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Abstract: Geometry measurements are very important to monitor a machine part’s health and
performance. Optical measurement system have several advantages for the acquisition of a parts
geometry: measurement speed, precision, point density and contactless operation. Measuring parts
inside of assembled machines is also desirable to keep maintenance cost low. The Raspberry Pi is a
small and cost efficient computer that creates new opportunities for compact measurement systems.
We have developed a fringe projection system which is capable of measuring in very limited space.
A Raspberry Pi 2 is used to generate the projection patterns, acquire the image and reconstruct the
geometry. Together with a small LED projector, the measurement system is small and easy to handle.
It consists of off-the-shelf products which are nonetheless capable of measuring with an uncertainty
of less than 100 pm.
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1. Introduction

In order to monitor a parts manufacturing quality, reliability and performance, geometry
measurements are very important [1]. Optical means of measurement are very fast, contact less and
deliver precise geometry information. Fringe projection, for example, is used for a wide range of
measurement tasks and multiple scales. It is based on the triangulation principle. A simple setup
for fringe projection consists of a camera and a projector set up in a known angle, e.g., 30 degree.
The projector then projects certain structured light patterns onto an object to determine a relation
between camera pixels and projector pixels. This relation is used to calculate a 3D point cloud of
the objects surface. One disadvantage of most fringe projections systems is the size and shape of the
projector. While the volume of measurement is usually adjusted for a specific task, only a few systems
are capable of measuring inside complex geometries. There are some endoscopic fringe projection
systems used to scan rows of teeth in a dental lab [2]. The measurement head is still relatively
large and the resolution and capabilities of the projector are limited. Storz offers the MULTIPOINT
endoscope which uses 49 laser dots to acquire 3d information of an object [3]. The position of each
measurement point is computed using the triangulation principle. General Electric developed a fringe
projection system with a fixed pattern projector and a chip on tip camera on a flexible shaft [4].
A similar measurement system was developed by Matthias [5]. It uses a bundle of 100,000 single
fibers for projection and image acquisition and has therefore a more flexible measurement head.
A disadvantage is the limited resolution of 100,000 pixels. Although these systems all have some
capability in measuring in limited space, all of them sacrifice pattern projection quality for a small
measurement head. The measurement system presented in this paper uses a borescope with a chip
on tip Raspberry Pi camera to deliver high quality measurements with fully adaptable color patterns.

Electronics 2016, 5, 43; doi:10.3390/ electronics5030043 www.mdpi.com/journal/electronics


http://www.mdpi.com/journal/electronics
http://www.mdpi.com
http://www.mdpi.com/journal/electronics

Electronics 2016, 5, 43 20f8

With those patterns our measurement system delivers superior measurement quality compared to
products on the market. The Raspberry Pi is used for image acquisition as well as pattern generation
via built in HDMI output.

2. The Measurement System

The measurement system consists of a Raspberry Pi with a camera, a borescope and a projector.
The camera is the standard Raspberry Pi camera with a special ribbon cable that is only 6 mm wide.
The projector Texas Instruments LCR4500 is used because it is very compact and delivers a linear
light intensity profile. The borescope is a 86290 CF from Storz. It has a length of 20 mm, an angle of
view of 90° and a direction of view of 70°. The cameras is pointed 90° relative to the shaft. Therefore
the system has a triangulation angle of approximately 20°. Additionally, a camera adapter is used to
couple the light of the projector into the borescope. The optical properties of the projector are very
similar to that of a pinhole camera. Therefore the camera adapter is also suitable to be used with the
projector. The adapter was originally developed to combine the borescope with an industrial camera
with a “C mount” lens mount.

As shown in Figure 1 the Raspberry Pi is connected to the measurement workstation via ethernet.
The workstation sends requests for a image pattern sequence to the Raspberry Pi. The Raspberry Pi
calculates the patterns and transmits them to the projector via HDMI. The camera is controlled with
the Camera Serial Interface (CSI) embedded onto the Raspberry Pi and transmits the images to the
Raspberry Pi. Finally the Raspberry Pi transmits the images to the workstation for further processing.

The reconstruction of the measurement is done on the workstation, because it is more suitable to
display and manage the measurements. The measurement system itself only needs a power supply
and ethernet connection to the workstation and is very compact and portable (see Figures 2 and 3).
The base plate of the projector was designed to provide mounting points for the borescope shaft and
the camera adapter.
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Figure 1. Signal plan for the measurement system.
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Figure 2. Rendering of the measurements system. The system is mounted on a goniometer.

The following parts are labeled: (a) projector; (b) camera adapter; (c) Raspberry Pi 2; (d) borescope

shaft; (e) camera (f) fields of view of the projector (green) and the camera (blue).

Bedeueiggiou

Figure 3. Photograph of the measurement system from the top. Thelabels are consistent
with Figure 2.

