Die Rolle von Nrf2 und p21 in der Hepatokarzinogenese

Von der Naturwissenschaftlichen Fakultät der Gottfried Wilhelm Leibniz Universität Hannover

> zur Erlangung des Grades Doktorin der Naturwissenschaften Dr. rer. nat. genehmigte Dissertation

> > von

Dipl.-Biol. Silke Marhenke geboren am 26.08.1975 in Hannover

2010

Referenten:Prof. Dr. B. Otto und Priv.-Doz. Dr. med. A. VogelKorreferent:Prof. Dr. B. Huchzermeyer

Tag der Promotion 18.06.2010

Zusammenfassung

Das hepatozelluläre Karzinom ist weltweit die fünfthäufigste Krebserkrankung, die insbesondere im metastasierten Stadium schlecht behandelbar ist. Ziel dieser Arbeit war es molekulare Mechanismen zu identifizieren, die zur Tumorentstehung in der Leber beitragen, um so neue Ansätze zur Prävention und Therapie aufzuzeigen. Insbesondere wurde hier der Einfluss von Nrf2 und p21 auf die Entstehung des hepatozellulären Karzinoms in zwei murinen Modellen untersucht, die humane Erkrankungen in beschleunigter Zeitabfolge widerspiegeln.

Der Transkriptionsfaktor "NF-E2-related factor 2" (Nrf2) aktiviert die Transkription einer Reihe von "antioxidant response element" (ARE)-regulierten Antioxidantien und detoxifizierenden Enzymen und trägt somit entscheidend zum Schutz der Zelle gegenüber oxidativem und elektrophilem Stress bei. In der Leber spielt Nrf2 beispielsweise eine wichtige Rolle bei der Entgiftung von Aflatoxin B und Acetaminophen. In dieser Arbeit konnte gezeigt werden, dass Nrf2 in einem Modell der hereditären Tyrosinämie ($Fah^{-/-}$), indem die Akkumulation eines toxischen Metaboliten zu DNA-Schäden führt, nicht nur die akute und chronische Leberschädigung deutlich vermindert, sondern auch vor der Entstehung von hepatozellulären Karzinomen schützt. Im Gegensatz dazu zeigten die hier durchgeführten Untersuchungen in einem Modell der Cholangitis ($Mdr2^{-/-}$), indem es aufgrund akkumulierender Gallensäuren zu Entzündungsreaktionen und Bildung von Fibrose kommt, das Nrf2 keinen Einfluss auf den Krankheitsverlauf in der Leber und die Tumorentstehung hatte.

In dem zweiten Teil wurde der Einfluss des Zellzyklus-Inhibitors p21 in der Hepatokarzinogenese untersucht. Neben seinem Effekt auf den Zellzyklus spielt p21 auch eine wichtige Rolle in der Regulation der Apoptose. Infolge der unterschiedlichen Funktionen kann p21 sowohl als Tumorsuppressor als auch als Onkogen agieren. Interessanterweise konnte p21 bereits in dem Modell der HT1 als Tumorsuppressor identifiziert werden. Überraschenderweise wirkt p21 in der vorliegenden Arbeit in dem Modell der Entzündungs-induzierten Karzinogenese nicht als Tumorsuppressor, vielmehr wirkt p21 als Onkogen.

Zusammenfassend zeigen die hier ermittelten Ergebnisse einen sehr unterschiedlichen Einfluss von Nrf2 und p21 auf die Hepatokarzinogenese. Nrf2 zeigte sich als wirksamer Tumorsuppressor in dem HT1-Modell ähnlich den Beobachtungen im Aflatoxin-induzierten HCC-Modell, während sich kein wesentlicher Effekt in dem Cholangitis-Modell zeigte. Insgesamt könnte die Aktivierung von Nrf2 daher ein vielversprechender Ansatz zur Prävention von hepatozellulären Karzinomen in Risikopatienten in der Zukunft darstellen. Im Vergleich zu den Beobachtungen im Modell der HT1, konnte hier in dem *Mdr2^{-/-}* Modell keine beschleunigte Tumorentstehung gezeigt werden. Diese Ergebnisse zeigen, dass p21 abhängig von der zugrunde liegenden Schädigung sowohl als Tumorsuppressor als auch als Onkogen in der Leber wirken kann. Aufgrund dieser sehr gegensätzlichen Effekte erscheint p21 als Target für chemopräventive Strategien daher eher ungeeignet.

Schlagwörter: HCC, Nrf2, p21

Abstract

Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Given a poor prognosis in metastatic stage of the disease, new therapies are urgently needed. The aim of the study was to identify the molecular mechanism of the development of hepatocellular carcinoma in order to develop new strategies for prevention or treatment of this devastating disease. To investigate the impact of Nrf2 and p21 during the progression of hepatocellular carcinoma formation, two different mouse models were used which reflect the associated human diseases.

The transcription factor NF-E2-related factor 2 (Nrf2) activates many antioxidant response element (ARE)-regulated antioxidants and detoxifying enzymes and thus gives a protection against oxidative and electrophilic stresses. For example, in the liver Nrf2 plays an important role in the detoxification from aflatoxin B and aceta-minophen. Here is shown that in the model of hereditary tyrosinaemia type 1 (HT1/ $Fah^{-/-}$), where the accumulation of the toxic metabolite FAA induces DNA-damage, Nrf2 protects from both acute and chronic liver damage and also from liver tumor formation. Contrary, in the model of cholangitis ($Mdr2^{-/-}$), where the regurgitation of bile acids induces inflammation and fibrosis, Nrf2 does not play a role in the course of disease and tumor formation in the liver.

Additionally, the importance of the cell-cycle inhibitor p21 in the development of HCC was investigated. It has been shown that p21 not only has an important role in the cell cycle but also in the regulation of apoptosis. Due to its dual role, p21 may act as a tumor suppressor or oncogene. In the HT1, p21 was formally identified as a tumor suppressor. Surprisingly, in the model of inflammation-induced carcinogenesis ($Mdr2^{-/-}$), p21 act as an oncogene.

Summarizing, those results showed variable effects of Nrf2 and p21 in hepatocarcinogenesis. Nrf2 was identified as an effective tumor suppressor in the HT1 model, as previously shown in the Aflatoxin-induced HCC model, while no essential effect was seen in the cholangitis model. Overall, activation of Nrf2 could be a good strategy for prevention of HCCs in patients who are at high risk of tumor development in the liver. In comparison to the observation in the HT1 model, loss of p21 did not lead to an accelerated tumor formation in the liver of the *Mdr2*^{-/-}mice. These results suggest that the response of p21 to different triggers could define its role as a tumor suppressor or oncogene in the same organ. On the basis of these opposed effects, p21 seems to be an inappropriate target for developing new strategies for HCC chemoprevention.

Keywords: HCC, Nrf2, p21

Inhaltsverzeichnis

Zusamm	enfassung		
Abstract			IV
Inhaltsve	rzeichnis		. V
Abkürzur	ngsverzeicł	nnis	IX
Tabellen	verzeichnis	S	XI
Abbildun	gsverzeich	nis	XII
1	Einleitung		16
1.1	Das huma	ne hepatozelluläre Karzinom	16
1.2	Nrf2	'	16
1.3	p21 und d	er Zellzvklus	19
1.4	Humane E	rkrankungen und ihre korrespondierenden Mausmodelle.	21
	1.4.1	Die humane hereditäre Tyrosinämie und das	
		korrespondierende Fah-Knockout-Mausmodell	22
	1.4.1.1	Tyrosin Metabolismus	22
	1.4.1.2	Hereditäre Tyrosinämie Typ 1	23
	1.4.1.3	Fah-Knockout Mausmodell	24
	1.4.2	Die humane hereditäre cholestatische Lebererkrankung u	nd
		das korrespondierende Mdr2-Knockout-Mausmodell	25
	1.4.2.1	Die Leber und ihre Aufgabe der Synthese und Sekretion of	der
		Gallenflüssigkeit	25
	1.4.2.2	Die Familie der ABC-Transporter	26
	1.4.2.3	Der ABCB4-Gendefekt und die progressive familiäre	
		intrahepatische Cholestase Typ 3 (PFIC3)	27
	1.4.2.4	Das Mdr2-Knockout-Mausmodell.	29
1.5	Ziel dieser	Studie	30
2	Material u	nd Methoden	31
2.1	Material		31
	2.1.1	Chemikalien	31
	2.1.2	Medikamente für Mäuse	33
	2.1.3	Antikörper	34
	2.1.3.1	Antikörper für Western Blot-Analysen	34
	2.1.3.2	Primäre Antikörper für die Immunhistochemie (IHC)	35
	2.1.3.3	Sekundär-Antikörper	35
	2.1.4	Mäuse	36
2.2	Methoden		36
	2.2.1	Tierexperimentelle Methoden	36

3 3.1

2.2.1.1	Tierhaltung
2.2.1.2	Behandlung der Tiere
2.2.1.3	Tötung der Tiere und Gewebeentnahme
2.2.1.4	² / ₃ Leberteilresektion
2.2.1.5	DNA-Extraktion und anschließende Genotypisierung der Tiel
0.0.0	
2.2.2	Proteinisolierung und -bestimmung
2.2.2.1	Isolierung von Proteinextrakten aus der Leber
2.2.2.2	Isolierung von Zelikerniysaten aus der Leber
2.2.2.3	Proteinbestimmung
2.2.3	Sodiumdodecylsulfat-Polyacrylamidgelelektrophorese (SDS-
	PAGE) mit anschließendem Western Blot
2.2.4	Histologische Methoden 44
2.2.4.1	H&E-Färbung
2.2.4.2	Sirius-Rot-Färbung 45
2.2.4.3	Masson-Goldner-Trichrom-Färbung 45
2.2.4.4	Immunhistochemische-Färbungen46
2.2.4.5	TdT-mediated dUTP nick labeling (TUNEL)-Assay 46
2.2.5	Serum-Analysen 47
2.2.5.1	TNF-α- und IL-6-ELISA
2.2.5.2	Alanin-Aminotransferase (ALT)-Aktivitätsmessung 47
2.2.5.3	Bilirubin-Bestimmung im Mausserum 47
2.2.6	Isolierung, Messung und Quantifizierung der Nukleotide 48
2.2.6.1	RNA-Isolierung 48
2.2.6.2	DNA-Isolierung 48
2.2.6.3	Photometrische Konzentrationsbestimmung von
	Nukleinsauren
2.2.6.4	Northern Blot
2.2.6.5	cDNA-Synthese und semi-quantitative RT-PCR
2.2.7	Bestimmung von Schadigungen der Leber durch oxidativem
~ ~ <i>_ i</i>	Stress ausgelost
2.2.7.1	GSH-GSSG-Assay
2.2.7.2	8-Hydroxy-2'-deoxyguanosin (8-OH-dG)-Bestimmung 50
2.2.7.3	Nachweis von Protein-Carbonylgruppen in Leberproben . 51
2.2.8	Bestimmung der Hydroxyprolin-Konzentration in Mauslebern
2.2.9	Mikroarray-Analyse
2.2.10	Standard-Agarose-Gelelektrophorese
2.2.11	Statistische Auswertung 54
Ergebnis	sse
Die Rolle	e von Nrf2 in der hereditären Tyrosinämie Typ1 (HT1) und sein
Einfluss	auf Mortalität & Tumorentstehung55

	3.1.1	Nrf2 ist in <i>Fah^{-/-}</i> Mäusen nach NTBC-Entzug induziert 55
	3.1.2	Nrf2 ist wichtig für das Überleben von <i>Fah^{-/-}</i> Mäusen nach
		NTBC-Entzug55
	3.1.3	Fah ^{-/-} Nrf2 ^{-/-} Mäuse entwickeln eine stärker ausgeprägte
		Hepatitis und Fibrose während der Therapie mit geringerer
		NTBC-Dosis
	3.1.4	Das zelluläre Detoxifikations-System der Fah ^{-/-} Nrf2 ^{-/-} Mäuse
		ist stark beeinträchtigt 63
	3.1.5	Identifizierung von funktionalen Gengruppen und
		transkriptionellen Netzwerken die in den Fah ^{-/-} und Fah ^{-/-} Nrf2 ^{-/-}
		0% NTBC Mäusen differentiell unterschiedlich reguliert waren
	3.1.6	Nrf2 führt in den <i>Fah</i> -⁄- Mäusen zu einer verzögerten
		Tumorentstehung in der Leber73
	3.1.7	Das Medikament 1-[2-Cyano-3-,12-Dioxooleana-1,9(11)-Dien-
		28-Oyl]-Imidazole (CDDO-Im) schützt vor FAA-induziertem
		Leberschaden
3.2	Die Rol	le von Nrf2 im murinen <i>Mdr2^{-/-}</i> HCC-Modell
	3.2.1	Der Verlust von Nrf2 führt in den <i>Mdr2^{-/-}</i> Mäusen zu keiner
		verstärkten Leberschädigung78
	3.2.2	Die vermehrte Fibrosierung der <i>Mdr2^{-/-}</i> Mäuse wird Nrf2
		unabhängig reguliert79
	3.2.3	Das zelluläre Detoxifikations-System der <i>Mdr2^{-/-} Nrf2^{-/-}</i> Mäuse
		ist im Vergleich zu den <i>Mdr2^{-/-}</i> Mäusen leicht beeinträchtigt81
	3.2.4	Der Verlust von Nrf2 hat keinen Einfluss auf die durch
		oxidativen Stress ausgelöste Leberschädigung
	3.2.5	Nrf2 kann in den <i>Mdr2^{-/-}</i> Mäusen die hepatozelluläre
		Karzinogenese weder verhindern noch verzögern
3.3	Die Rol	le von p21 in der cholestatischen Lebererkrankung und sein
	Einfluss	auf die Karzinogenese
	3.3.1	Der Zellzyklus-Inhibitor p21 ist in <i>Mdr2^{-/-}</i> Mäusen induziert85
	3.3.2	p21 hat keinen Einfluss auf die cholestatische
		Leberschädigung
	3.3.3	Die Fibrosierung der <i>Mdr2^{-/-}</i> Knockout-Mäuse wird p21
		unabhängig reguliert
	3.3.4	Der Einfluss von p21 auf Apoptose in den Lebern der Mdr2-/-
		Knockout-Mäuse
	3.3.5	Das Proliferationsverhalten der <i>Mdr2^{-/-} p21^{-/-}</i> Hepatozyten ist
		beeinträchtigt
	3.3.6	Die beeinträchtigte Proliferation der Mdr2 ^{-/-} p21 ^{-/-} Hepatozyten
		führt nicht zur Aktivierung von Leberstammzellen
	3.3.7	Der Verlust von p21 führt nicht zum eingeschränkten
		Proliferationsverhalten der Hepatozyten

	3.3.8	Der Verlust von p21 führt nicht zu einem eingeschränkten Proliferationsverhalten der <i>Mdr2</i> ^{-/-} Hepatozyten) 94
	3.3.9	Der Verlust von p21 führt in den <i>Mdr2</i> ^{-/-} Mäusen zu einer	
		verzögerten Entstehung von Lebertumoren	96
4	Diskussio	n	98
4.1	Die Einflus Tumormoo	ss von Nrf2 auf Mortalität & Tumorentstehung in den murir dellen <i>Fah^{-/-}</i> und <i>Mdr2^{-/-}</i>	nen 98
4.2	Die Einflus	ss von p21 auf die Karzinogenese in der cholestatischen L 1	.eber 02
Anhang			06
А	Tabelle 15	5: Geninduktion in <i>Fah⁻</i> ⁻ Mäusen unter 10% und 0% NTBC	;-
	Behandlur	ng 1	06
В	Tabelle 16: Xeonobiotischer Metabolismus: Geninduktion in der Fah ^{-/-}		
	<i>Nrf2⁻′⁻</i> Mäเ	usen 1	07
С	Tabelle 17	7: Krebs betreffend 1	10
Literaturverzeichnis			14
Lebenslauf 124			24
Danksag	Danksagung 126		
Erklärun	g zur Disse	ertation 1	27

Abkürzungsverzeichnis

KO	Knockout
AFP	Alpha-1-Fetoprotein
ALT	Alanin-Aminotransferase
APS	Ammonium peroxodisulfat
ARE	Anti-oxidative response element
bp	Basenpaare
BrdU	(+)-5-Bromo-2'-deoxyuridine
BSA	Bovine serum albumin
CDK	Cyclin-abhängige Proteinkinasen
cDNA	copy DNA
cm	Zentimeter
DAPI	4',6-diamidino-2-phenylindol
dest.	Destilliert
DKO	Doppelknockout
DNA	Desoxyribonukleinsäure
dNTPs	Desoxyrinonukleotide (dATP, dGTP, dTTP, dCTP)
EDTA	Ethylendiamin-tetraacetic acid
EGTA	Ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid
ELISA	Enzyme-linked Immunosorbent Assay
EpRE	Elektrophile response element
FAA	Fumarylazetoazetat
Fah	Fumarylazetoazetat Hydrolase
Gapdh	Glycerinaldehyd-3-phosphat-Dehydrogenase
GSH	Reduziertes Glutathion
GSSG	Oxidiertes Glutathion
GST	Glutathion-S-Transferase
HCC	Humane hepatozelluläre Karzinom
HCI	Chlorwasserstoff/ Salzsäure
HEPES	4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid
HO-1	Hämoxygenase-1
HPCL/ ECD	High-performance liquid chromatographie mit elektronischer De-
	tektion
HT1	Hereditäre Tyrosinämie Typ1
IHC	Immunhistochemie
IVC	individuell ventilierte Käfige
KCI	Kaliumchlorid
kDa	Kilodalton
Keap1	Kelch-like ECH-associated protein 1

КО	Knockout
mA	Milliampere
Mdr2 bzw. 3	mulitdrug-resistence 2 bzw. 3
MgCl ₂	Magnesiumchlorid
min	Minute
mm	Millimeter
MT	Mutant
NAC	N-Acetylcysteine
NaCl	Natriumchlorid
NaOH	Natrium Hydroxide
NQO1	NAD(P)H-Quinon-Oxidoreduktase
Nrf2	Nuclear factor erythroid-2 p45-related factor 2
NTBC	2-(2-nitro-4-trifluor-methylbenzyl)-1,3 zyklohexanedion
PAGE	Polyacrylamid Gelelektrophorese
PBS	Phosphate buffer saline
PCR	Polymerasekettenreaktion
PFIC3	Progressive familiäre intrahepatische Cholestase
RNA	Ribonukleinsäure
ROS	Reactive oxygen species
rpm	revolution (radiation/ rounds) per minute
SDS	Sodium dodecyl sulfat
SOD	Superoxid-Dismutase
TEMED	N, N, N ⁽ , N ⁽ -Tetramethylethylendiamin
Tris	2-amini-2-(hydoxymethyl)-1,3-propandiol
TUNEL	Terminale Desoxyribosyl-Transferase mediated dUTP Nick End
	Labeling
Tween-20	Polyethylene glycol sorbitan monolaurate
WT	Wildtyp
γ-GT	γ-Glutamyl-Transferase

Tabellenverzeichnis

Tabelle 1:	Chemikalien
Tabelle 2:	Medikamente
Tabelle 3:	Western Blot-Antikörper 34
Tabelle 4:	Primäre Antikörper
Tabelle 5:	Sekundär-Antikörper
Tabelle 6:	Mausstämme mit Referenzangaben
Tabelle 7:	Behandlungsplan
Tabelle 8:	Anästhetikum und Analgetikum
Tabelle 9:	Primersequenzen für die Genotypisierung 40
Tabelle 10:	Reaktionsansätze für die Genotypisierungs-Analysen
Tabelle 11:	Thermocylcer PCR-Programme 41
Tabelle 12:	Zusammensetzung der Sammel- bzw. der Trenngele
Tabelle 13:	PCR-Ansatz und -Programm 49
Tabelle 14:	Primer
Tabelle 15:	Geninduktion in Fah ^{-/-} Mäusen unter 10% und 0% NTBC-Behandlung
	106
Tabelle 16:	regulierte Gene des xenobiotischen Metabolismus 107
Tabelle 17:	Geninduktion in den Fah ^{-/-} Nrf2 ^{-/-} Mäusen die in diversen Aspekten der
	Karzinogenese zugeordnet werden konnten 110

Abbildungsverzeichnis

Abbildung 1:	Schematische Abbildung der Nrf2 regulierten Genexpression.18
Abbildung 2:	Schematische Darstellung des Zellzyklus
Abbildung 3:	Schematische Darstellung des Tyrosin Metabolismus
Abbildung 4:	Schematische Darstellung der wichtigsten Transportprozesse in
	der kanalikulären Membran von Hepatozyten
Abbildung 5:	Hypoth. Mechanismus der kanalikulären Lipid-Exkretion 28
Abbildung 6:	Darstellung der Leberlappen der Maus
Abbildung 7:	schematische Darstellung der Glutathion (GSH)-Synthese 50
Abbildung 8:	Northern Blot-Analyse der Nrf2-mRNA in Fah ^{-/-} Mäusen nach 2, 4
	und 14 Tagen NTBC-Entzug im Vergleich zu <i>Fah^{-/-}</i> Kontrolltieren
	mit 100% NTBC 55
Abbildung 9:	Überlebenskurve der <i>Fah^{-/-}</i> und <i>Fah^{-/-} Nrf</i> 2 ^{-/-} Mäuse nach
	vollständigem NTBC-Entzug. <i>Fah</i> ^{-/-} Mäuse überleben den NTBC-
	Entzug signifikant länger im Vergleich zu <i>Fah^{-/-} Nrf</i> 2 ^{-/-} Mäusen.56
Abbildung 10:	Repräsentative Histologien der H&E- und TUNEL-gefärbten
	Schnitte von Lebern der <i>Fah^{-/-}</i> und <i>Fah^{-/-} Nrf2^{-/-}</i> Tiere mit (100%)
	und ohne (0%) NTBC-Behandlung56
Abbildung 11:	Western Blot-Analysen für Pro-Caspase 9, gespaltene Caspase 3,
	p-JNK und Aktin, welches als Beladungskontrolle diente 57
Abbildung 12:	Messung der Alanin-Aminotransferase-Aktivität im Blutserum der
	behandelten Mäuse58
Abbildung 13:	Tumornekrosefaktor (TNF)-α- und Interleukin (IL)-6-
	Konzentrationen im Blutserum von Tieren nach NTBC-Entzug
	mittels ELISA-Messung bestimmt 59
Abbildung 14:	RNA-Expr. der Tyrosin-katabolisierenden Enzyme
Abbildung 15:	Repräsentative Histologien der H&E- und TUNEL-Färbungen von
	Lebern der Fah ^{4*} und Fah ^{4*} Nrf2 ^{4*} Liere mit 100% und 10% NIBC-
	Behandlung. 200x Vergroßerung
Abbildung 16:	Reprasentative Autnahmen der Farbungen, welche als
	Leberfibrose-Marker eingesetzt wurden
Abbildung 17:	statistische Auswertung der Sirius-Rot-Farbung in Prozent pro
Abbildure et 40.	Gesichtsteid
Abbildung 18:	Auswertung der Microarray-Analysen einiger Gene, die an der
	Conagendidung beteinigt sind und somit bei der Entstehung von
	Fibrose eine Rolle spielen
ADDIIGUIIG 19.	$F_{2}h^{-/2}$ Marga mit 100% 0% und 100/ NTPC Repeature 64
Abbildung 20:	Western Blot-Analyse der Untereinheiten der V-
	Glutamylovsteinligese in $Eeh^{-/2}$ und $Eeh^{-/2}$ Mäuse EA
	Olulaniyicystenniyase in ran unu Fan Iviiz Iviause

Abbildung 21:	Der Effekt der N-Acetylcystein Behandlung auf das Überleben der <i>Fah^{-/-} Nrf2^{-/-}</i> Mäuse nach NTBC-Entzug		
Abbildung 22:	Semiquantitative RT-PCR-Analyse von Glutathion-S-		
Abbildung 22:	Des Verböltnis von 8 Hydroxy 2 des vy Cuspesin (8 OH dC) zu		
Abbildung 23.	Das verhaltnis von 8-nydroxy-2-deoxy-Guariosin (8-OH dG) zu		
	Guanosin (dG) in Tieren unter 100% bzw. 10% NTBC-		
	Benandlung		
Abbildung 24:	Bestimmung des Carbonylierungsgrades von nepatischen		
	Proteinen mithilfe des OxyBlot Protein Oxidation Detecion Kits		
	67		
Abbildung 25:	Das p53-Netzwerk nimmt eine zentrale Rolle in der FAA-		
	induzierten Leberschädigung ein 68		
Abbildung 26:	Das c-jun-Netzwerk nimmt eine zentrale Rolle in der FAA-		
	induzierten Leberschädigung ein 69		
Abbildung 27:	Das Cylin D1-Netzwerk nimmt eine zentrale Rolle in der FAA-		
	induzierten Leberschädigung ein70		
Abbildung 28:	Western Blot-Analyse von p53, p21, c-jun und Cyclin D1 in den		
	vier Gruppen		
Abbildung 29:	Repräsentative Histologien der p21-Immunhistochemie in den		
	<i>Fah^{-/-}</i> und <i>Fah^{-/-} Nrf2^{-/-}</i> Tieren mit 100% und 10% NTBC-		
	Behandlung71		
Abbildung 30:	Repräsentative histologische Aufnahmen der Ki67-tochemie in		
	den <i>Fah^{-/-}</i> und <i>Fah^{-/-} Nrf</i> 2 ^{-/-} Tieren mit 100% bzw. 10% NTBC-		
	Behandlung72		
Abbildung 31:	Auszählung der Ki67-positiven Hepatozyten		
Abbildung 32:	Repräsentative Aufnahmen der hepatischen α-1 Fetoprotein		
Ū	(AFP)-Immunhistochemie in den <i>Fah^{-/-}</i> und <i>Fah^{-/-} Nrf2^{-/-}</i> Tiere mit		
	100% und 10% NTBC-Behandlung73		
Abbildung 33:	Repräsentative Aufnahmen der A6-Immunhistochemie in Lebern		
C C	der <i>Fah^{-/-}</i> und <i>Fah^{-/-} Nrf2^{-/-}</i> Tiere mit 100% und 10% NTBC-		
	Behandlung. 200x Vergrößerung		
Abbildung 34:	Tumorinzidenz in Fah ^{-/-} und Fah ^{-/-} Nrf2 ^{-/-} Tieren nach		
0	neunmonatiger Behandlung mit 100% und 10% NTBC		
Abbilduna 35:	(A) Anzahl der Tumore in den Lebern der <i>Fah^{-/-}</i> und <i>Fah^{-/-} Nrf</i> 2 ^{-/-}		
0	Näuse nach neunmonatiger Behandlung mit 10% NTBC (B)		
	Makroskopische Aufnahme einer <i>Fah^{-/-} Nrf</i> 2 ^{-/-} Leber nach		
	achtmonatiger Behandlung mit 10% NTBC		
Abbildung 36	Repräsentative Aufnahmen der (A) BrdU-Färbung im Tumor mit		
	angrenzendem nekroinflammatorischen Lebergewebe einer Fah ^{-/-}		
	Nrf2 ^{-/-} 10% NTBC Maus (B) Ki67- (arijn) und p21-(rot) Doppel-		
	Färbung im Tumor mit angrenzendem nekroinflammatorischen		
	Lebergewebe einer $Eab^{-/-} Nrf2^{-/-} 10\%$ NTRC Maus (C) p21_		
	Lebergewebe enter i an i witz 10 /0 141 DC Waus (C) pz 1-		

	Färbung in einer Leber mit Tumorknoten sowie im Tumor einer
Abbildung 37	Schematische Darstellung des Versuchsahlaufs während der
ribblidding or .	CDDO-Im-Behandlung
Abbildung 38	Überlebenskurve der unbehandelten und CDDO-Im behandelten
/ lobildurig 66.	$Fah^{-/-}$ Tiere sowie der behandelten $Fah^{-/-}$ $Nrf2^{-/-}$ Mäuse nach
	vollständigem NTBC-Entzug und der zusätzlichen Gabe einer
	proteinreichen Diät
Abbildung 39	Repräsentative Aufnahmen der H&F- und TUNEL-Färbung der
/ lobildurig co.	Lebern unbehandelter und CDDO-Im behandelter Fah ^{-/-} Tiere
	77
Abbildung 40:	Western Blot-Analyse der GCLC- und GCLM-Proteinmengen in
	<i>Fah</i> ^{-/-} 100% NTBC, unbehandelten <i>Fah</i> ^{-/-} 0% NTBC und den
	CDDO-Im behandelten <i>Fah</i> ^{-/-} 0% NTBC Mäusen
Abbildung 41:	Repräsentative Aufnahmen von H&E-gefärbten histologischen
	Schnitten von Lebern der <i>Mdr</i> 2 ^{+/+} , <i>Mdr</i> 2 ^{-/-} und <i>Mdr</i> 2 ^{-/-} <i>Nrf</i> 2 ^{-/-} Tiere.
	78
Abbildung 42:	Bilirubin-Konzentrationen im Blutserum der Mdr2 ^{+/+} , Mdr2 ^{-/-} und
	<i>Mdr2^{-/-} Nrf2^{-/-}</i> Tiere
Abbildung 43:	Repräsentative Aufnahmen von Sirius-Rot-gefärbten
	histologischen Schnitten von Lebern der Mdr2 ^{-/-} und Mdr2 ^{-/-} Nrf2 ^{-/-}
	Tiere
Abbildung 44:	Hepatische Hydroxyprolin-Konzentration der <i>Mdr2⁺⁺</i> , <i>Mdr2⁺</i> und <i>Mdr2^{-/-} Nrf2^{-/-}</i> Tiere
Abbildung 45:	Western Blot-Analyse der hepatischen Proteinmenge von GCLC,
	MnSOD, NQO1 und HO-1 in <i>Mdr2</i> +/+, <i>Mdr2</i> -/- und <i>Mdr2</i> -/- <i>Nrf2</i> -/-
	Mäusen
Abbildung 46:	Hepatische GSH-Konzentration der Mdr2 ^{+/+} , Mdr2 ^{-/-} und Mdr2 ^{-/-}
	<i>Nrf2^{-/-}</i> Tiere im Alter von 3 Monaten
Abbildung 47:	Bestimmung des Carbonylierungsgrades von hepatischen
	Proteinen
Abbildung 48:	Tumorinzidenz in den Lebern der <i>Mdr</i> ^{+/+} , <i>Mdr</i> 2 ^{-/-} und <i>Mdr</i> 2 ^{-/-} <i>Nrf</i> 2 ^{-/-}
	Tiere im Alter von 15 und 18 – 23 Monate
Abbildung 49:	Tumoranzahl und -größe in 18 – 23 Monate alten $Mdr2^{+/+}$, $Mdr2^{-/-}$
	und <i>Mdr2^{**} Nrf2^{**}</i> Tieren
Abbildung 50:	Repräsentative Aufnahmen von BrdU-gefärbten histologischen
	Leberschnitten und statistische Auswertung der BrdU-positiven
	Zellen der 15 Monate alten <i>Marz</i> ² und <i>Marz² Nrt</i> ² Tiere
Abbildung 51:	Representative Bilder der p21-immunnistochemie in den Lebern der $Mdr2^{+/t}$ und $Mdr2^{-/t}$ Tiere
Abbildung 50:	uei iviuiz uiu iviuiz 11ere
Abbildung 52:	Western Diot-Analyse der nepalischen p21-Proteinmenge IN $Mdr2^{+/+}$ $Mdr2^{-/-}$ und $Mdr2^{-/-}$ $n24^{-/-}$ Mäuseen CADDH dieste ele
	Reladungekentrelle
	Delauunyskunnulle

Abbildung 53:	Repräsentative Bilder von H&E-gefärbten Leberschnitte der Mdr2 ^{+/+} , Mdr2 ^{-/-} , Mdr2 ^{-/-} p21 ^{-/-} Tiere. 200x Vergrößerung 86
Abbildung 54:	Auswertung der H&E-Färbungen für (A) duktuläre Reaktionen und (B) DR-assoziierte Entzündungen der <i>Mdr2^{-/-}</i> und <i>Mdr2^{-/-} p21^{-/-}</i>
Abbildung 55:	Tiere
Abbildung 56:	Repräsentative Bilder von Sirius-Rot und α-SMA gefärbten Leberschnitte der <i>Mdr2^{-/-}</i> und <i>Mdr2^{-/-} p21^{-/-}</i> Tiere
Abbildung 57:	Hepatische Hydroxyprolin-Konzentration der $Mdr2^{+/+}$, $Mdr2^{-/-}$ und $Mdr2^{-/-} p21^{-/-}$ Tiere
Abbildung 58:	Repräsentative Bilder der TUNEL-Färbung der Lebern der $Mdr2^{-/-}$ und $Mdr2^{-/-} p21^{-/-}$ Tiere
Abbildung 59:	Repräsentative Bilder der BrdU- und Ki67-Immunhistochemie in Lebern der <i>Mdr</i> 2 ^{+/+} , <i>Mdr</i> 2 ^{-/-} und <i>Mdr</i> 2 ^{-/-} <i>p</i> 21 ^{-/-} Tiere sowie
Abbildung 60:	statistische Auswertung positiver Hepatozyten
Abbildung 61:	Western Blot-Analyse der Cyclin D1, CDK4 und p27 Proteinmengen in <i>Mdr2</i> ^{+/+} , <i>Mdr2</i> ^{-/-} und <i>Mdr2</i> ^{-/-} p21 ^{-/-} Tieren 92
Abbildung 62:	Repräsentative Bilder der A6-, CK19- und MIC1-IHCs in den Lebern der <i>Mdr2^{-/-}</i> und <i>Mdr2^{-/-} p21^{-/-}</i> Tiere
Abbildung 63:	(A) Repräsentative Bilder der BrdU- und Ki67-Färbung der Lebern und (B) das Verhältnis von Leber- zu Körpergewichte der $p21^{+/+}$ und $p21^{-/-}$ Tiere vor und nach $^{2}/_{3}$ Leberteilresektion
Abbildung 64:	(A) Repräsentative Bilder von Ki67-Färbungen in Lebern der $Mdr2^{+/+}$, $Mdr2^{-/-}$ und $Mdr2^{-/-} p21^{-/-}$ Tiere (B) mit statistischer Auswertung positiver Hepatozyten vor und nach $^{2}/_{3}$
Abbilduna 65:	Tumorinzidenz der $Mdr2^{+/+}$. $Mdr2^{-/-}$ und $Mdr2^{-/-} p21^{-/-}$ Tiere 96
Abbildung 66:	(A) Anzahl der Tumore (B) Tumorgröße und (C) Gewicht der Tumor-tragenden Lebern der <i>Mdr2</i> ^{+/+} , <i>Mdr2</i> ^{-/-} und <i>Mdr2</i> ^{-/-} <i>p21</i> ^{-/-} Tieren
Abbildung 67:	(A) Proliferationsrate in den Tumoren (B) Differenzierungsgrad der Tumore der $Mdr2^{-/-}$ und $Mdr2^{-/-} p21^{-/-}$ Tiere
Abbildung 68:	Schematische Abbildung der Nrf2- und p53/ p21-Wechselwirkung in der HT1

1 Einleitung

1.1 Das humane hepatozelluläre Karzinom

Das humane hepatozelluläre Karzinom (HCC) ist weltweit die fünfthäufigste Krebsart und die dritthäufigste krebsbedingte Todesursache¹. Im Gegensatz zu vielen anderen Krebserkrankungen ist die Behandlung des fortgeschrittenen HCCs mit konventionellen systemischen Methoden bisher nicht erfolgreich, und ein Überleben der Patienten kann nur selten erreicht werden. Daher werden nicht nur bessere Therapien dringend benötigt, sondern auch neue Ansätze zur Prävention von Leberzellkarzinomen.

Grundlegende Voraussetzung für die Entwicklung neuer Therapieansätze oder das Entdecken neuer chemoprotektiver Substanzen ist die Identifizierung der entsprechenden Signalwege, welche zur Tumorentstehung beitragen bzw. sie verhindern, sowie die Bedeutung der jeweiligen Signalwege im Tumor selbst.

Ziel dieser Arbeit ist es, die Bedeutung von Nrf2 und p21 in der Tumorentstehung in verschiedenen HCC-Mausmodellen zu untersuchen und die molekularen Mechanismen der Tumorentstehung zu charakterisieren.

1.2 Nrf2

Die Leber ist unter anderem der zentrale Ort der Entgiftung und Entsorgung endogener und exogener Verbindungen.

Die Zellen des menschlichen Körpers sind fortwährend toxischen, mutagenen und karzinogenen Verbindungen ausgesetzt. Dazu zählen neben reaktiven Sauerstoffspezies (reactive oxygen species = ROS) und Stickstoffspezies (reactive nitrogen species = RNS) auch reaktive elektrophile Metabolite sowie Lipidperoxidations-Produkte.

Diese Verbindungen entstehen fortwährend als Intermediate zahlreicher Stoffwechselvorgänge (Endobiotika) oder werden aus der Luft, mit dem Wasser und/ oder der Nahrung aufgenommen (Xenobiotika). Obwohl geringe physiologische Konzentrationen der reaktiven Verbindungen effizient durch das zelluläre antioxidative Detoxifizierungs-System entsorgt werden können, führt ein Ungleichgewicht von Oxidantien und Antioxidantien zu oxidativem Stress, der zu DNA-Schäden führen kann und somit die Karzinogenese fördert²⁻⁶. Höhere Organismen haben deshalb eine Reihe von enzymatischen und nicht-enzymatischen antioxidativen Detoxifikations-Systemen entwickelt, um ihre Zellen zu schützen. Die Detoxifikations-Systeme können verschiedenen Kategorien zugeordnet werden⁷⁻¹¹:

- die Endo- und Xenobiotika-metabolisierenden Phase II-Enzyme, zu denen unter anderem die Glutathion-S-Transferasen (GSTs) sowie die NAD(P)H-Quinon-Oxidoreduktase (NQO1) gehören
- Antioxidantien und ihre modulierenden Enzyme, zu denen zum Beispiel die Superoxid-Dismutasen (SOD) sowie die Glutathion-Synthase gehören
- das Chaperon- und Proteasom-System
- die DNA-Reparatur-Enzyme
- anti-inflammatorische Proteine, zu denen beispielsweise das Ferritin und die Hämoxygenase-1 (HO-1) gehören

In der Regel erfolgt die Entgiftung und Entsorgung der Xeno- bzw. Endobiotika in den Hepatozyten in 2 bzw. 3 Phasen. Die Enzyme der Phase I führen funktionelle Gruppen (-OH, -SH) in die meist unpolaren Verbindungen ein. In Phase II werden die in Phase I eingefügten funktionellen Gruppen mit endogenen wasserlöslichen Substraten konjugiert und ermöglichen somit die Eliminierung dieser Verbindungen. Die Beseitigung erfolgt in Phase III mithilfe der dafür vorgesehenen Transporter.

"Nuclear factor erythroid-2 p45-related factor 2" (Nrf2) ist ein Mitglied der NF-E2 Familie der "basic leucin zipper" (bZIP) Transkriptionsfaktoren, zu denen ebenfalls Nrf1 und Nrf3 sowie Bach 1 und 2 gehören. Er aktiviert die basale und die induzierbare Genexpression von Antioxidantien sowie Detoxifizierungs-Enzymen¹². Nrf2 wird im Zytosol durch seinen Inhibitor "kelch-like ECHassociated protein 1" (Keap1), auch INrf2 genannt, komplexiert¹³⁻¹⁵ und dient als Adapter für den "cullin 3/ ring box 1"(Cul3/ Rbx1)-E3-Ubiquitin-Ligase-Komplex¹⁶⁻¹⁸. Dieser führt zur Ubiquitinierung des gebundenen Nrf2-Proteins, welches anschließend durch das 26S Proteasom abgebaut wird¹⁹⁻²³.

Bei auftretendem oxidativem Stress transloziert Nrf2 in den Zellkern und induziert dort die Transkription einer Reihe von Genen²⁴⁻²⁸. Wie es zur Freisetzung von Nrf2 aus dem Keap1-Komplex kommt, ist noch nicht vollständig geklärt. Zurzeit werden zwei mögliche Modelle diskutiert. Eine Theorie geht davon aus, dass oxidativer Stress direkt zur Stabilisierung des Nrf2-Proteins führt, indem die Ubiquitinierung durch den Keap1-Cul3-Komplex blockiert wird und Nrf2 somit der proteasomalen Degradation entkommt. Eine zweite Theorie besagt, dass Nrf2 durch Phosphorylierung eine Konformationsänderung erfährt und somit aus dem Keap1-Komplex freigesetzt wird^{23,29-33}. Nach Translokation in den Zellkern induziert Nrf2 zusammen mit weiteren Proteinen der bZIP-Familie wie den kleinen Maf-Proteinen (MafG, MafK, MafF) und Jun (c-jun, Jun-D, Jun-B) die Genexpression einer Vielzahl von Phase I- und II-Enzymen sowie antioxidativer Proteine³⁴⁻³⁸. Die Genexpression wird durch eine cis-agierende DNA-Promotorsequenz, das "anti-oxidative response element" (ARE), auch "electrophile response element" (EpRE) genannt, vermittelt³⁹.

Ein schematisches Modell der Nrf2-vermittelten Genexpression (nach Theorie von Huang *et al.*²⁹) ist in Abbildung 1 dargestellt.

Abbildung 1: Schematische Abbildung der Nrf2 regulierten Genexpression

Arbeiten mit Nrf2-Knockout-Mäusen haben gezeigt, dass der Verlust von Nrf2 zur Erhöhung der Sensitivität gegenüber einer Vielzahl von Xenobiotika führt. *Nrf2*^{-/-} Mäuse sterben zum Beispiel in Folge einer bedeutend geringeren Dosis Acetaminophens an einem akuten Leberversagen als Wildtyp-Tiere⁴⁰. Desweiteren zeigte die Belastung der *Nrf2*^{-/-} Tiere mit dem Leberkarzinogen Aflatoxin B vermehrt DNA-Schädigungen, die in diesen Tieren zu einer wesentlich schneller auftretenden Leberkarzinogenese im Vergleich zu Wildtyp-Tieren führte⁴¹. Daraufhin wurden Nrf2-Induktoren wie Oltripraz (4-methyl-5-(2-pyrazinyl)-3dithiolethione) im Mausmodell erfolgreich zur Chemoprävention gegen Aflatoxin B-induzierter Karzinogenese getestet und eingesetzt⁴². Auch in klinischen Studien kam Oltipraz zur Chemoprävention von Aflatoxin-induzierten humanen hepatozellulären Karzinomen (HCCs) zum Einsatz^{43,44}, wurde aber letztendlich aufgrund der hohen Toxizität beim Menschen nicht zugelassen. Zurzeit werden weitere Nrf2-induzierende Substanzen zur Chemoprävention des Aflatoxininduzierten HCC getestet, wie zum Beispiel das CDDO-Im (1-[2-Cyano-3-,12-Dioxooleana-1,9(11)-Dien-28-Oyl]-Imidazole)⁴⁵.

Das durch Nrf2-vermittelte Schutzsystem bietet jedoch nicht nur Vorteile. Kommt es in Tumorzellen zu einer konstitutiven Induktion von Nrf2, kann dies eine Resistenz gegenüber Chemotherapeutika vermitteln. So wurden zum Beispiel bei Patienten mit Gallenblasenkrebs Mutationen im Nrf2-Inhibitor Keap1 gefunden, die eine konstitutive Nrf2-Aktivierung vermitteln konnten⁴⁶. *In vitro*-Studien zeigten, dass die Deletion des Keap1-Gens zu einer konstitutiven Nrf2-Aktivierung führte, welche die Zelllinie gegenüber dem Chemotherapeutikum 5-Fluorouracil (5-Fu) weniger anfällig werden ließ⁴⁶.

1.3 p21 und der Zellzyklus

Der Zellzyklus beschreibt die Entstehung einer Zelle bis zur ersten Zellteilung. Er ist in die M(itose)-Phase und die Interphase unterteilt, wobei die Interphase wiederum aus drei Phase besteht: die G_1 -, S- und G_2 -Phase. Die erste Phase der Interphase, die G_1 -Phase, ist durch Zellwachstum und Protein-Synthese gekennzeichnet. Die S-(ynthese) Phase zeichnet sich durch die Verdopplung der DNA aus (= Replikation). In der anschließenden G_2 -Phase wird das replizierte Erbgut auf Fehler geprüft und gegebenenfalls korrigiert. Erst dann tritt die Zelle in die M-Phase ein, in der sich die Chromosomen trennen, die Zelle sich teilt und zwei identische Tochterzellen mit gleichem Chromosomen-Satz entstehen.

Für alle lebenden Organismen ist es von essentieller Bedeutung, dass die verschiedenen Phasen des Zellzyklus präzise koordiniert und reguliert werden. Die Phasen müssen nacheinander und in der korrekten Reihenfolge ablaufen, ansonsten können chromosomale-Aberrationen auftreten. Darunter versteht man, dass Chromosomen oder Teile von Chromosomen verloren gehen, neu angeordnet oder ungleich zwischen den Tochterzellen aufgeteilt werden, wie es des Öfteren in Krebszellen der Fall ist. Aus diesem Grunde überwacht die Zelle den Fortschritt des Zellzyklus an bestimmten Punkten, den sogenannten Kontrollpunkten oder "Checkpoints". Der erste Kontrollpunkt ist in der späten G₁-Phase zu finden, der über den Eintritt in die S-Phase entscheidet. Ein weiterer Kontrollpunkt in der G2-Phase entscheidet, ob die DNA vollständig und fehlerfrei repliziert wurde. Bei nicht korrektem Ablauf der Replikation werden Reparatur-Mechanismen aktiviert oder Apoptose eingeleitet. Der letzte Kontrollpunkt im Zellzyklus befindet sich in der M-Phase. Hier wird geprüft, ob die Chromosomen-Sätze korrekt auf die Tochterzellen aufgeteilt wurden.

Sowohl das Fortschreiten des Zellzyklus als auch das Passieren der Kontrollpunkte wird durch eine Vielzahl von Faktoren bestimmt. Dabei spielen die Cycline und die Cyclin-abhängigen Proteinkinasen ("cyclin-dependent kinases = CDKs) eine entscheidende Rolle. Abbildung 2 zeigt schematisch den Ablauf des Zellzyklus mit den zugehörigen Cyclinen und CDKs. Die Cycline wurden erstmals 1983 in Seeigeleiern beschrieben⁴⁷. Bis heute wurden verschiedene Klassen der Cycline identifiziert die zu unterschiedlichen Zeitpunkten im Zellzyklus aktiv sind. Die D- und E-Cycline sind für die Progression der G1- zur S-Phase des Zellzyklus verantwortlich⁴⁸. Dies geschieht, indem D-Cycline zusammen mit CDK4 oder CDK6⁴⁹⁻⁵¹ und die E-Cycline zusammen mit CDK2^{52,53} Holoenzyme ausbilden, in den Zellkern translozieren und durch CDKaktivierende Kinasen phosphoryliert werden⁵⁴⁻⁵⁶. Die so aktivierten Holoenzyme wiederum Mitglieder Retinoblastom phosphorylieren der (RB)-Tumorsuppressor-Familie (RB, p107, p130). Dadurch wird der Transkriptionsfaktor E2F aus dem RB-E2F-Komplex freigelassen und die Expression der benötigen Proteine wird aktiviert⁵⁷. Sind die mitogenen Signale nicht stark genug, um die CDK-Aktivität für die partielle Inaktivierung des RB-E2F1-Komplexes zu fördern, werden die Zellen am Eintritt in die S-Phase gehindert und gehen in die reversible G₀-Ruhephase über.

