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Abstract 

Iron is the fourth-most abundant element in the Earth’s crust and an essential nutrient for all 

living organisms. The mass-dependent shift in the relative abundances of the stable iron 

isotopes 54Fe, 56Fe, 57Fe and 58Fe is induced by changes in the binding energy and by kinetic 

effects. With the advent of multiple-collector inductively coupled plasma mass spectrometers 

(MC-ICP-MS) it became possible to determine the natural variations of iron isotope ratios 

with a precision of better than 0.05 ‰ in δ
56Fe (δ56Fe/[‰]=[(56/54Fesample/

56/54FeIRMM-014)−1 · 

103). In nature variations of up to 5 ‰ have been found so far. Up to now the research of 

stable iron isotope fractionation has mainly taken place in the domain of Geosciences. Little is 

known about the nature and extent of iron isotope fractionation in the biosphere, especially in 

higher plants. Consequently, the objective of this thesis is to identify the stable iron isotope 

variations in higher plants and the determination of the isotopic difference between plants and 

the substrate they grow on, as well as to identify isotope distribution patterns and 

fractionation factors. Another aim of this thesis is to elucidate the mechanisms which lead to 

Fe isotope variations in plants and to test whether stable iron isotopes are an adequate tool to 

study uptake and translocation processes in higher plants. 

Several studies were designed to address these issues. In the first study several legumes were 

grown on two types of soil, different plant organs were harvested and the δ
56Fe values were 

determined. It appeared that strategy I plants, which rely on reduction of iron before uptake, 

are enriched in the lighter iron isotopes by up to 1.6 ‰ compared to the standard IRMM-014, 

and show the trend that younger plant organs obtain lighter iron than older parts. In contrast, 

strategy II plants, which rely on chelation of iron by exuded phytosiderophores, are only 

slightly enriched in the heavier iron isotopes and show uniform compositions in all plant 

organs.  

In the second study the iron isotope composition of the iron of the soils where these plants 

grew on was determined that is most likely available to supply the plants. The iron isotope 

ratio of bulk soils was measured and two different sequential extraction methods, designed to 

resolve the iron isotope signature of various soil fractions, were tested. The pools which 

contribute most to plant nutrition are about 0.3 ‰ lighter than the bulk soils. The isotope 

composition of this supposedly plant-available iron was compared to that of the plants grown 

on the soils. While redox and other transformation processes in the rhizosphere enrich 
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strategy I plants to varying degrees in light iron isotopes, strategy II plants exhibit a uniform 

iron isotopic composition and are only slightly enriched in the heavier iron isotopes by about 

0.3 ‰ compared to the plant-available soil iron. Therefore these plants may record the iron 

isotope composition of plant-available iron in soils, to which the composition of strategy I 

plants can be compared to. 

Next it was examined how the iron isotope compositions of plants evolve during growth. For 

this reason bean and oat as representatives of strategy I and II plants were grown on a nutrient 

solution supplied with Fe(III)-EDTA and were harvested at least at three different points in 

time. Total bean plants are enriched in the light iron isotopes. Younger leaves contain lighter 

iron than older ones, and during growth younger leaves further accumulate the lighter isotopes 

whereas older leaves and the total roots are simultaneously depleted in light iron isotopes. 

This indicates that isotope fractionation is a result of translocation or re-translocation 

processes. Oat plants are also enriched in the light iron isotopes. An explanation for this 

enrichment of light iron isotopes, which is in contrast with that found in strategy II plants 

grown on soil in the previous study is the prevalence of a constitutive reductive uptake 

mechanism of iron in the nutrient solution used as this is non-deficient in iron. In contrast iron 

availability in the natural aerated soils used in the previous study was low. However, during 

growth of the oat plants the initial isotope ratio obtained during the first uptake is maintained 

in all organs at all growth stages, including the roots. The absence of fractionation of iron 

isotopes during the translocation of iron in strategy II plants hints at a difference in 

translocation mechanisms between strategy I and II plants. 

Results of these studies provide support to the hypothesis that stable metal isotopes 

potentially serve as a new tool to identify the physiological mechanisms of metal uptake and 

translocation in plants. 

This tool of stable iron isotope fractionation was applied to identify the mechanisms of iron 

translocation in maize. Iron isotope data of various experiments with maize as a representative 

of strategy II plants are presented. Maize was grown in a nutrient solution with known iron 

isotopic signature as well as in an isotopically spiked nutrient solution, without iron in the 

nutrient solution and on a soil substrate. The obtained δ56Fe values clearly reveal that maize 

retranslocates iron from older leaves into younger plant parts independent from the iron status 

of the plant. Furthermore it is shown that the direction and the extent of iron isotope 
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fractionation during iron acquisition by maize plants depends on the form of iron supply and 

therefore iron availability. 

The results of this thesis demonstrate that the uptake of iron by plants from soil and its 

translocation inside the plant are important sources of isotopic variations in the 

biogeochemical cycle of iron. In addition it is shown that stable iron isotopes can serve as an 

adequate tool in plant physiology. 

 

Keywords: Iron isotope fractionation, higher plants, MC-ICP-MS 
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Zusammenfassung 

Eisen ist das vierthäufigste Element der Erdkruste und essentieller Nährstoff für alle lebenden 

Organismen. Die massenabhängige Verschiebung in den relativen Häufigkeiten der stabilen 

Eisenisotope 54Fe, 56Fe, 57Fe und 58Fe wird durch Änderungen in der Bindungsenergie und 

durch kinetische Effekte hervorgerufen. Seit der Einführung von Multikollektor-Plasma-

Massenspektrometern (MC-ICP-MS) ist es möglich, die natürlichen Variationen im 

Eisenisotopenverhältnis bis auf eine Genauigkeit von 0,05 ‰ zu bestimmen. Bislang wurden 

in der Natur Variationen von etwa 5 ‰ für das 56Fe/54Fe Verhältnis (dargestellt als 

δ
56Fe/[‰]=[(56/54Fesample/

56/54FeIRMM-014) −1 · 103) beobachtet. Diese Entdeckung wurde 

bislang hauptsächlich von Geowissenschaftlern genutzt. Bisher ist wenig über die Art und das 

Ausmaß der Eisenisotopenfraktionierung in der Biosphäre, vor allen in höheren Pflanzen, 

bekannt. Daher ist es Ziel dieser Arbeit, die Variationen in den stabilen 

Eisenisotopenverhältnissen in höheren Pflanzen zu identifizieren. Dabei soll die isotopische 

Differenz zwischen Pflanzen und dem Substrat, auf dem sie wachsen, bestimmt, sowie Muster 

und Fraktionierungsfaktoren identifiziert werden. Außerdem sollen die Mechanismen, die zur 

Eisenisotopenfraktionierung führen, herausgestellt werden und es soll gezeigt werden, ob 

stabile Eisenisotope ein geeignetes Werkzeug darstellen, mit dem man die Aufnahme- und 

Translokationprozesse in Pflanzen untersuchen kann. 

Diese Themen wurden in mehreren Studien behandelt. In der ersten Studie wurden 

ausgewählte Gemüse- und Getreidesorten auf zwei Bodenarten angepflanzt, verschiedene 

Pflanzenteile geerntet und der δ
56Fe Wert bestimmt. Dabei zeigte sich, dass Strategie I 

Pflanzen, die Eisen mithilfe einer vorherigen Reduktion aufnehmen, um bis zu 1,6 ‰ in den 

leichten Isotopen angereichert sind und dass tendenziell jüngere Pflanzenteile leichteres Eisen 

beinhalten als ältere. Im Gegensatz dazu sind Strategie II Pflanzen, die Phytosiderophore 

ausscheiden, welche dreiwertiges Eisen zur Aufnahme chelatisieren, nur leicht in den 

schweren Eisenisotopen angereichert und alle Pflanzenteile zeigen ähnliche 56/54Fe 

Verhältnisse.  

In einer weiteren Studie wurde die eisenisotopische Zusammensetzung des Eisens der Böden 

bestimmt, auf denen die Pflanzen gewachsen sind und das am wahrscheinlichsten von 

Pflanzen aufgenommen wird. Dazu wurde das 56/54Fe Verhältnis der Gesamtböden gemessen 

und zwei verschiedene sequentielle Extraktionsmethoden getestet, um die 
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Eisenisotopenzusammensetzung verschiedener Eisen-Fraktionen in den Böden zu bestimmen. 

Die Eisen-Fraktionen, die den größten Anteil an pflanzenverfügbaren Eisens ausmachen, sind 

um 0,3 ‰ in den leichten Eisenisotopen gegenüber dem Gesamtboden angereichert. Diese 

Eisenisotopenzusammensetzung wurde mit der der Pflanzen verglichen, die auf den Böden 

gewachsen sind. Strategie I Pflanzen werden durch Redox- und andere 

Transformationsprozesse in der Rhizosphäre verschieden stark in den leichten Eisenisotopen 

angereichert. Strategie II Pflanzen hingegen sind um 0,3 ‰ in den schweren Isotopen 

angereichert und zeigen ähnliche 56/54Fe Verhältnisse in allen Pflanzenteilen. Es kann daher 

geschlussfolgert werden, dass Strategie II Pflanzen die Eisenisotopenzusammensetzung des 

pflanzenverfügbaren Eisens im Boden anzeigen können, mit der dann die der Strategie I 

Pflanzen verglichen werden kann. 

Des Weiteren wurde untersucht, wie sich die Eisenisotopenzusammensetzung von Pflanzen 

während des Wachstums entwickelt.  Zu dem Zweck wurden Bohne und Hafer als Vertreter 

von Strategie I und II Pflanzen auf einer Fe(III)-EDTA enthaltenden Nährlösung angepflanzt 

und bei verschiedenen Wachstumsstadien geerntet. Dabei konnte beobachtet werden, dass 

Bohnen-Pflanzen in den leichten Eisenisotopen gegenüber der Nährlösung angereichert sind 

und dass tendenziell jüngere Pflanzenteile leichteres Eisen enthalten als ältere. Während des 

Wachstums werden die älteren Blätter in den schwereren Eisenisotopen angereichert, während 

Eisen in den jüngeren Blättern immer leichter wird. Das lässt darauf schließen, dass jüngere 

Blätter ihr Eisen nicht nur aus der Nährlösung, sondern auch aus Speichermolekülen älterer 

Blättern beziehen. Es wird vermutet, dass die beobachteten Muster aus einer Eisen Reduktion 

vor der Aufnahme in die Pflanze und aus Reduktion von Eisen bei der nicht quantitativen 

Mobilisierung aus Speichermolekülen resultieren. Da diese Muster in der Strategie II Pflanze 

Hafer nicht sichtbar sind, kann geschlossen werden, dass die Translokationsmechanismen von 

Eisen innerhalb der beiden Pflanzentypen, zumindest bei ausreichender Eisenernährung, 

unterschiedlich sind. Des Weiteren ist Hafer, im Gegensatz zu den Ergebnissen der bisherigen 

Studie, in den leichten Isotopen um 0,4 ‰ angereichert. Dieser Unterschied wird mit dem 

Einfluss der Eisenspeziation im Boden oder der Nährlösung, und damit der 

Eisenverfügbarkeit, erklärt. Dies verdeutlicht, dass die Eisenisotopensignatur von Pflanzen 

nicht nur von der jeweiligen Aufnahmestrategie abhängt, sondern auch von der 

Eisenverfügbarkeit im Substrat. All diese Resultate führten zu der Idee, dass stabile 

Eisenisotopenfraktionierung als ein neues Werkzeug in der Pflanzenphysiologie eingesetzt 

werden könnte.  
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Mit diesem neuen Werkzeug der Eisenisotopenfraktionierung sollten dann die Eisen-

Aufnahme- und Translokations-Mechanismen in Mais identifiziert werden. Dazu wurde Mais 

in einer Nährlösung mit bekanntem Isotopenverhältnis, ohne Eisen in der Nährlösung, in einer 

im Isotop 58Fe angereicherten Nährlösung und auf Boden angezogen. Die gemessenen 

Eisenisotopenverhältnisse zu verschiedenen Erntezeitpunkten zeigen deutlich, dass Mais 

Eisen unabhängig vom Eisenstatus der Pflanze von Blattstufe zu Blattstufe umlagert und dass 

die Richtung und das Ausmaß der Eisenisotopenfraktionierung während der Eisenaufnahme 

von der angebotenen Eisenform und damit der Eisenverfügbarkeit abhängt. 

Die Ergebnisse dieser Arbeit zeigen, dass die pflanzliche Eisenaufnahme und die 

Eisenumlagerung in der Pflanze bedeutende Quellen isotopischer Variationen im 

biogeochemischen Zyklus des Eisens darstellen. Es wird außerdem gezeigt, dass stabile 

Eisenisotope als neues Werkzeug in der Pflanzenphysiologie dienen können. 

 

Schlagwörter: Eisenisotopenfraktionierung, höhere Pflanzen, MC-ICP-MS 
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1 Introduction 

1.1 Objectives 

Fractionation of the stable iron isotopes provides a new geochemical tool that promises to be 

useful for many basic and applied research questions in the Earth, Environmental and 

Biological Sciences. The analytical methods to resolve mass-dependent variations in the 

abundances of iron isotopes in nature have only been developed about a decade ago. 

Although iron is the fourth-most abundant element in the Earth’s crust, after O, Si and Al 

(Wedepohl, 1995), and the sufficient supply with iron is essential for all living organisms, 

preciously little effort has been dedicated towards the study of iron isotopes in higher 

organisms. 

Iron occurs in different oxidation states, participates in many abiotic and biotically mediated 

redox processes and has a variety of ligands and bonding partners. These reactions lead to 

mass-dependent fractionation of stable iron isotopes between different phases if transfer is 

incomplete. Most studies of stable iron isotopes were undertaken by the Earth Science 

community and iron isotope fractionation by microbes in the environment was the major 

biological application focused on (e.g. Brantley et al., 2001; Croal et al., 2004, Johnson et al., 

2004b). Walczyk and von Blanckenburg (2002; 2005) first showed that it is in fact higher 

organisms that produce the largest iron isotope fractionations in nature. Results from the 

present thesis support this finding and demonstrate that the iron isotope effects caused by 

plant growth present the most significant and systematic shifts of geosphere - biosphere 

interaction. Furthermore iron isotopes present a novel tool for studying Fe metabolism in 

plants which is required for a better understanding of intracellular redox state, binding forms 

and Fe transport processes in plants, as will be shown in this thesis. Using the stable iron 

isotope fingerprint has the advantage in that no high and physiologically unrealistic iron 

concentrations or artificially enriched isotopes are required.  

The need for knowledge of iron metabolism processes in plants arises from efforts to 

biofortify herbal human food with iron. This is a scientific challenge with global implications.  

The World Health Organization (WHO) estimates that worldwide around 2 billion people are 

iron-deficient of which approximately 50% suffer from iron deficiency anaemia (WHO, 
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2003). Iron deficiency and anaemia lead first to decreased work performance, and at higher 

levels to lower resistance to infection, and growth deficits (Edison et al., 2008).  

To combat against iron deficiency is so difficult because even though plants are primary 

sources of iron in the human diet, iron concentration in plants is often below the dietary 

requirements or the bioavailability is low. In addition, many people of the developing world 

do not have access to animal sources of iron. The usual strategy to compensate for this deficit 

is fortification of plant foods. But often this fortified iron is not highly bioavailable or poor 

people from the rural areas cannot afford these fortified plant foods (Boccio and Iyengar, 

2003). Therefore, another approach is to enhance the iron content of plant foods through 

biofortification. In this process the plant uses its own mechanisms to fortify or increase the 

density or bioavailability of nutrients (like iron) in its edible parts. Two strategies among 

several to develop iron biofortified plants are the alteration of pathways of iron metabolism, 

and the modification of iron bioavailability.  

When choosing to alter a plant by targeting its iron acquisition system, it is crucial to fully 

understand the iron metabolic processes significant to that plant. But many aspects of iron 

uptake, transport and remobilization in higher plants are still not well known.  

Due to insufficient methods it is yet not possible to figure out the physiological significance 

of remobilization and characterize underlying reactions. Radioactively labelled Fe isotopes 

are used as markers for translocation/retranslocation processes in plants (Zhang et al., 1996) 

so far but they are only able to provide information on uptake rates and transferred amounts 

from a synthetic Fe substrate. A new tool is demanded to identify underlying processes. As 

proposed by Álvarez-Fernández (2006) this could be stable iron isotopes in the future. 

This thesis supports this statement. I show that stable iron isotopes are an adequate tool to 

study uptake and translocation processes in higher plants and that biochemical reactions like 

redox-changes or ligand exchange can be elucidated. The findings presented here show an 

approach that promises to be of general interest to trace the behaviour of metals in biological 

systems. This thesis provides more evidence that the heavy metal isotope systems are 

emerging as indicators of geosphere-biosphere metal transfer processes. Therefore this work 

is interdisciplinary and provides applications not only in geo-, but also in plant- and nutrition 

sciences. 
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1.2 Organization of the thesis 

This thesis is subdivided into five chapters: an introduction section and four main chapters. 

The introduction section provides the aim of the thesis and introduces the reader into the 

general concepts of iron-metabolism in plants. The principles of stable isotope fractionation 

are then presented as well as the current state-of-the-art of iron isotope research in the geo- 

and biosphere. The chapters 2 to 4 contain separate introduction and conclusion sections and 

therefore present independent units without the context of other chapters. Manuscripts that 

represent these chapters are either already published (chapter 2 and 3) in international journals 

or aimed at being submitted for publication in international journals (chapter 4). Chapter 5 is a 

summary of several experiments, their results and main points of discussion. 

Chapter 2 provides the first data which show that the plant-specific iron uptake mechanisms 

for plants (strategy I: reduction of iron, strategy II: chelation to iron and uptake of Fe-

phytosiderophores) can be fingerprinted with stable iron isotope compositions. For this study 

different species of strategy I and II plants were grown on two different types of soil. Parts of 

plants were harvested at two different times. First direct evidence is found that translocation 

mechanisms have to be different in both types of plants. This study is the first showing that 

stable iron isotopes are likely to present a novel tool for studying iron metabolism in plants. 

This work is published in the international journal “Environmental Science and Technology” 

in April 2007 (Guelke, M. & von Blanckenburg, F. (2007): Fractionation of stable iron 

isotopes in higher plants. Environmental Science & Technology, 41 (6), 1896-1901). 

In Chapter 3 the stable iron isotope composition of the plant-available iron pool in soils are 

identified. For the interpretation of a plant’s iron isotope ratios the knowledge of the 

fractionation factor between the plant and the soil on which it grows is essential. To determine 

this fractionation factor the exact iron isotope composition of iron which can be taken up by 

plants needs to be known. In this chapter it is stated that the stable iron isotope composition of 

strategy II plants (grasses) has a potential capability as indicator of the mobile plant-available 

iron fraction in soils. I determined the stable iron isotope signature of the plant-available iron 

pools in two agronomic soils with two different sequential extraction methods. This isotopic 

signature was compared to that of typical strategy I and II plants grown on the soils. Strategy 

II plants exhibited uniform iron isotopic composition and only little fractionation occurred 

during uptake of iron by these plants when compared to the composition of the most mobile 

iron fraction in soil. An apparent fractionation factor could be determined. This work is 
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published in the international journal “Chemical Geology” (Guelke, M., von Blanckenburg, 

F., Staubwasser, M., Schoenberg, R. & Stuetzel, H. (2010): Determining the stable iron 

isotope signature of plant-available iron in soils. Chemical Geology, 277 (3-4), 269-280). 

In Chapter 4 it is shown how the iron isotope ratios changed in different organs of both a 

strategy I and a strategy II plant during growth in a nutrient solution supplied with Fe(III)-

EDTA. It is demonstrated that the stable iron isotope patterns evolve not only in the uptake 

mechanisms of these plants but also in the translocation mechanisms. The distribution of iron 

isotopes inside the strategy I plant indicates remobilization of iron from older plant organs 

and points to iron isotope fractionation during reduction of iron before membrane transport 

and reduction of iron during mobilization from storage molecules. In contrast to our previous 

results (chapter 2) the complete strategy II plant was enriched in the light iron isotopes, too, 

although there was no significant change in the iron isotope ratios during growth and in the 

different plant organs. This divergence can be explained with the influence of iron speciation 

in the growth media, suggesting that the iron isotope signature of plant biomass depends not 

only on the iron uptake strategy but also on the iron availability in the growth substrate. The 

measured stable isotope compositions also indicate that in addition to the different uptake 

mechanisms, strategy I and II plants have different iron translocation mechanisms, which is 

consistent with the hypothesis that strategy I plants may more frequently change the redox 

state of iron during translocation, while in strategy II plants, iron may remain to a larger 

extent in its ferric form, also during ligand exchange.  

In Chapter 5 iron isotope data of various experiments with the strategy II plant maize are 

given. The experiments were conducted together with Dr. Enrico Scheuermann of the Institute 

for Plant Nutrition at the University of Hohenheim. Maize plants were grown under controlled 

conditions in a nutrient solution with known iron isotopic signature as well as in a nutrient 

solution which was enriched in the isotope 58Fe. Plant growth and the determination of the 

chlorophyll contents were performed by Dr. Scheuermann whereas iron concentration and 

stable iron isotope measurements were done by me. In this chapter the results and a 

preliminary interpretation of using stable iron isotopes to investigate the specific processes of 

iron metabolism of strategy II plants are reported. In addition this chapter contains isotope 

data of maize grown on a soil substrate. This experiment was conducted in Hannover at the 

Institute of Biological Production Systems. The obtained data of all maize experiments clearly 

reveal that the iron isotope signature of maize depends on the iron availability of the growth 

substrate. Furthermore it is shown that maize retranslocated iron from older leaves into 
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younger plant organs, regardless of the iron status of the plant. In addition the obtained data 

allow hypothesizing that reduction of iron is a main factor in translocation mechanisms in 

maize.  

 

1.3 Iron in plants 

Besides nitrogen and phosphorous iron is one of the nutrients that mostly inhibits plant 

growth. But unlike the other nutrients iron supply cannot easily be increased by fertilization 

because the supplied iron becomes unavailable in the form of insoluble iron hydroxides. 

Consequently, it is fundamental to understand the metabolism of iron in plants. 

Although iron comprises approximately 5 % of the earth’s crust and is the fourth most 

abundant element in the lithosphere (Wedepohl, 1995), the bioavailability of iron for plants is 

usually low (Lindsay and Schwab, 1982). In the earth’s crust iron is prominent in the ferrous 

and ferric form in minerals like biotite, amphibole, pyroxene or olivine. During weathering 

iron oxides and hydroxides are formed from these minerals which have different solubilities 

in the following order (Lindsay and Schwab, 1982): 

Fe(OH)3 poorly crystalline > FeOOH lepidocrocite > Fe2O3 hematite > Fe2O3 maghemite > 

FeOOH goethite.  

For plant nutrition the poorly crystalline Fe(III)-precipitates play a particularly significant role 

as they have the highest solubility. For the dissolution of these Fe compounds the pH and the 

redox-potential of the soil are important. The solubility of Fe minerals decreases 

exponentially for each pH unit increase (Lindsay and Schwab, 1982). Reducing conditions 

lead to the reduction of Fe(III) to Fe(II)-oxides/hydroxides and the release of dissolved Fe(II) 

which has a higher solubility (Sah and Mikkelsen, 1986).  

The low solubility of iron under aerobic conditions is not sufficient to provide enough free 

iron for optimal plant growth. Plants require 10−9 – 10−4 mol Fe/ L soil (Guerinot and Yi, 

1994). Free Fe(III) in an aerobic, aqueous environment is limited to an equilibrium 

concentration of approximately 10−17 M, a value far below that required for optimal plant  

(Guerinot and Yi, 1994; Marschner, 1995).  

Although there are organic compounds like siderophores, produced by fungi and bacteria, in 

the soil which are able to bind Fe(III) and therefore enhance iron concentration, there are only 
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10−10 M dissolved iron available on calcareous soils (Briat and Lobreaux, 1997) which 

comprise one third of all world’s surface soils. Thus, Fe-deficiency often limits plant growth 

causing agricultural problems. 

 

Functions of iron in plants 

Iron is a transition element and can easily change its redoxstate between Fe(III) and Fe(II). It 

can form octahedral complexes with various ligands. This variability in the oxidation state is 

the reason for the special role of iron in biological redox systems. However, usually most Fe 

in plants is in the ferric form (Goodman and Dekock, 1982). There are two major groups of 

Fe containing proteins in plants: heme proteins (e.g. cytochrome, catalase, nitrate reductase) 

and Fe-S proteins (e.g. ferrodoxin, nitrite reductase) which take part in many metabolic 

processes, including the electron transfer chains of respiration and photosynthesis 

(cytochromes), the biosynthesis of DNA (ribonucleotide reductase), lipids (lipoxygenase) and 

hormones (1-aminocyclopropane 1-carboxylic acid (ACC) oxidase) and nitrogen assimilation 

(nitrate reductase) (Curie et al., 2009). The heme-bound enzyme catalase catalyses the 

reaction from H2O2 to H2O and O2 and thus makes H2O2 innoxious, an important process to 

avoid the occurrence of the cell damaging radical O2˙¯ . Under Fe-deficiency, visual 

symptoms firstly appear in the young leaves caused by an inhibition of several Fe-dependent 

steps on chlorophyll biosynthesis. 

 

Iron acquisition by the roots 

Plant roots preferentially take up iron in its ferrous form and under non-limiting Fe supplies, 

Fe uptake is mediated via a constitutive acquisition system that consists of a membrane-bound 

ferric reductase which is linked to a divalent metal ion transporter and an ATP-driven proton 

extrusion pump. This means that plants reduce iron and take up the ferrous form when they 

are grown on soils with a high Fe availability (Chaney et al., 1972). However, this rarely 

occurs. High Fe(II) concentrations are found only in flooded, anaerobic soils which lead to 

excessive Fe uptake and consequently to Fe toxicity (Bienfait et al., 1985). But as Fe in soils 

is normally present as hardly soluble Fe(III) compounds which are not available for plant use, 

higher plants were forced to evolve different strategies to make iron in soil available for their 

needs. There is general agreement of at least two strategies of plants for iron acquisition 

(Marschner et al., 1986) (Figure 1.1). 
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Strategy I is used by all dicotyledonous plants and the non-graminaceous monocots. Under 

iron deficiency, roots of these plants exude protons into the rhizosphere via a plasmalemma P-

type ATPase, lowering the pH of the soil solution and promoting dissolution of Fe(III) 

precipitates. Fe becomes more available by reducing Fe3+ to the more soluble Fe2+. 

Fe(III)chelates reductases have been identified in several plants at the molecular level. Iron is 

reduced in the apoplast and subsequently transported as Fe2+ into the root by the membrane 

transporter protein IRT1, a member of the ZIP metal transporter family. Genes encoding Fe3+-

chelate reductase (FRO1) have been cloned from Arabidopsis thaliana (Robinson et al., 1999) 

and pea (Waters et al., 2002). The iron transporter gene IRT1 has been cloned from 

Arabidopsis thaliana (Eide et al., 1996) as well as its orthologs from pea and from tomato 

(Cohen et al., 1998; Eckhardt et al., 2001). 

 

      

 

Figure 1.1  Iron uptake of roots according to strategy I (a) and strategy II (b) and the membrane 
transport processes involved. R: Fe(III)chelate reductase, IRT1: Fe(II) transporter, 
YS1: phytosiderophore–Fe(III) (PS) transporter. The process of PS secretion has not 
been finally resolved (yellow ellipse). After Hell and Stephan (2003). 

 

a) 

b) 



1  Introduction 

16 

 

All three components of strategy I (proton extrusion, reduction, uptake by transporters) 

increase their activities during iron deficiency. Further adaptive mechanisms include root 

morphology changes, root hair and transfer cell development.  

Strategy II  is used by the monocotyledonous plants (the grasses) and employs ferric chelators 

called phytosiderophores (PS) which are exuded under iron deficiency. Phytosiderophores 

belong to the mugineic acid (MA) family which are non-proteinogenic secondary amino acids 

with a molecular weight of around 320. They can effectively chelate ferric iron via their 

amino and carboxyl groups. The family of mugineic acids includes several species. One of 

them is 2 deoxy-mugineic acid (Figure 1.2). Each grass produces its own set of MAs and 

increases the production and secretion of MAs in response to iron deficiency. Tolerance to 

Fe-deficiency is therefore correlated with the amounts and the types of PS secreted 

(Marschner, 1995). 

PS have a high affinity for Fe(III) to which they are bound efficiently in the rhizosphere. 

Fe(III)–PS complexes are then transported into the plant roots via a specific transport system. 

The uptake of the Fe(III)–PS complex was elucidated by cloning of the mutant allele of the 

transport-defective YS1 mutant from maize (Curie et al., 2001). This chelation strategy is 

more efficient than the reduction strategy used by the other plants and thus allows grasses to 

survive more drastic iron-deficiency conditions (Curie and Briat, 2003).  

 

 

Figure 1.2  Structure of the phytosiderophore 2 deoxy-mugineic acid. 
 

When plants of either strategy are confronted with Fe-deficiency stress, the strategy-specific 

processes are upregulated in the plant’s root system (Grusak and DellaPenna, 1999). 

 

Iron transport in plants 

The acquisition of iron and other micronutrients in the plant actually starts in the apoplast of 

the root epidermal cells (Sattelmacher, 2001). Iron diffuses through the free apoplastic space 
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to the plasmalemma but, once it is reduced or de-chelated, may not be completely imported 

by the different uptake systems. Under aerated conditions part of the iron is oxidized and 

precipitates as hydroxide or phosphate salt, forming an apoplastic iron pool (Bienfait et al., 

1985). This pool comprises up to 95 % of total root iron content in hydroponic culture and can 

be used when conditions of iron deficiency are applied (Becker et al., 1995). Apoplastic iron 

may be less important in roots of soil-grown plants as evidenced by specific determination of 

iron concentrations in cross-sections of barley roots (Strasser et al., 1999). Iron enters the 

roots’ epidermal cells through either the uptake of Fe(III)-phytosiderophore complexes used 

by the grasses or the strategy I acidification, reduction, and ferrous transport pathway present 

in all other plants (Figure 1.1; Figure 1.3 inlet).  

Iron moves through the root to the central vascular cylinder, which contains the xylem and the 

phloem, where it can be loaded into the xylem and translocated to other parts of the plant. 

All solutes must enter the vascular cylinder through a symplastic (intra-cellular) pathway 

because the casparian strip, a layer of waxy coated endodermal cells, forms an impermeable 

barrier for water and solutes. This casparian strip separates the soil solution and the apoplast 

of the outer root from the apoplast of the inner root and the vascular cylinder. In the symplast 

iron is bound by chelating compounds. Fe-chelator complexes then move through intercellular 

connections into the stele along the diffusion gradient. It is proposed that nicotianamine (NA) 

(Figure 1.4) functions as iron chelator. NA is produced by the enzymatic condensation of 

three amino-carboxylpropyl groups of three S-adenosyl-methionine molecules by 

nicotianamine synthase. This leads to the formation of a hexadentate co-ordination which 

results in the formation of very stable octahedral chelates with a central metal ion. NA is a 

precursor of phytosiderophores. It is present in all plants and has the ability to bind various 

metals including Fe2+ and Fe3+ (von Wirén et al., 1999), whereby the kinetic stability is higher 

for the Fe(II)-NA complex and lower for the Fe(III)-NA complex. NA is not secreted and it is 

suggested that it plays a role in intra-and intercellular metal transport in both strategy I and II 

plants. 
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Figure 1.3  Iron uptake and translocation pathways in higher plants. Arrows represent the long-
distance circulation of iron chelates within a flowering plant (after Briat et al. 2007). 
Uptake into the root is mediated by transporter proteins; this occurs either after 
reduction (strategy I) or after complexation (strategy II). Complex formation by 
organic acids or, in particular, nicotianamine (“NA”, blue arrows) moves Fe between 
cells. Transport in the xylem is as an Fe(III)-citrate complex, and in graminaceous 
plants, also an Fe(III)-phytosiderophore complex (red arrows). Transfer of Fe from the 
xylem into leaf cells requires Fe(III)-citrate reduction, followed by transport across the 
membrane as Fe2+ or as a ferric complex with nicotianamine or phytosiderophores (the 
latter only in strategy II plants). Within leaf and root cells, most of the physiologically 
active Fe is found as Fe(II) or Fe(III) in the protein fraction, as heme-bound Fe, or 
fixed in Fe–S clusters (Briat et al. 2007). When the plant enters the generative growth 
phase, root activity usually decreases, so elements become translocated to sink tissues 
(brown arrows). Fe can be reduced again before reaching the sink organs (Curie et al. 
2009). From von Blanckenburg et al. (2009). 
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Figure 1.4  Structure of nicotianamine (NA). 
 

Fe has to be discharged from the symplast to be released into the xylem but the mechanism is 

not yet clearly understood (Kim and Guerinot, 2007). In the xylem, where the pH is around 

5.5-6, Fe is present as Fe(III)-citrate (Hell and Stephan, 2003). Unpublished studies show that 

Fe-PS might be transported in the xylem as well (von Wirén, pers. comm). The mechanism of 

Fe uptake from the xylem vessels into leaf tissues (xylem unloading to symplast and re-

absorption to apoplast) is not clear (Kim and Guerinot, 2007). However, it is believed that 

strategy I mechanisms play a role when Fe moves across the plasma membrane of leaf cells 

and it has to be mediated by transporters of iron–citrate, NA–iron or other iron complexes or 

free Fe2+. The photoreduction of xylem-transported ferric carboxylates like citrate seems to 

play an important role in the reduction of iron in the shoots. The driving force for this reaction 

is provided by light energy (Bienfait and Scheffers, 1992). The idea of enzymatic iron 

reduction in leaves has been controversial (Schmidt, 1999), but plasmalemma activity of 

Fe(III)-chelate reductase has been clearly demonstrated (Larbi et al., 2001).  

Fe has also to be transported by the phloem, for example to the seeds. The pH in the phloem 

is above 7, so Fe must be bound to chelators to stay soluble. It is believed that Fe is 

transported as Fe-ITP (iron transporter protein) in the phloem. ITP binds Fe(III) as shown by 

in vivo labelling experiments. In addition nicotianamine (Figure 1.4) has been proposed to be 

another Fe-transporter in the phloem as it is ubiquitous in plant tissues and at the relatively 

higher pH of the phloem, both Fe(III) and Fe(II) are predicted to be complexed with NA (von 

Wirén et al., 1999). The presence of a small amount of Fe(II) in the phloem sap has lead to the 

idea that NA can act as a shuttle by chelating Fe(II) from Fe(III)-ITP during phloem loading 

and unloading (Kim and Guerinot, 2007). However, it is supposed that NA plays an essential 

role as principal chelator of free iron in cells whenever iron is not bound to target structures 

such as heme or stored as phytoferritin. It is not clear if transport within the plant differs 

significantly between strategy I and II plants. The fate of the imported Fe(III)-PS complex is 

currently unclear. But since NA forms complexes with Fe(III) as well, iron might just be 
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chelated by NA as a default mechanism until it is channelled into further transport, storage 

sites or functional target molecules (Hell and Stephan, 2003).  

 

Iron storage in plants 

Plants can suffer from iron deficiency but also from an excess of iron despite strict control by 

the root uptake systems. Iron can be stored in the apoplast, but inside the cells plastids and 

vacuoles are important iron stores. To bind excess free iron in the cells, the synthesis of 

phytoferritin is induced. Ferritins are ubiquitous multimeric protein complexes that are able to 

store up to 4000 iron atoms in a central cavity. Their abundance is controlled by precise 

regulatory mechanisms (Briat, 1999). In plant cells Fe is stored as phytoferritin in the stroma 

of plastids. The mechanism of Fe uptake into the chloroplasts is not well understood. Fe 

uptake studies with isolated barley chloroplasts indicated that this process is light-dependent, 

and requires Fe(III)chelate reductase activity (Bughio et al., 1997). More than 90 % of leaf Fe 

is located in the chloroplasts (Terry and Abadia, 1986).  

It is proposed that NA (Figure 1.4) is involved in the regulation, delivery and distribution of 

Fe between several organelles in the cytoplasm (the symplastic department). It is not yet clear 

how plants regulate cellular Fe homeostasis and intracellular Fe transport, but several 

observations have suggested that vacuoles play a significant role in storing excess Fe and 

releasing Fe into the cytosol under iron deficiency. It has been observed that upon Fe overload 

NA concentrations are increased in tomato and pea and most of the NA is found in the 

vacuoles whereas under normal or Fe-deficient conditions it is detected mostly in the cytosol 

(Pich et al., 2001). Current knowledge is limited whether Fe translocates into the vacuole as 

Fe-NA complex (Fe(II) or Fe(III)) or whether specific transporters for NA are present and the 

Fe-NA complexes then form inside the vacuole (Kim and Guerinot, 2007). In comparison to 

the cytoplasm the vacuole is relatively acidic and therefore oxidizing which means that 

vacuolar iron is likely to be stored as Fe(III) in ferric (hydr)oxides or phosphates. Kim et al. 

