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Abstract
Insurance and financial products, companies and markets are highly complex. An under-
standing of the inherent upside and downside risk requires suitable tools for a detailed
analysis. In addition, several crises in the history of the financial system have shown that
powerful regulatory frameworks are indispensable in order to guarantee that products,
firms and markets provide benefits to the society. These issues are the focus of this thesis.

Classical monetary risk measures are functionals that quantify the downside risk of po-
sitions. They facilitate a better understanding of the risks in products, companies and
markets, and they are an important basis for regulation – in particular in the context of
capital requirements. Risk measures have been studied intensively over the past twenty
years. The present thesis focuses on the following aspects:

• From a practical point of view, the implementation of risk measures in the context of
Monte Carlo simulations is an important issue; for a certain class of risk measures, we
design and evaluate their efficient estimation via a stochastic root finding algorithm.

• The thesis contributes to the development of risk measures and the evaluation of their
merits and disadvantages. Classical risk measures typically evaluate exogenous po-
sitions. We investigate feedback from trading and price impact and suggest suitable
liquidity-adjusted risk measures. We also consider risk measurement in networks of
firms and investigate the issues of optimal capital allocation and optimal risk shar-
ing between entities within a network. We find that firms may hide a substantial
portion of their downside risk if they use V@R-based risk measures as a basis for
their capital requirements.

• We investigate the impact of insurance premium taxation. This tax on many insur-
ance products differs from the standard tax scheme: the value-added tax.

• Finally, we focus on a specific functional of the upside and downside risk, the market
consistent embedded value and its components within an asset-liability management
model; this requires a combination of different valuation approaches and an integra-
tion of actuarial and financial perspectives.

Keywords: risk management, regulation, monetary risk measures, (solvency) capital requirements,
corporate networks, optimal risk sharing, network risk, (set-valued) capital allocation, liquidity risk,
insurance premium tax, asset-liability management, market consistent embedded value, stochastic
root finding, value at risk, average value at risk, range value at risk, utility-based shortfall risk,
optimized certainty equivalents, distortion risk measures
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Introduction

Motivation. Insurance and financial products, companies and markets are highly com-
plex. An understanding of the inherent upside and downside risk requires suitable tools for
a detailed analysis. In addition, several crises in the history of the financial system have
shown that powerful regulatory frameworks are indispensable in order to guarantee that
products, firms and markets provide benefits to the society. These issues are the focus of
this thesis.

Classical monetary risk measures are functionals that quantify the downside risk of
positions. They facilitate a better understanding of the risks in products, companies and
markets, and they are an important basis for regulation – in particular in the context of
capital requirements. Risk measures have been studied intensively over the past twenty
years. The present thesis focuses on the following aspects:

• From a practical point of view, the implementation of risk measures in the context of
Monte Carlo simulations is an important issue; for a certain class of risk measures,
we design and evaluate in Chapter 1 of this thesis their efficient estimation via a
stochastic root finding algorithm.

• Chapters 2 - 4 of the thesis contribute to the development of risk measures and the
evaluation of their merits and disadvantages. Classical risk measures typically evalu-
ate exogenous positions. We investigate feedback from trading and price impact and
suggest suitable liquidity-adjusted risk measures. We also consider risk measurement
in networks of firms and investigate the issues of optimal capital allocation and op-
timal risk sharing between entities within a network. We find that firms may hide a
substantial portion of their downside risk if they use V@R-based risk measures as a
basis for their capital requirements.

In the last two chapters of the thesis, we investigate two topics that were motivated by
discussions with practitioners:

• Chapter 5 investigates the impact of insurance premium taxation. This tax on many
insurance products differs from the standard tax scheme: the value-added tax.

• Like the first part of this thesis, Chapter 6 looks at functionals for the evaluation
of risk. Here, we focus on a specific functional of the upside and downside risk,
the market consistent embedded value and its components within an asset-liability
management model; this requires a combination of different valuation approaches
and an integration of actuarial and financial perspectives.

1



2 Introduction

Outline. The thesis is structured as follows:

1. In Chapter 1, we design and analyze Monte Carlo methods for the estimation of an
important and broad class of convex risk measures that is constructed on the basis
of optimized certainty equivalents (OCEs). This family of risk measures – originally
introduced in Ben-Tal & Teboulle (2007) – includes, among other risk measures,
e.g., the entropic risk measure or average value at risk. The computation of OCEs
involves a stochastic optimization problem which can be reduced to a stochastic
root finding problem via a first-order condition. We describe suitable algorithms and
illustrate their properties in numerical case studies.

2. Risk measures were originally applied to exogenous random variables. The actions
and interactions of market participants do, however, influence the value of assets and
liabilities, and richer models are an attempt to capture these effects. An important
type of risk, especially during times of crises, is the liquidity risk due to price impact
of trades. As observed by Acerbi & Scandolo (2008), this type of risk requires adjust-
ments to classical portfolio valuation and risk measurement. The key contribution of
Chapter 2 is the construction of a new, cash-invariant liquidity-adjusted risk measure
that can naturally be interpreted as a capital requirement. We clarify the difference
between our construction and the one of Acerbi & Scandolo (2008) in the framework
of capital requirements using the notion of eligible assets, as introduced by Artzner,
Delbaen & Koch Medina (2009). Numerical case studies illustrate how price impact
and limited access to financing influence the risk measurements. We apply stochas-
tic root finding algorithms – as proposed in Chapter 1 – in order to compute the
liquidity-adjusted average value at risk and liquidity-adjusted utility-based shortfall
risk.

3. Chapter 3 considers risk of networks of firms. In such a setting, new phenomena
arise that cannot be observed in models of single firms, for example, risk sharing or
systemic interaction. We propose a unified framework for the regulation of corporate
networks. Its cornerstone is the new notion of a set-valued network risk measure that
quantifies network risk by the set of vectors of additional capital requirements that
lead to acceptable regulatory outcomes. In this setting, we analyze capital alloca-
tions that are optimal from the point of view of the network’s management while
respecting regulatory requirements at the same time. We show that the Euler allo-
cation principle can be embedded into our set-valued setting, and we analyze capital
allocations in numerical examples. Since capital allocations interfere with manage-
ment strategies, including asset-liability management strategies and internal capital
transfers, we also study their impact on optimal capital allocations. Numerical case
studies indicate that consolidated balance sheets can be mimicked via optimal man-
agement strategies.

4. If risk capital of a network of firms is not computed on the basis of a consolidated
balance sheet, but defined as the sum of the capital requirements of the sub-entities,
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risk sharing becomes highly important. While coherent risk measures are not prob-
lematic, downside risk can be hidden when V@R-based risk measures are used. In
Chapter 4, we discuss the impact of risk sharing and asset-liability management on
capital requirements. Our analysis contributes to the evaluation of the merits and
deficiencies of different risk measures. In particular, we highlight that the class of
V@R-based risk measures allows for a substantial reduction of the total capital re-
quirement in corporate networks that share risks between entities. We provide case
studies that complement previous theoretical results and demonstrate their practical
relevance. For large networks, optimal asset-liability management is often contrary
to those strategies that are desirable from a regulatory point of view.

5. In Chapter 5, we analyze the impact of insurance premium taxation. In many coun-
tries insurance premiums are subject to an insurance premium tax that replaces
the common value-added tax (VAT) used for most products and services. Insurance
companies cannot deduct VAT paid on inputs from premium tax; also corporate
buyers of insurance cannot deduct premium tax payments from VAT on their out-
puts. Such deductions would be allowed, if insurance premiums were subject to VAT
instead of insurance tax. We investigate the impact of the premium tax on insurance
companies, insurance holders and government revenues from multiple perspectives.
We explicitly compare tax systems with premium tax and tax systems that allow
deductions. We find that the competitiveness of corporate buyers of insurance, the
ruin probabilities of insurance firms and their solvency capital are hardly affected by
the tax system. In contrast, the tax system has a significant influence on the cost of
insurance, insurance demand, government revenues and the profitability of insurance
firms.

6. Chapter 6 provides an introduction to the market consistent embedded value (MCEV)
within the context of an asset-liability management model that probabilistically
models both the asset and the liability side. This highlights the intertwined ac-
tuarial and financial valuation of the MCEV. We present a unified framework that
shows how a martingale measure for the risk-neutral valuation of replicable risks and
the statistical measure for the computation of the cost of capital of non-hedgeable
risks are combined. The definition of the cost of capital is based on monetary risk
measures.

7. Appendix B is an additional, technical chapter that discusses the notion of redistri-
bution risk measures. This new definition provides a unifying framework for liquidity-
adjusted risk measures and network risk measures.

Literature. Chapters 1, 2, 5 & 6 are based on the following publications:

• The work presented in Chapter 1 was previously published in Proceedings of the 2013
Winter Simulation Conference as Stochastic Root Finding for Optimized Certainty
Equivalents by Hamm, Salfeld & Weber (PhD advisor). The conceptional ideas were



4 Introduction

suggested by Stefan Weber. The displayed figures were created by Thomas Salfeld.
All authors developed the formalism, discussed the results and jointly wrote the
paper.

• The work presented in Chapter 2 was previously published in Mathematics and
Financial Economics as Liquidity-Adjusted Risk Measures by Weber (PhD advisor),
Anderson, Hamm, Knispel, Liese & Salfeld. The conceptional ideas were suggested by
Stefan Weber. Figures of liquidity-adjusted portfolio values were created by Thomas
Salfeld. I carried out the numerical case studies based on the findings in Chapter
1. Moreover, I embedded the liquidity-adjusted risk measure into the framework of
redistribution risk measures, see Appendix B. All authors discussed the results and
jointly wrote the paper.

• The work presented in Chapter 5 was previously published in European Actuarial
Journal as The Impact of Insurance Premium Taxation by Degelmann, Hamm &
Weber (PhD advisor). All authors conceived and planned the studies and jointly
wrote the paper.

• A German version of the work presented in the introductory part of Chapter 6,
Sections 6.1 & 6.2 was previously published in Der Aktuar under the title Market
Consistent Embedded Value – eine praxisorientierte Einführung by Becker, Cottin,
Fahrenwaldt, Hamm, Nörtemann & Weber (PhD advisor). All authors contributed
equally to this published paper. All extensions in Chapter 6 were developed by myself
in discussion with my supervisor.

Chapters 3 & 4 are based on a working paper and a preprint:

• The work presented in Chapter 3 is based on the working paper Network Risk,
Network Regulation, and Network Optimization by Hamm, Knispel & Weber (PhD
advisor) that is still work in progress. All authors contributed equally to this chapter.

• The work presented in Chapter 4 is based on the preprint Optimal Risk Sharing
in Insurance Networks – An Application to Asset-Liability Management by Hamm,
Knispel & Weber (PhD advisor). The final version is accepted for publication in
European Actuarial Journal. All authors contributed equally to this chapter.

Other references on which the presented research is based are discussed in detail in the
individual chapters of the thesis.



1 | Stochastic Root Finding for Optimized Cer-
tainty Equivalents

The original version of this chapter was previously published in Proceedings of the 2013 Winter
Simulation Conference, pp. 922-932, 2013, see Hamm, Salfeld & Weber (2013).

Global financial markets require suitable techniques for the quantification of the down-
side risk of financial positions. The seminal papers of Artzner, Delbaen, Eber & Heath
(1999) and Föllmer & Schied (2002) triggered an intensive scientific discussion about sen-
sible risk measures with economically meaningful properties. However, there are not many
contributions in the literature on the Monte Carlo simulation and implementation of risk
measures – an issue of crucial importance for the implementation in practice.

This chapter introduces a new Monte Carlo simulation technique for an important
and broad class of convex risk measures, the optimized certainty equivalents (OCE). This
family of risk measures was suggested by Ben-Tal & Teboulle (2007) and includes, among
others, the entropic risk measure and average value at risk. Average value at risk, also
known as tail value at risk, conditional value at risk, or expected shortfall, plays already
an important role in practice and provides, for example, the basis for the Swiss Solvency
Test for insurance firms.

The computation of OCE-risk measures involves the solution of a stochastic optimiza-
tion problem. The key contribution of the present chapter is to realize that by a first-order
condition the Monte Carlo estimation of OCE-risk measures can be reduced to a two-step-
procedure: the first step consists in solving a stochastic root finding problem, the second
step amounts to a standard Monte Carlo simulation of a value function at the argument
that was computed in the first step. Our observation allows us to use stochastic root finding
techniques for the purpose of risk measurement that could previously only be applied to
a very specific class of risk measures, i.e., utility-based shortfall risk, see Dunkel & Weber
(2010), and Hamm (2012) for a preliminary extension of their results. This chapter shows
that stochastic root finding possesses much higher relevance for financial risk management
than would previously have been expected in view of the existing literature.

The chapter is organized as follows: Section 1.1 reviews the (now standard) axioms of
risk measures, see Artzner et al. (1999) and Föllmer & Schied (2002). Section 1.2 presents
the OCE-risk measures. We review examples (see Ben-Tal & Teboulle (2007)) illustrating
that well-known risk measures like the entropic risk measure and the average value at risk
are special cases of OCEs, corresponding to an exponential and piecewise linear utility

5



6 CHAPTER 1. STOCHASTIC ROOT FINDING FOR OPTIMIZED CERTAINTY EQUIVALENTS

function, respectively. The computation of OCEs requires the solution of a stochastic
optimization problem that can be reduced to a stochastic root finding problem under
suitable conditions. We present suitable algorithms in Section 1.3. The risk measures
discussed in this chapter and the suggested algorithms are illustrated in the context of
numerical case studies in Section 1.4. We calculate both the entropic risk measure and
the average value at risk, as well as a third OCE that does not correspond to a classical
risk measure and is defined in terms of quartic utility. Section 1.5 concludes with a short
summary of the main findings.

1.1 | Risk Measures

For the convenience of the reader, the current section reviews standard notions of the
theory of static risk measures. For a detailed description, we refer to the excellent book
by Föllmer & Schied (2011). We assume that there is one time period characterized by
the current time t = 0 and the future t = 1. Letting (Ω,F) be a measurable space of
possible scenarios, a financial position is modeled by a measurable mapping X : Ω → R.
The value X(ω) ∈ R for a specific ω ∈ Ω represents the discounted net future value of X
if the scenario ω occurs. We fix a family X of financial positions, assuming that X is a
vector space containing the constants. Our aim is to summarize the risk of any financial
position X ∈ X by a number ρ(X) ∈ R.

Definition 1.1.1. A map ρ : X → R is called monetary risk measure, if it satisfies the
following conditions for X,Y ∈ X :

(i) Monotonicity: If X ≤ Y , then ρ(X) ≥ ρ(Y ).

(ii) Cash-invariance: ρ(X +m) = ρ(X)−m, for all m ∈ R.

This definition formalizes that (i) risk should increase, if positions become worse, and
that (ii) risk is measured on a monetary scale.

Definition 1.1.2. A monetary risk measure ρ : X → R is called convex risk measure, if
it satisfies the following condition for X,Y ∈ X and λ ∈ [0, 1]:

Convexity: ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ).

Convexity formalizes that diversification of financial positions does not increase risk
measurements.

Definition 1.1.3. A convex risk measure ρ : X → R is called coherent risk measure, if it
satisfies the following condition for X ∈ X :

Positive homogeneity: If λ ≥ 0, then ρ(λX) = λρ(X).

Example 1.1.4. We recall three well-known risk measures.
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(i) Value at risk: For λ ∈ (0, 1) we define

V@Rλ(X) := inf{m ∈ R | P (X +m < 0) ≤ λ}.

The value at risk (V@R) at level λ yields the smallest monetary amount m that
needs to be added to the financial position X in order to avoid that the probability
of a loss exceeds λ. V@R is generally not convex, but only positively homogeneous.

(ii) Average value at risk: For λ ∈ (0, 1) we define the coherent risk measure

AV@Rλ(X) := 1
λ

∫ λ

0
V@Rν(X) dν,

which corresponds, under weak technical conditions, to the conditional expectation
of a loss beyond the V@Rλ(X). The average value at risk (AV@R) is also known as
conditional value at risk.

(iii) Utility-based shortfall risk: Letting l : R→ R be an increasing, non-constant, convex
loss function and λ the threshold level, we define the convex risk measure

UBSRl,λ(X) := inf {m ∈ R | E[l(−(X +m))] ≤ λ}.

Utility-based shortfall risk (UBSR) of a financial position X equals the smallest
monetary amount m that needs to be added to X in order to avoid that the expected
utility −E[l(−(X+m))] is less than the threshold level −λ. The special case l(−X) =
e−βX admits the representation

UBSRl,λ(X) = 1
β

(
log

(
E
[
e−βX

])
− log(λ)

)
,

see Appendix A, Lemma A.0.10 (i) for details.

1.2 | Optimized Certainty Equivalents

The current section summarizes important results on OCEs that provide the basis for the
algorithms suggested below. For further details, we refer to the original reference Ben-Tal
& Teboulle (2007).

In the following, we let u : R → [−∞,∞) be a concave and non-decreasing utility
function satisfying u(0) = 0, u(x) ≥ 0 ∀x ≥ 0, and u(x) < x ∀x.

Definition 1.2.1. Letting u be a utility function as above and X ∈ L∞ be a random
variable, the optimized certainty equivalent (OCE) is defined by the map OCEu : L∞ → R
with

OCEu(X) = sup
η∈R
{η + E [u(X − η)]} . (1.1)
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As shown by Ben-Tal & Teboulle (2007), the negative of an OCE defines a convex risk
measure. This is stated by the following corollary.

Corollary 1.2.2. Under the assumptions of Definition 1.2.1,

ρ(X) := −OCEu(X), X ∈ L∞,

defines a convex risk measure.

OCE thus yields a simple method for the construction of convex risk measures associ-
ated to a utility function u. As demonstrated in Ben-Tal & Teboulle (2007), the optimal
η∗ that maximizes (1.1) satisfies a first-order condition – provided that u is continuously
differentiable and strictly concave. The first-order condition is given by the equation

E
[
u′ (X − η∗)

]
= 1. (1.2)

This equation immediately leads to a stochastic root finding problem. An alternative ap-
proach would consist in a gradient-based simulation optimization procedure, as described
in Kim (2006), Hong & Nelson (2009), Fu (2006), Fu (2008), Andradóttir (1998), and
Henderson & Nelson (2006). In the current setting, the derivative of the function u that
defines the risk measure can be computed directly.

Note that the derivation of Equation (1.2) involves an exchange of the order of dif-
ferentiation and integration. If X ∈ L∞ and u is continuously differentiable and strictly
concave, u′(X − η) is almost surely bounded from above and below for any η ∈ R which
justifies the first-order condition. In the general case, the assumptions of the differentiation
lemma need to be verified, see, e.g., Lemma 16.2. in Bauer (2001).

Example 1.2.3. (i) If we choose a utility function of the form u(t) = 1− e−βt, β > 0,
the optimal η∗ – computed according to (1.2) – coincides with the negative of utility-
based shortfall risk with loss function l(−X) = e−βX and threshold level λ = 1

β . The
risk measure defined in Corollary 1.2.2 is thus given by

ρ(X) = UBSRl, 1
β

(X)− β − 1
β

For β = 1, this risk measure coincides with the entropic risk measure with parameter
1, i.e.,

ρ1(X) = log
(
E
[
e−X

])
.

We refer to Appendix A, Lemma A.0.10 (ii) for a detailed computation.

(ii) For the utility function u(t) = min{0, α t}, α > 1, the optimal η∗ calculated according
to (1.2) coincides with the negative of V@R at level 1

α . To be more precise, it is

η∗ = F−1
X

( 1
α

)
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where F−1
X (λ) = qX(λ) is the λ-quantile of the random variable X. Hence, according

to Example A.0.3 (ii) (see Appendix A), it is η∗ = −V@R 1
α

(X). The risk measure
defined in Corollary 1.2.2 is thus given by

ρ(X) = AV@R 1
α

(X).

Again, we refer to Appendix A, Lemma A.0.10 (iii) for a detailed computation.

Monte Carlo Methods. The main contribution of this chapter is a new Monte Carlo
method for the computation of OCE-risk measures that are defined according to Corol-
lary 1.2.2. The first-order condition (1.2) allows for the application of stochastic root
finding methods. These can be used instead of stochastic optimization procedures that are
directly applied to the defining Equation (1.1). We will explain two alternative approaches
to compute the OCE-risk measure on the basis of stochastic root finding.

Method 1: According to Equation (1.2) the optimal η∗ in (1.1) is the unique root of the
function

g(η) = E
[
u′ (X − η)

]
− 1. (1.3)

The root η∗ can thus be computed by a stochastic root finding scheme, as explained in the
next section. In a second step, the associated OCE and the associated OCE-risk measure
can be estimated using a standard Monte Carlo procedure, since

OCEu(X) = η∗ + E [u (X − η∗)] .

Method 2: Alternatively, both the optimal η∗ in (1.1) and the corresponding OCE could
jointly be estimated by solving a 2-dimensional stochastic root finding problem. Denoting
OCEu(X) = ξ∗, the pair (ξ∗, η∗) satisfies

0 = ξ∗ − η∗ − E [u (X − η∗)]

0 = E
[
u′ (X − η∗)

]
− 1

However, a 2-dimensional root finding algorithm turns out to be less efficient than
Method 1. This is not surprising, since the equation characterizing η∗ does not depend on
ξ∗. It is thus preferable to estimate η∗ first, and to compute ξ∗ only for an approximately
correct value of η∗. Intermediate computations of ξ∗ for less precise estimates of η∗ do not
accelerate the computation of η∗ – as it would be the case in a fully coupled system. For
this reason, we will concentrate on Method 1 in the following sections.

1.3 | Stochastic Approximation

In this section, we provide a brief survey of stochastic root finding algorithms and explain
how these can be applied to the computation of OCEs and the corresponding risk measures.
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For further information on stochastic root finding, we refer to Dunkel & Weber (2010) and
the references therein. A very detailed description of the topic is provided by Kushner &
Yin (2003).

Robbins-Monro Algorithm. Our purpose is to construct an algorithm yielding a se-
quence of estimators (ηn), n ∈ N, which converges quickly to the sought root η∗ of the
function g(η) defined in (1.3). The OCE can then be obtained in a second step by a Monte
Carlo procedure.

In many situations, stochastic root finding will not be based on naive Monte Carlo
procedures, but on sophisticated variance reduction techniques. It is thus advisable to
describe the algorithms in a way that allows for variance reduction. This approach is, for
example, explained in Dunkel & Weber (2010). Moreover, in practice, random numbers
are typically drawn uniformly on the interval (0, 1). We will thus use uniform random
variables as the starting point for the simulation scheme.

For practical and mathematical reasons, we design algorithms that are restricted to a
bounded domain. Letting −∞ < a < η∗ < b <∞, we define for t ∈ R the projection

π(t) =


a, t ≤ a,
t, a < t < b,

b, b ≤ t.

Assume that for any η ∈ [a, b] there exists a known function Yη : (0, 1)→ R such that
for any on (0, 1) uniformly distributed random variable U , we have

g(η) = E [Yη(U)] .

The Robbins-Monro algorithm for the estimation of η∗ is constructed as follows:

1. Choose

• a constant γ ∈
(

1
2 , 1
]
,

• a constant c > 0, and

• a starting point η1 ∈ [a, b].

2. Calculate the sequence of estimators recursively:

ηn+1 = π

(
ηn + c

nγ
Yηn (Un)

)
, n ∈ N,

for a sequence (Un) of independent, unif(0,1)-distributed random variables.

In the case considered in the chapter, a simple choice of Yη could consist in Yη(U) =
1− u′ (qX(U)− η), where qX denotes the quantile function of X.

Theorem 1.3.1. Suppose that the function g(η) is well-defined and finite for all η ∈ [a, b].
Moreover, assume that supη∈[a,b] Var (Yη (Un)) < ∞. Then, the sequence (ηn)n converges
P -almost surely to the root η∗ of function (1.3).
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Besides the consistency of the algorithm, its convergence rate can be further analyzed
on the basis of limit theorems for the rescaled quantities

√
nγ (ηn − η∗), n ∈ N . For precise

conditions, we refer to Dunkel & Weber (2010).

Theorem 1.3.2. Under suitable conditions, the rescaled quantities exhibit the following
asymptotic behavior:
If γ = 1, then

√
n (ηn − η∗)→ N

(
0, −c

2Var (Yη∗(U))
2cg′ (η∗) + 1

)
.

If γ ∈
(

1
2 , 1
)
, then

√
nγ (ηn − η∗)→ N

(
0, −cVar (Yη∗(U))

2g′ (η∗)

)
.

1.4 | Numerical Case Studies

The aim of the current section is to illustrate the properties of Method 1 in numerical
case studies. We focus on three examples of OCEs: the entropic risk measure, average
value at risk, and an OCE defined in terms of quartic utility. In the first two cases, we
analyze the example in which X is standard normally distributed. In the third case in
which the OCE corresponds to quartic utility, we investigate the impact of the properties
of the distribution. We provide results for X being distributed either according to a normal
distribution or a Student’s t-distribution. Both distributions are assumed to have the same
mean and variance. Observe that t-distributions are heavy tailed.

The estimation of the root η∗ of (1.3) is compared for different Robbins-Monro algo-
rithms (RM). We generated results from the recursive algorithms for values n = 100, 300,
1 000, 3 000, 10 000, 30 000. For each recursion depth n, we repeated the simulation N = 104

times in order to obtain an empirical distribution of the RM-estimator of the root. The
starting point η1 of each run was sampled uniformly from the interval [a, b], where a and b
are the lower and upper projection-bounds. In the cases of the entropic risk measure and
average value at risk, we set [a, b] := [η∗−5, η∗+5]; in the case of quartic utility, we choose
[a, b] := [η∗−10, η∗+10]. In real-world applications η∗ is, of course, unknown. Choosing the
bounds a and b will in this case require pre-estimates of η∗ before running the algorithms.
The fact that we assumed that the projection interval is symmetric about η∗ is not crucial
for our results. The Robbins-Monro algorithm was simulated for the parameters γ = 0.7
and γ = 1 setting c = 1.

1.4.1 | Entropic Risk Measure

Let u be the exponential utility function u(t) = 1 − e−2t. Assuming that X is standard
normally distributed, we can compute the optimal η∗ exactly using the formulae in Ex-
ample 1.2.3 (i), i.e., η∗ = − log(2)

2 − 1 ≈ −1.34657. This yields OCEu(X) = − log(2)
2 − 1

2 ≈
−0.846574. Consequently, this example provides a good basis for testing our methods.
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Figure 1.1 illustrates the distributions of 104 runs of the stochastic root finding algo-
rithm for each recursion depth. The drop shapes in the charts are generated based on a
smooth kernel density estimation. The estimated PDFs are mirrored along the η-axis (ver-
tical axis) and scaled in the width. For increasing step size, the distributions are getting
more Gaussian like with decreasing variance.

For n = 100, the right panel (γ = 1) of Figure 1.1 shows a bimodal distribution. The
same effect can be observed in the other examples presented below. This is due to the fact
that the initial root estimates hit the bounds of the simulation interval quite frequently.
If γ is large, the correction terms of the iterative scheme decrease faster than for smaller
γ. The initial accumulation of mass at the boundaries of the projection interval converges
to the sought root as n grows. For γ = 1, a bimodal distribution remains visible in the
histograms.
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Figure 1.1: Distribution charts for the RM algorithm with recursion depth n ∈ {100, ..., 30 000} and (left: γ = 0.7,
right: γ = 1.0) for the exponential utility function. The black dots represent the expectations of the distributions
and the gray dashed line marks the exact value of the root.

Table 1.1 shows the mean and the variance of the simulation depending on the number
of iterations and the constant γ. The bias decreases in both cases in a qualitatively similar
way, but the variance decreases faster for γ = 1.

γ = 0.7 γ = 1
iteration steps n mean variance mean variance

100 -1.8373 0.2214 -1.9000 0.5051
300 -1.7296 0.0946 -1.5774 0.2096
1000 -1.4639 0.2552 -1.4245 0.0798
3000 -1.4032 0.1083 -1.3725 0.0251
10000 -1.3722 0.0445 -1.3543 0.0047
30000 -1.3589 0.0195 -1.3493 0.0017

Table 1.1: Mean and variance of the empirical distribution of ηn depending on the number of iteration steps n and
the constant γ.

1.4.2 | Average Value at Risk

Let u be defined according to Example 1.2.3 (ii), i.e., u(t) = αmin{0, t}. As explained
above, we will calculate η∗ as the negative of value at risk at level 1

α according to the
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first-order condition. Afterwards, we can simulate the OCE which yields the (negative)
average value at risk at level 1

α . We set α = 20.
Figure 1.2 illustrates the distributions of 104 runs of the stochastic root finding algo-

rithm for a given iteration size between 100 and 30 000. The figure shows that the variance
decreases rapidly and that for larger number of iterations the performance of the algo-
rithm is better for γ = 1. Mean and variance of the empirical distributions are provided
in Table 1.2.
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Figure 1.2: Distribution chart for the RM algorithm with recursion depth n ∈ {100, ..., 30 000} and (left: γ = 0.7,
right: γ = 1.0) for the piecewise linear utility function. The black dots represent the mean of the distributions and
the gray dashed line marks the exact value of the root.

γ = 0.7 γ = 1
iteration steps n mean variance mean variance

100 -1.8432 0.2219 -2.2636 0.2590
300 -1.7211 0.0927 -1.8101 0.0413
1000 -1.6782 0.0388 -1.6696 0.0066
3000 -1.6601 0.0176 -1.6504 0.0020
10000 -1.6509 0.0073 -1.6462 0.0006
30000 -1.6484 0.0035 -1.6453 0.0002

Table 1.2: Mean and variance of the empirical distribution of ηn depending on the number of iteration steps n and
the constant γ.

Figure 1.3 illustrates a path of the calculation of the OCE which is the (negative)
AV@R for the piecewise linear utility function. The path was generated by simple Monte
Carlo simulation.
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Figure 1.3: A path of a Monte Carlo estimation of the OCE for the piecewise linear utility function. The dashed
orange line represents the exact value.

The precision of the Monte Carlo estimation of the OCE or corresponding risk measure
does, of course, depend on the precision of the estimate of η∗. For a fixed simulation depth



14 CHAPTER 1. STOCHASTIC ROOT FINDING FOR OPTIMIZED CERTAINTY EQUIVALENTS

n, both bias and variance contribute to the error in the estimation of η∗. Figure 1.4
illustrates how bias and variance in the estimation of η∗ influence the average estimate of
(negative) AV@R in step 2 of the simulation procedure.

The variance of the estimation of η∗ can be reduced to zero, if we replace its random
estimator by the mean of the empirical distributions shown in Figure 1.2. The error of
the resulting estimate of η∗ for various recursion depths is then essentially only due to
the bias of the stochastic root finding algorithms. The purple dots in Figure 1.4 show the
corresponding Monte Carlo estimates for (negative) AV@R, if the mean of the empirical
distribution is used as input parameter η∗ in step 2 of the computation of the OCE.
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Figure 1.4: Convergence of the Monte Carlo estimation of the OCE for η having the empirical distribution (blue)
or being Dirac distributed at the mean of the empirical distributions (purple).

In practice, the estimation of η∗ will typically not be repeated several times. A single
estimate will be used as the input parameter for the Monte Carlo simulation of the OCE.
This corresponds to sampling η∗ from the empirical distributions shown in Figure 1.2.
The blue dots in Figure 1.4 show the sample average of the corresponding Monte Carlo
estimates for (negative) AV@R. As expected, the comparison in Figure 1.4 shows that the
bias of the estimator of (negative) AV@R is significantly larger in the second case.

1.4.3 | Quartic Utility

Assume that

u(t) :=

 1− (t− 1)4, if t ≤ 1,

1, otherwise.

We compare two different distributions for the financial position X. In the first case,
we assume that X is normally distributed with variance σ2 = 5

3 ; in the second case,
we suppose that X has a Student’s t-distribution with ν = 5 degrees of freedom. Both
random variables have the same mean and variance, but different tail behavior. In both
cases, the expression η + E [u (X − η)] can be written as a closed-form expression of η.
This allows us to obtain the exact value of the OCE. We compute that η∗ = −2.16359 and
OCEu(X) = −1.6511 in the first case, i.e., if X is normally distributed. In the second case,
i.e., if X is Student’s t-distributed, we get η∗ = −3.73624 and OCEu(X) = −5.93075. As
expected, the heavy tailed Student’s t-distribution does indeed lead to a higher OCE-risk
measure. Detailed computations are provided in Appendix D, Section D.1.
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Figures 1.5 & 1.6 illustrate the empirical distributions of the estimates of η∗ which
are sampled according to RM algorithms. The projection interval was set to η∗ ± 10. The
figures show that for quartic utility and finite sample sizes the estimation errors can be
smaller for γ = 0.7 than for γ = 1. Finite sample properties might, thus, deviate from the
asymptotic behavior suggested by the limit theorems above.

Figure 1.6 illustrates that the algorithm might actually perform quite badly for heavy
tailed distributions like the Student’s t-distribution. Variance reduction techniques are in
this case a crucial tool that needs to be employed in order to secure reasonable simulation
results. For a discussion of this insight in a different context, we refer to Dunkel & Weber
(2010).

100 300 1000 3000 10000 30000
-10

-8

-6

-4

-2

0

100 300 1000 3000 10000 30000
-10

-8

-6

-4

-2

0

Figure 1.5: Distribution chart for the RM algorithm with recursion depth n ∈ {100, ..., 30 000} and (left: γ = 0.7,
right: γ = 1.0) for the piecewise quartic utility function and a normally distributed random variable.
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Figure 1.6: Distribution chart for the RM algorithm with recursion depth n ∈ {100, ..., 30 000} and (left: γ = 0.7,
right: γ = 1.0) for the piecewise quartic utility function and a Student’s t-distribution with ν = 5 degrees of freedom.

1.5 | Conclusion

A large family of OCE-risk measures has been introduced by Ben-Tal & Teboulle (2007)
which includes well-known examples like average value at risk and the entropic risk mea-
sure. The OCE-risk measures can be computed by solving a stochastic optimization prob-
lem. Under weak conditions, by a first-order condition, the calculation can be reduced to
a two step procedure: a stochastic root finding problem in the first step, and the compu-
tation of an expected value in the second step. In this chapter, we suggest algorithms for
the estimation of OCE-risk measures and test them numerically.

The performance of the algorithms depends largely on the properties of the distribution
of the financial position whose risk is estimated. The performance of the algorithms is
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reasonable for distributions with bounded variance and light tails. However, the suggested
simulation procedures are usually not optimal, if distributions are heavy tailed. In this
case, it seems to be crucial to employ variance reduction techniques in order to improve
performance.

The suggested techniques provide promising algorithms for the estimation of a broad
class of convex risk measures based on utility theory. An application to liquidity risk is
provided in Chapter 2. Future research needs to investigate how the performance of the
algorithms can be improved in the case of distributions with high variance or heavy tails
and how they can efficiently be applied to real-world examples.

c© 2013 IEEE. Reprinted, with permission, from Proceedings of the 2013 Winter Simulation
Conference: Stochastic Root Finding for Optimized Certainty Equivalents, pp. 922-932.
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2 | Liquidity-Adjusted Risk Measures

The original version of this chapter was previously published in Mathematics and Financial Eco-
nomics 7(1), pp. 69-91, 2013, see Weber, Anderson, Hamm, Knispel, Liese & Salfeld (2013).

Liquidity risk played a major role during many crises that have been observed during
the last decades. Its impact was clearly apparent in the recent credit crisis (e.g., the
failures of Bear Stearns and Lehman Brothers), and also during the collapse of Long Term
Capital Management in 1998. Proper financial regulation and risk management requires
appropriate concepts that enable the quantification of liquidity risk. Various aspects of
liquidity risk have extensively been investigated during recent years, see, e.g., Cetin, Jarrow
& Protter (2004), Cetin & Rogers (2007), Jarrow & Protter (2005), Astic & Touzi (2007),
and Pennanen & Penner (2010). For further references, we refer to a survey article by
Schied & Slynko (2011).

A key instrument to control the risk of financial institutions are suitable measures
of the downside risk. These constitute an important basis for reporting, regulation, and
management strategies. This chapter suggests a liquidity-adjusted measure of the downside
risk, focusing on two key aspects of liquidity risk: access to financing and price impact of
trades. These issues receive particular attention in the context of new regulatory standards,
such as Basel III and Solvency II. The proposed liquidity-adjusted risk measure provides
a unified framework beyond the current implementations in practice.

Our approach builds on a recent contribution of Acerbi & Scandolo (2008). While
classical asset pricing theory assumes that the value of a portfolio is proportional to the
number of its assets, Acerbi & Scandolo (2008) argue that, if access to financing is limited
and the size of trades impacts prices, the linearity assumption breaks down; classical
valuation should be replaced by liquidity-adjusted valuation.

A situation like this occurs, for example, if a fund or bank needs to execute a large block
trade. In this case, the realized average price depends on the liquidity of the market as
well as the chosen trading strategy. This phenomenon is called price impact. Its magnitude
is affected by the specific structure of supply and demand, or, equivalently, the shape of
the order book, if the trades are settled on an exchange. The importance of this type
of liquidity risk differs among agents and is governed by the particular situation of the
investor: adverse price impact is, of course, only relevant, if a particular trade must indeed
be quickly executed. Investors with short-term obligations who are subject to strict budget
constraints and have no access to cheap external funding might be forced to engage in fire

17
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sales. As a consequence, they might tremendously be hurt by price impact; their liquidity
risk is large. In contrast, investors with deep pockets will almost not be affected by steep
supply-demand curves. They can hold assets over very long time horizons, sell only a few
assets simultaneously, and wait until a good price can be realized.

For the convenience of the reader, we review the approach of Acerbi & Scandolo (2008)
in Section 2.1. More specifically, we consider an investor with an asset portfolio in a one-
period economy. Limited access to financing is modeled by constraints on borrowing and
short selling, or by more general portfolio constraints. At the same time, the investor
is faced with temporary short-term obligations which could, for example, be associated
with margin calls or withdrawals from customers. In this situation, the investor might be
required to liquidate a fraction of her portfolio in order to avoid default. Price impact
of orders is explicitly modeled by supply-demand curves. The liquidity-adjusted portfolio
value modifies the classical mark-to-market value by accounting for the losses that occur
from the forced liquidation of a fraction of the investor’s portfolio.

Liquidity-adjusted risk measures can be constructed on the basis of the liquidity-
adjusted value. Acerbi & Scandolo (2008) suggested to measure liquidity-adjusted risk
by computing a standard monetary risk measure for the liquidity-adjusted value. The re-
sulting liquidity-adjusted risk measure ρAS is convex, but in general not cash-invariant
anymore, and does not possess a natural interpretation as a capital requirement. The key
contribution of this chapter is the construction of a new, cash-invariant liquidity-adjusted
risk measure ρV that can conveniently be interpreted as a capital requirement, see Sec-
tion 2.2. Our definition endows ρV with a clear operational meaning: it equals the smallest
monetary amount that needs to be added to a financial portfolio to make it acceptable.
At the same time, ρV provides a rationale for convex cash-invariant risk measures, if price
impact is important.

Section 2.2.2 further clarifies the difference between our construction ρV and the risk
measure ρAS. For this purpose, we employ the theoretical framework of capital require-
ments and eligible assets, as introduced by Artzner et al. (2009). Section 2.3 illustrates
in the context of numerical case studies how price impact and limited access to financing
influence the liquidity-adjusted risk measurements.1 Section 2.4 concludes with a short
summary of our main findings and suggestions for future research.

2.1 | Liquidity Risk and Portfolio Values

For convenience, the current section recalls the deterministic notion of liquidity-adjusted
portfolio value, a concept that was originally proposed by Acerbi & Scandolo (2008).
We slightly modify their definition by introducing liquidity constraints that are easily
interpretable and by imposing additional portfolio constraints.

1For a preliminary analysis on the estimation of liquidity risk, see Hamm (2012).
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2.1.1 | Maximal Mark-to-Market and Liquidation Values

The price of an asset depends on the quantity that is traded. Following, e.g., Cetin et al.
(2004) and Jarrow & Protter (2005), we capture this fact by supply-demand curves.

Definition 2.1.1 (Marginal supply-demand curve, best bid, best ask).

(i) Setting R∗ := R \ {0}, a function m : R∗ → R+ is called a marginal supply-demand
curve (MSDC), if m is decreasing. We denote byM the convex cone of all MSDCs.

(ii) The numbers m+ := m(0+) and m− := m(0−) are called the best bid and best ask,
respectively. Their difference ∆m := m−−m+ ≥ 0 corresponds to the bid-ask spread.

An MSDC m models the current prices of a financial asset or, equivalently, the state
of its ‘order book’ – capturing the dependence of prices on the actual quantities that are
traded. If large amounts of an asset are sold, the average price of one unit of the asset will
typically be smaller than for small amounts. Conversely, if large amounts are bought, the
average price will typically be larger than for small amounts of the asset.

For any number of assets x ∈ R∗, the price of an infinitesimal additional amount is
captured by the marginal price m(x). As a consequence, an investor selling s ∈ R+ units
of the asset will receive the proceeds ∫ s

0
m(x) dx.

Conversely, if the investor buys |s| ∈ R+ units of the asset, she will pay
∫ 0
−|s|m(x) dx, thus

‘receive’
∫ s

0 m(x) dx ≤ 0.
We endow the convex cone M of all MSDCs with a canonical metric for which two

MSDCs are close to each other if the corresponding proceeds are close to each other for
any number of assets.2

A financial market of multiple assets is characterized by a collection of MSDCs.

Definition 2.1.2 (Spot market, portfolio).

(i) A spot market of N risky assets (N ∈ N) is a vector

m̄ = (m0,m1, . . . ,mN ) ∈MN+1.

We will always assume that asset 0 corresponds to cash and set m0 ≡ 1.
2The convex coneM can be endowed with the metric

dM(m1,m2) := |m−1 −m
−
2 |+ |m

+
1 −m

+
2 |+

∞∑
n=1

1
2n

(∫ n

−n
|m̂1(x)− m̂2(x)|dx ∧ 1

)
, m1,m2 ∈M,

where we use the auxiliary function

m̂(x) :=

{
m(x)−m+, x > 0,
0, x = 0,
m(x)−m−, x < 0.

In the sequel, all topological properties ofM are based on this metric.
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(ii) A portfolio in a spot market of N risky assets is a vector

ξ̄ = (ξ0, ξ1, . . . , ξN ) = (ξ0, ξ) ∈ RN+1

whose entries specify the number of assets.

Notation 2.1.3. For k ∈ R, ξ̄ = (ξ0, ξ) ∈ RN+1, we write k + ξ̄ := (ξ0 + k, ξ).

In practice, portfolios are frequently marked-to-market at the best ask and best bid.
We will call this value the maximal mark-to-market. The maximal mark-to-market is a
hypothetical value of a portfolio that cannot always be realized in practice. In fact, unless
there are no liquidity effects, the mark-to-market value typically differs from the liquidation
value, i.e., from the income or cost of an immediate liquidation of the portfolio. The
liquidation value does not only depend on the best bid and best ask, but on the whole
supply-demand curve.

Definition 2.1.4 (Def. 4.6 & 4.7 in Acerbi & Scandolo (2008)). Let ξ̄ ∈ RN+1 be a
portfolio in a spot market of N risky assets.

(i) The liquidation value of ξ̄ is given by

L(ξ̄, m̄) :=
N∑
i=0

∫ ξi

0
mi(x) dx = ξ0 +

N∑
i=1

∫ ξi

0
mi(x) dx.

(ii) The maximal mark-to-market value of a portfolio ξ̄ is given by

U(ξ̄, m̄) := ξ0 +
N∑
i=1

m±i (ξi) · ξi,

where m±i (ξi) =
{
m+
i , if ξi ≥ 0,

m−i , if ξi < 0.

Remark 2.1.5. Acerbi & Scandolo (2008) call the function U the uppermost mark-to-
market value.

The following remark summarizes useful properties of L and U .

Remark 2.1.6 (Properties, see Section 4 in Acerbi & Scandolo (2008)).

(i) L and U are continuous on RN+1 ×MN+1.

(ii) L and U are concave functions of their first argument (i.e., the portfolio) that are
differentiable on R× RN∗ .

(iii) Let ξ̄ ∈ RN+1 be some portfolio and m̄ ∈MN+1 a spot market.

• If λ ≥ 1, then L(λξ̄, m̄) ≤ λL(ξ̄, m̄). If 0 ≤ λ ≤ 1, then L(λξ̄, m̄) ≥ λL(ξ̄, m̄).

• U is positively homogeneous, i.e., for λ ≥ 0, we have that U(λξ̄, m̄) = λU(ξ̄, m̄).
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(iv) U and L are fully decomposable.3

(v) ∀k ∈ R: U(k + ξ̄, m̄) = k + U(ξ̄, m̄), L(k + ξ̄, m̄) = k + L(ξ̄, m̄).

An investor can buy and sell assets and thereby change her portfolio at prevailing mar-
ket prices. Letting ξ̄ ∈ RN+1 be a portfolio, an investor can liquidate a sub-portfolio (0, γ),
γ ∈ RN , changing the cash position of the portfolio by the liquidation value L((0, γ), m̄)
of the sub-portfolio (0, γ). Any portfolio which is attainable from ξ̄ thus has the form:

(
ξ0 +

N∑
i=1

∫ γi

0
mi(x) dx, ξ − γ

)
, γ ∈ RN .

Definition 2.1.7. We denote by A(ξ̄, m̄) the set of all portfolios which are attainable
from ξ̄ in the spot market m̄.

2.1.2 | Liquidity and Portfolio Constraints

Classical portfolio theory assumes that the value of a portfolio does not depend on its
owner. The value is a linear function of the number of assets. Acerbi & Scandolo (2008)
argue convincingly that this standard approach is not correct if prices depend on the
quantities traded and if investors have at the same time limited access to financing:

Investors typically need to fulfill short-term obligations, but cannot always quickly
borrow liquidity on financial markets. If short of cash, they need to liquidate a part of
their portfolio. The average prices, however, at which investors can sell (or buy) assets
depend in the presence of price impact on the quantities that are traded. In this sense,
the portfolio value depends on the specific financial situation of the investor as well as on
the supply-demand curves of the assets.

In order to model these effects, we will characterize the investor by two different con-
straints that can be observed in real markets: liquidity constraints and portfolio constraints.
Liquidity constraints signify short-time payments an investor needs to make. Portfolio con-
straints refer, for example, to borrowing and short selling constraints.

Liquidity Constraints. We consider a one period economy with time points t = 0, 1.
An owner of an asset portfolio will typically receive certain payments, or is required to
fulfill certain financial obligations – including, for example, items like rent payments,
maintenance costs, coupons, or margin payments. The total amount of these cash flows
will affect the cash position of the investor. For modeling purposes, we will assume that
payments occur at the end of the time horizon, i.e., at t = 1, and are given by a function
of the assets other than cash that the investor holds at time 1.

Definition 2.1.8. The short-term cash flows (SCF) are a function φ : RN → R ∪ {−∞}
such that φ(0N ) = 0. We will write φ ∈ SCF.

3A function f : RN+1 → R is fully decomposable, if f(x0, x1, . . . , xN ) =
∑N

i=0 fi(xi) for functions
fi : R→ R, i = 0, 1, . . . , N .
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An investor is required to be sufficiently liquid at the end of the time horizon t = 1: she
must own enough cash to cover any obligations due. Otherwise, the investor will default.
Typically, an investor has a borrowing constraint that prevents her from obtaining an
arbitrarily large amount of cash. The difference between liquid and illiquid portfolios is
captured by the following definition.

Definition 2.1.9. Let φ ∈ SCF, and a ∈ R. The set of liquid portfolios which are attain-
able from ξ̄ ∈ RN+1 is defined by

L(ξ̄, m̄, φ, a) =
{
η̄ ∈ A(ξ̄, m̄) : η0 + φ(η) ≥ a

}
.

The pair (φ, a) is called a liquidity constraint.

The number a is typically negative and signifies the maximal amount the investor can
borrow. We assume in this case that the investor is prohibited to borrow more than |a|.
The value φ(η) signifies the short-term cash flows associated with a portfolio η̄ ∈ A(ξ̄, m̄).
These cash flows plus available cash must exceed a.

Remark 2.1.10. Definition 2.1.9 assumes that short-term cash flows are not directly
determined from the original portfolio ξ̄, but from liquid portfolios that can be attained
from ξ̄. Alternatively, one could, of course, assume that short-term cash flows are associated
with the original portfolio and modify the theory accordingly. The economic interpretations
of these two conceivable alternatives differ slightly:
Our convention essentially assumes that short-term cash flows are due at the beginning of
a time period immediately after the investor decides about the composition of the portfolio
(that needs to satisfy the constraints). Alternatively, one could assume that short-term
cash flows are due at the end of a time period.

Stylized examples of liquidity constraints are proportional margin constraints and con-
vex constraints.

Example 2.1.11. (i) Proportional margin constraints: The obligations due to holding
the assets other than cash are proportional to the number of assets on which the
investor is short, i.e.,

φ(η) = −
N∑
i=1

αi · η−i , αi ≥ 0, i = 1, . . . , N.

(ii) Convex constraints: φ ≤ 0 is a concave function with φ(0N ) = 0. Proportional margin
constraints are a special case of convex constraints.

Remark 2.1.12. Acerbi & Scandolo (2008) introduce the concept of a “liquidity policy”
which is a convex and closed subset C ⊆ RN+1 such that

(i) η̄ ∈ C ⇒ η̄ + b := η̄ + (b, 0N ) ∈ C ∀b > 0.

(ii) η̄ = (η0, η) ∈ C ⇒ (η0, 0N ) ∈ C.
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The constraints in Example 2.1.11 correspond to special cases of liquidity policies. Con-
versely, if inf{η0 : (η0, η) ∈ C} > −∞ for all η ∈ RN , a liquidity policy C induces a liquidity
constraint by setting

a = inf{η0 : (η0, 0N ) ∈ C},

φ(η) = − inf{η0 : (η0, η) ∈ C}+ a,

with the usual convention that inf ∅ =∞.

Portfolio Constraints. Real investors are also restricted by other constraints that limit
the feasibility of trading strategies. These portfolio constraints are typically formulated
in terms of a non-empty, closed, convex set K ⊆ RN . It is required that η ∈ K for any
admissible portfolio η̄ = (η0, η) at the end of the time horizon, t = 1. We suppose that
0N ∈ K, i.e., holding cash only is acceptable, as long as the borrowing constraint η0 ≥ a

is satisfied.

Example 2.1.13. (i) Unconstrained case: K = RN .

(ii) Constraints on short selling: K = [−q1,∞) × [−q2,∞) × · · · × [−qN ,∞) for qi ≥ 0,
i = 1, . . . , N .

(iii) Cone constraints: K is a non-empty, closed, convex cone in RN .

2.1.3 | The Value of a Portfolio

An investor who owns a portfolio ξ̄ ∈ RN+1 at time t = 0 might need to liquidate a
fraction of her portfolio in order to meet the liquidity and portfolio constraints at time
t = 1: short-term payments need to be made, but borrowing and short selling are typically
restricted. The liquidation of assets will, however, typically not occur at the best bid, unless
supply-demand curves are horizontal. The supply-demand curve determines the proceeds
of any transaction, and both average and marginal prices are functions of the number of
assets that are traded. The liquidity-adjusted value that we define in this section takes
these issues into account. Our definition of the portfolio value follows conceptually the
ideas of Acerbi & Scandolo (2008). Liquidity-adjusted risk measures are, however, defined
differently, see Section 2.2.1.

Although often used in practice, the maximal mark-to-market value is an artificial
quantity. Measuring the value of a portfolio by its maximal mark-to-market has at least
one important disadvantage: liquidity effects are completely neglected. If supply-demand
curves were horizontal, then the maximal mark-to-market value could indeed be inter-
preted as the value of a portfolio. In reality, however, supply-demand curves are typically
not horizontal which complicates the situation significantly. When liquidity and portfo-
lio constraints are absent, the maximal mark-to-market value can be interpreted as a
market-based approximation to the long-run value of a portfolio. If, however, short-term
obligations and portfolio constraints are present – possibly forcing investors to liquidate
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a fraction of their assets, the maximal mark-to-market value becomes an inadequate ap-
proximation of the portfolio value.

The approach that we follow in this chapter requires that the mark-to-market value
must only be used as an approximation of the portfolio value if a portfolio satisfies all
liquidity and portfolio constraints. If a portfolio does not satisfy these constraints, we
require that a suitable fraction of the portfolio is liquidated, before the mark-to-market
value is computed. This procedure – originally suggested by Acerbi & Scandolo (2008) –
thereby assigns a cost to illiquidity. The value of a portfolio is then given by the maximal
mark-to-market value, after a suitable part of the original portfolio has been liquidated.
For the formal definition, we consider again an economy with two dates t = 0, 1.

Definition 2.1.14. The value of a portfolio ξ̄ ∈ RN+1 under the liquidity constraint (φ, a)
and the portfolio constraint K is given by

V (ξ̄, m̄) = V (ξ̄, m̄, φ, a,K) = sup{U(η̄, m̄) : η̄ ∈ L(ξ̄, m̄, φ, a) ∩ (R×K)}. (2.1)

Remark 2.1.15. If φ is concave, the valuation problem amounts to maximizing the con-
cave function U(·, m̄) on the convex set of attainable liquid portfolios L(ξ̄, m̄, φ, a)∩(R×K).
If φ models obligations of the investor (which is typically the most interesting case), then
φ will be non-positive.

Assumption 2.1.16. From now on, we will always assume that the SCF φ are concave
and non-positive. This will be captured by the following definition.

Definition 2.1.17. We denote by Φ the family of all concave and non-positive functions
on RN . We endow Φ with the uniform distance d∞, i.e., if φ, ψ ∈ Φ, then d∞(φ, ψ) =
supx∈RN |φ(x)− ψ(x)|. The set Φ is called the family of concave short-term cash flows.

Proposition 2.1.18. Suppose that Assumption 2.1.16 holds. Then, the value map V has
the following properties:

(i) The maximal mark-to-market dominates the value map:

V (ξ̄, m̄) ≤ U(ξ̄, m̄).

This implies, in particular, that V (ξ̄, m̄) <∞.

(ii) Suppose that L(ξ̄, m̄) ≥ a. Then, V (ξ̄, m̄) > −∞ (or, equivalently, L(ξ̄, m̄, φ, a) ∩
(R×K) 6= ∅), and V (ξ̄, m̄) ≥ L(ξ̄, m̄).

(iii) Concavity: For α ∈ [0, 1] and ξ̄1, ξ̄2 ∈ RN+1, we have

V (αξ̄1 + (1− α)ξ̄2, m̄) ≥ αV (ξ̄1, m̄) + (1− α)V (ξ̄2, m̄).

(iv) Translation-supervariance: For all k ≥ 0 and ξ̄ ∈ RN+1, we have

V (ξ̄ + k, m̄) ≥ V (ξ̄, m̄) + k. (2.2)
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(v) Monotonicity: If ξ̄ ≤ η̄, then V (ξ̄, m̄) ≤ V (η̄, m̄).

Proof. The proof is given in Section 2.5.

Remark 2.1.19. Suppose that the portfolio constraint K can be expressed in terms of r
convex functions ψ1, . . . , ψr : RN → R, i.e.,

η ∈ K ⇐⇒ ψ1(η) ≤ 0, . . . , ψr(η) ≤ 0.

This condition is obviously satisfied for the cases presented in Example 2.1.13. In this
situation, the portfolio value (2.1) can be characterized via Lagrange multipliers. Indeed,
a portfolio η̄ is attainable from ξ̄, if

η0 − ξ0 −
N∑
i=1

∫ ξi−ηi

0
mi(x) dx = 0.

This constraint can be replaced by an inequality constraint that does not affect the value
in (2.1). The objective is thus to determine the supremum of U(η̄, m̄) for varying η̄ under
the following r + 2 inequality constraints:

1. Attainability: ν1(η̄) := η0 − ξ0 −
∑N
i=1

∫ ξi−ηi
0 mi(x) dx ≤ 0.

2. Liquidity constraint: ν2(η̄) := a− η0 − φ(η) ≤ 0.

3. Portfolio constraints: ψ1(η) ≤ 0, . . . , ψr(η) ≤ 0.

This is a standard optimization problem, see, e.g., Section 28 in Rockafellar (1970). If
the short-term cash flows and the portfolio constraints are fully decomposable, the opti-
mization problem can be reduced to N + 1 one-dimensional unconstrained optimization
problems and the determination of a Karush-Kuhn-Tucker vector. The assumption of de-
composability greatly simplifies the analysis and is not too unrealistic to capture examples
in practice.

2.2 | Liquidity Risk and Risk Measures

Definition (2.1) of the liquidity-adjusted value of a portfolio does not yet involve any
randomness. So far, the portfolio value is a deterministic function of both the deterministic
supply-demand curves and the deterministic short-term cash flows. We will now assume
that at least one of these quantities is not revealed when portfolio risk is measured.

Consider again an economy with two dates t = 0, 1. The portfolio ξ̄ ∈ RN+1 whose
risk needs to be measured is given at time t = 0. Again, liquidity and portfolio constraints
are imposed at time 1. These do possibly require that a suitable fraction of the portfolio
is liquidated. At time t = 0, the constraints are typically not completely known, since
supply-demand curves and, possibly, short-term cash flows are random quantities that
are not revealed until time t = 1. As a consequence, no action needs to be taken by the
investor until time 1. At time 1, however, liquidity and portfolio constraints need to be
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respected, once the realizations of supply-demand curves and short-term cash flows are
known. Pathwise the liquidity-adjusted value of the portfolio is then again defined by (2.1),
but becomes now a random variable that is measurable with respect to the information
that is available at time 1.

The goal of the current section is to define a liquidity-adjusted risk of the portfolio.
The sought risk measure will be given as a capital requirement in Section 2.2.1, i.e., the
smallest monetary amount that needs to be added to the portfolio at time 0 to make
it acceptable. This approach ensures that the liquidity-adjusted risk measure is indeed a
generalized convex monetary risk measure on the set of portfolios.

Section 2.2.2 illuminates the difference between our approach and the approach of
Acerbi & Scandolo (2008) on liquidity-adjusted risk measures within a general framework
of risk measures associated to capital requirements, see Artzner et al. (2009). The key
concept is the notion of an eligibile asset which provides the reference point with respect
to which capital requirements are computed.

2.2.1 | Liquidity-Adjusted Risk

Impact of Randomness. Let (Ω,F) denote a measurable space which models uncer-
tainty, and let P be a given probability measure on (Ω,F). We will endow the metric
spaces (Φ, d∞) and (M, dM) with the corresponding Borel-σ-algebras. Note that Φ and
M are thus Standard-Borel spaces.

Definition 2.2.1 (Random MSDC, random SCF).

(i) A random marginal supply-demand curve (MSDC) is a vector m̄ = (1,m1, . . . ,mN )
of measurable mappingsmi : Ω→M, i = 1, . . . , N . The vector m̄ = (1,m1, . . . ,mN )
of random MSDCs corresponds to a random spot market of N risky assets.

(ii) A random short-term cash flow (SCF) is a measurable mapping φ : Ω→ Φ.

If MSDCs and SCFs are random, then the liquidity-adjusted value of a portfolio ξ̄ ∈
RN+1 as defined in (2.1) is a random variable that needs to be computed for almost all
scenarios ω ∈ Ω.

Definition 2.2.2. Let m̄ be a random MSDC, φ a random SCF, a ∈ R, and K a portfolio
constraint. The random (liquidity-adjusted) value of the portfolio ξ̄ ∈ RN+1 is defined by

Ω→ R ∪ {−∞}, ω 7→ V (ξ̄, m̄(ω), φ(ω), a,K).

We will sometimes simply write V (ξ̄) for the random value of ξ̄.

Our goal is to measure the risk of a portfolio ξ̄ in terms of random values of cash-
adjusted portfolios. The following assumption ensures that L(ξ̄, m̄), U(ξ̄, m̄) belong to
L∞ := L∞(Ω,F , P ) for all ξ̄ ∈ RN+1.

Assumption 2.2.3. For all i = 1, . . . , N and x ∈ R∗: mi(x) ∈ L∞.
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Liquidity-Adjusted Risk Measure. For the definition of liquidity-adjusted risk mea-
sures, we fix a convex risk measure ρ on L∞, as described in Section 4.3 in Föllmer &
Schied (2011). It is well-known that ρ induces an acceptance set A from which it can be
recovered as a capital requirement, see, e.g., Section 4.1 in Föllmer & Schied (2011).

Acerbi & Scandolo (2008) suggest measuring the liquidity-adjusted risk of a portfolio
ξ̄ ∈ RN+1 by

ρAS(ξ̄) := ρ(V (ξ̄)),

i.e., by applying a classical risk measure to the liquidity-adjusted value. We propose an
alternative definition of a liquidity-adjusted risk measure which is based on the notion of
capital requirements. In contrast to the liquidity-adjusted risk measure of Acerbi & Scan-
dolo (2008), our liquidity-adjusted risk measure remains cash-invariant and thus measures
risk on a monetary scale.

Definition 2.2.4. The liquidity-adjusted risk of a portfolio ξ̄ is defined as

ρV (ξ̄) := inf{k ∈ R : V (k + ξ̄) ∈ A}.

Definition 2.2.4 defines liquidity-adjusted risk as the smallest monetary amount that
has to be added to the portfolio at time 0 such that its liquidity-adjusted random value at
time 1 is acceptable for the risk measure ρ. Since the liquidity-adjusted value incorporates
price effects as well as the size of short-term cash flows and access to financing, the liquidity-
adjusted risk measure will quantify these influences. We will illustrate this in the context
of a numerical case study in Section 2.3 and provide comparative statics.

Remark 2.2.5. The mapping ρV in Definition 2.2.4 is given by a redisitribution risk
measure in the sense of Definition B.1.3 (i) (see Appendix B). Indeed, letting

f : RN+1 → X (R), f(ξ̄) = V (ξ̄),

the liquidity risk of a portfolio ξ̄ can be measured by

ρ̃(f ; ξ̄) = inf{k ∈ R |V (k + ξ̄) ∈ A},

see Example B.2.2, and thus ρV (ξ̄) = ρ̃(f ; ξ̄).

It is easy to see that for a given risk measure ρ our liquidity-adjusted risk and the one
suggested by Acerbi & Scandolo (2008) have the same sign; however, the absolute value
of ρAS is always larger than the one of ρV .

Proposition 2.2.6. If ξ̄ ∈ RN+1 is a portfolio, then ρV (ξ̄) ∈ R. Moreover,

|ρV (ξ̄)| ≤ |ρAS(ξ̄)|, (2.3)

and ρV (ξ̄) and ρAS(ξ̄) have the same sign, if ρV (ξ̄) 6= 0.

Proof. The proof is given in Section 2.5.
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The mapping ρV defines a liquidity-adjusted risk measure that is cash-invariant and
that can be interpreted as a capital requirement.

Theorem 2.2.7. The mapping ρV : RN+1 → R is inverse monotone and convex as well
as cash-invariant in the following sense:

ρV (ξ̄ + k) = ρV (ξ̄)− k for all k ∈ R.

The acceptance set
AV := {ξ̄ ∈ RN+1 : V (ξ̄) ∈ A}

is convex, and ρV can be recovered from AV as a capital requirement:

ρV (ξ̄) = inf{k ∈ R : ξ̄ + k ∈ AV }.

The mapping ρV is called liquidity-adjusted risk measure.

Proof. The proof is given in Section 2.5.

For a numerical implementation of liquidity-adjusted risk measures, the following im-
plicit equation is useful.

Theorem 2.2.8. Let ρ be a convex risk measure that is continuous from above, and assume
that P -almost surely η̄ 7→ V (η̄) is continuous on the interior of its essential domain.
Suppose that ξ̄ is a portfolio such that ξ̄ + ρV (ξ̄) is P-almost surely in the interior of
the essential domain of V . Then, the liquidity-adjusted risk ρV (ξ̄) is equal to the unique
solution k ∈ R of the equation

0 = ρ(V (ξ̄ + k)). (2.4)

Proof. The proof is given in Section 2.5

2.2.2 | Liquidity-Adjusted Risk Measures and Capital Requirements

The definitions of our liquidity-adjusted risk measure and the one introduced by Acerbi
& Scandolo (2008) can be embedded into a conceptual framework that was provided by
Artzner et al. (2009). Their paper describes the process of measuring risk as follows:

Measuring the risk of a portfolio of assets and liabilities by determining the
minimum amount of capital that needs to be added to the portfolio to make the
future value “acceptable” has now become a standard in the financial service
industry. [...]

