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iv Abstract / Zusammenfassung

Abstract
Particle image velocimetry (PIV) is a non-intrusive flow measurement technique, capable
of capturing a velocity field in either a series of single independent instantaneous mea-
surements (conventional PIV), or a sequence of instantaneous measurements (high-speed
PIV). It facilitates qualitative and quantitative study of flow structures in a plane or
in a volume (tomographic PIV). PIV is a measurement technique of intense research
interest to those investigating turbomachinery. In most of turbomachinery applications,
the complexity of flow structures require the use of three-component or stereoscopic
PIV (SPIV) and the geometrical scales of the machines require the use of endoscopes in
order to access the flow channel. Compared to the traditional PIV, the introduced image
distortion in endoscopic SPIV is of higher order and is a source of error in measurements.
In the present work, an endoscopic SPIV setup is developed for flow investigations at
the inlet of a process centrifugal compressor. Based on partial differential equations, a
new image reconstruction method is presented, which is capable of resolving high order
distortions of the endoscopic imaging. In order to improve the measurement accuracy,
a method for the calibration of pressure and temperature signals under quasi-steady
conditions for the existing measurement system is developed. Finally, several aspects of
the application of SPIV at the inlet of the compressor together with a typical result are
presented for the first time.

Zusammenfassung
Particle Image Velocimetry (PIV) ist eine störungsfreie Messmethode, die es ermöglicht,
das Geschwindigkeitsfeld entweder in einer Folge von unabhängigen momentanen Auf-
nahmen (konventionelles PIV) oder eine Reihe von momentanen Aufnahmen (High-
Speed-PIV) zu erfassen. Es ermöglicht die qualitative und quantitative Untersuchung
der Strömungsstrukturen in einer Ebene oder in einem Volumen (tomographisches PIV).
PIV ist von intensivem Forschungsinteresse in Turbomaschinuntersuchungen. In meisten
Anwendungen in Turbomaschinen die Komplexität der Bauart erfordert den Einsatz
von drei-Komponenten- oder stereoskopischen PIV (SPIV). Geometrischen Größen
der Maschinen erfordern den Einsatz von Endoskopen, um den Strömungskanal zu
erreichen. Im Vergleich zum traditionellen PIV, ist die eingeführte Bildverzerrung in
endoskopischen Aufnahen von höherer Ordnung und ist eine Quelle der Messunge-
nauigkeit. In der vorliegenden Arbeit wird ein endoskopischer SPIV-Aufbau für die
Stömungsuntersuchungen am Eintritt eines Radialverdichters entwickelt. Basiert auf
partiellen Differenzialgleichungen, wird ein neues Bildrekonstruktionsverfahren für
die Datenverarbeitung hochverzerrten Bildern vorgestellt. Um die Messgenauigkeit zu
verbessern, wird ein Verfahren für die Kalibrierung von Druck- und Temperatursig-
nale unter quasi-stationären Bedingungen für das bestehende Messsystem entwickelt.
Schließlich werden erstmals einige Aspekte der Anwendung von SPIV am Eintritt des
Radialverdichters zusammen mit einem typischen Ergebnis dargestellt.
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A⇒ B therefore; it follows that; implication; if A then B
A⇔ B equivalence; A if and only if B
f : D 7→ R function or mapping f from the domain set D into the range

set R
� Q.E.D. symbol; end of definition, theorem, proof, . . .

† Unit varies according to the corresponding (physical) quantity.



Mathematical Definitions

Bold face letters are used for variables with dimensions higher than zero, such as vectors
and tensors, as well as matrices.

The following definitions are used throughout this work:

Partial Derivatives

Partial derivatives are alternatively denoted by a comma in subscript. For an arbitrary
function ϕk(x1, x2, x3):

ϕk,m(x1, x2, x3) := ∂ϕk(x1, x2, x3)
∂xm

ϕk,mn(x1, x2, x3) := ∂2ϕk(x1, x2, x3)
∂xm∂xn

Sets

For a given set of numbers A:

A+ := {x ∈ A| x > 0}
A− := {x ∈ A| x < 0}
A� := {x ∈ A| x ≥ 0}
A� := {x ∈ A| x ≤ 0}

Intervals

Intervals, defined on a set of numbers A:

[a, b]A := {x ∈ A| a ≤ x ≤ b}
]a, b[A ≡ (a, b)A := {x ∈ A| a < x < b}

xxi
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[a, b[A ≡ [a, b)A := {x ∈ A| a ≤ x < b}
]a, b]A ≡ (a, b]A := {x ∈ A| a < x ≤ b}

If A is omitted, R is assumed.

Functions

Bracket function
On a finite or countable set of numbers Ad:

Ad = {f(k)| f(k) : Z 7−→ R, f(k) monotone and increasing}

the bracket of a real variable x is defined as:

[x]Ad : R 7−→ Ad

[x]Ad = f(k) ⇐⇒ ∃ k ∈ Z : f(k) ≤ x < f(k + 1)

Conditional count function
On a sample {xi}, the conditional count,

N2
N
N1

(xi | A), is equal to the number of xi,

i ∈ [N1, N2]Z, for which a logical condition or a set of logical conditions A is true.

Min and max functions
For a real function f(x):

y = min
A

(f(x)) ⇐⇒ {∀x ∈ A : f(x) ≥ y}

y = max
A

(f(x)) ⇐⇒ {∀x ∈ A : f(x) ≤ y}

Order of magnitude

The order of magnitude is represented either in its formal form O(xm, yn), standing for
all terms with the degree of m or higher with respect to x and with the degree of n or
higher with respect to y, or as On(x1, . . . , xk), which stands for all terms with the degree
of n or higher with respect to x1 to xk.



Chapter 1

Introduction

Particle Image Velocimetry (PIV) is the outcome of scientific research and technological
development in optics, digital imaging, laser technology, electronics, and computer
sciences. During the past 20 years, these improvements have brought major advances in
this measurement technique and still further developments need to be made in order to
find solutions for current short comings of the method.

As a non-intrusive flow measurement technique, capable of providing a planar repre-
sentation of a flow field, PIV has become a method of choice for flow investigations
in turbomachines. Compared to single-point measurement techniques such as HWA1,
LTV2, LDA3, and multi-hole pressure probes, this planar representation of instantaneous
velocity field in successive time-independent measurements (traditional PIV) as well
as phase-resolved measurements (high-speed PIV) reveals the flow structures and can
be used to investigate the kinematics of a flow. In this regard, PIV is of intense interest
for investigating the fluid flow phenomena in turbomachines. An overview of the recent
applications of PIV in thermal turbomachinery can be found in Woisetschläger and
Göttlich (2008).

The application of PIV in turbomachines, as compared with external flow or large
scale internal flow applications, is rather challenging. In most machines, geometrical
complexity limits the accessibility of the flow channel, especially if the nature of the
flow requires three-component velocity measurements. Light reflection from machine
components is another issue which determines the extent of the measurable range. The
limitation due to light reflection and background illumination is more severe if oil
droplets are used as seeding, which have considerably lower illumination than solid
particles.

The calibration of a PIV setup requires the imaging of a geometrically known object

1HWA: Hot-wire anemometry
2LTV: Laser transit velocimetry. Also known as L2F: Laser two-focus velocimetry
3LDA also LDV: Laser Doppler anemometry/velocimetry

1



2 Chapter 1. Introduction

in the prospective measurement section. In PIV setups, which involve image distortion
such as stereoscopic setups, the reference object should cover the whole measurement
section. In such cases, the lack of accessibility of the flow channel may require external
calibration.

If the measurement section can be accessed through a window, so that the light sheet can
be captured by objectives, PIV images will be of higher quality. In such measurements,
which are generally suitable for large-scale machines, light sheet images could be guided
directly to the camera (Voges et al., 2007; Liu et al., 2006), or indirectly via mirror
deflections (Wernet et al., 2001; Zachau et al., 2008). More flexibility is achieved
by using an endoscope for light sheet delivery into the measurement section, without
substantial reduction in the quality of measurements (Yun et al., 2008).

The implementation of endoscopes both for camera(s) and light-sheet delivery, known as
endoscopic PIV, provides more accessibility and covers a broader range of applications.
Endoscopic PIV is not only a solution for small-scale measurements, but also provides
enough flexibility to achieve feasible configurations. Some of its drawbacks are the
reduction of the intensity and quality of the light-sheet, decreased signal-to-noise ratio in
recordings, and image distortions of higher orders than that of imaging with objectives
and light-sheet optics. In this regard, endoscopic PIV is more sensitive to the settings and
the quality of a PIV setup than the traditional PIV. While light-sheet and image quality
can be optimized by improving the settings and the quality of the measurement setup
and section, the image distortion should be corrected during data analysis.

The present research work concerns the development of the PIV measurement technique
for flow investigation at the inlet of a centrifugal compressor with inlet guide vanes
(IGV). Current applications of the endoscopic PIV in turbomachinery consist of two-
component measurements in which the optical axis of the camera is perpendicular to
the light-sheet (Kegalj and Schiffer, 2009; Dierksheide et al., 2002). In order to capture
the three components of the velocity, endoscopic stereoscopic PIV is employed for the
first time at the compressor inlet. Two camera endoscopes together with a light sheet
endoscope provide a three-component PIV setup in order to investigate the flow structure
between the IGV and impeller.

One characteristic of the stereoscopic endoscopic imaging is highly distorted recordings.
Image distortion is a common issue in most of PIV applications. In imaging by objectives,
the effect of image distortion may be neglected if the view axis is normal to the object
plane. In stereoscopic imaging with objectives usually a first-order mapping is sufficient
for the distortion compensation of the images. Methods to compensate for higher
order distortions have been developed by implementing analytic mapping functions in
camera models (Coudert and Schon, 2001; Soloff et al., 1997). Although the available
reconstruction methods are suitable for objective recordings, they are incapable of full
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reconstruction of endoscopic measurements. The issue of image distortion is considered
in Ch. 2. A novel method for image reconstruction based on partial differential equations
is presented which is capable of full reconstruction of endoscopic recordings.

Besides PIV measurements, the inlet flow is also investigated with aerodynamic pressure
probes. In regular on-site calibration procedures, the disturbances due to small instabili-
ties in device and ambient conditions are ignored. This may result in extended ranges
of uncertainty. In order to enhance the accuracy of measurements, the issue of on-site
calibration has been considered in detail. A theory for calibration under quasi-steady
conditions has been developed in Ch. 3. By inclusion of low rate variations in calibration
data, the theory provides means to improve the accuracy of calibration. This chapter
provides the theoretical basis for the data analysis of the flow measurements with the
pressure probes, which are presented in Ch. 4.

Chapter 5 presents the first flow investigation by SPIV at the compressor inlet. The
calibration of the stereoscopic setup and the application of the image reconstruction
method of Ch. 2 is presented in Sect. 5.2. In this chapter the achieved state of the
endoscopic SPIV approach is shown, which was reached from the first few measurements
in the compressor. The practical features of the application of the endoscopic SPIV
for flow investigation at the compressor inlet are discussed and are followed by the
conclusions and necessary future work in Ch. 6.





Chapter 2

Distortion Compensation of Digital
Images

2.1 Introduction

In stereoscopic setups the optical axis of the imaging system is oblique to the object plane
and image sharpness is achieved according to the Scheimpflug criterion (Scheimpflug,
1904). Oblique angles of view introduce image distortion, which is linear in pin-hole
camera models. Another type of distortion is due to lens type or imperfections in optical
components, which can be of second or higher orders.

As a result of distortion, the length scale of an image is altered. The variation of the
length scale is a property of the imaging system and is, in general, unknown. The
distances recorded in an image, whose length scale is not constant, cannot be measured
directly and in order to extract quantitative information, its distortion should be identified
or corrected first.

One method of distortion compensation is the use of analytical mappings by polynomials
or the ratio of polynomials, Raffel et al. (2007). In this method, the image of a known
reference grid, such as a grid of point patterns, is used to extract the distortion data of the
imaging system. An analytical function is fitted on the data so that the distorted image
be mapped into the reference grid. The mapping is valid for all image records out of the
same imaging system in the same configuration and can be applied to PIV images for
back transformation.

Another approach is the successive transformations on an artificially created reference
image by Baggenstoss (2004). In an iterative procedure, several distorted reference
images are compared with a test image by correlation, until a best match is obtained.
The method has high computational burden at preprocessing, which includes a training
phase, but requires very low computation, when determining the distortion of the test

5



6 Chapter 2. Distortion Compensation of Digital Images

images. The applications of this method include pattern recognition in satellite and
medical imaging.

By evaluating the image position changes due to small sample position shifts, Pollak
et al. (2001) present a novel method of correcting image distortion. This method does
not require a sample (calibration) image and uses the identifiable features of the distorted
image. Three position shifts of an object are recorded and the displacements of image
features are used to provide a polynomial fit to the distortion field.

In most single medium stereoscopic imaging, such as imaging with objectives or near
field endoscopic imaging, the use of polynomial fits for distortion compensation provides
enough accuracy. However, high order or local distortions require more sophisticated
mapping functions. Partial differential equations (PDEs) have found applications in
many image processing methods such as image inpainting, dejittering, registration,
and segmentation (Tai et al., 2007). A good survey on different PDE models used in
tomographic image reconstruction methods has been presented by Natterer (2006).

In this chapter, a novel PDE-based distortion compensation method is presented. The
method covers a broad class of image distortions including local distortions and can be
used for back-projection of endoscopic PIV records. The method consists of three main
parts:

1. Grid recognition in digital images
2. Back-transformation
3. Image reconstruction

which are presented as follows.

2.1.1 Calibration grid

One common method for determining the distortion of an image is the comparison of the
image records of geometrically definite planar patterns with themselves. A rectangular
grid of dots or crosses, a grid of horizontal and vertical lines, and a chessboard pattern
are some commonly used examples. A pattern may be carved on a metal sheet by high
precision machining or may be printed by high resolution printer devices. The pattern is
then recorded by an imaging system. The resulting image contains distortion information
of the imaging system.

The physical dimensions of a pattern can be determined by direct measurement within
the accuracy of the measurement system or the method used. In a distorted image, the
length scale is usually not constant. Therefore, lengths in a distorted image cannot be
determined directly.
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Fig. 2.1: Artificial Gaussian patterns as grid points in calibration image
The image is inverted for printing.

Digital imaging confines the resolution of an image to the effective pixels of the record-
ing elements, such as a CCD1 chip. A sub-pixel accuracy, however, is achievable by
interpolating pixel values. Electronic cameras also add noise to images. Averaging
techniques can be used to suppress these noise effects. Digitization and addition of noise
introduce additional image distortions which are independent of the optics of the imaging
system.

One method for compensating noise effects and achieving sub-pixel accuracy in pattern
recognition in a digital image, is the use of definite continuous gray scale patterns and
interpolating functions. Figure 2.1 shows an artificial Gaussian pattern around a central
point. Interpolation of the image of the pattern with a Gaussian function results in the
coordinates of the central point with sub-pixel accuracy. Owed to the random nature of
noise, the Gaussian fit on several pixels can reduce the noise effects. In a comparison
between three center estimation methods, namely binary center of mass (barycenter), gray
scale center of mass, and Gaussian fit, Udrea et al. (2000) show the superior accuracy of
the Gaussian fit method.

In this work, a rectangular grid is used as the calibration grid. Grid points are identified
by symmetric gray scale Gaussian patters centered at grid nodes. In the following a
method for grid recognition in distorted images is presented. The method identifies the
location of nodes with pixel accuracy. Gaussian fit is then used on node patterns to refine
node coordinates with sub-pixel accuracy.

1CCD: Charge Coupled Device
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Fig. 2.2: Image plane with nomenclature and coordinates of a digital image

2.1.2 Grid recognition in digital images

A digital gray scale image1 is considered as a simply connected rectangular closed
domain D1 bounded by ∂D1, Fig. 2.2, and composed of an array of (mmax−mmin + 1)×
(nmax − nmin + 1) simply connected open sub-domains D1 |m,n , each of which bounded
by a boundary ∂D1 |m,n , which satisfy the following conditions:

M := [mmin, mmax]Z (2.1)

N := [nmin, nmax]Z (2.2)

∀m1, m2 ∈ M ∧ ∀n1, n2 ∈ N :
m1 6= m2 ∨ n1 6= n2 ⇒ D1 |m1,n1

⋂
D1 |m2,n2 = ∅ (2.3)

D1 =
⋃
m∈M
n∈N

(D1 |m,n ∪ ∂D1 |m,n ) (2.4)

It is assumed that the sub-domains are equal rectangles and the location of each sub-
domain can be described with respect to its centroid in a Cartesian coordinates Ox1x2,
Fig. 2.2:

x1(m) = x1(mmin) + d1(m−mmin) (2.5)

x2(n) = x2(nmin) + d2(n− nmin) (2.6)

In a digital image, each sub-domain D1 |m,n , called a pixel, is assigned a discrete light
intensity value I1 |m,n ∈ I, zero for black color and maximum for white color. This value
is assigned to the centroid of each pixel.

Figure 2.3 shows a digital image, domain D1, of a distorted rectangular grid of Gaussian

1In this work only gray scale digital images are considered. Without loss of generality, black color is
assumed for the lowest light intensity and white for the highest.
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Fig. 2.3: Identification of nodes in the digital image of a distorted grid
Each node is identified by the maximum intensity in a Gaussian
pattern. The image of Gaussian patterns is inverted for printing.

patterns in the x1x2 plane. The grid adapts the curvilinear coordinates ξ1ξ2. It is assumed
that Gaussian patterns are white patterns on a black background.

As a first step in grid identification, a subset of image containing local maxima of
intensities is extracted:

D2 = {D1 |m,n ∈ D1 : ∀D1 |p,q ∈ Sk |m,n ⇒ I1 |m,n ≥ I1 |p,q > 0} (2.7)

where

Sk |m,n = {D1 |p,q ∈ D1 : k ∈ N, p ∈ [m− k, m+ k]Z ,
q ∈ [n− k, n+ k]Z} (2.8)

In order to treat the boundary pixels, D1 may be extended by zero-padding or Sk |m,n can
be modified in the neighborhood of the boundary to include the inner elements of D1.
The coordinates of distinct pixels in D2 reveal the approximate locations of grid nodes.
If the image is not saturated, D2 should not contain multiple pixels in a Gaussian pattern.
However, if the maximum of a Gaussian pattern is on a pixel boundary, it can contain
adjacent pixels with the same intensities. This can also happen due to the noise added by
the imaging system which alters pixel intensities in a random manner. Since adjacent
pixels are assumed to be in different Gaussian patterns, only one set of coordinates is
assigned to them. One way is to determine their common centroid. The set of the element
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locations of D2, i.e. the coordinates of the centroids of single elements or common
centroid of adjacent elements, is an approximation of the grid in the image plane and is
referred to as Γ0 ⊂ R2.

