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ABSTRACT 
 
Post-transcriptional mechanisms play a critical role in regulating the expression of numerous 

proteins that are involved in inflammation. Expression of these proteins can be influenced 

profoundly by alterations in degradation or translation of their mRNA, which often contain 

adenine/uridine-rich elements (AREs), but also other, less well characterized cis-elements in 

their 3’-untranslated regions.  

Previously it was reported by our group that activation of the p38 MAP kinase/MAPKAP 

kinase 2 (MK2) pathway in HeLa cells can lead to stabilization of ARE-containing mRNAs, 

whereas UV-B light stabilizes mRNAs irrespective of an ARE and in a p38/MK2 independent 

manner. In light of these studies, behaviour of selected short-lived mRNAs, IL-8, IκBζ and 

IκBα mRNAs, which differ in their regulatory elements, were examined in response to UV-B 

light and IL-1. It was found that UV-induced stabilization of ARE-containing IL-8 mRNA by 

low doses requires the p38 MAPK pathway, whereas it was stabilized independently of this 

pathway at high doses, which suggests activation of other mechanisms and signal pathways in 

mRNA stabilization. Knock down of the candidate mRNA stabilizing protein HuR did not 

affect the stability of IL-8 mRNA mediated by UV light or IL-1. Both non-ARE IκBζ and 

IκBα mRNAs were not or only slightly affected by low and high doses of UV-B respectively, 

independently of p38 MAPK pathway. Initial results for mRNA stabilization by UV-B were 

also obtained in primary keratinocytes. Based on initial results in the group, IL-1-induced 

changes in the translational level of the selected mRNAs were studied. Of the three mRNAs, 

only IκBζ mRNA exhibits translational silencing which is reversed by IL-1. The translational 

silencing was identified by luciferase reporter assays to be executed by its 3’ UTR region. 

Increased translation in response to IL-1 was independent of the p38 MAP kinase cascade. 

Mimicking the translational effect of IL-1 by IRAK proteins suggests involvement of other 

signalling pathway which apparently diverge downstream of IRAKs.  

The results show that, depending on the stimulus and RNA, diverse post-transcriptional 

control mechanisms can be executed which selectively influence inflammatory gene 

expression. 
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ZUSAMMENFASSUNG 
 
Posttranskriptionelle Mechanismen spielen eine entscheidende Rolle bei der Expression 

zahlreicher Proteine, die in der Entzündung beteiligt sind. Die Expression diese Proteine kann 

durch Änderungen in der Degradation oder Translation ihrer mRNA  stark beeinflusst werden. 

Diese mRNAs beinhalten oft Adenin/Uridin reiche Elemente (AREs), aber auch andere 

weniger charakterisierte cis-Elemente in ihren 3’ untranslatierten Bereichen. 

Wie früher von unserer Gruppe gezeigt, kann die Aktivierung des p38 MAP kinase/MAPKAP 

kinase 2 (MK2) Signalwegs in HeLa Zellen zur Stabilisierung von ARE-haltigen mRNAs 

führen, während UV-B Licht mRNAs unabhängig von einem ARE und dem p38/MK2 

Signalweg stabilisierte. Angesichts dieser Beobachtungen wurde das Verhalten ausgewählter 

kurzlebiger mRNAs, IL-8, IκBζ und IκBα mRNAs, die sich in ihren regulatorischen 

Elementen unterscheiden, gegenüber UV Bestrahlung und IL-1 Stimulation untersucht. Es 

wurde festgestellt, dass UV-induzierte Stabilisierung der ARE-haltigen IL-8 mRNA durch 

niedrige Dosen den p38 MAPK Singnalweg benötigt, während diese Stabilisierung durch 

hohe Dosen unabhängig von diesem Signalweg verläuft, was auf sonstige mRNA 

stabilisierende Mechanismen und Signalwege hinweist. Der Knock down von mRNA 

stabilisierendem Protein HuR übte keine Wirkung auf die durch UV-B oder IL-1 vermittelte 

Stabilität der IL-8 mRNA aus. Die nicht ARE-haltigen IκBζ und IκBα mRNAs waren durch 

niedrige UV-B Dosen nicht und durch hohe Dosen nur leicht in einer p38 MAPK 

unabhängigen Weise beeinflusst. Anfängliche Ergebnisse für UV-vermittelte mRNA 

Stabilisierung wurden auch in primären Keratinozyten erhalten. Durch IL-1 induzierte 

translationelle Änderungen in den ausgewählten mRNAs wurden aufbauend auf erste 

Ergebnisse unserer Gruppe weiter untersucht. Von diesen drei mRNAs wies nur IκBζ mRNA 

eine translationelle Hemmung auf, die durch IL-1 aufgehoben wurde. Mit Hilfe von 

Luciferase Reporter Experimenten wurde festgestellt, dass dieser Hemmeffekt durch den 3' 

untranslatierten Bereich von IκBζ ausgeübt wird. Die Erhöhung der Translationsrate durch IL-

1 war unabhängig von der p38 MAP Kaskade. Die durch IL-1 ausgeübte translationelle 

Wirkung wurde von IRAK Proteine nachgeahmt. Dies weist auf die Beteiligung weiterer 

Signalwege hin, die anscheinend "downstream" von IRAKs abzweigen. Diese Ergebnisse 

zeigen, dass abhängig von Stimulus und RNA mehrere posttranskriptionelle 

Kontrollmechanismen aktiviert werden können, welche die inflammatorische Genexpression 

selektiv beeinflussen. 

Schlagwörter: Regulatorische Elemente, UV-Licht, mRNA Stabilisierung, Translation 
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1 INTRODUCTION 

1.1 Regulation of gene expression 

The multistep pathway of eukaryotic gene expression is a fundamental cellular process, which 

involves a series of highly regulated events in the nucleus and cytoplasm. In the nucleus, 

genes are transcribed into pre-messenger RNAs which undergo a series of nuclear processing 

steps. Mature mRNAs are then transported to the cytoplasm, where they are translated into 

protein and degraded. Expression of a gene can be controlled at many levels, including: 

• Transcription 

• RNA processing (mRNA nuclear export and localization, mRNA splicing, mRNA 

stability and mRNA decay) 

• Translation and post-translational events such as protein stability and modification. 

  

The main focus of this study was to study the control of mRNA degradation and translation. 

 

1.2 Mechanisms of mRNA decay in eukaryotes 

The steady-state level of a eukaryotic messenger RNA is established by its relative rates of 

synthesis and degradation. The vast majority of eukaryotic mRNAs carry a 5’ 7-

methylguanosine cap structure and a 3’ poly(A) tail of up to 200 adenosine residues in length. 

mRNA turnover is a regulated process, which can involve different pathways. 

 

1.2.1 Deadenylation-dependent mRNA decay 

A principal mRNA-degradation pathway used in both yeast and higher eukaryotes is initiated 

by removal of the 3’ poly(A) tail, a process known as deadenylation (Shyu et al., 1991). 

Deadenylation-dependent mRNA decay is important for regulating transcript stability in 

mammalian cells (Shyu et al., 1991). The process starts with excision of poly(A) tail by 

deadenylase enzymes like poly(A) ribonuclease, PARN, (Gao et al., 2000) that was initially 

described and purified from mammalian cells (Aström et al., 1992; Körner et al., 1997). In 

yeast, the predominant deadenylase complex contains two nucleases Ccr4p and Pop2p and 

several accessory proteins, Not1-Not5p, Caf4p, Caf16p, Caf40p and Caf130p (Tucker et al., 

2002; Tucker et al., 2001). Other deadenylases like Pan2p/Pan3p (poly(A) nuclease), are 

proposed to trim nascent poly(A) tails in the nucleus before export (Brown et al., 1996), but 
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might also participate in cytoplasmic deadenylation (Boeck et al., 1996; Tucker et al., 2001). 

The Ccr4p/Pop2p/Not protein complex (Draper et al., 1995; Dupressoir et al., 1999; 

Dupressoir et al., 2001) and the Pan2p/Pan3p deadenylase (Zuo et al., 2001), which were first 

discovered in yeast, are conserved in eukaryotic genomes. In Table 1 some human homologs 

of yeast RNA degradation factors are mentioned. 

 

Protein Names 

in Yeast 

Human Homologs  

(% Identity) 

Information 

Dcp1 DCP1B (34%), DCP1A (33%) Member of decapping complex with Dcp2 

Dcp2 DCP2 (37%) Catalytic pyrophosphatase subunit of decapping complex 

Xrn1 XRN2 (36%), XRN1 (35%) Cytoplasmic 50 exonuclease 

Ccr4 hCCR4 (18%) Member of Ccr4-NOT complex 

Pop2 CNOT7 (39%), CNOT8 (37%) Member of Ccr4-NOT complex 

Not1 CNOT1 (27%) Member of Ccr4-NOT complex 

Not5 CNOT3 (33%) Member of Ccr4-NOT complex 

Not3 unclear Member of Ccr4-NOT complex 

Caf16 CNOT3 (26%) Member of Ccr4-NOT complex 

Caf40, Caf130 unclear Member of Ccr4-NOT complex 

 
Table 1. Human Homologs of Yeast RNA Degradation Factors (modified from Houseley 
et al., 2009). 
 
Once RNA is deadenylated, it can be degraded in either of two ways. One way is degradation 

in the 5’-3’direction, where the 5´cap is removed by decapping enzymes Dcp1 & Dcp2 

(hDcp1 & hDcp2 are the mammalian homologues of the yeast) (Lykke-Andersen, 2002; 

Piccirillo et al., 2003; Wang et al., 2002) and the transcript is digested by exoribonucleases 

like Xrn1p (Muhlrad et al., 1994). The second way is degradation in the 3’-5’ direction via a 

complex of exonucleases known as exosome (Jacobs-Anderson et al., 1998; Muhlrad et al., 

1995) followed by hydrolysis of 5’ cap structure by decapping enzymes (Fig.1). 
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Fig.1 Eukaryotic mRNA decay mechanisms and enzymes. Two general mRNA decay 
pathways. Both pathways are initiated by deadenylation by the Ccr4/Pop2/Not complex or 
possibly by the alternative deadenylases, Pan2/Pan3 and PARN. Poly(A) tail shortening can 
lead to either 3’-5’ exonucleolytic digestion by the exosome or decapping by the Dcp1/Dcp2 
complex. Decapping is followed by 5’-3’ exonuclease digestion by Xrn1. The residual cap 
structure resulting from exosome digestion is cleaved by the scavenger decapping enzyme 
DcpS (Decker et al., 2002). 
 
Most enzymes and components of the deadenylation and decapping 5’–3’decay pathway 

(Dcp1/Dcp2 complex, exonuclease XRN1, CCR4-NOT deadenylase complex) come together 

in small cytoplasmic foci called P bodies (processing bodies). Therefore P bodies are thought 

to be places of mRNA degradation. In yeast, GFP-tagged Dcp1p, Dcp2p, and Xrn1p have 

been localized to P bodies (Sheth et al., 2003). Similarly, knockdown of XRN1 leads to the 

accumulation of polyadenylated mRNA at P bodies in mammalian cells (Cougot et al., 2004).  

Apart from P bodies stress granules are also non-membranous cytoplasmic aggregates, 

which are sites of mRNA triage, wherein individual mRNAs are dynamically sorted for 

storage, degradation, or translation during stress and recovery (Anderson and Kedersha, 

2009). Proteins that promote mRNA stability like HuR or destabilize mRNA tristetraprolin 

(TTP) are also recruited to stress granules, suggesting that stress granules effect a process of 

mRNA triage, by promoting polysome disassembly and routing mRNAs to cytoplasmic 

domains enriched for HuR and TTP (Kedersha and Anderson, 2002; Anderson, 2008). 
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1.2.2 Deadenylation-Independent mRNA decay 

1.2.2.1 Nonsense-mediated mRNA decay 

Messenger mRNAs bearing premature translation termination codons (PTCs), which could 

give rise to truncated and potentially harmful proteins, are eliminated through nonsense-

mediated mRNA decay (NMD). The NMD pathway is one of the best characterized mRNA 

surveillance mechanisms (Pulak et al., 1993). This pathway has been studied extensively in 

yeast, in which a premature stop codon is recognized during translation termination, resulting 

in rapid, deadenylation-independent decapping (Muhlrad and Parker, 1994). Four factors -

Upf1, Upf2, Upf3 and Hrp1- are essential for nonsense-mediated mRNA decay in yeast. All 

interact with the translation- release factor RF3, and they are also involved in suppressing 

nonsense codons (Weng et al., 1996; Wang et al., 2001). The human homologue of these 

factors (UPF1, UPF2, UPF3) have also been identified and have functional characteristics 

similar to their yeast homologues (Bhattacharya et al., 2000; Serin et al., 2001; Mendell et al., 

2000). 

 

 
 
Fig.2 Decay of NMD substrates. In yeast and mammals decay of NMD targets is initiated by 
removal of the cap structure by the decapping enzymes Dcp1 and Dcp2. This exposes the 
mRNA to exonucleolytic digestion by the 5’→3’ exonuclease Xrn1. An alternative pathway 
involves deadenylation followed by 3’→5’ exosome-mediated decay (Lynne E. Maquat, 
2006). 
 

1.2.2.2 Endonuclease-mediated mRNA decay 

Eukaryotic mRNAs can be degraded via endonucleolytic cleavage prior to deadenylation. 

Evidence for this mechanism comes from the analysis of transcripts such as mammalian 

insulin-like growth factor II, IGF2, (Nielson et al., 1992), transferrin receptor, TfR, (Binder et 

al., 1994), where mRNA fragments are detected in vivo. It was observed that mRNA 

degradation involved an endonucleolytic cleavage within the 3' UTR and did not involve 
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poly(A) tail shortening. Endonucleolytic cleavages have also been defined in vitro for the 

albumin mRNA (Dompenciel et al., 1995) and in the coding region of the c-myc mRNA 

(Bernstein et al., 1992). 

Endonucleolytic cleavage can also be exhibited by Micro RNAs. Micro RNAs (miRNAs) are 

small endogenous noncoding RNAs that regulate gene expression post-transcriptionally 

(Bartel, 2004; Filipowicz, 2005). They control gene expression in animals, plants, and 

unicellular eukaryotes by promoting cleavage of complementary mRNA (Yekta et al., 2004) 

or repressing translation of target mRNAs (Lee et al., 1993). To accomplish their regulatory 

function miRNAs associate with the Argonaute proteins to form RNA-induced silencing 

complexes (RISCs) (Bartel, 2004; Filipowicz, 2005). 

The existence of a link between the miRNA pathway and mRNA decay is supported by the 

observation that mammalian Argonaute proteins, miRNAs, and miRNA targets co-localize to 

P bodies (Jakymiw et al., 2005; Liu et al., 2005a,b; Meister et al., 2005; Sen et al., 2005). 

 

1.3 Regulation of mRNA stability 

The mRNAs are generally protected at their 5’ end through a 7-methylguanosine cap structure 

from exonuclease activity (Shatkin, 1976). At the 3’ end they are protected through a poly(A) 

tail and its interrelated poly (A)-binding proteins (PABPs) from nuclease decay (Bernstein 

and Ross, 1989). mRNAs lacking a 3’ poly(A) tract are unstable with or without added PABP 

(Bernstein et al., 1989; Ross et al., 1987). 

PABP1 also interacts with a specific region of the translation-initiation factor eIF4G, which in 

turn forms a ternary complex with the cap-binding protein eIF4E (Gingras et al., 1999). This 

complex circularizes the mRNA (Wells et al., 1998), can promote translation, and stabilize 

mRNAs by preventing access of deadenylating and decapping enzymes to their targets. 
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Fig.3 The ternary complex for translation and mRNA stability. During translation, the 
mRNA is thought to be circularized by its interaction with the translationinitiation factors 
eIF4E (4E), eIF4G (4G) and the poly(A)-binding protein (PABP). The eIF4E protein binds to 
the 5′ cap structure and this interaction is promoted by its binding to eIF4G which also binds 
to PABP on the poly(A)-tail. This conformation protects the 5′ and 3′ ends of the mRNA from 
attack by the deadenylase and decapping enzymes (Wilusz et al., 2001). 
 
Several sequence elements can affect the stability of the mRNA transcript, either by 

promoting it (stabilizer elements) or by promoting mRNA decay (destabilizer elements). So 

far a few examples of stabilizer elements that block rapid mRNA decay have been identified. 

In yeast a stabilizer sequence that inactivates the deadenylation-dependent decay pathway has 

been found in the stable PGK1 mRNA (Decker et al., 1993). In mammals, a sequence in the 

3’-UTR of the α-globin transcript slows down poly(A) shortening and rapid decay of the 

mRNA (Wang et al., 1999).  

The mRNA half-lives vary considerably among different species of transcripts. Half-lives of 

most mRNAs are influenced by specific cis-acting elements within the mRNA molecule 

frequently located in the 3’ untranslated regian (3’ UTR) of the mRNA. One of the best 

studied and most prevalent cis-acting elements is the AU-rich element (ARE). 

1.3.1 AU-rich elements (AREs) 

AREs are sequence elements of 50–150 nt that are rich in adenosine and uridine bases. These 

motifs were first identified within the 3’ UTR of many short lived mRNAs encoding several 

cytokines or lymphokines (Caput et al., 1986). The first direct evidence that the ARE can 

function as a potent mRNA destabilizing element came from a study in which a conserved 

region of 51 nucleotides containing AUUUA motifs from the 3' UTR of human granulocyte-

macrophage-colony-stimulating factor (GM-CSF) mRNA was inserted into the 3' UTR of ß-

globin mRNA; the otherwise stable β-globin mRNA was destabilized with a half-life of less 

than 30 min (Shaw and Kamen, 1986). Similarly the 3’UTR of the c fos mRNA, which 

contains a 69 nucleotides ARE, was also observed to reduce the stability of the β-globin 

mRNA (Chen et al., 1995). Since then, inserting a putative ARE into the 3’ UTR of an 

otherwise stable reporter RNA has become the classical experimental approach to study 
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cellular or artificial AREs. Many of these studies used tetracycline and its derivates (tet-off 

system) or actinomycin D to block transcription and thereby allow degradation rates to be 

measured (Xu et al., 1998). 

Numerous mRNAs including IL-2, IL-3, IL-8, IL-6, TNF-α were shown to contain ARE as 

instability determinants (Lewis et al., 1998; Lindstein et al., 1989; Stoecklin et al., 2000; 

Winzen et al., 1999). It has been estimated that 5–8% of human genes code for ARE-

containing mRNAs; the corresponding proteins perform a variety of functions implicated in 

numerous transient biological processes (Bakheet et al., 2001; Bakheet et al., 2003). 

 
Based on the number and the distribution of AUUUA pentamers, AREs have been grouped 

into three classes (Chen et al., 1995). Class I AREs contain several dispersed copies of the 

AUUUA motif within U-rich regions. Class II AREs possess at least 2 overlapping 

UUAUUUA (U/A)(U/A) nonamers. Bakheet and co-workers have subsequently constructed a 

database containing class II AREs and these regulatory elements were divided into five 

groups (Bakheet et al., 2001; Bakheet et al., 2003). The classification in this ARE database is 

based on the repetition pattern of the AUUUA pentamer. Class III AREs are much less well 

defined, they are U-rich regions but contain no AUUUA motif. The best documented example 

of a type III ARE is that situated within the 3’ UTR of c-jun mRNA (Chen et al., 1994; Peng 

et al., 1996; Xu et al., 2001). 

 

 

Table 2. Classification of AREs. Where W can be either A/U. (Wilusz et al., 2001). 
 
The AREs are conserved among different species. Although a significant proportion (>25%) 

of human genes differ in their ARE patterns from mouse and rat transcripts (Halees et al., 

2008). 