[This approach requires to specify] a traded asset in which the supporting
capital may be invested (the “eligible asset” [...] ). [...]

The minimum required capital will of course depend on the definition of ac-
ceptability, but also on the choice of the eligible asset.
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The notion of capital requirements and eligible assets facilitates a comparison between
ρV and ρAS. As suggested in Artzner et al. (2009), we specify a set of acceptable positions
at the end of the time horizon and then compare different eligible assets.4 For a given
eligible asset, the implied liquidity-adjusted risk measure is the smallest number of shares
of the eligible asset that need to be added to the portfolio to make its liquidity-adjusted
value acceptable.

Suppose that we are in the situation described in the previous Section 2.2.1. For the
purpose of formally defining liquidity-adjusted capital requirements relative to an eligible
asset, we enlarge the initial spot market m̄ by one further asset e ∈ M to be interpreted
as the eligible asset. The extended spot market is thus given by the vector m̃ = (m̄, e) ∈
MN+2, an extended portfolio is a vector ξ̃ = (ξ̄, k) ∈ RN+2. We do not impose any further
restrictions on the eligible asset e, i.e., we allow, for example, redundancy if e ≡ 1.

Risk of an original portfolio ξ̄ is measured in units of the eligible asset. For this rea-
son, the eligible asset should not distort the original liquidity constraints. This can be
formalized by assuming that the short-term cash flows in the extended market are given
by

φ̃(ω)((η, k)) := φ(ω)(η) (ω ∈ Ω, η ∈ RN , k ∈ R).

Objects associated with the extended market will be marked by a tilde, i.e., m̃, L̃, Ũ , L̃,
φ̃, K̃, Ṽ , in order to differentiate between the original and the extended market.

Definition 2.2.9. Liquidity-adjusted risk of a portfolio ξ̄ relative to the eligible asset e is
defined as the smallest number of assets that need to be added to a portfolio to make its
liquidity-adjusted value acceptable, i.e.,

ρe(ξ̄) := inf{k ∈ R : Ṽ ((ξ̄, k)) ∈ A}. (2.5)

The following proposition is an immediate consequence of the definitions and an ap-
propriately modified proof of Theorem 2.2.7.

Proposition 2.2.10. The mapping ρe : RN+1 → R has the following properties:

• Inverse monotonicity: If ξ̄ ≤ η̄, then ρe(ξ̄) ≥ ρe(η̄).

• Convexity: For all α ∈ [0, 1] and ξ̄, η̄ ∈ RN+1, we have

ρe(αξ̄ + (1− α)η̄) ≤ αρe(ξ̄) + (1− α)ρe(η̄).

Both liquidity-adjusted risk measures ρV and ρAS can be recovered from ρe for suitably
chosen e:

(i) ρV corresponds to the special case e ≡ 1 and the choice K̃ = K×R+. This is apparent
from the definitions. ρV can thus be interpreted as the smallest monetary amount

4An alternative approach, suggested by Filipović (2008), investigates the effect of a change of numéraire
on risk measures. In this case, the acceptance set of nominal final values is dependent on the numéraire. For
our comparison between ρV and ρAS, the closely related framework of Artzner et al. (2009) is preferable
since it fixes an acceptance set independently of the eligible asset.
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that needs to be added to the portfolio at time 0 to make its liquidity-adjusted value
acceptable.

(ii) ρAS is not a special case of ρe for an appropriate e, but a limiting case for a suitably
chosen sequence of eligible assets.

To state this more precisely, we consider the portfolio constraint K̃ = K × R and the
family

eε(x) :=


0, if x > ε,

1, if − ε ≤ x ≤ ε,
2, if x < −ε,

(ε > 0)

of “random” MSDCs for the eligible asset. This choice signifies that selling more than ε
units of the eligible asset as well as buying more than ε units is suboptimal. In the limiting
case ε ↓ 0, the eligible asset becomes completely illiquid. The limiting case formalizes in
the context of Artzner et al. (2009) that ρAS is the smallest monetary amount that needs
to be added to the liquidity-adjusted value at time 1 to make it acceptable.

Proposition 2.2.11. Suppose that P -almost surely η̄ → V (η̄) is continuous on the interior
of its essential domain and that the reference risk measure ρ is continuous from above and
below. Let ρeε denote the capital requirement (2.5) relative to the eligible asset eε. Suppose
that ξ̄ ∈ RN+1 is P-almost surely in the interior of the essential domain of V . Then, we
have

ρAS(ξ̄) = lim
ε↓0

ρeε(ξ̄).

Proof. The proof is given in Section 2.5.

Remark 2.2.12. Acerbi & Scandolo (2008) argue that risk measures should be coherent,
if no liquidity risk is present. Liquidity-adjusted risk measures should thus be coherent in
the extreme case of a spot market in which all MSDCs are horizontal.

Consider again the setup of Section 2.2.1 – now assuming that ρ is coherent. The
liquidity-adjusted risk measure ρV will indeed be coherent, if the MSDCs in the spot
market are horizontal. In the case of general MSDCs, ρV will be convex and cash-invariant.
Example 2.2.13 illustrates that ρV will typically not anymore be positively homogeneous,
if MSDCs are not horizontal. Conceptually, the risk measure ρV provides a rationale for
convex risk measures, if price impact is important. At the same time, ρV measures risk as
the minimal cash amount that makes the future value of the position acceptable.

In contrast to ρV , the liquidity-adjusted risk measure ρAS does not preserve cash-
invariance. In the extreme case of horizontal MSDCs, ρAS is also coherent. If MSDCs
are not horizontal, the risk measure ρAS of Acerbi & Scandolo (2008) is convex, but not
cash-invariant.

Example 2.2.13. Consider a spot market with only one risky asset whose MSDC is given
by

m1(x) :=
{

1− x, if x ≤ 1,
0, if x > 1.



2.3. NUMERICAL CASE STUDIES 31

Suppose furthermore that there are no portfolio constraints and that the liquidity con-
straint is given by φ(η1) = −|η1| and a = 0. The coherent risk measure ρ is given by minus
the expectation operator.

In this framework, the portfolio ξ̄ = (0, 1) satisfies ρV (ξ̄) = −0.5. If ρV would be pos-
itively homogeneous, then ρV (2ξ̄) = −1. However, adding the capital injection of −0.9 >
−1 = 2ρV (ξ̄) to the scaled portfolio 2ξ̄ yields the portfolio value V ((−0.9, 2)) = −∞ < 0,
hence ρV (2ξ̄) > 2ρV (ξ̄).

2.3 | Numerical Case Studies

Equation (2.4) provides a convenient characterization of liquidity-adjusted risk that we will
now exploit for the specific reference risk measure utility-based shortfall risk, see Weber
(2006), Giesecke, Schmidt & Weber (2008), and Föllmer & Schied (2011). In this setting,
we will see how the various ingredients of the framework, such as the MSDC, liquidity and
portfolio constraints, affect the liquidity-adjusted risk of a portfolio. For comparison, we
will also investigate the risk measures value at risk and average value at risk, see Appendix
A for their definitions.

Definition 2.3.1. For a given convex loss function5 l and an interior point z in the range
of l, we define a convex acceptance set by

A := {X ∈ L∞ : E[l(−X)] ≤ z}.

The risk measure ρ : L∞ → R defined by

ρ(X) := inf{k ∈ R : X + k ∈ A}

is called utility-based shortfall risk (UBSR).

UBSR is a distribution-based convex monetary risk measure which is continuous from
above and below, see, e.g., Chapter 4.9 in Föllmer & Schied (2011) for a detailed discussion
of basic properties, its robust representation, and its relation to expected utility theory.
Moreover, it is easy to check that y = ρ(X) is the unique solution of the equation

E [l(−X − y)] = z.

This implicit characterization reduces the computation of UBSR to a stochastic root find-
ing problem, and it is thus particularly useful for the numerical estimation of the downside
risk, cf. Chapter 1. Combined with Theorem 2.2.8, it provides the basis for an efficient
algorithm to compute the liquidity-adjusted utility-based shortfall risk UBSRV .

Corollary 2.3.2. Assume that P -almost surely η̄ 7→ V (η̄) is continuous on the interior of
its essential domain, and let ξ̄ be a portfolio such that P -almost surely ξ̄ + UBSRV (ξ̄) is

5An increasing, non-constant function l : R→ R is called a loss function.
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in the interior of the essential domain of V . Then, UBSRV (ξ̄) is equal to the unique root
k∗ ∈ R of the function

g : R→ R, k 7→ E
[
l(−V (ξ̄ + k))− z

]
.

The complexity of the random supply-demand curves and constraints will typically
require a numerical evaluation of the value of the function g at a given argument k ∈ R.
To obtain a solution of the root finding problem described above, we use two stochastic
approximation algorithms, the Robbins-Monro and the Polyak-Ruppert algorithm. For a
short review of the Robbins-Monro algorithm, we refer to Chapter 1, Section 1.3; for a
detailed analysis of suitable algorithms the reader is refered to Dunkel & Weber (2010).
Liquidity-adjusted value at risk is approximated as the root k∗ ∈ R of the function

g : R→ R, k 7→ E
[
1{V (ξ̄+k)<0} − λ

]
, λ ∈ (0, 1),

using stochastic root finding techniques. Liquidity-adjusted average value at risk is esti-
mated as a negative optimized certainty equivalent as provided in Chapter 1, Example
1.2.3 (ii).
The numerical results are obtained for the following specifications of our market model.

Portfolio Construction. In order to illustrate the interplay of price effects, limited
access to financing, and convex risk measures, we consider a financial market with three
assets: cash and two risky assets indexed by i = 1, 2. We fix a portfolio ξ̄ consisting of zero
cash, a short position of three shares of asset i = 1, and a long position of four shares of
asset i = 2, i.e., ξ̄ = (ξ0, ξ1, ξ2) = (0,−3, 4).

For the purpose of comparative statics, we compare different random supply-demand
curves. Specifically, we assume that the financial market of the risky assets (i = 1, 2)
is characterized by exponential marginal supply-demand curves mi(x) = hi · e−bx with
b, h1, h2 > 0. The slope b of the exponent is treated as a model parameter, while hi,
i = 1, 2, are modeled as random variables. We compare three values of b: 0.005 (which can
essentially be considered as a value of 0), 0.5 and 1. The parameter b = 0.005 corresponds
to a market with essentially no price impact, b = 0.5 corresponds to a medium-size price
impact, and b = 1 to a large price impact. The stochastic parameters hi, i = 1, 2, have
a shifted Beta distribution hi − s ∼ M · Beta(2, 4). For the portfolio ξ̄ = (ξ0, ξ1, ξ2) =
(0,−3, 4), we choose (s,M) = (25, 6). The parameters (s,M) shift and rescale the original
Beta distribution such that the support of hi, i = 1, 2, equals the interval [25, 31]. We
compare the results for three different dependence structures of the assets i = 1 and i = 2:
comonotonicity, independence, and countermonotonicity.

Limited access to financing becomes particularly important, if the absolute values of
negative short-term cash flows are large. We use proportional margin constraints

φ(ξ) = −α · ξ−1 − α · ξ
−
2
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for various values of α. The larger α, the larger is the absolute value of the short-term cash
flows, and the more important are the liquidity constraints. The parameter a in Definition
2.1.9 is set to −0.6.

The last ingredient of our specification are the portfolio constraints. We fix short selling
constraints K = [−qi,∞)2 for qi ≥ 0, i = 1, 2. The values of parameter qi are set to 4,
which prohibits short selling 4 or more assets.

Liquidity-Adjusted Portfolio Values. The liquidity-adjusted portfolio value is a func-
tion of the realizations of the random parameters hi, i = 1, 2. In the case of comonotonicity
and countermonotonicity, this function effectively depends only on one parameter, since
the realization of h1 is a monotonic function of the realization of h2.

Figure 2.1 displays the liquidity-adjusted portfolio value V (ξ̄) as a function of h1 =
h2 =: h in the comonotonic case for the portfolio (ξ0, ξ1, ξ2) = (0,−3, 4). We focus on
the parameter values b = 0.5 and α ∈ {5, 10, 15, 17}. Again, b = 0.5 corresponds to
medium-size price impact. The size of the short-term cash flows induced by short asset
positions increases with α. Increasing α thus leads to lower liquidity-adjusted values of
the portfolio. If α = 17 – corresponding to particularly high short-term cash flows – the
constraints cannot be satisfied anymore for low values of h and a default occurs. In this
case, the liquidity-adjusted value equals −∞. In the figure, this discontinuity is emphasized
by an orange dot.
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Figure 2.1: Upper part: Liquidity-adjusted portfolio values as a function of the asset price h = h1 = h2 for the
portfolio ξ̄ = (ξ0, ξ1, ξ2) = (0,−3, 4) with fixed b and varying α. Lower part: PDF of the asset price h, where
h ∼ 6 · Beta(2, 4) + 25.

Comonotonicity implies that increasing h increases both the prices of asset i = 1 and
asset i = 2. For h ∈ [25, 31], the marginal price for buying or selling the first infinitesimal
unit of assets i = 1, 2 is at least 25. Short positions are, however, associated with short-
term cash flows of α per unit. If α ∈ {5, 10, 15, 17}, it turns out to be suboptimal to reduce
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the size of the short position in asset i = 1 by buying shares when computing the optimal
portfolio η̄∗ in Eq. (2.1), since α ≤ 25 in these cases. This is confirmed numerically for
portfolios with a finite liquidity-adjusted value showing that −4 < η∗1 < −3. At the same
time, we observe that the investor optimally sells more units of asset i = 2 than asset
i = 1. The rational for this phenomenon is that the short position in asset i = 1 incurs an
additional temporary cost which is caused by the short-term cash flows.

Both assets are optimally sold, and the liquidity-adjusted value of the portfolio in-
creases with h, the multiplicative factor of the supply-demand curves. For smaller values
of h, more assets need to be sold in order to satisfy the liquidity constraint. The aver-
age price that can be achieved in this case is smaller, because supply-demand curves are
downward sloping for b = 0.5. At the same time, the obligation associated with the short
position becomes relatively more important, since more assets of the long position are
optimally liquidated. This explains why the liquidity-adjusted value of the portfolio is a
concave function of h in all cases α ∈ {5, 10, 15, 17}. For α = 5, i.e., a modest liquidity
constraint, the optimal portfolio η̄∗ in Eq. (2.1) is quite insensitive to changes in h. In this
case, we have, for example, η̄∗ = (−15.9,−3.3, 3.6) for h = 25 and η̄∗ = (−15.6,−3.2, 3.7)
for h = 31. Only a small amount of shares needs to be liquidated. The liquidity-adjusted
value is thus an almost linear function of h. The liquidity constraint is stronger for larger
α implying that more shares need to be sold. If h becomes smaller, prices decrease and
the amount of shares that is sold needs to be increased. Since average prices decrease with
the number of shares sold, even more shares need to be sold in order to fulfill the liquid-
ity constraint. The concavity of the liquidity-adjusted value as a function of h is, hence,
more pronounced for larger α. For α = 15, we obtain, for example, optimal portfolios
η̄∗ = (55.9,−3.8, 0.8) for h = 25 and η̄∗ = (55.2,−3.7, 2.2) for h = 31. Optimal portfolios
for further values of α and h are provided in Table 2.1.

α = 5 b = 0.5
h V (ξ̄) η∗0 η∗1 η∗2
25 23.55 15.92 -3.30 3.61
26 24.63 15.86 -3.29 3.63
27 25.69 15.80 -3.28 3.64
28 26.76 15.75 -3.27 3.66
29 27.81 15.70 -3.26 3.67
30 28.86 15.66 -3.25 3.69
31 29.91 15.62 -3.24 3.70

α = 15 b = 0.5
h V (ξ̄) η∗0 η∗1 η∗2
25 -18.63 55.95 -3.77 0.78
26 -11.50 55.96 -3.77 1.17
27 -5.92 55.90 -3.76 1.47
28 -1.33 55.78 -3.75 1.71
29 2.54 55.63 -3.74 1.91
30 5.91 55.44 -3.73 2.08
31 8.90 55.24 -3.72 2.22

Table 2.1: Liquidity-adjusted portfolio values V (ξ̄) and the corresponding optimal portfolios (η∗0 , η∗1 , η∗2) as functions
of h in the comonotonic case. These results refer to the portfolio ξ̄ = (0,−3, 4) and parameters α ∈ {5, 15} and
b = 0.5.

Figure 2.2 illustrates the liquidity-adjusted portfolio value as a function of the asset
price h = h1 = h2 for fixed α = 10 (short-term cash flows) and varying b (price impact).
Increasing the price impact b does, of course, decrease the portfolio value. Again, comono-
tonicity implies that increasing h increases both the prices of asset i = 1 and asset i = 2.
At the same time, it remains suboptimal to reduce the size of the short position in asset
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i = 1 by buying shares, since also in this case short-term cash flows per share α = 10
are smaller than the lower bound 25 for the marginal price of buying or selling the first
infinitesimal unit of asset i = 1. If b = 0.005, there is essentially no price impact and the
liquidity-adjusted portfolio value is almost linear in h. If b is increased, the price impact
becomes larger. Due to a non-negligible liquidity constraint for α = 10, cash is required
and shares of the assets need to be sold. Again, if h is smaller, prices decrease and the
amount of shares that needs to be sold is increased. Since average prices decrease with the
number of shares sold, even more shares need to be sold in order to fulfill the liquidity
constraint. The concavity of the liquidity-adjusted value as a function of h becomes more
pronounced for larger price impact b. For b = 1, we obtain, for example, optimal portfolios
η̄∗ = (37.8,−3.8, 1.1) for h = 25 and η̄∗ = (35.6,−3.6, 2.8) for h = 31.
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Figure 2.2: Liquidity-adjusted portfolio value as a function of h = h1 = h2 for the portfolio ξ̄ = (ξ0, ξ1, ξ2) =
(0,−3, 4) with α = 10 and varying b.

Table 2.2 below shows the means and variances of the liquidity-adjusted portfolio value
for b ∈ {0.005, 0.5, 1} and α ∈ {5, 10, 15, 20}. The qualitative behavior of these quantities
can already be inferred from Figures 2.1 & 2.2, if the distribution of h is given as displayed
in the lower part of Figure 2.1: the mean decreases and the variance increases for increasing
α (liquidity constraints) and increasing b (price impact).

In contrast to Figures 2.1 & 2.2, Figure 2.3 displays the liquidity-adjusted portfolio
value in the countermonotonic case. In this situation, h1 and h2 are decreasing functions
of each other. We plot the liquidity-adjusted portfolio value as a function of h2, the mul-
tiplicative factor of the supply-demand curve of long asset i = 2. If h2 increases, prices
of asset i = 2 increase, while prices of the short asset i = 1 decrease. Like Figure 2.1,
Figure 2.3 shows the liquidity-adjusted portfolio value for b = 0.5 and α ∈ {5, 10, 15, 17}.
Qualitatively, the findings are very similar in both cases. Again, it is optimal to liquidate
shares of both assets. The main difference is that the range of liquidity-adjusted value of
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the portfolio changes for varying h2 is significantly larger in the countermonotonic case.
For large h2 (associated with a small h1), the long position in η∗2 is valuable, but the
absolute value of the negative mark-to-market η∗1 is smaller than in the comonotonic case.
An analogous argument applies, if h2 is small. In this case, the long position has a smaller
value than for large h2, while the short position constitutes a larger obligation.
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Figure 2.3: Liquidity-adjusted portfolio value V (ξ̄) in the countermonotonic case as a function of h2 for ξ̄ =
(ξ0, ξ1, ξ2) = (0,−3, 4) with fixed b and varying α.

For further comparison, we also consider a different portfolio which contains 45 units
of cash, a short position of five shares of asset i = 1 and a long position of seven shares of
asset i = 2, i.e., ξ̄ = (ξ0, ξ1, ξ2) = (45,−5, 7). Corresponding to comonotonic dependence,
we assume that h = h1 = h2. In contrast to the other example, we suppose that the range
of h is given by [20, 40]. In this case, the short selling constraint requires the investor to
buy at least one share of asset i = 1. A similar effect would also occur in other examples,
if α was large compared to h1.

Figure 2.4 displays the liquidity-adjusted portfolio value of the portfolio ξ̄ = (ξ0, ξ1, ξ2) =
(45,−5, 7) as a function of h = h1 = h2 for fixed α (short-term cash flows) and varying b
(price impact). The liquidity-adjusted value does, of course, decrease with increasing price
effect b. We observe that the liquidity-adjusted value is not necessarily a monotonically
increasing function. For a market with a medium size price effect (b = 0.5), the liquidity-
adjusted portfolio value still increases with increasing h, while it decreases for large h
in the case of large price impacts (b ∈ {0.95, 1}). This can be understood by inspecting
the optimal portfolios η̄∗. In all cases, both the liquidity constraint and the short selling
constraint are binding. In order to satisfy the short selling constraint, the investor buys
exactly one share of asset i = 1. The price of this share increases with h and needs to
be financed by selling asset i = 2. For b = 0.95, the position in asset i = 2 needs to be
reduced from 7 shares to 6.5 shares if h = 20, but to 3 shares if h = 40. This diminishes
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the liquidity-adjusted portfolio value.
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Figure 2.4: Liquidity-adjusted portfolio value as a function of h = h1 = h2 for the portfolio ξ̄ = (ξ0, ξ1, ξ2) =
(45,−5, 7) with fixed α and varying b.

Liquidity-Adjusted Risk Measures. In this paragraph, we focus again on the port-
folio ξ̄ = (ξ0, ξ1, ξ2) = (0,−3, 4) and assume that the stochastic parameters hi, i = 1, 2,
have a shifted Beta distribution hi − 25 ∼ 6 · Beta(2, 4). In all cases, we ran n = 5, 000
independent simulations yielding an empirical distribution of liquidity-adjusted portfolio
values or liquidity-adjusted risk measures. The individual samples of the portfolio values
are solutions to the optimization problem described in Section 2.1.3. We computed mo-
ments of the empirical distributions. We estimated liquidity-adjusted V@R at level 5%,
AV@R at level 5% as well as UBSR with an exponential loss function lexp(x) = exp(0.5x)
and with threshold level z = 0.05, see Appendix A, Lemma A.0.10 (i). All risk measures
were computed both according to the approach of Acerbi & Scandolo (2008) and accord-
ing to our approach, see Definition 2.2.4; the estimates were labeled by (AS) and (V),
respectively. The results are documented in Table 2.2 (h1 and h2 comonotonic), Table 2.3
(h1 and h2 independent) & Table 2.4 (h1 and h2 countermonotonic).

The liquidity-adjusted portfolio values have generally lower variance in the comono-
tonic case than in the countermonotonic case. The independent case exhibits intermediate
values. The mean of the liquidity-adjusted value always decreases with larger short-term
cash flows and larger price impact.

Tables 2.2, 2.3 & 2.4 demonstrate that all risk measures detect the increase of liquidity
risk as b (price impact) and α (short-term cash flows/liquidity constraints) increase. As
proven in Proposition 2.2.6, the absolute value of our liquidity-adjusted risk measure is
indeed always smaller than the one suggested by Acerbi & Scandolo (2008). Furthermore,
in some cases the liquidity-adjusted risk measure according to Acerbi & Scandolo (2008)
becomes infinite, while our liquidity-adjusted risk measure is still finite. The reason is that
our risk measure computes the cash amount that needs to be added to the position at time
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b=0.005
mean variance V@R(V) V@R(AS) AV@R(V) AV@R(AS) UBSR(V) UBSR(AS)

α

5 27.0 1.1 -25.4 -25.5 -25.2 -25.3 -20.7 -20.8
10 27.0 1.1 -25.2 -25.4 -25.1 -25.3 -20.6 -20.7
15 26.9 1.1 -25.1 -25.3 -24.9 -25.2 -20.4 -20.6
20 26.7 1.1 -24.8 -25.2 -24.6 -25.0 -20.2 -20.4

b=0.5
mean variance V@R(V) V@R(AS) AV@R(V) AV@R(AS) UBSR(V) UBSR(AS)

α

5 25.7 1.2 -17.1 -24.1 -17.0 -23.9 -14.5 -19.4
10 18.9 2.7 -8.3 -16.5 -7.4 -16.2 -6.6 -12.3
15 -6.4 27.7 3.9 14.9 4.4 16.2 4.7 17.7
20 −∞ ∞ 17.9 ∞ 18.0 ∞ 54.2 ∞

b=1
mean variance V@R(V) V@R(AS) AV@R(V) AV@R(AS) UBSR(V) UBSR(AS)

α

5 24.0 1.5 -11.1 -22.2 -10.2 -22.0 -9.6 -17.7
10 -7.0 59.5 2.7 20.8 3.1 23.7 3.1 25.7
15 −∞ ∞ 18.5 ∞ 18.5 ∞ 18.7 ∞
20 −∞ ∞ 34.3 ∞ 34.4 ∞ 41.7 ∞

Table 2.2: Liquidity-adjusted risk measures for the portfolio ξ̄ = (0,−3, 4) in the comonotonic case h = h1 = h2.

b=0.005
mean variance V@R(V) V@R(AS) AV@R(V) AV@R(AS) UBSR(V) UBSR(AS)

α

5 27.1 28.9 -17.7 -18.4 -16.1 -16.5 -14.5 -14.6
10 27.0 28.9 -17.3 -18.4 -15.9 -16.5 -14.4 -14.5
15 26.9 28.9 -17.2 -18.3 -15.6 -16.4 -14.3 -14.4
20 26.8 28.9 -17.1 -18.1 -15.6 -16.2 -14.1 -14.3

b=0.5
mean variance V@R(V) V@R(AS) AV@R(V) AV@R(AS) UBSR(V) UBSR(AS)

α

5 25.8 28.9 -12.3 -17.1 -11.0 -15.2 -10.3 -13.3
10 19.0 30.1 -5.1 -10.4 -4.0 -8.5 -3.7 -6.6
15 -6.0 51.1 5.2 16.6 6.5 18.1 6.3 19.6
20 −∞ ∞ 18.3 ∞ 30.2 ∞ 21.1 ∞

b=1
mean variance V@R(V) V@R(AS) AV@R(V) AV@R(AS) UBSR(V) UBSR(AS)

α

5 24.1 29.1 -8.1 -15.4 -7.0 -13.6 -6.8 -11.6
10 -6.2 64.3 3.2 18.6 4.6 20.6 4.0 23.0
15 −∞ ∞ 18.3 ∞ 20.0 ∞ 18.7 ∞
20 −∞ ∞ 34.1 ∞ 36.7 ∞ 34.4 ∞

Table 2.3: Liquidity-adjusted risk measures for the portfolio ξ̄ = (0,−3, 4) in the independent case.

b=0.005
mean variance V@R(V) V@R(AS) AV@R(V) AV@R(AS) UBSR(V) UBSR(AS)

α

5 26.8 54.2 -14.9 -14.9 -13.2 -13.1 -12.3 -12.3
10 26.8 54.2 -14.8 -14.9 -13.1 -13.0 -12.2 -12.2
15 26.7 54.2 -14.7 -14.8 -13.0 -13.0 -12.0 -12.1
20 26.5 54.3 -14.5 -14.6 -12.8 -12.8 -11.8 -12.0

b=0.5
mean variance V@R(V) V@R(AS) AV@R(V) AV@R(AS) UBSR(V) UBSR(AS)

α

5 25.5 54.2 -11.2 -13.6 -8.7 -11.8 -12.3 -12.3
10 18.8 55.0 -4.4 -6.9 -1.8 -5.1 -12.2 -12.2
15 -6.0 71.2 6.0 18.8 7.6 20.4 7.0 21.2
20 −∞ ∞ 18.8 ∞ 28.0 ∞ 21.1 ∞

b=1
mean variance V@R(V) V@R(AS) AV@R(V) AV@R(AS) UBSR(V) UBSR(AS)

α

5 23.8 54.3 -7.4 -12.0 -5.1 -10.2 -5.7 -9.3
10 -5.8 67.8 3.8 17.8 5.2 19.1 4.5 20.1
15 −∞ ∞ 18.2 ∞ 19.5 ∞ 18.6 ∞
20 −∞ ∞ 34.0 ∞ 34.6 ∞ 34.2 ∞

Table 2.4: Liquidity-adjusted risk measures for the portfolio ξ̄ = (0,−3, 4) in the countermonotonic case.
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0 in order to make it acceptable. The position can thus still be modified such that default
is prevented. As explained in Section 2.2.2, the approach of Acerbi & Scandolo (2008)
computes the amount of cash that needs to be added to the liquidity-adjusted value at
time 1 to make it acceptable. In the event of default, this amount will be infinitely large.
The ex post inflow of cash cannot prevent a default once it has occurred. See also Appendix
B for a discussion of this issue.

Figure 2.5 presents the realized liquidity-adjusted portfolio values in the comonotonic
case in a histogram. As an example, we display a market with medium-size price impact
b = 0.5 and short-term cash flows parameterized by α = 10 and α = 15, respectively.
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Figure 2.5: Histogram of liquidity-adjusted portfolio value by price impact b = 0.5 (left: α = 10, right: α = 15) and
5,000 simulations in the comonotonic case h = h1 = h2.

Figures 2.6 & 2.7 show the stochastic root finding procedures for both liquidity-
adjusted V@R and liquidity-adjusted UBSR in the same setting, i.e., b = 0.5 and α = 10,
α = 15, respectively.
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Figure 2.6: Stochastic root finding for liquidity-adjusted V@R by price impact b = 0.5 (left: α = 10, right: α = 15)
and 5,000 iterations in the comonotonic case h = h1 = h2.
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Figure 2.7: Stochastic root finding for liquidity-adjusted UBSR by price impact b = 0.5 (left: α = 10, right: α = 15)
and 5,000 iterations in the comonotonic case h = h1 = h2.

When conducting our numerical experiments, we also noticed that variance reduction
techniques become important when computing liquidity-adjusted risk measures if price
effects and short-term cash flows are large. Suitable techniques are described in Dunkel &
Weber (2007) and Dunkel & Weber (2010). The effective implementation in the context
of measuring risk in highly illiquid markets constitutes an interesting direction for future
research.

2.4 | Conclusion

We propose liquidity-adjusted risk measures in the context of a static one-period model.
Main drivers are two dimensions of liquidity risk, namely price impact of trades and limited
access to financing. The suggested cash-invariant risk measures are based on the notion of
capital requirements and provide a simple method to properly managing portfolio risk by
injecting an appropriate amount of capital upfront. Our analysis is based on the notion of
liquidity-adjusted portfolio valuation that was originally developed by Acerbi & Scandolo
(2008). The presented numerical case studies apply the stochastic root finding algorithm
provided in Chapter 1. Moreover, the proposed liquidity-adjusted risk measure can be
defined in terms of a redistribution risk measure as suggested in Appendix B.

Our approach is quite stylized, and it remains an important topic for future research
to investigate how liquidity-adjusted valuation and risk measurement can successfully be
implemented in practice. In particular, the random supply-demand curves and the liquidity
constraints of the model would have to constitute appropriate proxies of reality. This
requires the design and detailed analysis of suitable estimation procedures.

Two further topics are important and might be promising for future research. First,
a dynamic extension of the current framework could provide a more realistic approach
to measuring liquidity-adjusted risk. Second, liquidity-adjusted risk measures might con-
tribute to the theory of portfolio choice. Modified objective functions or constraints that
integrate the results of this chapter will lead to different optimal investments which do
not ignore the important dimension of liquidity risk anymore.
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2.5 | Appendix: Proofs

In this section, we provide the proofs of the results presented in Sections 2.1.3 & 2.2.

Proof of Proposition 2.1.18.

Proof. The proofs of (i), (iii) and (iv) are similar to Proposition 3 and Theorem 1 in Acerbi
& Scandolo (2008).

(ii) can be shown as follows: If L(ξ̄, m̄) ≥ a, then (L(ξ̄, m̄), 0N ) ∈ L(ξ̄, m̄, φ, a)∩(R×K),
since 0N ∈ K. Thus, V (ξ̄, m̄) ≥ L(ξ̄, m̄) ≥ a > −∞.

In order to verify (v), suppose that ξ̄ ≤ η̄ and recall that attainable portfolios µ̄ ∈
A(ξ̄, m̄), ν̄ ∈ A(η̄, m̄) take the form

µ̄ =
(
ξ0 +

N∑
i=1

∫ αi

0
mi(x) dx, ξ − α

)
, ν̄ =

(
η0 +

N∑
i=1

∫ βi

0
mi(x) dx, η − β

)
(α, β ∈ RN ).

We associate to any µ̄ ∈ L(ξ̄, m̄, φ, a)∩(R×K) the vector ν̄ corresponding to β = η−ξ+α ≥
α, i.e.,

ν̄ =
(
η0 +

N∑
i=1

∫ ηi−ξi+αi

0
mi(x) dx, ξ − α

)
.

Then, ν̄ belongs to L(η̄, m̄, φ, a)∩ (R×K), and we have the inequality U(µ̄, m̄) ≤ U(ν̄, m̄).
This implies V (ξ̄, m̄) ≤ V (η̄, m̄).

Proof of Proposition 2.2.6.

Proof. Since L(ξ̄, m̄) ∈ L∞, there exists k ∈ R such that both L(k+ξ̄, m̄) = k+L(ξ̄, m̄) ≥ a
and L(k + ξ̄, m̄) = k + L(ξ̄, m̄) ∈ A. Thus, by Prop. 2.1.18, L(k + ξ̄, m̄) ≤ V (k + ξ̄) ≤
U(k+ ξ̄, m̄) ∈ L∞. Hence, V (k+ ξ̄) ∈ A. This implies that ρV (ξ̄) <∞. Moreover, observe
that V (k + ξ̄) ≤ U(k + ξ̄, m̄) = k + U(ξ̄, m̄). Thus,

ρV (ξ̄) = inf{k : V (k + ξ̄) ∈ A} ≥ inf{k : U(k + ξ̄, m̄) ∈ A} = ρ(U(ξ̄, m̄)) > −∞,

since U(ξ̄, m̄) ∈ L∞.
Estimate (2.3) is a consequence of the translation-supervariance (2.2) of V (ξ̄). Indeed,

if ρV (ξ̄) > 0, then we have V (k + ξ̄) 6∈ A for any fixed k ∈ (0, ρV (ξ̄)). Since V (k + ξ̄) ≥
k+ V (ξ̄), this yields k+ V (ξ̄) 6∈ A, hence ρAS(ξ̄) ≥ k > 0. Letting k increase to ρV (ξ̄), we
obtain ρV (ξ̄) ≤ ρAS(ξ̄) for ρV (ξ̄) > 0.

Conversely, ρV (ξ̄) < 0 implies that V (k + ξ̄) ∈ A for any fixed k ∈ (ρV (ξ̄), 0). Here,
translation-supervariance yields the estimate V (k+ ξ̄) ≤ k+V (ξ̄). Thus, k+V (ξ̄) ∈ A, and
so we have ρAS(ξ̄) ≤ k < 0. Taking the limit k ↓ ρV (ξ̄), this translates into ρAS(ξ̄) ≤ ρV (ξ̄)
for ρV (ξ̄) < 0.



42 CHAPTER 2. LIQUIDITY-ADJUSTED RISK MEASURES

Proof of Theorem 2.2.7.

Proof. Letting ξ̄, η̄ ∈ RN+1 and m ∈ R, we obtain

ρV (ξ̄ +m) = inf{k : V (k + ξ̄ +m) ∈ A} = ρV (ξ̄)−m,

which proves the cash-invariance of ρV . Suppose now that ξ̄ ≤ η̄. Then, V (k+ξ̄) ≤ V (k+η̄)
for any k ∈ R. Thus,

V (k + ξ̄) ∈ A ⇒ V (k + η̄) ∈ A,

since A is the acceptance set of the risk measure ρ. Hence, ρV (η̄) ≤ ρV (ξ̄).
In order to prove convexity, we fix α ∈ [0, 1] and ξ̄, η̄ ∈ RN+1. For all k1, k2 ∈ R such that
V (k1 + ξ̄), V (k2 + η̄) ∈ A, convexity of the acceptance set A yields that αV (k1 + ξ̄) + (1−
α)V (k2 + η̄) ∈ A. Since V is concave by Prop. 2.1.18, we have

αV (k1 + ξ̄) + (1− α)V (k2 + η̄) ≤ V (α(k1 + ξ̄) + (1− α)(k2 + η̄)),

hence
V (αk1 + (1− α)k2 + αξ̄ + (1− α)η̄) ∈ A.

This implies αk1 + (1 − α)k2 ≥ ρV (αξ̄ + (1 − α)η̄). Taking the limits k1 ↓ ρV (ξ̄) and
k2 ↓ ρV (η̄), we obtain convexity of ρV .

Proof of Theorem 2.2.8.

Proof. Let ρV (ξ̄) = k. The cash-invariance of ρV implies

0 = ρV (ξ̄)− k = ρV (ξ̄ + k) = inf{m ∈ R : V (ξ̄ + k +m) ∈ A}. (2.6)

Since V is increasing in the portfolio and A is an acceptance set, we have V (ξ̄+k+m) ∈ A
for all m > 0. Thus, ρ(V (ξ̄ + k)) = limm↘0 ρ(V (ξ̄ + k +m)) ≤ 0.

Suppose that ρ(V (ξ̄+k)) < −ε < 0 for ε > 0, i.e., ρ(V (ξ̄+k)−ε) < 0 because of cash-
invariance. Since V is P -almost surely continuous on the interior of its essential domain and
increasing in the portfolio vector, there exists k′ < k such that V (ξ̄+k′) ≥ V (ξ̄+k)−ε. By
inverse monotonicity of the risk measure ρ, we get that ρ(V (ξ̄+k′)) ≤ ρ(V (ξ̄+k)−ε) < 0,
i.e., V (ξ̄ + k′) ∈ A – contradicting (2.6). Thus, ρ(V (ξ̄ + k)) = 0.

Uniqueness of the solution of (2.4) can be shown as follows: Suppose there exist two
solutions k′ > k to the equation. Letting k′ − k =: c > 0, we get

ρ(V (ξ̄ + k′)) = ρ(V (ξ̄ + k + c)) ≤ ρ(V (ξ̄ + k) + c) = ρ(V (ξ̄ + k))− c = −c < 0,

a contradiction. Here, the inequality follows from the translation-supervariance of V , see
Prop. 2.1.18, as well as from the cash-invariance and monotonicity of ρ.
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Proof of Proposition 2.2.11.

Proof. Let ξ̄ ∈ RN+1 be a given portfolio and k ∈ R the units of the eligible asset eε with
ε > 0. We are going to show that

V (ξ̄) + k ≤ Ṽ ((ξ̄, k)) ≤ V (ξ̄ + ε) + k + ε for all k ∈ R, ε > 0, (2.7)

where Ṽ depends on ε implicitly. Indeed, for any η̄ = (η0, η) ∈ L(ξ̄, m̄, φ, a)∩ (R×K), the
portfolio

µ̃ :=
(
η0 +

∫ ε

0
eε(x) dx, η, k − ε

)
∈ RN+2

is attainable from (ξ̄, k), belongs to L̃((ξ̄, k), (m̄, eε), φ̃, a) ∩ (R× K̃) and satisfies
Ũ(µ̃, (m̄, eε)) = U(η̄, m̄) + k. This yields the first inequality V (ξ̄) + k ≤ Ṽ ((ξ̄, k)).

In order to verify the second inequality in (2.7), note first that buying more as well
as selling more than ε units of the eligible asset decreases Ũ(·, (m̄, eε)). For the rele-
vant portfolios η̃ = (η̄, ηN+1) ∈ L((ξ̄, k), (m̄, eε), φ, a) ∩ (R × K × [k − ε, k + ε]), we
have Ũ(η̃, (m̄, eε)) = U(η̄, m̄) + ηN+1 ≤ U(η̄, m̄) + k + ε. Note that η̄ is an element of
L(ξ̄ + δ, m̄, φ, a) ∩ (R×K) for some δ ∈ [−ε, ε]. This implies

Ṽ ((ξ̄, k)) ≤ V (ξ̄ + δ) + k + ε ≤ V (ξ̄ + ε) + k + ε,

and so we have shown (2.7). The inequality (2.7) translates into

ρ(V (ξ̄)) ≥ ρeε(ξ̄) ≥ ρ(V (ξ̄ + ε))− ε.

Since ρ is continuous and V is continuous at ξ̄, letting ε tend to 0 yields

lim
ε↓0

ρeε(ξ̄) = ρ(V (ξ̄)) = ρAS(ξ̄).
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3 | Network Risk, Network Regulation, and Net-
work Optimization

This chapter is based on a working paper that is still work in progress, see Hamm, Knispel &
Weber (2019a).

Regulation schemes such as Basel III, Solvency II, or the Swiss Solvency Test rely on
capital requirements that provide a buffer against potential losses and thereby serve to
ensure a financial firm’s solvability. In internal models, such solvency capital requirements
(SCR) are computed in terms of a risk measure applied to the simulated distribution
of the future net asset value (NAV). The required capital depends on the one hand on
the underlying risk measure. While the regulation scheme Solvency II for the European
insurance sector is based on the risk measure value at risk, the Swiss Solvency Test employs
the average value at risk, a coherent risk measure that in contrast to value at risk does
not penalize economical meaningful diversification and measures risk in the tail. On the
other hand, regulatory guidelines may leave room for interpretation such that different
SCR definitions are compliant with regulatory requirements.

In this chapter, we do not limit the computation of capital requirements to an indi-
vidual firm, but consider a corporate network of n ∈ N sub-entities where each sub-entity
i = 1, . . . , n, has its own balance sheet. The network setting allows for interaction among
the entities and, in particular, internal capital transfers are possible. In this case, capital
requirements also depend on the aggregation method for regulatory purposes. For exam-
ple, balance sheets can be consolidated among all entities by summation, and then the
network is treated as one legal entity. We propose a unified framework for the regulation
of firm networks and their capital requirements. Capital requirements are derived from a
set-valued network risk measure, consisting of the following ingredients:

(i) Terminal net asset values E: These are modeled by a random field depending on
initial equity e ∈ Rn and additional capital k ∈ Rn. The terminal NAV for each
entity is determined with respect to the corporate structure of the network.

(ii) Regulatory aggregation function Λ and acceptance sets (Aj)j=1,...,m: The regulatory
aggregation function maps terminal NAVs of the entities to final regulatory out-
comes that need to be acceptable for regulatory purposes. The acceptance sets of
scalar monetary risk measures define criteria for terminal regulatory outcomes to be
acceptable.

45
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This setting is flexible and includes a wide variety of regulatory frameworks used in prac-
tice. The network risk measure is the set of vectors of additional capital requirements such
that terminal regulatory outcomes are acceptable:

RΛ (E; e) := {k ∈ Rn |Λj (E(e, k)) ∈ Aj ∀j = 1, . . . ,m}.

From a regulator’s perspective, any of these allocations can be chosen in order to meet the
regulatory requirements. However, from the perspective of the network’s management,
it is efficient to identify optimal capital allocations, i. e., for example, those allocations
that minimize the total cost of capital or those that maximize the overall performance
of the network. Management objectives can be formalized by an objective function, and
so we face the problem of optimizing the objective function among all acceptable capital
allocations.

In practice, terminal net asset values are affected by management strategies, includ-
ing asset-liability management (ALM) strategies as well as internal capital transfer (ICT)
agreements. We thus model these strategies explicitly and identify ALM- and ICT-strategies
that are feasible and optimize the objective function of the network’s management while
respecting regulatory requirements at the same time.

Outline. The chapter is organized as follows: In Section 3.1, we introduce our set-valued
framework for the regulation of firm networks based on capital requirements. For this pur-
pose, we first review a notion of solvency capital requirements for individual firms, derived
from the natural requirement of acceptability in the theory of monetary risk measures.
Second, we propose the concept of a set-valued network risk measure to generalize this
approach to network regulation.

In the context of network regulation, the problem of optimal capital allocation is ana-
lyzed in Section 3.2. First, Section 3.2.1 defines the notion of an optimal set-valued capital
allocation principle, depending on the objective function of the network’s management,
and provides solutions for a variety of regulatory frameworks. Second, we show in Sec-
tion 3.2.2 that the classical Euler allocation principle corresponds to a special case of our
set-valued setting. Third, Section 3.2.3 illustrates the computation of set-valued capital
allocations via a grid search algorithm in numerical examples.

In Section 3.3, we extend our framework by including management strategies that
affect the evolution of terminal NAVs. Section 3.3.1 introduces both ALM- and ICT-
strategies explicitly and specifies the network’s constrained optimization problem. The
numerical case studies in Section 3.3.2 analyze the impact of different regulatory systems
on the optimal management strategy by computing an optimal investment strategy in the
financial market, optimal internal transfer agreements, and an optimal acceptable capital
endowment. Overall, our case studies indicate that consolidated balance sheets can be
mimicked via optimal management strategies. Section 3.4 concludes with a summary.
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Literature. The analysis of risk management in corporate networks under regulatory
constraints is an ongoing field of research; see Remark 8 in Weber (2018) for a discussion
on the classification of networks vs. groups. Based on the Swiss Solvency Test, Keller (2007)
and Luder (2007) provide an overview on insurance group risk management. Both papers
are rather of qualitative nature. Filipović & Kupper (2008b) provide a sound mathematical
framework and propose a bottom up approach based on legal entities and capital transfer
agreements. Their approach is an alternative to the traditional two step procedure of,
first, computing the aggregate risk and, second, splitting this risk and allocating capital
to the entities. In contrast to the chapter at hand, Filipović & Kupper (2008b) consider
scalar-valued risk measures and a fixed management function. For an application of their
model in the context of the Swiss Solvency Test, we refer to Filipović & Kupper (2007),
see also Filipović & Kunz (2008) for further case studies.

For group regulation, a framework based on set-valued risk measures - similar to our
approach - is proposed in Haier, Molchanov & Schmutz (2016), see, e. g., Jouini, Meddeb
& Touzi (2004), Hamel & Heyde (2010), and Hamel, Heyde & Rudloff (2011) for an
overview on set-valued risk measures. The authors consider a group as acceptable for
regulatory purposes, if there exists an admissible intragroup transfer such that the terminal
wealth of each entity becomes acceptable. Additionally required capital can be added
to terminal equity only (insensitive case). In contrast, our setting also allows for capital
injections to initial equity endowments (sensitive case), and it includes both internal capital
transfer agreements and asset-liability management strategies. Our set-valued network risk
measure is a generalization of the concept of set-valued systemic risk measures introduced
in Feinstein, Rudloff & Weber (2017).

Capital allocation principles based on scalar-valued risk measures as well as their prop-
erties have been the subject of intense scientific research. The axiomatic theory of coherent
risk measures introduced in Artzner et al. (1999) was, for the first time, applied to insur-
ance by Artzner (1999). Denault (2001) extends the concept of coherent risk measures to
a coherent allocation of risk capital to portfolios based on game theory approaches. Tasche
(2000), Tasche (2008) and Kalkbrener (2005) discuss the Euler capital allocation in detail.
While Tasche (2000) and Tasche (2008) focus on performance measurement, Kalkbrener
(2005) provides an axiomatic approach to capital allocations. Buch & Dorfleitner (2008)
combine the concepts of coherent risk measures by Artzner et al. (1999) and coherent cap-
ital allocations by Denault (2001) with the Euler principle and derive certain axiom pairs
that are shown to be equivalent. The Euler allocation can be embedded into our set-valued
framework, and so this chapter also contributes to the methods of capital allocation.

To the best of our knowledge, the combination of asset-liability management strategies
and internal capital transfer agreements in the context of network optimization under
regulatory constraints in a set-valued framework is new to the literature.
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3.1 | Network Regulation

Capital requirements provide a buffer against downside risk and serve to ensure a firm’s
financial solvability. Solvency capital requirements (SCR) are thus a key instrument of
financial regulation schemes for insurance companies or banks. In this chapter, we focus
on firms where the stochastic solvency balance sheet is derived by projections within
internal models, for example, in the sense of the Solvency II Directive 2009/138/EC for
the European insurance sector. In particular, insurance firms computing their SCRs with
the Solvency II Standard Formula are not in the scope of this chapter.

In this section, we introduce an abstract framework for the regulation of financial firm
networks and for the computation of their SCRs based on a set-valued network risk mea-
sure. The network risk measure consists of three ingredients: terminal net asset values, a
regulatory aggregation function, and acceptability criteria related to monetary risk mea-
sures. This setting is flexible and includes a wide variety of regulatory frameworks used in
practice.

For the convenience of the reader, we begin with a short review on SCRs for individual
firms.

3.1.1 | Regulation of Individual Insurance Firms

To sketch the SCR computation for an individual firm, consider a one period economy
with two dates, say t = 0, 1. Time 0 is interpreted as today, time 1 as the future time
horizon of the regulation scheme. Note that Solvency II and the Swiss Solvency Test rely
on a time horizon of one year.

Throughout this chapter, the set of financial positions at time 1 whose risk needs to be
assessed is a vector space of random variables on a probability space (Ω,F , P ) that contains
the constants. For example, X (R) = L0(R) is the family of random variables, X (R) =
L∞(R) is the subspace of bounded random variables, or X (R) = Lp(R) is the subspace
of p-integrable random variables. Analogously, we use later on the notation X (Rn), where
X (Rn) ⊆ L0(Rn) is a subspace of the family of n-dimensional random vectors. By sign
convention, negative values correspond to debt or losses.

For individual entities, the SCR computation is based on two key components, stochas-
tic balance sheet projections capturing the random evolution of the firm’s equity over a
given time horizon, and a scalar monetary risk measure ρ that measures risk on a monetary
scale or, equivalently, defines acceptability of financial positions in terms of its acceptance
set:

Aρ := {X ∈ X (R) | ρ(X) ≤ 0}.

Standard examples include the value at risk (V@R) and average value at risk (AV@R),
see, e. g., Artzner et al. (1999), Föllmer & Schied (2011), Föllmer & Weber (2015) for
detailed reading, or Section 3.5 as well as Appendix A for a short review of key facts and
examples on risk measures.

In t = 0, assets, liabilities and the net asset value (or book value of equity) are deter-
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ministic and denoted by a, l, e = a − l ∈ R, respectively. In t = 1, assets, liabilities and
their difference - referred to as net asset value (NAV) - are the random variables denoted
by A,L,E = A− L ∈ X (R), respectively, cf. Table 3.1.

t = 0

Assets Liabilities

e = a− l
a

l

t = 1

Assets Liabilities

E = A− L
A

L

Table 3.1: Balance sheet of an insurance company for different points in time.

These quantities can be derived from stochastic balance sheet projections within so-
phisticated internal models that rely extensively on Monte Carlo simulations. We set

X := (A− a)− (L− l) = E − e

for the random change in wealth of the company over the considered time horizon.
From the perspective of a financial supervisory authority, it is natural to call an in-

surance firm solvent if the future NAV E is acceptable with respect to a prescribed scalar
risk measure ρ and its acceptance set Aρ, i. e., E ∈ Aρ. Note that

E ∈ Aρ ⇔ e+X ∈ Aρ ⇔ ρ(e+X) ≤ 0 ⇔ ρ(X) = ρ(E − e) ≤ e.

Defining SCR = ρ(X), acceptability of E is equivalent to SCR ≤ e, i. e., the firm’s initial
equity is sufficient to cover the solvency capital requirement. This construction can be
applied for arbitrary monetary risk measures, and in particular for the industry standard
V@R. The following example, taken from Chapter 4 (cf. Example 4.1.1), clarifies the link
to Solvency II regulation.

Example 3.1.1. For Solvency II regulation, Recital 64 of the Directive 2009/138/EC
states that capital must be sufficient to prevent ruin with probability 99.5% on a one-
year time horizon, i. e., P (E < 0) ≤ α with α = 0.005. This condition is equivalent to
E ∈ AV@R0.005 , where AV@Rα = {X ∈ X (R) |P (X < 0) ≤ α} denotes the acceptance set
of value at risk. Hence, a canonical SCR definition in the context of Solvency II is

SCR := V@R0.005(X) = V@R0.005(E − e) = e+ V@R0.005(E) = e− q+
E(0.005),

where q+
E denotes the upper quantile function of E, see Appendix A, Definition A.0.2. Note,

however, that, §101(2) of the Directive 2009/138/EC supports the definition in terms of
the so-called mean value at risk which is widely used in practice.



50 CHAPTER 3. NETWORK RISK, NETWORK REGULATION, AND NETWORK OPTIMIZATION

3.1.2 | Regulation of Firm Networks

Let us now extend these ideas to the regulation of firm networks. For this purpose, we first
introduce the new concept of a set-valued network risk measure. In a nutshell, a network
risk measure is defined by the set of vectors that specify for each entity within the network
the amount of additional required capital such that terminal net asset values generated by
the network are acceptable for regulatory purposes. Based on the network risk measure,
we describe a solvency condition for networks.

3.1.2.1 | Network Risk Measure

Consider a network, e. g., an insurance network, consisting of n < ∞ sub-entities. We
denote by N = {1, . . . , n} the set of entities, i. e., i ∈ N represents sub-entity i of the net-
work. Conditional on any initial equity allocation in the network, the sub-entities generate
random NAVs (or equity values) at terminal time due to the evolution of their balance
sheets. Regulatory aggregations of these terminal NAVs need to be acceptable for reg-
ulatory authorities, and if necessary, entities need to add additional capital in order to
ensure acceptability. We compute those vectors of additional capital leading to accept-
able outcomes by the set-valued network risk measure, defined in terms of the following
ingredients:

(i) Terminal net asset values: The joint balance sheets of the entities evolve over the
given time horizon, starting with an initial equity allocation e ∈ Rn in the network.
Given both initial equity allocation and additional required regulatory capital k ∈
Rn, terminal NAVs are random, and they may depend on asset-liability management
strategies. If these are held constant, then the following random field formalizes the
dependence on initial equity and required capital:

E : Rn × Rn → X (Rn), (e, k) 7→ E(e, k).

The random field E is chosen by the network.

We assume that a higher initial equity as well as higher additional capital lead to
higher random terminal NAVs of the sub-entities. Thus, we consider random fields
that are non-decreasing:

– If ci ≤ ei, ∀i ∈ N, e, c ∈ Rn, then Ei(c, k) ≤ Ei(e, k), ∀i ∈ N .

– If ci ≤ ki, ∀i ∈ N, k, c ∈ Rn, then Ei(e, c) ≤ Ei(e, k), ∀i ∈ N .

The space of non-decreasing random fields is denoted by Y, i. e., E ∈ Y.

(ii) Network regulation: The network regulation consists of two more ingredients:

– Regulatory aggregation function: Let 1 ≤ m <∞ and

Λ : Rn → Rm, l 7→ Λ(l).
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The regulatory aggregation function is increasing and maps terminal NAVs
of sub-entities to terminal regulatory values that need to be acceptable for
regulatory purposes. The function Λ is chosen by the regulator.

– Acceptance criteria: Acceptability is specified by acceptance sets (Aj)j=1,...,m

of monetary risk measures. Acceptability and acceptance sets are prescribed by
the regulator.

These components allow to define allocations of additional required capital k ∈ Rn such
that terminal NAVs are acceptable for regulatory purposes. The set of all these capital
allocations is called a set-valued network risk measure. Our formal definition is a general-
ization of the systemic risk measure defined in Feinstein et al. (2017).

Definition 3.1.2. Let P(Rn;Rn+) := {A ⊆ Rn |A = A + Rn+} be the collection of upper
sets with ordering cone Rn+. Let Λ be a regulatory aggregation function, E ∈ Y a random
field of terminal NAVs and e ∈ Rn an initial equity allocation. We call the function

RΛ : Y × Rn → P
(
Rn;Rn+

)
a network risk measure, if for some acceptance sets Aj ⊆ X (R) of scalar monetary risk
measures ρj , j = 1, . . . ,m:

RΛ (E; e) := {k ∈ Rn |Λj (E(e, k)) ∈ Aj ∀j = 1, . . . ,m}.

Let us first summarize examples for terminal NAVs. Note that, in particular, internal
capital transfers - defined by the network itself - are determined by the choice of E.

Example 3.1.3. (i) Basically, we distinguish two types of terminal NAVs:

1. Sensitive case: In the sensitive case, required capital k ∈ Rn is added to the
initial equity e ∈ Rn. Thus, the evolution of balance sheets does not only depend
on the initial equity, but also on required capital added in t = 0. Terminal NAVs
are given by

E : Rn × Rn → X (Rn), E(e, k) = E(e+ k, η),

where η is the neutral element with respect to the conjunction of the arguments.
In the sequel, we focus on terminal NAVs, where initial equity e and additional
capital k are combined additively only. In this case, the neutral element is given
by the zero vector denoted by 0 = (0, 0, . . . , 0) ∈ Rn, and so we have

E : Rn × Rn → X (Rn), E(e, k) = E(e+ k,0). (3.1)

We denote the random field in Eq. (3.1) by E.

2. Insensitive case: In the insensitive case, required capital k ∈ Rn is added to
terminal equity values in t = 1. In contrast to the sensitive case, additional
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capital cannot affect the evolution of balance sheets anymore. Terminal NAVs
evolve according to

E : Rn × Rn → X (Rn), E(e, k) = E(e, η) + k,

where η is the neutral element with respect to the conjunction of initial equity
and additional capital. With the same arguments as in 1., we obtain

E : Rn × Rn → X (Rn), E(e, k) = E(e,0) + k. (3.2)

We denote the random field in Eq. (3.2) by E.

For a critical discussion on the difference between the sensitive and the insensitive
case, in particular, in terms of interpretation, we refer to Appendix B.

(ii) Let e ∈ Rn be the initial equity allocation, and let X ∈ X (Rn) denote the random
change in wealth of the network. Then, the NAVs of entities evolve to

e+X = (e1 +X1, e2 +X2, . . . , en +Xn) ∈ X (Rn).

However, ei+Xi does not necessarily coincide with the terminal NAV of sub-entity i.
Indeed, these values can be shaped by capital transfer agreements between network’s
entities such that terminal NAVs are determined after redistribution of equity. This
redistribution, in turn, may depend on the additional required capital k ∈ Rn. The
terminal net asset value of sub-entity i is the stochastic outcome of the random field
Ei(e, k) and may capture capital transfers inside the network. Examples include:

1. Stand-alone firms without any internal capital transfers:

E1 : Rn × Rn → X (Rn), E1(e, k) = X + e+ k.

2. Profit and Loss Transfer Agreements within networks:

E2 : Rn × Rn → X (Rn),

E2
i (e, k) =

n∑
d=1

aid ·max{Xd + ed + kd, 0}+
n∑
d=1

bid ·min{Xd + ed + kd, 0},

i ∈ N , where
∑n
i=1 a

i
d =

∑n
i=1 b

i
d = 1, d = 1, . . . , n. Here, aid > 0 is the part of

profits generated by entity d that is transferred to entity i. Analogously, bid > 0
is the part of the losses generated by entity d that is captured by entity i.

The random fields for terminal NAVs in the sensitive and insensitive case, i ∈ N ,
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take the form

E
1(e, k) = E1(e, k) = E1(e, k),

E
2(e, k) = E2(e, k) and

E2
i (e, k) = E2

i (e,0) + ki =
n∑
d=1

aid ·max{Xd + ed, 0}+
n∑
d=1

bid ·min{Xd + ed, 0}+ ki.

Secondly, we discuss examples for regulatory aggregation functions Λ. Note that ag-
gregation functions (as well as risk measures and their acceptance sets) are prescribed by
the regulatory scheme or the local supervisory authority. In particular, the choice of Λ
determines whether consolidation of balance sheets is allowed or not.

Example 3.1.4. Regulatory aggregation functions include:

(a) If each sub-entity is considered individually, then the regulatory aggregation function
is the identity, i. e.,

Λ1 : Rn → Rn, Λ1(l) = l.

Applying Λ1 to the random field E2 in Example 3.1.3 (ii) corresponds to a regula-
tory framework of partial consolidation where sub-entities consolidate their balance
sheets, but for the regulatory authority each legal entity needs to be still acceptable.
The network risk measure with respect to Λ1 is given by

RΛ1 (E; e) = {k ∈ Rn |Ei(e, k) ∈ Ai, ∀i ∈ N}.

This network regulation allows for the application of an individual scalar-valued risk
measure to each entity in the network.

(b) Instead of the legal entity approach in (a), the regulator may prescribe a consolidated
approach. Here, the network of n sub-entities is structured such thatm consolidating
sub-networks arise, 1 ≤ m < n. The regulatory aggregation function is given by

Λ2 : Rn → Rm, l 7→ Λ2(l).

If, for example, the individual positions of the entities in the sub-networks are ag-
gregated by summation, then the aggregation function takes the form

Λ2.1 : Rn → Rm, Λ2.1(l) =

 n1∑
i=1

li,
n2∑

i=n1+1
li, . . . ,

nm∑
i=nm−1+1

li

 ,
where nj ∈ N,nm = n. The network risk measure with respect to Λ2.1 is given by

RΛ2.1 (E; e) =

k ∈ Rn
∣∣∣∣ nj∑
i=nj−1+1

Ei(e, k) ∈ Aj , ∀j = 1, . . . ,m

 , (n0 = 0, nm = n).

As special case of Λ2, we obtain a network that is considered as one legal entity
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by setting m = 1. If the aggregation mechanism is given by summation, then the
regulatory aggregation function becomes

Λ2.2 : Rn → R, Λ2.2(l) =
n∑
i=1

li.

This leads to the network risk measure

RΛ2.2 (E; e) =
{
k ∈ Rn

∣∣∣∣ n∑
i=1

Ei(e, k) ∈ A
}
.

In contrast to network regulation based on the regulatory aggregation function Λ1

in (a), only one scalar-valued risk measure is sufficient to measure the total network
risk.

Let us emphasize that a regulatory framework that aggregates the balance sheets of
individual entities by summation allows for subsidization within the networks, i. e.,
losses of sub-entities can be subsidized by gains of the remaining entities.

(c) Suppose that the regulator is blind for several sub-networks that are hidden under
the regulatory screen, i. e., not all but only some sub-entities or sub-networks need
to be acceptable. Examples for these regulatory aggregation functions are

Λ3 : Rn → Rh, Λ3(l) = (l1, . . . , lh), 1 ≤ h < n,

or
Λ3.1 : Rn → Rh, Λ3.1(l) =

(
Λ2.1

1 (l), . . . ,Λ2.1
h (l)

)
, 1 ≤ h < m.

Here, Λ3 and Λ3.1 are projections to certain components. If h = 1, then only one
entity, e. g., the parent company, or one sub-network needs to generate acceptable
outcomes. Applying Λ3.1, for example, to the random field E2 in Example 3.1.3
(ii), yields a regulatory framework of partial consolidation where sub-networks are
individually regulated but within the sub-networks the entities consolidate their
balance sheets. We obtain the corresponding network risk measures

RΛ3 (E; e) = {k ∈ Rn |Ej(e, k) ∈ Aj , ∀j = 1, . . . , h}

and

RΛ3.1 (E; e) =

k ∈ Rn
∣∣∣∣ nj∑
i=nj−1+1

Ei(e, k) ∈ Aj , ∀j = 1, . . . , h

 , (n0 = 0, nh = m).

In these frameworks of network regulation, only entities 1, . . . , h or sub-networks
1, . . . , h need to fulfill acceptability conditions. In Feinstein et al. (2017), RΛ3 (E; e)
with h = 1 is called systemic risk measure.

In contrast to RΛ3.1 (E; e), the network risk measure RΛ2.1 (E; e) in (b) captures the
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contribution of each sub-entity to the total network. On the other hand, RΛ3.1 (E; e)
incorporates only those entities being part of one of the sub-networks 1, . . . , h. Other
entities or sub-networks are not visible for the regulatory authority.

Table 3.2 summarizes specific settings for the network risk measure that are mainly
used throughout this chapter. In particular, this overview demonstrates that the abstract
concept of a set-valued network risk measure is flexible and rich enough to account for a
wide variety of regulatory frameworks used in practice.

