
  

 
 

Role of polysialic acid and NCAM in 
interneuron development 

 
 
 
 
 

Von der Naturwissenschaftlichen Fakultät  

der Gottfried Wilhelm Leibniz Universität Hannover 

zur Erlangung des Grades 

Doktorin der Naturwissenschaften 

Dr. rer. nat. 

 

 

genehmigte Dissertation 

 

 

von 

Dipl.-Biol. Iris Melanie Röckle 

geboren am 09. Mai 1978 in Stuttgart 

 

 

 

2010 



  

Diese Arbeit wurde im Institut für Zelluläre Chemie der Medizinischen Hochschule 

Hannover angefertigt. 

 

 

Referent:  Prof. Dr. Herbert Hildebrandt 
Institut für Zelluläre Chemie 
Zentrum Biochemie 
Medizinische Hochschule Hannover 
Carl-Neuberg-Str. 1, 30625 Hannover 

 
 
Korreferent: Prof. Dr. Peter Claus 

Institut für Neuroanatomie 
Zentrum Anatomie 
Medizinische Hochschule Hannover 
Carl-Neuberg-Str. 1, 30625 Hannover 

 
 
Drittprüfer:  Prof. Dr. Anaclet Ngezahayo 

Institut für Biophysik 
Leibniz Universität Hannover 
Herrenhäuser Straße 2, 30419 Hannover 

 
 
Tag der Promotion: 08. März 2010 
 

 

 

 

 

 

 

 

 

 

 

Schlagworte: Interneuronentwicklung, Polysialinsäure, Zelladhäsion 
keywords: interneuron development, polysialic acid, cell adhesion 



  

Erklärung zur Dissertation 
 

Hierdurch erkläre ich, dass ich meine Dissertation mit dem Titel „Role of polysialic 

acid and NCAM in interneuron development“ selbständig verfasst und die 

benutzten Hilfsmittel und Quellen sowie gegebenenfalls die zu Hilfeleistung 

herangezogenen Institutionen vollständig angegeben habe. 

 

Die Dissertation wurde nicht schon als Masterarbeit, Diplomarbeit oder andere 

Prüfungsarbeit verwendet.



Dissertation Iris Röckle                                                                                       Table of Contents 
 

 

Table of Contents 

Zusammenfassung................................................................................................. 1 

Summary................................................................................................................ 2 

Chapter 1 – General Introduction ........................................................................... 3 

1.1 NCAM isoforms............................................................................................. 3 
1.2 Developmental regulation and posttranslational modification of NCAM........ 4 
1.3 PolySia biosynthesis ..................................................................................... 6 
1.4 Developmental regulation of polysialylation .................................................. 7 
1.5 NCAM interactions and NCAM-mediated neurite outgrowth ......................... 7 
1.6 Tools for the analysis of polySia and NCAM functions ................................. 9 
1.7 Mode of polySia function............................................................................. 10 
1.8 PolySia in postnatal neurogenesis.............................................................. 12 
1.9 Transgenic approaches to NCAM and polySia functions ............................ 14 

1.9.1 NCAM-deficient mice............................................................................ 14 
1.9.2 Polysialyltransferase single knockout mice .......................................... 15 
1.9.3 Polysialyltransferase double knockout mice......................................... 17 

1.10 PolySia and NCAM in neuropsychiatric disorders..................................... 18 
1.11 Objectives ................................................................................................. 20 

Chapter 2 - Polysialic acid controls NCAM-induced differentiation of neuronal 
precursors into calretinin-positive olfactory bulb interneurons.......................... 21 

Chapter 3- Changes of GABAergic interneuron populations in the forebrain of  
mice deficient for polysialic acid or NCAM ....................................................... 40 

Chapter 4 – General Discussion........................................................................... 70 

References ........................................................................................................... 78 

Abbreviations........................................................................................................ 93 

Curriculum Vitae................................................................................................... 95 

Publications .......................................................................................................... 96 

Danksagung ......................................................................................................... 98 



Dissertation Iris Röckle                                                                                     Zusammenfassung 
 

 1

Zusammenfassung 

Das neurale Zelladhäsionsmolekül NCAM und seine außergewöhnliche 
Glykosylierung mit Polysialinsäure (PolySia) sind eng mit der Entwicklung und 
Plastizität des Nervensystems verbunden. PolySia verringert die Zelladhäsion auf 
unspezifische Art und Weise und schafft dadurch permissive Bedingungen, z. B. 
für die Migration neuraler Vorläuferzellen. PolySia reguliert jedoch auch 
spezifische, NCAM-vermittlelte Interaktionen. Im Unterschied zur wohlbekannten 
Migrationsstörung der Interneuron-Vorläuferzellen des olfaktorischen Bulbus in 
PolySia-defizienten Mäusen, ist noch nicht geklärt, ob PolySia möglicherweise 
deren Differenzierung sowie die Entwicklung kortikaler Interneurone beeinflusst.  

Die hier vorliegende Doktorarbeit beinhaltet zwei Studien zur Rolle von NCAM und 
PolySia in der Interneuronentwicklung in vitro und in vivo. In der ersten Studie 
konnte mittels Primärkulturen von Neuroblasten der subventrikulären Zone der 
Einfluss von PolySia auf die Differenzierung von Vorläuferzellen untersucht und 
von der fördernden Wirkung auf die Migration getrennt werden. Das Entfernen von 
PolySia förderte die Entstehung von Neuriten und die Reifung zu Calbindin-
positiven Interneuronen. Diese Reaktion konnte durch den Kontakt mit NCAM 
imitiert und durch ein NCAM-bindendes Peptid unterbunden werden. Dies deutet 
auf eine Beteiligung NCAM-spezifischer Interaktionen hin. Darüber hinaus führte 
die Inkubation von Vorläuferzellen aus NCAM-knockout Mäusen mit einem 
löslichen NCAM-Fc Fusionsprotein zu einer erhöhten Differenzierung, ein Befund, 
der darauf hinweist, dass diese Reaktion durch heterophile NCAM Interaktionen 
hervorgerufen wurde.  

Abnorme Expression von NCAM und polySia wurde mit der Pathophysiologie von 
Schizophrenie und anderen neuropsychiatrischen Erkrankungen in 
Zusammenhang gebracht. Markante Veränderungen bei Schizophrenen betreffen 
die Dichte der Interneuronen im präfrontalen Kortex und im Hippocampus, sowie 
die Größe des olfaktorischen Bulbus. Im zweiten Teil meiner Arbeit wurde 
untersucht, wie sich der Verlust von polySia auf bestimmte 
Interneuronpopulationen auswirkt. Um unterscheiden zu können, ob Reduktion 
von NCAM, Abnahme von polySia oder unzureichende Polysialylierung von NCAM 
oder eventuell weiteren polysialylierten Molekülen zu Veränderungen führt, 
wurden Mäuse mit unterschiedlich kombinierten Ncam1- und 
Polysialyltransferase-Mutationen analysiert. Eine Auswertung maßgeblicher 
Interneuron-Marker ergab, dass die Dichte Parvalbumin-positiver Zellen im 
präfrontalen Kortex und Calbindin-positiver Zellen im olfaktorischen Bulbus in allen 
polySia- oder NCAM-defizienten Mausstämmen verringert war. Dagegen nahm die 
Dichte Parvalbumin-positiver Zellen in den CA Feldern des Hippocampus zu.  

Zusammengefasst belegen diese Ergebnisse, dass Polysialinsäure auf NCAM für 
die Entwicklung spezifischer GABAerger Interneuronsubtypen im Vorderhirn der 
Maus unerlässlich ist und deuten darauf hin, dass PolySia die Migration und 
Differenzierung von Interneuron-Vorläuferzellen über zwei unterschiedliche 
Mechanismen beeinflusst.  
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Summary 

The neural cell adhesion molecule NCAM and its unique glycosylation with 
polysialic acid (polySia) are tightly associated with neural development and 
plasticity. PolySia attenuates cell adhesion in a non-specific manner and creates 
permissive conditions for e.g. neural precursor migration. Alternatively, polySia 
acts as a specific regulator of NCAM-mediated interactions. In contrast to the well-
known migration deficits of olfactory bulb interneuron precursors in polySia-
deficient mice, the potential impact of polySia on their differentiation as well as on 
the development of cortical interneurons is unresolved. 

The thesis presented here comprises two studies analyzing the role of NCAM and 
polySia on interneuron development in vitro and in vivo. Using primary cultures of 
subventricular zone-derived neuroblasts, the first study dissects the influence of 
polySia on precursor differentiation from its function as a promoter of neuroblast 
migration. Removal of polySia enhanced neuritogenesis and maturation into 
calbindin-positive interneurons. This response was mimicked by exposure to 
NCAM and could be blocked by a NCAM-binding peptide, pointing towards an 
involvement of NCAM specific interactions. Moreover, the incubation of precursors 
derived from NCAM-knockout mice with a soluble NCAM-Fc fusion protein 
resulted in a higher degree of differentiation, indicating that heterophilic NCAM 
binding partners mediate the differentiation response. 

Aberrant NCAM and polySia expression have been linked to the pathophysiology 
of schizophrenia and other neuropsychiatric disorders. Prominent findings in 
schizophrenia are altered interneuron densities in the prefrontal cortex and in the 
hippocampus as well as smaller olfactory bulbs. In the second part of my thesis, I 
investigated the effect of polySia deficiency on selected interneuron populations. 
To dissect, whether effects were caused by loss of NCAM, loss of polySia, or 
reduced polysialylation of either NCAM or additional polySia carriers, mice with 
differently combined Ncam1 and polysialyltransferase deletions were 
comparatively analyzed. Evaluation of major interneuron markers revealed a 
reduced density of parvalbumin-positive cells in the prefrontal cortex and of 
calbindin-positive cells in the olfactory bulb of all polySia- or NCAM-deficient 
strains, whereas densities of parvalbumin-positive cells in the CA-fields of the 
hippocampus were increased.  

These results prove that NCAM-bound polySia is essential for the development of 
specific GABAergic interneuron subtypes and indicate that polySia affects 
migration and differentiation of interneuron precursors by two distinct mechanisms. 
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Chapter 1 – General Introduction 
1.1 NCAM isoforms 

In the brain of higher vertebrates billions of neurons form complex networks. For 

the development of these circuitries a precise temporal and spatial control of 

cellular interactions is essential. Cell adhesion molecules (CAMs) are important 

players in that field. The first CAM identified in vertebrates was the neural cell 

adhesion molecule NCAM (Thiery et al. 1977), which was originally described as a 

synaptic membrane glycoprotein termed D2 (Jorgensen and Bock 1974). NCAM is 

a cell surface glycoprotein belonging to the immunoglobulin (Ig) superfamily. The 

Ig superfamily is a heterogenic group of proteins that share a common fold, a 

sandwich of two β-sheets, called the Ig fold (Halaby and Mornon 1998). NCAM is 

encoded by a single gene located on chromosome 11q23.1 in humans (official 

gene name NCAM1; Nguyen et al. 1986; Walsh et al. 1986) and on chromosome 9 

in mice (official gene name Ncam1; D'Eustachio et al. 1985). By alternative 

splicing three major isoforms are generated, which differ in their C-terminal regions 

and, according to their apparent molecular weight, are named NCAM-180 

(180kDa), NCAM-140 (140kDa) and NCAM-120 (120kDa) (Fig. 1A; Murray et al. 

1986; Cunningham et al. 1987; Walsh and Dickson 1989). NCAM-180 and NCAM-

140 are type II transmembrane molecules with intracellular domains of different 

lengths, whereas NCAM-120 lacks an intracellular domain and is attached to the 

membrane via a glycosylphosphatidylinositol (GPI) anchor. The N-terminal 

(extracellular) region of all NCAM isoforms consists of five immunoglobulin (Ig)-like 

domains and two fibronectin type III (FnIII)-like repeats. Structural variations in the 

extracellular part result from alternative splicing of the small exons VASE 

(“variable alternatively spliced exon”, in the fourth Ig domain), MSD1a, b, c 

(muscle specific domain 1), and AAG (all four between the two FnIII-like repeats, 

Fig. 1A; Ronn et al. 1998; Walmod et al. 2004). In addition to the membrane 

bound isoforms, NCAM also exists in a secreted form produced by the expression 

of the small so-called SEC-exon. This exon contains a stop-codon therefore 

resulting in a truncated form of the extracellular part of the NCAM molecule (Bock 

et al. 1987; Gower et al. 1988). Furthermore, soluble NCAM can be produced via 

ectodomain shedding from the membrane-bound isoforms. Proteolytic cleavage 

mediated by a disintegrin and metalloprotease (ADAM) family metalloprotease 
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results in the release of the entire NCAM extracellular region (NCAM-EC) as a 

soluble fragment (Vawter et al. 2001; Hübschmann et al. 2005; Hinkle et al. 2006; 

Kalus et al. 2006; Brennaman and Maness 2008a).  

 

1.2 Developmental regulation and posttranslational modification 
of NCAM  

NCAM-180 and NCAM-140 are expressed by neurons, whereas NCAM-120 is 

primarily found in glia (Noble et al. 1985; Dityatev et al. 2000; Maness and 

Schachner 2007). As shown for rodents, the expression of all NCAM isoforms is 

developmentally regulated. In the mouse NCAM-180 and NCAM-140 first appear 

at embryonic day 8 (E8; Probstmeier et al. 1994). Both are highly expressed 

during fetal and early postnatal development, and persist at lower levels into 

adulthood (Chuong and Edelman 1984; Gennarini et al. 1986; Oltmann-Norden et 

al. 2008). In contrast, NCAM-120 is hardly detectable until postnatal day 5 (P5). 

But parallel to the progression of myelination a massive up-regulation of this 

characteristic isoform of oligodendrocytes and myelin sheaths has been observed 

during the second and third postnatal week (Bhat and Silberberg 1986; Bhat and 

Silberberg 1988; Oltmann-Norden et al. 2008). A recent study revealed a similar 

developmental regulation pattern of the major NCAM isoforms in the human 

prefrontal cortex (PFC; Cox et al. 2009). 

NCAM can be posttranslationally modified by phosphorylation and palmitoylation 

of the intracellular domain (Sorkin et al. 1984; Little et al. 1998; Ponimaskin et al. 

2008) and by glycosylation of its extracellular part (Geyer et al. 2001; Liedtke et al. 

2001; von der Ohe et al. 2002). Six potential N-glycosylation sites have been 

detected in the Ig-like domains of NCAM (Fig. 1; Albach et al. 2004). To all of 

these sites variable glycans can be attached giving rise to a high structural 

diversity (Liedtke et al. 2001). The most prominent modification of NCAM is its 

glycosylation with polysialic acid (polySia). The term “polysialic acid” denotes 

polymers of sialic acids, which comprise derivates of the nine carbon sugers 

neuraminic acid (5-amino-3,5-dideoxy-D-glycero-D-galacto-2-nonulosonic acid, 

Neu) or KDN (3-deoxy-D-glycero-D-galacto-2-nonulosonic acid). With over 50 

naturally occurring derivatives identified so far sialic acids are highly diverse 

(Angata and Varki 2002). PolySia on NCAM consists of a linear homopolymer of 
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α2,8-glycosidically linked N-acetylneuraminic acid (Neu5Ac) with typically up to 50-

60 residues (Galuska et al. 2008). One or more polySia chains can be attached to 

the 5th and 6th N-glycosylation site in the 5th Ig-like domain of all three major NCAM 

isoforms (Fig. 1; Nelson et al. 1995; Franceschini et al. 2001; Liedtke et al. 2001; 

Hildebrandt et al. 2008). However, the predominant carriers of polySia in the brain 

are NCAM-140 and NCAM-180, whereas the majority of NCAM-120 remains in a 

polySia-free state (Oltmann-Norden et al. 2008). 

 

 

Figure 1: Structure of the neural cell adhesion molecule NCAM and polysialic acid. A: Schematic 
illustration of the three major NCAM isoforms. In the extracellular part all NCAM isoforms consist of 
five immunoglobulin (Ig)-like domains and two fibronectin type III repeats. NCAM-140 and NCAM-
180 are transmembrane proteins, which differ in the length of their intracellular part, whereas 
NCAM-120 is attached to the plasmamembrane via a glycosylphosphatidylinositol (GPI) anchor. 
Structural variations can result from alternative splicing of small exons, depicted exemplarily at 
NCAM-140. NCAM contains six N-glycosylation sites and in vivo polysialylation is confined to the 
5th and 6th N-glycosylation site. B: Polysialic acid (polySia)-specific tools. Two important tools for 
the analysis of polySia functions are the monoclonal antibody 735 and the phage-derived 
endosialidases, which specifically cleave polySia. Due to its negative charge polySia is highly 
hydrated and therefore considerably expands the hydrodynamic radius of NCAM, as indicated by 
the purple sphere. 
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1.3 PolySia biosynthesis 

In mammals, the biosynthesis of polySia is catalyzed by two polysialyltransferases 

(polySTs), termed ST8SiaII (STX) and ST8SiaIV (PST; Eckhardt et al. 1995; 

Kojima et al. 1995; Nakayama et al. 1995) which are both independently capable 

of synthesizing polySia on NCAM (Kojima et al. 1996; Mühlenhoff et al. 1996b; 

Angata and Fukuda 2003). The two closely related Golgi-resident enzymes show 

59% identity on the amino acid sequence level and were classified as typical 

members of the mammalian sialyltransferase family (Harduin-Lepers et al. 2001). 

They are type II transmembrane glycoproteins with a short N-terminal cytoplasmic 

tail, a transmembrane domain, a stem region, and a large C-terminal catalytic 

domain turned towards the lumen of the Golgi-apparatus. The catalytic domain 

includes three consensus sequences (the sialymotives L, S, and VS) which are 

conserved in all animal sialyltransferases and known to be involved in binding of 

donor and acceptor substrate, and in the transfer of sialic acid (Datta and Paulson 

1995; Harduin-Lepers et al. 2005). The polySTs contain a structurally unique 

polybasic motif of 32 amino acids, called the polysialyltransferase domain (PSTD), 

which is absent in other members of the sialyltranferasse family and is essential 

for their polysialylation capability (Nakata et al. 2006). Both enzymes catalyze the 

transfer of multiple α2,8-linked sialic acid residues to terminally α2,3- or α2,6-

sialylated galactose residues that are bound in α1,4-linkage to N-acetyl 

glucosamine (Mühlenhoff et al. 1996b; Angata et al. 1998). Whereas most 

glycosyltransferases modify glycan structures irrespective of the carrier protein the 

polySTs are highly selective for NCAM, which is by far the major polySia acceptor. 

So far, only a limited number of other polysialylated proteins have been found in 

the mammalian system. These proteins include the polySTs themselves, which 

autopolysialylate their own N-glycosylation sites (Mühlenhoff et al. 1996a; Close 

and Colley 1998), the α-subunit of the voltage-gated sodium channel in rat brain 

(Zuber et al. 1992), the scavenger receptor CD36 in human and mouse milk (Yabe 

et al. 2003), and neuropilin-2 on human dendritic cells (Curreli et al. 2007). Most 

recently, SynCAM 1 was identified as a novel polysialylated protein in brains from 

NCAM-deficient and wildtype mice (Galuska et al. 2009). 
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1.4 Developmental regulation of polysialylation 

Polysialylation of NCAM is highly regulated during brain development. PolySia is 

detectable in mouse starting at E9, shortly after the first appearance of NCAM 

(Probstmeier et al. 1994; Ong et al. 1998). Then, polySia expression increases 

reaching a maximum in the perinatal phase, when almost all NCAM is 

polysialylated (Probstmeier et al. 1994; Oltmann-Norden et al. 2008; Schiff et al. 

2009). Postnatally, polySia declines rapidly by about 70% between P9 and P17 

(Oltmann-Norden et al. 2008). The down-regulation of polySia and the resulting 

increase of polySia-free NCAM coincide with the completion of major 

morphogenetic events during postnatal brain development. However, polySia 

expression persists into adulthood at sites of ongoing neurogenesis or plasticity, 

like the subventricular zone (SVZ) of the lateral ventricles or the subgranular zone 

(SGZ) of the hippocampal formation (Doetsch 2003; Bonfanti 2006).  

The total amount of polySia, the chain length distribution, the ratio of polysialylated 

to non-polysialylated NCAM, and the amount of polySia per NCAM molecule can 

be affected by alterations in the expression of the two polySTs (Galuska et al. 