(2006) showed that vacuolar Fe storage plays an important role for the growth of germinating 

seedlings. They identified VIT1 (Vacuolar Iron Transporter 1) in Arabidopsis which functions 

as a Fe2+ transporter in vacuolar Fe storage. It remains to be shown what contribution ferritin 

in plastids and vacuoles have in buffering cellular iron in leaves and roots. However, results 

of Pich et al. (2001) together with the finding that the Fe(II)-NA complex is a poor Fenton 

reagent (von Wirén et al., 1999) indicate that at the cellular level NA could be involved in the 
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detoxification of high Fe concentrations by chelation and sequestration in the vacuole. 

Therefore cytosolic iron homeostasis apparently requires NA to mediate between different 

forms of iron storage (Stephan and Scholz, 1993; Stephan et al., 1996; Curie et al., 2009). 

 

Iron remobilization in plants 

The term “remobilization” was defined as a decrease in the net content of mineral nutrients, in 

amount per organ, e.g. leaf. Remobilization is especially important for seed germination and 

periods of insufficient Fe-supply to the roots during vegetative or reproductive growth 

(Marschner et al., 1986). The translocation of mineral nutrients from roots to shoots is 

strongly affected, especially by the demand of the shoot (Engels and Marschner, 1992). If the 

shoot demand exceeds the mineral nutrient supply to the roots and transport from roots to 

shoot, remobilization from mature leaves is increased and their amount per leaf decreases for 

mineral nutrients such as N or K. It is quite clear how roots respond to iron deficiency and 

how Fe is remobilized in the rhizosphere and then taken up by the plant roots. However, there 

is only little information about iron remobilization from older leaves. Zhang et al. (1996) 

showed with 59Fe labelled iron that bean plants (Phaselolus vulgaris L.) are able to remobilize 

iron from older leaves when grown under Fe-deficiency. For strategy II plants remobilization 

has not been demonstrated to date. Remobilization of vacuolar iron stores to meet cellular 

needs has been shown to occur in yeast requiring the reduction of Fe(III) to Fe(II) (Singh et 

al., 2007). 

 

Probable iron isotope effects in plants 

As can be seen from the previous sections of this chapter iron metabolism in plants involves 

many changes of the redox state of iron and of the ligand it is bound to. These metal 

conversion processes in plants are expected to result in isotope fractionation whenever they 

are not quantitative (see chapter 1.4). These preconditions for iron isotope fractionation are 

given in the rhizosphere, in the cell apoplast, during passage across the plasma membrane, in 

the cytoplasm involving storage of iron in vacuoles or plastids, during export from the 

cytoplasm into xylem vessels, in the membrane passage from the xylem fluid into the 

cytoplasm of leaf cells, during loading into the phloem vessel and during transfer from the 

phloem into the seed or fruit (von Blanckenburg et al., 2009). 
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1.4 Stable iron isotopes 

1.4.1 Principles of stable isotope fractionation 

General characteristics 

Atoms whose nuclei have the same number of protons but a different number of neutrons are 

called isotopes. The term “isotope” originated from the Greek and means “at the same place”, 

indicating that isotopes occupy the same position in the periodic table. Isotopes are usually 

symbolized in the form m
nE where the superscript “m” is the mass number and the subscript 

“n” is the atomic number of an element E. The atomic weight of each naturally occurring 

element is the average of the weights given by its various isotopes. 

Isotopes can be divided into stable and unstable isotopes, depending on the ratio of protons 

and neutrons in the nucleus. Unstable isotopes are radioactive species. Variations in the 

abundances of radiogenic isotopes derive from radioactive decay which occurs if the ratio of 

protons and neutrons is disadvantageous to the nuclear binding energy (Hoefs, 2009). The 

related isotope will decay under emission of high-energy radiation and change into a different 

element, depending on the kind of decay. A large number of natural radioactive isotopes have 

decayed since they were formed. Those with a very high half-life (e.g. 238U) are still existent 

as well as the shorter-lived ones that are permanently created by cosmic radiation (e.g. 14C) or 

due to decay of high half-life isotopes (e.g. 230Th). 

Isotopes with a favorable proton/neutron ratio do not decay and are called stable isotopes. But 

stable isotopes can also vary in their abundances. The partitioning of isotopes between two 

substances or two phases of the same substance with different isotope ratios is called “isotope 

fractionation” and is caused by small chemical and physical differences between the isotopes 

of an element. The main phenomena producing isotope fractionations are isotope exchange 

reactions (equilibrium isotope fractionation) and kinetic processes, the latter depending 

primarily on differences in reaction rates of isotopic molecules. The theory of isotopes effects 

and a related isotope fractionation mechanism will be presented here briefly.  

Variations in the atomic mass of an element result in differences in the chemical and physical 

properties of the given isotopes. These differences arise from quantum mechanical effects. 

Quantum theory says that the energy of a molecule is restricted to certain discrete energy 

levels. The lowest level does not correspond to the minimum of the energy curve, but is 
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located slightly above it with an amount of ½ hν, where h is the Planck’s constant 

(6.626 × 10−34 J·s) and ν  the frequency with which atoms in the molecule vibrate with respect 

to one another. This fundamental vibration frequency depends on the mass of the substituted 

atoms. As a consequence of the relation of equation 1.1 and 1.2 the zero point energy (ZPE) 

of a bond involving a light isotope is greater than the zero point energy of a bond involving a 

heavy isotope (Figure 1.5).  

 

 

Figure 1.5  Schematic illustration of how isotope substitution affects zero point energies (ZPEs) 
and bond strengths. (Inset) Detail of the potential energy well that describes the 
diatomic bond between two atoms, A and B. If there are two isotopes of A, xA and yA, 
they will have different ZPEs and hence different bond strengths (from Anbar and 
Rouxel, 2007). 

 
 

Therefore, molecules bearing the light isotopes will generally react a little more readily than 

those with the heavy isotope during a chemical reaction (Hoefs, 2009): 

 ( )hv2
1nEvibr +=                                                                                                                             1.1 
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Thereby n is the quantum number for the respective degree of freedom, h is the Planck’s 

constant, ν  the vibration frequency and k the effective constant of power of the bond between 

the two molecules. The masses of the two atoms of the molecule are represented with m1 and 

m2 (Schauble, 2004). With the binding of the heavier isotope the mass m1 is increased in the 

molecule, consequently the vibration frequency is reduced and therefore the vibration energy 

Evibr is also diminished.  

 

Equilibrium isotope fractionation 

Equilibrium fractionation can take place at isotope exchange reactions. These are a special 

case of general chemical equilibrium and can be written like 

xA + yB = xB + yA                                                                                                                     1.3 

where x and y are two isotopes and A and B two phases. The equilibrium constant for this 

reaction is  

))((

))((

AB

BA
K

xy

xy

eq =                                                                                                                         1.4 

defined as the quotient of the thermodynamic activities of the products and reactants. 

Assuming exchange of one atom of the element and ideal mixing of isotopes in both phases 

(Polyakov, 1993), Keq is the same as the equilibrium isotope fractionation factor α (see 

equation 1.18). 

Equivalent to any chemical reaction the equilibrium constant is related to the change in 

standard Gibbs free energy: 

eqRRRR KRTVSTHPTG ln),( 0000 −=∆+∆−∆=∆                                                               1.5 

In principle, the free energy change and the equilibrium constant can be calculated for isotope 

exchange reactions from thermodynamic data of molar enthalpy (∆H0
R), entropy (∆S0

R) and 

volume (∆V0
R) as a function of pressure (P) and absolute temperature (T), but the changes in 

∆G0
R on isotopic substitution would be too small (less than a few tens of joules) for precise 

classical thermodynamic calculations which makes a quantum mechanical approach 
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necessary. Except for some light elements the change in volume and bond structure for 

isotope exchange reactions is very small, particularly for condensed phases like minerals. 

Therefore, following G = F + PV, ∆G of the reaction is equivalent to the Helmholtz free 

energy (∆F) and the equilibrium constant is  

-∆F

RT
eqK =e

 
 
                                                                                                                        1.6 

Approximating the atomic motion by a harmonic oscillator, ∆F is roughly the same as the 

difference in the zero-point energy (∆ZPE), which can be calculated with equation 1.1: 

 
products reactants

1 1 1
F ZPE=

2 2 2
hv hv h v

   ∆ ≈ ∆ − = ∆   
   

∑ ∑                                                               1.7 

Therefore, the difference in the vibrational frequency ∆ν which is correlated to the masses of 

substances (equation 1.2) drives equilibrium isotope fractionation. 

More precisely, the sum of energy of motion of a molecule includes vibrational, rotational and 

translational energies and can be described by statistical mechanics using partition functions 

Q. Partition functions consider all energy states of a molecule and the probability to occupy 

particular states. Q is related to the Helmholtz free energy according to  

F= RT lnQ−                 1.8 

The vibrational partition function, Qvib, for harmonic vibrations, describes the sum over all 

vibrational energies, En in a molecule: 

( ) 1
exp  with =

2vib n nn
Q E kT E n hv

 = − + 
 

∑                                 1.9 

k is the Boltzmann’s constant (1.38 × 10−23 J K−1) and n describes the energy state, i.e. the 

quantum number, of the vibrational degree of freedom. For a molecule in the ground state, 

n=0, which defines the zero-point energy, the partition functions for rotation (Qrot) and 

translation (Qtrans) in a molecule can be calculated according to: 

2

2

8
rot

IkT
Q

h

π=  and                                     1.10 
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trans

mkT
Q V

h

π =  
 

              1.11 
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I is the moment of inertia of the molecule, V is the volume of the molecule and m is its mass. 

Therefore the total energy of atomic motion is 

( )ln trans rot vibF RT Q Q Q= − ⋅ ⋅                1.12 

From this the following expression for keq and therefore a result: 

( )

( ) ( ){ }

products reactants

products reactants

products

reactants

exp exp

exp ln ln

( )

( )

eq

trans rot vib trans rot vib

trans rot vib

trans rot vib

F FF
k

RT RT

Q Q Q Q Q Q

Q Q Q

Q Q Q

α
 − −−∆ = = =   

    

= ⋅ ⋅ − ⋅ ⋅

⋅ ⋅
=

⋅ ⋅

∑ ∑

∏
∏

          1.13 

In contrast to most cation exchange reactions, where ∆G is approximately constant over a 

specific range of temperatures, the free energy change of isotope exchange reactions varies 

significantly with T. Therefore isotope fractionation often depends on higher orders of inverse 

temperature (T-2).  

Isotope fractionation between two compounds at room temperature can be roughly estimated 

from the difference in vibrational energy of the participating reactants according to  

α =Keq = exp(−∆G0 /kT) ≈ exp(−∆Evib /kT)                                                                             1.14 

A rule of thumb predicts a fractionation of 1 ‰ for a difference in vibrational energy of 

2.5 J/mol (Schauble, 2004). This rule is valid for reactions at moderate temperatures only, e.g. 

at room temperature. Equilibrium isotope effects are strongest at low temperature and 

decrease with rising temperature (Urey, 1947). However, isotope fractionations do not 

decrease to zero monotonously with increasing temperature. At intermediately high 

temperatures, they may change sign and increase in magnitude, but they will approach zero 

for very high temperatures (Hoefs, 2009).  

Some qualitative predictions have been made by Schauble (2004) which govern the 

equilibrium fractionation: 

• Usually the magnitude of isotope fractionation decreases with increasing temperature, 

approximately with 1/T2. Exceptions are the direct binding of an element to hydrogen. 
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• The magnitude of isotope fractionation decreases with increasing element mass (m) 

and decreasing mass difference (∆m) between the isotopes, roughly scaling with 

2
»heavy light

heavy light

m m m

m m m

− ∆
×

                                                                                                      1.15 

• At equilibrium the heavy isotopes are concentrated in the molecules with the more 

strongly bonds. Bond strength is positively correlated with a high oxidation state of 

the element of interest, presence of highly covalent bonds, a low coordination number 

and low-spin electronic configuration. 

 

Kinetic isotope fractionation 

Kinetic isotope effects are the second reason for isotope fractionations. Kinetic isotope 

fractionation between different phases can occur during incomplete isotope exchange 

reactions due to differences in the reaction rate constants of different isotopes of an element. 

These differences result from the mass-dependence of bond strength, i.e. heavyAB reacts more 

slowly than lightAB. Incomplete unidirectional reactions or processes like evaporation, 

diffusion, dissociation- or biologically mediated reactions can produce isotope fractionations. 

Quantitatively, many observed deviations from simple equilibrium processes can be 

interpreted as consequences of the various isotopic components having different rates of 

reactions (Hoefs, 2009). The mass of a molecule or atom affects its velocity (v). This can be 

shown for an ideal gas, where the translational kinetic energy (KE) is the same for all 

molecules or atoms: 

 21 3

2 2E RK m v k T= × = ×                                                                                                        1.16 

Thereby k is the Boltzmann´s constant, T the absolute temperature and m the mass of the 

molecule or atom, whose velocities differ according to: 

 
2

2

light

heavy

heavy

light

m v

m v
=                                                                                                                        1.17 

Thus, in many kinetic reactions, the light isotopes are enriched in the reaction product. 
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Reporting isotope fractionation 

The isotope fractionation factor α for isotopes lightX and heavyX between two substances XA 

and XB, not considering if equilibrium fractionation or kinetic fractionation is usually 

expressed: 

( )
( )

heavy light

XA
XA-XB heavy light

XB

X X
α =

X X
                                                                                                   1.18                                                               

Analogous to equation 1.13, α can be expressed as partition function ratios: 

 
light A heavy A

A-B
light B heavy B

α =
Q Q

Q Q
                                                      1.19 

Usually calculated partition function ratios are expressed as reduced partition functions (β-

factors), ignoring translational and rotational energies. From these β-factors, the equilibrium 

fractionation factor can be calculated according to: 

A-B or   1000 ln 1000ln 1000lnA
A B A B

B

a
β α β β
β− = = −                             1.20 

Fractionations are usually very small, in the order of parts per thousand or parts per ten 

thousand, so expressions like 1000·lnα or 1000·(α−1) are common that magnify the 

difference between α and 1. α=1.001 is equivalent with 1 ‰. 

The delta notation is a general way to express shifts in isotope ratios between two 

compartments. It gives the permil deviation of the isotopic ratio of the sample relative to that 

of a standard:  

       
heavy heavy light

sample sample

heavy light
standard

δ X X X
= 1 ×1000

[‰] X X

 
−  

 
                                                                   1.21 

 The fractionation between two phases is often expressed as ∆A-B= δA - δB, thereby  

 ∆ ≈ 103 ln α.                                                                                                                           1.22       
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1.4.2 Stable iron isotopes 

Stable isotope fractionation is known for the light elements such as H, O or C since a long 

time and the phenomenon is utilized for many applications (Hoefs, 2009) like the origin of 

life, the evolution of the solar system or for climate research. 

Fractionation effects for the heavier elements such as iron are not long known. The expected 

isotope fractionations are very small as the magnitude of maximally possible isotope 

fractionation depends on the mass of an element and the mass difference between the two 

isotopes of interest. Relatively large isotopic variations of tens to hundreds of permil are 

observed in nature for isotope systems of light elements like H, Li or O. For heavier elements 

like iron which has a mass difference of about 4 % in 56Fe/54Fe, natural isotopic variations are 

smaller (< 5 ‰) and therefore analytically more ambitious. Until recently the precision of 

mass-spectrometric methods was not enough to resolve these small variations in isotopic 

abundances. But this changed with the advent of double spike thermal ionisation mass 

spectrometry (TIMS) and multi-collector inductively coupled plasma mass spectrometry 

(MC-ICP-MS). Now it is possible to determine the natural occurring isotope variations of 

metals with a precision of better than 0.1 ‰. For iron a reproducibility of 0.05 ‰ was 

achieved (Schoenberg and von Blanckenburg, 2005). In situ techniques, such as secondary 

ion mass spectrometry (SIMS) (e.g. Woodhead, 2006) and laser ablation coupled to MC-ICP-

MS (e.g. Horn and von Blanckenburg, 2007) for these heavy stable isotope systems were also 

developed. 

Iron has four naturally occurring isotopes: 54Fe (5.85 %), 56Fe (91.75 %), 57Fe (2.12 %) and 
58Fe (0.28 %) (Rosman and Taylor, 1998). Iron isotope fractionation is expressed in the delta 

notation, which gives the permil deviation of the isotopic ratio (e.g. 56Fe/54Fe or 57Fe/54Fe) of 

the sample relative to that of the IRMM-014 standard (Taylor et al., 1992) of which the 

isotopic composition is close to that of various igneous rock reservoirs (Beard et al., 2003; 

Poitrasson and Freydier, 2005; Schoenberg and von Blanckenburg, 2006):  

( )
( )

56 5456
sample sample

56 54

IRMM-014

Fe FeFe
1 ×1000

[‰] Fe Fe

 δ
 = −
 
 

                                                                        1.23 

Thereby conversion between 57Fe/54Fe and 56Fe/54Fe isotope ratios is according to 

δ
57Fe = δ56Fe · 1.48, based on the mass fractionation law 
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54 57 54
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a b56

56 5454

ln M Fe 1 1
ln M Fe M Fe M Fe

α Fe α Fe , with  or  β =
1 1ln M Fe

M Fe M Feln M Fe

   −   
   = β =
   −     

                       1.24 

whereby βa is relating to kinetic fractionation and βb is relating to equilibrium fractionation 

(Young et al., 2002). The conversion factor in equation 1.23 is derived from the kinetic law. 

These mass dependent fractionation laws have shown to be helpful to differentiate between 

equilibrium and kinetic isotope fractionation in nature (Young et al., 2002). 

 

1.4.2.1 Stable iron isotope geochemistry: state of the art 

Iron is an abundant element that participates in many biotically and abiotically-controlled 

redox processes in different geochemical environments. Iron has a variety of important 

bonding partners and ligands, forming sulfide, oxide and silicate minerals as well as 

complexes with water. Bacteria can use Fe during both dissimilatory and assimilatory redox 

processes. Due to its high abundance and its important role in many processes, isotope studies 

of iron are of substantial interest (Hoefs, 2009). 

Iron isotope fractionation was first described for meteorite inclusions using a thermal 

ionization mass spectrometry (TIMS) technique (Voelkening and Papanastassiou, 1989). In 

the following years the TIMS technique was improved and the absolute isotope composition 

and atomic weight of an iron reference material by calibration with synthetic isotope mixtures 

was determined (Taylor et al., 1992; Taylor et al., 1993). It was now possible to compare 

measured isotope effects between laboratories by the commercially available iron reference 

material known as IRMM-014. This standard is a pure iron metal which is certified and 

supplied by the Institute for Reference Materials and Measurements in Geel, Belgium. 

In 1999, a TIMS technique with a double-spike approach led to a better correction of 

instrumental mass bias and in the late 1990s the multi-collector inductively coupled plasma 

mass spectrometry (MC-ICP-MS) was established to investigate iron isotope ratios in 

geological samples (Halliday et al., 1995; Halliday et al., 1998; Belshaw et al., 2000). 

A decade ago only a few abstracts had been published on Fe isotope geochemistry. This 

number rose almost exponentially with the analytical development in mass spectrometry. 

Although the quantity and quality of the first obtained data was unsatisfactory, scientists were 
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enthusiastic as they wanted to evolve new tools for understanding the biological cycling of 

iron, specifically microbial Fe3+ reduction, which was recognized in the late 1980s as a main 

process by which iron is cycled in the surface environments of the Earth (Lovely and Philipps, 

1988; Myers and Nealson, 1988). Beard et al. (1999) hypothesized that iron isotopes may be a 

biosignature for microbial Fe cycling, but others were unconvinced (Anbar et al., 2000, 

Bullen et al., 2001). In the early 2000s there were many experimental and theoretical studies 

into the mechanisms of Fe isotope fractionation in abiologic and biologic systems (e.g. Anbar 

et al., 2000; Polyakov and Mineev, 2000; Brantley et al., 2001, Schauble et al., 2001; Johnson 

et al., 2002). Up to now a number of reviews has been published on experimental obtained 

fractionation factors and Fe isotope compositions found in nature (Anbar, 2004; Beard and 

Johnson, 2004; Johnson et al., 2004b; Dauphas and Rouxel, 2006; Johnson and Beard, 2006; 

Anbar and Rouxel, 2007; Johnson et al., 2008).  

The general variation in δ56Fe observed in natural systems is about 5 ‰ (Figure 1.6), 

excluding variations of several hundreds of permil due to mass-independent fractionation in 

extraterrestrial materials (e.g. Voelkening and Papanastassiou, 1989; Tripa et al., 2002; 

Engrand et al., 2005).  

A largely homogenous Fe isotope composition of the solar system is suggested due to the 

narrow range of δ56Fe found in chondrites, meteorites from Mars and Vesta, lunar rocks, and 

igneous rocks from Earth. Only small variations possibly exist between planetary bodies (e.g. 

Schoenberg and von Blanckenburg, 2006; Poitrasson, 2007). The Earth’s basaltic crust is 

expected to have a δ
56Fe value of about 0.1 ‰ relative to the reference material IRMM-014 

(Beard et al., 2003; Schoenberg and von Blanckenburg, 2006). 

Fe isotopes have become promising useful tracers of the biogeochemical redox cycling of Fe. 

Biotic and abiotic redox processes are among the principal factors that fractionate Fe isotopes. 

These redox processes include dissimilatory iron reduction (Beard et al., 1999; Icopini et al., 

2004), anaerobic photosynthetic Fe(II) oxidation (Croal et al., 2004), abiotic Fe(II) oxidation 

and precipitation of ferric hydroxides (Bullen et al., 2001; Balci et al., 2006), and sorption of 

aqueous Fe(II) onto ferric hydroxides (Icopini et al., 2004; Teutsch et al., 2005). Equilibrium 

isotope fractionations of 3 ‰ between coexisting Fe(III) and Fe(II) aqueous species have 

been observed and theoretically calculated (Welch et al., 2003; Anbar et al., 2005). 
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Figure 1.6 Natural iron isotope variations. Data of “biosphere” from Walczyk and von       
Blanckenburg (2002; 2005), Guelke and von Blanckenburg (2007) and Noordmann 
(2008). Other data from Anbar (2004), Beard and Johnson 2004), Johnson and Beard 
(2004), Dauphas and Rouxel (2006) and references therein. Grey bar: bulk silicate 
earth. 

 

Also nonredox processes can result in significant kinetic and /or equilibrium Fe isotope 

fractionation (up to 1 ‰), for example inorganic mineral precipitation of Fe oxides (Skulan et 

al., 2002), carbonates (Wiesli et al., 2004), and sulfides (Butler et al., 2005). Considerable Fe 

isotope fractionation (up to −0.8 ‰) can also take place during dissolution of silicates and 

ferric oxides in the presence of simple organic ligands such as oxalate (Brantley et al., 2001; 

2004; Wiederhold et al., 2006) and during the dissolution of siderophores produced by soil 

bacteria (Brantley et al., 2001; 2004). Fractionation might also occur during ligand exchange 

reactions (Anbar et al., 2000; Roe et al., 2003; Schauble, 2004; Dideriksen et al., 2008). 

Therefore it is not surprising that large variations in the Fe isotope compositions have been 

found so far in the biosphere where many redox reactions, ligand exchange, precipitation and 

dissolution of iron take place. The range of found isotopic variation in nature in general is 



1  Introduction 

33 

 

about 5 ‰, in the biosphere (plants, animals, humans) it is about 3.7 ‰ to date, indicating that 

the biosphere is the reservoir on earth with the largest variations besides BIFs and pyrites in 

Precambrian black shales (Figure 1.6). 

Unfortunately up to now there are only a small number of studies concerning natural iron 

isotope signatures in the biosphere including plants and animals/humans although it is a very 

promising field and great variations in δ56Fe have been found in nature so far (Walczyk and 

von Blanckenburg, 2002; 2005). In the following part of the chapter I will focus on the state 

of art of iron isotope fractionations found in the biosphere. 

To interpret iron isotope variations in plants it is crucial to know the iron isotope composition 

of the soil where the plants grow on. Regrettably iron isotope data from natural soil 

environments are still rare. Bulk soils were measured in the study of Walczyk and von 

Blanckenburg (2005) and gave values of +0.3 ‰ to −0.2 ‰ in δ56Fe, indicating that the iron 

isotope composition of bulk soils is around zero. Significant iron isotope fractionation during 

lateral iron translocation at the landscape scale was investigated by Wiederhold and von 

Blanckenburg (2002) but the correlation of the observed data to specific pedogenic processes 

was limited. Fantle and DePaolo (2004) studied iron isotope variations in four selected 

horizons of a soil profile in northern California and found variations of about 0.7 ‰ in δ
56Fe 

between bulk soil samples from different depths. Brantley et al. (2001; 2004) reported a 

strong enrichment of light isotopes in the exchangeable iron fraction compared to oxide-

bound iron in a soil sample from the B horizon of a hornblende-containing soil. Emmanuel et 

al. (2005) reported variations of about 0.35 ‰ in δ
57Fe (approximating 0.24 ‰ in δ

56Fe) in 

bulk soil samples of a Czech forest soil and an Israeli semi-arid soil. In their study a least-

squares method was used to estimate the Fe isotopic composition of the end-members 

representing the three main Fe reservoirs in the Czech soil (silicates, organically bound Fe 

and pedogenic Fe-oxides). Wiederhold et al. (2007a, 2007b) showed that different iron pools 

(poorly-crystalline iron oxyhydroxides, crystalline iron oxides, and silicate bound iron) of 

different types of soil (Podzol, Cambisol, redoximorphic soil) have different iron isotope 

signatures and that podzolation leads to a preferential translocation of lighter iron isotopes 

within the soil. Thompson et al. (2007) measured the iron isotopic composition of surface and 

subsurface basaltic soil horizons and found different Fe isotopic signatures at different soil 

depths and in different soil fractions ranging from +1 ‰ to −0.3 ‰ in δ56Fe. Schuth et al. 

(2009) determined the iron isotope composition of horizons of a gleysol from NW Germany 

and found δ57Fe values ranging from +0.3 ‰ in the Ah horizon and −0.2 ‰ in the Gor 
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horizon. Additionally they conducted an experimental study where suspensions of gleysol 

horizons were subjected to controlled redox conditions. The experiments yielded values from 

about −0.4 ‰ in δ57Fe for moderately reducing conditions to −1 ‰ for reducing conditions 

and +0.3 ‰ for oxidising conditions. Fe concentrations increased substantially at reducing 

conditions, indicating a preferential mobilisation of lighter iron into aqueous solutions at 

reducing conditions, leaving a residue enriched in heavy iron isotopes.  

With the start of this work actually no iron isotope data were available on natural grown or 

greenhouse plants and even up to now our study (Guelke and von Blanckenburg, 2007) is the 

only one giving iron isotope data of greenhouse plants. However, very recently Kiczka et al. 

(2010b) found an enrichment of the lighter iron isotopes by −1.0 to −1.7 ‰ in δ
56Fe in three 

alpine plant species, two of them being strategy I plants and one potentially a strategy II plant, 

grown under natural growth conditions.  

The usefulness of stable iron isotopes as tracers in plant biology has been recognized 

(Álvarez-Fernández, 2006; Rodriguez-Castrillon et al., 2008; Stuerup et al., 2008). For other 

elements like Si (Opfergelt et al., 2006a; 2006b), Zn (Weiss et al., 2005; Viers et al., 2007; 

Moynier et al., 2009), Ca (Wiegand et al., 2005; Page et al., 2008; Centi-Tok et al., 2009) or 

Mg (Black et al., 2008; Bolou Bi et al., 2008) isotope data of plants are available. Thereby it 

has been shown that plants favour the heavy isotope of Si and the Si-isotopic compositions of 

the various plant parts indicate that heavy isotopes discrimination occurs at three levels in the 

plant (at the root epidermis, for xylem loading and for xylem unloading) (Opfergelt et al., 

2006b). Plants seem also to favour the heavier isotopes of Mg as roots of rye-grass and clover 

are significantly enriched in the heavier Mg isotopes but shoots are systematically lighter than 

roots (Bolou Bi et al., 2008). Black et al. (2008) reported that wheat plants grown 

hydroponically preferentially took up the heavy Mg isotopes from the growth solution as well. 

The uptake of Zn by roots grown in nutrient solution leads to an enrichment of heavier Zn 

isotopes in the roots but lighter Zn isotopes in the shoots (Weiss et al., 2005). During Zn 

transport within the plant, both diffusion and active uptake of heavy isotopes by cells out of 

the xylem favour the mobility of light isotopes to the most aerial parts of the plants (Viers et 

al., 2007). Additionally Moynier et al. (2009) showed that translocation within the plant 

favours the lighter Zn isotopes. Results of Wiegand et al. (2005) and Page et al. (2008) 

propose a converse systematic behaviour of stable Ca isotopes in trees: tree tissues contain 

lighter Ca than the soil fractions whereby roots and stem wood contain the lightest Ca, while 

leaves hold the heaviest Ca. Centi-Tok et al. (2009) also demonstrated increasingly heavy Ca 
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in the order roots − stem wood – leaves for spruce and beech at a watershed in Northern 

France.  

First data on the stable iron isotope composition of plants were given by Walczyk and von 

Blanckenburg (2002). These authors measured stable iron isotope signatures in human blood, 

human body tissues and in the human diet, including animal and plant food sources. Plant 

food was purchased from conventional supermarkets and comprised cereals like wheat, rye 

and rice as well as vegetables like spinach, lentils, green beans, soybeans and peas. All plant 

foods were found to be enriched in the lighter iron isotopes up to −1.5 ‰ in δ
56Fe compared 

to IRMM-014, only spinach had a δ
56Fe value of near zero. Except for fish samples animal 

food products were even more enriched in the light iron isotopes, up to −2.5 ‰ and the 

lightest values for stable iron isotopes were found in human blood and human tissues (Figure 

1.7). Human blood covers a range of −2.0 to −3.1 ‰ in δ56Fe, human liver is heavier with 

−0.9 to −1.6 ‰ and human muscle tissue has similar values as human blood with −2.1 to 

−3.4 ‰. The lowest δ
56Fe was measured for human hair with −3.3 ‰.  

 

Figure 1.7   Fe isotope variations in the human body and in different food samples 
 covering the most relevant dietary food sources (from Walczyk and von  
 Blanckenburg, 2002). 

 

All these first values show that the lighter iron isotopes are enriched along the food chain, 

decreasing with 1 ‰ with each trophic level (Figure 1.8). Iron in the human diet is 

isotopically heavier than iron in the human body but lighter than iron in the geosphere. 
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Thereby animal food sources like meat and eggs are more enriched in the lighter iron isotopes 

compared to plant food sources.  

The question arose why human blood has such a light iron isotope composition. As only 10-

20 % of iron in the daily human diet derive from animal products (Ziegler and Filer, 1996), 

these products can’t be responsible for the light iron isotope ratios in human blood. 

Additionally most of dietary iron leaves our body unabsorbed; this can be seen as well in the 

δ
56Fe values of human feces (Figure 1.7) which are similar to that of the human diet.  

 

 

 

 

 

´ 

 

 

Figure 1.8 Fractionation of stable iron isotopes along 
the food chain. BF: Blood female; BM: Blood male; Li: 
Liver tissue; Mu: Muscle tissue (from Walczyk and von 
Blanckenburg, 2005). 

 

 
It was suggested that blood iron isotopic shifts either originate from preferential losses of 

heavy iron isotopes from the body via skin exfoliation, sweat, hair, bile or urine; from 

fractionation processes during absorption in the intestine, or from isotope effects during 

distribution between body tissues. The first idea was excluded immediately since losses were 

too small and hair for instance has an even lighter iron isotope composition than human blood 

(Figure 1.7). The authors concluded that the iron isotope effect in the human blood results 

from the preferential uptake of light iron isotopes in the human intestine. In the food sources 

iron is mostly prominent in its ferric form and has to be reduced in the small intestine to be 

absorbed by the human body. This reduction could lead to a fractionation effect, favouring the 

uptake of the lighter iron isotopes. The authors also concluded that the different iron isotope 

signature in the blood reflects each individual’s efficiency of iron absorption (Krayenbuehl et 

al., 2005; Walczyk and von Blanckenburg, 2005). After Ohno et al. (2004) these signatures 

stay stable for at least one year. This finding reflects directly the slowly turn-over of iron in 

the human body. The hypothesis of a preferential absorption of lighter iron isotopes in the 
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intestine was confirmed by analyzing blood of patients, suffering from hereditary 

hemochromatosis, a disease that is characterized by excessive iron uptake in the intestine 

(Krayenbuehl et al., 2005). The iron isotopic composition of blood obtained from patients 

undergoing regular phlebotomies (blood-lettings) for iron removal was compared to that of 

the blood of untreated hemochromatic patients as well as an age matched control group. 

Patients suffering from iron overload tend to have a higher proportion of the heavier iron 

isotopes in blood relative to healthy controls when treated with regular phlebotomies. It was 

concluded that the rate of iron absorption in the intestine is determining the isotopic signature 

in blood as under hemochromatosis the fractionation effect is lower as iron absorption is 

higher.  

Besides absorption efficiency as a main determining factor for the isotopic composition of 

blood iron, potential isotope effects during distribution and relocation of iron within organs 

and tissues were considered. It was found out that liver tissue is much less enriched in the 

light iron isotopes than blood (Walczyk and von Blanckenburg, 2002). A reinterpretation of 

the observation in haemochromatotics was done. In fact, the release of liver iron rather 

enriched in heavy isotopes could be responsible for the changes in blood iron isotopic 

composition rather than a further increase in absorption efficiency in response to the acute 

blood loss. The question arose whether the enrichment of light iron isotopes in human blood 

could just be a consequence of the storage of heavy iron in the liver, leaving a light residue. 

But liver iron was not substantially depleted in light iron isotopes compared to dietary iron; 

therefore this could not be the only reason. The question remained open whether there might 

be other complementarily fractionated organs besides liver that could be responsible for the 

observed effects. Hotz (2009) addressed this question in her dissertation. In one of her studies 

a Goettingen minipig was used as a model of human physiology and the iron isotope 

composition of body tissues relevant to iron metabolism was determined. The author found an 

enrichment of light iron isotopes in the gastric and intestinal mucosa of the minipig and a 

correlation of iron isotopic signatures of the mucosa with known and suggested sites of iron 

absorption of mammals. This is a direct proof for a preferential uptake of light iron isotopes 

from the diet. A detected enrichment of heavier iron isotopes in the liver and other ferritin-

rich organs (red bone marrow, spleen) indicate that both iron absorption and iron deposition 

in body tissues are mass-sensitive and determine the individual iron isotope composition in 

blood. To confirm this statement Hotz (2009) observed the changes in blood iron isotope 

signatures of four iron-overloaded subjects undergoing phlebotomy treatment (blood-letting). 
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She detected a measurable effect on the iron isotopic composition of blood resulting from 

blood lettings and therefore mobilization of storage iron. The evolution of blood loss was 

quantitatively visible in the iron isotopic composition of blood. The author concludes that iron 

absorption efficiency and partitioning of iron between blood and body iron stores are 

determinants of the iron isotopic composition of human blood. 

Recently a systematic study of the iron isotope composition of middle-European human food 

sources showed a mean δ
56Fe of −0.5 ‰ in a normal human diet with slight variations for 

men and women. For a vegetarian diet a δ
56Fe of −0.2 ‰ could be determined (Noordmann, 

2008). These values together with the data for human blood obtained by Walczyk and von 

Blanckenburg (2002) make the calculation of a ∆56Fediet-human body possible. This yields a 

∆56Fediet-human body of −2.0 ‰ for women and −2.2 ‰ for men when a “normal” European diet 

is followed. A vegetarian diet leads to a ∆56Fediet-human body of −2.2 ‰ for women and −2.6 ‰ 

for men. 

The first attempt of Walczyk and von Blanckenburg (2002; 2005) and also the work of 

Kiczka et al. (2010b) only showed that plants seem to be enriched in the lighter iron isotopes 

but systematic studies are missing up to now. In the following chapters of this thesis many 

open questions are addressed concerning the iron isotopic signature of different plant species 

grown on agricultural soil or in nutrient solution, the development of δ56Fe during 

translocation of Fe inside the plant, as well as elucidating the mechanisms which lead to iron 

isotope fractionation in plants and establishing stable iron isotopes as a tool to study uptake 

and translocation mechanisms in plants. 