Regulatory framework Ingredients for network risk measure

Stand-alone approach E(e, k) = E1(e, k), m = n, Λ(l) = Λ1(l)

Legal entity approach E(e, k) = E(e, k), m = n, Λ(l) = Λ1(l)

Consolidated approach E(e, k) = E(e, k), m = 1, Λ(l) = Λ2.2(l)

Legal entity approach (insensitive) E(e, k) = E(e, k), m = n, Λ(l) = Λ1(l)

Consolidated approach (insensitive) E(e, k) = E(e, k), m = 1, Λ(l) = Λ2.2(l)

Table 3.2: Overview on regulatory frameworks.

If terminal NAVs are set to the random field E1 in the legal entity or legal entity
approach (insensitive), these approaches coincide with the stand-alone approach (see Ex-
ample 3.1.3 (ii)).

3.1.2.2 | Basis Properties and Comparison of Network Risk Measures

Let us now compare the regulatory frameworks in Table 3.2 and discuss some general
properties of our network risk measure. Proposition 3.1.5 shows how the legal entity and
consolidated approach are linked to each other. It demonstrates that if regulatory authori-
ties measure the network risk based on individual balance sheets, then capital requirements
are stricter than in the consolidated approach where the single balance sheets are simply
aggregated by summation.

Proposition 3.1.5. Assume that for all entities i ∈ N acceptability is determined by the
same subadditive risk measure ρ. Then, for both sensitive and insensitive terminal net
asset values,

RΛ1 (E; e) ⊆ RΛ2.2 (E; e) .

Proof. The proof is given in Section 3.7.

Proposition 3.1.6 exhibits in which sense sensitive and insensitive terminal NAVs are
linked to each other.

Proposition 3.1.6. Assume that terminal net asset values are translation-supervariant
in the initial equity for all i ∈ N .
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(i) Let k ∈ Rn+. If k ∈ RΛ1(E; e), then k ∈ RΛ1(E; e).

If each entity of the network has to add capital, each capital allocation that is ac-
ceptable in the legal entity approach (insensitive) is also acceptable in the legal entity
approach. Hence, in the insensitive case, capital requirements are stricter.

(ii) Let k ∈ Rn−. If k ∈ RΛ1(E; e), then k ∈ RΛ1(E; e).

If each entity of the network can remove capital, each capital allocation that is ac-
ceptable in the legal entity approach is also acceptable in the legal entity approach
(insensitive). Hence, in the sensitive case, capital requirements are more prudent.

Proof. The proof is given in Section 3.7.

Remark 3.1.7. (i) The network risk measure in Definition 3.1.2 is a redistribution risk
measure in the sense of Definition B.1.3 (ii) in Appendix B. Indeed, letting terminal
NAVs be given by the sensitive random field in (3.1), and setting

f : Rn → X (Rm), f(e) = Λ(E(e,0)),

the network risk can be measured by

ρ̃(f ; e) = {k ∈ Rn |Λj (E(e+ k,0)) ∈ Aj ∀j = 1, . . . ,m}.

Thus, RΛ(E; e) = ρ̃(f ; e).

(ii) For non-decreasing random fields E and increasing Λ, property (ii) in Remark 3.5.1
(see Section 3.5) implies that l + c ∈ RΛ (E; e) whenever l ∈ RΛ (E; e) and c ∈ Rn+.
Hence, increasing the capital allocation does not affect the regulator’s acceptability,
see also Appendix B, Remark B.3.5.

The following proposition provides general properties of our network risk measure.

Proposition 3.1.8. Let Λ be a regulatory aggregation function, E ∈ Y a random field
of terminal net asset values, e ∈ Rn an initial equity allocation, and RΛ a network risk
measure. The following properties are satisfied:

(i) Cash-invariance: If E is sensitive (see Eq. (3.1)), then

RΛ(E; e+ l) = RΛ(E; e)− l, ∀l ∈ Rn.

(Adding a fixed capital vector to initial equity reduces the additional capital exactly
by this amount.)

(ii) Monotonicity: Let F ∈ Y be another random field such that Fi(e, k) ≤ Ei(e, k), ∀i ∈
N . Then,

RΛ (F ; e) ⊆ RΛ (E; e) .

(Capital requirements are stricter if future wealth levels decrease.)
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(iii) Convex values: If E is insensitive (see Eq. (3.2)), Λj is concave for all j = 1, . . . ,m,
and (Aj)j=1,...,m is convex, then RΛ is a convex subset of Rn, i. e., if k, l ∈ RΛ (E; e) ,
then

αk + (1− α) l ∈ RΛ (E; e) , ∀α ∈ [0, 1].

(Convex combinations of acceptable allocations are again acceptable.)

Proof. The proof is given in Section 3.7.

Remark 3.1.9. In the insensitive case, RΛ (E; e) is cash-invariant if E is translation-
invariant in the initial equity. In the sensitive case, property (iii) in Prop. 3.1.8 is satisfied,
if Rn → X (Rn), (e, k) 7→ E(e, k) is concave in the initial equity, i. e.,

αEi(e, k) + (1− α)Ei(e, l) = αEi(e+ k,0) + (1− α)Ei(e+ l,0)

≤ Ei(e+ αk + (1− α)l,0) = Ei(e, αk + (1− α)l),

for all i ∈ N,α ∈ [0, 1]. Since Λ is increasing, it is Λj(αE(e, k) + (1 − α)E(e, l)) ≤
Λj(E(e, αk + (1− α)l)), ∀j = 1, . . . ,m, and the claim follows.

The solvency condition for individual firms outlined in Section 3.1.1 can be translated
to network regulation as follows: The network is solvent if and only if the values of the
regulatory aggregation function that depend on terminal equity are acceptable, i. e.,

Λj (E(e, k∗)) ∈ Aj , ∀j = 1, . . . ,m ⇔ k∗ ∈ RΛ(E; e).

In the sensitive case, this is equivalent to the solvency condition

0 ∈ RΛ
(
E; e+ k∗

)
,

due to cash-invariance. In the insensitive case, the equivalence only holds, if E is translation-
invariant in the initial equity, see Remark 3.1.9. Hence, the network is solvent if initial
equity endowments are sufficient in order to generate acceptable terminal values.

Our set-valued framework is a sophisticated concept for the regulation of networks since
risk measurement and capital allocation are not split into two processes. Instead, capital
allocation is inherent in the risk measurement procedure which, in particular, incorporates
the structure of the network. In our framework, no artificial capital allocation method, such
as proportional allocation or the covariance principle (see Section 3.6), has to be specified.
However, the covariance principle is included within our framework and corresponds -
as shown in Section 3.2.2 - to a particular choice of the ingredients of our network risk
measure.

If capital requirements are not-unique, then the regulatory authority can choose among
vectors of acceptable capital endowments RΛ(E, e). The network itself, however, is inter-
ested in choosing the optimal capital allocation subject to an overall management strategy.
We analyze this optimization problem, including the objectives of the network (optimizing
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management strategies) as well as regulatory guidelines (acceptability of terminal values)
in Sections 3.2 & 3.3.

3.2 | Capital Allocation in Networks

In this section, we focus on capital allocations that are optimal from the point of view
of the network’s management while respecting regulatory requirements at the same time.
These allocations may, for example, reflect the objective of minimizing the total (cost of)
additional capital among all acceptable allocations or maximizing the overall performance
of the network. Since all acceptable capital allocations are - per definitionem - collected
in the network risk measure RΛ, optimal capital allocations correspond to a particular
subset of RΛ depending on the management’s objective function. Our setting leads to a
general set-valued approach of capital allocation which allows for a wide variety of choices
for terminal net asset values, the regulatory aggregation function, acceptance sets and
the management’s objective function, see Section 3.2.1. In Section 3.2.2, we show that for
a specific choice of these ingredients the well-known Euler capital allocation principle is
obtained. Finally, numerical case studies illustrate our findings in Section 3.2.3.

3.2.1 | Set-Valued Capital Allocation

Let us now extend our framework in Section 3.1.2 by including the objectives of the
network’s management. Thus, we consider the following components:

(i) Terminal net asset values: E : Rn × Rn → X (Rn), (e, k) 7→ E(e, k).

(ii) Network regulation via a regulatory aggregation function Λ : Rn → Rm, l 7→ Λ(l),
and acceptance sets (Aj)j=1,...,m.

(iii) Objective function: For a given allocation of additional capital k ∈ Rn within the
network, the objective function

µ : Rn → R, k 7→ µ(k),

characterizes the objective of the network’s management.

Management objectives may include, for example, the minimization of the network’s total
capital requirement

µ : Rn → R, µ(k) =
n∑
i=1

ki, (3.3)

or the maximization of the expected return on capital. To obtain a unified minimization
problem of objective functions later on, the latter objective is described with negative sign:

µ : Rn → R, µ(k) = −
∑n
i=1 E [Ei(e, k)]∑n
i=1 (ei + ki)

. (3.4)

The key idea is that optimal set-valued capital allocation principles identify certain subsets
of the acceptable allocations according to an objective function defined by the network’s
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management. Let us define optimal set-valued capital allocation principles based on net-
work risk measures.

Definition 3.2.1. Let RΛ be a network risk measure in the sense of Definition 3.1.2,
E ∈ Y, e ∈ Rn, and µ an objective function. For R ⊆ RΛ(E; e), an optimal set-valued
capital allocation principle is defined by

AΛ,µ : Y × Rn → R, AΛ,µ (E; e) = arg min
l∈RΛ(E;e)

µ(l).

Note that the set AΛ,µ (E; e) is set- or single-valued depending on whether the opti-
mization has a unique solution or not.

Proposition 3.2.2 and Remark 3.2.3 provide optimal set-valued capital allocations for
the regulatory frameworks in Table 3.2.

Proposition 3.2.2. Let the management’s objective function be given by (3.3). For the
regulatory frameworks in Table 3.2, optimal set-valued capital allocations are:

(i) Stand-alone approach:

AΛ1,µ(E1; e) =


SCR1 − e1

SCR2 − e2
...

SCRn − en


(The optimal additional capital allocation is unique and given by the solvency capital
requirement for individual firms less initial equity.)

(ii) Legal entity approach:

AΛ1,µ(E; e) = arg min
{

n∑
i=1

li

∣∣∣∣ l ∈ Rn : ρi (Ei(e+ l,0)) ≤ 0, ∀i ∈ N
}
.

(If terminal NAVs are given by the random field E1, then optimal set-valued capital
allocations coincide with the allocation in (i).)

(iii) Consolidated approach:

AΛ2.2,µ(E; e) = arg min
{

n∑
i=1

li

∣∣∣∣ l ∈ Rn : ρ
(

n∑
i=1

Ei(e+ l,0)
)
≤ 0

}
.

(If terminal NAVs are given by the random field E1, then optimal set-valued capital
allocations coincide with the allocations in (v).)
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(iv) Legal entitiy approach (insensitive):

AΛ1,µ (E; e) =


ρ1(E1(e,0))
ρ2(E2(e,0))

...
ρn(En(e,0))


(If terminal NAVs are given by the random field E1, then optimal set-valued capital
allocations coincide with the allocation in (i).)

(v) Consolidated approach (insensitive):

AΛ2.2,µ (E; e) =
{
l ∈ Rn

∣∣∣∣ ρ
(

n∑
i=1

Ei(e,0)
)

=
n∑
i=1

li

}
.

(Any capital allocation such that the sum of additional capital equals the risk of the
aggregated balance sheets is optimal.)

Proof. The proof is given in Section 3.7.

Remark 3.2.3. By concritizing E by E
2 in Proposition 3.2.2 (ii), we obtain optimal

set-valued capital allocations for the regulatory framework of the partially consolidated
approach (legal entity based). Moreover, setting Λ(l) = Λ3.1(l), optimal set-valued capital
allocations for the partially consolidated approach (consolidation based) can be derived.

The achievement of management objectives - defined as optimization of the objective
function - clearly depends on the regulatory framework. Corollary 3.2.4 shows that the
optimization of the objective function in a regulatory framework allowing for the consoli-
dation of balance sheets is less challenging than in a legal entity approach.

Corollary 3.2.4. Assume that the same subadditive risk measure ρ is applied to each
entity i ∈ N . In this case, the optimal value of the management’s objective function in the
consolidated approach is a lower bound for the optimal value of the objective function in
the legal entity approach, i. e.,

min
k∈RΛ1 (E;e)

µ(k) ≥ min
k∈RΛ2.2 (E;e)

µ(k).

In particular, this holds for both sensitive and insensitive terminal net asset values.

Proof. The proof is given in Section 3.7.

3.2.2 | Special Case of Euler Capital Allocation

In this section, we show that the Euler allocation principle - also known as gradient allo-
cation principle - can be embedded into our set-valued setting. More precisely, the Euler
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allocation corresponds to the consolidated approach (insensitive) combined with the man-
agement’s objective function (3.3) seeking to minimize the total additional capital, see
Corollary 3.2.6 below.

The Euler capital allocation principle is based on Euler’s well-known theorem on ho-
mogeneous functions and can be applied as follows in our setting, see, e. g., McNeil, Frey
& Embrechts (2015) and Buch & Dorfleitner (2008): LetW ⊂ Rn\{0} be a cone of weights
such that 1 = (1, . . . , 1) ∈ W . For w ∈ W , consider the regulatory aggregation function
Λw defined by

Λw : Rn → R, Λw(l) =
n∑
i=1

wili.

Let ρ be some risk measure defined on a set M such that {Λw (E(e,0)) : w ∈W} ⊆ M,
and let us define the risk measure function

rρ : W → R, w 7→ rρ(w) = ρ (Λw (E(e,0))) .

Note that the risk measure function is positively homogeneous, if ρ is a positively homo-
geneous risk measure. Indeed, for any λ > 0, we have

rρ(λw) = ρ
(
Λλw (E(e,0))

)
= ρ

(
n∑
i=1

λwiEi(e,0)
)

= λρ (Λw (E(e,0))) = λrρ(w).

In the sequel, the random field that computes terminal NAVs with regulatory additional
capital k = 0 is denoted by E0:

E0 : Rn × Rn → X (Rn), (e, k) 7→ E(e,0). (3.5)

In this case, terminal equity values depend on initial equity only.

Definition 3.2.5. Suppose that the risk measure function rρ is differentiable in every
w ∈W . The Euler allocation principle is given by

A∇ : Y ×W → Rn, (E0, w) 7→


A∇,1

(
E0, w

)
...

A∇,n(E0, w)


with

A∇,i(E0, w) := wi
∂rρ
∂wi

(w).

For w = 1, Definition 3.2.5 leads to

A∇,i(E0,1) = ∂rρ
∂wi

(1),

and so Euler’s Theorem on homogeneous functions yields the full capital allocation prop-
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erty

ρ(Λ1 (E(e,0))) = rρ(1) =
n∑
i=1

∂rρ
∂wi

(1) =
n∑
i=1

A∇,i(E0,1). (3.6)

Now we embed the Euler capital allocation principle into our set-valued framework of
capital allocation.

Corollary 3.2.6. Let us consider the consolidated approach (insensitive) in Table 3.2 and
the management’s objective function (3.3) seeking to minimize the total additional capital.
If ρ is a positively homogeneous risk measure, then

A∇(E0,1) ∈ AΛ2.2,µ (E; e) .

Proof. The proof is given in Section 3.7.

The Euler allocation principle is based on a linear regulatory aggregation function
that aggregates terminal insensitive equity values by summation. It is a useful tool for
capital allocation when the full allocation property is required. This is the case when
capital can flow without any constraints between entities and hence, an aggregated position
resulting from the summation of individual positions can be considered. In general, e. g., for
insurance networks, this is not possible since the capital flow between entities is based on
legally binding capital transfer agreements. For example, usually the losses of one entity
cannot be subsidized by gains of another. Our general framework of set-valued capital
allocation is much more flexible and allows for different regulatory aggregation functions
beyond simple summation of positions.

For further reading, Section 3.6 provides some well-known examples of the Euler capital
allocation for different scalar-valued risk measures. Moreover, Appendix C.2 generalizes the
Euler principle - that is a priori restricted to differentiable and positively homogeneous risk
measures - to the subgradient allocation for general convex risk measures. This allocation
method relies on the robust representation of convex risk measures, cf., e. g., Föllmer &
Schied (2011), Section 4.2, for detailed reading and Appendix C.1 for a short review.

3.2.3 | Numerical Case Studies

Let us now illustrate the computation of (optimal) set-valued capital allocations in nu-
merical examples. In Section 3.2.3.1, we first analyze network risk measures and optimal
set-valued capital allocations for a fictitious insurance network and different regulatory
frameworks. Secondly, Section 3.2.3.2 shows how capital requirements can be reduced by
capital transfers among the entities. The numerical results are based on a modification of
the grid search algorithm introduced in Feinstein et al. (2017).

Throughout these case studies, we limit the discussion to a network with n = 2 entities.
Recall that Xi ∈ X (R) denotes the random change in wealth of entity, i = 1, 2, and
X = (Xi)i=1,2 ∈ X (R2). We assume that the initial equity endowment is ei = 0, i = 1, 2,
and that X ∈ X (R2) follows a two-dimensional normal distribution with expected value
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vector µ and covariance matrix Σ given by

µ =
(

0.5
1

)
and Σ =

(
1 0.75

0.75 2

)
.

3.2.3.1 | Optimal Capital Allocations for Different Regulatory Frameworks

Consider the random field E1 ∈ Y (see Example 3.1.3 (ii)) that captures the terminal net
asset values in the network:

E1 : R2 × R2 → X (R2), E1(e, k) = X + e+ k.

In the sequel, we focus on network risk measures for the following regulatory frameworks:

(1) For the regulatory aggregation function Λ1 : R2 → R2, Λ1(l) = l, the network risk
measure takes the form

RΛ1(E1; e) = {k ∈ R2 | ρi(Xi + ei + ki) ≤ 0, i = 1, 2}

= {k ∈ R2 | ρi(Xi + ei) ≤ ki, i = 1, 2},

cf. Example 3.1.4 (a). Note that this regulatory framework captures the stand-alone,
the legal entity and the legal entity approach (insensitive), due to the specific choices
of the random field and the regulatory aggregation function.

(2) Suppose that the regulatory aggregation function is given by Λ2.2 : R2 → R, Λ2.2(l) =
l1 + l2. By Example 3.1.4 (b), the network risk measure is given by

RΛ2.2(E1; e) =
{
k ∈ R2

∣∣∣∣ ρ
( 2∑
i=1

Xi + ei + ki

)
≤ 0

}

=
{
k ∈ R2

∣∣∣∣ ρ
( 2∑
i=1

Xi + ei

)
≤

2∑
i=1

ki

}
.

This regulatory framework captures both the consolidated and the consolidated ap-
proach (insensitive).

(3) Let us finally consider the regulatory aggregation function

Λ4 : R2 → R, Λ4(l) =
2∑
i=1

min{li, 0}+ r.

In contrast to Λ2.2, the regulatory aggregation function Λ4 adds up losses only and
so losses of one sub-entity cannot be subsidized by gains of another. The amount
r > 0 reflects the advantage of being part of the network. For example, r can be
interpreted as a fixed overall capital buffer of the network or a regulatory bonus
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value for the network. In this case, the network risk measure is given by

RΛ4(E1; e) =
{
k ∈ R2

∣∣∣∣ ρ
( 2∑
i=1

min{Xi + ei + ki, 0}+ r

)
≤ 0

}

=
{
k ∈ R2

∣∣∣∣ ρ
( 2∑
i=1

min{Xi + ei + ki, 0}
)
≤ r

}
.

For our case studies, we fix the parameter r = 0.5.

Network Risk Measures. Acceptability is specified with respect to the two standard
risk measures value at risk (V@R) and average value at risk (AV@R) at level λ = 0.005,
cf. Appendix A. While capital requirements in the regulation scheme Solvency II are based
on V@R, the Swiss Solvency Test applies the coherent risk measure AV@R. We compute
RΛ1 (

E1; e
)
, RΛ2.2 (

E1; e
)
and RΛ4 (

E1; e
)
for both risk measures. Figures 3.1 (a) & (b)

display the boundaries of the corresponding sets.
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Figure 3.1: Network risk measure for different regulatory systems using V@R in (a) and AV@R in (b).

Note first that
RΛ1(E1; e) ⊆ RΛ4(E1; e) ⊆ RΛ2.2(E1; e),

in line with the results in Proposition 3.1.5. Hence, all capital requirements that are
acceptable in setting (1) are also acceptable for the settings (2) & (3). Insofar, the stand-
alone approach (1) leads to the strictest additional capital requirements. In contrast, in
settings (2) & (3), the entities of the network are not considered separately. This leads to
a larger set of acceptable additional capital. Since, in setting (2), the entities consolidate
gains and losses completely, RΛ2.2 (

E1; e
)
is the largest set. Comparing Figures 3.1 (a) &

(b), we see that in all settings the application of AV@R leads to higher additional capital
requirements than the application of V@R – as expected.

Optimal Set-Valued Capital Allocations. Let us now compute optimal set-valued
capital allocations AΛ,µ. For this purpose, we consider again the management’s objective
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function in (3.3), i. e., µ : R2 → R, µ(k) = k1 +k2. By Proposition 3.2.2, optimal set-valued
capital allocations for V@R are1

AΛ1,µ(E1; e) = arg min
l∈RΛ1 (E1;e)

µ(l) = (2.0758, 2.6428),

AΛ2.2,µ(E1; e) = arg min
l∈RΛ2.2 (E1;e)

µ(l) = {(k1, k2) ∈ R2 | − k1 + V@Rλ(X1 +X2) = k2},

AΛ4,µ(E1; e) = arg min
l∈RΛ4 (E1;e)

µ(l) = (1.8704, 2.3586).

For AV@R, we obtain2

AΛ1,µ(E1; e) = arg min
l∈RΛ1 (E1;e)

µ(l) = (2.3919, 3.0898),

AΛ2.2,µ(E1; e) = arg min
l∈RΛ2.2 (E1;e)

µ(l) = {(k1, k2) ∈ R2 | − k1 + AV@Rλ(X1 +X2) = k2},

AΛ4,µ(E1; e) = arg min
l∈RΛ4 (E1;e)

µ(l) = (2.2010, 2.8910).

Observe that AΛ2.2,µ(E1; e) is not unique, but contains a line segment. The Euler capital
allocation picks a certain point on this line, i. e., the Euler capital allocation is an element
of RΛ2.2 (

E1; e
)
. More precisely, cf Corollary 3.2.6,

A∇(E0,1) ∈ AΛ2.2,µ(E1; e).

For V@R and AV@R, we obtain

AV@R
∇ (E0,1) = (1.6250, 2.3392) and AAV@R

∇ (E0,1) = (1.8857, 2.7490)

via the covariance principle, see Section 3.6. These allocations are marked by a magenta
square in Figures 3.1 (a) & (b).

3.2.3.2 | Reduction of Network Capital Requirements by Capital Transfers

The following example shows that network capital requirements can be reduced by capital
transfers that are defined by derivatives on the random terminal net asset values of the
entities. To this end, we explicitly incorporate fixed capital transfers among the entities.

Consider the following random field E2 ∈ Y (see Example 3.1.3 (ii)) that captures the
1Our implemented algorithm approximates a set of optimal set-valued capital allocations

AΛ4,µ(E1; e) =
{(

1.885
2.344

)
,

(
1.884
2.345

)
,

(
1.883
2.346

)
,

(
1.882
2.347

)
,

(
1.854
2.376

)
,

(
1.853
2.376

)
,

(
1.852
2.377

)}
. We simply

computed the average to get a unique allocation.
2The approximated set of our algorithm is

AΛ4,µ(E1; e) =
{(

2.215
2.877

)
,

(
2.211
2.881

)
,

(
2.207
2.885

)
,

(
2.203
2.889

)
,

(
2.199
2.893

)
,

(
2.195
2.897

)
,

(
2.191
2.901

)
,

(
2.187
2.905

)}
.
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terminal NAVs in the network:

E2 : R2 × R2 → X (R2),

E2
i (e, k) =

2∑
d=1

aid ·max{Xd + ed + kd, 0}+
2∑
d=1

bid ·min{Xd + ed + kd, 0}, i = 1, 2,

where
∑2
i=1 a

i
d =

∑2
i=1 b

i
d = 1, d = 1, 2. Recall that aid > 0 is the part of profits generated

by entity d that is transferred to entity i, while bid > 0 is the part of the losses generated by
entity d that is captured by entity i. Insofar, these vectors determine fixed capital transfers
among the sub-entities. In our case study, we assume a1 = b1 and a2 = (1−a1

1, 1−a1
2) = b2,

i. e., the part of gains and the part of losses that are generated by entity d and captured
by entity i coincide.

We compute the network risk measure in the partially consolidated approach (legal
entity based) with respect to V@R at level λ = 0.005:

RΛ1(E2; e) = {k ∈ R2 |V@R0.005(E2
i (e+ k,0)) ≤ 0, i = 1, 2}.

Figure 3.2 displays the boundaries of the set-valued network risk measure as well as optimal
set-valued capital allocations for several choices of a1.
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Figure 3.2: Network risk measure RΛ1 (E2; e) for a1 = (1, 1) (yellow), a1 = (1, 0) (blue), a1 = (1, 0.5) (green),
a1 = (0.5, 0) (black), a1 = (0.9, 0.4) (red), a1 = (0.4, 0.9) (magenta). Optimal set-valued capital allocations with
respect to the management’s objective function in (3.3) are marked by a cyan square.

Setting a1 = (1, 1), i. e., all gains and losses are transferred to entity 1, the random field
E2 takes the form

E : R2 × R2 → X (R2), E(e, k) =
(
E1

1(e, k) + E1
2(e, k)

0

)
,

which corresponds – in combination with Λ1 – to the consolidated approach. For a1 =
(1, 0), we obtain the random field E1. Hence, this choice of a1 yields the stand-alone
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approach. In the case a1 = (1, 0.5), entity 1 can be interpreted as the parent company of
sub-entity 2. All gains and losses of entity 1 retain within the firm, whereas 50% of the
gains and losses of entity 2 are passed to the parent company. By this construction, entity
1, i. e., the parent company, can reduce its capital requirement. The same interpretation
holds for a1 = (0.5, 0). Here, entity 2 is the parent company and takes 50% of gains and
losses of sub-entity 1. Hence, entity 2 can reduce its capital requirement compared to the
stand-alone case. The values a1 = (0.9, 0.4) and a1 = (0.4, 0.9) define further splitting
rules for gains and losses among the sub-entities. In comparison to the stand-alone case,
both entities can reduce their required capital if gains and losses are shared.

We observe that the smallest (strictest) set of additional capital requirements is ob-
tained in the stand-alone case, i. e., a1 = (1, 0), while the largest set of additional capital
requirements corresponds to the consolidated approach, i. e., a1 = (1, 1). In all other cases,
we obtain subsets of the consolidated and supersets of the stand-alone approach. Thus –
considering the management’s objective function in (3.3) (total capital minimization) –
it is efficient for the network to consolidate "as much as possible". Usually, there are re-
strictions on the free movement of capital such that the splitting rule a1 = (1, 1) is not
applicable. However, our case studies in Section 3.3 indicate that consolidated balance
sheets can be mimicked via optimal management strategies.

3.3 | Network Optimization

In this section, we model the network’s optimization problem explicitly. In contrast to
Section 3.2, we now allow to choose management strategies including asset-liability man-
agement (ALM) strategies and internal capital transfers (ICTs). Thus, firms can not only
adjust their equity by additional capital, but also affect the evolution of terminal equity via
internal transactions, investments in the financial market, and underwriting decisions, see
Section 3.3.1. While so far management strategies were held constant and only capital al-
locations were varied, we now include optimal ALM- and ICT-strategies that optimize the
network’s management function subject to regulatory constraints. Numerical case studies
illustrate our results and indicate that consolidated balance sheets can be mimicked via
optimal management strategies, see Section 3.3.2.

3.3.1 | The Network’s Optimization Problem

Let Z be the set of management strategies, see below for specific examples. With this
additional ingredient, terminal net asset values and the management’s objective function
depend on z ∈ Z, and so the extended framework consists of the following components:

(i) Terminal net asset values: To account for the dependency on the management strat-
egy z ∈ Z, the random terminal NAVs are denoted by

E : Z × Rn × Rn → X (Rn), (z, e, k) 7→ E(z, e, k).

(ii) Network regulation via a regulatory aggregation function Λ : Rn → Rm, l 7→ Λ(l),
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and acceptance sets (Aj)j=1,...,m.

(iii) Objective function: Depending on the management strategy z ∈ Z, the function

µ : Z × Rn → R, (z, k) 7→ µ(z, k),

characterizes the objective of the network’s management.

We call a management strategy z ∈ Z trivial, if z leads to nil-tranfers within the net-
work. The set of trivial strategies is denoted by Ztri. The following proposition shows
that including non-trivial strategies allows for a reduction of the total solvency capital
requirement.

Proposition 3.3.1. Let ρj be monetary risk measures, j = 1, . . . ,m. If asset-liability
management strategies are held constant, then

RΛ,tri(E; e) ⊆ RΛ,Z(E; e),

where

RΛ,tri(E; e) := {k ∈ Rn |Λj(E(z, e, k)) ∈ Aj for j = 1, . . . ,m, z ∈ Ztri}

and
RΛ,Z(E; e) := {k ∈ Rn |Λj(E(z, e, k)) ∈ Aj for j = 1, . . . ,m, z ∈ Z}.

In particular, this holds for both sensitive and insensitive terminal net asset values.

Proof. The proof is given in Section 3.7.

In the remaining part of the chapter, we simply write RΛ(E; e) instead of RΛ,Z(E; e)
whenever any management strategy z ∈ Z is admissible. If trivial strategies are allowed
only, then we write RΛ,tri(E; e).

Remark 3.3.2. Note that RΛ,tri(E; e) = RΛ (E1; e
)
for the random field E1 defined in

Example 3.1.3 (ii). Hence, RΛ,tri(E; e) encodes the network risk measurement without any
internal cash-flows. Choosing, for example, the regulatory aggregation function Λ1, the set
RΛ1,tri(E; e) is given by

RΛ1,tri(E; e) =


ρ1
(
E1

1
(
z1, e,0

))
ρ2
(
E1

2
(
z1, e,0

))
...

ρn
(
E1
n

(
z1, e,0

))

+ Rn+, z1 ∈ Ztri.

The following corollary shows that in a regulatory framework allowing for trivial man-
agement strategies only, the objective function of the network’s management can be less
efficiently optimized than in a general framework.



3.3. NETWORK OPTIMIZATION 69

Corollary 3.3.3. Let µ be the objective function of the management. The optimal value
function of the network’s management in a regulatory framework allowing for trivial man-
agement strategies only is an upper bound for the optimal value function of the network’s
management in a general framework, i. e.,

min
z∈Z,

k∈RΛ(E;e)

µ(z, k) ≤ min
z∈Ztri,

k∈RΛ,tri(E;e)

µ(z, k).

In particular, this is true for both sensitive and insensitive terminal net asset values.

Proof. The proof is given in Section 3.7.

In our setting, a network can manage its terminal NAV E by implementing both ALM
strategies and ICT agreements. The aim is to optimize some objective function µ over all
admissible strategies z under regulatory constraints imposed by a regulatory aggregation
function Λ and acceptance sets (Aj)j=1,...,m. Thus, the network needs to identify ALM-
and ICT-strategies that are feasible and optimize the objective function of the network’s
management while respecting regulatory constraints at the same time.

In the sequel, we set Z = Θ×T , where Θ is the set of ALM strategies and T denotes
the set of ICT strategies. Let us first describe these sets in detail.

ALM Strategies. Let us assume that the network’s firms can invest in a financial market
with a finite number D of financial assets. At time t = 0, asset prices are deterministic and
denoted by sd, d = 1, . . . , D. Asset prices evolve randomly over the given time horizon.
The set of admissible ALM strategies is given by a subset

Θ(e, l, s) ⊆
{
x ∈ Rn×D

∣∣∣∣ D∑
d=1

xidsd = ei + li, ∀i ∈ N
}
,

where xid is the number of shares invested in asset d by entity i over the given time horizon,
li denotes the liabilities of the i-th entity in t = 0, and the sum ei + li equals the total
asset amount of the balance sheet for entity i in t = 0. Hence, we assume that each entity
fully allocates its capital in the financial market. The subset Θ(e, l, s) may reflect further
investment constraints, e. g., upper and lower bounds on the investment in certain assets.
In this case, the set of admissible ALM strategies takes the form

Θ(e, l, s) =
{
x ∈ Rn×D

∣∣∣∣ D∑
d=1

xidsd = ei + li, b̄id ≥ xid ≥ bid, ∀i ∈ N
}
.

ICT Strategies. Depending on the vector L of the entities random liabilities at t = 1,
the set T (L) contains all strategies x ∈ Rn×n defining the capital transfer from entity i to
j given by the contract ξij(L, x). If ξij(L, x) is positive, then entity j receives the amount
ξij(L, x) from entity i. Conversely, if ξij(L, x) is negative, then entity j pays the amount
ξij(L, x) to entity i. The case ξij(L, x) = 0 corresponds to no internal transfer from i to j.
Note that ξii(L, x) = 0 for all i ∈ N . All legally binding contracts are given by the matrix
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function
ξ : X (Rn+)× Rn×n → X (Rn×n), (L, x) 7→ ξ(L, x).

The set of admissible ICT strategies is given by

T (L) ⊆

x ∈ Rn×n
∣∣∣∣xij = xji,

n∑
i=1

n∑
j=1

ξij(L, x) = 0, ξii(L, x) = 0, i ∈ N

 .
The constraints describe that the transfers are financed by the network and that there are
no transfers within one entity. Thus, the matrix ξ(L, x) is skew symmetric with zeros on
its diagonal. Since there are no transfers within one entity, we set xii := 0 for all i ∈ N.
The set of trivial ICT strategies is given by

T tri(L) =
{
x ∈ Rn×n

∣∣∣∣xij = xji, ξij(L, x) = 0∀i, j
}
.

Note that T (L) may reflect further constraints on admissible ICT strategies, e. g., no
profits from ICTs:

T (L) =

x ∈ Rn×n
∣∣∣∣xij = xji,

n∑
i=1

n∑
j=1

ξij(L, x) = 0, ξii(L, x) = 0,
n∑
i=1

ξij(L, x) ≤ Lj

 .
Example 3.3.4. For insurance networks, reinsurance agreements provide typical examples
of contracts ξij(L, x) from firm i to firm j.

(i) Quota share reinsurance (proportional internal transfers):

(L, x) 7→ ξij(L, x) = xijLj .

Entity i pays a portion xij of the liabilities of entity j, while entity j pays (1−xij)Lj .
In this case, the set of admissible ICTs is given by

T QSR(L) =

x ∈ Rn×n
∣∣∣∣xij = xji,

n∑
i=1

n∑
j=1

ξij(L, x) = 0, ξii(L, x) = 0, xij ∈ [0, 1]

 .
A trivial ICT strategy is given by the zero-matrix.

(ii) Stop loss reinsurance (non-proportional internal transfers):

(L, x) 7→ ξij(L, x) = (Lj − xij)+.

Entity i pays that part of the liabilities of entity j exceeding a barrier xij . Entity j
pays min{Lj , xij}. The set of admissible ICTs is given by

T SLR(L) =

x ∈ Rn×n
∣∣∣∣xij = xji,

n∑
i=1

n∑
j=1

ξij(L, x) = 0, ξii(L, x) = 0, xij ∈ [0, ||Lj ||∞]

 .
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A trivial ICT strategy is given by

xtri =



0 ||L2||∞ ||L3||∞ · · · ||Ln||∞
||L2||∞ 0 ||L3||∞ · · · ||Ln||∞
||L3||∞ ||L3||∞ 0 · · · ||Ln||∞

...
...

...
...

...
||Ln||∞ ||Ln||∞ ||Ln||∞ · · · 0


∈ T tri(L).

Remark 3.3.5. In contrast to our setting, Haier et al. (2016) consider admissible internal
strategies depending on terminal equity E:

Rn− ⊆ T (E) ⊆
{
x ∈ Rn

∣∣∣∣ n∑
i=1

xi ≤ 0
}
,

i. e., internal tranfers are financed by the network and nil-tranfers are possible. Haier et al.
(2016) do not specify the optimal legally binding internal contracts in t = 0 explicitly, but
concentrate on the outcome of admissible contracts for each entity in t = 1. Thus, their
internal strategy is a vector specifying the amount of capital added to terminal equity by
internal transfers for each entity in t = 1, i. e., this corresponds to an insensitive approach
in our setting. In our model, the internal strategy is a matrix defining the contracts from
entity i to entity j in t = 0 such that network management is implemented in an optimal
way.

Taking into account ALM- and ICT-strategies, the network’s management faces the
following optimization problem under constraints:

Problem 3.3.6. The constrained optimization problem of a network is given by

min
ϑ,π,k

µ(ϑ, π, k)

such that ϑ ∈ Θ(e+ k, l, s), π ∈ T (L), k ∈ RΛ(E; e).

Note that in the insensitive case the corresponding ALM constraint is given by ϑ ∈
Θ(e, l, s).

For a review on constrained optimization problems, we refer, e. g., to Freund (2004),
see also Giorgi & Kjeldsen (2014) for a collection of seminal papers on this topic. In this
section, we compare the results for different regulatory frameworks in the corollaries below
and illustrate the optimizing strategies in numerical case studies in Section 3.3.2.

In analogy to Corollary 3.2.4, the first corollary shows that in a regulatory framework
allowing for the consolidation of balance sheets, the minimal value of the management
function is less or at most equal to the minimal value of the management function in a
regulatory system applying the legal entity approach.

Corollary 3.3.7. Assume that the same subadditive risk measure ρ is applied to each
entity i ∈ N .
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(i) If terminal net asset values are sensitive, then

min
ϑ∈Θ(e+k,l,s),
π∈T (L),

k∈RΛ2.2 (E;e)

µ(ϑ, π, k) ≤ min
ϑ∈Θ(e+k,l,s),
π∈T (L),

k∈RΛ1 (E;e)

µ(ϑ, π, k).

(ii) If terminal net asset values are insensitive, then

min
ϑ∈Θ(e,l,s),
π∈T (L),

k∈RΛ2.2 (E;e)

µ(ϑ, π, k) ≤ min
ϑ∈Θ(e,l,s),
π∈T (L),

k∈RΛ1 (E;e)

µ(ϑ, π, k).

Corollary 3.3.8 states that including non-trivial strategies reduces the minimal value
of the management function, cf. Corollary 3.3.3. Note that in a regulatory framework
applying the consolidated approach via the regulatory aggregation function Λ2.2, ICT
strategies are not relevant.

Corollary 3.3.8. If terminal net asset values are sensitive, then

min
ϑ∈Θ(e+k,l,s),
π∈T tri(L),

k∈RΛ,tri(E;e)

µ(ϑ, π, k) ≥ min
ϑ∈Θ(e+k,l,s),
π∈T (L),
k∈RΛ(E;e)

µ(ϑ, π, k).

If terminal net asset values are insensitive, then

min
ϑ∈Θ(e,l,s),
π∈T tri(L),

k∈RΛ,tri(E;e)

µ(ϑ, π, k) ≥ min
ϑ∈Θ(e,l,s),
π∈T (L),
k∈RΛ(E;e)

µ(ϑ, π, k).

3.3.2 | Numerical Case Studies

The following two case studies provide numerical solutions to Problem 3.3.6 for the two
objective functions (3.3) and (3.4). We analyze ALM- as well as ICT-strategies that opti-
mize the management’s objective function while respecting regulatory constraints at the
same time.

Both case studies are based on a common setting: Consider a simple insurance network
with n = 2 entities endowed with initial equity e = (8, 2). We assume ICTs from entity 1
to entity 2 and compare the impact of trivial ICTs, ICTs based on quota share reinsurance
and on stop loss reinsurance (cf. Example 3.3.4) on the optimal management strategy.

In addition to ICT strategies, both entities can also invest in a financial market in
order to meet their future liabilities. For illustration purposes, we limit the discussion to a
financial market with two assets: a risk-free bond and a risky stock. The bond is specified
by the initial value s1 = 3 and a zero interest rate. The future stock price is assumed
to follow - at least approximately - a normal distribribution with parameters µ = 4 and
σ2 = 0.5, i. e., S2 ∼ N (4, 0.5). We set s2 = 4. For the future liabilities of entity i, Li, we
assume a shifted and scaled Beta distribution Li − ti ∼ Mi · Beta(2, 4), i = 1, 2, with
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(t1,M1) = (30, 10) and (t2,M2) = (25, 6). In this case, the support of L1 equals [30, 40]
and L2 ∈ [25, 31]. The terminal net asset value E is given by the difference of assets and
liabilities, and it depends on the ALM- and ICT-strategy.

Regulatory acceptability constraints are specified by the subadditive risk measure av-
erage value at risk at level λ = 0.05, i. e., ρ(Λj(E(z, e, k))) = AV@R0.05(Λj(E(z, e, k))) for
j = 1, . . . ,m. We solve Problem 3.3.6 for the following regulatory systems (cf. Table 3.2)
and constraints:

(a) Legal entity approach:

ϑ ∈ Θ(e+ k, l, s), π ∈ T •(L), k ∈ RΛ1(E; e), ki ∈ [−ei, ei],

where • ∈ {QSR, SLR, tri}. The last constraint ensures that each entity cannot
remove or borrow more capital than the initial amount.

(b) Legal entity approach (insensitive):

ϑ ∈ Θ(e, l, s), π ∈ T •(L), k ∈ RΛ1(E; e), ki ∈ [−E[Ei((ϑ, π), e,0)],E[Ei((ϑ, π), e,0)]] ,

where • ∈ {QSR, SLR, tri}. The last constraint ensures that each entity cannot
remove or borrow more capital than the expected terminal amount.

(c) Consolidated approach:

ϑ ∈ Θ(e+ k, l, s), k ∈ RΛ2.2(E; e), ki ∈ [−ei, ei].

(d) Consolidated approach (insensitive):

ϑ ∈ Θ(e, l, s), k ∈ RΛ2.2(E; e), ki ∈ [−E[Ei((ϑ, π), e,0)],E[Ei((ϑ, π), e,0)]] .

Note that in the consolidated approaches, ICTs always vanish and thus do not need to be
considered.

Minimization of the Total Additional Capital. Suppose first that the management’s
objective is to minimize the total additional capital:

µ(ϑ, π, k) = k1 + k2.

We ran the optimization 1, 000 times and calculated the mean of the minimizers and min-
imal values. Each optimization step relies on 100, 000 simulations of the random variables.
The initial values for the Matlab algorithm are set to

ϑ11 = 12, ϑ12 = 0.3, ϑ21 = 9, ϑ22 = 0.1, πQSR
12 = 0.5, πSLR12 = 27, k1 = k2 = 0.

Tables 3.3 & 3.4 display the optimal ALM strategy in blue, the optimal ICT strategy in
green and the additional required capital in red. While Table 3.3 provides the results for
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insensitive terminal NAVs, the results for sensitive terminal NAVs are shown in Table 3.4.
In both cases, we observe that the sum of additional required capital in the consolidated
regulatory framework is a lower bound, while the sum of the total capital in the case of
trivial ICT strategies serves as an upper bound. The total capital requirement when quota
share- or stop loss-reinsurance is included is between these bounds. The optimal internal
contract for capital transfer in the case of insensitive terminal equity values is given by
ξ12(L, π) = 0.22 ·L2 and ξ12(L, π) = (L2− 24.94)+, respectively, meaning that for the first
contract entity 1 pays 22% of entity 2’s liabilities. In the second contract, liabilities of
entity 2 exceeding the amount of 24.95 are captured by entity 1. All other liabilities retain
within entity 2. Including these ICT strategies reduces the regulatory capital requirement.
In particular, the network’s consolidated balance sheet can be nearly mimicked via a stop
loss reinsurance contract from entity 1 to entity 2. For the ALM strategy, we observe
that practically nothing is invested in the risky asset. Instead, both entities invest in the
risk-free bond. In nearly all cases, both entities can reduce their terminal capital in order
to fulfill the regulatory constraints. Only for T tri(L), entity 2 has to add k2 = 0.3813 and
for T QSR(L), entity 1 has to add k1 = 1.99.

Problem Minimizer Minimal Value
T tri(L) (ϑ, πz , k) = (13.7674; 0.0079; 9.6607; 0.0045;πz ;−4.0309; 0.3813) -3.6495

πQSR = 0, πSLR = 31

T QSR(L) (ϑ, π, k) = (13.7671; 0.0079; 9.6619; 0.0036;0.2222;1.9999;−6.1480) -4.1480

T SLR(L) (ϑ, π, k) = (13.7658; 0.0089; 9.6666; 0.0000;24.9464;−1.3390;−4.0535) -5.3925

Consolidated (ϑ, k) = (13.7723; 0.0041; 9.6612; 0.0041;−4.6691;−0.7448) -5.4139

Table 3.3: Optimal strategy for minimizing total required capital when terminal NAVs are insensitive.

The optimal internal contract for capital transfer in the case of sensitive terminal equity
values is given by ξ12(L, π) = 0.08 · L2 and ξ12(L, π) = (L2 − 27)+, respectively, meaning
that for the first contract, entity 1 pays 8% of entity 2’s liabilities. In the second contract,
liabilities of entity 2 exceeding the amount of E[L2] = 27 are captured by entity 1. All
other liabilities retain within entity 2. Including these ICT strategies reduces the regulatory
capital requirement. For the ALM strategy, we observe the same as in the insensitive case.
In particular, for T SLR(L), entity 2 invests in the risk-free bond only. In nearly all cases,
both entities can reduce their initial capital in order to fulfill the regulatory constraints
in the future. Only for T tri(L), entity 2 has to add k2 = 0.3811. We point out that for
T QSR(L) and T SLR(L), entity 2 reduces its initial equity to zero.
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Problem Minimizer Minimal Value
T tri(L) (ϑ, πz , k) = (12.4244; 0.0074; 9.7875; 0.0046;πz ;−4.0308; 0.3811) -3.6496

πQSR = 0, πSLR = 31

T QSR(L) (ϑ, π, k) = (13.1554; 0.0073; 8.9943; 0.0042;0.0811;−1.8381;−2.0000) -3.8381

T SLR(L) (ϑ, π, k) = (12.6684; 0.0089; 9.0000; 0.0000;27.0001;−3.2920;−2.0000) -5.2920

Consolidated (ϑ, k) = (12.1776; 0.0045; 9.4505; 0.0045;−4.7828;−0.6307) -5.4135

Table 3.4: Optimal strategy for minimizing total required capital when terminal NAVs are sensitive.

Figure 3.3 compares the total network capital requirement for sensitive and insensitive
terminal NAVs. When individual entities without any transfers are considered as well as
in the case of consolidated balance sheets, i. e., free movement of capital without any
constraints or legally binding contracts, the required capital almost coincides. Since for
quota share- and stop loss-reinsurance capital can be reduced, even more capital can be
taken out of the network in the insensitive case. Hence, in that case sensitive terminal
NAVs lead to stricter capital requirements.

Capital

Trivial QSR SLR Con
0

1

2

3

4

5

6

7

Insensitive
Sensitive

Figure 3.3: Network capital requirement for minimizing the total capital for sensitive and insensitive terminal NAVs.

Maximization of the Expected Return on Capital. Suppose now that the man-
agement’s objective is to maximize the total expected return on capital. Recalling from
(3.4) the sign convention to obtain a minimization problem, the management’s objective
is described by the objective function

µ(ϑ, π, k) = −
∑2
i=1 E[Ei((ϑ, π), e, k)]∑2

i=1 ei + ki

Again, we ran the optimization 1, 000 times with 100, 000 simulations of random variables
per optimization step. The initial values for the Matlab algorithm are set to

ϑ11 = 11, ϑ12 = 2, ϑ21 = 8, ϑ22 = 1, πQSR
12 = 0.5, πSLR12 = 27, k1 = k2 = 0.

In comparison to the first case study, we make the following observations in the optimal
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strategies: Both entities adjust their ALM strategy by investing more capital in the risky
stock in order to improve the expected return. ICTs from entity 1 to entity 2 decrease for
insensitive terminal NAVs. More precisely, entity 1 pays 11% of the liabilities of entity 2,
when a quota share reinsurance is present. For a stop loss reinsurance, liabilities of entity
2 exceeding the amount of π12 = 25.58 are captured by entity 1. For sensitive terminal
NAVs, ICTs stay at the same level as in the previous example. Since the objective is to
maximize the expected return on capital, in all cases, initial or terminal equity is increased,
respectively.

Problem Maximizer Maximal Value
T tri(L) (ϑ, πz , k) = (10.9316; 2.1346; 8.4175; 0.9368;πz ;0.7246; 1.4445) 1.00

πQSR = 0, πSLR = 31

T QSR(L) (ϑ, π, k) = (11.2198; 1.9185; 7.9977; 1.2517;0.1134;1.9021; 0.4105) 1.00

T SLR(L) (ϑ, π, k) = (11.1146; 1.9974; 8.2563; 1.0578;25.5877;1.1189; 1.2411) 1.00

Consolidated (ϑ, k) = (11.0170; 2.0707; 8.0662; 1.2003;0.0373; 0.0481) 1.00

Table 3.5: Optimal strategy for maximizing the expected return on capital when terminal NAVs are insensitive.

Problem Maximizer Maximal Value
T tri(L) (ϑ, πz , k) = (11.1028; 2.4809; 9.1888; 0.7057;πz ;1.8989; 1.3894) 1.00

πQSR = 0, πSLR = 31

T QSR(L) (ϑ, π, k) = (11.1268; 2.0425; 8.1451; 1.1728;0.0850;0.2172; 0.1263) 1.00

T SLR(L) (ϑ, π, k) = (11.0481; 2.0715; 8.2981; 1.0894;26.7343;0.0973; 0.2519) 1.00

Consolidated (ϑ, k) = (11.0227; 2.0758; 8.0701; 1.2035;0.0376; 0.0242) 1.00

Table 3.6: Optimal strategy for maximizing the expected return on capital when terminal NAVs are sensitive.

Comparing total required capitals in Figure 3.4 particularly illustrates the decrease
of capital for sensitive terminal NAVs when ICTs are included in the network structure.
By choosing an optimal strategy, the capital requirement can be reduced efficiently and
approximates the lower bound of the consolidated regulatory framework.
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Figure 3.4: Network capital requirement for maxmizing the expected return on capital for sensitive and insensitive
terminal NAVs.

3.4 | Conclusion

In this chapter, we provide a unified framework for the regulation of corporate networks
and their solvency capital requirements. Capital requirements are defined in terms of a
set-valued network risk measure, depending on terminal net asset values, a regulatory
aggregation function, and acceptability criteria related to scalar-valued monetary risk
measures. Network risk is measured by the set of vectors of additional capital requirements
such that terminal net asset values are acceptable for regulatory purposes. In particular,
the solvability of corporate networks is directly linked to acceptability.

For regulatory purposes different capital allocations may be acceptable, and so the
network’s management can choose - depending on its objective function - an optimal
asset allocation that satisfies regulatory requirements at the same time. We provide an
optimal set-valued capital allocation principle for a variety of regulatory frameworks. In
particular, the Euler allocation principle can be embedded into our setting and coincides
with the consolidated approach (insensitive). Capital allocations interfere with manage-
ment strategies including asset-liability management (ALM) strategies and internal capital
transfers (ICTs) defined by the network’s management. To analyze their impact on capital
requirements and optimal capital allocations, we include ALM and ICT strategies explic-
itly. Numerical case studies indicate that consolidated balance sheets can be mimicked via
optimal management strategies.

A question for future research concerns the explicit characterization of optimal set-
valued capital allocations for different regulatory systems and management’s objective
functions beyond the Euler allocation. Moreover, the suitability of certain capital alloca-
tions for performance measurement should be analyzed in order to evaluate their economic
efficiency.
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3.5 | Appendix: Risk Measures and Their Acceptance Sets

We denote by X a vector space of measurable, real-valued functions on a measurable
space (Ω,F) that contains the constants. If P is a probability measure on (Ω,F), typical
examples of X are Lp-spaces, p ∈ [1,∞], where P -almost sure equal functions are identified
with each other.
A mapping ρ : X → R is called monetary risk measure if it satisfies

1. Monotonicity: X,Y ∈ X , X ≤ Y ⇒ ρ(X) ≥ ρ(Y )

2. Cash-invariance: X ∈ X ,m ∈ R ⇒ ρ(X +m) = ρ(X)−m

Property 1 states that the risk of a position Y is smaller than the risk of a position X, if
the future value of Y is at least X. Property 2 states that risk is measured on a monetary
scale: If m Euro are added to X, then the risk of X is exactly reduced by this amount.

In particular, any monetary risk measure corresponds to its acceptance set, A = {X ∈
X | ρ(X) ≤ 0}, from which it can be recovered via

ρ(X) = inf{m ∈ R |X +m ∈ A}.

Thus, a monetary risk measure can be viewed as a capital requirement: ρ(X) is the minimal
capital that has to be added to the position X to make it acceptable.

Remark 3.5.1. The defining properties of an acceptance set A are given by (see, e.g.,
Föllmer & Schied (2011), Section 4.1, and Feinstein et al. (2017), Section 2.2):

(i) inf{m ∈ R |m ∈ A} > −∞.
(Not any deterministic monetary amount is acceptable.)

(ii) If X ∈ A, Y ∈ X (R) and Y (ω) ≥ X(ω) ∀ω ∈ Ω, then Y ∈ A.
(Positions that dominate acceptable positions are again acceptable.)

(iii) A is closed in X (R).

For further properties and examples of monetary risk measures, we refer to Appendix A.

3.6 | Appendix: Examples of the Euler Allocation Principle

To be self-contained, we briefly recall the well-known examples for Euler capital allocations
for the scalar-valued risk measures applied in the numerical case studies in Section 3.2.3.

(i) Let ρ be based on the standard deviation, i. e.,

ρ (Λw (E(e,0))) = −E [Λw (E(e,0))] + γ
√

Var (Λw (E(e,0))), γ > 0.

Then, the Euler capital allocation is given by the covariance principle, i. e.,

A∇,i(E0, w) = −E [wiEi(e,0)] + γ
Cov (wiEi(e,0),Λw(E(e,0)))√

Var (Λw (E(e,0)))
,
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see, e. g., Kalkbrener (2005) and Buch & Dorfleitner (2008).

(ii) Let ρ be the value at risk at level λ ∈ (0, 1), i. e.,

ρ (Λw (E(e,0))) = inf{m ∈ R |P (Λw (E(e,0)) +m < 0) ≤ λ} = −q+
Λw(E(e,0))(λ).

Then, subject to technical conditions, the Euler capital allocation is given by

A∇,i(E0, w) = −E[wiEi(e,0) |Λw (E(e,0)) = −V@Rλ (Λw (E(e,0)))],

see, e. g., Tasche (2000) and McNeil et al. (2015). For Gaussian random variables
and λ ≤ 0.5, the Euler capital allocation coincides with the covariance principle with
γ = Φ−1(1− λ), cf. Appendix A, Remark A.0.6.

(iii) Let ρ be the average value at risk at level λ ∈ (0, 1), i. e.,

ρ (Λw (E(e,0))) = 1
λ

∫ λ

0
V@Rα (Λw (E(e,0))) dα.

In this case, the Euler capital allocation takes the form

A∇,i(E0, w) = −E[wiEi(e,0) | − Λw (E(e,0)) ≥ V@Rλ (Λw (E(e,0)))],

see, e. g., Tasche (2004), Prop. 5, and McNeil et al. (2015). For Gaussian random
variables, the Euler capital allocation is given by the covariance principle with γ =
φ(Φ−1(1−λ))

λ , cf. Appendix A, Remark A.0.6.

3.7 | Appendix: Proofs

In this section, we provide the proofs of the results presented in Sections 3.1, 3.2 & 3.3.

Proof of Proposition 3.1.5.

Proof. Assume that k∗ ∈ RΛ1 (E; e) = {k ∈ Rn | ρ (Ei(e, k)) ≤ 0 ∀i ∈ N}. Subadditivity of
ρ implies

ρ

(
n∑
i=1

E(e, k∗)
)
≤

n∑
i=1

ρ (Ei(e, k∗)) ≤ 0,

hence
k∗ ∈

{
k ∈ Rn | ρ

(
n∑
i=1

Ei(e, k)
)
≤ 0

}
= RΛ2.2 (E; e) .

This shows RΛ1(E; e) ⊆ RΛ2.2(E; e).

Proof of Proposition 3.1.6.

Proof. (i) Let k∗ ∈ Rn+ be an additional capital allocation in the case of insensitive
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terminal NAVs, i. e.,

k∗ ∈ RΛ1 (E; e) =
{
k ∈ Rn+ | ρi (Ei(e,0) + ki) ≤ 0 ∀i ∈ N

}
.

Since terminal NAVs are assumed to be translation-supervariant in the initial equity,
we have Ei(e,0) + k∗i ≤ Ei(e + k∗,0) for all i ∈ N , and so monotonicity of the
monetary risk measures implies

ρi (Ei(e+ k∗,0)) ≤ ρi (Ei(e,0) + k∗i ) ≤ 0 for all i ∈ N .

Hence, k∗ ∈
{
k ∈ Rn+ | ρi (Ei(e+ k,0)) ≤ 0 ∀i ∈ N

}
= RΛ1(E; e).

(ii) The proof is analogous to the proof in (i).

Proof of Proposition 3.1.8.

Proof. (i) Since E is sensitive, we have

RΛ(E; e+ l) =
{
k ∈ Rn |Λj

(
E(e+ l, k)

)
∈ Aj , j = 1, . . . ,m

}
= {k ∈ Rn |Λj (E(e+ l + k,0)) ∈ Aj , j = 1, . . . ,m} .

Setting b = l + k leads to

RΛ(E; e+ l) = {b− l ∈ Rn |Λj (E(e+ b,0)) ∈ Aj , j = 1, . . . ,m}

=
{
b ∈ Rn |Λj

(
E(e, b)

)
∈ Aj , j = 1, . . . ,m

}
− l = RΛ(E; e)− l.

(ii) Let Fi(e, k) ≤ Ei(e, k), i ∈ N . Since Λ is increasing, it is Λj (F (e, k)) ≤ Λj (E(e, k))
for all j = 1, . . . ,m. Hence, Λj (F (e, k)) ∈ Aj implies Λj (E(e, k)) ∈ Aj , j = 1, . . . ,m,
due to Remark 3.5.1 (ii). Thus, RΛ (F ; e) ⊆ RΛ (E; e).

(iii) Let α ∈ [0, 1] be fixed. Since k, l ∈ RΛ (E; e), it is Λj (E(e, k)) ,Λj (E(e, l)) ∈ Aj ,
j = 1, . . . ,m. Due to convexity of Aj , we have αΛj (E(e, k))+(1−α)Λj (E(e, l)) ∈ Aj
for all j. The concavity of Λj yields

αΛj (E(e, k)) + (1− α)Λj (E(e, l)) ≤ Λj (αE(e, k) + (1− α)E(e, l)) ,

and this implies

Λj (αE(e, k) + (1− α)E(e, l)) = Λj (E(e,0) + αk + (1− α) l)

= Λj (E(e, α k + (1− α) l) ∈ Aj for all j.

From the definition of RΛ, we conclude αk + (1− α)l ∈ RΛ (E; e).
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Proof of Proposition 3.2.2.

Proof. (i) For the stand-alone approach the network risk measure takes the form

RΛ1(E1; e) = {k ∈ Rn |Xi + ei + ki ∈ Ai,∀i ∈ N}

= {k ∈ Rn | ρi (Xi + ei) ≤ ki, ∀i ∈ N} .

This leads to the optimal set-valued capital allocation

AΛ1,µ(E1; e) = arg min
{

n∑
i=1

li

∣∣∣∣ l ∈ Rn : ρi (Xi + ei) ≤ li, ∀i ∈ N
}

= {l ∈ Rn | ρi (Xi + ei) = li,∀i ∈ N}

=


ρ1(X1 + e1)
ρ2(X2 + e2)

...
ρn(Xn + en)

 =


SCR1 − e1

SCR2 − e2
...

SCRn − en


(ii) The network risk measure in the legal entity approach is given by

RΛ1(E; e) = {k ∈ Rn |Ei(e+ k,0) ∈ Ai,∀i ∈ N}

= {k ∈ Rn | ρi (Ei(e+ k,0)) ≤ 0, ∀i ∈ N} ,

and this yields the optimal set-valued capital allocation

AΛ1,µ(E; e) = arg min
{

n∑
i=1

li

∣∣∣∣ l ∈ Rn : ρi (Ei(e+ l,0)) ≤ 0 ∀i ∈ N
}
.

(iii) For the consolidated approach the network risk measure takes the form

RΛ2.2(E; e) =
{
k ∈ Rn

∣∣∣∣ n∑
i=1

Ei(e+ k,0) ∈ A
}

=
{
k ∈ Rn

∣∣∣∣ ρ
(

n∑
i=1

Ei(e+ k,0)
)
≤ 0

}
.

Thus, the optimal set-valued capital allocation is given by

AΛ2.2,µ(E; e) = arg min
{

n∑
i=1

li

∣∣∣∣ l ∈ Rn : ρ
(

n∑
i=1

Ei(e+ l,0)
)
≤ 0

}
.

(iv) The network risk measure in the legal entity approach (insensitive) becomes

RΛ1(E; e) = {k ∈ Rn |Ei(e,0) + ki ∈ Ai,∀i ∈ N}
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= {k ∈ Rn | ρi (Ei(e,0)) ≤ ki, ∀i ∈ N} .

This leads to the optimal set-valued capital allocation

AΛ1,µ (E; e) = arg min
{

n∑
i=1

li

∣∣∣∣ l ∈ Rn : ρi (Ei(e,0)) ≤ li,∀i ∈ N
}

=


ρ1(E1(e,0))
ρ2(E2(e,0))

...
ρn(En(e,0))


(v) For the consolidated approach (insensitive) the network risk measure is given by

RΛ2.2 (E; e) =
{
k ∈ Rn

∣∣∣∣ n∑
i=1

Ei(e,0) + ki ∈ A
}

=
{
k ∈ Rn

∣∣∣∣ ρ
(

n∑
i=1

Ei(e,0)
)
≤

n∑
i=1

ki

}
,

and so we derive the optimal set-valued capital allocation

AΛ2.2,µ (E; e) = arg min
{

n∑
i=1

li

∣∣∣∣ l ∈ Rn : ρ
(

n∑
i=1

Ei(e,0)
)
≤

n∑
i=1

li

}

=
{
l ∈ Rn

∣∣∣∣ ρ
(

n∑
i=1

Ei(e,0)
)

=
n∑
i=1

li

}
.

Proof of Corollary 3.2.4.

Proof. The claim follows from RΛ1(E; e) ⊆ RΛ2.2(E; e), cf. Prop. 3.1.5.

Proof of Corollary 3.2.6.

Proof. Due to Eq. (3.6), it is
∑n
i=1A∇,i

(
E0,1

)
= ρ (

∑n
i=1Ei(e,0)) . From Prop. 3.2.2 (v),

we obtain

A∇(E0,1) ∈
{
l ∈ Rn

∣∣∣∣ ρ
(

n∑
i=1

Ei(e,0)
)

=
n∑
i=1

li

}
= AΛ2.2,µ (E; e)

for the particular choice li = A∇,i
(
E0,1

)
.

Proof of Proposition 3.3.1.

Proof. Let k∗ ∈ RΛ,tri(E; e), i. e., Λj(E(z, e, k∗)) ∈ Aj for all j = 1, . . . ,m, and z ∈ Ztri.
Since Ztri ⊆ Z for each z1 ∈ Ztri, we can choose z2 ∈ Z such that Ei(z1, e, k∗) ≤
Ei(z2, e, k∗) for all i ∈ N . Since Λ is increasing, it is Λj(E(z1, e, k∗)) ≤ Λj(E(z2, e, k∗)) for
all j and hence, Λj(E(z1, e, k∗)) ∈ Aj implies Λj(E(z2, e, k∗)) ∈ Aj due to Remark 3.5.1
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(ii). Thus, k∗ ∈ {k ∈ Rn |Λj(E(z, e, k)) ∈ Aj ∀j = 1, . . . ,m, z ∈ Z} = RΛ,Z(E; e). Hence,
RΛ,tri(E; e) ⊆ RΛ,Z(E; e).

Proof of Corollary 3.3.3.

Proof. By Prop. 3.3.1, we have RΛ,tri(E; e) ⊆ RΛ(E; e). Together with Ztri ⊆ Z, this
yields the claim.



