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Zusammenfassung

In dieser Arbeit werden Singularitäten von Ballquotienten untersucht. Ballquo-
tienten erhält man als Quotienten des n-dimensionalen komplex hyperbolischen
Raums CHn nach einer speziellen arithmetischen Untergruppe Γ der Gruppe der
Automorphismen. Diese sind quasi-projektive Varietäten nach Ergebnissen von
W.L. Baily, Jr. und A. Borel. Es wird bewiesen, dass der Ballquotient kanon-
ische Singularitäten besitzt, solange n ≥ 12. Wir benutzen hierbei Techniken,
die auf einer Arbeit von V.A. Gritsenko, K. Hulek und G.K. Sankaran beruhen,
in der ähnliche Resultate für orthogonale modulare Varietäten bewiesen wer-
den. Weiterhin konstruieren wir eine toroidale Kompakti�zierung (Γ\CHn)∗ des
Ballquotienten, wobei wir benutzen, dass der Ballquotient eine Darstellung als
beschränktes symmetrisches Gebiet besitzt. Auch geben wir hierfür ein Resultat
über kanonische Singularitäten an.

Für unsere Untersuchungen ist es von entscheidender Bedeutung, dass sich das
Studium von Singularitäten lokal auf Quotienten V/G reduziert, wobei G eine
endliche Gruppe ist die auf dem Tangentialraum V operiert. Auch muss das der
Konstruktion zu Grunde liegende O-Gitter betrachtet werden, wobei O der Ring
der ganzen Zahlen des imaginär-quadratischen Zahlkörpers Q(

√
D) ist. Eine

genaue Untersuchung der auftretenden Darstellungen in Verbindung mit dem
Reid-Tai Kriterium liefert eine Schranke für die Dimension n. Die Konstruk-
tion einer toroidalen Kompakti�zierung benutzt Techniken der torischen Geome-
trie, wobei die Kompakti�zierung durch Arbeiten von A. Ash, D. Mumford, M.
Rapoport und Y.-S. Tai gegeben ist. Wir werden eine solche Kompakti�zierung
angeben, wobei die auftretenden torischen Varietäten durch Gitter vom Rang 1
gegeben sind. Zudem wird eine Schranke angegeben, so dass diese Kompakti-
�zierung kanonische Singularitäten besitzt. Hierfür werden Argumente benutzt,
die sich vorheriger Resultate im nicht-kompakten Fall bedienen.

Schlagworte: Ballquotient, kanonische Singularitäten, toroidale Kompakti�-
zierung
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Abstract

In this thesis we study the singularities of ball quotients obtained as quotients
of the n-dimensional complex hyperbolic space CHn by a special arithmetic sub-
group Γ of the automorphism group. This is actually a quasi-projective variety
by results of W.L. Baily, Jr. and A. Borel. We will prove that the ball quotient
has canonical singularities if n ≥ 12. We rely on techniques based on work of
V.A. Gritsenko, K. Hulek and G.K. Sankaran where similar results for orthogonal
modular varieties are obtained. Furthermore, we construct a toroidal compacti�-
cation (Γ\CHn)∗ from the ball quotient, using a representation of the latter as a
bounded symmetric domain. We also state a result about canonical singularities
for the compacti�ed ball quotient.

For this study, it is of crucial importance that the investigation of singularities can
locally be reduced to quotients V/G, with �nite group G acting on the tangent
space V . We also have to take into account the underlaying O-lattice, where O
is the ring of integers of an imaginary quadratic number �eld Q(

√
D). Examing

the relevant representations, coupled with the Reid-Tai criterion yields a bound
on the dimension n. Constructing a toroidal compacti�cation of the ball quotient
Γ\CHn requires framework provided by toric geometry and results of A. Ash, D.
Mumford, M. Rapoport and Y.-S. Tai. We will state this compacti�cation using
that the construction for ball quotients only needs toric varieties induced by rank
1 lattices. Furthermore, we prove a bound, such that this compacti�cation has
canonical singularities. For this purpose we use arguments that are based on
former results.

Keywords: Ball quotient, canonical singularities, toroidal compacti�cation
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Introduction

Modular varieties are much studied objects in algebraic geometry. V.A. Grit-
senko, K. Hulek and G.K. Sankaran studied modular varities of orthogonal type
(cf. [GHS07]). These modular varieties of orthogonal type appear when one wants
to study certain moduli spaces, for example the moduli space of K3 surfaces, or
the moduli space of polarised symplectic manifolds. For dimension n ≥ 9 they
prove that the corresponding compacti�ed modular variety has only canonical
singularities. This result was used to give a result on the Kodaira dimension of
the moduli space of polarised K3 surfaces of degree 2d. This moduli space is of
general type if d > 61.

The de�nition of unitary modular varieties is similar, i.e. the quasi-projective
varieties given by unitary groups instead of orthogonal groups. This thesis will
concentrate on the special case of ball quotient and will not regard unitary groups
in full generality.

Ball quotients also appear as moduli spaces, for example as the moduli space of
cubic threefolds which was studied by D. Allcock [All03] or as the moduli space
of cubic surfaces also investigated by D. Allcock together with J. Carlson and
D. Toledo [ACT02]. In the case of threefolds there are results on some stability
problems in terms of geometric invariant theory. For the surfaces they proved
that the moduli space of semistable cubic surfaces is in fact biholomorphic to the
Satake compacti�cation of a special 4-dimensional ball quotient and investigated
some relations between their orbifold structures.

Ball quotients in dimension 2, the ball quotient surfaces B2
C/Γ, were studied inten-

sively by R.-P. Holzapfel (see [Hol98, Hol81] for example). He calculated some

formulas for the Euler number e(B2
C/Γ) and the index τ(B2

C/Γ) for a smooth
model of the Baily-Borel compacti�cation of the surface. Furthermore he studied
arithmetic aspects of ball quotient surfaces and their singularities.

Since ball quotients have a representation as a bounded symmetric domain, one
can apply toroidal compacti�cation as studied by A. Ash, D. Mumford, M.
Rapoport and Y.-S. Tai [AMRT75]. They deliver the tools using constructions
from toric geometry. Y.-S. Tai proved that one can construct a projective com-

1



INTRODUCTION

pacti�cation under some assumptions.

These results will be used in this thesis to construct a toroidal compacti�cation
of ball quotients and study the singularities of these projective varieties. M. Reid
[Rei87] and Y.-S. Tai [Tai82] studied canonical singularities and proved a crite-
rion to decide when only these singularities occur.

Chapter 1 provides the techniques and de�nitions that will also be used in the
later chapters. After an introduction into quotient singularities, canonical sin-
gularities will be introduced. This is based on work of Y.-S. Tai [Tai82] and
M. Reid [Rei87]. In particular the Reid-Tai criterion will be stated which can be
used to determine canonical singularities in the situation of quotient singularities.
The last section leads to the construction of toroidal compacti�cations where this
thesis restricts to the case that the lattice on which the construction of the toric
variety is based has rank 1.

In Chapter 2, there will be an investigation of representation theory of a cyclic
group µr over a quadratic number �eld Q(

√
D). Classical results about the de-

compositions of cyclotomic polynomials over the number �eld Q(
√
D) will be

used to state all irreducible representations of µr. There will be a criterion to
determine the eigenvalues of such representations.

The ball quotient will be de�ned in Chapter 3. Using results of V.A. Gritsenko,
K. Hulek and G.K. Sankaran (cf. [GHS07]), we provide assumptions which en-
sure that Γ\CHn has canonical singularities. This will be done by �rst reducing
to the action of the stabilizer subgroup of a point [ω] on the tangent space at [ω]
and making heavy use of the Reid-Tai criterion. For D = −3 we list all elements
g ∈ Γ that could possibly lead to non-canonical singularities.

We construct a toroidal compacti�cation (Γ\CHn)∗ of the quasi-projective va-
riety Γ\CHn in Chapter 4. This will be done for the 0-dimensional boundary
components as described in the book [AMRT75]. Finally, we prove a theorem
about canonical singularities of the compacti�cation (Γ\CHn)∗.
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Notations

Z ring of integers
Q �eld of rational numbers
R �eld of real numbers
C �eld of complex numbers( ·
·

)
Kronecker symbol

(a, b) greatest common divisor for integers a, b
ϕ Euler's phi function
φr rth cyclotomic polynomial
{q} fractional part of a rational number q
HA complex conjugate transpose of a matrix A

CHn n-dimensional complex hyperbolic space
Pn

C n-dimensional complex projective space
Bn

C n-dimensional complex ball
U(Λ) automorphism group of lattice Λ
U(n, 1) unitary group of signture (n, 1)
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Chapter 1

Preliminaries

This chapter will give some tools for the future study of ball quotients. We will
start recalling some facts about singularities, where we �rst introduce quotient
singularities and reduce them to a quotient of Cn by a �nite subgroup of the group
of invertible n × n-matrices. Then we study canonical singularities and state a
criterion for these singularities in case when they arise as quotient singularities.
The last section will be devoted to the construction of a toroidal compacti�cation
of a bounded symmetric domain restricted to rank 1. For this compacti�cation
we state some properties.

1.1 Singularities

Singularities are a well-studied object in algebraic geometry. The goal of this
section is to state some important results by M. Reid and Y.-S. Tai.

1.1.1 Quotient Singularities

First we will follow D. Prill [Pri67] and H. Cartan [Car57] who investigated quo-
tient singularities.

Let M be a complex manifold and H a subgroup of the group of holomorphic
homeomorphisms of M that acts properly discontinously on M . Now denote by
M/H the space of orbits. This space turns out to be complex analytic.
As we want to study singularities we have to introduce an equivalence relation for
complex analytic spaces X1 and X2. Let p1 ∈ X1 and p2 ∈ X2, then we say that
two pairs (X1, p1) and (X2, p2) are locally isomorphic if there exist neighborhoods
U1 ⊂ X1, U2 ⊂ X2 of p1, p2 and a map f : U1 −→ U2, such that

(i) f is biholomorphic, and

(ii) f(p1) = p2.

7



1.1. SINGULARITIES

Now let G be a �nite subgroup of the general linear group GL(n,C). We de�ne

Cn/G

to be the normal analytic space. We want to say what we mean by a quotient
singularity:

De�nition 1.1. A quotient singularity is a singularity which is locally isomorphic
to a singularity M/H, where M and H a �nite group as above.

Now we can classify quotient singularities in the following way.

Lemma 1.2. Every quotient singularity is locally isomorphic to a pair (Cn/G, 0),
where G ⊂ GL(n,C) is a �nite subgroup and 0 ∈ Cn.

Proof. [Car57, p.97]

To give a more exact correspondance we need to de�ne a special class of matrices.

De�nition 1.3. An element g ∈ GL(n,C) is called a quasi-re�ection, if all but
one eigenvalues of g are equal to 1.

Now we can state a more precise result.

Lemma 1.4. Let G1, G2 ⊂ GL(n,C) be two �nite subgroups without quasi-
re�ections. Then the singularities (Cn/G1, 0) and (Cn/G2, 0) are locally isomor-
phic if and only if G1 and G2 are conjugated.

Proof. [Pri67, Theorem 2]

As before let G denote a �nite subgroup of GL(n,C). Now take N to be the
subgroup of G generated by its quasi-re�ections. This is a normal subgroup, and
the quotient G/N is isomorphic to a group without quasi-re�ections, which we
will callK. Then (Cn/G, 0) and (Cn/K, 0) are locally isomorphic by the following
proposition.

Proposition 1.5. Every quotient singularity (Cn/G, 0) is locally isomorphic to a
pair (Cn/K, 0), where K ⊂ GL(n,C) is a �nite subgroup without quasi-re�ections
and 0 ∈ Cn.

Proof. [Pri67, Proposition 6]

Thus it is enough when one works with groups without quasi-re�ections.
As we described the relations between groups and the corresponding singularities
we now want to know which groups give rise to smooth quotients.

Corollary 1.6. Let G ⊂ GL(n,C) be a �nite group. Then the quotient (Cn/G, 0)
is non-singular if and only if G is generated by quasi-re�ections.

Proof. [Pri67, Corollary of Theorem 2]

8



CHAPTER 1. PRELIMINARIES

1.1.2 Canonical Singularities

In the last section we introduced quotient singularities. Now we want to give a
criterion when they are `nice', namely canonical. In this section we �rst follow
the article of M. Reid [Rei87].
Let X be a normal, quasi-projective variety over C. We denote byKX a canonical
divisor of X. As we will mostly assume that X is singular, we will �rst tell what
we mean by the canonical divisor KX .
For this let Xsm := X−Sing(X) be the smooth part of X, where Sing(X) denotes
the singular locus of X. We have the natural inclusion map

ι : Xsm ↪→ X. (1.1)

Now we can de�ne a canonical divisor on X.

De�nition 1.7. A canonoical divisor KX on X is a Weil divisor, such that KX

coincides with a canonical divisor KXsm
of the smooth locus Xsm, when restricted

to Xsm.

Now we have everything together that we need to de�ne canonical singularities.

De�nition 1.8. A variety X has canonical singularities if the following holds:

(i) rKX is Cartier for some r ≥ 1, and

(ii) if f : X̃ −→ X is any resolution and {Ei} is the family of exceptional prime
divisors of the resolution f , then

rK eX = f ∗(rKX) +
∑

aiEi, where all ai ≥ 0. (1.2)

If one strengthens the conditions on the ai, one can de�ne stricter types of sin-
gularities.

Remark 1.9. If we assume in De�nition 1.8 that all ai > 0 then we say that X
has terminal singularities.

In a local situation we can de�ne what is meant if we say that a point is a
canonical singularity.

De�nition 1.10. A point x ∈ X is a canonical singularity if there exists a
neighbourhood of x that has canonical singularities.

There are some other de�nitions that should be made when one introduces canon-
ical singularities.

De�nition 1.11. (i) Let p ∈ X be a singularity. Then we call the smallest
r, such that rKX is Cartier in a neighboorhood U 3 p the index of the
singularity p.

9



1.1. SINGULARITIES

(ii) We de�ne the discrepancy of a resolution f : X̃ −→ X as

∆ := K eX − f ∗KX .

If one thinks of ∆ as a Q-divisor, one can write ∆ =
1

r

∑
aiEi.

From now on we will restrict to the case that X = M/G, where M = Cn and G
is a �nite subgroup of GL(M). In the following we will describe criteria when the
quotient singularity 0 ∈ X is a canonical singularity. We make use of statements
of Y.-S. Tai [Tai82] and M. Reid [Rei87].
We will use the abbreviation Xg for the quotient M/ 〈g〉, where 〈g〉 denotes the
cyclic subgroup of G generated by g ∈ G.
Let s be a G-invariant pluricanonical form on M , which we denote by
s ∈ H0(M,OM(kKM))G for some integer k.
Then the quasi-projective variety X has canonical singularities if and only if s
lifts holomorphically to every resolution X̃. That means that if we regard the
form s as a meromorphic form on X̃ it does not have poles on any exceptional
divisor Ei. This statement corresponds to ai ≥ 0 in the de�nition of canonical
singularities. A resolution of Xg is denoted by X̃g.

Lemma 1.12. A form s ∈ H0(M,OM(kKM))G extends to X̃ if and only if it

extends to X̃g for every g ∈ G.
Proof. [Tai82, Proposition 3.1]

But when s is a G-invariant form, then it is automatically 〈g〉-invariant. This
leads to

Proposition 1.13. X has canonical singularities, if Xg has canonical singular-
ities for every g ∈ G.
Proof. This follows directly from the discussion above and Lemma 1.12.

Note that the other direction is in general not true. But if we restrict to groups
without quasi-re�ections, we get a better result.

Proposition 1.14. Let G be a �nite group as above without quasi-re�ections.
Then X has canonical singularities if and only if Xg has canonical singularities
for every g ∈ G.
Proof. [Rei80, Remark 3.2]

Finally we want to state a criterion for canonical singularities. Therefore let
g ∈ GL(M) be an element of order m and ζ = ζm be a primitive mth root of
unity. Assume that

g ∼

 ζa1

. . .

ζan

 , (1.3)

10



CHAPTER 1. PRELIMINARIES

where 0 ≤ ai < m. For this element g and the eigenvalues ζai we make a
de�nition.

De�nition 1.15. We call

Σ(g) :=
1

m

n∑
i=1

ai (1.4)

the Reid-Tai sum of g.

The Reid-Tai sum is the right object to study, in order to decide ifX has canonical
singularities.

Theorem 1.16 (Reid-Tai criterion). Let G be a �nite subgroup of GL(M) without
quasi-re�ections. Then X = M/G has canonical singularities if and only if

Σ(g) ≥ 1

for every g ∈ G, g 6= id.

Proof. [Rei87, (4.11)] and [Tai82, Theorem 3.3].

Remark 1.17. (i) The statement of the theorem is independent of the choice
of ζ as with g ∈ G every power of g lies in G.

(ii) We can assume that every element of G can be written in the form (1.3),
because g has �nite order as G is �nite.