For the second step of grid recognition, the coordinate system of the grid should be
known. A set of three points such as points A, B, and C, Fig. 2.3, indicating axis
directions, and a point for the origin of the coordinates ξ1ξ2 should be given.

From A and B, E′ is determined by
#   ”

BA. A search on Γ0 elements within C(E′, r1)
determines E as the nearest point to E′. The radius r1 is selected proportional to | #   ”

BA|.
Similarly

#   ”

AB at C results in D′ and D is found by searching within C(D′, r1). All other
eight neighbors of A are found in similar ways. By repeating the same procedure on
newly found nodes, the whole grid is captured. By registering the relation of each found
node, the connectivity data of the grid points is determined during grid identification.

2.1.3 Refinement of node coordinates

In order to achieve sub-pixel accuracy for node coordinates, Gaussian patterns in the
image of the calibration grid are interpolated with a Gaussian function. This method
reduces the effect of image noise and partly recovers the distortion of Gaussian patterns
caused by discretization in the digital image.

Given the position of a Gaussian pattern by its maximum intensity in the pixel range, a
subset of M pixels including the maximum and its neighbor nodes is selected:{

(kx1,
k
x2,

k
y0)
}
, k ∈ [1, M ]N (2.9)

A Gaussian function:

y = f(x1, x2; β1, . . . , β6)
= exp(β1 + β2 x1 + β3 x

2
1 + β4 x2 + β5 x1 x2 + β6 x

2
2) (2.10)

with six parameters βi, is fitted on the subset by non-linear least squares fitting using
Levenberg-Marquardt algorithm. The details of the Gaussian function and the nomencla-
ture used is given in App. C.

With the selected set of points and initial values for the parameters, the following matrices
are calculated:

A = [Amn]M×6 (2.11)

Am,1 = m
y (2.11a)

Am,2 = m
x1

m
y (2.11b)
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Am,3 = (mx1)2 my (2.11c)

Am,4 = m
x2

m
y (2.11d)

Am,5 = m
x1

m
x2

m
y (2.11e)

Am,6 = (mx2)2 my (2.11f)

B = AT ·A (2.12)

C = [Cm]6×1, C = AT ·E (2.13)

E = [Em]M×1, Em = m
y0 −

m
y (2.14)

where m ∈ [1, M ]N and m
y is the value of Eq. (2.10) for (mx1,

m
x2). The optimum set

of parameters βi, which minimizes the target function R̃, Eqs. (D.7) and (D.17), is the
solution of

(B∗ + λI∗) ·D∗0 = C∗ (2.15)

for D∗0 by iteration. A star (*) as superscript of a matrix, denotes scaled matrix (see
App. D).

Refinement of node coordinates of Γ0 yields a grid Γ1 in R2 with one-to-one correspon-
dence with the image of Gaussian patterns in D1. It is assumed that the imaging system
does not alter the topology of the object plane during imaging. Therefore, the image grid
Γ1 corresponding to a rectangular structured grid in the object plane will be structured
and the grid coordinates ξ1 ξ2, Fig. 2.3, will be curvilinear in general.

In a typical structured grid Γ1, the elements are called grid points or nodes. The curves
ξi = const., i ∈ {1, 2}, passing through the nodes are called grid lines. Grid lines can be
indexed with successive integers. This in turn results in node indexing. Corresponding to
Γ1, an indexing set Γ′1 ⊂ Z2 is defined, whose members are in one-to-one correspondence
to the members of Γ1. It is assumed that the index values along a grid line increase in
the direction of the coordinate axis with unit steps between neighbor nodes, Fig. 2.3. A
quadrilateral {(i, j), (i+ 1, j), (i+ 1, j + 1), (i, j + 1)} is called a (grid) cell.

2.1.4 Grid refinement

The grid Γ1 of the calibration image contains distortion information of the imaging
system. The back-transformation method in the following section uses the node locations
in Γ1 to determine a discrete transformation function which results in a transformation
data set. The data set is then used to back-transform distorted images using interpolation.
In order to enhance the accuracy of the back-transformation, especially for coarse grids,
Γ1 can be refined by subdividing its cells.
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Fig. 2.4: Triangle with vector definitions

Grid refinement consists of the subdivision of grid cells in the object plane, the extension
of grid data-base to include the subdivided cells, and the initialization of the extended
grid. The discretization of Poisson equations in the following sections is valid for a
rectangular grid with equal grid spacing in each direction of coordinates. To maintain this
property, the only valid grid refinement is a uniform subdivision of cells. The number
of subdivisions in each coordinate direction remains the same for all cells but can differ
between the coordinate directions.

The number of subdivisions of the distorted grid in the image plane is the same as in
the object plane. However, the coordinates of the added notes are unknown and are
determined by a solution of the transformation equations. An approximation of the
coordinates of the added nodes can be used for initialization. The following theorems
provide the tools for subdividing the distorted grid in an image plane.

Theorem 2.1 In a triangle ABC with a point M on BC and m = BM and n = CM,
Fig. 2.4:

~c = ~a+~b

2 −
(
m− n
m+ n

)
~a−~b

2 (2.16)

�

Theorem 2.2 In a planar convex quadrilateral ABCD, Fig. 2.5a, if the segments EF and
GH split the sides so that:

AE/EB = DF/FC = α ∈ R+ (2.17)

AH/HD = BG/GC = β ∈ R+ (2.18)
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(a) (b)

Fig. 2.5: Planar convex quadrilateral

then:

HM/MG = α (2.19)

EM/MF = β (2.20)

Proof: Figure 2.5b shows the quadrilateral with vector definitions. Assuming points M1

and M2 on EF and GH, so that HM1/M1G = α and EM2/M2F = β,
#    ”

AM1 and
#    ”

AM2

are determined from Eq. (2.16) as follows:

2 #       ”

AM1 =
(
(1 + α)~a+ β~c+ β~d

)
+
(
α− 1
α + 1

) (
(1 + α)~a+ β~c− β~d

)
(2.21)

∴ 2 #       ”

AM1 =
(
(1 + β)~d+ (1 + α)~b− ~c+ β~d

)
+
(
α− 1
α + 1

) (
(1 + β)~d+ (1 + α)~b− ~c− β~d

)
(2.22)

2 #       ”

AM2 =
(
(1 + β)~d+ α~b+ α~a

)
+
(
β − 1
β + 1

)(
(1 + β)~d+ α~b− α~a

)
(2.23)

∴ 2 #       ”

AM2 =
(
(1 + α)~a+ (1 + β)~c−~b+ α~a

)
+
(
β − 1
β + 1

)(
(1 + α)~a+ (1 + β)~c−~b− α~a

)
(2.24)

Subtracting the sum of Eqs. (2.21) and (2.22) from the sum of Eqs. (2.23) and (2.24)
results in

#       ”

AM1 = #       ”

AM2 = #    ”

AM. �

For grid refinement, the sides of each cell in Γ1 are subdivided uniformly with the same
number of divisions on opposite sides. Connecting added nodes with straight lines
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Fig. 2.6: Grid refinement
A uniform distribution of points on opposite sides of the quadri-
lateral made by the vertices of a cell are connected with straight
lines.

divides the cell into sub-cells, Fig. 2.6. The number of subdivisions in each direction
of grid coordinates ξ1ξ2 can be different from the other. In order to maintain the grid
continuity between cells, the same number of subdivisions should be applied to all
cells. Theorem 2.2 assures that for a convex cell with uniform subdivision on the sides,
each connecting line is subdivided uniformly and therefore the subdivision of a cell is a
structured grid and the topology of the grid is preserved.

As shown in Fig. 2.6, newly added nodes, marked with black filled circles, are not
necessarily on grid lines. This refinement is used as an initialization for the back-
transformation method, which adjusts all nodes to grid coordinates. The resulting refined
grid is called Γ2 with a corresponding indexing set Γ′2. Obviously Γ1 ⊂ Γ2 ⊂ R2.

2.2 Back-transformation

2.2.1 Introduction

Back-transformation of an image is a one-to-one transformation from the image plane to
the object plane, in which each point on the object plane is assigned to a corresponding
point in the image plane and vice versa. A necessary condition for this correspondence
is that the image is in focus. In out of focus regions on the image plane, a point on the
object plane corresponds to a region in the image plane. In this work, it is assumed that a
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one-to-one correspondence between the object and image planes exists.

In some back-transformation methods, a set of points in the image plane whose corre-
spondence with the object plane is known, is selected and a functional fit of specific
functions, such as polynomials, is used for transformation. The selection of a correct
transformation function is dependent on the type of the distortion, which is generally
unknown. In practice, the selection of the best transformation function is a matter of trial
and error. In common optical systems, linear and second order transformations usually
give satisfactory results. If applicable, back-transformation by these functions is fast and
results in smooth variations. However, for distortions of higher order, the use of ordinary
functions is not always satisfactory.

Partial differential equations (PDEs) have found many scientific applications and are
a means of describing physical phenomena. Because of the analogy between certain
physical phenomena, a set of PDEs may find multiple physical implementations. For
instance, Laplace equations describe certain electromagnetic, fluid flow, and heat transfer
phenomena. The solution of a set of PDEs varies according to initial and boundary
conditions and can cover a large class of functions. For example, a subset of the solutions
of the Navier-Stokes equations are the physical fluid phenomena, which are experienced
in daily life.

Two-dimensional Poisson equation describes the heat transfer in a plate with heat source
or sink. With the lack of heat source or sink, it reduces to Laplace equation and in the
case of Neumann boundary conditions iso-temperature lines and the lines of constant heat
flux will form an orthogonal field. Introduction of heat source or sink to the field alters
the distribution of iso-temperature and constant heat flux lines. This property of Poisson
equation has found applications in grid generation methods. The adjustment of source
functions for grid clustering near boundaries has been used in elliptic grid generation
techniques (Steger and Sorenson, 1979). The characteristics of Poisson equation makes it
a suitable choice as transformation function for back-transformation of distorted images.
The idea is to determine the source functions, so that the rectangular grid in the object
plane be transformed into the distorted grid in the image plane.

A summary of the set definitions is given in Tab. 2.1. The grids are assumed to be
structured. The indexing set of each grid is indicated by a prime (′), e.g. Γ′1 for Γ1.
The coordinate axes x1 and x2 in the object plane are equivalent to the transformed
coordinate axes ξ1 and ξ2 in the image plane, respectively. In each indexing set {(i, j)},
i varies along x1 and ξ1 axes and j along x2 and ξ2. It is assumed that the indexing sets
of relevant sets between object and image planes have equivalent coordinates. Therefore,
G′1 ≡ Γ′1 and G′2 ≡ Γ′2.

The distorted grid in the image plane, Γ1, involves the distortion information and is used
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Table 2.1: Summary of the set definitions used in the image reconstruction

Grid Description

D1 The set of image pixels or the digital image in image plane,
Sect. 2.1.2.

D2 The subset of D1 with maximum local intensities, Eq. (2.7).
D3 The set of pixels of back-transformed image, Sect. 2.3.
I1 The set of light intensities assigned to D1 elements.
I2 The set of light intensities assigned to D3 elements.
G1 A rectangular Cartesian grid of points in the object plane. Equiva-

lent to Γ1 in the image plane.
G2 Refined G1 with uniform subdivision of cells. Equivalent to Γ2 in

the image plane.
Γ0 The grid of the approximate location of Gaussian patterns in the

image plane as described in Sect. 2.1.3.
Γ1 Distorted grid in the image plane as described in Sect. 2.1.3. Equiv-

alent to G1 in the object plane.
Γ2 Refined Γ1 as described in Sect. 2.1.4 with the same number of

cell subdivisions as in G2. Equivalent to G2 in the object plane.

to determine the source terms of Poisson equations. The source terms are computed in
G1, whose relation with Γ1 is known. The grid G1 is then refined to provide a better
accuracy of transformation. The source terms are distributed on the refined grid by
interpolation. The solution of Poisson equations on the refined grid G2 by the finite
difference method (FDM) results in the transformation data which are used for image
reconstruction.

2.2.2 Mapping by Poisson equation

Considering two subdomains Dx and Dξ in R2 in two-dimensional Euclidean space,
the mapping of (x1, x2) ∈ Dx into (ξ1, ξ2) ∈ Dξ by Poisson equations is as follows
(Tannehill et al., 1997):

ξi(xj) : Dx 7−→ Dξ

ξi,11(xj) + ξi,22(xj) = i
p(xj) , i, j ∈ {1, 2} (2.25)

where (xj) ≡ (x1, x2) is a point in the coordinate system x1x2 and i
p(xj) are source

functions. A comma in subscript denotes partial differentiation:

ϕk,mn(xj) := ∂2ϕk(xj)
∂xm∂xn

, for an arbitrary function ϕk(xj) (2.26)
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Equations (2.25) are a mapping from Dx into Dξ. Generally, it transforms the Cartesian
coordinates into a curvilinear coordinates. The inverse mapping can be derived as follows.
Considering the inverse functions xi(ξj), the chain rule of differentiation results in:

∂x1

∂x1
= ∂x1

∂ξ1

∂ξ1

∂x1
+ ∂x1

∂ξ2

∂ξ2

∂x1
= x1,1 ξ1,1 + x1,2 ξ2,1 = 1 (2.27)

In a similar way the following system of equations is achieved:


x1,1 ξ1,1 + x1,2 ξ2,1 = 1
x1,1 ξ1,2 + x1,2 ξ2,2 = 0
x2,1 ξ1,1 + x2,2 ξ2,1 = 0
x2,1 ξ1,2 + x2,2 ξ2,2 = 1

(2.28)

Solution for ξi,j gives:

ξ1,1 = x2,2/J̃ (2.29)

ξ1,2 = −x1,2/J̃ (2.30)

ξ2,1 = −x2,1/J̃ (2.31)

ξ2,2 = x1,1/J̃ (2.32)

where J̃ is the inverse Jacobian of the transformation:

J̃ = x1,1x2,2 − x1,2x2,1 (2.33)

From (2.27):

∂2x1

∂x2
1

= x1,11 ξ
2
1,1 + 2 x1,12 ξ1,1 ξ2,1 + x1,22 ξ

2
2,1

+ x1,1 ξ1,11 + x1,2 ξ2,11 = 0 (2.34)

Similarly:

∂2x1

∂x2
2

= x1,11 ξ
2
1,2 + 2 x1,12 ξ1,2 ξ2,2 + x1,22 ξ

2
2,2

+ x1,1 ξ1,22 + x1,2 ξ2,22 = 0 (2.35)

Adding both sides of these equations and inserting from Eq. (2.25) gives:

x1,11 (ξ2
1,1 + ξ2

1,2) + 2 x1,12 (ξ1,1 ξ2,1 + ξ1,2 ξ2,2) + x1,22 (ξ2
2,1 + ξ2

2,2)

+ x1,1
1
p+ x1,2

2
p = 0 (2.36)
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(a) (b)

Fig. 2.7: Back-transformation (a) domain Dx containing the distorted cali-
bration grid Γ1 in the image plane (b) transformed domain Dξ

The goal of back transformation is to map Γ1 into a rectangular
grid G1.

Inserting Eqs. (2.29) to (2.33) in Eq. (2.36) gives the final form of inverse mapping as:

xi(ξj) : Dξ 7−→ Dx

α xi,11 − 2 β xi,12 + γ xi,22 = −J̃2 xi,k
k
q , i, j, k ∈ {1, 2} (2.37)

α(ξj) := x2
1,2 + x2

2,2 (2.38)

β(ξj) := x1,1 x1,2 + x2,1 x2,2 (2.39)

γ(ξj) := x2
1,1 + x2

2,1 (2.40)

where i
q(ξj) := i

p(xk(ξj)) and the Einstein’s summation convention1 is valid for repeated
indices. If source functions i

q vanish identically to zero, the Poisson equations reduce to
Laplace equations.

Figure 2.7 shows an image plane with a distorted calibration grid Γ1 within a domain
Dx. The goal of back-transformation is to find a transformation, so that Γ1 be mapped
onto the rectangular grid of a calibration image G1. For proper source functions i

q, the
solution of the inverse Poisson equations (2.37) in Dξ results in the mapping data.

In the following section, a numerical solution of the inverse Poisson equations using the

1A repeated index in a term which appears once as an upper and once as a lower index implies summation
over the whole range of the index.
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1

2 3 4

10

9876

5

11 12 13

Boundary

Outer Region

Fig. 2.8: Discretization patterns on the rectangular grid in domain Dξ Pat-
tern 1: an internal node with coordinates and indices Patterns
2–13: boundary nodes
Black circles show principle nodes and hollow circles auxiliary
nodes, which are used in discretization.

finite difference method (FDM) is presented. Since Dξ is not, in general, a rectangular
domain, an explicit algorithm is used to solve the set of discretized Poisson equations.

2.2.3 Discretization

Figure 2.8 shows different possible patterns for a finite difference discretization. The
patterns stand for second order discretization at internal nodes and second or mixed first
and second order at boundary nodes. A summary of the relevant discrete equations is
given in App. E.

At an internal node (i, j), pattern 1 in Fig. 2.8, the discrete form of Eq. (2.37) is as
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(a) (b)

Fig. 2.9: Interpolation

follows:

α|i, j
∆ξ2

1

(
xm|i+1, j − 2 xm|i, j + xm|i−1, j

)
−

β|i, j
2 ∆ξ1 ∆ξ2

(
xm|i+1, j+1 − xm|i+1, j−1 − xm|i−1, j+1 + xm|i−1, j−1

)
+
γ|i, j
∆ξ2

2

(
xm|i, j+1 − 2 xm|i, j + xm|i, j−1

)
= − J̃2

∣∣∣
i, j

xm, k|i, j
k
q
∣∣∣∣
i, j

, m, k ∈ {1, 2} (2.41)

in which ∆ξ1 and ∆ξ2 are grid spacings in ξ1 and ξ2 directions respectively. For a typical
discrete variable ϕ, ϕ|ni,j is its value at node (i, j) and at a time step or iteration step n,
which may be omitted as in the above equations. The discretization at boundary nodes is
derived in the same manner, resulting in different variants of Eq. (2.41).

2.2.4 Computation of the source functions

Since the physical grid G1 in the object plane as well as the distorted grid Γ1 in the image
plane are known, the source terms 1

q and 2
q can be determined by solving the discretized

form of Eq. (2.37) in G1.

