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Zusammenfassung

Die ersten Experimente mit atomaren Bose-Einstein Kondensaten (BEK) wur-
den in magnetischen Fallen durchgeführt. Das Magnetfeld dieser Fallen führt zu
einer Polarisierung der atomaren Spins und somit zu einem Einfrieren des Spin-
freiheitsgrades. Optische Dipolfallen erlauben hingegen beliebige Spinorientierun-
gen. Der Spinfreiheitsgrad von quantenentarteten Spinorgasen führt zu unzähligen
neuen physikalischen Phänomenen. Das Hauptmerkmal von ultrakalten Spinor-
gasen sind spinändernde Zweiteilchenstöße, bei denen sich die z-Komponente der
Einteilchenspins ändert, während die z-Komponente des Zweiteilchenspins erhalten
bleibt. Das Wechselspiel dieser spinändernden Stöße mit dem Zeemaneffekt und
dem inhomogenen Fallenpotential führt zu einer Reihe neuartiger Phänomene im
Hinblick auf die Struktur des Grundzustandes, der Ausbildung von Spinstrukturen
und Domänenwänden, sowie der kohärenten Spindynamik. Erst kürzlich wurde
gezeigt, dass Spinor BEK die Beobachtung makroskopischer Quantenphänomene
erlauben, welche der aus der Quantenoptik bekannten parametrischen Verstärkung
sehr ähnlich sind. Die Untersuchung dieses Effekts ist der Schwerpunkt dieser Ar-
beit.

In dieser Dissertation wird die Spindynamik von atomaren 87Rb BEK mit Spin
1 oder 2 untersucht, welche im Spin-Anfangszustand |m = 0〉 präpariert wurden.
Ein charakteristisches Merkmal der Dynamik ist die stoßinduzierte Erzeugung ko-
rrelierter Atompaare in den Spin-Zuständen |m = ±1〉. Dieser Prozess ist auf
das Engste mit der parametrischen Verstärkung verwandt, welche aus der Quan-
tenoptik bekannt ist. Ich zeige, dass die Spindynamik eine faszinierende multireso-
nante Magnetfeldabhängigkeit aufweist, welche durch die Inhomogenität der Falle
induziert wird. Diese Magnetfeldabhängigkeit ist direkt verknüpft mit der Insta-
bilität der Spin-Bogoliubov-Moden des BEK im Spin-Anfangszustand |m = 0〉. Die
genaue Analyse der Magnetfeldabhängigkeit der Instabilität der Spin-Bogoliubov-
Moden zeigt, dass das optische Fallenpotential einen entscheidenden Einfluss auf die
Effizienz der Paarerzeugung hat. Ich untersuche außerdem im Detail den Auslöse-
mechanismus der Spindynamik, welcher durch die unvermeidbare Präsenz störender
Saatatome und durch Quantenfluktuationen gegeben ist. Es lässt sich aber zeigen,
dass der Einfluss von Saatatomen auf das System unter bestimmten Bedingungen
vernachlässigbar ist, wodurch die Dynamik ausschließlich durch Quantenfluktuatio-
nen ausgelöst wird.

Es wird weiterhin gezeigt, dass magnetische Dipol-Dipol-Wechselwirkungen einen
entscheidenden Einfluss auf die Dynamik von Spin-1 87Rb BEK haben, obwohl
diese in Alkaligasen typischerweise sehr schwach sind. Allerdings ist die Stärke der
spinändernden Stöße in Spin-1 87Rb ebenfalls sehr schwach und dadurch von vergle-
ichbarer Größenordnung. Wir zeigen, dass magnetische Dipol-Dipol-Wechselwirkungen
zu einer starken Abhängigkeit der Verstärkungsdynamik vom Winkel zwischen der
Achse der zigarrenförmigen Falle und dem angelegten Magnetfeld führen. Wir



untersuchen außerdem den wichtigen Einfluss von Magnetfeldgradienten auf den
Verstärkungsprozess, welcher von vergleichbarer Größenordnung sein kann. Für den
zweifelsfreien Nachweis des Einflusses der magnetischen Dipol-Dipol-Wechselwirkung
ist deshalb in zukünftigen Experimenten eine genaue Kontrolle der Magnetfeldgra-
dienten unerlässlich.

Ich zeige schließlich, dass in einer axialsymmetrischen Falle sowohl die räum-
liche als auch die Spinsymmetrie des Hamiltonians während der parametrischen
Verstärkung der Quantenfluktuationen spontan gebrochen sein kann. Die axi-
ale Symmetrie ist immer dann gebrochen, wenn entartete Fallenmoden maximal
verstärkt werden, während in diesen Fällen die Spinsymmetrie erhalten bleibt.
Wenn hingegen Fallenmoden mit unterschiedlichen Energien gleich stark verstärkt
werden, führt Quanteninterferenz zur Ausbildung räumlicher Spinstrukturen und
somit zu einer spontanen Brechung der lokalen Magnetisierung.

Alle Ergebnisse dieser Dissertation werden mit den an der Leibniz Universität
Hannover durchgeführten Experimenten verglichen.

Schlagwörter: Spinor Bose-Einstein Kondensation, Parametrische Verstärkung,
Vakuumfluktuationen



Abstract

Early experiments on atomic Bose-Einstein condensates (BECs) were carried out
in magnetic traps, where the atomic spin is polarized by external magnetic fields,
and hence the atomic spin degree of freedom is frozen. However, the atoms get
their spin degree of freedom back when they are trapped in an optical dipole traps.
The liberated spin degree of freedom of ultracold atoms leads to a wealth of new
physics in quantum degenerate spinor gases. The key feature of these gases are spin-
changing collisions, which may change the z-component of the individual atomic
spins while the total spin of the atomic pair is conserved during a collison. The
competition between spin-dependent interatomic interactions, Zeeman effect, and
inhomogeneous trapping induces a rich physics in these gaseous spinor condensates,
both in what concerns their ground state properities, spin textures and domains
formations and the coherent spin dynamics. More recently, spinor BECs have been
shown to offer the fascinating possibility of studying macroscopic effects directly
stemming from purely quantum phenomena like the ones resembling parametric
amplification in quantum optics. The study of this effect constitutes the main
focus of this Thesis.

In this thesis we analyze the spinor dynamics of 87Rb spin-2 and spin-1 conden-
sates initially prepared in the |0〉 Zeeman sublevel. We show that this dynamics,
characterized by the creation of correlated atomic pairs into | ± 1〉 states, which
closely resembles parametric amplification in quantum optics, presents an intrigu-
ing multiresonant magnetic field dependence induced by the trap inhomogeneity.
This dependence is directly linked to the most unstable Bogoliubov spin excitations
of the initial |0〉 condensate, showing that, in general, even a qualitative under-
standing of the pair-creation efficiency in a spinor condensate requires a careful
consideration of the confinement. We analyze also in detail the triggering mecha-
nisms of this multi-resonant magnetic field dependent pair creation efficiency and
show that under proper conditions the system is basically insensitive against spu-
rious seeding, being purely driven by quantum spin fluctuations.

The magnetic dipole-dipole interactions, although typically very weak in alkaline
atoms, are shown to play a very relevant role in the amplification dynamics of spin-1
87Rb due low energy scale of the spin changing interactions. We show that these
interactions may lead to a strong dependence of the amplification dynamics on the
angle between the trap axis and the magnetic field orientation. We analyze as well
the important role played by magnetic fiel gradients, which modify also strongly the
amplification process. Magnetic field gradients must be hence carefully controlled in
future experiments, in order to observe clearly the effects of the dipolar interactions
in the amplification dynamics.

We also show a twofold spontaneous breaking of spatial and +1 and−1 spin sym-
metries during the amplification of quantum spin fluctuations. When degenerate
spin modes are maximally amplified, we show that the cylindrical spatial symmetry
is spontaneously broken, but phase squeezing prevents spin-symmetry breaking. If,
however, nondegenerate spin modes contribute to the amplification, quantum in-



terferences lead to spin-dependent density profiles and hence spontaneously formed
patterns in the longitudinal magnetization.

Throughout the thesis we compare our results with the experimental ones per-
formed at the Leibniz University of Hannover.

Keywords: Spinor Bose-Einstein Condensation, Parametric Amplification, Vac-
uum Fluctuations.
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Chapter 1

Introduction

Ultracold atoms have been one of the most active research areas in physics
since more than two decades. In this time, the progress has been outstanding
both experimentally and theoretically. New trapping and cooling techniques
have been developed since the 1970s, which have resulted in the discovery of
laser-based techniques like laser cooling and magneto-optical trapping [1, 2],
leading in the mid 1990s to the experimental realization of the Bose-Einstein
condensation (BEC) in alkaline gases. As a result of these remarkable devel-
opments, the community of ultracold gases has been awarded several Nobel
prizes during the last few years 1.

One of the most fascinating features of the physics of ultracold atoms is
given by its inherent cross-disciplinar character. A close link to condensed-
matter physics and solid-state physics is provided by the physics of ultracold
atoms in optical lattices and low-dimensional geometries, as highlighted by the
milestone realization of the superfluid to Mott-insulator phase transition [3, 4]
and the Tonks-Girardeau gas [5, 6]. The non-linearity originating in BECs as
a consequence of the interparticle interactions provides an ideal platform for
studying non-linear phenomena traditionally investigated in non-linear optics,
as e.g. solitons [7–11]. Ultracold gases have also attracted the interest of
other disparate areas of physics including quantum information and molecular
physics.

Additionally, ultracold atoms provide interesting applications, in particu-
lar in what concerns precision measurements. Atom interferometry [12] has
been employed for very precise measurements of the gravitational constant G,
the gravitational acceleration g, the Planck constant h and the fine structure
constant α [13–15]. Atomic gyroscopes based on the Sagnac effect [16] are par-
ticularly relevant for the study of the variations in the rotation of the Earth,
general relativity effects [17], for navigation and even for oil exploration.

A major feature of the physics of ultracold atoms is provided by their
internal structure, potentially much richer than that of e.g. electrons. The
spin degree of freedom allows for the exceedingly rich physics of spinor gases,
and more specifically of spinor condensates, part of which will be considered
in this Thesis.

1Wolfgang Paul recieved the Nobel prize in 1989 for his studies on ion traps; Steven
Chu, Claude Cohen-Tannoudji and William D. Phillips for their work on laser cooling in
1997; Eric A. Cornell, Wolfgang Ketterle and Carl E Wieman got the Nobel prize for the
experiments on BEC in 2001
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A spinor BEC is a condensate consisting of atoms with spin F , where F
is the sum of electron and nuclear spin. Such a BEC has 2F + 1 internal
states |F,mF 〉 where mF = −F, ..., F . In a magnetic field, the degeneracy of
these components is lifted due to the Zeeman effect. Magneto-optical traps
use this Zeeman splitting to prevent the laser cooled atoms from leaving the
trap, but only certain Zeeman substates are trapped suppressing any spinor
dynamics since the energy difference between two substates is too high for
the atoms to change their mF by scattering with other atoms. The first
attempt to create a spinor BEC was performed in 1998 using a magnetic trap
to confine simultaneously two Zeeman substates of different hyperfine spin
states of rubidium, |F = 1,mF = −1〉 and |F = 2,mF = 1〉, which present
exactly the same Zeeman shift [18].

The breakthrough for spinor condensates came however with the devel-
opment of optical dipole traps, capable of confining simultaneously all spin
components of a spin-F BEC. The first optically trapped spinor BEC, created
in 1998, was a spin-1 sodium condensate [19]. Subsequently, spinor conden-
sates of 87Rb with spin-1 [20, 21] and with spin-2 [21–24] were created. Spin-3
condensates are potentially possible in Chromium experiments [25].

Spinor BECs have attracted as well an impressive amount of theoreti-
cal efforts, which have addressed a wealth of topics, including ground state
properties [26–28], coherent spin mixing [29–34], spinor vortices [26, 35], spin
textures and domains [36, 37], spin squeezing and entanglement [38, 39].

Spinor condensates offer as well the fascinating possibility of studying
macroscopic (or at least mesoscopic) effects directly stemming from purely
quantum phenomena. These effects, resembling parametric amplification in
quantum optics, constitute the main focus of this Thesis.

1.1 Bose-Einstein Condensation

1.1.1 The realization of Bose-Einstein condensates

Bose-Einstein condensation was predicted by Albert Einstein in 1925 [40] using
the photon-statistics developed by Satyendra Nath Bose [41]. This remarkable
phenomenon consists in that below a critical temperature Tc a macroscopic
number of bosons occupy the lowest single particle state with the rest dis-
tributed over excited states [42].

Condensation occurs when a collection of identical bosons is cooled down
to a very low temperature, such that the corresponding thermal de Broglie
wavelength of the particles (λdb = h/(2πmkBT )1/2, with m the atom mass, kB
the Bolzmann constant, and T the temperature) becomes larger than the mean
inter-particle separation (i.e. the particles overlap with each other). More
precisely, condensation sets in when the dimensionless phase-space density,
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ρps ≡ nλ3
db is larger than 2.612, with n = N/V the atom density.

Although condensation was known to be a fundamental phenomenon, con-
nected to superfluidity in liquid Helium and superconductivity in metals, it
was only experimentally observed for the first time in 1995 using magnet-
ically trapped rubidium [43] and sodium [44] gases. Since then BEC has
been realised in a variety of species including 7Li [45], Hydrogen [46], 85Rb
[47], 41K [48], 133Cs [49], Chromium [25, 50], Calcium [51] 2, 84Sr [52], ytter-
bium [53] and in molecules of 87Rb2, [54], 40K2 [55], 133Cs2 [56], 6Li2 [57, 58],
and 23Na2 [59].

In addition to dilute quantum gases of ultracold atoms, condensation has
been also observed in other system, including excitons 3 [60], microcavity
exciton polaritons 4 [61, 62], and magnons 5 [63].

1.1.2 Order parameter

The concept of condensation may be defined in terms of the single-particle
density matrix [64]

ρ(1)(~r ′, ~r, t) = 〈Ψ̂†(~r ′, t)Ψ̂(~r, t)〉, (1.1)

where Ψ̂(~r, t) and Ψ̂†(~r, t) are the creation and annihilation scalar boson field
operators for a particle at the position ~r and time t. When one of the eigenval-
ues of the density-matrix is macroscopic (i.e. of the order of the total number
of particles N), while the sum of all other eigenvalues is of the order of 1,
then this eigenvalue defines the number of particles N0 in the BEC. On the
contrary, BEC is absent when all eigenvalues of ρ(1)(~r ′, ~r, t) are of the same
order.

The above definition can be easily generalised to bosons with internal
spin degrees of freedom labeled as above by an index mF . Here the scalar
boson field operator in Eq. (1.1) becomes a vector boson field operator with
components Ψ̂mF (~r, t), and hence the single particle density matrix takes the
form [65]

ρ(1)(~r ′,m′F ;~r,mF ; t) = 〈Ψ̂†m′F (~r ′, t)Ψ̂mF (~r, t)〉. (1.2)

An alternative (and closely related) definition of condensation in quantum
many-body systems is based on the concept of off-diagonal long-range order
(ODLRO) [66]. Instead of diagonalizing ρ(1)(~r ′, ~r, t), in ODLRO one is inter-
ested in the limit |~r ′ − ~r| → ∞. If the density matrix is finite in this limit,

2The first experimentally produced BEC of alkaline earth atoms
3Electron-hole pair in a semiconductor.
4Polaritons are quasiparticles resulting from the coupling of photons with an excitation

in the material. Exciton polariton is due to the coupling of visible light with an exciton.
5A quantum of a spin wave.
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particles far away from each other are still correlated (coherent) and can be
expressed by a macroscopic wave-function Ψ(~r, t) via

lim
|~r ′−~r|

ρ(1)(~r ′, ~r, t) = Ψ∗(~r ′, t)Ψ(~r, t). (1.3)

This wave function Ψ(~r, t) can be identified as a scalar order parameter char-
acterizing the BEC. The concept of order parameters appears in the context
of phase transitions in ordered media and spontaneous symmetry breaking.
Note that cooling below TC can be considered as a phase-transition from
the normal phase to the BEC phase, where the U(1) gauge symmetry of the
energy-functional is spontaneously broken [67, 68], i.e. the BEC ”chooses” a
certain phase.

1.1.3 Dimensionality

Dimensionality plays a crucial role in the concept of condensation. An ideal
Bose gas with no external trap exhibits BEC only in 3D, and not in 2D (at
finite T ) and 1D (at any T ). This may be understood by considering the
corresponding density of states, ρ(E). For an ideal untrapped Bose gas the
density of states is ρ(E) ∝ E(d−2)/2, where d is the dimensionality in space. In
3D, the number of excited states close to the ground state (E = 0) is zero since
limE→0 ρ(E) = 0, and as a consequence thermal or quantum fluctuations do
not destroy the BEC. On the contrary, in 2D and 1D, the thermal population

NT =

∫ ∞
0

ρ(E)dE

exp(βE)− 1
(1.4)

diverges in the thermodynamic limit, and hence the BEC is destabilized at
finite T . However, with an additional harmonic trap the density of states
modifies as ρ(E) ∝ Ed−1 and, consequently the integral (1.4) converges in
2D. In 1D, BEC cannot occur even in the presence of harmonic confinement
because of the logarithmic divergence in the integral (1.4).

The presence of interactions changes the picture even further. Inter-atomic
interactions play a crucial role in the BEC physics. The interactions may be
typically considered as isotropic and short-ranged (although dipole-dipole in-
teractions may play an important role as discussed in Chapter 5 of this Thesis),
being determined at low energies by a single parameter, namely the s-wave
scattering length as [69]. The scattering length can be tuned experimentally
via Feshbach resonances by sweeping the static magnetic field [70, 71]. If
as > 0, the interatomic interaction is purely repulsive and the BEC is stable
in all dimensions, for any trap configurations and for any number of atoms.
If the interaction is attractive, i.e. as < 0, the homogeneous (not trapped)
BECs are unstable against local collapses in 2D and 3D. The presence of a
trap guarantees stability below a critical number of atoms, above which the
BEC undergoes a global collapse in 2D and 3D [72–74].
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1.1.4 The Gross-Pitaevskii equation

The Gross-Pitaevskii equation (GPE), developed in the early 1960s by Pitaevskii
[75] and Gross [76, 77], describes sucessfully most of the BEC properties at
very low temperatures. In the following we briefly discussed the derivation of
this important equation.

The many-body Hamiltonian describingN weakly interacting spinless bosons
confined by an external potential Vext(~r) is given by [69]

Ĥ =

∫
d~rΨ̂†(~r, t)

[
− ~2

2M
∇2 + Vext(~r)

]
Ψ̂(~r, t)

+
1

2

∫
d~r

∫
d~r ′Ψ̂†(~r, t)Ψ̂†(~r ′, t)V (~r − ~r ′)Ψ̂(r ′, t)Ψ̂(~r, t), (1.5)

where Ψ̂(~r, t) and Ψ̂†(~r ′, t) are the scalar boson field operators, and V (~r−~r ′)
is the two-body interatomic potential, with M is the atom mass. One ap-
plies the so-called Bogoliubov approximation [78], first formulated by Bogoli-
ubov in 1947 [78], to separate the condensate contribution from the bosonic
field operator. Accordingly, the Bose field operator can be decomposed into
Ψ̂(~r, t) =

∑
i Ψi(~r, t)âi with single-particle wave-functions Ψi(~r, t) and annihi-

lation operators âi. In the presence of a condensate the expectation value of
the ground-state is macroscopic (N →∞) and hence [78]

〈â†0â0〉0 = N0 ' (N0 + 1) = 〈â0â
†
0〉0. (1.6)

This means that â0 and â†0 commute and can be treated as c-numbers â0 '
â†0 '

√
N0. Thus the condensate is described by a macroscopically occupied

complex wave function (recall the discussion above). On the contrary the
particles in the excited states still require an operator treatment. As a result
the Bose field operator may be decomposed into

Ψ̂(~r, t) = Ψ(~r, t) + Ψ̂′(~r, t), (1.7)

where Ψ(~r, t) ≡ 〈Ψ̂(~r, t)〉, is known as the macroscopic wavefunction of the
condensate, while Ψ̂′(~r, t) describes the non-condensed part (or excitations on
the condensate).

The time evolution of the Bose field operator is obtained using the Heisen-
berg equation,

i~
∂

∂t
Ψ̂(~r, t) =

[
Ψ̂(~r, t), Ĥ

]
=

[
− ~2

2M
∇2 + Vext(~r)

]
Ψ̂(~r, t)

+

∫
d~r ′Ψ̂†(~r ′, t)V (~r ′ − ~r)Ψ̂(~r ′, t)Ψ̂(~r, t).

(1.8)

We consider the case of a dilute ultracold gas, in which only binary collisions at
low energy are relevant. As mentioned above these collisions are characterized
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by a single parameter, the s-wave scattering length as, independently of the
details of the two-body potential. Hence the interatomic potential can be
replaced by an effective delta-function pseudo-potential [69, 78–81] of the
form V (~r ′ − ~r) = gδ(~r ′ − ~r), where the coupling constant g = 4π~2as/M .
Inserting the pseudo-potential into Eq. (1.8), and upon replacing the field
operator Ψ̂(~r, t) with the classical field Ψ(~r, t), we obtain

i~
∂

∂t
Ψ(~r, t) =

[
− ~2

2M
∇2 + Vext(~r) + g|Ψ(~r, t)|2

]
Ψ(~r, t). (1.9)

This equation is known as the Gross-Pitaevskii equation (GPE) [75–77], which
remains valid if as is much smaller than the average inter-particle distance
and if the number of condensed atoms Nc � 1, such that the product Ncas is
fixed [82]. In addition, we demand that the wave function Ψ(~r, t) satisfies the
constraint ∫

|Ψ(~r, t)|2d~r = N, (1.10)

that defines the conservation of total number of particles, N .
Note that the GPE has actually the form of a non-linear Schrödinger (NLS)

equation, (the non-linearity coming from the mean-field term, proportional to
the particle density n(~r) = |Ψ(~r)|2). NLS equation is a key model appearing
in a variety of physical contexts, ranging from Kerr media in non-linear op-
tics to fluid dynamics and plasma physics [83]. As already mentioned, this
resemblance has attracted a large interest of the nonlinear community onto
the BEC physics.

Note that Ψ(~r, t) = 〈Ψ̂(~r, t)〉 actually means 〈N − 1|Ψ̂(~r, t)|N〉 since the
Bose-field operator Ψ̂(~r, t) destroys one particle. Hence the condensate wave-
function Ψ̂(~r, t) oscillates at a frequency corresponding to the chemical po-
tential µ = ∂E

∂N
' E(N) − E(N − 1), given by with the energy change asso-

ciated to the removal of one particle [84]. Hence the time-dependence of the
ground-state condensate is given by Ψ(~r, t) = Ψ(~r) exp(−iµt/~), leading to
the time-independent GPE

µΨ(~r) =

[
− ~2

2M
∇2 + Vext(~r) + g|Ψ(~r)|2

]
Ψ(~r). (1.11)

Note that the chemical potential µ acts as a Lagrange multiplier for the mini-
mization of the free energy F = E−µN at small temperatures, associated with
the conservation of the total particle number. Here the energy functional, E,
consisting of kinetic energy, potential energy and interaction energy is given
by

E =

∫
d~r

[
~2

2M
|∇Ψ|2 + Vext(~r)|Ψ(~r)|2 +

1

2
g|Ψ(~r)|4

]
. (1.12)
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Alternatively, one may also derive the time-independent GPE from this energy
functional using a variational method,

i~
∂

∂t
Ψ(~r, t) =

∂E

∂Ψ∗(~r, t)
. (1.13)

1.2 Spinor Bose-Einstein Condensation

As already mentioned above, spinor condensates are formed by particles with
more than one available internal degree of freedom (spin), and hence the
scalar order parameter that describes a scalar condensate becomes a vector
order parameter in a spinor BEC ~Ψ(~r, t) = [ΨF , ...,Ψ−F ]T with 2F +1 compo-
nents. Spinor condensates constitute indeed an ideal scenario to investigate
the interplay between internal and external degrees of freedom in a multi-
component superfluid. The fascinating physics of spinor condensates stems
from the competition between various energy scales, including short range in-
teractions, dipole-dipole interactions, and Zeeman effect. In the following we
discuss these energy scales.

1.2.1 Short-range interactions in spinor condensates

We consider first the short-range interactions in spinor condensates, which
for the extremelly low energies relevant in ultra-cold gases are dominated by
two-body s-wave collisions. The microscopic picture of an ultracold collision
of two identical bosonic spinors is illustrated in Fig. (1.1) . When two atoms
approach each other, their spins will temporarily couple together to form a
total spin, and the two atomic spins precess around this total spin during the
collision. After the collision, the two spins decouple and the atoms move away
from each other. For two identical spin-f particles, the total spin is given by
~F = ~f1 + ~f2, and the allowed total spins are F = 2f, 2f − 1, ...., 0. However,
due to the symmetry (anti-symmetry) required by identical bosons (fermions),
for integer f only F even (odd) channels are allowed for bosons (fermions),
when the total spatial wavefunction of the two atoms is symmetric (as it is
the case in s-wave collisions). The short-range interaction conserves the total
spin F . Here we focus on the particular case of spin f = 2 condensates, thus
the allowed collisional channels are F = 4, 2, 0. Hence three parameters are
required to describe the interactions, namely the s-wave scattering lengths
aF=4, aF=2, and aF=0.