1.2 Toroidal Compacti�cation

We will deal with quasi-projective non-compact varieties. Often one wants to
be in a compact setting. Therefore one needs to compactify the quasi-projective
variety. There are some di�erent compacti�cations, e.g. the Baily-Borel com-
pacti�cation, or a toroidal compacti�cation. As the Baily-Borel compacti�cation
is minimal but usually highly singular and we later want to describe the singu-
larities of the compacti�cation, we will deal with toroidal compacti�cation.
As we will not need toroidal compacti�cation in full generality we will restrict
ourself to a special case and skip some of the details. A good reference for the fol-
lowing is the book of A. Ash, D. Mumford, M. Rapoport and Y.-S. Tai [AMRT75].
We will sometimes cite K. Hulek, C. Kahn and S.H. Weintraub [HKW93, I.3], as
they stated the toroidal compacti�cation of the moduli space of abelian surfaces
and these results generalize to arbitrary quotients of bounded symmetric domains.
Therefore we will give this book as a reference whenever the generalization holds.

11



1.2. TOROIDAL COMPACTIFICATION

1.2.1 Basics

Let D ⊂ Cn be a realization as a bounded symmetric domain and Aut(D) the
automorphism group of D. Let G ⊂ Aut(D) be an arithmetic subgroup.
In the following we want to sketch the steps that lead to a special compacti-
�cation of X(G) := D/G which we will denote by (D/G)∗ and call a toroidal
compacti�cation.
As we will see we �rst have to compactify the quotient locally around a boundary
component. We will speak of this as `in direction of the boundary components of
X(G)'. We denote by D the closure of D in the ambient space Cn.
First give some de�nitions.

De�nition 1.18. (i) We say that two points p1, p2 ∈ D are equivalent, denoted
p1 ∼ p2, if they could be connected by �nitely many holomorphic curves

(ii) We de�ne a boundary component of D to be an equivalence class of a point
p ∈ D.

(iii) We will denote the set of all boundary components by F .

(iv) A boundary component is called proper if it lies only on the border, i.e. on
D −D.

We have group G acting on the space D. This action extends naturally to D and
therefore we give a de�nition what this actions means for boundary components.

De�nition 1.19. Two boundary components F1, F2 ∈ F are called congruent if
there exist an g ∈ G with g(F1) = F2.

Usually one should also de�ne a partial ordering on F , called adjacency. This is
not required here, as our boundary components will all be of the same dimension
0.

1.2.2 Local compacti�cation

For the compacti�cation we need to de�ne stabilizing groups of the boundary
components F . Therefore let GR := G⊗Z R.

De�nition 1.20. (i) For the boundary component F ∈ F we can de�ne

N(F ) := {g ∈ GR; g(F ) = F} , (1.5)

which is called the stabiliser group of F .

(ii) We call F ∈ F rational if N(F ) is de�ned over Q.

In the following we will mention a correspondance of boundary components and
subspaces. First we have to introduce the notion of isotropic subspaces.

12



CHAPTER 1. PRELIMINARIES

De�nition 1.21. A subspace U ⊂ Cn is called isotropic (with respect to the form
〈·, ·〉), if

〈u1, u2〉 = 0

holds for all u1, u2 ∈ U .

To each rational boundary component F ∈ F one can associate a rational
isotropic subspace UF . Equivalently to the de�nition above we could call F
rational if the corresponding subspace UF is rational.
From the theory we have to restrict this group to the arithmetic subgroup G.
Hence we will de�ne

N(F )Z := N(F ) ∩G. (1.6)

Now we will introduce some more groups, deduced from N(F ), which we will
need to go on in the compacti�cation process.

De�nition 1.22. (i) First de�ne some subgroups.

(a) We denote by W (F ) the unipotent radical of N(F ).

(b) Let U(F ) be the centre of W (F ), i.e.

U(F ) = {g ∈ W (F ); gh = hg for all h ∈ W (F )} .

(ii) Now we will restrict to G as in the case of N(F ):

U(F )Z := U(F ) ∩G. (1.7)

(iii) De�ne

G(F ) := N(F )Z/U(F )Z. (1.8)

In the following we will discuss some quotients and give a concrete construction.
As all groups mentioned above are subgroups of the automorphism group of D
we can de�ne the quotient of D by these groups.

De�nition 1.23. The partial quotient D(F ) of D(with respect to the the bound-
ary component F ) is given by

D(F ) := D/U(F )Z. (1.9)

Furthermore the partial quotient map will be denoted by

q(F ) : D −→ D(F ).

13



1.2. TOROIDAL COMPACTIFICATION

Now we can give a �rst theorem which shows how toroidal compacti�cation will
work. But before this we should mention that the group U(F )Z is a Z-lattice of
rank, say r in the C-vector space

U(F )C := U(F )Z ⊗Z C,

which is therefore of dimension r.

Theorem 1.24. Let F be a rational boundary component of D. Then there exists
a trivial torus bundle D(F ) with �bre

T := U(F )C/U(F )Z ∼= (C∗)r

over F × (W (F )/U(F )), such that

(i) D(F ) is isomorphic to an open subset of D(F ), and

(ii) the action of G(F ) on D(F ) extends to D(F ).

Proof. [AMRT75, III.4]

From now on we will restrict our discussion to the case that the rank of the lattice
U(F )Z is 1 and therefore T ∼= C∗ in the formulation of Theorem 1.24.
The following usually requires more knowledge of toric geometry. As we are
restricting to the rank 1 case, however, we will not give precise de�nitions of the
objects and the techniques we will use, but say what can occur in our case. For
more details about toric geometry we refer the reader to the book of T. Oda
[Oda88].
First we will sketch the general contruction. We have to choose a `fan' Σ := Σ(F )
in U(F ) over R for every F . This has to be `admissible' in the sense of Namikawa
[Nam80, De�nition 7.3] and this restricts the choice of the fan, e.g. there has to
be a compatibility with the group action.
A fan consists of `strongly convex rational polyhedral cones' σ which has to ful�ll
some additional properties. To a cone σ one can associate a so called `dual cone'
σ∨ (cf. [Oda88, 1.1]).
From this admissible fan we can construct a `toric variety' TΣ. In this construction
the dual cone appears. After this we want to `replace' the torus T mentioned
before by the toric variety TΣ.
Now we will discuss what can happen in the rank 1 case. The strongly convex
rational polyhedral cones that can occur are

{0}, σ+ := R≥0 and σ− := −σ+.

Now we want to choose an admissible fan Σ which has to be a suitable subset
of {{0}, σ+, σ−}. As we have rank 1 there are only two choices of the admissible
fan, in fact

Σ = {{0}, σ±}. (1.10)

14
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We already mentioned dual cones. Here

σ∨± = σ±, {0}∨ = R = σ+ ∪ σ−.

Thus σ± is self-dual. It turns out directly that for each of the two choices for the
fan Σ

TΣ = C = Spec C[x].

In our construction this toric variety is an essential part of the compacti�cation
of the space X(G).

De�nition 1.25. For a rational boundary component and the admissible fan
Σ(F ) as above we de�ne

(i) DΣ(F ) := D(F )×T TΣ, and

(ii) DΣ(F ) := (D(F ))0 as the interior of D(F ), where D(F ) denotes the closure
of D(F ) ⊂ DΣ(F ).

Now we are in the right set-up to give a result for the partial compacti�cation of
D/N(F )Z.

Proposition 1.26. The induced action of G(F ) on D(F ) extends uniquely to a
properly discontinous action on DΣ(F ).
The space

XΣ(F ) := DΣ(F )/G(F )

is an analytic variety. Assume that DΣ(F ) is smooth, then XΣ(F ) has at worst
�nite quotient singularities.

Proof. [AMRT75, III.6 Proposition 2]

Now we can de�ne the boundary of this quotient space.

De�nition 1.27. The boundary of XΣ(F ) is de�ned as

∂XΣ(F ) := XΣ(F )− (D/N(F )Z).

It turns out from the theory that ∂XΣ(F ) is a divisor on XΣ(F ).
Now we can seeXΣ(F ) as a partial compacti�cation ofD/N(F )Z. But we want to
have a partial compacti�cation of X(G). This could be achieved by the following.

Proposition 1.28. Let F ∈ F be a rational boundary component. Then there
exist a N(F )Z-invariant interior neighborhood U of F in D, such that there is a
local isomorphism

p(F ) : D/N(F )Z −→ X(G),

when restricted to U , induced by the inclusion U ⊂ D.

Proof. [HKW93, Proposition 3.47]

With the map from the previous Proposition we can attach the divisor ∂XΣ(F )
to D/G with the help of the isomorphism p(F ) around F and achieve a partial
compacti�cation of D/G in the direction of the boundary component F .

15
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1.2.3 Global construction

In the last section we have constructed a partial compacti�cation in the direction
of F . Now we will make precise what to do to glue all these partial compacti�-
cations together. Remember that we restricted ourself to the case r = 1.
First we collect all fans with respect to the rational boundary components:

Σ̃ := {Σ(F ); F is a rational boundary component}. (1.11)

Similarly to the fans (where only certain choices of admissible fans were allowed),
one has to de�ne what is meant by an admissible collection of fans.

De�nition 1.29. We call a collection of fans Σ̃ (in the rank 1 case) admissible,
if

(i) every Σ(F ) ∈ Σ̃ is admissible, i.e. it is of the form (1.10), and

(ii) for two rational boundary components F1, F2 with F1 = g(F2) for an g ∈ G,
it follows that Σ(F1) = gΣ(F2)g

−1.

Now we have to say how one gets from one partial compacti�cation to another.

Proposition 1.30. Let F1 and F2 be two rational boundary components, such
that F1 = g(F2) for an g ∈ G as above. Additionally let Σ(F1), Σ(F2) be two fans
in U(F1), U(F2), such that Σ(F1) = gΣ(F2)g

−1. Then

(i) the diagram

DΣ(F2)(F2)
g̃ // DΣ(F1)(F1)

D/U(F2)Z
g //

?�

OO

D/U(F1)Z
?�

OO

commutes, and g̃ is an isomorphism, and

(ii) the diagram

XΣ(F2)(F2)
g // XΣ(F1)(F1)

D/N(F2)Z
g //

?�

OO

D/N(F1)Z
?�

OO

commutes, and g is an isomorphism

Proof. [HKW93, Proposition 3.69]

We can now de�ne the toroidal compacti�cation of D/G. Remember that Σ̃
denotes an admissible collection of fans.

16
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First we have to de�ne

D(Σ̃) :=
⊔

F∈F rational

DΣ(F )(F ), (1.12)

as a disjoint union, where Σ(F ) ∈ Σ̃. Next we want to identify points of D(Σ̃)
with the help of an equivalence relation.

De�nition 1.31. Let D(Σ̃) and Σ̃ be as in (1.12). Let F1, F2 be rational bound-
ary components. Then for xi ∈ DΣ(Fi)(Fi), i = 1, 2, the points x1 and x2 are
equivalent, denoted x1 ' x2, if there exist an g ∈ G with the property F1 = g(F2),
such that

x1 = g̃x2,

for g̃ as in Proposition 1.30.

Finally we can de�ne the toroidal compacti�cation constructed by such a collec-
tion Σ̃.

De�nition 1.32. Let Σ̃ = {Σ(F )} be an admissible collection of fans. Then we
will call

X(G)∗ = (D/G)∗ := D(Σ̃)/ '

the toroidal compacti�cation of D/G given by Σ̃.

Remark 1.33. The map p(F ) from Proposition 1.28 can be extended to a map

p(F ) : XΣ(F )(F ) −→ X(G)∗.

Now we have constructed a toroidal compacti�cation of D/G. This compacti�-
cation has some nice properties.

Theorem 1.34. Let (D/G)∗ be a toroidal compacti�cation of D/G constructed

by an admissible collection of fans Σ̃ = {Σ(F )}. Then the following statements
hold

(i) (D/G)∗ is compact,

(ii) D/G is an open and dense subset of (D/G)∗,

(iii) ∂(D/G)∗ := (D/G)∗ −D/G is a Weil divisor,

(iv) the map p(F ) is an isomorphism when restricted to a su�ciently small
neighborhood of the boundary of XΣ(F )(F ),

(v) X(G)∗ is the union of the images of p(F ) for all F .

Proof. [HKW93, Theorem 3.82, Remark 3.77(i)]

17



1.2. TOROIDAL COMPACTIFICATION

A property one usually wants to have for a compacti�cation is to be a projective
variety. The projectivity follows directly if the admissible collection of fans is
`projective', i.e. that there exisits a `polarization function' in the sense of G.
Faltings and C.-L. Chai [FC90, IV. De�nition 2.4]. As we are in the rank 1 case
every admissible collection of fans is automatically projective.

Theorem 1.35. Let (D/G)∗ be a toroidal compacti�cation de�ned by Σ̃, where Σ̃
is a projective admissible collection of fans. Then (D/G)∗ is a projective variety.

Proof. [AMRT75, IV.2 Theorem]
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Chapter 2

Representation theory and number

�elds

The representation theory of cyclic groups over Q is well understood. In the
case of quadratic number �elds there are some results we will use to classify all
irreducible representations of the cyclic group. In this chapter we will �rst recall
some classical results on irreducibilty of cyclotomic polynomials which give all
number�elds over which a given cyclotomic polynomial is reducible. Then we
mention some correspondences for irreducible factors of cyclotomic polynomials
corresponding to the quadratic number �eld. Finally we state all irreducible
representations of the cyclic group over this �eld.

2.1 Cyclotomic polynomials

In this section we consider reducibility of cyclotomic polynomials over several
quadratic number �elds. It is well-known that the rth cyclotomic polynomial is
irreducible over the rationals.
In this section we provide the full list of quadratic number �elds over which the
rth cyclotomic polynomial is reducible. Mostly we follow arguments given by L.
Weisner [Wei28].
Let r ∈ N and r ≥ 2.

De�nition 2.1. The rth cyclotomic polynomial is de�ned as

φr(x) =
r∏

i=1
(i,r)=1

(x− ζ i), (2.1)

where ζ := ζr is a primitive rth root of unity.

Since the exponents i of the roots of (2.1) are chosen coprime to r, the power ζ i

is also a primitive rth root of unity. Via this construction one gets all primitive
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rth roots. Therefore the cyclotomic polynomial is independent of the choice of
ζr. It is a classical result that φr(x) has integer coe�cients for all r.
Another fact is

φ2r(x) = φr(−x),

for odd r. This is true because the only primitive 2nd root of unity is −1 ∈ Q.

Remark 2.2. A common choice for a primitive rth root of unity is

ζr := e
2πi
r .

Now we can give some results on irreducibility. We start with a result for the
rationals.

Lemma 2.3. The polynomial φr is irreducible over Q.

Proof. [Was82, Chapter 2]

Thus, over the rationals, there is nothing more to say about irreducibility. How-
ever, when one uses quadratic number �elds instead of the rationals the situation
becomes more complicated. We write Q(

√
D) for the quadratic number �eld,

where D ∈ Z\{0, 1} is squarefree.
When we have two such number �elds where a given cyclotomic polynomial is
reducible we want to construct a third one with this property. The following
lemma will make this more precise.

Lemma 2.4. Assume that φr is reducible over Q(
√
D1) and Q(

√
D2), where

Q(
√
D1) and Q(

√
D2) are distinct �elds. Then φr is reducible over Q(

√
D1 ·D2).

Proof. [Wei28, Lemma 1]

Another property to which we will refer later, is that a `divisibility property'
of two cyclotomic polynomials preserves reducibility over the same quadratic
number �eld.

Lemma 2.5. Assume that φr is reducible over Q(
√
D) and choose r′ with r

divides r′. Then the cyclotomic polynomial φr′ is reducible over Q(
√
D).

Proof. [Wei28, Lemma 2]

We introduced some technical results which will be used to �nd `enough' quadratic
number �elds.
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CHAPTER 2. REPRESENTATION THEORY AND NUMBER FIELDS

2.1.1 Reducibility

We now state a list of quadratic number �elds that leads to reducible cyclotomic
polynomials. Therefore we get a lower bound for the number of all such quadratic
number �elds.
We now �x r ≥ 2 and investigate the behaviour of φr for some number �elds as
before using results of [Wei28].
We have to use the prime factorization of r. In the following we assume that r is
of the form

r = 2a0pa1
1 · · · pas

s , (2.2)

where the pi are distinct odd prime numbers with ai ≥ 1 for i ≥ 1 and a0 ≥ 0.
Already Gauss investigated the behaviour of cyclotomic polynomials over such
�elds. The rest of this section relies on one of Gauss' theorems.

Theorem 2.6 (Gauss). Let p be an odd prime number.Then the pth cyclotomic

polynomial φp is reducible over the �eld Q
(√

(−1)
p−1
2 p

)
.

Proof. [Gau66, 357.]

Using this theorem one can state a �rst estimate for the number of those number
�elds. We use the lemma above and the fact that r has s distinct odd prime
factors.

Lemma 2.7. There are at least 2s − 1 quadratic number �elds over which the
cyclotomic polynomial φr is reducible.

Proof. We know that φr is reducible over Q
(√

(−1)
pi−1

2 pi

)
for all i by Gauss

and Lemma 2.5 . By Lemma 2.4, the polynomial φr is reducible over Q(
√

∆),
where ∆ = ∆(r) is of the form

∆ =
∏
i∈A

(−1)
pi−1

2 pi,

for all non-empty subsets A ⊂ {1, . . . , s} and odd prime numbers pi as in (2.2).
Collectively there exist

s∑
k=1

(
s

k

)
=

s∑
k=0

(
s

k

)
− 1

= 2s − 1

such quadratic number �elds.
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Up to this point we have only used the odd prime numbers pi in the factorization
of r and not the factor 2a0 . When a0 ≥ 2 there appear more quadratic number
�elds.
For this we state the explicit form of the 2a0th cyclotomic polynomial. First we
have to state a well-known decomposition.