Abbildung 2: Schematische Darstellung des Zellzyklus (Abbildung aus A. M. Abukhdeir & B. H. Park, 2008⁵⁸)

Zusätzlich kann der Zellzyklus über Inhibitoren der CDKs (CDK inhibitors, CKI) reguliert werden. Es gibt zwei Klassen von CDK-Inhibitoren. Zu der ersten Klasse gehören die p15^{*INK4B* 59}, p16^{*INK4A* 60}, p18^{*INK4C* 61} und p19^{*INK4D* 62,63} Proteine, die spezifisch an die CDK4 und CDK6 binden und somit die Assoziation mit D-Cyclinen inhibieren. Die zweite Klasse der CDK-Inhibitoren besteht aus der CIP/KIP-Protein-Familie, zu denen p21^{*CIP1/WAF1*} (hiernach als p21 bezeichnet)⁶⁴⁻

⁶⁶, p27^{*KIP1* 67,68} und p57^{*KIP2* 69,70} gehören. Diese inhibieren sowohl Komplexe aus E-Cyclin-CDK als auch A-Cyclin-CDK. Zusätzlich existieren einige Berichte, wonach CIP/KIP-Inhibitoren mit D-Cyclin-assoziierten CDKs interagieren^{64,66,71} und so deren Kinase-Aktivität hemmen.

p21 wurde zunächst als ein Vermittler des p53-induzierten Zellwachstum-Arrests⁶⁵ sowie als direkter Regulator der CDK-Aktivität⁶⁶ identifiziert. Nach heutigem Stand der Kenntnisse weiß man, dass die Mitglieder der CIP/KIP-Protein-Familie die Inhibierung der Cyclin-CDK-Komplexe mithilfe des terminalen Amino-Endes vermitteln⁷²⁻⁷⁵. p21 im Speziellen kann zusätzlich mit dem terminalen Carboxy-Ende den Zellzyklus regulieren, indem es das "Proliferating cell nuclear antigen" (PCNA) komplexiert. PCNA ist eine Untereinheit der DNA-Polymerase δ , welche durch die Bindung an p21 die Verankerung der DNA-Polymerase in der DNA verhindert. Somit wird die DNA-Replikation, jedoch nicht die DNA-Reparatur blockiert^{72,76-78}.

Neben seiner zytostatischen Wirkung wurde p21 auch als ein Regulator der Apoptose identifiziert. So wurde zum Beispiel von Willenbring *et al.* eine durch p21 induzierte Apoptose-Resistenz in der Leber gezeigt⁷⁹. Ebenso wurde in verschiedenen *in vitro*-Studien gezeigt, dass der Verlust von p21 zur Induktion der Apoptose führt⁸⁰. Die ambivalente Rolle des p21-Proteins mit zytostatischerund anti-apoptotischer Wirkung ist insofern sinnvoll, da in der Phase des Zell-zyklus-Arrests und der Apoptose-Inhibierung die DNA-Reparatur eingeleitet werden kann.

Die Bedeutung von p21 in der Karzinogenese ist bislang noch nicht vollständig geklärt. Zum einen kann p21 durch Inhibierung des Zellzyklus eine permanente Proliferation verhindern, zum anderen fördert es durch seine anti-apoptotische Wirkung die Karzinogenese. Arbeiten mit p21-Knockout Mäusen haben gezeigt, dass diese Mäuse im Vergleich zu Wildtyp-Tieren früher Tumore hämatopoetischen und epithelialen Ursprungs ausbilden⁸¹. Außerdem sind diese Mäuse anfälliger für chemisch-induzierte Tumore, was die Rolle von p21 als Tumorsuppressor bestärkt⁸². Andererseits wurden in schlecht differenzierten HCCs hohe zytoplasmatische p21-Spiegel nachgewiesen, was wiederum für eine onkogene Eigenschaft des p21-Proteins spricht⁸³.

1.4 Humane Erkrankungen und ihre korrespondierenden Mausmodelle

Mithilfe von Knockout-Mausmodellen, die eine humane Erkrankung in beschleunigter Zeitabfolge widerspiegeln, wurden und werden Krankheiten erforscht, um diese besser zu verstehen und neue Therapieansätze zu entwickeln. In dieser Arbeit wurden zwei verschiedene HCC-Mausmodelle genutzt, um die Rolle von Nrf2 und p21 in der Hepatokarzinogenese zu untersuchen.

Zum einen wurden Fah-Knockout-Mäuse eingesetzt, bei denen es aufgrund eines genetischen Defektes zu oxidativem Stress und Entzündungen in der Leber kommt und sie für die Entstehung von hepatozellulären Karzinomen prädisponiert sind. Zum anderen kamen Mdr2-Knockout-Mäuse zum Einsatz, die ein etabliertes Entzündungs-assoziiertes HCC-Modell darstellen.

1.4.1 Die humane hereditäre Tyrosinämie und das korrespondierende Fah-Knockout-Mausmodell

1.4.1.1 Tyrosin Metabolismus

Die Aminosäure Tyrosin wird im Zytoplasma der Hepatozyten und in den proximalen Tubuluszellen der Niere mithilfe von 5 verschiedenen Enzymen zu Fumarat und Azetoazetat metabolisiert. Tyrosin stammt entweder direkt aus der Nahrung oder aber aus dem enzymatischen Abbau des Phenylalanins, welches durch die Phenylalanin-Hydroxylase zu Tyrosin hydroxyliert wird. Eine schematische Darstellung des Tyrosin-Metabolismus ist in der Abbildung 3 aufgeführt.

Abbildung 3: Schematische Darstellung des Tyrosin Metabolismus

TAT = Tyrosin-Aminotransferase, HPD = 4-Hydoxyphenylpyruvat-Dioxygenase, HGD = Homogentisinsäure-Dioxigenase, MAI = Maleylazetoazetat-Isomerase, FAH = Fumarylazetoazetat-Hydrolase; FAR = Fumarylazetoazetat-Reduktase; HT1 = hereditäre Tyrosinämie Typ 1; HT2 = hereditäre Tyrosinämie Typ 2; HT3 = hereditäre Tyrosinämie Typ 3; NTBC = 2-(2-Nitro-4-Trifluor-methyl-Benzoyl)-1,3 Cyclohexandion.

1.4.1.2 Hereditäre Tyrosinämie Typ 1

Bei drei der in Abbildung 3 aufgeführten Enzyme sind autosomal rezessiv vererbte Defekte bekannt: die Tyrosinämie Typ 1, 2 und 3.

Bei der Tyrosinämie Typ 1 wird aufgrund eines autosomal rezessiv vererbten Defektes in der Fumarylazetoazetat-Hydrolase (FAH) Tyrosin nicht vollständig abgebaut, sondern resultiert in einer Akkumulation des reaktiven Metaboliten Fumarylazetoazetat (FAA)⁸⁴. FAA ist ein alkylierender Metabolit, der oxidativen Schaden in der Zelle verursachen kann, indem er mit Glutathion⁸⁵ oder mit Sulfhydrylgruppen von Proteinen reagiert⁸⁶. FAA wurde sowohl *in vitro*⁸⁵ als auch *in vivo*⁸⁷ als Mutagen identifiziert. Der genaue Mechanismus, durch den FAA Mutationen hervorruft, ist noch nicht bekannt. Es wird vermutet, dass FAA direkt mit der DNA interagiert, indem es die DNA alkyliert und somit Punktmutationen verursacht⁸⁸. Eine weitere Annahme ist, dass FAA indirekt zu DNA-Schäden führt, indem es Proteine schädigt, die an der genomischen Stabilisierung und Reparatur beteiligt sind. Dies würde das weite Spektrum der bisher gefundenen Mutationen erklären⁸⁸.

Das FAH-kodierende Gen ist auf Chromosom 15q23 – q25 lokalisiert⁸⁹, ist ungefähr 35 kbp lang und beinhaltet 14 Exons⁹⁰. Das exprimierte Protein formt im Zytoplasma ohne zusätzliche Co-Faktoren ein Homodimer von 80 kDa⁹¹ und wird hauptsächlich in der Leber (Hepatozyten) und in der Niere (proximale Tubuluszellen) gebildet.

Eine bei der Erkrankung häufig auftretende Mutation ist die Founder-Mutation, die einen Austausch einer Base im Intron 12 des FAH-Gens (IVS₁₂₊₅ G \rightarrow A) beschreibt und somit zu einer Beeinträchtigung der Spleiß-mRNA des hepatischen Enzyms führt. Weitere Mutationen sind bekannt, jedoch lässt der Genotyp der Patienten keinen Rückschluss auf den Phänotyp zu⁹².

Die Symptome der Tyrosinämie Typ 1 treten meist bereits im frühen Säuglingsalter auf. Die Erkrankung kann akut oder chronisch verlaufen⁹³. Patienten, bei denen die Erkrankung akut verläuft, sterben in den ersten Lebenswochen an Leberversagen⁹⁴. Leiden die Patienten an der chronischen Form, so ist der Verlauf der Erkrankung milder ausgeprägt, es treten aber zusätzliche Symptome wie renal-tubuläre Dysfunktion⁹⁵ und neurologische Symptome⁹⁶ auf. Chronisch erkrankte Patienten entwickeln meist innerhalb der ersten Lebensjahre hepatozelluläre Karzinome⁹⁵.

Nur bei 50% der jungen Patienten wird die Erkrankung der Tyrosinämie Typ 1 diagnostiziert bevor sie versterben⁹⁴. Bis 1992 stellte die einzig mögliche Therapie der Patienten eine Phenylalanin- und Tyrosin-arme Diät dar. Diese erzielte lediglich bei der chronischen Form der Erkrankung einen geringen Erfolg. Ein Fortschreiten der Lebererkrankung konnte jedoch nicht verhindern werden⁹⁷. Schlug die diätetische Therapie nicht an, kam für die Patienten nur noch eine

Lebertransplantation in Frage, um eine Verbesserung des Gesundheitszustandes zu erreichen. 1992 berichteten Lindstedt *et al.* zum ersten Mal vom Einsatz des 4-Hydroxyphenylpyruvat Dioxigenase (HPD) Inhibitors 2-(2-Nitro-4-Trifluormethyl-Benzoyl)-1,3 Cyclohexandion (NTBC), auch bekannt unter dem Namen Nitrisinone⁹⁸. Aufgrund der Hemmung der enzymatischen Reaktionen oberhalb des defekten FAH-Enzyms wird die Akkumulation des reaktiven Metaboliten FAA drastisch reduziert. Bereits 1 bis 2 Tage nach Therapiebeginn fällt die Konzentration von Sukzinylazetoazetat im Urin unter die Nachweisgrenze⁹⁸.

Die Behandlung der Patienten mit dem Medikament NTBC und die daraus resultierende Verbesserung des Gesundheitszustandes kann die Hepatokarzinogenese jedoch nicht verhindern. Das gilt insbesondere für Patienten, bei denen die Diagnose und Therapie erst in einem Alter von 2 Jahren erfolgte.

1.4.1.3 Fah-Knockout Mausmodell

1993 generierte M. Grompe et al. eine Knockout-Maus speziell für die Fumarylazetoazetat-Hydrolase: die $Fah^{-/-}$ Maus (Fah^{\Delta exon5})⁹⁹. Die homozygoten Fah-Knockout-Mäuse starben alle innerhalb der ersten 24 Stunden nach der Geburt. Für die Bestimmung der Todesursache wurden verschiedene biochemische Parameter der Mäuse kurz nach der Geburt bestimmt. Die Plasmakonzentration der Aspartat-Aminotransferase war 6 Stunden nach der Geburt deutlich erhöht und deutete auf einen starken hepatozellulären Schaden hin. Im Vergleich zu der humanen Erkrankung der HT1 waren die Tyrosinkonzentrationen im Blutserum der homozygoten Mäuse kaum erhöht. Ein weiterer Marker, der für die Bestimmung der humanen HT1 herangezogen wurde, ist die Sukzinylazetoazetat-Konzentration in der Leber und im Blutplasma. Die hepatische Konzentration des Sukzinylazetoazetats war bei den Mäusen ebenso wenig erhöht wie beim Menschen, wobei die Konzentration im Blutplasma beim HT1-Patienten im Vergleich zu gesunden Menschen ebenso wie in den Fah^{-/-} Mäusen stark erhöht war. Weitere Hinweise dafür, dass die Fah^{-/-} Mäuse kurz nach der Geburt an einem akuten Leberversagen starben, fand man in der Auswertung von elektronenmikroskopischen Aufnahmen des Lebergewebes. Die Bilder zeigten einen vollständigen Verlust von Glykogen im Zytoplasma der Hepatozyten sowie die vollständige Zerstörung des Endoplasmatischen Retikulums innerhalb der Leberzellen.

Den Leberschäden in den *Fah*^{-/-} Mäusen kann mit der NTBC-Behandlung entgegen gewirkt werden. Unterbricht man die NTBC-Therapie der *Fah*^{-/-} Mäuse erhält man ein adäquates Modell der akuten HT1. Eine verminderte NTBC-Therapie spiegelt die chronische Erkrankung der HT1 wieder. Es konnte gezeigt werden, dass die Fah-Knockout-Mäuse ein adäquates Tiermodell der humanen HT1 sind und die humane Erkrankung in beschleunigter Zeitabfolge widerspiegeln.

- 1.4.2 Die humane hereditäre cholestatische Lebererkrankung und das korrespondierende Mdr2-Knockout-Mausmodell
- 1.4.2.1 Die Leber und ihre Aufgabe der Synthese und Sekretion der Gallenflüssigkeit

Die Leber ist, neben ihrer zentralen Aufgabe der Entgiftung endogener und exogener Verbindungen, auch für die Synthese und Sekretion der Gallenflüssigkeit zuständig.

Die Gallenflüssigkeit setzt sich aus mehreren Bestandteilen zusammen, wobei die Gallensäuren den größten Anteil (67%) neben den Phospholipiden (22%) ausmachen. Aufgrund der emulgierenden Eigenschaften der Gallensäuren können erst durch sie fettlösliche Vitamine und andere lipidlösliche Nahrungsbestandteile über den Darm resorbiert werden. Nach der hepatozellulären Synthese oder der basolateralen (sinusoidalen) Aufnahme aus dem portalvenösen Blut (enterohepatischer Kreislauf) erfolgt der transzelluläre Transport der Gallensäuren sowie organischer Anionen zur (apikalen) kanalikulären Membran der Hepatozyten. Dort erfolgt, entgegen dem Gradienten, der aktive Transport (Sezernierung) in das kanalikuläre Lumen¹⁰⁰, wobei die Sekretion der Gallensäuren in die Gallekanalikuli der aufrechterhaltende Schritt des Galleflusses ist. Nach der Sekretion kann die Gallenflüssigkeit in der Gallenblase zwischengespeichert und von dort bei Bedarf in den Darm abgegeben werden. Die Gallensäuren werden zu 95% aus dem Darm rückresorbiert und gelangen über die sinusoidale Aufnahme wieder zurück in die Hepatozyten. Diese Rückgewinnung wird als enterohepatischer Kreislauf der Gallensäuren bezeichnet.

Kommt es zu einer Störung oder Verlangsamung des hepatischen Galleflusses, spricht man von einer Cholestase (griechisch: chôle = Galle und stasis = Stau). Eine Störung oder Verlangsamung des intra- oder extrahepatischen Transports der Gallensäuren und anderer organischer Anionen kann aufgrund von angeborenen oder erworbenen cholestatischen Lebererkrankungen vorliegen.

Bei einer cholestatischen Lebererkrankung werden die Eigenschaften der Gallensäuren zum hepatischen Problem. Kommt es zu einem intra- oder extrazellulären Anstieg der Gallensäurekonzentration, haben die hydrophoben Gallensäuren eine toxische und zellwandschädigende Wirkung auf die Hepatozyten. Dies kann zu chronischen Leberschädigungen bis hin zur Leberzirrhose führen. Um die Toxizität zu reduziere, haben die ableitenden Gallenwege zwei unterschiedliche Mechanismen entwickelt. Zum einen scheidet das Gallenblasenepithel einen Mukus ab, der sich auf die kanalikulären Membranen legt und somit vor den Gallensäuren schützt. Zum anderen sitzen in der kanalikulären Membran Transporter, die Phospholipide aus den Hepatozyten in die Gallenwege transportieren, wo sie zusammen mit Cholesterin gemischte Mizellen bilden, welche die Gallensäuren umschließen.

Defekte der verschiedenen Transportproteine sind größtenteils die Ursache für eine cholestatische Lebererkrankung. Dazu gehören unter anderem:

- PFIC (progressive familiäre intrahepatische Cholestase)
- BRIC (benigne rekurrente intrahepatische Cholestase)
- ICP (intrahepatic cholestasis of pregnancy Schwangerschaftscholestase)
- arzneimittelinduzierte Cholestase
- intrahepatische Cholelithiasis (Gallensteine)

1.4.2.2 Die Familie der ABC-Transporter

Die Genfamilie der ATP-bindenden Kassetten (ABC) repräsentiert die größte Familie der Transmembranproteine. Sie binden ATP und nutzen die Energie für den Transport von Molekülen über die Plasmamembran¹⁰¹⁻¹⁰⁵. Die Mitglieder der ABC-Familie haben sich auf unterschiedliche Transportfunktionen spezialisiert. Sie transportieren kleine Oxyanionen bis hin zu großen hydrophoben Molekülen (z. B. Medikamente), sowie große hämolytische Proteine und Peptide.

Die Mitglieder der ABC-Transporter sind strukturell sehr ähnlich aufgebaut. Sie bestehen aus zwei in die Membran integrierten Proteindomänen, die sich aus je sechs α -helikalen Bereichen zusammensetzen. Diese wiederum sind mit zwei Proteindomänen verbunden, welche die Energie für den Transportvorgang zu Verfügung stellen, indem sie ATP binden und spalten. Diese Domänen sind aus zwei charakteristischen Aminosäure-Sequenzmotiven aufgebaut, den sogenannten Walker-Motiven A und B¹⁰⁶.

In Abbildung 4 sind einige Mitglieder der ABC-Transporter dargestellt, die an den Transportprozessen an der kanalikulären Membran der Hepatozyten beteiligt sind.

Abbildung 4: Schematische Darstellung der wichtigsten Transportprozesse in der kanalikulären Membran von Hepatozyten, vermittelt durch ABC-Transporter.

(Abbildung aus R. P. J. Elferink & C. C. Paulusma, 2006¹⁰⁷)

1.4.2.3 Der *ABCB4*-Gendefekt und die progressive familiäre intrahepatische Cholestase Typ 3 (PFIC3)

Entsprechend seines Namens gehört der ABCB4 Transporter ebenfalls zu der Familie der ABC-Transporter (Abbildung 4). Die Nomenklatur des heutigen ABCB4/ Abcb4-Proteins war ursprünglich sehr irritierend, da unterschiedliche Namen für orthologe Proteine in verschiedenen Spezies vergeben wurden, bevor die Funktion des Proteins verstanden war. Beim Menschen wurde es MDR3 (multidrug-resistance) P-Glykoprotein genannt, beim Nagetier wiederum Mdr2 P-Glykoprotein. Gegenwärtig wurde eine neue einheitliche Nomenklatur dieses ABC-Transporters eingeführt. Das humane Protein trägt demnach den Namen ABCB4, in den restlichen Spezies heißt es Abcb4¹⁰⁷.

Es gibt zwei Typen intramembranärer Lipidtransporter. Flippasen transportieren Lipide von der äußeren zur inneren Plasmamembran, Floppasen transportieren Lipide von der inneren zur äußeren Plasmamembran¹⁰⁸. Der ABCB4-Transporter ist eine Floppase für Phosphatidylcholin, die ausschließlich in der kanalikulären Membran der Hepatozyten vorkommt. Hier transportiert sie Phosphatidylcholin von der inneren zur äußeren kanalikulären Membran, welches dann im kanalikulären Lumen für die Bildung der gemischten Mizellen zur Verfügung steht¹⁰⁹.

Abbildung 5 zeigt eine Hypothese zur Lipid-Exkretion an der kanalikulären Membran¹⁰⁷. Der Start der Lipid-Exkretion beginnt mit der ABCB11-vermittelten

Sekretion von Gallensäuren. Dies führt zur Aktivierung der Floppase ABCB4, die Phosphatidylcholin von der inneren zur äußeren kanalikulären Membran transportiert. Infolgedessen können Gallensäuren und Phosphatidylcholin zusammen mit Cholesterol, welches über die Floppase ABCG5/G8 in das kanalikuläre Lumen transportiert wird, gemischte Mizellen ausbilden. Zeitgleich werden Aminophospholipide mittels Flippase ATP8B1 von der äußeren zur inneren Membran transportiert. Dies erhöht den relativen Gehalt von Sphingomyelin und Cholesterol in der äußeren Membran und führt zum Schutz der äußeren Membran vor Gallensäuren.

Abbildung 5: Hypothetischer Mechanismus der kanalikulären Lipid-Exkretion (Abbildung aus R. P. J. Elferink & C. C. Paulusma, 2006¹⁰⁷)

Ein hereditärer Defekt im *ABCB4*-Gen ist mit dem klinischen Bild der progressiven familiären intrahepatischen Cholestase Typ 3 (PFIC3) assoziiert¹¹⁰. Aufgrund des genetischen Defekts können keine Phospholipide in die Galle sezerniert werden. Folglich stehen im kanalikulären Lumen keine Phospholipide (siehe Abbildung 5) für die Ausbildung der Mizellen zur Verfügung. Letztendlich führt der fehlende Schutzmechanismus zu einer durch Gallensäuren vermittelten Schädigung der kanalikulären Membran.

Die ersten Symptome der PFIC3 sind Gelbsucht, entfärbter Stuhl, Hepatomegalie (abnorme Vergrößerung der Leber) und anhaltender Juckreiz. Klinische Symptome einer Cholestase werden bei einem Drittel der Patienten innerhalb des ersten Lebensjahres festgestellt. Erst in der Pubertät oder im jungen erwachsenen Alter tritt die Leberzirrhose mit ihren Folgeerkrankungen in Erscheinung. Initial werden im Blut dieser jungen Patienten erhöhte Aktivitäten der Alanin-Aminotransferase und der Alkalischen Phosphatase, erhöhte Konzentrationen von konjugiertem Bilirubin sowie der gesamten Gallensäuren gemessen. Ebenso zeichnet sich die PFIC3 durch stark erhöhte γ-Glutamyl-Transferase (γ-GT) Aktivität aus¹¹¹. Da dieses Enzym unter anderem in der kanalikulären Membran der Hepatozyten lokalisiert ist, verwendet man die Werte der γ-GT als Marker einer Cholestase. Bei fehlender Mizellen-Bildung ist die γ-GT den Gallensäuren direkt ausgesetzt. Dementsprechend weisen diese Patienten schon im frühen Kindesalter starke durch Gallensäuren verursachte Schäden auf, einhergehend mit einer progredient verlaufenden Cholestase. Histologisch manifestiert sich die PFIC3 durch eine Fibrose in den Portalfeldern und eine vermehrte Proliferation der Gallengänge. Während 50% der Patienten mit einer speziellen Diät geholfen werden kann, ist bei den anderen 50% der jungen Patienten eine Lebertransplantation notwendig¹¹².

1.4.2.4 Das Mdr2-Knockout-Mausmodell

1993 generierte J. J. M. Smit *et al.* eine Knockout-Maus für den ABC-Transporter Abcb4: die $Mdr2^{-/-}$ (bzw. $Abcb4^{-/-}$) Maus $(Mdr2^{neo1})^{113}$. Die pgk-neo Kassette, welche für die homologe Rekombination benutzt wurde, ersetzte die Mdr2-Transkriptionsinitiation zusammen mit den beiden ersten Exonen und führte damit zu einem nicht funktionsfähigen Mdr2-Protein.

Detailliertere Untersuchungen von sechs bis vierzehn Wochen alten *Mdr2*^{-/-} Mäusen zeigten, dass deren Blutserum stark gelb verfärbt war. In ähnlicher Weise wie bei dem humanen Gendefekt waren die Leberwerte der Alkalischen Phosphatase, der Alanin-Aminotransferase sowie des Bilirubins im Vergleich zu den Wildtyp-Nachkommen stark erhöht¹¹³.

Histologische Analysen zeigten, dass der Verlust des Mdr2-Proteins zu Veränderungen der Lebermorphologie führte, die bereits zwei Wochen nach Geburt der homozygoten Mäuse eintraten. Bei sechs bis zwölf Wochen alten *Mdr2^{-/-}* Mäusen konnten im Vergleich zu heterozygoten Mäusen zahlreiche nekrotische Bereiche sowie starke Gallengangs-Proliferationen nachgewiesen werden¹¹³.

Wie zu erwarten, zeigten zusätzlich durchgeführte Analysen zur Zusammensetzung der Gallenflüssigkeit, dass in den *Mdr2*^{-/-} Mäusen keine biliären Phospholipide nachweisbar waren. Die physiologische Funktion des Abcb4-Proteins in Mäusen war aufgeklärt. Mäuse mit einem Knockout für das *Abcb4*-Gen scheiden im Vergleich zu Wildtyp-Mäusen kein Phosphatidylcholin in die Galle aus^{113,114}. Als Beweis dafür, dass das humane ABCB4-Protein die gleiche physiologische Funktion ausübt wie das murine Abcb4-Protein, wurden *Mdr2*^{-/-} chimäre Mäuse generiert, die das humane ABCB4-Protein exprimierten. Diese chimären Tiere besaßen die Physiologie von Wildtyp Tieren¹¹⁵. Insgesamt konnte gezeigt werden, dass die *Mdr2*^{-/-} Mäuse ein adäquates Tiermodell der humanen PFIC3 sowie des genetischen Defekts im *ABCB4*-Gen darstellen und die humane Erkrankung in beschleunigter Zeitabfolge widerspiegeln.

1.5 Ziel dieser Studie

Das humane hepatozelluläre Karzinom (HCC) zählt zu den fünf häufigsten Krebserkrankungen weltweit, mit einer zunehmenden Inzidenz in den letzten Jahren. Im Gegensatz zu anderen Krebserkrankungen ist die Behandlung des fortgeschrittenen HCCs mit konventionellen Methoden bisher nicht erfolgreich.

In den letzten Jahren rückte die Erforschung der molekularen Mechanismen, die zur Tumorentstehung führen in den Fokus der Wissenschaft, denn nur nach vollständigem Verständnis der Mechanismen lassen sich neue Therapieansätze entwickeln.

Ziel dieser Arbeit ist es, die Bedeutung von Nrf2 und p21 in der Hepatokarzinogenese zu untersuchen. Zu diesem Zweck wurden zwei verschiedene Knockout-Mausmodelle verwendet, welche die humane Erkrankung in beschleunigter Zeitabfolge widerspiegeln und deshalb für die Analyse gut geeignet sind.

Um die Bedeutung von Nrf2 und p21 in der Hepatokarzinogense zu analysieren, sollen folgende Fragen beantwortet werden:

- Welchen Einfluss hat der Verlust von Nrf2 im Fah^{-/-} Modell auf die Mortalität der Mäuse und die hepatozelluläre Tumorentstehung?
- Welchen Einfluss hat der Verlust von Nrf2 im *Mdr2^{-/-}* Modell auf die Mortalität der Mäuse und hepatozelluläre Tumorentstehung?
- Welchen Einfluss hat der Verlust von p21 im *Mdr2^{-/-}* Modell auf die Mortalität der Mäuse und hepatozelluläre Tumorentstehung?

2 Material und Methoden

2.1 Material

2.1.1 Chemikalien

Tabelle 1: Chemikalien

Name	Hersteller	Artikelnummer
(+)-5-Bromo-2'-deoxyuridine	Sigma	B5002-5g
(Phosphorwolframsäure)-Orange G Lösung	Merck	1.00485./3
10x Cell lysis buffer	Cell signaling	9803
10xPBS	Gibco	14200-083
2-Methoxyethanol	Sigma	18,546-9
30% Acrylamide/ Bis Verhältnis 37,5:1	Bio-rad	161-0158
4-Dimethylaminobenzaldehyd (DAB)	Sigma	D2004-25g
AEC Chromogen	Zymed	00-2007
Agarose	Invitrogen	15510.027
Amersham Hyperfilm ECL	GE Healthcare Bio- Sciences AB	28906837
Ammoniumperoxidsulfat (APS)	Roth	9592.3
Antigen unmasking solution	Vektor	H-3300
Bernsteinsäure	Merck	1.00682
Borsäure	Sigma	B6768-1kg
Bovine Serum Abumin (BSA)	Sigma	A6003-10g
Bromphenolblau	Sigma	B6131-5g
Calciumchlorid	Merck	1.02379
Chloramin-T hydrat	Sigma	C9887-250
Complete (Protease Inhibitor)	Roche	04 693 116 001
Einbettmedium mit DAPI (Vectashield)	Vektor	H-1200
Entellan	Merck	1.07961.0100
Eosin Y Solution	Sigma	HT11.0232
Essigsäure	J.T. Baker	6052

Ethylendiamin-tetraacetic acid	Sigma	E5134-25ßg
Formaldehyd Lösung	Pathologie	-
Gel Loading Solution	Sigma	G7654
GelStar Gelstain	Lonza	50535
Glycerol	Sigma	G8773-500ml
Glycine	Sigma	G8898-1kg
GVA Mounting Medium	Zymed	00-8000
HCI 37%	Merck	1.09057.1000
HEPES	Sigma	H0887
Hydrogen peroxid (H ₂ O ₂)	Sigma	21.676-3
IL-6-ELISA	BD Biosciences	555240
Immun-Blot PVDF-Membran	Bio-rad	162-0177
In Situ Cell death Detection Kit (TU- NEL)	Roche	11684795910
КСІ	Roth	67813
L-Hydroxyproline (HYP)	Merck	1.04506.0010
Lichtgrün SF Lösung	Merck	1.00485./3
M.O.M Immunodetection Kit	Vector	PK-2200
Magnesium Chlorid (MgCl ₂)	Sigma	M2670-500g
Micrococcus Nuklease	Sigma	N5386
Natrium Acetat	KMF	08-319
Natrium Citrat	Sigma	S1804-500g
NucleoSpin® RNA II (für 50 Reaktio- nen)	Macherey-Nagel	740955.50
PageRuler Prestained Protein Ladder	Fermentas	SM0671
Perchlorsäure 70 – 72%	Merck	1.00519.1000
Peroxidase-Konjugat Plus	Zymed	50-420Z
Pferde Serum	Zymed	S-2000
Phosphodiesterase	Sigma	P9041
Ponceas Solution	Sigma	P7170
Protein Assay Dye Reagent Concen- trate	Bio-rad	500-0006
Proteinkinase K	Merck	1.24568.0500
QIAamp DNA Mini Kit	Qiagen	51304

RNeasy Mini Kit	Qiagen	74104
Sodium Chlorid (NaCl)	Fluka	71376
Sodium Dodecyl Sulfat (SDS)	Sigma	75746
Sodiumhydroxid (NaOH)	Merck	1.06482.1000
Spermidine Trihydrochlorid	Sigma	S2501
Spermine	Sigma	S3256
SuperScript™II-First-Strand Synthesis System for RT-PCR	Invitrogen	-
TEMED	Fluka	87689
Tissue Tek O.C.T. Compound	Sekura	4583
TNF-α-ELISA	BD Biosciences	555268
Transciptor High Fidelity cDNA Syn- thesis Kit (für 50 Reaktionen)	Roche	05 081 955 001
Tris UltraPure	Invitrogen	15504-020
Tween-20	Sigma	P5927-500ml
Weigert`s Eisenhämatoxylin	Merck	1.09249.2500
Westernlightning reagent	Perkin-Elmer	N101
Whatman Chromatographie Papier	Schleicher & Schuell Bioscience GmbH	3017-915
Xylol	J.T. Baker	8080
Ziegen Serum	Zymed	S-1000
Zitronensäure	Merck	8.18707.1000

2.1.2 Medikamente für Mäuse

Name	Hersteller
2-(2-nitro-4-trifluor-methylbenzyl)-1,3 zyklohexanedion (NTBC)	Business Office Reed College, Portland
N-Acetylcysteine (NAC)	Sigma-Aldrich #A9165
BrdU + Glucose	Sigma #B5002-5g
GSH-methylester	Sigma-Aldrich #39073
1-[2-Cyano-3-,12-Dioxooleana-1,9(11)- Dien-28-Oyl]-Imidazole (CDDO-Im)	Dartmouth Medical School, M.D. M. Sporn

Tabelle 2: Medikamente

2.1.3 Antikörper

2.1.3.1 Antikörper für Western Blot-Analysen

Tabelle 3: Western Blot-Antikörper

Name	Verdünnung	Wirtstier/ Moleku- largewicht [kDa]	Eingesetzte Proteinmenge [µg]	Firma/ Bestell- nummer
Actin	1:1.000	Ziege IgG/ 43 kDa	100 µg	Santa Cruz #sc- 1615
Caspase-9	1:1.000	Kaninchen IgG/ 37, 39, 49 kDa	100 µg	Cell signaling #9504
CDK4	1:1.000	Maus IgG₁/ 34 kDa	120 µg	Thermo Scientific #MS-469
c-jun	1:500	Kaninchen IgG/ 43, 48 kDa	140 µg	Cell Signaling #9165
Cleaved Cas- pase-3 (Asp175)	1:1.000	Kaninchen IgG/ 17, 19 kDa	100 µg	Cell signaling #9661
Cyclin D1	1:500	Maus IgG _{2a} / 36 kDa	100 µg	BD Biosciences #556470
Gapdh	1:1.000	Maus IgG₁/ 37 kDa	100 µg	Santa Cruz #sc-32233
GCLC	1:10.000	Kaninchen IgG/ 72 kDa	35 µg	Zur Verfügung gestellt durch: T.J.
GCLM	1:10.000	Kaninchen IgG/ 30 kDa	50 µg	Kavanagh (Uni- versity of Was- hington)
HO-1	1:5.000	Kanninchen IgG/ ~32 kDa	40 µg	Stressgen #SPA-896
MnSOD	1:500	Kanninchen IgG/ 24 kDa	20 µg	Upstate #06-984
NQO1	1:500	Ziege IgG/ 30 kDa	100 µg	Abcacm #2346
р21 (М-19)	1:500	Ziege IgG/ 21 kDa	100 µg	Santa Cruz #sc- 471
p27	1:500	Kaninchen IgG/ ~27 kDa	100 µg	Santa Cruz #sc- 776
р53	1:1.000	Ziege IgG/ 53 kDa	30 µg (Kernex- trakt)	R&R System #AF1355
p-SAPK/JNK (Thr183/ Tyr185)	1:500	Kaninchen IgG/ 46, 54 kDa	150 µg	Cell signaling #9251

2.1.3.2 Primäre Antikörper für die Immunhistochemie (IHC)

Name	Verdünnung/ Verdünnungs Puffer	Wirtstier/ Moleku- largewicht [kDa]	Gewebe Permeabilisierung	Firma/ Bestell- nummer
A6	1:100/ PBS	Ratte IgG2a	Proteinase K Be- handlung [1 µg/µl PBS]	Zur Verfügung gestellt durch V. Factor (National Institutes of Health)
AFP	1:500/ 2% Pfer- de Serum in TBST	Kaninchen	-	ICN #645611
Alpha smooth muscle ac- tin (sma)	1:50/ in M.O.M Blocking Rea- gent in PBS	Maus IgG2a	Antigen unmasking solution	DakoCytomation #M 0851
BrdU	1:200/ 5% Zie- gen Serum in PBST	Rekombinanter IgG _{2a}	Natrium Citrat Puf- fer pH 6,0 [10 mM Natrium Citrat, 0,05% Tween-20]	GE Healthcare #RPN202
Ki67	1:500 oder 1.000/ 2% Zie- gen Serum in PBST	Kaninchen IgG	EDTA Puffer pH 9,0 [1 mM EDTA, 10 mM Tris, 0,05% Tween-20]	Vector #VP-K451
MIC1	unverdünnt	Ratte IgG	-	Zur Verfügung gestellt durch M. Grompe (Oregenon Health & Science Univ.)
p21 (M-19)	1:50/ 2% Pferde Serum in PBST	Ziege IgG	Citrat Puffer pH 6,0 [10 mM Zitro- nensäure, 0,05% Tween-20]	Santa Cruz #sc- 471

Tabelle 4: Primäre Antikörper

2.1.3.3 Sekundär-Antikörper

Tabelle 5: Sekundär-Antikörper

Name	Verdünnung	Wirtstier/ Moleku- largewicht [kDa]	Firma/ Bestell- nummer
Affe anti- Ziege IgG- HRP	1:2.500	Ziege IgG	Santa Cruz #sc-2020

Ziege anti- Kaninchen IgG biotinyliert	1-100 – 1:200	Kaninchen IgG	Invitrogen #B2770
Ziege anti- Kaninchen IgG-HRP	1:2.500	Kaninchen IgG	Santa Cruz #sc- 2004
Ziege anti- Maus IgG Alexa Fluor 488	1:100 – 1:200	Maus IgG	Invitrogen #A11001
Ziege anti- Maus IgG- HRP	1:2.500	Maus IgG	Santa Cruz #sc- 2005

2.1.4 Mäuse

Tabelle 6: Mausstamme mit Referenzangab

Name	Stammbezeichnung	Referenz
Fah	C57BL/6-Fah ^{tm1Mgo}	Grompe <i>et al.</i> , 1993 ⁹⁹
Nrf2	B6.129-Nrf ^{tm1Mym}	Itoh <i>et al.</i> , 1997 ³⁷
Mdr2	FVB.129P2-Abcb4 ^{tm1Bor}	Smit <i>et al.</i> , 1993 ¹¹³
p21	C57BL/6J-Cdkn1a ^{tm1Tyj/J}	Brugarolas <i>et al.</i> , 1995 ¹¹⁶

2.2 Methoden

2.2.1 Tierexperimentelle Methoden

Alle tierexperimentellen Methoden wurden unter Berücksichtigung der im Tierschutzgesetzt verankerten Richtlinien durchgeführt. Alle Tierversuche sind durch das Niedersächsische Landesamt für Verbraucherschutz und Lebensmittelsicherheit in Oldenburg genehmigt worden.
2.2.1.1 Tierhaltung

Die Mäuse wurden in den klimatisierten Räumen des zentralen Tierlabors der Medizinischen Hochschule Hannover in einem Temperaturbereich von 20-24°C und mit einer Luftfeuchtigkeit von 50-60% in individuell ventilierten Käfigen (IVC) gehalten und verpaart. Den Tieren stand Futter (Altromin Diät 1320) und Trinkwasser *ad libitum* zur Verfügung. In den Tierlaboren herrschte ein 14 zu 10 Stunden Tag-Nacht-Rhythmus.

2.2.1.2 Behandlung der Tiere

Name	Applikation/ Kon- zentration	Herstellung der Stocklösung	Versuchsaufbau
2-(2-nitro-4-trifluor- methylbenzyl)-1,3 zyklohexanedion (NTBC)	lm Trinkwasser 16 µg/ml Trinkwasser	4 mg/0,5% Natrium- hydrogencarbonat ml auf 55°C erhitzen und unter rühren lösen	täglich
N-Acetylcysteine (NAC)	Intraperitoneal 500 mg/kg Körper- gewicht	80 mg/ml PBS, auf 40°C erhitzen und den pH auf 7,2 mithil- fe von NaOH einstel- len	viermal täglich
BrdU + Glucose	Im Trinkwasser 0,8 mg/ml Trinkwas- ser + 5% Glucose	-	4 Tage vor Gewebe- entnahme
GSH-Methylester	Intraperitoneal 800 mg/kg Körper- gewicht	50 mg/450 µl PBS, mit 10N NaOH den pH auf 7,0 einstellen	viermal täglich
1-[2-Cyano-3-,12- Dioxooleana- 1,9(11)-Dien-28- Oyl]-Imidazole (CDDO-Im)	Gavage 100 µmol/kg Körpergewicht	10 mg/ml PEG-400	4 Tage lang einmal pro Tag

Tabelle 7: Behandlungsplan

2.2.1.3 Tötung der Tiere und Gewebeentnahme

Die Tiere wurden den Tierschutzgesetzbestimmungen gemäß nach der chemischen und mechanischen Methode getötet. Dafür wurde den Tieren intraperitoneal (i.p.) das Dissoziativanästhetikum Ketamin zusammen mit dem Analgetikum Rompun verabreicht (Zusammensetzung siehe Tabelle 8).

Name: Wirkstoff	Konzentration	Firma
Ketamin Graub Injektionslösung: Ketaminhydrochlorid	100 mg/kg Körpergewicht	aniMedica GmbH
Rompun 2% Injektionslösung: Xylazinhydrochlorid	4 mg/kg Körpergewicht	Bayer HealthCare

Tabelle 8: Anästhetikum und Analgetikum

Nach der Betäubung erfolgte zuerst die retroorbitale Blutentnahme. Im Anschluss wurde der intraperitoneale Raum geöffnet und die Leber mit einer 0.9% Natriumchloridlösung, die mit 22 Units/ml Heparin versetzt war, perfundiert. Der Zugang für die Perfusion wurde mit einer Venenverweilkanüle (24G) in die Vena portae (Pfortader) gelegt und der Austritt der Flüssigkeit erfolgte über die durchtrennte Vena cava inferior. Nachdem das Blut vollständig aus der Leber gespült war, wurden die Tiere per Genickbruch getötet und die Lebern entnommen. Die Bezeichnungen der Leberlappen sind der Abbildung 6 zu entnehmen. Die Leber wurde wie folgt zerteilt: Der linke, rechte und der caudale Leberlappen wurde für Protein-, RNA- und DNA-Aufreinigung in flüssigem Stickstoff schockgefroren und bei -80℃ bis zur Weiterverarbeitung gelagert. Von dem mittleren Leberlappen wurde die Gallenblase entfernt, im Anschluss in der Mitte zerteilt und für Paraffin- und Gefrierblöcke verwendet. Dafür wurde eine Hälfte für 18 Stunden bei 4°C unter ständigem Schütteln mit Formaldehydlö sung fixiert und dann mittels Gewebeinfiltrationsautomaten (Leica TP1020) in Paraffin überführt. Die andere Hälfte des Lappens wurde in Tissue Tek O.C.T. Compound eingebettet und bei -20℃ tiefgefroren und gelagert.

Abbildung 6: Darstellung der Leberlappen der Maus (aus "The anatomy of the Laboratory mouse" von M. J. Cook)

2.2.1.4 ²/₃ Leberteilresektion

Die $^{2}/_{3}$ Leberteilresektion stellt ein gängiges Modell zu Untersuchung der Regenerationsfähigkeit der Leber dar. Dazu wurden die Mäuse wie unter 2.2.1.3 beschrieben betäubt und geöffnet. Die Durchführung erfolgte nach C. Mitchell & H. Willenbring¹¹⁷. Für die Analysen wurden die Zeitpunkte 38 Stunden und eine Woche nach $^{2}/_{3}$ Leberteilresektion gewählt. Als Kontrolle dienten die zum Zeitpunkt der Leberteilresektion (0 Stunden) entnommenen Leberlappen.

2.2.1.5 DNA-Extraktion und anschließende Genotypisierung der Tiere

Schwanz-Lyse-Puffer

10 mM Tris/HCl pH 8,2 400 mM NaCl 2 mM EDTA 2% SDS 77 Units/ml Puffer

TE-Puffer

10 mM Tris/ HCl pH 8,0 1 mM EDTA

Für die Genotypisierung der Mäuse wurde DNA aus deren Schwanzspitzen gewonnen. Dafür wurde den Tieren ca. zwei Wochen nach der Geburt 2-3 mm der Schwanzspitze abgeschnitten. Zugleich erhielten die Tiere eine Ohrmarkierung. Die Schwanzstücke wurden über Nacht in Schwanz-Lyse-Puffer bei 56°C inkubiert. Am darauffolgenden Tag wurde das Homogenisat bei 13.200 rpm für 10 Minuten abzentrifugiert. Der Überstand wurde abgenommen und in ein neues Gefäß überführt. Durch Zugabe von Isopropanol und nach erneuter Zentrifugation wurde die darin enthaltene DNA gefällt. Das DNA-Pellet wurde mit 70%-igem Ethanol gewaschen und abermals zentrifugiert. Die pelletierte und gewaschene DNA wurde für 10 Minuten bei Raumtemperatur getrocknet und im Anschluss in 100 µl TE-Puffer aufgenommen.

Die Genotypisierung der einzelnen Mäusestämme erfolgte mithilfe der Polymerase-Kettenreaktion (PCR) in einem Thermocycler (Eppendorf). Die Primersequenzen sind in Tabelle 9 aufgeführt. Die jeweiligen Reaktionsansätze enthielten ein Volumen von 20 und 50 µl und sind der Tabelle 10 zu entnehmen. In Tabelle 11 sind die Programme der Thermocyler aufgeführt.

Im Anschluss an die PCR wurden $6 - 15 \,\mu$ l der Reaktionsansätze mittels Elektrophorese in einem Agarosegel analysiert (siehe 2.2.10).

Gen	Primer 1 5' – 3'	Primer 2 5' – 3'	Primer 3 5' – 3'	Primer 4 5' – 3'	Amplifikations- Produkt [bp]
Fah	CTA GGT CAA TGG CTG TTT GG	GGA CAT ACC AAT TTG GCA AC	TAA AAT GAG GAA ATT GCA TCG	-	WT 180 bp MT 240 bp
Nrf2	GCG GAT TGA CCG TAA TGG GAT AGG	TGG ACG GGA CTA TTG AAG GCT G	GCC GCC TTT TCA GTA GAT GGA GG	-	WT 400 bp MT 700 bp
Mdr2	GCT GAG ATG GAT CTT GAG	GTC GAG TAG CCA GAT GAT GG	CGG CGA GGA TCT CGT CGT GAC CCA	GCG ATA CCG TAA AGC ACG AGG AAG	WT 300 bp MT 200 bp
p21	GAA GAA CGA GAT CAG CAG	GAA CTT TGA CTT CGT CAC GG	ACA ACA CCT CCT GGT CAG AGG	_	WT 700 bp MT 100 bp

Tabelle 9: Primersequenzen für die Genotypisierung

MT = mutant, WT = wildtyp

	Fah	Nrf2	Mdr2	p21
Template-DNA	<0,5 µg	<0,5 µg	<0,5 µg	<0,5 µg
Reaktionspuffer	Von 5x Puffer 10 µl	Von 10x Puffer 5 μl	Von 5x Puffer 10 µl	Von 5x Puffer 10 µl
Primer 1 – 4	je 0,2 µM	je 0,2 µM	je 0,75 µM	je 0,4 µM
MgCl ₂	-	-	-	2 mM
dNTP-Mix	50 µM	200 µM	100 µM	160 µM
H₂O dest.	auf 20 µl auffül- Ien	auf 50 µl auffül- Ien	auf 50 µl auffül- Ien	auf 50 µl auffül- Ien
Taq- Polymerase	2,5 Units GoTaq (Promega)	2 Units TaKaRa Ex Taq (Lonza)	1,5 Units GoTaq (Promega)	1,5 Units GoTaq (Promega)

Tabelle 10: Reaktionsansätze für die Genotypisierungs-Analysen mittels PCR

	Fah	Nrf2	Mdr2	p21
Initiale Denaturierung	94℃ 3 min	95℃ 4 min	94℃ 3 min	95℃ 2 min
Zyklusbeginn (x-mal)	30x	35x	12x + 30x	35x
Denaturierung	90℃ 30 sek	95℃ 30 sek	94℃ 20 sek 94℃ 20 sek	95℃ 30 sek
Annealing	56℃ 30 sek	60,5℃ 30 sek	64℃* 30 sek 58℃ 30 sek	62,5℃ 30 sek
Elongation	72℃ 1 min	72℃ 45 sek	72℃ 35 sek 72℃ 35 sek	72℃ 1 min
Zyklusende				
Finale Elongation	72℃ 10 min	72℃ 10 min	72℃ 10 min	72℃ 10 min
Ende	4℃ ∞	4℃ ∞	4℃ ∞	4℃ ∞

Tabelle 11: Thermocylcer PCR-Programme

* = -0,5℃ pro Zyklus

2.2.2 Proteinisolierung und -bestimmung

2.2.2.1 Isolierung von Proteinextrakten aus der Leber

Die bei -80°C gelagerten Leberproben wurden in 4°C kaltem Zelllysepuffer, der mit Complete Protease Inhibitor versetzt war, aufgenommen und mittels UltraTurrax T25 basic (IKA-Werke) für 20 Sekunden bei 21.500 rpm homogenisiert. Das Lysat wurde im Anschluss bei 13.200 rpm in der Tischzentrifuge (Beckmann) bei 4°C für 10 Minuten abzentrifugiert und der Überstand abgenommen. Mittels drei Einfrier- und Auftau-Zyklen wurden die Zellkompartimente zerstört und nach erneuter Zentrifugation konnte das Proteinlysat bis zum weiteren Gebrauch bei -80°C tiefgefroren und gelagert werden.