An important feature of the short-range interactions is that due to their
isotropy, they do not modify the spin projection of the pair along the quan-
tization axis. This means that if the in-coming pair has spins mF,1 and mF,2,
and the out-going one mF,3 and mF,4, then mF,1 +mF,2 = mF,3 +mF,4 (conser-
vation of the magnetization). Note that, crucially, this may be realized in two
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non-equivalent ways. One way is given by the so-called spin-preserving colli-
sions, for which mF,1 = mF,3 (mF,1 = mF,4) and mF,2 = mF,4 (mF,2 = mF,3).
Interestingly, there is an alternative way in which the population of the differ-
ent components is re-distributed, but the conservation of the magnetization
is preserved. These are the so-called spin-changing collisions, which play a
crucial role in the following discussion and in this Thesis in general.

f=1 f=1
F=2,0

Figure 1.1: Intuitive picture of atomic interactions in spinor condensates: binary
collision of spin-1 bosons. (Left) Two spin-1 bosons approach each other. (Center)
The atomic spin of two bosons couple to form a total spin, and then the bosons
precess around this total spin during the collisions. The total spin can be F = 2, 0.
(right) Two bosons break apart after collision is finished

The short-range interaction between two particles 1 and 2 may be decom-
posed into contributions from the different channels in the form:

V̂sr(~r1 − ~r2) = δ(~r1 − ~r2)

2f∑
F=0

gF P̂F , (1.14)

where gF = 4π~2aF/M is the coupling strength for the F -channel (with M
the atomic mass) and P̂F is the projection operator onto a two-particle state
with total spin-F :

P̂F =
F∑

mF=−F

|F,mF 〉〈F,mF |. (1.15)

For identical bosons, the projection operators satisfy the following closure
relationship:

1 =
2F∑

F=0,2

P̂F . (1.16)

On the other hand, since ~̂f1 · ~̂f 2 = ( ~̂F 2 − ~̂f 1
2 − ~̂f 2

2)/2, then

~̂f1 · ~̂f 2 =
∑
F

λF P̂F , (1.17)

where λF ≡ F̂ (F̂+1)−2~f(~f+1)
2

.
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For spin-2 condensates, Eq. (1.16) and Eq. (1.17) lead to

1 = P̂0 + P̂2 + P̂4, (1.18)

~̂f1 · ~̂f 2 = −10P̂0 − 7P̂2 + 4 (1.19)

respectively. Employing the above two identities, Eq. (1.14) takes the form

V̂sr(~r1 − ~r2) = δ(~r1 − ~r2)(c0 + c1
~̂f1 · ~̂f 2 + c2P̂0). (1.20)

Where c0, c1, c2 are coupling constants given by

c0 =
4g2 + 3g4

7
, (1.21a)

c1 =
g4 − g2

7
, (1.21b)

c2 =
7g0 − 10g2 + 3g4

7
. (1.21c)

Note that c0 acts as a coupling constant for spin-independent interactions,
and hence it is related with spin-preserving collisions. Note that if all aF are
similar to each other (which turns out to be the typical case in experiments),
then c0 ' ā, where ā is the average scattering length.

On the contrary c1 and c2 are coupling constants for spin-dependent inter-
actions, being related to the above mentioned spin-changing collisions. Note
that c1,2 vanish if all aF are exactly equal, i.e. there are no spin-changing
collisions in exact SU(2F+1) systems. Since the scattering lengths are not
exactly equal, spin-changing collisions are generally present, although their
energy scale is typically much smaller than that of the spin-preserving colli-
sions. This makes spin-changing collisions sensitive against other small energy
scales, as e.g. dipole-dipole interactions, as discussed next.

1.2.2 Dipole-dipole interactions in spinor condensates

The atomic spins have an associated magnetic dipole moment, and hence
interact via a magnetic dipole-dipole interaction of the form

Vdd(~r − ~r ′) =
cdd

|~r − ~r ′|3
[
~f1 · ~f2 − 3

(
~f1 · ~ur

)(
~f2 · ~ur

)]
(1.22)

where cdd = µ0(gsmuB)2

4π
denotes the coupling constant associated to the dipolar

interaction (with µ0 the vacuum magnetic permeability, µB the Bohr magne-
ton and gs the gyromagnetic factor), and ~ur = ~r−~r′

|~r−~r′| is the unit vector along
the relative interparticle distance.

Dipole-dipole interactions are typically very weak in alkaline gases, due to
the very low magnetic dipole moment. However, as mentioned above, spin-
changing collisions are also very weak, and hence (especially for 87Rb F = 1)
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the dipole-dipole interactions may play a relevant role in the spinor dynamics.
At this point we shall not comment further on dipolar effects, which will be
discussed in details in Chapter 5.

1.2.3 Spinors In Magnetic Fields

The associated magnetic moment of the spins couples with any external mag-
netic field, leading to a Zeeman energy shift. This spin-dependent energy shift
is crucial for the physics of spinor condensates, and hence it will be discussed
in detail at this point.

We note that (in absence of orbital angular momentum) the spin ~f results
from the composition of nuclear spin~i and electron spin ~s. For 87Rb and 23Na
atoms, the nuclear spin is i = 3/2 and the electron spin is s = 1/2, thus the
total spin becomes f = 1 or f = 2. Both spins interact with each other and
with the external magnetic field and hence the Zeeman Hamiltonian:

HZ = geµBBsz − gnµnBiz + Chfs~s ·~i. (1.23)

Here, ge ≈ 2 is the electron g-factor, gn is the nuclear g-factor, µn is the nuclear
magneton, Chfs is the hyperfine constant, and ~s = (sx, sy, sz) and~i = (ix, iy, iz)
are the dimensionless spin-1/2 and spin-3/2 matrices respectively. We can
safely neglect the second term of Eq. (1.23) since gnµn/geµB ≈ 10−11, and
HZ can be easily diagonalized analytically (its energy spectrum is plotted in
Fig. 1.2).

At zero magnetic field HZ consists only of the spin-spin coupling which is
diagonal in the basis of total spin. Using

~f 2 = (~s+~i)2 = ~s2 +~i2 + 2~s ·~i ⇒ ~s ·~i = ~f 2/2− 9/4 (1.24)

we obtain the hyperfine shifts

Chfs~s ·~i|f = 1,mf〉 = −5/4Chfs|f = 1,mf〉
Chfs~s ·~i|f = 2,mf〉 = +3/4Chfs|f = 2,mf〉.

The energy shifts are drawn as blue arrows leftmost in Fig. 1.2. Thus all f = 2
states are shifted upwards by EZ = +3/4Chfs and all f = 1 states are shifted
downwards by EZ = −5/4Chfs.

For small magnetic fields it is often sufficiently accurate to approximate the
real eigenstates by ~f 2 eigenstates (f and mf are ‘good’ quantum numbers).
By using Eq. (1.24) and the Wigner-Eckart theorem [85]

PfszPf =
〈~s · ~f〉f
〈~f 2〉f

PffzPf
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Figure 1.2: Zeeman energy of 87Rb atoms in dependence of the magnetic field | ~B|.
For small | ~B| the nuclear spin ~i and the electron spin ~s couple to the total spin ~f

which precesses around the magnetic field axis. For large | ~B| both spins ~i and ~s

precess independently around ~B. Although the experiments are performed at very
low magnetic fields (green circle) the nonlinear behavior of the energy due to the
coupling between f = 1 and f = 2 states is not negligible.

(Pf is the projection operator onto the Hilbert space with spin f and the
expectation values have to be calculated with states from this subspace) we
obtain the first-order approximation of the Zeeman energy

EZ ≈ 〈f,mf |HZ |f,mf〉 =

[
ge
f(f + 1)− 3

2f(f + 1)

]
︸ ︷︷ ︸

=:gf (Landé factor)

µBBmf +Chfs

[
f(f + 1)/2−9/4

]
.

The Landé factor for f = 1 states is g1 = −1/2 and for f = 2 states is
g2 = 1/2 (for an illustrative calculation of the Landé factor see Ref. [86]).

The first-order low-| ~B| result is thus given by

EZ(f = 1) ≈ −5/4Chfs − µBBmf/2, (1.25)

EZ(f = 2) ≈ +3/4Chfs + µBBmf/2. (1.26)

This behavior can be seen in Fig. 1.2 in the region B < 1000 G. Note that
for f = 2 the state with mf = 2 has highest energy whereas for f = 1 the



12 Chapter 1. Introduction

state with mf = −1 has highest energy due to the negative sign of the Landé
factor.

Let us now consider the other extreme case of large magnetic fields 2µBB �
Chfs. Here we use {〈ms,mi〉} eigenstates. Employing the relations

~s ·~i = iz ⊗ sz +
1

2
(i+ ⊗ s− + i− ⊗ s+) (1.27)

with i± ≡ ix ± iiy (and analog for s±) and

i±|i,mi〉 =
√
i(i+ 1)−mi(mi ± 1)|i,mi ± 1〉, (1.28)

and analog for s±, we obtain the first-order approximation of the Zeeman
energy in the region of large magnetic fields

EZ ≈ 〈mi,ms|HZ |mi,ms〉 = 2µBBms + Chfsmims. (1.29)

Thus in the region B > 3000 G we observe two multiplets which are shifted
by an average energy of ∆E ≈ ±µBB (see the blue arrows rightmost of
Fig. 1.2). The average spacing between the four states of each multiplet is
∆E ≈ Chfs/2. Note again that the ordering within the lower multiplet is
inverted since ms = −1/2.

In the intermediate region 1000 G < B < 3000 G the energy depends non-
linearly on B (except for the fully stretched states) and the coupling between
states with the same mf

(|1,mf〉 ↔ |2,mf〉,mf = −1, 0, 1
)

continuously ro-

tates ~f 2 into (iz, sz) eigenstates, i.e. the eigenstates are intermediate between
the states |F,mf〉 and |ms,mf〉. Note that the energy of the fully stretched
states

(|2, 2〉= |3/2, 1/2〉 and |2,−2〉= |− 3/2,−1/2〉) depends linearly on B
for all magnetic fields since they are not coupled to other states. Thus, they
are eigenstates of HZ for all magnetic fields and their energy is exactly given
by Eqs. (1.25) or (1.29). The energy of the other states for all magnetic fields
can be obtained by diagonalizing the 8× 8 matrix of HZ [86] and it turns out
to be

EZ = −Chfs

4
+ (−1)f

[
Chfs +

µBB

2
mf +

µ2
BB

2

2Chfs

(
1− m2

f

4

)]
. (1.30)

In current experiments all the atoms are initially prepared in spin state f = 2
or f = 1 and the magnetic field strength is of the order of a few Gauss,
which is indicated by the green circle in Fig. 1.2. Hence one can neglect the
constant hyperfine shift and the small admixture |f = 2,mf〉 and |f = 1,mf〉
of Eq.(1.30),

EZ = pmf + qm2
f . (1.31)

Here p = (−1)fµBB
2

is the linear Zeeman efffect and q = (−1)f+1 µ
2
BB

2

8Chfs
is the

quadratic Zeeman effect, which is q < 0 for f = 2 and q > 0 for f = 1.
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Note, however, that the value for q (and even its sign) may be also externally
modified (independently of p) using optical or micro-wave dressing [87, 88].

Finally, let us mention that up to this point we have just considered ho-
mogeneous magnetic fields, but typical experiments may present also non-
negligible magnetic field gradients ∇B ·~r. Since the magnitude of such gradi-
ents is typically small, the quadratic term contribution can be neglected. The
correspoding linear term leads to an energy shift mf∇p · ~r, which may play a
relevant role in the spinor dynamics, as discussed in detail in Chapter 5.

Summarizing, the Zeeman Hamiltonian together with the magnetic gradi-
ent effect becomes of the form

EZ = pmf +mf∇p · ~r + qm2
f . (1.32)

Note that short-range interactions preserve magnetization. In addition,
although the dipole-dipole interactions may in principle violate the conser-
vation of magnetization, this violation is typically forbidden due to Larmor
precession (which constitutes a large energy scale even at very low magnetic
fields). As a result, the system dynamics is characterized by a conserved
magnetization and hence the linear Zeeman energy has no effect on the dy-
namics. However, the quadratic Zeeman energy plays a crucial role in the
spinor dynamics, and in the results of this Thesis. As mentioned above also
the magnetic field gradients may be relevant, as discussed in Chapter 5.

1.3 Second Quantized Hamiltonian

In the previous section we analyzed the most relevant energy scales in the
spinor system. In this section we sum up these energy scales into a second-
quantized Hamiltonian. In the following we consider an optically-trapped
spin-2 87Rb BEC in an external magnetic field oriented along the z-axis. The
second-quantized single-particle Hamiltonian is given by

Ĥ0 =
∑
mf

∫
d3r ψ̂†mf (~r)

[
− ~2

2M
∆ + V (~r) + EZ

]
ψ̂mf (~r), (1.33)

where we may recognize the kinetic energy, the optical trapping, V (~r), which
is the same for all Zeeman sublevels, and the Zeeman energy, which is given
by Eq. (1.32). Here the summation index runs over all Zeeman sublevels
mf = 2, 1, 0,−1,−2. The bosonic field annihilation operator has hence five

components ψ̂2(~r), ψ̂1(~r), ψ̂0(~r), ψ̂−1(~r), ψ̂−2(~r). For simplicity, we use m in-
stead of mf in the rest of the thesis.

The second-quantized two-particle Hamiltonian that describes short-range
interactions is of the form

Ĥsr =
1

2

∫
d3~r
∑
~m

U~mψ̂
†
m4

(~r)ψ̂†m3
(~r)ψ̂m2(~r)ψ̂m1(~r), (1.34)
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where

U~m =
∑
F

F∑
M=−F

gF 〈m1,m2|F,M〉〈F,M |m3,m4〉 (1.35)

are the coupling constants for the collisional channels {m1,m2} → {m3,m4}
(~m ≡ (m1,m2,m3,m4)), where 〈m1,m2|F,M〉 are the Clebsch-Gordan coeffi-
cients.

The above second-quantized short-range interaction Hamiltonian can be
obtained from the second-quantized form of Eq. (1.20) and reduced to

Ĥsr =
c0

2

∫
d3~r
∑
mm′

ψ̂†m′(~r)ψ̂
†
m(~r)ψ̂m′(~r)ψ̂m(~r)

+
c1

2

∫
d3~r
∑
~m

ψ̂†m4
(~r)ψ̂†m3

(~r) ~̂Fm3m2 · ~̂Fm4m1ψ̂m2(~r)ψ̂m1(~r)

+
c2

2

∫
d3~r
∑
~m

ψ̂†m4
(~r)ψ̂†m3

(~r)〈m4;m3|0, 0〉〈0, 0|m2;m1〉ψ̂m2(~r)ψ̂m1(~r),

(1.36)

where c0,1,2 are defined in Eqs. (1.21), and ~̂Fm3m2 · ~̂Fm4m1 = (F̂α)m3m2(F̂α)m4m1 ,

where (F̂α)m3m2 are the matrix elements for the Cartesian traceless spin F = 2
Pauli matrices,

F̂x =
1

2


0 2 0 0 0

2 0
√

6 0 0

0
√

6 0
√

6 0

0 0
√

6 0 2
0 0 0 2 0

 , F̂y =
i

2


0 −2 0 0 0

2 0 −√6 0 0

0
√

6 0 −√6 0

0 0
√

6 0 −2
0 0 0 2 0


and

F̂z =


2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2

 ,

with z the quantization axis.

Re-writing the state |0, 0〉 in terms of the five Zeeman sublevels (see Ap-
pendix A), the short-range interaction Hamiltonian may be re-written in the
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form

Ĥsr =
c0

2

∫
d3~r
∑
mm′

ψ̂†m′(~r)ψ̂
†
m(~r)ψ̂m′(~r)ψ̂m(~r)

+
c1

2

∫
d3~r
∑
~m

ψ̂†m4
(~r)ψ̂†m3

(~r) ~̂Fm3m2 · ~̂Fm4m1ψ̂m2(~r)ψ̂m1(~r)

+
c2

10

∫
d3~r
∑
m,n

(−1)m+nψ̂†m(~r)ψ̂†−m(~r)ψ̂n(~r)ψ̂−n(~r). (1.37)

In this short-range interaction Hamiltonian, the first term represents the intra-
state collisions, or the self-scattering, and the next two terms represent the
inter-state collisions and the spin-changing collisions. As already mentioned,
the short-range interaction Hamiltonian leaves the total spin projection invari-
ant (m1 + m2 = m3 + m4). The coupling strength coefficients of all possible
collisions in the system are tabulated in Table 1.3.

Um1,m2,m1,m2 2 1 0 −1 −2
2 c0 + 4c1

c0+4c1
2

c0
2

c0
2
− c1

c2
5

+ c0 − 2c1

1 c0+4c1
2

c0 + c1
c0+3c1

2
c2
5

+ c0−c1
2

c0
2
− c1

0 c0
2

c0+3c1
2

c2
5

+ c0
c0+3c1

2
c0
2

−1 c0
2
− c1

c2
5

+ c0−c1
2

c0+3c1
2

c0 + c1
c0+4c1

2

−2 c2
5

+ c0 − 2c1
c0
2
− c1

c0
2

c0+4c1
2

c0 + 4c1

U2,−2,0,0
c2
5

U1,−1,0,0 − c2
5

+ 3c1

U2,−2,1,−1 − c2
5

+ c1

U2,0,1,1

√
6c1

U2,−1,1,0

√
6c1
2

U1,−2,−1,0

√
6c1
2

U−2,0,−1,−1

√
6c1

Table 1.1: Table of two-body interaction strengths. Upper table lists the intra-
and inter-state particle exchange collisions. Lower table lists the spin changing or
spin mixing collisions

In addition, the contribution of the magnetic dipole-dipole interactions is
given by the second-quantized form of Eq. (1.22):

Ĥdd =
cdd
2

∑
~m

∫
d3r d3r′ ψ̂†m1

(~r)ψ̂†m2
(~r ′) 1

|~r−~r ′|3 ×
[
~̂Fm1m3 · ~̂Fm2m4

−3
(
~̂Fm1m3 · ~ur

)(
~̂Fm2m4 · ~ur

)]
ψ̂m4(~r

′)ψ̂m3(~r), (1.38)
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where the coupling cdd and the unit vector ~ur are defined in Eq. (1.22).
The total Hamiltonian of the system is then given by the sum Ĥ = Ĥ0 + Ĥsr + Ĥdd,

and takes the final form

Ĥ =
∑
m

∫
d3r ψ̂†m(~r)

[
− ~2

2M
∆ + V (~r) + pm+m∇p · ~r + qm2

]
ψ̂m(~r)

+
c0

2

∫
d3~r
∑
mm′

ψ̂†m′(~r)ψ̂
†
m(~r)ψ̂m′(~r)ψ̂m(~r)

+
c1

2

∫
d3~r
∑
~m

ψ̂†m4
(~r)ψ̂†m3

(~r) ~̂Fm3m2 · ~̂Fm4m1ψ̂m2(~r)ψ̂m1(~r)

+
c2

10

∫
d3~r
∑
m,n

(−1)m+nψ̂†m(~r)ψ̂†−m(~r)ψ̂n(~r)ψ̂−n(~r)

+
cdd
2

∑
~m

∫
d3r d3r′ ψ̂†m1

(~r)ψ̂†m2
(~r ′)

1

|~r − ~r ′|3

×
[
~̂Fm1m3 · ~̂Fm2m4 − 3

(
~̂Fm1m3 · ~ur

)(
~̂Fm2m4 · ~ur

)]
ψ̂m4(~r

′)ψ̂m3(~r), (1.39)

1.4 Coupled Gross-Pitaevskii equations

The mean-field dynamics of a spin-2 BEC is governed by a set of coupled GPEs
for the five Zeeman sublevels. As in our derivation of the scalar GPE, these
coupled equations of motion may be obtained by means of the Heisenberg
equations of motion,

i~
∂ψ̂m(~r, t)

∂t
= [ψ̂m(~r, t), Ĥ]. (1.40)

Using Eq. (1.39) and Eq. (1.40) for the field operators and taking into account
the mean-field approach, similar to the procedure for the scalar GPE, one
obtains a set of five coupled GPEs of the form:

i~
∂ψm(~r, t)

∂t
=

[
− ~2

2M
∆ + V (~r) +m∇p · ~r + qm2

]
ψm(~r, t)

+N(c0n+m(c1fz + cddA0)ψm(~r, t)

+
N

2

[(
c1f− + 2cddA−

)
S+
m,m−1ψm−1(~r, t)

+
(
c1f+ + 2cddA+

)
S−m,m+1ψm+1(~r, t)

]
+

2Nc2

5
(−1)mS−ψ

∗
−m(~r, t) (1.41)
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Where f±(~r) =
∑

mn ψ
∗
mS
±
mnψn is the spin density, S±m,m∓1 =

√
6−m(m∓ 1)

and S− = 1
2

∑
n(−1)nψnψ−n is the singlet-pair amplitude. The terms A0 =∫

d3~r′
(1−3 cos3 θrr′ )

2|~r−~r′|3 fz(~r
′) andA± =

∫
d3r′

(3 cos3 θrr′−1)

2|~r−~r′|3 f±(~r′) characterize the dipole
dipole interaction. In deriving these terms, we consider a sufficient large mag-
netic field along z-axis (the quantization axis) and hence we neglect collisions
which do not conserve the total spin [89].

In Eq. (1.41) we find various spin-changing processes, which result in trans-
fer of atoms among the different Zeeman sublevels. These spin changing pro-
cesses are governed by the parameters c1, which includes all couplings of states
with ∆mF = ±1 (e.g |0〉+ |0〉 ↔ |1〉+ |−1〉), c2 that includes the only possible
coupling with ∆mF = ±2 (e.g |0〉+ |0〉 ↔ |2〉+ | − 2〉), and cdd, that regular-
izes the spin dynamics depending on the geometry of the trap, dimensionality,
and orientation with respect to the magnetic field. The magnitude of these
couplings provides the time scales for the spinor dynamics, and their relative
strengths indicate the initially dominant channels (e.g. for 87Rb c1 > c2).
The above GPEs hence provide a rich physics given by the interplay between
internal and external degrees of freedom.

1.5 Overview

This thesis is organized as follows:
In chapter 2 we analyze the first stages of the spinor dynamics (linear

regime), focusing on the properties of the Bogolibov spectrum of spin exci-
tations of the initial condensate in the |0〉 Zeeman sublevel for both spin-1
and spin-2 87Rb spinor BECs. This spectrum is particularly interesting to
understand the instability associated to the spinor dynamics that are charac-
terized by the correlated pair creation into | ± 1〉 from the BEC in |0〉, which
closely resembles the parametric amplification in quantum optics. We con-
sider a homogeneous case and derive the Hamiltonian in the linear regime,
without considering dipolar or magnetic gradient effects. We determine the
Bogoliubov spectrum for different quadratic Zeeman effect q and show that
the different stability and instability regimes of the BEC in |0〉. In particular,
we focus on the unstable regime and determine the instability rate, which is
obtained from the most unstable Bogoliubov spin excitation mode.

In chapter 3 we continue the investigation of the first stages of the spinor
dynamics (linear regime), but now for trapped spin-1 and spin-2 spinor BECs.
As in the previous chapter, we analyze the Bogoliubov spectrum and deter-
mine the instability rate as a function of the applied magnetic field. This
instabilty rate shows an intriguing non-monotonous character which is cru-
cially determined by the trap inhomogeneity and cannot be explained from
the physics of homogeneous spinor BEC discussed in chapter 2. We then an-
alyze the pair creation dynamics, which is characterized by the exponential
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growth of the most unstable spin excitations of the initial BEC in |0〉. This
pair creation efficiency (from |0〉 to | ± 1〉) presents a striking multi-resonant
magnetic field dependence, which maps the instability rate. We also calculate
the population growth in | ± 1〉 using the mean-field coupled GPEs, however,
this result fails to reproduce the high magnetic field resonance resulting from
the exact quantum calculations in the linear regime. In the final part of the
chapter, we compare our results to the experiments performed in Hannover,
showing an excellent agreement between theory and experiment.

In chapter 4 we study the triggering mechanism of the amplification. We
show that the classical seed, very few spurious atoms in | ± 1〉, plays only
a relevant role at sufficiently low magnetic fields, where the amplified spin
excitation mode has a large overlap with the original BEC. However, at larger
magnetic fields the amplified spin excitations show pronounced spatial struc-
tures and lack a substantial overlap. As a result, our results show that the
amplification is dominantly triggered by vacuum fluctuations. In the final
part of the chapter, We directly compare our results with the experimental
ones in Hannover university and show pretty good agreement.

In chapter 5 we analyze the sensitivity of the amplification to the magnetic
dipole-dipole interactions. We show that the amplification is largely modified
when changing the relative orientation between the applied magnetic field and
the trap axis. If these directions are perpendicular to each other the ampli-
fication dynamics is much faster than for the parallel configuration. We also
analyze in detail the effects of magnetic field gradients in the amplification
dynamics. We show that these gradients modify also largely the amplification
process and must be carefully controlled, since uncontrolled gradients may
obscure the expected DDI effects. Finally we comment on experimental re-
quirements for observing the magnetic dipole-dipole interaction effects on the
amplification dynamics.

Chapter 6 is devoted to the study of the nature of the symmetry breaking
during the amplification of quantum spin fluctuations, studied in Ch. 4. Inter-
estingly, a twofold spontaneous breaking of spatial and +1 and −1 spin sym-
metries may occur. On one hand, we show that quantum fluctuations of the
relative phase between amplified degenerate spin modes may break the cylin-
drical symmetry imposed by the trap. On the other hand, the density profiles
in |+1〉 and |−1〉 may differ from each other, leading to spontaneously formed
longitudinal magnetization patterns only if various nondegenerate spin modes
are significantly amplified. We show that this novel type of spin-symmetry
breaking is linked to quantum interferences occurring during the amplifica-
tion process. In the final part of the chapter, we show that our results are in
qualitative agreement with the experiments in Hannover university.



Chapter 2

Bogoliubov Analysis

A particularly interesting scenario for spinor condensates is provided by BECs
initially prepared in the m = 0 Zeeman sublevel (|0〉), since spin-changing col-
lisions acting upon this level may induce, as throughly discussed in this Thesis,
the equivalent of parametric down conversion into m = ±1 sublevels (±1〉). In
this chapter we analyze the first stages of this spinor dynamics (linear regime),
focusing on the properties of the Bogoliubov spectrum of spin excitations of
the initial condensate in the |0〉 Zeeman sublevel for both spin-1 and spin-2
87Rb spinor BECs. This spectrum is particularly interesting to understand
the instability associated to the spinor dynamics leading to the discussed
parametric amplification. We concentrate in this chapter on the relatively
simple homogeneous case, leaving the (experimentally relevant) discussion of
the trapped case to the following chapter. We first derive the Hamiltonian in
the linear regime (without considering dipolar or gradient effects, which are
left to Chapter 5). We then diagonalize the linear Hamiltonian to obtain the
corresponding Bogoliubov spectrum for different quadratic Zeeman energies,
and finally analyze the different stability and instability regimes.

