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Abstract 

Background and aim: The proportion of vegetarian diets has increased in recent years. The beneficial 

effects of a lacto-ovo vegetarian diet on various diseases such as type 2 diabetes and cardiometabolic 

disorders are well documented. In contrast, there are also potentially critical nutrients such as vitamin 

B12, D, and iron. The popularity of vegetarian diets is increasing in endurance sports as well. However, 

previous studies investigating the relationship between vegetarian diets and sports are outdated, 

questionnaire-based and did not include nutritional or sports medical diagnostics, had a very low sample 

size or included only vegetarians and omnivores. There are no significant data on vegan athletes. In 

addition, data on exercise-induced metabolic changes do not exist. The validity of the current knowledge 

is therefore low. As a result, the aim of this thesis was to study the nutrient intake, status of selected 

biomarkers, exercise capacity and exercise-induced changes in energy metabolism (sirtuins), oxidative 

stress (malondialdehyde), amino acid profile (AA profile), and nitric oxide (NO) (nitrate, nitrite). 

Methods: In a cross-sectional study 81 ambitious male and female recreational runners (18-35 years, 

BMI 20-25 kg / m², 2-5 training sessions per week) with an omnivorous (OMN, n=27), lacto-ovo 

vegetarian (LOV, n=26) or vegan (VEG, n=28) diet were included in the study and were matched 

according to age and gender. Initially, anthropometric examinations, recording of nutrient intake (incl. 

supplements) based on 3-day dietary records as well as fasting blood samples to determine the status 

of vitamin B12, D, and iron, and folic acid as well as of zinc, magnesium, and calcium, were carried out. 

In addition, performance diagnostics and measurement of the lactate and glucose concentration by 

means of an incremental step test until exhaustion took place. The short-term food intake was conducted 

on the day of the performance diagnostics using a 24-hours dietary recall. In addition, blood samples 

were taken before and after exercise to analyze exercise-induced changes in sirtuins, malondialdehyde, 

AA profile, nitrate, and nitrite. 

Results: On average, dietary nutrient intake was adequate for all three groups, which was in part due 

to supplementation. Despite partially quantitatively different nutrient intake, a comparable and adequate 

status of vitamin B12, D, and iron biomarkers could be determined. The performance diagnostics 

revealed no differences between the groups in maximum power output related to body weight (OMN: 

4.15 ± 0.48, LOV: 4.20 ± 0.47, VEG: 4.16 ± 0.55 watt/kg BW, p=0.917) and lactate and glucose 

concentrations. In addition, the study showed that the groups differ in terms of oxidative stress, NO 

metabolism, and AA profile. Exercise induced an increase in MDA in all three groups, no significant 

changes in nitrate and nitrite, and comparable increases in alanine, while there were differences in AA 

metabolism as well. 

Conclusion: Ambitious recreational runners with vegetarian diets have an adequate status even with 

otherwise critical nutrients and thus show a high health awareness. Especially in VEG, there seem to 

exist adaptational mechanisms in energy metabolism, as shown by sirtuin activity and AA metabolism. 

However, these only partially affect performance. Factors such as exercise and genetic aspects seem 

to have a greater impact on performance than avoiding meat. In addition, it can be assumed that 

increased antioxidant intake has no additive effects on exercise-induced oxidative stress. The study 

shows that both vegetarian and vegan diets are an adequate alternative for ambitious recreational 

athletes. Further studies are needed to examine the influence of vegetarian diets on health and physical 

performance. 

Trial registration: German Register of Clinical Trials DRKS00012377 

Key words: Vegetarian diets, nutritional status, exercise performance 
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Zusammenfassung 

Hintergrund und Ziel: Der Anteil vegetarischer Ernährungsformen ist in den letzten Jahren gestiegen. 

Die günstigen Effekte einer lakto-ovo-vegetarischen Ernährung auf verschiedene Erkrankungen wie 

Typ-2-Diabetes und kardiometabolische Erkrankungen sind gut erforscht. Allerdings gibt es auch po-

tentiell kritische Nährstoffe wie Vitamin B12, D und Eisen. Die Popularität pflanzenbasierter Kost steigt 

auch im Ausdauersport. Allerdings sind bisherige Studien, welche den Zusammenhang zwischen ve-

getarischer Ernährung und Sport untersuchten, veraltet, fragebogenbasierend und beinhalteten keine 

ernährungs- oder sportmedizinische Diagnostik, umfassten eine sehr geringe Probandenzahl oder 

schlossen nur Vegetarier und Omnivore ein. Bei veganen Sportlern gibt es praktisch keine aussage-

kräftigen Daten. Auch Daten zu belastungsinduzierten metabolischen Veränderungen gibt es nicht. Die 

Aussagekraft der aktuellen Studienlage ist daher gering. Infolgedessen war es das Ziel dieser Arbeit, 

die Nährstoffaufnahme, den Status ausgewählter Biomarker, die sportliche Leistungsfähigkeit sowie 

belastungsinduzierte Veränderungen von Parametern des Energiemetabolismus (Sirtuine), des 

oxidativen Stresses (Malondialdehyd), des Aminosäureprofils (AS-Profil) sowie des Stickstoffmonoxid- 

(NO) Metabolismus (Nitrat, Nitrit) zu untersuchen. 

Methodik: Im Rahmen einer Querschnittsstudie wurden 81 ambitionierte Freizeitläufer (18-35 Jahre, 

BMI 20-25 kg/m², 2-5 x Training pro Woche), welche sich omnivor (OMN, n=27), lakto-ovo-vegetarisch 

(LOV, n=26) oder vegan (VEG, n=28) ernährten, in die Studie aufgenommen und nach Alter und Ge-

schlecht zugeordnet. Zunächst erfolgten anthropometrische Untersuchungen, die Erfassung der Nähr-

stoffzufuhr (inkl. Supplemente) anhand von 3-Tage Ernährungsprotokollen sowie Nüchternblutabnah-

men zur Statusbestimmung von Vitamin B12, D, Eisen und Folsäure sowie Zink, Magnesium und Cal-

cium. Außerdem fand eine Leistungsdiagnostik und Messung der Laktat- und Glukosekonzentration 

mittels Stufentests bis zur maximalen Ausbelastung statt. Die kurzfristige Nahrungsaufnahme wurde am 

Tag der Leistungsdiagnostik mittels 24h-Recall durchgeführt. Darüber hinaus erfolgten vor und nach 

Belastung Blutentnahmen zur Diagnostik belastungsinduzierter Veränderungen von Sirtuinen, 

Malondialdehyd, dem AS-Profil sowie Nitrat und Nitrit. 

Ergebnisse: Die Nährstoffaufnahme war durchschnittlich bei allen drei Gruppen adäquat, was partiell 

von der Supplementierung abhing. Trotz teilweise quantitativ unterschiedlicher Nährstoffaufnahme 

konnte ein vergleichbarer und zudem adäquater Status von Biomarkern des Vitamin B12-, D-, und Eisen-

Stoffwechsels festgestellt werden. Die Leistungsdiagnostik ergab keine Unterschiede bezüglich 

maximaler Leistungsfähigkeit (OMN: 4.15±0.48, LOV: 4.20±0.47, VEG: 4.16±0.55 Watt/kg KG; p=0.917) 

sowie Laktat- und Glukosekonzentrationen zwischen den Gruppen. Darüber hinaus zeigte die Studie, 

dass sich die Gruppen in Bezug auf oxidativen Stress, NO-Metabolismus und AS-Profil voneinander 

unterscheiden. Die Belastung induzierte in allen drei Gruppen einen Anstieg von MDA, keine 

signifikanten Veränderungen von Nitrat und Nitrit und vergleichbare Anstiege des Alanins, während es 

ebenso Unterschiede im AS-Metabolismus gab. 

Schlussfolgerung: Ambitionierte Freizeitläufer mit vegetarischen Ernährungsmustern weisen einen 

adäquaten Status auch bei sonst kritischen Nährstoffen auf und zeigen damit ein hohes Gesundheits-

bewusstsein. Es scheint insbesondere bei VEG Anpassungsmechanismen im Energiestoffwechsel zu 

geben, was durch die Sirtuinaktivität und den AS-Metabolismus gezeigt wurde, welche allerdings nur 

partiell die Leistungsfähigkeit zu beeinflussen scheinen. Faktoren wie Training und Genetik scheinen 

einen größeren Einfluss auf die Leistungsfähigkeit zu haben, als das Meiden von Fleisch. Darüber 

hinaus kann angenommen werden, dass eine erhöhte Antioxidantienaufnahme keine additiven Effekte 

auf belastungsinduzierten oxidativen Stress hat. Die Studie verdeutlicht, dass sowohl eine vegetarische 

als auch vegane Ernährung adäquate Alternativen für ambitionierte Freizeitsportler darstellen. Weitere 

Studien sind notwendig, um den Einfluss vegetarischer Ernährungsmuster auf Gesundheit und 

sportliche Leistungsfähigkeit zu untersuchen.  

Studienregistrierung: Deutsches Register Klinischer Studien DRKS00012377 

Stichwörter: Vegetarische Ernährungsformen, Nährstoffstatus, sportliche Leistungsfähigkeit  
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1. General introduction 

1.1. Aim of this dissertation thesis  

Vegetarian diets are gaining popularity in the western world. Nowadays, the health benefits of 

a lacto-ovo vegetarian diet are well documented. Large-scale studies such as the Adventist 

Health Study (AHS) and the European Prospective Investigation into Cancer and Nutrition 

(EPIC) Oxford Study clearly show that vegetarian dietary patterns may have beneficial effects 

on various diseases such as obesity, type 2 diabetes, cardiometabolic diseases, hypertension, 

and cancer [1–9], although healthy non-vegetarian diets can achieve the same effects [10]. 

Hence, several nutrition societies, such as the Academy of Nutrition and Dietetics (USA), the 

British Nutrition Foundation (GB), the National Program for the Promotion of a Healthy Diet 

(Portugal) and the National Health and Medical Research Council (Australia), recommend 

vegetarian nutrition in all life stages, including for athletes [11–14]. In contrast, a strict vegan 

diet is viewed as critical due to the risk for an undersupply with several nutrients such as 

protein, long-chain n3 fatty acids, riboflavin, vitamin B12, vitamin D, calcium, iron, and zinc [15].  

Although vegetarian diets are becoming increasingly popular in endurance sports [16] and the 

prevalence of ambitious recreational runners who practice vegetarianism or veganism is 

increasing [17], there is little evidence on health status and exercise capacity of vegetarian or 

vegan athletes. Only a few studies have reported the dietary intake (partly incomplete) of 

vegetarian athletes [18–20], whereas the nutrient intake and status of vegan athletes is rather 

unknown. The question of whether vegetarian and especially vegan athletes can meet their 

requirements is still unclear. A recent questionnaire-based study suggests that vegan and 

vegetarian endurance athletes have the same health status as omnivores [21,22]. However, 

in order to assess the health status, the examination of biochemical data is indispensable. 

There are only a few biochemical data on nutrient supply and on exercise capacity, which 

additionally are outdated [19,23]. Furthermore, studies did not differentiate between 

vegetarians and vegans [18]. In addition to exercise capacity, diet-related adaptations to 

exercise-induced physiological metabolic processes are also conceivable. However, there are 

no data available. 

In addition to the lack of biochemical and performance-specific data, the differentiated 

consideration of vegetarianism and veganism in endurance sports is missing. Consequently, 

an investigation of the nutrient intake in combination with biochemical parameters and 

parameters of exercise capacity appears meaningful. Those scientific insights provide the 

foundation for the assessment of the relationship between vegetarian diets and health status 

as well as performance. These findings can help to formulate initial recommendations for 

vegetarian/vegan athletes to optimize their health status and performance. 
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Study objectives 

In order to generate new information on the status of athletes practicing vegetarian diets, data 

were collected as part of a cross-sectional study from recreational athletes following a vegan 

or lacto-ovo vegetarian diet and compared with those of omnivores. Nutrient intake, nutritional 

status in the form of biochemical parameters and exercise capacity were analyzed. 

Additionally, parameters of the exercise-induced alterations of energy metabolism (sirtuins), 

oxidative stress (malondialdehyde, MDA), nitric oxide (NO) metabolism (nitrate, nitrite) and 

amino acid profile were investigated. The following research questions form the basis of this 

dissertation thesis, which are addressed in the respective scientific publication: 

1. How is the nutrient supply of vegan and lacto-ovo vegetarian recreational athletes 

compared to omnivores and do they meet the recommendations? (Paper I, chapter 

2.1.) 

2. Do vegan, lacto-ovo vegetarian and omnivorous recreational athletes differ in terms of 

biochemical parameters in blood? (Paper II, chapter 2.2.) 

3. Are there differences in exercise capacity between vegan, lacto-ovo vegetarian and 

omnivorous recreational athletes? (Paper III, chapter 2.3.) 

4. Do vegetarian dietary patterns influence exercise-induced regulation of sirtuin activity? 

(Paper IV, chapter 2.4.) 

5. Are there differences in the expression of parameters of the exercise-induced oxidative 

stress in the form of MDA, NO metabolism and amino acid profile between vegan, lacto-

ovo vegetarian and omnivorous athletes? (Paper V, chapter 2.5.) 
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1.2. Vegetarian diets 

1.2.1. Definitions, distribution, and motivation  

As early as 500 before Christ, Pythagoras founded vegetarianism (“vegetare” – to grow) as a 

diet that in addition to the predominant proportion of foods derived from plants is characterized 

by abstaining from meat, fish and its products. Depending on the dietary intake, several 

subgroups exist [11] (Table 1). 

Vegetarianism was defined as  

“[…] a diet that uses only or predominantly plant-based foods such as grains, vegetables, fruits, 

legumes, nuts, and seeds. Depending on the form of vegetarianism, products from live animals such as 

milk, eggs and honey and all products made from them may also be included. Excluded are foods 

derived from dead animals, such as meat, fish (including other aquatic animals) and all products derived 

from them. On the basis of the consumed food, one differentiates lacto-ovo, lacto  and ovo vegetarians 

as well as vegans, whereby the latter refuse all animal products, including honey and commodities from 

animal parts (wool, fur, leather, etc.).” [24] 

 

In contrast to vegetarianism, veganism is understood as a way of life and thus defined as 

“[…] a philosophy and way of living which seeks to exclude—as far as is possible and practicable—all 

forms of exploitation of, and cruelty to, animals for food, clothing or any other purpose; and by extension, 

promotes the development and use of animal-free alternatives for the benefit of humans, animals and 

the environment. In dietary terms, it denotes the practice of dispensing with all products derived wholly 

or partly from animals.” [25] 

 

Table 1 Types of vegetarian diets. 

Type Exclusion of 

lacto-ovo-vegetarianism meat, fish and their products 

lacto-vegetarianism meat, fish, their products and eggs 

ovo-vegetarianism meat, fish, their products and dairy products 

veganism all animal-derived products 

raw food (almost) all animal-derived products + heated foods 

The table was designed according to [11]. 

 

However, there are also many overlaps and mixed forms, so in reality, this classification is not 

always possible due to inhomogeneous diets.  
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Distribution 

Vegetarianism is distributed differently worldwide, with high prevalence in India and low 

prevalence in Australia and the US (Figure 1). It is estimated that there are approximately 

4.3 % up to 10 % vegetarians in Germany, whereas vegans are said to represent about 1.6% 

[16,26–28].  

 

Figure 1 Proportion of vegetarians worldwide in 2016 (exemplary). 

The figure was modified in accordance with [29] and in addition of [30]. 

 

The motives for following vegetarian diets are manifold and currently changing. Apart from 

ethical motives, health and performance aspects play an important role [31]. Additionally, 

religious and ecological aspects must be mentioned [32].  

 

1.2.2. Nutrient intake and status 

The difficulty in assessing the nutrient status is that there is not one vegetarian or vegan diet 

as described in chapter 1.2.1. Therefore, no general statement can be made about the 

nutritional status of vegetarians and vegans [24]. In addition, the nutritional evaluation is 

hampered by the fact that the local recommendations are defined for the healthy general 

population (Deutsche, Österreichische und Schweizerische Gesellschaften für Ernährung, D-

A-CH [33]) and there are no separate recommendations for vegetarians and athletes (for 

details see chapter 1.3.4.).  

Overall, the predominant or exclusive consumption of plant foods are reflected in the nutrient 

profile. Several studies investigated the dietary intake of vegetarians and vegans, including 

two large-scale studies (the EPIC Oxford Study and the Adventist Health Study, AHS I and II) 
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with more than 60.000 and 96.000 participants, respectively [34,35]. The energy intake of 

omnivores is typically higher compared to vegetarians and especially vegans [34,36–42]. Also, 

there are differences regarding the macro nutrient ratio, as vegetarians and vegans consume 

more (complex) carbohydrates than omnivores due to the high or exclusive proportion of 

vegetable foods [34,36–38,40,43]. In both omnivorous and vegetarian dietary patterns, the 

percentage of protein intake is above the recommendations [34,44]. Several studies found 

that vegetarians and especially vegans have a lower protein intake than omnivores [37–39,43] 

and thus are closer to the recommendations [34,44]. Considering the quality of dietary protein 

and the supply with essential amino acids, both, omnivores and lacto-ovo vegetarians can 

achieve an adequate biological value. But vegans can also achieve adequate amounts [45] if 

adequate energy intake is guaranteed. The fat intake of vegetarians and vegans is typically 

lower to that of omnivores [38]. However, lacto-ovo vegetarians typically consume significantly 

less saturated and larger amounts of monounsaturated and polyunsaturated fatty acids [34]. 

Since long-chain omega-3 polyunsaturated fatty acids (PUFA, > 20 C-atoms) are only present 

in marine sources, the intake of docosahexaenoic acid (DHA) and eicosapentaenoic acid 

(EPA) is lower in vegetarian diets than in omnivorous [46,47]. In addition, due to the lower 

conversion rate of alpha-linoleic acid (ALA), which occurs in plant oils, vegetarians and vegans 

have a lower status of EPA and DHA in blood [46–49]. In contrast, due to the high or exclusive 

intake of plant-based foods, vegetarians and especially vegans consume significantly more 

fiber compared to omnivores [34,38,43,50–52].  

When considering the micronutrient supply, a differentiation between dietary intake and blood 

concentrations is crucial, since inhibiting or promoting substances and the bioavailability have 

an impact on the status [24]. Additionally, the assessment of the supply situation is hampered 

by the fact that clinical parameters have not been established for all nutrients. Furthermore, 

the minerals potassium, magnesium, calcium and zinc are subject to strict homeostatic 

regulations [53], whereby the dietary intake is not directly reflected. 

A lacto-ovo vegetarian as well as a vegan diet per se, is associated with a high intake of β-

carotene, vitamin C, E, B1, folic acid, pantothenic acid, and biotin [34,38,41,42,50,52]. In 

addition, vegetarian diets generally provide adequate amounts of potassium, magnesium, 

vitamin K, B6, copper, and selenium [34,38,41–43,50,51]. 

Due to the low alimentary intake, on the one hand, and the low bioavailability from vegetable 

sources, on the other hand, there are some critical nutrients for vegetarian dietary patterns. 

The most critical nutrient is vitamin B12, which occurs in small amounts in milk and dairy 

products, while a vegan diet contains in purely arithmetic terms 0 µg [24]. Therefore, a 

supplementation of vitamin B12 or fortified foods is recommended [11]. Further, although the 

dietary intake of iron is characteristically higher in people with vegetarian diets, investigations 
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showed an undersupply of ferritin in especially female vegetarians and vegans [54]. Therefore, 

vegans are advised to consume 1.8 fold more iron than omnivores [14]. In fact, vegetarian 

diets contain high amounts of iron-absorption inhibiting substances such as fiber and phytic 

acid. However, the dietary intake of vitamin C as an iron absorption promoting substance is 

elevated as well [41,42]. Thus, a targeted choice of food can ensure an adequate supply of 

iron in vegetarian diets [11]. 

In addition, vitamin D is a critical nutrient for the general population, independent of diet, as 

even omnivores do not reach the recommended vitamin D intake [34,38]. Further, calcium 

(vegans), zinc, and iodine are considered critical nutrients in vegetarian diets [34,55–59].  

 

1.2.3. Health status 

The health status depends on a variety of factors, including genetics, but also lifestyle factors 

such as diet, physical exercise, mental health, smoking status, and alcohol abuse. In general, 

vegetarians have a healthy lifestyle compared to the general population, but also health-

conscious non-vegetarians can achieve similar preventive effects [10,60]. In addition, 

vegetarians often show a higher socioeconomic status compared to the average population, 

which is associated with a decreased risk of obesity [34].  

In general, people who practice vegetarian dietary patterns usually have a favorable body 

composition, meaning lower body mass index (BMI) compared to omnivores. The BMI 

decreases in the following order: omnivores > lacto-ovo vegetarians > vegans [51,61]. 

However, there are also vegetarian populations, which have a high proportion of overweight 

[51].  

There is large evidence, that vegetarian diets based on a broad variety of foods have a 

beneficial effect on certain metabolic diseases: 

• In the meantime, it has been shown that a health-conscious vegetarian diet can reduce 

the risk of type 2 diabetes by 40-50%, even after adjustment of the BMI [62,63]. 

Additionally, an association between meat consumption and diabetes risk was observed 

[64,65]. Further, the metabolic syndrome occurs less frequently [66]. 

• In addition, a lacto-ovo vegetarian but also vegan diet has a positive effect on blood 

pressure [9] and lipid profile [67], which in turn can reduce the risk of ischemic and 

cardiovascular events by 30% [1,2,4,5,7,68]. However, atherothrombotic events can be 

increased, if vitamin B12 deficiency occurs, which results in increased homocysteine levels 

[57]. In addition, vegetarians tend to have higher platelet hyperaggregability  [69,70].  

• While the bone mineral density of lacto-ovo vegetarians in comparison to omnivores 

hardly differs [71], vegans show diminished values by up to 4% [72,73]. There are no 

differences between lacto-ovo vegetarians and omnivores in terms of fracture risk, while 
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vegans have a 30% increased risk [74]. However, this increased risk is due to the low 

calcium intake and not due to the vegan diet per se [74,75]. 

• A meta-analysis (n=124 706) showed that vegetarians had an 18% reduced overall risk 

of developing cancer [76]. However, the risk for cancer depend on type of vegetarianism, 

as lacto-ovo vegetarians had a 10% reduced risk compared to omnivores [77]. Regarding 

mortality, there is only a minor difference between vegetarians and non-vegetarians, 

indicating a healthier lifestyle for non-vegetarians compared to the general population 

[2,78].  

• Although various studies in vegetarians show a 38-48% lower mortality rate and an 

increased life expectancy by 9.4 years compared to the general population, the same 

mortality rate in vegetarians in comparison to health-conscious omnivores was observed 

[76,78,79]. 
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1.3. Nutrient requirements, metabolic changes and adaptations as a result of 

physical activity 

 

1.3.1. General aspects 

In addition to genetic components and training, nutrition is a crucial factor in athletic 

performance [80]. Thus, a diet that is adapted to the respective sport type (e.g. sports of 

endurance vs. strength), duration and intensity (e.g. recreational vs. high-performance) is 

required [80]. Further, external factors such as climatic conditions and diet have a strong 

impact on the requirements of athletes. Therefore, specific nutritional strategies should be 

taken into account to optimize body composition, health, training adaptations, physical 

performance, and regeneration [81]. In this thesis, endurance sport is considered in more 

detail. 

Overall, aerobic physical activities lead to positive metabolic effects. More specifically, these 

adjustments further result in long-term adaptations, such as an increase in heart and blood 

volume [82], increased capillarization and therefore improved oxygen supply [83], improved 

oxidative capacity through increased synthesis and enlargement of mitochondria [84], 

increased glucose uptake of the skeletal muscle [85], increased glycogen synthesis in muscle 

and liver [86], energy supply from fats and increased fatty acid oxidation [87,88] as well as 

higher occurrence of slow twitch fibers [89]. Further, intense endurance exercise induces 

short-term effects such as oxidative processes, which will be described in more detail in the 

context of this work (see chapter 1.3.4).  

 

Since the exercise level of sports has a significant impact on the need for nutrients, a 

differentiated consideration should be made. The different exercise levels can be defined as 

follows: 

Recreational sport: “Recreational was defined as currently playing the sport in an organized 

competition at any grade and never having represented a sport at any grade at a regional or above level, 

including junior representation.” [90] 

High-performance sport: “A person who is a member of any national team or other high-level 

representative team in any sport organized by a National Sports Federation.” [91] 

 

The characterization and classification of athletes are hindered by the fact that the professional 

societies published different definitions of exercise level in training (Table 2). 
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Table 2 Characterization of physical activity based on exercise level. 

IOC and ACSM ISSN  

Low-intensity or skill-based activities General physical activity: 

30-40 min/day 

3 times a week 

Moderate exercise 

1 h/day 

Moderate levels of intense training 

2-3 h/day 

5-6 times a week 

Moderate to high endurance program 

1-3 h/day 

 

High-volume intense training 

3-6 h/day 

1-2 sessions/day 

5-6 times a week 

Extreme commitment 

> 4-5 h/day 

 

The table was designed in accordance with  [81,92,93]. 
Abbreviations: ACSM, American College of Sports Medicine; IOC, International Olympic Committee; ISSN, 
International Society of Sports Nutrition. 

 

The task of sports nutrition is to provide the organism with adequate energy-providing 

macronutrients, micronutrients, and fluids to suit individual needs during training and 

competitive phases [94]. Therefore, in addition to optimal energy supply, it is necessary to 

consider exercise-induced adaptations as well as the associated increased needs for athletes. 

Adapted to the type of sport and intensity, professional societies have defined guidelines for 

the recommended nutrient intake.  

In Germany, dietary recommendations for healthy adults are stated by the D-A-CH [33]. 

However, no recommendations for both recreational athletes and high-performance athletes 

are given. In general, recreational athletes are viewed to meet their needs through a mixed 

diet [81]. On an international level, expert societies such as the American College of Sports 

Medicine (ACSM) [81], the International Olympic Committee (IOC) [95], and the International 

Society of Sports Nutrition (ISSN) [93] have defined guidelines for the nutritional intake of 

athletes. However, these recommendations only apply to recreational athletes to a limited 

extent, while the International Society for Exercise Immunology issued guidelines for 

optimizing immunological changes during exercise, which also include recreational athletes 

[96]. Recreational athletes are a separate collective, as both the recommendations for the 

general population and the recommendations for competitive athletes are inadequate.  

Although mainly high-performance athletes are affected by an increased need for nutrients, 

recreational athletes may also be concerned especially when exogenous factors such as heat 



General introduction 

10 
 

and high humidity are included [97,98]. Inadequate intake of micronutrients and the associated 

low blood levels have an adverse effect on physical performance, regeneration capacity, 

increased susceptibility to infections, chronic fatigue, and an increased risk of injury [99–101]. 

Beside exercise-induced metabolic changes, there are further aspects that may be reasonable 

for considerable losses and increased need for several micronutrients in intensive or long-

lasting physical stress (Table 3). As part of this dissertation, energy metabolism (chapter 

1.3.2.) and oxidative stress (chapter 1.3.4.) are examined in more detail.  

 

Table 3 Possible reasons for increased nutrient requirements. 

Reason  Possible affected nutrients 

↑ losses via 

• sweat   

• urine                         

• feces          

• foot strike hemolysis 

 

- thermoregulation  

- ↑ aldosterone  ↑ glomerular 

filtration rate 

- micro bleedings in the intestine 

- capillary hemolysis especially in 

runners  

 

Na, K, Mg, Ca, Fe, water-

soluble vitamins                      

Fe                                           

Fe           

Fe                                           

↑ requirements 

• oxidative stress          

Fe 

• blood formation 

 

- ↑ need of antioxidative enzymes 

(catalase, SOD, GPx) and coenzymes 

- age of erythrocytes reduced from 

120 to 70 days  improved oxygen 

transport 

 

Fe, Zn, Cu, Mn, Se, Vit C, E, 

B2, β-carotene 

Fe, B6, B12, folate 

↓ dietary intake  

 

- diet low in wholegrain, meat, fruits, 

and vegetables  

- malnutrition, eating disorders  

All nutrients, especially β-

carotene, Vit C, B6, D, folic 

acid, I, Mg, Ca, Fe, Zn 

The table was designed in accordance with [102–111]. 
Abbreviations: GPx, glutathione peroxidase; SOD, superoxide dismutase.   

 

 

1.3.2. Energy metabolism  

Beside the aforementioned aspects for increased requirements, an adequate energy supply is 

also essential for optimized physical performance [80]. In order to perform muscle work, energy 

must be provided by mobilizing, transporting, and degrading high-energy substrates with 

adenosine triphosphate (ATP) extraction. Depending on the duration and intensity of the 

endurance exercise, ATP and creatine phosphate (CP) are first used to generate energy, 

followed by muscle glycogen and fatty acids [112] (Figure 2).  
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Figure 2 Share of energy supply processes under endurance exercise. 

The figure was modified in accordance with [112]. 
Abbreviations: ATP, adenosine triphosphate; CP, creatine phosphate. 
 

 

Although primarily carbohydrates and secondary fats are used for energy supply in endurance 

sports and intense physical activities, proteins additionally serve as energy substrates. Thus, 

glucogenic amino acids are transformed into intermediates of the Krebs cycle (Figure 3). 

Although amino acids underlie homeostatic regulatory processes, blood concentrations reflect 

a combination of dietary intake as well as anabolic and catabolic processes [113,114]. It could 

be demonstrated that both long- and short-term endurance exercises induce metabolic 

changes in amino acid profile, since studies observed a decrease of total amino acid 

concentration post-exercise by 15-30% [115–120]. Aromatic amino acids, on the other hand, 

were demonstrated to increase by 6-11% [121,122].  

Overall, increased energy consumption requires increased activity of regulatory mechanisms 

and leads to increased oxidative processes [123]. 
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Figure 3 Amino acid metabolism. 

The figure was modified in accordance with [112]. 
Abbreviations: TCA, tricarboxylic acid cycle. 