2.2.2.2 Isolierung von Zellkernlysaten aus der Leber

Kernextraktionspuffer 1	2,0 M Sucrose
	10 mM HEPES pH 7,6
	15 mM KCl
	150 µM Spermine
	500 µM Spermidine
	1 mM EDTA pH 8,0

10% Glycerol Complete (Protease Inhibitor)

Kernextraktionspuffer 2

2,2 M Sucrose 10 mM HEPES 15 mM KCl 150 µM Spermine 500 µM Spermidine 1 mM EDTA pH 8,0 10% Glycerol Complete (Protease Inhibitor)

Für die Zellkernisolierung wurde frisch entnommenes Gewebe verwendet. Dafür wurden die Lebern wie unter 2.2.1.3 beschrieben entnommen. Die Isolierung der Kerne erfolgte mittels Dichtegradienten-Zentrifugation. 1 g Lebergewicht wurde in 5,5 ml Kernextraktionspuffer 2 aufgenommen und mithilfe eines Glaspotters homogenisiert. Im Anschluss wurde das Homogenisat in ein Zentrifugenröhrchen auf 3,6 ml des Kernextraktionspuffer 1 geschichtet und für 70 Minuten mit 24.000 rpm bei 4℃ in einem SW-28 Au sschwingrotor zentrifugiert. Anschließend wurde der Überstand vorsichtig abgenommen und die pelletierten Zellkerne in 100-200 µl Zelllysepuffer aufgenommen. Mittels drei Einfrierund Auftau-Zyklen wurden die Zellkerne zerstört und dann für weitere 10 Minuten mit 13.200 rpm in der Tischzentrifuge bei 4℃ z entrifugiert. Das Zellkernlysat wurde abgenommen und bis zur weiteren Verwendung bei -80℃ gelagert.

2.2.2.3 Proteinbestimmung

4x Elektrophorese-Proben-Ladepuffer

500 mM Tris/ HCl pH 6,8 12% SDS 40% Glycerol 20% ß-Mercapthoethanol 0,08% Bromphenolblau

Die Bestimmung der Proteinkonzentration der Leberextrakte und Zellkernlysate erfolgte mithilfe des Bio-Rad Protein Assay Dye Reagent Concentrate nach

Herstellerangaben. Für die Einstellung der Proteinkonzentrationen auf 10 μ g/ μ l wurden die Proben mit Elektrophorese-Proben-Ladepuffer und Zelllysepuffer verdünnt. Die Analyse der Proteine erfolgte mittels SDS-PAGE und anschließendem Western Blot (siehe 2.2.3).

2.2.3 Sodiumdodecylsulfat-Polyacrylamidgelelektrophorese (SDS-PAGE) mit anschließendem Western Blot

SDS-Laufpuffer	25 mM Tris
	192 mM Glycine
	0,1% SDS
Blotting-Transferpuffer	25 mM Tris
	192 mM Gylcine
TBST	50 mM Tris/ HCl pH 7,5
	150 mM NaCl
	0,1% Tween-20

Mithilfe der SDS-PAGE können Proteine in Gegenwart von Sodiumdodecylsulfat (SDS) in Polyacrylamid-Gelen in einem elektrischen Feld nach ihrer Molekularmasse aufgetrennt werden.

Die SDS-PAGE wurde, modifiziert nach Laemmli, in vertikalen Bio-rad Gelkammern (Mini-Protean System) durchgeführt¹¹⁸. Dabei wurden 1,5 mm dicke diskontinuierliche Gele mit einem Trenn- und Sammelgel (siehe Tabelle 12) angefertigt. Die Polyacrylamid-Endkonzentrationen in den Gelen betrugen je nach nachzuweisendem Protein 7,5 bis 12%. Bevor die Proteine mittels SDS-PAGE aufgetrennt wurden, erfolgte eine fünfminütige Inkubation bei 95°C im Thermomixer. Um die apparente Molekularmasse der Proben zu bestimmen, lief bei jeder SDS-PAGE ein Standard (PageRulerTM, Fermentas) mit, der aus einem Gemisch aus Proteinen mit bekannten Molekularmassen bestand. Die Gele wurden in SDS-Laufpuffer konstant bei 20 mA pro Gel laufen gelassen.

Mittels Western Blot, auch Immunoblot genannt, wurden anschließend die Proteine auf eine Immuno-Blot PVDF-Membran (Bio-Rad #162-0177) in einem vertikalen Bio-rad Tank Transfer Systems (Mini Trans-Blot Cell) transferiert. Der Transfer erfolgte für eine Stunde bei einer angelegten Spannung von 100 Volt.

Bestandteile	Sammelgel	Trenngel 7,5%	Trenngel 10%	Trenngel 12%
30% Acrylamid/ Bis Sol. (Verhältnis 37,5 : 1)	1,3 ml	5 ml	6,6 ml	8 ml
1,5M Tris/ HCI pH 8,8	-	5 ml	5 ml	5 ml
0,5M Tris/ HCI pH 6,8	2,5 ml	-	-	-
SDS (10%)	0,1 ml	0,2 ml	0,2 ml	0,2 ml
H ₂ O	6 ml	9,8 ml	8,2 ml	5 ml
APS-Lösung (10%)	100 µl	150 µl	150 µl	150 µl
TEMED	30 µl	50 µl	50 µl	50 µl

Tabelle 12: Zusammensetzung der Sammel- bzw. der Trenngele

2.2.4 Histologische Methoden

Die 4 μ m Praffinschnitte wurden von der Pathologie (MHH) angefertigt und die 7 μ m Gefrierschnitte wurden in eigener Arbeit angefertigt

Für alle Färbungen an Paraffinschnitten, wurden diese zunächst zweimal für 10 Minuten in einem Xylolbad depraffiniert und anschließend in einer absteigenden Alkoholreihe (2 x in 100%-igem, 1 x in 90%-igem, 1 x in 70%-igem Ethanol) für jeweils 5 Minuten gewässert.

Für alle Färbungen an Gefrierschnitten, wurden diese zunächst mit Azeton bei - 20°C fixiert und anschließend gewässert.

Die Auswertung der Färbungen und die Aufnahmen der Bilder erfolgten am Leica Mikroskop Typ DM4000B mithilfe der Software Leica QWinV3 und Leica QGo an dem Rechnersystem Leica Q550IW. Für Fluoreszenz-Aufnahmen wurde die Leica Kamera DFC350Fx und für Durchlicht-Aufnahmen die Leica Kamera DFC320 verwendet.

2.2.4.1 H&E-Färbung

Die H&E-Färbung (Weigert's Eisenhämatoxylin und Eosin) dient als klassische Färbemethode zur Beurteilung der Gewebemorphologie. Weigert's Eisenhämatoxylin färbt aufgrund seiner positiven Ladungen die Zellkerne blau und Eosin das Zytoplasma blassrosa ein. Die Färbungen wurden auf Paraffin-Gewebeschnitten von der Pathologie der MHH angefertigt. Nach dem Entparaffinieren und Wässern der Schnitte wurden diese für 10 Sekunden in Weigert's Eisenhämatoxylin gefärbt. Als nächstes erfolgte die Färbung in Eosin für 2 Minuten. Bevor die Schnitte in harzhaltigem Entellan eingedeckt wurden, erfolgte eine Behandlung der Schnitte in einer aufsteigenden Alkoholreihe (1 x in 70%-igem, 1 x in 90%-igem und 2 x in 100%-igem Ethanol) und anschließendem Xylolbad. Zwischen den Färbeschritten wurden die Schnitte in Wasser gespült.

2.2.4.2 Sirius-Rot-Färbung

Die Sirius-Rot-Färbung wird genutzt um Kollagenfasern in Geweben nachzuweisen^{119,120}. Diese werden rot angefärbt, während das Zytoplasma und die Muskelfasern gelb angefärbt werden. Unter polarisiertem Licht stellen sich die großen Kollagenfasern gelb-orange, die kleinen Kollagenfasern und das Bindegewebe hingegen grün dar. Dazu wurden die entparaffinierten und gewässerten Schnitte zuerst in Weigert's Eisenhämatoxylin für 10 Sekunden gebadet. Als nächstes erfolgte die einstündige Inkubation in der Picro-Sirius-Rot-Färbelösung (0,5 g in 500ml gesättigter wässriger Picricsäure) bei Raumtemperatur. Zur Fixierung der Färbung wurden die Schnitte in zwei Durchläufen mit angesäuertem Wasser (0,5% Essigsäure in dest. Wasser) gewaschen. Zum Abschluss wurden die Schnitte in drei Chargen 100%-igem Ethanol entwässert und nach zweimaligem Durchlaufen eines Xylolbades mit harzhaltigem Entellan eingedeckt.

Zum einen erfolgte die Auswertung des Fibrosestatus anhand von aufgenommenen Fotos, zum anderen wurden die gefärbten Präparate mithilfe einer Computer-gestützten Software (Leica QWinV3 und Leica QGo) statistisch ausgewertet.

2.2.4.3 Masson-Goldner-Trichrom-Färbung

Bei der Trichrom-Färbung nach Masson-Goldner wurden durch den kombinierten Einsatz von Ponceau Solution, Orange G und Lichtgrün SF Muskelfasern, Kollagenfasern, Fibrin und Erythrozyten selektiv dargestellt. Dazu wurden die Schnitte nach dem Entparaffinieren und Wässern in Weigert`s Eisenhämatoxylin für 1 Minute gefärbt. Im Anschluss erfolgte die fünfminütige Färbung mit Ponceau. Danach wurden die Schnitte in 0,5%-iger Essigsäure gewaschen. Direkt im Anschluss erfolgte die Färbung mit Orange G für 2 Minuten. Nach erneutem Waschen in 0,5%-iger Essigsäure erfolgte die letzte Färbung mit Lichtgrün SF für 4 Minuten. Nach letztmaligem Waschen in 0,5%-iger Essigsäure für 30 Sekunden wurden die Schnitte in einer aufsteigenden Alkoholreihe (1 x in 70%-igem, 1 x in 90%-igem und 2 x in 100%-igem Ethanol) entwässert und nach zweimaliger Inkubation im Xylolbad in harzhaltigem Entellan eingedeckt.

2.2.4.4 Immunhistochemische-Färbungen

Für die Immunhistochemie wurden die Schnitte wie unter 2.2.4 beschrieben vorbehandelt. Die Permeabilisierung bzw. Fixierung der Präparate wurde in 4). verschiedenen Puffern durchgeführt (siehe Tabelle Für die Permeabilisierung wurden die Schnitte im Wasserbad bei 96℃ für 40 Minuten gekocht. Nach dem Abkühlen wurden die Schnitte in 3%-igem Wasserstoffperoxid inkubiert, um die interne Peroxidase zu blocken. Nach gründlichem Waschen erfolgte das Abblocken der Schnitte für 30 Minuten mit 5%-igem Ziegenoder Pferde-Serum in PBS bei Raumtemperatur. Die Erstantikörper-Inkubation erfolgte bei 4℃ über Nacht. Primärantikörper, ents prechende Puffer und Verdünnungen wurden in Tabelle 4 aufgeführt.

Am darauffolgenden Tag erfolgte nach gründlichem Waschen die die 30minütiger Inkubation der Schnitte mit dem entsprechenden biotinylierten sekundären Antikörper, verdünnt in 5%-igem Ziegen- oder Pferde-Serum. Entsprechend der Darstellung in Tabelle 5.

Im Anschluss erfolgte eine 30-minütige Inkubation mit HRP-Streptavidin-Peroxidase-Konjugat Plus. Die Entwicklung der Färbung erfolgte mittels AEC Chromogen. Bevor die Schnitte im wässrigen Einbettmedium eingedeckt wurden, erfolgte die Gegen-Färbung in Weigert's Eisenhämatoxylin-Lösung. Zwischen den jeweiligen Inkubationen wurden die Schnitte in PBS gewaschen.

2.2.4.5 TdT-mediated dUTP nick labeling (TUNEL)-Assay

Die Fragmentierung der DNA wird als Nachweis für "Zelltod" herangezogen, womit auch der Programmierte Zelltod (Apoptose) gemeint sein kann. Dabei treten Doppelstrangbrüche innerhalb der DNA auf, die man an den somit freiliegenden 3'-OH Enden mit modifizierten Nukleotiden markieren kann. Der TUNEL-Assay markiert die aufgrund von Zelltod freien 3'-OH Enden in der DNA mithilfe der terminalen Deoxynucleotidyl-Transferase (TdT) mit Fluoreszeinmarkierten Nukleotiden.

Nach der oben aufgeführten Vorbehandlung wurden die Schnitte im Citrat Puffer (10 mM Zitronensäure, 0,05% Tween-20, pH 6,0) in der Mikrowelle bei 150 Watt behandelt. Im Anschluss daran erfolgte die 30-minütige Permeabilisierung der Präparate mit Proteinase-K-Lösung (20 µg/ml PBS). Als nächstes wurden die Schnitte für eine Stunde in 4%-iger Formaldehyd-Lösung inkubiert. Bevor die Schnitte mit dem TUNEL-Reaktions-Ansatz (Herstellerangaben) für 1,5 Stunden inkubiert wurden, erfolgte eine 30-minütige Behandlung mit Natrium Citrat Puffer (0,1% Natrium Citrat, 0,2% Triton-X-100 in PBS). Zum Schluss wurden die Schnitte mit DAPI Einbettmedium eingedeckt und die Auswertung erfolgte bei einer Wellenlänge von 456 nm.

2.2.5 Serum-Analysen

Für die Diagnose und auch die Verlaufskontrolle von Lebererkrankungen wurden folgende Parameter bestimmt:

2.2.5.1 TNF- α - und IL-6-ELISA

Die Bestimmung der TNF-alpha und IL-6 Konzentration in Mausseren erfolgte mithilfe der ELISA Sets von BD Biosiensces (siehe Tabelle 1). Die Durchführung der ELISA erfolgte, soweit nicht anders erwähnt, nach Herstellerangaben. Für den TNF-α-ELISA wurden die Mausseren 1:20 und für den IL-6-ELISA 1:15 im vom Kit zur Verfügung gestellten Puffer verdünnt.

2.2.5.2 Alanin-Aminotransferase (ALT)-Aktivitätsmessung

Die Alanin-Aminotransferase (ALT) ist ein Enzym das hauptsächlich in der Leber vorkommt und somit als Parameter zur Diagnostik der Lebererkrankung herangezogen werden kann. Die ALT überträgt die Aminogruppe von Alanin auf das alpha-Ketoglutarat, wodurch Glutamat und Pyruvat entstehen. Schon bei geringen Störungen in der Leber kann man eine Erhöhung der ALT-Aktivität im Blut messen.

Die Bestimmung der Aktivität erfolgte in der Nephrologie der MHH mithilfe des Olympus AU400. Dafür wurden die Mausseren unverdünnt oder entsprechend der Leberschädigung bis 1:20 in Wasser verdünnt eingesetzt. Der Messbereich des Olympus lag zwischen 3 und 1000 Units/Liter.

2.2.5.3 Bilirubin-Bestimmung im Mausserum

Das Bilirubin ist ein gelb-braunes Hauptabbauprodukt des Hämstoffwechsels, das größtenteils (65 – 75%) aus dem Abbau des Hämoglobins stammt. Die Ausscheidung des Bilirubins erfolgt über die Gallenflüssigkeit in den Darm. Für die Leberfunktions-Prüfung wird das indirekte (unkonjugierte, an Albumin gebundene) und das direkte (konjugierte) Bilirubin gemessen. Diese Marker geben Auskunft über die Ursache der erhöhten Bilirubin-Konzentrationen, ist die indirekte Bilirubin-Konzentration Erhöht, liegen die Ursachen dafür in der Milz, der Leber oder Aufgrund vermehrten Hämoglobin-Abbaus vor. Ist die direkte Bilirubin-Konzentration erhöht so liegt die Ursache dafür in der Galle vor.

Die Bestimmung der der totalen Bilirubin-Konzentrationen erfolgte in der Nephrologie der MHH mithilfe des Olympus AU400. Dafür wurden die Mausseren unverdünnt oder entsprechend der Leberschädigung bis 1:20 in Wasser verdünnt eingesetzt. Der Messbereich des Olympus lag zwischen 0 und 513 µmol/L.

2.2.6 Isolierung, Messung und Quantifizierung der Nukleotide

2.2.6.1 RNA-Isolierung

Die RNA-Isolierung erfolgte mit zwei verschiedenen Kits, zum Einem mit dem RNeasy Mini Kit von Qiagen und zum anderen mit dem NucleoSpin® RNA II von Macherey-Nagel GmbH & Co. KG. Die Isolierung erfolgte aus Leberstücken von 10-20 mg Gewicht nach Herstellerangaben.

2.2.6.2 DNA-Isolierung

Die DNA-Isolierung aus Mauslebern erfolgte mit dem QIAamp DNA Mini Kit von Qiagen. Die Isolierung erfolgte aus Leberstücken von 15-25 mg Gewicht nach Herstellerangaben.

2.2.6.3 Photometrische Konzentrationsbestimmung von Nukleinsäuren

Die Konzentrationsbestimmung der Nukleinsäuren erfolgte mittels Absorptionsmessung bei 260 nm im Spektrometer (Eppendorf). Dabei galten bei einer Absorption von 1,0 folgende Konzentrationen:

doppelsträngige DNA:	50 µg/ml
RNA:	40 µg/ml

2.2.6.4 Northern Blot

Die für den Northern Blot notwendige RNA-Isolierung erfolgte wie unter 2.2.6.1 beschrieben. Die Durchführung des Northern Blots erfolgte durch die Oregon Health and Science University. Dabei wurde ein gängiges Protokoll für die Durchführung genutzt.

2.2.6.5 cDNA-Synthese und semi-quantitative RT-PCR

Die Herstellung der cDNA erfolgte mittels SuperScript[™]II-First-Strand Synthesis System for RT-PCR (Invitrogen) und Transcriptor High Fidelity cDNA Synthesis Kit (Roche). Es wurden 2-4 µg RNA für die Herstellung der cDNA Syn-

these nach Herstellerangaben eingesetzt. Die fertiggestellte cDNA wurde bei - 20℃ tiefgefroren und gelagert.

Die für die semi-quantitative RT-PCR Analysen notwendigen PCR-Ansätze, PCR-Programme und Primer sind in den Tabellen 13 und14 aufgeführt.

		_		
PCR-Ansatz		_	PCR-Programm	
RT-PCR	Konzentration		Initiale Denaturierung	94℃ 3 min
cDNA	500 ng/µl	-	Zyklusbeginn (x-mal)	Siehe Primer
dNTP Mix	160 µM		Denaturierung	90℃ 30 sek
Primer Vorwärts	0,4 µM		Annealing	56℃ 30 sek
Primer Rückwärts	0,4 µM		Elongation	72℃ 1 min
H ₂ O dest.	Auf 50 µl auffüllen	-	Zyklusende	
Taq-Polymerase	1,5 Units		Finale Elongation	72℃ 10 min
			Ende	4℃ ∞

Tabelle 13: PCR-Ansatz und -Programm

Tabelle	14:	Primer
---------	-----	--------

Name	5' – 3' Ende	3' – 5' Ende	PCR Zyklen
Glutathion S- Transferase mu3 (Gst3)	TGA TTA GGC CCC TGC CAT GCT	TTG GGT CTG GGC ACC AAT GAA	27
Glutathion S- Transferase mu4 (Gst4)	CGG GGG TTC TGG GAA CAG TTG	GCT GGC AGG CAA GAC CAT CAA	30
Glutathion S- Transferase mu6 (Gst6)	TCG GAG TTC CTG GGG AAG CAG	CCT CAA AGC GGG CCA TGA AGT	28
Beta-2-Microglobulin (ß2M)	CTG ATA CAT ACG CCT GCA GAG TTA A	ATG AAT CTT CAG AGC ATC ATG AT	25

2.2.7 Bestimmung von Schädigungen der Leber durch oxidativem Stress ausgelöst

Für die Bestimmung der durch oxidativen Stress ausgelösten Leberschädigungen wurden folgende Methoden verwendet:

2.2.7.1 GSH-GSSG-Assay

Die Glutathion (GSH; γ-Glutamyl-Cysteinyl-Glycin)-Synthese wird durch zwei ATP-abhängige Schritte katalysiert (Abbildung 7). In aeroben Organismen steht das reduzierte Glutathion mit dem oxidierten Glutathion im Gleichgewicht. Unter normalen Bedingungen liegt der GSSG-Spiegel gegenüber dem reduzierten GSH in einem Verhältnis 1:10 vor. Mithilfe der Glutathion-Peroxidase werden zwei GSH-Moleküle unter Bildung von Wasserstoff zu Glutathion-Disulfid ver-knüpft. Die Regeneration des GSH erfolgt durch die Glutathion-Reduktase mit NADPH/H⁺ als Elektronendonor. Kommt es innerhalb der Zelle zu oxidativem Stress, steigt das Verhältnis von GSSG zu GSH an.

Abbildung 7: schematische Darstellung der Glutathion (GSH)-Synthese

Die Bestimmung der GSH und GSSG Konzentration wurden mithilfe des Glutathion Assay Kit II (354103, Calbiochem) aus Mausleberproben bestimmt. Die Vorgehensweise erfolgte nach Herstellerangaben.

2.2.7.2 8-Hydroxy-2'-deoxyguanosin (8-OH-dG)-Bestimmung

Hydrolysemix 5,6 Units Micrococcus-Nuklease/ 7 μl Aqua bidest. 280 mUnits Phosphodiesterase/28 μl Aqua bidest. 7 μl Verdaupuffer 28 μl Aqua bidest. Verdaupuffer

0,2 M Bernsteinsäure pH 6,0 3,7 mM Calciumchlorid

Die Oxidation von DNA-Basen durch direkte Einwirkung von reaktiven Sauerstoffspezies (reactive oxygen species, ROS) kann zu DNA-Strangbrüchen führen. Das Guanin-Derivat 8-Hydrxy-2'-deoxyguanosin ist ein zuverlässiger Marker für die Bestimmung des oxidativen Stressstatus in der Zelle.

Der Nachweis von 8-OH-dG erfolgte mittels Hochdruck-Flüssigkeitschromatographie (high-performance liquid chromatographie, HPLC) mit elektronischer Detektion (ECD). Dafür wurde genomische DNA aus Mäuselebern gewonnen und in Nukleotide gespalten, indem 35 µg DNA (Pellet) im Hydrolysemix für 3 Stunden bei 37℃ verdaut wurde. Die DNA-Isolierung erfolgte wie unter 2.2.6.2 beschrieben. Direkt im Anschluss erfolgte die Messung per HPLC, wobei für die Bestimmung der 8-OH-dG-Konzentration zusätzlich ein Standard mit gemessen wurde. Die Messung der Proben erfolgte durch das Frauenhofer Institut für Toxikologie und Experimentelle Medizin in Hannover.

2.2.7.3 Nachweis von Protein-Carbonylgruppen in Leberproben

Aufgrund von oxidativem Stress können Proteine an bestimmten Aminosäuren, wie Arginin, Lysin und Prolin, mit Carbonylgruppen versehen werden, die zu einer charakteristischen Veränderung des eigentlichen Proteins führen können. Der Nachweis erfolgte mithilfe des OxyBlot Protein Oxidation Detecion Kit (S7150, Chemicon). Die Vorgehensweise erfolgte nach Herstellerangaben. Da es sich weitestgehend um eine SDS-PAGE handelt, werden die Lösungen, die nicht im Kit enthalten waren, entsprechend den Angaben unter 2.2.3 angefertigt.

2.2.8 Bestimmung der Hydroxyprolin-Konzentration in Mauslebern

Hydroxyprolin (L-4-Hydroxyprolin) ist eine hydroxylierte α-Aminosäure, die im Kollagen vorkommt und zu dessen Stabilität beiträgt. Die Bestimmung der Hydroxyprolin-Konzentration wird zur Bestimmung der Leberfibrosierung genutzt.

240 mM Zitronensäure 1,2% Essigsäure

	900 mM Natriumazetat
	850 mM Natriumhydroxid
Neutralisierungs-Puffer	2,2 g Natriumhydroxid in 100 ml Citratazetat- Puffer pH 6,0 lösen
Chloramin-T-Lösung	0,141 g Chloramin-T (MW = 227,64 g mol)
	2 ml dest. Wasser
	3 ml 2-Methoxyethanol
	5 ml Citratazetat Puffer pH 6,0
Dimethylbenzaldehyd-Lösung	2 g Dimethylbenzaldehyd (MW = 149,119 g/mol) in 10 ml 2-Methoxyethanol lösen

Zuerst wurden 200 mg Lebergewebe in 4 ml 6N HCl homogenisiert und hydrolisiert. Bei abweichendem Lebergewebe wurde die Zugabe von 6N HCl entsprechend angepasst. Das Homogenisat wurde in spezielle Glasfläschchen überführt und für 16 bis 24 Stunden bei 110°C inkub iert.

Nach der Inkubation, wurde das Probenlysat auf Raumtemperatur abgekühlt. Die Lysate wurden anschließen mit einem Faltenfilter (Porengröße 159nm) gefiltert. Für die Neutralisierung der Lysate wurde zu je 50 µl Probenlysat 450 µl Neutralisierungs-Puffer gegeben.

Für die Auswertung der Hydroxyprolin-Konzentrationen wurde ein Hydroxyprolin-Standard im Versuch mitgeführt.

Stock der Standardlösung	5 mg Hydroxyprolin in 1 ml dest. Wasser
Standard-Gebrauchslösung	12 μl + 10 ml Citrat-Azetat Puffer = Endkon- zentration von 6 μg/ml
Standard 1	500 μl Standard Gebrauchslösung = Endkon- zentration von 6 μg/ml
Standard 2	500 μl Standard 1 + 500 μl Citrat-Azetat Puf- fer = Endkonzentration von 3 μg/ml
Standard 3	500 μl Standard 2 + 500 μl Citrat-Azetat Puf- fer = Endkonzentration von 1,5 μg/ml
Standard 4	500 μl Standard 3 + 500 μl Citrat-Azetat Puf- fer = Endkonzentration von 0,75 μg/ml

Standard 5	500 μl Standard 4 + 500 μl Citrat-Azetat Puf- fer = Endkonzentration von 0,375 μg/ml
Standard 6	500 μl Standard 5 + 500 μl Citrat-Azetat Puf- fer = Endkonzentration von 0,1875 μg/ml

Die Oxidierung der Hydrolysate (Probenvolumen 500 µl) erfolgte durch Zugabe von je 250 µl Chloramin-T-Lösung im Abstand von 10 Sekunden zu den neutralisierten Hydrolysaten, der Standard-Reihe sowie zum Leerwert (reiner Citrat-Azetat-Puffer). Diese wurden dann für 20 Minuten bei Raumtemperatur inkubiert.

Nach der 20-minütigen Inkubation wurde zu den 750 μ l Probenvolumen 250 μ l 70 – 72%-ige Perchlorsäure ebenfalls im 10 Sekunden Abstand hinzugegeben und erneut für 12 Minuten bei Raumtemperatur inkubiert. Zu den 1.000 μ l Probenvolumen wurden zu jeder Probe 250 μ l der Demethylbenzaldehyd Lösung hinzugegeben und für 20 Minuten bei 60°C inkubiert. Nach erfolgter Inkubation wurden die Proben, die Standards 1 – 6 und der Leerwert innerhalb von einer Stunde bei 565 nm in einem Photometer vermessen.

2.2.9 Mikroarray-Analyse

Für die Analyse der differentiellen Genexpression, wurde RNA wie unter 2.2.6.1 beschrieben isoliert. Die Analyse erfolgte mittels GenChip MOE 430 2.0 GeneChip Array (Affymetrix). Durchgeführt zum einen durch die Affymetrix Microarray Core Facility der Oregon Health and Science University Gene Microarray Shared Resource und zum anderen durch das Microarray Core Facility des Helmholzzentrums für Infektionsforschung. Die Daten wurden mittels Affymetrix-Expression-Analysis Software GCOS 1.4 analysiert und ausgewertet.

2.2.10 Standard-Agarose-Gelelektrophorese

Die gelelektrophoretische Auftrennung von DNA-Fragmenten erfolgte in horizontalen Bio-rad Elektrophorese Kammern (Sub-Cell GT) bei 5 Volt/cm für 30 bis 60 Minuten. Die Agarosekonzentrationen betrugen je nach Größe der aufzutrennenden DNA-Fragmente 1-2%. Zur Herstellung der Gele wurde Agarose in 0,5xTBE Puffer (44,5 mM Tris/ HCl, 44,5 mM Borsäure, 1 mM EDTA, pH 8,3) durch Kochen in der Mikrowelle bei 700 Watt gelöst und mit GelStar Gelstain (Endkonzentration: 0,5-fach) versetzt. Die Proben wurden vor dem Auftragen, soweit nicht schon im PCR Puffer vorhanden, mit Gel Loading Solution versetzt. Nach Auftrennung der DNA-Fragmente wurden die Agarosegele mit dem Gen Genius Bio Imaging System und der GeneSnap Software (SynGene) zur Dokumentation fotografiert.

2.2.11 Statistische Auswertung

Die Auswertung der erhobenen Daten wurde mithilfe des Tabellenkalkulationsprogramms Microsoft Excel (Microsoft Deutschland) durchgeführt. Die Einzeldaten der jeweiligen Versuchsgruppen wurden zusammengefasst und Mittelwerte mit Standardabweichung (MW \pm SD) ermittelt. Der Vergleich zweiter Versuchsgruppen miteinander erfolgte mittels Student`s t-Test. Als statistisch signifikant wurden die p-Werte von < 0,05 angenommen. Die Darstellung der Überlebenskurven erfolgte mit GraphPad Prism (GraphPad Software USA).

3 Ergebnisse

3.1 Die Rolle von Nrf2 in der hereditären Tyrosinämie Typ1 (HT1) und sein Einfluss auf Mortalität & Tumorentstehung

3.1.1 Nrf2 ist in Fah^{-/-} Mäusen nach NTBC-Entzug induziert

Erste Genexpressions-Analysen haben in den *Fah*^{-/-} Tieren nach komplettem NTBC-Entzug eine Induktion der Expression einer Reihe von Nrf2-Zielgenen gezeigt (siehe Anhang, Tabelle 15).

Mittels Northern Blot-Analysen konnte in *Fah*^{-/-} Knockout-Tieren ein Anstieg der Nrf2-mRNA nach kompletten Entzug des Medikaments 2-(2-nitro-4-trifluor-methylbenzyl)-1,3 zyklohexanedion (NTBC) gezeigt werden, der mit zunehmender Schädigung der Leber über die Zeit signifikant anstieg (Abbildung 8).

Abbildung 8: Northern Blot-Analyse der Nrf2-mRNA in *Fah*^{-/-} Mäusen nach 2, 4 und 14 Tagen NTBC-Entzug im Vergleich zu *Fah*^{-/-} Kontrolltieren mit 100% NTBC.

Um die Bedeutung der Nrf2-regulierten Stressantwort in den $Fah^{-/-}$ Tieren näher zu untersuchen, wurden $Fah^{-/-} Nrf2^{-/-}$ Doppelknockout-Mäuse generiert.

3.1.2 Nrf2 ist wichtig für das Überleben von *Fah*^{-/-} Mäusen nach NTBC-Entzug

8 Wochen nach der Geburt wurde sowohl *Fah^{-/-} Nrf2^{-/-}* Doppelknockout-Tieren als auch *Fah^{-/-}* Einfachknockout-Tieren das NTBC entzogen. Für die Überlebenskurve wurden 12 *Fah^{-/-}* und 13 *Fah^{-/-} Nrf2^{-/-}* Tiere über einen Zeitraum von 4 Wochen nach NTBC-Entzug beobachtet und der eventuell eingetretene To-

deszeitpunkt festgehalten (Abbildung 9). Während die *Fah*^{-/-} Tiere den NTBC-Entzug länger als 4 Wochen überlebten, starben alle *Fah*^{-/-} *Nrf2*^{-/-} Mäuse innerhalb der ersten 5 Tage nach NTBC-Entzug.

Abbildung 9: Überlebenskurve der *Fah*^{-/-} und *Fah*^{-/-} *Nrf2*^{-/-} Mäuse nach vollständigem NTBC-Entzug. *Fah*^{-/-} Mäuse überleben den NTBC-Entzug signifikant länger im Vergleich zu *Fah*^{-/-} *Nrf2*^{-/-} Mäusen (p-Wert < 0,0001).

Um die Todesursache der $Fah^{-/-} Nrf2^{-/-}$ Tiere näher zu bestimmen, wurden histologische Untersuchungen der $Fah^{-/-}$ und $Fah^{-/-} Nrf2^{-/-}$ Tiere mit und ohne NTBC-Behandlung durchgeführt. Die Hämatoxylin-Eosin (H&E)-Färbung zeigte viele nekrotische Bereiche in den Lebern der $Fah^{-/-} Nrf2^{-/-}$ Tiere ohne NTBC-Behandlung (0% NTBC). Diese Tiere wurden für 2 – 4 Tage ohne NTBC gehal-

Abbildung 10: Repräsentative Histologien der H&E- und TUNEL-gefärbten Schnitte von Lebern der *Fah*^{-/-} und *Fah*^{-/-} Nrf2^{-/-} Tiere mit (100%) und ohne (0%) NTBC-Behandlung. 200x Vergrößerung.

TUNEL-Färbung = Darstellung TUNEL-positiver Zellen in grün, Zellkern-Färbung mittels DAPI in blau.

ten und getötet sobald sie moribund waren. In den Lebern der *Fah*^{-/-} Tiere, die für 14 Tage ohne NTBC gehalten wurden, konnte mittels H&E-Färbung nur ein leichter Leberschaden nachgewiesen werden. Im Vergleich dazu konnte keine Leberschädigung in den Kontrolltieren mit 100% NTBC-Behandlung (*Fah*^{-/-} und *Fah*^{-/-} *Nrf*2^{-/-}) nachgewiesen werden (Abbildung 10).

Des Weiteren wurden die Lebern der 4 Gruppen mithilfe der TUNEL-Färbung auf hepatozellulären Zelltod untersucht. Hier konnten ausschließlich in den Lebern der *Fah*^{-/-} *Nrf*2^{-/-} ohne NTBC-Behandlung (0% NTBC) viele TUNEL-positive Hepatozyten nachgewiesen werden (Abbildung 10).

Um zu untersuchen, ob es sich bei dem nachgewiesenen Zelltod um apoptotische oder nekrotische Hepatozyten handelt, wurden die Proteinmengen der Pro-Caspase 9 und des Spaltungsproduktes der Caspase 3 mittels Western Blot analysiert (Abbildung 11). Caspasen sind Proteasen, die die Apoptose (programmierten Zelltod) einleiten und auch ausführen. Die Aktivierung der Caspasen erfolgt mittels autokatalytischer Spaltung der enzymatisch inaktiven Zymogene (Pro-Caspasen). Caspase 9 gehört zu den Initiator-Caspasen, die nachgeschaltete Vorstufen (Zymogene) der Effektor-Caspasen, wie z. B. die Caspase 3, spalten.

Für die Untersuchung der Proteinmenge wurden exemplarisch jeweils 2 Proben der Fah^{-/-} und Fah^{-/-} Nrf2^{-/-} Tiere mit 100% NTBC-Behandlung mit je 2 Fah^{-/-} und Fah^{-/-} Nrf2^{-/-} Mäusen verglichen, die 14 Tage bzw. 2-4 Tage ohne NTBC gehalten wurden. Die Western Blot-Analyse zeigte, dass in den Fah^{-/-} Nrf2^{-/-} Tieren ohne NTBC-Behandlung das Pro-Caspase 9-Protein nicht mehr nachweisbar war. Ein Hinweis dafür, dass die Pro-Caspase 9 vollständig gespalten wurde und demnach in der aktiven Form vorlag. Die Analyse für die gespaltene Caspase 3 zeigte als Nachweis seiner aktiven Form eine starke Bande in den Fah^{-/-}

Abbildung 11: Western Blot-Analysen für Pro-Caspase 9, gespaltene Caspase 3, p-JNK und Aktin, welches als Beladungskontrolle diente.

Casp. 9 = Pro-Caspase 9, cleaved Casp. 3 = gespaltene Caspase 3, p-JNK = phospho-SAPK/JNK, F = $Fah^{-/-}$, FN = $Fah^{-/-}$ Nrf2^{-/-}.

Nrf2^{-/-} Tieren ohne NTBC. Der in den 0% NTBC *Fah^{-/-} Nrf2^{-/-}* Mäusen nachgewiesene hepatozelluläre Zelltod erfolgte demnach aufgrund des programmierten Zelltods.

Ebenso wurde die Aktivierung des JNK (stress-acitvated protein kinase/ Junamino-terminal kinase, SAPK/JNK) Proteins in diesen Mäusen untersucht, die bei verschiedenen Formen von Stress aktiviert wird (Abbildung 11). Hier konnte eine starke Aktivierung des JNK Proteins in den *Fah^{-/-} Nrf2^{-/-}* Mäusen nach kompletten NTBC-Entzug nachgewiesene werden. In den anderen drei Gruppen konnte im Vergleich zu den *Fah^{-/-} Nrf2^{-/-}* 0% NTBC Mäusen keine Aktivierung von JNK gezeigt werden.

Als Marker für den Grad der Leberschädigung und zur Bestätigung der vorherigen Ergebnisse der H&E-Färbungen, wurde die Alanin-Aminotransferase (ALT)-Aktivität im Blutserum gemessen. Die Alanin-Aminotransferase ist ein Enzym, das hauptsächlich in der Leber konstitutiv expremiert wird und somit als Parameter zur Diagnostik von Lebererkrankungen herangezogen werden kann. Die ALT überträgt die Aminogruppe von Alanin auf alpha-Ketoglutarat, wodurch Glutamat und Pyruvat entstehen. Schon bei geringen Störungen in der Leber ist eine erhöhte ALT-Aktivität im Blut messbar.

In Übereinstimmung mit den in den histologischen Untersuchungen festgestellten Leberschäden in den 0% NTBC *Fah*^{-/-} *Nrf2*^{-/-} Tieren, war die ALT-Aktivität dieser Tiere im Vergleich zu den anderen Gruppen signifikant erhöht (Abbildung 12).

Abbildung 12: Messung der Alanin-Aminotransferase-Aktivität im Blutserum der behandelten Mäuse

* p-Wert = 0,00015, F = *Fah*^{-/-}, FN = *Fah*^{-/-} *Nrf*2^{-/-}, 100% = 100% NTBC, 0% = 0% NTBC

Eine akute Schädigung der Leber kann zur Aktivierung des Immunsystems führen. Die erste Antwort des Immunsystems auf einen Leberschaden ist die Aktivierung der lebereigenen Makrophagen, der Kupfferzellen. Werden diese auf Grund von akuten oder auch chronischen Schäden in der Leber aktiviert, können sie Zytokine sezernieren. Zu den sezernierten Zytokinen der Kupfferzellen gehört der Tumornekrosefaktor (TNF)-α und das Interleukin (IL)-6. Nach Aktivierung der Kupfferzellen, binden die Zytokine an Oberflächenrezeptoren der Hepatozyten und sorgen dafür, dass Leukozyten in das geschädigte Gewebe einwandern und weitere systemische Effekte aktiviert werden.

Um den Zusammenhang zwischen Leberschädigung und Immunantwort in unserem Mausmodell zu untersuchen, sollten die Zytokine TNF-α und IL-6 bestimmt werden. Dazu wurden die Konzentrationen der beiden Zytokine in den Serumproben der einzelnen Gruppen mithilfe von ELISA-Messungen bestimmt. In den Doppelknockout-Tieren nach NTBC-Entzug konnte im Vergleich zu den Einfachknockout-Tieren bei beiden Zytokinen ein signifikanter Anstieg der Serum-Konzentration nachgewiesen werden (Abbildung 13).

Abbildung 13: Tumornekrosefaktor (TNF)- α - und Interleukin (IL)-6-Konzentrationen im Blutserum von Tieren nach NTBC-Entzug mittels ELISA-Messung bestimmt.

* p-Wert = 0,00043, ** p-Wert = 0,015, F = Fah^{-/-}, FN = Fah^{-/-} Nrf2^{-/-}.

Das Medikament NTBC sorgt im *Fah*^{-/-} Modell dafür, dass der toxische Metabolit Fumarylazetoazetat (FAA) nicht in der Leber akkumuliert. Entzieht man den Tieren das NTBC sammelt sich das FAA in der Leber an. Die Akkumulation von FAA wiederum führt zur negativen Rückkopplung (Feedback) der Enzyme, die in der Tyrosin-Abbaukaskade oberhalb des gebildeten FAAs lokalisiert sind¹²¹. Um zu bestimmen ob Nrf2 eine Rolle bei der negativen Rückkopplung auf die Enzyme oberhalb des defekten Fah-Enzyms spielt, wurde die RNA-Expression dieser vier Enzyme gemessen. Dafür wurden *Fah*^{-/-} und *Fah*^{-/-} *Nrf2*^{-/-} Mäuse mit 10% NTBC und ohne NTBC-Behandlung miteinander verglichen (Abbildung 14). In beiden Tiermodellen kam es nach NTBC-Entzug zu einer gleichsam verminderten Expression. Im Vergleich dazu stieg die Expression dieser Enzyme aber in beiden Tiermodellen unter 10% NTBC-Therapie gleichermaßen an.

Abbildung 14: RNA-Expressionsprofile der Tyrosin-katabolisierenden Enzyme.

Tat = Tyrosin-Aminotransferase, Hpd = 4-Hydoxyphenylpyruvat-Dioxygenase, Hdg = Homogentisinsäure-Dioxigenase, Maai = Maleylazetoazetat-Isomerase.

3.1.3 *Fah^{-/-} Nrf2^{-/-}* Mäuse entwickeln eine stärker ausgeprägte Hepatitis und Fibrose während der Therapie mit geringerer NTBC-Dosis

Um zu bestimmen, welche Rolle Nrf2 bei der chronischen Form der HT1-Erkrankung und der potentiellen Entstehung von hepatozellulären Karzinomen spielt, wurden *Fah*^{-/-} und *Fah*^{-/-} *Nrf2*^{-/-} Mäuse für 5 bis 6 Monate mit einer verminderten NTBC-Dosis (10%) behandelt.

Abbildung 15: Repräsentative Histologien der H&E- und TUNEL-Färbungen von Lebern der *Fah*^{-/-} und *Fah*^{-/-} *Nrf*2^{-/-} Tiere mit 100% und 10% NTBC-Behandlung. 200x Vergrößerung.

TUNEL-Färbung = Darstellung TUNEL-positiver Zellen in grün, Zellkern-Färbung mittels DAPI-Färbung in blau. Die ersten histologischen Untersuchungen mittels H&E-Färbung haben gezeigt, dass die *Fah^{-/-} Nrf2^{-/-}* Tiere generell – unabhängig von der NTBC-Dosis – eine stärkere Hepatitis im Vergleich zu den *Fah^{-/-}* Tieren entwickeln (Abbildung 15). Die Auswertung der histologischen Schnitte ergab vielfältige abnorme Leberbefunde, mit einer stärkeren Ausprägung in den 10% NTBC *Fah^{-/-} Nrf2^{-/-}* Tieren im Vergleich zu den 100% NTBC Tieren. Unter anderem konnten diffuse nekroinflammatorische Läsionen in der Leber, Proliferation der Gallengänge, Variationen in der Hepatozytengröße und stellenweise Steatose nachgewiesen werden.

Im Gegensatz zu den akut kranken *Fah*^{-/-} *Nrf2*^{-/-} Tieren (0% NTBC, Abbildung 10) konnte in den chronisch kranken *Fah*^{-/-} *Nrf2*^{-/-} Tieren (10% NTBC), sowie in den jeweiligen Kontrollgruppen mit 100% NTBC keine Apoptose in den Lebern mittels TUNEL-Färbung nachgewiesen werden (Abbildung 15).

Hepatozelluläre Schäden können zunächst zur Fibrose und letztendlich – bei anhaltender Schädigung – zur Leberzirrhose führen. Leberfibrose entsteht, wenn das Gleichgewicht zwischen Auf- und Abbau der kollagenreichen extrazellulären Matrix ins Ungleichgewicht gerät und mehr Kollagen gebildet als abgebaut wird.

In den folgenden Experimenten sollte geklärt werden, ob es in den hier untersuchten Mäusen aufgrund der genetischen Prädisposition und der daraus resultierenden Ansammlung des toxischen Metaboliten FAA zur Entstehung von Fibrose oder Zirrhose kommt. Aus diesem Grunde wurde der Fibrosestatus in den unterschiedlichen Gruppen untersucht und miteinander verglichen.

Als Nachweis für Fibrose wurden drei histologische Färbungen der Lebern durchgeführt, die direkt oder indirekt den Kollagengehalt der Leber nachwiesen. Zum einen zeigten sowohl die Sirius-Rot-Färbung als auch die Masson-Goldner-Trichrom-Färbung direkt den Kollagengehalt des Gewebes, zum anderen wurde mittels α -SMA (α -smooth muscle actin)-Immunhistochemie das glatte Muskel-Aktin nachgewiesen, welches von den Myofibroblasten der Leber produziert wird. Diese Zellen sind ebenfalls in der Lage Kollagenfasern zu bilden.

Die Aufnahmen der Sirius-Rot- und Masson-Goldner-Trichrom-Färbungen zeigten, dass in den *Fah*^{-/-} Mäusen mit 10% NTBC und *Fah*^{-/-} *Nrf2*^{-/-} Mäusen mit 100% und 10% NTBC zu einem Anstieg des Kollagengehaltes kam (Abbildung 16). Durch die statistische Auswertung der Sirius-Rot-Färbung konnte der Anstieg des Kollagengehaltes in diesen Gruppen bestätigt werden. Demnach kam es in den *Fah*^{-/-} *Nrf2*^{-/-} Mäusen mit 10% NTBC-Behandlung im Vergleich zu den *Fah*^{-/-} Mäusen mit 10% NTBC-Behandlung zu einem zweifachen Anstieg des Kollagengehaltes (Abbildung 17).

Zusätzlich konnte in den $Fah^{-/-}$ Nrf2^{-/-} Tieren mit 10% NTBC-Behandlung eine stärke α -SMA-Färbung nachgewiesen werden (Abbildung 16).

Abbildung 16: Repräsentative Aufnahmen der Färbungen, welche als Leberfibrose-Marker eingesetzt wurden. 200x Vergrößerung.

Sirius red = Aufnahmen erfolgten unter polarisiertem Licht (gelb-orange-Färbung zeigt große Kollagenfasern; kleine Kollagenfasern und Bindegewebe sind grün angefärbt), Mas. trichrome = Masson-Goldner-Trichrom-Färbung, α -SMA-Färbung = glattes Muskel Aktin (α -SMA-positive Zellen wurden in grün dargestellt, Zellkern-Färbung mittels DAPI in blau dargestellt).

Abbildung 17: statistische Auswertung der Sirius-Rot-Färbung in Prozent pro Gesichtsfeld. Pro Gruppe wurde der hepatische Kollagengehalt von 4 Tieren bestimmt. Je Tier wurden 10 Gesichtsfelder ausgewertet und im Anschluss gemittelt.

* p-Wert < 0,0001, F = Fah^{-/-}, FN = Fah^{-/-} Nrf2^{-/-}.

Ergänzend zu den vorherigen Bestimmungen des hepatischen Kollagengehalts, zeigte die Auswertung der Microarray-Analysen in den *Fah^{-/-} Nrf2^{-/-}* 10% NTBC

Tieren im Vergleich zu den $Fah^{-/-}$ 10% NTBC-Kontrollen eine stärkere Induktion einiger an der Kollagenbildung beteiligter Gene (Abbildung 18).

Abbildung 18: Auswertung der Microarray-Analysen einiger Gene, die an der Kollagenbildung beteiligt sind und somit bei der Entstehung von Fibrose eine Rolle spielen.

weiß = $Fah^{-/-}$ 10% NTBC, schwarz = $Fah^{-/-}$ Nrf2^{-/-} 10% NTBC.

3.1.4 Das zelluläre Detoxifikations-System der *Fah*^{-/-} *Nrf*2^{-/-} Mäuse ist stark beeinträchtigt

Die Studien-Ergebnisse der letzten Jahre zeigten, dass Nrf2 eine zentrale Rolle in der Regulation der Phase II-Enzyme spielt. Darüber hinaus ist Nrf2 an der Synthese des nichtenzymatischen Radikalfängers Glutathion beteiligt. Aus diesem Grunde sollte in dieser Arbeit die Auswirkung des Verlusts von Nrf2 auf das Detoxifikations-Systems in den *Fah*^{-/-} Mäusen analysiert werden.