2.1 Linear Regime Hamiltonian

In the following we are interested in the first stages (linear regime) of the
spinor dynamics of a spin-2 BEC initially prepared in the |0〉 sublevel, after
quenching q into a possibly unstable regime. The initial scalar wavefunction
ψ0(~r) of the condensate and the corresponding chemical potential µ may be
obtained using the time-independent Gross-Pitaevskii equation Eq. (1.11):[

− ~2

2M
∆ + V (~r) +

(
c0 +

c2

5

)
n0(~r)

]
ψ0(~r) = µψ0(~r), (2.1)

with n0(~r) = |ψ0(~r)|2,
∫
d3r|ψ0(~r)|2 = N and N is the total number of parti-

cles.

The free energy of the spinor system is described by K̂ = Ĥ − µN̂ , where
N̂ =

∑
m

∫
d3rψ̂†m(~r)ψ̂m(~r) is the total number operator of the system. Insert-

ing Eq. (1.39) (without dipole-dipole interaction or magnetic field gradients)
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we obtain

K̂ =

∫
d3~r
∑
m

ψ̂†m(~r)

(
−~2∇2

2M
+ V (~r) + qm2 − µ

)
ψ̂m(~r)

+
c0

2

∫
d3~r
∑
mm′

ψ̂†m′(~r)ψ̂
†
m(~r)ψ̂m′(~r)ψ̂m(~r)

+
c1

2

∫
d3~r
∑
~m

ψ̂†m4
(~r)ψ̂†m3

(~r) ~̂Fm3m2 · ~̂Fm4m1ψ̂m2(~r)ψ̂m1(~r)

+
c2

10

∫
d3~r
∑
m,n

(−1)m+nψ̂†m(~r)ψ̂†−m(~r)ψ̂n(~r)ψ̂−n(~r). (2.2)

The first stages of the spinor dynamics of the spin-2 system initially prepared
in |0〉 Zeeman sublevel may be described by means of a Bogoliubov approxi-
mation:

[ψ̂2(~r, t), ψ̂1(~r, t), ψ̂0(~r, t), ψ̂−1(~r, t), ψ̂−2(~r, t)]T =
[
(Ψ0(~r) + δΨ̂(~r, t))T

]
e−iµt.

(2.3)
where δΨ̂(~r, t)T = (δψ̂2(~r, t), δψ̂1(~r, t), δψ̂0(~r, t), δψ̂−1(~r, t), δψ̂−2(~r, t))T are small
fluctuations of the spinor field operator and Ψ0(~r)T = (0, 0, ψ0(~r), 0, 0)T is the
initial state of the condensate.

In this first stages of the spin evolution time, we may perform the following
approximations:

• Small population in | ± 1〉 components, such that the density of the
fluctuations is much smaller than the density of the condensate,
n0(~r) = |ψ0(~r)|2 � 〈δψ̂†m(~r)ψ̂m(~r)〉.

• Keep terms up to the second order in δψ̂m(~r), which means that we
neglect the spin-collisions that involve only atoms in | ± 1〉 Zeeman
sublevels.

• When the above conditions are fulfilled, then there is no transfer of
atoms from | ± 1〉 in to | ± 2〉, whereas the transfer rate from |0〉 in to
|±2〉 is much smaller that from |0〉 in to |±1〉 (see Table 1.3). Therefore,
we may neglect the transfer of atoms into |±2〉 Zeeman sublevels during
the first stages of the dynamics.
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Employing these approximations, Eq. (2.2) takes the form

K̂ =

∫
d3~r

{
(ψ0 + δψ̂†0)(− ~2

2M
∇2 + V (~r)− µ)(ψ0 + δψ̂0)

+ δψ̂†1(− ~2

2M
∇2 + V (~r) + q − µ)δψ̂1 + δψ̂†−1(− ~2

2M
∇2 + V (~r) + q − µ)δψ̂−1

}
+

c0

2

∫
d3~r
{

4(ψ∗0 + δψ̂†0)δψ̂†1(ψ0 + δψ̂0)δψ̂1 + 4(ψ∗0 + δψ̂†0)δψ̂†−1(ψ0 + δψ̂0)δψ̂−1

+ (ψ∗0 + δψ̂†0)(ψ∗0 + δψ̂†0)(ψ0 + δψ̂0)(ψ0 + δψ̂0)
}

+
c1

2

∫
d3~r

{
4(ψ∗0 + δψ̂†0) ~̂F10 · ~̂F01δψ̂

†
1(ψ0 + δψ̂0)δψ̂1 + 4(ψ∗0 + δψ̂†0)δψ̂†−1

× ~̂F−10 · ~̂F0−1(ψ0 + δψ̂0)δψ̂−1 + (ψ∗0 + δψ̂†0)(ψ∗0 + δψ̂†0) ~̂F00 · ~̂F00

×(ψ0 + δψ̂0)(ψ0 + δψ̂0) + 2(ψ∗0 + δψ̂†0)(ψ∗0 + δψ̂†0) ~̂F01 · ~̂F0−1δψ̂1δψ̂−1

+2δψ̂†1δψ̂
†
−1
~̂F10 · ~̂F−10(ψ0 + δψ̂0)(ψ0 + δψ̂0)

}
+

c2

10

∫
d3~r
{− (ψ∗0 + δψ̂†0)(ψ∗0 + δψ̂†0)δψ̂1δψ̂1 − δψ̂†1δψ̂†−1(ψ0 + δψ̂0)(ψ0 + δψ̂0)

+ (ψ∗0 + δψ̂†0)(ψ∗0 + δψ̂†0)(ψ0 + δψ̂0)(ψ0 + δψ̂0)
}
. (2.4)

Using the values of ~̂Fm3m2 · ~̂Fm4m1 (see Appendix B) in Eq. (2.4), and after
some calculation, we get

K̂ =

∫
d3~r

{
ψ∗0(− ~2

2M
∇2 + V (~r) +

1

2
(c0 +

c2

5
)n0 − µ)ψ0

+ δψ̂†0(− ~2

2M
∇2 + V (~r) + (c0 +

c2

5
)− µ)δψ̂0 + (

c0

2
+
c2

10
)n0(δψ̂†0δψ̂

†
0 + δψ̂0δψ̂0)

+ ψ∗0(− ~2

2M
∇2 + V (~r) + (c0 +

c2

5
)n0 − µ)δψ̂0

+ δψ̂†0(− ~2

2M
∇2 + V (~r) + (c0 +

c2

5
)n0 − µ)ψ0

}
+

∫
d3~r

{ ∑
m=±1

δψ̂†m(− ~2

2M
∇2 + V (~r) + (c0 + 3c1)n0 + q − µ)δψ̂m

(3c1 − c2

5
)n0(δψ̂†−1δψ̂

†
1 + δψ̂1δψ̂−1)

}
. (2.5)

In the above equation, the third and the fourth terms vanish due to the time-
independent GPE (2.1). The first term of Eq. (2.5) is a constant, which is
the free energy of the initial BEC. The second term describes the dynamics
of the density and phase fluctuations δψ̂0(~r) of the |0〉 BEC. Note that these
fluctuations are decoupled from the spin fluctuations δψ̂±1(~r) in the linear
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regime. The two last terms govern the dynamics of the spin fluctuations in
| ± 1〉, being the relevant terms in our further discussion. Note in particular
that the last term clearly describes pair creation into | ± 1〉.

Therefore, the effective Hamiltonian that describes pair creation of atoms
into | ± 1〉 Zeeman sublevels acquires the form:

Ĥ±1 =

∫
d3~r

{ ∑
m=±1

δψ̂†m(~r)
[
Ĥeff (~r) + q

]
δψ̂m(~r)

+ U1−1n0(~r)
[
δψ̂†−1(~r)δψ̂†1(~r) + δψ̂1(~r)δψ̂−1(~r)

]} (2.6)

with

Ĥeff (~r) = − ~2

2M
∇2 + Veff (~r) (2.7)

where Veff (~r) = V (~r) + (U00 + U1−1)n0(~r) − µ, with U00 = c0 + c2/5 and
U1−1 = 3c1 − c2/5. Note that Veff (~r) acts as an effective trapping potential
for the | ± 1〉 atoms on the top of the the condensate in the |0〉 Zeeman
sublevel. Besides the optical trap and the chemical potential of the system,
this effective trap contains the mean-field potential (U00 + U1−1)n0(~r), which
originates from spin-preserving collisions of atoms in | ± 1〉 with |0〉 atoms.
Note that in the Thomas-Fermi regime µ = V (~r) + U00n0(~r). In that regime,
Veff (~r) = U1−1n0(~r) within the BEC region, and Veff (~r) = V (~r)− µ outside.

The second term of the Hamiltonian in Eq. (2.6) originates from spin-
changing collisions, which convert atoms in the |0〉 BEC into pairs of atoms
in |±1〉 and vice-versa. Interestingly, this process resembles parametric down
conversion in optical parametric amplifiers. Indeed, as it will be discussed
below, if the condensate in |0〉 is unstable after the quench of the quadratic
Zeeman energy q, then the spin-changing collisions lead to an exponential
amplification of the population in the | ± 1〉 Zeeman sublevels.

Note that the effective Hamiltonian of Eq. (2.6) can also describe the
dynamics of spin-1 systems by using the appropriate coupling constants
U00 = (g0 + 2g2)/3 and U1−1 = (g2 − g0)/3. Hence, in the remaining part of
this chapter, our results are equally valid for both spin-1 and spin-2 87Rb.

2.2 Bogoliubov spin excitations

To develop a basic understanding of the spinor dynamics after quenching q,
we consider small perturbations about the inital |0〉 BEC. In particular, we
are interested in determining whether a given perturbation to the condensate
will be stable or unstable, i.e., whether it will evolve by simply accruing a
phase over time, or by becoming exponentially amplified or de-amplified. This
distinction is dictated by the properties of the spectrum of spin excitations of
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the original condenstate, which we determine at this point. In the following,
and for simplicity of our discussion at this point, we consider a homogeneous
(i.e. non-trapped) case. In a homogenous system, whereby Veff (~r) and n0(~r)

are constants and µ = U00n0, it is natural to work in a momentum (~k) basis.
We express the effective Hamiltonian (2.6) in terms of Φ̂±(~r) = 1√

2
[δψ̂1(~r)±

δψ̂−1(~r)]. It takes then the form Ĥ±1 = Ĥ+ + Ĥ−, where

Ĥ± =

∫
d3~r

{
Φ̂†±(~r)[Ĥeff+q]Φ̂±(~r)+

εU1−1n0(~r)

2
[Φ̂†±(~r)Φ̂†±(~r)+Φ̂±(~r)Φ̂±(~r)]

}
,

(2.8)
with ε = ±. The expressions for Ĥ+ and Ĥ− has the same form except the
value of ε. Thus, it is the same to solve either Ĥ+ or Ĥ−, and hence we drop
the ± subindex in the remaining part of this discussion.

We may introduce the Fourier transform Φ̂(~r) =
∫

d3~k
(2π)3/2

ei
~k·~rΦ̂(~k), which

allows us to write Eq. (2.8), in the simplified form:

Ĥ±1 =

∫
d3~k

(2π)3
(ε~k + q − qcr)Φ̂†(~k)Φ̂(~k)

− εqcr
2

∫
d3~k

(2π)3
[Φ̂†(~k)Φ̂†(−~k) + Φ̂(~k)Φ̂(−~k))],

(2.9)

where qcr = −U1−1n0 is constant and εk = ~2k2

2M
. Note that for spin-1 and spin-

2 87Rb U1−1 > 0 and U1−1 < 0, and hence qcr > 0 and qcr < 0, respectively.
The Hamiltonian for each ~k mode takes the form

Ĥ±1(~k) = (ε~k + q− qcr)Φ̂†(~k)Φ̂(~k)− εqcr
2

[Φ̂†(~k)Φ̂†(−~k) + Φ̂(~k)Φ̂(−~k))]. (2.10)

This Hamiltonian may be easily diagonalized using the Bogoliubov transfor-
mation

Ô(~k) = u~kΦ(~k) + v~kΦ
†(−~k), (2.11)

such that

ξ~kÔ(~k) = [Ô(~k), Ĥ±1(~k)], (2.12)

where ξ~k are the excitation energies. Using the Heisenberg equation along
with the above commutation relation, it is easy to show that

i~
∂Ô(~k)

∂t
=[Ô(~k), Ĥ±1(~k)]

= ξ~ku~kΦ(~k) + ξ~kv~kΦ
†(−~k)

= (εk + q − qcr)
[
ukΦ̂(~k)− vkΦ̂†(−~k)

]
− εqcr

[
ukΦ̂

†(−~k)− vkΦ̂(~k)
]
.

(2.13)
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One hence obtains the so-called Bogoliubov-de Gennes equations:

ξ~ku~k = (ε~k + q − qcr)u~k + εqcrv~k
ξ~kv~k = −(ε~k + q − qcr)v~k − εqcru~k,

(2.14)

which may be expressed in the matrix form:(
ε~k + q − qcr εqcr
−εqcr −(ε~k + q − qcr)

)(
u~k
v~k

)
= ξ~k

(
u~k
v~k

)
. (2.15)

We may hence calculate the eigenenergies and eigenstates of the spin excita-
tions [90, 91]. After diagonalizing the above matrix, one obtains

ξ2
~k

= (ε~k + q − qcr)2 − q2
cr. (2.16)

Note that the eigenenergies and eigenstates fulfill the condition:

(ξ~k − ξ∗~k)[|u~k|2 − |v~k|2] = 0, (2.17)

which is particularly important in the following discussion.
Note that the eigenenergies may become imaginary, leading to the on-set

of dynamical instability against an exponential amplification of the population
in | ± 1〉. Whether there is instability or not depends to a large extent on the
quadratic Zeeman energy q. We focus at this point on this important issue.

2.2.1 Real eigenenergies

Real eigenvalues occur when when (ε~k + q − qcr) > qcr. In that case one may
proceed as for usual stable scalar condensates [69]. The quasi-particle operator

Ô(~k) is a bosonic operator; consequently the operator Ô(~k) and Ô†(~k) satisfy
the Bose commutation relation, i.e.

[Ô(~k), Ô†(~k)] = 1. (2.18)

By imposing the above commutation rule, one finds that the amplitudes u~k
and v~k must obey the normalization condition:

|u~k|2 − |v~k|2 = 1. (2.19)

We can then choose one solution with amplitudes u~k = cosh
γ~k
2

and v~k =
sinh

γ~k
2

, such that

tanh γ~k =
qcr

(ε~k + q − qcr) . (2.20)

The eigenenergies corresponding to this state is given by

ξ~k =
√

(ε~k + q − qcr)2 − q2
cr. (2.21)
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The other possible eigenstate is

(
v∗~k
u∗~k

)
with eigenenergy −ξ~k. Hence the Bo-

goliubov transformation for the above two possible solution is expressed as

Ô1(~k) = u~kΦ̂(k) + v~kΦ̂
†(−~k) = Ô(~k)

Ô2(~k) = v∗~kΦ̂(~k) + u∗~kΦ̂(−~k).
(2.22)

However, the operator Ô2(~k) does not fulfill the commutation relation, since

[Ô2(~k), Ô†2(~k)] = |v~k|2 − |u~k|2 = −1. (2.23)

This is because the operator Ô2(~k) is actually the Hermitian conjugate of

u~kΦ̂(−~k) + v~kΦ̂
†(~k), which is the same as Ô1(~k) but in −~k. Therefore, we

have

Ô(~k) = u~kΦ̂(~k) + v~kΦ̂
†(−~k)

Ô2(~k) = Ô†(−~k).
(2.24)

Hence, using these bosonic operators the effective Hamiltonian, Eq. (2.9)
becomes

Ĥ±1 =

∫
d3~k

(2π)3

{
[(ε~k + q − qcr)2 − q2

cr]
1/2Ô†(~k)Ô(~k)

− 1

2

[
ε~k + q − qcr − [(ε~k + q − qcr)2 − q2

cr]
1/2
]} (2.25)

2.2.2 Imaginary eigenenergies

When (ε~k + q − qcr) < qcr, the eigenenergies become imaginary. Hence, from

Eq. (2.17) it follows that |u~k|2 = |v~k|2 and the operator Ô(~k) cannot be a
bosonic operator, but it has actually the form:

Ô(~k) = ū~k[e
iS~kΦ̂(~k) + e−iS~kΦ̂†(−~k)] (2.26)

with u~k = ū~ke
iS~k and v~k = ū~ke

−iS~k , such that the amplitudes fulfills |u~k|2 =
|v~k|2. The quantity S~k is a phase, which we evaluate in the following. Em-
ploying Eq. (2.26) into one of the equations of (2.14), we obtain

± i|ξ~k| = (ε~k + q − qcr) + εqcre
−2iS~k (2.27)

Thus, the phase S~k, which will be discussed in more detail in Chapter 6,
becomes

sin 2S~k =
∓|ξ~k|
εqcr

cos 2S~k =
−(ε~k + q − qcr)

εqcr
.

(2.28)
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The Bogoliubov transformation for the possible energy eigenvalues of ±|ξ~k|
can be expressed as

Ô+(~k) = ū~k[e
iS~kΦ̂(~k) + e−iS~kΦ̂†(−~k)]

Ô− = ¯̄u~k[e
−iS~kΦ̂(~k) + eiS~kΦ̂†(−~k)].

(2.29)

Here one can easily see that the operators Ô±(~k) are not bosonic operators,
rather they are quadratures that obey the following commutation relation:

[Ô+(~k), Ô−(~k)] = i (2.30)

with ū~k = ¯̄u~k = 1√
2 sin 2S~k

. We obtain hence the final form of the quadrature

operators:

Ô+(~k) = χ̂(~k) =
1√

2 sin 2S~k
[eiS~kΦ̂(~k) + e−iS~kΦ̂†(−~k)]

Ô−(~k) = ℘̂(~k) =
1√

2 sin 2S~k
[e−iS~kΦ̂(~k) + eiS~kΦ̂†(−~k)].

(2.31)

The effective Hamiltonian, Eq. (2.9) takes thus the form

Ĥ±1 =

∫
d3~k

(2π)3

(
|ξ~k|
(
χ̂(~k)℘̂(~k) + ℘̂(~k)χ̂(~k)

)
− (ε~k + q − qcr)

)
. (2.32)

2.3 Magnetic field dependence of the instabil-

ity rate

Whether the condensate in the |0〉 Zeeman sublevel is stable or unstable de-
pends upon whether ξ~k is real or imaginary. If the imaginary part of ξ~k is

positive for some ~k, then the condensate in the |0〉 Zeeman sublevel is dynam-
ically unstable and pair production to the | ± 1〉 Zeeman sublevel occurs, as
we shall discuss in the next chapter.

From Eq. (2.16) one may distinguish three different regimes as a function
of q:

• If q > qcr + |qcr| then ξ2
~k
> 0 and ξ~k is real and hence the |0〉 condensate

is stable.

• If qcr < q < qcr + |qcr| then ξ~k is imaginary, and the |0〉 BEC be-
comes dynamically unstable. The most unstable mode is characterized
by ~kmax = 0. The instability rate of the most unstable mode (which
provides the amplification rate, as discussed in the following chapter)

is given by Λ(q) =
|ξ~kmax=0

|
h

=
√

(q2
cr − (q − qcr)2/h, which is zero at

q = qcr + |qcr| and acquires its maximal value,
|ξ~kmax=0

h
| = |qcr|

h
at q = qcr,

as shown in Fig. (2.1).
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• If q < qcr the |0〉 BEC is also unstable, but the most unstable mode

is characterized by a non-zero ~k. The minimum value of ξ2
~kmax

= −q2
cr

for a fixed value of q is obtained at ε~kmax = qcr − q, where kmax =√
2M
~ (qcr − q) characterizes the most unstable mode. The corresponding

instability rate is Λ(q) =
ξkmax
h

= |qcr|
h

, which remains constant (this will
change in the presence of a trap as discussed in the following chapter).

 0
 0−|qcr|

|qcr|

|ξ m
ax
|=

√ q2 cr
−(

q−
q c

r)
2

|ξ m
ax
|=

√ q2 cr
−(

q−
q c

r)
2

|ξmax| = |qcr|

Stable

Regime

Figure 2.1: The largest instability rate of the homogenous system as a function of
the quadratic Zeeman energy q. Note that for spin-2, since U1−1 > 0 then qcr < 0.
On the contrary for spin-1 U1−1 < 0, and qcr > 0.





Chapter 3

Multi-resonant parametric
amplification in trapped spinor

condensates

Spinor BECs provide exciting perspectives as novel sources of non-classical
states of matter. In this sense, condensates initially prepared in the |0〉 Zee-
man sublevel are especially fascinating [20, 21, 92, 93]. As mentioned in
the previous chapter, the creation of correlated pairs results in the growth
of macroscopic populations in the | ± 1〉 Zeeman sublevel in a process which
closely resembles parametric amplification in optical parametric down conver-
sion [94], opening exciting new routes for matter-wave squeezing and atomic
Einstein-Podolsky-Rosen entanglement experiments [38, 39].

Correlated pair creation, and in general any spinor dynamics, demands
a significant rate of spin-changing collisions. In typical experiments these
collisions are suppressed by the quadratic Zeeman effect (QZE) already in the
presence of moderate magnetic fields [20]. However, the influence of the QZE
at low fields is far from trivial [34, 92, 95–97]. In particular, spin-mixing can
reach a pronounced maximum for low but finite fields [96]. This resonance,
contrary to those discussed below, has a non-linear character and has been
explained in terms of phase matching [96].

As we show in this chapter, the pair-creation efficiency reflects the confine-
ment induced magnetic field dependence of the most unstable Bogoliubov spin
excitations of the trapped condensate. In the first part of this chapter, we ana-
lyze the Bogoliubov spectrum along similar reasonings as those of the previous
chapter, but introducing the crucial effects induced by the trapping potential.
We determine the most unstable Bogoliubov mode, which provides the insta-
bility rate. This instability is shown to present an intriguing non-monotonous
character which is crucially determined by the trap inhomogeneity and can-
not be explained from the physics of homogeneous spinor BEC discussed in
the previous chapter. In the second part of the chapter, we analyze the pair
creation dynamics, which is characterized by the exponential growth of the
most unstable spin excitations of the initial |0〉 BEC. As discussed below, the
creation efficiency presents an striking multi-resonant magnetic field depen-
dence. In the last part, we present mean-field results based on the coupled
GPEs discussed in the introductory chapter, comparing the results with the
exact quantum calculations in the linear regime.
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3.1 Instability rate of Trapped system

Although the homogenous picture discussed in the previous chapter offers im-
portant insights, the actual q-dependence of the spinor dynamics in trapped
condensates is strikingly different, showing that the confinement must be con-
sidered to obtain even a qualitative understanding. In the following two sub-
sections, we first consider a box model to undestand the impact of the a finite
confinement, and then we discuss the effects of the trap inhomogeneity for the
experimentally relevant case of a harmonic trap.

3.1.1 Box potential trap

We consider at this point the simplified case of a spin-1 or spin-2 condensate
in a box potential V (~r) = 0 for r < R, and V (~r) = ∞ otherwise. In the
Thomas-Fermi regime the density n0 of the condensate in the |0〉 Zeeman
sublevel is approximately constant for r < R.

The analysis of the spinor dynamics is significantly simplified by consider-
ing the eigenfunctions and eigenenergies ofHeff (~r) in Eq. (2.7), Heff (~r)φn(~r) =

εnφn(~r). After projecting the bosonic field operator, δψ̂m(~r), in the basis of
these eigenstates:

δψ̂m(~r) =
∑
n

φn(~r)ân,m, (3.1)

the effective Hamiltonian (2.6) for the pair creation of atoms in |±1〉 Zeeman
sublevels takes the form

Ĥ±1 =
∑
n

(εn + q)
(
â†n1ân1 + â†n−1ân−1

)
+
∑
nn′

Ann′
(
â†n1â

†
n′−1 + ân1ân′−1

)
(3.2)

where Ann′ = U1−1

∫
d3rn0(~r)φn(~r)φn′(~r) characterizes the effects of the short-

range spin-changing collisions.
We may diagonalize the above Hamiltonian, Eq. (3.2), by applying the

multimode Bogoliubov transformation:

α̂±ν =
∑
n

(
u±νnân1 + v±νnâ

†
n−1

)
. (3.3)

Using the notation (ân1, â
†
n−1)T := (â11, â21, ..., â

†
1−1, â

†
1−1, ...)

T , we may rewrite
Eq. (3.3) in a matrix form by means of a transformation matrix M, which
transforms the operators (ân1, â

†
n−1)T into (α̂+

ν , α̂
−
ν )T ,(

α̂+
ν

α̂−ν

)
=

(
u+
νn v+

νn

u−νn v−νn

)
︸ ︷︷ ︸

M

(
ân1

â†n−1

)
. (3.4)
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Where operator α̂±ν satisfy [
α̂±ν , Ĥ±1

]
= λ±ν α̂

±
ν . (3.5)

Using the Heisenberg equation along with the above relation, we obtain

i~
∂α̂±ν
∂t

=[α̂±ν , Ĥ±1]

= λ±ν u
±
νnân1 + λ±ν v

±
νnâ
†
n−1

=
∑
n′

{
(εn + q)δnn′

[
u±νnân′1 − v±νnâ†n′−1

]
+ Ann′

[
u±νnâ

†
n′−1 − v±νnân′1

]}
.

(3.6)

This leads to the Bogoliubov-de Gennes equations

λ±ν u
±
νn = (εn + q)u±νn −

∑
n′

Ann′v
±
νn′

λ±ν v
±
νn = −(εn + q)v±νn +

∑
n′

Ann′u
±
νn′.

(3.7)

Note that in the Thomas-Fermi regime, the density n0 and the chemical
potential µ = U00n0 are constants. As a consequence the effective trap
Veff = U1−1n0 + V becomes a box shifted by U1−1n0. The eigenfunctions,
φn(~r), and eigenenergies, εn, are the usual eigenfunctions and eigenenergies
of a box shifted by U1−1n0, i.e. εn = U1−1n0 + ε′n with ε′n the energy of the
nth-level of the box trap. In addition there is no coupling between different
levels of the effective trap, i.e. Ann′ = U1−1n0δnn′ . Hence Eqs.(3.7) reduce to
a 2× 2 eigenproblem, which may be solved independently for each box level,
leading to the eigenvalues

λ2
n(q) =

[
(ε′n − qcr + q)2 − q2

cr

]
, (3.8)

with qcr = −U1−1n0, as in the previous chapter. Once more, if the imaginary
part of the above eigenenergies is positive, Im(λn(q)) > 0, then the condensate
in the |0〉 is dynamically unstable resulting into the correlated pair creation
of atoms in the | ± 1〉 Zeeman sublevels.