AREs are shown to stimulate deadenylation processes in vivo (Wilson et al., 1988) and in 

vitro (Ford et al., 1999a). Other in vitro decay studies indicate that ARE-mRNAs are degraded 

primarily in the 3’–5’ direction by the exosome (Chen et al., 2001; Mukherjee et al., 2002), or 

by decapping (Gao et al., 2001). Similarly a 5’−3’ Xrn1 pathway to degrade ARE-mRNAs in 
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mammalian cells was also reported (Stoecklin et al., 2006). It has been shown that ARE 

binding protein TTP promotes the deadenylation of ARE containing mRNAs by PARN (Lai 

et al., 2003). Altered control of ARE-mediated mRNA turnover has been shown to result in 

aberrant gene regulation and to promote disease. For example, oncogenic alleles of the c-fos 

gene have deletions in the AU rich 3’ UTR sequence (Schuler, 1988; Raymond et al., 1989; 

Schiavi et al., 1992). Immunological disorders caused by accumulation of TNF-α mRNA and 

increased TNF-α protein production have been shown to involve deregulation of ARE-

mediated decay of the TNF-α mRNA (Taylor et al., 1996; Kontoyiannis et al., 1999). It has 

been observed that many human cancer and inflammatory diseases are linked to ARE defects 

(Conne et al., 2000). 

1.3.2 ARE-binding proteins (ARE-BP) 

The mRNA stability is a product of not only the cis-acting sequences such as the ARE but 

also transacting factors, the RNA-binding proteins, that bind directly or indirectly to the cis-

acting elements and promote the deadenylation and degradation of the mRNA. In vitro studies 

have revealed that ARE-containing mRNAs undergo 3’-5’ degradation by the exosome 

(Mukherjee et al., 2002; Liu et al., 2002; Chen et al., 2001). The destabilizing activity of 

AREs can be increased or decreased as a result of interactions with ARE-binding proteins. It 

has been reported that ARE-BPs can regulate the movement of ARE-containing RNA into and 

out of stress granules and P-bodies in a way that regulates mRNA translation and decay 

(Anderson, 2008). Table 3 shows how several ARE-BP can interact with one ARE-containing 

mRNA. Several ARE-BPs have been described over the past decade. Here some are 

introduced which are well known to modulate turnover of ARE-mRNAs. 

 



INTRODUCTION 
 

9 

Class mRNA ARE-BP 
I c-myc AUF1, HuR 
 c-fos AUF1, HuR, KSRP, TTP1 
 Interferon-γ  Hsp70 
 MyoD HuR 
 iNOS HuR, KSRP 
 Cyclin A, B1, D1 AUF1, HuR 
II GM-CSF AUF1, HuR, TTP, TIAR 
 TNF-α AUF1, HuR, TTP, TIAR, TIA-1, KSRP 
 Interferon- α hnRNP 
 COX-2 AUF1, HuR, TTP, TIAR, TIA-1, KSRP 
 Interleukin-2 AUF1, HuR, TTP 
 Interleukin-3 HuR, BRF1 
 Interleukin-8 HuR2, KSRP3, TTP4 
 VEGF HuR, TTP, KSRP 
III c-jun KSRP, hnRNP 
 p53 HuR 
 Hsp70 HuR 
 Myogenin HuR 

 
Table 3. ARE-mRNAs and their interacting ARE-binding proteins. 1Chen et al., 2001; 
Hau et al., 2007, 2Winzen et al., 2004, 3Winzen et al., 2007, 4Suswam et al., 2008; Winzen et 
al., 2007. Modified from Barreau et al., 2005. 
 
 

AUF1 (AU binding factor 1) was the first ARE-binding protein to be identified, and was 

isolated on the basis of its ability to induce c-myc mRNA decay in vitro (Zhang et al., 1993). 

AUF1 promotes mRNA decay (Zhang et al., 1993; Loflin et al., 1999). It is reported that 

AUF1 mediates ARE mRNA degradation by recruiting the exosome (Chen et al., 2001). 

Tristetraprolin or TTP is a prototype of a group of CCCH tandem zinc finger domains 

(Thompson et al., 1996). TTP was identified to promote the decay of ARE-containing TNF-α 

and granulocyte macrophage colony-stimulating factor (GM-CSF) transcripts by direct 

binding to their AU-rich element (Lai et al., 1999; Carballo et al., 2000). Knockout strains of 

mice harbouring a deletion of the tristetraprolin gene show increased stability of both TNF-α 

and GM-CSF mRNAs (Carballo et al., 1998; Carballo et al., 2000). Like AUF1, TTP is 

thought to degrade ARE-containing mRNA by recruiting the exosome (Chen et al., 2001).  

 

1.3.2.1 KSRP 

K-homology splicing regulatory protein was originally identified as a component of a 

complex, assembled on an intronic enhancer required for neuronal specific c-src splicing (Min 

et al., 1997). KSRP was first purified by Chen and colleagues and it was found that it binds 
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specifically to the c-fos and TNF-α ARE and associates with the exosome, which can mediate 

rapid 3’-5’ degradation of these mRNAs (Chen et al., 2001). It has a molecule weight of 75 

kDa and contains four RNA binding K homology (KH) motifs. The KH domain was first 

identified in the hnRNP K protein and found to be necessary for the RNA binding of the 

hnRNP K and FMR1 proteins (Siomi et al., 1993, Siomi et al., 1994). These motifs are 

functionally essential since mutations within them lead to disease or differentiation defects in 

flies, worms, and mammals (Adinolfi et al., 1999). It was shown that KH domain 3 binds to 

the RNA with a significantly higher affinity than the other domains (Garcia Mayoral et al., 

2008). Gherzi et al showed that KH domain 4 together with domain 3 mediate RNA binding, 

mRNA decay and interactions with the exosome and PARN (Gherzi et al., 2004). 

KSRP activity is controlled through different signal pathways. For example it was reported 

that phosphatidylinositol 3-kinase (PI3K)-AKT phosphorylates KSRP at a unique serine 

residue, induces its association with the multifunctional protein 14-3-3, and prevents KSRP 

interaction with the exoribonucleolytic complex exosome (Gherzi et al., 2006). p38 MAP 

kinase also phosphorylates KSRP, thereby compromises its binding to ARE-containing 

transcripts  (Briata et al., 2005). In our group it was shown that KSRP is involved in the 

degradation of IL-8 mRNA (Winzen et al., 2007). 

 

1.3.2.2 HuR 

Hu antigen R or ELAV-like 1 another ARE binding protein with a molecule mass of 36 kDa 

is a ubiquitously expressed member of the ELAV (embryonic lethal abnormal vision) family 

(Ma et al., 1996). In contrast to so far described ARE binding proteins HuR is believed to 

increase mRNA stability. An interaction of c-fos ARE and IL-8 ARE with HuR was described 

by Chen et al., 2001 and Winzen et al., 2004. It was demonstrated that HuR shuttles between 

the nucleus and cytoplasm via a nucleocytoplasmic shuttling domain and therefore may 

initially bind to ARE-containing mRNAs in the nucleus and provide protection during and 

after their export to the cytoplasmic compartment. (Fan and Steitz, 1998a; Ford et al., 1999). 

In another study, HuR is shown to interact with an endonucleolytic site in the p27KIP1 mRNA 

and protect this site from endonuclease cleavage (Zhao et al., 2000). Brennan et al introduced 

protein ligands such as phosphatase 2A inhibitors which interact with HuR and modulate 

HuR's ability to bind its target mRNAs (Brennan et al., 2000). According to hypothesis of 

Yarovinsky et al early exposure of T lymphocytes to IL-4 positively regulates IL-4 mRNA 

stability via HuR (Yarovinsky et al., 2006). Katsanou and co-workers showed that in 

transgenic macrophages, HuR overexpression induced the translational silencing of specific 
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cytokine mRNAs despite positive effect on their corresponding turnover (Katsanou et al., 

2005). The stabilizing effect of HuR on various mRNAs has been also studied with the help of 

siRNA knock-down experiments (Lal et al., 2004; Raineri et al., 2004). For example lowering 

of endogenous HuR levels through expression of antisense RNA (siRNA) inhibited 

stabilization induced by UVC light (Wang et al., 2000). Deletion of HuR in mice in recent 

studies reveals complex and essential roles of HuR in the development including thymic T 

cell maturation, placental branching morphogenesis, spleen ontogeny, intestinal integrity, and 

hematopoietic progenitor cell survival (Papadaki et al., 2009; Katsanou et al., 2009; Ghosh et 

al., 2009). HuR’s ability to enhance expression of anti-apoptotic genes was investigated in 

another study in which HuR promoted the translation of prothymosin-α, an inhibitor of the 

apoptosome, in response to the ultraviolet light (UVC) (Lal et al., 2005). 

As mentioned above HuR is predominantly localized in the nucleus and its translocation to 

the cytoplasm leads to stabilization of its target mRNA. Several signalling pathways such as 

ERK pathway (Yang et al., 2004), AMP-activated kinase (Wang et al., 2002), p38 pathway 

(Atasoy et al., 2003) and β-catenin (Lee et al., 2006) have been shown to be involved in its 

cytoplasmic localization. Phosphorylation of HuR by cell cycle checkpoint kinase (Chk2) was 

reported to regulate SIRT1 expression (Abdelmohsen et al., 2007). Other studies have 

indicated regulation of HuR via PKC-α-dependent phosphorylation or through 

phosphorylation by Cdk1 (Doller et al., 2007; Kim et al., 2008).  

 

1.4 AREs as translational regulatory elements 

Translational repression by AREs derived from several cytokine mRNAs was first discovered 

by microinjection of reporter mRNAs into Xenopus oocytes. It was observed that AU rich 

elements for interferon, GM-CSF and c-fos RNAs prevented mRNA translation (Kruys et al., 

1989). The function of the TNF-α mRNA 3’ UTR and the role of its ARE sequence was 

studied by Han et al. They found that the TNF-α ARE imposed a strong translational blockade 

in macrophages. However, this blockade was moderated when the cells were treated with 

LPS. (Han et al., 1990). Deleting the TNF-α ARE in mice affected mechanisms responsible 

for TNF mRNA destabilization and translational repression in hemopoietic and stromal cells 

which led to development of chronic inflammatory arthritis and Crohn's-like inflammatory 

bowel disease (Kontoyiannis et al., 1999). ARE binding protein TIA-1 has been characterized 

to suppress the translation of TNF-α and Cyclooxygenase 2 (COX-2) (Dixon et al., 2003; 

Piecyk et al., 2000). Another ARE binding protein TIAR binds to the 3’ UTR of mRNAs 

encoding translation factors and suppresses their translation, particularly in response to low 
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levels of short-wavelength UVC irradiation (Mazan-Mamczarz et al., 2006). Further studies 

notified that TIAR suppresses the translation of TIA-1; in contrast, HuR positively enhances 

TIA-1 expression (Pullmann et al., 2007). HuR was also reported to repress translation of 

CDK inhibitory protein p27 by reducing its IRES-dependent translation (Kullmann et al., 

2002). It has been reported that overexpression of HuR can release selected ARE-containing 

mRNA molecules from P-bodies, allowing reinitiation of translation and polysome assembly 

(Bhattacharyya et al., 2006). 

 

1.5 Regulation of mRNA stability by signal transduction pathways 

Several signalling pathways have been implicated in regulating the decay of specific mRNAs. 

Early reports revealed altered turnover of ARE-mRNAs in response to extracellular as well as 

intracellular signals, such as phorbol ester (TPA), antibodies recognizing T cell receptor 

(TCR) and the CD28 auxiliary receptor, and TNF-α (Gorospe et al., 1993; Lindstein et al., 

1989). Extracellular stimulation like pro-inflammatory cytokines or other cell stresses can 

activate many signal transduction pathways including: 

 

- NF-κB pathway 

- Extracellular regulated kinase (ERK) 

- Stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) 

- p38 MAP kinase pathways 

- PI3-AKT3 pathway 

- Protein kinase C 

- Wnt signaling pathway  

 

These pathways also contribute to activation of gene transcription regulation (Baldwin, 1996; 

Karin et al., 1997). JNK activation was seen to be required for IL-2 and IL-3 mRNA 

stabilization in T-cell or mast cell lines (Chen et al., 1998; Ming et al., 1998). ERK was 

responsible for GM-CSF mRNA stabilization in TNF-α plus fibronectin-activated peripheral 

blood eosinophils (Esnault et al., 2002). Protein kinase C (PKC) was specifically implicated 

in the enhanced stability of many labile mRNAs, such as those encoding p21 and IL-1 

(Gorospe et al., 1993; Park et al., 2001). It was also demonstrated that protein kinase-α 

dependent phosphorylation regulates shuttling of the mRNA stabilizing factor HuR (Doller et 

al., 2007). The Wnt β-catenin pathway activation can stabilize ARE-mRNAs. For example, β-

catenin binds to the ARE region of the COX-2 mRNA and increases its stability and interacts 
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with HuR (Lee et al., 2006). The JNK pathway has been demonstrated to regulate human 

iNOS expression by stabilizing iNOS mRNA possibly by a TTP-dependent mechanism 

(Korhonen et al., 2007). The PI3 kinase pathway has been shown to be involved in the mRNA 

stabilization of several reporter genes linked to the ARE of IL-3, GM-CSF, TNF-α, IL-2, and 

IL-6 (Ming et al., 2001; Stoecklin et al., 2001). Phosphorylation of MAP-kinase-activated 

protein kinase-2 (MK2) by p38 MAPK induces stabilization of TNF-α, IL-6 and IL-8 mRNA 

(Kotlyarov et al., 1999; Winzen et al., 1999). 

Relating to this study, the NF-κB and the Mitogen-activated protein kinases (p38 pathway) 

are explained more in details. 

 

1.5.1 NF-κB pathway 

The nuclear factor-κB was first described by Sen and Baltimore as a B cell nuclear factor that 

bound a site in the immunoglobulin κ enhancer (Sen and Baltimore, 1986a). NF-κB is a 

ubiquitous transcription factor which regulates gene expression during immune and 

inflammatory responses to various extracellular stimuli or stress, including inflammatory 

cytokines such as TNF-α or interleukin-1 (IL-1), lipopolysaccharide, phorbol esters and UV 

irradiation (Sen and Baltimore, 1986b; Baeuerle et al., 1996; Baldwin et al., 1996). NF-kB 

family members contain a conserved DNA binding and dimerization domain towards the N-

terminus, called the Rel homology domain, which carries a nuclear localization signal (NLS) 

and interacts with IκB, inhibitor of NF-κB, proteins (May et al., 1998). Most members of the 

Rel family contain a C-terminally located transactivation domain (TAD) that is important for 

optimal transcriptional activity.  

Mammalian cells contain five NF-κB subunits. They are RelA (p65), c-Rel, RelB, p50 and 

p52 which form various hetero- and homo-dimers and bind at κB sites in the DNA of target 

genes. The p50 and p52 subunits, which lack transactivation domains, are produced by 

processing of precursor molecules of 105 kDa and 100 kDa, respectively (Baeuerle et al., 

1994; Siebenlist et al., 1994). IκB inhibitors have ankyrin repeats, each about 30-33 amino 

acids sequences, which form a unit able to interact with Rel regions. Activity of NF-κB 

results in liberation of NF-κB dimers from IκB following phosphorylation of IκBs by the 

cytokine-responsive IκB kinases IKK-α and IKK-β (Baldwin et al., 1996). Upon removal of 

IκBs, NF-κB enters to the nucleus to induce expression of coordinate sets of target genes, 

thereby controlling immunity, inflammation, cell growth and survival.  

 



INTRODUCTION 
 

14 

1.5.2 Members of IκB family proteins 

All the isoforms of IκB - IκBα, IκBβ, IκBε, IκBγ, IκBζ, IκBNS, BCL-3, p100, p105- share a 

characteristic ankyrin repeat motif which binds to the dimerization domain of NF-κB dimers 

(Hayden et al., 2004). Different isoforms of IκB proteins exhibit differential affinity towards 

various subunits of the NF-κB family and thus control expression many genes. Except for 

Bcl-3, IκBNS and IκBζ, which are localized in the nucleus (Totzke et al., 2006; Zhang et al., 

1994), all other IκB proteins are localized in the cytosol (Whiteside et al., 1997). 

 

 

Fig.4 IκB family proteins. Distinct from cytoplasmic IκB proteins, Bcl-3, IκBNS, and IκBζ 
contain a nuclear localization signal (NLS). A: ankyrin motifs (Yamamoto et al., 2008). 
 

The prototypical and most extensively studied member of the family is the 37-kDa protein 

IκBα. It is the first isoform of IκB family that was cloned and identified (Haskill et al., 1991; 

Davis et al., 1991). It inhibits the DNA binding activity of the NF-κB dimers (p50:p65 

heterodimers, p50:c-Rel heteromers and c-Rel homodimers) in which it forms a complex with 

them (Davis et al., 1991). IκBα can be divided into three structural domains: a N-terminal 

region, an internal region that is composed of ankyrin repeats, and a C-terminal region that 

contains a so called PEST region. The PEST domain plays an important role in the inhibition 

of NF-κB DNA-binding activity (Ernst et al., 1995). Activation of NF-κB through stimuli 

leads to rapid phosphorylation of IκBα, followin ubiquitination by a ubiquitin ligase complex 

and degradation by the 26S proteasome (Chen et al., 1995; Alkalay et al., 1995). It has been 

shown that IκBα retains NF-κB in the cytoplasm through masking of the nuclear localization 

sequences (Baeuerle et al., 1994; Siebenlist et al., 1994; Beg et al., 1993). IκBβ is a 43-kDa 

protein which structurally is similar to IκBα. Like IκBα, IκBβ preferentially interacts with c-

Rel/p50 or RelA (p65)/p50 heterodimers of NF-κB (Thompson et al., 1995). Unlike IκBα, 

which has both nuclear import and export sequences and hence has the ability to remove 

activated NF-κB from the nucleus, IκBβ does not enter the nucleus and can only bind to NF-

κB in the cytoplasm. Where IκBα is targeted by a signaling pathway initiated by TNF, IL-1, 
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LPS; IκBβ reportedly is targeted only by pathways initiated by LPS or by IL-1 (Thompson et 

al., 1995). The 45-kDa protein IκBε shares many properties with IκBα along with structural 

homology. A major difference is that it forms complexes exclusively with p65 and c-Rel 

(Whiteside et al., 1997). IκBγ is a 70-kDa protein detected predominantly in lymphoid cells. It 

appears to be limited only to mouse B cells (Baeuerle et al., 1994; Siebenlist et al., 1994). 

IκBγ is shown to inhibit the sequence-specific DNA binding of NF-κB p50 homodimers 

(Inoue et al., 1992). BCL-3 is found in the nucleus associated with p50- and p52-containing 

homo- and heterodimers of NF-κB (Franzoso et al., 1993). IκBNS, also named IκBδ, is 

similar to BCL-3 a nuclear protein and contain ankyrin repeats. It was originally cloned as a 

gene rapidly induced by T cell receptor stimulation in thymocytes (Fiorini et al., 2002). 

IκB/NF-κB precursor proteins p105 and p100 have been categorized both as IκB protein 

family and NF-κB family members due to the presence of a Rel homology domain (RHD) at 

the N-terminal and ankyrin repeats at the C-terminal. The RHD of these proteins interact with 

complementary regions of NF-κB subunits like c-Rel and p65 (Rice et al., 1992; Scheinman et 

al., 1993). 