Dazu wurden zunächst die hepatische Konzentrationen des reduzierten (GSH) und oxidierten (GSSG) Glutathions bestimmt. Die Analyse ergab, dass sowohl die GSH- als auch die GSSG-Konzentrationen in den 100% NTBC-behandelten *Fah*^{-/-} und *Fah*^{-/-} *Nrf2*^{-/-} Mäusen identisch waren (n = 4). Der vollständige NTBC-Entzug (0%) verursachte in den *Fah*^{-/-} *Nrf2*^{-/-} Tieren einen signifikanten Abfall der hepatischen GSH-Konzentration im Vergleich zu den Kontrollen (100% NTBC) (p < 0,00001). Dagegen stieg die GSH-Konzentration der *Fah*^{-/-} Tiere nach NTBC-Entzug im Vergleich zu den Kontrollen (100% NTBC) signifikant an (p < 0,00001) (Abbildung 19).

Abbildung 19: Konzentrationen des hepatischen GSH und GSSG der *Fah^{-/-}* und *Fah^{-/-} Nrf*2^{-/-} Mäuse mit 100%, 0% und 10% NTBC-Behandlung.

 $F = Fah^{-/-}; FN = Fah^{-/-} Nrf2^{-/-}.$

Wie bereits erwähnt wird die Biosynthese des Glutathions mithilfe von zwei Enzymen reguliert. Die γ -Glutamylcysteinligase (GCL) ist das erste Enzym im Reaktionssystem zur Glutathion-Synthese (siehe 2.2.7.1). Diese besteht aus zwei Untereinheiten; der modulatorischen Untereinheit (GCLM) und der katalytischen Untereinheit (GCLC). Um die Nrf2-abhängige Expression der GCL zu untersuchen, wurden die Proteinmengen der beiden GCL-Untereinheiten per Western Blot-Analyse bestimmt (Abbildung 20). Übereinstimmend mit den erhöhten Glutathion-Konzentrationen in den Lebern der *Fah*^{-/-} 0% NTBC Tiere, konnte eine erhöhte Proteinmenge der beiden GCL-Untereinheiten nachgewiesen werden. In den 0% NTBC *Fah*^{-/-} *Nrf2*^{-/-} Mäusen konnte hingegen keine Veränderung der hepatischen Proteinmenge der GCL-Untereinheiten im Vergleich zu den Kontrollen (100% NTBC) gezeigt werden.

Abbildung 20: Western Blot-Analyse der Untereinheiten der γ -Glutamylcysteinligase in Fah^{-/-} und Fah^{-/-} Mäuse. Aktin diente als Beladungskontrolle.

GCLC= katalytische Untereinheit der γ -Glutamylcysteinligase, GCLM = modulatorischen Untereinheit der γ - Glutamylcysteinligase, F = Fah^{-/-}, FN = Fah^{-/-} Nrf2^{-/-}.

Andere Forschungsgruppen haben bereits zuvor gezeigt, dass die Gabe von N-Acetylcystein (NAC), einem Vorläufer des Glutathions, dem durch Acetaminophen vermittelten Leberschaden in *Nrf2^{-/-}* Mäusen entgegenwirken kann⁴⁰. Aus diesem Grunde wurden jeweils sechs der *Fah^{-/-} Nrf2^{-/-}* Tiere entweder mit NAC oder mit PBS als Kontrolle behandelt. Begonnen wurde die NAC-Behandlung 24 Stunden vor dem vollständigen NTBC-Entzug und erfolgte alle vier Stunden über einen Zeitraum bis zu vier Tagen. Die Behandlung mit NAC zeigte jedoch keine Verlängerung des Überlebens der *Fah^{-/-} Nrf2^{-/-}* Mäuse nach dem NTBC-Entzug (Abbildung 21).

Abbildung 21: Der Effekt der N-Acetylcystein Behandlung auf das Überleben der *Fah^{-/-} Nrf*2^{-/-} Mäuse nach NTBC-Entzug.

Desweiteren wurde zuvor von anderen Forschungsgruppen gezeigt, dass die Behandlung mit dem zellpermeablen GSH (GSH-Methylester) in den Mäuse zu einer Erhöhung der hepatischen GSH-Konzentration führte¹²². Aufgrund dieser Beobachtungen wurden *Fah^{-/-} Nrf2^{-/-}* Mäuse nach dem kompletten NTBC-Entzug viermal am Tage mit GSH-Methylester oder PBS behandelt. Es konnte kein signifikantes Überleben der behandelten *Fah^{-/-} Nrf2^{-/-}* Mäuse im Vergleich zu den unbehandelten Mäusen gezeigt werden (ohne Abbildung).

Da weder die Behandlung mit NAC noch mit GSH-methylester zu der erwarteten Reduktion der Mortalität in den $Fah^{-/-} Nrf2^{-/-}$ Mäusen führte, wurde analysiert, ob andere Gene des xenobiotischen Stoffwechsels durch den Verlust von Nrf2 beeinflusst wurden. Auswertungen der Mikroarray-Analysen haben gezeigt, dass eine Reihe von Genen differenziell in den $Fah^{-/-} Nrf2^{-/-} 10\%$ NTBC Mäusen im Vergleich zu den $Fah^{-/-} 10\%$ NTBC Mäusen reguliert waren. Beispielsweise kam es zu einer 11,2-fachen Reduktion der Expression von GSTm3 (Glutathion-S-Transferase, mu 3) in den $Fah^{-/-} Nrf2^{-/-} 10\%$ NTBC Mäusen im Vergleich zu den $Fah^{-/-} 10\%$ NTBC Mäusen. Weitere Ergebnisse sind der Tabelle 16 (siehe Anhang) zu entnehmen.

In verschiedenen Organen und Zelltypen werden laut Literatur zahlreiche Gene, die in dieser Arbeit als differenziell reguliert gezeigt wurden, durch Nrf2 reguliert. Dazu gehören zum Beispiel die Glutathion-S-Transferasen (GSTs), die eine wichtige Rolle bei der Entgiftung von organischen Stoffen spielen. Sie konjugiert Xenobiotika mit Glutathion, um diese Stoffe aus der Zelle zu entfernen.

Deshalb wurden exemplarisch einige der GST-RNA-Expressionen per semiquantitativer RT-PCR bestimmt (Abbildung 22). Es konnte gezeigt werden, dass die Regulation der hier analysierten GSTs nicht allein von Nrf2 abhängig ist. In den *Fah^{-/-} Nrf2^{-/-}* Mäusen mit 0% NTBC-Behandlung war die Expression fast vollständig runter reguliert im Vergleich zu den Kontrollen. Die Reduktion der Expression in den *Fah^{-/-} Nrf2^{-/-}* 10% NTBC Tiere aber im Vergleich zu den Kontrollen geringer ausfiel.

Abbildung 22: Semiquantitative RT-PCR-Analyse von Glutathion-S-Transferasen. ß2 Mg diente als Beladungskontrolle.

Gst3 = Glutathion-S-Transferase mu3, Gst4 = Glutathion-S-Transferase mu4, Gst6 = Glutathion-S-Transferase mu6, ß2 Mg = beta-2-Mikroglobulin, WT = C57/Bl6 Mäuse, $F = Fah^{-/-}$, $FN = Fah^{-/-}$ Nrf2^{-/-}.

Frühere Untersuchungen haben gezeigt, dass die Ätiologie der FAA-induzierten Leberschädigung sowohl zu oxidativem Stress als auch zu Stress im Endoplamatischen Retikulum (ER) führen kann^{123,124}. Aus diesem Grund wurde in der vorliegenden Arbeit untersucht ob der Verlust der Nrf2-regulierten Stressantwort den oxidativen Stress sowie den ER Stress in den *Fah^{-/-}* Mäusen erhöht.

Dazu wurde zunächst das Verhältnis von 8-Hydroxy-2-deoxy-Guanosin (8-OH dG) zu 2-deoxy-Guanosin (dG) in der hepatozellulären DNA dieser Tiere bestimmt (Abbildung 23). 8-OH dG entsteht sobald ein Hydroxyl-Radikal oder Sauerstoffsuperoxid die DNA-Base Guanin angreift und ist deshalb ein Marker für Schädigungen der DNA aufgrund von oxidativem Stress. Es konnte gezeigt werden, dass in den 100% NTBC Tieren kein Unterschied zwischen den *Fah*^{-/-} und *Fah*^{-/-} *Nrf2*^{-/-} Tieren im Verhältnis von 8-OH dG zu dG besteht. Vergleicht man jedoch die Ergebnisse der *Fah*^{-/-} mit *Fah*^{-/-} *Nrf2*^{-/-} Tieren jeweils mit 10% NTBC-Behandlung, so konnte ein Anstieg des Verhältnisses in den *Fah*^{-/-} *Nrf2*^{-/-} gemessen werden. Dies deutet darauf hin, dass es in den Lebern der *Fah^{-/-} Nrf2^{-/-}* Tieren unter dieser Behandlung zu einem Anstieg von oxidativem Stress kam.

Abbildung 23:Das Verhältnis von 8-Hydroxy-2-deoxy-Guanosin (8-OH dG) zu 2-deoxy-Guanosin (dG) in Tieren unter 100% bzw. 10% NTBC-Behandlung.

* p-Wert =0,006, F = *Fah*^{-/-}, FN = *Fah*^{-/-} *Nrf*2^{-/-}, n = 4.

Ein weiterer Marker für oxidativen Stress ist der Carbonylierungsgrad von Proteinen in der Leber. Kommt es in der Zelle zur Bildung von reaktiven Sauerstoffspezies (ROS), können Proteine carbonyliert werden. Diese Modifizierung ist ein Zeichen dafür, dass die Proteine degradiert und nachfolgend abgebaut werden sollen. In dieser Arbeit wurde mithilfe des OxyBlot Protein Oxidation Detection Kit der Carbonylierungsgrad der *Fah*^{-/-} und *Fah*^{-/-} *Nrf2*^{-/-} Leber-Proteine bestimmt. Hier konnte gezeigt werden, dass bei gleichen Proteinmengen im Vergleich zu den anderen Gruppen mehr oxidierte Proteine in den *Fah*^{-/-} *Nrf2*^{-/-} 10% NTBC Mäusen vorlagen (Abbildung 24).

Abbildung 24: Bestimmung des Carbonylierungsgrades von hepatischen Proteinen mithilfe des OxyBlot Protein Oxidation Detecion Kits

WT = C57/BI6, F = $Fah^{-/-}$, FN = $Fah^{-/-}$ Nrf2^{-/-}, 100% und 10% NTBC, n = 4.

3.1.5 Identifizierung von funktionalen Gengruppen und transkriptionellen Netzwerken die in den Fah^{-/-} und Fah^{-/-} Nrf2^{-/-} 0% NTBC Mäusen differentiell unterschiedlich reguliert waren

Für ein besseres Verständnis der molekularen Veränderungen in den *Fah*^{-/-} und *Fah*^{-/-} *Nrf2*^{-/-} Mäusen während der Leberschädigung wurden Analysen mithilfe der Software Ingenuity Pathway angefertigt. Die *in silico*-Auswertung der Mikro-array-Daten ordnete die differentiell regulierten Gene zum einen in einzelne Kategorien ein, zum anderen zeigte sie Verknüpfungen zwischen einzelnen Gengruppen auf.

Abbildung 25: Das p53-Netzwerk nimmt eine zentrale Rolle in der FAA-induzierten Leberschädigung ein.

Auf diese Weise konnte 137 Gene in diversen Aspekten der Karzinogenese zugeordnet werden (siehe Anhang, Tabelle 17).

Daraufhin erfolgte die Zuordnung der differentiell regulierten Gene in spezifische Signalwege. Es konnten drei Netzwerke mit zentraler Bedeutung mithilfe der Software Ingenuity Pathway ermittelt werden. Die Analyse ergab, dass p53, Cylcin D1 und c-jun zentrale Proteine in der FAA-induzierten Leberschädigung darstellten (Abbildung 25 – 27).

Abbildung 26: Das c-jun-Netzwerk nimmt eine zentrale Rolle in der FAA-induzierten Leberschädigung ein.

Abbildung 27: Das Cylin D1-Netzwerk nimmt eine zentrale Rolle in der FAA-induzierten Leberschädigung ein.

Übereinstimmend mit den vorherigen Analysen wurden mittels Western Blot-Analyse ebenfalls erhöhte p53-, p21-, c-jun- und Cyclin D1-Proteinmengen in den *Fah*^{-/-} *Nrf*2^{-/-} 10% NTBC Mäusen im Vergleich zu den *Fah*^{-/-} Mäusen nachgewiesen (Abbildung 28).

Abbildung 28: Western Blot-Analyse von p53, p21, c-jun und Cyclin D1 sowie Aktin als Beladungskontrolle in den vier Gruppen.

 $F = Fah^{-/-}$, $FN = Fah^{-/-} Nrf2^{-/-}$, n = 4.

Auch in der Immunhistochemie wurden im Vergleich zu den anderen Gruppen in den Lebern der *Fah^{-/-} Nrf2^{-/-}* 0% NTBC Tiere erhöhte p21-Proteinmengen gezeigt (Abbildung 29).

Abbildung 29: Repräsentative Histologien der p21-Immunhistochemie in den Fah^{-1} und Fah^{-1} Nrf2⁻¹ Tieren mit 100% und 10% NTBC-Behandlung. 200x Vergrößerung.

In vorausgegangenen Studien innerhalb unserer Arbeitsgruppe wurde gezeigt, dass die Lebern der *Fah*^{-/-} 0% NTBC Mäuse im Vergleich zu Wildtyp-Mäusen nach partieller Leberteilresektion eine stark beeinträchtige Regenerationsfähigkeit aufwiesen. Man hat herausgefunden, dass der Zellzyklus-Inhibitor p21 für diese verminderte Leberregeneration in den *Fah*^{-/-} 0% NTBC Mäusen verantwortlich war⁷⁹.

Aufgrund der vorrausgegangenen Studien und den in Abbildung 28 und Abbildung 29 gezeigten erhöhten p21-Proteinmengen, sollte geklärt werden, ob die *Fah^{-/-} Nrf2^{-/-}* Mäuse nach Aktivierung des p53/ p21-Signalweges ebenfalls eine beeinträchtige Leberregeneration bei dieser chronischen Lebererkrankung aufzeigen. Das Ki67 Protein ist während des gesamten Zellzyklus gebildet (G₁-, S-, G₂- und M-Phase) und wird deshalb als Marker für Proliferation eingesetzt. Aus diesem Grund wurde eine Ki67-Immunhistochemie durchgeführt. In den Lebern der *Fah*^{-/-} 100% und 10% NTBC Tiere konnten nur vereinzelte Hepatozyten positiv für Ki67 nachgewiesen werden. Im Vergleich dazu waren signifikant mehr positive Hepatozyten in den *Fah*^{-/-} *Nrf2*^{-/-} 100% NTBC Tieren erkennbar (p = 0,01). Einhergehend mit den zuvor gezeigten erhöhten p21-Proteinmengen konnten in den *Fah*^{-/-} *Nrf2*^{-/-} 10% NTBC Tieren mit chronischer Leberschädigung nur wenige Ki67-positive Hepatozyten nachgewiesen werden (Abbildung 30).

Abbildung 30: Repräsentative histologische Aufnahmen der Ki67-Immunhistochemie in den *Fah*^{-/-} und *Fah*^{-/-} *Nrf2*^{-/-} Tieren mit 100% bzw. 10% NTBC-Behandlung. 200x Vergrößerung.

Zur exakteren Analyse der Ki67-Immunhistochemie erfolgte eine Auszählung der positiven Hepatozyten für jeweils vier Tiere jeder Gruppe (Abbildung 31).

Abbildung 31: Auszählung der Ki67-positiven Hepatozyten. Gezählt in 10 Gesichtsfeldern je Maus.

* p-Wert = 0,01, F = *Fah*^{-/-}, FN = *Fah*^{-/-} *Nrf*2^{-/-}, n = 4.

In den *Fah*^{-/-} *Nrf2*^{-/-} 10% NTBC Mäusen kam es neben der Aktivierung des p53/ p21-Signalweges, auch zu einer Induktion des Tumor- und Zirrhosemarkers α-1-Fetoprotein (AFP), welcher in diesen Lebern per Immunhistochemie nachgewiesen wurde (Abbildung 32). Hingegen zeigten die Tiere der anderen Gruppen (*Fah*^{-/-} 100%, *Fah*^{-/-} 10%, *Fah*^{-/-} *Nrf2*^{-/-} 100% NTBC) kein hepatisches AFP.

Abbildung 32: Repräsentative Aufnahmen der hepatischen α -1 Fetoprotein (AFP)-Immunhistochemie in den *Fah*^{-/-} und *Fah*^{-/-} *Nrf*2^{-/-} Tiere mit 100% und 10% NTBC-Behandlung. 200x Vergrößerung.

Kommt es in der Leber zu einem verminderten Regenerationsverhalten der geschädigten Hepatozyten, werden dort residierende bipotente Leber-Vorläuferzellen (Ovalzellen) aktiviert, die zu Hepatozyten oder Cholangiozyten differenzieren können. Eine solche Ovalzell-Aktivierung konnte in den Lebern der *Fah*^{-/-} *Nrf2*^{-/-} 10% NTBC Mäuse per A6-Immunhistochemie nachgewiesen werden (Abbildung 33), während in den anderen Gruppen keine Ovalzell-Aktivierung nachweisbar war.

Abbildung 33: Repräsentative Aufnahmen der A6-Immunhistochemie in Lebern der *Fah*^{-/-} und *Fah*^{-/-} *Nrf2*^{-/-} Tiere mit 100% und 10% NTBC-Behandlung. 200x Vergrößerung. Darstellung der A6-positiven Zellen in grün, Zellkern-Färbung mittel Dapi-Färbung in blau.

3.1.6 Nrf2 führt in den *Fah*^{-/-} Mäusen zu einer verzögerten Tumorentstehung in der Leber

Um den Einfluss des Nrf2-Verlusts auf die FAA-induzierte Tumorentstehung in der Leber zu untersuchen, wurden *Fah^{-/-}* und *Fah^{-/-} Nrf2^{-/-}* Tiere für 9 Monate bei einer niedrigen (10%) oder regulären (100%) NTBC-Gabe gehalten und hinsichtlich der Tumorentstehung miteinander verglichen. Kein Tier der *Fah^{-/-}* oder

Fah^{-/-} *Nrf2*^{-/-} 100% NTBC Gruppe entwickelte innerhalb dieses Zeitraumes Lebertumore. Bei 10% der *Fah*^{-/-} 10% NTBC Tiere wurden nach 9 Monaten Lebertumore nachgewiesen. Im Vergleich dazu entwickelten alle *Fah*^{-/-} *Nrf2*^{-/-} 10% NTBC Mäuse innerhalb dieses Zeitraums multiple Lebertumore (Abbildung 34).

Abbildung 34: Tumorinzidenz in *Fah*^{-/-} und *Fah*^{-/-} *Nrf*2^{-/-} Tieren nach neunmonatiger Behandlung mit 100% und 10% NTBC.

 $F = Fah^{-/-}$, $FN = Fah^{-/-} Nrf2^{-/-}$, n = 12 - 20.

Im Durchschnitt entwickelten die $Fah^{-/-} Nrf2^{-/-} 10\%$ NTBC Tiere 13 Tumore pro Leber. Im Vergleich dazu wiesen die $Fah^{-/-} 10\%$ NTBC Mäuse im Durchschnitt nur einen Tumor pro Leber auf (Abbildung 35 A, B).

Abbildung 35: (A) Anzahl der Tumore in den Lebern der *Fah^{-/-}* und *Fah^{-/-} Nrf2^{-/-}* Mäuse nach neunmonatiger Behandlung mit 10% NTBC (B) Makroskopische Aufnahme einer *Fah^{-/-} Nrf2^{-/-}* Leber nach achtmonatiger Behandlung mit 10% NTBC.

* p-Wert < 0,0001, F = *Fah*^{-/-}, FN = *Fah*^{-/-} *Nrf2*^{-/-}, n = 12 – 20.

Histologische Untersuchungen mithilfe der (+)-5-Bromo-2'-deoxyuridine (BrdU)-Immunhistochemie, welches ein Marker für die Synthese-Phase des Zellzyklus ist, zeigten in den Lebern der *Fah*^{-/-} *Nrf2*^{-/-} Mäuse mit 10%-iger NTBC-Behandlung eine stärkere Proliferation der Hepatozyten (Abbildung 36 A). Diese starke Proliferation ging einher mit dem Verlust des Zellzyklus-Inhibitors p21 im tumorösen Gewebe (Abbildung 36 B, C). In dem umgebenden Lebergewebe war die Proliferation der Hepatozyten eingeschränkt, was auf das Vorhandensein des Zellzyklus-Inhibitors p21 zurückgeführt werden konnte (Abbildung 36 B, C).

Abbildung 36: Repräsentative Aufnahmen der (A) BrdU-Färbung im Tumor mit angrenzendem nekroinflammatorischen Lebergewebe einer *Fah*^{-/-} *Nrf*2^{-/-} 10% NTBC Maus (B) Ki67- (grün) und p21-(rot) Doppel-Färbung im Tumor mit angrenzendem nekroinflammatorischen Lebergewebe einer *Fah*^{-/-} *Nrf*2^{-/-} 10% NTBC Maus (C) p21-Färbung in einer Leber mit Tumorknoten sowie im Tumor einer *Fah*^{-/-} *Nrf*2^{-/-} 10% NTBC Maus. 200x Vergrößerung.

3.1.7 Das Medikament 1-[2-Cyano-3-,12-Dioxooleana-1,9(11)-Dien-28-Oyl]-Imidazole (CDDO-Im) schützt vor FAAinduziertem Leberschaden

Die Induktion der Phase II Enzyme bietet einen effektiven Schutz vor Leberschädigung und Karzinogenese. Ein sehr potenter Aktivator der Phase II-Enzyme ist die Substanz 1-[2-Cyano-3-,12-Dioxooleana-1,9(11)-Dien-28-Oyl]-Imidazole (CDDO-Im), welche eine Reihe von Genen aktiviert, die durch Nrf2 reguliert werden^{125,126}.

Um die protektive Eigenschaft von CDDO-Im in der Hereditären Tyrosinämie Typ 1 zu untersuchen, wurden *Fah*^{-/-} und *Fah*^{-/-} *Nrf2*^{-/-} Mäuse mit CDDO-Im behandelt. Dazu wurde den Tieren an vier aufeinander folgenden Tagen das

Abbildung 37: Schematische Darstellung des Versuchsablaufs während der CDDO-Im-Behandlung.

CDDO-Im in einer Konzentration von 100 µmol/kg Körpergewicht mithilfe einer Magensonde (per gavage) verabreicht. Während der Behandlung erhielten die Mäuse eine proteinreduzierte Diät. Am fünften Tag der Behandlung wurde den Tieren das NTBC schlagartig entzogen. Sie erhielten zusätzlich eine proteinreiche Diät, um eine rapide Ansammlung des toxischen Metaboliten FAA zu erreichen. Eine schematische Übersicht des Versuchsablaufs zeigt Abbildung 37.

Während die unbehandelten *Fah*^{-/-} Kontrolltiere innerhalb von vier Tage nach NTBC-Entzug starben, überlebten 80% der CDDO-Im-behandelten *Fah*^{-/-} Mäuse bis zu 8 Tage nach NTBC-Entzug. Das CDDO-Im konnte die *Fah*^{-/-} *Nrf2*^{-/-} Mäuse hingegen nicht schützen. Sie starben alle innerhalb der ersten 50 Stunden nach NTBC-Entzug (Abbildung 38).

Abbildung 38: Überlebenskurve der unbehandelten und CDDO-Im behandelten *Fah*^{-/-} Tiere sowie der behandelten *Fah*^{-/-} *Nrf2*^{-/-} Mäuse nach vollständigem NTBC-Entzug und der zusätzlichen Gabe einer proteinreichen Diät. n = 8, p = 0,0007.

Histologische Untersuchungen mittels H&E- und TUNEL-Färbung der Lebern behandelter und unbehandelter *Fah*^{-/-} Tiere zeigten einen ausgeprägten Leberschaden mit vielen TUNEL-positiven Zellen in allen unbehandelten Tieren. Im Vergleich dazu wiesen die behandelten Tiere nur einen moderaten Leberschaden und wenige TUNEL-positive Hepatozyten auf (Abbildung 39).

Abbildung 39: Repräsentative Aufnahmen der H&E- und TUNEL-Färbung der Lebern unbehandelter und CDDO-Im behandelter *Fah*^{-/-} Tiere.

200x Vergrößerung. TUNEL-Färbung = Darstellung TUNEL-positiver Zellen in grün, Zellkern-Färbung mittels DAPI-Färbung in blau.

Mithilfe von Western Blot-Analysen konnte gezeigt werden, dass der Schutz vor Leberschädigung in den *Fah*^{-/-} Mäusen mit erhöhte Proteinmengen der Glycin-Cystein-Ligase-Untereinheiten GCLC und GCLM assoziiert war. Die Proteinmengen beider Untereinheiten, welche für die GSH-Synthese benötigt werden, waren in den unbehandelten *Fah*^{-/-} Kontrollen (0% NTBC) während des FAA-induzierten Leberschadens deutlich niedriger im Vergleich zu den CDDO-Im behandelten Tieren (Abbildung 40).

Abbildung 40: Western Blot-Analyse der GCLC- und GCLM-Proteinmengen in $Fah^{-/-}$ 100% NTBC, unbehandelten $Fah^{-/-}$ 0% NTBC und den CDDO-Im behandelten $Fah^{-/-}$ 0% NTBC Mäusen. Aktin diente als Beladungskontrolle.

3.2 Die Rolle von Nrf2 im murinen *Mdr2^{-/-}* HCC-Modell

Aufgrund der vorherigen Ergebnisse, die gezeigt haben, dass der Nrf2vermittelte Schutz die Hepatokarzinogenese in der Hereditären Tyrosinämie Typ I nicht verhinderte, sie aber signifikant verzögerte, sollte in dieser Arbeit untersucht werden, ob Nrf2 in anderen Lebererkrankungen einen Schutz vor hepatozellulärer Tumorentstehung bietet.

Als weiteres Karzinogenese-Modell wurden *Abcb4^{-/-}* Mäuse im C57BL/6/ FVB/N Hintergrund eingesetzt, die in dieser Arbeit unter dem alten Namen *Mdr2^{-/-}* geführt werden und ein Entzündungs-induziertes HCC-Modell darstellen.

3.2.1 Der Verlust von Nrf2 führt in den *Mdr2^{-/-}* Mäusen zu keiner verstärkten Leberschädigung

Um das Ausmaß der Leberschädigung in den unterschiedlichen Genotypen zu verschiedenen Zeitpunkten (3, 6, 10 und 15 Monate) zu ermitteln, wurden H&E-Färbungen angefertigt und analysiert (Abbildung 41). Dabei konnte zwischen den Einfachknockout- und Doppelknockout-Tieren kein Unterschied in Bezug auf die Leberschädigung zu den untersuchten Zeitpunkten festgestellt werden.

Abbildung 41: Repräsentative Aufnahmen von H&E-gefärbten histologischen Schnitten von Lebern der *Mdr2*^{+/+}, *Mdr2*^{-/-} und *Mdr2*^{-/-} *Nrf2*^{-/-} Tiere. 200x Vergrößerung.

Im Vergleich zu den *Mdr2*^{+/+} Kontrolltieren wurden in den Lebern der *Mdr2*^{-/-} und *Mdr2*^{-/-} *Nrf2*^{-/-} Mäuse gleichstarke duktuläre Reaktionen teils mit assoziierten

Entzündungen nachgewiesen. Diese duktulären Reaktionen, wie Proliferation der Gallengänge, pericholangioläre entzündliche Zellinfiltrate sowie eine periduktale Fibrose, beschreiben das klinische Bild einer Cholestase.

Für eine Quantifizierung der Leberschädigung in den drei Gruppen zu den unterschiedlichen Zeitpunkten wurden die Konzentration und Aktivitäten verschiedener Enzyme im Blutserum bestimmt, welche als Marker für den Grad der Leberschädigung eingesetzt wurden (siehe 2.2.5).

Exemplarisch für die Ergebnisse aller Messungen die hier für die Bestimmung der Leberschädigungen eingesetzt wurden, ist in Abbildung 42 die Bilirubin-Messung dargestellt. Im Vergleich zu den Bilirubin-Konzentrationen im Blutserum der *Mdr2*^{+/+} Tiere waren sowohl die Konzentrationen der *Mdr2*^{-/-} als auch die der *Mdr2*^{-/-} *Nrf2*^{-/-} Mäuse leicht erhöht. Jedoch zeigte sich zu keinem der untersuchten Zeitpunkte ein signifikanter Unterschied.

Abbildung 42: Bilirubin-Konzentrationen im Blutserum der *Mdr2^{+/+}*, *Mdr2^{-/-}* und *Mdr2^{-/-} Nrf2^{-/-}* Tiere.

3.2.2 Die vermehrte Fibrosierung der *Mdr2^{-/-}* Mäuse wird Nrf2 unabhängig reguliert

Aufgrund des genetischen Knockouts entwickeln *Mdr2*^{-/-} Mäuse in den ersten 12 Wochen nach der Geburt eine Leberfibrose¹¹³. Leberfibrosierung kann mittels Sirius-Rot-Färbung nachgewiesen werden, die die im Rahmen der Fibrosierung synthetisierten Kollagenfasern rot anfärbt. Histologische Auswertungen der Sirius-Rot-gefärbten Leberschnitte der *Mdr2*^{-/-} und *Mdr2*^{-/-} *Nrf2*^{-/-} Mäuse ergaben zu keinem der untersuchten Zeitpunkte Unterschiede im Fibrosierungsgrad (Abbildung 43).

Abbildung 43: Repräsentative Aufnahmen von Sirius-Rot-gefärbten histologischen Schnitten von Lebern der *Mdr2^{-/-}* und *Mdr2^{-/-}* N*rf2^{-/-}* Tiere. 200x Vergrößerung.

Zur Quantifizierung der Leberfibrosierung wurde die hepatische Hydroxyprolin-Konzentration bestimmt. Hydroxyprolin ist eine α-Aminosäure, die ausschließlich im Kollagen vorkommt und deshalb zur Bestimmung der Leberfibrosierung geeignet ist. Die Messungen ergaben keinen signifikanten Unterschied zwischen den *Mdr2*^{-/-} und den *Mdr2*^{-/-} *Nrf2*^{-/-} Tieren zu den jeweiligen Zeitpunkten. Im Vergleich zu den *Mdr2*^{+/+} Mäusen war die hepatische Hydroxyprolin-Konzentration der *Mdr2*^{-/-} und *Mdr2*^{-/-} *Nrf2*^{-/-} Tiere in den 3, 6, und 10 Monate alten Tieren leicht und in 15 Monaten alten Tieren signifikant erhöht (Abbildung 44).

Abbildung 44: Hepatische Hydroxyprolin-Konzentration der *Mdr2^{+/+}*, *Mdr2^{-/-}* und *Mdr2^{-/-} Nrf2^{-/-}* Tiere.

^{*} p-Wert & ** p-Wert < 0,004.

3.2.3 Das zelluläre Detoxifikations-System der *Mdr2^{-/-} Nrf2^{-/-}* Mäuse ist im Vergleich zu den *Mdr2^{-/-}* Mäusen leicht beeinträchtigt

Nrf2 spielt eine zentrale Rolle in der Regulation des Detoxifikations-Systems der Leber. Ein Verlust von Nrf2 führt zur Erhöhung der Sensitivität gegenüber Xenobiotika (Fremdstoffen) wie zum Beispiel Acetaminophen⁴⁰.

Um den Einfluss des Nrf2-Verlustes auf das Detoxifikations-System der *Mdr2*^{-/-} Mäuse zu untersuchen, wurden Western Blot-Analysen von Proteinen durchgeführt, die bei der Xenobiotika-Entsorgung eine Rolle spielen (Abbildung 45). Dafür wurden von jedem Genotyp Leberproteine isoliert, von vier Tieren vereint und im Anschluss zusammen analysiert.

Untersucht wurden zunächst die Proteinmengen der katalytischen Untereinheit der γ- Glutamylcysteinligase (GCLC), welche an der Glutathion-Synthese beteiligt ist sowie die Manganse-Superoxid-Dismutase (MnSOD), die Superoxidradikale in Anwesenheit von Wasserstoff zu Sauerstoff und Wasserstoffperoxid katalysiert. In den *Mdr2*^{+/+}, *Mdr2*^{-/-} und *Mdr2*^{-/-} *Nrf2*^{-/-} Mäusen konnte jedoch kein Unterschied in den Proteinmengen nachgewiesen werden. Zusätzlich wurde die Proteinmenge der NAD(P)H-Quinon-Oxidoreduktase (NQO1) untersucht, einem durch Nrf2 regulierten Enzym der Phase II¹²⁷. Es zeigte sich, dass die Proteinmenge in den *Mdr2*^{-/-} *Nrf2*^{-/-} Mäusen im Vergleich zu den *Mdr2*^{+/+} und *Mdr2*^{-/-} Mäusen stark vermindert war. Die Proteinmenge der Hämoxygenase-1 (HO-1) welches laut Literatur ebenfalls ein Nrf2-reguliertes Enzym der Phase II darstellt³⁴, wies in dieser Analyse keine Abhängigkeit von Nrf2 auf.

Abbildung 45: Western Blot-Analyse der hepatischen Proteinmenge von GCLC, MnSOD, NQO1 und HO-1 in $Mdr2^{+/+}$, $Mdr2^{-/-}$ und $Mdr2^{-/-}$ Mäusen. Aktin diente als Beladungskontrolle. n = 4.

WT = $Mdr^{+/+}$, M = $Mdr2^{-/-}$, MN = $Mdr2^{-/-}$, GCLC = katalytische Untereinheit der γ -Glutamylcysteinligase, MnSOD = Manganese-Superoxid-Dismutase, NQO1 = NAD(P)H-Quinon-Oxidoreduktase, HO-1 = Hämoxygenase 1.

Neben einer Vielzahl von detoxifizierenden Enzymen bietet das Glutathion (GSH)-System der Zelle einen wichtigen Schutz vor oxidativem Stress¹²⁸. Um den Einfluss des Nrf2-Verlustes auf das Glutathion-System zu untersuchen, wurden die hepatischen GSH-Konzentrationen der *Mdr2^{-/-}* und *Mdr2^{-/-} Nrf2^{-/-}* Tiere bestimmt und mit denen der *Mdr2^{+/+}* Kontrolltiere verglichen (Abbildung 46). Die Analyse ergab eine signifikante Abnahme der hepatischen GSH-Konzentrationen der *Mdr2^{-/-} Nrf2^{-/-}* Mäuse. Gegenüber der hepatischen GSH-Konzentration der *Mdr2^{+/+}* Mäuse war die Konzentration in den *Mdr2^{-/-} Nrf2^{-/-}* Tieren nahezu unverändert.

Abbildung 46: Hepatische GSH-Konzentration der $Mdr2^{+/+}$, $Mdr2^{-/-}$ und $Mdr2^{-/-}$ Nrf2^{-/-} Tiere im Alter von 3 Monaten. n = 4.

** p-Wert = 0,0000002,* p-Wert < 0,00006, GSH = Glutathion.

3.2.4 Der Verlust von Nrf2 hat keinen Einfluss auf die durch oxidativen Stress ausgelöste Leberschädigung

Oxidativer Stress kann zu Protein-Carbonylierungen führen, was zu einem Verlust der Protein-Tertiärstruktur führen kann und somit zum kompletten Funktionsverlust des Proteins führt¹²⁹. Für die Analyse des Carbonylierungs-Status wurden für jeden Genotypen die hepatischen Proteinproben von je vier Tieren vereint und untersucht. Die Analyse zeigte jedoch keinen Unterschied zwischen den Carbonylierungs-Zuständen der Leber-Proteine der einzelnen Gruppen (Abbildung 47). Es konnte lediglich ein gleich starker Anstieg über die Zeit nachgewiesen werden.

Abbildung 47: Bestimmung des Carbonylierungsgrades von hepatischen Proteinen mithilfe des OxyBlot Protein Oxidation Detecion-Kit.

WT = $Mdr2^{+/+}$, M = $Mdr2^{-/-}$, MN = $Mdr2^{-/-}$ $Nrf2^{-/-}$.

3.2.5 Nrf2 kann in den *Mdr2^{-/-}* Mäusen die hepatozelluläre Karzinogenese weder verhindern noch verzögern

Laut Literaturangaben entwickeln *Mdr2^{-/-}* Mäuse im 129- und FVB/N-Hintergrund zwischen dem 9. und 12. Lebensmonat Lebertumore^{130,131}.

Um den Zeitpunkt der beginnenden Hepatokarzinogenese zu bestimmen, wurden $Mdr2^{+/+}$, $Mdr2^{-/-}$ und $Mdr2^{-/-}$ $Nrf2^{-/-}$ Mäuse ab dem 9. Lebensmonat getötet, analysiert und verglichen (Abbildung 48). Sowohl $Mdr2^{-/-}$ (20%) als auch $Mdr2^{-/-}$ $Nrf2^{-/-}$ (33%) Mäuse entwickelten erst ab dem 15. Lebensmonat Lebertumore. Im Alter von 18 – 23 Monaten zeigten 80% der Mäuse in beiden Gruppen hepatozelluläre Karzinome. Jedoch gab es zu keinem Zeitpunkt einen signifikanten Unterschied in der Tumorinzidenz zwischen den Gruppen. Die $Mdr2^{+/+}$ Kontrolltiere entwickelten im untersuchten Zeitraum keine Lebertumore.

Abbildung 48: Tumorinzidenz in den Lebern der $Mdr^{+/+}$, $Mdr2^{-/-}$ und $Mdr2^{-/-} Nrf2^{-/-}$ Tiere im Alter von 15 und 18 – 23 Monate.

Jene Mäuse, die während der Beobachtungszeit Lebertumore entwickelten, wurden für eine detaillierte Analyse herangezogen. Dabei zeigte sich, dass sich die Lebertumore der $Mdr2^{-/-}$ und der $Mdr2^{-/-}$ Nrf2^{-/-} Mäuse sowohl nach 15 Monaten (ohne Abbildung) als auch nach 18 – 23 Monaten weder in der Anzahl noch in der Größe unterschieden (Abbildung 49).

Abbildung 49: Tumoranzahl und -größe in 18 – 23 Monate alten $Mdr2^{+/+}$, $Mdr2^{-/-}$ und $Mdr2^{-/-}$ $Nrf2^{-/-}$ Tieren.

Untersuchungen des Proliferationsverhaltens der *Mdr2^{-/-}* und *Mdr2^{-/-} Nrf2^{-/-}* Hepatozyten mittels BrdU-Färbungen zeigten keinen signifikanten Unterschied zwischen den Gruppen nach 15 Monaten (Abbildung 50).

Abbildung 50: Repräsentative Aufnahmen von BrdU-gefärbten histologischen Leberschnitten und statistische Auswertung der BrdU-positiven Zellen der 15 Monate alten *Mdr2*^{-/-} und *Mdr2*^{-/-} *Nrf2*^{-/-} Tiere. 200x Vergrößerung.

 $M = Mdr2^{-/-}, MN = Mdr2^{-/-} Nrf2^{-/-}.$

3.3 Die Rolle von p21 in der cholestatischen Lebererkrankung und sein Einfluss auf die Karzinogenese

3.3.1 Der Zellzyklus-Inhibitor p21 ist in *Mdr2^{-/-}* Mäusen induziert

Immunhistochemische Untersuchungen in Lebern der *Mdr2^{-/-}* Mäuse haben im Vergleich zu den *Mdr2^{+/+}* Mäusen ein erhöhtes Maß an p21-positiven Zellen gezeigt. Nach einem Anstieg der positiven Zellen in den *Mdr2^{-/-}* Mäusen der nach 5 Monaten in einem Maximum mündete, fiel die Anzahl der positiven Zellen über die restliche Untersuchungszeit kontinuierlich ab (Abbildung 51).

Abbildung 51: Repräsentative Bilder der p21-Immunhistochemie in den Lebern der $Mdr2^{+/+}$ und $Mdr2^{-/-}$ Tiere. 200x Vergrößerung.

Forschungsergebnisse unserer Arbeitsgruppe¹³² sowie unserer Kollaborations-Partner⁷⁹ haben gezeigt, dass der Verlust von p21 die Karzinogenese in chronisch geschädigten Lebern fördert. Aus diesem Grund sollte in diesem Teil der Arbeit der Einfluss von p21 auf die cholestatische Lebererkrankung untersucht werden. Dazu wurden $Mdr2^{+/+}$, $Mdr2^{-/-}$ und $Mdr2^{-/-}$ p21^{-/-} Doppelknockout-Mäuse aus Wurfgeschwistern generiert, analysiert und miteinander verglichen.

Mittels Western Blot-Analysen konnten die zuvor gezeigten Ergebnisse der Immunhistochemie bestätigt werden (Abbildung 52). Dafür wurde aus Tieren der drei Gruppen Leberprotein isoliert, von jeweils vier Tieren des gleichen Genotyps vereint und im Anschluss vergleichend analysiert. Als Kontrolle dienten dabei die 10 Monatszeitpunkte der *Mdr2*^{+/+} Mäuse. In den untersuchten Zeitpunkten war das p21-Protein-Niveau in den *Mdr2*^{-/-} im Vergleich zu den *Mdr2*^{+/+}

Tieren stark erhöht. Wie erwartet konnte in den $Mdr2^{-/-} p21^{-/-}$ Doppelknockout-Tiere aufgrund des Genotyps kein p21 nachgewiesen werden.

Abbildung 52: Western Blot-Analyse der hepatischen p21-Proteinmenge in $Mdr2^{+/+}$, $Mdr2^{-/-}$ und $Mdr2^{-/-} p21^{-/-}$ Mäusen. GAPDH diente als Beladungskontrolle. n = 4.

WT = $Mdr2^{+/+}$, M = $Mdr2^{-/-}$, MP = $Mdr2^{-/-}$, GAPDH = Glycerinaldehyd-3-phosphat-Dehydrogenase.

3.3.2 p21 hat keinen Einfluss auf die cholestatische Leberschädigung

Um den Einfluss des Verlust von p21 auf die cholestatische Leberschädigung zu untersuchen, wurden zunächst H&E-Färbungen der Lebern von 3, 5, 10 und 15 Monate alten $Mdr2^{-/-}$ und $Mdr2^{-/-}$ p21^{-/-} Tieren angefertigt und mit den histologischen Färbungen der $Mdr2^{+/+}$ Tiere verglichen (Abbildung 53).

Abbildung 53: Repräsentative Bilder von H&E-gefärbten Leberschnitte der $Mdr2^{+/+}$, $Mdr2^{-/-}$, $Mdr2^{-/-} p21^{-/-}$ Tiere. 200x Vergrößerung. n = 4 – 8.

Es konnte gezeigt werden, dass der p21-Verlust keinen großen Einfluss auf die Leberschädigung hatte. Die H&E-gefärbten Leberschnitte der $Mdr2^{-/-}$ und $Mdr2^{-/-} p21^{-/-}$ Tiere zeigten zu den Zeitpunkten von 3, 5 und 15 Monaten keinen signifikanten Unterschied in der Leberschädigung. Im Vergleich zu den $Mdr2^{+/+}$ Tieren wurde zu diesen Zeitpunkten (3, 5 und 15 Monate) in den Lebern der $Mdr2^{-/-}$ und $Mdr2^{-/-} p21^{-/-}$ Tiere wie erwartet eine gleich starke Cholestase nachgewiesen, welche sich durch duktuläre Reaktionen teils mit assoziierten Entzündungen, Proliferation der Gallengänge, pericholangioläre Zellinfiltrate sowie durch periduktale Fibrose auszeichnete.

In den 10 Monate alten Tieren wurde ein signifikanter Unterschied der duktulären Reaktionen (DR) zwischen den Einfachknockout- und Doppelknockout-Tieren festgestellt (Abbildung 54A). Im Vergleich zu den Lebern der *Mdr2^{-/-} p21^{-/-}* Tieren wurden mehr duktuläre Reaktionen als in den Lebern der *Mdr2^{-/-}* Tiere nachgewiesen. Dabei konnte kein Unterschied in den DR assoziierten Entzündungen zwischen den Einfach- und Doppelknockout Tieren festgestellt werden (Abbildung 54B).

Abbildung 54: Auswertung der H&E-Färbungen für (A) duktuläre Reaktionen und (B) DRassoziierte Entzündungen der $Mdr2^{-/2}$ und $Mdr2^{-/2} p21^{-/2}$ Tiere.

n = 4 – 8. * p-Wert = 0,0316, M = $Mdr2^{-/-}$, MP = $Mdr2^{-/-} p21^{-/-}$.

Für eine weitere Quantifizierung der Leberschädigung in den drei Genotypen zu den unterschiedlichen Zeitpunkten wurden verschiedene Marker (siehe 2.2.5), welche für die Bestimmung der Leberschädigung herangezogen werden, gemessen.

Exemplarisch für die Ergebnisse aller Messungen sind die ALT-Aktivität (Abbildung 55 A) und die Bilirubin-Konzentration (Abbildung 55 B) dargestellt. Im Vergleich zu den $Mdr2^{+/+}$ Tieren waren sowohl die ALT-Aktivität als auch die Bilirubin-Konzentration der $Mdr2^{-/-}$ und $Mdr2^{-/-}$ p21^{-/-} Tiere im gleichen Maße erhöht. Jedoch zeigte sich zu keinem der Zeitpunkte ein signifikanter Unterschied.

Abbildung 55: (A) Alanin-Aminotransferase (ALT)-Aktivitäten und (B) Bilirubin-Konzentrationen im Blutserum der $Mdr2^{+/+}$, $Mdr2^{-/-}$ und $Mdr2^{-/-} p21^{-/-}$ Tiere.

3.3.3 Die Fibrosierung der *Mdr2^{-/-}* Knockout-Mäuse wird p21 unabhängig reguliert

Die Mdr2^{-/-} Mäuse entwickeln aufgrund ihrer genetischen Prädisposition eine Fibrose. Um den Einfluss von p21 auf die Fibrose-Entstehung und -Progredienz zu untersuchen, wurden zwei histologische Färbungen an Lebern der Mdr2^{-/-} und *Mdr2^{-/-} p21^{-/-}* Tiere durchgeführt und analysiert (Abbildung 56). Zum einen einer Sirius-Rot-Färbung, erfolgte die Durchführung die direkt den Kollagengehalt des Gewebes zeigt. Zum anderen wurde mittels a-SMA-Muskel-Aktin Immunhistochemie glattes nachgewiesen, welches von Myofibroblasten der Leber produziert wird, die ebenfalls in der Lage sind Kollagenfasern zu bilden.

Weder die Sirius-Rot-Färbung noch die α -SMA-Immunhistochemie wies einen Unterschied der hepatischen Fibrosierung zwischen den *Mdr2*^{-/-} und *Mdr2*^{-/-} p21^{-/-} Tieren zu den untersuchten Zeitpunkten auf.

Zur Quantifizierung der Leberfibrosierung wurde ebenfalls die hepatische Hydroxyprolin-Konzentration der $Mdr2^{+/+}$, $Mdr2^{-/-}$ und $Mdr2^{-/-} p21^{-/-}$ Tiere bestimmt (Abbildung 57). Wie in den zuvor durchgeführten Experimenten wies die Messung der Hydroxyprolin-Konzentration keinen signifikanten Unterschied in der Fibrosierung zwischen den $Mdr2^{-/-}$ und $Mdr2^{-/-} p21^{-/-}$ Tiere zu den untersuchten Zeitpunkten auf. Im Vergleich zu der Konzentration der $Mdr2^{+/+}$ Tieren konnte jedoch ein signifikanter Anstieg in den Einfach- und Doppelknockout-Tieren ermittelt werden.

Abbildung 56: Repräsentative Bilder von Sirius-Rot und α -SMA gefärbten Leberschnitte der $Mdr2^{-/-}$ und $Mdr2^{-/-} p21^{-/-}$ Tiere. 200x Vergrößerung. n = 4.

 α -SMA = glattes Muskel-Aktin (Darstellung der α -SMA-positiven Zellen erfolgte in grün, Zellkern-Färbung mittels DAPI in blau)

Abbildung 57: Hepatische Hydroxyprolin-Konzentration der *Mdr2^{+/+}*, *Mdr2^{-/-}* und *Mdr2^{-/-} p21^{-/-}* Tiere.

n = 4. * p-Wert < 0,05.

3.3.4 Der Einfluss von p21 auf Apoptose in den Lebern der *Mdr2*^{-/-} Knockout-Mäuse

Viele chronische Lebererkrankungen bzw. -schädigungen zeichnen sich durch eine Störung in Apoptose und Proliferation aus¹³³.

