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Abstract

LISA, the Laser Interferometer Space Antenna, is a planned gravitational wave
observatory in space. It is a joint ESA and NASA mission planned to be launched
in 2018. Three spacecraft form an equilateral triangle with the armlength of 5
million kilometres, building a Michelson interferometer.

The technology demonstrator for LISA, LISA Pathfinder, itself a space mission
to be launched in 2012. The main measurement concept of LISA is based on the
ability to put a test mass into free fall and account for all residual forces that may
act on it. LISA Pathfinder aims to verify this concept. An interferometer measures
the distance between two free-falling test masses with pico-metre accuracy in the
milli-Hertz range.

The LISA Pathfinder mission time is strictly limited. Experiments must be pre-
pared in detail prior to the mission in order to maximise the mission’s science
output. In general the on-board experiments are not independent from each other,
but the result of one may affect following experiments.

This situation leads to special demands on the data analysis activities, as only a
robust and carefully tested tool shall be used for the quasi-online data analysis. As
such the software tool ‘LTPDA’, which enables scientists to carry out the complete
data analysis of the mission, was developed by the data analysis team as part of
this thesis.

Every analysis carried out by using LTPDA can be traced back to the raw data
used. With LTPDA it will be simple to pass analyses carried out for LISA Pathfinder
to the mission time of LISA.

All results concerning the LISA Pathfinder mission presented in this thesis were
carried out exclusively within LTPDA. In fact, the software tool is used for the
complete data analysis of the LISA Pathfinder experiments at AEI.

In this thesis important laboratory experiments on the Engineering Model of the
LISA Pathfinder optical bench are presented. These experiments are part of the
experiment master plan carried out in preparation of the mission. The focus was
on the development of data analysis tools in LTPDA. A number of significant noise
sources in LISA Pathfinder are discussed in this thesis. These include: the angular
motion of the LISA Pathfinder test masses coupling into the measurement, a special
non-linear technical noise source, called sideband induced noise as well as the laser
amplitude noise applying an additional force to the test masses. The work presented
here highlights ready-to-use methods for analysing these noises.

The LISA Pathfinder experiment is simulated within so-called mock data chal-
lenges (MDCs). During the evolution of this thesis two of these (MDCs) have been
carried out successfully. During the process of MDC1 one of the key components
of the data analysis for LISA Pathfinder, the conversion of interferometer read-
out to test mass acceleration has been implemented (for the ideal, one-dimensional
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model). The key point of MDC2 was to investigate a variety of parameter estimation
methods and in this thesis the linear approach is presented.

The complexity of the simulated experiments is increased stepwise, such that
the MDCs will become more realistic and it will be possible to test all mission
experiments using enhanced MDC models. These MDCs have been proven to be a
good instrument for driving the development of the analysis tools as well as forcing
a good understanding of the experiment on all scientists involved.

The final project presented is the injection of non-Gaussian noise into LISACode.
It is a first attempt of injecting a noise source measured in LISA Pathfinder into a
LISA data simulator. This project is meant to serve as a catalyst for a more intense
collaboration between the data analysis efforts done in LISA Pathfinder and those
of LISA. The focus of the data analysis for the two missions is very different since
LISA Pathfinder will be insensitive to gravitational wave signals. From the technical
point of view, however, it is important to transfer the experiences made in LISA
Pathfinder to LISA. This includes the sideband induced noise (SIN) presented in
this thesis, which has been observed in the LISA Pathfinder interferometer readout
and which has been well studied in the course of LISA Pathfinder data analysis.
Further investigations on such realistic noise sources will improve the quality of the
mock LISA data challenges (MLDCs) accomplished in preparation of the mission.

Keywords: gravitational wave detection, data analysis, parameter estimation
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Zusammenfassung

LISA und LISA Pathfinder sind geplante Weltraummissionen der ESA und NASA.
LISA (Laser Interferometer Space Antenna) ist ein geplanter Gravitationswellende-
tektor im All. Da es nicht möglich ist alle Schlüsseltechnologien für LISA in Laboren
auf der Erde zu testen, wurde die Testmission LISA Pathfinder entwickelt.

Das Messprinzip, das in LISA Anwendung findet, basiert darauf den Abstand
zweier frei-fallender Testmassen im Bereich von einigen milli-Hertz mit Picome-
ter Genauigkeit interferometrisch zu vermessen. Eines der Hauptziele von LISA
Pathfinder ist es, dieses Experiment zu verifizieren.

Die Missionszeit für LISA Pathfinder ist sehr begrenzt. Um den wissenschaftlichen
Ertrag der Mission zu erhöhen, ist es daher wichtig, alle durchzuführenden Exper-
imente im Vorfeld auszuarbeiten. Im Allgemeinen sind die jeweiligen Experimente
nicht unabhängig voneinander. Das heißt, die Ergebnisse einer Messung kann die
Wahl der Parameter für folgende Experimente beeinflussen.

Dieser Umstand stellt besondere Anforderungen an die Software zur Analyse
der Missionsdaten. Für die quasi-online Analyse der Daten soll ein robustes und
verlässliches Software-Tool verwendet werden. Dieses Tool stellt LTPDA dar. Die
Entwicklung dauert an und fand maßgeblich im Rahmen dieser Arbeit statt. LTPDA
ist ein gemeinschaftliches Projekt aller Wissenschaftler, die an der Datenanalyse für
LISA Pathfinder beteiligt sind.

Hierbei ermöglicht die Verwendung von LTPDA, die Rückverfolgung aller Ergeb-
nisse einer jeden Analyse bis hin zu den verwendeten Rohdaten. Mit LTPDA wird
es demnach beträchtlich einfacher, Ergebnisse und Analysen LISA Pathfinder be-
treffend, bis in die Missionszeit von LISA weiterzureichen.

Tatsächlich wurden, alle Analysen von LISA Pathfinder Experimenten, die in
dieser Arbeit gezeigt werden, mit LTPDA erstellt. Die Datenanalyse der Labordaten
für LISA Pathfinder am AEI wird bereits vollständig mit LTPDA durchgeführt.

In dieser Arbeit werden wichtige Experimente am Engineering Model der op-
tischen Bank von LISA Pathfinder präsentiert. Diese Experimente sind Teil des
‘Experiment Master Plan’ (EMP) und werden zur Vorbereitung der Mission und
zum Test von Hardwarekomponenten durchgeführt. Der Fokus wird hierbei auf
den erstellten Analyse-Tools liegen, die in dieser Form auch auf Missionsdaten
von LISA pathfinder anwendbar sind. Die Beschreibung und Analyse wesentlicher
Rauschquellen für LISA Pathfinder sind Bestandteil dieser Arbeit. Dies umfasst
das Koppeln der Verkippung der Testmassen in die Abstandsmessug, eine beson-
dere, technische, nicht-lineare Rauschquelle, das sogenannte sideband induced noise
sowie das Laser-Amplitudenrauschen, welches eine zusätzliche Kraft auf die Test-
massen ausübt. Herausgestellt werden hier besonders die entwickelten Methoden
zur Analyse der Rauschquellen.

Das LISA Pathfinder Experiment wird durch sogenannte ‘mock data challenges’
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(MDCs) simuliert. Während der Entstehung dieser Arbeit wurden zwei dieser MDCs
erfolgreich durchgeführt. In MDC1 wurden die Tools für eines der wichtigsten Ex-
perimente implementiert: das Umwandeln von Interferometerdaten in Testmassen-
Beschleunigung (idealisiertes, eindimensionales Modell). Das Hauptaugenmerk in
MDC2 waren verschiedene Methode zur Parameterschätzung. In dieser Arbeit wird
die Methode der Linearisierung behandelt.

Die Komplexität der simulierten Experimente und die hierfür verwendeten Mod-
elle werden stufenweise erhöht, sodass die Simulationen dem realen LISA Pathfinder
Experiment zunehmend ähneln. Mit solch repräsentativen Modellen können dann
alle Experimente des EMP simuliert und entsprechende Methoden der Datenanalyse
entwickelt werden. MDCs haben sich als ein hervorragendes Instrument erwiesen
die Entwicklung der Analyse-Software voranzutreiben. Ein wertvoller Nebeneffekt
ist die Schulung der an den Simulationen für LISA Pathfinder beteiligten Wis-
senschaftler.

Abschließend, wird ein Projekt zur Injektion einer nicht-Gausschen Rauschquelle
in eine Simulation von LISA vorgestellt. Es ist der erste Ansatz eine in LISA
Pathfinder beobachtete Rauschquelle in die Datenanalyse von LISA zu integrieren.
Das vorgestellte Projekt soll als Katalysator für die Zusammenarbeit der sehr un-
terschiedlichen Lager der Datenanalyse für LISA und LISA Pathfinder dienen. Der
große Unterschied rührt vor allem daher, dass LISA Pathfinder nicht-sensitiv für die
Detektion von Gravitationswellen ist. Nichtsdestotrotz ist der eher technische Fokus
der Datenanalyse für LISA Pathfinder in gleichem Maße für LISA von Bedeutung,
und die gewonnenen Erfahrungen sollten für die zukünftige LISA Datenanalyse
nutzbar gemacht werden. Dies schließt die besondere technische Rauschquelle na-
mens ‘Sideband Induced Noise’ (SIN) ein, die sich als wichtiger Rauschbeitrag in der
LISA Pathfinder Interferometrie herauskristallisiert hat. Diese Rauschquelle wurde
im Rahmen dieser Arbeit detalliert analysiert. Das Fortführen der Einbindung realer
Rauschquellen in die Simulationen von LISA wird die Qualität der zur Vorbereitung
der Mission durchgeführten ‘mock LISA data challenges’ weiter verbessern.

Schlagworte: Detektion von Gravitationswellen, Datenanalyse, Parameterschätzung
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1 Introduction

1.1 Gravitational waves

Space and time do not have an independent existence but are joined as spacetime
and must be considered as measurable observables like any other physical quantity
[1]. This is what Einstein’s theory of Special Relativity [2] taught us, when published
in 1905. Ten years later Einstein’s field equation of General Relativity [3] replaced
the Newtonian picture of Gravitation by a geometric one: massive bodies cause
a curvature of spacetime. Changing mass distributions can cause indentations in
spacetime propagating outwards at the speed of light. These indentations are often
called ripples in spacetime. Figure 1.1 depicts a gravitational wave transmitted by
a binary system as distortions in spacetime.

Figure 1.1: Ripples in spacetime: an artist’s impression of gravitational waves transmitted
by a system of two orbiting masses (binary system). Source: NASA

.

In 1918 Einstein published the first calculation of gravitational radiation [4] lead-
ing to the field equation that is today well known as the ‘quadrupole formula’ for
gravitational wave (GW) emission. The quadrupole formula shows that gravita-
tional waves arise from accelerated masses just as electromagnetic waves arise from
charged particles [1]. The main reason for the difficulty of the observation of gravi-
tational waves lies in the weakness of the interaction. Einstein’s field equations pre-
dict that very large masses need to be subject to extreme accelerations to produce
gravitational waves that are detectible by today’s technology. Only astrophysical
objects fulfil these requirements and as such the first indirect proof of the existence
of gravitational waves has been found by studying binary neutron star systems. In
1975 Hulse and Taylor reported that the orbit of the ‘Hulse-Taylor’ pulsar 1913+16
is decaying with time, matching with high precision Einstein’s equations and that
part of the pulsar orbital energy is converted into gravitational radiation [5]. In 1993
they were awarded the Nobel prize in physics for this indirect proof of the existence

1
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of gravitational waves. However, the weakness of the gravitational interaction still
prevents gravitational waves from being detected directly.

Once gravitational waves are directly detectable they will provide a completely
different way of exploring astrophysical objects. Electromagnetic radiation is strongly
interacting with matter, which is the reason why it is so easily measurable. However,
it thereby is also likely to be scattered or absorbed before reaching the detectors.
In contrast the same reason that makes gravitational waves so difficult to detect,
namely their weak interaction with matter, prevents them from being altered signif-
icantly during their travel through space. Hence, gravitational wave-astronomy will
also, among others, aim to analyse gravitational radiation from the early Universe,
when no electromagnetic radiation was present.

The spectrum of gravitational waves differs completely from the one of electro-
magnetic waves. It is impossible to produce an image of a gravitational wave source.
Instead an analogy to sound waves works quite well. There exist sources transmit-
ting gravitational waves of the same frequency range as sound waves. Hence, it is
possible to translate certain gravitational wave signals into audible sound. There-
fore results from gravitational wave astronomy are presentable as sound rather than
in pictures.

Detection of gravitational waves Gravitational waves produce oscillations in the
distance between freely-floating masses. Figure 1.2 gives an impression of how gravi-
tational waves stretch and squeeze matter or energy through which they propagate.
Gravitational waves like electromagnetic waves are transverse, meaning they act
in the plane perpendicular to their direction of propagation. Moreover, they oscil-
late such that a wave travelling through a plane containing two free-falling masses
decreases their distance in one direction by the same amount as it increases the
distance in the perpendicular direction. Hence there are two independent linear
polarisations, called ‘+’ and ‘×’. Figure 1.2 shows how a ring of freely-floating par-
ticles is deformed by a gravitational wave impinging perpendicularly. The upper
row illustrates the effect of a purely ‘+’ -polarised wave and the lower depicts the
influence of a purely ‘×’ -polarised wave on such an array of particles.

These changes in distance, δL, between the test masses are related to the dimen-
sionless amplitude of the gravitational wave, h, and the total distance between the
particles, L, via the equation:

1
2
h =

δL

L
. (1.1)

A world-wide network of ground based gravitational wave observatories aims to
measure these changes in distance by means of laser interferometry. The total dis-
tance L is thereby given by the armlength of the interferometer. These ground-based
detectors are sensitive to gravitational waves of relatively high frequencies between
10 Hz and 1 kHz or higher (see Figure 1.5). Seismic noise and length limitations
prevent low frequencies from being accessible to ground-based detectors. The detec-
tion of sources emitting gravitational waves of lower frequencies will only possible
from space.
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Figure 1.2: Illustration of the two polarisations of gravitational waves: the deformation of
free-floating particles arranged as a ring is shown for both polarisations. The
incident GW is perpendicular to the array of particles. The upper row shows
how such a ring would be deformed by the gravitational wave that carries pure
‘+’-polarisation and the lower row shows the effect of a wave carrying pure
‘×’-polarisation. The amplitude of the GW is shown in phase steps of 90◦

1.2 LISA

LISA, the Laser Interferometer Space Antenna, is a planned gravitational wave
observatory in space. It is a joint ESA and NASA mission planned to be launched in
2020. Three spacecraft fly as an equilateral triangle with the armlength of 5 million
kilometres, forming a Michelson interferometer with an additional arm. The third
arm provides redundancy as well as independent information on both polarisations
of the detected gravitational wave. The three spacecraft will travel in an Earth-like
orbit around the sun while they remain in their triangular formation (see Figure
1.3). The plane of the triangle is inclined by an angle of 60◦ with respect to the
plane of the solar system. The formation follows the Earth by an angle of 20◦.
Throughout the year the formation is passively maintained due to the choice of
the individual spacecraft orbits so that the triangle rotates around its centre once
per year. The orbits have been chosen to minimise the length changes between the
spacecraft over the extended mission lifetime of 10 years.

A simplified scheme of one LISA spacecraft and the links to the remaining two
spacecraft is shown in Figure 1.4. Each spacecraft carries two test masses (TM)
and two telescopes. The test masses define the ends of the 5 million km long
interferometer-arms. Their differential length changes are measured interferomet-
rically using infrared lasers. The laser light propagates from one spacecraft to the
other two via the telescopes and is reflected by one of the two test masses. Since
diffraction causes great losses over the distances between the spacecraft, it is not
possible to reflect the laser light directly back. Instead, the laser on the distant
spacecraft is phase-locked to the incoming light and transmitted back. When the
laser light arrives back at the original spacecraft, it is superimposed on another sta-
ble laser beam. The relative phase measurement gives information about the length
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Figure 1.3: The heliocentric orbit of the LISA satellites. The plane of the triangle is inclined
at 60 to the ecliptic. The triangle appears to rotate once around its centre during
one revolution around the sun. Source: [6]

.

Figure 1.4: Schematic of the two optical benches onboard one LISA satellite. Indicated are
the phasemeters (s and τ), the lasers (p) and the test masses (δ). The picture
is taken from [7].
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of that interferometer arm. The difference between the phase measurements for the
two arms gives information about the relative changes in the two arms caused by
the gravitational wave signal [8].

For the detection of gravitational waves the test masses, which reflect the laser
light on the spacecraft need to be in free-fall within the measurement band of LISA.
Outside this range as well as along the insensitive measurement axes, the position of
the test masses inside each spacecraft is controlled by means of the inertial reference
sensor (IRS). Details about these sensors can be found in [9].

1.3 Sensitivity of LISA

LISA’s armlength has been chosen to achieve best sensitivity between about 0.1 mHz
and 1 Hz. Thus, the frequency range covered by ground based detectors is com-
pletely different to that of LISA. Hence, these two kinds of observatories are sensitive
to entirely different groups of gravitational wave sources. There exist various publi-
cations on gravitational wave sources and a nice overview of low frequency sources
can be for example found in the Pre-Phase A Report for LISA [6]. Their discussion
is beyond the scope of this thesis. Instead some examples for low frequency sources
which LISA aims to detect shall be listed without further description: The coales-
cence of supermassive black holes (MBH) at the centres of merging galaxies, the
radiation from compact binaries in our galaxy and the infall of small black holes,
neutrons stars, and white dwarfs into MBH at galactic centres. The sensitivity of
LISA reaches up to

h ≈ 10−23, (1.2)

in the millihertz range. Hereby distance fluctuations, δL, measured over a period of
one year and a signal-to-noise-ratio (SNR) of 5 are assumed. Figure 1.5 illustrates
the complementarity of the ground-based interferometers and LISA using the ex-
ample of the world’s largest gravitational wave observatory, LIGO. The sensitivity
(denoted on the y-axis) is plotted in terms of the dimensionless gravitational wave
amplitude.

More on the LISA sensitivity is given in Chapter 5, where the introduction of
non-Gaussian noise into the LISA data generator is presented.

LISA is one of the most challenging space missions planned for the next decades.
While no completely new technologies need to be invented, the performance of ex-
isting technology must be improved and additional functionality is required. Some
examples of fields this applies to are: micropropulsion, drag-free sensing and ac-
tuation and interferometric measurement systems. These are only a few examples
of key technologies on which great demands are made. The most challenging task
is thus the advancement and testing of the individual technologies as well as their
assembly to the complete system of high precision technology. A great amount of
technology to be developed for LISA has already progressed enormously.

Some of the technologies, like the drag-free sensing and actuation of test masses,
cannot be tested on ground. Thus system level tests including these key technologies
need to be done in space. This is the reason for the development of the technology
demonstrator mission LISA Pathfinder [10].



6 CHAPTER 1. INTRODUCTION

Figure 1.5: Sensitivity curves for LISA and LIGO and some sources that could be detected
by these gravitational wave observatories. For the LISA curve, a signal-to-noise-
ratio of 5, and averaging over one year and all possible directions and polarisa-
tion angles is assumed. Source: [6]

1.4 LISA Pathfinder

The technology demonstrator for LISA, LISA Pathfinder (LPF), is a space mission
to be launched in 2012. It carries two different payloads: the Disturbance Reduction
System (DRS) provided by NASA, and the LISA Technology Package (LTP) from
ESA. This thesis deals solely with the European experiment LTP. It comprises
two free-falling test masses, whose distance is measured interferometrically. LISA
Pathfinder can be regarded as the attempt to shrink one LISA arm to 38 cm in
order to realise it on one single satellite. The main science goal for LISA Pathfinder
is the verification of free-fall between the two test masses at a level of

a(f) = 3 · 10−14m s−2 /
√

Hz [1 + (f/3 mHz)2] (1.3)

in a measurement band (MB) between 1 mHz and 30 mHz [11].
For LISA Pathfinder, flight hardware is being built and parts of the final assembly

have already been tested and thereby space-qualified at ESTEC, ESA. Testing at
the ESTEC facilities for space-qualification comprises a number of mechanical as
well as thermal and radiation tests. Figure 1.6 shows a photograph of the spacecraft
during the shock tests.

1.5 LISA Technology Package and on-orbit operation

The main payload of LISA Pathfinder is the LISA technology package (LTP). It
is composed of two vacuum containers carrying two test masses connected by an
optical bench. The test masses serve as end mirrors of the laser interferometer set



1.5. LISA Technology Package and on-orbit operation 7

up on the optical bench. Figure 1.7(a) shows an artist’s impression of LTP. The
partly transparent 3D view reveals the two test masses that will be placed inside
the vacuum chambers. The photograph in Figure 1.7(b) shows two dummy vacuum
chambers inside the science module of the LPF spacecraft illustrating the assembly
of LTP inside the spacecraft.

Figure 1.6: The LISA Pathfinder spacecraft composite. Science module on top of the propul-
sion module. Dummy tanks are attached to the propulsion moulde. The pho-
tograph has been taken during shock tests at ESTEC, The Netherlands, in
October 2008. Source: [10]

In the previous section it has been pointed out that the need for a demonstrator
mission arises from the numerous challenging technologies to be implemented in
LISA that cannot be completely tested on-ground. The key technologies tested by
accomplishing the LISA Pathfinder mission are:

Micro-Newton thrusters: Propulsion mechanism applying forces of the order of a
few 100’s of µN. They enable the spacecraft to remain centred on the test
mass.

Inertial Sensor and actuator: A capacitive sensor, measuring distances between
the electrode housing and the test mass and actuating the test mass position.

Drag-free and Attitude control: The control system of the two test masses inside
the spacecraft and the control of the spacecraft itself.

Interferometry: The interferometer onboard LISA Pathfinder measures the dis-
tance between the test masses with picometre accuracy.

In the course of this introductory section the above terms will be explained further,
however, for detailed technical discussions references are given. All future gravita-
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(a) Artist’s impression of LTP. (b) A photograph of the Science module of LTP.

Figure 1.7: The LISA Technology Package (LTP), including the two test masses inside the
vacuum chambers and the optical bench between them. (a) Partly transparent
view (artist’s impression) revealing the test masses inside their vacuum enclo-
sures. The test masses serve as end mirrors for the laser interferometer on the
optical bench between them. (b) This photograph shows two dummies of the
two vacuum chambers which will contain the proof masses. It was taken at
ESTEC during the acoustic tests in 2008. Source [10]

Figure 1.8: Each vacuum chamber contains a test mass enclosed in an electrode-housing
box. The photograph depicts the electrode housing with one test mass. The
cubic mass, 4.6 cm on a side, weights approximately 2 kg and is made from a
gold-platinum alloy. The housing is made of molybdenum and sapphire coated
with gold.
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Figure 1.9: The LISA Pathfinder mission requirements. The upper most curve represents
the requirement on displacement noise due to force noise on the test masses for
the entire mission. The curve below indicates the requirement on the interfero-
metric measurement. The lowest curve is not an official requirement but rather
a guideline for noise contributions of individual noise sources of the OMS.

tional wave detectors in space will benefit from the system level testing in space of
these key technologies.

LTP aims to measure the geodesic motion of the two test masses. However,
the test masses cannot be completely shielded from external and internal forces.
External forces may arise, for instance, from solar radiation pressure. Examples
for internal disturbances are magnetic forces, residual charges and temperature
fluctuations. Hence, in order to realise so-called drag-free motion of the test masses,
a control system is needed to reduce the influence of these disturbances.

This control system is the Drag-Free and Attitude Control System (DFACS):
it is implemented to counteract the disturbances, forces and torque applied on
the spacecraft to maintain the free-floating conditions on the main test mass. The
control laws running on the spacecraft On-Board Computer (OBC) use the test mass
position measurements to compute the necessary forces to apply to the spacecraft
to maintain a steady position and orientation of the test mass. These forces are
applied by the Micro-Newton thrusters that move the spacecraft around the test
mass. The systems that measure the test mass position are the inertial sensors and
the optical metrology system (OMS) [12]. The inertial sensors measure the position
of each test mass with respect to their electrode housing, depicted in Figure 1.8. The
OMS comprises two interferometers: the so-called X1 interferometer measures the
distance between one test mass and the spacecraft, whereas the X12 interferometer
measures the distance between the two test masses.

LISA Pathfinder’s operational phase will last six months. Out of these, 90 days
of the complete mission time are reserved for measurements done with LTP. After
that 60 days for DRS follow and finally a shared mission time for both payloads
of 30 days is foreseen. Every day of the mission must be well planed in advance.
The measurements to be done are defined in detail in the so-called Experiment
Master Plan (EMP). The aim is to achieve the requirement plotted in Figure 1.9.
The Figure shows three requirement curves: the mission goal, the requirement on
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the interferometric measurement and a guideline for the requirements on each in-
strument contributing to the optical metrology system (OMS). For requirements
on individual system components see also [13]. The requirements are plotted as
test mass displacement but could as well be given as equivalent acceleration noises
on the test masses. In order to achieve these requirements analytic analysis and sim-
ulations were done for various noise sources. These analyses are well documented
and comprise for example:

� test mass acceleration noise [14],

� thruster noise [14],

� interferometer measurement noise [15],

� laser frequency noise [16],

� noise due to optical path length difference [17].

In the course of the LTP mission time the noise sources are to be minimised in order
to achieve the target performance of the experiment. The experiments related to
the various noise sources are defined in the above documents, which belong to the
EMP but certain details about the course of action will depend on the results of
the corresponding measurements.

The main scientific experiment to be accomplished with LISA Pathfinder is the
measurement of the geodesic motion of the two test masses of LTP. For this mea-
surement a certain setup of the hardware inside LTP is needed. In the following, the
arrangement of the test masses and the measurements needed, along the sensitive
x-axis, for the performance of the experiment are given. The procedure described
in the following applies to an ideal, one-dimensional case, where no forces acting
along the non-sensitive axis are included.

� Test mass 1 is free-floating within its housing, which means there is no control
force from the Inertial Sensor (IS) applied to the test mass. The spacecraft is
made to follow its motion.

� The position of the free-floating test mass (TM1) relative to the spacecraft is
measured interferometrically, via the so-called X1 interferometer.

� The position of test mass 2 is controlled electro-statically by means of the
Inertial Sensors.

� The distance between the two test masses is measured by means of the
so called X12 interferometer. This signal is used to control the position of
test mass 2 and thereby TM2 is made to follow TM1.

This setup is called the science mode and it is the most sensitive measurement mode
of LTP. To implement this mode, however, a series of actions is necessary between
the time of arrival of the spacecraft in its orbit and the start of the experiments in
science mode. One reason for this is that during launch the test masses are fixed
by the so-called caging mechanism in there housings to withstand the mechanical
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load during launch. Only after the spacecraft reaches its final orbit, the test masses
are released and their position pre-aligned for the interferometrical measurement.
The complete procedure is documented in the Experimental Master Plan mentioned
above.