Remark 2.8. Let n be a positive integer. Then

xn − 1 =
∏
d|n

φd.

It is now easy to calculate that

φ2a0 (x) = x2a0−1

+ 1. (2.3)

This can be shown easily if one writes

x2a0 − 1 =
∏
d|2a0

φd

and x2a0−1 − 1 =
∏

d|2a0−1

φd.

When one substitutes y := x2a0−1
, it follows that:

φ2a0 (x) =
x2a0 − 1

x2a0−1 − 1

=
y2 − 1

y − 1
= y + 1

= x2a0−1

+ 1.

Now we �rst assume a0 ≥ 2 and construct a speci�c decomposition of the poly-
nomial (2.3).

Lemma 2.9. Let a0 ≥ 2. Then the cyclotomic polynomial φ2a0 is reducible over
Q(i) = Q(

√
−1).

Proof. An easy calculation shows that(
x2a0−2

+ i
)
·
(
x2a0−2 − i

)
= x2a0−1

+ 1 = φ2a0 (x).

This lemma enables us to expand the list of quadratic number �elds given in
Lemma 2.7.

22
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Lemma 2.10. If a0 ≥ 2, then there exist at least 2s+1−1 quadratic number �elds
over that φr is reducible.

Proof. Since 2a0 divides r, the polynomial φr is reducible over Q(i) by Lemma 2.5.
In addition, Lemma 2.7 implies reducibility over Q(

√
∆). Hence the cyclotomic

polynomial is reducible over

Q(
√
±∆) and Q(i). (2.4)

Altogether we have

2 · (2s − 1) + 1 = 2s+1 − 1 (2.5)

distinct such quadratic number �elds. In the formula (2.5) the 2s− 1 comes from
Lemma 2.7, the factor 2 from the ± in (2.4) and the summand 1 appears because
of the number �eld Q(i).

When one even assumes a0 ≥ 3 one gets a further decomposition.

Lemma 2.11. If a0 ≥ 3, then there exist at least 2s+2−1 quadratic number �elds
over that φr is reducible.

Proof. For a0 ≥ 3 we want to factor the polynomial φ2a0 (x) = x2a0−1
+ 1 over

Q(
√

2) in a di�erent way than we did before. We have

x2a0−1

+ 1 =
(
x2a0−2

+
√

2x2a0−3

+ 1
)
·
(
x2a0−2 −

√
2x2a0−3

+ 1
)
.

With an analogous statement as in Lemma 2.10 we can construct the number
�elds

Q(i), Q(
√
±2), Q(

√
±∆) and Q(

√
±2∆) (2.6)

with the required property. Thus we get

1 + 2 ·

(
s+1∑
k=0

(
s+ 1

k

)
− 1

)
= 1 + 2 · 2s+1 − 2 (2.7)

= 2s+2 − 1

quadratic number �elds. In (2.7) we get the summand 1 again from the �eld Q(i)
and the factor 2 from the ±. The expression in the brackets is the number of all
non-empty subsets of a set with s+1 elements which is the number of all possible
choices of a product with factors 2, p1, . . . , ps.

Now we can state a bound on the number of number �elds which lead to reducible
cyclotomic polynomials φr, only depending on the prime factorization of r.
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Corollary 2.12. Let φr be the rth cyclotomic polynomial and r = 2a0pa1
1 · · · pas

s ,
with a0 ≥ 0 and ai ≥ 1, i = 1, . . . , s. Then the number of distinct quadratic
number �elds over which φr is reducible is at least

(i) 2s − 1, if 4 6 |r,

(ii) 2s+1 − 1, if 4|r,

(iii) 2s+2 − 1, if 8|r.

Proof. This follows at once from the Lemmas 2.7, 2.10 and 2.11.

2.1.2 Galois theory

So far we know the minimal number of quadratic number �elds which imply
reducibility of φr, since we constructed them explicitly. Now we mention tools
which will lead to the maximum number of such �elds. To do this, we have to
use Galois theory.
In the previous section we only considered quadratic number �elds. Now we must
use number �elds of higher degree, namely the cyclotomic �elds Q(ζr), where ζr
is a primtive rth root of unity. Note that the cyclotomic �eld is the splitting
�eld of the polynomial φr. This follows easily because if one primitive rth root
of unity lies in the �eld then every power of the root is also an element. Thus all
zeroes of φr lie in the cylotomic �eld and it is therefore the splitting �eld of φr.
First we de�ne G to be the Galois group

G = Gal(Q(ζr)/Q).

There is a classical description of the group G given by the isomorphism

G ∼= (Z/rZ)∗ . (2.8)

Here (Z/rZ)∗ denotes the group of units of the cyclic group Z/rZ.
In the following we want to count all intermediate �elds of degree 2 over Q of
the �eld extension Q(ζr)/Q. This relies on the fact that the degree of the �eld
extension is [Q(ζr) : Q] = ϕ(r), where ϕ denotes Euler's phi function.
Therefore assume the cyclotomic polynomial φr to be reducible of over a quadratic
extension of Q which is not a sub�eld of Q(ζr). Then it is not possible that Q(ζr)
is the splitting �eld of degree ϕ(r) corresponding to the polynomial φr. This
gives a contradiction. So �nding all intermediate quadratic �elds will be an
upper bound on the number of �elds over which φr is reducible.
Now we can rephrase this problem using Galois theory. The problem of �nding
these sub�elds is equivalent to �nding all subgroups of G of index 2.
The following is a classical result that solves this problem.
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Lemma 2.13. Let r be as in (2.2). The number of subgroups of index 2 of the
group (Z/rZ)∗ is

(i) 2s − 1, if 4 6 |r,

(ii) 2s+1 − 1, if 4|r but 8 6 |r and

(iii) 2s+2 − 1, if 8|r.

Proof. [Wei28, Section 6]

2.1.3 A Result

In 2.1.1 and 2.1.2 we �rst constructed quadratic number �elds such that the
cyclotomic polynomial φr decomposes. Then we gave an upper bound on the
number of number �elds of degree 2 with this property. Now we will combine
these two results and provide a complete list of such �elds.

Theorem 2.14. Let r be as in (2.2). Then the only quadratic number �elds over
which the cyclotomic polynomial φr is reducible are

(i) Q(
√
D), where D = ∆ =

∏
i∈A(−1)

pi−1

2 pi, for all non-empty subsets A ⊂
{1, . . . , s}, if 4 6 |r,

(ii) Q(i) and Q(
√
D), where D = ±∆, for ∆ as in (i), if 4|r and 8 6 |r,

(iii) Q(i) and Q(
√
D), where D = ±∆ or D = ±2∆, for ∆ as in (i), if 8|r.

Proof. As the lower bound equals the upper bound by Corollary 2.12 and Lemma
2.13, this follows directly from the discussion in 2.1.1.

For this result we give two easy examples, which will show how one can �nd
number �elds explicitly.

Examples 2.15. (a) r = 35 = 5 · 7. Then the 22 − 1 = 3 quadratic number
�elds mentioned in Theorem 2.14 are:

Q(
√

5), Q(
√
−7) and Q(

√
−35).

(b) r = 36 = 22 ·32. Then we also have 21+1−1 = 3 such number �elds, namely

Q(i) and Q(
√
±3).
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2.2 Eigenvalues of cyclotomic polynomials

In the last section we discussed the quadratic number �elds where φr splits.
Now we will focus on the case where φr factorizes for such a number �eld. We
are interested in the zeroes of the irreducible factors and how they behave for
di�erent number �elds as in Theorem 2.14.
First recall the de�nition of the rth cyclotomic polynomial.

φr(x) =
r∏

i=1
(i,r)=1

(x− ζ i),

where ζ is a primitive rth root of unity (cf. (2.1)). As already mentioned before
the zeroes of φr are the primitive rth roots of unity.
Assume that φr(x) is reducible over a quadratic number �eld Q(

√
D). Then it

has to decompose into two irreducible polynomials of degree ϕ(r)
2

with coe�cients

in Q(
√
D).

This can be best seen studying the diagram

Q(ζ)

ϕ(r)
2

Q(
√
D)

2

Q

The numbers along the lines denote the degree of the �eld extensions. Since we
assumed that φr is reducible, we will write

φr(x) = φ′r(x) · φ′′r(x). (2.9)

Assume that the degree of φ′r is less than φ(r)
2
. Then the degree of the �eld

extension Q(
√
D) ⊂ Q(ζr) would be also less than φ(r)

2
. This contradicts the

degree of the splitting �eld over Q. Therefore the polynomials φ′r and φ′′r are
de�ned over a quadratic number �eld Q(

√
D) as in Theorem 2.14 with deg φ′r =

deg φ′′r = ϕ(r)
2
.

Choose ζr := e
2πi
r to be a generator of the group of r-th roots of unity. Clearly

ζr is primitive by de�nition. Without loss of generality we choose φ′r such that

φ′r(ζr) = 0. (2.10)

This is equivalent to φ′′r(ζr) 6= 0.
We want to calculate all roots of φ′r (and therefore also the roots of φ′′r). Now we
need a criterion for the roots of φr that distinguishes zeroes of φ

′
r from zeroes of

φ′′r .
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There is a natural map between Galois groups of the �elds introduced before
which induces a map that distinguishes the roots. The following diagram makes
this more precise:

Gal(Q(ζr)/Q)
f //

∼=
��

Gal(Q(
√
D)/Q) // Gal(Q/Q)

(Z/rZ)∗
f̃ // {±1} // {idQ}

(2.11)

In this diagram +1 denotes the action on Q(
√
D) as the identity and −1 the

action as conjugation, i.e.

− 1 : a+ b
√
D 7−→ a− b

√
D. (2.12)

The Galois group Gal(Q(
√
D)/Q) = {±1} also acts on φ′r and φ

′′
r by the action

on the coe�cients. Therefore we obtain

+ 1 : φ′r 7→ φ′r, φ′′r 7→ φ′′r , (2.13)

−1 : φ′r 7→ φ′′r , φ′′r 7→ φ′r. (2.14)

In the following, we refer to a map f which has the properties requested by the
diagram. To be more precise, it must map a ∈ Gal(Q(ζr)/Q) to +1 resp. −1 in
Gal(Q(

√
D)/Q), i.e. f(a) = +1 resp. f(a) = −1.

If f(a) = +1 we want to get φ′r(ζ
ã
r ) = 0, were ã is the image of a by the vertical

isomorphism between the Galois group of the cyclotomic �eld and the group of
units. From now on we identify a and ã.
We can rephrase this question as �nding all a ∈ (Z/rZ)∗ with the property
f̃(a) = +1.
For this we will state some well-known maps coming from number theory.
First we introduce a map de�ned only for odd primes.

De�nition 2.16. Let b ∈ Z and p an odd prime number. Then the Legendre
symbol is de�ned as(

b

p

)
:=


1, if b is a quadratic residue modulo p,

−1, if b is a quadratic non-residue modulo p,
0, if p divides b.

We want to use not only primes but also integers. There is a well-known gener-
alization of this symbol.

De�nition 2.17. For all b ∈ Z, n = u ·
∏k

i=1 p
ei
i , with ei > 0, u a unit and pi a

prime, we de�ne the Kronecker symbol(
b

·

)
: Z −→ {0,±1}
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by (
b

n

)
:=

(
b

u

)
·

k∏
i=1

(
b

pi

)ei

, where (2.15)(
b

pi

)
denotes the Legendre symbol for pi > 2

(
b

2

)
:=


1, if b ≡ 1 or b ≡ 7 mod 8,

−1, if b ≡ 3 or b ≡ 5 mod 8,
0, if 2|b,

(2.16)

and

(
b

1

)
:= 1,

(
b

−1

)
:=

{
1, if b > 0,

−1, if b < 0.
(2.17)

The Kronecker symbol should be regarded as the map f̃ introduced in the diagram
(2.11). But by de�nition it can take the value 0, which is not allowed by the
diagram.
The following lemma shows that this can not occur in our situation.

Lemma 2.18. Let r ≥ 2 as in (2.2) and φr be the rth cyclotomic polynomial
with corresponding Galois group Gal(Q(ζr)/Q) ∼= (Z/rZ)∗. For D as in Theorem
2.14 we have (

D

·

)
: (Z/rZ)∗ −→ {±1}. (2.18)

Proof. From Theorem 2.14 we know that D|r. Let a be an element of (Z/rZ)∗,
i.e. (a, r) = 1. Let a = 2s0qs1

1 · · · q
sl
l be the prime factorization of a with s0 ≥ 0

and si ≥ 1, i = 1, . . . , l. We have to distinguish two cases which would lead to
value 0 in the decomposition (2.15) of the Kronecker symbol:

(1) Assume that s0 > 0 and
(

D
2

)
= 0. This implies that D is even. Then

by the theorem a0 ≥ 3 and 8|r. However, 2 /∈ (Z/rZ)∗ for 8|r, because
(2, r) = 2 6= 1.

(2) Now let
(

D
qi

)
= 0 for one i. This is only possible when qi devides D by

the de�nition of the Legendre symbol. So one has qi|D for one i and D|r.
Overall we get qi|r in contradiction to the de�nition of (Z/rZ)∗.

This shows that the Kronecker symbol has the properties required. With these
properties the map can also be called a primitive Dirichlet character mod r.
We will now state the easy fact that complex conjugation acts on the group of
primitive roots of unity resp. on (Z/rZ)∗.
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Lemma 2.19. Let r be a positive integer and a ∈ (Z/rZ)∗. Then

r − a ∈ (Z/rZ)∗ .

Proof. This follows by an easy calculation.

With the Kronecker symbol we can decide which root belongs to which irreducible
factor of the cyclotomic polynomial over some quadratic number �eld.
We will now state a criterion to distinguish the zeroes of the factors for some
special cases with respect to a given root of φr.

Proposition 2.20. Assume that φr decomposes over Q(
√
D) into two polynomi-

als φ′r and φ′′r of degree ϕ(r)
2

as in (2.9) with the property (2.10). Then

(i) the complex conjugate ζr−a
r of ζa

r with φ′r(ζ
a
r ) = 0 is a zero of φ′r, in particular

φ′r(ζ
r−1
r ) = 0, if D > 0.

(ii) the complex conjugate ζr−a
r of ζa

r with φ′r(ζ
a
r ) = 0 is a zero of φ′′r , in partic-

ular φ′′r(ζ
r−1
r ) = 0, if D < 0.

Proof. We need to investigate the values of the Kronecker symbol for the di�erent
exponents.

(i) It is to show that
(

D
r−a

)
= 1 if

(
D
a

)
= 1. We know D|r and thus(

D

r − a

)
=

(
D

−a

)
=

(
D

−1

)
·
(
D

a

)
=

(
D

−1

)
.

By de�nition of the Kronecker symbol
(

D
−1

)
= 1 if and only if D > 0.

(ii) Analogous to the previous argument.

We want to apply the results and techniques from above to the Examples 2.15.
Therefore we will state how a cyclotomic polynomial factors in di�erent number
�elds.

Example 2.21. (a) For r = 35 and D = −7 one can estimate the zeroes of
φ′35 in this situation:

ζa
35, for a = 1, 2, 4, 8, 9, 11, 16, 18, 22, 23, 29, 32.

The remaining primitive 35th roots of unity are the zeroes of φ′′35.
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(b) One achieves, for r = 36 and

(1) D = −1, the decomposition

φ36(x) = φ′36(x)φ
′′
36(x)

=
(
x6 − ix3 − 1

) (
x6 + ix3 − 1

)
/Q(i),

with φ′36(ζ
a
36) = 0 for a = 1, 5, 13, 17, 25, 29.

(2) D = 3, the decomposition

φ36(x) = φ̃′36(x)φ̃
′′
36(x)

=
(
x6 − x3

√
3 + 1

)(
x6 + x3

√
3 + 1

)
/Q(

√
3),

with φ̃′36(ζ
a
36) = 0 for a = 1, 11, 13, 23, 25, 35.

2.3 Representations over number �elds

So far we introduced cyclotomic polynomials and studied their decompostion for
some speci�c quadratic number �elds. These results will be used in this section
to state the irreducible representations of cyclic groups for number �elds Q(

√
D).

It is well-known that over the rational numbers there is a unique irreducible
faithful subrepresentation of the group of rth roots of unity and the eigenvalues
of this subrepresentation are the primitive rth roots of unity.
We will see that this is not the case any more when the cyclotomic polynomial
factors.
Denote by µr the cyclic group of rth roots of unity. We are interested in the
action of µr on an r-dimensional vector space over a quadratic number �eld. The
group µr can be identi�ed with Z/rZ.
Let V be an r-dimensional Q(

√
D)-vector space and

ρ : µr −→ Aut(V ) (2.19)

be a representation of µr on the vector space V . Let ζ ∈ µr be the generator of
this cyclic group and therefore a primitive rth root of unity.
Now choose a basis e1, . . . , er of V such that the action of ρ(ζ) is given by

ρ(ζ)ei = ei+1, 1 ≤ i ≤ r − 1,

ρ(ζ)er = e1.

Then ρ(ζ) is given by the matrix

M =


0 1

1
. . .
. . . . . .