These energy eigenvalues are similar to the energy eigenvalues of the ho-
mogenous case (Eq. (2.16) in the previous chapter) except that not all the

valus of ~k are possible. Note that the energy for the possible discrete set is

given by the energy of the box potential ε′n =
~2k2

0n
2

2M
with n2 = n2

x + n2
y + n2

z.
As for the case of the homogenous system, we obtain three different regimes

that are classified according to the value of the q:

• If q > qcr + |qcr| then the eigenenergies are real, λn(q) > 0, and hence
the condensate in the |0〉 Zeeman sublevel is stable.
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• If qcr < q < qcr + |qcr|, the BEC is unstable and the most unstable mode
is the ground state of the box trap (n2 = 3). Similar to the homogenous
case, the instability rate of this most unstable mode is given by

Λ(q) =
|λn|
h

=

√
q2
cr − (q − qcr + ε′0)2

h
, (3.9)

with ε′0 the ground-state energy of the box trap. This instability rate
reaches its maximum, Λ(q) = |qcr|, when q = qcr − ε′0 (see Fig. 3.1).

• If q < qcr, the most unstable mode can be determined by the derivative
of the energy eigenvalues (3.8). For clarity, let’s introduce a parameter
α2, such that the energy eigenvalue is written as

λ2
n(q) =

[(
~2k2

0n
2

2M
− ~2k2

0α
2

2M

)2

− q2
cr

]
, (3.10)

with qcr− q = ~2k2
0α

2/2M . The condition for the minimal energy eigen-
values λ2

n(q) (i.e. the maximally unstable mode), is obtained from

∂λ2
n(q)

∂n2
= 2

(
~2k2

0

2M

)(
n2 − α2

)
= 0 (3.11)

This equation holds true when n2 = α2. Since n2 may only take some
integer values, it then follows that the maximum instability rate occurs
when n2

min = [α2], where [α2] is the closest integer to α2 from the n2

series. Therefore, the instability rate is given by

Λ(q) =

√
q2
cr −

(
~2k2

0

2M

)2(
[α2]− α2

)
h

. (3.12)

This instability rate shows pronounced maxima and minima as in Fig. 3.1,
reaching its maximum value, Λmax(q) = |qcr|, only when q is in resonance
with the levels of the effective trap potential.
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Stable 
Regime

UnStable 
Regime

|qcr|
Im(λ±

ν )

qcr + |qcr| − ε′0qcr − ε′0qcr − ε′1−ε′0

Figure 3.1: The imaginary part of the unstable modes for spin-1 and spin-2 87Rb
with qcr > 0 and q > 0 for spin-1 and qcr < 0 and q < 0 for spin-2 respectively.

Fig. (3.2) shows the maximum instability rate depending on the quadratic
Zeeman energy energy q. For low q, the two regimes are similar to the ho-
mogenous case. However, the growth of the instability rate is not followed by
a constant value for large quadratic zeeman energy |q|. On the contrary, Λ(q)
shows, as mentioned above, pronounced maxima for the values of |q| resonant
with the effective trap levels.

Max[Im(λn)]

|qcr| = |U1|n0

qcr − ε′0qcr − ε′1

q
qcr + |qcr| − ε′0

qcr

Figure 3.2: Maximal instability rate as a function of the quadratic Zeeman energy
for spin-1 and spin-2 87Rb in a box trap. Unlike the homogenous case, this instability
rate shows a pronounced maxima and minima.

3.1.2 Harmonic trap

For the actual experimental conditions not only the finite confinement but also
the inhomogeneity of the potential and the related inhomogeneous Thomas-
Fermi density profile n0(~r) contribute to the instability properties. This in-
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homogeneity of the potential trap and the inhomogeneity of the density n0(~r)
play actually a double role. First, the effective trap Veff (~r) presents a non-
trivial Mexican-hat-like form as shown in Fig. 3.3 (for spin-2 Rubidium, with
U1−1 > 0). Second, contrary to the simplified box potential, there is a signif-
icant coupling (Ann′) between the different trap levels, induced by the inho-
mogeneity of the density n0(~r).

U1−1 = 0 U1−1 < 0 U1−1 > 0a) b) c)

Figure 3.3: a)- c) One-dimensional schematic representation of the effective po-
tential Veff (~r) for various interaction terms U1−1.

After diagonalizing Eq. (3.7) numerically, we obtain the spin Bogoliubov
modes λν(q). Figure (3.4), shows the magnetic-field dependence of the maxi-
mal instability rate Λ(q) = Max|Im(λν(q))|/h for the experimental parameters
of spin-2 87Rb with trap frequencies (ωx, ωy, ωz) = 2π × (176, 132, 46) Hz and
atom number N = 5 × 104. In the unstable regime with low |q| we may ap-
proximate (following the discussion of the preceeding chapter) the maximal
instability rate by Λ(q) '√q̄2

cr − (q − q̄cr)2/h with an effective q̄cr(' −30 Hz
in Fig. (3.4)). However, as expected from the discussion above, this growth is
not followed by a constant instability rate for large |q|. On the contrary, Λ(q)
shows pronounced maxima and minima.

This picture is rather general and may be applied to any other experiment
on spinor condensates. In particular, Fig. (3.5) shows the maximum instability
rate for recent experiments with spin-1 87Rb at Berkeley [93]. In the unstable
regime, qcr < q < qcr + |qcr| (here qcr = 6Hz), the maximal instability rate
may be approximated by Λ(q) ' √q2

cr − (q − qcr)2/h. This instability rate
becomes constant for 0 < q < qcr. However, contrary to what may be expected
from the simplified homogenous approximation, this instability rate does not
remain constant, but rather it clearly decays for q < 0, in excellent agreement
with the reported results in Ref. [93].
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Figure 3.4: Instability rate as a function of the quadratic Zeeman energy q, given
by the imaginary part of the most unstable spin Bogoliubov mode, corresponding to
the trap frequencies 2π × (176, 132, 46) Hz and N = 5× 104 particles. The maximal
instability rate for an effective homogenous case (dashed line) lacks any resonant
features .
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Figure 3.5: Instability rate as a function of the quadratic Zeeman energy for the
parameters of Ref. [93], (ωx, ωy, ωz) = 2π× (440, 39, 4.2) Hz and N = 2× 106 atoms.
A constant maximal instability rate for 0 < q < 6 Hz is followed by a significant
decay of the conversion efficiency for q < 0.

The maxima and minima of the instability rate depend on the non-trivial
interplay between the quadratic Zeeman energy q, the spin changing collisions,
and the finiteness and inhomogeneity of both the trapping potential and the
atomic density of the condensate in the |0〉 Zeeman sublevel. Fig. (3.6) shows
how the nontrivial interplay between the different energy scales changes the
maximal instability rate by considering different possible experimental param-
eters of spin-2. This change is sensitive to the details of the trap frequencies,
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the atomic number and the scattering lengths. In Fig. (3.6b) we consider
two different sets of scattering lengths of a0 = 87.685aB (with aB the Bohr
radius), a2 = 91.049aB, and a4 = 99.197aB

1, and a0 = 89.4aB, a2 = 94.5aB,
and a4 = 106.0aB

2. Although the difference in the spin-changing interaction
energies between these two sets of scattering lengths is rather small, it leads to
a small change in the potential bump of the effective trap, leading to different
instability rates and a quite different pair creation efficiency at the resonances.
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(a) instability rate for possible different
trap frequencies and number of particles
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(b) instability rate for different scat-
tering lengths with the same number
of particles and trap frequency

Figure 3.6: Instability rate as a function of the quadratic Zeeman energy for dif-
ferent experimental parameters. Fig. (3.6a) corresponds to N = 5 × 104 number of
particles with two different trap frequencies of 2π× (176, 132, 46) Hz (red curve) and
2π × (179, 179, 85) Hz (green curve) and the blue one corresponds to N = 3 × 104

particles with trap frequencies of 2π× (176, 132, 46) Hz. In both cases the scattering
lengths are a0 = 87.685aB , a2 = 91.049aB , a4 = 99.197aB . Fig. (3.6b) corresponds
to the trap frequency of 2π × (176, 132, 46) Hz , N = 5 × 104 number of particles
with two different set of scattering lengths: a0 = 89.4aB , a2 = 94.5aB , a4 = 106.0aB

(red curve) and a0 = 87.685aB , a2 = 91.049aB , a4 = 99.197aB (green curve).

3.2 Transfer of atoms into | ± 1〉 Zeeman sub-

level

In this section we study the dynamics of the exponential population growth
in |±1〉, i.e. we are interested in the time evolution of δψ̂±1(~r, t). To this end,
we follow a similar reasoning as that employed for obtaining the instability
rates, i.e. we diagonalize the effective Hamiltonian (3.2) using the multimode
Bogoliubov transformation (3.3). The time evolution of the quasi-particle

1Recent estimation of Prof. E. Tiemann, private communication.
2PhD Thesis of Holger Schmaljohann, Univ. Hamburg 2004
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operators α̂±ν (t) is hence given by the Heisenberg equation

i~
d

dt
α̂±ν =

[
α̂±ν , Ĥ±1

]
, (3.13)

which using Eq. (3.5) leads to

α̂±ν (t) = α̂±ν (0)e−iλ
±
ν t/~. (3.14)

Hence, when the imaginary part of the energies λ±ν is positive, Im(λ±ν ) > 0, the
amplitude of the quasiparticles grows exponentially, leading to the exponential
population growth in | ± 1〉.

Using Eqs. (3.4) and (3.14) we obtain[
ân1(t)

â†n−1(t)

]
= U(t)

[
ân1(0)

â†n−1(0)

]
, (3.15)

with U(t) = M−1e−iΛt/~M where Λ = diag(λ+
1 , λ

+
2 , ..., λ

−
1 , λ

−
2 , ...) is a diagonal

matrix with the eigenenergies λ±ν in the diagonal, and M is defined in Eq. (3.4).

As mentioned above, the atoms are initially prepared in the |0〉 Zeeman
sublevel. However, a slightly imperfect preparation may lead to a non-zero
population of Ns atoms in | ± 1〉. These spurious atoms are called from this
point on the classical seed. Since they are produced at a single-particle level
(due to e.g. not fully perfect radio-frequency transitions), the seed atoms in
| ± 1〉 occupy the same wave function as the BEC in |0〉 state, χ0 = ψ0/

√
N ,

i.e. the initial state is given by χ0(
√
Ns,
√
N,
√
Ns)

T . We need to know the
effect of the operators ân±1 on the states

(χ0| ± 1〉)⊗Ns =
1

Ns!

(
â†χ±1

)Ns |vac.〉, (3.16)

where â†χ±1 =
∑

n χnâ
†
n±1, with χn =

∫
d3rφnχ0, creates one particle in single-

particle state χ0| ± 1〉. One finds

ân±1 (χ0| ± 1〉)⊗Ns =
√
Nsχn (χ0| ± 1〉)⊗(Ns−1) . (3.17)

We may then easily express the population Pm(t) =
∑

n〈â†n,mân,m〉 in the
m = ±1 state, using Eqs. (5.21) and Eq. (3.17) as

P±1(t) = Ns~χ ·
(
O†O + Õ†Õ

)
· ~χ+ trace

(
Õ†Õ

)
(3.18)

where the matrices O and Õ are the upper left and upper right part of the
time evolution matrix U(t) and ~χ := (χ1, χ2, ...)

T .
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As for the instability rate, we first consider the simplified case of a box
trap to gain some qualitative undestanding. In a box trap, the time evolution
matrix U(t) decomposes into 2× 2 matrices of the form

U(t) =

[
U

(n)
11 (t) U

(n)
12 (t)

U
(n)
21 (t) U

(n)
22 (t)

]
(3.19)

where the matrices U (n) can be calculated independently. To calculate the
population in | ± 1〉, we evaluate the time evolution of ân1(t) and ân−1(t) and
sum up for all the box levels. For each box level, ân1(t) and ân−1(t) can be
written in terms of the matrices as

ân1(t) = U
(n)
11 ân1(0) + U

(n)
12 â

†
n−1(0) and

ân−1(t) = U
(n)
22

∗
ân−1(0) + U

(n)
12

∗
â†n1(0).

(3.20)

After some calculations the matrices U (n) turn out to be

Un
11 = e Im(λ+

n ) t/~ (sinh θn + i)

2i
= Un

22
∗,

Un
12 = e Im(λ+

n ) t/~ cosh θn
2i

= Un
21
∗

(3.21)

with coth θn = U1n0

εn+U1n0+q
.

Employing these expressions into Eq. (3.20), it then follows that

ân1(t) =
e Im(λ+

n ) t/~

2i

[
(sinh θn + i)ân1(0) + cosh θnâ

†
n−1(0)

]
− e−Im(λ+

n ) t/~

2i

[
(sinh θn + i)ân1(0) + cosh θnâ

†
n−1(0)

]
and

ân−1(t) =
e Im(λ+

n ) t/~

2i

[
(sinh θn + i)ân−1(0) + cosh θnâ

†
n1(0)

]
− e−Im(λ+

n ) t/~

2i

[
(sinh θn + i)ân−1(0) + cosh θnâ

†
n1(0)

]
.

(3.22)

After a sufficiently large evolution time, the pair creation is dominated by the
most unstable mode (λ+

0 ) and hence, the population of the | ± 1〉 components
evolves in the form

P±1(t) = 2Ns

∑
n

χ2
n

[
U1−1n0

2|λ+
n |
]2

e 2Im(λ+
n ) t/~ +

∑
n

[
U1−1n0

2|λ+
n |
]2

e 2Im(λ+
n ) t/~.

(3.23)
The first term in Eq. (3.23), which is proportional to Ns, constitutes the
contribution to the population growth triggered by the classical seed. On
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the contrary the second term exists even if Ns = 0, being induced by purely
quantum triggering. The latter term will be discussed in much further detail
in the next chapter.

One sees that the population of the |±1〉 components grows exponentially

∝ e2 Im(λ+
n ) t/~. Therefore the population growth is resonantly enhanced, at

the levels of the box, i. e. when q = −U1n0 − εn, whereby the maxima of
the instability landscape are located. As expected from our discussion of the
instability rate, one sees that the population P±1(t) = Ns remains stationary
in the stable region q > qcr + |qcr|.

Similarly the instability rate of a harmonically trapped system has a pro-
nounced maxima and minima landscape that leads to a strongly enhanced or
reduced pair-creation efficiency into |± 1〉 components due to the exponential
nature of the growth. Fig. 3.7 shows the population growth in | ± 1〉 for the
parameters of Fig. 3.4. The maxima and minima of the pair-creation efficiency
in Fig. 3.7 are exactly at the predicted positions of maxima and minima of
the instability rare in Fig. 3.4. However, the strength of the resonances and
the absolute population are not totally as expected from the instabilitiy rate,
whereby the strength of the resonance is smaller for small |q| than for larger
|q|. This is because the strength of the resonance is not only determined by
the growth rate but also by the initial condition, which will be discussed in
detail in the next chapter.
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Figure 3.7: Fraction of atoms transferred into either |m = +1〉 or |m = −1〉
components as a function of the quadratic Zeeman energy q. This fraction of atoms is
obtained from the ratio of the number of transferred atoms into |m = ±1〉 component
to the total number of atoms in the condensate |m = 0〉. The positions of the maxima
and minima on the resonance curve are exactly at the positions of the maxima and
minima of the instability rate in Fig. (3.4).
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3.3 Atom losses

In actual experiments with 87Rb F = 2, it is important to take into account the
possibility of hyperfine changing collisions, which lead to a decay into F = 1,
introducing atom losses. We discuss at this point how this loss channel is
taken into account in our calculations.

We focus only on the relevant losses within the linear regime, i.e. losses
stemming from the collisions of atoms in the condensate and collisions of atoms
in | ± 1〉 with the |0〉 condensate. These losses modify the spinor dynamics,
since the instantaneous spin Bogoliubov modes change. As a consequence, the
maxima in the transfer rate shift slightly from those expected without losses.
Moreover, these losses slow down significantly the spinor dynamics. Thus one
has to take into account these losses in our calculations.

We describe the losses in the form [21, 98, 99]

nm(~r, t) = nm(~r, t = 0) exp (−Γt), (3.24)

with Γ = γn̄0(t), where n̄0(t) is the average density, and the rate γ is obtained
from an experimental fit.

To incorporate the effect of these losses, we define µ0 as the chemical po-
tential obtained before starting the dynamics. Thus, the initial wave function
of the condensate at any time t can be written as ψ0(~r, t) = ψ0(~r, t)e−iµ0t/~.
The crucial point is that now the wave function of the condensate ψ0(~r, t) =√
n0(~r, t)e−iϑ(~r,t) is a complex number, due to the losses. Since the losses are

considered small, then ϑ(~r, t) evolves slowly compared to µ0t. Thus, we define
δψ̂m(~r, t) = δψ̂m(~r, t)e−iµ0t/~. Then one obtains as before Heff , but with an
extra term 2U10

(
n0(~r, t)−n0(~r, 0)

)
. This term has a much slower energy than

µ0 and hence leads to a slower evolution and a slight shift in the positions of
the instability maxima and minima.

Employing Eq. (3.24) into Eq. (3.7), we obtain

[
(εn + q)δnn′ +Bnn′ −Ann′

Ann′ −(εn + q)δnn′ +Bnn′

](
u±νn
v±νn

)
= λ±ν

(
u±νn
v±νn

)
. (3.25)

Where Bnn′ =
∫
d3r 2U10[n0(~r, t)− n0(~r, 0)]φn(~r)φn′(~r) and

Ann′ =
∫
d3rU1−1n0(~r, t)e−2iϑ(~r,t)φn(~r)φn′(~r). Note that the terms Bnn′ and

Ann′ are now time dependent, leading to an instanteneous change of the spin
Bogoliubov modes.
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Figure 3.8: Fraction of atoms, with and without losses, transferred into |m = ±1〉
as a function of the quadratic Zeeman energy q. To obtain this fraction, the number
of transferred atoms per state was divided by the total number of atoms in the
condensate |m = 0〉 at 22.5 ms. we consider a loss rate γ = 10−3m3s−1.

Fig. (3.8) shows the population growth of the | ± 1〉 components for the
parameters of Fig. (3.4) with a loss rate γ = 10−3m3s−1. Note that the
strength of the population growth decreases by approximately 40% compared
to case without losses for the same parameters, showing once more that a
small decrease in the instability rate leads to a large exponential decrease in
the strength of the population growth.

3.4 Gross-Pitaevskii equation (GPE)

As mentioned in the introductory chapter, we may study the time evolution of
the spinor BECs by means of coupled GPEs. This mean-field treatment, how-
ever, does not include by definition quantum fluctuations, a crucial drawback
(compared to the exact Heisenberg equations discussed ebove) to explain key
features of the experiments, as shown later on in this Thesis. In this section
we discuss the numerical results coming from the coupled GPEs and compare
them to the quantum results.

The coupled GPEs for a spin-2 BEC (in absence of dipole-dipole interac-
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tions or magnetic field gradients) are:

i~
∂ψm(~r, t)

∂t
=

[
− ~2

2M
∆ + V (~r) + qm2 +N(c0n+mc1fz)

]
ψm(~r, t)

+
Nc1

2

[
f−S

+
m,m−1ψm−1(~r, t) + f+S

−
m,m+1ψm+1(~r, t)

]
+

2Nc2

5
(−1)mS−ψ

∗
−m(~r, t).

(3.26)

As in actual experiments 3, we first prepare the ground state ψg to be in
the |2〉 component using the imaginary-time propagation method. The spin
polarized condensate is then transferred into the |0〉 component as an ini-
tial state. In order to simulate experimental imperfections in this population
transfer, we assume a very small population in all the remaining four com-
ponents, i.e. ψm(~r, t = 0) =

√
(Ns/N)ψg with m = ±2,±1 and Ns is the

initial tiny number of seed particles, which will be discussed in detail in the
next chapter. If all the atoms were initially in the |0〉 component (Ns = 0),
it would then immediately follow from Eq. (3.26) that the other components
ψm would remain zero during the subsequent time evolution. A seed is hence
necessary in the coupled GPE approach. The time evolution of the system is
obtained by numerically solving the coupled GPEs (3.26) in three dimensions
with the Crank-Nicolson method.

We consider the same parameters as in Fig. (3.8) for our numerical cal-
culations, i.e. a spin-2 87Rb BEC of N(t = 0) = 5 × 104 atoms in a trap of
frequencies (wx, wy, wz) = 2π(176, 132, 46) Hz with scattering lengths a0 =
87.685aB, a2 = 91.049aB, a4 = 99.197aB. We take into account the losses of
atoms into Eq. (3.26) as discussed in the previous section. Thus, the number
of particles in the GPE is now time dependent:

N(t) =

∫
d3r
∑
m

nm(~r, t). (3.27)

Upon substituting the loss rate Eq. (3.24) into the above equation, we get

N(t) = N(t = 0)e−Γt. (3.28)

Figure (3.9) shows the time evolution of the |+ 2〉 and |+ 1〉 components for
the given parameters at a particular quadratic Zeeman energy q = 29.92 Hz.
The |+ 1〉 component population grows exponential and reaches around 13%,
whereas the population growth in the | + 2〉 component remains around the
seed population during the 28 ms evolution time, confirming the validity of
neglecting the transfer of atoms into | ± 2〉 during this evolution time, i.e.
the time scale of the linear regime.

3PhD Thesis of Oliver Topič, Univ. of Hannover 2010 [100].
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Figure 3.9: Fraction of atoms transferred into m = +1 (red colored line) and m =
+2 (green colored line) components during 28 ms time of evolution. The inset shows
the time evolution of the m = +2 component. In 28 ms evolution time an exponential
growth in the m = +1 component is visible whereas there is no significant growth in
the m = +2 component in this time scale.
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Figure 3.10: Fraction of atoms transferred into | ± 1〉 components as a function of
the quadratic Zeeman energy q during 22.5 ms evolution time. The high magnetic-
field resonance is absent in the mean-field GPE calculation.

Figure (3.10) shows the population growth in | ± 1〉 depending on the
quadratic Zeeman energy q. This result clearly fails to reproduce the high
magnetic-field resonance resulting from the quantum calculation in Fig. (3.8)
for the same parameters. Note that the main difference is the lack of quantum
fluctuations. This will be discussed in detail in the next chapter.
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3.5 Comparison with experiments

Our results have been directly compared with experiments in a close collabo-
ration with the experimental group leaded by Profs. J. Arlt and W. Ertmer
at the Leibniz University of Hannover. As we have seen in the above discus-
sions, slight differences in the instability rate are exponentially magnified in
the pair-creation efficiency of atoms into | ± 1〉. Hence to compare our results
with the experimental results (see the PhD Thesis of O. Topič thesis [100] for
more details concerning experiments), we have to focus on the exact values
of the atomic density, trap frequencies, scattering lengths a0,2,4 and the initial
condition, which will be studied in the next chapter.

Here we consider experimental parameters: N = 5 × 104 atoms, trap fre-
quencies of 2π× (176, 132, 46) Hz, and scattering lengths a0 = 87.685aB, a2 =
91.049aB, and a4 = 99.197aB. The position of the maxima and minima of the
observed pair creation efficiency in the experiments is in excellent agreement
with the position of the calculated maxima and minima of the instability rate
as in Fig. 3.11. However, as already mentioned, the evaluation of the res-
onance strength is more subtle. The experimentally observed resonance at
low |q| seems to be stronger than the one at high |q|, whereas the calculated
instability rate is slightly smaller for the resonance at low |q|. As mentioned
above, this is so because the absolute population is not only determined by
the growth rate but also by the initial conditions. In fact, as we have seen
in the derivation of the transfer rate, the resonant growth can be initiated by
spuriously produced atoms in | ± 1〉 and by vacuum spin fluctuations. These
triggering mechanisms will be discussed in the next chapter.
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Figure 3.11: (a) Fraction of atoms transferred into |±1〉 within 21 ms as a function
of the quadratic Zeeman energy q. To obtain this fraction, the number of transferred
atoms per state was divided by the sum of transferred | ± 1〉 and condensed |0〉
atoms. Due to strong shot-to-shot fluctuations 15 independent realizations were
averaged at each magnetic field. The error bars indicate statistical uncertainties.
The blue line is a triple Gaussian fit to guide the eye. (b) Instability rate, given by
the imaginary part of the most unstable spin Bogoliubov mode, corresponding to the
pair creation efficiency into | ± 1〉 (solid line). The maximal instability rate for an
effective homogeneous case (dashed line) lacks any resonant features.





Chapter 4

Parametric amplification of
vacuum fluctuations in a spinor

condensate

Parametric amplification of vacuum fluctuations is crucial in modern quantum
optics, enabling the creation of squeezing and entanglement. In this chapter,
we study the parametric amplification of vacuum fluctuations for matter waves
using a spinor condensate. As mentioned in previous chapters, spin-changing
collisions lead to the correlated creation of pairs of atoms in | ± 1〉 from an
initially unstable |0〉 BEC, which acts as a vacuum for |m 6= 0〉 components.
Although this pair creation of atoms from a |0〉 condensate is ideally triggered
by vacuum fluctuations, unavoidable spurious initial atoms in | ± 1〉 induce,
as mentioned in the previous chapter, a classical seed which may become the
dominant triggering mechanism.

In this chapter, we find that the classical seed plays only a relevant role
at sufficiently low magnetic fields, where the amplified spin excitation mode
has a large overlap with the original BEC. However, at larger magnetic fields
the amplified spin excitations show pronounced spatial structures and lack a
substantial overlap. As a result, our results show that the amplification is
dominantly triggered by vacuum fluctuations.

The amplification of vacuum fluctuations is a key requirement for the pro-
duction of non-classical matter waves with squeezed quadratures and strong
quantum correlations. Our results hence open fascinating perspectives for
spinor condensates, which may be employed in the next future as a source of
two-mode squeezed matter waves [94] and entangled Einstein-Podolski-Rosen
pairs [39, 101], and may possibly allow for Bell-type measurements [102, 103]
with neutral atoms.

