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Prologue

This advanced textbook "Advanced Neural Networks: Finance, Forecast, And Other
Applications" by Dr. Hans-Jörg Henri von Mettenheim (Master of Economics 2003,
Master of Mathematics 2008, Dr. rer. pol. 2009, all from Leibniz Universität Han-
nover) is based on his Ph.D. thesis. Dr. von Mettenheim carefully develops both
theory and implementation of so-called matrix prognosis models for general time
series. All time series must be aligned on a regular time scale. Matrix prognosis
stands for simultaneous prognoses of both many time series and multi-time steps.
This matrix prognosis must be robust, i.e. the model must be easily trainable and
adjustable and it must be — more or less — persistent in time.

Dr. von Mettenheim first builds his new, innovative mathematical theory of artifi-
cial neural networks with a shared layer perceptron topology. The essential differ-
ence to standard multilayer perceptrons is that only a single weight matrix is used.
It shows that the training of the neural network models is much faster and much
more robust, especially for challenging and real life problems. All mathematical
and algorithmic considerations are well grounded and reproducible.

Secondly, Dr. von Mettenheim’s highly efficient implementation is fully incorpo-
rated into the FAUN-Neurosimulator suite under development since 1996 at the
Technische Universität Clausthal and the Leibniz Universität Hannover (FAUN =
Fast Approximation of Universal Neural Networks). Highlights are, e.g., a wake on
LAN coarse grained parallelization for large, inhomogeneous low budget computer
clusters. These computer clusters enable an extremely fast training of matrix prog-
nosis models even for very large and very difficult data sets.

Finally, Dr. von Mettenheim presents some convincing solutions for challenging
and real life problems, e.g., a market value at risk model for a portfolio for the next
10 days based on 25 financial time series over the last 10 years.

This advanced textbook by Dr. von Mettenheim is well written, is well structured
and is a must for scientists and practitioners solving challenging and real life prob-
lems. Covered fields include time series analyses and forecasts, artificial neural
networks and also high performance neurosimulation.

Hannover, December 30, 2009
Prof. Dr. Michael H. Breitner
Dean of the School of Economics and Business Administration
Head of the Institute for Information Systems Research

Gottfried Wilhelm Leibniz Universität Hannover

3



Acknowledgements

First and foremost I thank my supervisor Prof. Dr. Michael H. Breitner who encour-

aged me in many ways to write this book. His ideas appear throughout the text

and it is always interesting to discuss new topics with him. Especially, I am very

grateful to him for giving me the opportunity to continue studying mathematics.

I also thank Prof. Dr. Klaus-Peter Wiedmann, my second referee, for accepting to

examine my dissertation.

Many people contributed in different ways to this book. It is impossible to name

them all. Without making a claim of completeness I mention some of them. I

thank my colleagues Karsten Sohns and Marc Klages. We often had interesting

discussions which gave me new insights on how markets work. I thank Cornelius

Köpp for numerous technical advice. You three had to endure me all the time. . . I

also thank Prof. Christian Dunis, director of the Centre for International Banking

Economics and Finance at Liverpool John Moores University. His studies on neu-

ral networks helped me considerably. I had numerous fruitful conversations with

Dr. Hans Georg Zimmermann and Dr. Ralph Grothmann from Siemens Corporate

Technology. This pushed my imagination of what one can do with neural networks

further. Thank you for this.

I dedicate this work to my family. Your continuous support is essential for me.

Thank you!

4



Contents

Prologue 3

Acknowledgements 4

Abstract 9

Abstract in deutscher Sprache 10

Executive Summary 11

Nomenclature 19

1 Introduction 21

1.1 Guidelines for Readers of this Book . . . . . . . . . . . . . . . . . . . . . . 23

1.2 Motivation: Can Forecasts Work? . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Engineering and Reengineering of FAUN Neurosimulator 27

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Fine Grained Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Coarse Grained Parallelization on Inhomogeneous Clusters: The FAUN

Grid Computing Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.1 Programming Language Requirements and Selection . . . . . . . 39

2.4.2 The Distributed Object Model . . . . . . . . . . . . . . . . . . . . . . 41

2.4.3 Wake Up and Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.4 Cost Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.5 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Extended FAUN Documentation . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5.1 User Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5



2.5.2 Administrator Documentation . . . . . . . . . . . . . . . . . . . . . 54

2.5.3 Developer Documentation . . . . . . . . . . . . . . . . . . . . . . . . 57

2.6 FAUN Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Neural Network Topological Concepts and Enhancements 65

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Shared Layer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3.2 Forward Accumulation . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.3 Reverse Accumulation . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.4 Computational Requirements . . . . . . . . . . . . . . . . . . . . . . 77

3.4 Teacher Forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.6 Optimization with SQP Methods . . . . . . . . . . . . . . . . . . . . . . . . 83

3.7 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Examples 99

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3.1 Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3.2 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4 Side Note: Data Acquisition Caveats . . . . . . . . . . . . . . . . . . . . . . 119

4.5 Data Preprocessing and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 120

4.5.1 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.5.2 Descriptive Statistics for Level Series . . . . . . . . . . . . . . . . . 129

4.5.3 Data Transformation and Further Analysis . . . . . . . . . . . . . 139

4.5.4 Stationarity and Autocorrelation Analysis . . . . . . . . . . . . . . 149

4.6 Modeling Market Value at Risk . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.7 Purchasing and Transaction Decision Support . . . . . . . . . . . . . . . . 168

4.8 Investment Decision Support . . . . . . . . . . . . . . . . . . . . . . . . . . 188

4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6



5 Conclusions and Outlook 205

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

5.2 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

5.3 Critical Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

5.3.1 Grid Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

5.3.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

5.3.3 Financial Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 211

5.3.4 Comprehensive Assessment . . . . . . . . . . . . . . . . . . . . . . . 216

5.4 Further Research Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

5.5 Management Recommendations . . . . . . . . . . . . . . . . . . . . . . . . 220

5.6 Some Final Words. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Bibliography 223

Index 259

Curriculum Vitae and Publications 263

7



8



Abstract

This book enhances the FAUN neurosimulator, FAUN = Fast Approximation with

Universal Neural Networks. It implements a grid computing client. With this client

spare computing capacity of user workstations can be reused. Tests on heteroge-

neous networks are presented. The grid computing client achieves a speedup of

more than 95 percent. Remote wake up and shutdown saves power costs when the

computers are not needed. Measurements show that power consumption is only

one third of a comparable always-on scenario.

A novel neural network topology, the shared layer perceptron, is presented and

analyzed. It is memory enabled and allows multi asset and multi step forecasts.

The shared layer perceptron explicitly allows for uncertainty in the observed world.

It incorporates uncertainty using hidden states. Convergence is robust and not

sensitive to meta parameters.

Applications include modeling market value at risk, transaction decision support

and investment. 25 financial time series spanning 10 years are used. The shared

layer perceptron produces good or even very good results on equities, interest and

exchange rates, and commodities. The shared layer perceptron forecasts multi

asset time series well by design. Multi step forecasts enable market timing with

high accuracy. The distribution of returns allows to evaluate the probable path

of the portfolio within confidence bands. Performance is robust over a time span

of 8 years, without retraining. Compared to benchmark models the shared layer

perceptron produces consistent results.

It can be concluded that advanced neural networks can provide sustainable and

economic competitive edge in today’s financial markets.

Keywords: Neural networks, grid computing, parallelization, high-dimensional

optimization, quantitative investment, decision support.

JEL classification: C45, C53
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Abstract in deutscher Sprache

Im vorliegenden Buch werden verschiedene Erweiterungen des FAUN Neurosimu-

lators eingeführt, FAUN = Fast Approximation with Universal Neural Networks.

Es wird ein Grid Computing Client vorgestellt, der es ermöglicht, überschüssige

Rechenkapazität in inhomogenen Clustern zu nutzen. Ein Speedup von mehr als 95

Prozent wird erreicht. Zur Einsparung von Energie hat der Nutzer die Möglichkeit,

die Rechner ferngesteuert an- und abzuschalten.

Eine neuartige neuronale Netz Topologie wird entwickelt, das Shared Layer Per-

ceptron. Diese Topologie verfügt über ein Gedächtnis und erlaubt Ensemble- und

Mehrschritt-Prognosen. Das Shared Layer Perceptron erlaubt es, die Unsicherheit in

der beobachtbaren Welt, explizit zu modellieren. Dies wird durch die Einführung

verdeckter Zustände ermöglicht. Die Konvergenz ist robust.

Zu den vorgestellten Anwendungen gehören die Modellierung des Value At Risk,

Transaktions-Entscheidungsunterstützung und Unterstützung bei Investment-Ent-

scheidungen. 25 Zeitreihen über einen Zeitraum von 10 Jahren werden verwendet.

Das Shared Layer Perceptron führt zu guten or sogar sehr guten Ergebnissen bei

Aktien, Zinsraten, Wechselkursen und Rohstoffen. Das Shared Layer Perceptron

prognostiziert durch seine Topologie Ensembles gut. Mehrschritt-Prognosen er-

möglichen Market Timing Anwendungen mit hoher Genauigkeit. Die Verteilung der

Experten Topologie liefert eine Abschätzung des wahrscheinlichen Portfolio Pfades.

Die Prognose Leistung bleibt über einen Zeitraum von acht Jahren auch ohne Neu-

training robust. Verglichen mit Benchmarks liefert das Shared Layer Perceptron

konsistente Ergebnisse.

Schlagworte: Neuronale Netze, Grid Computing, Parallelisierung, hoch-dimensio-

nale Optimierung, quantitatives Investment, Entscheidungsunterstützung.

JEL Klassifikation: C45, C53
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Executive Summary

The content summarized for the rushing executive

This book enhances the FAUN neurosimulator. It implements a grid computing

client. With this client spare computing capacity of user workstations can be

reused. Remote wake up and shutdown saves power costs when the computers

are not needed. A novel neural network topology, the shared layer perceptron, is

presented and analyzed. It is memory enabled and allows multi asset and multi

step forecasts. Convergence is robust and not sensitive to meta parameters. Ap-

plications include modeling market value at risk, transaction decision support and

investment. 25 financial time series spanning 10 years are used. The shared layer

perceptron produces good or even very good results on equities, interest and ex-

change rates, and commodities. Multi step forecasts especially enable market tim-

ing with high accuracy. The distribution of returns allows to evaluate the probable

path of the portfolio within confidence bands. Performance is robust over a time

span of 8 years, without retraining.

The content summarized on 8 pages

This book answers the research question «Can advanced neural networks provide

sustainable and economic competitive edge in today’s financial markets?» The au-

thor shows that neural networks are indeed capable of adding value to financial

applications. To achieve this requires several components working together. Fig-

ure 0.1 on the following page provides an overview.

The research question considers several important aspects:

• Advanced neural networks are investigated. This is not a standard multi layer

perceptron but a quite new topology, the shared layer perceptron, that allows

easy modeling of multi dimensional financial time series.

• The models should be sustainable, i.e., more than just a statistical fluke, more

than just a lucky hit. They should be robust over time.

11



Chapter 2 The FAUN grid computing client offers speedups of more than 95 %.
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Chapter 3 The shared layer perceptron: a memory enabled neural network
topology for multi asset multi time step forecasts.
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Chapter 4 Different financial applications are analyzed: market value at risk,
transaction decision support, and investment.
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Chapter 5 Conclusions. The shared layer perceptron topology

• is very robust. It performs regardless of asset or time span.

• adds economic value. It beats the benchmarks consistently.

• is versatile. It works well on a wide variety of financial applications.

• is easily parallelizable. It can be trained on off-the-shelf hardware.

Advanced neural networks provide sustainable and economic competitive edge
in today’s financial markets.

Figure 0.1: Steps towards advanced neural networks for financial applications.
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• Computational requirements should be low, i.e., economic. Especially, compu-

tation should not require special high performance computers.

• The modeled applications should not be simple forecasts. They should offer

real competitive edge.

• The focus is on financial markets.

Everything in this book is linked to the FAUN neurosimulator, FAUN = Fast Ap-

proximation with Universal Neural Networks. Since Michael H. Breitner started the

FAUN project in 1996 there has been continuous development and improvement.

The reader will find the following highlights:

• The FAUN neurosimulator now also uses fine-grained parallelization. This

allows for easily achieved speedups on dual and quad core CPUs. End users

are therefore enabled to utilize their workstations to full capacity without

having to deal with the increased complexity of message passing software.

• FAUN now also features coarse-grained parallelization using an easy to install

grid computing client. Via the web interface it is possible to use clusters of

heterogeneous workstations. Spare computing capacity gets reused. Auto-

matic wake up and shutdown saves power costs.

• FAUN is now well-equipped to handle time series problems. It uses a very

innovative shared-layer perceptron architecture. A detailed analysis of the

computational requirements for the gradient calculation is provided. The gra-

dient calculation itself is presented extensively. Using reverse accumulation

and matrix algorithms allows for very efficient computation.

• The examples are designed to provide a maximum of practicality. This in-

cludes not only the standard trading application but also market value at risk

modeling and transaction decision support.

• The same dataset is used for different application. This offers the possibility

to benchmark the performance of neural networks or more standard model-

ing procedures in different domains. The dataset spans 10 years. It includes

bear and bull cycles and is not limited to a single up or down trend where

most models perform well anyway. The models are very robust and work well

without retraining over a period of 8 years.
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Figure 0.2: The FAUN grid computing client offers consistent speedup above 95

percent on networks of heterogeneous computers.

Grid Computing

Successfully training neural networks is also a matter of having enough computing

capacity available. Neural networks are ideally suited for coarse grained paralleliza-

tion. Communication requirements are low. You can distribute every single neural

network to a separate thread. With the FAUN grid computing client spare comput-

ing capacity on user workstations is reused. There is no need to install specialized

message passing software. The client is self contained. The achievable speedup

is above 95 percent, see figure 0.2. This means that 95 percent of theoretically

available computing power compared to a single thread is used.

It is a waste of energy to leave computers running continually. The FAUN grid

computing client allows to wake up and shutdown computers remotely.

The update procedure is simple because all functionality is hosted on the server.

An important feature of my client and server is that they are totally platform in-

dependent. Working combinations include the last releases of Debian and Ubuntu

Linux, Windows 7, Windows Vista and Windows XP. This functionality is normally

only implemented in commercial message passing software which necessitates a

much more complicated setup.
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The Shared Layer Perceptron Topology

The shared layer perceptron provides an elegant method to build multi asset and

multi step models, see figure 0.3 on the following page. It augments the observable

states s1, . . . , sN by hidden states sN+1, . . . , sD. Hidden states allow the model to

build up memory. Philosophically the shared layer perceptron acknowledges an

incomplete view of the world. One does not assume that the «variables» are a

perfect description of what happens. Rather one explicitly allows other «hidden»

variables to influence the model. Training a shared layer perceptron implicitly also

involves finding the right trajectory through the state space: for observable and

hidden variables.

At each time step the state space is squeezed through the common weight matrix

W and the following non linearity. This is an essential difference to standard multi

layer perceptrons. Only a single weight matrix is used. This reduces the number of

free parameters and also training times.

This topology produces at each time step all necessary input for the next time

step. This simple mechanisms has two additional advantages. First, one automat-

ically gets forecasts for all the observables. Second, one can reuse the forecast at

the next time step and produce multi step forecasts.

Financial Applications

The dataset includes 25 financial time series from July 1999 to July 2009, i.e., 10

years of data. The dataset is divided into four asset classes: equity indices, inter-

est rates, currency exchange rates and commodities. Interest rates are generally

proxied by using yield curves. This dataset is challenging because it includes the

boom and bust of the new economy, the bull market up to the credit crisis of 2007,

the subsequent sharp bear market and even a small part of the ongoing recovery.

Contrary to other studies this dataset truly represents all market cycles.

The first application models market value at risk. Interest lies in the worst ex-

pected portfolio value over the next 10 days. Figure 0.4 on page 17 shows a sample

forecast for the FTSE 100 index. The goal is to model the worst returns as closely

as possible. It turns out that the shared layer perceptron beats the benchmark

historical simulation for every asset on a time span of 110 days. It still beats the

benchmark without retraining on 8 years except for 5 cases. This allows institutions

to reduce the margin of safety to an appropriate level.
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Figure 0.3: The shared layer perceptron for multi asset multi step models.
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Figure 0.4: The shared layer perceptron topology models the probably worst port-

folio value over the next 10 days for the FTSE 100 equity index.

Figure 0.5 on the following page shows a 20 days ahead ensemble forecast for

the Baltic Exchange Dry Index. The target is to find an appropriate low entry point

within the next month to secure low freight rates. One notes that the shared layer

perceptron appropriately models the target: first down, then flat, then slightly up

again. It does not exactly find the lowest price. However, the suggested lowest

forecast is a sensible entry point. It is located before the index rises again. This

models the typical challenge of a corporate treasurer: regular investments on a

monthly basis. Again, the shared layer perceptron beats every fixed day strategy

for every asset on 110 days. It is still very successful without retraining on 8 years.

The last application focuses on correctly forecasting the sign of next day returns.

The shared layer perceptron is benchmarked against a naive strategy and a moving

average strategy. The shared layer perceptron performs well or very well across a

broad range of assets. Results are especially satisfactory on equities and currencies.

It does not always beat the benchmark strategies. But it is at worst second best and

shows very consistent returns. The benchmarks, however, show fabulous gains

followed by catastrophic losses. The shared layer perceptron works robustly on

the shorter and longer time span.
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Figure 0.5: The shared layer perceptron forecasts the path of the Baltic Exchange

Dry Index over the next 20 days.

Conclusions

The shared layer perceptron is a very robust model. It performs well over different

asset classes. It also adapts to different market circumstances and shows consis-

tent performance for long and short time spans without retraining. The shared

layer perceptron offers a unique way to model a market ensemble:

• The multi step forecasts give a complete view on the portfolio value path.

• A single model is used. With an expert topology one gets every percentile of

the underlying distribution for free.

• One will be more confident to use a model that works well over a broad range

of assets. The shared layer perceptron works for all inputs by design.

Training the networks using coarse grained parallelization and the FAUN grid com-

puting client provides a cost efficient and failsafe path to neural network modeling.

Using the client does not require additional setup. The shared layer perceptron

topology adds value to financial applications. The author recommends it as an

important addition in the modeler’s and forecaster’s toolbox.
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Nomenclature

acf Autocorrelation function

AD Automatic Differentiation

ADF Augmented Dickey-Fuller test

ANN Artificial Neural Network

BBA British Bankers’ Association

BDI Baltic Exchange Dry Index

CAC Cotation Assistée en Continu

CCI Continuous Commodity Index

cERP Cumulated Excess Realized Potential

CRB Commodity Research Bureau

∂i,j Partial derivative with respect to wi,j

DAX Deutscher Aktien Index

DRb Distributed Ruby

εt Local error at time t

ERP Excess Realized Potential

EUR Euro

EURIBOR Euro Interbank Offered Rate

FAUN Fast Approximation with Universal Neural Networks

FMADD Floating Point Multiplication and Addition
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GBP Great British Pound

GUI Graphical user interface

ICE Intercontinental Exchange

JPY Japanese Yen

LBMA London Bullion Market Association

LIBOR London Interbank Offered Rate

MPI Message Passing Interface

N State space dimension

NASDAQ National Association of Securities Dealers Automated Quotations

NPSOL Nonlinear Programming Solver

OAT Obligation assimilable du Trésor

OTC Over The Counter

pacf Partial autocorrelation function

PVM Parallel Virtual Machine

RP Realized Potential

SFR Swiss Franc

SLP Shared Layer Perceptron

SQP Sequential Quadratic Programming

SSD Sum of Squared Deviations

T Number of time steps

USD US-Dollar, i.e., United States Dollar

VaR Value at Risk

WOL Wake On Lan
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1 Introduction

Neural networks are an emerging modeling tool in the context of financial decision

support systems. Most presented applications use standard topologies like multi

layer perceptrons. Often, training occurs on personal workstations with simple

algorithms. This has drawbacks:

• Multi layer perceptrons are conceptually not especially well suited for mod-

eling and forecasting financial time series. One can do it, of course. But is

does not come as especially natural. This results in people rejecting neural

networks as unintuitive black boxes. This book intends to show: They are not!

• Training a neural network, especially with unsophisticated algorithms, takes

its time. Mostly minutes but sometimes also hours or even days. This results

in people rejecting neural networks as resource hogs. Again, this book intends

to show: They are not!

The essence of this book consists in demonstrating the two bold statements above.

It wants to show that neural networks can be very natural to use for forecast-

ing financial time series. And it to presents some ways how the computational

requirements of neural networks can be reduced quite effectively using advanced

optimization algorithms and grid computing.

The author has been involved with neural networks for the past decade. But,

when talking to most other people, the two objections cited at the beginning are

often encountered. This is especially true when talking to people from the finance

sector. That’s why the author decided to answer the question:

«Can advanced neural networks provide sustainable and economic competitive

edge in today’s financial markets?»

The reader will note that the research question considers following important

aspects:

• Advanced neural networks are investigated. This is not a standard multi layer
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perceptron but a quite new topology, the shared layer perceptron, that allows

easy modeling of multi dimensional financial time series.

• The models should be sustainable, i.e., more than just a statistical fluke, more

than just a lucky hit. They should be robust over time.

• Computational requirements should be low, i.e., economic. Especially, compu-

tation should not require special high performance computers.

• The modeled applications should not be simple forecasts. They should offer

real competitive edge.

• Finally, the author has to limit the scope of this book and focuses on financial

markets.

To be specific, the book offers the following highlights:

• The FAUN neurosimulator now also uses fine-grained parallelization. This

allows for easily achieved speedups on dual and quad core CPUs. While coarse-

grained parallelization is still more efficient when different CPU sockets are

involved the typical case of a user workstation profits from additional cores.

End users are therefore enabled to utilize their workstation to full capacity.

They do not have to deal with the increased complexity of message passing

software.

• FAUN now also features coarse-grained parallelization using an easy to install

grid computing client. Via the web interface it is possible to use clusters of

heterogeneous workstations. Spare computing capacity gets reused. Auto-

matic wake up and shutdown saves power costs.

• FAUN is now well-equipped to handle time series problems. It uses a very

innovative shared-layer perceptron architecture. A detailed analysis of the

computational requirements for the gradient calculation is provided. The gra-

dient calculation itself is presented extensively. Using reverse accumulation

and matrix algorithms allows for very efficient computation.

• The examples are designed to provide a maximum of practicality. This in-

cludes not only the standard trading application but also market value at risk

modeling and transaction decision support.

22



• The same dataset is used for different application. This offers the possibility

to benchmark the performance of neural networks or more standard model-

ing procedures in different domains. The dataset spans 10 years. It includes

bear and bull cycles and is not limited to a single up or down trend where

most models perform well anyway. The models are very robust and work well

without retraining over a period of 8 years.

1.1 Guidelines for Readers of this Book

Figure 1.1 on the next page outlines the flow of this book. If the reader is in a hurry

to grasp the basic concepts, the reader should just look at the figure. If there is a

little more time, the summary in 150 words which is the first part of the executive

summary at the beginning should be read. Then, the executive summary is the next

best guess. It already provides some details.

The book is organized as follows: The remainder of this chapter is devoted to a

motivation and some basic explanations of what the reader can expect from this

book.

Chapter 2 introduces the FAUN neurosimulator. After a brief recapitulation of

FAUN history this chapter gets quite technical. It describes in detail different kinds

of parallelization for FAUN. The reader will meet fine and coarse grained paral-

lelization — both useful techniques in their own right. Considering coarse grained

parallelization the FAUN grid computing client is worth mentionning. It allows to

easily distribute workload on a network of heterogeneous workstations. The reader

will find a detailed analysis of speedup in different scenarios.

Chapter 3 presents the shared layer perceptron topology. As this topology is

probably different from what is generally known as being a «neural network» the

author motivates the shared layer perceptron philosophically, too. When using the

shared layer perceptron one views the world in a more humble way. One especially

acknowledges that one is not omniscient. Nevertheless the shared layer perceptron

is first and foremost hard mathematics. That’s why the remainder of the chapter

deals with training it. The partial derivatives are explored and how to compute

them efficiently with matrix algorithms. Teacher forcing and noise are presented as

techniques which help to improve training. The next section details the sequential

quadratic programming method used for optimizing. And the last section analyzes

convergence depending on various meta parameters of the neural network.
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Chapter 2 The FAUN grid computing client offers speedups of more than 95 %.
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Chapter 5 Conclusions. The shared layer perceptron topology

• is very robust. It performs regardless of asset or time span.

• adds economic value. It beats the benchmarks consistently.

• is versatile. It works well on a wide variety of financial applications.

• is easily parallelizable. It can be trained on off-the-shelf hardware.

Advanced neural networks provide sustainable and economic competitive edge
in today’s financial markets.

Figure 1.1: Steps towards advanced neural networks for today’s financial markets.
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Chapter 4 presents different applications of the shared layer perceptron. Com-

mon to these applications is that the shared layer perceptron offers a unique way

to model them elegantly and naturally. This is not to say that these examples are

not amenable to, e.g., a multi layer perceptron approach. But one would have to

build 500 models instead of just one. The examples are, of course, from quanti-

tative finance. First the dataset is introduced. It consists of 25 time series from

different asset classes: equity indices, interest rates, currencies, and commodities.

The salient features of this data are extracted with classical statistics. In the fol-

lowing three applications are presented. The first models market value at risk. The

second supports transaction decisions. I.e., it helps to find the best entry point in

a given time frame. The last application is the obligatory trading simulation with

additional filters.

Finally, the last chapter wraps up the book. Beside a summary the reader will

also find management recommendations how to put the shared layer perceptron to

good use. There is also an extensive critical section. Indeed, in this book the author

is only able to scratch the surface. With creativity the potential of the shared layer

perceptron is vast. In this section the author details what he could achieve and

what remains further research. The author also explicitly states application limits.

1.2 Motivation: Can Forecasts Work?

The main argument against successful forecasts goes along the lines of the efficient

market hypothesis. Advocators of it state it in several forms: Risk free excess

profits are not possible. Efficient markets cannot be beaten. However, consider the

following:

• To the best of the author’s knowledge nobody has asserted that it is not possi-

ble to achieve excess profits with superior models, investment in technology

and manpower. Developing a model, possibly buying and maintaining the

necessary hardware to run it on, staffing an investment office — all these

are upfront investments, or risks, that one would not take if they were not

rewarded.

• There is strong reason to suspect that some markets cannot even be efficient.

E.g., the bond market is utilized by governments to steer monetary policy.

Market operations of central banks are not necessarily directed at achieving
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trading profits. Some actions, like providing liquidity to other participants by

buying back bonds, may also occur at the wrong moment.

• When saying that it is not possible to beat efficient markets this often means

a weak form: it is not possible to beat efficient markets consistently. And here,

there may be a compromise. The author does not state that a single model

will work well ad infinitum. He asserts that the presented model class has all

it needs to be successful over time.

1.3 Literature Review

At this point only a general overview of literature which links the fields of this

book is given: i.e., grid computing, neural network topologies and neural network

applications in finance. As this specific combination is quite unique there is un-

derstandably only a small amount of available literature. In any case the reader

should read [43] which links all of the above fields. As a shameless plug the author

also recommends his papers [47, 327]. [63] at least analyzes distributing financial

applications on heterogeneous clusters. The approach in [67] is usable for FAUN

when viewed as agent.

A detailed introduction to available literature is given at the beginning of each

chapter.

And now, the author sincerely hope you’ll enjoy reading this book.

26



2 Engineering and Reengineering of

FAUN Neurosimulator

2.1 Introduction

A significant part of the work in this book flows in various enhancements of the

FAUN Neurosimulator, FAUN = Fast Approximation with Universal Neural Networks.

In this chapter all aspects concerning software engineering are discussed. The con-

ceptual layout of the components of FAUN is shown in figure 2.1 on page 30. The

reader may want to consult this figure when following the architectural description

of FAUN. This chapter however does not cover mathematical details of the newly

implemented topology, the shared layer perceptron. See the following chapter for

that. Neither does this chapter discuss specific applications of the shared layer

perceptron. These are again saved for a later chapter.

With this said the author first looks at historical development of FAUN:

• The very first version of FAUN 0.1 is developed between December 1996 and

February 1998 by Michael H. Breitner. It features three layer perceptrons

which are optimized using NPSOL. Matrix algorithms are not implemented

yet.

• Michael H. Breitner develops FAUN 0.2 between March 1998 and January 1999.

Key enhancements are the implementation of matrix algorithms from the Ba-

sic Linear Algebra Subroutines, BLAS. This allows performance tuning by us-

ing vendor libraries. FAUN 0.2 also considerably facilitates usage by offering

online and offline graphics with the free software package Gnuplot.

• FAUN 0.3 is developed by the FAUN project group since the beginning of 1999.

Key developers are also Marc Ambrosius, Ulrich Kritzner, Patrick Mehmert,

Lars Neujahr and Janka Zündel. Additionally a PVM version is developed to

allow coarse grained parallelization.
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• Development of FAUN 1.0 occurs until the end of 2004. Benefits are twofold:

for local usage an enhanced graphical user interface is developed with the

support of Simon König, Roland Kossow and also Frank Köller. An improved

coarse grained PVM version is created by the author until August 2003.

• The FAUN 1.1 family, still under active development, has a web interface. This

allows the program to be used remotely on the institute compute cluster. It

relieves the user from having to perform the computation on his own PC.

Compared to a simple command line interface this is more user-friendly. The

web interface is mainly developed by Simon König. He also creates an MPI

version. Parallelly the FAUN grid computing client is developed by me. The

focus of the present chapter is among others on the grid computing client.

An additional measure, the curvature tensor, is implemented by Frank Köller

and Simon König in Frank Köller’s dissertation.

The present work extends FAUN on different conceptual levels:

• A new neural network topology is implemented, the shared layer perceptron

which is a recurrent network. The goal is to facilitate time series applications

with FAUN.

• A grid computing client for FAUN is developed, which is designed to avoid

the disadvantages of PVM and MPI. A requirement is, especially, that it is

platform agnostic. I.e., it works on Windows, Linux and other platforms. It

also offers power management functionality. Compute clients are only started

when needed and powered off after the computation.

• As an additional feature the option to use fine grained parallelization is also

implemented.

Integration of the shared layer perceptron is a well structured task. Since the reengi-

neering by Simon König FAUN is divided into several well defined and documented

modules. It is therefore conceptually straightforward to add another topology.

However, handling of input and output data has to be slightly altered. Implementa-

tion of the shared layer perceptron is a well structured task, as well. But as a new

algorithm has to be developed possible hurdles are to be taken into account. The

development of the grid computing client is, however, badly structured: concrete

requirements will have to be gathered during development itself. — The simple
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requirement «It should work!» is not enough. Problems are to be expected when

dealing with different platforms. Especially automatic startup mechanisms are dif-

ferent, e.g., between Linux and Windows. For this reason the author decided to

divide the entire implementation work into several manageable modules. Comple-

tion of these modules are considered as milestones:

• Implement the shared layer topology and successfully train exemplary net-

works. The realization of this task is considered straightforward. However,

it is not clear a priori if all mathematical and technical problems can be over-

come.

• Integrate the shared layer perceptron into the FAUN command line version.

The new topology is accessible via the file based interface. Due to the module

structure of FAUN this task is straightforward.

• Integrate the shared layer perceptron into the web based interface. The new

topology is accessible via a dedicated sub page. This task might lead to tech-

nical complications because the web interface is not a priori designed with

extendability in mind.

• Implement a cross platform client-server pair which distributes control and

data files and collects the results. This program is accessible via the command

line. It acts as wrapper for FAUN and can be used as drop in replacement.

I.e., the caller is not aware that computation occurs non locally. This task is

difficult. It is not clear a priori which technical problems might occur.

• Implement wake up and shutdown functionality. Wake up is realized via a sep-

arate program using wake on lan. Shutdown is integrated into the grid client.

This task is technically straightforward. However, difficulties are expected

from the fact that test computers are on different routed and firewalled net-

works. Difficulties may also arise because the targeted student and staff clus-

ter uses desktop computers. They may not offer the reliability and versatility

of server hardware.

• Develop an installer that distributes the client and automatically schedules it

to run at startup. The user of the installer only necessitates minimal informa-

tion on the target platform. This task is not difficult but tedious. A significant

amount of testing is expected for getting this to work on all available plat-

forms.

29



User

Operating
system:

Windows,
Linux, etc.

Online and
a posteriori

graphics
Local GUI

User interface
software

Web
frontend,
thin client

architecture

Single/multi
core

compute
server

Single/multi
core

personal
computer

Resource
dispatching
middleware

and hardware

Multiple
processors

via MPI

Multiple
processors

via grid
computing

FAUN kernel
Kernel

software

offline

1

temporarilyonline 2

2a 2b 2c

Figure 2.1: 3-layer architecture of the FAUN software suite. Users choose between

local installation (1) or web frontend to access FAUN (2). The middle-

ware distributes tasks user-definable to the FAUN compute kernel on

one (2a) or many processors (2b and 2c). Applications of every layer are

independently replaceable and available for Windows and Linux.

• Make the wake up and shutdown functionality available via the web interface.

This task is straightforward within the above limitations.

• Implement fine grained parallelization using the OpenMP standard. This task

is technically straightforward. However, performance improvements are not

guaranteed a priori.

Algorithmic details of the shared layer perceptron implementation are left for the

following chapter. The author discusses fine grained parallelization and the grid

computing client in the following. This also includes a detailed analysis of achieved

speedup. Extensive documentation of new FAUN functionality is presented. This

includes user manual, administrator and developer documentation. Numerous ap-

plications of FAUN are discussed in the following section.
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2.2 Literature Review

The present section focuses on references with a technical background, i.e., pro-

gramming process and languages, and grid computing.

Programming Process

[33] deals with agile programming practice and how best to implement it. Although

in the present case the author is the only member of the «development team» [74]

proved useful, especially in the end phase of development. It merges agile and

non agile practices. Similar approaches are discussed in [179]. [180] deals with

the challenge of correctly estimating development times. The advantage of this

experience report is that it is actually usable. Implementation is considered in

[192,277,292,293,304]. [341] focuses on implementing agile and extreme practices

in a scientific research context. [344] merges agile practices with grid computing.

Arising problems are discussed in [211,335]. [228] provides guidance how the agile

process should be adapted relating to complexity and uncertainty. [234] goes in a

similar direction. A classical, readable and also entertaining debate of agile — and

extreme — methods is found in [84]. The article is recommended.

Language

• FORTRAN: The author found [60] to deliver a very pragmatic and usable

approach to the language. [248] is another very good reference which goes

into more details. Not specifically FORTRAN related but used in this context

is [157] which deals with compilation issues concerning OpenMP. A classic

MPI reference that the author used is [165]. Also related to MPI [261] is a bit

dated but conveys the basic concepts very clearly. [201] specifically focuses

on using BLAS libraries with FAUN. [325] deals with the PVM implementation

of FAUN.

• Ruby: The classic and very entertaining to read reference to Ruby is [305]. By

reading this book one will get interesting insights into the Ruby programming

language. [236] provides use cases for Ruby. These are not particularly FAUN

specific but nevertheless present the language well. [163] provides several

problem solving strategies the author has found useful. Testing is an integral
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part of the development process. A good advanced reference — not Ruby

specific — is [232].

Grid Computing

• Introduction: Everybody at all interested in grid computing should read the

compact description [130] by Ian Foster, the «father of grid computing». [133],

also by Foster and his colleagues, goes into more details. The basic concepts

of service orientation are also well presented in [131,132].

• Resource allocation: [48] provides a concise introduction on how to get the

best out of a cluster. This paper was of considerable help when planning

job utilization. [4,221,358] deal with the task of how best to select resources

when scheduling jobs. [39] highlights the aspect of cooperation among pro-

cesses. [81, 222] focus on the on demand aspect of grid computing which

is implemented in the FAUN grid computing client par excellence. [135] pro-

poses the concept of a grid of grids. This concept is of particular interest with

respect to FAUN when different subnetworks are used. The author plans to

dedicate further research to implementing just that: a whole cluster offers

itself as a highly performing resource.

• Middleware and applications: [5] presents the grid application toolkit, a mid-

dleware for resource dispatching. Similarly, [134] introduces the globus toolkit.

[24, 168, 265, 342] deal with specific requirements of quality of service. Both

references helped in designing the FAUN grid computing client which is a mid-

dleware. [53] specifically addresses the problem of managing the workflow in

a grid application. Similar aspects are dealt with in [158]. [125] proposes a

method to describe grid workflows with a domain specific language. Although

the author didn’t use this for FAUN it helped in outlining important parts

in the process of distributing and collecting data. [238] focus on grid com-

puting in the context of computational finance. [120] introduces the publish-

subscribe mechanism. This concept is implemented in simplified form by the

FAUN grid computing client. Every client can also be considered as a service.

This is described in [191,264,310,321]. [240] is an example of the growing im-

portance of grid computing projects. Viewing clients as independent agents

is a sensible paradigm in grid computing. [67] provides a good introduction
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to the topic, see also [167]. [51] carries the term grid even further and envi-

sions a structure similar to a power grid. A similar position is found in [55].

Visionary is also [83] which proposes techniques to enhance existing grids.

2.3 Fine Grained Parallelization

Since the advent of cheap consumer grade multicore processors compiler vendors

have implemented features to semi-automatically distribute tasks over different

cores in a computer. Especially loops and array operations are candidates for fine

grained parallelization. However, one may not hope for the same reduction in

computation time as when using coarse grained parallelization. The reasons are

that the distribution of tasks among threads involves significant management over-

head. E.g., for a matrix multiplication the different parts of the matrix have first to

be dispatched to every thread. If this involves a thread on another processor the

comparatively slow inter processor connections are used instead of the processor

caches. Then the actual multiplication occurs in parallel. Finally, the result data is

collected and stored.

These three steps also occur in principal when distributing entire networks, i.e.,

coarse grained parallelization. The main difference is that with fine grained par-

allelization the typical duration of a task is in the sub millisecond or millisecond

region. And the shorter the task the more important are the effects of managerial

overhead. If one wants to avoid this one should parallelize the outer loops of a pro-

gram, if possible. However, in the case of neural networks one conceptually only

has one outer loop. This is the training of several networks. Within the training

options are limited:

• The forward pass involves matrix algebra. However, with the shared layer

perceptron each time step depends on the previous time step. One cannot

parallelize the entire loop. But one can parallelize the matrix operations.

• Calculation of errors is parallelizable. The computational effort is however

negligible: one subtracts two numbers and squares them. One does not expect

a high performance gain from parallelizing these operations.

• The backward pass again has a sequential dependency. One cannot parallelize

the entire loop. But the computationally intensive matrix operations can be

parallelized.
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• The line search of optimizer NPSOL is parallelizable. However, time spent in

NPSOL is by experience generally less than five percent of total computation

time. One does not expect a significant performance gain.

• Update of the weight matrix. This trivial task is fully parallelizable.

Figure 2.2 on page 37 shows the reduction in computation time when using sev-

eral threads for the shared layer perceptron. With a D × D matrix a dense matrix

multiplication accounts for D floating point multiplications and D−1 additions for

every element. As there are D2 elements in the matrix a full multiplication needs

O(D3) floating point operations. Here, one does not differentiate between multipli-

cation and addition as these operations are realized with the same computational

effort. Please note that the matrix multiplication is especially suited for the FMADD

operation of modern processors. This operation allows a floating point multiplica-

tion and addition to be carried out in a single operation. In matrix multiplication

one encounters daisy chains of FMADD operations.

Figure 2.2 and table 2.1 on page 38 confirm that fine grained parallelization in-

deed improves computation times — as long as operations are confined to a single

processor. The numbers are created using a dual quad core workstation. This

computer has two distinct quad core processors. Connections between these two

processors are comparatively slow when considering the processor caches. This

is what one observes: the improvement when going from 1 to 4 threads is quite

remarkable. All threads execute on the same processor. However the improvement

of going from 4 to 8 threads is not so impressive. The performance penalty is

incurred because additional communication is necessary between two processors.

We also note that in two cases adding another thread produces worse results.

This happens when the scheduler distributes tasks in a suboptimal manner. Once

a task is distributed the entire program has to wait for the results to arrive. The

slowest task finally forms a bottleneck. Let the author illustrate this with an exam-

ple. One wants to multiply two matrices with dimension 100×100. Using the above

analysis this requires

1,000,000 multiplications and 990,000 additions

for a total of

1,990,000 floating point operations.
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Now assume that one wants to distribute this task evenly on 4 threads. Slicing the

first matrix after each 25th row this is easily possible. Each thread has to compute

497500 floating point operations.

A core is clocked at 2.5 GHz or higher. This results in theoretical peak performance

of 4 × 2.5 = 10 GFlops per second. Therefore the operation of every thread only

takes 49.75µs. This is a very short time span even for modern processors and

operating systems. Time slices of 10ms are common, i.e., 200 times more than the

duration of a single task. One sees how time sensitive fine grained operations are.

The figure also shows that adding more threads than physical cores does not

improve the results significantly. This is unsurprising as the processor does not

use hyperthreading. This technique provides two or more virtual cores for every

physical core. A small improvement is noticeable, though. It is due to the fact

that even on an almost idle computer there is a competition for resources among

different processes. Using additional threads induces the scheduler to allocate

more resources. As these additional threads are scheduled on a core where data is

already copied they do not incur that much of a performance penalty.

Figure 2.3 on page 38 shows the effect of different state space dimensions. One

sees that the reduction in computation times is most noticeable for the greater

dimensions. The smaller dimensions do not profit that much. This is due to time

sensitivity in the sub ms domain as mentioned above.

Figure 2.4 on page 39 presents the dependency of computation time on the num-

ber of observeables in the shared layer perceptron. One sees that a performance

penalty does not happen for small numbers of observeables. On the other hand

one can also argue that increasing the number of observeables does not improve

fine grained parallelization computation times.

Compared to coarse grained parallelization one notes that fine grained paral-

lelization does not perform as well. While coarse grained parallelization yields

speedups of more than 95 percent, fine grained parallelization only reaches 58 per-

cent for 2 threads and 33 percent for 4 threads, see table 2.1. The reader may

rightly ask why the author concerns himself at all with fine grained parallelization.

This question is justified even more by the fact that coarse grained parallelization

of entire network training seems very natural and intuitive. Fine grained paralleliza-

tion is an important additional performance tool:
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• The performance speedup is realized without any additional infrastructure.

There is no need to install software like MPI or PVM. Special configuration

on the host computer is not required. The developer can entirely hide the

parallelism with respect to the user. The only thing the user will notice is

that training is faster. This is especially interesting for people using the lo-

cal version of FAUN. These versions will probably run on dual or quad core

consumer processors, see below.