 

 

 

 

 

 

 

 

 



2  Fractionation of stable iron isotopes in higher plants 

39 

 

2 Fractionation of stable iron isotopes in higher plants 

2.1 Abstract 

Although the fractionation of stable iron isotopes by biological processes in the environment 

is currently a matter of intense debate, the isotope fractionation associated with the growth of 

higher plants has, to date, not been characterized. Here it is shown that iron isotope 

fractionation induced by higher plants is substantial and also generates systematic plant-

specific patterns. A hypothesis is suggested in which these patterns mirror the two different 

strategies that plants have developed to incorporate iron from the soil: reduction of Fe(III) in 

soils by strategy I plants resulted in the uptake of iron, which is depleted in 56Fe by up to 1.6 

per mil relative to 54Fe when compared to the available Fe in soils; complexation with 

siderophores by strategy II plants resulted in the uptake of iron that is 0.2 per mil heavier than 

that in soils. Furthermore, younger parts of strategy I plants became increasingly depleted in 

heavy isotopes as the plant was growing, while strategy II plants incorporated nearly the same 

isotope composition throughout. This points to entirely different translocation mechanisms 

between strategy I and II plants. Such presumably redox-related differences in translocation 

have been under debate up to now. It is concluded that plant metabolism represents an 

important cause of isotopic variation in the biogeochemical cycling of Fe. Therefore, heavy 

stable metal isotope systems now start to be viable indicators of geosphere - biosphere metal 

transfer processes.  

 

2.2 Introduction 

The isotopic composition of an element is changed if the element is transported from a source 

compartment to a target compartment given that element transfer is both incomplete and 

mass-sensitive (Walczyk and von Blanckenburg, 2002). Stable isotope ratios are routinely 

used in studying the biogeochemical cycling of light elements in the environment, including 

studies of the mechanisms of photosynthesis and of nutrient uptake and translocation in plants 

(Taiz and Zeiger, 2002). However, until very recently, equivalent methods have not been 

available for heavier elements with atomic masses above 40 amu due to instrumental 

limitations. Sophisticated mass-spectrometric techniques now allow the measurement of small 
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changes in heavy metal stable isotope ratios resulting from equilibrium and kinetic reactions 

in both biotic and abiotic processes (Johnson et al., 2004b; Dauphas and Rouxel, 2006). Due 

to its importance in natural systems, iron has attracted particular attention and iron isotopes 

now provide a new tool to trace the biogeochemical iron cycle (Walczyk and von 

Blanckenburg, 2002; Johnson et al., 2005; Walczyk and von Blanckenburg, 2005; Dauphas 

and Rouxel, 2006). 

While biogeochemists have mainly used this new isotope tool to focus on the work of 

microbes in the environment it is in fact the higher organisms that produce the largest isotope 

fractionations. Recent studies on iron isotope fractionation in the human body and of human 

food sources revealed that large fractionations of stable iron isotopes take place in higher 

animals and plants (Walczyk and von Blanckenburg, 2002). The lighter iron isotopes are 

enriched along the food chain and each individual human being bears a distinct Fe isotope 

signature in blood, pointing at the possibility that Fe uptake efficiency results in an isotope 

fingerprint, and that iron isotopes can be used to quantify the uptake efficiency (Walczyk and 

von Blanckenburg, 2005). Plants are the principal source of iron in most human diets 

(Guerinot and Salt, 2001) but they have not yet been characterized isotopically in a systematic 

manner (Walczyk and von Blanckenburg, 2002). For human nutrition studies it is important to 

determine a representative fractionation factor between the human diet and the human body. 

In plant research stable isotopes potentially offer an excellent and safe tool to study the uptake 

and the metabolic processes of iron (Álvarez-Fernández, 2006). 

The sufficient supply of iron is essential for all living organisms to maintain cellular 

homeostasis. In plants Fe is required for iron-sulfur proteins and as a catalyst in enzyme-

mediated redox reactions (Taiz and Zeiger, 2002). Although abundant in soil, iron is one of 

the most limiting nutrients for plant growth (Guerinot and Salt, 2001) because it exists 

primarily in the ferric form [Fe(III)] which is of extremely low solubility (Lindsay and 

Schwaab, 1982). Iron excess occurs on waterlogged soils with anaerobic conditions such as 

rice fields. The excess accumulation of Fe(II) in plants results in the well-known bronzing 

phenomenon, caused by oxidative stress (Briat and Lobreaux, 1997). To utilize iron 

efficiently for growth, two distinct iron acquisition mechanisms known as strategy I and 

strategy II have evolved in higher plants (Roemheld and Marschner, 1986). Strategy I plants, 

which comprise the dicots and non-grass monocots, excrete protons via a plasmalemma H+-

ATPase to acidify the rhizosphere, thus making Fe(III) more soluble. The inducible ferric 

chelate reductase activity of FRO2 reduces Fe(III) to Fe(II) (Robinson et al., 1999). Fe(II) is 
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subsequently transported into the plant by IRT1, which is the major iron transporter of the 

plant root (Vert et al., 2002). Within the cells the production of highly toxic hydroxyl radicals 

through iron redox changes is avoided by sophisticated chelation mechanisms (Hell and 

Stephan, 2003). The grasses use the strategy II response, which relies on chelation of Fe(III) 

rather than reduction (Takagi et al., 1984). In this case, phytosiderophores are released into the 

soil where they chelate Fe(III); the complexed Fe(III) is then internalized via specific 

transporters (Curie et al., 2001; Schaaf et al., 2004). A better understanding of intracellular 

redox state, binding forms and Fe transport processes in plants is required for biofortification 

(Roemheld and Schaaf, 2004). Although numerous studies with radioactively marked Fe 

isotopes have examined Fe partitioning in plants (Roemheld and Marschner, 1986; Roemheld 

and Schaaf, 2004), methods based on stable isotope fractionation have the potential to shed 

additional light on the behaviour of iron in plants (Álvarez-Fernández, 2006). Unlike 

radioactively labelled Fe isotopes, which provide information on uptake rates and transferred 

amounts from a synthetic Fe substrate, stable iron isotopes identify the underlying processes 

and, potentially, the fractions transferred from natural soil substrates. 

 

2.3 Materials and methods 

Using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), it was 

investigated whether plants discriminate between Fe isotopes. The isotopic composition of 

dietary plant iron was determined and it was elaborated whether Fe isotope effects can be 

used to trace uptake and translocation mechanisms in strategy I and strategy II plants. Stable 

Fe isotope compositions were analyzed in different kinds of vegetables including 

graminaceous and non-graminaceous species and in the soils where they were grown. 

2.3.1 Plant growth 

About five individuals of different kinds of legumes were sown in 5–10 L pots on a sandy and 

a loamy soil. Plants grew in a daylight climate chamber with a temperature of 16 – 18 °C and 

were only watered with deionised water without fertilizer. About ten individual plants were 

taken from each soil after approximately 60 days, and, where possible, at a full growth period 

after approximately 180 days. Plants were washed with deionised water and separated into 

stem, leaves, and seeds. The original seeds were also examined. To investigate whether the Fe 
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isotopic composition changes with the age of plant sections, bean plants were sampled for the 

lower and upper parts of the stem and for the first to fourth fully expanded leaf. Plant samples 

were dried at 80 °C for at least 3 days in an oven and ground to mince and homogenize them. 

2.3.2 Soils 

Two types of soils were used as substrate for plant growth under field conditions: (1) a 

Cambisol from glacial sand of the Drenthe stadium of the Saaleian glaciation (profile 

Hannover-Herrenhausen; location Rp 3548 / Hp 5807) located in the “Geest”, the moraine 

landscape prevalent in Lower Saxony, pHH2O = 7.5; and (2) a Stagni-Haplic Luvisol from 

loess of the Weichselian glaciation (profile Ruthe; location Rp 3556 / Hp 5790) located at the 

NW margin of the main European loess belt in the centre of Germany, pHH2O = 7.8. Both soils 

are used as agricultural soils; the Ap horizon (0-30 cm depth) was sampled. 

To estimate the Fe isotopic composition of the iron pool in the soils that is available to plants, 

the 56Fe/54Fe ratio of the exchangeable iron fraction (exchanged with 1 M MgCl2), iron of 

amorphous iron oxides and in organic complexes (extracted with a mixture of 30 % H2O2 and 

0.03 M HNO3) were determined using the extraction methods after Tessier et al. (1979), and 

iron in the soil solution (saturated with deionised water, followed by shaking, centrifugation 

and filtration). The δ56Fe of the bulk soils was determined as well. 

2.3.3 Sample preparation 

Samples were prepared for isotopic analysis according to the procedure of Schoenberg and 

von Blanckenburg (2005). Approximately 250 mg of each plant sample was digested via a 

microwave digestion system in 4 mL of concentrated HNO3, evaporated on a hotplate in 

Teflon beakers and treated with a mixture of 30 % H2O2 and concentrated HNO3 to oxidize 

the organic compounds and ferrous iron to ferric iron. Subsequently the samples were 

redissolved in 6 M HCl and centrifuged to eliminate any remaining solids. Iron was separated 

from other elements by anion-exchange chromatography (resin DOWEX AG© 1x8 100-200 

mesh) with quantitative recovery, evaporated, and dissolved in 1 mL 0.3 M HNO3 

(Schoenberg and von Blanckenburg, 2005). It has been shown that Fe separates of samples 

with high transition metal contents or organic matrices may not be entirely matrix-free after 

anion-exchange chromatography and require further purification (Schoenberg and von 

Blanckenburg, 2005). Therefore, an additional precipitation step was employed that ensures 
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quantitative precipitation of all Fe(III) as Fe(III)OOH while Cu, Zn, Co, Cd, Mn and V as 

well as organic compounds remain in solution. The samples were precipitated at pH 10 with 

NH4(OH) and solutions were allowed to equilibrate for 1 h before centrifugation. The 

supernate solutions were discarded and the precipitates were washed with pure H2O. The 

precipitate was redissolved in HNO3. Quantitative recovery during precipitation, essential to 

avoid Fe isotope fractionation, was assured by determining the Fe concentration before and 

after the precipitation step. Finally the samples were diluted to 3-8 ppm Fe in 0.3 M HNO3 for 

isotopic analysis. 

2.3.4 Iron isotope measurements 

Iron isotope compositions were determined using a multiple-collector inductively coupled 

plasma mass spectrometer (MC-ICP-MS; Neptune, ThermoFinnigan). The sample-standard 

bracketing approach commonly used to correct for mass discrimination was applied 

(Schoenberg and von Blanckenburg, 2005) using the Fe isotopic reference material IRMM-

014. Sample and standard solutions were introduced into the mass spectrometer in 0.3 M 

HNO3 at concentrations of 3-8 ppm Fe. All values are reported as δ56Fe relative to the IRMM-

14 standard of which the isotopic composition is close to that of rocks at the Earth’s surface 

(Johnson et al., 2004a; Dauphas and Rouxel, 2006; Schoenberg and von Blanckenburg, 2006) 

(defined as δ56Fe = 0 with δ56Fe/[‰] = [(56/54Fesample/
56/54Festandard) −1] · 103 where 56Fe/54Fe 

sample is the 56Fe/54Fe ratio of the measured sample and 56Fe/54Festandard is the average 56Fe/54Fe 

ratio of the IRMM-014 standards measured before and after each sample). 

δ56Fe and δ57Fe of all samples were plotted against each other and were found to follow a 

mass-dependent fractionation law which demonstrates the absence of molecular or elemental 

interferences. A precision of ±0.05 ‰ (2SD) for the δ56Fe and ±0.08 ‰ (2SD) for the δ
57Fe 

(Schoenberg and von Blanckenburg, 2005) was achieved. 

 

2.4 Results and discussion 

The observed isotope shifts were mass-dependent. The obtained precision allowed to resolve 

differences in the isotopic composition of Fe of the different parts of the plant species and in 

different soil fractions. The sandy and loamy soils had a bulk Fe isotopic composition of 

δ56Fe = 0.03 ± 0.1 ‰ and δ56Fe = −0.07 ± 0.1 ‰, respectively. If a mean of the δ
56Fe values 
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of the extracted soil fractions which mostly tend to be mobilized by plants (Inoue et al., 1993; 

Bertrand and Hinsinger, 2000) is taken, an approximate δ56Fe value of −0.14 ± 0.07 ‰ (2SD) 

for the plant-available iron in the sandy and −0.08 ± 0.06 ‰ (2SD) for the plant-available iron 

in the loamy soil is obtained. The absence of Fe released from silicates and clay minerals was 

assured by measuring Si and Al concentrations in the solutions.  

Iron isotope compositions of different parts of strategy I and strategy II plants varied from 

δ
56Fe = +0.17 ‰ to −1.64 ‰ (Table 2-1) and displayed some consistent features: strategy I 

plants usually yielded lower δ
56Fe than the plant-available iron in both types of soil, whereas 

strategy II plants usually yielded slightly higher δ
56Fe than the plant-available soil iron 

(Figure 2.1). The isotope fractionation was not dependent on the type of soil as plants 

experienced similar isotope shifts on both soils. Fractionation of iron in strategy I plants was 

more pronounced in plant samples grown on the sandy soil, however. 

Reduction, sorption to Fe oxides, precipitation, complexation with organic ligands and a 

change in the dissolved inorganic Fe species has been shown to affect the isotopic 

composition of iron (e.g. Bullen et al., 2001; Welch et al., 2003; Brantley et al., 2004; Croal et 

al., 2004; Icopini et al., 2004; Johnson and Beard, 2004; Anbar et al., 2005; Staubwasser et 

al., 2006; Wiederhold et al., 2006). Redox reactions result in the largest fractionations. For 

example aqueous solutions at equilibrium (22°C) contained Fe(III) that had δ56Fe values 

which were 3 ‰ higher than that of dissolved Fe(II) (Welch et al., 2003). Conversely, 

reduction of a ferric solid led to δ56Fe that was approx. 1.0 - 1.5 ‰ lower in the resulting 

reduced species (Johnson et al., 2005; Staubwasser et al., 2006). 

These iron isotope fractionation patterns allow to conclude that the main fractionation in 

strategy I plants occurs during reduction of Fe in the rhizosphere prior to absorption by the 

root cells. Since only a small fraction of the mobile iron in the soil is reduced, an equilibrium 

fractionation allows for a partitioning of isotopes, resulting in a lower δ56Fe value in the 

plants than in the soil. In contrast to redox-related isotope shifts, release of ferric iron from Fe 

oxides by complexation results in only minute isotope shifts, and is usually associated with a 

small shift towards heavy compositions. Little fractionation (a slight enrichment of heavy Fe 

isotopes) was observed in the study of Brantley et al. (2004) between abiotically DFAM 

(siderophore desferrioxamine mesylate) dissolved Fe and goethite (δ56Fe goethite= −0.23 ‰, 

δ
56Fe in solution= −0.14 to 0.11 ‰; mean: ∆ Fe solution-Fe goethite = 0.2 ‰, where ∆ Fe solution-Fe 

goethite describes the isotope fractionation between a source compartment containing Fe in 
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goethite and target compartment containing Fe(III) in solution, in this case ∆= δ56FeFe solution 

−δ56FeFe goethite).  

 

Table 2-1 Iron concentrations and δ
56Fe of all plant parts 

Sample δδδδ 56Fe ± *2σ δδδδ 57Fe ± *2σ
Fe conc. 
[µg/g] Sample δδδδ 56Fe ± *2σ δδδδ 57Fe ± *2σ

Fe conc. 
[µg/g]

701 (original seed) -0.581 ± 46 -0.870 ± 74 55

711B (leaf first harvest) -0.552 ± 46 -0.847 ± 99 114 721B (leaf first harvest) -0.611 ± 47 -0.937 ± 90 100
711S (stem first harvest) -0.400 ± 46 -0.567 ± 73 29 721S (stem first harvest) -0.224 ± 46 -0.383 ± 73 86
712B (leaf second harvest) -1.131 ± 46 -1.662 ± 73 85 722B (leaf second harvest) -0.535 ± 46 -0.749 ± 73 71
712S (stem second harvest) -0.625 ± 46 -0.939 ± 79 46 722S (stem second harvest) -0.281 ± 46 -0.430 ± 73 31
712F (new grown seed) -1.462 ± 46 -2.113 ± 73 92 722F (new grown seed) -0.966 ± 46 -1.400 ± 92 56
Bean growth experiment
B1F (fruit) -1.635 ± 46 -2.380 ± 73 60
B1S1 (older part of stem) -0.503 ± 46 -0.709 ± 73 70
B1S2 (younger part of stem) -0.852 ± 46 -1.194 ± 73 30
B1B1 (first fully grown leaf) -0.404 ± 46 -0.613 ± 73 104
B1B2 (second fully grown leaf) -0.901 ± 46 -1.288 ± 73 77
B1B3 (third fully grown leaf) -1.048 ± 46 -1.499 ± 73 72
B1B4 (fourth fully grown leaf) -1.112 ± 46 -1.605 ± 73 62

901 (original seed) -0.379 ± 46 -0.562 ± 73 150

911B (leaf first harvest) -0.306 ± 46 -0.470 ± 73 175 921B (leaf first harvest) -0.201 ± 46 -0.316 ± 73 223

1001 (original seed) -1.054 ± 46 -1.566 ± 87 76
1011B (leaf first harvest) -0.211 ± 46 -0.363 ± 80 1641021B (leaf first harvest) -0.185 ± 46 -0.318 ± 75 174
1011S (stem first harvest) -0.132 ± 46 -0.195 ± 76 1901021S (stem first harvest) -0.102 ± 46 -0.170 ± 76 191

501 (original seed) -1.176 ± 46 -1.791 ± 81 118

511B (leaf first harvest) -1.011 ± 46 -1.480 ± 84 61 521B (leaf first harvest) -0.836 ± 46 -0.128 ± 73 70
511S (stem first harvest) -0.301 ± 46 -0.386 ± 99 107 521S (stem first harvest) -0.337 ± 46 -0.419 ± 88 67
512F (new grown seed) -1.535 ± 46 -2.007 ± 99 31

601 (original seed) -1.196 ± 48 -1.779 ± 73 64

611B (leaf first harvest) -0.914 ± 46 -1.352 ± 73 116 621B (leaf first harvest) -0.690 ± 46 -1.010 ± 73 122
611S (stem first harvest) -0.750 ± 46 -1.081 ± 73 70 621S (stem first harvest) -0.433 ± 46 -0.646 ± 73 72

401 (original seed) -1.490 ± 46 -2.217 ± 75 72

411B (leaf first harvest) -1.151 ± 46 -1.730 ± 73 153 421B (leaf first harvest) -0.433 ± 46 -0.639 ± 73 122
411S (stem first harvest) -0.970 ± 46 -1.464 ± 73 126 421S (stem first harvest) -0.277 ± 46 -0.381 ± 79 75
412B (leaf second harvest) -0.406 ± 46 -0.589 ± 73 164422B (leaf second harvest) -0.220 ± 46 -0.359 ± 73 60
412S (stem second harvest) -0.139 ± 46 -0.245 ± 75 50 422S (stem second harvest) -0.216 ± 46 -0.292 ± 78 8
412F (new grown seed) -1.029 ± 46 -1.549 ± 73 109 422F (new grown seed) -0.900 ± 46 -1.256 ± 73 48

801 (original seed) -0.732 ± 90 -1.100 ± 73 53

811B (leaf first harvest) -0.643 ± 46 -0.934 ± 73 142 821B (leaf first harvest) -0.687 ± 46 -0.971 ± 73 81
811S (stem first harvest) -0.506 ± 46 -0.804 ± 75 44 821S (stem first harvest) -0.716 ± 46 -1.058 ± 73 32
812B (leaf second harvest) -0.296 ± 46 -0.400 ± 73 110822B (leaf second harvest) -0.476 ± 46 -0.623 ± 73 84
812S (stem second harvest) -0.241 ± 46 -0.377 ± 73 40 822S (stem second harvest) -0.700 ± 46 -1.010 ± 73 30
812F (new grown seed) -0.931 ± 46 -1.384 ± 73 50 822F (new grown seed) -1.523 ± 46 -2.229 ± 73 84

Bean  (Phaseolus vulgaris L.)

Lettuce (Valerianella locusta L.)

Spinach (Spinaci oleracea L.)

Rape (Brassica napus L.)

Pea (Pisum sativum L.)

sandy soil loamy soil

Amaranth (Amaranthus hybridus L.)

Soybean (Glycine max. L.)
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Table 2-1 continuation 

Sample δδδδ 56Fe ± *2σ δδδδ 57Fe ± *2σ
Fe conc. 
[µg/g] Sample δδδδ 56Fe ± *2σ δδδδ 57Fe ± *2σ

Fe conc. 
[µg/g]

101 (original seed) -0.100 ± 46 -0.159 ± 73 68

111B (leaf first harvest) 0.018  ± 53 0.059  ± 99 121 121B (leaf first harvest) 0.058  ± 65 0.025  ± 82 59

301 (original seed) 0.094  ± 46 0.219  ± 89 30

311B (leaf first harvest) 0.005  ± 99 -0.023 ± 98 69 321B (leaf first harvest) 0.071  ± 46 0.154  ± 73 50
311S (stem first harvest) 0.136  ± 99 0.169  ± 99 39 321S (stem first harvest) 0.071  ± 46 0.076  ± 73 39
312B (leaf second harvest) 0.087  ± 46 0.057  ± 73 82 322B (leaf second harvest) -0.009 ± 46 -0.057 ± 73 99
312S (stem second harvest) 0.064  ± 46 0.098  ± 73 3 322S (stem second harvest) 0.072  ± 46 0.107  ± 73 7
312F (new grown seed) 0.003  ± 46 0.016  ± 73 20 322F (new grown seed) 0.096  ± 46 0.124  ± 73 25

201 (original seed) -0.109 ± 46 -0.118 ± 73 25

211B (leaf first harvest) 0.021  ± 46 0.030  ± 79 70 221B (leaf first harvest) 0.076  ± 46 0.090  ± 73 63
212B (leaf second harvest) -0.046 ± 46 -0.028 ± 73 51 222B (leaf second harvest) -0.018 ± 46 0.018  ± 73 65
212S (stem second harvest) 0.172  ± 46 0.236  ± 73 1 222S (stem second harvest) 0.091  ± 46 0.103  ± 73 2
212F (new grown seed) -0.051 ± 46 -0.078 ± 73 92 222F (new grown seed) -0.022 ± 46 -0.040 ± 73 50

Maize (Zea mays L. convar. Saccharata)

Oat (Avena sativa L.)

Wheat (Triticum aestivum L.)

 
* given as the 2 standard deviation reproducibility of replicate measurements. This is determined from the 
internal measuring precision for single analysis, or external reproducibility of our JM standard (Schoenberg and 
von Blanckenburg, 2005), whichever was largest. Numbers refer to the last digits given for the δ-values. 
 

A similar minor enrichment of 0.3 ‰ in δ56Fe was observed for the solution of ligand-bound 

Fe(III) after goethite dissolution by oxalate (Wiederhold et al., 2006). Indeed our results 

showed a slight enrichment (∆
56Fe ≈ 0.2 ‰) of the heavy Fe isotopes in strategy II plants 

compared to the plant-available iron in the soils. However, leaves showed no resolvable 

further fractionation; only seeds tended to be slightly lighter than leaves (Figure 2.1). 

Efficient acquisition of iron in graminaceous plant species relies on the synthesis and release 

of phytosiderophores (PS). Siderophores bind Fe(III) more effectively than do low-molecular 

weight organic acids, especially at neutral to alkaline conditions (Powell et al., 1980). The 

small enrichment of heavy isotopes is likely to be due to an equilibrium fractionation during 

complexation of Fe(III) to phytosiderophores in the rhizosphere. The Fe(III)-PS complexes 

are subsequently taken up by YS1-type membrane proteins that energize root uptake by the 

cotransport of metal-phytosiderophores with protons (Curie et al., 2001). As the Fe(III)-PS 

complex is too big for fractionation itself (relative mass differences are too small), the Fe(III)-

PS uptake should not result in any further fractionation. This is the case even if uptake is not 

quantitative which is due to the degradation of Fe(III)-PS-complexes by microbes or 

absorption by the soil matrix. In summary, the reductive uptake of light iron by strategy I 
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plants, and the non-fractionating Fe(III) complexing by strategy II plants is entirely 

compatible with Fe isotope fractionation theory and known fractionation factors.  

 

 

Figure 2.1 δ
56Fe of plant-available iron in the two soils and of different parts of strategy I and 

strategy II plants. Samples of stems, leaves and grown seeds were taken after 
approximately 60 days and, where possible, at full growth period after approximately 
180 days. In almost all cases final compositions are plotted, unless an earlier growth 
stage is indicated in Table 2-1. For illustration purposes typical fractionation factors 
for reduction and complexation to siderophores (Brantley et al., 2004; Johnson et al., 
2005; Staubwasser et al., 2006) are also given as arrows. 

 

After identifying the feasibility of uptake-related fractionations, it is proceeded to apply 

similar concepts to iron translocation in plants. The theory of iron translocation in both 

strategy I and II plants is disputed much more than that of iron uptake (Hell and Stephan, 

2003; Álvarez-Fernández, 2006). Stable iron isotope fractionations potentially provide new 

insight into this debate and it is possible to argue that substantial differences between 

translocation in strategy I and II plants are plausible based on the observed isotope shifts. All 

parts of strategy I plants were enriched in the lighter Fe isotopes throughout plant growth. The 
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δ
56Fe values decreased from soils to stems (mean −0.15 to −0.6 ‰), from stems to leaves 

(mean −0.2 to −0.9 ‰) and from leaves to seeds, which were fractionated up to −1.6 ‰ 

relative to the soil Fe (Table 2-1). In addition, stem and leaves of a bean plant (strategy I) 

showed decreasing δ56Fe during growth. This was particularly true in the step of first (δ56Fe of 

−0.4 ‰) to fourth fully grown leaves (δ
56Fe of −1.1 ‰) (Table 2-1).  

The question now arises whether this successive enrichment of light isotopes in strategy I 

plants resulted from iron isotope fractionation during uptake, during translocation, or both. A 

plausibility test of the potential causes of this phenomenon along four possible end member 

scenarios provides evidence for iron translocation being the governing process. For 

illustration purposes it is assumed that in all cases iron reduction is associated with a 

fractionation ∆reduced species-oxidized species of −1.5 ‰ (Johnson et al., 2005; Staubwasser et al., 

2006), and that plant-available iron in soils has a composition of −0.1 ‰. 

1. Closed-system fractionation during uptake. In this case the Fe-pool available for uptake is 

successively depleted in light iron isotopes which are extracted into the strategy I plant by 

reduction. A Rayleigh-type mass balance (Walczyk and von Blanckenburg, 2002) dictates 

that this source compartment will develop towards heavier iron isotope compositions which in 

turn would also lead to a development towards heavier compositions in strategy I plants 

during growth. This has not been observed.  

2. Open system fractionation during uptake. In this case an infinite iron pool supplies the 

roots and the Fe isotope fractionation will always be ∆reduced species- oxidized species (−1.5 ‰). This 

would lead to the same δ56Fe values throughout all parts of strategy I plants if the 

fractionation occurs exclusively during uptake. Again, such uniform compositions have not 

been observed.  

3. Closed-system fractionation during translocation. Here a series of Rayleigh steps 

supplying light iron from older into younger plant parts with concomitant reduction leads to 

fractionation during growth of the plant. For example translocation of about 50 % will result 

in translocated iron of which δ
56Fe is 1.1 ‰ lower than the original δ

56Fe, while the Fe(III) 

remaining in the source compartment will change by 1.04 ‰ towards heavier compositions. 

This translocation scenario predicts the observed sense of fractionations, while the magnitude 

is difficult to assess given that at present neither exact values of ∆reduced species- oxidized species nor 

of fractions translocated are known.  
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4. Fractionation during uptake and translocation as an open system. This scenario is similar 

to scenario (3), but since it is unlikely that younger parts of a plant receive all their iron from 

their first-generation leaves, fresh Fe from uptake is continuously mixed into the plant. This 

again leads to a decrease of the δ56Fe value during growth of the plants, but due to binary 

mixing the resulting isotope effect will be damped over that predicted for the closed-system 

scenario (3). Regardless of the actual details of the process, fractionation during translocation 

is the mechanism that best fits the decrease in δ56Fe from older to younger parts of strategy I 

plants. 

This prediction is compatible with the mechanisms that have been suggested for translocation 

of iron in strategy I plants. The current view is that within the cell of strategy I plants, Fe(II) 

is chelated by nicotianamine (NA) and then transported to the xylem vessels (Hell and 

Stephan, 2003).  Iron is oxidized when released into the xylem vessels and then transported as 

a Fe(III)-citrate complex (Tiffin, 1966). No isotope fractionation is expected during this step 

as loading is presumably quantitative. The further distribution of iron from the cells adjacent 

to the veins of the leaf lamina is probably again mediated by the Fe(II)-NA complex, so for 

non-quantitative xylem-unloading another reduction and therefore isotopic fractionation 

favoring the lighter isotopes occurs. Excess iron is stored as a phytoferritin complex, localized 

in the plastids of shoots and also roots (Briat and Lobreaux, 1997). Non-quantitative oxidative 

phytoferritin fixation, for example, would result in light residual Fe(II)-NA. When 

remobilized from older leaves for iron import into seeds, iron might be transported within the 

phloem as Fe(III) by nicotianamine (Le Jean et al., 2005). Whenever these redoxchanges are 

non-quantitative, light mobile Fe(II) will develop and heavy Fe(III) is stored. Successive 

oxidation-reduction cycling during translocation will gradually increase the ensuing 

fractionations. Kinetic fractionation is also possible, when Fe is loaded to or unloaded from 

the chelators. The chelators themselves are too big for kinetic fractionation, however 

(molecular mass of NA approximately 350 amu). In light of the obtained results, which 

indicate preferred translocation of light iron into the younger parts of the strategy I plant, the 

explanation is that the heavier iron is locked into phytoferritin or other target molecules 

leaving a light reduced residue, or mobilizing light iron upon reduction.  

The fate of imported Fe(III) as part of a PS complex in strategy II plants is currently unclear. 

Redox changes during translocation similar to that in strategy I plants have been traditionally 

suggested (Hell and Stephan, 2003), but an alternative scenario invokes Fe(III) that is chelated 

by NA rather than Fe(II), since NA forms complexes with Fe(III) as well (von Wirén et al., 
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1999). In this case Fe(III)-NA complexation would be the default mechanism until Fe is 

channelled into further transport and storage sites or functional target molecules without 

redox changes (Hell and Stephan, 2003). Unlike strategy I plants our strategy II plants show 

virtually no Fe isotope fractionation throughout growth. Hence we can speculate that Fe does 

not change its redox state during translocation or that reduction/oxidation is quantitative in all 

steps. If kinetic fractionation during ligand exchange played a role, fractionations would be 

visible in both strategy I and II plants. As fractionation is not detectable throughout growth of 

strategy II plants, kinetic fractionation is probably negligible. However, a minute decrease in 

δ
56Fe from leaves to seeds is observed in strategy II plants. This decrease might be due to the 

reduction step required for the release of Fe(III) stored in phytoferritin for import into seeds 

(Chasteen, 1998). The resulting fractionation will be small if this release is almost 

quantitative. With this exception we infer that the theory of ligand exchange without redox 

changes (Hell and Stephan, 2003) during translocation is the currently best explanation of the 

strategy II results. In fact it now seems possible that stable Fe isotopes provide the first direct 

evidence for a difference in iron translocation mechanisms between strategy I and strategy II 

plants. 

 

2.5 Conclusions 

The findings of this study have several implications. First, it is worth noting that although to 

date emphasis in the characterization of iron isotope fractionation in the biosphere has been 

on microbial metabolism (Johnson et al., 2005) the isotope effects caused by plant growth 

provide the most substantial, and also the most systematic shifts of geosphere - biosphere 

interaction. Second, it has been suggested that the iron isotope composition of human blood is 

light relative to the human diet (Walczyk and von Blanckenburg, 2002), and that δ56Fe is 

reduced by 1 per mil with each trophic level within the human food chain (Walczyk and von 

Blanckenburg, 2005). To accurately quantify these mechanisms, differences in the Fe isotopic 

composition between strategy I and II plants that have previously been overlooked (Walczyk 

and von Blanckenburg, 2002) need to be taken into account. For example, the fractionation 

factor in the human intestine (Walczyk and von Blanckenburg, 2005) would be even larger if 

the individuals' diet contained more cereals (strategy II plants) than legumes (strategy I 

plants) or meat. Furthermore, the Fe isotope ratio of an individuals' blood might also depend 

on the ratio of strategy I to strategy II plants in the diet. The full characterization of human 
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and animal diet is essential in the application of metal isotopes in nutrition studies. Third, and 

most importantly, our results show that isotopic fractionation of iron will emerge as a 

complementary tool in the study of Fe uptake and translocation in plants, as previously 

suggested (Álvarez-Fernández, 2006). The advantage of stable isotopes is that soil iron 

including the non-soluble fractions is intrinsically labelled isotopically, and that the 

fingerprint of the fractions taken up can be traced without the requirement of adding artificial 

tracers. In addition, studies on iron translocation in plants can be conducted under field 

conditions which is difficult or impossible to achieve with radiotracers. These applications are 

important as a better understanding of intracellular redox state, binding forms and Fe transport 

processes in plants is required for biofortification (increasing the Fe content of food crops) 

(Briat and Lobreaux, 1997). This is a scientific challenge of global significance since iron 

deficiency affects more than 2 billion people worldwide (WHO, 2003). 
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3 Determining the stable Fe isotope signature of plant-available 

iron in soils 

3.1 Abstract 

The isotope composition of iron in soils can display the environmental conditions that formed 

this soil. But plants extract only the mobile iron from soil, which is a small fraction of the 

soils total iron. Yet this fraction is notoriously difficult to extract experimentally. Here it is 

shown that this signature is provided readily in the form of strategy II plants (grasses). The 

stable Fe isotope signature of iron pools in two agronomic soils was determined with two 

different sequential extraction methods. The Fe isotopic composition of the following soil 

mineral pools was measured: exchangeable iron, iron of poorly-crystalline (oxyhydr)oxides, 

iron in organic matter, iron of crystalline oxides and silicate bound iron. Variations of about 1 

per mil in δ56Fe (δ56Fe/[‰] = [(56/54Fesample/
56/54FeIRMM-014) –1] · 103) were found in the iron 

isotopic composition between the different soil mineral pools. The pools that contribute most 

to plant nutrition are water-extractable- and exchangeable iron, iron in organic matter and iron 

of poorly-crystalline (oxyhydr)oxides. These fractions were about 0.3 per mil lighter than the 

bulk soils. Silicates in our soils had a δ56Fe of up to 0.4 ‰, suggesting preferential loss of 

light Fe during weathering. The isotope composition of the plant-available Fe was compared 

to that of typical strategy I and strategy II plants, grown on the soils. While redox and other 

transformation processes in the rhizosphere enriched strategy I plants to varying degrees in 

light Fe isotopes, strategy II plants exhibited a uniform Fe isotopic composition and were only 

slightly enriched in the heavier iron isotopes by about 0.3 ‰. Therefore these plants may 

record the Fe isotope composition of plant-available iron in soils, to which the composition of 

strategy I plants can be compared to. 

 

3.2 Introduction 

Iron is an essential nutrient supplied to plants from soil. Yet iron availability in the 

rhizosphere is limited by the very low solubility and slow dissolution rates of inorganic iron 

compounds which are beneath those required for plant and microbial growth (Lindsay and 

Schwab, 1982). To increase iron supply according to their demand, plants can induce 
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chemical reactions in the rhizosphere that increase iron solubility from iron pools in soil. 

Identifying which of these pools is available to plants, however, is important because iron 

deficiency is a major problem in plant nutrition that can lead to a dramatic loss in crop yield 

(Briat and Lobreaux, 1997). It is crucial to fully assess the bioavailability of Fe for plants in 

soils, as well as its biogeochemical cycling (Yang et al., 2007). Stable iron isotopes 

potentially provide a tool suited to provide this understanding. Stable Fe isotopes have been 

used to study the biogeochemical iron cycle in geologic systems (reviews by Anbar, 2004; 

Johnson et al., 2004b; Dauphas and Rouxel, 2006; Johnson et al., 2008), and in humans and 

higher plants (Walczyk and von Blanckenburg, 2002, 2005; Guelke and von Blanckenburg, 

2007). Iron isotope fractionation is usually expressed in the delta notation, which gives the 

permil deviation of the isotopic ratio (e.g. 56Fe/54Fe or 57Fe/54Fe) of the sample relative to that 

of the IRMM-014 standard (Taylor et al., 1992):  δ
56Fe/[‰] = [(56/54Fesample/

56/54FeIRMM-014) –

1] · 103. 