 

1.5.2.1 IκBζ 

A new member of the IκB protein family IκBζ was also termed as MAIL (molecule 

possessing ankyrin-repeats induced by lipopolysaccharide, Kitamura et al., 2000) or INAP 

(IL-1- inducible nuclear ankyrin-repeat protein, Haruta et al., 2001). IκBζ contains 6 ankyrin 

repeats in its C-terminal portion and thereby shares about 40% homology with those of IκB 

proteins such as IκBα and Bcl3, whereas its N-terminal portion showed no homology with 

any other proteins (Kitamura et al., 2000). In contrast to IκBα or β, IκBζ is localized in the 

nucleus and therefore does not affect the translocation of NF-κB. Instead, it inhibits the DNA 

binding of NF-κB by interacting mainly with the NF-κB subunit p50 in the nucleus 

(Yamazaki et al., 2001). It was demonstrated that IκBζ gene expression was rapidly induced 

by IL-1 and LPS (Kitamura et al, 2000; Haruta et al, 2001; Yamazaki et al., 2001) but not by 

TNF-α (Haruta et al., 2001), all of which are known to activate the NF-κB signalling pathway. 

However Totzke et al described a weak induction of IκBζ by TNF-α (Totzke et al., 2006). It 

has been observed that Overexpression of MyD88 (myeloid differentiation factor 88) and 

TRAF6 but not TRAF2 led to induction of IκBζ (Eto et al., 2003). According to Kitamura and 

co-workers IκBζ is an activator of IL-6 production (Kitamura et al, 2000). Deletion of the 

IκBζ gene in mice resulted in impaired expression of IL-6, GM-CSF and the p40 subunit of 

IL-12 (Yamamoto et al, 2004). Overexpression of IκBζ inhibited the transcriptional activity of 
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Signal transducer and activator of transcription 3 (STAT3) (Wu et al., 2009). Similarly other 

studies reveal that IκBζ can suppress expression of certain genes while it may be required for 

the expression of others (Matsuo et al, 2007; Kayama et al, 2008; Yamazaki et al, 2008). It 

was shown that IL-17A up-regulated IκBζ and knockdown of IκBζ significantly diminished 

the expression of IL-17A-induced human β-defensin 2 (Kao et al., 2008). IκBζ mediated gene 

regulation appears to be crucial for the accomplishment of a specific inflammatory response. 

 

1.5.3 Mitogen-Activated Protein Kinases 

Mitogen-activated protein kinases (MAPKs) compose a family of protein kinases which 

phosphorylate specific serines and threonines of target protein substrates and thereby mediate 

a number of processes such as gene expression, metabolism, cellular proliferation, division, 

differentiation and apoptosis. Its function and regulation have been conserved during 

evolution from unicellular organisms such as yeast to complex organisms including humans 

(Widmann et al., 1999). The MAPK are regulated by phosphorylation by upstream kinases, 

MKKs. MKK-catalyzed phosphorylation activates the MAPK and increases its activity in 

catalyzing the phosphorylation of its own substrates. MKKs are phosphorylated and activated 

in turn through MAPK kinase kinases (MKKKs). 

Four different MAP kinase pathways have been described: extracellular signal-regulated 

kinases (ERKs), stress-activated protein kinases (SAPKs) comprising the c-Jun N-terminal 

(JNK) and p38 MAP kinases, respectively, and ERK5/big MAP kinase 1 (BMK1). 

 

1.5.4 The p38 MAPK pathway 

The mammalian p38 MAPK family consists of four different proteins, p38α, p38β, p38γ and 

p38δ, which are most similar to the Hog1 MAPK of budding yeast (de Nadal et al., 2002). 

The p38 MAPK is activated mainly by dual phosphorylation of threonine and tyrosine in the 

Thr-Gly-Tyr activation motif by three upstream MAPK kinases MKK3, MKK4 and MKK6. 

p38 MAPK can also be directly activated, independently of MKKs by MKKK candidates, 

such as TAK and TAB1 (Moriguchi et al., 1996; Ge et al., 2002 ). The p38 MAPKs 

phosphorylate Ser/Thr residues of their substrates. Downstream substrates of p38 MAPKs are 

mostly protein kinases such as MK2, MK3, MNK1, MNK2 and casein kinase 2 (CK2), 

transcription factors such as activating transcription factor1, 2 and 6 (ATF-1/2/6), p53 and 

CREB, cell cycle regulators like Cdc25B, Cdc25C, cyclin D1/2/3, and cytoskeletal proteins 

such as keratin 8 and microtubule-associated protein Tau (all reviewed in Zarubin et al., 

2005). The identification of physiological substrates for p38 MAP kinases has been facilitated 
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by the availability of specific pyridinyl imidazole inhibitors such as SB203580 and SB202190 

(which specifically inhibit p38α and p38β isoforms), and the recently reported inhibitor of all 

four p38 isoforms (BIRB0796) (Kuma et al. 2005). 

Stress signals, such as lipopolysaccharides (LPS), heat shock and ultraviolet light or pro-

inflammatory cytokines like IL-1 or TNF-α can activate p38 MAPK pathway by its 

phosphorylation. Activation of p38 MAPK regulates mRNA stability in multiple cell types. 

Many ARE-containing mRNAs involved in inflammation and cancer are known to be 

stabilized by this pathway, for example, COX-2, TNF-a, IL-3, IL-6, IL-8, GM-CSF, VEGF 

and c-fos (Stoecklin et al., 2000, Brook et al., 2000; Winzen et al., 1999). However it is 

noticeable that not all the ARE-mRNAs regardless of there ARE class are targets for the 

MAPK p38 pathway (Frevel et al., 2003). Activation of p38 MAPK pathway leads to 

phosphorylation of KSRP leading to loss of function of this RNA-binding protein, 

subsequently ARE-mediated mRNA stabilization (Briata et al., 2005). It has been reported 

that MK2-mediated phosphorylation of TTP promoted the assembly of TTP: 14-3-3 

complexes followed by inhibition of ARE-mRNA degradation and stress granule association 

(Stoecklin et al., 2004). Selective activation of the p38 MAPK pathway by MAPK kinase 6 

induces mRNA stabilization of IL-8 (Holtmann et al., 1999). MK2 can regulate IL-6 at the 

levels of mRNA stability, and of TNF-α mainly through TNF-ARE-dependent translational 

control (Neininger et al., 2002). It has been reported that p38 MAPK phosphorylates HuR 

which could compete with TTP and it can regulate IL-3 mRNA decay (Ming et al., 2001).  

The p38 MAPK regulates HuR localization and subsequently HuR mRNA targets that are 

involved in chronic inflammation and cancer such as cyclin-dependent kinase inhibitor p21kip1 

and COX-2 (Lafarga et al., 2009; Dixon et al., 2006). 
 

1.6 Regulation of mRNA stability by UV light 

Ultraviolet light is a potent inducer of inflammation which can trigger signal transduction 

cascades and thereby lead to changes in the gene expression. High doses of UV radiations 

cause physical, cellular and molecular damage, resulting in erythema (sunburn), 

immunosuppression and carcinogenesis. Over 1 million new skin cancers are diagnosed 

yearly in the United States which include approximately 40% of all new cancer cases. The 

UV radiation component of sunlight consists mainly of UV-A (320–400 nm), UV-B (280–320 

nm) and UV-C (200–290 nm). Among all these three radiations UV-B radiation is the most 

effective inducer of sunburn, immediate tanning and cancers of keratinocytes (Nickoloff et al., 
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2002). UV-C radiation is absorbed by the ozone layer (Madronich et al., 1998), UV-A 

radiations affects the oxidative status of target molecules (Vile et al. 1993).  

UV radiation is known to induce the activation of stress-inflammation signal transduction 

pathways such as p38, JNK, ERK and NFκB (Tyrrell, 1996; Chouinard et al., 2002; Baldwin 

1996). Activation of these signaling cascades can result in a number of cellular responses that 

include apoptosis, proliferation, inflammation, differentiation and development (Bode et al., 

2006). Activation of JNK pathway in response to UV-C irradiation promotes apoptosis by the 

proapoptotic gene hid (Luo et al. 2007). It has been shown that p38 kinase mediates UV-

induced phosphorylation of p53 protein (Huang et a., 1999). It was reported that UV-B 

regulates the expression of COX-2 in human keratinocytes via p38 MAP kinases and ERK 

(Chen et al., 2001). UV light induces stabilization of short-lived mRNAs such as VEGF, c-

fos, c-jun and c-myc in mammalian cells (White et al., 1997; Blattner et al., 2000; Bollig et 

al., 2002) and inhibits degradation of reporter RNAs containing AREs but also RNAs without 

AREs (Bollig et al., 2002). This mRNA stabilization was indicated to be in a p38 MAPK 

dependent or independent manner (Bollig et al., 2002). Furthermore it was reported that the 

increased mRNA stability induced by UV light is due to inhibition of deadenylation 

(Gowrishankar et al., 2005). The ARE-binding protein HuR is reported to be involved in UV-

C mediated stabilization of p21 mRNA (Wang et al., 2000). Similarly binding of HuR to p53 

following UV-C irradiation has been indicated to increase the translation of this mRNA 

(Mazan-Mamczarz et al., 2003). UV irradiation also induces changes in the translational 

mechanism. UV light elicits phosphorylation of eukaryotic translation initiation factor 2 

(eIF2α), which leads to the assembly of stress granules by decreasing the availability of the 

eIF2–GTP–tRNAMet Ternary complex that is needed to initiate protein translation (Kedersha 

and Anderson, 2002). 

 

1.7 Aims of the study 

The aim of this work was to investigate the mechanism of post-transcriptional regulation of 

gene expression particularly in response to the pro-inflammatory cytokine IL-1α and to UV 

irradiations. UV light strongly activates stress signaling pathways, including the p38/MK2 

pathway (Iordanov et al., 1997). From our previous studies we know that UV light stabilizes 

short-lived ARE- and non-ARE containing mRNAs in a p38 MAPK/MK2 pathway 

independent manner (Bollig et al., 2002). In light of these studies, behaviour of different 

mRNAs containing AU-rich elements such as IL-8 mRNA (Winzen et al., 1999), or those 

without classical AREs such as IκBζ and IκBα mRNAs (Bakheet et al., 2001) towards UV-B 
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radiations and involvement of the p38 MAPK pathways was compared. Using the HeLa tTA 

cell line, the stability of endogenous mRNAs was detected by actinomycin D- chase 

experiments, while that of the reporter mRNAs, with defined regulatory sequences, was 

determined with the help of the tet-off system. In addition to HeLa cells the stability of 

endogenous mRNAs was investigated in primary keratinocytes as well. It was also of interest 

to understand if and how these mRNAs are controlled at the translational level. Taking IL-1α 

as an inducer and mediator of inflammation we analyzed the changes in the translational level 

of mRNAs mentioned above, specifically IκBζ 3’ UTR mRNA, which showed changes in the 

ribosomal occupancy induced by IL-1 based on a microarray screen. Towards this aim, a 

luciferase reporter construct containing 3' UTR of IκBζ mRNA was used. Furthermore 

regulation of the 3’ UTR region of IκBζ mRNA by different signaling pathways and UV was 

examined. Comparing the stability and translation for the selected mRNAs and stimuli, IL-1 

and UV-B light, in this study will further expand our information on the selectivity of post-

transcriptional control mechanisms. 
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2 MATERIALS 

 

2.1 Labware 

Plasticware, disposable material- including 2ml, 5ml, 10ml and 25 ml pipettes, tips and 

eppendorf tubes, petri dishes for cell culture and cell culture flasks etc., were bought from the 

firms- Eppendorf, Sarstedt, Greiner and Nunc. 

 
2.2 Laboratory equipment 
 
Autoclave sanoclav, Wolf 

Axiovert 40 CFL (fluoroscent microscope) Zeiss 

BioDoc Analyze UV translluminator Biometra 

Centrifuges 
Laboratory centrifuge 3K30 
Tabletop centrifuge 1-15 
Tabletop centrifuge 5415C 
Tabletop centrifuge 5810R 
Ultracentrifuge J6 MC 

 
Sigma 
Sigma 
Eppendorf 
Eppendorf 
Beckman 

Gel-documentation systems Digit-Store duo (INTAS) 

Electrophoresis chamber for DNA gels Peqlab  

Electrophoresis chamber for RNA gels  BioRad 

Electrophoresis chamber for SDS gels Invitrogen 

Electrophoresis Power supply- EPS600 Amersham Pharmacia Biotech 

Electrophoresis Power supply- ST305 GIBCO BRL Life technologies 

Electorblotter-iBLOT  Invitrogen 

Electorblotter Semi-dry  Peqlab 

Film Developer Protec Optimax 

Glassline (4ºC and -20ºC) Liebherr 

Horizontal shaker B.Braun Biotech international 

Hybridization oven- OVI Biometra 

Ice machine Ziegra 

Incubator C200 (cellculture) Labotech 

Innova 4230 (Refrigerated incubator shaker) New Brunswick scientifi 

Laminar flow- Hera safe KS Thermo scientific 

Luminometer-Lumat LB9501 Berthold 

Magnetic stirrer- MR 3001K Omnilab 

Multilabel counter- Victor2 V 1420 Perkin Elmar 

Microwave Sharp R-939 

Refrigerator (-80°C) GFL 
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Scanner-scanjet G4050 HP 

Spectrophotometer-NanoDrop ND-100 Peqlab 

Test tube thermostat TCR 100 Roth 

Thermomixer 5436 Eppendorf 

Thermocycler Landgraf 

Thermocycler-7500 Fast Real-Time PCR System Applied Biosystems 

Thermocycler-primus 25 advanced Peqlab 

Vortex-MIXOMAT Boskamp 

Vortex-Genie 2 Bender and Hobein 

Water bath with shaking- E100 Lauda 

Water bath in cell culture Grant OLS 200 

Weighing scale Omnilab 

 

2.3 Chemicals and Solutions 

All chemicals-powdered and solutions-, analytical grade or cell culture tested, were obtained 

from Fluka, Merck, Serva, SIGMA-Aldrich, BIOMOL, ROTH and J.T.Baker. 

 

2.4 Buffers and Solutions 

 
Luria Bertani (LB) medium 
 
25 g Dissolved in 900 ml distilled water made up the volume to 1 liter, sterilized by 

autoclaving and stored at 4°C. 

 

LB-Ampicillin Agar Plates 

37 g of Standard Nutrient Agar was dissolved in 1000 ml water and autoclaved. After 

autoclaving, the medium was let to cool down to 55 °C and ampicillin was added to a final 

concentration of 100µg/ml. This medium was poured into 10 cm petriplates and left to 

solidify, then stored at 4°C. 

 

Loading Buffer (DNA-, RNA- Gel electrophoresis) 
50 % (v/v) Glycerol  
0.4 % (w/v) Bromphenolblue   
1 mM             EDTA pH 8,0 
 
10X Detection solution (Northernblot) 
0.1 M Tris-HCl 
0.1 M Sodium Chloride (NaCl)   
pH set to 9.5 
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2X HEBS 
16.4 g/l NaCl  
11.9 g/l  HEPES 
0.21 g/l Disodium hydrogen phosphate (Na2HPO4) 
pH set to 7.12 
 
2X Maleic acid solution 
0.1 M Maleic acid 
200 mM NaCl 
pH set to 7.5 
 
10X MOPS  
200 mM  3-(N-Morpholino) propanesulphonic acid 
50  mM Sodium acetate 
10 mM EDTA 
pH set to 7.0 
 
20X SSC 
3 M NaCl 
300 mM Tri-sodium citrate 
pH set to 7.0 
 
20X SSPE 
3 M NaCl 
200 mM Sodium dihydrogen phosphate (NaH2PO4) 
20 mM EDTA    
pH set to 7.4 
 
50X TAE  
2 M Tris 
0,1 M EDTA  
pH set to 8.0 using acetic acid  
 
TSS solution (Preparation of competent bacteria) 
10 % (w/v) Polyethylenglykol 8000 
5 % (v/v) dimethylsulfoxide (DMSO) 
50 mM  Magnesium sulphate (MgSO4) 

in LB-Medium 
 
10X electrophoresis buffer (for SDS gels) 
250 mM  Tris 
2 M  Glycine 
1 %(w/v) SDS 
pH set to 8.3 
 
10X TBS buffer (for western blot) 
100 mM Tris-HCL. pH 7.5 
1.5 M NaCl 
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Transfer buffer (for semi-dry western blotting) 
48 mM  Tris-HCL 
39 mM  Glycine 
0.0037 %(v/v)  SDS 
20 %(v/v)  Methanol 
 
3x Laemmli loading buffer 
187.5 mM    Tris-HCl. pH 6.8 
9 %(w/v)   SDS 
15 %(v/v)    β-mercaptoethanol 
30 %(v/v)    Glycerol 
 
Coomassie Brilliant Blue solutions 
 
staining solution: 
7 %(v/v)  Acetic acid  
3.6 %(v/v)  Methanol 
0.1% %(w/v) Coomassie R250  
Add H2O for needed volume 
 
De-staining solution: 
7 %(v/v)  Acetic acid  
10 %(v/v)  Methanol 
Add H2O for needed volume 
 
Reporter-lysis buffer (for luciferase activity) 
Buffer A (200mM KH2PO4) 4.25 ml 
Buffer B (200mM K2HPO4) 45.75 ml 
0.2% Triton X-100  200µl 
H2O    add to 100ml 
 
Add inhibitors before using:   
1µg/ml  Pepstatin 
10µg/ml Leupeptin 
1mM  PMSF 
 
Firefly Luciferase Buffer 
25 mM Potassium Phosphate buffer (pH 7.8) 
15 mM MgSO4.7H2O 
1 mM ATP  
1 mM DTT 
4 mM  EGTA 
 
Renilla Luciferase Buffer 
100 mM Potassium Phosphate buffer (pH 7.8) 
500 mM Sodium Chloride 
1 mM EDTA 
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2.5 Ready-to-use buffers and solutions 

Dulbecco’s modified eagle medium (DMEM) PAA 

Cryopan Freezing medium (for Keratinocytes) PAN Biotech 

EDTA 1% PAN Biotech 

Fetal Calf Serum PAN 

Keratinocyte Growth Medium with supplement Mix Promocell 

L-Glutamin (200 mM) Gibco 

PBS PAA 

Penicillin/Streptomycin PAA 

Trypsin-EDTA (10X) PAA 

NuPAGE LDS sample Buffer (4X) Invitrogen 

20X MOPS SDS Running Buffer Invitrogen 

20X Tris Acetat SDS Running Buffer  Invitrogen 

 

2.6 Antibodies 

Phospho-p38 MAPK (Thr180/Tyr182) Cell signalling  

p38 MAPK Cell signalling 

HuR 19F12 Santa cruze biotechnology 

 

2.7 Cell lines 

HeLa- tTA (stably transfected with the 
tetracycline sensitive Transactivator) 
 

Gossen et al., 1992 

Foreskin Keratinocytes Hautklinik Linden, Hannover 

 

2.8 Enzymes, Nucleotides and Standards 

dNTP Set MBI Fermentas 

Oligo (dT)18 Primer MBI Fermentas 

rDNase Macherey-Nagel 

Restriction endonuleases MBI Fermentas 

Revert Aid M-MuLV Reverse Transcriptase (20u/µl) MBI Fermentas 

Taq-DNA-Polymerase (5u/µl) MBI Fermentas 
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2.9 Escherichia coli strains: 

DH5α 

JM109 

XL1 blue 

 

2.10 Inhibitors and Stimulators 

Actinomycin D  Sigma  

Doxycycline Sigma 

SB203580 Calbiochem 

rHu Il-1 α Promokine 

rHu IL-17A R&D Systems 

h TNF- α Genentech 

Wortmanin Alomone Labs 

 

2.11 Kits 

FastSybrGreen-PCR-Mix Applied Biosystems 

TaqMan Fast Universal PCR Master Mix Applied Biosystems 

GENECLEAN® Turbo Kit Qbiogene 

GFXTM for plasmid mini-preps from Amersham Biosciences 

MEGAscript® T7/T3 Transcription Kit  Ambion 

Nucleospin RNA II (250 preps) for RNA isolation Macherey Nagel 
Nucleospin AX for plasmid maxi-preps Macherey Nagel 

PCR purification kit Qiagen 
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2.12 Other materials and substances 

Cell scrapper Sarstedt 

CSPD Roche diagnostic 

Coelenterazine 4mM promega 

D-Luciferin 25mM Sigma 

DIG-11-UTP Roche diagnostics 

Filter paper 3MM Whatman 

Hybond N Membran Amersham 

Immobilon PVDF membrane Millipore 

Neubauer cytometer Superior Marienfeld 

X ray film cassettes Applied Gene Technology Systems 

X ray films Kodak 

 

2.13 Plasmids 

pEGFP-C1 Clontech 

phRL-TK Promega 

ptetBBB Xu et al., 1998 

pCMV flag d.neg.p38 Winzen et al., 1999 

pcDNA3 MKK62E Winzen et al., 1999 

pMir-Report Ambion 

pMir-IκBζ 2273-3885 Dhamija et al., 2010 

pMir-IL-8 ARE Dhamija et al., 2010 

pCMV-HA-IRAK1 Kindly from Mark Windheim 

pCMV-HA-IRAK2 Kindly from Mark Windheim 

pFl-IRAK-1-DD Neumann et al., 2007, Neumann et 
al., 2008 
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2.14 Probes and primers for Real time PCR 

All TaqMan Probes were ordered from company Applied Biosystems with assay-ID as 
follows: 

NFKBIA Hs00153283_m1 

GAPDH Hs99999905_m1 

IL8 Hs00174103_m1 

JUN Hs00277190_S1 

 
SybrGreen sense and antisense primers: 

IκBζ sense 5' gccaaccattccaagtcagg 

IκBζ antisense 5' ttggtttgtgggtgtagtgtgg 

GAPDH sense 5' tcaaggctgagaacgggaag 

GAPDH antisense 5' atggtggtgaagacgccagt 

Luciferase sense 5' gctgggcgttaatcagagag 

Luciferase antisense 5' gccatccatccttgtcaatc 
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3 METHODS 

 

3.1 Tissue culture methods 

3.1.1 Passaging and Handling: 

All cell culture techniques were performed under sterile conditions in the hood. Only 

disposable plastic ware-pipettes, 50ml falcon tubes, petri dishes, and culture flasks were used.  