In science mode test mass 1 is kept in free-fall. Its position with respect to
the spacecraft is known from the interferometrical measurement. The spacecraft is
made to follow the motion of test mass 1 by means of the drag-free control loop,
which controls the Micro-Newton thrusters. Test mass 2 is directly controlled via
the electro-static control loop to follow the motion of the spacecraft. This control
is realised with low bandwidth to keep the noise introduced by the electro-static
actuator small. In this way the motion of test mass 1 is drag-free and test mass 2
serves as reference for the measurement of this motion. The system that combines
all of these control laws is the DFACS, mentioned above.

The extraction of the differential residual acceleration of the test masses by ac-
counting for all control forces applied, is one example for a variety of tasks that need
to be prepared from the side of the data analysis for LISA Pathfinder. A general
overview to the field of data analysis for LTP will be given in the next section.

1.6 Data Analysis - Characterisation of LTP

LTP will measure the free-fall between two test masses. The baseline for the sensi-
tivity of this measurement is of the order of 3 ·10−14 m /(s2

√
Hz) in a measurement

bandwidth between 1 mHz and 30 mHz.
It was pointed out earlier in this introduction that LTP can be regarded as single

LISA arm downscaled from 5 Million km to 38 cm. LTP is completely set up within
one spacecraft. Also it has already been stated that the sensitivity to gravitational
waves scales with δL/L, with L being the length of the optical path between the
test masses. Hence LTP is effectively insensitive to gravitational waves [18].

As such the objective of its data analysis is very different from the one of LISA
and the ground based observatories, where the search of gravitational wave signals
is the focal point of all considerations. The challenges for the LTP data analysis
arise mainly from the limited mission time for LTP (about 90 days), which is why
it is very important for the mission’s success that every experimental run to be
carried out is very well planned in advance.

In preparation of the data analysis for LTP the work presented in this thesis can
be divided into two different parts:

� The data analysis of ongoing laboratory experiments and tests of engineering
and flight models of the LTP hardware. Especially the analysis of experi-
ments from the engineering model (EM) of the optical bench for the LTP
interferometer.

� Implementing and simulating the experiments that are to be processed during
the mission. This is done by the so called Mock Data Challenges, which are
discussed in detail in Chapter 4.

In the course of fulfilling these tasks, reliable tools for the data analysis for the mis-
sion are implemented. The data analysis for the LISA Technology Package onboard
LISA Pathfinder is a major topic of this thesis.
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2 The data analysis infrastructure for the
LISA Technology Package

The LISA Pathfinder mission time is strictly limited. Experiments must be prepared
in detail prior to the mission in order to maximise the mission’s science output. The
task of planning every experiment in advance becomes even more challenging when
taking into account that the experiments are not independent from each other, but
the result of one is likely to affect following experiments.

This situation leads to special demands on the data analysis activities, as only
a robust and carefully tested tool shall be used for the quasi-online data analysis.
By quasi-online post-processing of obtained data on-ground is meant. Results of
this may affect decisions for the experiments to follow. It becomes evident that
the LISA Pathfinder mission needs a robust and flexible data analysis tool which
enables scientists to carry out the complete data analysis of the mission.

In late 2006 the development of such a data analysis tool started, and the idea of
an object-oriented LTPDA (LISA Technology Package Data Analysis) MATLAB
toolbox formed. In this chapter LTPDA will be presented: its main concept will be
exposed, the main functionality will be pointed out and some special features will
be highlighted. [19] also gives some detailed information on LTPDA and a general
overview about the data analysis for LTP. The LTPDA development is a joint effort
between the AEI in Hannover and the University of Trento, with about ten people
working full time at the moment.

2.1 Requirements on the data analysis for LTP

LTPDA will be delivered to ESA and will be tested according to ESA standards.
Thus a detailed set of requirements on the software tool have been formulated
and are documented in official technical reports: the user requirements are defined
in the User Requirement Document (URD) [20] and based on this is the Software
Requirements Document [21]. In this context discussions will be limited to the most
important points leading to the concept that is finally implemented.

The defined task was to develop a comprehensive data analysis environment
which contains all analysis algorithms necessary to completely characterise the LISA
Pathfinder experiment. It was clear from the beginning that there will be non-
programming experts among the scientists performing the online data analysis of
the mission. As such the software tool should require only a short training period.

LTPDA is implemented as a MATLAB toolbox and will in the following be de-
noted simply as toolbox. The main reason for this choice of a commercial software
environment is that it comes with a large collection of professionally implemented
algorithms useful for all sorts of data analysis. Moreover, a commercial software

13
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like MATLAB does not need to undergo official testing. As such original MATLAB
functionality is used wherever possible to limit the amount of necessary testing.
Moreover the mathematical oriented MATLAB scripting language with its large
function library simplifies common data analysis tasks compared to other program-
ming languages like C.

Another major aim was to develop the toolbox such that every analysis is fully
reproducible and completely traceable back to the raw data used. This is especially
important for sharing results among a team of scientists, where everybody works on
the same data like in LISA Pathfinder and also for maintaining the readability of the
results until the mission time of LISA. Analysis results will be comprehensible and
easily comparable. As such, these results are not simple files containing experimental
data. They are objects having a certain structure, which makes it possible to store
all kinds of information.

It has been agreed that the user of the developed toolbox should be able to do
the following things when obtaining a result of a data analysis accomplished with
the same toolbox:

� Find out about all steps that were involved in the production of the final
result, including

– information on the raw data that was involved (date, channel, time seg-
ment, time of retrieval).

– all operations that have been applied to modify the raw data e.g which
functions were applied.

� Re-do all operations provided she or he has access to the raw data and the
toolbox (LTPDA).

� Modify any of the applied operations to obtain a new result.

2.2 The concept of the Analysis Object

The concept of the Analysis Object (AO) arose from the above requirements on the
software tool. The first document dealing with the concept is [22], which still applies
for the general overview of Analysis Objects. Detailed up-to-date information can
be found in the manual of LTPDA [23]. It has a structure providing the possibility
to not only store the data resulting from an analysis but also various information
about it. Examples for fields included in the architecture of the Analysis Object
are:

� a description,

� information on the raw data that has been used,

� a history of all operations on the data that have been performed and

� the type of the resulting data, e.g. time domain data or frequency domain
data.
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Many more fields exist and they partly depend on the type of the resulting data. For
example it makes not much sense to speak of the number of seconds of a frequency
data series. As such, different data classes exist for example for frequency and time
dependent data. These are fsdata and tsdata respectively. The purpose of classes
is discussed later in this chapter. Figure 2.1 reveals the first layer of the structure
of an Analysis Object.

- Name
- unique ID
- Description

- Data vectors
- Errors
- Creation data/time
- Units

Numerical 
Data

Processing 
History

ProvenanceMeta 
Data

- Algorithm name/version
- Parameter list
- Input history

- Creator
- IP adress
- Hostname
- Operating System
- Sofware version

Analysis Object

Figure 2.1: Illustration of the structure of an Analysis Object. It contains various fields for
combining data and useful information about it.

2.3 Object Orientated Programming

For the realisation of the concept of Analysis Objects it is most convenient to chose
an object oriented developing environment. In Object Orientation the relation of
data and algorithms is represented by objects. Thereby it is possible to construct
reusable components and put them together as modules of a complex program.
This is an effective way to decompose a complex project into smaller components
which may be easier to understand and which are reusable within the project.
Consequently the management of such complex software projects gets simplified
significantly. Today object oriented programming is of great importance for the
development of comprehensive Applications.

Classes A software tool can represent all kinds of different categories. These can be
physical objects like animals or vehicles or virtual objects like financial markets. In
object orientation these categories are represented by classes. States are properties
and methods are operations of these classes. Objects are instances of classes and
they are constructed according to the fixed behaviour of this class.

The basic architecture of a software tool needs to be elaborated carefully in
advance to the development. Hence it must be defined what type of data elements
are needed and which operations in the form of methods need to be implemented.
All desired information on data, depending on the type of object the data belongs
to, can then be stored as properties.

Different methods belonging to different classes can have the same name. Defining
a method with the name of an already existing one is called overloading. Which
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method finally gets called, depends on the class the object belongs to. This is a
key part of the development of LTPDA, where existing MATLAB functions like
plus and minus are overloaded for Analysis Objects. They could be completely
redefined, but of course it is easier for the user to keep the methods behaviour the
same as far as possible.

Also in MATLAB all variables belong to a certain class. For instance double
values belong to the MATLAB class double. In MATLAB it is possible to have user
defined classes and objects. As such the class ao has been defined together with a
set of classes for objects containing different types of data. At present five different
types of data objects exist in LTPDA:

tsdata: For storing time dependent data (time-series).

fsdata: For storing frequency dependent data, like e.g. spectra or transfer functions.

cdata: For storing constants or any non-dependent values.

xydata: For storing two types of any kind of data that depend on each other.

xyzdata: For storing three types of any kind of data that depend on each other.

All of the above objects are part of Analysis Objects. They represent sub-objects
of the Analysis Object.

It shall be noted that once an object is defined with all its properties including
the data, the user will deal only with objects and functions. The objects are treated
like common variables whose metadata is kept hidden from the user unless the user
calls the appropriate field.

2.4 The MATLAB Toolbox - LTPDA

LTPDA stands for LISA Technology Package Data Analysis and is the name of the
MATLAB toolbox developed for the data analysis of LISA Pathfinder. It imple-
ments the concept of Analysis Objects described above by means of object orien-
tated programming. At present the project comprises:

� around 2,500 source code files,

� about 100,000 lines of code,

� approximately 60,000 lines of documentation.

The toolbox is completely integrated within MATLAB which includes the help
pages being part of the MATLAB manual. Figure 2.2 shows a screen shot of one of
the introductory help topics inside MATLAB. On the page shown, the hierarchical
scheme of the classes of the toolbox is introduced. The help can as well be found
online at [23].

Figure 2.3 shows the most important classes containing the most important meth-
ods. Emphasised are the so-called user classes, the user interacts only with these
classes directly. The call of non user-classes is happening hidden from the user. Thus
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Figure 2.2: Screenshot of the help of LTPDA inside MATLAB. Shown is the introductory
topic about its classes. The task-bar on the left hand side shows the help topics
for every toolbox installed in MATLAB.

ao

history

fsdata tsdata xydata xyzdata cdata

pzmodel

pole zero

time

timespan

plist

param

miir mfir
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Figure 2.3: LTPDA classes, the list is not complete but only the most important classes are
shown. Coloured are the classes the user has access to.
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the architecture of LTPDA is well structured by numerous classes without compli-
cating its usage. The majority of methods belong to the class ao which means they
act on Analysis Objects and give Analysis Objects out. Figure 2.4 depicts the list
of methods only from the ao-class.

Figure 2.4: The complete set of methods of the ao class inside LTPDA. It is the largest
class of the toolbox containing most of the methods.

The implementation of methods is realised in different ways:

Methods are newly developed: This applies mostly to functions that make use of
the different fields of the AO. For example the select method lets the user
select a segment of data of a certain time or frequency span, depending on
the type of data and the user’s needs.

Methods are implemented in C: MATLAB offers the possibility to embed C-code
in the software via a so-called wrapper. This type of implementation is re-
stricted to methods where C-code offers a great speed advantage over MAT-
LAB. This is for example true for the logarithmic power spectral density (lpsd)
method [24].

Methods are overloaded: One advantage in using MATLAB as development plat-
form is the great amount of ready implemented and tested functions. Essential
functions like operators (plus, minus, ect.), see also Figure 2.5, are overloaded
and extended to work with Analysis Objects.

Figure 2.5 shows a selection of methods in LTPDA grouped in categories named
after their purpose of application. There are the methods for:

Spectral analysis: Producing frequency dependent data.
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Spectral
psd lpsd
tfe ltfe
cohere lcohere
fft

Pre-processing
resample select
downsample split
upsample   whiten
filter     delay

Operators
+,-,^,*,/,.*,./,.^,' 
abs, sin, cos, tan, 
exp, ln, log, sqrt, 
min, max, real, imag

Figure 2.5: A selection of LTPDA methods from three different categories of required op-
erations.

Pre-processing: Preparing data for further analysis.

Operators: All common operators need to be implemented. Most of the operators
are overloaded MATLAB methods.

Functionality and usage of LTPDA The reason why existing MATLAB functions
need to be overloaded for the use in LTPDA is the special structure of Analysis
Objects. Methods of the class ao only deal with AOs rather than with variables.
They accept AOs as input and also produce AOs as output. How the methods deal
with AOs internally is hidden from the user and in principle the usage is not any
different from dealing with plain variables. The following example shall give an idea
about the usage of LTPDA.

>> a1 = ao(5); % Creates an AO of type cdata with a constant value of 5
>> a2 = ao(4);
>> a3 = a1+a2 % adds up the data inside the two AOs (4+5)
−−−−−−−−−−− ao 01: (a1+a2) −−−−−−−−−−−

name: (a1+a2)
data: 9

−−−−−−−− cdata 01 −−−−−−−−−−−−
y: [1x1], double

dy: [0x0], double
yunits: []
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

hist: ao / plus / Id : plus.m, v1.452009/08/3117 : 09 : 44ingoExp
mdlfile: empty

description:
UUID: 3f5e7e9e−3042−4569−9411−a5d520d7fbf5

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

In the example two Analysis Objects are created. The first having the constant
value 5 and the second contains the value 4. Once the objects are created they can
be treated as variables and, like in the given example, simply be added together.
In fact the method that is called is an overloaded method for plus that deals with
Analysis Objects.

Additional information can be assigned to all Analysis Objects. Some fields con-
tain standard values, in the above example the resulting object a3 is named after
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the operations done (a1+a2). Information will be carried along during operations.
For instance, physical units should be attached to all data in newly created Analysis
Objects and will be computed correctly with subsequent operations.

Figure 2.6 illustrates a method call where the name method refers to any possible
method: In general the behaviour of methods is configured via so-called parameters.
These parameters consist of a name (‘key’) and a value and they are collected in
so-called parameter lists (plist). For every method it is well documented what sets
of parameters are applicable.

b = method(a,pl)

output AOs input AOs input parameters

Figure 2.6: A method call in LTPDA. The name ‘method’ can be replaced by any method
name of LTPDA and ‘pl’ stands for the parameter list. Methods of LTPDA deal
with Analysis Objects containing the data to be processed. Their behaviour is
configured via parameter lists by which the user can choose different options
that may be implemented inside the algorithm.

Figure 2.7 depicts how the methods keep given information on Analysis Objects
during operations. All information needed to trace a given result back to the raw
data is kept. The complete set of information necessary is called the history of an
object.

Input 
AO

Input 
AO

Algorithmic step
input 

history

input 
history

Algorithm 
history

Output 
AO

Figure 2.7: Illustration of how the so called history of an Analysis Object is tracked during
operations. The history object of every input AO is called by every algorithm
applied and each algorithm writes the input history plus its own processing
history into the newly created AO.

Every algorithm working on an object in LTPDA adds an entry to the history
of that object. The entry contains:

� the algorithm name,

� the algorithm version,

� the parameter list that was used by the algorithm,

� the names of the input objects and

� the history entries of the input object.
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In this way a tree of history entries is built as an object passes through the
individual operations of an analysis. The history entry is an object (or instance)
of the history class and it is part of the Analysis Object. The processing tree can
be extracted from the history object to be viewed and it can be used to rebuild the
object or to alter the processing steps of the analysis. This fulfils the above listed
requirements of traceability and reproducibility of any result of the data analysis
for LISA Pathfinder.

The diagram in Figure 2.8 shows the processing history of an Analysis Object.
It is to be read from the top to the bottom: two AOs are created, they contain time-
series data following a random distribution. The spectrum of each of the objects
is computed by the method lpsd and finally the two objects are added together.
The additional information in the boxes represents all of the parameter list entries
that can be set when applying a function. For example T0 is the start time of a
time-series inside an AO, which can be set.

END

plus(empty-plist)

lpsd(KDES=100, JDES=1e+03,
LMIN=0, WIN=(BH92, alpha=0,

psll=92, rov=66.1, nenbw=2.0044,
w3db=1.8962, flatness=-0.8256),

PSLL=200, OLAP=66.1, ORDER=
0, SCALE=’PSD’)

ao(TSFCN=’randn(size(t))’,
FS=1, NSECS=1e+05, YUNITS=

’m’, NAME=’None’, DESCRIPTION=
’’, PLOTINFO=(empty-plist),
XUNITS=’s’, T0=’1970-01-01

00:00:00.000’, RAND_STREAM=
1x1 [struct])

lpsd(KDES=100, JDES=1e+03,
LMIN=0, WIN=(BH92, alpha=0,

psll=92, rov=66.1, nenbw=2.0044,
w3db=1.8962, flatness=-0.8256),

PSLL=200, OLAP=66.1, ORDER=
0, SCALE=’PSD’)

ao(TSFCN=’randn(size(t))’,
FS=1, NSECS=1e+05, YUNITS=

’m’, NAME=’None’, DESCRIPTION=
’’, PLOTINFO=(empty-plist),
XUNITS=’s’, T0=’1970-01-01

00:00:00.000’, RAND_STREAM=
1x1 [struct])

Figure 2.8: History tree for an Analysis Object. It is to be read from top to the bottom: Two
AOs are created and contain a random time-series. After that there power spec-
tral density is computed and finally they are added together. Each block repre-
sents an algorithm applied and contains all important configuration parameters
used. The diagram was generated automatically by the method viewHistory()
[25].

A history tree like the one shown is generated automatically by applying the
method viewHistory() on the object, which creates a pdf document (if the appro-
priate third party software is installed [25]). These diagrams can become arbitrarily
complicated just like the analysis process applied. The history object makes it
possible to rebuild the entire analysis script that was used to achieve the analysis
result.
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Testing Since LTPDA will be the official mission tool for data analysis it must
be reliable and therefore its functionality must be well tested. Testing is done on
different levels [19]:

Unit level tests: For every method of the toolbox one or more unit tests are im-
plemented. This is a MATLAB file that tests two different aspects of the
according algorithm:

the syntax: This test assures that the algorithm can be called as described
in the documentation.

the algorithm: In this test, the result returned by the algorithm is checked
(against the result from the appropriate MATLAB function or against
applicable test data).

System level tests: For these tests blocks of several algorithms connected in vari-
ous ways are implemented. These blocks form compatibility tests of the func-
tions among each other.

User tests: Daily use of the software tool by various scientists are an effective way
of testing the existing methods on all levels as well as revealing the need for
new algorithms. In this context, especially the Mock Data Challenges and the
laboratory analysis, which are discussed in detail in Chapter 4 and Chapter
3 respectively, shall be highlighted.

Acceptance test: this is a formal test campaign carried out by the ESA. Its aim
is to assure that the software is capable of performing its role in the mission.

2.5 An example for a special tool of LTPDA: Generation of
time-series with a prescribed spectrum - The Franklin
noise-generator

The toolbox comprises a large collection of algorithms. This collection is a mixture of
algorithms adopted from MATLAB, functions originally implemented for ground-
based gravitational wave detectors (especially GEO600) and newly implemented
methods by the LTPDA team and several other people (for every function the
credits are included in the manual). For this section, one contribution of special
interest is picked out and presented.

We want a method to generate Gaussian random noise with a given spectral
density. Such time-series are needed, for example, to generate test data sets for
programs that compute spectral densities, or as inputs for various simulations.

One way to realise this is to apply digital filters (FIR or IIR) to white input noise.
This approach is effectively implemented for the generation of ‘multichannel’ noise
with a given cross spectral density. ‘Multichannel’ transfer functions are identified
by an automatic fit procedure based on a modified version of the vector-fitting al-
gorithm (see z-Domain Fit in the user manual for LTPDA [23] for further details on
the algorithm). Partial fraction expansion of ‘multichannel’ transfer functions and
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the implementation of filter state initialisation avoid the presence of any unwanted
warm-up period.

A different approach is implemented in LTPDA as the Franklin noise-generator.
It produces spectral densities according to a given pole/zero model, meaning an
analytical transfer function, and does not require any warm-up period. Franklin’s
noise generator is a method to generate arbitrarily long time-series with a prescribed
spectral density. The algorithm is based on a paper by J. N. Franklin written in
1956 [26].

The algorithm is based on the propagation of a state vector, ~y. The state vector
is a random vector with a prescribed covariance matrix. For this method random
vectors with two prescribed covariance matrices are required: one for initialisation,
~y0, and one for the noise contributions, ~ε, to each time step.

The input to the method is a pole/zero model defining the desired spectrum of
the time-series to generate, the sampling frequency fs and the number of seconds
to be generated. The generator operates on a real state-vector, ~y, of length N
which is maintained between invocations. It produces samples of the time-series in
equidistant steps T = 1/fs. The sequence of operations is as follows:

� initialising the state vector:

~y0 = Tinit · ~r, (2.1)

� propagate the state vector:

~yi = E · ~yi−1 + Tprop · ~r, (2.2)

� generate the final time-series:

~xi = ~a · ~yi, (2.3)

where ~r is a vector of independent normal Gaussian random numbers and Tinit,
E and Tprop are real matrices and ~a is a real vector. The matrices are determined
once by the algorithm from the given transfer function. The mathematical basis of
the algorithm has been published by Joel Franklin in 1965 in [26] and in [27] the
main concept as well as the implementation is described comprehensively. The key
of the implementation is the computation of the matrices Tinit, E and Tprop. It
is described in [27], where the first implementation of the method is documented.
This initial implementation has been coded in the programming language C by
Gerhard Heinzel and has been transformed to MATLAB code for the integration
into LTPDA as part of this work. The implementation will be described at the end
of this section, where all matrices required for the individual processing steps listed
above will be constructed. After that those steps will become less abstract. After
this, the usage of the noise generator within LTPDA is shown and some significant
examples will be presented.
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2.5.1 Implementation

The implementation of the algorithm is taken from [26] and [27]. In this section
the computation of the matrices Tinit, E, Tprop and the vector ~a is presented.
As mentioned in the previous section, these are the key components of Franklin’s
algorithm for generating time-series with prescribed spectra.

The starting point is always a mathematical description of the desired spectrum.

H(s) =
a0 + a1s + · · ·+ amsm

b0 + b1s + · · ·+ bn−1sn
, with n > m, (2.4)

where s = iω = 2πif is the Laplace variable and this transfer function is conceptu-
ally applied to the LSD in 1/

√
Hz of white input noise.

The denominator of the transfer function to compute is denoted by b and the
numerator by a. Franklin’s method starts with the computation of the propagation
matrix E. At first a matrix, A, is set up using the b-coefficients of the input transfer
function:

A = Aij =



0 1 0 · · · 0

0 0 1
. . . 0

...
... 0

. . . 0

0 0 0
. . . 1

−b0 −b1 −b2 · · · −bn−1


or (2.5)

Aij =


1 : j = i + 1,
−bj : i = n− 1, (i = 0, . . . , n− 1; j = 0, . . . , n− 1).
0 : else,

(2.6)

where n + 1 is the number of b-coefficients in the denominator of the transfer
function. This is due to the fact that here the counting of array entries starts at
0. It shall be noted that the b-coefficients are normalised to bn = 1 beforehand.
According to [26] E is given by

E = exp(A · T) = Eij (i = 0, . . . ,n− 1; j = 0, . . . ,n− 1), (2.7)

where T = 1/fs the input sampling frequency.
Two instances of random vectors with prescribed covariance matrix are need for

the final generation of the time-series. They are produced from generic vectors by
multiplication with a lower triangular matrix T. The resulting random vector has
a covariance given by

C = T ·Tᵀ. (2.8)

Thus, once C has been found, the ‘generator matrix’ T can be found by decompo-
sition, for example using a Cholesky decomposition an algorithm that is described
in standard textbooks on Linear Algebra (for example, in Numerical Recipes [28]).

The next step of the implementation will provide the random vector generator
matrix, Tinit, for initialisation of the random vector with prescribed covariance
matrix. This is the first of the two instances mentioned above. The resulting matrix
Tinit will later be used only once by the generation algorithm for initialising the
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Algorithm 1: Recipe for filling the matrix Bij necessary for computing the
random vector generator matrix for initialisation Tinit. The symbol← represents
a variable allocation
for i = 0 to n-1 do

if i is even then
j0 ← i/2
s ← (−1)j0

j ← j0

for k = 0 to n do
Bij ← s ·bk

k ← k + 2
s ← -s
j ← j + 1

else
j0 ← (i + 1) /2
s ← (−1)(j0+1)

j ← j0

for k = 1 to n do
Bij ← s ·bk

k ← k + 2
s ← -s
j ← j + 1

state vector, ~y. Analogue to Franklin’s formulae we begin by setting up a matrix
B = Bij using the recipe given in Algorithm 1.

For n = 4 the result from the recipe given in Algorithm 1 is as follows

B =


b0 −b2 b4 0
0 b1 −b3 0
0 −b0 b2 −b4

0 0 −b1 b3

 . (2.9)

For the next step the linear set of equations

B · ~m = ~k (2.10)

must be solved for the unknowns ~m = (m0, · · · ,mn−1)ᵀ and ~k = (0, · · · , 1/2)ᵀ.
Using the resulting ~m, the matrix Cinit can be filled according to the following

rules.

Cinit =
{

(−1)(i−j)/2 ·m(i+j)/2 if (i + j) is even,

0 otherwise.
(2.11)
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For n = 4 the matrix Cinit reads:

Cinit =


m0 0 −m1 0
0 m1 0 −m2

−m1 0 m2 0
0 −m2 0 m3

 . (2.12)

Finally the desired matrix Tinit is obtained by decomposing Cinit according to
Equation 2.8 such that

Cinit = Tinit · (Tinit)ᵀ, (2.13)

using, for example, the Cholesky decomposition mentioned above [28].
There is a second instance of random vectors with prescribed covariance matrix

needed. It will be used for the propagation of each step in the final noise gener-
ation method. This covariance matrix is called Cprop. It is set up similar to the
previously described procedure for Cinit above. The covariance matrix will again
be decomposed according to

Cprop = Tprop · (Tprop)ᵀ, (2.14)

To start with, the non-symmetric N × N matrix D is to be constructed. The
corresponding recipe is given again as pseudo-code in Algorithm 2.

Algorithm 2: Recipe for filling the matrix Bij necessary for computing the
random vector generator matrix for initialising Tinit. The symbol ← represents
a variable allocation
for i = 0 to N -1 do

for j = 0 to N-1 do
Dij ← 0

for i = 0 to n-1 do
for j = 0 to n-1 do

for k = 0 to n= -1 do
Dg(i,j),g(j,k) ← Dg(i,j),g(j,k) + Aik

Dg(i,j),g(j,k) ← Dg(i,j),g(i,k) + Ajk,

with Aij being defined in Equation 2.6 and the indexing function g:

g(i, j) =

{
i(i+1)

2 + j if i ≥ j
j(j+1)

2 + i otherwise.
(2.15)

The matrix D is of size
2 · n + n : 2,

where ‘:’ denotes the ‘division algorithm’. Thus, for n = 4, D becomes a 10 × 10
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matrix. The so constructed matrix reads:

D =



0 2 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 2 0
−b0 −b1 0 −b2 0 0 −b3 1 0 0
0 −b0 −b1 0 −b2 0 0 −b3 1 0
0 0 0 −b0 −b1 −b2 0 0 −b3 1
0 0 0 0 0 0 −2b0 −2b1 −2b2 −2b3


. (2.16)

Using this matrix, the linear set of equations

D · ~p = ~q (2.17)

needs to be solved for ~p, while ~q is filled according to:

qg(i,j) =
{

(En−1,n−1)2 − 1 if i = n− 1,
Ei,n−1 ·Ej,n−1 otherwise,

(2.18)

with Eij from Equation 2.7. After solving the system 2.17 for ~p, the elements of ~p
are used to fill the covariance matrix Cprop using the indexing function g(i, j):

Cprop = pg(i,j). (2.19)

And finally the random vector generator matrix for propagation Tprop can be found
according to Equation 2.14.

