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Abstract

The effects of inelastic collisions, decoherence and density dependent frequency
shift in a 1-D 88Sr optical lattice clock were investigated in this work. To study
these effects, the 88Sr atoms were first cooled down to ultra-cold temperatures and
were loaded into the optical lattice operated at “magic” wavelength. The forbidden
1S0→3P0 clock transition was enabled by applying a static homogeneous magnetic field
that admixes the 3P1 state to the 3P0 state and excited with a narrow linewidth laser.
Different laser sources required for this study were setup during this thesis work. By
observing the inelastic losses in a pure sample of 3P0 atoms and in a mixture of 1S0 and
3P0 atoms, the loss-rate coefficients and the corresponding inelastic scattering lengths
were determined. This study showed that the loss rate due to 3P0+

3P0 collisions is an
order of magnitude higher compared to the loss rate due to 1S0+

3P0 collisions. The
investigation of collisional broadening and damping of Rabi oscillations showed that
a dephasing mechanism in 88Sr proportional to the number of ground state atoms is
present. A master equation to describe the excitation dynamics was formulated.

The frequency shift due to collisions was measured using an interleaved stabiliza-
tion scheme. At low atom number, this density shift was described using mean field
approach. The effect of non-linear drifts of the clock laser reference cavity on the
performance of the locking to the clock transition was determined. It was shown that
this effect does not limit the uncertainty of our measurement at 10−16 level. Based on
the investigation carried on in this work, an uncertainty budget and a guideline for
the design of a 1D- optical lattice clock with bosonic 88Sr, which shows no degradation
due to collisions at the level of 10−16 was developed.

Keywords: Optical lattice, elastic and inelastic collisions, frequency shift, inter-
leaved stabilization.





Zusammenfassung

Die Auswirkungen inelastischer Stöße, Dekohärenz und dichteabhängiger Frequen-
zverschiebungen auf die Funktion einer optischen eindimensionalen 88Sr Gitteruhr
wurden in dieser Arbeit untersucht. Hierfür wurden die 88Sr Atome zunächst auf
ultra-kalte Temperaturen gekühlt und dann in ein optisches Gitter der “magischen”
Wellenlänge geladen. Der verbotene 1S0→3P0 Uhrenübergang wurde ermöglicht, in-
dem ein statisches Magnetfeld zur Beimischung des 3P1 Zusandes zum 3P0 Zustand an-
gelegt wurde, und mit einem schmalbandigen Laser abgefragt. Verschiedene, für diese
Studien benötigte Laserquellen wurden im Rahmen dieser Arbeit aufgebaut. Durch
die Beobachtung der inelastischen Verluste in einem reinen Ensemble aus Atomen
im 3P0 Zustand, sowie einer Mischung aus 1S0 und 3P0 Atomen, wurden die Verlus-
tratenkoeffizienten und die entsprechenden inelastischen Streulängen bestimmt. Diese
Messungen zeigen, dass die Verlustrate aufgrund von 3P0+

3P0 Stößen eine Größenord-
nung über der Verlustrate aufgrund von 1S0+

3P0 Stößen liegt. Die Untersuchung der
Stoßverbreitung und der Dämpfung von Rabi-Oszillationen zeigte, dass für 88Sr ein
Dephasierungs-Mechanismus proportional zur Anzahl der Atome im Grundzustand
vorliegt. Es wurde eine Gesamtgleichung aufgestellt um die Anregungsdynamik zu
beschreiben.

Die Frequenzänderung durch Stöße wurde in einem verschachtelten Stabilisierungs-
Schema gemessen. Die dichteabhängige Verschiebung bei geringer Atomzahl wurde
durch einen mean field-Ansatz beschrieben. Der Effekt der nichtlinearen Drift des
Uhrenlaserreferenzresonators auf die Stabilisierung auf den Uhrenübergang wurde bes-
timmt und es wurde gezeigt, dass diese Effekte die Genauigkeit der Messung auf
einem Niveau von 10−16 nicht limitieren. Aufbauend auf den Messungen dieser Ar-
beit wurde ein Unsicherheitsbudget und ein Leitfaden für das Design einer 1-D Git-
teruhr mit bosonischem 88Sr aufgestellt, die keine kollisionsbedingte Herabsetzung der
Genauigkeit in der Größenordnung von 10−16 zeigt.

Stichworte: Optisches Gitter, elastische und inealastische Stöße, Frequenzverschiebung,
verschachtelten Stabilisierung.
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Chapter 1

Introduction

This chapter gives a brief introduction to time standards and highlights the princi-
ple and advantages of a 1-D lattice clock based on optical transitions. The motivation
for studying collisions in a 88Sr 1-D lattice clock and the outline of the thesis are
presented.

1.1 History of time standards

Timekeeping has played a major role in the development of human civilization. A
device which is used for timekeeping is known as the Clock. A constant repetitive
process which could characterize the passage of time and the ability to measure this
process are the two fundamental requirements for timekeeping. As civilizations pro-
gressed, the need for measuring time at shorter intervals became an absolute necessity
due to the fact that an activity which occurred at a time scale shorter than the time
period of the timekeeping device could not be characterized. A time standard would
measure a certain number of cycles and define a unit of time as the time taken to
complete the number of cycles. Access to clocks by the public also lead to the need
for a precise and accurate Time Standard. In the absence of such a standard, each
individual would measure time as shown by his or her timekeeping device. This would
lead to confusion and disorder since no two timekeeping devices can be synchronous
for a long period of time. The need for measuring time more accurately lead to the
invention of pendulum clocks and quartz clocks which is based on the piezoelectric
property of quartz crystals. However, these time keeping devices suffered from imper-
fections. In mechanical clocks, thermal effects, drag due to presence of air and local
gravity influenced their performance since the time period of the pendulum clock is
proportional to the square root of its length and inversely proportional to the square
root of local gravity and in quartz clocks, oscillation frequency depends critically on its
size and shape and producing quartz crystals with precise dimensions posed limitation
on its reliability because no two crystals can have the exact dimensions, therefore the
oscillation frequency would be slightly different.

The idea of using atoms as a frequency standard was first proposed by Lord Kelvin
in 1879 [3]. Early 20th century witnessed a rapid development of theory and experi-
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mental investigations into the quantum nature of atoms. These investigations revealed
the experimental possibility to have time or frequency standard based on the discrete
energy levels of atoms. This new approach to define and determine time had an ad-
vantage, the difference between two energy levels of an atom is discrete, therefore the
atoms get excited only to an incident radiation that corresponds to a particular fre-
quency. The properties of a time standard is largely determined by the quality factor
of its reference transition which is given as Q = ν0/∆ν where ν0 is the number of cy-
cles (repetitive process) which is used to define a unit of time known as the “second”
and ∆ν is the observed width of the reference transition. The quality factor of atom
based microwave frequency standard (ν ∼ GHz) is more than the quartz oscillators
(ν ∼ MHz) by 3 orders of magnitude and the frequency standard based on atoms are
less sensitive to external perturbations compared to previous time standards.

Motivated by these advantages and the development of electronics capable of mak-
ing microwave measurements lead to the first atomic clock based on an ammonia
absorption line at 23870.1 MHz [4]. The demonstration of the first atomic clock and
its advancement due to the pioneering works [5, 6] opened up a window of possibilities.
Its impact was seen in every field of study where synchronization is important. Pre-
cision measurement of time increased the precision of scientific measurements which
provided a deeper insight. Improvement in accuracy with which time could be mea-
sured lead to the redefinition of the S.I. (Systéme international) unit “meter” which is
defined as [7] “The meter is the length of the path traveled by light in vacuum during
a time interval of 1/299 792 458 of a second”. Since the speed of light is constant, the
ultimate accuracy with which length is measured could be only limited by the accuracy
of the measurement of time.

Various experiments summarized in reference [8], established the superiority of
atomic clocks in accuracy and stability with respect to previous time standards. This
development demanded the need for a new definition of the time unit “second”. “Sec-
ond” got its new definition at the 13th General Conference for Weights and Measures
(CGPM) in the year 1967. The official S.I. unit of time is defined as [9]

“The second is the duration of 9 192 631 770 periods of the radiation
corresponding to the transition between the two hyperfine levels of the
ground state of the cesium 133 atom.”

Factors such as natural occurrence of only one stable isotope (133Cs), large hyperfine
splitting (9.192 GHz), relative ease to probe and detect made Cesium an attractive
element for the frequency standard when compared to other competitors like Hydrogen
maser or Rubidium based frequency standards [8].

Performance of an atomic clock is determined by two factors namely the accuracy
and stability. The agreement between the measured value of the transition frequency
and the unperturbed transition frequency gives us the accuracy of the clock. The
stability of the clock denotes the ability to constantly reproduce a frequency value.
Accuracy of an experiment can be improved by making sure that the perturbations
that would change the real value of the outcome of an experiment are eliminated or
minimized. The limitations in the accuracy of cesium clocks, as in any other atomic
clocks, comes from the fact that in order to measure the difference between two energy
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levels of an atom as accurately as possible, the energy levels should be kept free of
perturbation. In real world, such an ideal environment is not possible since there is
always interaction between the system and its environment. Imperfections such as
shifts the clock transition frequency due to cold collisions, quadratic Zeeman effect,
black-body radiation, second-order Doppler shift, frequency shift due to imperfect
electronics etc, limit the accuracy with which we can measure the atomic transition of
the Cesium clock.

Stability (or instability) of a frequency standard is usually expressed in terms of
Allan deviation [10]. When white frequency noise is the dominating noise contribution,
the Allan deviation is given by the equation [11]:

σy(τ) =
∆ν

ν0

η

S/N

√
Tc
τ

(1.1)

where ∆ν is the line-width of the atomic transition with frequency ν0. S/N is the
signal to noise ratio of a single cycle, the cycle time Tc is the time taken to complete
one interrogation, τ is the averaging time and η is a numerical factor in the order of
unity and it depends on the shape of the resonance line and the method of spectroscopy
used to determine the transition. From the equation, we find that the stability of an
atomic clock could be improved by having a higher quality factor ν0/∆ν and improving
S/N .

1.2 Atomic clocks based on optical transitions

The limitations posed by the cesium clocks motivated other ways to improve a
frequency standard. Timekeeping improved over time by increasing the quality factor,
so the next logical step would be to look for ways to increase the quality factor which
means to look for a frequency standard with higher frequency ν0 and lower line-width
∆ν. Optical transitions which are of hundreds of terahertz were the answer. Aided
by the new technology of femtosecond-laser frequency combs [12] to count the optical
frequencies, atomic clocks based on optical transitions, also known as optical clocks,
will offer a quality factor which is 4 orders of magnitude more than that of a Cesium
clock [13, 14].

Frequency standards based on single ions [15] attracted attention based on many
advantages. First, several ions have narrow transitions in the optical frequency regime
[16]. Single ions are only influenced by background collisions [17]. Since the ions are
trapped, one can have long interaction time. An ion confined, such that its motion
is smaller than the wavelength of the laser used to probe the clock transition (Lamb-
Dicke regime [18]), is free of first-order Doppler effect. Impressive performance of ion
clocks [19, 20, 21, 22, 23] has made them viable candidates for an optical frequency
standard.

In spite of ion clocks showing promise due to high Q factor and increased accuracy,
the stability of such clocks is limited due to the signal-to-noise ratio since only one
ion is probed. The idea of improving signal-to-noise ratio by probing an ensemble of
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Figure 1.1: Principle of an optical lattice clock.

neutral atoms [24, 25] lead to initial demonstrations of optical clocks based on laser-
cooled alkaline-earth atoms [26]. Using laser-cooled neutral atoms had two major
disadvantages, the clock transition was subjected to Doppler effect and the interaction
time was limited since the atoms were not confined, therefore limiting the accuracy
of the clock transition measurement. Confining the atoms in the Lamb-Dicke regime,
by using an optical lattice [27] at a specific “magic” wavelength where the ac Stark
shift of the clock transition states are same, one can measure the clock transition free
of perturbation due to trapping laser [28, 29]. This light-shift cancellation technique
opened doors to explore optical lattice clocks because it offers Doppler and ac Stark
shift free spectroscopy in addition to large ensemble of atoms (good S/N).

The schematic of a 1-D optical lattice clock as it was setup during this thesis work
is shown in fig. 1.1. The clock-laser which is used to probe the clock transition is pre-
stabilized to an ultra-stable optical cavity. The atoms trapped in the optical lattice
are probed by this laser and the absorption signal is detected by the detector. The
absorption signal is used to generate an error signal and this error signal is used by
the feedback electronics to stabilize the laser to the clock transition. The femtosecond
frequency comb is stabilized to the clock-laser, this would enable all the comb compo-
nents to have the same stability and accuracy as that of the laser enabling production
of stable clock signal in the microwave-frequency domain thus making it possible to
measure time.
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Optical clocks will find applications in areas where their improved accuracy and
stability can be used to measure other physical quantities. First obvious application
would be redefinition of “second”. Improved definition of other fundamental units
such as “meter” would be possible with the help of optical clocks. By using optical
clocks, fundamental physical theories and the constancy of fundamental constants
can be put to a more rigorous test [30, 31]. For example, the dependence on the
fine structure constant α varies from one transition to another [32]. By comparing
different clock transitions over time, one can investigate the temporal variation of α
[33, 34]. Assuming a constant value for the speed of light, the accuracy with which the
distance between two sites can be determined will be increased with the help of optical
clocks leading to application of such clocks in GPS (Global positioning system), Lunar
Ranging and space exploration resulting in improved navigation accuracy.

1.3 Motivation and outline of the thesis

The first demonstration of an optical lattice clock [35] was done on the 5s2 1S0→5s5p
3P0 transition of 87Sr with a natural linewidth of 1 mHz. Since then, various system-
atic experimental [36, 37, 38, 39] investigation and theoretical [40, 29, 41, 42] work
has provided strong argument for optical lattice clocks. The current uncertainty of
1-D 87Sr lattice clock is at the level of 1× 10−16 [14]. Fermionic isotope based lattice
clocks in principle, would be free of collisions. This is the primary motivation for
exploring fermionic optical lattice clocks. In the fermionic 87Sr the presence of nuclear
spin (I = 9/2) is responsible for hyperfine interaction allowing the 1S0→3P0 transi-
tion, however, external magnetic field and lattice light polarization effects perturbs
1S0→3P0 clock transition. The hyperfine interaction also complicates the laser cooling
process by requirement of additional laser [43]. Due to these reasons bosonic isotopes
which have zero nuclear spin were explored.

In bosonic isotopes, the 1S0→3P0 transition can either be probed by three-photon
resonances [44] or by applying a static homogeneous magnetic field [45]. Bosonic 88Sr
isotope have higher natural abundance, therefore one can have higher signal to noise
ratio but the presence of s-wave collisions in 88Sr leads to clock frequency shifts. These
collisions among bosonic atoms can be suppressed if a 3-D lattice is used with one atom
per site occupancy [46] but it would mean increased complexity in the experimental
setup. Therefore, by understanding the collisional effects in a 1-D lattice, one can
determine how it affects the accuracy of the clock transition of 88Sr. A 1-D lattice clock
based on 88Sr can potentially offer higher stability and less complicated experimental
setup compared to a 1-D 87Sr clock, thus finding applications as transportable setups
which could be operated in space [47]. At the time of starting this work, 1-D lattice
clocks based on 88Sr were not explored in depth. Shift coefficients for quadratic Zeeman
effect, ac Stark shift of the probe laser and blackbody radiation were theoretically
estimated for 88Sr clock transition [45, 48] but experiments were not carried out to
observe and measure the collisional shift. In order to compare a 1-D lattice clock
based on 88Sr with the best lattice clock to this date [14], collisional shift should be
measured at an uncertainty level of 10−16.
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Studying the prospects of using bosonic 88Sr atoms in a 1-D optical lattice clock for
an optical frequency standard, with the focus on investigating collisions, is the aim of
this thesis. The work presented in this thesis investigates collision induced effects: (a)
broadening of the clock transition due to collisions, (b) losses due to inelastic collisions
between, both ground-excited (1S0+

3P0) and excited-excited (3P0+
3P0) state atoms

of the clock transition, and (c) frequency shift of the clock transition due to collisions.
The following chapter will cover the level structure relevant to the laser cooling

of 88Sr and explain the magnetic field induced clock transition. The advantages of a
“magic” wavelength 1-D lattice confinement in the Lamb-Dicke regime and how one can
extract different parameters like trap radius, atom temperature by doing spectroscopy
on the clock transition will be explained.

In order to study the collisional effects, the 88Sr atoms are first cooled down to
ultra-cold temperatures and are loaded into the optical lattice operating at “magic”
wavelength. Lasers required for two-stage cooling, repumping and optical trapping
were setup during this thesis work. In chapter 3, the vacuum chamber, different light
sources (461 nm, 689 nm, 679 nm, 707 nm, 813 nm) that were used for cooling,
repumping and trapping will be explained. The atoms are first cooled down to few
mK using 1S0→1P1 strong transition. Further cooling is made possible using the
intercombination 1S0→3P1 transition. Optimization of atom number and temperature
during the cooling stages and simultaneous loading into the optical lattice will be
described in this chapter. The 698 nm laser used for 1S0→3P0 spectroscopy is explained
and the clock transition detection scheme and our observation of sideband spectra in
the Lamb-Dicke regime will be discussed in detail.