2006; Hildebrandt et al. 2008). In this way, the degree of NCAM polysialylation 

may be adjusted by variation of the ST8SiaII and ST8SiaIV levels. Although there 

is a considerable overlap, differences in tissue- and time-specific mRNA 

expression patterns suggest an independent regulation of ST8SiaII and ST8SiaIV 

at the transcriptional level. In the perinatal mouse brain transcript levels of 

ST8SiaII exceed those of ST8SiaIV (Galuska et al. 2006; Oltmann-Norden et al. 

2008; Schiff et al. 2009). From P1 to P21, ST8SiaII transcript levels drop rapidly, 

whereas ST8SiaIV declines gradually (Oltmann-Norden et al. 2008). At P9 both 

polySTs reach identical transcript levels, and thereafter, ST8SiaIV becomes the 

predominant enzyme (Oltmann-Norden et al. 2008). Thus, ST8SiaII is prevailing 

during embryonic and early postnatal development, while ST8SiaIV is the major 

polysialyltransferase of the adult brain.  

 

1.5 NCAM interactions and NCAM-mediated neurite outgrowth 

One NCAM molecule is able to interact with another NCAM molecule (homophilic 

interaction) on the same cell (in cis) or on opposing cells (in trans; for review see: 

Soroka et al. 2008). As known for long, NCAM is involved in homophilic trans-
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interactions (Rutishauser et al. 1982). However, the exact nature of homophilic 

binding is still under discussion and several models exist including binding via the 

Ig3 domains, between Ig1 and Ig2 or the involvement of all five Ig-like domains 

(Rao et al. 1992; Rao et al. 1993; Rao et al. 1994; Ranheim et al. 1996; Kiselyov 

et al. 1997; Atkins et al. 1999; Jensen et al. 1999; Kasper et al. 2000; Johnson et 

al. 2004; Johnson et al. 2005a; Johnson et al. 2005b). A recent model for NCAM 

homophilic adhesion, based on the crystal structure of a fragment consisting of 

NCAM Ig1-Ig2-Ig3, postulates two different zipper-like arrays of NCAM molecules 

(Soroka et al. 2003; Walmod et al. 2004; Soroka et al. 2008).  

NCAM can also be involved in heterophilic interactions with other proteins and 

extracellular matrix molecules, thereby modulating diverse biological processes 

including cell adhesion, migration, proliferation, differentiation, survival and 

synaptic plasticity (Amoureux et al. 2000; Ronn et al. 2000a; Prag et al. 2002; 

Ditlevsen et al. 2003; for review see: Hinsby et al. 2004a; Walmod et al. 2004). 

Among the heterophilic binding partners of NCAM are other members of the Ig-

superfamily. A functional cooporation between NCAM and closely related cell 

adhesion molecule L1 in cis has been demonstrated. By inducing phosphorylation 

of tyrosine and serin residues in L1 this interaction seems to be involved in basal 

neurite outgrowth (Kadmon et al. 1990a; Kadmon et al. 1990b; Horstkorte et al. 

1993; Heiland et al. 1998). NCAM has also been found to be a high-affinity ligand 

of the transiently expressed axonal surface glycoprotein-1 (TAG-1; Milev et al. 

1996). In addition, NCAM interacts with several components of the extracellular 

matrix (ECM) like the glycosaminoglycan heparin (Cole et al. 1986; Cole and 

Akeson 1989), heparan sulfate proteoglycans (HSPGs) including agrin (Grumet et 

al. 1993; Burg et al. 1995), and chondroitin sulfate proteoglycans (CSPG) 

including phosphacan and neurocan. NCAM binding to phosphacan and neurocan 

interferes with NCAM homophilic interactions and inhibits neuronal adhesion and 

neurite outgrowth (Grumet et al. 1993; Friedlander et al. 1994; Milev et al. 1994; 

Retzler et al. 1996). NCAM was also observed to bind to collagens. However, this 

binding is probably indirect and mediated by NCAM interactions with the ECM via 

the heparin-binding site (Probstmeier et al. 1989; Probstmeier et al. 1992; Kiselyov 

et al. 1997). 

The most prominent and widely studied function of NCAM is the promotion of 

neurite outgrowth (e.g. Doherty et al. 1990; for review see: Walsh and Doherty 
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1997). This activity is presumably mediated through an interaction and activation 

of the fibroblast growth factor receptor (FGFR) in response to homophilic NCAM 

interactions (Williams et al. 1994; Saffell et al. 1997; Hinsby et al. 2004b). Data 

from pancreatic tumor cells indicate that NCAM initiates the assembly of a 

signaling complex consisting of NCAM, N-cadherin and FGFR-4 at the cell surface 

and a number of intracellular adaptor and signaling proteins. The formation of this 

complex seems to activate FGFR-4 and downstream signaling cascades 

(Cavallaro et al. 2001). Independent from FGF receptor activation, NCAM may 

also stimulate neurite outgrowth by acting as an alternative signaling receptor for 

members of the GDNF (glial cell line-derived neurotrophic factor) ligand family 

(Paratcha et al. 2003; Paratcha and Ledda 2008; Nielsen et al. 2009). Both GDNF 

and the GPI-anchored GDNF family receptor α1 (GFRα1) have been 

demonstrated to bind directly to NCAM. Association of NCAM with GFRα1 

downregulates NCAM-mediated cell adhesion and promotes high-affinity binding 

of GDNF to NCAM-140. The resulting activation of the cytoplasmic Src-like kinase 

Fyn and the focal adhesion kinase FAK seems to promote neurite outgrowth and 

Schwann cell migration (Paratcha et al. 2003; Sariola and Saarma 2003). Finally, 

NCAM itself, at least the transmembrane isoforms NCAM-140 and NCAM-180 can 

also take part in a number of direct or indirect interactions with various intracellular 

molecules (reviewed in: Walmod et al. 2004; Buttner and Horstkorte 2008). 

Amongst others, associations with the cytoskeletal linker-protein spectrin 

(Pollerberg et al. 1986; Pollerberg et al. 1987; Leshchyns'ka et al. 2003) or the src-

family tyrosine kinase fyn and the focal adhesion kinase FAK (Beggs et al. 1997) 

have been demonstrated and were implicated in NCAM-induced neurite 

outgrowth. 

 

1.6 Tools for the analysis of polySia and NCAM functions  

PolySia-specific antibodies and polySia-degrading enzymes turned out to be 

essential tools for the analysis of polySia functions (Fig. 1B). The monoclonal 

antibody 735 binds specifically to α-2,8-linked Neu5Ac with a chain length of at 

least eight residues (Frosch et al. 1985; Husmann et al. 1990; Hayrinen et al. 

2002). PolySia can be specifically degraded by the phage-derived enzymes 

endosialidase (endo-N-acetylneuraminidase, endoN) E or F (Gerardy-Schahn et 

al. 1995; Stummeyer et al. 2005). For binding to polySia-NCAM, endoNE seems to 
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require a minimum of eight α-2,8-linked Neu5Ac residues with a minimum of three 

residues on the nonreducing end (distal side) and a minimum of five residues on 

the reducing end (proximal side). Thus, after enzymatic cleavage, at least five 

sialic acid residues remain on NCAM (Finne and Makela 1985). By use of these 

reagents in vitro and in vivo important functions of polySia and NCAM in migration 

and differentiation of neuronal precursor cells, axon growth and pathfinding, 

neuronal plasticity and repair have been mapped (for review see: Kleene and 

Schachner 2004; Bonfanti 2006; Gascon et al. 2007b; Hildebrandt et al. 2007; 

Maness and Schachner 2007; Rutishauser 2008). 

To unravel NCAM functions and for use as pharmacological tools, a number of 

synthetic NCAM mimetic peptides have been developed (for review see: Berezin 

and Bock 2004). One example is the C3 peptide, which binds to the Ig1-domain of 

NCAM (Ronn et al. 1999). In the absence of NCAM interactions, a dendrimeric 

tetramer of this peptide (C3d) has been shown to mimic NCAM activity by inducing 

neurite outgrowth in vitro (Ronn et al. 1999; Ronn et al. 2000b). In low-density 

cultures of hippocampal neurons, this neuritogenic response has been 

demonstrated to be dose- and incubation time-dependent (Kiryushko et al. 2003). 

On the other hand, the C3d peptide inhibits NCAM-induced neurite growth (Ronn 

et al. 1999; Ronn et al. 2000b). Important in the context of this thesis, C3d has 

been shown to abolish the response of neuroblastoma cells to endoN treatment 

(Seidenfaden et al. 2003; Seidenfaden et al. 2006) indicating that this compound 

can block NCAM interactions induced by polySia removal. 

 

1.7 Mode of polySia function 

Models of NCAM interactions described so far mostly refer to NCAM, irrespective 

of its polysialylation status. PolySia, however, drastically changes NCAM 

properties. The classical model of polySia function is the “steric repulsion”. Due to 

its negative charge and high water binding capacity polySia forms a large and 

repulsive structure and therefore increases the distance between apposing cell 

membranes (Fig. 1B; Yang et al. 1992; Yang et al. 1994; Johnson et al. 2005b). 

Thereby, polySia is supposed to interfere with NCAM homo- and heterophilic 

interactions in cis and trans and to attenuate binding of other cell contact-

dependent receptors, such as cadherins, leading to reduced cell adhesion and cell 
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contact-dependent signaling (Rutishauser 1998; Fujimoto et al. 2001; Rutishauser 

2008). Recently, the analysis of polySia deficient mice (see below for details) 

revealed that a major function of polySia is to mask NCAM and to guarantee that 

NCAM mediated contacts take place in a highly organized, time- and site-specific 

manner (reviewed in: Hildebrandt et al. 2007; Mühlenhoff et al. 2009). The 

assumption that polySia acts as a control element of specific NCAM interactions 

and that down-regulation of polySia initiates NCAM signaling is supported by in 

vitro studies. In neuroblastoma cells, loss of polySia has been shown to initiate 

NCAM trans-interactions at cell-cell contact sites, leading to reduced proliferation 

but enhanced neuronal differentiation and survival by activation of the ERK/MAP-

kinase (extracellular signal-related/mitogen activated protein-kinase) pathway 

(Seidenfaden et al. 2003; Seidenfaden et al. 2006). 

In addition to the repulsive activity of polySia and its role as a regulator of NCAM 

interactions, polySia-specific functions have been suggested. In the presence of 

polySia, hippocampal and hypothalamic neurons were more sensitive to brain-

derived neurotrophic factor (BDNF) or ciliary neurotrophic factor (CNTF), resulting 

in enhanced neuronal survival (Muller et al. 2000; Vutskits et al. 2001; Vutskits et 

al. 2003). Recently, it has been shown that polySia can bind directly to a BDNF-

dimer to form a large complex (Kanato et al. 2008). Furthermore, it has been 

demonstrated that oligodendrocyte precursors require the presence of polySia for 

directed migration in a gradient of the platelet-derived growth factor (PDGF; Zhang 

et al. 2004). Other types of direct polySia action were indicated by binding of 

polySia to heparan sulfate proteoglycans of the cell surface or the extracellular 

matrix, which may be involved in synaptogenesis and remodeling of synapses 

(Storms and Rutishauser 1998; Dityatev et al. 2004) or by the effects of NCAM-

bound or free polySia on ionotropic glutamate receptors and synaptic plasticity 

(Vaithianathan et al. 2004; Hammond et al. 2006; Senkov et al. 2006). 

An important, but yet poorly defined aspect of polySia functions is its role in the 

regulation of neural progenitor differentiation. Removal of polySia with endoN 

reduces migration of oligodendrocyte preprogenitors and induces their 

differentiation in vitro and in vivo (Decker et al. 2000; Decker et al. 2002). 

Similarly, removal of polySia from the subventricular zone (SVZ) blocks cell 

migration and leads to a premature onset of neuronal differentiation of precursors 

in vivo and in explant cultures (Petridis et al. 2004). In these studies, however, it 
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remains open, whether reduced migration is causally linked to the observed 

differentiation and it is completely unclear, which of the above discussed modes of 

polySia action are accuntable for these responses. 

 

1.8 PolySia in postnatal neurogenesis 

PolySia is commonly used as a marker for postnatal neurogenesis (Doetsch 2003; 

Kempermann et al. 2004; Bonfanti 2006). The two main regions with persistent 

neurogenesis in adulthood are the subventricular zone (SVZ) and the subgranular 

zone in the hippocampal dentate gyrus (SGZ; Gage 2000). A role of polySia in 

migration and neuronal differentiation of progenitor cells in the SGZ has been 

shown only recently (Burgess et al. 2008). In contrast, several studies, including 

the analyses of the polysialylation- or NCAM-deficient mouse models (discussed 

below), deal with the role of polySia in the SVZ neurogenic system. The SVZ lines 

the lateral walls of the lateral ventricles and is the largest germinal zone of the 

adult rodent brain (Fig. 2; Conover and Allen 2002). It can be divided into an 

anterior (SVZa) and a posterior part. Most cells derived from the posterior part 

develop into astrocytes and oligodendrocytes (Privat 1975; Luskin and McDermott 

1994), whereas virtually all cells derived from the SVZa differentiate into neurons 

(Luskin 1993; Luskin et al. 1997). Initially, ependymal cells were considered as 

neural stem cells (NSCs) in the SVZ (Morshead et al. 1994; Johansson et al. 

1999), later glial fibrillary acidic protein expressing (GFAP) SVZ astrocytes were 

identified as NSCs (Doetsch et al. 1999; Alvarez-Buylla and Garcia-Verdugo 

2002), but the identity of the NSCs is still under debate (Chojnacki et al. 2009). 
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Figure 2: Adult neurogenesis in the subventricular zone (SVZ). The SVZ lines the lateral wall of the 
lateral ventricles (lv). In the SVZ stem cells (type B cells) give raise to transient amplifying 
precursors (type C cells) that produce neuroblasts (type A cells). The polySia-positive neuroblasts 
migrate along the rostral migratory stream (RMS) into the olfactory bulb (OB) where they become 
interneurons. To the right, the major markers of the different cell types are shown. Abbreviations: 
cc: corpus callosum, GABA: γ-aminobutyric acid, GFAP: glial fibrillary acidic protein.  
Based on: (Doetsch et al. 1997; Doetsch et al. 1999; Doetsch 2003) 
 

According to the current model, slowly dividing stem cells within the SVZ (SVZ 

astrocytes, type B cells) give rise to transient amplifying precursors (type C cells), 

which then produce migratory neuroblasts (type A cells) characterized by 

expression of class III β-tubulin and polySia (Doetsch and Alvarez-Buylla 1996; 

Doetsch et al. 1997; Doetsch et al. 1999; Morshead et al. 2003). These 

neuroblasts migrate tangentially in chain-like structures independent from radial 

glia along a well defined pathway, the rostral migratory stream (RMS) towards the 

olfactory bulb (OB), where they detach from the chains and differentiate into 

granule and periglomerular interneurons (Fig. 2; Luskin 1993; Rousselot et al. 

1995; Lois et al. 1996; Wichterle et al. 1997). Chains of migrating neuroblasts are 

ensheated by tube-like structures formed by astrocytes (Jankovski and Sotelo 

1996; Lois et al. 1996; Peretto et al. 1997). The function of the glial tunnels is not 

known and they are not essential for chain migration (Wichterle et al. 1997), but 

factors secreted by astrocytes appear to enhance the migration of SVZ 

neuroblasts (Mason et al. 2001). As outlined below, polySia plays a crucial role in 

neuroblast migration, as shown by its genetic or enzymatic deletion (Tomasiewicz 
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et al. 1993; Cremer et al. 1994; Ono et al. 1994; Hu et al. 1996; Chazal et al. 2000; 

Weinhold et al. 2005). In addition, polySia was found to be important in controlling 

cell-contact dependent differentiation (Petridis et al. 2004) and survival of SVZ 

derived neuroblasts (Gascon et al. 2007a; Gascon et al. 2008). 

The SVZ/RMS has become an important model to study the molecular and cellular 

mechanisms involved in adult neurogenesis in rodents (Alvarez-Buylla and Garcia-

Verdugo 2002; Hagg 2005; Lledo et al. 2006). In humans however, the RMS has 

been elusive until Curtis et al. (2007) demonstrated its existence. The SVZ is 

regarded as a potential source of adult neural stem cells and neuronal precursors 

that could be applied in brain repair in neurodegenerative disease like Parkinson 

or after stroke. To utilize these cells, it is essential to understand the mechanisms 

and molecular determinants that regulate their differentiation into specific neurons. 

Despite the evidence of polySia being involved in precursor migration and 

differentiation it is not clear, if differentiation after removal of polySia is a 

consequence of impaired migration or due to altered NCAM properties or other cell 

surface interactions that may be affected by polySia. 

 

1.9 Transgenic approaches to NCAM and polySia functions 

Major insights in polySia and NCAM functions were obtained from transgenic 

mouse models. In the last years diverse mouse strains lacking NCAM, either one 

or both polySTs or NCAM and the two polySTs were bred (Fig. 3). All mice differ in 

their phenotype and the comparison of shared and individual phenotypic traits 

allows for a dissection of NCAM and polySia functions during brain development. 

 

1.9.1 NCAM-deficient mice 
In 1994, Cremer et al. described a mouse model, which is deficient for all NCAM 

isoforms (N-/-; Fig. 3D), and in addition is almost completely devoid of polySia due 

to the absence of its major protein carrier. Unexpectedly, these mice displayed a 

rather mild phenotype. They appeared to be healthy and fertile and showed only a 

small reduction in brain weight, whereas the overall cytoarchitecture, with only a 

few exceptions, was normal. The most prominent finding was the reduced size of 

the olfactory bulbs. This is consistent with the phenotype of mice with a specific 

deletion of the NCAM-180 isoform and has been explained by disturbed tangential 
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migration of SVZ-derived neuronal precursors along the RMS towards the 

olfactory bulb (OB; Tomasiewicz et al. 1993; Cremer et al. 1994; Hu et al. 1996). 

This impaired neuroblast migration is phenocopied by enzymatic removal of 

polySia and therefore due to polySia deficiency (Ono et al. 1994). Another 

prominent morphological defect of N-/- mice is a delamination of the mossy fiber 

tract in the hippocampus. Moreover, N-/- mice showed deficits in spatial learning 

when tested in the Morris water maze and long-term potentiation (LTP) was 

severely impaired at mossy fiber-CA3 synapses and Schaffer collateral-CA1 

synapses of hippocampal organotypic slice cultures (Cremer et al. 1994; Muller et 

al. 1996; Cremer et al. 1998). 

 

1.9.2 Polysialyltransferase single knockout mice 
To unravel the individual role of the two polySTs in NCAM polysialylation, single 

knockout mice for each of the two polySTs have been generated (Eckhardt et al. 

2000; Angata et al. 2004). Both strains are viable and fertile but differ in their 

phenotype.  

In St8siaIV-knockout mice (IV-/-; Fig. 3C), the mossy fiber tract arising from the 

dentate gyrus was found to be devoid of polySia but, unlike in NCAM-deficient 

animals, displays a normal morphology and LTP at mossy fiber-CA3 synapses is 

unaffected. In contrast, LTP and long-term depression (LTD) are impaired at 

Schaffer collateral-CA1 synapses of adult IV-/- mice (Eckhardt et al. 2000). Thus, 

alterations of activity-induced synaptic plasticity in the CA1 region are similar in  

IV-/- and N-/- animals. Consistent with the lack of apparent neurodevelopmental 

defects, polySia levels in the brains of newborn IV-/- mice are analogous to the 

wildtype situation. This can be explained by compensation due to the high 

expression of ST8SiaII in early postnatal stages. In contrast, polySia expression is 

strongly reduced in adult ST8SiaIV-deficient animals corresponding to the 

predominance of ST8SiaIV in adult wildtype mice (Eckhardt et al. 2000; Oltmann-

Norden et al. 2008). 
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Figure 3: Overview of the different mouse models and synopsis of their phenotypes. A: wildtype 
mouse. B: St8siaII knockout mouse. C: St8siaIV knockout mouse. D: Ncam knockout mouse: E: 
St8siaII and St8siaIV double knockout mouse. F: St8siaII, St8siaIV and Ncam triple knockout 
mouse. Abbreviations: CA: cornu ammonis subfield of the hippocampus (Ammon’s horn), LTD: 
long-term depression, LTP: long-term potentiation, OB: olfactory bulb, RMS: rostral migratory 
stream. 

 

In St8siaII-knockout mice (II-/-; Fig. 3B) polySia levels are reduced in newborn 

animals while they are hardly affected in adults (Angata et al. 2004; Galuska et al. 