• The first networks arrive faster. This is especially interesting for real time

applications when networks are retrained on a continuous basis. Consider,

that with 8 cores training time is only 66 percent of that compared to a single

core. While this is not satisfactory in terms of speedup it is still a significant

reduction of computation time in its own right. Time sensitive applications

can profit from this.

• Related to the previous point fine grained parallelization is especially inter-

esting on consumer dual and quad core processors. These processors are

available with clocks up to 3.4 GHz. E.g., the Intel i7 processors provide na-

tive dynamic overclocking. When, e.g., 2 cores are idle the other cores are

overclocked. Fine grained parallelization can take advantage of this and pro-

vide the first results faster.

• Fine grained parallelization is obligatory when using general purpose graphi-

cal processing units. Computation on the graphics card involves several hun-

dred threads executed with comparatively low clocks of 1 GHz or slightly

more. This kind of architecture is well equipped for handling matrix algo-

rithms which are predominant in neural network training.

Especially the last point looks very promising. Although computation on the

graphics card is still in its infancy vendors begin to discover the potential for high

performance computing. Nvidia offers rack mounted kits of four high memory

graphic cards and proposes the CUDA architecture. ATI/AMD offers the stream

technology. And both vendors work on the OpenCL standard designed to provide

unified access regardless of underlying vendor chips. First inquiries have shown

that for large networks the FAUN kernel is able to scale well to several hundred

threads. However the results are still preliminary and are not reported here. But

this is an interesting research area the author plans to devote more resources on.

36



12000

13000

14000

15000

16000

17000

18000

19000

20000

21000

1 2 3 4 5 6 7 8 9 10

T
im

e

Threads

Figure 2.2: Effect of fine grained parallelization for state vector with d = 500, com-

putation time in ms. The higher the dimension of the state vector the

more important the speedup with fine grained parallelization, because

the involved matrix and vector multiplications are easily parallelized.

This example is computed on a computer with two quad-core proces-

sors. This effect is noticeable: the improvement in going from 4 to 8

threads is much less important than going from 1 to 4 threads. The re-

sulting inter processor communication is responsible for the relatively

low gain in speedup. Also, the required additional resources for man-

aging and feeding a new thread sometimes even increase computation

times. Finally, one notes that using more threads than physical cores

unsurprisingly leads to almost no improvement. The small resulting

improvement is due to a greater part of computational resources being

allocated.
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Threads Time in ms Speedup comment

1 20178 1.00 only one processor
2 17519 0.58
3 14966 0.45
4 15210 0.33

5 14395 0.28 second processor used
6 14031 0.24
7 14482 0.20
8 13296 0.19

9 12885 0.17 more threads than cores
10 12854 0.16

Table 2.1: Computation time and speedup.
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Figure 2.3: Fine grained parallelization for different number of threads and dimen-

sions, computation time in ms. One notes that fine grained paralleliza-

tion improves computation times when the dimension of the state space

vector is high. This is caused by a certain overhead incurred when dis-

tributing data among cores and especially among two different proces-

sors. The figure suggests that one should mostly use fine grained paral-

lelization on single processors and rather use coarse grained paralleliza-

tion when inter processor communication is involved.
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Figure 2.4: Computation time in ms for different numbers of observeables. One

notes note that fine grained parallelization works equally well even

for few observeables. The performance impact encountered with state

space dimensions is not found here.

2.4 Coarse Grained Parallelization on Inhomogeneous

Clusters: The FAUN Grid Computing Client

The present section deals with design and implementation of the FAUN grid com-

puting client. The section does not include documentation which is saved for sec-

tion 2.5.

2.4.1 Programming Language Requirements and Selection

As the grid computing client is required to run on different platforms without mod-

ifications the choice excludes languages which are only available for specific plat-

forms. Nowadays, however, compilers and interpreters exist for a wide variety of

languages and platforms and this requirement merely excludes very specialized

languages, e.g., for embedded processors. It is not a restriction. The author also

wants to avoid standard languages with proprietary extensions.
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The goal is also to realize easy maintainability. On the other hand, performance is

of secondary importance because the compiled FAUN kernel carries out the training.

The client is intended as a wrapper and is merely responsible for task dispatching

and data gathering. With this in mind the author decided to opt for an interpreted

language in contrast to a compiled language. The interpreted language has the

advantage that it is not necessary to produce releases for every target platform.

The same program will run unmodified on all platforms. Of course, one has to

take care for individual platform aspects, like, e.g., when system commands are

executed. But the FAUN grid computing client is entirely platform agnostic. The

requirement of an interpreted language excludes the otherwise strong candidates

C/C++ and FORTRAN.

The Java language has a strong name for being platform independent. However,

it is generally compiled to virtual machine code which will then be executed by

a platform specific Java virtual machine. This is a dependency which the author

wanted to avoid. Additionally it is also an unnecessary step and there is a priori no

possibility to influence which exact version of Java will be installed. Download size

is typically at least 10 MB.

Finally, the author decided to settle for the Ruby programming language. It of-

fers the following strong points, especially when dealing with distributed platform

independent systems:

• The single most important unique feature is that it is fully object oriented.

The entire grid computing client is realized as a collection of objects which

are distributed across the network.

• Ruby possesses a distributed object model which shares objects among dif-

ferent computers. Compared to message passing software or raw network

programming results are achievable much more rapidly. The distributed ob-

ject model relieves the programmer from knowing details of the underlying

network protocol. It is described in detail in subsection 2.4.2.

• Ruby is a dynamic language which allows changes to methods of classes at

runtime. This is especially important when considering that the client will

have to updated — be it because of bug fixes or to enhance functionality. In

any case Ruby allows to update the file and reload it at runtime.

• The Ruby interpreter is very lightweight and can be stripped down and bun-

dled with the program to be distributed. The advantage is that not the entire
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library tree gets bundled but only the necessary functionality. This allows for

small interpreter files of less than 2 MB.

• The bundled interpreter does not require any installation on the host system.

It runs out of the box.

• Ruby includes especially strong support for various network functionalities.

• The author has found the Ruby developer community to be responsive and

cordial.

• Should the need arise Ruby can be compiled to Java byte code and executed

with a Java virtual machine. This technology is called JRuby. Although the

author explicitly does not want to use this for the present version it is a good

option for potential future development.

• Last but not least, software development being a project and the author the

only developer he had to keep in mind the experience of the developer team.

As the author uses Ruby on a daily basis and also has realized important

projects with it he deems it quite natural to choose a language which he is

already experienced in. E.g., WARRANT-PRO-2 for derivative optimization and

design has a wrapper graphical user interface written in Ruby.

2.4.2 The Distributed Object Model

A remarkable concept with Ruby is that every object can be marshaled. This means

that the current instance is transformed into a byte stream and saved. It can then

be loaded again for future use and start in the exact same state as it was before

marshaling. Marshaling provides an easy way to distribute objects among a net-

work. This is realized in Ruby with the distributed object model called DRb, short

for distributed Ruby. This works as follows:

• The object is marshaled.

• The marshaled stream is sent over the network.

• The object is demarshaled again and available.

The advantage of this proceeding is that the calling process does not need any

knowledge of the called object. Of course, it is necessary to know the appropriate
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method to call. But except for these well defined interfaces the object stays opaque.

Note that with the undumped option the calling process does not require the object

source code: all calls are marshaled to the server and results are marshaled back

fully transparently. This works in both directions. Every client can in principle also

act as server.

In the context of the FAUN grid computing client it is important to note that

one wants to keep communication requirements to a minimum. The target is to

put the Windows hosts in the student computer pool to work. This ITS pool is

a separate sub network which is firewalled. The server and other powerful Linux

hosts are in yet another sub network. For security reasons it is not advisable to

enable connections from the outside to the ITS pool. For this reason the clients are

designed to connect to the server at startup. This is quite the opposite from the

standard MPI concept. There the server uses, e.g., ssh to contact every client. Using

the distributed object model the only communication requirement is that the client

can reach an arbitrary port on the server.

This design choice is also intended to provide trust for additional clients. Con-

sider the following: when one dedicates spare computing capacity to a central

server one would rather like to have control over the connection than have a server

connect to the computer. While such a design actually makes crashes of the client

a little bit more difficult to handle it serves its purpose in the present case.

2.4.3 Wake Up and Shutdown

An important requirement in the FAUN grid computing client is to put resources

to work economically and ecologically. The idea to use idle computing capacity in

university clusters of workstations and individual computers is only really sensible

when these computers do not have to be powered on full time. Assuming that spare

capacities are not always needed but only on demand one requires some kind of

mechanism to power the computers on and off.

Server grade hardware features an intelligent platform management interface, or

IPMI, which allows to do just that. IPMI often provides much more information,

like, e.g., temperature. However, IPMI is not an option in the present case. First,

IPMI is not available on all computers and especially it is not available on most non

business computers like those in the faculty cluster. Second, the IPMI interface

itself consumes a small additional amount of energy.
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The author decided that the simplest way to achieve the desired functionality is

to use wake on lan, or WOL. This standard is nowadays implemented in almost

every mainboard. It requires the power supply to still deliver a small amount of

power to the network interface card, even when the computer is «powered off».

This is also referenced as soft off state. However, the amount of power required to

sustain soft off mode is small compared to leaving the computer running idle and

also compared to other management solutions.

Wake on lan is realized by broadcasting a so called magic packet. This small

network packet especially contains the MAC address of the network card repeated

16 times. The network card will parse every incoming packet for this sequence

and wake up the computer when appropriate. Tools implementing wake on lan are

readily available for every platform. They are also easy to program in almost any

language able to interface with networks. Note that wake on lan is not secure. Any-

one with the ability to connect to the network can send a magic packet. Although

some Linux flavors will require one to be root, i.e., the administrator, to send a

packet to the broadcast address this is by no means obligatory. Generally routers

are designed not to forward broadcast packets across network boundaries. The

potential abuse is therefore limited to the local network and people knowing the

MAC address of the network card. Nevertheless let the author emphasize that the

author does not recommend to enable wake on lan on computers with sensitive

data on it. Although not a threat in itself the computer may yield access to badly

secured data.

Wake on lan necessitates a computer in the same sub network as the hosts to

wake up. In the case of the student and staff cluster this is not a problem because

there is already one server running full time. If no such server is available one might

consider adding a low cost low power computer as wake up server. This server then

connects to the FAUN grid computing server and dispatches magic packets when

needed.

Shutdown is realized by operating system commands. I.e., the client retrieves the

order to shut down from the server and acts accordingly.

Note that when using a network switchable power outlet it is possible to com-

pletely eliminate power consumption of the computers which are otherwise in soft

off mode. When several computers are switched via a single power outlet the power

consumption of the outlet is negligible. While this solution might be the preferred

one from an ecological point of view it is not practicable in the present case. Realiz-
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Configuration single system entire cluster cost per hour
in W/h in W/h in Euro cent

Standby 0.4 24.0 0.51
Idle 44.7 2682.0 56.46
1 core 61.7 3702.0 77.93
2 cores 74.9 4494.0 94.60

Table 2.2: Power consumption for different scenarios in the student and staff clus-

ter. Hourly costs are based on a rate of 21.05 Euro cent per kWh. The

1 core configuration signifies that only 1 core is loaded to full capacity,

the 2 cores configuration loads both cores. This is what the FAUN grid

computing client does.

ing the switching requires a significant amount of additional cabling for the student

and staff cluster. Another reason is that switchable power supplies often provide

non standard interfaces and not everybody uses them.

2.4.4 Cost Analysis

The student and staff cluster comprises 60 dual core E8400 systems at 3.0 GHz.

Table 2.2 shows the results of the measurements. One notes that there is an impor-

tant difference between the standby and idle numbers: powered on the computers

consume 112 times more electricity than in standby mode.

We want to get a realistic impression of what one can save when powering off

the computers. For this, one assumes that the student and staff cluster is used

40 hours per week for the sole purpose of computation. During the rest of the

time it either runs idle or is powered off in standby mode. This is not strictly true

because the cluster is also used for, e.g., teaching during the week. But it allows

a conservative comparison. One also have to take into account that the cluster is

air conditioned. Every Watt consumed by the cluster is finally transformed into

heat and has to be cooled. A typical air conditioner produces 3 units of cooling

power for 1 unit of electrical energy. The total power consumption of the cluster is

therefore increased by one third. Powering off the cluster after computation leads

to the following figures for a 168 hours week:

• 40 hours of full capacity on 2 cores. Costs 40h × 94.60 c/h × 4
3 = EUR 50.45
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• 128 hours in standby. Costs 128h × 0.51 c/h × 4
3 = EUR 0.87

On the other hand, leaving the cluster idle but not powered off gives:

• 40 hours of full capacity on 2 cores. Costs 40h × 94.60 c/h × 4
3 = EUR 50.45

• 128 hours idle. Costs 128h × 56.46 c/h × 4
3 = EUR 96.36

Aggregating the numbers into a year with 52 weeks one gets power costs of EUR

2668.64 per year when switching off. However, not switching off leads to costs of

EUR 7634.12. This leads to cost savings of EUR 4965.48 per year when using the

FAUN grid computing client.

We can also view power consumption from another angle and ask: What are

the added costs of using the student and staff cluster for computation? In this

scenario one assumes that computation is carried out during the operating time

of the cluster. I.e., the added costs are the difference between full load and idle

consumption. Even when users do word processing or web research the load is

very low. This yields 40h × (94.60 c/h − 56.46 c/h) × 4
3 = EUR 20.34. For an entire

year this sums up to EUR 1057.68. I.e., one gets the approximate performance of a

dedicated cluster or high performance computer for the power costs only. There is

no need to purchase additional hardware. Of course, some fine grained problems

are simply not suited for workstation clusters. But the FAUN grid computing client

speeds up almost linearly, see figure 2.9 on page 52.

2.4.5 Performance Analysis

In the following the author looks at how the grid computing client actually per-

forms when training batches of networks. The author analyzes several scenarios:

• A purely local scenario where one only considers performance within a dual

quad core computer. This scenario should give us an idea of how the grid

computing client scales under ideal conditions.

• A one network scenario where one stays within the institute’s sub network.

The computers involved are connected via a common 100 MBit/s Ethernet

switch. However, this switch serves the entire floor and is not exclusively

dedicated to compute traffic. One expects to see some slowdown because of

the comparatively narrow bandwidth provided by the switch.
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• A multi network scenario for which the grid computing client is actually in-

tended. The author will connect the user workstations from the students and

staff computer cluster in the second floor to the grid server in the fourth

floor and compute on all available clients. The second and fourth floor are

connected using a shared 1 GBit/s fiber. I.e., the theoretical peak bandwidth

to the institute network is 1 GBit/s divided by the number of computers in-

volved. Of course, the theoretical peak bandwidth to the server is still lower

because this computer is only connected with 100 MBit/s as mentioned above.

We can only sensibly judge the speedup in the first scenario. In the other scenarios

the added computers are too different as to allow a comparison. Indeed clock

frequency is only a very rough indicator of what one can theoretically expect as

peak performance. For actual computations, however, other factors like processor

caches and data size, in-out bandwidth, and network bandwidth to name only a few

become very relevant.

The throughput in networks per second for the first scenario is shown on fig-

ure 2.5 on the next page. One sees that throughput increases almost linearly up

to 8 threads. This is to be expected because the server has 8 physical cores. The

scheduler will first distribute idle cores to the FAUN processes. It is very inter-

esting to see that adding more threads than physical cores still increases overall

throughput noticeably. As the cores are already heavily loaded the increase is not

linear and one notices that going from 10 to 11 threads has only a negligible effect.

This is to be contrasted to fine grained parallelization where adding more threads

generally decreases throughput. The reason that this works well for coarse grained

parallelization is that FAUN also has to deal with input and output. During this

time speed is limited not by clock frequency but by memory bandwidth. There is

still idle capacity which the additional threads are able to exploit. This effect is very

satisfactory. It indicates that the FAUN grid computing client adds value compared

to using the single threaded version. Still one caveat applies: while adding more

threads than cores increases the overall throughput the very first networks will

take slightly longer to arrive because the server is loaded to more than full capacity

with 11 threads.

Figure 2.6 on page 48 shows the scaling behavior in relative terms, i.e., the

speedup. One sees that at first the speedup decreases. Then, when the second pro-

cessor is hit the speedup temporarily increase above 1. This surprising behavior

is due to the second processor taking over administrative tasks from the first and
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Figure 2.5: Computed neural networks per second using the FAUN grid computing

client and only one server. One sees that using more than 8 threads still

slightly improves the throughput although only 8 physical processing

cores are available. This effect is due to in-out operations which do not

load the core to full capacity. Therefore some capacity is still available

to be exploited.

therefore relieving the overall system. While this effect is negative in fine grained

parallelization because of latency effects the coarse grained version does not re-

quire sub ms latency. Then the speedup slightly reduces as expected until more

threads than physical cores are added. Note that increasing the number of threads

does obviously not increase the available hardware processing power. However,

the threads are able to take advantage of some spare capacity. They increase the

overall speedup compared to using only a single thread which is the benchmark.

Figure 2.7 on page 50 shows network throughput for the second scenario which

uses diverse computers in the institute’s network. Interestingly adding a second

8 core server improves results significantly, threads 12–22. Although this server

is older and slower throughput almost doubles. From thread 23 onwards various

dual and single core computers are added. Here, not every new thread improves

the throughput. On heavily loaded computers the client is too slow to respond and
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Figure 2.6: Relative speedup on a single dual quad core server. One notes that

speedup is at times greater than 1. This is explained by the fact that

threads are computed on two different processors. When threads start

to hit the second processor the first processor is relieved from certain

administrative tasks. This can be seen starting with 4 threads. The

speedup declines below one until the 8th thread. Then one adds more

threads then physical cores. While these threads do not have access to

capacity of an entire core they still add to the bottom line of computed

networks per second. Therefore they increase the speedup compared to

running only a single instance of FAUN.

actually slows down the entire calculation. On shared computers it is necessary to

set the FAUN grid computing client to low priority because otherwise services are

disturbed. The threads include normal user computers, smaller and older servers

hosting virtual machines and file servers on Windows and Linux. Simply put: ev-

erything one finds in an organically grown network. Not using the grid computing

client with lowest priority quickly makes one very unpopular with other users. Fig-

ure 2.7 on page 50 shows a very realistic scenario where not every threads adds

value. However, it is not possible to know a priori which computer will be loaded

and which not. It is best to include all available hardware in the computation be-
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cause even small improvements are improvements that one gets at no additional

hardware cost. With very slow computers it can happen that the client never man-

ages to send the results back before all others have finished. In this case a small

performance penalty is incurred.

Here, the question of speedup is more difficult to answer. How can one com-

pare a cluster of inhomogeneous computers which are as varied as can be. Op-

erating systems Linux and Windows, professional and consumer hardware, very

recent hardware from 2009 and hardware as old as 2004, different vendors, etc.

the author chooses to benchmark the involved computers individually with the sin-

gle threaded version of FAUN. Then, it is possible to compare how much of this

possible performance is realized in the grid version. Still, the results can only

be indicative because the individual load situation on every computer will vary be-

tween benchmark and production runs. With all these caveats figure 2.8 on page 51

shows the estimated speedup for the inhomogeneous cluster. The effect of a sec-

ond slower 8 core server up to thread 22 is clear to see. Like in the first scenario

speedup still increases when adding more threads than physical cores. In the case

of this shared server the effect is due to more threads also getting a bigger share in

total system resources. Even when setting the threads to low priority one should

be cautious in doing this. Other applications will be less responsive. From thread

23–36 other computers are added. One sees that this — with few exceptions — de-

creases the speedup. The overall speedup is always above 95 percent. This number

is actually very satisfactory. It indicates that only 5 percent of theoretical perfor-

mance are lost in communication and management overhead.

Figure 2.9 on page 52 shows estimated speedup for the third scenario. Here, the

author includes 21 dual core computers from the student and staff cluster. Because

the computer room is still in the building process the author was not able to use all

systems. But the figure already indicates that one can expect very good speedup.

One notes that speedup is jittery. This is due to using a shared network. One can

expect that, e.g., downloads of other users, IP-telephony and other network services

interfere with data transmission.

2.5 Extended FAUN Documentation

[208] is the authoritative user manual for all aspects of FAUN. The present work ex-

tends FAUN functionality in several ways. The author provides compact additional
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Figure 2.7: The second scenario uses different types of computers within the in-

stitute’s network. The first 11 threads run on a recent 8 core server

exclusively dedicated to computation. The following threads are set to

low priority to avoid disturbance of user users. The threads 12–22 run

on an older 8 core server which also is professional hardware. Threads

on this server scale similarly well. The slope of the curve is reduced

due to significantly slower clock speed. This server is shared with other

applications. The next threads 23–36 successively use diverse single or

dual core computers which can be heavily loaded otherwise: 2 of the

computers run Windows 7, the others run various flavors of Linux and

host virtual machines for other users. Threads 27–29 show that adding

more threads does not necessarily increase throughput. This happens

on systems with otherwise heavy load.

50



0.940

0.960

0.980

1.000

1.020

1.040

1.060

1.080

1.100

1.120

1.140

0 5 10 15 20 25 30 35 40

Sp
ee

d
u

p

Threads

Figure 2.8: Estimated speedup for cluster of heterogeneous computers. This

speedup is estimated using single threaded benchmarks on the individ-

ual computers. It is only indicative because benchmark and test run re-

sults depend on the actual load on the computer. One sees that speedup

is stable until thread 22. In the following various loaded computers are

added which — not surprisingly — worsen the speedup. It is remarkable

that the speedup always stays above 95 percent. This is a sign of very

good resource utilization. However, slow computers have a dispropor-

tional negative effect. On the one hand they only deliver few results. On

the other hand they are slow in actually sending them back.

documentation for the new functionality. This includes

• How to access the shared layer perceptron topology.

• How end users can compute using additional resources from FAUNgrid.

• How the administrator can configure the grid client.

• How to extend the shared layer perceptron functionality.

• How to extend the grid client.
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Figure 2.9: Estimated speedup including the student and staff computer cluster.

Overall speedup is good but jittery. This has to be expected because the

network connection is shared. E.g., downloads of other users may slow

down data transmission.

2.5.1 User Manual

The most efficient way to access FAUN grid resources is via the command line.

However, first time users will prefer the web interface. In the following the author

describes both methods.

Command Line Interface

The author took special care to design the FAUN grid computing client as a drop in

replacement for the FAUN kernel executable. For the end user all setup procedures

stay the same:

• Provide training and validation data in the sub directory data_files. For un-

scaled data the filenames are training_unscaled and validation_unscaled.

For scaled data use training_scaled and validation_scaled.

• Provide the control files in the sub directory control_and_output_files.
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• Edit especially control_1_1_0 suitablys. The number of networks set here

is the total number of networks that are trained. The server automatically

distributes smaller tasks to the clients.

• Finally start FAUN by calling the faun executable.

One can follow the progress of training by looking at the output_1 file which shows

every trial. output_2 saves successfully trained network. One can parse these files

with all the already available tools as the format is unchanged from previous FAUN

versions. One may get a few networks more than actually required because it is not

previsible at which rate clients will deliver results. If a client happens to deliver a

batch of networks then, of course, superfluous networks are not discarded because

they contain useful information.

Accessing the power management facility is straightforward. The wake up com-

mand starts all available hosts. The shutdown command will power off all clients

which are configured to react to this command.

Web Interface

The web interface is intended for the casual user who wants fast access to FAUN

functionality. [208] provides a detailed introduction to the web interface. Details

for developers can be found in [207]. The following additional features are now

available. Figure 2.10 on the next page shows how to use the grid computing client.

By default the student and staff computer pool — ITS pool — is powered off. The

institute’s compute cluster is available. One should use these settings for test runs.

For production runs one can wake up the ITS pool by clicking on the appropriate

button. Remember to power off the cluster at the end of computation.

The Active grid connection box shows all clients available for computation. One

will note that the same host may appear several times on different ports. This is

useful for multi core systems which provide more than one client. With several

clients it is possible to achieve maximum efficiency. It is even possible to involve

more clients than cores. As a heuristic the author noticed that an 8 core system is

loaded to full capacity with 11 clients. When one of the clients is non CPU bound,

e.g., during file transfer, others take over.

Figure 2.11 on page 55 shows the Type & topology tab. Its structure is the same

as in the previous web interface version. However, a fourth category for the shared

layer perceptron is now available. As usual one can select it with the appropriate
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Figure 2.10: Use the grid computing client by ticking the appropriate checkbox.

One can wake up and shutdown the student and staff computer clus-

ter by clicking on the appropriate button. Note, that these are not the

only clients available for computation. As a standard the institute’s

compute cluster is available, too.

radio button. The Shared layer perceptron box at the bottom of the page allows to

fine tune the shared layer perceptron settings.

2.5.2 Administrator Documentation

The author considers the initial distribution of the FAUN grid computing client and

the setup of the server to be an administrator and not a user task. The reason

is that every institutional setup requires among others some adjustment in the

connection settings. Users will not necessarily know, e.g., ports and IP addresses.

In every case one has to modify the connection settings. They are provided

as module in the file moduleConnection.rb. This file only contains two entries.

Please set them accordingly. Remember that network cards may bind to more than

one IP address and choose the appropriate one. E.g., the lines
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Figure 2.11: Use the shared layer perceptron by ticking the appropriate radio but-

ton. One then has the possibility to configure the topology in detail.

• SERVER = "130.75.63.71"

• PORT = 1025

will cause the server to start on the external interface with IP address 130.75.63.71

on port 1025. moduleConnection.rb has to be the same for all clients required to

work in this context. The easiest way to achieve this is to modify it in the install

directory. From this directory all necessary files are copied during setup. One can,

of course, start several servers on different computers or on one computer with

different ports. The server is written in pure Ruby. It is tested on different Linux

and Windows flavors.

To install the client one can simply execute the install file. It will copy all

necessary files to an appropriate destination. One can configure the destination in

the Install class. The installer also configures the client to run at startup. Here,

the mechanisms between Linux and Windows are markedly different:

• On Linux the installer creates a link in the appropriate rc directory. For this

to work one needs to be root. If one modifies the link one should keep in
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mind that the client needs a working network connection. It will otherwise

fail writing a message to a local log file. Still, this kind of problem may be

hard to debug. To avoid this the startup link should be placed at a position

after network initialization.

• On Windows the installer creates a scheduled task. The task runs at startup

and without the necessity of a user being logged in. The syntax of the task cre-

ation command can be modified in the Install class. A modification might

be necessary on Windows XP when using localized versions of the operating

system. Modifications are not needed with Windows Vista and Windows 7.

One can control the correct behavior by starting the server and wait for the client

to connect. The server will log a line like

client ’130.75.63.71 PID:10818 on i486-linux’ calls get_work

which tells one the IP address, the process identification number and the archi-

tecture of the client platform. The process identification number is useful when

several clients are running on the same host.

If this message does not appear there most probably is a problem with the fire-

wall configuration. One should confirm this by looking at the local log file on the

client. Especially when one is connecting two different subnetworks the central

firewall may forbid inside-inside communication although inside-outside commu-

nication does work. This is the default case here at Leibniz Universität where two

different subnetworks are not allowed to communicate except for a few standard

ports. Another common problem is created by the local Windows firewall which

might be overly restrictive. In this case one will have to allow the client specifically

to communicate over the port one has selected. Finally, when running the server on

Linux and using a privileged port, i.e., below 1024, one may need to be root. How-

ever, the author does not recommend any of this. One should not use a privileged

port and one should not run the client as root for security reasons.

The installer chooses the appropriate FAUN executable to be copied to the local

system. There are four files to choose from, i.e., Linux and Windows, both for 32

and 64 bit systems. These files are called FAUNlin32, FAUNlin64, FAUNwin32 and

FAUNwin64. If one installs on other platforms one will have to create the necessary

FAUN executables yourself. This is straightforwards but necessitates a FORTRAN

compiler for the target platform.
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2.5.3 Developer Documentation

The code of the FAUN grid computing client and server is amply commented. It

should allow one to easily alter functionality. In the following the author gives an

overview of the components making up client and server.

The class FAUNObject is central to the functioning of client and server. It is

distributed to and accessed by every client. It is managed centrally by the server.

The most important switch is the @action class variable. It stores the state of

computation. Currently there are three implemented states:

• :doNothing is the default state on startup. This state is also reset at the end

of computation.

• :compute tells the client to start and continue the computation. If the pre-

vious state was :doNothing the client assumes that it should fetch control

and data files. If however the previous state already was :compute then the

client continues the computation with the already fetched data. If for any rea-

son one wants the client to fetch new data, one has to set :doNothing before

setting :compute.

• :shutdown causes the client to shutdown the computer. Before this hap-

pens computed results are transferred. One can therefore safely initiate a

:shutdown without fear of loosing already available results.

In order to access state information from the server the client has to call the

get_work method. This method will block until there is effectively some work

to do. The advantage of using a blocking method is that the client is not obliged to

poll the server regularly. Polling would generate a significant amount of network

traffic. An appropriate choice of the polling interval is difficult. When returning

get_work contains the appropriate @action, i.e., :compute or :shutdown.

With get_data the client accesses control and training data. As this will move

a possibly significant amount of data across the network one should make sure to

only call get_data when necessary. To achieve this the server assigns a unique @id

to every new computation. The client can now simply check if the @id has changed

and only fetch the data in this case.

The control_1 file necessitates a special treatment. It is not enough to simply

copy it, because it contains the number of networks to compute and the seed for the

random generator. For every client the server generates an individual control_1
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file with the number of networks to train and the random seed set appropriately.

The client retrieves this file always, i.e., not only when starting the computation.

This is achieved via the method get_control_1. When adding functionality one

should keep this feature because it allows to individually set the number of net-

works for every client. It is, e.g., possible to first distribute several networks to

train for every client. Then as results flow in the server reduces the number of

networks to compute. This further reduces communication overhead.

The client uses deliver_results to send the results back to the server. To keep

this as flexible as possible the results are simply a hash of key-value pairs. The key

is the filename. The value contains the actual data. In the present case the three

files output_1, output_2 and output_3 are sent back. But one can, of course, add

more files as needed.

The server has to synchronize write operations of several clients. Otherwise

the reporting back of the results would get mixed up. This is implemented in

the @semaphore instance variable which locks access to output files during writes.

Although this does not represent a bottleneck in the present case there might be

situation where locking slows down the computation. This may happen with several

hundreds of clients with very small workloads, i.e., shorter than one second. Then

the writes take a significant amount of time. However, this scenario is not likely.

Short workloads could easily be computed with fewer clients.

The FAUNClient class is responsible for all local tasks. It’s principal method is

main_loop which appropriately dispatches workloads. The initialize method

connects to the distributed object server.

The FAUNHelpers class provides local auxiliary functionality for both clients and

server. The important difference to FAUNObject is that all methods in this class

are designed to work without any network connection. The distributed object is not

necessary. If one wants to add functionality there are several methods of interest.

createNewFAUNDir is responsible for setting up the FAUN directory structure from

scratch. It removes old directories and sets up the new ones. If one changes how the

FAUN kernel accesses control and output files one will have to make adjustments

here. Most files can be passed on to the FAUN client without modification. As

mentioned above control_1 needs a special treatment and the server modifies it

for every client. parse_control_1 has the task of parsing the file. It creates a hash

where every value can be modified. If one changes the structure of control_1 one

will also have to alter the parse functionality.
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The module Log provides simple logging facilities. One should include this mod-

ule in every possible extension to get unified logging. The logging facility is mostly

useful for testing new functionality. Without it one will have difficulties debugging

the distributed program as log messages will appear at all locations.

The module Connection stores connection settings for clients and server. The

author already describes its application above.

When adding functionality one does not want to reinstall the client on every host.

It is sufficient to simply overwrite the modified file. Changes will be incorporated

at the next start. To overwrite the file it is most simple to send the file as part of

a compute job. The client will notice that the sent file does not belong to FAUN

control and training data and will put it in the specified location.

Targeting new platforms or operating systems creates no problems as long as

a Ruby interpreter is available. One may want to check that shutdown works as

intended. However, one also has to provide an appropriate executable of the FAUN

kernel. The FAUN kernel does not contain any platform specific code. But, of

course, one will need a FORTRAN compiler for the target platform to create it.

To summarize: extending the grid computing client is straightforward due to its

modular structure. Before writing code one should check the following points:

• Do you add functionality which needs synchronization between server and

client? Then put it in the class FAUNObject which gets distributed.

• Is the functionality needed by server and client, but only locally? Then the

FAUNHelpers class is the right file to use.

• Is the functionality limited to client or server? Then take the local class.

2.6 FAUN Applications

Although the focus of this book is on financial forecasting the author does not

want to pass over the numerous other applications which have successfully been

realized with FAUN. All applications realized with FAUN are too many as that the

author could describe every in detail. The selected applications should give the

reader a good guidance of what is possible with FAUN. The author will expand in

much more detail on forecasting applications with FAUN in chapter 4. For this

reason the list given here is quite short.
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Financial Forecasting

• Forecasting the German yield curve, long and short term, is one of the flagship

applications of FAUN. This model, developed by Michael H. Breitner, has also

been implemented in a bank. Such a system typically serves as decision sup-

port system. It helps deciding whether refinancing and/or investment best

occurs at long or short term rates, see [43].

• In previous works the author analyzes short term forecasts of the EUR|USD

exchange rate. This system uses high frequency data sampled at 60 seconds

intervals. It forecasts the rate of return for the next 15, 30 and 45 minutes,

see [324].

• Jan Bührig generates a forecast for the DAX 30 index, to appear.

• Horst-Oliver Hofmann forecasts the EEX energy future, based on electrical

power prices. This leads to good short term forecasts. Here again, high fre-

quency data is used, to appear.

• Christoph Polus analyzes the the spread of different oil brands and uncovers

market inefficiencies. This study uses daily data, to appear.

Derivatives

• Michael H. Breitner first prices BASF and EUR|USD calls by using market con-

forming pricing models, [43].

• Patrick Bartels uses FAUN to provide real-time market valuation of options.

He uses an appropriately developed web mining agent to gather the data. This

leads to the WARRANT-PRO-1 software, [16–18].

Optimal Control, Simulation and Dynamic Games

• Michael H. Breitner provides tutorials on dynamic games and neural networks

in [44,46].

• Michael H. Breitner develops a model for optimal reentry guidance of a space

shuttle. The simulation provides very smooth reentry paths, see, e.g., [42].

• André Meyer presents zero sum games in [249].
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• Frank Köller and others realize the simulation of a callers’ queue in a call

center. The model allows significant savings over previous heuristics, see

[19,204,205,353].

• The author analyzes the enhanced cornered rat game and the homicidal chauf-

feur game. Both games can be seen as pursuer-evader or collision avoidance

scenarios. It turns out that FAUN produces solutions which are very close to

the analytical solution but much faster to compute, see [329].

Pattern Recognition

• Horst-Oliver Hofmann, Jörn-Gunnar Knie and Christoph König employ FAUN

to recognize speed limit signs, seminar paper.

2.7 Summary

This chapter presents technical details of the changes the author made to the insti-

tute’s neurosimulator FAUN. Part of it is creating new functionality, i.e., engineering.

Another part consists in enhancing and ameliorating already existing functionality,

hence reengineering. Mostly both parts come together and complement one an-

other.

An important topic of this chapter is the introduction of new parallelization

schemes for FAUN. With semi-automatic fine grained parallelization one can speedup

the computation of single networks. If the task at hand requires only few networks

to be trained, i.e., a few hundreds, but these have to be available fast, fine grained

parallelization is a good solution. One finds that fine grained parallelization does

not scale well. The results are satisfactory as long as the parallelized threads stay

on a single processor. When a second processor is involved latency penalties dom-

inate. Only a fraction of the additional processor is used. The challenge is the

following: essentially, training neural networks involves linear algebra. The appli-

cation of the non linear squashing function is negligible compared to computation

time spent in doing matrix-matrix and matrix-vector multiplications. While these

operations are theoretically easy to parallelize it turns out that copying input and

writing back results takes comparatively long time. The actual computation is in

the sub ms domain. This is well below the typical time slice of 10 ms of a standard

operating systems.
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Yet, fine grained parallelization has in the author’s opinion a bright future. There

are two important points:

• For the past two years increase in processor clock speed has been almost

nil. On the other hand dual and quad core processors have become quite

common. It is almost impossible today to buy computers with only a single

processor. This development continues. Intel and AMD already sell hexa cores

for standard servers and both Intel and AMD have announced octo cores to

be launched in 2010. Intel also plans the release of the Larrabee processor

which will share features of CPUs and GPUs. The trend clearly indicates that

clock speeds stagnate or even fall and the number of cores goes up. With this

development hardware and compiler vendors will necessarily move towards

fine grained parallelization. One can expect interesting novelties within the

next few years.

• Since the advent of Nvidia’s CUDA in February 2007 high performance com-

puting on the GPU has become popular. The author has no trusted source

to quantify this. But he argues that seldom a month goes by without an ar-

ticle on GPU computing in the mainstream computer media. GPU computing

generally involves fine grained parallelization because the number of threads

executed ranges from 240–800. Today, it is still difficult to load a GPU to full

capacity. But vendors, especially AMD/ATI and Nvidia, seem to be aware of

the current bottlenecks. It is probable that upcoming generations of graphics

hardware will facilitate effective usage of the hardware.

For both of these reasons the author plans to dedicate further research to the

fine grained parallelization of FAUN. First results are already promising. The next

concrete step is to create a gridded version of FAUN which makes use of additional

graphics hardware when it finds it.

In the meantime coarse grained parallelization with the grid computing version

of FAUN is very promising. It yields speedups of 95 percent or more and addition-

ally offers power management. The MPI version is suitable for dedicated compute

clusters. Here, upfront configuration is not a problem. One also generally owns —

administratively or even physically — the compute cluster. However, the scenario

at a typical university or company is different. One mostly has user workstations

or computer pools which are idle most of the day. Administration is often not cen-

tralized. It is left to individual departments or institutes. In this case it is difficult
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to justify complicated upfront configuration. The FAUN grid computing client fills

the gap with the following features:

• Installation simply consists in executing the installer on Windows systems.

On Linux systems one can also use the installer or install the grid computing

client as a package. The administrator once creates a customized installer

with site connection settings. Then, everybody can use this installer and auto-

matically connects to the server.

• The FAUN grid computing version bridges different operating systems trans-

parently. While the well known free versions of MPI do not allow hybrid setups

the client and server are operation system agnostic. Using the platform inde-

pendent Ruby programming language and distributed objects reduces the has-

sle of providing customized programs for every platform. Server and client

have been tested with Windows XP, Windows Vista and Windows 7, and for

the three latest releases of Ubuntu and the two latest releases of Debian.

• Communication is arranged such that the client initializes the connection.

This represents the typical case of a firewalled network where clients are al-

lowed arbitrary connections from the inside to the outside. But outside-inside

access is generally restricted to very few standard ports. When user work-

stations are concerned outside-inside access is typically entirely forbidden.

Contrast this to MPI where the server — or master — initiates all connections.

• The architecture is robust. If a client drops out this does not crash the compu-

tation. Conversely a client can also connect when a computation runs and will

be used immediately. If the server fails the clients automatically shut down.

They are not left in an undefined state. Data is not lost but available as files

on the server.

• Compute clusters are always on. It is a waste of energy and ultimately money

to let computers run idly. The FAUN grid computing client alleviates this

problem by allowing the user to wake up and shutdown all involved comput-

ers remotely. In the case of the student and staff computer cluster this means

savings of several thousand Euro per year. It is compared to a case where all

workstations are always on. There are not only direct costs associated with

having clusters always on. The student and staff computer pool is air condi-

tioned. Each amount of energy saved in the computers is also saved at one
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third in air conditioning energy costs. Additionally, consumer hardware is not

designed to run permanently. Having the possibility to switch resources on

and off on demand is a very important feature in the domain of high perfor-

mance computing on commodity parts.

While the grid computing client is fully functionally there are further points which

should be researched:

• How does the batch size affect performance? It is obvious that bigger batch

sizes reduce communication overhead. On the other hand one does not want

to compute too much networks. For the present calculations the author uses a

decreasing batch size towards the end. It would be instructive to experiment

with different batch size policies.

• The current architecture uses a single central node and only clients otherwise.

In segregated networks it might be useful to introduce an additional hierarchy.

All clients in a sub network then connect to a sub-server and this sub-server

communicates with the main server. This reduces load on the main server

and also communication on the institutional backbone.

• Clients send their data back every time they have finished a batch. This is

useful for online control of the training process and allows the user to check

out networks as soon as they arrive. However, the author sees the typical

use case of the grid computing client as follows. After having determined

appropriate parameters locally or on a small cluster the user runs a batch

training job. This job runs unsupervised and online graphics are of no interest.

It might be more efficient in this case to bundle the results and only send them

back at the end of computation. There is the danger of loosing data when a

client disconnects during computation.

• To further improve usability a graphical installer builder is useful. This pro-

gram would advise the administrator in making the necessary connection set-

tings and create a customized installer.

With two parallelization modes and an additional neural network topology the

present book considerably enhances functionality of FAUN. As the software is writ-

ten in as modular a way as possible it is the author’s hope that parts of it will be

reused for other projects.
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3 Neural Network Topological

Concepts and Enhancements

3.1 Introduction

This chapter presents a detailed analysis of a neural network topology which has

been only seldom used up to today. This topology, the shared layer perceptron, is

especially elegant because it treats the passage of time as perfectly symmetric. It

provides parallel forecasts for several time series. Multi step forecasts are easily

possible.

The chapter is structured as follows. The literature review provides the reader

with all basics one might need to understand the concepts presented here. Al-

though the shared layer perceptron topology is simple and not as convoluted as

some others one may want to review some ideas, especially how neural networks

are applied to dynamical systems. The reader will also see that the author uses op-

timization methods which are not very common in the neural network community.

The reader may want to review some numerical procedures.

The following section 3.3 makes up the «meat» of the chapter. It provides motiva-

tion and mathematical formulation for the shared layer perceptron. It also shows

how to compute required partial derivatives efficiently. Finally, the author analyzes

computational requirements of forward and backward pass.

The next two sections present two methods of accelerating the training: teacher

forcing and the addition of noise on the hidden states. The author discusses the

changes needed in the algorithm.

Then, the optimization method, sequential quadratic programming, is discussed

in detail. The author especially presents how the algorithm is formulated in the

terminology of NPSOL, the optimizer package.

Finally the section on convergence analysis discusses the influence of the dif-

ferent meta parameters in the shared layer perceptron. It also provides sensible
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guidance if one wants to use the shared layer perceptron and are unsure how to

choose the parameters.