In this chapter, we first briefly discuss the analogy between spinor BEC
and optical parametric amplifiers. We then comment on the experimental
preparation of the system, and in particular on the unavoidable spurious clas-
sical seed atoms and on the quantum vacuum fluctuations. In the second
part of the chapter, we study the magnetic-field dependence of the triggering
mechanism and compare with experimental results obtained at the Leibniz
University of Hannover.
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spinor condensate

4.1 Spinor condensates as parametric ampli-

fiers

Parametric amplifiers have enabled the observation of non classical phenom-
ena, by bringing the realm of quantum effects into the macroscopic world. In
solid state systems, for example, low-noise Josephson-parametric amplifiers
are used to investigate nonclassical electromagnetic fields [104]. In quantum
optics, optical parametric amplifiers play a crucial role in the investigation
and application of nonclassical states of light [105]

Nonclassical states of light have revolutionized the field of quantum optics
in the past decades. Since the first observation of squeezed light [106], these
non-classical states of light have become a valuable tool in modern optics,
e.g. for the enhancement of modern interferometers [107]. Similarly, the pro-
duction of entangled photon pairs [108] has triggered a still on-going series
of fundamental tests of modern quantum mechanics [103, 109] and has many
possible applications for quantum computing [110]. The tools developed for
the production and manipulation of ultra-cold neutral atoms now bring many
of these seminal investigations within the scope of experiments with matter
waves. In this sense, the production of number-squeezed Bose-Einstein con-
densates [111, 112] and spin squeezed thermal clouds [113] has been demon-
strated using the inherent Kerr nonlinearity in atomic condensates.

Spinor condensates initially prepared in the |0〉 Zeeman sublevel provide
a promising method to generate non-classical matter waves. As mentioned in
previous chapters, a collision of two |0〉 atoms can form a pair of correlated
atoms in |±1〉. Interestingly, this process is equivalent to photon pair creation
in a non-degenerate optical parametric amplifier [90, 94]. In this analogy, the
large condensate in |0〉 resembles a coherent pump, the nonlinear interactions
in the condensate serve as an equivalent of the nonlinear crystal, and the pro-
duced atoms in |±1〉 play the role of the signal and the idler. Pair production
leads to an exponential amplification of the population in | ± 1〉, which re-
sembles the gain of an optical parametric amplifier. As it was mentioned in
Chapter 3, the corresponding pair creation rate is governed by three compet-
ing energy scales: the quadratic Zeeman energy, the inter-atomic interactions
and the external trap. In particular, the external confinement can lead to
strong, magnetic field dependent spin resonances.

Similar to its optical counterpart, the output of the matter-wave amplifier
depends crucially on the input state. This input state could be an ideal input
that would be provided by the vacuum state |vac〉, which is characterized by
the absence of atoms in | ± 1〉 or a coherent classical input, which is charac-
terized by the initial presence of spurious atoms in | ± 1〉. The preparation of
the initial input is hence crucial, and will be discussed next.
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4.2 Experimental Preparation of the initial

state

In the following we describe the experimental preparation of the initial BEC
as performed at the group of J. Arlt and W. Ertmer at the Leibniz University
of Hannover. In the experiment, a polarized BEC is created in |2〉, being
subsequently coherently transferred into |0〉 by means of a radio frequency
(rf) sweep (for more details see Ref. [100]). Afterwards, a strong magnetic-
field gradient is applied in order to expel residual atoms in |m 6= 0〉 from
the trap. However, this purification cannot be completely perfect, and some
imperfections due to radio-frequency noise and/or magnetic field jitter result
into a small amount of spuriously produced atoms, Ns � N , in the | ±
1〉 components. These spurious atoms, the classical seed introduced in the
previous chapter, are produced by single-particle processes, and thus share
the spatial wave-function of the |0〉 condensate.

In the case of an ideal purification, whereby there is no any spurious atoms
in | ± 1〉, the state may be considered (in what concerns |m 6= 0〉) a vacuum
state. This may be visualized as an ideally fixed spin orientation of the conden-
sate. In this case, vacuum fluctuations result from the quantum uncertainty
of the spin orientation. Note that there could also be a tiny spurious thermal
seed atoms in the | ± 1〉 component. However these thermal seed atoms are
in average far away from the condensate and lack significant spatial overlap
with the most unstable excitation mode (see discussion below), and as a result
they do not contribute to the spin dynamics.

4.3 Triggering Mechanism

In this section we study the classical and quantum triggering mechanisms,
discussing their relative importance as a function of the applied quadratic
Zeeman energy q. As we discussed in previous chapters, the amplification dy-
namics is dominated by the most unstable spin Bogoliubov mode ν0 with the
largest imaginary part Im(λν0) = hΛ(q). As already shown, this instability
rate Λ(q) shows a non-monotonous multi-resonant magnetic-field dependence
due to the interplay between quadratic Zeeman energy, interactions and ex-
ternal confinement.

In the previous chapter we have shown as well how to calculate the relevant
quantum evolution of the operators ân,±1(t) and â†n,±1(t). The total popula-

tion in the | ± 1〉 components is then given by P±1(t) =
∑

n〈â†n,±1(t)ân,±1(t)〉,
where the average is performed over the initial state |Ψ±1(0)〉 = |Ψ〉. In the
presence of the unstable spin excitation modes, the initial state |Ψ〉 triggers
the subsequent amplification. Using the notation of the previous chapter,
this initial state |Ψ〉 may include a classical seed, and can be represented as
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|Ψ〉 = 1
Ns!

(
â†χ±1

)Ns |vac〉, where âχ±1 (â†χ±1), defined in subsection 3.2, creats

(annihilates) a m = ±1 particle in the mode of the initial BEC. Note that
if there are no spurious classical seed atoms, Ns = 0, in the | ± 1〉 compo-
nents, then pair-creation in | ± 1〉 is ideally triggered by vacuum fluctuations.
Otherwise, the classical seed in | ± 1〉 components may become the dominant
triggering mechanism.

One may re-write the population P±1(t) from Eq. (3.18) as P±1 = PC(t) +
PQ, where

PC(t) = Ns~χ ·
(
O†O + Õ†Õ

)
· ~χ, (4.1)

PQ(t) = Trace
(
Õ†Õ

)
, (4.2)

denote, respectively, the classically and the quantum-triggered contributions.
In the previous expressions, ~χ characterizes the overlap between the unstable
mode and the condensate, and the matrices O and Õ are the upper left and
upper right part of the time evolution matrix U(t) defined in Sec. 3.2.

We have employed Eqs. (4.1) and (4.2) to determine the population in the
| ± 1〉 components at any time t. As we have discussed in subsection 3.3,
although the inherent hyperfine-changing losses are small (< 20% of the total
number) during the typical evolution time of 22.5 ms, they significantly alter
the spin dynamics, and have been incorparated in our numerical analysis as
discussed in the previous chapter, with an experimentally determined loss rate
of Γ ' 10−2 ms−1.

We have performed numerical simulations for the time evolution of the
population in | ± 1〉 using the parameters of the experiments performed at
the Leibniz University of Hannover. We have considered a spin-2 87Rb BEC
initially containing N = 5× 104 atoms in an optical dipole trap with frequen-
cies (ωx, ωy, ωz) = 2π× (176, 132, 46) Hz. We have assumed scattering lengths
a0 = 87.685aB, a2 = 91.049aB, and a4 = 99.197aB. Figures (4.1) show the
numerical results for the population in | ± 1〉.

Figure (4.1a) shows the magnetic-field dependence of the classically (PC(t))
and quantum (PQ(t)) triggered fraction of transferred atoms into | ± 1〉 after
an evolution time of 22.5 ms. The fraction of the transferred atoms due to
the quantum triggered part is larger than the classically triggered part (with
Ns = 1). Moreover, the second pronounced peak is absent in the classically
triggered part. Hence the classical seed Ns only influences the spin dynamics
significantly at the low magnetic-fields. We shall clarify in further subsections
the reasons of this behavior.
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Figure 4.1: Fraction of atoms in the | ± 1〉 components as a function of the
quadratic Zeeman energy q for different experimental parameters: N = 5 × 104

initial number of particles, trap frequencies 2π × (176, 132, 46) Hz and scattering
lengths a0 = 87.685aB , a2 = 91.049aB , and a4 = 99.197aB . In Fig. (4.1a) the blue
color corresponds to the quantum triggering part only, and the green and red colors
correspond to the classically triggered part with classical seed atoms of Ns = 2 and
Ns = 1 respectively. Fig. (4.1b) shows the total fraction of atoms as a function of
the quadratic Zeeman energy q for different classical seed atoms. The classical seed
atoms strongly influence the dynamics at the low magnetic-fields.
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Figure (4.1b) shows the total fraction of transferred atoms, PC(t) +PQ(t),
in | ± 1〉 after the same evolution time of 22.5 ms, which as mentioned in
previous chapters shows a striking multi-resonant magnetic-field dependence,
which maps the instability rate Λ(q). The most pronounced resonances are at
q = −29.92 Hz and q = −130.24 Hz, which we refer to as the low magnetic-
field and high magnetic-field resonances respectively. The absolute value of
the fraction of transferred atoms strongly depends on the initial condition.
When we change Ns, the absolute value of the fraction of transferred atoms
changes significantly at the low magnetic-field resonance. As an example, for
Ns = 1, (red curve in Fig. 4.1b), the population at the higher magnetic-field
resonance is larger than the lower magnetic-field one. However, for Ns = 2
(dark-grey curve in Fig. 4.1b), the low magnetic-field resonance is larger than
the high magnetic-field one. Hence, the relative importance of both resonances
strongly depends on the classical seed.

4.3.1 Relative importance of both triggering mecha-
nisms

The relative importance of both triggering mechanisms is obtained from the
ratio of the classical and quantum triggered parts. To gain a qualitative
understanding of this, we consider the case of a box model. Thus, from
subsection 3.2, the classical and quantum triggered parts in a box potential
trap are given by

PC(t) = 2Ns

∑
n

χ2
n

[
U1−1n0

2|λ+
n |
]2

e 2Im(λ+
n ) t/~ and

PQ(t) =
∑
n

[
U1−1n0

2|λ+
n |
]2

e 2Im(λ+
n ) t/~,

(4.3)

It is particularly useful to introduce the ratio η = PC/PQ between both trig-
gering mechanisms for Ns = 1:

η(t) =
2
∑

n χ
2
n

[
U1−1n0

2|λ+
n |

]2

e 2Im(λ+
n ) t/~∑

n

[
U1−1n0

2|λ+
n |

]2

e 2Im(λ+
n ) t/~

. (4.4)

When η(t) ≥ 1 the classically triggered part dominates. On the contrary, if
η(t) < 1 then the quantum triggered part is dominant, and one expects that
as a result the classical seed does not significantly influence the amplification
process.

For large evolution times, only the most unstable mode with the largest
imaginary part Im(λnmax) = hΛ(q) contributes to the spin dynamics. Hence
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we may characterize the growth by making a single-mode approximation, just
paying attention to the contribution of this most unstable mode. Accordingly,
the expressions for the classically and quantum-triggered parts take the form

PC(t) = 2χ2
nmaxe

2Λ(q) t,

PQ(t) = e 2Λ(q) t,
(4.5)

and hence η = 2χ2
nmax , where χnmax characterizes the overlap between the most

unstable mode and the condensate. To study the magnetic-field dependence
of the ratio η, we have hence to study the magnetic-field dependence of χnmax .

The magnetic-field dependence of the overlapping can be understood from
our discussion of the preceeding chapters. We recall that two different unstable
regimes occur:

• qcr < q < qcr + |qcr|, in this regime the most unstable mode, which is the
ground state of the box trap, has the same symmetry as the condensate,
and as a result the overlapping of this most unstable mode with the
condensate χnmax is maximum. This leads to η ≥ 1, and hence the
classically triggered part dominates.

• q < qcr, in this regime the most unstable mode has a momentum√
2(qcr − q), which leads to a smaller overlapping χnmax with the origi-

nal BEC and hence eventually η < 1. In this case the quantum triggered
part is dominant and as a result the classical seed does not significantly
influence the amplification process.

Therefore, as we quench q towards higher values, i.e. as we excite pro-
gressively higher modes of the effective box-trap, the overlapping of the most
unstable mode χnmax with the original condensate becomes smaller, and con-
sequently the influence of the classical seed becommes negligible in the higher
magnetic fields.

We have analyzed numerically the relative importance of both triggering
mechanisms for realistic experimental situations. In our numerical calcula-
tions we have considered a spin-2 87Rb BEC containing N = 5 × 104 initial
number of particles in an optical dipole trap with frequencies (ωx, ωy, ωz) =
2π × (176, 132, 46) Hz and considered scattering lengths a0 = 87.685aB, a2 =
91.049aB, and a4 = 99.197aB. Fig. (4.2) shows η for an evolution time
of 15 ms and for the limit of large evolution times. For large evolution
times, as in the case of the box-trap model, we may approximate the evo-
lution of PC,Q(t) ' P̄C,Q exp(2Λ(q)t) and evaluate the time-independent ratio
η = P̄C/P̄Q between the classical and quantum triggering mechanisms. For
sufficiently small quadratic Zeeman |q|, including the low magnetic-field reso-
nance shown in Fig. (4.4), any classical seed is highly relevant (η ∼ 1) due to
the large overlap between the wave function of the most unstable mode and
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the original BEC. However, for larger quadratic Zeeman |q|, including the
high magnetic-field resonance, the overlap is negligible and the population is
dominantly triggered by quantum vacuum fluctuations.

This general analysis may also be applied to other experiments on spinor
BEC. In particular, Fig. (4.3) shows the relative importance of both trig-
gering mechanisms for recent amplification experiments with spin-1 87Rb at
Berkeley [93].
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Figure 4.2: Ratio PC/PQ (see text) for the given parameters at an evolution time
of 15 ms (blue) and for the limit of large evolution times (black). The quantum
triggered dynamics is characterized by PC/PQ � 1. The hollow circles represent the
experimental results (see Sec. 4.4.2).
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Figure 4.3: Ratio PC/PQ for the experimental parameters of Ref. [93],
(ωx, ωy, ωz) = 2π × (440, 39, 4.2) Hz and N = 2 × 106 atoms, for the limit of large
evolution times. The quantum triggered dynamics is characterized by PC/PQ � 1.
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4.4 Comparison with Experiments

To compare the theoretical results with the experimental data for F = 2 87Rb,
as mentioned in Sec. 3.3, it is crucial to take into account the loss of atoms due
to hyperfine changing collisions. Otherwise, the fraction of transferred atoms
is far too large for the given experimental data as shown in Fig. (3.8). Other
crucial experimental parameters that must be carefully considered concern
the classical seed atoms and the exact values of the scattering lengths. In the
following, we consider a F = 2 87Rb BEC contaning of N = 5× 104 atoms in
an optical dipole trap with trapping frequencies of 2π × (176, 132, 46) Hz.

4.4.1 Multi-peaked pair creation efficiency

We have calculated the magnetic-field dependence of the multi-peaked pair
creation efficiency for the given experimental parameters. In this calculation,
we considered the inherent hyperfine-changing losses with an experimentally
determined loss rate of Γ ' 10−2 ms−1.

Figure 4.4 (a) shows the numerical results for the population tranferred
into | ± 1〉. As already shown in the preceeding chapter, the multi-resonant
dependence of the instability rate Λ(q) discussed in Chapter 3 directly maps
into a multi-peaked pair creation efficiency, which is in a very good agreement
with the experimental results.

As discussed in the above subsection 4.3, the classical seed atoms only
influence the spin dynamics significantly at the low magnetic-field resonance,
and hence the relative transferred fraction of atoms in the two resonances
crucially depends on the number of classical seed atoms Ns.

Accordingly, the relative transferred fraction of atoms from the experimen-
tal result is obtained from a fit to the relative fraction of atoms on the two
theoretical resonances, which corresponds to an estimated average number of
classical seed atoms of Ns = 1.6 and Ns = 2.4, respectively. Furthermore, as
it was mentioned in Sec. 3.2, the amplification dynamics depends on the total
number of atoms and especially on the precise values of the scattering lengths
aF . We have employed a0 = 87.685aB, a2 = 91.049aB, and a4 = 99.197aB,
which are within their rather strict uncertainities 1, and lead to an excellent
fit with the experimental results.

1Coupled channel analysis performed by Prof. E. Tiemann predict a0 = 87.9(2)aB ,
a2 = 91.2(2)aB , a4 = 99.0(2)aB
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Figure 4.4: (a) Fraction of atoms transferred into |±1〉 within 21 ms as a function of
the applied magnetic field [100]. The error bars indicate statistical uncertainties and
the detection uncertainty. The shaded blue area indicates the result of our theoretical
prediction for a seed atom number of Ns = 2 ± 0.4, assuming an initial BEC in |0〉
with N = 50000 (see text). The grey area indicates the detection limit for a single
atom number measurement. (b) Comparison of the calculation, including both the
classical seed Ns = 2 and vacuum spin fluctuations (blue line) with the GP result
(black line).

Figure 4.4 (b) shows the numerical results for the given experimental pa-
rameters for both the exact calculation and the GPE calculation. These results
show that the spin dynamics differs significantly from the result of the simple
mean-field GPE approach introduce in Sec. 3.4. The striking difference be-
tween GP and exact results are a further indication of the fact that the two
resonances display a very different sensitivity to a classical seed and quantum
vacuum fluctuations.

4.4.2 Classical seed Ns sensitivity of the pair-creation
efficiency

Experiments at the Leibniz University of Hannover have investigated the sen-
sitivity of the spin dynamics to classical seed atoms at the available unstable
spin excitation resonances. The sensitivity of the system to a classical seed is
investigated by deliberately producing a very small symetric seed population
in | ± 1〉 prior to the spin evolution. This is accomplished by using a ra-
dio frequency pulse, which transfers a variable number of atoms from the |0〉
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BEC into | ± 1〉. By ramping down the intensity of the radio-frequency pulse
it was possible to general controllably extremelly small number of atoms in
| ± 1〉. Note that there are also some spurious seed atoms in the experiment.
Since both the spuriously and deliberately produced seeds result from similar
single-atom processes, they have exactly the same spatial dependence as the
original BEC. Therefore, the sensitivity to the deliberately produced seed is
representative of the sensitivity to any classical seed in the experiment.
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Figure 4.5: Fraction of atoms transferred into | ± 1〉 as a function of the number
of deliberately prepared seed atoms (in the BEC mode). (a) The fraction recorded
at 0.65 G, corresponding to the low field resonance, shows a strong dependence on
the classical seed after an evolution time of 15 ms. (b) The fraction recorded after
t = 23 ms on the high field resonance at 1.29 G is basically independent of the number
of seed atoms and we conclude that it is triggered by vacuum spin fluctuations. The
error bars indicate statistical uncertainties. The solid lines represent the result of
the theoretical model with a seed atom number Ns = 4.5.

Figure 4.5 (a) shows for the low magnetic-field resonance (Fig. 4.4) the
transferred fraction of atoms in | ± 1〉 after the spin dynamics, as a function
of the number of deliberately created seed atoms. Starting at a small offset
value, this transferred fraction of atoms grows linearly with increasing number
of seed atoms (an amplification of 23 dB). Hence the low field resonance is
strikingly sensitive to a classical seed, down to an extremely small number of
seed atoms. The offset is both due to the amplification of vacuum fluctuations
and a small number of accidentally produced seed atoms. A comparison of
our theoretical model yields a seed atom number of Ns = 4.5 ± 0.3, which
is slightly higher than the value presented in Fig. 4.4 due to the additional
preparation time after purification. An independent linear fit to the data
yields the slope and the offset at zero seed atoms (at position −Ns in the
graph). The ratio of slope to offset yields the ratio of classical to quantum
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triggering. The resulting data points are shown in Fig. 4.5 and confirm our
theoretical model.

However this sensitivity to a classical seed is not general. Figure 4.5 (b)
shows the fraction of transferred atoms for the high-field resonance. For this
resonance the fraction of | ± 1〉 atoms is largely independent of the number
of deliberately produced seed atoms, which indicates that a spurious classical
seed is irrelevant for sufficiently large |q|. Note in particular the remarkable
difference between the results for PC/PQ at both resonances in Fig. 4.2. This
experimentally confirms that quantum triggering dominates the amplification
dynamics at the high field resonance and pair creation conclusively acts as a
parametric amplification of vacuum fluctuations.



Chapter 5

Parametric amplification of
matter waves in dipolar spinor

BECs

Interestingly, spin-changing collisions are typically characterized by a very low
energy scale much lower than the chemical potential in the condensate. As a
result of that, the spinor dynamics in alkaline gases may be extraordinarily
sensitive to the magnetic dipole-dipole interactions (DDI). Moreover, the DDI
is expected to yield rich phenomena when combined with spin degrees of
freedom, such as the Einstein-de Hass effect [88, 114] and ground-state spin
textures and mass currents [115, 116].

Up to very recently, only short-range interactions have played a role in
typical experiments in ultra-cold gases. Recent experiments have started to
unveil the rich physics resulting from the dipole-dipole interactions [117, 118].
This is particularly the case of Chromium, which presents a relatively large
magnetic dipole moment, µ = 6µB. Remarkable effects of the magnetic DDI
have been reported in recent experiments on Chromium BEC [119–124]. Al-
kaline atoms, on the contrary, present a much lower magnetic dipole moment,
µ = µB/2, and hence they are not usually expected to show any trace of the
DDI unless short-range interactions are switched-off by means of Feshbach
resonances [125, 126]. However, as mentioned above, the spin-changing colli-
sions in alkaline spinor BECs (in particular spin-f = 1 87Rb) are remarkably
low-energetic. As a result, spinor dynamics is very sensitive to magnetic DDI,
in spite of the very low magnetic dipole moment. Recent experiments [127]
have shown that the DDI may induce magnetization patterns in spin-f = 1
87Rb BECs.

In this chapter we show that the amplification dynamics discussed in pre-
vious chapters may be extremelly sensitive to the magnetic DDI. As a result
of that, the amplification of EPR-like pairs is largely modified by the relative
orientation between the applied magnetic field and the trap axis. We analyze
in detail this dependence, as well as the effects of magnetic-field gradients.
We show that these gradients modify also largely the amplification process
and must be carefully controlled, since uncontrolled gradients may obscure
the expected DDI effects.

The structure of the chapter is as follows. In Sec 5.1 we develop the lin-
ear regime Hamiltonian of the system considered (dipolar spinor BEC). An
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intuitive qualitative picture of the effects of the DDI in the instability rate
is discussed in Sec. 5.2. The discussion of these effects in a trapped system
will be presented in Sec. 5.3. In Sec. 5.4 we introduce the main formalism
to analyze the amplification dynamics in the presence of DDI, whereas the
corresponding numerical results are presented in Sec. 5.4.1. The effects of the
magnetic-field gradient are analyzed in Sec. 5.5. Finally we discuss experi-
mental requirements in Sec. 5.6.

5.1 Linear regime Hamiltonian of dipolar spinor

BECs

In the following we are interested in the first stages (linear regime) of the
spinor dynamics of a spin-1 BEC initially prepared in the |m = 0〉 compo-
nent, after quenching the quadratic Zeeman effect q into the unstable regime.
As we have seen in Chapter 3, this dynamics, induced by spin-changing colli-
sions, is characterized by the correlated pair creation of atoms into |m = ±1〉
components. In this Chapter we use a similar approach as in Chapter 2 to de-
velop the contribution of the DDI to the effective Hamiltonian that describes
the linear regime of onset of dynamics. In so doing, for the sake of simplic-
ity, we do not consider magnetic-field gradients, which will be introduced in
Sec. 5.5.

As it was mentioned in chapter 2, the first stage of the spinor dynamics
may be described by means of a Bogoliubov approximation:

[ψ̂1(~r, t), ψ̂0(~r, t), ψ̂−1(~r, t)]T =
[(
ψ0(~r) + (δψ̂1(~r, t), δψ̂0(~r, t), δψ̂−1(~r, t)

)T]
e−iµt

(5.1)
with (ψ0(~r))T = (0, ψ0(~r), 0)T . Where we consider small fluctuations of the
spinor field operator {δψ̂m(~r, t)}, such that |ψ0(~r)|2 �∑

m〈δψ̂†m(~r, t)δψ̂m(~r, t)〉.
In the following we consider that the condensate is trapped in a har-

monic potential of the form V (~r) = M
2

(
ω2
⊥ (x2 + y′2) + ω2

‖z
′2
)

, where M is

the atomic mass, ω‖ � ω⊥ are the trap frequencies (cigar-shape trap), and
y′ = cosϑ y + sinϑ z, z′ = − sinϑ y + cosϑ z, with ϑ the angle between the
trap axis and the magnetic field orientation. This angle will play a crucial role
in our discussion of the effects of the DDI. Note that in the Thomas-Fermi
regime µ = V (~r)+U00n0(~r). In that regime, the effective potential (see Chap-
ter 2) is Veff (~r) = U1−1n0(~r) within the BEC region, and Veff = V (~r) − µ
outside.

The Hamiltonian of the DDI in the linear regime is obtained by inserting
Eq. (5.1) into the Hamiltonian (1.38) and keeping terms up to second order
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in δψ̂m(~r). This gives

Ĥ1,dd =

∫
d3r d3r′δψ̂†1(~r, t)δψ̂†−1(~r ′, t)W 0,0

1,−1(~r − ~r ′)ψ0(~r)ψ0(~r ′)

+

∫
d3r d3r′ψ0(~r)δψ̂†−1(~r, t ′)W 0,−1

0,−1 (~r − ~r ′)δψ̂−1(~r, t)ψ0(~r ′)

+

∫
d3r d3r′ψ0(~r)δψ̂†1(~r ′, t)W 0,1

0,1 (~r − ~r ′)δψ̂1(~r, t)ψ0(~r ′)

+

∫
d3r d3r′

{(
ψ0(~r) + δψ̂†0(~r ′, t)

)(
ψ0(~r) + δψ̂†0(~r ′, t)

)
W 0,0

0,0 (~r − ~r ′)
(
ψ0(~r) + δψ̂0(~r, t)

)(
ψ0(~r ′) + δψ̂0(~r ′, t)

)}
(5.2)

with

W 0,0
1,−1(~r − ~r ′) ≡ cdd

|~r − ~r ′|3
[
~f01 · ~f0−1 − 3

(
~f01 · ~ur

)(
~f0−1 · ~ur

)]
, (5.3)

and

W 0,m
m,0 (~r − ~r ′) ≡ cdd

|~r − ~r ′|3
[
~fm0 · ~f0m − 3

(
~fm0 · ~ur

)(
~f0m · ~ur

)]
. (5.4)

Inserting the values of ~̂fm3m2 · ~̂fm4m1 and ~̂fm3m2 · ~ur (detail calculations are
included in Appendix B) into Eqs. (5.3) and (5.4), we obtain

W 0,m
m,0 (~r − ~r ′) ≡ W 0,0

1,−1(~r − ~r ′) ≡ cdd
|~r − ~r ′|3

[
3(z − z′)2

|~r − ~r ′|2 − 1

]
, (5.5)

with m = ±1 and W 0,0
0,0 (~r − ~r ′) = 0.