Chapters 4 and 5 will describe the investigation of collisional losses and density-
dependent frequency shifts in a 1-D lattice clock based on 88Sr. The inelastic losses
due to collisions between atoms were investigated by observing temporal variation of
atom number in the lattice for different initial atom numbers and the loss rates were
determined. By varying the atoms in the lattice and observing the clock transition
and Rabi oscillations, the decoherence effects and broadening of the clock transition
were studied and in the process an additional dephasing due to elastic collisions was
identified. Finally, by using the technique of interleaved stabilization, the clock fre-
quency shift due to collisions was determined. The method of alternating stabilization
that was used to find the density-dependent frequency shift is explained and possible
sources of errors that may affect the measurements using alternating stabilization has
been studied in detail. Having quantified the collision effects, operational parameters
under which a 1-D optical lattice clock with 88Sr can be operated without degradation
due to collisions at a fractional uncertainty level of 10−16 and a preliminary uncertainty
budget will be presented.

Chapter 6 will conclude the thesis by summarizing the findings of this work and
its impact.
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Chapter 2

Trapping and probing of 88Sr atoms

In this chapter, the transitions available for cooling 88Sr atoms down to ultra-cold
temperatures is described. The advantages of spectroscopy in the Lamb-Dicke regime
are explained in section 2.2. Sections 2.3 and 2.4 discusses the trapping of atoms in an
optical lattice and the necessity for using “magic” wavelength. The chapter concludes
by explaining in detail magnetic field induced spectroscopy which is used in this work
to induce the forbidden 1S0→3P0 clock transition.

2.1 Level structure of Strontium

Strontium is an element of Group 2 of the periodic table. It has two valence
electrons which couple in two ways, anti-parallel to result in spin singlet state (S = 0)
and parallel to result in spin triplet state (S = 1). The ground state is 1S0 with J = 0.
The strontium level structure is shown in fig. 2.1. The transition to the first excited
singlet P state (1P1) is dipole allowed transition with an excited state lifetime of 5 ns.
The 1S0→1P1 strong transition allows to laser cool the atoms down to a few mK. Since
the ground state is non-degenerate, sub-Doppler cooling is not possible for 88Sr. Atoms
in the 1P1 state can decay to the lower 1D2 state and could be lost from the trap by
ending up in the metastable 3P2 state and atoms decaying into the 3P1 state would
decay back to the ground state. The decay to the 1D2 state is small (3.85(1.47)× 103)
[49], so a considerable number of photons can be scattered to cool the atoms using
the 1S0→1P1 transition. Atoms decaying to the 3P2 could be brought back to ground
state by using 679 nm and 707 nm repumping lasers (see fig. 2.1) to excite the atoms
in the 3P2 and 3P0 states to 3S1 state which would then decay back to ground state
via 3P1.

Selection rules tell that the electric dipole operator (E1) does not allow ∆S = ±1
transitions, therefore no dipole transition is possible between spin singlet and spin
triplet states. This rule is true for atoms with low mass where the Russell-Saunders
LS-coupling is valid [50]. But for heavier atoms like strontium, spin-orbit interaction
results in the LS-coupling breaking down in which case a small amount of 1P1 state
mixes with the 3P1 thus allowing the ∆S = ±1 transition. Such weak dipole transitions
are called intercombination lines and they are much weaker than the strong ∆S = 0
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Figure 2.1: Partial strontium energy level scheme. Γ denotes the spontaneous decay
rate.

transitions. The intercombination lines, due to their narrow linewidths can be used
to further cool the atoms already cooled by the 1S0→1P1 transition. In this work, the
1S0→3P1 intercombination transition at 689 nm was used to cool the atoms down to
a few µK. This second stage cooling is here called as the “red MOT”.

Strontium occurs in four stable isotopes in nature, they are 88Sr, 87Sr, 86Sr and 84Sr.
Their natural abundance [51] is given in Table 2.1. Table 2.1 shows among bosons,
highest natural abundance is for 88Sr and only one fermionic isotope is present with
7.02% natural abundance. Due to presence of only one fermionic isotope and high
natural abundance for the bosonic 88Sr isotope, most of the lattice clock experiments
based on strontium focus on these two isotopes. The 88Sr isotope has a nuclear spin
I = 0. The 87Sr isotope has a nuclear spin I = 9/2. The presence of the nuclear
spin in 87Sr results in hyperfine interaction. This hyperfine interaction mixes the 3P0

state with 3P1 state resulting in 3P0 acquiring a weak dipole coupling with the ground
state 1S0. This dipole coupling would allow the 1S0→3P0 transition in 87Sr and the
line-width of the transition is ∼ 1 mHz making it suitable for an optical frequency
standard. Table 2.2 lists the characteristic data of the atomic transitions relevant to
laser cooling of strontium.

8



Atomic mass number I Natural abundance(%)
84 0 0.56
86 0 9.89
87 9/2 7.02
88 0 82.56

Table 2.1: Isotopes of Strontium.

Characteristic data 1S0→1P1
1S0→3P1

Wavelength: λ (nm) 461 689

Lifetime of upper state: τ (ns) 5.00 21322

Linewidth: γ = Γ
2π

(MHz) 31.83 0.00746

Saturation intensity: Is = πhc
λ3τ

· 2Ji+1
2Ju+1

(mW/cm2) 42.50 0.00298

Doppler temperature: TD = h
4πkBτ

(µK) 764.17 0.18

Table 2.2: Characteristic data for cooling transitions used in this thesis.

2.2 Spectroscopy in Lamb-Dicke regime

Interrogation of ultra-cold atoms in free space is subjected to Doppler shift ωD and
recoil shift ωr. The angular frequency ωabs of the light absorbed by a moving atom
with velocity v is given as [52]

ωabs = ω0 + ωD + ωr (2.1)

where ωD = k · v is the first-order Doppler frequency shift with k being the wave
vector of the incident radiation, ω0 is the transition frequency of the atom at rest
and ωr = h̄k2

2M
is the recoil frequency. While the recoil shift is constant for a given

transition, Doppler shifts depend on the velocity distribution of the atoms. These
shifts limit the experimental accuracy of the transition we want to probe. The way
to overcome this problem is to restrict the motion of the atoms. If the atoms are
confined in a harmonic potential, they would execute periodic sinusoidal motion at an
oscillation frequency ωz, the displacement of the atoms is given as z(t) = zmax sin(ωzt)
where zmax is the maximum displacement. When a laser tuned to the clock transition
frequency ν0 probes an atom confined in such a harmonic potential, the transition
frequency as seen by the atom will be modulated by the first-order Doppler shift at
trap frequency ωz [53]. By using the classical picture of a moving atom, the radiation
field experienced by the atom can be written as [54]

E = E0e
i(ω0t−kzmax sin(ωzt)) = E0e

iω0t

[
+∞∑

m=−∞
(−1)mJm(kzmax)e

−imωzt

]
. (2.2)
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In eq. 2.2, the amplitude of the spectral component named m is given by the Bessel
function Jm and ω0 = 2πν0. The Doppler-free component of the spectrum (m = 0)
has an amplitude which is proportional to J0(2πzmax/λ)2. The spectrum absorbed by
the moving atom is discrete and it is given as

ν±m = ν0 ±m
ωz
2π

= ν0

(
1±m

v

ηc

)
(2.3)

where v is the peak velocity of the atom inside the trap and η = 2πzmax/λ. In eq. 2.3
we see that if η is small, the side spectral components (m 6= 0) also known as sidebands,
will be separated from ν0. This would mean that the absorbed radiation of the atom
confined in the harmonic potential would be same as in the case when the atom is at
rest provided the atom interacts only with the central peak [53]. The parameter η is
known as the Lamb-Dicke parameter.

The above classical picture gives us an intuitive understanding of absorption spec-
tra in the Lamb-Dicke regime, however, it does not take into account photon recoil
effects. In order to have a complete understanding, the atom-laser interaction and the
motion of the atoms in the harmonic trap is treated quantum mechanically [52]. The
population of the vibrational levels in a 1-D harmonic trap is characterized by the
probability distribution P (n) where n characterizes the energy levels of the harmonic
oscillator with En = h̄ωz(n+ 1

2
). When a laser of frequency ω traveling along the z axis

given by a plane wave eikz probes the atomic transition of frequency ω0 and linewidth
Γ, the strength of the absorption signal for the atoms in a 1D harmonic potential
depends on the probability distribution P (n) and the overlap of the wavefunction of
the atoms in the initial and final motional states (Franck-Condon factor). The signal
is given as [55, 56, 52]

S(ω) ∝
∑
nf ,ni

P (ni)
|〈nf |eikz|ni〉|2

1 + 4
Γ2 (ω0 − ω + (Enf

− Eni
)/h̄)2

(2.4)

where |ni〉, |nf〉 are the initial and final motional states of the atom in the harmonic
potential. If 〈kz〉 < 1 we can expand the matrix element of eq. 2.4 to first order as

〈nf |eikz|ni〉 ≈ 〈nf |1|ni〉+ 〈nf |ikz|ni〉 = δnfni
+ i

2πz0

λ
(
√
ni + 1δni+1,nf

+
√
niδni−1,nf

)

(2.5)
where the position operator is given as z = z0(a

† + a), a†and a being the raising and
lowering operators. z0 =

√
h̄/Mωz is the characteristic oscillator length. Squaring the

matrix element, we get

Anfni
≡ |〈nf |eikz|ni〉|2 ≈ δnfni

+ η2((ni + 1)δni+1,nf
+ niδni−1,nf

) (2.6)

where η = 2πz0/λ is the Lamb-Dicke parameter. The Lamb-Dicke parameter can also
be given in terms of recoil-frequency and oscillation frequency as

η =

√
ωr
ωz
. (2.7)
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Eqs. 2.4 and 2.6 gives us insight into the absorption spectrum of an atom trapped in
a harmonic potential in the Lamb-Dicke regime (η < 1). Consider the case of an atom
with internal clock states |g〉 and |e〉 separated by frequency ω0. The atom will absorb
the incident radiation if the radiation frequency (ω) is equal to the sum of the frequency
difference between the internal states (ω0) and the frequency difference between the
motional states (Enf

−Eni
)/h̄. This resonance condition (ω = ω0 + (Enf

−Eni
)/h̄) is

given in the denominator of eq. 2.4. The three cases in which absorption will occur
are given in eq. 2.6. The cases are discussed below

• The first term will be non-zero and the last two terms will be zero when the
change in motional quantum number is zero (ni = nf ). When the atom is
trapped in the “magic” wavelength, the vibrational frequencies of ground and
excited states are same. In this case, the atom will change its state to |ni〉 from
|nf〉 when ω = ω0. The transition frequency ω0 in this case is also known as the
carrier frequency.

• δni+1,nf
is non-zero when nf−ni = 1, in this case, the atoms will absorb radiation

when ω = ω0 + ωz. Since this sideband frequency is higher than the carrier
frequency, it is called the blue-sideband.

• δni−1,nf
is non-zero when the motional quantum number changes by -1. The

atoms will absorb radiation when ω = ω0−ωz. This sideband frequency is lower
than the carrier frequency and therefore is called the red-sideband. The red-
sideband feature will be absent if all the atoms are in the motional ground state
ni = 0.

The matrix element in eq. 2.4 for general values of k and z0 is [52]

〈nf |eikz|ni〉 = e−
1
2
(kz0)2

√
n<!

(n< + ∆n)!
(ikz0)

∆nL∆n
n<

[(kz0)
2] (2.8)

where n< is the lower value of the initial and final motional quantum number,
∆n = |nf − ni| (difference between the motional quantum numbers) and L∆n

n<
[(kz0)

2]
is the generalized Laguerre polynomial. From eq. 2.6 we see that in the Lamb-Dicke
regime, the absorption signal of the carrier transition is not affected by the initial and
final motional states but the sideband signals depend on the initial motional state. Also
the position of the sidebands and the carrier does not depend on the initial motional
state. However, if the trapping potential experienced by the ground and excited states
is not same then the motional energy levels of the ground and excited states for the
same motional quantum number will not be equal (Enf

− Eni
6= 0 for nf = ni), the

carrier transition in this case will depend on the motional states. Therefore, it is
important to trap the atoms at a wavelength in which the ground and the excited
states experience the same potential so that the carrier transition is not affected by
the trap. Section 2.4 explains how to calculate the this “magic”wavelength. Since the
recoil frequency ωr for a given transition is constant, eq. 2.7 shows that the Lamb-
Dicke criterion (η < 1) improves if the atom is more more tightly bound to the lattice
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potential. Therefore, when the atom is in the Lamb-Dicke regime (η ¿ 1), the photon
recoil momentum is taken by the system consisting of atom and confining potential
[52, 18].

So far, we assumed that the atom is trapped in a harmonic potential which depends
on position z as z2. However, the trap potential which is used to confine the atoms
depends on position as cos2(kz), this difference results in trap anharmonicity. Trap
anharmonicity leads to modification of the energy of the motional states of the trap
[57, 58, 55] and its effect becomes noticeable for higher motional states, but as long as
atoms are trapped at magic wavelength, the change in the ground and excited trapping
potentials will be same and the net effect of the trap anharmonicity on the carrier
transition will be zero. Since the energy difference between the motional trap states
depends on the depth of the potential due to anharmonicity, the sideband frequency
will therefore depend on the motional state of the atom.

To see the effect of radial motion, we note that due to the Gaussian profile of
the trapping beam, the atoms are less confined in the radial direction. As the atoms
move along the radial direction, the intensity and therefore the axial trap frequency
change depending on the position of the atom along the radial direction. The change
in axial trap frequency does not influence the carrier transition when the atoms are
trapped in the magic wavelength but the sideband frequency position depends on the
variation of intensity along the radial direction. This leads to asymmetric broadening
of the sidebands. Since the radial temperature determines the extent to which atoms
can move in the harmonic potential, the sideband signal and the degree of asymmetry
depend on the radial temperature of the atoms and trap parameters (intensity, waist
radius and wavelength) [55].

In addition to axial sideband frequencies present due to axial motion, radial motion
results in radial sidebands. These radial sidebands which can be calculated from
eq. 2.16 are present in our case at 390 Hz from the carrier transition which is much
closer than the axial sideband frequencies. However, they can be suppressed when
the probe beam is aligned orthogonal to the radial motion of the atoms. Detailed
investigation of the effects of atom temperature, trap parameters, axial and radial
motion on the Rabi frequency for the carrier transition is given in reference [55]. The
study suggests that in order to have a uniform Rabi oscillation, the confinement of the
atoms along the radial direction must be strong and all the atoms must occupy the
lowest axial motional state.

The situations considered till now treated each potential well separately, this as-
sumption is strictly true for deep potential wells where one can neglect tunneling of
atoms from one well to another. Before ending this session we note that the finite
periodic cos2(kz) potential, as in the case of optical lattice will have a band structure
with finite energy bandwidths for the quantum states since each potential well cannot
be treated separately. The band structure and the finite bandwidth causes shift in the
clock transition frequency and line broadening. These effects can be viewed as residual
Doppler and recoil effects due to quantum tunneling and they do not affect the clock
frequency at a fractional inaccuracy level of 10−17 if the potential depth is more than
Umax = 70Er where Er is the recoil energy due to lattice photon [59]. For an optical
lattice aligned vertically, gravity causes adjacent sites to be shifted in energy. This re-
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sults in lifting the degeneracy between adjacent sites, therefore suppressing site-to-site
tunneling. For vertically aligned lattices, a potential depth of Umax = 5Er can be used
for the same fractional inaccuracy level [59].

2.3 Confinement of atoms in 1-D optical lattice

The confinement of neutral atoms can be achieved by using optical dipole traps
[60]. The basic equations for the dipole potential are derived by considering the atom
as a simple oscillator which is subjected to a classical radiation field. A laser beam
with electric field E(t) and angular frequency ω interacting with an atom would induce
a dipole moment d in the atom. The oscillation frequency of dipole moment is same
as that of the electric field and the relation between the induced dipole moment and
the electric field is given as

d = α(ω)E (2.9)

where α(ω) is known as the complex polarizability. It describes how easily the electric
field induces the dipole moment as a function of the frequency. The potential energy
of the induced dipole is [60]

Udip = − 1

2ε0c
Re(α)I (2.10)

where I = ε0c|E0|2 is the intensity for a given field amplitude E0. The corresponding
force Fdip is given by the potential gradient −∇Udip(r) ∝ ∇I(r). Thus the dipole force
is proportional to the gradient of the intensity. The imaginary part of the complex
polarizability Im(α) characterizes the power absorbed by the atom Pabs, this power is
re-emitted as dipole radiation. The scattering rate of the photons re-emitted as dipole
radiation is

Γsc(r) =
Pabs

h̄ω
=

1

h̄ε0c
Im(α)I(r). (2.11)

In a semiclassical approach where the atom is treated as a two level system, the dipole
potential and the scattering rate are given as [60]

Udip = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r) (2.12)

Γsc =
3πc2

2h̄ω3
0

(
ω

ω0

)3 (
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(r) (2.13)

where Γ is the dipole-transition natural linewidth and ω0 is the dipole-transition an-
gular frequency. Eqs. 2.12 and 2.13 give us insight into the forces that an atom
experiences in a dipole potential. When ∆ = ω − ω0 < 0 (red-detuning), the dipole
potential is negative, therefore the potential minima are found at positions with max-
imum intensity and when ∆ = ω − ω0 > 0 (blue-detuning), the potential minima are
found at positions with minimum intensity. Depending on the sign of ∆, a trap can
be labeled either as a red-detuned trap or a blue-detuned trap.