 

1.3.3. Sirtuins 

Increased energy demand during exercise requires an increased rate of glycolysis, Krebs 

cycle, fatty acid oxidation, and mitochondrial respiratory chain. These processes are closely 

connected and i.a. regulated by endocrine factors such as insulin and glucagon, but also by 

allosteric ligands such as ATP, citrate and NAD+ [124,125].  

Currently, another regulatory mechanism has gained attention, namely the NAD+ dependent 

deacylases, named sirtuins (derived from the first explored sirtuin Sir2 [silent mating type 

information regulation 2] in Saccharomyces cerevisiae) [126–128].  

Beside regulatory functions in energy metabolism, sirtuins seem to be associated with 

antioxidative defense [126,129] (Figure 4). Primarily, sirtuins catalyze the deacylation or ADP-

ribosylation of lysine residues, which are always NAD+ dependent [130,131]. There is evidence 

that sirtuins are involved in further metabolic processes such as gene expression, apoptosis 

[132], stress response [133], mitochondrial biogenesis [134], fatty acid oxidation [135], insulin 

response [136], inflammation [137] and aging processes [128,138] by deacetylating targets 
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such as peroxisome proliferator-activated receptor gamma (PPARα), peroxisome proliferator-

activated receptor gamma coactivator 1-alpha (PGC-1α), fork-head box protein O (FOXO3), 

hypoxia-inducible factor (HIF) 1α, tumor suppressor p53 and nuclear factor-κB (NF-κb) [139]. 

Therefore, it has been demonstrated that blood concentrations of sirtuins correlate with several 

organ dysfunctions like coronary heart disease [140–143], diabetes type I and II [144] and 

cancer [145,146]. However, most studies are animal or in vitro studies and the investigation in 

humans is rare. 

Until now, seven sirtuins (SIRT1-SIRT7) have been classified in mammals [147]. While SIRT1, 

6 and 7 are located in the nucleolus and SIRT2 in the cytosol, SIRT3, 4 and 5 are mitochondrial 

enzymes [148]. However, a subcellular shift of SIRT1 and 3 into the cytosol appear to be 

possible [148].  

 

 Figure 4 Influences of sirtuins in energy metabolism and oxidative stress response 
(exemplary).  

The figure was modified in accordance with [149] in addition to [150–154]. Blue arrows represent increasing 

effects, red lines represent inhibiting effects. By regulating different co-substrates (e.g. PGC-1α, FOXO or several 

enzymes), sirtuins also influence metabolic processes such as the TCA, gluconeogenesis, and β-oxidation. 

Abbreviations: α-KG, alpha-ketoglutarate; ADP, adenosine diphosphate; ATP, adenosine triphosphate; CPS1, 

carbamoyl phosphate synthase; e-, electron; FOXO, forkhead box protein; HMGCR, 3-hydroxy-3-methyl-glutaryl-

coenzyme A reductase; GDH, glutamate dehydrogenase; Gln, glutamine; Glu, glutamate; LCAD, long-chain acyl-

CoA dehydrogenase; LDH, lactate dehydrogenase; NAD+, nicotinamide adenine dinucleotide; NADH, reduced 

form of NAD+; NH4
+, ammonium; O2-, superoxide anion; PGC-1α, peroxisome proliferator-activated receptor 

gamma coactivator 1-alpha; SIRT, sirtuin; SOD, superoxide dismutase; TCA, tricarboxylic acid cycle. 
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Sirtuins as metabolic regulators are themselves subject to regulatory processes (e.g. via 

phosphorylation [155]), which implies an up- or downregulation of their activity and 

consequently an up- or downregulation of the respective function [148,156]. Further, sirtuins 

have partly contrary effects and thus a mutual regulation of sirtuin takes place. Few data on 

sirtuin activity in humans showed an increase of sirtuin activity after physical exercise [157–

159], which indicate an activation of the aforementioned energy-providing pathways [157,160–

168]. In addition, sirtuin activity possibly can be affected by dietary factors. First, caloric 

restriction was shown to be associated with an increase of SIRT1, which was associated with 

the reduction of aging processes and associated diseases [169,170]. Second, polyphenols, 

such as resveratrol, are described to encourage sirtuin activity [171,172]. In contrast, 

decreased bioavailability of vitamin B12 was shown to decrease SIRT1 expression, which in 

turn induces irreversible endoplasmic reticulum stress in a cell model [173].  

The exploration of the role of sirtuins is still in its infancy, but may open up a new interesting 

area to better understand the energy metabolism and antioxidative defense in humans. 

 

1.3.4. Oxidative stress  

Increased energy consumption also leads to an increased incidence of oxidative processes, as 

the oxidation of carbon compounds serves as an important energy source [80]. This implies an 

imbalance between formation and degradation of reactive oxygen and nitrogen species (ROS 

and RNS, respectively). A higher occurrence of ROS or RNS can lead to either unfavorable or 

protective metabolic pathways [174,175]. On the one hand, free radicals are known to attack 

carbon double-bounds of PUFAs which leads to modification of lipids [176]. The main products 

of lipid peroxidation are lipid hydroperoxides, 4-hydroxy-nonenal (HNE) and the stress-sensitive 

malondialdehyde (MDA) (Figure 5), which is the most frequently detected biomarker of oxidative 

stress [176,177]. Due to its cytotoxic functions, studies showed a connection between MDA and 

the pathogenesis of atherosclerosis [178], Alzheimer´s disease [179], cancer [180], diabetes 

[181], endothelial dysfunction [182], and cardiovascular diseases [183]. 

Beside unfavorable effects, on the other hand, oxidative stress is also responsible for the 

activation of various health-promoting signaling pathways [184]. In fact, studies showed an 

association between the occurrence of ROS and muscular cytokines, leading to anti-

inflammatory processes and training adaptations [184]. For example, the regulatory function 

of nitric oxide (NO) is stimulated by oxidative stress. NO is synthesized by nitric oxide synthase 

out of arginine [175] in endothelial cells and is involved in a wide range of metabolic processes, 

including vasodilatation, and therefore of great importance in exercise performance. However, 
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the unstable NO generally cannot be analyzed per se due to its short half time, whereby its 

metabolic products (nitrite and nitrate) can be detected  [185].  

Further possibilities to assess oxidative processes or antioxidative response are markers of 

oxidative damage of DNA (e.g. oxidized purine, pyrimidine), protein (e.g. oxidation products of 

lysine), and lipid damage (e.g. isoprostane) as well as markers of antioxidative capacity via 

endogenous (e.g. super oxide dismutase, gluthatione, gluthatione peroxidase) and dietary 

antioxidants (e.g. tocopherole, ascorbate) and total antioxidantive capacity (e.g. total peroxyl 

radical-trapping  antioxidant parameter, TRAP) [186]. 

 

 

Figure 5 Simplified mechanisms of lipid peroxidation and the formation of MDA using 
the example of arachidonic acid. 

The figure was modified in accordance with [177]. 
Abbreviations: COOH, carboxyl group; HNE, 4-hydroxy-2-nonenal; MDA, malondialdehyde; OH, hydroxy group; 
15(S)-8-iso-PGF2α, F2-isoprostane 15(S)-8-iso-prostaglandin F2α. 
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1.4. Vegetarian diets and endurance performance  

Various nutritional strategies were claimed to positively affect health, performance, training 

adaptation and regeneration. Already in the antique, the impact of diet on athletic performance 

has been described [187]. In contrast to earlier views, when meat was seen as a performance-

enhancing food [188], vegetarian diets today have a high popularity and the interest of 

vegetarian nutrition and athletic performance is growing [16]. Since vegetarian diets show 

indisputable health benefits (see chapter 1.2.3.), one could hypothesize that parameters of 

physical performance can also be affected [189,190].  

On the one hand, the characteristically high intake of carbohydrates is one favorable factor of 

vegetarian diets [18,38,42,191] (see chapter 1.2.2.). In addition, vegetarians and vegans 

consume typically higher amounts of antioxidative substances such as vitamin C and vitamin 

E (see chapter 1.2.2.), which could have favorable effects on exercise-induced oxidative 

stress. In fact, little literature exists, which summarizes the probable advantageous effect of 

higher intake of antioxidants on cardiovascular health in endurance sports [192]. However, 

whether this increased intake actually benefits athletic performance has not been studied.  

On the other hand, the consumption of protein, creatine, and carnitine is typically lower in 

vegetarians and vegans compared to omnivores, which could be unfavorable for exercise 

performance [193,194].  

So far, there are only a few studies examining the relationship between vegetarian diets and 

sport [195,196]. Among them are case studies of high-performance athletes practicing 

vegetarian nutrition, cross-sectional surveys comparing the performance of athletes who 

practice different diets, and intervention studies describing the direct or indirect impact of 

vegetarian nutrition on athletic performance (Table 4 and 5).  

 

Case reports 

In fact, a few case studies describe the exceptional performance of individual athletes (Table 

4). For example, Leischik and Spelsberg characterized an ultra-triathlete who practiced a raw 

vegan diet and finished the Triple-Ironman in 41 hours and 18 minutes [197]. The 

echocardiography and spiroergometry revealed no differences between this ultra-triathlete and 

controls. Wirnitzer and Kornexl reported about a female vegan cyclist who participated in the 

2004 Transalp Challenge, had a relative peak power output of 4.6 W/kg and finished the race 

in 41 hours, 59 minutes and 45 seconds and thus the 16th place in the mixed category [198].  

Although the authors conclude, that a well-planned vegan diet can meet the requirements of 

individual competitive athletes and that this diet is compatible with ultra-endurance 

performance, results of case studies should be interpreted with caution.  
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Cross-sectional studies 

In 1986, Hanne and colleagues carried out a cross-sectional survey on the athletic 

performance of 49 vegetarian (lacto-ovo /lacto vegetarians, vegans) and 49 omnivorous 

endurance athletes, matched according to age, sex, body size and type of athletic activity 

(Table 4) [23]. The researchers discovered adequate blood levels of selected parameters and 

comparable performance regarding aerobic (cycle ergometer stress test) and anaerobic 

capacity (Wingate test) in both groups.  

In 2006, an Indian research team by Khanna (n=64) investigated athletic performance by 

recording the time to exhaustion via graded exercise until exhaustion on a treadmill in lacto-

ovo and lacto vegetarians in comparison to omnivores. Overall, vegetarians had lower 

endurance times compared to omnivores, while lacto-ovo vegetarians had better endurance 

compared to lacto vegetarians (lacto vegetarians: 12.18±2.62 vs. lacto-ovo vegetarians: 

14.63±2.34 min vs. non-vegetarians: 15.77±3.59 min; p<0.01). Recovery measured by heart 

rate after 2 and 3 min was fastest in lacto vegetarians compared to the two remaining groups 

(e.g. 2 min recovery heart rate in lacto vegetarians: 93.0±16.4 min vs. lacto-ovo vegetarians: 

112.9±16.4 min vs. non-vegetarians: 104.6±14.8 min; p<0.05) [20].  

Another recent cross-sectional by Lynch and colleagues (2016) discovered a comparable peak 

torque and maximum oxygen uptake (VO2max) between male vegetarians and omnivores 

(62.6±15.4 vs. 55.7±8.4 ml/kg/min, respectively; p=0.220). However, the authors found a 

higher VO2max in female vegetarians (53.0±6.9 vs. 47.1±8.6 ml/kg/min, respectively; p<0.05) 

[18].  

 

Intervention studies 

In order to examine the direct and indirect effects of vegetarian diets on athletic performance, 

various intervention studies were carried out (Table 5).  

Since athletes are often more susceptible to infections than non-athletes, which can negatively 

impact athletic performance [99–101], Richter and colleagues investigated the influence of a 

lacto-ovo vegetarian diet on the immune status of male endurance athletes [199]. After 6 

weeks intervention period, the number of CD3+, CD8+, CD4+, CD16+ and CD14+ and the 

activity of natural killer cells was identical for both the lacto-ovo vegetarian diet and the control 

[199]. The authors concluded that a lacto-ovo vegetarian diet does not influence parameters 

of immune function [199]. However, the parameters were not measured during or after 

exercise, but at rest, and the effects on immunological reactions under stress could bring 

different results.  
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Another work by Raben and colleagues investigated the endurance performance after 

changing to a lacto-ovo vegetarian diet (6 week intervention period) [200]. All tests showed 

equal performance in both groups [200].  

A research team from Belgium investigated the influence of a vegetarian or omnivorous diet in 

combination with sprint training on the muscle carnosine content and buffer capacity [201]. 

The study revealed a significant group-training interaction in carnosine content of the soleus, 

whereby the values from the omnivorous diet non-significantly increased and those from the 

vegetarian group non-significantly decreased. However, muscle carnosine content and 

carnosine synthase mRNA were not affected by the vegetarian diet [201].  

As acid-based status is also associated with athletic performance, Hietavala and colleagues 

investigated the effect of a vegetarian diet on blood acidity status [202]. Although submaximal 

oxygen uptake at 40, 60 and 80% of VO2max after the vegetarian diet was higher than in 

controls, the intervention had no effect on maximum oxygen uptake. The authors concluded 

that this would mean a lower exercise economy [202]. However, as not only the protein source 

but also the amount of protein absorbed changed over the period of the intervention, a 

meaningful conclusion is not possible. In addition, another approach was to examine the 

impact of the high intake of basic substances in the form of plant foods on acid-base status, 

which probably have favorable effects on exercise performance [203]. But current data give no 

evidence for a benefit of a high intake of basic substances in exercise performance [204]. 

Since vegetarian diets are low in creatine, carnosine, and carnitine, Blancquaert and 

colleagues studied the effect of a lacto-ovo vegetarian diet with and without the 

supplementation of β-alanine and creatine on the muscle and plasma levels of the respective 

biomarkers [205]. Physical performance was comparable in both groups. Carnosine content of 

soleus (p<0.001) and gastrocnemius (p=0.001) increased after 6 month of vegetarian diet + 

supplementation. The creatine pool diminished after 3 months of vegetarian nutrition, which 

could be counteracted by supplementation, while the carnitine and carnosine levels remained 

the same [205].  

For the sake of completeness, in addition to the studies mentioned above, there are a few 

other studies, which examined the influence of a vegetarian diet by strength. Three studies 

with similar study designs examined the impact of a lacto-ovo vegetarian diet on strength either 

with a beef containing supplement or a plant-based supplement [206–208]. All three 

interventions did not show any differences in the strength between the groups. In addition to 

the small number of subjects, Campbell´s study examined sedentary overweight subjects, 

while Wells and Haub's studies did not describe the athletic activity of the participants prior to 

the start of the studies.  
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Moreover, the influence of 6-day carnitine supplementation on exercise performance via a 

modified Wingate test was tested in physically active vegetarians compared to placebo-

controlled omnivores (n=7 and 17, respectively) [209]. Overall, most parameters (body mass, 

plasma glucose lactate, creatine) did not differ between the groups after intervention. However, 

peak power output increased in controls, but not in vegetarians.  

 

Currently, there is no evidence that vegetarian diets have any beneficial or unfavorable effects 

on athletic performance in endurance athletes [195]. However, the previous study situation is 

insufficient. First, data of nutritional and physical parameters are outdated [19,23]. Second, the 

latest data on nutrient supply and health are questionnaire-based but do not include 

biochemical parameters [21,22,210–212]. Third, several studies did not define the training 

status of the subjects or included athletes from different disciplines [18,20,207,208]. Forth, only 

one study examined a differentiated consideration of various types of vegetarianism [20]. Fifth, 

several studies, especially intervention studies, included only a small number of subjects 

[199,200,202,206–208]. Also, the intervention period of the intervention studies was partially 

short [202]. Lastly, study data about nutritional intake and both biochemical parameters and 

performance parameters of vegan athletes are missing. Since nutrient intake and status can 

vary between vegetarians and vegans (see chapter 1.2.2.), studies with differentiation of the 

vegetarian diets in athletes are needed. 
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Table 4 Case reports and cross-sectional studies examing the relationship between vegetarian dietary pattern and performance.  

Reference Study data Diets Nutritional 
intake 

Biochemical parameters Physical 
performance 

Results of performance 
diagnostics 

Case reports 

Leischik and 
Spelsberg 2014 

n=1, m, 48 y, ultra-triathlete, 
Triple-Ironman (11.4 km 
swimming, 540 km cycling, 
126 km running) 

raw VEG not reported leu, ery, Hct, Hb, MCV, MCH, 
MCHC, tromb, alk. Ph., GTP, 
GOT, GPT, LDH, amylase, lipase, 
CK, P, TC, HDL, LDL, TAG, TSH, 
Fe, free testosterone, Vit B12, 
ferritin, folic acid   

spiroergometry, time 
to finish 

time to finish: 41:18 min  

no differences compared to 
controls 

Wirnitzer and 
Kornexl 2014 

n=1, f, 30 y, amateur mountain 
biker, Transalp Challenge (8 
days; altitude climbed, 22,500 
m; total distance, 662 km) 

VEG  24-hours             
dietary recall 

iron, ferritin, Hb, Hct, vitamin B12, 
Hcy 

Incremental cycling 
test, HR, power, RPE, 
time to finish 

time to finish: 41:59:45 min 

peak power: 4.6 W/kg  

Cross-sectional studies 

Hanne et al. 
1986 

n=98, m+f, 17-60 y, endurance 
athletes (marathon, rowing, 
cycling, swimming, football, 
basketball and water-ball) 

vegetarian, 
OMN 

not reported protein and glucose in urine, 
hemoglobin, hematocrit, uric acid, 
proteins and glucose in the blood 

cycle ergometer 
stress test, 30-sec 
Wingate test: total 
power, peak power 
and percentage of 
fatigue, RPE 

comparable performance 
regarding aerobic and 
anaerobic capacity 

Khanna et al. 
2006 

n=64, f, 16-24 y, national 
athletes (no specific 
description) 

LOV, LV, 
OMN 

24-hours            
dietary recall 

Hb time to exhaustion via 
graded exercise till 
exhaustion on a 
treadmill, recovery 
HR  

time to exhaustion highest in 
OMN, followed by LOV and 
then LV 

recovery HR after 2 and 3 min 
fastest in LV  

Lynch et al. 
2016 

n=70, m+f, 21-58 y, 
competitive endurance 
athletes (running, cycling and 
triathlon) 

vegetarian, 
OMN 

7-day food log not reported spiroergometry, 
dynamometer testing 

comparable peak torque and 
VO2max 

higher VO2max in f vegetarians 

Abbreviations: CK, creatine kinase; FFQ, food frequency questionnaire; Frap, ferric reducing antioxidant power; GOT, glutamate oxaloacetate transaminase; GPT, glutamic pyruvic transaminase; GTP, 
guanosine triphosphate; HDL, high density lipoprotein; LDH, lactate dehydrogenase; LDL, low density lipoprotein; LOV, lacto-ovo vegetarians; LV, lacto vegetarians; MCH, mean corpuscular volume; MCHC; 
mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume; NO, nitric oxide; OMN, omnivores; TG, triglycerides; TC, total cholesterol; TSH, thyroid-stimulating hormone; RPE, ratings of 
perceived exertion; TBARs, thiobarbituric acid reactive substance; VEG, vegans. 



General introduction 

21 
 

Table 5 Intervention studies examining the effect of vegetarian diets on performance-related outcomes. 

Reference Study data Intervention Biochemical parameters Physical 
performance 

Results  

Richter et al. 
1991 

n=8, m, 21-28 y,                   
well-trained athletes (cycling, 
running, rowing, mixed aerobic 
activities) 

6 w cross-over (4 w wash-out), macro 
nutrient ratio (both):  

57 EN% CH, 14 EN% P and 29 EN% 
F 

Group 1: meat-rich diet, 31% plant P  

Group 2: LOV, 82% plant P 

immune parameters: number of 
CD3+, CD8+, CD4+, CD16+ and 
CD14+ and the activity of natural 
killer cells 

not reported identical number of 
CD3+, CD8+, CD4+, 
CD16+ and CD14+ 
and activity of natural 
killer cells  

Raben et al. 
1992 

n=8, m, 21-28 y,                    
well-trained athletes (cycling, 
running, rowing, mixed aerobic 
activities) 

6 w cross-over (4 w wash-out), 

Group 1 (LOV, n=4):  

58 EN% CH, 15 EN% P and 27 EN% 
F, 5.7gxMJ fiber, 13gxMJ iron 

Group 2 (OMN, n=4):  

58 EN% CH, 14 EN% P and 28 EN% 
F, 2.7gxMJ fiber, 10gxMJ iron 

Hb, serum iron, serum 
transferrin, T, free T, SHBG, 
DHT, 4-AD, DHAS, estrone, 
estradiol, estrone sulfate, LH, 
FSH, prolactin 

spiroergometry, MVC 
and the isometric 
endurance at 35% of 
the MVC on 
quadriceps muscle and 
elbow flexors 

comparable 
performance 

Baguet et a. 
2011 

n=20, m+f, 21.5±1.7 y,      
physical active (2-3 hours per 
week) 

5 w  

Group 1 (OMN): beta-alanine-rich 

creatine monohydrate 

Group 2 (LOV) 

Both: + 1 g/d creatine monohydrate + 

sprint training 

muscle biopsy: carnosine content 
in soleus, gastrocnemius lateralis 
and tibialis anterior, non-
bicarbonate buffering capacity, 
carnosine content and carnosine 
synthase mRNA expression 

repeated sprint ability 
test (6x6s), lactate 
measurements 

no effects on muscle 
buffering capacity and 
peak power output 

Hietavala et al. 
2012 

n=9, m, 23.5±3.4 y,         
physical active (walking, 
jogging, cycling, resistance 
training) 

4 d cross-over (16 d wash-out) 

Group 1 (OMN, n=5) 

Group 2 (LOV, n=4): low protein 

vegetarian diet (0.8 g/kg BW), 
designed by PRAL 

venous blood pH, SID, Atot, 
pCO2, HCO3

-, FFA, TG  
incremental cycling 
test with 
spiroergometry, 
venous blood lactate, 
glucose 

higher submaximal 
oxygen uptake at 40, 
60 and 80% of VO2max 
in group 2, no effect on 
VO2max 
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Blancquaert et 
al. 2018 

n=40, f, 25.6±7.3 y, 

comparable VO2max:  

Group 1: 39.4±6.4 ml/min,  

Group 2: 36.6±6.3 ml/min,  

Group 3: 40.4±6.4 ml/min, 
p=0.504 

6 m 

Group 1 (n=15): LOV + placebo 

Group 2 (n=14): LOV + 0.8-0.4 g/d β-

alanine + 1 g creatine monohydrate/d 

Group 3 (n=10): OMN control 

CR, carnosine and carnitine 
(muscle biopsy and plasma), 
25(OH)D, plasma 
guanidonoacetate,acetylcarnitine, 
24 h urine: pi-methylhistidine, 
tau-methylhistidine and anserine 

incremental cycling 
test with 
spiroergometry 

no differences in 
VO2max and time to 
exhaustion  

stable plasma alanine 
concentrations for 
group 1 and 3, in group 
2 increased plasma -
alanine concentration 
(in soleus and 
gastrocnemius muscle) 

Abbreviations: 4-AD, 4-androstenedione; Atot, total concentration of weak acids; BW, body weight; CH, carbohydrates; DHAS, dihydroepiandrosterone sulphate; DHT, 
dihydrotestosterone; EN%, energy percent; F, fat; FFA, free fatty acids; FSH, Follicle-stimulating hormone; Hb, hemoglobin; HCO3

-, bicarbonate; Hct, hematocrit; HDL, high density 
lipoprotein; LDL, low density lipoprotein; LH, Luteinizing hormone; LOV, lacto-ovo vegetarian; MCH, mean corpuscular volume; MVC, maximal voluntary contraction; P, proteins; pCO2, 
partial pressure of carbon dioxide; PRAL, Potential renal acid load; SHBG, sex hormone-binding globulin; SID, strong ion difference; T, testosterone; TC, total cholesterol; TG, 
triglycerides; VO2max, maximal oxygen consumption. 
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Abstract 

Background: The number of people preferring plant-based nutrition is growing continuously 

in the western world. Vegetarianism and veganism are also becoming increasingly popular 

among individuals participating in sport. However, whether recreationally active vegetarian and 

vegan populations can meet their nutritional needs is not clear.  

Methods: The purpose of this cross-sectional study was to compare the nutrient intake of 

omnivorous (OMN, n = 27), lacto-ovo vegetarian (LOV, n = 26) and vegan (VEG, n = 28) 

recreational runners (two to five training sessions per week) with intake recommendations of 

the German, Austrian and Swiss Nutrition Societies (Deutsche, Österreichische und 

Schweizerische Gesellschaften für Ernährung, D-A-CH) for the general population. Lifestyle 

factors and supplement intake were examined via questionnaires; dietary habits and nutrient 

intake were determined based on 3-day dietary records.  

Results: More than half of each group did not reach the recommended energy intake (mean 

OMN: 10.4, 95 % CI 8.70–12.1; LOV: 9.67, 8.55–10.8; VEG: 10.2, 9.12–11.3 MJ). 

Carbohydrate intake was slightly below the recommendations of > 50 energy percent (EN%) 

in OMN (46.7, 43.6–49.8 EN%), while LOV (49.4, 45.5–53.3 EN%) and VEG (55.2, 51.4–59.0 

EN%) consumed adequate amounts (p = 0.003). The recommended protein intake of 0.8 g/kg 

body weight (D-A-CH) was exceeded in all three groups (OMN: 1.50, 1.27–1.66; LOV: 1.34, 

1.09–1.56; VEG: 1.25; 1.07–1.42 g/kg BW; p =0.047). Only VEG (26.3, 22.7–29.8 EN%) did 

not achieve the recommended fat intake of 30 EN%. The supply of micronutrients, such as 

vitamin D and cobalamin, was dependent on supplement intake. Similarly, female OMN 

(OMNnon-SU: 11.2, 9.11–12.2 mg) and LOV (LOVnon-SU: 12.8, 9.47–16.1 mg) achieved the 

recommended daily intake of 15 mg iron only after supplementation, while VEG (VEGnon-SU: 

19.8, 15.7–24.0 mg) consumed adequate amounts solely via food.  
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Conclusion: All three groups were sufficiently supplied with most nutrients despite the 

exceptions mentioned above. The VEG group even showed advantages in nutrient intake (e.g. 

carbohydrates, fiber and iron) in comparison to the other groups. However, the demand for 

energy and several macro- and micronutrients might be higher for athletes. Thus, it is also 

necessary to analyze the endogenous status of nutrients, including functional parameters, to 

evaluate the influence of a vegetarian and vegan diet on the nutrient supply of athletes.  

Trial registration: German Clinical Trial Register (DRKS00012377), registered on April 28, 

2017 

Keywords: Recreational endurance athletes, plant-based diets; nutrient supply, 

vegetarianism, veganism, nutrient survey  

Background 

Plant-based diets, especially vegetarianism and veganism, are increasingly gaining popularity 

in the western world. These alternative diets are characterized by a predominance of foodstuffs 

derived from plants in varying amounts and range from abstaining from meat, meat products 

and fish and to complete rejection of animal products, as applicable for vegans (VEG) [1,2]. 

About 4.3 to 10 % of the population in Germany are estimated to be vegetarians, whereas the 

number of VEG is estimated at 1.6 % [3–5]. Switzerland, Italy, Austria and the UK have a similar 

number of vegetarians as Germany at 9–11 % [6]. In the United States, only 5 % of the 

population is considered vegetarian [7], however, this is still more than 16 million people. 

It is undisputed that a lacto-ovo vegetarian (LOV) diet based on a broad variety of foods 

generally ensures the supply of (nearly) all nutrients in adults [1,8,9] and has favorable effects 

on the cardiometabolic risk compared to the usual mixed diet [10–14]. Moreover, plant-based 

diets show beneficial associations with obesity, type 2 diabetes, hypertension and cancer [15–

18], although healthy omnivore (OMN) diets can achieve similar effects [19]. Consequently, 

several nutrition societies recommend LOV diets as a healthy diet for all stages of life [8,20–

22]. By contrast, strict VEG nutrition is viewed as critical due to the risk for an undersupply with 

critical nutrients such as protein, long-chain n3 fatty acids, riboflavin, cobalamin, vitamin D, 

calcium, iron and zinc [23]. Thorough planning and engagement with a VEG diet are required 

to adjust the nutrient supply and meet the needs in different population groups. 

A balanced diet also plays an important role for athletes. The impact of a plant-based diet on 

the health and performance of athletes is becoming a growing interest [4]. However, data on 

the prevalence of vegetarians or VEG as recreational and professional athletes are still sparse 

and only a few studies have investigated the nutritional status of vegetarian athletes [27–29]. 

Therefore, it is of great importance to investigate the nutritional status of athletes using data 

on dietary habits combined with analytical data on the nutrient status and functional outcomes. 
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Such findings enable an evaluation of whether athletes who follow plant-based diets can meet 

their nutritional needs or show nutrient imbalances. Furthermore, such data form the basis for 

assessing the relationship of a plant-based diet with the body composition, the antioxidant and 

immunological capacity and, ultimately, with the health and performance of athletes [24,25,27]. 

Present studies investigating the relationship between a vegetarian and VEG diet and exercise 

do not differentiate between vegetarians and VEG [24], are outdated [26], questionnaire-based 

[28–30] or do not contain nutritional assessment including biochemical markers [31,32].  

The nutrient supply status of athletes consuming a balanced mixed diet including animal-based 

foods can usually be classified as safe, including critical nutrients. However, there is a lack of 

scientific data investigating the question of whether vegetarian and especially VEG athletes 

are undersupplied with critical nutrients, and whether this affects health and performance. To 

date, no data exist on the nutritional and athletic conditions of VEG recreational runners and 

there are no recommendations regarding nutrient intake for LOV and VEG athletes. Therefore, 

in order to fill the knowledge gap between nutrient intake, status and performance, the novel 

approach of this study is to compare the dietary habits, nutritional intake, body composition 

and performance diagnostics of VEG and LOV recreational runners with OMN runners. We 

present here a comparison of the nutritional supply status of these three groups and a 

comparison with reference values of the German, Austrian and Swiss Nutrition Societies for 

healthy adults (Deutsche, Österreichische und Schweizerische Gesellschaft für Ernährung: D-

A-CH) [33]. These data may serve as a first basis to determine specific recommendations 

regarding the nutrient intake for vegetarian and vegan athletes in the future. 