Therefore, there is no DDI contribution in the GP Eq. (2.1), since ~f00 = 0.
There is however an important contribution to the effective Hamiltonian that
describes the pair creation of atoms into |±1〉 components. This contribution
is then obtained by employing Eq. (5.5) into Eq. (5.2), and after some calcu-
lations, the contribution to the effective Hamiltonian from the DDI Ĥ1,dd has
the form

Ĥ1,dd =

∫
d3r d3r′ψ0(~r)ψ0(~r ′)Vdd(~r − ~r ′)

×
[
δψ̂†1(~r, t)δψ̂1(~r ′, t) + δψ̂†−1(~r, t)δψ̂−1(~r ′, t)

+ δψ̂†1(~r, t)δψ̂†−1(~r ′, t) + δψ̂1(~r, t)δψ̂−1(~r ′, t)

]
(5.6)

with Vdd(~r − ~r ′) = cdd
2|~r−~r ′|5 (3(z − z′)2 − |~r − ~r ′|2).
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In deriving the above effective Hamiltonian of Eq. (5.6), we have neglected
terms related to scattering processes which do not preserve the total spin
projection since, as mentioned in Sec. 1.2.3, the associated change in linear
Zeeman energy (LZE) suppresses spin-violating processes even for very low
magnetic fields. Note that the third line of Ĥ1,dd originates from the spin-
changing collisions, which converts atoms in the |m = 0〉 component into
pair of atoms in the | ± 1〉 components and vice-versa. This term is similar
to the parametric amplification term discussed in Chapter 2. Thus, the DDI
regularises the amplification process, i.e. depending on its sign either it will en-
hance or reduce the amplification process. To gain qualitative understanding
of this effect, we will discuss the homogenous system in the following section.

5.2 Qualitative picture of the effect of the dipole-

dipole interactions on the instability rate

The effects of the DDI on the amplification dynamics may be qualitatively
understood from a simplified homogeneous model. We will first briefly recall
the discussion of the homogenous case without DDI and then extend the dis-
cussion to the case when there is DDI. We introduce the Fourier Transform
δψ̂m(~r) =

∫
d3k/(2π)3ei

~k·~rη̂m(~k), which allows to write the non-dipolar Hamil-

tonian of Chapter 2 (Eq. (2.6)) in the simplified form: Hhom
1 =

∫
ĥkd

3k/(2π)3,
where

ĥk =
∑
mF

(Ek + q − qcr) η†mF (~k)ηmF (~k)

− qcr

(
η̂†1(~k)η̂†−1(−~k) + η̂1(~k)η̂−1(−~k)

)
, (5.7)

with Ek = ~2k2/2M and qcr = −U1−1n0. Note that for spin-F = 1 87Rb
U1 < 0, and hence qcr > 0 (we consider in the following this case, although for
the spin-F = 2 case the sign is the opposite as disccused in previous chapters).
This Hamiltonian possesses eigen-energies

λ±~k (q) =
√

(Ek + q − qcr)2 − q2
cr. (5.8)

In the following we apply a similar formalism to the DDI term Ĥ1,dd. We

introduce the Fourier transformation of Vdd(~r) to obtain Ṽdd(~k) = Udd(1 −
3 cos2 θ), where Udd = 2πcdd/3 and θ is the angle between ~k and the dipole
orientation (z axis). Using convolution theorem, and since we assume the
density of the |0〉 BEC, n0, as constant, we may then re-write Ĥ1,dd in the
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form:

Ĥhom
1,dd =

∫
d3k

(2π)3
n0Ṽdd(θ)

{ ∑
mF=±1

η̂m(~k)†η̂m(~k)

+ η̂1(~k)†η̂−1(−~k)† + η̂1(~k)η̂−1(−~k)
}
. (5.9)

Hence, the total effective Hamiltonian that describes the pair creation of
atoms into |m = ±1〉 components becomes Ĥhom

1,T ot =
∫
ĥTotk d3k/(2π)3, where

ĥTotk =
∑
mF

(
Ek + q − qcr + n0Ṽdd(θ)

)
η†mF (~k)ηmF (~k)

− (qcr − n0Ṽdd(θ))
(
η̂†1(~k)η̂†−1(−~k) + η̂1(~k)η̂−1(−~k)

)
. (5.10)

This total effective Hamiltonian, may be easily diagonalized for each momen-
tum ~k, having eigen-energies of the form

λ±~k (q) =

√
(Ek + q − qeffcr (θ))2 − qeffcr (θ)

2
, (5.11)

with an effective qeffcr (θ) = qcr − n0Ṽdd(θ).
Note that, due to the anisotropy of the DDI, qeffcr depends on the angle θ.

The effects of the trap geometry may be qualitative understood from this θ
dependence. For axisymmetric trap the dominant momenta are those along
the tightest direction. Therefore, when the axisymmetric trap is along the
dipole orientation, then the dominant momenta in the instability (those with

the lowest ~k) are those with θ = π/2, and hence qeffcr ' qcr − n0Udd. On the
contrary, if the axisymmetric trap is perpendicular to the dipole orientation,
then the dominant momenta are those with θ = 0. Thus, qeffcr ' qcr + 2n0Udd.

Recall from Ch. 2 that the instability rate rises between qeffcr < q < 2qeffcr

acquiring its maximal value Λ ' qeffcr at q = qeffcr , remaining constant for the
homogeneous case for q < qeffcr . We, hence expect an enhancement of the
instability for a magnetic field orientation perpendicular to the trap axis, and
a reduced instability for a parallel orientation. Moreover, the position of the
maxima shifts to the right, when the magnetic-field is perpendicular to the
axisymetric of the trap, and to the left, when they are parallel, compared to
the situation when there is no DDI.

Although the DDI in alkaline atoms is typically very weak, the spin-
changing collisions are very weak as well. In particular, in spin-f = 1 87Rb
the strength of the DDI is quite significant compared to the strength of the
spin-changing collisions, |Udd/U1−1| ≈ 0.2 1. As a result, the DDI modification

1On the contrary,in spin-f = 2 87Rb the strength of the DDI is quite smaller compared
to the strength of the spin-changing collisions, |Udd/U1−1| ≈ 0.076.
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of the instability rate is expected to lead to a marked orientation dependence
of the amplification dynamics. In the following sections we show that this is
indeed the case when considering realistic trapped cases.

.

5.3 Instability rate of a trapped dipolar spinor

condensates

Although the homogeneous model discussed before allows for a simplified in-
tuitive understanding of the major effects of the DDI in the amplification
process, a quantitative analysis of realistic experimental situations may be
just achieved by properly considering the inhomogeneous trapping, and the
corresponding inhomogeneous density n0(~r) of the BEC in the |0〉 component.

As in Ch. 3 the analysis of the dipolar spinor dynamics is significantly sim-
plified by considering the eigenfunctions and eigenergies of Ĥeff , Ĥeffφn(~r) =
εnφn(~r), and expanding the field operators in the basis of these eigenstates
δψ̂m(~r, t) =

∑
n φn(~r)ân,m(t). We may then re-write:

Ĥ1 + Ĥ1,dd =∑
n

((εn + q)δn,n′ +Bn,n′)
∑

mF=±1

â†nmân′m

+
∑
nn′

(Ann′ +Bn,n′)
(
â†n1â

†
n′−1 + ân1ân′−1

)
, (5.12)

where Ann′ = U1−1

∫
d3r n0(~r)φn(~r)φn′(~r) characterizes the effects of the short-

range spin-changing collisions, whereas the effects of the DDI are given by

Bnn′=

∫
d3r

∫
d3r ′Fn(~r)Vdd(~r − ~r ′)Fn′(~r ′), (5.13)

where Fn(~r) = ψ0(~r)φn(~r). The matrix elements Bn,n′ are most efficiently

calculated in ~k-space according to

Bnn′ =

∫
d3k

(2π)3
F̃n(~k)Ṽdd(~k)F̃n′(~k) (5.14)

where F̃ (~k) is the Fourier transform of F (~r).
Eq. (5.12) is solved by the multimode Bogoliubov ansatz

α̂±ν =
∑
n

(
u±νnân1 + v±νnâ

†
n−1

)
, (5.15)

where α̂±ν satisfy [
α̂±ν , Ĥ1 + Ĥ1,dd

]
= λ±ν α̂

±
ν , (5.16)
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which leads to the eigenvalue equation:

C ·
(
~u±ν
~u±ν

)
= λ±ν

(
~u±ν
~u±ν

)
, (5.17)

where ~u± Tν ≡ {u±ν1, u
±
ν2, . . . } (and similarly for ~v±ν ) and

C =

[
(εn + q)1 + B −A + B

A + B −(εn + q)1−B

]
, (5.18)

with 1 the identity matrix, and A (B) the matrix with components An,n′
(Bn,n′).

After diagonalizing Eq. (5.18) numerically, we obtain the spin Bogoliubov
modes λν(q). In our numerical calculations we have considered realistic exper-
imental conditions, with N = 105 spin-f = 1 87Rb atoms in a cigar-shapped
harmonic potential with ω⊥ = 2π × 200 Hz, and ω‖ = 2π × 40 Hz.
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Figure 5.1: Instability rate Λ(q) as a function of q for N = 105, ω⊥ = 2π × 200 Hz
and ω‖ = 2π × 40 Hz, for the case when there is no DDI (black, dashed), when
axisymmetric trap is aligned along the orientation of the magnetic field (red, dot-
dashed) and when the magnetic field is oriented perpendicular to the trap axis (blue,
solid).

Fig. 5.1 shows the dependence of the maximal instability rate Λ(q) =
Max|Im(λν(q))|/h as a function of the quadratic Zeeman effect q for the case
when the axisymmetric axis is parallel or perpendicular to the magnetic field
and when there is no DDI. Note that for all cases, the instability rate ex-
periences a pronounced maximum contrary to the homogeneous case. This
maximum, as already discussed in previous chapters, is induced by the in-
homogeneous harmonic trapping and leads to marked resonances in the q-
dependence of the amplification dynamics. However, this instability rate Λ(q)
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clearly depends on the trap orientation confirming indeed the intuitive qual-
itative picture discussed in Sec. 5.2. When trap axis and magnetic-field are
aligned the instability rate, Λ(q), decreases compared to the non-dipolar case,
whereas the opposite is true when the magnetic field is oriented perpendicular
to the trap axis. Note as well that, also as expected from the qualitative pic-
ture of Sec. 5.2, the instability region is shifted towards lower q values in the
parallel configuration, and towards larger q values in the perpendicular one.

5.4 Amplification dynamics in trapped dipo-

lar spinor condensates

As we have seen in the above discussions, depending on the relative orienta-
tion between the trap axis and the dipole-dipole interaction the instability rate
increases or decreases compared to the non-dipolar spinor system. This mod-
ified instability rate translates into a significantly distorted transfer of atoms
into | ± 1〉 components, due to the exponential nature of the parametric am-
plification. In this subsection, we obtain the expression of the transferred rate
following the same procedure as in Sec. 3.2.

The time evolution of the quasi-particles operator α̂±ν (t) is obtained from
the Heisenberg equations of motion

i~
d

dt
α̂±ν (t) =

[
α̂±ν (t), Ĥ1 + Ĥ1,dd

]
. (5.19)

Using Eq. (5.16), we obtain

α̂±ν (t) = α̂±ν (0)e−iλ
±
ν t/~. (5.20)

As in previous chapters, if for some eigen-energy Im(λ±ν ) > 0, then there is an
exponential growth of correlated pairs of atoms in the |±1〉 components. This
exponential growth efficiency is once more best characterized by the instability
rate Λ = max{Im(λ±ν )}. Thus, the decrease or increase of the instability rate
due to the orientation between the axisymmetric trap and the magnetic-field
leads to an exponential decrease or increase of the growth of pairs of atoms
in the | ± 1〉 components, respectively.

The time evolution of ân,±1 is then easily obtained[ {ân1(t)}
{â†n−1(t)}

]
= U(t)

[ {ân1(0)}
{â†n−1(0)}

]
, (5.21)

with U = M−1e−iDt/~M, where M is the matrix of eigenvectors obtained after
solving Eq. (5.17) and D the corresponding diagonal matrix of eigenvalues.

As discussed in the previous chapter, we consider a BEC initially prepared
in the |0〉 component with possibly an initial spurious classical seed atoms of
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Ns � N in the | ± 1〉 components. Hence, following the same procedure as
in Sec. 3.2, the population P±(t) =

∑
n〈â†n,±1(t)ân,±1(t)〉 is expressed in the

form as P±(t) = PC(t) + PQ(t), where

PC(t) = Ns~χ ·
(
O†O + Õ†Õ

)
· ~χ, (5.22)

denotes the population triggered by the classical seed, and

PQ(t) = Tr
(
Õ†Õ

)
, (5.23)

denotes the population induced by quantum fluctuations (i.e. when Ns = 0).

In the previous expressions, the matrices O and Õ are the upper left and
upper right part of the time evolution matrix U(t) and ~χ = (χ1, χ2, ...)

T with
χn =

∫
d3rψ0(~r)φn(~r) as defined before.

5.4.1 Dipole-induced orientation-dependence of the am-
plification dynamics

In this subsection we employ the formalism developed in Sec. 5.4 to study
the effects of the DDI in the amplification dynamics. We shall show that
due to the DDI the amplification may be markedly dependent on the relative
orientation, which is given by the angle θ, between the trap axis and the
external magnetic field.

In our numerical calculations we have considered realistic experimental
conditions, with N = 105 spin-f = 1 87Rb atoms in a cigar-shapped harmonic
potential with ω⊥ = 2π× 200 Hz, and ω‖ = 2π× 40 Hz. As mentioned above,
we consider the atoms as initially prepared in the |0〉 component with possibly
an initial spurious classical seed Ns = 2 in | ± 1〉 components. At t = 0 the
quadratic Zeeman effect q is set to a given value within the instability regime.
We monitor the subsequent evolution of the populations P±1(t) obtained from
Eqs. (5.22) and (5.23) as a function of q and the relative angle θ between the
trap axis and the external magnetic field.

Fig. 5.2 shows the fraction of transferred atoms P±1(t)/N after t = 115 ms
as a function of quadratic Zeeman effect q for different values of θ. As expected
from the form of the instability rate Λ(q) we observe the appearance of a
maximum for all θ, which is slightly shifted (by approx. 1 Hz) towards lower
q when θ is shifted from π/2 to 0. However, this maximum is approximately
more than twice as large for θ = π/2 than for θ = 0. The dependence of
the amplification on θ is very clearly observable in the θ-dependence of the
maximum of P±1(t) (again at t = 115 ms) shown in Fig. 5.5. Note that the
maximum grows monotonically from θ = 0 to θ = π/2.
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Figure 5.2: Fraction of atoms transferrered into | ± 1〉 after 115 ms as a function of
q for Ns = 2 and the same parameters as Fig. 5.1, and for the case of no DDI (black,
dashed), θ = 0 (red, solid) and θ = π/2 (blue, dot-dashed).
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Figure 5.3: Maximal fraction of transffered atoms in |m = ±1〉 components after
an evolution time of 115 ms as a function of θ (same parameters as Fig. 5.2).
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5.5 Effects of magnetic field gradients on the

amplification dynamics

As mentioned in Sec. 1.2.3 the homogeneous linear Zeeman effect (LZE) plays
typically no role in the spinor dynamics (only at very low magnetic fields
B < 1 mG the DDI could induce the equivalent of the Einstein-de Haas
effect [89, 114], and in this case the residual LZE could play a role). However,
magnetic field gradients cannot be gauged out, and may play a relevant role
in the spinor physics [91]. In this section, we analyze the effects that these
gradients may have on the amplification dynamics. We shall show that even
relatively weak gradients may have a significant effect on the amplification
process.

From Eq. (1.39), the Hamiltonian that account for the magnetic-field gra-
dient is:

Ĥ1,gr =
∑
m

m∇p ·
∫
d3r ψ̂†m(~r, t)~rψ̂m(~r, t). (5.24)

Thus, these magnetic-field gradients do not affect the GP equation for the
BEC in |0〉 component. However, there is indeed a contribution to the effective
Hamiltonian for δψ̂±1(~r, t) in the linear regime. This contribution is given by

Ĥ1,gr = ∇p ·
∫
d3r
(
δψ̂†1(~r, t)~r δψ̂1(~r, t)− δψ̂†−1(~r, t)~r δψ̂−1(~r, t)

)
. (5.25)

Expanding this Hamiltonian in the basis of Heff , we obtain

Ĥ1,gr = ∇p ·
∫
d3r φn(~r)~r φn′(~r)

(
â†n,1(t)ân′,1(t)− â†n,−1(t)ân′,−1(t)

)
, (5.26)

which may be straightforwardly implemented into the matrix C of the eigen-
value equation (5.17),

C =

[
(εn + q)1 + B + D −A + B

A + B −(εn + q)1−B + D

]
, (5.27)

with Dnn′ = ∇p · ∫ d3r φn(~r)~r φn′(~r).
The magnetic-field gradients have two main effects. On one side, they

modify the effective potential Veff (~r) in a different way for m = 1 than for m =
−1. This reduces the overlap of the atomic clouds in the |±1〉 components with
the BEC in |0〉 component and hence the scattering mediated transfer. This
reduction is stronger for the short-range spin-changing collisions compared
to the long-rage DDI, since non-overlapping clouds interact solely due to the
nonlocal DDI. On the other side, atoms placed at different locations experience
different Larmor precession frequencies. Although this does not affect the local
short-range interactions, it does modify the non-local DDI. For large-enough
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gradients this may lead to a time-averaged DDI [91]. For weak gradients, as
those considered below, the explicit time dependence induced by the gradients
must be considered.

Parametric amplification is handicapped by the presence of gradients as a
result of these two combined effects. Fig. 5.4 shows the combined effect of the
DDI and the magnetic-field gradient along the weak trap axis for θ = π/2.
As expected, we obtain a reduction of the transfer maximum with increasing
gradient and a shift of its position to lower q by approximately 1.5 Hz for a
gradient of 10 mG/cm. Hence the transfer maximum is shifted down and to
lower q with decreasing θ and increasing gradient. As shown in Fig. 5.5, in
the presence of a magnetic field gradient the maximum of P±1(t) shows also
a marked θ dependence.

Hence, even rather weak gradients (< 10 mG/cm) may largely modify the
amplification dynamics, an effect which is enhanced by the presence of the
DDI. Although as mentioned above, the θ-dependence should reveal also in the
presence of gradients the effects of the DDI, slight variations of the magnetic
field gradients (of the order of few mG/cm) when changing the magnetic-field
orientation with respect to the trap axis must be very carefully controlled.
This is indeed a crucial point, since otherwise, accidental θ-dependences of the
magnetic-field gradients may obscure the physical θ-dependence characteristic
of the DDI.
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Figure 5.4: Fraction of atoms in | ± 1〉 after a time 115 ms (same parameters as
Fig. 5.2) as a function of q for θ = π/2, and for gradients ∇B = 0 (blue, solid),
5 mG/cm (black, dashed) and 10 mG/cm (red, dot-dashed).
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Figure 5.5: Maximal population transfer after 115 ms as a function of θ (same
parameters as Fig. 5.2) for different magnetic field gradients ∇B = 0 (blue, solid),
5 mG/cm (black, dashed) and 10 mG/cm (red, dot-dashed).

5.6 Experimental requirements

In the following we outline the general requirements to perform an experiment
with F=1 87Rb to probe the theoretical results discussed above. A BEC in
|0〉 component must be prepared in a crossed dipole trap following the same
procedure detailed in Refs. [100]. The state preparation requires particular
attention, since the classical atoms in | ± 1〉 components may strongly alter
the experimental result. Previous experiments have shown that the number
of classical seed atoms in | ± 1〉 components can be suppressed to Ns ≈ 2 by
briefly applying a strong magnetic field gradient to purify the system [100].
Due to the nature of the quadratic Zeeman effect in spin-1 87Rb, magnetic-
fields can be used to access positive values of q, as required above.

As discussed in Sec. 5.5, the most significant requirement compared to
previous experiments is related to the suppression of magnetic field gradients
which could obscure the dipolar effects. Appropriate experiments should be
carefully designed to minimize all sources of field gradients from the vicinity
of the atomic sample (alternatively a magnetic shield could be placed around
the sample). In state of the art precision measurements, field gradients are
commonly suppressed below 1mG/cm [128], which is sufficient to realize the
mandatory experimental conditions (see Sec. 5.5).

Fig. 5.2 shows that the fraction of transferred atoms into |±1〉 components
depends strongly on the relative orientation of the weak trap axis and the
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external magnetic field. Since it is difficult to change the orientation of a
dipole trap while maintaining its trapping potential, experiments must be
designed to variate the orientation of the external magnetic field. In this
sense, two sets of Helmholtz coils are necessary to provide a homogeneous
external magnetic field. One of them should be placed along the weak axis
of the trapping potential to realize the θ = 0 configuration and another one
along one of the strong axis to realize the θ = π/2 case. Both magnetic fields
have to be calibrated, preferentially using precision microwave spectroscopy
between the ground state hyperfine manifolds of 87Rb. Such an experimental
apparatus would also allow for a rotation of the field, since the currents in the
two Helmholtz coils could be adjusted to obtain a relative angle θ. In this way,
it should be possible to perform a measurement analogous to that discussed
in Fig. 5.5. Finally, additional magnetic field gradients can be applied along
both magnetic field directions to observe the suppression shown in Fig. 5.4. By
changing the strength and orientation of these gradients the effect of additional
external gradients could be evaluated and, if necessary, compensated.



Chapter 6

Spontaneous breaking of space
and spin symmetries in spinor

BEC

Spontaneous symmetry breaking is fundamental in disparate scenarios in
physics ranging from cosmology [129] and particle physics [130] to liquid crys-
tals [131] and superfuid Helium [132]. Symmetry breaking is also crucial in
Bose-Einstein condensates (BECs), where U(1) (phase) symmetry is sponta-
neously broken. Even more interesting, quantum gases provide unprecedented
possibilities for the study of non-equilibrium dynamics, and in particular for
the detailed analysis of dynamical symmetry breaking, including the forma-
tion of topological defects via Kibble-Zurek mechanism [129, 132, 133].

We have seen in the previous chapters that the spinor BEC prepared in a
special initial state acts as a parametric amplifier. Parametric amplification of
quantum fluctuations constitutes a fundamental scenario for symmetry break-
ing, and hence spinor BECs constitute an exciting scenario for the study of
spontaneously broken symmetries. In a recent seminal experiment [133] the
sudden quench of a spinor BEC from a polar into a ferromagnetic phase was
followed by the formation of ferromagnetic domains and topological defects
in the transverse magnetization, whereas the longitudinal magnetization re-
mained negligible. Reference [133] provided a major insight in the formation
of topological defects, but the nature of the symmetry breaking mechanism
remained largely unexplored.

In this chapter, we study the nature of the symmetry breaking in a spin-2
87Rb BEC initially prepared in |0〉 state during the amplification of quantum
fluctuations. Interestingly, a twofold spontaneous breaking of spatial and +1
and −1 spin symmetries may occur. On one hand, we show that quantum
fluctuations of the relative phase between amplified degenerate spin modes
may break the cylindrical symmetry imposed by the trap. On the other hand,
contrary to the situation in reference [133], the density profiles in | + 1〉 and
|−1〉 may differ from each other, leading to spontaneously formed longitudinal
magnetization patterns only if various nondegenerate spin modes are signifi-
cantly amplified. We show that this novel type of spin-symmetry breaking is
linked to quantum interferences occurring during the amplification process.

The chapter is structured as follows. In Sec. 6.1 we develop and analyze
the eigen-states and eigen-values of the linear Hamiltonian in the case of a 2D-
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circular box trap. A qualitative understanding of the two ways of spontaneous
symmetry breaking is obtained using density-density correlation functions in
Sec. 6.2. In Sec. 6.3 we introduce order parameters to characterize the break-
ing of symmetries for different values of the quadratic Zeeman effect q. The
corresponding numerical results for a cylindrical harmonic trap are presented
in Subsec. 6.3.1. Finally the comparison of our results with the experimental
results is discussed in Sec. 6.4.

6.1 Two-dimensional circular box-trap

In this section we develop the expression of the spin excitations δψ̂m(~r, t)
and the eigen-energies of the effective Hamiltonian Ĥ±1 (see Eq. (2.6)), which
describe the linear regime dynamics of the pair-creation of atoms in | ± 1〉
components, in a two-dimensional circular box trap.

As it was discussed in previous chapters, we consider the initial BEC in |0〉
as a classical field

√
n0(~r), whereas the excitations in the |±1〉 are represented

by the operators δψ̂±1(~r, t). Moreover, we consider the fact that the population
in the |±1〉 components remains small compared to that in the |0〉 component
and hence the first stages of the dynamics may be described by means of
a Bogoliubov approximation of Eq. (2.3) and the effective Hamiltonian of
Eq. (2.6).

In the following we consider that the condensate is trapped in a 2D circular
box trap of the form given by

V (~r) =

{
0 ρ < R
∞ ρ ≥ R

(6.1)

Where R is the radius of the circular box and ρ =
√
x2 + y2. Note that in this

case it is easy to see that in the Thomas-Fermi regime the effective potential
Veff (~r) (see chapter 2) is constant, i.e. Veff (~r) = U1−1n0 within the circular
region ρ < R and Veff (~r) =∞ for ρ ≥ R.