Da der genetische Knockout des Mdr2-Gens zu einer chronischen Lebererkrankung führt, sollte in den Lebern dieser Tiere die Apoptose untersucht werden. Dies erfolgte mittels TUNEL-Färbung in den $Mdr2^{-/-}$ und $Mdr2^{-/-}$ $p21^{-/-}$ Tieren (Abbildung 58). In den 3, 5, 10 und 15 Monate alten Knockout- und Doppelknockout-Tieren wurden jedoch nur vereinzelt TUNEL-positive Hepatozyten detektiert. Es lagen zu keinem Zeitpunkt signifikante Unterschiede der Apoptose zwischen den $Mdr2^{-/-}$ und $Mdr2^{-/-} p21^{-/-}$ Tieren vor. In den Lebern der $Mdr2^{+/+}$ Tiere wurden ebenfalls nur vereinzelt TUNEL-positive Hepatozyten sichtbar (ohne Abbildung).

Abbildung 58: Repräsentative Bilder der TUNEL-Färbung der Lebern der $Mdr2^{-/2}$ und $Mdr2^{-/2}$ p21^{-/-} Tiere. 200x Vergrößerung. n = 4.

TUNEL-Immunhistochemie = Darstellung TUNEL-positiver Zellen erfolgte in grün, Zellkern-Färbung mittels DAPI-Färbung in blau.

3.3.5 Das Proliferationsverhalten der *Mdr2^{-/-} p21^{-/-}* Hepatozyten ist beeinträchtigt

Ebenfalls sollte das hepatozelluläre Proliferationsverhalten dieser Tiere untersucht werden. Dazu wurden BrdU- und die Ki67-Färbungen durchgeführt (Abbildung 59).

BrdU ist ein chemisches Analogon des Nukleosids Thymidin und wird an seiner Stelle während der Synthese-Phase in die replizierende DNA eingebaut. Im An-

schluss kann es mittels BrdU-Färbung nachgewiesen werden und ist somit ein Marker für die Synthese-Phase des Zellzyklus. Im Vergleich dazu ist Ki67 ein Nachweis für den gesamten Zellzyklus, da das Protein während der G₁-, S-, G₂- und M-Phase vorliegt.

Sowohl die BrdU- als auch die Ki67-Färbung zeigten in den Lebern der $Mdr2^{-/-} p21^{-/-}$ im Vergleich zu den $Mdr2^{-/-}$ Mäusen weniger proliferierende Hepatozyten. Die Verhältnisse von proliferierenden- zu nicht-proliferierenden-Hepatozyten sind für die 5 und 10 Monate alten Mäuse in Abbildung 59 dargestellt. Im Vergleich zu den $Mdr2^{+/+}$ Kontrolltieren konnten fast ausschließlich mehr proliferierende Hepatozyten in den Einfachknockout- und Doppelknockout-Mäusen ermittelt werden. Eine Ausnahme bildeten die 10 Monate alten $Mdr2^{-/-} p21^{-/-}$ Tiere, in denen im Vergleich zu den $Mdr2^{+/+}$ Kontrolltieren weniger proliferierende Hepatozyten vorlagen.

Abbildung 59: Repräsentative Bilder der BrdU- und Ki67-Immunhistochemie in Lebern der $Mdr2^{+/+}$, $Mdr2^{-/-}$ und $Mdr2^{-/-} p21^{-/-}$ Tiere sowie statistische Auswertung positiver Hepatozyten. 200x Vergrößerung. n = 4 – 8.

Auszählung erfolgte in 10 Gesichtsfeldern je Leber in einer 400x Vergrößerung. WT = $Mdr2^{+/+}$, M = $Mdr2^{-/-}$, MP = $Mdr2^{-/-}$ $p21^{-/-}$.

Das beeinträchtige Proliferationsverhalten der $Mdr2^{-/-} p21^{-/-}$ Tiere spiegelt sich auch in deren Lebergewicht wieder (Abbildung 60). Diese zeigten sowohl in den 3 als auch in den 10 Monate alten Tieren signifikant geringere Lebergewichte im Vergleich zu den $Mdr2^{-/-}$ Tieren. Die $Mdr2^{-/-}$ Tieren entwickeln aufgrund des Genotyps eine Hepatomegalie¹¹¹ (abnorme Vergrößerung der Leber), die sich im Lebergewicht widerspiegelte. Im Vergleich zu den $Mdr2^{+/+}$ Kontrolltiere hatten sowohl die 3 als auch die 10 Monate alten $Mdr2^{-/-}$ Tieren signifikant schwerere Lebern.

Abbildung 60: Lebergewicht der $Mdr2^{+/+}$, $Mdr2^{-/-}$ und $Mdr2^{-/-} p21^{-/-}$ Tiere im Alter von 3 und 10 Monaten.

n = 3 - 10. * p-Wert < 0,007. WT = $Mdr2^{+/+}$, M = $Mdr2^{-/-}$, MP = $Mdr2^{-/-}$ $p21^{-/-}$.

Mittels Western Blot-Analysen erfolgte zusätzlich die Untersuchung von Proteinen die an der Zellzyklusregulation beteiligt sind (Abbildung 61). Dafür wurde von den drei Genotypen ($Mdr2^{+/+}$, $Mdr2^{-/-}$, $Mdr2^{-/-}$ $p21^{-/-}$) Leberprotein isoliert, wobei von je vier Tieren des gleichen Genotyps die Proteinproben für die Analyse vereint wurden. Für die $Mdr2^{+/+}$ Kontrolltiere wurde lediglich das Protein der 10 Monate alten Tiere verwendet. Für Cyclin D1 und CDK4 welche zusammen für das Fortschreiten des Zellzyklus sorgen, zeigen sich für alle Proben mit Ausnahme der 10 Monate alten $Mdr2^{-/-} p21^{-/-}$ Tiere eine stärkere Proteinexpression im Vergleich zu den Kontrollen. p27 ist ein Mitglied der CIP/KIP-Protein-Familie und kann ebenfalls das Fortschreiten des Zellzyklus hemmen. Die Proteinmenge von p27 wies jedoch zu keinem Zeitpunkt einen Unterschied auf.

Abbildung 61: Western Blot-Analyse der hepatischen Cyclin D1, CDK4 und p27 Proteinmengen in $Mdr2^{+/4}$, $Mdr2^{-/2}$ und $Mdr2^{-/2}$ p21^{-/2} Tieren. GAPDH diente als Beladungskontrolle. n = 4.

WT = $Mdr2^{+/+}$, M = $Mdr2^{-/-}$, MP = $Mdr2^{-/-}$ p21^{-/-}, CDK4 = "cyclin-dependent kinase 4", GAPDH = Glycerinaldehyd-3-phosphat-Dehydrogenase.

3.3.6 Die beeinträchtigte Proliferation der *Mdr2^{-/-} p21^{-/-}* Hepatozyten führt nicht zur Aktivierung von Leberstammzellen

In Folge der meisten Leberschädigungs-Formen beruht die Leberregeneration nicht auf Aktivierung von Stamm- oder Vorläuferzellen, sondern regt zunächst die ausdifferenzierten hepatischen Zellen zur Proliferation an¹³⁴. In Tiermodellen konnte gezeigt werden, dass Hepatozyten Stammzell-ähnliche, regenerative Eigenschaften besitzen und in der Lage sind, die Leber vollständig zu regenerieren¹³⁵. Ist die Proliferationsfähigkeit der Hepatozyten eingeschränkt, werden in der adulten Leber fakultativ bipotente Vorläuferzellen – aufgrund ihrer äußeren Morphologie auch als Ovalzellen bezeichnet – aktiviert^{136,137}. Diese können zu Hepatozyten und Cholangiozyten (Epithelzellen der Gallengänge) ausdifferenzieren¹³⁴.

Aufgrund des eingeschränkten Proliferationsverhaltens der Hepatozyten in den *Mdr2^{-/-} p21^{-/-}* Mäusen sollte die Ovalzell-Aktivierung in diesen Mäusen untersucht werden. Dafür wurden drei etablierte immunhistochemische Nachweise für Ovalzellen, die A6-, CK19- und MIC1-Immunhistochemie, durchgeführt (Abbildung 62).

Mithilfe dieser Färbungen konnte eine starke Ovalzell-Aktivierung in den Lebern der $Mdr2^{-/-}$ Mäuse im Vergleich zu den $Mdr2^{-/-} p21^{-/-}$ Tieren nach 5 und 10 Monaten nachgewiesen werden. Zudem schien sich die Aktivierung der Ovalzellen in den $Mdr2^{-/-} p21^{-/-}$ Tieren bereits nach 5 Monaten wieder abzuschwächen.

Abbildung 62: Repräsentative Bilder der A6-, CK19- und MIC1-Immunhistochemie in den Lebern der $Mdr2^{-/2}$ und $Mdr2^{-/2} p21^{-/2}$ Tiere. 200x Vergrößerung. n = 8 – 10.

Darstellung der A6- und MIC1-positiven Zellen in grün, Zellkern-Färbung mittels DAPI in blau.

3.3.7 Der Verlust von p21 führt nicht zum eingeschränkten Proliferationsverhalten der Hepatozyten

Aufgrund der fehlenden Aktivierung der Proliferation und der Ovalzellen in den

Lebern der $Mdr2^{-/-}p21^{-/-}$ Mäuse, sollte mittels des etablierten Modells der $^{2}/_{3}$ Leberteilresektion die Regenrationsfähigkeit in gesunden ($p21^{+/+}$) und kranken ($p21^{-/-}$) Hepatozyten überprüft werden. Nach einer $^{2}/_{3}$ Leberteilresektion bei Nagetieren regeneriert sich die gesunde Leber innerhalb von 7 – 10 Tagen auf die ursprüngliche Lebermasse¹³⁸. In Mäusen wurde dabei das Proliferations-Maximum nach ca. 40 Stunden ermittelt¹³⁹.

Um den Einfluss von p21 auf das Proliferations- und Regenerationsverhalten zu überprüfen, wurde bei $p21^{+/+}$ und $p21^{-/-}$ Mäusen eine $^{2}/_{3}$ Leberteilresektion durchgeführt. Im Anschluss wurde mittels BrdU- und Ki67-Färbung das Proliferationsverhalten der Hepatozyten ermittelt und das Lebergewicht bestimmt.

Das Proliferationsverhalten der Hepatozyten der $p21^{+/+}$ und $p21^{-/-}$ Mäuse erwies sich 38 Stunden nach $^{2}/_{3}$ Leberteilresektion als gleich stark (Abbildung 63 A). Zu diesem Zeitpunkt hatte das Verhältnis von Leber- zu Körpergewicht im gleichen Maße bei den $p21^{+/+}$ und $p21^{-/-}$ Mäusen zugenommen. Eine Woche nach $^{2}/_{3}$ Leberteilresektion hatte sich das Verhältnis erneut erhöht und zeigte nun einen signifikanten Unterschied zwischen den $p21^{+/+}$ und $p21^{-/-}$ Mäusen (Abbildung 63 B).

Abbildung 63: (A) Repräsentative Bilder der BrdU- und Ki67-Färbung der Lebern und (B) das Verhältnis von Leber- zu Körpergewichte der $p21^{+/+}$ und $p21^{-/-}$ Tiere vor und nach $^{2}/_{3}$ Leberteilresektion (PH). 200x Vergrößerung. n = 4.

* p-Wert = 0,0313. PH = $^{2}/_{3}$ Leberteilresektion. 0h = vor PH, 38h = 38 Stunden nach PH, 1 week PH = 1 Woche nach PH.

3.3.8 Der Verlust von p21 führt nicht zu einem eingeschränkten Proliferationsverhalten der *Mdr2*^{-/-} Hepatozyten

Aufgrund der eingeschränkten Proliferation der $Mdr2^{-/-} p21^{-/-}$ Hepatozyten sollte untersucht werden ob diese durch einen Proliferationsreiz wie einer $^{2}/_{3}$ Leberteilresektion zur Proliferation angeregt werden können. Dazu wurden 3 und

8 Monate alte $Mdr2^{+/+}$, $Mdr2^{-/-}$ und $Mdr2^{-/-} p21^{-/-}$ Mäuse einer $^{2}/_{3}$ Leberteilresektion unterzogen und das Proliferationsverhalten vor und nach dem operativen Eingriff mittels Ki67-Immunhistochemie ermittelt (Abbildung 64 A, B).

Die Hepatozyten der 3 Monate alten $Mdr2^{+/+}$ und $Mdr2^{-/-}$ Mäuse wiesen 38 Stunden nach $^{2}/_{3}$ Leberteilresektion ein gleich starkes Proliferationsverhalten auf. Die Proliferation der 3 Monate alten $Mdr2^{-/-} p21^{-/-}$ Tiere zeigte jedoch im Vergleich zu den beiden anderen Gruppen einen starken Anstieg. Laut Literatur kommt es in 10 Monate alten Wildtyp-Tieren zu einer Verzögerung des Proliferations-Maximums^{140,141}. In Übereinstimmung mit diesen Beobachtungen konnte in den 8 Monate alten Lebern der $Mdr2^{+/+}$ und $Mdr2^{-/-}$ Mäuse im Vergleich zu den jungen Tieren nur ein geringer Prozentsatz an proliferierenden Hepatozyten nachgewiesen werden. Ebenso war die Proliferation in den Lebern der 8 Monate alten $Mdr2^{-/-}$ Tiere im Vergleich zu den jungen Tieren erniedrigt, aber immer noch signifikant stärker als im Vergleich zu den 8 Monate alten $Mdr2^{+/+}$ und $Mdr2^{-/-}$ Mäusen.

Abbildung 64: (A) Repräsentative Bilder von Ki67-Färbungen in Lebern der $Mdr2^{+/+}$, $Mdr2^{-/-}$ und $Mdr2^{-/-} p21^{-/-}$ Tiere (B) mit statistischer Auswertung positiver Hepatozyten vor und nach $^{2}/_{3}$ Leberteilresektion. 200x Vergrößerung. n= 3 – 4.

* p-Wert < 0,002, PH = $^{2}/_{3}$ Leberteilresektion. 0h = zum Zeitpunkt der PH, 38h = zum Zeitpunkt 38 Stunden nach PH, Auszählung erfolgte in 10 Gesichtsfeldern je Leber in einer 400x Vergrößerung. WT = $Mdr2^{+/+}$, M = $Mdr2^{-/-}$, MP = $Mdr2^{-/-}$ p21^{-/-}.

3.3.9 Der Verlust von p21 führt in den *Mdr2^{-/-}* Mäusen zu einer verzögerten Entstehung von Lebertumoren

Bei chronisch kranken *Fah*^{-/-} Mäusen führt der Verlust von p21 zu einer wesentlich schneller auftretenden Karzinogenese. So entwickeln sie nach NTBC-Entzug bereits innerhalb von 8 Wochen Lebertumore⁷⁹.

Für die Bestimmung der Tumorinzidenz wurden $Mdr2^{+/+}$, $Mdr2^{-/-}$ und $Mdr2^{-/-}$ $p21^{-/-}$ Tiere ab dem 3. Lebensmonat beobachtet und getötet. In $Mdr2^{-/-}$ und $Mdr2^{-/-}$ $p21^{-/-}$ Tieren wurden die ersten Lebertumore nach 15 Monaten festgestellt (Abbildung 65), wobei 55% der $Mdr2^{-/-}$ und nur 18% der $Mdr2^{-/-}$ $p21^{-/-}$ Tieren Lebertumore entwickelten. Im Alter von 18 Monaten kam es in 83% der $Mdr2^{-/-}$ und nur 50% der $Mdr2^{-/-}$ $p21^{-/-}$ Tiere zur Tumorentstehung. Die $Mdr2^{+/+}$ Kontrolltiere entwickelten im untersuchten Zeitraum keine Lebertumore.

Abbildung 65: Tumorinzidenz der $Mdr2^{+/+}$, $Mdr2^{-/-}$ und $Mdr2^{-/-} p21^{-/-}$ Tiere. * p-Wert < 0,05.

Obwohl im untersuchten Zeitraum von 18 Monaten weniger $Mdr2^{-/-} p21^{-/-}$ als $Mdr2^{-/-}$ Tiere Lebertumore entwickelten, ergab die Analyse der Tumoranzahl in den 15 und 18 Monate alten Mäusen signifikant mehr Tumore in den Lebern dieser Tiere im Vergleich zu den $Mdr2^{-/-}$ Tieren (Abbildung 66 A). Zusätzlich waren die Tumore nach 18 Monaten signifikant größer als die der $Mdr2^{-/-}$ Tiere (Abbildung 66 B). Auch die Gewichtsmessung der Tumor-tragenden Lebern ergab eine signifikante Zunahme des Lebergewichts in den 18 Monate alten $Mdr2^{-/-} p21^{-/-}$ Tieren im Vergleich zu den Lebern der $Mdr2^{-/-}$ Tiere (Abbildung 66 C).

Für die Analyse des Tumorgewebes, wurden H&E-Färbungen und Ki67immunhistochemische Färbungen angefertigt. Es konnte gezeigt werden, dass die HCCs der $Mdr2^{-/-} p21^{-/-}$ Mäuse eine signifikant stärkere Proliferationsrate im Vergleich zu den Tumoren der $Mdr2^{-/-}$ Tiere aufwiesen (Abbildung 67 A). Des Weiteren wurden die HCCs in drei unterschiedliche Differenzierungsgrade ein-

Abbildung 66: (A) Anzahl der Tumore (B) Tumorgröße und (C) Gewicht der Tumor-tragenden Lebern der $Mdr2^{++}$, $Mdr2^{-+}$ und $Mdr2^{-+} p21^{-+}$ Tieren.

* p-Wert < 0,01, WT = *Mdr*2^{+/+}, M = *Mdr*2^{-/-}, MP = *Mdr*2^{-/-} p21^{-/-}.

geteilt (Klassifizierung aus der Humanmedizin). Während die Karzinome der Klasse G1 eine gute Differenzierung mit guter Behandlungs- und Überlebensrate zeigen, beinhaltet Klasse G3 schlecht differenzierte Karzinome mit schlechter Behandlungs- und Überlebensrate. G2 liegt dementsprechend im Bereich zwischen G1 und G3. Die Klassifizierung des Differenzierungsgrades ergab keinen signifikanten Unterschied zwischen den Tumoren der $Mdr2^{-/-} p21^{-/-}$ und $Mdr2^{-/-}$ Tiere. In beiden Gruppen konnte aber ein Anstieg des Differenzierungsgrades von 15 zu 18 Monate alten Tieren festgestellt werden (Abbildung 67 B).

Abbildung 67: (A) Proliferationsrate in den Tumoren (B) Differenzierungsgrad der Tumore der $Mdr2^{-/-}$ und $Mdr2^{-/-} p21^{-/-}$ Tiere.

* p-Wert < 0,05, M = Mdr2^{-/-}, MP = Mdr2^{-/-} p21^{-/-}.

4 Diskussion

4.1 Die Einfluss von Nrf2 auf Mortalität & Tumorentstehung in den murinen Tumormodellen *Fah^{-/-}* und *Mdr2^{-/-}*

In dieser Arbeit konnte gezeigt werden, dass der Verlust von Nrf2 in $Fah^{-/-} Nrf2^{-/-}$ Mäusen nach komplettem NTBC-Entzug zu einem dramatischen Anstieg der Mortalität führte, welche durch ein akutes Leberversagen ausgelöst wurde. Nicht minder verheerend ist die chronische Form der hereditären Tyrosinämie Typ 1, die mit einer gravierenden Prädisposition für die Entstehung von Tumoren in der Leber einhergeht^{88,142}. Ähnliches zeigte sich in den $Fah^{-/-} Nrf2^{-/-}$ Mäusen, die mit einer 10%-igen NTBC-Dosis behandelt wurden. Diese Tiere entwickelten eine ausgeprägtere Hepatitis und eine stärkere Fibrose als die $Fah^{-/-}$ Kontrolltiere unter 10% NTBC-Behandlung. Darüber hinaus führte der Nrf2-Verlust in den chronisch kranken $Fah^{-/-} Nrf2^{-/-}$ Mäusen zu einer früher auftretenden Karzinogenese als in den $Fah^{-/-}$ Kontrolltieren. Demzufolge schützt Nrf2 nicht nur vor akutem FAA-induzierten Leberversagen, sondern auch vor chronischer Leberschädigung durch Akkumulation von FAA und verzögert letztendlich die Karzinogenese in der HT1.

Der genaue Mechanismus, wie FAA ein akutes Leberversagen verursacht, ist bis heute noch nicht vollständig geklärt. Aller Voraussicht nach ist das Leberversagen ein Resultat aus direkten toxischen Effekten auf die intrazellulären Signalwege der Apoptose und Nekrose, wie es nach Verlust von Nrf2 in den Fah^{-/-} Nrf2^{-/-} Mäusen nach komplettem NTBC-Entzug zu beobachten war. Zum einen erfolgte in diesen akut kranken Tieren eine starke Aktivierung der Caspase 9 und 3, zum anderen wurde eine Aktivierung der JNK-Stresskinase nachgewiesen. Eine anhaltende Aktivierung der JNK-Stresskinase wurde bereits in der Arzneimittel-induzierten Entstehung hepatischer Nekrose gezeigt¹⁴³. Zusätzlich dazu könnte das Fortschreiten und der Schweregrad des FAAinduzierten Leberschadens in den parenchymalen Leberzellen eventuell durch die Aktivierung der Immunantwort verstärkt werden. Durch den Verlust von Nrf2 in den Fah^{-/-} Nrf2^{-/-} Mäusen konnte nach komplettem NTBC-Entzug eine starke Aktivierung des Immunsystems nachgewiesen werden. Ähnliche Beobachtungen wurden bereits in vivo nach Acetaminophen-induzierter Leberschädigung gezeigt. Hier führten die von Kupffer-Zellen und anderen Immunzellen sezernierten Zytokine und Chemokine ebenfalls zu einer Progression der Leberschädigung¹⁴⁴. Desweiteren wurde gezeigt, dass Nrf2 ein entscheidender Regulator des angeborenen Immunsystems ist. Die Induktion von Nrf2 und der damit verbundene Schutz vor fehlregulierten Entzündungsreaktionen resultiert somit in einer drastischen Verlängerung des Überlebens¹⁴⁵.

FAA ist eine stark elektrophile Substanz, die in der Lage ist, essentielle Sulfhydrylgruppen von Proteinen zu zerstören⁸⁶ oder direkt mit GSH zu interagieren⁸⁵. In den *Fah^{-/-} Nrf2^{-/-}* Mäusen wurde nach komplettem NTBC-Entzug eine signifikante Abnahme der GSH-Spiegel nachgewiesen. Sowohl die Gabe von N-Acetylcystein (NAC) als auch die Gabe des zellpermeablen GSH (GSH-Methylester), konnte dem fulminanten Leberversagen in den *Fah^{-/-} Nrf2^{-/-}* Mäusen nach NTBC-Entzug nicht entgegenwirken. Diese Ergebnisse lassen vermuten, dass aber die koordinierte Regulierung der Nrf2-Zielgene zum Schutz vor einer FAA-induzierten Leberschädigung benötigt wird. Bei einer Vielzahl von Genen, die durch Nrf2 reguliert werden, konnte nach NTBC-Entzug eine reduzierte Expression in den *Fah^{-/-} Nrf2^{-/-}* Mäusen nachgewiesen werden. In diesen Mäusen wurde zum Beispiel eine deutlich reduzierte Expression der Glutation-S-Transferasen (GSTs) gezeigt. Diese spielen nicht nur in der Detoxifikation von Xenobiotika eine entscheidende Rolle, sondern sind maßgeblich an der zellulären Abwehr von oxidativem Stress beteiligt¹⁴⁶.

Die Umstände, die in der humanen HT1 eine HCC-Progression verursachen, sind noch nicht vollständig aufgeklärt. Für ein besseres Verständnis der molekularen Mechanismen, die an der Tumorentstehung beteiligt sind oder sie verhindern, wurden Genexpressions-Analysen der Fah^{-/-} Nrf2^{-/-} Mäuse erstellt. In silico Auswertungen identifizierten beim Vergleich der unterschiedlich regulierten Genexpressionen in Fah^{-/-} Nrf2^{-/-} und Fah^{-/-} Kontrolltieren zwei Netzwerke: Zum einen konnten die Gene dem Xenobiotika-Metabolismus und zum anderen der Karzinogenese zugeordnet werden. Analysen der beiden Netzwerke konnten eine Aktivierung des p53/ p21-Signalweges während der frühen FAAinduzierten Leberschädigung identifizieren. Die Aktivierung des p53/ p21 Signalweges ist voraussichtlich eine direkte Reaktion auf den alkylierenden Metaboliten FAA, der in vivo und in vitro nachweislich für chromosomale Aberrationen und mitotische Veränderungen verantwortlich ist^{86,147}. Diese Daten lassen vermuten, dass der Verlust der Nrf2-regulierten Detoxifikation von FAA einen starken DNA-Schaden verursacht und deshalb zur Aktivierung des p53/ p21 Signalweges führt, wie es in den Fah^{-/-} Nrf2^{-/-} Mäusen unter verminderter NTBC-Behandlung gezeigt wurde. Die Aktivierung von p21 führt in diesen Mäusen zu einer beeinträchtigten Proliferation der Hepatozyten und resultiert in der Mobilisierung des hepatischen Stammzell-Pools, der für die Kompensierung des Hepatozyten-Verlusts in den Fah^{-/-} Nrf2^{-/-} Mäusen wichtig zu sein scheint. Die Aktivierung der hepatischen Vorläuferzellen (Ovalzellen) konnte in den Fah^{-/-} Nrf2^{-/-} NTBC-Behandlung Mäusen mit einer verminderten mittels A6-Immunhistochemie nachgewiesen werden. Desweiteren lassen die starken Signale vom α-1-Fetoprotein (AFP) in diesen Mäusen eine Aktivierung der Leberstammzellen vermuten. Diese sind ebenfalls ein Hinweis für die frühere Entwicklung von Lebertumoren. Bekanntlich wird AFP seit Jahren in der Humanmedizin als Marker und für die Verlaufskontrolle von hepatozellulären Karzinomen eingesetzt¹⁴⁸. Dem Anschein nach scheint die Aktivierung von c-jun- und Cyclin D1 in den *Fah^{-/-} Nrf2^{-/-}* Mäusen mit verminderter NTBC-Dosis entscheidend für die Initiierung der frühen Hepatokarzinogenese zu sein. Dies wurde bereits *in vivo* gezeigt^{149,150}. Desweiteren scheint der gezeigte tumorale Verlust der p21-regulierten Zellzykluskontrolle kennzeichnend für den Übergang prämaligner Tumore hin zu malignen Tumoren während der Hepatokarzinogenese zu sein¹⁵¹.

Da die HT1-Patienten trotz NTBC-Therapie weiterhin ein erhöhtes Risiko für die Entwicklung von Tumoren in der Leber tragen, wurde die Aktivierung von Nrf2 zur potentiellen Chemoprävention in der HT1 getestet. Die Aktivierung des Nrf2-regulierten Detoxifiaktions-System führte in den mit dem synthetischen Derivat der Oleanolsäure (CDDO-Im) behandelten *Fah^{-/-}* Mäuse zu einem Schutz vor FAA-induziertem akuten Leberversagen. Durch den Verlust von Nrf2 konnten die *Fah^{-/-} Nrf2^{-/-}* Mäuse durch Gabe von CDDO-Im nicht vor einem akuten Leberversagen geschützt werden. Der bemerkenswerte Schutz vor akutem Leberversagen der *Fah^{-/-}* Tiere lässt vermuten, dass die Behandlung mit CDDO-Im die Tumorentstehung der chronisch kranken Tiere verzögern konnte.

Zusammenfassend führt der Verlust von Nrf2 in der akuten HT1 zu einer verstärkten Mortalität der Mäuse. Zusätzlich werden die Lebern in der chronischen HT1 durch die Nrf2-Aktivierung vor Schäden geschützt und die Karzinogenese verzögert. Basierend auf allen Ergebnissen dieser Arbeit wird von einer Wechselwirkung zwischen Nrf2 und p53/ p21 in der HT1 ausgegangen die vor der Hepatokarzinogenese schützt.

Abbildung 68 fasst schematisch die mögliche Wechselwirkung von Nrf2 und p53/ p21 zusammen. In den *Fah*^{-/-} Mäusen unter 100% NTBC-Behandlung kommt es nicht zur Ansammlung des toxischen Metaboliten FAA und somit werden weder Nrf2 noch p53/ p21 aktiviert.

Abbildung 68: Schematische Abbildung der Nrf2- und p53/ p21-Wechselwirkung in der HT1.

In Mäusen mit suboptimaler NTBC-Behandlung steigt der intrazelluläre FAA-Spiegel an. Dieser führt in den *Fah*^{-/-} Tieren zur Aktivierung von Nrf2, welches wiederrum vor DNA-Schäden und vor der Hepatokarzinogenese schützt. In den *Fah*^{-/-} *Nrf2*^{-/-} Tieren kommt es aufgrund des Verlusts von Nrf2 zu einer stärkeren Akkumulation von FAA, das zu DNA-Schäden führt und letztendlich p53/ p21 aktiviert. Der spätere p21 Verlust führt nachfolgend in den *Fah*^{-/-} *Nrf2*^{-/-} Tieren zur Tumorentstehung. In den *Fah*^{-/-} Tieren führt der komplette NTBC-Entzug zu einer verstärkten Akkumulation des FAAs, welches wiederum eine verstärkte Aktivierung von Nrf2 und p53/ p21 nach sich zieht. Diese verstärkte Aktivierung von p53/ p21 führt in den *Fah*^{-/-} Tieren zu einem anhaltenden Zellzyklusarrest der die DNA-Reparatur erlaubt. In den *Fah*^{-/-} *Nrf2*^{-/-} Tieren nach komplettem NTBC-Entzug sind die FAA-Konzentrationen aufgrund des Nrf2-Verlusts so hoch, dass die Hepatozyten der Apoptose und Nekrose unterliegen und die Tiere an einem akuten Leberversagen sterben.

Der Einfluss von Nrf2 auf die Hepatokarzinogenese sollte ebenfalls in der cholestatischen Lebererkrankung untersucht werden. Während in dem Fah^{-/-} Mausmodell gezeigt werden konnte, dass Nrf2 eine entscheidende Rolle in der akuten HT1 spielt, führte hingegen der Verlust von Nrf2 in den *Mdr2*^{-/-} Mäusen zu keinerlei Unterschieden in den morphologischen Veränderungen, die aufgrund des genetischen Mdr2-Knockouts vermittelt werden. Sowohl *Mdr2*^{-/-} als auch *Mdr2*^{-/-} *Nrf2*^{-/-} Mäuse zeigen eine gleichstarke Proliferationen der Gallengänge sowie eine gleichmäßig ausgebildete Fibrose. Auch die mittels verschiedenster Marker ermittelten Leberschädigungen sind in den Einfach- und Doppelknockout-Mäusen nicht unterschiedlich ausgeprägt. Im Vergleich zu den *Mdr2*^{+/+} Tieren sind alle Auswirkungen die das klinische Bild der Cholestase beschreiben in den Einfach- und Doppelknockout-Tieren gleichermaßen nachweisbar.

Lediglich das durch Nrf2-induzierte Detoxifikations-System in den *Mdr2*^{-/-} Mäusen zeigte im Vergleich zu den *Mdr2*^{-/-} *Nrf2*^{-/-} Mäusen einen signifikanten Unterschied. Während es in diesen Tieren zu einem leichten Anstiegs der hepatischen GSH-Konzentration kam blieben die Konzentrationen der *Mdr2*^{-/-} *Nrf2*^{-/-} Mäuse aufgrund des Nrf2-Verlustes auf dem gleichen Niveau wie das der *Mdr2*^{+/+} Kontrollen. Ebenfalls konnte eine Nrf2-abhänigige Induktion von NQO1 in den *Mdr2*^{-/-} Mäusen gezeigte werden, die in den *Mdr2*^{-/-} *Nrf2*^{-/-} Mäuse noch unter dem Niveau der *Mdr2*^{+/+} Kontrollen lag. Dennoch scheint das in den *Mdr2*^{-/-} Mäusen induzierte Detoxifikations-System nicht effizient genug zu sein um eine Verzögerung der Karzinogenese zu vermitteln.

Der im *Fah*^{-/-} Mausmodell gezeigte Einfluss des Nrf2-Verlusts auf die chronische Form der HT1 und die daraus resultierende früher auftretende Karzinogenese konnte im cholestatischen *Mdr2*^{-/-} Mausmodell nicht gezeigt werden. In dem untersuchten Zeitraum konnte weder ein Unterschied in der TumorInzidenz noch in der Tumoranzahl bzw. -größe zwischen den $Mdr2^{-/-}$ und $Mdr2^{-/-}$ $Nrf2^{-/-}$ Mäusen ermittelt werden.

Während die in dieser Arbeit durchgeführten Untersuchungen zeigten, dass es in den verwendeten Mdr2^{-/-} Mäusen ab dem 15. Lebensmonat zur Entstehung von Lebertumoren kam, zeigten Ergebnisse anderer Forschergruppen, dass sich in deren Mdr2^{-/-} Mausmodell bereits zwischen dem 9. und 12. Lebensmonat Lebertumore entwickeln^{130,131}. Diese voneinander abweichenden Ergebnisse beruhen aller Voraussicht nach auf Unterschieden im genetischen Hintergrund der Mdr2^{-/-} Mausmodelle. In der vorliegenden Arbeit wurden Mdr2^{-/-} Mäuse mit einem gemischten Hintergrund aus C57BI/6 und FVB/N verwendet, während sich die Mäuse mit früher auftretender Karzinogenese in einem genetischen Hintergrund aus 129 oder FVB/N befanden. Nachweislich sind Mäuse im C57BI/6 Hintergrund gegenüber eine Reihe von Leberkarzinogenen resistenter als in anderen Hintergründen. Beispielsweise wurde gezeigt, dass C57BI/6-Mäuse gegenüber dem Karzinogen ENU resistenter sind als Mäuse in einem anderen genetischen Hintergrund¹⁵². Desweiteren zeigte eine erst vor kurzem veröffentlichte Studie, dass abcb1a Knockout-Mäuse (siehe Abbildung 4) im FVB/N Hintergrund eine spontane Kolitis (Entzündung des Darms) entwickeln. Im Gegensatz dazu war in den Knockout-Mäusen im C57BI/6-Hintergrund keine Kolitis innerhalb des ersten Lebensjahres nachweisbar. Dennoch wiesen sie weiterhin eine Prädisposition für diese Erkrankung auf, wie durch die Behandlung mit Helicobacter bilis oder Dextran Sodium Sulfat gezeigt werden konnte¹⁵³.

4.2 Die Einfluss von p21 auf die Karzinogenese in der cholestatischen Leber

In den letzten Jahren konnte gezeigt werden, dass p21 vielseitige Aufgaben im Organismus übernimmt. So wurde nachgewiesen, dass es in chronisch geschädigten Lebern nach Aktivierung von p21 zu einer Verlangsamung der hepatischen Erkrankung kommt^{154,155}. Die in dieser Arbeit gezeigte Induktion des Zellzyklus-Inhibitors p21 in den Lebern von jungen *Mdr2*^{-/-} Mäusen resultierte nicht – wie in vielen chronischen Lebererkrankungen gezeigt – in einer Verlangsamung der cholestatischen Erkrankung. Dies konnte mittels verschiedener Marker für Leberschädigungen in den *Mdr2*^{-/-} *p21*^{-/-} Mäusen nachgewiesen werden. Darüber hinaus konnte ein Zusammenhang zwischen der p21-Induktion in chronisch kranken Lebern und einer Verzögerung der Karzinogenese gezeigt werden⁷⁹. In der veröffentlichten Studie von Willenbring *et al.* führte der Knockout des Zellzyklus-Inhibitors p21 in den Lebern der chronisch kranken *Fah*^{-/-} Mäuse, welche bereits eine Prädisposition für die Hepatokarzinogenese besitzen, zu einer beschleunigten Hepatokarzinogenese⁷⁹. Dies konnte jedoch in der hier vorliegenden Arbeit anhand der durchgeführten Analysen in den cholestatischen Lebern der $Mdr2^{-/-}p21^{-/-}$ Mäuse nicht bestätigt werden. Allerdings konnte in den Lebern der 15 Monate alten $Mdr2^{-/-}$ Mäusen ein Verlust von p21 festgestellt werden, welcher die Rolle von p21 als Tumorsuppressor bestärkt⁸².

Neben der bislang noch nicht vollständig verstandenen Wirkung von p21 in der Karzinogenese als Tumorsuppressor besitzt p21 fundamentale regulative – eine zytostatische¹³³ als auch eine anti-apoptotische⁸⁰ – Eigenschaften. Einen Hinweis auf die zentrale Bedeutung von p21 in der Regulation der Apoptose gibt die Beobachtung, dass in akut geschädigten Lebern eine Apoptose-Resistenz gezeigt werden konnte, die einherging mit einer Akkumulation von p21 im Zytoplasma⁷⁹. In dem hier durchgeführten Apoptose-Nachweis gab es zwischen den $Mdr2^{-/-}$ und den $Mdr2^{-/-} p21^{-/-}$ Mäusen keinen Unterschied, in beiden Gruppen wurden nur sehr wenig positive apoptotische Hepatozyten ermittelt. Zudem ging der hier erbrachte Nachweis für p21 in den $Mdr2^{-/-}$ Mäusen nicht mit einer zytoplasmatischen Lokalisation einher und spricht somit nicht für eine anti-apoptotische Wirkung von p21 in diesen Mäusen.

Die in dieser Arbeit gezeigten unterschiedlichen Lebergewichte der $Mdr2^{-/-} p21^{-/-}$ Mäusen könnten auf eine Fehlregulation der Proliferation hinweisen. Wie in chronischen Lebererkrankungen bereits gezeigt wurde, führt eine starke Induktion von p21 vor dem Eintritt in die S-Phase zu einer Hemmung des Zellzyklus^{154,156,157}. Trotz der starken nukleären Translokation von p21 in den Lebern der $Mdr2^{-/-} p21^{-/-}$ Mäusen signifikant mehr proliferierende Hepatozyten mittels BrdU-Färbung – einem Marker für die S-Phase des Zellzyklus – nachgewiesen werden. Die deutlich weniger stark proliferierenden Hepatozyten in den 10 Monate alten $Mdr2^{-/-} p21^{-/-}$ Mäusen könnten auf eine p21-unabhängige Hemmung der Proliferation zurückzuführen sein. Es wurde vermutet, dass die Hemmung durch p27 – ebenfalls ein Inhibitor der CIP/KIP-Familie – vermittelt wird, welcher in der Lage ist in der späten G₁-Phase die Transition in die S-Phase zu hemmen⁵⁸. In den hier durchgeführten Analysen konnten jedoch keine unterschiedlichen Mengen des p27 Proteins in den Einfach- und Doppelknockout Tieren festgestellt werden.

Die Vermutung lag nahe, dass die in dieser Arbeit gezeigte starke Proliferation in den Tumoren der 15 Monate alten *Mdr2^{-/-} p21^{-/-}* Mäuse – trotz Hemmung der Proliferation in den Lebern der 10 Monate alten *Mdr2^{-/-} p21^{-/-}* Mäuse – auf eine hepatische Stammzellaktivierung (Ovalzellaktivierung) zurückzuführen ist. Eine ähnliche Beobachtung wurde bereits in p27 Knockin-Mäusen beschrieben, deren p27 Protein durch eingebrachte Punktmutationen nicht mehr in der Lage war an Cycline und CDKs zu binden, um so den Zellzyklus zu hemmen¹⁵⁸. Darüber hinaus blieb das Protein funktionsfähig. Die Beobachtungen von Besson

et al. zeigten, dass durch den Verlust der Proliferations-Hemmung gewebseigene Stammzellen aktiviert wurden, die vermutlich für eine vermehrte Tumorbildung verantwortlich waren¹⁵⁸. In den hier durchgeführten Nachweisen der Ovalzellaktivierung konnte diese Vermutung nicht bestätigt werden. Die Aktivierung der Ovalzellen in den $Mdr2^{-/-} p21^{-/-}$ Mäusen war zum Zeitpunkt vor Tumorentstehung (10 Monate) viel geringer im Vergleich zu der Ovalzellaktivierung in den $Mdr2^{-/-}$ Mäusen.

Da nicht nur eine verminderte Proliferationsfähigkeit der Hepatozyten in den Mdr2^{-/-} p21^{-/-} Mäusen ermittelt wurde, sondern zusätzlich auch die Stammzellaktivierung eingeschränkt war, könnte dies eventuell direkt auf den Verlust von p21 zurückzuführen sein. Das würde bedeuten, dass $p21^{-/-}$ Mäuse nach $^{2}/_{3}$ Leberteilresektion auch eine verminderte Regenerationsfähigkeit besitzen. In diese Arbeit konnte aber eher das Gegenteil gezeigt werden. Eine Woche nach Leberteilresektion war das Verhältnis von Leber- zu Körpergewicht in den p21^{-/-} Mäusen im Vergleich zu den p21^{+/+} Mäusen signifikant erhöht. Deswegen wurde nachfolgend überprüft, ob die chronische Erkrankung ausschlaggebend für die eingeschränkte Regenerationsfähigkeit der Lebern war¹⁵⁴. Die in diesem Zusammenhang gezeigte verzögerte Proliferation der Mdr2^{-/-} Hepatozyten nach ²/₃ Leberteilresektion in 8 Monate alten Mäusen, könnte zum einen auf eine verzögerte Regenerationsfähigkeit aufgrund der Lebererkrankung, zum anderen aber auf eine altersbedingte eingeschränkte Regeneration zurückzuführen sein. Dies wurde sowohl in dieser Arbeit als auch von anderen Forschergruppen in älteren Wildtyp Mäusen gezeigt^{140,141}. Allerdings zeigten in jungen Tieren (3 Monate) durchgeführte ²/₃ Leberteilresektionen keine Verzögerung in der Proliferation von *Mdr2^{-/-}* Hepatozyten. Daraus lässt sich schließen, dass entweder die Leber noch nicht geschädigt genug war, oder aber die in den alten Mäusen gezeigte Proliferation-Hemmung nicht auf die Lebererkrankung zurückzuführen ist. Interessanterweise konnte in dieser Studie aber widerlegt werden, dass die Hepatozyten der Mdr2^{-/-} p21^{-/-} Mäuse nicht mehr in der Lage sind zu proliferieren. Diese zeigten nach $^{2}/_{3}$ Leberteilresektion sowohl in den alten als auch in den jungen Mäusen eine sehr starke Proliferation.

Ein Hinweis auf die Ursache der verminderten Proliferationsfähigkeit bietet die Arbeit von Kato *et al.*, in der ebenfalls eine eingeschränkte Proliferation der Hepatozyten in dem Zusammenhang mit einer chronischen Lebererkrankung gezeigt werden konnte¹⁵⁹. In dieser Arbeit würde die verminderte Proliferation durch eine verminderten Cyclin D1-Induktion begründet, welche zwar mit einer erniedrigten p21-Induktion einherging, diese aber nicht auslöste¹⁵⁹. In der hier vorliegenden Arbeit konnte ebenfalls eine verminderte Cyclin D1-Induktion in den 10 Monate alten *Mdr2^{-/-} p21^{-/-}* Mäusen nachgewiesen werden. Eventuell könnte diese verminderte Induktion der Auslöser für die Hemmung der Proliferation zu diesem Zeitpunkt sein.

Abschließend kann zusammengefasst werden, dass im Gegensatz zu dem Fah^{-/-} Mausmodell der Verlust von p21 in den Mdr2^{-/-} p21^{-/-} Mäusen nicht zu einer früher auftretenden Karzinogenese führte. Die Tumore der Mdr2^{-/-} p21^{-/-} Mäuse waren im Vergleich zu den *Mdr2^{-/-}* Mäusen letzten Endes nicht nur größer sondern wiesen auch eine verstärkte Proliferationsrate auf. Die tumorsuppressive Eigenschaft von p21 in dem Fah^{-/-} Mausmodell konnte letztlich nicht in den *Mdr2^{-/-}* Mäusen gezeigt werden, vielmehr wirkte p21 in der cholestatischen Lebererkrankung als Onkogen. Interessanterweise führte der in dieser Arbeit gezeigt Verlust von p21 in den *Mdr2^{-/-} p21^{-/-}* Mäusen zu keinerlei Unterschieden in der Leberschädigung oder -fibrosierung, die aufgrund des Genotyps zu erwarten waren. Lediglich im Vergleich zu den Mdr2+/+ Tieren sind alle Auswirkungen die das klinische Bild der Cholestase beschreiben in den Mdr2^{-/-} und Mdr2^{-/-} p21^{-/-} Mäusen nachweisbar. Obwohl in den Lebern kein Unterschied der Schädigung nachweisbar war, kam es zu dem Verlust der Proliferation der Hepatozyten und ebenfalls zu einer verminderten Aktivierung der Leberstammzellen in den 10 Monate alten $Mdr2^{-/2} p21^{-/2}$ Mäusen. Hingegen konnte mittels 2 /₃ Leberteilresektion gezeigt werden, dass die Lebern der älteren *Mdr2^{-/-} p21^{-/-}* Mäuse nicht nur wieder in der Lage waren zu proliferieren sondern eine gesteigerte Proliferationsfähigkeit im Vergleich zu den Mdr2^{+/+} und Mdr2^{-/-} Mäusen aufwiesen.