The simplest way to create an optical dipole trap is to use a focused Gaussian
beam with frequency tuned away from the atomic resonance frequency to keep the
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scattering rate Γsc low. The intensity profile of a Gaussian laser beam traveling in the
z axis is given as

I(r, z) =
2P

πw2(z)
e
−2r2

w(z)2 (2.14)

where w(z) is the 1/e2 radius of the Gaussian beam and r is the radial distance
from the beam center. The axial profile of the Gaussian beam is given as w(z) =
w0(1 + (z/zR)2)1/2 with zR = πw2

0/λ being the Rayleigh range, λ is the wavelength of
the trapping beam and P is the total laser power. The peak intensity of the beam is
given as I0 = 2P/πw2

0. The potential depth is increased by a factor of four if the beam
is retroreflected, forming an optical lattice with a period λ/2. The lattice potential is
then given by the expression [61]

Ulat(r, z) = 4Umaxe
−2r2

w(z)2 cos2(2πz/λ) (2.15)

where Umax(z) = Pα/(πcε0w(z)2). At the center of the intensity distribution (r ≈ 0)
and the point of maximum intensity (z ≈ 0), the axial (νz) and radial (νr) frequencies
can be obtained by approximating the potential to a harmonic trap. They are

νz =
1

2π

√
1

M

(
δ2U(r, z)

δz2

)

r,z=0

=
1

2πw0λ

√
32παP

cε0M

νr =
1

2π

√
1

M

(
δ2U(r, z)

δr2

)

r,z=0

=
1

2πw2
0

√
16αP

cπε0M
.

(2.16)
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Figure 2.2: An optical lattice simulated by using eq. 2.15. The period of the lattice is
λ/2, where λ is the wavelength of the trapping laser light.
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This section is focused on how neutral atoms can be trapped in a 1-D optical lattice.
The lattice wavelength used in our experiment is λ = 813 nm (red-detuned lattice) for
reasons explained in the next section. The calculated potential of an optical lattice
with a waist radius of 30 µm, 300 mW of power at a wavelength of 813 nm is shown
in fig. 2.2. Eqs. 2.15 and 2.16 give the essential parameters needed to characterize
an optical lattice. Atoms trapped in the red-detuned lattice will accumulate at the
points of highest intensity. In the potential wells near the center of the trap z ≈ r ≈ 0,
the region can be treated like a harmonic oscillator potential and therefore in the
Lamb-Dicke regime, recoil-free and Doppler-free spectroscopy on the clock transition
can be performed. However, the energy states of the atoms trapped in such a lattice in
general will be shifted differently by the ac Stark effect. For a potential well with the
above parameters, the shifts are in order of few Hz/nm. How this shift would influence
the clock transition and the way to circumvent this problem is discussed in the next
section.

2.4 The ac Stark shift free optical lattice

When an atom interacts with a laser, each of its atomic energy level i is shifted
by the dipole potential. For an atom with unperturbed clock transition frequency ν0

trapped in an optical lattice with electric field amplitude E0, the perturbed (shifted)
energy is given as [29]

hν = hν0 − 1

4
∆α(ê, ω)E2 − 1

64
∆γ(ê, ω)E4 − . . . (2.17)

where ê is the unit polarization vector of the electric field, ∆α(ê, ω) and ∆γ(ê, ω) are
the differences between ac polarizabilities and hyperpolarizabilities of the clock states.
The second term in eq. 2.17 is proportional to laser intensity I. The dependence of
∆α on ω offers the possibility to find a frequency of the lattice laser such that the
ac polarizability of the clock states are same. These shifts in energy levels for the
clock states would be equal and we can do perturbation free spectroscopy. Since the
clock transition is using J = 0 states (1S0→3P0), there is no dependence on electric
field orientation with respect to quantization axis, resulting in a scalar light shift [28].
The effect of the second term in eq. 2.17 leading to hyperpolarizability effect will be
discussed later in the thesis.

The ac polarizability of an atomic state i depends on its interaction with excited
states. In second-order perturbation, it is given as the sum of the dipole interactions
between state i and excited state k [62]

αi(ω) =
2

h̄

∑

k

ωik
(ω2

ik − ω2)
| 〈φk|d|φi〉 |2. (2.18)

The dipole matrix elements dik = 〈φk|d|φi〉 for both clock states are required to cal-
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culate the polarizability. The matrix elements dik are given as [63]

|dik|2 = (2Ji + 1)(2Lk + 1)(2Jk + 1)

{
Li Ji Si
Jk Lk 1

}2 (
Ji 1 Jk
−mi p mk

)2

||dLiLk
||2

(2.19)
where the curly brackets represent the 6 − j symbol and Wigner 3 − j symbol is the
term in round brackets. ||dLiLk

|| is the reduced dipole moment between the states |Li〉
and |Lk〉. The dipole-transition spontaneous decay rate is related to dik as

Γik =
ω3
ik

3πε0h̄c3
|dik|2. (2.20)

By knowing ωik the frequency ω at which the ac polarizability is the same for both
clock states can be determined. The value at which the two polarizabilities are equal
is called the “magic wavelength”. The magic wavelength λL for the Sr 1S0→3P0 clock
transition is ≈ 813 nm [29]. A deviation from the magic wavelength would result in a
clock transition frequency shift of 8(2) (Hz/nm)/ER [55], where ER is the recoil energy
associated with the absorption or emission of a photon from the optical lattice.

2.5 Forbidden 1S0→3P0 clock transition in 88Sr

The ∆S = 1 and J = 0 → 0 nature of 1S0→3P0 clock transition in bosonic 88Sr
makes it doubly forbidden. Ideas using two photon electromagnetically induced trans-
parency (EIT) [64] and three photon EIT [44] were proposed to probe the 1S0→3P0

transition. These techniques however require extra laser sources which add to the
complexity of the experimental setup. A simple method to excite the clock transition
was proposed by Taichenachev et al. [45]. In this method, a weak static homoge-
neous magnetic field is used to mix the 3P1 state to the 3P0 state, therefore allowing
single-photon excitation of the 1S0→3P0 clock transition. This magnetically induced
spectroscopy (MIS) method is simple and could be implemented without any major
modification or addition to the existing experimental setup that is used to cool and
trap 88Sr. Since we use the static field method to excite the clock transition, in the
following this method is described in more detail [1, 45].

2.5.1 Magnetic field induced transition

When an atom is placed in a static homogeneous magnetic field, its total Hamilto-
nian is Htot = H0 + Hper where H0 is the unperturbed Hamiltonian of the atom and
Hper = µ ·B is the perturbation due to the static magnetic field. The total magnetic
moment is µ = µB(gLL + gSS) where gL = 1,gS ≈ 2 and µB is the Bohr magneton. If
one chooses the B field to be in the z direction, then Hper ≈ µB(Lz + 2Sz)|B|. The
first order correction to the |3P0〉 state is

|3P ′
0〉 = |3P0〉+

∑

ψ

〈ψ|Hper|3P0〉
h̄∆ψ

|ψ〉 (2.21)
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Figure 2.3: Schematic of the magnetic field induced spectroscopy of the 1S0→3P0 clock
transition [1].

where the summation is performed all over possible states and ∆ψ is the frequency
difference between states |ψ〉 and 3P0 state (∆ψ = ωψ−ω3P0

). The state |3P1,mj = 0〉
contributes more than 90% to the sum in eq. 2.21. By decomposing the Russell-
Saunders states into eigenstates of |Lz, Sz〉, one gets [1]

|3P1,mj = 0〉 =
√

1/2|1,−1〉 −
√

1/2| − 1, 1〉 (2.22)

|3P0,mj = 0〉 =
√

1/3|1,−1〉 −
√

1/3|0, 0〉+
√

1/3| − 1, 1〉. (2.23)

The above equations lead to

〈3P1|µ ·B|3P0〉 = h̄ΩB ≈
√

2

3
µB|B|. (2.24)

Therefore the first order perturbed |3P0〉 state in the presence of a static magnetic field
is given as

|3P ′
0〉 = |3P0〉+

ΩB

∆32

|3P1,mj = 0〉 (2.25)

where ∆32 is the fine structure splitting between |3P1〉 state and |3P0〉 state as shown
in fig. 2.3. If the Rabi frequency of the intercombination transition 1S0↔3P1 is given
by ΩL, then the Rabi frequency of the 1S0↔3P

′
0 transition is

Ω =

〈
1S0|d · E|3P ′

0

〉

h̄
=

ΩB

∆32

〈1S0|d · E|3P1〉
h̄

=
ΩLΩB

∆32

(2.26)

where the dipole matrix operator is given by d · E. Due to mixture of states 3P1 and
3P0, the perturbed 3P

′
0 state has a finite natural linewidth given as [45]

γ
′
= γ

Ω2
B

∆2
32

(2.27)
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where γ is the natural linewidth of the 1S0↔3P1 transition. In the presence of the
magnetic field, the excited state experiences a second order Zeeman shift ∆B which is

∆B =
Ω2
B

∆32

. (2.28)

The interaction of the laser field with the 1S0↔3P0 clock transition will also result in
optical Stark shift, this shift is given as [45]

∆L = − Ω2
L

4∆32

. (2.29)

Using eq. 2.28 and eq. 2.29, we can express the Rabi frequency of the clock transition
as Ω = 2

√
|∆L∆B|.

In order to express the Rabi frequency of the clock transition in terms of experi-
mentally measurable parameters, eq. 2.26 is written in a different form by considering
the vector nature of the applied fields as

Ω =
〈‖d‖〉 〈‖µ‖〉 (E ·B)

h̄2∆32

(2.30)

where 〈‖d‖〉 is the reduced matrix element of the electric dipole moment of the
1S0↔3P1 transition and 〈‖µ‖〉 is the reduced matrix element of the magnetic dipole
moment of the 3P1↔3P0 transition. By combining the electric and magnetic dipole
matrix elements into one constant α, one can rewrite eq. 2.30 as

Ω = α
√
I|B| cos θ (2.31)

where θ is the angle between the B and E and I is the light intensity. The second
order Zeeman shift and the optical Stark shift can also be written as ∆B = β|B|2 and
∆L = κI. This parameterization results in rewriting the Rabi frequency equation as

Ω = ξ
√
|∆B∆L| cos θ (2.32)

where ξ ≡ α/
√
βκ is a dimensionless quality factor for the clock transition because

it relates the Rabi frequency induced by the MIS to the corresponding induced field
shifts. Table 2.3 [45] shows the MIS scheme parameters for the 88Sr 1S0↔3P0 clock
transition.

γ ∆32 α β κ ξ

[kHz] [THz] [Hz/(T
√

mW/cm2)] [MHz/T2] [mHz/(mW/cm2)]

7 5.6 198 -23.3 -18 0.30

Table 2.3: Relevant parameters for the 1S0↔3P0 MIS scheme of 88Sr

This chapter started by covering energy level structure of strontium relevant to
this thesis and listed main characteristics of the transitions used in the experiment.
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Confining the atoms in a 1-D optical lattice leading to recoil-free and Doppler-free spec-
troscopy in the Lamb-Dicke regime and eliminating the ac Stark shift using “magic”
wavelength was explained. The chapter has come to a conclusion with the theory of
magnetic field induced transition. The next chapter deals with the experimental setup
and describes cooling of 88Sr atoms down to ultra-cold temperatures, loading them
into an optical lattice and doing spectroscopy in the clock transition.
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Chapter 3

Laser cooling and clock
spectroscopy of 88Sr

In this chapter, the experimental setup including the different laser sources and the
spectroscopy on the clock transition are presented. Section 3.1 describes our vacuum
setup and the coils which are used for quadrupole and Helmholtz field configurations.
The 461 nm laser setup and the laser cooling of 88Sr atoms down to a few millikelvin
are discussed in section 3.2 along with a subsection on repumping lasers setup. Further
cooling of the atoms down to few microkelvin temperatures, characterization of atom
number and temperature with respect to cooling beam intensities and the 689 nm laser
system is described in section 3.3. Sections 3.4 and 3.5 describe our lattice laser setup
and trap radius determination using axial sloshing of the atoms. The 689 nm laser
which is used for spectroscopy on the clock transition is discussed in section 3.6. The
chapter concludes with section 3.7 in which schemes for detecting the clock transition,
the observation of clock transition along with the sidebands and initial measurements
hinting strong collisional losses and broadening are explained.

3.1 The vacuum chamber

Heart of the experiment, the vacuum chamber, is a spherical chamber made of V2A
stainless steel. It has 33 view ports, five viewports with 101.6 mm O.D1 (DN 90), one
view-port with 152.4 mm O.D (DN 100), two viewports with 19.0 mm O.D (DN 10)
and the rest of the view ports have 41.3 mm O.D (DN 32). The present experimental
setup uses the large viewports for cooling and trapping of the atoms and the smaller
ones are used for CCD-camera, fluorescence signal detection, repumping lasers and
Zeeman slowing. A 400 l/s ion getter pump maintains a pressure of 5× 10−10 mbar in
the chamber.

Fig. 3.1 shows the schematic diagram of the top view of the chamber, the alignment
of blue, red MOT beams and other beams of importance to the experiment. The source
for the strontium atoms is an oven filled with strontium granules. The oven is a 35 mm
long stainless steel cylinder and has an inner diameter of 4 mm. The oven has few tens

1O.D = Outer diameter
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Figure 3.1: Top view of the experiment chamber. The blue MOT beams are collectively
labeled as B and the red MOT beams as R. D : Detection beam for absorption imaging,
Z : Zeeman slower beam, M : 2-D molasses beams, r : Repump beam, L: Lattice beam,
C : Quadrupole/Helmholtz coils, PMT : Photomultiplier tube for 689 nm fluorescence
detection, PD : Photodiode with amplifier for 461 nm fluorescence detection and l :
Lens (f = 80 mm) used to collimate the atomic fluorescence. Dotted line shows the
deflection of the atoms coming out of the Zeeman slower to the MOT center.
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of capillaries (diameter ∼ 0.5 mm) to have good atomic flux and highly collimated
atomic beam. The oven is placed inside another cylinder made of ceramic. This
ceramic cylinder is surrounded by heating wire which heats the oven to a temperature
of 480◦C during the experiment. The oven is kept in a vacuum chamber at a pressure
of < 10−7 mbar. The oven chamber separated from the main chamber by a valve and
a pinhole acting as a differential pumping stage. This separation prevents breaking of
the vacuum in the main chamber every time the oven needs to be refilled. A mechanical
lever-like stop is used to manually allow or block the strontium atoms coming out of
the oven.

The atoms coming out of the oven are decelerated using a Zeeman slower [65]
operated on the 1S0→1P1 transition. The Zeeman slower is 38 cm long. A 4 A current
through the Zeeman coil produces a maximum magnetic field Bmax = 41 mT. An
additional coil with 10 A current flowing is used along with the Zeeman slower at
the end to reverse the magnetic field and have the field return to zero. Atoms from
the oven are decelerated to a velocity of 50 m/s from their initial average velocity of
500 m/s. Both coils of the Zeeman slower are water cooled. Atoms decelerated in the
Zeeman slower are collimated and deflected by an angle of 15◦ by two retro-reflected
independent laser beams thus forming 2-D optical molasses [66]. The deflection of the
slowed atoms by 15◦ prevents the cooled atoms from being exposed to atoms that were
not slowed in the Zeeman slower and also from black body radiation from the oven.

Figure 3.2: Circuit schematic of quadrupole/Helmholtz coils. The blue, red and green
arrows show the current flow for the blue MOT quadrupole field, red MOT quadrupole
field and Helmholtz field. The switches (S) and switchable current-sinks (CS) are
controlled by TTL.
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The pair of coils used for a creating magnetic field is located inside the vacuum
chamber. The coils consists of 49 windings (7 radial and 7 axial) each, they are water
cooled and Kapton coated. The coils are used to create Helmholtz field and quadrupole
field for blue and red MOT. The coil configuration is shown in fig. 3.2. In fig. 3.2 the
coils are named Q1 and Q2. When switches S1 and S2 are on, the current flow in both
coils is in opposite direction, creating a quadrupole field. When S1 is on and S2 is off,
the current passes through the current-sink CS1 which is used to reduce the current
flow in the quadrupole coil configuration for the red MOT. The current flow in both
coils along the same direction (Helmholtz configuration) is enabled when S1 and CS1

are off and S3 on. The current-sink CS2 is used to regulate the flow of current in the
Helmholtz configuration.