The eigenfunction of Ĥeff (~r), in this case, is then decomposed into radial
and angular part, which is expressed as

ϕnl(ρ, φ) = Rnl(ρ)eilφ, (6.2)

where each mode is identified by two quantum numbers n and l for the ra-
dial excitation and the orbital angular momentum. Employing Eq. (6.2) into
the energy eigenvalue equation, Ĥeffϕnl(ρ, φ) = εnlϕnl(ρ, φ), and taking into
account the two-dimensional Laplacian equation, after some calculations, we
obtain [

− ~2

2M

(
d2

dρ2
+

1

ρ

d

dρ
− l2

ρ2

)
− U1−1n0

]
Rnl(ρ) = εnlRnl(ρ), (6.3)
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which leads to

ρ2 d
2

dρ2
Rnl(ρ) + ρ

d

dρ
Rnl(ρ) +

[
2M

~2
(εnl − U1−1n0) ρ2 − l2

]
Rnl(ρ) = 0, (6.4)

which is the well known Bessel differential equation, whose solutions are of
the form

Rnl(ρ) =
1√

πRJ|l|+1(βn|l|)
Jl(βn|l|

ρ

R
), (6.5)

where J|l| is the Bessel function of the first kind and βn|l| represents the nth
zero of J|l|.

Therefore, the eigenfunctions of Ĥeff become

ϕnl(ρ, φ) =
1√

πRJ|l|+1(βn|l|)
Jl(βn|l|

ρ

R
)eilφ, (6.6)

with the corresponding eigen-energies of the form

εn,l = U1−1n0 +
~2

2MR2
β2
n|l|. (6.7)

One can easily see that εn,l = εn,−l, and thus modes with the same n and
opposite non-zero l and −l are degenerate. This degeneracy is particularly
important in the discusions of breaking of symmetries in Sec. 6.2.

Expanding the field operators δψ̂m(~r, t) =
∑

nl ϕnl(ρ, φ)ân,l,m(t), the linear

Hamiltonian of Eq. (2.6) splits into Ĥ =
∑

n|l|Hn|l|, where

Ĥn|l| = (εn|l| + q)
∑

m,l=±|l|

a†n,l,mân,l,m (6.8)

+ U1−1n0

(
â†n,l,1â

†
n,−l,−1 + â†n,−l,1â

†
nl,−1 + h.c.

)
.

This Hamiltonian may be easily diagonalized, being characterized by the
eigen-energy function of the form

ξ2
n,l =

(
~2

2MR2
β2
n|l| + q − qcr

)2

− q2
cr, (6.9)

with qcr = −U1−1n0. As in previous chapters, if ξn,l is real the (n, l)-mode may
be considered stable, whereas an imaginary ξn,l = i|ξn,l| denotes instability.
The (n, l)-mode is unstable for

− ~2

2MR2
β2
n|l| < q < 2qcr − ~2

2MR2
β2
n|l|. (6.10)
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q

Figure 6.1: The instability rate for a spin-2 87Rb BEC in a 2D-circualr box trap.
The solid curve is the maximal instability rate. This curve belongs to the most unsta-
ble (1, 0)-mode in the region − ε1,0+ε1,|1|

2 < q < qcr−ε1,0, then to the degenerate most
unstable (1,±1)-modes in the region − ε1,|1|+ε1,|2|

2 < q < − ε1,0+ε1,|1|
2 and soon. Be-

sides to the degenerate most unstable modes, there may also non-degenerate equally
unstable modes like (1,±1) and (1, 0) at q = − ε1,0+ε1,|1|

2 and (1,±1) and (1,±2) at
q = − ε1,|1|+ε1,|2|

2

As it was discussed in Chapter 3, the maximal instability occurs when
q = −εn,|l|, as shown in Fig. (6.1). The solid curve in Fig. (6.1) is the maximal
instability rate as a function of the quadratic Zeeman effect q and it belongs to
different most unstable (n, l)-modes for different values of q. Note that modes
with the same n and opposite non-zero l and −l are degenerate and hence
they are equally unstable (for example the curve that belongs to degenerate

most unstable (1,±1)-modes in the region − ε1,|1|+ε1,|2|
2

< q < − ε1,0+ε1,|1|
2

of
Fig. (6.1)). On the other hand, modes with different n and n′ (εn,l 6= εn′,l′) can
be approximately equally unstable (|ξn,l| = |ξn′,l′ |) (for example |ξ1,0| = |ξ1,−1|
at q = − ε1,0+ε1,|1|

2
as shown in Fig. (6.1)). These two ways of being equally

unstable lead to different types of symmetry breaking that will be discussed
in the next Sec. 6.2.

In the following, we focus on the unstable modes, since these modes are
those related to the onset of spinor dynamics. As it was discussed in Sub-
sec. 2.2.2, for an unstable mode the Hamiltonian of Eq. (6.9) may be re-written
as

Ĥn|l| =
|ξn,|l||

2

∑
m,l=±|l|

[
X̂

(1)
n,l,m(t)X̂

(2)
n,l,m(t) + X̂

(2)
n,l,m(t)X̂

(1)
n,l,m(t)

]
, (6.11)
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where

X̂
(1,2)
n,l,m(t) =

1√
2 sin (2θn,l)

(
e±iθn,l ân,l,m(t) + e∓iθn,l â†n,−l,−m(t)

)
, (6.12)

with cos (2θn,l) =
(εn,|l|+q)

|qcr| . The operators X̂
(1,2)
n,l,m(t) are quadratures, which

satisfy the commutation relation[
X̂

(1)
n,l,m(t), X̂

(2)
n,l,m(t)

]
= i, (6.13)

being linked to the squeezing physics associated to the amplification dynamics.
From the Heisenberg equation of motion, the time evolution of these operators
is given by:

X̂
(1,2)
n,l,m(t) = e±|ξn,|l||t/~X̂1,2

n,l,m(0). (6.14)

This shows that the quadrature X̂
(1)
n,l,m(t) is stretched according to e|ξn,|l||t/~,

whereas X̂
(2)
n,l,m(t) is squeezed as e−|ξn,|l||t/~. Hence the amplification process

corresponding to the unstable (n, l)-mode is characterized by a squeezing pa-
rameter |ξn|l||t/~ and a mixing angle θn,l. Interestingly, θn,l, is different for
different (n, l)-modes. This turns out to be crucial for understanding of break-
ing of +1 and −1 spin symmetry, which will be discussed in Subsec. 6.2.2.

The time evolution of the operator ân,l,m(t) can be obtained by employing
Eq. (6.14) into Eq. (6.12), after some calculation, it turns out to be

ân,l,m(t) =
e|ξn,|l||t/~

2i sin 2θn,l

[
e2iθn,l ân,l,m(0) + â†n,−l,−m(0)

]
− e−|ξn,|l||t/~

2i sin 2θn,l

[
e−2iθn,l ân,l,m(0) + â†n,−l,−m(0)

]
.

(6.15)

After some evolution time t only the growing part is important. It then follows
that

δψ̂m(ρ, φ, t) =
∑
nl

ϕnl(ρ, φ)
e|ξn,|l||t/~

2i sin 2θn,l

[
e2iθn,l ân,l,m(0) + â†n,−l,−m(0)

]
, (6.16)

where only unstable modes are summed.

6.2 Correlation functions in a 2D- circular box-

model

In this subsection we employ the formalism developed in Sec. 6.1 to calculate
the density-density correlation functions of |+ 1〉 and | − 1〉 components after
a given evolution time t and for a given quadratic Zeeman effect q.
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The density-density correlation function after a given time t can be ex-
pressed as

〈n̂m(ρ, φ, t)n̂m′(ρ
′, φ′, t)〉 = 〈δψ̂†m(ρ, φ, t)δψ̂m(ρ, φ, t)δψ̂†m′(ρ

′, φ′, t)δψ̂m′(ρ
′, φ′, t)〉.
(6.17)

We need to calculate the density-density correlation functions during the am-
plifications of quantum modes. Hence, we consider the initial state to be a
pure quantum state |vac〉 (with zero spurious seed atoms). Using Eq. (6.16)
the above equation takes the form

〈n̂m(ρ, φ, t)n̂m′(ρ
′, φ′, t)〉 =

∑
~n1,~n2,~n3,~n4

ϕ∗~n1
(ρ, φ)ϕ~n2(ρ, φ)ϕ∗~n3

(ρ′, φ′)ϕ~n4(ρ
′, φ′)

× e[|ξ~n1
|+|ξ~n2

|+|ξ~n3
|+|ξ~n4

|]t/~

16 sin 2θ~n1 sin 2θ~n2 sin 2θ~n3 sin 2θ~n4

×〈vac|
[(
e−2iθ~n1 â†~n1,m

+ â−~n1,−m

)(
e−2iθ~n2 â†~n2,m

+ â−~n2,−m

)
(
e−2iθ~n3 â†~n3,m′

+ â−~n3,−m′
)(
e−2iθ~n4 â†~n4,m′

+ â−~n4,−m′
)]
|vac〉,

(6.18)

with ±~ni = (ni,±li). Evaluating the above equation, we obtain two density-
density correlations of the form

〈n̂m(ρ, φ, t)n̂m(ρ′, φ′, t)〉 =
∑
~n, ~n′

e2(|ξ~n|+|ξ ~n′ |)t/~

16 sin2 2θ~n sin2 2θ~n′

{
|ϕ~n(ρ, φ)|2 ∣∣ϕ~n′(ρ

′, φ′)
∣∣2

+ ϕ∗~n(ρ, φ)ϕ~n(ρ′, φ′)ϕ∗~n′(ρ, φ)ϕ~n′(ρ
′, φ′)

}
,

(6.19)

which is the density-density correlation of | ± 1〉 with itself, and

〈n̂−m(ρ, φ, t)n̂m(ρ′, φ′, t)〉 =
∑
~n, ~n′

e2(|ξ~n|+|ξ ~n′ |)t/~

16 sin2 2θ~n sin2 2θ~n′

{
|ϕ~n(ρ, φ)|2 ∣∣ϕ~n′(ρ

′, φ′)
∣∣2

+ϕ∗~n(ρ, φ)ϕ~n(ρ′, φ′)ϕ∗~n′(ρ, φ)ϕ~n′(ρ
′, φ′) cos 2(θ~n − θ~n′)

}
,

(6.20)

which is the density-density correlation of |+ 1〉 with | − 1〉.
These two previous equations can be expressed in terms of the radial and
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angular parts of the wavefunction as

〈n̂m(ρ, φ, t)n̂m(ρ′, φ′, t)〉 =
∑
n,l

n′,l′

e2(|ξn,|l||+|ξn′,|l′||)t/~

16 sin2 2θn,l sin
2 2θn′,l′

{
|Rnl(ρ)|2 |Rn′l′(ρ

′)|2

+Rnl(ρ)Rnl(ρ
′)Rn′l′(ρ)Rn′l′(ρ

′)

× cos (l − l′)(φ− φ′)
}

(6.21)

and

〈n̂−m(ρ, φ, t)n̂m(ρ′, φ′, t)〉 =
∑
n,l

n′,l′

e2(|ξn,|l||+|ξn′,|l′||)t/~

16 sin2 2θn,l sin
2 2θn′,l′

{
|Rnl(ρ)|2 |Rn′l′(ρ

′)|2

+Rnl(ρ)Rnl(ρ
′)Rn′l′(ρ)Rn′l′(ρ

′)

× cos{(l − l′)(φ− φ′) + 2(θnl − θn′l′}
}

(6.22)

We employ these two equations in the following subsections to understand
the key futures concerning the broken symmetries during the amplification
dynamics.

6.2.1 Spontaneous breaking of cylindrical spatial sym-
metry

In this subsection, we study the spontaneous breaking of the cylindrical spatial
symmetry during the amplification of quantum fluctuations. This broken
symmetry can be understood from Eq. (6.21).

The first obvious fact that may be easily seen from Eq. (6.21) is that not
all unstable modes contribute equally. Those with the largest amplification
gain |ξn,|l|| dominate after a transient time. We have seen in Sec. 6.1 that
degenerate (n, l)-modes (εn,l = εn,−l), are equally unstable (|ξn,l| = |ξn,−l|).
As a result any linear combination of these modes is equally unstable, being
selected from shot to shot by quantum fluctuations, and hence inducing a
shot-to-shot spontaneous breaking of the cylindrical symmetry. Of course,
the cylindrical symmetry is maximally broken when degenerated modes with
non-zero l are the most unstable ones. We have calculated the density-density
correlation at two different values of the quadratic Zeeman effect q, to clarify
this effect. One is the case at q = −ε1,0, where there is only one maximally
unstable (1, 0)-mode, and hence there is no breaking of the cylindrical spatial
symmetry as shown in Fig. (6.2a). The other is the case at q = −ε1,|1|,
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whereby two degenerate most unstable (1,±1)-modes exist. In this case, the
cylindrical spatial symmetry is broken as shown in Fig. (6.2b).

(a) (b)

Figure 6.2: Density-density correlation functions at different quadratic Zeeman
effect q. Fig. (6.2a) corresponds to the case at q = −ε1,0, for which there is only one
maximally unstable (1, 0)-mode. On the other hand, Fig. (6.2b) corresponds to the
case at q = −ε1,|1| whereby two degenerate maximally unstable (1,±1)-modes exist.
Note that in the first case the cylindrical symmetry is not broken, whereas in the
second case it is broken.

6.2.2 Spontaneous breaking of the spin symmerty

Besides to the breaking of cylindrical spatial symmetry, there may also be
spontaneous breaking of the +1 and −1 spin symmetry during the amplifi-
cation of quantum fluctuations. In this subsection, we study this broken +1
and −1 spin symmetry using Eqs. (6.21) and (6.22).

It is clear from Eqs. (6.21) and (6.22) that the mechanism for the breaking
of the +1 and −1 spin symmetry is very different to the breaking of the
cylindrical spatial symmetry. This breaking of the +1 and −1 spin symmetry
is directly linked to a quantum interference between unstable modes with
different mixing angles θn,l. Note in particular that degenerate modes (εn,l =
εn,−l) posses equal mixing angles, and hence do not contribute to the +1 and
−1 spin symmetry breaking. Therefore, those states which maximally break
the cylindrical symmetry do not contribute to the +1 and −1 asymmetry. A
maximal +1 and −1 symmetry breaking is produced when two non-degenerate
modes with εn,|l| 6= εn′,|l′| are approximately equally unstable (|ξn,|l|| = |ξn′,|l′||),
which demands −q = (εn,|l| + εn′,|l′|)/2, being the most unstable ones. For
instance, this breaking of +1 and −1 spin symmetry occurs for the case
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q1 = − ε1,|1|+ε1,0
2

, at which the (1, 0) mode interferes with (1,±1)-modes and for

q2 = − ε1,|1|+ε1,|2|
2

, whereby the (1,±1)-modes interfere with the (1,±2)-modes.

This spontaneous breaking of the +1 and −1 spin symmetry gives rise to
fluctuations of local longitudinal magnetization,

Sz =
∑
m

mδψ̂†m(~r, t)δψ̂m(~r, t) (6.23)

contrary to Ref. [133] where Sz was negligible. Fig. (6.3) shows the fluctuations
of local magnetization, Sz, at q1 and q2 respectively.
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Figure 6.3: Fluctuations of the local magnetization at different quadratic Zeeman
effect q. Fig. (6.3a) corresponds to the case at q1 at which two modes of (1,±1) and
(1, 0) are the most unstable ones. Fig. (6.3b) corresponds to the case at q2 whereby
two modes of (1,±1) and (1,±2) are the most unstable ones. Both cases show that
the +1 and −1 spin symmetry may be clearly broken.

6.3 Order parameters for the asymmetry of

the correlations

In this subsection we study the cylindrical spatial asymmetry and the +1
and −1 spin asymmetry of the density profile using various order parameters.
These order parameters are particularly important for the characterization of
the type of broken symmetry in a trapped system, which will be discussed in
Subsec. 6.3.1, and in the discussions of the experimental results.
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The first order parameter that we use to study the cylindrical spatial
asymmetry of the | ± 1〉 density cloud is defined as

G∆l
m,m =

∫
d3~r
∫
d3~r ′〈n̂m(~r, t)n̂m(~r ′, t)〉 cos ∆l(φ− φ′)[ ∫

d3~r〈n̂2
m(~r, t)〉] (6.24)

with ∆l = l − l′ = 2, 4, 6, .... This order parameter will be particularly large
when two degenerate modes with l = ∆l

2
and l = −∆l

2
are the most unstable

ones. Note that G∆l
m,m = 0 for the case where there is no breaking of cylindrical

spatial symmetry.
The other order parameter employed to study the +1 and −1 spin asym-

metry is

η =

∣∣∣∣1− ∫ d3~r〈n̂1(~r, t)n̂−1(~r, t)〉∫
d3~r〈n̂1(~r, t)n̂1(~r, t)〉

∣∣∣∣ . (6.25)

Note that η = 0 when the +1 and−1 densities are locked to each other, i.e. when
there is no breaking of the +1 and −1 spin symmetry, but η 6= 0 when the +1
and −1 spin symmetry is broken.

We have calculated numerically the above two order parameters for a
spin-2 87Rb BEC trapped by 2D-circular box trap. We considered N = 105

atoms and 2π × (1, 50, 1) Hz frequencies in order to check that our numerics
gives the results of the previous discussions.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

-84.4 -84.2 -84 -83.8 -83.6 -83.4 -83.2 -83

(1,0)
(1,±1)

(2,0) (1,±2)(1,±3)(2,±1)(1,±4)(2,±2)

(3,0)

G∆l=2
mm

G∆=4
mm

q/h [Hz]

A
sy

m
m

et
ry

  

η

Figure 6.4: Cylindrical spatial and the +1 and −1 spin asymmetry as a function
of quadratic Zeeman effect q for the given artificial parameters (see text). G∆l=2,4

mm is
the cylindrical spatial asymmetry for the modes with ∆l = 2 and 4 and η is the +1
and −1 spin asymmetry.

Fig. (6.4) shows the cylindrical spatial asymmetry and the +1 and −1 spin
asymmetry as a function of quadratic Zeeman effect q. The red curve, i.e.G∆l=2

mm ,
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corresponds to cylindrical spatial asymmetry i.e. for the lower modes with
l = ±1. As it was discussed in Subsec. 6.2.1, the curve shows a maximum
breaking of cylindrical spatial symmetry at the values of q where the degen-
erate (1,±1) and (2,±1) modes are located. The cylindrical asymmetry for
higher modes with l = ±2 is given by the blue curve (G∆l=4

mm ) and it shows
a maximum breaking of cylindrical spatial symmetry for the values of q, at
which the degenerate (1,±2) and (2,±2) modes are located.

The black curve in Fig.(6.4) shows the breaking of +1 and −1 spin sym-
metry. It shows that there is a relative maximum breaking of the +1 and −1
spin symmetry at the values of q whereby two non-degenerate unstable modes
are equally unstable, like in the case at values of q where two non-degenerate
modes cross each other, as expected from the discussion of Subsec. 6.2.2.

6.3.1 Results in the trapped system

In this subsection, we study the breaking of the above two types of symmetries
during the amplification of quantum fluctuations for realistic experimental pa-
rameters. To this end, we have performed numerical simulations to calculated
the above two order parameters for a spin-2 87Rb BEC initially containing
N = 5× 104 atoms in an optical dipole trap with a cylindrical harmonic trap-
ping potential of frequencies given by (ωx, ωy, ωz) = 2π × (187, 183, 67) Hz.
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Figure 6.5: Cylindrical spatial and +1 and −1 spin asymmetry as a function of
the magnetic field for the experimental parameters (see text). G∆l=2

mm corresponds
for the cylidrical asymmetry of the l = ±1 modes and η characterizes for the +1 and
−1 spin asymmetry.

Fig. (6.5) shows the cylindrical spatial asymmetry (green curve) and the
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+1 and −1 spin asymmetry (red curve) as a function of the magnetic field
after an evolution time of t = 100ms. There is a maximum breaking of the
cylindrical spatial symmetry around B = 1.68G, in which two most unstable
rates, which belong to modes with |l| = 1, overlap. For the reasons explained
in Subsec. 6.2.1 the red curve in Fig. (6.5) shows no breaking of the +1 and
−1 spin symmetry at the value of B = 1.68G at which the cylindrical spatial
symmetry is maximally broken. Interestingly, to the right and left of this
value of B there is both breaking of cylindrical spatial symmetry and the
+1 and −1 spin symmetry. This region will be the focus of the qualitative
comparison of the experimental results in Sec. 6.4. Around B = 1G the +1
and −1 spin symmetry is broken without breaking of the cylindrical spatial
symmetry. This happen when two modes with |l| = 0 are the most unstable
ones.

6.4 Comparison with the experimental results

To compare quantitatively the theoretical results with the experimental ones,
we have to consider the exact values of the atomic density, trap frequencies,
scattering lengths, the atomic losses and the magnetic field gradients. Since
these parameters are not known very precisely, in the following we will focus
on the qualitative comparison of the theoretical and experimental results.

We consider a spin-2 87Rb BEC initially containing N = 5× 104 atoms in
a cylindrical trapping potential of 2π × (187, 183, 67) Hz frequencies.

Figure( 6.6a) shows (from left to right) the averaged density profiles of all
realizations recorded at the magnetic field of B = 0.64G, 0.9G, 1.3G, 1.7G,
2.0G and 2.3G respectively. As expected, the averaged density profiles show
spatial cylindrical symmetry and a spin symmetry under the interchange |+1〉
and | − 1〉. Figure (6.6b) shows an individual realization at the above given
values of B. It is clear from Fig. (6.5) that at the values of B = 0.64G,
1.3G and 2.0G there is only one maximally unstable mode (l = 0), and hence
the clouds remain cylindrically symmetric at these values even in individual
realizations. However, at around B = 1.7G there are two equally maximally
unstable modes, |l| = 1, which allows for a clockwise rotation (vortex) or an
anticlockwise one (antivortex). As a result the relative strength of vortex-
antivortex mode is chosen from shot-to-shot by quantum fluctuations, and
hence inducing a shot-to-shot spontaneous breaking of the cylindrical symme-
try as shown in Fig. (6.6b).

Note that at lower values of the magnetic field B, as it was discussed in
Chapter 4, the spurious seeds influences the production of population in |±1〉,
moreover at these values of B the experimental clouds are very sensitive to
small magnetic field gradients (see Ref.[134] for experimental details).

Therefore, the symmetry breaking during the amplifications of quantum
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(a)

(b)

Figure 6.6: The experimental density distributions | + 1〉 and | − 1〉 clouds at
the above given magnetic fields (see text) after time-of-flight expansion. (6.6a) cor-
responds to the averaged experimental density profiles. (6.6b) shows an individual
experimental realization.

fluctuation is best studied at higher magnetic fields. Accordingly, experimen-
tal measurments were taken at four magnetic field values between 1.68G and
1.84G to evaluate the symmetry breaking process (see Ref. [134] for exper-
imental details). At these values of B the density profiles show qualitative
form as that at B = 1.7G in Fig. (6.6b). Note that the density profile of each
component has a defined density node at the center, which is oriented in a
particular direction. The angle between this direction and a fixed axis was
measured experimentally for a large number of realizations.

Fig. (6.4) is a histogram that shows the distribution of angles for |1〉 and
| − 1〉 as well as the difference between these angles. All angles of the | ± 1〉
clouds occur with roughly the same probability, showing that the cylindrical
symmetry is indeed spontaneously broken. This matches reasonably well with
our result in Fig. (6.5) for the magnetic field values between 1.6G and 1.8G.
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Figure 6.7: The orientation of individual density distributions recorded at four
magnetic field values bewteen 1.68G and 1.84G. (a) and (b) The distribution of
angles for the |1〉 and | − 1〉 states. (c)The distribution of the difference between the
angles of orientation.

The relative angle in Fig. (6.4) shows an intriguing behaviour. At 1.78G,
the two angles are locked to each other and hence there is no significant
breaking of the +1 and −1 spin symmetry. However, towards lower and higher
magnetic fields, the locking relaxes and different angles become more probable.
Such realizations with different orientations of the density distributions in |1〉
and −1〉 break the spin symmetry of the density profiles. Note, again, that
this observation is in good agreement with our numerical results of Fig. (6.5),
where a dip in η was expected for the maximum of G∆l=2

mm at approximately
the values observed experimentally.



Chapter 7

Conclusion and outlook

In this thesis, we have studied the parametric amplification of matter-waves
on the basis of spinor BECs. Spinor dynamics is particularly interesting for
the case of condensates initially prepared in the |0〉 Zeeman sublevel. In that
case, spin-changing collisions may lead to correlated pair-creation of atoms
into | ± 1〉, in a process which closely resembles parametric down conversion
in non-linear optics. As a result, spinor condensates may act as parametric
amplifiers of matter waves, opening interesting perspectives for the creation
of nonclassical states of matter based on spinor BECs. In this thesis we have
studied how the amplification dynamics crucially depends on the interplay
between trapping potential, quadratic Zeeman effect q, magnetic-field gradi-
ents, spin-changing collisions and DDI. Furthermore, we have investigated its
sensitivity with respect to quantum spin fluctuations and the spontaneous
breaking of space and spin symmetries in the parametrically amplified clouds
in | ± 1〉.

We detail in the following the main results of this thesis:
In Chapter 2, we have studied the first stages (linear regime) of the spinor

dynamics (without the DDI and the magnetic-field gradient) by analyzing the
properties of the Bogoliubov spectrum of spin excitations of the initial conden-
sate in the |0〉 Zeeman sublevel for both spin-1 and spin-2 87Rb homogenous
spinor BECs. The BEC in |0〉 is stable or unstable depending on the quadratic
Zeeman effect q. The instability of the condensate leads to the pair-creation
of atoms into | ± 1〉 Zeeman sublevel. This pair-creation efficiency is charac-
terized by the instability rate, which is obtained from the most unstable spin
excitation modes. This instability rate is growing for small |q| and acquired
its maximum value at certain value of |q|, and from that point on, for large
|q| it remains constant.

In Chapter 3, we have studied the influence of the trapping potential on
the instabilitiy rate. On the contrary to the homogenous case, we have shown
that the magnetic field dependent instability rate has a non-monotonous char-
acter, which mostly results from the finite size and inhomogeneity of both the
trapping potential and the density of the BEC in the |0〉. This trap-dependent
modulation of the instability rate is directly reflected into a strong enhance-
ment or suppression of the pair-creaction efficiency for particular magnetic
field values. Accordingly, we have shown that the pair-creation efficiency is
characterized by a striking multi-resonant magnetic field dependence, which
maps the instability rate (with two particularly strongly enhanced peaks for
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the experiments in Hannover). We have shown that the resonant growth can
be initiated by spuriously produced atoms in |±1〉 and by vacuum spin fluctu-
ations (These triggering mechanisms were discussed in Chapter 4.), and hence
the relative importance of the resonance strengths is controlled accordingly.
Furthermore, we have studied the mean-field calculations of the pair-creation
efficiency using coupled GPEs. These results clearly failed to reproduce the
high magnetic-field resonance resulting from the quantum calculation, due to
the lack of quantum fluctuations in the GPEs calculation. Finally, we directly
compared our results with the experimental results and showed an excellent
agreement.