With regard to plants it has recently been discovered that iron in higher plants was 

isotopically fractionated compared to the iron in the soil the plants grew on. These stable Fe 

isotope signatures are plant-specific (Guelke and von Blanckenburg, 2007; Chapter 2 of this 

thesis). Strategy I plants, which have to reduce iron before uptake, incorporated light iron, 

while strategy II plants, which take up iron as Fe(III)siderophore complexes, incorporated 

virtually unfractionated iron relative to bulk iron in soils. However, many details in the iron 

metabolism of higher plants are still unclear. An increased understanding of these processes is 

necessary for biofortifying herbal human food with Fe. This is a scientific challenge with 

global implications since the World Health Organization (WHO) estimates that worldwide 

around 2 billion people are iron-deficient (WHO, 2003). Stable iron isotopes carry the 

potential to be a new tool in plant biology and to shed light on mechanisms that would not be 

detectable with other means (Álvarez-Fernández, 2006). Radioactively labelled Fe isotopes 

are used as markers for translocation/retranslocation processes in plants so far but they are 

only able to provide information on uptake rates and transferred amounts from a synthetic Fe 

substrate. As redox reactions (inorganic and biologically mediated) induce the largest 

fractionation, stable iron isotopes are a powerful tool for identifying, monitoring, and 

quantifying redox processes in the Fe metabolism of plants (Weiss et al., 2008; von 

Blanckenburg et al., 2009). 

An important starting point for any field experiment that makes use of stable iron isotope 

composition in plants is knowledge of the isotope composition of the iron pools in soils that 
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are available to plants. Therefore experiments were conducted in which the iron isotope 

signature in different chemical soil extracts of typical Ap horizons (homogenized by plowing) 

from agriculturally used soils was determined and compared to that of the plants that grew on 

the soils. The Fe isotope signature of bulk soils was determined and two different sequential 

extraction methods designed to determine the Fe isotope signature of the various soil fractions 

were tested. 

3.2.1 Iron and its isotopes in soil 

The solubility of inorganic iron is controlled by both the pH and the redox potential of the 

soils pore water. Dissolution of iron involves a multitude of possible hydrolysis species that 

are in equilibrium with iron-bearing minerals. These minerals have different solubilities that 

are a function of their crystallinity and stability. The most soluble iron bearing mineral in soils 

is amorphous iron hydroxide and the least soluble is goethite (Lindsay and Schwab, 1982). 

This differential solubility has led to its description by a series of iron reservoirs in soils 

which are: a) ionic and complexed form in solution; b) exchangeable; c) organically 

complexed but water insoluble; d) insoluble inorganic precipitates; e) held in primary 

minerals. Reservoirs a and b are the most soluble and thus the Fe pools in soils which are 

most likely to be plant-available. However, these are very small in most cases so that the 

organically bound Fe forms and poorly-crystalline Fe(III) precipitates are likely to play the 

major role in plant nutrition (Lindsay and Schwab, 1982; Borggaard, 1992; Bertrand and 

Hinsinger, 2000, and many other workers). In contrast the crystalline oxides like goethite or 

hematite do not appear to provide an important mobile Fe pool. For example Bertrand and 

Hinsinger (2000) found that dissolution of goethite by maize was insignificant. Although it 

was shown that plants are able to dissolve minor amounts of goethite (Bertrand and 

Hinsinger, 2000; Reichard et al., 2005), plant-available iron is defined here without crystalline 

Fe oxides. 

Several authors have explored the range of stable iron isotopes in soils. Most of these studies 

use selective extraction procedures to identify the composition of the iron pools in soils. 

These procedures are described in section 3.2.2. A common denominator of these previous 

studies is that selective chemical extractions are used that are attributed to distinct 

operationally defined pools of both isotopically heavy and light Fe in soils. 
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In the first studies of this kind, Brantley and co-workers (2001, 2004) reported a strong 

enrichment of light isotopes in the exchangeable iron fraction compared to oxide-bound iron 

in a soil sample from the B horizon of a hornblende-containing soil. Fantle and DePaolo 

(2004) studied iron isotope variations in four selected horizons of a soil profile in northern 

California using leaches in water and 0.5 M HCl on their samples and found variations of 

about 0.7 ‰ in δ56Fe between bulk soil samples from different depths. Emmanuel et al. 

(2005) reported variations of about 0.35 ‰ in δ
57Fe (approximating 0.24 ‰ in δ

56Fe) in bulk 

soil samples of a Czech forest soil and an Israeli semi-arid soil. In their study a least-squares 

method was used to estimate the Fe isotopic composition of the end-members representing the 

three main Fe reservoirs in the Czech soil (silicates, organically bound Fe and pedogenic Fe-

oxides). Wiederhold et al. (2007a, 2007b) showed that different iron pools (poorly-crystalline 

iron (oxyhydr)oxides, crystalline iron oxides, and silicate bound iron) of different types of soil 

(Podzol, Cambisol, redoximorphic soil) had different iron isotope signatures and that 

podzolization led to a preferential translocation of lighter iron isotopes within the soil. They 

applied a three-step sequential extraction procedure to separate the iron mineral pools from 

the soil samples. Thompson et al. (2007) also performed different soil extraction procedures 

to determine the iron isotopic composition of surface and subsurface basaltic soil horizons. 

Besides bulk digestion they extracted the most readily soluble Fe using 0.5 M HCl, 0.1 M 

acid ammonium oxalate and Na-pyrophosphate and found different Fe isotopic signatures at 

different soil depths and in different soil fractions ranging from +1 ‰ to –0.3 ‰ in δ
56Fe. In a 

conference abstract Schuth et al. (2009) presented the iron isotope composition of horizons of 

a gleysol from NW Germany and found δ
57Fe values ranging from +0.3 ‰ in the Ah horizon 

and –0.2 ‰ in the Gor horizon. Additionally they conducted an experimental study where 

suspensions of gleysol horizons were subjected to controlled redox conditions. Buss et al. 

(2010) determined the iron isotopic composition of 0.5 M HCl extracts of soil and saprolite 

samples in the Luquillo Mountains of Puerto Rico. They found that iron in the HCl extracts of 

saprolite samples is enriched in the light iron isotopes relative to the igneous rocks in the 

profile by only 0.1 ‰ in δ56Fe. Iron in the soil samples and bottom of the saprolite directly 

overlying the bedrock, where biological activity is highest, is more enriched in the lighter iron 

isotopes by –0.4 to –0.6 ‰. Poitrasson et al. (2008) examined two lateritic profiles and found 

a very limited range in iron isotope compositions, with δ
57Fe values ranging from 0.06 ‰ 

relative to IRMM–014 in a saprolite, to 0.27 ‰ in a soft clayed horizon. 
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All these data indicate that different iron pools in soils carry distinct iron isotope signatures 

and show that labile iron pools in soils are mostly enriched in the lighter iron isotopes.  

3.2.2 Experimental strategies for the extraction of iron pools from soils 

A suitable technique had to be developed to identify the isotopic composition of the plant-

available iron pool in the two soils. A variety of methods exist to extract distinct mineral iron 

pools from soils. Physical methods like sieving, density separation or handpicking under a 

microscope are unsuitable because the size of the relevant particles in soils is usually too 

small. Therefore, chemical separation methods, based on the sequential dissolution of specific 

iron phases from soil samples are used (Wiederhold et al., 2007b). 

Many sequential extraction methods have been developed (e. g. Borggaard, 1988; Heron et 

al., 1994; La Force and Fendorf, 2000) but for stable isotope studies they require testing for 

artefacts during sample preparation. First, the isotope ratio of both the solution and the solid 

residue can be biased if an isotope fractionation takes place during incomplete dissolution. A 

second potential challenge is to avoid alteration of the sample during treatment or dissolution 

of phases during leaching that are not considered soluble in the aqueous environment. For 

example, Fantle and DePaolo (2004) and Wiederhold et al. (2007b) used 0.5 M HCl in their 

step to extract poorly-crystalline (oxyhydr)oxides. Wiederhold et al. (2007b) then used 1 M 

HCl in conjunction with hydroxylamine-hydrochloride in their step to extract crystalline iron 

oxides. Such strong HCl, however, is likely to also partially dissolve the silicate minerals 

present and may potentially induce an iron isotope fractionation in the process (Chapman et 

al., 2009; Kiczka et al., 2010a). A third serious issue in sequential extraction methods is the 

generation of secondary precipitation or adsorption products. Partial precipitation or 

adsorption reactions of iron-containing phases from the solution used for the extraction 

potentially introduce fractionation artefacts that would seriously bias the results (Icopini et al., 

2004; Mikutta et al., 2009). A fourth, equally important aspect is the potential matrix effects 

in the mass spectrometer resulting from incomplete purification of Fe from the solvent used 

for the extraction. Since both the quantitative retention of Fe on an anion exchange column, 

employed to separate iron from its matrix, and isotope ratio measurements by MC-ICP-MS 

are very sensitive to matrix effects, they require solutions from which organic compounds 

have been destroyed.  
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In soil science a common method to characterize the pool of poorly-crystalline Fe 

(oxyhydr)oxides (“Feo”), and thus to estimate plant-available Fe, is the extraction with 

ammonium-oxalate in an acidic solution (pH 3) (Schwertmann, 1991). Its ratio Feo/Fed to the 

dithionite-extractable Fe (“Fed”), also termed “activity ratio”, is often used in soil science to 

describe the extent of pedogenesis or to differentiate soils (e.g., Cornell and Schwertmann, 

2003). Since oxalate is light-sensitive the extraction must be carried out in the dark. 

Unfortunately, despite the short exposure times, oxalate attacks also minor amounts of well-

crystallized iron oxides, particularly maghemite, magnetite and lepidocrocite (Schwertmann, 

1973). Since small amounts of iron dissolved from crystallized oxides by oxalate can result in 

large fractionations (Wiederhold et al., 2006) the oxalate method is not applicable for isotopic 

analysis.  

Using a modified dithionite extraction method (Canfield, 1993), Staubwasser et al. (2006) 

were able to accurately measure Fe isotope ratios in Fe oxides and oxy-hydroxides leached 

from marine sediments. In this study two sequential extraction methods were chosen that have 

been shown to extract distinct Fe reservoirs and that do not significantly bias their stable Fe 

isotope signature during extraction. The first of these two complementary methods (method 

S-mod) was adapted from Staubwasser et al. (2006) with additional leaching of exchangeable 

and organically bound iron (Tessier et al., 1979). The second method (method W) was based 

on a sequential extraction designed by Wiederhold et al. (2007b) to determine the Fe isotope 

composition of various Fe reservoirs in soils. 

3.2.2.1 First sequential extraction procedure (Method S-mod) 

In method S-mod exchangeable ions were extracted with MgCl2 (1 M, 2h, 25°C). Brantley et 

al. (2004) stated that this extraction step (fraction Feex) is not causing any isotope 

fractionation. This was concluded from the similarity between two MgCl2 extractions of the 

same sample after 1h and 10h.  

In a second step, organically bound iron including Fe sorbed to organic surfaces, complexed 

by organic ligands or incorporated into organic macromolecules was dissolved with weak 

HNO3 and H2O2 (Tessier et al., 1979; Emmanuel et al., 2005). In the third step all iron oxides 

were extracted with a dithionite-citrate solution as used by Staubwasser et al. (2006) to 

determine the Fe isotope composition of Fe oxyhydroxides in marine sediments. The term “Fe 

oxides” is used throughout this paper to refer to both Fe oxides and hydrous Fe oxides that are 

not associated with organic matter. Dithionite dissolves all poorly-crystalline and crystalline 
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iron oxides except magnetite together with minor amounts of silicate-bound Fe(III) and acid 

soluble sulfides (Haese, 2000). Small amounts of Fe leached from silicates do not 

significantly affect isotope ratios (Staubwasser et al., 2006). Leaching experiments performed 

on a synthetic mixed haematite-goethite sample demonstrated the absence of unwanted 

fractionation during sample separation and measurement (Staubwasser et al., 2006). The 

extraction solvent can be completely removed by oxidation and quantitative precipitation of 

sulfur as BaSO4 (Staubwasser et al., 2006). In the final step all remaining soil material was 

dissolved by a microwave digestion with HF-HNO3. 

3.2.2.2 Second sequential extraction procedure (Method W) 

In method W hydrochloric acid (0.5 M, 24 h, 25 °C) dissolved the poorly-crystalline Fe 

oxyhydroxides like ferrihydrite and both adsorbed and organically bound iron. Wiederhold et 

al. (2006) showed that the stepwise dissolution of goethite with 0.5 M HCl does not cause any 

iron isotope fractionation. In another study Skulan et al. (2002) showed that the partial 

dissolution of hematite by HCl produced no significant isotopic fractionation (within 0.1 ‰ 

(2SD) in δ56Fe). The lack of iron isotope fractionation may be due to a different bond 

breaking mechanism when compared to ligand-controlled dissolution and indicates bond 

breakage between oxygen and adjacent iron atoms during detachment (Wiederhold et al., 

2006). On the other hand, HCl can etch silicate minerals from granite. Chapman et al. (2009) 

reported that after 48 hours of cold leaching with 0.5 M HCl around 40 µg/mL Fe were in the 

leachate of granite (bulk 14078 µg/mL), but up to 600 µg/mL Fe in the leachate of basalt 

(bulk 103663 µg/mL), which means that 0.5 M HCl leaches around 0.5 % of silicates within 

48 hours, which is negligible even if leaching leads to iron isotope fractionation of up to –1 ‰ 

(Chapman et al., 2009). However, Kiczka et al. (2010a) showed that nearly 20 % of the Fe 

from biotite and chlorite were released within 24h in 0.01 M HCl. Thus, the amount of Fe 

which is released from silicates during dissolution in HCl is highly dependent on the 

mineralogy of the soils and might not always be insignificant. In addition, other factors such 

as grain size may have an effect on the dissolution kinetics of different mineral phases. 

Hence, HCl is able to partially attack silicate minerals in soil extractions but the influence on 

Fe isotope data will not be significant in most cases and needs to be accepted as a potential 

small bias. As a test for silicate dissolution during our HCl extraction Al concentrations were 

also measured. The second step used hydroxylamine-hydrochloride in 1 M HCl. Wiederhold 

et al. (2007b) showed that hydroxylamine-hydrochloride breaks up all crystalline iron oxides 

like goethite and hematite by complete reductive dissolution. However these authors reported 
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that minor amounts of clay minerals or other silicate minerals might also be etched and a 

small bias has to be taken into account when interpreting the iron isotope data. In the third 

step all remaining soil material was dissolved by a microwave digestion with HF-HNO3. The 

sequential extractions were performed in parallel to the total soil digests, which allowed 

performing an isotope mass balance between the sum of the extractions and the total digests. 

 

3.3 Materials and Methods 

3.3.1 Soil characteristics and plant samples 

Ap horizons of two soil types from two characteristic landscapes prevalent in NW Germany 

were used as substrate for plant growth under field conditions: (1) a Cambisol from glacial 

sand of the Drenthe stadium of the Saaleian glaciation (profile Hannover-Herrenhausen; 

location 9.705237° west/ 52.395613° north (UTM projection WGS84)) located in the “Geest”, 

the moraine landscape prevalent in Lower Saxony; and (2) a Stagni-Haplic Luvisol from loess 

of the Weichselian glaciation (profile Ruthe; location 9.819935° west/ 52.242075° north 

(UTM projection WGS84)) located at the NW margin of the main European loess belt in the 

centre of Germany. Usually the measurement of soil pH takes place in 0.01 M CaCl2 solution.  

Here sorbed H+˗ions can be exchanged with CaCl2 ions, therefore the measured pH is 0.3 to 

1.0 pH units lower as the pH measured in aqueous solution (pHH2O). The pHH2O of the two 

soils was 7.5 and 7.8, respectively, thus the pH is slightly acidic to neutral. 

The Ap horizons are well-aerated and exhibit oxic conditions all year round. No 

redoximorphic features such as iron and manganese mottles or concretions, which are 

characteristic for hydromorphic soils, are present. The matrix colour of the samples is dark 

brown to ochre. For the Stagni-Haplic Luvisol formed on loess the texture is unknown, for the 

Cambisol it is 75 % sand, 19 % silt and 6 % clay. The organic carbon content is 2.8 and 

1.8 %, respectively (Table 3-1). In both samples, quartz is the most abundant mineral. The 

<2mm fine soil fraction the sample from glacial sands contains 11 % feldspar and the sample 

from loess 16 %, whereby the feldspars are composed of nearly equal amounts of Orthoclase 

and Albit phases (50 and 40 % of whole feldspar), the amounts of the Anorthite phase are 

smaller (Dultz, 2002). The mineralogical composition of the clay fraction is similar for both 
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profiles with illite as the most common mineral in amounts of 60–80 % (Niederbudde and 

Schwertmann, 1980) and goethite as the predominant iron oxide. 

The Ap horizon (0–30 cm depth) was sampled at both sites; samples were dried at 40 °C in 

the laboratory and sieved through a 1.6 mm mesh. Aliquots of the samples were ground to a 

fine powder in an agate mortar. Selected properties of the two soils including oxalate-soluble 

iron concentrations are presented in Table 3-1. The soils are commonly used by plant and soil 

scientists at the Leibniz Universitaet Hannover. All information of Table 3-1 is internal and 

unpublished. 

 

Table 3-1 Characteristics of the two soils 

  Location 

  Herrenhausen Ruthe 

Soil Cambisol Stagni-Haplic Luvisol 

Parent material glacial sand loess 

Horizon Ap Ap 

pHH2O 7.50 7.80 

P2O5 [g/kg] 0.36 0.04 

K 2O [g/kg] 0.17 0.04 

MgO [g/kg] 0.08 0.09 

NaCl [%] 0.03 0.08 

Organic compounds [%]* 2.80 1.80 

Oxalate-soluble Fe [g/kg] 1.50 1.20 
*organic compounds determined by dry combustion, 1000°C 

In the previous study (Guelke and von Blanckenburg, 2007; chapter 2 of this thesis) different 

kinds of plants (all vegetables and grasses) were sown in pots filled with the unsieved 

Cambisol and Stagni-Haplic Luvisol respectively. Plants grew in a daylight climate chamber 

with a temperature of 16 – 18 °C and were only watered with deionised water without the 

addition of fertilizer. About ten individual plants were harvested after approximately 60 days, 

washed with deionised water and separated into stem, leaves and seeds. Plant samples were 

dried in an oven at 80 °C for at least three days and subsequently ground to mince and 

homogenize them. For details of plant growth, plant species, harvest times, and the resulting 

iron isotope composition the reader is referred to chapter 2 of this thesis. 
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3.3.2 Iron extraction from soil fractions 

The iron pools described in section 3.2.2 and also water-extractable and total Fe were 

extracted from both soils as follows. All reagents used during sample preparation were 

suprapure grade and prepared with ultrapure water (Milli Q, >18.2 MΩ cm). Hydrochloric 

and nitric acids were pro analysi grade and were further purified by sub-boiling distillation 

measured by ICP-OES after distillation in our laboratory. Fe concentrations of these 

chemicals were checked and were only used if they were below detection limit. Hydrofluoric 

acid used during digestions was suprapure quality (MERCK, Germany). All preparation work 

was carried out in a metal-free clean chemistry laboratory class 1000 in laminar-flow hoods, 

class 10.  

Bulk soil Fe (Febulk). Approximately 50 mg of the powdered samples was dissolved in a 

concentrated HF-HNO3 (mixture 1:2) on a hotplate with 160 °C for about 24 hours. After 

decomposition of samples the solutions were evaporated and 5 mL aqua regia was added to 

redissolve fluoride complexes. After an additional microwave digestion the clear solutions 

were evaporated in Teflon beakers on a hotplate. The residue was redissolved in concentrated 

HNO3 to ensure complete oxidation of ferrous to ferric iron. This solution was evaporated 

anew and the residue was taken up in 6 M HCl.  

Water-extractable Fe (FeH2O). An aliquot of about 25 g of the dried and sieved soils was 

used to extract the ionic and complexed iron forms in solution. The soil samples were water-

saturated with approximately 40 mL ultrapure water and were shaken over-head for about 12 

hours. Samples were then centrifuged and the supernate was filtered through 0.2 µm PTFE 

membrane filters. Throughout this study Whatman Puradisc™ 25 TF filters were used which 

were wetted before filtering with ultrapure H2O. After drying down on a hotplate the 

evaporated sample was treated with concentrated HNO3 to convert all ferrous into ferric iron 

and was then taken up into 1 mL 6 M HCl.  

3.3.2.1 First sequential extraction procedure (method S-mod) 

Exchangeable iron (Feex). 3 g of soil samples were weighted into six 50 mL centrifuge tubes 

and 30 mL 1 M MgCl2 solution was added to each tube. Analytical grade MgCl2 was 

additionally cleaned before use by anion exchange chromatography (see section 3.3.4) to 

remove all traces of iron. The Fe concentration in the cleaned MgCl2 was checked by ICP–

OES and was found to be 0.001 µg/mL. 
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The samples were placed into an over-head shaker for 2 hours at room temperature. Then the 

tubes were centrifuged (15 min, 5000 rpm, 4472 x g) and the supernates decanted. The 

centrifugate of the MgCl2 extraction was washed twice with ultrapure water, centrifuged, and 

the wash water was pooled with the extraction sample which was then filtered through 0.2 µm 

PTFE membrane filters. After drying down on a hotplate the evaporated supernates were 

treated with concentrated HNO3 to convert all ferrous iron into the ferric form and were then 

taken up into 10 mL 6 M HCl. After washing the centrifugate of the MgCl2 extraction was 

gently dried on a hotplate at about 80 °C. 

Organically bound iron (Feorg). The centrifugate from the extraction with exchangeable Fe 

was used for the second extraction step, in which 3 mL 0.01 M HNO3 and 5 mL H2O2 (30 %) 

were added to 0.2 g of the dried and homogenized residue. The solution was transferred to 

savillex® beakers, closed, and then placed on a hotplate at 80 °C. Two hours later another mL 

of H2O2 was added to the solutions, they were heated for another hour, after which 7.5 mL 

0.01 M HNO3 were added and after a few minutes the solutions were transferred into 50 mL 

centrifuge tubes and centrifuged (15 min, 5000 rpm, 4472 x g). The supernates were 

decanted; the centrifugate was washed twice with ultrapure water, centrifuged and the wash 

water pooled with the extraction samples, which were then filtered through 0.2 µm PTFE 

membrane filters. The evaporated samples were treated with concentrated HNO3 to oxidise all 

ferrous iron and were then taken up in 5 mL 6 M HCl.  

Iron oxides (Feoxide). The cleaned centrifugate of the HNO3–H2O2 extraction was gently dried 

on a hotplate at about 80 °C in 25 mL Erlenmeyer flasks. 10 mL of a dithionite-citrate 

solution, consisting of 0.35 M acetic acid, 50 g/L Na-dithionite and 0.2 M Na-citrate, was 

added to about 50 mg of the dried and homogenized soil samples. After 12 hours the samples 

were centrifuged, the supernates were decanted; the centrifugate was washed twice with 

ultrapure water, centrifuged and the wash water was pooled with the extraction samples, 

which were then filtered through 0.2 µm PTFE membrane filters. The separation of Fe from 

the leach solution was preceded by hot oxidation in aqua regia via microwave digestion 

followed by oxidation in ammonia and H2O2. The solution was then transferred into vials and 

Fe hydroxide was precipitated after adding ammonia and H2O2. Next the precipitate was 

dissolved in 1 M HCl and 1 M HNO3 and a 0.1 M BaCl2 solution was added to precipitate all 

remaining sulfate as barite. After centrifugation the supernate was decanted and Fe was 

precipitated by adding ammonia and H2O2. The solution was centrifuged, the supernate 

decanted and the centrifugate finally dissolved in 6 M HCl for further analysis.  
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Silicates and clay minerals (Fesil). Silicate-bound Fe is present within the crystalline 

structure of the primary and secondary silicate minerals. The residues of the third extraction 

in the Erlenmeyer flasks were dried at 80 °C and homogenized. Approximately 40 mg of the 

powdered samples was dissolved in a 1:2 mixture of concentrated HF-HNO3 followed by 

microwave digestion with 5 mL aqua regia. After evaporation on a hotplate the residues were 

redissolved in concentrated HNO3 to ensure complete oxidation of ferrous to ferric iron. 

These solutions were evaporated and the residues were taken up in 6 M HCl.  

3.3.2.2 Second sequential extraction procedure (method W) 

Poorly-crystalline Fe (oxyhydr)oxides (Feam.oxide). In the first extraction step 2 g of the soil 

samples were weighed into 50 mL centrifuge tubes and 40 mL 0.5 M HCl was added. The 

samples were placed into an over-head shaker at room temperature. After 24 hours of shaking 

the tubes were centrifuged (15 min, 5000 rpm, 4472 x g) and the supernates were decanted. 

The centrifugate was washed twice with ultrapure water, centrifuged and the wash water was 

pooled with the extraction samples, which were then filtered through 0.2 µm PTFE membrane 

filters. 

Crystalline iron oxides (Fecryst.oxide). The cleaned residue in the 50 mL tubes of the first 

extraction step was treated with 40 mL of a 1 M hydroxylamine-hydrochloride solution in 

1 M HCl. The tubes were shaken and placed into a hot-water bath (90 °C, 4 hours) with 

manual overhead-shaking every 10 minutes. Afterwards the tubes were centrifuged (15 min, 

5000 rpm, 4472 x g) and the supernates were decanted. The centrifugate was washed twice 

with ultrapure water, centrifuged again and the wash water was pooled with the extraction 

samples, which were then filtered through 0.2 µm PTFE membrane filters. 

Silicates and clay minerals (Fesil). The residues of the previous extraction step contained the 

remaining dissolved silicates and clay minerals of the soils. The cleaned residues of the 

Fecryst.oxide extraction were filled into Erlenmeyer flasks, dried at 80 °C and homogenized. 

Approximately 60 mg of the powered sample was dissolved in a 1:2 mixture of concentrated 

HF–HNO3 followed by microwave digestion with 5 mL aqua regia. After evaporation on a 

hotplate the residues were redissolved in concentrated HNO3 to ensure complete oxidation of 

ferrous to ferric iron. These solutions were again evaporated and the residues taken up in 6 M 

HCl.  

The extracted solutions Feam.oxide and Fecryst.oxide were taken to dryness on a hot plate after 

which concentrated H2O2 and concentrated HNO3 were added and samples were subjected to 
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a microwave agitation at 200 °C for about an hour to destroy any remaining organic matter, or 

hydroxylamine, and to oxidise ferrous into ferric iron. After drying down the residues were 

dissolved in 6 M HCl.  

3.3.3 Digestion of plant samples 

Approximately 250 mg dry weight of each plant sample was digested via microwave agitation 

in 5 mL of concentrated HNO3 at 200 °C, evaporated on a hotplate and treated with a mixture 

of 30 % H2O2 and concentrated HNO3 to oxidize remaining organic compounds and ferrous 

iron to ferric iron. Subsequently the samples were redissolved in 6 M HCl and centrifuged 

before Fe separation. 

3.3.4 Iron separation 

Iron of the soil and plant samples was separated from other elements by anion exchange 

chromatography following the method of Schoenberg and von Blanckenburg (2005). In a few 

words, after a cleaning procedure and conditioning of the resin, samples, dissolved in 6 M 

HCl, were loaded on the columns. Matrix elements were washed out with 6 M HCl and 

afterwards Fe was extracted with 5 M HNO3. Samples were dried down and redissolved in a 

drop of 15 M HNO3. After nearly drying down samples were dissolved in 0.3 M HNO3. 

As it has been shown that even after anion exchange chromatography solutions might be not 

entirely free of Zn, Cu or organic complexes (Schoenberg and von Blanckenburg, 2005), an 

additional precipitation step was applied that ensures quantitative precipitation of all Fe(III) as 

Fe(III)OOH while Cu, Zn, Co, Cd, Mn and V as well as organic compounds remain in 

solution. For this purpose the samples were precipitated at pH 10 with ammonia (Schoenberg 

and von Blanckenburg, 2005). After one hour the samples were centrifuged, the supernate 

solutions were discarded and the precipitates were washed with ultrapure H2O. The 

precipitate was redissolved in 0.3 M HNO3.  

Iron concentrations of all samples were measured by optical emission spectroscopy with 

inductively coupled plasma (ICP–OES: Varian Vista PRO CCD Simultaneous) after 

decomposition or extraction and after the iron separation column/precipitation to ensure 

quantitative recovery and the absence of remaining matrix elements. This is important to 

avoid artificial isotope fractionation (Anbar et al., 2000; Roe et al., 2003) and matrix effects 

during isotope measurement. The post-purification iron yield was measured on volumetrically 
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determined aliquot amounts and was found to be better than 95 %. Al concentrations in the 

soil samples were also measured to test for etching of clay minerals during the sequential 

extractions (Barker et al., 2003). Procedural blanks were checked regularly and ranged 

between 17 and 120 ng Fe (n=10). 

3.3.5 Iron isotope ratio measurements and reproducibility 

A detailed description of iron isotope measurements by multiple-collector inductively coupled 

plasma mass spectrometry (MC-ICP-MS; ThermoFinnigan Neptune) in the geochemistry-

laboratory at the Institute for Mineralogy of the Leibniz Universitaet Hannover can be found 

in Schoenberg and von Blanckenburg (2005). A sample-standard bracketing approach with 

the standard material IRMM–014 was used to correct for instrumental mass bias. Standards 

and samples were diluted to 3–7 ppm with 0.3 M HNO3, depending on the daily status of the 

machine. Obtained isotope ratios are expressed in the delta notation, which gives the permil 

deviation of the isotopic ratio (e.g. 56Fe/54Fe or 57Fe/54Fe) of the sample relative to that of the 

IRMM-014 standard: (δ56Fe/ [‰] = [(56/54Fesample/
56/54Festandard) –1] · 103). The δ57Fe values 

were also determined and it was checked in a three isotope plot that all data follow the 

theoretical mass-dependant fractionation law which demonstrates the absence of molecular or 

elemental interferences. The external reproducibility of the internal house standard JM 

(Johnson&Matthey, Fe Puratronic wire) was determined by Schoenberg and von 

Blanckenburg (2005) using different instrumental settings. It was found to be 0.046 ‰ for 

δ
56Fe and 0.073 ‰ for δ

57Fe (2SD, respectively). In this study the internal reproducibility for 

a single analysis of the JM standard was slightly inferior with ±0.05 to ±0.07 ‰ (2SD) in 

δ
56Fe. External reproducibilities of stable Fe isotope determinations of natural samples in the 

laboratory were determined by Schoenberg and von Blanckenburg (2005) who tested a variety 

of natural samples with different matrices (inorganic and organic). The excellent agreement of 

δ
56Fe reproducibilities between chemical replicates of the same dissolution allows for an 

assessment of an overall external reproducibility of 0.049 ‰ (2SD). The reproducibility of 

replicate measurements and chemical replicates of individual dissolutions was also 

determined according to Schoenberg and von Blanckenburg (2005) of the samples processed 

in this and the previous study (Chapter 2 of this thesis). It was found to be 0.07 ‰ (2SD; n= 

29) for the δ56Fe of chemical replicates of individual dissolutions and 0.11 ‰ (2SD) for 

replicate measurements (n=108). Considering only soil samples the reproducibility was better 

with 0.09 ‰ (2SD; n=12) for replicates measurements and 0.05 ‰ (2SD; n=3) for chemical 
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replicates. Nevertheless, the external reproducibility is slightly inferior to that obtained by 

Schoenberg and von Blanckenburg (2005). 

To compare the iron concentration and iron isotope results of the different soil fractions 

measured with bulk iron and bulk iron isotope composition a mass balance approach was used 

which was calculated according to the following formula, where Fen is the fraction of the iron 

concentration in pool n and δ
56Fen the isotopic composition of pool n: 

[ ]( )56 56
total calculated n n

n

Fe Fe Feδ δ− = ×∑                                                                                      3.1                    

while the errors of the calculated total Fe concentrations were the propagated errors of the 

individual fractions, and errors of the calculated total δ56Fe the propagated errors of the 

individual fractions and their corresponding δ
56Fe. 

 

3.4 Results  

3.4.1 Iron concentrations in the different mineral pools 

Iron concentrations of the different Fe pools in the soils are given in Table 3-2. The Cambisol 

had a total Fe concentration of 8860 mg/kg (0.9 %) and the Stagni-Haplic Luvisol of 13190 

mg/kg (1.3 %). These are common values as soils contain between 0.2 and 5 % Fe (Sparks, 

2003; Essington, 2004). Wiederhold et al. (2007b) found similar values in a Cambisol with 

1.1 % total iron concentration. For the Cambisol, calculated bulk Fe concentrations (Table 3-

2) showed good agreement between the summed Fe of the extraction procedures and bulk Fe. 

For the Stagni-Haplic Luvisol calculated bulk Fe concentrations were lower than measured Fe 

concentrations by about 20 % for the first and 10 % for the second extraction procedure, when 

Febulk calculated was compared to Febulk This could be due to uncertainties for the Fe calibration 

during the ICP-OES measurement (about 5 %), or inhomogenity of the soil material. Blanks 

of chemicals and obtained blanks during processing cannot account for this big discrepancy 

(see section 3.3.2). As Al concentrations showed excellent agreement between measured and 

calculated Al (Table 3-2) probably no sample material was lost during extraction procedures 

and no significant inaccuracies were introduced during dilution. 
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The concentrations of iron resulting in the water-extractable solution were 0.1 and 0.02 mg 

per kg soil in the Cambisol and Stagni-Haplic Luvisol, respectively. This equals 2.5 and 0.5 

mg/L in solution (4.5·10-4 and 8.9·10-6 mol/L) as 25 mg soil was weighed in for this 

extraction. The values are not surprising as the solubility of all Fe(III) oxides is very low 

(ferrihydrite has a solubility of about 10-7 mol/L) and common iron concentrations in soil 

solutions of Ap horizons at near neutral pH are 0.005 to 8 mg/L (Bradford et al., 1971; 

Campbell and Becket, 1988), mostly comprising soluble organic complexes. At near-neutral 

pH under oxic conditions, the predicted activity of free iron in solution would be even smaller 

(Kraemer, 2004). 

The extraction of exchangeable iron revealed similarly low iron concentrations with less than 

1 mg/kg soil (which equals 1.8 and 0.1 mg/L solution as 3 g of soil were weighed in). More 

Fe was associated with organic matter which accounts for 4 % and 0.5 % of total iron for the 

Cambisol and Stagni-Haplic Luvisol, respectively. The organic matter fraction did not 

represent a significant reservoir for Fe as only a small amount of organic matter is present in 

these soils (Table 3-1).  

Most Fe was contained in the oxide fraction. With method S-mod the extracted fraction 

contained around 55 % of total Fe and comprised both crystalline and poorly-crystalline Fe 

oxides. Method W yielded even higher Fe amounts in the oxide fraction for the Cambisol. 

The fraction Feam.oxide contained Fe from the poorly-crystalline oxides, adsorbed iron, and 

some of the organically bound iron which amounted to 11 and 16 % of the total iron in the 

Cambisol and Stagni-Haplic Luvisol. The crystalline oxides (Fecryst.oxide) contained an 

additional 52 and 35 %, respectively.  