HeLa tTA cells: The medium that was predominantly used for the culturing of Hela cells was 

Dulbecco’s modified eagle medium (DMEM).  Fetal calf serum (FCS), to a final 

concentration of 5% or 10%, L-Glutamine, penicillin and streptomycin were added to usually 

500ml of the ready-to-use DMEM medium just before use. This medium was then stored at 

4°C for some weeks. The medium was always prewarmed to 37°C before use. Similarly the 

1XPBS prepared from the 10X stock, and the 1X trypsin-EDTA solution were also stored at 

4°C, and prewarmed to 37°C before use. The cells were normally cultured in medium 

supplemented with 5% FCS. For passaging, the cells were allowed to reach confluence, and 

then the medium was discarded. The cells were washed carefully with warm PBS twice. Then 

an appropriate amount of trypsin-EDTA (according to the size of the culture flask or petri 

dish) was added to the cells. The cells were then incubated at 37°C for 2-3mins until they 

detached from the surface of the culture vessel. Fresh medium was immediately added to the 

cells, and the cells were split into an appropriate number of culture flasks according to the 

need and the period before the next passage. 

Keratinocytes: The culturing medium was Keratinocytes Basal Medium (serum free). To get 

the complete growth medium, a SupplementMix/CaCl2-solution was added to the basal 

medium which includes: 

 

 

 

 

 

 
 

 Final conc. 
Bovine Pituitary Extract 0.004 ml / ml 
Epidermal Growth Factor 0.125 ng / ml 
Insulin 5 µg / ml 
Hydrocortisone 0.33 µg / ml 
Epinephrine 0.39 µg / ml 
Transferrin, holo (human) 10 µg / ml 
CaCl2 0.15 mM 
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To avoid contamination penicillin/streptomycin was also added. The complete medium was 

stored at 4°C.  For passaging keratinocytes it is better that the cells have not reached full 

confluency. Here also medium, 1XPBS and trypsin-EDTA were prewarmed to 37°C before 

use. The medium was discarded. The cells were washed with 1XPBS twice. 4-5 ml of 0.02% 

EDTA was added to the cells, incubated for 5 min in order to separate the cells from each 

other. Then appropriate amount of trypsin-EDTA was added and the cells were incubated for 

2 min. 10 ml of 1XPBS was added immediately to the cells. Cells were spun down for 3 min, 

1100 rpm. They were then resupended in the appropriate amount of medium and allowed to 

grow at 37 °C. 

3.1.2 Counting the cells 

The cell count was determined using the Hemocytometer (Neubauer Chamber). An aliquot of 

the cell suspension obtained after trypsinizing the cells was diluted 1:1 with Trypan Blue 

(0.8% v/v in PBS). Trypan Blue is a cell permeable dye; while living cells are able to extrude 

the dye, dead cells are unable to do so and hence stain blue. To obtain an accurate count, the 

cells have to be uniformly distributed over the entire chamber. The chamber is divided into 9 

squares. Each square has a surface area of 1sq.mm and the depth of the chamber is 0.1mm. To 

get the final count in cells/ml, first divide the total count by 0.1mm (chamber depth) then 

divide the result by the total surface area counted.  

 

3.1.3 Freezing and thawing cells 

HeLa tTA: Cells that are to be frozen are cultured until they reach confluence. One 75cm2 

flask of cells was prepared for one freezing ampoule. Each freezing ampoule was labeled with 

the name of the cell line and the date of freezing. The freezing medium contains: 

 

70% growth media 

10% DMSO 

20% FCS 

 

The cells were trypsinized, and spun down by centrifugation. They were then resupended in 

the appropriate amount of ice cold freezing medium (1ml per ampoule) and transferred to the 

ampoule, which was then placed in a freezing box. The box was left at -80ºC for at least 

24hrs. Thereafter the ampoules can be transferred to storage in liquid nitrogen. 
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For thawing cells, an ampoule was taken from the liquid nitrogen and allowed to thaw in 

warm water until only a small piece of ice is left. The cell suspension was transferred to a 

15ml centrifuge tube. 1ml of cold FCS was added drop-wise to the cells, with gentle mixing. 

10ml of growth medium containing 15% FCS was then added to the cells in portions with 

gentle mixing. The cells were spun down, and the cell pellet was resuspended in 1ml of the 

growth medium containing 15% FCS, after which the cell suspension was transferred to 

75cm2 flask containing 25ml of the same growth medium and allowed to grow at the 

appropriate growth temperature until they reach confluence. 

Keratinocytes: Keratinocyte cells are to be frozen until they reach confluence of ca. 70%. 

When they are too full they hardly get separated from each other and form clumps. The 

freezing procedure is the same like passaging, only at the end the cell pellet is resuspended in 

cold serumfree freezing medium (PAN Biotech). 

For thawing the cells, the ampule was thawed in warm water until only a small piece of ice 

clump is left. The cell suspension was transferred to 10ml 1XPBS and was spun down for 3 

min, 1100 rpm. The cell pellet was resuspended in Keratinocytes complete growth medium 

and then transferred to 75cm2 flask and allowed to grow. 

3.1.4 Transient transfection 

Transient transfection of the HeLa tTA cells was done using the calcium chloride-HEBS 

method. In brief, appropriate numbers of cells were seeded in petri dishes (see table above) 

the day before the transfection was to be done, such that the cells reach a state of sub-

confluence on the day of the transfection. The next day the medium in the dishes was replaced 

with fresh medium containing 5%FCS at least an hour before the actual transfection was to be 

done. 250mM calcium chloride solution was prepared fresh from the 2.5M stock solutions. 

Then equal volumes of the 250mM calcium chloride solution and 2X HEBS solution (pH 

7.12, set at RT) were tested against each other in a small glass tube for the formation of a thin 

white precipitate at the interface of the two solutions, taking care to add the pre-warmed 2X 

HEBS drop by drop along the sides of the tube. Now the required amounts of the plasmids (to 

be transfected were added to the appropriate amounts of the calcium chloride solutions 

aliquoted in the glass tubes. Then equal volumes of the 2X HEBS solution were added 

individually to each tube, making sure a precipitate was formed in each case. Each mixture 

was allowed to stand at RT for 1mins, mixed well and then added to the cells to be transfected 

in the petri dishes. 4h after the transfection, a glycerol shock was given to the cells using a 

10% glycerol solution prepared in warm DMEM. An appropriate amount of the 10% glycerol 

solution was added to the cells, after removing the medium that was previously covering the 
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cells. The glycerol-medium mixture was allowed to stand on the cells for 3mins. Then the 

glycerol was removed and the cells were washed twice with warm PBS and fresh medium 

added. 2h after the glycerol shock the cells were trypsinized and reseeded in parallel cultures 

required for the assay to be carried out.  

 

Medium In DMEM-Medium + 5% FCS + P/S, L-Glutamin  

1.Day = seeding 2.Day = Transfection + glycerol shock 

  cell number   each plate each plate each plate 

Plates cm/cm² Hela Med.-vol. µg plasmid 1x CaCl 2x HEBS 10% Glycerol 

9 cm dish (56cm²) 4x106 10ml 20-30 µg 0.5 ml 0.5 ml 2 ml 

6 cm dish (21cm²) 1.5-2x106 5ml 9-10 µg 0.25 ml 025 ml 1 ml 

6-well dish (9.6cm²) 5x105 2ml 4 µg 0.125 ml 0.125 ml 0.35 ml 

 

3.1.5 siRNA transfection 

For siRNA transfection cells were seeded in the morning. 2.2 million cells were seeded in 6 

cm plates. A gap for more than 6 h was kept between seeding and transfection. In the evening 

the cells were transfected with 200 pmol siRNA along with appropriate amount of empty and 

peGFP plasmid as mentioned in 3.1.4. The cells were incubated overnight without glycerol 

shock. On the second day the cells were washed few times with 1X PBS and splitted into 9 

cm plates. Second siRNA transfection was done on the third day (500 pmol siRNA) followed 

by glycerol shock. Cells were incubated overnight without splitting. On the fourth day the 

cells were trypsinized and reseeded in parallel cultures required for the assay on the next day. 

Protein aliquots were also made additionally to check the efficiency of knockdown on western 

blot. 

 

3.1.6 Preparation of lysates for RNA extraction 

For the preparation of lysates, the transfected cells (about 24hrs after the transfection) were 

washed with cold 1XPBS. After adding appropriate amount of the RNA lysis buffer (from 

Macherey Nagel) the cells were scraped off from the petri dish. The lysates were frozen in 

liquid nitrogen and stored at -80°C. 
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3.1.7 Preparation of lysates for luciferase measurement 

The transfected cells were washed with cold 1XPBS. After adding appropriate amount of the 

B-galactosidase buffer (see section 2.4) the cells were scraped off from the petri dish. The 

lysates were stored at -80°C. 

 

3.2 Molecular biology methods 

3.2.1 Preparation of competent E.coli cells: 

3ml cultures of E.coli (JM109/XL1blue) were grown in LB overnight at 37ºC. The next day 

the 2ml cultures were inoculated into 120ml of LB each and allowed to grow at 37ºC in a 

shaker. In the meantime the transformation stop solution (TSS) was prepared fresh (see 

section 2.4). When the OD600nm reached 0.3-0.4, the cultures were spun down at 2000 g, 4ºC 

for 10 min. To each pellet 1/10 the volume of 1XTSS (10ml for a 100ml culture) was added, 

the pellets resuspended in the same and incubated on ice for 2 min. Then 200µl aliquots were 

made and stored at -80ºC. 

3.2.2 Determination of nucleic acid concentration 

The concentration of the isolated DNA or RNA and the ratio of absorbance at 260 nm to 280 

nm (A260/A280 ratio) were measured with the NanoDrop ND-1000 spectrophotometer. A 

ratio of A260/A280 between 1.8 and 2 monitored a sufficient purity of the DNA or RNA 

preparation. 
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3.2.3 Agarose gel electrophoresis of DNA 

The size and purity of DNA was analyzed by agarose gel electrophoresis. Concentration of 

agarose used for analysis is inversely proportional to the size of the DNA of interest, that is, 

the larger the DNA the lower the concentration of agarose. 

 

Agarose concentration 
(% [w/v])  

Separation area 
(kb) 

0.6 1-20 

0.9 0.5-7 

1.2 0.4-6 

1.5 0.2-4 

2 0.1-3 

 

Agarose was weighed and dissolved in 1XTAE buffer by boiling in a microwave oven. The 

agarose solution was cooled to 60 °C and ethidium bromide was added to a final 

concentration of 0.5µg/ml. This was poured into the agarose gel cassette and allowed to 

polymerize completely. The sample DNA was mixed with gel loading buffer and loaded onto 

the gel. The gel electrophoresis was carried out at 100 V. Ethidium bromide is a fluorescent 

dye which intercalates between the stacked bases of the DNA and fluoresces under UV light 

at 254 nm. Hence DNA can be visualized. The gel was photographed using a gel 

documentation system. 

3.2.4 Restriction endonuclease digestion of DNA 

The activity of restriction enzymes is measured in terms of ‘Units’ (U). One unit of restriction 

enzyme activity is defined by the amount of restriction enzyme required to cut 1 microgram of 

bacteriophage lambda DNA to completion in a time of 1 hour. 

 

Plasmid DNA 40µg 

Enzyme buffer 20µl 

Restriction enzyme 50 units 

H2O add to 200µl 
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The reaction mixture was then incubated at the suitable temperature recommended from the 

manufacturer for 2-4 hours. The digestion was checked by running the digested product with 

uncut controls of the same plasmid on a DNA agarose gel. 

3.2.5 Dephosphorylation of DNA 

To avoid undesired self ligation of plasmid DNA, the 5’ phosphate groups of the DNA were 

dephosphorylated using calf intestinal phosphatise. 5 units of CIAP were added to the 

previously digested DNA and the mixture incubated for about 40 min at 37ºC. The 

dephosphorylated plasmid was purified using PCR purification kit from firm Qiagen. 

3.2.6 Purification 

To purify the digested plasmid or a PCR product 5-fold volume of buffer PBI was added. The 

sample was vortexed and transferred to the Qiagen-quick-column and centrifuged for 1 min at 

14000 rpm. The flow-through was discarded and the filter- bound DNA was centrifuged for 1 

min at 14000 rpm with 750µl of PE buffer. The flow-through was discarded again and the 

sample was centrifuged for another 1 min without addition of buffers to remove remaining 

ethanol. The elution of DNA was performed with 50µl elution buffer.  

3.2.7 Purification of DNA by Gel extraction 

To the previously purified linearised DNA, an appropriate amount of the DNA loading buffer 

was added. A 1% agarose gel was prepared and about 15µl of the Dye-DNA mixture was 

loaded in each of 3 wells. The gel was allowed to run until a good separation of the linearized 

DNA from the other fragments resulting from the digestion was achieved. The gel was now 

visualized in a UV transilluminator and neat incisions were made using a scalpel, just behind 

the linearised vector, on the sides and above. Gel piece was removed and placed in a clean 

eppendorf tube. The DNA was purified and eluted with GENECLEAN Turbo Kit from firm 

Qbiogene according to the manufacturer’s instructions. 

3.2.8 Ligation 

Joining linear DNA fragments together by a phosphodiester bond between the 3’hydroxyl of 

one nucleotide and the 5’ phosphate of another is called ligation. T4-DNA ligase is used for 

this purpose. The ligation reactions were set up taking either a 1:3 or a 1:5 ratio of molar 

concentrations of the vector: insert as follows: 
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Vector  100ng 

Insert depends the on size of insert 

5X Ligation buffer 2 µl 

T4 DNA ligase 0.5µl 

ddH20 to 10µl 

  
The reactions were incubated at RT, 5 min. 5µl of the ligated mix was used for bacterial 

transformation. 

3.2.9 Transformation of competent E.coli cells 

10-50 ng of DNA or 5µl of the ligation mix was added to each 200µl aliquot of competent 

cells and incubated on ice for 30 min. Cells were subjected to heat shock by incubating at 42 

°C for 45 sec and incubated on ice for 2 min. 0.8 ml of LB medium was added to the cells 

followed by incubation at 37 °C in the shaker for 1 hour. Cells were plated on LB agar plates 

containing appropriate antibiotic (z.B.100µg/ml of ampicillin). 

3.2.10 Plasmid preparations 

Mini plasmid preparations were done using the GFX (see section 2.11) kit according to the 

manufacturer’s instructions. Maxi-preparations were also done using the Nucleobond kit from 

Macherey Nagel, according to the manufacturer’s instructions. 

3.2.11 Isolation of RNA from mammalian cells 

RNAs were isolated from mammalian cells in culture using the Nucleospin kit from Macherey 

Nagel. The principle behind the isolation was very simple. Cells were lysed using the lysis 

buffer provided with the kit. The appropriate amount of the lysate was added to Shredder 

columns to homogenize the lysate. Freshly prepared 70% ethanol was then added to the 

homogenized lysates to bind the nucleic acids. This mixture was then added to Columns, 

which had silica gel matrices that bound the RNA from the lysates. After suitable washes to 

remove contaminating DNA and proteins, pure RNA was eluted in 40µl of RNase free water. 

If RNAs are to be used for DNA-microarray analysis or Real-Time PCR an additional DNase 

I treatment is needed. 
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3.2.12 RNA gels 

The required amount of agarose, depending on the % required, was dissolved in deionized 

water by boiling. Then the required amounts of 10X MOPS solution and formaldehyde 

solution were added and the gel poured immediately into the gel platform. 

   

Total gel volume 300ml 

Deionized water 214.8ml 

Agarose 3g (1%) 

37% formaldehyde 55.2ml 

10X MOPS  30ml 

 
Prepare 5-20µg of total RNA in deionized water. A master mix of the loading buffer was 

prepared. 

10X MOPS 1.5µl*X 

37% Formaldehyde 3.75µl*X 

1mg/ml Ethidium bromide 1µl*X 

RNA loading dye  8.75µl*X 

  X is the no. of samples 

Equal amounts of the RNA sample and the loading buffer were mixed with each other. The 

mixtures were vortexed briefly and then heated to 65ºC for 15 min, spun down, mixed well 

once again and loaded onto the gels. The gels were run at 120V until the dye front migrated 

halfway down the gel. 

3.2.13 Northern transfer 

The RNA gels were visualized under a transilluminator and photographed, so that a record of 

the quality of the RNA and the quantity (equal loading) can be made. Then the gels were 

rinsed in distilled water two times, 30 min each time to wash off the excess formaldehyde 

fumes. The gels were then rinsed in 10X SSC for about 20min and in the meantime the 

transfer apparatus set up, using a glass dish, 10X SSC and a whatmann wick. The gels were 

blotted onto 0.45µm nylon membranes. The membranes were cut to the sizes of the gels to be 

transferred, and soaked briefly in 10X SSC. The membranes were then placed over the gels 

that had previously been placed on the transfer apparatus, taking care to roll out air pockets if 

any. This was covered by two pieces of 3MM whatmann paper once again cut to the size of 

the gels which had also been briefly soaked first in distilled water and then in 10X SSC, 

followed by a stack of paper towels/diapers, and a weight was placed over the whole set-up. 
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The transfer was allowed to take place for about 20 h. Then the membranes were baked for 

about 10min at 80ºC, and crosslinked using either a UV transilluminator (1min 15secs) or 

simply using a crosslinker. 

3.2.14 Hybridization of Northern blots 

The blots were presoaked in 2X SSC. The blots were now incubated with the pre-

hybridization solution at 68ºC for at least 2hrs the volume used depending on the size of 

the blots. After the pre-hybridzation, the blots were incubated with the hybridization 

solution at 68ºC O/N.  