A summary wraps up the chapter. Here the reader will also find further ideas

how to improve on the present topology.

3.2 Literature Review

Neural network introductions and basics

[176] is a classic reference and covers a broad range of topics. Coverage is — as

one should expect from an introductory book — not very deep. Dynamic systems

are also mentioned. Especially the section on input preprocessing on p. 144 should

be read carefully. [31] is more superficial. Yet it explains basics in a more accessible

manner than [176]. This also holds for [276]. [280] is an introductory overview of

neural network applications. It gives a feeling of what one can actually do with neu-

ral networks, whereas the other introductions are more focused on theory. Starting

with p. 467 [235] introduces neural networks from an information theoretical point

of view. While this book has only a small part dedicated to neural networks it is

still a good read — the whole book. One will get a feeling of what models can

memorize and what not. As this book is built around the FAUN neurosimulator

the author also suggests to read [43]. This provides a mathematical and thorough

presentation of neural networks, model building, and applications with the added

benefit that all nomenclature applies directly to FAUN and is reused in this book.

[182] proves that neural networks are in principle able to approximate every

input-output mapping on an interval with required accuracy. [282] gives a similar

result adapted to dynamic systems. Please note, that neither reference will tell how

to find a network — just that it exists. This explains the plethora of literature on

neural network training, see below.

Modeling of dynamic systems

[122] is the paper which gave birth to dynamic system modeling in the context of

neural networks as one knows it today. Although it focuses on word recognition its

conclusions are applicable to dynamic systems in general. [2] focuses on identifying

dynamic systems.
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Generally, a dynamic system model will include memory of past history. One may

either model memory explicitly via inputs. Or one can provide a network internal

mechanism to do this. [281] deals with long term effects. [178] offers an approach

using special connections between the neurons.

Numerical methods

FAUN uses sequential quadratic programming for optimization. See [35] for a gen-

eral introduction. [155] further focuses on merit functions. The optimizer NPSOL

used by FAUN is presented in [156]. [154] documents the sub package LSSOL. NPSOL

is in its essence a quasi Newton algorithm. [86] presents it. [87] analyzes global con-

vergence of this algorithm class.

Accelerating training is the topic of various papers. [334] explains backpropaga-

tion through time for dynamic systems in detail. [338] deals with the challenges of

having the network operate continuously while learning. [138] presents a boosting

algorithm. [169] introduces the Marquardt algorithm in the context of neural net-

works. [251] proposes an accelerated conjugate gradient method. [229] presents

an approach how to only consider relevant patterns when learning and proposes a

filter. [281] proposes reinforcement learning. A totally different approach is to not

use gradient methods at all but genetic algorithms, see [252]. A more general intro-

duction is [271]. [365] presents functional reasoning, [366] uses data mining. [331]

is a work in progress which reviews global optimization methods.

Training neural networks is essentially a high dimensional non linear optimiza-

tion problem. [160] provides a review of possible training algorithms for these

cases. [257] provides a succinct introduction. [272] reviews challenges and solu-

tions for high dimensional optimization. [297] deals with stability issues.

One generally not only trains a single network but rather 100–10000. This allows

one to only select the best networks for future use. Best does not necessarily mean

networks with the lowest training error although it generally does. In FAUN one

can also select networks based on validation error or curvature. Then, one may

want to combine the networks to form an expert topology. [175] reviews available

methods. One can also view this process as Monte Carlo simulation, see [183].

Combining neural networks gives one a distribution of possible outcomes. [250]

exploits distributional properties.

Training requires at least first partial derivatives in most cases. [263] shows

different methods to efficiently compute them dedicated to time dependent sys-
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tems. [339] reviews gradient methods and the amount of computation required.

For very general network topologies and first experiments it is not always possible

or necessary to explicitly compute the derivatives by hand. This task is successfully

carried out by automatic differentiation. [164] is an introduction to automatic dif-

ferentiation. [29, 30] introduces the ADIFOR software package, [312] the OpenAD

package. [174] introduces another good software package, Tapenade, and also in-

troduces automatic differentiation very concisely.

Learning dynamic systems with long history may cause the error flow to become

very small for certain time steps. This is known as vanishing gradients. The author

didn’t encounter the effect in this book. But the discussion in [177] is useful in its

own right. [294] proposes a method to mitigate vanishing gradient effects.

When learning patterns one may argue that there is uncertainty in the observed

values. To improve generalization capabilities one may add noise, see [181]. The

author uses noise on the hidden states and find that it helps escape local minima

at the beginning of training. [330] presents this approach, but for the outputs. An-

other useful modification of the learning process is teacher forcing. It replaces

forecasts by desired outputs. This is discussed very briefly in [176], p. 817. [307]

give mores details.

3.3 Shared Layer Perceptron

3.3.1 Mathematical Formulation

The basic idea is to model a dynamic system which forecasts every component of

the system as a whole. In simple words: the system produces its own forecast. As

one cannot assume that one is able to observe everything that is important for the

system one adds hidden states which absorb the unknowns. Think about it: just

because one considers something is meaningful it does not follow that other vari-

ables are not meaningful. Just look into your world: which variables do you see? A

few thousand, perhaps a few millions? And how many variables are relevant to the

world? One cannot account for all these variables in the model. And one cannot

measure them with arbitrary accuracy. This is not the goal. But one can build a

model that at least acknowledges hidden influences and does not ignore them. To

be specific: just because one takes a fancy in forecasting exchange rates they will

not suddenly become something special. They continue to move, together with eq-
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uity indices, interest rates, commodities, economic indicators, market actors, other

humans, molecules, atoms, and elementary particles. One has a coherent system.

We can model such a system with a D × D matrix of weights W which encodes

the dynamics. At every time t one has a D-dimensional state vector st. The first

N elements are the observeables. These are the variables one can measure, deem

especially important for the system and want to predict as a whole. The next D−N
elements are hidden states. For state transitions one uses the following simple

neural network formulation:

st+1 = f(st). (3.1)

In the present case one has

st+1 = tanh(Wst). (3.2)

Please note, that tanh is applied element-wise to the vector Wst. Figure 3.1 on the

next page illustrates the shared layer perceptron.

Optimization algorithms like NPSOL generally need to know at least the first par-

tial derivative of the cumulated error function E with respect to the weights of the

weight-matrix W . As usually all partial derivatives are needed at every optimiza-

tion step it is important to devise computationally efficient ways to calculate the

gradient. Depending on the given algorithm and the relationship of input variables,

i.e., weights, and output variables, i.e., E or the elements of the Jacobian, it is better

to calculate the gradient using forward or reverse accumulation in the chain rule.

Using forward accumulation is more intuitive. Because of that the author presents

this method first. Reverse accumulation is known as the classical backpropagation

algorithm. The author presents it second.

3.3.2 Forward Accumulation

First, the author looks qualitatively at the gradient calculation and note the follow-

ing: The gradient of the error function E depends on the gradients of the local error

εt at every time step t = 1 . . . T . These local errors again depend on the values of

the state space st. Finally, every st depends directly on the previous state space at

t − 1 because

st = f(st−1). (3.3)
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Figure 3.1: Modeling with the shared layer perceptron. The initial hidden states in

yellow can also be trained.
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One therefore get a recursive dependence of ∂i,jftm(s) on ∂i,jft−1
k (s) for k = 1 . . .D.

The author uses the abbreviation

∂i,j := ∂
∂wi,j

(3.4)

to avoid cluttering the notation. One gets

∂i,jft+1
m (s) = ∂i,j tanh(W · ft(s))m

= ∂i,j tanh(
N∑
n=1

wm,n · ftn(s)

= tanh′(
N∑
N=1

wm,n · ftn(s)) ·
N∑
n=1

∂i,j(wm,n · ftn(s))

= [1− tanh2(
N∑
n=1

wm,n · ftn(s))] ·
N∑
n=1

[(∂i,jwm,n) · ftn(s)+wm,n · ∂i,jftn(s)]

One notes that

∂i,jwm,n =

 1 if i =m and j = n
0 otherwise.

One can further simplify using

[1− tanh2(
D∑
n=1

wm,n · ftn(s))] = 1− (ft+1
n (s))2.

One can do this because all values of ftn, t = 1 . . . T have already been calculated,

or are at least calculated simultaneously. One needs the values anyway, e.g., for

estimation of the local errors. Finally, one sees, that the rightmost summand in the

right sum over n is easily expressed as matrix-vector multiplication

D∑
n=1

wm,n · ∂i,jftn(s) = (W · ∂i,jft(s))m

where ∂i,jft(s) is the vector of a partial derivative with respect to every component

of the state space, i.e.,

∂i,jft(s) =


∂i,jft1(s)

...

∂i,jftD(s)

 .
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This allows us to write the vector of partial derivatives very elegantly using vector

and matrix operations. One gets

∂i,jft+1(s) = (1	 (ft+1(s))2)⊗ (ft∆i,j(s)⊕ ∂i,jft(s))
or, even more succinctly, dropping the start vector s

∂i,jft+1 = (1	 (ft+1)2)⊗ (ft∆i,j ⊕ ∂i,jft). (3.5)

Here, 1 represents the D-dimensional vector filled with 1 and the m-th component

of ft∆i,j is defined as

(ft∆i,j)m =
 ftj if i = m

0 otherwise.

The operators 	,⊕,⊗ indicate component-wise vector or matrix operations. To

further utilize high performance matrix algorithms in forward accumulation mode

one uses the following mapping. Every pair i, j of actually used weight indices in

the weight matrix W is mapped onto a corresponding single index k, k = 1 . . . K.

This is realized unambiguously by starting in the first row, i = 1, and mapping for

all indices j, j = 1 . . .D. Then continue in the second row, i = 2, map the columns,

and so on. The mapping concludes with the last matrix row, i = D. For a fully

connected matrix W one gets the mapping

(i, j) → k
(1,1) → 1

(1,2) → 2
...

(1,D) → D
(2,1) → D + 1

...

(D − 1,D) → (D − 1) ·D
(D,1) → (D − 1) ·D + 1

...

(D,D) → D ·D.

Keep in mind that for a sparse representation some indices are missing. It is ad-

visable to only use the indices of the weights which are actually modified to avoid
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additional computing costs. One defines the matrix

∂F t+1 :=


∂k=1ft+1

...

∂k=Kft+1

 . (3.6)

∂F t+1 contains as row vectors the corresponding partial derivatives with respect to

every weight and every element of the state space. In detail, one has

∂F t+1 =


∂k=1ft+1

1 ∂k=1ft+1
2 . . . ∂k=1ft+1

D

∂k=2ft+1
1 ∂k=2ft+1

2 . . . ∂k=2ft+1
D

. . . . . . . . . . . .
∂k=Kft+1

1 ∂k=Kft+1
2 . . . ∂k=Kft+1

D

 .

Analogously one defines the matrix

F t∆ :=


ft∆k=1

...

ft∆k=K


as matrix of row vectors. This allows to rewrite equation 3.6 as

∂F t+1 = (1	 (ft+1)2)︸ ︷︷ ︸
row vector

⊗ (F t∆ ⊕ ∂F t)︸ ︷︷ ︸
matrix

. (3.7)

Note that ⊗ means that one multiplies each of the D columns of the matrix (F t∆ ⊕
∂F t) with the corresponding value of the row vector (1 	 (ft+1)2). This allows for

fine grained parallelization using the appropriate matrix algorithms.

Finally, one needs a start point for the recursion that gives us the initial equation

for t = 1. Note that one doesn’t need partial derivatives at t = 0. Indeed, the initial

state s is entirely determined by the first observation and the hidden states. These

hidden states may be randomly initialized or trained themselves. But in any case

they don’t depend on the weight matrix W . To be specific, all partial derivatives

with respect to all weights are zero at t = 0, i.e.

∂F0 = 0,

where 0 is the zero matrix. Equation 3.7 on the previous page yields the simple
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initial equation

∂F1 = (1	 (f1)2)︸ ︷︷ ︸
row vector

⊗ (F1∆)︸ ︷︷ ︸
matrix

.

These values are available because f1 and F1∆ only depend on the initial state s.

Ultimately one is interested in the partial derivatives with respect to the error

function. Using the notation from above one gets

∂i,jE = 1
2

T∑
t=1

∂i,jεt

where εt is the usual local cumulated squared error at time t, i.e.

εt =
N∑
k=1

(xtk − stk)
2.

The chain rule of calculus leads to

∂i,jεt =
N∑
k=1

∂i,j(xtk − stk)
2

=
N∑
k=1

2(xtk − stk) · ∂i,j(xtk − stk)

= −2
N∑
k=1

(xtk − stk) · ∂i,jstk

because the observeables xtk do not depend on wi,j . If one agrees to only take into

account the first N values of ft one can write the above equation somewhat sloppily

using the dot product

∂i,jεt = −2(xt − ft) · (∂i,jft). (3.8)

The above formulation leads to very efficient implementation. In terms of efficiency

one can even improve on equation 3.8 using a matrix vector multiplication to obtain

∂i,jεt for all index pairs (i, j) in one step. Because of the commutativity of the dot

product one can alter the order of both factors in 3.8. One defines the row vector

of local errors

εt := (xt − ft)
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and the vector of all partial error derivatives at time t

∂εt := (∂1εt, ∂2εt, . . . , ∂Kεt).

Note that in the above equation the author again uses the mapping from an index

pair to a single index (i, j) → k for ease of notation. Using these definitions one

can write the vector formulation of equation 3.8 on the facing page elegantly as

∂εt = −2F t · εt. (3.9)

Finally, the total error vector of partial derivatives ∂E is given by

∂E =
T∑
t=1

∂εt. (3.10)

3.3.3 Reverse Accumulation

As stated above reverse accumulation involves traversing the chain rule from the

outer to the inner part. It is the classical form of the backpropagation algorithm.

Errors are propagated back until one sees the influence on the weights. For this

one should first recall the following: at every time step t the backpropagated error

consists of two part. On the one hand one has the direct error εtj . This error is

simply the difference of target value and output value. On the other hand one

also adds the backpropagated error from previous time steps. This allows us to

compute the local gradient

ltj = tanh′(Wst−1
j )

εtj + D∑
k=1

wj,klt+1
k

 (3.11)

Equation 3.11 describes how stj changes depending on Wst−1
j . Because of

tanh′(·) = 1− tanh2(·)

one may simplify equation 3.11 to

ltj = (1− (stj)2)
εtj + D∑

k=1

wj,klt+1
k


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for the shared layer perceptron. This is computationally much more efficient be-

cause one has to calculate the st anyway. Doing this iteratively one gets local gradi-

ents for all times from t = T down to t = 1. One gets the partial derivative of total

error E with respect to weight wi,j by weighting all local gradients appropriately:

∂E
∂wi,j

=
T∑
t=1

ltis
t−1
j .

One can implement reverse accumulation very elegantly again using matrix formu-

lation. Each sum in the above equation translates into a vector dot product. Doing

this for all D dimensions leads to

lt = (1	 (st)2)⊗ (W ′lt+1 ⊕ εt).

The operations 	,⊗,⊕ refer to component-wise vector operations. W ′ is the trans-

posed of W . As initial condition one sets

lT = εT .

Having computed all the local gradients one gets the D ×D matrix ∂E with partial

derivatives with respect to all weights:

∂E = L′ · S.

Here, L is the matrix containing the local gradients,

L = (l1, . . . , lT ),

and S the matrix of the first T − 1 states,

S = (s0, . . . , sT−1).

If one wants to also train the initial hidden states one needs the partial derivatives

∂E
∂s0
N+1

, . . . ,
∂E
∂s0
D
.
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One gets these, again, by using the appropriate local gradient,

∂Es0 = W ′l1.

Obviously, one only takes the components N + 1, . . . ,D of ∂Es0 because only those

are sensibly trained.

3.3.4 Computational Requirements

FAUN spends the dominant amount of computation time in evaluating error func-

tions and derivatives. For the multi layer perceptron one will find the relevant

dependencies in the literature. The author provides them here for the shared layer

perceptron. Computation depends mainly on

• D, the number of dimension of state vector and weight matrix,

• T , the number of time steps used for training and validation.

The number of observeables N < D also plays a role, but to a lesser extent. As long

as one is using dense matrices the sparsity level s does not influence computation

time.

Forward pass

Each forward pass consists mainly in T matrix-vector operations. Viewing the ma-

trix as slices of vectors one notes that multiplying two D-dimensional vectors costs

D multiplications and D − 1 additions. As today’s processors execute these opera-

tions in the same time one will call them floating point operations, i.e., flops. The

vector-vector multiplications needs 2D − 1 flops and the matrix-vector operation

D(2D − 1) flops. For all time steps one gets

T ·D(2D − 1) = O(T ·D2) flops

using Landau notation. Additionally one requires T · D transcendental function

calls for the application of tanh.
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Error

Computing the error is a simple matter of calculating differences. This costs T ·N
additions and is of the order

O(T ·D)

considering N < D.

Forward accumulation

Assuming a dense weight matrix equation 3.7 first leads to the addition of 2 D2×D
matrices, therefore D2 · D additions. Building the row vector needs D multiplica-

tions and D subtractions. Multiplying the row vector with the matrix leads again to

D2 ·D multiplications. In total one gets for T time steps

T(D2 ·D + 2D +D2 ·D) = T(2D3 + 2D) = O(T ·D3) flops

just for the derivative matrices Ft. Calculating the error derivatives adds T ·2D2 ·D
flops but does not change the order.

Reverse accumulation

The dominant computation for the T local gradients is the matrix-vector multiplica-

tion W ′lt+1. This costs again D(2D− 1) flops. Adding the errors is another D flops.

Building the «left» factor of the product costs 2D flops. The final multiplication

adds D flops. Computing all local gradients leads to

T(D(2D − 1)+D + 2D +D) = T(2D2 + 3D) = O(T ·D2) flops.

The final matrix-matrix multiplication involves the D × T matrix L′ and the T ×D
matrix S. This costs again

D2 · (T + T − 1) = D2(2T − 1) = O(T ·D2) flops.

To summarize: using reverse accumulation one gets computational costs at the

order O(T ·D2). Forward accumulation costs us one order of magnitude in D more.

Where forward accumulation might be at first sight easier to compute one sees that

reverse accumulation is actually much cheaper and also much more elegant to real-
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ize. This is a direct consequence of the automatic differentiation rule stating that

R → Rn functions are best treated using conventional forward accumulation. On

the other hand Rn → R functions are more efficiently treated with reverse accumu-

lation. Calculating the error function involves the latter case. To be fair: forward

accumulation delivers a considerable amount of intermediary results. If one uses

an optimization algorithm which puts these results to good use this might warrant

the additional computational complexity. However, NPSOL only needs the deriva-

tives. In the following the author uses reverse accumulation.

Until now the computational requirements analysis only considers dense weight

matrices. Using a sparsity level of s would reduce the forward pass and the local

gradient operations to this fraction s. The last matrix-matrix computation cannot

be reduced because both matrices, local gradients and states, are a priori dense.

Multiplying by a constant does not change the order of magnitude required:

O(sT ·D2)+O(T ·D)+O(sT ·D2)+O(T ·D2) = O(T ·D2).

However, taking s = 0.10 one reduces the theoretical amount of computation to

only 10 percent of the original amount. This looks very attractive. Experiments

with sparse matrix algorithms showed almost no speed gain. One explanation for

this is that sparse storage only allows to access columns or rows efficiently; but

not both. In the forward pass one needs the original W and in the backward pass

the transposed W ′. The analysis of sparse weight matrices seems worthwhile. The

author plans to further work on this.

3.4 Teacher Forcing

When training error is high this can have two reasons:

• The weights are not right. One addresses this conventionally by training the

network and adjusting the weights.

• One is in the wrong part of the state space. I.e., adjusting the weights is a

futile effort.

The concept of teacher forcing addresses the latter issue. It gently pushes the

network to operate in the appropriate region of the state space. This is realized by
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replacing the observeable output with the desired outcome, see figure 3.2 on the

next page for an illustration.

Note that when using teacher forcing one is actually changing the error function.

One has to modify the derivative calculation at the following points. First, one

overrides the backpropagated error and only inject local error. Second, one sees

that teacher forcing modifies the input for the subsequent computation. This leads

to the following change:

ltj = (1− (stj)2)εtj for j = 1, . . . ,N.

One also has to remember that the states used in subsequent computations are

outputs, i.e., the result of one step of the network. The inputs — which are teacher

forced — are only used in the forward pass.

3.5 Noise

Especially at the beginning of training one wants to avoid one of the very many bad

local minima. A common technique is the addition of error dependent noise on the

hidden states. Figure 3.3 on page 82 illustrates this. The noise δ is drawn from a

Gaussian distribution according to

δ =min
{
κ, E ·N(µ = 0, σ 2)

}
. (3.12)

κ represents a small value, e.g., κ = 0.1 and represents the maximum amount of

noise that will be added to a hidden state. Don’t be confused by the minimum in

equation 3.12. It ensures that even if the noise term is too big one won’t saturate

a neuron. E is the training error. As E decreases the amount of noise added also

decreases. N is a normally distributed random variable with zero mean. Standard

deviation σ should also be set to a small amount, e.g., σ = 0.1. This ensures that

one generally does not clip the noise at κ.

There are more sophisticated possibilities of using noise. An interesting ap-

proach is to use noise dependent on the local error of the state space element.

The author researched this. But experiments failed to improve on the much sim-

pler version reported here. For this reason the author decided to stick with the

present model. However, this is not to say that improvements are not possible.
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Figure 3.2: Illustration of teacher forcing. After the error has been computed the ob-

serveable states are replaced with the desired output, red arrows. Note

that the error and the derivatives slightly change. However, the added

computational complexity is neglegible.
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Figure 3.3: Illustration of additive noise on the hidden states. At the beginning

of training Gaussian noise is added to the hidden states. This avoids

initial entrapment in one of the many local minima. As training contin-

ues noise reduces according to training error and is finally switched off

towards the end.
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3.6 Optimization with SQP Methods

FAUN uses the nonlinear programming optimization package NPSOL, see [156].

The part of NPSOL is the following: One wants to minimize training error E on the

available historical data. The error depends on weights in matrixW . It also depends

on the initial hidden states, s0
N+1, . . . , s

0
D. These can also be trained. NPSOL evaluates

the error and the derivatives. It then modifies weights — and initial hidden states

— accordingly.

In the following the author discusses usage of NPSOL as it is pertinent to the

problem. For a complete description of NPSOL please refer to [156]. Indeed, FAUN

only uses some part of the NPSOL functionality. Especially NPSOL’s ability to accom-

modate linearly dependent and non-linear constraints is not relevant for FAUN.

The function to minimize is E, the overall training error. This depends on the

weight matrix W . Additionally one wants the weights to stay within certain bounds.

This is important because otherwise a single weight could saturate the correspond-

ing neuron. See also the discussion on convergence. For the shared layer percep-

tron an interval of w ∈ [−2; 2] has proven acceptable. Therefore one may incur a

trade off in training error when hitting the bounds. However, in the author’s experi-

ence, the bounds are rarely active. They become active mostly when the weights are

initialized on too large an interval. Then, the training may fail to converge anyway.

One has a non-linear objective function and constant constraints on W . Assume

one has V active weights. Then one wants to

minimize E(WV), WV ∈ Rn×n

with l ≤ WV ≤ u.
(3.13)

The subscript V indicates that one only minimizes on the V active weights of W ac-

cording to the mapping specified above. Somewhat abusing notation one takes WV
as a vector of weights which are appropriately mapped back to W in the following.

This means that for the jth active weight the equation lj ≤ WV j ≤ uj holds. One

has to produce values for every component of l and u. If one wants to leave the

jth component free one can do so by setting a very low or very high value. In the

present case one typically takes lj = −2 and uj = 2.

In the context of NPSOL one wants the constraints to be satisfied within a certain

tolerance δ. For WV j < lj − δ the corresponding jth constraint is violated. For

lj−δ ≤ WV j ≤ lj+δ the lower constraint is active. Conversely if lj+δ < WV j < uj−δ
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the jth constraint is inactive. If uj − δ ≤ WV j ≤ uj + δ the upper constraint

is active and it is violated for WV j > uj + δ. NPSOL takes the lower and upper

constraints l and u as input parameters. Additionally one also sets starting values

for the active weights WV . These values are generally initialized randomly. One

also has to furnish the function E(W). NPSOL also needs the partial derivatives

of E(W) in respect to every WV j . These partial derivatives could be calculated on

the fly by NPSOL using finite-differences approximations. It has the disadvantage

of reduced accuracy compared to exact derivatives. It is better to provide analytic

derivatives. For the shared layer perceptrons the derivation is shown above. For

more complicated topologies automatic differentiation may be used. Some further

information on automatic differentiation is provided in the literature review. It is

possible to implement another error function, e.g., if one wanted to optimize not

for training error, but, e.g., for a financial measure. In this case one would have

to keep in mind to provide new derivatives for NPSOL. For first experiments with

new error functions it is still possible to use finite-difference approximations and

the author recommends this. This functionality has helped the author more than

once when debugging obviously erroneous analytic derivatives. One will quickly

discover, e.g., sign errors or errors which differ by a multiple.

NPSOL uses a sequential quadratic programming (SQP) algorithm which the au-

thor describes in detail adapted to the relevant parts of the shared layer perceptron

in FAUN. An overview of SQP methods is given in [35]. One sets g(WV) as being the

vector of first partial derivatives of E(WV), i. e.

gj(WV) =
∂E(WV)
∂WV j

.

Analogously in NPSOL nomenclature J is the Jacobian matrix of the first partial

derivatives of the constraints. For FAUN this reduces to

Ji,j =
∂WV i
∂WV j

=


1

. . .

1


The first-order conditions for optimality of (3.13) for an acceptable point c are

satisfied, if one has:

• A vector of Lagrange multipliers λ exists so that the gradient of E(WV) −
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λTWV = 0. One calls E(WV)− λTWV the Lagrangian. This leads to

g(WV) = J(WV)Tλ

i. e. 
∂E(WV )
∂WV 1

...
∂E(WV )
∂WVn

 =


1
. . .

1



λ1

...

λn


or

λj =
E(WV)
∂WV j

.

• λj = 0 if lj < WV j < uj , λj ≥ 0 if lj = WV j , λj ≤ 0 if WV j = uj . Any value of λj
is acceptable for lj = uj .

As NPSOL uses an SQP method one has two types of iterations when solving (3.13):

major and minor iterations. The goal of the major iterations is to finally get to a

point that satisfies the first-order optimality conditions. This is represented by

WV ′ = WV +αp.

α is the step-length, a non-negative scalar, p is the search direction. p is again the

solution to a quadratic optimization problem described as

minimize E(WV)+ g(WV)Tp +
1
2
pTHp, p ∈ RV

with l ≤ c + J(WV)p ≤ u
(3.14)

with H being a positive-definite quasi-Newton approximation to the Hessian of the

Lagrangian.

In the case of FAUN the following can be noted for the Hessian of the Lagrangian

L(WV) = E(WV)− (λ1, . . . , λV)


WV 1

. . .
WVn

 .
One gets

∂L(WV)
∂WV j

= ∂E(WV)
∂WV j

− λj
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and finally
∂2L(WV)
∂WV j∂WVk

= ∂2E(WV)
∂WV j∂WVk

.

This means that the Hessian of the Lagrangian is actually the Hessian of E(WV).
One could also determine the Hessian exactly instead of using an approximation.

Automatic differentiation would be a viable alternative. If the computation of the

Hessian is efficiently possible interior points methods are advantageous compared

to SQP. When implementing other simpler training error functions it could be of

interest to also try out this way although it would mean changing the current opti-

mization algorithm NPSOL.

When solving (3.14) NPSOL uses the integrated package LSSOL, see [154] for more

information on LSSOL. Major and minor iterations work like the following. First,

the minor iterations provide a solution for p. Then, in the major iteration, one has

to determine an appropriate step-length α. This means that the new iterate W ′V
should decrease sufficiently when using an augmented Lagrangian merit function.

Without nonlinear constraints the Lagrangian merit function is simply the objective

function, see also [155]. In the last step one updates the approximate Hessian H to

reflect the change from WV to W ′V .

It remains the question how to find an initial acceptable point that satisfies the

first-order optimality conditions. This is not difficult. As one has seen the vector

of Lagrange multipliers is simply given by the gradient of E(WV). And as the only

constraints one has are constant one is also able to find a point which satisfies the

constraints.

The quasi-Newton updates during each major iteration are remarkably simple

given the accommodating nature of the constraints. NPSOL requires a positive-

definite approximation to the Hessian. Several alternatives can be used, see, e.g.,

[87]. FAUN uses BFGS quasi-Newton updates of the form

H′ = H − 1
sTHs

HssTH + 1
yT s

yyT ,

setting s = W ′V −WV the amount of which WV changes from iteration to iteration. If

one starts with a positive definite H the following holds, see also [86]:

H′ is positive definite a yT s > 0.
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Without nonlinear constraints one has

y = g(W ′V)− g(WV),

i. e., the change in gradient between two iterations. If this doesn’t lead to the

required result one takes an appropriately scaled y .

3.7 Convergence Analysis

[182] proves that feed forward neural networks are universal approximators. More

recently [282] also proves that recurrent neural networks can approximate — in

principle — every dynamical system with arbitrary accuracy. This is done by view-

ing a recurrent network as feed forward neural network. Both proofs, however,

do not tell how exactly one is supposed to find the weights that approximate the

system of choice. Training is and always was heuristic.

For this reason the present section looks at empirical convergence behavior of

the shared layer perceptron. One only analyzes training error, i.e., one ignores

validation error momentarily. Then one trains for several iterations and observe

convergence. The following meta parameters are of interest:

• number of observeables

• number of time steps

• state space dimension

• sparsity

• initialization domain

• random distribution of weights

• training of initial states

• part of the data selected.

The crucial point is whether training is always well-behaved in the sense that the

error shrinks steadily. Or are there setups where convergence does not seem to

occur?
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Figure 3.4: Typical convergence behavior: the initial error is mostly very high be-

cause one is on a random point in weight space. This is quickly cor-

rected. Then the error decreases steadily. Each function call involves

evaluating the network error and computing the corresponding partial

derivatives. Function calls are not to be confused with optimization it-

erations. Each iteration may involve several function calls and not every

function call necessarily yields an improvement. More than 95 percent

of computation time is spent in function calls. Function calls are a good

comparative measure.

Figure 3.4 shows typical convergence behavior. One sees that initial error is high.

This is easily explainable by the fact that one generally starts on a random point in

weight space. This point does not have to be and generally is not particularly good.

The first few function calls quickly reduce the error. In the following the error

decreases steadily. Every function call includes evaluating the error and computing

the appropriate partial derivatives. Function calls are not equal to optimization

iterations because the optimizer may need several function calls before finding an

improved point. Function calls are the best measure in terms of computation time

to compare different training processes. More than 95 percent of computation is

spent in function calls and only a comparatively small amount in the optimizer.
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Figure 3.5: Convergence behavior for different random initializations. Varying ini-

tial errors are corrected quickly. This empirical analysis shows that

differently initialized weight matrices do not influence convergence sig-

nificantly.

Figure 3.5 shows the effect of different matrix initializations on convergence. All

meta parameters stay the same. For every of the 20 runs different positions in

the weight matrix are initialized with different values. One sees that initial errors

vary. But after less than 50 function calls errors are comparable regardless of

the individual initialization. This behavior is important. It makes us confident

that convergence is not due to luck of finding a particularly good starting point in

weight space. One sees here the same good natured convergence behavior as FAUN

already shows for multi layer perceptrons.

Figure 3.6 on the next page presents convergence behavior depending on the

number of observeables included in the optimization. Naturally, the initial error is

greater when more observeables are considered. There is a mean error that results

from taking a random point in weight space. These errors accumulate for more

observeables. However, a detailed look at convergence behavior on figure 3.7 on

page 91 proves very interesting. The figure shows only the last 100 function calls

of 1000 function calls in total. One sees that the achievable training error actu-
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Figure 3.6: Convergence behavior for different numbers of observeables.

ally decreases when the number of observeables increases. This is very satisfactory

because it gives us trust in the underlying modeling procedure. Adding more ob-

serveables which together form «the market» allows the optimizer to explain the

behavior of some observeables by others. Looking at figure 3.7 in the context of

chapter 4 shows that adding different asset types to a general market model does

help to explain the overall development better. Especially note that the cumulated

error is shown. One would already be satisfied if the error did not increase when

adding more observeables. However, the best achievable error after 1000 function

calls with 25 observeables is more than 50 percent smaller compared to the error

achievable with few observeables.

Figure 3.8 on the next page shows the dependence of convergence on state space

dimension. One sees that increasing the dimension of the state space also improves

convergence. The reason for this is twofold. On the one hand increasing the state

space dimension also increases the number of weights. However, as one sees on

figures 3.10 and 3.11 this effect saturates. On the other hand one also increase the

memory capability of the system. This also only leads to a noticeable improvement

in training error up to a dimension of 300.

Next one addresses the question what happens when one increases the length
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Figure 3.7: Convergence behavior for different numbers of observeables, detailed

analysis.
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Figure 3.8: Convergence depending on state space dimension.
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Figure 3.9: Convergence depending on the length of the time window included in

the optimization.

of the optimization time window. I.e., one increases past history to learn. One

sees on figure 3.9 that convergence is again well behaved. Evidently the initial error

increases. However this error is reduced quickly and convergence is always smooth

from that point on. As should be expected a longer history is more difficult to learn.

The longer past history the less likely it is that actual dynamics as encoded in the

weight matrix stay the same. Still the increase in training error is no obstacle for

good forecasting results. Chapter 4 shows that the model is indeed robust even to

very long time spans.

Figure 3.10 on the next page depicts convergence depending on sparsity. When

one makes the matrix more dense one adds more weights. More weights will the-

oretically improve the best achievable training error. However, the same as with

multi layer perceptrons, one sees that this only holds up to a certain point. Fig-

ure 3.11 on the facing page shows this in detail for the last 100 function calls. One

sees that up to a sparsity level of 0.10 the achieved training error indeed decreases

significantly. There is not much improvement when adding more weights.

One may also ask if one is perhaps especially lucky to get a time period which is

easy to learn. For this reason figure 3.12 on page 94 shows a sweep with different
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Figure 3.10: Convergence for different sparsity levels. Adding more weights by

making the weight matrix more dense evidently helps but only up to a

sparsity level of 0.10, see also figure 3.11.

0.05
0.10

0.15
0.20

900
920

940
960

980
1000

0
5

10
15
20
25
30

T
ra

in
in

g
er

ro
r

Sparsity
Function calls

0
5
10
15
20
25
30

Figure 3.11: Detailed convergence for different sparsity levels and the last 100 func-

tion calls. One sees that saturation takes place.
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Figure 3.12: Convergence depending on the start time in history. One sees that

during the first 300 function calls learning may progress at different

speeds. However, this evens up and after 1000 function calls there is

no noticeable difference in training error.

start times. There are indeed starting periods where initial convergence is faster

than in other periods. This evens up after 300 function calls. The differences in

training error after 1000 function calls are negligible. This finding is very satis-

factory because it shows that the same weight matrix is able to encode different

histories equally well.

At the beginning of every training the weights have to be initialized with a ran-

dom start value. This is done by using a symmetric initialization interval around 0.

Figure 3.13 on page 96 shows training errors when using different initial intervals.

E.g. a value of 0.1 means that the weights are chosen from the interval [−0.1; 0.1].
During experiments the author faced a dilemma which the reader can also see in

the figure. If one chooses the initialization interval too small all weights are very

close to zero. One starts the search essentially from the zero matrix. While the

training converges it is very slow. If on the other hand the initialization interval is

too large the optimizer may get stuck at points in weight space where improvement

simply is not possible. Fortunately this is detected and training stops. The reason
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for this behavior is that when initializing on a large interval it may happen that

one or a few weights dominate all the others. The optimizer then focuses on these

weights and tries to change them. But this may happen in the wrong direction for

the overall problem.

One notes that convergence occurs until an initial interval of [−0.15; 0.15]. Then

there is — purely by chance — a last successful training for [−0.17; 0.17]. But other

intervals above this do not lead to convergence. FAUN detects this automatically

and stops the training. FAUN also offers the possibility to choose initial and run-

time boxes for the weights. In the present case the author suggests to explore the

limits and then choose a bound well within the secure area. As one sees in the figure

convergence improves marginally for initial bounds between 0.1 and 0.15. But the

author does not recommend these settings because one may inadvertently enter

the domain of non convergence. As a general rule one should use smaller intervals

if one has more weights. The rationale for this is that each individual output, i.e.,

each neuron, is the sum of its inputs at the previous time step.

A squashing through the nonlinear tanh occurs but nevertheless summing up is

the essential feature. One wants to avoid driving the neuron into saturation. If

a neuron is saturated it is useless for all practical purposes. If one changes one

weight by a small amount which happens during optimization the neuron’s output

stays almost unchanged. To cause a change all weights would have to move in the

same direction. These weights then lose their usefulness for the other outputs to

be learned. A drastic method to investigate in further research would be to simply

stop optimizing on these weights. This requires scaling down the number of active

variables at runtime.

One sees that the shared layer perceptron converges well in all cases. When

varying all available meta parameters over a sensible range convergence still occurs.

The robustness of the model especially shows in the fact that adding more related

observeables decreases overall training error. However, the choice of the initial

bounds requires some care.

3.8 Summary

Key model features of the shared layer perceptron are:

• It forecasts several time series at once.
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Figure 3.13: Convergence depending on the initial bounds of the weights. Up to

0.15 the training converges. Above 0.15 it is more often the rule than

the exception that the optimizer is not able to improve the error and

gives up after a few hundred function calls or even earlier. Here only

the last 500 function calls are shown to preserve details.

• This allows to easily generate multi step forecasts.

• Time is treated symmetrically, i.e., one gets from past to future — and future

to past — by simple matrix operations.

• Memory modeled by hidden states can be varied accordingly to the model

builder’s view: a shared layer perceptron with zero hidden states corresponds

to a memoryless system while adding more hidden states allows for a practi-

cally infinite memory.

• A single matrix is used at every time step. This shared matrix approach re-

duces the number of weights.

• Sparsity level of the weight matrix allows to model loosely or densely coupled

systems.
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One sees that the shared layer perceptron is a very versatile architecture. It is

designed to model dynamic systems, possibly with memory. By calculating partial

derivatives with reverse accumulation one gets to overall computational require-

ments of O(T · D2). I.e., computation time increases linearly with the number of

time steps T involved in training and validation data and quadratically with the

dimension of the state space. Using sparse matrices one may further save compu-

tation time.

Training error converges very robustly. The detailed convergence analysis shows

that varying meta parameters does not lead to jumps in the achievable training er-

ror. Rather, transitions occur smoothly. The only parameter that necessitates some

care is the initialization of the weights. One should not choose the initialization in-

terval too large.

The shared layer perceptron topology may be further explored in the following

directions:

• It is easy to deal with missing data by not accounting for the corresponding

error during training. An interesting question is, if mixing data with different

time frames improves forecasts. E.g., one could mix daily data with weekly

data and simply ignore the error on weekly data for not available days.

• Now, the weight matrix is initialized randomly, weight value and position.

This needs not be the case. One could imagine setting the structure of the

matrix. This represents the model builder’s view of causalities. Would this

improve forecasts?

• By using all available data the shared layer perceptron is predestined for ap-

plications where only few data is available. How few is enough? In this book

the author analyzes only daily data which is amply available. However, yearly

panel data might only include 10–20 observations. Can the shared layer per-

ceptron produce sensible forecasts even then?

• How much memory is adequate? Or: which is the optimal dimension of the

state vector? It is of high interest to analyze different problems and produce

a heuristic how to best set the state space dimension.

• Could dummy variables, like day of the week, improve forecasts? Of course,

the model does not have to forecast them. They are simply included in the

multi step forecast.
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• Is it sensible to include a variable and some transformation of it in the same

forecast? E.g., does adding a moving average improve the forecast?

• Can one forecast three interdependent variables and judge the quality of the

forecast by recalculating the dependence? I.e., can one build an effective tran-

sitive filter?

• What does the distribution of different shared layer perceptrons tell us? Can

one find a heuristic that allows us to judge the probability of the forecast?

• Can one interpret single weights? I.e., when looking at the weight values, is

the result compatible with the view of the world?

All of these aspects should be analyzed in future work. The author thinks that

every single question is very interesting. Answers will not only lead to a better

understanding of the shared layer perceptron topology. They will also provide

insights into the entire class of dynamic systems as well. However, every book

must have a limit somewhere of what it can cover.
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4 Examples

4.1 Introduction

In this chapter the shared layer perceptron is finally put to work. The focus shifts

from technical and mathematical to practical applications on financial time series.

To this end the author first reviews available resources on neural networks in fi-

nance, section 4.2. Then section 4.3 concentrates on the selection of appropriate

data. From 31 financial time series one constructs 25 modified time series. This sec-

tion also delivers some motivation for the inclusion of specific assets. Please keep

in mind, though, that a definitive theory on input selection for neural networks has

yet to be found. Therefore, the arguments given for selecting specific inputs are

necessarily based on either general economic theory or heuristics. The portfolio

comprises 2609 daily observations in a time span of 10 years from July 1999 to

July 2009. This analysis, covering more than a complete business cycle, makes the

present work stand out from other studies. Another feature is important: the first

330 days are used for training, the following 110 days for validation.

This merits a short discussion: one generally selects validation data to cover as

much as possible different situations in the time series under consideration, see

especially [43], p. 58 and p. 62. As one is dealing with financial time series it is,

e.g., advisable to select a bull and a bear period and a sideways period. This is not

necessarily fulfilled by choosing the last observations in the series. It is sensible to

split validation data into several periods. However, as the present model applies

to 25 different time series it would be necessary to select different appropriate

validation data for every asset. This is doable. But it transforms the modeling

process from a straightforward one into an arbitrary procedure. Think about it:

everybody would probably select slightly different validation data. By selecting the

most recent observations as validation data one gains two advantages:

• The model is validated on recent data and not on data in the past. Older data

might not reflect current market dynamics.

99



• Validation data is the same for every asset. So every asset has the same odds

of performing or not.

This procedure also opens room for further improvements. If one wanted to focus

on one asset specifically one would check, if different validation data produces

better performance.

Following applications then include an out of sample time span of 110 days and

2169 days, i.e., more than 8 years. Again, the analysis of the robustness of a model

for this long time span is unique. Finally, let the author emphasize, that the entire

portfolio of 25 assets is treated with the same model. While an individual opti-

mization could lead to marginal increases in performance the attractiveness of the

shared layer perceptron results from having one robust model which works well

for all assets.