84 CHAPTER 3. NETWORK RISK, NETWORK REGULATION, AND NETWORK OPTIMIZATION



4 | Optimal Risk Sharing in Insurance Networks:
An Application to Asset-Liability Manage-
ment

This chapter is based on the working paper Optimal Risk Sharing in Insurance Networks: An Ap-
plication to Asset-Liability Management by Hamm, Knispel & Weber. A revised version will appear
in the European Actuarial Journal, see Hamm, Knispel & Weber (2019b).

Capital requirements of insurance companies or banks serve as a protection of policy-
holders, banking customers, and creditors. They provide a buffer against downside risk,
i. e., the adverse random fluctuations of the financial resources of a company. In internal
models of financial institutions such capital requirements are computed on the basis of the
simulated distribution of the firm’s book value of equity at a finite time horizon, also called
the future net asset value. The resulting capital requirements depend on the risk measures
that are used. While the regulation scheme Solvency II is based on the risk measure value
at risk (V@R), the Swiss Solvency Test employs a coherent risk measure, average value
at risk (AV@R). The influence of risk measures on capital requirements as well as their
properties have been the subject of intense scientific research over the last twenty years,
see, e. g., Föllmer & Schied (2004) or Föllmer & Weber (2015).

In this chapter, we discuss the impact of risk sharing and asset-liability management
on capital requirements. This investigation will contribute to the evaluation of the merits
and deficiencies of different risk measures. In particular, we highlight that the class of
V@R-based risk measures, as defined in Weber (2018), allows for a substantial reduction
of the total capital requirement in corporate networks that share risks between entities. We
provide case studies that complement the theoretical analysis of Embrechts, Liu & Wang
(2018) and Weber (2018), and illustrate their practical relevance. In addition, we refine
in Section 4.1.2.2 the tail allocations suggested in these papers to ensure that downside
risk is shared in an approximately symmetric manner. The analysis of optimal risk sharing
within a model for asset-liability management is – to the best of our knowledge – new to
the literature.

The chapter is structured as follows: Section 4.1.1 first reviews the notion of solvency
capital requirements, emphasizing that the definition commonly used in practice deviates
from an alternative definition that is naturally derived from the notion of acceptability
in the theory of monetary risk measures. Second, in Section 4.1.2, we consider risk shar-
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ing between entities. If networks of companies are not required to report a total capital
requirement on the basis of a consolidated balance sheet, risk sharing may serve as an
instrument to reduce required capital. We review the general risk sharing problem and
the notion of inf-convolutions, summarize theoretical results for distortion risk measures
of Embrechts et al. (2018) or Weber (2018), and refine the allocations of the distribu-
tion’s tail within the network. Section 4.2 introduces a model setting that admits the joint
analysis of asset-liability management and risk sharing. The general structure is described
in Section 4.2.1.1. In the context of a Black-Scholes asset model and for deterministic
liabilities, the inf-convolutions and capital requirements are explicitly computed for three
important examples: average value at risk and the two V@R-type risk measures value at
risk and range value at risk. More sophisticated models are then analyzed on the basis of
Monte Carlo case studies. Section 4.2.2 describes how distributions and parameters are
chosen, and how we calibrate value at risk, average value at risk and range value at risk in
order to allow for a meaningful comparison of these risk measures. In Section 4.2.3, we an-
alyze three case studies of different complexity: a) Assets are modeled by a Black-Scholes
market, liabilities are deterministic. b) Liabilities may be random; different types of de-
pendence between assets and liabilities are investigated. c) An additional left-tailed asset
is available. We find that corporate networks may largely hide downside risk, if capital
requirements are computed on the basis of V@R-type risk measures. For large networks,
optimal asset-liability management is often contrary to those strategies that are desirable
from a regulatory point of view. The results are quite striking and thus we discuss this
issue in detail.

Literature. The general problem of optimal risk sharing is an ongoing field of research.
Barrieu & El Karoui (2005) and Barrieu & El Karoui (2008) introduced the inf-convolution
in order to formulate the risk sharing problem among agents with convex risk measures.
They show that the inf-convolution of two convex risk measures is again a convex risk
measure. The optimal structure to the optimal risk sharing problem is explicitly derived
when agents have dilated risk measures, i. e., ργ(Z) = 1

γ ρ (γZ). Jouini, Schachermayer &
Touzi (2008) show that for law-invariant monetary utility functions (i. e., law-invariant
convex risk measures) the set of Pareto optimal comonotone allocations is non-empty.
Acciaio (2007) considers non-necessarily monotone monetary functionals and characterizes
optimal solutions in that case. Moreover, the existence of such solutions is proven. The
author introduces the best monotone approximation of non-monotone functionals, where
the resulting optimization corresponds to the inf-convolution with constraint

∑n
i=1 Zi ≤

Z defined by Filipović & Kupper (2008a) and Filipović & Svindland (2008). Explicit
calculations of optimal risk sharing rules for particular cases are given. Further risk sharing
strategies for special cases of two or three agents can be found in Acciaio (2005). The case
of non-necessarily monotone, law- and cash-invariant convex functions is also considered
by Filipović & Svindland (2008). The authors prove that the capital and risk allocation
problem always admits a solution via contracts whose payoffs are defined as increasing
Lipschitz-continuous functions of the total risk. Embrechts et al. (2018) solve the optimal
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risk sharing problem for range value at risk and state some robustness results on optimal
allocations. Weber (2018) provides a risk sharing rule for distortion risk measures and
embeds the risk sharing problem into the context of corporate networks, for example,
insurance networks. We also refer to Weber (2018) for a discussion on the classification of
networks vs. groups. Weber’s (2018) general framework includes the results of Embrechts
et al. (2018) as special cases and constitutes the basis for our comparison of the impact of
different risk measures on regulatory capital requirements.

4.1 | Capital Regulation and Network Risk Minimization

4.1.1 | Capital Requirements

Capital requirements are a cornerstone of regulation schemes such as Basel III for banks,
Solvency II for European insurance companies, or the Swiss Solvency Test for insurance
companies in Switzerland. The key idea is that financial firms should hold a buffer for
potential losses that ensures the firm’s financial solvability and thereby serves to protect
customers, policyholders, and other counterparties. The computation of such a capital
requirement - in the sequel named solvency capital requirement (SCR) - typically involves
two components: stochastic balance sheet projections capturing the random evolution of
the firm’s equity over a given time horizon, and a monetary risk measure that quantifies
the inherent risk on a monetary scale or, equivalently, specifies acceptability of financial
positions, e. g., from the perspective of a financial supervisory authority, a rating agency,
or the board of management.

To formalize the SCR computation in a stylized manner, let us consider an atomless
probability space (Ω,F , P ) and a one period economy with two dates, say t = 0, 1. Time
0 is interpreted as today, time 1 as the future time horizon of the regulation scheme, e. g.,
one year in case of Solvency II. We denote by X the set of financial positions at time 1
whose risk needs to be assessed. By sign convention, negative values correspond to debt
or losses. Throughout this chapter, X is a vector space of random variables on (Ω,F , P )
that contains the constants.

Assets and Liabilities. At time t = 0, 1, the economic values of assets and liabilities
of a financial firm according to the solvency balance sheet are denoted by At and Lt,
respectively, and the book value of equity or net asset value (NAV) is then derived as
Et = At − Lt. Note that the quantities A0, L0, E0 at t = 0 are deterministic, while their
counterparts A1, L1, E1 at t = 1 are typically not known in advance, but random. Mathe-
matically, the values of assets and liabilities A1, L1 and the resulting equity E1 are modeled
as real-valued random variables on the given probability space (Ω,F , P ). In practice, these
quantities can be derived from stochastic balance sheet projections within sophisticated
internal models that rely extensively on Monte Carlo simulations.

Solvency Capital Requirement. Regulatory guidelines typically describe requirements
on the SCR computation verbally, but do not provide an exact and unique SCR definition
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in mathematical terms. In particular, as illustrated in Example 4.1.1 below for Solvency
II regulation, regulatory requirements can be contradictory, leaving considerable room for
interpretation.
In this chapter, we focus on two different SCR definitions:

SCRA(E1) := ρ(E1 − E0),

SCRmean(E1) := ρ(E1 − E[E1]),

where ρ denotes a monetary risk measure with acceptance set A such as value at risk
(V@R), average value at risk (AV@R) or range value at risk (RV@R), see Appendix A
for a short review on monetary risk measures, and in particular Example A.0.3 for the
definition of V@R, AV@R and RV@R.

While SCRA(E1) evaluates the risk of the random capital increment E1−E0 over the
given time horizon, the alternative definition SCRmean(E1) refers to the firm’s centered
equity E1 − E[E1] at time 1. Also note that

SCRA(E1) = E0 + ρ(E1) and SCRmean(E1) = E[E1] + ρ(E1),

due to cash-invariance of the monetary risk measure ρ.
From a conceptional point of view, the definition SCRA corresponds to a regulator’s

perspective, and it is based on the natural requirement that equity E1 at time 1 should
be acceptable with respect to a prescribed monetary risk measure ρ, i. e.,

E1 ∈ A ⇔ ρ(E1) ≤ 0.

For SCRA(E1) = E0 + ρ(E1), acceptability of the firm’s equity E1 is equivalent to
SCRA(E1) ≤ E0, i. e., the firm’s equity is sufficient to cover the solvency capital re-
quirement. In practice, however, it is a common approach to consider only unexpected
losses, in particular for market risks and underwriting risks. This leads to the alternative
definition SCRmean.

Example 4.1.1. For Solvency II regulation, Recital 64 of the Directive 2009/138/EC
states that capital must be sufficient to prevent ruin with probability 99.5% on a one-
year time horizon, i. e., P (E1 < 0) ≤ α with α = 0.005. This condition is equivalent to
E1 ∈ AV@R0.005 , where AV@R0.005 denotes the acceptance set of value at risk defined in
Appendix A, Eq. (A.1). Hence, a canonical SCR definition in the context of Solvency II is

SCRA(E1) := V@R0.005(E1 − E0) = E0 + V@R0.005(E1) = E0 − q+
E1

(0.005),

where q+
E1

denotes the upper quantile function of E1, see Appendix A, Definition A.0.2.
Contradicting, §101(2) of the Directive 2009/138/EC prescribes that the SCR “shall

cover only unexpected losses“, and that “it shall correspond to the Value-at-Risk of the
basic own funds of an insurance or reinsurance undertaking subject to a confidence level
of 99.5 % over a one-year period.” This supports the definition in terms of the so-called
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mean value at risk

SCRmean(E1) := V@R0.005(E1 − E[E1]) = E[E1] + V@R0.005(E1) = E[E1]− q+
E1

(0.005)

which is widely used in practice. Both definitions are consistent to specific regulatory
requirements, but lead, however, to different solvency capital requirements.

Financial institutions are typically owned by shareholders with limited liability. The
free surplus - given as equity less SCR - can be distributed as dividends to the shareholders.
Consequently, shareholders and the management board are interested in reducing the SCR
via appropriate techniques. In the sequel, we focus on this problem from a network’s
perspective.

4.1.2 | The Risk Sharing Problem of the Network

4.1.2.1 | Inf-Convolutions

Consider a financial network that consists of n entities that are all individually subject
to capital regulation. We suppose that the solvency capital requirement of entity i =
1, 2, . . . , n is computed based on a monetary risk measure ρi, and we write SCRi

A and
SCRi

mean, respectively, to differentiate between the two SCR definitions for entity i.
The network’s balance sheet is obtained by consolidating the individual balance sheets

of its sub-entities. Denoting from now on by At and Lt the total consolidated assets and
liabilities at times t = 0, 1, the network’s total equity is given by Et = At−Lt, t = 0, 1. The
corporate network now uses at time t = 0 legally binding transfer agreements to modify
the equities at time t = 1. The resulting new allocation is denoted by

(
Ei
)
i=1,...,n, where∑n

i=1E
i
1 = E1 and

∑n
i=1E

i
0 = E0. In this situation, the total SCR of the network is given

by

n∑
i=1

SCRi
A(Ei1) = E0 +

n∑
i=1

ρi(Ei1) and
n∑
i=1

SCRi
mean(Ei1) = E[E1] +

n∑
i=1

ρi(Ei1),

respectively. This definition relies on the assumption that the firm’s individual SCRs are
added up to obtain the network’s SCR. In particular, this means that the network’s SCR
is not computed based on a consolidated solvency balance sheet.

For both SCR definitions, the minimization of the network’s SCR is equivalent to the
minimization of

∑n
i=1 ρ

i
(
Ei1
)
. In other words, for a fixed number of n firms the problem

of the network consists in the design of optimal transfers that minimize
∑n
i=1 ρ

i
(
Ei1
)
. We

thus face the optimal risk sharing problem

2ni=1ρ
i(E1) = inf

{
n∑
i=1

ρi
(
Ei1

) ∣∣∣∣ n∑
i=1

Ei1 = E1, E
1
1 , . . . , E

n
1 ∈ X

}
, (4.1)

also known as inf-convolution. Let us write

2ni=1SCRi
A(E1) = E0+2ni=1ρ

i(E1) and 2ni=1SCRi
mean(E1) = E[E1]+2ni=1ρ

i(E1) (4.2)
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for the corresponding solvency capital requirements.

Remark 4.1.2. Let ρ be a coherent risk measure and assume that ρi = ρ for any firm
i = 1, . . . , n, n ∈ N. In this case, optimal risk sharing and splitting the risk within the
network to more firms do not reduce the total network’s risk, i. e.,

2ni=1ρ(E1) = ρ(E1) for all n ∈ N.

Indeed, for all decompositions E1 = E1
1 + . . .+ En1 , subadditivity yields

ρ(E1) = ρ

(
n∑
i=1

Ei1

)
≤

n∑
i=1

ρ(Ei1),

and this lower bound is attained for Ei1 = αiE1, i = 1, . . . , n, with α1 + . . .+ αn = 1.

4.1.2.2 | Risk Sharing with Distortion Risk Measures

In the context of distortion risk measures, problem (4.1) is discussed in Weber (2018). The
risk measures V@R, AV@R and RV@R belong to this class of risk measures. Theorem 4.1.5
provides an upper bound to the solution and an allocation that attains this bound. The
results in Weber (2018) characterize under which conditions the bound is attained and
generalize the work of Embrechts et al. (2018).

Definition 4.1.3. An increasing function g : [0, 1]→ [0, 1] with g(0) = 0 and g(1) = 1 is
called a distortion function. If P is a probability measure on (Ω,F), then

cg(A) := g(P (A)), A ∈ F ,

defines a capacity. The risk measure

ρg(X) :=
∫

(−X)dcg,

defined as the Choquet integral with respect to cg, is called distortion risk measure.

As special cases, Weber (2018) introduces the class of V@R-type distortion risk mea-
sures.

Definition 4.1.4. Consider the class of distortion functions g such that

g(x) = 0, ∀x ∈ [0, α],
g(x) > 0, ∀x ∈ (α, 1],

for some α ∈ [0, 1). The number α is called the parameter of g and

ĝ(x) =
{
g(x+ α), 0 ≤ x ≤ 1− α,
1, 1− α < x,
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is the active part of g. If the parameter α > 0, then ρg is called a V@R-type distortion
risk measure.

The risk measures V@R and RV@R are of V@R-type, AV@R is not. This is shown in
Table 4.1.

Risk Measure V@Rα AV@Rβ RV@Rα,β

g (x) =
{

0, 0 ≤ x ≤ α,
1, α < x.

{
x
β , 0 ≤ x ≤ β,
1, β < x.


0, 0 ≤ x ≤ α,
x−α
β , α < x ≤ α+ β,

1, α+ β < x.

Type V@R-type Not V@R-type V@R-type

Table 4.1: Distortion functions for the risk measures V@R, AV@R and RV@R for α, β > 0 with α+ β ≤ 1.

The solution to the optimal risk sharing problem (4.1) minimizes the network’s total
risk. The minimizer is an allocation

(
Ei
)
i=1,...,n with

∑n
i=1E

i
1 = E1 and

∑n
i=1E

i
0 = E0.

Theorem 4.1.5 (Weber (2018), Theorem 2.4). Let E1 ∈ L∞ and n ∈ N. By g1, g2, . . . , gn,

we denote left-continuous distortion functions with parameters α1, α2, . . . , αn ∈ [0, 1), and
define d =

∑n
i=1 αi. We set ρi = ρgi, i. e., ρi is the distortion risk measure associated with

the distortion function gi, i = 1, 2, . . . , n. Define the left-continuous functions

f = min
{
ĝ1, ĝ2, . . . , ĝn

}
, g(x) =

{
0, 0 ≤ x ≤ d ∧ 1,
f(x− d), d ∧ 1 < x ≤ 1.

Note that g ≡ 0, if d ≥ 1. In particular, g is not necessarily a distortion function with
g(1) = 1. We set V@Rλ := V@R1 = − ess sup for λ ≥ 1.

1. There exist E1
1 , E

2
1 , . . . , E

n
1 ∈ L∞ such that

∑n
i=1E

i
1 = E1 and

n∑
i=1

ρi(Ei1) =
∫

[0,1]
V@Rλ(E1)g(dλ) + (g(1)− 1) ess sup E1.

If d ≥ 1, this equation can be simplified and we obtain

n∑
i=1

ρi(Ei1) = − ess sup E1.

2. The allocation (Ei1)i=1,2,...,n can be constructed as follows: Let

Y := E1 − ess sup E1 ≤ 0.

There exists a random variable U , uniformly distributed on [0, 1], such that Y =
−V@RU (Y ). For i = 1, 2, . . . , n, we set

ri(λ) =
{

1, i = inf{j : ĝj(1− λ) = f(1− λ)},
0, else,
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(λ ∈ [0, 1]) and Ri(y) = −
∫ |y|

0 ri(λ)dλ. We define Ỹ = Y · 1{U≥d} and Ẽi1 = Ri(Ỹ ).
For i = 1, 2, . . . , n, we set

Ei1 = Y · 1{∑i−1
l=1 αl ≤ U <

∑i

l=1 αl
} + Ẽi1 + ess sup E1

n
(4.3)

If d ≥ 1, this equation can be simplified and we obtain

Ei1 = Y · 1{∑i−1
l=1 αl ≤ U <

∑i

l=1 αl
} + ess sup E1

n

Remark 4.1.6. Theorem 4.1.5 can be generalized to unbounded random variables, see
Weber (2018).

Tail Allocation. Theorem 4.1.5 characterizes a particular solution to (4.1), but for V@R-
based risk measures multiple solutions are admissible. V@R-based risk measures ignore
the extreme tail. This implies that the tail part of the distribution of E1 that is hidden
via risk sharing can be allocated to different entities in various ways. While V@R-based
risk measurements remain invariant under these re-allocations of the tail, other quantities
that are important from the perspective of the single entities may change, e.g., the profit
of the individual firms in the network.

In contrast to Embrechts et al. (2018) and Weber (2018), we construct an alternative
tail allocation; this also minimizes the network’s total risk, but provides a fairer allocation
of the extreme downside risk from the perspective of the single firms. In (4.3), the terms

Y · 1{∑i−1
l=1 αl ≤ U <

∑i

l=1 αl
}

can, more generally, simply be replaced by

Y · si(U)

for càdlàg functions si : [0, d]→ {0, 1},
∫ d

0 si(u)du = αi, i = 1, 2, . . . , n, with
∑n
i=1 si ≡ 1.

Remark 4.1.7. Suppose Y has a continuous density. Then, fair allocations of the downside
risk among all entities can be constructed as follows:
Consider a sequence of n-tupels of functions (smi )i=1,2,...,n, m = 1, 2, . . . , as defined above.
We set

Smi : [0, 1]→ RR ∪ {†}, Smi (x) =
{

id, smi (x) = 1, 0 ≤ x ≤ d,
†, else.

and define probability measures

µmi ((a, b]) := 1
αi
P (Smi (U) ◦ Y ∈ (a, b]) , −∞ < a < b <∞.

There exists a sequence (smi )i=1,2,...,n (m = 1, 2, . . . ) such that µmi converges weakly as
m→∞ to a limit that is independent of i = 1, 2, . . . , n. An example of such a sequence is
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given by

smi =

 1, k
m · d+

∑i−1
l=1 αl
m ≤ x < k

m · d+
∑i

l=1 αl
m for some k = 0, 1, . . . ,m− 1,

0, else.

In this case, µmi converges weakly as m→∞ to the conditional distribution P Y (· |U < d).

Special Cases. For the particular distortion risk measures V@R, AV@R and RV@R, we
recover the results in Embrechts et al. (2018), Theorem 2.

Example 4.1.8. For any E1 ∈ X and α1, . . . , αn, β1, . . . , βn ≥ 0, n ∈ N, we have

(i) 2ni=1V@Rαi(E1) = V@R∑n

i=1 αi
(E1),

(ii) 2ni=1AV@Rβi(E1) = AV@Rmax{β1,...,βn}(E1),

(iii) 2ni=1RV@Rαi,βi(E1) = RV@R∑n

i=1 αi,max{β1,...,βn}(E1).

Note that the optimal risk sharing problem (4.1) can be combined with other manage-
ment actions. For example, the network may adjust its structure by increasing the number
of firms over longer time horizons, or the network may optimize its asset allocation to fur-
ther reduce its total risk and its total SCR (cf. Section 4.2). In particular, Weber (2018)
shows that for V@R-type risk measures and sufficiently large n, the corporate network
can find a capital allocation such that

2ni=1ρ
i(E1) = − ess supE1, (4.4)

corresponding to the best case scenario. Downside risk can thus completely be hidden
within corporate network structures.

V@R is a special case of a V@R-type distortion risk measure, and hence our obser-
vations are relevant in the context of Solvency II. In contrast, they do not apply to the
Swiss Solvency Test that uses the coherent risk measure AV@R as the basis for capital
regulation (cf. Remark 4.1.2).

4.2 | An Application to Asset-Liability Management

This section provides numerical case studies on optimal risk sharing. In Section 4.2.1, we
introduce an asset-liability management (ALM) model for networks. Entities can imple-
ment various (static) asset allocation strategies over a one-year time horizon. Within this
framework, we analyze three case studies of different complexity:

1. Assets are modeled by a Black-Scholes market, liabilities are deterministic.

2. Liabilities may be random; different types of dependence between assets and liabili-
ties are investigated.

3. An additional left-tailed asset is available.
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For these cases, we quantify the impact of the number n of sub-entities in the net-
work on the network’s minimal risk 2ni=1ρ

i (E1) and on the solvency capital requirements
2ni=1SCRi

A (E1) and 2ni=1SCRi
mean (E1). We demonstrate how asset-liability management

can further reduce the minimal network risk. We focus on three different risk measures:
V@R, AV@R and RV@R.

4.2.1 | Asset-Liability Management Model

4.2.1.1 | General Asset-Liability Model

Consider an ALM model with finite time horizon 1. We assume that the network’s firms
can invest in a financial market with a finite number K ≥ 1 of liquidly traded assets. We
denote by Akt , the price of one share of asset k = 1, . . . ,K, and by Lt the consolidated
liabilities at time t ∈ [0, 1], respectively. At t = 0, the network decides – in a static manner
– how to invest in the different assets in the period t ∈ [0, 1] by determining an asset
allocation strategy δ ∈ RK with

δk ≥ 0 and
K∑
k=1

δk = 1,

where δk denotes the fraction of the total asset amount of the balance sheet invested in
asset k. The corresponding numbers of shares held in the assets k = 1, . . . ,K are given by

ηk(δ) = δk · E0 + L0
Ak0

where E0 is the net asset value – or book value of equity – at time 0. Afterwards the net
asset value, calculated as the difference of total assets and liabilities, is a function of the
asset allocation strategy and takes the form

Et(δ) =
K∑
k=1

ηk(δ)Akt − Lt, t ∈ [0, 1].

As a consequence, both risk ρ(E1(δ)) and return E1(δ)/E0 − 1 depend on the strategy δ.

4.2.1.2 | Basis Asset-Liability Model

As a simple reference model we consider a Black-Scholes market and a single deterministic
liability.

Asset Model. The financial market model consists of two liquidly tradable primary
products: one riskless asset (savings account) and one risky asset (stock). Their price
processes (A1

t )t∈[0,1], (A2
t )t∈[0,1] are defined on a filtered probability space (Ω,F ,F =

(Ft)t∈[0,1], P ) and follow the classical Black-Scholes model, i. e.,

• Savings account: A1
t = exp(rt), t ∈ [0, 1], with interest rate r,
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• Stock: A2
t = A2

0 exp(σWt+(µ− 1
2σ

2)t), t ∈ [0, 1], with A2
0 ∈ (0,∞), µ ∈ R, σ ∈ (0,∞),

where (Wt)t∈[0,1] denotes a one-dimensional Wiener process. Note that E[A2
t ] = A2

0 exp(µt).
For the remaining part of the chapter, we assume that the risk-free interest rate r equals
zero, i. e., A1

t = 1, t ∈ [0, 1].

Liability Model. We assume that the insurance network sells a pure endowment with
maturity 1 only. The network’s premium income in t = 0 is denoted by π. The liabilities
are deterministic, and the actuarial interest rate is assumed to be zero. Consequently, the
actuarial reserve is a constant, i. e., Lt = π, t ∈ [0, 1].

In this basis setting, the net asset value is given by

Et(δ) = η1(δ)A1
t + η2(δ)A2

t − Lt = η1(δ) + η2(δ)A2
t − π (t ∈ [0, 1])

for any asset allocation δ ∈ R2, δ2 ≥ 0, δ1 = 1− δ2 ≥ 0. Randomness is driven only by the
terminal stock value A2

1. This allows us to derive the minimal risk capital

2ni=1ρ
i (E1(δ))

for the three risk measures V@R, AV@R and RV@R in closed form.

Corollary 4.2.1. Let ρi = RV@Rαi,βi, αi, βi ≥ 0, be the risk measure of network’s entity
i, i = 1, . . . , n, and define α = α1 + . . .+ αn, β = max{β1, . . . , βn}. Let δ ∈ R2 be a fixed
asset allocation strategy of the network. If α+ β ≤ 1, then optimal risk sharing yields

2ni=1RV@Rαi,βi(E1(δ)) = RV@Rα,β(E1(δ))

= −η2(δ)A2
0 e

µ 1
β

(
Φ
(
Φ−1(α+ β)− σ

)
− Φ

(
Φ−1(α)− σ

))
−η1(δ) + π,

where Φ denotes the cumulative distribution function of the standard normal distribution.
In particular, the minimal SCRs take the form

2ni=1SCRi
A(E1(δ)) = η2(δ)A2

0

(
1− eµ 1

β

(
Φ
(
Φ−1(α+ β)− σ

)
− Φ

(
Φ−1(α)− σ

)))
,

2ni=1SCRi
mean(E1(δ)) = η2(δ)A2

0

(
eµ − eµ 1

β

(
Φ
(
Φ−1(α+ β)− σ

)
− Φ

(
Φ−1(α)− σ

)))
.

Proof. The proof is given in Section 4.4.

As a byproduct, Corollary 4.2.1 provides the corresponding results for V@R and
AV@R.

Corollary 4.2.2. Let δ ∈ R2 be the network’s asset allocation strategy.

(i) Let ρi be given by V@Rαi, αi ∈ (0, 1), i = 1, . . . , n, and set α = α1 + . . .+ αn.
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If α ≤ 1, then

2ni=1V@Rαi(E1(δ)) = −η2(δ)A2
0 e

µ exp
(
Φ−1(α)σ − σ2

2

)
− η1(δ) + π.

Moreover,

2ni=1SCRi
A(E1(δ)) = η2(δ)A2

0

(
1− eµ exp

(
Φ−1(α)σ − σ2

2

))
,

2ni=1SCRi
mean(E1(δ)) = η2 (δ)A2

0

(
eµ − eµ exp

(
Φ−1(α)σ − σ2

2

))
.

(ii) Let ρi be given by AV@Rβi, βi ∈ (0, 1), i = 1, . . . , n, and define β = max{β1, . . . , βn}.
If β ≤ 1, then

2ni=1AV@Rβi(E1(δ)) = −η2(δ)A2
0 e

µ 1
β Φ

(
Φ−1(β)− σ

)
− η1(δ) + π.

In particular, we have

2ni=1SCRi
A(E1(δ)) = η2(δ)A2

0

(
1− eµ 1

βΦ
(
Φ−1(β)− σ

))
,

2ni=1SCRi
mean(E1(δ)) = η2(δ)A2

0

(
eµ − eµ 1

βΦ
(
Φ−1(β)− σ

))
.

Proof. The proof is given in Section 4.4.

4.2.2 | Parameterization

Let us now summarize our standing assumptions on the parameterization.

Remark 4.2.3. For V@R-type risk measures and for sufficiently many sub-entities, the
network can reduce its total risk substantially, as described in Eq. (4.4). If the best case
is unbounded, total risk will be equal to −∞. Our case studies below rely on simulation
methods with a finite number of samples. In all numerical experiments we run 500, 000
simulations. If the best case is unbounded, the sampled best case will always be a finite
number, and it will thus not be possible to reproduce Eq. (4.4). For this reason, we modify
all distributions in the extreme tails such that they will be of bounded support. This
enables a simulation-based analysis of Eq. (4.4) and related results in our case studies.
To be more precise, asset distributions are modified by setting asset values above the
99.95%-quantile to the 99.95%-quantile.

Analogously, we also modify liability distributions by setting liability values above
the 99.95%-quantile to the 99.95%-quantile, and below the 0.05%-quantile to the 0.05%-
quantile. This procedure will be applied to a liability distribution in Section 4.2.3.2 despite
the fact that its support is bounded. This is done in order to avoid settings that require
more sophisticated rare event simulation. The resulting, simplified model is well suited to
numerically illustrate the effect of network size and ALM-strategies on risk. Alternative
models in which extreme tail events possess a large influence on the outcome of simulations
require more care in terms of simulation techniques for rare events. This is, however, not
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the focus of our analysis. We thus concentrate on the described setting.
Details for used distributions are discussed below. The relevant numerical values are

provided in Table 4.2.

Lognormal distr. Beta distr. Stable distr.

0.9995-quantile 66.2512 0.9713 3.2209

0.0005-quantile not relevant 0.7792 not relevant

Table 4.2: Adjustment of distributions.

Parameterization of the Basis Model. For the asset side, we assume that the initial
stock price is given by A2

0 = 30 and that the stock price dynamics is determined by the
drift µ = ln (35/30) ≈ 0.1542 (i. e., E[A2

1] = 35) and the volatility σ = 0.2. As discussed in
Remark 4.2.3, we bound the asset value by its 99.95%-quantile which equals 66.2512, see
Table 4.2, by modifying its distribution as explained. Interest rates of the savings account
are assumed to be zero. On the liability side, we assume that the network’s premium income
in t = 0 is π = 90. Since the liabilities are deterministic, this implies L0 = L1 = π = 90.

The initial equity value is set to E0(δ) = 30. In this case, the total asset amount of
the balance sheet is given by E0(δ) + L0 = 120. The network’s asset allocation δ ∈ R2 is
assumed to be fixed and set to δ1 = 0.75 and δ2 = 0.25, i. e., we obtain the corresponding
numbers of shares

η1(δ) = 90, η2(δ) = 1.

Note that this asset allocation yields the terminal equity

E1(δ) = η1(δ) + η2(δ)A2
1 − π = A2

1

proportional to the stock value. In particular, for the given positive drift µ, we have

E[E1(δ)] = E[A2
1] = A2

0 exp(µ) > A2
0 = E0,

i. e.,

SCRA(E1(δ)) = E0 + ρ(E1(δ)) < E[E1(δ)] + ρ(E1(δ)) = SCRmean(E1(δ))

for any monetary risk measure ρ.

Parameterization of Risk Measures. Our case studies compare and analyze the ef-
fect of optimal risk sharing for three different risk measures: V@R, AV@R and RV@R.
We assume that within the network all firms use the same risk measure with the same
parameters, i. e.,

(a) ρi = V@Rα, α ∈ (0, 1), for all i = 1, . . . , n,

(b) ρi = AV@Rβ, β ∈ (0, 1), for all i = 1, . . . , n,
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(c) ρi = RV@Rγ,ε, γ, ε ∈ (0, 1), for all i = 1, . . . , n.

This situation might result from a management decision to apply a unified risk measure-
ment approach within the network, or it could be enforced by regulatory requirements if
all firms are subject to the same regulation scheme.

For value at risk, we choose the level α = 0.1, and we fix γ = 0.05 for the range value
at risk. To ensure comparability of results between the three risk measures, the remaining
parameters β, ε are calibrated such that for X ∼ N (0, 1) with cumulative distribution
function Φ and probability density function φ

V@Rα(X) = AV@Rβ(X) = RV@Rγ,ε(X). (4.5)

For this purpose, we use that V@Rα(X) = −q+
X(α) = −Φ−1(α). This leads to

AV@Rβ(X) = 1
β

∫ β

0
V@Rα(X) dα = − 1

β

∫ β

0
Φ−1(α) dα

= − 1
β

∫ Φ−1(β)

−∞
yφ(y) dy = − 1

βφ(Φ−1(β)),

due to the substitution y = Φ−1(α) and φ′(y) = yφ(y) (see also Appendix A, Lemma
A.0.5), and

RV@Rγ,ε(X) = 1
ε

∫ γ+ε

γ
V@Rα(X) dα = −1

ε

∫ γ+ε

γ
Φ−1(α) dα

= −1
ε

(
φ
(
Φ−1(γ + ε)

)
− φ

(
Φ−1(γ)

))
.

Solving Eq. (4.5) with these formulae for given α and γ numerically, yields the following
parameters:

V@Rα AV@Rβ RV@Rγ,ε

α = 0.1 β = 0.2456 γ = 0.05, ε = 0.1072

Table 4.3: Parameterization of risk measures.

Remark 4.2.4. Observe that the chosen quantile levels in Remark 4.2.3 and Table 4.2 are
in the extreme tail of the distributions, if compared to the parameters of the risk measures
in Table 4.3. Consequently, also within our modified model with adjusted distributions the
chosen risk measures are non-trivial functionals of the tails.

4.2.3 | Numerical Case Studies

4.2.3.1 | Unsophisticated Network vs. Sophisticated Network

Let us first consider the basis ALM model with deterministic liabilities. The first row in
Tables 4.4–4.6 displays the risk capital ρ(E1(δ)) and the corresponding SCRs for V@R,
AV@R and RV@R of a single firm. This corresponds to the consolidated case and can be
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interpreted as an unsophisticated network. All values are almost equal across different risk
measures due to the applied standardization of the risk levels α, β, γ, ε, although E1(δ)
follows a lognormal distribution instead of a standard normal distribution.

Sophisticated networks may, firstly, adjust their structure by increasing the number
of entities n. For a fixed number n of firms, the corporate network will, secondly, design
optimal intra-network capital transfers that minimize the total risk in Eq. (4.1). The
second and the third row in Tables 4.4–4.6 quantify the effect on risk capital and on the
corresponding SCRs for n = 5 and n = 10 firms:

• For the two risk measures of V@R-type, V@R and RV@R, we observe that down-
side risk can be reduced significantly by optimal capital transfers that hide the tail
risk. For n sufficiently large, the corporate network could even determine a capital
allocation such that

2ni=1ρ
i(E1(δ)) = − ess supE1(δ),

corresponding to the best case scenario. This requires n · α ≥ 1 for the risk measure
V@Rα and n · γ ≥ 1 for RV@Rγ,ε (cf. Theorem 4.1.5). For V@Rα with α = 0.1,
this condition is already satisfied for a number of firms n ≥ 10, and the simulations
provide the expected result.

• In contrast, for the coherent risk measure AV@R, optimal risk sharing does, of course,
not reduce the risk capital – hiding tail risk is not possible.

E[E1(δ)] 2ni=1V@Riα (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1 34.9982 -26.5577 3.4423 8.4405

n = 5 34.9982 -34.3060 -4.3060 0.6922

n = 10 34.9982 -66.2512 -36.2512 -31.2530

Table 4.4: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10
firms; risk measure: V@R0.1; deterministic liabilities.

E[E1(δ)] 2ni=1AV@Riβ (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1, 5, 10 34.9982 -26.6784 3.3216 8.3198

Table 4.5: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10
firms; risk measure: AV@R0.2456; deterministic liabilities.

E[E1(δ)] 2ni=1RV@Riγ,ε (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1 34.9982 -26.5722 3.4278 8.4260

n = 5 34.9982 -30.9523 -0.9523 4.0459

n = 10 34.9982 -35.2473 -5.2473 -0.2491

Table 4.6: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10
firms; risk measure: RV@R0.05,0.1072; deterministic liabilities.
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4.2.3.2 | Random Liabilities

We extend the basis ALM model by including random liabilities. The insurance network is
assumed to sell pure endowment contracts only, i. e., a product depending on the random
future life time of the insurees. The idiosyncratic risk of individuals becomes irrelevant in
a very large pool, but the systematic risk, random mortality, does not average out. This
is the focus of the case study.

For insured persons aged x, we denote by p∗x and px their one-year actuarial survival
probability and their one-year random survival probability, respectively. We use the as-
sumption that the actuarial survival probability p∗x is the best estimate of the random
survival probability in the sense that E[px] = p∗x and that p∗x does not yet include any
margin for unexpected losses, i. e., deviations from the expected value. In this case, for a
sum insured L > 0, the premium is calculated as π = L · p∗x, and the random liabilities at
time t = 1 are given by

L1 = L · px = px
p∗x
π.

The last term corresponds to the actuarial reserve adapted to mortality by an appropriate
multiplier, the ratio of random and actuarial survival probability, as introduced in Chapter
6, Section 6.3.
For zero interest rates, the network’s random equity at time t = 1 is then given by

E1(δ) = η1(δ) + η2(δ)A2
1 − L1 = η1(δ) + η2(δ)A2

1 −
px
p∗x
π. (4.6)

The extended model (4.6) reduces to the basis ALM model if px ≡ p∗x is deterministic. For
a monetary risk measure ρ, the risk

ρ (E1(δ)) = ρ

(
η2(δ)A2

1 −
px
p∗x
π

)
− η1(δ)

accounts for both the network’s asset risk and biometric risk, i. e., the longevity of policy-
holders.

We analyze the network’s optimal risk sharing strategy for three different dependence
structures of assets (stock) and liabilities: independence, comonotonicity, and counter-
monotonicity. These dependencies are illustrated in Figure 4.1. We do not claim that pure
comonotonicity and countermonotonicity are realistic, but study them to illustrate the
implications of particularly extreme forms of dependence.

Independent assets and liabilities do not affect each other. In the comonotonic case,
asset and liability values change in the same direction. In particular, increasing liabilities
are associated with increasing asset values such that increasing costs for the insurer are
hedged by gains in the financial market. In contrast, countermonotonic assets and lia-
bilities correspond to a scenario in which increasing liability values are associated with
decreasing asset values. The first situation could, for example, correspond to a scenario
of joint technical and medical innovation with both increased wealth and longevity. The
second situation could be associated with medical innovation and longevity coupled with
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(a) (b) (c)

Figure 4.1: Dependence structures: The stock value and the survival probability are (a) independent, (b) comono-
tonic, and (c) countermonotonic.

an aging population that liquidates assets to generate liquidity. Countermonotonic assets
and liabilities are problematic, since high insurance claims occur together with low asset
values and yield a low book value of equity of insurers. In the worst case, the liabilities
might not be covered by the asset value anymore.

For the numerical results, we rely on the parameterization of Section 4.2.2. In addition,
we assume a sum insured L = 100, p∗x = 0.9 and

px ∼ Beta(92.1842, 10.2427),

see Chapter 6, Section 6.3.2, for more details on the applied Beta distribution. Then,
E[px] = p∗x = 0.9, and hence E[L1] = π = L0. As described in Remark 4.2.3, we modify
this distribution in the tails. The relevant quantiles are shown in Table 4.2. For the sake
of comparison to the basis case in Section 4.2.3.1, we calibrate the asset allocation δ1, δ2

with δ1 +δ2 = 1 such that for a network with a single firm only and for independent assets
and liabilities V@Rα(E1(δ)) coincides with the basis ALM model. This yields

δ1 = 0.8355, δ2 = 0.1645,

i. e., the fraction δ1 in the savings account is now higher. This is not surprising since random
mortality increases risk which needs to be offset by a reduction of the stock investment.
As a consequence, the return decreases as well; the expected value of the future net asset
value is

E[E1(δ)] = (E0 + L0)
(
δ1E

[
A1

1
A1

0

]
+ δ2E

[
A2

1
A2

0

])
− E[L1] = (E0 + L0)

(
δ1 + δ2 exp(µ)

)
− π.

The following tables summarize the numerical results.
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Case Study I - Independent Stock and Liabilities.

E[E1(δ)] 2ni=1V@Riα (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1 33.2871 -26.5578 3.4422 6.7292

n = 5 33.2871 -32.8938 -2.8938 0.3932

n = 10 33.2871 -65.9336 -35.9336 -32.6465

Table 4.7: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10
firms; risk measure: V@R0.1; independent assets and liabilities.

E[E1(δ)] 2ni=1AV@Riβ (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1, 5, 10 33.2871 -26.6392 3.3608 6.6479

Table 4.8: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10
firms; risk measure: AV@R0.2456; independent assets and liabilities.

E[E1(δ)] 2ni=1RV@Riγ,ε (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1 33.2871 -26.5707 3.4293 6.7163

n = 5 33.2871 -30.2036 -0.2036 3.0835

n = 10 33.2871 -33.6313 -3.6313 -0.3443

Table 4.9: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10
firms; risk measure: RV@R0.05,0.1072; independent assets and liabilities.

Case Study II - Comonotonic Stock and Liabilities.

E[E1(δ)] 2ni=1V@Riα (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1 33.2883 -31.6892 -1.6892 1.5991

n = 5 33.2883 -32.5983 -2.5983 0.6901

n = 10 33.2883 -46.7250 -16.7250 -13.4367

Table 4.10: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10
firms; risk measure: V@R0.1; comonotonic assets and liabilities.

E[E1(δ)] 2ni=1AV@Riβ (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1, 5, 10 33.2883 -31.7290 -1.7290 1.5593

Table 4.11: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10
firms; risk measure: AV@R0.2456; comonotonic assets and liabilities.

E[E1(δ)] 2ni=1RV@Riγ,ε (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1 33.2883 -31.6960 -1.6960 1.5923

n = 5 33.2883 -32.0096 -2.0096 1.2787

n = 10 33.2883 -32.8229 -2.8229 0.4654

Table 4.12: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10
firms; risk measure: RV@R0.05,0.1072; comonotonic assets and liabilities.
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Case Study III - Countermonotonic Stock and Liabilities.

E[E1(δ)] 2ni=1V@Riα (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1 33.2905 -24.1566 5.8434 9.1340

n = 5 33.2905 -32.5717 -2.5717 0.7188

n = 10 33.2905 -65.9336 -35.9336 -32.6431

Table 4.13: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10
firms; risk measure: V@R0.1; countermonotonic assets and liabilities.

E[E1(δ)] 2ni=1AV@Riβ (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1, 5, 10 33.2905 -24.3028 5.6972 8.9877

Table 4.14: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10
firms; risk measure: AV@R0.2456; countermonotonic assets and liabilities.

E[E1(δ)] 2ni=1RV@Riγ,ε (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1 33.2905 -24.1817 5.8183 9.1088

n = 5 33.2905 -28.9309 1.0691 4.3596

n = 10 33.2905 -33.5930 -3.5930 -0.3025

Table 4.15: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10
firms; risk measure: RV@R0.05,0.1072; countermonotonic assets and liabilities.

In the consolidated case – corresponding to an unsophisticated network consisting of a
single firm only – and for all three risk measures V@R, AV@R and RV@R, the associated
risk capital ρ(E1(δ)) reflects the different dependence structures in the following sense:
The highest risk capital is attained for the countermonotonic case, the lowest risk capital
is observed for the comonotonic case, while the risk capital for independent assets and
liabilities is between the values of the two extreme dependency structures.

In analogy to Section 4.2.3.1, the numerical results illustrate for all three dependence
structures that optimal capital transfers within a sophisticated network hide the downside
risk, if capital regulation is based on V@R-type risk measures such as V@R and RV@R.
In contrast, there is no reduction of risk capital by optimal risk sharing for the coherent
risk measure AV@R. For V@R-type risk measures, the different levels of risk capital for
the countermonotonic and independent case disappear for increasing n. The difference of
the inf-convolutions 2ni=1V@Ri

α (E1(δ)) in the countermonotonic and the independent case
decreases from 2.4 for n = 1 to 0.3 for n = 5 and finally to 0 for n = 10. Similarly, the
difference of the inf-convolutions 2ni=1RV@Ri

γ,ε (E1(δ)) in the countermonotonic and the
independent case decreases from 2.4 for n = 1 to 1.3 for n = 5 and finally to nearly 0 for
n = 10. Observe that 210

i=1V@Ri
α (E1(δ)) equals −65.93 for both the countermonotonic

and the independent case, corresponding to the best case – as known from Eq. (4.4).
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4.2.3.3 | Left-Tailed Assets

In this section, we consider again the basis ALM model with deterministic liabilities as
described in Section 4.2.1, but extend the financial market by including a third left-tailed,
also called left-skewed, asset with price process (A3

t )t∈[0,1]. This asset is characterized by
a skewed distribution with the possibility of losses and – in comparison to the stock – a
higher downside risk. More precisely, its price process is modeled by

A3
t = A3

0 exp(ζt) + Z − E[Z], t ∈ (0, 1],

where the initial value A3
0 > 0 is a fixed constant, ζ > 0 is a rate of exponential growth,

and Z is a random variable with stable distribution.

Definition 4.2.5. A random variable Z has a stable distribution S(a, b, c, d) with param-
eters a ∈ (0, 2], b ∈ [−1, 1], c ∈ (0,∞), d ∈ R, i. e., Z ∼ S(a, b, c, d), if its characteristic
function is given by

E
[
eisZ

]
=


exp

(
−cα|s|a

[
1 + ib sign(s) tan πa2

((
c|s|1−a − 1

))]
+ ids

)
, a 6= 1,

exp
(
−c|s|

[
1 + ib sign(s) tan 2

π
(c|s|)

]
+ ids

)
, a = 1.

For the numerical case study, we fix A3
0 = 1, ζ = 0.3 and assume that

Z ∼ S(1.5,−1, 1, 0)

is independent from the stock price process (A2
t )t∈[0,1]. Figure 4.2 shows the probability

density function of Z.
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Figure 4.2: PDF of Z ∼ S(1.5,−1, 1, 0).

Again, as explained in Remark 4.2.3, we modify the distribution such that it is bounded
from above. Table 4.2 shows the new upper bound of 3.22 at the 99.95%-quantile of the
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original distribution. Note that

E
[
A3

1
A3

0

]
≈ exp(ζ) > exp(µ) ≈ E

[
A2

1
A2

0

]

for the parameters ζ = 0.3 and µ = 0.1542, i. e., the expected return of the left-tailed asset
exceeds the expected return of the stock, compensating for the higher risk of this position.
For three assets, the book value of equity at terminal time 1 is given by

E1(δ) = η1(δ) + η2(δ)A2
1 + η3(δ)A3

1 − π = (E0 + L0)
(
δ1A1

1
A1

0
+ δ2A2

1
A2

0
+ δ3A3

1
A3

0

)
− π,

where δ ∈ R3, δ1, δ2, δ3 ≥ 0, δ1 + δ2 + δ3 = 1. Further, η1(δ) and η2(δ) are as before
and η3(δ) denotes the number of left-tailed assets bought at time t = 0. Thus, a higher
fraction δ3 yields a higher expected terminal net asset value E[E1(δ)], but is associated
with a higher downside risk.

Case Study I - Fixed Asset Allocation Including a Left-Tailed Asset. Let us
first analyze the impact of the left-tailed asset on network risk minimization for a fixed
asset allocation δ ∈ R3, where a small fraction δ3 = 0.01 is invested in the left-tailed
asset. For the sake of comparison to the basis case in Section 4.2.3.1, we calibrate the
remaining fractions δ1, δ2 with δ1 + δ2 + δ3 = 1 such that for the consolidated case, i. e.,
a network with only a single firm, V@Rα(E1(δ)) coincides with the basis case. This yields
the allocation

δ1 = 0.73901, δ2 = 0.2510, δ3 = 0.01.

In analogy to Section 4.2.3.1, the numerical results in Tables 4.16, 4.17 & 4.18 illustrate
that optimal capital transfers within a sophisticated network hide the downside risk, if
capital regulation is based on V@R-type risk measures such as V@R and RV@R.

E[E1(δ)] 2ni=1V@Riα (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1 35.4378 -26.5577 3.4423 8.8801

n = 5 35.4378 -35.1833 -5.1833 0.2545

n = 10 35.4378 -71.8246 -41.8246 -36.3867

Table 4.16: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10
firms; risk measure: V@R0.1; additional left-tailed asset.

E[E1(δ)] 2ni=1AV@Riβ (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1, 5, 10 35.4378 -25.4473 4.5527 9.9905

Table 4.17: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10
firms; risk measure: AV@R0.2456; additional left-tailed asset.
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E[E1(δ)] 2ni=1RV@Riγ,ε (E1(δ)) 2ni=1SCRiA (E1(δ)) 2ni=1SCRimean (E1(δ))

n = 1 35.4378 -26.5512 3.4488 8.8866

n = 5 35.4378 -31.5879 -1.5879 3.8499

n = 10 35.4378 -36.1717 -6.1717 -0.7339

Table 4.18: Expected equity, minimized network risk capital and corresponding SCRs for a split into n = 1, 5, 10
firms; risk measure: RV@R0.05,0.1072; additional left-tailed asset.

Case Study II - Optimizing the Asset Allocation. In the second step, we fix the
fraction δ1 = 0.75 invested in the savings account and vary the fraction δ3 held in the left-
tailed asset (and δ2 = 1−δ1−δ3, respectively) in the range [0, 0.25]. The left boundary point
δ3 = 0 corresponds to the basis ALM model in Section 4.2.3.1, i. e., there is no investment
in the left-tailed asset and the full remaining fraction δ2 = 0.25 of asset amount of the
balance sheet is invested in the stock. As an anchor point, the first row in Tables 4.19–
4.21 coincides with the numerical results of the basis ALM model (cf. Tables 4.4–4.6). For
the right boundary point δ3 = 0.25, the fraction of 0.25 invested initially in the stock is
completely replaced by the left-tailed asset.

Table 4.19 displays the expected terminal net asset value and the risk capital for the
consolidated case, i. e., an unsophisticated network, for varying δ3. A higher fraction δ3

increases the expected terminal equity E[E1(δ)], thus the expected profit of the network.
At the same time, substituting the stock by the left-tailed asset substantially increases
risk capital for all three risk measures V@R, AV@R and RV@R. The risk measure AV@R
is most sensitive to the re-allocation between stock and left-tailed asset.

E[E1(δ)] 2ni=1V@Riα (E1(δ)) 2ni=1AV@Riβ (E1(δ)) 2ni=1RV@Riγ,ε (E1(δ))

δ3 = 0 34.9982 -26.6784 -26.6822 -26.5722

δ3 = 0.05 36.0977 -21.6074 -12.7634 -21.2202

δ3 = 0.1 37.1972 -10.8346 7.1190 -10.0190

δ3 = 0.15 38.2967 0.7034 27.6693 1.9167

δ3 = 0.2 39.3962 12.4657 48.4084 14.0584

δ3 = 0.25 40.4958 24.2745 69.2267 26.2904

Table 4.19: Expected equity and minimized network risk capital for V@R, AV@R and RV@R for a split into n = 1
firms; additional left-tailed asset.

Tables 4.20 & 4.21 show the relevant quantities for a sophisticated network which
splits into n = 5 or n = 10 entities. Returns increase with δ3, i. e., the fraction in the
left-tailed asset, and are independent of n. However, with increasing n for the two V@R-
type risk measures, V@R and RV@R, required capital decreases substantially. The effect
of reduction is stronger for δ3 > 0 than in the basis ALM model corresponding to δ3 = 0.
For δ3 = 0, the difference in 2ni=1V@Ri

α (E1(δ)) for n = 1 and n = 10 is equal to 39.6,
but for δ3 = 0.25 equal to 190.9. In the case of RV@R, the corresponding differences are
smaller but qualitatively similar, i. e., 8.7 and 93.8, respectively. In particular, the increase
of risk capital for a single firm driven by investments in the left-tailed asset can completely
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be compensated within a sophisticated network.

E[E1(δ)] 2ni=1V@Riα (E1(δ)) 2ni=1AV@Riβ (E1(δ)) 2ni=1RV@Riγ,ε (E1(δ))

δ3 = 0 34.9982 -34.3060 -26.6784 -30.9523

δ3 = 0.05 36.0977 -39.6707 -12.7634 -33.7124

δ3 = 0.1 37.1972 -45.4260 7.1190 -34.6340

δ3 = 0.15 38.2967 -50.9053 27.6693 -34.9642

δ3 = 0.2 39.3962 -56.2971 48.4084 -35.1112

δ3 = 0.25 40.4958 -61.6229 69.2267 -35.1748

Table 4.20: Expected equity and minimized network risk capital for V@R, AV@R and RV@R for a split into n = 5
firms; additional left-tailed asset.

E[E1(δ)] 2ni=1V@Riα (E1(δ)) 2ni=1AV@Riβ (E1(δ)) 2ni=1RV@Riγ,ε (E1(δ))

δ3 = 0 34.9982 -66.2512 -26.6784 -35.2473

δ3 = 0.05 36.0977 -86.1500 -12.7634 -41.0915

δ3 = 0.1 37.1972 -106.0488 7.1190 -47.8593

δ3 = 0.15 38.2967 -125.9476 27.6693 -54.4418

δ3 = 0.2 39.3962 -145.8646 48.4084 -60.9784

δ3 = 0.25 40.4958 -166.5765 69.2267 -67.5032

Table 4.21: Expected equity and minimized network risk capital for V@R, AV@R and RV@R for a split into n = 10
firms; additional left-tailed asset.

But the numerical results are even more striking. For n = 1, all risk measures indicate
that investments into the left-tailed asset increase risk. The coherent risk measure AV@R is
invariant under an increase of the number of entities. But, for n = 5 and n = 10, both V@R-
type risk measures lead to decreasing measurements of total risk if the fraction δ3 invested
in the left-tailed asset is increased. In the case of V@R, total risk 2ni=1V@Ri

α (E1(δ))
increases for n = 1 from −26.7 for δ3 = 0 to 24.3 for δ3 = 0.25, but decreases for n = 5
from −34.3 for δ3 = 0 to −61.6 for δ3 = 0.25, and for n = 10 from −66.3 for δ3 = 0 to
−166.6 for δ3 = 0.25. A similar phenomenon is observed for RV@R, but less significant.
Total risk 2ni=1RV@Ri

γ,ε (E1(δ)) increases for n = 1 from −26.6 for δ3 = 0 to 26.3 for
δ3 = 0.25, but decreases for n = 5 from −31.0 for δ3 = 0 to −35.2 for δ3 = 0.25, and for
n = 10 from −35.2 for δ3 = 0 to −67.5 for δ3 = 0.25.

Figure 4.3 illustrates the impact of the fraction δ3 invested in the left-tailed asset
on E[E1(δ)], 2ni=1ρ

i (E1(δ)), 2ni=1SCRi
A (E1(δ)) and 2ni=1SCRi

mean (E1(δ)) for n = 1, 5, 10
firms.
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Figure 4.3: E[E1(δ)] in blue, 2ni=1ρ
i (E1(δ)) in red, 2ni=1SCRiA (E1(δ)) in yellow and 2ni=1SCRimean (E1(δ)) in

purple.

Optimal risk sharing for V@R-type risk measures suggests that the network’s manage-
ment should invest as much as possible in the left-tailed asset and provides incentives for
highly risky investments, i. e., – from a regulatory point of view – for risk mismanagement.
In fact, the left-tailed asset is associated with a significant downside risk, as indicated by
the coherent risk measure AV@R. In contrast to V@R-type risk measures, an asset allo-
cation decision based on this coherent risk measure would avoid too large investments in
the left-tailed asset.

4.3 | Conclusion

Unless a consolidated solvency balance sheet is required, corporate networks may largely
hide their total risk, if downside risk is quantified by risk measures of V@R-type – which
includes the industry’s standard risk measure value at risk. More precisely, a corporate
network consisting of sufficiently many firms can largely reduce its total solvency capital
requirement via optimal intra-network capital transfers and asset-liability management
strategies. The size of capital reduction is increasing in the number n of firms in the
network. If n is sufficiently large, the network can design a capital allocation such that the
optimal network risk 2ni=1ρ

i(E1) coincides with − ess supE1, corresponding to the best
case scenario.

This chapter illustrates the impact of optimal intra-network capital transfers embedded
into a general asset-liability management model, allowing for different asset allocation
strategies, random liabilities with different dependencies between assets and liabilities,
and investments in a left-tailed asset. The numerical case studies show that V@R-type
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risk measures provide incentives for risky investments. In contrast, if risk management is
based on the coherent risk measure average value at risk, downside risk cannot be hidden
and misleading incentives are not present.
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4.4 | Appendix: Proofs

In this section, we provide the proofs of the results presented in Section 4.2.1.2.

Proof of Corollary 4.2.1.

Proof. By Example 4.1.8 (iii), we have

2ni=1RV@Rαi,βi(E1(δ)) = RV@Rα,β(E1(δ))

for α = α1 + . . .+ αn, β = max{β1, . . . , βn}. It is thus enough to show that

RV@Rα,β(E1(δ)) = −η2(δ)A2
0 e

µ 1
β

(
Φ
(
Φ−1(α+ β)− σ

)
− Φ

(
Φ−1(α)− σ

))
− η1(δ) + π.

(4.7)
To this end, note first that

RV@Rα,β(E1(δ)) = RV@Rα,β

(
η2(δ)A2

1 + η1(δ)− π
)

= η2(δ) RV@Rα,β(A2
1)− η1(δ) + π, (4.8)

since RV@Rα,β is cash-invariant and positively homogeneous. Hence, it remains to compute

RV@Rα,β(A2
1) = 1

β

∫ α+β

α
V@Rγ(A2

1) dγ = 1
β

∫ α+β

α
−qA2

1
(γ) dγ.

Using the quantile transformation rule for A2
1 = f(W1) with the increasing function f(x) =

A2
0 exp(µ − 1

2σ
2 + σx) combined with the fact that qX(γ) = E[X] + Φ−1(γ)

√
Var(X) for

any normally distributed X (see Appendix A, Lemma A.0.5 (i)), we obtain

RV@Rα,β(A2
1) = 1

β

∫ α+β

α
−qA2

1
(γ) dγ = 1

β

∫ α+β

α
−A2

0 e
µ−1

2σ
2+σqW1 (γ) dγ

= 1
β

∫ α+β

α
−A2

0 e
µ−1

2σ
2+Φ−1(γ)σ dγ = −A2

0 e
µ−1

2σ
2 1
β

∫ α+β

α
eΦ−1(γ)σ dγ.

Substituting y = Φ−1(γ) with dy = (1/φ(Φ−1(γ))dγ in terms of the density φ of the
standard normal distribution, leads to

RV@Rα,β(A2
1) = −A2

0 e
µ−1

2σ
2 1
β

∫ Φ−1(α+β)

Φ−1(α)
eσy φ(y) dy

= −A2
0 e

µ−1
2σ

2 1
β

∫ Φ−1(α+β)

Φ−1(α)
eσy 1√

2π e
−1

2y
2
dy

= −A2
0 e

µ 1
β

∫ Φ−1(α+β)

Φ−1(α)
1√
2π e

−1
2 (y−σ)2

dy

= −A2
0 e

µ 1
β

∫ Φ−1(α+β)−σ

Φ−1(α)−σ
φ(y) dy

= −A2
0 e

µ 1
β

(
Φ
(
Φ−1(α+ β)− σ

)
− Φ

(
Φ−1(α)− σ

))
.



4.4. APPENDIX: PROOFS 111

Together with (4.8) this proves (4.7). Since

E[E1(δ)] = η2(δ)A2
0 e

µ + η1(δ)− π,

the formulae for 2ni=1SCRi
A(E1(δ)) and 2ni=1SCRi

mean(E1(δ)), respectively, follow from
(4.2) immediately.

Proof of Corollary 4.2.2.

Proof. Recalling that the limiting cases of RV@Rα,β correspond to V@Rα for β → 0
and AV@Rβ for α → 0, the claim follows from Example 4.1.8 and Corollary 4.2.1. More
precisely, we have

V@Rα(E1(δ)) = lim
β→0

RV@Rα,β(E1(δ))

= lim
β→0

(
−η2(δ)A2

0 e
µ 1
β

(
Φ
(
Φ−1(α+ β)− σ

)
− Φ

(
Φ−1(α)− σ

))
−η1(δ) + π

)
= −η2(δ)A2

0 e
µ
(
d
dβΦ

(
Φ−1(α+ β)− σ

))
− η1(δ) + π

= −η2(δ)A2
0 e

µ φ(Φ−1(α)−σ)
φ(Φ−1(α)) − η

1(δ) + π

= −η2(δ)A2
0 e

µ exp
(
σΦ−1(α)− σ2

2

)
− η1(δ) + π.

In the same manner, we derive

AV@Rβ(E1(δ)) = lim
α→0

RV@Rα,β(E1(δ))

= lim
α→0

(
−η2(δ)A2

0 e
µ 1
β

(
Φ
(
Φ−1(α+ β)− σ

)
− Φ

(
Φ−1(α)− σ

))
−η1(δ) + π

)
= −η2(δ)A2

0 e
µ 1
β Φ

(
Φ−1(β)− σ

)
− η1(δ) + π,

since limα→0 Φ−1(α) = −∞ and limα→0 Φ(Φ−1(α)− σ) = 0.
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5 | The Impact of Insurance Premium Taxation

The original version of this chapter was previously published in European Actuarial Journal 8(1),
pp. 127-167, 2018, see Degelmann, Hamm & Weber (2018).

In many countries insurance premiums are subject to insurance premium tax that
replaces the common value-added tax (VAT) used for most products and services. This
is, for example, mandatory according to EU-law. In contrast to VAT, premium tax does
not permit any deductions: first, insurance companies cannot deduct VAT paid on inputs
from premium tax; second, corporate buyers of insurance cannot deduct their premium
tax payments from VAT on their outputs, although the insurance contracts are an input
to their production. As a consequence, insurance premium tax leads to a higher taxation
than VAT if the same tax rate is applied. In this chapter, we investigate the impact of
premium tax on insurance companies, insurance holders and government revenues from
multiple perspectives.

Subject to premium tax are insurance premiums only. In the case of insurance compa-
nies, these are approximately equal to the total revenues of these firms. VAT – in contrast
– is not charged on revenues, but on the value added which is smaller than revenues.

Premium tax rates and VAT rates vary across countries. Tax rates may also be differ-
ent for different types of products. Information on tax rates for individual countries and
products can be found in European Commission (2017), Insurance Europe (2016), and
Bundesministerium der Justiz und für Verbraucherschutz (2017). In Germany, the VAT
rate and the premium tax rate coincide for most types of products and are generally both
equal to 19%.

In absolute terms, government revenues from VAT are much larger than revenues from
premium tax due to a larger tax base. In 2015, VAT revenues in Germany were 159,015
million EUR – corresponding to 23.6% of total tax revenues; premium tax revenues during
the same year were equal to 12,419 million EUR, i.e., 1.8% of total tax revenues or 7.8%
of VAT revenues, see Bundesfinanzministerium (2016).

On the individual level of both the providers and buyers of insurance, premium tax
may lead to higher total tax payments. We quantify this effect in Section 5.1. As already
explained, on the one hand, a provider of insurance cannot deduct VAT paid on input goods
from premium tax. On the other hand, commercial buyers of insurance cannot deduct the
incurred premium tax from VAT on their outputs. While Section 5.1 provides an analysis
from the point of view of individual tax payers, Section 5.2 calculates the impact on
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overall tax revenues. More specifically, a tax system with insurance tax is compared to
one in which insurance tax is replaced by VAT. If the VAT rate was unchanged, total tax
revenues would decrease by 16 billion EUR. An equivalent VAT rate of 89.2% is computed
that leads to the original total tax revenues.