2.1. Image Acquisition

In most scenarios, the Raspberry Pi camera is used with image compression, which is suitable
for most consumer applications. The precision of optical measurements though strongly relies on
high quality camera images. Lossy image compression would therefore have a negative impact on
the measurement quality. On the other hand, most optical measurement systems rely on grayscale
images instead of color images. Unfortunately, receiving the raw-data from the image sensor is rather
time consuming and takes more than one second per image.

For the measurement systems, the standard application to capture images with the Raspberry Pi,
raspistill, has been altered to receive only the intensity value of the camera image. For the developers
convenience, a wrapper for python programming language was written.

The adapted application is based on raspistillYUV from the userland library. The image data
is converted to the YUF442 format and not compressed. The application then extracts only the
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luminance part of the image and copies it into a buffer. The buffer has been provided by the caller of
the method. In practice the buffer was allocated by the python interpreter, so that the interpreter takes
care of the memory management. Figure 4 contains a sequence of patterns used for a measurement.
Only one phase per frequency is shown.

Figure 4. Example sequence of fringe patterns. Three frequencies (waves per pattern) are used: 1, 6,

36. Only one pattern per frequency is shown.

2.2. Calibration

The calibration of the measurement system is based on the calibration of a stereo camera system
with an extended pinhole camera model. It is roughly based on the work of Zhang [6]. The light
path of the projector is very similar to that of a camera so that the same model is applied to both.
The pinhole model is a linear equation

u
s|ov| =KPx 1)
1
fu 0 up
K=|[0 f, o 2)
0 0 1
P— (R t) 3)

with the scaling factor s, the pixel coordinates u and v the focal length f,, and f, the camera principal
point (ug,vg)”, the rotation matrix R, the translation vector t and the homogeneous extension of a
point in space x. Additionally the lens distortion is modelled as two non linear functions

u = u+kir? 4 kor* + ksr® + 2p1uv + po(r* + 2u?) (4)

and
v = v 4 ki1 + kor* + ksr® + py (2 4 20%) + 2pouv, (5)

with the undistorted pixel values u” and v/, the distance of the pixel from the camera principle point r,
the radial distortion coefficients k1, k7, k3, and the tangential distortion coefficients p; and p. The high
manufacturing quality and precise alignment of optics of modern industrial cameras usually leads to
p1 and p, being close to 0, so that they have not to be determined. With our measurement system,
identifying these parameters improves the results a lot, because the borescope is not aligned perfectly
to the projector. The mediocre quality of the raspberry pi camera also makes the identification of these
parameters necessary.

The pose P of the camera is assumed to be the identity, so that the world coordinate system
lies in the centre of the camera. A standard with printed dots with a distance of 1 mm was used to
calibrate the measurement system. For a full calibration, the standard has to be viewed from different
poses and angles. The computer vision library openCV was used to calculate the parameters for the
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camera and the projector. The projector is, obviously, not capable of viewing the printed features.
In a first step the camera was calibrated using the printed features. In a second step the projector
projects circular features onto the same calibration standard. The pose of the standard is known from
the camera calibration, so that the 3D position if the projected features is are also known. The model
for camera and projector can be inverted numerically.

The quality of the calibration is influenced by several sources of error. First the calibration
standard has some uncertainty. Additionally quantisation of the image sensor and projector mirror
array cause some error in the detection and projection of the markers. The round markers are
approximated with fitted ellipses. Variances in the illumination around an ellipse will have an
influence on which pixels that are detected as being part of the contour.

2.3. Pattern Projection and Reconstruction

For the calibration and measurements, the projector has to project certain patterns. Those
patterns are transferred to the Raspberry Pi with the xmlrpc protocol. Two major pattern types are
used: calibration and sinusoidal waves. The first has the parameters size and density, the latter
frequency, phase and undistortion parameters. The Raspberry Pi calculates the projector image
according to the parameters. The images are undistorted prior to projection, so that the sinusoidal
waves projected are already undistorted when reflected by the objects surface.

The measurement algorithm is based on the work of Peng [7]. The points on the objects surface
are reconstructed using the triangulation principle. Projecting certain patterns allows us to link
each camera pixel to a row or column of the projector. In this example the sinusoidal patterns are
projected vertically, so that the row may be determined. The line of sight of each camera pixel and
the corresponding plane of the projectors row are calculated. The surface point in 3D space is where
both, the line and the point, intersect.