Once all matrices have been computed, for the final generation of the time-series
with a prescribed spectrum, the process is rather simple. It was stated earlier in this
section that the final generator comprises three steps. The steps shall be repeated
here for clarity:

~y0 = Tinit · ~r initialisation of the state vector,
~yi = E · ~yi−1 + Tprop · ~r propagation of the state vector,
~xi = ~a · ~yi generation of the final time-series. (2.20)

~r is a random vector of length n. It is generated by the built-in MATLAB random
number generator producing Gaussian random numbers from a normal distribution
with zero mean and unity variance. For every invocation for a new time step, a new
set of n uncorrelated Gaussian random numbers is created. The random number
vector acts on the state vector ~y to produce one time step of the final time-series
per invocation.

2.5.2 Functionality and performance of the noise generator

The formula of the transfer function was given in Equation 2.4 on page 24. For the
noise generator in LTPDA this must be given as a pole/zero model. The factors
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for transforming poles and zeros to the form of H(s) given in Equation 2.4 are as
follows.

A single real pole at frequency f corresponds to the factor

1/

(
1 +

s

2πf

)
. (2.21)

A complex pole (conjugated pair) at frequency f with the quality factor Q corre-
sponds to the factor

1/

(
1 +

s

2πfQ
+

s2

(2πf)2

)
. (2.22)

Accordingly, a single real zero at frequency f corresponds to the factor(
1 +

s

2πf

)
(2.23)

and a complex zero (conjugated pair) at frequency f with the quality factor Q
corresponds to the factor (

1 +
s

2πfQ
+

s2

(2πf)2

)
. (2.24)

For more information on pole/zero models, see the LTPDA manual [23].
The algorithm will transform the model to the transfer function of the form given

in Equation 2.4. Thus the requirement n > m means that the model must consist
of more poles than zeros. This can always be achieved by adding out of band poles
if necessary.

Once the model is defined the user needs to specify also the sampling frequency,
fs and the number of seconds, nsecs, of the time-series to compute. In LTPDA the
implementation of this method is realised within the constructor of an Analysis
Object. Thus, the method ao can be called with a parameter list (see previous
section) containing the above listed information and the result is an Analysis Object
containing a time-series with the prescribed spectrum. An example in MATLAB
for using LTPDA for the generation of a time-series with a prescribed spectrum is
given in the following.

% The gain of the transfer function is put to 1.
g = 1;
% defining the pole/zero model
pzm = pzmodel(g,{1e−6 1e−6 0.8 0.8},{1e−5 1e−5 5e−2});
% The parameter list for the noise generator is filled
% with all necessary information.
pl = plist('fs',100,...
'pzmodel',pzm,'nsecs',100000);
% The ao−constructor is called with the defined paramter list
% and the time−series is generated.
ng = ao(pl);

The noise generator produces a time-series of arbitrary length. The variable, ng,
from the above call, for example contains a time-series of 10000 samples (fs× nsecs).
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However, to evaluate the result, the spectral content of that time-series is to be
compared to the input target spectrum. As such the linear spectral density (LSD) of
the generated time-series is computed using the logarithmic power spectral density
algorithm, lpsd, [24] implemented in LTPDA. Figure 2.9 shows the plot of the
analytical function computed from the input pole/zero model of the above example
together with the linear spectral density of the generated time-series.
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Figure 2.9: Numerical power spectral density of the generated time-series compared to the
analytical function defined by the input pole/zero model.

At high frequencies the curve for the spectrum of the noise generator includes
aliasing [27]. This causes the projection of signal components at frequencies above
the Nyquist frequency

fNy = fs/2 (2.25)

into the Nyquist band
0 ≤ f ≤ fNy. (2.26)

Aliasing is an unavoidable effect yet it is computable and could be included in the
computation of the analytical spectrum to match the two curves.

The pole/zero model used here is well suited for demonstrating the usage of
the tool. However, for such rather simple examples conventional methods may be
sufficient. The results of two more complicated examples will be presented in the fol-
lowing to demonstrate the performance of the noise generation based on Franklin’s
method. These examples are adapted from [27]. It is worth mentioning that for
the pole/zero model of the next two examples the default MATLAB double preci-
sion would not be sufficient for the computation of the matrices. For computing the
time-series that lead to the spectra shown in Figure 2.10 and 2.11 a higher precision
was needed. Note however that once the matrices are computed the propagation of
the time-series does not require the high precision.

In MATLAB arbitrary precision can be obtained by using the symbolic math
toolbox which is as well required for some other applications of LTPDA. It provides
the ‘variable precision arithmetic’ library with which the user can define the desired
number of digits for every variable in symbolic math mode. While double precision
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floating point provides a relative precision of 16 decimal digits, the number of digits
can be set for the use of the noise generator and for the examples presented here the
number of digits has been set to 32. In case of insufficient precision, the algorithm
will fail to invert certain matrices and an error occurs.

The first spectrum represents a measurement from the Engineering Model (EM)
of the LTP interferometer that will be described in Chapter 3. The assembling of
the pole/zero model is omitted here for readability. Instead the poles and zeros
defining the desired spectrum are listed in Table 2.1 and 2.2. Also the MATLAB
calls are not presented anymore since they would not add any information. For both
examples the generated time-series consist of 10 Million samples. Depending on the
machine this may take around 20 seconds in MATLAB. In Figure 2.10 the resulting
linear spectral density is plotted again together with the analytical function.

Table 2.1: Pole/zero model for a laboratory measurement of the LTP Engineering model
for the interferometer, described in Chapter 3. The individual poles and zeros
are defined by a frequency and a quality factor Q. Pole or zeros without a given
Q are real. The gain of the transfer function is g = 4.37× 103 and the sampling
frequency has been chosen to be fs = 100.

Poles Zeros
f [Hz] Q f [Hz] Q

10−6 687.61 ×10−6 2.211
10−6 972.81 ×10−6

179.90 ×10−6 2.156 11.14 ×10−3

218.46 ×10−3 638.61 ×10−3 557.6 ×10−3

7.909 906 7.414 4.62
11.125 200 11.125 5.79
6.626 907.64 ×10−3 973 ×10−6

16.4 5.047
139 ×10−6

The next example is made artificially difficult to test the algorithm. Several peaks
occur in the spectrum as can be seen in the plot in Figure 2.11. The spectrum
computed from the generated time-series fits well the analytical spectrum. For low
frequencies the computation of the spectrum gets costly. The generated time-series
underlying the spectrum plotted in Figure 2.11 is plotted in Figure 2.12.

2.5.3 Comparison with conventional methods.

What is called a conventional method here is using a filter (FIR or IIR) with the
desired transfer function and apply it to a time-series of white input noise. One
advantage of the algorithm presented here over this conventional method is the
precision with which the spectral content of the produced time-series matches the
input spectrum. Another great advantage is the absence of any warm-up period.
The common method of filtering using recursive IIR filters requires a certain period
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Figure 2.10: Example for an LTP interferometer spectrum. The peaks in the spectrum are
also modelled. The time-series underlying the noise generator spectrum can
only be computed with a precision higher than MATLAB standard double.
Here 32 digits have been used instead of 16.
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Figure 2.11: Generated time-series for artificially complicated spectrum in Figure 2.11. The
time-series can only be computed with a precision higher than MATLAB stan-
dard double. Here 32 digits have been used instead of 16.



32 CHAPTER 2. DATA ANALYSIS INFRASTRUCTURE FOR LTP

0 1 2 3 4 5 6 7 8 9 10
x 10

4

−0.1

−0.05

0

0.05

0.1
A

m
pl

itu
de

  [
ra

d]

Time  [s]

 

 

generated time series

Figure 2.12: Generated time-series underlying artificially complicated spectrum containing
many peaks and a large range of frequencies where poles and zeros are located.
The time-series can only be generated with a precision higher than MATLAB
standard double. Here 32 digits have been used instead of 16.

Table 2.2: Pole-zero model for an artificially difficult spectrum. The individual poles and
zeros are defined by a frequency and a quality factor Q. Poles or zeros without
a given Q are real. The gain of the transfer function is g = 1 and the sampling
frequency is fs = 100.

Poles Zeros
f [Hz] Q f [Hz] Q

10−5 100 1.778 ×10−5 100
3.162 ×10−5 100 5.623 ×10−5 100
10−4 100 1.778 ×10−4 100
3.162 ×10−4 100 5.623 ×10−4 100
10−4 100 1.778 ×10−3 100
3.162 ×10−3 100 5.623 ×10−3 100
0.01 100 1.778 ×10−2 100
3.162 ×10−2 100 5.623 ×10−2 100
0.1 100 1.778 ×10−1 100
3.162 ×10−1 100 5.623 ×10−1 100
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before the internal memory settles to a stationary state [27].
The advantage of a method involving filtering is, on the other hand, that it is

usually simpler, both in implementation and computation in terms of processing
power. However, the matrices for Franklin’s method need to be computed only once
and after that the processor power needed is similar to the method of filtering.

2.6 Conclusion

The object oriented programming concept has paved the way for LTPDA to be-
come the official analysis software tool for the entire LISA Pathfinder mission.
Since LTPDA is a comprehensive and reliable tool it has become popular beyond
the preparation of the data analysis for LISA Pathfinder. It is not only used ex-
tensively for the data analysis of the LISA Pathfinder component tests but for all
kinds of laboratory experiments throughout scientific groups around Europe. These
numerous users, especially the scientists, working in the lab on LPF experiments,
greatly accelerated the development process.

A first version of LTPDA has been delivered to ESA in 2009. As such it has passed
numerous tests, listed in this section. The third version is planned to contain all
tools necessary to analyse the mission data and it is scheduled to be delivered in
2010.

Numerous tools have been newly developed for LTPDA or have been integrated
from other projects. One such tool has been picked out to be presented in this
section; the Franklin noise generator, a useful tool for generating a time-series with
a prescribed spectrum. It has been implemented in MATLAB and integrated into
LTPDA. It turns out to have a couple of advantages over the conventional method
of filtering a time-series with a transfer function of the desired spectrum.
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3 Characterisation of the optical
metrology system

The optical metrology system (OMS) is one key part of the LISA Technology Pack-
age. It comprises the system units responsible for the measurement of the distance
between the two test masses.

In this chapter key points of the laboratory data analysis on the OMS that has
been accomplished in preparation of the mission will be presented. And the focus
will lie on the development of analysis tools and algorithms in LTPDA, the software
tool for the mission which was introduced in the previous chapter. The system will
be introduced to an extent that makes it possible to understand the data analysis
accomplished. Further information on the optical metrology system can be found,
for example in [29], [30] and [31].

All experiments presented in this chapter have been performed on the Engineer-
ing Model (EM) of the optical bench for LISA Pathfinder. This optical bench was
designed at the AEI Hannover and constructed at the Rutherford Appelton Lab-
oratories in collaboration with the LISA Pathfinder groups from the University of
Glasgow and the AEI Hannover.

All analyses presented have been carried out completely using LTPDA (see Chap-
ter 2).

3.1 Introduction to the OMS

The optical metrology system comprises

� four interferometers situated on one optical bench,

� the laser and laser modulator (laser assembly),

� the Phasemeter and

� the Data Management Unit (DMU).

For understanding the purpose of the individual units as well as their interaction,
the main measurement principle will be explained. At first, the LISA Pathfinder
interferometry will be introduced and moreover, the optical bench with its four
interferometers will be presented. Finally the process of the phase readout accom-
plished via the phasemeter and process by the DMU is explained.

3.1.1 The LISA Pathfinder interferometry

The displacement and attitude of the two test masses on-board LISA Pathfinder is
measured interferometrically. The setup realising the length measurement comprises

35
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a heterodyne Mach-Zehnder laser interferometer, a phasemeter and the DMU which
together transform the measured signals to the desired length measurement.

Heterodyne in contrast to homodyne interferometry makes use of two laser beams
featuring a frequency difference leading to a beat signal at the detector. Mathemat-
ically an expression for the interference of two beams at a beam splitter can be
derived by combining their electromagnetic fields [31, 32]. The fields can be de-
scribed as

E1(t) = A · ei(ω1t+φ1) (3.1)

E2(t) = A · ei(ω2t+φ2), (3.2)

where A denotes the amplitude (for simplicity here the same amplitude is assumed
for both beams), ω the angular frequency and φ the phase. The intensity of the two
interfering beams that will be measured as photocurrent at the detector is given by

I = |E1 + E2|2 (3.3)
= A (1− c cos(ωhett + φ(t))), (3.4)

where the interferometer contrast, c, has been introduced for taking imperfections
in the interferometer into account. Furthermore A is the average photocurrent of
the heterodyne signal, ωhet = ω1 − ω2 is the angular heterodyne frequency and
φ = φ1 − φ2 denotes the phase difference.

With ω1 6= ω2 the time dependency of Equation 3.4 is kept. The controlled time
dependency results in a dynamic range for the interferometer of multiples of the laser
frequency. For comparison, in homodyne interferometry the predefined operating
point limits the dynamic range to a fraction of an interference fringe [31, 30, 32, 29].

The phase difference φ contains the main measurement, the optical change ∆L:

φ =
2π

λ
∆L, (3.5)

where λ is the average wavelength of the two laser beams and ∆L is the difference
in length of the two interferometer arms.

For the LTP setup the two frequency shifted laser beams are realised by the so-
called laser modulation: one laser beam is split into two beams via a beam splitter.
Subsequently a frequency difference between the two beams is introduced by mak-
ing them pass through individual Acousto-Optic Modulators (AOM) operating at
80 MHz ± 0.5 kHz. The resulting frequency shift is of the order of 1 kHz.

This so-called modulation of the laser beam is physically separated from the ultra
stable optical bench. It takes place on the ‘modulation bench’ and the beams are
transferred, via optical fibres, to the optical bench. The setup of the modulation
bench is illustrated in Figure 3.1.

The optical bench comprises four interferometers.

The reference interferometer: It is shown in Figure 3.2(a). It is situated com-
pletely on the optical bench and as such detects common disturbances of all
interferometers. By subtracting its signal from a different interferometer signal
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AOM 1

AOM 2

80MHz + fhet /2

80MHz - fhet /2

(a) (b)

Figure 3.1: (a): Schematic of the LTP modulation bench: One laser beam is split into two
beams. Both beams pass through AOMs that operate at 80 MHz with a slight
mismatch yielding the heterodyne frequency. The output beams feature a fre-
quency difference of about 1 kHz needed for the heterodyne interferometry on
the ultra stable optical bench (not included in the picture). (b) The flight hard-
ware of the laser modulator unit as provided by Kayser Threde (D) / Max
Planck Albert Einstein Institute. Copyright: Kayser Threde.

these disturbances are removed in the resulting signal. The common distur-
bances are mainly introduced from the more unstable modulation bench. The
optical bench itself is made of Zerodur® and therefore rather insensitive to
the main effect causing mechanical instability - thermal fluctuations.

The frequency stabilisation interferometer: This interferometer is shown in Fig-
ure 3.2(b). It measures frequency fluctuations in the laser beam via an inten-
tional pathlength difference and can therefore be used for a laser frequency
stabilisation.

The measurement interferometers: Two of the four interferometers are often in-
dexed by an ‘M’ for indicating the measurement interferometers. They are
designed to detect displacements of both test masses. In the laboratory ex-
periment where the Engineering Model of the LTP optical bench is used, the
test masses are replaced by piezo-actuated mirrors. The piezos can be used
to change the longitudinal as well as the angular position of the mirrors.

The test mass 1 interferometer: The so-called X1 interferometer. It mea-
sures the displacement of test mass 1 with respect to the optical bench.
In Figure 3.3(a) the optical path of this interferometer is shown.

The differential interferometer: It is also called the X12 interferometer and
measures the distance between the two test masses. It can be seen from
Figure 3.3(b) that this is a direct measurement rather than the result
from a measurement of the individual positions of the two test masses.

3.1.2 The data processing

Quadrant photodiodes are used for the detection of the interference signal. The
measured photo currents are converted into voltages by transimpedance amplifiers
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Figure 3.2: Schematic of the reference (a) and frequency (b) interferometers. The optical
path is shown individually for each interferometer but the optical bench is
constructed such that all four interferometers (see Figure 3.3) are situated on
one base plate. See caption of Figure 3.3 on next page also.
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(b) The X12 interferometer

Figure 3.3: The schematic of the two measurement interferometers situated on the optical
bench for LTP are shown. In a) the X1 interferometer is shown and in b) the
differential interferometer X12 is presented. The optical path is shown individ-
ually for each interferometer but the optical bench is constructed such that all
four interferometers are situated on one base plate. The laser beams are trans-
ferred to the optical bench via fibre optics from the modulation bench (not
included here). The baseplate and the components are made of Zerodur and
the bench was constructed using hydroxide-catalysis bonding techniques [30].
In the laboratory experiments the test masses are replaced by piezo-actuated
mirrors.
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which is fed into the phasemeter. The role of the phasemeter is to perform a ‘single
bin discrete Fourier transform’ (SBDFT) on the digitised input signals (the original
interference signals). Single bin here means that the Fourier transform for each
segment containing N samples is only computed at the frequency bin corresponding
to the heterodyne frequency, fhet. The result is a complex vector representing the
amplitude of the photodiode signal at fhet. A simplified representation of the real
and imaginary parts of the vector is as follows.

<{F (fhet)} =
1
N

N−1∑
i=0

cos
(

2πfhet
i

fsamp

)
· xi(ti), (3.6)

={F (fhet)} =
1
N

N−1∑
i=0

sin
(

2πfhet
i

fsamp

)
· xi(ti), (3.7)

where xi is the amplifier output at time ti. The DC mean value of the signal is
calculated according to

DC =
1
N

N−1∑
i=0

xi(ti). (3.8)

These computations are implemented in the Field Programmable Gate Array (FPGA)
based phasemeter for every quadrant of each photodiode.

The final data processing steps are implemented inside the Data Management
Unit (DMU). Here the signals computed by the phasemeter are converted to the
longitudinal phase and alignment signals.

Longitudinal measurement The longitudinal phase φ is defined as:

φ = arg(FP) + n2π, (3.9)

where FP represents the sum of the relevant quadrants of the photodiode signals
and the term n2π results from a phasetracking algorithm [33, 29].

In Equation 3.5 the general dependency of the measured phase, φ, and the path-
length difference, ∆L, was given. On the optical bench of LTP, four interferometers
with four different optical paths are situated. The individual pathlengths are as
indicated in Figure 3.4. Thus the following phases shall be introduced:

∆F =
2π

λ
(L1 − L2) (3.10)

∆R =
2π

λ
(L1R − L2R) (3.11)

∆M =
2π

λ
(L1M − L2M) , (3.12)

where the different variables Lx represent the pathlengths of the respective inter-
ferometer arms. A more detailed description of these can be found in Chapter 2 of
[15]. It follows that the given phases ∆x represent pathlength fluctuations in the
associated optical paths. The phase ∆F refers to the pathlength difference in the
common feed paths for all interferometers. This originates mostly from fluctuations
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Figure 3.4: Schematic of the heterodyne interferometer used in LISA Pathfinder. The opti-
cal pathlengths used in Equations 3.10 - 3.12 are indicated by L1, L2, L1R, L2R,
L1M and L2M.

of the fibres guiding the laser beams from the unstable modulation bench to the
ultra stable optical bench. The fluctuations ∆R and ∆M refer to the stable reference
interferometer and the two stable measurement interferometers respectively. From
these relations the primary observables can be written as:

φR = ∆F + ∆R, (3.13)
φM = ∆F + ∆M. (3.14)

From these computed longitudinal phases, the main interferometric measurement
is obtained. The reference phase, φR, is subtracted from the other phases to cancel
the environmental noise which is present in all measurements, resulting in the “Ψ”
variables. For test mass 1 the phase measurement of the displacement with respect
to the optical bench is denoted by Ψ1 and the differential phase measurement is
denoted by Ψ12.

Ψ1 = φ1 − φR, (3.15)
Ψ12 = φ12 − φR. (3.16)

Finally the phase measurements, Ψ1 and Ψ12, can be transformed to length mea-
surements. For this operation the incident angle of the measurement beam on the
test masses has to be taken into account. Within this thesis the length measurement
will be denoted by o but often it is also called x.

o1 = x1 =
λ

4π cos α
Ψ1 =

λ

4π cos α
(φ1 − φR), (3.17)

o12 = x12 =
λ

4π cos α
Ψ12 =

λ

4π cos α
(φ12 − φR), (3.18)

where α represents the incident angle.

Alignment measurement In addition to the longitudinal displacement of the
test masses described above, alignment measurements give information on the orien-
tation of the test masses in two degrees of freedom. Figure 3.5 shows the coordinate
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Figure 3.5: Coordinate frame for LISA Pathfinder

frame for LISA Pathfinder and illustrates the orientation of the test masses. The
angles ϕ and η are measured while the interferometer is insensitive to θ. These mea-
surements are as well obtained from the outputs of the phasemeter. Two different
approaches lead to the angular motion of the test masses:

� Estimating the beam position on the quadrant photodiode. This is done from
the DC measurement of the differential light power contribution on the indi-
vidual quadrants.

� The so-called Differential Wavefront Sensing (DWS). This more sensitive
method is explained in detail in for example [30]. Here only the basic princi-
ple will be mentioned: The method is based on the analysis of the wavefronts
of the beams arriving at the photodiodes. The beam corresponding to the
reference interferometer is assumed to be fixed. The wavefront of a measure-
ment beam is analysed with respect to the one of the reference beam and the
differential phases between the different halves of the quadrant photo diode
correspond to the angular displacement of the corresponding test mass.

The DWS signals are about 10 times more sensitive than the DC alignment signals
[29]. Estimating the beam position by analysing the light power on the individ-
ual quadrants of the photodiode is very robust. Sensible results are obtained with
low light power impinging the photodiode. Hence it is well suited for the initial
alignment of the interferometer [29].
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3.2 Angular noise subtraction

It was described above that the interferometer measurements give information on
the longitudinal as well as on the angular displacement of the test masses. In fact,
these two measurements are correlated: The angular motion of the test masses cou-
ples into the longitudinal measurement. The reason for the coupling of the angular
motion of the test masses lies in the imperfect alignment of laser beam at the centre
of rotation of the test masses.

The aim of the experiment described in this section is to probe the impact of
angular test mass movement on the sensitivity of the interferometric measurement.
For this, simulations resulting in spectral predictions of the test mass angular noise
expected on orbit, were performed [34]. By means of ‘Franklin’s noise generator’
(see Chapter 2 and [27]) time series matching these simulated spectra were gener-
ated. As such the generated data represents a time dependent angular movement
of the test masses. These time series served as input signal for the piezo actuated
end-mirrors of the interferometer representing the test masses. Finally interfero-
metric measurements were carried out using the DWS signals, described above,
for measuring the angular displacement. Figure 3.6 shows the spectra of the mea-
sured angular motion together with the spectral prediction from the simulations
accomplished beforehand. Both spectra are in good agreement.
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Figure 3.6: Angular test mass noise. Noise with a prescribed spectrum from a simulation was
applied to the test masses. The measurements from the differential wavefront
sensing (DWS) agree with the desired simulated spectrum. Shown is the angular
measurement of test mass 1 but the same noise is applied to both test masses.

At the end of this section the results of the noise subtraction are plotted in
Figure 3.9 together with the sensitivity curve of the longitudinal measurement. It
can be seen that the sensitivity is lowered by a significant amount.

In this section a method for removing this residual angular noise from the mea-
sured data will be presented. The focus will be on the algorithm development for
the software tool LTPDA, presented in Chapter 2.
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3.3 Development of the algorithm for angular noise
subtraction in LTPDA

The angular test mass motion couples into the longitudinal measurement. For re-
moving the noise originating from this displacement, a linear fit is applied to com-
pute the coupling factors explicitly. These coupling factors represent the relation
between the noise introduced and the final longitudinal measurement. As such they
are used to identify the noise contribution and subtract it from the measured lon-
gitudinal phase. The procedure has been published in [35].

The longitudinal measurement can be expressed as:

Ψm = Ψtrue + Ψang, (3.19)

where Ψm is the measured longitudinal phase, Ψtrue is the true longitudinal con-
tribution to the measurement and Ψang represents the angular noise coupling into
the longitudinal measurement.

A measurable correlation between the angular and longitudinal displacement of
the test masses, however, exists only in a limited frequency region of the measure-
ment. As such the linear model for the correlation entering the fitting procedure
is also only applicable in this region. Therefor, the data is bandpass-filtered in the
region of interest prior to the fitting procedure. All data streams involved in the
fitting procedure are filtered such that the frequencies irrelevant for the angular
noise contribution are suppressed. The frequency response for the applied bandpass
filter is plotted in Figure 3.7. The filter is constructed such that frequencies in the
region between f1 = 3× 10−3 Hz and f2 = 3× 10−2 Hz are passing unsuppressed.
In this region the residual angular test mass noise is dominating the longitudinal
measurement.
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Figure 3.7: Frequency response of the bandpass filter applied to the interferometer mea-
surement data.

In the following the rotation of the test masses will be described by the angles η
and ϕ as illustrated in Figure 3.5. Hereby the rotations for the individual test masses
will be denoted by η1 and ϕ1 for TM1 and by η12 and ϕ12 for the differential rotation.
The linear model describing the residual angular test mass noise is different for
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the two interferometer read-out channels. In the measurement of test mass 1 only
the TM1 angles ϕ1 and η1 are involved whereas all four angles couple into the
differential measurement. The resulting equations for the linear model to be fitted
to the filtered data reads for the two output channels respectively:

Ψang1
= α1 · ϕ1 + β1 · η1, (3.20)

Ψang12
= α2 · ϕ1 + β2 · η1 + γ2 · ϕ12 + δ2 · η12, (3.21)

where αi, βi, γ2 and δ2 are the coupling factors for the angles of rotation. Measure-
ments of the angles are taken by the interferometer and the coupling factors are to
be estimated by the linear fitting routine.

The applied estimation method is the ‘linear least squares method’. MATLAB
supplies a function for this, called lscov and it was overloaded to work as an
LTPDA method (see Chapter 2). The LTPDA method is called lscov as well.

The linear least squares method is the subject of many data analysis textbooks
like [36] and various ways of implementation are discussed in the collection of nu-
merical methods in [28]. Also the main principle is introduced in Chapter 4, while
the special case of ‘Singular value decomposition’ (SVD) is presented in detail in
Section 4.6.4. Nevertheless, the basic idea will be repeated here briefly to present
the application to the given problem, the estimation of the coupling factors of the
angular test-mass motion into the longitudinal measurement.