After analyzing the basic differences between VAT and premium tax, we provide in
Sections 5.3 – 5.6 a broader perspective on the topic by comparing the impact of different
tax systems on insurance demand, the competitiveness of corporate buyers of insurance,
ruin probabilities of insurance firms, and solvency capital. In Section 5.3, we model cor-
porate buyers of insurance as utility maximizers that can choose their optimal level of
insurance. The total cost of insurance depends on the tax system that is implemented. We
provide case studies that illustrate potential consequences on the demand for insurance.
These show that a change in the tax system from insurance to value-added tax increases
the insurance demand. Section 5.4 investigates the competitiveness of corporate buyers of
insurance. In contrast to Section 5.3 it is assumed that the amount of insurance that is
bought is constant, but that its cost depends on the tax system. If an insurance tax is
replaced by a VAT with the same rate, the costs are effectively reduced. If these savings
are completely passed on to the buyer of the output products, the demand for these prod-
ucts increases. This is explicitly quantified in two numerical case studies. While Section
5.4 assumes that tax savings are used to reduce the price of output products, Sections
5.5 & 5.6 suppose that savings are retained by the insurance company. In Section 5.5, we
generalize the classical Cramér-Lundberg model by including tax payments in order to
study the impact on ruin probabilities. Finally, Section 5.6 computes how solvency cap-
ital requirements change that are, e.g., implemented under the regulatory framework of
Solvency II or the Swiss Solvency Test. In summary, we find that the competitiveness of
corporate buyers of insurance, the ruin probabilities of insurance firms and their solvency
capital are hardly affected by the tax system. In contrast, the tax system has a signifi-
cant influence on the cost of insurance, insurance demand, government revenues and the
profitability of insurance firms. Section 5.7 concludes with a discussion and suggestions
for further research.

Literature. Holzheu (1997) and Holzheu (2000) suggest an accounting methodology
in order to compute basic quantities that characterize the impact of a premium tax.
Sections 5.1 & 5.2 build on this methodology. Our sections are, however, based on current
data and constitute a necessary prerequisite for the other parts of this chapter. Straubhaar
(2006) provides a qualitative analysis of the impact of an increased premium tax that is
complemented by a regression analysis in order to obtain quantitative estimates. Schrinner
(1997) qualitatively discusses the impact of premium tax and provides related accounting
figures besides a preliminary economic analysis. Another preliminary analysis can be found
in Hildebrandt (2013).
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5.1 | Impact on Insurance Companies and Insurance Holders

Insurance premium tax and value-added tax lead to different tax expenses related to insur-
ance services. To begin with, we provide a descriptive analysis on the basis of aggregate
accounting data that quantifies the impact of different tax systems. Our computations
follow the methodology described in Holzheu (1997) & Holzheu (2000), using data from
2011 – 2015 provided in BaFin (2011-2015).

Impact on Insurance Companies. We consider an insurance company with earn-
ings of gross premiums denoted by π ∈ R. Gross premiums are before the deduction of
reinsurance. For the purpose of our comparisons, we define taxed premiums as the sum
of gross premiums π and the tax that is charged from the policyholders for their insur-
ance contracts, i.e., either premium tax or value-added tax – depending on the (real or
hypothetical) tax system that we consider.

We denote the prevailing VAT rate by τVAT ≥ 0. The input of the production of
insurance contracts is always taxed according to VAT. Taxed input1 L̄ and untaxed input
L can thus be converted into each other:

L̄ = (1 + τVAT)L.

We define the rate of input α as the ratio of untaxed input and untaxed gross premiums
earned:

α = L

π

Tax legislation in many countries typically prohibits the deduction of VAT paid on
inputs from premium tax, but would allow a deduction if instead VAT was also paid on
outputs. The amount that would be deducted in this case equals

L̄− L = τVATαπ. (5.1)

We now estimate this quantity that is typically not directly reported by insurance com-
panies. Untaxed inputs can roughly be estimated as gross premiums earned plus capi-
tal income minus total losses and costs including taxes. For Germany, the required data
were obtained from the annual reports of Bundesanstalt für Finanzdienstleistungsaufsicht
(BaFin).

Example 5.1.1. On the basis of BaFin-data for the years 2011 – 2015 (see BaFin (2011-
2015)), the mean rate of input2 equals α = 5.2%. With τVAT =19%, this implies a difference
of untaxed and taxed inputs equal to L̄− L ≈ 0.99% · π.

1In this chapter, taxed variables are marked with a bar .̄
2Input ratios were estimated on the basis of an aggregated stylized income statement of insurance

companies provided by BaFin. Input ratios were computed for single years, then added and finally averaged
over time. For the detailed computation, we refer to Section 5.9.
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Equivalent Value-Added Tax Rate. The current tax system charges VAT on the
production inputs of insurance firms, but premium tax on their outputs, i.e., on insurance
contracts. A deduction of VAT on inputs from premium tax is not permitted. What is
the hypothetical VAT rate on the value added generated by the insurance contracts that
leads to the same tax payments as insurance tax? We call this counterfactual VAT the
equivalent value-added tax. We stress that the VAT rate on all other goods and services
remains unchanged in this gedankenexperiment. We simply analyze a modified basis of
assessment of the tax that is charged on insurance contracts, holding the tax revenue
constant. In the case of premium tax, the basis of assessment are the premiums; in the
case of the equivalent VAT, the basis of assessment is the value added generated by the
insurance industry.

We denote the premium tax rate by τPT ≥ 0 and the insurance’s value added before
taxes by W̃ . The value added before taxes is estimated as the sum of acquisition costs and
administrative expenses, profits before taxes and changes in equalization provisions and
similar provisions. In order to account for the fraction of the value added that is indirectly
generated by reinsurers’ share of gross premiums earned, we add the difference between
the gross technical result and net technical result. From BaFin-data 2011 – 2015,3 we
compute

W̃ ≈ 31.3% · π.

The equivalent value-added tax rate that leads to the same tax revenue can be calculated
by the change of basis of assessment equation,

τ̃VATW̃ = τPTπ ⇔ τ̃VAT = τPT ·
π

W̃

Example 5.1.2. For many types of insurance contracts the premium tax rate in Germany
equals τPT = 19%. With π/W̃ ≈ 1/31.3% = 3.19 as calculated above, we obtain an
equivalent VAT rate of

τ̃VAT ≈ 60.7%.

Remark 5.1.3. Value added before taxes varies among different lines of insurance. Equiv-
alent VAT rates are displayed in Table 5.1.4

Impact on Insurance Holders. Next, we consider a hypothetical tax system in which
VAT can be deducted from premium tax, and premium tax from VAT. In this case, the
basis of assessment of the premium tax are the gross premiums earned, but counterfactual
deductions are admissible. We assume that all tax savings are passed to a corporate buyer
of insurance contracts. The latter are treated as an input good to the buyer’s production,
allowing for a deduction of incurred premium tax from VAT on outputs of the corporate
customer. Total tax savings can thus be decomposed into two components: a) the VAT on

3Value added was calculated for every year, summed up and averaged over time. For the detailed
computation, we refer to Section 5.9.

4For the detailed computation of the quantities, we refer to Section 5.9.
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Class Value added ratio Equivalent VAT rate

Accident 39% 49%
Public liability 37% 51%
Car total 21% 89%
Defense 37% 51%
Fire 35% 55%
Household 43% 45%
Residential building 32% 59%
Credit and guarantee 37% 51%
Total 31% 61%

Table 5.1: Equivalent VAT rates for different lines of insurance.

the input goods of insurance firms deducted from premium tax, b) premium tax deducted
from the VAT on the output goods of the corporate buyer of insurance.

We compute the size of these tax savings. For this purpose, we denote the total revenue
(or business volume) of the corporate insurance holder by U ∈ R and her untaxed cost of
insurance by V ∈ R. The insurance ratio of the company is defined as

β := V

U
∈ [0, 1]. (5.2)

Lemma 5.1.4. If VAT and premium tax can be deducted from each other, if taxes on
outputs are higher than on inputs and if all tax savings are passed on to a corporate buyer
of insurance, then this firm has tax savings of

E = (τVAT α+ τPT)βU. (5.3)

Proof. The proof is given in Section 5.8.

Example 5.1.5. Setting the input ratio to α =5.2% as in Example 5.1.1 and the insurance
ratio to β =0.5%,5 we obtain

E = 0.1% · U,

i.e., the total savings are only approximately 10 basis points of the business volume of
the company. The parameter β depends on the industry sector of the corporate insurance
holder. According to Swiss Re, sigma No 5/2012 (sigma (2012), p. 17), it varies between
0.1% and 1.4% for different US industries.

In summary, we estimated for insurance firms in Germany that their mean rate of
input is about 5% of gross premiums, implying a difference between untaxed and taxed
inputs of about 1% of gross premiums. For a premium tax of 19%, an equivalent VAT rate
depends on the line of insurance and ranges from about 50% for accident insurance to
about 90% for car insurance. Finally, we considered a counterfactual tax system in which

5As a rough approximation of β, we use an estimate that is provided in Swiss Re, sigma No 5/2012
(sigma (2012), p. 16) for the US market. Since the main purpose of Example 5.1.5 is to provide an estimate
of the order of the impact of a modified tax system on corporate insurance costs, precise knowledge of β
is not required.
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VAT and premium tax can be deducted from each other and estimated for Germany that
tax savings of corporate policyholders would amount to about 10 basis points of their total
revenues.

5.2 | Impact on Tax Revenues

We will now discuss the impact on total tax revenues, if premium tax is replaced by
VAT. First, we compute the modified tax revenues. Second, we calculate an equivalent
VAT which leads to the same total tax revenues. Our findings build on the results of the
previous section. The methodology is motivated by Holzheu (2000), p. 76ff.

Comparison of Tax Revenues. Let Π be the total national untaxed gross insurance
premiums earned, W̃ the total value added before taxes of the corresponding insurance
companies, and α their input ratio. The tax revenue S related to insurance contracts in a
tax system with premium tax can be split into three parts:

1. VAT of insurance companies on their inputs: This amount cannot be deducted from
premium tax. It can be computed according to Eq. (5.1).

2. Premium tax.

3. VAT on taxed insurance premiums: The costs of the outputs of corporate buyers
of insurance are increased by the premium tax. This is implicitly reflected in their
prices and leads to additional value-added tax revenues.

Total tax revenues are given by adding up the three parts:

S = (τVATα+ τPT) ·Π + τVAT · (1 + τPT) ·ΠG.

Here, ΠG denotes the untaxed insurance premiums of corporate insurance holders. Policies
of private customers are included in Π but not in ΠG, since they are not indirectly charged
with additional VAT.

Suppose now that insurance premiums are not subject to a premium tax but to a value-
added tax. In this case, these taxes are fully deductable and double-taxation is avoided.
The total relevant tax revenue thus amounts to S̃ := τVATW̃ . In particular, if we assume
that τPT ≥ τVAT and W̃ < Π, then

S̃ = τVATW̃ < τPTΠ < S.

Changing the tax system from premium tax to VAT thus leads to lower total tax revenues,
if the corresponding tax rates are equal.

Equivalent Value-Added Tax Rate. As before, we compute an equivalent VAT rate
τ̃VAT that leads to the same tax revenues, but now also incorporates taxes on premium tax
paid by corporate policyholders. As in the previous section, we assume that the VAT rate
on all other goods and services remains unchanged in this thought experiment. We only
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focus on those tax revenues that are directly related to insurance contracts as explained
above.

Lemma 5.2.1. We denote by g := ΠG
Π the ratio of untaxed corporate insurance premiums

over total untaxed insurance premiums. The equivalent value-added tax rate τ̃VAT is given
by

τ̃VAT = (τVATα+ τPT + τVAT(1 + τPT)g) · Π
W̃

Proof. The proof is given in Section 5.8.

Example 5.2.2. The average value added before taxes of German insurance firms during
the period 2011 – 20156 amounts to

W̃ ≈ 31.3% ·Π.

If we assume that the fraction of premiums of corporates is g =35%,7 we obtain for
τVAT = τPT = 19% and α = 5.2%8 an equivalent value-added tax rate of

τ̃VAT ≈ 89.2%.

Finally, let us consider a modification of the tax system in which premium tax is replaced
by VAT. This would, in particular, imply that both VAT on insurance companies’ inputs
and VAT on premium tax paid by corporate customers are deductible. For the purpose
of illustrating the size of this effect, we suppose that the German premium tax of 19% is
replaced by VAT of 19%. This would decrease total German tax revenues by approximately

S − τVAT · W̃ = (τVATα+ τPT + τVAT(1 + τPT)g − τVAT · 31.3%) ·Π = (27.9%− 5.9%) ·Π

= 22% ·Π

Taking Π ≈ EUR 75 billion (corresponding to German gross premiums earned in 2015), tax
revenues would decrease by approximately EUR 16 billion, if the tax system was changed.

5.3 | Impact on Insurance Demand

The current German premium tax leads to an additional tax burden for insurance con-
tracts. In this section, we investigate the impact of the tax system on insurance demand.
Insurance demand is endogenously modeled in a classical expected utility framework. For
proportional insurance, we compute the optimal demand maximizing the expected utility
of the policyholder.

Model 5.3.1 (Insurance Demand). We consider a proportional insurance contract over a
fixed time horizon. The initial wealth of the insurance holder is denoted by w > 0. Over

6Compare Footnote 3.
7This number quantifies the fraction for Germany in 2010 according to sigma (2012), p. 10, Table 3.

35% of the total non-life premium income was generated by corporate buyers of insurance contracts.
8See Example 5.1.1.
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the time interval, the insurance holder incurs a random loss X ∈ L1(R+) where L1(R+)
denotes the space of integrable real-valued random variables on some probability space
(Ω,F , P ) with values in R+. The insurance contract is characterized by the parameter
ν ∈ [0, 1] which is the fraction of the loss that is covered by the insurance. The premium
for full insurance is π ∈ R+; the premium for partial insurance of a fraction ν of the loss
X is ν · π.

The terminal endowment of the insurance holder as a function of ν is

Xν = w −X + ν(X − π) = (1− ν)(w −X) + ν(w − π).

Buyers of insurance can choose the fraction ν according to their preferences. This fraction
is computed as the solution to a utility maximization problem of the policyholder, see,
e.g., Chapter 2 in Föllmer & Schied (2011).

As a first example, we consider a Bernoulli utility function with constant absolute risk
aversion (CARA). This function has the form uκ1(x) = 1−e−κx with κ > 0. Another exam-
ple is a Bernoulli utility function with hyperbolic absolute risk aversion (HARA), given by
uλ2(x) = 1

λx
λ for λ ∈ (0, 1). The limiting case λ = 0 corresponds to logarithmic utility. The

Arrow-Pratt-coefficients of absolute risk aversion are κ for uκ1 and the hyperbolic function
x 7→ (1 − λ)/x for uλ2 , explaining the terminology. In the case of HARA utility, we will
always assume that X ≤ w, for logarithmic utility X < w.

Problem 5.3.2 (Expected Utility Maximization). Let S ⊆ R be convex and assume that
u : S → R is a Bernoulli utility function, i.e., a function that is strictly concave, strictly
increasing and continuous on S. Suppose that the support supp Xν is contained in S and
that u(Xν) is integrable with respect to P for all ν ∈ [0, 1]. Then, the optimal insurance
contract is characterized by the maximizer ν∗ ∈ [0, 1] of the expected utility

ν 7→ E [u(Xν)] .

A necessary condition for an interior solution ν ∈ (0, 1) is given by the first-order condition

∂

∂ν
E [u(Xν)] = 0.

We compare different tax regimes for two examples of loss distributions, a Bernoulli and a
Gamma distribution. In the case of a Bernoulli distribution, we assume that a loss x̂ > 0
occurs with probability p ∈ (0, 1), and no loss with probability 1− p, i.e., X ∼ Ber(x̂, p).
For HARA utility, we assume that x̂ ≤ w, for logarithmic utility x̂ < w. For a Gamma
distribution with parameters ξ, µ > 0 and density

fξ,µ(x) = µξ

Γ(ξ) x
ξ−1 e−µx 1(0,∞)(x), x ∈ R,

we use the notation Γ(ξ, µ). Note that Γ(·) denotes the ordinary gamma function. The
Gamma distribution with unbounded support will only be considered in the case of CARA
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utility.

Remark 5.3.3. The following result is a simple consequence of Föllmer & Schied (2011),
Proposition 2.39: Let u : dom u → R be a Bernoulli utility function. We assume that
R+ ⊆ dom u, X ≤ w and π ≤ w. Then, the following assertions hold:

(i) We have ν∗(π) = 1 if π ≤ E[X], and ν∗(π) > 0 if π ≤ w − cX , where cX is the
certainty equivalent given by the equation E[u(X)] = u(cX).

(ii) If u is differentiable, then

ν∗(π) = 1 ⇔ π ≤ E[X]

and
ν∗(π) = 0 ⇔ π ≥ w − E[(w −X)u′(w −X)]

E[u′(w −X)]

If π < w − E[(w−X)u′(w−X)]
E[u′(w−X)] , then ν∗(π) > 0.

A risk-averse buyer purchases full insurance, if and only if the premium does not exceed
the expected loss. Insurers will, however, always charge premiums that are larger in order
to avoid ruin. In this case, full insurance is never optimal.
For the special case of Bernoulli-distributed random variables, Schrinner (1997) discussed

ν∗(π)

 = 1, if π ≤ E[X],

< 1, if π > E[X],

in the context of premium tax. He argued that higher premium taxes lead to higher
premiums and therefore to a larger deviation of the premium from the expected loss,
which results in less demand for insurance.

Theorem 5.3.4. The solutions to Problem 5.3.2 for specific utility functions and loss
distributions are as follows:

(i) CARA-utility: Consider the Bernoulli utility u(x) = uκ1(x), κ > 0.

• Assume that losses are Bernoulli-distributed, i.e., X ∼ Ber(x̂, p). Then, the
optimal insurance contract is characterized by

ν∗(π) =


0, π ≥ px̂eκx̂

1−p+peκx̂ ,

1− 1
κx̂ ln

( 1
p
−1

x̂
π
−1

)
, px̂eκx̂

1−p+peκx̂ > π > px̂,

1, px̂ ≥ π.

• Assume that losses are Gamma-distributed, i.e., X ∼ Γ(ξ, µ), and assume that
κ < µ. Then, the optimal insurance contract is given by

ν∗(π) =


0, π ≥ ξ

µ−κ ,

1 + ξ
πκ −

µ
κ ,

ξ
µ−κ > π > ξ

µ ,

1, ξ
µ ≥ π.
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(ii) HARA-utility: Consider the Bernoulli utility u(x) = uλ2(x), λ ∈ (0, 1). We set ζ =
1

1−λ .

• Assume that losses are Bernoulli-distributed, i.e., X ∼ Ber(x̂, p). We suppose
that 0 < x̂ ≤ w. Then, the optimal insurance contract is

ν∗(π) =


0, π ≥ px̂w1−λ

pw1−λ+(1−p)(w−x̂)1−λ ,
πζ(1−p)ζ(x̂−w)+pζ(x̂−π)ζw
πζ(1−p)ζ(x̂−π)+pζ(x̂−π)ζπ ,

px̂w1−λ

pw1−λ+(1−p)(w−x̂)1−λ > π > px̂,

1, px̂ ≥ π.

(iii) Logarithmic utility: Consider the logarithmic utility u0
2(x) = log(x), i.e., the limiting

case of HARA-utility for λ = 0.

• Assume that losses are Bernoulli-distributed, i.e., X ∼ Ber(x̂, p). We suppose
that 0 < x̂ < w. Then, the optimal insurance contract is characterized by

ν∗(π) =


0, π ≥ px̂w

w+x̂(p−1) ,
π(w−x̂)−px̂(w−π)

π(π−x̂) , px̂w
w+x̂(p−1) > π > px̂,

1, px̂ ≥ π.

Proof. The proof is given in Section 5.8.

Remark 5.3.5. Although the technical conditions of bounded support of the random
variable and differentiability of the utility function are not fulfilled in all cases of Theorem
5.3.4, we point out that the provided thresholds for the premium still coincide with those
given in Remark 5.3.3 (ii). For detailed computations, we refer to Appendix D, Section
D.2.2.

In order to gauge the effect of a modified tax on insurance demand, we now compute
the modification of the effective premiums for different tax systems.

Lemma 5.3.6. We denote the taxed premium in a system with premium tax by π̄PT.
Assume now the counterfactual situation that VAT and premium tax can be deducted from
each other and that at the same time all tax savings are passed to a corporate buyer of
insurance. In this case, the effective premium equals

π̄VAT = γ · π̄PT, γ := 1− τVATα+ τPT

1 + τPT
,

where α denotes the input ratio.

Proof. The proof is given in Section 5.8.

Example 5.3.7. For an input ratio α = 5.2% and τVAT = τPT =19%, we obtain γ ≈
0.832, i.e., the effective premium reduces to 83.2% of the original premium, if deduction
is permitted.
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Before we can analyze the impact of alternative tax systems on demand, we need to
specify how premiums are calculated net of taxes. We focus on two examples of classi-
cal premium principles, namely the expected value principle and the standard deviation
principle, see, e.g., Chapter 12 in Schmidt (2009). We also investigated the semi-standard
deviation principle which leads to similar results as the standard deviation principle; for
this reason it is not included in the case studies below. However, we provide the correspond-
ing formulae. Untaxed premiums with safety loading δ > 0 are given in Table 5.2 for the
considered loss distributions; see Appendix D, Section D.2.3, for detailed computations.
Note that Γ(·, ·) denotes the upper incomplete gamma function. Adjusting tax payments,
optimal insurance contracts can finally be computed according to Theorem 5.3.4.

Premium Principle X ∼ Ber(x̂, p) X ∼ Γ(ξ, µ)
Expected Value Principle px̂(1 + δ) ξ

µ (1 + δ)

Standard Deviation Principle px̂
(

1 + δ
√

1−p
p

)
ξ
µ

(
1 + δ 1√

ξ

)
Semi-Standard Deviation Principle px̂

(
1 + δ 1−p√

p

)
ξ
µ

(
1 + δ 1

ξ

√
1

Γ(ξ) (ξξ e−ξ + ξ Γ(ξ, ξ))
)

Table 5.2: Computation of untaxed premiums.

The following examples analyze the impact of different tax systems on insurance de-
mand. In all case studies, we assume τPT = 19% and γ = 0.832 according to Example
5.3.7.

Example 5.3.8. In the first numerical example, we consider losses X ∼ Ber(x̂, p) and a
policyholder with CARA-utility u(x) = uκ1(x), κ > 0. We choose p = 0.1 and vary x̂. Risk
aversion is set to κ = 0.3, and the safety loading equals δ = 0.4.

Figure 5.1 displays optimal insurance contracts ν∗ for the two different tax systems.
In the case of CARA-utility, these do not depend on the initial endowment of the poli-
cyholder. As expected, if deduction is permitted, the demand for insurance is increased.
The difference in demand initially increases for small loss sizes x̂ and decreases towards a
small level for larger loss sizes. Comparing Figures 5.1 (a) & (b), we observe similar shapes
of the functions for both premium principles. Due to higher premiums for the standard
deviation principle, the optimal demand for insurance is smaller than in the case of the
expected value principle.

Example 5.3.9. In the second numerical example, we consider losses X ∼ Γ(ξ, µ) and a
policyholder with CARA-utility u(x) = uκ1(x), κ > 0. We choose ξ = 1 and vary 1/µ. Risk
aversion is again set to κ = 0.3, and the safety loading equals δ = 0.4.

Figure 5.2 displays optimal insurance contracts ν∗ for the two different tax systems.
Again, if deduction is permitted, the demand for insurance is increased. The difference in
demand is zero for small expected loss sizes 1/µ ≤ 0.92, increases for 1/µ ∈ (0.92, 1.33),
and decreases for larger losses.
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Figure 5.1: Insurance demand in Example 5.3.8 for expected value and standard deviation principle.
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Figure 5.2: Insurance demand in Example 5.3.9 for expected value and standard deviation principle.

Example 5.3.10. In the third numerical example, we consider losses X ∼ Ber(x̂, p) and
a policyholder with HARA-utility u(x) = uλ2(x), λ ∈ (0, 1). We choose p = 0.1 and vary x̂.
We set λ = 0.2. The safety loading equals δ = 0.01. Initial wealth is w = 300.

Figure 5.3 displays optimal insurance contracts ν∗ for the two different tax systems.
Again, we obtain that the demand for insurance is increased, if deduction is permitted.
The difference in demand is large for small loss sizes x̂ and decreases for larger losses.
It remains larger than 0.2 for all values of x̂ in the case of the expected value principle,
respectively, for all values of x̂ ≥ 10.2 in the case of the standard deviation principle.

Example 5.3.11. Finally, we consider the same situation as in Example 5.3.10, but keep
x̂ = 280 fixed and vary λ. Risk aversion decreases with increasing λ. Figure 5.4 displays
optimal insurance contracts ν∗ for the two different tax systems. With VAT, insurance de-
mand stays close to 1 for small values of λ. Premium tax leads to a higher cost of insurance,
and insurance demand is significantly lower. In the case of premium tax, insurance demand
decreases to 0 as risk aversion goes to 0, i.e., λ approaches 1. In the case of VAT, this
effect occurs only if premiums are computed according to the standard deviation principle.
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Figure 5.3: Insurance demand in Example 5.3.10 for expected value and standard deviation principle.
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Figure 5.4: Insurance demand in Example 5.3.11 for expected value and standard deviation principle.

In summary, our case studies show that the tax system may have a substantial impact
on insurance demand of corporate buyers of insurance. The size of this effect depends
on the loss distribution and the utility of the policyholder, in particular, on the size of
potential losses and the risk aversion of the policyholder.

5.4 | Impact on Competitiveness

The current tax system in Germany with premium tax does not allow that premium
tax and VAT are deducted from each other. If such deductions were permitted, as, for
example, in an hypothetical tax system that charges VAT on insurance contracts (instead
of premium tax), overall tax payments would be reduced.

Consider a corporate insurance holder. We compare two tax systems: a realistic tax
system with premium tax, and a counterfactual tax system that permits the full deduction
of VAT and premium tax from each other. We assume that the resulting tax savings lead
to a reduction of the sales prices of the corporate policyholder. The reduced prices increase
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the relative competitiveness of a domestic firm that benefits from a modified tax system
in contrast to its international competitors.

We design a stylized model that captures this effect and allows its quantification. There
are two firms that produce different goods i = 1, 2 that they sell for prices pi, i = 1, 2.
We assume that demand for the two goods in the economy is the solution to a utility
maximization of a representative consumer.

Problem 5.4.1 (Utility Maximization). The utility function of the representative con-
sumer with budget w ∈ R+ is denoted by u : X → R, X = R+ × R+. The consumer’s
demand x∗ = (x∗1, x∗2) solves her utility maximization problem

x∗ ∈ argmaxx∈R2
+
u(x1, x2)

subject to her budget constraint

p1x1 + p2x2 = w.

The following preliminary lemma computes the price reduction when the tax system is
changed.

Lemma 5.4.2. Let α be the rate of input of insurance companies, and let β be the insur-
ance ratio of company 1 as defined in Eq. (5.2). If company 1 is a domestic company, a
modification of the domestic tax system, as described in Lemma 5.1.4, decreases the price
of its product by θα,β · p1, where

θα,β := (τVATα+ τPT)β,

and p1 denotes the original price with premium tax. I.e., the unit price decreases to p̃1 =
(1− θα,β) · p1.

Proof. The proof is given in Section 5.8.

In two case studies, we will now illustrate how a modification of the tax system may
change product demand. In the first example, the representative consumer has a utility
function of Cobb-Douglas type, in the second with constant elasticity of substitution.

5.4.1 | Cobb-Douglas Utility Function

We recall that a Cobb-Douglas Utility Function has the form

ua(x1, x2) := xa1x
1−a
2 , a ∈ (0, 1).

Solving the optimization problem 5.4.1, one obtains the solution

x
(a)
1 = aw

p1
, x

(a)
2 = (1− a)w

p2
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We compare the change in competitiveness of a domestic and a foreign firm, if the domestic
system is changed as described before. For this purpose, we assume that company 1 is
domestic and company 2 foreign. The price of the product of company 2 is p2 and fixed,
but the price of the product of company 1 is a function of the domestic tax system.

Lemma 5.4.3 (Shift in Demand). Let p1 be the original price of product 1 and x(a)
1 the

corresponding demand. Suppose that p̃1 is the price of product 1 after modifying the tax
system, see Lemma 5.4.2, and x̃(a)

1 the corresponding demand. Setting ∆x(a)
1 = x̃

(a)
1 −x

(a)
1 ,

we obtain
∆x(a)

1

x
(a)
1

= θα,β
1− θα,β

Proof. The proof is given in Section 5.8.

The relative shift in demand does neither depend on the available budget w nor the
preference parameter a.

Example 5.4.4. Taking the numbers from Example 5.1.5, we compute θα,β ≈ 0.1%, thus

∆x(a)
1

x
(a)
1
≈ 0.1%, ∀a ∈ (0, 1).

The price of the product of the domestic company and its competitiveness is almost not
affected by a modification of the tax system. The reason is that the insurance ratio of
companies is typically small. In addition, the rate of input of insurance companies is not
very large.

Example 5.4.5. Insurance contracts are an input to the production of goods. Their
contribution varies across different industry sectors and so does the effect of a modification
of the tax system on production costs and product prices. Suppose that the input ratio
is set to α =5.2% as in the previous example. Insurance ratios for different US industry
sectors are based on a survey of MarketStance and were obtained from sigma (2012) (p.
17). The data are displayed in Table 5.3. Again, θα,β and ∆x(a)

1
x

(a)
1

are computed according
to our model. In all cases, the effects are very small.

Premium/Business Vol. Saving/Business Vol. Shift in Demand
Industrial Sector β in % θα,β in % ∆x(a)

1 /x
(a)
1 in %

Mining 0.80 0.16 0.16
Construction 1.31 0.26 0.26
Manufacturing 0.31 0.06 0.06
Transport, utilities, 1.21 0.24 0.24
communication

Retail trade 0.36 0.07 0.07
Wholesale trade 0.14 0.03 0.03
Financial 0.38 0.08 0.08
Services 0.70 0.14 0.14

Table 5.3: Shift in product demand related to industrial sectors.
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5.4.2 | Constant Elasticity of Substitution Utility Function

We recall the definition of a utility function with constant elasticity of substitution (CES):

ua,b(x1, x2) :=
(
axb1 + (1− a)xb2

) 1
b ,

where a ∈ (0, 1) and b 6= 0. The latter quantity is called the parameter of substitution.
Again, we denote the budget of the consumer by w. The consumer’s optimal demand is

xa,b1 = w (p1/a)−η

aηp1−η
1 + (1− a)ηp1−η

2
, xa,b2 = w (p2/(1− a))−η

aηp1−η
1 + (1− a)ηp1−η

2
,

where η := 1
1−b denotes the elasticity of substitution.

Lemma 5.4.6 (Shift in Demand). Let p1 be the original price of product 1 and xa,b1 the
corresponding demand. Suppose that p̃1 is the price of product 1 after modifying the tax
system, see Lemma 5.4.2, and x̃a,b1 the corresponding demand. Setting ∆xa,b1 = x̃a,b1 − x

a,b
1 ,

we obtain

∆xa,b1

xa,b1
= (1− θα,β)−η aη p1−η

1 + (1− a)η p1−η
2

(1− θα,β)1−η aη p1−η
1 + (1− a)η p1−η

2
− 1.

Proof. The proof is given in Section 5.8.

In contrast to a Cobb-Douglas utility, the relative demand shift depends on the pa-
rameters of the utility and the price level of the products in the case of CES-utility. The
impact of these inputs on demand is illustrated in Figure 5.5 for the parameter values
given in Table 5.4.

Saving: θα,β = 0.1%
Share Parameter: a ∈ (0, 1)
Price of Product 1: p1 = 1
Price of Product 2: p2 ∈ [0, 2]

Table 5.4: Parameters for case studies with CES utility function.

In particular, we consider different parameters of substitution b and elasticity of substi-
tution η = 1/(1−b). For η > 1, the products are gross substitutes, for η < 1, they are gross
complements. We fix p1 = 1 and vary η, a and p2. The resulting relative demand shifts are
displayed in Figure 5.5. In the case of gross substitutes (η > 1), the increase in demand
caused by the price change is, of course, higher than in the case of gross complements.
The effect is, however, in all cases very small.
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Figure 5.5: Relative shift in demand with CES utility functions.

All case studies clearly indicate that the international competitiveness (in terms of
product pricing) of corporate policyholders is almost not affected by the difference of
premium tax and VAT.

5.5 | Impact on Ruin Probability

In this section, we investigate the impact of the premium tax on the ruin probability of
insurance companies. For this purpose, we extend the classical Cramér-Lundberg model by
including taxes and compare ruin probabilities for different systems of taxation. A concise
introduction to ruin theory is Mikosch (2009). A comprehensive presentation can be found
in Asmussen & Albrecher (2010).

Let (Ω,F , P ) be a probability space. We consider a family of risk processes of insurance
companies (Rwt )t≥0 enumerated by the initial wealth Rw0 = w ∈ R. The ruin probability
of these companies is a function of initial wealth:

ψw(π) := P

(
inf
t≥0

Rwt < 0
)
.

For later reference, we also emphasize the dependence on the premium rate.

5.5.1 | The Cramér-Lundberg Model

In the current section, we recall the classical Cramér-Lundberg model and its basic defi-
nition. On the basis of Mikosch (2009) and Asmussen & Albrecher (2010), we collect the
results that will be needed for an analysis of the impact of insurance tax on ruin.

Model 5.5.1 (Cramér-Lundberg). Denote the initial capital of the insurance company by
w ∈ R and its premium rate by π ∈ R. Insurance losses are modeled by a compound Poisson
process

(∑Nt
k=1Xk

)
t≥0

where individual losses (Xk)k∈N are strictly positive, integrable,
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identically distributed with law B, jointly independent and independent of the Poisson
process (Nt)t≥0 with intensity ϑ > 0. The risk process in the Cramér-Lundberg model is
given by

Rwt = w + πt−
Nt∑
k=1

Xk.

Wald’s equation and the strong law of large numbers imply that 1
t

∑Nt
k=1Xk −−−→

t→∞
ϑE[X1] =: r almost surely. It is well-known that ruin occurs with probability 1, unless
the net profit condition (NPC) holds, i.e., π > r. This is equivalent to premium payments
being larger than the expected value of the losses for any time horizon t, i.e.,

πt = (1 + ρ)E
[
Nt∑
k=1

Xk

]

with safety loading ρ = π−r
r > 0. If the NPC holds, the asymptotic behaviour of the ruin

probability ψw for w →∞ can be characterized; large w corresponds to high initial capital.
We recall the key results for light-tailed and heavy-tailed losses in the Cramér-Lundberg
model.

Notation 5.5.2. If limw↑∞
ψw(π)
ϕw(π) = 1, we write ψw(π) ∼ ϕw(π).

The classical result of ruin theory considers the case of light-tailed distributions and
involves the Cramér-Lundberg coefficient. Assume that the moment-generating function
of X1, i.e., B̂(h) =

∫
ehzdB(z) = E

[
ehX1

]
, exists for all h ∈ (−h0, h0) for some h0 > 0.

The Cramér-Lundberg coefficient l > 0, if it exists, is the unique solution of the equation

B̂(l) = 1 + πl

ϑ

Theorem 5.5.3 (Cramér-Lundberg Approximation). Assume that the NPC holds and
that the distribution of X1 has a density and a moment-generating function in some neigh-
borhood of 0. In addition, we suppose that the Cramér-Lundberg coefficient l > 0 exists.
Setting C = π−r

ϑB̂′(l)−π the asymptotic behaviour of the ruin probability can be characterized
as follows:

lim
w→∞

elwψw(π) = C,

i.e., ψw(π) ∼ Ce−lw as w →∞.

Example 5.5.4. For independent, exponentially distributed losses X1, X2, . . . with pa-
rameter ι > 0, i.e., Xk ∼ Exp(ι), k ∈ N, the Cramér-Lundberg coefficient is l = ι− ϑ

π , and
the ruin probability equals the asymptotic approximation of Theorem 5.5.3:

ψw(π) = ϑ

ιπ
e−(ι−ϑπ )w (5.4)

So far, we considered light-tailed losses. In the case of heavy-tailed losses, the oc-
currence of ruin is qualitatively different from the light-tailed case. For light-tailed loss
distributions, ruin happens if a large number of sufficiently large claims accumulate. For
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heavy-tailed loss distributions, ruin can occur spontaneously and is typically due to a
large single claim. Quantitatively, this is related to the integrated tail distribution. The
corresponding theorem of Embrechts & Veraverbeke (1982) requires the notion of subex-
ponential distributions.

Remark 5.5.5. (i) If the positive random variable X has distribution function F , then
the function FX,I : R→ [0, 1] with

FX,I(x) =
( 1
E[X]

∫ x

0
(1− F (y)) dy

)
· 1(0,∞)(x)

is the integrated tail distribution function of X. The function FX,I is a distribution
function of a probability measure on the positive half line.

(ii) Subexponential distributions provide a natural definition of being heavy-tailed. They
formalize that the tail of the sum Sn = X1 + · · ·+Xn is essentially determined by the
tail of the maximumMn = maxk=1,...,nXk for independent copies of the distribution
of X1. A formal definition is

∀n ≥ 2 : lim
x→∞

P (Sn > x)
P (X1 > x) = n.

Theorem 5.5.6. Assume that the NPC holds. In addition, suppose that the losses Xk have
a density and that FX1,I , the integrated tail distribution function of X1, is subexponential.
Then,

lim
w→∞

ψw(π)
1− FX1,I(w) = 1

ρ
= r

π − r
,

i.e., ψw(π) ∼ 1−FX1,I(w)
ρ as w →∞.

Example 5.5.7. Examples of parametric distributions that satisfy the conditions of this
theorem can be found in Table 3.2.19 in Mikosch (2009). These include the log-normal
and the Pareto distribution.

5.5.2 | The Cramér-Lundberg Model with Taxes

We extend the model and add taxes.

Model 5.5.8 (Cramér-Lundberg Model with Taxes). Let τ ∈ [0, 1] be a constant tax
rate that is charged on the gross premium income π ∈ R. We denote taxed premiums by
π̄ = (1 + τ) ·π. We assume that the realized tax charged on the insurer’s input costs L ∈ R
is given by the tax rate ετ which we represent as a fraction ε ∈ [0, 1] of the premium tax
rate τ ∈ [0, 1]. The term realized tax refers to the tax on inputs minus deductions that are
allowed. The costs L do not include insurance payments due to losses. The after-tax risk
process is

Rw,τ,εt = w +
[

π̄

1 + τ
− (1 + ετ)L

]
t−

Nt∑
k=1

Xk. (5.5)
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The effective insurance premium (after subtracting all expenses and taxes) is

πτ,ε := π̄

1 + τ
− (1 + ετ)L. (5.6)

The model allows to mimic different tax systems.

(i) For τ = τPT = τVAT and ε = 1, we obtain a tax system with premium tax in which
VAT is applied to inputs but cannot be deducted from the premium tax payments.
This captures the current German tax system, if we choose τ = 19%.

(ii) For τ = τVAT and ε = 0, we obtain a counterfactual tax system in which premium
tax is replaced by VAT. In this case, VAT paid on inputs is fully deductable from
VAT paid on insurance premiums.

(iii) Suppose that we are given a tax system with premium tax and VAT as in (i),
i.e., τ = τPT = τVAT and ε = 1. As in Example 5.1.2, we consider a counterfactual
tax system (ii) in which premium tax is replaced by VAT. We assume that VAT paid
on value added of the insurance firm in the new tax system is equal to premium
tax revenues in the original tax system. Moreover, we hold π constant. We denote
the modified quantities with a tilde. In this case, τ̃ = τ̃VAT = τPT · π

W̃
and ε̃ = 0

where W̃ is the value that the insurance company adds to its inputs by producing
the insurance contract, see Section 5.1. The modified taxed premium rate is given
by π̄ = (1 + τ̃) · π > (1 + τPT) · π. We implicitly assumed that the higher tax
on the premium is paid by the policyholder. The financial situation of the insurance
company is thus improved in this case, since it can take advantage of tax deductions.

(iv) Suppose that we are in a counterfactual tax system (ii). We can extend the argu-
ments in (iii) to construct a corresponding tax system with premium tax. We assume
that insurance tax revenues in the new tax system are equal to VAT paid on value
added of the insurance firm in tax system (ii). Moreover, we hold π constant. In this
case, the premium tax rate needs to be adjusted, i.e., τ̃ = τ̃PT = τVAT · W̃π and ε̃ = 1.
The modified taxed premium rate is given by π̄ = (1 + τ̃) · π < (1 + τVAT) · π. This
describes the opposite scenario to the situation in (iii). The modification of the tax
system leads to a higher tax burden of the insurance company, since tax deductions
are no longer possible. The benefits are in this case transferred to the policyholders.

The risk process Rw,τ,ε defined in Eq. (5.5) is a function of the tax parameters τ
and ε. We investigate how ruin probabilities depend on the tax system. In contrast to
the examples (iii) and (iv) above, we now keep π̄ fixed instead of π. Tax expenses and
tax savings are not transferred to the buyer of insurance, but are fully absorbed by the
insurance firm. This implies, in particular, that the design of the tax system and a modified
tax rate on premiums alter the financial resources and ruin probability of the insurance
company.
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The effective insurance premium is computed according to Eq. (5.6). For both the light-
tailed and the heavy-tailed case, we consider the dependence of the ratio ψw(πτ,ε)/ψw(π0,0)
on the tax rate τ and compare the cases ε = 1 and ε = 0 that correspond to a system
with premium tax and VAT, respectively.

Example 5.5.9. First, we consider light-tailed loss distributions. If the conditions of
Theorem 5.5.3 hold, then clearly ψw(πτ,ε)

ψw(π0,0) ∼
C(πτ,ε)e−l(πτ,ε)w

C(π0,0)e−l(π0,0)w with C (π) = π−r
ϑB̂′(l(π))−π and

Cramér-Lundberg coefficient l(π) for any effective insurance premium π. In the case of
exponential losses, the approximation equals the exact ruin probability. Let X1, X2, . . . be
exponentially distributed with parameter ι > 0. Then,

ψw(πτ,ε)
ψw(π0,0) = π0,0

πτ,ε
eϑw

(
1

πτ,ε
− 1
π0,0

)
(5.7)

In the numerical example, we choose ι = 1 and ϑ = 1, thus r = 1. Since the NPC
should be satisfied, we assume π0,0 = 2. We set9 w = 1 ≈ 0.87 = 43.5% · π0,0 and choose
L = απ0,0 = 2α. Observe that π̄ = π0,0 + L. Setting the mean rate of input α = 5.2% as
in Example 5.1.1, we obtain L = 0.104 and deduce from formula (5.6):

πτ,ε := 2 + L

1 + τ
− (1 + ετ)L = 2.104

1 + τ
− 0.104 · (1 + ετ) ≈ 2.1

1 + τ
− 1 + ετ

10

Plugging this result into Eq. (5.7), we compute the ratio of ruin probabilities as a function
of τ . This is displayed in Figure 5.6.
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Figure 5.6: Ratio of ruin probabilites for exponentially distributed losses.

Clearly, the higher the tax rate τ the higher the probability of ruin compared to
a system without taxes. As expected, the increase of ruin probabilities is stronger in a
tax system with premium tax. A change of the tax system from type (i) to type (ii)
would thus reduce the probability of ruin. We observe that ψw(π0.19,1)/ψw(π0,0) = 1.353,
ψw(π0.19,0)/ψw(π0,0) = 1.329, thus ψw(π0.19,1)/ψw(π0.19,0) = 1.018. In Germany, at the

9 According to BaFin (2011-2015), Issue 2015, p. 158, Table 520, equity capital of non-life insurance
firms in Germany in 2015 was 43.5% of gross premium income.
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prevailing rate of 19%, the ruin probability in a tax system with premium tax is only
about 2% larger than the ruin probability in a tax system with VAT.

Example 5.5.10. Second, we consider the heavy-tailed loss distributions. As in the pre-
vious example, we assume that

πτ,ε ≈ 2.1
1 + τ

− 1 + ετ

10 ,

and choose ϑ = 1. Let Z be log-normally distributed with parameters (0, 1), thus E[Z] =
e1/2. We assume that the independent losses X1, X2, . . . have the same distribution as
e−1/2·Z, i.e.,Xk is log-normally distributed with parameters

(
−1

2 , 1
)
. This implies E[X1] =

1, thus r = 1 as in the example of light-tailed losses. We compute:

ψw(πτ,ε)
ψw(π0,0) ∼

π0,0 − 1
πτ,ε − 1 =

( 2.1
1 + τ

− 11 + ετ

10

)−1

This is displayed in Figure 5.7.
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Figure 5.7: Ratio of ruin probabilites for heavy-tailed loss distributions.

In particular, we obtain ψw(π0.19,1)/ψw(π0,0) = 1.549, ψw(π0.19,0)/ψw(π0,0) = 1.504,
thus ψw(π0.19,1)/ψw(π0.19,0) = 1.03. In Germany, at the prevailing rate of 19%, the ruin
probability in a tax system with premium tax is only about 3% larger than the ruin
probability in a tax system with VAT. Let us finally stress that the results do not depend
on the loss distributions being log-normal; only the condition E[X1] = 1 was used in the
derivation.

The quantities derived in Examples 5.5.9 & 5.5.10 and displayed in Figures 5.6 & 5.7 are
all ratios of ruin probabilities over an infinite time horizon. In absolute terms, annual ruin
probabilities of real insurance companies are limited by regulatory standards. Solvency II,
for example, restricts annual ruin probabilities to at most 0.5%. Otherwise, companies face
serious interventions of the regulator. Our analysis thus indicates that absolute changes
of annual ruin probabilities due to a modified tax system would be extremely moderate
– on the order of less than 10 basis points. However, even small absolute changes in ruin
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probabilities might be costly in terms of solvency capital, if regulatory constraints are
tight and binding. This issue is discussed in the next section.

Remark 5.5.11. Our focus is on premium tax and VAT, and we deduced the implications
of tax systems on ruin probabilities from standard results in the literature on ruin theory.
The key assumption was that Eq. (5.6) describes the tax impact on the risk process. In
the context of premium tax and VAT, Eq. (5.6) is a reasonable hypothesis. However, the
functional dependence of risk processes on other types of taxes might be more complicated
than assumed in this chapter. We briefly summarize some previous key contributions.
Albrecher & Hipp (2007) analyze the effect of tax payments under a loss-carry forward
system in the Cramér-Lundberg model. They suppose that taxes are only paid when
the company is in a profitable situation, meaning that the risk process is at its running
maximum. The authors study ruin probabilities with and without taxes in their model
and find that the survival probability with tax is a power of the survival probability
without tax, i.e., 1− ψγ(w) = (1− ψ0(w))

1
1−γ , where 0 < γ < 1 is the constant tax rate.

Moreover, they compute the optimal surplus level at which taxation should start in order
to maximize the expected discounted tax payments before ruin. Albrecher, Badescu &
Landriault (2008) conduct a similar analysis in the dual risk model. The description of the
ruin probability with taxes in terms of the ruin probability without taxes becomes more
complicated. A considerable generalization of the results is derived by Albrecher, Renaud
& Zhou (2008) who embed the model by Albrecher & Hipp (2007) into a general Lévy
framework. The relation between ruin probabilities is recovered, and also the structure
of many other results is preserved in the Lévy setup. Kyprianou & Zhou (2009) and
Albrecher, Borst, Boxma & Resing (2009) introduce a surplus-dependent tax rate.

5.6 | Impact on Solvency Capital Requirement

As explained in the previous sections, premium tax generates more tax revenues than VAT,
if both tax rates are equal. We now compare these two alternative tax systems from the
point of view of solvency capital requirements. For this purpose, we assume that insurance
firms keep their taxed insurance premiums constant, but retain the tax savings that accrue
when premium tax is replaced by VAT. Obviously, the solvency capital requirement is then
decreased by this amount, and insurance companies can distribute all tax savings to their
shareholders. If this occurs, risk will be back at its original level. In the current section,
we review the notion of solvency capital requirements in the context of internal models10

and explain in detail why the dividend payments to shareholders may be increased.
To this end, we review the basic definition of distribution-based monetary risk mea-

10Another approach is the standard formula of Solvency II, a modular construction for the computation
of the solvency capital requirement, see Appendx A, Corollary A.0.8. While an internal model attempts
to describe and evaluate the stochastic evolution of the balance sheet of the insurance firm, the standard
formula is an auxiliary construction that facilitates the computation of a solvency capital requirement.
Aggregation of risk modules is based on correlations and a square-root formula. It is well-known and
easily demonstrated that the modular construction cannot be interpreted as an approximation of a capital
requirement that limits the probability of ruin to less than 0.5% as requested by Directive 2009/138/EC,
see, e.g., Pfeifer (2016). In this chapter, we focus exclusively on internal models.



136 CHAPTER 5. THE IMPACT OF INSURANCE PREMIUM TAXATION

sures. These include all risk measures that are typically used in practice. For a short
introduction to monetary risk measures, we refer to Appendix A; for a detailed exposition
on the subject, see Artzner et al. (1999), Föllmer & Schied (2011), and Föllmer & Weber
(2015).

Definition 5.6.1. Let (Ω,F , P ) be a probability space, and X a vector space of random
variables on Ω that contains the constants. We identify random variables that are P -
almost surely equal. A mapping ρ : X → R is called a monetary risk measure on X , if
ρ(X) = ρ(Y ) for X = Y P -almost surely and if ρ satisfies the following properties:

(i) Monotonicity: If X ≥ Y P -almost surely, then ρ(X) ≤ ρ(Y ).
(Better payoff profiles are less risky.)

(ii) Cash-invariance: If m ∈ R, then ρ(X +m) = ρ(X)−m.
(Adding a fixed amount m to the risky position decreases the risk exactly by this
amount.)

The risk measure ρ is called distribution-based, if ρ(X) = ρ(Y ) whenever X and Y have
the same distribution under P .

Example 5.6.2. Examples of distribution-based monetary risk measures are value at risk
(V@R) and average value at risk (AV@R), also called expected shortfall, conditional value
at risk, tail value at risk, or worst conditional expectation. V@R and AV@R are the basis
of the definition of solvency capital requirements in Solvency II and in the Swiss Solvency
Test, respectively.

(i) Value at risk at level y ∈ (0, 1) is defined as a quantile:

V@Ry(X) := inf{m ∈ R |P (X +m < 0) ≤ y}.

It is equal to the smallest monetary amountm that needs to be added to the financial
position X such that the probability of a loss does not exceed the level y.

(ii) Average value at risk at level y ∈ (0, 1) is the average of the V@Rs below y, i.e.,

AV@Ry(X) := 1
y

∫ y

0
V@Rc(X) dc.

Under technical conditions, e.g., if X has a continuous distribution, it is equal to the
conditional expectation of a loss beyond the V@Ry(X).

We will now explain – in a stylized way – how solvency capital requirements are
defined in an internal model; see Chapters 3 & 4 for further details. The evolution of
assets, liabilities and capital of an insurance firm can be captured by solvency balance
sheets at time horizons that are specified by regulators. The time horizon of Solvency II
and the Swiss Solvency Test is one year. Table 5.5 displays the balance sheet of a company
at time t = 0 and t = 1.
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t = 0

Assets Liabilities

E0 = A0 − L0

A0

L0

t = 1

Assets Liabilities

E1 = A1 − L1

A1

L1

Table 5.5: Balance sheet of an insurance company for different points in time.

The assets are denoted by At, the liabilities by Lt, t = 0, 1. The quantities at time
t = 0 are known, the quantities at time t = 1 are random variables. The difference between
assets and liabilities Et = At − Lt, t = 0, 1, is the net asset value (NAV) of the firm. We
set X = E1 − E0 for the change of the NAV over the considered time horizon.

The solvency capital requirement (SCR) for Solvency II is defined in the Directive
2009/138/EC of the European Parliament and of the Council on the taking-up and pursuit
of the business of Insurance and Reinsurance – Solvency II (see European Commission
(2009)):

The Solvency Capital Requirement should be determined as the economic cap-
ital to be held by insurance and reinsurance undertakings in order to ensure
that ruin occurs no more often than once in every 200 cases or, alternatively,
that those undertakings will still be in a position, with a probability of at least
99.5 %, to meet their obligations to policy holders and beneficiaries over the
following 12 months. That economic capital should be calculated on the basis
of the true risk profile of those undertakings, taking account of the impact of
possible risk-mitigation techniques, as well as diversification effects.

This definition is specified in terms of condition on the acceptability of E1. An equivalent
formulation11 provides the definition of the SCR under Solvency II:

P (E1 < 0) ≤ y ⇔ V@Ry(E1) ≤ 0 ⇔ V@Ry(E1−E0) ≤ E0 ⇔ V@Ry(X) ≤ E0.

Setting SCR := V@Ry(X), the solvency condition of the company becomes

SCR ≤ E0.

An analogous argument holds, if V@R is replaced by any other risk measure ρ.12 The
acceptance set of ρ is the family of positions with non-positive risk, i.e.,

Aρ = {X ∈ X : ρ(X) ≤ 0}.
11For simplicity, we assume in this chapter that interest rates over the one-year horizon are approximately

zero. For adjustments on the definition of the SCR if interest rates are non-zero, see Christiansen &
Niemeyer (2014).

12V@R has been criticized in the context of capital regulation, since it neglects losses beyond the V@R
and – due to its lack of coherence – it might mislead investment decisions and asset-liability management.
In addition, in corporate networks it is possible “to sweep the downside risk under the carpet”, see Chapter
4 and Weber (2018).
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If we assume again for simplicity that interest rates over a one-year horizon are zero,
setting SCR := ρ(X), we obtain the following solvency condition:

E1 ∈ Aρ ⇔ ρ(E1) ≤ 0 ⇔ SCR ≤ E0.

The Swiss Solvency Test chooses AV@R as the basis for the definition of solvency.
Let us now return to the original question regarding the impact of the tax system on

solvency capital. In Eq. (5.1), we computed the tax savings that would accrue if a deduction
of VAT paid on inputs was permitted. We assume that these savings of L̄−L = τVATαπ are
retained by the insurance company. While initial capital E0 remains unchanged, capital
E1 at the solvency time horizon is increased by this amount. This leads to a reduction of
the SCR.

Lemma 5.6.3. We denote by SCR the solvency capital requirement in the original tax
system with premium tax. Assume that the tax system is modified such that a deduction of
VAT paid on inputs is permitted. In this case, the solvency capital requirement is reduced
to

SCR− τVATαπ.

Proof. The proof is given in Section 5.8.

Considering the situation in Example 5.1.1, the reduction of the solvency capital by
τVATαπ would amount to 0.99% of gross premium income. This is due to decreased gov-
ernment revenues. The company could increase the dividend payments to its shareholders
by this amount. If this is done, the NAV at time 1 will return to its original level E1.
The solvency situation of the insurance company, i.e., E1 ∈ Aρ, will then be the same
as before. Conversely, if the NAV of an insurance firm at time 0, i.e., E0, is close to the
SCR in a tax system with VAT, the firm would need a capital injection of 0.99% of gross
premium income from its shareholders to satisfy the same solvency capital constraint in a
tax system with premium tax.

5.7 | Conclusion

We analyzed the impact of premium tax on total tax revenues, insurance demand, the
competitiveness of corporate buyers of insurance, the ruin probability of insurance firms
and their solvency capital requirement. We find that the competitiveness of corporate
buyers of insurance, the ruin probability of insurance firms and their solvency capital are
hardly affected. In contrast, the tax system (i.e., premium tax vs. VAT) has a signifi-
cant influence on the cost of insurance, insurance demand, government revenues and the
profitability of insurance firms. The increased cost of insurance in tax systems with pre-
mium tax in contrast to VAT might promote alternative risk transfer mechanisms such
as off-shore captive insurance, derivatives, or preventative measures that are not subject
to premium tax. These instruments might provide more cost-efficient solutions to the risk
management needs of corporations. On the one hand, some tax-efficient products might
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offer new business opportunities for insurance firms. On the other hand, alternative risk
transfer mechanisms might also cannibalize their traditional business. The design of such
instruments and their implications for corporate risk management, insurance companies
and government revenues are interesting topics for further research.
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5.8 | Appendix: Proofs

In this section, we provide the proofs of the results presented in this chapter.

Proof of Lemma 5.1.4.

Proof. The savings are given by Eq. (5.1) plus the input tax reduction of the company for
insurance products, i.e., E = τVAT αV + τPT V .

Proof of Lemma 5.2.1.

Proof. The result follows immediately from the condition τ̃VATW̃ = S.

Proof of Theorem 5.3.4.

Proof. Here, we provide a condensed proof of the theorem. Detailed computations are
given in Appendix D, Section D.2.1.

(i) CARA-utility:
We first consider the case X ∼ Ber(x̂, p). We compute

E [uκ1 (Xν)] = 1− e−κ(w−νπ)
(
eκ(1−ν)x̂p+ 1− p

)
.

This implies

∂

∂ν
E [uκ1 (Xν)] = κeκ(πν−x̂ν+x̂−w)

(
π(p− 1)eκx̂ν−κx̂ + p(x̂− π)

)
.

At the boundary ν = 0, we obtain

∂

∂ν
E [uκ1 (Xν)]|ν=0

= κeκ(x̂−w)
(
π(p− 1)e−κx̂ + p(x̂− π)

)
.

Thus, ν(π) = 0 is the optimal solution, if and only if

∂

∂ν
E [uκ1 (Xν)]|ν=0

≤ 0 ⇐⇒ π ≥ px̂eκx̂

1− p+ peκx̂

At the boundary ν = 1, we obtain ∂
∂νE [uκ1 (Xν)]|ν=1

= κeκ(π−w) (px̂− π). Thus, the
optimal solution is ν(π) = 1, iff ∂

∂νE [uκ1 (Xν)]|ν=1
≥ 0, i.e., π ≤ px̂. In all other cases,

we need to solve ∂
∂νE [uκ1 (Xν)] = 0, leading to the stated solution. The first-order

conditions are sufficient due to the strict concavity.
Second, we derive the optimal contract for X ∼ Γ(ξ, µ). In this case,

E [uκ1 (Xν)] = 1− e−κ(w−νπ)
(

µ

µ− κ(1− ν)

)ξ
,

∂

∂ν
E [uκ1 (Xν)] = e−κ(w−νπ)

(
µ

µ− κ(1− ν)

)ξ+1 (
−κ
µ

)
(π(µ− κ(1− ν))− ξ).

The solution can now be derived by analogous arguments as before.
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(ii) HARA-utility: Using the same steps as above, the solution is computed, observing

E
[
uλ2 (Xν)

]
= 1

λ
·
(
((1− ν)(w − x̂) + ν(w − π))λ · p

+((1− ν)w + ν(w − π))λ · (1− p)
)
,

∂

∂ν
E
[
uλ2 (Xν)

]
= (w − νπ + x̂(ν − 1))λ−1p(x̂− π) + (−π)(1− p)(w − νπ)λ−1.

(iii) Logarithmic utility: Again, the solution is derived by analogous arguments, noting

E
[
u0

2 (Xν)
]

= log((1− ν)(w − x̂) + ν(w − π)) · p

+ log((1− ν)w + ν(w − π)) · (1− p),
∂

∂ν
E
[
u0

2 (Xν)
]

= 1
w − νπ + x̂ν − x̂

p(x̂− π) + (−π)(1− p) 1
w − νπ

Proof of Lemma 5.3.6.

Proof. The result follows from π̄VAT = π̄PT−E where tax savings E are computed according
to Eq. (5.3) with π̄PT = (1 + τPT)βU . Hence,

π̄VAT = π̄PT − E = (1 + τPT)βU − (τVATα+ τPT)βU = (1 + τPT)βU
(

1− τVATα+ τPT

1 + τPT

)
= π̄PT

(
1− τVATα+ τPT

1 + τPT

)
.

Proof of Lemma 5.4.2.

Proof. We have θα,β = E
U where U is the revenue or business volume of the company. Now,

the result follows from Eq. (5.3).

Proof of Lemma 5.4.3.

Proof. This is an application of Lemma 5.4.2 to the solution of the optimization problem,
thus

∆x(a)
1

x
(a)
1

=
aw
p̃1
− aw

p1
aw
p1

=
aw

(1−θα,β)p1
− aw(1−θα,β)

(1−θα,β)p1
aw(1−θα,β)
(1−θα,β)p1

= 1
1− θα,β

− 1 = θα,β
1− θα,β
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Proof of Lemma 5.4.6.

Proof. This is an application of Lemma 5.4.2 to the solution of the optimization problem,
thus

∆xa,b1

xa,b1
=

w(p̃1/a)−η

aη p̃1−η
1 +(1−a)ηp1−η

2
− w(p1/a)−η

aηp1−η
1 +(1−a)ηp1−η

2
w(p1/a)−η

aηp1−η
1 +(1−a)ηp1−η

2

=

( (1−θα,β)p1
a

)−η
·
(
aηp1−η

1 + (1− a)ηp1−η
2

)
(p1
a

)−η · (aη((1− θα,β)p1)1−η + (1− a)ηp1−η
2

) − 1

= (1− θα,β)−η · aηp1−η
1 + (1− a)ηp1−η

2
aη(1− θα,β)1−ηp1−η

1 + (1− a)ηp1−η
2
− 1

Proof of Lemma 5.6.3.

Proof. Adjusted quantities are labeled with a tilde. The random economic capital at time
t = 1 becomes Ẽ1 = E1 + τVATαπ. Due to cash-invariance of ρ, we compute

S̃CR = ρ(X + τVATαπ) = ρ(X)− τVATαπ = SCR− τVATαπ.

5.9 | Appendix: Computations of Section 5.1

Rate of Input

2015 2014 2013 2012 2011
Gross premiums earned π 75,008,740 71,216,091 69,298,052 66,922,556 63,514,681
Capital income 7,431,575 7,246,143 7,207,242 7,451,052 6,988,566
Investment expenses 1,269,941 923,197 1,010,400 1,098,403 1,740,899
Total losses 56,243,800 52,078,719 55,722,781 50,255,508 48,929,622
Acquisition costs & adminis. expenses 18,921,252 18,083,843 17,594,251 17,113,492 16,486,877
Taxes 1,462,200 1,479,200 963,100 1,483,700 1,147,200
Input L 4,543,122 5,897,275 1,214,762 4,422,505 2,198,649

Table 5.6: Computation of input costs in thousands of euros (TEUR).
These values are given in Table 540 of the corresponding annual report of BaFin (2011-2015). (Negative) Taxes are
disclosed in Table 79 of the same reports.

2015 2014 2013 2012 2011 Mean
Gross premiums earned 100.00 100.00 100.00 100.00 100.00
Capital income 9.91 10.17 10.40 11.13 11.00
Investment expenses 1.69 1.30 1.46 1.64 2.74
Total losses 75.00 73.10 80.40 75.10 77.00
Acquisition costs & administrative expenses 25.20 25.40 25.40 25.60 26.00
Taxes 1.95 2.08 1.39 2.22 1.81
Rate of Input α 6.07 8.30 1.75 6.58 3.46 5.23

Table 5.7: Computation of rate of input α as ratio of earned gross premium π.
Total losses as well as acquisition costs and administrative expenses can be adopted from Table 540 in the corre-
sponding annual report of BaFin (2011-2015). Other quantities are calculated using Table 5.6.
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Value Added

2015 2014 2013 2012 2011
Acquisition costs & adminis. expenses 18,921,252 18,083,843 17,594,251 17,113,492 16,486,877
Profits before taxes 2,548,300 2,587,900 2,135,800 2,472,600 1,986,700
Changes in equilization provisions 295,400 684,500 -180,700 858,400 -368,700
Gross technical result 4,859,078 5,076,151 -165,970 3,442,647 1,812,497
Net technical result 2,931,694 2,908,918 288,506 1,573,496 377,868

Value added W̃ 23,692,336 23,523,476 19,094,875 22,313,643 19,539,506

Table 5.8: Computation of value added in TEUR.
Profits before taxes and (negative) changes in equilization provisions are given in Table 79 of the corresponding
annual report of BaFin (2011-2015). Gross and net technical results can be found in Table 540 of the same reports.