 

Pre-hybridization/Hybridization solutions (40ml)  

Formamide  20 ml 

20X SSPE  10 ml 

10X Blocking solution 8 ml 

N-Laurylsarcosine 0.4ml 

20% SDS 0.04ml  

deionized water 1.52ml 

*DIG labeled as RNA 100-200ng/ml 

* only for the hybridization solution  

 

The first time that the probe was dissolved in the hybridization solution it was heated to 95ºC 

for 5 min. Then the hybridization solution was stored at -80ºC. Thereafter the hybridization 

solution was thawed at 75ºC for 15 min just before use. 

After the O/N hybridization the blots were first rinsed under high stringency conditions (2X 

SSC, 0.1% SDS) at RT two times, 5 min each time. Then the blots were washed under low 

stringency conditions (0.1X SSC, 0.1% SDS) two times at 68ºC, 15 min each time. The blots 

were now incubated with the blocking buffer for 30 min and then were incubated with the 

blocking buffer containing the anti DIG-AP (alkaline phosphatase) conjugated antibody at a 

dilution of 1: 10,000 for another 30 min. Now the blots were washed two times, 15 min each 

time with the washing solution (1X Maleic acid, 0.3% Tween 20). The blots were washed 

briefly in the 1X DIG detection solution (see section 2.4). The blots were now incubated with 

the substrate solution, CSPD for 5 min, then placed in the film cassettes, and are now ready 

for exposures. Exposures were made by placing X-ray films over the blots in the cassettes, 

and after a suitable exposure period, the films were developed using a developer. 
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3.2.15 Preparation of DIG labeled as RNA probe 

The DIG labeled UTPs (DIG-11-UTP) were incorporated into an antisense RNA probe 

spanning a region of the gene of interest, which was generated by in vitro transcription using a 

linearized plasmid or a cDNA template containing the correct RNA polymerase promoter site 

(T7, T3) upstream of the sequence to be transcribed (gene of interest). 

 

linearized plasmid template/ 1µg 

cDNA template from RT-PCR 200ng 

10X transcription buffer 4µl 

75mM ATP solution 2µl 

75mM CTP solution  2µl 

75mM GTP solution  2µl 

75mM UTP solution 0.73µl 

T7/T3 RNA polymerase 2µl 

RNase free water 2µl (40 units) 

 to 20µl 

 

The transcription was allowed to take place for 1.5h at 37ºC. 1µl of Turbo DNaseI (2U/µl) 

was added and the mix incubated for 15 min at 37ºC. The RNA was than purified with “Mini 

Quick Spin™ Column” (Roche) with the following procedure: 

The matrix was initially resuspended in the column buffer by gentle vortexing. Top cap and 

bottom tip are removed; the column bed is placed in a new tube and centrifuged for 1 min at 

1000 x g. The flow-through is discarded. The sample is applied to the center of the column 

bed, which is placed into a new microcentrifuge tube. Furthermore the column is centrifuged 

for 4 min at 1000 x g and the RNA sample collected in the tube. 
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3.2.16 RT-PCR 

For the reverse transcription reaction, the following general protocol is followed: 

 

Total RNA 1µg or 500ng for Real-Time PCR 

5X RT buffer  4µl 

0.1M DTT 2µl 

10mM dNTPs  2µl 

Oligo(dT)s 1µl 

M-MLV reverse Transcriptase 0.5µl 

H2O RNase free to 20µl 

 

The reaction mix was then incubated in the thermocycler at: 

 

23ºC 10 min 

37ºC 60 min 

95ºC 5 min 

3.2.17 PCR 

The reverse transcription can be followed by a classical PCR to amplify the generated cDNA. 

PCR reaction: 

cDNA (RT product) 10µl 

10X PCR buffer 9µl 

25mM MgCl2  3.6µl 

Sense primer  10 pmole 

antisense primer 10 pmole 

dd water 74.4µl 

Taq polymerase 1µl 

Total volume of 100 µl 

 

For each PCR reaction the annealing temperature was chosen depending on the melting 

temperature (Tm) of the primers. The extension step for Taq DNA polymerase is 1 min at 

72°C for PCR products up to 2 kb. For larger products, the extension time is prolonged by 

1min/kb. 
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The reaction is incubated in a thermocycler device where the temperature can be changed 

rapidly. Usually there is a preheating step of 5 min at 95°C, which is followed by switch to 

85°C for 5 min. During this period enzyme is added. The cycles are as follows: 

 
Condition Temperature Time 

 95°C 5 min 
 85°C 5 min 
Denaturation 95ºC 1 min 
Annealing 55ºC 1 min 
Extension 72°C 2 min 
 60°C 10 min 
 4°C ∞ 

 

3.2.18 Real-Time PCR 

Real-time PCR, also called quantitative PCR follows the general principle of polymerase 

chain reaction. The amplified DNA is detected as the reaction progresses in real time, where 

the product of the reaction is detected at its end. Two common methods for detection of 

products in real-time PCR are: probe-based and intercalator-based methods. Probe-based real-

time PCR, also known as TaqMan PCR, requires a pair of PCR primers and an additional 

fluorogenic probe which is an oligonucleotide with both a reporter fluorescent dye and a 

quencher dye attached to the 3’ and 5’ ends. Intercalator-based method, also known as 

SYBRGreen method, requires a double-stranded DNA dye in the PCR reaction which binds to 

newly synthesized double-stranded DNA and gives fluorescence. 

Fluorescence is detected and measured in the real-time PCR thermocycler, and its geometric 

increase corresponding to exponential increase of the product is used to determine the 

threshold cycle (CT) in each reaction. 

Each sample requires an endogenous control. Typically, housekeeping genes such as ß-actin, 

glyceraldehyde-3-phosphate (GAPDH) are used as endogenous controls, because their 

expression levels tend to be relatively stable.  

 

Protocol 

First of all a reverse transcription was done to convert isolated RNA to cDNA. RNAs were 

then diluted to 250 ng. From this dilution 2 µl was added to the reaction mix (500 ng cDNA 

end concentration in the reaction). The expression of each gene was analyzed in duplicates. 

Values with standard deviations > 0.2 - 0.25 cycles were excluded from the analysis. The 

X 40 
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mRNA units are calculated as 2-∆CT x 103, based on GAPDH mRNA as a housekeeping 

mRNA control. 

 

TaqMan reaction mix:  SYBR Green reaction mix:  

TaqMan Fast Master Mix 5µl FAST SybrGreen MM 12µl 

Assay On Demand  0.5µl Sense Primer 1.44µl 

H2O  2.5µl Antisense Primer 1.44µl 

  H2O 7.92µl 

9.6µl is added in 0.5 ml Eppis  22.8 µl is added in 0.5 ml Eppis  

+ 2.4 µl of cDNA  +1.2 µl cDNA  

10µl is added into 96-well plate  20µl is added into 96-well plate  

 

The cycles are as follows:   

TaqMan                                  SYBR Green 

                                                                              

                                                                                                        

   X 45 

 

3.2.19 DNA-Microarray-Analysis 

The DNA-Microarray-analysis that has been done in this study was done in collaboration 

with Dr. Oliver Dittrich-Breiholz. The total RNA for this purpose was prepared using the 

Nucleospin kit from Macherey Nagel with an additional DNase I treatment. To detect 

differentially expressed genes, fluorescently labeled cRNA (Cy3-labeled) was generated. 

Labeled cRNAs were subjected to quality control and hybridized to the Whole Human 

Genome Oligo Microarray (G4112F, ID 014850; Agilent Technologies) as described in 

Winzen et al., 2007. Data were filtered according to a stringent multistep approach that 

accounted for quality of the measurements (hybridization performance), consistency among 

replicate assays, intensity range and fold change values. 

95°C 20s 

95°C 3s 

60°C 30s 

95°C 20s 

95°C 3s 

60°C 30s 

95°C 15s 

60°C 60s 

95°C 15s 

X 40 
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3.3 Biochemical methods 

The elecrophoretic separation of the proteins was performed through high-tris discontinual 

SDS polyacrylamide gel electrophoresis. A system with vertical oriented glass plate was used. 

The gels were prepared as follows:  

The resolving gel (10 % acrylamide) was first put between glass plates and covered with a 

layer of water. After polymerisation of the gel was completed, water was removed and the 

space between glass plates was dried with Whatman paper. Then the stacking gel was put on 

top of the polymerised resolving gel and the combs for pre-forming the gel pockets were 

introduced immediately. After approximately 15 min polymerization was completed and the 

sample combs were removed. The glass plates with the gel between them were fixed inside 

the electrophoresis chamber and covered with 1X electrophoresis buffer (see section 2.4). 

Protein samples were mixed with Laemmli loading buffer 1:1, denatured by 95 °C for ca. 15 

min and spun down. The protein samples were injected into the stacking gel pockets. Run 

time was approximately 50-60 min at 200 volts. 

 

Ingredients Stacking gel 
(5%) 

Separating gel 
(10%) 

30% Acrylamide solution (ml) 5.7 3.3 
ddH2O (ml) 1.7 4.1 
0.5 M Tris-HCl, pH 6.8 (ml) 2.5 - 
1.5 M Tris-HCl, pH 8.8 (ml) - 1.5 
10% w/v SDS (µl) 0.1 0.1 
TEMED (µl) 10 5 
10% APS (µl) 50 50 

 

3.3.1 SDS-Polyacrylamide Gel Electrophoresis 

Coomassie Blue staining is based on the binding of the dye Coomassie Brilliant Blue R250, 

which binds non-specifically to virtually all proteins. The gel is soaked in a 1:10 dilution of 

coomassie dye and de-staining solution for few hours. 

3.3.2 Staining with Coomassie-Blue 

Coomassie Blue staining is based on the binding of the dye Coomassie Brilliant Blue R250, 

which binds non-specifically to virtually all proteins. The gel is soaked in a 1:10 dilution of 

coomassie dye and de-staining solution for few hours. 
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3.3.3 Western blot (semi-dry) 

Six pieces of 3 mm Whatman paper and one piece of PVDF or nitrocellulose membrane were 

cut to the size of the SDS gel. Gel and membrane were equilibrated for 2 min in cathode 

buffer (PVDF membrane needs to be activated initially by soaking in methanol for 2 min 

followed by soaking in cathode buffer). The blot was assembled without air bubbles 

according to the following scheme: 

cathode (-) ↓ 
3x papers soaked in transfer buffer 

gel 
membrane 

3x papers soaked in transfer buffer 
anode (+) 

 
For transfer, the current was set to 1 mA/cm2 gel size for 45-60 min. After transfer, the 

membrane was briefly washed with water, activated with methanol and rinsed briefly with 

water again. The membrane was stained with ponceau red and destained in water as required. 

The blot was washed 4 times for 5 min each with 1X TBS (see section 2.4) containing 

0.1%Tween 20. The blot was incubated in blocking solution (5% milk powder in 1XTBS/ 

0.1% Tween 20) for one hour at room temperature. Subsequent incubation with the primary 

antibody diluted in blocking buffer, occurred either overnight at 4 °C or 2-3 hours at room 

temperature. For some proteins the blocking step was skipped and the blots were directly 

transfered into the primary antibody diluted in 1% BSA/ 1X TBS/ 0.1% Tween 20. The 

primary antibody is washed with 1X TBS/ 0.1% Tween 20 (4 times) for 5 min. Then the 

membrane was incubated with secondary antibody, also diluted 1:5000 in blocking solution 

for one hour at room temperature. The blots were now incubated with the substrate solution, 

CSPD for 5 min, then placed in the film cassettes, and are now ready for exposures. 

Exposures were made by placing X-ray films over the blots in the cassettes, and after a 

suitable exposure period, the films were developed using a developer. 

3.3.4 iBlot® Dry Blotting System 

For quick transfer of proteins another blotting system was performed with an iBlot gel 

transfer device (invitrogen). For this system ready-to-use NuPAGE 7% Tris-Acetat (31-400 

kDa proteins) or 10% Bis-Tris (14-200 kDa proteins) gels were used. Protein samples were 

mixed with LDS sample buffer 1:1, denatured by 95 °C for ca. 15 min, spun down and loaded 

on the gel. Gel run was approximately 50-60 min at 200 V for 10% and 150 V for 7% gels. 

After electrophoresis the gel was removed from the cassette for transfer. The blot was 

assembled using anode and cathode stack provided by according to the following scheme: 
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For blotting program 3 was selected which transfers proteins of 30 kDa-150 kDa molecular 

weight in 7 min at 20 volt. Gel staining and the procedures after blotting is the same as 

described in 3.3.2 and 3.3.3. 

3.3.5 Stripping for reprobing western blots 

Stripping is the term used to describe the removal of primary and secondary antibodies from a 

western blot membrane. It is useful for the investigation of more than one protein on the same 

blot. For re-probing the same blot the primary and secondary antibodies should get washed off 

from the membrane. The blot is rinsed shortly in Methanol, incubated initially 5 min in 

1XTBS, without Tween 20, next 30 min in 10 ml stripping buffer (25mM Glycin, 1% SDS, 

pH: 2.1) and finally 1 h in blocking solution (5% milk powder in 1XTBS/ 0.1% Tween 20 or 

1% BSA/ 1X TBS/ 0.1% Tween 20). 

3.3.6 Luciferase reporter gene assay 

A reporter gene assay can be used to study the regulation of a gene of interest. Originally 

developed for studying the role of promoter elements on gene transcription, it was later 

adopted for studying post-transcriptional regulation by mRNA 3’ / 5’ UTR elements.  

Luciferase is a generic term for the class of oxidative enzymes used in bioluminescence. 

Firefly luciferase and Renilla luciferase are the most commonly used luciferases for reporter 

gene assays. 
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The reaction catalyzed by Firefly luciferase takes place in two steps: 
 
luciferin + ATP → luciferyl adenylate + PPi  
luciferyl adenylate + O2 → oxyluciferin + AMP + light  
 

The reaction catalyzed by Renilla luciferase is: 
 
Coelenterazine + O2 → coelenteramide + CO2 + photon of light 

 

Plasmids with the regulatory elements upstream / downstream of luciferase gene are 

transfected into cells, lysed after treatments and assayed for luciferase activity. A dual 

reporter assay could be carried out with a second luciferases construct under a constitutive 

promoter to normalise for experimental variations.  

 

Protocol 

Cells were transfected with luciferase expression vectors. For determining the effect of IL-1 or 

other stimulators, the cells originating from the same transfected culture dish were reseeded into 

parallel cultures, incubated over night. On the next day cells were stimulated or left untreated. For 

lysis the cells were washed with cold 1XPBS 2 times, lysed by adding 200µl of the Reporter 

lysis buffer (see section 2.4) and incubated on ice for 10 min. They were then centrifuged 15 

min at 10,000 g and 4° C. The supernatant was collected and transferred into a new tube. The 

lysates were used directly for luciferase measurement or stored at -80°C. 

 

Firefly Assay: 100 µl of firefly reaction buffer + appropriate volume of lysate (10-50µl) 

taken in the tube. 50 µl of luciferin solution (25µM D-luciferin in firefly buffer) is injected 

and measured by using a Lumat LB9501 luminometer. 

 

Renilla Assay: 10 to 50 µl of lysate is pipetted directly into the tubes and 50 µl of substrate in 

Renilla buffer (4µM coelenterazine) is injected and measured. 
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4 RESULTS 
 

4.1 Analysis of mRNA decay in cells 

4.1.1 Actinomycin-D chase experiments to study mRNA decay 

The classical approach for determining half-lives of endogenous mRNAs involve the 

blockade of transcription by the antibiotic Actinomycin-D (Act-D) and analysis of mRNA 

levels by northern blotting or RT-qPCR. In case of inducible genes, Act-D is added after 

stimulation. 

 

4.1.2 The tet-off system to study mRNA decay 

It is a well-established system used to determine half-lives of exogenously expressed mRNAs. 

It is helpful in identifying the cis-regulatory elements which regulate mRNA stability. In this 

system the gene of interest is cloned downstream of a tetracycline regulated promoter. In case 

of reporter based studies the cis regulatory elements or putative regulatory regions in the 

mRNA under investigation is cloned upstream (5’ UTR) / downstream (3’UTR) of a reporter 

mRNA. These constructs are then transiently transfected into cells that constitutively 

expresses the tetracycline transactivator (tTA). The addition of tetracycline or its analog 

doxycycline stops transcription. Lysates are made at appropriate time intervals thereafter, 

RNAs prepared and examined by blotting or PCR for half-life determination. 
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Fig.5 Schematic representation of the tet-off system: HeLa tTA cells obtained from Dr. 
Hermann Bujard, constitutively express the tetracycline controlled transactivator (tTA) 
(Gossen & Bujard, 1992). The transactivator (tTA) protein is a fusion between the tetracycline 
repressor (tetR) (from E.coli) and the activator domain of the Herpes Simplex virus 
transcription factor. The DNA of the reporter gene (example: β-globin) or another gene of 
interest is cloned under the control of a Tet-responsive promoter, which contains sequences 
for the binding of the tet repressor. The constructs are transfected in the HeLa tTA cells. In 
the absence of tetracycline or its analog doxycycline, tTA binds to and strongly activates the 
transcription of the reporter gene/gene of interest. In the presence of tetracycline/doxycycline 
the binding of the tTA to the promoter is abolished and transcription is stopped. 

 

4.2 UV light induces stabilization of short-lived mRNAs in HeLa cells 

UV light is a potent inducer of inflammation and induces expression of numerous genes 

including cytokines and oncogenes (Tyrrell, 1996, Herrlich et al., 1997) which is in part due 

to the stabilization of mRNAs (Blattner et al., 2000, Wang et al., 2000). UV light strongly 

activates stress signaling pathways, including the p38/MK2 pathway (Iordanov et al., 1997). 

Work from our group has shown that unlike the p38 MAPK/MK2 pathway, whose effect is 

limited to AU-rich trarnscripts, UV light stabilizes short-lived mRNAs irrespective of 

presence or absence of AU-rich elements in their 3´ UTR (Bollig et al., 2002). Here we 

wanted to investigate the behaviour of different mRNAs containing AU-rich elements (IL-8 

mRNA with ARE class II, Winzen et al., 1999 and c-jun mRNA with ARE class III, Chen and 

Shuy, 1995) or those without classical AREs (IκBζ and IκBα mRNAs, Bakheet et al., 2001) 

towards UV-B radiations and involvement of p38 mitogen-activated protein kinase pathways 

in this manner. 
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4.2.1 Stabilization of IL-8 and IκBζ mRNA by UV light 

Amounts of IL-8 and IκBζ in unstimulated cells were too low for detection by Northern blot 

(Fig.6A and B, first lane). Therefore expression of endogenous IL-8 and IκBζ mRNAs was 

induced by stimulation of the cells with the pro-inflammatory cytokine IL-1 for 2 hours. At 

that time transient activation of p38 MAP kinase and stabilization of IL-8 mRNA by IL-1 is 

no longer seen (previous results of the lab, Winzen et al., 1999). HeLa cells were exposed to 

high dose of UV-B light and transcription was stopped by adding Act-D. As observed it Fig.6 

the half-life of the IL-8 mRNA (A) and IκBζ mRNA (B) was very short under the 

unstimulated control condition and was markedly increased by exposure to UV light. 

 
     A. 

 
 

        B. 