1 0

 ∈ Mat(r,Q(
√
D)), (2.20)
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with respect to the basis e1, . . . , er.

In the following we will construct a subspace, such that we can decompose the
vector space V .
For this de�ne the vector v := e1 + · · · + er. It holds that ρ(ζ)v = v, i.e. the
space 〈v〉Q(

√
D) is an µr-invariant 1-dimensional subspace of V where ρ(ζ) has

eigenvalue 1 and eigenvector v.

We choose a basis for which we describe the representation explicitly. Let

b1 := e2 − e1, . . . , br−1 := er − er−1. (2.21)

Using the action of ρ(ζ) on the ei we can state the action on the bi:

ρ(ζ)bi = bi+1, i = 1, . . . , r − 2,
ρ(ζ)br−1 = −(b1 + · · ·+ br−1).

The bi de�ne a (r − 1)-dimensional representation U with the decomposition of
V given by

V = 〈v〉Q(
√

D) ⊕ U, (2.22)

as a Z/rZ-module. The matrix that represents ρ(ζ)|U is denoted by MU and is
given with respect to the basis {bi} by

MU =


0 −1

1
. . .

...
. . . . . .

...

1 0
...

1 −1

 ∈ Mat(r − 1,Q(
√
D)). (2.23)

Thus we can assume

M ∼Q(
√

D)


1 0

0 MU

 . (2.24)

The characteristic polynomial χM(x) = ±(xr−1) ofM has a zero at 1 and hence
we can divide the linear factor corresponding to the eigenvalue 1 out and get the
characteristic polynomial of MU . Note that the sign of χM depends on whether
r is even or odd.

χMU
(x) =

χM(x)

χI1(x)
=
±(xr − 1)

x− 1

= ±(xr−1 + xr−2 + · · ·+ x+ 1).
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With this result it is obvious that

χMU
(x) = ±

r−1∏
i=1

(x− ζ i).

For the rationals one could already say that the representation U is irreducible
if r is a prime by Lemma 2.3. In the case of quadratic number �elds we get a
weaker result.

Proposition 2.22. If r is a prime and the quadratic number �eld Q(
√
D) is

not one of the list in Theorem 2.14, then the representation U is irreducible over
Q(
√
D).

Proof. This follows from the irreducibility of χMU
(x) = φr(x), which has been

showed in Theorem 2.14.

Since we want to give a description of the irreducible representations over number
�elds in a general setting, we have to use more theory.
Assume that r ∈ N, r ≥ 2 is arbitrary. For a �xed r there can be at most
2 ·#{d ∈ N; d divides r, d ≤ r} irreducible factors of χM . This relies on the fact
that χM can be written as

χM(x) = ±(xr − 1)

= ±
∏
d|r

φd(x),

and each of the φd is irreducible or decomposes into two irreducible polynomials
of degree ϕ(d)

2
depending on the �eld (cf. section 2.2).

We need not a bound on the factors but rather an exact number which we will
de�ne as

irrD(r) := number of irreducible factors of xr − 1 over Q(
√
D).

As indicated this number depends on the choosen number �eld and r. Trivially

#{d ∈ N; d|r, d ≤ r} ≤ irrD(r) ≤ 2 ·#{d ∈ N; d|r, d ≤ r}.

This enables us to state a result how V decomposes as a Z/rZ-module for a given
number �eld.

Proposition 2.23. There exist irrD(r) irreducible subrepresentations V1, . . . , VirrD(r)

of Z/rZ over Q(
√
D) with the property

V =

irrD(r)⊕
i=1

Vi. (2.25)

Every Vi corresponds to exactly one irreducible factor of xr − 1, i.e. the charac-
teristic polynomial of ρ(ζ)|Vi

is one of these factors.
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Proof. We know that M is the matrix that represents ρ on V with
χM(x) = ±

∏
d|r φd(x), where φd is the dth cyclotomic polynomial. If φd is re-

ducible over Q(
√
D) replace it by φ′d ·φ′′d, where φ′d and φ′′d are irreducible of degree

ϕ(d)
2
. Hence we can write χM as a product of irreducible polynomials.

Now consider χM over the splitting �eld Q(ζr), where ζr is a primitive rth root
of unity. This can be done via

VQ(ζr) := V ⊗Q(
√

D) Q(ζr). (2.26)

With respect to the cyclotomic �eld Q(ζr) the polynomial χM decomposes into
linear factors, namely

χM(x) = (x− 1) · (x− ζr) · · · (x− ζr−1
r ). (2.27)

The matrix M can be diagonalised over Q(ζr), so there corresponds to each zero
ζ i
r, 0 ≤ i ≤ r − 1, of the characteristic polynomial χM a 1-dimensional subspace

Ũi , with the property Z/rZ · Ũi ⊂ Ũi. Each subspace Ũi is a Q(ζr)-vector space
by construction.
Now we collect the Ũi for each irreducible factor of χM that are given by d with
the property that d divides r. We have

(1)

Ṽd =
⊕
l|φd

l=(x−ζi
r)

Ũi,

if φd is irreducible over Q(
√
D), resp.

(2)

Ṽ ′
d =

⊕
l|φ′d

l=(x−ζi
r)

Ũi

and Ṽ ′′
d =

⊕
l|φ′′d

l=(x−ζi
r)

Ũi,

if φd is reducible over Q(
√
D).

The spaces Ṽd, resp. Ṽ
′
d and Ṽ

′′
d , are ϕ(d) = deg φd-, resp.

φ(d)
2

= deg φ′d = deg φ′′d-
dimensional Q(ζr)-vector spaces with the property

VQ(ζr)
∼=
⊕
d|r

Ṽd. (2.28)
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In this description we have to replace Ṽd in (2.28) by Ṽ ′
d ⊕ Ṽ ′′

d for the reducible
cyclotomic polynomials.
To get a Z/rZ-invariant Q(

√
D)-subspace of V , as requested, we have to de�ne

Vd :=
(
Ṽd

)Gal(Q(ζr)/Q(
√

D))

(2.29)

:=
{
v ∈ Ṽd; σ(v) = v for all σ ∈ Gal(Q(ζr)/Q(

√
D))

}
. (2.30)

The Galois group acts on VQ(ζr) by operating on the coe�cients and permuting
the basis elements. Analogously we obtain V ′

d and V ′′
d when φd is reducible.

Standard calculations show that these objects are Q(
√
D)-vector spaces.

By a result of Silverman [Sil86, Lemma II.5.8.1] it holds that

Vd ⊗Q(
√

D) Q(ζr) ∼= Ṽd.

So the Q(
√
D)- and the Q(ζr)-dimension of the associated spaces coincide. The

same is true for V ′
d and V ′′

d .
Hence we get exactly irrD(r) irreducible subrepresentations of Z/rZ with the
property (2.25).

As mentioned in the proof, there is a correspondence of representations and irre-
ducible polynomials. For later purposes we will make a de�nition.

De�nition 2.24. Let φd be the dth cyclotomic polynomial and Q(
√
D) a given

number �eld.

(i) Let φd be irreducible over Q(
√
D). Then we denote the corresponding

representation by Vd.

(ii) Let φd = φ′d · φ′′d the decomposition into irreducible factors for Q(
√
D).

Then the representations corresponding to φ′d resp. φ′′d will be denoted by
V ′

d resp. V ′′
d .

In the proof of Proposition 2.23 we have constructed an irreducible representation
to each irreducible factor of the characteristic polynomial χM . So it remains to
show that this construction leads to all possible irreducible representations of
the cyclic group µr, i.e. we must show that there are no other non-isomorphic
irreducible represenations over the �eld Q(

√
D).

For this we �rst need to de�ne what is meant by isomorphic representations.

De�nition 2.25. Let G be a group, V1, V2 be vector spaces and

ρ1 : G −→ Aut(V1), ρ2 : G −→ Aut(V2)

representations of G in V1 resp. V2. Then ρ1 and ρ2 are called isomorphic repre-
sentations, if
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(i) there exists a vector space isomorphism α : V2 −→ V1, and

(ii) α−1 ◦ ρ1(g) ◦ α = ρ2(g) holds for all g ∈ G, i.e. the diagram

V1
ρ1(g) // V1

α−1

��
V2

ρ2(g) //

α

OO

V2

(2.31)

commutes for all g ∈ G.

The following proposition shows that we already found all irreducible representa-
tions of µr. For this we introduce the corresponding group algebra and some other
facts and tools from representation theory which we will not de�ne formally. For
details we refer the reader to some books which contain representation theory,
e.g. [Lan02] or [CR62].

Proposition 2.26. There are no more non-isomorphic irreducible representa-
tions over Q(

√
D) than the irrD(r) ones already stated in Proposition 2.23.

Proof. We �rst will recall the notion of the group algebra. In this case the group
algebra is de�ned as all formal sums

R := Q(
√
D)Z/rZ :=

 ∑
ζ∈Z/rZ

αζ · ζ; αζ ∈ Q(
√
D)

 .

Since R is a group algebra it is semi-simple by Maschkes Theorem [Lan02, XVIII
Theorem 1.2]. The dimension of R is

dimQ(
√

D) Q(
√
D)Z/rZ = |Z/rZ| = r.

Among the representations of the group algebra and the group representations
there is a one-to-one correspondance, and the representations of R are the R-
modules (cf. [CR62, �10]). From [Lan02, XVII Theorem 4.3 and 4.4] one knows
that R decomposes into

R ∼=
s∏

i=1

Ri,

for some s, where Ri represents the simple modules. The R-modules are isomor-
phic if and only if the corresponding representations are (cf. again [CR62, �10]).
Hence the group algebra decomposes into all irreducible representations.
Indeed, the dimension of the group algebra is r and the dimensions of the represen-
tations from Proposition 2.23 add up to |Z/rZ| = r. As long as all representaions
are non-isomorphic there is nothing more to prove.
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It remains to show that the irreducible subrepresentations from the proposition
are all non-isomorphic. If there are isomorphic subrepresentations, they must
have the same characteristic polynomial by the de�nition of isomorphic represen-
tations. This can not happen.
So there are no more representations left and the proposition is proved.

Thus we could state all irreducible subrepresentations. In the following chapters
we do not have to mention all representations, but rather only the faithful ones,
i.e. the injective group homomorphisms.

Lemma 2.27. Let ρ : Z/rZ −→ Aut(V ) be a representation of the cyclic group
Z/rZ. Then the following holds:

(i) Assume that φr is irreducible over Q(
√
D). Then there exists a unique

faithful irreducible representation Vr.

(ii) Assume φr = φ′r · φ′′r . Then there are exactly two faithful irreducible repre-
sentations, namely V ′

r and V ′′
r .

Proof. Let d ∈ {d < r; d divides r} and ζ be a generator of Z/rZ. Now de�ne
Ad := ρ|Vd

(ζ), where the eigenvalues of Ad are the zeroes of φd.

(i) Using the fact that ρ is a homomorphism we get

ρ|Vd
(ζd) = (ρ|Vd

(ζ))d = Ad
d, (2.32)

and the eigenvalues of Ad
d on Vd are 1. Thus the represenatation ρ|Vd

is not
injective, i.e. not faithful. An analogous argument for Vr gives the result.

(ii) If the cyclotomic polynomial φd is reducible, we have to replace Vd by V ′
d

resp. V ′′
d . A similar approach proves (ii).

These results give rise to a complete charaterization of the irreducible represen-
tations of Z/rZ.

Theorem 2.28. Let ρ : Z/rZ −→ Aut(V ) be a representation of Z/rZ on the
vector space V over Q(

√
D). Then

(i) there is a unique irreducible faithful representation Vr if φr is irreducible.
The eigenvalues of ρ|Vd

(ζr) are the primitive r-th roots of unity.

(ii) there are two irreducible faithful representations V ′
r , V

′′
r if φr is reducible.

The eigenvalues of ρ|V ′
d
(ζr) are the primitive rth roots of unity ζa

r with
(

D
a

)
=

1 for a ∈ (Z/rZ)∗. The eigenvalues of ρ|V ′′
d
(ζr) are ζa

r for the remaining

a ∈ (Z/rZ)∗, i.e. the a with
(

D
a

)
= −1.

Restricting to speci�c D's make this more precise:
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(a) If D > 0, then for each eigenvalue ζa
r of ρ|V ′

d
(ζr) the complex conjugate

ζr−a
r is an eigenvalue as well.

(b) If D < 0, then for each eigenvalue ζa
r of ρ|V ′

d
(ζr) the complex conjugate

ζr−a
r is an eigenvalue of ρ|V ′′

d
(ζr).

Proof. This follows directly from Theorem 2.14, the Propositions 2.20, 2.23 and
Lemma 2.27.

The cases (a) resp. (b) in the theorem lead to real resp. imaginary quadratic
number �elds.
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Chapter 3

Ball quotients and singularities

In this chapter we will �rst introduce ball quotients and their automorphism
group. Then we will study the representations that can occur and their contri-
bution to the Reid-Tai sum. This will lead to results on canonical singularities
for ball quotients. We will state a general result and restrict to a special case as
this could not be covered by the general argument.
In this chapter we will use techniques introduced by S. Kondo [Kon93] and en-
hanced by V.A. Gritsenko, K. Hulek and G.K. Sankaran [GHS07].

3.1 Ball quotients

First we choose Q(
√
D) to be an imaginary quadratic number �eld, where D ∈ Z

is a squarefree integer with D < 0. For this quadratic number �eld we de�ne

O := OQ(
√

D)

to be its ring of integers.
A classical result from algebraic number theory gives

O = OQ(
√

D) =

{
Z[
√
D], if D ≡ 2, 3 mod 4, or

Z
[

1
2

(
1 +

√
D
)]
, if D ≡ 1 mod 4.

For later arguments we have to start with an lattice.

De�nition 3.1. We will denote by Λ an O-lattice of signature (n, 1). The her-
mitian form given by this lattice will be denoted by h(·, ·).

Instead of a lattice we can speak of Λ as a free O-module of rank n + 1 with a
hermitian form of signature (n, 1), i.e. Λ ∼= On,1 where the exponent indicates
the signature of the form.
From now on we �x Λ.

39



3.1. BALL QUOTIENTS

Over the complex numbers we can give an identi�cation in terms of matrices.
Therefore �rst de�ne

Ip,q :=

(
Ip 0
0 −Iq

)
, (3.1)

where Ii denotes the i×i-identity matrix. Also note that we will denote HA :=T A
for an arbitrary matrix A.

Remark 3.2. (i) When we �x a basis we get an isomorphism

ψ : Λ⊗O C ∼= Cn,1,

where Cn,1 denotes the pair (Cn+1, form of signature (n, 1)). Therefore
Λ⊗O C could be regarded as a (n+ 1)-dimensional C-vector space.

(ii) We will also denote the induced form on Λ⊗O C by h(·, ·).

(iii) We can choose a basis of Cn+1, such that the form h(·, ·) is given by In,1,
i.e.

h(x, y) = x1y1 + · · ·+ xnyn − xn+1yn+1

= HyIn,1x.

With this notations we can introduce the main object to study.

De�nition 3.3. We call

CHn := {[ω] ∈ P(Λ⊗O C); h(ω, ω) < 0} . (3.2)

the complex hyperbolic space of dimension n.

Therefore CHn can be regarded as an open subset of the complex projective n-
space Pn

C. We can also see by de�nition, that CHn has an natural underlying
lattice structure given by Λ.

Remark 3.4. Note that

U(n, 1) :=
{
A ∈ GL(n+ 1,C); HAIn,1A = In,1

}
is the unitary group of signature (n, 1).

There are some well-known identi�cations of the space CHn.

Proposition 3.5.

CHn ∼= Bn
C := {z ∈ Cn; |z| = z1z1 + · · ·+ znzn < 1} (3.3)

= Hn,1 :=
{
Z ∈ Mat(n, 1; C); HZZ − I1 < 0

}
∼= U(n, 1)/(U(n)× U(1)). (3.4)

40



CHAPTER 3. BALL QUOTIENTS AND SINGULARITIES

Proof. The identi�cation (3.3) follows directly from the de�nitions of these spaces,
while the isomorphism (3.4) was shown by Shimura (cf. [Shi63]). We sketch
Shimuras proof:

An element

(
A b
c d

)
:= U ∈ U(n, 1) acts holomorphically on z ∈ Bn

C via

U(z) :=
Az + b

cz + d
. De�ne the map

ψ : U(n, 1) −→ Bn
C

by ψ(U) := U(0) =
b

d
.

It is easy to show that ψ is surjective. Since ψ is not injective we compute the
kernel of this map. Easy calculations yield that

U(n, 1)0 := ker(ψ) = U(n)× U(1).

Hence the map U(n, 1)/(U(n)×U(1)) −→ Bn
C is bijective and the result follows.

Remark 3.6. One can generalize this identi�cation to

Hp,q :=
{
Z ∈ Mat(p, q; C); HZZ − Iq < 0

}
∼= U(p, q)/(U(p)× U(q)).

For details see G. Shimura [Shi63].

For the following we will consider the automorphism group of the lattice Λ.

De�nition 3.7.

U(Λ) := group of automorphisms of Λ.

As we did before we can consider the corresponding group for the induced complex
vector space.