2015 2014 2013 2012 2011 Mean
Acquisition costs & administrative expenses 25.20 25.40 25.40 25.60 26.00
Profits before taxes 3.40 3.63 3.08 3.69 3.13
Changes in equilization provisions 0.39 0.96 -0.26 1.28 -0.58
Gross technical result 6.50 7.10 -0.20 5.10 2.90
Net technical result 3.91 4.08 0.42 2.35 0.59

Value added W̃
π

31.58 33.01 27.60 33.33 30.85 31.28

Table 5.9: Computation of value added as ratio of earned gross premium π.
Acquisition costs and administrative expenses as well as gross technical result can be adopted from Table 540 in the
corresponding annual report of BaFin (2011-2015). Other quantities are calculated using Table 5.8 and π in Table
5.6.
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Value added for different lines of insurance

Accident

2015 2014 2013 2012 2011
Total gross premium earned π 69,448,394 66,146,203 64,535,515 62,102,602 59,310,517
Gross premium earned accident π∗ 6,388,854 6,440,961 6,416,895 6,500,627 6,383,714
Net premium earned accident π̂∗ 5,487,886 5,545,237 5,707,299 5,638,822 5,587,643
Total profits before taxes 2,548,300 2,587,900 2,135,800 2,472,600 1,986,700
Total changes in equilization provisions 295,400 684,500 -180,700 858,400 -368,700
Net technical result accident 24.70 16.60 17.10 17.20 17.30

Table 5.10: Needed data for computation of value added accident.
Total gross premium earned (direct business), gross premium earned accident (direct business), net premium earned
accident (direct business) and net technical result accident are given in Table 541 of the corresponding annual report
of BaFin (2011-2015). As above, total profits before taxes and total (negative) changes in equilization provisions
can be adopted from Table 79 in the same reports. Positions 1 to 5 are specified in TEUR, position 6 as ratio of π̂∗.

2015 2014 2013 2012 2011
Acquisition costs and administrative expenses 1,993,322 2,003,139 2,002,071 2,054,198 2,055,556
Profits before taxes 234,429 251,996 212,367 258,821 213,833
Changes in equilization provisions 27,175 66,653 -17,967 89,854 -39,684
Gross technical result 1,252,215 1,210,901 1,270,545 1,280,624 1,238,441
Net technical result 1,355,508 920,509 975,948 969,877 966,662
Value added accident 2,151,634 2,612,179 2,491,068 2,713,619 2,501,483

Table 5.11: Computation of value added accident in TEUR.
All quantities except net technical result are computed using Table 5.12 and π∗ given in Table 5.10. Net technical
result is calculated by multiplying the corresponding quantities in Table 5.10.

2015 2014 2013 2012 2011 Mean
Acquisition costs and administrative expenses 31.20 31.10 31.20 31.60 32.20
Profits before taxes 3.67 3.91 3.31 3.98 3.35
Changes in equilization provisions 0.43 1.03 -0.28 1.38 -0.62
Gross technical result 19.60 18.80 19.80 19.70 19.40
Net technical result 21.22 14.29 15.21 14.92 15.14
Value added accident 33.68 40.56 38.82 41.74 39.19 38.80

Table 5.12: Computation of value added accident as ratio of earned gross premium π∗.
Acquisition costs and administrative expenses as well as gross technical results are given in Table 541 of the cor-
responding annual report of BaFin (2011-2015). Profits before taxes and changes in equilization provisions are
calculated by using total values in Table 5.10. Net technical results are based on the absolute values in Table 5.11
and π∗ given in Table 5.10.
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Public Liability (publicL)

2015 2014 2013 2012 2011
Total gross premium earned π 69,448,394 66,146,203 64,535,515 62,102,602 59,310,517
Gross premium earned publicL π∗ 9,246,435 8,837,457 8,360,776 8,023,858 7,706,079
Net premium earned publicL π̂∗ 6,714,540 6,536,798 6,670,263 6,437,008 5,979,624
Total profits before taxes 2,548,300 2,587,900 2,135,800 2,472,600 1,986,700
Total changes in equilization provisions 295,400 684,500 -180,700 858,400 -368,700
Net technical result publicL 7.50 9.00 7.20 9.80 9.80

Table 5.13: Needed data for computation of value added public liability.
Total gross premium earned (direct business), gross premium earned public liability (direct business), net premium
earned public liability (direct business) and net technical result public liability are given in Table 541 of the corre-
sponding annual report of BaFin (2011-2015). As above, total profits before taxes and total (negative) changes in
equilization provisions can be adopted from Table 79 in the same reports. Positions 1 to 5 are specified in TEUR,
position 6 as ratio of π̂∗.

2015 2014 2013 2012 2011
Acquisition costs and administrative expenses 2,810,916 2,695,424 2,575,119 2,527,515 2,450,533
Profits before taxes 339,283 345,756 276,700 319,468 258,127
Changes in equilization provisions 39,330 91,453 -23,410 110,908 -47,904
Gross technical result 674,990 821,884 627,058 866,577 608,780
Net technical result 503,591 588,312 480,259 630,827 586,003
Value added public liability 3,360,929 3,366,205 2,975,208 3,193,641 2,683,533

Table 5.14: Computation of value added public liability in TEUR.
All quantities except net technical result are computed using Table 5.15 and π∗ given in Table 5.13. Net technical
result is calculated by multiplying the corresponding quantities in Table 5.13.

2015 2014 2013 2012 2011 Mean
Acquisition costs and administrative expenses 30.40 30.50 30.80 31.50 31.80
Profits before taxes 3.67 3.91 3.31 3.98 3.35
Changes in equilization provisions 0.43 1.03 -0.28 1.38 -0.62
Gross technical result 7.30 9.30 7.50 10.80 7.90
Net technical result 5.45 6.66 5.74 7.86 7.60
Value added public liability 36.35 38.09 35.59 39.80 34.82 36.93

Table 5.15: Computation of value added public liability as ratio of earned gross premium π∗.
Acquisition costs and administrative expenses as well as gross technical results are given in Table 541 of the cor-
responding annual report of BaFin (2011-2015). Profits before taxes and changes in equilization provisions are
calculated by using total values in Table 5.13. Net technical results are based on the absolute values in Table 5.14
and π∗ given in Table 5.13.
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Car Total

2015 2014 2013 2012 2011
Total gross premium earned π 69,448,394 66,146,203 64,535,515 62,102,602 59,310,517
Gross premium earned car π∗ 24,601,179 23,637,844 22,503,977 21,234,566 20,113,638
Net premium earned car π̂∗ 19,146,675 18,312,796 18,352,347 17,317,716 16,402,766
Total profits before taxes 2,548,300 2,587,900 2,135,800 2,472,600 1,986,700
Total changes in equilization provisions 295,400 684,500 -180,700 858,400 -368,700
Net technical result car total 2.00 3.70 -2.80 -3.30 -8.10

Table 5.16: Needed data for computation of value added car total.
Total gross premium earned (direct business), gross premium earned car total (direct business), net premium earned
car total (direct business) and net technical result car total are given in Table 541 of the corresponding annual report
of BaFin (2011-2015). As above, total profits before taxes and total (negative) changes in equilization provisions
can be adopted from Table 79 in the same reports. Positions 1 to 5 are specified in TEUR, position 6 as ratio of π̂∗.

2015 2014 2013 2012 2011
Acquisition costs and administrative expenses 4,206,802 4,089,347 3,960,700 3,822,222 3,640,568
Profits before taxes 902,702 924,806 744,768 845,449 673,738
Changes in equilization provisions 104,642 244,611 -63,011 293,510 -125,035
Gross technical result 615,029 827,325 -1,012,679 -509,630 -1,528,636
Net technical result 382,934 677,573 -513,866 -571,485 -1,328,624
Value added car total 5,446,241 5,408,515 4,143,643 5,023,036 3,989,259

Table 5.17: Computation of value added car total in TEUR.
All quantities except net technical result are computed using Table 5.18 and π∗ given in Table 5.16. Net technical
result is calculated by multiplying the corresponding quantities in Table 5.16.

2015 2014 2013 2012 2011 Mean
Acquisition costs and administrative expenses 17.10 17.30 17.60 18.00 18.10
Profits before taxes 3.67 3.91 3.31 3.98 3.35
Changes in equilization provisions 0.43 1.03 -0.28 1.38 -0.62
Gross technical result 2.50 3.50 -4.50 -2.40 -7.60
Net technical result 1.56 2.87 -2.28 -2.69 -6.61
Value added car total 22.14 22.88 18.41 23.65 19.83 21.38

Table 5.18: Computation of value added car total as ratio of earned gross premium π∗.
Acquisition costs and administrative expenses as well as gross technical results are given in Table 541 of the cor-
responding annual report of BaFin (2011-2015). Profits before taxes and changes in equilization provisions are
calculated by using total values in Table 5.16. Net technical results are based on the absolute values in Table 5.17
and π∗ given in Table 5.16.



5.9. APPENDIX: COMPUTATIONS OF SECTION 5.1 147

Defense

2015 2014 2013 2012 2011
Total gross premium earned π 69,448,394 66,146,203 64,535,515 62,102,602 59,310,517
Gross premium earned defense π∗ 3,949,994 3,824,287 3,756,450 3,695,395 3,401,014
Net premium earned defense π̂∗ 3,440,597 3,317,429 3,367,084 3,306,620 3,048,240
Total profits before taxes 2,548,300 2,587,900 2,135,800 2,472,600 1,986,700
Total changes in equilization provisions 295,400 684,500 -180,700 858,400 -368,700
Net technical result defense 0.50 -0.40 0.50 3.50 3.40

Table 5.19: Needed data for computation of value added defense.
Total gross premium earned (direct business), gross premium earned defense (direct business), net premium earned
defense (direct business) and net technical result defense are given in Table 541 of the corresponding annual report
of BaFin (2011-2015). As above, total profits before taxes and total (negative) changes in equilization provisions
can be adopted from Table 79 in the same reports. Positions 1 to 5 are specified in TEUR, position 6 as ratio of π̂∗.

2015 2014 2013 2012 2011
Acquisition costs and administrative expenses 1,319,298 1,269,663 1,228,359 1,249,044 1,091,725
Profits before taxes 144,939 149,621 124,320 147,131 113,922
Changes in equilization provisions 16,801 39,575 -10,518 51,079 -21,142
Gross technical result 31,600 -22,946 7,513 136,730 112,233
Net technical result 17,203 -13,270 16,835 115,732 103,640
Value added defense 1,495,435 1,449,183 1,332,838 1,468,251 1,193,099

Table 5.20: Computation of value added defense in TEUR.
All quantities except net technical result are computed using Table 5.21 and π∗ given in Table 5.19. Net technical
result is calculated by multiplying the corresponding quantities in Table 5.19.

2015 2014 2013 2012 2011 Mean
Acquisition costs and administrative expenses 33.40 33.20 32.70 33.80 32.10
Profits before taxes 3.67 3.91 3.31 3.98 3.35
Changes in equilization provisions 0.43 1.03 -0.28 1.38 -0.62
Gross technical result 0.80 -0.60 0.20 3.70 3.30
Net technical result 0.44 -0.35 0.45 3.13 3.05
Value added defense 37.86 37.89 35.48 39.73 35.08 37.21

Table 5.21: Computation of value added defense as ratio of earned gross premium π∗.
Acquisition costs and administrative expenses as well as gross technical results are given in Table 541 of the cor-
responding annual report of BaFin (2011-2015). Profits before taxes and changes in equilization provisions are
calculated by using total values in Table 5.19. Net technical results are based on the absolute values in Table 5.20
and π∗ given in Table 5.19.
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Fire

2015 2014 2013 2012 2011
Total gross premium earned π 69,448,394 66,146,203 64,535,515 62,102,602 59,310,517
Gross premium earned fire π∗ 2,150,739 1,888,463 1,840,158 1,736,250 1,763,792
Net premium earned fire π̂∗ 1,131,264 1,091,608 1,050,167 1,048,086 1,064,826
Total profits before taxes 2,548,300 2,587,900 2,135,800 2,472,600 1,986,700
Total changes in equilization provisions 295,400 684,500 -180,700 858,400 -368,700
Net technical result fire -13.30 -7.50 -4.20 -10.20 -7.50

Table 5.22: Needed data for computation of value added fire.
Total gross premium earned (direct business), gross premium earned fire (direct business), net premium earned fire
(direct business) and net technical result fire are given in Table 541 of the corresponding annual report of BaFin
(2011-2015). As above, total profits before taxes and total (negative) changes in equilization provisions can be
adopted from Table 79 in the same reports. Positions 1 to 5 are specified in TEUR, position 6 as ratio of π̂∗.

2015 2014 2013 2012 2011
Acquisition costs and administrative expenses 615,111 523,104 506,043 503,513 502,681
Profits before taxes 78,918 73,884 60,900 69,128 59,081
Changes in equilization provisions 9,148 19,542 -5,152 23,999 -10,964
Gross technical result -204,320 -18,885 58,885 -83,340 -15,874
Net technical result -150,458 -81,871 -44,107 -106,905 -79,862
Value added fire 649,315 679,517 664,783 620,205 614,785

Table 5.23: Computation of value added fire in TEUR.
All quantities except net technical result are computed using Table 5.24 and π∗ given in Table 5.22. Net technical
result is calculated by multiplying the corresponding quantities in Table 5.22.

2015 2014 2013 2012 2011 Mean
Acquisition costs and administrative expenses 28.60 27.70 27.50 29.00 28.50
Profits before taxes 3.67 3.91 3.31 3.98 3.35
Changes in equilization provisions 0.43 1.03 -0.28 1.38 -0.62
Gross technical result -9.50 -1.00 3.20 -4.80 -0.90
Net technical result -7.00 -4.34 -2.40 -6.16 -4.53
Value added fire 30.19 35.98 36.13 35.72 34.86 34.58

Table 5.24: Computation of value added fire as ratio of earned gross premium π∗.
Acquisition costs and administrative expenses as well as gross technical results are given in Table 541 of the cor-
responding annual report of BaFin (2011-2015). Profits before taxes and changes in equilization provisions are
calculated by using total values in Table 5.22. Net technical results are based on the absolute values in Table 5.23
and π∗ given in Table 5.22.
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Household

2015 2014 2013 2012 2011
Total gross premium earned π 69,448,394 66,146,203 64,535,515 62,102,602 59,310,517
Gross premium earned househ. π∗ 2,814,327 2,742,306 2,683,368 2,622,915 2,578,722
Net premium earned househ. π̂∗ 2,426,927 2,370,466 2,434,656 2,375,543 2,330,813
Total profits before taxes 2,548,300 2,587,900 2,135,800 2,472,600 1,986,700
Total changes in equilization provisions 295,400 684,500 -180,700 858,400 -368,700
Net technical result household 15.30 12.30 14.40 14.70 16.30

Table 5.25: Needed data for computation of value added household.
Total gross premium earned (direct business), gross premium earned household (direct business), net premium
earned household (direct business) and net technical result household are given in Table 541 of the corresponding
annual report of BaFin (2011-2015). As above, total profits before taxes and total (negative) changes in equilization
provisions can be adopted from Table 79 in the same reports. Positions 1 to 5 are specified in TEUR, position 6 as
ratio of π̂∗.

2015 2014 2013 2012 2011
Acquisition costs and administrative expenses 982,200 959,807 936,495 925,889 902,553
Profits before taxes 103,267 107,290 88,806 104,431 86,378
Changes in equilization provisions 11,971 28,378 -7,513 36,255 -16,030
Gross technical result 484,064 394,892 402,505 445,896 477,064
Net technical result 371,320 291,567 350,590 349,205 379,923
Value added household 1,210,183 1,198,800 1,069,703 1,163265 1,070,042

Table 5.26: Computation of value added household in TEUR.
All quantities except net technical result are computed using Table 5.27 and π∗ given in Table 5.25. Net technical
result is calculated by multiplying the corresponding quantities in Table 5.25.

2015 2014 2013 2012 2011 Mean
Acquisition costs and administrative expenses 34.90 35.00 34.90 35.30 35.00
Profits before taxes 3.67 3.91 3.31 3.98 3.35
Changes in equilization provisions 0.43 1.03 -0.28 1.38 -0.62
Gross technical result 17.20 14.40 15.00 17.00 18.50
Net technical result 13.19 10.63 13.07 13.31 14.73
Value added household 43.00 43.72 39.86 44.35 41.50 42.49

Table 5.27: Computation of value added household as ratio of earned gross premium π∗.
Acquisition costs and administrative expenses as well as gross technical results are given in Table 541 of the cor-
responding annual report of BaFin (2011-2015). Profits before taxes and changes in equilization provisions are
calculated by using total values in Table 5.25. Net technical results are based on the absolute values in Table 5.26
and π∗ given in Table 5.25.
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Residential Building (ResBui)

2015 2014 2013 2012 2011
Total gross premium earned π 69,448,394 66,146,203 64,535,515 62,102,602 59,310,517
Gross premium earned ResBui π∗ 6,144,732 5,782,479 5,388,303 5,033,876 4,764,973
Net premium earned ResBui π̂∗ 4,702,787 4,425,298 4,329,537 4,064,797 3,834,273
Total profits before taxes 2,548,300 2,587,900 2,135,800 2,472,600 1,986,700
Total changes in equilization provisions 295,400 684,500 -180,700 858,400 -368,700
Net technical result residential building -9.40 -8.30 -22.20 -12.50 -14.40

Table 5.28: Needed data for computation of value added residential building.
Total gross premium earned (direct business), gross premium earned residential building (direct business), net
premium earned residential building (direct business) and net technical result residential building are given in Table
541 of the corresponding annual report of BaFin (2011-2015). As above, total profits before taxes and total (negative)
changes in equilization provisions can be adopted from Table 79 in the same reports. Positions 1 to 5 are specified
in TEUR, position 6 as ratio of π̂∗.

2015 2014 2013 2012 2011
Acquisition costs and administrative expenses 1,720,525 1,624,877 1,530,278 1,424,587 1,362,782
Profits before taxes 225,471 226,233 178,326 200,423 159,610
Changes in equilization provisions 26,137 59,839 -15,087 69,580 -29,621
Gross technical result -147,474 -138,779 -1,929,012 -241,626 -385,963
Net technical result -442,062 -367,300 -961,157 -508,100 -552,135
Value added residential building 2,266,721 2,139,469 725,661 1,961,063 1,658,944

Table 5.29: Computation of value added residential building in TEUR.
All quantities except net technical result are computed using Table 5.30 and π∗ given in Table 5.28. Net technical
result is calculated by multiplying the corresponding quantities in Table 5.28.

2015 2014 2013 2012 2011 Mean
Acquisition costs and administrative expenses 28.00 28.10 28.40 28.30 28.60
Profits before taxes 3.67 3.91 3.31 3.98 3.35
Changes in equilization provisions 0.43 1.03 -0.28 1.38 -0.62
Gross technical result -2.40 -2.40 -35.80 -4.80 -8.10
Net technical result -7.19 -6.35 -17.84 -10.09 -11.59
Value added residential building 36.89 37.00 13.47 38.96 34.82 32.23

Table 5.30: Computation of value added residential building as ratio of earned gross premium π∗.
Acquisition costs and administrative expenses as well as gross technical results are given in Table 541 of the cor-
responding annual report of BaFin (2011-2015). Profits before taxes and changes in equilization provisions are
calculated by using total values in Table 5.28. Net technical results are based on the absolute values in Table 5.29
and π∗ given in Table 5.28.
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Credit and Guarantee (CreGua)

2015 2014 2013 2012 2011
Total gross premium earned π 69,448,394 66,146,203 64,535,515 62,102,602 59,310,517
Gross premium earned CreGua π∗ 450,905 415,173 988,984 958,490 1,235,832
Net premium earned CreGua π̂∗ 429,550 403,996 585,225 560,561 845,929
Total profits before taxes 2,548,300 2,587,900 2,135,800 2,472,600 1,986,700
Total changes in equilization provisions 295,400 684,500 -180,700 858,400 -368,700
Net technical result credit and guarantee 32.40 29.10 20.20 23.00 29.20

Table 5.31: Needed data for computation of value added credit and guarantee.
Total gross premium earned (direct business), gross premium earned credit and guarantee (direct business), net
premium earned credit and guarantee (direct business) and net technical result credit and guarantee are given in
Table 541 of the corresponding annual report of BaFin (2011-2015). As above, total profits before taxes and total
(negative) changes in equilization provisions can be adopted from Table 79 in the same reports. Positions 1 to 5 are
specified in TEUR, position 6 as ratio of π̂∗.

2015 2014 2013 2012 2011
Acquisition costs and administrative expenses 132,115 119,155 273,949 272,211 359,627
Profits before taxes 16,545 16,243 32,730 38,162 41,396
Changes in equilization provisions 1,918 4,296 -2,769 13,249 -7,682
Gross technical result 124,450 126,213 206,698 150,483 411,532
Net technical result 139,174 117,563 118,215 128,929 247,011
Value added credit and guarantee 135,854 148,344 392,392 345,176 557,862

Table 5.32: Computation of value added credit and guarantee in TEUR.
All quantities except net technical result are computed using Table 5.33 and π∗ given in Table 5.31. Net technical
result is calculated by multiplying the corresponding quantities in Table 5.31.

2015 2014 2013 2012 2011 Mean
Acquisition costs and administrative expenses 29.30 28.70 27.70 28.40 29.10
Profits before taxes 3.67 3.91 3.31 3.98 3.35
Changes in equilization provisions 0.43 1.03 -0.28 1.38 -0.62
Gross technical result 27.60 30.40 20.90 15.70 33.30
Net technical result 30.87 28.32 11.95 13.45 19.99
Value added credit and guarantee 30.13 35.73 39.68 36.01 45.14 37.34

Table 5.33: Computation of value added credit and guarantee as ratio of earned gross premium π∗.
Acquisition costs and administrative expenses as well as gross technical results are given in Table 541 of the cor-
responding annual report of BaFin (2011-2015). Profits before taxes and changes in equilization provisions are
calculated by using total values in Table 5.31. Net technical results are based on the absolute values in Table 5.32
and π∗ given in Table 5.31.

Note: When data were available from different BaFin-reports, we have always chosen
the most current data source. Whenever possible, we used data from BaFin (2011-2015),
Issue 2015, for the years 2013-2015, BaFin (2011-2015), Issue 2014, for the year 2012
and BaFin (2011-2015), Issue 2013, for the year 2011. This refers to Table 540 in the
corresponding issues. For the year 2014, we had to rely on Table 80 instead of Table 79 in
BaFin (2011-2015), Issue 2014.
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6 | Market Consistent Embedded Value

A German version of the introductory part, Sections 6.1 & 6.2 was previously published in Der
Aktuar, p. 4-8, 2014, see Becker, Cottin, Fahrenwaldt, Hamm, Nörtemann & Weber (2014).

The main objective of the market consistent embedded value (MCEV) is to define
a methodologically sound, meaningful, comparable and consistent measurement of the
profitability of the total business in-force of an insurance company. The CFO Forum
(2009b), Principle 1, states that the "MCEV is a measure of the consolidated value of
shareholders’ interests in the covered business. [...]". This value serves as an important
indicator not only for the management of these insurance firms, but also for analysts,
investors and shareholders of the undertakings.

The measurement of the intrinsic value of an insurance company is not a trivial task.
Contracts are associated with expenses and gains at different points in time that are
usually stochastic. A measure of value attempts to summarize the inherent value in a single
number. Traditional accounting measures are not able to capture how the two dimensions
randomness and time are intertwined. As a consequence, they are largely useless for the
company’s management, investors and capital providers.

The MCEV was suggested in 2009, see CFO Forum (2009b). Its computation is based
on stochastic balance sheet projections. The random evolutions of the balance sheet po-
sitions depend on the random evolution of financial and insurance risk as well as the
random behavior of policyholders and on the management policies of the company. The
computation of the MCEV requires an asset-liability management model that probabilis-
tically models both the asset and the liability side. Actuarial and financial valuation are
both required for the analysis. In case of perfect pooling, the value of insurance liabilities
could be computed by a law of large numbers under the statistical measure. But pooling
is never perfect and stochastic fluctuations remain. At the same time, systematic risk such
as financial risk or stochastic mortality influences both the liability and the asset side of
the company’s balance sheet. Two complementary methodologies need to be applied to
value these risks. The hedgeable part can be priced under a martingale measure using
risk-neutral valuation. The non-hedgeable part contributes to the capital requirement of
the firm. The capital requirement is computed on the basis of a monetary risk measure
that encodes risk tolerance governing the firm, typically under the statistical measure.
This risk measure is either specified by a regulatory authority or by policies of the com-
pany. Providing capital is associated with a cost, the cost of capital, that is charged for

153
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non-hedgeable risks.

Literature. A preliminary measure of value in the industry is the Embedded Value, now
known as classical or traditional Embedded Value (TEV), that is, for example, described in
DAV (2005). The TEV is not yet capable of fully integrating the dimensions time and value,
as it is based on deterministic computations. A Present Value of Future Profits (PVFP) is
calculated by means of a single deterministic projection of future cash flows. Discounting
is done according to the risk discount rate, which is given by the sum of a risk-free interest
rate and a company specific risk loading. The TEV has multiple obvious drawbacks: First,
stochastic fluctuations of future cash flows, e.g., caused by financial markets, systematic
insurance risk or the policyholders’ behavior, are not included. Risk analysis is clumsy
and naïve. Second, risk loadings are company specific, not standardized, thus arbitrary
to a large extent. Third, universal reporting standards cannot easily be developed on the
basis of a deficient methodology such as TEV. Reported values for different companies
can hardly be compared to each other in a meaningful manner.

Realizing these challenges, the CFO Forum – a discussion group of Chief Financial
Officers of large European insurance companies – proposed the European Embedded Value
(EEV) to facilitate the transparent and comparable valuation of insurance companies, see
CFO Forum (2004b) and CFO Forum (2004a). These ideas were further developed and led
to the definition of the Market Consistent Embedded Value (MCEV). The framework for
the computation of the MCEV in life insurance companies is organized in 17 principles
and 91 guidances in the document "Market Consistent Embedded Value Principles", see
CFO Forum (2009b), which was published in October 2009. These basic principles are
listed in Table 6.1. The additional document "Market Consistent Embedded Value – Basis
for Conclusions", see CFO Forum (2009a), explains the calculation in detail and consists
of 198 comments. Actuarial societies published more detailed methodologies, see, e.g., the
following publications by Deutsche Aktuarvereinigung (DAV): "Stochastischer Embedded
Value", DAV (2006), "Best Estimate in der Lebensversicherung", DAV (2010), and "Market
Consistent Embedded Value", DAV (2011).

No. Heading Contents
P1 Introduction Definition MCEV, Group MCEV,

MCEV-Methodology
P2 Coverage Area of Application, Definition of Covered Business
P3 MCEV Definitions Components of MCEV
P4 Free Surplus Definition of Free Surplus
P5 Required Capital Definition of Required Capital
P6 Value of In-Force Components of Value of In-Force Covered Business,

Covered Business Comment on Present Value of Future Profits
P7 Financial Options and Computation of the Time Value of Financial

Guarantees Options and Guarantees
P8 Frictional Costs of Definition of Frictional Costs of Required Capital

Required Capital
P9 Cost of Residual Non- Definition and Computation of Costs of Residual
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Hedgeable Risks Non-Hedgeable Risks
P10 New Business and Definition of New Business, Allowance of Renewals,

Renewals Additional Value to Shareholders
P11 Assessment of Appropriate Recommended Practice on Appropriate Assumptions

Non-Economic for Future Experience; Demographic Assumptions,
Projection Assumptions Expenses, Taxation and Legislation

P12 Economic Assumptions Recommended Practice on Appropriate Economic
Assumptions; Comment on Inflation and Smoothing

P13 Investment Returns and Recommended Practice on Capital Market
Discount Rates Consistent Discount Rates

P14 Reference Rates Recommended Practice on Reference Rates
as Proxy for the Risk-Free Rate

P15 Stochastic Models Recommended Practice on Stochastic Models
and their Parameters

P16 Participating Business Recommended Practice on Participating Business
P17 Disclosure Reporting Requirements

Table 6.1: Summary of MCEV-Principles.

There are several previous scientific contributions on the MCEV that focus on vari-
ous important aspects of this valuation methodology. Diers, Eling, Kraus & Reuß (2012)
generalize the concept of the MCEV and apply it to non-life insurance business in or-
der to achieve comparability in performance measurement. Kraus (2013) shows that the
concepts of economic value added and MCEV can be linked under the residual income val-
uation theory which facilitates the consistent application of both at a corporate level. Graf,
Pricking, Schmidt & Zwiesler (2012) utilize Monte Carlo simulations in order to analyze
the time value of financial options and guarantees (TVOG) in private health insurance
business. They find that the impact of TVOG is significantly smaller than in the life in-
surance business. Sector-specific issues as well as their impact on the MCEV-computation
are qualitatively discussed in Schmidt (2012). Schmidt (2014) applies an adjusted version
of the asset-liability management (ALM) model introduced by Gerstner, Griebel, Holtz,
Goschnik & Haep (2008) to conduct a quantitative study of the MCEV in German pri-
vate health insurance. The focus is on the TVOG, and the author finds that its impact
on the MCEV is rather small. Bauer, Reuß & Singer (2012) present a technique for the
numerical implementation of the MCEV which is based on nested simulations. Reuß, Ruß
& Wieland (2015) focus on the impact of product design on the insurer’s capital efficiency
in a market consistent valuation model. They introduce alternative products to the tra-
ditional participating life insurance contracts and illustrate how these can reduce the risk
and increase the profitability of the insurer. The cost of capital approach for the allowance
of non-hedgeable risk is considered in Waszink (2013). In particular, the author focuses
on the discount rate suitable for determining the risk margin.

This chapter extends a preliminary analysis of the MCEV in Becker et al. (2014). The
key contribution is to explain how actuarial and financial valuation are intertwined in
the computation of the MCEV and how non-hedgeable risks are valued on the basis of



156 CHAPTER 6. MARKET CONSISTENT EMBEDDED VALUE

monetary risk measures. We explicitly analyze randomness on both sides of the balance
sheet, i.e., the asset and the liability side. Our case studies include the impact of several
factors (e.g., interest rates, stochastic mortality, management decisions etc.) on the MCEV.
In order to keep our ALM-analysis tractable, we use a very stylized model. Extensions
could be developed along the lines of Gerstner et al. (2008) and Schmidt (2014).

Outline. The chapter is organized as follows: In Section 6.1, we define the MCEV and
provide an overview of its components. In Section 6.2, we discuss in detail the components
of the MCEV. We explain how actuarial and financial valuation methods are intertwined.
The computation of the MCEV is presented in Section 6.3. While Section 6.3.1 introduces
our asset-liability management model, Section 6.3.2 illustrates the methodology in several
case studies. Section 6.4 concludes with a summary and short discussion.

6.1 | The MCEV and its Components

We begin with a brief exposition of the MCEV and its components.1 According to Principle
3 in CFO Forum (2009b), the "MCEV represents the present value of shareholders’ interests
in the earnings distributable from assets allocated to the covered business after sufficient
allowance for the aggregate risks in the covered business. The allowance for risk should
be calibrated to match the market price for risk where reliably observable. The MCEV
consists of the following components:

• Free surplus allocated to the covered business,

• Required capital, and

• Value of in-force covered business.

The value of future new business is excluded from the MCEV."

Following this definition, the MCEV is decomposed as the sum of three components:
Free Surplus (FS), Required Capital (ReC) and Value of In-Force Covered Business (VIF):

MCEV = FS + ReC + VIF. (6.1)

The sum of FS and ReC is called Shareholder Net Worth, cf. DAV (2011), or Net Asset
Value (NAV), i.e.,

NAV = FS + ReC. (6.2)

The NAV is part of the balance sheet of an insurance company and corresponds to the
market value at valuation date of those assets that are not required to cover the technical
insurance obligations. The FS is that part of the NAV "[...] allocated to, but not required to
support, the in-force covered business at the valuation date", see Principle 4 in CFO Forum
(2009b). Hence, the FS can be distributed to shareholders without restrictions. The ReC,
however, is that part of the NAV, whose distribution to shareholders is restricted. There

1Similar introductions to the MCEV can also be found in Becker et al. (2014) and Schmidt (2012).
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are several reasons for companies to hold additional capital not backing the liabilities:
regulatory requirements such as solvency requirements according to Solvency II, rating
purposes, reputation, etc. Consequently, the ReC is given by (see DAV (2011), p. 5)

ReC = max {regulatory capital requirement, in-house capital requirement} .

The NAV can be computed from the balance sheet as a residual quantity. The asset
side of the balance sheet can be evaluated by financial methods. Its total value equals the
total liabilities on the balance sheet. The NAV is the difference between total liabilities
and the liabilities that cover the technical insurance obligations. Those could, for example,
consist of a reserve and a bonus account that are calculated according to prudent actuarial
valuation methods.

Although the NAV corresponds to the market value of those assets that are not required
to cover the technical insurance obligations, it is not equal to the MCEV. The reason is
that the estimates of the reserves are prudent. In many cases, they are larger than the
insurance payments that will be realized in the future. This leads to additional future
profits of the insurance companies. The value of these profits is the VIF which is not yet
included in NAV.2 As a consequence, the MCEV equals the sum of NAV and VIF, see
Equations (6.1) & (6.2).

How is the VIF computed? As explained, the full actuarial reserves will not be needed
in all scenarios. In order to gauge these random gains of the shareholders, a stochastic
balance sheet projection is needed. Over any fixed time period, gross profits are reflected
as the incremental net asset value. Using a suitable martingale measure, a value of the
stream of these profits can be computed. This quantity is called the Present Value of Future
Profits (PVFP(stoch)). In order to obtain the VIF, two positions are subtracted from the
PVFP(stoch), the Frictional Costs of Required Capital (FC) and the Cost of Residual Non-
Hedgeable Risks (CRNHR). FC refers, for example, to taxation and investment costs on
the assets backing the ReC. CRNHR are discussed in Principle 9 in CFO Forum (2009b):
"An allowance should be made for the cost of non-hedgeable risks not already allowed for
in [...] the PVFP. This allowance should include the impact of non-hedgeable non-financial
risks and non-hedgeable financial risks. [...]." Such risks are, for example, mortality risk,
operational risk, lapse risk, etc.

The cited definition of the CRNHR is vague, and one key insight of this chapter is
how it can be made precise. Our key idea is to compute the PVFP(stoch) under a specific
pricing measure. The CRNHR is a value adjustment that reflects the particular structure
of the pricing measure. The chosen pricing measure prices replicable risks correctly. But
we assume on purpose that it does not add any risk premium to non-hedgeable risks,
see Section 6.2. Non-hedgeable risks thus require an additional value adjustment which
is reflected by the CRNHR. In this chapter, we suggest and explain an approach how

2In Section 6.2 we explain the difference of financial and actuarial valuation in detail. Section 6.3
includes a detailed illustration of a company’s balance sheet and the valuation of its positions. Section 6.2
focuses on the computation of the VIF.
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CRNHR could be computed. Finally, we obtain the following equation for the VIF:

VIF = PVFP(stoch)− FC− CRNHR. (6.3)

The computation of PVFP(stoch) is based on stochastic balance sheet projections. This
method needs Monte Carlo simulations which are computationally expensive. Historically,
deterministic methods were used in actuarial mathematics. In this spirit, a simpler, but
crude version of PVFP is PVFP(CE). This quantity is obtained from a single deterministic
scenario: the “certainty equivalent” (CE). The CE-scenario is constructed on the basis
of best estimate assumptions. Stochastic fluctuations are not included – implying that
PVFP(CE) and PVFP(stoch) typically do not coincide. Their difference is called the
Time Value of Financial Options and Guarantees (TVOG)

TVOG = PVFP(CE)− PVFP(stoch). (6.4)

It can be interpreted as a quantitative measure of the stochastic fluctuations that are ne-
glected by the PVFP(CE). Random fluctuations of insurance liabilities are, for example,
due to imperfect pooling, mortality risk, surrenders, embedded options, dynamic agree-
ments, etc. This leads to an alternative representation of VIF:

VIF = PVFP(CE)− TVOG− FC− CRNHR.

Figure 6.1 illustrates the identities between the various quantities that were introduced.

TVOG

PVFP(stoch)

NAV NAV

PVFP(CE)

TVOG
CRNHR

FC

VIF

ReC
FS

MCEV

Figure 6.1: MCEV and its components.

6.2 | Valuation Methods

In this section, we explain the computation of the MCEV and its components in more
detail. In particular, we discuss the interplay of actuarial and financial valuation. We
suggest a unified framework that shows how a martingale measure and the statistical
measure are combined – the former being used for the valuation of replicable risks, and
the latter for the computation of the cost of capital of non-hedgeable risks. Our definition
of the cost of capital builds on monetary risk measures.

The MCEV is the sum of NAV and VIF. The NAV is easily computed as the difference
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of assets and reserves. Reserves are prudently calculated and embed potential for future
cash flows to the shareholders. The key task in the MCEV-computation consists of as-
signing a value to these cash flows, the VIF. The valuation of cash flows intertwines risk
pooling and arbitrage-free pricing.

We will work within the following abstract setting, see Wüthrich, Bühlmann & Furrer
(2010), Section 2. Consider a discrete time model on a probability space (Ω,H, P ) with
dates t = 0, 1, . . . , T and final time horizon T ∈ N. The information flow is captured by
the filtration H = (Ht)t=0,1,...,T , i.e.,

{∅,Ω} = H0 ⊂ H1 ⊂ . . . ⊂ HT = H.

The primary products available in the financial market are adapted stochastic processes(
S0, S1, . . . , SN

)
, N ∈ N. The product S0

t = (1 + r)t, t = 0, 1, . . . , T, is a deterministic
savings account and will be chosen as numéraire.
We assume that the filtered probability space possesses a product structure, i.e.,

Ω = Ω1 × Ω2, H = H1 ⊗H2, P = P 1 ⊗ P 2.

The probability measures P 1 : H1 → [0, 1] and P 2 : H2 → [0, 1] denote the statistical mea-
sures on the σ-algebras H1 and H2, respectively. The first component captures replicable,
the second non-replicable risks. We denote by F = (Ft)t=0,1,...,T the filtration of repli-
cable risks and by T = (Tt)t=0,1,...,T the filtration of non-replicable risks. The σ-algebra
Ht = σ(Ft ∪ Tt) contains all information at time t. This includes, e.g., information on the
financial market, demographic evolution, economic events, policyholder behavior, etc. We
assume that up to nullsets

Ft = σ
((
H1 ⊗ {∅,Ω2}

)
∩Ht

)
, Tt = σ

((
{∅,Ω1} ⊗H2

)
∩Ht

)
t = 0, 1, . . . , T.

In particular,
(
S0, S1, . . . , SN

)
are adapted to F.

We suggest the following valuation approach: The value of replicable risks is the cost
of their perfect replication. In a first step, non-replicable risks are simply priced according
to best estimates. This leads to a pricing measure with the following structure

Q = Q1 ⊗ P 2,

where Q1 can be interpreted as a martingale measure on the first component. To be
more precise, the processes S1

S0 ,
S2

S0 , . . . ,
SN

S0 are Q-martingales. In a second step, a value
adjustment for the non-replicable risk is computed using monetary risk measures.

Present Value of Future Profits. The present value of future profits, PVFP(stoch)t,
computes the value of future profits at time t with respect to the martingale measure Q,
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i.e.,

PVFP(stoch)t = EQ

[
T∑

s=t+1

1
(1 + r)s−t · Profits

∣∣∣∣ Ht
]
. (6.5)

Profits are defined as the one-year increments of NAV adjusted for interest:

Profitt = NAVt − (1 + r) ·NAVt−1.

Here, r denotes the interest rate. Due to our choice of Q, the valuation of replicable risks
is market-consistent, while best estimates are taken for all residual risks. Residual risks
that lead to future annual profits are thus priced too optimistically, without including
a proper risk premium. A valuation adjustment is necessary, called the costs of residual
non-hedgeable risks CRNHR.

Costs of Residual Non-Hedgeable Risks. Risks that cannot fully be hedged include,
for example, fluctuations due to imperfect pooling, mortality risk, surrenders, embedded
options, dynamic agreements, etc. As long as these risks can be quantitatively modeled and
embedded into an economic scenario generator, the following methodology is applicable
to compute a valuation adjustment, the CRNHR:

1. Determine the non-hedgeable fluctuations around PVFP(stoch), i.e.,

Zt − PVFP(stoch)t

with

Zt = EQ

[
T∑

s=t+1

1
(1 + r)s−t · Profits

∣∣∣∣Ht, TT
]
. (6.6)

2. Compute a capital buffer for the downside risk. For this purpose, an Ht-conditional
risk measure ρt is applied to the fluctuations:

ρt (Zt − PVFP(stoch)t) .

Then, the risk ρt (Zt − PVFP(stoch)t) is an Ht-measurable random variable. For a
brief introduction to risk measures and their extension to conditional, resp. dynamic,
risk measures, we refer to Section 6.5.

3. Finally, the CRNHRt is computed by multiplying the capital buffer with a cost of
capital rate ξ ∈ [0, 1], thus

CRNHRt = ξ · ρt (Zt − PVFP(stoch)t) . (6.7)

This quantity can be considered as risk premium for non-hedgeable risks.

For positively homogeneous risk measures, we obtain the following representation of CRNHR.
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Proposition 6.2.1. Let ρt be a positively homogeneous conditional risk measure with
ρt(0) = 0, ξ ∈ [0, 1], then

CRNHRt = ξ · 1
(1 + r)T−t · ρt

(
EQ

[
NAVT

∣∣∣∣Ht, TT ]− EQ
[
NAVT

∣∣∣∣Ht]) ,
for all 0 ≤ t ≤ T − 1 and CRNHRT = 0.

Proof. By Equations (6.5) & (6.6), we obtain

PVFP(stoch)t = 1
(1 + r)T−t · EQ

[
NAVT

∣∣∣∣Ht]−NAVt

and
Zt = 1

(1 + r)T−t · EQ
[
NAVT

∣∣∣∣Ht, TT ]−NAVt,

for 0 ≤ t ≤ T − 1 and PVFP(stoch)T = ZT = 0. The positive homogeneity of ρt leads to

CRNHRt = ξ · ρt (Zt − PVFP(stoch)t)

= ξ · 1
(1 + r)T−t · ρt

(
EQ

[
NAVT

∣∣∣∣Ht, TT ]− EQ
[
NAVT

∣∣∣∣Ht]) .

Frictional Costs of Required Capital. As mentioned in Section 6.1, FC corresponds
to those expenses resulting from ReC. These are, for example, costs of capital investments
or taxes on profits due to assets backing the ReC. The FC can be interpreted as oppor-
tunity costs resulting from the investment of equity capital into the insurance company
rather than a direct investment in the capital market, see DAV (2011) and Christiansen
& Niemeyer (2014) for further details.

Required Capital and Free Surplus. The segmentation of NAV into ReC and FS, see
Eq. (6.2), allows for different approaches. In-house capital requirements can be based on
requirements provided by regulators, rating agencies, investors or the management of the
company. For example, the risk capital (RC) can be computed by applying a conditional
risk measure to the random change in the MCEV over a one year time horizon with respect
to the available information, i.e.,

RCt = ρt (MCEVt+1 −MCEVt) , t = 0, 1, . . . , T − 1.

Since VIF represents the value of the business in force from the perspective of equity
investors, it can be subsidized with the RC. Hence, ReC is given by

ReCt = max {SCRt,max {0,RCt −VIFt}} ,

where SCR denotes the solvency capital requirement according to regulatory requirements,
see, e.g., Chapters 3 & 4 for further details on the SCR. Afterwards, FS can be computed
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as residual, i.e.,
FSt = NAVt − ReCt.

6.3 | An Application to Asset-Liability Management

In this section, we illustrate the methodology in the context of a stylized asset-liability
management model. We analyze the impact of different investment strategies, stochastic
mortality and interest rates on the evolution of the stochastic balance sheet and the MCEV.

6.3.1 | The Model

Asset-liability management controls insurance firms on the basis of the random future
evolution of assets and liabilities, see Zwiesler (2004). Our model of the stochastic dynamics
of the balance sheet of an insurance firm is described in this section. A snapshot of a
simplified balance sheet is displayed in Table 6.2. The sum of the assets equals the sum of
the liabilities: S̃t + B̃t = NAVt + V̄t + BAt. Setting At := S̃t + B̃t and Lt := V̄t + BAt, we
obtain NAVt = At − Lt.

ASSETS LIABILITIES

Stocks S̃t Net Asset Value NAVt
Bonds B̃t Actuarial Reserve V̄t

Bonus Account BAt

Table 6.2: Simplified balance sheet of an insurance firm.

Asset Model. We suppose that there are two primary products available in the financial
market, i.e., N = 1 and we set (Bt, St) = (S0

t , S
1
t ), t = 0, 1, . . . , T . The product B is a

risk-free bond and S is a risky stock. In the time period (t− 1, t], the insurance company
holds nBt−1 bonds and nSt−1 shares of the stock. At time t, the value of the bond position
is B̃t = nBt−1 · Bt and the value of the stock position is S̃t = nSt−1 · St. Gains and losses
on the asset side are due to price changes of the bond and the stock and denoted by

∆B̃t = B̃t − B̃t−1 and ∆S̃t = S̃t − S̃t−1,

respectively. For simplicity, we consider a constant interest rate r, i.e., Bt = (1 + r) ·Bt−1,
t = 1, 2, . . . , T , with B0 = 1. A model for the stock price is described in Section 6.3.2.

Liability Model. We consider an insurance company selling pure endowments. The com-
putation of the actuarial reserve is based on prudent actuarial assumptions on the interest
rate and survival probabilities. These quantities will be denoted by r∗ and p∗, respectively.
We assume that survival probabilities may deviate from the actuarial assumptions. This
may lead to gains and losses.

We suppose that the technical assumptions are fixed and do not change when new
information becomes available. We use the actuarial standard notation, i.e., tp∗x for the
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technical probability of a person of age x to survive additional t years. Realized empirical
survival probabilities typically deviate from these values and may not be stationary. We
denote the time t-realized fractions of survival of persons of age x at time 0 by the Ht-
measurable random variable tpx. A stochastic mortality model is described in Section
6.3.2.

The actuarial reserve is determined as follows: We consider a pure endowment with
maturity T and single premium payment π in t = 0. Let X denote the sum insured, then
the single premium is given by

π = 1
(1 + r∗)T T p

∗
x ·X.

The first-order actuarial reserve at any time t, Vt, is determined by charging interest to
the value of the actuarial reserve at time t− 1:

Vt = (1 + r∗) · Vt−1, V0 = π.

However, the actual actuarial reserve at time t must be adjusted due to biometrical cor-
rections:

V̄t = tpx

tp
∗
x

· Vt = 1
(1 + r∗)T−t tpx T−tp

∗
x+t X, V̄0 = V0.

This is due to the fact that the realized probability of survival up to time t typically
deviates from the technical assumptions.

Like the asset side, the liability side generates gains and losses at each point in time.
These gains and losses are due to the evolution of the financial market or stochastic
mortality and are denoted by

∆V̄t = V̄t−1 − V̄t = (V̄t−1 − (1 + r∗)V̄t−1)︸ ︷︷ ︸
interest rate losses

+ ((1 + r∗)V̄t−1 − V̄t)︸ ︷︷ ︸
mortality gains/losses

.

We denote interest rate losses by ∆V̄ r
t := V̄t−1 − (1 + r∗)V̄t−1. These should be fully

captured by gains on the asset side. Observe that at this point ongoing low interest rates
in the financial market cause a crucial problem. Mortality gains/losses are denoted by
∆V̄ m

t := (1 + r∗)V̄t−1 − V̄t. They occur if the actuarial reserve at time t is not given by
simply paying interest on the reserve at time t− 1, since there have been deviations in the
in fact realized survival probabilities from the assumed actuarial survival probabilities. If
there are no deviations, ∆V̄ m

t = 0 and hence, there are neither gains nor losses.

Management Model. The evolution of the balance sheet depends on the action of the
management through time that we describe by management rules. We focus on investment
strategies and surplus distribution.

Investment Strategies:
The asset side of the balance sheet is the sum of the bond and stock holdings. The fraction
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invested in stocks at time t is denoted by αt ∈ [0, 1]. We consider two alternative investment
strategies.

1. Strategy A: Buy and hold.
Stocks and bonds are bought at time 0 and then held throughout. The number of
stocks thus equals

nSt = α0(NAV0 + V0)
S0

,

the number of bonds

nBt = (1− α0)(NAV0 + V0)
B0

= (1− α0)(NAV0 + V0),

noting B0 = 1.

2. Strategy B: Rearranging the portfolio according to a reserve rate.
The reserve rate at time t is defined by

εt = NAVt
V̄t + BAt

= NAVt
Lt

If εt differs from a given target reserve rate of the insurance company, εtarget ∈
(0, 1), investments are adjusted; see Gerstner et al. (2008) for a similar approach.
In addition, stock investments are bounded, i.e., αt ≤ αmax. With α0 ≤ αmax the
investment rule is given by

αt = min
{

max
{
α0 +

(
εt − εtarget

)
, 0
}
, αmax

}
, t ≥ 1.

The number of stocks at time t is nSt = αtAt
St

, the number of bonds nBt = (1−αt)At
Bt

.

Surplus Distribution Strategy:
Investment and biometric gains have to be split between the insurance company and the
policyholders. We assume that in each period a fraction β ∈ [0, 1] of investment gains
and a fraction γ ∈ [0, 1] of mortality gains is allocated to the shareholders, while the rest
is allocated to the bonus account of the policyholders. If the insurance company experi-
ences investment or biometric losses, the net asset value, i.e., the shareholders’ account,
is affected only.

The value of the bonus account at time t is denoted by BAt. The bonus account is not
adjusted for biometrical corrections; rather, it is charged interest by the actuarial interest
rate. Consequently, the costs of the insurer for the bonus account are given by

∆bt = BAt−1 − (1 + r∗)BAt−1.

The evolution of the bonus account is provided in Section 6.3.2.
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6.3.2 | Numerical Case Studies

In the current section, we compute the quantities introduced in Sections 6.1 & 6.2 in the
model defined in Section 6.3.1.

We consider a two period model, i.e., t = 0, 1, 2 and T = 2. The buyer of insurance
has to pay a single premium π, where we set the sum insured to X = 1, 000. Moreover,
we assume 1p

∗
x = 1, 1p

∗
x+1 = 0.9, i.e., T p∗x = 0.9 and death can occur in the second period

only. The capital buffer for CRNHR is computed by the risk measures value at risk and
average value at risk at level λ = 0.005, respectively, see Appendix A, Example A.0.3.
According to Allianz (2016), the cost of capital rate is set to ξ = 0.06.

At the beginning, 10% of the available capital is invested in stocks, i.e., α0 = 0.1, the
remaining 90% are invested in bonds. In our case studies, we analyze the two investment
strategies introduced in Section 6.3.1. To this end, we set αmax = 0.15 and εtarget = 0.12
in Strategy B. Moreover, we simulate both mortality gains and losses. In our setting, 90%
of positive capital market gains and 75% of positive biometric gains are credited to the
policyholder, whereas β = 10% and γ = 25% of these gains are invested in the net asset
value of the company. Losses are fully carried by the insurance firm. Hence, the evolution
of the net asset value is given by

NAVt = NAVt−1

+ 1{∆V̄t>0}[
1{∆S̃t+∆B̃t+∆bt>0}

(
NAVt−1

NAVt−1 + V̄t−1
· (∆S̃t + ∆B̃t + ∆bt)

+ β · V̄t−1

NAVt−1 + V̄t−1
· (∆S̃t + ∆B̃t + ∆bt) + γ ·∆V̄t

)

+ 1{∆S̃t+∆B̃t+∆bt≤0}

(
(∆S̃t + ∆B̃t + ∆bt) +γ ·∆V̄t

)]
+ 1{∆V̄t≤0}[

1{∆S̃t+∆B̃t+∆V̄ rt +∆bt>0}

(
NAVt−1

NAVt−1 + V̄t−1
· (∆S̃t + ∆B̃t + ∆V̄ r

t + ∆bt)

+ β · V̄t−1

NAVt−1 + V̄t−1
· (∆S̃t + ∆B̃t + ∆V̄ r

t + ∆bt) + ∆V̄ m
t

)

+ 1{∆S̃t+∆B̃t+∆V̄ rt +∆bt≤0}

(
∆S̃t + ∆B̃t + ∆V̄t + ∆bt

)]

Here, the indicator function 1{∆V̄t>0} decides whether there is a mortality gain or
not. If there is a mortality gain, the second indicator function 1{∆S̃t+∆B̃t+∆bt>0} decides
whether there are capital market gains or not. If there are additional capital market gains,
the fraction of the gains which results from the net asset value of the company as well as
the fraction β which results from the investment of the reserve remain within the company
and are added to the net asset value. Moreover, the fraction γ of the mortality gains is
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added. If there are mortality gains only, the company has to pay for the capital market
losses.

If there are mortality losses, the insurer has to compensate for those by reducing the
net asset value. Again, capital market gains are split as above, losses are completely taken
by the firm.
Accordingly, the evolution of the bonus account is given by

BAt = (1 + r∗) · BAt−1

+ 1{∆V̄t>0}[
1{∆S̃t+∆B̃t+∆bt>0}

(
(1− β) · V̄t−1

NAVt−1 + V̄t−1
· (∆S̃t + ∆B̃t + ∆bt) + (1− γ) ·∆V̄t

)

+ 1{∆S̃t+∆B̃t+∆bt≤0}

(
(1− γ) ·∆V̄t

)]
+ 1{∆V̄t≤0}[

1{∆S̃t+∆B̃t+∆V̄ rt +∆bt>0}

(
(1− β) · V̄t−1

NAVt−1 + V̄t−1
· (∆S̃t + ∆B̃t + ∆V̄ r

t + ∆bt)
)

+ 1{∆S̃t+∆B̃t+∆V̄ rt +∆bt≤0} · 0
]

with BA0 = 0.

As presented in Section 6.2, we denote by F = (Ft)t=0,1,...,T the filtration of replicable
(financial) risks and by T = (Tt)t=0,1,...,T the filtration of non-replicable risks (stochastic
mortality). The complete information flow is captured by the filtration H = (Ht)t=0,1,...,T ,
i.e.,

{∅,Ω} = H0 ⊂ H1 ⊂ . . . ⊂ HT = H.

Thus, the σ-algebra Ht = σ(Ft ∪ Tt) contains all information at time t. With respect to
Section 6.2, a complete scenario has the form ω =

(
ω1, ω2) ∈ Ω1 × Ω2 = Ω, where Ω1

represents the sample space of replicable financial risk of the stock evolution and Ω2 = [0, 1]
is the sample space covering non-replicable risk of stochastic frequency of mortality. Our
filtered probability space is given by

Ω = Ω1 × [0, 1], H = PΩ1 ⊗ B[0,1], P = P 1 ⊗ P 2,

where PΩ1 is the power set of Ω1 and B[0,1] denotes the Borel σ-algebra on the interval
[0, 1].

The evolution of the stock in our two period model is given by a possible upwards
movement u or downwards movement d per period. Hence, the associated sample space
adds up to

Ω1 = {uu, du, ud, dd}.
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The random evolution of the stock is illustrated in Figure 6.2.
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Figure 6.2: Stock evolution.

For the risk of stochastic mortality, the actual realized survival probability 1px+1 is
modeled by a random variable on the interval [0, 1]. For simplicity, we assume that the
random variable is Beta-distributed. For a Beta distribution with parameters a, b ≥ 1 and
density

fa,b(x) = 1
B(a, b) x

a−1(1− x)b−1 1[0,1](x), x ∈ R,

we use the notation Beta(a, b). Note that B(·, ·) denotes the Beta function given by
B(a, b) =

∫ 1
0 t

a−1(1− t)b−1 dt. For further simplicity, we assume that individuals can die
only a short time before t = 2, i.e., 1px = 1 = 1p

∗
x. However, we point out that any

stochastic mortality model can be included within our model framework.

In the following case studies, we compute PVFP(stoch)t according to Eq. (6.5). The
particular pricing measure is Q = Q1⊗P 2, where Q1 represents the martingale measure in
the pure financial market and P 2 represents the statistical measure in the pure stochastic
mortality model. In our case studies, Q1 varies with respect to the interest rate in the
financial market and P 2 is given by a Beta distribution, i.e., 1px+1 ∼ Beta(a, b). However,
in the computation of PVFP(stoch)t, 1px+1 is not random, but fixed to a best estimate
assumption by averaging. We set

p̄ := EP 2 [1px+1] .

Then, we compute
CRNHRt = ξ · ρt (Zt − PVFP(stoch)t)

according to Eq. (6.7), where by Eq. (6.6) it is

Zt = EQ

[
T∑

s=t+1

1
(1 + r)s−t · (NAVs − (1 + r)NAVs−1)

∣∣∣∣Ht, TT
]

the PVFP(stoch) without averaging over the non-hedgeable risks, i.e., 1px+1 ∼ Beta(a, b)
is random.
Based on these quantities, VIF and MCEV are easily computed by

VIFt = PVFP(stoch)t − CRNHRt − FCt,
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where we assume FCt = 0 for all 0 ≤ t ≤ T , and

MCEVt = NAVt + VIFt.

As illustrated in Section 6.2, we compute ReCt by

ReCt = max {SCRt,max {RCt −VIFt, 0}} ,

where SCRt = ρt (NAVt+1 − (1 + r)NAVt) and RCt = ρt (MCEVt+1 −MCEVt). Finally,
FSt is given by

FSt = NAVt − ReCt.

Our case studies are structured as follows: We consider three different scenarios in the
financial market:

• Zero interest rate scenario: The interest rate in the financial market as well as the
actuarial interest rate is zero, i.e., r = r∗ = 0.

• Low interest rate scenario: The interest rate in the financial market is lower than
the actuarial interest rate. We set r = 0.01 and r∗ = 0.02.

• High interest rate scenario: The interest rate in the financial market is higher than
the actuarial interest rate. We set r = 0.03 and r∗ = 0.02.

In each interest rate scenario, we compare the two investment strategies buy and hold
(Strategy A) vs. rearranging the portfolio (Strategy B). At the same time, we simulate
three mortality scenarios:

• Scenario 1: 1px+1 ∼ Beta(92.1842, 10.2427), i.e., p̄ = EP 2 [1px+1] = 0.9 = 1p
∗
x+1

• Scenario 2: 1px+1 ∼ Beta(138.2685, 30.3516), i.e., p̄ = EP 2 [1px+1] = 0.82 < 1p
∗
x+1

(mortality gains)

• Scenario 3: 1px+1 ∼ Beta(50.9071, 2.6793), i.e., p̄ = EP 2 [1px+1] = 0.95 > 1p
∗
x+1

(mortality losses)

The distributions are chosen such that the variance in all three cases is the same and
equal to 8.7017 · 10−4. The corresponding probability density functions are displayed in
Figure 6.3.

Moreover, we compare two regulatory systems. The first requires value at risk for risk
measurement whereas the second uses average value at risk for the computation of capital
requirements.

Zero Interest Rate Scenario. In the following example, we compute the stochastic
balance sheet as well as the economic quantities introduced in the previous sections in the
zero interest rate scenario for different strategies of the insurance company by additionally
considering the three mortality scenarios.
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Figure 6.3: Probability density functions of the considered Beta distributions.

Example 6.3.1. We assume NAV0 = 50 and compute V0 = π = 900. Since α0 = 0.1, we
obtain the following balance sheet:

t = 0:

ASSETS LIABILITIES
Strategy A B A B
Scenario 1 2 3 1 2 3 1 2 3 1 2 3
Stock 95 95 NAV 50 50
Bond 855 855 V 900 900

BA 0 0
Σ 950 Σ 950

Table 6.3: Stochastic balance sheet for t = 0.

In the first period, the stock can move upwards or downwards as given in Figure 6.2
and the company realizes gains or losses depending on the evolution of the capital market.
Due to our model framework (i.e., 1px = 1), there are no mortality gains or losses in the
first period. According to the 10/90 rule, positive capital market gains are split between
the insurer (NAV) and the policyholder (bonus account). Losses are fully carried by the
company and consequently, there is no capital on the bonus account.
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t = 1, ω = (u·, 1px):

ASSETS LIABILITIES
Strategy A B A B
Scenario 1 2 3 1 2 3 1 2 3 1 2 3
Stock 114 114 NAV 52.8 52.8
Bond 855 855 V̄ 900.0 900.0

BA 16.2 16.2
Σ 969 Σ 969

Table 6.4: Stochastic balance sheet for t = 1 when the stock goes up.

t = 1, ω = (d·, 1px):

ASSETS LIABILITIES
Strategy A B A B
Scenario 1 2 3 1 2 3 1 2 3 1 2 3
Stock 76 76 NAV 31 31
Bond 855 855 V̄ 900 900

BA 0 0
Σ 931 Σ 931

Table 6.5: Stochastic balance sheet for t = 1 when the stock goes down.

Note that until now, there is no difference in Strategy A and B, since the initial stock
investment for both strategies is given by α0 = 0.1. In Strategy A, this investment strategy
is maintained. But in Strategy B, the stock investment in the second period depends on the
reserve rate ε1. In both scenarios ω = (u·, 1px) and ω = (d·, 1px), it is ε1 < εtarget = 0.12
and hence the stock investment is reduced to α1 = 0.0376 in the upwards-scenario and to
α1 = 0.0144 in the downwards-scenario. Consequently, the balance sheet in t = 2 depends
on the investment strategy, the mortality scenario and the stock evolution.

Let us first consider the case where the stock moves up again. For both Strategies A
and B, Scenario 1 results in further capital market gains and neither gains nor losses from
biometric risks. Thus, the capital market gains are split as in t = 1 and the NAV as well as
the bonus account increase. In Strategy B, the increase is less strong since the capital gains
are lower due to the reduced stock investment. In Scenario 2, additional to capital market
gains, mortality gains are realized and thus the NAV as well as the bonus account increase
stronger compared to Scenario 1. This is true for both investment strategies. In the last
Scenario 3, there are mortality losses which have to be fully carried by the company. Since
mortality losses dominate capital market gains, the NAV is reduced. The bonus account is
not affected by these mortality losses and hence, it is increased by the capital market gains
and therefore coincides with the bonus account in Scenario 1. Again, this argumentation
is true for Strategy A and B.
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t = 2, ω = (uu, p̄):

ASSETS LIABILITIES
Strategy A B A B
Scenario 1 2 3 1 2 3 1 2 3 1 2 3
Stock 133 42.54 NAV 55.65 75.65 5.65 53.71 73.71 3.71
Bond 855 932.54 V̄ 900.00 820.00 950.00 900.00 820.00 950.00

BA 32.35 92.35 32.35 21.37 81.37 21.37
Σ 988 975.08 Σ 988 975.08

Table 6.6: Stochastic balance sheet for t = 2 when the stock goes up again.

In the second case, the stock moves downwards in t = 2 after it moved upwards in
t = 1. Hence, the company realizes losses in the capital market. These losses are fully
carried by the insurer and thus, in Scenario 1, the NAV decreases and the bonus account
remains the same due to zero interest rates. Now, in Strategy B, the NAV is reduced
less because of smaller capital losses due to the lower stock investment. In Scenario 2,
mortality gains dominate capital market losses and hence, both the NAV and the bonus
account increase. Scenario 3 leads to mortality losses and now the NAV becomes negative
due to losses in the capital market as well as in biometric risk. Again, the bonus account
is not affected.

t = 2, ω = (ud, p̄):

ASSETS LIABILITIES
Strategy A B A B
Scenario 1 2 3 1 2 3 1 2 3 1 2 3
Stock 95 30.38 NAV 33.8 53.8 -16.2 46.72 66.72 -3.28
Bond 855 932.54 V̄ 900.0 820.0 950.0 900.00 820.00 950.00

BA 16.2 76.2 16.2 16.20 76.20 16.20
Σ 950 962.92 Σ 950 962.92

Table 6.7: Stochastic balance sheet for t = 2 when the stock goes down.

In the third case, the stock moves upwards in t = 2 after it moved downwards in t = 1.
Hence, the company realizes gains in the capital market. The interpretation of the results
is along the lines of the interpretation given for Table 6.6.

t = 2, ω = (du, p̄):

ASSETS LIABILITIES
Strategy A B A B
Scenario 1 2 3 1 2 3 1 2 3 1 2 3
Stock 95 16.81 NAV 33.47 53.47 -16.53 31.44 51.44 -18.56
Bond 855 917.55 V̄ 900.00 820.00 950.00 900.00 820.00 950.00

BA 16.53 76.53 16.53 2.92 62.92 2.92
Σ 950 934.36 Σ 950 934.36

Table 6.8: Stochastic balance sheet for t = 2 when the stock goes up.