The task of a fitting algorithm based on the general least squares method is to
construct a so-called merit function according to the given model. This function
relates the measurements, yi with the model denoted by f which depends on the
unknown parameters, ~θ.

r(~x, ~y, ~θ) =
∑

i

(yi − f(xi, ~θ))2. (3.22)

The model function for Ψang was defined in Equation 3.21. The optimal parameter
set, θopt, minimises the residual function. As such the defined merit function r needs
to be minimised to find the optimal parameter set. In the following equation, the
expression ‘argmin

~θ

’ indicates the minimum of the function for the parameter set ~θ.

~θopt = argmin
~θ

(r(~x, ~y, ~θ)). (3.23)

In the case that the model f(xi, ~θ))2 is linear in its parameters ~θ, the task of
minimisation reduces to solving a linear system of equations.

A~θ = ~b, (3.24)

where ~θ stands for the optimal parameter set to be estimated, ~b represents the
measurement of the longitudinal phase Ψ and the matrix A is called the ‘design
matrix’. It contains the angular measurements. For the case of the differential lon-
gitudinal measurement Ψ12 these are the DWS signals of all four angles: ϕ1, η1, ϕ12

and η12. Thus, Equation 3.24 relates the angular measurements to the longitudinal
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measurement via the desired coupling factors ~θ. Solving this system for ~θ provides
the optimal parameter set.

This is done by using the LTPDA method lscov. For solving the system a number
of methods exist. One of them is the above mentioned SVD (see Section 4.6.4). The
method used by lscov is by default the cholesky decomposition [28], which was
mentioned in Section 2.5.

For the task at hand, the input data for the function lscov in LTPDA are the
following:

ϕ1, η1, ϕ12 and η12: The measured DWS signals of the four angles
(see Figure 3.5).

Ψ12: The differential longitudinal phase measure-
ment.

An example for the function call in LTPDA for computing the coupling factors
for the differential longitudinal test mass motion is as follows:

%% Loading data
psi meas = ao('psi12.txt');
phi1 = ao('phi1.txt');
eta1 = ao('eta1.txt');
phi12 = ao('phi12.txt');
eta12 = ao('eta12.txt');
%% Constructing filter
bp = mfir(plist('type', 'bandpass', 'order', 1, ...
'gain', 1,'fs',phir.fs, 'fc', [0.4e−3 1]);
%% Bandpass filtering
psi measf = filter(psi meas,bp);
phi1f = filter(phi1,bp);
eta1f = filter(eta1,bp);
phi12f = filter(phi12,bp);
eta12f = filter(eta12,bp);
%% Function call for linear parameter estimation.
c = lscov(phi1f, eta1f, phi12f, eta12f ,psi measf);

In the code shown above phi1, eta1, phi12 and eta12 are Analysis Objects
containing the time series corresponding to ϕ1, η1, ϕ12 and η12 respectively and
psi meas is an AO corresponding to the time series of Ψ12.

The result of the above call are the coupling factors α2, β2, γ2 and δ2. They
are stored in the AO, c, together with subsidiary information like the individual
standard deviation and the covariance matrix [36] (see also Section 4.6.4).

After the coefficients have been estimated, they can be inserted into the equation
for the contribution of the angular displacement measurement, Equation 3.21. How-
ever, in contrast to the the linear fitting routine, where the bandpass filtered data
for the angular and longitudinal measurements have been used, the computation of
Ψang is done using the original, unfiltered data. In LTPDA the linear combination
of the computed coupling factors and the angular measurement is performed by
the function lincom. The inputs to the function are the variable c, containing the
coupling factors and the unfiltered angular measurements. With the result of Ψang

the longitudinal phase measurement can be corrected by simply subtracting the
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angular contribution in time domain. From Equation 3.19 it follows:

Ψtrue = Ψmeasured −Ψang, (3.25)

In LTPDA the corresponding code is the following:

%% Linearly combine fitted coefficients, c, with unfiltered data
psi ang = lincom(phi1, eta1, phi12, eta12, c);
%% Subtracting noise contribution from measurement
psi true = psi meas − psi ang;

In the above code psi ang represents Ψang and c is an AO containing the fitted
coupling factors. Figure 3.8 illustrates the procedure of the estimation and final
subtraction of the angular noise.

Data channel
Ψ12

Data channel Data channel Data channelData channel
ϕ12 η12η1ϕ1

Time-domain fit
(lscov):

Linear combination
(lincom):

Subtraction: Ψ12correct = Ψ12 −Ψang

Bandpass filter

η1f ,
η12fϕ12f ,

ϕ1f ,Ψ12f ,

α,β, γ, δ

Ψang

Figure 3.8: Illustration of the angular noise subtraction in LTPDA. The purple boxes rep-
resent the results of the respective method. All variables (purple and yellow) are
Analysis Objects containing time series data. The yellow boxes depict LTPDA
methods and the final subtraction is a simple operation on Analysis Objects to
be treated like any common variable.

Experimental results The sensitivity curves with angular noise injected and the
one where the noise has been subtracted, Ψtrue are plotted in Figure 3.9. For com-
parison a measurement, where no noise was applied to the test masses is plotted
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as well. It can be seen that the corrected longitudinal measurement reaches ap-
proximately the same level as the reference measurement for the region where the
angular noise impacts and the requirement for the interferometer is met.
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Figure 3.9: The spectral densities of the longitudinal phase measurements converted to
meters. The red curve represents the measurement with injected angular noise
on the test masses. The blue curve is the spectral density of the corrected
measurement. The green curve belongs to a reference measurement, where no
angular noise was injected.

3.4 Characterisation of the optical pathlength difference

The computation of the longitudinal measurement was derived in the introduction
to this chapter. The pathlength fluctuations were introduced and will be repeated
here for the sake of readability:

φR = ∆F + ∆R, (3.26)
φM = ∆F + ∆M, (3.27)
ΨM = φM − φR. (3.28)

where φM denotes the two measurement phases. In the ideal case the optical path-
length difference, ∆F, cancels when computing ΨM. Further noise studies, however,
showed that the ΨM variables are not completely independent of the optical path
fluctuation ∆F [15]. The resulting ‘sideband induced noise’ is the noise source in-
vestigated in this section. A model for the noise source will be presented from which
we will find the coupling factors to the sensitivity measurement by applying a linear
fit similar to the angular noise analysis presented in the previous section.
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3.4.1 OPD stabilisation

The studies of the sideband induced noise revealed a coupling of the optical path
fluctuation ∆F into the phase measurement ΨM. The investigations on the sideband
induced noise in the LISA Technology Package (LTP) has first been published in
[37] in 2006. It has been found to be an important noise source for LTP and as such
an on-orbit experiment is planned to measure and eventually subtract it from the
phase measurement.

In this section a method of subtracting this noise source from the output channel
will be presented. However if possible, minimising the noise during the measure-
ment should always be the preferred method over estimating coupling factors and
subtracting a noise source. For the sideband induced noise it is possible to sup-
press the noise driven by ∆F by stabilising the optical pathlength difference. This
is done by phase locking the reference phase to the electronic reference signal φel. A
measurement with stabilised OPD is not investigated in this thesis. The sideband
induced noise is instead suppressed by reducing another important factor for this
noise, the electronic cross-talk. More detailed explanations on the stabilisation loops
can be found in [29] and [30]. While the particular noise mechanism described here
is unique to LTP, the ubiquitous noise caused by ghost beams and stray light often
has similar characteristics and can be treated similarly, such that these methods
may also be applied to other interferometers.

3.4.2 Theory of sideband induced noise (SIN)

It is explained in detail in [15] that the dependency of Ψ on the optical path
fluctuation originates in the presence of electrical sidebands introduced by the RF
driving signals of the acoustic optical modulators (AOM) used for the generation of
the heterodyne signal (as explained in Section 3.1.1). In fact the electrical sidebands
cause optical sidebands on the signals measured at the photodetectors. A detailed
discussion on how the electrical sidebands convert into optical sidebands is as well
given in [15] and will be omitted here. These optical sidebands, on the other hand,
produce a spurious interferometer signal, called the sideband induced noise.

The total error due to sidebands can be expresses analytically by the following
equation:

δΨ =
{

b0 sin
(

φR + φM

2

)
+ b1 cos

(
φR + φM

2

)}
· sin

(
φM − φR

2

)
(3.29)

+ {c0 sin(φR + φM) + c1 cos(φR + φM)} · sin(φM − φR). (3.30)

This analytical function is linear in its parameters and hence a linear fitting routine
can be applied for the analysis. The procedure is shown at the end of this section.
The error consists of two main contributions:

� The contribution φM − φR represents the pathlength changes on the ultra-
stable optical bench, which change only slowly. On orbit this corresponds to
the varying test mass position, which is expected to be slow as well.

� The contributions from the raw phases: φR and φM vary rapidly with the
fluctuating optical pathlength difference, ∆F (see Equations 3.26 and 3.27).
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Two different phase measurements will be analysed in terms of sideband induced
noise:

A free running performance experiment: An experiment under standard labora-
tory conditions, where no OPD stabilisation is active. Hence φR is fluctuating
rapidly and so the sideband induced noise limits the measurement sensitiv-
ity. The measurement analysed in this thesis was performed in 2005 and was
chosen for demonstration purposes because of its significance in terms of the
sideband induced error.

An OPD scan: Scanning the OPD means changing the optical pathlength ∆F in a
controlled fashion. For the measurement analysed in this thesis this is achieved
by injecting a triangular scanning signal to the piezo. The measurement un-
der investigation in this thesis was taken during the test campaign for the
Engineering Model of the laser and laser modulator at AEI. It was measured
under idealised conditions with the focus on minimising electrical sidebands
caused by electrical cross-talk for example due to cables which cause the side-
band induced noise. The conditions might be unrealistic when it comes to the
on-orbit experiment but they provide a good indicator for the efficiency of
minimising electronic cross-talk in terms of sideband induced noise.

A detailed discussion about the Engineering Model laser and laser modulator test
campaign in terms of sideband induced noise is given in the technical document [17].

Fast phase shifts in φR, either originating from rapid OPD fluctuations or an
OPD scan, introduce an additional error due to the Doppler effect. This error
term will have to be subtracted from the measurement before further analyses on
the sideband induced error can be carried out. The method of subtracting will be
discussed in the following.

3.4.3 General remarks on segment selection and the presentation of
results

The aim of the analysis presented here is the investigation of the dependency of
the measurement phase ΨM on the OPD fluctuation ∆F. As such, in the time
domain the effect under investigation is best visualised by plotting ΨM against
φR = ∆F + ∆R.

Figure 3.10 shows a plot of the measurement phase, Ψ1, versus the reference
phase, φR. The measurement shown comprises a couple of hours during which ΨM is
drifting naturally. This effect overlaps the periodic sideband induced error and leads
to an ambiguous dependency of φR. As such the measurement does not represent
a function in the mathematical sense, since not all values of Ψ1 are unique co-
values of φR. For this reason the measurement must be split into segments of well
defined functions in order to analyse the relation between the phase measurements
properly. The segment splitting is done in the time domain, in parallel for every
phase measurement. For the segments two important points are required:

� The segment must be long enough to comprise a variation of at least 2π in
φR.
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Figure 3.10: Ψ1 = φ1 − φR is plotted as a function of φR = ∆F + ∆R. The plot shows a
measurement of a few hours. The natural fluctuation of Ψ1 has no simple φR

dependence [15].

� The segment must be short enough to allow a linear approximation of the
dependency of Ψ1 on φR [15].

In the analyses presented in the following a set of segments fulfilling the require-
ments above is selected from the data and each is fitted to the given model. The
results are averaged and the coefficients obtained are inserted back into the model
to compute the noise contribution which can then be subtracted from the data.

3.4.4 Doppler correction

The fast phase shifts introduced by the fast OPD fluctuations cause a Doppler shift
(see Chapter 9 of [15]). This is due to the fact that the single-bin discrete Fourier
transform (SBDFT) as stated in Section 3.1.2 requires the heterodyne frequency,
fhet, to be centred in the chosen output bin. The rapid OPD fluctuations result in
a fluctuation of fhet within the bin which resembles a Doppler shift [31] and causes
a dterministic error in the phase measurement.

Prior to analysing the sideband induced error of the measurement of the test mass
displacement, the error term caused by this Doppler shift must be removed. This
is because the Doppler shift has the same effect on the data as the spurious side-
bands and would distort the analysis. Fortunately, the Doppler error term is known
analytically and can be removed by subtraction from the raw data. The error term
depends only on the absolute value of the phase and the Doppler-shift, δ, which is
numerically approximated as

δi =
φi+1 − φi−1

4π
, (3.31)

where i is a counter for the data points. In fact δ represents the time derivative of
φ. The Doppler induced error term applies likewise to each raw phase, i.e φM and
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Figure 3.11: Plotted is ΨM = φM − φR as a function of φR. Before (red) and after (blue)
the Doppler correction was applied. The measurement was carried out with-
out stabilising the optical pathlength difference (OPD). The Doppler effect
originates from the fast fluctuations of ∆F.

φR. It will be computed on a grid of k×k points. In the case presented here k = 50
is the bin size. The Doppler contribution is approximated by the following formula
taken from [15]:

φDoppler = − 1
2k

δ sin(2φ) +
1

4k2
δ2 sin(2φ) +

1
8k2

δ2 sin(4φ). (3.32)

The Doppler correction is implemented in LTPDA under the name dopplercorr.
The method computes the error term according to the equation defined above and
subtracts it from the input raw phase. This procedure is applied to all phases
relevant for the planned analysis, i.e. φM and φR. The resulting respective raw
phase is:

φcorr = φ− φDoppler. (3.33)

The measurement that will be analysed in the following has been performed
without OPD stabilisation and under ordinary laboratory conditions. This means
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that indeed fast OPD fluctuations are present. In Figure 3.11, the effect of the
Doppler correction on the described relation is shown. The amplitude of the signal
with respect to the reference phase φR is reduced. In fact the amplitude of the signal
is the amplitude of the OPD noise plus the error term introduced by the Doppler
effect. Hence if the Doppler induced error would not be removed from the data, it
would distort the result.

The Doppler correction can always be applied to the data because its contribution
is zero if no Doppler shift is present.

3.4.5 The estimation of the sideband induced noise (SIN) and the
correction of the measurement data

After this post-processing stage, the measured phases can be analysed in terms of
the sideband induced errors. In this section results of both experiments with and
without OPD stabilisation, will be presented. The measurement performed without
stabilisation was performed in 2005. More recent measurements exist but the chosen
one is well suited for demonstration. A second experiment with active OPD and
frequency stabilisation has been accomplished as part of the tests of the Engineering
Model of the laser modulator at AEI in 2009.

As explained above, the first step of the procedure is the Doppler correction of
all phase measurements involved (φR and φM). After this we can approximate the
sideband induced noise term using the model given in Equation 3.30. The model is
linear in its parameters and hence a linear fitting routine can be applied to fit the
measurement to the model. As for the angular noise fit in the previous section, the
LTPDA method lscov, is used. It performs a linear least squares estimation. The
method description is given in [23] and a brief summary on the linear least squares
method was already given in Section 4.6.4.

The complete model the data is fitted to comprises the natural drift of φM with
φR and the model given in Equation 3.30. It reads

ΨM =

natural evolution of φR︷ ︸︸ ︷
a0 + a1 · φR + a2 · φ2

R

+
{

b0 · sin
(

φR + φM

2

)
+ b1 · cos

(
φR + φM

2

)}
· sin

(
φM − φR

2

)
+ {c0 · sin(φR + φM) + c1 · cos(φR + φM)} · sin(φM − φR), (3.34)

where the terms associated with the natural evolution of φR are necessary for the
fit to converge to the correct result since for this the model need to reflect the
measurement very well. The result of the fit will be the coupling factors a0, a1,
a2, b0, b1, c0 and c1. The error term has two amplitudes that must be examined
separately; the first order amplitude is given by:

ε1 =
√

b2
0 + b2

1 (3.35)

and the amplitude of the second order error term yields

ε12 =
√

c2
0 + c2

1. (3.36)



54 CHAPTER 3. CHARACTERISATION OF THE OMS

The a-coefficients are not relevant for the amplitude of the error term, but only
describe the natural evolution of φR linearly.

Figures 3.12(a) and 3.12(b) show a selected segment of 90 s from the end of
the phase measurement of Ψ1 and Ψ12 respectively. They are plotted against the
reference phase, φR. The fit is also shown and it can be seen that it is a good
representative of the measurement.
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Figure 3.12: Fit of sideband induced noise. Plotted are Ψ1 (a) and Ψ12 (b) as a function of
φR. The fit was performed on the Doppler corrected data. The measurement
was carried out without stabilising the optical pathlength difference (OPD).
The Doppler effect originates from the fast fluctuations ∆F. The length of the
segment shown is 90 s.

The residuals of the data shown in Figure 3.12 and the corresponding fits are
shown in a histogram in Figure 3.13. The relative residuals are given in percentage.
They are normally distributed as expected.
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Figure 3.13: Histogram of the residuals of the fit of the sideband induced noise. The plot
refers to the fit shown in Figure 3.12. The counts of the data points are plotted
as a function of the deviations in percentage. a) refers to Ψ1 and b) refers to
Ψ12. Both functions follow a normal distribution as expected.
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This procedure is repeated for two more segments: one is taken from the beginning
of the measurement and is 50 s long and another one is 90 s long and has been taken
from the end of the measurement. The resulting amplitudes of the first and second
order sidebands as well as their average are given in Tables 3.1 and 3.2 for Ψ1 and
Ψ12 respectively.

Table 3.1: Sideband amplitude derived indirectly from the phase measurement of Ψ1. Given
are the combined first order amplitudes and in the last column the combined
second order amplitudes are shown.

Time segment [s] ε1 [rad]
1st order 2nd order

1660-1710 2.26× 10−4 ± 1.86% 12.68× 10−4 ± 0.27%
3540-3550 2.25× 10−4 ± 4.98% 13.08× 10−4 ± 0.69%
5580-5670 3.11× 10−4 ± 1.20% 10.67× 10−4 ± 0.31%

Table 3.2: Sideband amplitude derived indirectly from the phase measurement of Ψ12.
Given are the combined first order amplitudes and in the last row the combined
second order amplitudes are shown.

Time segment [s] ε12 [rad]
1st order 2nd order

1660-1710 1.85× 10−4 ± 3.22% 12.67× 10−4 ± 0.27%
3540-3550 2.64× 10−4 ± 5.61% 13.03× 10−4 ± 0.74%
5580-5670 2.49× 10−4 ± 1.80% 10.69× 10−4 ± 0.29%

The averaged results are then inserted into the model to obtain the sideband
induced noise (SIN) contribution and subtracted from the original phase. Fig-
ure 3.14 shows the spectral density of the original measurement phase converted into
test mass displacement in metres, which is then called Xm. This is plotted together
with the data from which the SIN noise contribution was subtracted. The sensitivity
of the corrected test mass displacement is significantly increased by the subtraction.
The fact that the corrected measurement still does not reach the requirement of
the interferometer is of minor importance since the measurement was taken in 2005
and different noise sources might have had an impact on the experiment. Neverthe-
less, it shall be noted that stabilising the OPD and reducing electronic cross-talk
which result in a suppression of the amplitude of optical sidebands are the preferred
method for increasing the measurement sensitivity.

It was stated before that, if possible, suppressing a noise during a measurement,
should be the preferred method over estimating and subtracting it from the noisy
measurement. This is the approach for the experiment presented in the following.

As mentioned above, the analysis of the OPD scan in terms of sideband induced
noise will be investigated. The aim of this experiment was to find an upper limit for
the amplitudes, ε, of the sidebands introducing the noise. To find such upper limits,
the origin of the noise source (as stated in [15]) the electrical sidebands resulting
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Figure 3.14: X12 (red) is the differential test mass displacement in meters. It was taken
without OPD stabilisation. The blue curve shows the estimated sideband in-
duced noise (SIN) contribution and the green curve represents the test mass
displacement from which the SIN contribution was subtracted. Measurement
data from 2005.

from electronic cross-talks has been minimised by using a setup that resembles the
one on-board LISA Pathfinder. That is connecting units directly instead of feeding
through a vacuum chamber. The procedure to be applied is the same as before: At
first the data is corrected for the Doppler shift introduced by the rapid OPD scan
and then the remaining error is estimated by applying the linear fit.

Figure 3.15 shows the variation of φR over one complete measurement.
The measurements of the OPD scan for the EM test campaign of the laser and

laser modulator were of length of around 200-300 seconds. For this reason the
spectral densities of these measurements will not be computed but the focus of the
data analysis will be on the estimation of the sideband amplitudes, εM.

Figure 3.16 shows one segment of the time series of the phase measurement. It
was selected using the same criteria as before. Again the phase is plotted against
the reference phase to make the dependency of the measurement phase on the
reference phase visible. The plot shows the measurement phase Ψ12, before and
after the Doppler correction was applied. The periodicity of Ψ12 in φR is significantly
reduced.

In Figure 3.17 the reference phase, Ψ12, (after the correction of the Doppler error)
is plotted against the reference phase to visualise the residual sideband induced
error term. In this curve the amplitude of the error term is not clearly visible
anymore. The fitted curve is shown as well. The result of the fit is given in Table
3.3. For completeness also the result for Ψ1 is given which was not explicitly plotted
before. The numerical results represent what could be suspected from the plot: the
statistical variances of the estimated amplitudes are mostly of the same order of
magnitude as the amplitudes themselves. Hence, the sideband induced error term
in this case is too low to obtain a reliable fitting result. Nevertheless the obtained
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Figure 3.15: Variation of φR during an OPD scan of the Engineering Model test campaign
of the laser.
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Figure 3.16: Doppler correction of an OPD scan experiment during the Engineering Model
test campaign of the laser and laser modulator. Ψ12 is plotted before (red) and
after (blue) the removal of the Doppler effect.
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values for the amplitudes can be seen as an upper limit for the true amplitudes of
the noise term. But even these upper limits are one order of magnitude lower than
the ones estimated for the free-running OPD measurement, where the electronic
cross-talks were not reduced. The upper limits should, however, not be inserted in
the model for the noise source for subtraction of the measurement phase.
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Figure 3.17: Fit of Ψ12 for measuring the amplitudes of the sideband induced noise term.
The red curve shows the measurement after the Doppler correction was applied.
The blue curve represents the function resulting from the linear fitting routine.

Table 3.3: Sideband amplitudes derived indirectly from the phase measurement of Ψ1 dur-
ing the test campaign of the Engineering Model of the laser and laser modulator.
Given are the combined first order amplitudes and in the last row the combined
second order amplitudes are shown.

Measurement phase ε [rad]
1st order 2nd order

Ψ1 2.15× 10−5 ± 60.47% 2.73× 10−5 ± 25.27%
Ψ12 1.20× 10−5 ± 40.83% 3.62× 10−5 ± 28.45%

It shall be noted again that the measurement on the Engineering Model of the
laser and laser modulator have been performed under idealised conditions to min-
imise the electronic cross-talk causing the sideband induced noise. As such, the
results can be regarded as upper limits for the combined amplitudes of the first
and second order sidebands. The two different measurements analysed in this sec-
tion illustrate well that the contribution of the sideband induced noise term can be
lowered significantly by reducing electronic cross-talk.

In LISA Pathfinder an on-orbit experiment on the estimation of the sideband
induced noise term is planned. The analysis presented here has been completely
carried out within LTPDA, demonstrating that the analysis tools for these experi-
ments are in place.
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3.5 Laser amplitude noise

In this section the effect of laser amplitude noise on the interferometric measurement
will be discussed. For this, a realistic assumption based on laboratory results will
be made for the noise source. The noise will be injected into a one-dimensional
simulation of LTP to establish the noise contribution to the test-mass displacement
which is the interferometer output. The work presented here is based on technical
document written by Martin Hewitson [38].

Fluctuations of the amplitude of the laser beam used in LTP cause a change
in momentum transfer on the test masses. This change results in force noise on
the test-masses coupling directly into test mass motion. Establishing a method for
measuring the noise contribution of laser amplitude noise to the interferometric
measurement is important since this measurement is planned to be carried out on-
board LISA Pathfinder. As such it is part of the experiment master plan whose
development is performed in parallel to the preparation of the data analysis of the
mission.

As the experiment involves test mass motion, it cannot simply be performed
on ground. Instead, the experiment is simulated using a simulator developed in
LTPDA. The one-dimensional model to be simulated for the purpose of the noise
projection of laser amplitude noise is discussed in detail in Chapter 4. There all pa-
rameters and controllers involved are explained. The model is based on the so-called
science mode, where the position of TM1 is measured by the X1 interferometer (see
Figure 3.3(a)) and fed back to the drag-free controller. The differential displace-
ment is measured by the X12 interferometer (see Figure 3.3(b)) and it is controlled
using the electrostatic suspension controller, Csus.

It is possible to suppress the noise source by stabilising the laser amplitude. A
discussion on stabilisation loops in the OMS can be found in [29, 30].

3.5.1 Building the noise model for the input laser amplitude noise

The laser amplitude fluctuations lead to a change in the power of the laser beams
hitting the test masses. This power can be extracted from the measurement of rel-
ative intensity noise (RIN) using for example the frequency interferometer in LTP
(see Figure 3.2(b)). Here it is important to note that the frequency interferome-
ter measures the relative intensity noise of both beams whereas only beam 1 hits
the test masses. One possibility for determining the RIN of the beam hitting the
test masses is to assume equal noise in both beams and dividing the measured RIN
by
√

2. Another possible approach is to turn off one beam and measure the RIN
separately from the measurement of the test mass position. More possibilities can
be thought of but in this thesis the second option is considered. Figure 3.18 shows
the transfer function of the assumed RIN used as the noise-shape filter for white
noise in the simulation.

The noise will be injected into the simulation as force noise on the test masses.
The force resulting from photon momentum transfer is given by

F =
2P

c
, (3.37)
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Figure 3.18: Transfer function for the model of relative intensity noise in the laser beam
used in LTP. It is based on a free-running measurement performed on the
Engineering Model of the laser assembly.

where P is the power and c is the speed of light. This model is a simplified one; for
example it is assumed here that the reflectivity of the test masses is equal to one.

To convert the dimensionless relative intensity noise plotted in Figure 3.18 to
power we have to multiply by the laser beam power that impinges the test masses.
Assuming a perfect beam splitter the laser beam power divides on the two test masses
as follows:

� 2 mW hit TM1 and

� 1 mW hits TM2.

For stimulating the system a sinusoid modulation signal is injected. For the am-
plitude we chose about 10% of the force noise, hence it is set to 0.1 mW. Since
the beam is split after it hits TM1, the amplitude of the signal on TM1 is 0.1 mW
whereas the amplitude of the signal on TM2 is 0.05 mW. The modulation frequency,
fm, is set to 10 mHz.