The stray magnetic field is compensated by three independent pairs of coils which
are fixed on the outside of the large view port flanges of the chamber, where each
pair of coil gives a constant field of ∼ 0.6 µT/A. Atom fluorescence from the 461 nm
transition is collimated using a f = 80 mm lens and is focused by a f = 150 mm
lens on to a photodiode. A 461 nm interference filter is used to block ambient light
and light from other lasers from the photodiode. A similar lens setup is used with a
photo-multiplier tube and a 689 nm interference filter to detect the atom’s fluorescence
from the 689 nm transition.

3.2 Experimental realization of 461 nm blue MOT

The laser source for the 461 nm 1S0→1P1 transition is shown in fig. 3.3.

Figure 3.3: Schematic of the blue MOT laser setup. L: Lens, PBS: Polarizing beam
splitter, AOM : Acousto optic modulator and BD: Beam dump.
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During the initial stages of the experiment, the source for the 461 nm radiation was
from 922 nm Ti-Sapphire laser, frequency doubled with a periodically-poled potassium
titanyl phosphate (PPKTP) crystal. Since the power output from the crystal decreased
over time due to photorefractive damage resulting from blue absorption [67], the blue
light source was later replaced by a commercial Toptica TA SHG 110 MOPA sys-
tem. An output power of about 115 mW at 461 nm is used for the experiment. The
blue MOT beams are formed by three independent beams which are retro-reflected.
The beams have a 1/e2 diameter of 1 cm and the total beam (6 beams) intensity is
26 mW/cm2. The 2-D molasses beams consists of two independent beams which are
retro-reflected. The diameters of the 2-D molasses beams are same as that of the blue
MOT beams and have a total beam power (4 beams) of 9 mW. The power of the
Zeeman slower beam is 20 mW. The blue laser source is frequency stabilized to a 88Sr
reference atomic beam.
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Figure 3.4: Expansion of blue MOT at different time intervals. The solid lines are
fitted by the equation r(t) = r2(0) + v2t2 where r(t) is the rms-radius of the atomic
cloud at time t. The temperature is estimated from the relation T = mv2/kB where
m is the mass of the atom and kB is the Boltzmann constant.

In the quadrupole coil configuration, 1 A current gives a magnetic field gradient of
231 µT/cm. A magnetic field gradient of 7.4 mT/cm is used for the blue MOT. The
loading time for the blue MOT is about 150 ms. Around 3× 107 atoms are captured
in the blue MOT. The lifetime of the MOT was measured to be 53 ms. In order to not
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saturate the transition during detection, a 0.03 mW/cm2 beam is used for absorption
imaging in order to determine the temperature of atoms in the MOT. The absorption
imaging system consists of two achromat lenses of focal length f = 300 mm back to
back each in f − f configuration to provide a magnification of 1.

Fig. 3.4 shows the rms radii rx, ry of the expanding cloud of atoms along the
directions perpendicular and parallel to gravity at different time intervals. The fit
gives the value of the temperature to be ∼2.5 mK (see table 2.2 for Doppler limit)
which is limited by extra heating mechanisms due to fluctuations in the laser intensity
[68]. The difference in cloud dimensions in the x (horizontal) and y (vertical) directions
could be attributed to imperfections in the MOT beam alignment.

3.2.1 Repumping lasers set up

Figure 3.5: Schematic of the repumping laser setup. L: Lens, PBS: Polarizing beam
splitter, AOM : Acousto optic modulator, BD: Beam dump, AFP: Analyzer Fabry
Perot, APP: Anamorphic prism pairs, FM : Flip mirror, GP: Glass plate, OI : Optical
isolator, CL: Cylindrical lens and PCL: Plano concave lens. The shutter (not shown
in the figure) is placed near the entry port (after PBS) of the fiber.

The setup of repumping lasers is shown in fig. 3.5. The repumping lasers serve to
bring the atoms in the excited clock state back to ground state for detection. They are
also used to improve the atom number in the blue MOT by an order of magnitude by
repumping the atoms from 3P0 and 3P2 states to 3P1 which then decays back to ground
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state (see fig. 2.1). Two commercial lasers, Sacher (TEC 100) for 679 nm and Toptica
(DL 100) for 707 nm are used. The two lasers are frequency stabilized to a single
reference cavity using orthogonal polarizations. The reference cavity is 103 mm long
and has a free spectral range (FSR) of 1.45 GHz. The cavity is temperature stabilized
to 23◦C and is kept in a vacuum chamber. The offset frequency for the stabilization is
given by AOM1 (80 MHz) and AOM2 (80 MHz). The detuning and switching of the
repump lasers are provided by AOM3 (200 MHz) and AOM4 (200 MHz) for 707 nm
and 679 nm lasers. An additional mechanical shutter is used to block stray light from
the repumper. Both the 679 nm and 707 nm laser light are coupled into a single-mode
polarization maintaining fiber. A transfer efficiency of 50% gives an output power of
1.3 mW for 679 nm and 200 µW for 707 nm, the radius of the repumper beams is
∼ 5 mm.

3.3 Experimental realization of 689 nm red MOT

Figure 3.6: Schematic of the 689 nm laser setup. L: Lens, PBS: Polarizing beam
splitter, AOM : Acousto-optic modulator, BD: Beam dump, FM : Flip mirror, OI :
Optical isolator and CL: Cylindrical lens.

To further cool the atoms down to microkelvin temperatures, the intercombination
1S0→3P1 transition at 689 nm is used. The laser setup for the 689 nm cooling transition
is shown in fig. 3.6. The setup consists of one master diode laser and two injection
locked slave diode lasers. The master laser is a home built extended cavity diode laser
(ECDL) in Littrow configuration [69]. The master diode gives an output power of
11 mW. The master laser is frequency stabilized to a reference cavity using the Pound-
Drever-Hall (PDH) technique [70, 71]. The reference cavity has a 3 GHz free spectral
range and is kept inside a vacuum chamber with pressure < 10−6 mbar, maintained at
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a temperature of 25◦C. By monitoring the resonance frequency drift over long a long
period of time, the cavity drift rate was determined to be 21 kHz per day. The light
from the master laser is detuned by two 80 MHz double-pass AOM before being used
for injection locking two slave lasers, one slave for cooling the atoms and the other for
spectroscopy on the 689 nm transition. The slave laser diodes give an output power of
30 mW. Additional 106 MHz AOM is used for switching and varying the power in the
MOT beams during the two sub-stages of cooling. The beams are coupled into single-
mode polarization maintaining fibers for mode cleaning with a 40% transfer efficiency.
The red MOT beams are formed by three independent beams which are retro-reflected
and have a 1/e2 diameter of 5.4 mm.

Figure 3.7: Timing diagram to obtain ultra-cold atoms and the corresponding absorp-
tion images.

The cooling on the 1S0→3P1 transition involves two sub-stages to overcome the
limitation of capture velocity range imposed by the narrow linewidth (7.6 kHz) of the
transition [72]. The two sub-stages are called the broadband stage and single frequency
stage. During the broadband stage, the cooling laser frequency is detuned 1.6 MHz
below the 1S0→3P1 transition and a sinusoidal modulation of 50 kHz is applied to the
80 MHz cooling AOM to broaden the laser resulting in a maximum frequency span of
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3 MHz. At the high frequency edge of the spectrum, the laser is 100 kHz red detuned
from the transition. This broadening of cooling lasers increases the velocity capture
range, leading to increased capture of atoms from the blue MOT stage. The total
peak intensity (6 beams) for cooling beams during this stage is 8 mW/cm2 and the
magnetic field gradient is 0.7 mT/cm. This broadband cooling stage lasts for 30 ms
and at the end of this stage around 1.6× 107 atoms are captured with a temperature
of 15 µK.

After the broadband stage, the modulation is turned off and the laser power is
reduced by using AOM5 (see fig. 3.6) to a total peak intensity is 445 µW/cm2 while
the magnetic field gradient remains the same, the cooling laser is detuned 800 kHz
below the 1S0→3P1 transition. This single-frequency stage lasts for another 50 ms. At
the end of the single-frequency stage, we get around 9×107 atoms with a temperature
of ∼ 3 µK. During the cooling process, stray light from the 461 nm beams are blocked
using mechanical shutters. The transfer of atoms from the blue to the single-frequency
red MOT is around 30%. Fig. 3.7 shows the timing diagram used for cooling the atoms
down to ultra-cold temperatures.
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Figure 3.8: Variation of atom number and temperature with respect to total laser
intensity Itot.

The variation of the temperature and number of atoms after the single-frequency
cooling stage with respect to the total peak intensity of the cooling beams is shown in
fig. 3.8. The temperature of the atoms decreased as the intensity of the cooling beams
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were reduced. The temperature dependence on such low intensities shown in fig. 3.8
can be explained by noting that at such low intensities, the recoil energy becomes
important and cooling becomes fully quantum mechanical [73]. Since the intensities of
the cooling beams are higher than the saturation intensity (see tab. 2.2), the transition
is power broadened. Hence the decrease in the atom number is due to the decrease
of the capture velocity range of the trap [73]. The lifetime of the single-frequency red
MOT was measured to be ∼ 460 ms. Since the radiation force for single frequency
cooling is comparable to the gravitational force, the atoms settle at the bottom of the
of the trap where the laser frequency detuning balances the Zeeman shift [74]. This is
evident from the absorption image as shown in fig. 3.7 taken after the single frequency
cooling stage. The atoms rebound at a point z0 ∼ δ/(β dB

dz
) from the trap center,

where δ = 800 kHz and β = 2.1 × 104 MHz/T is the Zeeman shift coefficient for the
1S0→3P1. Substituting these values, we find that z0 ∼ 550 µm.

3.4 Loading of atoms into 813 nm optical lattice

The atoms cooled in the first two stages should be loaded into the optical lattice
in order to interrogate the clock transition. The setup for the lattice laser is shown in
fig. 3.9.

Figure 3.9: Schematic of the lattice laser setup. L: Lens, PBS: Polarizing beam splitter,
BD: Beam dump, OI : Optical isolator, DM : Dichroic mirror, C.L: Clock laser and S:
Shutter.
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It consists of a Coherent 10 Watt Verdi at 532 nm pumping a Ti:Sapphire laser
resulting in an output power of ∼ 1.3 W at 813 nm. The 813 nm laser light passes
through polarization optics and f = 400 mm, f = 4.5 mm mode-matching lenses
before being coupled into a single-mode polarization maintaining fiber with a mode-
field diameter of ∼ 5 µm. The transfer efficiency through the fiber is close to 65%. The
light coming out of the fiber is collimated by a f = 30 mm lens and passes through a
half-wave plate and a polarizing beam cube. The half-wave plate and the polarizing
beam cube in the lattice laser set is used for varying the power in the lattice beam.
The beam is then focused into the vacuum chamber by a f = 300 mm lens and a
polarization cube makes the polarization of the lattice beam is perpendicular to the
gravity and the axis of the quadrupole/Helmholtz coils. The optical lattice is formed
by recollimating the beam and retro-reflecting the beam using a dichroic mirror which
reflects light at 813 nm and transmits clock laser light at 698 nm. The outcoupler and
mirror of lattice setup is mounted on a five-axis kinematic stages on the opposite sides

Figure 3.10: Absorption image showing atoms trapped in the optical lattice and the
untrapped atoms falling down.

of the vacuum chamber for overlapping the lattice beam with the MOT. The switch-
ing of lattice laser is done by using a mechanical shutter. The lattice beam is turned
on during the whole cooling process so that loading of the atoms into the lattice takes
place simultaneously while they are being laser cooled. Fig. 3.10 shows the atoms
trapped in optical lattice.

High atom numbers (∼ 106) in the optical lattice were determined usually from
absorption images. Since the images are noisy at low atom number, we calibrate
the fluorescence signal from the 1S0→1P1 transition to the corresponding high atom
numbers obtained from the absorption images. In order to obtain fluorescence signal
from the atoms trapped in the optical lattice, a short blue MOT phase lasting for 20 ms
is used. During this short phase, the blue fluorescence signal proportional to the atom
number in the ground state is detected. Getting a good SNR is the reason behind
having the small blue MOT phase instead of a single detection beam. A waiting time
of 150 ms is used before starting the small blue MOT phase to make sure that the
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Figure 3.11: Blue fluorescence signal proportional to the atom number versus time.
The line is an exponential fit and gives the lifetime of the atoms in the lattice to be
7.5 s.

falling untrapped atoms do not get recaptured. At high atom number, the saturation
of images is avoided by turning off the lattice and allowing the atoms to expand for
10 ms before taking the image. We estimate low atom numbers by assuming a linear
relation between the fluorescence signal and atom number. The depletion of atom
number (given by the blue fluorescence) in the lattice with respect to time is shown
in fig. 3.11. An exponential fit gives a lifetime of ∼ 7.5 s which is much more than
the time taken for an experiment cycle in our case (∼ 1 s). The lifetime is limited by
background gas collisions.

3.5 Waist radius determination of optical lattice

In order to determine the waist radius of the lattice beam which is important to
derive quantities like atomic densities, a dipole trap was formed by blocking the retro-
reflected beam. The atoms were initially loaded in a position which is away from the
potential minimum of the dipole trap in the axial direction. This is done by applying
an offset magnetic field in addition to the quadrupole magnetic field used for the
1S0 −3 P1 MOT. The oscillation of the center of mass of the atomic cloud along the
axial direction of the dipole trap is determined from absorption images.

The position of the center of mass of the atoms at different times of evolution is
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Figure 3.12: Trap oscillations in axial direction excited by loading the atoms at a
position away from the potential minimum of the dipole trap. The power of the dipole
beam is 600 mW. Squares represent the measured position of the center of mass of the
atoms in the dipole trap. The solid line is a sinusoidal fit to the data.

shown in fig 3.12. The sinusoidal fit to the data gives an angular frequency ωz =
15 rad s−1. The relation between trapping frequency and potential depth is given as
[75]

ωz =

√
2U

mz2
R

(3.1)

where m is the mass and zR is the Rayleigh range(zR =
πω2

0

λ
). Using eq. 3.1 the waist

radius ω0 was found to be (32± 2) µm. The same method was used to find the waist
radius of the retro-reflected beam by loading the atoms in the reflected beam that
is purposely not overlapped with the incoming beam. This method was also used to
place the axial positions of the foci of the dipole trap beams at the position of the
MOT and thus assure that the foci of both beams coincide.

When we did spectroscopy on the clock transition for atoms in the lattice, we
found a discrepancy between observed axial sideband frequencies and calculated axial
sideband frequencies. The axial sideband frequencies depend on the power of the
lattice beam (see eq. 2.16). For a waist radius of 32 µm and a power of 600 mW,
the expected sideband frequency is at ∼ 172 kHz but the sideband frequency was at
∼ 86 kHz. The calculated sideband frequencies agreed with the observed values for
lattice laser powers less than 150 mW. Initial doubts about the waist radius of the
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lattice beam was resolved by repeated measurements of the waist radius. During the
initial stages of the experiment, the lattice laser set up was located in the neighboring
lab and due to this reason, a 25 m long fiber was used.

(a)

(b)

Figure 3.13: Spectrum of laser amplitude fluctuations measured with a fast-photodiode
after the fiber. (a) For powers less than 500 mW in the free running beam or for powers
less than 150 mW in the lattice beam. (b) Spectrum of fast-photodiode for powers
more than 500 mW in the free running beam or for powers more than 150 mW in the
lattice beam.

In order to search for a possible hint to nonlinear processes [76, 77] in the fiber
(which could result in spectral broadening of the laser ), a fast-photodiode was placed
on the side of the polarizing beam cube located before the f = 300 mm focusing lens
(see fig. 3.9) and the reflected light from the polarizing beam cube was focused on the
fast photo-diode. The power was gradually increased for the free running beam (no
retrorefection). Fig. 3.13(a) shows the spectrum of the fast-photodiode where a peak
at 276 MHz was observed for powers less than 500 mW. Multiple peaks as shown in
fig. 3.13(b) were observed when the power is increased above 500 mW. In the lattice
configuration (with retroreflected beam), when the power was less than 150 mW per
beam, the spectrum was identical to fig. 3.13(a) and for powers more 150 mW, the
spectrum was same as fig. 3.13(b). We attribute these single and multiple peaks to
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interference in the fiber due to cascaded nonlinear process such as Brillouin scattering.
Since nonlinear processes depend on the fiber length, the lattice setup was moved close
to the experiment and a 3 m fiber with the same mode field diameter as the long fiber
was used. With the short 3 m fiber, up to 300 mW (resulting in a potential depth of
∼ 50 µK) of power showed no indications of nonlinear processes and the calculated
sideband frequencies matched the observed values for powers up to 300 mW. Further
investigations to reveal the nature of the these processes were not carried out since
they are beyond the scope of this thesis.

3.6 The 698 nm clock laser
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Figure 3.14: Schematic [2] of the 689 nm clock laser setup.

Vibrations, thermal noise and expansion of the reference cavity to which the clock
laser is stabilized leads frequency drift and noise in the laser. These effects limit the
stability and quality factor of an optical frequency standard. A stable clock laser is
also important for our investigation on collisions. For example, narrow linewidth of
clock laser is desirable to study collisional broadening of the clock transition over a
large dynamic range (atoms in this case).