The distribution of source functions inside G2 is determined from that in G1 by interpo-
lation. For a given cell P2P3P4P5 as a convex quadrilateral encompassing a grid node
P1, Fig. 2.9a, the value of a function ϕ(x1, x2) at P1, denoted by ϕ1, is computed by
interpolating its values at cell vertices (Mohseni, 2000):

ϕ1 = a134a145ϕ2 + a145a152ϕ3 + a152a123ϕ4 + a123a134ϕ5

a134a145 + a145a152 + a152a123 + a123a134
(2.42)
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Fig. 2.10: Interpolation along the common side of two adjacent cells
d12 and d13 are the lengths of the segments P1P2 and P1P3 respec-
tively.

where a1mn is the area of the triangle4P1PmPn:

a1mn = 1
2
∣∣∣ #    ”
P1Pm ×

#    ”
P1Pn

∣∣∣ (2.43)

The interpolation preserves the vertex values. On the cell sides, Eq. (2.42) turns into
the interpolation of function values at end vertices weighted with the distances of other
vertices from the side. For example on P2P3, Fig. 2.9b:

ϕ1 = d13 h13 ϕ2 + d12 h12 ϕ3

d13 h13 + d12 h12
(2.44)

where d12 and d13 are the lengths of P1P2 and P1P3, and h12 and h13 are vertical distances
of P5 and P4 from P2P3, respectively.

In general, the continuity of the interpolation on the cell sides is not preserved except
at cell vertices. The conditions required for the continuity of the interpolated function
across cell boundaries is provided by the following theorem:

Theorem 2.3 Let P2P3P4P5 and P2P3P′4P′5 be two adjacent cells as shown in Fig. 2.10
and ϕ a function to be interpolated at P1, whose values at cell vertices are given as ϕ2,
ϕ3, . . ., at P2, P3, . . ., respectively. Then the interpolated values of ϕ1 in each cell are
equal along P2P3 if and only if ϕ2 = ϕ3 or h12/h13 = h′12/h

′
13. �

Since the interpolation is continuous, smooth, and preserves the cell values, the difference
between the interpolated values on the cell sides is finite and is dependent on the
cell distortion. The discontinuity would be negligible for slightly distorted cells. In
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Original node
Added node

Boundary

Fig. 2.11: Application of the boundary conditions
On the boundary curve B1BB2, B1 and B2 are the original nodes
from Γ1 and are fixed. The location of an added node B is deter-
mined from the location of its neighbor node A by the interpolated
branch slope on the boundary curve.

highly distorted regions of an image, it might be required to use a more sophisticated
interpolation algorithm which maintains continuity across the cells. However, an increase
of the number of the grid points in the original calibration grid in the object plane, G1,
can moderate the discontinuity effect on the cell sides.

2.2.5 Boundary and internal conditions

Boundary conditions are applied to the boundary nodes in the image plane. The Dirichlet
boundary condition is applied to the original grid points of Γ1 in Γ2, with leaving the
location of the nodes fixed.

The added nodes on the boundaries are adjusted by branch slopes. Figure 2.11 shows a
boundary region in the image plane. The nodes B1, B2, B′1, and B′2 are original nodes
from Γ1. The boundary curve B1BB2 and the slopes of the branches from the original
nodes on it, i.e. the slopes of the unit vectors~b1 and~b2, are approximated by a natural
cubic spline fit (for details see App. B). An added node B on the boundary near an
internal node A is located so that the vectors ~a and b̂ be collinear. Here b̂ is a unit vector
at B whose slope is equal to the interpolated slope along the boundary.

During the solution, the original grid Γ1 as well as the original nodes at the boundaries in
Γ2, which are subject to the Dirichlet boundary conditions, remain fixed. The locations
of internal nodes as well as added nodes on the boundaries in Γ2 are modified during the
solution. In each iteration, the distribution of source functions in Γ2 is computed from
the original distribution in Γ1 by interpolation.
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2.2.6 Solution of Poisson equations

Assuming that G2 is a refinement of G1 by adding N1 nodes in the ξ1 direction and N2

nodes in ξ2 direction in each cell, for a given set of source functions 1
q |i,j and 2

q |i,j in
G2, the grid coordinates xm can be computed from Eq. (2.41) at an internal node (i, j)
iteratively using the following explicit equation:

xm|n+1
i, j =

N ′12 α|ni, j
∆ξ2

1

(
xm|ni+1, j + xm|ni−1, j

)

−
N ′1N

′
2 β|

n
i, j

2 ∆ξ1 ∆ξ2

(
xm|ni+1, j+1 − xm|ni+1, j−1

− xm|ni−1, j+1 + xm|ni−1, j−1

)
+
N ′2

2 γ|ni, j
∆ξ2

2

(
xm|ni, j+1 + xm|ni, j−1

)
+ J̃2

∣∣∣n
i, j

xm, k|ni, j
k
q
∣∣∣∣n
i, j

]

/

2N ′1
2 α|ni, j

∆ξ2
1

+
2N ′2

2 γ|ni, j
∆ξ2

2

 , m, k ∈ {1, 2} (2.45)

where for m ∈ {1, 2}, ∆ξm is the grid spacing in G1, N ′m := Nm + 1, and n ∈ N is the
step of iteration. After initialization, the solution consists of an iteration loop as in the
following pseudo-code:

repeat:

Solve Eq. (2.45) at all nodes.

Apply boundary conditions.

Update source functions at added nodes.

Update grid data structure.

until the convergence criterion is passed.

2.3 Image reconstruction

The solution of the transformation equations results in a refined grid Γ2 as a transfor-
mation of G2. The transformation is applicable to PIV images with the same setup as
the calibration image. During image reconstruction, the rectangular image pixels are
generally transformed into non-rectangular regions, Fig. 2.12. Therefore, in order to
improve the transformation quality, it is required that the distorted image be subdivided
to achieve higher resolution. To this end, a reconstructed image D3 is defined on D1,
Eq. (2.4), with adjustable resolution.

Using a search algorithm and interpolation, the location of each pixel in D3 is computed.
This procedure consists of finding a cell in Γ2, which contains a point in D3. The
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Fig. 2.12: Deformation of pixels after reconstruction
Each deformed pixel is represented by smaller pixels whose sizes
are identifiable from the saw-tooth patterns on the boundaries.

coordinates of a pixel in the image plane, Γ2, is approximated by the interpolation
Eq. (2.42). The intensity value at the location found can be directly assigned to the pixel.
By repeating the same procedure for all pixels in D3, the reconstructed image is gained.

2.4 Applications

The applications of the transformation method are presented in this section. Some
characteristics of the transformation are presented by examples. The gray scales of the
images are inverted for printing purposes.

Figure 2.13 shows a synthetic grid generated by the equidistant translations of two
smooth curves along straight lines. The grid contains nearly rectangular cells as well as
cells with skewness to the right (right) and to the left (top left). Grid nodes are marked
with symmetric Gaussian distributions, whose extrema coincide with grid nodes. The
Gaussian pattern is the same at all nodes. The grid has relative poor density in the regions
of high grid-line curvature (middle right and middle top).

Figure 2.14a shows the identified original grid (black) and the refined grid (light blue)
with four added nodes in each direction. The refined grid is the result of the solution
of Poisson equations and coincides with the original grid only at boundary points. The
adjustment of its internal nodes is dependent on the source functions, which allow the
arrangement of added nodes along curves rather than lines and a better approximation
of the original grid. After the identification of the original grid, its boundaries are
approximated with natural cubic splines. The locations of the added nodes on the
boundaries are confined to these splines during the application of the boundary conditions
as explained in Sect. 2.2.5.
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Fig. 2.13: Synthetic grid from smooth curves
The grid is generated by equidistant translations of two crossing
curves along straight lines. Grid nodes are marked with two-
dimensional Gaussian distributions, whose maxima coincide with
the node locations.

The distances between the original nodes and their corresponding nodes in the refined
grid after the solution of the Poisson equations, δi,j , are shown on the original grid in
Fig. 2.14b. For a node (x1|i,j , x2|i,j) ∈ Γ1 and its corresponding node in the refined grid
( x̃1|m,n , x̃2|m,n) ∈ Γ2, δi,j is calculated as follows:

δi,j :=
√(

x1|i,j − x̃1|m,n
)2

+
(
x2|i,j − x̃2|m,n

)2
∈ R� (2.46)

Since the original nodes at the boundaries are subject to Dirichlet boundary conditions,
the differences between the original nodes and their corresponding nodes in the refined
grid at the boundaries are zero. In a considerable region, the distance remains under one
pixel, while in the regions of high grid-line curvature it increases up to 2.4 pixels. This is
a measure of the accuracy of the transformation in the range of 600 pixels in x1 and 800
pixels in x2 directions for a 8× 11 nodes grid.

The distribution of the source terms in the image and object planes are shown in Figs. 2.15
and 2.16, respectively. The source terms are computed on the original grid and then are
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Fig. 2.14: (a) The original grid (black) and the refined grid (light blue) after
grid identification and the solution of Poisson equations on the
grid of Fig. 2.13 (b) distribution of the distances between the
nodes in the original grid and their corresponding nodes in the
refined grid
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Fig. 2.15: Distribution of the source functions in the image plane
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Fig. 2.16: Distribution of the source functions after transformation

interpolated on the added nodes in the refined grid. Along the boundaries, the source
terms at added nodes do not participate in the solution and have been optionally set to
zero. The transformed coordinate lines in the object plane are shown in Fig. 2.17a.

The reconstructed image of the grid in Fig. 2.13 is shown in Fig. 2.17b. It shows the
ability of the method to resolve high distortions with relative low grid density. Departures
of the grid lines from straight lines are visible as local distortions.

In the next example, the sensitivity of the method to non-uniform grids with low grid
density is studied. Figure 2.18 shows a synthetic grid generated by non-uniform dis-
placement and deformation of two crossing smooth base curves. Each curve is slightly
deformed in a different way compared with its neighbors. Missing nodes at top right
add extra corners to the boundaries. The density of the nodes along each grid line is so
that extra nodes are needed to estimate their distribution. Grid nodes are marked with
Gaussian patterns as in Fig. 2.13

Figure 2.19a shows the original (black) and the refined (light blue) grids. The deviation
of the refined grid from the original grid is shown in Fig. 2.19b. They represent the effect
of the grid resolution and the curvature of grid lines on the accuracy of the transformation.
Since the method is a discretization on the original grid, the lack of nodes at upper right
corner does not limit its applicability. Due to the non-uniformity and low resolution of
the original grid, the deviation of the refined grid from the original is considerable. The
maximum deviation in the 8× 8 nodes grid and in the range of 600 pixels × 600 pixels
is 32 pixels, Fig. 2.19b.
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Fig. 2.17: (a) Coordinate lines after transformation (b) reconstructed grid
Grid-lines show the expected locations of the point patterns.

Fig. 2.18: Synthetic grid from smooth curves
The grid is generated by non-uniform distribution of two crossing
base curves. Each curve is slightly deformed in comparison
with its neighbors. Grid nodes are marked with two-dimensional
Gaussian distributions, whose maxima coincide node positions.
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Fig. 2.19: (a) The original grid (black) and the refined grid (light blue) after
grid identification and the solution of Poisson equations on the
grid of Fig. 2.18 (b) distribution of the distances between the
nodes in the original grid and their corresponding nodes in the
refined grid

The distribution of the source functions in the image plane is shown in Fig. 2.20. Fig-
ure 2.21 represents the reconstructed grid. This example shows that although the distorted
grid, Fig. 2.18, does not contain enough information for back-transformation, the method
used is capable of an approximate reconstruction.

The next example, Fig. 2.22, is a synthetic grid made by twisting a rectangular grid
around its center point. The center of the twist is a singular point. Grid lines are smooth
and identifiable from the distribution of the nodes. Despite the previous examples, the
grid markings are not Gaussian distributions and are partly saturated. The saturated
regions of marking patterns do not provide information about the location of the nodes.
Therefore, the node coordinates are determined to within the size of the saturated regions.
This example shows the effect of the quality of node markings and the ability of the
method to transform a region around a singularity.

The results of grid identification and the solution of the transformation equations are
presented in Fig. 2.23. The accuracy of the transformation is within six pixels and the
highest error is in the vicinity of the singularity. Considering the distribution of the source
terms, Figs. 2.24 and 2.25, the increase of the resolution of the original grid or the use of
a higher order interpolation of the source terms at added nodes can improve the accuracy
of the transformation. The distribution of the coordinate lines and the reconstructed grid
are shown in Fig. 2.26.
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Fig. 2.20: Distribution of the source functions in the image plane
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Fig. 2.21: Reconstructed grid
Grid-lines show the expected locations of the point patterns.
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Fig. 2.22: A synthetic grid, generated by uniform distortion of a rectangular
grid
Grid nodes are marked with patterns with partly saturated pixels
instead of Gaussian patterns. The saturation of pixels reduces the
accuracy of the determination of the node coordinates, which is a
source of error in back-transformation.

In this example the grid and image characteristics of the original grid are comparable to
that of the first example, Fig. 2.13. Hence, the expected mismatch between the original
and the refined grids should be less than three pixels. The maximum deviation of six
pixels in Fig. 2.23b is within the size of the saturated regions of the node markings and
is located in the region near the singularity, where the resolution of the grid is more
effective in the accuracy of the transformation. Besides the grid resolution, the saturation
of the node markings affects the mismatch between the original and the refined grid and
is a source of error in the transformation. The example also shows the applicability of
the transformation method to such distortions with local node dislocations.

Depending to the type of distortion, the size of image, and the applied grid refinement,
the iterative solution of the finite difference discretization of the Poisson equations (2.45)
may take considerable time. In this regard, the distortion compensation method does not
suit real-time data manipulation. However, once the transformation data are computed,
the image reconstruction phase can be implemented in real-time data processing.

The time of distortion compensation phase can be optimized in several ways. One method
is the implementation of other solution algorithms instead of the explicit algorithm used.
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Fig. 2.23: (a) The original grid (black) and the refined grid (light blue) after
grid identification and the solution of Poisson equations on the
grid of Fig. 2.22 (b) distribution of the distances between the
nodes in the original grid and their corresponding nodes in the
refined grid
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Fig. 2.24: Distribution of the source functions in the image plane
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Fig. 2.25: Distribution of the source functions after transformation
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Since the solution domain is not rectangular, an explicit method is the first choice. Hybrid
explicit and implicit methods may be implemented, in order to improve the convergence
speed. Besides the use of acceleration and damping factors in the solution code, an
estimation of the required accuracy and the optimization of the convergence criterion
based on the behavior of the convergence curve can considerably affect the time of
computations.

Another characteristic that affects the time and accuracy of the convergence is the
presence of local dislocations in grid points. This may happen if the quality of the node
markings is not good enough to estimate the locations of the nodes correctly, such as
in Fig. 2.22. From the physical realizations, it is known that Poisson equation governs
smooth variations. Therefore, the presence of local node dislocations increases the
tendency of the solution to diverge and increases the time of convergence. As shown
for the distorted image of Fig. 2.18, the method is capable of adapting itself to local
structures in a distorted grid. The adaptation to local dislocations is, however, a departure
from the real distortion function of the imaging system. Therefore, the accuracy of
the identification of node locations affects the accuracy and computation time of the
distortion compensation method.

In this section the application of the transformation method to three synthetic grids
with different characteristics was presented. The application of the method to distorted
endoscopic SPIV images is presented in Sect. 5.2.

2.5 Conclusions

The case studies in the previous section and the application of the method for the
reconstruction of the calibration images of the endoscopic SPIV setup in Ch. 5, show the
capability of the method to reconstruct highly distorted images. After the identification
of the grid in a calibration image, the method provides a unique solution without the
need of user interference or judgment.

As a typical characteristic of iterative numerical methods, the solution algorithm takes
considerably more computational time than similar analytic reconstruction methods and,
therefore, is not suitable for real-time transformations. However, once the transforma-
tion data are available for a calibration configuration, the image reconstruction can be
implemented in on-line data processing algorithms.

Partial differential equations as transformation functions provide a new class of image
reconstruction methods, which can improve the data analysis in PIV and other image-
based optical measurement techniques.
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Fig. 2.26: (a) Coordinate lines after transformation (b) reconstructed grid
Grid-lines show the expected locations of the point patterns.



Chapter 3

Theory of Local Measurements under
Quasi-Steady Conditions

3.1 Introduction

With the increase of the resolution of measurement devices, their sensitivity to external
effects such as ambient noise increases. Especially during calibration, the achieve-
ment of stable conditions becomes troublesome. Even slight changes in the effective
environmental conditions may be revealed in the measured data.

This problem can be dealt with in several ways. The basic approach would be to isolate
the measuring system to get a stable signal, sensitive only to the variations of measured
quantities. This method is, however, not always practical, especially for an on-site
calibration.

In most engineering applications, minor changes due to environmental effects are negligi-
ble in regard to the expected accuracy of measurements. In regular calibration procedures,
it is tried to stabilize a signal and determine its statistical properties based on direct
averaging. In this case, slight changes in the signal mean may cause unreal extension of
its range of uncertainty. However, they may be neglected, if they are within the range of
an expected accuracy. In this way at the cost of lowering the accuracy, the calibration
procedure may become easier, faster, and more versatile.

In steady state measurements, only low-frequency changes of a measured signal are
important and the output of measurement is a low-pass filtered signal. This characteristic
raises the idea of the quasi-steady calibration, in which minor external and environmental
effects are considered so that the accuracy of calibration is increased.

The theory presented in this chapter provides the means for calibrating measurement
loops under slightly varying or quasi-steady conditions. In practice the achievement of
steady state conditions may take long time or may not be achieved due to the presence

37
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of external or internal disturbances, such as slight changes in ambient conditions. By
including these changes in a calibration procedure, the method provides the statistical
characteristics of a signal, while keeping its uncertainty range to that of the signal noise
and device accuracy.

In the following the mathematical basis for the calibration under quasi-steady conditions,
including the statistical analysis and error estimation, is presented. The application of
the method to the flow measurements by aerodynamic pressure probes is presented in
the next chapter.

3.2 Measurement

Under steady state conditions, field variables like pressure or temperature are time
independent. In practice, such as flow measurements in turbomachinery, steady state
conditions are hardly achieved. Under most stable conditions, the field variables of a
flow are approximately statistically stationary and are weakly time dependent in the
mean.

If the rate of change of a field variable compared to the time constants1 of a measurement
system is negligible, steady state measurements can still be performed. Generally, a
measured signal, acquired at a constant location, can be decomposed into a mean variation
and a superposed fluctuation or noise. In an ideal steady state, the signal is identical to
its mean and is time independent. In practice, however, noise usually accompanies a
signal and under stable conditions, only the mean of the signal is time independent.