F1 =
2
c
· [P1 + A1 sin(2πf)] (3.38)

F2 = −2
c
· [P2 + A2 sin(2πf)] , (3.39)

where the opposite signs originate from the coordinate system of LTP. It was shown
earlier in this chapter in Figure 3.5. The forces act in opposite directions and push
the test masses apart. This results in an increasing differential displacement, o12,
measured by the interferometer. From the arguments listed above, the following set
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of parameters is inserted into the individual equations for the force noises:

P1 = 2× 10−3 [W]

P2 = 1× 10−3 [W]

A1 = 1× 10−4 [W]

A2 = 5× 10−5 [W]

fm = 1× 10−2 [Hz]
(3.40)

The resulting differential force noise contributing to the differential test mass
displacement, o12, is given by the sum of the individual force noises:

Fdiff = F1 + F2. (3.41)

In Figure 3.19 the modulated differential force noise is plotted. The modulation
signal is clearly visible at 10 mHz. The figure shows the force noise as it is injected
into the system. The modelling of Fdiff as described above is done in the frequency
domain. After that a filter is created from the resulting transfer function and it
used to filter a time series of white noise. Finally the time-series created is injected
into the system.
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Figure 3.19: Linear spectral density of the modelled force noise due to laser amplitude
fluctuations.

3.5.2 Simulation of a simplified model of LTP with injected laser
amplitude noise

The model used for the simulation is a one-dimensional state space model (ssm)
implemented in LTPDA. The method of modelling the system in state space is
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useful for complex systems like LTP. However, state space will not be discussed
further here since the development of the model in ssm is not part of this thesis. It
is rather the tool used to accomplish the noise projection to be presented.

In addition to the modelled laser amplitude noise, the following noise sources
have been injected into the system:

� thruster noise,

� test mass noise,

� interferometer measurement noise.

The origin of these noise sources is discussed in Chapter 4. They are the most
obvious noises to be included. In Figure 3.20 the two output channels of the inter-
ferometer, o1 and o12 simulated using all noises listed including the laser amplitude
noise are plotted. It can be seen that the modulated laser amplitude noise has no
contribution in the o1 channel but it couples into into the differential channel, o12.
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Figure 3.20: Interferometer measurement channels simulated with modulated laser fre-
quency noise. The modulation couples only into the differential channel, o12.

3.5.3 Noise projection

The aim of the work presented here is to establish a method for measuring the con-
tribution of laser amplitude noise to test mass motion. This is done by performing
a noise projection of the modelled laser amplitude noise on the differential interfer-
ometer output, o12. The noise projection is carried out by performing the following
steps:

1. Measure the input laser amplitude noise, Fdiff (see Figure 3.19).
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2. Convert Fdiff to in-loop displacement noise, D by

D(f) =
PSD(Fdiff)

(s2 + ω2
2) + Csus

, (3.42)

where s = 2πif is the Laplace variable, ω2
2 = −2× 10−6 s−2 and Csus repre-

sents the electronic suspension loop controller.

3. Measure the differential interferometer output, o12 (see Figure 3.20).

4. Compute the transfer function, T, from the injected force noise, Fdiff , to the
differential test mass displacement, o12:

T =
D(fm)

õ12
, (3.43)

where õ12 denotes the DFT at fm and D has been computed explicitly at the
modulation frequency, fm.

5. The projection of laser amplitude noise to differential test mass displacement,
R12 is given by the multiplication of the absolute value of the coupling factor,
T, with the amplitude spectral density of the simulated differential displace-
ment, o12.

R12 = ASD(o12)× |T |. (3.44)

The resulting noise contribution, R12, is plotted together with the simulated
displacement noise, o12, in Figure 3.21. The injected signal at 10 mHz is clearly
visible in both spectral densities.
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Figure 3.21: Noise projection of laser amplitude noise, R12, into differential displacement
noise, o12.
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3.5.4 Future investigations

We established a method to estimate the coupling of laser amplitude noise into the
measurement of the differential displacement of the test masses in LTP. For this
a newly developed simulator based on a state space description of the system was
used. The results shown in this section represent the first attempt of simulating
this noise source using the state space simulator.

The simulator will become increasingly realistic with the approaching launch date
of LISA Pathfinder. Finally it will be possible to simulate the complete system of
LTP in three dimensions and with all variable parameters. In the near future for
example input noises maybe adjusted to be more realistic. Also the model used for
the conversion of laser amplitude noise to force noise on the test masses will be
extended to take into account important physical quantities like the reflectivity of
the test masses. When the coupling factor is known these additional parameters
could as well be estimated from the noise projection. Following this scheme, it
may be also possible to track the test mass reflectivity and the efficiency of the
photodiodes over the mission life time. Since these two parameters have the same
effect on the measurement performed it could be difficult to distinguish them but it
should be possible by including the measurements of all appropriate photodiodes.

3.6 Conclusion

In this chapter important laboratory experiments on the Engineering Model of the
LISA Pathfinder optical bench were presented. These experiments are part of the
experiment master plan prepared in the preparation of the mission.

The first experiment investigated was the angular noise subtraction, where sim-
ulated angular jitter was injected into the measurement. The coupling coefficients
that relate the the angular noise to the longitudinal measurement were found and
then used to subtract this noise from the data. It was shown that the sensitivity
can be improved significantly by this method.

After that the optical pathlength difference (OPD) was introduced and two dif-
ferent measurements were analysed in terms of sideband induced noise (SIN). The
first measurement comprises several hours, where the OPD was not stabilised. The
measurement was taken under normal laboratory conditions. Here the sideband in-
duced noise was estimated and then subtracted like shown in the first experiment.

The second measurement was also performed without stabilising the OPD but
here the electronic sidebands responsible for the sideband induced noise were inten-
tionally minimised. It shall be noted that the electronic system of the engineering
and flight models has been optimised carefully in terms of sidebands because of the
early comprehension that this will be an important noise source.

The comparison of the estimations of the amplitudes of the two measurements
shows that even without stabilising the OPD it is possible to suppress the SIN
significantly by reducing electronic sidebands in LTP.

The last project presented was the estimation of the coupling of laser amplitude
noise into the differential displacement of the test masses. A realistic relative inten-
sity noise was forming the bases of the input amplitude noise. A simplified model
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for the conversion of amplitude noise to force noise on each test mass was intro-
duced and then a noise projection was carried out. This noise projection shows the
contribution of the laser amplitude noise to displacement noise.

The focus of this chapter was on the development of data analysis tools in LT-
PDA, the software tool to be used for the on-board data analysis. The work pre-
sented here highlights ready-to-use methods within this comprehensive data anal-
ysis tool. The close collaboration between the data analysis of the laboratory ex-
periments and the development of LTPDA has proven to be a very effective way
of development. As such the effort will be continued throughout the preparation of
the experiment master plan as well as during all hardware tests accomplished at
the AEI.



4 Data Analysis for the Mission

4.1 Introduction

The main measurement concept of LISA is based on the ability to put a test mass
into free fall and account for all residual forces that may act on it. LISA Pathfinder
aims to verify this concept. An interferometer measures the distance between two
free-falling test masses with pico-meter accuracy in the milli-Hertz range. The LISA
Pathfinder mission time is strictly limited, therefore experiments must be prepared
in detail prior to the mission in order to maximise its science output. All experiments
that are to be carried out during the mission are collected and defined in the
Experimental Master Plan (EMP). The preparation of the data analysis for LISA
Pathfinder and this Experimental Master Plan go hand in hand aiming to

� assure that all experiments necessary to characterise the mission will be well
understood and realisable,

� verify before launch the ability of analysing the complete mission data.

Daily data analysis during hardware development and testing on ground are crucial,
but this alone will not ensure that all necessary parts needed for the analysis of
the mission are in place. For this reason major components from the Experimental
Master Plan are simulated in theoretical scenarios defined by the data analysis
groups. The theoretical scenarios had to be prepared carefully in order to accomplish
them successfully. These preparations and the first simulations performed are the
subject of this chapter. The course of action as reflected by the individual sections
is described in the following.

1. To simplify international collaboration, scientists involved in the data analysis
for LISA Pathfinder agreed on one model of the dynamics of the two test
masses onboard the satellite. This model is a simplification of the actual
experiment and will be expanded as the development of the algorithms for the
analysis, as well as the understanding of the complete experiment, advances.
Thus the development of the simulation of LTP started with the definition of
a one-dimensional model of LTP in the so-called science mode. In this mode
test mass 1 is kept drag-free which means the spacecraft follows the motion
of test mass 1 (TM1), and test mass 2 (TM2) moves such that the distance
between test mass 1 and test mass 2 is kept constant. The technical details of
this mode, as well as the mathematical description of the motion of the test
masses, will be described in Section 4.2.

2. Once a common model has been defined, it needs to be verified. Since all
future models will probably be based on this first one, and since it will serve

67
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as a reference for future simulations, it must be very reliable. The verifi-
cation of the model is done by the collaboration of two sub-groups of the
LTP data analysis group who have their own independent understanding of
the defined model. One group runs a simulation based on this model and
delivers the obtained data to the other group, which analyses it according
to its own understanding of the defined model. The result is a consolidated
understanding of the physics of this simplified but fundamental model and
an agreement on language and procedures for the future collaboration. The
main organisational structure of having two sub-groups is kept throughout
all simulations, whereas the scientists involved in each group may of course
change during the project. The details about the process of verification of the
simplified model for LTP are given in section 4.3.

3. The third step on the way to simulating LTP is performing an analysis defined
in the Experimental Master Plan on data from the simulations - the ‘conver-
sion to acceleration’. The position of the two test masses is measured by means
of the interferometer. Due to residual forces, like solar pressure, gravitational
couplings or un-commanded thruster force, the test mass position changes
continuously. Differentiating the change in position of the test masses twice
in principle leads to their acceleration. However, additional controller forces
are applied to keep the test masses inside the measurement range. Thus, in or-
der to compute the test mass acceleration resulting from residual force noises,
the controller forces need to be accounted for, which slightly complicates the
procedure.
The data to be simulated (that is the data that will be analysed as described
in this chapter) are the interferometer measurements.

These three steps have been published under name of ‘The first mock data chal-
lenge for LISA Pathfinder’ [39].

The test mass accelerations are an important science output of the mission since
they can be directly related to the residual force noises on the test masses, whose
measurement is a major goal of LISA Pathfinder. In section 4.5 the results of this
important experiment are presented. Simulating certain experiments from the ex-
perimental master plan, even with a simplified model of the experiment, enormously
promotes the development of the data analysis tools.

The most recent experiment of this kind that has been performed, aims to esti-
mate certain model parameters. During the mission some parameter values might
not be known exactly and in order to proceed (for example, with the ‘conversion
to acceleration’) these parameter values are to be estimated first. The algorithms
necessary to accomplish the estimation of parameter values need essential for the
mission and their development will be a very important outcome of this experi-
ment. The last part of this chapter (Section 4.6) deals with a couple of methods
implemented to perform this task.

The work introduced above and described in detail in this chapter has been done
within the framework of so-called Mock Data Challenges (MDCs). In this context
the term ‘Mock Data’ describes data obtained by performing simulations of the
defined models and experiments, and ‘challenge’ comprises all kinds of possible
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analysis based on the definitions made. While the data originates from a purely
theoretical scenario, the tools developed for the analysis are the actual ones that
will be used for the mission, which in our case is LTPDA. So far, two of these
MDCs have been performed successfully. Figure 4.1 shows the way the MDCs are
accomplished.

Compare analysis 
results with 

expected results

4

Define MDC 
model(s), 

assumptions,etc.

1

Analyse data (based 
on some details 

from 1)

3

Produce data 
sets based on 1)

2

Figure 4.1: Illustration of the work flow in MDCs for LTP: Data sets are produced (2)
according to a previously defined model (1). This data is analysed by making
use of some information incorporated into the model definition. Finally the
result from the analysis is compared to the expectation from the process of
data generation (4).

4.2 A simplified model of the LTP dynamics

The model underlying the first couple of Mock Data Challenges describes a simpli-
fied setup of the LISA Pathfinder experiment where the two test masses move only
along the sensitive x-axis and no cross-talk from other axes is included. The mea-
surement principle is illustrated in Figure 4.2. It shows a schematic of the spacecraft
(S/C) including the two test masses (TM1 and TM2), the capacitive sensors, the
micro Newton thrusters and the controllers, as well as all forces and interactions
acting along the sensitive axis. The spacecraft has a mass of M = 475 kg and the
two test masses are assumed to have equal mass m1 = m2 = m = 1.96 kg.

The model is based on the so-called science mode. Test mass 1 moves, since it
experiences residual force noises. The spacecraft is made to follow this motion of
test mass 1 by controlling the thrusters. To keep the distance between the two test
masses constant, test mass 2 is made to follow the motion of the spacecraft with low
bandwidth. The position of test mass 1 is measured with respect to the spacecraft
and since the control of the spacecraft via the micro-Newton thrusters is noisy,
the measurement is dominated by exactly this thruster noise. In the differential
measurement (that is, the position of the two test masses with respect to each
other), the effect of the thruster noise mostly cancels out and a measure of the
residual test mass force noises is obtained. These relationships of measurement and
noises can be extracted from the graph in Figure 4.7 of Section 4.5, where the
matter is discussed in more detail.
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The data used as input error signals to the control loops are the two interferometer
measurement channels: The measurement of the position of test mass 1 with respect
to the spacecraft and the measurement of the differential position of the two test
masses, referred to as ~o1 and ~o12 respectively. Two control loops are illustrated in
Figure 4.2:

� The position of the spacecraft relative to test mass 1 is controlled by the micro
Newton thrusters according to the measurement of ~o1. This combination is
called the drag-free control loop.

� The electrostatic suspension loop comprises the capacitive actuators control-
ling the position of test mass 2 relative to test mass 1 by means of the inter-
ferometer output ~o12 [40].

Analysing all forces acting on the system shown in Figure 4.2 will lead to the
equations of motion of the two test masses. These equations form the recipe to
derive the acceleration of the two test masses from their position measured by the
interferometer. The equations of motion can be found by setting up the Lagrangian
equations of the system and solving the Euler-Lagrange equations of the two test
masses. The Lagrangian is defined as the kinetic energy of the system, T , minus its
potential energy, V , which can be written as L = T − V . For the simplified model
of LTP the Lagrangian reads:

L =
m

2
ẋ2

1 +
m

2
ẋ2

2︸ ︷︷ ︸
kinetic energy

− k1

2
x2

1 −
k2

2
(x2 − x1)2 −

k3

2
x2

2︸ ︷︷ ︸
potential energy

, (4.1)

where m is the mass of each TM, x1 and x2 are the test mass positions; k are the
spring couplings between bodies: k1 acts between the spacecraft and test mass 1,
k2 acts between the S/C and test mass 2 and k3 acts between the two test masses.

The term k2
2 (x2 − x1)2 represents the gravitational coupling between the test

masses, with k2 being the spring constant. From this, the Euler-Lagrange equations
are found for test mass 1 and test mass 2 respectively:

external force on TM1: F1 =
∂L

∂x1
− d

dt

(
∂L

∂ẋ1

)
. (4.2)

external force on TM2: F2 =
∂L

∂x2
− d

dt

(
∂L

∂ẋ2

)
. (4.3)

In an inertial frame, Equations 4.2 and 4.3 would be equal to zero. In this document,
however, the LTP experiment is defined in a non-inertial frame, and forces acting on
the spacecraft are defined to be external. This leads to a total force on test mass 1
and test mass 2 which is non-zero.

The view of the spacecraft being a non-inertial frame is only a matter of definition.
It is however a very convenient definition since all coordinates necessary to describe
the motion of the test masses can be defined with respect to an origin inside the
spacecraft. Other definitions of the system will result in the same equations of
motion provided the correct coordinate transformations are made.
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Adf [ N
kg ] - thruster force per unit mass

AN [ N
kg ] - acceleration noise on spacecraft

k1x1 [N] - spring coupling between TM1 and S/C
k3x2 [N] - spring coupling between TM2 and S/C
A1,A2 [ N

kg ] - acceleration noises on TM1 and TM2
Cdf [s−2] - drag-free controller
Csus [s−2] - electrostatic suspension controller

TM 1

r =
 0

.3
 m

IFO/DMU

TM 2

Cdf

Csus

x

AN Adf

A

A1

A2

x1

x2

k1x1

k3x2

µN-Thruster

Capacitive
sensor

Figure 4.2: Top: List of definitions for variables depicted in the figure below including their
units. Bottom: Simplified model of the LTP dynamics: The spacecraft in grey
houses two test masses. The thruster (black) moves the S/C via the controller
Cdf , and the capacitive sensor (brown) acts on test mass 2, where the movement
is controlled by Csus. The arrows of A and x indicate the positive direction of
forces (per unit mass) and distances reflected in Equations 4.4 to 4.10. x1 and
x2 are the distances between the Spacecraft and test mass 1 and test mass 2
respectively. The block IFO/DMU represents the interferometer and the Data
Management Unit. More detailed information on the DMU can be found in [12]
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The external forces on the test masses (F1 and F2) arise from the total force on
the spacecraft. To derive the total forces on the test masses, first the total force on
the spacecraft must be found. The mass of the spacecraft is denoted by M , and m
is the mass of each test mass. The forces acting on the spacecraft are:

� the force applied by the thrusters: MAdf ,

� additional force noises like solar radiation pressure and un-commanded thruster
noise: MAN and

� forces arising from the back reaction of the spring coupling of the test masses:
−k1x1 and −k3x2 on the S/C.

The total force on the spacecraft can then be written as:

FSC = MAsc = MAdf + MAN − k1x1 − k3x2. (4.4)

The thruster force, MAdf , arises from the drag-free loop reading the output o1 of
the interferometer and feeding back to the micro-Newton thrusters to make the
spacecraft follow test mass 1. Therefore it reads:

Fdf = MAdf = −o1CdfM, (4.5)

with Cdf representing the transfer function of the drag-free controller and o1 the
first interferometer output channel.

External forces on the two test masses arise from the pseudo force from the
spacecraft, due to working in the non-inertial frame (−mAsc). Additional forces
(mA1) may arise from local disturbances, for example from magnetic fields. This
leads to the expression for the force on test mass 1:

F1 = mA1 −mAsc = mA1 −mAdf −mAN + µk1x1 + µk3x2, (4.6)

where µ = m/M is the reduced mass.
Inserting Equation 4.5 into Equation 4.6 leads to:

F1 = mA1 + m o1Cdf −mAN + µk1x1 + µk3x2. (4.7)

The same pseudo force ( −mAsc) has to be taken into account in the equation of
motion for test mass 2. Additionally a force from the electrostatic actuator (mAsus)
acts on test mass 2 , which leads to the following expression for the total force on
test mass 2:

F2 = mA2 + mAsus −mAdf −mAN + µk1x1 + µk3x2. (4.8)

In the electrostatic suspension loop the differential interferometer output o12 is
measured and fed back to control the position of test mass 2. The force arising from
this reads:

Fsus = mAsus = o12Csusm, (4.9)
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where Csus is the transfer function of the electrostatic suspension controller. Now
Equation 4.8 can be rewritten as:

F2 = mA2 + m o12Csus −mAdf −mAN + µk1x1 + µk3x2. (4.10)

Having found the net-forces acting on the two test masses (Equations 4.7 and 4.10),
it is possible to set up the equations of motion for test mass 1 and test mass 2 from
Equations 4.2 and 4.3. For this the right hand side of Equations 4.2 and 4.3 need
to be solved using the Lagrangian from Equation 4.1.
For test mass 1 this reads:

mA1 + m o1Cdf −mAN + µk1x1 + µk3x2 = −k1x1 + k2(x2 − x1)−mẍ1, (4.11)

and for test mass 2 we get:

mA2+m o12Csus−mAdf−mAN+µk1x1+µk3x2 = −k2x2+k2x1−k3x2−mẍ2. (4.12)

The following modifications lead to the final equations of motion of the test masses
given in Equation 4.13 and Equation 4.14:

1. division by the mass of the test masses m,

2. substitution of x12 = x2 − x1,

3. substitution of the so-called stiffness terms: ω2
1 = k1

m , Γ = k2
m , ω2

2 = k3
m and

4. moving the equations to Laplace domain, with s = iω acting as the Laplace
variable for easier calculation of the derivatives.

[
s2 + ω2

1(1 + µ) + µω2
2

]
x1 +

[
µω2

2 − Γ
]
x12 = −o1Cdf + AN −A1, (4.13)[

s2 + 2Γ + ω2
2

]
x12 +

[
ω2

2 − ω2
1

]
x1 = −o12Csus + A1 −A2. (4.14)

From this point on, terms involving the mass of the test masses divided by the mass
of the spacecraft, µ, or the gravitational coupling between the test masses (Γ) will
be neglected since they are small. It makes sense to move to matrix notation to
preserve readability. The following matrices are obtained by appropriate grouping
of all variables:

� the test mass coordinates:

~q =
[

x1

x12

]
, (4.15)

� the interferometer output:

~o =
[

o1

o12

]
, (4.16)

� the acceleration noises:

~gn =
[

A1 −AN

A2 −A1

]
, (4.17)
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� the controllers:

C =
[

Cdf 0
0 Csus

]
and (4.18)

� the dynamics of the system:

D =
[

(s2 + ω2
1) 0

(ω2
2 − ω2

1) (s2 + ω2
2)

]
, (4.19)

Using the above made definitions, Equations 4.13 and 4.14 can be combined to the
following relationship:

D~q = −C~o− ~gn. (4.20)

Equation 4.20 relates the TM coordinates to the dynamics of the model of LTP
and states that this is equal to the multiplication of the control matrix with the
measured output minus the acceleration noises. The controller matrix, C, comprises
all terms for delays and gains. Both controller transfer functions include well defined
delays, Ξdf , for the drag-free loop and Ξsus for the suspension loop, as well as an
actuator coefficient Gdf and Gsus respectively (for further information on the delays
see [41]). The matrices for the actuation (G), the time delays (Ξ) and the controller
transfer functions (H) are defined as follows:

Ξ =
[

Ξdf 0
0 Ξsus

]
, G =

[
Gdf 0
0 Gsus

]
, H =

[
Hdf 0
0 Hsus

]
. (4.21)

The complete controller matrix reads:

C =
[

Cdf 0
0 Csus

]
= Ξ G H. (4.22)

The last part missing from the complete mathematical description of the dynamics
of this model of LTP is the relationship between the interferometer data, ~o, and the
actual position of the test masses ~q. The interferometer can of course only measure
the position of the test masses with a finite precision limited by the so-called sensing
noise ~on:

~on =
[

on1

on12 .

]
(4.23)

Moreover, the measurement involves a cross-talk between the two interferometer
channels, δ, leading to the cross-talk matrix S:

S =
[

1 0
δ 1

]
. (4.24)

The expression for the interferometer output ~o yields:

~o = S~q + ~on, (4.25)

The cross-talk, δ, originates from interferometer imperfections. It is not a noise
source but a constant coupling factor. As such, the measurement of the position of
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test mass 1 couples into the differential interferometer output, o12, in addition to
the actual measurement of x1 − x12, by the coupling factor δ. Thus, if both test
masses are moving in common mode such that their separation remains constant,
the second interferometer channel detects a spurious signal, o12, proportional to the
change in position of test mass 1. It shall be noted that the zero entry in the matrix
is always true and as such not stated as a variable here. That is, there is no such
coupling from the position of test mass 2 to the measurement of o1.

With the full mathematical description of the dynamics of the test masses consid-
ering the simplifications described above, it is finally possible to set up an expres-
sion for the test mass accelerations. Combining Equations 4.20 and 4.25 leads to an
expression for the acceleration of the test masses separating the well known param-
eters like the dynamics, the interferometer cross-talk, the controller functions, and
the interferometer output data (left hand side of Equation 4.26) from the unknown
ones that are the noise sources (right hand side of Equation 4.26). The analysis of
the system in terms of the here presented mock data challenges (MDCs) is fully
described by the following equation:

[DS−1 + C]~o = D S−1 ~on − ~gn. (4.26)

The right hand side of 4.26 will be denoted as predicted acceleration:

~apred = D S−1 ~on − ~gn. (4.27)

and the left hand side of Equation 4.26 will be denoted as measured acceleration:

~ameas = [DS−1 + C]~o (4.28)

Note that Equation 4.27 does not contain any simulated data. It consists only
of parameters for which realistic assumptions have been made when the simulated
data was generated. These will be unknown when LISA Pathfinder is producing
real data, but the theoretical assumptions made for the data generation are used
here for predicting the test mass acceleration. Thus ~apred is computed by applying
all information about the noise sources to the known dynamical model.

The result of Equation 4.28 gives ~ameas. All variables in this equation will initially
assumed to be known to some finite accuracy and precision:

� the dynamics, D, from analysing the model,

� the IFO cross coupling, S, from simulations,

� the controllers, C, by definition and

� the IFO output, ~o, from the measurement.

The dynamics, the interferometer cross-coupling and eventual controller actuation
factors (see Equation 4.21) can be adapted according to the results of the on-orbit
experiments. These experiments and the estimations of those parameters are the
subject of Section 4.6. The expressions for the accelerations of the test masses
derived here are the basis of all simulations of the LTP experiment already accom-
plished and of the ones still to be done. The complexity of the model will increase
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further with the approach of the launch date of the mission. Thereby the model
will become more and more realistic. For instance, the one-dimensional experiment
needs to be extended to three dimensions. All computations accomplished in this
chapter consider a purely one-dimensional model, where all forces only act along
the sensitive x-axis such that resulting displacements also only affect this axis. In
reality residual forces act in all dimensions such that the applied control forces
will need to compensate for them. However, the one-dimensional model represents
the perfect scenario where cross-talks from other axes are minimised. Therefore in
principle the complete analysis presented in this thesis holds for such a scenario.

4.3 Validation of the model

The expressions derived above will be used throughout the LISA Pathfinder com-
munity for the preparation of the data analysis of the mission. Consequently, the
description of this first model of the LISA technology package needs to be verified.
Data from the first Mock Data Challenge (MDC1) is used for this verification pro-
cess. The data was generated by a sub-group of the data analysis group from the
University of Trento. The data generation procedure itself is not a subject of the
work presented here, but documented in [42].

The first step on the way to verifying the model is to recover the simulated
interferometer data. Together with the generated data, all details regarding quan-
tities relevant for the generation process were provided. Using the model that the
scientists involved agreed on, it is possible to compute an analytic expression for
the interferometer output in the frequency domain. Finally, inserting the provided
details about the relevant quantities will lead to the theoretical function of the
interferometer data in Fourier space.

The analytical expression for the model computed in the following will thus be
validated by comparing the ‘power spectral densities’ (PSDs) of the simulated time
series of the interferometer data with its computed analytical expression.

The model is considered as being validated when both the data generation group
and the data analysis group agree on one set of equations. Once the results match
and the analytical expression can be regarded as correct, it will be used for further
analysis such as the analytical function of the TM acceleration discussed in Section
4.4.

These analytical expressions play an important role especially in the beginning
of the process of the data analysis. Once they are validated they can be used as a
reference for the results obtained from actually analysing the simulated data.