Remark 3.8. It holds for a suitable choice of a basis

U(Λ)C := U(Λ)⊗O C ∼= U(n, 1). (3.5)

So far we introduced the complex hyperbolic space and the automorphism group
of the lattice. Now we can de�ne quotients for suitable subgroups.

De�nition 3.9. Let Γ < U(Λ) be a subgroup of �nite index. We de�ne the
n-dimensional ball quotient

Γ\CHn (3.6)

as the space of orbits.
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As CHn can be represented as a ball (cf. (3.3)) it makes sense to speak of (3.6)
as a ball quotient. This turns out to be a quasi-projective variety by [BB66].
One can give a description of the rami�cation divisors. Let

fΓ : CHn −→ Γ\CHn

be the quotient map for Γ. The elements �xing a divisor in CHn are the quasi-
re�ections. Therefore the rami�cation divisors of fΓ are the �xed loci of elements
of Γ acting as quasi-re�ections.

3.2 A local description

In section 3.1 we considered some results for the complex ball resp. complex
hyperbolic space. From now on we restrict to the local situation as we want
to give results about canonical singularities. Therefore we will �rst de�ne the
�xgroup of a point in CHn and study its action on the tangent space. Some of
the proofs we give are similar to those of [GHS07, 2.1].
As before Γ is of �nite index in U(Λ). Now choose a point [ω] ∈ CHn.

De�nition 3.10. Let

G := Γ[ω] := {g ∈ Γ; g[ω] = [ω]} (3.7)

be the �xgroup of [ω].

The group G is �nite by [Hol98, 4.1.2] or [Shi71, pp. 1].
In the following we will de�ne some sublattices. To construct these sublattices
we need a speci�c complex line corresponding to [ω].
For this let ω ∈ Λ⊗O C be a representative and de�ne the line though the point
ω to be

W := C · ω. (3.8)

Now we can de�ne the following lattices.

De�nition 3.11.

S := W⊥ ∩ Λ and T := S⊥ ∩ Λ, (3.9)

with respect to the form h(·, ·).

These are sublattices of the lattice Λ.
To be in the complex setting we can make the following de�nitions for S and for
T , similar to the complexi�cation of Λ in the previous section.

SC := S ⊗O C and TC := T ⊗O C. (3.10)

First we want to prove that the intersection of the subspaces de�ned in (3.10) is
trivial. This will be used to give a proof of one of the lemmas below.
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Lemma 3.12. The only point the two lattices have in common is the origin, i.e.

SC ∩ TC = {0}.

Proof. Let x ∈ SC ∩ TC. Then one has h(x, x) = 0, since x ∈ TC = S⊥C .
Therefore it remains to show that the hermitian form is positive de�nite on SC.
Now consider the complex line W ⊂ ΛC = Λ⊗OC. The space W is 1-dimensional
and has {ω} as a C-basis with h(ω, ω) < 0, since [ω] lies in CHn. Hence the
hermitian form has signature (0, 1) on W and this implies that its signature on
W⊥ is (n, 0). By de�nition one has SC ⊂ W⊥ and because of that h(·, ·) is positive
de�nite on SC.

In the following we will study the action of the �xgroup G. Therefore we have to
prove that there is an action on the sublattices de�ned above.

Lemma 3.13. The �xgroup G of [ω] acts on S and T .

Proof. G acts on W and on Λ, hence on S = W⊥ ∩ Λ and on T = S⊥ ∩ Λ.

As we proved that G acts on the sublattices and, by de�nition, on the whole space
we will formalize this action. We de�ned G as the stabilzer of the projective point
[ω] and therefore we have for a representative ω of [ω] the equation

g(ω) = α(g)ω, (3.11)

where the map
α : G −→ C∗

is a group homomorphism. As we have to use it for the arguments following we
will denote the kernel of this map as

G0 := kerα.

We now prove that the spaces SC and TC are closed under the action of the group
G.

Lemma 3.14. The spaces SC and TC are G-invariant subspaces of the vector
space ΛC.

Proof. Let x ∈ TC, y ∈ SC, ω ∈ W and g ∈ G. We will give seperated proofs for
these statements.

(1) First prove the statement for SC.

0 = h(y, ω) = h(g(y), g(ω)) = α(g) · h(g(y), ω). (3.12)

As α(g) 6= 0 we get h(g(y), ω) = 0, i.e. g(y) ∈ SC.
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(2) A similar statement holds for TC:

0 = h(x, y) = h(g(x), g(y)), (3.13)

with g(y) ∈ SC as shown in (1). Hence we have g(x) ∈ S⊥C = TC.

As G0 is a subgroup of G it acts on S and T by Lemma 3.13. When we investigate
this it turns out that the action of G0 is special for T . Analogous to the complex
case we de�ne SQ(

√
D) := S ⊗O Q(

√
D) and TQ(

√
D) := T ⊗O Q(

√
D).

Lemma 3.15. The group G0 acts trivially on TQ(
√

D).

Proof. Let x ∈ TQ(
√

D) and g ∈ G0. Then

h(ω, x) = h(g(ω), g(x)) = h(ω, g(x)).

Thus we have TQ(
√

D) 3 x − g(x) ∈ W⊥ ∩ ΛQ(
√

D) = SQ(
√

D). So by Lemma 3.12
we get g(x)− x = 0.

By (3.11) the quotient G/G0 is a subgroup of Aut W which is isomorphic to C∗.
Thus G/G0 is cyclic.

De�nition 3.16. The order of G/G0 is de�ned as

rω := ord(G/G0).

Thus we can identify G/G0 with Z/rωZ.
The subspace TQ(

√
D) splits as a module into a direct sum of Q(

√
D)-irreducible

representations as stated in Theorem 2.28. For the notation of the representations
we refer to chapter 2.

Lemma 3.17. The space TQ(
√

D) decomposes as a G/G0-module

(i) into a direct sum of Vrω 's, i.e. ϕ(rω) divides dimTQ(
√

D), if Vrω is irreducible

over Q(
√
D),

(ii) into a direct sum of V ′
rω
's and V ′′

rω
's, in particular ϕ(r)

2
divides dimTQ(

√
D),

if there exist a decomposition Vrω = V ′
rω
⊕ V ′′

rω
over Q(

√
D).

Proof. As G/G0
∼= µrω and by the chinese remainder theorem (Z/rωZ)∗ ∼=

((Z/p1Z)∗)a1 × · · · × ((Z/ptZ)∗)at for suitable pi and ai. It remains to show,
that the only element having 1 as an eigenvalue on TC could be the identity
element in G/G0. Assume that g ∈ G−G0 with g(x) = x for a x ∈ TC. Then

h(ω, x) = h(g(ω), g(x)) = α(g) · h(ω, x).

As we have a(g) 6= 1 by the choice of g we get h(ω, x) = 0 and therefore x ∈
SC ∩ TC = {0}.
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If we consider the action of an element g ∈ G we can state a similar result on the
decomposition. Henceforth we will denote the order of α(g) by r.

Corollary 3.18. For g ∈ G the space TQ(
√

D) decomposes as a g-module into a

direct sum of Vr's resp. V
′
r 's or V

′′
r 's of dimension ϕ(r) resp. ϕ(r)

2
.

Proof. The same as in Lemma 3.17.

3.2.1 Tangent space

Instead of studying this quotient globally we will restrict ourself to the action of
the stabiliser subgroup on the tangent space T[ω]CHn.
As we will study the action of G on the tangent space of CHn we need a descrip-
tion of T[ω]CHn that enables us to calculate things.

Lemma 3.19. The tangent space of CHn at a point [ω] is given by

Hom(W,Cn+1/W).

Proof. The space CHn is an open subset of the Grassmannian variety
G(1, n + 1) of 1-dimensional subspaces in (n + 1)-dimensional complex vector
space Cn+1. Thus the tangent spaces of the the complex hyperbolic space and
the Grassmannian coincide in [ω]. With a result of [ACGH85, Chapter II �2] we
get

T[ω]CHn = T[ω]G(1, n+ 1) ∼= Hom(W,Cn+1/W). (3.14)

As we will refer to this description of the tangent space we will denote it by

V := Hom(W,Cn+1/W). (3.15)

Hence in the following we will investigate the quotient

G\V

instead of Γ\CHn. Here V as above and G = Γ[ω] the stabiliser subgroup as
already de�ned before.

Remark 3.20. Note that we can write V = W∨ ⊗ (Cn+1/W).

Now let g ∈ G be of order m. Then we can consider the eigenvalues

ζa1 , . . . , ζan
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of g on the tangent space V , where ζ denotes a primitive mth root of unity and
0 ≤ ai < m. Now we are in the set-up of section 1.1.2 and can therefore apply
the Reid-Tai criterion which essentially says that the Reid-Tai sum has to ful�ll

Σ(g) :=
n∑

i=1

ai

m
≥ 1

for every g ∈ G for V/G to have canonical singularities, as long as G does not
contain any quasi-re�ections. For a detailed argument see Theorem 1.16.

3.3 A �rst result

The discussion in 3.2.1 enables us to state some results on canonical singular-
ities of G\V . For this we will calculate the contribution of certain irreducible
representations to the Reid-Tai sum.
As we will see we can not give a result for general D < 0 but for D < −3.
Therefore we de�ne D0 := −3.
First we will give a bound on r as α(g) is the eigenvalue from g on W. This
bound will be independent of n. For the action of g on the tangent space V there
occurs α(g)−1 because of the dual of W by Remark 3.20. As already de�ned the
order of α(g) is denoted by r.
For the following arguments we will denote the fractional part of a rational num-
ber q by {q}.

Lemma 3.21. Suppose g ∈ G does not act as a quasi-re�ection on V . Then the
Reid-Tai sum ful�lls Σ(g) ≥ 1, if

(i) ϕ(r) ≥ 10 for all D < 0,

(ii) ϕ(r) = 4 for D < D0.

Proof. Let Vω
r be the copy of Vr ⊗C resp. V ′

r ⊗C or V ′′
r ⊗C containing ω. For a

�xed primitive mth root of unity ζ we get a primitive rth root of unity when we
consider ζ

m
r .

Let 0 ≤ ki < r be the distinct numbers coprime to r. We will denote the set of
all ki with this property by Ar := {ki; i = 1, . . . , ϕ(r)}, where #Ar = ϕ(r). Let

ζ
mk1

r be the eigenvalue of g on W, i.e. α(g) = ζ
mk1

r . On the dual space W∨ we

will get the eigenvalue α(g) = ζ
mk1

r =: ζ
mk2

r .

Now on the space Vω
r the element g will have the eigenvalues ζ

mki
r for ki ∈ Ar

resp. in the case where φr is reducible over Q(
√
D), as in Chapter 2, we have

ki ∈ A ⊂ Ar for a suitable A with k1 ∈ A and #A = ϕ(r)
2

(cf. Theorem 2.28).

This A depends on D. Thus we will have eigenvalues ζ
mki

r for ki ∈ Ar − {k1}
resp. ki ∈ A−{k1} on V ω

r ∩Cn+1/W. However, as k1 ∈ A we know k2 6∈ A, since
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Vω
r is the subspace containing ω.

On Hom(W,Vω
r ∩ Cn+1/W) ⊂ V the element g has eigenvalues ζ

mk2
r ζ

mki
r for

ki ∈ Ar−{k1} resp. ki ∈ A−{k1}. As we are interested in Σ(g) we will get with
the estimation

Σ(g) ≥


∑

ki∈Ar−{k1}

{
k2 + ki

r

}
, resp.∑

ki∈A−{k1}

{
k2 + ki

r

}
.

(3.16)

Each summand will give rise to non-zero contribution to Σ(g), as the only such

summand would be

{
k1 + k2

r

}
. We now give a �niteness result on r.

(i) We can give a very coarse approximation of the sums (3.16) by

ϕ(r)
2
−1∑

j=1

j

r
=

(
ϕ(r)

2
− 1
)
·
(

ϕ(r)
2

)
2r

(3.17)

=

(
ϕ(r)2

4
− ϕ(r)

2

)
2r

=
r(p1 − 1)2 · · · (ps − 1)2

8p1 · · · ps

− (p1 − 1) · · · (ps − 1)

4p1 · · · ps︸ ︷︷ ︸
≤ 1

4

, (3.18)

with r = pa1
1 · · · pas

s . This expression has a `monotonicity' property and
we can calculate all possibilities for pi and ai that do not contribute 1.
Therefore (3.18) is greater or equal to 1, if

(a) s ≥ 4,

(b) s ≥ 3 unless r = 2a · pb · q (assume p < q) and

a b p q

<3 1 3 <11
1 1 3 11
1 1 3 13
1 2 3 5
1 1 5 7

(c) r = paqb unless
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a b p q

1 1 2 ≤19
1 1 3 5,7
2 1 2 <11
2,3 2 2 3
1 2 2 5
3 1 2 <7
4 1 2 3
2 1 3 2
3 1 3 2

(d) r = pa unless

a p

1 <11
2 3
≤ 5 2

So there are only �nitely many cases left which we will study in more
detail. For these cases we will de�ne an expression to calculate the minimal
contribution mc(r) of g on Hom(W,Vω

r ∩ Cn+1/W). This is done by

mc(r) := min
D<0

suitable

min
k2∈Ar

∑
ki∈Ar−{k1}“
D
ki

”
=

“
D

r−k2

”
{
k2 + ki

r

}
. (3.19)

By `suitable' we mean that we only consider number �elds that lead to re-
ducibility of the representation. This expression calculates the contribution
from all possible irreducible representations V ′

r and V ′′
r that can occur.

If Vr is irreducible for all D < 0 one has to omit the �rst `min' and the
Kronecker symbols in (3.19).
We only have to calculate mc(r) for the remaining r with ϕ(r) ≥ 10. Com-
puter calculation yields that for these r we get mc(r) ≥ 1. This can be
done by a computer as there are, for each r, only �nitely many well-known
possibilities for a `suitable' D. This number �elds can be found by Theorem
2.14. Thus we proved (i).

(ii) Now we have to consider r = 5, 8, 10, 12. The corresponding representations
are irreducible by the assumption on D. So we are in the �rst case of (3.16)
and may write

4∑
i=2

{
k2 + ki

r

}
=

{
2k2

r

}
+

{
k2 + k3

r

}
+

{
k2 + k4

r

}
. (3.20)

Calculating this for all values of r and all possibilities of k2, k3 and k4

produces a contribution of at least 1 to the Reid-Tai sum.
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Calculating explicit values of some minimal contributions implies even more.

Remark 3.22. The same calculations of mc(r) shows that Σ(g) ≥ 1 for r =
9, 16, 18 and no restriction on D < 0.

As we will always deal with irreducible representations and therefore have to
switch beween Vd, V

′
d and V ′′

d we will make a de�nition that makes arguments
shorter.

De�nition 3.23. Let d be a positive integer.

(i) We will always denote by Vd the `right' irreducible representation over
Q(
√
D), i.e. a copy of Vd resp. V ′

d or V ′′
d .

(ii) Similarly to (i) we will de�ne

Vd := Vd ⊗Q(
√

D) C.

By the `right' representation we mean that there is always the choice to take V ′
d

or V ′′
d in the reducible case. We will not specify this choice anymore and only

refer to Vd.
We will prove a result for ϕ(r) = 1. Here we have to restrict to the case D ≤ D0.

Lemma 3.24. Assume that g ∈ G does not act as a quasi-re�ection on the
tangent space V . Additionally let r = 1, 2 and D 6= −1,−2. Then Σ(g) ≥ 1.

Proof. As r = 1, 2 we have α(g) = ±1. With an analogous statement as in
[GHS07, Proposition 2.9] we get that g is not of order 2 and g2 acts trivially on
TC but not on SC. Therefore let g act on the subspace Hom(W,Vd) ⊂ V as ±Vd

with d > 2, for a representation Vd from the decomposition of SC as a g-module
over Q(

√
D). The contribution from this subspace to Σ(g) is at least

min
D<0

suitable

min
r∈{1,2}

min
α=±1

∑
(ki,d)=1“

D
ki

”
=α

{
1

r
+
ki

d

}
≥

ϕ(d)
2∑

j=1

j

d
. (3.21)

Again one has to modify this expression if Vd = Vd.
One sees that the right hand side of this inequality is similar to the estimation
in the proof of Lemma 3.21, so we achieve for d = pa1

1 · · · pas
s and

(a) s ≥ 4,

(b) s ≥ 3 unless d = 2a · pb · q (assume p < q) and
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a b p q

<3 1 3 <11
1 1 3 11
1 2 3 5

(c) d = paqb unless

a b p q

1 1 2 <17
1 1 3 5
2 1 2 <11
2 2 2 3
3 1 2 <7
4 1 2 3
2 1 3 2
3 1 3 2

(d) d = pa unless

a p

1 <11
2 3
<5 2

a contribution of at least 1 to Σ(g). For the remaining d we have to make a better
estimation by calculating the left side of (3.21).
The only value of d for that the expression is less than 1 is 8 = 23. But as it
holds V8 = V8 for D 6= −1,−2 we can choose conjugate eigenvalues ζ8 and ζ8

which add up to 1.

So far we only gave bounds according to r, the order of α(g). There we proved
that we only have to deal with �nitely many r's in the following.
Now we can state a theorem that leads to canonical singularities for general r.

Theorem 3.25. Let g ∈ G do not act as a quasi-re�ection on V . If

(i) n ≥ 11 and D < D0, then Σ(g) ≥ 1.