3.4.2 Iron isotope signature of bulk soils 

The sandy Cambisol and the loamy Stagni-Haplic Luvisol soils yielded a bulk Fe isotope 

composition of δ56Fe = –0.04 ± 0.05 ‰ (2SD) and δ56Fe = –0.01 ± 0.05 ‰ (2SD), 

respectively (Table 3-2, Figure 3.1). This is in agreement with Wiederhold et al. (2007b) who 

found similar values for bulk soils within error in all horizons in a Cambisol profile on 

basaltic tuff. The bulk soil values were virtually identical to those of various igneous rock 

reservoirs (Beard et al., 2003; Poitrasson and Freydier, 2005; Weyer et al., 2005; Schoenberg 

and von Blanckenburg, 2006). 
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Table 3-2 Fe and Al concentrations and δ56Fe values of bulk soils and all soil fractions  

soil fraction

Fe 
concentration 

[mg/kg]
1

%  of 
total Fe

Al 
concentration 

[mg/kg]
1

%  of 
total Al δδδδ56

Fe [‰]

error 

(2SD)
3

Cambisol Febulk 8860 ±310 18355±642 -0.04 0.06

Febulk calculated 8310±210
2

100.00 18128±453
2

100.00 -0.07 0.11 
4

FeH2O 0.109±0.004 0.00 0.07±0.00 0.00 -0.48 0.05

Feex 0.61±0.02 0.01 9.1±0.3 0.10 -0.05 0.05

Feorg 290±10 3.51 266±9 1.50 -0.14 0.05

Feoxide 4720±170 56.86 39.2±1.4 0.20 -0.28 0.06

Fesil 3290±120 39.62 17814±641 98.30 0.25 0.06

Stagni-Haplic Luvisol Febulk 13190 ±460 26924±942 -0.01 0.05

Febulk calculated 10220±260
2

100.00 26526±663
2

100.00 0.01 0.12 
4

FeH2O 0.023±0.001 0.00 0.02±0.0 0.00

Feex 0.035±0.001 0.00 1.8±0.1 0.01 0.03 0.05

Feorg 49.1±1.7 0.48 98.9±3.6 0.37 -0.17 0.06

Feoxide 5370±190 52.58 92.2±3.3 0.35 -0.34 0.07

Fesil 4800±170 46.94 26333±948 99.27 0.41 0.06

Cambisol Febulk 8860 ±310 18355±642 -0.04 0.06

Febulk calculated 8400±190
2

100.00 18245±456
2

100.00 -0.04 0.11 
4

Feam. oxide 1370±50 16.25 847±30 4.64 -0.22 0.07

Fecryst. oxide 4320±150 51.50 1759±62 9.64 -0.12 0.07

Fesil 2710±100 32.25 15639±547 85.71 0.18 0.06

Stagni-Haplic Luvisol Febulk 13190 ±460 26924±942 -0.01 0.05

Febulk calculated 11950±280
2

100.00 26161±654
2

100.00 0.00 0.11 
4

Feam. oxide 1320±50 11.04 946±33 3.61 -0.27 0.06

Fecryst. oxide 4170±150 34.85 1851±65 7.07 -0.03 0.07

Fesil 6470±230 54.12 23364±818 89.31 0.07 0.06

First sequential extraction procedure (method S-mod)

Second sequential extraction procedure (method W)

 

1 Errors are combined from weighing, dilution, instrumental count statistics and calibration error. 
2 Errors are propagated from absolute errors of the individual fractions. 
3 given as the 2 standard deviation for a single analysis, or external reproducibility of our JM standard 
(Schoenberg and von Blanckenburg, 2005), whichever was largest.  

4 propagated from all individual errors of fractions.  
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3.4.3 Iron isotope signature of the different Fe pools in soils 

3.4.3.1 First sequential extraction procedure (method S-mod) 

Results from the sequential extraction method S-mod are shown in Figure 3.1 and 3.2 and 

Table 3-2. It is obvious that the range of iron isotope ratios was much broader than that of 

bulk soil signatures as it covered about 0.7 ‰ in δ
56Fe. 

The MgCl2-extractable iron in the Cambisol had an isotopic composition of δ56Fe= –0.05± 

0.05 ‰ (2SD), the Stagni-Haplic Luvisol of 0.03 ± 0.05 ‰ (2SD). Within error both were 

identical to their respective bulk soil. The blank of the used MgCl2 solution was found to 

contain 0.001 µg/mL Fe, and 30 mL of this solution were used. The total Fe content of the 

extraction was 1.8 and 0.1 µg, respectively. For the Cambisol the Fe content of the MgCl2 

represented 1.6 % of the extracted Fe, but for the Stagni-Haplic Luvisol it represented 30 %, 

which could have resulted in a significant bias of measured isotope ratios.  

The Fe isotopic composition of water-extractable iron (fraction FeH2O) was difficult to 

measure because iron concentrations were very low and therefore a determination of δ
56Fe 

was only possible for the Cambisol. This measurement yielded a δ56Fe of –0.48 ‰, indicating 

that light iron was dissolved within the soil solution, presumably in the form of soluble 

organic complexes.  

The δ56Fe of the Feorg fraction in the Cambisol was –0.14 ‰ and in the Stagni-Haplic Luvisol 

it was –0.17 ‰. According to Borggaard (1992), this fraction is the major reservoir of Fe that 

was particularly available for uptake by plants. The third extraction step (Feoxide) yielded a 

δ
56Fe value for Fe-oxides in the Cambisol of –0.28 ‰ and in the Stagni-Haplic Luvisol of –

0.34 ‰. The iron oxides exhibited the lightest Fe isotope signature found in all fractions 

except the water-extractable fraction.  

Fe in silicates (fraction Fesil) yielded a higher δ56Fe with +0.25 ‰ for the Cambisol and 

+0.40 ‰ for the Stagni-Haplic Luvisol. Both values point to an iron isotope composition 

similar or even heavier than that contained in the most highly differentiated silicate rocks 

(Poitrasson and Freydier, 2005; Schoenberg and von Blanckenburg, 2006).  

Mass balance calculations (equation 3.1) showed excellent agreement between the Fe isotope 

signature of the soil extracts (Figure 3.1 and 3.2) and bulk soil digests. 
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3.4.3.2 Second sequential extraction procedure (method W) 

Results from the second sequential extraction procedure as adapted from Wiederhold et al. 

(2007b) are shown in Figures 3.1 and 3.2 and Table 3-2. The range of iron isotope ratios 

between the different fractions covered about 0.4 ‰ in δ56Fe but it was not as large as that of 

the S-mod extraction procedure. 

The δ56Fe of Fe extracted with HCl (fraction Feam.oxide) in the Cambisol was –0.22 ‰, in the 

Stagni-Haplic Luvisol it was –0.27 ‰. The δ
56Fe of the Fecryst.oxide fraction in the Cambisol 

was –0.12 ‰, in the Stagni-Haplic Luvisol it was –0.03 ‰. At the third step all remaining soil 

material containing iron in primary silicates and clay minerals was completely dissolved with 

HF-HNO3. Fe in silicates (fraction Fesil) yielded a δ56Fe of +0.18 ‰ for the Cambisol and 

+0.07 ‰ for the Stagni-Haplic Luvisol.  

 

Figure 3.1 Fe concentration and δ
56Fe values for the sequential extraction methods for the 

Cambisol. 
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Figure 3.2 Fe concentration and δ
56Fe values for the sequential extraction methods for the Stagni-

Haplic Luvisol. 

 

3.5 Discussion 

3.5.1 Comparison between the two extraction procedures 

3.5.1.1 Water-extractable and exchangeable iron 

In method S-mod the exchangeable iron fraction was extracted with MgCl2. This fraction 

consists of ions that are bound to surfaces by outer-sphere binding. As free ion Fe2+ and Fe3+ 

is expected in inner-sphere binding, Fe released during this stage is likely to have been bound 

to the surface of solid phases via organic complexes. The MgCl2-extractable iron in the 

Cambisol had an isotopic composition of δ
56Fe= –0.05 ± 0.05 ‰ (2SD), in the Stagni-Haplic 

Luvisol of 0.03 ± 0.05 ‰ (2SD). For two reasons it is hesitated to attribute much significance 
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to this ratio: first, due to a significant blank of the used and cleaned MgCl2 and a very low Fe 

concentration in these soil extracts one has to consider a blank, biasing the measured isotope 

ratios. Second, although Brantley et al. (2004) stated that the extraction with MgCl2 does not 

lead to artificial fractionation of Fe isotopes; Wiederhold et al. (2007b) considered the 

measurement of “exchangeable Fe” in oxic soils to be very difficult because of the very slow 

solubility of ferric iron at neutral pH. In their opinion it is difficult to demonstrate that iron 

atoms which were displaced by the excess of Mg ions from soil exchange sites did not oxidize 

and re-precipitate during the 2 h extraction.  

Similar to the findings of Brantley et al. (2001; 2004) δ56Fe as light as –0.48 ‰ were found, 

indicating that light iron was dissolved within the soil solution, presumably in the form of 

soluble organic complexes. Although it is not known which plants grew on the soils, this 

could be due to light plant debris in the organic litter of the Ap horizon, which is expected to 

contain light iron if strategy I plants grew on the soil (Guelke and von Blanckenburg, 2007; 

chapter 2 of this thesis), or can be due to a bias in the form of an oxidation step associated 

with reprecipitation from solutions, or a fractionation during adsorption (Icopini et al., 2004) 

occurring in nature and leading to a higher δ
56Fe in the exchangeable fraction. Nevertheless, 

fractionation during extraction cannot be excluded. 

3.5.1.2 Organically bound iron 

In method S-mod organically bound iron including Fe sorbed to organic surfaces, complexed 

by organic ligands or incorporated into organic macromolecules was dissolved with weak 

HNO3 and H2O2 after Tessier et al. (1979) and Emmanuel et al. (2005). The δ56Fe of the Feorg 

fraction in the Cambisol was −0.14 ‰ and in the Stagni-Haplic Luvisol it was −0.17 ‰. 

According to Borggaard (1992), this fraction is the major reservoir of Fe that is particularly 

available for uptake by plants. Table 3-2 shows that 1.5 % of total Al was dissolved during 

this extraction step for the Cambisol and 0.4 % of total Al for the Stagni-Haplic Luvisol. This 

is likely to result from the dissolution of Al-oxyhydroxides (Berggren and Mulder, 1995), as 

Al(OH)3 has a solubility of more than 3 mg/L at the pH of the examined soils (Ksp ≈10−34 at 

pH 5) and the amorphous forms have an even higher solubility (Ksp ≈10−32) (Dixon and Weed, 

1989). It is therefore concluded that the extraction with weak HNO3 and H2O2 is an adequate 

method to extract organically bound iron from soils. 



3  Determining the stable Fe isotope signature of plant-available iron in soils 

74 

 

3.5.1.3 Iron bound in oxides 

In method S-mod, the exchangeable, the water-extractable and the organic iron pool were 

each extracted separately from each other. In method W this was not the case. These pools 

were extracted together with iron of poorly-crystalline iron oxides with HCl and yielded a 

δ
56Fe of –0.22 ‰ for the Cambisol and –0.27 ‰ for the Stagni-Haplic Luvisol. The extraction 

with HCl for iron isotope analyses is controversial. On the one hand it has been shown that 

proton-promoted dissolution of iron oxides does not fractionate iron isotopes (Skulan et al., 

2002; Wiederhold et al., 2006), probably due to a different bond breaking mechanism when 

compared to ligand-controlled dissolution, indicating bond breakage between oxygen and 

adjacent iron atoms during detachment (Wiederhold et al., 2006). On the other hand it has 

also been shown that HCl can etch silicate minerals. Obviously the extent depends on the 

mineralogy of the soil. However, the possibility of a bias in measured iron isotope ratios in 

the HCl extracted iron pool of method W resulting from silicate dissolution has to be taken 

into account. Checks of Al concentrations in this fraction show that these amounted to several 

wt%. While some of this Al might be derived from dissolution of silicate minerals, some is 

equally likely derived from dissolution of Al-hydroxides, Al substitution in iron oxide 

structures and adsorbed Al. By mass balance, it can be assumed however, that the silicate 

dissolution effect is small and introduces at best an artefact of 0.1 ‰. This number results 

from the percentage of Al present in the respective fractions. If half of this percentage was 

derived from silicate dissolution 2–2.5 % silicate Fe in the method W fractions of poorly 

crystalline oxides can be assumed. If this silicate Fe has a δ56Fe of +1 ‰ (which is an extreme 

upper bound) and the oxide fraction of –2 ‰ (which is similarly a low bound) this would 

result in a bias of less than 0.1 ‰ which is approximately the obtained reproducibility. It is 

therefore concluded that the extraction with HCl is an adequate method to extract poorly-

crystalline iron oxides from soils. 

In method S-mod all iron oxides (poorly-crystalline and crystalline) were extracted with a 

dithionite-citrate solution as used by Staubwasser et al. (2006) to determine the Fe isotope 

composition of Fe oxyhydroxides in marine sediments. Leaching experiments performed on a 

synthetic mixed haematite-goethite sample demonstrated the absence of artificial fractionation 

during sample separation and measurement (Staubwasser et al., 2006). Small amounts of Fe 

leached from silicates did not significantly affect isotope ratios of Staubwasser et al. (2006). 

This extraction step (Feoxide) yielded a δ56Fe value for Fe-oxides in the Cambisol of −0.28 ‰ 

and in the Stagni-Haplic Luvisol of –0.34 ‰ which were identical within error to the values 
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obtained for poorly-crystalline Fe oxides of method W (fraction Feam.oxide) (Table 3-2). The 

iron oxides exhibited the lightest Fe isotope signature found in all fractions except the water-

extractable fraction. Fe-oxides/hydroxides are, besides clay minerals, the major product of 

weathering reactions in soils (Cornell and Schwertmann, 2003). The obtained values indicate 

that during weathering light iron isotopes have been preferentially removed from silicate 

minerals (Fantle and DePaolo, 2004).  

Table 3-2 shows that no significant Al was contained in the Feoxide fraction. While the 

presence of Al in the extractions does not necessarily imply silicate dissolution, its absence 

certainly shows that silicates were not dissolved in this step. 

While the Feoxide fraction of method S-mod extracts both poorly-crystalline and crystalline 

oxides like goethite, the Feam.oxide fraction of method W only comprises the poorly-crystalline 

Fe (oxyhydr)oxides as well as organically bound iron which is extracted separately in method 

S-mod. Therefore the sum of iron concentrations in the fractions Feorg and Feoxide of method S-

mod should be equal to the sum of iron concentrations of the fractions Feam.oxide and 

Fecryst.oxide. Indeed, the sum of fractions containing organically bound iron and iron oxides 

(poorly-crystalline and crystalline) are identical within error for the Stagni-Haplic Luvisol, for 

the Cambisol they differ by ca. 500 mg/kg. As the sum of poorly crystalline and crystalline 

iron oxides and organically bound iron is similar, also Fe concentration in the silicate fraction 

should be similar for both methods for the respective soil, as the exchangeable and water-

extractable fraction are negligibly small. However, for the Cambisol they differ by 600 

mg/kg, in the Stagni-Haplic Luvisol by 1670 mg/kg. Nevertheless, mass balance between the 

measured and calculated Febulk concentration showed good agreement for the Cambisol with 

both extraction procedures but for the Stagni-Haplic Luvisol a discrepancy of about 20 % for 

the first and 10 % for the second extraction procedure exists. There, calculated bulk Fe 

concentrations are lower than measured Fe concentrations. This could be due to uncertainties 

for the Fe calibration during the ICP-OES measurement (about 5 %), or inhomogenity of the 

soil material. Blanks of chemicals and obtained blanks during processing cannot account for 

this big discrepancy (see section 3.3.2). As explained above Al mass balances show that 

sample recovery from extractions was quantitative and no significant inaccuracies during 

dilution occurred. 

However, the δ56Fe of the Fecryst.oxide fraction (leached with hydroxylamine-hydrochloride in 

1M HCl) in the Cambisol was –0.12 ‰, in the Stagni-Haplic Luvisol it was –0.03 ‰. Within 
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error the δ56Fecryst.oxide, δ
56Feam. oxide and δ56Feoxide values were similar for the Cambisol but for 

the Stagni-Haplic Luvisol they differed significantly. Checks of Al concentrations in the 

method W fractions of crystalline oxides show that these were nearly 10 wt%. Besides 

dissolution of Al-hydroxides, desorption of Al substituted in iron oxide structures and that 

adsorbed, some Al might derive from silicate and clay mineral dissolution. 

With mass balance it can be calculated that this silicate dissolution effect can introduce at 

most an artefact of 0.3 ‰ in δ
56Fe if a hypothetical δ56Fe of +1 ‰ for silicates and of –2 ‰ 

for oxides and an extreme upper bound of 10 % Fe input through silicate dissolution is 

assumed. With the obtained values (assuming 5 % silicate dissolution, δ56Fe of silicates 

+0.4 ‰ and δ56Fe for oxides –0.4 ‰) this would result in an offset of at least 0.04 ‰ which is 

within error. Therefore the obtained δ
56Fe values for crystalline oxides of method W cannot 

be explained by the presence of silicate-bound Fe, confirmed by the Fe concentrations which 

are identical within error for the oxide fractions (Feorg+Feoxide=Feam. oxide+Fecryst.oxide) of the 

two extraction procedures. 

At this stage no explanation for the differences between the various Fe oxide fractions in the 

Stagni-Haplic Luvisol can be made.  

3.5.1.4 Iron of silicates 

Fe in silicates (fraction Fesil) of method S-mod yielded a higher δ
56Fe with +0.25 ‰ for the 

Cambisol and +0.40 ‰ for the Stagni-Haplic Luvisol. Both values point to an iron isotope 

composition similar or even heavier than that contained in the most highly differentiated 

silicate rocks (Poitrasson and Freydier, 2005; Schoenberg and von Blanckenburg, 2006). 

These relatively heavy compositions indicate that during weathering light iron isotopes have 

been preferentially removed from silicate minerals (Fantle and DePaolo, 2004). This 

observation is consistent with the light Fe found in oxides. Similar observations were made by 

Wiederhold et al. (2007a; 2007b) and Thompson et al. (2007) who both found enrichments of 

heavy Fe isotopes in weathering residues.  

Nearly 100 weight% Al was found in the Fesil fractions of the two soils (Table 3-2) extracted 

with method S-mod indicating that no silicates were dissolved during the other extractions. 

Mass balance calculations (equation 3.1) showed excellent agreement between the Fe isotope 

signature of the soil extracts (Figures 3.1 and 3.2) and bulk soil digests. 
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Silicates measured after the method W procedure showed a similarly high δ56Fe value for the 

Cambisol with 0.18 ‰, but only 0.07 ‰ for the Stagni-Haplic Luvisol which differs 

significantly by more than 0.3 ‰ from that obtained with method S-mod. 

3.5.1.5 A preferred extraction procedure 

As mass balance calculations showed excellent agreement between the Fe isotope signature of 

the soil extracts and bulk soil digests (Figures 3.1 and 3.2) with both extraction procedures, it 

is difficult to evaluate the sequential extraction procedure method that is more suitable for Fe 

isotope analyses. Although slightly more demanding in terms of laboratory steps and reagent 

preparation, the extraction with dithionite for the isotopic analysis of Fe from iron oxides and 

iron from the residual silicates is preferred in our study as Al concentrations were 

considerably lower. However, the HCl step appears to be the currently best available to 

extract poorly-crystalline Fe (oxyhydr)oxides from soils. An improved sequential extraction 

procedure for the determination of the iron isotopic signature of different mineral pools in 

soils is suggested that involves an extraction with H2O2-HNO3 for Fe bound to organic 

complexes, an extraction with HCl for Fe of poorly-crystalline (oxyhydr)oxides, a dithionite-

citrate extraction for the extraction of iron from crystalline iron oxides and dissolution with 

HF-HNO3 of the residue (silicates, clay minerals). For the determination of the plant-available 

iron pool it is sufficient to determine the organically bound iron and iron of poorly-crystalline 

(oxyhydr)oxides, therefore an extraction with H2O2-HNO3 followed by HCl is preferred. 

3.5.2 Determination of the iron isotope signature of plant-available soil iron 

Now that the iron budgets, the iron pools in the soils, and their respective isotope ratios are 

established, it can be proceeded to identify those that are available to plants. First, 

observations from plant iron budgets are used to single out those compartments that are the 

most likely to be available. Plants are estimated to require Fe concentrations in the soil of up 

to 10−9–10−4 M which approximates less than 5 mg Fe/L to avoid iron deficiency (Guerinot 

and Yi, 1994). In the soil samples the amounts of oxalate-soluble iron were 1500 and 1200 

mg/kg (Table 3-1). Therefore it can be concluded that the plants were not iron deficient as 

iron of poorly-crystalline (oxyhydr)oxides, which can be extracted with ammonium-oxalate, 

is the most likely to be mobilized (Borggaard, 1992). The concentration of iron extracted from 

the soils with HCl of method W contains similar Fe amounts to the ammonium-oxalate 

soluble iron (about 1300 mg/kg) and, like the ammonium-oxalate leach, contains iron from 
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poorly-crystalline Fe (oxyhydr)oxides. The extraction with HCl is regarded useful to 

determine the iron isotope signature of poorly-crystalline Fe (oxyhydr)oxides in soils. 

Furthermore, Fe bound to organic complexes, exchangeable iron, and water-extractable iron 

contribute to plant Fe nutrition (Lindsay and Schwab, 1982; Borggaard, 1992; Bertrand and 

Hinsinger, 2000, and many other workers). As the extraction of exchangeable iron with 

MgCl2 for our soils is considered to be very difficult and probably erroneous and the Fe pool 

is very small, one can calculate the isotopic signature of plant-available iron in the two soils 

according to 

δ
56Feplant-available = fam.oxide· δ

56Feam.oxide.+ forg.· δ
56Feorg+ fH2O· δ56FeH2O             3.2 

where fx is the proportion each fraction x and δ
56Fex the isotopic composition of the extracted 

fraction. This results in a δ
56Feplant-available of –0.206 ‰ for the Cambisol and –0.266 ‰ for the 

Stagni-Haplic Luvisol. Note that these values differ from the ones given in Chapter 2 of this 

thesis for the same soils, as those were merely mean values of different soil extracts and no 

δ
56Fe of Fe extracted with HCl was available in that study. Obviously, the equation combines 

extractions of the two methods and the Feam.oxide fraction of method W contains also 

organically bound and water-extractable iron. But a revised extraction procedure for the 

determination of plant-available iron is suggested in section 3.5.1.5 with the extraction of 

organically bound iron followed by the extraction of the poorly-crystalline Fe oxides with 

HCl. For the soils of this study the Fe concentration in the Feorg fraction is low and values 

would not change significantly if one left out the fraction in the calculation of the δ
56Fe of 

plant-available iron, but it is very likely that in other soil types this fraction has a much larger 

influence. 

Clearly the obtained values are just estimates. For example, plants might first extract their Fe 

from organic complexes before they proceed to dissolve the poorly-crystalline Fe 

(oxyhydr)oxides. Regardless the plant-available iron in the studied soils is enriched in the 

light iron isotopes when compared to bulk soils. 

Now the question arises on the way in which the iron isotope ratio is modified from that 

calculated to be plant-available in soil iron as iron is taken up by plants. Because of the low 

free iron concentration in soils, plants have two special strategies to mobilize iron from the 

soil and make it available to absorption by their roots (Roemheld and Marschner, 1986). Most 

plants are strategy I plants. These plants are able to excrete protons via a plasmalemma H+-

ATPase to acidify the rhizosphere, thus making Fe(III) more soluble. A reductase then 
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reduces Fe(III) to Fe(II) (Robinson et al., 1999) as strategy I plants can only take up ferrous 

iron, which is subsequently transported into the plant by an iron transporter (Vert et al., 2002). 

Strategy II is used by the grasses which are able to exude phytosiderophores (PS), large 

organic molecules that can bind the Fe(III) from the soil solution (Takagi et al., 1984), and 

transport the Fe(III)-PS complexes through the plasma membrane of the root cells via specific 

transporters without the need for reduction (Curie et al., 2001; Schaaf et al., 2004). 

As plants have totally different ways to mobilize and incorporate iron it is not surprising that 

strategy I and II plants vary in their iron isotopic signature and differ from that in the soil 

(Guelke and von Blanckenburg, 2007; chapter 2 of this thesis). Redox reactions result in large 

fractionation (Welch et al., 2003; Anbar et al., 2005; Johnson et al., 2005; Staubwasser et al., 

2006) where light iron isotopes are fractionated into the ferrous dissolved pool. Crosby et al. 

(2007) have shown a fractionation of –3 ‰ from a solid Fe(III) substrate into Fe(II)aq using 

dissimilatory iron reducing bacteria. This value is similar to the inorganic fractionation factor 

(Welch et al., 2003; Anbar et al., 2005) but it can be lowered by readsorption of Fe(II)aq as 

adsorption processes are known to preferentially sequester the heavier isotope at soil particle 

surfaces (Icopini et al., 2004). These predictions have been confirmed for reduction of ferric 

iron in marine sediments (Severmann et al., 2006; Staubwasser et al., 2006). In contrast, 

complexation of Fe from goethite to siderophores resulted in minor fractionations (Brantley et 

al., 2004; Dideriksen et al., 2008), enriching the heavier isotopes in the solution. Recently it 

was shown that plant Fe indeed reflects these fractionations (Guelke and von Blanckenburg, 

2007; chapter 2 of this thesis). It was hypothesized that reduction of Fe(III) in soils by 

strategy I plants led to a decrease of up to 1.6 ‰ in δ56Fe in seeds compared to the bulk soils. 

Complexation with siderophores by strategy II plants led to iron in these plants that is 0.2 ‰ 

heavier than that in soils (Figure 3.3).  
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Figure 3.3 δ
56Fe for leaves from different strategy I and strategy II plants grown on the two 

agronomic soils (Guelke and von Blanckenburg, 2007, chapter 2 of this thesis). Grey 
bars: δ56Fe of plant-available iron of the two soils measured. Grey areas: uncertainties 
of these values. 

 

In Figure 3.3 the δ56Fe values of leaves of different strategy I and II plants are plotted. 

Strategy I plants scattered in their δ
56Fe but strategy II plants covered only a small range from 

−0.05 ‰ to +0.1 %. In chapter 2 it has been shown that strategy I plants also evolved 

isotopically during growth whereas strategy II plants appear to use a uniform mechanism to 

transport Fe through the plant as they displayed unvarying δ56Fe at all growth stages. Only 

one fractionation step is required during the complexation of Fe from iron bearing minerals in 

the soil onto phytosiderophores (Guelke and von Blanckenburg, 2007; Chapter 2 of this 

thesis). This fractionation factor can be calculated as follows. The iron isotopic composition 

of the plant-available iron of the Cambisol was about −0.21 ‰ in δ56Fe. Leaves of strategy II 

plants grown on the Cambisol yielded a δ
56Fe of approximately 0.02 ‰. This yields an 

apparent fractionation factor ∆
56Feplant-soil of circa +0.2 ‰. For the Stagni-Haplic Luvisol 

strategy II plants yielded a δ
56Fe of 0.03 ‰ and the apparent fractionation factor ∆

56Feplant-soil 

is circa 0.3 ‰. These values are very similar to the ones Brantley et al. (2004) found for the 

dissolution of goethite by siderophores (∆
56Fesolution-goethite = 0.2 ‰), Dideriksen et al. (2008) 
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found for the equilibrium isotope fractionation between complexes of the siderophore Fe(III)-

desferrioxamine B (FeDFOB) and inorganic aqueous Fe(III) complexes (∆56FeDFOB-inorg = 

0.5 ‰) and Wiederhold et al. (2006) found for the ligand controlled dissolution of goethite 

with oxalate (∆56Fesolution-goethite about 0.3 ‰). Siderophores form multi-dentate and very stable 

complexes with dissolved Fe(III), with stability constants up to ~1050 (Hider, 1984). They 

attach to Fe at mineral surfaces, destabilizing Fe-bonding within the mineral structure, thereby 

causing ligand-promoted dissolution (e.g. Kalinowski et al., 2000). The extent of equilibrium 

fractionation depends on the strength of the bonding environment (Schauble, 2004; Hill and 

Schauble, 2008). Therefore it is expected that differences in the various organic ligands´ 

mode of bonding can lead to a range of isotope fractionation factors. 

 

3.6 Conclusions 

It is concluded that the extraction with H2O2-HNO3 for organically bound iron and HCl for 

iron of poorly-crystalline Fe (oxyhydr)oxides is at the moment most suitable for the 

determination of the plant-available iron pool and thus to determine its iron isotopic signature. 

These extraction steps induce complete dissolution of the respective pool and therefore do not 

cause any isotope fractionation. A small bias can account from silicate dissolution but will in 

most cases be negligible. Variations of up to 0.7 ‰ in δ56Fe were found for the different soil 

mineral pools of a Cambisol and a Stagni-Haplic Luvisol. Light Fe isotopes were enriched in 

the oxide fractions, indicating preferential weathering of light isotopes from silicates. This 

hypothesis is confirmed by analysis of the silicate minerals, dissolved with HF-HNO3 after 

prior exposure to all other extraction steps of method S-mod, which yielded a δ
56Fe of +0.25 

and +0.4 ‰, respectively. This ratio is higher than that expected for unweathered minerals. 

An iron isotope composition of about –0.21 ‰ and –0.27 ‰ for the plant available soil iron 

was calculated. Strategy II plants which grew on these soils contained Fe with δ
56Fe of 

virtually 0 ‰ which is about 0.2 to 0.3 ‰ heavier than the measured plant-available Fe in 

soils. It is proposed that these values represent the apparent fraction factors ∆56Feplant-soil 

during uptake of Fe by strategy II plants. Therefore it is concluded that these plants are most 

likely to be suitable indicators for the composition of plant-available iron in soils. If so, the 

measurement of a strategy II plant is sufficient to calculate the composition of plant-available 

Fe in soil, to which the iron isotope evolution of strategy I plants can be compared to. Such 

iron isotope studies of plants contain an intrinsic advantage that is not available in other 
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methods. This advantage can, for example, be applied in chronosequences when the aim is to 

determine the change in the soils isotope composition through time (von Blanckenburg et al., 

2009). The potential of the approach suggested here is that in each soil site grasses can be 

measured for their Fe isotope composition to determine the composition of the soils mobile 

iron fraction without relying in elaborate soil sampling and extraction methods, while strategy 

I plants, potentially driving the change in isotope composition through time by multiply 

fractionation cycles, unveil the driving force of this Fe isotope composition. 

Although it is now possible to bracket the ∆
56Festrategy II plant-soil to a narrow range, more 

sophisticated experiments should be performed to elucidate whether there is really only one 

fractionation step during the incorporation of iron by strategy II plants and if in fact all 

strategy II plants show the same Fe isotope pattern. Hence this study can be seen as only a 

first attempt providing a basis that should accompany evolution of these methods. 

Nevertheless an improved sequential extraction procedure is suggested to extract plant-

available iron from soils, and these results show great promise that strategy II plants can serve 

as proxies of available soil iron isotope composition. 
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4 Identification of differences in iron metabolism between 

strategy I and II plants as revealed by the distribution of stable 

iron isotopes during plant growth  

4.1 Abstract 

Multiple-collector ICP-MS now routinely allows resolving small differences in metal stable 

isotope compositions of plants. Using this method, in an earlier study it was found that 

strategy I plants, which rely on reduction of iron before uptake, were enriched in stable 54Fe 

relative to 56Fe when grown on soil. In contrast strategy II plants, which rely on chelation of 

Fe(III) by phytosiderophores before uptake, were slightly enriched in the heavier iron 

isotopes.  

The new study here explores the iron isotope fractionation caused by translocation during 

growth of a plant. As representatives of strategy I and II plants bean and oat were grown in a 

nutrient solution supplemented with Fe(III)-EDTA and were harvested at least at three 

different points in time. Total bean plants were found to be enriched in the light iron isotopes. 

Younger leaves contained lighter iron than older ones, and during growth younger leaves 

further accumulated the lighter isotopes whereas older leaves and the total roots were 

simultaneously depleted in light iron isotopes. This indicates that isotope fractionation is a 

result of translocation or re-translocation processes. 

Oat plants, grown in a Fe(III)-EDTA-containing nutrient solution, were also enriched in the 

light iron isotopes. An explanation for this enrichment of light iron isotopes, which is in 

contrast with that found in strategy II plants grown on soil in the previous study (see chapter 

2), is the prevalence of a constitutive reductive uptake mechanism of iron in the nutrient 

solution used as this is non-deficient in iron. In contrast iron availability in the natural aerated 

soil used in the previous study was low. However, during growth of the oat plants the initial 

isotope ratio obtained during the first uptake is maintained in all organs at all growth stages, 

including the roots. The absence of fractionation of iron isotopes during the translocation of 

iron in strategy II plants hints at a difference in translocation mechanisms between strategy I 

and II plants. 
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Results of the present study provide further support to the hypothesis that stable metal 

isotopes potentially serve as a new tool to identify the physiological mechanisms of metal 

uptake and translocation in plants. 

 

4.2 Introduction 

Even though iron is the fourth most abundant element in the Earth’s crust and is essential for 

all living organisms including humans, animals and plants, iron deficiency is a major 

agronomical and health problem in many parts of the world. Plant’s iron uptake and 

homeostasis controls the plant iron content and therefore the quality of edible plant parts. The 

major goal in studies of iron uptake by plants is biofortification. Biofortification means that 

the plant uses its own mechanisms to fortify or enhance the density or bioavailability of 

nutrients in its edible tissues. But the mechanisms for plant uptake and transport of iron are 

not completely understood. Besides molecular biological methods other tools are required to 

address open questions in the iron metabolism of plants. Recently, the use of stable iron 

isotopes as one possible tool has been recognized (e.g. Álvarez-Fernández 2006; Stuerup et al. 

2008). 

The research of stable iron isotope fractionation has mainly taken place in the domain of the 

Geosciences (reviews e.g. Dauphas and Rouxel 2006; Johnson and Beard 2006; Anbar and 

Rouxel 2007; Johnson et al. 2008). In the studies undertaken to date, variations in the minor, 

but well-resolvable 56Fe/54Fe ratios are expressed in permil relative to a reference material and 

are reported in the delta notation (δ
56Fe). Efforts in studying stable iron isotope fractionation 

in the biosphere were mostly directed at detecting microbial iron isotope fractionation (Beard 

et al. 1999; Crosby et al. 2007). In higher animals the iron isotope composition in human 

blood and human tissues has been examined (Walczyk and von Blanckenburg 2002; Ohno et 

al. 2004; Krayenbuehl et al. 2005; Walczyk and von Blanckenburg 2005). In the first study of 

the stable iron isotope signature of higher plants the δ56Fe values in vegetables and crops 

grown on two distinct soil substrates were determined (Guelke and von Blanckenburg 2007). 

It was found that strategy I and strategy II plants differ in their stable iron isotope 

composition. Iron in strategy I plants was found to yield significantly lower δ56Fe values than 

the plant-available iron pool in the soil substrates, whereas iron in strategy II plants yielded 

slightly heavier δ56Fe values than the soil substrates. The first observation was explained with 
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the preferential reduction of the lighter iron isotopes during uptake (e.g. Welch et al. 2003; 

Staubwasser et al. 2006) while the latter could be due to the preferential chelation of heavier 

iron isotopes during complexation to phytosiderophores (Brantley et al. 2004; Dideriksen et 

al. 2008). In addition it was found that δ
56Fe values in strategy I plants decreased from soils to 

stems, from stems to leaves and from leaves to seeds with seeds having the lowest δ
56Fe value 

of −1.6 ‰. In contrast, all measured parts of strategy II plants displayed similar δ
56Fe values. 

This finding led to the assumption that these plant types differ in the numbers of oxidation 

and reduction cycles during translocation as these processes are known to induce significant 

iron isotope fractionation (e.g. Welch et al. 2003). 

Very recently Kiczka et al. (2010) found a δ
56Fe of −1.0 to −1.7 ‰ in three Alpine plant 

species, two of them being strategy I plants and one being possibly a strategy II plant, grown 

under natural growth conditions. Mass balance calculations revealed that fractionation 

towards lighter Fe isotopic composition occurred before uptake, probably during mineral 

dissolution, and during selective uptake of iron at the plasma membrane. Iron isotopes were 

further fractionated during remobilization from old into new plant tissue, which changed the 

isotopic composition of leaves and flowers over the season. 

However, these previous studies pose several questions. First, the transport mechanisms 

responsible for the fractionation processes need to be identified. Second, the question arises 

whether the fractionation during uptake depends on the iron speciation in the growth medium. 

For example, the observed trends might be characteristic of plants grown on soil substrates, 

and might differ in plants grown in nutrient solutions. 

To address these open questions a strategy I plant (bean: Phaseolus vulgaris L.) and a strategy 

II plant (oat: Avena sativa L.) were planted on purified quartz sand, watered with a nutrient 

solution of known iron isotopic signature, and different plant organs were harvested at several 

growth stages. The iron concentration and the iron isotopic signature were determined and 

compared to that of the nutrient solution.  