The row of the projector pixels is determined using arctan(xy~!) and a sine and a cosine pattern.
Unfortunately the reflectivity and background illumination are unknown. A minimum of three
patterns are used: A sinusoidal pattern with the wavelength equal to the projector image height and
three phases, 0°, 90° and 180°. Those patterns lead to the following signals in the three camera images:

so = ho + fo *sin(¢), (©)
s1 = ho + fo * cos(¢), 7)
Sp = hg — fo * Sin(¢)/ (8)

with the background illumination hy, the reflectivity of the surface fy and the projector image row ¢.
From these equation we derive

S0 — 50-552
¢ = arctan(—=-). )
51— 52

The tangens function is not injective so that the range of its inverse, arctan, is only a subset of the
domain of the original funtion. Nevertheless the true quadrant of the result of arctan can be computed
observing the signs of the nominator and the denominator of the argument.

Higher frequency patterns lead to an improved sensitivity of the phase signal and more precise
measurements. Using more than one wave per pattern makes it necessary to identify each of the
fringes. In practice, patterns with a low frequency are used for disambiguation and the highest
frequency patterns are used for precise phase measurement. Additionally, using four instead of three
phases is more robust towards a dynamic background illumination. The background illumination
computed from one frequency, can be used with the other frequencies. In practice the following
patterns are used: 1 wave with phases 0 and 90 degree (global disambiguation), 6 waves with 0 and
90 degree (another level of disambiguation) and 36 waves with 0, 90, 180 and 270 degree (best phase
signal and background illumination).
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3. Results

The measurement uncertainty was characterized following the GUM from the Joint Committee
for Guides in Metrology. Four features on two contour standards have been measured: A gap with
a depth of 1mm and a convex cylinder with a radius of 1mm on a standard from the company
Alicona and two convex cylinders with a radius of 6mm and 10mm on a standard from the
company Hommel. The standards have been calibrated with known uncertainties. Images of sample
measurements can be seen in Figures 5 and 6. The gap depth and the small cylinders radius have
been measured 25 times from the exact same pose. The latter two cylinders radius has been measured
in three different poses with 30 measurements each. Pose one is a top down view, with the cylinder
axis being parallel to the image plane. For pose two and three the cylinder axis was rotated to have
an angle of 70° and 110° in respect to the normal of the image plane.
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Figure 5. Distances of the sample measurements points to the nominal geometry of the gap (top left),
the cylinder with radius 1 mm.

Figure 6. Sample measurements of the cylinder with a radius of 10 mm in pose 1 (left), pose 2 (middle)
and pose 3 (right).

The results can been seen in Tables 1 and 2. The measurement system is capable of determining
the depth of the gap with very high precision while the measured cylinder radius has a much higher
error. Additionally one can see, that the pose has some major influence on the measurement quality.
The results vary especially for the large cylinder.

Table 1. Evaluation of a gap with a depth of 1 mm and the cylinder with a radius of 1 mm.

Gap with Depth Imm  Cylinder with Radius 1 mm

calibrated value 1000.5 + 0.4 um 1001.5 + 0.7 pm
measured value 992.6 £ 0.5 pum 9354 £ 1.1pm
deviation 7.9 pm 66.1 pm

single point distance (o) 16.7 pm 18.6 pm
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Table 2. Evaluation of two cylinders with a radius of 6 mm and 10 mm.

Cylinder with Radius 6mm  Cylinder with Radius 10 mm

calibrated value 5994.0 +£ 1.2 pm 10002.1 £ 0.9 pm
pose one
measured value 6037.4 £ 1.6 ym 9945.1 £ 1.1 um
deviation 43.4pm 57.0 pm
single point distance (c) 83.4pm 100.0 pm
pose two
measured value 59715+ 4.4pum 9851.0 £ 4.0 um
deviation 224 pm 151.1 pm
single point distance () 29.3 um 23.1pm
pose three
measured value 5911.7 £2.8 pm 9905.1 £4.3pm
deviation 82.3pm 97.0 pm
single point distance (o) 71.0 pm 35.0 pm

4. Conclusions

The measurement system is capable of measuring in very limited space while it produces very
good results. On the other hand side, it is relatively slow compared to fringe projection systems on
the market. The camera is currently only capable of taking a few uncompressed images per second.
So that a full measurement with eight images takes several seconds. The fringe projection system
from Matthias [5] is faster because it uses an industrial camera, but is limited to a smaller resolution.

A huge advantage is the relative simple setup with off-the-shelf components. A key element is
the 5 mega pixel micro camera which is currently only supported by the Raspberry Pi. The single
board computer proved very handy for the generation of the projector patterns, controlling the
projector and the camera and processing the images.

Future work will include an improved calibration technique, relying on common calibration
standards and more sophisticates calibration patterns. The effect of gravitation on the borescope
and the camera are currently under research. A better camera, like the Pi Camera Module v2 with
the 8 megapixel Sony IMX219 sensor, will be used in a future setup.
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Abbreviations

The following abbreviations are used in this manuscript:

GUM: Guide to the expression of uncertainty in measurement
HDMI: High-definition multimedia interface

CSI: Camera serial interface

LED: Light emitting diode
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