(ii) n ≥ 7 and D < −15, then Σ(g) ≥ 1.

Proof. Let m be the order of g, choose ζ to be a primitive mth root of unity
and Vd := Vd ⊗ C or V ′

d ⊗ C resp. V ′′
d ⊗ C as in De�nition 3.23. On the space

Hom(W,Vd) ⊂ V the element g has eigenvalues ζ
mc
r ζ

mki
d for �xed 0 < c < r with

(c, r) = 1 and the number of 0 < ki < d coprime to d that occur as an exponent
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is dimC Vd.
So the contribution of g on this subspace to the Reid-Tai sum is given by

ϕ(d)∑
i=1

{
c

r
+
ki

d

}
, if dimC Vd = ϕ(d), resp.

∑
ki∈A

{
c

r
+
ki

d

}
, if dimC Vd =

ϕ(d)

2
,

for a suitable A as in the proof of Lemma 3.21 depending on the number �led
Q(
√
D) , with #A = ϕ(d)

2
.

Each of these sums is greater or equal to
∑ϕ(d)

2
j=1

j

d
if we exclude d ∈ ϕ−1({2, 4, 6, 8}).

Thus we know, that all d which contribute at least 1 to Σ(g) are the d not men-
tioned in the list of the proof of Lemma 3.24.
Hence there are only �nitely many d left. The remaining d, which has to be
investigated by a more exact argument, are

d = 1, 2, . . . , 10, 12, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 36,

40, 42, 48, 54, 60, 66, 84, 90. (3.22)

Now we could calculate the contributions for each choice of d and each choice of
r. But as this not feasible we de�ne

cmin(d) := min
0≤a<d

∑
0<b<d
(b,d)=1

{
b+ a

d

}
, resp. (3.23)

credmin(d) := min
D<0

suitable

min
α=±1

min
0≤a<d

∑
0<b<d
(b,d)=1

(D
b )=α

{
b+ a

d

}
. (3.24)

By this choice we mean that if there exist at least one imaginary quadratic number
�eld for which the representaition Vd decomposes we have to calculate credmin(d) for
those D. If there exists no such D we will use cmin(d).
Both expressions only depend on d by de�nition and are a lower bound for the
contribution to Σ(g). This was shown in [GHS07, Proof of Theorem 2.10]. By
obvious reasons cmin(d) ≥ credmin(d) for all d.
Nevertheless we have to take the minimum over all such D. To avoid this �rst
we will de�ne a less exact argument c̃redmin(d) with the property

credmin(d) ≥ c̃redmin(d) := min
0≤a<d

∑
0<b≤b d

2
c

(b,d)=1

{
b+ a

d

}
. (3.25)
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This enables us to reduce the list of d's given by (3.22) using c̃redmin(d). So the only
values for d not cotributing 1 are

d = 1, 2, . . . 10, 12, 14, 15, 16, 18, 20, 22, 24, 30.

For the remaining d it is worth calculating cmin(d) resp. c
red
min(d) if Vd is reducible

for one D < 0. The values that are at least 1 are

credmin(22) = 14/11, credmin(18) = 1, credmin(16) = 5/4,

cmin(10) = 6/5, credmin(9) = 1, cmin(5) = 6/5,

while

credmin(30) = 11/15, credmin(24) = 5/6, credmin(20) = 4/5, credmin(15) = 11/15,

credmin(14) = 4/7, credmin(12) = 1/3, credmin(8) = 1/4,

credmin(7) = 4/7, credmin(6) = 0, credmin(4) = 0, credmin(3) = 0. (3.26)

do not contribute 1. As we know TC decomposes into a direct sum of Vr while
we can assume the space SC decomposes into a direct sum of Vd where

d ∈ {1, 2, 3, 4, 6, 7, 8, 12, 14, 15, 20, 24, 30}

by the estimation above.
When we write down all possibilities for the compostions of these representations
this leads to the equation

dim Vr · λ+ ν1 + ν2 + 2ν3 + 2ν4 + 2ν6 +
6

2
ν7 +

4

2
ν8

+
4

2
ν12 +

6

2
ν14 +

8

2
ν15 +

8

2
ν20 +

8

2
ν24 +

8

2
ν30 = n+ 1, (3.27)

where λ denotes the multiplicity of Vr in TC and νd denotes the multiplicity of
Vd in SC. Note that we can assume that Vd for d ∈ {7, 8, 12, 14, 15, 20, 24, 30} is
reducible. If it is not it would contribute at least 1 to Σ(g), as shown in [GHS07,
Theorem 2.10].
For D < 0 and d = 3, 4, 6 it is possible for Vd to be reducible. In that case we
have to divide the dimension(i.e. 2) by 2 in equation (3.27). But as we restrict
to the case D < D0 this can not happen.
For the quotient ΛC/Vω

r we denote by νr the multiplicity of Vr in ΛC/Vω
r as a

g-module, i.e. the number of copies of Vr without Vω
r .

As we will only observe ΛC/Vω
r in the following we have to add mc(r) from (3.19),

as the subspace Hom(W,Vω
r ∩ Cn+1/W) ⊂ V will not appear in the further

calculations. Now we can calculate the (minimal) contribution of Hom(W,Vd)
to Σ(g) by ∑

(a,d)=1

{
a

d
+
k1

r

}
resp. min

D<D0

min
α=±1

∑
(a,d)=1

(D
a )=α

{
a

d
+
k1

r

}
. (3.28)
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According to Lemma 3.21 and Remark 3.22 we have to investigate the cases
r ∈ {3, 4, 6} = ϕ−1(2), r ∈ {7, 14} ⊂ ϕ−1(6) and r ∈ {15, 20, 24, 30} ⊂ ϕ−1(8).

(1) Let ϕ(r) = 2. The contributions of the Vd with ϕ(d) ≥ 4 are greater or
equal to 1 and (3.27) becomes

ν1 + ν2 + 2ν3 + 2ν4 + 2ν6 = n+ 1− 2 = n− 1.

For the 6 possible cases of the choice of (r, k1), namely r ∈ {3, 4, 6} and
k1 ∈ {1, r − 1}. The other contributions are at least

d contribution

1 1/6
2 1/6
3 1/3
4 1/2
6 1/3

After all Σ(g) ≥ 1 if n− 1 ≥ 6.

(2) Let r = 7, 14. We can assume D = −7 as if this is not the case explicit
calculations show thatVω

r will contribute at least 1 to Σ(g). Equation (3.27)
becomes

ν1 + ν2 + 2ν3 + 2ν4 + 2ν6 + 3ν7 + 3ν14 = n+ 1− 3 = n− 2

and the contributions are

d contribution

1 1/14
2 1/14
3 3/7
4 4/7
6 3/7
7 4/7
14 4/7

and 4/7 from Vω
r . So we may assume that ν3 = ν4 = ν6 = ν7 = ν14 = 0,

because otherwise the contribution will be ≥ 1. So Σ(g) ≥ 1, if ν1 + ν2 ≥ 6
and n ≥ 8.

(3) Let r = 15, 20, 24, 30. Analogously to the last case we can assume that
D = −5,−6,−15.
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(a) Let D = −5. Hence we get the equation

ν1 + ν2 + 2ν3 + 2ν4 + 2ν6 + 4ν20 = n− 3.

The contributions are

d contribution

1 1/30
2 1/30
3 5/12
4 8/15
6 5/12
20 4/5

and 4/5 from Vω
r . So Σ(g) ≥ 1 unless ν1 + ν2 ≤ 5 resp. n ≤ 8.

(b) Let D = −6 and therefore we get the equation

ν1 + ν2 + 2ν3 + 2ν4 + 2ν6 + 4ν24 = n− 3.

The contributions of V24 and Vω
r are 5/6. So Σ(g) ≥ 1 unless ν1 +ν2 ≤

4 resp. n ≤ 7.

(c) The last case is D = −15. So we get the equation

ν1 + ν2 + 2ν3 + 2ν4 + 2ν6 + 4ν15 + 4ν30 = n− 3. (3.29)

The contributions of V15, V30 and Vω
r are 11/15. So Σ(g) ≥ 1, if

ν1 + ν2 ≥ 8 resp. n ≥ 11.

Thus (i) is proved.

Statement (ii) follows directly from the above discussion, because g contributes
at least 1 on the subspace Hom(W,Vω

r ∩ Cn+1/W) for ϕ(r) = 6, 8, as the corre-
sponding representations are irreducible in this case.

So far we have only studied elements g that are not quasi-re�ections. Never-
theless this enables us to state a �rst result on canonical singularities of the
quasi-projective variety.

Corollary 3.26. Let D 6= −1,−2,−3 and n ≥ 11. Then Γ\CHn has canonical
singularities away from the branch divisors.

Proof. This directly follows from Theorem 3.25 and the Reid-Tai criterion.

This is true because the quasi-re�ection induce the branch divisors.
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3.4 Quasi-re�ections

In the previous section we only considered elements that were not quasi-re�ections.
Now we will turn our attention to quasi-re�ections and elements whose power is
a quasi-re�ection.
We will start with a description how ΛQ(

√
D) decomposes as a g-module, for a

quasi-re�ection h = gk. We can mention the possible decompositions with respect
to a given imaginary quadratic number �eld.

Proposition 3.27. Let h = gk be a quasi-re�ection on V for g ∈ G and n ≥ 2.
As a g-module we have

ΛQ(
√

D)
∼= Vm0 ⊕

⊕
j

Vmj

for some mi ∈ N. Then

(i) (m0, k) = m0 and 2(mj, k) = mj, or 2(m0, k) = m0 and (mj, k) = mj for
j ≥ 1 in the cases D < D0 and D = −2,

(ii) (m0, k) = m0 and l(mj, k) = mj, or l(m0, k) = m0 and (mj, k) = mj,
l ∈ {2, 4}, for j ≥ 1 in the case D = −1,

(iii) (m0, k) = m0 and l(mj, k) = mj, or l(m0, k) = m0 and (mj, k) = mj,
l ∈ {2, 3, 6}, for j ≥ 1 in the case D = −3.

Proof. As a g-module ΛQ(
√

D) decomposes into Vω
r ⊕

⊕
i Vdi

for some di ∈ N. As
h is a quasi-re�ection on V , all but one eigenvalues on V must be 1.

First �x an i. Now de�ne Vd := Vdi
and d′ :=

d

(k, d)
, then the eigenvalues of h

on Vd are primitive d′th roots of unity of multiplicity
dimVd

dimVd′
. We want to give

restrictions on the di:

(1) dimVd′ ≤ 2: Assume that the dimension is at least 3. One can choose three
distinct eigenvalues ζ, ζ ′, ζ ′′ on Vd′ , such that h would have eigenvalues
α(h)−1ζ, α(h)−1ζ ′ and α(h)−1ζ ′′ on V and at most one of these eigenvalues
could be 1.

(2) dimVd

dimVd′
= 2 ⇒ dimVd′ = 1: Assume dimVd′ ≥ 2 under the given condition.

Denote two of the dimVd′ eigenvalues of multiplicity 2 of h on Vd by ζ, ζ ′.
So one would have the eigenvalues α(h)−1ζ and α(h)−1ζ ′ of multiplicity 2
on V .

(3) dimVd ≥ 2, dimVd′ = 1 ⇒ the eigenvalue of h on Vd is α(h): If ζ is the
eigenvalue of h on Vd with ζ 6= α(h), then α(h)−1ζ 6= 1 would be an
eigenvalue on V of multiplicity dimVd ≥ 2.
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(4) dimVd′ = 2 ⇒ dimVd = 2: Let dimVd > 2. There are two eigenvalues
ζ 6= ζ ′ of h on Vd of multiplicity greater or equal to 2. Hence we have on V
the eigenvalues α(h)−1ζ and α(g)−1ζ ′ of the same multiplicity.

(5) The case dimVd′ = dimVd = 2 could not occur: Let dimVd′ = dimVd = 2
with eigenvalues ζ, ζ ′ of h on Vd. Without loss of generality we can as-
sume that ζ = α(h). If not we would have eigenvalues α(h)−1ζ 6= 1 and
α(h)−1ζ ′ 6= 1 on V . There could be no other summand Vd1 in the decom-
position of ΛQ(

√
D), as this summand would give an eigenvalue 6= 1 (the

dimension of Vd′ has to be 1, but as ζ = α(h) and ζ is a primitive d′th root
of unity, this can not happen).
There are two eigenvalues of h on Vω

r (because of dimVd′ = 2) which we
will call α(h) and ζ ′′ with multiplicity dimVr

2
(the denominator is dimVd′).

Therefore the multiplicity of the eigenvalues have to be 1, because α(h)−1ζ ′′ 6=
1 is an eigenvalue on V . But then we will have two eigenvalues 6= 1 on V
(namely α(h)−1ζ ′ and α(h)−1ζ ′′).

Hence there follows dimVd′ = 1.

Now we want to study Vr. Let r
′ :=

r

(k, r)
. We claim that dimVr′ = 1. Suppose

dimVr′ ≥ 2.

(6) dimVr′ ≤ 2: Assume that dimVr′ > 2, i.e. h has on Vω
r at least three

distinct eigenvalues α(h), ζ, ζ ′, which will give rise to eigenvalues α(h)−1ζ 6=
1 and α(h)−1ζ ′ 6= 1 on V .

(7) dimVr′ = 2 ⇒ n = 1: We know dimVd′ = 1 from above. Let ζ be the
eigenvalue of h on Vd of multiplicity dimVd. Clearly ζ 6= α(h), because
of dimension reasons. So we get the eigenvalue α(h)−1ζ on V , and hence
ΛQ(

√
D) = Vω

r and rk Λ = 2.

By the assumption n ≥ 2 we get dimVr′ = 1.
Putting this all together we get as a h-module

ΛQ(
√

D)
∼= Vω

r ⊕
⊕

i

Vdi
,

where the eigenvalues of h = gk on

(a) Vω
r are primitive r′th roots of unity (dimVr′ = 1) of multiplicity dimVr.

(b) Vdi
are primitive d′ith roots of unity (dimVd′i

= 1) of multiplicity dimVdi
.

The proof enables us to give an explicit decomposition of ΛQ(
√

D).

Remark 3.28. (i) As a h-module we have

56



CHAPTER 3. BALL QUOTIENTS AND SINGULARITIES

(1) in the cases D < D0, D = −2:

ΛQ(
√

D)
∼= Vω

r ⊕ V
a1
1 ⊕ Va2

2 , ai ≥ 0, r ∈ {1, 2},

(2) in case D = −1:

ΛQ(
√

D)
∼= Vω

r ⊕ V
a1
1 ⊕ Va2

2 ⊕ Va4
4 , ai ≥ 0, r ∈ {1, 2, 4},

(3) in case D = −3:

ΛQ(
√

D)
∼= Vω

r ⊕ V
a1
1 ⊕ Va2

2 ⊕ Va3
3 ⊕ Va6

6 , ai ≥ 0, r ∈ {1, 2, 3, 6}.

In particular h has order

(1) 2, if D < D0, D = −2,

(2) lcm(r, (i)ai>0) = 2 or 4, if D = −1,

(3) lcm(r, (i)ai>0) = 2, 3 or 6, if D = −3.

(ii) The l in the proposition above is the lowest common multiple resp. 2
mentioned in (i).

By now we know the possible actions on the tangent space for a given D. This
leads to the elements in U(Λ) inducing quasi-re�ections.

Corollary 3.29. The quasi-re�ections on V are induced by elements h ∈ U(Λ),
such that

(i) ±h acts as a re�ection on ΛC, if D < D0 or D = −2,

(ii) h4 ∼ I, if D = −1,

(iii) h6 ∼ I, if D = −3.

Proof. One has to check all possibilities for α(h) and the order of the quasi-
re�ection on V .

We want to the investigate the elements in the corollary in more detail depending
on the number �eld Q(

√
D).

Remark 3.30. Let h ∈ U(Λ) such that the induced action on the tangent space,
denoted by h′, is a quasi-re�ection. Therefore

h′ ∼C


1

. . .

1
ζ

 , with ζ 6= 1.
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Hence

h ∼C


α(h)

. . .

α(h)
λ

 .

(1) Let D < D0 or D = −2. So α(h) = ±1. If α(h) = +1 we will have the
eigenvalue +1 on ΛC of multiplicity n and λ = −1 of multiplicity 1. For
α(h) = −1 it is the other way round. Hence ±h is a re�ection on ΛC.

(2) Let D = −1, so α(h) = ±1, ζ4.

order of h′ α(h) λ order of h

2 ±1 cf. 1. 2
2 ζ4 ζ−1

4 4
4 ±1 ±ζ4 4
4 ζ4 ±1 4

(3) Let D = −3. Hence α(h) = ±1, ζ3, ζ6.

order of h′ α(h) λ order of h

2 ±1 cf. 1. 2
2 ζ3 ζ6 = −ζ3 6
2 ζ6 −ζ6 6

3 ±1

{
ζ3, α(h) = +1

ζ6, α(h) = −1

{
3

6

3 ζ3 +1, ζ−1
3 3

3 ζ6 −1, ζ−1
6 6

6 ±1

{
ζ6, α(h) = +1

ζ3, α(h) = −1
6

6 ζ3 ζ6 6
6 ζ6 +1, ζ3 6

In the following we will show that for some restrictions on n and D we always
have canonical singularities. As we will do this by reducing to suitable quotient
groups without quasi-re�ections we �rst have to note

Remark 3.31. V/G has canonical singularities if V/〈g〉 has canonical singulari-
ties for all g ∈ G. This was shown by [GHS07, Proof of Lemma 2.14].