In Chapter 4, we have studied the triggering mechanism of the amplifica-
tion dynamics (with particular emphasis on spin-2 87Rb). We have shown that
the classical seed atoms, which are spuriously produced atoms in | ± 1〉, are
highly relevant at low magnetic-fields, for which the amplified spin excitation
mode has a large overlap with the original BEC. However, at larger magnetic-
fields the amplified spin excitations show pronounced spatial structures and
lack a substantial overlap. As a result, the amplification dynamics is insensi-
tive to the presence of classical seed atoms, and hence dominantly triggered
by quantum vacuum fluctuations. Thus the system acts as a matter-wave
amplifier for the vacuum fluctuations. These results were also in an excellent
agreement with the experiments in Hannover university.

In Chapter 5, we have studied the effect of the DDI and the magnetic field
gradient on the amplifications dynamics. We have shown that, in spite of the
very small magnetic moment, the magnetic DDI may lead to a strong mod-
ification of the amplification dynamics in spin-1 87Rb due to the low-energy
scale of the spin-changing collisions. We have shown that the DDI induce a
very marked dependence of the amplification gain with respect to the relative
orientation between magnetic-field direction and trap axis. If both directions
are perpendicular to each other the amplification dynamics is much faster than
for the parallel configuration. Remarkably, the number of transferred atoms
into | ± 1〉 may increase for spin-1 87Rb for a fixed holding time of around
100ms by a factor over 400% when turning from a parallel to a perpendicular
configuration. We have shown as well that magnetic-field gradients may also
significantly modify the amplification dynamics, both due to their effects on
the trapping and on the DDI. As a result, magnetic-field gradients must be
carefully controlled, since uncontrolled changes in the gradient when turn-
ing the magnetic field orientation may obscure the orientation dependence of
the DDI effects on the amplification. This demands specific requirements for
future experiments.

In Chapter 6, we have studied a nontrivial double spontaneous symmetry
breaking during the amplification of quantum fluctuations in | ± 1〉 in spin-2
87Rb. On one hand, we have shown that the cylindrical spatial symmetry
introduced by the trap is broken when amplification dynamics is dominated
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by degenerate most unstable spin modes, since any linear combination of
these modes is equally unstable, being selected from shot to shot by quantum
fluctuations, and hence inducing a shot-to-shot spontaneous breaking of the
cylindrical symmetry. On the other hand, if the amplification dynamics is
dominated by at least two non-degenerate most unstable spin modes, sponta-
neously formed longitudinal magnetization patterns appear due to quantum
interferences between the different amplified quadratures. These nontrivial
double spontaneous symmetry breaking was recently observed in experiments
at Hannover University.

Our results on parametric amplification using spinor condensates open
fascinating perspectives for the creation and analysis of non-classical state of
matter. This possibility will be explored in the next future in close collab-
oration with the experimental group at the Leibniz University of Hannover.
For example, relative and total number fluctuations should show interesting
statistical properties. Recently, we have studied the number statistics of the
parametrically amplified clouds in | ± 1〉 of spin-2 87Rb and in particular the
so called Q-paramter [135] given by

Q =
〈(∆N̂)2〉 − 〈N̂〉

〈N̂〉 , (7.1)

where 〈(∆N̂)2〉 = 〈N̂2〉 − 〈N̂〉2 with N̂ = N̂+1 + N̂−1 the total number of
atoms in |±1〉. Note that for Q in the range −1 ≤ Q < 0 the statistics is sub-
Poissonian, and if Q > 0, super-Poissonian. Fig.( 7.1) shows the Q-parameter
as a function of the quadratic Zeeman effect q for spin-2 87Rb BEC of N =
5 × 104 atoms in a trap of frequencies (wx, wy, wz) = 2π × (176, 132, 46) Hz
with scattering lengths a0 = 87.685aB, a2 = 91.049aB, a4 = 99.197aB. It
clearly shows that, except for very low magnetic fields, the number statics is
super-Poissonian. Particularly, it is more super-Poissonian around the second
resonance (high magnetic field resonance), and hence there is a very large
number fluctuations around this region.

The statistics of the relative number N̂r = N̂+1 − N̂−1 is even more in-
teresting, being at the moment investigated in close collaboration with the
experimental group at the Leibniz University of Hannover.
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Figure 7.1: The Q-paramter as a function of quadratic Zeeman effect q for the
given parameters (see text). Except at very low |q|, the number statistics is super-
Poissonian.



Appendix A

Operator Identities

In this appendix we derive some important relations, which are useful in the
discussion of the Hamiltonian employed in Chapters 1 and 2.

The projection operator onto a two-particle state with total with total
spin-F is expressible as:

P̂F =
F∑

mF=−F

|F,mF 〉〈F,mF |. (A.1)

Using the following orthogonality relations of the Clebsch-Gordan coeffi-
cients:

2F∑
F=0,2

F∑
mF=−F

〈f1,m1; f2,m2|F,mF 〉〈F,mF |f1,m3; f2,m4〉 = δm1m3δm2m4 .

(A.2)
and the closure relationship of the projection operator, one can see that

2F∑
F=0,2

λF P̂F =
2F∑

F=0,2

F∑
mF=−F

λF 〈f1,m1; f2,m2|F,mF 〉〈F,mF |f1,m3; f2,m4〉

(A.3)
with λF = 1

2
[F (F + 1)− 2f(f + 1)].

Inserting λF into one of the Clebsch-Gordan coefficients gives

λF 〈F,mF |f1,m3; f2,m4〉 =〈F,mF |1
2
F (F + 1)− f(f + 1)|f1,m3; f2,m4〉

=〈F,mF |1
2

( ~̂F − ~̂f1 − ~̂f2)|f1,m3; f2,m4〉

=〈F,mF | ~̂f1 · ~̂f 2|f1,m3; f2,m4〉.
(A.4)

Up on substituting Eq. (A.4) into Eq. (A.3), we obtain

2F∑
F=0,2

λF P̂F =
2F∑

F=0,2

F∑
mF=−F

〈f1,m1; f2,m2|F,mF 〉〈F,mF | ~̂f1 · ~̂f 2|f1,m3; f2,m4〉.

(A.5)
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Performing the summation over F and mF , the above equation becomes

2F∑
F=0,2

λF P̂F =〈f1,m1; f2,m2| ~̂f1 · ~̂f 2|f1,m3; f2,m4〉

= ~̂fm3m2 · ~̂fm4m1
= (f̂α)m3m2(f̂α)m4m1

(A.6)

where (f̂α)m3m2 are the matrix elements for the Cartesian traceless spin f = 2
Pauli matrices. This is one of the operator identities that we use in the
calculation.

In the following we express the projection operator onto |F = 0,mF = 0〉
state, i.e. P̂F=0 = |F = 0,mF = 0〉〈F = 0,mF = 0|. The state |F = 0,mF =
0〉 for spin-F = 2 may be expressed interms of the five Zeeman sublevels as:

|F = 0,mF = 0〉 =
∑
m1,m2

|m1,m2〉〈m1,m2|F = 0,mF = 0〉 (A.7)

with m1 +m2 = 0. Using the Clebsch-Gordan coefficients, the above equation
becomes

|F = 0,mF = 0〉 =
1√
5

(|2,−2〉 − |1,−1〉+ |0, 0〉 − | − 1, 1〉+ | − 2, 2〉) (A.8)

Thus, the projection operator P̂0 takes the form

P̂0 =
1

5

(|2,−2〉 − |1,−1〉+ |0, 0〉 − | − 1, 1〉+ | − 2, 2〉)
× (〈2,−2| − 〈1,−1|+ 〈0, 0| − 〈−1, 1|+ 〈−2, 2|), (A.9)

which is employed particularly in Sec. 1.3.



Appendix B

Derivation of Linear regime
Hamiltonian

In this appendix we discuss in detail the derivations of the linear regime
Hamiltonian that employed in Chapters 1 and 5. In the following we consider
a spin-2 (or spin-1) 87Rb atoms, with Zeeman components m = ±2,±1, 0 (or
m = ±1, 0), confined in a dipole trap in the presence of an external magnetic
field oriented along the z-axis. In the discussion of the short-range interactions
Hamiltonian, we show how to calculate the coupling constants for the possible
collisional channels in spin-2 and spin-1 systems.
• The second-quantized single-particle Hamiltonian of the system is given

by

Ĥ0 =
∑
m

∫
d3r ψ̂†m(~r)

[
− ~2

2M
∆ + V (~r) + Ez

]
ψ̂m(~r), (B.1)

where ψ̂m(~r) annihilates bosons with spin projection m. The first part is the
kinetic energy, the second is the optical trap and the third part is the Zeeman
energy, Ez = (p+∇p · ~r )m + qm2, which contains the linear and quadratic
Zeeman effects due to homogeneous magnetic field and the magnetic gradient
effect (see Sec. 1.2.3).
• The second-quantized two-particle Hamiltonian that describes short-

range interactions is expressible as

Ĥsr =
1

2

∫
d3~r
∑
~m

U~mψ̂
†
m4

(~r)ψ̂†m3
(~r)ψ̂m2(~r)ψ̂m1(~r), (B.2)

where

U~m =
∑
F

F∑
M=−F

gF 〈m1,m2|F,M〉〈F,M |m3,m4〉 (B.3)

are the coupling constants for the collisional channels {m1,m2} → {m3,m4}
(~m ≡ (m1,m2,m3,m4)), where 〈m1,m2|F,M〉 are the Clebsch-Gordan coeffi-
cients.

In the following we are interested in the first stage (linear regime) of the
spinor dynamics of a spin-2 (or spin-1) BEC initially prepared in the |0〉 sub-
level. Hence, the possible collisions, in this case, are:



94 Appendix B. Derivation of Linear regime Hamiltonian

Spin preserving collisions

{0, 0} → {0, 0} =⇒U0,0
0,0

= g0〈0, 0|0, 0〉〈0, 0|0, 0〉∗ + g2〈0, 0|2, 0〉
× 〈0, 0|2, 0〉∗ + g4〈0, 0|4, 0〉〈0, 0|4, 0〉∗
= g0

5
+ 2g2

7
+ 18g4

35
= c2

5
+ c0

{0, 1} → {0, 1} =⇒U0,1
0,1

= g2〈0, 1|2, 1〉〈0, 1|2, 1〉∗
+ g4〈0, 1; 4, 1〉〈0, 1|4, 1〉∗
= g2

14
+ 3g4

7
= c0+3c1

2{0,−1} → {0,−1}=⇒U0,−1
0,−1

= g2〈0,−1|2,−1〉〈0,−1|2,−1〉∗
+ g4〈0,−1|4,−1〉〈0,−1|4,−1〉∗
= g2

14
+ 3g4

7
= c0+3c1

2
= U0,1

0,1

Spin changing collisions

{0, 0} → {1,−1} =⇒U0,0
1,−1

= g0〈0, 0|0, 0〉〈1,−1|0, 0〉∗ + g2〈0, 0|2, 0〉
× 〈1,−1|2, 0〉∗ + g4〈0, 0|4, 0〉〈1,−1|4, 0〉∗
= −g0

5
− g2

7
+ 12g4

35
=− c2

5
+ 3c1

{1,−1} → {0, 0} =⇒U1,−1
0,0

= g0〈1,−1|0, 0〉〈0, 0|0, 0〉∗ + g2〈1,−1|2, 0〉
× 〈0, 0|2, 0〉∗ + g4〈1,−1|4, 0〉〈0, 0|4, 0〉∗
= −g0

5
− g2

7
+ 12g4

35
=− c2

5
+ 3c1=U0,0

1,−1

We use similar ways to calculate the coupling strength coeffiecents for all
possible collisions in spin-2 system, which are tabulated in Table 1.3.

Following the same way, the coupling constants for spin-1 are:

U0,0
0,0

=g0+2g2
3

U0,1
0,1

=U0,−1
0,−1

=g2
2

U0,0
1,−1

=U1,−1
0,0

=−g0+g2
3

Using the above coupling strength coeffiecients, the short-range interaction
part of the Hamiltonian in the linear regime takes the form

Ĥ lr
sr =

1

2

∫
d3~r

{
U0,0

0,0
ψ̂†0(~r)ψ̂†0(~r)ψ̂0(~r)ψ̂0(~r)

+ 4U0,1
0,1

[
ψ̂†0(~r)ψ̂†1(~r)ψ̂0(~r)ψ̂1(~r) + ψ̂†0(~r)ψ̂†−1(~r)ψ̂0(~r)ψ̂−1(~r)

]
+ 2U0,0

1,−1

[
ψ̂†0(~r)ψ̂†0(~r)ψ̂1(~r)ψ̂−1(~r) + ψ̂†1(~r)ψ̂†−1(~r)ψ̂0(~r)ψ̂0(~r)

]}
.

(B.4)

The free energy of the spinor system is described by K̂ = Ĥ0 + Ĥsr − µN̂ ,
where N̂ =

∑
m

∫
d3rψ̂†m(~r)ψ̂m(~r) is the total number operator of the system.
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Thus, this free energy in the linear regime becomes

K̂ =

∫
d3~r

{
ψ†0(~r)

[
− ~2

2M
∆ + V (~r)− µ

]
ψ̂0(~r)

+
∑
m=±1

ψ†m(~r)

[
~2

2M
∆ + V (~r) +m∇p · ~r + q − µ

]
ψ̂m(~r)

+
U0,0

0,0

2
ψ̂†0(~r)ψ̂†0(~r)ψ̂0(~r)ψ̂0(~r)

+ 2U0,1
0,1

[
ψ̂†0(~r)ψ̂†1(~r)ψ̂0(~r)ψ̂1(~r) + ψ̂†0(~r)ψ̂†−1(~r)ψ̂0(~r)ψ̂−1(~r)

]
+ U0,0

1,−1

[
ψ̂†0(~r)ψ̂†0(~r)ψ̂1(~r)ψ̂−1(~r) + ψ̂†1(~r)ψ̂†−1(~r)ψ̂0(~r)ψ̂0(~r)

]}
.

(B.5)

As it was mentioned in chapter 2, this first stages of the spinor dynamics
(linear regime) may be described by means of a Bogoliubov approximation
(see Ch. 5 for spin-1):

[ψ̂2(~r, t), ψ̂1(~r, t), ψ̂0(~r, t), ψ̂−1(~r, t), ψ̂−2(~r, t)]T =
[
(Ψ0(~r) + δΨ̂(~r, t))T

]
e−iµt.
(B.6)

where δΨ̂(~r, t)T = (δψ̂2(~r, t), δψ̂1(~r, t), δψ̂0(~r, t), δψ̂−1(~r, t), δψ̂−2(~r, t))T are small
fluctuations of the spinor field operator and Ψ0(~r)T = (0, 0, ψ0(~r), 0, 0)T is the
initial state of the condensate with ψ0(~r) and µ obtained by solving the time-
independent Gross-Pitaevskii equation Eq. (2.1).

Inserting Eq. (B.6) into Eq. (B.5), we obtain

K̂ =

∫
d3~r

{
(δψ†0(~r) + ψ∗0(~r))

[
− ~2

2M
∆ + V (~r)− µ

]
(δψ̂0(~r) + ψ0(~r))

+
∑
m=±1

δψ†m(~r)

[
~2

2M
∆ + V (~r) +m∇p · ~r + q − µ

]
δψ̂m(~r)

+
U0,0

0,0

2
(δψ̂†0(~r) + ψ∗0(~r))(δψ̂†0(~r) + ψ∗0(~r))(δψ̂0(~r) + ψ0(~r))(δψ̂0(~r) + ψ0(~r))

+ 4U0,1
0,1

[
(δψ̂†0(~r) + ψ∗0(~r))δψ̂†1(~r)(δψ̂0(~r) + ψ0(~r))δψ̂1(~r)

+ (δψ̂†0(~r) + ψ∗0(~r))δψ̂†−1(~r)(δψ̂0(~r) + ψ0(~r))δψ̂−1(~r)
]

+ 2U0,0
1,−1

[
(δψ̂†0(~r) + ψ∗0(~r))(δψ̂†0(~r) + ψ0(~r))δψ̂1(~r)δψ̂−1(~r)

+ δψ̂†1(~r)δψ̂†−1(~r)(δψ̂0(~r) + ψ0(~r))(δψ̂0(~r) + ψ0(~r))
]}
.

(B.7)
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Keeping terms up to second order in δψ̂m(~r), the above equation reduces to:

K̂ =

∫
d3~r

{
ψ∗0(~r)(− ~2

2M
∇2 + V (~r) +

U0,0
0,0

2
ψ2

0(~r)− µ)ψ0(~r)

+ δψ̂†0(~r)(− ~2

2M
∇2 + V (~r) + U0,0

0,0
ψ2

0(~r)− µ)δψ̂0(~r)

+
U0,0

0,0

2
ψ2

0(~r)(δψ̂†0(~r)δψ̂†0(~r) + δψ̂0(~r)δψ̂0(~r))

+ ψ∗0(~r)(− ~2

2M
∇2 + V (~r) + U0,0

0,0
ψ2

0(~r)− µ)δψ̂0(~r)

+ δψ̂†0(~r)(− ~2

2M
∇2 + V (~r) + U0,0

0,0
ψ2

0(~r)− µ)ψ0(~r)

+
∑
m=±1

δψ̂†m(~r)(− ~2

2M
∇2 + V (~r) + 2U0,1

01
ψ2

0(~r) +m∇p · ~r + q − µ)δψ̂m(~r)

+ U1,−1
0,0

ψ2
0(~r)(δψ̂†−1(~r)δψ̂†1(~r) + δψ̂1(~r)δψ̂−1(~r))

}
. (B.8)

In the above equation, as it was discussed in Ch. 2, the fourth and the fifth
terms vanish due to the time-independent GPE (2.1). The first term is the
free energy of the initial BEC, which is constant. The second and third terms
describe the dynamics of the density and phase fluctuations δψ̂0(~r) of the |0〉
BEC. Note that these fluctuations are decoupled from the spin fluctuations
δψ̂±1(~r) in the linear regime. The two last terms govern the dynamics of the
spin fluctuations in | ± 1〉, which clearly describes pair creation into | ± 1〉.

Therefore, the effective Hamiltonian that describes pair creation of atoms
into | ± 1〉 Zeeman sublevels acquires the form:

Ĥ±1 =

∫
d3~r

{ ∑
m=±1

δψ̂†m(~r)
[
Ĥeff (~r) +m∇p · ~r + q

]
δψ̂m(~r)

+ U1−1n0(~r)
[
δψ̂†−1(~r)δψ̂†1(~r) + δψ̂1(~r)δψ̂−1(~r)

]} (B.9)

with

Ĥeff (~r) = − ~2

2M
∇2 + Veff (~r) (B.10)

where Veff (~r) = V (~r) + 2U01
01
n0(~r) − µ and n0(~r) = ψ2

0(~r). Note that for the
sake of simplicity we use U00 for U00

00
and U1−1 for U00

1−1
in the thesis and it

is also clrear that 2U01
01

= U00
00

+ U00
1−1

. The last term of the above equation
originates from spin-changing collisions process, which convert atoms in the
|0〉 BEC into pairs of atoms in | ± 1〉 and vice-versa, resembles parametric
down conversion in optical parametric amplifiers.
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• The second-quantized magnetic dipole-dipole interactions is given by

Ĥdd =
∑
~m

∫
d3r d3r′ ψ̂†m1

(~r)ψ̂†m2
(~r ′)Udd

m1,m2
m3,m4

(~r, ~r ′)ψ̂m4(~r
′)ψ̂m3(~r), (B.11)

where

Udd
m1,m2
m3,m4

(~r, ~r ′) =
cdd

2|~r − ~r ′|3 ×
[
~̂Fm1m3 · ~̂Fm2m4 − 3

(
~̂Fm1m3 · ~ur

)(
~̂Fm2m4 · ~ur

)]
,

(B.12)
are the effective DDI coupling strength coeffiecents and ~ur = ~r−~r′

|~r−~r′| is the unit
vector along the relative interparticle distance.

In the following we follow a similar approach as in the short-range inter-
action part, i.e. we calculate the effective DDI coupling strength coefficients
for the first stage of the dynamics (linear regime):

Spin preserving collisions
for the collisions of {0, 1} → {1, 0}:

Udd
0,1
1,0

(~r, ~r ′) =
cdd

2|~r − ~r ′|3 ×
[
~̂F01 · ~̂F10 − 3

(
~̂F01 · ~ur

)(
~̂F10 · ~ur

)]
. (B.13)

Using ~̂Fm1m2 = ((F̂x)m1m2 , (F̂y)m1m2 , (F̂z)m1m2) and the matrix elements for
the Cartesian traceless spin-F = 2 and spin-F = 1 Pauli matrices, one can
easily see that

~̂Fm1m2 spin-2 spin-1

~̂F10 = ~̂F0−1 (
√

6
2
,−i

√
6

2
, 0) (

√
2

2
,−i

√
2

2
, 0)

~̂F01 = ~̂F−10 (
√

6
2
, i
√

6
2
, 0) (

√
2

2
, i
√

2
2
, 0)

~̂F00 (0, 0, 0) (0, 0, 0)

Thus, employing the values of ~̂F10and ~̂F01 for spin-2 into Eq. (B.13), we
get

Udd
0,1
1,0

(~r, ~r ′) =
cdd

2|~r − ~r ′|3 ×
[

12

4
− 18

4

(
(x− x ′)2 + (y − y ′)2

|~r − ~r ′|2
)]

=
−3cdd (1− 3 cos2 θrr ′)

4|~r − ~r ′|3
(B.14)

where cos θrr ′ = (z−z ′)
|r−r ′| .

Thus, for spin-2, following the same procedure, one obtains
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• {0,−1} → {−1, 0} : Udd
0,−1
−1,0

(~r, ~r ′) =
−3cdd(1−3 cos2 θrr ′)

4|~r−~r ′|3

• {0, 0} → {0, 0} : Udd
0,0
0,0

(~r, ~r ′) = 0 since ~̂F00 = (0, 0, 0).

Spin changing collisions
for the collision {0, 0} → {1,−1}, we have

Udd
0,0
1,−1

(~r, ~r ′) =
cdd

2|~r − ~r ′|3 ×
[
~̂F01 · ~̂F0−1 − 3

(
~̂F01 · ~ur

)(
~̂F0−1 · ~ur

)]
. (B.15)

Using the values of ~̂F01 and ~̂F0−1 for spin-2 in the above equation, we get

• {0, 0} → {1,−1} : Udd
0,0
1,−1

(~r, ~r ′) =
−3cdd(1−3 cos2 θrr ′)

4|~r−~r ′|3

• {1,−1} → {0, 0} : Udd
1,−1
0,0

(~r, ~r ′) =
−3cdd(1−3 cos2 θrr ′)

4|~r−~r ′|3

For spin-1 system, the above effective DDI coupling becomes

Udd
0,1
1,0

(~r, ~r ′) = Udd
0,−1
−1,0

(~r, ~r ′) = Udd
0,0
1,−1

(~r, ~r ′) =
−cdd(1−3 cos2 θrr ′)

4|~r−~r ′|3

Using these effective DDI coupling strengths, the linear regime part of the
DDI Hamiltonian becomes

Ĥ lr
dd =

∫
d3r d3r′

−αcdd (1− 3 cos2 θrr ′)

2|~r − ~r ′|3
{
ψ̂†1(~r)ψ̂†−1(~r ′)ψ̂0(~r)ψ̂0(~r ′)

+ ψ̂†0(~r)ψ̂†−1(~r ′)ψ̂−1(~r)ψ̂0(~r ′)

+ ψ̂†0(~r)ψ̂†1(~r ′)ψ̂1(~r)ψ0(~r ′)

} (B.16)

with α = 3 and 1 for spin-2 and spin-1 respectively.
Upon inserting Eq. (B.6) into Eq. (B.16) and keeping terms up to second

order in δψ̂m(~r), the Hamiltonian of the DDI in the linear regime takes the
form

Ĥ lr
dd =

∫
d3r d3r′ψ0(~r)ψ0(~r ′)Vdd(~r − ~r ′)

×
[
δψ̂†1(~r)δψ̂1(~r ′) + δψ̂†−1(~r)δψ̂−1(~r ′)

+ δψ̂†1(~r)δψ̂†−1(~r ′) + δψ̂1(~r)δψ̂−1(~r ′)

]
(B.17)

with Vdd(~r−~r ′) = αcdd
2|~r−~r′|3 (3 cos2 θrr ′ − 1). The last term is similar to the last

term in Eq. (B.9), and hence the DDI regularises the spin changing process,
which resembles parametric amplification process, i.e. depending on its sign
either it will enhance or reduce the amplification process.
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[87] F. Gerbier, A. Widera, S. Fölling, O. Mandel and I. Bloch, Resonant
control of spin dynamics in ultracold quantum gases by microwave dress-
ing, Phys. Rev. A 73, 041602 (2006).

[88] L. Santos, M. Fattori, J. Stuhler and T. Pfau, Spinor condensates with a
laser-induced quadratic Zeeman effect, Phys. Rev. A 75, 053606 (2007).

[89] L. Santos and T. Pfau, Spin-3 Chromium Bose-Einstein Condensates,
Phys. Rev. Lett. 96, 190404 (2006).

[90] A. Lamacraft, Quantum Quenches in a Spinor Condensate, Phys. Rev.
Lett. 98, 160404 (2007).

[91] R. W. Cherng and E. Demler, Magnetoroton Softening in Rb Spinor
Condensates with Dipolar Interactions, Phys. Rev. Lett. 103, 185301
(2009).

[92] T. Kuwamoto, K. Araki, T. Eno and T. Hirano, Magnetic field depen-
dence of the dynamics of 87Rb spin-2 Bose-Einstein condensates, Phys.
Rev. A 69, 063604 (2004).

[93] S. R. Leslie, J. Guzman, M. Vengalattore, J. D. Sau, M. L. Cohen and
D. M. Stamper-Kurn, Amplification of fluctuations in a spinor Bose-
Einstein condensate, Phys. Rev. A 79, 043631 (2009).

[94] P. Meystre and M. Sargent, Elements of quantum optics, Springer,
Berlin, 4th edition (2007).
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