Methods 

Participants  

This cross-sectional study was conducted at the Institute of Food Science and Human 

Nutrition, Leibniz University Hannover, Germany. Ethical approval was provided by the Ethics 

Committee at the Medical Chamber of Lower Saxony (Hannover, Germany). The study was 

conducted in accordance with the Declaration of Helsinki. All subjects gave their written 

informed consent. The study was registered in the German Clinical Trial Register 

(DRKS00012377). 

Eighty-one healthy recreational runners (mean age: 27.5 ± 4.14 yr., height: 1.75 ± 0.80 m, 

body mass: 67.7 ± 9.56 kg, BMI: 22.0 ± 1.94 kg/m2, m = 31, f = 50) aged between 18 and 35 

years were recruited from the general population in Hannover, Germany, via local running 

events, online running communities and online vegetarian and VEG communities.  

The eligibility of subjects was assessed using questionnaires. Participants were selected 

based on the following inclusion criteria: OMN, LOV or VEG diet for at least half a year, body 
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mass index (BMI) between 18.5 and 25.0 kg/m2 and run regularly two to five times per week 

for at least 30–60 min. Regular running sessions were documented via self-reporting data. The 

following criteria led to exclusion: Any cardiovascular, metabolic or malignant disease, 

diseases regarding the gastrointestinal tract, pregnancy, food intolerances and addiction to 

drugs or alcohol. Participants were allowed to take dietary supplements, but the use of 

performance-enhancing substances (e.g. alkaline salts, creatine) led to exclusion.  

Methods and examination procedure 

A questionnaire which included food groups the participants usually consume had to be 

completed to categorize subjects as OMN, LOV and VEG recreational athletes.  

Participants were matched according to age and gender. Subjects who were included in the 

study collective were invited to an examination. Prior to the examination, subjects fulfilled a 3-

day dietary record over three consecutive days, including two weekdays and one weekend 

day. The nutritional diaries were checked by nutritionists for completeness, readability and 

plausibility. Ambiguities were clarified with subjects if necessary. Seventy-nine out of eighty-

one participants returned the completed record. The following food groups were analyzed: 

Meat, meat products and sausages, fish and seafood, milk and dairy products, eggs, fat and 

oil, whole grain products, cereal products, pastries, potatoes, vegetables, legumes, soy, fresh 

fruits, nuts and seeds, sweets, alcoholic drinks, alcohol, nonalcoholic beverages, coffee, tea 

and fast food.  

Nutrient intake was depicted in comparison to the reference values of the German, Austrian 

and Swiss Nutrition Societies for healthy adults (D-A-CH) [33]. Amino acid intake was 

compared to the reference values of the World Health Organization (WHO) [34].  

Participants completed a questionnaire regarding their supplement intake, status of health and 

running activity. Training frequency and duration were self-reported by the subjects. The 

determination of anthropometric data followed. The measurements of body weight (BW) and 

height were carried out lightly clothed and without shoes, respectively. Waist circumference 

was determined using a tape measure. The BMI was calculated using the standard formula: 

 𝐵𝑀𝐼 =
body mass [kg]

(height [m])2  . 
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Data analysis and statistical methods 

The nutrition organization software PRODI6.4® (Nutri-Science GmbH, Freiburg, Germany) was 

used to analyze dietary habits, energy and nutrient intake from the 3-day dietary record. The 

composition of foods, which were not available in PRODI6.4®, have been requested from the 

manufacturer and the results were integrated into the software. The intake of animal- and plant-

based iron was also calculated with the software. The compositions of all supplementary 

products mentioned at the time of evaluation were researched and multiplied by the intake 

frequency (daily intake (factor *1), two times a week (factor *2/7, three times a week (factor 

*3/7), four times a week (factor *4/7), irregular intake (factor *12/365) to calculate the average 

daily intake of the respective nutrients via supplements. Based on the intake frequencies 

above, the average daily intake for each mineral and vitamin was calculated for each subject 

individually.   

Statistical analyses were performed using SPSS software (IBM SPSS Statistics 24.0; Chicago, 

IL, USA). Results are presented as mean ± standard deviation (SD) or 95 % confidence interval 

(CI). Normal distribution was checked using the Kolmogorov-Smirnov test. If data were 

normally distributed, one-way analysis of variance (ANOVA) was used to evaluate differences 

in nutritional status and intake between the three diet groups. The Kruskal-Wallis test was 

performed to analyze data with non-normal distribution. If there were significant differences 

between the groups, the post hoc test with Bonferroni correction was conducted. The Mann-

Whitney U test was used to examine differences between supplement users (SU) and non-

supplement users (non-SU) within the groups. The chi-square test was used to compare the 

differences between the frequencies of the three groups. Associations between parametric 

data were computed via Pearson and nonparametric data via Spearman’s rho correlation. P 

values ≤ 0.05 were interpreted as statistically significant.  

Results 

Characterization of the study population 

Twenty-seven of the 81 runners followed OMN nutrition, 26 were LOV and 28 were VEG 

(Figure 1). Men and women were equally distributed and there were no differences in the mean 

age and anthropometric data (Table 1). Only one female of the LOV had a waist circumference 

slightly over 80 cm; all other participants had values in the reference range of < 80 cm for 

women and < 94 cm for men. All but one of the 27 participants of the OMN group had followed 

the diet for > 3 years. By contrast, 4 out of 26 participants of the LOV group and 6 out of 28 of 

the VEG group had switched to their current diet for 0.5–1 year.  
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Figure 1 Flow chart of the study population. 

Several subjects took dietary supplements. More precisely, 18 out of 28 participants (64.3 %) 

of the VEG, 10 out of 27 (37.0 %) of the OMN and 9 out of 26 (34.6 %) of the LOV group took 

supplements. Although considerably more subjects of the VEG group consumed supplements, 

there were no statistically significant differences between the groups. Magnesium, calcium, 

iron, cobalamin and vitamin D were commonly consumed supplements (Table 1). Magnesium 

and vitamin D were most commonly supplemented in the OMN group (22.2 % and not 

significant [n.s.], respectively), magnesium in LOV (17.9 %; n.s.), and cobalamin in VEG 

(53.9 %; p = 0.005, χ2). Total nutrient intake of SU compared to non-SU was investigated 

(Figure 2 and 3). Statistically significantly higher cobalamin intake in SU compared to non-SU 

was found in both male and female VEG (p = 0.019 and 0.003, respectively) as well as in 

female OMN (p = 0.027) and LOV (p = 0.026). Magnesium (p = 0.036), vitamin D (p = 0.018) 

and iron (p = 0.018) intake was statistically significantly higher in female LOV SU compared to 

non-SU. Male SU in OMN also showed higher iron intakes than non-SU (p = 0.004). The 

analysis of fortified food products revealed only one subject who consumed a small amount 

(15 mg) of calcium-enriched soy drink, which can be neglected. 

None of the subjects regularly consumed tobacco. The participants showed no differences in 

training frequency or duration (Table 1). 
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Figure 2 Nutrient intake in relation to the reference range: Supplement users vs. non-supplement users 
(males; mean+SD). OMN = omnivores, LOV = lacto-ovo vegetarians, VEG = vegans, SU = supplement 
users, non-SU = non-supplement users, recommended intake of the German, Austrian and Swiss 
Nutrition Societies (Deutsche, Österreichische und Schweizerische Gesellschaften für Ernährung, D-A-
CH) [33]. The error bars represent the standard deviations of the average daily nutrient intake. 
Differences between SU and non-SU were analyzed using the Mann-Whitney U test. *p ≤ 0.05. 

 

Figure 3 Nutrient intake in relation to the reference range: SU vs. non-SU (females; mean+SD). 
Recommended intake of the D-A-CH [33]. The error bars represent the standard deviations of the 
average daily nutrient intake. Differences between SU and non-SU were analyzed using the Mann-
Whitney U test. *p ≤ 0.05. 
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Dietary habits 

According to their diet, LOV and VEG consumed neither meat, meat products, fish nor seafood 

(Table 2). The VEG additionally waived milk, dairy products and eggs. The three groups 

consumed similar amounts of fat and oil, whole grain and cereal products as well as pastries. 

Moreover, there were no significant differences in the dietary intake of sweets, alcoholic drinks, 

coffee and tea. The VEG consumed significantly higher amounts of potatoes, vegetables and 

fresh fruit compared to LOV (pLOV-VEG = 0.013, 0.031 and 0.041, respectively) and OMN (pOMN-

VEG = 0.017, 0.001 and 0.015, respectively). Legumes were consumed mainly in the VEG group 

(p < 0.001), while OMN consumed the highest amounts of fast food (p = 0.016) (Table 2).  

Nutritional intake 

None of the three groups differed in terms of energy consumption (Table 3); men (OMN: 12.3, 

8.36–16.1; LOV: 10.3, 8.96–11.7; VEG: 11.5, 8.97–1 3.9 MJ; n.s.) had a higher energy intake 

than women (OMN: 9.11, 7.96–10.3; LOV: 9.22, 7.51–10.9; VEG: 9.47, 8.47–10.4 MJ; n.s.), 

which was statistically significant for OMN (p = 0.023). In comparison to the recommended 

values for people who perform sport several times a week (age group 19–25 and 25–51, 

physical activity level was classified at 1.7; [33]), only the average of female VEG and male 

OMN reached the recommendations. Low levels of energy intake were evident in 59.3 % of 

OMN, 52.0 % of LOV and 51.9 % of VEG, with no differences in frequency distribution. No 

significant associations were found between energy intake and age, BMI and frequency of 

training. 

Regarding the macronutrient intake, there were significant differences between OMN and 

VEG. The VEG consumed a higher percentage of carbohydrates (55.2, 51.4–59.0 energy 

percent, EN%) compared to OMN (46.7, 43.6–49.8 EN%; pOMN-VEG = 0.002) (Table 3). Most 

subjects of the OMN group (70.4 %) and 50.2 % of the LOV group had low levels (< 50 EN%) 

of carbohydrates. By contrast, most subjects (66.7 %) of the VEG group had higher levels of 

carbohydrates (> 55 EN%). These differences were statistically significant (p = 0.035, χ2). The 

absolute intake of carbohydrates differed only slightly. 

Regarding the absolute dietary protein intake, there were only minor differences between the 

groups (Table 3). On average, all the groups were above the reference range of 0.8 g/kg BW; 

only one subject of the OMN group (3.70 %), two subjects of LOV (8.00 %) and two subjects 

of VEG (7.41 %) did not reach the recommendations (data not shown). All three groups were 

adequately supplied with all essential amino acids (see Additional file 1). 

Considering the average relative fat intake, subjects in the OMN group (pOMN-VEG = 0.021) and 

LOV (n.s. compared to VEG) consumed higher amounts compared to VEG, who were below 

the recommendation of 30 EN% (Table 3). A low-fat intake (< 30 EN%) was observed in 
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70.4 % of the VEG, 44.0 % of the LOV and 25.9 % of the OMN group. These differences were 

significant (p = 0.004, χ2). Differences in fatty acid intake patterns were observed. The highest 

intake of saturated fatty acids was observed in the OMN group (8.70, 7.13–10.3 EN%) followed 

by LOV (7.86, 6.17–9.55 EN%; n.s. compared to OMN) and VEG (4.57, 3.55–5.59 EN%; pOMN-

VEG < 0.001) (see Additional file 2). Monounsaturated fatty acids were least consumed by the 

VEG group (3.96, 3.02–4.91 EN%) compared to LOV (5.45, 3.77–7.13 EN%; n.s. compared 

to LOV) and OMN (5.95, 4.86–7.03 EN%; pOMN-VEG = 0.019). No differences were observed in 

polyunsaturated fatty acid (PUFA) intake. On average, none of the three groups reached the 

recommended intake values of monounsaturated fatty acids (> 10 EN%) and PUFA (7–

10 EN%). The intake of linoleic acid (LA) was 4.33 (3.44–5.21) EN% in the VEG group, 3.52 

(2.57–4.46) EN% in LOV and 2.96 (2.50–3.42) EN% in OMN. Similarly, the intake of alpha-

linolenic acid (ALA) was highest in the VEG group (0.80, 0.55–1.05 EN%) compared to LOV 

(0.68, 0.33–1.03 EN%, n.s. compared to VEG) and OMN (0.37, 0.27–0.48 EN%, pOMN-VEG = 

0.005). The ratio LA:ALA did not differ significantly between the groups, although OMN showed 

a less favorable ratio (1:8.04) (see Additional file 2). The PUFAs, eicosapentaenoic acid (EPA, 

20:5n3) and docosahexaenoic acid (DHA, 22:6n3), were supplemented by two subjects of the 

OMN group, two subjects of the VEG and one of the LOV group. We observed the highest sum 

of EPA + DHA intake in the OMN group (0.54, 0.23–0.85 g), followed by LOV (0.08, 0.37–0.12 

g; pOMN-LOV = 0.003) and VEG (0.09, 0.01–0.17 g; pOMN-VEG < 0.001). 

Fiber intake was significantly higher in the VEG group (51.7, 44.1–59.4 g) compared to LOV 

(33.4, 28.6–38.2 g; pOMN-LOV = 0.006) and OMN (27.0, 22.8–31.1 g; pOMN-VEG < 0.001). The latter 

did not reach the minimum reference value of 30 g per day.  

Micronutrient intakes also showed several differences between the groups (Table 4). Several 

participants did not reach the recommended intake for all the micronutrients examined (see 

Additional file 3). There were variations regarding the minerals, sodium, potassium and 

magnesium, while calcium and phosphorus values were similar. More precisely, lower sodium 

intake was observed in the LOV group (pOMN-LOV = 0.004) and VEG (pOMN-VEG = 0.005) 

compared to OMN (Table 4, p values of total intake are not shown). By contrast, the VEG 

group had significantly higher intake levels of potassium and magnesium compared to LOV 

(pLOV-VEG = 0.005 and 0.001, respectively) and OMN (pOMN-VEG = 0.014 and < 0.001, 

respectively) (Table 4, p values of total intake are not shown). On average, the LOV and VEG 

groups had calcium intakes < 1000 mg per day [33], and OMN consumed sufficient amounts 

(1026, 846–1207 mg) due to supplementation. A total of 64.0 % of the LOV group, 51.9 % of 

OMN and 44.4 % of VEG were below the recommendations for calcium (see Additional file 3). 

There were also group differences regarding trace elements, except for the zinc values, which 

did not vary between the groups. All three groups had adequate dietary zinc intakes, however, 
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the male LOVs were slightly low (9.89, 5.33–14.5 mg). Female subjects reached the 

recommendations and so did the non-SU (OMN 8.46, 6.30–10.6 mg; LOV 9.44, 6.77–12.1 mg; 

VEG 9.89, 7.63–12.1 mg). We observed a high iron intake, particularly in the VEG group (Table 

4). The mean iron intake was within the recommended area (10 mg/day [33]) in all three groups 

when only men were compared, and in both male SU and non-SU (Figure 2). The highest iron 

intake via food in women was found in the VEG group (19.8, 15.7–24.0 µg), followed by LOV 

(12.8, 9.47–16.1 µg; pLOV-VEG = 0.037) and OMN (11.2, 9.01–13.2 µg; pOMN-VEG = 0.005). Only 

the female SU in both the LOV and OMN groups reached the reference range (15 mg/day [33]) 

(Figure 3). The iron sources in the diet of the VEG group were exclusively plant-based food. 

However, the LOV and OMN groups consumed predominantly plant-based iron as well (Table 

4). The worst supply was observed for iodine. Only 3.7 % of the OMN group and none of the 

subjects in LOV and VEG had values in a reference range of 200 µg per day (see Additional 

file 3) [33].  

Variations were also observed in the vitamin intake between the groups (Table 5). On average, 

all three groups reached the recommended amounts for thiamine, pyridoxine and folate, while 

the reference value for vitamin D was not achieved, and the ascorbic acid intake was exceeded 

in all groups. Due to the supplementation, the highest average intake of cobalamin was 

observed in the VEG group (207, 102–313 µg), followed by OMN (4.97, 3.70–6.25 µg; n.s. 

compared to VEG) and LOV (2.96, 1.69–4.24 µg; n.s. compared to VEG) (Table 5). Riboflavin 

intake was low in 44.4 % of VEG subjects, 44.0 % of LOV and 22.2 % of OMN (see Additional 

file 3). We found the highest vitamin D intake in the VEG group (19.9, 2.75–37.0 µg), followed 

by OMN (8.29, 2.22–14.37 µg; n.s. compared to VEG) and LOV (4.52, -1.34–10.39 µg; n.s. 

compared to VEG) (Table 5). Only 22.2 % of the VEG group, 14.8 % of OMN and 4.00 % of 

LOV had vitamin D intakes within the recommendations (20 µg/day [33]). 

Discussion 

The aim of this study was to investigate for the first time the dietary habits and nutritional intake 

of German recreational runners practicing a VEG diet in comparison to a LOV or OMN diet.  

Organizations such as The American College of Sports Medicine (ACSM), The International 

Society for Sports Nutrition (ISSN) and the International Olympic Committee (IOC) have 

defined guidelines for athletes [35–37]. As these few existing recommendations for mainly high-

performance athletes were only partially applicable to this study collective, the nutrient intake 

was compared with intake recommendations of the D-A-CH for the general population. 

However, the D-A-CH does not specify any certain reference values for ambitious recreational 

athletes and recommends only the percentage of carbohydrate and fat intake, while there are 

absolute recommendations regarding protein intake [33].  
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The literature considers an adequate supply of athletes with all micronutrients through a 

balanced mixed diet, but it is unknown whether a vegetarian and especially VEG diet can 

provide all the important nutrients for athletes.  

The type, duration and intensity of sport determine the energy requirements. The ISSN 

recommends an energy intake from 7.5–10.0 MJ for athletes with general physical activity 

levels of 30-40 min three to four times a week [35]. In order to assess the energy demand, the 

ACSM recommends various options (e.g. based on the daily recommended intake, the basal 

metabolic rate and a factor of physical activity or metabolic equivalents) [37]. The IOC refers 

to the fat-free mass (30–45 kcal/kg FFM/day) [38]. Our subjects trained an average of three 

times a week for about 60 min, which corresponds to an estimated physical activity level value 

of about 1.7 [33]. More than half of each group did not reach the recommended energy intake, 

which is not uncommon in endurance athletes [39]. There were no differences among the 

groups, which agrees with the results of Lynch and colleagues, who compared 35 vegetarian 

athletes with 35 omnivores [24]. 

Macronutrients 

Carbohydrates are the most important sources of energy and endurance athletes strive to 

consume carbohydrates to benefit from full glycogen stores [40]. Depending on the intensity 

and type of training or competition, gender and external influences, an absolute amount of 3–

7 g/kg BW is recommended. Thus, participants in the present study achieved the 

recommendations for carbohydrate intake. Similar to previous studies with non-athletes [41–

44], the VEG group had the highest intake of carbohydrates (55.2, 51.4–59.0 EN%) compared 

to OMN (46.7, 43.6–49.8 EN%; pOMN-VEG = 0.002) and LOV (49.4, 45.5–53.3 EN%; n.s. 

compared to VEG), which can be explained by the increased intake of potatoes and fruit, since 

the intake of whole grain and cereal products, pastries and sweets were similar for all groups.  

The protein needs of athletes have been widely discussed [45–47]. The ACSM and IOC 

recommend a range of 1.2–2.0 g/kg BW for (endurance) athletes [37,38] and pay no attention 

to ambitious recreational athletes. By contrast, the ISSN recommends 0.8–1.0 g/kg BW for 

general fitness [35]. According to the IOC and ACSM, the recommended amount also applies 

to vegetarians. The average protein intake of all three groups was within the reference ranges 

of the ACSM and IOC, but above the reference range of the ISSN. In addition to absolute 

protein intake, it is important to consider the quality of the proteins. Protein sources were mainly 

meat, meat products and sausages, fish and dairy products for the OMN group, milk, dairy 

products and eggs for LOV, and cereal products and soybeans for VEG. The biological value 

of animal proteins is slightly higher compared to plant-based proteins. Compared to the 

reference values of the WHO, on average, all groups met the reference range for amino acid 

intake [34]. Hence, it can be assumed that all three groups – including VEG – had an adequate 
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protein and amino acid supply. This is consistent with the literature, which has shown that non-

athlete LOV and VEG appear to be within the range of recommendations for protein intake 

[44,48].   

Dietary fats are valuable energy sources and have structural and regulatory functions. 

Regarding adequate fat intake, the recommendations vary strongly between the sports 

societies. While the ACSM recommends a daily intake of 20–35 EN% but not less than 

20 EN% fat [37], the IOC advises an intake of ≥ 15–20 EN% fat, depending on the type of sport 

[49]. By contrast, both D-A-CH and ISSN recommend a fat intake of 30 EN% [33,35]. Most 

subjects in the three groups reached the recommendations of the D-A-CH [33], ISSN and 

ACSM. In addition, it is important to evaluate the PUFA intake of athletes, which was below 

the reference value in all three groups [33]. The PUFAs play a pivotal role in health due to their 

precursor function as regulatory lipid mediators. The International Society for the Study of Fatty 

Acids and Lipids recommends a daily sum EPA + DHA intake of 0.5 g, which was achieved by 

the OMN group (0.54, 0.23–0.85 g), but not by LOV (0.08, 0.04–0.12 g; pOMN-LOV = 0.003) or 

VEG (0.09, 0.01–0.17 g; pOMN-VEG < 0.001) [50]. The supply situation of LOV and VEG in the 

study collective can be classified as inadequate, which is consistent with other studies 

regarding non-athlete vegetarians and VEG [51]. The EPA/DHA supplements were only 

consumed occasionally in the VEG and LOV groups. The resulting LA:ALA ratios in the VEG 

(1:5.71) and LOV groups (1:5.30) were within the reference range [33]. The OMN group 

showed higher LA:ALA ratios (1:8.04), which are consistent with the results of the German 

Nutrition Survey [52].  

Micronutrients 

It is generally thought that athletes consume high amounts of micronutrients via dietary 

supplements due to their increased health awareness [53]. However, several studies have 

shown insufficient micronutrient intake in athletes [54,55]. For this specific group, there are no 

clear recommendations for micronutrient intake. However, in the view of the ACSM, ISSN and 

IOC, an adequate supply of micronutrients is assured with a balanced mixed diet. A possible 

insufficient supply to vegetarians of zinc, iron, riboflavin, cobalamin and vitamin D is described 

in the ACSM and IOC guidelines [36,37], while the ACSM additionally mentions calcium, 

pyridoxine and folate. A specific risk of an insufficient micronutrient supply with a VEG diet is 

not mentioned.  

In the present study, magnesium, calcium, iron, vitamin D and cobalamin were the most 

frequently supplemented nutrients. Cobalamin intake was strongly dependent on 

supplementation, especially for both female and male VEG. Half of the VEG group 

supplemented cobalamin and, thus, had an adequate intake compared to the D-A-CH 

reference values of 4 µg per day [33]. As expected, subjects of the VEG group who did not 
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take cobalamin supplements had a marginal intake. Additionally, the dietary intake of the LOV 

group was insufficient, especially for males, who had cobalamin intakes below the 

recommendations, regardless of supplementation. However, although consuming cobalamin-

rich foods such as meat, meat products and fish, its intake was still inadequate in one-third of 

the OMN group. Cobalamin is considered critical for VEG, but adequate intake should be 

ensured for every diet. 

Due to high riboflavin levels in animal products, it was not surprising that the OMN group 

consumed the highest amounts, although, on average, VEG and female LOV reached the 

recommendations, which agrees with previous studies in non-athletes [56,57]. In contrast to 

Eisinger et al., who showed high intakes of riboflavin in LOV endurance runners [58], only 

female LOV achieved the reference values. Pyridoxine intake exceeded the recommendations 

in the VEG group due to the high consumption of vegetables, legumes, nuts and seeds, which 

has already been shown by other studies with non-athletes [56,59]. The VEG group showed a 

high folate intake due to the high amount of folate in green vegetables, yeast and nuts, while 

the folate intake of most OMN subjects was insufficient. These results are consistent with the 

German Nutrition Survey [52] and studies with athletes [54].  

Similar to cobalamin, vitamin D intake was strongly dependent on the use of supplements. This 

becomes clear by comparing the vitamin D intake between SU and non-SU. On average, the 

VEG group (19.9, 2.75–37.0 µg) was closest to the recommendations of 20 μg per day 

compared to OMN (8.29, 2.21–14.4 µg) and LOV (4.52, -1.14–10.4 µg). However, the intake 

of vitamin D was considerably higher in SU compared to non-SU. Hence, the mean values for 

the vitamin D intake in the VEG group (including SU and non-SU) should be treated with 

caution. This also applies to the OMN and LOV group, although not quite as strongly 

pronounced. However, it is worth mentioning that an adequate vitamin D status can only be 

evaluated with the endogenous 25-hydroxyvitamin D status in the blood.  

Similar to other studies with non-athletes [42,56], the highest iron intake from food (excluding 

supplements) was observed in VEG subjects compared to LOV and OMN. In addition, the VEG 

group had the highest iron intake via supplements compared to the other two groups. A total 

of more than 85 % of VEG subjects achieved the recommendations compared to only ~ 50 % 

in OMN and LOV. Male subjects of all groups were above the recommendations with more 

than 10 mg per day, independent of supplementation. Female OMN and LOV subjects 

achieved the recommendation of 15 mg daily only after supplementation. Interestingly, the 

VEG group reached the iron intake recommendations solely via food and not via supplements. 

The literature on the iron supply of athletes is inconsistent. Some studies found an adequate 

[60,61] and others an inadequate iron intake in athletes [62]. High-performance athletes might 

have increased requirements due to increased iron losses via sweat, urine and feces, which 
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results in a higher risk of iron deficiency anemia [61]. In addition to absolute amounts, the 

bioavailability of different iron species should be considered. Despite the exclusive 

consumption of plant-based iron of the VEG group, LOV and OMN also consumed 

predominantly plant iron sources. While plant-based foods contain non-heme iron, mainly in 

trivalent form (Fe3+), which has a poor bioavailability of 1–5 %, meat and fish contain about 

70 % of the total iron in the form of heme iron, which can be absorbed much better at 10–20 % 

[63,64]. Hence, the lower iron intake in OMN subjects compared to LOV and VEG does not 

necessarily result in a lower status. Moreover, further influences on bioavailability (promoting 

substances such as ascorbic acid or lactic acid and inhibiting substances such as phytic acid 

or oxalic acid, which occurs in vegetable foods) must be taken into account (the same applies 

to zinc, magnesium and calcium). Therefore, only functional parameters, such as transferrin 

and ferritin, indicate an adequate supply status.  

The present results show that calcium is still a critical nutrient [55]. As expected, calcium intake 

was highest among OMN subjects, although more than half were below the reference range. 

The highest number of subjects with an intake below the reference range for calcium was found 

in the LOV group (64.0 %), although they consumed milk and dairy products. The calcium 

supply of athletes should be improved independently of dietary habits due to the importance 

of bone health, and normal nerve and muscle function. The mean intake of zinc was in the 

reference range for all groups, although male LOV subjects were slightly below. Female 

subjects and non-SU reached the recommendations. Interestingly, the zinc supply was similar 

in OMN and VEG subjects, although animal-based foods are rich in zinc and the zinc 

supplement intake in the VEG group was considerably lower than OMN. These results reveal 

that zinc-rich plant-based foods can secure adequate zinc supply. The literature on zinc supply 

is inconsistent. Some studies observed a slightly lower but adequate intake of zinc in 

vegetarians and VEG compared to OMN [43,48,56], other studies found no differences between 

vegetarian and OMN endurance athletes [24].  

The fact that the data of dietary intake relied on self-reported data by subjects should be 

considered. Both under- and over-reporting are further sources of error in dietary records. 

Since the use of iodized salt is voluntary in Germany and a precise indication about the dietary 

intake is critical, the values of iodine intake should be considered with caution. Furthermore, 

there are limitations regarding the nutrition software which shows data gaps, especially 

regarding VEG products. We did not consider the water intake of the subjects, which might 

also influence nutrient (e.g. mineral) supply. 

Conclusion 

In summary, all three groups were adequately supplied with most nutrients. As expected, the 

intake of carbohydrates and fiber was highest in the VEG group, while the recommended 
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amount of fat was not reached. Moreover, all three groups exceeded the recommendations for 

absolute protein intake. The mean intake of micronutrients was partly dependent on 

supplementation, especially for vitamin D and cobalamin. Only female VEG achieved the 

recommended amounts for iron intake solely via food and not via supplements. However, the 

demand for several micronutrients might be higher for athletes due to increased losses. 

Recommendations of current guidelines for an adequate micronutrient intake of recreational 

athletes are sparse due to a lack of data.  
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Table 1 Characterization of the study population (mean±SD). 