Anhang

A Tabelle 15: Geninduktion in *Fah*^{-/-} Mäusen unter 10% und 0% NTBC-Behandlung

Tabelle 15: Geninduktion in Fah^{-/-} Mäusen unter 10% und 0% NTBC-Behandlung

Gene Probe Set ID F10% vs. F100% F0% vs. F100% Zenobiotic metabolism and antioxidant response carbonyl reductase 1 Cbr1 1460196_at 8,10 6,90 cytochrome P450, family 3, subfamily a, polypeptide 1 Cyp33a1 1418780_at 3,90 - glutathione S-transferase, theta 3 Gstta3 1422891_s, at 3,40 2,15 glutathione S-transferase, mu 4 Gstm2 1418411_at 3,10 6,33 glutathione S-transferase, approx Gstm2 1418430_at 3,30 6,45 microsomal glutathione S-transferase 3 Mgst3 1442807_6_a_s_at 2,40 20,12 glutathione S-transferase, alpha 2 (Yc2) Gsta2 1422016_a_s_at 2,40 20,12 glutathione S-transferase, alpha 2 (Yc2) Gsta1 1442807_6_a_s_at 2,40 20,12 glutathione S-transferase, mu 3 Gstm3 1422817_a_s_at 2,40 20,12 2,33 selerinp1 1450059_a_at 2,20 2,33 2,22 1,99 1,4160 glutathione S-transferase, mu 6 Gstm3 142272_a_at <	Nrf2 Target Genes: Genes up-regulated in <i>Fah</i> [≁] r	nice									
Xenobiotic metabolism and antioxidant response carbonyl reductase 1 Cbr1 1460196_at 8,10 6,90 cytochrome P450, family 39, subfamily a, polypeptide 10 Cyp4310 1424853, s. at 3,57 1,01 glutathione S-transferase, m4 Gstm4 142385, at 3,40 2,15 glutathione S-transferase, m4 Gstm4 1424805, at 3,00 6,63 glutathione S-transferase, apha 2 (Yc2) Gstm2 1416411, at 3,00 6,09 glutathione S-transferase, apha 2 (Yc2) Gstm2 1421816, at 2,20 2,93 selenium binding protein 1 Gstm6 1422201, s. at 2,20 2,93 selenium binding protein 1 Selenbp1 1450699, at 1,90 1,84 oplutathione S-transferase, m0 3 Gstm6 1422072, a. at 1,90 1,84 oplutathione S-transferase, m0 3 Gstm6 1422072, a. at 1,90 1,84 oplutathione S-transferase, m0 4 Gstm6 1422072, a. at 1,90 1,84 oplutathione S-transferase, m0 4 Gstm6 1422072, a. at 1,86 1,84	Gene Desciption	Gene	Probe Set ID	F10% vs. F100% ^a	F0% vs. F100% ^b						
carbonyl reductase 1 Chrl 1460196_att 8,10 6,90 cytochrome P450, family 3, subfamily a, polypeptide 1 Cytp3al1 1418780_att 3,90 - cytochrome P450, family 4, subfamily a, polypeptide 10 Cytp4a10 1424863_s_att 3,67 1,01 glutathione 5-transferase, mu 4 Gstm2 1416411_att 3,40 2,15 glutathione 5-transferase anu 2 Gstm2 1416411_st 3,00 6,09 glutathione 5-transferase 3 Mgst3 1448300_att 3,00 6,09 glutathione 5-transferase 3 Mgst3 1448300_att 2,20 2,93 glutathione 5-transferase ange 1 Gstm1 1426875_s_att 2,20 2,93 glutathione 5-transferase, quinine 1 Cyp24 142203_st 2,22 1,99 glutathione 5-transferase, quinine 1 NQOI 1423627_att 1,90 1,416 glutathione 5-transferase, quinine 1 NQOI 1423627_att 1,90 1,41 glutathione 5-transferase, quinine 1 NQOI 1423627_att 1,90 4,25 glutathione 5-transferase, mu 6 Gstm3 <td colspan="11">Xenobiotic metabolism and antioxidant response</td>	Xenobiotic metabolism and antioxidant response										
Sytechrome P450, family 39, subfamily a, polypeptide 1 Cyp3e1 144780, att 3,90 1- Cytochrome P450, family 4, subfamily a, polypeptide 10 Cyp4a10 1424853, s. att 3,97 1,01 glutathione S-transferase, theta 3 Gittal 1424853, s. att 3,40 2,15 glutathione S-transferase, mu 4 Gittal 1424833, att 3,20 6,83 Glutathione S-transferase, mu 2 Gittal 1424833, att 3,12 9,76 glutathione S-transferase, mu 2 Gittal 1421816, att 3,00 6,09 glutathione S-transferase, mu 2 Gittal 142101, s. att 2,60 35,47 glutathione S-transferase, mu 2 Gittal 142101, s. att 2,20 2,21 199 cytochrome P450, family 2, subfamily a, polypeptide 4 Cyp2a1 42220, s. att 2,20 2,93 selenium binding protein 1 Selenbp1 145699, att 1,90 1,84 glutathione S-transferase, mu 3 Gittal 142474, s. att 1,90 1,84 glutathione S-transferase, mu 6 Gittal 1422072, a. att	carbonyl reductase 1	Cbr1	1460196 at	8.10	6.90						
Sytochrome P450, family 4, subfamily a, polypeptide 10 C/p4a10 1424853 e_ at 3,67 1,01 glutathione S-transferase, mu 4 Gstm4 1424853 e_ at 3,40 2,15 glutathione S-transferase, mu 4 Gstm4 1424835 at 3,12 9,76 glutathione S-transferase, mu 2 Gstm2 1416411 at 3,10 6,93 glutathione S-transferase, apha 2 (Yc2) Gstata 1421816 at 3,30 6,45 microsomal glutathione S-transferase omega 1 Gstn1 1416851 at 2,20 2,93 glutathione S-transferase, optian Gstn2 14221041 s_ at 2,40 20,12 glutathione S-transferase, optian Gstn3 1422807 s_ at 2,40 20,32 glutathione S-transferase, mu 3 Gstm3 1422474 s_ at 1,40 1,41 Jutathione S-transferase, mu 6 Gstm6 142207 s_ at 1,90 1,84 Thoredoxin reductase 1 NoOI 1 1421529 s_ at 1,90 1,84 Glutathione S-transferase, mu 6 Gstm6 142207 s_ at 1,80 1,84 Glutathione S-tra	cytochrome P450, family 39, subfamily a, polypeptide 1	Cvp39a1	1418780 at	3.90	-						
gutathione S-transferase, investment Getta 1423801 at 3.40 2.15 gutathione S-transferase, mu 4 Getta 1424835 at 3.12 9.76 gutathione S-transferase, mu 2 Gstm2 1416411 at 3.10 6.93 Glutathione S-transferase, mu 2 Gstm2 1416411 at 3.00 6.09 gutathione S-transferase, alpha 2 (Yc2) Gsta2 1421816 at 2.22 1.99 gutathione S-transferase omega Mgst3 1448300 at 2.00 1.22 1.99 gutathione S-transferase omega Gstm1 1416531 at 2.22 1.99 Cytochrome P450, family 2, subfamily a, polypeptide 4 Cyp2a4 1422030 s. at 2.00 2.33 gutathione S-transferase, mu 3 Gstm3 1422747 s. at 1.90 1.41, 10 gutathione S-transferase, mu 4 Gstm6 1422072 a. at 1.90 1.84 gutathione S-transferase, mu 5 Gstm6 1422072 a. at 1.90 4.25 gutathione S-transferase, mu 4 Gstm6 1422072 a. at 1.86 1.84 Glutathione S-tra	cytochrome P450, family 4, subfamily a, polypeptide 1	Cvp4a10	1424853 s at	3.57	1.01						
gluzthione S-transferase, mu 4 Gstm4 1424835 at 3,12 9,76 gluzthione S-transferase, mu 2 Gstm 1416411 at 3,10 6,93 gluzthione S-transferase 3 Mgst3 1448300 at 3,00 6,45 microsomal gluzthione S-transferase 3 Mgst3 1448300 at 3,00 6,09 gluzthione S-transferase omega 1 Gstra1 1421041 s_at 2,00 35,47 gluzthione S-transferase omega 1 Gstra1 1426875 s_at 2,40 20,12 gluzthione S-transferase omega 1 Gstra1 142230 s_at 2,48 2,00 cytochrome P450, family 2, subfamily a, polypeptide 4 Cyp2a4 142230 s_at 2,83 2,00 gluzthione S-transferase, mu 3 Gstrm1 142207 s_at 1,90 1,84 Thioredoxin reductase 1 Txnrd1 142529 s_at 1,80 1,84 Gluzthione S-transferase, mu 6 Gstrm6 142207 s_at 1,80 1,84 Gluzthione S-transferase, mu 4 Gstrm6 142697 s_at 1,40 1,60 3,04 gluzthione S-	alutathione S-transferase, theta 3	Gstt3	1423891 at	3.40	2.15						
glutathione S-transferase, mu 2 Gstm2 1416411_att 3.10 6.93 Glutathione reductase 1 Gsr 1421816_att 3,30 6,45 microsomal glutathione S-transferase, 3 pha 2 (Yc2) Gsta2 1421041_s.att 2,60 35,47 glutathione S-transferase, alpha 2 (Yc2) Gsta2 1421041_s.att 2,40 20,12 glutathione S-transferase omega 1 Gstn1 1416631_att 2,22 1,99 glutathione S-transferase, mu 3 Satis 14122230_s.att 2,20 2,33 selenium binding protein 1 NGO1 1422687_s.att 1,90 1,41 glutathione S-transferase, mu 3 Gstm3 1421621_s.att 1,90 1,41 glutathione S-transferase, mu 6 Gstm6 1422072_s.att 1,90 1,84 Glutathione S-transferase, mu 6 Gstm6 1422072_s.att 1,86 1,84 Glutathione S-transferase, mu 1 Gstm1 1416816_x.att 1,40 1,60 3,04 glutathione S-transferase, mu 1 Gstm1 1416816_x.att 1,40 2,73 cytochrome P450,	glutathione S-transferase, mu 4	Gstm4	1424835 at	3.12	9.76						
Gutathione reductase 1 Gsr 1421816_at 3.30 6.45 microsonal glutathione S-transferase 3 Mgst3 1448300_att 3.00 6.09 glutathione S-transferase, alpha 2 (Yc2) Gsta2 1421041_s_at 2.60 35.47 sulfredoxin 1 homolog glutathione S-transferase omega 1 Gsta1 1426875_s_at 2.40 20.12 glutathione S-transferase omega 1 Gsta1 1422827_s_at 2.93 2.20 2.93 selenium binding protein 1 NOIO1 1423827_at 1.91 2.053 glutathione S-transferase, mu 3 Gstm3 1422072_a.at 1.90 1.84 Thioredoxin reductase 1 Txmd1 14212072_a.at 1.90 1.84 Transferase, mu 6 Gstm6 1422072_a.at 1.90 4.25 glutathione S-transferase, mu 6 Gstm1 1446354_at 1.40 1.60 glutathione S-transferase, mu 6 Gstm1 1448354_at 1.40 1.42 Glutathione S-transferase, mu 1 Gstm1 1446354_at 1.40 2.73 glucathione S-transferase,	alutathione S-transferase, mu 2	Gstm2	1416411 at	3.10	6.93						
microsomal glutathione S-transferase 3 Mgst3 1448300_at 3.00 6.09 glutathione S-transferase, alpha 2 (Yc2) Gsta2 1421041_s, at 2.60 35.47 glutathione S-transferase omega 1 Gsto1 14426875_s, at 2.40 20.12 glutathione S-transferase omega 1 Gsto1 14426875_s, at 2.20 2.93 selenium binding protein 1 Selenbp1 1450699_at 2.18 2.00 1.93 solenium binding protein 1 NQO1 1422627_at 1.90 1.41 1.90 1.41 1.90 1.41 1.90 1.41 1.90 1.41 1.90 1.41 1.90 1.41 1.90 1.41 1.90 1.41 1.90 1.41 1.90 1.41 1.90 1.41 1.90 1.84 1.90 1.41 1.90 1.84 1.90 1.41 1.90 1.84 1.90 1.42 1.90 1.42 1.90 1.84 1.90 1.20 3.00 1.42 1.90 1.84 1.90 1.20 3.00<	Glutathione reductase 1	Gsr	1421816 at	3.30	6.45						
glutathione S-transferase, alpha 2 (Yc2) Gsta2 1421041.s_at 2.60 35.47 sulfredoxin 1 homolog Grxn1 1426875_s_at 2.40 20.12 glutathione S-transferase omega 1 Gsto1 1416531_at 2.22 1.99 cytochrome P450, family 2, subfamily a, polypeptide 4 Cyp2a4 1422302_s_at 2.20 2.93 selenium binding protein 1 Selenbp1 1450699_at 2.21 8.209 NAD (P)H dehydrogenase, quinine 1 NOO1 1423627_at 1.90 1.84 Thioredoxin reductase 1 Gstm6 1422072_a_at 1.90 1.84 Qlutathione S-transferase, mu 6 Gstm6 1422072_a_at 1.90 4.25 Glutathione S-transferase, mu 6 Gstm6 1422072_a_at 1.80 1.44 Glutathione S-transferase, mu 6 Gstm6 1422072_a_at 1.80 1.42 Glutathione S-transferase, mu 1 Gstm6 1422072_a_at 1.80 1.42 Glutathione S-transferase, nu 1 Gstm1 145015_at 1.60 3.04 glutathione S-transferase, alpha 4	microsomal glutathione S-transferase 3	Mast3	1448300 at	3.00	6.09						
suffiredoxin 1 homolog Sixn1 1426875.s_at 2,40 20,12 glutathione S-transferase omega 1 Gsto1 1416531.at 2,22 1,99 cytochrome P450, family 2, subfamily a, polypeptide 4 Selenipp1 1422830.s_at 2,20 2,93 selenium binding protein 1 NCO1 1423627.at 1,91 20,53 glutathione S-transferase, mu 3 Gstm3 1427474.s_at 1,90 1,410 glutathione S-transferase, mu 6 Gstm6 1422072.a 1,90 1,84 Thioredoxin reductase 1 Txnrd1 1421529.a.at 1,86 1,84 Glutathione S-transferase, mu 6 Gstm6 1422072.a.at 1,86 1,84 Glutathione S-transferase, mu 1 Gstm1 141683.at 1,60 3,04 glutathione S-transferase, mu 1 Gstm1 1416416.x.at 1,40 1,605 glutathione S-transferase, mu 1 Gstm1 141646.x.at 1,40 2,73 glutathione S-transferase, mu 4 Gstm1 141646.x.at 1,40 3,00 glutathione S-transferase, mu 4	glutathione S-transferase, alpha 2 (Yc2)	Gsta2	1421041 s at	2.60	35.47						
glutathione S-transferase omega 1 Gsto1 1416531_at 2,22 1,99 cytochrome P450, family 2, subfamily a, polypeptide 4 Cyp2a4 142230_s_at 2,13 2,03 2,83 selenium binding protein 1 Selenium binding protein 1 NBO(P)H dehydrogenase, quinine 1 NQO(1 1423627_at 1,91 20,53 glutathione S-transferase, mu 3 Gstm3 1427474_s_at 1,90 1,84 Thioredoxin reductase 1 Txmrd1 142152a_at 1,90 4,25 glutathione S-transferase, mu 6 Gstm6 1422072_a_at 1,84 1,84 Glutathione S-transferase, mu 6 Gstm2 1417883_at 1,60 1,42 Transketolase Txmrd1 142527_a_at 1,80 1,42 Glutathione S-transferase, mu 1 Gstm4 1447615_at 1,60 3,04 glucase-6-phosphate dehydrogenase X-linked G6pdx 1448354_at 1,40 2,73 glutathione S-transferase, apha 4 Gsta4 1416416_x_at 1,30 1,36 glutathione S-transferase, apha 4 Aox1 1419435_at	sulfiredoxin 1 homolog	Srxn1	1426875 s at	2.40	20.12						
cytochrome P450, family 2, subfamily a, polypeptide 4 Cyp2a4 1422230_5_at 2,20 2,93 selenium binding protein 1 Selenbp1 1450699_at 2,18 2,09 NAD(P)H dehydrogenase, quinine 1 NQO1 1423627_at 1,91 20,53 glutathione S-transferase, mu 3 Gstm6 1422072_a at 1,90 1,84 Thioredoxin reductase 1 Txnrd1 1421529_a_at 1,90 4,25 glutathione S-transferase, mu 6 Gstm6 1422072_a_at 1,84 1,84 Glutathione S-transferase, mu 6 Gstm6 1422072_a_at 1,86 1,84 glucose-6-phosphate dehydrogenase X-linked G6pdx 1448354_at 1,40 16,05 glutathione S-transferase, mu 1 Gstm1 1416416_x_at 1,40 2,73 cytochrome P450, family 1, subfamily a, polypeptide 2 Gyp1a2 145078_at 1,20 3,07 glutathione S-transferase, alpha 4 Gsta4 1416416_x_at 1,20 3,07 glutathione S-transferase, alpha 4 Gsta4 1416378_at 1,20 2,65 <t< td=""><td>glutathione S-transferase omega 1</td><td>Gsto1</td><td>1416531 at</td><td>2.22</td><td>1.99</td></t<>	glutathione S-transferase omega 1	Gsto1	1416531 at	2.22	1.99						
Selenium binding protein 1 Selenbp1 1426699_at 2,18 2,09 NAD(P)H dehydrogenase, quinine 1 NQO1 1423627_at 1,91 20,53 Qiutathione S-transferase, mu 3 Gstm3 1427474_s,at 1,90 1,4,10 glutathione S-transferase, mu 6 Gstm6 1422072_a,at 1,90 1,84 Thioredoxin reductase 1 Txnrd1 1421529_a,at 1,90 4,25 glutathione S-transferase, mu 6 Gstm6 1422072_a,at 1,66 1,42 Glutathione S-transferase, theta 2 Gstm1 141616_x,at 1,40 16,05 glutose-6-phosphate dehydrogenase X-linked G6pdx 1448354_at 1,40 16,05 glutathione S-transferase, mu 1 Gstm1 141616_x,at 1,40 2,73 glutathione S-transferase, alpha 4 Gsta4 141935a_at 1,20 8,08 aldehyde oxidase 1 Aox1 1419435_at 1,20 3,07 Ubigitination and proteolysis Fbxo21 1452828_at 1,77 1,50 proteasome (prosome, macropain) 26S subunit, non-ATPase, 5<	cytochrome P450, family 2, subfamily a, polypeptide 4	Cyp2a4	1422230 s at	2,20	2,93						
NAD(P)H dehydrogenase, quinine 1 NQO1 1423627_at 1,91 20,53 glutathione S-transferase, mu 3 Gstm3 1422072_a, at 1,90 14,10 glutathione S-transferase, mu 6 Gstm6 1422072_a, at 1,90 4,25 glutathione S-transferase, mu 6 Gstm6 1422072_a, at 1,86 1,84 Transferase, fibta 2 Gstt2 1417883_at 1,60 1,42 Transketolase Tkt 1417883_at 1,60 1,42 glucose-6-phosphate dehydrogenase X-linked G6pdx 1448354_at 1,40 2,73 cytochrome P450, family 1, subfamily a, polypeptide 2 Cyp1a2 1450715_at 1,30 1,36 glutathione S-transferase, nu 1 Gstta4 1416868_at 1,20 3,07 Ubigitination and proteolysis - - Aox1 1419435_at 1,20 2,65 Chaperon system - Fbx021 1452828_at 1,77 1,50 Proteasome (prosome, macropain) 26S subunit, non-ATPase, 5 Psmd5 1423234_at 1,20 2,65 <tr< td=""><td>selenium binding protein 1</td><td>Selenbp1</td><td>1450699 at</td><td>2,18</td><td>2,09</td></tr<>	selenium binding protein 1	Selenbp1	1450699 at	2,18	2,09						
glutathione S-transferase, mu 3 Gstm3 1427474_s_at 1,90 14,10 glutathione S-transferase, mu 6 Gstm6 1422072_a_at 1,90 1,84 Thoredoxin reductase 1 Txn11 1421529_a_att 1,90 4,25 glutathione S-transferase, mu 6 Gstm6 1422072_a_att 1,86 1,84 Glutathione S-transferase, theta 2 Gstm1 141616_x_att 1,60 1,42 Transketolase Tkt 1451015_att 1,60 3,04 glutathione S-transferase, mu 1 Gstm1 1416416_x_att 1,40 2,73 cytochrome P450, family 1, subfamily a, polypeptide 2 Cyp1a2 145015_att 1,30 1,36 glutathione S-transferase, alpha 4 Gsta4 1419435_att 1,20 8,08 aldehyde oxidase 1 Aox1 1419435_att 1,20 3,07 Ubigitination and proteolysis F F 1423234_att 1,20 2,65 Chaperon system F Fk506 binding protein 5 Fkbp5 1448231_att 3,30 1,48 Cel	NAD(P)H dehydrogenase, guinine 1	NQO1		1,91	20,53						
glutathione S-transferase, mu 6 Gstm6 1422072 a at 1,90 1,84 Thioredoxin reductase 1 Txnrd1 1421529 a at 1,90 4,25 glutathione S-transferase, mu 6 Gstm6 1422072 a at 1,86 1,84 Glutathione S-transferase, mu 6 Gstt2 1417883_at 1,60 1,42 Transketolase Tkt 14451015_at 1,60 3,04 glucose-6-phosphate dehydrogenase X-linked G6pdx 14451016_x_at 1,40 16,05 glutathione S-transferase, mu 1 Gstm1 1416116_x_at 1,40 2,73 cytochrome P450, family 1, subfamily a, polypeptide 2 Cyp1a2 1450715_at 1,30 1,36 glutathione S-transferase, alpha 4 Gsta4 1416368_at 1,20 8,08 aldehyde oxidase 1 Aox1 1419435_at 1,20 3,07 Ubigitination and proteolysis F F 5 142231_at 3,30 1,48 Cell growth and apoptosis F F 1420362_a at 1,87 2,22 Cellular represo	alutathione S-transferase, mu 3	Gstm3	1427474 s at	1.90	14.10						
Thioredoxin reductase 1 Txnrd1 1421529 a_at 1,90 4,25 glutathione S-transferase, mu 6 Gstm6 1422072 a_at 1,86 1,84 glutathione S-transferase, theta 2 Gstt2 1417883.at 1,60 1,42 Transketolase Tkt 1451015_at 1,60 3,04 glucathione S-transferase, mu 1 Gstt3 1417838.at 1,40 16,05 glutathione S-transferase, mu 1 Gstt4 1416364.ex_at 1,40 2,73 cytcochrome P450, family 1, subfamily a, polypeptide 2 Cyp1a2 1450715_at 1,30 1,36 glutathione S-transferase, alpha 4 Gsta4 1419435_at 1,20 8,08 aldehyde oxidase 1 Aox1 1419435_at 1,20 3,07 Ubigitination and proteolysis F-box only protein 21 proteasome (prosome, macropain) 26S subunit, non-ATPase, 5 Psmd5 1423234_at 1,20 2,65 Chaperon system FK506 binding protein 5 Fkbp5 1448231_at 3,30 1,48 Cell qrowth and apoptosis	alutathione S-transferase, mu 6	Gstm6	1422072 a at	1.90	1.84						
glutathione S-transferase, mu 6 Glutathione S-transferase, theta 2 Gatt2 1417883_at 1,60 1,42 Transketolase Tkt 1451015_at 1,60 3,04 glucose-6-phosphate dehydrogenase X-linked G6pdx 1448354_at 1,40 16,05 glutathione S-transferase, mu 1 Gatta 1416416_x_at 1,40 2,73 cytochrome P450, family 1, subfamily a, polypeptide 2 Cyp1a2 1450715_at 1,30 1,36 glutathione S-transferase, alpha 4 Gata4 141638_at 1,20 8,08 aldehyde oxidase 1 Diglitination and proteolysis F-box only protein 21 proteasome (prosome, macropain) 26S subunit, non-ATPase, 5 Psmd5 1423234_at 1,20 2,65 Chaperon system FK506 binding protein 5 Fkbp5 1448231_at 3,30 1,48 Cell growth and apoptosis Angiopoietin-like 4 Angiopoietin-like 4 Angiopoietin-like 4 Angiopoietin-like 4 Angiopoietin-like 4 DIP-glucose pyrophosphorylase 2 UDP-glucose pyrophosphorylase 2 UDP-glucose pyrophosphorylase 2 Transcription MID- glucose pyrophosphorylase 2 MID- glucose pyrophosphorylase 2 ATP-binding cassette, sub-family C (CFTR/MRP), member 5 Abcc5 Transcription MID- glucose pyrophosphorylase 2 MID- glucose pyrophosphorylase 2 MID- glucose pyrophosphorylase 2 ATP-binding cassette, sub-family C (CFTR/MRP), member 5 Abcc5 Transcription MID- glucose pyrophosphorylase 2 MID-	Thioredoxin reductase 1	Txnrd1	1421529 a at	1.90	4.25						
Glutathione S-transferase, theta 2 Gstt2 1417883_at 1,60 1,42 Transketolase Tkt 1451015_at 1,60 3,04 glucose-6-phosphate dehydrogenase X-linked G6pdx 1448354_at 1,40 16,05 glutathione S-transferase, mu 1 Gstm1 1416416_x_at 1,40 2,73 cytochrome P450, family 1, subfamily a, polypeptide 2 Cyp1a2 1450715_at 1,30 1,36 glutathione S-transferase, alpha 4 Gsta4 141638a_at 1,20 8,08 aldehyde oxidase 1 Aox1 1419435_at 1,20 8,08 aldehyde oxidase 1 Aox1 1419435_at 1,20 2,65 Chaperon system F Fboz only protein 21 Fbx021 1452828_at 1,77 1,50 proteasome (prosome, macropain) 26S subunit, non-ATPase, 5 Psmd5 1448231_at 3,30 1,48 Cell growth and apoptosis FK506 binding protein 5 Fkbp5 1448231_at 3,30 1,48 Cellular repressor of E1A-stimulated genes Creg1 1417130_s_at 2,20	glutathione S-transferase, mu 6	Gstm6	1422072 a at	1,86	1,84						
Transketolase Tkt 1451015_at 1,60 3,04 glucose-6-phosphate dehydrogenase X-linked G6pdx 1448354_at 1,40 16,05 glutathione S-transferase, mu 1 Gstm1 1416416_x_at 1,40 2,73 cytochrome P450, family 1, subfamily a, polypeptide 2 Cyp1a2 1450715_at 1,30 1,36 glutathione S-transferase, alpha 4 Gsta4 1416368_at 1,20 8,08 aldehyde oxidase 1 Aox1 1419435_at 1,20 3,07 Ubigitination and proteolysis F. F. 50x only protein 21 9x021 1452828_at 1,77 1,50 proteasome (prosome, macropain) 26S subunit, non-ATPase, 5 Psmd5 144231_at 3,30 1,48 Cell growth and apoptosis Angiopoietin-like 4 Angtpt4 1417130_s_at 2,20 1,59 Bcl2-interacting killer-like Biklk 14420362_a_at 1,87 2,22 Cellular repressor of E1A-stimulated genes Creg1 1416947_at 1,40 3,66 Transcription UDP-glucose pyrophosphorylase 2 <	Glutathione S-transferase, theta 2	Gstt2	1417883 at	1,60	1,42						
glucose-6-phosphate dehydrogenase X-linked G6pdx 1448354_at 1,40 16,05 glutathione S-transferase, mu 1 Gstm1 1416416_x_at 1,40 2,73 cytochrome P450, family 1, subfamily a, polypeptide 2 Cyp1a2 1450715_at 1,30 1,36 glutathione S-transferase, alpha 4 Gsta4 Gsta4 1416368_at 1,20 8,08 aldehyde oxidase 1 Aox1 1419435_at 1,20 3,07 Ubigitination and proteolysis F-box only protein 21 Fbxo21 1452828_at 1,77 1,50 proteasome (prosome, macropain) 26S subunit, non-ATPase, 5 Psmd5 1423234_at 1,20 2,65 Chaperon system F Fk506 binding protein 5 Fkbp5 1448231_at 3,30 1,48 Cell growth and apoptosis Angptl4 1417130_s_at 2,20 1,59 Bicl2-interacting killer-like Biklk 1420362_a_at 1,87 2,22 Cellular repressor of E1A-stimulated genes Creg1 1415947_at 1,40 3,66 Transcription UDP-glucose pyrophosphorylase 2<	Transketolase	Tkt		1,60	3,04						
glutathione S-transferase, mu 1 Gstm1 1416416_x_at 1,40 2,73 cytochrome P450, family 1, subfamily a, polypeptide 2 Cyp1a2 1450715_at 1,30 1,36 glutathione S-transferase, alpha 4 Gsta4 1416368_at 1,20 8,08 aldehyde oxidase 1 Aox1 1419435_at 1,20 3,07 Ubigitination and proteolysis F F 5 1452828_at 1,77 1,50 proteasome (prosome, macropain) 26S subunit, non-ATPase, 5 Psmd5 1423234_at 1,20 2,65 Chaperon system F Fkbp5 1448231_at 3,30 1,48 Cell growth and apoptosis Angiopoietin-like 4 Angiopoietin-like 4 1,87 2,22 Cellular repressor of E1A-stimulated genes Creg1 1415947_at 1,40 3,66 Transcription UDP-glucose pyrophosphorylase 2 Ugp2 1434485_a_at 1,50 2,56 Tansport ATP-binding cassette, sub-family C (CFTR/MRP), member 5 Abcc5 142056_a_at 4,00 - Solute carrier family 2 (facilitated glucose t	glucose-6-phosphate dehydrogenase X-linked	G6pdx	1448354 at	1,40	16,05						
Cytochrome P450, family 1, subfamily a, polypeptide 2 Cyp1a2 1450715_at 1,30 1,36 glutathione S-transferase, alpha 4 Gsta4 1416368_at 1,20 8,08 aldehyde oxidase 1 Aox1 1419435_at 1,20 8,08 aldehyde oxidase 1 Aox1 1419435_at 1,20 3,07 Ubigitination and proteolysis F.box only protein 21 Fbxo21 1452828_at 1,77 1,50 proteasome (prosome, macropain) 26S subunit, non-ATPase, 5 Psmd5 1423234_at 1,20 2,65 Chaperon system Fk506 binding protein 5 Fkbp5 1448231_at 3,30 1,48 Cell growth and apoptosis Angptl4 1417130_s_at 2,20 1,59 Bcl2-interacting killer-like Biklk 1420362_a_at 1,87 2,22 Cellular repressor of E1A-stimulated genes Creg1 1415947_at 1,40 3,66 Transcription UDP-glucose pyrophosphorylase 2 Ugp2 1434485_a_at 1,50 2,56 Transport ACS 1422600_at 1,98 3,04	glutathione S-transferase, mu 1	Gstm1	1416416 x at	1,40	2,73						
gutathione S-transferase, alpha 4 Anno aldehyde oxidase 1 Aox1 1416366_at 1,20 8,08 aldehyde oxidase 1 Aox1 1419435_at 1,20 3,07 Ubigitination and proteolysis F F 5000 1423234_at 1,20 2,65 Chaperon system F Fkbp5 14423234_at 1,20 2,65 Chaperon system F Fkbp5 1448231_at 3,30 1,48 Cell growth and apoptosis Angiopoletin-like 4 Angptl4 1417130_s_at 2,20 1,59 Bcl2-interacting killer-like Biklk 1420362_a_at 1,87 2,22 Cellular repressor of E1A-stimulated genes Creg1 1415947_at 1,40 3,66 Transcription UDP-glucose pyrophosphorylase 2 Ugp2 1434485_a_at 1,90 - ATP-binding cassette, sub-family C (CFTR/MRP), member 5 Abcc5 1427565_a_at 4,00 - Solute carrier family 2 (facilitated glucose transporter), member 1 Slc2a1 142660_at 1,98 3,04	cytochrome P450, family 1, subfamily a, polypeptide 2	Cyp1a2	1450715 at	1,30	1,36						
Aldehyde oxidase 1 Aox1 1419435_at 1,20 3,07 Ubigitination and proteolysis F-box only protein 21 Fbx021 1452828_at 1,77 1,50 proteasome (prosome, macropain) 26S subunit, non-ATPase, 5 Psmd5 1423234_at 1,20 2,65 Chaperon system FK506 binding protein 5 Fkbp5 1448231_at 3,30 1,48 Cell growth and apoptosis Angipoletin-like 4 Angiptl4 1417130_s_at 2,20 1,59 Bcl2-interacting killer-like Biklk 1420362_a_at 1,87 2,22 Cellular repressor of E1A-stimulated genes Creg1 1415947_at 1,40 3,66 Transcription UDP-glucose pyrophosphorylase 2 Ugp2 1434485_a_at 1,50 2,56 Transport ATP-binding cassette, sub-family C (CFTR/MRP), member 5 Abcc5 1427565_a_at 4,00 - solute carrier family 2 (facilitated glucose transporter), member 1 Sic2a1 142640_at 1,98 3,04 amiloride-sensitive cation channel 5, intestinal Accn5 1420451_at 1,82 2,36	glutathione S-transferase, alpha 4	Gsta4		1,20	8,08						
Ubigitination and proteolysis F-box only protein 21 Fbxo21 1452828_at 1,77 1,50 proteasome (prosome, macropain) 26S subunit, non-ATPase, 5 Psmd5 1423234_at 1,20 2,65 Chaperon system	aldehyde oxidase 1	Aox1		1,20	3,07						
Ubigitination and proteolysis F-box only protein 21 Fbx021 1452828_at 1,77 1,50 proteasome (prosome, macropain) 26S subunit, non-ATPase, 5 Psmd5 1423234_at 1,20 2,65 Chaperon system FK506 binding protein 5 Fkbp5 1448231_at 3,30 1,48 Cell growth and apoptosis Angiopoietin-like 4 Angptl4 1417130_s_at 2,20 1,59 Bcl2-interacting killer-like Biklk 1420362_a_at 1,87 2,22 Cellular repressor of E1A-stimulated genes Creg1 1415947_at 1,40 3,66 Transcription UDP-glucose pyrophosphorylase 2 Ugp2 1434485_a_at 1,50 2,56 Transport ATP-binding cassette, sub-family C (CFTR/MRP), member 5 Abcc5 1427565_a_at 4,00 - ATP-binding cassette, sub-family 2 (facilitated glucose transporter), member 1 Slc2a1 1426600_at 1,98 3,04 amiloride-sensitive cation channel 5, intestinal Accn5 1420451_at 1,82 2,36 phosphatidylinositol transfer protein, beta Pitpnb 1420307											
F-box only protein 21 Fbxo21 1452828_at 1,77 1,50 proteasome (prosome, macropain) 26S subunit, non-ATPase, 5 Psmd5 1423234_at 1,20 2,65 Chaperon system FK506 binding protein 5 Fkbp5 1448231_at 3,30 1,48 Cell growth and apoptosis Angiopoietin-like 4 Angptl4 1417130_s_at 2,20 1,59 Bcl2-interacting killer-like Biklk 1420362_a_at 1,87 2,22 Cellular repressor of E1A-stimulated genes Creg1 1415947_at 1,40 3,66 Transcription UDP-glucose pyrophosphorylase 2 Ugp2 1434485_a_at 1,50 2,56 Transport ATP-binding cassette, sub-family C (CFTR/MRP), member 5 Abcc5 1427565_a_at 4,00 - solute carrier family 2 (facilitated glucose transporter), member 1 Slc2a1 1426600_at 1,98 3,04 amiloride-sensitive cation channel 5, intestinal Accn5 1420451_at 1,82 2,36 phosphatidylinositol transfer protein, beta Pitpnb 1420307_a_at 1,61 1,65 Biosynthesis Cysteine co	Ubigitination and proteolysis										
proteasome (prosome, macropain) 26S subunit, non-ATPase, 5 Psmd5 1423234_at 1,20 2,65 Chaperon system FK506 binding protein 5 Fkbp5 1448231_at 3,30 1,48 Cell growth and apoptosis Angiopoletin-like 4 Angthl 1417130_s_at 2,20 1,59 Bcl2-interacting killer-like Biklk 1420362_a_at 1,87 2,22 Cellular repressor of E1A-stimulated genes Creg1 1415947_at 1,40 3,66 Transcription UDP-glucose pyrophosphorylase 2 Ugp2 1434485_a_at 1,50 2,56 Transport ArtP-binding cassette, sub-family C (CFTR/MRP), member 5 Abcc5 1427565_a_at 4,00 - solute carrier family 2 (facilitated glucose transporter), member 1 Slc2a1 1426600_at 1,98 3,04 amiloride-sensitive cation channel 5, intestinal Accn5 1420451_at 1,82 2,36 phosphatidylinositol transfer protein, beta Pitpnb 1420307_a_at 1,61 1,65 Biosynthesis Cobl1 1446302_at 1,95 - pre-	F-box only protein 21	Fbxo21	1452828_at	1,77	1,50						
Chaperon system FK506 binding protein 5 Fkbp5 1448231_at 3,30 1,48 Cell growth and apoptosis Angiptolitic 1ike 4 Angptl4 1417130_s_at 2,20 1,59 Bcl2-interacting killer-like Biklk 1420362_a_at 1,87 2,22 Cell ular repressor of E1A-stimulated genes Creg1 1415947_at 1,40 3,66 Transcription UDP-glucose pyrophosphorylase 2 Ugp2 1434485_a_at 1,50 2,56 Transport ATP-binding cassette, sub-family C (CFTR/MRP), member 5 Abcc5 1427565_a_at 4,00 - solute carrier family 2 (facilitated glucose transporter), member 1 Slc2a1 1426600_at 1,98 3,04 amiloride-sensitive cation channel 5, intestinal Accn5 1420451_at 1,82 2,36 phosphatidylinositol transfer protein, beta Pitpnb 1420307_a_at 1,61 1,65 Biosynthesis Ccbl1 1446302_at 1,95 - -	proteasome (prosome, macropain) 26S subunit, non-ATPase, 5	Psmd5	1423234_at	1,20	2,65						
FK506 binding protein 5 Fkbp5 1448231_at 3,30 1,48 Cell growth and apoptosis Angiopoietin-like 4 Angptl4 1417130_s_at 2,20 1,59 Bcl2-interacting killer-like Biklk 1420362_a_at 1,87 2,22 Cellular repressor of E1A-stimulated genes Creg1 1415947_at 1,40 3,66 Transcription UDP-glucose pyrophosphorylase 2 Ugp2 1434485_a_at 1,50 2,56 Transport Argentiation of the sensitive cation channel 5, intestinal phosphatidylinositol transfer protein, beta Accn5 1427565_a_at 4,00 - Biosphatidylinositol transfer protein, beta Pitpnb 1420307_a_at 1,61 1,65 Biosynthesis Ccbl1 1446302_at 1,95 - Cysteine conjugate-beta lyase Ccbl1 1448607_at 1,61 1,85	Chaperon system										
Cell growth and apoptosis Angiopoietin-like 4 Angptl4 1417130_s_at 2,20 1,59 Bcl2-interacting killer-like Biklk 1420362_a_at 1,87 2,22 Cellular repressor of E1A-stimulated genes Creg1 1415947_at 1,40 3,66 Transcription UDP-glucose pyrophosphorylase 2 Ugp2 1434485_a_at 1,50 2,56 Transport ATP-binding cassette, sub-family C (CFTR/MRP), member 5 Abcc5 1427565_a_at 4,00 - solute carrier family 2 (facilitated glucose transporter), member 1 Slc2a1 1426600_at 1,98 3,04 amiloride-sensitive cation channel 5, intestinal Accn5 1420451_at 1,82 2,36 phosphatidylinositol transfer protein, beta Pitpnb 1420307_a_at 1,61 1,65 Biosynthesis C Cobl1 1446302_at 1,95 - Pre-B-cell colony-enhancing factor 1 Pbef1 1448607_at 1,61 1,85	FK506 binding protein 5	Fkbp5	1448231_at	3,30	1,48						
Cell growth and apoptosis Angiopoietin-like 4 Angptl4 1417130_s_at 2,20 1,59 Bcl2-interacting killer-like Biklk 1420362_a_at 1,87 2,22 Cellular repressor of E1A-stimulated genes Creg1 1415947_at 1,40 3,66 Transcription UDP-glucose pyrophosphorylase 2 Ugp2 1434485_a_at 1,50 2,56 Transport ATP-binding cassette, sub-family C (CFTR/MRP), member 5 Abcc5 1427565_a_at 4,00 - solute carrier family 2 (facilitated glucose transporter), member 1 Slc2a1 1426600_at 1,98 3,04 amiloride-sensitive cation channel 5, intestinal Accn5 1420451_at 1,82 2,36 phosphatidylinositol transfer protein, beta Pitpnb 1420307_a_at 1,61 1,65 Biosynthesis Cysteine conjugate-beta lyase Ccbl1 1446302_at 1,95 - pre-B-cell colony-enhancing factor 1 Pbef1 1448607_at 1,61 1,85											
Angiopoietin-like 4 Angptl4 1417130_s_at 2,20 1,59 Bcl2-interacting killer-like Biklk 1420362_a_at 1,87 2,22 Cellular repressor of E1A-stimulated genes Creg1 1415947_at 1,40 3,66 Transcription UDP-glucose pyrophosphorylase 2 Ugp2 1434485_a_at 1,50 2,56 Transport ATP-binding cassette, sub-family C (CFTR/MRP), member 5 Abcc5 1427565_a_at 4,00 - solute carrier family 2 (facilitated glucose transporter), member 1 Slc2a1 1426600_at 1,98 3,04 amiloride-sensitive cation channel 5, intestinal Accn5 1420451_at 1,82 2,36 phosphatidylinositol transfer protein, beta Pitpnb 1420307_a_at 1,61 1,65 Biosynthesis Cysteine conjugate-beta lyase Ccbl1 1446302_at 1,95 - pre-B-cell colony-enhancing factor 1 Pbef1 1448607_at 1,61 1,85	Cell growth and apoptosis										
Bcl2-interacting killer-like Biklk 1420362_a_at 1,87 2,22 Cellular repressor of E1A-stimulated genes Creg1 1415947_at 1,40 3,66 Transcription UDP-glucose pyrophosphorylase 2 Ugp2 1434485_a_at 1,50 2,56 Transport ATP-binding cassette, sub-family C (CFTR/MRP), member 5 Abcc5 1427565_a_at 4,00 - solute carrier family 2 (facilitated glucose transporter), member 1 Slc2a1 1426600_at 1,98 3,04 amiloride-sensitive cation channel 5, intestinal Accn5 1420451_at 1,82 2,36 phosphatidylinositol transfer protein, beta Pitpnb 1420307_a_at 1,61 1,65 Biosynthesis Cosline conjugate-beta lyase Ccbl1 1446302_at 1,95 - pre-B-cell colony-enhancing factor 1 Pbef1 1448607_at 1,61 1,85	Angiopoietin-like 4	Angptl4	1417130_s_at	2,20	1,59						
Cellular repressor of E1A-stimulated genesCreg11415947_at1,403,66TranscriptionUDP-glucose pyrophosphorylase 2Ugp21434485_a_at1,502,56TransportATP-binding cassette, sub-family C (CFTR/MRP), member 5Abcc51427565_a_at4,00-solute carrier family 2 (facilitated glucose transporter), member 1Slc2a11426600_at1,983,04amiloride-sensitive cation channel 5, intestinalAccn51420451_at1,822,36phosphatidylinositol transfer protein, betaPitpnb1420307_a_at1,611,65BiosynthesisCysteine conjugate-beta lyaseCcbl11446302_at1,95-pre-B-cell colony-enhancing factor 1Pbef11448607_at1,611,85	Bcl2-interacting killer-like	Biklk	1420362_a_at	1,87	2,22						
TranscriptionUDP-glucose pyrophosphorylase 2Ugp21434485_a_at1,502,56TransportATP-binding cassette, sub-family C (CFTR/MRP), member 5Abcc51427565_a_at4,00-solute carrier family 2 (facilitated glucose transporter), member 1Slc2a11426600_at1,983,04amiloride-sensitive cation channel 5, intestinalAccn51420451_at1,822,36phosphatidylinositol transfer protein, betaPitpnb1420307_a_at1,611,65BiosynthesisCysteine conjugate-beta lyaseCcbl11446302_at1,95-pre-B-cell colony-enhancing factor 1Pbef11448607_at1,611,85	Cellular repressor of E1A-stimulated genes	Creg1	1415947_at	1,40	3,66						
UDP-glucose pyrophosphorylase 2Ugp21434485_a_at1,502,56TransportATP-binding cassette, sub-family C (CFTR/MRP), member 5Abcc51427565_a_at4,00-solute carrier family 2 (facilitated glucose transporter), member 1Slc2a11426600_at1,983,04amiloride-sensitive cation channel 5, intestinalAccn51420451_at1,822,36phosphatidylinositol transfer protein, betaPitpnb1420307_a_at1,611,65BiosynthesisCysteine conjugate-beta lyaseCcbl11446302_at1,95-pre-B-cell colony-enhancing factor 1Pbef11448607_at1,611,85	Transcription										
TransportATP-binding cassette, sub-family C (CFTR/MRP), member 5Abcc51427565_a_at4,00-solute carrier family 2 (facilitated glucose transporter), member 1Slc2a11426600_at1,983,04amiloride-sensitive cation channel 5, intestinalAccn51420451_at1,822,36phosphatidylinositol transfer protein, betaPitpnb1420307_a_at1,611,65BiosynthesisCysteine conjugate-beta lyaseCcbl11446302_at1,95-pre-B-cell colony-enhancing factor 1Pbef11448607_at1,611,85	UDP-glucose pyrophosphorylase 2	Ugp2	1434485_a_at	1,50	2,56						
IransportATP-binding cassette, sub-family C (CFTR/MRP), member 5Abcc51427565_a_at4,00-solute carrier family 2 (facilitated glucose transporter), member 1Slc2a11426600_at1,983,04amiloride-sensitive cation channel 5, intestinalAccn51420451_at1,822,36phosphatidylinositol transfer protein, betaPitpnb1420307_a_at1,611,65BiosynthesisCysteine conjugate-beta lyaseCcbl11446302_at1,95-pre-B-cell colony-enhancing factor 1Pbef11448607_at1,611,85											
ATP-binding cassette, sub-family C (CFTR/MRP), member 5 Abcc5 1427565_a_at 4,00 - solute carrier family 2 (facilitated glucose transporter), member 1 Slc2a1 1426600_at 1,98 3,04 amiloride-sensitive cation channel 5, intestinal Accn5 1420451_at 1,82 2,36 phosphatidylinositol transfer protein, beta Pitpnb 1420307_a_at 1,61 1,65 Biosynthesis Cbsteine conjugate-beta lyase Ccbl1 1446302_at 1,95 - pre-B-cell colony-enhancing factor 1 Pbef1 1448607_at 1,61 1,85			4407505	4.00							
solute carrier ramily 2 (facilitated glucose transporter), member 1 SIC2a1 1426600_at 1,98 3,04 amiloride-sensitive cation channel 5, intestinal Accn5 1420451_at 1,82 2,36 phosphatidylinositol transfer protein, beta Pitpnb 1420307_a_at 1,61 1,65 Biosynthesis Cysteine conjugate-beta lyase Ccbl1 1446302_at 1,95 - pre-B-cell colony-enhancing factor 1 Pbef1 1448607_at 1,61 1,85	A I P-binding cassette, sub-tamily C (CFTR/MRP), member 5	ADCC5	1427565_a_at	4,00	-						
annioride-sensitive cation channel 5, intestinalAcch51420451_at1,822,36phosphatidylinositol transfer protein, betaPitpnb1420307_a_at1,611,65BiosynthesisCcbl11446302_at1,95-pre-B-cell colony-enhancing factor 1Pbef11448607_at1,611,85	solute carrier family 2 (facilitated glucose transporter), member 1	Sic2a1	1426600_at	1,98	3,04						
BiosynthesisPitpnb1420307_a_at1,611,65BiosynthesisCcbl11446302_at1,95-pre-B-cell colony-enhancing factor 1Pbef11448607_at1,611,85	amilioride-sensitive cation channel 5, intestinal	Accn5	1420451_at	1,82	2,36						
BiosynthesisCysteine conjugate-beta lyaseCcbl11446302_at1,95-pre-B-cell colony-enhancing factor 1Pbef11448607_at1,611,85	pnospnatidylinositol transfer protein, beta		1420307_a_at	1,61	1,65						
Cysteine conjugate-beta lyase Ccbl1 1446302_at 1,95 - pre-B-cell colony-enhancing factor 1 Pbef1 144807_at 1,61 1,85	Biosynthesis										
pre-B-cell colony-enhancing factor 1 Pbef1 1448607_at 1,61 1,85	Cysteine conjugate-beta lyase	Ccbl1	1446302 at	1,95	-						
	pre-B-cell colony-enhancing factor 1	Pbef1	1448607_at	1,61	1,85						

Nrf2 Target Genes: Genes up-regulated in <i>Fah^{-/-}</i> mice							
Gene Desciption	Gene	Probe Set ID	F10% vs. F100% ^a	F0% vs F100% ^b			
Protease Inhibitor							
serine protease inhibitor, Kunitz type 2	Spint2	1451935_a_at	2,40	1,53			
serine (or cysteine) proteinase inhibitor, clade A, member 3K	Serpina3k	1423867_at	1,92	0,65			
serine (or cysteine) proteinase inhibitor, clade F, member 1	Serpinf1	1453724_a_at	1,69	0,58			
Receptor							
transferrin receptor	Tfrc	1422966_a_at	3,73	4,73			
C-type lectin related f	Clrf	1431240_at	2,54	-			
asialoglycoprotein receptor 2	Asgr2	1419747_at	2,12	1,06			
DNA, RNA or Protein Binding							
glycoprotein, synaptic 2	Gpsn2	1429681_a_at	2,02	1,29			
hematopoietically expressed homeobox	Hhex	1423319_at	1,59	1,74			
general enzymes							
aspartate-beta-hydroxylase	Asph	1450058_at	1,92	1,20			
Triosephosphate isomerase	Tpi1	1415918_a_at	1,90	2,11			
^a mice with moderate liver damage ^b mice with severe liver damage							

В Tabelle 16: Xeonobiotischer Metabolismus: Geninduktion in der Fah^{-/-} Nrf2^{-/-} Mäusen