In the fourth case, the stock moves down again. Hence, the company realizes losses in
the capital market. The interpretation of the results is along the lines of the interpretation



172 CHAPTER 6. MARKET CONSISTENT EMBEDDED VALUE

given for Table 6.7.

t = 2, ω = (dd, p̄):

ASSETS LIABILITIES
Strategy A B A B
Scenario 1 2 3 1 2 3 1 2 3 1 2 3
Stock 57 10.09 NAV 12 32 -38 27.64 47.64 -22.36
Bond 855 917.55 V̄ 900 820 950 900.00 820.00 950.00

BA 0 60 0 0 60.00 0
Σ 912 927.64 Σ 912 927.64

Table 6.9: Stochastic balance sheet for t = 2 when the stock goes down again.

Now, let us compute the economic quantities decribed above in our model framework.
The results for Strategy A and B under Scenario 1, 2 and 3 are given in Table 6.10.
Results in brackets belong to an insurance company measuring risk by average value
at risk; otherwise value at risk is applied for the computation of capital requirements.
Whenever results for both risk measures are the same in all considered cases, we only
state them once.

Strategy/Scenario t = 0 t = 1, (u·, ·) t = 1, (d·, ·)

PVFP

A1 -16.2708 -8.0762 -8.2653
A2 3.7292 11.9238 11.7347
A3 -66.2708 -58.0762 -58.2653
B1 -10.1228 -2.5832 -1.4625
B2 9.8772 17.4168 18.5375
B3 -60.1228 -52.5832 -51.4625

CRNHR

A1 3.6679 (3.9441) 3.6679 (3.9441) 3.6679 (3.9441)
A2 1.0401 (1.2080) 1.0401 (1.2080) 1.0401 (1.2080)
A3 2.7094 (2.7895) 2.7094 (2.7895) 2.7094 (2.7895)
B1 3.5833 (3.9219) 3.5833 (3.9219) 3.5833 (3.9219)
B2 1.0187 (1.1484) 1.0187 (1.1484) 1.0187 (1.1484)
B3 2.6837 (2.7617) 2.6837 (2.7617) 2.6837 (2.7617)

VIF

A1 -19.9386 (-20.2149) -11.7441 (-12.0203) -11.9332 (-12.2094)
A2 2.6891 (2.5212) 10.8837 (10.7158) 10.6946 (10.5267)
A3 -68.9802 (-69.0603) -60.7856 (-60.8657) -60.9747 (-61.0548)
B1 -13.7061 (-14.0447) -6.1665 (-6.5051) -5.0458 (-5.3844)
B2 8.8585 (8.7288) 16.3981 (16.2684) 17.5188 (17.3891)
B3 -62.8065 (-62.8845) -55.2669 (-55.3449) -54.1462 (-54.2242)

MCEV

A1 30.0613 (29.7851) 41.0559 (40.7797) 19.0668 (18.7906)
A2 52.6891 (52.5212) 63.6837 (63.5158) 41.6946 (41.5267)
A3 -18.9802 (-19.0603) -7.9856 (-8.0657) -29.9747 (-30.0548)
B1 36.2939 (35.9553) 46.6335 (46.2949) 25.9542 (25.6156)
B2 58.8585 (58.7288) 69.1981 (69.0684) 48.5188 (48.3891)
B3 -12.8065 (-12.8845) -2.4669 (-2.5449) -23.1462 (-23.2242)

SCR

A1 19.00 19.00 19.00
A2 19.00 -1.00 -1.00
A3 19.00 69.00 69.00
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B1 19.00 6.0771 3.3619
B2 19.00 -13.9229 -16.6381
B3 19.00 56.0771 53.3619

RC

A1 10.9945 7.2559 (6.9797) 7.0668 (6.7906)
A2 10.9945 9.8837 (9.7158) 9.6945 (9.5267)
A3 10.9945 8.2144 (8.1343) 8.0253 (7.9452)
B1 10.3397 -0.0893 (-0.4279) -1.6839 (-2.0225)
B2 10.3397 2.4753 (2.3455) 0.8808 (0.7510)
B3 10.3397 0.8103 (0.7322) -0.7842 (-0.8623)

ReC

A1 30.9332 (31.2094) 19.00 19.00
A2 19.00 (19.00) 0 0
A3 79.9747 (80.0548) 69.00 69.00
B1 24.0458 (24.3844) 6.0772 3.3619
B2 19.00 (19.00) 0 0
B3 73.1462 (73.2242) 56.0772 53.3620

FS

A1 19.0668 (18.7906) 33.80 12.00
A2 31.00 (31.00) 52.80 31.00
A3 -29.9747 (-30.0548) -16.20 -38.00
B1 25.9542 (25.6156) 46.7228 27.6381
B2 31.00 (31.00) 52.80 31.00
B3 -23.1462 (-23.2242) -3.2772 -22.3620

Table 6.10: Computation of economic quantities in a zero interest rate scenario.

The computation of PVFP(stoch) (in Table 6.10 only denoted by PVFP) does not
depend on any risk measurement procedure at all and thus single values are given. Of
course, mortality gains lead to a higher PVFP(stoch) than mortality losses. An active asset
management modeled by Strategy B increases PVFP(stoch), since losses can be reduced
efficiently due to the reduced stock investment. In Strategy A, PVFP(stoch) is higher if
the stock moves upwards in t = 1 than in the case where the stock moves downwards,
whereas in Strategy B it is the other way around, because the stock investment is even
stronger reduced when the stock moves down in t = 1. The CRNHR can be reduced as well
by applying Strategy B. Of course, CRNHR is higher if average value at risk is applied.
In all settings, CRNHR is constant over time, since interest rates are zero and the non-
hedgeable risk – stochastic mortality – is realized in the last period, i.e., from t = 1 to
t = 2. The results for VIF and MCEV are direct consequences of the computations of NAV,
PVFP(stoch) and CRNHR. In order to calculate ReC, we need to quantify SCR and RC
first. Since possible balance sheets in t = 1 are equal for all strategies and scenarios, the
SCR in t = 0 coincides in all cases. In t = 1, the SCR is reduced in Scenario 2, especially in
Strategy B, because the mortality gains increase the NAV. In the case of mortality losses,
i.e., Scenario 3, the NAV decreases and thus the SCR increases due to the downside risk.
In Scenario 1, the SCR remains 19 in Strategy A whereas it is reduced in Strategy B as a
result of active asset management. While applying Strategy A, the SCR coincides in both
scenarios of the financial market (up or down in t = 1). Since losses in the NAV are the
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same if the stock moves downwards in t = 2, independent of the stock evolution in t = 1,
the downside risk in both scenarios is equal. This is not true for Strategy B. In Strategy
B, the stock investment is higher if the stock moved upwards in t = 1 than in the case
where the stock moved downwards. The higher stock investment leads to higher losses if
the stock moves downwards in t = 2. Thus, the downside risk is increased which leads
to a higher SCR compared to the SCR we obtain if the stock moves downwards first. In
t = 0, the RC is equal in all scenarios but differs slightly among the strategies. Again, in
t = 1, the RC can be reduced efficiently by applying Strategy B. As we have seen before,
the reduction is even more efficient when the stock moved downwards in t = 1, because
of the reduction of the stock investment to α1 = 0.0144. The results for ReC are direct
consequences of the computations of SCR, RC and VIF. In turn, FS follows from NAV
and ReC. Observe, since ReC is equal to zero in Scenario 2 for both strategies, that the
FS is equal to the NAV in this case.

Example 6.3.2. In Example 6.3.1, the computation of the TVOG was not needed in
order to compute the MCEV, since we directly computed PVFP(stoch). By computing
PVFP(CE), we obtain TVOG as residual, see Eq. (6.4). In the CE-scenario, the interest
paid on all assets is the same; in our example this interest rate is r = 0. The best estimate
for survival probabilities is p̄ = EP 2 [1px+1] = 0.9 in Scenario 1, p̄ = EP 2 [1px+1] = 0.82 in
Scenario 2 and p̄ = EP 2 [1px+1] = 0.95 in Scenario 3. Hence, the balance sheet in t = 2 is
given by Table 6.11.

ASSETS LIABILITIES
Strategy A B A B
Scenario 1 2 3 1 2 3 1 2 3 1 2 3
Stock 95 33.78 NAV 50 70 0 50 70 0
Bond 855 916.22 V 900 820 950 900 820 950

BA 0 60 0 0 60 0
Σ 950 Σ 950

Table 6.11: Stochastic balance sheet for t = 2 in the CE-scenario.

Due to the CE-scenario, there are no gains from the investment in the capital market
for both strategies. Observe that in Strategy B, the invesment is just shifted from the stock
to the bond due to the investment rule, we defined. Thus, only mortality has an impact on
the evolution of the NAV and the bonus account. In Scenario 2, there is a mortality gain
in the amount of 80. This gain is split according to the 25/75 rule between the insurer and
the policyholder. In Scenario 3, there are mortality losses of 50 that are fully captured by
the company. In Scenario 1, there are neither gains nor losses.

Table 6.12 displays the resulting PVFP(CE) and TVOG. While PVFP(CE) varies for
different scenarios but not in time, TVOG varies in time but is not affected by different
mortality scenarios.
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Strategy/Scenario t = 0 t = 1, (u·, ·) t = 1, (d·, ·)

PVFP(CE)

A1 0 0 0
A2 20 20 20
A3 -50 -50 -50
B1 0 0 0
B2 20 20 20
B3 -50 -50 -50

TVOG

A1 16.2708 8.0762 8.2653
A2 16.2708 8.0762 8.2653
A3 16.2708 8.0762 8.2653
B1 10.1228 2.5832 1.4625
B2 10.1228 2.5832 1.4625
B3 10.1228 2.5832 1.4625

Table 6.12: Computation of TVOG.

Low Interest Rate Scenario. In the second interest rate scenario, we assume r = 0.01
and r∗ = 0.02. In Example 6.3.3 below, we analyze the economic quantities compared to
Example 6.3.1 only. The stochastic balance sheet projections are given in Section 6.6.

Example 6.3.3. We assume NAV0 = 50 and compute V0 = π ≈ 865.05. The interpre-
tation of the results in Table 6.13 is along the lines of the interpretation of the values in
the previous example. However, values such as PVFP(stoch), VIF and MCEV are lower
whereas costs such as SCR and RC are higher in nearly all cases. This is due to the interest
rate losses coming from the low interest rates in the financial market and which have to
be covered by the NAV of the company. Only in the case of mortality gains, i.e., Scenario
2, these gains still dominate interest rate losses, at least when the stock moved upwards
(compare the SCRs). Moreover, we emphasize that the martingale measure in this example
differs from the martingale measure in the previous example, where the upwards and the
downwards movement of the stock had the same probability, due to a non-zero interest
rate. Here, an upwards movement of the stock is more likely. Furthermore, the interest
rate of r = 0.01 leads to non-constant CRNHR due to discounting. Besides, RC is not
equal in all scenarios in t = 0, but depends on mortality gains/losses.

Strategy/Scenario t = 0 t = 1, (u·, ·) t = 1, (d·, ·)

PVFP

A1 -25.2905 -12.7479 -12.7894
A2 -0.5534 12.2827 12.1443
A3 -74.3053 -62.2528 -62.2944
B1 -21.3395 -8.8140 -8.7362
B2 3.4907 16.2959 16.3075
B3 -70.3543 -58.3189 -58.2411

CRNHR

A1 3.5208 (3.8468) 3.5560 (3.8853) 3.5560 (3.8853)
A2 0.9037 (1.2377) 0.9142 (1.2525) 0.9121 (1.2475)
A3 2.6726 (2.7563) 2.6993 (2.7839) 2.6993 (2.7839)
B1 3.5184 (3.8405) 3.5536 (3.8789) 3.5536 (3.8789)
B2 0.9065 (1.2425) 0.9165 (1.2566) 0.9146 (1.2531)
B3 2.6696 (2.7405) 2.6963 (2.7679) 2.6963 (2.7679)



176 CHAPTER 6. MARKET CONSISTENT EMBEDDED VALUE

VIF

A1 -28.8113 (-29.1373) -16.3039 (-16.6332) -16.3454 (-16.6747)
A2 -1.4571 (-1.7911) 11.3685 (11.0302) 11.2322 (10.8968)
A3 -76.9779 (-77.0616) -64.9521 (-65.0367) -64.9937 (-65.0783)
B1 -24.8579 (-25.1800) -12.3676 (-12.6929) -12.2898 (-12.6151)
B2 2.5842 (2.2482) 15.3794 (15.0393) 15.3929 (15.0544)
B3 -73.0239 (-73.0948) -61.0152 (-61.0868) -60.9374 (-61.0090)

MCEV

A1 21.1887 (20.8627) 35.0738 (34.7445) 6.2880 (5.9587)
A2 48.5429 (48.2089) 62.7462 (62.4079) 33.8656 (33.5302)
A3 -26.9779 (-27.0616) -13.5744 (-13.6590) -42.3603 (-42.4449)
B1 25.1421 (24.8200) 39.0101 (38.6848) 10.3436 (10.0183)
B2 52.5842 (52.2482) 66.7571 (66.4170) 38.0263 (37.6878)
B3 -23.0239 (-23.0948) -9.6375 (-9.7091) -38.3040 (-38.3756)

SCR

A1 27.8666 28.3012 27.8566
A2 27.8666 -4.9341 -5.3787
A3 27.8666 78.3012 77.8566
B1 27.8666 15.1757 10.1532
B2 27.8666 -15.5208 -16.3077
B3 27.8666 65.1757 60.1532

RC

A1 15.4479 (15.5079) 12.0362 (11.7643) 11.8375 (11.5655)
A2 14.8161 (14.8385) 13.9576 (13.6948) 13.7609 (13.5010)
A3 15.8127 (15.8315) 13.2699 (13.2035) 13.0712 (13.0048)
B1 15.3425 (15.4033) 2.8439 (2.5767) -1.8134 (-2.0806)
B2 14.6975 (14.7245) 4.7636 (4.4991) 0.1083 (-0.1547)
B3 15.7070 (15.7270) 4.0779 (4.0257) -0.5794 (-0.6316)

ReC

A1 44.2592 (44.6452) 28.3401 (28.3975) 28.1829 (28.2402)
A2 27.8666 (27.8666) 2.5891 (2.6646) 2.5287 (2.6042)
A3 92.7906 (92.8931) 78.3012 (78.3012) 78.0649 (78.0831)
B1 40.2004 (40.5833) 15.2115 (15.2696) 10.4764 (10.5345)
B2 27.8666 (27.8666) 0 (0) 0 (0)
B3 88.7309 (88.8218) 65.1757 (65.1757) 60.3580 (60.3744)

FS

A1 5.7408 (5.3548) 23.0376 (22.9802) -5.5495 (-5.6068)
A2 22.1334 (22.1334) 48.7886 (48.7131) 20.1047 (20.0292)
A3 -42.7906 (-42.8931) -26.9235 (-26.9235) -55.4315 (-55.4497)
B1 9.7996 (9.4167) 36.1662 (36.1081) 12.1570 (12.0989)
B2 22.1334 (22.1334) 51.3777 (51.3777) 22.6334 (22.6334)
B3 -38.7309 (-38.8218) -13.7980 (-13.7980) -37.7246 (-37.7440)

Table 6.13: Computation of economic quantities in a low interest rate scenario.

High Interest Rate Scenario. In the third interest rate scenario, we assume r =
0.03 and r∗ = 0.02. Again, in Example 6.3.4 below, we analyze the economic quantities
compared to Examples 6.3.1 & 6.3.3 only. The stochastic balance sheet projections are
given in Section 6.6.

Example 6.3.4. We assume NAV0 = 50 and compute V0 = π ≈ 865.05. The interpre-
tation of the results in Table 6.14 is along the lines of the interpretation of the values in
the previous examples. Values such as PVFP(stoch), VIF and MCEV are higher whereas
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costs such as SCR and RC are lower in most of the cases. This is due to the interest rate
gains coming from the high interest rates in the financial market. Again, we point out that
the martingale measure in this example differs from the martingale measures in the two
examples before. Besides, we note the dependence of the results on the underlying Beta
distributions.

Strategy/Scenario t = 0 t = 1, (u·, ·) t = 1, (d·, ·)

PVFP

A1 -7.3835 -3.6910 -3.6635
A2 13.3952 17.7364 17.7042
A3 -54.5133 -52.2347 -52.2072
B1 -3.7266 0.0022 0.2023
B2 13.3952 17.7364 17.7042
B3 -50.8564 -48.5415 -48.3414

CRNHR

A1 3.4494 (3.7444) 3.5529 (3.8567) 3.5529 (3.8567)
A2 0.8580 (1.0250) 0.8838 (1.0565) 0.8834 (1.0549)
A3 2.5423 (2.6263) 2.6186 (2.7051) 2.6186 (2.7051)
B1 3.4369 (3.7157) 3.5400 (3.8272) 3.5400 (3.8272)
B2 0.8458 (0.9745) 0.8716 (1.0058) 0.8712 (1.0011)
B3 2.5328 (2.6046) 2.6088 (2.6828) 2.6088 (2.6828)

VIF

A1 -10.8329 (-11.1279) -7.2439 (-7.5477) -7.2164 (-7.5202)
A2 12.5372 (12.3702) 16.8526 (16.6799) 16.8208 (16.6493)
A3 -57.0556 (-57.1396) -54.8533 (-54.9398) -54.8258 (-54.9123)
B1 -7.1635 (-7.4423) -3.5378 (-3.8250) -3.3377 (-3.6249)
B2 12.5494 (12.4207) 16.8648 (16.7306) 16.8330 (16.7031)
B3 -53.3892 (-53.4610) -51.1503 (-51.2243) -50.9502 (-51.0242)

MCEV

A1 39.1671 (38.8721) 46.5945 (46.2907) 31.8879 (31.5841)
A2 62.5372 (62.3702) 70.6910 (70.5183) 55.9251 (55.7536)
A3 -7.0556 (-7.1396) -1.0149 (-1.1014) -15.7215 (-15.8080)
B1 42.8365 (42.5577) 50.3006 (50.0134) 35.7666 (35.4794)
B2 62.5494 (62.4207) 70.7032 (70.5690) 55.9373 (55.8074)
B3 -3.3892 (-3.4610) 2.6881 (2.6141) -11.8459 (-11.9199)

SCR

A1 12.3957 12.5567 11.6736
A2 12.3957 -14.9876 -15.4028
A3 12.3957 62.5567 61.6736
B1 12.3957 1.1320 0.6587
B2 12.3957 -17.1343 -17.3683
B3 12.3957 51.1320 50.6587

RC

A1 8.8703 (9.0541) 5.3329 (5.2093) 4.9230 (4.7994)
A2 7.0195 (7.0746) 5.8654 (5.8924) 5.4558 (5.4841)
A3 9.8998 (9.9503) 7.3556 (7.3185) 6.9457 (6.9086)
B1 8.6628 (8.8308) -2.3839 (-2.5067) -2.2114 (-2.3342)
B2 7.0141 (7.0447) -1.4714 (-1.5580) -1.2915 (-1.3752)
B3 9.6839 (9.7335) -0.3730 (-0.3982) -0.2005 (-0.2257)

ReC

A1 19.7032 (20.1820) 12.5768 (12.7570) 12.1394 (12.3196)
A2 12.3957 (12.3957) 0 (0) 0 (0)
A3 66.9554 (67.0899) 62.5567 (62.5567) 61.7715 (61.8209)
B1 15.8263 (16.2731) 1.1539 (1.3183) 1.1263 (1.2907)
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B2 12.3957 (12.3957) 0 (0) 0 (0)
B3 63.0731 (63.1945) 51.1320 (51.1320) 50.7497 (50.7985)

FS

A1 30.2968 (29.8180) 41.2616 (41.0814) 26.9649 (26.7847)
A2 37.6043 (37.6043) 53.8384 (53.8384) 39.1043 (39.1043)
A3 -16.9554 (-17.0899) -8.7183 (-8.7183) -22.6672 (-22.7166)
B1 34.1737 (33.7269) 52.6845 (52.5201) 37.9780 (37.8136)
B2 37.6043 (37.6043) 53.8384 (53.8384) 39.1043 (39.1043)
B3 -13.0731 (-13.1945) 2.7064 (2.7064) -11.6454 (-11.6942)

Table 6.14: Computation of economic quantities in a high interest rate scenario.

Comparative Statics. Finally, our main results concerning the MCEV are clearly shown
in Figures 6.4 - 6.7. Figure 6.4 displays the impact of different interest rate scenarios on the
MCEV in t = 0. In particular, the prevailing situation of a low interest rate environment
is illustrated. Obviously, low interest rates in the financial market reduce the MCEV since
the higher actuarial interest rate requires equivalent gains in the financial market in order
to avoid losses. Moreover, we find that the active investment strategy of rearranging the
portfolio (Strategy B) dominates the passive buy & hold strategy (Strategy A), i.e., the
MCEV can be increased when the asset portfolio is rearranged according to the considered
investment rule. As an example, Figure 6.4 shows the results in the case of neither mortality
gains nor losses (Scenario 1).
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Figure 6.4: Comparison of MCEV in t = 0 for different interest rate scenarios in Strategy A1 and Strategy B1.

Figure 6.5 presents the impact of different investment strategies on the MCEV in t = 0
in detail. Again, we see that the active investment strategy (Strategy B) leads to a higher
MCEV than the buy & hold strategy (Strategy A). This is true for each interest rate and
each mortality scenario.
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Figure 6.5: Comparison of MCEV in t = 0 for Strategies A & B in three interest rate scenarios.

The impact of stochastic mortality on the MCEV in t = 0 is shown is Figure 6.6.
We choose the results of Strategy A as an example. Equivalent results are obtained for
Strategy B. As expected, mortality gains increase the MCEV and losses lead to reductions.
In particular, we observe that including stochastic mortality gains and losses varies the
MCEV significantly in each interest rate scenario.
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Figure 6.6: Comparison of MCEV in t = 0 for different stochastic mortality scenarios in three interest rate scenarios.

Figure 6.7 displays the composition of the MCEV in t = 0. As an example, we choose
the results obtained for Strategy B in Scenario 2, i.e., the insurance company rearranges
its asset portfolio and mortality gains are assumed. Low interest rates lead to a higher
required capital whereas in the high interest rate scenario the free surplus can be increased.
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Figure 6.7: Comparison of the composition of the MCEV in t = 0 in VIF, ReC and FS in three interest rate scenarios.

6.4 | Conclusion

We provided a comprehensive overview of the MCEV and the valuation of its components.
These valuations are based on the interplay of actuarial and financial approaches which
is explicitly illustrated in this chapter. While presenting the computation of the MCEV,
we provided a complete asset-liability management model that includes, first, an interest
rate and a stock model for the asset model. Second, a product and a stochastic mortality
model for the liability model are incorporated. Third, we suggested investment and surplus
distribution strategies in order to investigate the influence of a management model. More-
over, we compared different regulatory systems by applying value at risk as well as average
value at risk for risk measurement and the determination of capital requirements. Our nu-
merical results, in particular, indicate that active asset-liability management dominates
passive asset-liability management in the sense that capital requirements can be reduced
and, in turn, the free surplus is increased. Future research needs to adjust each component
of our model in order to become more realistic. We emphasize that the complexity will
increase tremendously.
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6.5 | Appendix: Conditional Risk Measures

In this section, we provide a brief introduction to risk measures and their extension to
conditional risk measures. To this end, we consider a discrete time model on a probability
space (Ω,H, P ) with dates t = 0, 1, . . . , T and final time horizon T ∈ N. The information
flow is captured by the filtration H = (Ht)t=0,1,...,T , i.e.,

{∅,Ω} = H0 ⊂ H1 ⊂ . . . ⊂ HT = H.

We denote by L0, resp. L∞, the space of real-valued random variables, resp. bounded
random variables, on the given probability space.

Definition 6.5.1. A mapping ρ : L∞ → R is called a monetary risk measure if the
following properties are satisfied:

(i) Monotonicity: If X ≥ Y P -almost surely, then ρ(X) ≤ ρ(Y ).
(Better payoff profiles are less risky.)

(ii) Cash-invariance: If m ∈ R, then ρ(X +m) = ρ(X)−m.
(Adding a fixed amount m to the risky position decreases the risk exactly by this
amount.)

Examples of risk measures are provided in Appendix A, e.g, in Example A.0.3.

The definition of monetary risk measures is static. A dynamic extension to conditional,
resp. dynamic, risk measures incorporates the evolution of time. The assessment of risk is
conditional on available information up to time t.
In the subsequent exposition, we follow Detlefsen & Scandolo (2005). We define the sub-
spaces

L0
Ht =

{
X ∈ L0

∣∣∣∣ X is Ht-measurable
}

and
L∞Ht = L∞ ∩ L0

Ht ,

where Ht ⊆ H, t ∈ {0, 1, . . . , T}.

Definition 6.5.2. (i) A mapping ρt : L∞ → L0
Ht , t ∈ {0, 1, . . . , T}, is called an Ht-

conditional risk measure.

(ii) A dynamic risk measure is a family (ρt)Tt=0 such that ρt is an Ht-conditional risk
measure.

Remark 6.5.3. (i) For t = 0, ρ0 : L∞ → L0
H0

= R corresponds to the classical scalar
risk measure in Definition 6.5.1, i.e., the unconditional case.

(ii) The conditional risk ρt(X) is a random variable in L0
Ht . When the scenario ω ∈ Ω

occurs, we assess the risk ρt(X)(ω) to the random position X.
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6.6 | Appendix: Computations of Section 6.3.2

In this section, we provide the stochastic balance sheet projections of Examples 6.3.3 &
6.3.4. We start with Example 6.3.3:

t = 0:

ASSETS LIABILITIES
Strategy A B A B
Scenario 1 2 3 1 2 3 1 2 3 1 2 3
Stock 91.50 91.50 NAV 50.00 50.00
Bond 823.55 823.55 V 865.05 865.05

BA 0 0
Σ 915.05 Σ 915.05

Table 6.15: Stochastic balance sheet for t = 0 (Low interest rate).

t = 1, ω = (u·, 1px):

ASSETS LIABILITIES
Strategy A B A B
Scenario 1 2 3 1 2 3 1 2 3 1 2 3
Stock 109.81 109.81 NAV 51.38 51.38
Bond 831.78 831.78 V̄ 882.35 882.35

BA 7.86 7.86
Σ 941.59 Σ 941.59

Table 6.16: Stochastic balance sheet for t = 1 when the stock goes up (Low interest rate).

t = 1, ω = (d·, 1px):

ASSETS LIABILITIES
Strategy A B A B
Scenario 1 2 3 1 2 3 1 2 3 1 2 3
Stock 73.20 73.20 NAV 22.63 22.63
Bond 831.78 831.78 V̄ 882.35 882.35

BA 0 0
Σ 904.98 Σ 904.98

Table 6.17: Stochastic balance sheet for t = 1 when the stock goes down (Low interest rate).

t = 2, ω = (uu, p̄):

ASSETS LIABILITIES
Strategy A B A B
Scenario 1 2 3 1 2 3 1 2 3 1 2 3
Stock 128.11 41.43 NAV 52.70 70.92 2.70 48.56 69.18 -1.44
Bond 840.10 915.14 V̄ 900.00 820.00 950.00 900.00 820.00 950.00

BA 15.51 77.29 15.51 8.01 67.39 8.01
Σ 968.21 956.57 Σ 968.21 956.57

Table 6.18: Stochastic balance sheet for t = 2 when the stock goes up again (Low interest rate).
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t = 2, ω = (ud, p̄):

ASSETS LIABILITIES
Strategy A B A B
Scenario 1 2 3 1 2 3 1 2 3 1 2 3
Stock 91.5 29.59 NAV 23.59 56.82 -26.41 36.72 67.41 -13.28
Bond 840.1 915.14 V̄ 900.00 820.00 950.00 900.00 820.00 950.00

BA 8.01 54.78 8.01 8.01 57.32 8.01
Σ 931.6 944.73 Σ 931.6 944.73

Table 6.19: Stochastic balance sheet for t = 2 when the stock goes down (Low interest rate).

t = 2, ω = (du, p̄):

ASSETS LIABILITIES
Strategy A B A B
Scenario 1 2 3 1 2 3 1 2 3 1 2 3
Stock 91.5 6.39 NAV 23.73 41.48 -26.27 15.26 39.48 -34.74
Bond 840.1 908.87 V̄ 900.00 820.00 950.00 900.00 820.00 950.00

BA 7.87 70.12 7.87 0 55.78 0
Σ 931.6 915.26 Σ 931.6 915.26

Table 6.20: Stochastic balance sheet for t = 2 when the stock goes up (Low interest rate).

t = 2, ω = (dd, p̄):

ASSETS LIABILITIES
Strategy A B A B
Scenario 1 2 3 1 2 3 1 2 3 1 2 3
Stock 54.9 3.84 NAV -5 28.24 -55 12.71 39.17 -37.29
Bond 840.1 908.87 V̄ 900 820.00 950 900.00 820.00 950.00

BA 0 46.76 0 0 53.54 0
Σ 895 912.71 Σ 895 912.71

Table 6.21: Stochastic balance sheet for t = 2 when the stock goes down again (Low interest rate).

For Example 6.3.4, we obtain:

t = 0:

ASSETS LIABILITIES
Strategy A B A B
Scenario 1 2 3 1 2 3 1 2 3 1 2 3
Stock 91.50 91.50 NAV 50.00 50.00
Bond 823.55 823.55 V 865.05 865.05

BA 0 0
Σ 915.05 Σ 915.05

Table 6.22: Stochastic balance sheet for t = 0 (High interest rate).
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t = 1, ω = (u·, 1px):

ASSETS LIABILITIES
Strategy A B A B
Scenario 1 2 3 1 2 3 1 2 3 1 2 3
Stock 109.81 109.81 NAV 53.84 53.84
Bond 848.25 848.25 V̄ 882.35 882.35

BA 21.87 21.87
Σ 958.06 Σ 958.06

Table 6.23: Stochastic balance sheet for t = 1 when the stock goes up (High interest rate).

t = 1, ω = (d·, 1px):

ASSETS LIABILITIES
Strategy A B A B
Scenario 1 2 3 1 2 3 1 2 3 1 2 3
Stock 73.20 73.20 NAV 39.10 39.10
Bond 848.25 848.25 V̄ 882.35 882.35

BA 0 0
Σ 921.45 Σ 921.45

Table 6.24: Stochastic balance sheet for t = 1 when the stock goes down (High interest rate).

t = 2, ω = (uu, p̄):

ASSETS LIABILITIES
Strategy A B A B
Scenario 1 2 3 1 2 3 1 2 3 1 2 3
Stock 128.11 44.19 NAV 57.73 76.0 7.73 56.24 74.50 6.24
Bond 873.70 947.79 V̄ 900.00 820.0 950.00 900.00 820.00 950.00

BA 44.08 105.8 44.08 35.74 97.48 35.74
Σ 1001.8 991.98 Σ 1001.8 991.98

Table 6.25: Stochastic balance sheet for t = 2 when the stock goes up again (High interest rate).

t = 2, ω = (ud, p̄):

ASSETS LIABILITIES
Strategy A B A B
Scenario 1 2 3 1 2 3 1 2 3 1 2 3
Stock 91.5 31.56 NAV 42.9 70.44 -7.1 54.32 72.59 4.32
Bond 873.7 947.79 V̄ 900.0 820.00 950.0 900.00 820.00 950.00

BA 22.3 74.76 22.3 25.03 86.76 25.03
Σ 965.2 979.35 Σ 965.2 979.35

Table 6.26: Stochastic balance sheet for t = 2 when the stock goes down (High interest rate).

t = 2, ω = (du, p̄):

ASSETS LIABILITIES
Strategy A B A B
Scenario 1 2 3 1 2 3 1 2 3 1 2 3
Stock 91.5 28.01 NAV 42.71 60.74 -7.29 41.17 59.19 -8.83
Bond 873.7 926.02 V̄ 900.0 820.00 950.00 900.00 820.00 950.00

BA 22.49 84.46 22.49 12.86 74.84 12.86
Σ 965.2 954.03 Σ 965.2 954.03

Table 6.27: Stochastic balance sheet for t = 2 when the stock goes up (High interest rate).
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t = 2, ω = (dd, p̄):

ASSETS LIABILITIES
Strategy A B A B
Scenario 1 2 3 1 2 3 1 2 3 1 2 3
Stock 54.9 16.81 NAV 28.6 55.68 -21.4 39.62 57.65 -10.38
Bond 873.7 926.02 V̄ 900.0 820.00 950.0 900.00 820.00 950.00

BA 0 52.92 0 3.21 65.18 3.21
Σ 928.6 942.83 Σ 928.6 942.83

Table 6.28: Stochastic balance sheet for t = 2 when the stock goes down again (High interest rate).
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A | A Short Introduction to Risk Measures

For the convenience of the reader, we review the basic definitions of scalar-valued risk
measures. For detailed information on risk measures and their properties, we refer, e.g., to
Artzner et al. (1999), Föllmer & Schied (2011), McNeil et al. (2015) and Föllmer & Weber
(2015).

We denote by X (R) a vector space of measurable, real-valued functions on a measurable
space (Ω,F) that contains the constants. If P is a probability measure on (Ω,F), typical
examples of X (R) are Lp-spaces, p ∈ [1,∞], where P -almost sure equal functions are
identified with each other.

Definition A.0.1. A mapping ρ : X (R)→ R is called monetary risk measure if it satisfies

(i) Monotonicity: If X(ω) ≥ Y (ω), ∀ω ∈ Ω, then

ρ(X) ≤ ρ(Y ).

(Better payoff profiles are less risky.)

(ii) Cash-invariance: If m ∈ R, then

ρ(X +m) = ρ(X)−m.

(Adding a fixed cash amount m to the risky position decreases the risk exactly by
this amount.)

Further properties are:

(iii) Convexity: If λ ∈ [0, 1] and X,Y ∈ X (R), then

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ).

(Diversification does not increase risk.)
For monetary risk measures convexity is equivalent to Quasi-convexity:

ρ(λX + (1− λ)Y ) ≤ max{ρ(X), ρ(Y )}.

(iv) Positive homogeneity: If λ ≥ 0, then

ρ(λX) = λρ(X).

187
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(Risk increases in a linear way.)

(v) Subadditivity:
ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

(Risk of the aggregate position is bounded by the sum of the individual risks.)

Any two of the properties convexity, positive homogeneity and subadditivity imply the
third. A monetary risk measure satisfying additionally property (iii) is called convex risk
measure. A convex risk measure satisfying additionally property (iv) is called coherent risk
measure. In general, a mapping ρ : X (R)→ R, X 7→ ρ(X) is called risk measure.

In particular, any monetary risk measure corresponds to its acceptance set, A = {X ∈
X | ρ(X) ≤ 0}, from which it can be recovered via

ρ(X) = inf{m ∈ R |X +m ∈ A}.

Thus, a monetary risk measure can be viewed as a capital requirement: ρ(X) is the minimal
capital that has to be added to the position X to make it acceptable.

For later references, we define (lower and upper) quantiles.

Definition A.0.2. The upper and lower λ-quantile, λ ∈ (0, 1), of a random variable X
on (Ω,F , P ) are defined by

q+
X(λ) := inf{x ∈ R |P (X ≤ x) > λ} = sup{x ∈ R |P (X < x) ≤ λ}

and
q−X(λ) := sup{x ∈ R |P (X < x) < λ} = inf{x ∈ R |P (X ≤ x) ≥ λ},

respectively. A λ-quantile is any q ∈ R with

P (X ≤ q) ≥ λ and P (X < q) ≤ λ.

The set of all λ-quantiles of X is an interval
[
q−X(λ), q+

X(λ)
]
.

We recall well-known risk measures with different properties.

Example A.0.3. (i) Standard deviation risk measure:

ρ(X) := −E[X] + γ
√
Var(X), γ > 0.

Since the standard deviation is not monotone, it is not a monetary risk measure in
general.

(ii) Value at risk: The most commonly used risk measure in practice - and in particular
the prescribed risk measure for Solvency II purposes - is value at risk (V@R). For
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a given level λ ∈ (0, 1), we denote by V@Rλ the monetary risk measure defined by
the acceptance set

AV@Rλ = {X ∈ X |P (X < 0) ≤ λ}. (A.1)

For a financial position X, the value V@Rλ(X) specifies the smallest monetary
amount that needs to be added to X such that the probability of a loss becomes
smaller than λ:

V@Rλ(X) := inf{m ∈ R |P (X +m < 0) ≤ λ} = −q+
X(λ).

V@Rλ has two main deficiencies: Firstly, value at risk is not a convex risk mea-
sure and may thus penalize diversification beyond the setting of Gaussian or more
generally elliptic financial positions. Secondly, V@Rλ neglects extreme losses that
occur with small probability. These deficiencies of value at risk were a major reason
to develop a systematic theory of coherent and convex risk measures, as initiated
by Artzner et al. (1999) and Föllmer & Schied (2002). Further, V@Rλ is positively
homogeneous, but not subadditive in general.

(iii) Average value at risk: Another basic example is the average value at risk (AV@R),
also known as conditional value at risk, tail value at risk, or expected shortfall, which
plays a prominent role in the Swiss Solvency Test. The average value at risk at level
λ ∈ (0, 1] is defined by

AV@Rλ(X) := 1
λ

∫ λ

0
V@Rα(X) dα.

AV@Rλ(X) corresponds, under weak technical conditions, to the conditional expec-
tation of a loss beyond the V@Rλ(X). In contrast to value at risk, AV@Rλ accounts
for extreme losses per definition, and it provides incentives for diversification. More
precisely, AV@Rλ is a coherent measure of risk.

(iv) Range value at risk: Cont, Deguest & Scandolo (2010) suggest an alternative to V@R
and AV@R, called range value at risk (RV@R). Letting α, β > 0 with α + β ≤ 1,
they define

RV@Rα,β(X) = 1
β

∫ α+β

α
V@Rγ(X) dγ.

Note that the limiting cases of RV@Rα,β correspond to V@Rα for β → 0 and AV@Rβ

for α→ 0. Like V@R, RV@R is a non convex risk measure, and it may thus penalize
diversification.

The following lemma shows V@R as the lower quantile of the random variable −X.

Lemma A.0.4. The value at risk at level λ ∈ (0, 1) is given by

V@Rλ(X) = q−−X(1− λ).
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Proof. It is

V@Rλ(X) = −q+
X(λ) = − sup{x ∈ R |P (X < x) ≤ λ} = inf{y ∈ R |P (X < −y) ≤ λ}

= inf{y ∈ R |P (−X > y) ≤ λ} = inf{y ∈ R |P (−X ≤ y) ≥ 1− λ}

= q−−X(1− λ)

For normally distributed random variables, we derive the risk for the risk measures
V@R and AV@R explicitly.

Lemma A.0.5. Let X be a normally distributed random variable, i.e., X ∼ N (µ, σ2).

(i) V@Rλ is given explicitly by

V@Rλ(X) = −E[X] + Φ−1(1− λ)
√
Var(X),

where Φ−1 is the quantile function of the standard normal distribution.

(ii) AV@Rλ is given explicitly by

AV@Rλ(X) = −E[X] + φ(Φ−1(1− λ))
λ

√
Var(X),

where Φ−1 is the quantile function of the standard normal distribution and φ the
corresponding density.

Proof. (i) It is

V@Rλ(X) = inf{m ∈ R |P (X +m < 0) ≤ λ}

= inf
{
m ∈ R

∣∣∣∣P
(
X − E[X]√
Var(X)

<
−m− E[X]√

Var(X)

)
≤ λ

}

= inf
{
m ∈ R

∣∣∣∣Φ
(
−m− E[X]√

Var(X)

)
≤ λ

}

= inf
{
m ∈ R

∣∣∣∣m ≥ −E[X] + Φ−1(1− λ)
√
Var(X)

}
= −E[X] + Φ−1(1− λ)

√
Var(X)

(ii) For a continuous distribution function, AV@Rλ can be represented by

AV@Rλ(X) = E [−X | −X ≥ V@Rλ(X)] .

If X̃ is standard normally distributed, i.e., X̃ ∼ N (0, 1), then

AV@Rλ(X̃) = E
[
−X̃ | − X̃ ≥ V@Rλ(X̃)

]
= E

[
−X̃ | − X̃ ≥ −Φ−1(λ)

]
= 1
P
(
X̃ ≤ Φ−1(λ)

) E
[
−X̃ · 1{X̃≤Φ−1(λ)}

]
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= 1
P
(
X̃ ≤ Φ−1(λ)

) ∫ Φ−1(λ)

−∞
−y φ(y) dy

= 1
Φ (Φ−1(λ))

∫ ∞
Φ−1(1−λ)

y φ(y) dy

= 1
λ

∫ ∞
Φ−1(1−λ)

y
1√
2π

e−
y2
2 dy = lim

T→∞

1
λ

[
− 1√

2π
e−

y2
2

]T
Φ−1(1−λ)

= lim
T→∞

1
λ

[−φ(y)]TΦ−1(1−λ) = lim
T→∞

1
λ

(
−φ(T ) + φ

(
Φ−1(1− λ)

))
= φ

(
Φ−1(1− λ)

)
λ

Since AV@Rλ is cash-invariant and positively homogeneous, we obtain for X ∼
N (µ, σ2)

AV@Rλ(X) = AV@Rλ
(
E[X] + X̃

√
Var(X)

)
= −E[X] + AV@Rλ(X̃)

√
Var(X)

= −E[X] + φ(Φ−1(1− λ))
λ

√
Var(X)

Since the standard normal distribution is continuous and symmetric, we have that
the upper- and lower quantile coincide and that X and −X are both standard normally
distributed. Hence, −Φ−1(λ) = Φ−1(1− λ) and the results above are true.

Remark A.0.6. The representations given in Lemma A.0.5 show that for normally dis-
tributed random variables, V@R and AV@R are standard deviation risk measures. To be
more precise: For λ ≤ 0.5, it is Φ−1(1− λ) > 0, and hence, V@Rλ is a standard deviation
risk measure. Thus, the subadditivity property is fulfilled for normally distributed random
variables in that case. AV@Rλ is a standard deviation risk measure since φ(Φ−1(1−λ))

λ > 0
for all λ ∈ (0, 1).

The following proposition and subsequent corollary state aggregation results. Since this
thesis is also concerned with solvency capital requirements, regulation and risk aggregation,
we present the results for the sake of completeness.

Proposition A.0.7. Let Xi ∼ N (µi, σ2
i ) be normally distributed. If X =

∑n
i=1Xi, then

V@Rλ(X) = −
n∑
i=1

E[Xi] +

√√√√ n∑
i=1

n∑
j=1

ρij V@Rλ(Xi − E[Xi])V@Rλ(Xj − E[Xj ]), (A.2)

where ρij is the correlation coefficient between Xi and Xj.

Proof. According to Lemma A.0.5 (i), it is

V@Rλ(Xi) = −E[Xi] + Φ−1(1− λ)
√
Var(Xi) ⇔

√
Var(Xi) = V@Rλ(Xi) + E[Xi]

Φ−1(1− λ)



192 APPENDIX A. A SHORT INTRODUCTION TO RISK MEASURES

This leads to

V@Rλ(X) = −E[X] + Φ−1(1− λ)
√
Var(X)

= −E[X] + Φ−1(1− λ)

√√√√ n∑
i=1

n∑
j=1

Cov(Xi, Xj)

= −E[X] + Φ−1(1− λ)

√√√√ n∑
i=1

n∑
j=1

ρij

√
Var(Xi)

√
Var(Xj)

= −E[X] + Φ−1(1− λ)

√√√√ n∑
i=1

n∑
j=1

ρij
V@Rλ(Xi) + E[Xi]

Φ−1(1− λ)
V@Rλ(Xj) + E[Xj ]

Φ−1(1− λ)

= −
n∑
i=1

E[Xi] +

√√√√ n∑
i=1

n∑
j=1

ρij V@Rλ(Xi − E[Xi])V@Rλ(Xj − E[Xj ])

Corollary A.0.8. Let Xi ∼ N (0, σ2
i ) be normally distributed with E[Xi] = 0 ∀i = 1, . . . , n.

If X =
∑n
i=1Xi, then

V@Rλ(X) =

√√√√ n∑
i=1

n∑
j=1

ρij V@Rλ(Xi)V@Rλ(Xj), (A.3)

where ρij is the correlation coefficient between Xi and Xj.

Equation (A.3) is well known as the square root formula or standard formula. It is pro-
posed in the guidelines of Solvency II in order to compute the solvency capital requirement
of insurance firms. To this end, the aggregate risk, e.g., due to different lines of business,
market risk etc., is quantified by prescribed correlation matrices for individual risks. Corol-
lary A.0.8 shows that aggregated risk can be computed by the standard formula when risks
are centered jointly normally distributed. Hence, solvency capital calculations are based
on very strong assumptions that are usually not satisfied in real world applications.

Observe that the results in Proposition A.0.7 and Corollary A.0.8 are also true for
AV@R.

The following example presents further monetary risk measures.

Example A.0.9. (i) Utility-based shortfall risk: Letting l : R → R be an increasing,
non-constant, convex loss function and λ the threshold level. The utility-based short-
fall risk (UBSRl,λ) is a convex risk measure defined by

UBSRl,λ(X) := inf{m ∈ R |E[l(−(X +m))] ≤ λ}.

Thus, UBSRl,λ of a financial positionX equals the smallest monetary amountm that
needs to be added to X in order to avoid that the expected utility −E[l(−(X +m))]
is less than the threshold level −λ. The risk measure is normalized when λ = l(0).
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Setting l(x) := −u(−x), where u is a utility function (i.e., non-decreasing and strictly
concave), then l is a strictly convex and increasing function, and the maximization
of expected utility is equivalent to minimizing the expected loss, i.e.,

UBSRl,λ(X) = inf{m ∈ R |E[l(−(X +m))] ≤ λ} = inf{m ∈ R |E[u(X +m)] ≥ −λ},

see, e.g., Föllmer & Schied (2011).

(ii) Optimized certainty equivalent: Letting u : R → [−∞,∞) be a concave and non-
decreasing utility function satisfying u(0) = 0, u(x) ≥ 0 ∀x ≥ 0 and u(x) < x∀x.
The optimized certainty equivalent (OCEu) is defined by the map OCEu : L∞ → R
with

OCEu(X) = sup
η∈R
{η + E[u(X − η)]}.

The OCEu is the present value of an optimal split of the uncertain future income X
into a certain amount η and an uncertain future amount X−η, see Föllmer & Weber
(2015). As shown by Ben-Tal & Teboulle (2007), the negative of an OCE defines a
convex risk measure, i.e.,

ρOCEu(X) := −OCEu(X), X ∈ L∞.

The subsequent lemma summarizes representations of UBSRl,λ and OCEu for some
explicit choices of loss and utility functions, respectively.

Lemma A.0.10. (i) UBSRl,λ: For an exponential loss function l(x) = eβx, we obtain

UBSRl,λ(X) = inf
{
m ∈ R

∣∣∣∣E [e−β(X+m)
]
≤ λ

}
= 1
β

(
logE

[
e−βX

]
− log(λ)

)
.

For the threshold level λ = 1, this risk measure coincides with the entropic risk
measure, i.e., UBSRl,1(X) = ρβ(X), cf. Appendix C.1, Example C.1.2 (i) & (iv).

(ii) OCEu: For an exponential utility function u(t) = 1− e−βt, we obtain

ρOCEu(X) = UBSRl, 1
β

(X)− β − 1
β

For β = 1, this risk measure coincides with the entropic risk measure with parameter
1, i.e., ρOCEu(X) = ρβ(X) = ρ1(X).

(iii) OCEu: For the utility function u(t) = min{0, α t}, α > 1, we obtain

ρOCEu(X) = AV@R 1
α

(X).

See as well Appendix C.1, Example C.1.2 (v).

Proof. (i) This follows by the fact that UBSRl,λ(X) = s∗ is the unique solution of
the equation E[l(−X − s)] = λ, see, e.g., Föllmer & Schied (2011), Dunkel & Weber



194 APPENDIX A. A SHORT INTRODUCTION TO RISK MEASURES

(2010) for details. Hence, computing the root of the function gλ(s) := E[l(−X−s)]−λ
leads to

E[l(−X − s)]− λ != 0 ⇔ E
[
e−β(X+s)

]
= λ

⇔ −βs+ log
(
E
[
e−βX

])
= log(λ)

⇔ s∗ = 1
β

(
log

(
E
[
e−βX

])
− log(λ)

)

(ii) Since u′(t) = β e−βt, the first-order condition (1.2) in Chapter 1 yields

E
[
βe−β(X−η∗)

]
= 1 ⇔ log(β) + βη∗ = − logE

[
e−βX

]
⇔ η∗ = 1

β

(
− logE

[
e−βX

]
+ log

( 1
β

))
⇔ η∗ = −UBSRl, 1

β
(X)

Thus, the OCEu is given by

OCEu(X) = η∗ + E[u(X − η∗)]

= −UBSRl, 1
β

(X) + E
[
1− e−β

(
X− 1

β (− logE[e−βX ]−log(β))
)]

= −UBSRl, 1
β

(X) + 1− E
[
e−βX

]
E
[
E
[
e−βX

]−1
β−1

]
= −UBSRl, 1

β
(X) + β − 1

β

Hence, we obtain the corresponding risk measure

ρ(X) = UBSRl, 1
β

(X)− β − 1
β

(iii) Let X be a continuous random variable with continuous distribution function FX

and density fX . Then,

OCEu(X) = sup
η∈R
{η + E[u(X − η)]} = sup

η∈R
{η + αE[min{0, X − η}]}

= sup
η∈R

{
η + α

∫ η

−∞
(x− η)fX(x) dx

}
=: sup

η∈R
{f(η)}

We obtain

f ′(η) != 0 ⇔ 1 + α
d

dη

(∫ η

−∞
xfX(x) dx− η

∫ η

−∞
fX(x) dx

)
= 0

⇔ 1 + α

(
ηf(η)−

(
1 ·
∫ η

−∞
fX(x) dx+ ηfX(η)

))
= 0

⇔ 1 + α (−(FX(η)− 0)) = 0
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⇔ η∗ = F−1
X

( 1
α

)
,

where F−1
X (λ) = qX(λ) is the λ-quantile of the random variable X. Hence, according

to Example A.0.3 (ii), it is η∗ = −V@R 1
α

(X). Now, it follows by Föllmer & Schied
(2011), Lemma 4.51,

OCEu = sup
η∈R
{η + E[u(X − η)]} = sup

η∈R
{η + αE[min{0, X − η}]}

= sup
η∈R
{η − αE[max{0,−(X − η)}]}

= qX

( 1
α

)
− αE

[
max

{
0, qX

( 1
α

)
−X

}]
= −AV@R 1

α
(X)

Hence, the corresponding risk measure is given by

ρ(X) = AV@R 1
α

(X).
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B | Redistribution Risk Measures

In this additional chapter, we introduce an extension of the classical monetary risk mea-
surement theory. The key contribution of this extension is the integration of a so-called
redistribution function. This enables the consideration of any possible reallocation of ter-
minal wealth within the risk measurement procedure. Special cases of redistribution risk
measures are discussed within this thesis, see, e.g., Chapters 2 & 3.

In the seminal paper by Artzner et al. (1999), the classical theory of monetary risk
measures is provided. Here, the risk of a random variable is measured by the following
procedure: Let the random variable X denote the stochastic evolution of a risky position.
For instance, X might be any financial product. Then, the risk of X is quantified by
applying a risk measure ρ that determines the minimal amount of capital k which needs to
be added to X in order to make the position acceptable with respect to the corresponding
acceptance set A, i.e.,

ρ(X) = inf{k ∈ R | k +X ∈ A}. (B.1)

We extend the risk measure given in Eq. (B.1) to redistribution risk measures, see Eq.
(B.2) below. This is motivated by the following observation: Often the terminal wealth of
a company or an investor does not only depend on X, but also on a second redistribution
mechanism which reallocates wealth by the end of a fixed time horizon. The outcome of
this redistribution depends on both the stochastic evolution of X and the initial capital
c ∈ R the company or the investor is endowed with. For example, the portfolio of an
investor could need to be adjusted due to given trading constraints or a network of financial
institutions might transfer capital between the entities. These redistribution channels need
to be taken into account when overall risk is measured. Given initial capital c, we formalize
any redistribution by a random field f that captures the stochastic terminal wealth, and
consider the resulting redistribution risk measure

ρ̃(f ; c) := inf{k ∈ R | f(k + c) ∈ A}. (B.2)

By means of the random field f , any possible redistribution channel which determines the
terminal financial wealth of a company or an investor can be modeled. Thus, ρ̃(f ; c) in
Eq. (B.2) quantifies the capital requirement that is needed in order to make the future
random outcome of a function depending on the evolution of X and the initial capital c,
i.e., f(k+ c), acceptable. In contrast, ρ(X) in Eq. (B.1) focuses on the acceptability of X
only.

197



198 APPENDIX B. REDISTRIBUTION RISK MEASURES

Furthermore, we emphasize that computing ρ̃(f ; c) as given in Eq. (B.2) is not the
same as calculating

ρ̄(f ; c) := inf{k ∈ R | k + f(c) ∈ A}. (B.3)

In Eq. (B.3), risk is measured by applying a classical risk measure to the redistributed
value f(c), i.e., ρ̄(f ; c) = ρ(f(c)). This approach does not capture the impact of the
additional capital k on the redistribution mechanism itself since k is added to the terminal
redistributed value instead of the initial position. However, risk measures as given in Eq.
(B.3) are often proposed in the literature, see, e.g., Acerbi & Scandolo (2008), Chen,
Iyengar & Moallemi (2013), Hoffmann, Meyer-Brandis & Svindland (2016), Brunnermeier
& Cheridito (2014) and Haier et al. (2016). There are two significant differences in the
interpretation of the two approaches given in (B.2) and (B.3):

1. Our redistribution risk measure in Eq. (B.2) determines the amount of capital that
needs to be added today, i.e., in t = 0, in order to make the random outcome
tomorrow, i.e., in t = 1, acceptable. The risk measure in Eq. (B.3) attempts to add
an amount of capital after the actual redistribution is already done. This might be
too late. See Chapter 2, Section 2.3, for an illustrative example.

2. In general, the risk measure given in Eq. (B.3) is not cash-invariant anymore in the
sense of adding an amount of cash to the eligible asset. Instead, the capital k is added
to the redistributed value which does not correspond to the natural interpretation of
risk as a capital requirement. In contrast, our redistribution risk measure in Eq. (B.2)
maintains the property of cash-invariance and therefore its natural interpretation as
a capital requirement.

Literature. In this chapter, we analyze redistribution risk measures in both the scalar,
see Eq. (B.2), and the set-valued setting. For classical scalar-valued risk measures, a huge
literature exists. In recent years, the excellent book by Föllmer & Schied (2011) became a
standard reference for risk measures and their properties. We refer the interested reader
to references therein for further information. For set-valued risk measures and its appli-
cations to finance and economics, we refer, e.g., to Feinstein et al. (2017), Molchanov &
Cascos (2016), Haier et al. (2016) and the references therein. Haier et al. (2016) suggest
a set-valued risk measure that incorporates intragroup transfer strategies. They apply
the framework of set-valued risk measures based on selections introduced in Molchanov &
Cascos (2016). A set-valued network risk measure that can be embedded within our frame-
work of redistribution risk measures is proposed in Hamm et al. (2019a). The concept of
redistribution risk measures previously appeared in the literature under several notations,
see, e.g., Weber et al. (2013) for scalar-valued liquidity-adjusted risk measures or Fein-
stein et al. (2017) for set-valued systemic risk measures. However, until now a unifying
framework did not exist. We provide this missing general setup in this chapter.

Outline. This additional chapter is structured as follows: In Section B.1, we give precise
definitions of our comprehensive redistribution risk measure in both the scalar and the
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set-valued setting. Section B.2 illustrates several examples of practical applications within
the unifying framework. In Section B.3, we analyze the properties of the proposed risk
measure. Section B.4 concludes with a summary and suggestions for future research.

B.1 | Definition of Redistribution Risk Measures

Throughout this chapter, the set of financial positions at time 1 whose risk needs to
be assessed is a vector space of random variables on a probability space (Ω,F , P ) that
contains the constants. For example, X (R) = L0(R) is the family of random variables,
X (R) = L∞(R) is the subspace of bounded random variables, or X (R) = Lp(R) is the
subspace of p-integrable random variables. Analogously, we use the notation X (Rn), where
X (Rn) ⊆ L0(Rn) is a subspace of the family of n-dimensional random vectors.

All risky positions X which are acceptable with respect to the monetary risk measure
ρ (see Appendix A, Definition A.0.1) are collected in the corresponding acceptance set

A = {X ∈ X (R) | ρ(X) ≤ 0} ⊆ X (R).

Hence, we call X acceptable if no additional capital is needed for acceptance.

Remark B.1.1. The defining properties of a general acceptance set A are given by (see,
e.g., Föllmer & Schied (2011), Section 4.1, and Feinstein et al. (2017), Section 2.2):

(i) inf{m ∈ R |m ∈ A} > −∞.
(Not any deterministic monetary amount is acceptable.)

(ii) If X ∈ A, Y ∈ X (R) and Y (ω) ≥ X(ω) ∀ω ∈ Ω, then Y ∈ A.
(Positions that dominate acceptable positions are again acceptable.)

(iii) A is closed in X (R).

The scalar risk measure corresponding to A is given by

ρ(X) = inf{k ∈ R | k +X ∈ A}, X ∈ X (R). (B.4)

Thus, the risk of X is quantified by the minimal amount of capital k which has to be
added to the risky position X in order to make it acceptable. Hence, there is no distinction
between risk and capital requirements.

We extend the classical static risk measure given in Eq. (B.4) to our redistribution
risk measure as follows. We assume that the risky position X is reallocated, e.g., within a
portfolio or among agents. Here, we suppose that this reallocation depends on the initial
capital c and a capital injection k. This redistribution of terminal wealth is modeled by
a random field f . Using a redistribution risk measure, the risk of X is quantified by the
minimal amount of capital k which has to be added to the initial capital c in order to make
the terminal wealth f(k+ c) acceptable with respect to a classical monetary risk measure.
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In particular, our redistribution risk measure takes the capital injection k – which in turn
influences the redistribution – into account for the risk measurement procedure itself.

For the remaining part of the chapter, let us denote the sets M = {1, . . . ,m} and
N = {1, . . . , n} for m,n ∈ N.

Definition B.1.2. We call the random field

f : Rn → X (Rm) with f(c) = (f1(c), f2(c), . . . , fm(c)),

fj : Rn → X (R), ∀j ∈ M, c ∈ Rn, a redistribution function. We denote by Y the space of
random fields, i.e., f, fj ∈ Y, ∀j ∈M, c ∈ Rn.

In Section B.2, several examples of redistribution functions are illustrated.
Now, we define our redistribution risk measures based on redistribution functions in

both the scalar and set-valued setting. These risk measures either map to a single value
or to a set of vectors and capture any redistribution of the risky position X.

Definition B.1.3. Let f : Rn → X (Rm) be a redistribution function. Given that compo-
nent j ∈M needs to be acceptable and given eligible assets i ∈ N , we define redistribution
risk measures as follows:

(i) For k ∈ R, we call the map
ρ̃ : Y × Rn → R

a redistribution risk measure, if for some acceptance set Aj ⊆ X (R) of a static
monetary risk measure

ρ̃(f ; c) = inf
{
k ∈ R

∣∣∣∣ fj(k + c) ∈ Aj
}
, c ∈ Rn, j ∈M,

where fj is the component of f that needs to be acceptable with respect to Aj and

k + c = (c1, . . . , k + ci, . . . , cn) , i ∈ N.

Here, i is the eligible asset in which the capital k is invested.

(ii) For k ∈ Rn, we call the map

ρ̃ : Y × Rn → P ⊆ Rn

a set-valued redistribution risk measure, if for some acceptance set Aj ⊆ X (R) of a
static scalar monetary risk measure

ρ̃(f ; c) =
{
k ∈ Rn

∣∣∣∣ fj(k + c) ∈ Aj
}
, c ∈ Rn, j ∈M.

Again, fj is the component of f that needs to be acceptable with respect to Aj and

k + c = (k1 + c1, . . . , kn + cn) .
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Thus, in each asset i ∈ N capital ki is invested.

Remark B.1.4. (i) Let c ∈ R, C ∈ X (R) and let X = C−c denote the random change
in wealth of the financial position. If n = m = 1 and f(c) = X + c, we obtain the
classical scalar risk measure as provided in Eq. (B.4).

(ii) The acceptability conditions given in Definition B.1.3 can easily be extended to the
condition of simultaneous acceptance of several positions J ⊆M by setting

ρ̃(f ; c) = inf
{
k ∈ R

∣∣∣∣ fj(k + c) ∈ Aj ∀j ∈ J
}
, c ∈ Rn,

and
ρ̃(f ; c) =

{
k ∈ Rn

∣∣∣∣ fj(k + c) ∈ Aj ∀j ∈ J
}
, c ∈ Rn,

respectively. We refer to Example B.2.3 as well as Chapter 3 for an application with
J = M .

B.2 | Examples of Application

In this section, we suggest several examples for practical applications which illustrate the
quality of a unifying general framework as provided in Section B.1. The main objective is
to specify the redistribution mechanism f which captures the random terminal wealth.

Example B.2.1 (Insolvency Risk). Let us consider an insurance company that models
its internal wealth by the market consistent embedded value (MCEV). The MCEV can be
calculated as the sum of the net asset value and the present value of future profits reduced
by the sum of the costs of residual non-hedgeable risks and any further costs. An overview
with respect to the valuation of the MCEV and its components is provided in Chapter 6.

Based on our introduced framework, the capital k ∈ R that the insurance firm has
to add to its initial economic capital c ∈ R in order to make the future random value
of the company, modeled by the MCEV, acceptable can be determined by applying a
redistribution risk measure. With m = n = 1 and

f : R→ X (R), f(c) = MCEV(c),

the insolvency risk of the company can be measured by

ρ̃(f ; c) = inf
{
k ∈ R

∣∣∣∣MCEV(k + c) ∈ A
}
.

Example B.2.2 (Liquidity Risk). Let us consider an agent who attempts to make the
future random liquidity-adjusted portfolio value of his portfolio c ∈ Rn+1 acceptable by
trading. Here, the liquidity-adjusted portfolio value is given in terms of an optimization
problem subject to liquidity and portfolio constraints. As analyzed in Chapter 2, the
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liquidity-adjusted portfolio value V (c) can be determined by

V (c) = sup
{
U(l, z)

∣∣∣∣ l ∈ L(c, z, φ, a) ∩ (R×K)
}
,

where z = {z0, . . . , zn} ∈ Mn+1 is the spot market of n risky assets consisting of n + 1
random marginal supply-demand curves, U(l, z) is the maximal mark-to-market value of
a portfolio l and L(c, z, φ, a) ∩ (R × K) formalizes the liquidity and portfolio constraints
obligatory for the trader.

Based on our introduced framework, the capital k ∈ R the agent has to invest in the
eligible asset ci of his portfolio c ∈ Rn+1 in order to make the future random liquidity-
adjusted portfolio value acceptable can be determined by applying a redistribution risk
measure. With m = 1 and

f : Rn+1 → X (R), f(c) = V (c),

the liquidity risk of the investor can be measured by

ρ̃(f ; c) = inf
{
k ∈ R

∣∣∣∣V (k + c) ∈ A
}
.

We refer to Chapter 2 for the precise notations and a detailed analysis of liquidity risk
and liquidity-adjusted risk measures.