        
 OMN (n = 27) p value 

OMN-LOV 
LOV (n = 26) p value 

LOV-VEG 
VEG (n = 28) p value 

OMN-VEG 
p value 
3 groups 

        

        
Age (years) 27.4 ± 4.03 - 27.6 ± 4.31 - 27.5 ± 4.24 - 0.968b 

Sex m = 11, w = 16 - m = 10, w = 16 - m = 10, w = 18 - 0.929d 
BMI (kg/m2) 22.3 ± 1.74 - 21.6 ± 1.98 - 22.1 ± 2.09 - 0.436b 
Waist (cm)                             female 
male                                                                                                                                                                                         

71.0 ± 4.3 
79.5 ± 4.3 

- 
- 

70.1 ± 3.8 
76.4 ± 3.0 

- 
- 

69.5 ± 5.0 
80.6 ± 4.1 

- 
- 

0.057a 

0.591a 

Systolic blood pressure (mm Hg) 121 ± 11.1 - 121 ± 13.4 - 116 ± 12.6 - 0.201b 

Diastolic blood pressure (mm Hg) 74.0 ± 6.00 - 72.0 ± 4.00 - 72.0 ± 9.00 - 0.457b 
Pulse rate (bpm) 66.0 ± 9.00 - 61.0 ± 8.00 - 65.0 ± 10.00 - 0.188b 
Duration of diet 
  < 0.5 years (%) 
  0.5–1 year (%) 
  1–2 years (%) 
  2–3 years (%) 
  > 3 years (%) 

 
0 
0 
3.70 
0 
96.3 

  
0 
15.4 
11.5 
7.69 
65.4 

  
0 
21.4 
14.3 
25.0 
39.3 

 0.001d 

Magnesium supplement user (%) 22.2  17.9  23.1  0.710d 
Calcium supplement user (%) 11.1  3.85  7.14  0.210d 
Iron supplement user (%) 11.1  15.4  19.3  0.689d 
Vitamin B12 supplement user (%) 18.5  15.4  53.9  0.005d 
Vitamin D supplement user (%) 22.2  3.85  23.1  0.078d 
Smoker (%) 0  0 - 0 - - 
Training frequency per week 3.04 ± 0.98 - 3.24 ± 0.88 - 3.00 ± 0.85 - 0.502b 
Running time per week (h) 2.72 ± 1.11 - 3.38 ± 1.43 - 2.65 ± 1.38 - 0.079b 
        

OMN = omnivores, LOV = lacto-ovo vegetarians, VEG = vegans, BMI = body mass index, bpm = beats per minute. 
a One-way ANOVA, b Kruskal Wallis test, c Post hoc test, d Chi-square test. 
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Table 2 Mean daily intake of different food categories calculated from a 3-day dietary record. 

        
Food group (g/day) OMN 

(n = 27) 
p value 
OMN-LOV 

LOV 
(n = 25) 

p value 
LOV-VEG 

VEG 
(n = 27) 

p value 
OMN-VEG 

p value 
3 groups 

        

        
Meat 85.8 ± 58.8 0.000c - 1.000c - 0.000c 0.000b 
Meat products and sausages 29.6 ± 32.1 0.000c - 1.000c - 0.000c 0.000b 

Fish and seafood 28.7 ± 39.9 0.000c - 1.000c - 0.000c 0.000b 
Milk and dairy products 290 ± 183 1.000c 279 ± 311 0.000c - 0.000c 0.000b 
Eggs 23.8 ± 37.4 1.000c 15.8 ± 25.0 0.003c - 0.000c 0.000b 

Fat and oil 9.85 ± 14.8 - 10.3 ± 12.1 - 12.0 ± 10.8 - 0.228b 
Whole grain products 33.2 ± 48.7 - 50.6 ± 58.8 - 51.0 ± 59.0 - 0.294b 

Cereal products 208 ± 141 - 188 ± 130 - 220 ± 120 - 0.678a 
Pastries 58.8 ± 50.0 - 58.0 ± 100 - 37.4 ± 73.8 - 0.067b 

Potatoes 44.1 ± 79.3 1.000c 37.5 ± 62.3 0.013c 118 ± 130 0.017c 0.005b 
Vegetables (except potatoes, legumes) 265 ± 237 0.511c 324 ± 187 0.031c 521 ± 258 0.000c 0.000b 
Legumes (except soybeans) 3.70 ± 8.08 0.054c 27.7 ± 39.7 0.092c 66.4 ± 68.1 0.000c 0.000b 
Soybeans - 0.007c 54.4 ± 95 0.031c 151 ± 179 0.000c 0.000b 
Fresh fruit 266 ± 160 1.000c 288 ± 171 0.041c 518 ± 404 0.015c 0.009b 
Nuts and seeds 4.57 ± 8.30 0.044c 19.7 ± 23.7 0.578c 26.0 ± 29.3 0.000b 0.001b 
Sweets 37.0 ± 39.3 - 38.9 ± 44.4 - 20.2 ± 33.6 - 0.148b 
Alcoholic drinks 131 ± 210 - 101 ± 198 - 63.0 ± 146 - 0.184b 
Alcohol 5.50 ± 8.64 - 3.89 ± 6.91 - 2.26 ± 5.57 - 0.345b 
Nonalcoholic beverages (except coffee 
and tea) 

1103 ± 1095 - 794 ± 1098 - 1246 ± 1258 - 0.339b 

Coffee 170 ± 164 - 279 ± 238 - 148 ± 198 - 0.051b 
Tea 257 ± 398 - 181 ± 310 - 221 ± 339 - 0.999b 
Fast food 57.1 ± 75.2 0.063c 32.7 ± 87.2 1.000c 16.6 ± 38.1 0.025c 0.016b 
        

All nutrients excluding dietary supplements. OMN = omnivores, LOV = lacto-ovo vegetarians, VEG = vegans. 

Data are presented as mean±SD. a One-way ANOVA, b Kruskal Wallis test, c Post hoc test. 
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Table 3 Absolute and relative daily energy and macronutrient intake of the study population calculated from a 3-day dietary record. 

         
Nutrient intake OMN 

(n = 27) 
p value 
OMN-LOV 

LOV 
(n = 25) 

p value 
LOV-VEG 

VEG 
(n = 27) 

p value 
OMN-VEG 

p value 
3 groups 

Reference values 
(m/f) 

         

         
Energy         
    Energy intake (MJ) 10.4 (8.70, 12.1) - 9.67 (8.55, 10.8) - 10.2 (9.12, 11.3) - 0.989b 11.9–12.3/9.41–

9.83 
         

         
Macronutrients         
    Carbohydrate (EN%) 46.7 (43.6, 49.8) 0.824c 49.4 (45.5, 53.3) 0.067c 55.2 (51.4, 59.0) 0.002c 0.003a > 50 
    Carbohydrate (g/kg BW)  4.31 (3.45, 5.17) 1.000c 4.22 (3.52, 4.91) 0.094c 5.01 (4.40, 5.62) 0.111c 0.049b  
    Protein (EN%) 16.7 (15.1, 18.9) 0.540c 15.9 (13.6, 18.2) 0.295c 13.8 (12.5, 15.0) 0.007c 0.009b  
    Protein (g/kg BW) 1.50 (1.27, 1.66) 0.159c 1.34 (1.09, 1.56) 1.000c 1.25 (1.07, 1.42) 0.063c 0.047b 0.8 
    Fat (EN%) 32.5 (30.5, 34.5) 0.432c 30.8 (26.8, 34.8) 0.708c 26.3 (22.7, 29.8) 0.021c 0.026b 30 
         

         
Fiber (g) 27.0 (22.8, 31.1) 0.176c 33.4 (28.6, 38.2) 0.006c 51.7 (44.1, 59.4) 0.000c 0.000b ≥ 30 
         

OMN = omnivores, LOV = lacto-ovo vegetarians, VEG = vegans, MJ = mega joule, EN% = energy percent, BW = body weight, reference values of the German, 
Austrian and Swiss Nutrition Societies (Deutsche, Österreichische und Schweizerische Gesellschaften für Ernährung, D-A-CH) [33]. Data are presented as mean 
(95 % CI). a One-way ANOVA, b Kruskal Wallis test, c Post hoc test. 
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Table 4 Dietary mineral intake of the study population calculated from a 3-day dietary record (nutrient intake via food and supplements). 

         
 OMN 

(n = 27) 
p value 
OMN-LOV 

LOV 
(n = 25) 

p value 
LOV-VEG 

VEG 
(n = 27) 

p value 
OMN-VEG 

p value 
3 groups 

Reference 
values (m/f)* 

         

         
Na (g)  food 2.65 (2.17, 3.12) 0.004b 1.72 (1.44, 2.00) 1.000b 1.72 (1.46, 1.99) 0.005b 0.001a 1.5 
supplement 0 - 0 - 0 - -  
K (g)  food 3.16 (2.88, 3.50) 1.000b 3.04 (2.55, 3.52) 0.005b 4.65 (3.85, 5.50) 0.014b 0.002a 4c 
supplement 0 - 0.00 (0.00, 0.01) - 0.00 (0.00, 0.01) - 0.372a  
Ca (mg) food 981 (813, 1149) - 901 (716, 1085) - 730 (614, 846) - 0.115a 1000 
supplement 45.1 (-32.0, 122) - 0 - 6.37 (-2.22, 15.0) - 0.214a  
P (g) food 1.43 (1.26, 1.60)  - 1.34 (1.08, 1.61) - 1.33 (1.15, 1.52) - 0.495a 0.7 
supplement 0 - 0 - 0 - -  
Mg (mg) food 346 (310, 382) 0.990b 388 (324, 452) 0.001b 599 (518, 679) 0.000b 0.000a 350/300 
supplement 36.7 (0.44, 73.0) - 53.2 (-5.58, 112) - 54.3 (-7.09, 116) - 0.910a  
Fe (mg) food (total) 11.9 (10.6, 13.2) 1.000b 12.8 (10.8, 14.7) 0.001b 19.6 (16.8, 22.4) 0.000b 0.000a 10/15 
plant-based iron 7.44 (6.33, 8.54) 0.105b 10.7 (8.95, 12.5) 0.000b 19.6 (16.8, 22.4) 0.000b 0.000a  
animal iron 4.45 (3.67, 5.24) 0.013b 2.02 (1.41, 2.61) 0.000b 0 0.000b 0.000a  
supplement 1.70 (-1.36, 4.77) - 1.52 (-1.19, 4.24) - 3.74 (-0.64, 8.12) - 0.675a  
Zn (mg) food 9.74 (8.32, 11.2) - 8.88 (7.30, 10.5) - 10.7 (9.21, 12.2) - 0.214a 10/7 
supplement 2.23 (-1.59–6.04) - 0.90 (-0.70–2.49) - 0.47 (-0.48–1.41) - 0.648a  
Cu (mg) food 1.63 (1.43, 1.84) 0.819b 1.85 (1.56, 2.13) 0.001b 2.93 (2.51, 3.34) 0.000b 0.000a 1.0-1.5 
supplement 0 - 0 - 0 - -  
Mn (mg) food 4.75 (3.87, 5.62) 0.188b 6.29 (5.05, 7.54) 0.067b 8.48 (7.10, 9.85) 0.000b 0.000a 2.0-5.0 
supplement 0 - 0 - 0 - -  
I (µg) food 88.8 (64.1, 114) 0.190b 61.6 (49.4, 73.7) 1.000b 57.7 (48.4, 67.0) 0.060b 0.048a 200 
supplement 0 - 0 - 0 - -  

OMN = omnivores, LOV = lacto-ovo vegetarians, VEG = vegans, reference values of the German, Austrian and Swiss Nutrition Societies (Deutsche, 
Österreichische und Schweizerische Gesellschaften für Ernährung, D-A-CH) [33].  
Data are presented as mean (95 % CI). a Kruskal Wallis test, b Post hoc test, c Estimated values. 
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Table 5 Dietary vitamin intake of the study population calculated from a 3-day dietary record (nutrient intake via food and supplements). 

          
  OMN 

(n = 27) 
p value 
OMN-LOV 

LOV 
(n = 25) 

p value 
LOV-VEG 

VEG 
(n = 27) 

p value 
OMN-VEG 

p value 
3 groups 

Reference 
values (m/f)* 

          

          
A [retinol equ.] (mg)           food 1.45 (0.81, 2.10) - 1.26 (0.91, 1.61) - 1.72 (1.27, 2.16) - 0.221a 1.0/0.8 
   supplement 0 - 0 - 0 - -  
D (µg)                               food 2.61 (1.34, 3.89) 1.000b 1.67 (1.02, 2.32) 0.037b 1.04 (0.46, 1.62) 0.003b 0.002a 20 
 supplement 5.68 (-0.12, 11.5) - 2.75 (-2.91, 8.40) - 18.8 (1.61, 36.1) - 0.086a  
E (mg)                              food 9.66 (7.85, 11.5) 0.851b 11.4 (9.03, 13.7) 0.280b 16.4 (12.5, 20.4) 0.015b 0.018a 14/12c 
 supplement 1.12 (-0.47–2.71) - 0.15 (-0.16–0.47) - 0.04 (-0.37–0.11) - 0.411a  
K (µg)                               food 92.5 (63.5, 122) 0.119b 181 (96.6, 266) 0.058b 261 (164, 359) 0.000b 0.000a 70/60 
 supplement 0 - 0 - 0 - -  
B1 [thiamine] (mg)                      food 1.38 (1.21, 1.55) 0.502b 1.20 (0.98, 1.43) 0.003b 1.86 (1.56, 2.16) 0.143b 0.004a 1.2/1.0 
   supplement 0.56 (-0.58, 1.70) - 0.17 (-0.16, 0.50) - 0.09 (-0.08, 0.26) - 0.888a  
B2 [riboflavin] (mg)                    food 1.57 (1.34, 1.79) - 1.54 (1.12, 1.96) - 1.38 (1.16, 1.59) - 0.278a 1.4/1.1 
      supplement 0.56 (-0.58, 1.70) - 0.01 (-0.01, 0.03) - 0.11 (-0.98, 0.33) - 0.896a  
Niacin (mg)                                    food 21.4 (18.5, 24.3) 0.033b 15.8 (12.3, 19.3) 1.000b 17.3 (12.3, 22.3) 0.021b 0.010a 15/12 
 supplement 0.62 (-0.52, 1.77) - 0.09 (-0.09, 0.27) - 1.31 (-1.12, 3.74) - 0.645a  
Pantothenic acid (mg)                  food 5.23 (4.38, 6.07) - 5.36 (4.04, 6.68) - 6.39 (4.96, 7.81) - 0.461a 6c 
 supplement 0.95 (-0.95, 2.85) - 0 - 0.04 (-0.19, 0.11) - 0.374a  
B6 [pyridoxine] (mg)                   food 1.91 (1.61, 2.20) 0.670b 1.59 (1.27, 1.91) 0.002b 2.63 (2.10, 3.16) 0.087b 0.003a 1.5/1.2 
 supplement 0.47 (-0.31, 1.25) - 0.46 (-0.11, 1.04) - 0.16 (-0.07, 0.40) - 0.497a  
Biotin (µg)                            food 50.9 (44.9, 56.9) - 56.7 (43.4, 69.9) - 64.5 (51.4, 77.6) - 0.573a 30–60c 
 supplement 6.10 (-5.33, 17.5) - 0 - 0.70 (-0.44, 1.90) - 0.373a  
Folate (µg)                                     food 307 (249, 364) 1.000b 327 (265, 389) 0.024b 478 (402, 572) 0.001b 0.001a 300 
 supplement 11.3 (-5.01, 27.6) - 2.20 (-2.33, 6.72) - 41.9 (-20.2, 104) - 0.261a  
B12 [cobalamin] (µg)                   food 4.02 (3.12, 4.92) 0.057c 2.49 (1.49, 3.48) 0.002b 0.79 (0.47, 1.12) 0.000b 0.000a 4 
 supplement 0.96 (-0.21, 2.13) 0.002b 0.84 (-0.20, 1.89) 1.000b 206 (101, 312) 0.004b 0.001a  
C [ascorbic acid] (mg)                food 153 (110, 196) 1.000b 143 (107, 179) 0.003b 293 (222, 365) 0.001b 0.000a 110/95 
 supplement 3.16 (-1.07, 7.38) - 0.17 (-0.18, 0.51) - 7.80 (-1.26, 13.7) - 0.126a  

OMN = omnivores, LOV = lacto-ovo vegetarians, VEG = vegans, retinol equ. = retinol equivalent, reference values of the German, Austrian and Swiss Nutrition 
Societies (Deutsche, Österreichische und Schweizerische Gesellschaften für Ernährung, D-A-CH) [33].  
Data are presented as mean (95 % CI). a Kruskal Wallis test, b Post hoc test, c Estimated values. 
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Abbreviations: BIA – bioelectrical impedance analysis, BW - body weight, FOXO3 – forkhead 

box protein O 3, LBM – lean body mass, LOV – lacto-ovo-vegetarian, OMN – omnivorous, 

PGC-1α – Peroxisome proliferator-activated receptor gamma coactivator 1-alpha, p53 – 

protein 53, qRT-PCR – quantitative reverse transcription-polymerase chain reaction, ROS – 

reactive oxygen species, SIRT – sirtuin,  SOD2 – mitochondrial manganese superoxide 

dismutase, U – enzyme units, VEG – vegan 

Keywords: metabolic regulation, recreational runners, sirtuins, vegan, vegetarian 

Abstract: Nutrition affects metabolic regulation in humans. Sirtuins are essential regulators of 

cellular energy metabolism: SIRT1, SIRT3, and SIRT4 have a direct effect on glycolysis, 

oxidative phosphorylation and fatty acid oxidation. This cross-sectional study investigated the 

effect of different diets on sirtuin regulation after exercise. SIRT1 and SIRT3 - SIRT5 were 

measured in blood from omnivorous, lacto-ovo-vegetarian and vegan recreational runners (21-

25 subjects, respectively) before and after exercise at the transcript, protein, and enzymatic 

levels. Analyses showed a significant correlation of all sirtuins with antioxidative substances 

ascorbate and tocopherol. SIRT1, SIRT3, and SIRT5 enzyme activities increased after 

exercise in omnivores and lacto-ovo-vegetarians, commensurate with increased energy 

demand during exercise. However, activities were reduced in vegans. Reduced SIRT1, SIRT3, 

and SIRT5 enzyme activities in vegans may have a negative impact on energy metabolism 
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and markers of antioxidative response. Decreased sirtuin activities in vegan participants may 

be due to an increased intake of the antioxidative substances tocopherol and ascorbate. 

Introduction 

Sirtuins are NAD+ dependent deacylases that regulate mitochondrial energy metabolism as 

well as cellular response to stress.[1,2] In mammals, seven different sirtuins (SIRT1-SIRT7) with 

specific subcellular localization and enzymatic reactions are known.[3] SIRT1, SIRT6, and 

SIRT7 are nuclear enzymes, SIRT3, SIRT4 and SIRT5 are located in mitochondria, while 

SIRT2 is the only cytosolic sirtuin. Additionally, a subcellular shift of SIRT1 and SIRT3 into the 

cytosol was described under specific conditions.[4] The enzymatic reactions catalyzed by 

sirtuins are either a NAD+-dependent deacylation of lysine residues or a NAD+-dependent 

ADP-ribosylation of lysine residues.[5] The most common enzymatic reaction of sirtuins is 

deacetylation while SIRT5 is predominantly a desuccinylase, demalonylase, and 

deglutarylase.[6] The acetylation level of the mitochondrial proteome is 65%[7] which makes 

these proteins amenable to regulation by sirtuins. Blood levels of sirtuins were shown to 

correlate with several organ dysfunctions like coronary heart disease in obese patients[8–11] or 

type 1 and type 2 diabetes.[12]  

Nutritional factors may influence sirtuin activity. Caloric restriction has been linked to longevity 

and protection from age-related diseases via sirtuins.[13,14] A promoting effect of polyphenols 

on sirtuin activity[15,16] and an activating effect of resveratrol have been described.[16] As 

polyphenols are phytochemicals it can be hypothesized that a plant-based diet positively 

affects sirtuin activity. Plant-based diets such as vegetarian (predominant consumption of 

plant-based foods) and vegan (exclusive consumption of plant-based foods) nutrition are high 

in a variety of polyphenols. A lacto-ovo-vegetarian diet based on a broad variety of foods may 

protect from obesity, type 2 diabetes, hypertension, cardio metabolic disorders and cancer.[17–

22] On the other hand, plant-based diets are low in vitamin B12, which could have also 

modulating effects on sirtuin activity.[23] Ghemrawi and colleagues described a decreased 

SIRT1 expression due to lack of vitamin B12.[23] These observations prompted us to compare 

sirtuins in blood from vegans, lacto-ovo-vegetarians, and omnivores. 

During physical exercise, energy demand increases, especially in skeletal and cardiac muscle, 

the energy demand of the heart may vary 10-fold. In order to maintain metabolic homeostasis, 

energy production must increase commensurate with the increased energy demand during 

exercise. Mitochondrial energy production is regulated passively via substrate (ADP) 

saturation and actively via activation of ATP synthase (complex V of the respiratory chain) as 

previously described.[24] Furthermore, the Krebs cycle enzymes are under the control of 

calcium[25] which increases in response to exercise. Sirtuins are regulators of energy 
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production. SIRT3 activates complex 1 of the respiratory chain[26,27] complex 2[28], complex 3[27], 

complex 4[29] and complex 5[30] and regulates mitochondrial biogenesis.[31] Also, SIRT1 

stimulates mitochondrial biogenesis[32] and oxidative phosphorylation via PGC-1α[32], while 

fatty acid oxidation is inhibited by SIRT4.[33] Hence, a better understanding of the regulation of 

human energy metabolism by sirtuins may offer a new approach to exercise physiology. To 

the best of our knowledge, literature regarding the influence of exercise performance on sirtuin 

activity in humans is scarce. For example, an investigation by Villanova and colleagues 

showed that sirtuin activity might be upregulated by physical exercise.[34] Suwa et al. as well 

as Covington et al. also described up-regulation of sirtuins after exercise.[35,36] A similar result 

was observed in rats with exercise training in treadmills resulting in activation of SIRT1 

signaling pathways.[37] Zhuang et al. additionally showed transactivation of SIRT1 by FOXO3 

and p53 in response to exercise.[38]  

As diet may have an effect on sirtuins, we hypothesize that diet may not only influence basal 

sirtuin levels but the sirtuin response to exercise performance as well. We, therefore, studied 

sirtuins in blood from omnivores, lacto-ovo vegetarians and vegans before and after physical 

exercise. 

Materials and methods  

Participants 

Participants were recruited from the general population in Hannover, Germany, by 

advertisements. Participants were pre-selected via screening questionnaires according to the 

following inclusion criteria: Omnivorous, lacto-ovo-vegetarian or vegan diet for at least half a 

year, BMI between 18.5 and 25.0 kg/m2 and regular running exercise 2 to 5 times per week. 

The following criteria led to exclusion: Any cardiovascular, metabolic or malignant disease, 

diseases regarding the gastrointestinal tract, pregnancy, nutrient intolerances as well as 

addiction to drugs or alcohol. Participants were matched according to age and gender. 

Ethical approval was granted by the Ethics Committee at the Medical Chamber of Lower 

Saxony (Hannover, Germany; 12/2017). The study was conducted in accordance with the 

Declaration of Helsinki. All participants gave their written informed consent prior to recruitment. 

This study is registered in the German Clinical Trial Registry (DRKS00012377). 

Methods  

All subjects underwent a sports-medical examination. First, a 24 h dietary recall was conducted 

(food and beverages consumed in the last 24 hours, including antioxidants, polyphenols, 

caffeine, vitamin B12). Subsequently, an incremental exercise test was performed on a bicycle 

ergometer (Excalibur, Lode B.V., Groningen, Netherlands) until voluntary exhaustion. 
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Participants were asked not to perform any strenuous activities one day before and on the 

same day of the exercise test, and to maintain their usual diet. After a warm-up period of 6 

minutes at 10 Watt (W), the test started at 50 W and increased by 16.7 W per minute (50 W 

per 3 min). For maximum performance, the body weight-related power output (W/kg BW) and 

time to exhaustion (s) were determined. To ensure that the subjects achieve their maximum 

performance, they were verbally motivated by staff, but they were not allowed to get out of the 

saddle. Before and after the exercise test (pre and post), venous blood samples were collected, 

aliquoted immediately and stored at -80° C. On a separate day, body composition was 

estimated using a bipolar bioelectrical impedance analyzer (BIA) (Nutriguard M, Data Input 

Company, Darmstadt, Germany) as well as the relative software NutriPlus© 5.4.1 (Data Input 

Company, Darmstadt, Germany). 

Sample preaparation 

2 ml EDTA-blood from every survey participant were taken. 500 µl of the blood sample was 

transferred into RNAprotect Animal Blood Tubes (Qiagen, DE). These samples were used for 

RNA isolation. The remaining 1.5 ml of blood were centrifuged at 3,300x g for 3 minutes. We 

collected the blood plasma and used it for analyses of sirtuins.  

RNA isolation and qRT-PCR 

RNA was isolated with RNeasy Protect Animal Blood Kit (Qiagen, DE) according to the product 

protocol. The isolated RNA was reverse transcribed to cDNA with the Omniscript RT Kit 

(Qiagen, DE). Real-time PCR of different cDNA samples was carried out with SYBR green on 

a 7900 HT fast real-time PCR system (Applied Biosystems, DE). Used primers are shown in 

supplementary data Table S1. Relative changes in the mRNA expression were calculated 

according to Vandesompele et al..[39] 

Sirtuin activity assay 

SIRT1 and SIRT3 deacetylase activities and SIRT5 desuccinylase activity were determined by 

using SIRT1, SIRT3 and SIRT5 fluorometric drug discovery assay kits (Enzo Life Science, 

CH). To ensure that enzyme capacity was measured we added a surplus of NAD+ to our 

assays. We followed the manufacturer’s protocol with serum samples diluted 1:5 in HEPES 

buffer (110 mM NaCl, 2.6 mM KCl, 1.2 mM KH2PO₄, 1.2 mM MgSO4x7H2O, 1.0 mM CaCl2, 

25 mM HEPES) and lysed by sonification for 10 seconds with 20 kHz at an amplitude of 75%. 

For normalization of the determined SIRT-activity signals, we measured total protein 

concentration of the analyzed samples lysed in HEPES buffer with the Pierce™ BCA Protein 

Assay Kit (Thermo Fisher Scientific, US). 
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Data analysis and statistical methods 

Statistical analyses were performed using SPSS software (IBM SPSS Statistics 24.0; Chicago, 

IL, US) and GraphPad Prism 7.02 (GraphPad Software Inc., US). Results are shown as mean 

± SD. First, normal distribution was checked by using the Kolmogorov-Smirnov test. If data 

were normally distributed, one-way ANOVA was used to evaluate differences between the 

three diet groups. For data with non-parametric distribution, a Kruskal Wallis test was 

performed. Additionally, if there were significant differences between the groups, a Post Hoc 

test with Bonferroni correction was conducted (Dunn´s multiple comparison test). Moreover, 

the Chi-square test was used to compare differences between the frequency distribution of the 

three groups. Associations between parametric data were computed via Pearson, non-

parametric data via Spearman´s rho correlation. P values ≤ 0.05 were regarded as statistically 

significant.  

To analyze the nutrient intake of the 24h dietary protocol, the nutrition organization software 

PRODI® (Nutri-Science GmbH, Freiburg, Germany) was used. 

Results 

In total, seventy-six healthy male and female omnivorous (OMN), lacto-ovo-vegetarian (LOV) 

and vegan (VEG) recreational runners aged between 18 and 35 years were included in the 

study. However, in five subjects, no analyses could be performed due to failure to collect blood 

or (pre-) analytical errors (Figure S1). Details of the study population are summarized in Table 

1. 

Maximum power output during the exercise test (OMN: 4.15±0.48, LOV: 4.20±0.47, VEG: 

4.16±0.55 Watt/kg BW) and time to exhaustion (OMN: 1199 ± 177, LOV: 1197 ± 183, VEG: 

1187 ± 237 s) did not differ significantly between the study groups, no gender-differences could 

be found.  

Sirtuin activity 

We analyzed the sirtuin capacity (under substrate saturation) in vitro in blood of 71 participants 

before and after exercise (Table 1). There were no significant differences in basal sirtuin 

activity levels of all sirtuins between the 3 nutritional groups, no gender-differences were 

observed. We detected a significant increase of SIRT1 enzyme capacity in omnivores (Figure 

1 A) with an activity of 4.1 U/mg protein (±1.5) before exercise and 5.7 U/mg (±3.6) afterward. 

The induction of the SIRT1 capacity in response to exercise in lacto-ovo-vegetarians was not 

significant with activity levels of 4.9 U/mg (±1.7) before and 6.3 U/mg (±2.9) after exercise. A 

similar result was observed for samples from vegan participants. Here, the values before and 
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after exercise were unchanged with SIRT1 capacity levels of 4.3 U/mg (±2.1) before and 4.2 

U/mg (±1.4) after exercise (Figure 1 A). 

The results were similar for omnivores in case of SIRT3 (before [12.4 U/mg (±5.3)] and after 

[15.8 U/mg (±7.8)] exercise, p<0.05) and SIRT5 (before [0.7 U/mg (±0.3)] and after [0.9 U/mg 

(±0.3)] exercise, p<0.05), as well as for lacto-ovo-vegetarians with insignificant changes from 

10.7 U/mg (±3.2) before to 13.4 U/mg (±4.9) after exercise for SIRT3 (Figure 1 B)  and a 

change from 0.5 U/mg (±0.2) before to 0.6 U/mg (±0.2) after exercise for SIRT5 (Figure 1 C). 

SIRT3, as well as SIRT5 levels of sirtuin capacity, decreased in samples of vegan participants. 

For SIRT3 a reduction by ~10% to 11.5 U/mg (±4.8) after exercise and from 0.68 U/mg (±0.4) 

before to 0.66 U/mg (±0.4) after exercise was observed for SIRT5.  

Since we observed an altered result in participants with a vegan diet, we reanalyzed our data 

for sirtuin capacity with a paired analysis approach to detect intraindividual alterations within 

single participants. Therefore, we subtracted the sirtuin capacity before exercise from the 

sirtuin capacity after exercise.  

Also, the SIRT1 capacity was reduced in response to exercise in vegan participants. While 

there was an induction of 1-2 U/mg protein in omnivores and lacto-ovo-vegetarians, the SIRT1 

capacity in vegans was reduced by ~0.7 U/mg protein. This was a significant difference 

compared to omnivores and lacto-ovo-vegetarians as well (Figure 2 A).  

For SIRT3, a similar result was observed (Figure 2 B). In omnivores, we detected an induction 

by 3 U/mg protein after exercise and an increase of 2 U/mg protein in lacto-ovo-vegetarians. 

For samples of vegan participants, we observed a slight decrease by 0.5 U/mg protein. The 

vegan group differed again significantly from the omnivorous and lacto-ovo-vegetarian group. 