We have stated all the results we need to produce a result for a general element
g and the corresponding Reid-Tai sum. First we give some de�nitions and then
prove the result.
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Let h = gk be a quasi-re�ection on the tangent space V and g ∈ G. We assume
that k > 1 is minimal with this property. If one considers the quotient V/〈h〉 by
the subgroup generated by h, this quotient is smooth by Corollary 1.6.
Let h be of order l, where l is given by Remark 3.28, i.e. g has order l ·k. We want
to have a look on the eigenvalues ζa1 , . . . , ζan of g on V , where ζ is a primitive
(l · k)th root of unity, and 0 ≤ ai < lk.
We want to consider the action of the group 〈g〉/〈h〉 on V ′ := V/〈h〉. Clearly
V ′/(〈g〉/〈h〉) ∼= V/〈g〉. Now we want to use analogous arguments as before to
describe the action of elements of 〈g〉/〈h〉, namely gf〈h〉, on V ′. Note that the dif-
ferential of gf〈h〉 on V ′ has eigenvalues ζfa1 , . . . , ζfan−1 , ζ lfan . The nth eigenvalue
correspond to the eigenvalue of h not equal to 1.
As we have an other action then before we modify the Reid-Tai sum.

De�nition 3.32.

Σ′(gf ) :=

{
fan

k

}
+

n−1∑
i=1

{
fai

lk

}
. (3.30)

One can show that this is the right de�nition to study quasi-re�ections.

Lemma 3.33. The quasi-projective variety Γ\CHn has canonical singularities,
if

(i) Σ(g) ≥ 1 for all g ∈ Γ no power of which is a quasi-re�ection, and

(ii) Σ′(gf ) ≥ 1 for 1 ≤ f < k, where h = gk is a quasi-re�ection.

Proof. [GHS07, Lemma 2.14]

We already proved some results for (i), so we now have to give a result for g
inducing quasi-re�ections.

Proposition 3.34. Let D < D0, h = gk be a quasi-re�ection and n ≥ 12. Then
Σ′(gf ) ≥ 1 for every 1 ≤ f < k.

Proof. We know from the former results that all eigenvalues on Vω
r are α(h),

where

α(h) =


±1, D < D0 and D = −2,

±1, ζ4, D = −1,

±1, ζ3, ζ6, D = −3.

(3.31)

We also already decomposed ΛC into Q(
√
D) irreducible pieces and by Remark

3.30 there is exactly one eigenvalue on ΛC that is λ 6= α(h), since only one
eigenvalue on V is not 1. This eigenvalue λ will appear on one Vd. As all
eigenvalues of g on Vd are primitive dth roots of unity they all have the same
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order. We know that λ must have multiplicity 1 on ΛC so dimVd = 1. This
implies

d =


1, 2,

1, 2, 4,

1, 2, 3, 6.

(3.32)

Denote by v the eigenvector of g corresponding to the eigenvalue ζan . Then v
clearly comes from Vd and therefore 〈v〉 = Hom(W,Vd).
If δ is the primitive generator of Vd ∩ Λ then h(δ, δ) > 0, since Vd ⊂ W⊥

Q(
√

D)
,

where WQ(
√

D) ⊗Q(
√

D) C ∼= W and WQ(
√

D) is a Q(
√
D)-vector space. The form

h(·, ·) is negative de�nite on W as shown in the proof of Lemma 3.12. If we de�ne
the sublattice Λ′ ⊂ Λ as Λ′ := δ⊥, this lattice has signature (n− 1, 1).
Now 〈g〉 / 〈h〉 acts on Λ′ as a subgroup of U(Λ′).
Therefore

Σ′(gf ) =

{
fan

k

}
+ Σ(gf〈h〉)

and gf〈h〉 ∈ U(Λ′).
Analogously to the proof of [GHS07, Proposition 2.15] we can give the following
argument: We claim that gf〈h〉 is not a quasi-re�ection on Λ′. If it were, the
eigenvalues of gf on Λ′ are as in Corollary 3.29. Thus the order of the eigenvalue
on Vd is

d =


1, 2,

1, 2, 4,

1, 2, 3, 6.

So ord gf divides l, and therefore gf ∈ 〈h〉. Hence the group 〈g〉/〈h〉 has no
quasi-re�ections and we apply Theorem 3.25 for n− 1 ≥ 11.

Theorem 3.35. Let n ≥ 12 and D < D0. Then Γ\CHn has canonical singular-
ities.

Proof. This follows directly from Lemma 3.33, Theorem 3.25 and Proposition
3.34.

Remark 3.36. All the techniques provided in this section also work for arbitrary
D < 0. The only reason for the restriction is Theorem 3.25, as there can occur
contribution of 0 for D = −1,−2,−3 and some representations.

3.5 Non-canonical singularities

In the last section we proved a result that there exist a bound on n for CHn/Γ
to have canonical singularities when one restricts to D < −3. This restriction
relies on the contribution of some representations to Σ(g).
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Now we want to give a bound for D = −3 by explicitly examining the cases that
do not lead to canonical singularities. But even there will occur some elements
in Γ that could give rise to non-canonical singularities. We will give a list of all
these elements.
The whole section we will assume that D = −3.
Primarily we assume that g do not act as a quasi-re�ection on V . We will keep
the notation from the previous sections.
First we summarize some of the results we obtained in section 3.3.

Lemma 3.37. The only values for r that do not ful�ll the Reid-Tai inequality
are r = 3, 4, 6, 7, 12, 14, 15, 20, 24, 30.

Proof. We only need to cite previous results.

(1) r = 1, 2 follows from Lemma 3.24

(2) Using the arguments from the proof of Lemma 3.21(ii) for r = 5, 8, 10 imply
the result.

(3) By Remark 3.22 we get r = 9, 16, 18.

(4) All r with ϕ(r) ≥ 10 follow directly from Lemma 3.21

Now we have to check the remaining values for r by hand. This can be done
using techniques introduced in the previous sections.

Lemma 3.38. If r = 7, 14, 15, 20, 24, 30 then Σ(g) ≥ 1.

Proof. All we have to do is to calculate the contribution of g on
Hom(W,Vw

r ∩ Cn+1/W) explicitly. This can be done using mc(r) from(3.19).
We have to watch out, as we only do this for D = −3 as long as Vr is reducible
over Q(

√
−3). If it is not reducible a slight modi�cation of mc(r) gives the right

formula. Calculating these contributions one gets:

r contribution to Σ(g)

3 0
4 1/2
6 0
7 15/7
12 1/2
14 15/7
15 6/5
20 16/5
24 3/2
30 6/5
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The r we are looking for contribute at least 1.

Now there are only four di�erent choices for r left, which would not contribute 1
to the Reid-Tai sum Σ(g). There are two pairs that behave di�erently, namely
4, 12 and 3, 6. This is based on the fact that Vr is irreducible in the �rst case,
but reducible in the second.
First we will give a bound on the dimension for r = 4, 12.

Proposition 3.39. Let r = 4, 12 and n ≥ 7, then Σ(g) ≥ 1.

Proof. Analogously to the proof of Theorem 3.25 we obtain (3.27) for the D = −3
case. But now we can be more exact what the dimensions are, as we know exactly
which representations are irreducible resp. reducible over this speci�c number
�eld:

dim Vr · λ+ ν1 + ν2 + ν3 + 2ν4 + ν6 + 6ν7 + 4ν8

+2ν12 + 6ν14 + 4ν15 + 8ν20 + 4ν24 + 4ν30 = n+ 1. (3.33)

Here it automatically follows that:

(1) ν7 = ν8 = ν14 = ν20 = 0, because they contribute at least 1 to Σ(g) (cf. the
discussion after (3.27)).

(2) ν4 = ν24 = ν30 = 0, as their contribution together with the contribution
mc(r) add up to at least 1. This has been already calculated in (3.26).

(3) λ = 1, for the same reason as in (b)(remember that dim Vr = 2).

Now we can rewrite (3.33) as

ν1 + ν2 + ν3 + ν6 + 2ν12 + 4ν15 = n+ 1− 2 = n− 1. (3.34)

To give a bound on n we will �rst state a list of the minimal possible values for the
contribution of Vd to the Reid-Tai sum. To get better results we will distinguish
the cases r = 4, 12, and therefore choose α(g) = ζr, r = 4, 12.

d min. contr. for r = 4 min. contr. for r = 12

1 1/4 1/12
2 1/4 1/12
3 1/12 1/12
6 1/12 1/12
12 5/6 1/2
15 5/3 5/3

As mc(r) = 1/2 we can give bounds using similar arguments as for Theorem 3.25:
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(1) In case r = 4, the contribution to Σ(g) is less than one, as long as

ν1, ν2 ≤ 1, ν12 = ν15 = 0, ν3 + ν6 ≤ 5.

Therefore Σ(g) ≥ 1, if n− 1 ≥ 6 ⇔ n ≥ 7.

(2) Analogously to (1) we get in case r = 12:

ν12 = ν15 = 0, ν1 + ν2 + ν3 + ν6 ≤ 5.

Thus n has to be at least 7.

Now there are only two possible values for r left, namely r = 3, 6.
But we want to reduce further. Up to now there are in�nitely many possible
representations occuring in the decomposition as a g-module.

Lemma 3.40. Let r = 3, 6 and d 6= 1, 2, 3, 4, 6, 12. Then the contribution to Σ(g)
coming from Hom(W,Vd ∩ Cn+1/W) is at least 1.

Proof. We will calculate the contribution of g from the subspace
Hom(W,Vd ∩ Cn+1/W) ⊂ V to the Reid-Tai sum in the case of D = −3 and
r = 3, 6. First note that we only have to consider d ≤ 90, because this was
already done for (3.22).
Now there are only �nitely many cases left. Using computer calculation we will
get

(1) the value

min
(a,r)=1

∑
(b,d)=1

{
a

r
+
b

d

}
for Vd irreducible over Q(

√
−3), and

(2) the value

min
α=±1

min
(a,r)=1

∑
(b,d)=1

(−3
b )=α

{
a

r
+
b

d

}

for Vd reducible over Q(
√
−3).

As this leads to the values of d we stated above we are done.

So there are no irreducible representations of dimension greater than 2 leading
to non-canonical singularities that we have to care about.
As we will need some estimations of these contributions for the non-canonical
singularities to have something like a �niteness result we state some contributions
calculated for the proof of Lemma 3.40.
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Remark 3.41. The smallest possible contributions coming from 2-dimensional
representations calculated in Lemma 3.40 are

d min. contr. for r = 3 min. contr. for r = 6

4 2/3 2/3
12 2/3 2/3

We can now state all elements that do not give rise to canonical singularities by
the Reid-Tai criterion.

For this we �rst �x α(g) =: ζr, r = 3, 6, for a primitive rth root of unity ζr. By
Lemma 3.40 we can assume

g ∼Q(
√
−3)



Ia1

−Ia2

A3
a3

A
3

b3

A6
a6

A
6

b6

A4
a4

A12
a12


, (3.35)

where Ai
ai
, i = 3, 6 denotes the ai × ai-diagonal matrix with entries ζi and A

i

bi

the complex conjugate of this matrix. The two remaining 2ai × 2ai-matrices are
de�ned as

Ai
ai

=

 Vi

. . .

Vi

 , i = 4, 12.

Remark 3.42. In the de�nition of Ai
ai
, for i = 4, 12 we only write Vi. In case

i = 12 there are two choices for V12, as there are two 2-dimensional irreducible
representations. So by this notation we mean that there can occur both in A12

a12
.
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Proposition 3.43. Let r = 3, 6 and g be as in (3.35). Then Σ(g) ≥ 1 except for
the following values of ai and bj:

(i) All a3 ≥ 1 and

b3 a1 a2 a6 b6 a4 a12

0 0
0,1

0
0

1 0
0 0,1

0 0
0,1

0
0

0 1
0 0,1

1 0
1,2,3 0 0

0 00 1 0
0 0 1,2,3

2 0
1

0
0

0 00 1
0 0

0 1
1,2,3 0 0

0 00 1 0
0 0 1,2,3

0 2
1

0
0

0 00 1
0 0

0 0
3,4,5 0

0 0 02 1,0
1 1

0 0 0
0 3,4,5

0 01,0 2
1 1

in case r = 3.

(ii) All a6 ≥ 1 and
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a2 b6 b3 a3 a1 a4 a12

0 0
0,1

0
0

1 0
0 0,1

0 0
0,1

0
0

0 1
0 0,1

1 0
1,2,3 0 0

0 00 1 0
0 0 1,2,3

2 0
1

0
0

0 00 1
0 0

0 1
1,2,3 0 0

0 00 1 0
0 0 1,2,3

0 2
1

0
0

0 00 1
0 0

0 0
3,4,5 0

0 0 02 1,0
1 1

0 0 0
0 3,4,5

0 01,0 2
1 1

in case r = 6.

Proof. First we state the induced action of g on the tangent space V . In case
r = 3 this is



A
3

a1

A
6

a2

Ia3−1

A3
b3

−Ia6

A6
b6

ζ3A
4
a4

ζ3A
12
a12


,

where without loss of generality we �x ζ6 := −ζ3.
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The induced action in case r = 6 is given by

A
6

a1

A
3

a2

−Ia3

A6
b3

Ia6−1

A3
b6

ζ6A
4
a4

ζ6A
12
a12


,

with −ζ6 =: ζ3.
We will only prove the case r = 3 as r = 6 is identical.
As we assume that g do not act as a quasi-re�ection on V , the values that ful�ll

a1 + a2 + 2a4 + a6 + 2a12 + b3 + b6 = 1

are not allowed.

(1) If the 2-dimensional representations occur, i.e. a12 6= 0 or a4 6= 0, then they
contribute at least 2/3 by Remark 3.41. So only when a2 ≤ 1 or b6 ≤ 1
and not simultaneously equal 1 (each of the 1-dimensional contributions is
at least 1/6) they do not sum up to 1 for the Reid-Tai sum.

For the other cases we can assume that a4 = a12 = 0.

(2) Let b3 > 0 (and less than 3 as each ζ3 contributes at least 1/3), then at
once a1 = 0, as otherwise one could choose complex conjugate eigenvalues.
If b3 = 1 and 0 < a2 ≤ 3 then b6 = 0 ( again choose complex conjugate
eigenvalues) and a6 = 0 as its contribution is 1/2. Therefore if a6 = 1, then
automatically a2 = b6 = 0. Interchanging the roles of a2 and b6 gives the
same result.
When one assumes a1 > 0 the conclusion is the same.

(3) So we may assume a1 = b3 = 0. Let a2 > 0(and less than 6 as the contri-
bution is at least 1/6), then b6 = 0 and vice versa (cf. (2)). If a6 > 0 then
a2 is at most 2.

These are all possible cases for the ai and the bi.

As the techniques introduced to prove Proposition 3.34 were proven for general
D < 0, we can give a result in case D = −3.

Corollary 3.44. Let D = −3, h = gk be a quasi-re�ection and n ≥ 8. Then
Σ′(gf ) ≥ 1 for every 1 ≤ f < k and h not corresponding to one of the list of
Proposition 3.43.
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3.5. NON-CANONICAL SINGULARITIES

Proof. The proof is analogous to the proof of Proposition 3.34

Thus we can give a result on singularities of Γ\CHn in case D = −3. As shown
before there are elements in arbitrary dimension that could lead to non-canonical
singularities. But by Proposition 3.43 we can study the singularities if necessary.

Corollary 3.45. Let n ≥ 8. Then the quasi-projective variety Γ\CHn has canon-
ical singularities up to singularities that can arise induced by elements as from
Proposition 3.43.

Proof. This follows with the results from this section used with Lemma 3.33 and
the techniques from Proposition 3.34.

Remark 3.46. If one wants to study the elements not leading to quasi-re�ections
one has to watch out. In Proposition 3.34 we do not study the action on V but
on V ′. Therefore there happens a base change, and they are not induced directly
from the elements we already mentioned.

In principle we could give a statement also for the other two remaining cases
which were not covered by Theorem 3.25, namely D = −1 and D = −2. One has
to consider the 2-dimensional representations that decompose over the number
�eld. But as seen in this section it is very messy to do. Furthermore, the case
r = 1, 2 is not covered anymore since Lemma 3.24 is only true for D 6= −1,−2.
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Chapter 4

Compacti�cation

In the last chapter we studied the singularities of the quasi-projective variety
Γ\CHn. There we proved a bound on n (under some restrictions on D), such
that the ball quotient has canonical singularities. However, Γ\CHn is a non-
compact variety. So there arises the natural question of a compacti�cation and
the singularities occuring at the boundary. Based on [GHS07] we will construct
locally a toroidal compacti�cation (Γ\CHn)∗ and study its singularities.

4.1 De�nitions

As already introduced in section 1.1.2 we will construct a toroidal compacti�ca-
tion of Γ\CHn. Therefore we have to follow this construction.
We �rst recall that the hermitian form h(·, ·) given by the lattice Λ has signature
(n, 1). Thus the isotropic subspaces corresponding to the form are 1-dimensional
and the boundary components or cusps are for this reason 0-dimensional, i.e.
points.
As we will give local arguments we �x a rational boundary component F of CHn.