 
 

Fig.6 Effect UV-B light on the degradation of endogenous IL-8 (A) and IκBζ (B) mRNA 
in HeLa (tTa) cells. HeLa cells were treated with IL-1α (2ng/ml) for 2 hours. They were then 
exposed to high dose of UV-B light (ca. 2000J/m2). Transcription was stopped by addition of 
5µg/ml Act-D and the cells were lysed after the indicated times. Total RNA was isolated and 
analyzed by Northern blotting on 1% formaldehyde-agarose gel with digoxygenin-labeled 
antisense RNA probes for (A) IL-8 and (B) IκBζ mRNA. Ethidium bromide staining of the 
28S rRNA is shown for RNA loading control.  
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4.2.2 Effect of different doses of UV light and involvement of the p38 MAPK/MK2 

pathway 

 

4.2.2.1 IL-8 mRNA 

Previously it was shown that UV-induced stabilization is independent of the p38 MAP kinase 

pathway (Bollig et al., 2002). To investigate this observation regarding low and high dose of 

UV light, the pyridinyl imidazole SB203580 (2µM), a selective p38 MAPK inhibitor, was 

applied to the cells prior to UV exposure. The cells were exposed to different doses of UV 

light, 80 J/m2 – 1280 J/m2. To investigate the effect of UV and SB203580 on endogenous IL-

8 mRNA the cells were pre treated with IL-1α for 2 hours. Transcription was stopped by 

adding Act-D (Fig.7.A). Using the tet-off system (see 4.1) stability of the reporter B-globin-

IL-8 ARE was monitored. The β-globin mRNA is a normally stable mRNA and is widely used 

to study the role of 3’ UTR elements in regulation of mRNA stability (Shaw and Kamen, 

1986). The B-globin-IL-8 ARE -reporter (BBB-IL-8 ARE) construct includes nucleotide 

sequence 1017-1076 of IL-8 mRNA (ARE) cloned down stream of the coding region of β-

globin genomic DNA, under the control of tet responsive promoter. The β-globin mRNA is 

destabilised after addition of IL-8 ARE. Doxycycline was added to the cells, which stopped 

the transcription (Fig.7.B) of the reporter.  

 

It was observed that stabilization of IL-8 mRNA at low dose UV light is mostly p38 MAPK 

dependent since samples treated with SB203580 show less stabilization compare to those 

without SB203580, whereas the stabilization at high dose UV is independent of p38 MAPK. 

Even though p38 MAP kinsase activation is blocked by SB203580 (Lee et al., 1994), samples 

treated with high dose UV (1280 J/m2) maintain their stabilization (Fig.7) 
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Fig.7 Kinetics of degradation of endogenous IL-8 mRNA (A) and Reporter BBB-IL-8 
ARE (B) in response to different doses of UV-B light. (A) HeLa cells were treated with 
2ng/ml IL-1α for 2 hours. After 90 minutes of IL-1 incubation 2µM of SB203580 was added 
to the cells for 30 min followed by exposure to UV light. Transcription was stopped by 
addition of 5µg/ml actinomycin D directly after UV irradiation. The cells were harvested at 
the indicated times thereafter. Degradation kinetics was determined as described in the legend 
to fig 4.1 with an antisense IL-8 RNA probe. (B) HeLa cells were transiently transfected by 
the calcium phosphate method (see chapter 3.1.4) with ptet-BBB-IL-81017-1076. To the 
transfected cells 2µM of SB203580 was added 30 min before exposure to different doses of 
UV light as indicated. After 15 min incubation the transcription was stopped by the addition 
of 3µg/ml doxycycline. RNA was extracted and degradation kinetics determined as described 
in the legend to fig 4.1 using an antisense β-globin probe. 

4.2.2.2 IκBζ mRNA 

As observed in Fig.4.2B IκBζ mRNA is stabilized with high dose of UV light. Next we 

wanted to check how IκBζ mRNA is regulated with low dose (160 J/m2) and high dose (1280 

J/m2) of UV light compare to IL-8 mRNA. Interesting was also to find out whether this 

regulation is through p38 MAPK. Hence to determine the involvement of p38 MAP kinase 

SB203580 inhibitor was applied to the cells prior to UV exposure and the total RNA was 

isolated and analyzed by the Reverse transcription and quantitative PCR with SYBR Green 
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based sense and antisense IκBζ primers. The values were normalized to the housekeeping 

gene glyceraldehyde-3-phosphate (GAPDH). 

According to Fig.8 there is no stabilization with low UV dose (160 J/m2); however high dose 

(1280 J/m2) stabilizes endogenous IκBζ mRNA to some extent (A). Similar to IL-8 mRNA 

blocking the p38 MAP kinase activation using the SB203580 inhibitor could not reverse the 

inhibition of mRNA degradation induced by high dose of UV light. However this is notable 

that the level of mRNA stabilization in the control (-SB) is not striking high to make a clear 

statement about the effect of SB203580 and role of p38 MAPK. 
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Fig.8 Effect of high and low doses of UV light on IκBζ mRNA. HeLa cells were treated 
with 2ng/ml IL-1α for 2 hours. After one and half hours of IL-1 incubation 2µM of SB203580 
was added to the cells for an incubation time of 30 followed by UV- exposure. Transcription 
was stopped by addition of actinomycin D. SB203580 treated (B) and untreated (A) cells were 
harvested at the indicated time points. Total RNA was isolated and analyzed by the RT-qPCR 
with SYBR Green based sense and antisense IκBζ primers. The values were normalized to the 
housekeeping gene GAPDH which was used as an endogenous control. Results are expressed 
in percent of the amount at 0 min. 

4.2.2.3 IκBα mRNA 

Next we wanted to check how IκBα mRNA is regulated with UV-B light and to what extent is 

p38 MAP kinase involved. HeLa cells were treated with IL-1α for 2 hours and then exposed 

to different dose of UV-B light. The result demonstrates that similar to IκBζ mRNA UV-light 

moderately stabilizes IκBα mRNA and mostly only at high doses (1200J/m2). 
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Fig.9 Kinetics of degradation of endogenous IκBα mRNA at low and high UV radiations. 
HeLa cells were treated with 2ng/ml IL-1α for 2 hours and then exposed to UV radiations. 
Transcription was stopped by addition of 5µg/ml Act-D. Decay kinetics was determined by 
Northern blotting as described in the legend to Fig.1 with an IκBα antisense RNA probe. 
 
To investigate the role of p38 MAPK pathway in UV-mediated stabilization, samples treated 

with or without SB203580 were exposed to high and low dose of UV-B light. The RNA 

samples were analyzed using reverse transcription and quantitative PCR with a TaqMan probe 

for IκBα mRNA. The results illustrate that, similar to Northern blot results of Fig.9, a low UV 

dose (160 J/m2) does not inhibit degradation of IκBα mRNA, whereas a high dose of UV has a 

slight stabilizing effect. Since there is no difference between SB203580 treated samples 

(Fig.10A) and those without SB203580 (Fig.10B), it can be concluded that p38 MAPK does 

not play any role in UV-mediated stabilization of IκBα mRNA. 
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Fig.10 High dose of UV light stabilizes IκBα mRNA slightly and is p38 MAPK 
independent. HeLa cells were treated with 2ng/ml IL-1α for 2 hours. After one and half 
hours of IL-1 incubation 2µM of SB203580 was added to the cells for an incubation time of 
30 following with the exposure to UV light. Transcription was stopped by addition of 5µg/ml 
Act-D directly after UV irradiation. The cells were harvested at the indicated times thereafter. 
Total RNA is analyzed by RT-qPCR quantification using a TaqMan IκBα probe with 
normalization to GAPDH mRNA. 
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4.2.2.4 JUN mRNA 

To check the changes in mRNA stabilization by UV light for multiple mRNAs a high density 

microarray analysis was carried out (see chapter 3.2.19). The effect of UV light on 

stabilization of mRNAs from HeLa cells was determined by comparing the differences 

between the transcriptomes with and without exposure to UV-B in the presence of act-D.  

JUN mRNA was one candidate since it belongs to the ARE class III (Chen & Shuy, 1995), 

which showed increase in mRNA stability after irradiation.  

 

HeLa cells 

Accesion no. 
 

Gene name + IL-1 
0 

+ IL-1 
3h act.D 

+ IL-1 + UV 
          0 

+ IL-1 + UV 
3h act.D 

Fold 
stabilization 

NM_002228 JUN 909 61 1530 489 4.7 
NM_002228 JUN 939 69 1490 542 4.9 
NM_002228 JUN 939 62 1573 472 4.5 
NM_002228 JUN 950 58 1544 465 4.9 
NM_002228 JUN 974 125 1532 502 2.5 
NM_002228 JUN 1004 134 1546 536 2.6 
NM_002228 JUN 1075 48 1940 520 6.0 
NM_002228 JUN 1085 56 1466 499 6.6 
NM_002228 JUN 957 65 1546 487 4.6 
NM_002228 JUN 888 73 1521 503 4.0 

 
Table 4: Microarray analysis of UV-induced inhibition of JUN mRNA degradation in 
HeLa tTA cells. Cells were stimulated with 2ng/ml of IL-1 for 2h, and then exposed to high 
dose of UV-B (ca. 2000J/m2). Transcription was stopped by the addition of 5µg/ml Act-D. 
Lysates were made before (0) and 3 h after Act-D addition and total RNA was prepared for 
microarray analysis. To provide a measure of technical precision in each hybridization one 
probe is usually spotted as replicates on the microarray slide (here in 10 different spots). The 
data for JUN mRNA is presented and the fold stabilization by UV exposure is shown. 
 
In a separate experiment a similar microarray analysis was carried out using primary 

epidermal keratinocytes in order to check the effect of UV light on mRNAs before and after 

stopping the transcription with Act-D. The results for JUN mRNA are shown in table 5. 
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Epidermal Keratinocytes  

Accesion no. 
 

Gene name  
0 

 
3h act.D 

+ UV 
          0 

+ UV 
3h act.D 

Fold 
stabilization 

NM_002228 JUN 19859 1156 17803 1873 1.8 
NM_002228 JUN 19314 1079 18555 2276 2.2 
NM_002228 JUN 17823 1063 14076 1904 2.3 
NM_002228 JUN 20429 1177 17402 2125 2.1 
NM_002228 JUN 17577 1119 18002 2209 1.9 
NM_002228 JUN 18702 1113 17156 2198 2.1 
NM_002228 JUN 19369 1170 17711 2149 2.0 
NM_002228 JUN 18799 1149 17794 2199 2.0 
NM_002228 JUN 19168 1204 17864 2126 1.9 
NM_002228 JUN 18546 1050 17089 2184 2.3 

 

Table 5: Microarray analysis of UV-induced stabilization of JUN mRNA in primary 
keratinocytes. Primary keratinocytes were grown to 70-80% confluence with the serum free 
keratinocytes Growth Medium in 6-cm petri dishes. The cells were exposed to 160J/m2 dose 
UV-B. Transcription was stopped by the addition of Act-D and lysates were prepared as 
described in the legend to table 4. 
 
Comparing the result of HeLa cells (table 4) with those from keratinocytes (table 5) revealed a 

higher fold stabilization of JUN mRNA by UV-B light in HeLa cells than in primary 

keratinocytes, which is probably because the keratinocytes were exposed to lower doses of 

UV-B light(160J/m2). 

 

In a subsequent experiment HeLa cells treated with or without SB203580 were exposed to the 

high and low dose of UV-B light followed by addition of Act-D. Later the isolated total RNA 

was analyzed by RT-qPCR with a TaqMan probe for JUN mRNA. As it is shown in Fig 4.7 

both low and high doses of UV light tend to cause an inhibition of JUN mRNA degradation 

with the difference that in high dose UV (1000 J/m2) this effect is prolonged. Investigating the 

role of p38 MAPK in UV-mediated stabilization of JUN mRNA we could see that SB203580 

blocks the stabilization of JUN mRNA induced with low dose of UV-B, which shows that this 

stabilization is p38 MAPK dependent, whereas it has no distinctive effect on the mRNA 

stabilization induced with high dose of UV light, which argues against a role of p38 MAPK. 
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Fig.11 Stabilization of JUN mRNA in response to low and high dose of UV light and its 
dependence on p38 MAPK. HeLa cells stimulated with 2ng/ml IL-1α for 2h were treated 
with SB203580 (2µM) 30min before exposure to 200 and 1000 J/m2 UV-B. Transcription was 
stopped by addition of 5µg/ml Act-D. Total RNA was analyzed by RT-qPCR quantification 
using a TaqMan probe for JUN RNA. The values were normalized to GAPDH mRNA. 

4.3 Investigation of mRNA stabilization by UV-B light in Keratinocytes 

Epidermal keratinocytes are the cell types in our body, which are maximally exposed to UV 

radiation. So far we detected the effect of UV-B light for the short-lived mRNAs in HeLa 

(tTA) cells. In the next part we wanted to analyse the influence of low and high dose of UV-B 

light in the epidermal keratinocytes isolated from neonatal foreskin for the three mRNAs IL-

8, IκBζ and IκBα on the stability level. To determine involvement of p38 MAP kinase in 

parallel, SB203580 inhibitor was applied to the cells prior to UV exposure and the total RNA 

was isolated and analyzed by the Reverse transcription and quantitative PCR using either a 

TaqMan or a SYBR Green based probe. 

4.3.1 IL8 mRNA 

As it can be observed in Fig.12, low and high dose of UV light lead to an inhibition of IL-8 

mRNA degradation in keratinocytes, which is comparable to HeLa cells (Fig.7). Blocking the 

p38 MAP kinase pathway with SB203580 did not impair the stabilizing effect of both low and 

high dose of UV radiations. However, the mRNA stability is already high at the basal level 

(Fig.12A, –UV) which is blocked by SB203580 (Fig.12B, –UV). This suggests the 

speculation that the keratinocytes are in a pre-activated condition. Exposure to UV-light leads 

to further stabilization, which is not blocked by SB203580. 

 



RESULTS 
 

56 

A.                                                                         B.  

 -SB

0

50

100

150

200

0 30 60

Act.D (min)

%
 IL

-8
 m

R
N

A

 -UV

160J UV

1280J UV

 

+SB

0

50

100

150

200

0 30 60

Act.D (min)

%
 IL

-8
 m

R
N

A

 -UV

160J UV

1280J UV

 
 
Fig.12 Stabilization of IL-8 mRNA by UV light in keratinocytes independent of p38 
MAPK activity. Primary keratinocytes were grown to 70-80% confluence with the serum 
free keratinocytes Growth Medium in 6-cm petri dishes. After addition of 2µM of SB203580 
to the cells (B), they were incubated for 30 min and then exposed to low dose (160 J/m2) and 
high dose (1280 J/m2) of UV-B. Transcription was stopped by adding Act-D (5µg/ml). At 
different time points thereafter, total RNA was isolated and analyzed by RT-qPCR for the 
amount of endogenous IL-8 mRNA using an IL-8 TaqMan probe. The values were 
normalized to GAPDH mRNA. 
 
 

4.3.2 IκBζ mRNA 

Next we investigated UV induced stabilization of IκBζ mRNA in keratinocytes. Primary 

keratinocytes were treated with SB203580 and then exposed to the indicated low and high 

doses of UV-B radiation. The total RNA was isolated and analyzed by RT-qPCR for 

endogenous IκBζ mRNA. As one can observe in Fig.13 there is a slight stabilization effect at 

160 J/m2. This effect is stronger at 1280 J/m2. Neither basal nor UV induced mRNA stability 

was significantly dependent on p38 MAPK as shown by the p38 inhibitor. 
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Fig.13 Stabilization of IκBζ mRNA by high dose of UV light in keratinocytes. The 
experiment performed as described in the legend to Fig.12. Total RNA was analyzed by 
SybrGreen based RT-qPCR for endogenous IκBζ mRNA using sense and antisense IκBζ 
primers. The values were normalized to GAPDH mRNA. 
 

4.3.3 IκBα mRNA 

To compare the UV-induced IκBα mRNA stabilization in HeLa cells with that of primary 

keratinocytes, we exposed keratinocytes to low and high doses of UV-B radiations. To study 

the role of p38 MAPK, the cells were incubated with SB203580 for 30 min before UV 

exposure. Low dose of UV light did not stabilize IκBα mRNA, whereas a minor stabilizing 

effect could be seen in the case of high dose of UV (Fig.14). This corresponds to the result 

observed in HeLa cells (Fig.10). Since the mRNA stabilization by high dose UV was low, we 

can not make a clear statement about the effect of SB203580 and the role of p38 MAPK 

pathway. 
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Fig.14 Minor stabilizing effect of UV light on IκBα mRNA in keratinocytes. The 
experiment was performed as described in the legend to Fig.12. Total RNA was analyzed by 
RT-qPCR for endogenous IκBα mRNA using a TaqMan probe. The values were normalized 
to GAPDH mRNA. 
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4.3.4 Microarray analysis of UV-induced mRNA stabilization 

The effect of UV light on the stability of different mRNAs in keratinocytes was carried out by 

microarray analysis. The microarray data and the fold stabilization after UV exposure (low 

dose) for the selected mRNAs, IL-8, IκBζ and IκBα, are listed in Table 6. The profile 

obtained overlaps with those obtained from RT-q PCR experiments. 

 
Epidermal Keratinocytes  

Accesion no. 
 

Gene name  
0 

 
3h act.D 

+ UV 
          0 

+ UV 
3h act.D 

Fold 
stabilization 

NM_000584 IL-8 1701 676 1269 669 1.3 
NM_031419 NFKBZ 13279 3745 9808 1920 0.7 
NM_020529 NFKBA 83329 1137 76337 1189 1.1 

 
Table 6: Microarray analysis of UV effect on the three indicated mRNAs. Primary 
keratinocytes were grown to 70-80% confluence with the serum free keratinocytes growth 
medium in 6-cm petri dishes. The cells were exposed to 160J/m2 UV-B. Transcription was 
stopped using 5µg/ml Act-D. Lysates were made before (0) and 3 h after Act-D addition and 
total RNA was prepared for microarray analysis. 
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4.4 Activation of p38 MAPK by UV-B light 

Various cellular stresses such as ultraviolet light, lipopolysaccharides (LPS) and pro-

inflammatory cytokines can initiate signalling cascades resulting in the activation of p38 

MAPK by dual tyrosine/threonine phosphorylation. As a parameter for p38 MAPK activation 

we investigated the effect of different UV-doses on the phosphorylation of p38 MAPK (p-p38 

MAPK) by western blot analysis (see chapter 3.3.4) with the help of a polyclonal antibody for 

phospho-p38 MAPK (Thr180/Tyr182). 

In both the cell types we could detect activation of p-p38 MAPK by 160J/m2. In HeLa cells 

the intensity of p-p38 MAPK bands increases in a UV dose-dependent manner, whereas this 

effect remains constant in the kerationocytes. 

A.      B. 

 HeLa   keratinocyte 
    

 
J/m2 

-UV    80    160    320    640    1280  
J/m2 

-UV    80     160    320   640  1280 

  ┌─┐┌────────────────┐  ┌─┐┌────────────────┐ 

p-p38 

  

 
p-p38 

 
 

p38 
p38 

   

 
Fig.15 Western blot analysis for the detection of p38 and phospho-p38 MAP kinase. 
HeLa cells (A) and keratinocytes (B) were exposed to the indicated doses of UV light. After 
30 min of incubation the cells were lysed and a western blot analysis was performed as 
described in section 3.3.4. Phospho-p38 MAPK could be detected by phospho-p38 MAPK 
(Thr180/Tyr182) antibody (upper panel). p38 MAP kinase was detected using a p38 MAP 
kinase antibody as loading control (lower panel). 
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4.5 Role of HuR in stabilization of IL-8 mRNA in HeLa cells 

HuR is a ubiquitously expressed member of embryonically lethal abnormal vision (ELAV) 

family of RNA binding proteins (Ma et al., 1996). It is a 36-kDa RNA binding protein, which 

has been observed to bind to a large number of mRNAs with AU rich elements and stabilize 

them (Fan and Steitz, 1998, Peng et al., 1998, Levy et al., 1998). It was shown that lowering 

of endogenous HuR levels through expression of antisense RNA or small interfering RNA 

(siRNA) inhibited stabilization induced by UVC light (Wang et al., 2000). The interaction of 

IL-8 ARE with HuR was described before from our group (Winzen et al., 2004). Here we 

studied the effect of HuR on the stability of IL-8 mRNA by siRNA knock-down experiments 

and influence of UV-B light as a stress factor in HuR depleted cells. 