SIRT5 showed a slightly different result (Figure 2 C). Similar to SIRT1 and SIRT3 omnivores 

showed an increase in enzyme activity by 0-16 U/mg protein. For vegan participants, a 

significantly different reduction by 0.004 U/mg protein was observed. In contrast to the results 

of SIRT1 and SIRT3, we detected only a small induction by 0.02 U/mg protein in the lacto-ovo-

vegetarian group, resulting in no significant difference between vegan and lacto-ovo-

vegetarian participants in SIRT5. 

Although the change in sirtuin capacity was likely caused by altered posttranslational 

modifications we examined possible changes at gene expression levels of the analyzed 

sirtuins.  

We measured the relative expression levels of SIRT1, SIRT3, SIRT4, and SIRT5. Basal levels 

before exercise were not different between groups and there were no gender differences. The 

changes in expression levels were calculated similarly to the changes in sirtuin capacity (under 
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substrate saturation) before and after exercise. For none of the analyzed sirtuin expression 

levels a significant change in gene expression was detectable (Figure 3A-C). The overall 

distribution of relative expression levels of vegan participants was similar to the omnivore and 

vegetarian groups. 

A subset of each group was tested and in the samples examined no differences between the 

groups were detectable. 

Correlations 

In an attempt to find possible explanations for the differences between vegan participants and 

the omnivorous and lacto-ovo-vegetarian groups we correlated the capacities of SIRT1, 

SIRT3, and SIRT5 with different parameters from the 24 h dietary recall. We tested potential 

correlations between sirtuin capacities and several substances potentially having an influence 

on sirtuin activities. We did not detect correlations of sirtuin capacity with caffeine intake, blood 

insulin levels, blood glucose levels and active and total vitamin B12-concentrations in blood. 

Additionally, we tested possible correlations of polyphenolic and flavonoid substances from the 

dietary recall, also without significant correlations. Furthermore, we checked if there were 

correlations between sirtuin capacities and the exercise intensity of probands and since sirtuins 

are responding to caloric restriction, correlations of sirtuin capacities with the caloric intake. All 

of these correlations were not significant (p-values > 0.05) (Table S2). 

We found significant inverse correlations of sirtuin activities with the intake of the antioxidative 

substances tocopherol and ascorbate. Tocopherol showed a significant correlation (p<0.05, 

R=0.27) with all three analyzed sirtuin enzyme activities (Figure 4 A-C). For ascorbate, the 

correlations were similar but only in case of SIRT1 statistically significant (p=0.042, R=0.28) 

(Figure 4 D) while the correlations showed low but not significant p-values for SIRT3 (p=0.061, 

R=0.25) (Figure 4 E) and SIRT5 (p=0.148 R=0.17) (Figure 4 F).  

We calculated ascorbate and tocopherol uptake within the 24 h recall in the study groups OMN, 

LOV and VEG. In vegan participants, we found increased levels of ascorbate as well as 

tocopherol (Figure 5), resulting in previously described correlations.  

Several subjects took dietary supplements (OMN: 38.5, LOV: 34.6, VEG: 62.5%). Commonly 

consumed supplements were magnesium (OMN: 23.1, LOV: 15.4, VEG: 16.7%), iron (OMN: 

7.69, LOV: 11.5, VEG: 16.7%), vitamin B12 (OMN: 19.2, LOV: 15.4, VEG: 50%) and vitamin 

D (OMN: 23.1, LOV: 3.85, VEG: 20.8%). 
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Discussion 

To the best of our knowledge, this is the first investigation on sirtuins in humans with different 

diets at basal level and after physical exercise. 

Sirtuins are known to be linked to nutrition. The first evidence of sirtuins as functional markers 

in blood was published by Tarantino et al.[8] with SIRT4 showing an inverse correlation to 

obesity. Alterations of sirtuins were described for caloric restriction with an induction of sirtuin 

expression and activity, reviewed by Kapahi et al..[40] Furthermore, it was reported that sirtuin 

activities can be altered by glucose supply.[41] We are aware that blood sirtuins may not 

necessarily reflect sirtuin-function in tissue, however we think that blood levels are a 

reasonable surrogate parameter for tissue levels. 

In our study, we compared omnivores to lacto-ovo vegetarians and vegans. For sirtuins 1, 3, 

4 and 5 in blood, no differences could be observed at gene expression level prior to exercise. 

At basal enzyme level, no differences could be observed for sirtuins 1, 3 and 5. For sirtuin 4, 

no enzyme assay was available; therefore measurement was done only at the gene expression 

level. In a pilot study, basal sirtuin activities at recruitment were compared to enzyme activities 

just prior to exercise (n=5), no differences were found. We hypothesized that sirtuins are 

altered in omnivores, lacto-ovo-vegetarians, and vegans as previously observed in different 

animals.[37,38]  

Increased energy demand during exercise has to be met by increased flux at the levels of 

glycolysis, the Krebs cycle, fatty acid oxidation and the mitochondrial respiratory chain 

(oxidative phosphorylation). Increased capacities of sirtuins 1 and 3 as observed in our study 

in omnivores and to a lesser (non-significant) extent in lacto-ovo vegetarians during physical 

exercise result in activation of these pathways.[27,29–34,42–44] Previous studies in different animals 

showed induction of SIRT1 levels after exercise as well.[35,38] In our study, the capacity of sirtuin 

4, an important regulator of fatty acid oxidation[33], could not be measured in the absence of an 

adequate assay. In vegans, sirtuin capacities decreased or remained unchanged during 

exercise. This may possibly result in energy deficiency in skeletal and heart muscle during 

exercise though we only measured sirtuins in blood and not in muscle. Furthermore, only in 

vitro enzyme capacities under substrate saturation were measured which do not necessarily 

reflect actual in vivo activities. Whether this leads to clinical symptoms or subclinical energy 

deficiency in tissues is still unknown. 

Basal levels of enzyme capacities did not differ between the different groups (Figure 1) which 

may suggest a similar nutrition level for all study participants. SIRT5 capacity was somewhat 

lower in lacto-ovo-vegetarians compared to the other group, though not significantly, this may 

indicate reduced protein intake in vegetarians, since SIRT5 is an important regulator of the 
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urea cycle, where toxic ammonia from protein degradation is converted to urea. Actually, 

protein intake in the 24-hour recall was slightly reduced in vegetarians in a non-significant 

manner (p=0.22).  

We have previously reported a correlation between ROS levels after treatment with 

antioxidants and sirtuin activities.[45] This prompted us to correlate the dietary intake of the 

antioxidants tocopherol and ascorbate assessed by the dietary recall with sirtuin levels. We 

found a negative correlation of these compounds with sirtuin capacities in all probands.  

Increasing evidence suggests that sirtuins play an important role regarding stress responses.[1] 

Especially SIRT3 is involved in the cellular response to oxidative stress by deacetylating and 

activating the SOD2.[46,47] Furthermore, SIRT3 affects ROS detoxification by inducing the 

glutathione system as well as the thioredoxin system.[48] This may protect organs from 

exercise-induced mitochondrial ROS production.[49]  

Reduced SIRT1 and SIRT3 enzyme capacities have a variety of different cellular 

consequences. Energy metabolism, especially the mitochondrial respiratory chain, is 

downregulated[50] as well as antioxidative response. SOD2 is a target of SIRT1 as well as 

SIRT3 and is the main ROS detoxification enzyme in mitochondria.[47,51] Only a few publications 

give evidence for a direct effect of antioxidative substances in humans. Some studies 

suggested that altered ROS levels act as effectors on sirtuin activity in response to high levels 

of antioxidants during exercise.[52]  

We measured sirtuins in blood which is obviously a limitation. However, it has previously been 

shown that sirtuin levels in blood correlate with different organ dysfunctions like coronary heart 

disease in obese patients[8–11] or type 1 and type 2 diabetes.[12] Furthermore, exercise leads to 

metabolic stress in different organs and it would not ethically be sound to biopsy multiple 

organs in humans. Therefore, blood levels of sirtuins were used as surrogate parameters of 

sirtuin function in tissues. 

In conclusion, we show in this study that sirtuins can be measured in human blood at enzyme, 

protein and gene expression levels. Basal enzyme capacities of sirtuins 1, 3 and 5 were not 

influenced by dietary habits (omnivores, lacto-ovo vegetarians and vegans); at gene 

expression and protein levels, no impact of diet on sirtuins 1, 3, 4 and 5 was found. While 

enzyme capacities of sirtuins 1 and 3 were up-regulated during exercise in omnivores and to 

a lesser extent in lacto-ovo vegetarians as a reflection of increased energy demand, enzyme 

capacities of sirtuins 1, 3 and 5 were down-regulated in blood from vegans. This may be related 

to the higher intake of the antioxidants tocopherol and ascorbate as judged by dietary recalls. 

Whether these changes are of clinical relevance, remains to be elucidated. 
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Figure legends 

Figure 1. Absolute enzyme capacities (under substrate saturation) of sirtuins SIRT1, SIRT3 and 

SIRT5. The figure shows the enzyme activities before (pre) and after (post) exercise in the three 

analyzed study groups omnivores (OMN), lacto-ovo-vegetarians (LOV) and vegans (VEG) for the 

sirtuins SIRT1 (A), SIRT3 (B) and SIRT5 (C). Data are shown as median ± quartiles and extrema; 

n=21-25; Statistical analysis with Kruskal Wallis test and Dunn´s multiple comparison test;                    

* = p<0.05. 
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Figure 2. Changes of enzyme capacity (under substrate saturation) of sirtuins SIRT1, SIRT3 and 

SIRT5 after exercise. The response of sirtuins to exercise was calculated as the difference of 

enzyme capacities before (pre) and after (post) exercise. Sirtuins in the three study groups 

omnivores (OMN), lacto-ovo-vegetarians (LOV) and vegans (VEG) are shown:  SIRT1 (A), SIRT3 

(B) and SIRT5 (C). Data are shown as mean difference ± SD; n=21-25; Statistical analysis with 

Kruskal Wallis test and Dunn´s multiple comparison test; * = p<0.05. 
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Figure 3. Changes in the relative expression of sirtuins SIRT1, SIRT3, SIRT4 and SIRT5 after 

exercise. The figure shows the differences of relative expression before (pre) and after (post) 

exercise in the three analyzed study groups omnivores (OMN), lacto-ovo-vegetarians (LOV) and 

vegans (VEG) for the analyzed sirtuins SIRT1 (A), SIRT3 (B) and SIRT5 (C). Data are shown as 

median ± quartiles and extrema; n=21-25; Statistical analysis with Kruskal Wallis test; * = p<0.05. 
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Figure 4. Correlations of calculated tocopherol and ascorbate intake with SIRT1, SIRT3, and SIRT5 

capacity levels. The figure shows the correlations of changes in enzyme capacities (post-pre 

exercise) with either tocopherol (A-C) or ascorbate (D-F) for all analyzed sirtuins. For correlation 

analyses, all study groups were pooled (n=71). Correlations for tocopherol (A-C) and ascorbate 

with SIRT1 were statistically significant; Statistical analysis with Spearman correlation test;                   

* = p<0.05, R=0.27. 
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Figure 5. Intake of ascorbate (A) and tocopherol (B) in the three analyzed study groups omnivores 

(OMN), lacto-ovo-vegetarians (LOV) and vegans (VEG) during 24 h dietary recall. Data are shown 

as median ± quartiles and extrema; n=21-25; Statistical analysis with Kruskal Wallis test and 

Dunn´s multiple comparison test; * = p<0.05. 

 

 

 

Table 1. Participant characteristics by dietary patterns of the study population.  

 OMN 

(n=25) 

LOV 

(n=25) 

VEG 

(n=21) 

p-value 

 

Age (y) 27.2±4.1 27.6±4.4 27.2±4. 4 0.888a 

Sex m=10, w=15 m=10, w=15 m=9, w=12 0.975b 

BMI (kg/m2) 22.3±1.74 21.6±1.98 22.1±2.09 0.426a 

LBM (kg) 54.1±9.2 52.7±8.9 54.6±11.3 0.869a 

Body fat (%) 21.4±6.0 21.2±5.6 20.2±5.3 0.752c 

Duration of diet 

  < 0.5 years, n (%) 

  0.5 - 1 year, n (%) 

  1 - 2 years, n (%) 

  2 - 3 years, n (%) 

  > 3 years, n (%) 

 

0 (0) 

0 (0) 

1 (4) 

0 (0) 

24 (96) 

 

0 (0) 

4 (16) 

3 (12) 

2 (8) 

16 (64) 

 

0 (0) 

5 (24) 

3 (14) 

7 (33) 

6 (29) 

0.001b 

Smoker (%) 0 0 0 - 

Training frequency per week 3.0±0.9 3.2±0.9 2.9±0.8 0.469a 

Running time per week (h) 2.7±1.1 3.3±1.3 2.6±1.5 0.237a 

OMN = omnivores, LOV = lacto-ovo-vegetarians, VEG = vegans, SU = supplement users, n.s. = not 

significant. Values are given as means  SD or n (%). a Kruskal Wallis test, b Chi-square test, c One-way 
ANOVA. 
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2.5. Paper V 

Exercise-induced oxidative stress and amino acid profile in 

recreational runners with vegetarian and non-vegetarian dietary 

patterns 

Authors: Nebl J, Drabert K, Haufe S, Eigendorf J, Wasserfurth P, Tegtbur U, Hahn A*, 

Tsikas D* 

Published in: Nutrients 2019, 11(8), 1875 

Link: https://www.mdpi.com/2072-6643/11/8/1875 

* Authors contributed equally 
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3. General discussion 

The aim of this dissertation thesis was to investigate the nutrient intake and body status, as 

well as exercise capacity and exercise-induced metabolic adaptations in the form of sirtuin 

activity, oxidative stress, NO metabolism, and amino acid profile of German recreational 

athletes with vegetarian diets in comparison to omnivores. A cross-sectional study was carried 

out with 81 recreational runners (18 – 35 years), who practiced an omnivorous (OMN), lacto-

ovo vegetarian (LOV) or vegan (VEG) diet. The examination included both the examination of 

nutrient intake and biochemical status as well as the examination of performance-related and 

exercise-induced parameters. The results of the dissertation thesis are presented in 5 scientific 

publications (chapter 2). 

3.1.  Nutrient intake and nutritional status of recreational athletes with 

vegetarian diets compared to omnivores 

Results of Paper I and II demonstrate that LOV and VEG, as well as OMN recreational runners, 

reached the recommendations of the D-A-C-H for most nutrients, which were partly reflected 

by the related biomarkers.  

The assessment of the results was hampered by the absence of national recommendations 

for recreational athletes, on the one hand, and for vegetarians and vegans on the other hand. 

The existing guidelines of the ACSM, the IOC and the ISSN mainly focus on high-performance 

athletes [81,93,95] and were therefore only to some extent applicable to the present collective. 

As a consequence, the nutrient intake was compared to the recommendations of the D-A-C-H 

for healthy adults, which, however, do not include recommendations for recreational athletes 

[33].  

Overall there is large consensus that a mixed diet can provide the requirements for athletes 

and that vegetarian athletes are also able to meet their dietary needs [11–14]. Interestingly, 

Turner McGrievy and colleagues found higher diet quality scores even in vegan and vegetarian 

runners compared to omnivores (n=422) [211].  So far, there are only a few studies on nutrient 

intake of vegetarian athletes  [18,20], whereas data on vegan athletes are missing. Therefore, 

it is rather unknown whether recreational athletes practicing veganism meet their 

requirements.  

Energy intake 

Considering energy intake, more than 50% of the present study collective had energy intakes 

below the recommendations, which often occurs in endurance sports [213]. All three groups 

had comparable energy intake, which aligns with the results of previous studies comparing 

vegetarian and omnivorous endurance athletes [18,20].  
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Macronutrients 

Carbohydrate requirements are dependent on various factors such as type and intensity of 

sports and vary from 3-7 g/kg BW [214]. In the present study, VEG had highest carbohydrate 

intake (5.01, 4.40-5.62 g/kg BW) compared to OMN (4.31, 3.45-5.17 g/kg BW) and LOV (4.22, 

3.52-4.91 g/kg BW), which is in accordance with previous findings in non-athletes [38,42–44], 

while studies dealing with vegetarian athletes found various amounts of carbohydrate intake 

[18,20]. The results reflect a higher intake of potatoes and fruits in VEG, but no significant 

differences in whole grain and cereal products, pastries and sweets intake between the groups. 

Further, the protein intake of the three study groups (OMN: 1.50, 1.27-1.66; LOV: 1.34, 1.09-

1.56; VEG: 1.25; 1.07-1.42 g/kg BW) reached the reference range of the sports societies (1.2-

2.0 g/kg BW [81,93,95]), which is higher than recommended by the D-A-C-H (0.8 g/kg BW) 

[33]. Moreover, the amino acid intake of all three groups was within the recommendations of 

the World Health Organization (WHO) [215]. The analysis of the recorded food groups showed 

that meat, meat products, and sausages, as well as fish and dairy products, were main protein 

sources for OMN, while milk, dairy products, and eggs were main sources for LOV and cereal 

products as well as soy for VEG. The findings are in accordance with the literature since 

previous studies also found that non-sportive lacto-ovo vegetarians and vegans [44,216] and 

vegetarian endurance athletes generally meet the recommended values [18].   

In contrast to carbohydrate and protein intake, the professional societies defined diverse 

recommendations for fat intake in a margin of 15 – 35 EN% [33,81,93,105]. Mean fat intake of 

the present study collective was between 26 EN% (VEG) and 32 EN% (OMN) and therefore 

within the recommendations of the D-A-CH, ISSN, and ACSM and comparable to findings from 

Lynch and colleagues [18,33,81,93]. In contrast, the LA:ALA ratio of VEG (1:5.71) and LOV 

(1:5.30) was within the recommended ratio [33]. OMN had a higher LA:ALA ratio (1:8.04), 

which is in agreement with findings for the general population in Germany [217]. Further, the 

sum of EPA and DHA was below the recommendations of the International Society for the 

Study of Fatty Acids and Lipids (0.5 g) for LOV (0.08, 0.04-0.12 g) and VEG (0.09, 0.01-0.17 

g), while OMN achieved the recommendations (0.54, 0.23-0.85 g) [218]. In comparison, the 

intake of men and women in the National Nutrition Survey II (0.16 g) was between the groups 

[219]. 

Micronutrients 

The professional societies assume that athletes practicing a balanced omnivorous diet are 

adequately supplied with micronutrients [81,93,105]. In addition, due to their health awareness, 

athletes were shown to have a high dietary supplement intake [220], which was also observed 

in the present study collective where magnesium, calcium, iron, vitamin D and B12 were most 

frequently consumed. For athletes practicing a vegetarian diet, the ACSM and IOC named 
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zinc, iron, riboflavin, cobalamin and vitamin D as critical micronutrients [81,95] and additionally 

calcium, pyridoxine, and folate, which are mentioned by the ACSM [81].  

Dietary intake and biomarkers of vitamin B12 

In the present study, the vitamin B12 intake and status of the VEG group was dependent on 

supplement intake (Paper I and II). Since about 50% of the VEG group consumed vitamin B12 

supplements, the average dietary intake was higher (207, 102-313 µg) compared to the other 

groups (OMN: 4.97, 3.70-6.25 µg; LOV: 2.96, 1.69-4.24 µg). Therefore, the recommended 

intake of 4 µg/day [33] was on average achieved by OMN and VEG, while those vegan subjects 

who did not take supplements, had a marginal intake. Considering the LOV group, vitamin B12 

intake was inadequate and independent of supplementation. In addition, about 30% of the 

OMN group had insufficient vitamin B12 intake although they consumed B12 containing foods 

such as meat, meat products, and fish. Lynch and colleagues found an adequate vitamin B12 

intake of vegetarian athletes [18], which did not include dietary supplementation.  

Although dietary intake of vitamin B12 differed between the groups, the respective biomarkers 

showed an adequate supply of all three groups. As expected, when comparing non-

supplement users (non-SU), VEG had the lowest but still adequate vitamin B12 supply, reflected 

in the 4 markers combined vitamin B-12 indicator (4cB12) [221]. Surprisingly, non-SU of the 

OMN and LOV group differed only slightly, although LOV consumed less vitamin B12 than 

recommended, vitamin B12 status was apparently sufficient, since the duration of the diet had 

no influence on vitamin B12 supply. These findings are in contrast with previous findings, where 

up to 87% of vegetarians and vegans had insufficient vitamin B12 concentration in serum with 

elevated MMA (32-83%) and decreased holo-TC levels (72-93%) as well [222,223]. However, 

several studies did not differentiate between SU and non-SU and did not examine the impact 

of supplementation, although the correlation of vitamin B12 supplement intake and serum B12 

as well as supplementation and holo-TC were previously described in the AHS 2 [224].  

Dietary intake and biomarker of vitamin D 

Comparable to vitamin B12, vitamin D intake and status were depended on supplementation 

(Paper I and II). Highest total dietary intake was found in VEG (19.9, 2.75-37.0 µg), followed 

by OMN (8.29, 2.21-14.4 µg) and LOV (4.52, -1.14-10.4 µg). However, due to large differences 

in supplementation, these average results should be treated cautiously. The dietary intake of 

vitamin D was not reflected by the 25-hydroxy vitamin D (25(OH)D) concentration in blood. 

However, 25(OH)D represents both the dietary intake and the endogenous synthesis. All three 

present study groups showed sufficient blood levels of > 75 nmol/l and comparably low 

prevalence (20%) of vitamin D inadequacy (< 50 nmol/l). Furthermore, vitamin D deficiency 

was observed in two subjects of the VEG group. As vitamin D deficiency is a common problem 
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in the general population [225], the results of the 25(OH)D analysis should be interpreted as 

exceptional. The adequacy of vitamin D supply might be linked to supplementation, since all 

subjects consuming vitamin D supplements had 25(OH)D levels > 50 nmol/l and only non-SU 

had inadequate or deficient 25(OH)D values. These results are in accordance with the results 

of the AHS 2, where the authors found that vitamin D supply is dependent on supplement 

intake [226].  

Vitamin D supply can be affected by various factors. First, a high endogenous synthesis could 

be expected since the investigation took place from May to December [227] and as the subjects 

were between 18 and 35 years old [228]. Additionally, present subjects were recreational 

runners who usually stay relatively long outside, which could explain high 25(OH)D levels, as 

an investigation with female runners revealed similar results [229]. Second, the latitude affects 

endogenous vitamin D synthesis, but present results stand in contrast to a German nationwide 

study, which found 25(OH)D concentrations of 45.1 and 45.3 nmol/l in males and females, 

respectively [228]. Further factors, such as current holidays in sunny regions, sun exposure, 

and sun protection habits [230] were not recorded. 

Dietary intake and biomarkers of iron 

In contrast to the aforementioned vitamins, iron intake and status were only partially dependent 

on supplementation (Paper I and II). Highest iron intake was observed in VEG, which is 

consistent with previous findings [38,231]. Further, about 85% of VEG had a sufficient iron 

intake, while it was about 50% of OMN and LOV. Beside male subjects of each group, female 

VEG achieved the reference values solely via food intake (19.8, 15.7-24.0 µg), while female 

OMN (11.2, 9.01-13.2 µg) and LOV (12.8, 9.47-16.1 µg) were dependent on supplement 

intake. The dietary iron intake was only partially reflected in iron status. Less than one-third of 

each group had low ferritin levels (< 15 µg/l) and no subject had iron deficiency anemia. The 

highest dietary iron intake in female VEG was reflected in high ferritin levels as well (32.1±22.8 

µg/l). Indeed, the VEG group exclusively consumed plant iron sources, but LOV and OMN 

predominantly consumed plant-based iron as well. Plant-based iron has a bioavailability of 

about 1–5%, while animal-based sources contain about 70% heme iron, which has a 

bioavailability of about 10-20% [232,233]. The explanation for comparable iron status could be 

the high intake of iron bioavailability promoting substances such as vitamin C [234]. Further, 

as VEG and LOV consumed high amounts of legumes (OMN: 3.70±8.08 g, LOV: 27.7±39.7 g, 

VEG: 66.4±68.1 g) and soy (OMN: 0 g, LOV: 54.4±95 g, VEG: 151±179 g), the intake of 

phytoferritin, which has a higher bioavailability, in these groups can be assumed [235]. As the 

iron status was independent of supplementation, the results suggest that both a balanced 

vegetarian and omnivorous diet can provide adequate amounts of iron. Previous studies 

reported similar results, as people practicing vegetarian diets had adequate hemoglobin and 
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serum iron levels [38,40,236]. However, earlier investigations also found low ferritin levels 

[40,54,59], which are in contrast to the present results. Further, exercise-related increased 

requirements of iron should be taken into account [237–239]. 

Further nutrients 

The obviously different amounts of folate intake were not reflected by red blood cell (RBC) 

folate since all three study groups had comparably high RBC folate levels (OMN: 2213±444 

nmol/l, LOV: 2236±596 nmol/l, VEG: 2354±639 nmol/l; p=0.577). These findings are to be 

interpreted as exceptional, since folate deficiency in healthy adults is described < 340 nmol/l 

and present subjects are far from this cut off [240]. Recent findings of the AHS 2 agree with 

present results since the authors found RBC folate levels of > 2000 nmol/l in meat-eaters, fish-

eaters, lacto-ovo vegetarians and vegans as well [241]. 

Although the dietary intake of calcium, magnesium, and zinc partly differed between the 

groups, the respective serum levels were on average adequate and not directly associated 

with dietary intake due to strict homeostatic regulations [53].  

Further data on health status of vegan and vegetarian endurance athletes was provided by the 

Nutrition and Running High Mileage (NURMI) Study (n=245), determining health-related 

indicators and health-related behavior [21]. The authors found a lower body weight in 

vegetarians and vegans compared to omnivores and a lower prevalence of allergies in vegans 

[21]. The health status was further comparable between males and females [22]. Moreover, 

Boldt and colleagues investigated the WHO Quality of Life Brief questionnaire in 281 

recreational runners and found a comparably high quality of life score in omnivores, lacto-ovo 

vegetarians, and vegans [212].  

 

3.2. Exercise performance of recreational athletes practicing vegetarian 

diets in comparison to omnivores 

Results of Paper III demonstrate that LOV and VEG recreational runners of the present study 

appear to have the same maximum exercise capacity in the form of maximum power output 

compared to omnivorous counterparts (OMN: 4.15±0.48 Watt/kg BW, LOV: 4.20±0.47 Watt/kg 

BW, VEG: 4.16±0.55 Watt/kg BW; p=0.917). Additionally, similar submaximal and maximum 

lactate and glucose concentrations were observed. Although vegetarian diets lead to 

differences regarding dietary intake of nutrients such as carbohydrate, iron, and vitamin B12 

(Paper I), those differences did not seem to affect exercise capacity. An insufficient supply of 

vitamin D and iron were shown to decrease physical performance [242,243] and recent 

evidence suggests that endurance athletes may have an altered vitamin B12 metabolism as 
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well [244]. Since the respective biomarkers of vitamin B12, vitamin D, and iron were on average 

in the normal range in the present collective (Paper II), a comparable exercise capacity could 

be expected [242,243]. 

An earlier investigation comparing vegetarian and omnivorous athletes also found similar 

physical performance [23]. A more recent investigation showed a 13% greater VO2max score in 

female vegetarians compared to omnivores [18]. However, the findings of the present study 

are only partly comparable with previous findings, since the authors did not differentiate 

between vegetarians and vegans and the subjects underwent an exercise test on a treadmill. 

Moreover, Lynch and colleagues examined only aerobic capacity and exercise tests were not 

carried out until exhaustion [18]. Further, previous investigations did not examine the anaerobic 

metabolism in the form of the submaximal and maximum lactate and glucose concentrations 

[18,23]. Therefore, the present study contributes to the understanding of glucose utilization in 

recreational athletes with vegetarian diets. 

Besides cross-sectional studies, the effect of vegetarian diets on physical performance was 

investigated in intervention studies as well [200–202]. Those studies reported controversial 

findings. While both a 5- and 6-week intervention with a lacto-ovo vegetarian diet did not affect 

aerobic capacity and repeated sprint ability [200,201], a 4-day low-protein vegetarian diet was 

observed to have a disadvantageous influence on submaximal cycling economy, since 

submaximal oxygen uptake at 40, 60, and 80% of VO2max increased after the intervention period 

[202]. However, the authors found no effect on maximum oxygen uptake and did not examine 

the effect of a lacto-ovo vegetarian diet per se, but on restricted protein intake, whereby the 

evidence of the results is questionable [195].  

Besides the typically high intake of carbohydrates, vegetarian diets are also characterized by 

a high intake of basic substances [216]. This fact let Hietavala and colleagues to suggest that 

diets rich in plants may have an advantageous effect on physical performance [203]. However, 

the analysis of previous findings showed no effect of a high intake of basic substances on 

performance-related parameters [204].  

The anaerobic energy supply increases with exercise intensity. In the present collective, VEG 

had the highest carbohydrate intake compared to LOV and OMN, however submaximal and 

maximum lactate and glucose concentrations were comparable between all three groups. 

Consequently, a higher carbohydrate intake, which is characteristic for vegetarian diets, did 

not appear to affect glucose utilization. Also, there are various factors such as glycogen 

storage, previous exercises, water balance and caffeine consumption, which influence lactate 

metabolism [245]. It seems that the individual sex and genetic background, as well as training 

habits, have a stronger effect on physical performance than the consumption or avoidance of 

animal products [246,247]. 
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Further, the dietary intake 24 hours before exercise did not affect maximum power output nor 

glucose or lactate concentrations. 

With regard to body composition and BMI, all three groups demonstrated comparability, which 

is contrary to previous findings, where female omnivorous athletes had a higher body fat mass 

compared to vegetarians [23].  

 

3.3. Exercise-induced metabolic changes  

To investigate metabolic changes, several biomarkers of energy metabolism, oxidative stress, 

NO and amino acid metabolism were analyzed before and after the exercise test.  

Considering sirtuins as a reflection of energy supply and antioxidative defense [149,248], 

gene expression of SIRT 1, 3, 4 and 5 were comparable in all three groups pre-exercise (Paper 

IV). Additionally, no differences were observed at the basal enzyme level. Since comparable 

data in humans are missing, our results were compared with previous findings in a mouse 

model, which did not find differences in animals with different diets [249,250].  