Section 4.5 presents basic descriptive statistics and necessary data transforma-

tions. One tests the data for normality and stationarity. Because of non stationarity

of the raw level series one transforms the data into rates of return. This is often nec-

essary when preprocessing data for neural network use, see [98]. The transformed

series are stationary. They are suitable for neural network training.

The following three sections are entirely devoted to three unique examples. These

examples, especially the first two, exploit the added possibilities by using shared

layer perceptrons. The rationale for choosing these examples is based on practical

applicability. If one is only interested in the potential of shared layer perceptrons

one should go straight to the examples sections.

The first example deals with modeling value at risk. This well-known risk mea-

sure is designed to be indicative of the worst losses that may affect a portfolio

within the next few days at a given confidence level. Standard estimation proce-

dures, like historical simulation, often provide very conservative estimates. While

this is good from the regulator’s point of view it unnecessarily forces a financial

institution to provide reserve capital. This results in lost opportunities when the

capital could better have been invested elsewhere. The purpose of this example

is not to replace standard value at risk procedures. They exist in their own right.

Instead the idea is to model the worst expected return over a 10 day period as

accurately as possible. The results are benchmarked against historical simulation.

The second example deals with a typical purchasing decision problem: on an

ongoing basis some kind of asset has to be purchased. This might be a real com-

modity, like gold or oil, for industrial production. It can be a currency, that one
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needs for regular foreign exchange transactions with business partners. Or, for a

financial institution, it might be equity, or an equity index. Saving plans that regu-

larly invest into assets to average in come into mind. In every case there is a need

to buy within the next, say, 20 business days. But the exact day is not constrained.

The challenge then is to buy at the lowest price within the time span under consid-

eration. To achieve this the author uses multi step forecasts. The realized potential

is benchmarked against a fixed day strategy where investments occur on a specific

date within a four weeks time frame.

The third example is a standard problem for neural networks: accurately fore-

casting the sign for next day returns. In this domain numerous papers exist, see

the next section. The unique feature of the present example is that it forecasts all

25 assets at once. There is no need to build models for every asset. This leads to

a well performing, robust solution. Transaction costs are also taken into account.

One enhances the neural network model by two filtered strategy. The first uses a

threshold filter to avoid trades with low profit probability. The second also takes

into account the forecast for the day after tomorrow and only trades on the trend.

The neural network model is benchmarked against two technical trading strategies:

the naive strategy and a moving average strategy.

The last section summarizes the results. It also offers an outlook on potential

further research in the application of shared layer perceptrons to financial time

series.

In the following, the author will among others look at currency exchange rates.

As Tim Weithers from UBS so aptly puts it in [333]: «Foreign Exchange: It’s not dif-

ficult; It’s just confusing.» One of the many possible sources of confusion results

from quotation conventions. The author use Weithers’ suggestion and quote cur-

rencies as, e.g., GBP|USD 1.6240. The interpretation is quite easy with the simple

rule: replace the sign «|» by «1» and add a «=» which gives GBP 1 = USD 1.6240. This

means that for 1 Great British Pound one will get 1.6240 US Dollars. Historically

quoting conventions haven been chosen so as to avoid having quotes starting with

a zero. E.g., the Yen is quoted against the US Dollar as USD|JPY 92.83 to avoid an

ugly JPY|USD = 0.01077 quotation. Another source of confusion results from unre-

flected designations like home and foreign currency. Depending on who and where

you are, your concepts of home and foreign differ considerably. The author avoids

these terms altogether and name the currencies involved. It is usually convenient

to use three letter ISO codes to abbreviate currencies. These are unambiguous.
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4.2 Literature Review

This section only deals with resources concerning the application of neural net-

works to financial time series. Technological aspects of parallelization and training

and topology of neural networks in general have already been presented. Exploiting

the potential power for forecasting financial time series is not a new idea. Since the

early 1980s, where computational resources began to penetrate Wall Street, there

have always been papers studying the forecasting accuracy of neural networks on

financial time series. That is also the most common application. Others include

volatility forecasts and — related to that — option pricing. To the best of the au-

thor’s knowledge present literature does not take into account multi asset forecasts.

Application of multi step forecasts is also very limited. Therefore the presentation

of literature is quite straightforward by application class. Additionally the author

also gives hints to non neural network references, where appropriate. This includes

seminal articles on advances in financial time series analysis. References to aspects

of quantitative investment and trading are also included.

Forecasting returns

Equity A classic application is presented in [58, 128, 213, 227, 258, 260, 279, 290,

303,315,316,318,319,348]. [194] provides a long-term analysis of stock mar-

kets. A similar but shorter term analysis is shown in [196]. [8] provides a

novel contribution by augmenting the neural network decision by fuzzy logic

rules. These especially allow to avoid trades with low success probability. [22]

applies recurrent neural networks based on volatility to stock indices. It is

therefore a mixed approach. [49, 50] give evidence for inefficiencies in FTSE

futures. [61] uses self correcting networks. In [62] the same authors exploit

inefficiencies in the Taiwanese stock market. [73] augments neural network

forecasts by a regime switching component and applies it to the Cyprus stock

market. [76] analyzes technical trading rules for a 12 year period on the Hang

Seng Index. [94] adds a GARCH model, [109] an ARMA model. In [162] one

will find a somewhat dated but still pertinent compilation of the challenges in

forecasting equity. [317] develops a methodology for neural network models

in stock markets.

Interest rates [43,246] provide studies concerning yield curves, here the German

yield curve. Neural networks are trained with FAUN. [115] models the UK 10
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year bond. [190] predicts inflation with interest rate spreads. [364] forecasts

yield curves with error correction networks.

Exchange Rates [91,99,110,112,118,136,137,184–187,203,206,210,223,225,288,

309,336,345,346,349–352,355,363] present classic studies. [324,326,327] use

FAUN. [66] presents a recent study focused on high-frequency exchange rates.

[28,143] analyzes the potential of carry trades. [6] uses genetic algorithms to

improve training times and generalization capability. A similar evolutionary

approach is presented in [40]. [68, 354] use a wavelet approach. A general

comparison is found in [85,245]. [275] investigate intra day arbitrage. In [322]

a model is developed to trade option on the Dow Jones.

Commodities [104, 105, 108] trade commodity spreads. [106, 107, 343] addition-

ally apply filters. [116, 226, 242] focus on precious metals. [25] presents an

early application of a hybrid approach combining neural networks and expert

systems. [360] applies historically correct neural networks.

A general direction of change analysis is carried out in [23]. Pure neural networks

are compared to neural networks with a fuzzy component. [26] presents neural

network models for different assets, unfortunately without enough details to re-

produce the results. [253] chooses a slightly different approach with reinforcement

learning.

Most studies show, that neural networks are able to reduce forecast errors com-

pared to standard models. However, only few studies provide a thorough evalua-

tion of returns when transaction costs are applied. Often, standard risk measures

are not provided. If financial measures are given, they are often limited to annual-

ized return before transaction costs. Indeed, from an investment point of view the

error of fit is almost irrelevant. It says nothing about the performance of a strategy

in a real environment. Even returns without risk measures are almost worthless:

what good is a paper profit of 50 percent when the model incurs a drawdown of 90

percent? In this case return might be due to learning a single unpredictable event,

see [200] for a warning on this topic. It may be that nothing of this kind happens

but without additional information one simply cannot tell! The reason the author

emphasizes this problem is that there are examples for very thorough studies. All

necessary trading and risk measures are given and results are of practical use for

quantitative investment. Not the only but the most consistent author of this kind

is Christian Dunis from Liverpool John Moores University. Following analysis will

be based on his methodology.
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Forecasting volatility and risk

Equity [129] analyzes volatility in S&P500 options. [20] use a volatility mixture to

measure risk in the DAX. [113] actually trades volatility. [247] present a hybrid

model with GARCH.

Interest rates [127] prices options on yield curves.

Exchange rates [195] forecasts volatility. [100, 217] focus on risk management

while [101] emphasizes trading aspects. [146, 313] use support vector ma-

chines. The study [302] stands out by analyzing tick data.

Commodities [111] models VaR.

[59] provides a VaR analysis. [198] more generally introduces volatility options.

[273] deals with model risk. [289,306] deal with aspects of trading volatility.

Option pricing

[16–18,285] use FAUN within the WARRANT-PRO-1 software to price options with

empirically mined web data. See also [45, 323, 328] on the WARRANT-PRO fam-

ily. [41] uses specialized neural network hardware to efficiently compute neural

networks for option pricing.

A standard application is presented in [269,284]. [7] prices options using a com-

bination of neural network and parametric models. Similar in spirit [214,268] pro-

vides another hybrid approach. [123] focuses on market making. [144, 150] focus

on hedging options. Model risk is considered in [149,215].

As general introductions to option pricing the author recommends [32,188,340].

[145] deals specifically with foreign exchange options. See also [52] for the under-

lying concept of implied volatility. Market efficiency is considered in [65].

Modeling aspects

An introduction to forecasting applications is given in [77]. [244] specializes on fi-

nance applications. [78,79,102,170,172,220,256,262,347,356,357,361,362] give

more details. A collection of modeling papers with a strong focus on neural net-

works is [98]. An introduction to historically correct neural networks is given

in [359]. In [166] a wide variety of neural networks is analyzed. [219, 337] focus

on decision support at financial services providers. [189] adds stochastic differen-

tial equations to the model.
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[1] discusses the aspect how to calibrate a neural network model to financial

data without overfitting. The 2009 paper [14] provides several experiments on

how to best train neural networks for nonlinear time series. [15] goes further and

proposes an automatic modeling procedure, but only for univariate time series.

[97] focuses especially on genetic algorithms. [47] illustrates diverse aspects of

using neural networks, and especially FAUN, in the context of decision support at

financial services providers. The problem of missing data is addressed in [103].

A simpler yet effective class of neural networks, higher-order neural networks, is

presented in [141]. Another class of networks, Gaussian mixture models focusing

on distributions, is discussed in [224].

As a general comparison, [197] provides a good overview between linear and

nonlinear models. A similar analysis is carried out in [57,82,90,117,239,241]. [64]

focuses especially on neural networks. [34] specifically analyzes regime-switching

models. This is also the topic of [36] which focuses on foreign exchange rates.

[11–13] analyze statistical aspects of foreign exchange markets in the years 1989–

1992. They focus on daily and intra-day returns and represent early work on market

microstructure. The question of how forecasts are best combined is treated in

[69,92,93,95,308]. Filters are introduced in [114]. A good introduction to modeling

is also [142]. The information theoretic point of view is discussed in [235]. As a

toolbox for nonlinear modelers [286, 287, 291, 298, 314, 365, 366] are helpful. [27]

highlights valuation factors.

Everyone dealing with financial time series should read the original paper on

GARCH [37]. Another historic reference is the original paper on «the behavior of

stock-market prices» [126]. [301] provides a general introduction to modeling. [38,

233,237] make for an entertaining reading on the dangers of too much quantitative

modeling. Neural networks are not explicitly mentioned. On the other hand, [56]

encourages one to implement a quantitative point of view and also mentions neural

networks in a practical context. A similar goal is reached by [75,96,243,296] with a

focus on long and short strategies. The special aspects of high-frequency strategies

are discussed in [80,151,216,218]. Technical strategies are introduced in [119,199,

200,254,255,270,332]. Their potential is further analyzed in [10,147,148,159,202,

300, 320]. Finally, don’t miss out the classic [161] for an opposite and yet similar

point of view.
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4.3 Data

4.3.1 Data Selection

As a definitive theory explaining the interconnection between currency exchange

rates, stock markets, interest rates, and commodities is still missing, it is plausible

to include in forecasting and risk management applications, data that is a priori

likely to influence the target of interest. A univariate analysis is generally said to

be inferior to a multivariate analysis. Therefore the author selects data in accor-

dance to what economic theory would suggest. It is beyond the scope of this book

to provide a unified theory of currency, fixed income and equity markets. The fol-

lowing arguments should be seen as motivation why specific datasets are included

in further analysis. The author refers the reader to the relevant literature for de-

tailed theoretical arguments. The author’s analysis is purely experimental in the

sense that the author assumes very little a priori interdependencies and do not

assume a specific model.

It is, e.g., common understanding that there is a linkage between currency ex-

change rates and interest rates. The direction is generally seen as interest rate

influencing the exchange rate. I.e., higher interest rates make a currency more at-

tractive and therefore more investors will tend to buy this currency. The currency

will appreciate. However, this relation needs not be so clear. Above average inter-

est rates may also signal inflation. In this case the corresponding currency appears

less attractive. For the five major currencies in stable economies, generally, the

attractive argument holds.

Can exchange rates also influence interest rates? Certainly, but the argumenta-

tive chain is a bit convoluted. If an exchange rate is not appropriate in the eyes

of the respective central bank there might be an intervention to alter the exchange

rate. One instrument of a central bank is to set the reserve interest rate. This

will typically also influence interbank interest rates. Because of the importance of

interest rates and exchange rates not only for financial markets but especially for

the real economy the author decides to include a wide range of exchange rates and

benchmark interest rates in the dataset.

The linkage between equity markets and interest rates is popular. The general

assumption is that when interest rates go down, equities rise and vice versa. This

is motivated by the fact that low interest rates generally provide cheaper access

to capital for companies. This stimulates new investments and innovation. Cheap
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funds also stimulate by inciting consumers to take on, e.g., mortgages.

On the other hand, high interest rates are a hindrance for most companies. How-

ever, the author suggests that such over-simplifying assumptions should be seen

with circumspection. There are situations where the room for maneuver for central

banks is quite limited. As the time of writing the Federal Reserve has a target rate

between 0.0 and 0.25 percent. The effect on the economy is, at best, mixed and

some economists argue that the rate should actually be negative. This is not pos-

sible, of course. Nevertheless, it seems reasonable to include the most important

equity markets in subsequent analysis.

Finally, most research agrees on a link between currency exchange rates and equi-

ties. The direction of the link is however not always the same. Generally, an export

oriented country will profit when its own currency depreciates. This makes the

exported products relatively cheaper for others to buy. Shares of export oriented

companies will therefore tend to increase in price. Equity is often seen as hedge

against exchange rate fluctuations: The share gives right to a part of a company. If

the assets themselves do not change value for some fundamental reason the share

price should increase when the home currency depreciates. Yet, the effect on the

economy can be mixed. Imported products without local substitute become more

expensive. This can increase inflation which is perceived as bad. Again, the author

decides to include the most important equity indices in the dataset.

Often, a fourth asset class is considered when describing economic links: com-

modities. This is, however, a very generic term. It encompasses at least

• precious metals: silver, gold, platinum and palladium

• other industrially used metals: e.g., copper or aluminum

• energy products: the most notable being oil, especially Brent and WTI crude

• agricultural products: e.g., corn, wheat, soybeans and sugar and

• livestock: e.g., cattle.

From these commodities two generally receive much attention in research and pop-

ular media: gold and oil. Gold is, even today, accepted as reserve currency and

hedge against inflation. Oil, on the other hand, is a very important consumable in

developed countries and also has political importance. The author deems it inade-

quate, however, to include every other commodity in subsequent analyzes because

this would unnecessarily inflate the dataset.
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Because of this, the author selects a commodity index for inclusion, see below.

Charter rates are also important. They reflect the actual costs of transportation

for certain commodities but are also considered a leading indicator, see below.

Again, the link of commodity prices to other parts of the economy can work in both

directions. Oil and gold, quoted in USD, will exhibit an inverse relationship. The

connection to other currencies is still unclear. Rising oil and gold prices will, on the

other hand, tend to benefit oil and gold producers. Especially the oil companies are

often among the largest companies by capitalization of a country. They will tend to

bias the relevant equity indices upwards. Other companies, which employ oil or any

other commodity as input factor will face a lower share price. To summarize: the

link between equities and commodities is one of the areas where further research

is especially needed.

4.3.2 Data Description

The author selects the following data pool for subsequent analysis. The author

bases his selection on methodology from [118]. The data is also summarized in

table 4.1 on the next page. An overview of the exchanges is presented in table 4.2

on page 118. Additionally the author gives a reason for choosing this specific time

series. The data in the following description is ordered by world regions whereas

the data in the tables is ordered by instrument type. This is due to the fact that

general explanations on selecting specific datasets are more relevant to regions.

Furthermore, this order also corresponds to a typical trading day which begins

in Asia Pacific moves to Europe and closes in the United States. But subsequent

analysis will show that time series offer greater correlation, and often predictive

power, when one considers related instruments. The attribution of a specific time

series to a world region is in some cases somewhat ambiguous: an exchange rate,

e.g., Yen to US Dollar, belongs in fact to two different regions. But as this reference

rate is mostly stated to compare different economies vis-à-vis the US Dollar the

author decides to put it in the Asia Pacific part. The same applies respectively for

the other exchange rates. Some time series are not attributable to specific regions.

They are referenced at the end in the World category. The author visualizes the

data on a world map on figure 4.1 on page 110. This figure illustrates clearly the

timezone considerations when using time series from different world markets.
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Name Instrument Region Datastream

FTSE 100 Index Equities United Kingdom FTSE100
DAX 30 Index Equities Germany DAXINDX
CAC 40 Index Equities France FRCAC40
FTSE MIB Equities Italy FTSEMIB
Dow Jones Euro Stoxx 50 Equities Europe DJES50I
S&P 500 Index Equities United States S&PCOMP
NASDAQ 100 Index Equities United States NASA100
Nikkei 225 Index Equities Japan JAPDOWA
Kospi Index Equities South Korea KORCOMP

3 months LIBOR Interest rate United Kingdom ECUK£3M
12 months LIBOR Interest rate United Kingdom BBGBP12
Germany 3 months Interest rate Germany ECWGM3M
France 3 months Interest rate France ECFFR3M
Italy 3 months Interest rate Italy ECITL3M
EURIBOR 3 months Interest rate Euro area ECEUR3M
Eurodollars 3 months Interest rate United States (Europe) ECUS$3M
Benchmark Bond 3 months Interest rate Japan ECJAP3M
Benchmark Bond 10 years Interest rate United Kingdom UKMBRYD
Bund Future 10 years Interest rate Germany BDBRYLD
Benchmark Bond 10 years Interest rate France FRBRYLD
Benchmark Bond 10 years Interest rate Italy IBRYLD
US Treasuries 10 years Interest rate United States USBD10Y
Benchmark Bond 10 years Interest rate Japan JPBRYLD

US Dollar to Great British Pound Exchange rate United Kingdom USDOLLR
US Dollar to Swiss Franc Exchange rate Switzerland SWISFUS
US Dollar to Euro Exchange rate Euro area USEURSP
Yen to US Dollar Exchange rate Japan JAPAYE$

Gold Bullion Commodity United Kingdom (world) GOLDBLN
Brent Crude Oil Commodity Europe (world) OILBREN
CRB Index Commodities United States (world) NYFECRB
Baltic Exchange Dry Index Commodities world BALTICF

Table 4.1: The time series used in the following examples, ordered by instrument

type. The given region indicates not necessarily where the instrument is

quoted but rather that it’s important and widely followed in the given

area. Refer to the text for further explanation and especially time zone

considerations.
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Europe
FTSE 100
DAX 30
CAC 40
FTSE MIB
3m LIBOR
12m LIBOR
3m Germany
3m France
3m Italy
3m EURIBOR
10y gilts
10y Bund
10y OAT
10y BDP
GBP|USD
USD|SFR
EUR|USD
Gold Bullion
BDI

Asia Pacific
Nikkei 225
Kospi
3m Japan
10y Japan
USD|JPY

North America
S&P 500
NASDAQ 100
3m US
10y Treasuries
Brent Crude Oil
CRB Index

trading time

Figure 4.1: Schematic representation of data used for subsequent analysis, ordered

roughly geographically by source. Note that one has to be careful when

considering which lags to use: the trading day begins in Asia Pacific

in the East, goes to Europe and ends in North America. At the end

of trading in North America Asia Pacific again takes over with a new

trading day. Consequently, when using time series for forecasting only

data which comes from a market place East of the series to forecast can

be taken into account for the same day. As a rule of thumb Asia Pacific

data is available at 11.00 GMT, European data at 17.00 GMT and North

America data at 22.00 GMT. Thus, from a European perspective North

America data arrives too late to be traded upon. See the text for exact

quotation times. Source: overlay own creation, background world map

from Wikipedia released into the public domain.

Asia Pacific

Nikkei 225 Scope: Japan, Quotation: Tokyo Stock Exchange, 8.45 GMT. This index

comprises the 225 largest companies in Japan. See [70], p. 1 for a very brief

introduction. It is calculated by the Nihon Keizai Shimbun newspaper and

published in real time.

Data from Asia Pacific is generally already available in the European morning

session because of the considerable time zone lead. It is important to in-

clude especially Japanese data as Japan is the second biggest economy of the
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world and generally representative for the Asia Pacific region. (Datastream

JAPDOWA)

Kospi Index Scope: South Korea, Quotation: Korea Exchange, 10.45 GMT. The Ko-

rea composite stock price index comprises all companies listed on the Korea

Exchange, see [209], p. 8. It is published in real time. Closing data is already

available in the morning session. The South Korean economy is also consid-

ered as a leading indicator for the world economy, see [152], p. 328 and [171]

for a more general introduction on leading indicators.

This is due to the fact that South Korea is an important manufacturer and

exporter of electronic devices and the largest shipbuilder in the world. It’s

capital, Seoul, ranks among the ten most important financial capitals. The

rationale for the acceptance as leading indicator is, that, in the long term, a

weakening world economy tends to announce itself by reducing demand of

goods and therefore a reducing demand of shipping goods. This effect is felt

first by ship manufacturers. See also the explanation for the Baltic Exchange

Dry Index below. (Datastream KORCOMP)

Benchmark Bond 3 months Scope: Japan, Quotation: Collected by the European

Central Bank and provided by Reuters, 21.50 GMT. This bond reflects the

short term interest situation in Japan. On the one hand it is indicative, with

an additive premium, for the rate at which Japanese companies may borrow

funds. On the other hand it also indicates how attractive short term yen

investments are. Until the period 2007–08 Japanese carry trades were very

attractive. Carry traders also influenced the exchange rate, see [143]. (Datas-

tream ECJAP3M)

Benchmark Bond 10 years Scope: Japan, Quotation: Collected by the European

Central Bank and provided by Reuters, 21.50 GMT. As for the 3 months bench-

mark bond the 10 year bond allows an outlook on the Japanese interest rates,

but for the long-term. Again, one assumes that the inclusion of Japanese in-

terest rate data adds valuable forecasting power as Japanese time series move

more independently as the following analysis shows. (Datastream JPBRYLD)

Yen to US Dollar Scope: Japan, Quotation: Reuters, 21.50 GMT. The exchange rate

between Japan and the United States is interesting for several reasons: The

United States and Japan are the two biggest national economies of the world

and therefore the interaction of their exchange rate bears significant economic

impact. Additionally, the Japanese economy has had a tendency to develop
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relatively independently from other economies. Finally, due to very low inter-

est rates in Japan carry trades have flourished. And when carry trades are re-

versed this influences the exchange rate significantly, see also the comments

above. (Datastream JAPAYE$)

Europe

FTSE 100 Index Scope: United Kingdom, Quotation: London Stock Exchange, 16.35

GMT. This index represents the 100 largest companies in the United Kingdom,

see [173]. It is published in real-time by the FTSE Group, originally a joint

venture of the Financial Times and the London Stock Exchange. The author

uses the closing price as realized in the closing auction between 16.30 and

16.35 GMT. (Datastream FTSE100)

DAX 30 Index Scope: Germany, Quotation: Deutsche Börse, Xetra, 16.35 GMT. This

index consists of the 30 largest companies in Germany, see [88]. It is pub-

lished in real time by Deutsche Börse until close of trading in Frankfurt. An

index update is available as X-DAX until 21.00 GMT but less liquid. The pub-

lished value is the result of the closing auction between 16.30 and 16.35 GMT,

see [89]. (Datastream DAXINDX)

CAC 40 Index Scope: France, Quotation: Euronext Paris, 18.30 GMT. The index

consists of the 40 largest companies in France, either traded on the Bourse de

Paris or with significant influence on the French market, see [259]. It is pub-

lished in realtime by the Euronext division of the New York Stock Exchange.

(Datastream FRCAC40)

FTSE MIB Scope: Italy, Quotation: Borsa Italiana, 19.30 GMT. This index consists

of the 40 largest companies in Italy, see [140]. It is published in realtime by

the FTSE group. (Datastrem FTSEMIB)

Dow Jones Euro Stoxx Scope: Euro area, Quotation: derived from Dow Jones Stoxx

600 Index, 8.00 GMT. This index consists of the 50 largest companies in

the Euro area. It is updated in real-time depending on local trading hours,

see [299]. The time series available in Datastream reflects opening or pre-

opening prices in the relevant local markets. (Datastream DJES50I)

3 months LIBOR Scope: United Kingdom, Quotation: British Bankers Association,

11.00 GMT. The LIBOR interest rate series is published daily by the British

Bankers’ Association by taking the quotes of participating banks, see [21]. To

112



avoid a distortion or influence by interested parties the top and bottom quar-

tiles of quotes are discarded before calculating the average. LIBOR reflects

the price at which banks with good credit could borrow GBP from each other.

It is a good proxy for the risk free rate. During the credit crisis of 2007–2009,

however, LIBOR surged. But even at the higher rates banks were not willing to

lend. Nevertheless, LIBOR is generally widely followed and amply commented

on in the financial press. (Datastream ECUK£3M)

12 months LIBOR Scope: United Kingdom, Quotation: British Bankers Association,

11.00 GMT. The same as for 3 months LIBOR, see above, applies. The 12

months rate is equally widely followed. (Datastream BBGBP12)

3 months Benchmark Bond Scope: Germany, Quotation: collected by the Euro-

pean Central Bank and distributed by Reuters, 21.50 GMT. The data series

is a synthetic benchmark for a 3 months debt from the German government.

The rationale for including data from different European countries is that al-

though the rating of European governments is generally the best, AAA, the

perceived credit worthiness varies. One can assume that to include yields

from different European countries offers predictive power compared to a sin-

gle synthetic rate. (Datastream ECWGM3M)

3 months Benchmark Bond Scope: France, Quotation: collected by the European

Central Bank and distributed by Reuters, 21.50 GMT. See explanation for the

German benchmark bond above. Again, the French economy is slightly differ-

ent but generally similar compared to the German. A model should be able to

use this information. (Datastream ECFFR3M)

3 months Benchmark Bond Scope: Italy, Quotation: collected by the European

Central and distributed by Reuters, 21.50 GMT. Compared to German bonds

Italian bonds often trade at a discount, i.e., with higher implied yields. This

can especially be seen when looking at the time series of the years 2007–09.

Economic data and especially the Italian budget deficit seem to enhance the

probability of default in the eyes of potential investors. Whether this per-

ception is accurate or not shall not be discussed here. The point is that the

difference between German and, especially, Italian government bond yields

could be exploited by a model. (Datastream ECITL3M)

3 months EURIBOR Scope: Euro area, Quotation: British Bankers Association, 11.00

GMT. The European Interbank Offered Rate is published daily by the British

Bankers’ Association. Like LIBOR it is based on the quotes of participating
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banks. The reason of including EURIBOR in addition to the 3 months Euro-

pean government yields is that floating interest rate products are often based

on 3 months EURIBOR. It is, e.g., common for corporate bonds to offer a float-

ing rate of 3 months EURIBOR plus a premium. This rate is equally widely

followed and reported in the mainstream financial media.

A second reason for including this time series is that the spread between an

interbank offered rate and the corresponding same maturity government rate

can be quite informative on the actual state of the economy. Generally, the

spread is small because the creditworthiness of important banks is perceived

almost as good as the creditworthiness of a European government. However,

in crisis times, like, e.g., the years 2007–09, the spread widens considerably.

This is due to a lack of trust among banks. At the height of the credit crisis in

2008 the banks regularly feared that their counterparty could unexpectedly

go bankrupt and that the posted collateral would also be worth nothing.

The yield spread could therefore work as leading indicator. As an aside: It is a

common misconception that LIBOR and EURIBOR are fundamentally different.

Actually, EURIBOR is a kind of LIBOR because the L in LIBOR stands for London

and both rates are indeed quoted in London. By choosing the names LIBOR

and EURIBOR the British Bankers Association actually introduced euphonious

marketing names — but also a potential source of confusion. (Datastream

ECEUR3M)

UK gilts 10 years Scope: United Kingdom, Quotation: reference quotation by the

Bank of England and the Government’s Debt Management Office, 16.00 GMT.

The gilts, i.e., the United Kingdoms government bonds, are issued by the Gov-

ernment’s Debt Management Office and can also be bought there directly,

see [311]. They are also traded on the stock exchange. These benchmark

bonds are widely followed and trade liquidly. (Datastream UKMBRYD)

Bund Future 10 years Scope: Germany, Quotation: Eurex, 21.00 GMT. The Bund

Future is a derivative based on the delivery of an imaginary German gov-

ernment debt obligation, Bundesanleihe, with maturity between 8.5 and 10.5

years, see [124]. Bund futures are highly liquid instruments and a benchmark

for expected long term Euro interest rate. (Datastream BDBRYLD)

10 years Obligation assimilable du Trésor Scope: France, Quotation: benchmark

quotation by Agence France Trésor, 16.00 GMT. The obligations are issued by

the French government via Agence France Trésor a department of the French
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finance ministry, see [3]. They can be traded in the secondary market at Eu-

ronext Paris and are among the most liquidly traded bonds in France. (Datas-

tream FRBRYLD)

10 years Buoni del Tesoro Polianuali Scope: Italy, Quotation: benchmark quota-

tion by the Dipartimento del Tesoro, 16.00 GMT. The buoni are the long term

government bonds issued by Italy. (Datastream IBRYLD)

US Dollar to Great British Pound Scope: United Kingdom, Quotation: Reuters, 16.00

GMT. While the GBP|USD exchange rate is traded around the clock in most fi-

nancial centers the London fixing is a widely followed and published price.

GBP|USD is among the five most actively traded currency pairs and is there-

fore included for subsequent analysis. (Datastream USDOLLR)

US Dollar to Swiss Franc Scope: Switzerland, Quotation: Reuters, 16.00 GMT. The

same technical details as above apply. The rationale for including the Swiss

Franc is that the market often considers it as a safe heaven because of Switzer-

land’s neutrality. Although trading volume is much smaller compared to

EUR|USD it is nevertheless interesting to see if changes in SFR|USD have pre-

dictive power for other time series. (Datastream SWISFUS)

US Dollar to Euro This is the most actively traded exchange rate of the world. Nu-

merous studies have investigated the behavior of this exchange rate and it is

generally accepted that the exchange rate market is very efficient. Because

of the significant economic and technical impact of EUR|USD it is included.

(Datastream USEURSP)

North America

S&P 500 Scope: United States, Quotation: Standard & Poors, 0.30 GMT. This index

comprises the 500 largest companies in the United states, see [295]. The

companies are either traded on New York Stock Exchange or NASDAQ OMX.

The index is published in real-time. The price available in Datastream reflects

the closing price of after-hours trading. Keep in mind that from a European

perspective the value is only available after the European market close. To

avoid a look-ahead bias it is necessary to take the price from the previous day.

(Datastream S&PCOMP)

NASDAQ 100 Scope: United States, Quotation: NASDAQ OMX, 1.00 GMT. This in-

dex comprises the largest 100 companies on the National Association of Se-
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curities Dealers Automated Quotations system, see [9], p. 10. The companies

are US but also foreign companies and, importantly, non-financial. The widely

followed NASDAQ 100 index is mostly known as technology index. There is

an intersection of S&P 500 and NASDAQ 100 companies. Nevertheless, it is

interesting to include the NASDAQ 100 in its own right and analyze, if the pre-

dictive power of subsequent models is enhanced. The index is published in

realtime. The same time zone consideration as for the S&P 500 applies when

dealing with mostly European data. (Datastream NASA100)

3 months Eurodollars Scope: United States, Quotation: Reuters, 21.50 GMT. This

somewhat misleading term refers to US Dollars deposited in bank accounts

outside the United States, see [333]. These US Dollars are therefore not subject

to different restrictions imposed by the Federal Reserve and the 3 months

interest rate payed on the deposits is assumed to better represent current

market conditions.

Nevertheless, Eurodollars will also react to the Federal Reserve policy because

the target rate determines, among others, the attractiveness of the currency.

Although most Eurodollars are actually deposited in European banks there

is no connection at all to the Euro or even to Europe. US Dollars held, e.g.,

in Tokyo would technically be called Eurodollars, too. Eurodollars can be

traded at the Chicago Mercantile Exchange using futures, see [71]. As an aside

see [139] for a historical and thought-provoking introduction to Eurodollars.

(Datastream ECUS$3M)

10 years Treasuries Scope: United States, Quotation: Reuters, 21.50 GMT. The 10

years treasury notes is the benchmark bond for long term interest rate percep-

tion in the United States, see [212]. They are auctioned by the United States

Treasury and afterwards traded in a very liquid secondary market. (Datas-

tream USBD10Y)

World

Gold Bullion Scope: World (United Kingdom), Quotation: London Bullion Market

Association, 15.00 GMT. The benchmark for gold prices is the priced pub-

lished in the fixing by the London Bullion Market Association twice daily,

see [231]. Interestingly even in London the price is quoted as US Dollar per

troy ounce. Gold has a special meaning as replacement currency, especially
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related to the US Dollar. Furthermore, Gold is important in the electronics and

jewelry industry. The economic importance of Gold seems stable, see [333].

(Datastream GOLDBLN).

Brent Crude Oil Scope: World (Europe), Quotation: Intercontinental Exchange, 6.30

GMT. Together with West Texas Intermediate and Dubai Crude the Brent

Crude Oil coming from the North Sea belongs to the benchmark oil notations.

It’s price is widely followed and can be traded via futures on the Intercontinen-

tal Exchange and with lower liquidity on the New York Mercantile Exchange.

(Datastream OILBREN)

CRB Index Scope: World (United States), Quotation: Commodity Research Bureau,

3.00 GMT. The continuous commodity index is determined daily by the Com-

modity Research Bureau based on the price in US Dollars of 22 different com-

modities, see [274]. It consists of two broad categories: industrial materials

and food. The index is focused on the United States price of commodities.

But due to the fact that many goods are traded in US Dollars for similar prices

worldwide it also reflects the worldwide commodity price level. As the com-

modities listed in the CCI serve as input materials for other products the

CCI is regarded as leading indicator: a general price rise in commodities will

cause a price rise, or inflation, later in end consumer products. (Datastream

NYFECRB)

Baltic Exchange Dry Index Scope: World, Quotation: Baltic Exchange, 17.00 GMT.

This index is an aggregate of shipping rates on the 20 most important dry bulk

shipping routes, see [266]. It reflects the price for the transport of merchan-

dise. This index is also considered as leading indicator using the following

rationale: a slowing or shrinking economy will manifest itself, among others,

in reduced demand. This causes demand for transportation capacity to shrink.

Because shippers can not simply mothball their ships an overcapacity occurs

and the prices for bulk shipping drop. (Datastream BALTICF)

For the following analysis one applies a small preliminary transformation to the

interest rates. The actual level of interest rates is not as important as the difference

between long and short term interest rates. Fixed income professionals will typi-

cally talk of this yield curve saying, e.g., «I have a flattish view.» when they expect

the difference between long and short term rates to decrease, see also [212]. Typ-

ically, long term interest rates are expected to be higher than short term interest

rates. There is ample economic theory to explain this, see again [212] and also [333]
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Name Trading Hours Website

Tokyo Stock Exchange 0.00–2.00 and www.tse.or.jp
3.30–6.00

Korea Exchange 0.00–6.00 www.krx.co.kr

London Stock Exchange 8.00–16.30 www.londonstockexchange.com
Xetra (Deutsche Börse) 8.00–16.30 deutsche-boerse.com
Euronext Paris 8.00–16.30 www.bourse-de-paris.com
Borsa Italiana 8.00–16.30 www.borsaitaliana.it
Eurex 8.00–21.00 www.eurexchange.com

New York Stock Exchange 15.30–22.00 www.nyse.com
NASDAQ OMX 15.30–22.00 www.nasdaq.com
Chicago Mercantile 11.00–10.00 www.cmegroup.com
Exchange (electronic)
Intercontinental Exchange 12.30–11.30 www.theice.com

(electronic)

Table 4.2: Relevant exchanges for time series. Trading hours are uniformly in GMT.

Keep in mind that every time series analysis must account for timezone

differences. Using European data the same-day closing data from the

United States is not available to us, one has to use data from the previous

day.

for an introduction. The quintessence is that investors want to be compensated for

taking a longer liquidity penalty.

However, at times, the yield curve is termed inverted when short term interest

rates are higher than long term interest rates. Inverted yield curves are actually

quite common as one can see, e.g., on figure 4.3 on page 136. Inverted yield curves

may serve as leading indicator for a recession: investors then prefer the additional

security of a long term government investments. I.e., demand for long-term govern-

ment bonds increases and therefore the yield goes down. For all these reasons the

author uses the following albeit crude definition of a yield curve:

yield curve := 10 years interest rates− 3 months interest rates.

The author is aware of the fact that the yield curve generally consists of much more

points starting with overnight yields up to 50 years yields. 3 months and 10 years

rates should provide a sufficiently accurate view of the market.
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4.4 Side Note: Data Acquisition Caveats

The author noticed during preparation of the dataset that data acquisition is not

always straightforward. In the few following paragraphs the author describes the

relevant details of what one should look out for when assembling market ensemble

datasets.

First, it is important to note that the data has to come from a reliable source

or cleaned by hand. As the model building and subsequent training procedure

depends entirely on the data outliers or missing data have to be identified carefully.

Adequate measures for dealing with this kind of problems have to be taken. This

is detailed in section 4.5. It helps considerably when data comes from a unified

source. In the present case data is taken from Thomson Reuters Datastream. Most

of the historical data is also available freely, often at the exchange or source of

origin. But the work one has to put into unifying the data is considerable and

warrants the use of a database provider.

Second, when analyzing markets from different regions around the world, time-

zone considerations are very important. If not catered for look-ahead bias is easily

incurred as detailed above. But how can one determine the time of publication of a

financial value? The following rules are helpful:

• When dealing with data from a single specific exchange check the exchange

website for trading hours. Closing prices are generally determined in a clos-

ing auction which lasts five minutes and published immediately afterwards.

Do not take into account after hour or similarly called trading. After hour

trading generally occurs with reduced liquidity and is not widely followed in

the media. The above applies, e.g., for the non composite equity indices.

• Closing prices of composite indices are published just after the close of all

involved exchanges.

• Benchmark interest rates are determined once a day by asking important mar-

ket participants and averaging. The rate is often published late in the morning

trading session, local time. The exact publication time is noted on the relevant

website.

• Exchange rates are quoted around the clock. Nowadays exchange rates are

even quoted on weekends. Different institutions and exchanges publish ref-

erence rates. These are often published middays or at the close of trading at
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the given locality. The author prefers to choose an important financial center

which is close to the region of his principal interest. In the analysis the au-

thor takes London closing prices. Another possibility for Europe is to use ECB

reference rates. Other financial centers with certainly tradeable rates are New

York and Tokyo.

• It may not be clear where your data series come from. For Datastream the au-

thor suggests to use the GEOGN datatype which describes the regional market

of a series. Datatype EXNAME returns the name of the exchange, if any, from

which the data series comes. Finally, if nothing else helps, the author highly

recommend to ask the technical support. With some perseverance the author

was able to get an amazing amount of undocumented information.

Third, one might need some creativity to build meaningful datasets. Your data

provider might not be able to provide exactly the data series one wants but perhaps

only something slightly similar. E.g., the author uses the evolution of the yield curve

as input. This is, however, not available as time series on its own. The reason is

that it is a priori not clear which and how many points of the yield curve the user

would want. Yet, it is easy to build the yield curve by calculating the differences of

relevant benchmark interest rates.

4.5 Data Preprocessing and Analysis

4.5.1 Correlation

In the following the author describes the salient features of the dataset. Although

subsequent focus lies on analysis of the data with neural networks it is nevertheless

useful to start with basic descriptive statistics. For multivariate time series the

cross-correlation analysis provides important information, see tables 4.3–4.6. For

the analysis the author uses Pearson’s correlation coefficient

R(X,Y) := 1
T − 1

T∑
t=1

(
xt − x̄
sx

)(
yt − ȳ
sy

)

for two time series X = (x1, x2, . . . , xT ), Y = (y1, y2, . . . , yT ), the means x̄, ȳ and

standard deviations sx, sy . One has to keep in mind that the same time correlation

matrix has no predictive power. I.e., if the data is correlated today there is no
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necessity for it to be related today and tomorrow. However the correlation analysis

is helpful when estimating which time series might be linearly related and which

might have a non-linear relationship. In a same time cross-correlation analysis one

can obtain two qualitatively different results:

• The absolute value of R is high, e.g., |R| ≥ 0.7. This indicates a strong posi-

tive or negative linear relationship. One anticipates that linear models would

work well on describing this particular relationship and that a neural network

would use small weights.

• The absolute value of R is small, e.g., |R| ≤ 0.3. This indicates linearly uncor-

related time series. In the context of market modeling this might mean that

there is indeed no mutual influence of the markets. However, it might well be

the case that a non-linear relationship exists that can be favorably exploited

by neural networks.

A value of R in between signalizes a mixed mutual influence and one can not draw

any a priori conclusions. In any case one shouldn’t put too much weight on an

interpretation of the correlation coefficient, because it is really only designed to

discover linear relationships, see, e.g., [72]. Remember, that many obvious or inter-

esting relationships have a correlation coefficient of zero. Think, e.g., of x-y pairs

of points distributed along a circle. So, why look at all at correlation coefficients

in a book which focuses on neural networks, a notably non-linear technique? One

reason is, that the concept of linear correlation is easy and intuitive to grasp: the

higher the absolute value of R the «more linear» the relationship is. The second rea-

son is that a correlation analysis can prove valuable when selecting which inputs to

include in a neural network topology.

The author starts the analysis with an overview of the internal cross correlation

of the four markets: equities, interest rates, exchange rates and commodities. The

first block consists of the cross-correlations between different equity indices. These

are found on tables 4.3 on page 125 and 4.4. One expects the indices to exhibit a

significant positive correlation because of world markets moving together. Indeed,

all coefficients are positive. However, one notices that the South Korean Kospi

index shows a notably lower correlation to all other indices.