 

4.3 Principles of iron uptake and transport by plants and iron isotope 

systematics 

Iron from the soil or nutrient solution diffuses into the apoplast of plant roots. The apoplast 

represents an extracytosolic compartment of plant cells and is defined by the space that is 
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influenced by the properties of the cell wall.  Under non-limiting iron supplies, iron uptake is 

mediated via a constitutive acquisition system that consists of a membrane-bound ferric 

reductase which is linked to a divalent metal ion transporter and an ATP-driven proton 

extrusion pump. This means that plants reduce iron and take up the ferrous form when they 

are grown on soils with a high iron availability. However, this rarely occurs. In soils iron is 

present in sparingly soluble Fe(III) compounds which are not directly available for root 

uptake. Therefore higher plants were forced to develop different strategies to make iron in soil 

available for their needs (Figures 1.1 and 1.2 in introductory section). Strategy I plants, which 

comprise the dicots and non-grass monocots, excrete protons via a plasmalemma H+-ATPase 

to acidify the rhizosphere, thus making Fe(III) more soluble. The inducible ferric chelate 

reductase activity of FRO2 reduces Fe(III) to Fe(II) (Robinson et al., 1999). Fe(II) is 

subsequently transported into the plant by IRT1, which is the major iron transporter of the 

plant root (Vert et al., 2002). This strategy is induced under Fe-deficiency. Strategy II plants, 

which are represented by graminaceous plant species, acquire iron by exuding 

phytosiderophores (PS). Phytosiderophores belong to the mugineic acid (MA) family which 

are non-proteinogenic secondary amino acids with a molecular weight of around 320. PS have 

a high affinity for Fe(III) and efficiently chelate Fe(III) in the rhizosphere via their amino and 

carboxyl groups. Fe(III)-PS complexes are then transported into plant roots via a specific 

membrane transport system. This chelation strategy is more efficient than reduction of ferric 

iron via a membrane-associated ferrireductase (strategy I) used by the other plants and thus 

allows grasses to survive more drastic iron-deficiency conditions (Curie and Briat, 2003).  

The mechanisms of iron transport in plants, once taken up by the roots, are less clear. It has 

recently been suggested that younger leaves receive their iron primarily from the phloem 

whereas older leaves receive iron from the xylem (Morrissey and Guerinot, 2009). In the 

xylem iron is transported as Fe(III)-citrate, in the phloem as Fe(III)-ITP (Iron Transporter 

Protein) or Fe-nicotianamine (NA). The species of Fe-NA transported in the phloem has still 

to be identified. NA is a precursor of phytosiderophores. It is present in all plants and has the 

ability to bind various metals including Fe2+ and Fe3+ (von Wirén et al., 1999) but the kinetic 

stability is higher for the Fe(II)-NA complex than for the Fe(III)-NA complex. NA is not 

secreted and it is suggested that it plays a role in intra-and intercellular metal transport in both 

strategy I and II plants. 

Developing seeds receive iron from the roots and from senescent leaves. At daylight iron 

moves to the seeds most likely via the phloem, because the flow of the xylem is driven by 
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transpiration and seeds hardly transpire. At night, iron is also transported to the seeds through 

the xylem due to root pressure. The level of remobilization from shoot to seed varies by 

species (Morrissey and Guerinot, 2009). It has also been shown that Fe-NA is essential for 

flower and seed development In the seed, iron is thought to be stored mainly in the vacuoles 

of the embryo and endosperm as Fe(III) (Morrisey and Guerinot, 2009). Thus, iron 

metabolism in plants involves many changes in its binding forms and most likely also changes 

in the redox state (Figure 4.1).  

 

Figure 4.1     Fe chelation and long-distance iron transport in strategy I and II plants. The grey 
boxes symbolize transporters. The blue band represents redox- and ligand changes of 
iron. 
Iron enters the root epidermal cells as Fe(II) (Strategy I plants) or Fe(III)-PS (strategy 
II plants). It is certainly chelated but it is unclear by which ligand. Once in the xylem 
iron is known to be bound by citrate. In the phloem iron is thought to be bound to 
nicotianamine (NA) or iron transport protein (ITP), whereby NA could act as a shuttle 
between the transporter and ITP. NA is an essential part of long distance movement to 
the seeds, although it is unclear in what form the iron is held, once it is loaded to the 
seeds. Inside the seeds iron is stored in the vacuole as Fe-phytate (P) or Fe-NA and in 
the plastides as phytoferritin (Fe(III)). After Morrissey and Guerinot (2009). 

 

Stable iron isotopes are an excellent tool to study biogeochemical pathways of iron. Stable 

iron isotopes can be used in two different approaches. These are on the one hand isotope 

fractionation studies, utilizing minute natural isotopic shifts in the isotopic ratios of iron 

isotopes as driven by binding form and reaction kinetics, and on the other hand tracing 

studies, using artificial compounds enriched in a specific isotope. Both approaches permit to 

track the natural cycles of iron and to study metabolic processes, e.g. in humans or plants. 

Iron has four naturally occurring stable isotopes with the following approximate composition: 
54Fe (5.8 %), 56Fe (91.8 %), 57Fe (2.1 %) and 58Fe (0.3 %) (Rosman and Taylor, 1998).  The 
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relative abundances are virtually constant in nature but tiny differences due to small chemical 

or physical differences between the iron isotopes can now be identified using advanced mass-

spectrometric techniques (Weyer and Schwieters, 2003; Schoenberg and von Blanckenburg, 

2005). The partitioning of isotopes between two substances or two phases of the same 

substance with different isotope ratios is called isotope fractionation. The main phenomena 

producing isotope fractionations are isotope exchange reactions (equilibrium isotope 

fractionation) and kinetic processes, the latter depending primarily on differences in reaction 

rates of isotopic molecules. Iron isotope fractionation is expressed in the delta notation, which 

provides the permil deviation of the isotopic ratio (e.g. 56Fe/54Fe or 57Fe/54Fe) of the sample 

relative to that of the IRMM-014 standard (Taylor et al., 1992):  δ56Fe/ [‰] = 

[(56/54Fesample/
56/54Festandard) −1] · 103. 

Iron metabolism in plants involves several changes of the binding form and redox state of iron 

(Briat et al., 2007). These metal conversion processes are expected to result in isotope 

fractionation whenever they are not quantitative. Crosby et al. (2007) have shown a 

fractionation of −3 ‰ from a solid Fe(III) substrate into Fe(II)aq using dissimilatory iron-

reducing bacteria. This value is similar to the abiotic fractionation factor (Welch et al., 2003; 

Anbar et al., 2005). In soil δ
56Fe of the Fe(II)aq taken up can still be lowered by re-adsorption 

of Fe(II)aq as adsorption processes are known to preferentially sequester the heavier isotope at 

soil particle surfaces (Icopini et al., 2004). These predictions have been confirmed for 

reduction of ferric iron in marine sediments (Severmann et al., 2006; Staubwasser et al., 

2006). Additionally it has been shown that iron isotope fractionation might occur during 

ligand exchange reactions. Dideriksen et al. (2008) described the equilibrium isotope 

fractionation between complexes of the siderophore Fe(III)-desferrioxamine B (FeDFOB) and 

inorganic aqueous Fe(III) complexes  with a ∆
56FeDFOB-inorg of 0.5 ‰, which is similar to what 

Wiederhold et al. (2006) found for the ligand-controlled dissolution of goethite with oxalate 

(∆56Fesolution-goethite about 0.3 ‰). 

Preconditions for iron isotope fractionation in plants are given in the rhizosphere, in the 

apoplast, during passage across the plasma membrane, in the cytoplasm when considering 

storage of iron in vacuoles or plastids, during export from the cytoplasm into xylem vessels, 

in the membrane passage from the xylem fluid into the cytoplasm of leaf cells, during loading 

into the phloem vessel and during transfer from the phloem into the seed or fruit (von 

Blanckenburg et al., 2009). 
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4.4 Materials and Methods 

4.4.1 Plant growth with nutrient solution 

Seeds of Avena sativa L. (oat) and Phaseolus vulgaris L. (bean) were immersed into deionised 

water on a tissue for two days and then planted onto approximately 5 L quartz sand at a 

density of 6 plants in 5 L pots. Plants were watered as needed with deionisied water. Every 

two days a nutrient solution with the following composition was added until the quartz-sand 

was fully covered with solution: 1000 µM Ca(NO3)2, 375 µM K2SO4, 325 µM MgSO4, 100 

µM KH2PO4, 8 µM H3BO3, 0.2 µM CuSO4, 0.2µM ZnSO4, 0.2 µM MnSO4, 10 µM NaCl, 

0.05 µM MoNa2O4 and 20 µM Fe(III)-EDTA, all dissolved in deionised water. The Fe(III)-

EDTA solution was not part of the nutrient solution containing the other elements, but was 

added separately before every watering. Plants grew in a daylight climate chamber with a 

temperature of 16 – 18 °C. At different points in time, one pot of plants was harvested; plants 

in the other pots continued to grow. Bean plants were harvested 17 days, 30 days, 47 days and 

74 days after germination. Oat plants were harvested 14, 28 and 50 days after germination. 

The plants were rinsed with ultrapure water and separated into roots, stem, the different leaves 

and fruits/buds. Roots were rinsed to remove adherent nutrient solution. Since apoplastic iron 

was not removed (Bienfait et al., 1985) measured roots concentration and isotope data 

integrate over both, intracellular iron and apoplastic iron. 

The pedicel from the leaves was removed prior to cleaning. The plant parts were dried in an 

oven for at least 3 days at 80 °C and their dry weight was determined afterwards. Finally they 

were ground to mince and homogenize them. The same procedure was applied for original 

seeds. 

4.4.2 Sample decomposition and iron separation 

All reagents used during sample preparation were suprapure grade and prepared with 

ultrapure water. Hydrochloric and nitric acids were pro analysi grade and were further 

purified by sub-boiling distillation. All preparation work was carried out in a clean lab class 

1000 in laminar-flow hoods, class 10. 

Approximately 200 mg of each dried plant sample was digested via microwave digestion in 

7 mL concentrated HNO3 and 1 mL concentrated H2O2 at 200 °C for more than half an hour.  
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The Fe(III)-EDTA solution given to the bean and oat plants was also digested in order to 

determine its isotopic signature. The EDTA complex breaks down completely at temperatures 

of about 200 °C after 2 hours (Martell et al., 1975). 10 mL of the Fe(III)-EDTA solution (3 

repetitions) were dried down, the residues were dissolved in 7 mL concentrated HNO3 and 1 

mL concentrated H2O2 followed my microwave digestion at 220 °C for two hours. After this 

procedure the Fe(III)-EDTA solutions were clear, indicating that all EDTA was destroyed. As 

an additional test for the initial composition the nutrient solution (including Fe(III)-EDTA) 

was digested in the same way. 

As it is also possible that plants mobilize small amounts of iron from the quartz sand which 

does contain traces of adsorbed iron, the iron concentration in a quartz leach which best 

represents the mobilization of iron by plants was determined. In three replicates 2 g of the 

quartz sand were weighed into 50 mL centrifuge tubes and 40 mL 0.5 M HCl were added. 

The samples were placed into an over-head shaker at room temperature. After 24 hours of 

shaking the tubes were centrifuged (15 min, 5000 rpm, 4472 x g) and the supernates decanted 

and filtered through 0.2 µm PTFE membrane filters wetted with ultrapure water. This 

procedure is thought to extract all poorly-crystalline iron (oxyhydr)oxides and iron bound to 

organic compounds (Wiederhold et al., 2007, chapter 3 of this thesis) which are most likely to 

be available for plant nutrition (e.g. Borggaard, 1992; Bertrand and Hinsinger, 2000). The 

total iron concentration and stable iron isotope composition of the quartz sand was also 

determined. For this purpose the quartz sand was digested via microwave agitation with a 1:2 

HF/HNO3 mixture at 200 °C for about an hour. Fluoride complexes that form in silicate 

samples were destroyed by treating the evaporated sample with concentrated aqua regia and 

heating to 170 °C for several hours. After digestion all samples were dried down on a hotplate 

and full oxidation of iron to its trivalent state was achieved by adding a drop of concentrated 

HNO3 to the samples, heating them to 150 °C and careful drying them down. Afterwards all 

samples were dissolved in 1 mL of 6 M HCl for iron purification by anion-exchange 

chromatography following the procedure described by Schoenberg and von Blanckenburg 

(2005). As iron concentrations in plant materials are quite low (50-100 µg/g) microcolumns 

were used for iron separation, filled with ca. 300 µL DOWEX AG© 1x8 (100-200 mesh) resin. 

For the Fe(III)-EDTA- and nutrient solution samples 7.5 mL Spectrum® 104704 

polypropylene columns filled with 1 mL of the resin were used. The exchange capacity of 1 

mL wet resin is 1.2 mmol FeCl4
- corresponding to approximately 90 mg iron (Schoenberg and 

von Blanckenburg, 2005). After a cleaning procedure and conditioning of the resin, samples, 
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dissolved in 6 M HCl, were loaded to these columns. Matrix elements were washed out with 

6 M HCl and afterwards iron was eluted with 5 M HNO3. Samples were dried down and 

redissolved in a drop of 15 M HNO3. After taking samples almost to dryness, they were 

dissolved in 1 mL of 0.3 M HNO3. 

An additional precipitation step was applied for the plant samples that ensures quantitative 

precipitation of all Fe(III) as Fe(III)OOH while e.g. Zn as well as organic compounds stay in 

solution (Schoenberg and von Blanckenburg, 2005). The samples were precipitated at pH 10 

with ammonia. After one hour the samples were centrifuged, the supernate solutions were 

discarded and the precipitates washed twice with ultrapure H2O before they were redissolved 

in 0.3 M HNO3. Quantitative recovery and removal of matrix elements during iron separation 

and precipitation was controlled by iron concentration measurements with small aliquots of 

the samples before and after each step by optical emission spectroscopy with inductively 

coupled plasma (ICP-OES: Varian Vista PRO CCD Simultaneous). This check is important 

because non-quantitative recovery could result in artificial isotope fractionation (Anbar et al., 

2000; Roe et al., 2003). Additionally the iron concentrations of the plant samples were 

obtained and total procedural iron blanks were measured with mostly less than 60 ng. This 

was less than 1 % of the processed iron (with a minimum measureable Fe content of 6 µg) and 

was considered to be insignificant. 

4.4.3 Iron isotope measurements 

The iron isotope compositions of the Fe(III)-EDTA-solution, and for comparison also that of 

the nutrient solution, the quartz sand, and the different plant tissues were determined with the 

use of a multiple-collector inductively coupled plasma mass spectrometer (MC-ICP-MS; 

Neptune, ThermoFinnigan) by means of a high-mass resolution mode. Molecular 

interferences were resolved routinely by increasing mass resolution on this instrument (Weyer 

and Schwieters, 2003). The mass discrimination was corrected with the sample-standard 

bracketing approach (Schoenberg and von Blanckenburg, 2005) using the iron isotopic 

reference material IRMM-014 (Institute of Reference Material and Measurement, Geel, 

Belgium). 

Sample and standard solutions were introduced into the mass spectrometer in 0.3 M HNO3 at 

concentrations of 5-7 ppm Fe. All values are reported as δ56Fe and δ57Fe relative to the 
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IRMM-014 standard of which the isotopic composition is close to that of rocks at the Earth’s 

surface (Schoenberg and von Blanckenburg, 2006 and others). 

δ56Fe and δ57Fe of all samples were plotted against each other and were found to follow a 

mass-dependent fractionation law which demonstrates the absence of molecular or elemental 

interferences. Within each analytical session the internal laboratory standard JM (Johnson 

&Matthey, Fe Puratronic wire) was measured to test the accuracy of the measurements. 

During the course of this study the measured Fe isotope composition of the JM standard was 

δ
56Fe = 0.421±0.050 ‰ and δ

57Fe = 0.625±0.090 ‰ (2σ, n = 62), which is in agreement with 

previous measurements (δ
56Fe = 0.423±0.046 ‰ and δ

57Fe = 0.624±0.073 ‰) given by 

Schoenberg and von Blanckenburg (2005). The reproducibility of replicate measurements and 

chemical replicates according to Schoenberg and von Blanckenburg (2005) of the samples 

processed in this and the previous studies (chapter 2 and 3 of this thesis) were determined as 

well. It was found to be 0.07 ‰ (2σ; n= 29) for the δ56Fe of chemical replicates and 0.11 ‰ 

for replicate measurements (2σ; n=108). These values are less reproducible than those 

obtained by Schoenberg and von Blanckenburg (2005). 

A mass balance approach is used to determine the δ
56Fe of bulk plants and above-ground 

organs (without the roots) which is calculated according to the following formula, where Fen 

is the fraction of the iron amount of plant tissue n (dry weight multiplied with Fe 

concentration) and δ56Fen the isotopic composition of plant tissue n: 

[ ]( )56 56
total n n

n

Fe Fe Feδ δ= ×∑                                                                                                         4.1 

Errors of the calculated total δ
56Fe are the propagated errors of the δ

56Fe of the individual 

plant tissues.  

 

4.5 Results 

The iron isotopic composition of the Fe(III)-EDTA solution, the nutrient solution and the 

quartz sand is shown in Table 4-1. The iron concentration for the quartz sand leachate was 

about 60 ng/g. As this comprised only about 5 % of the iron contained in the Fe(III)-EDTA it 

is considered to be negligible. The iron concentration leached from quartz was too low for 

iron isotope measurements. However, even if the δ
56Fe of leached Fe and Fe(III)-EDTA 
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differed significantly, this would result in a bias of less than 0.1 ‰, which is within the 2 

standard deviation of the analysis (assuming a δ
56Fe of the leached Fe of −2 ‰, which is an 

upper bound). 

 

Table 4-1 Iron concentration and δ
56Fe of the Fe(III)-EDTA solution, nutrient solution and quartzsand 

  Fe concentration [µg/g] δ56Fe [‰] 2SD [‰]1 

Fe(III)-EDTA 1.10 0.56 0.11 

nutrient solution 1.10 0.55 0.11 

quartz sand HCl leach 0.06 ----------------------------------- 

quartz sand 2.50 0.25 0.11 

1 given as the 2 standard deviation reproducibility of replicate measurements  

 

Total quartz sand had a Fe concentration of 2.5 µg/g. About 2.5 % of this Fe was available for 

the plants in form of mobile Fe (leached with HCl). The residual Fe contained in the quartz 

sand is considered to be negligible as plants are not able to extract iron of crystalline oxides or 

silicates (Bertrand and Hinsinger, 2000). 

Iron in Fe(III)-EDTA had a δ56Fe of 0.56 ± 0.11 ‰. For comparison, the isotopic composition 

of a small aliquot of the nutrient solution (after Fe(III)-EDTA was added) was also 

determined. It is in agreement with the value found for Fe(III)-EDTA. In the following 

discussion the isotopic difference between plant parts and the Fe(III)-EDTA of the nutrient 

solution will be expressed as: ∆
56Feplant-Fe(III)-EDTA= (δ56Fe)plant – (δ56Fe)Fe(III)-EDTA (Figures 4.2 

and 4.3). The precision on the δ
56Fe values was better than 0.11 ‰ (2SD) (Table 4-2). The 

error of the nutrients’ δ56Fe value was not propagated into ∆
56Feplant-Fe(III)-EDTA since this error 

was the same during the entire growth experiment, assuming uniform iron composition in the 

growth solution. 

4.5.1 Bean 

All parts of bean plants except for the roots exhibited iron concentrations in the range 

expected for green plant tissues (Marschner, 1995). Seeds and fruits showed the lowest iron 

concentrations of approx. 50 ppm (Table 4-2). Roots had the highest Fe concentrations of 

mostly more than 200 ppm and differed between the harvests which might be explained by 

the lack of apoplastic iron removal prior to sample digestion. Therefore the δ
56Fe of roots 
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includes apoplastic iron, precipitated in the “free space” after reduction. This pool was 

potentially available for plants; precipitated iron could be re-reduced and taken up. As roots 

were washed with ultrapure water after harvesting and Fe(III)-EDTA was easily washed out it 

is assumed that the apoplast comprises only iron which was reduced once and then 

precipitated again. 

The concentration of iron in the cotyledon and first leaf decreased during growth. The iron 

concentration of the stem decreased from the first to the second harvest but then increased 

again. Shells of fruits had lower iron concentrations than fruits. Together they showed similar 

values as the original seeds.  

All measured tissues of the bean plants were found to be enriched in the lighter iron isotopes 

compared to the Fe(III)-EDTA solution by up to −2.5 ‰. Iron in the different plant tissues 

became increasingly lighter from older to younger plant parts, i.e. from roots to cotyledon, to 

stem, to leaves and to fruits. At every harvest point this trend was visible. It is also obvious 

that during first growth the earlier leaves accumulated iron with high δ56Fe while the young 

leaves of the later growth stages obtained iron with lower δ56Fe than that obtained by the 

earlier leaves during their growth. Iron in roots and the cotyledon shifted to slightly higher 

compositions during growth. Iron in the stem and the first leaf evolved towards heavier 

compositions from the third harvest point on. The second and third leaf shifted to heavier 

isotopes during growth as well, whereas the fruits developed towards a lighter iron isotope 

composition when they grew further (Figures 4.2 and 4.3). 
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Table 4-2 Iron concentrations and stable Fe isotope compositions of plant tissues and total bean plants 

number of 
harvest

plant part
dry mass 

[g]

Fe 
concentration 

[µg/g]
error

1 δ56
Fe [‰]

2SD 

[‰]
2

∆56
Feplant-

FeEDTA [‰]

seeds 53 ± 2 -0.53 0.11

1 st harvest roots 0.4 205 ± 7 -0.45 0.11 -1.00
cotyledon 6 128 ± 4 -0.57 0.11 -1.12
stem 2.2 38 ± 1 -0.76 0.11 -1.31
leaf 1 5.7 133 ± 4 -1.19 0.11 -1.74

above-ground organs4 -0.72 0.193 -1.27

Total plant 4 -0.70 0.22 3 -1.25

2 nd  harvest roots 1.5 199 ± 7 -0.35 0.11 -0.90
cotyledon 5.0 70 ± 3 -0.44 0.11 -0.99
stem 5.5 22 ± 1 -0.87 0.11 -1.42
leaf 1 1.6 57 ± 2 -1.32 0.11 -1.87
leaf 2 7.9 64 ± 2 -1.63 0.11 -2.18
bud 0.4 62 ± 2 -1.69 0.11 -2.24

above-ground organs4 -0.96 0.243 -1.51

Total plant 4 -0.70 0.27 3 -1.25

3 rd  harvest roots 3.0 311 ± 11 -0.27 0.11 -0.82
cotyledon 1.2 99 ± 3 -0.21 0.11 -0.76
stem 5.0 44 ± 2 -0.54 0.11 -1.09
leaf 1 3.1 63 ± 2 -0.86 0.11 -1.41
leaf 2 0.5 56 ± 2 -1.14 0.11 -1.69
leaf 3 11.6 78 ± 2 -1.38 0.11 -1.93
fruit 1 0.9 52 ± 2 -1.59 0.11 -2.14
fruit 2 3.5 48 ± 2 -1.65 0.11 -2.20

above-ground organs4 -0.85 0.293 -1.40

Total plant 4 -0.62 0.31 3 -1.17

4th harvest roots 6.0 433 ± 15 -0.25 0.11 -0.80
stem 1.5 81 ± 3 -0.31 0.11 -0.86
leaf 2 1.3 59 ± 2 -0.38 0.11 -0.93
leaf 3 8.0 68 ± 2 -0.69 0.11 -1.24
fruit 1 3.1 49 ± 2 -1.83 0.11 -2.38
fruit 2 19.6 43 ± 2 -1.90 0.11 -2.45
shell of fruit 1 1.8 24 ± 1 -1.15 0.11 -1.70
shell of fruit 2 6.7 17 ± 1 -1.05 0.11 -1.60

above-ground organs4 -1.2 0.293 -1.75

Total plant 4 -0.65 0.31 3 -1.20

Bean

 
1 Errors are combined from weighing, dilution, instrumental count statistics and calibration error. Numbers refer   
to the last digits given for the concentration values 
2 given as the 2 standard deviation reproducibility of replicate measurements  
3 propagated from the 2 standard deviation reproducibilities of replicate measurements from all plant parts 
4 calculated with wt% fractions of the different plant tissues (equation 4.1)  
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Figure 4.2  Schematic illustration of development of the ∆56Feplant-Fe(III)-EDTA of bean plant tissues 
during  growth. 

 

With mass balance (equation 4.1) above-ground organs’ and bulk plant isotope compositions 

were calculated for each point of harvest (Table 4-2). Complete bean plants were found to be 

lighter by about 1.2 ‰ than Fe(III)-EDTA at all three growth stages. In contrast, the 

composition of the above-ground plant changed from −1.2 ‰ at stage 1 to −1.75 ‰ at stage 4 

when compared to the growth solution. 

 

 

Figure 4.3  ∆
56Feplant-Fe(III)-EDTA of bean plant parts. The error bars denote the standard 

reproducibilities obtained for the δ
56Feplant part. Horizontal grey bars show ∆

56Fe 

between bulk plants (eq. 4.1) and the Fe(III)-EDTA for each growth experiment.  
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4.5.2 Oat 

Similar to the bean plants, oat roots showed very high iron concentrations (Table 4-3) which 

can be explained by the lack of apoplastic iron removal prior to digestion. 

The iron concentration in the cotyledon decreased from 77 µg/g at the first point of harvest to 

62 µg/g at the second point of harvest. In the stem it decreased from 42 to 15 µg/g whereas in 

the first leaf and forth leaf the iron concentration increased during growth. In the second and 

third leaf the iron concentration was slightly diminished. 

All δ
56Fe values of the oat plants covered a small range of (Table 4-3). All measured tissue 

samples of the oat plants were enriched in the lighter iron isotopes compared to the nutrient 

solution (∆56Feplant-Fe(III)EDTA 0.34 to 0.62 ‰), a range which is only vaguely above the 2 

standard deviation. In contrast to the bean plant, this finding does not change when roots are 

involved in the calculation or when only the above-ground organs are taken into account 

(Figures 4.4 and 4.5).  

 

Figure 4.4  Schematic illustration of development of the ∆56Feplant-Fe(III)-EDTA of oat plant tissues 
during growth. 
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At all three harvests the roots, stems and the cotyledons had identical iron isotopic 

compositions within the 2 standard deviations. From the second to the third point of harvest 

the first leaf evolved towards a lighter iron isotope composition by 0.3 ‰, at the same time 

the iron concentration doubled. The iron isotopic composition of the second and third leaf and 

the fruit stayed the same during growth whereas leaf 4 evolved towards slightly lighter 

compositions. 

Table 4-3 Iron concentrations and stable iron isotope compositions of plant tissues and total oat plants 

number of 
harvest

plant part
dry mass 

[g]

Fe 
concentration 

[µg/g]
error

1 δ56
Fe [‰]

2SD 

[‰]
2

∆56
Feplant-

FeEDTA [‰]

seeds 33 ± 1 0.22 0.11

1 st harvest roots 0.4 1053 ± 37 0.04 0.11 -0.51
cotyledon 1.2 77 ± 3 0.18 0.11 -0.37
stem 0.6 42 ± 2 0.04 0.11 -0.51
leaf 1 2.3 48 ± 2 0.21 0.11 -0.34

above-ground organs4 0.09 0.193 -0.46

Total plant 4 0.06 0.22 3 -0.49

2 nd  harvest roots 1 405 ± 14 -0.05 0.11 -0.60
cotyledon 0.1 62 ± 2 0.14 0.11 -0.41
stem 5.3 24 ± 1 -0.06 0.11 -0.61
leaf 1 0.7 55 ± 2 0.27 0.11 -0.28
leaf 2 0.5 67 ± 2 0.19 0.11 -0.36
leaf 3 0.5 63 ± 2 0.18 0.11 -0.37
leaf 4 0.2 55 ± 2 0.19 0.11 -0.36
fruit 2.7 27 ± 1 0.05 0.11 -0.50

above-ground organs4 0.03 0.293 -0.52

Total plant 4 -0.01 0.31 3 -0.56

3 rd  harvest roots 2 469 ± 16 -0.01 0.11 -0.56
stem 3.6 15 ± 1 -0.05 0.11 -0.60
leaf 1 0.1 120 ± 4 -0.07 0.11 -0.62
leaf 2 0.5 52 ± 2 0.09 0.11 -0.46
leaf 3 0.1 53 ± 2 0.14 0.11 -0.41
leaf 4 0.1 62 ± 2 0.03 0.11 -0.52
fruit 3.3 11 ± 0 0.07 0.11 -0.48

above-ground organs4 -0.04 0.273 -0.59

Total plant 4 -0.02 0.29 3 -0.57

Oat

 

1 Errors are combined from weighing, dilution, instrumental count statistics and calibration error. Numbers refer   
to the last digits given for the concentration values 
2 given as the 2 standard deviation reproducibility of replicate measurements  
3 propagated from the 2 standard deviation reproducibilities of replicate measurements from all plant parts  
4 calculated with wt% fractions of the different plant tissues (equation 4.1)  



4  Identification of differences in iron metabolism between strategy I and II plants 

99 

 

With mass balance (equation 4.1) the total iron isotopic composition of the oat plants for each 

point of harvest was calculated (Table 4-3). It was found that oat plants were uniformly 

lighter by about 0.5 ‰ than Fe(III)-EDTA at all three growth stages. 

 

Figure 4.5  ∆
56Feplant-Fe(III)-EDTA of oat plant parts. The error bars denote the standard 

reproducibilities obtained for the δ
56Feplant part. Horizontal grey bars show ∆

56Fe 

between bulk plants (eq. 4.1) and the Fe(III)-EDTA for each growth experiment. 
 

 

4.6 Discussion 

4.6.1 Iron isotope fractionation in strategy I plants 

4.6.1.1 Fractionation during uptake of iron in strategy I plants 

Mass balance (equation 4.1) shows that iron of the complete strategy I plant bean was about 

1.2 ±0.11 ‰ lighter than the Fe(III)-EDTA and 0.2 ±0.11 ‰ lighter than iron of the original 

seeds at every point of harvest. Therefore (i) uptake of iron by the bean plants from a Fe(III)-

EDTA solution led to an enrichment of light iron isotopes, (ii) the fractionation factor for iron 

uptake by bean plants grown in nutrient solution was constant during all growth stages and 

(iii) this enrichment of light iron isotopes is compatible with a reduction step before uptake. 

A similar enrichment of light iron isotopes has been found in strategy I plants grown on two 

distinct types of soil substrate (Guelke and von Blanckenburg, 2007, chapter 2 of this thesis), 
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where iron in some plant parts was up to 1.6 ‰ lighter than the plant-available iron in the 

respective soil substrate. This similarity indicates that fractionation patterns of strategy I 

plants do not depend on the type of the growth medium or iron availability. Further evidence 

for reductive uptake of light iron isotopes is provided by the roots, which were all depleted in 

heavy iron isotopes when compared to the growth solution. However, in contrast to the bulk 

plants, the root’s composition also changed during growth. Roots of bean plants were 

enriched in the light iron isotopes by 1 ‰ compared to the Fe(III)-EDTA at the first point of 

harvest, by 0.9 ‰ at the second point of harvest and 0.8 ‰ at the third and forth point of 

harvest. With 200-400 ppm the roots furthermore contained much more iron than the plant 

tissues with 60-80 ppm. Therefore, this iron is also included in iron-containing solids (FePO4 

or Fe(OH)3) that were precipitated in the apoplast. The change of the root δ56Fe cannot be 

attributed to a change in the δ
56Fe of the nutrient solution over time as the nutrient solution 

was renewed every 2 days. Thus, iron isotope fractionation by bacterial growth within the 

nutrient solution is unlikely. Reduction of iron by the reductase in the plasma membrane of 

root cells most likely leads to the observed enrichment in 54Fe over 56Fe in the above-ground 

plant organs without the roots (Table 4-2).  

It is therefore hypothesized that roots were depleted in lighter iron isotopes during growth, as 

light iron isotopes from storage molecules in the roots or apoplast were transported 

preferentially into younger plant parts, probably involving an initial reduction step. 

4.6.1.2 Fractionation during translocation of iron in strategy I plants 

With that isotope fractionation model during uptake in mind the distribution of iron isotopes 

between the different organs of bean plants can be discussed. It was previously observed that 

iron in leaves of soil-grown plants became increasingly enriched in the lighter isotopes from 

the oldest to the youngest leaf (Guelke and von Blanckenburg, 2007, chapter 2 of this thesis). 

The same pattern emerged in bean plants in the present study although plants were grown on 

Fe(III)-EDTA. This indicates that in strategy I plants the isotope fractionation patterns during 

both uptake and translocation do not differ depending on whether natural soil or an artificial 

solution is used as growth medium.  

Iron isotope fractionation during uptake alone cannot be responsible for the observed patterns 

in the bean plants. Such an open-system fractionation during uptake was discussed in chapter 

2. If an infinite iron pool was to supply the roots, and the iron isotope fractionation during 

uptake was also constant, the δ
56Fe values in all parts of strategy I plants would be identical. 
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Such uniform compositions have never been observed in strategy I plants. Rather, during 

growth, iron in older leaves of bean evolved towards heavier and iron of new young leaves 

towards even lighter compositions. Newly grown fruits showed the lightest iron isotope 

composition with a ∆56Feplant-Fe(III)-EDTA of up to −2.5 ‰ at the fourth harvest point. Therefore 

fractionation during translocation of iron is adding to the iron isotopic shift induced into 

strategy I plants during uptake. This scenario, called “fractionation during uptake and 

translocation as an open system” in chapter 2 can be seen as a series of Rayleigh steps 

supplying light iron from older into younger plant parts. A series of consecutive iron 

reduction steps lead to fractionation during growth of the plant. However, since the early 

grown parts of the plant do not contain sufficient iron amounts to supply the younger growth 

stages, fresh iron from uptake is continuously mixed into the plant, too. The combination of 

these two processes leads to a decrease of the δ56Fe value during growth of the plants, but due 

to binary mixing the resulting isotope effect will be smaller than if all iron in young leaves 

was supplied from older parts of the plant. Regardless of the actual details of the process, 

fractionation during translocation is the mechanism that best fits the decrease in δ56Fe from 

older to younger organs of strategy I plants. This effect can be demonstrated with a simple 

example. The amount of iron lost from the cotyledon and leaves 1-3 during growth was 737 

µg if not all iron was remobilized from the dying cotyledon and first leaf (Table 4-2). Iron 

contained in the fruits (fruit 1 and 2 including fruit shells) amounts to 1935 µg, therefore 

about 38 % of the fruits’ iron has been retranslocated from the early plant parts. The residual 

62 % originated from iron uptake via the roots. Now the possible iron isotopic composition of 

this fresh iron can be estimated if one assumes that old leaves are not supplied with fresh iron 

from uptake. The δ56Fe of the Fe which has been remobilized by the earlier leaves amounts to 

−0.41 ‰ which is not as low as the δ
56Fe of the fruits. The δ

56Fe of the new iron taken up is 

determined with the assumption that all is transported qualitatively to the fruits according to: 

δ
56Fefruit= fremobilized Fe· δ

56FeFe remobilized + fnew Fe· δ
56Fenew Fe                                                      4.2 

with f being the fraction of remobilized (38 %) and fresh iron (62 %); and δ56Fe its respective 

iron isotopic composition. Total fruits (fruit 1+2 inclusive shells of fruit) have a δ
56Fefruit of 

−1.8 ‰. This results in a δ
56Fenew Fe of −2.65 ‰. This value is only a very rough estimate as 

the correct iron amount being transferred to the fruits from older leaves can only be assumed 

and probably always new fresh Fe from uptake is mixed into the leaves during growth. 

Nevertheless it is demonstrated that the iron isotopic composition of the fruits is a mixture of 

fresh iron from uptake and remobilized iron from older leaves.                               
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Which mechanisms during translocation may potentially be responsible for the fractionation 

of iron isotopes? Changes of the binding form and redox state of iron are expected to result in 

isotope fractionation whenever they are not quantitative as has been presented in section 4.3. 

According to the processes during iron translocation in plants, an enrichment of the lighter 

iron isotopes can occur during reduction of iron in the root apoplast, while the heavier iron 

isotopes can be concentrated in the oxidized and precipitated iron pool in the apoplast leading 

to even lighter iron in the ferrous iron pool which is taken up by the strategy I plant. 

Fractionation of iron isotopes can also occur during release of iron into xylem vessels where it 

is transported as Fe(III) or uptake into leaf tissues where iron has to be reduced for transport 

across the plasma membrane. Non-quantitative oxidative phytoferritin fixation during storage 

would result in light residual Fe(II)-NA. Also ligand exchange and change of the redox state 

during loading of iron to the phloem, transport inside it or unloading from the phloem can 

cause iron isotope fractionation. As it has been shown that iron is transported as Fe2+ into the 

cell’s vacuole and is stored probably as Fe(III)-complexes (Kim et al., 2006), it can be 

assumed that the mobilization of iron involves a reduction step and can therefore result in 

isotope fractionation favoring a relative accumulation of lighter iron isotopes in the soluble 

iron pool. Especially when the plant enters the generative growth phase, root activity usually 

decreases, so elements become retranslocated to sink tissues like the seeds or fruits. In 

summary it is concluded that fruits contain iron that mainly originates from light iron upon 

reduction in the root apoplast and from light remobilized iron from older leaves. 