The schematic of the clock laser system is shown in fig. 3.14. The setup for the
698 nm clock laser [2] consists essentially of a stabilized master laser and an injection
locked slave laser. The master laser is an extended cavity diode laser in Littman
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configuration [69] and gives an output power of 4 mW. Stabilization of the master
laser onto a high-finesse ultra-stable optical cavity is done using the Pound-Drever-
Hall (PDH) technique [70, 71]. The frequency offset between the laser and the cavity is
bridged by a double pass 200 MHz offset AOM . The optical cavity is 100 mm long and
it is made of ULE (ultra-low expansion) glass. Optical axis of the cavity is oriented
perpendicular to gravity (horizontally mounted). In order to minimize the sensitivity
to vertical vibrations, small drilled invar plates were glued at four points near its
horizontal symmetry plane and viton cylinders were used to support the cavity. The
cavity is enclosed in a copper cylinder which acts as heat shield. The cavity finesse
is 330,000 which corresponds to a linewidth of 4.5 kHz and it is kept in a vacuum
chamber (∼ 10−7 mbar) which is temperature stabilized to 24◦C.

The influence of the mechanical and acoustic vibrations on the cavity is minimized
by mounting the cavity on a vibration isolation platform which in turn is placed in
an acoustic isolation box. A 1.5 m long polarization-maintaining single-mode fiber is
used to couple the light from the master laser to to optical cavity. The linewidth of the
laser is close to 30 Hz which is limited by problems in vibration isolation. However,
by phase locking our clock laser to another narrow linewidth reference laser at 657 nm
(used for calcium experiments), the linewidth can be reduced to few Hz. The slave
laser gives an output power of 23 mW which is used for the spectroscopy of the clock
transition and also for the femtosecond laser comb. An additional 80 MHz AOM (not
shown in figure) is used for switching on and off the clock laser during the experiment
to probe the clock transition.

3.7 Spectroscopy on 698 nm the clock transition

The state mixing of the 3P1 and 3P0 states necessary for the excitation on the
clock transition is done by applying a magnetic field. The coils in the Helmholtz
configuration provide a magnetic field of 0.5 mT/A. The clock beam has a waist
radius of 39 µm and its polarization is parallel to the applied magnetic field. It is
overlapped with the lattice through a dichroic mirror. A camera is used to check
the extent of overlap between the lattice laser beam and the clock laser beam. A
pellicle-beamsplitter can be placed in the lattice laser path to deflect a part of the
retro-reflected beam and the clock laser beam which allows to observe the deflected
beams at two or more points.

To measure the number of atoms that have been excited by the interaction with
the clock laser, either the reduction of the number of atoms in the 1S0 ground state can
be measured or the increase in the number of atoms in the excited 3P0 state. The two
methods are shown in fig. 3.15. The first method is by detecting the fluorescence of
the remaining ground state 1S0 atoms by the 20 ms 461 nm MOT phase. Ground state
atom detection would result in longer cycle time because atoms which are not trapped
in the lattice takes finite time ( ∼ 150 ms) to fall down to a distance such that they
cannot be detected. The second method involves pushing away the remaining ground
state 1S0 atoms by using a resonant 461 nm beam immediately after the excitation
to 3P0 state. The excited state atoms are then brought back to the ground state by
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Figure 3.15: Schematic of the detection of clock transition. 1: Atoms are initially at
the ground state. 2: Clock transition drives a fraction of the ground state atoms to the
clock excited state. 3: The remaining ground state atoms can be detected (or blown
away) using the 461 nm transition. 4: Using 679 nm and 707 nm repump lasers, the
excited state atoms can be brought to the ground state and be detected.

optically pumping them to the 3S1 state using 679 nm and 707 nm lasers and the fluo-
rescence is detected using the 20 ms 461 nm MOT phase. Colliding atoms can absorb a
photon and get lost from the trap by forming an electronically excited molecule. Such
light assisted density dependent photo-associative losses from the repumping light [78]
were avoided by switching off the lattice beam and allowing the cloud of excited state
atoms to expand before repumping.

After loading the atoms into the lattice, a static magnetic field up to 3 mT is
applied. The clock laser beam of ∼ 2.5 mW of power is used to excite the atoms to
the 3P0 state. In order to find the clock transition, the clock laser frequency is varied
by scanning the master laser-cavity offset AOM .

Fig. 3.16 shows the spectrum of the clock transition in the Lamb-Dicke regime.
The Rabi frequencies for the red and blue sidebands in the Lamb-Dicke regime are
given as [79]

Ωn,n−1 = Ω
√
n η

Ωn,n+1 = Ω
√
n+ 1 η

(3.2)

where Ω is the Rabi frequency of the carrier transition. We see that the Rabi
frequencies of the sidebands are suppressed with respect to Ω. Therefore, in order to
observe the sidebands, one has to saturate the carrier (clock) transition. The incoming
beam power of the trapping laser was ∼ 120 mW. For the given power (120 mW) and
waist radius (32±2 µm) of the lattice beam, the position of axial sidebands νz (see eq.
2.16) are expected to be tens of kilohertz away from the carrier transition. Since the
clock transition is narrow compared to the axial trap frequency we see three resolved
absorptions, one carrier and two sidebands. Eqs. 2.4 and 2.6, are used to explain the
observed spectrum.
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Figure 3.16: Spectroscopy on the 1S0→3P0 transition showing the carrier (clock tran-
sition) and the 1st order sideband transitions. The duration of the clock laser pulse is
500 ms.

The carrier absorption occurs when the change in the motional quantum number
is zero (nf = ni) , in this case, the atoms absorb light at frequency ν = ν0 where
ν0 is the clock transition frequency. The sideband at higher frequency occurs when
the change in the motional quantum number is 1 (nf = ni + 1), the atoms absorb
light at frequency ν = ν0 + νz where νz is the axial trap frequency. Finally, a change
of −1 in the motional quantum number results in the occurrence of red sideband at
frequency ν = ν0 − νz. The ratio between blue and red sidebands is (ni + 1)/ni. The
sidebands are at ∼72 kHz. Using eq. 2.16 for axial frequency we obtain a waist radius
of ∼34 µm. The recoil frequency for 1S0→3P0 clock transition is ∼ 4.7 kHz giving for
this spectrum, a Lamb-Dicke parameter η = 0.26.

In a harmonic potential with En = h̄ω(n + 1
2
), one can calculate the rms width

atom distribution along z direction where wrms is

(wrms)z = z0

√
2 〈nz〉+ 1 (3.3)

with z0 =
√
h̄/2m(2πνz) and nz being the motional quantum number in the z direction.

Since atoms are distributed among different levels of the harmonic trap, the average
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value 〈nz〉 is determined using the Boltzmann distribution

〈nz〉 =
∑
nz

P (nz)nz =

∑∞
nz=0 nze

−nzhνz
kBT

∑∞
nz=0 e

−nzhνz
kBT

=
e
−hνz
kBT

1− e
−hνz
kBT

. (3.4)

By knowing the temperature and the sidebands, one can calculate the rms width.
Treatment of rms width and average n can be extended along the radial direction to
determine the radial rms width (wrms)r by calculating νr from eq. 2.16. The value
of 〈nz〉 can also be determined from the observed sidebands using the fact that the
the blue and red sidebands are suppressed by a factor of η2(〈nz〉i + 1) and η2(〈nz〉i)
with respect to the carrier transition. 〈nz〉i is the average value of the initial motional
quantum number. The ratio of axial blue and red sidebands in the axial direction is
then given as

SB
SR

=
〈nz〉i + 1

〈nz〉i
(3.5)

where SB (SR) is the blue (red) sideband absorption signal. By taking the ratio of
blue and red sideband absorption signals in fig. 3.16 we get 〈nz〉i = 0.45 which agrees
with the calculated value from eq. 3.4 for a cloud temperature of ∼ 3 µK. Also using
eqs. 3.4 and 3.5, we can relate the temperature and sidebands as

T =
hνz

kBln(SB

SR
)
. (3.6)

Knowing the ratio of the sideband signals and the axial frequency, one can calculate
the temperature of the atomic sample in the lattice. From fig. 3.16 and eq. 3.6 the
temperature is calculated to be ∼ 3 µK which agrees with the temperature measured
using expansion images. The asymmetric broadened sidebands are the result of radial
motion of the atoms. As the atoms move out radially from the trap center (maximum
intensity), the axial frequency νz decreases due to decrease in intensity. This leads
broadening at frequencies ν = ν0 ± νz and hence the sidebands are asymmetrically
broadened towards the carrier transition.

A strongly saturated transition for a two-level atom should eventually lead to a
50% population in ground and excited states. Fig. 3.16 shows a near zero depletion of
ground state atoms after a 500 ms clock pulse giving us strong indications for inelastic
loss mechanism. For 2.5 mW of clock laser power and 3 mT homogeneous magnetic
field, the Rabi frequency is calculated to be Ω/2π ∼ 30 Hz and π pulse length is
16 ms. Fig. 3.17 shows the decay of ground state atoms with respect to clock pulse
length for two different atom numbers 2× 106 and 1× 105. For high atom number the
population decayed to near zero value but for low atom number, the population reached
an equilibrium although no Rabi oscillation were observed. This gives us evidence for
density dependent inelastic losses and strong damping due to decoherence. Collisional
broadening was also observed, fig 3.18 shows a preliminary result of the dependence
of linewidth of the atomic transition on the atom number showing evidence of density
dependent broadening taking place. These effects must be studied and understood in
order to find how they affect a 88Sr based optical lattice clock in terms of accuracy
and stability which is the focus of next chapter.
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Figure 3.17: Decay of ground state atoms with respect to clock laser pulse length for
two different initial atom numbers

0 500 1000 1500 2000 2500 3000 3500
0

200

400

600

800

1000

 

 

C
lo

ck
 tr

an
si

tio
n 

lin
ew

id
th

 (
H

z)

Atom number (arb. units)
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Chapter 4

Inelastic collisions and decoherence
effects in a 1-D 88Sr lattice clock

In this chapter, results of the investigation of the losses due to 1S0+
3P0 and

3P0+
3P0 inelastic collisions, density-dependent broadening and decoherence effects are

presented. Section 4.1 describes the study of collisional losses by observing temporal
variation of the atoms in the lattice. Since 3P0+

3P0 collisions also occur in an en-
semble of 3P0 and 1S0 atoms, 3P0+

3P0 collisions are observed first and the loss rate is
determined. This loss rate is then used to fit the decay and determine the loss rate due
to 1S0+

3P0 collisions. The observations reveal that the dominating loss mechanism
are the 3P0+

3P0 collisions. Section 4.2 presents the study of broadening and decoher-
ence effects for different atom numbers in which an additional dephasing mechanism
is identified.

4.1 Inelastic collisional losses in the optical lattice

Collision between two particles, depending on the outcome, can be classified into
two main categories namely elastic and inelastic.

• In an elastic collision, the kinetic energy of relative motion of the two bodies does
not change, though their velocities and individual kinetic energies may change.

• In an inelastic collision, the energy is transferred between internal and relative
kinetic energy.

At very low energies, scattering is mainly dominated by s-waves and the scattering
cross-section can be expressed in terms of a parameter called the scattering length. In
case of atoms which have several internal states such as L (orbital angular momentum),
J (total angular momentum), S (spin angular momentum), several collision channels
are possible. The atoms can be initially prepared in one of the several possible quan-
tum states and the collision channels can be specified by a set of quantum numbers
representing the state of each atom and the partial wave. For a single channel scatter-
ing where only elastic scattering is possible, the scattering cross-section in the s-wave
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limit is given as σ = 4πa2 where a is the scattering length. For multichannel scatter-
ing, the scattering length is a complex number a = α − iβ. In case of multichannel
scattering, the elastic scattering cross section contribution from s-wave collision is

σ = 4gπ(α2 + β2). (4.1)

For s-wave inelastic collisions that remove atoms from a channel, the loss rate coefficient
γloss is

γloss = 2g
h

mµ

β. (4.2)

The factor g (two particle correlation function) is equal to 1 when the atoms are bosons
or fermions that are not in identical states, g = 2 or 1 for two bosons in identical states
in a normal thermal gas or a Bose-Einstein condensate and g = 0 for two identical
fermions.

In order to study and characterize the collisional properties between ground (1S0)
and excited state atoms (3P0) of the clock transition, we load the atoms in the optical
lattice using a 150 ms blue MOT loading time followed by a 30 ms broadband cooling
and a 50 ms single frequency cooling. The optical lattice with 300 mW of power is
overlapped throughout the cooling process so that atoms are simultaneously loaded
into the optical lattice while they are cooled. Before applying the clock laser pulse,
a 150 ms wait time ensures that the untrapped atoms fall away. A 3 mT Helmholtz
field and a clock laser intensity of 125 W/cm2 (ΩR/2π ∼ 33 Hz) are applied to excite
the atoms to the 3P0 state. The clock pulse length is 20 ms. After the excitation an
ensemble of ground and excited state atoms is present in the optical lattice. The rate
at which the atoms are lost from the trap can determined by the time dependence of
the number of atoms in the trap.

Possible collisions in the lattice include the inelastic 1S0+
3P0 and 3P0+

3P0 and the
elastic 1S0+

1S0 collisions. The atoms are held in the trap for variable amount of time
(trapping time) before they are detected. In order to differentiate between 1S0+

3P0

and 3P0+
3P0 collisional processes, we conduct two separate measurements. To study

the 3P0+
3P0 collisional process, ground state atoms are blown away by using 461 nm

blow beam for 20 ms immediately after we excite the atoms, leaving only the excited
state atoms in the lattice. After a variable trapping time, the atoms in the lattice are
allowed to expand for 10 ms by switching off the lattice in order to avoid repumping
light assisted photo-associative losses [78]. The 679 nm and 707 nm repumping lasers
are switched on for 10 ms to bring the excited state atoms back to the ground state.
Finally, a short 20 ms long blue MOT phase is used to detect the their fluorescence.
To study the 1S0+

3P0 collisional process, after the clock pulse, we hold the atoms
for variable trapping time in the lattice. After the hold time, the fluorescence of the
ground state atoms is detected using a 20 ms long blue MOT phase and the remaining
excited state atoms are detected using the same procedure as in 3P0+

3P0 collisional
study. The timing diagram (150 ms wait time for untrapped atoms to fall away is not
shown) for the experiments to study both 1S0+

3P0 and 3P0+
3P0 collisional processes

is shown in figs. 4.1 and 4.2.
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Figure 4.1: Timing diagram to study 3P0+
3P0 collisions.

Figure 4.2: Timing diagram to study 1S0+
3P0 collisions. The cooling and loading

sequence is same as that shown in fig. 4.1
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In order to model the decay rate of the number of atoms in the trap, we use coupled
differential equations

ρ̇g = −Γρg − γgeρeρg (4.3a)

ρ̇e = −Γρe − γgeρeρg − γeeρ
2
e (4.3b)

where ρg(ρe) represents the local atomic density of the ground (excited) state atoms
in the optical lattice. Γ is the inverse trap lifetime due to background gas collisions
which is 7.5 s. γee(γge) is the loss coefficient of 3P0+

3P0 (1S0+
3P0 ) collisions. For,

3P0+
3P0 collisional losses in which we get rid of ground state atoms immediately after

clock pulse, eq. 4.3b reduces to

ρ̇e = −Γρe − γeeρ
2
e. (4.4)

The rate equation for the 3P0+
3P0 collisions is given by

Ṅe = −ΓNe − γee

∫
dr3 ρ2

e

= −ΓNe − γee
V
N2
e .

(4.5)

In eq. 4.5, Ne is the number of excited state atoms and V is the effective volume
of a single lattice site. Solving eq. 4.5 for a single lattice site gives

Ne(t) = Ne(0)
e−Γt

1 + Ne(0)γee

Γπ
3
2w2

rwz

(1− e−Γt)
(4.6)

where π
3
2w2

rwz is the effective volume of a single lattice site and Ne(0) is the initial
atom number. wr and wz are the 1/e2 radii of the atomic cloud along the radial and
axial direction and are related to rms widths as wi = 2(wrms)i (see eq. 3.3). Different
lattice sites are occupied by different atom numbers and the distribution of atoms along
the lattice is a Gaussian distribution with a 1/e2 radius w′ which is determined from
the absorption images. Due to this distribution of atom number, eq. 4.6 is numerically
summed over all the lattice sites.

Fig. 4.3 shows the decay of the excited state atom number due to 3P0+
3P0 collisions

for three different initial atom numbers. The solid lines are the fits to the experimental
data shown, the fits were obtained by numerical summation of eq. 4.6. From the fits
we obtained the loss coefficient γee = (4.0 ± 2.5) × 10−18m3/s. The uncertainty in
the loss coefficient is due to the uncertainty in the calculation of the radii wi, w

′ and
the scatter of the fit parameters. Traverso .et al [78] reported the value of γee to be
an order of magnitude higher that our value by performing measurements in a dipole
trap. In the trap, we have T ∼ h̄ω0 where T is the temperature of the atoms and ω0 is
the axial frequency. In this regime, axial confinement of the particle motion has effect
on the scattering rate [80]. Therefore, this difference can be due to the temperature
and the dimensionality of the trap potential.
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Figure 4.3: Decay of 3P0 atom number due to 3P0+
3P0 inelastic collisions. The solid

lines are fit of summation of eq. 4.6 to the observed decay.
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Figure 4.4: Decay of 3P0 and 1S0 atom numbers due to 1S0+
3P0 inelastic collisions.