At this point it is not possible to say without further analysis if the Kospi indeed

might lead the others. As it is relatively independent it might offer valuable addi-

tional information as stated above. One also note that especially the technology
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loaden NASDAQ and the more traditionally oriented Kospi are almost uncorrelated

with R = 0.009. Not so marked but still noticeable is that the NASDAQ is generally

less correlated to all other indices.

For the interest rate analysis it is useful to first concentrate on the yield curves.

One notes that Western yield curves are quite correlated: interest rates in the United

Kingdom, Germany, France, Italy and the United States move almost in lockstep

with the US being noticeably more independent. Especially the three countries

from continental Europe, i.e., Germany, France, Italy, show a very high degree of

correlation, R ≥ 0.955.

This could indicate that one of the yield curves could serve as proxy for the other

two. Presumably one would take the German yield curve as this is the most impor-

tant economy in continental Europe. One must be careful not to draw premature

conclusions.

The Japanese yield curve features a significantly less important correlation to the

other nations. Interestingly the correlation between the US and Japan is very low,

R = 0.058. This reflects the traditionally independent interest rate politics of Japan.

One can hope that the Japanese yield curves gives us valuable additional informa-

tion as Japan is the second biggest economy by GDP after the US. Or, including

the combined output of the European Union, Japan is on rank 3. Finally one sees

that 12 months LIBOR and 3 months EURIBOR are, not unsurprisingly, positively re-

lated but not strongly so. This reflects the relative independence of the UK vis-à-vis

continental Europe.

Looking at the currency cross-rates on tables 4.5 on page 127 and 4.6 on page 128

one first notes a very high correlation between the Swiss Franc to US Dollar and Euro

to US Dollar exchange rates, R = 0.981. This is due to the fact that Switzerland

is mostly seen to be economically similar to the Euro area. It is therefore not

unanticipated that the respective exchange rates behave correlatedly. Further one

notes a less strong correlation of the Great British Pound exchange rate to SFR|USD

and EUR|USD.

This moderate correlation backs the thesis that European exchange rates behave

similarly but that the United Kingdom is more independent. Finally, one notes a

very low correlation to all exchange rates for USD|JPY. Especially the correlation

between GBP|USD and USD|JPY is surprisingly low, R = −0.153, although Japan and

the United Kingdom are important trade partners. In fact, Japan is the third largest

export market of the United Kingdom as computed by the UK trade invest service.
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The generally low correlations of the Japanese exchange rate to the other exchange

rates can be attributed to relative independence of the Japanese economy. Note,

that the coefficients are negative because the exchange rate is quoted in Yen per

US-Dollar and not vice-versa.

A look at the correlation of the commodity linked time series proves very inter-

esting. First, one notes a very high correlation between the CRB Index and the

commodities gold and oil, R = 0.927 and R = 0.964. This is partially explainable

by the fact that gold and oil are indeed constituents of the CRB Index. But it is also

a tribute to the dominant effect that gold and especially oil prices have on most

other commodities.

A detailed analysis of the inter-commodity relationships might prove insightful.

It is, however, beyond the scope of this book. Additionally one notes that the Baltic

Exchange Dry Index has the highest correlation with the oil price, R = 0.797. This

relationship is explainable by the significant influence that carburant prices have

on shipping costs. The similarly high correlation to the CRB Index, R = 0.787, is

also due to many commodities having to be shipped.

Let us now leave the analysis of same instrument category and analyze inter-

market relationships. The referred numbers are again found in tables 4.3–4.6. In

the following the author highlights remarkable correlation and give a rationale for

the finding. Keep in mind, that the data spans ten years time, which is much longer

than in most comparable analyses where only a few years or even a few months are

analyzed.

The possibility that the observed correlation is simply a statistical fluke is there-

fore remote. In the author’s opinion the most revealing finding is the at first

glance surprisingly high inter-market correlation of the South Korean Kospi to

other assets, see especially table 4.4 on page 126. One notes a strong correlation of

R = 0.903 between the Kospi and the CRB index. Both, Kospi and CRB, are consid-

ered leading indicators. It is consistent that they both exhibit a correlation in the

same direction.

When the economy is preparing to boom, commodity prices should rise and the

South Koreans should get more demand on ships and electronics products. Addi-

tionally, the South Korean economy is not so dependent on the commodities listed

in the CRB and therefore a price rise in those commodities doesn’t impair their

economy.
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A similar argument applies especially for the strong correlation between the

Kospi and the oil price with R = 0.867. High oil prices do not harm the Koreans

but signify that demand for and consumption of motor powered vehicle is high,

ships included. The high R = 0.839 of Kospi and Gold is perhaps less clear but

can be supported by the argument that Gold demand could be self-induced by the

Korean economy. Indeed, Gold is in small but nevertheless substantial quantities

indispensable for the manufacturing of electronics products. A flourishing Korean

economy could cause the demand for Gold to rise, causing the prices to appreciate.

This argument is consistent with an R = 0.819 between the Kospi and the EUR|USD

exchange rate. As the exported products are generally priced in US Dollars the Ko-

reans profit from a depreciating Dollar. As the Dollar looses value their exported

products are more attractively priced, e.g., in the Euro area.

Next, one notes a high correlation between the CRB index and the EUR|USD ex-

change rate, R = 0.902. This comes as no surprise: a depreciating Dollar will almost

automatically cause the price of imported goods that are priced in Dollars to rise.

This is immediately noticeable, too, when one looks at the correlation between

gold and EUR|USD, R = 0.870, and oil and EUR|USD, R = 0.868, see table 4.6 on

page 128. Similar arguments also apply for the SFR|USD exchange rate which ex-

hibits the same behavior, albeit with slightly lower correlation coefficients.

To conclude the same-day correlation analysis of the dataset one may remember

the following points:

• Intra-market relationships are generally strong. I.e., one finds strong rela-

tionships among the world’s equity indices, interest rates or yield curves, ex-

change rates and commodities.

• Intra-region relationships can be very strong. This is true especially for the

European market.

• Japanese instruments are generally more independent compared to European

and North American instruments.

• The Kospi index fulfills a special role in that it is highly correlated to time

series outside the Asia Pacific area.

• A same-day correlation analysis does not tell us if one time series «predicts»

the other. It also does not involve any causality. But correlated assets are a

good starting point for further analysis.
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Mnemonic FTSE100 DAXINDX FRCAC40 FTSEMIB DJES50I SPCOMP

FTSE100 1.000 0.923 0.957 0.919 0.935 0.951
DAXINDX 0.923 1.000 0.915 0.816 0.888 0.881
FRCAC40 0.957 0.915 1.000 0.970 0.987 0.920
FTSEMIB 0.919 0.816 0.970 1.000 0.961 0.907
DJES50I 0.935 0.888 0.987 0.961 1.000 0.884
SPCOMP 0.951 0.881 0.920 0.907 0.884 1.000
NASA100 0.731 0.700 0.786 0.758 0.831 0.713
JAPDOWA 0.920 0.819 0.873 0.866 0.846 0.907
KORCOMP 0.409 0.555 0.266 0.150 0.162 0.449

BBGBP12 0.783 0.717 0.786 0.789 0.788 0.839
ECEUR3M 0.631 0.721 0.675 0.588 0.691 0.561
UKyc -0.696 -0.689 -0.685 -0.673 -0.652 -0.756
GERyc -0.453 -0.609 -0.449 -0.342 -0.395 -0.418
FRyc -0.477 -0.606 -0.471 -0.385 -0.413 -0.461
ITyc -0.528 -0.617 -0.527 -0.472 -0.471 -0.539
USyc -0.784 -0.767 -0.756 -0.714 -0.699 -0.730
JAPyc 0.234 -0.015 0.264 0.381 0.279 0.272

USDOLLR 0.248 0.275 0.133 0.145 0.022 0.441
SWISFUS -0.171 -0.007 -0.304 -0.376 -0.410 -0.051
USEURSP -0.013 0.141 -0.156 -0.230 -0.265 0.115
JAPAYEUSD 0.106 -0.018 0.157 0.244 0.173 0.071

GOLDBLN 0.035 0.277 -0.079 -0.234 -0.175 0.043
OILBREN 0.279 0.437 0.164 0.057 0.061 0.344
NYFECRB 0.217 0.406 0.101 -0.016 -0.009 0.278
BALTICF 0.251 0.382 0.160 0.107 0.079 0.419

Table 4.3: Correlation matrix of the analyzed data. Note that the respective interest

series have already been transformed into yield curves. A same-day cor-

relation matrix offers no predictive power but is nevertheless useful for

determining which data might exhibit linear or non-linear relationship.

This and the following table clearly show us that most world equity in-

dices are highly correlated. We can especially notice a strong correlation

among European equity indices. On the other hand, the Korea compos-

ite or Kopsi index is more independent from other equity indices. See

table 4.1 on page 109 for an explanation of the mnemonic codes. Contin-

ued on tables 4.4–4.6
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Mnemonic NASA100 JAPDOWA KORCOMP BBGBP12 ECEUR3M UKyc

FTSE100 0.731 0.920 0.409 0.783 0.631 -0.696
DAXINDX 0.700 0.819 0.555 0.717 0.721 -0.689
FRCAC40 0.786 0.873 0.266 0.786 0.675 -0.685
FTSEMIB 0.758 0.866 0.150 0.789 0.588 -0.673
DJES50I 0.831 0.846 0.162 0.788 0.691 -0.652
SPCOMP 0.713 0.907 0.449 0.839 0.561 -0.756
NASA100 1.000 0.742 0.009 0.694 0.463 -0.517
JAPDOWA 0.742 1.000 0.401 0.768 0.438 -0.622
KORCOMP 0.009 0.401 1.000 0.198 0.201 -0.383

BBGBP12 0.694 0.768 0.198 1.000 0.697 -0.828
ECEUR3M 0.463 0.438 0.201 0.697 1.000 -0.705
UKyc -0.517 -0.622 -0.383 -0.828 -0.705 1.000
GERyc -0.133 -0.251 -0.512 -0.416 -0.798 0.728
FRyc -0.121 -0.282 -0.513 -0.459 -0.795 0.765
ITyc -0.157 -0.346 -0.483 -0.546 -0.807 0.819
USyc -0.560 -0.745 -0.463 -0.596 -0.557 0.776
JAPyc 0.314 0.396 -0.335 0.232 -0.304 0.114

USDOLLR -0.093 0.328 0.750 0.305 -0.007 -0.450
SWISFUS -0.380 -0.139 0.741 -0.196 -0.207 -0.092
USEURSP -0.262 0.021 0.819 -0.049 -0.109 -0.214
JAPAYEUSD -0.206 0.059 -0.211 0.079 0.180 0.058

GOLDBLN -0.215 -0.005 0.839 -0.153 0.073 -0.130
OILBREN -0.063 0.220 0.867 0.205 0.281 -0.456
NYFECRB -0.126 0.173 0.903 0.094 0.214 -0.372
BALTICF -0.029 0.211 0.754 0.294 0.220 -0.439

Table 4.4: Correlation matrix. Continued from table 4.3. This table offers interest-

ing insights in the Kospi index as leading indicator. We note especially

the high correlation of the Kospi to the EUR|USD exchange rate, to the

Gold and oil price and to the commodity index CRB. All this can be ex-

plained by the fact, that the South Korean economy will generally be

among the first to profit from a booming world economy as they are

among the world largest shipbuilders. We also see that yield curves, in-

dicated by the suffic »yc« are still dependent on one another but more

independent than the equity indices in the previous table.

126



Menemonic GERyc FRyc ITyc USyc JAPyc USDOLLR SWISFUS

FTSE100 -0.453 -0.477 -0.528 -0.784 0.234 0.248 -0.171
DAXINDX -0.609 -0.606 -0.617 -0.767 -0.015 0.275 -0.007
FRCAC40 -0.449 -0.471 -0.527 -0.756 0.264 0.133 -0.304
FTSEMIB -0.342 -0.385 -0.472 -0.714 0.381 0.145 -0.376
DJES50I -0.395 -0.413 -0.471 -0.699 0.279 0.022 -0.410
SPCOMP -0.418 -0.461 -0.539 -0.730 0.272 0.441 -0.051
NASA100 -0.133 -0.121 -0.157 -0.560 0.314 -0.093 -0.380
JAPDOWA -0.251 -0.282 -0.346 -0.745 0.396 0.328 -0.139
KORCOMP -0.512 -0.513 -0.483 -0.463 -0.335 0.750 0.741

BBGBP12 -0.416 -0.459 -0.546 -0.596 0.232 0.305 -0.196
ECEUR3M -0.798 -0.795 -0.807 -0.557 -0.304 -0.007 -0.207
UKyc 0.728 0.765 0.819 0.776 0.114 -0.450 -0.092
GERyc 1.000 0.992 0.955 0.651 0.602 -0.288 -0.279
FRyc 0.992 1.000 0.982 0.654 0.551 -0.348 -0.273
ITyc 0.955 0.982 1.000 0.652 0.456 -0.399 -0.213
USyc 0.651 0.654 0.652 1.000 0.058 -0.299 -0.057
JAPyc 0.602 0.551 0.456 0.058 1.000 -0.080 -0.463

USDOLLR -0.288 -0.348 -0.399 -0.299 -0.080 1.000 0.752
SWISFUS -0.279 -0.273 -0.213 -0.057 -0.463 0.752 1.000
USEURSP -0.342 -0.342 -0.297 -0.173 -0.427 0.826 0.981
JAPAYEUSD 0.038 -0.027 -0.126 0.138 0.235 -0.153 -0.499

GOLDBLN -0.500 -0.457 -0.353 -0.251 -0.596 0.546 0.868
OILBREN -0.625 -0.630 -0.600 -0.385 -0.407 0.732 0.792
NYFECRB -0.613 -0.606 -0.554 -0.373 -0.492 0.736 0.862
BALTICF -0.439 -0.471 -0.498 -0.209 -0.299 0.839 0.717

Table 4.5: Correlation matrix. Continued from table 4.4. This and the following

table show a high correlation between the world’s leading exchange rates.

We especially notice one of the highest correlation of the entire analysis

between the SFR|USD and EUR|USD exchange rate. This shows that on

the monetary market Switzerland and the Euro area are perceived to be

very similar.
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Mnemonic USEURSP JAPAYEUSD GOLDBLN OILBREN NYFECRB BALTICF

FTSE100 -0.013 0.106 0.035 0.279 0.217 0.251
DAXINDX 0.141 -0.018 0.277 0.437 0.406 0.382
FRCAC40 -0.156 0.157 -0.079 0.164 0.101 0.160
FTSEMIB -0.230 0.244 -0.234 0.057 -0.016 0.107
DJES50I -0.265 0.173 -0.175 0.061 -0.009 0.079
SPCOMP 0.115 0.071 0.043 0.344 0.278 0.419
NASA100 -0.262 -0.206 -0.215 -0.063 -0.126 -0.029
JAPDOWA 0.021 0.059 -0.005 0.220 0.173 0.211
KORCOMP 0.819 -0.211 0.839 0.867 0.903 0.754

BBGBP12 -0.049 0.079 -0.153 0.205 0.094 0.294
ECEUR3M -0.109 0.180 0.073 0.281 0.214 0.220
UKyc -0.214 0.058 -0.130 -0.456 -0.372 -0.439
GERyc -0.342 0.038 -0.500 -0.625 -0.613 -0.439
FRyc -0.342 -0.027 -0.457 -0.630 -0.606 -0.471
ITyc -0.297 -0.126 -0.353 -0.600 -0.554 -0.498
USyc -0.173 0.138 -0.251 -0.385 -0.373 -0.209
JAPyc -0.427 0.235 -0.596 -0.407 -0.492 -0.299

USDOLLR 0.826 -0.153 0.546 0.732 0.736 0.839
SWISFUS 0.981 -0.499 0.868 0.792 0.862 0.717
USEURSP 1.000 -0.473 0.870 0.841 0.902 0.796
JAPAYEUSD -0.473 1.000 -0.462 -0.265 -0.327 -0.195

GOLDBLN 0.870 -0.462 1.000 0.836 0.927 0.626
OILBREN 0.841 -0.265 0.836 1.000 0.964 0.797
NYFECRB 0.902 -0.327 0.927 0.964 1.000 0.787
BALTICF 0.796 -0.195 0.626 0.797 0.787 1.000

Table 4.6: Correlation matrix. Continued from table 4.5. In this table we can note

the high correlation among commodities. We also note that the Baltic

Exchange Dry Index behaves more independently. However, the BDI ex-

hibits a high correlation to the GBP|USD exchange rate with almost as

high a correlation to the EUR|USD exchange rate. We can interpret this

as a general dependence of the BDI on the US Dollar with the BDI appre-

ciating when the US Dollar depreciates.
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4.5.2 Descriptive Statistics for Level Series

In the following the author has an exemplary look at the problems which arise

when dealing with financial time series. The author uses the Jarque-Bera test to

verify normality, see [193]. The Jarque-Bera statistic JB measures how much a

given distribution with unknown kurtosis and skewness deviates from a normal

distribution. It is given by

JB = T
6

(
M2

skewness +
(Mkurtosis − 3)2

4

)

where T indicates the sample length and M... the appropriate moment of the distri-

bution.

JB measures excess kurtosis as the normal distribution has a kurtosis of 3. There-

fore any additional skewness and kurtosis increases the Jarque-Bera statistic. The

corresponding p-value on table 4.7 on page 133 describes how likely it is to obtain

the given JB if the underlying distribution is indeed normal, see [283]. As this

probability is below 1 percent for every series in the dataset one can conclude at

the 99 percent confidence level that all level series are non normal. Starting with a

normal distribution one can interpret the skewness and kurtosis values in table 4.7

on page 133 as follows:

• The skewness indicates an asymmetry in the tails, where the normal distribu-

tion is perfectly symmetric withMskewness = 0. A negative skewness means that

the left tail is more developed. As an example take the FTSE100 distribution

on figure 4.2 on page 135, however this is perhaps not so obvious from the

graph.

A positive skewness indicates a longer right tail. A very clear example of

this is shown in the distribution of the Gold Bullion prices on figure 4.5 on

page 138. See below for more explanation of this phenomenon. The skewness

is the third moment of a distribution. It is calculated as

Mskewness =
1
T

∑T
t=1(xt − x)3(

1
T

∑T
t=1(xt − x)2

)3/2 .

• The kurtosis shows how «peaked» the distribution is. As explained above a

kurtosis below 3 indicates a platykurtic distribution. This can be interpreted
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as fewer values being near the mean and a lower probability of extreme values.

The multimodal distribution of the GBP|USD exchange rate level series, see

figure 4.4 on page 137, is a good example for low kurtosis. On the other

hand a kurtosis above 3 indicates a leptokurtic distribution with more values

proximate to the mean and a higher probability of extreme values. These are

also called fat tails.

One meets fat tails again when looking at return series, see, e.g., the highly

peaked distribution of the UK yield curve differences on figure 4.8 on page 146.

The skewness is the fourth moment of a distribution and is calculated from

the sample by

Mkurtosis =
1
T

∑T
t=1(xt − x)4(

1
T

∑T
t=1(xt − x)2

)2 .

The author now looks at exemplary statistics from each of the four asset classes,

i.e., the FTSE 100 equity index, the UK yield curve, the GBP|USD exchange rate and

the Gold Bullion. Each of these four examples shows individual characteristics of

the given asset class and common characteristics of financial time series in levels.

This is intended to give us a taste of which kind of transformation, if any, may be

necessary before trying to fit a model. All time series are plotted and the corre-

sponding detailed statistics are found in table 4.7 on page 133.

FTSE 100 Index The FTSE 100 level series and corresponding distribution is plot-

ted on figure 4.2 on page 135. The sample period is representative of different

market phases: it includes the bear market from 2000–2003 following the col-

lapse of the «new economy». Then, one sees the impressive bull market of

2003 to mid 2007. And then again, one observes the precipitated collapse

until mid 2009 which is known as «credit crisis».

The sample thus includes more than one full business cycle which is said to

last approximately seven years. Indeed, this business cycle can be observed

from 2000–2007, peak to peak, but the author won’t delve further into the

analysis, whether and why this market lore might be justified. Looking at the

distribution of levels one notes first a slight negative skewness, which is also

noticeable in the graph.

However, the distribution is bi-modal with peaks around 4250 and 6000. A

third smaller peak around 5000 can also be seen. The kurtosis of 1.72 is

misleading as it centers actually around the mean at 5311 points. However,
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this is only a secondary peak. The Jarque-Bera statistic indeed confirms at

more than 99 percent confidence that the level series is non normal. The

double-peakedness indicates that a transformation of the series is advisable

for it to be useful in further analysis: the mean shifts over time. Or, expressed

the other way around, the FTSE 100 series is not mean reverting. However, one

is not surprised by this finding, as it is common for equity time series to be

biased upwards. Think about it: if they weren’t, at least in the long term, there

would be no reason for an investor to be long equities for a substantial time

period.

UK yield curve The UK yield curve and corresponding distribution is shown on

figure 4.3 on page 136. One notes that the volatility has considerably aug-

mented since the credit crisis in 2007. And since the end of 2008 one notes

a widening gap between short and long term yields. This is, at least partly,

due to decisive open market operations of the Bank of England in an attempt

to stabilize the ailing British economy: The reference interest rates have been

lowered and the market has been flooded with short term liquidity. The yield

curve also shows two peaks around 0.0 and 0.5, although these are not very

clear. One can also see that the tails are fat as indicated by the high kurtosis

of 3.52.

US Dollar to Great British Pound One notes an appreciation of GBP relative to USD

in a very long trend starting in mid 2001 and only sharply reversing in 2008,

see figure 4.4 on page 137. Such long lasting trends are typical for exchange

rates, see [333]. The ailing British economy and recovery hopes on the US side

are mainly responsible for the drop between mid 2008 and the beginning of

2009. It is important to note that here, too, the sample contains up and down

phases. Thus the model should not overfit to particular trend. However, a

model trained on data up to 2008 and using the rest of the interval for testing

might be ill-equipped to handle the downturn. A look at the distribution of

returns is not very conclusive: the distribution is multi-modal with several

not very clear peaks.

The kurtosis of 1.68 is the second smallest in the entire dataset and highlights

a typical feature of exchange rates: they tend to move in ranges, see again

[333]. This can be explained by the argument that exchange rates have a fair

value which is determined by a basket of goods. If the exchange rate deviates

too much, arbitrage becomes possible.
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The arbitrage argument is a weak one as tariffs and shipping costs often pre-

vent arbitrage opportunities. But in the long run the arbitrage argument holds.

Another argument in favor of the range behavior is that central banks will

tend to intervene if the exchange rate moves too far away from what is per-

ceived as acceptable.

Gold Bullion Figure 4.5 on page 138 shows the level series and distribution. The

distribution is typical for a commodity, see [200], p. 97: most observations

are clustered around relatively low values, here in the range of USD 250–300.

However, the consistent trend from 1999–2009 with only minor corrections is

atypical. It is, partly, due to a depreciation of the US Dollar against other ma-

jor currencies and highlights the role of gold as reserve currency. As stated

previously the skewness of 0.82 indicating a stronger right tail is quite re-

markable. In so far as modeling is concerned One expects some problems

when using the correction of 2008–2009 as out-of-sample data. Clearly, also,

the mean of the gold series is not constant over time. It is even questionable

if one can sensibly speak of a mean when considering this series. The series

will therefore require some kind of transformation before modeling.

Let the author conclude the descriptive statistics for the level series with some

notes on other remarkable values in table 4.7 on the next page. The USD|JPY ex-

change rate series features a Jarque-Bera statistic of only 9.93, low skewness and

low kurtosis. However, this is not sufficient to allow for an above 1 percent change

of the series being normal. One also notes that the NASDAQ 100 series has a high

kurtosis of 5.80 and the highest Jarque-Bera statistic of 2221.82. As this series is

notably different from the others one might experience some problems when trying

to model it multivariately using the other series.

It is interesting that the S&P 500 index has a low kurtosis of 2.20 and a Jarque-

Bera statistic of 109.93 in the same range as the other time series as its constituents

are also equities from NASDAQ. Indeed, non-technology components have a higher

weight in the S&P 500. A detailed analysis is left for further research. One also

notices a high kurtosis of 4.33 paired with low skewness of 1.36 and a high Jarque-

Bera statistic of 998.10 for the Baltic Exchange Dry Index. One can attribute this to

the commodity like type of the BDI.

To prevent a possible misunderstanding let the author note that non normality

and fat tails are not at all linked. Non normality is measured by the Jarque Bera

statistic which takes into account skewness and kurtosis. Fat tails are a familiar
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way of designating high kurtosis. Already [237] notes that financial time series are

generally non normal. Fat tailedness is however only a general feature of returns.

An analysis of the return series is the topic of the following section.

Table 4.7: Descriptive statistics for level series. One notes several interesting

things here: most importantly the p-value of the Jarque-Bera statistic

is always 0.0. This signifies that all level series are non normal at a con-

fidence level greater than 99 percent. Further, most series exhibit slight

skewness and significant kurtosis. This is partly due to the fact that

most series are at least bimodal and in some cases multimodal. Fat tails

are indicated by high kurtosis. However, level series are not generally fat

tailed. It is only when looking at return series, see table 4.8 on page 143,

that fat tails become a general phenomenon. This will be discussed in

the next section.

Mnemonic Min Median SD Skewness Jarque-Bera

Max Mean Kurtosis p-value

FTSE100 3287.04 5363.01 894.69 -0.18 192.31

6930.2 5311.37 1.72 0.000

DAXINDX 2202.96 5231.35 1434.29 0.06 106.87

8105.69 5334.98 2.02 0.000

FRCAC40 2403.04 4504.66 1059.60 0.12 119.08

6922.33 4520.55 1.98 0.000

FTSEMIB 12620.57 32967.06 7825.97 -0.05 52.55

50108.56 32959.11 2.31 0.000

DJES50I 1809.976 3544.58 862.12 0.25 102.73

5464.43 3510.30 2.17 0.000

SPCOMP 676.53 1213.55 198.57 -0.31 109.93

1565.15 1201.34 2.20 0.000

NASA100 804.65 1589.55 729.03 1.77 2221.82

4704.73 1799.11 5.80 0.000

JAPDOWA 7054.98 12312.75 3281.71 0.25 155.61

20833.21 13054.47 1.91 0.000

KORCOMP 468.76 910.27 398.72 0.69 238.90

2064.85 1036.65 2.44 0.000

Continued on next page
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Mnemonic Min Median SD Skewness Jarque-Bera

Max Mean Kurtosis p-value

BBGBP12 1.5209 5.04 1.12 -0.76 303.39

6.8877 5.04 3.71 0.000

ECEUR3M 0.995 3.31 1.07 0.12 165.40

5.35 3.27 1.79 0.000

UKyc -2.1714 -0.16 0.88 0.55 163.85

3.0911 -0.06 3.52 0.000

GERyc -1.588 1.13 0.90 -0.44 146.14

2.5546 0.97 2.25 0.000

FRyc -1.2935 1.20 0.88 -0.35 125.84

2.886 1.07 2.18 0.000

ITyc -0.7669 1.40 0.86 -0.14 59.66

3.4899 1.30 2.31 0.000

USyc -1.4041 0.90 1.43 0.16 210.27

3.6635 1.07 1.65 0.000

JAPyc -0.2221 1.26 0.40 -0.81 305.13

1.946 1.17 3.39 0.000

USDOLLR 1.3669 1.68 0.20 0.10 192.84

2.1082 1.70 1.68 0.000

SWISFUS 0.5494 0.78 0.11 -0.07 106.63

1.0139 0.75 2.02 0.000

USEURSP 0.8287 1.21 0.20 0.01 101.03

1.5979 1.17 2.04 0.000

JAPAYEUSD 87.63 112.34 8.69 -0.15 9.93

134.83 112.72 2.97 0.007

GOLDBLN 252.85 409.14 219.49 0.82 341.05

1011.6 487.47 2.35 0.000

OILBREN 17.15 37.99 26.02 1.28 902.90

145.61 47.49 4.33 0.000

NYFECRB 183.49 274.73 99.92 0.86 324.08

614.57 305.03 2.92 0.000

BALTICF 663.0 2391.00 2455.96 1.36 998.10

11793.0 3285.73 4.33 0.000
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Figure 4.2: The FTSE 100 equity index from July 1999 to July 2009 and corre-

sponding distribution. Note especially the two peaks of the distribution

around 4250 and 6000. The sample shows a typical business cycle of

seven years from peak to peak in the years 2000–2007. It captures the

bear market of 2000, which marks the collapse of the new economy and

the remarkable bull market starting in 2003. The bear market of the

credit crisis starting mid 2007 can also be seen.
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Figure 4.3: The UK yield curve and corresponding distribution. Note the positive

skewness.
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Figure 4.4: The GBP|USD exchange rate (Datastream USDOLLR), and distribution.

From a modelers point of view the increased volatility at the end of

the period necessitates special attention.
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Figure 4.5: The Gold Bullion price, quoted in London in USD, price and distribution.
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4.5.3 Data Transformation and Further Analysis

As one has seen the time series need to be transformed appropriately, especially be-

cause of means shifting over time. A commonly used transformation is to compute

rates of return, see, e.g., [99]. One does this in the following way:

rt := xt
xt−1

− 1 (4.1)

where xt is the level series. This gives us returns centered around 0. Alternatively

one can also take logarithmic returns defined as

rt := log
(
xt
xt−1

)
= logxt − logxt−1 = diff(logX)t (4.2)

where diff represents the lagged differences operator

diff(·) := (·)t − (·)t−1.

Equation 4.1 offers a perfectly symmetric view of the returns where a gain of 10

percent is represented by rt = 0.1 and loss of 10 percent is represented by rt =
−0.1. On the other hand, equation 4.2 skews the returns in that excessive gains

are damped and excessive losses are emphasized, because of limx→0 log(x) = −∞.

Where the logarithmic returns might be more appropriate to quantify risk aversion

one choses the simple form of rate of returns, like in, e.g., [99]. However, both

forms do not differ much if one considers typical daily returns which generally are

in the range of 20% — and this would already be an extreme case, see also table

4.8. Figure 4.6 on the following page compares both return functions and one can

immediately see that both functions are very similar in the typical range. Note

that neither transformation function prevents outliers from biasing the dataset. If

needed, one applies a damping transformation to the time series.

The yield curves deserve a special treatment. Because yield differences can also

become negative it is not sensible to transform them into rates of returns. To

account for changes in the yield curve one simply uses lagged differences, i.e.

r yc
t = xt − xt−1.

One sees on table 4.8 and in the following analysis that this transformation is

sufficient to produce a mean of zero and to ensure stationarity.
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Figure 4.6: Comparison of rate of return functions. Simple returns in red, loga-

rithmic returns in blue. Note how logarithmic returns damp gains and

emphasize losses, whereas simple returns are symmetric. One can also

see that both return functions do not differ by much in the typical case.

Table 4.8 on page 143 shows that on a ten years span daily returns are

always in the 20 percent range and even seldom exceed the 15 percent

range. One uses simple rates of returns for further analysis.

Again, the author will now analyze in detail the return series for the four as-

sets described in the previous section. All numbers can be found in table 4.8 on

page 143 and on figures 4.7–4.10.

FTSE 100 Index Figure 4.7 on page 145 shows the return series and correspond-

ing distribution. One notes a unimodal distribution with a mean at zero,

slight skewness and very high kurtosis. This is indicative of fat tails. A high

Jarque-Bera statistic confirms that the return series is non normal. One finds

these facts confirmed in [148]. On the returns plot one notes the consider-

able volatility at the end of 2008. One can also verify visually the presence

of volatility clusters as described in [237]. Volatility clusters are a feature of

financial time series: empirically days with high volatility tend to be followed

by more days with high volatility and vice versa.
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UK yield curve The plot of daily differences on figure 4.8 on page 146 highlights

an important challenge for model builders. Except for one peak at the end

of 2008 which caused a shift in the yield curve of more than 1.2 percentage

points, i.e., more than 120 basis points, the other peaks are noticeably smaller.

As one has to scale the data appropriately the question emerges: how should

one treat this peak? It is clearly not an outlier because the peak is confirmed

by other data sources and can be explained by an intervention of the Bank of

England. Had one reserved the years 2008 and 2009 for out of sample testing

the peak would have most probably saturated the model.

One possibility is to cap the peak, e.g., at 0.6. However, an alteration of

the data should always be judiciously pondered. The author chooses not to

change anything and to accept the peak as it is. This, on the other hand, in-

curs the risk of loosing significance in the other values which are dwarfed by

the peak. The distribution is slightly skewed, features a very high kurtosis

and is definitely non normal as per the Jarque Bera statistic. The distribution

plot shows a concentration around the mean of zero. The occurrence of ex-

treme values is low. But when they do happen the deviations from the mean

are remarkable. Extreme peaks can not be noticed in the distribution plot

because of scaling.

US Dollar to Great British Pound Figure 4.4 on page 137 shows a remarkably even

distribution with a skewness of zero. The returns, however, exhibit the typical

volatility clusters, see again [237]. Correspondingly one observes fat tails as

indicated by a kurtosis of 8.38 and a non normal distribution. The same

challenge as above occurs when looking at the years 2008 and 2009. Where

the returns had been mostly clamped to a range of 2 percent one can find an

increased volatility where daily returns fluctuate even more than 4 percent.

Again, as I’m conducting a long term analysis the author does not artificially

modify the return series.

Gold Bullion The Gold Bullion return series plotted on figure 4.5 on page 138 is

special in that high volatility occurs all over the time series, not only in 2008

and 2009. E.g., one notes significant volatility in 1999 and the beginning of

2000, then again in mid 2001. A quieter period follows with volatility rising

again in mid 2006. One may attribute the recurrent volatility spikes to the role

of Gold as a commodity. Cyclic behavior of returns is therefore not surprising,

see also [54]. The series exhibits low skewness and high kurtosis.
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Summarizing one sees in table 4.8 that all time series have a mean of zero. This

is remarkable because the author didn’t specially design the transformation to pro-

duce a mean of zero. However, a warning is appropriate: especially when looking

at equity series one should be aware that a mean of zero is not guaranteed. Indeed,

a simple analysis shows that in the very long run, over, say, fifty or more years,

equity return series have a mean greater than zero. It is simply another form of

saying that a buy and hold strategy has a strong chance to work out when the in-

vestment horizon is sufficiently long. The mean depends crucially on the period

under investigation. If one had only chosen, e.g., a bull market phase one would

have had a positive mean of the returns. A mean of zero is important when training

neural networks. If the mean is another number than all weights will have to move

in the same direction, see [176], p. 146. This is bad, because it reduces the effect of

having several independent weights.

One also sees that all return series show a high kurtosis. The transformed inter-

est rates and yield curve series have especially high kurtosis. This can be explained

by a clustering around levels. Often, interest rates move almost in lockstep with

some even value set by the central bank. For example, intervals of 25 or 50 basis

points are current when setting target rates. This will cause short term rates to

shift quickly when policy changes. Long term interest rates are not so affected by

short term policy and will not change or change slowly. Therefore one observes

a movement in discrete levels. This effect is visible quite clearly in level series on

figure 4.3 on page 136. One can observe clustering of the yield curve around -1,

0 and 1 percent respectively. All return and difference series are fat tailed. The

Jarque Bera statistic confirms non normality at the 99 percent confidence level for

all series. Both features are common in financial time series, see [148].

Thinking at the future use of the data in a neural network one notes that the

transformation serves to harmonize the time series. This is important to avoid

domination of some time series by others, see [176], p. 144. Where one had levels

at different order of magnitude, low or high skewness and kurtosis, one now has

a data set with very similar parameters. Minima and maxima are at approximately

15 percent for return series and of the order of unity for difference series. Medians

and means are zero up to two significant digits, although not exactly as the casual

minus signs in table 4.8 indicate. The second moment, the standard deviation, is

harmonized to the interval 0.1 . . .0.8. Skewness and kurtosis still vary, but kurtosis

is uniformly much greater than 3 thus always to be considered as high.
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Table 4.8: Descriptive statistics for return and lagged difference series. The yield

curve series is calculated using one day lagged difference; all other se-

ries are calculated using simple rates of returns. The transformation

to return and difference series serves to harmonize the data. This is

important to facilitate training for future neural network use. Minima

and maxima are of the same order of magnitude. Median and mean are

uniformly almost zero, though not exactly as the casual minus sign in-

dicates. The transformed series feature a small standard deviation and

very high kurtosis. All transformed series are fat tailed. The Jarque-Bera

statistic confirms that all series are non normal at the 99 percent confi-

dence level as indicated by the corresponding p-value which is uniformly

zero up to three significant digits. These features are common in finan-

cial time series.

Mnemonic Min Median SD Skewness Jarque-Bera

Max Mean Kurtosis p-value

FTSE100 -0.08849274 0.00 0.01 0.04 4585.59

0.09838771 -0.00 9.49 0.000

DAXINDX -0.08492269 0.00 0.02 0.21 2496.79

0.1140195 0.00 7.77 0.000

FRCAC40 -0.09036819 0.00 0.02 0.20 3292.27

0.1117617 -0.00 8.49 0.000

FTSEMIB -0.08238858 0.00 0.01 0.11 4577.44

0.114905 -0.00 9.49 0.000

DJES50I -0.07879843 0.00 0.02 0.16 2481.17

0.1100186 -0.00 7.77 0.000

SPCOMP -0.0903498 0.00 0.01 0.12 7271.25

0.1158004 -0.00 11.17 0.000

NASA100 -0.1051949 0.00 0.02 0.46 2951.31

0.187714 0.00 8.13 0.000

JAPDOWA -0.1140637 0.00 0.02 -0.10 5350.46

0.141503 -0.00 10.01 0.000

KORCOMP -0.1201879 0.00 0.02 -0.32 1792.19

0.1194567 0.00 7.01 0.000

Continued on next page
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Mnemonic Min Median SD Skewness Jarque-Bera

Max Mean Kurtosis p-value

BBGBP12 -0.1905788 -0.00 0.01 -4.86 1648238.73

0.057722 -0.00 125.75 0.000

ECEUR3M -0.14 0.00 0.01 0.21 179864.60

0.1627907 -0.00 43.67 0.000

UKyc -0.6134 -0.00 0.07 2.21 224631.98

1.2751 0.00 48.24 0.000

GERyc -0.3781 -0.00 0.05 0.24 2029.41

0.3672 0.00 7.29 0.000

FRyc -0.4209 -0.00 0.05 0.08 2795.06

0.3602 0.00 8.07 0.000

ITyc -0.3926 -0.00 0.05 0.51 2888.93

0.3667 0.00 8.05 0.000

USyc -0.7181 -0.00 0.08 0.19 15501.22

0.7939 0.00 14.94 0.000

JAPyc -0.3688 0.00 0.04 0.05 6344.93

0.2904 -0.00 10.64 0.000

USDOLLR -0.03842446 0.00 0.01 0.00 3145.20

0.04579271 0.00 8.38 0.000

SWISFUS -0.02848304 0.00 0.01 0.22 346.90

0.04322024 0.00 4.73 0.000

USEURSP -0.03770979 0.00 0.01 0.28 1188.70

0.04729214 0.00 6.26 0.000

JAPAYEUSD -0.04505151 0.00 0.01 -0.55 1465.73

0.02567126 -0.00 6.51 0.000

GOLDBLN -0.06894229 0.00 0.01 0.08 3353.14

0.07661333 0.00 8.55 0.000

OILBREN -0.1274272 0.00 0.02 0.11 707.16

0.1445876 0.00 5.54 0.000

NYFECRB -0.05728754 0.00 0.01 -0.32 2448.47

0.05152885 0.00 7.70 0.000

BALTICF -0.1126648 0.00 0.02 0.21 15114.31

0.1463415 0.00 14.78 0.000
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Figure 4.7: The FTSE 100 equity index returns from July 1999 to July 2009 and

corresponding distribution.
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Figure 4.8: The UK yield curve daily differences and corresponding distribution.
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Figure 4.9: The GBP|USD exchange rate returns (Datastream USDOLLR), and distri-

bution.
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Figure 4.10: The Gold Bullion daily returns and distribution.
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4.5.4 Stationarity and Autocorrelation Analysis

One analyzes whether the transformed series are stationary. I.e., one answers the

question, if one can reasonably assume the probability distribution to be constant

over time. Especially one wants to know, if mean and variance are unchanged.

The augmented Dickey-Fuller (ADF) statistic, tests for the presence of a unit root,

see [121]. The ADF statistic is a number smaller than zero. The smaller it is,

the less likely the time series is to have a unit root. A unit root series is non-

stationary. Therefore, if one can reject the hypothesis of a unit root one has a

stationary process. Similarly the Phillips-Perron test is used to test for stationarity,

see [267]. Table 4.9 on the next page shows that all return series are stationary at

the 99 % significance level for both tests. One requires stationarity, especially for

training of neural networks, to avoid having to move the weights all together in one

direction during training.

Additionally one is interested in discovering autocorrelation in the data. Auto-

correlation signifies that lags of the time series are correlated with one another.

Periodic signals are, e.g., strongly autocorrelated. For the present analysis one is

interested in autocorrelation because one can hope that the model will exploit it.

The advantage of having a model with a memory is that it can — in principle —

reproduce almost every kind of periodic signal. One analyzes two kinds of autocor-

relation:

• standard autocorrelation, or acf, which measures correlation between lags rt
and rt−n.

• partial autocorrelation, or pacf, which measures correlation between lags rt
and rt−n, but additionally removes all correlation for lags in between, rt−1, . . . ,

rt−n+1.

Partial autocorrelation indicates the pure autocorrelation between two lags. The

Ljung-Box statistic provides a measure to test for autocorrelation, [230]. The higher

the resulting χ2 value the higher the probability that lags are indeed correlated.

The corresponding p-value indicates the probability that the lags are uncorrelated.

Table 4.10 on page 151 shows autocorrelation functions up to lag 10 and the corre-

sponding Ljung-Box statistic for every lag. One notices several effects:

• As a general rule both autocorrelations decrease with increasing lags. This

is quite intuitive: one expects older values to have less impact on today. An
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Table 4.9: Stationarity analysis for returns: all transformed return series are sta-

tionary. This is confirmed by both the augmented Dickey-Fuller (ADF)

test statistic and the Phillips-Perron (PP) test statistic at the 99 % signifi-

cance level. One therefore assumes that the distribution of returns does

not change over time for the sample in question. Mean and variance

are constant, a useful property, especially when using this data as basis

for neural network training. Most other statistical models also require

stationarity.