 

4.5.1 Effect of siRNA against HuR on basal IL-8 mRNA degradation 

To investigate the impact of HuR on the stability of IL-8 mRNA, we knocked down HuR in 

HeLa cells with two siRNAs (siHuR278 and siHuR649), which were chosen from two different 

regions of HuR mRNA. Knock down efficiency of HuR protein is presented in Fig.16A. Both 

siRNAs suppress the expression of HuR protein; however this suppression was more efficient 

with siHuR649. 

Knock down of HuR with siHuR278 appears to have no effect on the stability of IL-8 mRNA, 

since in both control (siGFP) and knocked-down cells IL-8 mRNA degrades with a half life of 

30 min. The cells knocked-down with siHuR649 showed increased stability of IL-8 mRNA 

(Fig.16B). Both results argue against a stabilizing role of HuR in this setting. 
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Fig.16 Effect of HuR knock down on the degradation of IL-8 mRNA.  HeLa cells were 
transfected with two siRNAs directed against HuR (siHuR278 and siHuR649) and with a siRNA 
directed against GFP as the negative control (see chapter 3.1.5, siRNA transfection). (A) 
Western blot with antibody recognising HuR (1:2000) to control knock down efficiency. (B) 
Endogenous IL-8 mRNA was induced by incubating the cells for 2 h with IL-1α (2ng/ml). 
mRNA half-life was determined after stopping the transcription with Act-D (5µg/ml) at the 
indicated times. Northern blots were hybridized to an IL-8 antisense probe. 28S rRNA is 
shown to allow comparison of RNA amounts loaded. 

4.5.2 Effect of siRNA against HuR on mRNA stabilization 

In this assay we studied effect of HuR knock down on the stability of endogenous IL-8 

mRNA treated with UV-B and IL-1α. The cells were stimulated with IL-1 for 40 min or 2h 

and then exposed to 200J/m2 of UV-B light. HuR knock down was accomplished as shown in 

Fig.17A & C for siHuR278 and siHuR649 respectively. 

Here HuR knock down with both siRNA sequences (siHuR278 and siHuR649) did not affect the 

stability of IL-8 mRNA mediated by UV light, since the UV-induced stabilization for siHuR 

transcripts remained similar to the control siGFP (Fig.17 B & D right panels). We can 

conclude that here HuR does not play any significant role in UV-induced stabilization of IL-8 

mRNA.  

Regarding IL-1-mediated stabilization, as it can be observed in Fig.17 B & D, this effect is 

transient. Stabilization decreases when the cells are stimulated longer with IL-1α. After 2 

hours of IL-1 incubation we can see a more rapid degradation of IL-8 mRNA than after 40 

min incubation, which is another evidence for the short half life of IL-8 mRNA. This rapid 

degradation of IL-8 mRNA was decreased by knock down with siHuR649 (Fig.17.D, IL-1 2h). 

The apparent increase of IL-8 mRNA amount in Fig.17.D/siGFP for the last three Act-D time 

points (IL-1 40 min) is only due to the differences in RNA loading amount in agarose gel, 

when compared to its 28S rRNA loading control. 
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Fig.17 Effect of HuR knock down on stabilization of IL-8 mRNA in response to IL-1 or 
UV light. HeLa cells were transfected with siRNAs specific for HuR, siHuR278 (B) and 
siHuR649 (D), or GFP. Endogenous IL-8 mRNA was induced by incubating the cells for 40 
min or 2 h with IL-1α (2ng/ml). 200J/m2 of UV-B light was exposed to the cells after 2h of 
IL-1 induction. Transcription was stopped by addition of Act-D. The mRNA half-life was 
determined with Northern blot assay for IL-8 mRNA. 28S rRNA is shown to allow 
comparison of RNA amounts loaded. (A and C) Western blot analysis with anti-HuR antibody 
to control the knock down efficiency.  
 

4.6 Control of mRNA Translation by IL-1 

Translation of mRNA into protein represents the final step in the gene-expression pathway. 

Molecular mechanisms of translational control act either in a global manner, in which the 

translation of most mRNAs in the cell is regulated or it is mRNA-specific, whereby the 

translation of a defined group of mRNAs is modulated without affecting general protein 

biosynthesis (Gebauer et al., 2004). Among all the cytokine families, the IL-1 family is 

closely associated with inflammatory and immune responses (Dinarello, 2009). In our group 

the effect of IL-1α on the mRNA stability is well studied. Since translation and degradation 

are known to be linked (Hosoda et al., 2003; Kobayashi et al., 2004), we intended to 

investigate the effect of IL-1α at the translational level, which is very important in the post-

transcriptional gene regulation. 
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Polysome fractionation is the classical technique employed to study the translational state of 

mRNAs in cells. Ribosomes are high density ribo-nucleoprotein complexes, which further 

assembles as polysomes or poly-ribosomes on an actively translated mRNA. The poly and 

mono- ribosomes are separated into fractions based on their difference in density by 

subjecting to sucrose - density gradient centrifugation. These fractions are analyzed by 

blotting or PCR for specific mRNAs to look for their translational state in the cell. 

Translational state analysis with an oligonucleotide microarray that covers ca. 31000 human 

genes (carried out in the lab in cooperation with O. Dittrich-Breiholz) indicated an increase in 

polysome association of a group of mRNAs from HeLa cells after stimulation with IL-1α 

(data not shown, Dhamija et al., 2010).  Polysome association or active translation state was 

calculated as the ratio of signals obtained by microarray analysis of total RNA from 

"translated" over "untranslated" pools of fractions after density gradient centrifugation of 

cytoplasmic extracts (Fig.18).  

 

 

  

Fig.18 Sucrose gradient fractions and polysomes distribution. To prepare polysome 
gradient cytoplasmic extracts of HeLa cells were fractioned on sucrose gradients. The optical 
density of the fractions was read at 260 nm. Fractions 2 to 4 contain free ribosomes and 
untranslated mRNAs, whereas fractions 7 to 10 contain polysomes with mRNAs (From 
Dhamija et al., 2010). 
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4.6.1 IL-1 increases polysome association of IκBζ mRNA 

Next we investigated in detail the translational regulation of different mRNAs which are 

induced and stabilized by IL-1. 

On the basis of microarray experiment mentioned above we analyzed the distribution of IκBζ 

mRNA for individual fractions by reverse transcription and quantitative PCR (density 

gradient fractionation carried out by Anneke Doerrie). We could see a distinctive shift from 

untranslated to translated fractions after IL-1stimulation for IκBζ mRNA, which indicated that 

IL-1α induced an increase in translation of IκBζ mRNA (B). GAPDH was analyzed as a 

housekeeping mRNA control and showed a slight shift to non-translated fractions. This was 

observed in some but not all subsequent assays (A). In the case of IL-8 mRNA (C) and IκBα 

mRNA (D) there was no shift in the polysome gradient fractions, even though IL-8 mRNA is 

well known to be stabilized by IL-1 stimulation (Winzen et al., 1999, Winzen et al., 2004) and 

IκBα mRNA is usually rapidly induced by IL-1. This indicates that IL-1 induced stabilization 

does not necessarily lead to a translational activation.  
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Fig.19 Increased polysome association of IκBζ mRNA after stimulation with IL-1. 
Cytoplasmic lysates from unstimulated or IL-1α stimulated HeLa cells (2ng/ml, 1 hour) were 
fractioned in density gradients and polysome profiles of the indicated endogenous mRNAs 
was obtained by RT-qPCR analysis. 
 

4.6.2 IκBζ 3’ UTR contains translational silencing activity 

For further studies, a luciferase reporter assay system was used to confirm the regulation of 

translation by IL-1. Since a shift in the distribution after IL-1 treatment was also observed 

with a reporter mRNA that contained only the 3' UTR of IκBζ (Dhamija et al., 2010), the 

IκBζ 3' UTR was cloned 3' of the firefly luciferase coding region in pMir-Report.  

 

 

 

Fig.20 Luc-IκBζ construct. 3’ UTR of IκBζ mRNA (nt 2273-3885) was inserted 3’ of the 
firefly luciferase coding region in a plasmid expressing luciferase under control of the CMV 
promoter (From Dhamija et al., 2010). 
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To obtain information about the translational activity, the luciferase mRNA amount is 

measured by reverse transcription and quantitative PCR and the mRNA units were calculated 

as described in section 3.2.18. The luciferase protein amount is determined by measuring the 

firefly luciferase activity as described in section 3.3.6. Dividing the luciferase activity by 

RNA units gives the luciferase protein/mRNA ratio. 

 

Next we checked the luciferase activity and its mRNA amount in HeLa cells transfected with 

the vector lacking or containing the 3’ UTR of IκBζ mRNA. The cells were stimulated with 

IL-1α or left untreated. They were then lysed and firefly luciferase activity and the amount of 

mRNA were determined as mentioned above.  
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Fig.21 IL-1 induced fold increase of luciferase mRNA & protein. HeLa cells were 
transfected with empty luciferase expression vector or luciferase expression vector containing 
3’ UTR of IκBζ mRNA. The cells were stimulated with IL-1α, incubated for 4 hours and 
lysed thereafter. The firefly luciferase activity was determined as explained in section 3.3.6. 
The mRNA amount was analyzed by RT-q PCR using SYBR Green based sense and 
antisense luciferase primers. The expression of each gene was analyzed in duplicates. Values 
with standard deviations ˃ 0.2−0.25 cycles were excluded from the analysis. The values were 
normalized to endogenous GAPDH mRNA and the mRNA units were calculated as described 
in section 3.2.18. In response to IL-1 treatment, A & B show the fold change in mRNA and 
protein level, whereas C shows the fold change in the translational activation of luciferase 
reporter constructs. 
 
Transcripts containing 3’ UTR of IκBζ (Fig.21 B) showed a strong induction in the luciferase 

protein expression, whereas there was less change seen in the mRNA value (16.7 versus 0.6 

fold). In the case of the transcripts containing the empty luciferase expression vector (Fig.21 

A) there was approximately 2 fold induction of RNA but there was hardly any induction at the 

protein level (2.6 versus 1.4 fold). Comparing the general translational activation induced by 

IL-1, we see a fold change of 10.5 in the luciferase activity/RNA of transcripts containing the 

3’ UTR of IκBζ mRNA (Fig.21 C). 



RESULTS 
 

68 

We can conclude from these results that IκBζ 3’ UTR contains translational silencing activity 

and its function is affected by IL-1 treatment. This translational activation can occur even in 

the absence of reporter mRNA stabilization. 

 

4.6.3 IL-1 does not affect translation of a luciferase reporter construct containing IL-8 

ARE 

IL-8 is a well known target of IL-1-induced stabilization. But in contrast to IκBζ we could not 

see an IL-1-induced shift for IL-8 mRNA in the polysome gradient fractions (Fig.19C), which 

suggested absence of translational activation. To observe this interplay between stabilization 

and the translational activation we investigated the effect of IL-1 on the translation of 

luciferase mRNA containing IκBζ 3’ UTR (luc-IκBζ), ARE of IL-8 mRNA (luc-IL-8 ARE) or 

only the reporter (luc). The transfected HeLa cells were stimulated with IL-1α for 4 hours or 

left untreated. 

As described earlier, the AU rich elements are able to repress the translational activity (see 

section 1.4). Here in Fig.22A, we observe that the level of translational activation in the 

luciferase reporter construct containing ARE of IL-8 mRNA (luc-IL-8 ARE) is much lower 

compare to that of the empty luciferase reporter (luc). This indicates a translational silencing 

executed by the IL-8 ARE, which - unlike that of IκBζ translational silencing element - is not 

influenced by IL-1. Since in our previous experiments we have observed IL-8 and IκBζ 

mRNA stabilization induced by UV light, it was interesting to observe the UV influence on 

the translation of these reporter mRNAs as well. Therefore, the cells were additionally 

exposed to low and high dose of UV-B and the changes in the luciferase mRNA and protein 

level was monitored. 

 

In Fig.22B Stimulating the cells with IL-1 induced a fold increase of 5.8 in the luciferase 

activity of the reporter mRNA containing luc-IκBζ 3’ UTR, whereas there was no increase in 

the luciferase activity with the reporter construct containing the IL-8 ARE or no insertion. 

Treating the cells with UV-B in turn reduced the translation of these reporter mRNA, which is 

presumably due to the stress caused by UV-B. 
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Fig.22 Lack of translational activation of reporter mRNA containing luc-IL-8 ARE by 
IL-1. HeLa cells were transfected with pMir-luc; pMir-IκBζ2273-3885 and pMir-IL-8 ARE 
separately. Stimulation with IL-1α followed on the next day. The cells were lysed after 4 
hours later. The firefly luciferase activity and the luciferase mRNA amount were analyzed as 
described in the legend to Fig.21. The luciferase protein activity/mRNA is shown as fold 
change in Fig.B and the ratios in unstimulated cells were set as 1. 

4.6.4 Role of KSRP in the translational regulation of IκBζ 3’ UTR mRNA induced by 

IL-1 

KSRP is an ARE-binding protein, which promotes ARE-directed mRNA turnover by 

recruiting the degradation machinery (Gherzi et al., 2004). p38 MAP kinase activation results 

in phosphorylation of KSRP, which in turn attenuates its mRNA destabilization function 

(Briata et al., 2005). With the help of microarray analysis done by our group, it was shown 

that KSRP also interacts with non-ARE mRNA (Winzen et al., 2007). 

In order to analyse the effect of KSRP in the translational regulation of IκBζ mRNA, which 

lacks an AU rich element, we knocked down KSRP in HeLa cells with siRNA and co-

transfected them with the luc-IκBζ 3’ UTR reporter plasmid. Firefly luciferase activity 

(protein amount) and the mRNA amount were determined as described before (see 4.6.2). In 



RESULTS 
 

70 

response to IL-1 the luciferase activity/mRNA ratio was increased 3.2 fold after KSRP knock-

down as compared to 1.4 fold in the control knock-down. A similar experiment could be 

reproduced by J. Klöhn in our group (not shown). However it should be noticed that IL-1 

induction in the control knock-down was low. Therefore to make an exact statement more 

experiments should be carried out to reproduce this result with higher IL-1 induction. 
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Fig.23 Increased translational activation of luc-IκBζ 3’ UTR mRNA induced by IL-1 in 
KSRP knock-down cells. HeLa cells were transfected with siKSRP479 and co-transfected 
with pMir luc-IκBζ 3’ UTR (see chapter 3.1.5 siRNA transfection). The cells were stimulated 
with IL-1α on the next day and lysed after 4 hours. The firefly luciferase activity and the 
luciferase mRNA amount were analyzed as described in the legend to Fig.21.  

 

4.6.5 Effect of other pro-inflammatory cytokines on the translation regulation of IκBζ 

3’ UTR mRNA 

Next we applied two other pro-inflammatory cytokines, IL-17 (IL-17A) and TNF-α, in 

addition to IL-1α, to examine their effect on the IκBζ 3' UTR-dependent translational 

induction. The results from two independent experiments are shown in Fig.24. HeLa cells 

transfected with luciferase expression vector containing the 3’ UTR of IκBζ, showed an 

increase in the luciferase protein value induced by IL-17. In contrast TNF-α could not induce 

any increase in the translational level of this reporter. 
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Fig.24 Effect of IL-17 and TNF-α on translation of mRNA containing IκBζ 3’ UTR. 
HeLa cells transfected with luciferase expression vector containing 3’ UTR of IκBζ were 
stimulated with IL-1α (2ng/ml), human IL-17 (25ng/ml) or TNF-α (100ng/ml) separately. 
After 4 hours of incubation the cells were lysed. Firefly luciferase activity was analyzed and 
normalized to co-expressed Renilla luciferase activity. A & B are two independent 
experiments error bars show the standard deviations. 
 
In a subsequent experiment we stimulated HeLa cells transfected with luc-IκBζ 3’ UTR only 

with IL-1α and IL-17 separately to analyze the kinetics of translational activation for these 

two pro-inflammatory cytokines for different time periods. As it is shown in Fig.25 IL-17, 

like IL-1 increased the translational activation of luc-IκBζ, also till 6 hours after addition of 

the stimulant. Only after 6 hours this increase diminished, whereas with IL-1 this effect was 

prolonged till 8 hours of incubation. 
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Fig.25 Increased translation of luc-IκBζ 3’ UTR mRNA with IL-1 and IL-17 for 
different time periods. HeLa cells transfected with luciferase expression vector containing 
the 3’ UTR of IκBζ were stimulated with IL-1α (2ng/ml) or human IL-17 (25ng/ml). Cells 
were lysed after the indicated times and firefly luciferase activity and luciferase mRNA 
amount were analyzed as described in the legend to Fig.21.  
 

4.6.6 Role of p38 MAPK pathway in the translational activation of mRNA containing 

IκBζ 3’ UTR induced by IL-1 

Work from our group showed that IL-1 can stabilize mRNAs through activation of p38 

MAPK/MK2 signalling cascade (Winzen et al., 1999). To study the role of p38 MAPK/MK2 

pathway in the translational activation of IκBζ 3’ UTR induced by IL-1, we co-transfected 

HeLa cells without (con) or with plasmids for dominant-negative p38 MAP kinase, or for 

MKK62E. The dominant-negative mutant of p38 MAPK (p38AGF) can reverse the IL-1 

induced stabilization of mRNAs (Winzen et al., 1999) and MKK62E is a constitutively active 

mutant of the p38 MAP kinase-selective upstream kinase MKK6 and stabilizes IL-8 mRNA 

(Winzen et al., 1999, Winzen et al., 2004).  The cells without or with dominant-negative p38 

MAP kinase were stimulated with IL-1, whereas the transfected cells with MKK62E left 

untreated. The cells were lysed after 4 hours. 

An increase in the luciferase activity over mRNA ratio induced by IL-1 (IL-1/con) is observed 

(ratio: 3.6). dn-p38 MAPK did not change the IL-1 induced effect clearly. In response to IL-

1only a slight decrease was seen in the transcripts containing the dn-p38 MAPK (0.7 fold). 

Similarly active MKK6 did not cause any change in the translational activity of the reporter-

IκBζ 3’ UTR mRNA. From these observations we can conclude that the 3’ UTR dependent 

translational effect of IL-1 on IκBζ mRNA is independent of the p38 MAP kinase pathway.  
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Fig.26 Lack of p38 MAP kinase involvement in IL-1-induced translational activation of 
IκBζ 3’ UTR reporter. HeLa cells were all transfected with luc-IκBζ 3’ UTR. Some were 
additionally co-transfected with pCMV flag dn-p38 or with pCDNA3-MKK62E. On the next 
day, cells treated without or with IL-1α for 4 hours were lysed. The firefly luciferase activity 
and its mRNA amount were analyzed as described in the legend to Fig.21.  

4.6.7 Role of PI3 kinases in the translational activation of IκBζ 3’ UTR mRNA induced   

by IL-17 

Phosphoinositide 3-kinases (PI3K) have been reported to lead to stabilization of mRNAs 

(Gherzi et al., 2006). Wortmannin is a broad spectrum inhibitor of the PI3 kinases. In this 

experiment we applied two different concentration of wortmanin to HeLa cells. 

 

Blocking the PI3 kinases by wortmannin did not inhibit the IL-1-induced translational 

activation of luciferase expression vector containing IκBζ 3’ UTR. As it is shown in Fig.27, 

there is still an increase in the luciferase activity for mRNAs, which were stimulated with IL-

1. In the case of the cells containing empty reporter there was no effect of wortmannin in the 

level of luciferase protein/mRNA (data not shown). Since wortmannin is toxic under higher 

concentration and there are small changes observed in the luciferase values with low 

concentration wortmannin, more experiments are needed to make an exact statement about the 

role of PI3 kinases. 
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Fig.27 Effect of blocking PI3 kinases on the translation of luc-IκBζ 3’ UTR mRNA 
induced by IL-1. HeLa cells transfected with luc-IκBζ 3’ UTR were left untreated or were 
treated with 50nM and 100nM of wortmannin for 30 min. The cells were then stimulated with 
IL-1 or left alone and lysed after 4 hours. The firefly luciferase activity and the luciferase 
mRNA amount were analyzed as described in the legend to Fig.21. 