Fitting is done for ground state atoms.
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Figure 4.5: Same decay as fig. 4.4 but fitting is done for excited state atoms.

The collisional 1S0+
3P0 losses curves for different initial ground state atoms along

with the fits given by the solid lines are shown in figs. 4.4 and 4.5. The simultaneous
fitting of eqs. 4.3a and 4.3b to the ground and excited state atoms is made using γee
obtained from 3P0+

3P0 collisional studies. The fits and the observed decay of atoms
show discrepancy depending on whether ground or excited state atoms are fitted.

This discrepancy is attributed to inelastic collisions that reduce the excited state
atom number during the ground state atom detection. During the ground state atom
detection, the 1S0 atoms are detected using a short blue MOT stage, the atoms which
undergo 1S0→1P1 detection are trapped due to the quadrupole field. The scenario
is different in case of 3P0+

3P0 collisional study where the atoms are just blown away.
Due to the 1D2 leak channel (see fig. 2.1), atoms end up in 3P1 and 3P2 and collision of
these atoms with 3P0 atoms could diminish the excited state atom number. However,
since the losses are dominated by 3P0+

3P0 collisions, we ignore other types of collisions
and correct the excited state population for collisions with 3P0 atoms by calculating
the time taken for the ground state atom detection and calculate back the number of
3P0 atoms lost during this detection stage. Fig. 4.6 shows the decay of 3P0 atoms due
to both 3P0+

3P0 and 1S0+
3P0 collisions with the corrected fits. The value of 1S0+

3P0

collision loss coefficient γge = (5.3 ± 1.9) × 10−19m3/s. The uncertainly contributions
are same is that for γee.

Having determined the loss coefficients γee and γeg we can calculate the inelastic
scattering lengths given by eq. 4.2 and they are Im(aee) = (2± 1.2)a0 and Im(aeg) =
(0.26±0.09)a0 where a0 is the Bohr radius. Using the electronic potential energy curves
of Sr2 given in references [81, 82] an order of magnitude difference between γee and γeg
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Figure 4.6: Decay of 3P0 atom number due to 3P0+
3P0 collisions shown by the red

circles. The decay due to 1S0+
3P0 collisions is shown by the black squares.The solid

lines are fit obtained by summation of eq. 4.3a and eq. 4.3b.

can be qualitatively explained. The 3P0+
3P0 asymptote correlates at short internuclear

distances to a molecular 1Σ+
g state which can decay to lower states by fluorescence.

However, a more likely source of losses are collision-induced nonadiabatic transitions
to molecular potentials dissociating to lower asymptotes. For the case of 1S0 +3 P0

collisions, only one potential dissociates to the lower 1S0+
1S0 asymptote and it is steep

at the energy of 1S0 +3 P0 asymptote. Due to selection rules, a direct spontaneous
decay to that ground state potential is not allowed but complex coupling to molecular
states exists at short internuclear distance that are subjected to spontaneous decay
[83].

4.2 Density dependent broadening and decoherence

effects of the clock transition

In addition to losses of the atoms from the optical lattice due to inelastic collisions,
interactions between atoms also give rise to broadening of the clock transition and
decoherence. In case of inelastic collisions, the lifetime of the atom in the excited state
is reduced leading to broadening of the transition. In case of elastic collisions, the
energy level of atom A is shifted as it approaches another atom. Due to this shift in
energy level, the frequency ω of the emitted or absorbed radiation of atom A changes
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by an amount ∆ω. This change ∆ω usually depends on the interaction potential
between atoms A and B. After the elastic collision, the emitted or absorbed radiation
frequency returns to its initial value ω. Therefore, the effect of elastic collision is to
induce a phase change, such collisions are also called as “dephasing collisions”. In the
spectrum of the radiation, these random phase changing collisions lead to a broadening
of the transition.

Our case can be approximated by a two-level atom interacting with a classical field.
Dynamics of such an atom is represented by the evolution of the density operator which
is known as the Schrödinger-von Neumann equation. The equation in the rotating wave
approximation is

∂tρ = − i

h̄
[H, ρ] (4.7)

where the interaction Hamiltonian H and the density matrix ρ are given in the rotating
frame. The interaction Hamiltonian and the density matrix for the two-level atom
interacting with classical light (the clock laser) are

H

h̄
=

(
0 Ω/2

Ω/2 ∆

)
(4.8)

ρ =

(
ρ11 ρ12

ρ21 ρ12

)
. (4.9)

In eq. 4.8, ∆ is the detuning of the clock laser from the clock transition, Ω is the
Rabi frequency which is calculated from eq. 2.31. In order to incorporate the decay
of populations and decoherences we have to add extra damping matrices to eq. 4.7.
First, we write down the losses due to inelastic collisions and decoherences, they are

∂tρ11 = −(Γ + γgeρ22)ρ11 (4.10)

∂tρ12 = −
[
γge

(ρ11 + ρ22)

2
+
γeeρ22

2
+ Γ + L+ γdepρ11

]
ρ12 (4.11)

∂tρ21 = −
[
γge

(ρ11 + ρ22)

2
+
γeeρ22

2
+ Γ + L+ γdepρ11

]
ρ21 (4.12)

∂tρ22 = −(Γ + γgeρ11 + γeeρ22)ρ22. (4.13)

The above set of equations shows how the ground (ρ11), excited state (ρ22) and the
coherences (ρ12, ρ21) evolve over time. The ground state atoms decay due to collisions
with background atoms (given by Γ) and collisions with excited state atoms (given
by γegρ22). Collisions with background, ground state atoms and excited state atoms
are responsible for excited state atom decay. The coherence terms namely ρ12 and ρ21

decay at a rate (Γg + Γe)/2 where Γg(Γe) are the decay terms of the ground (excited)
states. L represents the decoherence due to the linewidth of the clock laser. In order
to explain our observed spectra, we had to include an additional dephasing term γdep

which is proportional to the ground state population. Eqs. 4.8 and 4.13 can be
combined together to get a master equation [84]

∂tρ = − i

h̄
[H, ρ] +

1

2
{<, ρ}+

1

2
(L+ γdepρ11)L[σz]ρ (4.14)
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Figure 4.7: Spectra of the clock transition. The red line is the fit of eq. 4.14 with
γdep = 0 and the blue line is the fit with γdep = (3.2±1.0)×10−16 m3/s. The frequency
axis have arbitrary offsets.
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where the relaxation matrix <, the Lindblad superoperator L[σz]ρ and the Pauli
matrix σz are given as

< =

(−(Γ + γgeρ22) 0
0 −(Γ + γgeρ11 + γeeρ22)

)
(4.15a)

L[σz]ρ = σzρσ
†
z −

1

2
(σ†zσzρ+ ρσ†zσz) (4.15b)

σz =

(
1 0
0 −1

)
. (4.15c)

To observe the broadening and dephasing effects due to elastic and inelastic colli-
sions, the number of atoms that were loaded into the optical lattice was varied from
1.2× 106 to 3.4× 103. The clock laser intensity with 125 W/cm2 and a magnetic field
of 3 mT were used to excite the atoms from 1S0 to 3P0. The duration of the clock
pulse was 5 ms, this value was determined by observing Rabi oscillations at low atom
numbers and determining the π pulse time. Fig. 4.7 shows the excitation spectra of
clock transition for different atom numbers.

We used eq. 4.14 to fit the observation, the effect of dephasing due to ground state
atoms is shown in the figure. The blue line is the fit using eq. 4.14 with γdep = 0.
The red line is the fit using the same equation with the γdep included. From the fits
we obtain the value of γdep = (3.2± 1.0)× 10−16 m3/s. We can see that at high atom
number, the dephasing due to elastic collisions is strong and at low atom number, this
dephasing is negligible. The laser linewidth L was fitted to be about 36 Hz. This
value is consistent with the clock transition linewidth that is shown in fig. 4.8. The
linewidth of the laser was limited due to problems with vibration isolation of the cavity
to which the clock laser is stabilized.
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Figure 4.8: Clock transition for a clock pulse length of 35 ms. The Lorentzian fit gives
a FWHM 35 Hz.

49



Fig. 4.9 shows the Rabi oscillations in the clock transition by varying the clock
pulse length for two different atom numbers. Rabi oscillations at high atom numbers
were not observed due to strong damping. The Rabi frequency calculated from by
using eq. 2.31 is Ω/2π ∼ 27 Hz, the value got from the fit was around 17% smaller
than the calculated which could be due to the finite value of the Lamb-Dicke parameter
(0.26).
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Figure 4.9: Rabi oscillation for two different atom numbers. The red line is the fit of
eq. 4.14 with γdep = 0 and the blue line is the fit with γdep = (3.2± 1.0)× 10−16 m3/s.

In this chapter, we have quantified inelastic collisions between the clock states of
the 88Sr 1-D lattice clock. The observation of clock transition broadening and Rabi
oscillations showed an additional dephasing mechanism. One more collision effect,
namely the frequency shift of the clock transition will be discussed in the next chapter
which describes the method of alternating stabilization that was used to measure the
collision frequency shift.
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Chapter 5

Measurement of frequency shift
using interleaved scheme

This chapter explains the method of interleaved scheme and how it is used to
measure the density-dependent frequency shift. Section 5.1 gives a detailed description
of the method of locking the clock laser to the 1S0→3P0 transition and possible errors
that could limit the accuracy of the measurement. Description of clock frequency shift
using mean field interaction and the results are discussed in section 5.2. The chapter
concludes with section 5.3 by discussing systematic effects affecting clock frequency
and presenting a preliminary uncertainty budget for a 1-D 88Sr lattice clock operating
at an uncertainty level of 10−16 .

5.1 Locking the clock laser to 1S0→3P0 transition

Perturbations due to interaction with the external environment (e.g: black body
radiation, collisions) lead to a shift in the clock transition. In order to improve the
performance and accuracy of an optical lattice clock, different frequency shifts to the
clock transition due to perturbations should be evaluated and corrected. This requires
to systematically vary the perturbation parameter and measure the corresponding
frequency shift in the clock transition and extrapolate it to zero shift. To evaluate
frequency shifts due to perturbations, an additional frequency reference is needed
which is stable over the time of experiment.

However, one can characterize the effects due to perturbations by making a mea-
surement in which the parameter responsible for the perturbation is quickly varied
relative to a fixed initial perturbation parameter within a few cycles. This results in
interleaved cycles in which the frequency shifts due the two parameters are measured.
Such an interleaved scheme offers the advantage of not requiring an external long-term
stable frequency reference and can rely on the short term stability of the clock laser.
The method was used before to measure the ac Stark shift of the 1S0→3P1 transition of
Ca atoms for different wavelengths [85, 86]. In this section, a detailed analysis of this
method is presented and it is used to determine the frequency shifts due to collisions.
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(a) Stabilization of the clock laser to the atoms either to ground state or excited state atoms, O is
the offset signal counts. The dotted line is the electronic path.

(b) Timing diagram for the interleaved scheme where the perturbation parameter is different in
stabilization cycles A and B. Interrogation cycles a, b and a′, b′ are used to obtain the fluorescence
signal counts S1, S2 and S

′
1, S

′
2 for cycles A and B.

Figure 5.1: Interleaved stabilization scheme.
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To measure the density dependent frequency shift, we use interleaved cycles in
which the atom number in one cycle is different from the other cycle. When the
1S0→3P0 transition frequency is different in the two interleaved cycles due to different
atom numbers, the frequency of the clock laser that is used to excite the atoms should
be different. To observe this, the clock laser is stabilized to the 1S0→3P0 transition.
Fig. 5.1(b) shows the schematic in which the stabilization cycle A (B) has two interro-
gation cycles a, b (a′, b′). Cooling, trapping and probing of the clock transition are done
during the interrogation cycles and τcycle is the time taken for completion of a single
(interleaved) cycle i. Fig. 5.1(a) shows the schematic of the clock laser stabilization.
In order to lock the clock laser, its frequency is detuned from the 1S0→3P0 transition
frequency ν0 by about ±δ/2 where usually δ ≈ ∆ which is the transition linewidth
(FWHM) of the 1S0→3P0 transition. This detuning is done by changing the frequency
of the offset AOM between clock laser and the cavity. The atoms are loaded into the
lattice and excited to the 3P0 state by applying a clock pulse with a frequency ν0+δ/2.
After the excitation, we can detect both the ground and the excited state atoms. The
cycle is repeated again with a frequency ν0− δ/2. A deviation νerror of the mean clock
laser frequency from ν0 results in a non-zero difference between the excited state atom
numbers probed at ν0 ± δ/2. To estimate νerror, we assume that the clock transition
has a Lorentzian profile. If the atom number at detunings ν0 + δ/2 and ν0 − δ/2 are
given by the fluorescence signals S1 and S2 respectively, then relation between νerror

and the fluorescence signal is

νerror = ±κδ S2 − S1

2(S2 + S1 − 2 ·O)
. (5.1)

In eq. 5.1 the plus sign is used in the estimated frequency error when ground state
atoms are detected and minus sign is used in the estimated frequency error when the
excited state atoms are detected. In our experiment we only detect the excited state
atoms in order to reduce the interrogation time. The offset signal O is determined
as shown in fig. 5.1(a). We give the value of δ and the offset signal O as the input
parameter in the measurement program for the correction. κ is a function of detuning
and it is equal to 1 when the atoms are probed at FWHM points. Instead of probing
atoms at FWHM points, one can probe at different detunings δ. For example, to
probe different atom numbers with the same excitation probability, we use detunings
δ different from ∆ (FWHM) which would result in different values of κ for the cycles
A and B. κ in this case is given as

κ =
1

4µ
(µ2 + 1)2 (5.2)

where µ = δ
∆

. The different values of κ was compensated by having different gain
values G in cycles A and B.

The estimated frequency error νerror is obtained independently for the two stabi-
lization cycles and is fed back with an appropriate gain G smaller than one to the
clock laser-cavity offset AOM νioffset, via the measurement program in order to keep
the laser locked at the clock transition frequency for the two cycles. This gain factor
G introduces an effective time constant for the servo loop. The stabilization of the
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clock laser to the 1S0→3P0 transition becomes slightly complicated due to the change
in length of the ultra-stable cavity, resulting in a drift of the frequency of the clock
laser. Since this frequency drift of the laser is roughly linear in time, an estimated
correction for this drift D is sent as feed forward to the offset AOM between the clock
laser and its reference cavity. To explain this drift correction more clearly, consider
the stabilization cycle A in the cycle i (fig. 5.1(b)). The drift correction Di is done at
the start of the interrogation cycle a and b. At the end of cycle b, νierror is estimated
and νioffset is corrected for the drift during a′ and b′ of stabilization cycle B. The drift
rate is automatically updated to a new value Di+1 by adding to the previous drift rate
Di, a correction proportional to νerror. The correction of the frequency offset between
clock laser and its reference cavity and the update of the drift rate are given as

νi+1
offset = νioffset −G · νierror + τcycle ·Di (5.3)

Di+1 = Di +
β · νierror

τcycle

. (5.4)

5.1.1 Time constants and locking errors in a single cycle

First, we assume zero drift of the reference cavity and noiseless detection. If ti is
the time in cycle i, the error signal νierror is then reduced as

νierror = ν0
error · (1−G)

ti

τcycle (5.5)

where the ν0
error is the initial error at t0 = 0. Comparing νierror with ν0

error e
−ti

τservo , we get
the time constant τservo of the servo loop as

τservo =
−τcycle

ln(1−G)
. (5.6)

For our interleaved cycles to measure the density shift, the gain value was G = 0.5
and τcycle ∼ 0.8 s giving τservo ∼ 1.2 s.

In practice however, the cavity resonance drifts which leads to change in the clock
laser frequency. If the resonance frequency of the cavity νcavity drifts at a constant rate
ν̇cavity and no drift correction is applied, there will be a steady frequency offset error
in the measurement cycle. For example, consider cycle i in the stabilization cycle A
shown in fig. 5.1(b). The error νierror is estimated at the end of b and after correction
the remaining error is νierror ·(1−G). At the end of cycle B, the error corrected in cycle
i for A would have increased by ν̇cavity · τcycle. The error in the cycle i+ 1 is related to
the error in cycle i as

νi+1
error = νierror · (1−G) + ν̇cavity · τcycle. (5.7)

The error after some time, in the absence of drift correction, can be found from the
steady state solution of eq. 5.7 which is

νdrift
error =

ν̇cavity · τcycle

G
. (5.8)
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Figure 5.2: Variation of cavity resonance frequency with time. Red line is a linear fit
to the drift of the cavity resonance frequency.