2006; Oltmann-Norden et al. 2008). Similar to the phenotype of NCAM-deficient 

mice, a morphological defect of the mossy fiber tract has been described in II-/- 
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mice. Its infrapyramidal bundle is elongated and mistargeting of mossy fibers is 

indicated by the presence of ectopic synapses. However, in contrast to IV-/- mice, 

the mossy fiber tract of adult II-/- animals is polySia-positive, pointing towards a 

developmental origin of this defect. These mossy fiber alterations have been 

linked to the higher exploratory drive and reduced behavioral responses to 

Pavlovian fear conditioning observed in II-/- mice (Angata et al. 2004). 

As judged by non-quantitative immunostaining, no obvious decrease of polySia 

expression in the SVZ and RMS of II-/- or IV-/- mice has been detected. From the 

regular pattern of migratory cells in the RMS of IV-/- and the unaltered gross 

morphology of RMS and OB in II-/- mice, it was concluded that precursor migration 

along this pathway is not impaired (Eckhardt et al. 2000; Angata et al. 2004). 

However, no detailed analysis has been performed so far and therefore minor, yet 

undetected defects due to slightly altered polysialylation patterns can not be 

excluded. 

 

1.9.3 Polysialyltransferase double knockout mice 
The simultaneous deletion of both polysialyltransferase genes (II-/-IV-/-; Fig. 3E) 

resulted in mice completely devoid of polySia but retaining normal levels of NCAM 

protein (Weinhold et al. 2005). II-/-IV-/- mice recapitulate the major morphological 

phenotype of N-/- mice, i.e. smaller olfactory bulbs, a migration deficit in the RMS 

and delamination of mossy fibers (Weinhold et al. 2005; Angata et al. 2007). This 

indicates that these defects are caused by the lack of polySia, independent of the 

presence or absence of NCAM. In contrast to NCAM, ST8SiaII or ST8SiaIV single 

knockout mice the II-/-IV-/- animals display additional defects resulting in a severe 

phenotype. Although II-/-IV-/- mice are indistinguishable from double-heterozygous 

littermates at P1, their postnatal growth is drastically retarded and less than 20% 

survive for more than four weeks. II-/-IV-/- mice have a high incidence of a 

progressive hydrocephalus with massive dilatation of the lateral and third 

ventricles in conjunction with thinning of cortex and corpus callosum as well as 

deformation of the hippocampal formation and fimbria. Independent of 

hydrocephalus formation, II-/-IV-/- mice show defects of several fiber tracts. The 

most striking findings, so far, were the complete absence of the anterior 

commissure as well as hypoplasia of the internal capsule, the corticospinal and 

mammillothalamic tracts, and a reduced rostrocaudal extent of the corpus 



Dissertation Iris Röckle                                                              Chapter 1 - General Introduction 
 

 18 

callosum (Weinhold et al. 2005; Hildebrandt et al. 2009). Since these II-/-IV-/- 

specific defects are fully reversed by the additional deletion of the NCAM gene in 

triple knockout mice (N-/-II-/-IV-/-; Fig. 3F), it has been concluded that they are 

caused by a gain of NCAM functions (Weinhold et al. 2005). Therefore, one 

function of polySia is to mask NCAM and prevent premature interactions. This is 

supported by a recent study, which revealed that the extent of fiber tract 

deficiencies observed in mice with selected combinations of mutant NCAM and 

polysialyltransferase alleles correlates strictly with the level of polySia-free NCAM 

during brain development (Hildebrandt et al. 2009). More important, this 

correlation indicates that also minor imbalances of NCAM polysialylation can 

cause deficits in brain connectivity.  

Angata et al. (2007) provide evidence that the migration of undefined precursors is 

impaired during cortical development of II-/-IV-/- mice. This study also reports 

reduced numbers of calbindin (CB)-positive interneurons in the cerebral cortex of 

adult II-/- IV-/- animals. Since no other interneuron populations were evaluated, the 

specificity of this effect remains elusive. Moreover, the observed defect may be not 

related to impaired migration during development but could be secondary to 

hydrocephalus formation, which results in cortical thinning as observed in the 

animals that were evaluated in this study.   

 

1.10 PolySia and NCAM in neuropsychiatric disorders 

Numerous studies link dysregulation of NCAM to the pathophysiology of 

schizophrenia and other neuropsychiatric disorders (reviewed in Vawter 2000; 

Sullivan et al. 2007; Brennaman and Maness 2008b). Elevated levels of a soluble 

NCAM fragment have been detected in the cerebrospinal fluid and in postmortem 

brains of schizophrenic patients, and fragment concentrations were found to 

correlate with severity and duration of the disease (Poltorak et al. 1995; van 

Kammen et al. 1998; Vawter et al. 2001; Sullivan et al. 2007). Furthermore, 

reduced polySia expression was observed in the hilus region of the hippocampus 

in schizophrenic brains (Barbeau et al. 1995). The neurodevelopmental hypothesis 

of schizophrenia implicates altered neuronal development in disrupted brain 

connectivity and cognitive dysfunction (Lewis and Levitt 2002; Rapoport et al. 

2005; Fatemi and Folsom 2009). Since NCAM and polySia play a crucial role in 
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cell migration and differentiation they are candidate factors for schizophrenia. 

NCAM1 as well as both polysialyltransferase genes map to chromosomal regions 

considered to be involved in genetic predisposition to schizophrenia (11q23.1, 

15q26, and 5q21 for NCAM1, ST8SIA2 and ST8SIA4, respectively; Lewis et al. 

2003; Lindholm et al. 2004; Maziade et al. 2005). Single nucleotide polymorphisms 

(SNPs) in the promoter region of ST8SIA2 showed a significant association with 

schizophrenia (Arai et al. 2006) and two recent studies suggested also an 

association between SNPs in the NCAM1 gene and schizophrenia (Atz et al. 2007; 

Sullivan et al. 2007). 

The striking analogies between the phenotype of NCAM- or polysialylation-

deficient mice and the pathophysiological findings in schizophrenia further support 

the possibility that NCAM polysialylation may be relevant to etiological aspects of 

schizophrenia. Ventricular enlargement as shown for NCAM-180 or polySia 

deficient (II-/-IV-/-) mice (Wood et al. 1998; Weinhold et al. 2005) is one of the most 

characteristic abnormalities in schizophrenia (Hyde and Weinberger 1990). Also 

similar to N-/- or II-/-IV-/- mice, patients with schizophrenia have a reduced size of 

the olfactory bulb (Turetsky et al. 2000). N-/- mice show deficits in spatial learning 

and LTP (Cremer et al. 1994; Cremer et al. 1998), which correlates with cognitive 

impairment, another hallmark finding in schizophrenia (Heinrichs and Zakzanis 

1998). Furthermore, in schizophrenic patients a reduction of corpus callosum size 

and length as well as a decreased size of the internal capsule has been reported 

(Innocenti et al. 2003; Hulshoff Pol et al. 2004; Douaud et al. 2007; Mitelman et al. 

2007; Begre and Koenig 2008). This is in correlation with the fiber tract deficits 

observed in polysialylation compromised mice (Hildebrandt et al. 2009). Major 

abnormalities of schizophrenic brains concern alterations of specific GABAergic 

interneurons, most notably of the parvalbumin-positive subtype, in the prefrontal 

cortex (PFC) and hippocampus (Reynolds et al. 2001; Eyles et al. 2002; Heckers 

and Konradi 2002; Zhang and Reynolds 2002; Sakai et al. 2008). As the combined 

evidence indicates the possibility that altered NCAM polysialylation contributes to 

a neurodevelopmental predisposition to schizophrenia, it appears mandatory to 

analyze, if NCAM- or polysialylation-deficient mice display aberrant compositions 

of interneurons, similar to those observed in schizophrenia. 
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1.11 Objectives 

In vitro data indicate that loss of polySia enhances differentiation of progenitor 

cells. In addition, enzymatic removal of polySia in vivo has been shown to induce 

premature differentiation of neuronal precursors in the subventricular zone and 

subgranular zone. However, since polySia also plays a crucial role in neuroblast 

migration in the rostral migratory stream, the cause for the differentiation response 

remained elusive. Differentiation could also result from impaired chain migration 

leading to altered interactions with the cellular environment along the migratory 

path. Therefore, the objective of the first study of this thesis was to investigate the 

role of polySia and NCAM in neuroblast differentiation in vitro, independent from a 

possibly confounding influence of migration.  

As outlined above, polySia and NCAM seem to be involved in interneuron 

migration and differentiation on the one hand as well as in the pathophysiology of 

schizophrenia on the other. Since alterations of GABAergic interneurons are 

frequently observed in schizophrenia, one important open question is, if any of the 

major interneuron populations is affected by altered NCAM polysialylation. The 

second study of this thesis addresses this question by evaluating selected 

interneuron populations of the olfactory bulb, prefrontal cortex and hippocampus in 

mouse models with impaired polysialylation capacity or NCAM deficiency. 
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Preface – About this manuscript 
 

In the absence of polysialic acid (polySia) neuroblast migration in the rostral 

migratory stream (RMS) is impaired. Together with migration deficits, enhanced 

neuronal differentiation has been observed in the RMS after enzymatic removal of 

polySia, but the cause for the differentiation response remained elusive and could 

result from halted chain migration leading to altered interactions with the cellular 

environment along the migratory path. Therefore, the first study of my thesis aimed 

at analyzing the impact of polySia and of the neural cell adhesion molecule NCAM 

on differentiation under controlled conditions in vitro and independent from its 

firmly established role in chain migration. 

For this purpose, primary cultures of subventricular zone (SVZ) derived precursors 

from early postnatal wildtype, NCAM knockout and polysialylation-deficient mice 

were generated. The wildtype cultures were treated with NCAM- or polySia- 

specific reagents and the differentiation response was analyzed by evaluation of 

neuritogenesis and the expression of biochemical differentiation markers. To 

confirm the absence of chain migration in the primary cultures, time-lapse 

recording was performed.  

My contributions to this manuscript comprised the preparation and culture of 

neuroblasts, the immunofluorescent staining, microscopy, and all evaluations. 

Prof. H. Hildebrandt and I designed the experiments and wrote the paper. 
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ABSTRACT: Understanding the mechanisms 
that regulate neurogenesis is a prerequisite for 
brain repair approaches based on neuronal 
precursor cells. One important regulator of 
postnatal neurogenesis is polysialic acid 
(polySia), a post-translational modification of 
the neural cell adhesion molecule NCAM. In the 
present study, we investigated the role of polySia 
in differentiaion of neuronal precursors isolated 
from the subventricular zone of early postnatal 
mice. Removal of polySia promoted neurite 
induction and selectively enhanced maturation 
into a calretinin-positive phenotype. Expression 
of calbindin and Pax6, indicative for other 
lineages of olfactory bulb interneurons, were not 
affected. A decrease in the number of TUNEL-
positive cells indicated that cell survival was 
slightly improved by removing polySia. Time 
lapse imaging revealed the absence of chain 
migration and low cell motility, in the presence 
and absence of polySia. The changes in survival 
and differentiation, therefore, could be dissected 

from the well-known function of polySia as a 
promoter of precursor migration. The 
differentiation response was mimicked by 
exposure of cells to soluble or substrate-bound 
NCAM and prevented by the C3d-peptide, a 
synthetic ligand blocking NCAM interactions. 
Moreover, a higher degree of differentiation was 
observed in cultures from polysialyltransferase-
depleted mice and after NCAM exposure of 
precursors from NCAM-knockout mice 
demonstrating that the NCAM function is 
mediated via heterophilic binding partners. In 
conclusion, these data reveal that polySia 
controls instructive NCAM signals, which direct 
the differentiation of subventricular zone-
derived precursors towards the calretinin-
positive phenotype of olfactory bulb 
interneurons. © 2008 Wiley Periodicals, Inc. Develop 
Neurobiol 68: 1170–1184, 2008 
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INTRODUCTION 
Neurogenic systems of the postnatal brain 
provide a reservoir of neuronal precursor cells 
with potential use in cell-based brain repair 
approaches (Lindvall et al., 2004; Falk and 
Frisen, 2005). In particular, ongoing 
neurogenesis from stem cells in the 
subventricular zone (SVZ) of the postnatal 
rodent brain has become an important model to 
study the molecular and cellular mechanisms 
that contribute to the generation of new 
neurons (Alvarez-Buylla and Garcia-Verdugo, 
2002; Hagg, 2005; Lledo et al., 2006). In vivo, 
slowly dividing stem cells give rise to transient 
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amplifying precursors, which then produce 
migratory neuroblasts characterized by 
expression of class III β-tubulin and polysialic 
acid (polySia) (Doetsch and Alvarez-Buylla, 
1996; Doetsch et al., 1997, 1999; Morshead et 
al., 2003). These neuroblasts migrate in chain-
like structures towards the olfactory bulb 
(OB), where they detach from the chains and 
differentiate into granule and periglomerular 
interneurons. Although the majority of granule 
cells are homogeneously GABAergic, sub-
populations of interneurons in the glomerular 
layer can be distinguished by differential 
expression of markers for GABAergic and 
dopaminergic neurons, or the calcium-binding 
proteins calretinin and calbindin (Kosaka et 
al., 1995; Brinon et al., 1999; Kohwi et al., 
2007; Parrish-Aungst et al., 2007). So far, little 
is known about the molecular cues regulating 
neuronal differentiation and maturation of 
SVZ-derived neuroblasts. Their neuronal 
commitment has been assumed, but recent 
evidence indicates conversion and 
differentiation into glial cell types upon 
ectopic transplantation (Seidenfaden et al., 
2006a). Thus, one challenge for using the 
reservoir of SVZ-derived precursors in cell-
based or endogenous brain repair approaches 
is to explore new molecular cues to direct their 
neuronal differentiation and maturation. 

In rodents and humans, polySia is 
intimately linked to postnatal neurogenesis 
from the SVZ (Alvarez-Buylla and Garcia-
Verdugo, 2002; Curtis et al., 2007). This 
carbohydrate polymer of α2,8-linked sialic 
acids is found almost exclusively as a post-
translational modification of the neural cell 
adhesion molecule, NCAM (Mühlenhoff et al., 
1998; Angata and Fukuda, 2003). Mice 
deficient in NCAM also lack polySia 
(Tomasiewicz et al., 1993; Cremer et al., 1994) 
and are characterized by impaired migration of 
SVZ-derived neuroblasts along the rostral 
migratory stream (RMS; Ono et al., 1994; Hu 
et al., 1996; Chazal et al., 2000). The  
migration phenotype must be explained by the 
loss of polySia, because it also developed in 
mice with genetic ablation of poly-Sia 
synthesis (Weinhold et al., 2005; Angata et al., 
2007) and could be copied by enzymatic 
removal of polySia using endo-N-acetyl-
neuraminidase (endoN) in vivo and in SVZ 
explant cultures (Ono et al., 1994; Hu et al., 
1996). Together with migration deficits, 
enhanced neuronal differentiation has been 

observed in the RMS after endoN treatment 
(Petridis et al.,  2004), but the cause for the 
differentiation response remained elusive and 
could result from halted chain migration 
leading to altered interactions with the cellular 
environment along the migratory path. This 
possibility is highlighted by recent work 
showing neuronal differentiation as a 
consequence of a cell-intrinsic block of 
neuroblast migration in the RMS of 
doublecortin-deficient mice with 
uncompromised polySia expression (Koizumi 
et al., 2006). The present study was designed 
to analyze the impact of polySia and NCAM 
on differentiation independent from its firmly 
established role in chain migration. Using 
primary cultures of neuroblasts derived from 
single cell suspensions of the SVZ, chain 
migration was not observed and the overall 
low cell motility was not affected by 
enzymatic removal of polySia. Morphometric 
analyses and evaluation of biochemical 
markers revealed that loss of polySia initiates 
NCAM trans-interactions, which promote the 
differentiation of SVZ-derived precursors into 
a calretinin-positive phenotype. 
 
METHODS 
 
Mice 
C57BL/6J and transgenic mice were bred at 
the central animal facility at Hannover 
Medical School. All protocols for animal use 
were in compliance with German law and 
approved by the responsible animal welfare 
officer. St8sia-II and St8sia-IV single knockout 
strains, which have been backcrossed with 
C57BL/6J mice for at least six generations, 
were intercrossed to obtain double knockout 
St8sia-II-/- St8sia-IV-/- animals (Weinhold et 
al., 2005). Ncam-/- mice were obtained from H. 
Cremer (Developmental Biology Institute of 
Marseille, Marseille, France; Cremer et al., 
1994) and backcrossed to C57BL/6J mice for 
at least six generations. Genotyping was 
performed by PCR as previously described 
(Weinhold et al., 2005). 
 
NCAM- and PolySia-Specific Reagents 
Recombinant endo-N-acetylneuraminidase 
(endoN) specifically degrading polySia was 
isolated as described (Gerardy-Schahn et al., 
1995; Stummeyer et al., 2005) and used in the 
cell culture medium at a concentration of 60 
ng/mL to remove polySia from the cell 
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surface. C3d, a synthetic dendrimeric undeca 
peptide which binds to the first Ig-like module 
of NCAM and its inactive variant C3d2ala 
(Ronn et al., 1999) were kindly provided by E. 
Bock (Panum Institute, Copenhagen, 
Denmark) and used at 1 μM. 

NCAM-Fc used in this study contains the 
extracellular domain of human NCAM (amino 
acids 1–705) fused to the constant (Fc) part of 
human IgG1. For construction of the 
expression plasmid the human NCAM-120 
cDNA (in the absence of the small 
alternatively spliced exons) was used as a 
template and a fragment comprising 
nucleotides 1–2,115 was amplified by PCR 
with the primers NCAMFwd (5’-
CCCAAGCTTACAATGCTGCAAACTAAG
GATC-3’) and NCAMRev (5’-ACGGATCC
ACTTACCTGTATTGCCTCCCAAG-3’) 
containing HindIII and BamHI restriction 
sites, respectively. Endonuclease restriction 
sites are underlined. After digestion, the 
HindIII-BamHI fragment was ligated into the 
corresponding sites of pcDNA3.1-Ig upstream 
of the DNA sequence encoding the human Fc 
part of IgG1. The vector pcDNA3.1-Ig was 
kindly provided by H. Volkmer (NMI 
Reutlingen, Germany). The resulting plasmid 
pcDNA3.1-N-Fc was stably expressed in 
polysialylation-deficient CHO-2A10 cells 
(Eckhardt et al., 1995). Secreted, polySia-free 
NCAM-Fc was affinity purified from cell 
culture supernatants by protein A-Sepharose 
chromatography. The human IgG1-Fc 
fragments used for control experiments were 
isolated on protein A-Sepharose from the 
supernatants of CHO-2A10 cells stably 
transfected with pSecTagC (Invitrogen, 
Germany) containing the HindIII-NotI 
fragment from pcDNA3.1-Ig. Recombinant 
NCAM-Fc and Fc protein were used at 1 
µg/mL. 

 
Culture of Primary Neuroblasts 
Brains dissected from postnatal day 2 mice 
(C57BL/6J or knockout strains as indicated in 
the result part) were immediately sliced into 
400 µm coronal vibratome sections, 
transferred to 1x HBSS (Hanks’ Balanced Salt 
Solution, GIBCO, Germany), and the anterior 
part of the SVZ was isolated from the striatal 
wall of the lateral ventricle. SVZ tissue was 
minced and incubated with 10 mg/mL Trypsin 
type IX (Sigma, Germany), 0.5 mg/mL DNAse 
I (Roche, Germany) at 37°C for 10 min. 

During the second half of the incubation 
period, 0.5 mg/mL DNAse I and 12 mM 
MgCl2 were added. After gentle trituration 
cells were collected by centrifugation with 
280g for 10 min at 4°C and the pellet was 
resuspended in Dulbecco’s modified Eagle 
Medium (high glucose), containing 2 mM 
Glutamax, 1% (v/v) N2 supplement, 2% (v/v) 
B27 (all from GIBCO, Germany), 10 µg/mL 
Insulin (Sigma, Germany), 10% (v/v) horse 
serum (Biochrom, Germany) and 5 µg/mL 
gentamycin (GIBCO, Germany). If not stated 
otherwise, single cell suspensions were seeded 
at densities of 100,000 cells/cm2 in 12 or 24 
well plates containing glass coverslips coated 
with poly-D-lysine (100 µg/mL). Reagents 
were added when cells were firmly attached 
(~2 h after start of culture). Fixation and 
immunostaining of cells followed 48 h after 
addition of test reagents. 
 