A stable system, i.e. a system which is in some equilibrium state, is usually sensitive
to external influences. For such a system, steady conditions can hardly be perfectly
achieved in most experimental measurements. If the deviation from steady state is slow
compared to the time constants of the system (including the measurement devices), the
measurements can be considered quasi-steady, meaning that field variables are weakly
time dependent in the mean and contain noise.

In the following, a mathematical approach for the data analysis of quasi-steady measure-
ments is presented. A field variable is first decomposed into a mean and a fluctuation or
noise. Quasi-steady condition is then defined for slight deviations from the steady state
and its statistical analysis is presented. In this work, the noise of a signal is assumed to
be stochastic in nature and tend to vanish in the mean.

Definition 3.1 The special time average of a continuous field variable ϕ(x, t) at a point

1The time constant of a field or a device variable is the required time after a change or disturbance for the
variable to become stable within a defined neighborhood of its steady state.
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x ∈ R3 and at time t is defined as:

ϕ̄(x, t) := 1
t′2 − t′1

∫ t+t′2

t+t′1
ϕ(x, t′) dt′ , t+ t′1 ≤ t ≤ t+ t′2 (3.1)

where [t′1, t′2] is an arbitrary time span selected for averaging. �

With this definition, a field variable ϕ(x, t) can be decomposed into a time average and
a fluctuation:

ϕ(x, t) = ϕ̄(x, t) + ϕ̄′(x, t) (3.2)

ϕ̄′(x, t) is called the noise of the field variable.

The selection of the averaging time span [t′1, t′2] is dependent on the noise of the signal
ϕ(x, t). For a typical signal, the selection of different averaging intervals [t′1, t′2] results
in different levels of smoothing. Cumulative average, defined as follows, can be used to
estimate the time span, within which noise effects are suppressed.

Definition 3.2 The cumulative time average of a continuous field variable ϕ(x, t) at a
point x ∈ R3 and at time t0 is defined as:

ϕ̆(x, t; t0) := 1
t− t0

∫ t

t0
ϕ(x, t′) dt′ (3.3)

�

The time average of a field variable can alternatively be estimated by function fitting. The
selection of the function, which best describes the physical phenomena corresponding
to a field variable requires a physical and mathematical approach, which is beyond
the scope of this work. However, the weak time dependency of a field variable allows
good estimation of its average with polynomials by using the least squares method (see
App. A).

Definition 3.3 A function ϕ̃(x, t) fitted to a field variable ϕ(x, t) and defined over a
time interval τ = [t1, t2] at a point x ∈ R3 is called the estimated time average. The
difference between the field variable and its estimated average is called the estimated
noise, ϕ̃′(x, t), of the field variable:

ϕ(x, t) = ϕ̃(x, t) + ϕ̃′(x, t) (3.4)

�

If polynomials are used to estimate the average, Theorem A.1 guaranties the suppression
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of the integral of the estimated noise over the time interval τ :∫
τ

ϕ̃′(x, t; t0)dt = 0 (3.5)

Each measurement system has limits within which its amplitude, frequency, and phase
responses are constant (Beckwith and Marangoni, 1990). Within the limits of constant
responses, a field variable and its corresponding measured values are called consistent:

Definition 3.4 A field variable ϕ(x, t) and its corresponding measured value ψ(x, t)
are at a point x ∈ R3 and during a time interval τ = [t1, t2] consistent, if and only if in
their range of variation, their amplitude, frequency, and phase responses are constant. �

The consistency between a field variable and its measured value is dependent not only
on the type of the field variable, but also on the measurement system and is generally
achieved at low frequencies. The frequency spectrum of noise is generally unknown and
most of the devices used for steady state measurements cannot maintain consistency at
noise frequencies. In steady and quasi-steady measurements, however, the time rate of
change of the variations is supposed to be small and therefore, consistency is usually
achieved for the mean values.

Definition 3.5 A field variable ϕ(x, t) and its corresponding measured value ψ(x, t)
are at a point x ∈ R3 and during a time interval τ = [t1, t2] apparently consistent, if and
only if their time average functions (special or estimated) are consistent. �

With the aforementioned definitions, a quasi-steady variation, as a slight deviation from
a steady state, can be defined as follows:

Definition 3.6 A field variable ϕ(x, t) and its corresponding measured quantity ψ(x, t)
are at a point x ∈ R3 and during a time interval τ = [t1, t2] in quasi-steady conditions if
and only if:

1. ϕ(x, t) and ψ(x, t) are apparently consistent.
2. The time rate of change of the time average function (special or estimated) of
ϕ(x, t) is bounded. �

3.3 Zero-drift of pressure sensors

The zero value of pressure sensors in their unloaded state is dependent on the environment
and device conditions, among which dependency on temperature is of major importance
(Tropea et al., 2007). After a sensor is set to zero, zero-drift causes gradual change in
output signal, even if the measured quantity is constant.

Figure 3.1 shows typical zero-drifts of five pressure channels measured concurrently
during three days. The sensors were set to zero prior to the measurements and were in



Chapter 3. Theory of Local Measurements under Quasi-Steady Conditions 41

Local Time [hour]

C
ha

nn
el

V
al

ue
[V

D
C

]

12 18 24 30 36 42 48 54 60 66 72 78 84

-0.003

-0.002

-0.001

0

0.001

0.002

0.003
1 mVDC is approximately equal to 0.4 mbar.
Sampling: approx. every 5 min.

Fig. 3.1: Typical zero-drift of pressure sensors measured concurrently dur-
ing 66 hours

the same conditions. Besides noise, there is a time variation of the mean, which is not
the same among the channels. The variations are within ±0.003 V corresponding to
±120 Pa, which is ±0.06% of the measurement range of the sensors in a time interval of
66 hours. This implies the inclusion of zero-drift as an overall change in the measured
signal. In this work, zero-drift is considered as a non-negative constant δ0, and is used
to expand both limits of the minimum-maximum range of the variation of a signal. As
shown in the figure, the effect of zero-drift depends on the duration of measurement.

3.4 Calibration of local measurements

Measurement devices such as pressure probes and thermocouples measure a physical
quantity locally. In the method of calibration by comparison, a measurement system,
e.g. a pressure measurement loop, is compared with a reference system, which is usually
a measurement system with higher stability and accuracy. Corresponding to a field
variable such as pressure or temperature, the measured quantity by a reference system at
a location x ∈ R3 and at time t ∈ R is denoted by ϕ(x, t) and that of a measurement
system by ψ(x, t). The measured variables ϕ and ψ can be different physical quantities.
For instance in a pressure field, the measurement system can measure electric potential
corresponding to the pressure measured by a reference system.
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During calibration for steady or quasi-steady measurements, typically a subdivision ofN1

points in the common range of the measurement and reference systems, called data-points,
is selected. In the method used in this work, at each data-point i, i ∈ [1, N1]N, and under
steady or quasi-steady conditions, N2 values ψi(x, tj), j ∈ [1, N2]N, following a reading
of the field variable ϕi(x, t0), t0 < t1, are registered. The set {ψi(x, tj)| j ∈ [1, N2]N}
corresponding to ϕi(x, t0) is called a sample.

This method in which one reference value corresponds to multiple readings of a mea-
surement system is called single-point – multi-point. In this method the uncertainty
parameters of the measurement system are determined by the statistical analysis of the
samples but they should be known for the reference system.

If multiple readings are registered by a reference system, so that multiple readings of
the reference system correspond to multiple readings of the measurement system at a
data-point, the calibration is called multi-point – multi-point. In this case, the samples
of the reference and measurement systems correspond to each other at a time t0 and
the goal of data analysis is to provide measurement and uncertainty data at this time.
If the readings of the reference and measurement systems are temporally concurrent,
there will be full or one-to-one correspondence between the sample elements. Therefore,
multi-point – multi-point measurements may be asynchronous or synchronous.

Digital measurement systems assign a discrete output to a continuous input. For example,
to a continuous physical quantity ϕ(x, t) ∈ D1 ⊂ R, a discrete value ψd(x, t) ∈ Dd

2 ⊂
Ψd may be assigned. The superscript “d” is used to denote discrete variable or quantity.
In some measurement systems, Ψd can be defined as:

Ψd = {kδ1 + δ2 ∈ R| k ∈ Z, δ1 ∧ δ2 = const. ∈ R} (3.6)

The subset Dd
2 is bounded and connected. δ1, which is the difference between two

successive members of Ψd, is the resolution of ψd(x, t).

If a measured quantity ψi and its corresponding field variable ϕi are apparently consistent,
then the dependency of their average functions or mean values is independent of time.
The signal noise is, however, time dependent and is supposed to be stochastic. It can
be assumed that the statistical characteristics of the noise such as its probability density
function, minimum, maximum, and standard deviation are time independent. Therefore,
the correspondence between the mean and the statistical characteristics of the field
variable and its corresponding physical quantity will be independent of time. In this way,
time independent estimations of the mean value and the statistical quantities are achieved
from time varying measurements. The goal of the calibration is to make estimations for
the mean values as well as the statistical properties of a measured quantity and its field
variable at some common time t0, at which their correspondence is valid.
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Fig. 3.2: A typical calibration sample of a pressure transmitter
The data were registered at constant time intervals.

Figure 3.2 shows a typical sample of 100 values registered from a pressure transducer
under quasi-steady conditions. The sample data were measured at equal time intervals.
The indices of sample values are shown at the abscissa. The measured quantity is the
electric potential. A third order polynomial fit shows an estimated average of the sample.
The cumulative time average ψdi (x, tj; t0), where t0 corresponds to the first sample
value, shows that the noise effect is suppressed approximately after the 10th sample value.

Since the special average, Eq. (3.1), of the sample values of a quasi-steady measurement
is not constant in general, the following statistical calculations are based on the estimated
time average referred to as the mean function and defined as follows:

Definition 3.7 An estimated time average of a bounded sample (a sample with finite
elements) is called a mean function of sample. For an unbounded sample, it is called the
mean function. �

The method of least squares is the curve fitting method used for uncertainty analysis in
this work. Details of fitting polynomials with this method are given in App. A.

Definition 3.7 is rather general and does not define the mean function to be the best fit to a
sample. In other words, the mean function does not necessarily reveal the physical nature
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of the measured quantity. As an example, the third order polynomial fit, as depicted in
Fig. 3.2, matches the sample better than the straight line. The increase of the order of the
polynomial results in a better fit to the sample values, but can lead to a departure from
the physical phenomena due to the effect of the signal noise.

Since the nature of the physical variation of a quantity and that of the sample noise are
not known, the determination of the best fit requires a more sophisticated approach which
accounts for the physical phenomena being investigated. However, small and low rate
deviations from a steady state can be approximated well by low order terms of the Taylor
series expansions of relevant field variables. This implies that low order polynomials
could be used to approximate such deviations.

Using the mean function as basis, the statistical quantities are defined as follows:

Definition 3.8 For a sample ψdi (x, tj) ∈ Dd, j ∈ [1, N2]N, at a data-point i with a mean
function ψ̃i, N2(x, t) over the time interval τ ∈ [t1, t2], the probability density function
(pdf) of sample is defined as:

fdi, N2 (ζ) : R 7−→ I

fdi, N2 (ζ) := 1
N2

N2
N
j=1

(
ψdi (x, tj)

∣∣∣ [ζ]Dd =
[
ψdi (x, tj)− ψ̃i, N2(x, tj)

]
Dd

) (3.7)

For an unbounded sample the probability density function is:

fdi (ζ) := lim
N2→+∞

fdi, N2 (ζ) (3.8)

�

Definition 3.9 For a sample ψi(x, tj), j ∈ [1, N2]N, at a data-point i with a mean
function ψ̃i, N2(x, t) over the time interval τ ∈ [t1, t2], the variance of sample is defined
as:

σ2
i, N2 (ψi(x, tj)) := 1

N2

N2∑
j=1

(
ψi(x, tj)− ψ̃i, N2(x, tj)

)2
(3.9)

where σi, N2 (ψi(x, tj)) ∈ R� is the standard deviation of sample. For an unbounded
sample the standard deviation is defined as:

σi (ψi(x, tj)) := lim
N2→+∞

σi, N2 (ψi(x, tj)) (3.10)

�

In order to determine the limits of the variation of a signal, the minimum and maximum
deviations of sample from its mean are defined as follows:
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Definition 3.10 For a sample ψi(x, tj), j ∈ [1, N2]N, at a data-point i with a mean
function ψ̃i, N2(x, t) over the time interval τ ∈ [t1, t2], the minimum and maximum
deviation from the mean of sample are defined as follows, respectively:

ε̌ i, N2 (ψi(x, tj)) := min
[1, N2]N

(
ψi(x, tj)− ψ̃i, N2(x, tj)

)
(3.11)

ε̂ i, N2 (ψi(x, tj)) := max
[1, N2]N

(
ψi(x, tj)− ψ̃i, N2(x, tj)

)
(3.12)

and for an unbounded sample:

ε̌ i (ψi(x, tj)) := lim
N2→+∞

ε̌ i, N2 (ψi(x, tj)) (3.13)

ε̂ i (ψi(x, tj)) := lim
N2→+∞

ε̂ i, N2 (ψi(x, tj)) (3.14)

�

The time dependency of a quasi-steady variable is generally unknown. Slight deviations
from steady-state conditions due to slow variations such as a small leakage in a pressure
measurement loop or a small heat transfer rate in a temperature measurement loop, are
usually nearly linear and polynomials of small orders can be used as the mean function
of sample.

3.5 Correlation functions

The statistical analysis at each data-point i ∈ [1, N1]N results in the estimated mean
function, standard deviation, minimum and maximum of sample for a measured variable.

A reference system is usually calibrated according to national standards and the results
of its statistical analysis, including the uncertainty data, are provided in calibration
certificates.

The combination of data-points results in the correlation functions of calibration, which
provide the dependency between field variables and their measured values in a measure-
ment system.

Table 3.1 summarizes one way of the combination of the statistical functions of the
reference and the measurement systems. A subscript “r” is used to indicate a parameter
of the reference system. The reference quantity is a function of the measured quantity,
ϕ̃ = ϕ̃(ψ̃). This function is assumed to be one-to-one and smooth, as is expected from
a measurement system. Other statistical quantities are described as functions of their
corresponding mean function.

The correlation functions can be generated by curve fitting data-point values. Spline
interpolation has the property to preserve the mean and uncertainty values at data-points.



46 Chapter 3. Theory of Local Measurements under Quasi-Steady Conditions

Table 3.1: Summary of the statistical analysis in quasi-steady calibration

Reference Measurement
System System

Mean function of sample ϕ̃(ψ̃) ψ̃

Standard deviation of sample σr(ϕ̃) σ(ψ̃)
Minimum deviation from mean of sample ε̌r(ϕ̃) ε̌(ψ̃)
Maximum deviation from mean of sample ε̂r(ϕ̃) ε̂(ψ̃)

A cubic spline fit provides piecewise-continuous third order polynomials which are
smooth at data-points. In this work third order polynomial is used to approximate the
mean function of sample, as shown in Fig. 3.2, and natural cubic spline is used as
correlation function for the functions in Table 3.1. The mathematical details for function
fitting by splines are given in App. B.

Zero-drift is amongst the effects which are independent from the calibration data and,
therefore, should be superposed on the measurement results. The effect of zero-drift
can be minimized during calibration by minimizing the calibration time and stabiliz-
ing the device and environmental conditions. As mentioned in Sect. 3.3, zero-drift is
considered as a constant δ0 ∈ R� which extends the range of the variation of a signal
as
[
ψ̃ + ε̌(ψ̃)− δ0, ψ̃ + ε̂(ψ̃) + δ0

]
, in which the location of measurement, x, has been

omitted for simplicity.

The internal error of measurement and data/signal processing devices is dependent on
the device characteristics such as sensitivity, stability, and dependency on environmental
conditions. It is usually determined and provided by the manufacturer. Device error is
included in the calibration data of a measurement loop. However, it determines the limit
of maximum achievable accuracy of measurements. Considering δ̌1(ψ̃) and δ̂1(ψ̃) as the
minimum and maximum values of device internal errors for ψ̃ respectively, the range of
the variation of a field variable ψ will be:[

ψ̃ + ∆̌(ψ̃), ψ̃ + ∆̂(ψ̃)
]

:=
[
ψ̃ + δ̌1(ψ̃), ψ̃ + δ̂1(ψ̃)

]
∪[

ψ̃ + ε̌(ψ̃)− δ0, ψ̃ + ε̂(ψ̃) + δ0
] (3.15)

where ∆̌(ψ̃) and ∆̂(ψ̃) are the minimum and maximum overall deviations of ψ̃, respec-
tively.

3.6 Analysis of measured data

Figure 3.3 presents the dependency between the measurement and the reference systems.
The function ϕ̃(ψ̃) prepares the dependency between the measured quantity ψ(x) and
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min or max
limits

Fig. 3.3: Calibration correlation function and the dependency of uncertainty
parameters

the reference quantity ϕ(x).

For each measured value ψ(x), a set D of mean values is found, which contains ψ(x) in
its range of variation:

D :=
[
ψ̃1(x), ψ̃2(x)

]
=
{
ψ̃| ψ(x) ∈

[
ψ̃ + ∆̌(ψ̃), ψ̃ + ∆̂(ψ̃)

]}
(3.16)

D is the set of all possible mean values, for which ψ(x) might have been encountered
during measurements.

If several measurements
i

ψ(x), i ∈ [1,M ]N, are available for the same physical conditions,

then the arithmetic mean ψ̄(x) = ∑M
i=1

i

ψ(x)/M is considered to be the measured value
and its corresponding range of variation is determined from each individual range
i
D = [

i

ψ̃1(x),
i

ψ̃2(x)] as follows:

D =
[

¯̃ψ1(x), ¯̃ψ2(x)
]

=
[

1
M

M∑
i=1

i

ψ̃1(x), 1
M

M∑
i=1

i

ψ̃2(x)
]

(3.17)
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For the pressure measurements in this work, the range of variation for the reference
quantity is given in the form of (Kalibrierschein DPI 610, 2005):[

ϕ̃+ ∆̌(ϕ̃), ϕ̃+ ∆̂(ϕ̃)
]

= [ϕ̃− 2 σ(ϕ̃), ϕ̃+ 2 σ(ϕ̃)] (3.18)

Corresponding to the variation range of the measured quantity, D, a range of variation of
the reference quantity, R, is found so that:

R := [ϕ̃1(x), ϕ̃2(x)]
= { ϕ̃| ψ(x) ∈ D ∧ ϕ(ψ(x)) ∈ [ϕ̃− 2 σ(ϕ̃), ϕ̃+ 2 σ(ϕ̃)]}

(3.19)

R is the variation range of a physical quantity ϕ(x) corresponding to a measured quantity

ψ(x) or a set of measured quantities
i

ψ(x), i ∈ [1, M ]N.