Mnemonic ADF p-value PP p-value

FTSE100 -14.51 0.010 -55.08 0.010
DAXINDX -13.66 0.010 -53.27 0.010
FRCAC40 -14.16 0.010 -54.00 0.010
FTSEMIB -13.17 0.010 -52.08 0.010
DJES50I -14.14 0.010 -53.98 0.010
SPCOMP -13.82 0.010 -56.52 0.010
NASA100 -12.89 0.010 -55.84 0.010
JAPDOWA -13.79 0.010 -51.94 0.010
KORCOMP -14.46 0.010 -50.23 0.010

BBGBP12 -10.15 0.010 -44.59 0.010
ECEUR3M -9.11 0.010 -69.35 0.010
UKyc -13.68 0.010 -58.84 0.010
GERyc -13.17 0.010 -54.00 0.010
FRyc -13.10 0.010 -56.06 0.010
ITyc -12.79 0.010 -53.65 0.010
USyc -11.52 0.010 -54.66 0.010
JAPyc -13.35 0.010 -59.54 0.010

USDOLLR -13.78 0.010 -47.98 0.010
SWISFUS -13.74 0.010 -54.53 0.010
USEURSP -13.36 0.010 -49.85 0.010
JAPAYEUSD -12.97 0.010 -51.98 0.010

GOLDBLN -14.35 0.010 -51.16 0.010
OILBREN -12.44 0.010 -51.81 0.010
NYFECRB -13.81 0.010 -50.28 0.010
BALTICF -9.14 0.010 -14.13 0.010
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exception is data which includes some kind of cycle. In this case there can be

some lags in the past which exhibit much higher autocorrelation than recent

lags. The only time series which shows such a feature is the Baltic Dry Index.

With pacf(7) = 0.12 being much higher than the surrounding pacf one finds

a week kind of cycling behavior.

• One cannot verify the hypothesis that the lags are uncorrelated. This is a

promising sign for future model building.

• Generally correlation is confirmed at the 99 percent confidence level. There

are however exceptions: FTSE MIB, Nikkei, Kospi, EUR|USD, Gold Bullion, oil,

and CRB index show high p-values, mostly for recent lags. Although they

never reach even the 95 percent confidence level for confirming a random

relation one should be aware that the inclusion of these lags in a purely au-

toregressive model might not be successful.

To summarize the analysis shows that the data is suitable for model building with

neural networks: it is stationary and the present autocorrelation should help during

the training phase.

Table 4.10: Autocorrelation analysis for the dataset. acf and pacf represent the ap-

propriately lagged autocorrelation and partial autocorrelation function.

The χ2 statistic and corresponding p-value result from the Ljung-Box

test. Low p-values indicate that the null hypothesis that the lags are

uncorrelated cannot be verified.

lag 1 2 3 4 5 6 7 8 9 10

FTSE100

acf -0.06 -0.06 -0.09 0.09 -0.06 -0.05 0.03 0.07 -0.01 -0.02

pacf -0.06 -0.06 -0.10 0.08 -0.06 -0.05 0.03 0.05 0.00 -0.01

χ2 10.55 20.13 41.70 64.74 75.08 80.98 82.92 94.82 94.98 96.22

p-val. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DAXINDX

acf -0.04 -0.01 -0.03 0.04 -0.05 -0.01 -0.00 0.03 -0.01 -0.01

pacf -0.04 -0.01 -0.03 0.04 -0.04 -0.02 -0.00 0.03 -0.01 -0.01

χ2 4.51 4.85 6.87 11.76 17.57 18.09 18.10 20.83 21.20 21.63

p-val. 0.03 0.09 0.08 0.02 0.00 0.01 0.01 0.01 0.01 0.02

Continued on next page
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lag 1 2 3 4 5 6 7 8 9 10

FRCAC40

acf -0.05 -0.04 -0.07 0.06 -0.07 -0.04 0.01 0.06 -0.04 -0.02

pacf -0.05 -0.04 -0.07 0.05 -0.07 -0.04 0.01 0.04 -0.03 -0.02

χ2 5.57 9.83 22.58 30.70 42.93 46.20 46.36 54.37 58.43 59.51

p-val. 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FTSEMIB

acf -0.02 -0.01 -0.03 0.12 -0.08 -0.01 0.00 0.08 -0.03 -0.01

pacf -0.02 -0.01 -0.03 0.11 -0.08 -0.01 0.01 0.06 -0.01 -0.01

χ2 1.18 1.41 4.29 38.93 56.52 56.76 56.78 73.52 76.41 76.74

p-val. 0.28 0.49 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DJES50I

acf -0.05 -0.03 -0.07 0.06 -0.06 -0.03 -0.00 0.06 -0.03 -0.01

pacf -0.05 -0.04 -0.07 0.06 -0.06 -0.04 -0.01 0.05 -0.03 -0.01

χ2 6.15 9.13 20.48 31.30 41.94 44.71 44.77 54.36 57.46 57.84

p-val. 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SPCOMP

acf -0.09 -0.07 0.03 -0.01 -0.03 -0.01 -0.03 0.04 -0.02 0.02

pacf -0.09 -0.08 0.01 -0.01 -0.03 -0.02 -0.04 0.03 -0.02 0.02

χ2 21.07 34.02 36.03 36.35 38.79 38.94 41.94 46.50 47.74 48.44

p-val. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NASA100

acf -0.08 -0.06 -0.01 0.00 -0.02 -0.01 0.02 0.01 -0.01 -0.00

pacf -0.08 -0.07 -0.02 -0.01 -0.03 -0.02 0.01 0.01 -0.01 -0.00

χ2 16.35 27.18 27.26 27.26 28.75 29.06 29.65 30.07 30.50 30.50

p-val. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

JAPDOWA

acf -0.01 -0.06 -0.03 0.01 0.02 -0.03 0.00 -0.01 -0.04 -0.01

pacf -0.01 -0.06 -0.04 0.01 0.01 -0.03 0.01 -0.01 -0.04 -0.01

χ2 0.45 8.85 12.03 12.31 13.23 16.05 16.09 16.26 19.83 19.93

p-val. 0.50 0.01 0.01 0.02 0.02 0.01 0.02 0.04 0.02 0.03

Continued on next page
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lag 1 2 3 4 5 6 7 8 9 10

KORCOMP

acf 0.02 -0.03 -0.00 -0.02 -0.03 -0.01 -0.02 0.01 -0.03 -0.00

pacf 0.02 -0.03 -0.00 -0.02 -0.03 -0.01 -0.02 0.01 -0.03 -0.00

χ2 0.77 2.66 2.70 3.31 5.44 5.61 6.25 6.55 8.32 8.32

p-val. 0.38 0.26 0.44 0.51 0.37 0.47 0.51 0.59 0.50 0.60

BBGBP12

acf 0.18 0.12 0.11 0.12 0.06 0.10 0.07 0.07 0.05 0.03

pacf 0.18 0.09 0.07 0.08 0.02 0.07 0.03 0.03 0.01 -0.01

χ2 88.91 126.80 155.63 191.50 201.84 227.67 241.96 254.86 261.51 264.12

p-val. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ECEUR3M

acf -0.34 0.18 -0.13 0.17 -0.02 0.10 -0.05 0.04 0.14 -0.01

pacf -0.34 0.08 -0.06 0.11 0.09 0.11 0.02 -0.00 0.17 0.06

χ2 293.73 379.30 424.32 497.21 497.88 526.29 533.07 536.67 587.83 588.04

p-val. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

UKyc

acf -0.14 -0.01 0.04 0.03 0.04 -0.03 0.00 0.01 -0.00 0.05

pacf -0.14 -0.03 0.03 0.04 0.05 -0.02 -0.01 0.01 0.00 0.05

χ2 54.70 54.90 58.23 60.13 63.76 66.71 66.72 67.19 67.19 73.92

p-val. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GERyc

acf -0.06 0.03 0.02 0.03 0.00 0.03 0.01 0.00 0.02 -0.05

pacf -0.06 0.03 0.02 0.03 0.01 0.03 0.02 0.00 0.02 -0.05

χ2 8.24 10.31 10.94 12.87 12.92 16.04 16.54 16.58 18.15 23.86

p-val. 0.00 0.01 0.01 0.01 0.02 0.01 0.02 0.03 0.03 0.01

FRyc

acf -0.10 0.02 0.02 0.01 -0.01 0.06 0.01 0.02 0.01 -0.05

pacf -0.10 0.01 0.02 0.02 -0.01 0.05 0.02 0.02 0.01 -0.05

χ2 23.71 24.94 25.90 26.36 26.94 35.45 35.84 36.67 37.03 42.64

p-val. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Continued on next page
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lag 1 2 3 4 5 6 7 8 9 10

ITyc

acf -0.05 0.04 0.01 0.03 0.01 0.03 0.00 0.02 0.02 -0.03

pacf -0.05 0.04 0.02 0.03 0.01 0.03 0.00 0.01 0.02 -0.03

χ2 5.99 10.10 10.44 12.84 12.92 15.84 15.84 16.44 17.31 19.61

p-val. 0.01 0.01 0.02 0.01 0.02 0.01 0.03 0.04 0.04 0.03

USyc

acf -0.08 -0.07 0.05 0.01 0.08 0.02 0.10 0.01 0.01 -0.01

pacf -0.08 -0.07 0.04 0.02 0.09 0.04 0.11 0.02 0.03 -0.02

χ2 15.05 26.66 32.17 32.64 49.56 50.99 75.76 75.90 76.48 76.74

p-val. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

JAPyc

acf -0.14 -0.02 -0.05 0.04 0.01 -0.00 -0.03 -0.01 -0.01 -0.04

pacf -0.14 -0.04 -0.06 0.03 0.02 0.00 -0.03 -0.02 -0.02 -0.05

χ2 51.44 52.69 60.03 65.09 65.46 65.46 68.01 68.25 68.82 72.37

p-val. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

USDOLLR

acf 0.06 0.00 -0.05 -0.00 -0.03 0.00 0.02 0.01 -0.03 -0.06

pacf 0.06 0.00 -0.05 0.00 -0.03 0.00 0.02 0.01 -0.03 -0.05

χ2 9.37 9.41 14.90 14.91 16.86 16.88 18.25 18.57 21.16 29.42

p-val. 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.02 0.01 0.00

SWISFUS

acf -0.07 0.01 -0.01 0.01 0.02 0.01 0.00 0.03 -0.03 0.02

pacf -0.07 0.00 -0.01 0.01 0.02 0.01 0.01 0.03 -0.03 0.02

χ2 11.86 11.98 12.50 12.63 13.48 13.84 13.89 16.02 18.66 19.72

p-val. 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.04 0.03 0.03

USEURSP

acf 0.02 -0.02 0.00 0.05 -0.01 -0.04 0.03 0.04 -0.04 -0.03

pacf 0.02 -0.02 0.00 0.05 -0.01 -0.04 0.03 0.04 -0.03 -0.02

χ2 1.44 2.35 2.38 7.90 8.24 13.00 15.28 20.05 23.26 25.06

p-val. 0.23 0.31 0.50 0.10 0.14 0.04 0.03 0.01 0.01 0.01

Continued on next page
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lag 1 2 3 4 5 6 7 8 9 10

JAPAYEUSD

acf -0.02 -0.02 -0.03 -0.00 0.00 -0.03 0.03 -0.01 0.02 0.01

pacf -0.02 -0.02 -0.03 -0.00 -0.00 -0.03 0.03 -0.01 0.02 0.01

χ2 0.78 1.53 3.59 3.59 3.59 5.23 8.03 8.32 9.15 9.40

p-val. 0.38 0.47 0.31 0.46 0.61 0.51 0.33 0.40 0.42 0.49

GOLDBLN

acf -0.00 0.01 0.01 0.03 0.04 -0.05 -0.03 0.00 -0.00 -0.02

pacf -0.00 0.01 0.01 0.03 0.04 -0.05 -0.03 0.00 -0.00 -0.02

χ2 0.02 0.44 1.00 2.72 6.31 11.99 14.11 14.15 14.19 15.54

p-val. 0.90 0.80 0.80 0.61 0.28 0.06 0.05 0.08 0.12 0.11

OILBREN

acf -0.01 0.00 0.02 0.02 -0.01 -0.05 0.03 -0.01 -0.01 0.02

pacf -0.01 0.00 0.02 0.02 -0.01 -0.05 0.03 -0.01 -0.01 0.02

χ2 0.58 0.59 2.13 3.00 3.12 8.62 11.62 11.72 12.13 12.81

p-val. 0.44 0.74 0.55 0.56 0.68 0.20 0.11 0.16 0.21 0.23

NYFECRB

acf 0.02 0.00 0.04 0.03 -0.03 -0.03 -0.04 0.01 0.01 0.00

pacf 0.02 0.00 0.04 0.02 -0.03 -0.03 -0.04 0.01 0.01 0.01

χ2 0.59 0.60 4.64 6.36 8.05 9.89 13.48 13.56 13.71 13.76

p-val. 0.44 0.74 0.20 0.17 0.15 0.13 0.06 0.09 0.13 0.18

BALTICF

acf 0.83 0.62 0.43 0.29 0.20 0.15 0.15 0.18 0.22 0.22

pacf 0.83 -0.25 0.00 -0.00 0.01 0.04 0.12 0.06 0.02 -0.01

χ2 1813.4 2806.3 3295.3 3522.8 3627.4 3684.9 3745.1 3834.5 3956.3 4086.1

p-val. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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4.6 Modeling Market Value at Risk

Value at risk is a crucial regulatory number. It influences the amount of capital a

financial institution has to keep as margin of safety against adverse movements in

the portfolio. Value at risk is typically used at the 99 percent confidence interval

and a 10 day time span. If accurate, the 99 percent 10 day VaR indicates which loss

will not be exceeded with a probability of 99 percent within the next 10 days, see

[188]. Value at risk is the most common risk measure among financial institutions,

traders and regulators alike, see also [278].

Here, the author will focus on finding a measure which tries to reproduce ac-

curately the real encountered risk — not some conservative value. Conservative

models like, e.g., historical simulation which the author will benchmark against,

are necessary in their own right to provide a margin of safety, not least to make

the regulator happy. Banks, however, are interested in the minimum value of the

portfolio that will likely occur during the next 10 days. Think about it: which kind

of model makes the most sense from the perspective of a financial institution in-

volved in investment or trading? Is it a model which obliges the institution to hold

exorbitant amount of risk capital in reserve? Or is it the model which adequately

represents the portfolio over the next ten days? — At the peril that the occasional

violation may occur.

From the latter point of view the story of modeling a realistic VaR boils down

to forecasting the lowest portfolio value within the next ten days. A multi step

forecast offers the additional advantage that one gets an impression of the portfolio

moves not just the worst expected value. Using an expert topology gives us not only

a single value or a single path for that matter but a distribution of values. One can

therefore peek above the threshold, say 95 or 99 percent, and see how bad things

might really get. This alleviates one of the deficiencies of standard VaR. It only

answers the question: what will most likely not happen to the portfolio within the

next ten days. It does not however answer the question: if the worst happens,

how bad will it be? Note that this issue is addressed by conditional VaR, see [188].

However, simple VaR remains the most observed measure.

As one is training neural networks on historical data one will use historical sim-

ulation as benchmark. Historical simulation is a very simple yet often used and

conservative way of estimating regulatory VaR, see [188]. It works as follows:

• Decide for a look back period l, here l = 440 days.
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• Compute daily returns.

• For every day compute the forward worst 10 day returns.

• Order these returns by magnitude. Keep in mind: the best possible worst

return is 100 percent of portfolio value as the present day is included in the

computation.

• Take an appropriate percentile of the 10 day returns, e.g., the return at the

worst 1 percent for a 99 percent VaR.

A simple and intuitive measure to compare value at risk models is the sum of

squared deviations SSD from the forecasted value. This gives us an appreciation

of how close one estimates the minimal value of the portfolio. From a regulatory

point of view one might be tempted to only penalize violations of the VaR by the

portfolio. However, one wants a measure of how closely the worst portfolio is

modeled. If one assumes too low a value this costs a financial institution money in

lost opportunities. It makes sense to choose a symmetric measure.

In the following the author presents a detailed analysis of modeled market VaR

for three assets: FTSE 100, GBP|USD exchange rate and Gold Bullion. This time the

author omits the UK yield curve because one would have to construct a derived

portfolio measuring the effect of yield curve changes. This could be realized, e.g.,

with a swap. However it would unnecessarily complicate the exposure without

adding something substantially important.

First look at the distributions of worst returns from the expert topology. These

are shown on figures 4.11 on page 161 for the FTSE 100 index, figure 4.12 for

GBP|USD exchange rate and figure 4.13 for the Gold Bullion. The figures show fore-

casted worst asset values for a time span of 10 days. The asset prices are rebased at

1.0 every day to allow comparisons. Obviously, the worst portfolio value can never

be greater than 1.0, as one always include the present day in the computation: even

if the portfolio rises continually during the next ten days the worst value is still 1.0.

For every day the forecasts are reordered so that the worst is at position 1 and the

best at position 300. Remember, one has an expert topology with 300 committee

members. The three figures give us a feeling for the forecasts:

• The forecasted worst values are different among the assets under consider-

ation: e.g., the GBP|USD exchange rate is forecasted to have better portfolio
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values over 10 days than the other assets. The Gold Bullion on the other hand

is forecasted to be more volatile.

• The worst forecasts are clustered in a small area of the tail of the distribution.

This indicates that it is not appropriate to simply take the average of the

forecasts. It is better to choose an appropriate percentile. In the following the

author will use 1 percent, i.e., the author will discard the worst 3 networks of

300 networks.

• The forecasts are very irregular. It is advisable to smooth them. The analysis

will also consider forecasts smoothed by the look forward period, i.e., a 10

day simple moving average.

FTSE 100 Index The author starts with an analysis of VaR for the short time span

of 110 days. That is one quarter of the training and validation data and the

typical validity period of a quantitative model. Figure 4.14 on page 162 shows

the result for the FTSE 100 Index. The author explains this figure in detail as it

is complex. The target is the bold blue line. This is an a posteriori calculation

of the worst return that indeed occurred in the following 10 days. Deviations

are measured against this target. Then one has the red line which shows the

suggested expected portfolio worst return obtained by historical simulation

over the past 440 days. This is the benchmark one tries to beat. Every VaR

forecast that is closer to the realized values is considered better.

One notes that historical VaR stays almost constant during the whole time

span of 110 days. A more flexible model should therefore be able to improve

on this. The green line shows the forecasted VaR by taking the appropriate

lowest percentile of all networks as described above. One sees that it roughly

follows the target and is generally closer to it than historical VaR. However, as

already mentioned the forecast is very jigged. The purple line is a smoothed

version of the forecast and exhibits a nicer behavior. Especially, one avoids

violations which occur using only the pure forecast but which do not occur

with historical VaR.

From table 4.11 on page 167 one gathers that the deviation of smoothed VaR

from the target is only about 77 percent of historical VaR. Figure 4.17 on

page 164 shows the development of the cumulated squared deviations. At

the beginning the values move closely together with historical VaR being even

a little bit better. Around day 520 the lines decidedly separate and historical
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VaR gets worse. Although the smoothed forecast looks better the difference

compared to the pure forecast is not very important: both still move together.

This is also reflected in figure 4.20 on page 165 which shows the mean SSD.

Interestingly the model manages to beat historical VaR over the prolonged

time span of more than 8 years, see table 4.11.

US Dollar to Great British Pound Figure 4.15 on page 163 shows VaR for GBP|USD

exchange rate. One notes that VaR is mostly confined to a small band of less

than 2 percent. Or, equivalently, the worst portfolio value stays above a nor-

malized value of 0.98. During this time the forecast and the smoothed version

manages well to model VaR and delivers closer estimates than historical VaR.

On day 587 however, the forecast and smoothed model cause a small vio-

lation. Historical VaR on the other hand produces no violation. As one is

considering a 99 percent confidence interval one is not surprised to find one

violation in a time span of 110 days. Figure 4.18 on page 164 shows how well

the smoothed forecast actually performs in terms of accuracy.

During the entire time span the smoothed forecasted VaR models the realized

VaR more closely than historical VaR. Whereas the simple forecasts perform

worse at the beginning until day 480 one sees that from that day on the ac-

curacy gap between historical VaR on the one hand and forecasted VaR on

the other hand widens considerably. The forecasts are able to better adapt

to the smaller range of the GBP|USD exchange rate which begins on day 495.

Figure 4.21 on page 166 confirms the findings: the mean deviation is signifi-

cantly smaller for both forecast models. Table 4.11 shows that the mean SSD
for the smoothed model is only

0.00070
0.00107

= 0.65

or 65 percent of the historical simulation. For the entire time span of more

than 8 years one gets a ratio of 71 percent.

Gold Bullion Figure 4.16 on page 163 compares the respective VaR. Almost always

the smoothed forecast models VaR more accurately than historical simulation.

One notes however two violations. The first right at the beginning, the second

around day 482. One sees that historical VaR acts almost like a resistance for

the smoothed forecast which manages to adapt accurately to the less volatile

period starting around day 490.
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Figures 4.19 on page 165 and 4.22 on page 166 show impressively how well

the forecasts work. For the smoothed version one even has only 44 percent de-

viation compared to historical VaR. Interestingly, the model even manages to

improve this ratio to 31 percent for the 8 year period. The Gold Bullion chart,

figure 4.5 on page 138, shows the cause for this improvement. The gold price

spikes in the first half of 2006 and then has a very volatile period starting in

mid 2007. This marks the beginning of the credit crisis. Such volatile peri-

ods are the times where the forecasts really shine. Historical VaR produces

über-conservative estimations then. However, one might be tempted to fur-

ther optimize smoothing period and percentile of the distribution to avoid

violations in the forecast model. This is not the scope of the analysis.

The analysis shows that an expert topology of shared layer perceptrons is capable

of beating the benchmark VaR. The smoothed version of the forecast manages to

do this always for the time span of 110 days. But even when considering the

prolonged out of sample time span of more than 8 years table 4.11 on page 167

shows that the smoothed forecast performs worse than historical VaR only in 5 out

of 17 cases. In all other cases the forecast is often considerably better.

Consider also that no additional optimization has been conducted. E.g., one

might optimize the smoothing period or the percentile over the validation data.

Doing this independently for each asset might considerably improve forecasts for

individual assets. However, this is beyond the scope of the present work and would

be against the spirit of a coherent market forecast: The author prefers to use a

model which demonstrably works well for all assets without curve fitting to a spe-

cific one. In quantitative asset management there are, of course, good reasons to

do just that. One then needs to recalibrate the parameters often. Compared to a

forecast using a single multi layer perceptron — or any model which offers just one

number — key benefits of the presented method are:

• The multi step forecasts offers a complete view on portfolio value path.

• A single model is used for different confidence levels. Once the expert topol-

ogy is trained one gets every percentile of the distribution for free: just choose

the point in the distribution that happens to be suitable.

• A single model is used for all assets. If it works simultaneously over a broad

range of assets one will be more confident to use it. The shared layer percep-

tron works well for all inputs by design.
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Figure 4.11: Worst 10 day returns for the FTSE 100, distribution of expert topology.
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Figure 4.12: Worst 10 day returns for the GBP|USD exchange rate, distribution of

expert topology.
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Figure 4.13: Worst 10 day returns for the Gold Bullion, distribution of expert topol-

ogy.
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Figure 4.14: Comparison of historical, forecasted and smoothed forecasted VaR for

the FTSE 100.
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Figure 4.15: Comparison of historical, forecasted and smoothed forecasted VaR for

the GBP|USD exchange rate.
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Figure 4.16: Comparison of historical, forecasted and smoothed forecasted VaR for

the Gold Bullion.
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Figure 4.17: Sum of Squared Deviations: Comparison of historical, forecasted and

smoothed forecasted VaR for the FTSE 100.
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Figure 4.18: Sum of Squared Deviations: Comparison of historical, forecasted and

smoothed forecasted VaR for the GBP|USD exchange rate.
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Figure 4.19: Sum of Squared Deviations: Comparison of historical, forecasted and

smoothed forecasted VaR for the Gold Bullion.
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Figure 4.20: Mean Sum of Squared Deviations: Comparison of historical, forecasted

and smoothed forecasted VaR for the FTSE 100.
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Figure 4.21: Mean Sum of Squared Deviations: Comparison of historical, forecasted

and smoothed forecasted VaR for the GBP|USD exchange rate.
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Figure 4.22: Mean Sum of Squared Deviations: Comparison of historical, forecasted

and smoothed forecasted VaR for the Gold Bullion.
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Mnemonic time SSD mean SSD
hist fc smooth hist fc smooth

FTSE100 110 days 0.414 0.336 0.318 0.00376 0.00305 0.00289
8 years 17.546 9.053 8.083 0.00817 0.00421 0.00376

DAXINDX 110 days 0.594 0.550 0.473 0.00540 0.00500 0.00430
8 years 30.215 13.089 11.733 0.01407 0.00609 0.00546

FRCAC40 110 days 0.389 0.420 0.352 0.00354 0.00382 0.00320
8 years 23.680 10.487 9.030 0.01102 0.00488 0.00420

FTSEMIB 110 days 0.446 0.463 0.398 0.00405 0.00421 0.00361
8 years 26.245 12.943 11.586 0.01222 0.00603 0.00539

DJES50I 110 days 0.362 0.104 0.081 0.00329 0.00095 0.00073
8 years 24.213 3.784 3.084 0.01127 0.00176 0.00144

SPCOMP 110 days 0.645 0.544 0.520 0.00586 0.00495 0.00473
8 years 14.941 12.158 10.988 0.00696 0.00566 0.00512

NASA100 110 days 3.210 2.241 2.217 0.02919 0.02038 0.02015
8 years 25.722 75.732 70.908 0.01198 0.03526 0.03301

JAPDOWA 110 days 0.674 0.064 0.084 0.00613 0.00058 0.00076
8 years 21.521 4.299 3.619 0.01002 0.00200 0.00168

KORCOMP 110 days 2.018 1.744 1.664 0.01835 0.01586 0.01513
8 years 29.087 61.269 56.884 0.01354 0.02852 0.02648

USDOLLR 110 days 0.118 0.083 0.077 0.00107 0.00076 0.00070
8 years 2.871 2.251 2.046 0.00134 0.00105 0.00095

SWISFUS 110 days 0.131 0.032 0.027 0.00119 0.00029 0.00024
8 years 2.192 1.026 0.825 0.00102 0.00048 0.00038

USEURSP 110 days 0.176 0.174 0.156 0.00160 0.00158 0.00142
8 years 2.723 5.642 5.163 0.00127 0.00263 0.00240

JAPAYEUSD 110 days 0.118 0.120 0.102 0.00108 0.00109 0.00093
8 years 3.184 4.694 4.281 0.00148 0.00219 0.00199

GOLDBLN 110 days 0.409 0.202 0.180 0.00372 0.00184 0.00163
8 years 10.690 3.927 3.321 0.00498 0.00183 0.00155

OILBREN 110 days 3.776 2.700 2.359 0.03433 0.02455 0.02145
8 years 55.391 67.252 62.115 0.02579 0.03131 0.02892

NYFECRB 110 days 0.160 0.131 0.124 0.00145 0.00119 0.00112
8 years 6.570 3.226 2.947 0.00306 0.00150 0.00137

BALTICF 110 days 0.439 0.170 0.159 0.00399 0.00155 0.00145
8 years 79.787 9.257 8.629 0.03715 0.00431 0.00402

Table 4.11: VaR benchmark measures. Note that the smoothed forecast is always

better than the historical simulation on 110 days. Forecasts that are

worse than historical simulation are highlighted in red.

Legend: hist = historical, fc = forecasted, smooth = smoothed
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4.7 Purchasing and Transaction Decision Support

In this example one will look at a typical situation of a corporate treasurer: on an

ongoing basis some kind of transaction has to be conducted. This may be a regular

monthly investment in equities for a pension plan or a fixed income placement. It

might be a regular foreign exchange transaction to pay monthly costs in another

currency. Or it could be the monthly supply of some commodity, like, e.g., fuel or

metal.

Common to all these cases is that the treasurer has to choose an appropriate

time for the transaction. This is, of course, the day on which the price is the most

favorable. One wants to buy equities, foreign currencies and commodities at the

lowest price within some time frame. And one also wants to place the money at the

highest available long term rate. Here, a multi step forecast proves useful, because

it gives us an idea of probable price movements.

In the following the author looks at a 20-day ahead multi step forecast for differ-

ent assets. The benchmark to evaluate market timing is the realized potential, RP .

RP is a number between 0 and 1, where 0 indicates that the transaction takes place

at the worst possible moment. RP = 1 indicates a perfect fit, i.e., one gets the best

possible price. To simplify further analysis the author will now assume that one

is on the buy side and best is equal to lowest. Then one define the 20-day ahead

realized potential at time t of a transaction as

RPt(20) := 1− prealized
t − pmin

t (20)
pmax
t (20)− pmin

t (20)
. (4.3)

pmax
t (20) and pmin

t (20) represent the maximum and minimum prices in the 20-day

ahead window starting at time t. prealized
t is the price realized when following the

forecast at time t. Please note, that prealized
t is not the forecasted price but the actual

price at which it would have been possible to trade. Indeed, there is no obligation

for the price to follow the forecast.

The author compares RP from the 20-day ahead forecast with RP resulting from

buying on a fixed day in the month, i.e., buying always on the 1st, or on the 15th,

and so on. For the analysis the author allows for a 440 day learning window, con-

taining training and validation data.

One then uses the resulting neural network ensemble to make a 20-day ahead

forecast and evaluate RP . Then one updates the network with new data from the
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day and move one time step forward, forecast, evaluate RP and so on. This is a

forecast with a 20-day rolling window.

To illustrate how the forecast works the author will have a look at two typical

examples. As the dataset comprises 25 assets with 2609 days this makes an aston-

ishing number of 25·2609 = 65225 possible forecasts. The author chooses the two

examples, because they are graphically especially appealing. First, have a look at

figure 4.23 on page 171 which shows a forecast for the Baltic Exchange Dry Index.

The forecast starts at day 441, which is the first day on which the expert topology

of neural networks has not been trained. Then, for the next 20 days until day 461,

one gets level forecasts.

These level forecasts have been computed by a back transformation of the return

forecasts. All forecasts are rebased at 1 to facilitate comparisons between different

forecasts. The first observation for the BDI is that the networks follow the general

tendency of the realized values. I.e., they first indicate prices to go down, then stay

flat for several days and finally go up again slightly.

This has been forecasted without ever «seeing» the values between t = 442 and

t = 461. If one wanted to buy dry bulk shipping capacity within the next 20 days:

which would be the best day? Clearly, it is t = 448 where the BDI hits its low at

1423 points. The neural networks suggests a buy at t = 456 or 1428 points. Let

the author emphasize important points:

• The neural networks avoid the high values at the beginning of the period

under consideration.

• The suggested buy point is not very time sensitive: it is a good timing whether

one buys one day earlier or later.

• The neural networks avoid the price rise at the end of the investigated period.

For market timing this is very important.

Using concrete values for the BDI one has a high, pmax
441 (20) = 1505 points, right

at the beginning of the period. The low occurs at t = 448 with pmin
441(20) = 1423

points. One buys at prealized
441 = 1428 points. The realized potential for the BDI using

equation 4.3 is therefore

RP441(20) := 1− prealized
441 − pmin

441(20)
pmax

441 (20)− pmin
441(20)

= 1− 1428− 1423
1505− 1423

= 0.94.

This means that one achieved 94 percent of the best possible price.
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Figure 4.24 on page 172 shows the typical case of a forecast. One starts at t = 451

and forecast the price of the Gold Bullion for the next 20 days, i.e., until t = 471. In

this case the networks suggest a buy at t = 456 which is actually not the absolute

low but still close to it. One sees what happens, when the networks overshoot at

the beginning of the forecast, here in the direction of low values: as the forecasts

are based on returns rather than levels, small errors at the beginning tend to skew

subsequent values.

This is a phenomenon only observeable in true multi step forecasts. In the

present case the networks tend to exaggerate the low and only get the trend right

again in the following. And this is substantial: a corporate treasurer basing his

decision on the expert topology would still get a feel for where the gold price is

headed, even without having an exact level forecast.

The treasurer would see that it makes sense to buy in 3 to 6 days time, because

the gold price is expected to decrease. She would see that the exact timing decision

is not very time sensitive, because the gold price should stay flat for some time —

and it does. But she would also note, that the gold price will rise at the end of the

period — and this is indeed what happens. One gets RP as

RP451(20) := 1− prealized
451 − pmin

451(20)
pmax

451 (20)− pmin
451(20)

= 1− 258.30− 257.05
264.85− 257.05

= 0.84.

One realizes 84 percent of the high-low span over 20 days.

The exemplary above results look promising. Two questions remain however

which the author wants to address in the following:

• Do the forecasts outperform the benchmark? I.e., do the forecasts beat the

typical strategy of a corporate treasurer whose primary goal is not to predict

the financial markets. Or would a simple strategy of buying always at the

same day in a four week cycle perform better? The latter strategy is currently

often implemented.

• Are the results consistent over time and over all assets? Or does the model

«age» and looses forecasting power? Do certain assets or certain type of asset

classes perform better?

To answer the first question one looks at a near term forecast over the next 110

days and calculate the excess realized potential. I.e., one compares the realized

potential of the neural networks with the strategy of buying always at some fixed
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Figure 4.23: An almost ideal example of a 20-day forecast for the Baltic Dry Index.

Realized values in blue, forecast in red. Additionally the gray lines

show forecasts of all different networks. Note, how the networks gets

the general tendency right: first down, then flat, then rising again a

little bit. It also suggests a «buy» at a very sensible low point although

the actual value of the low is not quite hit. Keep in mind, that this is

a genuine 20-day ahead forecast: the network runs freely for 20 time

steps without input of realized data. To allow comparisons with other

forecasts the values are rebased at 1.

day in a four weeks — or 20 days — cycle. Formally one define the excess realized

potential as

ERP = RPneural − RPfixed day (4.4)

with RP from the two respective strategies. ERP is a value in the range [−1 . . .1].
−1 signals that the simple strategy was perfect but the neural network suggested to

buy at the high — the worst possible case. 1 signals the inverse: the simple strategy

performed worst and the neural network hit the low exactly. Clearly, one expects

ERP > 0 for the forecasts to offer any added value. If one consistently had ERP < 0

one would be better off not using the forecasts. To get a performance measure for
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Figure 4.24: Forecast for the Gold Bullion showing a typical case. The network

misses out on the absolute minimum but the suggested buying point

on day 456 is not bad at all, considering that the Gold price continues

to rise afterwards. Again, one notes that the network appropriately

gets the general tendency right, but an overshooting in the first four

days causes the values to be skewed. Realized values in blue, forecast

in red. The gray lines show forecasts of all different networks.

different time spans one calculate the cumulated excess realized potential as

cERP =
tmax∑
t=tmin

ERPt (4.5)

where tmin, tmax represent the time span of interest.

The results are shown in figure 4.25 on the facing page. To interpret this figure

one should first consider that in every case cERP is positive. I.e., for near term

forecasts the model always performs better than any fixed day strategy. This is

true for every asset.

One also note that there are fixed days, mostly in the range 12–18, which show

only relatively low cERP . A detailed analysis of this effect is beyond the scope of

the present work. Suffice it to say that an optimized fixed day strategy can be a hard
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Figure 4.25: Cumulated yearly excess realized potential for a typical time span of

110 days and different fixed day strategies. This map is intended as

overview, only. Please find the exact numbers in table 4.12 on the

following page. Note, that for every asset and every day of the month

the excess realized potential is positive. I.e., the forecasts add value

consistently. See also figure 4.30 on page 184 for a comparison to an

8 year forecast.

benchmark to beat. This is already recognized by [153]. Because of, e.g., futures

expiry certain days of a week and of a month will consistently exhibit certain return

patterns. Conveniently optimized a strategy might simply exploit this although one

can doubt if the pattern will really be persistent. Obvious patterns are generally

exploited rapidly by arbitrageurs.

Table 4.12 on the next page allows a detailed analysis of cERP for the 110 day

time span. One especially notes that even assets which are linearly relatively un-

correlated to the others feature significant cERP : Nikkei, Kospi, the Japanese yield

curve, and the USD|JPY exchange rate are all not worse than other assets. One notes

a general tendency for low and high cERP to cluster. I.e., one does not have high

cERP followed by low cERP and so on but mostly similar cERP next to each other.

The author will look at this in more detail below.
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Table 4.12: Realized excess potential compared to different fixed day strategies for

a typical model validity time stretch, here one quarter of training and

validation data, i.e., 110 days. Note, that the realized excess potential is

always positive. This means that for every asset and every possible day

of the month strategy the neural network adds economic value. One is

better off using the forecast.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

FTSE100

52.30 50.11 47.99 46.06 44.43 42.75 41.00 39.31 37.84 36.35

34.99 33.37 31.82 30.21 28.73 27.24 25.88 24.47 23.05 54.77

DAXINDX

50.47 48.02 45.88 43.95 42.30 40.70 39.13 37.54 36.07 34.54

32.98 31.27 29.72 28.30 26.83 25.42 24.18 22.88 21.50 53.33

FRCAC40

56.91 53.92 51.04 48.61 46.22 43.96 41.73 39.71 37.82 35.91

34.09 32.05 30.09 28.23 26.47 24.84 23.32 21.69 20.06 60.34

FTSEMIB

58.57 56.28 54.29 52.42 50.72 48.90 46.97 45.09 43.54 41.89

40.27 38.55 36.95 35.49 34.10 32.68 31.45 30.01 28.42 60.82

DJES50I

58.29 55.43 52.75 50.35 48.23 46.21 44.19 42.21 40.34 38.50

36.68 34.57 32.63 30.74 28.91 27.09 25.26 23.34 21.35 61.46

SPCOMP

56.17 54.05 52.29 50.77 49.39 47.94 46.51 45.07 43.67 42.11

40.57 39.00 37.55 35.99 34.44 32.93 31.48 29.98 28.44 58.42

NASA100

57.09 54.81 52.77 50.89 49.25 47.50 45.59 43.68 41.72 39.83

38.02 36.10 34.32 32.58 30.86 29.13 27.36 25.73 24.01 59.58

JAPDOWA

57.96 55.48 53.25 51.07 48.77 46.54 44.37 42.22 40.30 38.51

36.57 34.63 32.75 30.87 28.90 26.88 24.92 22.97 21.06 60.74

Continued on next page
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1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

KORCOMP

54.10 52.64 51.17 49.56 48.33 47.01 45.73 44.43 43.09 41.58

40.25 39.03 37.92 36.78 35.59 34.42 33.30 32.14 31.18 55.76

BBGBP12

68.45 64.91 61.57 58.58 55.71 52.81 49.89 46.96 44.04 40.96

37.93 35.12 32.48 29.78 27.10 24.47 21.75 18.94 16.14 72.13

ECEUR3M

41.22 41.09 40.85 40.72 40.55 40.33 40.08 39.74 39.22 38.59

37.69 37.10 36.50 36.10 35.84 35.58 35.19 34.69 34.29 41.06

UKyc

40.05 40.49 40.84 41.45 41.84 42.52 43.21 43.73 44.21 44.86

45.54 46.25 46.83 47.24 47.79 48.53 49.51 50.46 51.33 39.60

GERyc

48.58 47.01 45.67 44.52 43.24 42.09 40.80 39.59 38.50 37.67

36.68 35.87 35.09 34.37 33.56 32.54 31.80 31.19 30.78 50.29

FRyc

45.55 44.36 43.20 42.26 41.12 40.02 38.82 37.72 36.54 35.51

34.51 33.70 32.97 32.14 31.35 30.47 29.82 29.14 28.79 46.91

ITyc

40.97 39.60 38.47 37.39 36.22 35.11 34.16 33.03 32.23 31.45

30.65 29.98 29.29 28.74 28.17 27.69 27.30 26.98 26.61 42.61

USyc

34.62 34.67 34.78 34.98 35.27 35.35 35.56 35.92 36.57 37.03

37.56 38.10 38.56 39.06 39.61 40.35 41.25 42.21 43.17 34.88

JAPyc

51.78 49.85 48.58 47.13 45.60 43.96 42.27 40.64 38.86 37.02

35.12 33.32 31.83 30.10 28.62 26.83 25.06 23.40 21.70 53.58

USDOLLR

47.29 45.31 43.48 41.86 40.28 38.62 37.07 35.50 33.98 32.42

31.07 29.83 28.72 27.64 26.45 25.41 24.33 23.24 21.82 49.52

Continued on next page
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1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

SWISFUS

51.61 48.95 46.46 44.09 41.98 40.06 38.25 36.58 34.95 33.51

32.25 31.12 29.77 28.21 26.80 25.27 23.77 22.35 21.04 54.91

USEURSP

51.51 49.48 47.55 45.80 44.39 43.06 41.77 40.68 39.60 38.50

37.53 36.47 35.36 34.06 32.82 31.40 29.93 28.51 27.31 53.92

JAPAYEUSD

28.93 29.03 29.37 29.73 30.13 30.58 30.87 31.49 32.02 32.38

32.89 33.55 34.32 35.30 36.19 37.28 38.42 39.59 40.84 28.93

GOLDBLN

40.62 39.08 37.91 36.66 35.56 34.50 33.61 32.61 31.74 30.89

30.41 29.75 29.38 29.07 28.75 28.44 27.94 27.26 26.64 42.53

OILBREN

36.18 34.69 33.46 32.48 31.78 31.08 30.54 30.17 30.14 30.06

30.25 30.48 30.58 30.64 30.89 30.99 31.20 31.21 31.26 38.03

NYFECRB

48.32 46.30 44.66 43.03 41.51 40.09 38.58 37.00 35.40 34.00

32.65 31.49 30.50 29.53 28.59 27.75 26.68 25.54 24.39 50.74

BALTICF

50.64 48.30 46.58 45.19 44.00 42.88 41.80 40.73 39.67 38.64

37.66 36.70 35.81 34.98 34.21 33.45 32.63 31.74 30.90 53.87

The author now addresses the second question of robustness and model consis-

tency over time. For this the author first has a detailed look at four selected assets

from every category:

FTSE 100 Index Figure 4.26 on page 180 shows the cumulative excess realized po-

tential for the index. The figure covers a time span of more than eight years

into the future during which the model is not retrained. One notes that at

the beginning of the forecast, starting with day 441, the cERP monotonically

increases for every fixed day strategy. This is, of course, consistent with the

previous analysis which showed very good results for a 110 day time span.