Culture of Neuroblasts on Cellular 
Substrate Layers 
Co-culture experiments were used to test the 
influence of NCAM presented at the cell 
surface of substrate cell layers on the 
neuroblast differentiation. To generate 
NCAM-positive cell layers, the clone LBN 
was used, representing a subclone of the 
murine fibroblast cell line L-929 stably 
expressing nonpolysialylated human NCAM-
140 (lacking the alternatively spliced exons 
VASE, a, b, c and AAG; Kasper et al., 1996). 
NCAM-negative layers were established with 
the mock transfected L-929 clone LVN. 
Mocktransfected LVN and NCAM-140 
expressing LBN cells were kindly provided by 
E. Bock (Panum Institute, Copenhagen, 
Denmark). The LBN cells were subcloned, 
screened by immunocytochemistry with 
NCAM-specific mAb 123C3, and a clone with 
homogeneous NCAM immunoreactivity was 
used. Western blot analysis confirmed that 
only non-polysialylated NCAM was expressed 
by LBN cells. To form the substrate layers, 
LBN or LVN cells were grown in 12-well 
plates on 20 mm diameter glass coverslips 
precoated with poly-D-lysine (100 µg/mL). In 
the experimental situation, primary neuroblasts 
were seeded on confluent monolayers. 
 
Time-Lapse Microscopy and 
Measurements of Cell Motility 
For time-lapse live-cell imaging cells were 
seeded in poly-D-lysine coated Lab-Tek two-
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immunocytochemistry. Rabbit, Rat, and mouse 
IgG-specific and subtype-specific Cy3- 
(Chemicon, CA), Alexa488-, Alexa568- 
(Molecular Probes, The Netherlands), and 
FITC-conjugated secondary antibodies 
(Rockland, CA) were used as suggested by the 
suppliers. In double stained immune-
fluorescence samples, specificity was 
controlled by omitting one of the two primary 
antibodies. Cross-reactivity was not observed 
for any of the secondary antibodies. Cells were 
coverslipped in Vectashield mounting medium 
with DAPI (Vector Laboratories, CA). 
Microscopy was performed using a Zeiss 
Axiovert 200 M equipped with AxioCam 
MRm digital camera and AxioVison software 
(Carl Zeiss, Germany). 
 
Terminal Deoxynucleotidyl Transfer-
ase-Mediated dUTP Nick end Labeling 
DNA strand breaks were detected by terminal 
deoxynucleotidyl transferase-mediated Dig-
oxigenin-dUTP nick end labeling (TUNEL) as 
described by Herzog et al. (2007). After 
preincubation in 1x terminal deoxytransferase 
(TdT) buffer containing 0.2 M cacodylate, 25 
mM Tris-HCl, 1 mM CoCl2 and 0.01% Triton 
X-100 (Fermentas, Germany), cells were 
labeled using 1x TdT buffer, 4 units TdT, 1 
µM DigdUTP and 0.1 mM dTTP for 1 h at 
37°C. The reaction was stopped by washing 
with 2x SSC (sodium citrate buffer). After that 
cells were rinsed with PBS and Digoxygenin 
was visualized using an anti-Dig-Rhodamin 
antibody (Roche, Germany). 
 
Evaluation of Neuritogenesis and of 
Immunocytochemical Markers 
From each well with cultured neuroblasts 
between 3 and 20 randomly selected frames 
(0.14 or 0.04 mm2) were scanned and 
evaluated in a blinded procedure using 
AxioVison software. Per frame, the mean 
length of all β-III-tubulin-positive processes 
exceeding 10 µm was determined and the 
number of processes was evaluated relative to 
the total number of neuroblasts. In addition, 
the number of neurite branch points and the 
number of processes per cell were counted in 
some of the experiments. Although neuritis 
were frequently touching each other, the use of 
β-III-tubulin staining enables the assignment 
of each neurite to a particular cell. For 
evaluation of neurochemical markers, the 
number of calretinin-, calbindin-, or Pax6-

chamber slides (Nunc, Germany) and placed in 
a humidified, CO2- and temperaturecontrolled 
incubation chamber mounted on a Zeiss 
Axiovert 200 M inverted microscope equipped 
with a motorized stage, AxioCam MRm digital 
camera and AxioVison software (Carl Zeiss, 
Germany). Five frames per chamber were 
recorded in both chambers simultaneously and 
images were acquired over a 48 h period at a 
rate of 10 images/h. To assess cell motility the 
displacement of the center of the observed cell 
soma was tracked using the interactive 
measurement module of the AxioVison 
software. Cell movements in µm/h were 
calculated from the length of the recorded 
track, given that the individual cell remained 
viable and could be traced over the entire 
observation time (48 h). 
 
Immunocytochemistry 
Primary cultured neuroblasts and mouse 
fibroblasts were fixed with 4% 
paraformaldehyde for 30 min, blocked with 
2% BSA for 1 h at RT and incubated with 
primary antibodies for 2 h at RT or overnight 
at 4°C. The following monoclonal (mAb) or 
polyclonal antibodies (pAb) were used: 
polySia-specific mouse mAb 735 (IgG2a, 10 
µg/mL), rat mAb H28 recognizing all isoforms 
of mouse NCAM (IgG2a, 7.5 µg/mL), and 
mouse mAb 123C3, reactive with all isoforms 
of human NCAM (IgG1, 5 µg/mL). The 
following mono- and polyclonal antibodies 
(mAb, pAb) were applied according to the 
manufacturers’ instructions: Beta-III-tubulin-
specific mouse mAb (IgG2b), glutamate 
decarboxylase (GAD65/67)-specific rabbit 
pAb, glial fibrillary acidic protein-specific 
rabbit pAb (all Sigma, Germany), calretinin- 
and calbindin-specific rabbit pAb (Swant, 
Switzerland), tyrosine hydroxylase-specific 
rabbit pAb, A2B5-specific mouse mAb (both 
Chemicon, CA), and Pax6-specific rabbit pAb 
(Covance, CA). For staining of intracellular 
markers, cells were permeabilized with 0.1% 
Triton X-100. In some of the experiments, the 
rate of proliferation was addressed by 
incorporation of 5-bromo-deoxyuridine (BrdU, 
Roth, Germany). Cells were incubated for 2 h 
with 10 µM BrdU prior to fixation. After 
incubating with 2N HCl for 15 min at 378C 
followed by 0.1M borate, pH 8.5 for 10 min, 
BrdU was detected with rat anti-BrdU 
antibody (clone BU1/75, Accurate Chemical 
and Scientific Corp., NY) diluted 1:100 for 
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positive cells was counted relative to the total 
number of neuroblasts identified by β-III-
tubulin or polySia staining. TUNEL positive 
cells were evaluated against total numbers of 
DAPI stained nuclei. Data were plotted as 
means (± s.e.m.) of values from at least three 
independently treated cultures per 
experimental group. Statistical analyses were 
performed using Graphpad Prism software. 
Differences between two groups were 
evaluated with Student’s t test (two-tailed). For 
more than two groups to compare, one way 
ANOVA with Newman-Keuls multiple 
comparison post hoc test (two-tailed) was 
applied. 
 
RESULTS 
 
Characterization of SVZ-Derived 
Neuroblast Cultures 
Dissociated cells isolated from the SVZ of 2-
day old wildtype mice were plated as single 
cell suspension on poly-D-lysine coated glass 
coverslips [Fig. 1(A,B)]. During attachment 
many of the cells aggregated in small clusters 
[Fig. 1(C)] and more than 95% of the 
adherently growing cells were immunopositive 
for β-III-tubulin and polySia [Fig. 1(D,E)], two 
markers indicative for the neuroblast stage of 
neuronal precursor cells (Doetsch and Alvarez-
Buylla, 1996; Lim and Alvarez-Buylla, 1999). 
Together with its protein carrier NCAM, 
polySia was found to be enriched at cell-cell 
contacts [Fig. 1(G,H)], and some of the cells 
started to develop polySia-positive neuritis 
[Fig. 1(I)]. Incubation of cultures with the 
polySia-specific phage-derived enzyme endoN 
(Stummeyer et al., 2005) efficiently removed 
polySia from the surface of adherently 
growing primary cultured neuroblasts and no 
re-expression of polySia could be detected 
during a 2-day culture period [Fig. 1(F)]. 
Consistent with the observation, that migrating 
precursors within the RMS express the 
GABAergic marker glutamic acid 
decarboxylase (GAD; Wang et al., 2003), all 
polySia- and β-III-tubulin-positive cells in the 
adherent cultures also stained positive for 
GAD-65/67 [Fig. 1(J)]. In a parallel control 
experiment, cells from the same preparations 
which gave rise to the homogenously β-III-
tubulin- and polySiapositive neuroblasts were 
cultured under nonadherent conditions. Under 
these conditions proliferating, BrdU 
incorporating neurospheres were formed 

(Supplementary Fig. S1). In line with 
published data (Gritti et al., 1996; Doetsch et 
al., 1999; Dizon et al., 2006), these 
neurospheres consisted of cells expressing 
markers of astrocytes and oligodendrocyte 
precursors (GFAP, A2B5) together with β-III-
tubulin and polySia-positive neuroblasts 
(Supplementary Fig. S1). In contrast, no 
A2B5-positive cells were detected after 2 days 
under adherent culture conditions and in the 
presence or absence of endoN the number of 
GFAP-positive cells was invariably below 2%.

Unlike for the neurospheres, a 2 h pulse of 
BrdU yielded no labeled cells in the adherently 
growing cultures. The lack of cell proliferation 
was confirmed by time-lapse live-cell imaging 
(for examples, see Supplementary Material, 
Video 1 and 2). Over an observation period of 
48 h, less than 1% of the cells divided. In 
addition, the time-lapse recordings revealed 
that no migrating chains were formed in the 
adherent neuroblast cultures. Importantly, 
removal of polySia with endoN had no effect 
on the overall low cell motility and sporadic 
saltatory movements were observed in both, 
control and endoN-treated cultures (Fig. 2 and 
Supplementary Material, Video 1 and 2). In 
summary, these data demonstrate that under 
adherent culture conditions the influence of 
polySia removal on neuroblast differentiation 
could be tested without the risk of being 
superimposed by potential effects on 
proliferation or chain migration. 

 
Removal of PolySia Enhances 
Neuroblast Survival 
Further assessment of adherently growing 
neuroblasts revealed that cell numbers were 
slightly increased after 2 days of culture in the 
presence of endoN [Fig.3(A)]. Because no 
proliferation was observed, this effect of 
polySia removal must be due to enhanced 
survival, which was confirmed by an 
evaluation of apoptotic cells using TUNEL 
staining [Fig. 3(B–D)]. The slight but 
statistically significant decrease of TUNEL-
positive cells after endoN treatment was 
inversely proportional to the increase of cell 
numbers. 
 
Neuritogenic Effects of PolySia 
Removal and Trans-Interacting NCAM 
All processes in the SVZ-derived cultures 
stained positive for β-III-tubulin identifying 
them as neuritis [Fig. 4(A–D)]. At day two of 
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NCAM-negative fibroblasts [LVN, Fig. 
4(J,L)]. However, if NCAM-positive, polySia-
negative fibroblasts [LBN, Fig. 4(K,M)] were 
used in the substrate layer, substantially higher 
amounts of neurites were obtained [Fig. 4(N)]. 
As with endoN treatment, no changes in 
neurite lengths, but enhanced amounts of cells 
with one or more neurites, and a slight, though 
not statistically significant, increase in the 
number of neuritis per cell and of neurite 
branches was observed [Fig. 4(O–R)]. 
Combining growth on polySia-free NCAM 
with endoN treatment elicited no additive 
effects [Fig. 4(S)]. These data show that both, 
unmasking of NCAM by removal of polySia 
and exposure of SVZ cultures to polySia-free 
NCAM, result in a comparable neuritogenic 
response. 
 
Nonpolysialylated NCAM Promotes 
Maturation into a Calretinin-Positive 
Phenotype 
We next asked, whether polySia removal 
affects the maturation of SVZ-derived 
neuroblasts into a specific interneuron subtype. 

endoN treatment the number of neurites was 
significantly higher than in control cultures, 
while the mean length of the neuritis remained 
constant [Fig. 4(A–F)]. Further analyses 
established that the neuritogenic response was 
borne of an increase in neurite-bearing cells 
rather than in the number of neurites per cell or 
in neurite branching [Fig. 4(G–I)]. Identical to 
the situation observed in cultures grown on 
poly-D-lysine, polySia-NCAM- and β-III-
tubulin-positive cells were abundant, when 
SVZ cells were seeded on monolayers of 

Figure 1 Characterization of SVZ-derived 
neuroblast cultures. A: Coronal section of a P2 
mouse brain stained with Cresyl violet/
thionine (Nissl stain). The subventricular zone 
(SVZ) of the striatal wall of the lateral ventricle (lv) 
is outlined in red to illustrate the area dissected to 
obtain single cell suspensions as described under 
“experimental methods”. B: Phase contrast image 
of cells 1 h after plating. C–J: SVZ-derived cells 
grown for 2 days under adherent conditions on 
poly-D-lysine coated glass coverslips. Phase 
contrast image (C) and corresponding 
immunofluorescence staining for β-III-tubulin (D, 
red) indicative for the neuroblast stage. Close to 
100% of the adherent cells express polySia (E, red). 
After 2 days of endoN treatment (60 ng/mL), the 
same staining revealed complete removal of 
polySia (F). Close-up views showing small cell 
clusters with polySia-immuno-reactivity (red) 
enriched at cell-cell contacts sites (G) and co-
localized with NCAM (H; NCAM green; merged 
color, yellow), as well as polySia on an outgrowing 
neurite (I). Double-immunofluorescence (J), 
showing co-expression of β-III-tubulin (red) and 
the GABAergic marker GAD-65/67 (green). In D, 
E-G, I, and J, DAPI stain was used to visualize 
nuclei (blue). Scale bars: 50 µm in B and C (for C–
F), 20 µm in J, 10 µm in H (upper left), and 5 µm 
in G (for G, I) and H (lower right). [Color figure 
can be viewed in the online issue, which is 
available at www.interscience.wiley.com.] 
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Figure 2 No effect of polySia removal on cell 
motility. A–H: Time-lapse recordings of two 
representative frames from control (left column) 
and endoN-treated cultures (right column). Images 
at 0, 24, and 48 h recording time and tracks of cell 
movements over 48 h are shown. Scale bar: 20 µm. 
Movies are available online as supplementary 
material. I: Evaluation of cell motility in control 
versus endoN treated cultures. Means  ± s.e.m. 
from n = 100 cells, each. n.s., difference 
statistically not significant (t test, p > 0.1). [Color 
figure can be viewed in the online issue, which is 
available at www.interscience.wiley.com.] 

In the OB, three nonoverlapping interneuron 
populations can be distinguished by their 
differential expression of dopaminergic 
markers or the calcium-binding proteins 
calbindin and calretinin (Kosaka et al., 1995; 
Brinon et al., 1999; Kohwi et al., 2007; 
Parrish-Aungst et al., 2007). Despite 
evaluation of eight independent cultures and 
>3000 cells, immunoreactivity for the 

Figure 3 Effect of polySia removal on cell 
survival. A: Cell counts per area ±s.e.m. after 2 
days in vitro (d.i.v.) under control conditions (ctrl.) 
or in the presence of 60 ng/mL endoN (endo). 
Means ± s.e.m. for five independent experiments 
with a minimum of 6 frames or 0.84 mm2 evaluated 
per experiment and treatment; p < 0.05, t test. B, C: 
TUNEL-labeling (red) combined with nuclear 
DAPI stain (blue) and immunofluorescence with 
antibodies against β-III-tubulin (green) of cultures 
under control conditions (B) and after 2-days 
incubation with 60 ng/mL endoN (C). Scale bar: 20 
µm. D: Percentage of TUNEL-positive cells in 
control (ctrl.) and endoN-treated cultures (endo). 
Means ± s.e.m. from 10 independently treated 
cultures with a minimum of five frames evaluated 
per culture. *, significant difference (t test, p < 
0.05). [Color figure can be viewed in the online 
issue, which is available at www.interscience.wiley
.com.] 

dopaminergic marker tyrosine hydroxylase 
was never detected in the SVZ-derived 
neuroblasts. To address commitment to the 
dopaminergic lineage, protein expression of 
the paired homeobox transcription factor Pax6 
was analyzed, which has been shown to be 
specifically involved in the generation of 
dopaminergic OB interneurons (Dellovade et 
al., 1998; Hack et al., 2005; Kohwi et al., 
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Figure 4 Effect of polySia removal and substrate NCAM on neurite formation. A–I: 
Phase contrast images (A, B), corresponding β-III-tubulin staining (C, D), and 
evaluation of neuritogenesis of neuroblasts seeded in parallel and cultured for 2 
days under control conditions (A, C; ctrl. in E–I) or in the presence of 60 ng/mL 
endoN (B, D; endo in E–I). Scale bar, 20 µm. Mean numbers of neurites per 100 
neuroblasts (E) and mean lengths of neurites (F) are shown ± s.e.m. (n = 8 cultures 
each). In four out of the eight experiments performed, the percentage of cells with 
one or more neurites (G), the number of neurites per cell (H) and the number of 
branches per neurite (I) were determined. (J–R) Neuroblasts in co-cultures with 
NCAM-negative (LVN, J, L) and NCAM-positive fibroblasts (LBN, K, M) were 
identified by polySia-immunofluorescence (J, K) or β-III-tubulin staining (L, M). 
Phase contrast images illustrate the confluent fibroblast monolayer (inserts). 
Neuritogenesis was evaluated as in (E–I) from n = 4 (N, O, P) or n = 3 cultures (Q, 
R). *, **, significant difference (t test), p < 0.05 or 0.01, respectively; n.s., not 
significant ( p > 0.1). (S) Number of neurites per 100 neuroblasts cultured in the 
presence or absence of 60 ng/mL endoN on NCAM-negative (LVN) or NCAM-
positive fibroblasts (LBN). Means ± s.e.m. of n = 3 cultures, each. One way 
ANOVA, p < 0.0001; *, ** significant difference versus LVN control (p < 0.05, p < 
0.01, Newmann-Keuls post hoc analysis). 
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2005). After 1 h of in vitro culture, 9.5% of the 
β-III-tubulin-positive neuroblasts were also 
immunopositive for Pax6. This number 
decreased to 5.8% after 2 days and Pax6 was 
no longer detectable after 6 days in vitro. 
Treatment with endoN for 2 days did not alter 
the relative amount of Pax6-positive cells [Fig. 
5(A,B)] indicating that removal of polySia had 
no effect on dopaminergic commitment. 

In contrast to Pax6, the percentage of 
calbindinpositive cells increased from 0.9% 
after 1 h to 8% after 2 days in vitro. Likewise, 
the number of calretinin-positive cells 
developed from 1.3 to 9% during the first 2 
days in culture. Strikingly, removal of poly-Sia 
by endoN treatment had no effect on the 
percentage of calbindin-positive neurons [Fig. 
5(C,D)], but caused a significant increase of 
cells expressing calretinin [Fig. 6(A–C)]. A 
similar increase of calretinin expression could 
be induced by incubation with soluble, 
nonpolysialylated NCAM presented in form of 
an NCAM-Fc chimera [Fig. 6(C), right graph] 
or by co-culture with NCAM-positive, 
polySia-negative fibroblasts [Fig. 6(F–H)]. To 
test, whether the effect of endoN treatment 
relates to differentiation induced by NCAM 
exposure, we used the dendrimeric C3d 
peptide, a synthetic ligand, which specifically 
binds to the first Ig-like domain of NCAM but 
has no NCAM-derived sequence (Ronn et al., 
1999). As demonstrated previously this 
peptide is a potent inhibitor of NCAM 
interactions initiated by polySia removal 
(Seidenfaden et al., 2003). Figure 6(D) shows 
that the C3d peptide had no effect on calretinin 
expression of untreated neuroblasts but, in 
contrast to the control peptide C3d2ala (Ronn 
et al., 1999), abolished the response following 
endoN treatment. Similarly, C3d but not 
C3d2ala reduced the number of calretinin-
positive cells if added to neuroblasts cultured 
on NCAM-positive monolayers [LBN, Fig. 
6(H), right graph] Thus, effects of polySia 
removal and NCAM exposure could be 
equally blocked by the NCAM-binding peptide 
indicating that they are mediated by NCAM 
interactions. 