3.7 Propagation of error

The combination of primary or directly measured quantities in order to calculate sec-
ondary or derived quantities is accompanied by the combination of measurement errors.
Depending on the sort of combination, different methods can be used to determine error
ranges for the derived quantities. Two methods of error analysis including the analysis of
error propagation by perturbation method, used for the combination of primary quanti-
ties via real valued analytic functions, and the estimation of error range by numerical
computation are presented in this section.

Generally a measured quantity xi with a deviation δi ∈ [δmin, δmax] may experience all
vales [xi + δmin, xi + δmax]. For an ideal measurement, it is expected that |δi| � |xi|.
Therefore, perturbation parameters εi := δi/xi ∈ (−1, 1) can be used in asymptotic
expansions to determine the resultant of error combinations. In the following examples,
this method is applied to the equations of the data analysis of 5-hole pressure probe
measurements of the next chapter.

As a first example, the generalized form of the pressure coefficients in Sect. 4.5 can be
considered as follows:

y = x1 + x2 + x3

x4 + x5 + x6
(3.20)

Including the deviations and factorizing results in:

y + δ =
(
x1 + x2 + x3

x4 + x5 + x6

) (1 + ε1 + ε2 + ε3

1 + ε4 + ε5 + ε6

)
(3.21)

where δ is the deviation of y as the result of the combination of εi and εi := δi/(x1 +x2 +



Chapter 3. Theory of Local Measurements under Quasi-Steady Conditions 49

x3) for i ∈ [1, 3]N, and εi := δi/(x4 + x5 + x6) for i ∈ [4, 6]N. If |εi| < 1, i ∈ [1, 6]N,
then the second term on the right-hand side can be expanded as follows:

1 + ε1 + ε2 + ε3

1 + ε4 + ε5 + ε6
= 1 + ε (3.22)

ε :=ε1 + ε2 + ε3

−ε4 (ε1 + ε2 + ε3 − ε4)
−ε5 (ε1 + ε2 + ε3 − 2 ε4 − ε5)
−ε6 (ε1 + ε2 + ε3 − 2 ε4 − 2 ε5 − ε6) +O3(ε1, . . . , ε6) (3.23)

where O3(ε1, . . . , ε6) stands for all terms of degree three and higher with respect to ε1

to ε6. If the deviations εi are independent from each other and from xi, then the variation
range of y is determined by the extrema of ε, ε = δ/y ∈ [εmin, εmax]. The determination
of these extrema becomes complicated as the order of the retained terms of the expansion
increases.

The second example is the calculation of velocity from the Mach number, M , and the
static temperature of flow, Tst, i.e. V = M

√
κRTst, in which κ is the isentropic exponent

(and is assumed constant) and R is the gas constant. In a general form this equation can
be written as:

y = k x1
√
x2 (3.24)

where k is a real constant. Including the deviations as above, Eq. (3.24) becomes:

y + δ = k x1
√
x2 · (1 + ε1)

√
1 + ε2 (3.25)

From which:

ε := δ

y
= ε1 + 1

2 ε2 + 1
2 ε1ε2 −

1
8 ε

2
2 +O3(ε1, ε2) (3.26)

The next example is the calculation of the static temperature from:

Tst = T0

(
pst
p0

)κ−1
κ

(3.27)

where the subscripts “st” and “0” denote static and stagnation conditions, respectively.
Considering the general form:

y = x1

(
x2

x3

)k
, (k is a real constant.) (3.28)
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and including the deviations, Eq. (3.28) becomes:

y + δ = x1

(
x2

x3

)k
· (1 + ε1)

(1 + ε2

1 + ε3

)k
(3.29)

From which:

ε := δ

y
= ε1 + k (ε2 − ε3) + k ε1 ε2 + 1

2 k (k − 1) ε2
2

− k ε1 ε3 − k2 ε2 ε3 + 1
2 k (k + 1) ε2

3 +O3(ε1, ε2, ε3) (3.30)

The analytical analysis of the error combinations in the above examples for the first order
terms is straight forward. With the increase of the order of the retained terms of the
expansions, analytical solutions become difficult. This is also the case, if the combination
of measured quantities is complicated, implicit, or is given by multiple functions. An
example is the analysis of error propagation of probe measurements in Sect. 4.5.

One simple and rather general solution to such problems, is a numerical search amongst
all possible values. Although it requires considerable computational time, its simplicity
and generality makes it a method of choice in many applications. In this method, the
variation range of each measured quantity xi+δi ∈ [xi+δi,min, xi+δi,max] is subdivided
and a search algorithm determines the a range of the variation of the derived quantity
y+δ ∈ [y+δmin, y+δmax] by evaluating all possible combinations of primary quantities.
By refining the subdivisions and repeating the procedure a convergence criterion can be
evaluated.

3.8 Conclusions

This chapter provides the theoretical basis for the data analysis of the velocity measure-
ments by pressure probes in the next chapter. A theory is presented for the calibration
under quasi-steady conditions. By including slow signal variations due to external and
device instabilities, it provides a method for on-site calibration with higher accuracy than
the regular methods.

Based on raw calibration data, a complete data analysis for steady state local measure-
ments is presented. The method derives the statistical characteristics of the measured
quantities by direct manipulation of calibration data and without the use of statistical
distribution functions.

The theory developed in this chapter is applied to the pressure probe measurements in the
next chapter. The numerical search algorithm of the previous section is used to compute
error propagation. The results of the application of the uncertainty analysis method are
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shown in Fig. 4.9 (primary quantities) and Fig. 4.10 (derived quantities). The calibration
charts of the pressure measurement loops are presented in App. G.





Chapter 4

Velocity Measurement at the
Compressor Inlet by Pressure Probes

4.1 The test facility

The centrifugal compressor test facility at the Institute of Turbomachinery and Fluid
Dynamics (TFD) is composed of a 1.35 MW motor-driven single stage centrifugal
air compressor capable of operating in closed- and open-loop modes. Figure 4.1 is a
simplified model of the compressor and Fig. 4.2 presents the process flow diagram of the
test facility. A summary of the characteristics and performance data of the test facility is
given in Tab. 4.1.

The compressor inlet consists of inlet guide vanes (IGV) with a hub and a connecting duct
between the IGV and impeller casing, which are designed and optimized for generating
positive pre-swirl . The IGV consists of s-cambered profiles, which are adjustable at
−20°, 0°, 20°, 40°, 60°, and 75° independently. The vane carrier ring provides continuous
circumferential adjustment of the IGV. More information about the inlet section can
be found in Hagelstein et al. (2001), Seume et al. (2007), Van den Braembussche et al.
(2006), and Mohseni et al. (2010).

4.2 Pressure and temperature measurement

Figure 4.3 shows a block diagram of pressure and temperature measurements. The
pressure and temperature signals are acquired by an HP 34970A data acquisition/switch
device (Hewlett-Packard, 1997) and sent to a computer.

Temperature is measured by nickel-chromium/nickel-aluminum, also known as chromel/
alumel, thermocouples categorized as type K in IEC1 584-1, 1995. The type K thermo-

1IEC: International Electrotechnical Commission

53
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Fig. 4.1: The schematic simplified diagram of the compressor with IGV

Table 4.1: The characteristics and performance data of the compressor test facility

Medium: Air

Operating mode: open-loop, closed-loop

Operating speed: 5000 – 18000 rpm
(520 – 1880 rad/s)

Max. design speed: 29000 rpm (3030 rad/s)

Impeller inlet hub diameter: 90 mm

Impeller inlet tip diameter: 280 mm

Impeller outlet diameter: 400 mm

Drive: DC-Motor, 1350 kW,
40 – 1800 rpm (4 – 188rad/s)

Max. total pressure ratio: 2.35
Max. isentropic efficiency based on total values: 83 %

Max. corrected mass flow rate: 9.5 kg/s

Inlet Reynolds number: 2.4× 105 – 1.6× 106

Corrected mass flow rate at best operating point: 5.5 kg/s

Total pressure ratio at best operating point: 1.75
Corrected shaft speed at best operating point: 14500 rpm (1520 rad/s)
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Fig. 4.2: The process flow diagram of the compressor test facility, with
valves positioned for open-loop operation

couple is the most commonly used thermocouple with the specified operating range of
-200 °C to 1100 °C (up to 1300 °C for short duration readings). Its emf1-temperature
dependence is nearly linear. The chemical composition of type K is 90% Ni-10% Cr /
95% Ni, balanced with Al, Si, Mn. In Germany, a slightly different composition is used:
85% Ni-12% Cr / 95% Ni-3% Mn, 2% Al, 1% Si (Michalski et al., 2001).

4.3 Zero-drift of pressure sensors

Prior to measurements all active pressure channels are set to zero. During the measure-
ments, zero-drift causes gradual deviation of the sensors from their unloaded conditions.
Figures 4.4 and 4.5 show the zero-drift of pressure channels during one day. Deviation
from zero is composed of a high frequency variation due to the device and ambient noise
and a low rate or gradual drift. Table G.2 in App. G provides a summary of zero-drift
ranges of the pressure channels during 24 hours. In this work, zero-drift is considered as
an stochastic phenomenon with symmetric range of variation.

1emf: electromotive force
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4.4 Calibration of pressure and temperature measure-
ment loops in quasi-steady conditions

Each pressure and temperature sensor is calibrated in its own measurement loop as shown
in Fig. 4.3 by the method of calibration by comparison. Differential pressure transducers
are calibrated by pressurizing their pressure side while their vacuum side is open to the
ambient. Figure 4.6 characterizes the calibration setups which are the same as their final
setup for the measurements in Fig. 4.3. For each sensor a number of data-points in its
operating range, which covers the expected measurement range for the experiments, is
selected. In a single-point – multi-point configuration and under quasi-steady conditions,
corresponding to a reading from a reference device, a number of readings from the
measurement system is registered. Using the statistical analysis of Ch. 3, the mean value
and error estimation of each data-point is determined. These data are combined into
calibration curves by function fitting. The calibration correlations provide the basis for
the analysis of measured data. The calibration charts of the pressure transmitters are
given in App. G.

4.5 Velocity measurement by 5-hole pressure probes

The velocity of flow at the compressor inlet was measured in three sections, Fig. 4.7,
with 5-hole pressure probes, which are capable of determining all three components of
the velocity. Each probe enters at the shroud and travels perpendicular to the machine
axis towards the hub in a plane which passes through the machine axis.

The coordinate system for pressure probe measurements is defined in Fig. 4.8. For each
probe the reference coordinates is the coordinates, for which the origin is located at the
hub along the probe path, the x1-axis is parallel to the machine axis in the downstream
direction (towards the impeller), the x2-axis is in radial direction towards the machine
axis, and the x3-axis is in circumferential direction. The velocity components of a
velocity vector ~V in the reference system x1 x2 x3 are V1, V2, and V3.

Multi-hole pressure probes are used in calibrated and null-reading modes (Tropea et al.,
2007). In calibrated mode, the probe is fixed and the flow direction is determined from
the calibration correlations. In this mode, the calibration procedure is detailed and
includes rather sophisticated data processing. The advantage is the reduction of the data
acquisition time approximately to the time constants of the measurement system, which
is considerably faster than that of the null-reading mode.

In the null-reading mode, which is used in this work, each probe is rotated around the
x2-axis, Fig. 4.8b, until p2 and p3 become equal. In this way the measurements are
approximately independent from the yaw angle and the calibration time and data reduce



60 Chapter 4. Velocity Measurement at the Compressor Inlet by Pressure Probes

Computer:
Data registration

Reference Temperature
Ice-Water

Thermocouples
immerged in a

liquid bath with
a thermal block

Pressure Calibration Diagram

1p

Temperature Calibration Diagram

ambp : Ambient Pressure

Thermocouple
Type K (NiCr/NiAl)

Reference
Thermocouple

Data Acquisition/
Switch Unit

Temperature
Indicator

Computer:
Data

Registration

Pressure
Header

Pressure Calibrator:
Indicator

+ Pressure
Transducerambp

Manual Data
Transfer

1p

amb1 pp −

Manual Data Transfer

Data
Acquisition/
Switch UnitAbsolute Pressure

Transducer
Electric Potential

)( amb1 ppf −
amb1 pp −

ambp

Electric Potential
)( amb1 ppf −

1p

Mercury
Barometerambp

Manual Data
Transfer

ambp

Fig. 4.6: Calibration setup diagrams

considerably. The dependency of the measured data on the yaw angle reduces to a
correction for the difference between the aerodynamic yaw angle (at which p2 = p3)
and the geometric yaw angle (based on the geometric position of the probe), which is
correlated as the offset of the yaw angle.

Finding the location at which the aerodynamic yaw angle vanishes is dependent on the
relaxation times of the measurement system. Therefore, the measurements in null-reading
mode are considerably slower than that in the calibrated mode.

In a probe measurement plane, Fig. 4.7, if the probe coordinates x1x2x3, Fig. 4.8b, be
indicated as x′1x

′
2x
′
3 at its reference position, then its location, at which p2 = p3, is fully

described by a rotation angle α′, measured from the positive x′1-axis in the x′1x
′
3-plane



Chapter 4. Velocity Measurement at the Compressor Inlet by Pressure Probes 61

Fig. 4.7: The schematic horizontal section of the compressor through the
impeller center line
The three sections (planes 1, 2, and 3) show the locations of the
pressure probes. The reference coordinates of the probes, x1 x2 x3,
are shown at their origins. For the measurements of this work, the
IGV is at zero setting angle and circumferentially located so that
the probes measure in the plane midway between two adjacent
IGV vanes. Dimensions are in mm.

and positive towards the positive x′3-axis, and a length along the x′2-axis which determines
the axial position of the probe. At the balance of p2 and p3, the yaw angle in the probe
coordinates x1x2x3 is given by the offset of the yaw angle as −α0. The yaw angle in the
reference coordinates x′1x

′
2x
′
3 will then be α′ − α0.

The calibration of each probe in the null-reading mode provides the following correlations:

α = α(CY A,M) (4.1)

γ = γ(CPA,M) (4.2)

CDP = CDP (γ,M) (4.3)

CSP = CSP (γ,M) (4.4)

CTP = CTP (γ,M) (4.5)
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Fig. 4.8: The definition of the pressures and coordinates of the 5-hole pres-
sure probes for measurements in calibrated mode (a) 5-hole pres-
sure probe with hole numbering (b) three-dimensional view with
positive yaw, α, and pitch, γ, angles of the flow velocity ~V (c) side
view of the coordinates
The x2-axis coincides with the probe center line. The x1-axis
passes through the pressure hole 1. The coordinate system is at-
tached to the probe and is moved with it. The yaw angle, α, is zero
in null-reading mode. Dimensions are in mm.
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where α is the yaw angle, γ is the pitch angle, M is the Mach number, and:

CY A := p2 − p3

p1 − p̄23
Yaw Angle Coefficient (4.6)

CPA := p4 − p5

p1 − p̄23
Pitch Angle Coefficient (4.7)

CSP := p̄23 − pst
p1 − p̄23

Static Pressure Coefficient (4.8)

CTP := p1 − p0

p1 − p̄23
Stagnation Pressure Coefficient (4.9)

CDP := p1 − p̄23

p1
Dynamic Pressure Coefficient (4.10)

p̄23 := p2 + p3

2 (4.11)

In the above equations, pst is the static pressure, p0 is the stagnation pressure, and pn,
n ∈ [1, 5]N, is the pressure value corresponding to n-th pressure hole of the probe,
Fig. 4.8a.

According to the calibration data, the yaw angle is approximately independent from the
Mach number. The calibration correlations for the probes used in the measurements are
given in App. F. The details of the calibration and measurement by pressure probes can
be found in Bubolz (2005), Gizzi (2000), and Tropea et al. (2007).

The solution of the correlations (4.2) and (4.3) results in the pitch angle and the Mach
number in the probe coordinates. The pitch angle in the probe coordinates x1x2x3, γ,
is measured at p2 = p3 and the pitch angle in the reference coordinates x′1x

′
2x
′
3, γ′ is

calculated as follows:

γ′ = tan−1
(

tan γ
cos(α′ − α0)

)
(4.12)

With the pitch angle and Mach number, the static and dynamic pressures can be calculated
from the correlations (4.4) and (4.5).

The total temperature at the inlet is measured by a half-cylindrical windowed thermocou-
ple. This temperature probe measures the recovery temperature, TR, of the flow with a
recovery factor, r, of approximately 96% – 98% (Dillmann et al., 2007):

TR = Tst + r
V 2

2Cp
= Tst + r (κ− 1)V 2

2κR (4.13)

From the relation between static and stagnation quantities (Wilson and Korakianitis,
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1998):

T0 = Tst

(
pst
p0

)κ−1
κ

(4.14)

and considering that T0 = TR for r = 1, the static temperature and the magnitude of flow
velocity can be calculated as follows:

Tst = TR

1− r + r

(
pst
p0

) 1−κ
κ

(4.15)

V =

√√√√√√√√√√√2
(

κ

κ− 1

)
RTR

1−
(
pst
p0

)κ−1
κ

r + (1− r)
(
pst
p0

)κ−1
κ

(4.16)

These scalar quantities are independent from the coordinates, hence are the same in both
the probe and the reference coordinate systems.

4.6 Results of velocity measurements by pressure probes

The flow measurement at the inlet of the compressor with 5-hole pressure probes consists
of the flow measurement in three planes, Fig. 4.7:

• Upstream of the inlet guide vanes (IGV), plane 1.
• Downstream of the IGV, plane 2.
• Upstream of the impeller, plane 3.

The measurements are performed at the best operating point or the point of maximum
efficiency of the compressor, i.e. at the corrected shaft speed of 16000 rpm and the
corrected mass low rate of 5.87 kg/s. The IGV vanes are at zero setting angle and
circumferentially located so that the plane of the pressure probes is midway between
two adjacent vanes. In these conditions, probe pressures in span-wise direction from
hub to shroud in null-reading mode together with other required quantities, such as the
stagnation temperature in the suction chamber, are registered. For each data-point, ten
readings are registered in order to suppress the unsteady effects in the flow.