The more one advances into the future, however, the more mixed the results

get: for fixed day strategies on days 1–10 the results stay positive. On other
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fixed days one periodically notes negative cERP . This indicates that up to

this point in time, e.g., the valley around day 1000, a fixed day strategy would

have performed better. Periods where the cERP rises again follow. Interest-

ingly one sees that towards the end of the period under investigation there is a

general tendency for cERP to rise again. To understand this phenomenon one

looks back at the FTSE 100 level series chart, figure 4.2 on page 135. one notes

that the training and validation period comprises the end of the bull market

and beginning bear market in 1999–2001. Viewed altogether one would qual-

ify the training and validation period as sideways market where there is no

clear tendency in the returns: positive and negative returns alternate.

This is comparable to the situation at the end of the out-of-sample period

2008–2009. One notices a bottom forming in the prolonged bear period at

the beginning of 2009 and then a moderate rise again. But the prices seem

to move in the range between 3500 and 4500 points. This is about the same

range as the prices at the beginning of the training, between 6000 and 7000

points. It is comforting to see that the networks manage to remember these

situations. However, the networks seem to have problems with trending mar-

kets. This is especially noticeable when one considers the bear period of

2001–2003. During that period, a consistent downtrend, it would almost al-

ways have been better to buy as late as possible, because prices were falling.

One clearly sees the downward bump that ensues for cERP .

Lastly, one notes an overall good cERP for fixed day strategies at day 20. It

would be very interesting to analyze this effect in more detail. As a prelimi-

nary hypothesis one can attribute this to the fact that day 20 corresponds to

the end of the month. Generally, at the end, of the month several transactions

occur, e.g., from institutional or government investors which are not necessar-

ily related to some economic reason. In the case of institutionals there is often

some kind of window-dressing going on. In the case of governments, transac-

tions are sometimes deliberately announced to stabilize markets. If any, one

may draw the conclusion, that a fixed day strategy at the end of the month

is unattractive compared to the neural network. [153] offers more insights

related to fixed day effects.

Detailed cERP numbers for the entire forecasting period are shown in ta-

ble 4.13 on page 185. One sees in the table that the worst cERP is at −26.02

whereas the best is realized at 134.39. This result is very satisfying, as one
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would have incurred a small performance penalty in only six cases. But in the

other fourteen cases one observes significant gains.

UK yield curve cERP values for the yield curve are on figure 4.27 on page 181.

One see that at any given day the cERP stays positive. One still sees the effect

of a strong increase at the beginning of the forecasting period, indicating a

well adapted model. Overall the cERP increases almost monotonically, with

the same tendency of lower cERP towards the end of the month. An expla-

nation for the very good performance of the neural network is, that the UK

gilt market is not perceived as being very efficient. This holds true for most

government bond markets, see [333]. As already mentioned, government enti-

ties will not have trading revenues as their primary objective when interacting

with their bond market. This gives quantitative models a certain edge which

the neural network is capable to capture.

What is the economic value in finding a low point in the yield curve? One

recalls that a low point in the yield curve signifies that long term interest

rates are relatively low compared to short term interest rates. Be careful: the

long term rate does not have to be lower than the short term rate. It can be,

though. In any case a low point is an attractive time for borrowing long term

funds and simultaneously lending short term funds. A corporate treasurer

with the duty to ensure long term funding for a company on an ongoing basis

should choose a low point in the yield curve when securing long term funds

and — at the same time — invest excess money at short term rates. This

transaction is only sensible when both components are considered: long term

borrowing and short term lending. If only one component is needed it is

better to develop a model to predict low points in either the long or short

term rate series.

The inverse problem, finding maxima of the yield curve, is the typical day-

to-day challenge for a bank. It is an aspect of one of the core reasons why

banks are actually in existence: term transformation. Typically, clients want

to borrow money for the long term, i.e., the bank lends to them. On the other

hand, banks refinance themselves short term — generally by paying interest

to other clients who hold money in their account. I.e., the bank borrows from

them. This operation is low risk and often low margin and that’s why banks

obviously want to time their borrowing and lending decisions to capture more

of the interest rate differential. As an aside: The author has always been
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surprised when talking to bankers by the ubiquitous wish to get an accurate

view of the yield curve. Most do not want models to forecast something fancy

like stocks or currencies — just the yield curve! And that’s why the author is

especially glad that yield curve timing works well with neural networks.

GBP|USD exchange rate Figure 4.28 on page 181 shows cERP for the currency

pair. Again, one finds the typical increase at the beginning of the period.

However, the day of the week effect is much less pronounced than for the

FTSE or the UK yield curve. cERP rises and falls mostly depending on the time

period not on the fixed day. One notes that towards the end of the period the

overall good cERP falls dramatically. There is still significant cERP realized

as can be seen in 4.13 on page 185 but the very good values of the year 2007

are unfortunately lost. Nevertheless one gathers from the table that the worst

case is cERP = −18.47 whereas the best case is more than five times that,

cERP = 102.93.

How can one explain the performance loss just towards the end of the out-

of-sample period? A look at the GBP|USD level series is quite revealing, see

figure 4.4 on page 137. One notes that the networks are trained on a side-

ways period followed by a mild downtrend. Starting mid 2008 one notices a

very abrupt downtrend followed by an equally sharp reversion. Clearly, the

neural network has never seen such kind of returns and fails to perform. It

manages, however, to catch up slightly in the following uptrend. Looking at

the corresponding level figure 4.9 on page 147 one notices another problem.

As this is a true out-of-sample test data has been scaled appropriately to the

training and validation period. The end of the out-of-sample period shows

however more extreme returns. Of course, the scaling includes a safety mar-

gin. But nevertheless the inputs are saturated and therefore the network is in

principle not able to represent these values adequately. This is a risk which

one is always confronted with. It can be mitigated by retraining more often

and adapting the safety margin to current market conditions. However, the

scope of the present work is to analyze model robustness during long time

periods.

Gold Bullion One finds cERP for the Gold Bullion on figure 4.29 on page 182. One

notes a very good cERP performance always positive at every point. Inter-

estingly the fixed day of the month effect is reversed compared to the FTSE

100 performance: better cERP is realized towards the end of the month. One
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Figure 4.26: Excess realized potential for the FTSE 100 index.

may attribute this to the fact that gold is not only used for speculative pur-

poses but also as reserve currency and as real commodity. There are some

inefficiencies resulting from market participants who are obliged — or feel

obliged — to buy or sell. Inefficiencies in the precious metals markets are

also acknowledged in [116, 242]. Interestingly these inefficiencies are quite

persistent as [116] is a recent study from 2007 and [242] was already pub-

lished in 1994. The present work extends the analysis up to mid 2009 and

confirms the findings for gold.

An application for an ongoing gold market timing model is its use in the

industry. As gold is an excellent electric conductor and does not oxidate in

air or water it is used for electrical connections and contacts where costs of

failure are high. This includes, e.g., air and space crafts.

Figure 4.30 on page 184 presents cumulative realized excess potential for all

assets and all fixed day strategies, the detailed corresponding values are shown

in table 4.13 on page 185. Generally one notes from the figure that often inferior

performance occurs clustered at the end of the month.

This includes the FTSE 100, Dow Jones Euro Stoxx, Nikkei, German, French, Ital-

ian, United States and Japanese yield curve, GBP|USD, USD|SFR, USD|JPY. A few as-
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Figure 4.27: Excess realized potential for the UK yield curve.
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Figure 4.28: Excess realized potential for the GBP|USD exchange rate.
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Figure 4.29: Excess realized potential for the Gold Bullion.

sets show inferior performance at the beginning of the month: Kospi, EUR|USD and

— only to some extent — Brent oil. Several assets are very good performers without

any negative values: DAX 30, CAC 40, FTSE MIB, S&P500, NASDAQ 100, 12 months

LIBOR and 3 months EURIBOR, UK yield curve, Gold Bullion, CRB Index and Baltic

Exchange Dry Index.

One notes that from the Western equity indices only FTSE 100 performs inferiorly.

On day 19 one also has a small negative value for the Dow Jones Euro Stoxx. The

other well known indices all show overwhelmingly good performance. The two

indices from Asia Pacific, however, are not so convincing. Still, the best performing

days are at least twice as good as the wort performing, and the underperforming

days are a minority.

Nevertheless, if one wanted to improve performance on Asia Pacific one should

include more relevant time series. Asia Pacific performance is also hurt by time

zone aspects: the data from Asia Pacific is first to arrive, around 11.00 GMT. It can

influence the ongoing trading session in Europe and the opening of the US session

at 15.00 GMT. However, when US trading closes around 22.00 GMT there is a gap

of 13 hours until the next Asian close. One can attenuate this problem by including

additional data.
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Considering interest rates one notes that interest rate differences are easier to

forecast than yield curve shifts. Still, in every case the good forecasts outperform

the bad. Further analysis if market interaction of other governments is different

compared to the United Kingdom could lead to interesting results. For now, its

very satisfying to see such good performance for short term interest rates: 3 and

12 months.

One notes that currencies are difficult to predict in the long term. Foreign ex-

change is notorious for having very little exploitable inefficiencies, see [333]. This

work confirms the findings. Especially EUR|USD underperforms in a majority of

cases. Very interestingly, USD|JPY performs surprisingly well. One only has four

negative days and the worst performance of −20.21 is dwarfed by the best perfor-

mance of 228.87 cERP . According to [333], USD|JPY is the second most actively

traded currency pair.

Commodities perform very satisfactorily. One only has a small underperfor-

mance for oil on five days. All other values are positive. One especially notes con-

sistently high values for the CRB index and the Baltic Exchange Dry Index. As com-

modities always fulfill some real economic purpose inefficiencies are not uncom-

mon. Especially the less traded commodities are prone to these, see, e.g., [105,226].

This is even more true for the BDI: prices are always real in the sense that they are

always tied to existing or soon to exist capacity. The Baltic Exchange is a market

where real capacities are traded by those who need them and those who have them.

As demand and supply is inelastic and likely to stay so one is not surprised to

see that the network can exploit the inefficiencies of this market. Additionally, an

electronically tradeable version of the BDI future is only available since June 2008

through Imarex. It remains to be seen if this market attracts enough quantitative

strategies to void returns.

To wrap-up this section on purchasing decision support the author emphasizes

that results are very satisfying. For the short term forecast of 110 days the neural

network model always beats the benchmark. It shows very consistent performance

as illustrated by figure 4.25 on page 173. What is even more satisfying is that a sin-

gle expert topology of neural networks shows robust performance on a timespan

of more than eight years. Training and validation data only spans two years. Al-

though performance is not always positive for all assets there are still assets, espe-

cially commodities and Western equity indices, where performance is much better

than the benchmark. One may ask: when performance is negative why shouldn’t
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Figure 4.30: Cumulated excess realized potential for the entire time span of 8 years

and different fixed day strategies. This map is intended to give the

reader an overview, only. The exact numbers can be found in table 4.13

on the next page. What the reader should take from this figure is that

the model is remarkably robust. Several assets still show positive ex-

cess realized potential, although the model has only been trained and

validated on the first 2 years. Note that, although for some assets and

for some days negative excess potential is shown, this is only with the

benefit of hindsight. One couldn’t have possibly known before, which

day of the month would lead to the best results.

a corporate treasurer always take the best performing fixed day strategy? It is ten-

tative to do that. But remember that the comparison is biased towards the fixed

day strategy. One chooses — or more appropriately: trains — neural networks on

a timespan of almost two years and select them a priori. This means one lets them

run untouched for eight years. Selecting «the best» fixed day strategy is however an

ex post decision. Only after eight years can one tell which strategy has performed

best. It is only with the benefit of hindsight that one could choose an appropriate

fixed day strategy. one concludes that multi step neural network forecasts do

indeed add economic value to purchasing decisions.
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Table 4.13: Realized excess potential compared to different fixed day strategies for

the entire dataset, i.e., 8 years. Negative excess potential is highlighted

in red. With the benefit of hindsight one can tell for which fixed day

strategies the neural network would actually have performed worse in

a time span of 8 years. But note how remarkably robust the neural net-

work nevertheless is. E.g., several equity indices and the Gold Bullion

still produce positive excess realized potential, although the neural net-

work has been trained and validated only with the first 2 years of data

and runs freely for the next 8 years.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

FTSE100

111.00 92.27 76.87 64.14 53.17 43.61 34.61 26.34 20.66 14.91

9.58 5.57 0.96 -3.15 -8.71 -13.69 -17.42 -21.10 -26.02 134.39

DAXINDX

144.60 125.03 110.31 97.48 87.58 79.34 72.03 67.44 65.08 62.33

60.00 59.76 59.28 59.23 58.89 58.76 58.19 58.75 58.87 171.78

FRCAC40

183.26 154.38 131.24 112.37 96.96 84.60 73.13 63.90 56.66 49.39

43.14 38.81 33.63 28.78 23.78 18.12 13.41 9.27 4.03 217.46

FTSEMIB

158.28 134.49 116.87 103.49 91.94 82.18 72.95 64.37 58.57 51.58

45.82 41.65 37.28 33.22 29.67 25.71 23.61 21.69 17.69 186.44

DJES50I

195.22 168.40 147.02 128.31 113.41 100.64 88.71 78.41 69.79 60.48

51.56 44.59 37.90 31.74 25.27 18.46 11.91 5.79 -2.51 227.96

SPCOMP

133.05 123.21 115.34 109.23 104.27 99.56 95.50 91.26 86.28 80.97

76.02 72.26 69.49 67.18 66.07 65.19 64.04 63.32 60.52 143.11

NASA100

60.26 58.83 58.21 57.75 58.38 57.53 54.72 53.11 49.89 47.54

44.63 42.18 40.45 40.47 41.38 41.52 43.56 47.27 49.24 63.02

Continued on next page
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1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

JAPDOWA

85.56 71.52 59.34 49.55 39.22 29.96 20.96 12.69 6.13 0.03

-6.31 -12.00 -17.13 -21.15 -24.61 -28.60 -32.72 -36.43 -40.31 104.02

KORCOMP

-59.98 -54.25 -47.47 -40.67 -32.50 -21.67 -11.55 -0.87 9.95 19.91

30.61 42.21 54.52 66.38 78.00 89.68 99.58 109.62 120.51 -64.68

BBGBP12

151.92 135.78 122.79 111.81 102.43 93.32 84.01 75.67 68.51 62.15

56.83 52.41 48.80 44.70 41.13 37.18 33.52 31.62 31.42 169.54

ECEUR3M

60.75 71.17 81.35 92.15 102.24 113.21 124.98 135.24 145.55 154.84

164.59 174.58 185.00 195.68 206.83 218.40 229.35 242.22 255.06 48.72

UKyc

204.84 192.26 179.03 166.34 153.72 142.10 131.70 121.64 111.72 102.42

93.87 85.59 78.10 69.55 60.07 50.82 42.97 33.08 24.70 220.06

GERyc

165.30 145.30 127.25 112.21 96.84 82.73 68.75 57.05 44.91 33.25

21.62 10.97 0.70 -9.26 -20.23 -31.61 -42.85 -52.48 -60.54 187.36

FRyc

137.27 119.42 102.71 88.55 74.49 61.88 49.09 37.95 26.63 15.38

4.48 -5.27 -14.11 -23.07 -33.58 -44.17 -54.75 -64.38 -72.16 157.03

ITyc

157.75 138.29 120.68 104.89 88.72 74.22 60.17 47.87 35.70 23.23

10.80 0.14 -9.41 -18.63 -29.86 -39.82 -49.43 -57.31 -64.48 180.08

USyc

197.38 174.25 151.92 132.74 115.57 98.87 82.33 67.03 53.52 41.05

29.69 18.05 6.38 -6.08 -18.42 -31.02 -43.18 -54.56 -64.91 222.15

JAPyc

213.97 190.41 169.44 149.26 131.01 111.48 92.75 73.52 53.84 34.53

14.83 -4.03 -23.43 -41.79 -58.89 -75.70 -91.53 -107.21 -122.11 241.42

Continued on next page
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1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

USDOLLR

82.28 67.36 55.12 45.14 35.47 26.73 18.20 11.00 4.71 -2.14

-7.68 -11.78 -14.63 -17.35 -18.47 -18.34 -16.28 -13.60 -10.32 102.93

SWISFUS

153.70 125.01 100.23 78.13 59.34 40.96 24.55 7.90 -7.65 -21.21

-32.54 -42.92 -50.70 -58.52 -64.24 -68.25 -73.48 -75.96 -74.94 188.63

USEURSP

-1.09 -9.07 -14.62 -16.80 -18.26 -19.21 -21.55 -22.02 -22.19 -21.46

-18.13 -14.91 -10.17 -7.20 -1.48 6.36 14.82 24.27 35.04 11.50

JAPAYEUSD

200.40 175.96 156.69 137.57 119.78 102.89 85.87 71.28 58.28 46.23

35.87 26.13 17.42 9.57 2.01 -5.48 -10.71 -15.23 -20.21 228.87

GOLDBLN

9.10 10.98 16.95 23.88 31.18 39.09 46.58 54.42 61.41 69.40

79.32 89.95 101.94 114.05 127.79 143.03 157.28 173.48 191.90 9.52

OILBREN

13.36 6.11 1.04 -1.69 -2.16 -2.60 -3.09 -2.17 0.24 3.22

6.35 10.34 14.93 19.83 26.26 34.58 43.90 53.04 65.12 22.10

NYFECRB

127.60 104.79 86.11 71.96 63.21 56.53 50.95 45.08 40.95 37.26

33.94 33.12 31.84 33.23 35.72 40.17 46.38 54.27 65.91 159.50

BALTICF

193.88 148.25 110.71 92.73 73.91 62.89 51.94 45.21 41.33 41.51

43.79 50.54 59.97 73.94 91.66 114.53 143.50 182.59 237.73 322.78
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4.8 Investment Decision Support

Literature review already shows that an overwhelming number of published neural

network applications in finance deal with investment and trading decision support.

The reason for this is that the results from different studies are easily comparable

and intuitive to grasp: everybody will agree that a higher annualized return is bet-

ter provided that incurred risk is adequate. Once one has devised an investment

strategy it is straightforward to calculate risk measures like, e.g., sharpe ratio and

maximum drawdown, and to compare the results with every other strategy. Al-

though the emphasis of the model is not particularly based on forecasting correct

sign changes it is interesting to see, how shared layer perceptrons perform. Follow-

ing two examples which use all features of the model, i.e., multi step forecasts and

distribution, one now analyzes a typical quantitative investment approach.

Here the focus lies on finding an adequate investment strategy. This is in its most

basic form equivalent to correctly forecasting the sign of tomorrow’s rate of return.

The author benchmarks the neural network against two other technical strategy,

see also [110]. The first is the naive strategy, which simply states

rt+1 = rt,

i.e., tomorrow’s return equals today’s. If today’s price already reflects all available

information then the best bet is, that the return remains unchanged. In an efficient

market the naive strategy should be a tough benchmark to beat. This also provides

us with an efficiency measure. The excess return, if any, of the neural network over

the naive strategy indicates how efficient or rather inefficient markets are.

The second strategy is a typical technical strategy using moving averages. The

n-day moving average is

MAn(t) =
1
n

t∑
i=t−n+1

Xi

where Xi is the level — not the return. One now looks at two moving averages of dif-

ferent periods. The rule is to buy when the shorter moving average moves through

the longer one from below. One sells when the reverse happens: i.e., the shorter

moving average intersects the longer one from above. This strategy is abbreviated

MA in table 4.14 on page 193 which presents an overview of all results.

The basic neural network strategy is straightforward: one takes the forecasted

rate of return, rt+1. If rt+1 > 0 one goes or stays long. If rt+1 < 0 one goes or stays
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short. Should rt+1 = 0 one would go or stay flat but that never happens. The basic

neural network strategy is abbreviated NN.

This strategy is tentatively augmented by a threshold filter. If the forecast is not

decisive enough one goes or stays flat. For the subsequent analysis one only trades,

if |rt+1| > 0.005. This is mostly intended to avoid jigsaw and trading when the

probability to cover transaction costs is only low, see [110]. This strategy is abbre-

viated NNthr. One should expect this strategy to produce better risk measures. To

be specific, it should improve sharpe ratio and maximum drawdown.

Finally, one would like to trade only if one expects the trend to go on. The multi

step forecast offers the possibility to select only those trades where

sgn rt+1 = sgn rt+2.

I.e., one wants the 2-day ahead forecast to go into the same direction as the 1-day

ahead forecast. This double forecast strategy is abbreviated NNdbl. Again, one

expects this strategy to show improved risk measures over the basic strategy.

Results for all assets and strategies are shown in table 4.14 on page 193. From

an investing point of view one is first interested in the annualized return,

ra = 252 · 1
T

T∑
t=1

rt

for all relevant times. Of course, one excludes the training and validation data, i.e.,

the first 440 days. r tca refers to annualized return with transaction costs subtracted.

Here, 0.033 percent are taken for a round-trip. Transaction costs, of course, differ

in various markets. But these costs are realistic for a market maker or a financial

institution, see, e.g., [110].

The sharpe ratio is a risk adjusted measure of return. It compares annualized

return with incurred volatility:

sharpe = ra
σa

where the annualized volatility is given by

σa =
√

252 ·

√√√√√ 1
T − 1

T∑
t=1

(rt − r)2.

The sharpe ratio may be interpreted as follows: a sharpe ratio inferior to zero sig-
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nifies a negative return. A sharpe ratio greater than zero signifies positive returns

with higher sharpe ratios being better.

Finally the maximum Drawdown, max DD, indicates which is the worst incurred

loss before reaching new highs in equity. It is the smallest value of cumulated

returns rt which ever happens during the life of the strategy. The author highly

recommends to have a look at further risk measures in [98], p. 33, from which the

author takes the presented methodology of risk measures.

Additionally for information purpose the result table also shows the number of

trades the strategy produces. A lower number of trades is generally preferred be-

cause of the transaction cost penalty. Each trade also involves the risk of slippage.

However, with the advance of all-electronic trading, transaction costs are getting

lower.

The information contained in the results table 4.14 on page 193 is very dense.

For this reason the author starts with a general overview of salient features:

• In most cases the basic neural network strategy delivers more consistent and

stable results when comparing the shorter and longer timespan. It does not

necessarily beat the benchmark strategies on the shorter timespan but gener-

ally beats them on the longer timespan.

• The naive strategy achieves impressive results in the short timespan. One

may attribute this to the inherent ability of this strategy to exploit trends

— in this case the consistent downtrend following the collapse of the new

economy which can be seen in most assets. However, the neural network

strategy either follows as a close second best or even beats the naive strategy.

• The moving average strategy is often disappointing, both for shorter and

longer timespan. It too, like the naive strategy, should work well in trend-

ing markets. But one sees that the strategy trades seldom. Trading activity

is often only one fifth of that of the other strategies. While this is good in

respect to transaction costs a closer look reveals that the moving average

strategy simply misses out on important successful trades.

• Performance of the filtered neural network strategies compared to the basic

neural network strategy is mixed. While they manage to reduce volatility the

improvement in sharpe ratio, if any, if often only marginal. As trading activity

if reduced to 60 percent compared to the basic strategy the filtered strategies,
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like the moving average strategy, miss out on too many good trades. On the

longer timespan, however, the filtered strategies often perform better.

Let us now look in detail at strategy results for asset classes and individual assets.

In the case of equity indices the naive strategy starts with very impressive results

for the short timespan on FTSE 100, DAX 30, CAC 40, FTSE MIB, Dow Jones, NAS-

DAQ, and Kospi. It is however beaten by the neural network strategy in the case of

NASDAQ and Kospi. In the other cases neural networks match the performance. In-

terestingly, the neural network strategies perform much better for S&P and Nikkei.

In both cases the naive strategy fails to perform at all. The author stresses that

this is surprising because both indices are perceived to represent very different

markets.

Analyzing the longer timespan one notes very bad results for the naive strategy

and bad results for the moving average. This is due to the fact that the longer

timespan of 8 years encompasses very different market types which the simple

strategies fail to adapt to. The neural networks, although not retrained, manage

to at least break even in most cases. While this is, of course, not satisfactory one

should keep in mind that in quantitative trading models are recalibrated regularly

to catch up with different market dynamics. However, the point of the present

analysis is to look at the flexibility of neural networks. And from this point of

view the author deems it a succès d’estime that the networks manage to perform

at all. One also notes that before transaction costs neural networks feature quite

impressive returns even on the longer timespan for Nikkei and Kospi.

Comparing filtered and unfiltered neural network strategies one sees the thresh-

old strategy sometimes leads to small improvements. This is especially the case for

the FTSE 100 on the shorter timespan. In other cases returns are reduced. It is only

with the benefit of hindsight that one would have been able to chose the better of

the two strategies. The double neural network strategy which only invests on fore-

casted two-day moves generally produces inferior results than the basic strategy.

However, it sometimes improves on the threshold strategy, e.g., for the NASDAQ.

This improvement takes place with significantly fewer trades, e.g., 32 instead of 51.

The incurred maximum drawdown is also reduced. Although this fails to improve

the sharpe ratio the calmer trading style of the double strategy has its own merits.

One concludes that it might be preferred by less active investors.

Performance on interest rates and yield curves is mixed — for all time spans

and strategies. To be more specific: Neural networks decidedly outperform on 12
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months LIBOR and the UK yield curve. The naive strategy delivers good short term

results on the German and French yield curves. Moving averages perform well on

US and Japanese yield curves. However, 3 months EURIBOR fails to be forecasted

accurately by all strategies. Still, moving averages and neural networks realize

marginal profits before transaction costs on the longer timespan.

Interestingly filtered neural network strategies manage to improve the perfor-

mance on the longer timespan. E.g. the threshold strategy delivers satisfactory

results on 3 months EURIBOR, the German, US and Japanese yield curve. Keep in

mind that performance here is not measured in percent of invested capital but sim-

ply reflects basis points. The real performance depends on the kind of product one

chooses to actually realize a view on interest rates.

Performance on currencies is clearly balanced towards neural networks. They

outperform impressively on SFR|USD, EUR|USD and USD|JPY and come as a close

second for GBP|USD. The naive strategy also achieves satisfactory performance on

GBP|USD, SFR|USD and USD|JPY. It fails to perform completely on EUR|USD. On

the longer timespan performance is low, sometimes slightly positive sometimes

slightly negative for all strategies.

Commodities perform with mixed results. On the Gold Bullion the naive strategy

slightly outperforms neural networks for the short time span. On the other hand

all neural network strategies manage to produce positive returns before transaction

costs on the longer timespan. In this case the filtered strategies clearly add value

by reducing the number of trades significantly. Short term directional oil forecasts

are decidedly — at least in the example — not for neural networks. They accumu-

late losses while moving averages impressively outperform. However, the filtered

threshold strategy manages to produce positive returns before transaction costs

on the longer timespan. The CRB index is forecasted best by the double neural

network strategy in the short term. However, in the long term, the naive strategy

slightly outperforms. Both strategies, which emphasize trends in their most basic

form, gain from cyclical commodity markets which are indexed by the CRB. Finally

the Baltic Dry Index performs very well for all strategies and all time frames. Ob-

viously all strategies exploit the consistent trends in the index. From the point of

view of quantitative investment the BDI might be an interesting asset to look at.

One may summarize the analysis as follows:

• By the consistency of their returns on short and long time frames neural

networks are especially suitable for forecasting financial time series.
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• However, simple technical strategies might prove lucrative, too. One sees that

these simple strategies do not produce consistent returns in the long term.

• A very interesting application — possibly with neural networks as it is a pat-

tern recognition problem — is therefore to determine which strategy to use.

This is clearly beyond the scope of this work but further research on this topic

should prove fascinating.

• One can clearly recommend the use of neural networks for forecasting equity

indices. They consistently produce very satisfying and often best returns for

all indices. This is not the case for the naive and moving average strategy.

Table 4.14: Comparison of different strategies. The naive and moving average or

MA strategy are the benchmark strategies. NN refers to a basic neural

network strategy, whereas NNthr uses a threshold filter. This avoids

trades with low expected returns. The strategy NNdbl only trades if a

double forecast, i.e., two consecutive days, promises to show identical

sign of the return. ra refers to annualized return, r tca to annualized

return including transaction costs. The first line of a strategy refers to

a time span of 110 days, the second line is the result of using a single

model for more than 8 years. Note that, although the NN strategy is

seldom best, it shows consistent returns for most asset classes.

strategy ra r tca sharpe max DD volatility trades

FTSE100

naive 0.437 0.421 2.55 -0.034 0.171 49

-0.129 -0.494 -0.61 -0.870 0.213 1106

MA -0.364 -0.368 -2.12 -0.154 0.172 13

-0.057 -0.139 -0.27 -0.539 0.215 249

NN 0.124 0.106 0.71 -0.133 0.175 54

0.047 -0.247 0.22 -0.438 0.215 891

NNthr 0.155 0.140 1.17 -0.100 0.132 44

-0.047 -0.288 -0.26 -0.655 0.176 731

NNdbl 0.117 0.105 1.03 -0.078 0.113 35

0.003 -0.181 0.02 -0.519 0.164 558

Continued on next page
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strategy ra r tca sharpe max DD volatility trades

DAXINDX

naive 0.491 0.475 2.42 -0.065 0.203 49

-0.127 -0.487 -0.48 -0.839 0.265 1091

MA 0.007 0.003 0.03 -0.104 0.206 13

0.119 0.054 0.44 -0.372 0.269 197

NN 0.278 0.260 1.34 -0.151 0.207 53

0.011 -0.315 0.04 -0.502 0.269 987

NNthr 0.111 0.095 0.65 -0.142 0.171 47

-0.025 -0.315 -0.11 -0.569 0.234 881

NNdbl 0.204 0.193 1.39 -0.072 0.147 34

-0.047 -0.240 -0.23 -0.595 0.199 586

FRCAC40

naive 0.262 0.244 1.34 -0.087 0.196 54

-0.130 -0.504 -0.52 -0.875 0.250 1134

MA -0.028 -0.031 -0.14 -0.121 0.200 9

-0.011 -0.078 -0.04 -0.566 0.252 205

NN 0.176 0.156 0.88 -0.117 0.200 61

-0.002 -0.321 -0.01 -0.592 0.252 965

NNthr 0.181 0.166 1.09 -0.113 0.167 45

0.039 -0.247 0.19 -0.375 0.210 867

NNdbl 0.022 0.012 0.17 -0.103 0.133 33

-0.051 -0.234 -0.28 -0.626 0.184 556

FTSEMIB

naive 0.276 0.258 1.71 -0.096 0.161 53

-0.105 -0.474 -0.46 -0.840 0.230 1117

MA -0.393 -0.400 -2.40 -0.170 0.164 21

0.091 0.017 0.39 -0.437 0.233 223

NN 0.249 0.231 1.55 -0.062 0.161 57

0.053 -0.277 0.23 -0.516 0.233 1002

NNthr 0.244 0.226 1.94 -0.046 0.126 53

-0.004 -0.287 -0.02 -0.596 0.197 857

NNdbl 0.036 0.026 0.31 -0.094 0.113 28

-0.030 -0.220 -0.17 -0.569 0.174 576

Continued on next page
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strategy ra r tca sharpe max DD volatility trades

DJES50I

naive 0.409 0.390 2.08 -0.076 0.197 55

-0.162 -0.533 -0.64 -0.902 0.254 1124

MA 0.020 0.016 0.10 -0.093 0.201 13

-0.012 -0.088 -0.05 -0.640 0.257 229

NN 0.318 0.298 1.60 -0.119 0.199 61

0.113 -0.212 0.44 -0.363 0.256 985

NNthr 0.173 0.158 1.04 -0.077 0.167 46

-0.019 -0.308 -0.09 -0.661 0.220 875

NNdbl 0.129 0.118 0.93 -0.083 0.138 32

0.003 -0.179 0.01 -0.398 0.189 550

SPCOMP

naive -0.085 -0.105 -0.45 -0.124 0.191 58

-0.306 -0.693 -1.43 -0.946 0.214 1171

MA 0.051 0.047 0.26 -0.074 0.192 13

-0.010 -0.080 -0.05 -0.619 0.220 213

NN 0.405 0.388 2.12 -0.076 0.191 50

0.004 -0.325 0.02 -0.478 0.220 995

NNthr 0.146 0.133 1.11 -0.046 0.131 42

-0.008 -0.293 -0.05 -0.444 0.184 863

NNdbl 0.239 0.228 1.70 -0.057 0.140 32

0.005 -0.171 0.03 -0.303 0.159 535

NASA100

naive 0.370 0.350 0.74 -0.189 0.503 60

-0.178 -0.549 -0.60 -0.924 0.294 1126

MA -0.196 -0.201 -0.38 -0.321 0.513 13

0.001 -0.080 0.00 -0.550 0.303 244

NN 0.512 0.494 1.00 -0.237 0.512 54

-0.119 -0.473 -0.39 -0.824 0.303 1073

NNthr 0.101 0.084 0.23 -0.244 0.443 51

-0.130 -0.475 -0.47 -0.798 0.279 1044

NNdbl 0.173 0.163 0.44 -0.227 0.393 32

-0.063 -0.237 -0.30 -0.574 0.209 529

Continued on next page
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strategy ra r tca sharpe max DD volatility trades

JAPDOWA

naive -0.376 -0.394 -1.50 -0.250 0.251 56

-0.084 -0.446 -0.35 -0.646 0.242 1097

MA -0.046 -0.050 -0.18 -0.166 0.261 10

-0.018 -0.090 -0.07 -0.560 0.257 217

NN 1.107 1.090 4.39 -0.089 0.252 50

0.211 -0.136 0.82 -0.448 0.256 1053

NNthr 1.034 1.018 4.97 -0.050 0.208 47

0.203 -0.082 0.95 -0.364 0.213 864

NNdbl 0.524 0.513 2.81 -0.070 0.187 33

0.027 -0.167 0.15 -0.413 0.179 589

KORCOMP

naive 0.155 0.136 0.62 -0.144 0.249 58

0.118 -0.228 0.46 -0.463 0.257 1049

MA 0.289 0.287 1.14 -0.114 0.254 6

0.142 0.076 0.53 -0.355 0.266 201

NN 0.480 0.467 1.91 -0.085 0.252 41

0.201 -0.091 0.76 -0.416 0.266 885

NNthr 0.407 0.394 1.66 -0.092 0.244 39

0.129 -0.161 0.53 -0.474 0.244 880

NNdbl 0.182 0.172 0.91 -0.085 0.200 29

0.142 -0.036 0.68 -0.510 0.208 540

BBGBP12

naive -0.027 -0.044 -0.23 -0.068 0.122 51

0.272 -0.019 2.02 -0.264 0.135 883

MA 0.259 0.256 2.12 -0.039 0.122 9

0.277 0.227 2.03 -0.273 0.136 151

NN 0.157 0.142 1.28 -0.068 0.123 47

0.069 -0.221 0.50 -0.202 0.137 877

NNthr -0.037 -0.039 -1.13 -0.022 0.033 7

-0.006 -0.055 -0.17 -0.111 0.033 148

NNdbl 0.283 0.274 2.57 -0.029 0.110 26

0.093 -0.090 0.81 -0.128 0.114 554

Continued on next page
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strategy ra r tca sharpe max DD volatility trades

ECEUR3M

naive -0.116 -0.134 -1.05 -0.129 0.111 54

-0.133 -0.396 -0.89 -0.879 0.149 795

MA -0.035 -0.037 -0.28 -0.060 0.124 5

0.134 0.074 0.74 -0.671 0.181 181

NN -0.191 -0.207 -1.54 -0.184 0.124 47

0.057 -0.237 0.32 -0.318 0.181 893

NNthr -0.040 -0.054 -0.38 -0.104 0.106 44

0.064 -0.193 0.45 -0.232 0.143 779

NNdbl -0.213 -0.221 -2.05 -0.145 0.104 26

-0.004 -0.164 -0.03 -0.406 0.131 484

UKyc

naive -3.285 -3.305 -3.78 -0.842 0.869 62

-1.125 -1.511 -1.07 -1.000 1.056 1171

MA -2.244 -2.251 -2.55 -0.838 0.881 21

-0.316 -0.406 -0.30 -1.000 1.061 270

NN 1.419 1.399 1.59 -0.436 0.893 61

0.435 0.056 0.41 -1.374 1.061 1148

NNthr 1.814 1.795 2.11 -0.336 0.859 59

0.386 0.011 0.37 -1.302 1.041 1137

NNdbl 1.537 1.528 2.61 -0.220 0.589 29

0.359 0.165 0.45 -2.374 0.796 587

GERyc

naive 0.885 0.868 1.35 -0.252 0.656 51

-0.391 -0.751 -0.51 -0.999 0.771 1093

MA -0.174 -0.178 -0.26 -0.437 0.657 13

0.367 0.297 0.48 -0.869 0.772 212

NN -0.127 -0.147 -0.19 -0.464 0.658 59

0.003 -0.306 0.00 -0.987 0.772 937

NNthr -0.119 -0.138 -0.19 -0.487 0.643 58

0.153 -0.154 0.21 -0.952 0.745 930

NNdbl -0.033 -0.042 -0.07 -0.260 0.457 25

0.047 -0.124 0.08 -0.801 0.561 520
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strategy ra r tca sharpe max DD volatility trades

FRyc

naive 0.548 0.531 0.81 -0.326 0.680 51

-0.370 -0.732 -0.48 -0.999 0.764 1096

MA -0.255 -0.259 -0.38 -0.422 0.679 11

0.262 0.186 0.34 -0.952 0.765 230

NN -1.087 -1.106 -1.61 -0.567 0.677 57

-0.126 -0.447 -0.16 -0.986 0.765 973

NNthr -0.309 -0.328 -0.52 -0.399 0.599 56

-0.126 -0.448 -0.17 -0.982 0.733 971

NNdbl -0.848 -0.858 -1.71 -0.403 0.496 29

-0.116 -0.301 -0.21 -0.947 0.542 560

ITyc

naive -0.452 -0.473 -0.71 -0.572 0.639 65

-0.169 -0.533 -0.23 -0.997 0.743 1101

MA -0.777 -0.784 -1.21 -0.484 0.641 21

0.308 0.233 0.41 -0.903 0.749 229

NN -1.069 -1.088 -1.67 -0.604 0.640 59

-0.069 -0.364 -0.09 -0.996 0.749 895

NNthr -1.159 -1.177 -1.87 -0.627 0.619 56

0.082 -0.209 0.11 -0.988 0.722 883

NNdbl -0.481 -0.490 -1.03 -0.353 0.466 26

-0.036 -0.201 -0.06 -0.947 0.562 501

USyc

naive -2.252 -2.272 -1.97 -0.791 1.144 61

-0.850 -1.213 -0.66 -1.000 1.279 1100

MA 0.210 0.204 0.18 -0.816 1.172 18

0.647 0.579 0.50 -0.989 1.287 208

NN 0.126 0.107 0.11 -0.655 1.168 57

-0.048 -0.392 -0.04 -1.000 1.288 1043

NNthr -0.871 -0.889 -0.79 -0.671 1.097 54

0.208 -0.135 0.17 -1.000 1.246 1040

NNdbl 0.041 0.030 0.05 -0.392 0.800 32

0.159 -0.026 0.17 -0.997 0.928 559
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strategy ra r tca sharpe max DD volatility trades

JAPyc

naive 0.048 0.030 0.10 -0.244 0.476 55

-0.655 -1.027 -1.03 -1.000 0.635 1127

MA 0.336 0.334 0.66 -0.231 0.512 8

-0.283 -0.366 -0.44 -0.991 0.649 251

NN -0.431 -0.452 -0.84 -0.306 0.511 62

-0.015 -0.366 -0.02 -0.951 0.649 1064

NNthr -0.002 -0.023 -0.00 -0.264 0.478 61

0.160 -0.189 0.26 -0.877 0.618 1059

NNdbl -0.632 -0.640 -1.87 -0.286 0.337 23

0.033 -0.132 0.07 -0.873 0.483 501

USDOLLR

naive 0.074 0.058 1.02 -0.031 0.072 48

0.057 -0.289 0.58 -0.282 0.097 1046

MA -0.158 -0.164 -2.20 -0.090 0.072 18

-0.007 -0.095 -0.07 -0.264 0.098 268

NN 0.014 -0.002 0.19 -0.049 0.073 49

0.010 -0.310 0.11 -0.312 0.098 970

NNthr 0.043 0.039 2.28 -0.008 0.019 12

0.005 -0.106 0.10 -0.111 0.048 335

NNdbl -0.023 -0.033 -0.46 -0.022 0.050 30

0.032 -0.155 0.42 -0.183 0.075 567

SWISFUS

naive 0.124 0.106 1.32 -0.038 0.094 53

-0.071 -0.455 -0.65 -0.546 0.109 1165

MA 0.005 0.001 0.05 -0.078 0.098 12

-0.062 -0.156 -0.56 -0.485 0.111 285

NN 0.144 0.125 1.47 -0.037 0.098 57

-0.043 -0.368 -0.39 -0.461 0.111 984

NNthr 0.088 0.075 1.46 -0.040 0.060 39

-0.032 -0.254 -0.45 -0.296 0.072 671

NNdbl 0.019 0.010 0.33 -0.038 0.059 29

-0.033 -0.210 -0.42 -0.306 0.079 537

Continued on next page
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strategy ra r tca sharpe max DD volatility trades

USEURSP

naive -0.019 -0.036 -0.18 -0.071 0.105 52

0.002 -0.362 0.02 -0.253 0.099 1102

MA -0.051 -0.056 -0.48 -0.093 0.106 16

0.026 -0.050 0.26 -0.212 0.100 229

NN 0.168 0.155 1.60 -0.033 0.105 39

-0.011 -0.307 -0.11 -0.375 0.100 898

NNthr 0.080 0.071 1.32 -0.021 0.061 29

-0.028 -0.225 -0.41 -0.346 0.067 598

NNdbl 0.207 0.199 2.42 -0.023 0.085 25

0.001 -0.172 0.02 -0.243 0.077 524

JAPAYEUSD

naive 0.069 0.050 0.73 -0.036 0.095 58

0.036 -0.325 0.35 -0.230 0.103 1093

MA -0.056 -0.060 -0.58 -0.084 0.096 12

0.014 -0.058 0.13 -0.192 0.104 219

NN 0.138 0.122 1.44 -0.073 0.096 50

0.045 -0.272 0.43 -0.146 0.104 961

NNthr 0.137 0.128 2.43 -0.030 0.056 27

0.036 -0.155 0.50 -0.166 0.072 579

NNdbl 0.092 0.084 1.22 -0.054 0.075 24

0.001 -0.171 0.01 -0.189 0.079 520

GOLDBLN

naive 0.107 0.091 0.96 -0.055 0.112 50

-0.031 -0.395 -0.17 -0.433 0.183 1104

MA -0.117 -0.121 -1.00 -0.141 0.116 14

0.008 -0.062 0.04 -0.384 0.190 211

NN 0.064 0.048 0.55 -0.084 0.116 47

0.008 -0.289 0.04 -0.544 0.190 900

NNthr -0.005 -0.017 -0.05 -0.060 0.097 38

0.072 -0.151 0.51 -0.390 0.140 675

NNdbl 0.169 0.159 2.54 -0.020 0.067 31

0.065 -0.127 0.43 -0.316 0.150 581
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strategy ra r tca sharpe max DD volatility trades

OILBREN

naive 0.068 0.049 0.27 -0.121 0.256 58

-0.083 -0.436 -0.23 -0.882 0.362 1069

MA 0.447 0.444 1.72 -0.118 0.261 10

0.140 0.066 0.38 -0.637 0.369 226

NN -0.560 -0.579 -2.15 -0.250 0.260 57

0.071 -0.270 0.19 -0.748 0.369 1034

NNthr -0.411 -0.431 -1.69 -0.203 0.243 56

0.120 -0.210 0.36 -0.593 0.336 1001

NNdbl -0.122 -0.132 -0.63 -0.136 0.195 31

0.048 -0.136 0.18 -0.447 0.265 557

NYFECRB

naive 0.011 -0.007 0.14 -0.038 0.082 55

0.083 -0.261 0.60 -0.202 0.139 1044

MA 0.083 0.080 0.99 -0.038 0.084 9

0.071 -0.000 0.50 -0.227 0.144 217

NN 0.062 0.044 0.74 -0.054 0.084 55

0.007 -0.292 0.05 -0.349 0.144 906

NNthr 0.031 0.021 0.64 -0.022 0.049 31

0.033 -0.164 0.35 -0.132 0.095 598

NNdbl 0.097 0.087 1.48 -0.028 0.065 30

0.026 -0.169 0.23 -0.234 0.114 591

BALTICF

naive 1.343 1.337 16.12 -0.004 0.083 16

2.474 2.371 10.54 -0.072 0.235 312

MA 0.960 0.959 9.39 -0.037 0.102 5

1.507 1.485 5.62 -0.196 0.268 68

NN 1.126 1.121 11.79 -0.028 0.096 15

1.876 1.773 7.26 -0.206 0.259 312

NNthr 0.805 0.801 9.16 -0.022 0.088 12

1.686 1.599 6.99 -0.177 0.241 264

NNdbl 1.081 1.075 11.68 -0.022 0.093 14

2.054 1.953 8.48 -0.107 0.242 304
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4.9 Summary

This chapter provides a detailed analysis of a diverse portfolio of assets. Examples

exploit the three key benefits of shared layer perceptrons:

• The ability to provide a market forecast, i.e., several assets are forecasted with

the same model and at the same time.