Thus the task to fulfil in this section is to obtain a verified, analytical expression
for the TM accelerations that will represent the reference for the final data analysis
result, the ‘conversion to acceleration’ discussed in Section 4.5. From Equation 4.26
it follows that the interferometer data, ~o, can be described as:

~o = [DS−1 + C]−1 [DS−1~on − ~gn]. (4.29)

This equation shows that for finding the function describing the interferometer
output, it is necessary to know all information used to generate the data, including
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analytical expressions for the various noise sources summed up in ~gn. The frequency
dependent functions describing the noise sources are communicated for MDC1 and
can be found in [42]. Equation 4.29 needs to be solved to obtain an expression
representing the PSDs of o1 and o12, since these can be computed directly from
the data of MDC1 such that these two results can be compared. The first term of
Equation 4.29 can be expressed as

[DS−1 + C]−1 =

[
1

(s2+ω2
1)+Cdf

0
−β

((s2+ω2
1)+Cdf)((s2+ω2

2)+Csus)
1

(s2+ω2
2)+Csus

]
, (4.30)

with β = (ω2
2 − ω2

1) − δ(s2 + ω2
2). And the second term of Equation 4.29 can be

expressed as:

DS−1~on − ~gn =
[

(s2 + ω2
1)on1 + AN −A1

βon1 + (s2 + ω2
2)on12 + A1 −A2

]
. (4.31)

Introducing the closed loop transfer functions

Sdf =
(s2 + ω2

1)
(s2 + ω2

1) + Cdf
(4.32)

and

Ssus =
(s2 + ω2

2)
(s2 + ω2

2) + Csus
, (4.33)

Solving Equation 4.29 leads to the following expressions for ~o:

o1 = Sdfon1 +
Sdf

(s2 + ω2
1)

(AN −A1), (4.34)

o12 = on1

[
β

Ssus

(s2 + ω2
2)

(1− Sdf)
]

+ on12Ssus −A2
Ssus

(s2 + ω2
2)

(4.35)

+ A1

[
Ssus

(s2 + ω2
2)

(
β

Sdf

(s2 + ω2
1)

+ 1
)]
−AN

(
β

SdfSsus

(s2 + ω2
1)(s2 + ω2

2)

)
. (4.36)

For later comparison of the data it is useful to define the power spectral densities
of the interferometer outputs. To verify that the results of the prediction of ~o are
the same as the simulated mock data, ‘power spectral densities’ (PSD) of both will
be compared graphically (Figure 4.4). The PSDs of o1 and o12 are defined as:

PSD(o1) = 〈o1 · o∗1〉. (4.37)
PSD(o12) = 〈o12 · o∗12〉. (4.38)

From this the ‘amplitude spectral density’ (ASD) can be calculated as:

ASD =
√

PSD. (4.39)

Furthermore, the spectra of the force noises (A2 − A1, AN , on) are also given as
combinations of underlying ASDs from the data generation team which makes it
impossible to recover all information about the variable itself, because the phase
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information is missing. Moreover, some terms are statistically independent and
their expectation value is defined to be zero. For instance: 〈on1gn1〉 = 0. Thus, the
computation of the PSDs must be done analytically rather than simply using a
computer algorithm for the complex conjugate of ~o.

PSD(o1) = |Sdf |2|on1 |2 +
|Sdf |2

|(s2 + ω2
1)|2

(|A1|2 + |AN|2), (4.40)

PSD(o12) = |on1 |2
[
|β|2

|Ssus]|2

|(s2 + ω2
1)|2

(
1 + |Sdf |2 − 2Re{Sdf}

)]

+ |on12 |2|Ssus|2 + |A2|2
|Ssus|2

|(s2 + ω2
2)|2

+ |A1|2
|Ssus|2

|(s2 + ω2
2)|2

(
|β|2 |Sdf |2

|(s2 + ω2
1)|2

+ 1 + 2Re

{
β

Sdf

(s2 + ω2
1)

})
+ |AN|2

|β|2|Sdf |2|Ssus|2

|(s2 + ω2
1)|2|(s2 + ω2

2)|2
. (4.41)

Equation 4.40 describes the generation of the output data, o1, as follows:
First the transfer function of the dynamics is applied to the sum of the force noises
on test mass 1, A1 and the force noise on the spacecraft, AN. The resulting signal
gets added to the measurement noise of the first interferometer channel on1 . After
that the transfer function of the closed loop drag-free controller is applied to the
signal which results in the power spectral density of o1. Predicting o12 is more
complicated, because here both o1 and o12, couple into the result. The result for
o12 is given in Equation 4.41. 4.3 represents exactly the same content as expressed
by Equation 4.40 but as a signal flow diagram.

Figure 4.4 shows two curves:

� the solid lines represent the analytical reference of the interferometer outputs,
o1 and o12, computed above and

� the dashed lines are the ASDs computed directly from the simulated interfer-
ometer data that is to be analysed in the next section.

The noise sources assumed for the data generation are given in [43]. The inter-
ferometer noise, on has been assumed to be 3 pm/

√
Hz above 10 mHz for both

interferometers. The force noises can be read directly from Figure 4.7. For better
visualisation of the differences of the analytical references and the simulated data
the ratios are plotted in Figure 4.5.

These results show the consistency of the model of the LTP dynamics with the
model that was originally used for the data generation. For both interferometer
outputs the curves for the predicted and the generated results agree very well.
Small deviations for frequencies in the sub-milihertz range most likely arise from
averaging only very few points for the spectral estimation. For the spectrum of o1

deviations also arise around 0.1 Hz, which may arise from differences in controllers
used for simulating the data and computing the analytical function.

Finally all deviations are very small, which of course did not come for free. In
reality the understanding of the defined model was naturally not the same from the
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Ã2 ++

S̃df

1
(s2 + ω2

1)
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õ12

ÃN
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Figure 4.3: Flow diagram for recovering simulated interferometer data of the simplified
dynamical model for LTP analytically. The tilde above the variables indicate
that the quantities are given in the Fourier domain.

10-4 10-3 10-2 10-1 100
10-12

10-11

10-10

10-9

10-8

A
S

D
 [m

 H
z-1

/2
]

o1 analytical
 o1 simulated
o12 analytical
o12 simulated

Frequency [Hz]

Figure 4.4: Amplitude spectral densities of the simulated interferometer data and its analyt-
ical prediction. The simulated data is equal to the interferometer measurement
noise of 3 pm/

√
Hz above 10 mHz.



80 CHAPTER 4. DATA ANALYSIS FOR THE MISSION

0.6

0.8

1

1.2

1.4

1.6

1.8 o1 simulated / o1 analytical

Frequency [Hz]

R
at

io

10-4 10-3 10-2 10-1 100

(a) o1

10-4 10-3 10-2 10-1 100
0.6

0.8

1

1.2

1.6

1.8
 

Frequency [Hz]

Ra
tio

o12 simulated / o12 analytical

(b) o12

Figure 4.5: Ratio of the amplitude spectral density (ASD) of the simulated interferometer
data in MDC1 and the analytical expression of the ASD of the interferometer
data.

start for all scientists involved. Instead what is summarised in this section is the re-
sult of an intensive process of discussion and error hunting among both sub-groups.
The result presented here forms the basis of a close and efficient collaboration be-
tween all groups working on the LISA Pathfinder mission.

From this point on, the computations regarding the test mass accelerations are
practically straightforward, since the tools describing the model are all verified and
in place and only need to be rearranged to compute the results described in the
following two sections.

4.4 Computation of analytical interferometer signals

Since it has now been demonstrated that the formalism used to analyse the model is
correct, the next step is to compute the expected results from the data analysis. This
will provide the reference for the results obtained from converting the generated
mock data back to acceleration. These references are given by the right hand side
of Equation 4.26:

~a = D~on S−1 + ~gn. (4.42)

The PSD of ~a is defined as:

PSD(a1) = |(s2 + ω2
1)|2|on1 |2 + |A1|2 + |AN|2, (4.43)

PSD(a12) = |β|2|on1 |2 + |(s2 + ω2
2)|2|on12 |2 + |A2|2 + |A1|2. (4.44)

These equations are as well visualised in the form of a flow diagram in Figure 4.6.
Figure 4.7 shows the predictions for the accelerations of test mass 1, a1, and the

differential acceleration between the test masses, a12, respectively. The spectra of
the noise sources described earlier in this document are plotted for comparison.
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Figure 4.6: Visualisation of Equations 4.43 and 4.44. Depicted is the computation of an
analytical expression representing the acceleration of the test masses in Fourier
space. The spectra of the involved noise sources are well defined for the purpose
of the performed simulations. The ∼ indicates that the respective variable is in
the Fourier domain.
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Figure 4.7 reflects very well the measurement principle of the science mode aiming
to recover the residual accelerations of the test masses and thereby the acceleration
noises acting on them.

As mentioned earlier in this chapter, the measurement of the acceleration of
test mass 1, a1, is dominated by the thruster noise AN up to a frequency of about
1 Hz. Consequently, at these frequencies one cannot distinguish between test mass
movement and spacecraft movement, which is consistent with our model because
the spacecraft follows the motion of test mass 1 by applying a force via the micro
Newton thrusters. Force noise acting on the thrusters should directly couple into
the measurement of the acceleration of test mass 1. The residual acceleration noises,
however, can only be extracted from the measurement of the differential accelera-
tion a12. The plot in Figure 4.7 shows that at Fourier frequencies up to 10µHz the
test mass noise is measured. At higher frequencies the interferometer sensing noise
dominates the measurement. In Figure 4.7 two curves are plotted for the interfer-
ometer noise, one corresponding to each test mass. Unlike all other noise sources
plotted, the sensing noise is not an acceleration noise but is a measure of distance.
In order to make it comparable in the given context it is multiplied with the dy-
namics of the corresponding test mass and thereby corresponds to an acceleration.
For test mass 1 the curve represents:

1
(s2 + ω2

1)
on (4.45)

and for test mass 2 curve was computed by

1
(s2 + ω2

2)
on. (4.46)

In fact the two curves only differ by the values for the corresponding stiffness terms
and as such almost lie on top of each other.

4.5 Conversion of interferometer data to test mass
acceleration

In the previous section the test mass acceleration expected from the known spectra
of present noise sources has been derived to obtain a reference for the actual analysis
of the generated data. Just as for the verification of the model in the first section of
this chapter, the conversion of interferometer data to test mass acceleration is done
exemplarily using data generated in the course of the first mock data challenge.
Their spectra are plotted in Figure 4.4. The aim of the analysis of the simulated
data is to extract an estimate of the differential acceleration of the two test masses.
From those the residual acceleration noises can be calculated. Just like for the
performance of this experiment on actual mission data, only the dynamics of the
system and the controller transfer functions must be known for computing the
test mass accelerations. The left hand side of Equation 4.26 gives the recipe of how
to extract the TM acceleration, ~a, from the interferometer output, ~o:

~a = [DS−1 + C]~o, (4.47)
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which in principle states to differentiate the interferometer output twice and cor-
recting for the measurement channel coupling as well as for the commanded forces.
The resulting test mass accelerations are as follows:[

a1

a12

]
=

[
(s2 + ω2

1)S
−1
df 0

ω2
∆ + (s2 + ω2

2) · (−δ) (s2 + ω2
2)S

−1
sus

] [
o1

o12

]
. (4.48)

The procedure is illustrated in Figure 4.8. The output of the second interferometer
measurement channel, ~o12, couples into the calibration of the differential test mass
acceleration, which is the reason for the pipeline of a12 being more complicated
than that of a1.
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++ ã12

õ12

õ1 S̃−1
df

S̃−1
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õ1

Figure 4.8: Data analysis of the interferometer output data. In the case of analysis in the
Fourier domain, the boxes represent transfer functions, in case of time-domain
analysis corresponding filters are defined.

The data analysis of the simulated interferometer data can be done in the Fourier
domain as well as in the time-domain. In the case of the analysis in the time-domain,
the elements in Figure 4.8 are generated using filters. Figure 4.9 shows the test
mass accelerations which have been found by analysing eleven sets of simulated
interferometer data and averaging the results. The error curves correspond to the
standard deviation of the displayed mean and are indicated as dashed lines. The
solid line represents the theoretical curve computed above using Equations 4.43 and
4.44. To make the differences better visible the ratios of analytical prediction and
analysis of the simulated data are plotted in Figure 4.10. It can be seen that the
results of the data analysis agrees very well with the theoretical predictions derived
from analysing the dynamical model of LTP.

There are small deviations:

� At low frequencies these arise from the estimation of the spectral densities.
At low frequencies a larger number of data points is needed to obtain a good
spectral estimation.
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Figure 4.9: Calibration of interferometer data to test mass acceleration: plotted is average
of the data analysis of 10 data sets together with the analytical prediction
computed in Section 4.4. The grey dashed lines represent the standard deviation.
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� The discrepancy between reference and analysis above 1Hz arises from the
method of numerical differentiation used in the time-domain analysis. The
method is discussed in [44].

� The very small deviations around 10 mHz for a1 arise from slightly different
controller transfer functions for the analysis and for the generation of the
data. For the ongoing investigations of MDC2 these have been corrected.

Analysing the data in the Fourier domain means that all elements in Figure 4.8 are
transfer functions, which is indicated by the ∼. This means that initially the PSD
of ~o is estimated and after that the transfer functions are applied. From Equation
4.48 and Figure 4.8, the following equations follow for the result of the data analysis
in the frequency domain:

PSD(a1) = |o1|2
|(s2 + ω2

1)|2

|Sdf |2
, (4.49)

PSD(a12) = |o1|2|β|2 + |o12|2
|(s2 + ω2

2)|2

|Ssus|2

+ β
(s2 + ω2

2)
∗

Ssus
∗ − o1,∆ + β∗

Sω2

Ssus
o1,∆ , (4.50)

where o1,∆ = 〈o1 o∗12〉 is the cross correlation.
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Figure 4.11: Calibration of one set of interferometer data to test mass acceleration in the
frequency-domain. The analytical prediction computed in Section 4.4.

The resulting functions for ~a in the frequency-domain are plotted in 4.11. For this
task only one set of data was analysed, instead of averaging all 10 interferometer
data sets like for the time-domain analysis. They agree with the results of the time-
domain analysis (Figure 4.9), apart from the deviations above 1 Hz which arise
from the numerical differentiation. From the results shown it can be said that the
theoretical predictions are in very good agreement with the outcome of the data
analysis.
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Along with this analysis a set of LTPDA tools has been developed. They are
ready to be used on any data simulated according to the here defined model of
LTP. With an expansion of the dynamics e.g. taking into account cross-talks from
other axes, the tools shall be expanded accordingly.

Up to this point, all results shown involving simulated data, are done on data
generated in the course of MDC1. Any data generated according to the model
described here (see Section 4.2) can now be analysed using the developed tools.
This of course presumes the knowledge of all the parameters in Equations 4.49 and
4.50.

The question of finding the parameters, which might not be known precisely
enough is the subject of the following section and the topic of the second Mock
Data Challenge (MDC2).

4.6 Parameter estimation

To perform the tasks discussed in the previous section (calibration of interferometer
data to test mass acceleration), all parameters describing the dynamical model un-
derlying the simulated or real data must be known. Uncertainties in the parameter
values will of course propagate into the data analysis result, that is the acceleration
of the test masses.

In reality, during the mission some parameters might not be known exactly.
Therefore, before the interferometer data can, for example, be converted to test mass
acceleration, these parameters need to be estimated. The observeability of the pa-
rameters, which depend on the dynamical system improves when the system is
stimulated by appropriate input signals. Naturally the next Mock Data Challenge
(MDC2) is designed in the following way:

Like in MDC1 two sub-groups are formed: one generating data and the other one
analysing the simulated data.

Data generation The simulation comprises a set of experiments where signals are
injected into the system and the output is generated.

Data analysis The data analysis task is to find certain unknown parameter val-
ues from the generated data. Given the injected input signals the transfer
functions can be measured and the parameters can be approximated by ap-
propriate fitting algorithms.

Different approaches for the actual parameter estimation (non-linear, linear and
Bayesian) have been investigated by the data analysis group of LTP. In the scope
of the work presented here, the focus lies on the linear analysis of the system. In this
section the method with which the system is stimulated and how the estimation
of the desired parameters is realised will be explained. Finally, together with the
obtained results, the applicability of the linear approximation of the simplified
model of LTP shall be discussed.



4.6. Parameter estimation 87

4.6.1 Defining the simulation procedure

During the mission as well as in the course of simulations, the stimulation of the
dynamical system can be realised by injecting stimulus signals at the input of the
controllers (Cdf and Csus) by adding them to the error signal. Ideally, when cross-
talks from other axes are minimised, the injection introduces a longitudinal motion
of the two test masses within the respective loop bandwidth. In fact, the dynamical
model underlying the simulations discussed in this thesis (see Section 4.2) represents
this ideal one-dimensional case. From the resulting output data and the injected
input signals, the transfer functions are measured. Figure 4.12 illustrates how the
system is stimulated by the injected signals oi1 and oi2.
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Figure 4.12: Extension of Figure 4.2: the simplified model of the LTP dynamics including
input signals oi1 and oi12 stimulating the system.

The diagram in Figure 4.12 depicts very well that the model comprises two control
loops which are coupled via two terms:

� the differential stiffness of the test masses, ∆ω = ω2
2 − ω2

1 and

� the interferometer cross-talk, δ.

The two control loops each consist of a controller term and a term describing the dy-
namics of the two test masses respectively. The drag-free loop controls the position
of the spacecraft with respect to test mass 1 and the electro-static suspension loop
controls the position of test mass 2 relative to TM 1 as discussed in the description
of the science mode in Section 4.2.

In the Laplace domain a transfer function is defined as the ratio of the output of
a system to the input of a system. Given an input function X(s), and an output
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Figure 4.13: Schematic of the definition of the transfer function.

function Y (s) (Figure 4.13), the transfer function T (s) is defined as:

T (s) =
Y (s)
X(s)

. (4.51)

In the simulations for the investigations on parameter estimation methods described
here, the inputs to the system are always oi1 and oi12 (see Figure 4.12). Within the
simulations performed, data sets that include the input signals are provided by the
data generation team1. As this data mimics the interferometer output as in the
previous sections, it will again be denoted as o1 and o12 for the two interferometer
output channels.

With the known input signals and the provided simulated data sets the appropri-
ate transfer functions are measured according to Equation 4.51. Some parameters
of the model are not communicated to the analysis team and instead have to be
estimated from the measured transfer functions by suitable fitting routines. For this
purpose the measured transfer functions need to be fitted to the theoretical models
derived from the equations of the dynamics for LTP. To derive this model, Equation
4.20 from Section 4.2 is modified to include the input signals ~oi:

D~q = −C(~o + ~oi)− ~gn. (4.52)

This leads to the needed expression for the interferometer output ~o. Equation 4.29
becomes

~o = [DS−1 + C]−1 [−C~oi − ~gn + DS−1~on]. (4.53)

Now the interferometer output from Equation 4.53 can be expressed as a combina-
tion of a set of transfer functions, each acting on one of the three types of inputs
to the system, the interferometer sensing noise, ~on, the residual acceleration noises
~gn and the input signals oi:

~o = T(θ̃) ~oi + Tn(θ̃) ~gn + Ton(θ̃) ~on, (4.54)

where θ̃ denotes the model parameters to be estimated.
The parameter estimation procedures discussed in this thesis represent the very

first attempt of finding unknown model parameters from simulated LTP interfer-
ometer data. As such, the model is kept simple by not taking into account the
parameter dependent noise terms ~gn and ~on (see Figure 4.12 and Section 4.2). In-
stead the signals ~oi are assumed to be large enough to dominate the interferometer
output. It will be shown in Section 4.6.5 that the parameter dependence of the

1The data generation team for parameter estimation simulations are: Miquel Nofrarias (AEI) and
Luigi Ferraioli (UTN).
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noise terms cannot be neglected and an appropriate method to deal with this kind
of noise will be presented.
The system simplifies to

~o = T(θ̃) ~oi + ~n, (4.55)

where the parameter dependent noise terms get summarised into the single term,
~n. The matrix, T(θ̃), represents all possible transfer functions from the introduced
signals. It reads:

T(θ̃, f) =

 − GdfHdf(f)
(s2 + ω2

1) + GdfHdf(f)

− GdfHdf(f)(ω2
1 − ω2

2 + δ(s2 + ω2
2))

((s2 + ω2
1) + GdfHdf(f))((s2 + ω2

2) + GsusHsus(f))
0

− GsusHsus(f)
(s2 + ω2

2) + GsusHsus(f)

 . (4.56)

From this matrix the transfer functions of the system from each of the two inputs
~oi to the output of the two measurement channels are found as[

o1

o12

]
=
[

T11 0
T12 T22

] [
oi1

oi2

]
+
[

n1

n2

]
. (4.57)

This construct of transfer functions based on the basic model of the LTP dynamics
and the two input signals injected at the controllers represents the model for the
parameter estimation algorithms. In Section 4.7 the transfer functions for each
experiment performed to simulate interferometer data computed via this matrix
are used. The model including all transfer functions is completely implemented in
LTPDA, enabling everybody with access to the simulated data, to easily analyse
the data according to the presented formalism. With future runs of simulations
(MDCs) the complexity of the model will increase and the implemented transfer
functions will of course be enhanced accordingly.

The model parameters whose values are not communicated by the data generation
team and thus need to be estimated are:

ω2
1 - the stiffness of TM1,

ω2
2 - the stiffness of TM2,

Gdf - the controller gain of the drag free loop,

Gsus - the controller gain of the electrostatic suspension loop and

δ - the interferometer cross-talk.
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Finally the true values must be communicated to evaluate the results of the parame-
ter estimation accomplished by the data analysis team. Thus they can be presented
here and are listed in Table 4.1. The set of unknown parameters will in the following
be denoted as ~θ.

Table 4.1: Unknown parameters and their correct values, which are to be estimated.

Parameter value

Gdf 0.8
Gsus 1.15
ω2

1 −1.1× 10−6

ω2
2 −2.2× 10−6

ω2
match −2.4× 10−6

δ 1.35× 10−4.

As mentioned above and reflected in the derived equations (Equation 4.55), the
parameter dependence of ~n will not be considered. Nevertheless, the noise plays an
important role in the parameter estimation procedure. Prevalent fitting routines
require white Gaussian noise as input data, but ~n is non-white and parameter de-
pendent. A common approach to solving the former but not the latter is applying
so called ‘whitening filters’ to whiten the noise and then apply the fitting routine
to the data with the whitened noise. Regarding the parameter dependence, the
signal is assumed to be significantly larger than the noise and the issue can be ne-
glected. However, the two most obvious issues of whitening the described simulated
interferometer data are pointed out in the following:

1. In the here discussed simulated interferometer data as well as in future mission
data the two noise terms n1 and n2 of the two interferometer channels are
highly correlated. For finding appropriate whitening filters this correlation
must be taken into account which makes the process rather complex. A so-
called two-dimensional whitening tool has been implemented for this purpose.
It is part of the LTPDA toolbox, in whose manual [23] further information
on the algorithm can be found.

2. Data and noise are inseparable and therefore applicable whitening filters, are
applied to both. Therefore the model must be filtered by the exact same
whitening filters as the data such that the procedure of noise whitening only
changes the noise term while the relation between data and model stays the
same.

For whitening two correlated signals an advanced algorithm has been implemented.
The function is called whiten2D and it is included in the LTPDA Toolbox. It was
developed by Luigi Ferraioli from the University of Trento. For further information
on this algorithm see [23]. The mathematical description of the relationship between
the whitened data, the whitening filters as found by whiten2D and the transfer
functions of the model are carried out in Section 4.6.5. To minimise unknown issues,
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data without the noise terms ~on and ~gn has been generated and instead white noise
of comparable magnitude has been added to it in every experiment. The analysis
with aiming the estimation of parameters is in the following sections always done
first on the data with white noise, before the final parameter estimation is done on
the original data, where the more realistic noise terms, ~on and ~gn, are included and
whitened.

4.6.2 Experiments

There exist a couple of documents [45, 42], suggesting a variety of experiments nec-
essary to maximise the science output of the mission and hence its value as technol-
ogy demonstration for LISA. The experiments performed for the simulations, which
are the subject of this thesis are inspired by these but are not completely the same.
The focus of the work presented here lies in the implementation and investigation
of suitable fitting routines rather than probing every suggested experiment. Never-
theless, the investigations on the different kinds of parameter estimation techniques
should reveal how well the performed experiments are suited for measuring certain
parameters.

The simulation performed to investigate and implement different methods of
parameter estimation on the example of the presented LTP setup, comprises a
set of three experiments. For each experiment a set of interferometer data, ~o, is
generated and will be analysed in order to estimate the values of the parameters
listed at the end of the previous section. For this purpose, the data will be fitted
to the theoretical expressions of the corresponding transfer functions defined by
Equation 4.57. The analysis of the three different experiments and corresponding
transfer functions will allow a comprehensive evaluation of the linear parameter
estimation method introduced here.

In the following, the experiments will simply be denoted as Experiment 1 to 3.
Figures 4.12, 4.22 and 4.19 illustrate the setup of each experiment accordingly. They
shall be described here only briefly:

Experiment 1 : Two signals, oi1 and oi2, are injected into the system.

Experiment 3 : Only the signal oi1 is injected into the system.

Experiment 2 : Like Experiment 3, but the stiffness parameters ω1 and ω2 are set
to the same value which is renamed to the parameter ωmatch.

The experiments presented are described by a document accompanying the gener-
ated data sets [46]. The document includes all necessary information for the data
analysis team to analyse the given data. In Section 4.7 each experiment is discussed
in detail and the results of important investigations are presented. The focus of the
analysis lies in the investigations of applicable parameter estimation methods, in
particular how well the model can be approximated by a linearisation, in order to
estimate the parameters using a straightforward linear fitting routine.

The relevant transfer functions for the above listed experiments result from Equa-
tion 4.56 and are plotted in Figure 4.14. Moreover in Figure 4.14 arrows indicate
the frequencies of interest. In each experiment the system is stimulated at certain
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frequencies and the output is measured. As presented earlier (in Equation 4.51) the
measured output over the input signal yields the transfer function. The frequencies
that are indicated by the arrows in the plot of the transfer functions will be listed
later for each experiment individually in the corresponding tables (Tables 4.4, 4.6
and 4.8 in Section 4.7) for the description of every input signal.
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Figure 4.14: Transfer functions T(~θ) from stimulus signals oi1 and oi2 to interferometer
data o1 and o12 the last curve represents Experiment 2, where ω1 and ω2 are
set to ωmatch.

4.6.3 Linearisation of the model

The unknown values of the model parameters are to be found by comparing the
model given in the matrix of Equation 4.56 with the simulated data. This can be
done with the ‘Least-squares method’. General information on this method is given
in several textbooks on data analysis like [36] and [47]. The main principle is that
the optimal parameter set is found by minimising the so-called merit or residual
function, that represents the difference between the theoretical model and the data.
The residual function is defined as:

r(~x, ~y, ~θ) =
∑

i

(yi − f(xi, ~θ))2, (4.58)

where ~θ is the set of unknown parameters, ~y are the measurements and f(xi, ~θ)
is the model function defined in Equation 4.56. The optimal parameter set, θopt,
minimises the residual function, r. In the following equation, the expression argmin

~θ

indicates the minimum of the function for the parameter set ~θ.