The application of the theory of measurements under quasi-steady conditions in Ch. 3
to velocity measurement by five-hole pressure probes is presented in Figs. 4.9 to 4.11.
Figure 4.9 shows the variation of the channel values or the primary quantities of the
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pressure probes in planes 1 and 2. Although the measurement loops are the same, they
show different error levels. The accuracy of the measurements is good enough to capture
flow variations such as the wall effects in shroud-side regions. The resulting pressure
values and their corresponding error ranges are characterized in Figs. 4.10 and 4.11. The
error levels show the difference between measurement channels and have negligible
variation in the span-wise direction. The dependency of the measurement channels and
probe pressures is given in Tab. G.1 in App. G. The method provides the ranges of
uncertainty at each data point, in which the stochastic properties of the channel, the effect
of zero-drift, and the result of error propagation are included. It also reveals the relative
accuracy of each measurement channel.

Figure 4.12 shows the variation of the static and stagnation pressures in span-wise
direction. The difference of the stagnation pressure in planes 1 and 2 is within the range
of their common uncertainty. In the vicinity of the shroud they show the flow losses
in the boundary layer, which are developed along the inlet pipe. The resulting velocity
magnitudes and components and the Mach number variation in span-wise direction in
planes 1, 2, and 3 are shown in Figs. 4.13 and 4.14. Since the IGV is at zero setting
angle, the difference between the velocity magnitude and its axial component is small.
The plausibility of the velocity values were checked with the average velocity values
based on the measured mass flow rate.

In the error analysis of the measured data in this chapter, the uncertainty data of the
pressure probes is excluded. As a future work, the presented calibration method can be
implemented in the calibration of the 5-hole pressure probes, in order to prepare their
uncertainty data.
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Fig. 4.9: Typical results of the steady state measurement of the primary
quantities
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Fig. 4.10: The corresponding pressure values of Fig. 4.9 after data analysis
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Fig. 4.11: Error ranges corresponding to pressure values of Fig. 4.10
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Fig. 4.12: The variation of static and stagnations pressures in planes 1 and
2 in span-wise direction
The indices P1 and P2 represent the planes 1 and 2, respectively.
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Fig. 4.13: Velocity variations in planes 1, 2, and 3 in span-wise direction
The indices P1, P2, and P3 stand for the planes 1, 2, and 3
respectively.
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Fig. 4.14: Variation of Mach number in planes 1, 2, and 3 in span-wise
direction



Chapter 5

PIV Measurement at the Compressor
Inlet

In this chapter, the PIV setup and the measurements in the compressor inlet are presented.
After an introduction to the setup, the calibration and back-transformation of the PIV im-
ages using the method of Ch. 2 are presented. The practical aspects of the measurements
are considered next and are followed by a comparison between the PIV and pressure
probe measurements.

5.1 Endoscopic SPIV setup at the compressor inlet

In particle image velocimetry (PIV) the velocity field in a plane is captured by the
analysis of two successive images from the particles, which move with a fluid flow. The
plane is illuminated with a laser light-sheet and the particle density and the delay between
the images are adjusted so that their local correlation results in a physical velocity field.
At each point in the light-sheet, a camera is capable of capturing the projected locally
averaged velocity in the plane, which passes through the point and is perpendicular to
its line of sight. For instance, a camera mounted normal to a light-sheet can capture the
velocity components in the light-sheet in the vicinity of its line of sight.

In stereoscopic PIV (SPIV) two cameras, whose lines of sights are not parallel with
each other and the light-sheet, are used to capture the three components of velocity
vectors. Based on the optics and the geometry of the SPIV setup, the combination of
the coincident velocity components captured by each camera, results in the full velocity
vector field.

For an oblique angle of view, which is typical in SPIV, in order to have the image in
focus the Scheimpflug criterion (Scheimpflug, 1904) should be satisfied. This criterion
states that in order to have the image in focus in an optical arrangement, if the object,
lens, and image planes are perpendicular to a common plane, then they should intersect
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at a common line. A comprehensive account of PIV and its applications can be found in
Raffel et al. (2007), Tropea et al. (2007) and Westerweel (1993).

Figure 5.1 shows the PIV setup for measurements after the IGV and upstream of the
impeller. Laser light from double oscillator Nd:YAG lasers with a nominal power of
200 mJ/Pulse at a wavelength of 532 nm is guided through a laser arm towards the light-
sheet endoscope. The light-sheet is generated along the endoscope, i.e. at 0° with respect
to the endoscope axis, and its plane passes through the machine axis. The maximum
laser power out of the light-sheet endoscope is about 28 mJ/Pulse. With this amount of
illumination, the measurement results are very sensitive to the settings and the quality
of the setup. DEHS1 atomized by Laskin nozzles is used for seeding. The air stream is
seeded in the suction chamber.

PIV images are recorded by two Sensicam QE double shutter cameras2 equipped with
cooled 12 Bit CCD chips, capable of recording in spectral range of 290 to 1100 nm. The
records are in gray scale with the resolution of 12 Bit, which is 16 times more accurate
than that of 8 Bit cameras. The cameras are able to capture 1376 × 1040 pixel double
images with internal interframing time of 500 ns at 10 Hz. External connections and
cabling increases the overall interframing time of the setup to about 5µs.

Two camera endoscopes with view angles of 0° with respect to the endoscope axis and at
about 45° on the sides of the light-sheet endoscope provide the stereoscopic view of the
light-sheet. The cameras and the laser endoscopes are coplanar. Scheimpflug adapters
are used to enhance the image quality of the cameras.

A two-dimensional view of the PIV measurement section is shown in Fig. 5.2, in which
the geometrical locations of the pressure probes and those of the PIV as well as the
coordinates and location of the PIV data in the flow channel are shown.

The design of the PIV setup provides direct access to the flow channel, in which the en-
doscopes are connected to the casing, as well as indirect access, in which the endoscopes
are not connected to the casing and optical access is provided by small windows. In both
cases the setup provides the ability to clean the optical paths during the measurements.
The arrangement of the setup provides flow investigation near the impeller while main-
taining the background illumination limited. As intended for research work, the setup
favors a simple design with redundant degrees of freedom for adjustments.

1DEHS: Di-ethyl-hexyl-sebacate
2PCO Computer Optics GmbH. Donaupark 11, 93309 Kelheim, Germany. URL: www.pco.de.
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(a)

(b)

Fig. 5.1: Endoscopic stereoscopic PIV setup on the compressor for flow
measurements between the IGV and the impeller
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Fig. 5.2: The PIV measurement section
Shown are the illuminated and measured regions and the location
of the pressure probe planes. PIV planes 1 and 2 are the locations
of PIV data extraction in Fig. 5.11 for comparison with the pressure
probe data. The measured region is limited to a subregion of the
illuminated area. Dimensions are in mm.

5.2 Calibration

The calibration grid, its adjusting mechanism and the calibration images of cameras 1
and 2 are shown in Fig. 5.3. The calibration grid is vertical to the plane of the endoscopes
and consists of a 2 mm× 2 mm rectangular grid of symmetric Gaussian patterns. Two
adjusting screws, allow the adjustment of its position in horizontal plane with the accuracy
of 0.01 mm. At each position the calibration grid can be turned towards each camera.
An L in the grid locates the common origin or the reference point of the images. Due to
manufacturing tolerances, the optical axis of the endoscope may not match its geometrical
axis. This is seen as a downward shift of the reference point of image (c) as compared
with (b). The mismatch between the images results in a reduction of their common area,
which is required in the stereoscopic analysis.

In order to enhance the accuracy of the grid recognition, the noise of the calibration
images can be reduced by averaging. Figure 5.4 shows a subdomain of a calibration
image of camera 1 (left). The noise effect is visible in the background. Arithmetic
averaging over 80 images reduces the noise effect (right). The intensity distribution along
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a row of pixels (shown inverted) reveals the reduction of noise after averaging.

The result of back-transformation using the method of Ch. 2 is shown in Fig. 5.5. The
recombination of the dewarped calibration images shows their common region and a
reduction in the effective region of the measurements. The deviation of the refined grid
from the original grid in the object plane is shown in Fig. 5.6. Except in the vicinity of
an imperfection in the calibration image, the difference between the grid points is under
0.5 mm for both cameras. The distribution of the deviations is not homogeneous. This
is due to the quality of the recognized grid, which is dependent on the accuracy of the
grid in the object plane and the accuracy in the determination of its node locations in the
image plane.

A comparison between the back-projection method presented in Ch. 2 and reconstruction
by an analytic projection is shown in Fig. 5.7. The projection function used, is the ratio
of two second order two-variable polynomials, which is fitted to the grid points by the
non-linear Levenberg-Marquardt algorithm. The images were processed by “PIVmap3”,
a module of the “PIVview” software1, and modified for better view. The expected
locations of the grid points are marked with crosses. The discrete method of Ch. 2,
Fig. 5.7a, shows the same quality of transformation for all nodes. The analytic projection,
Fig. 5.7b, has a good quality of transformation for the inner region of the image, but
shows considerable mismatch between the actual and the expected locations of the nodes
near the boundaries.

In the image reconstruction by fitting analytical functions, the result of the transformation
will have the characteristics of the mapping function. It can compensate for the presence
of local imperfections in the calibration image by using smooth mapping functions. The
effect of such imperfections is seen as local dislocations in Fig. 5.6. If the behavior
of a mapping function matches the real transformation function of an optical system,
stochastic effects such as image noise and local dislocations of grid points will be
compensated during the reconstruction. This is similar to the behavior of the mean
function of sample which is defined in Sect 3.4.

The advantage of the reconstruction method presented in Ch. 2 is the automatic determi-
nation of the source functions, which in turn determine the transformation equations. The
presence of dislocations in the identified grid causes departures of the source functions
from their correct values. The improvement of calibration image, the enhancement of
optical setup and camera settings for better image quality, and the improvement of node
identification procedure are some methods for improving the accuracy of the transfor-
mation. One method for the improvement of the quality of the calibration image by
averaging is shown in Fig. 5.4.

1PIVview, version 2.5, PivTec GmbH, Stauffenbergring 21, D-37075 Göttingen Germany. Homepage:
http://www.pivtec.com
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(a)

(b) (c)

Fig. 5.3: (a) Calibration grid and its adjusting mechanism, (b) and (c) cali-
bration images of camera 1 and camera 2, respectively
The calibration plane can be adjusted in horizontal plane with
0.01 mm accuracy. At each horizontal position, it can be rotated
by relocation for the second camera.
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Fig. 5.4: A sub-domain of a calibration image of camera 1, before (left) and
after averaging (right)
The image contrast and color values have been modified for better
visibility. As a result of averaging, the noise level in the averaged
image, visible in the background, is considerably reduced. The
diagram shows the light intensity distribution along the inverted
row of pixels (black as minimum and white as maximum intensity).

5.3 Measurements

Figure 5.8 shows a typical record of both cameras. The stream of particles is made visible
in the light-sheet. Visible machine parts are black painted to reduce light reflection. The
illuminated particles, regions C in the figure, cover a considerable portion of the visible
region. Secondary light reflections from the impeller leading edges, the impeller hub and
the blade surfaces near the hub are strong enough to distort the particle images (or the
signal). As the seeding particles attach to exposed surfaces, an oil film is formed which
intensifies the effect of the secondary light reflections. A part of the signal is lost due
to the partial mismatch of the camera records as shown in Fig. 5.5c. The slightly out of
focus regions of the images reduce the signal quality. These effects reduce the effective
area of the light-sheet to a smaller measurable region as shown in Fig. 5.2. The regions,
where the signal is distorted by light reflection differ between the cameras. Since the
signal of both cameras are needed for stereoscopic analysis, the lack of the signal of one
camera makes the equivalent signal of the other useless. For this reason, the union of the
regions of both cameras, within which the signal is lost, is subtracted from their common
visible region.

The reconstructed images are shown in Figs. 5.8c and d. The image quality differs
between the cameras. Camera 2 shows a partially out of focus region in the shroud-side,
within which the quality of the cross-correlation is reduced.
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(a) (b)

(c)

Fig. 5.5: Dewarped calibration images of (a) camera 1, (b) camera 2, and
(c) recombined dewarped images of camera 1 (red) and camera 2
(blue)
The image of camera 2 is flipped around the vertical axis, in order
to match the image of camera 1. The image areas are extended
so that their reference points, the corner of the horizontal L in the
grid, coincide with each other. The white region represents the
common region of the cameras.
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(a)

(b)

Fig. 5.6: Distribution of the distances between the nodes in the original grid
and their corresponding nodes in the refined grid (a) camera 1 (b)
camera 2
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(a)

(b)

Fig. 5.7: Comparison between (a) the reconstruction method presented in
Ch. 2 and (b) reconstruction by a second order analytic projection
The locations of the grid points are marked by Gaussian patterns.
The crosses show the expected locations of the grid points. The
enlarged view shows the deviation of the grid points (the Gaussian
patterns) from their expected locations in the border region of
image (b).
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Two further effects which distort the PIV measurements are shown in Fig. 5.9. The
location, direction, and quality of the light-sheet is dependent on the position of the laser
arm. Small movements can result in considerable changes in the light-sheet position.
One source of movement is the vibration of the machine, which propagates both through
the machine foundation and through the connection of the laser arm to the light-sheet
endoscope. The light-sheet reflection, region A, which should be parallel with the
marking B is rotated due to the movement of the laser arm. This movement brings the
light-sheet out of its calibrated position and is a source of error in the measurements.
The out-of-plane components of the velocity field of the measurements is affected by the
light-sheet misalignment and are excluded from the results. The correction of light-sheet
misalignment requires the use of image processing besides the improvement of the
measurement setup.

The accumulation of oil seeding droplets on the optical path is another effect which
reduces or distorts the signal quality. Region C in Fig 5.9 shows blurred particle images
due to droplet formation. This effect can be reduced by providing the seeding only during
the measurements. However, after the third or fourth series of measurements, a cleaning
of the optical ports may be necessary.

If the light sheet matches the calibration plane, its reflection patterns in both images
should coincide after image reconstruction. The movement of the light-sheet or its
misalignment with respect to the calibration plane leads to the mismatch of these patterns
as shown in Fig. 5.10. The exact alignment of the light-sheet in the calibration plane is
also dependent on its light intensity distribution. In internal flow applications, where
the measurement section is not directly accessible, the exact alignment of the light-sheet
is hard to achieve. Partial deviation of the light-sheet from its calibration plane can be
corrected in data analysis (Coudert and Schon, 2001). A method for the correction of the
light-sheet position has not been included in this work and is left as its future extension.

The applicability of the SPIV and the effect of different sources of error presented in this
section for the flow investigation at the inlet of the compressor is further studied by the
analysis of one typical set of measurements in the next section.

5.4 Data analysis and results

In this section the analysis of one typical set of SPIV records is presented and the effect
of several sources of error, discussed in the previous section, are further studied by
quantitative results.

The set of PIV records are visually checked for quality. Acceptable images are dewarped
by using the reconstruction data from the calibration images. The dewarped images
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(a) (b)

(c) (d)

Fig. 5.8: Typical PIV records (a) camera 1, (b) camera 2, (c) camera 1
dewarped, and (d) camera 2 dewarped
Region A is the reflection of the light-sheet and region B is a
rectangular marking on the rotor for the adjustment of the light
sheet. The light-sheet should be parallel to this rectangular region.
Regions C show the measurable part of the image, where the
illuminated particles are distinct from the background. The original
gray-scale levels are replaced by color levels for better visibility.
The color bar in image (b) represents the gray levels and is valid
for all images.
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Fig. 5.9: Rotation of the light-sheet, region A, from its expected direction,
which is along the machine axis and parallel to the rectangle B, and
the effect of droplet formation on the end window of the endoscope,
region C
The original gray-scale levels are replaced by color levels for
better visibility. The color strip indicates gray scale intensities
corresponding to the color distribution.

Fig. 5.10: The location of light-sheet reflection patterns after image recon-
struction for the case of misalignment between the light-sheet
and the calibration plane
The approximate expected location of the light-sheet is shown by
a dashed line. Grid spacing is 2 mm× 2 mm.
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are then analyzed by the “PIVview” software. The following results are the averaged
values over the velocity fields of each pair of the records. The operating conditions of
the compressor is the same as in the pressure probe measurements presented in Sect. 4.6.

Figure 5.11 shows the steady state velocity distribution obtained by averaging in the light-
sheet plane. As expected from the flow condition at zero setting of the IGV the velocity
field is uniform. The velocity distributions on the cross-section of two planes, plane 1 and
plane 2, with the light-sheet plane have been selected for comparison with the pressure
probe results. The location of these planes are 15.6 mm and 19.4 mm downstream of the
pressure probe plane 3, Fig. 5.2, respectively. The obviously incorrect velocity vectors
have been filtered out. However, the magnitude of some velocity vectors in the upper
right and the lower left regions of the vector field is physically not justifiable. The
variation of the magnitude from the inner field towards these regions is continuous,
which makes the verification of the vector values difficult. A comparison of the velocity
measurements by the pressure probes and PIV is presented in Fig. 5.12. The PIV velocity
values are the result of the averaging between 55 double-images. The axial velocity
matches the pressure probe measurements within their uncertainty range. The radial
component, V2, shows more departure from the pressure probe results than the axial
component, V1. For smoother velocity curves, the number of PIV records should be
increased.

The axial and radial velocity components measured by PIV shows good correspondence
with the pressure probe results in the range shown in Fig. 5.12. The out-of-plane or
circumferential component of the velocity, V3, is highly affected by the light-sheet
misalignment and is excluded from this diagram. Out of the shown range, the PIV
velocity components show departure from the probe measurements. This is noticed as a
change in the magnitude of the velocity vectors in the top right and bottom left regions
in Fig. 5.11.

Some of the effects which reduce the measurable region of the PIV images were presented
in the previous section. The misalignment of the light-sheet is a source of error, which
affects the accuracy of the measurements and can cause gradual change in the velocity
magnitude. Machine vibration and the requirement of the optical adjustment of the
light-sheet during measurements are the main causes of the light-sheet misalignment.

The relative movement of optical setup due to machine vibration is another source of
error in the measurements. It is an stochastic phenomenon and is supposed to suppress
by averaging. However, its limits within which the measured values are valid need to be
determined.

The formation of the oil film, from the seeding particles, on the optical paths is a
source of distortion in the PIV images. This effect is shown in the region C of Fig. 5.9.
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Since the formation of the oil film is gradual, the identification or the definition of a
threshold for its effect is not easy. One method of the verification of the resultant velocity
field and the determination of its acceptable range is the uncertainty analysis of the
measurement procedure. This analysis is left as a future extension of the measurement
method presented in this work.



86 Chapter 5. PIV Measurement at the Compressor Inlet

Fig. 5.11: Projected average velocity field on the light-sheet plane
The coordinates x y and the location of the planes 1 and 2 in the
flow channel are shown in Fig. 5.2.
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Fig. 5.12: Comparison between pressure probe and PIV measurements
Shown are the velocity magnitude, V , and its axial, V1, and radial,
V2, components, see Fig. 4.8. The circumferential component of
the velocity, V3, is highly affected by the light-sheet misalignment
and is excluded from the diagram. The indices P2 and P3 indicate
the pressure probe planes 2 and 3, respectively. The PIV planes 1
and 2 are defined in Figs. 5.2 and 5.11.