Increased physical activity requires an increased rate of energy-yielding processes such as 

glycolysis, the Krebs cycle, and the respiratory chain, for which reason increased sirtuin activity 

has also been suggested [149,151,251,252]. Since the capacities of SIRT1 and 3 were found 

to be increased after exercise, activation of those metabolic processes can be assumed 

[157,160–164,166–168]. This increase was observed in OMN and not significantly in LOV, 

which is in agreement with a previous animal study that found an increased capacity of SIRT1 

after exercise [158,250]. Interestingly, sirtuin capacities in vegans decreased or did not change 

after exercise. To identify reasons for the group specific differences, the dietary intake data of 

the last 24 hours before exercise test, fasting blood levels and exercise-related parameters 

(Paper II and III) were correlated with sirtuin capacity and revealed an inverse correlation 

between sirtuin activity (SIRT1, 3 and 5) and tocopherol and ascorbate (SIRT1). There is 

evidence that exercise-induced ROS levels act as effectors on sirtuin activity in response to 

high levels of antioxidants [253].  

Nevertheless, since sirtuin capacities were measured in blood, no direct associations can be 

made to skeletal and muscle content. Additionally, enzyme capacities were analyzed in vitro 

under substrate saturation and might therefore not directly reflect in vivo capacities. It would 

be highly interesting to analyze sirtuin activity in tissue, but as exercise induces metabolic 

stress in several organs, a multiple organ biopsy would be necessary, which is ethically 

unacceptable. However, this diverse response to exercise seems not to affect physical 
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performance (Paper III). As SIRT5 regulates the urea cycle, the slightly lower dietary protein 

intake, which was found in the 24 hours dietary recall, could be reasonable in LOV [254]. But, 

since the sirtuin metabolism in humans has hardly been studied so far, the significance of 

present results needs to be explored in future studies. 

Although sirtuin capacities are associated with cellular response to stress [129], inverse 

correlations were found between dietary antioxidant intake of ascorbate and tocopherol. 

However, a few studies suggested that increased levels of ROS reflect sirtuin activity in 

response to high levels of antioxidants [253]. 

Interestingly, MDA concentrations pre-exercise were highest in VEG and exercise-induced 

changes of MDA were highest in LOV and VEG, suggesting that the higher intake of 

antioxidants in the VEG group had no additional effect on oxidative stress (Paper V). Further, 

the dietary PUFA and especially ALA intake was associated with MDA, which reflects a higher 

rate of lipid peroxidation [177]. Only one study exists by Vanacore and colleagues, which 

treated H9c2 and H-H9c2 cells (cardiomyoblast cell line) with serum of vegan, vegetarian and 

omnivorous recreational athletes [255]. They found higher concentrations of thiobarbituric acid 

reactive substances and decreased levels of nitrite and concluded that a restrictive vegan diet 

had minor antioxidant capacity compared to the other groups, which is doubtful since vegans 

are characterized by a high intake of antioxidants [255]. However, since the investigation was 

in vitro, the results should be treated cautiously. Further, since oxidative stress is responsible 

for many health-promoting effects such as insulin sensitizing [174], higher oxidative stress in 

LOV and VEG may explain the diabetes-preventive effect of vegetarian diets [61]. MDA 

concentrations post-exercise were associated with maximum lactate and glucose 

concentrations, but not with maximum power output, suggesting that higher levels of oxidative 

stress did not affect exercise capacity. Nevertheless, future studies should examine further 

markers of oxidative stress or antioxidative response (e.g. super oxide dismutase, gluthatione, 

gluthatione peroxidase) in endurance athletes with vegetarian diets in order to gain clarification 

of its significance [186]. 

Since plant foods contain high amounts of nitrate [256], the higher plasma nitrate and nitrite 

concentrations in LOV and VEG compared to OMN pre-exercise could be expected. Contrary 

to the expectations, no significant exercise-induced changes of nitrate and nitrite 

concentrations could be observed, suggesting no exercise-induced increase in NO synthesis 

[257,258]. Plasma concentrations of nitrate were positively associated with maximum lactate 

and glucose concentrations, indicating the NO-dependent glucose uptake in the skeletal 

muscle [259,260]. 



General discussion 

116 
 

Furthermore, the study demonstrated an exercise-induced change in the amino acid profile. 

Although the present VEG group consumed lower amounts of methionine (results of the 24 h 

dietary recall), plasma concentrations were comparable between the three groups. 

Additionally, even the amino acid intake was within the WHO recommendations for all groups 

[215], both pre-exercise plasma concentrations and exercise-induced changes partly differed 

between the groups. Interestingly, the LOV group had lower plasma levels of Asp+Asn, GAA, 

Glu+Gln, Lys, Arg, and hArg pre-exercise compared to the VEG group, which partly agrees 

with findings of the EPIC-Oxford cohort [261]. Further agreements with the literature were 

found considering the correlation of plasma concentrations and dietary intake of Val, Leu+Ile, 

Phe, Tyr, and Lys [23]. The nutritional software limited the analysis, since it was not possible 

to detect the whole amino acid spectrum from the dietary intake. 

Overall, amino acid concentrations decreased post-exercise, which could be explained by 

exercise-induced catabolic processes such as transamination, oxidation, and gluconeogenesis 

[116,262,263]. Interestingly, the low dietary intake of methionine in LOV and VEG seem to be 

compensated by utilization of sarcosine, since sarcosine plasma concentrations decreased in 

OMN, but increased in LOV and VEG. Further, while plasma guanidinoacetate (GAA) levels in 

OMN decreased post-exercise, an increase was observed in LOV and VEG. This may be 

explained because creatine as a product of GAA occurs in animal products such as meat and 

fish [205]. It is assumed that OMN utilizes GAA during exercise, while creatine-poor diets may 

result in increased synthesis via L-arginine:glycine amidinotransferase [264] to ensure energy 

supply. Additionally, GAA was inversely correlated with lactate and glucose levels as well as 

maximum power output, suggesting a higher GAA utilization leads to higher exercise capacity 

[265]. 
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4. General conclusion and perspectives 

This thesis contributes to a better understanding of nutrient supply, exercise capacity and 

exercise-induced metabolic adaptations in vegan, lacto-ovo vegetarian and omnivorous 

recreational athletes. It was demonstrated that all three groups were adequately supplied with 

most nutrients, had comparable exercise capacity and partly differed in terms of oxidative 

stress, nitric oxide metabolism and amino acid profile. The results indicate that a lacto-ovo 

vegetarian and vegan diet are suitable alternatives for recreational athletes.  

It is important to point out that the present study collective was highly health compliant, which 

was expressed in the high level of supplement intake and the targeted choice of food. This, in 

turn, was reflected by the total intake of certain nutrients and status of biomarkers in the blood, 

where it was shown that vitamin B12 and vitamin D supply were dependent on supplementation. 

Further, the data indicates that a balanced vegetarian diet, based on a broad variety of foods, 

can meet iron requirements in recreational athletes without supplementation.  

Since the collective had comparable age, BMI, training habits and showed an adequate supply, 

a comparable exercise capacity could be explained. Interestingly, although the carbohydrate 

intake of vegans was higher compared to the other groups, lactate and glucose concentrations 

were comparable at submaximal and maximum levels of exercise.  

The investigation of exercise-induced metabolic adaptations suggests a diverse regulation of 

energy metabolism in athletes with vegetarian diets compared to omnivores. It was 

demonstrated that basal sirtuin capacities, as regulatory substances for energy metabolism 

and anti-oxidative response, did not differ pre-exercise. However, changes were observed 

post-exercise, since an up-regulation of SIRT1 and 3 were demonstrated in omnivores to a 

larger extent than lacto-ovo vegetarians, while the enzyme capacities were decreased in 

vegans. A down-regulation of SIRT1, 3 and 4 may consequently result in reduced energy 

metabolism, especially the mitochondrial respiratory chain, and anti-oxidative response. 

However, malondialdehyde as biomarker for oxidative stress was highest in vegans at baseline 

and increased significantly post-exercise in vegetarians and vegans. Also considering amino 

acid and NO metabolism, vegetarians and especially vegans appear to have different 

regulatory mechanisms, which in part were related to glucose metabolism.  

Although the present investigation provided first data on a differentiated consideration of 

omnivorous, lacto-ovo vegetarian and vegan recreational athletes, the present collective may 

not be representative and the results should be considered cautiously. The study was limited 

by the sample size and only included an age-specific group (18-35 y). Also, an interesting 

future approach would be to examine the aerobic capacity (VO2max) to generate data on the 

aerobic metabolism of vegetarian/vegan athletes. Additionally, further studies should clarify 
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the significance of those metabolic adaptations, since sirtuins may offer a new approach for 

the understanding of the energy metabolism. The examination of various types and intensities 

of sports would contribute to a better understanding of the role of vegetarian diets in sports. 

Further, there is great necessity to conduct long-term intervention studies to examine the 

effects of vegetarian diets on biochemical parameters of health as well as performance-related 

ones. Overall, future studies should contribute to the current state of knowledge by defining 

specific dietary intake recommendations for recreational athletes and athletes with vegetarian 

diets, which currently are missing.   

 

  



References 

119 
 

5. References 

[1] Appleby PN, Key TJ. The long-term health of vegetarians and vegans. Proceedings of the 
Nutrition Society 2016;75:287–93. doi:10.1017/S0029665115004334. 

[2] Key TJ, Appleby PN, Spencer EA, Travis RC, Roddam AW, Allen NE. Cancer incidence in 
vegetarians: results from the European Prospective Investigation into Cancer and Nutrition 
(EPIC-Oxford). American Journal of Clinical Nutrition 2009;89:1620S-1626S. 
doi:10.3945/ajcn.2009.26736M. 

[3] Orlich MJ, Singh PN, Sabaté J, Jaceldo-Siegl K, Fan J, Knutsen S, et al. Vegetarian Dietary 
Patterns and Mortality in Adventist Health Study 2. JAMA Internal Medicine 2013;173:1230. 
doi:10.1001/jamainternmed.2013.6473. 

[4] Pettersen BJ, Anousheh R, Fan J, Jaceldo-Siegl K, Fraser GE. Vegetarian diets and blood 
pressure among white subjects: results from the Adventist Health Study-2 (AHS-2). Public 
Health Nutrition 2012;15:1909–16. doi:10.1017/S1368980011003454. 

[5] Rizzo NS, Sabate J, Jaceldo-Siegl K, Fraser GE. Vegetarian Dietary Patterns Are Associated With 
a Lower Risk of Metabolic Syndrome: The Adventist Health Study 2. Diabetes Care 
2011;34:1225–7. doi:10.2337/dc10-1221. 

[6] Turner-McGrievy GM, Davidson CR, Wingard EE, Wilcox S, Frongillo EA. Comparative 
effectiveness of plant-based diets for weight loss: A randomized controlled trial of five 
different diets. Nutrition 2015;31:350–8. doi:10.1016/j.nut.2014.09.002. 

[7] Orlich MJ, Singh PN, Sabaté J, Fan J, Sveen L, Bennett H, et al. Vegetarian dietary patterns and 
the risk of colorectal cancers. JAMA Intern Med 2015;175:767–76. 
doi:10.1001/jamainternmed.2015.59. 

[8] Fraser GE. Vegetarian diets: what do we know of their effects on common chronic diseases? 
American Journal of Clinical Nutrition 2009;89:1607S-1612S. doi:10.3945/ajcn.2009.26736K. 

[9] Yokoyama Y, Nishimura K, Barnard ND, Takegami M, Watanabe M, Sekikawa A, et al. 
Vegetarian diets and blood pressure: a meta-analysis. JAMA Intern Med 2014;174:577–87. 
doi:10.1001/jamainternmed.2013.14547. 

[10] Ströhle A, Löser Chr, Behrendt I, Leitzmann C, Hahn A. Alternative Ernährungsformen. Aktuelle 
Ernährungsmedizin 2016;41:47–65. doi:10.1055/s-0041-111459. 

[11] Melina V, Craig W, Levin S. Position of the Academy of Nutrition and Dietetics: Vegetarian 
Diets. Journal of the Academy of Nutrition and Dietetics 2016;116:1970–80. 
doi:10.1016/j.jand.2016.09.025. 

[12] Phillips F. Vegetarian nutrition. Nutrition Bulletin 2005;30:132–67. doi:10.1111/j.1467-
3010.2005.00467.x. 

[13] Silva SCG, Pinho JP, Borges C, Santos CT, Santos A, Graça P. Guidelines for a healthy vegetarian 
diet. Lisbon: Direção-Geral da Saúde; 2015. 

[14] National Health and Medical Research Council. Australian Dietary Guidelines. Canberra: 
National Health and Medical Research Council: 2013. 

[15] Richter M, Boeing H, Grünewald-Funk D, Heseker H, Kroke A, Leschik-Bonnet E, et al. Vegan 
Diet. Position of the German Nutrition Society (DGE). Ernährungs Umschau 2016;63:92–102. 
doi:10.4455/eu.2016.021. 

[16] Mensink GBM, Barbosa CL, Brettschneider A-K. Verbreitung der vegetarischen 
Ernährungsweise in Deutschland. Journal of Health Monitoring 2016;2:2–15. 
doi:10.17886/RKI-GBE-2016-033. 

[17] Wirnitzer K, Seyfart T, Leitzmann C, Keller M, Wirnitzer G, Lechleitner C, et al. Prevalence in 
running events and running performance of endurance runners following a vegetarian or 
vegan diet compared to non-vegetarian endurance runners: the NURMI Study. SpringerPlus 
2016;5:458. doi:10.1186/s40064-016-2126-4. 

[18] Lynch H, Wharton C, Johnston C. Cardiorespiratory Fitness and Peak Torque Differences 
between Vegetarian and Omnivore Endurance Athletes: A Cross-Sectional Study. Nutrients 
2016;8:726. doi:10.3390/nu8110726. 



References 

120 
 

[19] Eisinger M, Plath M, Jung K, Leitzmann C. Nutrient intake of endurance runners with ovo-
lacto-vegetarian diet and regular western diet. Z Ernahrungswiss 1994;33:217–29. 

[20] Khanna G, Lal P, Kommi K, Chakraborty T. A Comparison of a Vegetarian and Non-Vegetarian 
Diet in Indian Female Athletes in Relation to Exercise Performance. Journal of Exercise Science 
and Physiotherapy 2006;2:27–34. 

[21] Wirnitzer K, Boldt P, Lechleitner C, Wirnitzer G, Leitzmann C, Rosemann T, et al. Health Status 
of Female and Male Vegetarian and Vegan Endurance Runners Compared to Omnivores—
Results from the NURMI Study (Step 2). Nutrients 2019;11:29. doi:10.3390/nu11010029. 

[22] Boldt P, Knechtle B, Nikolaidis P, Lechleitner C, Wirnitzer G, Leitzmann C, et al. Sex Differences 
in the Health Status of Endurance Runners: Results From the NURMI Study (Step 2). J Strength 
Cond Res 2019. doi:10.1519/JSC.0000000000003010. 

[23] Hanne N, Dlin R, Rotstein A. Physical fitness, anthropometric and metabolic parameters in 
vegetarian athletes. J Sports Med Phys Fitness 1986;26:180–5. 

[24] Leitzmann C, Keller M. Vegetarische Ernährung. UTB GmbH; 2013. 
[25] The Vegan Society. Definition of veganism. The Vegan Society n.d. 

https://www.vegansociety.com/go-vegan/definition-veganism (accessed February 21, 2019). 
[26] En­gen­horst S. 1,3 Millionen Deutsche leben vegan. SKOPOS Marktforschung 2016. 

https://www.skopos.de/news/13-millionen-deutsche-leben-vegan.html (accessed February 
13, 2018). 

[27] VEBU (Vegetarier-Bund Deutschlands). Anzahl der Veganer und Vegetarier in Deutschland 
2015. https://vebu.de/veggie-fakten/entwicklung-in-zahlen/anzahl-veganer-und-vegetarier-
in-deutschland/ (accessed March 20, 2017). 

[28] IfD Allensbach. Anzahl der Personen in Deutschland, die sich selbst als Vegetarier einordnen 
oder als Leute, die weitgehend auf Fleisch verzichten, von 2013 bis 2017 (in Millionen). 
Statista 2017. 
https://de.statista.com/statistik/daten/studie/173636/umfrage/lebenseinstellung---anzahl-
vegetarier/ (accessed February 20, 2018). 

[29] WorldAtlas. Länder mit dem höchsten Anteil von Vegetariern an der Bevölkerung weltweit 
(Stand: 2016). Statista 2016. 
https://de.statista.com/statistik/daten/studie/261627/umfrage/anteil-von-vegetariern-und-
veganern-an-der-bevoelkerung-ausgewaehlter-laender-weltweit/ (accessed June 5, 2018). 

[30] Gallup. Few Americans Vegetarian or Vegan 2018. 
https://news.gallup.com/poll/238328/snapshot-few-americans-vegetarian-vegan.aspx 
(accessed April 5, 2019). 

[31] Fox N, Ward K. Health, ethics and environment: A qualitative study of vegetarian motivations. 
Appetite 2008;50:422–9. doi:10.1016/j.appet.2007.09.007. 

[32] Janssen M, Busch C, Rödiger M, Hamm U. Motives of consumers following a vegan diet and 
their attitudes towards animal agriculture. Appetite 2016;105:643–51. 
doi:10.1016/j.appet.2016.06.039. 

[33] Deutsche Gesellschaft für Ernährung (DGE), Österreichische Gesellschaft für Ernährung (ÖGE), 
Schweizerische Gesellschaft für Ernährung (SGE), editor. Referenzwerte für die 
Nährstoffzufuhr. 2nd ed. Bonn: Neuer Umschau Buchverlag; 2018. 

[34] Davey GK, Spencer EA, Appleby PN, Allen NE, Knox KH, Key TJ. EPIC-Oxford: lifestyle 
characteristics and nutrient intakes in a cohort of 33 883 meat-eaters and 31 546 non meat-
eaters in the UK. Public Health Nutr 2003;6:259–69. doi:10.1079/PHN2002430. 

[35] Orlich MJ, Jaceldo-Siegl K, Sabaté J, Fan J, Singh PN, Fraser GE. Patterns of food consumption 
among vegetarians and non-vegetarians. British Journal of Nutrition 2014;112:1644–53. 
doi:10.1017/S000711451400261X. 

[36] Waldmann A, Koschizke JW, Leitzmann C, Hahn A. German Vegan Study: Diet, Life-Style 
Factors, and Cardiovascular Risk Profile. Annals of Nutrition and Metabolism 2005;49:366–72. 
doi:10.1159/000088888. 



References 

121 
 

[37] Ball MJ, Bartlett MA. Dietary intake and iron status of Australian vegetarian women. Am J Clin 
Nutr 1999;70:353–8. 

[38] Schüpbach R, Wegmüller R, Berguerand C, Bui M, Herter-Aeberli I. Micronutrient status and 
intake in omnivores, vegetarians and vegans in Switzerland. Eur J Nutr 2017;56:283–93. 
doi:10.1007/s00394-015-1079-7. 

[39] Ball MJ, Ackland ML. Zinc intake and status in Australian vegetarians. Br J Nutr 2000;83:27–33. 
[40] Elorinne A-L, Alfthan G, Erlund I, Kivimäki H, Paju A, Salminen I, et al. Food and Nutrient Intake 

and Nutritional Status of Finnish Vegans and Non-Vegetarians. PLOS ONE 2016;11:1–14. 
doi:10.1371/journal.pone.0148235. 

[41] Draper A, Lewis J, Malhotra N, Wheeler E. The energy and nutrient intakes of different types 
of vegetarian: a case for supplements? Br J Nutr 1993;69:3–19. 

[42] Deriemaeker P, Alewaeters K, Hebbelinck M, Lefevre J, Philippaerts R, Clarys P. Nutritional 
status of Flemish vegetarians compared with non-vegetarians: a matched samples study. 
Nutrients 2010;2:770–80. doi:10.3390/nu2070770. 

[43] Cade JE, Burley VJ, Greenwood DC, UK Women’s Cohort Study Steering Group. The UK 
Women’s Cohort Study: comparison of vegetarians, fish-eaters and meat-eaters. Public Health 
Nutr 2004;7:871–8. 

[44] Appleby PN, Thorogood M, Mann JI, Key TJ. The Oxford Vegetarian Study: an overview. Am J 
Clin Nutr 1999;70:525S-531S. 

[45] Messina VK, Burke KI. Position of the American Dietetic Association: vegetarian diets. J Am 
Diet Assoc 1997;97:1317–21. doi:10.1016/S0002-8223(97)00314-3. 

[46] Rosell MS, Lloyd-Wright Z, Appleby PN, Sanders TAB, Allen NE, Key TJ. Long-chain n-3 
polyunsaturated fatty acids in plasma in British meat-eating, vegetarian, and vegan men. Am J 
Clin Nutr 2005;82:327–34. doi:10.1093/ajcn.82.2.327. 

[47] Kornsteiner M, Singer I, Elmadfa I. Very low n-3 long-chain polyunsaturated fatty acid status in 
Austrian vegetarians and vegans. Ann Nutr Metab 2008;52:37–47. doi:10.1159/000118629. 

[48] Brenna JT, Salem N, Sinclair AJ, Cunnane SC, International Society for the Study of Fatty Acids 
and Lipids, ISSFAL. alpha-Linolenic acid supplementation and conversion to n-3 long-chain 
polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent Fatty Acids 2009;80:85–
91. doi:10.1016/j.plefa.2009.01.004. 

[49] Lane K, Derbyshire E, Li W, Brennan C. Bioavailability and potential uses of vegetarian sources 
of omega-3 fatty acids: a review of the literature. Crit Rev Food Sci Nutr 2014;54:572–9. 
doi:10.1080/10408398.2011.596292. 

[50] Rizzo NS, Jaceldo-Siegl K, Sabate J, Fraser GE. Nutrient Profiles of Vegetarian and 
Nonvegetarian Dietary Patterns. Journal of the Academy of Nutrition and Dietetics 
2013;113:1610–9. doi:10.1016/j.jand.2013.06.349. 

[51] Key TJ, Appleby PN, Rosell MS. Health effects of vegetarian and vegan diets. Proceedings of 
the Nutrition Society 2006;65:35–41. doi:10.1079/PNS2005481. 

[52] Waldmann A, Koschizke JW, Leitzmann C, Hahn A. Dietary intakes and lifestyle factors of a 
vegan population in Germany: results from the German Vegan Study. European Journal of 
Clinical Nutrition 2003;57:947–55. doi:10.1038/sj.ejcn.1601629. 

[53] Hahn A. Mineralstoffe. In: Matissek R, Baltes W, editors. Lebensmittelchemie, Berlin, 
Heidelberg: Springer Berlin Heidelberg; 2016, p. 55–70. doi:10.1007/978-3-662-47112-8_4. 

[54] Haider LM, Schwingshackl L, Hoffmann G, Ekmekcioglu C. The effect of vegetarian diets on 
iron status in adults: A systematic review and meta-analysis. Critical Reviews in Food Science 
and Nutrition 2018;58:1359–74. doi:10.1080/10408398.2016.1259210. 

[55] Clarys P, Deliens T, Huybrechts I, Deriemaeker P, Vanaelst B, De Keyzer W, et al. Comparison 
of nutritional quality of the vegan, vegetarian, semi-vegetarian, pesco-vegetarian and 
omnivorous diet. Nutrients 2014;6:1318–32. doi:10.3390/nu6031318. 

[56] Haddad EH, Tanzman JS. What do vegetarians in the United States eat? Am J Clin Nutr 
2003;78:626S-632S. doi:10.1093/ajcn/78.3.626S. 



References 

122 
 

[57] Obersby D, Chappell DC, Dunnett A, Tsiami AA. Plasma total homocysteine status of 
vegetarians compared with omnivores: a systematic review and meta-analysis. British Journal 
of Nutrition 2013;109:785–94. doi:10.1017/S000711451200520X. 

[58] Krajčovičová-Kudláčková M, Bučková K, Klimeš I, Šeboková E. Iodine Deficiency in Vegetarians 
and Vegans. Annals of Nutrition and Metabolism 2003;47:183–5. doi:10.1159/000070483. 

[59] Waldmann A, Koschizke JW, Leitzmann C, Hahn A. Dietary Iron Intake and Iron Status of 
German Female Vegans: Results of the German Vegan Study. Annals of Nutrition and 
Metabolism 2004;48:103–8. doi:10.1159/000077045. 

[60] Ford ES, Bergmann MM, Kröger J, Schienkiewitz A, Weikert C, Boeing H. Healthy living is the 
best revenge: findings from the European Prospective Investigation Into Cancer and Nutrition-
Potsdam study. Arch Intern Med 2009;169:1355–62. doi:10.1001/archinternmed.2009.237. 

[61] Tonstad S, Butler T, Yan R, Fraser GE. Type of Vegetarian Diet, Body Weight, and Prevalence of 
Type 2 Diabetes. Diabetes Care 2009;32:791–6. doi:10.2337/dc08-1886. 

[62] Viguiliouk E, Kendall CW, Kahleová H, Rahelić D, Salas-Salvadó J, Choo VL, et al. Effect of 
vegetarian dietary patterns on cardiometabolic risk factors in diabetes: A systematic review 
and meta-analysis of randomized controlled trials. Clin Nutr 2019;38:1133–45. 
doi:10.1016/j.clnu.2018.05.032. 

[63] Papier K, Appleby PN, Fensom GK, Knuppel A, Perez-Cornago A, Schmidt JA, et al. Vegetarian 
diets and risk of hospitalisation or death with diabetes in British adults: results from the EPIC-
Oxford study. Nutr Diabetes 2019;9:7. doi:10.1038/s41387-019-0074-0. 

[64] Vang A, Singh PN, Lee JW, Haddad EH, Brinegar CH. Meats, processed meats, obesity, weight 
gain and occurrence of diabetes among adults: findings from Adventist Health Studies. Ann 
Nutr Metab 2008;52:96–104. doi:10.1159/000121365. 

[65] Song Y, Manson JE, Buring JE, Liu S. A prospective study of red meat consumption and type 2 
diabetes in middle-aged and elderly women: the women’s health study. Diabetes Care 
2004;27:2108–15. 

[66] Orlich MJ, Fraser GE. Vegetarian diets in the Adventist Health Study 2: a review of initial 
published findings. American Journal of Clinical Nutrition 2014;100:353S-358S. 
doi:10.3945/ajcn.113.071233. 

[67] Zhang Z, Ma G, Chen S, Li Z, Xia E, Sun Y, et al. Comparison of plasma triacylglycerol levels in 
vegetarians and omnivores: a meta-analysis. Nutrition 2013;29:426–30. 
doi:10.1016/j.nut.2012.07.016. 

[68] Ströhle A, Löser Chr, Behrendt I, Leitzmann C, Hahn A. Alternative Ernährungsformen. Aktuelle 
Ernährungsmedizin 2016;41:47–65. doi:10.1055/s-0041-111459. 

[69] McCarty MF. Sub-optimal taurine status may promote platelet hyperaggregability in 
vegetarians. Med Hypotheses 2004;63:426–33. doi:10.1016/j.mehy.2002.11.007. 

[70] Li D. Chemistry behind Vegetarianism. J Agric Food Chem 2011;59:777–84. 
doi:10.1021/jf103846u. 

[71] Wang Y-F, Chiu J-S, Chuang M-H, Chiu J-E, Lin C-L. Bone mineral density of vegetarian and non-
vegetarian adults in Taiwan. Asia Pac J Clin Nutr 2008;17:101–6. 

[72] Smith AM. Veganism and osteoporosis: a review of the current literature. Int J Nurs Pract 
2006;12:302–6. doi:10.1111/j.1440-172X.2006.00580.x. 

[73] Ho-Pham LT, Nguyen ND, Nguyen TV. Effect of vegetarian diets on bone mineral density: a 
Bayesian meta-analysis. Am J Clin Nutr 2009;90:943–50. doi:10.3945/ajcn.2009.27521. 

[74] Appleby P, Roddam A, Allen N, Key T. Comparative fracture risk in vegetarians and 
nonvegetarians in EPIC-Oxford. Eur J Clin Nutr 2007;61:1400–6. doi:10.1038/sj.ejcn.1602659. 

[75] Tucker KL. Vegetarian diets and bone status. Am J Clin Nutr 2014;100 Suppl 1:329S-35S. 
doi:10.3945/ajcn.113.071621. 

[76] Huang T, Yang B, Zheng J, Li G, Wahlqvist ML, Li D. Cardiovascular disease mortality and cancer 
incidence in vegetarians: a meta-analysis and systematic review. Ann Nutr Metab 
2012;60:233–40. doi:10.1159/000337301. 



References 

123 
 

[77] Key TJ, Appleby PN, Crowe FL, Bradbury KE, Schmidt JA, Travis RC. Cancer in British 
vegetarians: updated analyses of 4998 incident cancers in a cohort of 32,491 meat eaters, 
8612 fish eaters, 18,298 vegetarians, and 2246 vegans. Am J Clin Nutr 2014;100 Suppl 1:378S-
85S. doi:10.3945/ajcn.113.071266. 

[78] Chang-Claude J, Hermann S, Eilber U, Steindorf K. Lifestyle determinants and mortality in 
German vegetarians and health-conscious persons: results of a 21-year follow-up. Cancer 
Epidemiology Biomarkers & Prevention 2005;14:963–968. 

[79] Key TJ, Fraser GE, Thorogood M, Appleby PN, Beral V, Reeves G, et al. Mortality in vegetarians 
and nonvegetarians: detailed findings from a collaborative analysis of 5 prospective studies. 
Am J Clin Nutr 1999;70:516S-524S. doi:10.1093/ajcn/70.3.516s. 

[80] McArdle WD, Katch FI, Katch VL. Optimal Nutrition for Physical Activity. Exercise Physiology: 
Nutrition, Energy, and Human Performance. 8th international edition, Philadelphia: Lippincott 
Williams&Wilki; 2014, p. 79–103. 