Fig. 5.2 shows the drift of the cavity resonance frequency over time, a linear fit to
the drift gives us the drift rate D to be ∼ 0.2 Hz/s. Using this drift rate in eq. 5.8, we
get νdrift

error ∼ 0.3 Hz. This error would limit the accuracy of a frequency measurement
to 0.3 Hz/ν0 ∼ 7 × 10−16 where ν0 is the clock transition frequency. In practice, we
give an estimate of the drift rate as an input parameter and correct the cavity drift
rate through feed forward as shown in eq. 5.4 assuming the drift rate to be constant.
However, during the course of the experiment, the drift rate changes to a new value
due to some external disturbances. Assume that at t0 = 0, the initial drift rate Dinitial

suddenly changes to ν̇new
cavity. If we assume that the time taken for the drift rate to

change to the new value is long compared to the time taken for the error signal to
reach steady state value, we end up with a steady offset error νsteady

error =
a·τcycle

G
where

a = ν̇new
cavity −Di. Updated drift rate at time ti is similar to the exponential approach

of νierror towards zero (eq. 5.5) and it is modelled with a time constant τdrift as

D(t) = Dinitial + a · (1− e
−ti

τdrift ). (5.9)

Comparing eqs. 5.9 and 5.4 after one cycle (ti = τcycle) for the case of steady state
error we get τdrift as

τdrift =
−τcycle

ln(1− β
G
)
. (5.10)
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In our case, for a drift rate gain β = 0.005, the final value ν̇new
cavity is approached with a

time constant τdrift ∼ 80 s.
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Figure 5.3: Residuals from the linear fit shown in fig. 5.2, red line shows a 2nd

order polynomial fit. The rate of change of drift rate ν̈cavity calculated from the fit
is 2×10−6 Hz/s2.

Eq. 5.10 assumes that the drift rate changes suddenly from an initial value to a
final value. Over a long period of time, we observe deviation from the linear behavior
of the drift that might lead to frequency errors. This deviation are the residuals from
the linear fit in fig. 5.2 and is shown in fig. 5.3. This change in drift rate could be
attributed to temperature changes in the cavity. A second order polynomial fit gives
us the rate of change of the drift rate ν̈cavity = 2 × 10−6 Hz/s2. This change in drift
rate would introduce a constant offset error due to the finite time required to update
the drift. If d0 is the initial drift rate of the cavity, after cycle i, the drift rate is

di = d0 + i · ν̈cavityτcycle. (5.11)

Let the estimated drift rate at the measurement cycle i be Di, then the error between
actual drift rate and the updated drift rate is

εi = d0 + i · ν̈cavityτcycle −Di. (5.12)
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Figure 5.4: Simulation of eqs. 5.11 and 5.14. Due to finite time taken for the drift
rate update, the actual drift rate is larger than the updated drift rate.

The steady state offset error, if the time taken for the drift rate to change is long
compared to the time taken for the error signal to reach a steady state value and the
drift update for the i+ 1 measurement are

νsteady
error =

εi · τcycle

G
(5.13)

Di+1 = Di +
β

G
νsteady

error . (5.14)

Fig. 5.4 shows the simulation of eqs. 5.11 and 5.14. At long times, the difference
between the updated and the actual drift rates settle to a constant value. This steady
state drift rate error εsteady

error which can be obtained by using εi = εi+1 is

εsteady
error = ν̈cavity τcycle

(
G

β
− 1

)
. (5.15)

The steady state drift rate error is estimated to be ∼ 0.15 mHz/s for our parameters.
This drift rate error would result in νsteady

error ∼ 0.25 mHz which would limit the relative
accuracy of the clock transition to ∼ 5× 10−19.
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5.1.2 Interleaved cycles

Fig. 5.1 shows the interleaving of the stabilization cycles A and B. We read out the
frequency values of the the offset AOM between the clock laser and its reference cavity
for A and B at the end of cycle i. The frequency shift due to collisions is obtained
from the difference between the frequency values of the offset AOM of the two cycles
A and B. Though the cavity drift is corrected in each individual cycle, due to reading
the locked signal values of A and B at different times a constant frequency offset is
present which can be estimated as

ν̇cavity·τcycle

2
. This constant frequency offset is around

few tens of milli-Hertz in our case. However, this offset can be can be eliminated by
taking the average of the locked signal in i and i + 1 of one cycle and subtracting it
with the locked signal taken in measurement cycle i of the other cycle.

Equal time for interrogation cycles a, b, a
′
, b
′
ensures that any disturbances which

are introduced by the cycle timing are equal and therefore cancel when the difference
between the stabilization cycles are taken. Possible disturbances can be detected
by differences in atom number or temperatures in cycles a (a′) and b (b′). In our
experiment, atom number and thus the density had to be different in measurement
cycles A and B, this was done by having different blue MOT loading times in cycles
A and B. However, in the cycle pairs (a,b) and (a

′
, b
′
) which is used to lock the

clock laser to the atoms, the atom number should be same. Initially we observed that
there was a difference between the atom numbers in cycles a (a

′
) and b (b

′
). The

problem was traced to the switching of quadrupole field gradient when the blue MOT
cycle ended and the red MOT cycle started. Due to the change in the field gradient
(change in the current flowing through the coils), vibrations were induced in the coils.
The vibration induced by the previous cycle MOT switching displaced the zero point
of the quadrupole field gradient and influenced the red MOT position and therefore
the loading of the atoms from the red MOT to the optical lattice in the following
interrogation cycle.

Figure 5.5: Difference of the red MOT absorption images taken in cycle a and b for
same cycle time in both interrogation cycles.
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Fig. 5.5 shows the difference of the red MOT absorption images taken in cycles a
and b. The yellow region, which is the non-overlapping part between the red MOT of
loading cycle a and b clearly indicates that the red MOT position is different in inter-
rogation cycles. The vibrations continued from one cycle to another and damped. In
order to overcome this problem, a darktime was added at the beginning of each loading
cycle. We made the cycle times same for both stabilization cycles A and B so that the
displacement of the atoms in the cycles a, b, a

′
and b

′
is the same. In our measurement

program, we had (darktime − blue MOT loading time) + blue MOT loading time.
This allowed to change our atom numbers in interleaved cycles by changing the blue
MOT loading time while keeping the cycle times constant.
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Figure 5.6: Squares show the Allan deviation (with respect to the clock transition
frequency). (a) With identical parameters (atom number) for both cycles. (b) With
different parameters (atom number).
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To check if there is any systematic frequency offset present when the atom number
is same in both cycles, around 2 × 104 atoms were loaded into the lattice for both
stabilization cycles. Each of the interrogation cycles (a, b, a

′
, b
′
) were ∼ 200 ms long.

Fig. 5.6 (a) show the stability (given by the Allan deviation) of the difference between
the clock laser frequencies of cycles A and B with respect to the clock transition
frequency. After an averaging time of τ ∼ 8 s, the Allan deviation scaled down as 1/

√
τ

(white noise limited) which is shown by the blue line. We reached a fractional stability
of 2×10−16 in τ = 4000 s. This test revealed no systematic offset between the cycles.
We loaded different number of atoms in the interleaved cycles by having different blue
MOT loading times. For the density shift measurement, the atom number in cycle
B was fixed to 9.7 × 103 and the atom number in cycle A was varied till 9 × 104.
Fig. 5.6(b) shows the relative Allan deviation for one such measurement with atom
number 5.6× 104 in cycle A and 9.7× 103 atoms in cycle B. We reached a stability of
2× 10−15 after an averaging time of 500 s. The uncertainty of the measured frequency
shift is got from the Allan deviation. The difference in the stability at a given averaging
time for the two measurements shown in fig. 5.6 could be attributed to noise levels in
the experiment since they were taken on different days.
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Figure 5.7: Relative Allan deviation of the atom number obtained from the fluorescence
signal counts S.

Signal-to-noise problem caused by shot-to-shot atom number fluctuation will limit
the stability of a clock operation (see eq. 1.1). In order to characterize the relative
stability, we calculate the excited atom number at lock points ν0 + δ/2 and ν0 − δ/2
which are given by the fluorescence signals S1, S2, S

′
1, S

′
2 and find its relative Allan

deviation. The stability shown in fig. 5.7 is with respect to the average excited state
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atoms at lock points in a single cycle. The atom number can be determined better
than 2% after an averaging time τ ∼ 500 s. We find that the atom number fluctuation
in our experiment will limit the uncertainty of the measured density shift (explained
in the next section) with respect to clock transition to ∼ 8 × 10−16 for an averaging
time of τ ∼ 500 s. The difference between the estimated stability due to atom number
fluctuation and the stability shown in fig. 5.6(b) could be attributed to Dick effect
which results from sequential probing of atoms [87, 88].

Consider a two level atom in a superposition state |ψ〉 = α |g〉 + β |e〉. When a
measurement is made, probability of finding the atom in the ground (excited) state is
|α|2(|β|2). This probabilistic outcome is the source of quantum projection noise and it
sets the fundamental limit to the instability of the atomic frequency standard. If the
number of atoms that are being probed is N and p is the excitation fraction, for Rabi
spectroscopy and Lorentzian lineshape of the transition, the quantum projection noise
limited instability for an averaging time τ is given as [63]

σy(τ) =
∆

2ν0

√
2(1− p)

pN

Tc
τ

(5.16)

where ∆ is the linewidth (FWHM) of the transition, ν0 is the clock transition and Tc
is the total time taken to probe the atoms at both half maxima points and the signal
to noise (S/N) of the excited state population is given as

√
pN/(1− p). Using this

relation, we can estimate the quantum projection noise limited stability. The density
shift measurements were carried out by having an excitation probability of 35% and
typical linewidth of 200 Hz. For 5× 104 atoms probed, the quantum projection noise
limited instability at 1 s is σy(1 s) ∼ 2× 10−15 (Tc being 0.4 s).

5.2 Density dependent frequency shift of clock tran-

sition

At ultra-cold temperatures where only s-wave collisions occur, the atoms, due to
elastic collisions, undergo shift in their energy levels. In a uniform gas with atoms of
mass beingm, this shift can be calculated by considering the mean field interaction and
it is g(4πh̄2/m)a n, where g is the two-particle correlation function at zero separation,
a is the scattering length, n is the atom density. Let |g〉 and |e〉 be the ground and
excited states of the clock transition. In a mixture of ground and excited state atoms,
the shift in the energy are given as [89]

δEg =
4πh̄2

m
(gggaggρg + ggeageρe) (5.17a)

δEe =
4πh̄2

m
(geeaeeρe + ggeageρg) (5.17b)

where Eg(Ee) is the shift in the ground (excited) state energy, aij is the scattering
length between atoms in the internal states i and j and ρg(ρe) is the atom number den-
sity for ground (excited) state. The two-particle correlation function at zero separation
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gij which measures the probability that two particles are simultaneously detected at
the same position and time is given by the expectation value of field operators [90]

gij =

〈
Ψ̂†
i Ψ̂

†
jΨ̂iΨ̂j

〉
〈
Ψ̂†
i Ψ̂i

〉〈
Ψ̂†
jΨ̂j

〉 . (5.18)

The shift in the transition frequency δνeg between |g〉 and |e〉 is

δEe − δEg
h

= δν =
h̄

m
ρ [geeaee − gggagg + ζ(2ggeage − gggagg − geeaee)] (5.19)

where ρ = ρg+ρe and ζ = (ρg−ρe)/ρ = 1−2Pe, Pe being the excitation probability. For
ultracold bosons (non-condensed), due to exchange symmetry, we have ggg = gee = 2.
Consider two atoms initially in ground state, for a coherent homogeneous excitation,
the wavefunctions (expressed as coherent superposition of ground and excited states)
of both atoms are identical (indistinguishable) and therefore maintain exchange sym-
metry, gge in this case is 2. However, depending on the temperature of the atoms or the
alignment between the clock laser beam and the lattice, atoms evolve with different
Rabi frequencies [91]. Thus the excitation is not homogeneous and the atoms are no
longer indistinguishable. During the Rabi pulse, gge depends on the degree of inhomo-
geneity and varies with time, therefore we have have for bosons [92] 1 ≤ gge(t) < 2.
In addition to variation of gge, ground and excited state population also evolve over
time during Rabi pulse. The evolution of atoms in our case is described by eq. 4.13
but for simplicity, we assume the atomic evolution without damping which is a good
approximation for time scales and densities considered here (see fig. 4.9). If the laser
is detuned by an amount ∆ from the clock transition, the excitation probability varies
with time as

Pe(t) = K
Ω2

Ω
2 sin2

(
Ω t

2

)
(5.20)

where Ω (Ω) is the Rabi (generalized Rabi) frequency. The relation between the two
is given as Ω =

√
Ω2 + ∆2. The value K takes into account the decoherence effects

(like atom temperature) that limits excitation probability when the atoms are probed
at resonance (Ω = Ω).

The value of the frequency shift over a Rabi pulse length tR that is measured in
the experiment can therefore be calculated as

δν =

∫ tR

0

g(t) δν(t) dt (5.21)

where g(t) is the normalized sensitivity function [93] that describes how the clock
laser frequency fluctuations are weighted during the pulse length. For a constant pulse
length tR =5 ms, the excitation probability depends on the detuning ∆. By making
the approximation gge(t) = 1, eq. 5.21 can be written as

δν =
2h̄

m
ρ [aee − agg + C(age − agg − aee)] (5.22)
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with

C =

∫ tR

0

g(t) {1− 2Pe(t)} dt =

∫ tR

0

g(t)

{
1− 2K

Ω2

Ω
2 sin2

(
Ω t

2

)}
dt. (5.23)

For given values of K and Ω, both determined by observing Rabi oscillations, C
can be numerically calculated for a given detuning independent of the density. For
a constant value of C, δν is proportional to the atom density. To determine the
coefficient of the shift, interleaved scheme was used and the coefficient of the density
shift was determined from the slope of the plot (δν)A − (δν)B = ε(ρA − ρB), where
ε = 2h̄

m
[aee − agg + C(age − agg − aee)]
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Figure 5.8: Atom number dependent frequency shift of the 1S0→3P0 clock transition of
88Sr obtained using the interleaved stabilization method. The blue data point (rhom-
bus) indicates the atom number difference at which frequency shift versus excitation
probability was measured.

Our observation of the clock frequency shift with respect to atom number is shown
in fig. 5.8. The uncertainty of the difference between the measured frequency shift
of atoms in cycles A and B is estimated from the Allan deviation plots similar to fig.
5.6(b). We reach an uncertainty of ∼ 0.7 Hz at an averaging time τ ∼ 500 s. The
atom number and its uncertainty were estimated from scans similar to fig. 4.7. Due
to the collisional losses discussed in the previous chapter, the maximum excitation
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probability varies with density, thus an excitation probability of 35% at lock points
was chosen so that it could be reached for the range of atomic densities we measured.
The slope (δν/N) of the frequency shift versus atom number which was obtained from
the fit (excluding the data shown in green) is (4.14× 10−4± 1.5× 10−5) Hz per atom.
At low atom number, a linear dependence was observed, but for high atom number a
deviation from the linear behavior was seen. This deviation of frequency shift at high
atom number could be explained by take into account changes in dynamics during
the excitation of the atoms because of losses and dephasing in which case eq. 5.22 is
no longer valid. The density shift coefficient ε in terms of average frequency shift δν,
number of atoms N and volume is given as

ε =
δν

N

2π2w′w2
rwz

λ
. (5.24)

Using eq. 5.24 we calculate ε = (7.2 ± 2.0) × 10−17 Hz m3. The uncertainty in the
density shift value is due to uncertainties in the density determination.

In order to determine the different scattering lengths, we investigated the shift
for different excitation probabilities. We observe a weak variation of density shift
depending on the excitation probability at lock points. In this measurement, the atom
numbers in cycle A (cycle B) were fixed to 3.2×104 (9.7×103)( shown as blue rhombus
in fig. 5.8). The excitation probability at the lock points of cycle B was fixed (35%)
and that of cycle A was varied by applying the clock pulse (tR = 5 ms) with different
clock laser detuning. The different excitation probability resulted in different values
of the coefficient C which were calculated numerically from eq. 5.23.
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Figure 5.9: Variation of C with respect to excitation probability. The red line is the
third order polynomial fit.

64



Fig. 5.9 shows the value of C for different final excitation probabilities. For the
fit, this dependence was approximated by polynomial

C(Pe) = 0.7596 + 0.01428 Pe + 3.3498 · 10−4P 2
e − 3.824 · 10−6 P 3

e . (5.25)

Fig. 5.10 shows the difference between the frequency shifts of atoms in cycles A
and B with respect to excitation probability of atoms in cycle A. The red line is the
fit of the equation

(δν)A − (δν)B = c+ d C(Pe) (5.26)

with

c =
2h̄

m
[(aee − agg)(ρA − ρB)− 0.504 ρB(age − agg − aee)]

d =
2h̄

m
ρA(age − agg − aee).