Xenobiotic metabolism: Genes up-regulated in Fah/ Nrf2^{-/-} mice Fah Fah Nrf2 Fah/ Fah Nrf2 affymetrix description name type fold change^a fold change^b fold change^c 3'-phosphoadenosine 5'-phosphosulfate synthase 2 alcohol dehydrogenase 7 (class IV), mu or sigma 1421987_at PAPSS2 2,0 3,0 -2,5 enzyme ADH7 1,6 1421058_at 2.2 -3.4 polypeptide 1.1 enzyme ALDH1L1 1424401 at 1.9 -1.1 2.2 aldehyde dehydrogenase 1 family, member L1 enzyme ALDH16A1 1447372_at aldehyde dehydrogenase 16 family, member A1 -1,4 -1,7 1,6 enzyme ALDH2 1,2,6 1434987_at aldehyde dehydrogenase 2 family (mitochondrial) -1.4 -1,8 1,5 enzyme ALDH3A2 2,6 1415776_at aldehyde dehydrogenase 3 family, member A2 -1,3 2.8 -3,9 enzyme aldehyde dehydrogenase 5 family, member A1 ALDH5A1 2,6 1453065_at (succinate-semialdehyde dehydrogenase) -1.0 -1,6 2,0 enzyme 1448104_at ALDH6A1 aldehyde dehydrogenase 6 family, member A1 -2,0 -1,3 1,7 enzyme ALDH7A1 2,6 1448137_at aldehyde dehydrogenase 7 family, member A1 -1,4 -1,5 1,7 enzyme 1417085_at AKR1C2⁴ aldo-keto reductase family 1, member C2 -1,4 -2,4 1,9 enzyme 1455454_at AKR1C4⁴ aldo-keto reductase family 1, member C4 1,8 -1,3 2,8 enzyme 1419996_s_a Transcr. ARNT aryl hydrocarbon receptor nuclear translocator -1,0 -1,8 -1,9 req. ATP-binding cassette, sub-family C (CFTR/ MRP), 1443870_at ABCC4 member 4 5,4 1,8 5,4 transporter ATP-binding cassette, sub-family C (CFTR/MRP), 1428988 at ABCC3 2.7 member 3 3,1 3,0 transporter calcium/ calmodulin-dependent protein kinase I CAMK1 -2.2 -1,5 1,9 kinase ¹ also involved in Tyrosine Metabolism ⁴ also involved in Androgen and Estrogen Metabolism ⁵ also involved Arachidonic Acid Metabolism ² also involved in Tryptophan Metabolism ⁶ also involved in Fatty Acid Metabolism ³ also involved in Linoleic Acid Metabolism ^a comparison of Eah 10% NTBC mice and Eah 100% NTBC mice ^b comparison of Fah Nrf2 10% NTBC mice and Fah Nrf2 100% NTBC mice ^c comparison of Fah 10% NTBC mice and Fah Nrf2 10% NTBC mice

Tabelle 16: regulierte Gene des xenobiotischen Metabolismus

positive values represent genes induced in Fah mice, negative values show genes induced in Fah Nrf2 mice

Xenobiotic metabolism: Genes up-regulated in <i>Fah/ Nrf2^{/-}</i> mice							
			Fah	Fah Nrf2	Fah/ Fah Nrf2		
affymetrix	name	description	fold change ^a	fold change ^b	fold change ^c	type	
1435371_x_a		carboxylesterase 1 (monocyte/macrophage serine					
t	CES1	esterase 1)	-1,3	-2,0	1,9	enzyme	
1441413_at	CAT	catalase Cbp/p300-interacting transactivator, with Glu/ Asp-	1,1	1,3	-1,6	enzyme Transcr.	
1452207_at	CITED2	rich carboxy-terminal domain, 2	1,2	-1,0	2,0	reg.	
1417420_at	CCND1	cyclin D1	-1,9	7,4	-17,1	other	
	2356	cytochrome P450, family 1, subfamily A, polypeptide					
1450715_at	CYP1A2 CYP2A12	2 cytochrome P450, family 2, subfamily a, polypeptide	1,3	-4,2	8,1	enzyme	
1418821_at 1422230 s a	CYP2A13	12 cvtochrome P450, family 2, subfamily A, polypeptide	1,1	-1,2	1,7	enzyme	
t	2,3,5,6	13 cytochromo P450, family 2, cybfamily B, polypoptido	2,2	2,6	2,2	enzyme	
t	CYP2B6 ^{2,3,5,6}		-1,5	2,87	-2,1	enzyme	
1419582_at	CYP2C18 2,3,5,6	cytochrome P450, family 2, subfamily C, polypeptide 18	2,2	1,9	-1,8	enzyme	
1424576_s_a t	CYP2C44 2,3,5,6	cytochrome P450, family 2, subfamily c, polypeptide 44	-1.4	-4.5	4.1	enzyme	
1455457 of	CYP2C50 2,3,5,6	cytochrome P450, family 2, subfamily c, polypeptide	1.9	61.7	75.4	007//00	
1425365_a_	CYP2D13	cytochrome P450, family 2, subfamily d, polypeptide	-1,6	-01,7	75,4	enzyme	
at	CYP2D26	13 cytochrome P450, family 2, subfamily d, polypeptide	-1,8	-2,8	2,3	enzyme	
1448683_at	2,3,5,6	26 cytochrome P450, family 2, subfamily D, polypentide	-1,2	-1,5	1,7	enzyme	
1419039_at	CYP2D6 2,3,5,6		-1,0	-1,4	2,6	enzyme	
1448792_a_ at	CYP2F1 2,3,5,6	cytochrome P450, family 2, subfamily F, polypeptide	1,2	-1,3	1,6	enzyme	
1449565_at	CYP2G1P 2,3,5,6	cytochrome P450, family 2, subfamily G, polypeptide	3,5	-1,1	5,8	enzyme	
1417532_at	CYP2J5 ^{2,3,5,6}	cytochrome P450, family 2, subfamily j, polypeptide	-1,5	-5,7	4,5	enzyme	
1419094_at	CYP2C37	cytochrome P450, family 2. subfamily c, polypeptide	21	-4 0	33	enzyme	
1419704_at	CYP3A5 ^{2,3,5,6}	37 cytochrome P450, family 3, subfamily A, polypeptide	2,1	4,0	10.0	enzyme	
	2256	5	1,9	33,0	-40,3	enzyme	
1419523_at	CYP3A7 2,3,5,6	cytochrome P450, family 3, subfamily A, polypeptide	-1,0	-2,0	1,9	onzymo	
1424352_at	CYP4A22 2,3,5,6	cytochrome P450, family 4, subfamily A, polypeptide	1,7	1,1	1,92	enzyme	
1419559_at	CYP4F12 2,3,5,6	cytochrome P450, family 4, subfamily F, polypeptide	-1,4	-3,3	3,0	enzyme	
1449316_at	CYP4F8 2,3,5,6	cytochrome P450, family 4, subfamily F, polypeptide	1,4	-1,1	1,9	enzyme	
1453487_at	DHDH	dihydrodiol dehydrogenase (dimeric)	2.0	12	1.8	enzyme	
1422438_at	EPHX1	epoxide hydrolase 1, microsomal (xenobiotic)	1.6	1,2	1,6	peptidase	
1449278_at	EIF2AK3	eukaryotic translation initiation factor 2-alpha kinase	1,3	1,9	-1,5	kinase	
1422301_at	FTL	ferritin, light polypeptide	2.6	13	2.2	other	
1425799_at	FMO4	flavin containing monooxygenase 4	1.9	1,5	-1.8	enzyme	
1421709_a_	FMO5	flavin containing monooxygenase 5	1,2	2,3	1,8	enzyme	
1453587_at	GGT6 ⁵	gamma-glutamyltransferase 6 homolog (rat)	1.4	-1.6	2.4	peptidase	
1448354_at	G6PD	glucose-6-phosphate dehydrogenase	1,4	-1.8	1.7	enzyme	
1455959_s_a	GCLC	glutamate-cysteine ligase, catalytic subunit	-1,0	-1,1	1,8	enzyme	
1449106_at	GPX3 ⁵	glutathione peroxidase 3 (plasma)	23	3.0	-33	enzyme	
1451695_a_	GPX4 ⁵	glutathione peroxidase 4 (phospholipid	1.8	1.5	1.5	enzyme	
at 1417836_at	GPX7 ⁵	glutathione peroxidase 7	1.6	2.4	1.5	enzyme	
1421817_at	GSR	glutathione reductase	2.1	2,4	-1,5	enzyme	
1423437_at	GSTA3	glutathione S-transferase A3	-1.6	-2.9	2,4	enzyme	
1416368_at	GSTA4	glutathione S-transferase A4	1,3	1.2	2,9	enzyme	
1421041_s_a	GSTA5	glutathione S-transferase A5	2,6	2,3	3,6	enzyme	
1416411_at	GSTM1	glutathione S-transferase M1	3.1	16	2.8	enzyme	
1419072_at	GSTM2	glutathione S-transferase M2 (muscle)	1.3	-1.9	2,0	enzyme	
¹ also involved i	n Tyrosine Metabo	lism ⁴ also invol	ved in Androgen ar	nd Estrogen Metabo	blism		
² also involved i	n Tryptophan Meta	bolism ⁵ also invol	ved Arachidonic Ac	d Metabolism			
³ also involved in Linoleic Acid Metabolism ⁶ also involved in Fatty Acid Metabolism							

³ also involved in Linoleic Acid Metabolism

 $^{\rm a}$ comparison of Fah 10% NTBC mice and Fah 100% NTBC mice

 $^{\rm b}$ comparison of Fah Nrf2 10% NTBC mice and Fah Nrf2 100% NTBC mice

 $^{\rm c}$ comparison of Fah 10% NTBC mice and Fah Nrf2 10% NTBC mice

positive values represent genes induced in Fah mice, negative values show genes induced in Fah Nrf2 mice
Xenobiotic	metabolism:	Genes up-regulated in Fan/ Nrt2 mice				
			Fah	Fah Nrf2	Fah/ Fah Nrf2	
affymetrix	name	description	fold change ^a	fold change ^b	fold change ^c	type
1416842_at	GSTM3	glutathione S-transferase M3 (brain)	1,1	1,3	-1,5	enzyme
1424835_at	GSTM4	glutathione S-transferase M4	3,1	1,1	8,4	enzyme
1425627_x_a t	GSTM5	glutathione S-transferase M5	1,2	2,4	18,0	enzyme
1416531_at	GSTO1	glutathione S-transferase omega 1	2,2	1,4	1,5	enzyme
1427473_at	GSTM3	glutathione S-transferase, mu 3	8,8	2,6	11,2	enzyme
1422072_a_ at	GSTM6	glutathione S-transferase, mu 6	1,9	-1,9	5,2	enzyme
1427552_a_ at	GSTZ1 1,5	glutathione transferase zeta 1 (maleylacetoacetate isomerase)	-1,1	-1,5	1,6	enzyme
1448239_at	HMOX1	heme oxygenase (decycling) 1	1.5	2.3	-1.6	enzyme
1449399_a_	IL1B	interleukin 1, beta	-1,9	-1,3	-1,7	cytokine
1432016_a_	IDH3A	isocitrate dehydrogenase 3 (NAD+) alpha	-1,3	1,2	-2,0	enzyme
	MDM2	Mdm2, transformed 3T3 cell double minute 2, p53	1.4	2.9	-2.0	Transcr.
at 1452592_at	MGST2	microsomal glutathione S-transferase 2	50.7			reg. enzyme
1419568_at	MAPK1	mitogen-activated protein kinase 1	59,7	7,8	4,2	kinase
1421876_at	MAPK9	mitogen-activated protein kinase 9	-1,3	1,1	-1,6	kinase
1426850_a_	MAP2K6	mitogen-activated protein kinase kinase 6	-1,1	1,3	-1,5	kinase
at 1/28667 at	MAOA ^{1,2}		1,6	-1,0	1,7	
1423627 at	NOO1		-1,2	1,1	-1,5	enzyme
1425027_at	NEE2L2	nuclear factor (eruthroid-derived 2)-like 2	1,9	1,3	2,8	Transcr
1410345_at			-1,2	-1,1	64,3	reg.
449731_s_at	NFKBIA	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha	-1,4	1,2	-1,6	other
1421266_s_a t	NFKBIB	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, beta	1,3	2,2	-1,6	Transcr. reg.
1432603_at	NRIP1	nuclear receptor interacting protein 1	-1,2	-1,4	2,0	Transcr. req.
1451807_at	NR112	nuclear receptor subfamily 1, group I, member 2	2,9	3,8	-1,9	nucl. recep.
1425392_a_ at	NR1I3	nuclear receptor subfamily 1, group I, member 3	1,5	-1,3	4,4	nucl. recep.
1453069_at	PIK3CB	phosphoinositide-3-kinase, catalytic, beta polypep- tide	-1,0	1,5	-1,9	kinase
1425862_a_ at	PIK3C2A	phosphoinositide-3-kinase, class 2, alpha polypep- tide	1,1	2,0	-1,8	kinase
1460419_a_ at	PRKCB1	protein kinase C, beta 1	-1,4	-1,1	-1,7	kinase
1434248_at	PRKCH	protein kinase C, eta	-1.5	1.0	-1.6	kinase
1448695_at	PRKCI	protein kinase C, iota	4.0	3.3	-1.7	kinase
1454902_at	PRKCZ	protein kinase C, zeta	6.8	12	23	kinase
1437730_at	PPP2R2A	protein phosphatase 2 (formerly 2A), regulatory	-1 1	1,2	-1.6	phosphatas
1455091_at	PPP2R3A	protein phosphatase 2 (formerly 2A), regulatory	-1 1	-2.1	1,0	e phosphatas
1443533_at	PPP2R5E	protein phosphatase 2, regulatory subunit B (B56),	5.0	-1 3	1.9	e phosphatas
1417398_at	RRAS2	epsilon isoform related RAS viral (r-ras) oncogene homolog 2	5,0	-1,3	1,3	e enzyme
1448868_at	SCAND1	SCAN domain containing 1	1,1	2,2	-2,2	Transcr.
1418940_at	SULT1B1	sulfotransferase family, cytosolic, 1B, member 1	1,5	2,0	1,0	reg. enzyme
1417633_at	SOD3	superoxide dismutase 3, extracellular	-1,5	-2,0	2,5	enzyme
	UBC	ubiquitin C	-1 1	-4.2	-1,8	other
τ 1427960_at	UGT2B10 ⁴	UDP glucuronosyltransferase 2 family, polypeptide	1.8	1 1	1 9	enzyme
1424934_at	UGT2B17 ⁴	B10 UDP glucuronosyltransferase 2 family, polypeptide	-1 4	-37	1,9	enzyme
1449890_at	UGT2B37 ⁴	B17 UDP glucuronosyltransferase 2 family, polypeptide	-1,1	-3,7	0,2	enzyme
1419622_at	UGT2B5 ⁴	B37 UDP glucuronosyltransferase 2 family, polypeptide	1,5	2,0	2,1	enzyme
1455595_at	UGT2B7 ⁴	B5 UDP glucuronosyltransferase 2 family, polypeptide	-1,1	-1,9	2,9	enzyme
		B7	-1,1	-1,4	1,6	, ,

¹ also involved in Tyrosine Metabolism

⁴ also involved in Androgen and Estrogen Metabolism

² also involved in Tryptophan Metabolism

⁵ also involved Arachidonic Acid Metabolism ⁶ also involved in Fatty Acid Metabolism

³ also involved in Linoleic Acid Metabolism

^a comparison of Fah 10% NTBC mice and Fah 100% NTBC mice

^b comparison of Fah Nrf2 10% NTBC mice and Fah Nrf2 100% NTBC mice

^c comparison of Fah 10% NTBC mice and Fah Nrf2 10% NTBC mice

C Tabelle 17: Krebs betreffend

Tabelle 17: Geninduktion in den Fah^{-/-} Nrf2^{-/-} Mäusen die in diversen Aspekten der Karzinogenese zugeordnet werden konnten

Hyperet Index and Instant and analysis of the section of the sectin of t							
old change ² Cold change ² Fold change ³ Fold change ³ Pole cha				Fah	Fah Nrf2	Fah/ Fah Nrf2	
142218.a. 141665.a. 141665.a. 141665.a. 141792.a. 141792.a. 141792.a. 1418 ADRA IB AFP admanspic.apha-1b., neceptor -1.1 -1.3 2.1 G-probab 141792.a. 141792.a. 142193.c. 142193	affymetrix	name	description	fold change ^a	fold change ^b	fold change ^c	type
141646.8_a AFP alpha fatoprotein 1.6 4.7 -1.1.1 transporter 1421702,at ATR atxia tatingicutaii and Rad3 related -1.2 1.3 -1.6 encaract 141802,at BRG3 backotrial IAP repeat-containing -2.2 1.1 -1.6 encaract 141802,at BRG4 back helick-top-helic domain containing, class B, 2 -2.2 1.1 -1.6 encaract 1421818,at BCL6 B-cell CLL/mphoma 6 (zinc finger protein St) -1.6 -2.0 2.6 1.71 1425481 at BCL2 BCL2.10 11.0 1.1 <td< td=""><td>1422183_a_ at</td><td>ADRA1B</td><td>adrenergic, alpha-1B-, receptor</td><td>-1,1</td><td>-1,3</td><td>2,1</td><td>G-protein</td></td<>	1422183_a_ at	ADRA1B	adrenergic, alpha-1B-, receptor	-1,1	-1,3	2,1	G-protein
142797.x1 ATR ataxia telangiocasia and Ra33 related -1.1 -1.1 -1.6 Mease at1392.x1 BIRG3 backlovial IAP repeat containing, dass B.2 -2.2 -1.6 -1.6 -1.6 remains 141892.x1 BIRG3 basic helix loop helix domain centaining, dass B.2 -2.2 -1.6	1416645_a_ at	AFP	alpha fetoprotein	1,8	4,7	-14,1	transporter
142132 backdwinal IAP repeat-containing. -2.2 -1.6	1427197_at	ATR	ataxia telangiectasia and Rad3 related	-1,1	1,3	-1,6	kinase
H18025_at BHLH82 basic helix-loop-heix domain containing, dass B, 2 2.2 1.1 Transcription registration 1421818_at BCL6 B-cell CLL/hymphone 6 (zinc finger protein 51) 1.6 2.0 2.6 151 141837_at BCL2 BCL2 store 11 (gooposis facilitator) 1.1 1.2 2.1.6 0ther 143767_a. BCL211 BCL2:kite 11 (gooposis facilitator) 1.1 1.2 1.1 1.3 0ther 143767_a. 0ther 143767_a. BTG and CNC homology 1, hasic leader protein facilitator) 1.1 1.3 0ther 143767_a. 0ther 14487_bit and ther there is a complex of the transcription facilitator) 1.1 1.3 0ther 143767_bit and there is a complex of there is a complex of the transcription facilitator) 1.1 1.2 1.1 1.8 2.9 0ther 143767_bit and there is a complex of there is a complex of the transcription facilitator) 1.1 1.2 1.6 peptidse 1448165_at CARP catelouin 0ther transcription facilitator) 1.1 1.2 1.6 peptidse 1448165_at CARP catelouin 0ther transcription facilitator) 1.1 1.6 pepti	1421392_a_ at	BIRC3	baculoviral IAP repeat-containing 3	-2,2	-1,6	-1,8	enzyme
1421818.at BCL6 B-cell CLL/ymphoma 6 (zinc finger pretein 51) 1.16 2.00 2.00 Presentation 1410827.at BAX BCL2.attor 1 (Socialized Scalillaco) .1.1 1.12 .1.16 .0.10 1439767.at. BAX BCL2.attor 1 (Socialized Scalillaco) .1.1 1.0 .1.1 .0.10 .1.1 .0.10 .1.1 .0.10 .1.1 .0.10 .1.1 .0.10 .1.1 .0.10 .1.1 .0.10 .1.1 .0.10 .1.1 .0.10 .1.1 .0.10 .1.1 .0.10 .1.1 .0.10 .1.1 .0.10 .1.1 .0.10 .1.1 .0.10 .1.1 .0.10 .1.1 .0.10 .1.1 .0.10 .1.1 .0.10 .0.10 .1.1 .0.10 .0.10 .1.1 .0.10 .0.10 .0.10 .1.1 .0.10 .0.10 .0.10 .0.10 .0.10 .0.10 .0.10 .0.10 .0.10 .0.10 .0.10 .0.10 .0.10 .0.10 .0.10 .0.10 .0.10 <td>1418025_at</td> <td>BHLHB2</td> <td>basic helix-loop-helix domain containing, class B, 2</td> <td>-2,2</td> <td>1,1</td> <td>-1,6</td> <td>Transcr. reg.</td>	1418025_at	BHLHB2	basic helix-loop-helix domain containing, class B, 2	-2,2	1,1	-1,6	Transcr. reg.
1418837_atl BAX BCL2 associated X protein 2.3 2.2 1.6 Other 143848.atl BCL2.11 BCL2.141 102.246.11 (apoptosis facilitator) -1.1 1.2 -1.5 other 1437667.atl BACH2 BTB and CNC homology 1, sasc leucine apper -2.1 1.1 1.0 -7.6 -7.	1421818_at	BCL6	B-cell CLL/lymphoma 6 (zinc finger protein 51)	-1,6	-2,0	2,6	transcr. reg.
143264 at at 1437867.at at 1437867.at bCCH2 BCL2L11 Imasor transcription factor 2 -2.1 1.1.1 1.3 Imasor transcription factor 2 1448272.at 1176053 BTG BTG family, member 2 1.1.1 3.0.0 -2.2.0 Mirasor transcription factor 2	1416837_at	BAX	BCL2-associated X protein	2,3	2,2	-1,6	other
H3767_a BACH2 BTB and CNC homology 1, basic leucine zipper -2,1 1,1 1,3 Transcription factor 2 1443272 at 1477005_a BTG2 BTG family, member 2 1,1 3,0 -2,0 Transcription factor 2 1477005_a CAMK1 calcurclamodulin-dependent protein kinase 1 -1,2 1,7 -2,1 kinase 1480170_a CALR calrediculin -1,1 -1,8 1,8 Prep. 1490196_at CBR1 calrediculin -1,1 -1,8 1,8 Prep. 1490196_at CARP calrediculin -1,1 -1,6 1,8 Prep. 1490196_at CARP calrediculin calrediculin -1,1 1,2 -1,6 peptidase 1418452_at CASP callease -1,0 -1,1 1,4 -1,0 Prep. 142323_at CEBPD CCAAT(rehancer binding protein (C/EBP, delta -1,3 -1,0 -1,4 -1,0 Prep. 143376 at CD44 CD44 molecule (indan blood group) -1,3	1435448_at	BCL2L11	BCL2-like 11 (apoptosis facilitator)	-1,1	1,2	-1,5	other
1448272_at BTG2 BTG4 milky, member 2 1,1 3,0 -2,9 reason. 1448272_at CAMK1 calcium/calmodulin-dependent protein kinase 1 -1,2 1,7 -2,1 kinase 1456170_x.a calcum/calmodulin-dependent protein kinase 1 -1,1 -1,8 1,8 reason. reason. <td< td=""><td>1437667_a_ at</td><td>BACH2</td><td>BTB and CNC homology 1, basic leucine zipper transcription factor 2</td><td>-21</td><td>11</td><td>1.3</td><td>transcr.</td></td<>	1437667_a_ at	BACH2	BTB and CNC homology 1, basic leucine zipper transcription factor 2	-21	11	1.3	transcr.
144262 at left B1G attiny, member 2 1,1 3,0 -2,9 Teg. 1417065_3_4 CAMK1 caloum/calmodulin-dependent protein kinase 1 -1,2 1,7 -2,1 kinase 1460186_at CBR1 cartericulin -1,1 -1,8 1,8 Teg. 1440195_at CAR cartericulin -1,1 -1,8 1,8 Teg. 1444185_at CASP2 dombyr feudusse 1 8,1 2,1 2,9 erzyme 1444185_at CASP2 dombyr ingulate 2 -1,1 1,2 -1,6 peptidase 1414430_at CAT catalase -1,0 -1,4 1,3 enzyme 1414430_at CAT catalase -1,0 -1,4 1,3 enzyme 1423233_at CEBPD CCAAT/enhancer binding protein (CIEBP), deta 2,2 3,3 -1,7 reg. 143376_at CD24 CD24 molecule (ndian blood group) -1,3 -1,0 -1,8 other 143376_at CD44 CD44 molecule (notan bloo	4440070 -1	DTOO			.,.	.,0	transcr.
t CAMK1 caleun/camodulin-dependent protein kinase I -1.2 1.7 -2.1 Minase Italian 145170_x,al t CALR carbony reductase 1 -1.1 -1.8 reg. 1460166_at CBR1 carbony reductase 1 -1.1 1.8 reg. 1448165_at CASP2 corports cell expressed, developmentally down-regulated 2) -1.1 1.2 -1.6 peptidase 14148430_at CASP caspase 8, apoptosis-related cysteine peptidase (neural precursor cell expressed, developmentally down-regulated 2) -1.1 1.2 -1.6 peptidase 1417482_at CASP catalase -1.0 -1.4 1.3 enzyme 1423233_at CEBPD CCAAT/onhancer binding protein (CEBP), detta 2.2 3.3 -1.7 reg. 1443852_a.at CD24 CD24 molecule (ndian biod group) -1.8 -1.0 -1.8 other 1433768_d1_at CD44 CD44 molecule (ndian biod group) -1.9 -1.4 -2.0 other 1436463_a.at CD54 coll division cycle associated 4	1448272_at 1417605_s_a	BIG2	BIG family, member 2	1,1	3,0	-2,9	reg.
Longen CAR calrediculin -1.1 -1.8 1.8 reg. 146016_at CBR1 carbony freductise 1 8.1 2.1 2.9 enzyme 1448165_at CASP2 carbony freductise 1 expressed, developmentally down-eguidade 2); -1.1 1.2 -1.6 peptidase 141448165_at CASP2 carbony freductise 1 expressed, developmentally down-eguidade 2); -1.1 1.2 -1.6 peptidase 141448165_at CASP2 carbopsin B 1.3 1.5 -1.6 peptidase 1417482_a CTSB cathegen B 1.3 1.5 -1.6 peptidase 1423233_at CEBPD CCAAT/enhancer binding protein (C/EBP), delta 2.2 3.3 -1.7 reg. 143876_at. CD24 CD24 molecule (indian blood group) -1.3 -1.6 peptidase 147876_at. CD24 CD24 molecule (indian blood group) -1.3 -1.0 -1.8 orher 147876_at. CD24 cold vision cycle associated 4 -1.8 -1.2 -1.8	t 1456170 x a	CAMK1	calcium/calmodulin-dependent protein kinase I	-1,2	1,7	-2,1	kinase transcr
1460196_at CBR1 cathoryl inductase 1 8,1 2,1 2,9 enzyme 1448165_at CASP2 caspase 2, approtosis-related cysteine peptidase (neural precursor cell expressed, developmentally down-regulated 2) -1,1 1,2 -1,6 peptidase 1424552_at CASP2 caspase 2, approtosis-related cysteine peptidase -1,0 -1,4 1,3 enzyme 1417463_0_at CAT catalase -1,0 -1,4 1,3 enzyme 142323_3,at CEBPD CCAAT/enhancer binding protein (CEBP), delta 2,2 3,3 -1,7 register 1443852_at CD24 CD24 molecule (Indian blood group) -1,3 -1,0 -1,8 other 1413762_at CD54 coll division cycle associated 4 -1,8 -1,3 -1,9 other 1413762_at CD54 cell division cycle associated 4 -1,8 -1,1 1,4 -2,0 other 1413762_at CD54 cell division cycle associated 4 -1,8 -1,1 1,4 -1,2 1,8 register	t	CALR	calreticulin	-1,1	-1,8	1,8	reg.
CasePace 2. apoptioss-leated cysteine peptidase (inverzigheusion cell expressed, developmentality) 1.1 1.2 1.6 peptidase 1448165_at CASPE caspase 8, apoptosis-related cysteine peptidase 1.1 2.6 1.9 peptidase 1417482_at CTSB catalase 1.0 1.4 1.3 enzyme 1417482_at CTSB catahepsin B 1.3 1.5 1.6 peptidase 142323_3_at CEBPD CCAAT(renhancer binding protein (C/EBP), detla 2.2 3.3 1.7 transcr. 1423376_at CD24 CD24 molecule 1.1 1.4 -5.0 other 1418762_at CD24 CD24 molecule (ndian blood group) 1.3 1.10 1.18 other 1418762_at CD24 celouite (ndian blood group) 1.9 1.4 -2.0 other 1418762_at CD24 celouite (ndian blood group) 1.9 1.4 -2.0 other 1418762_at CD24 celdivision cycle associated 4 1.8 1.7 transcr.	1460196_at	CBR1	carbonyl reductase 1	8,1	2,1	2,9	enzyme
Hara Ros, at CASP2 downregulated 2) 1.1 1.2 1.1<	1110105 at	CASDO	caspase 2, apoptosis-related cysteine peptidase (neural precursor cell expressed, developmentally		10	10	nontidooo
17.42.02_at CXPA Cost of a publication of a publicatin a publicatin a publication of a publicatin a publication of a pu	1424552 of			-1,1	1,2	-1,6	pepildase
1417492_atl CA1 Latatase 1,0 1,0 1,4 1,3 etrypticase 1417492_atl CTSB cathepsin B 1,3 1,5 -1,6 peliydiase 1423233_atl CEBPD CCAAT/enhancer binding protein (C/EBP), delta 2,2 3,3 -1,7 reg. 1448182_a_l CD24 CD24 molecule -1,1 1,4 -5,0 other 1448182_a_l CD24 CD24 molecule (Indian blood group) -1,3 -1,0 -1,8 other 1438382_a_l CD55 molecule, decay accelerating factor for	1424002_at	CASPO	caspase 8, apoptosis-related cysteme peptidase	1,1	2,0	-1,9	pepildase
14.1782_at C13B Latregsh B 1,3 1,7 reg, 1423233_at CEBPD CCAAT/enhancer binding protein (C/EBP), delta 2,2 3,3 -1,7 reg, 1438764_at CD24 CD24 molecule (decay accelerating factor for CD55 molecule, decay accelerating factor for cD43 1,4 -1,3 -1,9 other 1432862_at CDCA cell division cycle associated 4 -1,8 -1,3 -1,0 itranscr. reg, 1457644_s_a CREG1 cellular repressor of E1A-stimulated genes 1 1,2 -1,2 1,8 reg, reg, 1447672_x_a CHKA choline kinase alpha 1,2 -2,	1416430_at	CAT	catalase	-1,0	-1,4	1,3	enzyme
1423233_at CEBPD CCAAT/enhancer binding protein (C/EBP), delta 2.2 3.3 -1,7 reg. at CD24 CD24 molecule -1,1 1,4 -5,0 other 1443182_a_at CD24 CD24 molecule (india blood group) -1,3 -1,0 -1,8 other 143676_at CD55 complement (Cromer blood group) -1,9 -1,4 -2,0 other 1418762_at CDCA4 cell division cycle associated 4 -1,8 -1,3 -1,9 other 141362_at CDCA4 cell division cycle associated 4 -1,8 -1,2 1,8 reg. 1415948_at CREG1 cellular repressor of E1A-stimulated genes 1 1,2 -1,2 1,8 reg. 1445948_at CRCA1 chloride channel calcium activated 1 -1,4 1,2 -2,4 ion channel 1442277_at CHKA choline kinase alpha 1,2 -2,4 2,1 kinase 1422815_at C9 complement component 9 -1,1 1,0 1,1 -1,2 other 142948_a_a CXADR coxsackie virus and adenovirus r	1417492_at	0138		1,3	1,5	-1,0	transcr.
at CD24 CD24 molecule (India blood group) -1,1 1,4 -5,0 other 1434376_at CD44 CD44 molecule (India blood group) -1,3 -1,0 -1,8 other 1418762_at CD55 complement (Cromer blood group) -1,9 -1,4 -2,0 other 1418762_at CDCA4 cell division cycle associated 4 -1,8 -1,3 -1,9 other 1417648_at CREG1 cell division cycle associated 4 -1,8 -1,2 1,8 reg. 1457644_s_a cXCL2 chemokine (C-X-C motif) ligand 2 -2,2 1,9 -2,1 cytokine 1447852_x_a cLCA1 chloride channel calcium activated 1 -1,4 1,2 -2,4 ion channel 1442277_at CHKA choline kinase alpha 1,2 -2,4 ion channel 1442894_a cBox chromobox homolog 5 (HP1 alpha homolog, Droso- -1,0 1,1 1,2 cptr 1442949_a cBox chromobox homolog 5 (HP1 alpha homolog, Droso- -1,1 1,4 -1,8 <td>1423233_at 1448182_a_</td> <td>CEBPD</td> <td>CCAAT/enhancer binding protein (C/EBP), delta</td> <td>2,2</td> <td>3,3</td> <td>-1,7</td> <td>reg.</td>	1423233_at 1448182_a_	CEBPD	CCAAT/enhancer binding protein (C/EBP), delta	2,2	3,3	-1,7	reg.
1434376_at CD44 CD44 molecule (Indian blood group) -1,3 -1,0 -1,8 other 1418762_at CD55 complement (Cromer blood group) -1,9 -1,4 -2,0 other 1418762_at CD54 cell division cycle associated 4 -1,8 -1,3 -1,9 other 1415948_at CREG1 cell division cycle associated 4 -1,8 -1,2 1,8 regression 1415948_at CREG1 cell division cycle associated 4 -1,8 -1,2 1,8 regression 1417582_x.a cxCL2 chemokine (C-X-C motif) ligand 2 -2,2 1,9 -2,1 cytokine 1442277_att CHKA choline kinase alpha 1,2 -2,4 2,1 kinase 1442297_att CHKA choime kinase alpha 1,2 -2,4 2,1 kinase 1442799_att C60RF66 chromobox homolog 5 (HP1 alpha homolog, Droso- phila) -1,0 1,1 -1,2 2,1 other 1442949_a at CXADR coxackic virus and adenovirus receptor <td< td=""><td>at</td><td>CD24</td><td>CD24 molecule</td><td>-1,1</td><td>1,4</td><td>-5,0</td><td>other</td></td<>	at	CD24	CD24 molecule	-1,1	1,4	-5,0	other
1418762_at CD55 complement (Cromer blood group) -1,9 -1,4 -2,0 other 1423682_a at CDCA4 cell division cycle associated 4 -1,8 -1,3 -1,9 other 1415948_at CREG1 cell division cycle associated 4 -1,8 -1,2 1,18 reg. 1415948_at CREG1 cellular repressor of E1A-stimulated genes 1 1,2 -1,2 1,8 reg. 1417652_x_a chemokine (C-X-C motif) ligand 2 -2,2 1,9 -2,1 cytokine 144277_at CHKA chloride channel calcium activated 1 -1,4 1,2 -2,4 ion channel 1442287_at CHKA choline kinase alpha 1,2 -2,4 2,1 kinase 14428456_at CBX5 phila) fmombox homolog 5 (HP1 alpha homolog, Droso-phila) -1,0 1,1 -1,2 other 1422947_at C60CRF66 chromosome 6 open reading frame 66 -1,1 1,0 -1,1 other 1422815_at C9 complement component 9 -1,1 -1,4 </td <td>1434376_at</td> <td>CD44</td> <td>CD44 molecule (Indian blood group) CD55 molecule, decay accelerating factor for</td> <td>-1,3</td> <td>-1,0</td> <td>-1,8</td> <td>other</td>	1434376_at	CD44	CD44 molecule (Indian blood group) CD55 molecule, decay accelerating factor for	-1,3	-1,0	-1,8	other
1423002_A_ at CDCA4 cell division cycle associated 4 -1,8 -1,3 -1,9 other 1415948_at CREG1 cellular repressor of E1A-stimulated genes 1 1.2 -1,2 1,8 reg. Transcr. 1415948_at CREG1 cellular repressor of E1A-stimulated genes 1 1.2 -1,2 1,8 reg. Transcr. 1,8 2,2 1,9 -2,1 cytokine 1417852_X_a chemokine (C-X-C motif) ligand 2 -2,2 1,9 -2,1 ion channel 144277_at CHKA chloride channel calcium activated 1 -1,4 1,2 -2,4 ion channel 1442877_at CHKA chloride bannel calcium activated 1 -1,4 1,2 -2,4 ion channel 1442877_at CHKA chorinobox homolog 5 (HP1 alpha homolog, Droso- phila) -1,0 1,1 -1,2 other 1422815_at C9 complement component 9 -1,1 1,0 -1,1 other 1449349_a CXADR coxsackie virus and adenovirus receptor -1,1 1,4 -1,8 -rec.	1418762_at	CD55	complement (Cromer blood group)	-1,9	-1,4	-2,0	other
1415948_atCREG1cellular repressor of E1A-stimulated genes 11.2-1.2Iteration1457644_s_aCXCL2chemokine (C-X-C motif) ligand 2-2.21.9-2.1cytokine1417852_X.aCLCA1chloride channel calcium activated 1-1.41.2-2.4ion channel1442277_atCHKAcholine kinase alpha1.2-2.42.1kinase1442636_atCBX5phila-1.01.1-1.2other1454636_atCBX5phila-1.01.1-1.2other142299_atC60RF66chromosome 6 open reading frame 66-1.11.0-1.1other1429494_a-coxsackie virus and adenovirus receptor-1.11.0-1.1other1424038_aG-pr. c.1417420_atCCND1cyclin G12.32.9-1.5other1422439_a1424638_atCDK4cyclin-dependent kinase 41.62.1-1.9kinase1416868_atCDKN2CCDK4cyclin-dependent kinase inhibitor 1A (p21, Cip1)3.87.6-2.7kinase1416868_atCDKN2CCDK4cysteine-rich, angiogenic inducer, 61-2.61.8-1.6other1448830_atDUSP1dual specificity phosphatase 1-2.61.4-1.6phos-1448830_atDUSP1dual specificity phosphatase 1-2.61.4-1.6phos-	at	CDCA4	cell division cycle associated 4	-1,8	-1,3	-1,9	other
1457644_s_a tCXCL2chemokine (C-X-C motif) ligand 2-2,21,9-2,1cytokine1417852_X.a tCLCA1chloride channel calcium activated 1-1,41,2-2,4ion channel1442277_atCLKAcholine kinase alpha1,2-2,42,1kinase1442277_atCHKAcholine kinase alpha1,2-2,42,1kinase1454636_atCBX5phila)-1,01,1-1,20ther1427997_atC60RF66chromobox homolog 5 (HP1 alpha homolog, Droso- phila)-1,01,1-1,10ther142815_atC9complement component 9-1,11,00-1,10ther142949_a atCXADRcoxsackie virus and adenovirus receptor-1,11,4-1,8rec.1417420_atCCND1cyclin D1-1,97,4-1,110ther1422439_a atCDKN1Acyclin-dependent kinase 41,62,1-1,19kinase1424638_atCDKN1Acyclin-dependent kinase 41,62,1-1,9kinase141686_atCDKN2CcDKN1Acyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4)1,81,5-1,6reg.141686_atCDKN2Ccysteine-rich, angiogenic inducer, 61-2,61,8-1,6reg.141686_atDDNdecorinconplexing protein 2)1,1-1,51,5peptidase141686_atDDNdecorinconplexing protein 2)1,1-1,51,5pept	1415948_at	CREG1	cellular repressor of E1A-stimulated genes 1	1,2	-1,2	1,8	transcr. reg.
1417852_X_a tCLCA1chloride channel calcium activated 1-1,41,2-2,4ion channel1442277_atCHKAcholine kinase alpha1,2-2,42,1kinase1442277_atCHKAcholine kinase alpha1,2-2,42,1kinase1454636_atCBX5phila)-1,01,1-1,2other142797_atC60RF66chromobox homolog 5 (HP1 alpha homolog, Droso- phila)-1,01,11,0-1,1other142815_atC9complement component 9-1,11,0-1,1otherG-pr. c.G-pr. c.	1457644_s_a t	CXCL2	chemokine (C-X-C motif) ligand 2	-2,2	1,9	-2,1	cytokine
1442277_atCHKAcholine kinase alpha1,2-2,42,1kinase1454636_atCBX5chromobox homolog 5 (HP1 alpha homolog, Droso- phila)-1,01,1-1,2other1427997_atC60RF66chromosome 6 open reading frame 66-1,11,0-1,1other1422815_atC9complement component 9-1,1-2,02,1other1449949_aatcXADRcoxsackie virus and adenovirus receptor-1,11,4-1,8Ge-pr. c.1417420_atCCND1cyclin D1-1,97,4-17,1other1422439_acCNG1cyclin G12,32,9-1,5other1424638_atCDK4cyclin-dependent kinase 41,62,1-1,9kinase1416868_atCDKN2CcDK4/cyclin-dependent kinase inhibitor 1A (p21, Cip1)3,87,6-2,7kinase1416868_atCDKN2Ccyclin-dependent kinase inhibitor 2C (p18, inhibits1,81,5-1,6reg.1416039_x_acycR61cysteine-rich, angiogenic inducer, 61-2,61,8-1,6other1449830_atDCNdecorin-1,4-1,41,4-2,3other1448830_atDUSP1dual specificity phosphatase 1-2,81,4-1,6phos-phos-1448830_atDUSP1dual specificity phosphatase 1-2,81,4-1,6phos-	1417852_x_a t	CLCA1	chloride channel calcium activated 1	-1,4	1,2	-2,4	ion channel
1454636_attCBX5chromobox homolog 5 (HP1 alpha homolog, Droso-phila)-1,01,1-1,2other1427997_attC60RF66chromosome 6 open reading frame 66-1,11,0-1,1other1422815_atC9complement component 9-1,11,0-1,1other1449949_aattCXADRcoxsackie virus and adenovirus receptor-1,11,4-1,8G-pr. c.1417420_attCCND1cyclin D1cyclin D1-1,11,4-1,18rec.1422439_acCNG1cyclin G12,32,9-1,5other142433a_acDKN1Acyclin-dependent kinase 41,62,1-1,9kinase142638_attCDKN1Acyclin-dependent kinase inhibitor 1A (p21, Cip1)3,87,6-2,7kinase1416868_attCDKN2CcDKN1Acyclin-dependent kinase inhibitor 2C (p18, inhibits1,81,5-1,6reg.1416039_x_acYR61cystein-rich, angiogenic inducer, 61-2,61,8-1,6other1416697_attDCNdecorin-1,1-1,51,5peptidasephos-1416897_attDDP4dual specificity phosphatase 1-2,81,4-1,6phos-phos-	1442277_at	СНКА	choline kinase alpha	1,2	-2,4	2,1	kinase
1427997_atC6ORF66chromosome 6 open reading frame 66-1,11,0-1,1other1422815_atC9complement component 9-1,1-2,02,1other1449949_aatCXADRcoxsackie virus and adenovirus receptor-1,11,4-1,8G-pr. c.1417420_atCCND1cyclin D1-1,97,4-17,1other1450016_atCCNG1cyclin G12,32,9-1,5other1424339_aatCDK4cyclin-dependent kinase 41,62,1-1,9kinase1424638_atCDKN1Acyclin-dependent kinase inhibitor 1A (p21, Cip1)3,87,6-2,7kinase141668_atCDKN2CCDKA4cysteine-rich, angiogenic inducer, 61-2,61,8-1,6other1449368_atDCNdecorin-1,41,41,4-2,3other1448830_atDPP4complexing protein 2)-1,1-1,51,5peptidase1448830_atDUSP1dual specificity phosphatase 1-2,81,4-1,6phos-	1454636 at	CBX5	chromobox homolog 5 (HP1 alpha homolog, Droso-	-1.0	1 1	-12	other
1422815_at C9 complement component 9 -1,1 -1,0 1,1 -1,1	1427997 at	C6ORF66	chromosome 6 open reading frame 66	-1 1	1,1	-1 1	other
1449949_a_ atCXADRcoxsackie virus and adenovirus receptor-1,11,4-1,8G-pr. c. rec.1417420_atCCND1cyclin D1-1,97,4-17,1other1450016_atCCNG1cyclin G12,32,9-1,5other1422439_a_ atCDK4cyclin-dependent kinase 41,62,1-1,9kinase1424638_atCDKN1Acyclin-dependent kinase inhibitor 1A (p21, Cip1)3,87,6-2,7kinase1416868_atCDKN2CCDK4)cyclin-dependent kinase inhibitor 2C (p18, inhibits1,81,5-1,6reg.1416868_atCDKN2CCDK4)cysteine-rich, angiogenic inducer, 61-2,61,8-1,6other1449368_atDCNdecorin-1,41,4-2,3other1448830_at0DP4other1448830_atDUSP1dual specificity phosphatase 1-2,81,4-1,6phos-	1422815 at	C9	complement component 9	-1.1	-2.0	2.1	other
atCXADRCoxsackle virus and adenovirus receptor1,11,41,8Tec.1417420_atCCND1cyclin D11,97,41,7,1other1450016_atCCNG1cyclin G12,32,91,5other1422439_aCDK4cyclin-dependent kinase 41,62,11,9kinase1424638_atCDKN1Acyclin-dependent kinase inhibitor 1A (p21, Cip1)3,87,6-2,7kinase1416868_atCDKN2CCDK4cyclin-dependent kinase inhibitor 2C (p18, inhibits1,81,5-1,6reg.1416039_x_atCYR61cysteine-rich, angiogenic inducer, 61-2,61,8-1,6other1449368_atDCNdecorin-1,41,41,4-2,3other1416697_atDPP4dual specificity phosphatase 1-2,81,4_1,6phose-1448830_atDUSP1dual specificity phosphatase 1-2,81,4_1,6phatase	1449949_a_	CYADD		, , , , , , , , , , , , , , , , , , , ,	1.4	1.0	G-pr. c.
141/420_atCCN01Cyclin D1Cyclin D111,1Other1450016_atCCNG1cyclin G12,32,9-1,5other1422439_aatCDK4cyclin-dependent kinase 41,62,1-1,9kinase1424638_atCDKN1Acyclin-dependent kinase inhibitor 1A (p21, Cip1)3,87,6-2,7kinase1426638_atCDKN2CCDK4cyclin-dependent kinase inhibitor 2C (p18, inhibits1,81,5-1,6reg.1416686_atCDKN2CCDK4cysteine-rich, angiogenic inducer, 61-2,61,8-1,6other1449368_atDCNdecorin-1,41,41,4-2,3other1416697_atDPP4complexing protein 2)1,1-1,51,5peptidase1448830_atDUSP1dual specificity phosphatase 1-2,81,4-1,6phos-	at 1417420 of		cossackie virus and adenovirus receptor	-1,1	7.4	-1,8	iec.
1420439_a_ atCDK4cyclin G1cyclin G12,32,32,9-1,3Other1422439_a_ atCDK4cyclin-dependent kinase 41,62,1-1,9kinase1424638_atCDKN1Acyclin-dependent kinase inhibitor 1A (p21, Cip1)3,87,6-2,7kinase1416868_atCDKN2CCDK4)1,81,5-1,6reg.1416039_x_acyclin-dependent kinase inhibitor 2C (p18, inhibits1,81,5-1,6reg.1416039_x_acysteine-rich, angiogenic inducer, 61-2,61,8-1,6other1449368_atDCNdecorin-1,41,44,2,3other1416697_atDPP4complexing protein 2)1,1-1,51,5peptidase1448830_atDUSP1dual specificity phosphatase 1-2,81,4-1,6phos-	1417420_at			-1,9	7,4	-17,1	othor
atCDK4cyclin-dependent kinase 41,62,1-1,9kinase1424638_atCDKN1Acyclin-dependent kinase inhibitor 1A (p21, Cip1)3,87,6-2,7kinase1416868_atCDKN2CCDK4)1,81,5-1,6transcr.1416039_x.aCYR61cysteine-rich, angiogenic inducer, 61-2,61,8-1,6other1449368_atDCNdecorin-1,41,41,4-2,3other141697_atDPP4complexing protein 2)1,1-1,51,5peptidase1448830_atDUSP1dual specificity phosphatase 1-2,81,4-1,6phos-	1422439_a_	CONGT		2,3	2,9	-1,5	ourier
1424638_at CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1) 3,8 7,6 -2,7 kinase 1416868_at CDKN2C cyclin-dependent kinase inhibitor 2C (p18, inhibits 1,8 1,5 -1,6 transcr. 1416868_at CDKN2C CDK4) 1,8 1,5 -1,6 reg. 1416039_x_a t CYR61 cysteine-rich, angiogenic inducer, 61 -2,6 1,8 -1,6 other 1449368_at DCN decorin -1,4 1,4 -2,3 other 1416697_at DPP4 complexing protein 2) 1,1 -1,5 1,5 peptidase 1448830_at DUSP1 dual specificity phosphatase 1 -2,8 1,4 -1,6 phos-	at	CDK4	cyclin-dependent kinase 4	1,6	2,1	-1,9	kinase
1416868_at CDKN2C CDK4 1,8 1,5 -1,6 reg. 1416039_x_a t cysteine-rich, angiogenic inducer, 61 -2,6 1,8 -1,6 other 1449368_at DCN decorin -1,4 1,4 -2,3 other 1449368_at DCN decorin -1,4 1,4 -2,3 other 1416697_at DPP4 complexing protein 2) 1,1 -1,5 1,5 peptidase 1448830_at DUSP1 dual specificity phosphatase 1 -2,8 1,4 -1,6 phatase	1424638_at	CDKN1A	cyclin-dependent kinase inhibitor 1A (p21, Cip1) cyclin-dependent kinase inhibitor 2C (p18, inhibits	3,8	7,6	-2,7	kinase transcr.
Intersection CYR61 cysteine-rich, angiogenic inducer, 61 -2,6 1,8 -1,6 other 1449368_at DCN decorin -1,4 1,4 -2,3 other 1416697_at DPP4 dipeptidyl-peptidase 4 (CD26, adenosine deaminase complexing protein 2) 1,1 -1,5 1,5 peptidase 1448830_at DUSP1 dual specificity phosphatase 1 -2,8 1,4 -1,6 photo- photo- photo-	1416868_at	CDKN2C	CDK4)	1,8	1,5	-1,6	reg.
1449368_atDCNdecorin-1,41,4-2,3other141697_atDPP4dipeptidyl-peptidase 4 (CD26, adenosine deaminase complexing protein 2)1,1-1,51,5peptidase1448830_atDUSP1dual specificity phosphatase 1-2,81,4-1,6phos- phatase	t	CYR61	cysteine-rich, angiogenic inducer, 61	-2,6	1,8	-1,6	other
dipeptidyl-peptidase 4 (CD26, adenosine deaminase complexing protein 2) 1,1 -1,5 1,5 peptidase 1448830_at DUSP1 dual specificity phosphatase 1 -2,8 1,4 -1,6 phase	1449368_at	DCN	decorin	-1,4	1,4	-2,3	other
1448830_at DUSP1 dual specificity phosphatase 1 -2,8 1,4 -1,6 phos-	1416697_at	DPP4	dipeptidyl-peptidase 4 (CD26, adenosine deaminase complexing protein 2)	1,1	-1,5	1,5	peptidase
	1448830_at	DUSP1	dual specificity phosphatase 1	-2,8	1,4	-1,6	phos- phatase