[81] Thomas DT, Erdman KA, Burke LM. Position of the Academy of Nutrition and Dietetics, 
Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic 
Performance. Journal of the Academy of Nutrition and Dietetics 2016;116:501–28. 
doi:10.1016/j.jand.2015.12.006. 

[82] Ketelhut RG, Franz IW, Scholze J. Regular exercise as an effective approach in antihypertensive 
therapy. Med Sci Sports Exerc 2004;36:4–8. doi:10.1249/01.MSS.0000106173.81966.90. 

[83] Gavin TP. Basal and exercise-induced regulation of skeletal muscle capillarization. Exerc Sport 
Sci Rev 2009;37:86–92. doi:10.1097/JES.0b013e31819c2e9b. 

[84] Nilsson MI, Tarnopolsky MA. Mitochondria and Aging-The Role of Exercise as a 
Countermeasure. Biology (Basel) 2019;8. doi:10.3390/biology8020040. 

[85] Hargreaves M. Interactions between muscle glycogen and blood glucose during exercise. 
Exerc Sport Sci Rev 1997;25:21–39. 

[86] Costill D. Carbohydrates for Exercise: Dietary Demands for Optimal Performance. International 
Journal of Sports Medicine 1988;09:1–18. doi:10.1055/s-2007-1024971. 

[87] Martin WH. Effect of endurance training on fatty acid metabolism during whole body exercise. 
Med Sci Sports Exerc 1997;29:635–9. 

[88] Saltin B, Astrand PO. Free fatty acids and exercise. Am J Clin Nutr 1993;57:752S-757S; 
discussion 757S-758S. doi:10.1093/ajcn/57.5.752S. 

[89] Saltin B, Henriksson J, Nygaard E, Andersen P, Jansson E. Fiber types and metabolic potentials 
of skeletal muscles in sedentary man and endurance runners. Ann N Y Acad Sci 1977;301:3–
29. 

[90] Lamont-Mills A, Christensen SA. Athletic identity and its relationship to sport participation 
levels. J Sci Med Sport 2006;9:472–8. doi:10.1016/j.jsams.2006.04.004. 

[91] Bø K, Artal R, Barakat R, Brown W, Davies GAL, Dooley M, et al. Exercise and pregnancy in 
recreational and elite athletes: 2016 evidence summary from the IOC expert group meeting, 
Lausanne. Part 1-exercise in women planning pregnancy and those who are pregnant. Br J 
Sports Med 2016;50:571–89. doi:10.1136/bjsports-2016-096218. 

[92] Burke LM, Hawley JA, Wong SHS, Jeukendrup AE. Carbohydrates for training and competition. 
J Sports Sci 2011;29 Suppl 1:S17-27. doi:10.1080/02640414.2011.585473. 

[93] Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jäger R, et al. ISSN exercise 
& sports nutrition review update: research & recommendations. Journal of the International 
Society of Sports Nutrition 2018;15:38. doi:10.1186/s12970-018-0242-y. 

[94] Raschka C, Ruf S. Sport und Ernährung: Wissenschaftlich basierte Empfehlungen, Tipps und 
Ernährungspläne für die Praxis. Georg Thieme Verlag; 2017. 

[95] Maughan R, Burke L. Nutrition for Athletes –  A practical guide to eating for health and 
performance. Lausanne, Switzerland: IOC Medical Commission Working Group on Sports 
Nutrition; 2012. 

[96] Bermon S, Castell LM, Calder PC, Bishop N, Blomstrand E, Mooren FC, et al. Consensus 
statement immunonutrition and exercise 2017. 



References 

124 
 

[97] Casa DJ, Cheuvront SN, Galloway SD, Shirreffs SM. Fluid Needs for Training, Competition, and 
Recovery in Track-and-Field Athletes. Int J Sport Nutr Exerc Metab 2019;29:175–80. 
doi:10.1123/ijsnem.2018-0374. 

[98] Barnes KA, Anderson ML, Stofan JR, Dalrymple KJ, Reimel AJ, Roberts TJ, et al. Normative data 
for sweating rate, sweat sodium concentration, and sweat sodium loss in athletes: An update 
and analysis by sport. Journal of Sports Sciences 2019;0:1–11. 
doi:10.1080/02640414.2019.1633159. 

[99] Owens DJ, Sharples AP, Polydorou I, Alwan N, Donovan T, Tang J, et al. A systems-based 
investigation into vitamin D and skeletal muscle repair, regeneration, and hypertrophy. 
American Journal of Physiology-Endocrinology and Metabolism 2015;309:E1019–31. 
doi:10.1152/ajpendo.00375.2015. 

[100] Lukaski HC. Vitamin and mineral status: effects on physical performance. Nutrition 
2004;20:632–44. doi:10.1016/j.nut.2004.04.001. 

[101] Sabetta JR, DePetrillo P, Cipriani RJ, Smardin J, Burns LA, Landry ML. Serum 25-hydroxyvitamin 
d and the incidence of acute viral respiratory tract infections in healthy adults. PLoS ONE 
2010;5:e11088. doi:10.1371/journal.pone.0011088. 

[102] Faude O, Fuhrmann M, Herrmann M, Kindermann W, Urhausen A. Ernährungsanalysen und 
Vitaminstatus bei deutschen Spitzenathleten. Leistungssport 2005;35:4–9. 

[103] van Erp-Baart AM, Saris WH, Binkhorst RA, Vos JA, Elvers JW. Nationwide survey on nutritional 
habits in elite athletes. Part I. Energy, carbohydrate, protein, and fat intake. Int J Sports Med 
1989;10 Suppl 1:S3-10. doi:10.1055/s-2007-1024947. 

[104] Baranauskas M, Stukas R, Tubelis L, Žagminas K, Šurkienė G, Švedas E, et al. Nutritional habits 
among high-performance endurance athletes. Medicina (Kaunas) 2015;51:351–62. 
doi:10.1016/j.medici.2015.11.004. 

[105] Sundgot-Borgen J, Garthe I. Elite athletes in aesthetic and Olympic weight-class sports and the 
challenge of body weight and body compositions. J Sports Sci 2011;29 Suppl 1:S101-114. 
doi:10.1080/02640414.2011.565783. 

[106] Sundgot-Borgen J, Torstveit MK. Prevalence of eating disorders in elite athletes is higher than 
in the general population. Clin J Sport Med 2004;14:25–32. 

[107] Friedmann B. Sportleranämie. Deutsche Zeitschrift für Sportmedizin 2001;27:262–3. 
[108] Chatard JC, Mujika I, Guy C, Lacour JR. Anaemia and iron deficiency in athletes. Practical 

recommendations for treatment. Sports Med 1999;27:229–40. doi:10.2165/00007256-
199927040-00003. 

[109] Gröber U. Mikronährstoffe im Leistungssport. Deutsche Apotheker Zeitung 2012;23:86–92. 
[110] Brouns F. Heat--sweat--dehydration--rehydration: a praxis oriented approach. J Sports Sci 

1991;9 Spec No:143–52. doi:10.1080/02640419108729871. 
[111] Mao IF, Chen ML, Ko YC. Electrolyte loss in sweat and iodine deficiency in a hot environment. 

Arch Environ Health 2001;56:271–7. doi:10.1080/00039890109604453. 
[112] McArdle WD, Katch FI, Katch VL. Exercise physiology: nutrition, energy, and human 

performance. Eighth edition. Philadelphia: Wolters Kluwer Health/Lippincott Williams & 
Wilkins; 2015. 

[113] Metges CC. Contribution of microbial amino acids to amino acid homeostasis of the host. J 
Nutr 2000;130:1857S-64S. doi:10.1093/jn/130.7.1857S. 

[114] Cynober LA. Plasma amino acid levels with a note on membrane transport: characteristics, 
regulation, and metabolic significance. Nutrition 2002;18:761–6. 

[115] Décombaz J, Reinhardt P, Anantharaman K, von Glutz G, Poortmans JR. Biochemical changes 
in a 100 km run: free amino acids, urea, and creatinine. Eur J Appl Physiol Occup Physiol 
1979;41:61–72. 

[116] Lehmann M, Huonker M, Dimeo F, Heinz N, Gastmann U, Treis N, et al. Serum amino acid 
concentrations in nine athletes before and after the 1993 Colmar ultra triathlon. Int J Sports 
Med 1995;16:155–9. doi:10.1055/s-2007-972984. 



References 

125 
 

[117] Refsum HE, Gjessing LR, Strømme SB. Changes in plasma amino acid distribution and urine 
amino acids excretion during prolonged heavy exercise. Scand J Clin Lab Invest 1979;39:407–
13. 

[118] Volk O, Neumann G. Verhalten ausgewählter Aminosäuren während eines 
Dreifachlangtriathlons. DEUTSCHE ZEITSCHRIFT FÜR SPORTMEDIZIN 2001:6. 

[119] Brodan V, Kuhn E, Pechar J, Tomková D. Changes of free amino acids in plasma of healthy 
subjects induced by physical exercise. Eur J Appl Physiol Occup Physiol 1976;35:69–77. 

[120] Henriksson J. Effect of exercise on amino acid concentrations in skeletal muscle and plasma. J 
Exp Biol 1991;160:149–65. 

[121] Blomstrand E, Celsing F, Newsholme EA. Changes in plasma concentrations of aromatic and 
branched-chain amino acids during sustained exercise in man and their possible role in 
fatigue. Acta Physiol Scand 1988;133:115–21. doi:10.1111/j.1748-1716.1988.tb08388.x. 

[122] Blomstrand E, Hassmén P, Ekblom B, Newsholme EA. Administration of branched-chain amino 
acids during sustained exercise — effects on performance and on plasma concentration of 
some amino acids. Eur J Appl Physiol 1991;63:83–8. doi:10.1007/BF00235174. 

[123] Powers SK, Radak Z, Ji LL. Exercise-induced oxidative stress: past, present and future. J Physiol 
(Lond) 2016;594:5081–92. doi:10.1113/JP270646. 

[124] Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, et al. Endocrine regulation of energy 
metabolism by the skeleton. Cell 2007;130:456–69. doi:10.1016/j.cell.2007.05.047. 

[125] Karwi QG, Jörg AR, Lopaschuk GD. Allosteric, transcriptional and post-translational control of 
mitochondrial energy metabolism. Biochem J 2019;476:1695–712. doi:10.1042/BCJ20180617. 

[126] Merksamer PI, Liu Y, He W, Hirschey MD, Chen D, Verdin E. The sirtuins, oxidative stress and 
aging: an emerging link. Aging (Albany NY) 2013;5:144–50. doi:10.18632/aging.100544. 

[127] Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, et al. Calorie restriction 
promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 2004;305:390–
2. doi:10.1126/science.1099196. 

[128] Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J 
2007;404:1–13. doi:10.1042/BJ20070140. 

[129] Potthast AB, Heuer T, Warneke SJ, Das AM. Alterations of sirtuins in mitochondrial 
cytochrome c-oxidase deficiency. PLoS ONE 2017;12:e0186517. 
doi:10.1371/journal.pone.0186517. 

[130] Tanner KG, Landry J, Sternglanz R, Denu JM. Silent information regulator 2 family of NAD- 
dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. 
Proc Natl Acad Sci USA 2000;97:14178–82. doi:10.1073/pnas.250422697. 

[131] Hebert AS, Dittenhafer-Reed KE, Yu W, Bailey DJ, Selen ES, Boersma MD, et al. Calorie 
restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. 
Mol Cell 2013;49:186–99. doi:10.1016/j.molcel.2012.10.024. 

[132] Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, et al. Mammalian SIRT1 represses 
forkhead transcription factors. Cell 2004;116:551–63. doi:10.1016/s0092-8674(04)00126-6. 

[133] Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, et al. Stress-dependent regulation 
of FOXO transcription factors by the SIRT1 deacetylase. Science 2004;303:2011–5. 
doi:10.1126/science.1094637. 

[134] Brenmoehl J, Hoeflich A. Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. 
Mitochondrion 2013;13:755–61. doi:10.1016/j.mito.2013.04.002. 

[135] Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X. Hepatocyte-specific Deletion of 
SIRT1 Alters Fatty Acid Metabolism and Results in Hepatic Steatosis and Inflammation. Cell 
Metab 2009;9:327–38. doi:10.1016/j.cmet.2009.02.006. 

[136] Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Méneur C, et al. 
Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated 
insulin secretion in mice. Cell Metab 2005;2:105–17. doi:10.1016/j.cmet.2005.07.001. 

[137] Liu TF, McCall CE. Deacetylation by SIRT1 Reprograms Inflammation and Cancer. Genes Cancer 
2013;4:135–47. doi:10.1177/1947601913476948. 



References 

126 
 

[138] Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in 
Caenorhabditis elegans. Nature 2001;410:227–30. doi:10.1038/35065638. 

[139] Poulose N, Raju R. SIRTUIN REGULATION IN AGING AND INJURY. Biochim Biophys Acta 
2015;1852:2442–55. doi:10.1016/j.bbadis.2015.08.017. 

[140] Tarantino G, Finelli C, Scopacasa F, Pasanisi F, Contaldo F, Capone D, et al. Circulating levels of 
sirtuin 4, a potential marker of oxidative metabolism, related to coronary artery disease in 
obese patients suffering from NAFLD, with normal or slightly increased liver enzymes. Oxid 
Med Cell Longev 2014;2014:920676. doi:10.1155/2014/920676. 

[141] Mariani S, di Giorgio MR, Martini P, Persichetti A, Barbaro G, Basciani S, et al. Inverse 
Association of Circulating SIRT1 and Adiposity: A Study on Underweight, Normal Weight, and 
Obese Patients. Front Endocrinol (Lausanne) 2018;9. doi:10.3389/fendo.2018.00449. 

[142] Mansur AP, Roggerio A, Goes MFS, Avakian SD, Leal DP, Maranhão RC, et al. Serum 
concentrations and gene expression of sirtuin 1 in healthy and slightly overweight subjects 
after caloric restriction or resveratrol supplementation: A randomized trial. Int J Cardiol 
2017;227:788–94. doi:10.1016/j.ijcard.2016.10.058. 

[143] Mariani S, Fiore D, Basciani S, Persichetti A, Contini S, Lubrano C, et al. Plasma levels of SIRT1 
associate with non-alcoholic fatty liver disease in obese patients. Endocrine 2015;49:711–6. 
doi:10.1007/s12020-014-0465-x. 

[144] Al-Khaldi A, Sultan S. The expression of sirtuins, superoxide dismutase, and lipid peroxidation 
status in peripheral blood from patients with diabetes and hypothyroidism. BMC Endocr 
Disord 2019;19:19. doi:10.1186/s12902-019-0350-y. 

[145] Mei Z, Zhang X, Yi J, Huang J, He J, Tao Y. Sirtuins in metabolism, DNA repair and cancer. 
Journal of Experimental & Clinical Cancer Research 2016;35. doi:10.1186/s13046-016-0461-5. 

[146] Yang Q, Wang B, Zang W, Wang X, Liu Z, Li W, et al. Resveratrol inhibits the growth of gastric 
cancer by inducing G1 phase arrest and senescence in a Sirt1-dependent manner. PLoS ONE 
2013;8:e70627. doi:10.1371/journal.pone.0070627. 

[147] Feldman JL, Dittenhafer-Reed KE, Denu JM. Sirtuin catalysis and regulation. J Biol Chem 
2012;287:42419–27. doi:10.1074/jbc.R112.378877. 

[148] Buler M, Andersson U, Hakkola J. Who watches the watchmen? Regulation of the expression 
and activity of sirtuins. The FASEB Journal 2016;30:3942–60. doi:10.1096/fj.201600410RR. 

[149] Li X, Kazgan N. Mammalian sirtuins and energy metabolism. Int J Biol Sci 2011;7:575–87. 
[150] Verdin E, Hirschey MD, Finley LWS, Haigis MC. Sirtuin Regulation of Mitochondria - Energy 

Production, Apoptosis, and Signaling. Trends Biochem Sci 2010;35:669–75. 
doi:10.1016/j.tibs.2010.07.003. 

[151] Rafalski VA, Mancini E, Brunet A. Energy metabolism and energy-sensing pathways in 
mammalian embryonic and adult stem cell fate. J Cell Sci 2012;125:5597–608. 
doi:10.1242/jcs.114827. 

[152] Tarantino G, Finelli C, Scopacasa F, Pasanisi F, Contaldo F, Capone D, et al. Circulating Levels of 
Sirtuin 4, a Potential Marker of Oxidative Metabolism, Related to Coronary Artery Disease in 
Obese Patients Suffering from NAFLD, with Normal or Slightly Increased Liver Enzymes. Oxid 
Med Cell Longev 2014;2014. doi:10.1155/2014/920676. 

[153] Kapahi P, Kaeberlein M, Hansen M. Dietary restriction and lifespan: Lessons from invertebrate 
models. Ageing Res Rev 2017;39:3–14. doi:10.1016/j.arr.2016.12.005. 

[154] Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L. Mammalian Sir2 homolog SIRT7 is an 
activator of RNA polymerase I transcription. Genes Dev 2006;20:1075–80. 
doi:10.1101/gad.1399706. 

[155] Sasaki T, Maier B, Koclega KD, Chruszcz M, Gluba W, Stukenberg PT, et al. Phosphorylation 
regulates SIRT1 function. PLoS ONE 2008;3:e4020. doi:10.1371/journal.pone.0004020. 

[156] Lakshminarasimhan M, Curth U, Moniot S, Mosalaganti S, Raunser S, Steegborn C. Molecular 
architecture of the human protein deacetylase Sirt1 and its regulation by AROS and 
resveratrol. Biosci Rep 2013;33. doi:10.1042/BSR20120121. 



References 

127 
 

[157] Villanova L, Vernucci E, Pucci B, Pellegrini L, Nebbioso M, Mauri C, et al. Influence of age and 
physical exercise on sirtuin activity in humans. J Biol Regul Homeost Agents 2013;27:497–507. 

[158] Suwa M, Sakuma K. The potential role of sirtuins regarding the effects of exercise on aging- 
related diseases. Curr Aging Sci 2013;6:178–88. 

[159] Covington JD, Bajpeyi S. The sirtuins: Markers of metabolic health. Mol Nutr Food Res 
2016;60:79–91. doi:10.1002/mnfr.201500340. 

[160] Kim SH, Lu HF, Alano CC. Neuronal Sirt3 protects against excitotoxic injury in mouse cortical 
neuron culture. PLoS ONE 2011;6:e14731. doi:10.1371/journal.pone.0014731. 

[161] Kendrick AA, Choudhury M, Rahman SM, McCurdy CE, Friederich M, Van Hove JLK, et al. Fatty 
liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. 
Biochem J 2011;433:505–14. doi:10.1042/BJ20100791. 

[162] Bao J, Lu Z, Joseph JJ, Carabenciov D, Dimond CC, Pang L, et al. Characterization of the murine 
SIRT3 mitochondrial localization sequence and comparison of mitochondrial enrichment and 
deacetylase activity of long and short SIRT3 isoforms. J Cell Biochem 2010;110:238–47. 
doi:10.1002/jcb.22531. 

[163] Pirinen E, Lo Sasso G, Auwerx J. Mitochondrial sirtuins and metabolic homeostasis. Best Pract 
Res Clin Endocrinol Metab 2012;26:759–70. doi:10.1016/j.beem.2012.05.001. 

[164] Li X. SIRT1 and energy metabolism. Acta Biochim Biophys Sin (Shanghai) 2013;45:51–60. 
doi:10.1093/abbs/gms108. 

[165] Laurent G, German NJ, Saha AK, de Boer VCJ, Davies M, Koves TR, et al. SIRT4 coordinates the 
balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. 
Mol Cell 2013;50:686–98. doi:10.1016/j.molcel.2013.05.012. 

[166] Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, et al. Adiponectin and 
AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature 
2010;464:1313–9. doi:10.1038/nature08991. 

[167] Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, et al. SIRT3 regulates 
fatty acid oxidation via reversible enzyme deacetylation. Nature 2010;464:121–5. 
doi:10.1038/nature08778. 

[168] Lombard DB, Pletcher SD, Cantó C, Auwerx J. Ageing: longevity hits a roadblock. Nature 
2011;477:410–1. doi:10.1038/477410a. 

[169] Bishop NA, Guarente L. Genetic links between diet and lifespan: shared mechanisms from 
yeast to humans. Nat Rev Genet 2007;8:835–44. doi:10.1038/nrg2188. 

[170] Ramis MR, Esteban S, Miralles A, Tan D-X, Reiter RJ. Caloric restriction, resveratrol and 
melatonin: Role of SIRT1 and implications for aging and related-diseases. Mech Ageing Dev 
2015;146–148:28–41. doi:10.1016/j.mad.2015.03.008. 

[171] Ajami M, Pazoki-Toroudi H, Amani H, Nabavi SF, Braidy N, Vacca RA, et al. Therapeutic role of 
sirtuins in neurodegenerative disease and their modulation by polyphenols. Neurosci 
Biobehav Rev 2017;73:39–47. doi:10.1016/j.neubiorev.2016.11.022. 

[172] Villalba JM, Alcaín FJ. Sirtuin activators and inhibitors. Biofactors 2012;38:349–59. 
doi:10.1002/biof.1032. 

[173] Ghemrawi R, Pooya S, Lorentz S, Gauchotte G, Arnold C, Gueant J-L, et al. Decreased vitamin 
B12 availability induces ER stress through impaired SIRT1-deacetylation of HSF1. Cell Death 
Dis 2013;4:e553. doi:10.1038/cddis.2013.69. 

[174] Ristow M, Zarse K, Oberbach A, Kloting N, Birringer M, Kiehntopf M, et al. Antioxidants 
prevent health-promoting effects of physical exercise in humans. Proceedings of the National 
Academy of Sciences 2009;106:8665–70. doi:10.1073/pnas.0903485106. 

[175] Tuzun A. Plasma MDA Levels, GSH-Px Activities and Nitrite/Nitrate Levels in Patients with 
Familial Mediterranean Fever. JCAM 2010;1:1–5. doi:10.4328/JCAM.10.1.11. 

[176] Ayala A, Muñoz MF, Argüelles S. Lipid Peroxidation: Production, Metabolism, and Signaling 
Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid Med Cell Longev 2014;2014. 
doi:10.1155/2014/360438. 



References 

128 
 

[177] Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives 
in biological samples: Analytical and biological challenges. Analytical Biochemistry 
2017;524:13–30. doi:10.1016/j.ab.2016.10.021. 

[178] Heinecke JW. Oxidative stress: new approaches to diagnosis and prognosis in atherosclerosis. 
Am J Cardiol 2003;91:12A-16A. 

[179] Pizzimenti S, Ciamporcero E, Daga M, Pettazzoni P, Arcaro A, Cetrangolo G, et al. Interaction of 
aldehydes derived from lipid peroxidation and membrane proteins. Front Physiol 2013;4:242. 
doi:10.3389/fphys.2013.00242. 

[180] Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants 
in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39:44–84. 
doi:10.1016/j.biocel.2006.07.001. 

[181] Garcia SC, Grotto D, Bulcão RP, Moro AM, Roehrs M, Valentini J, et al. Evaluation of lipid 
damage related to pathological and physiological conditions. Drug Chem Toxicol 2013;36:306–
12. doi:10.3109/01480545.2012.720989. 

[182] Sydow K, Schwedhelm E, Arakawa N, Bode-Böger SM, Tsikas D, Hornig B, et al. ADMA and 
oxidative stress are responsible for endothelial dysfunction in hyperhomocyst(e)inemia: 
effects of L-arginine and B vitamins. Cardiovasc Res 2003;57:244–52. 

[183] Tyagi N, Sedoris KC, Steed M, Ovechkin AV, Moshal KS, Tyagi SC. Mechanisms of 
homocysteine-induced oxidative stress. Am J Physiol Heart Circ Physiol 2005;289:H2649-2656. 
doi:10.1152/ajpheart.00548.2005. 

[184] Scheele C, Nielsen S, Pedersen BK. ROS and myokines promote muscle adaptation to exercise. 
Trends Endocrinol Metab 2009;20:95–9. doi:10.1016/j.tem.2008.12.002. 

[185] Tsikas D, Hanff E, Bollenbach A, Kruger R, Pham VV, Chobanyan-Jürgens K, et al. Results, meta-
analysis and a first evaluation of UNOxR, the urinary nitrate-to-nitrite molar ratio, as a 
measure of nitrite reabsorption in experimental and clinical settings. Amino Acids 
2018;50:799–821. doi:10.1007/s00726-018-2573-z. 

[186] Karin Rappold. Oxidativer Stress und Möglichkeiten seiner Messung aus umweltmedizinischer 
Sicht: Mitteilung der Kommission „Methoden und Qualitätssicherung in der Umweltmedizin“. 
2008. 

[187] Maughan R, Burke L. Sports nutrition: a historical perspective. Clinical Sports Nutrition, Fifth 
Edition, Sydney: McGraw-Hill Education Australia; 2015. 

[188] Ryan AJ. Anabolic steroids are fool’s gold. Fed Proc 1981;40:2682–8. 
[189] Nieman DC. Physical fitness and vegetarian diets: is there a relation? The American Journal of 

Clinical Nutrition 1999;70:570s–575s. 
[190] Nieman DC. Vegetarian dietary practices and endurance performance. Am J Clin Nutr 

1988;48:754–61. doi:10.1093/ajcn/48.3.754. 
[191] Trapp D, Knez W, Sinclair W. Could a vegetarian diet reduce exercise-induced oxidative stress? 

A review of the literature. Journal of Sports Sciences 2010;28:1261–8. 
doi:10.1080/02640414.2010.507676. 

[192] Barnard ND, Goldman DM, Loomis JF, Kahleova H, Levin SM, Neabore S, et al. Plant-Based 
Diets for Cardiovascular Safety and Performance in Endurance Sports. Nutrients 2019;11:130. 
doi:10.3390/nu11010130. 

[193] Delanghe J, De Slypere JP, De Buyzere M, Robbrecht J, Wieme R, Vermeulen A. Normal 
reference values for creatine, creatinine, and carnitine are lower in vegetarians. Clin Chem 
1989;35:1802–3. 

[194] Kreider RB, Kalman DS, Antonio J, Ziegenfuss TN, Wildman R, Collins R, et al. International 
Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in 
exercise, sport, and medicine. J Int Soc Sports Nutr 2017;14. doi:10.1186/s12970-017-0173-z. 

[195] Lynch H, Johnston C, Wharton C. Plant-Based Diets: Considerations for Environmental Impact, 
Protein Quality, and Exercise Performance. Nutrients 2018;10. doi:10.3390/nu10121841. 



References 

129 
 

[196] Craddock JC, Probst YC, Peoples GE. Vegetarian and Omnivorous Nutrition - Comparing 
Physical Performance. Int J Sport Nutr Exerc Metab 2016;26:212–20. 
doi:10.1123/ijsnem.2015-0231. 

[197] Leischik R, Spelsberg N. Vegan Triple-Ironman (Raw Vegetables/Fruits). Case Reports in 
Cardiology 2014:1–4. doi:10.1155/2014/317246. 

[198] Wirnitzer KC, Kornexl E. Energy and macronutrient intake of a female vegan cyclist during an 
8-day mountain bike stage race. Proc (Bayl Univ Med Cent) 2014;27:42–5. 

[199] Richter EA, Kiens B, Raben A, Tvede N, Pedersen BK. Immune parameters in male atheletes 
after a lacto-ovo vegetarian diet and a mixed Western diet. Med Sci Sports Exerc 
1991;23:517–21. 

[200] Raben A, Kiens B, Richter EA, Rasmussen LB, Svenstrup B, Micic S, et al. Serum sex hormones 
and endurance performance after a lacto-ovo vegetarian and a mixed diet. Med Sci Sports 
Exerc 1992;24:1290–7. 

[201] Baguet A, Everaert I, De Naeyer H, Reyngoudt H, Stegen S, Beeckman S, et al. Effects of sprint 
training combined with vegetarian or mixed diet on muscle carnosine content and buffering 
capacity. European Journal of Applied Physiology 2011;111:2571–80. doi:10.1007/s00421-
011-1877-4. 

[202] Hietavala E-M, Puurtinen R, Kainulainen H, Mero AA. Low-protein vegetarian diet does not 
have a short-term effect on blood acid-base status but raises oxygen consumption during 
submaximal cycling. J Int Soc Sports Nutr 2012;9:50. doi:10.1186/1550-2783-9-50. 

[203] Hietavala EM, Stout JR, Frassetto LA, Puurtinen R, Pitkänen H, Selänne H, et al. Dietary acid 
load and renal function have varying effects on blood acid-base status and exercise 
performance across age and sex. Appl Physiol Nutr Metab 2017;42:1330–40. 
doi:10.1139/apnm-2017-0279. 

[204] Applegate C, Mueller M, Zuniga KE. Influence of Dietary Acid Load on Exercise Performance. 
Int J Sport Nutr Exerc Metab 2017;27:213–9. doi:10.1123/ijsnem.2016-0186. 

[205] Blancquaert L, Baguet A, Bex T, Volkaert A, Everaert I, Delanghe J, et al. Changing to a 
vegetarian diet reduces the body creatine pool in omnivorous women, but appears not to 
affect carnitine and carnosine homeostasis: a randomised trial. Br J Nutr 2018;119:759–70. 
doi:10.1017/S000711451800017X. 

[206] Campbell WW, Barton ML, Cyr-Campbell D, Davey SL, Beard JL, Parise G, et al. Effects of an 
omnivorous diet compared with a lactoovovegetarian diet on resistance-training-induced 
changes in body composition and skeletal muscle in older men. Am J Clin Nutr 1999;70:1032–
9. doi:10.1093/ajcn/70.6.1032. 

[207] Wells AM, Haub MD, Fluckey J, Williams DK, Chernoff R, Campbell WW. Comparisons of 
vegetarian and beef-containing diets on hematological indexes and iron stores during a period 
of resistive training in older men. J Am Diet Assoc 2003;103:594–601. 
doi:10.1053/jada.2003.50112. 

[208] Haub MD, Wells AM, Campbell WW. Beef and soy-based food supplements differentially 
affect serum lipoprotein-lipid profiles because of changes in carbohydrate intake and novel 
nutrient intake ratios in older men who resistive-train. Metab Clin Exp 2005;54:769–74. 
doi:10.1016/j.metabol.2005.01.019. 