• Multi step forecasts offer the possibility to generate a view on the probable

path of assets or portfolios.

• The expert topology leads to a distribution of forecasts which can be conve-

niently used, e.g., to assess risk.

The chapter analyzes assets from different instrument classes: important equity

indices, interest rates and yield curves, currency exchange rates, and commodities.

The complete dataset includes a timespan of 10 years: from July 1999 to July 2009.

The inclusion of more exotic assets like the Korean Kospi or the Baltic Dry Index for

freight rates proves insightful and also very attractive regarding performance. The

analysis at the beginning shows that the level series are non stationary. An appro-

priate transformation into rates of return provides stationarity. The Jarque Bera

statistic confirms that all return series are not normally distributed. Autocorrela-

tion is generally low. The dataset is representative of different market situations:

the boom and bust of the new economy, the bull market until 2007, the credit cri-

sis and the subsequent recovery. The analysis does not suffer from being biased

towards a specific kind of market situation.

The first two examples are unique in the sense that they benefit especially from

the shared layer perceptron model. The author does not claim that these examples

would be impossible with other modeling techniques — but building the model

would be considerably more work and considerably less intuitive!

The first example models market value at risk. The idea is to provide a more ade-

quate risk measure than standard techniques like, e.g., historical simulation. With

the shared layer perceptron it is possible to model an asset value 10 days ahead.

Then, one can choose an appropriate percentile of the distribution of experts. The

shared layer perceptron manages to always utilize less capital than the historical

simulation for every asset on a timespan of 110 days. On the longer time frame of

more than 8 years the shared layer perceptrons still outperforms for 12 out of 17

assets considered in the example. Please note, that the shared layer perceptron is
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not retrained. I.e., a single model manages to catch the dynamics very well. The

author concludes that neural networks add value when modeling the risk of a port-

folio. However, care should be taken to assess possible violation of regulatory risk

measures.

The second example features a typical but complex purchasing decision problem:

one has to buy some supply, some asset, regularly. In the example the author uses

a monthly basis. Obviously, one wants to buy for the lowest price achievable in that

month. Where the first example deals with accurately forecasting the lowest level

of a portfolio this second example involves forecasting the time when this lowest

level will occur. Again, shared layer perceptrons beat every fixed day strategy on a

110 day timespan. And on the longer timespan of 8 years shared layer perceptrons

still beat fixed day strategies in the overwhelming majority of the cases. And keep

in mind, that the networks do not produce any especially bad realized potential.

One can therefore be confident of the robustness of the model.

The third example is more typical for neural network applications: forecasting

the direction of change of financial time series. This works very well compared

to benchmark technical strategies for equity indices and currency exchange rates.

Results on interest rates and commodities are mixed but still overall satisfying. In

some cases filtered neural network strategies improve the results. Especially the

filter strategy which takes into account the sign of the return on two consecutive

days produces consistent, but lower, performance with significantly reduced trad-

ing activity: on average it produces only one or two trades per week.

The author will not hide that not all potential of shared layer perceptrons has

been exploited. Further research will address the following questions:

• How do the models perform when the networks are regularly retrained? Is it

sensible to even retrain continuously?

• How far can one extend multi step forecasts? Can one enhance multi step

forecasts when using additional information from another time step width,

like a weekly model?

• What does the distribution of returns tell us about the probability of the real-

ization of a single forecast? Does the information of distribution width and

height provide additional value?

• How dependent is the model on portfolio choice? Would performance change

when including more or less assets?
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5 Conclusions and Outlook

5.1 Introduction

This chapter wraps up this book. The reader finds a summary of results in the

following section. But the chapter is more than that. Section 5.3 provides a critical

review of parts that are still missing. The author highlights further research areas

in section 5.4. Note that much of the content of this section directly draws from

the critical assessment section. That is quite natural: incomplete parts are likely to

induce more research. Section 5.5 provides concise recommendations for decision

makers and implementers. This is not intended as executive summary. The reader

will find this summary at the beginning of this book on page 18. Finally, the last

section concludes this book with some thoughts.

5.2 Summary of Results

My research question is «Can advanced neural networks provide sustainable and

economic competitive edge in today’s financial markets?» Instead of merely repeat-

ing the end of chapter summaries the author will follow his research question and

highlight some keywords. The following bold headlines come from the research

question.

advanced neural networks

This book presents and analyzes in depth the shared layer perceptron topology.

This topology models a memory enabled dynamic system evolving in discrete time

steps. It’s key feature is that it models several time series at once. Unobserveable

states of the world are approximated through hidden states. One forecasted step,

i.e., output serves as input for the next forecasting step. Multi step forecasts are
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possible. One can see an unfolded shared layer perceptron as a multi layer percep-

tron with the same number of hidden layers as there are history time steps. How-

ever, the main difference is that each layer shares the same weights. The shared

layer perceptron is more manageable than a standard multi layer perceptron of

same depth.

Generally, training neural networks necessitates the first partial derivatives with

respect to the weights. One can calculate this derivatives efficiently using reverse

accumulation and matrix algorithms. The shared layer perceptron uses the op-

timization algorithm implemented in the neurosimulator FAUN, i.e., an efficient

sequential quadratic programming method.

sustainable

The model is robust in two ways. First, it works well over a broad range of financial

assets. The author demonstrates that for all three applications results on equities,

interest rates, currency exchange rates, and commodities, are good or very good.

This holds compared to benchmark strategies. But the model also produces very

satisfactory results on an absolute scale. In the author’s opinion the crux of most

otherwise presented models is that they are only trained for a single market. While

the results indicate good performance in this market they say nothing about other

markets or even only other assets in the same market. The author can’t emphasize

this enough: One will trust an overall good model more than a model fitted — or

overfitted? — to a single case.

Second, the shared layer perceptron obviously manages to catch the dynamics of

shifting markets well. The author demonstrates this by comparing forecast results

for a period of 110 days with a period of more than 8 years. Not unsurprisingly

results on the longer time span are noticeably worse than on the shorter time span

— but not abysmally so! Where benchmark strategies on the longer time span show

significant variance in performance the shared layer perceptron’s performance de-

grades gracefully. Again: this should strengthen trust in the quality of the model.

One will not believe that model performance is due to a statistical fluke.

economic

Training the shared layer perceptron is possible without specialized hardware. One

doesn’t need massively parallel high performance computers. Instead, the grid
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computing client puts spare computing capacity to work. In an organization where

user workstations are available anyway it is trivial to install the client. Using wake

up and shut down mechanisms controls power consumption efficiently.

The grid computing version of FAUN produces good speedups of more than 95

percent. This is in line with what the MPI and PVM versions achieve. However, using

the grid computing client does not require any special setup on the host computer

or in the network. Installing and using the client is very economical: as long as the

client reaches the server it will work.

FAUN is also prepared for fine grained parallelization. Although this does not

scale as well for more than four processes it is very promising for usage on graphics

cards.

competitive edge

The author shows that the model generally outperforms benchmark strategies. This

holds especially for modeling market value and risk and the transaction decision

support. Using the shared layer perceptron topology adds value. The shared layer

perceptron also offers applications, like multi step forecasts, which are not easy to

model otherwise.

today’s financial markets

The author shows that his model works well on past and recent data, even with-

out retraining. The applications the author presents cover a broad range of what

today’s financial markets require.

Modeling market value at risk is a topic of risk management. For a financial

institution it is of utmost importance to have a model that provides a realistic

assessment of portfolio value over the next few days. Standard computation meth-

ods like, e.g., historical simulation are often too conservative in their assumptions.

Holding back capital unnecessarily leads to lost opportunities.

Corporate treasurers face periodic purchasing decisions: they purchase an asset

— tangible or intangible — on a regular basis, say, every month. The challenge is

to buy this asset for the lowest price in the purchasing period. The shared layer

perceptron easily models portfolio course over 20 days. This allows to select the

entry point with good accuracy.

The third applications consists in day to day investment decisions: should one
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buy — or rather sell — an asset. Here, the sign of forecasted returns is of impor-

tance.

5.3 Critical Assessment

Although the author is personally satisfied with the results of this book there are

several aspects which warrant a critical review. These may be just simple questions

that could be answered with relative ease given time. Or they may be unknowns

which could shake the foundations of what the author presents. The author first

assesses every main chapter individually. Then the author gives a comprehensive

assessment of critical points linking all chapters.

5.3.1 Grid Computing

The performance of fine grained parallelization on multi processor computers is

disappointing. While the author expected some decrease in speedup due to high

latency the author is surprised to see such an amount. Clearly, more research is

warranted here. The author is convinced that programming the algorithm «closer

to the metal» with an in depth knowledge of processor architecture would increase

the result considerably. Also, OpenMP does not allow very fine tuned control on

how exactly it parallelizes computations. Again, programming more closely to the

underlying hardware should improve speedup.

Fine grained parallelization is a par excellence topic for programming on the

graphics card. The author tried this and the emulated results look promising. How-

ever, the author hadn’t a powerful graphics card available. Graphics card program-

ming would also have introduced a whole new layer of complexity. The author

decided to avoid this for the present book. However, using standard graphics hard-

ware for accelerating computation matches well with the general tenor of this book.

It is unfortunate that the author didn’t have more time to further inquire in this

direction.

The coarse grid computing client is still not as flexible as the author would like it.

The necessary general functions like file transfer, system calls, wake up, shutdown,

etc. are indeed generically usable. But the entire product is still very much tied to

FAUN. On the one hand there is no need to provide superfluous flexibility. On the

other hand the author would have been glad to publish the program as a universal
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grid computing client. One can use it like this. But it would be nice to have more

examples.

It is somewhat unsatisfactory that until now no automatism exists that evaluates

how an additional computer in the grid influences speedup. As a general rule net-

work bandwidth is more important than clock speed. But it would have been nice

to analyze this in more detail than the scenarios. Here, the book lacks a systematic

empirical test. Actually, the author would like a theoretic underpinning. But the

author is not at all sure if this is realistic with constantly varying hardware.

Administration of the grid participants occurs via the command line. This is

unproblematic for seasoned system administrators. But nevertheless the present

program lacks a user friendly graphical interface for managing the grid, except

for shutdown and wake up. At least the update functionality should be accessible

using the web interface. This would help in spreading the work further.

The architecture does not use bandwidth very efficiently. It is obviously better to

collect results locally and send them back as bundle. This introduces an additional

layer of complexity and also makes management more difficult. However, there

might be arrangements, like local clusters, where this would increase speedup. Us-

ing data compression would also improve bandwidth use. In principle this should

not be difficult to implement. The distributed object model is layered. It is possible

to insert an additional compression layer.

Another concern is that data is sent every time a new computation starts. This is

not important for production runs, because training then lasts longer. But for test

runs the client spends a comparatively high amount of time in sending the data.

Avoiding this is easy to implement by using a hash, e.g., the md5 hash. The MPI

version of FAUN already has the same inefficient bandwidth use. It would be good

to resolve this once and for all. However, the author does not consider this a key

problem and lacking time prevented an implementation.

Along the same lines as above goes another concern. For each new computation

FAUN will rescale the data as necessary. This holds for all versions of FAUN. Nor-

mally, scaling does not consume significant time and for the present book this was

not a problem. However, several months ago the author worked with a dataset of

several GB. With this dataset scaling takes three minutes. It would be nice to avoid

this unnecessary waiting time. Again, using a hash would solve this easily.

Security is also an issue. The client uses ssl to secure communication which is

good. However, the client stores training and validation data, and results unen-
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crypted on the local hosts. It is therefore possible for users with the appropriate

rights to view and possibly modify the data. This is a systemic problem, because

at some stage data has to decrypted. One could modify FAUN such that it reads

data directly from memory and not from file. But even then unencrypted data is in

memory. This makes it slightly more difficult for the casual attacker to get access.

One has to be aware of the fact that whoever owns the computer may look at data.

One could slightly mitigate this by taking two separate virtual machines: one for

the grid client and one for the local user. But the basic problem remains.

5.3.2 Neural Networks

The saying goes that building and training neural networks is «more an art than a

science». While the author likes to be an artist — who wouldn’t — this raises serious

concerns about what the neural networks do and how they do it. The shared layer

perceptron topology mitigates these concerns. But nevertheless for a given set of

meta parameters one can only prove convergence empirically, on a case by case

basis.

The essential question remains: which meta parameters are appropriate for the

application at hand? The author found the parameters by informed experimenta-

tion — or bluntly put: by trial and error. This is far from satisfactory and not

user-friendly at all. A unified theory about how to best choose the parameters will

— probably — not emerge in the foreseeable future. At least one would like an au-

tomatism setting sensible parameters for the application. The FAUN project group

has not been inactive in this respect. But the problem is really difficult. It neces-

sitates incorporating prior knowledge about successfully trained neural networks.

Then one needs to map this to a slightly different problem. One could call this a

meta neural network for parameter setting.

As a related topic the author would have liked to analyze convergence in much

more detail. It is satisfying to see such robust convergence on a financial time

series dataset. However, a thorough analysis should include datasets from different

sources. It should also vary parameters about a much broader range. And there

are still other parameters which the author didn’t even mention until now. But they

could also influence convergence. These include:

• The choice of single versus double precision. The author found no signifi-

cant difference during first tests. But, again, bigger datasets might well need
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double precision.

• The line search tolerance. NPSOL allows to set a granularity for the line search.

As high dimensional neural network functions can be very rugged choosing

a smaller line search parameter might even influence convergence negatively.

Experiments show no difference. But again, this is more anecdotal and not

universal.

• Optimization options of the compiler. In this book the author only uses the

Intel compiler on Intel systems. Except for debugging purposes the author

uses the -fast option which provides sensible optimization without being

overly aggressive. Using more aggressive parameters does not influence con-

vergence in first experiments. However, I’d like to verify this in more detail.

• Different compilers. While I’m very satisfied with results from the Intel com-

piler, the author is very interested in trying the compiler from the Portland

Group. This compiler now offers auto parallelization on Nvidia graphic cards.

The question is, if the algorithm really translates to the GPU and how this

affects convergence.

The shared layer perceptron offers, in principle, a white box — or at least gray

box — approach because it uses only a single shared matrix. A look at the upper left

N×N square should prove interesting. These numbers tell us how the immediately

previous time step affects the immediately next time step. Due to sparsity most en-

tries will be zeroes but the remaining could be informative. One could also extend

the analysis to include all previous states that influence the present observeables.

The question remains how to interpret the matrices for an expert topology.

5.3.3 Financial Applications

Every model faces a fundamental challenge: how will it stand the test of time? The

author thinks to have demonstrated the robustness of the approach. However, the

models have not been traded. When trading a model a host of catches can appear:

• The tradeable price deviates from the modeled price. A model may correctly

forecast a price, for a certain day, and this price also appears. But it is not

tradeable. One gets slippage or volume is not sufficient. This affects especially

the transaction and investment decision support applications.
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• Retraining takes too long. In a live application one would typically retrain the

model when new data is available. One may not be able to do this in real time.

For the shared layer perceptron the minimum time interval is 20 minutes.

When using minute or tick data one would not be able to retrain for every new

data. This must not be a serious disadvantage. But one has to be aware of it.

• Hardware fails. The model is entirely quantitative. There is no «guts» feeling

in it — at least not in the forecast. One is heavily dependent on reliable

hardware, which may not be available. Think about it: one needs a cluster, a

redundant internet connection for data supply and an uninterruptible power

supply. The shorter the time frame the more important are these three points.

• Software fails. One may not be able to transmit the model’s decision in ade-

quate time to the broker.

• Markets «fail». Obviously, no model can account for outside shocks. One may

be caught in the wrong position with no possibility to get off.

All these are very valid concerns. One can only evaluate the importance of each

by trading the model — with real money. Only with real money will one encounter

realistic slippage and unfilled orders. Unfortunately the author didn’t have the

capacity to put together a live model for this book. As an aside: if you are interested

in trying the model live, do tell the author by all means.

Related to the above concerns is the topic of money management in all three

applications, but especially in the investment decision application. Normally, one

would protect positions with a stop loss. This will — probably — prevent catas-

trophic drawdowns. But it will — probably — also prevent good trades. The author

didn’t analyze the effect of money management rules.

It is not at all clear what happens when the time scale of the data changes. Will

the shared layer perceptron also work well for weekly data and for tick data. Only

empirical tests can reveal what is likely to happen. The author didn’t use other

timescales than daily. Both — shorter and longer — timescales have their own set

of problems associated with them:

• Longer timescales face increasing data sparsity. It is generally not a problem

to get sufficiently long history, i.e., a few hundred time steps, for weekly data.

However, the picture changes quickly when going to monthly or even yearly

data. Most data of interest will only be easily available since the 1980s with
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exceptions starting in the 1960s. One may be lucky and get — some — data

since the inception of, e.g., the New York Stock Exchange in 1792 or predeces-

sors of Frankfurter Wertpapierbörse in 1150, but that seems rather esoteric.

In principle a shared layer perceptron of appropriate size should put all avail-

able data to good use. But that remains to be seen.

• Shorter timescales face increasingly erratic behavior. Studies on market mi-

crostructure generally agree that finding a suitable price may take up to one or

two minutes, even in a liquid market. When feeding and training the shared

layer perceptron with ultra high frequency data it may well be that the net-

work merely learns noise. Using validation data will cause early stopping at

high error levels and the information content of the network may be nil. This

problem is not specific to the shared layer perceptron not even to neural net-

work. But the ease of use of the shared layer perceptron may lead to abuse.

In any case, only thorough empirical studies can demonstrate the behavior at

short timescales.

When data is scarce the question arises: which amount of data is sufficient for

successful training? Clearly, one will reduce the number of weights. But can we, e.g.,

use only 10 data points of yearly data and make sensible forecasts? The opposite

question is also of interest: what is the highest sensible amount of time steps

one can use? Adding more time steps will increase training time but should also

produce better forecasts. However, there should be a region in which adding more

data only marginally increases forecasting performance, if at all. This region will

also be different at various timescales. The shared layer perceptron topology still

misses a comprehensive analysis of this entire topic.

In this book the author uses daily data. Each new data point is considered to rep-

resent «one time step». Even daily data shows irregularities: one has weekends and

holidays. So one is, in fact, not using a daily timescale but a — crude — volatility

timescale where periods of no trading — hence no volatility — are left out. With

higher frequency data volatility time scales gain in importance. Only currencies

trade around the clock. Other assets pause during the night or even do not trade

in the early morning and late afternoon. The author didn’t analyze the effect of

a volatility time scale at all. However, when using higher frequency data one al-

most certainly will find differences between, e.g., strictly hourly data and the same

amount of data based on a volatility time scale. Not connected to neural networks
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but yet very interesting is the following question: how can one construct a volatility

time scale for several assets which trade around the clock in different timezones?

To the best of the author’s knowledge there still is a research deficit here. One

notices that time zone considerations already affect the model on daily data. This

will be much more accentuated when using higher frequency data.

In short: the evidence that the model works is only empirical. It is very unlikely

that one will one day have a unified theory on how markets work. But in the mean-

time much more robustness tests of the shared layer perceptron are needed. One

can neither prove that other classical models work. But they have stood the test of

time. The author hopes that the shared layer perceptron, too, will be much used.

Another criticism of the work also holds: the analysis could have been even

deeper. In the present form it does not extract all information that the shared layer

perceptron provides. This concerns especially the distribution of returns. In first

tests the author already noticed that distribution width varies among assets. What

does this tell us about the probability of the realization of a path? Can one be more

confident when distribution is narrow? And should one be wary if distribution is

wide?

Related to this the author also does not exploit the potential of the expert topol-

ogy. An interesting question remains: how much experts are enough? Also, the

author does not provide a method — except training error — to select the experts.

Possibilities include to select experts based on past performance. This allows to

give experts with good out of sample results in the past a more important weight.

It also creates a third type of memory: the — hidden – states are the short term

memory, the weights the long term memory and the history of weight changes dur-

ing retraining incorporates the very long term memory. The author does not know

of any reference analyzing this aspect. But it is an obvious next step for the shared

layer perceptron.

The author doesn’t investigate the use of dummy variables. These variables like

day of the week, day of the month, time of the day, and so on may play a signif-

icant role in improving forecast quality. Incorporating them does not even lead

to increased training times, because the shared layer perceptron does not have to

forecast them. It can simply extrapolate the time series from known rules. Also,

the author doesn’t research the effect of derived variables. Surely, technical indi-

cators provide different views on time series. Take an oscillator. There are two

possibilities: one trains the network to also forecast the oscillator. Then one can

214



check if forecasted return and forecasted oscillator match. If they don’t one should

be wary. Or: one does not forecast the oscillator but compute it from past time

steps and use this to — possibly — improve forecasts of future time steps. There is

very much space for creativity here! An even more esoteric application is: include

weather data and use professional weather forecasts for future time steps. This

could yield some predictive lift at least on weather dependent commodities.

Is it realistic to assume that every time step represents the same time interval?

In the present model the weekend transition from Friday to Monday is essentially

the same as any other transition during the week. This is linked to the problem

whether wall clock time is an adequate representation of time. Volatility based

time scales provide an alternative. However, considering assets from different time

zones it remains unclear how one can construct a unified volatility time scale.

The author doesn’t consider the problem of missing values because it does not

occur in the dataset. The shared layer perceptron provides a simple way to treat

missing values. One simply excludes them from error computation. Other studies

set missing values to zero. The author considers this to be a potential source of

errors. However, to be sure, the author would have to compare the two approaches.

Missing values also offer the possibility to use data of different timescales, e.g.,

daily and monthly data. One can inject monthly data on the day it becomes avail-

able and treat the other days as missing. Does this improve forecasts? It gives one

the opportunity to include general economic trends as opposed to daily market

jitter in the model. I’m thinking of, e.g., consumer price indices, jobless numbers,

GDP, and others. It is not sure that these numbers significantly influence short

term movements.

My last criticism is more general and concerns the coherent market model. Right

now the author is modeling an entire world market. The model proves to perform

well on each asset. If one is interested in a single asset shouldn’t one build an even

better model just for this asset? Does a dedicated model work better? Personally

the author has more trust in a general robust model than in a model which one

cannot check on other assets. But the author concedes that this needs a thorough

empirical study.
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5.3.4 Comprehensive Assessment

Looking at this book at a whole the reader will see that a framework linking the

steps from idea to model implementation is still missing. Such a framework would

include a step by step guide to facilitate the process of model building. It would

also help in taking away the fear from implementing a complex solution as the

author describes it in the three main chapters. Still, the author gives some concrete

recommendations in section 5.5.

The problem with presenting a unifying framework is that it links several profes-

sions. It has to speak the language of each profession:

• Typically, a corporate treasurer, a portfolio manager or a trader generates a

view. Here, the process starts. The view is a description in words of some

market phenomenon and how one would like to exploit it. Are you involved

with risk management, with commodity purchasing, with trading?

• Then you transmit the idea to a modeler, probably an applied mathematician

or an engineer. She puts the idea in the form of an algorithm. She probably

also clarifies some points that are vague in the original formulation.

• A programmer implements the algorithm. He has to have a solid grasp of

how to interface with price databases for back testing.

• It may well be that one needs additional hardware to implement ideas. Then

one turns to a hardware engineer. She specifies a system. She will also men-

tion, e.g., uninterruptible power supplies, backup space, failover hardware,

redundant connections, etc.

• You will buy the required system at your trusted vendor. Here you must think

about service level agreements. E.g., do you want your system to run 24/7?

This will cost you.

• Now, your system is up and running. But it needs continuous maintenance.

Your system administrator cares for your applications and computers running

smoothly. She is especially useful when you are using a grid solution similar

to the one the author mentions in this book. There will be problems with users

interfering with the system. Computers will break and you need someone to

fix them.
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• Finally, a grid solution is not compatible with every organizational policy. You

will have to talk to department heads, the chief information officer, and the

chief information security officer to pull through the grid concept. When you

are involving user’s personal workstations the data security officer will also

have his say.

Keeping track of the number of different professions involved one sees that there

are typically seven different groups to talk to. Each group has its own interests.

And each group has a different view of the world. Implementing a neural network

model with grid computing involves the entire organization. Some groups may be

represented by the same person. E.g., modeler and programmer are often the same.

System engineer and administrator are nearby competences.

One can only implement parts of what the author suggests. E.g., one could use

the shared layer perceptron without an organization wide grid. This already re-

duces some hassles. Or one can, as a treasurer, use a modeling software which in-

terfaces to the shared layer perceptron and deploy the model yourself. One looses

some flexibility but it simplifies the process.

In any case one still needs a framework which defines roles and interfaces. It is

not the focus of this book to develop this framework. The author clearly put techni-

cal, mathematical and application oriented aspects in the foreground. The author

acknowledges that the organizational aspect is simply missing. The author also

acknowledges that dealing with the organizational aspect is key to implementing

the ideas in a real context.

Another point concerns user friendliness. The software should facilitate access

to the underlying neural network model. With the web interface this is easily pos-

sible, without local install. However, the web interface is very sober. It does not

particularly engage the user. It is also not interactive. The author’s vision is to aug-

ment the web interface with, e.g., Web 2.0 techniques. Don’t get the author wrong.

The sober interface should still persist for experienced users. And I’m not a fan of

everything moving and gliding on a web page. But the graphical user interface is

important. Period. It is the first encounter with the application. And if one doesn’t

help first-time users they will drop an — otherwise good — application.

Another idea is to realize a local grid enabled client. One would have all the power

of local applications at your fingertips but still the grid engine for coarse grained

parallelization. This, however, raises new issues. One has to think about lost con-

nections and concurrency much more intensively than when every job starts on the
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server. Both software engineering topics are beyond the scope of this book. They

are nevertheless very important to spread neural network usage.

To summarize all of the above the author thinks that the following unanswered

questions are the most important. The author plans to address these first in further

research.

• How do you get from an idea to grid enabled predictive modeling with neural

networks?

• How robust is the model when used for real decision support?

• Is a general model better than a specialized model?

• How should you best select input time series for a shared layer perceptron?

Can you automate this process?

5.4 Further Research Areas

The critical assessment section already outlines aspects where more research is

warranted. The author will now highlight the most important aspects of every

chapter. Where appropriate concrete steps are described.

In the author’s opinion fine grained parallelization on the graphics card has a

bright future. The next logical step is to experiment with the FAUN code on a real

graphics card. This is a little bit complicated by the fact that GPU enabled FORTRAN

compilers have just started to appear. Otherwise it would be necessary to port the

source code to C. While this is certainly possible the author would like to avoid this.

The author is confident that the market of GPU enabled compilers will grow and

that GPU usage will be further simplified. The author thinks that it is realistic to

have a satisfactorily working version of FAUN on the graphics card by mid 2010.

Concerning expected speedup training neural networks falls into the category of

good-natured applications: once the computation is started no input or output is

necessary until the network is trained.

The potential of the shared layer perceptron topology is far from being exploited.

From the range of possible research the author would choose exploring properties

of the distribution. The author suggests to start with data used in this book. Then,

one could analyze different percentiles of forecasted distributions. This should

enhance quality of the forecast by providing confidence bands.
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Another interesting point concerns data intervals. The author would especially

like to research how the shared layer perceptron copes with intraday data. This

introduces a new challenge because even hourly data is not available at every time

of the day. Consider, e.g., assets which are only traded in certain time zones. Even

with highly traded assets like S&P500 futures the after-hour prices are based on

a much smaller volume. The question is whether the available prices on Globex

are indicative. The shared layer perceptron offers the possibility to let the network

run freely where no prices are available. The network produces an interpolation

of the unknown price dynamics. It is of interest to analyze, whether such a setup

improves intraday forecasts.

Relatedly, one could imagine merging long term and short term models. E.g., the

20 step forecast of a daily model could be augmented by the forecast of a monthly

model. This could help to spot divergences in the dynamics of the underlying

systems: if monthly data suggests a completely different result than daily data care

should be taken in the interpretation of the model. Similar ideas could apply when

considering a short term intraday model merged with a long term daily model.

The author would also like to examine the effect of exogeneous, non forecasted,

time series in model building. One domain of time series in this category includes

all dummy variables related to time: e.g., day of the week, day of the month, month,

holidays, a priori known economic events, etc. These are always known in ad-

vance. A second class includes observeables which are better forecasted using

other means. This is especially true for weather forecasts which play a consider-

able role especially in the pricing of food commodities. Fuels are involved, too.

One could take these forecasts as given exogeneously, teacher force the appropri-

ate states and neglect the error. These observeables would therefore act as true

input variables. If these observables manage to improve forecasts significantly this

is attractive because the improvement comes at reduced additional cost. There is

no need to calculate and feed back local training error on these states.

Considering financial applications one is obviously interested in improving per-

formance based on some financial criteria, generally some kind of return. Training

error is of secondary interest. As it is still unclear how much time series make

up a good model the author suggests to study thoroughly the effect of adding or

removing possible explanatory time series. What happens if one only takes equi-

ties or only currencies? What happens if one doubles the number of available time

series? What happens if one adds redundant time series? All these questions are —

219



in principle — easy to answer by performing the appropriate experiment.

One important aspect of this book is using shared layer perceptrons as part of a

financial decision support system. As already mentionned a decision support sys-

tems consists of more than just the mathematical kernel. The other components

which deliver a useable tool are just as important. Considering this it is important

for the author to put efforts into developing a tool which provides an easy to use in-

terface to the shared layer perceptron. One has to keep in mind that mathematical

details are better abstracted from most users.

The present book only considers financial applications. However, multi variate

multi step forecasts may of value in other domains, too. As the author has experi-

ence in the field of dynamic games the topic optimal control comes to mind. When

using a feedback controller one often only forecasts the next step of the dynamic

system. Many systems are slow to react. In these cases a multi step forecast might

offer added value. The forecast prevents overreaction. One may think of systems

like cars of airplanes. Especially airplanes will only react comparatively slowly to,

e.g., a change in direction. Can shared layer perceptrons improve dynamic game

modelling, especially when an analytical solution is not available? As a first ex-

ample the author could use investigations of the game of two cars, a collision

avoidance scenario. This has already successfully been addressed using a three

layer perceptron. A comparative study is of interest: can shared layer perceptrons

improve the reaction of the evader?

5.5 Management Recommendations

This section intends to give the reader some important aspects to consider if one

wants to implement grid enabled predictive modeling with neural networks. It is —

still — not a comprehensive framework. But the points give the reader criteria to

base a decision on.

• Using the FAUN grid computing client provides significant hardware cost sav-

ings if you already have user workstations available. Keep in mind that in-

stalling the grid computing client organization-wide might require to change

some networking setups.

• If you plan to buy new hardware for computation you don’t need expensive

massively parallel computers. Simple quad cores or dual quad core servers
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are sufficient.

• Communication requirements are low. An existing 100 MBit network can be

used without problems. If more than 20 clients are involved in the compu-

tation the author recommends using standard 1 GBit networking equipment.

In any case you don’t need more expensive high bandwidth or low latency

equipment because they are not required for coarse grained parallelization.

• Do you have appropriate equipment in place to guarantee that computers are

always available? Otherwise Murphy’s Law will cause hardware to go down

when you most need it.

• What do you want to model? Are you sure you need a non linear model? Or

is a standard linear model enough? Just test you problem with any statistics

software. Do you get satisfactory results? If you do, you can probably stop

here.

• Do you have sufficient data available? Neural networks are generally best em-

ployed when history abounds. You should have several hundred time steps.

But a sparse shared layer perceptron can in principle also perform on much

fewer data.

• Select time series wisely. Too much time series will increase training times.

Too few time series will not lead to the desired affect of modeling an entire

market. As a heuristic you should not only take time series from the asset

class you are trying to model. Other assets should also be included. Using

approximately 25 time series provides good results.

• Invest great efforts in data quality and data analysis. Neural network learning

depends exclusively on the data. This means that outliers will be learned

or will at least affect forecasts negatively. Compute the usual descriptive

statistics but do not forget to also perform a visual analysis. This will rapidly

uncover anomalies and periods which might be difficult to forecast.

• Do not judge network performance on training error alone. The best per-

formance measure is always the one you are interested in. If you are, e.g.,

interested in timing the lowest entry point within the next 20 days then you

have to benchmark the network on this.
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• Test a model on different markets and different time periods. Only a model

which performs well on a broad range is trustworthy. The shared layer per-

ceptron will generally perform well or very well on most assets and most time

spans. Contrast this to benchmark models.

• Do not trust any model blindly. Always check if market circumstances are

such that you can realistically assume the model to work properly. Account

for market shocks.

Paying attention to the above points will not cause one to beat the market in

every case. But it assures that one is aware of possibilities and limitations of FAUN

in general and the grid computing version in particular.

5.6 Some Final Words. . .

Writing this book provided me with a lot of pleasure. It is always rewarding when

germs of ideas take form. The author hopes that you had as much pleasure reading

this book. The author hopes that he could transfer some of his enthusiasm vis-à-

vis neural networks to the reader. If you have any open question, please do not

hesitate to contact the author, e.g., at mettenheim@iwi.uni-hannover.de. The

author is always thankful and open for feedback, further ideas and co-operations.

And now: happy neural networking!
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JQ2 (= VHB JQ2) The Jourqual 2 ranking was published in 2008 and evaluates

756 journals and conferences for Business Administration and Management

under supervision of the German Verband der Hochschullehrer für Betrieb-

swirtschaft e. V. (VHB). Methodological details of the first Jourqual 1 rank-

ing can be found in: Hennig-Thurau, Thorsten; Walsh, Gianfranco; Schrader,

Ulf (2004): VHB-JOURQUAL: Ein Ranking von betriebswirtschaftlich-relevanten

Zeitschriften auf der Grundlagen von Expertenurteilen, Zeitschrift für betrieb-

swirtschaftliche Forschung (zfbf), Vol. 56, pages 520–543. The best available

ranking is A+.

WI (= VHB WKWI & GI FB WI) This is a ranking targeted at Information Systems Re-

search und supervision of both the German VHB Wissenschaftliche Kommis-

sion Wirtschaftsinformatik (VHB WKWI) and the Gesellschaft für Informatik e.

V. Fachbereich Wirtschaftsinformatik (GI FB WI). It evaluates 176 journals and

conferences in the field. It was first published in the February 2008 volume

of Wirtschaftsinformatik by the German scientific commission for Information

Systems Research (WKWI), pages 155–163. The best available ranking is A.

1. Plattformunabhängiges Softwareengineering eines Transportmodells zur ganz-

heitlichen Disposition von Strecken- und Flächenverkehren, IWI Discussion Pa-

per #38, about 40 pages, Institut für Wirtschaftsinformatik, Leibniz Univer-

sität Hannover, to appear January/February 2010 (in German, with Tim Rick-

enberg and Michael H. Breitner)

2. Prognose und Handel von Öl-Future-Spreads durch Multi-Layer-Perceptrons und

High-Order-Neuronalnetze mit FAUN 1.1, IWI Discussion Paper #35, 39 pages,

Institut für Wirtschaftsinformatik, Leibniz Universität Hannover, September

18th, 2009 (in German, with Christoph Polus and Michael H. Breitner)

3. Prognose und Handel von Derivaten auf Strom mit Künstlichen Neuronalen

Netzen, IWI Discussion Paper #34, 29 pages, Institut für Wirtschaftsinformatik,

Leibniz Universität Hannover, September 11th, 2009 (in German, with Horst-

Oliver Hofmann and Michael H. Breitner)

4. Derivative Optimization and Design in Valerie Belton, Erwin Pesch, Gerhard

J. Woeginger (eds.), Proceedings of the 23rd European Conference on Oper-

ational Research, July 5–8, 2009, Universität Siegen, Bonn (with Michael H.

Breitner)
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5. Multi-Objective Optimization for Planning of Central IT Resources with Focus

on Green IT in Valerie Belton, Erwin Pesch, Gerhard J. Woeginger (eds.)i, Pro-

ceedings of the 23rd European Conference on Operational Research, July 5–8,

2009, Universität Siegen, Bonn (with Marc Klages and Michael H. Breitner)

6. Numerical Solution of the Game of Two Cars with a Neurosimulator and Grid

Computing in Annals of the International Society for Dynamic Games (ISDG)

Vol. 10, pp. 207–230, Birkhäuser, Boston, May 2009 (with Michael H. Breitner,

internationally renowned annals for Dynamic Games, no German ranking due

to only few German researchers)

7. Derivative Design in Christian Dunis, Michael Dempster, Virginie Terraza (eds.),

Proceedings of the 16th International Conference on Forecasting Financial

Markets: Advances for Exchange Rates, Interest Rates and Asset Management,

May 27–29 2009, Luxembourg (with Michael H. Breitner)

8. Industrialization of Derivative Design: Integrated Risk Management with the Fi-

nancial Information System WARRANT-PRO-2 in Hans Robert Hansen, Dimitris

Karagiannis, Hans-Georg Fill (eds.), Business Services: Konzepte, Technolo-

gien, Anwendungen, 9. Internationale Tagung Wirtschaftsinformatik, Febru-

ary 25–27 2009, Vienna, Volume 2, pp. 255–264 (with Michael H. Breitner, HB

0.1, JQ2 C, WI A)

9. Entwicklung des Hannoveraner Referenzmodells für Sicherheit und Evaluation

an Fallbeispielen, IWI Discussion Paper #32, 31 pages, Institut für Wirtschaftsin-

formatik, Leibniz Universität Hannover, February 18th, 2009 (in German, with

Sebastian Schmidt and Michael H. Breitner)

10. Ganzheitliche Disposition von Strecken- und Flächenverkehren durch kombi-

nierten Einsatz modifizierter Operations Research Verfahren in Proceedings

der Fachtagung der GOR AG Logistik und Verkehr, 13./14. 11. 2008, Frankfurt

am Main (in German, with Marcus Gerasch, Michael H. Breitner and Lothar

Schulze)

11. Akzeptanz von Sicherheitsmaßnahmen: Modellierung, Numerische Simulation

und Optimierung, IWI Discussion Paper #28, 30 pages, Institut für Wirtschaftsin-

formatik, Leibniz Universität Hannover, October 16th, 2008 (in German, with

Matthias Paul and Michael H. Breitner)
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12. Intelligent Decision Support Systems and Neurosimulators: A Promising Al-

liance for Financial Services Providers in H. Österle, J. Schelp, R. Winter (eds.),

Proceedings of ECIS 2007, St. Gallen, 7th–9th June 2007 (with Michael H. Bre-

itner, Frank Köller and Simon König, HB 0.2, JQ2 B, WI A)

13. Distributed Neurosimulation in H.-D. Haasis, H. Kopfer, J. Schönberger (eds.),

Operations Research Proceedings 2005, Selected Papers of the Annual Interna-

tional Conference of the German Operations Research Society, Bremen, Sprin-

ger Verlag, Heidelberg, published September 2006, 6 pages (with Michael H.

Breitner)

14. Dynamic Games with Neurosimulators and Grid Computing: The Game of Two

Cars Revisited in Proceedings of the 12th International ISDG Symposium on

Dynamic Games and Applications, July 3rd–6th, 2006, Sophia Antipolis/Riviera,

24 pages (with Michael H. Breitner)

15. Coarse-grained Parallelization of the Advanced Neurosimulator FAUN 1.0 with

PVM and the Enhanced Cornered Rat Game Revisited, International Game The-

ory Review (IGTR), Vol. 7, No. 3, pp. 1–19, September 2005 (with Michael

H. Breitner, internationally renowned journal for (Dynamic) Game Theory, no

German ranking due to only few German researchers)

16. Neural Network Forecasting with High Performance Computers in E. P. Hofer, E.

Reithmeier (eds.), Proceedings of the 13th International Workshop on Dynam-

ics and Control — Modeling and Control of Autonomous Decision Support

Based Systems, Wiesensteig, Shaker, Aachen, May 2005, 9 pages (with Michael

H. Breitner)

17. Coarse-grained Parallelization of the Advanced Neurosimulator FAUN 1.0 with

PVM in Michael H. Breitner (ed.), Proceedings of the Fourth International ISDG

Workshop, Goslar, May 19th–21st, 2003, Institut für Wirtschaftsinformatik,

Leibniz Universität Hannover, 2003, 15 pages (with Michael H. Breitner)
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