Chapter 6

Conclusions and Future Work

The main goal of this research work is the development of the endoscopic stereoscopic
PIV for flow investigation in the inlet of a centrifugal compressor. An endoscopic SPIV
setup has been designed and constructed, in which several limitations in the application
of this measurement technique in internal flow investigations have been solved so that
the achievable quality of the PIV records is comparable to that of the traditional PIV.

An existing pressure probe flow measurement is also used in order to verify the PIV
results. In order to improve the accuracy of the flow measurements by the pressure probes,
a theory for calibration under quasi-steady measurements is presented in Ch. 3. Compared
to the current methods of calibration, in which the mean values are considered constant,
in this theory the time variation of the mean values is considered in the calibration
procedure. It provides the uncertainty analysis of the quasi-steady data. Starting from
the calibration data, this chapter provides the mathematical basis for a complete analysis
of the calibration and measurement data and provides methods for the estimation of
measurement error. By the inclusion of the external and internal influences on the
calibration data, the theory not only improves the accuracy of the calibration, but also
provides a method for on-site calibration, where the stable conditions are hard to achieve.

The statistical analysis presented is based on the direct use of the calibration records
without the implementation of the statistical distribution functions. The theory can
be extended to include the distribution functions and methods to find the matching
distribution function to a series of measurements. Also it can be extended to include
multi-point – multi-point mode of data acquisition, which has not been covered in Ch. 3.

Endoscopic SPIV has has been used for the first time to investigate the inlet flow in a
centrifugal compressor. Several practical features of the endoscopic measurements have
been discussed in Ch. 5. The results show the sensitivity of the endoscopic stereoscopic
measurements of internal flows to the reflection of the light from visible machine
components, the quality of the optics, the stability of the position of the light-sheet, the
formation of oil film and droplets on optical paths, the reconstruction of recordings,
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the alignment of light-sheet and calibration plane, and the relative movement of optical
components due to machine vibration. The measurements show the capability of the
measurement setup to measure the velocity field. However, an uncertainty analysis is
required in order to verify the results and to determine the extent of valid data.

In internal flow measurement, the fine adjustment of the light-sheet is hard to achieve.
A data processing method is required for the fine adjustment of the light-sheet on the
calibration plane. Addition of a mechanism which provides movements for cameras
and laser endoscope from measurement position to cleaning and calibration positions is
another improvement which facilitates long-term measurements.

The reconstruction of distorted endoscopic images has been considered in detail in Ch. 2.
A novel method for distortion compensation based on partial differential equations has
been presented. Compared to the current analytical methods, which are capable of partial
reconstruction of the endoscopic distortions, the presented method is capable of full
reconstruction of the distorted images. The method provides a unique solution to a
distortion pattern and is independent from the user interference or judgment. Several
examples presented in Chs. 2 and 5 show the capability of the method to reconstruct
highly distorted images.

The method is based on the iterative numerical solution of the discretized Poisson
equations. The solution of the transformation functions takes considerably more time
than the analytical mappings. Therefore, the method is not suitable for real-time data
analysis. The optimization of the solution procedure or the implementation of a new
solution algorithm to reduce the time of transformation can be considered as a future
work. The implementation of partial differential equations as transformation functions
provides a new class of reconstruction methods for further improvement of the PIV
measurement technique and other image-based optical measurement methods.
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Appendix A

Polynomial Fit with the Method of
Least Squares

Considering a sample {ti, xi}, i ∈ [1, N ]N, in Cartesian coordinates tx, and a real
function x(t; ak) with independent variable t ∈ R and parameters ak ∈ R, the least
squares method is a mathematical procedure for finding a set of parameters ak so that
the sum of the squares of the offsets or residuals of the sample points is minimized
(Weisstein, 2003).

Considering a polynomial of order P :

x(t; ak) =
P∑
k=0

(
ak t

k
)

(A.1)

and the sum of the squares of vertical offsets:

R(ak) =
N∑
i=1

[xi − x(ti; ak)]2 (A.2)

Vertical
offset

Perpendicular
offset

t

)(tx

Fig. A.1: Vertical and perpendicular offsets of a point from a curve
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94 Appendix A. Polynomial Fit with the Method of Least Squares

for R(ak) to be a minimum is required that:

∂R(ak)
∂ak

≡ R,k(ak) = 0 , ∀k ∈ [0, P ]I (A.3)

Inserting from Eqs. (A.1) and (A.2) into Eq. (A.3) results in:

∂

∂ak

N∑
i=1

[
xi −

P∑
k′=0

(
ak′ t

k′

i

)]2

= 0

∴
N∑
i=1

[
tki

(
xi −

P∑
k′=0

(
ak′ t

k′

i

))]
= 0 , ∀k ∈ [0, P ]I (A.4)

∴
P∑

k′=0

[
ak′

N∑
i=1

(
tk
′

i t
k
i

)]
=

N∑
i=1

(
xi t

k
i

)
, ∀k ∈ [0, P ]I (A.5)

Using matrix notation, Eq. (A.5) can be written as:

A ·X = B (A.6)

where the matrices A, X and B are as follows:

A = [Aij](P+1)×(P+1) , Aij =
N∑
k=1

(
tik t

j
k

)
X = [Xi](P+1)×1 , Xi = ai (A.7)

B = [Bi](P+1)×1 , Bi =
N∑
k=1

(
xk t

i
k

)

The solution of Eq. (A.7) is a set of coefficients ak, which determines a polynomial
x(t; ak), Eq. (A.1), with an order not grater than P .

Equation (A.4) for k = 0 shows that for a least squares fit, the sum of the offsets is equal
to zero. Therefore:

Theorem A.1 Let a polynomial x(t; ak) = ∑P
k=0

(
ak t

k
)

be a least squares fit based on
vertical offsets to a sample {ti, xi}, i ∈ [1, N ]N. Then the sum of offsets over all points
will vanish:

P∑
k=0

[xi − x(ti; ak)] = 0 (A.8)
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Appendix B

Spline Interpolation

A spline function of degree k having knots ti, i ∈ [0, N ]I and ti < ti+1, is a function
S(t) : R 7−→ R such that (Kincaid et al., 1991):

1. On each interval [ti, ti+1), S(t) is a polynomial of a degree not grater than k.
2. S(t) is Ck−1 continuous on [t0, tN ]

For a given set of points {(ti, xi)}, i ∈ [0, N ]I and ti < ti+1, a spline function of order
three, also known as cubic spline, is a function S(t):

S(t) =



S0(t) t ∈ [t0, t1]
S1(t) t ∈ [t1, t2]
...

...

SN−1(t) t ∈ [tN−1, tN ]

(B.1)

in which Si(t) = a0,i + a1,i t+ a2,i t
2 + a3,i t

3, i ∈ [0, N − 1]I, are cubic polynomials
and satisfy:

x0 = S0(t0)
xN = SN−1(tN)
xj = Si−1(ti) = Si(ti) , i ∈ [0, N − 1]I (B.2)

S ′i−1(ti) = S ′i(ti)
S ′′i−1(ti) = S ′′i (ti)

where S ′(t) := dS/dt and S ′′(t) := d2S/dt2. Defining zi := S ′′i (ti) and hi := ti+1 − ti,
the second derivative of Si(t) is calculated as:

S ′′i (t) = 1
hi

[zi(ti+1 − t) + (t− ti)] , i ∈ [0, N − 1]I (B.3)
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96 Appendix B. Spline Interpolation

Integrating Eq. (B.3) using conditions (B.2) results in:

Si(t) = 1
6hi

[
zi (ti+1 − t)3 + zi+1(t− ti)3

]
+
(
xi+1

hi
− zi+1 hi

6

)
(t− ti) +

(
xi
hi
− zi hi

6

)
(ti+1 − t)

, i ∈ [0, N − 1]I (B.4)

S ′i(t) = 1
2hi

[
−zi(ti+1 − t)2 + zi+1(t− ti)2

]
+ xi+1 − xi

hi
− hi

6 (zi+1 − zi)
, i ∈ [0, N − 1]I (B.5)

The continuity condition for S ′(t), Eq. (B.2), is used to determine zi:

hi−1zi−1+2 (hi−1 + hi) zi+hizi+1 = 6
(
xi+1 − xi

hi
− xi − xi−1

hi−1

)
, i ∈ [0, N − 1]I

(B.6)

Solution of this tridiagonal diagonally dominant system of equations, requires that z0 and
zN be known. In the case of z0 = zN = 0, S(t) in Eq. (B.1) is called natural cubic spline.
It is evident that for a cubic spline fit a minimum of three points is required, N ≥ 2.



Appendix C

Gaussian Function

In a right handed Cartesian coordinate system Oxyz in R3 the elliptic Gaussian function
centered on the line (x0, y0, z) and rotated around it by an angle θ (measured from
x+-axis and positive in the direction towards y+-axis) is (Weisstein, 2003):

z(x, y) = k exp
[
− [(x− x0) cos θ + (y − y0) sin θ]2

a2

− [−(x− x0) sin θ + (y − y0) cos θ]2

b2

] (C.1)

where {a, b, k} ⊂ R+ and θ ∈ (−π, π]. An equivalent form of Eq. (C.1) is:

z(x, y) = exp
(
c00 + c10 x+ c20 x

2 + c01 y + c11 x y + c02 y
2
)

(C.2)

in which:

c00 = ln(k)− (x0 cos θ + y0 sin θ)2

a2 − (x0 sin θ − y0 cos θ)2

b2 (C.3a)

c10 = 2 cos θ (x0 cos θ + y0 sin θ)
a2 + 2 sin θ (x0 sin θ − y0 cos θ)

b2 (C.3b)

c01 = 2 sin θ (x0 cos θ + y0 sin θ)
a2 − 2 cos θ (x0 sin θ − y0 cos θ)

b2 (C.3c)

c11 = −2 sin θ cos θ
( 1
a2 −

1
b2

)
(C.3d)

c20 = −(cos θ)2

a2 − (sin θ)2

b2 ⇒ c20 ∈ R− (C.3e)

c02 = −(sin θ)2

a2 − (cos θ)2

b2 ⇒ c02 ∈ R− (C.3f)

97



98 Appendix C. Gaussian Function

or with rearrangement for 2θ:

c00 = ln(k)− p(x2
0 + y2

0)− q
[
(x2

0 − y2
0) cos(2θ) + 2 x0 y0 sin(2θ)

]
(C.4a)

c10 = 2 p x0 + 2 q (x0 cos(2θ) + y0 sin(2θ)) (C.4b)

c01 = 2 p y0 + 2 q (x0 sin(2θ)− y0 cos(2θ)) (C.4c)

c11 = −2 q sin(2θ) (C.4d)

c20 = −p− q cos(2θ) ⇒ c20 ∈ R− (C.4e)

c02 = −p+ q cos(2θ) ⇒ c02 ∈ R− (C.4f)

where:

p = 1
2

( 1
a2 + 1

b2

)
, q = 1

2

( 1
a2 −

1
b2

)
, p ∈ R+, q ∈ R (C.5)

a2 = 1
p+ q

, b2 = 1
p− q

(C.6)

The parameters x0, y0, θ, k, p, and q are calculated from Eqs. (C.4a) to (C.4f) as follows:

x0 = 2 c10 c02 − c11 c01

∆ (C.7a)

y0 = 2 c20 c01 − c11 c10

∆ (C.7b)

tan(2θ) = c11

c20 − c02
(C.7c)

k = exp
(
c00 + c2

10 c02 − c10 c11 c01 + c20 c
2
01

∆

)
(C.7d)

p = −c20 + c02

2 (C.7e)

q = − c20 − c02

2 cos(2θ) (C.7f)

where c20 6= c02, θ 6= ±π/4 and

∆ := c2
11 − 4 c20 c02 (C.8a)

Inserting from Eqs. (C.4d), (C.4e), (C.4f) in Eq. (C.8a) and using Eq. (C.6) gives:

∆ = 4 q2 sin2(2θ)− 4
(
p2 − q2 cos2(2θ)

)
∴ ∆ = 4

(
q2 − p2

)
= −4
a2 b2 ⇒ ∆ ∈ R− (C.8b)

Also from Eqs. (C.4a) to (C.4f) the domain of θ is (−π/2, π/2].
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Special cases

Case I

When c20 = c02, from Eqs. (C.4e) and (C.4f):

q cos(2θ) = 0 ⇒


q = 0 ⇔ a = b

or

θ = ±π/4 (see Case II)
(C.9)

With q = 0 or a = b the Gaussian function is called circular Gaussian function and
is centered on the line (x0, y0, z). For this case Eqs. (C.4a) to (C.4f) are simplified as
follows:

c00 = ln(k)− p(x2
0 + y2

0) (C.10a)

c10 = 2 p x0 (C.10b)

c01 = 2 p y0 (C.10c)

c11 = 0 (C.10d)

c20 = −p (C.10e)

c02 = −p (C.10f)

from which:

x0 = − c10

2 c20
(C.11a)

y0 = − c01

2 c02
(C.11b)

k = exp
(
c00 −

c2
10 + c2

01
4 c20

)
(C.11c)

p = −c20 = −c02, {c20, c02} ⊂ R− (C.11d)

(C.12)

Case II

When θ = ±π/4, from Eqs. (C.4a) to (C.4f):

c00 = ln(k)− p(x2
0 + y2

0)− 2 q x0 y0 sin(2θ) (C.13a)

c10 = 2 p x0 + 2 q y0 sin(2θ) (C.13b)

c01 = 2 p y0 + 2 q x0 sin(2θ) (C.13c)

c11 = −2 q sin(2θ) (C.13d)



100 Appendix C. Gaussian Function

c20 = −p (C.13e)

c02 = −p (C.13f)

from which:

x0 = 2 c10 c02 − c11 c01

∆ (C.14a)

y0 = 2 c20 c01 − c11 c10

∆ (C.14b)

k = exp
(
c00 + c2

10 c02 − c10 c11 c01 + c02 c
2
01

∆

)
(C.14c)

p = −c20 = −c02, {c20, c02} ⊂ R− (C.14d)

q = − c11

2 sin(2θ) (C.14e)



Appendix D

Nonlinear Function Fitting

We consider the problem of fitting a real scalar function f of N real variables xi and
K real parameters βj to M expected function values using non-linear least-squares
optimization with the Levenberg-Marquardt algorithm originally presented by Levenberg
(1944) and Marquardt (1963):

{(kx1, . . . ,
k
xN ,

k
y0)}, k ∈ [1, M ]N (D.1)

y = f (xi; βj) : RN 7−→ R, i ∈ [1, N ]N , j ∈ [1, K]N (D.2)

Levenberg-Marquardt algorithm

With a set of residuals defined as:

k

R := k
y − k

y0 ≡ f(kxi; βj)−
k
y0, k ∈ [1, M ]N (D.3)

the problem is to find a set of parameters {βj}, j ∈ [1, K]N, which minimizes:

R :=
M∑
k=1

(
k

R)2 (D.4)

Using Taylor series expansion over the parameters at a fixed point (xi) = (x1, . . . , xN)
(Bronshtein et al., 2007, p. 417):

f(xi; βj + δj) = f(xi; βj) +
K∑
k=1

∂f(xi; βj)
∂βk

δk +O[δ2
k], δk ∈ R (D.5)
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the residuals and their sum of squares can be approximated by the first order terms of
this expansion:

k

R̃ := f(kxi; βj) +
K∑
m=1

∂f(kxi; βj)
∂βm

δm

− k
y0 (D.6)

R̃ :=
M∑
k=1

f(kxi; βj) +
K∑
m=1

∂f(kxi; βj)
∂βm

δm

− k
y0

2

(D.7)

where (δn) ∈ RK . If (δn)→ 0 then R̃→ R.

Considered as a function of (δn), the non-negative function R̃ can be minimized using
the standard least-squares method by setting all of its partial derivatives with respect to
δn equal to zero:

∂R̃

∂δn
= 0, ∀n ∈ [1, K]N (D.8)

Applying Eq. (D.8) to Eq. (D.7) results in:

M∑
k=1

∂f(kxi; βj)
∂βn

f(kxi; βj) +
K∑
m=1

∂f(kxi; βj)
∂βm

δm

− k
y0

 = 0, ∀n ∈ [1, K]N

∴
M∑
k=1

∂f(kxi; βj)
∂βn

(
f(kxi; βj)−

k
y0

)+

M∑
k=1

K∑
m=1

∂f(kxi; βj)
∂βn

· ∂f(kxi; βj)
∂βm

δm

 = 0, ∀n ∈ [1, K]N (D.9)

Iterative solution of Eq. (D.9) for (δm) and updating (βm) can minimize R̃. For simplicity,
matrix notation is used for the rest of the derivations.

Matrix definitions:

A = [Amn]M×K , Amn := ∂f(mxi; βj)
∂βn

, m ∈ [1, M ]N , n ∈ [1, K]N (D.10)

B = [Bmn]K×K , Bmn :=
M∑
k=1

∂f(kxi; βj)
∂βm

· ∂f(kxi; βj)
∂βn

,
m, n ∈ [1, K]N (D.11)
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C = [Cm]K×1, Cm :=
M∑
k=1

∂f(kxi; βj)
∂βm

(
−f(kxi; βj) + k

y0

),
m ∈ [1, K]N (D.12)

D = [Dm]K×1, Dm := δm, m ∈ [1, K]N (D.13)

E = [Em]M×1, Em := −f(mxi; βj) + m
y0, m ∈ [1, M ]N (D.14)

From Eqs. (D.10) and (D.11):

B = AT ·A (D.15)

and from Eqs. (D.14) and (D.15):

C = (ET ·A)T = AT ·E (D.16)

where the superscript T denotes matrix transposition. With these definitions, Eqs. (D.7)
and (D.9) in matrix notation are:

R̃ = (A ·D −E)T · (A ·D −E) (D.17)

B ·D = C (D.18)

Theorem D.1 (Marquardt, 1963, p. 434) Let λ ≥ 0 be arbitrary and let

D0 = [D0,m]K×1, D0,m := δ0,m, m ∈ [1, K]N (D.19)

satisfy the equation:

(B + λI) ·D0 = C (D.20)

Then D0 minimizes R̃ on a sphere in RK whose radius
√
DT ·D satisfies:

DT ·D = DT
0 ·D0 (D.21)

Proof: In order to find a vector D which optimizes Eq. (D.17) under the constraint
(D.21), the Lagrange method requires:

∂u

∂Dn

= ∂u

∂δn
= 0, ∀n ∈ [1, K]N (D.22)
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where

u(δi, λ) = u(D, λ) := R̃ + λ(DT ·D −DT
0 ·D0) (D.23)

and λ ∈ R is the Lagrange multiplier. Equation (D.22) together with Eq. (D.21) are the
necessary conditions for R̃ to become stationary.