~θopt = argmin
~θ

(r(~x, ~y, ~θ)), (4.59)
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Thus, the parameter can be found by finding the minimum of the above residual
function. This is the principle non-linear least squares fitting routines are based
on. In Section 4.7 the residual function is plotted for all data sets of the three
experiments under investigation (see Figures 4.18(a), 4.24(a) and 4.21(a)). The
residual function has been computed for a set of parameter values, ~θ0, around the
true values of ~θ, and the minimum should always lie at the true parameter value.

The model f(xi, ~θ) is non-linear in its parameters, which makes it necessary to use
iterative non-linear parameter estimation methods to find the optimal parameter
set ~θopt that minimises the residual function r(~x, ~y, ~θ).

The focus of this thesis, however, is the linear analysis of the model. A common
approach in estimating parameters of non-linear functions is to linearise the function
first and then use a straightforward, well understood, linear fitting algorithm. A
non-linear model can in principle be approximated by a linear expression using the
Taylor expansion and considering only the first term:

f(~θ, ~x) ≈ f(~θ0) + flin(~θ0, ~θ), (4.60)

f(~θ, ~x) ≈ f(~θ0) +
∑ ∂f

∂θk
(~θ0, ~x)∆θk, (4.61)

f(~θ, ~x)− f(~θ0) ≈
∑ ∂f

∂θk
(~θ0, ~x)∆θk, (4.62)

where ~θ are the unknown parameters and ~θ0 are a first estimation for each unknown
value. These first estimations may be known, for example, from a measurement or
a theoretical evaluation. The above approximation holds only for a certain interval
around the unknown parameter. The interval depends on the function f and is given
by ~θ − ~θ0, where ~θ represents the correct values of the parameters used during the
simulation. Those values are given in Table 4.1. The right hand side of Equation 4.62
is an expression that is linear in ∆~θ and thus can be fitted by a linear fitting routine.
In contrast to the non-linear approach stated in Equation 4.59 the simulated data
denoted by yi cannot simply be fitted to the linear model flin. Instead, projecting
the statement made by Equation 4.58 to the linear case yields

rlin(∆~θ) =
N∑
i

(
[yi − f(xi, ~θ0)]− flin(xi,∆~θ)

)2
,

rlin(∆~θ) =
N∑
i

(
[yi − fi(~θ0)]−

M∑
k

∂f

∂θk
(~θ0, ~xi)∆θk

)2

. (4.63)

Thus, the data that the linear expression flin is fitted to, is the measured or simu-
lated data yi minus the non-linear model function. The model function is computed
by inserting the first estimation for each parameter, f(~θ0). The result visualises the
region ∆~θ for which Equation 4.62 holds:

Plotting rlin against ∆θ for a set of different estimations, ~θ0, around the correct
value illustrates within which region the linearisation is a good approximation of the
model function. Figure 4.18(b) on page 105 shows this plot for Experiment 1 where
the noise in the interferometer output, ~o, is white. This investigation is done for all
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three experiments on data with white noise. However, results must be the same for
the simulated data with whitened noise since the purpose of whitening is to be able
to treat the whitened noise exactly the same as white noise. The described plots of
rlin against ∆θ are done for every experiment. Figure 4.21(b) shows the curve for
Experiment 3 and 4.24(b) shows the same for Experiment 2. These Figures provide
information on how well the model function can be linearised in each parameter
for a certain region. In Section 4.7 these plots will help understanding the obtained
results.

Equation 4.62 gives the expression that builds the input of the linear fitting
routine: a linear combination of unknowns to be estimated on the right hand side,
and on the left hand side the so-called ‘target function’ including the measurements.
For the model under investigation, described by Equation 4.56, this linearisation
according to Equation 4.62 yields the following expression:

(o1 + o12) − [(T11(~θ0) + T12(~θ0))oi1 + T22(~θ0)oi2] ≈∑
k

[(
∂T11

∂θk

∣∣∣∣
θk0

+
∂T12

∂θk

∣∣∣∣
θk0

)
oi1 +

∂T22

∂θk

∣∣∣∣
θk0

oi2

]
∆θk (4.64)

=

[(
∂T11

∂Gdf

∣∣∣∣
Gdf0

+
∂T12

∂Gdf

∣∣∣∣
Gdf0

)
oi1

]
(Gdf −Gdf0)

+

[(
∂T12

∂Gsus

∣∣∣∣
Gsus0

)
oi1 +

∂T22

∂Gsus

∣∣∣∣
Gsus0

oi2

]
(Gsus −Gsus0)

+

[(
∂T11

∂ω2
1

∣∣∣∣
ω1

2
0

+
∂T12

∂ω2
1

∣∣∣∣
ω1

2
0

)
oi1

]
(ω2

1 − ω1
2
0)

+

[(
∂T12

∂ω2
2

∣∣∣∣
ω2

2
0

)
oi1 +

∂T22

∂ω2
2

∣∣∣∣
ω2

2
0

oi2

]
(ω2

2 − ω2
2
0)

+

[(
∂T12

∂δ

∣∣∣∣
δ0

)
oi1

]
(δ − δ0). (4.65)

o1 and o12 were summed in order to fit both channels simultaneously and thus make
use of all information gained from these measurements. By adding the two inter-
ferometer channels together, the resulting expression is again a linear combination
of model functions and unknown parameters as required for the linear parameter
estimation method and represented in Equation 4.62.

From Equation 4.56 it can be seen that some derivatives are independent from
certain parameters and hence the derivative with respect to these parameters are
zero. The zero derivatives are not included in the above expression. The derivatives
of the three transfer functions (T11 T12 and T22) with respect to all parameters are
displayed in a matrix like notation in Table 4.2.

A first approximation of the parameters is given by the data generation team
(Table 4.3). During the mission it is expected that these parameters can also be
initially estimated. This first approximation is ~θ0. The linear fitting routine will
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return the parameter ∆θk = θk−θ0, where θk stands for the value of each parameter
to be estimated. Thus in fact the parameter is estimated by finding the difference
between the a priori estimation and the correct value. θk = ∆θk+θ0 is then inserted
into the model equations for the experiment and the result gets checked against the
simulated data o1 and o12. If the difference between model and data gets smaller,
the old parameter estimation θ0 is overwritten by the new θk and the linear fit is
repeated. This iteration procedure is terminated if the difference between model
and data has not decreased significantly in comparison to the result of the previous
iteration. The flow chart describing the iterative linear fitting process is shown in
Figure 4.15.

The iterations are necessary because the model is in fact non-linear and only
approximated by the first term of the Taylor expansion. The number of iterations
depends on how much the first approximation differs from the correct value. There
is no guarantee for convergence, but the expectation for convergence is greater when
the first term of the Taylor series (see Equation 4.61) is a good approximation in the
region over which θk is varied during the procedure. This implies that particularly
in highly non-linear problems like the one presented here, it is necessary to start
from a good first approximation [47].

Table 4.3: Information about unknown parameters as provided by the data generation team.

Parameter Nominal value Allowed region

Gdf 1 [0.5, 1.5]
Gsus 1 [0.5, 1.5]
ω2

1 −1.3× 10−6 [−3× 10−6, −1× 10−6]
ω2

2 −2× 10−6 [−3× 10−6, −1× 10−6]
δ 1× 10−4 [−1.75× 10−4, 1.75× 10−4]

4.6.4 The method of parameter estimation: Singular Value
Decomposition

There exists several methods for solving a set of linear equations. For the work
presented here the method of Singular Value Decomposition (SVD) has been chosen
since it is numerically very stable. SVD is described in detail in standard textbooks
dealing with Linear Algebra. For completeness the main concept of the method will
be given here. After that the application of the method to the model of MDC2 will
be demonstrated to give an insight to the accomplished parameter estimation. The
method of SVD is based on a theorem of Linear Algebra that will be given in the
following without proof. It states that every N ×M matrix A, with N > M can
be decomposed such that:

A = V · diag(wj) ·UT, (4.66)

with:
U : N ×M − matrix (column-orthogonal)
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Figure 4.15: Flow chart of the iterative linear fitting routine. The end condition of the
for-loop is that the change in the residual, r, is less than 10−5. The number
is arbitrary but has proven to indicate a good estimation of the parameter
values.
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V : N ×N − matrix (orthogonal)
wj : singular values.
The procedure of how this decomposition is established numerically can be found
for example in [28]. For solving a set of linear equations it is necessary to compute
the inverse of A. From the SVD of A in Equation 4.66 the inverse can be computed
as

A−1 = V · diag(1/wj) ·UT . (4.67)

Such that the above equations lead to the solution of a set of linear equations by
solving:

A~x = ~b→ ~x = A−1~b = V · diag(1/wj) ·UT ·~b. (4.68)

The task to be solved within this chapter of parameter estimation, however, repre-
sents an overdetermined system, where there exists more equations than variables.
Still SVD gives the optimal solution for x using Equation 4.68. The resulting pa-
rameter set ~x minimises the Equation

r2
lin = |A~x−~b|2. (4.69)

For an intuitive description of the application of this model to the system of
MDC2, the formalism shall be moved to matrix notation.
The Equation to be solved by the fitting routine is:

∆~θopt = argmin
∆~θ

(rlin(~x, ~y, ~θ)), (4.70)

where rlin was defined in Equation 4.63. Defining the Design matrix, A, the mea-
surement vector, ~b, and the parameter vector, ∆~θ

A = {Aik} , where Aik =
∂f

∂θk
(~θ0, ~xi) (N ×M)−Matrix,

~b =

 y1 − f1(~θ0)
...

yN − fN (~θ0)

 , ∆~θ =

 ∆θ1
...

∆θM

 (4.71)

rlin can be rewritten as:

rlin(~x, ~y, ∆~θ) = |A ·∆~θ −~b|2. (4.72)

And hence the optimal parameter vector reads

∆~θopt = argmin
∆~θ

(
|A ·∆~θ −~b|2

)
. (4.73)

Finally the above system of equations can be solved using the SVD of A:

∆~θopt = V · diag(1/wj) ·UT ·~b. (4.74)
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Additionally the errors of the above found solutions need to be computed. The
formalism is as follows:

f =
M∑
k

∆~θoptk ·Aik (4.75)

S = (ATA)−1 · σ (4.76)
std =

√
diag(S), (4.77)

where σ is known as the variance, S is named covariance and std is the standard
deviation. This error analysis is obligatory for every parameter estimation presented
in this thesis. The standard deviations are given for every estimated parameter in
the tables of Section 4.7. The covariance matrices are used in Section 4.8 to combine
the obtained results.

There are a variety of methods with which the the linear system of equations can
be solved. SVD has been chosen since it is numerically very robust and efficient.

4.6.5 Noise whitening

The interferometer data, which will be measured during the LISA Pathfinder mis-
sion, as well as the here investigated simulated data, contain a so-called ‘coloured’
noise. The formalism of the Linear-least squares method as it is presented here,
only applies for white noise. One possible method to estimate parameters from the
simulated (or measured) data is to whiten the noise in the data before applying
the algorithm (another one would be to weight the data). Figure 4.16 illustrates
the necessity of whitening the noise on the data: the residual function according
to Equation 4.59 from Section 4.6.3 is computed for a set of approximations of
~θ as described in the previous sections. The reason for the residual function not
having its minimum at the correct parameter value is the coloured noise on the
data. A fitting routine applied to this data with the parameter dependent noise
term would return these false parameter values for which the residual function is
minimised. The plot in Figure 4.16(a) shows the residual function of the data from
Experiment 1 as it was generated by the simulation. Figure 4.16(b) comprises the
same plots for the same experiment but with whitened noise. Those plots show that
the residual functions reach their minimum at exactly the true parameter, where
∆~θ = ~θ − ~θ0 = 0.

Since the two measurement channels o1 and o12 are strongly correlated, the noise
included in the two channels is correlated as well. As mentioned above, the LTPDA
function whiten2D is used for for whitening two correlated signals.

The data whose noise has been whitened will in the following be denoted by ~ow.
The so-called whitening filters applied to the data, ~o, will be represented by F . The
following equations describe how the formalism of the simulated data ~o given in
Equation 4.57 changes for ~ow.
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(b) Residual functions for the data with whitened noise. All minima lie at the correct value, which
is zero, the difference between the correct value and the estimation. Hence with whitened data it is
possible to obtain the correct result from a least squares fit.

Figure 4.16: Residual functions for all parameters in Experiment 1. All functions are nor-
malised at their minimum. The x-axes give the discrepancy between the esti-
mated parameter value and the true value in percent. The minimum does not
lie at the correct value ~θ− ~θ0 = 0 for all parameters if the noise in the data is
not white (a), but they do if the noise is whitened (b).
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[
ow1

ow12

]
=

[
F11 F12

F21 F22

] [
o1

o12

]
(4.78)

=
[
F11 F12

F21 F22

] [
T11 0
T12 T22

] [
oi1

oi2

]
(4.79)

=
[
F11T11 + F12T12 F12T22

F21T11 + F22T12 F22T22

] [
oi1

oi2

]
(4.80)

=
[
W11 W12

W21 W22

] [
oi1

oi2

]
(4.81)

The input to the function is an approximated spectrum of noise. The output are
the whitened data and the four whitening filters, F , that have been applied to the
data. These filters then need to be applied to the whole model in order to remove
artefacts introduced by applying the filters to the simulated data.

In order to estimate the unknown parameters with the linear fitting routine from
the whitened data ~ow, the formalism derived in Equation 4.65 needs to be adapted to
the relationship described above. For the linearised model Equation 4.65 becomes:

(ow1 + ow12)− [W11(~θ0) +W21(~θ0)]oi1 + [W12(~θ0) +W22(~θ0)]oi2

≈
∑

k

[(
∂W11

∂θk

∣∣∣∣
θk0

+
∂W21

∂θk

∣∣∣∣
θk0

)
oi1 +

(
∂W12

∂θk

∣∣∣∣
θk0

∂W22

∂θk

∣∣∣∣
θk0

)
oi2

]
∆θk. (4.82)

The above equation illustrates the fact that the linear model gets more complex for
the case of whitened data.

4.7 Analysis of simulated signals

In this section results from the data analysis for the three experiments are pre-
sented. As mentioned previously, investigations are first made on data with white
noise, before attempting to whiten the noise in the simulated data with the method
described above. Investigations comprise the computation of the linearised model
as well as the original, non-linear model function derived in Section 4.6.3 around
the correct parameter value. The linear residual function, rlin, and the non-linear
function r are plotted for each experiment and the original simulated data which
includes coloured noise. The information gained from both functions are useful dur-
ing the process of the parameter estimation. In the following a description of the
information gained from each function is given.

Non-linear residual function: By investigating the plot of these functions it can
be assured that it is possible to extract the correct parameter value from any
fitting routine. If the noise in the data is perfectly whitened, the minimum of
the function lies at the correct parameter value. Else common fitting routines
will return a false value, namely the one of the minimum found.

Linearised residual function: This function depicts how well the non-linear model
function is approximated by the first term of its Taylor expansion. These
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plots are particularly useful for approximating the maximal amount of the
difference between the first estimation and the correct value for the linear fit
that still converges to an unbiased result.

The results of the parameter estimations are then presented only for the original
simulated data, whose noise has been whitened. The parameter values obtained are
given for each experiment separately and a combination of those results is given in
the last part of this section.

As it can be seen from the following descriptions of each experiment, it makes
sense to start with the investigation of Experiment 1, followed by Experiment 3,
which does not add information to the first experiment but can be regarded as
redundant. The discussion will close with Experiment 2, being a modification of
Experiment 3.

It shall be noted that all data analysed in the following section have been zero
padded. This means that before the first stimulus signal and after the last one, zeros
were added for about 200 seconds of data points. This procedure helps to suppress
artefacts when computing the FFT.

4.7.1 Experiment 1

A signal, oi1, is injected into the drag-free loop and a signal, oi2, is injected into the
electrostatic suspension loop simultaneously. Thus, a longitudinal jitter is applied
to the micro-Newton thruster and to the second test mass via the servo. Only
in this experiment is a signal injected into the electro-static suspension loop. A
schematic of the setup has already been shown in Figure 4.12. The model for the
simulated interferometer data resulting from this experiment can be derived from
Equation 4.57. As mentioned above, this experiment represents a special case where
two signals are injected at the same time. Hence, the output, o12, is a combination
of the two input signals, oi1 and oi2. The two input signals are described by the
parameters given in Table 4.4.

Table 4.4: Input signals for Experiment 1

Amplitude [µm] Frequency[Hz] Duration [s]

1 0.01 1000
0.6 0.02 1000
0.8 0.06 1000
1 0.1 1000

Amplitude [µm] Frequency[Hz] Duration [s]

1 2× 10−3 2500
0.5 5× 10−3 1000
1 1× 10−2 1000

As described earlier in this section, the frequencies of the input signal were chosen
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to stimulate the system at the frequencies of interest when measuring the transfer
functions. These frequencies were depicted as well in Figure 4.14.

Like already mentioned, the analysis is shown first on a data set with white noise
added instead of the more realistic coloured noise term, ~n, from Equation 4.55.
Figure 4.17 shows this simulated interferometer data for Experiment 1 together
with the injected signals, ~oi, defined in Table 4.4.
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(b) o12 together with the input signal oi2

Figure 4.17: Input and output signals of the two interferometer channels for Experiment 1.
The data includes different modulation frequencies and an underlying coloured
noise.

As explained in Section 4.6.3 the analysis of the data comprises not only the linear
parameter estimation but also the investigation of the non-linear residual function
which should have a minimum at the correct parameter value to be found by the
fitting routine applied. Only if the minimum lies at the correct parameter value
is it possible to estimate it precisely. The residual functions will be plotted for all
parameters in ~θ for data with white noise (Figure 4.18(a)). Furthermore the linear
function defined in Equation 4.63 is plotted for a set of estimations of parameters
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~θ0 in Figure 4.18(b). These plots depict in which region of ∆~θ the non-linear model
can be approximated by the first term of the Taylor expansion.

For Experiment 1 the expression for the data sets, o1 and o12, can be read from
Equation 4.56 and the linearisation of the model representing the function to which
the data is fitted, is given by Equation 4.65. Figure 4.18(a) shows that the minima
of the residual functions of each parameter lie at the correct value. This means
that it is possible to find these values by an appropriate fitting routine, if the noise
is sufficiently white. Furthermore, investigating Figure 4.18(b), the linear residual
functions suggest that the model function defined by Equation 4.65 is linear in the
parameter, δ, for a large range of at least 1.5 times the correct parameter value.
The constant function in the plot showing the dependency of the linear residual
function on δ, illustrates that the linearised model is applicable for this parameter
range. The same is true for the rest of the parameter set, but the region for the
discrepancy of the respective parameter is considerably smaller.

In Table 4.5 the results of the linear parameter estimation done in the time-
domain of Experiment 1 with whitened noise are listed. The first approximations
were taken from Table 4.3 which was provided together with the simulated data
from the data generation team. The presented results were obtained after about ten
iterations and are completely reproducible. The number of iterations necessary for
the fit to converge depends on how far the starting value is away from the correct
one. The larger the difference between the starting value and the correct result, the
more iterations are necessary.

The results from the linear fitting routine agree very well with the correct values
that were used when the data was generated. The discrepancy between the correct
value and the fit result are merely of the order of a few percent. The standard
deviations, derived from the covariance matrix, which was defined in Equation
4.77 in Section 4.6.4 enclose these percentages very well. Only for δ the standard
deviation is slightly smaller than the error computed for the result.

It should be emphasised here that the starting values for some parameters deviate
by about 200 % from the ones to be found by the fitting routine (cp Table 4.5)
and nevertheless the linear fit converges to almost the exact values for all five
parameters. The chosen starting values are not at all presenting the limits of the
range where the routine converges to the correct result. Finding the exact limits
would be a very complex procedure, since the merit function depends differently on
each of the five parameters. Thus, the cost-value ratio of finding the exact limits is
rather low and instead a trial and error method was applied. Thus the presented
starting values are not necessarily the maximum allowable.

4.7.2 Experiment 3

The setup for Experiment 3 differs from the previous one only by the absence
of the second input signal. Only a signal, oi1, is injected into the drag-free loop,
producing a longitudinal jitter on the micro-Newton thruster. From this experiment
a good measurement of the differential stiffness, ∆ω, is expected. In principle this
experiment is redundant with respect to the first one, but the results obtained can
be combined and hence improve accuracy. The combination of results is done in
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(a) Non-linear residual function
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Figure 4.18: Experiment 1: The non-linear residual functions in (a) are minimal for the
true parameter value and the linear residual functions in (b) depicts the region
of parameter values for which the linearisation is a good approximation. All
functions are normalised at their minimum. The x-axes give the discrepancy
between the estimated parameter value and the true value in percent.
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Table 4.5: Linear fitting results for Experiment 1 with whitened noise.

Parameter correct value 1st estimation fit result standard error

Gdf 0.8 1.5 0.80014 4× 10−5

Gsus 1.15 0.5 1.1499991 6× 10−7

ω2
1 −1.1× 10−6 −3× 10−6 −1.098× 10−6 1× 10−9

ω2
2 −2.2× 10−6 −1× 10−6 −2.2002× 10−6 4× 10−10

δ 1.35× 10−4 −1.75× 10−4 1.354× 10−4 1× 10−7

Section 4.8.

IFO

1
s2 + ω2

1

1
s2 + ω2

2

gn1

gn2

GsusHsus

GdfHdf

δ
∆ω2

on1

on2

oi1

oi2

o12

o1

+ +

+

+

+

++

Figure 4.19: Schematic of Experiment 3, which is identical to the one of Experiment 1
shown in Figure 4.12 but without the second input signal oi2. The two loops
are again coupled via ∆ω and δ

.

The model for the interferometer output data has been derived from Equation
4.57 as usual. The input signal designed for this experiment is described by the
parameters given in Table 4.6.

The data with white noise is shown in Figure 4.20. The plot on the left hand side
also includes the input signal oi1.
For Experiment 3 the linearised model functions are derived from Equation 4.65,
by setting oi2 to zero.

The the non-linear residuals for this experiment are shown in Figure 4.21(a) and
the linear residuals in Figure 4.21(b). The relations between the different residuals
of this experiment are not the same as in Experiment 1 but also no significant
difference is visible. This suggests that the choice of starting values that resulted
in good parameter estimates for Experiment 1 should as well be appropriate for
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Table 4.6: Input signals for Experiment 3

Amplitude [µm] Frequency [Hz] Duration [s]

1 0.002 2500
1 0.006 1700
1 0.01 1000

0.5 0.03 330
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Figure 4.20: Original data with underlying coloured noise measured for Experiment 3 when
injecting the signal shown in (a).
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Figure 4.21: Residual functions for Experiment 3 plotted for all parameters separately. The
non-linear residual functions in (a) are minimal for the true parameter value
and the linear residual functions in (b) depict the region of parameter values for
which the linearisation is a good approximation. All functions are normalised
at their minimum. The x-axes give the discrepancy between the estimated
parameter value and the true value in percent.
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Experiment 3. As such the first estimations are chosen to be the same as in Exper-
iment 1. And as can be seen from the results for the whitened data presented in
Table 4.7 the method converged to the correct values for all parameters.

Returning to the statement made above, that this experiment is expected to
be very suitable for measuring ∆ω = ω2

2 − ω2
1: the results for the two stiffness

parameters are indeed not exact (but they lie within their computed standard
deviations), whereas the result for their difference is exact. This is in agreement
with other results not shown here and is expected from analysis presented in [48].

All deviations of the obtained results lie within the region of the computed stan-
dard deviation.

Table 4.7: Linear fitting results for Experiment 3 with whitened noise.

Parameter correct value 1st estimation fit result standard error

Gdf 0.8 1.5 0.8001 3× 10−4

Gsus 1.15 0.5 1.1502 5× 10−4

ω2
1 −1.1× 10−6 −3× 10−6 −1.3× 10−6 2× 10−7

ω2
2 −2.2× 10−6 −1× 10−6 −2.4× 10−6 2× 10−7

δ 1.35× 10−4 −1.75× 10−4 1.348× 10−4 2× 10−7

4.7.3 Experiment 2

A signal, oi1, is injected into the drag-free loop, where the difference of the two
stiffness terms ∆ω = ω2

2 − ω2
1 is set to zero. It follows that the two control loops

are coupled only by the interferometer cross-talk, δ, (see Figure 4.22). Thus, it is
expected that this experiment is very suitable for measuring δ.

This experiment, where the stiffness of both test masses is equal, are of special
importance for LTP. Without the interferometer cross-talk, δ, the response of the
second interferometer channel, o12, would be suppressed by matching the stiffness.
In reality matching the stiffness will be realised by applying a signal to the elec-
trostatic suspension of TM 1, which increases ω1 and can be adjusted such that
ω1 = ω2 = ωmatch corresponding to ∆ω = 0. For the simulation discussed here,
however, such a signal is not considered. Instead ∆ω is simply set to zero in the
data generation algorithms. Figure 4.22 illustrates the signal flow for Experiment 2.

Deriving the model for the interferometer data resulting from this experiment
and inserting ωmatch gives, according to Equation 4.57, the model for the two inter-
ferometer channels. Deriving the Equations is again straightforward and shall not
be repeated here.

The frequencies are chosen to probe the transfer functions at its most character-
istic attributes (see Figure 4.14). Figure 4.23 shows the data to be analysed. The
plots show o1 and o12 with the noise term ~n being the original data with underlying
coloured noise.

Also for Experiment 2 the target and model function for the linear fitting routine
can be read from Equation 4.65. In this case only one signal, oi1, is injected into
the system such that oi2 = 0. Considering furthermore ωmatch = ω1 = ω2, Equation
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Figure 4.22: Schematic of Experiment 2. A signal, oi1, is injected at the drag-free controller,
into the drag-free loop. ∆ω is set to zero such that the two loops are only
coupled via the interferometer cross coupling δ.

Table 4.8: Input signals for Experiment 2

Amplitude [µm] Frequency [Hz] Duration [s]

1 0.002 2500
1 0.01 1500
1 0.03 1700

0.5 0.1 330

4.65, yields the expression that enters the linear fit. Giving these Equations would
only be a repetition, but the derivatives involved can be found in Figure 4.2.

For Experiment 2 several different sets of starting values have been tried out as
input to the linear fitting routine. Not all results will be given here in detail but a
short summary of the investigations made shall be listed:

� The fit does not converge to any sensible answer if the starting guesses are
taken to be the same as for Experiment 1.

� The linear fit converges to the true answer if the first estimations are not
more than a few percent away.

� The fit converges to the correct results, if ωmatch is kept fixed and excluded
from the process of fitting. With this method the same starting values as in
the other two experiments can be chosen. The results from this method are
the ones chosen to be presented in this thesis. They are given in Table 4.9.