[209] Shomrat A, Weinstein Y, Katz A. Effect of creatine feeding on maximal exercise performance in 
vegetarians. Eur J Appl Physiol 2000;82:321–5. doi:10.1007/s004210000222. 

[210] Wilson PB. Nutrition behaviors, perceptions, and beliefs of recent marathon finishers. The 
Physician and Sportsmedicine 2016;44:242–51. doi:10.1080/00913847.2016.1177477. 

[211] Turner-McGrievy GM, Moore WJ, Barr-Anderson D. The Interconnectedness of Diet Choice 
and Distance Running: Results of the Research Understanding the NutritioN of Endurance 
Runners (RUNNER) Study. Int J Sport Nutr Exerc Metab 2015. doi:10.1123/ijsnem.2015-0085. 

[212] Boldt P, Knechtle B, Nikolaidis P, Lechleitner C, Wirnitzer G, Leitzmann C, et al. Quality of life 
of female and male vegetarian and vegan endurance runners compared to omnivores - results 



References 

130 
 

from the NURMI study (step 2). J Int Soc Sports Nutr 2018;15:33. doi:10.1186/s12970-018-
0237-8. 

[213] Loucks AB. Low energy availability in the marathon and other endurance sports. Sports Med 
2007;37:348–52. 

[214] Potgieter S. Sport nutrition: A review of the latest guidelines for exercise and sport nutrition 
from the American College of Sport Nutrition, the International Olympic Committee and the 
International Society for Sports Nutrition. South African Journal of Clinical Nutrition 
2013;26:6–16. doi:10.1080/16070658.2013.11734434. 

[215] World Health Organization, Food and Agriculture Organization, United Nations University, 
editors. Protein and amino acid requirements in human nutrition: report of a joint 
WHO/FAO/UNU Expert Consultation. Geneva: WHO; 2007. 

[216] Davey GK, Spencer EA, Appleby PN, Allen NE, Knox KH, Key TJ. EPIC–Oxford:lifestyle 
characteristics and nutrient intakes in a cohort of 33 883 meat-eaters and 31 546 non meat-
eaters in the UK. Public Health Nutrition 2003;6. doi:10.1079/PHN2002430. 

[217] Max Rubner Institut. Nationale Verzehrsstudie II - Ergebnisbericht, Teil 2. Nationale 
Verzehrsstudie II - Ergebnisbericht, Teil 2 2008. 

[218] International Society for the Study of Fatty Acids and Lipids. Report of the Sub-Committee on 
Recommendations for intake of polyunsaturated fatty acids in healthy adults 2004. 

[219] Stehle P. The Nutrition Report 2012 Summary. European Journal of Nutrition & Food Safety 
2013;4:14–62. 

[220] Mensink G, Ströbel A. Einnahme von Nahrungsergänzungspräparaten und 
Ernährungsverhalten. Gesundheitswesen 1999;61:S132-137. 

[221] Fedosov SN. Biochemical markers of vitamin B12 deficiency combined in one diagnostic 
parameter: the age-dependence and association with cognitive function and blood 
hemoglobin. Clin Chim Acta 2013;422:47–53. doi:10.1016/j.cca.2013.04.002. 

[222] Pawlak R, Lester SE, Babatunde T. The prevalence of cobalamin deficiency among vegetarians 
assessed by serum vitamin B12: a review of literature. Eur J Clin Nutr 2014;68:541–8. 
doi:10.1038/ejcn.2014.46. 

[223] Pawlak R, Parrott SJ, Raj S, Cullum-Dugan D, Lucus D. How prevalent is vitamin B 12 deficiency 
among vegetarians? Nutrition Reviews 2013;71:110–7. doi:10.1111/nure.12001. 

[224] Damayanti D, Jaceldo-Siegl K, Beeson WL, Fraser G, Oda K, Haddad EH. Foods and 
Supplements Associated with Vitamin B12 Biomarkers among Vegetarian and Non-Vegetarian 
Participants of the Adventist Health Study-2 (AHS-2) Calibration Study. Nutrients 2018;10. 
doi:10.3390/nu10060722. 

[225] Pilz S, Zittermann A, Trummer C, Schwetz V, Lerchbaum E, Keppel M, et al. Vitamin D testing 
and treatment: a narrative review of current evidence. Endocr Connect 2019. doi:10.1530/EC-
18-0432. 

[226] Chan J, Jaceldo-Siegl K, Fraser GE. Serum 25-hydroxyvitamin D status of vegetarians, partial 
vegetarians, and nonvegetarians: the Adventist Health Study-2. Am J Clin Nutr 2009;89:1686S-
1692S. doi:10.3945/ajcn.2009.26736X. 

[227] Cashman KD, Dowling KG, Škrabáková Z, Gonzalez-Gross M, Valtueña J, De Henauw S, et al. 
Vitamin D deficiency in Europe: pandemic? Am J Clin Nutr 2016;103:1033–44. 
doi:10.3945/ajcn.115.120873. 

[228] Rabenberg M, Scheidt-Nave C, Busch MA, Rieckmann N, Hintzpeter B, Mensink GBM. Vitamin 
D status among adults in Germany – results from the German Health Interview and 
Examination Survey for Adults (DEGS1). BMC Public Health 2015;15:641. doi:10.1186/s12889-
015-2016-7. 

[229] Wentz LM, Liu P-Y, Ilich JZ, Haymes EM. Female Distance Runners Training In Southeastern 
United States Have Adequate Vitamin D Status. Int J Sport Nutr Exerc Metab 2016;26:397–
403. doi:10.1123/ijsnem.2014-0177. 



References 

131 
 

[230] Webb AR. Who, what, where and when—influences on cutaneous vitamin D synthesis. 
Progress in Biophysics and Molecular Biology 2006;92:17–25. 
doi:10.1016/j.pbiomolbio.2006.02.004. 

[231] Kristensen NB, Madsen ML, Hansen TH, Allin KH, Hoppe C, Fagt S, et al. Intake of macro- and 
micronutrients in Danish vegans. Nutr J 2015;14. doi:10.1186/s12937-015-0103-3. 

[232] West A-R, Oates P-S. Mechanisms of heme iron absorption: current questions and 
controversies. World J Gastroenterol 2008;14:4101–10. 

[233] Anderson GJ, Frazer DM, McKie AT, Vulpe CD, Smith A. Mechanisms of haem and non-haem 
iron absorption: lessons from inherited disorders of iron metabolism. Biometals 2005;18:339–
48. doi:10.1007/s10534-005-3708-8. 

[234] Lynch SR, Cook JD. Interaction of vitamin C and iron. Ann N Y Acad Sci 1980;355:32–44. 
doi:10.1111/j.1749-6632.1980.tb21325.x. 

[235] Liao X, Yun S, Zhao G. Structure, function, and nutrition of phytoferritin: a newly functional 
factor for iron supplement. Crit Rev Food Sci Nutr 2014;54:1342–52. 
doi:10.1080/10408398.2011.635914. 

[236] Craig WJ. Iron status of vegetarians. Am J Clin Nutr 1994;59:1233S-1237S. 
doi:10.1093/ajcn/59.5.1233S. 

[237] Hinton PS. Iron and the endurance athlete. Applied Physiology, Nutrition, and Metabolism 
2014;39:1012–8. doi:10.1139/apnm-2014-0147. 

[238] Snyder AC, Dvorak LL, Roepke JB. Influence of dietary iron source on measures of iron status 
among female runners. Medicine & Science in Sports & Exercise 1989;21:7. 

[239] Alaunyte I, Stojceska V, Plunkett A. Iron and the female athlete: a review of dietary treatment 
methods for improving iron status and exercise performance. J Int Soc Sports Nutr 2015;12. 
doi:10.1186/s12970-015-0099-2. 

[240] de Benoist B. Conclusions of a WHO Technical Consultation on folate and vitamin B12 
deficiencies. Food Nutr Bull 2008;29:S238-244. doi:10.1177/15648265080292S129. 

[241] Miles FL, Lloren JIC, Haddad E, Jaceldo-Siegl K, Knutsen S, Sabate J, et al. Plasma, Urine, and 
Adipose Tissue Biomarkers of Dietary Intake Differ Between Vegetarian and Non-Vegetarian 
Diet Groups in the Adventist Health Study-2. J Nutr 2019. doi:10.1093/jn/nxy292. 

[242] Dahlquist DT, Dieter BP, Koehle MS. Plausible ergogenic effects of vitamin D on athletic 
performance and recovery. J Int Soc Sports Nutr 2015;12:33. doi:10.1186/s12970-015-0093-8. 

[243] Volpe SL. Iron and Athletic Performance. ACSM’s Health & Fitness Journal 2010;14:31. 
doi:10.1249/FIT.0b013e3181ed5968. 

[244] Herrmann M, Obeid R, Scharhag J, Kindermann W, Herrmann W. Altered vitamin B12 status in 
recreational endurance athletes. Int J Sport Nutr Exerc Metab 2005;15:433–41. 

[245] Pfitzinger P, Freedson PS. The reliability of lactate measurements during exercise. Int J Sports 
Med 1998;19:349–57. doi:10.1055/s-2007-971929. 

[246] Ahmetov II, Rogozkin VA. Genes, Athlete Status and Training – An Overview. Genetics and 
Sports 2009;54:43–71. doi:10.1159/000235696. 

[247] Peter I, Papandonatos GD, Belalcazar LM, Yang Y, Erar B, Jakicic JM, et al. Genetic modifiers of 
cardiorespiratory fitness response to lifestyle intervention. Med Sci Sports Exerc 2014;46:302–
11. doi:10.1249/MSS.0b013e3182a66155. 

[248] Qiu X, Brown K, Hirschey MD, Verdin E, Chen D. Calorie restriction reduces oxidative stress by 
SIRT3-mediated SOD2 activation. Cell Metab 2010;12:662–7. doi:10.1016/j.cmet.2010.11.015. 

[249] Koo J-H, Kang E-B, Oh Y-S, Yang D-S, Cho J-Y. Treadmill exercise decreases amyloid-β burden 
possibly via activation of SIRT-1 signaling in a mouse model of Alzheimer’s disease. Exp Neurol 
2017;288:142–52. doi:10.1016/j.expneurol.2016.11.014. 

[250] Zhuang J, Kamp WM, Li J, Liu C, Kang J-G, Wang P-Y, et al. Forkhead Box O3A (FOXO3) and the 
Mitochondrial Disulfide Relay Carrier (CHCHD4) Regulate p53 Protein Nuclear Activity in 
Response to Exercise. J Biol Chem 2016;291:24819–27. doi:10.1074/jbc.M116.745737. 



References 

132 
 

[251] Ahn B-H, Kim H-S, Song S, Lee IH, Liu J, Vassilopoulos A, et al. A role for the mitochondrial 
deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA 2008;105:14447–
52. doi:10.1073/pnas.0803790105. 

[252] Cantó C, Menzies KJ, Auwerx J. NAD+ Metabolism and the Control of Energy Homeostasis: A 
Balancing Act between Mitochondria and the Nucleus. Cell Metabolism 2015;22:31–53. 
doi:10.1016/j.cmet.2015.05.023. 

[253] Ding R-B, Bao J, Deng C-X. Emerging roles of SIRT1 in fatty liver diseases. Int J Biol Sci 
2017;13:852–67. doi:10.7150/ijbs.19370. 

[254] Nakagawa T, Guarente L. Urea cycle regulation by mitochondrial sirtuin, SIRT5. Aging (Albany 
NY) 2009;1:578–81. doi:10.18632/aging.100062. 

[255] Vanacore D, Messina G, Lama S, Bitti G, Ambrosio P, Tenore GC, et al. Effect of Restriction 
Vegan Diet’s on Muscle Mass, Oxidative Status and Myocytes Differentiation: a Pilot Study. J 
Cell Physiol 2018;12:9345–53. doi:10.1002/jcp.26427. 

[256] Mitek M, Anyzewska A, Wawrzyniak A. Estimated dietary intakes of nitrates in vegetarians 
compared to a traditional diet in Poland and acceptable daily intakes: is there a risk? Rocz 
Panstw Zakl Hig 2013;64:105–9. 

[257] Higaki Y, Hirshman MF, Fujii N, Goodyear LJ. Nitric oxide increases glucose uptake through a 
mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle. 
Diabetes 2001;50:241–7. doi:10.2337/diabetes.50.2.241. 

[258] Dreissigacker U, Wendt M, Wittke T, Tsikas D, Maassen N. Positive correlation between 
plasma nitrite and performance during high-intensive exercise but not oxidative stress in 
healthy men. Nitric Oxide 2010;23:128–35. doi:10.1016/j.niox.2010.05.003. 

[259] McConell GK, Rattigan S, Lee-Young RS, Wadley GD, Merry TL. Skeletal muscle nitric oxide 
signaling and exercise: a focus on glucose metabolism. American Journal of Physiology-
Endocrinology and Metabolism 2012;303:E301–7. doi:10.1152/ajpendo.00667.2011. 

[260] Ragoobirsingh D, McGrowder D, Dasgupta T, Brown P. The effect of nitric oxide on glucose 
metabolism. Mol Cell Biochem 2004;263:29–34. 

[261] Schmidt JA, Rinaldi S, Scalbert A, Ferrari P, Achaintre D, Gunter MJ, et al. Plasma 
concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and 
vegans: a cross-sectional analysis in the EPIC-Oxford cohort. Eur J Clin Nutr 2016;70:306–12. 
doi:10.1038/ejcn.2015.144. 

[262] Felig P, Wahren J. Amino acid metabolism in exercising man. J Clin Invest 1971;50:2703–14. 
[263] Van Hall G, Saltin B, Wagenmakers AJ. Muscle protein degradation and amino acid metabolism 

during prolonged knee-extensor exercise in humans. Clin Sci 1999;97:557–67. 
[264] Tsikas D, Wu G. Homoarginine, arginine, and relatives: analysis, metabolism, transport, 

physiology, and pathology. Amino Acids 2015;47:1697–702. doi:10.1007/s00726-015-2055-5. 
[265] He DT, Gai XR, Yang LB, Li JT, Lai WQ, Sun XL, et al. Effects of guanidinoacetic acid on growth 

performance, creatine and energy metabolism, and carcass characteristics in growing-finishing 
pigs. J Anim Sci 2018;96:3264–73. doi:10.1093/jas/sky186. 

[266] Fedosov SN, Brito A, Miller JW, Green R, Allen LH. Combined indicator of vitamin B12 status: 
modification for missing biomarkers and folate status and recommendations for revised cut-
points. Clinical Chemistry and Laboratory Medicine (CCLM) 2015;53. doi:10.1515/cclm-2014-
0818. 

 



Appendix Paper I 

133 
 

Appendix Paper I 

Additional file 1 Dietary intake of essential amino acids (mg/kg BW) according to dietary pattern. 

         
Amino acid OMN  

(n=27) 
P value 

OMN-LOV 
LOV  

(n=26) 
P value 

LOV-VEG 
VEG  

(n=28) 
P value 

OMN-VEG 
P value 

3 groups 
Reference 

values (m/f)* 
         

         
Isoleucine 54.9 (48.1, 

61.6) 
n.s. 50.0 (32.7, 

67,2) 
n.s. 41.0 (32.4, 

50.0) 
0.008 0.007a 20 

Leucine 92.0 (80.8, 
103) 

0.047 83.2 (55.1, 
111) 

n.s. 68.9 (54.8, 
83.0) 

0.012 0.008a 39 

Lysine 75.8 (64.7, 
86.9) 

0.007 58.8 (36.7, 
80.8) 

n.s. 44.1 (35.4, 
52.9) 

0.000 0.000a 30 

Methionine 25.8 (21.9, 
29.6) 

0.015 20.5 (12.6, 
28.4) 

n.s. 15.2 (11.6, 
18.8) 

0.000 0.000a 10 

Phenylalanine  52.8 (47.2, 
58.5) 

n.s. 48.6 (33.6, 
63.7)  

n.s. 44.4 (34.6, 
54.2) 

0.044 0.022a 25 

Threonine 46.2 (40.2, 
52.1) 

0.020 38.7 (26.0, 
51.4) 

n.s. 34.2 (27.6, 
40.9) 

0.015 0.006a 15 

Tryptophan 12.8 (11.2, 
14.4) 

n.s. 11.5 (7.90, 
15.2) 

n.s. 10.9 (8.70, 
13.1) 

n.s. 0.037a 4 

Valine 64.2 (56.6, 
71.7) 

n.s. 58.0 (39.2, 
76.8) 

n.s. 48.7 (39.0, 
58.5) 

0.012 0.009a 26 

Histidine 31.7 (27.8, 
35.6) 

0.011 26.0 (17.5, 
34.5) 

n.s. 22.9 (18.6, 
27.2) 

0.009 0.003a 10 

         

OMN = omnivores, LOV = lacto-ovo-vegetarians, VEG = vegans, * reference values of the World Health Organization [215].  
Data are presented as mean (95% KI). a Kruskal Wallis test, b Post Hoc Test. 
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Additional file 2 Dietary intake of fatty acids according to dietary pattern. 

         
Fatty acid OMN  

(n=27) 
P value 

OMN-LOV 
LOV  

(n=26) 
P value 

LOV-VEG 
VEG  

(n=28) 
P value 

OMN-VEG 
P value 

3 groups 
Reference 

values (m/f)* 
         

         
SFA (EN%) 8.70 (7.13, 10.3) n.s. 7.86 (6.17, 9.55) 0.006b 4.57 (3.55, 5.59) 0.000b 0.000a 7-10  
MUFA (EN%) 5.95 (4.86, 7.03) n.s. 5.45 (3.77, 7.13) n.s. 3.96 (3.02, 4.91) 0.019b 0.024a > 10 
PUFA (EN%) 2.81 (2.29, 3.32) - 3.21 (2.14, 2.97) - 3.39 (2.63, 4.14) - 0.513a 7-10 
EPA (g) food 

supplement 
0.19 (0.32, 0.35) 
0.08 (-0.03, 0.19) 

0.000b 

- 
0.01 (0.00, 0.01)  
0.01 (-0.01, 0.03) 

n.s. 
- 

0.00 (0.00, 0.00) 
0.04 (-0.03, 0.10) 

0.000b 

- 
0.000a 

0.823a 
- 

DHA (g) food 
supplement 

0.25 (0.14, 0.35) 
0.03 (-0.02, 0.08) 

0.031b 

- 
0.06 (0.03, 0.87) 
0.01 (-0.01, 0.02) 

n.s. 
- 

0.03 (0.01, 0,06) 
0.01 (-0.01, 0.04) 

0.000b 

- 
0.000a 

0.821a 
- 

LA (EN%) 2.96 (2.50, 3.42) n.s. 3.52 (2.57, 4.46) n.s. 4.33 (3.44, 5.21) n.s. 0.049a 2.5 
ALA (EN%) 0.37 (0.27, 0.48) n.s. 0.68 (0.33, 1.03) n.s. 0.80 (0.55, 1.05) 0.005b 0.007a 0.5 
LA:ALA ratio 1:8.04 - 1:5.30 - 1:5.71 - 0.481a 1:5 
         

OMN = omnivores, LOV = lacto-ovo-vegetarians, VEG = vegans, SFA = saturated fatty acids, PUFA = polyunsaturated fatty acids, MUFA = monounsaturated 
fatty acids, EPA = eicosapentaenoic acid, DHA = docosahexaenoic acid, ALA= alpha linolenic acid, LA= linoleic acid, EN% = energy percent, n.s. = not 
significant, * reference values of the German, Austrian and Swiss Nutrition Societies (Deutsche, Österreichische und Schweizerische Gesellschaften für 
Ernährung, D-A-C-H) [33].  
Data are presented as mean (95% KI). a Kruskal Wallis test, b Post Hoc Test. 
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Additional file 3 Proportion of participants who did not reach the recommended dietary intake of minerals and vitamins. Dietary intake is depicted in addition to 

supplement intake. OMN = omnivores, LOV = lacto-ovo-vegetarians, VEG = vegans, Vit = vitamin. 
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Table S1. Biomarkers of iron status and hematological parameters according to gender. 

 
Biomarker 

                                    

 
 
 

Omnivores 
n=27 

 

p value 
Omnivores 
vs. Lacto-

Ovo 

Lacto-ovo 
n=26 

 

p value 
Lacto-Ovo 
vs. Vegan 

Vegan 
n=28 

 

p value 
Omnivores 
vs. Vegan 

p value 
 

Vitamin B12, pmol/l                         
 

   Deficient (< 150 pmol/l), n (%)  
 

f 
m 
f 
m 

302±116 
353±127 

1 (4) 
0 (0) 

- 
- 

345±134 
281±188 

0 (0) 
2 (8) 

- 
- 

324±301 
311±145 

2 (7) 
1 (4) 

- 
- 

0.273b 
0.317b 

 

Holo-TC, pmol/l  
 
   Deficient (< 35 pmol/l), n (%) 

 

f 
m 
f 
m 

80.8±32.3 
79.8±28.0 

1 (4) 
0 (0) 

n.s. 
- 

79.8±28.0 
68.1±34.4 

1 (4) 
1 (4) 

0.042c 

- 
67.9±39.6 
67.7±41.1 

4 (14) 
2 (7) 

n.s. 
- 

0.047a 
0.662a 

MMA, nmol/l  
 
   Deficient (> 271 nmol/l), n (%) 

 

f 
m 
f 
m 

270±181 
253±171 

3 (11) 
2 (7) 

- 
- 

253±171 
331±227 

2 (8) 
4 (15) 

- 
- 

448±703 
209±73 
5 (18) 
2 (7) 

- 
- 

0.687b 
0.062b 

tHcy, µmol/l  
 
   > 10 µmol/l, n (%) 

f 
m 
f 
m 

11.5±3.37 
13.2±1.85 

1 (4) 
2 (7) 

- 
- 

13.2±1.85 
16.5±8.37 

3 (12) 
6 (23) 

- 
- 

12.0±3.52 
14.4±5.20 

3 (11) 
3 (11) 

- 
- 

0.514b 
0.462b 

4cB12  
 

f 
m 

0.90 
0.92 

- 
- 

1.15 
0.53 

- 
- 

0.66 
0.77 

- 
- 

0.148a 

0.359a 

f = female, m = male, Holo-TC = holotranscobalamin, MMA = methylmalonic acid, 4cB12 = 4 markers combined vitamin B-12 indicator [266], n.s. = not significant, tHcy = total 

homocysteine. Values are given as means ± SD or n (%) of the study population in the different cut-off values. a One-way ANOVA, b Kruskal Wallis test, c Post Hoc test. 
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Table S2. Biomarkers of vitamin D status according to gender.  

Biomarker   Omnivores 

n=27 

Lacto-ovo 

n=26 

Vegan 

n=28 

p value 

 

25(OH)D, nmol/l   

    

Optimal  

   (≥75 nmol), n (%)             

   Sufficiency  

   (50-74.9 nmol/l), n (%)        

   Insufficiency  

   (25-49.9 nmol/l), n (%)        

   Deficiency  

   (<25 nmol/l), n (%) 

f 

m 

f 

m 

f 

m 

f 

m 

f 

m 

98.2±30.9 

79.5±31.9 

12 (44) 

6 (22) 

4 (15) 

2 (7) 

0 

3 (11) 

0 

0 

85.0±39.5 

65.5±21.4 

8 (31) 

3 (12) 

4 (15) 

5 (19) 

3 (12) 

2 (8) 

0 

0 

87.4±40.0 

88.0±41.0 

9 (32) 

7 (25) 

5 (18) 

0 

2 (7) 

2 (7) 

1 (4) 

1 (4) 

 

0.516a 

0.308a 

 
 

 

f = female, m = male, 25(OH)D = 25-hydroxyvitamin D. Values are given as means ± SD or n (%) of 

the study population in the different cut-off values. a One-way ANOVA. 

 

. 
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Table S3. Biomarkers of iron status and hematological parameters according to supplement 
intake.  

Biomarker 
 

 
 

Omnivores 
n=27 

Lacto-ovo 
n=26 

Vegan 
n=28 

p value 

Iron serum, µmol/l  
 

SU non-
SU 

19.4±4.74 
17.5±8.43 

12.6±3.58 
18.7±7.91 

13.1±4.99 
17.5±6.38 

0.277a 

0.839a 

   Deficiency  
   (<10 µmol/l), n (%)  

SU non-
SU 

0 (0) 
7 (26) 

1 (4) 
4 (15) 

1 (4) 
1 (4) 

 

Ferritin, µg/l  
    
   Depleted iron stores  
   (< 15 µg/l), n (%)  

SU non-
SU  
SU non-
SU 

59.0±24.0 
62.6±57.5 

0 (0) 
7 (26) 

32.7±19.5 
40.4±34.7 

0 (0) 
6 (23) 

40.8±22.4 
45.7±33.7 

1 (4) 
3 (11) 

0.408b 
0.706b 

Transferrin, µmol/l  
 
   Increased iron requirement 
   (≥ 47.7 µmol/l), n (%)              

SU non-
SU SU 
non-SU 

36.4±1.78 
42.1±12.2 

0 (0) 
6 (22) 

44.8±4.04 
39.7±6.88 

1 (4) 
3 (12) 

36.4±1.78 
40.4±7.53 

0 (0) 
3 (11) 

0.061b 

0.957b 

Transferrin saturation  
    

SU non-
SU 

26.5±4.95 
23.2±14.3 

14.0±4.36 
24.4±11.1 

17.8±6.65 
23.1±10.4 

0.129a 

0.913a 
   Insufficient iron supply 
   (< 16%), n (%)          

SU non-
SU 

0 (0) 
10 (37) 

1 (4) 
5 (19) 

2 (7) 
7 (25) 

 

Hb, g/dl                               
    

SU non-
SU 

13.9±1.48 
13.9±1.42 

14.9±0.76 
14.0±1.04 

13.5±0.59 
14.1±1.47 

0.166a 

0.825a 
   Anemia  
   (< 12.0/13.0 g/dl), n (%)              

SU non-
SU 

3 (11) 
0 (0) 

0 (0)  
1 (4) 

4 (14) 
0 

 

Hct, l/l  
 

SU non-
SU 

0.41±0.04 
0.41±0.04 

0.45±0.02 
0.41±0.03 

0.40±0.02 
0.43±0.04 

0.087a 

0.263a 
   < 0.36 (f)/0.39 (m), n (%)  0 (0) 0 (0) 0 (0)  

MCV, fl  
   
   Iron deficiency anemia 
   (< 80 fl), n (%)  

SU non-
SU 
 

87.9±4.03 
87.4±3.79 

0 (0) 
 

91.0±2.80 
88.8±4.59 

0 (0) 

88.0±4.00 
89.0±3.91 

0 (0) 

0.543a 

0.365a 

SU = supplement-users, non-SU = non-supplement users, MCV = Mean Corpuscular Volume. 

Values are given as means ± SD or n (%) of the population in the different cut-off values. a One-way 

ANOVA, b Kruskal Wallis test. 
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Table S1. Sequences of qRT-PCR-Primers 

 

 

 

 

 

 

 

 

Table S2. Correlations of SIRT-activities with different parameters. 

Sirtuin Correlation with p-value 

SIRT1 coffee  0,238 
 flavonoids 0,352 
 polyphenols 0,324 
 Vitamine B12 in serum 0,411 
 Active vitamine B12 0,433 
 Glucose 0,416 
 Insulin 0,305 
 Calories 0,603 
 W/kg body weight 0,979 
SIRT3 coffee 0,190 
 flavonoids 0,196 
 polyphenols 0,146 
 Vitamine B12 0,349 
 Active vitamine B12 0,140 
 Glucose 0,377 
 Insulin 0,090 
 Calories 0,897 
 W/kg body weight 0,627 
SIRT5 coffee 0,388 
 flavonoids 0,067 
 polyphenols 0,382 
 Vitamine B12 0,214 
 Active vitamine B12 0,075 
 Glucose 0,274 
 Insulin 0,111 
 Calories 0,704 
 W/kg body weight 0,623 

Statistical analysis were conducted with Spearman correlation test. 

 

human SUPT20H (forward) AAC TTT TGC TTG AGA GCC 
AGC 

human SUPT20H (reverse) TTG CTG CCG ATT CAG AGA GG 
human SIRT1 (forward) CAA CTT GTA CGA CGA AGA C 
human SIRT1 (reverse) TCA TCA CCG AAC AGA AGG 
human SIRT3 (forward) CAG TCT GCC AAA GAC CCT TC 
human SIRT3 (reverse) AAA TCA ACC ACA TGC AGC AA 
human SIRT4 (forward) GCT GTG AGA GAA TGA AGA 

TGA GC 
human SIRT4 (reverse) CTT GGA AAG GGT GAT GAA 

GCG 
human SIRT5 (forward) AGT GGT GTT CCG ACC TTC AG 
human SIRT5 (reverse) CAT CGA TGT TCT GGG TGA TG 
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Appendix Paper V 

Table S1 Spearman correlation coefficients (r) and p values of biochemical parameters pre 

and post exercise.   

Parameters r p 

Oxidative stress/ NO metabolism  

MDA  0.360 0.002 

Nitrate  0.708 < 0.001 

Nitrite  0.444 < 0.001 

Kidney function   

Creatinine  0.167 0.157 

Amino acids  

Ala 0.802 < 0.001 

Thr 0.797 < 0.001 

Gly 0.861 < 0.001 

Val 0.889 < 0.001 

Ser 0.202 0.116 

Sar 0.813 < 0.001 

Leu+Ile 0.785 < 0.001 

GAA 0.528 < 0.001 

Asp+Asn 0.750 < 0.001 

Pro 0.912 < 0.001 

Met 0.682 < 0.001 

Glu+Gln 0.732 < 0.001 

Orn+Cit 0.818 < 0.001 

Phe 0.811 < 0.001 

Tyr 0.881 < 0.001 

Lys 0.865 < 0.001 

Arg 0.756 < 0.001 

hArg 0.835 < 0.001 

Trp 0.657 < 0.001 
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