Related to Cancer: Genes up-regulated in Fah/ Nrf2^{-/-} mice

^a comparison of Fah 10% NTBC mice and Fah 100% NTBC mice

 $^{\rm b}$ comparison of Fah Nrf2 10% NTBC mice and Fah Nrf2 100% NTBC mice

 $^{\rm c}$ comparison of Fah 10% NTBC mice and Fah Nrf2 10% NTBC mice

Related to Cancer: Genes up-regulated in <i>Fah/ Nrf2[∽]</i> mice						
			Fah	Fah Nrf2	Fah/ Fah Nrf2	
affymetrix	name	description	fold change ^a	fold change ^b	fold change ^c	type
1417065 at	EGR1	early growth response 1	-5,4	1,2	-10,9	transcr. reg.
1448136 at	ENPP2	ectonucleotide pyrophosphatase/phosphodiesterase	14	12	1.5	enzyme
1428476_a_	51400		1,4	1,2	1,0	Chizyine
at	ELAC2	elaC homolog 2 (E. coli)	1,9	1,6	1,6	transcr.
1449888_at 1460420_a	EPAS1	endothelial PAS domain protein 1 epidermal growth factor receptor (ervthroblastic	1,1	2,3	-1,8	reg.
at	EGFR	leukemia viral (v-erb-b) oncogene homolog, avian)	-1,0	-1,4	1,8	kinase
at	FANCA	Fanconi anemia, complementation group A	-1,4	1,2	-1,5	other
1460251_at	FAS	Fas (TNF receptor superfamily, member 6)	-1,5	3,7	-2,7	rec.
1416022_at	FABP5	fatty acid binding protein 5 (psoriasis-associated)	-2,6	-1,2	-4,9	transporter
1450869_at	FGF1	fibroblast growth factor 1 (acidic) fibroblast growth factor receptor 2 (bacteria- expressed kinase, keratinocyte growth factor receptor, craniofacial dysostosis 1, Crouzon syn-	-1,2	-1,9	2,1	growth fact.
at	FGFR2	drome, Pfeiffer syndrome, Jackson-Weiss syndrome)	1,8	1,3	1,6	kinase
1417558_at	FYN	FYN oncogene related to SRC, FGR, YES gap junction protein, beta 1, 32kDa (connexin 32,	-2,3	1,3	-1,8	kinase
1448766_at	GJB1	Charcot-Marie-Tooth neuropathy, X-linked)	1,1	-1,0	1,7	transporter
1418863_at	GATA4	GATA binding protein 4	1,1	1,1	1,0	reg.
at	GCGR	glucagon receptor	-1,0	-1,4	1,8	G-pr. c. rec.
1424109_a_ at	GLO1	glyoxalase I	1,0	-1,5	1,6	enzyme
1438629_x_a t	GRN	granulin	-1,3	-1,0	-1,5	growth fact.
1449519_at	GADD45A	growth arrest and DNA-damage-inducible, alpha	-1,3	1,8	-1,9	other
1448239_at	HMOX1	heme oxygenase (decycling) 1	1,5	2,3	-1,6	enzyme
1423531_a_ at	HNRPA1	heterogeneous nuclear ribonucleoprotein A1	1,7	2,2	-1,5	other
1451040_at	HARS2	histidyl-tRNA synthetase 2	1,2	1,1	1,5	enzyme
	HDAC11	histone deacetylase 11	1,2	-1,4	1,9	transcr. reg.
1448928_at	HDAC6	histone deacetylase 6	1,5	1,3	-1,6	transcr. reg.
1451814_a_ at	HTATIP2	HIV-1 Tat interactive protein 2, 30kDa	1.8	19	2.0	transcr.
1425895_a_	104	inhibitor of DNA binding 1, dominant negative helix-	1,0		2,0	transcr.
al		inhibitor of DNA binding 3, dominant negative helix-	-1,9	6,7	-0,0	transcr.
1416630_at	ID3	loop-helix protein	-4,0	1,5	-2,7	reg.
1423104_at 1423757_x_a	IRS1	insulin receptor substrate 1	1,0	-1,7	1,8	other
t	IGFBP4	insulin-like growth factor binding protein 4	2,1	-1,3	2,2	other
1423584_at	IGFBP7	insulin-like growth factor binding protein 7 intercellular adhesion molecule 1 (CD54), human	-1,1	1,6	-1,8	transporter transm.
1424067_at	ICAM1	rhinovirus receptor	-1,6	2,1	-3,8	rec.
1448167_at	IFNGR1	interferon gamma receptor 1	1,0	1,7	-2,0	rec.
1416714_at	IRF8	interferon regulatory factor 8	-1,5	1,7	-3,0	transcr. reg.
1449399_a_ at	IL1B	interleukin 1, beta	-1,9	-1,3	-1,7	cytokine
1/21230 at	II 6ST	interleukin 6 signal transducer (gp130, oncostatin M	15	3.4	-2.4	transm.
1421344_a_			1,0	0,7	2,7	
at	JUB	jub, ajuba nomolog (Xenopus laevis)	1,2	2,9	-2,2	transcr.
1417409_at	JUN	jun oncogene	-2,5	1,9	-3,4	reg. transcr.
1448890_at	KLF2	Kruppel-like factor 2 (lung)	1,4	2,1	-1,5	reg.
1419678_at	LATS2	phila)	-1,1	1,2	-1,3	kinase
at	LGALS1	lectin, galactoside-binding, soluble, 1 (galectin 1)	2,8	8,0	-3,2	other
1426808_at	LGALS3	lectin, galactoside-binding, soluble, 3 (galectin 3)	-1,3	1,3	2,5	other
at	LETMD1	LETM1 domain containing 1	2,6	2,3	1,5	other
1454899 at	LPP	LIM domain containing preferred translocation	-1,1	-2,1	1,7	other
	MAD2L1	MAD2 mitotic arrest deficient-like 1 (yeast)	1,0	1,6	-2,2	other
1423605_a_ at	MDM2	Mdm2, transformed 3T3 cell double minute 2, p53 binding protein (mouse)	1,4	2,9	-2,0	transcr. reg.

 $^{\rm a}$ comparison of Fah 10% NTBC mice and Fah 100% NTBC mice

 $^{\rm b}$ comparison of Fah Nrf2 10% NTBC mice and Fah Nrf2 100% NTBC mice

 $^{\rm c}$ comparison of Fah 10% NTBC mice and Fah Nrf2 10% NTBC mice

Related to Cancer: Genes up-regulated in <i>Fah/ Nrf2^{√-}</i> mice						
affymetrix	name	description	Fah fold change ^a	Fah Nrf2	Fah/ Fah Nrf2	type
1460542_s_a t	MDM4	Mdm4, transformed 3T3 cell double minute 4, p53 binding protein (mouse)	-1,6	1,0	-1,6	other
1422557_s_a t	MT1E	metallothionein 1E (functional)	6,4	3,6	-2,5	other
1428942_at	MT2A	metallothionein 2A	5,9	4,4	-2,8	other
1422764_at	MAPRE1	microtubule-associated protein, RP/EB family, member 1	1,0	1,2	-1,5	other
1426585_s_a t	MAPK1	mitogen-activated protein kinase 1	1,4	1,0	1,3	kinase
1450379_at	MSN	moesin	-1,1	1,9	-2,2	other
1424582_at	MULK	multiple substrate lipid kinase	1,3	2,1	-1,7	kinase
at	NF2	neurofibromin 2 (bilateral acoustic neuroma)	1,3	-1,1	1,1	other
1448306_at	NFKBIA	enhancer in B-cells inhibitor, alpha	2,0	2,5	-1,2	other
1460303_at	NR3C1	nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor)	-1,5	-1,9	1,3	ligdep. nuc. rec.
1424022_at	OSGIN1	oxidative stress induced growth inhibitor 1	-1,8	-1,2	1,6	growth fact.
1422620_s_a t	PPAP2A	phosphatidic acid phosphatase type 2A	-1,4	1,8	-1,5	phosphatas e
1431278_s_a t	PLA2G6	phospholipase A2, group VI (cytosolic, calcium- independent)	2,6	7,4	-1,9	enzyme
1435458_at	PIM1	pim-1 oncogene	-1,7	-2,1	1,5	kinase
1417216_at	PIM2	pim-2 oncogene	1,1	1,4	-1,6	kinase
t	PTTG1	pituitary tumor-transforming 1	-2,6	1,1	-1,8	reg.
1426208_x_a	PLAGL1	pleiomorphic adenoma gene-like 1	-1,5	1,0	-1,8	reg.
1433658_x_a t	PCBP4	poly(rC) binding protein 4	1,4	-1,0	1,7	other
1449483_at	POLK	polymerase (DNA directed) kappa	-1,1	1,9	-2,2	enzyme
at	POLB	polymerase (DNA directed), beta	-1,1	1,4	-1,8	enzyme
at	PSEN2	presenilin 2 (Alzheimer disease 4)	-1,3	-2,0	1,8	other
1426910_at	PAWR	PRKC, apoptosis, WT1, regulator	-1,6	1,2	-2,4	transcr. reg.
t	PDCD6IP	programmed cell death 6 interacting protein	1,1	-1,4	1,8	other
at	PRKCB1	protein kinase C, beta 1	-1,4	-1,1	-1,7	kinase
t	PRKCI	protein kinase C, iota	-1,3	-1,1	-1,3	kinase
1418085_at	PRKCZ	protein kinase C, zeta	2,8	2,3	1,2	kinase
1448923_at	PRKRA	RNA dependent activator	1,2	-1,4	1,9	other
1437869_at	PPP2R3A	subunit B", alpha	-1,5	-1,9	-1,0	e e
1422124_a_ at	PTPRC	protein tyrosine phosphatase, receptor type, C	-2,0	-1,2	-2,9	phosphatas e
1449110_at	RHOB	ras homolog gene family, member B	-1,3	2,8	-3,4	enzyme
1439273_at	RIPK1	kinase 1	-1,4	1,2	-1,6	kinase
at	RPA1	replication protein A1, 70kDa	-1,4	1,0	-1,6	other
1427061_at	RBBP8	retinoblastoma binding protein 8	-1,1	2,1	-2,2	other
1454906_at	RARB	retinoic acid receptor, beta	-1,8	1,4	-2,3	nuc. rec.
1448127_at	RRM1	ribonucleotide reductase M1 polypeptide serine (or cysteine) peptidase inhibitor, clade A,	1,4	2,4	-2,1	enzyme
1423867_at	SERPINA3K	member 3K	1,9	-1,9	2,4	other transcr.
1423389_at	SMAD7	SMAD family member 7	-3,7	1,2	-1,8	reg.
1438699_at	SRD5A1	oxo-5 alpha-steroid delta 4-dehydrogenase alpha 1)	3,9	2,2	1,7	enzyme
1422960_at	SRD5A2	oxo-5 alpha-steroid delta 4-dehydrogenase alpha 2)	1,2	-1,7	2,3	enzyme
1417194_at	SOD2	superoxide dismutase 2, mitochondrial	1,5	1,0	1,8	enzyme
t	SOCS3	suppressor of cytokine signaling 3	-3,3	-1,2	-1,7	other
1415997_at	TXNIP	thioredoxin interacting protein	-1,2	5,2	-2,9	other
at	TXNRD1	thioredoxin reductase 1	1,9	2,2	1,3	enzyme
1422202_at	THRB	leukemia viral (v-erb-a) oncogene homolog 2, avian)	-1,2	1,5	1,2	nuc. rec.
1460287_at	TIMP2	TIMP metallopeptidase inhibitor 2	-1,1	1,9	-2,0	other

 $^{\rm a}$ comparison of Fah 10% NTBC mice and Fah 100% NTBC mice

 $^{\rm b}$ comparison of Fah Nrf2 10% NTBC mice and Fah Nrf2 100% NTBC mice

 $^{\rm c}$ comparison of Fah 10% NTBC mice and Fah Nrf2 10% NTBC mice

Related to Cancer: Genes up-regulated in Fah/ Nrf2^{-/-} mice

affymetrix	name	description	Fah fold change ^a	Fah Nrf2 fold change ^b	Fah/ Fah Nrf2 fold change ^c	type
1426397_at	TGFBR2	transforming growth factor, beta receptor II (70/80kDa)	1,4	3,0	-3,7	kinase
1437277_x_a t	TGM2	transglutaminase 2 (C polypeptide, protein- glutamine-gamma-glutamyltransferase)	-1,9	1,4	-2,4	enzyme
1426576_at	TMEM23	transmembrane protein 23	1,5	2,8	-2,8	enzyme
1454711_at	TRIO	triple functional domain (PTPRF interacting)	-1,6	-1,0	-1,9	kinase
1427739_a_ at	TP53	tumor protein p53 (Li-Fraumeni syndrome)	2,2	5,0	-2,0	transcr. reg.
1421269_at	UGCG	UDP-glucose ceramide glucosyltransferase	1,2	1,3	-2,1	enzyme
1425711_a_ at	AKT1	v-akt murine thymoma viral oncogene homolog 1	1,6	2,8	-1,5	kinase
1448162_at	VCAM1	vascular cell adhesion molecule 1	1,4	2,7	-2,9	other
1422027_a_ at	ETS1	v-ets erythroblastosis virus E26 oncogene homolog 1 (avian)	1,3	2,3	-1,7	transcr. reg.
1416773_at	WEE1	WEE1 homolog (S. pombe)	1,2	2,1	-2,3	kinase
^a comparison of Fah 10% NTBC mice and Fah 100% NTBC mice						

^b comparison of Fah Nrf2 10% NTBC mice and Fah Nrf2 100% NTBC mice

^c comparison of Fah 10% NTBC mice and Fah Nrf2 10% NTBC mice

Literaturverzeichnis

- 1 Wysocki, P. J. Targeted therapy of hepatocellular cancer. *Expert Opin Investig Drugs* **19**, 265-274, (2010).
- 2 Klaunig, J. E. & Kamendulis, L. M. The role of oxidative stress in carcinogenesis. *Annu Rev Pharmacol Toxicol* **44**, 239-267, (2004).
- 3 Wiseman, H. & Halliwell, B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. *Biochem J* **313 (Pt 1)**, 17-29, (1996).
- 4 Nath, R. G., Ocando, J. E. & Chung, F. L. Detection of 1, N2propanodeoxyguanosine adducts as potential endogenous DNA lesions in rodent and human tissues. *Cancer Res* **56**, 452-456, (1996).
- 5 Frenkel, K. Carcinogen-mediated oxidant formation and oxidative DNA damage. *Pharmacol Ther* **53**, 127-166, (1992).
- 6 Giudice, A. & Montella, M. Activation of the Nrf2-ARE signaling pathway: a promising strategy in cancer prevention. *Bioessays* **28**, 169-181, (2006).
- Kwak, M. K. *et al.* Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival. *J Biol Chem* 278, 8135-8145, (2003).
- 8 Hayes, J. D. & McLellan, L. I. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. *Free Radic Res* **31**, 273-300, (1999).
- 9 Talalay, P., Dinkova-Kostova, A. T. & Holtzclaw, W. D. Importance of phase 2 gene regulation in protection against electrophile and reactive oxygen toxicity and carcinogenesis. *Adv Enzyme Regul* **43**, 121-134, (2003).
- 10 Li, J., Lee, J. M. & Johnson, J. A. Microarray analysis reveals an antioxidant responsive element-driven gene set involved in conferring protection from an oxidative stress-induced apoptosis in IMR-32 cells. *J Biol Chem* **277**, 388-394, (2002).
- 11 Kelly, V. P. *et al.* Chemoprevention of aflatoxin B1 hepatocarcinogenesis by coumarin, a natural benzopyrone that is a potent inducer of aflatoxin B1-aldehyde reductase, the glutathione S-transferase A5 and P1 subunits, and NAD(P)H:quinone oxidoreductase in rat liver. *Cancer Res* **60**, 957-969, (2000).
- 12 Nguyen, T., Sherratt, P. J. & Pickett, C. B. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. *Annu Rev Pharmacol Toxicol* **43**, 233-260, (2003).
- 13 Itoh, K. *et al.* Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. *Genes Dev* **13**, 76-86, (1999).
- 14 Dhakshinamoorthy, S. & Jaiswal, A. K. Functional characterization and role of INrf2 in antioxidant response element-mediated expression and antioxidant induction of NAD(P)H:quinone oxidoreductase1 gene. *Oncogene* **20**, 3906-3917, (2001).

- 15 Zipper, L. M. & Mulcahy, R. T. The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm. *J Biol Chem* **277**, 36544-36552, (2002).
- 16 Kobayashi, A. *et al.* Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. *Mol Cell Biol* **24**, 7130-7139, (2004).
- 17 Cullinan, S. B., Gordan, J. D., Jin, J., Harper, J. W. & Diehl, J. A. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. *Mol Cell Biol* **24**, 8477-8486, (2004).
- 18 Zhang, D. D., Lo, S. C., Cross, J. V., Templeton, D. J. & Hannink, M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. *Mol Cell Biol* 24, 10941-10953, (2004).
- 19 Sekhar, K. R., Yan, X. X. & Freeman, M. L. Nrf2 degradation by the ubiquitin proteasome pathway is inhibited by KIAA0132, the human homolog to INrf2. *Oncogene* **21**, 6829-6834, (2002).
- 20 Stewart, D., Killeen, E., Naquin, R., Alam, S. & Alam, J. Degradation of transcription factor Nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium. *J Biol Chem* **278**, 2396-2402, (2003).
- 21 Nguyen, T., Sherratt, P. J., Huang, H. C., Yang, C. S. & Pickett, C. B. Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome. *J Biol Chem* 278, 4536-4541, (2003).
- 22 Itoh, K. et al. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells 8, 379-391, (2003).
- Bloom, D. A. & Jaiswal, A. K. Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response elementmediated NAD(P)H:quinone oxidoreductase-1 gene expression. *J Biol Chem* **278**, 44675-44682, (2003).
- 24 Jaiswal, A. K. Nrf2 signaling in coordinated activation of antioxidant gene expression. *Free Radic Biol Med* **36**, 1199-1207, (2004).
- 25 Dhakshinamoorthy, S., Long, D. J., 2nd & Jaiswal, A. K. Antioxidant regulation of genes encoding enzymes that detoxify xenobiotics and carcinogens. *Curr Top Cell Regul* **36**, 201-216, (2000).
- 26 Zhang, D. D. Mechanistic studies of the Nrf2-Keap1 signaling pathway. *Drug Metab Rev* **38**, 769-789, (2006).
- 27 Kobayashi, M. & Yamamoto, M. Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. *Adv Enzyme Regul* **46**, 113-140, (2006).
- 28 Copple, I. M., Goldring, C. E., Kitteringham, N. R. & Park, B. K. The Nrf2-Keap1 defence pathway: role in protection against drug-induced toxicity. *Toxicology* **246**, 24-33, (2008).
- 29 Huang, H. C., Nguyen, T. & Pickett, C. B. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. *J Biol Chem* **277**, 42769-42774, (2002).

- 30 Buckley, B. J., Marshall, Z. M. & Whorton, A. R. Nitric oxide stimulates Nrf2 nuclear translocation in vascular endothelium. *Biochem Biophys Res Commun* **307**, 973-979, (2003).
- 31 Yu, R. *et al.* Role of a mitogen-activated protein kinase pathway in the induction of phase II detoxifying enzymes by chemicals. *J Biol Chem* **274**, 27545-27552, (1999).
- 32 Zipper, L. M. & Mulcahy, R. T. Inhibition of ERK and p38 MAP kinases inhibits binding of Nrf2 and induction of GCS genes. *Biochem Biophys Res Commun* **278**, 484-492, (2000).
- 33 Cullinan, S. B. *et al.* Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. *Mol Cell Biol* **23**, 7198-7209, (2003).
- 34 Alam, J. *et al.* Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene. *J Biol Chem* **274**, 26071-26078, (1999).
- 35 Wild, A. C., Moinova, H. R. & Mulcahy, R. T. Regulation of gammaglutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2. *J Biol Chem* **274**, 33627-33636, (1999).
- 36 Nguyen, T., Huang, H. C. & Pickett, C. B. Transcriptional regulation of the antioxidant response element. Activation by Nrf2 and repression by MafK. *J Biol Chem* **275**, 15466-15473, (2000).
- 37 Itoh, K. *et al.* An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. *Biochem Biophys Res Commun* **236**, 313-322, (1997).
- 38 Venugopal, R. & Jaiswal, A. K. Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. *Oncogene* **17**, 3145-3156, (1998).
- 39 Rushmore, T. H., Morton, M. R. & Pickett, C. B. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. *J Biol Chem* **266**, 11632-11639, (1991).
- 40 Chan, K., Han, X. D. & Kan, Y. W. An important function of Nrf2 in combating oxidative stress: detoxification of acetaminophen. *Proc Natl Acad Sci U S A* **98**, 4611-4616, (2001).
- 41 Kensler, T. W., Curphey, T. J., Maxiutenko, Y. & Roebuck, B. D. Chemoprotection by organosulfur inducers of phase 2 enzymes: dithiolethiones and dithiins. *Drug Metabol Drug Interact* **17**, 3-22, (2000).
- 42 Kensler, T. W. *et al.* Chemoprevention of hepatocellular carcinoma in aflatoxin endemic areas. *Gastroenterology* **127**, S310-318, (2004).
- 43 Kensler, T. W. *et al.* Oltipraz chemoprevention trial in Qidong, People's Republic of China: modulation of serum aflatoxin albumin adduct biomarkers. *Cancer Epidemiol Biomarkers Prev* **7**, 127-134, (1998).
- 44 Camoirano, A. *et al.* Oltipraz chemoprevention trial in Qidong, People's Republic of China: results of urine genotoxicity assays as related to smoking habits. *Cancer Epidemiol Biomarkers Prev* **10**, 775-783, (2001).
- 45 Yates, M. S. *et al.* Potent protection against aflatoxin-induced tumorigenesis through induction of Nrf2-regulated pathways by the triterpenoid 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole. *Cancer Res* **66**, 2488-2494, (2006).

- 46 Shibata, T. et al. Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology 135, 1358-1368, 1368 e1351-1354, (2008). 47 Evans, T., Rosenthal, E. T., Youngblom, J., Distel, D. & Hunt, T. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33, 389-396, (1983). Sherr, C. J. G1 phase progression: cycling on cue. Cell 79, 551-555, 48 (1994). 49 Meverson, M. & Harlow, E. Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Mol Cell Biol 14, 2077-2086, (1994). Bates, S. et al. CDK6 (PLSTIRE) and CDK4 (PSK-J3) are a distinct 50 subset of the cyclin-dependent kinases that associate with cyclin D1. Oncogene 9, 71-79, (1994). 51 Matsushime, H. et al. Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell 71, 323-334, (1992). Dulic, V., Lees, E. & Reed, S. I. Association of human cyclin E with a 52 periodic G1-S phase protein kinase. Science 257, 1958-1961, (1992). 53 Koff, A. et al. Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science 257, 1689-1694, (1992). Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative 54 regulators of G1-phase progression. Genes Dev 13, 1501-1512, (1999). Kato, J. Y., Matsuoka, M., Strom, D. K. & Sherr, C. J. Regulation of cyclin 55 D-dependent kinase 4 (cdk4) by cdk4-activating kinase. Mol Cell Biol 14, 2713-2721, (1994). 56 Matsuoka, M., Kato, J. Y., Fisher, R. P., Morgan, D. O. & Sherr, C. J. Activation of cyclin-dependent kinase 4 (cdk4) by mouse MO15-
- associated kinase. *Mol Cell Biol* 14, 7265-7275, (1994).
 Malumbres, M. & Barbacid, M. To cycle or not to cycle: a critical decision in cancer. *Nat Rev Cancer* 1, 222-231, (2001).
- 58 Abukhdeir, A. M. & Park, B. H. P21 and p27: roles in carcinogenesis and drug resistance. *Expert Rev Mol Med* **10**, e19, (2008).
- 59 Hannon, G. J. & Beach, D. p15INK4B is a potential effector of TGF-betainduced cell cycle arrest. *Nature* **371**, 257-261, (1994).
- 60 Serrano, M., Hannon, G. J. & Beach, D. A new regulatory motif in cellcycle control causing specific inhibition of cyclin D/CDK4. *Nature* **366**, 704-707, (1993).
- 61 Guan, K. L. *et al.* Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. *Genes Dev* **8**, 2939-2952, (1994).
- 62 Hirai, H., Roussel, M. F., Kato, J. Y., Ashmun, R. A. & Sherr, C. J. Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin Ddependent kinases CDK4 and CDK6. *Mol Cell Biol* **15**, 2672-2681, (1995).
- 63 Chan, F. K., Zhang, J., Cheng, L., Shapiro, D. N. & Winoto, A. Identification of human and mouse p19, a novel CDK4 and CDK6 inhibitor with homology to p16ink4. *Mol Cell Biol* **15**, 2682-2688, (1995).
- 64 Xiong, Y., Zhang, H. & Beach, D. D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. *Cell* **71**, 505-514, (1992).

- 65 el-Deiry, W. S. *et al.* WAF1, a potential mediator of p53 tumor suppression. *Cell* **75**, 817-825, (1993).
- 66 Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. & Elledge, S. J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclindependent kinases. *Cell* **75**, 805-816, (1993).
- 67 Polyak, K. *et al.* Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. *Cell* **78**, 59-66, (1994).
- 68 Toyoshima, H. & Hunter, T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. *Cell* **78**, 67-74, (1994).
- 69 Matsuoka, S. *et al.* p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. *Genes Dev* **9**, 650-662, (1995).
- 70 Lee, M. H., Reynisdottir, I. & Massague, J. Cloning of p57KIP2, a cyclindependent kinase inhibitor with unique domain structure and tissue distribution. *Genes Dev* **9**, 639-649, (1995).
- 71 Yu, Z. K., Gervais, J. L. & Zhang, H. Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. *Proc Natl Acad Sci U S A* **95**, 11324-11329, (1998).
- 72 Chen, J., Jackson, P. K., Kirschner, M. W. & Dutta, A. Separate domains of p21 involved in the inhibition of Cdk kinase and PCNA. *Nature* **374**, 386-388, (1995).
- 73 Nakanishi, M., Robetorye, R. S., Adami, G. R., Pereira-Smith, O. M. & Smith, J. R. Identification of the active region of the DNA synthesis inhibitory gene p21Sdi1/CIP1/WAF1. *EMBO J* **14**, 555-563, (1995).
- 74 Warbrick, E., Lane, D. P., Glover, D. M. & Cox, L. S. A small peptide inhibitor of DNA replication defines the site of interaction between the cyclin-dependent kinase inhibitor p21WAF1 and proliferating cell nuclear antigen. *Curr Biol* **5**, 275-282, (1995).
- Russo, A. A., Jeffrey, P. D., Patten, A. K., Massague, J. & Pavletich, N.
 P. Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. *Nature* 382, 325-331, (1996).
- 76 Li, R., Waga, S., Hannon, G. J., Beach, D. & Stillman, B. Differential effects by the p21 CDK inhibitor on PCNA-dependent DNA replication and repair. *Nature* **371**, 534-537, (1994).
- 77 Shivji, M. K., Grey, S. J., Strausfeld, U. P., Wood, R. D. & Blow, J. J. Cip1 inhibits DNA replication but not PCNA-dependent nucleotide excision-repair. *Curr Biol* **4**, 1062-1068, (1994).
- 78 Luo, Y., Hurwitz, J. & Massague, J. Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. *Nature* **375**, 159-161, (1995).
- 79 Willenbring, H. *et al.* Loss of p21 permits carcinogenesis from chronically damaged liver and kidney epithelial cells despite unchecked apoptosis. *Cancer Cell* **14**, 59-67, (2008).
- 80 Gartel, A. L. & Tyner, A. L. The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. *Mol Cancer Ther* **1**, 639-649, (2002).
- 81 Martin-Caballero, J., Flores, J. M., Garcia-Palencia, P. & Serrano, M. Tumor susceptibility of p21(Waf1/Cip1)-deficient mice. *Cancer Res* **61**, 6234-6238, (2001).

- 82 Philipp, J., Vo, K., Gurley, K. E., Seidel, K. & Kemp, C. J. Tumor suppression by p27Kip1 and p21Cip1 during chemically induced skin carcinogenesis. *Oncogene* **18**, 4689-4698, (1999).
- 83 Shiraki, K. & Wagayama, H. Cytoplasmic p21(WAF1/CIP1) expression in human hepatocellular carcinomas. *Liver Int* **26**, 1018-1019, (2006).
- 84 Lindblad, B., Lindstedt, S. & Steen, G. On the enzymic defects in hereditary tyrosinemia. *Proc Natl Acad Sci U S A* **74**, 4641-4645, (1977).
- 85 Jorquera, R. & Tanguay, R. M. The mutagenicity of the tyrosine metabolite, fumarylacetoacetate, is enhanced by glutathione depletion. *Biochem Biophys Res Commun* 232, 42-48, (1997).
- 86 Jorquera, R. & Tanguay, R. M. Fumarylacetoacetate, the metabolite accumulating in hereditary tyrosinemia, activates the ERK pathway and induces mitotic abnormalities and genomic instability. *Hum Mol Genet* **10**, 1741-1752, (2001).
- 87 Manning, K., Al-Dhalimy, M., Finegold, M. & Grompe, M. In vivo suppressor mutations correct a murine model of hereditary tyrosinemia type I. *Proc Natl Acad Sci U S A* **96**, 11928-11933, (1999).
- 88 Grompe, M. The pathophysiology and treatment of hereditary tyrosinemia type 1. *Semin Liver Dis* **21**, 563-571, (2001).
- 89 Labelle, Y., Phaneuf, D. & Tanguay, R. M. Cloning and expression analysis of a cDNA encoding fumarylacetoacetate hydrolase: posttranscriptional modulation in rat liver and kidney. *Gene* **104**, 197-202, (1991).
- 90 Labelle, Y., Phaneuf, D., Leclerc, B. & Tanguay, R. M. Characterization of the human fumarylacetoacetate hydrolase gene and identification of a missense mutation abolishing enzymatic activity. *Hum Mol Genet* 2, 941-946, (1993).
- 91 Timm, D. E., Mueller, H. A., Bhanumoorthy, P., Harp, J. M. & Bunick, G. J. Crystal structure and mechanism of a carbon-carbon bond hydrolase. *Structure* **7**, 1023-1033, (1999).
- 92 Poudrier, J., Lettre, F., Scriver, C. R., Larochelle, J. & Tanguay, R. M. Different clinical forms of hereditary tyrosinemia (type I) in patients with identical genotypes. *Mol Genet Metab* **64**, 119-125, (1998).
- 93 Kvittingen, E. A. Hereditary tyrosinemia type I--an overview. *Scand J Clin Lab Invest Suppl* **184**, 27-34, (1986).
- 94 Scott, C. R. The genetic tyrosinemias. *Am J Med Genet C Semin Med Genet* **142C**, 121-126, (2006).
- 95 Russo, P. & O'Regan, S. Visceral pathology of hereditary tyrosinemia type I. *Am J Hum Genet* **47**, 317-324, (1990).
- 96 Mitchell, G. *et al.* Neurologic crises in hereditary tyrosinemia. *N Engl J Med* **322**, 432-437, (1990).
- 97 Bain, M. D. *et al.* Dietary treatment eliminates succinylacetone from the urine of a patient with tyrosinaemia type 1. *Eur J Pediatr* **149**, 637-639, (1990).
- 98 Lindstedt, S., Holme, E., Lock, E. A., Hjalmarson, O. & Strandvik, B. Treatment of hereditary tyrosinaemia type I by inhibition of 4hydroxyphenylpyruvate dioxygenase. *Lancet* **340**, 813-817, (1992).
- 99 Grompe, M. *et al.* Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. *Genes Dev* **7**, 2298-2307, (1993).

- 100 Trauner, M., Meier, P. J. & Boyer, J. L. Molecular pathogenesis of cholestasis. *N Engl J Med* **339**, 1217-1227, (1998).
- 101 Higgins, C. F. ABC transporters: from microorganisms to man. *Annu Rev Cell Biol* **8**, 67-113, (1992).
- 102 Childs, S. & Ling, V. The MDR superfamily of genes and its biological implications. *Important Adv Oncol*, 21-36, (1994).
- 103 Endicott, J. A. & Ling, V. The biochemistry of P-glycoprotein-mediated multidrug resistance. *Annu Rev Biochem* **58**, 137-171, (1989).
- 104 Pastan, I. & Gottesman, M. M. Multidrug resistance. *Annu Rev Med* **42**, 277-286, (1991).
- 105 Gros, P. & Shustik, C. Multidrug resistance: a novel class of membraneassociated transport proteins is identified. *Cancer Invest* **9**, 563-569, (1991).
- 106 Schneider, E. & Hunke, S. ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. *FEMS Microbiol Rev* 22, 1-20, (1998).
- 107 Oude Elferink, R. P. & Paulusma, C. C. Function and pathophysiological importance of ABCB4 (MDR3 P-glycoprotein). *Pflugers Arch* **453**, 601-610, (2007).
- 108 Daleke, D. L. Regulation of transbilayer plasma membrane phospholipid asymmetry. *J Lipid Res* **44**, 233-242, (2003).
- 109 Elferink, R. P., Tytgat, G. N. & Groen, A. K. Hepatic canalicular membrane 1: The role of mdr2 P-glycoprotein in hepatobiliary lipid transport. *FASEB J* **11**, 19-28, (1997).
- 110 Deleuze, J. F. *et al.* Defect of multidrug-resistance 3 gene expression in a subtype of progressive familial intrahepatic cholestasis. *Hepatology* **23**, 904-908, (1996).
- 111 Gonzales, E. *et al.* Liver diseases related to MDR3 (ABCB4) gene deficiency. *Front Biosci* **14**, 4242-4256, (2009).
- 112 Jacquemin, E. *et al.* The wide spectrum of multidrug resistance 3 deficiency: from neonatal cholestasis to cirrhosis of adulthood. *Gastroenterology* **120**, 1448-1458, (2001).
- 113 Smit, J. J. *et al.* Homozygous disruption of the murine mdr2 Pglycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. *Cell* **75**, 451-462, (1993).
- 114 Oude Elferink, R. P. *et al.* Regulation of biliary lipid secretion by mdr2 Pglycoprotein in the mouse. *J Clin Invest* **95**, 31-38, (1995).
- 115 Smith, A. J. *et al.* Hepatocyte-specific expression of the human MDR3 Pglycoprotein gene restores the biliary phosphatidylcholine excretion absent in Mdr2 (-/-) mice. *Hepatology* **28**, 530-536, (1998).
- 116 Brugarolas, J. *et al.* Radiation-induced cell cycle arrest compromised by p21 deficiency. *Nature* **377**, 552-557, (1995).
- 117 Mitchell, C. & Willenbring, H. A reproducible and well-tolerated method for 2/3 partial hepatectomy in mice. *Nat Protoc* **3**, 1167-1170, (2008).
- 118 Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* **227**, 680-685, (1970).
- 119 Puchtler, H., Waldrop, F. S. & Valentine, L. S. Polarization microscopic studies of connective tissue stained with picro-sirius red FBA. *Beitr Pathol* **150**, 174-187, (1973).

- 120 Junqueira, L. C., Bignolas, G. & Brentani, R. R. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. *Histochem J* **11**, 447-455, (1979).
- 121 Langlois, C. *et al.* Evaluation of dichloroacetate treatment in a murine model of hereditary tyrosinemia type 1. *Biochem Pharmacol* **71**, 1648-1661, (2006).
- 122 Puri, R. N. & Meister, A. Transport of glutathione, as gammaglutamylcysteinylglycyl ester, into liver and kidney. *Proc Natl Acad Sci U S A* **80**, 5258-5260, (1983).
- 123 Dieter, M. Z. *et al.* Pharmacological rescue of the 14CoS/14CoS mouse: hepatocyte apoptosis is likely caused by endogenous oxidative stress. *Free Radic Biol Med* **35**, 351-367, (2003).
- 124 Bergeron, A., Jorquera, R., Orejuela, D. & Tanguay, R. M. Involvement of endoplasmic reticulum stress in hereditary tyrosinemia type I. *J Biol Chem* **281**, 5329-5334, (2006).
- 125 Liby, K. *et al.* The synthetic triterpenoids, CDDO and CDDO-imidazolide, are potent inducers of heme oxygenase-1 and Nrf2/ARE signaling. *Cancer Res* **65**, 4789-4798, (2005).
- 126 Liby, K. T., Yore, M. M. & Sporn, M. B. Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. *Nat Rev Cancer* **7**, 357-369, (2007).
- 127 Venugopal, R. & Jaiswal, A. K. Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response elementmediated expression of NAD(P)H:quinone oxidoreductase1 gene. *Proc Natl Acad Sci U S A* **93**, 14960-14965, (1996).
- 128 Sekhar, K. R. *et al.* Inhibition of the 26S proteasome induces expression of GLCLC, the catalytic subunit for gamma-glutamylcysteine synthetase. *Biochem Biophys Res Commun* **270**, 311-317, (2000).
- 129 Dalle-Donne, I. *et al.* Protein carbonylation, cellular dysfunction, and disease progression. *J Cell Mol Med* **10**, 389-406, (2006).
- 130 Mauad, T. H. *et al.* Mice with homozygous disruption of the mdr2 Pglycoprotein gene. A novel animal model for studies of nonsuppurative inflammatory cholangitis and hepatocarcinogenesis. *Am J Pathol* **145**, 1237-1245, (1994).
- 131 Katzenellenbogen, M. *et al.* Multiple adaptive mechanisms to chronic liver disease revealed at early stages of liver carcinogenesis in the Mdr2-knockout mice. *Cancer Res* **66**, 4001-4010, (2006).
- 132 Buitrago-Molina, L. E. *et al.* Rapamycin delays tumor development in murine livers by inhibiting proliferation of hepatocytes with DNA damage. *Hepatology* **50**, 500-509, (2009).
- 133 Riemann, u. a. *Gastroenterologie*. 1. edn, Vol. 2. 1237 1246 (Georg Thieme Verlag KG, 2007).
- 134 Fausto, N. & Čampbell, J. S. The role of hepatocytes and oval cells in liver regeneration and repopulation. *Mech Dev* **120**, 117-130, (2003).
- 135 Overturf, K., Al-Dhalimy, M., Finegold, M. & Grompe, M. The repopulation potential of hepatocyte populations differing in size and prior mitotic expansion. *Am J Pathol* **155**, 2135-2143, (1999).
- 136 Fausto, N., Campbell, J. S. & Riehle, K. J. Liver regeneration. *Hepatology* **43**, S45-53, (2006).
- 137 Fausto, N. Liver regeneration: from laboratory to clinic. *Liver Transpl* **7**, 835-844, (2001).

- 138 Michalopoulos, G. K. & DeFrances, M. C. Liver regeneration. *Science* **276**, 60-66, (1997).
- 139 Boyer, T., Wright, T., Manns, M. *Hepatology*. 5 edn, Vol. 2 23 26 (Sounders, 2006).
- 140 Bucher, N. L. Regeneration of Mammalian Liver. *Int Rev Cytol* **15**, 245-300, (1963).
- 141 Iakova, P., Awad, S. S. & Timchenko, N. A. Aging reduces proliferative capacities of liver by switching pathways of C/EBPalpha growth arrest. *Cell* **113**, 495-506, (2003).
- 142 Dehner, L. P. *et al.* Hereditary tyrosinemia type I (chronic form): pathologic findings in the liver. *Hum Pathol* **20**, 149-158, (1989).
- 143 Gunawan, B. K. *et al.* c-Jun N-terminal kinase plays a major role in murine acetaminophen hepatotoxicity. *Gastroenterology* **131**, 165-178, (2006).
- 144 Liu, Z. X., Govindarajan, S. & Kaplowitz, N. Innate immune system plays a critical role in determining the progression and severity of acetaminophen hepatotoxicity. *Gastroenterology* **127**, 1760-1774, (2004).
- 145 Thimmulappa, R. K. *et al.* Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. *J Clin Invest* **116**, 984-995, (2006).
- 146 Hayes, J. D., Flanagan, J. U. & Jowsey, I. R. Glutathione transferases. Annu Rev Pharmacol Toxicol **45**, 51-88, (2005).
- 147 Zerbini, C., Weinberg, D. S., Hollister, K. A. & Perez-Atayde, A. R. DNA ploidy abnormalities in the liver of children with hereditary tyrosinemia type I. Correlation with histopathologic features. *Am J Pathol* **140**, 1111-1119, (1992).
- 148 Stefaniuk, P., Cianciara, J. & Wiercinska-Drapalo, A. Present and future possibilities for early diagnosis of hepatocellular carcinoma. *World J Gastroenterol* **16**, 418-424, (2010).
- 149 Eferl, R. *et al.* Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53. *Cell* **112**, 181-192, (2003).
- 150 Lee, J. S. *et al.* A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. *Nat Med* **12**, 410-416, (2006).
- 151 Plentz, R. R. *et al.* Telomere shortening and inactivation of cell cycle checkpoints characterize human hepatocarcinogenesis. *Hepatology* **45**, 968-976, (2007).
- 152 Kemp, C. J. & Drinkwater, N. R. Genetic variation in liver tumor susceptibility, plasma testosterone levels, and androgen receptor binding in six inbred strains of mice. *Cancer Res* **49**, 5044-5047, (1989).
- 153 Staley, E. M., Schoeb, T. R. & Lorenz, R. G. Differential susceptibility of P-glycoprotein deficient mice to colitis induction by environmental insults. *Inflamm Bowel Dis* **15**, 684-696, (2009).
- 154 Ikeda, H. *et al.* Large cell change of hepatocytes in chronic viral hepatitis represents a senescent-related lesion. *Hum Pathol* **40**, 1774-1782, (2009).
- 155 Sasaki, M. *et al.* Bile ductular cells undergoing cellular senescence increase in chronic liver diseases along with fibrous progression. *Am J Clin Pathol* **133**, 212-223, (2010).

- 156 Bartkova, J. *et al.* Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. *Nature* **444**, 633-637, (2006).
- 157 Braig, M. & Schmitt, C. A. Oncogene-induced senescence: putting the brakes on tumor development. *Cancer Res* **66**, 2881-2884, (2006).
- 158 Besson, A. *et al.* Discovery of an oncogenic activity in p27Kip1 that causes stem cell expansion and a multiple tumor phenotype. *Genes Dev* **21**, 1731-1746, (2007).
- 159 Kato, A. *et al.* Relationship between expression of cyclin D1 and impaired liver regeneration observed in fibrotic or cirrhotic rats. *J Gastroenterol Hepatol* **20**, 1198-1205, (2005).
- 160 Perkins, N. D. Integrating cell-signalling pathways with NF-kappaB and IKK function. *Nat Rev Mol Cell Biol* **8**, 49-62, (2007).
- 161 Pikarsky, E. *et al.* NF-kappaB functions as a tumour promoter in inflammation-associated cancer. *Nature* **431**, 461-466, (2004).

Lebenslauf

Silke Marhenke, geboren am 26.08.1975 in Hannover wohnhaft in der Raffaelstraße 1 in 30177 Hannover

Schulische Ausbildung

1982–1986	Grundschule Mellendorf
1986–1988	Orientierungsstufe Mellendorf
1988–1992	Realschule Mellendorf
	Abschluss: erweiterter Sekundarabschluss I
1992–1996	Gymnasium: Herschelschule Hannover
	Abschluss: Hochschulreife

Berufsausbildung

1996–1998	Ausbildung zur Bürokauffrau
1998–2000	Kaufmännische Angestellte

Akademische Laufbahn

2000–2005	Studium der Biologie
	Abschluss: Dipl. Biologin
2005-heute	Wissenschaftliche Angestellte

Veröffentlichungen

Rapamycin delays tumor development in murine livers by inhibiting proliferations of hepatocytes with DNA damage.

Buitrago-Molina LE, Pothiraju D, Lamlé J, Marhenke S, Kossatz U, Breuhahn K, Manns MP, Malek N, Vogel A.

Hepatology. 2009 Aug; 50 (2): 500 - 509.

Activation of nuclear factor E2-related factor 2 in hereditary tyrosinemia type 1 and its role in survival and tumor development.

Marhenke S, Lamlé J, Buitrago-Molina LE, Cañón JM, Geffers R, Finegold M, Sporn M, Yamamoto M, Manns MP, Grompe M, Vogel A.

Hepatology. 2008 Aug; 48 (2): 487 – 496.

Nuclear factor-eythroid 2-related factor 2 prevents alcohol-induced fulminant liver injury.

Lamlé J, Marhenke S, Borlak J, von Wasielewski R, Eriksson CJ, Geffers R, Manns MP, Yamamoto M, Vogel A.

Gastroenterology. 2008 Apr; 134 (4): 1159 - 1168.

Danksagung

An dieser Stelle möchte ich mich zuallererst und rechtherzlich bei meinem Betreuer und Arbeitsgruppenleiter Priv.-Doz. Dr. Arndt Vogel für die Bereitstellung des Themas sowie für die Betreuung und die zahlreichen Diskussionen zu meiner Arbeit bedanken.

Bedanken möchte ich mich ebenfalls bei Professor Dr. M. P. Manns für die Bereitstellung von Materialen und des Arbeitsplatzes in der Klinik für Gastroenterologie, Hepatologie und Endokrinologie an der Medizinischen Hochschule Hannover.

Mein Dank geht auch an die Kooperationspartner innerhalb und außerhalb der Medizinischen Hochschule, die meine Arbeit unterstützt haben.

Desweiteren möchte ich mich meinen Arbeitskollegen (Deepika, Frauke, Jessica, Kirstin, Meriame, Padma, Sven) bedanken, die mich während der letzten Jahre begleitet und unterstützt haben, insbesondere bei Laura E. Buitrago-Molina, der ich für die gute und hilfreiche Zusammenarbeit und Unterstützung danken möchte.

Mein ganz besonderer Dank gilt Dr. Jutta Lamlé für die wertvollen Diskussionen und die produktive wissenschaftliche Zusammenarbeit. Ich danke dir von ganzem Herzen für alles und freue mich über die daraus entstandene Freundschaft.

Auch und vor allem möchte ich meinen Eltern, Carsten und meinen Freunden ganz herzlich danken. Erst durch ihre immerwährende Unterstützung und ihren unerschütterlichen Glauben an mich, war es mir möglich all das zu erreichen. Danke dass es euch gibt!

Danke für die schöne Zeit!

Erklärung zur Dissertation

gemäß §6(1) der Promotionsordnung der Naturwissenschaftlichen Fakultät der Gottfried Wilhelm Leibniz Universität Hannover

für die Promotion zum Dr. rer. nat.

Hierdurch erkläre ich, dass ich meine Dissertation mit dem Titel

"Die Rolle von Nrf2 und p21 in der Hepatokarzinigenese"

selbständig verfasst und die benutzen Hilfsmittel und Quellen sowie gegebenenfalls die zur Hilfeleistung herangezogenen Institutionen vollständig angegeben habe.

Die Dissertation wurde nicht schon als Masterarbeit, Diplomarbeit oder anderer Prüfungsarbeit verwendet.

Ort, Datum, Unterschrift

Name: Silke Marhenke