� An obvious experiment to be performed is to simply ignore the particularity
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Figure 4.23: Original data with underlying coloured noise for Experiment 2
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Figure 4.24: Residual functions for Experiment 2 plotted for all parameters separately. The
non-linear residual functions in (a) are minimal for the true parameter value
and the linear residual functions in (b) depict the region of parameter values for
which the linearisation is a good approximation. All functions are normalised
at their minimum. The x-axes give the discrepancy between the estimated
parameter value and the true value in percent.
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of this experiment and naively perform the same fit as in Experiment 3:
fitting the two stiffness terms, ω1 and ω2 separately. Indeed in this case the
fit converges to the correct parameter values for the controller gains, Gdf ,
Gsus, and the IFO cross-coupling, δ with same starting values as for the other
experiments. For the two stiffness terms the resulting estimation will indeed
differ more than 100% from the correct value, but the difference between
them, ∆ω, which was set zero is estimated correctly. The values will not be
given here explicitly but this result is in agreement with observations made
in Experiment 3 (see Section 4.7.2) and with other fitting routines (see for
example [48]).

In investigating Figure 4.24(b), no crucial differences from the residual functions
from other experiments can be found. However, the new parameter ωmatch depicts
the most obvious difference and its linear residual function also differs from the
ones of the other two experiments for ω1 and ω2. This is the reason for probing the
method leading to the results given in Table 4.9:

Since the parameter that makes the experiment differ from the others is ωmatch,
it is the one being suspected to spoil the approximation done by the linearisation
and as such is kept fixed. Not fitting ωmatch, of course means that its value can not
be measured, if it is not included in any other experiment. After all for the results
presented here, the value of ωmatch does not need to be known exactly. It has been
fixed to a value of more than 100 % away from the correct one. In Table 4.9 the
fixed value is stated as the first estimation and the fit result of this parameter does
of course not exist.

Table 4.9: Linear fitting results for Experiment 2 with whitened noise.

Parameter correct value 1st estimation fit result standard error

Gdf 0.8 1.5 0.80005 6× 10−5

Gsus 1.15 0.5 1.146 3× 10−3

ω2
match −2.4× 10−6 −1× 10−6 fixed X
δ 1.35× 10−4 −1.75× 10−4 1.3498× 10−4 7× 10−8

4.8 Summary and combination of results by means of the
covariance matrices

To conclude this section about the linear parameter estimation for the second mock
data challenge, the experiments carried out are listed together with the parameters
measured by it in Table 4.10. This Table provides a better overview when summaris-
ing the results obtained. Gdf , Gsus and δ are parameters of the transfer functions
of all experiments and it was possible to estimate them with every experiment.
The correct value for ωmatch however could not be estimated. The only Experiment
including this parameter is Experiment 2 and there the estimation method did not
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converge when including it. Instead the value for ωmatch has been fixed to a first
guess (see Section 4.7 for details) to measure the remaining parameter values.

Table 4.10: Overview of parameters measured in each experiment. ‘X’ indicates that the
parameter is measured by the allocated experiment and ‘-’ indicates that it
is not measured by an experiment. Gdf , Gsus and δ can be measured by all
experiments. ωmatch appears only in Experiment 2 and was not included in the
parameter estimation routine. For the reasons see text.

Experiment 1 Experiment 2 Experiment 3

Gdf X X X
Gsus X X X
ω1 X - X
ω2 X - X
ωmatch - - -
δ X X X

Finally it makes sense to combine the results of the three experiments performed,
since several parameters have been measured multiple times. This is done by com-
bining the obtained covariance matrices, S. The definition of the covariance matrix
is given by Equation 4.77 in Section 4.6.3). The combination is done as follows:

S−1
c =

N∑
i=1

S−1
i . (4.83)

From the combined covariance matrix, Sc, a new mean value for the parameters θ
is obtained:

~θc = Sc

N∑
i=1

S−1
i θi. (4.84)

Since not every parameter is measured in every experiment, the covariance ma-
trices S of the experiments do not all have the same size. While S1 and S3 are of
size 5 × 5 (all 5 parameters are measured), S2 is of size 3 × 3 (ω1 and ω3 are not
measured). For applying Equation 4.84, however, all matrices S need to be of the
same size. For this S2 is filled in the following way: the variances of the param-
eter values, that are not measured are set to infinity and their covariances with
the remaining parameter are set to zero. Hence, the 5 × 5 covariance matrix for
Experiment 2 reads:

std2
Gdf

X 0 0 X

X std2
Gsus

0 0 X
X X inf 0 X
X X 0 inf X
X X 0 0 std2

δ ,

(4.85)

where stdx is the standard deviation of the corresponding parameter x. With this
recipe for the covariance matrix of Experiment 2, Equation 4.84 can be applied to
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combine the results of all parameter values measured in all three experiments. The
final result is given in Table 4.11.

Table 4.11: Combined results from all experiments. Parameter value and standard deviation

Parameter correct value fit result standard error

Gdf 0.8 0.80006 3× 10−5

Gsus 1.15 1.1499991 6× 10−7

ω2
1 −1.1× 10−6 −1.1005× 10−6 6× 10−10

ω2
2 −2.2× 10−6 −2.2002× 10−6 5× 10−10

δ 1.35× 10−4 1.3499× 10−4 6× 10−8

It has been shown in Section 4.6.5 by Figure 4.16 that ignoring the coloured
and correlated noise terms in the simulated interferometer data could be fatal for
measuring parameters. Whitening the noise in the data was chosen as appropriate
method to deal with this issue within the scope of this thesis. Whitening the noise
in the two correlated data channels with the newly developed tool whiten2D and
then including the applied filters correctly in the model turned out to be rather
complex. This is why the analysis has been done first on data with white noise to
confirm that the applied model and all derivatives are correct.

In the second step the linear data analysis including all parameter estimations
are done on the more realistic data simulated by the data generation team, where
coloured and parameter dependent noise terms were included. The application of the
linear parameter estimation required that the noise was whitened, which was done
using advanced methods implemented in LTPDA. After the model has been adapted
accordingly as described in Section 4.6.5, parameters were estimated successfully
by the method of Singular Value Decomposition (SVD). The results obtained are
finally combined in Table 4.11. From these results we conclude that the model
underlying the second Mock Data Challenge can be very well approximated by a
linearisation if appropriate experiments are applied.

With Experiment 1, where two signals were injected into the two control loops
independently, all parameter values are estimated accurately by a linear fitting rou-
tine. The results exceed the expectations in the sense that the first estimations are
allowed to differ significantly from the true values. The same holds for Experiment 3
where the same starting values are used as used in Experiment 1. The linearisa-
tion of the transfer functions resulting from this experiment is as well a sufficient
approximation.

For Experiment 2 the linear fit converges again from the same starting values as
in the other experiments, if the new parameter ω1 = ω2 = ωmatch is excluded from
the fitting routine. Although it has been shown that this parameter does not need
to be known very well for the fit of the rest of the parameter set to converge, this
means that ωmatch cannot be measured by the linear approach within this setup.

The investigations on the linear analysis of the rather naively developed three
experiments for LTP has turned out to be very enlightening. The complex non-
linear model for the dynamics of LTP can be approximated very well by its Taylor
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expansion if appropriate stimulus signals are applied. The comprehensive approach
of linear parameter estimation constitutes its power. In the region, where the linear
approximation holds, the computation of the covariance matrices and with it, the
individual standard deviations are straightforward and well understood. Hence, we
have shown here that it makes sense to choose a linear fitting routine over a complex,
non-intuitive, non-linear fitting routine whenever a good enough first guess of the
parameter values are at hand.

4.9 Conclusion

As pointed out in the introduction to this chapter, the development of MDCs, and
analysis tools in general, is closely connected to the design of the experiments.

During the evolution of this thesis the two MDCs presented in this chapter have
been carried out successfully. During the process of MDC1 one of the key com-
ponents of the data analysis for LISA Pathfinder, the conversion of interferome-
ter readout to test mass acceleration has been implemented (for the ideal, one-
dimensional model). The key point of MDC2 was to investigated a variety of pa-
rameter estimation methods and in this thesis the linear approach was presented.
As a result the work on MDC2 drove the development and investigation of all fitting
routines under investigation.

The complexity of the simulated experiments is increased stepwise, such that
the MDCs will become increasingly realistic and all mission experiments can be
tested using realistic MDC models. These MDCs have been proven to be a good
instrument for driving the development of the analysis tools as well as forcing a
good understanding of the experiment on all scientists involved. With every MDC,
the model used shall become more advanced and the analysis outputs will be used
as reference data during the mission.



5 Injecting non-Gaussian noise source
into LISA simulations

The injection of non-Gaussian noise into LISACode is a first attempt at injecting
a real noise source observed in LISA Pathfinder into a LISA Data simulator. This
project is meant to serve as a catalyst for a more intense collaboration between
the data analysis efforts done in LISA Pathfinder and those of LISA. The focus of
the two is very different since LISA Pathfinder will be insensitive to gravitational
wave signals. From the technical point of view, however, it is important to transfer
the experience made in LISA Pathfinder to LISA. This includes the sideband in-
duced noise (SIN) presented in this thesis (see also Section 3.4), which has been be
observed in the LISA Pathfinder interferometer readout and which has been well
studied in the course of LISA Pathfinder data analysis. SIN serves as model since
expected noise from ghost beams and stray light may have similar properties.

In this chapter the LISA data generator LISACode will be introduced together
with the main components which it aims to simulate. The noise sources that are
already part of the simulations performed will be presented. It follows a discussion
on the noise source to be injected into the data generator. After this the procedure
of the computation of the LISA sensitivity curve will be explained and finally the
impact of the injected noise source on the LISA sensitivity curve is presented.

5.1 The LISA data generator: LISACode

The LISA data generator, ‘LISACode’, is presented in [49]. The software has been
written by Antoine Petiteau from APC, Paris in the programming language C++
and an executable file produced. This file can be executed with an input xml-file
providing the desired parameters of the simulation to be performed. The output
of LISACode is a time series of the simulated phasemeter data. The schematic in
Figure 5.1 shows the individual components of the software. The box encloses the
core part of the software. The gravitational waves calculations and the application
of time delay interferometry (TDI) are part of the code but are not part of LISA
and as such are indicated as external boxes in the schematic.

The individual items are discussed in [49]. The most important items will be
presented in more detail in the following.

LISA Orbits In LISACode the computation of the orbits of the three spacecraft
are based on the formulae given in [50]. The orbits include the rotation of the
LISA triangle as well as the flexing of the distance between the spacecraft [49]. The
light propagation time can be computed by simply using the distance between the
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Figure 5.1: Schematic of LISACode. Shown are the individual components included in the
data generation process. The core part of the software is indicated by the enclos-
ing box. Two types of output time-series are created: one without applying TDI
and one on which TDI has been applied to. In this thesis only the time-series
with TDI are investigated. Source: [49].

spacecraft but can be arbitrarily complex and more precise by taking into account
relativistic effects [51].

The phasemeter LISACode simulates the phasemeter output, which is a combi-
nation of the measured gravitational wave strain and the effect of the various noises.
As mentioned in Section 1.2, each satellite consists of two optical benches and two
phasemeters. One phasemeter measures the phase between the incident laser beam
from another LISA spacecraft and the local laser beam (far interferometry), and the
other measures the relative phase of the two local laser beams on the same satellite
(local interferometry). A schematic of one LISA spacecraft is shown in Figure 1.4
in Section 1.2. In LISACode the phasemeter signals are given in the unit of relative
frequency fluctuation (δf/f).

Ultra stable oscillator (USO) This noise source has an impact on the phasemeter
output as well as on the application of TDI. As reference clock the USO will provide
the sampling clock and hence influence the phasemeter output. Moreover, the USO
will time-stamp the time series and hence any deviation will introduce an error into
the application of TDI.

Time delay interferometry (TDI) It has been mentioned before that the LISA
interferometry is divided in a local interferometry, measuring the relative phase
between the two optical benches on one spacecraft, and the far interferometry mea-
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suring the relative phase between two Spacecraft. This implies the application of
two independent lasers, which introduces a noise of the order of 10−13 (in δf/f
units). The gravitational wave signal is near 10−21 which implies that the noise
has to be suppressed by 8 orders of magnitude. This is achieved by the method of
TDI. The main idea of this method is performing linear combinations of phaseme-
ter outputs at different times and thereby cancelling the laser noise. The subject of
TDI is not covered in detail in this thesis but it shall be stated here that it is fully
implemented in LISACode and an extensive description is given in [7, 52, 53].

5.2 Noise sources

Noise can be divided into two groups: external noise sources and internal noise
sources. External noises are transmitted from one satellite to the another therefore
can be suppressed to a certain level by applying TDI [49]. Internal noises have a
local impact on the phasemeter output and cannot be suppressed by TDI. Laser
noises for example are external noises. A list of noise sources is given in Table 5.1.
The measurement noises included in LISACode are taken from a list given in the
PrePhaseAReport [6]. A set of noise sources including, for example, noise from the
Ultra Stable Oscillator (USO) and the laser beam pointing instability, is summed
up in optical path noise in LISACode (see Table 5.1).

Table 5.1: Noise sources included in LISACode. The PSDs of the noise sources given in the
second column have been taken from Table 4.1 of [6]. The third column gives
the respective values used in LISACode in the same unit as in the first column.
For the 2nd to the 6th row the noises were added quadratically and averaged to
be combined for the use in LISACode. Source: [49].

Type of noise source Value of error LISACode
Measurement noise

Detector shot noise 11× 10−12 [m/
√

Hz] 11
USO 5× 10−12 [m/

√
Hz]

15.7
Laser beam pointing

stability
10× 10−12 [m/

√
Hz]

Laser phase
measurement and offset

lock
5× 10−12 [m/

√
Hz]

Scattered light effects 5× 10−12 [m/
√

Hz]
Other substantial

effects
8.5× 10−12 [m/

√
Hz]

Residual laser phase
noise

5× 10−12 [m/
√

Hz] not included

Acceleration noise
Test mass noise 3× 10−15 [m/(s2

√
Hz)] 3

The table shows the default errors included in the simulation but they can be
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changed by the user. The software takes user defined xml-files as input files. In these
files the amplitude of the individual internal noise sources can be given for each of
the six phasemeters individually. For the curves presented here the default values
have been chosen. The laser noise, however is not included in LISACode, since it
represents the residual noise term after the application of TDI and this is treated
explicitly in LISACode. The test mass noise is the only acceleration noise in the
list. The LISA Pathfinder mission is expected to provide a measurement on this.

5.3 Sideband induced noise (SIN)

The sideband induced noise was observed in the LISA Pathfinder experiment. The
noise source has been investigated intensively during the past years. Analysis tools
for estimating the noise contribution in LTP have been developed and implemented
within the software tool for the data analysis of the mission, LTPDA. Once the noise
contribution is estimated it is possible to subtract it from the measurement data.
All of this has already been discussed in Section 3.4, where the sideband induced
noise was introduced.

This section deals with the same noise source in a more general way. Since unlike
in LISA Pathfinder for LISA no experimental investigations on this type of noise
source exist. Also the model with which the noise is described and which the noise
generation is based on is expressed in a more general, to start with. For the Engi-
neering Model of the LTP interferometer the model for the sideband induced noise
was given in Equation 3.30. For the injection into LISACode it is simplified to

ε = A · cos(φ(t)), (5.1)

where A is the amplitude of the noise source and corresponds to the combined
amplitude of the optical sidebands and φ is the phase error measured by the inter-
ferometer. φ(t) represents a random process driven by the pathlength changes in
optical fibres or in parasitic interferometers.

Even though the model is simplified compared to Equation 3.30, the important
periodic non-linearity is kept by the cosine term. As discussed in Section 3.4, in the
LTP interferometer the origin of the optical sidebands causing this noise contribu-
tion are electrical sidebands originating from the acousto optic modulators (AOMs)
in the Laser modulator. In LISA, however, no AOMs are used but the same effect
has been observed in the presents of stray light, which as well can cause optical
sidebands [30].

The spectrum of φ(t) is not easy to predict. A spectrum of fibre pathlength
fluctuations under laboratory conditions serves as template for the generation of
noise shown in this section. The noise in orbit is expected to be lower but it is
not known by how much. Following the template, the amplitude spectral density
(ASD) of φ(t) is taken to follow a 1/f model. Again this model might not be the
one measured in LISA but since not much is known about the behaviour of the
measurement phase due to this error source in LISA, this model has been chosen to
begin with. Also a model described by 1/f is true for many common noise sources.
The parameters that have been changed in the scope of the work presented here
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are the amplitude, A, and the gain of the transfer function describing φ(t), while
the slope of the transfer function is always kept to 1/f . Since the convention in
LISACode is to use the unit of fractional frequency fluctuations, ν/∆ν, and so far
the noise has been generated in radians, the following transformation formula needs
to be applied to the noise term, ε:

hε = ε · λ

4π2L
, (5.2)

where the λ is the laser wavelength, which reads 1.064 × 10−6 m and L is the
interferometer armlength and is 5× 109 m.

5.4 Generation of sideband induced noise

The generation of the noise is based on the model given in Equation 5.2. The
noise generation is done in LTPDA (see Chapter 2). In the following the individual
steps of the procedure are explained and for each step the intermediate results
are plotted. Because of the non-linearity of the cosine-function the best way for
simulating this noise is in the time-domain. The complete procedure of the noise
generation is carried out in the time-domain but the intermediate results are plotted
as respective amplitude spectral densities.

In principle the procedure of noise generation comprises generating a random
time-series with a prescribed spectrum of 1/f and inserting it into the formula
given in 5.1. In detail the procedure of the noise generation using LTPDA is as
follows:

1. Generation of time series with the prescribed 1/f spectrum using Franklin’s
noise generator (see Section 2.5). The time-series represents φ(t) in Equation
5.1.

2. Computation of the noise term, ε according to Equation 5.1.

3. Computation of the time derivative of ε to obtain a frequency noise, which is
the convention for noises in LISACode.

4. Transformation from radians to the unit of ν/∆ν, the convention used in
LISACode. The equation used is given in 5.2.

As mentioned earlier, the parameters to be varied for the noise injection into
LISACode are the amplitude, A, and the gain of the pole/zero model representing
the prescribed spectrum of the generated time-series. The pole/zero model used as
template for φ(t) consists of a single pole at f = 1 ×10−4 Hz. The gains, g, are set
to 500, 100 and 10 respectively. Figure 5.2 shows the three curves with the different
gains. Shown are the amplitude spectral densities of the generated time-series φ(t)
together with the analytic response function of the respective pole/zero model.

In the second step, the computation of ε, the cosine of φ(t) is computed and it
is multiplied with the amplitude, A. Figure 5.3 shows the result for the three noise
curves (ASD) from Figure 5.2. For the curves shown A has been set to 1 milliradian.
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Figure 5.2: Amplitude spectral densities of phase noises φ(t). The underlying time-series
have been generated using Franklin’s method (2.5). For comparison the re-
sponses of the pole/zero models serving as template are also shown. The
pole/zero model has a single pole at f = 1 ×10−4 Hz. The gains are set to
500, 100 and 10 respectively.

The plot illustrates the periodic cosine behaviour of ε: The ASD of the function
with the highest gain, g = 500, has a lower amplitude at low frequencies than the
ASD of the function with g = 100. But since also the corner frequency shifts to
higher frequencies with increasing gain, the overall amplitude stays the highest for
the function with the highest gain.

The next step is the computation of the time derivative of the noise term, ε. This
is done numerically using the function deriv in LTPDA. This is the preparation for
matching the unit of the generated noise with the convention used in LISACode.
In fact the input into LISACode is simply this time derivative but internally it
is then transformed into the unit of fractional frequency fluctuations, ν/∆ν. For
easier comparison with the sensitivity curve plotted in Figure 5.7 later in Section
5.5.2 we plot here the final result used in LISACode after the transformation to
ν/∆ν. In Figure 5.4(a) the three ASDs of the final results for the generated noise
terms with A = 1 mrad are plotted. Figure 5.4(b) shows the result for the same
procedure with A = 5 mrad.

The plots in Figure 5.4 show that the ASD of the noise term increases with
increasing amplitude, A. They also show that with increasing amplitude the be-
haviour of the curves does not change significantly whereas from a high enough
gain of the transfer function the behaviour of the curve changes such that the
periodic behaviour of the noise term can be sensed.

5.5 The LISA sensitivity curve

The LISA sensitivity curve was already shown in the introduction to this thesis in
Section 1.3. In this section we will have a closer look at this curve. The sensitivity
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Figure 5.3: Error term of sideband induced noise. ε = cos (φ(t)), where φ(t) is plotted in
Figure 5.2.

curve provides a measure for LISA’s sensitivity as a function of frequency. It com-
bines influences like noises, duration of the measurement and the signal to noise
ratio (SNR) with the response of LISA to gravitational noise sources. This response
is traditionally computed for an isotropic distribution of sources with random po-
larisation. The equation that leads to this curve is the following

h = SNR

√
PSDnoise

T
× 1

RESPrms
GW

, (5.3)

where SNR is the signal-to-noise-ratio, t is the time over which the measurement
is averaged. RESP rms

GW represents the gravitational wave response of an isotropic
distribution of sources with random polarisation. The traditional values for the
parameters in the equation above are:

SNR = 5,

T = 1 year.

These values are also the ones chosen for the computation of the sensitivity curves
in this thesis. The variable PSDnoise used in the computation of the sensitivity
curve shown in Figure 5.5 includes the power spectrum for the noises listed in
Table 5.1. The values for the noise sources are the default values given in Table 5.1.
As indicated in the table, noise contributions from line 3 to 8 were combined to
a single term, called the optical path noises, by summing them quadratically. For
this, there frequency dependence was taken to be the same. In the plot in Figure
5.5 the shot noise is as well included in the combination, such that we are left with
three curves. The test mass noise, the optical path noise including shot noise and
the resulting sensitivity curve. The sensitivity curve will in the following be plotted
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(a) Noise term with amplitude of A = 1 mrad.
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(b) Noise term with amplitude of A = 5 mrad.

Figure 5.4: Error term of sideband induced noise for two different values of the amplitude,
A. hε in the units of fractional frequency fluctuations, ν/∆ν. The ASD of the
error term ε corresponding to the amplitude of 1 mrad (a), was plotted in
rad/
√

Hz in Figure 5.3. For every amplitude three different gains of transfer
functions have been used.
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as reference curve for the visualisation of the impact of the newly injected sideband
induced noise (SIN) on the sensitivity of LISA.
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Figure 5.5: LISA noise budget. Plotted are test mass noise, and shot noise including optical
path noise.

5.5.1 Data generation

As described above, the executable file of LISACode is called together with an input
xml-file by which the desired parameter values used are set. Traditionally this is
done separate for the input noises and the gravitational wave response of LISA
introduced above.

For the data generation two input xml-files are generated: one for the definition
of the noise sources to be injected and one for setting the parameters used in the
computation of the response to gravitational waves. For each input file LISACode
is called separately and hence two individual time-series are generated accordingly.

For the computation of the sensitivity curve these two data sets need to be
combined according to Equation 5.3. This is done using LTPDA and the steps are
as follows:

1. The output time-series of LISACode according to the noise sources set and
LISAs response to gravitational wave sources are stored in Analysis Objects
(AO).

2. The amplitude spectral densities of the time-series are computed using lpsd
([24]).

3. The sensitivity, h, is calculated according to Equation 5.3.

For the generation of the sensitivity curve shown in Figure 5.5 the input xml-
file for the noises contains the default values as given in Table 5.1. The input
file for the computation of LISAs gravitational wave response also contained the
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traditional settings. As such the response was computed based on a finite set of
coherent gravitational wave sources with random polarisation.

For the case of the sideband induced noise time-series the behaviour of LISACode
with inputs needed to be changed slightly. The input noise file usually consists of
the frequency dependency of the individual noise sources. But the sideband induced
noise was simulated in the time-domain in order to keep the periodic non-linear
behaviour of the error term.

For this project the scientists programming LISACode have changed it such that
it is now possible to read in time-series data as noise sources. The command for
reading the generated data sets is included in the xml-file for injecting the noise
sources. Since the noise is set separately for each of the six phasemeters in LISA,
six data streams are read into LISACode. This is the first time that a noise source
has been injected into LISACode in the form of a time domain.

The complete process from the generation of noise to the resulting sensitivity
curve is shown schematically in Figure 5.6. The resulting data of the described
procedure are presented in the following section.

5.5.2 The impact of the sideband induced noise on the LISA sensitivity
curve

Here the final sensitivity curves with the newly injected sideband induced noise
are presented. The plots in Figure 5.7 show a sensitivity curve for each noise term
generated following the above described process and injected into LISACode. The
reference curve (black) is the same as in Figure 5.5 it was generated using the
default noise terms without any additional noise.

Figure 5.7(a) demonstrates the impact on the sensitivity for the SIN with an
amplitude of, A = 1 mrad. It can be seen that with this amplitude and a transfer
function gain of 10 the non-linear noise source does not change the sensitivity curve.
For higher gains, g = 100 and g = 500, the sensitivity decreases significantly.

In Figure 5.7(b) the same is shown for an amplitude of A = 5 mrad. In this case
all three generated noise terms have an impact on the LISA sensitivity curve.

Hence reducing the amplitude of the sideband induced noise lowers the impact
on the sensitivity as expected. Reducing the amplitude corresponds to reducing the
combined amplitude of the sidebands due to electronic cross-talk (see Chapter 3.4
and [15]) and straylight.

Note that the model of the noise generation originates from the interferometric
measurements accomplished in LISA Pathfinder laboratory experiments. These pa-
rameters are most likely too pessimistic estimates for LISA. Hence, the magnitude
of the resulting impact of the noise terms on the LISA sensitivity curves does not
claim to be realistic.

5.6 Conclusion

The aim of the project presented in this chapter was to introduce the first non-
linear and non-Gaussian noise source into a data generator for LISA. It has been
a start of transferring investigations and experiences made in LISA Pathfinder to
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Generation of time-series Φ(t)

computation of noise term: 
     ε(t) = cos(Φ(t))

numerical time derivative:
ε' = d/dt (ε(t))

computation of: 
PSDNoise = PSD(Noise(t))

computation of: Resprms = PSD(Resp(t))GW

h = 5

√
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Figure 5.6: Schematic of process of noise injection into LISACode and computation of the
resulting sensitivity curve. The software tool LTPDA was used for every com-
putation outside LISACode.
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(a) Sensitivity curve with noise term ε where A = 1 mrad.
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(b) Sensitivity curve with noise term ε where A = 5 mrad.

Figure 5.7: Impact of the sideband induced noise on the LISA sensitivity. The curves are
shown for generated noises, ε, with amplitudes A = 1 mrad (a) and A = 5 mrad
(b). For each amplitude noise according to a transfer function with three differ-
ent gains were produced and the influence on the sensitivity curve was probed.
For the reference curve no additional noise was injected. It is the same as shown
in Figure 5.5.



5.6. Conclusion 129

the ongoing preparation of the data analysis for LISA. The order of magnitude of
the noise might not be transferrable from LISA Pathfinder to LISA but at present
we see no reason why this type of noise will not be observed in LISA. Further
investigations on such realistic noise sources will improve the quality of the mock
LISA data challenges (MLDCs) accomplished in preparation of the mission.
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