 

4.6.8 Involvement of IRAK Proteins in translational activation of IκBζ 3’ UTR mRNA 

Interleukin-1 receptor-associated kinases (IRAKs) are serine/threonine protein kinases, 

involved in the IL-1 and Toll-like-receptor (TLR) activated signal pathways. They interact 

downstream with TRAF6 (tumour necrosis factor receptor-associated factor 6) and cause 

mRNA stabilization and NFκB activation. However Hartupee et al showed that signals 

leading to mRNA stabilization and NFκB activation can diverge at IRAK1. This adaptor 

generates a distinct signal that links to a signaling pathway, independent of TRAF6/p38, 

which is responsible for IL-1α-induced stabilization of certain mRNAs (Hartupee et al., 

2008). 

Our next question was whether IRAK1 and IRAK2, which are receptor-proximal downstream 

components in IL-1 signalling, can reproduce the translational effect of IL-1 on IκBζ mRNA 

(3’ UTR). Therefore we co-transfected HeLa cells with expression vectors for IRAK1 or -2 

and compared their effect with IL-1. It was seen that over expression of IRAK1 & -2 can up 

regulate the luciferase activity. 
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Fig.28. Overexpression of IRAK1 or -2 increase the translation of the reporter mRNA 
containing IκBζ 3’ UTR. HeLa cells were transfected with luciferase expression vector 
containing 3’ UTR of IκBζ. They were either stimulated with IL-1α for 4 hours or co-
transfected with expression vectors for IRAK1 or -2. Firefly Luciferase activity was 
normalized to co-expressed Renilla luciferase.  
 
In a subsequent experiment we co-transfected HeLa cells with a truncated form of IRAK1 

consisting of the death domain alone which acts in a dominant-negative manner. The death 

domain of IRAK1 contains highly conserved threonine at position 66 (T66), which is the 

regulatory phosphorylation site controlling recruitment of IRAK to the receptor associated 

signalling complex e.g., the adaptor MyD88, the silencer Tollip, or the activator kinase 

IRAK-4 (Neumann et al., 2007; Neumann et al., 2008).Thus this deletion mutant of IRAK is 

recruited to IL-1 receptor but fails to initiate down stream signalling and acts as a dominat 

negative variant. 

As it can be observed in Fig.29 there was no induction of luciferase activity by IL-1 when 

cells were co-transfected with plasmid for dn-IRAK1, which again approves the involvement 

of IRAK proteins in translational activation of IκBζ 3’ UTR-containing mRNA. 
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Fig.29 Suppression of IκBζ 3’ UTR-dependent translational activation induced by IL-1 
by the death domain of IRAK1. HeLa cells were either transfected exclusively with luc-
IκBζ 3’ UTR (con) or co-transfected with pFL-IRAK1-DD (dn-IRAK1). Luciferase activity 
was determined following a 4 hour-incubation without or with IL-1α. Firefly Luciferase 
activity was normalized to co-expressed Renilla luciferase activity.  
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5 DISCUSSION 
 
 
Post-transcriptional mechanisms contribute to the changes in gene expression induced by cell 

stress and inflammatory stimuli. The pro-inflammatory cytokine IL-1α and UV-B radiation 

are two well known stimuli and inducers of inflammation, which activate various signalling 

pathways affecting multiple levels of gene regulation. These were the main stimuli used in 

this study, where their effect on the stability and translation of selected mRNAs differing in 

their regulatory elements has been examined. The short lived-mRNAs analyzed include ARE 

containing IL-8 mRNA and the mRNAs of IκBζ and IκBα which lack classical AREs. 

 

5.1 UV light and mRNA stability and signalling involved 

In the first part of this work the effect of low and high dose of UV-B radiation on stabilization 

of these three representative mRNAs has been investigated. As reported previously, UV 

exhibits a generalized effect on mRNA stability as it stabilizes both ARE and non-ARE 

containing mRNAs. It was seen that activation of the p38 MAPK pathway alone or in 

combination with the JNK and NF-κB pathways was not sufficient for UV-B mediated 

stabilization of the non-ARE reporters (Bollig et al., 2002). Earlier works from our group 

reported UV-B effect on IL-8 mRNA by inhibition of its deadenylation and degradation 

(Gowrishankar et al., 2005). Similarly, the stabilization of IκBα mRNA in response to UV-B 

light has been shown by Microarray data (Gowrishankar et al., 2006) and by Northern blot 

analysis (PhD thesis of Meera Shah 2007). 

 

According to the initial experiments in HeLa cells, endogenous IL-8 and IκBζ mRNAs 

showed stabilization as a result of UV exposure (high dose) (Fig.6). Furthermore we analyed 

the UV-induced stabilization in a UV dose-dependent manner and investigated the 

involvement of p38 MAPK at different UV doses for our selected mRNAs by using pyridinyl 

imidazole SB203580, a selective p38 MAPK inhibitor. Regarding endogenous and reporter 

IL-8-ARE mRNA (Fig.7), we observe UV-induced stabilization with both low (160 J/m2) and 

high dose of UV light (1280 J/m2). p38 MAPK is apparently involved in the stabilization 

caused by low dosed-UV light, since blocking of this pathway could reverse the UV-induced 

stabilization of both endogenous IL-8 and reporter IL-8 ARE mRNAs (Fig.7). Their 

stabilization induced by high dosed-UV was maintained even after SB203580 treatment, 
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which excludes a role for the p38 MAPK pathway. This is reminiscent of the observations 

from Blattner et al who could not prevent UV-C mediated mRNA stabilization using 

SB203580 and various other protein kinase inhibitors (Blattner et al., 2000). 

 

The two non-ARE endogenous IκBζ and IκBα mRNAs in turn do not show any stabilization 

with low dose of UV; however, high doses stabilize these mRNAs slightly and this effect was 

not inhibited by SB203580 (Fig.8 & Fig.10), which again fortifies the hypothesis that the 

stabilization induced by high dosed-UV is independent of p38 MAPK. Taken together, these 

observations indicate that the stabilization of specific mRNAs (e.g. IL-8 mRNA here) by low 

doses of UV-B is through p38 MAPK pathway. In response to high dose of UV-B there is the 

possibility of involvement of other mechanisms in the mRNA stability. This regulation must 

be through another signalling pathway or a combined activation of several signalling 

pathways, which is yet unidentified. 

 

The influence of low and high dose of UV-B light on the regulation of mRNA stability was 

further analyzed in the epidermal keratinocytes. It was noticeable that in keratinocytes all the 

selected mRNAs were comparatively stable without UV exposure (Fig.12, Fig.13 & Fig.14). 

One speculation is that the keratinocytes are already pre-activated and the exposure to UV 

light leads only to their further stabilization, which can not be blocked by SB203580. 

Therefore the involvement of p38 MAPK still remains open here. The special nutrient and 

growth factor rich medium requirements for maintaining primary keratinocytes in could 

contribute to this basal stabilization. It should be noticed that the expression of these mRNAs 

in keratinocytes was much lower than in HeLa cells. It is well established in the literature and 

was observed here that these transcripts are strongly induced by IL-1 in HeLa cells. However, 

according to our observation, IL-1 does not induce the expression of these genes in 

keratinocytes (data not shown). This can be due to cell differences and characteristics. This 

unresponsiveness to IL-1 stimulation could also be due to the already pre-activated condition 

of keratinocytes. This cytokine is reported to be constitutively produced in keratinocytes (Yu 

et al., 1996). On the other hand, other groups have reported on IL-1β responses in cultured 

human keratinocytes (Otkjae et al., 2010). It is likely that these contradictory observations are 

due to different cultural conditions. 

 

The data obtained from microarray analysis from an independent experiment in keratinocytes 

showed less or no stabilization of IL-8, IκBζ and IκBα mRNAs by low dose of UV light 
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(Table 6), which correlates to some extent with the results obtained from RT-qPCR 

experiments, explained above (Fig.12, Fig.13 & Fig.14). According to the microarray there 

are several other genes whose mRNA is stabilized more strongly by UV-B (data not shown), 

which indicates the general responsiveness of the keratinocytes to UV-B. These genes belong 

partly to the immediate early response genes and are functionally involved in signal 

transduction, apoptosis cell division and tissue differentiation, which make them interesting 

for future studies. 

5.2 p38 MAPK activation in response to different dose of UV-B light 

Stress signals, such as LPS, heat shock and ultraviolet light or pro-inflammatory cytokines 

like IL-1 can induce phosphorylation and activation of p38 MAPK (see section 1.5.4). 

Investigation on the effect of different UV-doses on the phosphorylation of p38 MAPK in 

HeLa cells and in keratinocytes revealed that in both the cell types there is activation of p38 

MAPK by 160J/m2 (Fig.15). Functional consequence of activation of p38 MAPK by low dose 

UV could also be detected by Northern blot analysis of IL-8 mRNA (see 5.2 for IL-8). In 

HeLa cells higher doses of UV-B induce enhanced activation of p38 MAPK, as shown by 

higher levels of phospho-p38 MAPK. This effect could not be seen in the keratinocytes. This 

can be either due to the pre-activated condition of keratinocytes resulting from the specific 

experimental conditions chosen for culturing and handling of primary keratinocytes, which 

was discussed before (see above), or due to cell characteristics. 

There is a considerable amount of data generated on UV mediated post-transcriptional gene 

expression in HeLa cells. This study hints towards possible differences between keratinocytes 

and HeLa cells in response to UV irradiation. Since UV mediated signalling would have 

physiologically relevant outcomes in keratinocytes, additional studies in primary 

keratinocytes are required to shed light on the mechanisms involved in UV-induced mRNA 

stabilization and its role in stress response in the skin. 

5.3 Role of HuR in UV-mediated stabilization of IL-8 mRNA 

Our group could previously show the interaction of mRNA stabilizing protein HuR with IL-8-

ARE in gel shift assays (Bollig et al., 2002; Winzen et al., 2004). However it was also shown 

that destabilization of IL-8 ARE was not counteracted by HuR over expression (Winzen et al., 

2004). HuR was also reported to mediate UV-induced mRNA stabilization (Wang et al., 

2000). Therefore, in the present work we further studied the role of HuR in IL-1- and UV-

induced stabilization for IL-8 mRNA by the siRNA mediated knock down of HuR. 
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We observed that knock down of HuR by two different siRNAs did not affect the stability of 

IL-8 mRNA mediated by UV light. Despite a successful knock-down as confirmed by 

Western blots, since the UV-induced stabilization for the samples transfected with siHuR was 

similar to that of the control (siGFP) (Fig.16 B & D). Hence HuR did not reveal any role in 

UV-mediated stabilization of IL-8 mRNA. 

Regarding IL-1-mediated stabilization, stimulating the cells 40 min with IL-1 leads to the 

stabilization of IL-8 mRNA (Fig 4.13 B & D). This is in accordance with the known 

stabilization effect induced by IL-1. In this effect of IL-1 HuR is apparently not involved, 

since suppression of HuR with two different siRNAs did not impact this effect. By 2 hours 

post-IL-1 addition, at a time when the IL-8 mRNA is degraded rapidly again, divergent results 

regarding knock down of HuR, were obtained. The cells knocked down with siHuR278 showed 

no change in degradation of IL-8 mRNA, which is consistent with a lack of effect of HuR on 

this mRNA. On the other hand, using siHuR649 for knock down, we could even observe 

stabilization of IL-8 mRNA compared to the control, the GFP siRNA- transfected cells 

(Fig.16, Fig.17 B & D). This argues against a stabilizing effect of HuR. There have been 

reports, in which HuR deviates from its established stabilizing function; for example it was 

reported that Hu proteins can block the polyadenylation (Zhu et al., 2007) or decrease the 

protein expression by inhibiting translation (Kullmann et al., 2002). However, this effect 

observed here requires more evidences. Another possible explanation is a lesser specificity of 

this siRNA (siHuR649). It is possible that there are other target molecules which possess 

sequence homology to this siRNA, the so-called off-target effect (Jackson et al., 2003). It was 

reported that even siRNAs without a physiological target, which are often used as negative 

controls for siRNA experiments, can exhibit sequence-specific off-target effects in 

mammalian cells (Tschuch et al., 2008). General guidelines have been discussed to insure 

experimental approaches to maximize siRNA specificity (Cullen et al., 2006; Echeverri et al., 

2006). To sum up, HuR does not play any role as a stabilizing factor in the basal half-life and 

IL-1- or UV-induced stabilization of IL-8 mRNA. In the case of siHuR649, the data indicate a 

converse impact, which we speculate to be due to the off-target effect of this siRNA. For 

elucidation additional experiments using different siRNAs directed against HuR are required. 

5.4 IL-1 increases ribosome occupancy of certain mRNAs 

The interleukin-1 (IL-1) family of cytokines comprises 11 proteins, which function mainly in 

the control of pro-inflammatory gene expression in the innate immune response and can 

mediate mRNA stability by inducing various signalling pathways. Translation is the final 
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process in the flow of the genetic information, which regulates the amount of protein 

synthesis. Microarray analysis of changes in ribosomal occupancy in HeLa cells led to the 

identification of mRNA targets including IκBζ which are translationally activated by IL-1 

(data not shown, Dhamija et al., 2010). Based on this microarray analysis, the distribution of 

IκBζ mRNA for individual fractions was studied. A shift in the ribosomal gradients from 

untranslated to translated fractions suggested for a higher translational level of endogenous 

IκBζ mRNA on IL-1 stimulation (Fig.19 B). This effect was further analyzed for IκBα and 

IL-8 mRNAs, which are known to be rapidly induced by IL-1. Unlike IκBζ mRNA, the 

ribosomal distribution of IκBα and IL-8 mRNAs was not affected by IL-1 (Fig.19 C & D).  

Since the 3’ UTR region of IκBζ mRNA exhibited a shift to the polysomal fractions in 

reporter mRNA experiments in response to IL-1 treatment (Dhamija et al., 2010), a luciferase 

reporter assay system containing this region was established to further study the regulation of 

translation by IL-1.  

5.5 Translational silencing effect mediated by 3’ UTR of I κκκκBζζζζ mRNA 

The Luciferase activity and mRNA were determined in parallel in HeLa cells by expressing 

the vector lacking or containing the IκBζ 3' UTR. After comparing the level of protein and 

mRNA amounts in response to IL-1 and the general IL-1 induced translational activation for 

both reporter constructs, we came to two important conclusions. One is that the IκBζ 3’ UTR 

contains translational silencing activity and its function is affected by IL-1 treatment (Fig.21 

C). This observation correlates with the study on murine IκBζ mRNA, which is stabilized by 

IL-1. It was reported that the first 165 nucleotides at the 3´UTR of this mRNA are responsible 

for this response and can mediate post-transcriptional control (Watanabe et al., 2007). The 

second conclusion is that the translational activation can occur even in the absence of reporter 

mRNA stabilization (comparing the low mRNA amount to the protein amount in IκBζ 

mRNA, Fig.21 B). 

5.6 Lack of IL-1-induced translational activation of luciferase reporter 

mRNA containing IL-8 ARE 

Previous studies reported stabilization of many short-lived mRNAs by IL-1 stimulation 

(Winzen et al., 1999, Tebo et al, 2003). Though IL-8 is a well known target of IL-1-induced 

stabilization, we could not detect any change in the level of translational activation of 

luciferase reporter construct containing ARE of IL-8 mRNA (Fig.22 B). This confirms the 

earlier result obtained for endogenous IL-8 mRNA in the ribosomal gradients, where 
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distribution of IL-8 mRNAs was not affected by IL-1 (Fig.19 C). Interestingly, in the absence 

of IL-1 stimulation the level of expression of the luciferase reporter construct containing ARE 

of IL-8 mRNA is much lower compare to that of the empty luciferase reporter (Fig.22 A). 

These data suggest a translational silencing executed by the IL-8 ARE, which - unlike that of 

IκBζ translational silencing element - is not influenced by IL-1. However it is possible that 

other stimuli are capable of affecting the translational activation of IL-8 ARE mRNA, which 

requires more investigations by further experiments.  

5.7 Effect of UV-B radiations on the luciferase translational activity 

UV light, a known stress stimulus, mediates stabilization of many short-lived mRNAs (see 

section 1.6). Exposing the cells to low and high doses of UV-B light decreased the level of 

translational activation of luciferase reporter activity irrespective of the presence of 3’ UTR of 

IκBζ mRNA or ARE of IL-8 mRNA. Even empty luciferase reporter indicated this reduction 

(Fig.22). Since both IL-8 and IκBζ mRNAs are stabilized by UV-B light (discussed in 5.1) 

this brings us again to the conclusion that mRNA stabilization does not automatically result in 

translational activation. Presumably the protein synthesis is inhibited as a consequence of UV- 

induced stress, which probably requires phosphorylation of eukaryotic initiation factor 2α 

(eIF2α), and the untranslated RNAs are accumulated in cytoplasmic aggregates termed stress 

granules (Kedersha and Anderson et al., 2002). 

5.8 Signal transduction pathways involved in IL-1 induced translational 

activation 

The p38 MAP kinase pathway, which is known to stabilize numerous ARE-containing 

mRNAs (Frevel et al., 2003) is apparently not involved in the translational activation 

luciferase reporter containing IκBζ 3’ UTR, since expressing a dominant negative mutant of 

p38 MAP kinase (p38AGF), did not significantly alter the IL-1 induced effect. Similarly 

expressing a constitutively active mutant of the p38 MAP kinase-selective upstream kinase, 

MKK6 (MKK6 2E), did not cause any change in the translational activity of the IκBζ 3’ UTR-

luc reporter (Fig.26). Blocking the PI3 kinases by wortmannin did not significantly affect the 

translational activation by IL-1 (Fig.27). To make a clear statement about their role further 

experiments should be carried out using a positive control for PI3 kinase inhibition.  Over 

expression of IRAK1 and -2 proteins, which are recognized to function upstream of TRAF6 

and are receptor-proximal downstream components in IL-1 signaling, can reproduce the 

translational effect of IL-1 on IκBζ mRNA (Fig.28), whereas expressing the truncated 
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dominant negative form of IRAK1 interfered with this effect (Fig.29). According to these 

results we can assume that an uncharacterized signalling pathway(s) inducing translational 

activation of IκBζ mRNA probably segregate downstream of IRAK from p38 MAP kinase 

pathway. IL-17, like IL-1 decreases suppression of luciferase activity executed by 3’ UTR of 

IκBζ mRNA, whereas TNF-α did not alter the translational activity of this reporter mRNA at 

all. As mentioned in the literature TNF activates p38 MAPK (Saklatvala et al., 1996; 

Freshney et al., 1994). Lack of the translational regulation by TNF argues against the role of 

p38 MAPK again. 

 

Taken together, analyzing three selected mRNAs reveals that one same stimulus can affect 

different mRNAs variably (e.g.: Stabilization of IL-8 mRNA by low and high doses of UV-B; 

no or slight stabilization of IκBζ and IκBα mRNAs by low and high doses of UV-B; different 

IL-1 induced translational activation of these mRNAs) and diverse signaling pathways 

contribute to the same effect (e.g.: low dosed UV-mediated stabilization through p38 MAPK, 

high dosed UV-mediated stabilization through other yet unidentified pathway(s)). This study 

disclose that, depending on the stimulus, different RNA cis-elements and activity of divers 

signaling pathways, post-transcriptional mechanisms can be executed which selectively 

influence the expression of specific genes.  
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