Example B.2.3 (Network Risk). Let us consider a financial network of n entities such
that i ∈ N represents firm i of the network. The objective of the system’s regulator
is to quantify the risk that arises due to the characteristics of the system itself. Thus,
acceptability of the entities within the network is required. The regulatory system might
be based on a legal entity or consolidated approach:

(i) The legal entity approach requires that the terminal wealth of each entity within
the network is acceptable with respect to its specific regulatory guideline. Based
on our introduced framework and Remark B.1.4 (ii), the capital ki ∈ R that each
entity i ∈ N of the network needs to add to its initial economic capital ci ∈ R in
order to make its future random wealth acceptable can be determined by applying
a set-valued redistribution risk measure. With m = n and

f : Rn → X (Rn), f(c) = C(c),

such that C(c) ∈ X (Rn) models the random terminal wealth for each entity by taking
capital and risk transfer strategies into account, the network risk can be measured
by

ρ̃(f ; c) =
{
k ∈ Rn

∣∣∣∣Ci(k + c) ∈ Ai ∀i ∈ N
}
.

(ii) The consolidated approach requires that the aggregated terminal wealth of the total
network is acceptable for one regulator. Based on our introduced framework, the
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capital ki ∈ R that each entity i ∈ N of the network needs to add to its initial
economic capital ci ∈ R in order to make the total future random wealth of the
network acceptable can be determined by applying a set-valued redistribution risk
measure. In this case, with m = 1 and

f : Rn → X (R), f(c) = Cnetwork(c),

such that Cnetwork(c) models the random terminal wealth of the total financial net-
work, the network risk can be measured by

ρ̃(f ; c) =
{
k ∈ Rn

∣∣∣∣Cnetwork(k + c) ∈ A
}
.

For a detailed analysis on regulatory systems, network risk, network risk measures and
risk sharing within networks, we refer to Chapters 3 & 4.

B.3 | Properties of Redistribution Risk Measures

In this section, we analyze the properties of the suggested redistribution risk measures in
the scalar and set-valued setting.

Scalar-valued setting. Throughout this paragraph, let us consider the scalar-valued
redistribution risk measure ρ̃ as provided in Definition B.1.3 (i). The following proposition
specifies conditions for ρ̃ being a monetary convex risk measure.

Proposition B.3.1. Let f : Rn → X (Rm) be a redistribution function and ρ̃ the re-
distribution risk measure provided in Definition B.1.3 (i). The following properties are
satisfied:

(i) Cash-invariance:
ρ̃(f ; c+ l) = ρ̃(f ; c)− l, ∀l ∈ R.

(If initial capital is increased by l, the required additional capital is reduced by l.)

(ii) Monotonicity in the initial capital: If f is non-decreasing in its j-th component,
j ∈M , then

ρ̃(f ; c) ≤ ρ̃(f ; z)

whenever ci ≥ zi, ∀i = 1, . . . , n.
(Larger initial capital leads to less additional capital.)

(iii) Convexity: If f is concave in its j-th component and Aj is convex, j ∈M , then

αρ̃(f ; c) + (1− α)ρ̃(f ; z) ≥ ρ̃(f ;αc+ (1− α)z), α ∈ [0, 1].

(Diversification in the initial endowment does not increase risk.)
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Proof. (i) Letting l ∈ R, j ∈M . It is ρ̃(f ; c+ l) = inf{k ∈ R | fj(c+ l+k) ∈ Aj}. Setting
b = l + k leads to

ρ̃(f ; c+l) = inf{b−l ∈ R | fj(c+b) ∈ Aj} = inf{b ∈ R | fj(c+b) ∈ Aj}−l = ρ̃(f ; c)−l.

(ii) Let ci ≥ zi,∀i = 1, . . . , n, j ∈M . Since fj is non-decreasing, it is fj(k+z) ≤ fj(k+c)
for any k ∈ R. Hence, if fj(k+ z) ∈ Aj then also fj(k+ c) ∈ Aj , because of Remark
B.1.1 (ii). Thus, ρ̃(f ; c) ≤ ρ̃(f ; z).

(iii) Let α ∈ [0, 1] be fixed, j ∈M . SinceAj is convex, it is αfj(k+c)+(1−α)fj(l+z) ∈ Aj ,
for all k, l ∈ R such that fj(k + c), fj(l + z) ∈ Aj . The concavity of fj yields

αfj(k + c) + (1− α)fj(l + z) ≤ fj(α(k + c) + (1− α)(l + z))

which leads to fj(α(k+ c) + (1−α)(l+ z)) = fj(αk+ (1−α)l+αc+ (1−α)z) ∈ Aj .
We obtain the upper bound

ρ̃(f ;αc+ (1− α)z) = inf{y ∈ R | fj(αc+ (1− α)z + y) ∈ Aj} ≤ αk + (1− α)l.

Taking the limits k ↓ ρ̃(f ; c) and l ↓ ρ̃(f ; z) implies convexity of ρ̃:

ρ̃(f ;αc+ (1− α)z) ≤ αρ̃(f ; c) + (1− α)ρ̃(f ; z).

The following proposition provides properties of ρ̃ in the random field.

Proposition B.3.2. Let f : Rn → X (Rm) and t : Rn → X (Rm) be redistribution func-
tions and ρ̃ the redistribution risk measure provided in Definition B.1.3 (i). The following
properties are satisfied:

(i) Monotonicity in the random field: If fj(c) ≥ tj(c),∀c ∈ Rn and j ∈M , then

ρ̃(f ; c) ≤ ρ̃(t; c).

(Larger terminal wealth is less risky.)

(ii) Quasi-convexity: If Aj, j ∈M , is convex, then

ρ̃(αf + (1− α)t; c) ≤ max {ρ̃(f ; c), ρ̃(t; c)}.

(Diversification in the terminal wealth does not increase risk.)

Proof. (i) Let fj(c) ≥ tj(c),∀c ∈ Rn, j ∈M . Hence, if tj(k+c) ∈ Aj then also fj(k+c) ∈
Aj , because of Remark B.1.1 (ii). Thus, ρ̃(f ; c) ≤ ρ̃(t; c).
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(ii) Let fj(c) ≥ tj(c),∀c ∈ Rn, j ∈ M, and ρ̃(t; c) = l. Hence, it is tj(c + l) ∈ Aj which
implies fj(c+ l) ∈ Aj . Convexity of Aj yields αfj(l+ c) + (1−α)tj(l+ c) ∈ Aj . This
leads to

ρ̃(αf + (1− α)t; c) = inf{z ∈ R | αfj(z + c) + (1− α)tj(z + c) ∈ Aj} ≤ l = ρ̃(t; c).

If fj(c) ≤ tj(c), ∀c ∈ Rn, j ∈M , then

ρ̃(αf + (1− α)t; c) ≤ ρ̃(f ; c).

This proofs the claim due to (i).

We compare the risk measures ρ̃ and ρ̄, see Eq.(B.3), in the subsequent proposition.
In particular, we find that for translation-supervariant redistribution functions, capital
requirements can be reduced when these are positive and ρ̃ is applied. When capital
requirements are negative, ρ̃ is more prudent than ρ̄.

Proposition B.3.3. Let f : Rn → X (Rm) be a redistribution function, ρ̃ the redistribution
risk measure provided in Definition B.1.3 (i) and ρ̄(f ; c) = inf{k ∈ R | fj(c)+k ∈ Aj}, j ∈
M . The following properties are satisfied:

(i) If f is translation-invariant in its j-th component, j ∈M , then ρ̃(f ; c) = ρ̄(f ; c).

(ii) If f is translation-supervariant in its j-th component, j ∈M , then

|ρ̃(f ; c)| ≤ |ρ̄(f ; c)|

and ρ̃(f ; c) and ρ̄(f ; c) have the same sign, if ρ̃(f ; c) 6= 0.

Proof. (i) Let j ∈M . Since fj(c+ k) = fj(c) + k, this property is obvious.

(ii) Let j ∈ M . The property is shown by case-by-case analysis. First, let us consider
ρ̃(f ; c) > 0. Then, fj(c+k) /∈ Aj for any fixed k ∈ (0, ρ̃(f ; c)). Since fj is translation-
supervariant, it is fj(c + k) ≥ fj(c) + k which implies fj(c) + k /∈ Aj , because of
Remark B.1.1 (ii). This leads to ρ̄(f ; c) ≥ k > 0. Letting k increase to ρ̃(f ; c), we
obtain ρ̃(f ; c) ≤ ρ̄(f ; c) for ρ̃(f ; c) > 0.
Now, we consider ρ̃(f ; c) < 0. In this case, fj(c+k) ∈ Aj for any fixed k ∈ (ρ̃(f ; c), 0).
Since fj is translation-supervariant, it is fj(c+k) ≤ fj(c)+k which implies fj(c)+k ∈
Aj , because of Remark B.1.1 (ii). This leads to ρ̄(f ; c) ≤ k < 0. Taking the limit
k ↓ ρ̃(f ; c), we obtain ρ̃(f ; c) ≥ ρ̄(f ; c) for ρ̃(f ; c) < 0.

Set-valued setting. Throughout this paragraph, let us consider the set-valued redistri-
bution risk measure as provided in Definition B.1.3 (ii). The following proposition sum-
marizes its properties.
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Proposition B.3.4. Let f : Rn → X (Rm) be a redistribution function and ρ̃ the set-valued
redistribution risk measure provided in Definition B.1.3 (ii). The following properties are
satisfied:

(i) Cash-invariance:
ρ̃(f ; c+ l) = ρ̃(f ; c)− l, ∀l ∈ Rn.

(ii) Monotonicity in the initial capital: If f is non-decreasing in its j-th component,
j ∈M , then

ρ̃(f ; z) ⊆ ρ̃(f ; c)

whenever zi ≤ ci ∀i = 1, . . . , n.

(iii) Monotonicity in the random field: Let t ∈ Y be another redistribution function such
that fj(c) ≥ tj(c), ∀c ∈ Rn and j ∈M . Then,

ρ̃(t; c) ⊆ ρ̃(f ; c).

(iv) Convexity: If f is concave in its j-th component and Aj is convex, j ∈M , then ρ̃ is
a convex subset of Rn, i.e., if k, l ∈ ρ̃(f ; c), then

αk + (1− α) l ∈ ρ̃(f ; c), α ∈ [0, 1].

Proof. (i) Letting l ∈ Rn, j ∈M . It is ρ̃(f ; c+ l) = {k ∈ Rn | fj(c+ l+k) ∈ Aj}. Setting
b = l + k leads to

ρ̃(f ; c+ l) = {b− l ∈ Rn | fj(c+ b) ∈ Aj} = {b ∈ Rn | fj(c+ b) ∈ Aj}− l = ρ̃(f ; c)− l.

(ii) Let zi ≤ ci ∀i = 1, . . . , n, j ∈M . Since fj is non-decreasing, it is fj(k+z) ≤ fj(k+c).
Hence, if fj(k + z) ∈ Aj then also fj(k + c) ∈ Aj , because of Remark B.1.1 (ii).
Therefore, k ∈ ρ̃(f ; c) whenever k ∈ ρ̃(f ; z). Thus, ρ̃(f ; z) ⊆ ρ̃(f ; c).

(iii) Let fj(c) ≥ tj(c),∀c ∈ Rn, j ∈M . Hence, if tj(k + c) ∈ Aj then also fj(k + c) ∈ Aj ,
because of Remark B.1.1 (ii). Thus, ρ̃(t; c) ⊆ ρ̃(f ; c).

(iv) Let α ∈ [0, 1] be fixed, j ∈ M . Since k, l ∈ ρ̃(f ; c), it is fj(k + c), fj(l + c) ∈ Aj .
Convexity of Aj leads to αfj(k + c) + (1 − α)fj(l + c) ∈ Aj . The concavity of fj
yields

αfj(k + c) + (1− α)fj(l + c) ≤ fj(α(k + c) + (1− α)(l + c))

which implies fj(α(k+ c) + (1−α)(l+ c)) = fj(αk+ (1−α) l+ c) ∈ Aj . Due to the
definition of ρ̃, we obtain

αk + (1− α)l ∈ ρ̃(f ; c).
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The properties of the set-valued redistribution risk measure in Proposition B.3.4 can
be interpreted analogously to the corresponding properties of the classical scalar risk mea-
sure: Characteristic (i) again describes that adding a fixed capital vector to the financial
positions reduces the risk exactly by this amount. Monotonicity formalizes that multivari-
ate capital requirements are stricter if initial (ii) resp. future (iii) random wealth levels
decrease. Property (iv) states that convex combinations of acceptable capital allocations
are again acceptable.

Remark B.3.5. In Proposition B.3.4 (ii), the redistribution risk measure can be specified
by

ρ̃ : Y × Rn → P(Rn;Rn+) := {A ⊆ Rn |A = A+ Rn+}.

Hence, ρ̃ maps into the collection of upper sets with ordering cone Rn+. For non-decreasing
redistribution functions fj , the properties of the acceptance set Aj , j ∈M , imply l + z ∈
ρ̃(f ; c) whenever l ∈ ρ̃(f ; c) and z ∈ Rn+.

We compare the risk measures ρ̃ and ρ̄ in the set-valued setting. The findings are
consistent with the scalar-valued framework.

Proposition B.3.6. Let f : Rn → X (Rm) be a redistribution function, ρ̃ the redistribution
risk measure provided in Definition B.1.3 (ii) and ρ̄(f ; c) = {k ∈ Rn | fj(c) + k ∈ Aj}, j ∈
M . The following properties are satisfied:

(i) If f is translation-invariant in its j-th component, j ∈ M , then ρ̃(f ; c) = ρ̄(f ; c),
i.e., the elements of both sets coincide.

(ii) Let f be translation-supervariant in its j-th component, j ∈M .

(a) Let k ∈ Rn+. If k ∈ ρ̄(f ; c), then k ∈ ρ̃(f ; c).

(b) Let k ∈ Rn−. If k ∈ ρ̃(f ; c), then k ∈ ρ̄(f ; c).

Proof. (i) Let j ∈M . Since fj(c+ k) = fj(c) + k, this property is obvious.

(ii) (a) Let k∗ ∈ Rn+ and k∗ ∈ ρ̄(f ; c) = {k ∈ Rn | fj(c) + k ∈ Aj}, j ∈ M . Since fj is
translation-supervariant, i.e., fj(c) + k∗ ≤ fj(c+ k∗), and Aj is the acceptance
set of a static scalar monetary risk measure, it is fj(c+ k∗) ∈ Aj . This implies
k∗ ∈ {k ∈ Rn | fj(c+ k) ∈ Aj} = ρ̃(f ; c).

(b) Let k∗ ∈ Rn− and k∗ ∈ ρ̃(f ; c) = {k ∈ Rn | fj(c + k) ∈ Aj}, j ∈ M . Since fj is
translation-supervariant, i.e., fj(c+ k∗) ≤ fj(c) + k∗, and Aj is the acceptance
set of a static scalar monetary risk measure, it is fj(c) + k∗ ∈ Aj . This implies
k∗ ∈ {k ∈ Rn | fj(c) + k ∈ Aj} = ρ̄(f ; c).

Remark B.3.7. In contrast to scalar-valued redistribution risk measures, set-valued re-
distribution risk measures do not quantify a minimum amount of additional capital, but
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a whole set of additional capital endowments that all generate acceptable outcomes. In
Feinstein et al. (2017), the definition of orthant risk measures is suggested in order to pro-
vide a methodology of choosing an adequate capital allocation out of the set of acceptable
allocations. Orthant risk measures specify a minimum vector of capital endowments which
is unique if the lower boundary of the set of possible positions is not a line segment. A
similar approach is proposed in Chapter 3, Section 3.2.1, in order to determine optimal
set-valued capital allocations in financial networks.

B.4 | Conclusion

We introduced a concept of meaningful risk measurement when a redistribution channel
is present. We pointed out the advantages – in particular, in terms of interpretation – and
analyzed the properties of the suggested redistribution risk measure in the scalar and set-
valued setting. Examples demonstrating the quality of this unifying concept for practical
applications were discussed. For detailed analyses of liquidity-adjusted and network risk
measures, we refer to Chapters 2 & 3, respectively. A comprehensive introduction to the
MCEV is provided in Chapter 6.

The investigation of the statistical properties of the suggested redistribution risk mea-
sure is an interesting field for future research. Moreover, the development of efficient al-
gorithms for the computation of the provided risk measures is an important objective,
because the inclusion of optimization problems or network models into the risk measure-
ment procedure significantly increases the effort of calculating capital requirements.



C | Appendix of Chapter 3

In this additional appendix, we introduce the subgradient allocation principle that relies
on the robust representation of convex risk measures. First, we provide a short review on
the robust representation of convex risk measures in Section C.1. In Section C.2, we define
our subgradient allocation principle and provide explicit formulae for its computation.

C.1 | Robust Representation of Convex Risk Measures

Under mild conditions, convex risk measures admit a robust representation, cf., e. g.,
Föllmer & Schied (2011), Chapter 4.2, for an overview. To recall some basis facts, let
X (R) = L∞ be the space of all bounded measurable functions on some measurable space
(Ω,F). The dual space X ′ can be identified with the space ba := ba(Ω,F) of finitely ad-
ditive set functions with finite total variation, see Definition A.50 in Föllmer & Schied
(2011). LetM1 denote the set of all probability measures on (Ω,F), and letM1,f be the
set of all finitely additive set functions Q : F → [0, 1] with Q(Ω) = 1.

Definition C.1.1. Let ρ be a convex risk measure. We call ρ proper if the domain of ρ is
non-emtpy, i. e., domρ = {X ∈ X (R) | ρ(X) <∞} 6= ∅.

The robust representation is derived from convex duality theory. The convex conjugate
(Fenchel-Legendre transform) of a proper convex risk measure ρ is given by ρ∗(lQ) =
αmin(Q), where the functions are defined as follows:

ρ∗ : X ′ → R ∪ {+∞}, ρ∗(l) = sup
X∈X (R)

{l(X)− ρ(X)},

where lQ ∈ X ′ is given by lQ(X) = EQ[−X] for Q ∈M1,f and thus

αmin :M1,f → R ∪ {+∞}, αmin(Q) = sup
X∈X (R)

{EQ[−X]− ρ(X)},

see Remark 4.18 in Föllmer & Schied (2011). The functional αmin is called minimal penalty
function. Since

lQ(X) ≤ ρ(X) + ρ∗(lQ) and EQ[−X] ≤ ρ(X) + αmin(Q),

respectively, we have the dual - also called robust - representation of convex risk measures

ρ(X) = sup
lQ∈ba

{lQ(X)− ρ∗(lQ)} and ρ(X) = sup
Q∈M1,f

{EQ[−X]− αmin(Q)},

209
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respectively.
Let us now fix a probability measure P on (Ω,F), and let us denote by M1(P ) the

class of all probability measures Q ∈M1 which are absolutely continuous with respect to
P . We write Q� P , whenever Q is absolutely continuous with respect to P , and use the
notation ϕ = dQ/dP for the Radon-Nikodym density of Q with respect to P . Let ρ be
a convex risk measure on L∞(Ω,F) which respects the null sets of P , i. e., ρ(X) = ρ(Y )
whenever the equivalence relation X = Y P -a. s. holds. Then, ρ can be regarded as a
convex risk measure on the Banach space X = L∞(Ω,F , P ) of equivalence classes. In this
case, the robust representation

ρ(X) = sup
Q∈M1(P )

{EQ[−X]− α(Q)}

holds iff ρ is continuous from above, i. e., ρ(Xn) ↗ ρ(X) whenever Xn ↘ X P -a. s.. This
representation clarifies that the risk with respect to any convex risk measure is computed
as worst-case of expected loss among a class of probabilistic models, taken more or less
seriously according to a so-called penalty function.
The following example recalls dual representations of well-known risk measures.

Example C.1.2. (i) Entropic risk measure (cf. Föllmer & Schied (2011), Example
4.34):

ρβ(X) = sup
Q∈M1(P )

{
EQ[−X]− 1

βH(Q|P )
}
, β > 0,

where the minimal penalty function

α :M1(P )→ (0,∞], Q 7→ α(Q) := 1
βH(Q|P )

is given in terms of the relative entropy H(Q|P ) := EQ[log dQ
dP ] of Q ∈ M1(P ) with

respect to P . Note that the supremum is attained by the measure with density
ϕ = e−βX/E[e−βX ], and this yields the explicit fornula ρβ(X) = 1

β logE[e−βX ]. The
risk measure ρβ is a special case of the utility-based shortfall risk measure in (iv).

(ii) Divergence risk measure (cf. Föllmer & Schied (2011), Example 4.36):

ρg(X) := sup
Q�P
{EQ[−X]− Ig(Q|P )},

where g : [0,∞[→ R ∪ {+∞} is a lower semicontinuous convex function satisfying
g(1) <∞ and the superlinear growth condition g(x)

x → +∞ as x ↑ ∞. The minimal
penalty function αg :M1(P )→ R ∪ {+∞} is given by the g-divergence, i.e.,

αg(Q) := Ig(Q|P ) := E
[
g
(
dQ
dP

)]
, Q ∈M1(P ).

For g(x) = 1
β x log x, ρg coincides with the entropic risk measure ρβ in (i). Let

g∗(y) = supx>0{xy− g(x)} be the convex conjugate of g, then (cf. Föllmer & Schied
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(2011), Theorem 4.122)

ρg(X) = inf
z∈R
{E[g∗(z −X)]− z}, X ∈ L∞.

(iii) Average value at risk (cf. Föllmer & Schied (2011), Theorem 4.52):

AV@Rλ(X) = max
Q∈Qλ

EQ[−X], λ ∈ (0, 1],

where Qλ :=
{
Q ∈M1(P ) | dQdP ≤

1
λ P -a.s.

}
. For λ ∈ (0, 1), the maximum is attained

by the measure Q0 ∈ Qλ, whose density is given by

dQ0
dP

= 1
λ

(
1{X<q} + κ1{X=q}

)
,

where q is a λ−quantile of X and κ is defined by

κ :=


0, if P [X = q] = 0,

λ− P [X < q]
P [X = q] , otherwise.

With g(x) := 0 for x ≤ 1
λ and g(x) := +∞ for x > 1

λ in (ii), AV@Rλ belongs to the
class of divergence risk measures.

(iv) Utility-based shortfall risk (cf. Föllmer & Schied (2011), Theorem 4.115): Letting
l : R → R be an increasing, non-constant, convex loss function, and let λ denote a
threshold level. The utility-based shortfall risk satisfies the robust representation

UBSRl,λ(X) = max
Q∈M1(P )

{
EQ[−X]− inf

z>0

1
z

(
λ+ E

[
l∗
(
z dQdP

)])}
, X ∈ L∞,

in terms of the convex conjugate l∗(y) := supx∈R{yx − l(x)} of the convex loss
function l and the minimal penalty function

αmin(Q) = inf
z>0

1
z

(
λ+ E

[
l∗
(
z dQdP

)])
, Q ∈M1(P ).

For an exponential loss function and the threshold level λ = 1, this risk measure
coincides with the entropic risk measure in (i), cf. Appendix A, Lemma A.0.10 (i).

(v) Optimized certainty equivalents: For an utility function u, the optimized certainty
equivalent of a financial position X ∈ X is defined as

OCEu(X) := sup
η∈R
{η + EP [u(X − η)]}.

This can be interpreted as the present value of an optimal allocation of the uncer-
tain future income X between a certain present amount η and the uncertain future
amount X − η.
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Up to sign, the OCE coincides with a divergence risk measure. Indeed, let g be a
divergence function, and let g∗ denote its convex conjugate. Since (see (ii))

inf
Q∈M1(P )

{EQ[X] + Ig(Q|P )} = sup
η∈R
{η − E[g∗(η −X)]},

we have OCEu(X) = −ρg(X), for u(z) ≡ −g∗(−z), i. e., the divergence function g is
given by g(y) = supx∈R{xy − l(x)}, see, e. g., Föllmer & Weber (2015). This is the
convex conjugate function of the loss function l associated to u via l(x) = −u(−x).
Hence, g(y) = l∗(y) and u(x) = −g∗(−x), and we obtain

OCE−g∗(−x)(X) = −ρg(x)(X) and OCEu(x)(X) = −ρl∗(x)(X).

For an exponential utility function u(t) = 1− e−βt, we obtain

ρOCEu(X) = UBSRl, 1
β

(X)− β−1
β

For β = 1, this risk measure coincides with the entropic risk measure ρβ(X) = ρ1(X)
in (i). For the utility function u(t) = min{0, α t}, α > 1, we have

ρOCEu(X) = AV@R 1
α

(X),

cf. Appendix A, Lemma A.0.10 (ii) & (iii).

C.2 | Special Case of Subgradient Capital Allocation

The Euler allocation principle requires a positively homogeneous risk measure. To extend
the Euler allocation to convex, but not necessarily positively homogeneous risk measures,
we introduce the subgradient allocation principle and derive explicit formulae for its com-
putation. To the best of our knowledge, these precise capital allocation principles with
respect to certain risk measures are new to the literature. In contrast to Kromer & Over-
beck (2014), our definition of the subgradient capital allocation principle is based on the
robust representation of convex risk measures and, in particular, involves the minimal
penalty function. The subgradient allocation principle can be embedded into our set-
valued framework similar to the Euler allocation principle. In particular, the subgradient
allocation principle corresponds to the consolidated approach (insensitive) together with
the management’s objective function to minimize the total additional capital.

To outline the mathematical details, consider the setting of Section C.1. We define the
subdifferential following Kromer & Overbeck (2014), Section 2. For further reading on the
weak∗-subdifferential, we refer to Delbaen (2000).

Definition C.2.1. Let ρ be a convex risk measure on Lp.

(i) The subdifferential of ρ at X ∈ domρ, 1 ≤ p <∞, is the set

∂ρ(X) = {ϕ ∈ Lq | ρ(X + Y ) ≥ ρ(X) + E[ϕY ] ∀Y ∈ Lp},
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where Lq is the dual space of Lp, i. e., q satisfies 1
p + 1

q = 1.

(ii) For p =∞ consider the weak∗-subdifferential

∂ρ(X) = {ϕ ∈ L1 | ρ(X + Y ) ≥ ρ(X) + E[ϕY ] ∀Y ∈ L∞}.

(iii) If ∂ρ(X) 6= ∅, then ρ is called subdifferentiable at X.

If ρ is a convex risk measure, then ρ is continuous and subdifferentiable on the interior
of its domain, see Kromer & Overbeck (2014).

Proposition C.2.2 and Corollary C.2.3 characterize the elements of the subdifferential
defined in Definition C.2.1. They are the key prerequisites for the concrete computation of
the subgradient allocation principle. We refer to Appendix C.1 for details, in particular,
for the equality of minimal penalty functions and convex conjugates in our setting.

Proposition C.2.2. Let ρ be a proper convex risk measure. Then, ϕ ∈ ∂ρ(X) if and only
if

ρ(X) = E[−ϕX]− αmin(Q),

where αmin is the minimal penalty function in the robust representation of the risk measure
ρ.

Proof. The proof is given in Ekeland & Témam (1999), Prop. 5.1 in Chapter I. Remember
that ϕ = dQ

dP and thus ρ(X) = EQ[−X]− αmin(Q) = E[−ϕX]− αmin(Q).

Corollary C.2.3. Let ρ be a proper convex risk measure. Then, ϕ ∈ ∂ρ(X) if and only if

ϕ ∈ arg max
ϕ̃∈X ′

{E[−ϕ̃X]− αmin(Q̃)},

where αmin is the minimal penalty function in the robust representation of the risk measure
ρ.

Proof. By Föllmer & Schied (2011), Theorem 4.16, any convex risk measure ρ on X (R) is
of the form

ρ(X) = max
Q∈M1,f

{EQ[−X]− αmin(Q)}, X ∈ X (R).

Together with Prop. C.2.2, we thus see that

ϕ = dQ

dP
∈ ∂ρ(X) ⇔ Q ∈ arg max

Q̃∈M1,f

ρ(X) = arg max
Q̃∈M1,f

{EQ̃[−X]− αmin(Q̃)}

⇔ ϕ ∈ arg max
ϕ̃∈X ′

{E[−ϕ̃X]− αmin(Q̃)}.

We are now ready to define our subgradient allocation principle based on the robust
representation of convex risk measures and the corresponding minimal penalty function
αmin. Recall that Λw (E(e,0)) =

∑n
i=1wiEi(e,0) ∈ X (R) and E0(e, k) = E(e,0) ∈ X (Rn).
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Definition C.2.4. Let E0 ∈ Y be the random field given in Chapter 3, (3.5). Let ρ : Lp →
R, 1 ≤ p ≤ ∞, be a convex risk measure which is subdifferentiable at Λw (E(e,0)) ∈ domρ.
The subgradient allocation principle is given by

A∂ : Y ×W → Rn, (E0, w) 7→


A∂,1

(
E0, w

)
...

A∂,n
(
E0, w

)


with
A∂,i(E0, w) = wi E [−ϕEi(e,0)]− γiαmin(Q), ϕ ∈ ∂ρ (Λw (E(e,0))) ,

where
∑n
i=1 γi = 1 and αmin is the minimal penalty function in the robust representation

of ρ.

For w = 1, Definition C.2.4 leads to

A∂,i(E0,1) = E [−ϕEi(e,0)]− γiαmin(Q), ϕ ∈ ∂ρ(Λ1 (E(e,0))).

Since ϕ = dQ
dP ∈ ∂ρ

(
Λ1 (E(e,0))

)
, it follows that (see Proposition C.2.2)

n∑
i=1

A∂,i(E0,1) = E
[
−ϕ

n∑
i=1

Ei(e,0)
]
− αmin(Q)

n∑
i=1

γi = E
[
−ϕΛ1 (E(e,0))

]
− αmin(Q)

= ρ(Λ1 (E(e,0))),

i. e., the full allocation property is satisfied in analogy to Eq. (3.6) in Chapter 3. The
embedding of the subgradient principle into our set-valued framework of capital allocation
presented in Chapter 3 is along the lines of the embedding of the Euler allocation principle,
since both allocation principles are based on a regulatory system that sums up individual
positions (consolidated approach (insensitive)) in order to allocate risk capital, and both
approaches minimize the total risk capital at the same time, see Corollary 3.2.6 in Chapter
3.

Remark C.2.5. Recall that a convex risk measure is coherent if and only if its penalty
function satisfies αmin ∈ {0,∞}. Thus, for coherent risk measures the subgradient alloca-
tion principle reduces to

A∂,i(E0, w) = wi E [−ϕEi(e,0)] , ϕ ∈ ∂ρ (Λw (E(e,0))) , i ∈ N.

In the following corollaries, we derive explicit results for the subgradient allocation
for several risk measures. We begin with an alternative formulation of the Euler capital
allocation for average value at risk resulting from the subgradient allocation principle, cf.
Chapter 3, Section 3.6 (iii). Both allocations are equivalent.

Corollary C.2.6. Let ρ be the average value at risk at level λ ∈ (0, 1). The subgradient
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allocation is given by

AAV@Rλ
∂,i (E0, w) = wiE [−ϕEi(e,0)] , i = 1, . . . , n,

where ϕ = 1
λ

(
1{Λw(E(e,0))<−V@Rλ(Λw(E(e,0)))} + κ1{Λw(E(e,0))=−V@Rλ(Λw(E(e,0)))}

)
and κ is

defined by

κ :=
{

0, if P [Λw (E(e,0)) = −V@Rλ (Λw (E(e,0)))] = 0,
λ−P [Λw(E(e,0))<−V@Rλ(Λw(E(e,0)))]
P [Λw(E(e,0))=−V@Rλ(Λw(E(e,0)))] , otherwise.

Proof. By Remark C.2.5, the subgradient capital allocation for the coherent risk measure
AV@R is given by

AAV@Rλ
∂,i (E0, w) = wi E [−ϕEi(e,0)] , i = 1, . . . , n,

where ϕ ∈ ∂AV@Rλ (Λw (E(e,0))) .
From Corollary C.2.3, we obtain that ϕ ∈ ∂AV@Rλ (Λw (E(e,0))) if and only if ϕ max-
imizes the robust representation of AV@R. Now, we know from Example C.1.2 (iii) that
the robust representation is given by

AV@Rλ (Λw (E(e,0))) = max
Q∈Qλ

EQ [−Λw (E(e,0))] ,

where for λ ∈ (0, 1) the maximum is attained by the measure with density

ϕ = 1
λ

(
1{Λw(E(e,0))<−V@Rλ(Λw(E(e,0)))} + κ1{Λw(E(e,0))=−V@Rλ(Λw(E(e,0)))}

)
and κ is defined such as given in the corollary.

In contrast to average value at risk, the entropic risk measure, utility-based shortfall
risk as well as optimized certainty equivalent risk measures are not positively homoge-
neous in general. Hence, the Euler allocation cannot be applied, while alternative capital
allocation principles such as the subgradient allocation can be implemented.

Corollary C.2.7. Let ρ be the utility-based shortfall risk measure with exponential loss
function l(x) = eβx. The subgradient allocation is given by

A
UBSRl,λ
∂,i (E0, w) = wiE [−ϕEi(e,0)]− γi

β (E [ϕ log(ϕ)] + log(λ)) , i = 1, . . . , n,

where ϕ = e−βΛw(E(e,0))/E[e−βΛw(E(e,0))] is chosen such that
∑n
i=1 γi = 1. Setting λ = 1,

the subgradient allocation for the entropic risk measure follows.

Proof. For the convex risk measure UBSR, Definition C.2.4 provides the subgradient cap-
ital allocation

A
UBSRl,λ
∂,i (E0, w) = wiE [−ϕEi(e,0)]− γi αmin(Q), i = 1, . . . , n,
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where ϕ ∈ ∂UBSRl,λ (Λw (E(e,0))) and
∑n
i=1 γi = 1. From Corollary C.2.3, we obtain

that ϕ ∈ ∂UBSRl,λ (Λw (E(e,0))) if and only if ϕ maximizes the robust representation of
UBSRl,λ. In the case of an exponential loss function, the robust representation of UBSR
is given by (see Lemma A.0.10 and Example C.1.2 (iv))

UBSRl,λ (Λw (E(e,0))) = ρβ (Λw (E(e,0)))− 1
β log(λ)

= max
Q∈M1(P )

{EQ [−Λw (E(e,0))]− 1
βH(Q|P )} − 1

β log(λ)

= 1
β logE[e−βΛw(E(e,0))]− 1

β log(λ), β > 0,

where the maximum is attained by the measure with density ϕ = e−βΛw(E(e,0))

E[e−βΛw(E(e,0))] . The
minimal penalty function is given by

αmin(Q) = sup
Λw(E(e,0))∈L∞

{EQ [−Λw (E(e,0))]−UBSRl,λ (Λw (E(e,0)))}

= sup
Λw(E(e,0))∈L∞

{EQ [−Λw (E(e,0))]− 1
β (logE[e−βΛw(E(e,0))]− log(λ))}

= sup
Λw(E(e,0))∈L∞

{EQ[−Λw (E(e,0))]− 1
β logE[e−βΛw(E(e,0))]}+ 1

β log(λ)

= 1
βH(Q|P ) + 1

β log(λ) = 1
β (E [ϕ log(ϕ)] + log(λ)) .

Corollary C.2.8. Let ρOCEu be the optimized certainty equivalent risk measure with ex-
ponential utility function u(x) = 1− e−βx. The subgradient allocation is given by

A
ρOCEu
∂,i (E0, w) = wiE [−ϕEi(e,0)]− γi

β

(
E [ϕ log(ϕ)] + log

(
1
β

)
+ (β − 1)

)
, i = 1, . . . , n,

where ϕ = e−βΛw(E(e,0))/E[e−βΛw(E(e,0))] and γi is chosen such that
∑n
i=1 γi = 1.

Proof. Since ρOCEu is a convex risk measure, the subgradient capital allocation is given
by

A
ρOCEu
∂,i (E0, w) = wiE [−ϕEi(e,0)]− γi αmin(Q), i = 1, . . . , n,

where ϕ ∈ ∂ρOCEu (Λw (E(e,0))) and
∑n
i=1 γi = 1 (cf. Definition C.2.4). Corollary C.2.3

yields that ϕ ∈ ∂ρOCEu (Λw (E(e,0))) if and only if ϕ maximizes the robust representation
of ρOCEu .

In the case of an exponential utility function, the robust representation of OCEu is
given by (see Example C.1.2 (v))

ρOCEu (Λw (E(e,0))) = UBSRl, 1
β

(Λw (E(e,0)))− β−1
β

= max
Q∈M1(P )

{
EQ [−Λw (E(e,0))]− 1

β

(
H(Q|P ) + log

(
1
β

))}
− β−1

β

= 1
β

(
logE[e−βΛw(E(e,0))]− log

(
1
β

))
− β−1

β

= 1
β

(
logE[e−βΛw(E(e,0))]− log

(
1
β

)
− (β − 1)

)
, β > 0,
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where the maximum is attained by the measure with density ϕ = e−βΛw(E(e,0))

E[e−βΛw(E(e,0))] . The
minimal penalty function for the OCE-risk measure is given by

αmin(Q) = sup
Λw(E(e,0))∈L∞

{EQ [−Λw (E(e,0))]− ρOCEu (Λw (E(e,0)))}

= sup
Λw(E(e,0))∈L∞

{EQ [−Λw (E(e,0))]

− 1
β

(
logE[e−βΛw(E(e,0))]− log

(
1
β

)
− (β − 1)

)}
= sup

Λw(E(e,0))∈L∞

{
EQ [−Λw (E(e,0))]− 1

β logE[e−βΛw(E(e,0))]
}

+ 1
β

(
log

(
1
β

)
+ (β − 1)

)
= 1

βH(Q|P ) + 1
β

(
log

(
1
β

)
+ (β − 1)

)
.
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D | Further Computations

In this section, we provide detailed computations of results presented in the thesis.

D.1 | Computations of Section 1.4.3

In this section, we provide detailed computations of results presented in Chapter 1, Section
1.4.3.

Assume that

u(t) :=

 1− (t− 1)4, if t ≤ 1,

1, otherwise.

We compare two different distributions for the financial position X. In the first case,
we assume that X is normally distributed with variance σ2 = 5

3 ; in the second case, we
suppose that X has a Student’s t-distribution with ν = 5 degrees of freedom. Both random
variables have the same mean and variance, but different tail behavior. In both cases, the
expression η + E [u (X − η)] can be written as a closed-form expression of η:

OCEu(X) = sup
η∈R
{η + E[u(X − η)]}

= sup
η∈R

{
η + E[1{X−η>1}] + E[(1− (X − η − 1)4) · 1{X−η≤1}]

}
= sup

η∈R

{
η +

∫ ∞
1+η

fX(x) dx+
∫ 1+η

−∞
fX(x) dx−

∫ 1+η

−∞
(x− η − 1)4 · fX(x) dx

}
= sup

η∈R

{
η + 1−

∫ 1+η

−∞
(x− η − 1)4 · fX(x) dx

}
=: sup

η∈R
{f(η)},

where fX is the density of the random variable X. Computing the derivative yields

f ′(η) = 1− d

dη

(∫ η+1

−∞
x4 · fX(x) dx− 4(η + 1)

∫ η+1

−∞
x3 · fX(x) dx

+ 6(η + 1)2
∫ η+1

−∞
x2 · fX(x) dx− 4(η + 1)3

∫ η+1

−∞
x · fX(x) dx

+(η + 1)4
∫ η+1

−∞
fX(x) dx

)

219
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= 1−
(

(η + 1)4 · fX(η + 1)−
(

4
∫ η+1

−∞
x3 · fX(x) dx+ 4(η + 1)4 · fX(η + 1)

)
+
(

12(η + 1)
∫ η+1

−∞
x2 · fX(x) dx+ 6(η + 1)4 · fX(η + 1)

)
−
(

12(η + 1)2
∫ η+1

−∞
x · fX(x) dx+ 4(η + 1)4 · fX(η + 1)

)
+
(

4(η + 1)3
∫ η+1

−∞
fX(x) dx+ (η + 1)4 · fX(η + 1)

))
= 1−

(
−4
∫ η+1

−∞
x3 · fX(x) dx+ 12(η + 1)

∫ η+1

−∞
x2 · fX(x) dx

−12(η + 1)2
∫ η+1

−∞
x · fX(x) dx+ 4(η + 1)3

∫ η+1

−∞
fX(x) dx

)
Using, e.g., Mathematica, we obtain

f ′(η) = 0 ⇔ η∗ = −2.16359 and f ′(η) = 0 ⇔ η∗ = −3.73624

respectively. Now, the OCE follows by the subsequent calculation: If X is normally dis-
tributed, we obtain

∫ −2.16359+1

−∞
(x+ 2.16359− 1)4 1√

2π 5
3

e
− 1

2
x2
5
3 dx = 0.48751,

which implies OCEu(X) = −2.16359 + 1 − 0.48751 = −1.6511. If X has a Student’s
t-distribution, it is

∫ −3.73624+1

−∞
(x+ 3.73624− 1)4 Γ(3)

√
5πΓ

(
5
2

) (1 + x2

5

)−3

dx

=
∫ −3.73624+1

−∞
(x+ 3.73624− 1)4 2

√
5π 3

√
π

4

(
1 + x2

5

)−3

dx = 3.19451,

which implies OCEu(X) = −3.73624 + 1− 3.19451 = −5.93075.

D.2 | Computations of Section 5.3

In this section, we provide detailed computations of results presented in Chapter 5, Section
5.3.

D.2.1 | Computations of Theorem 5.3.4

We provide a detailed proof of Theorem 5.3.4.

(i) CARA-utility:
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We first consider the case X ∼ Ber(x̂, p). We compute

E [uκ1 (Xν)] = 1− E
[
e−κ[(1−ν)(w−X)+ν(w−π)]

]
= 1− E

[
e−κ(1−ν)weκ(1−ν)Xe−κν(w−π)

]
= 1− e−κ[(1−ν)w+ν(w−π)]E

[
eκ(1−ν)X

]
= 1− e−κ(w−νπ)

(
eκ(1−ν)x̂p+ 1− p

)
This implies

∂

∂ν
E [uκ1 (Xν)] = ∂

∂ν

(
1− e−κw+κνπ · eκx̂−κνx̂ · p− e−κw+κνπ + p · e−κw+κνπ

)
= −κπe−κw+κνπ · eκx̂−κνx̂ · p+ e−κw+κνπ · κx̂eκx̂−κνx̂ · p

− κπe−κw+κνπ + pκπe−κw+κνπ

= κe−κw+κνπeκx̂−κνx̂
(
−pπ + x̂p− πe−κx̂+κνx̂ + pπe−κx̂+κνx̂

)
= κe−κw+κνπ+κx̂−κνx̂

(
π
(
−p− e−κx̂+κνx̂ + pe−κx̂+κνx̂

)
+ x̂p

)
= κeκ(−w+νπ+x̂−νx̂)

(
πeκ(νx̂−x̂)(−1 + p)− πp+ x̂p

)
= κeκ(πν−νx̂−w+x̂)

(
π(p− 1)eκ(ν−1)x̂ + p(x̂− π)

)
At the boundary ν = 0, we obtain

∂

∂ν
E [uκ1 (Xν)]|ν=0

= κeκ(x̂−w)
(
π(p− 1)e−κx̂ + p(x̂− π)

)
.

Thus, ν(π) = 0 is the optimal solution, if and only if

∂

∂ν
E [uκ1 (Xν)]|ν=0

≤ 0 ⇐⇒ π ≥ px̂eκx̂

1− p+ peκx̂

since

κeκ(x̂−w)
(
π(p− 1)e−κx̂ + p(x̂− π)

)
≤ 0

⇔ π(p− 1)e−κx̂ + px̂− pπ ≤ 0

⇔ π · ((p− 1)e−κx̂ − p) ≤ −px̂

⇔ π ≥ px̂

(1− p)e−κx̂ + p
= px̂eκx̂

1− p+ peκx̂

At the boundary ν = 1, we obtain ∂
∂νE [uκ1 (Xν)]|ν=1

= κeκ(π−w)(px̂− π). Thus, the
optimal solution is ν(π) = 1, iff ∂

∂νE [uκ1 (Xν)]|ν=1
≥ 0, i.e., px̂ − π ≥ 0 ⇔ π ≤ px̂.

In all other cases, we need to solve ∂
∂νE [uκ1 (Xν)] = 0, leading to the stated solution,
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since:

κeκ(πν−νx̂−w+x̂)(π(p− 1)eκ(ν−1)x̂ + p(x̂− π)) != 0

⇔ π(p− 1)eκ(ν−1)x̂ + p(x̂− π) = 0

⇔ −px̂+ pπ

π(p− 1) = eκ(ν−1)x̂

⇔ ln
(−px̂+ pπ

π(p− 1)

)
= κ(ν − 1)x̂

⇔ 1 + 1
κx̂
· ln

(−px̂+ pπ

π(p− 1)

)
= ν

⇔ ν = 1 +
(
− 1
κx̂
· ln

(
πp− π
−px̂+ pπ

))

⇔ ν = 1− 1
κx̂
· ln

(
π(1− p)
p(x̂− π)

)
= 1− 1

κx̂
· ln

 1−p
p

x̂−π
π

 = 1− 1
κx̂
· ln

( 1
p − 1
x̂
π − 1

)

The first-order conditions are sufficient due to the strict concavity.
Second, we derive the optimal contract for X ∼ Γ(ξ, µ). In this case, we compute

E [uκ1 (Xν)] = 1− e−κ[(1−ν)w+ν(w−π)]E
[
eκ(1−ν)X

]
= 1− e−κ(w−νπ)

(
µ

µ− κ(1− ν)

)ξ
This implies

∂

∂ν
E [uκ1 (Xν)] = ∂

∂ν

(
1− e−κw+κνπ · µξ · (µ− κ+ κν)−ξ

)
= µξ(−κπ)e−κw+κνπ(µ− κ+ κν)−ξ

− µξe−κw+κνπ(−ξ)(µ− κ+ κν)−ξ−1κ

= e−κ(w−νπ)
(
−κπ

(
µ

µ− κ(1− ν)

)ξ
+ ξκµξ

1
(µ− κ(1− ν))ξ+1

)

= e−κ(w−νπ) ·
(

µ

µ− κ(1− ν)

)ξ+1 (
−κπµ− κ(1− ν)

µ
+ ξ

κ

µ

)
= e−κ(w−νπ) ·

(
µ

µ− κ(1− ν)

)ξ+1 (
−κ
µ

)
(π(µ− κ(1− ν))− ξ)

At the boundary ν = 0, we obtain

∂

∂ν
E [uκ1 (Xν)]|ν=0

= e−κw
(

µ

µ− κ

)ξ+1 (
−κ
µ

)
(π(µ− κ)− ξ).

Thus, ν(π) = 0 is the optimal solution, if and only if

∂

∂ν
E [uκ1 (Xν)]|ν=0

≤ 0 ⇐⇒ π ≥ ξ

µ− κ
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since

e−κw
(

µ

µ− κ

)ξ+1 (
−κ
µ

)
(π(µ− κ)− ξ) ≤ 0 ⇔

(
−κ
µ

)
(π(µ− κ)− ξ) ≤ 0

⇔ π((µ− κ)− ξ) ≥ 0

⇔ π ≥ ξ

µ− κ

At the boundary ν = 1, we obtain ∂
∂νE [uκ1 (Xν)]|ν=1

= e−κ(w−π)
(
−κ
µ

)
(πµ−ξ). Thus,

the optimal solution is ν(π) = 1, iff ∂
∂νE [uκ1 (Xν)]|ν=1

≥ 0, i.e.,
(
−κ
µ

)
(πµ−ξ) ≥ 0 ⇔

π ≤ ξ
µ .

In all other cases, we need to solve ∂
∂νE[uκ1(Xν)] = 0, leading to the stated solution,

since:

e−κ(w−νπ) ·
(

µ

µ− κ(1− ν)

)ξ+1 (
−κ
µ

)
(π(µ− κ(1− ν))− ξ) != 0

⇔ π(µ− κ(1− ν))− ξ = 0

⇔ πµ− κπ + πκν − ξ = 0

⇔ ν = 1 + ξ

πκ
− µ

κ

The first-order conditions are sufficient due to the strict concavity.

(ii) HARA-utility: We compute

E
[
uλ2 (Xν)

]
= E

[ 1
λ
· ((1− ν)(w −X) + ν(w − π))λ

]
= 1
λ
·
(
((1− ν)(w − x̂) + ν(w − π))λ · p

+((1− ν)w + ν(w − π))λ · (1− p)
)

This implies

∂

∂ν
E
[
uλ2 (Xν)

]
= ∂

∂ν

( 1
λ
·
(
(w − x̂− νw + νx̂+ νw − νπ)λ · p

+(w − νw + νw − νπ)λ · (1− p)
))

= 1
λ
·
(
λ · (w − x̂+ νx̂− νπ)λ−1 · p · (x̂− π)

+λ · (w − νπ)λ−1 · (1− p) · (−π)
)

= p(x̂− π)(x̂(ν − 1) + w − νπ)λ−1 + (−π)(1− p)(w − νπ)λ−1

At the boundary ν = 0, we obtain

∂

∂ν
E
[
uλ2 (Xν)

]
|ν=0

= p(x̂− π)(−x̂+ w)λ−1 + (−π)(1− p)wλ−1.
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Thus, ν(π) = 0 is the optimal solution, if and only if

∂

∂ν
E
[
uλ2 (Xν)

]
|ν=0

≤ 0 ⇐⇒ π ≥ px̂w1−λ

pw1−λ + (1− p)(w − x̂)1−λ

since

p(x̂− π)(−x̂+ w)λ−1 + (−π)(1− p)wλ−1 ≤ 0

⇔ px̂(w − x̂)λ−1 ≤ π
(
(1− p)wλ−1 + p(w − x̂)λ−1

)
⇔ π ≥ px̂(w − x̂)λ−1

(1− p)wλ−1 + p(w − x̂)λ−1 = px̂w1−λ

pw1−λ + (1− p)(w − x̂)1−λ

compare Appendix D.2.2, part (ii), for the last computation. At the boundary ν = 1,
we obtain ∂

∂νE
[
uλ2 (Xν)

]
|ν=1

= p(x̂− π)(w − π)λ−1 + (−π)(1− p)(w − π)λ−1. Thus,

the optimal solution is ν(π) = 1, iff ∂
∂νE

[
uλ2 (Xν)

]
|ν=1

≥ 0 ⇔ π ≤ px̂, since

p(x̂− π)(w − π)λ−1 + (−π)(1− p)(w − π)λ−1 ≥ 0

⇔ px̂(w − π)λ−1 ≥ π
(
(1− p)(w − π)λ−1 + p(w − π)λ−1

)
⇔ π ≤ px̂(w − π)λ−1

(1− p)(w − π)λ−1 + p(w − π)λ−1 = px̂

In all other cases, we need to solve ∂
∂νE

[
uλ2 (Xν)

]
= 0, leading to the stated solution,

since:

p(x̂− π)(x̂(ν − 1) + w − νπ)λ−1 + (−π)(1− p)(w − νπ)λ−1 != 0

⇔ p(x̂− π)(w − νπ)1−λ − π(1− p)((ν − 1)x̂− νπ + w)1−λ = 0

⇔ (1− p)π((ν − 1)x̂− νπ + w)1−λ = p(x̂− π)(w − νπ)1−λ

⇔ πζ(1− p)ζ((ν − 1)x̂− νπ + w) = pζ(x̂− π)ζ(w − νπ), where ζ = 1
1− λ

⇔ πζ(1− p)ζ(ν − 1)x̂− (1− p)ζπζνπ + (1− p)ζπζw

= pζ(x̂− π)ζw − pζ(x̂− π)ζνπ

⇔ (1− p)ζπζνx̂− (1− p)ζπζ+1ν + pζ(x̂− π)ζνπ

= (1− p)ζπζ x̂− (1− p)ζπζw + pζ(x̂− π)ζw

⇔ ν =
πζ
(
(1− p)ζ x̂− (1− p)ζw

)
+ pζ(x̂− π)ζw

πζ(1− p)ζ(x̂− π) + pζ(x̂− π)ζπ

The first-order conditions are sufficient due to the strict concavity.

(iii) Logarithmic utility: We compute

E
[
u0

2 (Xν)
]

= E [log((1− ν)(w −X) + ν(w − π))]

= log((1− ν)(w − x̂) + ν(w − π)) · p+ log((1− ν)w + ν(w − π)) · (1− p)
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This implies

∂

∂ν
E
[
u0

2 (Xν)
]

= ∂

∂ν
(log(w − x̂+ νx̂− νπ) · p+ log(w − νπ) · (1− p))

= 1
w − x̂+ νx̂− νπ

· p · (x̂− π) + 1
w − νπ

· (1− p) · (−π)

At the boundary ν = 0, we obtain

∂

∂ν
E
[
u0

2 (Xν)
]
|ν=0

= 1
w − x̂

p(x̂− π) + (−π)(1− p) 1
w

Thus, ν(π) = 0 is the optimal solution, if and only if

∂

∂ν
E
[
u0

2 (Xν)
]
|ν=0

≤ 0 ⇐⇒ π ≥ px̂w

w + x̂(p− 1)

since

1
w − x̂

p(x̂− π) + (−π)(1− p) 1
w
≤ 0

⇔ 1
w − x̂

px̂ ≤ π

(1− p
w

+ p

w − x̂

)
⇔ π ≥ px̂(w − x̂)−1

(1− p)w−1 + p(w − x̂)−1 = px̂w

w + x̂(p− 1)

The last equation is obtained by

px̂(w − x̂)−1

(1− p)w−1 + p(w − x̂)−1 =
px̂
w−x̂

(1−p)(w−x̂)
w(w−x̂) + pw

w(w−x̂)

=
px̂
w−x̂

(1−p)(w−x̂)+pw
w(w−x̂)

= px̂

w − x̂
· w(w − x̂)

(1− p)(w − x̂) + pw
= px̂w

(1− p)(w − x̂) + pw

= px̂w

w − x̂+ px̂
= px̂w

w + x̂(p− 1)

At the boundary ν = 1, we obtain ∂
∂νE

[
u0

2 (Xν)
]
|ν=1

= 1
w−πp(x̂−π)+(−π)(1−p) 1

w−π .
Thus, the optimal solution is ν(π) = 1, iff ∂

∂νE
[
u0

2 (Xν)
]
|ν=1

≥ 0, i.e., p(x̂ − π) ≥
π(1− p) ⇔ π ≤ px̂.

In all other cases, we need to solve ∂
∂νE

[
u0

2 (Xν)
]

= 0, leading to the stated solution,
since:

1
w − x̂+ νx̂− νπ

· p · (x̂− π) + 1
w − νπ

· (1− p) · (−π) != 0

⇔ p(x̂− π) 1
w − x̂+ νx̂− νπ

= π(1− p) 1
w − νπ

⇔ p(w − νπ)(x̂− π) = π(1− p)(w − x̂+ νx̂− νπ)

⇔ − p(x̂− π)νπ − π(1− p)νx̂+ π(1− p)νπ

= π(1− p)w − π(1− p)x̂− p(x̂− π)w

⇔ ν(−p(x̂− π)π − π(1− p)x̂+ π2(1− p)) = π(1− p)(w − x̂)− pw(x̂− π)
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⇔ ν = π(1− p)(w − x̂)− pw(x̂− π)
π(1− p)(π − x̂)− pπ(x̂− π) = π(w − x̂)− px̂(w − π)

π(π − x̂)

The first-order conditions are sufficient due to the strict concavity.

D.2.2 | Computations of Remark 5.3.5

First, observe that

w − E [(w −X)u′(w −X)]
E [u′(w −X)] = E [Xu′(w −X)]

E [u′(w −X)]

(i) CARA-utility:
For X ∼ Ber(x̂, p), it is E[X] = px̂ and E[Xu′(w−X)]

E[u′(w−X)] = E[XeκX ]
E[eκX ] = px̂eκx̂

peκx̂+(1−p) .

For X ∼ Γ(ξ, µ), it is E[X] = ξ
µ and E[Xu′(w−X)]

E[u′(w−X)] = E[XeκX ]
E[eκX ] . Since X is

Gamma-distributed, we have

1
E [eκX ] = 1(

µ
µ−κ

)ξ = (µ− κ)ξ

µξ

and

E
[
X eκX

]
=
∫
R
x eκx fξ,µ(x) dx = µξ

Γ(ξ)

∫ ∞
0

xξ e(κ−µ)x dx.

The gamma function satisfies Γ(ξ + 1) = ξ Γ(ξ). By substituting y = −(κ− µ)x, we
compute

E
[
X eκX

]
= µξ

Γ(ξ)
1

(µ− κ)ξ+1

∫ ∞
0

yξ e−y dy = µξ

Γ(ξ)
1

(µ− κ)ξ+1 Γ(ξ + 1)

= µξ

Γ(ξ)
1

(µ− κ)ξ+1 ξ Γ(ξ) = µξ ξ

(µ− κ)ξ+1

Finally,
E
[
XeκX

]
E [eκX ] = (µ− κ)ξ

µξ
· µξ ξ

(µ− κ)ξ+1 = ξ

µ− κ

(ii) HARA-utility: It is E[X] = px̂ and for λ ∈ (0, 1)

E [Xu′(w −X)]
E [u′(w −X)] = px̂(w − x̂)λ−1

p(w − x̂)λ−1 + (1− p)wλ−1 =
px̂

(w−x̂)1−λ

p
(w−x̂)1−λ + 1−p

w1−λ

=
px̂

(w−x̂)1−λ

pw1−λ+(1−p)(w−x̂)1−λ

(w−x̂)1−λw1−λ

= px̂(w − x̂)1−λw1−λ

(w − x̂)1−λ(pw1−λ + (1− p)(w − x̂)1−λ)

= px̂w1−λ

pw1−λ + (1− p)(w − x̂)1−λ
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(iii) Logarithmic utility: It is E[X] = px̂ and E[Xu′(w−X)]
E[u′(w−X)] = px̂w

w+x̂(p−1)

D.2.3 | Computations of Premium Principles in Table 5.2

We consider the following premium principles:

1. Expected Value Principle: π = E[X] + δ · E[X],

2. Variance Principle: π = E[X] + δ ·Var(X),

3. Semi-Variance Principle: π = E[X] + δ · E
[(

(X − E[X])+
)2
]
,

4. Standard Deviation Principle: π = E[X] + δ ·
√
Var(X),

5. Semi-Standard Deviation Principle: π = E[X] + δ ·
√
E
[(

(X − E[X])+
)2
]
.

Note that in addition to Section 5.3, we also compute the variance and semi-variance
principle.
For X ∼ Ber(x̂, p), we calculate:

1. Expected Value Principle: π = px̂+ δpx̂ = px̂ · (1 + δ)

2. Variance Principle:

π = px̂+ δ ·
(
E
[
X2
]
− E[X]2

)
= px̂+ δ · (px̂2 − p2x̂2) = px̂+ δpx̂2 · (1− p)

= px̂ · (1 + δ(1− p)x̂)

3. Semi-Variance Principle:

π = px̂+ δ · (p(x̂− px̂)2) = px̂+ δ · (p(x̂2 − 2px̂2 + p2x̂2)

= px̂+ δ · (px̂2(1− 2p+ p2)) = px̂+ δ · (px̂2(1− p)2) = px̂ · (1 + δ(1− p)2x̂)

4. Standard Deviation Principle:

π = px̂+ δ ·
√
px̂2 − p2x̂2 = px̂+ δx̂

√
p(1− p)

= px̂ ·
(

1 + δ

√
p
√

1− p
p

)
= px̂ ·

(
1 + δ

√
1− p
p

)

5. Semi-Standard Deviation Principle:

π = px̂+ δ ·
√
px̂2(1− p)2 = px̂+ δx̂(1− p)√p = px̂ ·

(
1 + δ

1− p
√
p

)

For X ∼ Γ(ξ, µ), we calculate:

1. Expected Value Principle: π = ξ
µ + δ · ξµ = ξ

µ · (1 + δ)
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2. Variance Principle: π = ξ
µ + δ · ξ

µ2 = ξ
µ

(
1 + δ 1

µ

)
3. Semi-Variance Principle: We have to compute E

[(
(X − E[X])+

)2
]
. To this end,

define the upper incomplete gamma function

Γ(α, t) :=
∫ ∞
t

xα−1e−x dx

and note that,

Γ(α+ 1, t) = e−ttα + αΓ(α, t) and Γ(α, t) = λα
∫ ∞
t
λ

xα−1e−λx dx,

cf. Remark D.2.1. Hence, we obtain

E
[(

(X − E[X])+
)2
]

=
∫ ∞
ξ
µ

(
x− ξ

µ

)2 µξ

Γ(ξ)x
ξ−1e−µx dx =

∫ ∞
ξ
µ

(
x2 − 2 ξ

µ
x+ ξ2

µ2

)
µξ

Γ(ξ)x
ξ−1e−µx dx

= µξ

Γ(ξ)

(∫ ∞
ξ
µ

xξ+1e−µx dx− 2 ξ
µ

∫ ∞
ξ
µ

xξe−µx dx+ ξ2

µ2

∫ ∞
ξ
µ

xξ−1e−µx dx

)

= µξ

Γ(ξ)

(
1

µξ+2 Γ(ξ + 2, ξ)− 2 ξ
µ

1
µξ+1 Γ(ξ + 1, ξ) + ξ2

µ2
1
µξ

Γ(ξ, ξ)
)

= µξ

Γ(ξ)

( 1
µξ+2

(
e−ξξξ+1 + (ξ + 1)Γ(ξ + 1, ξ)− 2ξ

(
e−ξξξ + ξΓ(ξ, ξ)

)
+ ξ2Γ(ξ, ξ)

))
= 1

Γ(ξ)
1
µ2

(
e−ξξξ+1 + (ξ + 1)

(
e−ξξξ + ξΓ(ξ, ξ)

)
−2e−ξξξ+1 − 2ξ2Γ(ξ, ξ) + ξ2Γ(ξ, ξ)

)
= 1
µ2Γ(ξ)

(
ξξ+1e−ξ + ξξ+1e−ξ + ξξe−ξ + ξ2Γ(ξ, ξ) + ξΓ(ξ, ξ)

−2ξξ+1e−ξ − 2ξ2Γ(ξ, ξ) + ξ2Γ(ξ, ξ)
)

= 1
µ2Γ(ξ)

(
ξξe−ξ + ξΓ(ξ, ξ)

)
Thus,

π = ξ

µ
+ δ · 1

µ2Γ(ξ)
(
ξξe−ξ + ξΓ(ξ, ξ)

)
= ξ

µ
·
(

1 + δ
1

µΓ(ξ)
(
ξξ−1e−ξ + Γ(ξ, ξ)

))
.

For ξ = 1, this leads to
π = 1

µ
·
(

1 + δ
2
µ
e−1

)
.

4. Standard Deviation Principle: π = ξ
µ + δ ·

√
ξ
µ2 = ξ

µ ·
(

1 + δ 1√
ξ

)
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5. Semi-Standard Deviation Principle:

π = ξ

µ
+ δ ·

√
1

µ2Γ(ξ) (ξξe−ξ + ξΓ(ξ, ξ)) = ξ

µ
·
(

1 + δ
1
ξ

√
1

Γ(ξ) (ξξe−ξ + ξΓ(ξ, ξ))
)

For ξ = 1, this leads to
π = 1

µ
·
(
1 + δ

√
2e−1

)
.

Remark D.2.1. It is

(i) Γ(α+ 1, t) = e−ttα + αΓ(α, t),

(ii) Γ(α, t) = λα
∫∞
t
λ
xα−1e−λx dx.

Proof. (i) By partial integration, we obtain

Γ(α+ 1, t) =
∫ ∞
t

xαe−x dx = lim
T→∞

∫ T

t
xαe−x dx

= lim
T→∞

([
−e−xxα

]T
t +

∫ T

t
e−xαxα−1, dx

)

= lim
T→∞

(
−e−TTα + e−ttα + α

∫ T

t
xα−1e−x dx

)

= lim
T→∞

−e−TTα + e−ttα + α

∫ ∞
t

xα−1e−x dx

= e−ttα + αΓ(α, t)

(ii) By substituting y = λx, we obtain∫ ∞
t
λ

xα−1e−λx dx = 1
λα−1

∫ ∞
t

yα−1e−y
1
λ
dy = 1

λα

∫ ∞
t

yα−1e−y dy = 1
λα

Γ(α, t).

Hence,
Γ(α, t) = λα

∫ ∞
t
λ

xα−1e−λx dx.

Remark D.2.2. Note that

Γ(1) =
∫ ∞

0
e−x dx =

[
−e−x

]∞
0 = 0 + e−0 = 1

and
Γ(1, 1) =

∫ ∞
1

e−x dx =
[
−e−x dx

]∞
1 = 0 + e−1 = e−1.
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