4.6.2 Iron isotope fractionation in strategy II plants  

4.6.2.1 Fractionation during uptake of iron in strategy II plants 

Mass balance (equation 4.1) showed that iron of total oat plants was around 0.54 ‰ lighter 

than the Fe(III)-EDTA solution (Table 4-2) at all growth stages. This is in contrast to the 

finding of the first study on iron isotope fractionation in higher plants (Guelke and von 

Blanckenburg, 2007; chapter 2 of this thesis), where iron in strategy II plants appeared to be 

similar or even slightly heavier than to the iron isotope composition of the iron assumed to be 

plant-available in the soil substrate, but consistent with Fe isotope data of a potential alpine 

strategy II plant (above ground biomass) determined by Kiczka et al. (2010b) with a δ
56Fe of 

approx. −1 ‰ compared to the cortex which consists mainly of apoplastic iron. The main 

difference between these studies was the type of growth medium and therefore the iron 



4  Identification of differences in iron metabolism between strategy I and II plants 

103 

 

availability. In Guelke and von Blanckenburg (2007) plants were grown on two soil 

substrates, a sandy Cambisol and a loamy Stagni-Haplic Luvisol. Iron solubility is as low as 

10−10 M in these kinds of soils (Briat and Lobreaux, 1997). The concentration of iron from 

Fe(III)-EDTA in the growth medium of the present study was far higher than that of the free 

iron pool in the soils. Hence, plants in the growth solution were supplied with sufficient iron 

and therefore had no reason to induce their plant-specific iron mobilization strategies. 

Therefore it is likely that oat plants grown on a Fe(III)-EDTA nutrient solution reduce iron 

and take up the resulting Fe2+. In addition strategy II plants exude phytosiderophores but their 

amounts are not as large as in strategy II plants grown on soil, because upregulating of the 

strategy-specific processes only occurs when plants suffer from Fe-deficiency (Grusak and 

DellaPenna, 1999). In the Kiczka et al. (2010b) study the potential strategy II plant Agrostis 

grew on a natural soil as well, but the authors attributed the very high Fe concentration of the 

roots to a high apoplastic Fe pool and therefore to the sufficient supply with iron. 

In the present study one can assume a binary mixing in the oat plants, with iron being taken 

up by both the reductive pathway and as Fe(III)-PS. As shown in section 4.6.1 reduction of 

iron in the nutrient solution can lead to an enrichment of the light iron isotopes which were 

more prone to subsequent uptake. This iron represents the first component of the binary 

mixture. The second component is the fractionation occurring when oat plants exude 

phytosiderophores into the nutrient solution which then compete with EDTA for iron. As the 

Fe(III)-PS complex as a whole is too big for mass-dependent isotope fractionation (relative 

mass differences are too small), the Fe(III)-PS membrane transport process should not result 

in any further fractionation. More likely is that the fractionation occurs when ligands and 

chelates are exchanged. The direction of the reaction is determined by the stability constant of 

the respective complexes. 

Siderophores form multi-dentate and very stable complexes with dissolved Fe(III), with 

stability constants up to ~1050 (Hider, 1984). Fe(III)-EDTA has a stability constant of ~1025. 

In an aqueous solution where both chelates are present at the same concentration, the more 

stable chelator will bind the metal. Therefore, when phytosiderophores are exuded into the 

nutrient solution, Fe(III)-EDTA dissociates and the more stable Fe(III)-PS complex forms 

which is subsequently taken up by YS1-type membrane transporters that mediate root uptake 

by the cotransport of metal-phytosiderophores with protons (Curie et al., 2001; Schaaf et al., 

2004).  
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The described ligand exchange process was predicted to entail isotope fractionation. The 

principle is that the sense of direction of equilibrium isotope fractionation depends on 

bonding environment, where the heavier iron isotopes are favoured by the complex with the 

strongest bonds (Urey, 1947; Schauble, 2004). Wiederhold et al. (2006) and Dideriksen et al., 

(2008) have shown that heavy iron isotopes are enriched in Fe(III) complexed by organic 

ligands. Therefore during ligand exchange Fe(III)-PS is expected to obtain a heavier iron 

isotope composition that the Fe(III)-EDTA as the stability constant of Fe(III)-PS is higher. In 

the oat plants, this heavy Fe(III) is mixed with the light Fe(II) released during reduction of 

Fe(III)-EDTA. 

The iron isotope composition of the roots of oat plants supports this hypothesis. Roots were 

enriched in the light iron isotopes by 0.5 to 0.6 ‰ compared to the Fe(III)-EDTA regardless 

of the point of harvest. The reductive pathway into the plasma membrane led to an enrichment 

of the lighter iron isotopes in ferrous iron as explained above (section 4.6.1). But the 

reductase activity of roots in strategy II plants was not as high as that of strategy I plants as it 

comprises only a constitutive reductase which cannot be upregulated. Hence the binary iron 

mixture was shifted towards the phytosiderophore pathway, which binds Fe(III) from Fe(III)-

EDTA or from precipitated FePO4 or Fe(OH)3.  

4.6.2.2 Fractionation during translocation of iron in strategy II plants 

In contrast to the bean plants, all parts of the oat plants had similar δ
56Fe values at all growth 

stages. Furthermore, the iron isotope ratios of roots were identical to those of the above-

ground tissues and remained constant during growth. It is therefore concluded that iron 

isotope fractionation is the same during growth and even if iron is remobilized from the roots 

this does not lead to fractionation. This finding points to differences in the way of how iron is 

translocated within strategy I and II plants.  

As described in section 4.3 no consensus exists on the fate of the imported Fe(III)-PS 

complex in strategy II plants. Current thinking is that strategy I plants may more frequently 

change the redox state of Fe during translocation, while in strategy II plants, iron remains to a 

larger extent in its ferric form, also during ligand exchange. These differences potentially 

result in the substantial differences in the distribution of stable iron isotopes between these 

two plant types as found in this study. 
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4.7 Conclusions and potential applications 

The principle conclusions of this study are:  

1) The bulk strategy I plant bean was enriched by up to 1.25 ‰, the above-ground plant by up 

to 1.75 ‰ in the lighter iron isotopes compared to the nutrient solution, which confirms the 

hypothesis of Guelke and von Blanckenburg (2007, also chapter 2 of this thesis) that the 

reductive uptake pathway induced by these plants leads to iron isotope fractionation 

preferring the light isotopes. During growth of the bean plant older leaves and roots evolved 

towards being more enriched in the heavier iron isotopes whereas new young leaves were 

more enriched in the lighter iron isotopes. It is proposed that the observed distribution of iron 

isotopes in different plant organs is due to iron isotope fractionation during reduction of iron 

before membrane transport or chelate exchange which is relevant at uptake as well as during 

remobilization of iron from storage pools, such as reduction of apoplastic iron or non-

quantitative oxidative phytoferritin fixation.  

2) Iron in the bulk strategy II plant oat was 0.4 ‰ lighter than Fe(III)-EDTA of the nutrient 

solution. This fractionation is in contrast to the previous results obtained during growth on 

soil substrates where isotope fractionation was minor (Guelke and von Blanckenburg, 2007; 

also chapter 2 of this thesis). The difference can be explained by the influence of iron 

speciation in the growth media. In the Fe(III)-EDTA solution strategy II plants were well-fed 

with iron and the specific acquisition system was not upregulated. Therefore, under these 

conditions even strategy II plants were at least in part supplied by the constitutive system of 

iron reduction and uptake in the ferrous form (favouring light iron isotopes), and in part by 

Fe(III)-PS uptake (favouring heavy iron isotopes). In soil, in contrast, a larger fraction of 

phytosiderophores were exuded and most iron was taken up as Fe(III)-PS.  

3) In the strategy II plant oat all parts of the plants and the roots exhibited a similar iron 

isotope composition that also did not change significantly during growth. Thus, these iron 

isotope observations allow to support the hypothesis that translocation mechanisms differ 

(under iron sufficient conditions) between strategy I and II plants. According to this 

hypothesis, strategy I plants more frequently change the redox state of iron during 

translocation, while in strategy II plants, iron may remain to a larger extent in its ferric form, 

also during ligand exchange.  

The above conclusions clearly need further investigation, but, nevertheless, the stable iron 

isotope variations observed in plants contribute considerably to the understanding of iron 
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cycling processes in the environment and in individual organisms. In addition the potential of 

stable iron isotopes as a tool of tracing iron fluxes within plants has been demonstrated. Up to 

now radiolabelled iron (55Fe or 59Fe) has been used to trace iron and even to image it (Brown 

et al. 1965). These studies have focused on the uptake and breakdown of synthetic or natural 

chelates, as well as on the shoot translocation rates of the iron supplied by those compounds 

(e.g. Reid and Crowley, 1984; Roemheld and Marschner, 1986; Crowley et al., 1992; Johnson 

et al., 2002; Cesco et al., 2004). The current study demonstrates that stable isotopes too 

present an excellent tool to trace biogeochemical pathways of iron which possibly 

complements studies employing radiotracers. Stable iron isotopes can be used in two different 

ways: fractionation and tracer studies, the latter employing an enriched stable iron isotope 

label. Both approaches permit to follow the natural cycles of iron and to study metabolic 

processes. In the present study fractionation studies on a strategy I and a strategy II plant 

grown with artificial chelates demonstrate that redox processes and differences in the iron 

fluxes within plants employing different Fe acquisition systems can be mapped out. In 

addition it is shown that uptake mechanisms of the strategy II plant oat depend on the iron 

availability and therefore the type of growth substrate. These findings suggest that 

fractionation studies with stable iron isotopes will become a complementary tool in the study 

of iron uptake and translocation in plants as suggested recently by Álvarez-Fernández (2006) 

and Baxter (2009).  
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5 Deciphering mechanisms of iron acquisition and 

retranslocation in maize using stable iron isotope fractionation  

5.1 Aim of the study 

The aim of this chapter is to report the results and a preliminary interpretation of using stable 

iron isotopes to investigate the specific processes of iron metabolism of strategy II plants. The 

following questions will be addressed: (1) Does the Fe isotope signature of maize depend on 

the kind of Fe substrate? (2) Are translocation mechanisms in strategy II plants indeed 

different to those of strategy I plants? (3) Does (re-)translocation of iron in strategy II plants 

take place only under iron-deficiency or also under iron-sufficient conditions? (4) Is iron only 

remobilized from the root apoplast but also from older leaves? (5) What mechanism is 

relevant for the remobilisation of iron?  

Different experiments were conducted together with scientists of the University of 

Hohenheim from the Institute for Plant Nutrition. We chose maize as a strategy II plant and 

grew it in pots filled with nutrient solution in a climate chamber. Iron was added either as 

Fe(III)–EDTA or as Fe(III)–phytosiderophores, depending on the experiment. Plants were 

cultured under Fe-sufficient and –deficient conditions and the apoplastic iron was removed 

from the roots for some of the experiments according to Bienfait (Bienfait et al., 1985). In 

addition maize was grown on a soil substrate of which the isotopic composition of the iron 

which is most likely available for plants was determined (chapter 3 of this thesis). This part of 

the study was conducted at the Institute for Biological Production Systems at the Leibniz 

Universität Hannover. 

 

5.2 Materials and Methods 

5.2.1 Experiments 

An overview for all experiments can be found in Table 5-1. 
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Experiment 1: Maize sequential harvest 

The intention of experiment 1 was to investigate how the stable iron isotope signatures of 

different parts of maize plants change during growth when grown on a nutrient solution 

supplemented with Fe(III)-EDTA and when grown on iron deficient conditions.  

Maize (Zea mays) seeds (cv. UH002) were germinated in the dark between filter papers 

soaked with a CaSO4-saturated solution for 4 days and transferred to a half-strength nutrient 

solution not containing any iron. After one day, seedlings were transferred to a full-strength 

nutrient solution with +Fe conditions (see section 5.2.2). 18 days after sowing, plants were 

partially harvested (T0). Remaining plants were exposed to +Fe or –Fe conditions and 

harvested on day 22 (T1) and day 24 (T2) (Figure 5.1). Apoplastic iron was removed 

according to Bienfait et al. (1985) but not measured. Stems were not harvested.  

 

 

 

 

 

 

 

 

 

 

Figure 5.1  Experimental design of Experiment 1. 

 

 
Experiment 2: Maize supplied with phytosiderophores from wheat 1 

The intention of experiment 2 was to resolve the stable iron isotope signature of different 

parts of maize plants when grown on a nutrient solution supplemented with Fe(III)-

phytosiderophores to see if Fe isotope fractionation in strategy II plants depends on the form 

of iron supply in the nutrient solution. 
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Wheat (Triticum aestivum) plants (cv. Thomy) were germinated in quartz sand moistened 

with a CaSO4-saturated solution. After 7 days the seedlings (50 per pot) were transferred to 

1 L pots containing an iron-free full-strength nutrient solution.  

7 days after germination of wheat, maize seeds (cv. UH002) were germinated in the dark 

between filter papers soaked with a CaSO4-saturated solution for 4 days. Five plants were 

transferred to 1 L pots containing a half-strength nutrient solution without iron. 

From day 7 after maize germination, Fe-starved wheat plants were allowed to exude 

phytosiderophores (PS) in 1 L freshly prepared iron-free nutrient solution for five hours, 

starting two hours after the onset of light. The produced exudates-enriched nutrient solution 

was supplemented with 3 µM FeCl3. Five maize plants were directly subjected to 950 mL of 

this solution until the next day. This procedure was repeated for 4 days. Afterwards maize 

plants were divided into the +Fe and –Fe treatment. +Fe plants continued growing in the 

exudates-containing nutrient solution treatment. –Fe plants continued growing on an iron-free 

nutrient solution. All plants were harvested 4 days later. 

In addition maize was grown under the same conditions with a nutrient solution supplemented 

with Fe(III)-EDTA and another that was iron-free. 

 

Experiment 3: Maize plants for Bienfait solution (Fe(III)-EDTA) 

The intention of experiment 3 was to find out if apoplastic and symplastic iron in the roots 

differ in their iron isotope signature when maize is grown in a nutrient solution supplied with 

Fe(III)-EDTA in order to discover if fractionation occurs only during reduction or also during 

passage across the plasma membrane. Another aim is to find out if there is remobilization 

from the apoplastic iron pool when plants get iron-deficient and what mechanism could play a 

role during remobilization. 

Maize seeds (cv. UH002) were germinated in the dark between filter papers soaked with a 

CaSO4-saturated solution for 4 days. Five plants were transferred to 1 L pots containing the 

half-strength nutrient solution without iron. After 3 days seedlings were transferred to a full-

strength nutrient solution with +Fe conditions. Ten days past germination, the plants were 

subjected to +Fe and –Fe conditions for 6 days. Before harvest, roots were transferred to 

0.5 mM CaSO4 for 10 minutes. Apoplast-bound iron was removed from the roots according to 

the method of Bienfait et al. (1985): CaSO4 was replaced by a solution containing 0.5 mM 
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Ca(NO3)2, 10 mM MES buffer (2-(N-morpholino) ethanesulfonic acid) (pH 5.5) and 1.5 mM 

dipyridin (= 2.2 ’bipyridyl). After an exposure of one minute in this solution, Na-dithionate 

was added to a final concentration of 12.5 mM. This caused a reduction of all accessible 

Fe(III) precipitates. Fe2+ was then complexed by dipyridin to form a violet-coloured complex. 

Before the addition of dipyridin and during the reaction time (10 minutes) the reaction 

solution was kept free of oxygen by continuous aeration with N2. The Fe concentration and 

iron isotope composition of the Bienfait solutions and that of maize plant organs was then 

determined. 

 

Experiment 4: Maize supplied with phytosiderophores from wheat, 58Fe tracer experiment  

The intention of experiment 4 was to find out if iron is retranslocated from older into younger 

plant parts under Fe-deficiency and under non-deficient conditions. A 58Fe enriched nutrient 

solution was used as a tracer and from the binary mixing between 58Fe enriched iron and 

unspiked seed Fe it is possible to figure out if iron is retranslocated. Additionally the 

measured δ56Fe values which are not influenced by the spiked iron show what mechanisms 

play a role during remobilization. 

Wheat (Triticum aestivum) plants (cv. Thomy) were germinated in quartz sand moistened 

with a CaSO4-saturated solution and 6 days old seedlings (50 per pot) were transferred to 1 L 

pots containing an iron-free full-strength nutrient solution.  

Six days after germination of wheat, maize seeds (cv. UH002) were germinated in the dark 

between filter papers soaked with a CaSO4-saturated solution for 4 days. Five plants were 

transferred to 1 L pots containing a half-strength iron-free nutrient solution. 

From day 8 after maize germination, Fe-starved wheat plants were allowed to exude PS in 1 L 

freshly prepared iron-free nutrient solution for five hours, starting two hours after the onset of 

light. The obtained exudates-enriched nutrient solution was enriched with 1 mM Ca(NO3)2, 

0.4 mM K2SO4 and 3 µM 58Fe labeled FeCl3 and mixed gently. Five maize plants were 

directly subjected to 1 L of this solution until the next day. This procedure was repeated for 3 

days. Afterwards maize plants were divided into the +Fe and –Fe treatment. However, to 

neglect allelopathic effects all plants remained exposed to the nutrient solution containing 

wheat exudates. Therefore, the exudates-enriched nutrient solution was divided before 

supplementing with FeCl3. All plants were harvested 6 days later. 
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Experiment 5: Plant growth on a soil substrate 

The intention of experiment 5 was to resolve the stable iron isotope signature of different 

parts of maize plants when grown on soil to see if Fe isotope fractionation in strategy II plants 

depends on the form of iron supply in the growth medium. 

Eight seeds of maize (Zea mays, cv. UH002) were planted in 3x 5 L pots filled with 4.4 L of a 

Stagni-Haplic Luvisol (pHH2O = 7.8). Plants grew in a daylight climate chamber with a 

temperature of 16 – 18 °C and were watered with deionised water whenever required. Plants 

were harvested at three growth stages. The first harvest took place after 21 days when plants 

had four fully grown leaves (first pot, the other two remained growing), the second harvest 

was done after 42 days when plants had six leaves and after 54 days plants were harvested 

when they had seven fully grown leaves. Eight plants were harvested, respectively, cleaned 

with deionised water and separated into roots, stem and the different leaves. Roots were 

cleaned especially careful to remove any adherent soil particles. Plants were dried in an oven 

for at least 3 days at 80 °C after which their dry weight was determined. Finally the plant 

parts were ground to mince and homogenize them. The original seeds were subjected to the 

same procedure. 

 

Table 5-1 Overview experiments 

Experiment Substrate Addition Conditions 
    1 nutrient solution Fe(III)-EDTA +Fe, -Fe 
2 nutrient solution Fe(III)-EDTA and FeCl3 + phytosiderophores 

from wheat 
+Fe, -Fe 

3 nutrient solution Fe(III)-EDTA +Fe, -Fe 
4 nutrient solution FeCl3 + phytosiderophores from wheat +Fe, -Fe 

5 soil  +Fe 

 

5.2.2 Nutrient solution 

Environmental conditions for growth experiments 

Plant culture experiments were conducted in a climate chamber with 60 % humidity, a light 

intensity of ~200 µmol photons/m2s at plant height, and a 16/8 h (24/20°C) day-night regime. 
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Composition of nutrient solution 

All plants were grown in an aerated, non-sterile nutrient solution consisting of 2.0 mM 

Ca(NO3)2, 0.7 mM K2SO4, 0.5 mM MgSO4, 0.1 mM KCl, 0.1 mM KH2PO4, 0.5 µM MnSO4, 

0.5 µMZnSO4, 0.2 µM CuSO4, 0.01 µM (NH4)6Mo7O24, and 1 µM H3BO3. If not stated 

otherwise Fe-sufficient (+Fe) treatments were supplemented with 100 µM Fe(III)-EDTA and 

the nutrient solution was changed every 2-3 days. In experiment 1, 3 and 4 apoplastic iron 

was removed according to Bienfait et al. (1985). 

 

Preparation of the nutrient solution for 58Fe tracer experiment (experiment 4) 

For the 58Fe tracer experiment, 10 mg of 58Fe enriched metal pieces were purchased 

(Chemotrade, 92.8 % isotopic enrichment, Ref: Certificate of analysis, No. 26-01-58-3197, 

isotopic distribution: 54Fe: 0.05 %, 56Fe: 0.55 %, 57Fe: 6.6 %, 58Fe: 92.8 %), and completely 

dissolved in 6 M HCl. The resulting solution was diluted to a concentration of 570 ppm Fe. 

As the preparation of the nutrient solution required 52.65 mg FeCl3 and 0.16 % of the 

contained iron in the nutrient solution should be 58Fe to assure that the obtained δ
58Fe was 

high enough to detect binary mixing between spiked and unspiked iron (δ58Fe about 450 ‰) 

and the δ56Fe of the nutrient solution was not influenced, 0.033 ml spiked Fe solution 

(equalling 18.8 µg Fe) was given to 0.053 g FeCl3 dissolved in 3.9 mL concentrated HCl and 

the solution was shaken to homogenize. 

5.2.3 SPAD value 

In experiment 1 and 2 the SPAD value was determined after harvest. The SPAD value 

determines the relative chlorophyll content by measuring the absorbance of the leaf in two 

wavelength regions. Chlorophyll has absorbance peaks at 400-500 nm and 600-700 nm with 

no transmittance in the near-infrared region. Using these two transmittances a SPAD-meter 

calculates a numerical SPAD value which is proportional to the amount of chlorophyll present 

in the leaf. This amount is closely related to the nutritional status of the plant. When plants 

suffer from iron-deficiency the chlorophyll synthesis is affected and therefore the SPAD value 

decreases. 
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5.2.4 Sample decomposition and iron separation 

All sample preparation and iron chromatographic separation were carried out following the 

procedures described in chapters 2 to 4. Separate equipment was used for samples in the 58Fe 

tracer experiment (experiment 4) to avoid contamination. Total procedural iron blanks were 

measured yielding about 50 ng. This was less than 1 % of the processed Fe and was 

considered to be insignificant. 

5.2.5 Iron isotope measurements 

The iron isotope compositions of the Fe(III)-EDTA and FeCl3 solutions and the different plant 

parts were determined with the use of a multiple-collector inductively coupled plasma mass 

spectrometer (MC-ICP-MS; Neptune, ThermoFinnigan) following the methods described in 

chapter 4.  

The natural iron isotope ratios determined in this study are expressed relative to the IRMM-

014 standard (Institute of Reference Material and Measurement, Geel, Belgium), of which the 

isotopic composition is close to that of rocks at the Earth’s surface (Schoenberg and von 

Blanckenburg, 2006, and others), as: 

δ
56Fe/ [‰] = [(56/54Fesample/

56/54FeIRMM-014) –1] · 103                                                                5.1 

Similarly, results from the 58Fe tracer experiment are also expressed in permil deviation from 

the natural ratios as δ
58Fe: 

δ
58Fe/ [‰] = [(58/54Fesample/

58/54FeIRMM-014) –1] · 103                                                                5.2 

The isotopic difference between plant organs and the nutrient solution or soil are expressed as 

∆
56Feplant-nutrient solution = δ56Feplant – δ56Fenutrient solution                                                                              5.3 

or the equivalent equation with 58Fe. But it has to be born in mind that while δ
56Fe describes 

mass-dependent stable isotope fractionation, δ
58Fe quantifies the contribution of the added 

tracer 58Fe relative to the natural 56Fe. Because the amounts of 58Fe added to the nutrient 

solution increased the natural amount of 58Fe by 450 ‰, the small mass-dependent shift in the 
58Fe/54Fe ratio that accompanies the reactions are negligible and can be ignored. 

Within each analytical session the internal laboratory standard JM (Johnson &Matthey, Fe 

Puratronic wire) was measured to test the accuracy of the measurements. During the course of 

this study the measured Fe isotope composition of the JM standard was δ
56Fe = 0.431 ± 
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0.046 ‰, δ57Fe = 0.633 ± 0.079 ‰ and δ
58Fe = 0.88 ± 0.38 ‰ (2σ, n = 209), which agrees 

with previous measurements (δ
56Fe = 0.423 ± 0.046 ‰, δ

57Fe = 0.624 ± 0.073 ‰ and δ
58Fe = 

0.83 ± 0.41 ‰) given by Schoenberg and von Blanckenburg (2005). 

The reproducibility of replicate measurements and chemical replicates of the samples 

processed in this study was determined according to Schoenberg and von Blanckenburg 

(2005). It was found to be 0.11 ‰ (2σ; n= 6) for the δ56Fe of chemical replicates and 0.07 ‰ 

for replicate measurements (2σ; n=220). For the δ58Fe it was found to be 0.40 ‰ (2σ, n=14) 

for replicate measurements. These values are slightly inferior to that obtained by Schoenberg 

and von Blanckenburg (2005). 

 

5.3 Results 

5.3.1 Experiment 1: Maize sequential harvest 

The relative chlorophyll content in the different maize leaves, illustrated by the SPAD value, 

is displayed in Figure 5.2. Plants grown under iron-deficient conditions (–Fe plants) had lower 

SPAD values in the younger leaves than +Fe plants. 

 

Figure 5.2  Relative chlorophyll content of the maize leaves of experiment 1. 
 

All +Fe plant parts had iron concentrations expected for green plant parts (Table 5-2). Roots 

and younger leaves of –Fe plants obtained less than 50 ppm iron, which was beyond the 
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minimum supply and denoted Fe deficiency in the maize plants (Marschner, 1995). The dry 

mass of the –Fe plants’ roots was lower than that of the +Fe plants at the same harvest point. 

All parts of the maize plants were enriched in the lighter iron isotopes compared to the 

Fe(III)-EDTA of up to 2.3 ‰ (Figure 5.3, Table 5-2). Iron in leaf 1 (the cotyledon) was 0.4 to 

0.7 ‰ heavier than the roots, this isotopic difference increased during growth. Iron became 

increasingly lighter from the oldest to the youngest leaf. This trend is visible at every harvest 

point regardless of the iron status. However, the +Fe plants obtained lighter iron than the –Fe 

plants. The reproducibility between the different pots was poor. Because stems were not 

harvested the calculation of the plant’s total iron isotope composition from mass balance was 

not possible. However, the complete iron isotope composition ∆56Feplant-nutrient solution without 

apoplastic roots iron and stems of maize plants accounted to –0.9 ‰ for T 0, –1.2 ‰ for T1 

(+Fe), −1 ‰ for T1 (–Fe), –1.4 ‰ for T2 (+Fe) and –0.9 ‰ for T2 (–Fe) (horizontal bars in 

Figure 5.3).  

 

Figure 5.3  Mean ∆56Feplant-nutrient solution of four pots of experiment 1. Horizontal lines: composition 
of the complete plant without apoplastic iron and stems. Error bars denote the standard 
reproducibility of the mean of four pots. 
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5.3.2 Experiment 2: Maize supplied with phytosiderophores from wheat 

In the younger leaves 3 and 4 the SPAD value, representing the chlorophyll content, was 

lower in the –Fe plants than in the +Fe plants grown on both types of nutrient media. This 

effect was more pronounced in the plants grown on Fe(III)-EDTA, however (Figure 5.4). 

Organs of –Fe plants showed similar dry weights than those of +Fe plants grown in both types 

of nutrient media, but plants grown on FeCl3-PS obtained higher dry masses than plants 

grown on Fe(III)-EDTA (Table 5-3). Iron concentrations were higher in the +Fe plants than in 

the –Fe plants and lower in plants grown on FeCl3-PS than in plants grown on Fe(III)-EDTA. 

The iron content of roots was higher in plants grown on FeCl3-PS whereas the iron content of 

the leaves was higher in plants grown on Fe(III)-EDTA. 

 

 

Figure 5.4  Relative chlorophyll content of the maize leaves of experiment 2. 
 

The ∆56Feplant-nutrient solution values are illustrated in Figure 5.5. The horizontal lines represent 

the iron isotopic composition of complete plants including apoplastic iron. Iron in total plants 

grown on FeCl3-PS was unfractionated compared to that of the nutrient solution, regardless of 

the iron status of the plants. In contrast, plants grown on Fe(III)-EDTA were enriched in the 

lighter iron isotopes compared to the nutrient solution by –0.5 ‰ (+Fe plants) and by –0.2 ‰ 

(–Fe plants). 

In the FeCl3-fed plants iron evolved towards increasingly lighter compositions during growth. 

Roots of +Fe plants were enriched in the heavier iron isotopes by 0.3 ‰ compared to the 

nutrient solution; leaf 1 had a similar iron isotope composition as the nutrient solution and the 

stem and leaves 2 to 4 were enriched in the lighter iron isotopes compared to the nutrient 
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solution. Under iron-deficient conditions all leaves and the stem obtained heavier iron than 

those of +Fe plants. Roots of +Fe and –Fe plants obtained identical iron isotope compositions.  

The Fe(III)-EDTA fed plants showed similar iron isotope patterns as in experiment 1, iron in 

leaves became increasingly lighter during growth and +Fe plants obtained lighter iron than –

Fe plants. The values of the plants grown in the different pots did not reproduce exactly and 

therefore the standard deviation was very high. However, it can be recognized that in contrast 

to the first experiment the δ
56Fe of leaf 1 was lower as that of roots, regardless of the iron 

status. 

 

Figure 5.5  Mean ∆56Feplant-nutrient solution of four pots of experiment 2. Horizontal lines: composition 
of the complete plants. Error bars denote the standard reproducibility of the mean of 
four pots. 

 

5.3.3 Experiment 3: Maize plants for Bienfait solution (Fe(III)-EDTA) 

In the third experiment apoplastic iron was removed from roots according to Bienfait et al. 

(1985) and the iron concentrations and δ
56Fe values were determined in the roots (containing 

symplastic iron) and in the Bienfait solutions (containing apoplastic iron). The Bienfait 

solutions of +Fe plants contained 700 ppm iron, those of –Fe plants contained 210 ppm iron 

(Table 5-4). Roots had an iron concentration of about 150 ppm when grown under iron 

sufficient conditions and of only 40 ppm when grown under iron-deficient conditions. Leaves 

and stem of +Fe plants yielded iron concentrations expected for green plant parts (Marschner, 
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1995) with 90-190 ppm. Leaf 1 had the highest iron concentration with 189 in pot 1 and 154 

ppm in pot 2. The –Fe plants, however, yielded lower iron concentrations which were mostly 

less than 50 ppm, which was beyond the minimum supply and denoted Fe deficiency in the 

maize plants (Marschner, 1995). Only leaf 1 had higher Fe concentrations with 73 and 83 

ppm. 

The ∆56Feplant-nutrient solution values of all parts of the maize plants are illustrated in Figure 5.6. 

Mass balance shows that iron of complete +Fe maize plants was 0.6 ‰ lighter than the iron in 

the Fe(III)-EDTA and that of –Fe plants was only 0.1 ‰ lighter than Fe(III)-EDTA (Table 5-4, 

horizontal bars in Figure 5.6). Iron of the Bienfait solutions of +Fe plants was 0.6 ‰ lighter 

than that of the Fe(III)-EDTA and apoplastic and symplastic roots’ iron obtained similar iron 

isotope compositions. Iron of the Bienfait solutions of –Fe plants was 0.2 ‰ heavier than that 

of Fe(III)-EDTA. Again, symplastic roots’ iron showed similar values as the apoplastic iron. 

∆
56Fe values of the Bienfait solutions and root samples differed substantially between the two 

pots. Leaf 1 was virtually unfractionated compared to the nutrient solution and during growth 

iron of the subsequent leaves and the stem became increasingly lighter. The youngest leaf 4/5 

incorporated iron which was 1.2 ‰ lighter than the Fe(III)-EDTA. Leaves 1 and 2 of –Fe 

plants obtained lighter iron than in the +Fe plants, whereas iron of leaves 3 and 4 as well as 

that of the stem was heavier in –Fe plants. 

 

 
Figure 5.6  Mean ∆56Feplant-nutrient solution of two pots of experiment 3. Horizontal lines: composition 

of the complete plants. Error bars denote the standard reproducibility of the mean of 
two pots. 
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5.3.4 Experiment 4: Maize supplied with phytosiderophores from wheat, 58Fe 

tracer experiment 

Organs of –Fe plants obtained similar dry weights as that of +Fe plants, but iron 

concentrations and iron contents were higher in the +Fe plants than in the –Fe plants (Table 5-

5). As the younger leaves of the –Fe plants contained more than 50 ppm iron, iron deficiency 

can be excluded. The iron concentration of +Fe plant roots was 309 and 356 ppm, which was 

higher as that of leaves as apoplastic iron was not removed. 

Mass balance calculations revealed that iron of complete maize plants grown under Fe-

sufficient conditions was unfractionated compared to that of the nutrient solution (Figure 5.7). 

Within the +Fe plants the distribution of iron isotopes was not uniform. Roots yielded the 

same δ56Fe as the nutrient solution whereas leaves 1, 2 and 3 were enriched in the heavier iron 

isotopes with a ∆56Fe of 0.48, 0.39 and 0.18 ‰, respectively. The stem and leaves 4 and 5 

obtained lighter iron than the nutrient solution (∆
56Fe of −0.18 ‰  for stem, −0.17 ‰ for leaf 

4 and −0.37 ‰ for leaf 5) (Table 5-5). 

 

 

Figure 5.7  Mean ∆56Feplant-nutrient solution of two pots. Horizontal lines: composition of the complete 
plants. Error bars denote the standard reproducibility of the mean of two pots. 

 
Complete maize plants grown under Fe-deficient conditions were only slightly enriched in the 

heavier iron isotopes compared to the nutrient solution with +0.1 ‰. Iron of the roots and of 
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the first three leaves was heavier than the nutrient solution by 0.25, 0.21, 0.26 and 0.11 ‰, 

whereas leaves 4 and 5 and the stem obtained lighter iron than the nutrient solution (∆
56Fe of 

−0.06 ‰ for stem, −0.12 ‰ for leaf 4 and −0.30 ‰ for leaf 5). The trend for the ∆
56Fe was 

identical between –Fe and +Fe plants. However, the isotopic difference to the nutrient 

solution was larger in +Fe plants. 

In addition to the ∆56Fe values the ∆58Fe values were determined as well. The nutrient 

solution spiked with 58Fe yielded a δ58Fe of 458.4 ‰ (Table 5-5). Mass balance calculations 

showed that iron of complete +Fe plants was depleted by about 30 ‰ and that of –Fe plants 

was depleted by about 100 ‰ compared to the nutrient solution. This depletion reveals that 

there was unspiked iron in all parts of the plants (Figure 5.8).  

 

 

Figure 5.8  Mean ∆58Feplant-nutrient solution of two pots of experiment 4. Horizontal lines: composition 
of the complete plants. Error bars denote the standard reproducibility of the mean of 
two pots. 

 

This unspiked iron can merely result from seed iron as the plants only obtained a nutrient 

solution enriched in 58Fe. This explanation is supported by the following calculation: maize 

seeds contained 23 µg/g iron with a δ
56Fe of −0.14 ‰ (Table 5-2) which results in a natural 

δ
58Fe of approximately −0.28 ‰, as iron isotope fractionation is mass-dependent. Maize seeds 

had a weight of 200 mg which results in an iron content of 4.6 µg. As five maize seeds were 

grown in one pot, the sum of iron from all plant organs in one pot contained 23 µg seed iron. 

The total iron content of the plants in the pot 1 was 403 µg for +Fe plants and 114 µg for –Fe 

plants (sum of the iron content of all plant organs given in Table 5-5). The total iron content of 
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the plants in pot 2 was 420 µg for +Fe plants and 96 µg for –Fe plants. Given that 23 µg of 

this total iron is sourced in the seeds, 380 µg iron in +Fe plants of pot 1 was derived from the 

spiked nutrient solution (94.3 %). In –Fe plants 91 µg iron was derived from the spiked 

nutrient solution (79.8 %). In +Fe plants of pot 2 397 µg iron was derived from the spiked 

nutrient solution (94.5 %). In –Fe plants 73 µg iron was derived from the spiked nutrient 

solution (76.0 %). With binary mixing it is now possible to calculate the δ
58Fetotal plant with f 

being the fraction of seed iron and iron from nutrient solution, respectively and δ
58Fe their 

respective isotopic composition: 

δ
58Fetotal plant=f · δ58Feseed+ (1−f) · δ58Fenutrient solution                                                                  5.4 

This results in a δ58Fetotal plant for pot 1, +Fe plants of 432.26 ‰ (measured: 430.22 ‰; Table 

5-5), for –Fe plants 365.74 ‰ (measured: 352.87 ‰; Table 5-5) and for pot 2, +Fe plants of 

433.17 ‰ (measured: 424.92 ‰; Table 5-5) and for –Fe plants 348.22 ‰ (measured: 

355.26 ‰; Table 5-5). The deviations of the calculated values from the measured values 

might result from uncertainties from iron concentrations and dry weights of seeds, and 

propagated errors of δ
58Fe of the different plant organs. 