(5.27)
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Figure 5.10: Frequency shift vs excitation probability of cycle A. The red line is a fit
using eqs. 5.25 and 5.22

For cycle B (Pe = 0.35) the value of C was calculated to be 0.504. Using the well
known ground state (1S0) scattering length agg = −1.4a0 [94], the fit gives the values
of aee = (985± 40)a0 and age = (655± 40)a0. The maximum (minimum) value of aee
and age correspond to the upper (lower) bound shown as the blue dashed line in fig.
5.10. However, due to the uncertainty in the measured measured frequency shift, it is
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difficult to determine whether the slope is positive or negative. The green dashed line
in fig. 5.10 which has a negative slope is got by varying the parameters c and d. For
the negative slope, we estimate the value of aee (age) to be 678a0 (952a0). Traverso
.et al [78] reported the value of aee = (100 ± 50)a0. This discrepancy, as discussed
in the previous chapter, can be attributed to effects of the dimensionality of the trap
potential where a strong axial confinement of the particle motion has influence on the
elastic scattering [80], further investigations are necessary to experimentally study the
role of axial confinement on scattering lengths.

For the operation of the clock, it is desirable to work with a narrow transition. We
loaded 3× 103 atoms in the lattice, for this atom number, we do not expect significant
dephasing collisions that would lead to collisional broadening of the transition. The
vibration isolation of the clock laser stabilization cavity was improved resulting in a few
Hz laser linewidth. Fig. 5.11 shows a narrow line with (10± 1) Hz linewidth obtained
with an intensity of 12 W/cm2 and a magnetic field of 500 µT (Ω/2π ∼ 11 Hz).
The uncertainty in the measured linewidth is due to bad signal-to-noise ratio. The
clock pulse length was 100 ms giving a Fourier limited linewidth (0.89/tR) ∼ 9 Hz.
Measurement for longer pulse length did not produce narrower lines indicating some
broadening mechanism being present. These mechanisms may include residual laser
drift which could influence the linewidth depending on the scan direction and relative
drift or mechanical vibrations which can make the probe laser move relative to the
atoms in the lattice that will lead to Doppler broadening. To our knowledge, this is
the narrowest linewidth achieved in a 1-D 88Sr lattice clock.
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Figure 5.11: Narrow clock transition with 3×103 atoms in the lattice. The Lorentzian
fit gives a linewidth of 10 Hz.
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Having quantified the density shift between clock states of 88Sr atoms, we are in a
position to give a guideline for an operational 1-D lattice clock based on 88Sr atoms
in which the collisions contribute to the fractional uncertainty (with respect to clock
transition) at a level of 10−16 which is also the current uncertainty in the frequency
shift due to black body radiation [14]. At this level, the uncertainty in the collisional
shift should be 0.043 Hz. The slope of the line in fig. 5.8 has an uncertainty of 3.6%,
giving us collisional frequency shift to be 0.043/0.036 = 1.2 Hz. This frequency shift
limits the density to 1.7 × 1016 m−3, to optimize the atom number for this density,
we calculate a set of lattice parameters. For a 300 mW of power in a single beam
and 75 µm waist radius, we get a potential depth of 10 µK for a lattice operating at
813 nm. For an ensemble of atoms distributed along the lattice with w′ = 280 µm
and with 3 µK temperature, eq. 3.3 yields wz = 106 nm and wr = 42 µm along
the axial and radial direction. Substituting these values in eq. 5.24 gives us 2 × 104

number of atoms in the lattice. This atom number is comparable or larger than the
current lattice clocks based on 87Sr [14, 95] and the collisional broadening found from
simulation of eq. 4.14 is about 1.3 Hz. Finally, for these conditions, we estimate from
eq. 5.16 quantum projection noise limited stability σy(1 s) = 2 × 10−17 for optimized
Tc = 0.2 s, to achieve this limit however, the atom number should be controlled to
about 0.07%. Thus, the feasible lattice parameters and an atom number demonstrates
the possibility of using 1-D lattice clock based on 88Sr without collisional degradation
at the level of 10−16.

5.3 Evaluation of systematic effects

Based on the design parameters of the 1-D lattice 88Sr clock, we can evaluate the
systematic effects and present a preliminary uncertainty budget. We assume a state-
of-the-art clock laser with a 1 Hz linewidth and waist radius of 100 µm. For a Fourier
limited linewidth of 2 Hz, we have tR ∼ 445 ms and Ω/2π ∼ 1.1 Hz. This Rabi
frequency can be obtained with an intensity I = 636 mW/cm2 and a magnetic field
B = 1.4 mT. The effects which are described below are shifts due to clock laser light,
magnetic field, blackbody radiation and lattice laser.

• ac Stark shift due to Clock laser
Clock laser light induces frequency shift in the clock transition by the ac Stark
effect. This shift is proportional to the intensity of the clock laser and it is given
as ∆L = κI where ∆L is the frequency shift and I is the clock laser intensity.
The value of κ is given in table 2.3. For the given laser intensity, the resulting
shift is ∆L = −11.5 Hz. Fluctuations of laser intensity can be controlled within
0.5% [96], giving us the uncertainty δ∆L = 0.05 Hz.

• Second order Zeeman shift
In the presence of magnetic field the excited state is shifted in energy, this second
order Zeeman shift is given as ∆B = β|B|2. By using the value of β from table 2.3
we have ∆B = −45.7 Hz. The uncertainty in the magnetic field determination
leads to shift uncertainty δ∆B = 2δBβ|B|. With proper shielding, fluctuations
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can be controlled better than 1 µT. For a magnetic field of 1.4 mT with 0.1%
uncertainty in its determination we have δ∆B = 0.09 Hz.

• Shift due to blackbody radiation
Due to the different static polarizabilities (αdc) of the two clock states, the black
body radiation shifts clock frequency. This shift, for a given temperature T is
given as

∆R = − k4
B

60ε0h̄
4c3

∆αdcT
4 = −2.354(32)

(
T

300K

)4

Hz. (5.28)

The uncertainty in the constant is the result from the calculation of polarizabil-
ities [48]. For a temperature of the chamber of (294± 1) K, we get a blackbody
radiation shift of ∆R = 2.2 Hz and δ∆R = 0.042 Hz.

• Shift due to lattice laser
The clock transition frequency ν0 gets modified in the presence of lattice laser,
this shifted frequency can be expressed as [39]

ν = ν0 + ν1
U0

Er
+ ν2

U2
0

E2
r

+O

(
U3

0

E3
r

)
(5.29)

where Er is the lattice photon recoil energy. ν1 is proportional to the ac polar-
izabilities of the clock states which is canceled by operating the lattice at magic
wavelength. No scheme till now exist that would cancel second term which is
to due to the hyperpolarizability difference between the clock states. The mea-
surement of shift due to hyperpolarizability gives a value [39] ν1 = 7(6) µHz.
Using this value, we estimate the shift due to the hyperpolarizability effect for
the lattice power of 300 mW (U0 = 60Er) with a 0.5% intensity fluctuation to be
∆H = 0.025 Hz and an uncertainty δ∆H = 0.002 Hz which is below 10−17 level.

Systematic effects Shift (Hz) Fractional uncertainty (10−16)
ac Stark (clock laser) -11.5 1.3

2ndorder Zeeman effect -45.7 2
BBR shift 2.2 0.97

Hyperpolarizability 0.54 0.04
Collisional shift 1.2 1

Total -53.26 2.8

Table 5.1: Shift and uncertainty budget for 1-D lattice based 88Sr clock. Uncertainty
is given with respect to clock transition ν0 = 429 · 1012 Hz

Table 5.1 shows the uncertainty budget calculated from measured perturbation
parameters. From table 5.1, we find that the shift due to the ac Stark effect and
quadratic Zeeman shift is significant compared to other shifts. Further control over
the intensity and magnetic field is necessary to lower the uncertainty to 10−17 level [96].
The uncertainty contribution from the black body radiation can be reduced by accurate
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experimental determination of blackbody shift coefficient and operating the MOT in
a temperature controlled environment [14]. Finally, a new density shift measurement
with the proposed lattice parameters should give us an improved correction in the
collisional shift.

In this chapter, the technique of interleaved stabilization which was used to measure
the density shift was described in detail. This method can also be used to measure the
effects of other perturbations that influences an optical frequency standard (eg: second
order Zeeman effect, light shift of probe laser etc.). The limitation of this method is set
by the frequency noise of the clock laser, atom number fluctuations and non-linearity
of the cavity drift. Based on our measurement of the density shift coefficient, we
were able to propose optical lattice parameters and an atom number under which the
collisions do not degrade the fractional uncertainty at the level of 10−16 and evaluate
a preliminary uncertainty budget.
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Chapter 6

Conclusion and outlook

In this thesis inelastic collisions, decoherence effects and density dependent fre-
quency shift in a 1-D 88Sr lattice clock were investigated. To study these effects,
strontium atoms were laser-cooled using a two-stage cooling process. In the first stage,
the atoms are cooled down to 2.5 mK and a temperature of 3 µK is reached with the
second stage cooling. The atoms are simultaneously loaded into the optical lattice
operating at magic wavelength of 813 nm while they are being cooled in the inter-
combination line. The lifetime of the atoms in the lattice is 7.5 s which is limited by
background collisions. The forbidden 1S0→3P0 clock transition is enabled by applying
a static homogeneous magnetic field that admixes the 3P1 to the 3P0 state.

In order to study inelastic losses, experiment was conducted with only 3P0 atoms in
the lattice to study 3P0+

3P0 collisions. By measuring the decay of 3P0 atoms, the loss
rate γee was obtained. Similarly, the loss rate γge due 1S0+

3P0 collisions was obtained
by observing the decay of 1S0 and 3P0 atoms. From the loss rates the inelastic scat-
tering lengths Im(aee) and Im(aeg) were calculated. Study of collisional broadening of
the clock transition showed a new dephasing mechanism proportional to the ground
state atoms. A master equation was developed to fit the observed clock transitions
and Rabi oscillations. By observing the excitation dynamics for different atom num-
bers, the dephasing coefficient γdep was determined. Our observations show that this
dephasing effect does not affect the excitation dynamics for low atom numbers. In our
experimental setup, we have shown that a Q factor of 4 × 1013 can be achieved by
having few thousand atoms in the lattice. This is the highest Q factor achieved in a
1-D 88Sr lattice clock to our knowledge.

Third collision effect being important for an neutral atom based optical clock is the
frequency shift due to collisions. This shift ε was measured using interleaved stabiliza-
tion method. The uncertainty in the shift is mainly due to to density determination.
At low atom number, a linear dependence was observed but for high atom number a
deviation from the linear behavior was seen. This deviation of frequency shift at high
atom number could be explained by take into account changes in dynamics during the
excitation of the atoms because of losses and dephasing. A weak dependence of the
density shift on the excitation probability of atoms was observed and from this mea-
surement, upper and lower bounds of 1S0+

3P0 and 3P0+
3P0 elastic scattering lengths

were estimated.
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Because of the small frequency shifts due to density, it was crucial to study the
interleaved stabilization scheme in detail and optimize. Our method of estimation
of the error signal and its correction was presented in this thesis. Time constants
resulting from fractional error correction in each measurement cycle and errors due
to non-linear drift of the clock laser reference cavity were estimated for our set up.
We conclude that different uncertainties that arise in our experiment while using this
method does not limit the uncertainty of our measurement at 10−16 level. Possible
experiments using interleaved scheme to measure frequency shifts, for example, shifts
due to quadratic Zeeman effect and ac Stark shift of the probe laser whose values have
been only determined theoretically, will find the expressions for time constants and
estimated errors useful.

With the loss and the shift coefficients determined in this thesis, it was shown that
a 1-D lattice clock based on 88Sr shows no degradation due to collisions at the level
of 10−16. This guideline for the design of a 1D-lattice clock with bosonic 88Sr will be
of help in designing portable setups. Such portable optical clocks operated in space
can be used to make precise measurement of gravitational redshift, mapping of earth’s
gravitational field or improved in space navigation. Possible experiments which can be
limited by coherence time, for example using 88Sr atoms as quantum registers [97] or
to use them in producing millihertz linewidth lasers will benefit from the results of this
thesis work. The scattering lengths calculated in this work can be used to estimate
scattering lengths of other strontium isotopes using mass scaling laws.

Active development of optical lattice clocks has lead to explore other elements
such as Ytterbium and Mercury. Each element offers some kind of advantage over the
other elements. For example, the natural line-width of fermionic 87Sr isotope is 1 mHz,
compared to this the natural line-width of fermionic 171Yb isotope is 10 mHz, however,
the nuclear spin of 171Yb (I = 1/2) offers a simple spin system [98, 99]. Neutral
mercury atoms for example have BBR (Black body radiation) shift which is an order
of magnitude smaller [100] than that of Strontium and Ytterbium and work is underway
to construct an optical lattice clock based on neutral mercury atoms [101, 102]. This
thesis concludes by highlighting that advances in various fields spearheaded by the
improvement in accuracy and stability of measurement of time is the driving force
that pushes the limit of timekeeping to this day.
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Appendix A

Expression for density dependent
frequency shift

In a 1-D optical lattice, different potential wells (lattice sites) are occupied by
different number of atoms. Let Nn be the number of atoms in a potential well labeled
n and N be the total number of atoms trapped in all the lattice sites (N =

∑
nNn).

The frequency shift (δν) of the atoms inside a potential well with density distribution
ρ(r) is given as δν = ερ(r) where ε is the coefficient of density shift. Average density
shift of the atoms inside a single potential well is given as

δνn =

∫
dr3δνρ(r)

Nn

=

∫
dr3ερ2(r)

Nn

. (A.1)

If wz and wr are the 1/e2 radii of the distribution of the atoms along the axial and the
radial direction in each potential well, the Gaussian density distribution in a potential
well i is expressed as

ρ(r) = ρ0e
−2x2

w2
r e

−2y2

w2
r e

−2z2

w2
z (A.2)

where ρ0 is the peak density inside the potential well. Atom number in each potential

well can be expressed as Nn =
∫
dV ρ(r), using the relation

∫∞
−∞ dx e

−x2

A =
√
Aπ the

atom number in each potential well is given by

Nn =

∫
dV ρ(r) = ρ0

w2
rwzπ

2

√
π

2
. (A.3)

By using eqs. A.2 and A.3 the average frequency shift inside a potential well is ex-
pressed as

δνn =
εNn

π
3
2w2

rwz
. (A.4)

Eq. A.4 gives the average frequency shift experienced by the atoms in a single
potential well. In order to derive an expression for the average frequency shift experi-
enced by total number of atoms N trapped in all optical lattice sites, we first note that
absorption images of the atoms in the optical lattice show a Gaussian distribution of
atoms along the axial direction of the lattice beam. Therefore different lattice sites
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are occupied with different atom numbers given by a Gaussian distribution. If λ is
the wavelength of the lattice beam and w′ is the 1/e2 radius of the atom distribution
along the axial direction of the lattice beam, then the atom number in each lattice site
is given as

Nn = N0e
−2(n λ

2 )2

(w
′
)2 (A.5)

where N0 is the peak atom number along the axial direction of the lattice beam. Total
number of atoms is given by summing over Nn over all lattice sites

N =
∞∑

n=−∞
N0e

−2(n λ
2 )2

(w
′
)2

≈ N0

∫
dn e

−λ2n2

2(w′)2

≈
√

2πN0
w′

λ
.

(A.6)

Average frequency shift δν of the total number of atoms is given by summing the
average frequency shifts experienced by atoms in each potential well and diving by
total number of atoms.

δν =

∞∑
n=−∞

δνnN0e
−2(n λ

2 )2

(w
′
)2

N

=
N2

0 ε

π
3
2w2

rwzN

∫
dn e

−λ2n2

(w′)2 .

(A.7)

Using Eq.A.6, the expression for average frequency shift δν simplifies to

δν =
λεN

2π2w′w2
rwz

. (A.8)
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Appendix B

Expression for locking error signal

Figure B.1: Schematic of clock transition showing the lock points S1, S2 and offset O.

We derive the expression for the error signal that is used to stabilize the clock laser
to the atoms. The basic assumption is that the transition line is Lorenztian in shape.
Let νL and ν0 be the laser and clock transition frequency. Then we have the difference
±νerror = νL − ν0 where the error signal is positive or negative depending on the laser
frequency is greater or less than the clock transition frequency. The Lorentz model
used is

S = a− a−O

4(νL − ν2
0)

∆
+ 1

(B.1)

where ∆ is FWHM of the transition, a = S1 + S2 − 0. FigureB.1 shows the schematic
of the clock transition detected using ground state atoms. Let νL > ν0 in this example,
when the laser probes at ±∆/2 we have S2− S1 > 0 . S1 and S2 are given as

S1 = a− a−O

4[(νL −∆/2)− (νL − νerror)]
2

∆2 + 1

(B.2)
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S2 = a− a−O

4[(νL + ∆/2)− (νL − νerror)]
2

∆2 + 1

. (B.3)

Subtracting S1 from S2 and neglecting the terms ν2
error and (νerror/∆)2 we get

νerror = ∆
S2 − S1

2(S2 + S1 − 2 ·O)
. (B.4)

If the transition is probed at width δ which is related to ∆ as δ = µ∆ we have

S1 − S2 =
a−O

4(νerror − γ/2)2

∆2 + 1

− a−O

4(νerror + γ/2)2

∆2 + 1

. (B.5)

Ignoring again the terms ν2
error and (νerror/∆)2 we end up with

νerror = κ∆
S2 − S1

2(S2 + S1 − 2 ·O)
. (B.6)

with κ = 1
4µ

(µ2 + 1)2
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