To address the question, if the effect of 
polySia removal requires cell–cell contact, 
calretinin-positive cells without contacts were 
analyzed separately. Under the standard 
conditions of this study (100,000 cells/mm2) 
most of the SVZa-derived neuroblasts 
aggregated into clusters. By reducing the 

Figure 5 Pax6 and calbindin expression is not 
affected by polySia removal. A, C: Double-
labeling of neuroblasts with antibodies against β-
III-tubulin (red) and Pax 6 (A,  green) or calbindin 
(C, green). Nuclei are counterstained with DAPI. 
Scale bar: 20 µm. (B, D) Evaluation of Pax6 
(B) or calbindin expression (CB, D) of neuroblasts 
cultured for 2 days under control conditions (ctrl.) 
or in the presence of 60 ng/mL endoN (endo). 
Means ± s.e.m. from n = 6 cultures, each. n.s. 
difference not significant (t test, p > 0.1). [Color 
figure can be viewed in the online issue, which is 
available at www.interscience.wiley.com.] 

plating density to 50,000 cells/mm2, the 
amount of isolated cells was enhanced and 
~25% of all β-III-tubulin-positive neuroblasts 
were devoid of cell–cell contacts. Treatment 
with endoN had no significant effect on the 
relative amount of isolated neuroblasts (means 
± s.e.m.: 25.1 ± 5.8% for controls and 27.4 ± 
2.4% after endoN treatment; n = 4, each). 
Comparable to the situation at the higher cell 
density [Fig. 6(A)], calretinin was detected in 
about 9% of all neuroblasts with contact to at 
least one other cell and this number increased 
significantly after removing polySia with 
endoN [Fig. 6(E), “contact”]. In contrast, the 
frequency of calretinin-positive cells among 
isolated neuroblasts in the same cultures was 
not altered by endoN treatment [Fig. 6(E), 
“isolated”]. 

To further corroborate the differentiation-
promoting effect of polySia-free NCAM, 
calretinin expression was comparatively 
analyzed in neuroblasts derived from mice 
lacking polySia due to NCAM deficiency 
(NCAM knock-out mice, N-/-; Cremer et al., 
1994) and from mice that are devoid of 
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polySia but maintain normal expression levels 
of NCAM due to genetic ablation of the key 
enzymes for polysialylation (St8sia-II, St8sia-
IV double knock-out mice, II-/-IV-/-; Weinhold 
et al., 2005). Compared with wildtype 
controls, the neuroblasts isolated from II-/-IV-/-

mice (carrying nonpolysialylated NCAM), but 
not the neuroblasts isolated from NCAM 
knockout mice displayed elevated calretinin 
expression (Fig. 7, left graph). Most important, 
the enhanced calretinin expression in II-/-IV-/-

cultures could be completely reversed by the 
addition of C3d peptide (Fig. 7, right graph). 
Together, these data provide strong evidence 
that the loss of polySia initiates NCAM trans-
interactions, which promote the differentiation 
of neuroblasts towards a calretinin-positive 
phenotype. 

 
PolySia-Free NCAM Enforces 
Differentiation of NCAM-Negative 
Neuroblasts 
Since homophilic NCAM binding is abrogated 
by polySia (Johnson et al., 2005), it seems 
unlikely that homophilic trans-interactions 
account for neuritogenesis and biochemical 

Figure 6 Effect of polySia removal, trans-
interacting NCAM, and NCAM-specific peptide on 
calretinin expression. A–D: Double-labeling of 
neuroblasts with antibodies against β-III-tubulin 
(red) and calretinin (green) and evaluation of 
calretinin (CR)-positive cells in cultures under 
control conditions (A, ctrl. in C), after 2 days 
incubation with 60 ng/mL endoN (B, endo in C), Fc 
fragment or chimeric NCAM-Fc (1 µg/mL each; 
C), 1 µM of control peptide C3d2ala or NCAM-
binding peptide C3d in otherwise untreated cultures 
(D, left graph) or applied together with 60 ng/mL 
endoN (D, right graph). E: Separate evaluation of 
CR-expression among β-III-tubulin-positive cells 
with contact to at least one other cell (left graph) or 
among isolated neuroblasts (right graph). 
Incubation with endoN was performed as described 
for (C), but cells were plated at a lower density (see 
text for details). (F–H) Double-labeling of 
neuroblasts with β -III-tubulin (red) and calretinin 
(green) in co-cultures with NCAM-negative (LVN, 
F) and NCAM-positive fibroblasts (LBN, G) and 
evaluation of calretinin (CR)-positive cells (H). 
Means ± s.e.m. from n = 18, 10, or 4 cultures, each 
in C (left graph), C (right graph), or D, E, and H, 
respectively. n.s. difference not significant (t test, p 
> 0.1). *, **, ***, significant difference (t test, p < 
0.05, 0.01 or 0.001, respectively). Scale bar, 20 µm. 
[Color figure can be viewed in the online issue, 
which is available at www.interscience.
wiley.com.] 
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Figure 7 Calretinin expression in neuroblast 
cultures from NCAM- and polysialyltransferase-
deficient mice. Percent calretinin-positive cells in 
neuroblast cultures from control animals (ctrl.), 
from mice lacking NCAM and polySia due to 
NCAM-deficiency (N-/-), or from mice with normal 
NCAM expression but deficient in polySia due to 
genetic ablation of the polysialyltransferases 
ST8SiaII and ST8SiaIV (II-/-IV-/-; left graph). 
Comparison of II-/-IV-/- neuroblast cultures 
incubated with C3d2ala or C3d-peptide (1 µM 
each, right graph). The control group represents 
pooled data from cultures obtained from wildtype 
littermates of NCAM-deficient animals and from 
double-heterozygous II+/-IV+/- neuroblasts with 
normal expression levels of NCAM and polySia. 
C3d had no effect on neuroblast cultures from 
double-heterozygous II+/-IV+/- or N-/- animals (not 
shown). Means ± s.e.m. from n = 6, 6, or 3 cultures 
for ctrl., N-/- or II-/-IV-/- and n = 7 cultures for 
peptide treatments. **, significant difference 
against all other groups, p < 0.01, Newmann-Keuls 
post hoc analysis of one way ANOVA with p < 
0.001 (left graph) or t test, p < 0.01 (right graph). 

differentiation of polySia-positive neuroblasts 
in response to NCAM exposure. Therefore, we 
asked, whether differentiation can be triggered 
by heterophilic NCAM interactions. To 
address this point, neuroblasts derived from 
NCAM-negative mice (N-/-) were either 
exposed to an NCAM-positive cellular 
substrate or to soluble NCAM-Fc. As evident 
from the data presented in Figure 8, both 
treatments induced the same neuritogenic 
response and the same increase in the amount 
of calretinin-positive cells as in polySia-
NCAM positive wildtype cultures (see Figs. 4 
and 6). This experiment demonstrates that 
differentiation of NCAM-negative SVZ-
derived neuroblasts can be triggered by 
heterophilic NCAM binding and strongly 
suggests that the response of polySia-NCAM 
positive wildtype neuroblasts to polySia free-
NCAM is also induced by heterophilic NCAM 
trans- interactions.  
 

DISCUSSION 
 
In the mouse OB, calretinin-, calbindin-, and 
tyrosine hydroxylase-positive interneurons 
coexist as nonoverlapping populations, which 
are continuously produced from SVZ-derived 
neuroblasts (Kosaka et al., 1995; Brinon et al., 
1999; Kohwi et al., 2007; Parrish- Aungst et 
al., 2007). Here, we demonstrate that 
polysialylation directs differentiation of SVZ-
derived neuroblasts by controlling NCAM 
interactions. Downregulation of polySia 
promoted the appearance of calretinin, but had 
no effect on the relative amount of calbindin-
positive cells and the subset of Pax6-
expressing neuroblasts destined to become 
dopaminergic OB interneurons (Hack et al., 
2005; Kohwi et al., 2005). By using cultures of 
isolated neuroblasts we could dissect this 
function of polySia from its firmly established 
role in neuroblast migration.  

Figure 8 Effects of trans-interacting NCAM on 
NCAM-negative neuroblasts. NCAM-negative 
neuroblasts (N-/-) were cultured on NCAM-
negative (LVN) or NCAM-positive fibroblasts 
(LBN, left graphs), or incubated with soluble Fc 
fragment and chimeric NCAM-Fc (N.Fc, right 
raphs). A: Evaluation of neurite formation. B: 
Percent calretinin expressing cells. Means ± s.e.m. 
from n = 6 cultures, each, in A and B (right graph) 
and n = 4 cultures, each, in B, left graph. *, ** 
significant difference (t test, p < 0.05 or 0.01, 
respectively).
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Enhanced differentiation and neurite 
induction after endoN treatment were 
reproduced by exposure to NCAM. The 
uniform neuritogenic response, together with 
the absence of additive effects of polySia-
removal and exposure to NCAM, points 
towards a shared mechanism. Compatible with 
the accumulation of polySia-NCAM at contact 
sites between the neuroblasts, the increase of 
calretinin-positive cells after enzymatic 
removal of polySia was cell contactdependent 
and could be abrogated by incubation with the 
C3d peptide. As shown by others, the synthetic 
NCAM ligand C3d evokes a dose- and 
incubation time-dependent increase of neurite 
length in cellular models lacking NCAM 
interactions, but inhibits neurite growth caused 
by exposure to NCAM in other experimental 
settings (Ronn et al., 1999; Ronn et al., 2000; 
Kiryushko et al., 2003). Under the conditions 
of the current study, incubation with 1 µM C3d 
for 48h had no effect on polySia-positive or 
NCAM-negative neuroblast cultures. In 
contrast, the peptide prevented differentiation 
due to the loss of polySia as efficient as the 
response of polySia-positive neuroblasts to an 
NCAM-positive substrate. These findings are 
consistent with previous studies demonstrating 
that C3d abolishes the response of 
neuroblastoma cells to endoN treatment 
(Seidenfaden et al., 2003; Seidenfaden et al., 
2006b) and strongly suggest that polySia 
removal initiates NCAM interactions between 
neuroblasts, which than can be blocked by the 
C3d peptide. 

Similar to the present results, increased 
neuritogenesis was observed after endoN 
treatment of SVZ explants grown in collagen 
matrix (Petridis et al., 2004). As reported 
previously, chain migration is maintained in 
this in vitro system and polySia removal 
results in migration defects similar to those 
observed in the in vivo environment (Hu et al., 
1996). Preserving the diversity of cell contacts, 
the explants culture system is close to the 
situation in vivo. At the same time, the 
interpretation of the data by Petridis et al. 
(2004) is hampered by this diversity as well as 
by the inability to separate the neuritogenic 
response from the concomitant disruption of 
neuroblast migration, which in all likelihood 
perturbs the dynamics of many cell surface 
interactions. In contrast, the present study 
demonstrates endoN-induced neuritogenesis 
and biochemical maturation in a controlled 

setting using neuroblast cultures, in which 
chain migration was a priori absent and cell 
motility not affected by endoN treatment. 

As in the RMS in vivo, polySia was 
uniformly expressed on all neuroblasts of the 
SVZ-derived cultures. Its removal enhanced 
the generation of only the calretinin-, but not 
the calbindin-or tyrosine hydroxylase-positive 
cell type. This divergent responsiveness 
indicates heterogeneity in the differentiation 
potential, which is in line with increasing 
evidence that SVZ progenitors are intrinsically 
directed towards specific lineages 
characterized by distinct genetic determinants 
(Hack et al., 2005; Kohwi et al., 2005; Waclaw 
et al., 2006; for review, see Ninkovic and 
Götz, 2007). In contrast to the induction of 
calretinin expression, endoN treatment did not 
affect the decline of Pax6 and the absence of 
tyrosine hydroxylase immunoreactivity 
indicating the inability to maintain the 
precursor population with dopaminergic 
potential in neuroblast cultures from early 
postnatal mice. This outcome corresponds to 
the lack of tyrosine hydroxylase expression 
after applying endoN to SVZ explant cultures 
from 7-day-old mice (Petridis et al., 2004) but 
contrasts with the induction of this marker 
observed in the same study after removal of 
polySia from the SVZ of adult animals in vivo. 
On the one hand, the different response in vivo 
may be caused by altered interactions of 
neuroblasts with their stationary environment 
that are not reproduced in vitro. On the other 
hand, the generation of tyrosine hydroxylase-
positive OB interneurons is considerably lower 
in neonates than in the adult, demonstrating 
age-dependent differences of either extrinsic 
cues or autonomous commitment of SVZ 
progenitors (De Marchis et al., 2007). 

Taken together, the available data indicate 
that polySia expression postpones neuronal 
differentiation of SVZ-derived precursors, 
while its downregulation coordinates 
maturation of OB interneurons (Petridis et al., 
2004 and current study). Beyond this, the 
present study demonstrates responsiveness of 
polySia-NCAM positive neuroblasts to 
nonpolysialylated NCAM suggesting that 
polySia-free NCAM on target structures could 
serve as an instructive signal for neuroblasts 
arriving in the OB. This possibility is 
intriguing, since NCAM, but not polySia, is 
heavily expressed by the axons of the olfactory 
neurons that form the glomeruli, while the 



Dissertation Iris Röckle                                                                          Chapter 2 – in vitro Study 
 

© 2008 Wiley Periodicals, Inc.   
Originally published in Developmental Neurobiology, Vol. 68, No. 9, Aug. 2008, p. 1170-1184 

35

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

newly arriving prospective periglomerular 
cells maintain polySia expression (Miragall 
and Dermietzel, 1992; Bonfanti and 
Theodosis, 1994). Attempts to comparatively 
analyze SVZ-derived precursor differentiation 
in NCAM- or polysialyltransferase-deficient 
mice revealed that both genetic mouse models 
exhibit small OBs in conjunction with an 
accumulation of precursors in the proximal 
parts of the RMS and massive astrogliosis 
(Chazal et al., 2000; Weinhold et al., 2005; 
Hildebrandt and Röckle, unpublished 
observation). Thus, neuroblast migration into 
the OB is impaired in both mouse models, 
preventing an appropriate evaluation of 
interneuron differentiation in the OB of these 
mice. 

In vivo, the relevance of polySia as a 
specific control element of NCAM functions 
has been unequivocally documented by 
showing that malformations of major brain 
fiber tracts in polysialyltransferase-deficient 
mice were selectively rescued by additional 
deletion of NCAM (Weinhold et al., 2005; 
Hildebrandt et al., 2007). In tumor cell lines, 
enzymatic removal of polySia initiates NCAM 
signals leading to differentiation and improved 
survival (Seidenfaden et al., 2003, 2006b). In 
accordance with these mouse and tumor cell 
models, the response of SVZ-derived 
neuroblasts to endoN treatment is best 
explained by a gain of NCAM functions. In 
contrast, the congruent effects of polySia 
removal and NCAM exposure can not be 
explained by altered responsiveness to 
neurotrophins, as described after endoN 
treatment of cortical, septal or SVZ-derived 
neurons (Vutskits et al., 2001; Burgess and 
Aubert, 2006; Gascon et al., 2007). In 
particular, the survival of immature SVZ-
derived neurons in response to neurotrophins 
was reduced after enzymatic removal of 
polySia as well as by using cells lacking 
polySia due to NCAM-deficiency, indicating 
that this effect is independent from specific 
NCAM functions (Gascon et al., 2007). 
Similarly, PDGF-induced glial differentiation 
is enhanced in neurospheres derived from 
either polysialyltransferase- or NCAM-
deficient animals (Angata et al., 2007) and 
therefore not caused by a gain of polySiafree 
NCAM. Accelerated glial differentiation after 
endoN treatment has also been observed in 
oligospheres in vitro and after experimentally 
induced demyelination in vivo (Decker et al., 

2000; Decker et al., 2002). Although the mode 
of polySia activity in relation to NCAM 
functions was not explored in these studies, 
increased adhesion to compounds of the 
extracellular matrix was discussed as a 
possible mechanism. Indeed, it has been 
shown recently that substrate interactions can 
direct fate and specification of neural 
precursors derived from embryonic stem cells 
(Goetz et al., 2006). For SVZ-derived 
neuroblasts, however, our data show that 
polySia removal and trans-interacting NCAM 
(soluble or cell-bound) cause equal responses, 
which strongly argues against a direct 
modulation of cell-substrate interactions. 

The identical cellular response of NCAM-
negative and polySia-NCAM positive 
neuroblasts to NCAM cues presented in trans 
demonstrates potent heterophilic NCAM 
interactions. In agreement with these 
observations, heterophilic NCAM binding has 
been shown to promote differentiation of 
neuroblastoma cells (Seidenfaden et al., 2003) 
and hippocampal progenitors from the 
embryonic brain (Amoureux et al., 2000). The 
influence of polySia was not addressed in the 
latter study, but it is known that polySia is 
abundantly expressed on neuroblasts in the 
hippocampal neurogenic region (Seki, 2002; 
Seki et al., 2007). Together with 
differentiation, the reduction of proliferation 
was a major effect of heterophilic NCAM 
binding in hippocampal progenitors and 
neuroblastoma cells (Amoureux et al., 2000; 
Seidenfaden et al., 2003). In both systems, 
therefore, the relationship between the 
inhibition of proliferation and the increase in 
differentiation remained open. In contrast, 
proliferation was completely absent in the 
SVZ-derived neuroblasts cultures used in the 
current study, demonstrating that NCAM is an 
instructive signal able to induce neural 
progenitor differentiation independent of its 
effect on proliferation. 

As for hippocampal progenitors and 
neuroblastoma cells (Amoureux et al., 2000; 
Seidenfaden et al., 2003), the putative hetero-
philic NCAM receptor involved in the 
differentiation of SVZ-derived neuroblasts 
remains unknown. Among the numerous 
NCAM interaction partners described so far, 
some, like the fibroblast growth factor receptor 
or the cell adhesion molecule L1, bind to 
NCAM in cis, while others, like heparan and 
chondroitin sulfates, are either components of 
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the extracellular matrix or have a merely 
modulatory impact on NCAM interactions (for 
an overview, see Hinsby et al., 2004). As 
recently described, the glial cell line-derived 
neurotrophic factor (GDNF) and its GPI-
anchored receptor GFRα1 interact with 
NCAM and in the RMS, GDNF functions as a 
chemoattractant for SVZ-derived precursors 
(Paratcha et al., 2003; Paratcha et al., 2006). 
These interactions, however, affect functions 
of NCAM as receptor and not as a ligand. 
Moreover, GDNF binding to NCAM occurs 
independent of the presence of polySia 
(Paratcha et al., 2003). 

In conclusion, the current data demonstrate 
that loss of polySia initiates NCAM trans-
interactions, which promote survival as well as 
neurite induction and biochemical maturation 
of SVZ-derived precursors in vitro. The 
possibility to control timing of neuroblast 
differentiation and eventually increase neuron 
yields with the help of polySia- and NCAM-
specific tools may prove valuable for 
therapeutic strategies aiming at neuron 
replacement. Under pathological conditions 
such as stroke or Huntington’s disease, 
neuroblasts from the subependymal layer 
appear involved in brain repair (Arvidsson et 
al., 2002; Curtis et al., 2003), while their 
production is impaired in Parkinsonism 
(Hoglinger et al., 2004). In this context, it will 
be challenging to test if polySia removal, the 
inhibition of polySia synthesis, and/or the use 
of NCAM mimetics (Berezin and Bock, 2004) 
have the potential to manipulate neurogenesis 
from SVZderived stem cells and support 
endogenous brain repair processes. 
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Supplementary figure 1 Neurospheres formed by 
SVZ-derived cells seeded in uncoated 12 well 
plates, i.e. under non adherent conditions. For 
immunofluorescence staining, neurospheres were 
transferred after one day in vitro (d.i.v.) to poly-D-
lysine coated glass surface, where they attached. 
(A) Phase contrast image of neurospheres after 1 
d.i.v. (B-E) Representative examples of 
neurospheres stained for beta-III-tubulin (B), 
polySia (C), A2B5 (D) and GFAP (E, all shown in 
red) and the proliferation marker BrdU (B-E, 
green) added 2h before fixation. DAPI stain was 
used to visualize nuclei (blue). Scale bars: 50 µm 
in A, 10 µm in B (for B-E). 

Supplementary video 1 Representative time-lapse movies of neuroblasts recorded simultaneously under 
control conditions. 10 images /h were acquired over a 48h period. 