From Eqs. (D.7) and (D.13):

u =
M∑
k=1

f(kxi; βj) +
K∑
m=1

∂f(kxi; βj)
∂βm

δm

− k
y0

2

+ λ ·
K∑
m=1

(
δ2
m − δ2

0,m

)
(D.24)

From Eqs. (D.22) and (D.24):

M∑
k=1

∂f(kxi; βj)
∂βn

f(kxi; βj) +
K∑
m=1

∂f(kxi; βj)
∂βm

δm

− k
y0



+ λδn = 0, ∀n ∈ [1, K]N

∴
M∑
k=1

∂f(kxi; βj)
∂βn

(
f(kxi; βj)−

k
y0

)
+

M∑
k=1

K∑
m=1

∂f(kxi; βj)
∂βn

· ∂f(kxi; βj)
∂βm

δm

+ λδn = 0,

∀n ∈ [1, K]N (D.25)

Equation (D.25) in matrix form is:

(B + λI) ·D0 = C (D.26)

in which D0 is the value of D for which Eq. (D.26) holds.

Expanding Eq. (D.17) by its components gives:

R̃ =
M∑
i=1

 K∑
j=1

(Aij Dj)− Ei

2

(D.27)

For D = 0, R̃ = ET ·E ≥ 0. Starting from 0, D can be arbitrary chosen to reduce R̃.
It can also be chosen so that R̃ → +∞. Since R̃ is non-negative and continuous, for
continuous variation of D, D0 in Eq. (D.26) minimizes R̃. �
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Scaling of variables

In the following, scaled variables and parameters are denoted by “∗” as superscript.

From Eq. (D.26):

K∑
n=1

[(
Bmn√

Bmm

√
Bnn

+ λImn√
Bmm

√
Bnn

)
D0,n

√
Bnn

]
= Cm√

Bmm

,

∀m ∈ [1, K]N (D.28)

∴
K∑
n=1

[
(B∗mn + λI∗mn)D∗0,n

]
= C∗m, ∀m ∈ [1, K]N (D.29)

or (B∗ + λI∗) ·D∗0 = C∗ (D.30)

where:

B∗ = [B∗mn]K×K :=
[

Bmn√
Bmm

√
Bnn

]
K×K

(D.31)

I∗ = [I∗mn]K×K :=
[

Imn√
Bmm

√
Bnn

]
K×K

(D.32)

C∗ = [C∗m]K×1 :=
[

Cm√
Bmm

]
K×1

(D.33)

D∗ = [D∗n]K×1 :=
[
Dn

√
Bnn

]
K×1

⇔ D =
[
D∗n√
Bnn

]
K×1

(D.34)





Appendix E

Discretization

For a rectangular structured grid in two-dimensional Cartesian coordinates ξ1ξ2 with
constant grid spacings δ1 and δ2 along ξ1 and ξ2 axes, Fig. E.1, the discretized derivatives
of a real function u(ξ1, ξ2) are as follows (Tannehill et al., 1997):

u,1|i,j = ui+1, j − ui−1, j

2δ1
+O(δ2

1) (E.1)

u,1|i,j = −3 ui, j + 4 ui+1, j − ui+2, j

2δ1
+O(δ2

1) (E.2)

u,1|i,j = 3 ui, j − 4 ui−1, j + ui−2, j

2δ1
+O(δ2

1) (E.3)

u,11|i,j = ui+1, j − 2 ui, j + ui−1, j

δ2
1

+O(δ2
1) (E.4)

u,11|i,j = 2 ui, j − 5 ui+1, j + 4 ui+2, j − ui+3, j

δ2
1

+O(δ2
1) (E.5)

u,11|i,j = 2 ui, j − 5 ui−1, j + 4 ui−2, j − ui−3, j

δ2
1

+O(δ2
1) (E.6)

u,12|i,j = ui+1, j+1 − ui+1, j−1 − ui−1, j+1 + ui−1, j−1

4 δ1 δ2
+O(δ2

1, δ
2
2) (E.7)

Fig. E.1: Definitions of discretization on rectangular grid
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u,12|i,j = ui+1, j+1 − ui+1, j−1 − ui, j+1 + ui, j−1

2 δ1 δ2
+O(δ1, δ

2
2) (E.8)

u,12|i,j = ui, j+1 − ui, j−1 − ui−1, j+1 + ui−1, j−1

2 δ1 δ2
+O(δ1, δ

2
2) (E.9)

u,12|i,j = ui+1, j+1 − ui+1, j − ui−1, j+1 + ui−1, j

2 δ1 δ2
+O(δ2

1, δ2) (E.10)

u,12|i,j = ui+1, j − ui+1, j−1 − ui−1, j + ui−1, j−1

2 δ1 δ2
+O(δ2

1, δ2) (E.11)

u,12|i,j = ui+1, j − ui+1, j−1 − ui, j + ui, j−1

δ1 δ2
+O(δ1, δ2) (E.12)

u,12|i,j = ui, j+1 − ui, j − ui−1, j+1 + ui−1, j

δ1 δ2
+O(δ1, δ2) (E.13)

u,12|i,j = ui, j − ui, j−1 − ui−1, j + ui−1, j−1

δ1 δ2
+O(δ1, δ2) (E.14)

u,12|i,j = ui+1, j+1 − ui+1, j − ui, j+1 + ui, j
δ1 δ2

+O(δ1, δ2) (E.15)

where a comma in the subscript denotes partial derivatives, for example:

u,12 := ∂u(ξ1, ξ2)
∂ξ1∂ξ2

(E.16)

The discretized forms of u,2 and u,22 are derived from u,1 and u,11 in the above equations
by replacing δ1 with δ2 and interchanging the increments of the indices i and j.

The order of the discretization equations is two at internal nodes and two or mixed one
and two at boundary nodes.



Appendix F

Calibration Correlations of 5-hole
Pressure Probes

The correlation functions of the calibration of the 5-hole pressure probes, Eqs. (4.1) to
(4.5), for the null-reading mode of measurements are as follows:

The yaw angle, α, and its offset, α0, are approximately independent from the Mach
number:

Probe No. 3190: M ∈ [0.1939012, 0.6836150]

α(CY A,M)=− CY A / 0.04293 (F.1)

α0(γ,M) =1.02248× 10−4 γ2 + 0.0171408 γ − 1.11850 (F.2)

Probe No. 3192: M ∈ [0.1856182, 0.69668]

α(CY A,M)=− CY A / 0.04293 (F.3)

α0(γ,M) =− 9× 10−7 γ4 + 10−6 γ3 + 8× 10−5 γ2

− 0.0044 γ + 4.2298 (F.4)

Probe No. 3194: M ∈ [0.185459704, 0.705275306]

α(CY A,M)=− 24.38CY A (F.5)

α0(γ,M) =0.0003 γ2 + 0.0079 γ − 1.8 (F.6)

The equations of the offset angle α0 are the correlations of the differences between the
geometric and the aerodynamic yaw angles. It is subtracted from the measured yaw angle
to give the geometric yaw angle.
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The correlation functions of the pitch angle and the pressure coefficients are as follows:

γ(CPA, M) =
6∑
i=0

ai(M) Ci
PA (Table F.1) (F.7)

CDP (γ, M) =
5∑
i=0

bi(M) γi (Table F.2) (F.8)

CSP (γ, M) =
4∑
i=0

ci(M) γi (Table F.3) (F.9)

CTP (γ, M) =
5∑
i=0

di(M) γi (Table F.4) (F.10)

All angles in the above equations are in degrees. The calibration range of the pitch angle
for the pressure probes 3190 and 3192 is γ ∈ [−40°, +40°] and for the probe 3094 is
γ ∈ [−49°, +49°].

The coefficients of the calibration correlations of the pressure probes 3190, 3192, and
3194 are given in the following tables.
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Table F.1: The coefficients of the pitch angle correlation, Eq. (F.7)

M a6(M) a5(M) a4(M) a3(M) a2(M) a1(M) a0(M)
Probe: 3190

0.1939012 0.0 -40.35255 +9.791615 +69.85431 -8.881632 -74.26935 -1.037767
0.2971538 0.0 -39.01608 +12.41779 +67.52198 -10.24983 -73.40699 -1.286507
0.4529735 0.0 -41.57831 +11.20979 +68.60669 -8.873537 -71.79849 -1.686656
0.6006941 0.0 -34.65609 +11.32417 +59.37358 -8.677521 -65.88210 -1.899256
0.6836150 0.0 -41.78831 +18.45139 +58.08616 -10.39595 -61.54189 -1.926609

Probe: 3192

0.1856182 +70.277 -22.774 -101.16 +40.348 +48.585 -72.519 -12.629
0.3017698 +111.48 +3.0102 -112.98 +44.368 +48.343 -76.833 -11.854
0.431311 +43.369 -55.596 -75.712 +70.967 +40.727 -76.721 -10.394
0.605941 +61.607 -54.775 -84.308 +71.708 +39.365 -73.797 -9.2559
0.69668 +77.787 -103.84 -68.734 +87.404 +36.075 -73.107 -9.3391

Probe: 3194

0.185459704 0.0 0.0 0.0 0.0 7.40747 -69.1117 +0.8967410
0.299448952 0.0 0.0 0.0 0.0 3.97168 -69.3155 +1.0198900
0.447947891 0.0 0.0 0.0 0.0 1.41475 -67.5631 +0.5916590
0.611408367 0.0 0.0 0.0 0.0 -1.71097 -65.2393 -0.444
0.705275306 0.0 0.0 0.0 0.0 7.93469 -66.5562 -1.2746200
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Table F.2: The coefficients of the dynamic pressure correlation, Eq. (F.8)

M b5(M) b4(M) b3(M) b2(M) b1(M) b0(M)
Probe: 3190

0.1939012 0.0 -1.271796E-09 +7.689452E-08 -3.149368E-07 -1.416386E-04 2.172675E-02
0.2971538 0.0 -1.910896E-09 +1.695330E-07 -2.106573E-06 -2.920607E-04 4.770339E-02
0.4529735 0.0 -6.175179E-09 +2.912469E-07 -2.614237E-07 -5.046550E-04 1.027185E-01
0.6006941 0.0 -6.094900E-09 +4.806842E-07 -7.471407E-06 -8.280554E-04 1.641070E-01
0.6836150 0.0 -8.633687E-09 +5.737960E-07 -4.792790E-06 -1.025619E-03 1.950618E-01

Probe: 3192

0.1856182 -2E-11 -6E-10 +8E-08 -3E-07 -9E-05 +0.0208
0.3017698 -9E-13 -2E-10 +1E-07 -3E-06 -0.0002 +0.0499
0.431311 -9E-12 -2E-09 +2E-07 -4E-06 -0.0003 +0.1071
0.605941 -9E-12 -9E-10 +4E-07 -1E-05 -0.0005 +0.1754
0.69668 1E-10 -3E-09 +2E-07 -7E-06 -0.0006 +0.213

Probe: 3194

0.185459704 0.0 -4.7374E-10 +3.1900E-08 +3.2296E-07 -4.6355E-05 +2.21E-02
0.299448952 0.0 +1.23787E-10 +3.93440E-08 -2.21834E-06 -8.32112E-05 +5.54E-02
0.447947891 0.0 -2.6527E-09 +2.8801E-08 +3.9616E-07 -1.0688E-04 +1.20E-01
0.611408367 0.0 +9.0989E-10 +2.0502E-07 -5.4623E-06 -4.0243E-04 +2.02E-01
0.705275306 0.0 -4.4527E-09 +1.0194E-07 +1.5034E-06 -3.2614E-04 +2.55E-01
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Table F.3: The coefficients of the static pressure correlation, Eq. (F.9)

M c4(M) c3(M) c2(M) c1(M) c0(M)
Probe: 3190

0.1939012 +8.512461E-08 -4.305837E-06 +1.585613E-06 +8.514497E-03 +0.2200743
0.2971538 +5.027508E-08 -4.601377E-06 +7.797571E-05 +8.468228E-03 +0.2640518
0.4529735 +7.823675E-08 -3.665374E-06 +2.121983E-05 +6.519854E-03 +0.2833294
0.6006941 +4.670087E-08 -4.090756E-06 +8.161113E-05 +7.225924E-03 +0.3339905
0.6836150 +5.437153E-08 -4.044247E-06 +5.671979E-05 +7.332332E-03 +0.3895203

Probe: 3192

0.1856182 0.0 -3E-06 +6E-05 +0.0048 +0.169
0.3017698 0.0 -2E-06 +8E-05 +0.0033 +0.1676
0.431311 0.0 -3E-06 +8E-05 +0.005 +0.2404
0.605941 0.0 -3E-06 +1E-04 +0.0043 +0.264
0.69668 0.0 -3E-06 +8E-05 +0.0044 +0.2973

Probe: 3194

0.185459704 +2.48824E-08 -1.27591E-06 -3.18356E-05 +2.20509E-03 +9.07E-02
0.299448952 -8.5824E-09 -4.9689E-07 +3.7846E-05 +1.4893E-03 +9.83E-02
0.447947891 +1.94926E-08 +8.29384E-08 -1.10352E-05 +6.92042E-04 +7.40E-02
0.611408367 -1.5869E-08 -1.0106E-06 +3.4229E-05 +2.1588E-03 +1.10E-01
0.705275306 +1.1794E-08 -2.2791E-07 -3.1123E-06 +1.2092E-03 +1.09E-01
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Table F.4: The coefficients of the total pressure correlation, Eq. (F.10)

M d5(M) d4(M) d3(M) d2(M) d1(M) d0(M)
Probe: 3190

0.1939012 0.0 0.0 -3.097339E-07 -1.640291E-05 +4.979787E-04 +2.370160E-02
0.2971538 0.0 -7.567600E-09 -1.173732E-07 +1.056577E-05 +3.553459E-04 +1.603981E-02
0.4529735 0.0 -1.046248E-08 -1.112873E-07 +1.667853E-05 +4.329132E-05 +3.482588E-03
0.6006941 0.0 -1.350092E-08 -2.641646E-07 +1.297179E-05 +2.295971E-04 +1.748392E-02
0.6836150 0.0 -1.001014E-08 -8.478926E-08 +4.548147E-06 -2.841884E-04 +1.647617E-02

Probe: 3192

0.1856182 -6E-10 -4E-09 +9E-07 -3E-06 +2E-05 +0.0335
0.3017698 +2E-10 -1E-08 -6E-07 +1E-05 +0.0003 +0.0109
0.431311 +5E-11 -8E-09 -4E-07 +7E-06 +0.0003 +0.0588
0.605941 -2E-10 -2E-08 +5E-08 +2E-05 +5E-05 +0.0134
0.69668 -3E-10 -1E-08 +8E-08 +2E-05 -0.0002 -0.0006

Probe: 3194

0.185459704 0.0 +1.4178E-09 +2.5959E-07 -1.6651E-05 -3.5340E-05 +1.83E-02
0.299448952 0.0 -8.23839E-09 +2.43118E-07 -7.18602E-06 -1.79302E-04 +1.05E-02
0.447947891 0.0 -5.7386E-09 +3.6207E-07 -8.5615E-06 -2.9490E-04 +4.76E-03
0.611408367 0.0 -1.3806E-08 +9.3093E-08 +3.0019E-06 -7.2720E-05 +9.81E-03
0.705275306 0.0 -9.4989E-09 +2.7263E-07 +2.3972E-06 -2.8057E-04 +4.61E-03



Appendix G

Calibration Charts

This appendix presents the calibration charts of the ambient absolute pressure transmitter
and the pressure transmitters used in 5-hole probe measurements. The channel assign-
ments to the pressure probes and the zero-drift of the pressure channels are given in the
following tables. The nomenclature of the probe pressures is given in Fig. 4.8a.

Table G.1: Channel assignment of pressure probes

Probe Pressure Channel Number

Probe No. 3190: Plane 1
p1 301
p2 302
p2 − p3 303
p4 − p5 305

Probe No. 3194: Plane 2
p1 306
p2 307
p2 − p3 308
p4 − p5 309

Probe No. 3192: Plane 3
p1 310
p2 311
p2 − p3 312
p4 − p5 313
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Table G.2: Maximum zero-drift of pressure channels during 24 hours

Channel No. Channel Value Channel No. Channel Value
[VDC] [VDC]

201 ±0.002 301 ±0.0015
202 ±0.004 302 ±0.002
203 ±0.001 303 ±0.001
204 ±0.001 305 ±0.0045
205 ±0.002 306 ±0.003
206 ±0.003 307 ±0.0005
207 ±0.002 308 ±0.001
211 ±0.001 309 ±0.0015
212 ±0.001 310 ±0.0025
213 ±0.003 311 ±0.0006

312 ±0.0005
313 ±0.001
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Fig. G.1: Barton-cell absolute pressure transmitter for the measurement of
the ambient pressure
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Fig. G.2: Pressure channel 301, corresponding to the pressure p1 of the
probe in plane 1
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Fig. G.3: Pressure channel 302, corresponding to the pressure p2 of the
probe in plane 1



118 Appendix G. Calibration Charts

-1 0 1 2 3 4 5

-20 -15 -10 -5 0 5 10 15 20

-50

0

50

100

150

200

-3

-2

-1

0

1

2

3

Fig. G.4: Pressure channel 303, corresponding to the pressure p2 − p3 of
the probe in plane 1
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Fig. G.5: Pressure channel 305, corresponding to the pressure p4 − p5 of
the probe in plane 1
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Fig. G.6: Pressure channel 306, corresponding to the pressure p1 of the
probe in plane 2
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Fig. G.7: Pressure channel 307, corresponding to the pressure p2 of the
probe in plane 2
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Fig. G.8: Pressure channel 308, corresponding to the pressure p2 − p3 of
the probe in plane 2
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Fig. G.9: Pressure channel 309, corresponding to the pressure p4 − p5 of
the probe in plane 2
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Fig. G.10: Pressure channel 310, corresponding to the pressure p1 of the
probe in plane 3
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Fig. G.11: Pressure channel 311, corresponding to the pressure p2 of the
probe in plane 3
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Fig. G.12: Pressure channel 312, corresponding to the pressure p2 − p3 of
the probe in plane 3
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Fig. G.13: Pressure channel 313, corresponding to the pressure p4 − p5 of
the probe in plane 3
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