With mass balance (equation 5.4) it is possible to calculate the fraction of seed Fe in every 

plant organ of the maize plants (Figure 5.9). 

 

Figure 5.9  Mean fraction of seed Fe in the different plant organs of maize plants of experiment 4 
in %. 

 



5  Deciphering mechanisms of iron acquisition and retranslocation in maize 

122 

 

It can be recognized that +Fe plants contain a less percentage of seed Fe as –Fe plants. Roots 

and leaves 3-5 as well as the stem of +Fe plants contain around 5 % seed Fe, whereas leaf 1 

contains more than 20 % and leaf 2 about 13 % seed Fe.  

Roots and leaf 2-5 as well as the stem of –Fe plants contain between 20-25 % seed Fe, leaf 1 

holds more than 40 %. 

5.3.5 Experiment 5: Maize grown on a soil substrate 

Roots of maize plants grown on the soil substrate showed very high iron concentrations at all 

three points of harvest. This might be due to a high apoplastic iron pool. All plant organs at 

the first and second point of harvest yielded iron concentrations typical for green plant parts 

(Marschner, 1995); however, at the third point of harvest the stem and leaves 2 to 6 showed a 

decrease in the iron concentration whereas the first leaf contained nearly 300 µg/g more iron 

than at the first and second harvest point (Table 5-6).  

In chapter 3 the isotopic composition δ
56Fe of the iron which is most likely to be available for 

plant nutrition in the Stagni-Haplic Luvisol soil substrate where maize plants grew on, was 

shown to be –0.27 ‰. As the same number of plants as well as all organs of the plants were 

harvested in all experiments, it was possible to calculate the iron content of the different plant 

parts as basis of a mass balance. This shows that complete plants obtained the same iron 

isotope composition within the 2 standard deviation at the three times of harvest with a δ
56Fe 

of –0.05, –0.03 and –0.01 ‰, respectively (Figure 5.10). Therefore the ∆56Feplant-soil for 

complete maize plants was reproduced with approximately 0.25 ‰ at all three points of 

harvest. 

The obtained δ56Fe values of the different organs of the maize plants covered a small range of 

about 0.5 ‰. Original seeds showed a slight enrichment of the light iron isotopes compared to 

IRMM-014 (Table 5-6). 
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Figure 5.10 ∆
56Feplant-soil of maize plant parts of experiment 5. Horizontal lines: ∆56Fe of total plant. 

The 2 standard deviation of replicate measurements amounts to 0.07 ‰ in δ
56Fe. 

 

The ∆56Feplant-soil values for the maize plants are illustrated in Figure 5.10. It can clearly be 

seen that during growth younger leaves were enriched in the heavier iron isotopes. Within 2 

standard deviations (see section 5.2.5) roots and stems had the identical iron isotope 

composition at all three points of harvest. In contrast iron of leaves 1 and 2 evolved towards 

heavier compositions from the first to the second, but to lighter compositions from the second 

to the third harvest point. In parallel the ∆
56Fe values increased in leaves 3 and 4 from the first 

to the third harvest point whereas in the new grown leaves 5 and 6 at the second harvest point 

the ∆56Fe value was lower than in all leaves harvested earlier. Again, these leaves also 

became increasingly enriched in the heavier iron isotopes by up to 0.45 ‰ from the second to 

the third harvest point. The new grown seventh leaf at the third harvest point contained iron 

that was enriched in the heavy isotopes by 0.3 ‰ compared to the plant-available soil iron. 
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5.4 Discussion 

5.4.1 Isotope fractionation during acquisition of iron 

The SPAD value as well as the iron concentrations of maize in the first experiment (maize 

sequentially harvested when grown on the Fe(III)-EDTA –supplemented nutrient solution) of 

this study provided evidence that plants suffered from iron deficiency. The complete iron 

isotope composition ∆
56Feplant-nutrient solution (without apoplastic iron in roots and iron in stems) 

of these maize plants revealed an enrichment in the lighter iron isotopes compared to the 

Fe(III)-EDTA at all growth stages. This finding points at a fractionation favouring the lighter 

iron isotopes which occurs during acquisition of iron by maize plants. A similar finding was 

reported in chapter 4 for oat grown on a Fe(III)-EDTA-supplemented nutrient solution. Under 

non-limiting iron supplies, iron uptake of all plants is mediated via a constitutive acquisition 

system that consists of a membrane-bound ferric reductase which is linked to a divalent metal 

ion transporter and an ATP-driven proton extrusion pump. This is similar to the “strategy I” 

iron acquisition of plants but cannot be upregulated under iron-stress. Hence maize plants of 

experiment 1 probably enzymatically reduced iron of Fe(III)-EDTA but almost certainly this 

ferrous iron could not be quantitatively taken up by the membrane ion transporter. The 

reduction of iron has been shown to fractionate iron isotopes if it is not quantitative, favouring 

the lighter iron isotopes in the ferrous species (e.g. Welch et al., 2003; Anbar et al., 2005; 

Crosby et al., 2007). Probably the residual ferrous iron in the apoplast was oxidized and 

precipitated as Fe(OH)3 or FePO4. This precipitation is likely to be quantitative and therefore 

caused no additional fractionation. Thus, the apoplastic iron pool was enriched in the light 

iron isotopes. In addition maize exuded phytosiderophores which could bind precipitated 

Fe(III) in the apoplast. This chelation process favours the heavier iron isotopes as has been 

shown by Dideriksen et al. (2008) or Brantley et al. (2004). PS can compete with EDTA for 

iron as ligands and chelates can be exchanged, the direction of the reaction is determined by 

the stability constant of the respective complexes. Siderophores form multi-dentate and very 

stable complexes with dissolved Fe(III), with stability constants up to ~1050 (Hider, 1984). 

Fe(III)-EDTA has a stability constant of ~1025. As the heavier iron isotopes are favoured by 

the complex with the strongest bonds (Urey, 1947, Schauble, 2004), Fe(III)-PS is expected to 

obtain a heavier iron isotope composition than the Fe(III)-EDTA or precipitated iron. Fe(III)-

PS could be taken up easily by YS1-type membrane transporters that mediate root uptake by 

the cotransport of metal-phytosiderophores with protons (Curie et al., 2001; Schaaf et al., 
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2004). As the Fe(III)-PS complex as a whole is too large to cause any detectable fractionation 

(relative mass differences are too small), the Fe(III)-PS membrane transport process should 

not result in any further fractionation. Thus a binary mixing occurred in the maize plants, with 

iron being taken up by the reductive pathway (light Fe) and as Fe(III)-PS (heavy Fe). 

As iron of complete +Fe plants of experiment 1 became increasingly light during growth 

(Figure 5.3), it is obvious that the apoplast was not depleted in light iron isotopes. This is due 

to the exchange of the nutrient solution every two days. Thus a very light iron pool could have 

been developed. In contrast, under iron-deficiency, plants accelerate their specific iron 

acquisition strategies; hence strategy II plants exuded a larger amount of phytosiderophores 

into the nutrient solution. As no new iron diffused into the apoplast, the apoplastic light iron 

pool was depleted, as precipitated Fe(III) was bound to PS. Therefore iron of –Fe plants 

became increasingly enriched in the heavier iron isotopes from the second to the third point of 

harvest. 

In the second experiment (maize supplied with phytosiderophores from wheat 1) the SPAD 

value revealed that –Fe plants suffered from iron deficiency. Wheat phytosiderophores 

complexed Fe(III) from FeCl3 which resulted in the absence of fractionation as complexation 

was quantitative. During uptake of Fe(III)-PS into the maize plants no isotope fractionation is 

assumed as the complex is too large to cause any detectable mass-dependant isotope 

fractionation. FeCl3-PS is an efficient form of Fe supply as the Fe(III)-PS complex can be 

easily taken up. 

In contrast, plants grown on Fe(III)-EDTA were enriched in the lighter iron isotopes 

compared to the nutrient solution which was more distinct in +Fe than in –Fe plants and 

similar to the enrichment of light isotopes in maize plants of experiment 1. As explained in 

the context of experiment 1 this might be due to a larger fraction of enzymatically reduced 

iron.  

The similarity of the δ56Fe values obtained for the Bienfait solutions and roots of maize of the 

third experiment (maize plants for Bienfait solution (Fe(III)-EDTA) demonstrates that iron 

isotope fractionation has to occur before membrane transport, supporting the hypothesis of a 

preferential enzymatically reduction of light iron isotopes in the apoplast and the development 

of a light apoplastic Fe pool. As remaining Fe(III)-EDTA in the apoplast was probably washed 

out during cleaning of roots, only the isotope composition of that iron which was reduced 

once and then precipitated in the apoplast was measured. Complete +Fe plants were enriched 
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in the light iron isotopes, similar to that of experiment 1 and 2 (plants fed with Fe(III)-EDTA 

supplemented nutrient solution). Under iron-deficient conditions no new iron diffused into the 

apoplast, therefore the apoplastic iron pool was likely to be depleted in the light isotopes 

(Rayleigh fractionation model) during remobilization of iron. 

Mass balance calculations with δ
56Fe values revealed that iron of complete maize plants 

grown under Fe-sufficient and deficient conditions in experiment 4 (maize supplied with 

phytosiderophores from wheat, 58Fe tracer experiment) was unfractionated compared to that 

of the FeCl3-PS nutrient solution. This is similar to the finding in experiment 2. Therefore it is 

concluded that uptake of iron in the presence of phytosiderophores does not lead to isotope 

fractionation.  

Complete maize plants grown on soil (experiment 5) were enriched in the heavier iron 

isotopes. These plants probably had to exude more phytosiderophores as plants grown on 

Fe(III)-EDTA, as the constitutive acquisition system was not sufficient to avoid iron 

deficiency. Exuded phytosiderophores complexed the Fe(III) from the rhizosphere which was 

bound there to poorly-crystalline iron oxyhydroxides or to organic complexes. This binding 

could have resulted in an enrichment of the heavier iron isotopes as shown in chapter 3 of this 

thesis, and the Fe(III)-PS complex enriched in the heavy iron isotopes, was transported into 

the plant. 

It can be concluded that the direction and extent of iron isotope fractionation during 

acquisition of iron in maize plants depends on the form of iron supply and therefore on iron 

availability. 

5.4.2 Isotope fractionation during (re-)translocation of iron 

In all experiments it was observed that stable iron isotopes distributed unequally between the 

different organs of maize plants indicating that (re-)translocation of iron in maize leads to iron 

isotope fractionation.  

It has been proposed that reduction causes the uptake of light iron in the roots of maize plants 

grown on the Fe(III)-EDTA-supplied nutrient solution and that chelation to phytosiderophores 

in the rhizosphere of maize plants grown on soil favours the heavier iron isotopes (see 5.4.1).  

Ferrous iron which has been taken up by the root cells of maize plants grown on the Fe(III)-

EDTA-supplied nutrient solution (experiments 1,2 and 3) had to be chelated by nicotianamine 



5  Deciphering mechanisms of iron acquisition and retranslocation in maize 

127 

 

(NA) in the root cells. As NA can chelate both, Fe(II) and Fe(III) (von Wirén et al., 1999), it 

is likely that iron was present as Fe(II)-NA in the root cells when it was taken up via the 

reductive pathway. For transport in the xylem to other plant tissues iron had to be oxidized 

before it was bound to citrate (Tiffin, 1966) to be transported in the xylem as a Fe(III)-citrate 

complex. If this oxidation was not quantitative iron isotope fractionation could occur, 

favouring the heavier iron isotopes in the ferric species. It has been stated recently that older 

leaves receive their iron from the xylem whereas younger leaves receive their iron from the 

phloem (Morrissey and Guerinot, 2009). This finding could explain why the first leaf of 

maize plants of experiments 1 and 3 obtained heavier iron than the respective roots. However, 

iron of the first leaf of experiment 4 was also heavier than the roots although iron has been 

taken up as Fe(III)-PS and it is therefore proposed that iron stayed in the ferric form and only 

changed its ligands (Hell and Stephan, 2003). However, currently no consensus exists on the 

fate of the imported Fe(III)-PS complex in strategy II plants. Fe(III) might just be chelated by 

NA as a default mechanism until it is channelled into further transport, storage sites or 

functional target molecules (Hell and Stephan, 2003). When chelate exchange for the 

transport in the xylem takes places it is likely that iron isotope fractionation occurs, favouring 

the heavier iron isotopes in the complex with the stronger bonds. If Fe(III)-citrate has a higher 

stability constant as Fe(III)-NA an enrichment of the heavier iron isotopes in the xylem could 

have occurred which were then transported into the first leaf. As it has been shown that iron is 

transported as Fe2+ into the cells vacuole and is stored probably as Fe(III)-complexes (Kim et 

al., 2006), it can be assumed that the mobilization of iron involves a reduction step and can 

therefore result in isotope fractionation favouring a relative accumulation of lighter iron 

isotopes in the soluble iron pool. This would explain the depletion in lighter iron isotopes 

during growth, as light iron isotopes from storage molecules in vacuoles or plastids were 

likely to be transported preferentially into younger plant parts, probably involving an initial 

reduction step. Similar scenarios have been proposed for iron translocation in strategy I plants 

in chapter 4 of this thesis. This negates the hypothesis of different translocation mechanisms 

in strategy I and II plants (chapter 2 and 4 of this thesis), at least for maize grown in nutrient 

solutions.  

The δ58Fe values of experiment 4 (maize supplied with phytosiderophores from wheat, 58Fe 

tracer experiment) revealed that unspiked seed iron was present in all leaves of +Fe and –Fe 

plants, regardless if grown before or after the separation in the +/− treatment. This is an 

evidence that maize retranslocated iron, regardless of the iron status. The amount of 
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apoplastic iron is likely to be small, as plants were only shortly grown. As younger leaves 

were enriched in 54Fe over 56Fe compared to the nutrient solution, remobilization of iron 

probably involves reduction of iron, even under Fe-sufficient conditions. 

The trend of decreasing δ
56Fe in +Fe maize leaves was the same in all nutrient-solution-

experiments and neither depended on the form of Fe supply, the supply of additional PS, nor 

the removal of apoplastic iron. This indicates that translocation mechanisms are always the 

same in maize plants grown in nutrient solutions. 

In experiment 5 (maize grown on soil) the δ
56Fe values differed in the various organs of 

maize plants at the three points of harvest. This is in contrast to what was found in oat plants 

grown on Fe(III)-EDTA (chapter 4 of this thesis). Mass balance showed that at all three 

harvest points maize plants had the same total iron isotope composition. This suggests that 

always the same fractionation mechanism occurred during acquisition of iron, whereas inside 

the plant, different translocation mechanisms of iron probably led to a partitioning of iron 

isotopes. During growth younger leaves were enriched in the heavier iron isotopes. This trend 

is totally opposite from that found in maize grown on nutrient solution and that found in bean 

grown on Fe(III)-EDTA (chapter 4 of this thesis) and points to diverse mechanisms of 

translocation in strategy I and II plants on soil. The results also indicate that translocation 

mechanisms of maize differ between soil and nutrient solution as growth medium which lead 

to a different distribution of iron isotopes inside the plants. 

At the moment it is not clear what exactly these differences are, as many details in iron 

metabolism in plants are still unclear (Morrissey and Guerinot, 2009), but different numbers 

of redox changes and chelation processes are likely. 

 

5.5 Conclusion 

This chapter reports the results and a preliminary interpretation of using stable iron isotopes to 

investigate the specific processes of iron metabolism of maize as a representative of strategy 

II plants. The obtained results reveal that the direction and extent of iron isotope fractionation 

during acquisition of iron by maize plants depends on the form of iron supply and therefore 

on iron availability. It is also shown that stable iron isotope fractionation is an indicator for 

iron (re-)translocation in maize plants. It is demonstrated that iron was retranslocated 

regardless of the iron status of the plants. This retranslocation process involved at least one 
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reduction step and transport of remobilized iron from leaf to leaf. Mostly light Fe developed 

during growth probably due to a change in redox states during translocation 

The translocation mechanisms in maize grown on soil seem to be different to that of maize 

grown on nutrient solution and to that of strategy I plants when grown on soil. It is 

hypothesized that, depending on the kind of Fe supply, strategy I and II plants probably have 

different numbers of redox cycles and chelation changes during iron translocation. 
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5.6 Tables 

Table 5-2 All data of experiment 1 

time
iron 

status
pot/repe

tition
plant 
part

dry 
mass 
[mg]

Fe 
concentration 

[µg/g]

Fe 
content 

[µg]
δ56

Fe 
[‰]

∆56
Feplant-

nutrient 

solution

mean 

∆∆∆∆56Fe SD

EDTA 0.214
seeds 23 -0.136

T 0 +Fe 1 roots 689 91 63 -0.317 -0.531
2 roots 578 85 49 -0.226 -0.440
3 roots 714 64 46 0.041 -0.173
4 roots 585 71 41 -0.449 -0.663
1 leaf 1 114 89 10 -0.007 -0.221
2 leaf 1 119 76 9 0.187 -0.027
3 leaf 1 123 52 6 0.486 0.272

 4 leaf 1 116 69 8 0.090 -0.124
1 leaf 2 233 71 17
2 leaf 2 239 64 15
3 leaf 2 275 53 15 0.087 -0.127
4 leaf 2 240 48 12 -0.335 -0.549
1 leaf 3 605 83 50 -0.938 -1.152
2 leaf 3 634 62 39 -0.954 -1.168
3 leaf 3 668 55 37 -0.694 -0.908
4 leaf 3 580 35 20 -0.976 -1.190
1 leaf 4 903 106 96 -1.170 -1.384
2 leaf 4 714 69 49 -1.187 -1.401
3 leaf 4 939 66 62 -1.001 -1.215
4 leaf 4 711 70 50 -1.329 -1.543

T 1 +Fe 1 roots 1180 132 156 -0.305 -0.519
2 roots 1400 86 120 -0.630 -0.844
3 roots 1360 47 64 -0.640 -0.854
4 roots 1440 58 84 -0.193 -0.407
1 leaf 1 90 104 9 0.187 -0.027
2 leaf 1 110 154 17 0.060 -0.154
3 leaf 1 110 70 8 0.294 0.080
4 leaf 1 140 65 9 0.174 -0.040
1 leaf 2 230 60 14 -0.106 -0.320
2 leaf 2 230 81 19 0.025 -0.189
3 leaf 2 250 43 11 -0.084 -0.298
4 leaf 2 200 90 18 -0.026 -0.240
1 leaf 3 630 88 55 -0.755 -0.969
2 leaf 3 640 97 62 -0.533 -0.747
3 leaf 3 690 77 53 -0.784 -0.998
4 leaf 3 660 96 63 -0.583 -0.797
1 leaf 4 1740 81 140 -1.248 -1.462
2 leaf 4 1730 65 112 -1.308 -1.522
3 leaf 4 1730 67 116 -1.043 -1.257
4 leaf 4 1780 75 133 -1.151 -1.365

-0.878 0.124

-1.402 0.116

lost

-0.656 0.227

-0.035 0.096

-0.262 0.059

-0.452 0.207

-0.025 0.214

-1.386 0.134

-1.104 0.132

-0.338 0.298
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Table 5-2 continuation 

time
iron 

status
pot/repe

tition
plant 
part

dry 
mass 
[mg]

Fe 
concentration 

[µg/g]

Fe 
content 

[µg]
δ56

Fe 
[‰]

∆56
Feplant-

nutrient 

solution

mean 

∆∆∆∆56Fe SD

T 0 +Fe 1 leaf 5 1610 74 120 -1.478 -1.692
2 leaf 5 1770 63 112 -1.558 -1.772
3 leaf 5 1320 60 80 -1.335 -1.549
4 leaf 5 1560 95 149 -1.690 -1.904

T 1 -Fe 1 roots 1090 38 42 -0.100 -0.314
2 roots 1400 33 46 -0.268 -0.482
3 roots 1260 58 73 -0.183 -0.397
4 roots 1270 37 47 -0.256 -0.470
1 leaf 1 70 89 6 0.179 -0.035
2 leaf 1 90 90 8 0.500 0.286
3 leaf 1 110 86 9 0.398 0.184
4 leaf 1 70 98 7 0.240 0.026
1 leaf 2 220 72 16 0.027 -0.187
2 leaf 2 250 70 18 0.014 -0.200
3 leaf 2 260 82 21
4 leaf 2 240 83 20 0.520 0.306
1 leaf 3 570 83 47 -0.608 -0.822
2 leaf 3 640 104 67 -0.850 -1.064
3 leaf 3 590 88 52 -0.516 -0.730
4 leaf 3 650 94 61 -0.395 -0.609
1 leaf 4 1600 109 174 -1.102 -1.316
2 leaf 4 1750 56 98 -1.166 -1.380
3 leaf 4 1650 74 122 -0.934 -1.148
4 leaf 4 1750 80 140 -1.022 -1.236
1 leaf 5 1250 41 51 -1.241 -1.455
2 leaf 5 1430 35 50 -1.364 -1.578
3 leaf 5 1370 38 51 -1.134 -1.348
4 leaf 5 1460 34 50 -1.278 -1.492

T 2 +Fe 1 roots 1970 61 120 -0.737 -0.951
2 roots 1670 59 99 -0.647 -0.861
3 roots 1710 59 101 -0.743 -0.957
4 roots 1810 90 163 -1.267 -1.481
1 leaf 1 120 86 10 -0.003 -0.217
2 leaf 1 90 104 9 0.330 0.116
3 leaf 1 120 83 10 0.011 -0.203
4 leaf 1 110 122 13 0.104 -0.110
1 leaf 2 250 66 17 -0.527 -0.741
2 leaf 2 230 60 14 -0.230 -0.444
3 leaf 2 190 73 14 -0.101 -0.315
4 leaf 2 250 71 18 -0.345 -0.559
1 leaf 3 650 92 60 -0.924 -1.138
2 leaf 3 510 63 32 -0.697 -0.911
3 leaf 3 540 82 44 -0.683 -0.897
4 leaf 3 680 85 58 -0.989 -1.203

-1.468 0.095

lostlost

-1.062 0.283

-0.103 0.154

-0.807 0.193

-1.270 0.101

0.115 0.147

-1.037 0.156

-0.515 0.181

-0.027 0.288

-1.729 0.149

-0.416 0.077
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Table 5-2 continuation 

time
iron 

status
pot/repe

tition
plant 
part

dry 
mass 
[mg]

Fe 
concentration 

[µg/g]

Fe 
content 

[µg]
δ56

Fe 
[‰]

∆56
Feplant-

nutrient 

solution

mean 

∆∆∆∆56Fe SD

T 2 +Fe 1 leaf 4 2070 82 169 -1.247 -1.461
2 leaf 4 1500 80 119 -1.070 -1.284
3 leaf 4 1600 93 148 -1.014 -1.228
4 leaf 4 1970 78 153 -1.591 -1.805
1 leaf 5 2670 62 166 -1.775 -1.989
2 leaf 5 2410 73 175 -1.382 -1.596
3 leaf 5 2820 89 250 -1.408 -1.622
4 leaf 5 2520 88 221 -1.885 -2.099
1 leaf 6 1800 51 92 -2.148 -2.362
2 leaf 6 2620 74 193 -1.753 -1.967
3 leaf 6 2590 54 140 -2.027 -2.241
4 leaf 6 2360 62 145 -2.245 -2.459

T 2 -Fe 1 roots 1490 38 56 -0.605 -0.819
2 roots 1340 37 49 -0.132 -0.346
3 roots 1520 42 64 0.036 -0.178
4 roots 1320 31 41 -0.239 -0.453
1 leaf 1 2020 75 151 -0.200 -0.414
2 leaf 1 2300 86 198 0.093 -0.121
3 leaf 1 2000 82 165 0.197 -0.017
4 leaf 1 1890 84 159 0.297 0.083
1 leaf 2 120 41 5 -0.293 -0.507
2 leaf 2 100 63 6 0.067 -0.147
3 leaf 2 120 73 9 0.209 -0.005
4 leaf 2 100 72 7 -0.118 -0.332
1 leaf 3 230 63 15 -0.767 -0.981
2 leaf 3 260 75 19 -0.315 -0.529
3 leaf 3 250 75 19 -0.322 -0.536
4 leaf 3 230 78 18 -0.878 -1.092
1 leaf 4 690 36 25 -1.076 -1.290
2 leaf 4 690 55 38 -0.835 -1.049
3 leaf 4 690 71 49 -0.578 -0.792
4 leaf 4 530 53 28 -1.129 -1.343
1 leaf 5 1940 25 48 -1.489 -1.703
2 leaf 5 1900 34 65 -1.061 -1.275
3 leaf 5 1860 40 75 -0.616 -0.830
4 leaf 5 1580 40 63 -1.083 -1.297
1 leaf 6 970 21 20 -1.470 -1.684
2 leaf 6 1270 27 34 -1.474 -1.688
3 leaf 6 1350 40 53 -1.277 -1.491
4 leaf 6 1270 35 44 -1.322 -1.536

-0.449 0.271

-1.600 0.101

-2.257 0.213

0.260

-1.826 0.255

-1.445

-1.276 0.357

-0.117 0.215

-0.248 0.219

-1.119 0.252

-0.784 0.295
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Table 5-3 All data of experiment 2 

Fe 
medium

iron 
status

pot/repet
ition plant part

dry 
mass 
[g]

Fe 
concentra

tion 
[µg/g]

Fe 
content 

[µg] δ56
Fe [‰]

∆56
Feplant-

nutrient 

solution

mean 

∆∆∆∆56
Fe SD

EDTA 0.147
50mMFeCl3-PS -0.445

Fe(III)- +Fe 1 roots 0.23 1262 290 -0.070 0.375
PS 2 roots 0.25 1376 351 -0.109 0.336

3 roots 0.24 1283 301 -0.239 0.206
4 roots 0.26 1260 326 -0.203 0.242
1 leaf 1 0.04 252 10 -0.439 0.006
2 leaf 1 0.04 388 14 -0.379 0.066
3 leaf 1 0.04 324 12 -0.413 0.032

 4 leaf 1 0.03 345 12 -0.454 -0.009
1 leaf 2 0.07 242 17 -0.542 -0.097
2 leaf 2 0.08 350 27 -0.559 -0.114
3 leaf 2 0.08 297 23 -0.576 -0.131
4 leaf 2 0.08 338 26 -0.552 -0.107
1 leaf 3 0.14 197 28 -0.916 -0.471
2 leaf 3 0.15 280 43 -0.944 -0.499
3 leaf 3 0.15 250 38 -1.045 -0.600
4 leaf 3 0.22 266 57 -0.952 -0.507
1 leaf 4/5 0.22 138 30 -1.318 -0.873
2 leaf 4/5 0.22 170 37 -1.344 -0.899
3 leaf 4/5 0.22 168 36 -1.396 -0.951
4 leaf 4/5 0.22 173 38 -1.338 -0.893
1 stem 0.23 172 39 -1.219 -0.774
2 stem 0.25 200 50 -1.170 -0.725
3 stem 0.21 215 46 -1.253 -0.808
4 stem 0.27 190 51 -1.203 -0.758

Fe(III)- -Fe 1 roots 0.23 300 68 -0.125 0.320
PS 2 roots 0.28 305 86 -0.254 0.191

3 roots 0.27 339 91 -0.270 0.175
4 roots 0.26 247 65 -0.273 0.172
1 leaf 1 0.03 171 6
2 leaf 1 0.04 218 8 -0.112 0.333
3 leaf 1 0.04 198 7 -0.147 0.298

 4 leaf 1 0.03 198 7 -0.147 0.298
1 leaf 2 0.07 145 10 -0.272 0.173
2 leaf 2 0.08 186 15 -0.362 0.083
3 leaf 2 0.08 183 14 -0.349 0.096
4 leaf 2 0.08 147 12 -0.431 0.014
1 leaf 3 0.15 89 13 -1.006 -0.561
2 leaf 3 0.18 75 13 -0.801 -0.356
3 leaf 3 0.16 102 17 -0.890 -0.445
4 leaf 3 0.17 86 14 -0.836 -0.391
1 leaf 4/5 0.37 42 15 -1.055 -0.610
2 leaf 4/5 0.45 51 23 -0.930 -0.485
3 leaf 4/5 0.38 46 17 -1.061 -0.616
4 leaf 4/5 0.37 44 16 -0.974 -0.529
1 stem 0.30 29 9 -0.793 -0.348
2 stem 0.37 38 14 -0.711 -0.266
3 stem 0.34 32 11 -0.798 -0.353
4 stem 0.33 26 9 -0.939 -0.494

lost

-0.438 0.089

-0.560 0.064

-0.365 0.095

0.214 0.071

0.310 0.020

0.092 0.065

-0.519 0.056

-0.904 0.033

-0.766 0.034

0.290 0.079

0.024 0.033

-0.112 0.014
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Table 5-3 continuation 

Fe 
medium

iron 
status

pot/repet
ition plant part

dry 
mass 
[g]

Fe 
concentra

tion 
[µg/g]

Fe 
content 

[µg] δ56
Fe [‰]

∆56
Feplant-

nutrient 

solution

mean 

∆∆∆∆56
Fe SD

Fe(III)- +Fe 1 roots 0.39 895 352 -0.134 -0.281
EDTA 2 roots 0.37 992 369 -0.193 -0.340

3 roots 0.38 708 271 -0.072 -0.219
4 roots 0.40 873 353 -0.024 -0.171
1 leaf 1 0.04 115 4 -0.707 -0.854
2 leaf 1 0.03 87 3 -0.229 -0.376
3 leaf 1 0.03 114 4 -0.229 -0.376
4 leaf 1 0.04 114 4 -0.229 -0.376
1 leaf 2 0.09 77 7 -0.532 -0.679
2 leaf 2 0.08 104 8 -0.376 -0.523
3 leaf 2 0.08 93 8 -0.143 -0.290
4 leaf 2 0.09 93 8 -0.143 -0.290
1 leaf 3 0.22 71 15 -0.529 -0.676
2 leaf 3 0.19 105 20 -0.643 -0.790
3 leaf 3 0.21 92 20 -0.480 -0.627
4 leaf 3 0.21 88 18 -0.396 -0.543
1 leaf 4/5 0.61 61 37 -1.046 -1.193
2 leaf 4/5 0.53 90 48 -1.039 -1.186
3 leaf 4/5 0.58 72 42 -0.940 -1.087
4 leaf 4/5 0.61 69 42 -1.038 -1.185
1 stem 0.44 34 15 -1.093 -1.240
2 stem 0.44 43 19 -0.985 -1.132
3 stem 0.38 38 14 -1.021 -1.168
4 stem 0.44 39 17 -1.056 -1.203

Fe(III)- -Fe 1 roots 0.38 263 101 0.072 -0.075
EDTA 2 roots 0.41 279 113 0.160 0.013

3 roots 0.39 284 111 0.737 0.590
4 roots 0.36 265 94 0.238 0.091
1 leaf 1 0.04 86 3 -0.520 -0.667
2 leaf 1 0.04 89 3 -0.874 -1.021
3 leaf 1 0.04 96 4 -0.191 -0.338
4 leaf 1 0.04
1 leaf 2 0.09 103 9 -0.277 -0.424
2 leaf 2 0.09 83 8 -0.985 -1.132
3 leaf 2 0.10 76 7 -0.082 -0.229
4 leaf 2 0.09 76 7 -0.083 -0.230
1 leaf 3 0.23 36 8 -0.979 -1.126
2 leaf 3 0.23 61 14 -0.395 -0.542
3 leaf 3 0.25 42 11 -0.154 -0.301
4 leaf 3 0.21 31 7 -0.400 -0.547
1 leaf 4/5 0.35 17 6
2 leaf 4/5 0.50 20 10 -0.138 -0.285
3 leaf 4/5 0.40 17 7 -0.347 -0.494
4 leaf 4/5 0.33 17 6 -0.347 -0.494
1 stem 0.40 8 3 -1.580 -1.727
2 stem 0.44 8 3 -0.854 -1.001
3 stem 0.46 7 3 -0.303 -0.450
4 stem 0.40 7 3 -0.303 -0.450

lost

lost

-0.424 0.121

-0.907 0.605

-0.504 0.429

-0.629 0.351

0.155 0.298

-0.675 0.341

-0.659 0.103

-1.163 0.051

-1.186 0.046

-0.253 0.074

-0.495 0.239

-0.445 0.191
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Table 5-4 All data of experiment 3 

Fe 
medium

iron 
status

pot/rep
etition plant part

dry 
mass 
[mg]

Fe 
concentra

tion 
[µg/g]

Fe 
content 

[µg]
δ56

Fe 
[‰]

∆56
Feplant-

nutrient 

solution

mean 

∆∆∆∆56
Fe SD

EDTA (2007) 0.147
Fe(III)- +Fe 1 root apoplast 750 -0.496 -0.643
EDTA 2 root apoplast 639 -0.399 -0.546

1 roots 463 170 78 -0.331 -0.478
2 roots 326 138 45 -0.221 -0.368
1 leaf 1 46 189 9 0.046 -0.101
2 leaf 1 24 154 4 0.132 -0.014
1 leaf 2 109 105 11 -0.142 -0.289

 2 leaf 2 65 105 7 -0.042 -0.189
1 leaf 3 260 101 26 -0.697 -0.844
2 leaf 3 165 105 17 -0.499 -0.645
1 leaf 4/5 470 94 44 -1.135 -1.282
2 leaf 4/5 372 93 35 -0.942 -1.088
1 stem 462 123 57 -0.423 -0.570
2 stem 315 104 33 -0.407 -0.554

Fe(III)- -Fe 1 root apoplast 202 0.191 0.044
EDTA 2 root apoplast 222 0.692 0.546

1 roots 400 28 11 0.201 0.054
2 roots 354 53 19 0.521 0.374
1 leaf 1 36 73 3 -0.510 -0.657
2 leaf 1 34 83 3 -0.532 -0.679
1 leaf 2 82 55 4 -0.253 -0.400

 2 leaf 2 96 83 8 -0.374 -0.521
1 leaf 3 187 24 4 -0.103 -0.250
2 leaf 3 237 46.9 11 -0.113 -0.260
1 leaf 4/5 212 14 3 -0.021 -0.168
2 leaf 4/5 297 22.6 7 -0.028 -0.175
1 stem 316 6.9 2 -0.266 -0.413
2 stem 287 10.5 3 -0.164 -0.311

-0.562 0.011

-0.239 0.071

-0.745 0.140

-1.185 0.137

-0.594 0.069

0.295 0.355

0.214 0.227

-0.423 0.078

-0.058 0.061

-0.172 0.005

-0.362 0.072

-0.668 0.015

-0.461 0.086

-0.255 0.007
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Table 5-5 All data of experiment 4 
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          Table 5-6 All data of experiment 5 

number of 
harvest

plant 
part

dry 
weight 

[g]

Fe 
concentration 

[µg/g]

Fe 
content 

[µg]

δ56
Fe 

[‰]

2SD 

[‰]
1

∆56
Feplant-soil 

[‰]

seeds 0.20 23 4.6 -0.136 0.0700.070

1 st harvest roots 0.14 1129 156 -0.045 0.070 0.225
stem 0.20 92 18 -0.004 0.070 0.266
leaf 1 0.09 167 16 -0.047 0.070 0.223
leaf 2 0.20 108 22 -0.003 0.070 0.267
leaf 3 0.21 104 22 -0.123 0.070 0.147
leaf 4 0.05 101 5 -0.126 0.070 0.144

2 nd  harvest roots 0.20 1082 216 -0.010 0.070 0.260
stem 0.97 169 164 -0.077 0.070 0.193
leaf 1 0.11 127 14 0.020 0.070 0.290
leaf 2 0.21 184 39 0.114 0.070 0.384
leaf 3 0.36 143 51 0.081 0.070 0.351
leaf 4 0.65 129 83 -0.032 0.070 0.238
leaf 5 0.50 113 56 -0.167 0.070 0.103
leaf 6 0.04 147 6 -0.258 0.070 0.012

3 rd  harvest roots 0.28 1116 317 -0.030 0.070 0.240
stem 2.77 40 111 -0.039 0.070 0.231
leaf 1 0.14 460 63 -0.030 0.070 0.240
leaf 2 0.17 97 17 -0.039 0.070 0.231
leaf 3 0.64 71 45 0.035 0.070 0.305
leaf 4 0.87 83 72 0.262 0.070 0.532
leaf 5 1.95 77 151 0.257 0.070 0.527
leaf 6 1.54 75 116 0.177 0.070 0.447
leaf 7 0.30 62 19 0.028 0.070 0.298

 

1 given as the 2 standard deviation reproducibility of replicate measurements 
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