Supplementary video 2 Representative time-lapse movies of neuroblasts recorded simultaneously in the 
presence of 200 ng/ml endoN. 10 images /h were acquired over a 48h period. 
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Chapter 3- Changes of GABAergic interneuron 
populations in the forebrain of mice deficient for 
polysialic acid or NCAM 
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Preface – About this manuscript 
 

Aberrant NCAM expression or altered polysialylation have been linked to 

schizophrenia and mice with altered NCAM levels or unbalanced polysialylation of 

NCAM show several parallels to pathophysiological findings in schizophrenic 

patients. Numerous studies indicate that dysfunction in schizophrenia includes 

alterations of specific GABAergic interneurons in the prefrontal cortex (PFC) and 

hippocampus.  

On this background, the second study of my thesis aimed at analyzing 

pathological changes of interneuron populations in mice with deficiencies of either 

polysialylation of NCAM or of NCAM itself. Densities of major interneuron subtypes 

were comparatively analyzed in brain regions relevant to the pathophysiology of 

schizophrenia in polysialyltransferase (St8siaII, St8siaIV) and Ncam1 single-, 

double-, and triple-knockout mice. 

My contributions to this manuscript comprised the preparation of the brains, 

immunofluorescent staining, microscopy, cell counting and statistical evaluation. 

Prof. H. Hildebrandt and I designed the experiments and wrote the paper.  
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Abstract 

The neural cell adhesion molecule NCAM and its modification with polysialic acid 

(polySia) are major determinants of cellular interactions during brain development 

and plasticity. Variations in the genes for NCAM and one of the two 

polysialyltransferases, ST8SiaII, have been linked to schizophrenia. In mice, 

polySia deficiency impairs migration of subventricular zone-derived interneuron 

precursors towards the olfactory bulb and of undefined progenitors during 

neocortex development. Here, we analyzed how loss of polySia affects selected 

interneuron populations in brain regions relevant to the pathophysiology of 

schizophrenia. A panel of polySia-deficient mouse lines with differently combined 

Ncam1 and polysialyltransferase deletions was used to dissect, whether effects 

were caused by loss of NCAM, loss of polySia, or reduced polysialylation of either 

NCAM or additional polySia carriers. Densities of cells immuno-positive for major 

interneuron markers (parvalbumin, calbindin, calretinin, tyrosine hydroxylase) were 

assessed in prefrontal cortex, hippocampus, and the glomerular layer of the 

olfactory bulb. Pronounced reductions of parvalbumin-positive, calbindin-negative 

cells in the prefrontal cortex and calbindin-positive cells in the olfactory bulb were 

detected in all NCAM- or polySia-deficient lines, while parvalbumin-positive cell 

densities were increased in the hippocampus. Together, these data demonstrate 

that attenuation of NCAM-bound polySia causes pathological changes of specific 

GABAergic interneuron subtypes. 

 

Keywords: 
brain pathology, calcium-binding proteins, mouse model, prefrontal cortex, 

schizophrenia 
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The neural cell adhesion molecule NCAM controls diverse aspects of brain 

development (Ronn et al. 1998; Hildebrandt et al. 2007). A unique feature of 

NCAM is its posttranslational modification by the addition of a linear homopolymer 

of α2,8-linked sialic acid (polysialic acid, polySia). Dynamic changes of NCAM 

isoform patterns and polySia levels during development have been shown for 

rodent brain (Chuong and Edelman 1984; Gennarini et al. 1986; Oltmann-Norden 

et al. 2008) as well as for human prefrontal cortex (PFC; Cox et al. 2009). PolySia 

synthesis is implemented by the polysialyltransferases ST8SiaII and ST8SiaIV. 

Together with polysialyltransferase mRNA, levels of polySia-NCAM are high 

during embryonal and early postnatal development before declining rapidly and 

becoming restricted to mainly sites of ongoing neurogenesis or plasticity (for 

review, see Bonfanti 2006; Mühlenhoff et al. 2009). Consistent with these 

expression patterns, polySia-NCAM is a prominent regulator of migration, axon 

outgrowth and synaptic plasticity (Bonfanti 2006; Gascon et al. 2007; Hildebrandt 

et al. 2007; Maness and Schachner 2007; Rutishauser 2008).  

Nevertheless, mice lacking all forms of NCAM (N-/-) and, as a consequence, are 

almost completely devoid of polySia, show an overall mild phenotype (Cremer et 

al. 1994). Mild but distinct phenotypes were also observed in mice with partial 

reductions of polysialylation due to ablation of ST8SiaII (II-/-) or ST8SiaIV (IV-/-; 

Eckhardt et al. 2000; Angata et al. 2004). In contrast, simultaneous ablation of the 

two polysialyltransferases ST8SiaII and ST8SiaIV (II-/-IV-/-) yielded mice that are 

entirely negative for polySia but positive for NCAM. These animals combine two 

categories of defects (Weinhold et al. 2005; Hildebrandt et al. 2009). First, defects 

which are unique to the II-/-IV-/- mice and not observed in NCAM knockout animals, 

like postnatal growth retardation and precocious death, a high incidence of 

hydrocephalus as well as malformation of major brain axon tracts. These defects 

establish due to a gain of polySia-free NCAM as they are fully reversed by the 

additional deletion of NCAM in II-/-IV-/-N-/- triple knockout mice (Weinhold et al. 

2005). Moreover, the axon tracts deficiencies correlate specifically with the amount 

of erroneously non-polysialylated NCAM during development (Hildebrandt et al. 

2009). The second category comprises defects in brain morphology that are 

shared by the polysialyltransferase- and the NCAM-depleted mice. This includes a 

size reduction of the OB, which is caused by a migration deficit of subventricular 

zone-derived interneuron precursors (for review, see Hildebrandt et al. 2007). In 
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addition, Angata et al. (2007) provided evidence of impaired migration of 

precursors during cortical development of II-/-IV-/- mice.  

Several lines of evidence link aberrant NCAM expression or altered polysialylation 

to schizophrenia. Elevated levels of a soluble NCAM fragment have been detected 

in the PFC, in the hippocampus, and in the cerebrospinal fluid of schizophrenic 

patients, and fragment concentrations were found to correlate with severity and 

duration of the disease (Poltorak et al. 1995; van Kammen et al. 1998; Vawter 

2000; Vawter et al. 2001). By contrast, reduced polySia expression was observed 

in the hilus region of the hippocampus in schizophrenics (Barbeau et al. 1995). 

NCAM1 and both polysialyltransferase genes map to chromosomal regions that 

harbour susceptibility loci for schizophrenia (11q23.1, 15q26, and 5q21 for 

NCAM1, ST8SIA2 and ST8SIA4, respectively; Lewis et al. 2003; Lindholm et al. 

2004; Maziade et al. 2005). Single nucleotide polymorphisms (SNPs) in NCAM1 

as well as in the promoter region of ST8SIA2 (but not ST8SIA4) have been 

associated with schizophrenia (Arai et al. 2006; Atz et al. 2007; Sullivan et al. 

2007; Tao et al. 2007).  

Moreover, there are striking parallels between the phenotype of NCAM- or 

polySia-deficient mice and pathophysiological findings in schizophrenia. 

Ventricular enlargement, one of the most abundant abnormalities in schizophrenia 

(Shenton et al. 2001), has been reported for mice with specific deletion of NCAM-

180 and variable degrees of ventricular dilatations including cases of severe 

hydrocephalus were observed in II-/-IV-/- mice (Wood et al. 1998; Weinhold et al. 

2005). In addition, a decreased size of the corpus callosum and the internal 

capsule as has been reported in schizophrenic patients (Innocenti et al. 2003; 

Hulshoff Pol et al. 2004; Douaud et al. 2007; Mitelman et al. 2007; Begre and 

Koenig 2008). This correlates with the fiber tract deficits observed in polysialylation 

compromised mice (Hildebrandt et al. 2009). A further remarkable similarity is the 

reduced size of the olfactory bulb (OB) both in patients with schizophrenia 

(Turetsky et al. 2000) and N-/- or II-/-IV-/- mice (Cremer et al. 1994; Weinhold et al. 

2005). Reminiscent to cognitive impairment in schizophrenia (Heinrichs and 

Zakzanis 1998), N-/- as well as polysialyltransferase-deficient IV-/- mice display 

deficits in learning or memory formation as well as in hippocampal long-term 

potentiation (Cremer et al. 1994; Cremer et al. 1998; Eckhardt et al. 2000; Bukalo 

et al. 2004; Senkov et al. 2006) and one study reported reduced prepulse 
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inhibition of acoustic startle in NCAM-180 knockout mice (Wood et al. 1998; but 

see Plappert et al. 2005). 

Numerous studies indicate that dysfunction in schizophrenia includes alterations of 

GABAergic interneurons and in many of these studies, the immunohistochemical 

detection of the calcium-binding proteins parvalbumin (PV), calbindin (CB) and 

calretinin (CR) has proven a powerful tool for the identification and evaluation of 

GABAergic interneuron subtypes (for review, see Benes and Berretta 2001; Eyles 

et al. 2002; Lewis et al. 2005; Lewis and Sweet 2009). Here, we address the effect 

of polySia deficiency on selected interneuron populations of the mouse forebrain 

by comparatively analyzing St8siaII, St8siaIV and Ncam1 single-, double-, and 

triple-knockout lines. Densities of major interneuron subtypes in the PFC, 

hippocampus and OB were assessed by immunofluorescence staining of PV, CB, 

CR, and, in the case of the OB, tyrosine hydroxylase (TH; Kosaka et al. 1995; 

DeFelipe 1997; Matyas et al. 2004; Kohwi et al. 2007). The results indicate that 

reduction of NCAM-based polySia differentially affects PV- and CB-positive 

interneuron populations in the PFC, hippocampus and OB. 

 

Materials and Methods 

Mice 

C57BL/6J and transgenic mice were bred at the central animal facility at Hannover 

Medical School. All protocols for animal use were in accordance with the 

guidelines established by the European Union regarding the use and care of 

laboratory animals and approved by the local authorities. St8siaII, St8siaIV and 

Ncam1 single knockout strains, which have been backcrossed with C57BL/6J 

mice for six generations, were intercrossed to obtain double knockout (St8siaII-/- 

St8siaIV-/-, II-/-IV-/-) or triple knockout (St8siaII-/- St8siaIV-/- Ncam1-/-; II-/-IV-/-N-/-) 

animals (Weinhold et al. 2005). Genotyping was performed by PCR as previously 

described (Weinhold et al. 2005).  

 

Sectioning 

One month old mice were deeply anesthetized with a mixture of 200mg/kg 

Ketamin (Gräub AG, Bern) and 8mg/kg Xylazin (Rompun, Bayer Health Care, 

Leverkusen) in 0.9% NaCl. Animals were perfused transcardially with 4% 
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paraformaldehyde in 0.1 M phosphate buffer, pH 7.4. After dissection, the brains 

were postfixed over night. 50µm coronal sections were obtained with a vibrating 

microtome (Leica Microsystems, Wetzlar, Germany). For each genotype n=3 mice 

were used. For II-/-IV-/- mice, which have a high incidence of hydrocephalus 

(Weinhold et al. 2005), only specimen with moderate ventricular dilatation and no 

cortical thinning were processed and used for analysis. As St8siaII+/- St8siaIV+/- 

(II+/-IV+/-) animals were indistinguishable from wildtype animals, one II+/-IV+/- mouse 

was included into the control group.  

 

Immunofluorescence 

Sections were permeabilized for 15 min with 0.4% Triton X-100 in phosphate 

buffered saline (PBS), pH7.4 before blocking for 1h with 10% FCS in PBS with 

0.4% Triton X-100. Free floating sections were incubated with primary antibodies 

for 3 days at 4°C. The following monoclonal (mAb) or polyclonal antibodies (pAb) 

were applied according to the manufacturers’ instructions: Calretinin- and calbindin 

D-28k-specific rabbit pAb (Swant, Bellinzona, Switzerland), tyrosine hydroxylase-

specific rabbit pAb, and parvalbumin-specific mouse mAb (IgG1, Swant). Rabbit 

and mouse IgG-specific Cy3- (Chemicon, Temecula, CA) and Alexa488 

(Invitrogen/Molecular Probes, Karlsruhe, Germany) conjugated secondary 

antibodies were used as suggested by the suppliers. As first layer controls, cells 

were incubated in blocking solution lacking primary antibody. In double stained 

immunofluorescence samples, cross-reactivity of secondary antibodies was 

controlled by omitting either of the two primary antibodies. Stained sections were 

mounted on glass object slides (SuperFrost®Plus, Menzel, Braunschweig, 

Germany) and coverslipped using Vectashield mounting medium with DAPI 

(Vector Laboratories, Burlingame, CA).  

 

Microscopy, Area measurements, Cell Counting and Statistics  

Microscopy was performed using a Zeiss Axiovert 200 M equipped with an 

ApoTome device for near confocal imaging, AxioCam MRm digital camera and 

AxioVison software (Carl Zeiss Microimaging, Göttingen, Germany). Near confocal 

optical sections of 5.1 µm thickness located approximately 10 µm above the 

bottom (caudal level) of each 50 µm vibratome section were obtained by ApoTome 

technology using a 10x Plan-Apochromat objective with 0.45 numerical aperture 
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(Zeiss). Micrographs covering the area of one entire hemisphere were acquired 

using the MosaiX module of the AxioVision software. AxioVison software was also 

used for area measurements and cell counting. For evaluation micrographs were 

coded and randomized to ensure that the observer was blind to experimental 

conditions. On each optical slice the regions of interest, glomerular layer (Gl) of 

the olfactory bulb (OB), prefrontal cortex (PFC), Ammon's horn (cornu ammonis, 

CA) and dentate gyrus (DG) of the hippocampus, were lined out, areas were 

measured and the total numbers of cells positive for the particular marker of 

interest were counted. Thus, counting covered 100% of the sample area within 

each section and therefore there was no need to make use of a counting frame, 

which is typically employed in the optical dissector method. Examination of shape 

and areas of randomly selected labelled cells revealed no difference between the 

different genotypes. Therefore, and because the aim of this study was not the 

determination of absolute cell numbers or densities, but a comparison between 

polySia-positive and polySia-deficient animals, there was no need to correct for 

the overcount produced by counting rather big objects in relatively thin optical 

sections (as discussed by e.g. Guillery 2002). 

For each marker to be analysed, immuno-positive cells were quantified on MosaiX 

images obtained from three (for CR, CB and TH) or six (for PV) sections per 

animal and brain region. Three pairs of consecutive sections equally spaced 

between bregma level 4.05 mm and 3.7 mm (according to Paxinos and Franklin 

2001) for OB, between bregma level 1.9 mm and 1.65 mm for PFC and between 

bregma level -1.2 mm and -1.85 mm for hippocampus were selected. For 

prefrontal cortex and hippocampus, these pairs of consecutive sections were 

labelled for parvalbumin together with either calretinin or calbindin and both 

hemispheres were evaluated. For the glomerular layer of the olfactory bulb, one 

OB from the first section out of each pair was stained for calretinin, the other for 

calbindin. On the second section, one OB was stained for tyrosine hydroxylase.  
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Results 

Densities of PV-, CB-, and CR-immunoreactive cells in the PFC of polysialyl-
transferase- and NCAM-deficient mice 

Due to the high mortality of II-/-IV-/- mice after 4 weeks of age (Weinhold et al. 

2005), all analyses were restricted to young, one month old animals. Consistent 

with previous observations that brains of polysialyltransferase-negative mice are 

smaller (Weinhold et al. 2005; Schiff et al. 2009) the area of the PFC as well as 

the area of the entire brain section at the respective cross-sectional level were 

reduced in II-/-IV-/- mice (12% and 16% reduction, respectively; see suppl. Table 1). 

To compensate for the differences in overall brain size, cell counts for each PFC 

were normalized to the respective PFC area. Compared to the control group, the 

resulting densities of PV-positive cells in the PFC were significantly lower in both 

polysialyltransferase single knockout lines (II-/- and IV-/-) as well as in all other 

polysialyltransferase- or NCAM-deficient genotypes (ANOVA, P<0.001, Fig. 1; for 

numbers of evaluated sections and listing of cell counts, see suppl. Table 1). By 

double immunofluorescence staining, PV-positive but CB-negative (PV+CB-), PV 

and CB double-positive (PV+CB+) and PV-negative but CB-positive, interneurons 

(PV-CB+) could be distinguished. Compared to the control group, the densities of 

PV+CB- cells were significantly reduced in all polysialyltransferase- or NCAM-

deficient lines (ANOVA P <0.0001; Fig.2C). Although not statistically significant, 

this reduction was less pronounced in the IV-/- animals.  

No significant differences were found by comparing the PV+CB+ subpopulation 

between the different genotypes (ANOVA P >0.05; Fig.2D). However, a 

comparison of the mean values of all ST8SiaIV-deficient genotypes (IV-/-, II-/-IV-/-,  

II-/-IV-/-N-/-) with those of lines with uncompromised ST8SiaIV levels (control, II-/-,  

N-/-) revealed a significant difference [mean values +/- s.e.m. for the ST8SiaIV- 

positive and -negative group are 11.82 +/-0.51 and 8.82 +/- 0.15, respectively 

(n=3, each); P<0.005, t test]. In contrast, densities of PV-CB+ interneurons were 

unchanged in the different genotypes (Fig.2 E; ANOVA P >0.1). Likewise, no 

significant differences in the expression of CR were observed (Fig. 3A-C; ANOVA 

P >0.05). 
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Figure 1 
Parvalbumin (PV) expression in the prefrontal cortex (PFC). (A) ApoTome MosaiX image showing 
the distribution of PV-postive cells in an overview of the left hemisphere at the level of the PFC and 
schematic illustration of the corresponding right hemisphere (modified from Paxinos and Franklin 
2001). The area of the PFC, consisting of Cg1, PrL and IL, is outlined (left) or highlighted in grey 
(right). The position of the micrographs depicted in (B-G) is marked (white square). Abbreviations: 
Cg1: cingulate cortex, area 1; fmi: forceps minor of the corpus callosum; IL: infralimbic cortex; M1: 
primary motor cortex; M2: secondary motor cortex; Pir: piriform cortex; PrL: prelimbic cortex; S1: 
primary somatosensory cortex. (B-G) Representative details illustrating PV-positive cells in the 
dorsal PFC of different genotypes as indicated. Scale bar: 50µm. (H) Densities of PV-positive cells 
in the PFC. Per group, mean values ±SEM from n=3 animals are plotted. One-way ANOVA 
indicated significant differences (P<0.001) and Newman-Keuls post hoc test was applied. Means 
not marked with the same letter differ significantly (P<0.01). 
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Figure 3: 
Calretinin (CR) expression in the PFC. (A, 
B) Representative details illustrating CR-
positive cells in the PFC (PrL region) of 
control (A) and II-/- IV-/- mice (B). Scale bar: 
50µm. (C) Densities of the CR+ cells in the 
PFC. Per group, mean values ±SEM from 
n=3 animals are plotted. Differences were 
not significant (ANOVA, P>0.05) 
 

Figure 2 
Evaluation of parvalbumin- (PV) and calbindin- (CB) positive cells in the PFC. (A, B) 
Representative details illustrating double immunofluorescence staining for PV (red) and CB 
(green) in the PFC (Cg1 region) of control (A) and II-/-IV-/- mice (B). Double-positive cells appear 
yellow (arrows). Scale bar: 50µm. (C-E) Densities of PV+CB- (C), PV+CB+ (D) and PV-CB+ (E) cells 
in the PFC. Per group, mean values ±SEM from n=3 animals are plotted. One-way ANOVA 
indicated no significant differences (n.s., P>0.1; D, E) or highly significant differences (P<0.0001; 
C) and means not marked with the same letter differ significantly if compared by Newman-Keuls 
post hoc test (P<0.01, C). 
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Figure 4: 
Parvalbumin (PV) expression in the hipppocampus. (A) Schematic drawing of a hippocampus 
(coronal section, modified from Paxinos and Franklin, 2001). For evaluation the hippocampus was 
divided into the cornu ammonis (CA), highlighted in dark grey) and the dentate gyrus (DG, 
highlighted in light grey). The position of the micrographs depicted in (B-G) is indicated (red 
square). Abbreviations: CA1: field CA1 of hippocampus, CA3: field CA3 of hippocampus, DG: 
dentate gyrus, GrDG: granular layer of the dentate gyrus, Py: pyramidal cell layer of the 
hippocampus. (B-G) Representative details illustrating PV-positive cells (red) with nuclear 
counterstain (DAPI, blue) in the CA region of different genotypes as indicated. Scale bar: 50µm. 
(H, I) Densities of PV+ cells in the CA region (H) and the dentate gyrus (I). Per group, mean values 
±SEM from n=3 animals are plotted. One-way ANOVA indicated significant differences (P<0.05; 
H) and means not marked with the same letter differ significantly if compared by Newman-Keuls 
post hoc test (P<0.05; H). n.s., no significant differences (P>0.1; I). 
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Densities of PV-, CB-, and CR-immunoreactive cells in the hippocampus 

Immunopositive cells of the CA fields and the dentate gyrus were counted 

separately and respective areas were measured (Fig. 4A). Compared to the 

control group, mice lacking both (II-/-IV-/-) or either of the two polysialyltransferases 

(II-/- , IV-/-) had significantly increased densities of PV+ interneurons in the CA fields 

(ANOVA P<0.05, Fig. 4H). Both NCAM-negative groups (N-/- and II-/-IV-/-N-/-) 

displayed a slight increase, which neither differed significantly from the control nor 

from the other polysialyltransferase-deficient genotypes (Fig. 4B-H; for numbers of 

evaluated sections and listing of cell counts, see suppl. Table 2). In contrast to the 

CA fields, the densities of PV+ cells in the DG were not affected (ANOVA P>0.05, 

Fig 4I). In the hippocampus interneurons containing both PV and CB are very rare 

(Jinno and Kosaka 2002). In line with that, hardly any PV+CB+ could be detected. 

CB expression was only evaluated in Ammon’s horn, because in the DG calbindin 

is expressed mainly by granule cells and not interneurons (Baimbridge 1992; 

Freund and Buzsaki 1996; Matyas et al. 2004). The evaluation of CB+ cells in the 

CA fields revealed a high variability but no statistically significant differences 

between the genotypes (ANOVA P>0.05, Fig. 5A). Similar to the findings in the 

PFC, the density of CR+ cells in the CA fields was not affected in any of the groups 

analyzed (Fig. 5B). In the DG, many faintly CR+ cells were observed in the granule 

cell layer, especially at the interface with the hilus. Most likely, these cells are 

newly generated, immature granule cells, which transiently express CR (Brandt et 

al. 2003). Counting these cells revealed no significant differences between the 

diverse genotypes (data not shown).  

 

Figure 5 
Densities of calbindin-positive cells (CB+; A) and calretinin-positive cells (CR+; B) in the CA area of 
the hippocampus. Per group, mean values ±SEM from n=3 animals are plotted. Differences were 
not significant (ANOVA, P>0.1)  
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Figure 6: 
Calbindin (CB) expression in the glomerular layer of the olfactory bulb. (A) Schematic drawing of a 
coronal olfactory bulb section (according to Paxinos and Franklin, 2001). The glomerular layer (Gl) 
is highlighted in grey. The position of the micrographs depicted in (B-G) is indicated (red square). 
Abbreviation: GrO: granular cell layer of the olfactory bulb (B-G) Representative details illustrating 
CB-positive cells (green) with nuclear counterstain (DAPI, blue) in the Gl of different genotypes as 
indicated. Scale bar: 50µm. (H) Densities of CB+ cells in the Gl of the olfactory bulb. Per group, 
mean values ±SEM from n=3 animals are plotted. One-way ANOVA indicated significant 
differences (P<0.0001) and Newman-Keuls post hoc test was applied. Means not marked with the 
same letter differ significantly (P<0.01).  
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Densities of CB-, CR-, and TH-immunoreactive cells in the OB 

On each OB section the area of the glomerular layer (Gl) was determined and for 

each of the markers all immunopositive cells of the Gl were counted (Fig. 6A). 

Compared to the control group, a more than 50% reduction in the density of CB+ 

cells was detected within the glomerular layer of II-/-IV-/-, N-/- and II-/-IV-/-N-/- mice 

(Fig. 6B, E-H; ANOVA P<0.0001; for numbers of evaluated sections and listing of 

cell counts, see suppl. Table 3). Both lines deficient for one of the two 

polysialyltransferases (II-/-, IV-/-) had an intermediate phenotype (Fig 6C, D, H). The 

expression of CR or TH was not altered in the glomerular layer of the OB (ANOVA 

P>0.1, Fig. 7 A-C and D-F, respectively). 

 
 

Figure 7: 
Calretinin (CR) and tyrosine hydroxylase (TH) expression in the glomerular layer (Gl) of the 
olfactory bulb. (A, B) Representative details illustrating CR-positive cells in the Gl of control (A) 
and II-/- IV-/- (B) mice. Scale bar: 50µm. (C) Densities of CR+ cells in the glomerular layer of the 
olfactory bulb. Per animal three sections were evaluated. Per group mean values ±SEM 
determined from n=3 animals are plotted. Differences were not significant (ANOVA P>0.1).  (D, E) 
Representative details illustrating TH-positive cells in the glomerular layer of control (D) and II-/-IV-/- 
(E) mice. Scale bar: 50µm. (F) Densities of TH+ cells in the glomerular layer of the olfactory bulb. 
Per group, mean values ±SEM determined from n=3 animals are plotted. Differences were not 
significant (ANOVA P>0.1)  
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Discussion  

The influence of polySia deficiency on selected GABAergic interneuron 

populations of the mouse forebrain was analyzed in a panel of mouse lines with 

differently combined Ncam1 and polysialyltransferase deletions. Together, the 

data of the current study reveal alterations of distinct GABAergic interneuron 

populations in the prefrontal cortex, the hippocampus and the olfactory bulb. The 

concurrent effects observed in polysialylation-deficient and NCAM-negative mice 

identify a lack of NCAM-bound polySia as the cause of these pathological 

changes. This is an important notion because, although NCAM is by far the major 

polySia carrier in the brain, context-dependent polysialylation of a limited number 

of other glycoproteins has been described (see Mühlenhoff et al. 2009 for a recent 

review).  

 

PolySia deficiency inversely affects PV+ interneurons in PFC and CA  
The drastically reduced densities of PV+ interneurons in the PFC of all mouse lines 

with partial or complete deficiencies of polySia clearly contrasts with the increase 

of PV+ cells observed in the CA fields of mice negative for either one or both 

polysialyltransferases but positive for NCAM (II-/-, IV-/- , II-/-IV-/-). In the neocortex as 

well as in the hippocampus, PV+ cells comprise two major types of cortical 

interneurons, basket and chandelier cells (Conde et al. 1994; Freund and Buzsaki 

1996; DeFelipe 1997; Gabbott et al. 1997). The vast majority of PV+ cells, at least 

in the somatosensory cortex, are PV+CB- basket cells (Kawaguchi and Kubota 

1997; Markram et al. 2004). It is, therefore, reasonable to assume that the almost 

50% loss of PV+CB- cells in the PFC observed in all polySia-deficient mouse lines 

includes alterations of basket cells. Most likely, the increase of PV+ cells in the 

hippocampal CA region involves basket cells, too. As outlined below, the inverse 

relationship between these changes in the PFC and the hippocampus may reflect 

a causal link.  

Changes in basket cells have been found in other mouse models with altered 

polySia or NCAM levels. Mice over-expressing a soluble extracellular domain 

fragment of NCAM (NCAM-EC) under the neuron-specific enolase promoter 

displayed a dramatic reduction of PV+ puncta, but no reduction of PV+ cell somata 

in the cingulate cortex indicating a decrease in the number of synaptic terminals of 
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basket cells (Pillai-Nair et al. 2005). Further investigations of these mice revealed 

perturbed arborization of basket cells in the PFC during early postnatal stages, 

when endogenous polysialylated NCAM is replaced by polySia-negative NCAM 

(Brennaman and Maness 2008). Within the same time window, premature removal 

of polySia in the visual cortex results in precocious maturation of perisomatic 

innervation by basket interneurons leading to enhanced inhibitory synaptic 

transmission (Di Cristo et al. 2007). Together with the current findings, these data 

reveal that the balanced regulation of polySia and NCAM is essential for proper 

development of PV+ basket cells. 

In addition to altered basket cell counts, the densities of the PV+CB+ cells, 

indicative for a subpopulation of chandelier cells (DeFelipe 1997; del Rio and 

DeFelipe 1997), were significantly reduced in the IV-/- lines, if opposed to the IV+/+ 

genotypes investigated. This result is remarkable as it points towards a specific 

role of ST8SiaIV in the development or the maintenance of PV+CB+ interneurons, 

which may be independent from the synthesis of polySia on NCAM. Although a 

direct comparison of PV+CB+ cells in the PFC of e.g. ST8SiaIV-positive NCAM 

knockout mice with ST8SiaIV- and NCAM-negative mice was statistically not 

significant this possibility warrants further investigation.  

 

CB+ interneurons of the OB are reduced in mice with defective tangential 

migration 

Periglomerular and granular interneurons of the OB are replaced throughout life 

(Alvarez-Buylla and Garcia-Verdugo 2002). They are born in the subventricular 

zone and migrate towards the OB in the rostral migratory stream (RMS). Three 

non-overlapping subtypes of periglomerular interneurons are characterized by the 

expression of CR, CB, and TH (Kosaka et al. 1995) and, as shown recently, all 

three subtypes are GABAergic in the mouse (Kohwi et al. 2007). The prominent 

reduction of CB+ cells in the glomerular layer as found here in the NCAM- or 

polySia-negative mice (N-/-, II-/-IV-/-, II-/-IV-/-N-/-) is clearly linked to the well-described 

deficits of the tangential migration of the interneuron precursors due to altered cell 

surface interactions in the absence of polySia (Ono et al. 1994; Hu et al. 1996; 

Chazal et al. 2000). A causal link between impaired rostral migration and reduced 

numbers of CB+ periglomerular interneurons is supported by the striking similarity 

to the phenotype observed in doublecortin (DCX) knockout mice (Koizumi et al. 
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2006). In these animals, a cell-intrinsic block of neuroblast migration results in a 

significant reduction of CB+ neurons in the glomerular layer of the OB. In both 

cases, however, it remains enigmatic, why the migration deficit specifically affects 

the CB+ population of OB interneurons.  

Taken together, impaired tangential migration is the most likely cause for the 

deficits of CB+ interneurons in the NCAM or polySia-negative mice. In addition, a 

small but significant reduction of the CB+ subpopulation of periglomerular cells was 

observed in both polysialyltransferase single knockout lines (II-/- and IV-/-). This is 

unexpected, because migrating cells in the RMS express polySia in the absence 

of either ST8SiaII or ST8SiaIV, and a normal morphology of the rostral migratory 

stream and the OB has been reported for both lines (Eckhardt et al. 2000; Angata 

et al. 2004). On the other hand, the complete absence of polySia in the RMS of  

II-/-IV-/- animals indicates that both polysialyltransferases contribute to polySia 

synthesis in this system and therefore minor, yet undetected reductions of polySia 

levels may account for the mild phenotype in the OB of II-/- and IV-/- mice.  

 

Are cortical PV+ interneurons affected by disturbed tangential migration?  
Clearly, further studies, which are beyond the scope of the current phenotype 

analyses, are needed to unravel the mechanisms that account for the observed 

alterations of cortical interneurons. As shown in the current study, deletion of 

either one or both polysialyltransferases affects PV+ interneuron populations. In 

contrast, CB+ but not PV- or CR-positive interneurons have been shown to co-

express polySia in the PFC of adult rats (Varea et al. 2005) and expression of 

polySia in the PFC of adult mice is exclusively affected by ST8SiaIV-deficiency 

(Nacher, Röckle and Hildebrandt, submitted). It therefore seems likely that the 

changes of PV+ cells are caused by a lack of polySia during development and not 

by altered polySia expression in the mature cortex. 

In keeping with the prominent role of polySia in tangential migration of the 

subventricular zone-derived interneuron precursors, it is attractive to speculate 

that dysfunctional migration may cause the observed alterations of PV+ 

interneuron densities within the cortex. In rodents, most, if not all, GABAergic 

interneurons of the cortex originate within the subpallium and migrate tangentially 

to the developing pallium. Interneurons expressing PV appear to derive primarily 

from the medial ganglionic eminence (MGE), whereas CR+ cells seem to emerge 
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exclusively from the dorsal aspect of the caudal ganglionic eminence (CGE; Xu et 

al. 2004; Metin et al. 2006; Gelman et al. 2009). In contrast to CGE cells that 

migrate predominantly towards the caudal telencephalon, MGE cells tend to 

migrate laterally before they spread throughout the cortex. While some of the 

mechanisms that shape the early decisions used by interneurons to reach the 

cortex are at the beginning to be elucidated (for review, see Metin et al. 2006), the 

determinants of their intracortical migration, their spreading into the different 

cortical areas, and their subsequent differentiation into each particular type of 

interneuron remain to be revealed. Nevertheless, the inverse relationship between 

PV+ cells being reduced in the PFC but increased in the hippocampus of polySia-

deficient mice raises the intriguing possibility that polySia is involved in the 

regulation of cell surface interactions that shape decisions of directional migration 

of a distinct class of interneuron precursors.  

Indeed, impaired migration of yet unidentified precursor cells during cortical 

development has been detected in II-/-IV-/- mice (Angata et al. 2007). This study 

also reports on a substantial, approximately 20% reduction in the number of CB+ 

cells in the cerebral cortex of adult II-/-IV-/- animals. As no other neuronal markers 

where assessed, the specificity of this effect remains unresolved. More important, 

the apparent discrepancy with the specific reduction of PV+ cells observed in the 

current study may be explained by the fact that the other study evaluated animals 

with drastic cortical thinning due to hydrocephalus formation. As shown in human 

fetal hydrocephalus this involves the loss of CB+ and PV+ cells (Ulfig et al. 2001). 

In contrast, only specimen with moderate ventricular dilatation and no cortical 

thinning were considered for the current analyses. 

In addition to impaired migration, loss of polySia causes premature differentiation 

of neuronal precursors in vitro and in vivo (Petridis et al. 2004; Burgess et al. 

2008; Röckle et al. 2008), defective development of brain axon tracts (Weinhold et 

al. 2005; Hildebrandt et al. 2009) as well as reduced proliferation, enhanced 

survival and improved differentiation of neuroblastoma cells (Seidenfaden et al. 

2003; Seidenfaden et al. 2006). These effects, however, are induced by a gain of 

polySia-free NCAM. In contrast, the altered interneuron densities described in the 

current study are caused by reductions of polySia irrespective of the presence or 

absence of NCAM, as they were equally found in polysialylation- and NCAM-

deficient mice. This distribution is compatible with the observation of migration 
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deficits in mice with a specific depletion of polySia as well as in mice lacking 

polySia due to NCAM deficiency (Ono et al. 1994; Hu et al. 1996; Chazal et al. 

2000) and therefore supports the idea that impaired migration is the cause for the 

altered cortical interneuron densities observed in all polySia-deficient lines. 

 

Relation to pathological findings in schizophrenia 
Aberrant GABAergic circuits have been implicated in various neurodevelopmental 

and psychiatric disorders such as schizophrenia, bipolar disorder, autism and 

Tourette syndrome (Benes and Berretta 2001; Belmonte et al. 2004; Kalanithi et 

al. 2005). Numerous pathological reports demonstrate alterations of calcium-

binding protein containing interneurons in particularly the PFC of schizophrenic 

patients (reviewed in Reynolds et al. 2001; Eyles et al. 2002; Lewis et al. 2005; 

Lewis and Sweet 2009). Despite considerable inconsistencies, some of these 

studies demonstrate reduced densities of PV+ and, to a lesser extent, CB+ 

interneurons. In contrast, the CR+ subtype seems to be consistently unaltered 

(Beasley et al. 2002; Reynolds et al. 2002). These data, therefore, are comparable 

with the alterations of specifically PV+ but not CR+ interneurons observed in the 

PFC of polySia-deficient mice.  

In addition to pathological changes in the PFC, hippocampal dysfunction is 

considered to play a major role in the pathophysiology of schizophrenia (Gothelf et 

al. 2000; Schmajuk 2001; Harrison 2004; Hall et al. 2009) and decreased density 

of PV+ interneurons in the hippocampus is one of the most consistent postmortem 

findings in the brain of schizophrenic patients (Zhang and Reynolds 2002; 

Reynolds et al. 2004; Torrey et al. 2005). This clearly contrasts with the increase 

of PV+ interneurons observed in the CA region of mice with compromised polySia-

levels. However, as in the PFC, polySia-deficiency seems to cause a significant 

imbalance between inhibitory interneurons and excitatory transmission in the 

hippocampus.  

In conclusion, we therefore propose that dysregulated interneuron development 

caused by a lack of NCAM-bound polySia is a candidate mechanism for 

pathological alterations of GABAergic interneuron subtypes, which might be 

involved in the pathogenesis of schizophrenia and other neuropsychiatric 

disorders.
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Supplementary tables 

Supplementary Table 1: Prefrontal cortex areas and cell counts 

 
a Abbreviations: CB, calbindin, CR, calretinin; PFC, prefrontal cortex; PV, parvalbumin  
b if not noted otherwise, mean values for left and right PFC from six sections per brain were 
determined for each animal 
c per brain, mean areas from the evaluated sections at the level of the PFC were determined 
d if not noted otherwise, mean values for left and right PFC from three sections per brain were 
determined for each animal 
e areas and numbers of PV+ cells were determined from two sections per brain, numbers of CB+ 
and CR+ cells from one section, each 
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Supplementary Table 2: Hippocampus areas and cell counts 
 

 
a Abbreviations: CA, Cornu ammonis; CB, calbindin, CR, calretinin; DG, dentate gyrus; hip, 
hippocampus; PV, parvalbumin 
b if not noted otherwise, mean values for left and right hip from six sections per brain were 
determined for each animal 
c per brain, mean areas from the evaluated sections at the level of the hip were determined 
d if not noted otherwise, mean values for left and right hip from three sections per brain were 
determined for each animal 
e areas and numbers of PV+ cell were determined from four sections per brain, CR+ from one 
section, each 
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Supplementary Table 3: Olfactory bulb areas and cell counts  

  mean area [mm²] mean cell counts/Gl a 

 animal (line, 
mating, litter) 

Gl 
(evaluated 

area) b 
total OB 
section c  

relative 
area Gl 
(% of 
brain 

section) 
CB+ d CR+ d TH+ d 

ctrl. 

bl/6 #27 /8-21 
(II+/+IV+/+) 
tg1 #62/3-2 
(II+/+IV+/+) 
tg3 #151/3-10 
(II+/-IV+/-) 

0.73 
 

0.61 
 

0.73 
 

4.81 
 

4.03 
 

4.12 
 

15.18 
 

15.14 
 

17.72 
 

454.00 
 

504.67 
 

565.33 
 

1279.33 
 

1286.00 
 

1264.33 
 

250.33
 

231.33
 

259.67

IV-/- 
tg1 #76/3-4 
tg1 #76/3-5 
tg1 #76/3-6 

0.72 
0.77 
0.61 

3.86 
4.90 
3.71 

18.65 
15.71 
16.44 

491.00 
460.00 
403.33 

1102.33 
1266.33 
1093.00 

255.33 
268.00 
234.00

II-/- 
tg2 #142/1-33 
tg2 #142/1-34 
tg2 #142/1-35 

0.67 
0.81 
0.67 

3.84 
4.74 
3.78 

17.45 
17.09 
17.72 

393.67 
538.67 
386.00 

987.33 
1142.00 
1096.67 

250.33 
245.00 
235.67

II-/-

IV-/- 

tg4 #103/6-1 
tg3 #151/3-11 
tg3 #151/3-14 

0.55 
0.46 
0.44 

1.96 
2.29 
1.92 

28.06 
20.09 
22.92 

161.33 
132.33 
135.33 

999.00 
850.67 
735.33 

120.00 
145.33 
158.67

N-/- 
tg5 #98/5-1 
tg5 #98/5-2 
tg5 #98/5-3 

0.53 
0.61 
0.23 

2.46 
3.37 
2.86 

21.54 
18.10 

8.04 

164.00 
269.67 

71.00 

760.00 
930.33 
635.33 

179.67 
160.33 
58.33

II-/-

IV-/-

N-/- 

tg4 #134/3-11 
tg4 #134/3-12 
tg4 #103/55-1 

0.43 
0.43 
0.50 

2.06 
2.03 
2.04 

20.87 
21.18 
24.51 

126.33 
104.33 
220.33 

770.67 
782.67 

1019.00 

155.33 
176.33 
134.67

 
a Abbreviations: CB, calbindin, CR, calretinin; Gl, glomerular layer; TH, tyrosine hydroxylase 
b per brain, mean values for the Gl from nine OB sections were determined 
c per brain, mean areas from the evaluated OB sections were determined 
d per brain, mean values from three OB sections were determined 
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Chapter 4 – General Discussion 

The neural networks in the neocortex of higher vertebrates consist of two broad 

classes of neurons: principal or projection neurons and local circuit neurons or 

interneurons. While projecting neurons are excitatory, interneurons are mostly 

inhibitory and use GABA (γ-aminobutyric acid) as transmitter. Interneurons are 

crucial for the functional balance, complexity and computational architecture of 

neural circuits (Huang et al. 2007). Aberrant development and function of the 

cortical GABAergic system have been implicated in various neurodevelopmental 

and psychiatric disorders, for example, schizophrenia (Lewis et al. 2005), autism 

(Belmonte et al. 2004) and Tourette syndrome (Kalanithi et al. 2005). 

Understanding the mechanisms that underlie the construction and plasticity of the 

GABAergic system will be a prerequisite for the development of new therapeutic 

approaches.  

NCAM and its unique sugar moiety polySia are tightly associated with nervous 

system development and plasticity (Hinsby et al. 2004a; Hildebrandt et al. 2007; 

Rutishauser 2008). So far, however, their influence on the development of specific 

GABAergic interneuron subtypes in the cerebral cortex and olfactory bulb (OB) 

has been elusive and the specific impact of the polySia modification on the one 

hand and the NCAM protein backbone on the other has not been dissected. 

Therefore, the two studies of this thesis addressed the role of NCAM and polySia 

in interneuron development in vitro and in vivo. The obtained data indicate that 

loss of polySia affects the development of GABAergic interneurons of the mouse 

forebrain. However, it seems that different mechanisms are involved in vitro and in 

vivo. 

The subventricular zone (SVZ) is the largest neurogenic region in the adult brain. 

In vivo, neuroblasts born in the SVZ migrate as chains along the rostral migratory 

stream (RMS) into the olfactory bulb (OB), where they differentiate into 

interneurons (Doetsch and Alvarez-Buylla 1996; Lois et al. 1996; Doetsch et al. 

1997; Doetsch et al. 1999). In the mouse OB, three non-overlapping subtypes of 

periglomerular interneurons can be characterized by the expression of calbindin 

(CB), calretinin (CR) and tyrosine hydroxylase (TH; Kosaka et al. 1995). As 

demonstrated in the first study of this thesis, removal of polySia from cultured 

SVZ-derived neuroblasts with endosialidase (endoN) induced neuritogenesis and 
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enhanced specifically the differentiation of these precursors towards the CR-

positive interneuron subtype. In contrast, as shown in the second study no 

increase of the CR+ interneuron population of the glomerular layer was observed 

in the OB of polySia-deficient mice. Instead, the evaluation of the different markers 

revealed a prominent reduction of calbindin (CB)-positive cells in NCAM- or 

polySia-negative mice (N-/-, II-/-IV-/-, II-/-IV-/-N-/-). This indicates that two different 

functions of polySia are involved in the generation of interneurons in vitro and in 

vivo. Previous studies have shown that acute removal of polySia causes 

premature differentiation of neuronal precursors (Petridis et al. 2004; Burgess et 

al. 2008), as well as enhanced differentiation of neuroblastoma cells (Seidenfaden 

et al. 2003; Seidenfaden et al. 2006). This is consistent with the increased 

neuritogenesis and maturation of SVZ-derived precursors into CR+ interneurons 

after endoN treatment in vitro as observed in the first study of this thesis. Since 

endoN-induced differentiation could be prevented by incubation with the synthetic 

NCAM-binding protein C3d, this effect is most likely caused by a gain of polySia-

free NCAM. On the contrary, the reduced densities of CB+ interneurons in the 

glomerular layer were equally developed in polysialylation- and NCAM-deficient 

mice. Thus, the observed alterations in vivo are not caused by a gain of polySia-

free NCAM but by a reduction of polySia irrespective of the presence or absence 

of NCAM. This is compatible with the assumption that the loss of CB+ cells is a 

consequence of the prominent defect of tangential neuroblast migration, which is 

also observed in the absence of polySia or NCAM (Tomasiewicz et al. 1993; 

Cremer et al. 1994; Ono et al. 1994; Hu et al. 1996; Chazal et al. 2000; Weinhold 

et al. 2005; Angata et al. 2007). This assumption is further supported by the 

striking similarity to the phenotype observed in doublecortin (DCX) knockout mice 

(Koizumi et al. 2006), in which a cell-intrinsic block of neuroblast migration results 

in a significant reduction of CB+ neurons in the glomerular layer of the OB. Taken 

together, these findings indicate that in the absence of chain migration in vitro, loss 

of polySia induces differentiation of SVZ-derived precursors, whereas in vivo this 

effect may be concealed by the more severe consequences of impaired migration. 

Loss of polySia affects not only the density of CB-positive OB interneurons but 

also specific subpopulations of GABAergic interneurons in other brain regions. In 

contrast to the reduced density of CB+ interneurons in the OB, parvalbumin (PV)-

expressing cells were affected in the prefrontal cortex (PFC) and hippocampus. In 
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the cortex as well as in the hippocampus, PV+ cells comprise two major types of 

interneurons, chandelier and basket cells (Conde et al. 1994; Freund and Buzsaki 

1996; DeFelipe 1997; Gabbott et al. 1997). As the vast majority of PV+ 

interneurons, at least in the somatosensory cortex, are PV+CB- basket cells (del 

Rio and DeFelipe 1997; Kawaguchi and Kubota 1997; Markram et al. 2004), it is 

reasonable to assume that the primarily affected interneurons in the PFC and 

hippocampus include basket cells. PV+ cells were drastically decreased in the PFC 

of all mouse lines with partial or complete deficiencies of polySia, whereas an 

increase of PV+ interneurons was observed in the CA fields of the hippocampus. 

Increased densities of PV+ cells were also described in the CA1 field of the 

hippocampus of mice deficient for the cell adhesion molecule close homologue of 

L1 (CHL1; Nikonenko et al. 2006). Interestingly, like CHL1-mutants, IV-/- mice 

exhibit impaired long-term potentiation indicating a possible link of this phenotype 

to enhanced GABAergic inhibition.  

Concerning the implications of NCAM polysialylation in schizophrenia, it is 

remarkable that the loss of poySia affects particularly PV+ cortical interneurons. 

Although disputed, several studies found alterations of PV+ but not CR+ 

interneurons in schizophrenics (Beasley et al. 2002; Reynolds et al. 2002; 

reviewed in: Reynolds et al. 2001; Eyles et al. 2002; Lewis et al. 2005; Lewis and 

Sweet 2009). In this regard, the reduced densities of PV+ interneurons in the PFC 

of polySia-deficient mice correspond to pathological findings (Beasley et al. 2002; 

Reynolds et al. 2002), whereas the increase in the hippocampus is reciprocal to 

the consistently observed decrease of PV expression in the hippocampus of 

schizophrenic patients (Zhang and Reynolds 2002; Reynolds et al. 2004; Torrey et 

al. 2005).  

In analogy to the changes of OB interneurons discussed above, interneuron 

alterations observed in the PFC and hippocampus may be caused by either 

altered differentiation or disturbed migration. Since these changes are not due to a 

gain of NCAM functions other mechanisms must be responsible. Although highly 

speculative, a possible mechanism relates to the ability of polySia to modify 

cellular responses to brain-derived neurotrophic factor (BDNF; Vutskits et al. 2001; 

Glaser et al. 2007). As BDNF has been shown to bind to polySia (Kanato et al. 

2008), one possible function of polySia may be the enrichment of BDNF. 

Therefore, reduced BDNF-TrkB signaling may account for the altered PV 
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expression in the PFC of polySia-deficient mice. Indeed, signalling of BDNF 

through its receptor TrkB has been reported to influence the development of 

cortical GABAergic neurons and TrkB is predominantly expressed by PV-positive 

cortical interneurons (Cellerino et al. 1996; Huang et al. 1999; Yamada et al. 2002; 

Patz et al. 2004). In contrast to mice with decreased TrkB expression, however, a 

conditional BDNF-knock out mouse revealed no differences in mRNA expression 

levels of GAD67 (the 67kD isoform of the GABA-synthesizing enzyme glutamic 

acid decarboxylase) or PV (Hashimoto et al. 2005). It therefore has been 

concluded that changes in TrkB but not a lack of BDNF cause the altered 

expression of interneuron markers. Thus, it appears not likely that polySia affects 

interneuron densities by functioning as a BDNF scavenger factor. 

Another growth factor essential for differentiation and migration of neuronal 

precursors is GDNF (glial cell line-derived neurotrophic factor; Pozas and Ibanez 

2005; Paratcha et al. 2006). It has been shown that NCAM directly binds GDNF as 

well as the GPI-anchored GDNF family receptor α1 (GFRα1) and thus can function 

as an alternative signaling receptor for members of the GDNF ligand family 

(Paratcha et al. 2003). It therefore would be attractive to speculate that loss of 

polySia either alters interactions of NCAM with GFRα1 to induce NCAM-

dependent progenitor differentiation, or affects GDNF signaling to cause the 

observed alterations of interneuron densities. However, signaling via the NCAM-

GFRα1 complex is unlikely to be influenced by polySia depletion, because both, 

polysialylated and non-polysialylated forms of NCAM are equally able to bind 

GFRα1 and GDNF (Paratcha et al. 2003; Nielsen et al. 2009). Moreover, although 

migration and differentiation of cortical GABAergic neurons requires GFRα1 

signaling, the impact of GDNF on these processes is independent from NCAM 

(Pozas and Ibanez 2005).  

Similar to the tangential migration of neuroblasts within the RMS, interneuron 

precursors from the ganglionic eminence (GE) migrate tangentially towards the 

cortex. Thus, dysfunctional migration may not only account for reduced 

interneuron densities in the OB but also for the observed alterations within the 

PFC and hippocampus. The GE is the main source of interneurons in the 

developing rodent brain and at least three progenitor domains, the lateral (LGE), 

medial (MGE) and caudal ganglionic eminence (CGE), can be distinguished. Most 

of the PV and CB-expressing interneurons derive from the MGE, while CR-
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containing cells arise predominantly in the CGE, whereas LGE cells contribute to 

interneurons in the olfactory bulb (Flames and Marin 2005; Wonders and 

Anderson 2005; Metin et al. 2006; Rakic 2009). Some of the mechanisms of 

interneuron precursor migration are at the beginning to be elucidated (Metin et al. 

2006), but mostly, the factors controlling their spreading into the different cortical 

areas, their intracortical migration, and their subsequent differentiation into the 

different interneuron subtypes remain to be revealed. In this respect, the fact that 

PV+ cells are reduced in the PFC but increased in the hippocampus of polySia-

deficient mice raises the interesting possibility that polySia is involved in the 

regulation of directional migration of a distinct class of interneuron precursors, thus 

shaping their cortical distribution. Indeed, Angata et al. (2007) described impaired 

migration and altered distribution of precursor cells during cortical development of 

polySia-deficient II-/-IV-/- mice. Additionally, this study found a decrease of CB+ 

cells in the cerebral cortex of adult II-/-IV-/- mice. This is inconsistent with the 

outcome of our study where the CB+ interneuron subtype was unaffected but the 

density of PV+ cells was decreased. However, since only CB and no other 

neuronal markers were used by Angata et al. (2007), the specificity of the 

observed defect remains questionable. More important, mice with drastic cortical 

thinning due to hydrocephalus formation were evaluated in their study. 

Hydrocephalus formation, however, has been shown to involve the loss of CB+ 

and PV+ neurons in the cortex of rats and humans (Tashiro et al. 1997; Ulfig et al. 

2001). For these reasons, and in clear contrast to the study by Angata and 

colleagues, only animals with moderate ventricular dilatation and no cortical 

thinning were considered in our study. 

Albeit there is some indication that dysregulated migration may not only account 

for the interneuron alterations observed in the OB but also for those in the cortex, 

it is evident that further studies are needed to unravel the underlying mechanisms. 

Above all, it is open, if the reduced density of PV+ interneurons in the PFC of 

polySia-deficient mice is due to a lack of entire cells or just due to a lack of protein 

expression. The same issue is also heavily debated in schizophrenia. Some 

studies suggest that numbers of PV-expressing interneurons in the dorsolateral 

PFC of schizophrenics are not reduced but that these cells have decreased 

expression levels of PV and other GABAergic markers and might therefore be 

functionally impaired (Lewis et al. 2005). One possibility to address this question in 
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mice may be the use of GAD67-GFP (glutamic acid decarboxylase67-green 

fluorescence protein) knock-in mice (Tamamaki et al. 2003). In these mice, all 

GABAergic interneurons are labeled and cross-breeding with polySia-deficient 

lines will allow to determine, if loss of polySia causes changes of GABAergic 

interneuron numbers. Another strategy will be the investigation of other markers of 

PV+ interneurons. For example, staining with the Wisteria floribunda lectin 

visualizes extracellular matrix structures, so-called perineuronal nets, specifically 

surrounding PV+ interneurons of e.g. the PFC (Hartig et al. 1992; Brauer et al. 

1993; Dityatev et al. 2007). A normal distribution of these perineuronal nets in the 

PFC of polySia-deficient mice would point towards an unaltered interneuron 

number but decreased PV expression, whereas a decrease of perineuronal nets 

would indicate a reduction in cell number.  

Instead of altered migration, the loss or gain of specific interneuron populations 

could be caused by altered proliferation during embryogenesis. Future studies 

may address this possibility by BrdU (5-bromo-2-deoxyuridine)-labeling 

experiments to mark and trace proliferating cells. Alternatively, the loss of PV+ 

interneurons in the PFC could be due to degeneration. Thus, apoptotic cell death 

should be studied in the different polySia-deficient mouse lines. In addition, in the 

case of a degenerative process a progressive cell loss should be detectable. This 

could be addressed by simply analyzing polySia-deficient mice at different ages. 

Due to the precocious lethality of II-/-IV-/- mice, the current study was restricted to 

young, one month old animals. After revealing that animals deficient for either of 

the two polysialyltransferases or NCAM exhibit the same reduction of PFC 

interneurons, these mice can be now be traced over time. Finally, the reduction of 

interneuron density in the PFC as well as the increase in the hippocampus 

observed in four week old animals could be caused by a delay or an acceleration 

of differentiation. If this would be the case, the respective defect should diminish 

with age.  

Although NCAM is by far the major polySia carrier in the brain, it is important to 

keep in mind that context-dependent polysialylation of a limited number of other 

glycoproteins has been described (for a recent review see: Mühlenhoff et al. 

2009). In the brain, so far only the α-subunit of the voltage-gated sodium channel 

has been discussed as a possible alternative carrier of polySia (Zuber et al. 1992). 

Most recently, SynCAM 1 was identified as a novel polysialylated protein in brains 
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from NCAM-deficient and wildtype mice (Galuska et al. 2009). In this context it is 

remarkable that in addition to altered basket cell counts in the PFC, the densities 

of the PV+CB+ cells, indicative for a subpopulation of chandelier cells (DeFelipe 

1997), were significantly reduced in the IV-/- lines, if opposed to the IV+/+ genotypes 

investigated. This observation points towards a specific role of ST8SiaIV in the 

development or the maintenance of PV+CB+ interneurons, which may be 

independent from the synthesis of polySia on NCAM. Although a direct 

comparison of PV+CB+ cells in the PFC of e.g. ST8SiaIV-positive NCAM knockout 

mice (N-/-) with ST8SiaIV- and NCAM-negative mice (II-/-IV-/-N-/-) was statistically 

not significant this possibility warrants further investigation. Reduced chandelier 

cartridges have also been reported in schizophrenia (Woo et al. 1998; Pierri et al. 

1999). Therefore, a more detailed analysis of chandelier cells in the different 

polysialyltransferase-deficient mice would be of general interest. 

 

Perspectives 

The results of my thesis indicate that in vitro, in the absence of migration, 

downregulation of polySia initiates NCAM trans-interactions which promote 

differentiation of SVZ-derived interneuron precursors, whereas chronical loss of 

polySia in vivo during development impairs precursor migration and results in 

altered interneuron densities in the forebrain.  

The SVZ is a major source for adult neural stem cells and neuronal precursors, 

which could be used in cell-based brain repair approaches, e.g. in Parkinson’s 

disease or after stroke (Lindvall et al. 2004). Therefore, the possibility to control 

timing of neuroblast differentiation and eventually increase neuron yields in vitro 

with the help of polySia- and NCAM-specific tools is intriguing, as it may be 

applicable in therapeutic strategies aiming at neuron replacement. In addition, 

enzymatic degradation of polySia by target-oriented application of endoN, 

manipulation of endogenous polysialyltransferase activity and/or the use of NCAM-

mimetic peptides like C3d may have the potential to trigger endogenous brain 

repair processes. Thus, both approaches warrant further investigation. 

In contrast to the enhanced differentiation observed in vitro, reduced polySia 

expression during brain development leads to altered interneuron composition in 

the forebrain and thereby to a modified network function. Aberrant GABAergic 

circuits have been linked to diverse neurodevelopmental and psychiatric disorders 
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such as schizophrenia, bipolar disorder, autism and Tourette syndrome (Benes 

and Berretta 2001; Belmonte et al. 2004; Kalanithi et al. 2005). Thus, it suggests 

itself to analyze the different polySia-deficient mice in behavioral tests of sensory 

gating or working memory, which are indicative for cognitive deficits as observed 

in e.g. schizophrenia. Previous studies with N-/- mice indicate deficits in learning or 

memory formation (Cremer et al. 1994; Cremer et al. 1998; Eckhardt et al. 2000; 

Bukalo et al. 2004; Senkov et al. 2006) and one study reported reduced prepulse 

inhibition of acoustic startle (PPI) in NCAM-180 knockout mice (Wood et al. 1998). 

In contrast, a study on NCAM-null mice was not able to recapitulate this defect 

indicating that a deficit in prepulse inhibition may become apparent only after 

treatement with a ‘second hit’ (Plappert et al. 2005). Likewise, a first study on II-/- 

mice found no deficits of prepulse inhibition as tested in a large behavioural test 

battery (Angata et al. 2004). Thus, refined testing of the different polySia-deficient 

lines under more challenging conditions is needed. Studies along these lines will 

help to further explore, if interference with NCAM polysialylation holds the potential 

to contribute to a neurodevelopmental predisposition to cognitive impairment and 

neuropsychiatric disease.  
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Abbreviations 
 

II-/-   St8siaII-knock out 

IV-/-   St8siaIV-knock out 

BDNF   brain-derived neurotrophic factor 
BrdU   5-bromo-2-deoxyuridine 

CA   cornu ammonis (Ammon’s horn) 
CAM   cell adhesion molecule 
CB   calbindin 
cc   corpus callosum 
Cg1   cingulate cortex, area 1 
CGE   caudal ganglionic eminence 
CHL1   close homologue of L1 
CNTF   ciliary neurotrophic factor 
CR   calretinin 
CSPG   chondroitin sulfate proteoglycan 

E   embryonic day 
ECM   extracellular matrix 
endoN   endosialidase (endo-N-acetylneuraminidase) 
ERK-kinase  extracellular signal-related-kinase 

FAK   focal adhesion kinase 
FGFR   fibroblast growth factor receptor 
FnIII   fibronectin type III 

GABA   γ-aminobutyric acid 
GAD   glutamic acid decarboxylase 
GDNF   glial cell line-derived neurotrophic factor 
GE   ganglionic eminence 
GFAP   glial fibrillary acidic protein 
GFP   green fluorescent protein 
GFRα1  GDNF family receptor α1 
Gl   glomerular layer of the olfactory bulb 
GPI   glycosylphosphatidylinositol 

HSPG   heparan sulfate proteoglycan 

Ig   immunoglobulin 
IL   infralimbic cortex 

kDa   kilo Dalton 
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LGE   lateral ganglionic eminence 
LTD   long term depression 
LTP   long term potentiation 
lv   lateral ventricle  

MAP-kinase  mitogen activated protein-kinase 
MGE   medial ganglionic eminence 

N-/-   NCAM-knock out 
NCAM   neural cell adhesion molecule 
Neu5Ac  N-acetylneuraminic acid 
NSC   neural stem cell 

OB   olfactory bulb 

P   postnatal day 
PDGF   platelet-derived growth factor 
PFC   prefrontal cortex 
polySia  polysialic acid 
polyST  polysialyltransferase 
PrL   prelimbic cortex 
PSTD   polysialyltransferase domain 
PV   parvalbumin 

RMS   rostral migratory stream 

SGZ   subgranular zone 
SNP   single nucleotide polymorphism 
SVZ   subventricular zone 

TH   tyrosin hydroxylase 
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