De�nition 4.1. We will denote the corresponding rational isotropic subspace by
EQ(

√
D).

Of course EQ(
√

D) ⊂ ΛQ(
√

D) is an 1-dimensional subspace of the Q(
√
D)-vector

space ΛQ(
√

D), where D < 0.
As we want sometimes to restrict to the lattice we de�ne

E := EQ(
√

D) ∩ Λ, and

E⊥ := E⊥
Q(
√

D)
∩ Λ.

These two are primitive sublattices of Λ.
We will calculate the groups N(F ), W (F ) and U(F ) de�ned in 1.1.2 to follow the
compacti�cation process. Therefore we have to �x a basis. We will assume that
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4.1. DEFINITIONS

the hermitian form h(·, ·) of signature (n, 1) over Q(
√
D) is given by the matrix

Q′, i.e.

h(x, y) =H yQ′x. (4.1)

By the signature of the form we know that Q′ ∼C In,1.
We have to give the construction over the number �eld Q(

√
D). In the �rst step

we will choose a suitable basis for the form.

Lemma 4.2. There exists a basis e1, . . . , en+1 of ΛQ(
√

D), such that

(i) e1 is a basis of EQ(
√

D) and e1, . . . , en is a basis of E⊥
Q(
√

D)
,

(ii) the hermitian form with respect to this basis is given by

Q′ := (h(ei, ej))1≤i,j≤n+1 =

 0 0 a
0 B c
a Hc d

 , (4.2)

where a ∈ Q(
√
D), d ∈ Q, c ∈ Q(

√
D)

n−1
, B ∈ GL(n − 1,Q(

√
D)) and

B =HB.

Proof. The proof directly follows from the choice of the basis and the properties
of the form:

(1) We get the zeroes by h(EQ(
√

D), e) = 0 for all e ∈ E⊥
Q(
√

D)
.

(2) The rest follows as h(x, y) = h(y, x).

But the matrix Q′ we get is not good enough in our situation. Thus we have to
make a suitable base change.
We brie�y want to recall the well-known fact how a hermitian form behaves under
base change. For this let h : Ck ×Ck −→ C be a hermitian form given by S with
respect to the basis B. Then S ′ represents the same hermitian form with respect
to a basis B′, if there exist a matrix A ∈ GL(k,C), such that

S ′ =HASA.

Now we will choose a basis for Q′, such that such that the matrix corresponding
to the hermitian form has an `simple' structure.

Lemma 4.3. There exists a basis b1, . . . , bn+1 of ΛQ(
√

D), such that

(i) b1 is a basis of EQ(
√

D) and b1, . . . , bn is a basis of E⊥
Q(
√

D)
,
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CHAPTER 4. COMPACTIFICATION

(ii) the hermitian form is written with respect to this basis as

Q := (h(bi, bj))1≤i,j≤n+1 =

 0 0 a
0 B 0
a 0 0

 , (4.3)

where a and B are as in Lemma 4.2.

Proof. This proof is similar to the proof of [GHS07, Lemma 2.24]. The matrix
B represents the hermitian form h on E⊥

Q(
√

D)
/EQ(

√
D) and is therefore invertible.

Thus one can de�ne

N :=

 1 0 r′

0 In−1 r
0 0 1

 , (4.4)

where r := −B−1c ∈ Q(
√
D)

n−1
. Choose r′ such that it satis�es the equation

d−H cB−1c+ r′a+ ar′ = 0. (4.5)

This is possible as the �rst two summands are real by de�nition and the other
two are the complex conjugate of each other and therefore their sum is real. Now
we apply base change which gives

HNQ′N =

 0 0 a
0 B Br + c
a HrB +H c δ

 , (4.6)

with δ := ar′ + (HrB +H c)r + r′a+H rc+ d. But

Br + c = B(−B−1c) + c = 0.

Because of the de�nition of r and r′ we achieve

δ = ar′ +H (−B−1c)B(−B−1c) +H c(−B−1c) + r′a+H (−B−1c)c+ d

= ar′ + r′a−H cH(B−1)c+ d︸ ︷︷ ︸
=0, because of (4.5)

+ HcH(B−1)BB−1c−H cB−1c︸ ︷︷ ︸
=0

= 0.

Note that H(B−1) = B−1. Altogether this gives

HNQ′N =

 0 0 a
0 B 0
a 0 0

 .

Remark 4.4. The columns Ni, i = 1, . . . , n+ 1 of the matrix N in the proof of
Lemma 4.3 are the desired basis bi.
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4.2 Groups

So far we have chosen a suitable basis for the form h(·, ·). To proceed with the
compacti�cation to get (Γ\CHn)∗, we have to calculate

(1) the stabiliser subgroup N(F ) ⊂ ΓR of the isotropic subspace corresponding
to the cusp F ,

(2) the unipotent radical W (F ) of N(F ),

(3) the center U(F ) of N(F ).

as mentioned in 1.2.2. We will start by �nding the stabiliser subgroup. Note that
we have chosen a basis such that the rational isotropic subspace is generated by
the basis element b1.

Lemma 4.5. Let N(F ) ⊂ ΓR be the stabiliser subgroup corresponding to the cusp
F . Then

N(F ) =

g =

 u v w
0 X y
0 0 z

 ;
zu = 1, HXBX = B,

HXBy +H vaz = 0,
HyBy + zaw + zaw = 0

 . (4.7)

Proof. This can be easily shown by doing the following two calculations, that
come from the de�nition of N(F ).

(1) Collect all g ∈ ΓR which satisfy the equation

gb1 = b1.

This means that the isotropic subspace is g-invariant.

(2) Drop all g that do not respect the form de�ned by Q.

As we want to calculate the unipotent radical of N(F ) we �rst have to state a
lemma which comes from a more general algebraic setting, namely for a hermitian
matrix under some restrictions.

Lemma 4.6. Let A =H A ∈ Mat(n,C) be a de�nite, hermitian matrix, and B
element Mat(n,C) a unipotent matrix, i.e. B = In +N , where N ∈ Mat(n,C) is
a strict upper triangular matrix.

Then N = 0, if B satis�es the equation HBAB = A.

72



CHAPTER 4. COMPACTIFICATION

Proof. We will prove this lemma by induction on n.

First we assume n = 2 and write B =

(
1 b
0 1

)
and A = (ai,j)1≤i,j≤2. So we get

for these choices

HBAB =

(
1 0

b 1

)(
a1,1 a1,2

a2,1 a2,2

)(
1 b
0 1

)
=

(
a1,1 a1,2

ba1,1 + a2,1 ba1,2 + a2,2

)(
1 b
0 1

)
=

(
a1,1 a1,1b+ a1,2

ba1,1 + a2,1 (ba1,1 + a2,1)b+ ba1,2 + a2,2

)
=

(
a1,1 a1,2

a2,1 a2,2

)
.

So from the (1, 2)-entry we get a1,1b = 0, i.e. a1,1 = 0 or b = 0. As A is de�nite
we have a1,1 6= 0 and therefore b = 0.
Now assume that the statement holds for n − 1. First note that the restriction
Ares of A on the subspace Cn−1 = {z ∈ Cn; zn = 0} ⊂ Cn is de�nite, as A is
de�nite. With this notation we write

A =

(
Ares a
Ha α

)
, B =

(
I +N ′ ν

0 1

)
, (4.8)

where N =:

(
N ′ ν
0 0

)
. Now we will calculate the product of these matrices and

make a similar argument as before.

HBAB =

(
I +HN ′ 0

Hν 1

)(
Ares a
Ha α

)(
I +N ′ ν

0 1

)
=

(
(I +HN ′)Ares(I +N ′) (I +HN ′)Aresν + (I +HN ′)a
(HνAres +Ha)(I +N ′) (HνAres +Ha)ν +H νa+ α

)
(4.9)

=

(
Ares a
Ha α

)
.

Here we denote by I the identity matrix In−1. When one compares the matrices
one obtains from the �rst (n− 1)× (n− 1)-entries

(I +HN ′)︸ ︷︷ ︸
=H(I+N ′)

Ares(I +N ′) = Ares.

Now we can apply the induction hypothesis and thus get N ′ = 0. Hence we can
rewrite the matrix (4.9) and it becomes much simpler. The remainig condition
from the equation is

Aresν + a = a
⇔ Aresν = 0
⇒ HνAresν = 0
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4.2. GROUPS

But, as already mentioned, the matrix Ares is de�nite because it is de�ned by A,
therefore we get ν = 0. Thus N = 0 and the statement is proved.

With the help of this lemma we can prove a proposition about the unipotent
radical. Here we have to use that the elements of W (F ) are unipotent and then
apply the lemma.

Proposition 4.7. The unipotent radical is

W (F ) =

g =

 1 v w
0 In−1 y
0 0 1

 ;
By +H va = 0,

HyBy + aw + aw = 0

 (4.10)

Proof. The group W (F ) is by de�nition the subgroup of N(F ) consisiting of all
unipotent elements of N(F ). Therefore an element g ∈ W (F ) has to be of the
form

g =

 1 v w
0 X y
0 0 1

 ,

where X = In−1 + T with T strict upper triangular. So it remains to show that
T = 0. As B is de�nite by de�nition and X is unipotent the statement follows
from Lemma 4.6.

The fact that the matrix B is de�nite relies on its construction belonging to the
matrix Q and Q de�ning a hermitian form.
Now we can �nd the remaining group we need to construct a toroidal compacti-
�cation.

Lemma 4.8. The centre of W (F ) is then given by the group

U(F ) =

g =

 1 0 iax
0 In−1 0
0 0 1

 ; x ∈ R

 (4.11)

Proof. First note that the �rst condition of W (F ) gives:

v =H

(
−1

a
By

)
. (4.12)

Now we will use that U(F ) is the centre of W (F ), i.e.

centre(W (F )) = {g ∈ W (F ); gg′ = g′g for all g′ ∈ W (F )} .

When we calculate these products for g, g′ ∈ W (F ) we get a condition and have
to use property (4.12):

vy′ = v′y
=⇒ H

(
− 1

a
By
)
y′ = H

(
− 1

a
By′
)
y

⇐⇒ HyHBy′ = Hy′HBy
⇐⇒ HyBy′ −H

(
HyBy′

)
= 0,
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CHAPTER 4. COMPACTIFICATION

as B =HB by de�nition. Clearly the last equivalence implies that HyBy′ ∈ R for
every y′.
The matrix B has full rank as it is invertible and thus

B · Cn−1 = Cn−1.

Therefore set z′ := By′ ∈ Cn−1. Now we rephrase the property from above as

Hyz′ is real for all z′ ∈ Cn−1. (4.13)

As this is true for all vectors we can choose z′ to be

z′ =T (0, . . . , 0, 1, 0, . . . , 0),

where the only coordinate not equal to 0 is the jth. For this choice in (4.13) only
the jth coordinate of y remains and therefore yj ∈ R.
Now let

z′ =T (0, . . . , 0,
√
D, 0, . . . , 0).

Then (4.13) becomes yj ·
√
D ∈ R, and as D < 0 this means yj ∈ iR. Hence yj

has to lie in the intersection of these spaces.

yj ∈ R ∩ iR = {0}, because z′ varies in Cn−1.

As j is chosen arbitrary we can deduce that this is true for every entry, i.e. y = 0.
But as y = 0 by (4.12) also v = 0.
So we have to study the remaining condition given in (4.10), which is aw+wa = 0.
We want to describe w more speci�cally, i.e. in terms of a. For this we write
w = c+ id and a = e+ if . So we get

aw + wa = 2(ec+ df) = 0.

Assuming e 6= 0 this implies c = −df
e
and for this reason w = −df

e
+ id, d ∈ R.

Therefore

w ∈ R
(
−f
e

+ i

)
= R (−f + ie) = iR(e+ if) = iaR.

The case f 6= 0 is similar.

Now we determined all groups we need to start the process of toroidal compacti�-
cation. But �rst we have to restrict the center U(F ) from above to the arithmetic
group Γ.

Lemma 4.9. Th restriction of U(F ) to Γ induces

U(F )Z = U(F ) ∩ Γ ∼= Z.
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Proof. As Γ ⊂ GL(n + 1,O) it is clear that iax ∈ O. Also note that x ∈ R by
Lemma 4.8 we have to distinguish two cases:

(i) D ≡ 2, 3 mod 4. Therefore

iax = c+ d
√
D for some c, d ∈ Z. (4.14)

Additionally we know that a ∈ Q(
√
D) and hence a = e + f

√
D for some

e, f ∈ Q. Thus we can write equation (4.14) as

i(e+ f
√
D)x = c+ d

√
D

⇔ iex+ if
√
Dx = c+ d

√
D

⇔ f
√
−Dx+ iex = c+ d

√
D.

Therefore fx
√
−D ∈ R and iex 6∈ R, or to be more precise

fx
√
−D ∈ Z and iex ∈ Z

√
D,

so we get x ∈ 1

f
√
−D

Z∩1

e
Z
√
−D =

1

f(−D)
Z
√
−D∩1

e
Z
√
−D. As e, f ∈ Q

choose e =
p

q
, f =

r

s
, both with coprime numerator and denominator, and

x̃
√
−D = x, hence

x̃ ∈ s

r(−D)
Z ∩ q

p
Z.

We claim

s

rD′Z ∩
q

p
Z =

lcm(sp, rD′q)

rD′p
Z, (4.15)

where for brevity we de�ne

D′ := −D, c1sp := lcm(sp, rD′q), c2rD
′q := lcm(sp, rD′q).

Note that as c1, c2 are de�ned by the lowest common multiple, they are
therefore coprime.

(1) We will �rst prove '⊃'. Let η ∈ lcm(sp, rD′q)

rD′p
Z. Thus we can write

with c1, c2 de�ned as above and c ∈ Z:

η =
lcm(sp, rD′q)

rD′p
c =

c1sp

rD′p
c =

c2rD
′q

rD′p
c

=
c1s

rD′ c =
c2q

p
c.
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We have to �nd a = a(c), b = b(c) ∈ Z, such that we can represent

η as
s

rD′a,
q

p
b. Now let a := c1c, b := c2c which are integers because

they are products of integers. With this choice η lies in
s

rD′Z and in
q

p
Z and therefore in

s

rD′Z ∩
q

p
Z.

(2) Now we deal with '⊂'. Now choose η ∈ s

rD′Z ∩
q

p
Z, i.e. there exist

a, b ∈ Z with

η =
s

rD′a =
q

p
b. (4.16)

We have to show that there exist an c(a, b) = c ∈ Z with η =
lcm(sp, rD′q)

rD′p
c. Now let c :=

b

c2
=

a

c1
. Writing the �rst part of

(4.16) with this choice of c leads to

η =
s

rD′ cc1 =
spc1
rD′p

c =
lcm(sp, rD′q)

rD′p
c.

The other case is analogous. So it remains to show that this choices
of c lead to integers. This can be seen in the following way:
By (4.16) we get sap = qbrD′, and multiplying this by c1c2 gives

sapc1c2 = qbrD′c1c2
⇐⇒ ac2 lcm(sp, rD′q) = bc1 lcm(sp, rD′q)
⇐⇒ ac2 = bc1.

We know that c1 and c2 are coprime because they are de�ned by the
lowest common multiple. From this and the equation above it follows
that c1 divides a and c2 divides b. Thus c ∈ Z as required.

(ii) D ≡ 1 mod 4. We have to use the same argument, only that

iax = c+ d
1 +

√
D

2
=

2c+ d

2
+
d
√
D

2
for some c, d ∈ Z. (4.17)
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As in (i) we know that

fx
√
−D =

2c+ d

2
and iex =

d

2

√
D

⇐⇒ x =
2c+ d

2fD′

√
−D and x =

−d
2e

√
−D

⇐⇒ x ∈


1

2fD′

√
−D2Z ∩ 1

2e

√
−D2Z (d even)

1

2fD′

√
−D(Z− 2Z) ∩ 1

2e

√
−D(Z− 2Z) (d odd)

⇐⇒ x̃ ∈


1

fD′Z ∩
1

e
Z

1

2fD′ (Z− 2Z) ∩ 1

2e
(Z− 2Z)

⇐⇒ x̃ ∈


s

rD′Z ∩
q

p
Z

s

2rD′ (Z− 2Z) ∩ q

2p
(Z− 2Z)

⇐⇒ x̃ ∈ s

2rD′Z ∩
q

2p
Z

with e, f,D′, x̃ as in (i). By the same argument as above it follows that this
is

lcm(sp, rD′q)

2rD′p
Z.

This leads to the construction of a toroidal compacti�cation done in 1.2.2. We
have a Z-lattice U(F )Z of rank 1 in the vector space U(F )C = U(F )⊗Z C. This
is exactly the case in which we stated the toroidal compacti�cation. So we can
use the results mentioned in 1.2.

4.3 Constructing the compacti�cation

In the last section we have given the foundations for toroidal compacti�cation.
In the following we will, as in section 1.2.2, construct the algebraic torus T and
add a divisor to compactify Γ\CHn locally.
First we will choose coordinates on CHn, namely

(t1 : · · · : tn+1)

as CHn is an open part of n-dimensional complex projective space. By the
de�nition of CHn we can assume tn+1 = 1.
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As the compacti�cation has to be done locally we will consider the compacti�ca-
tion in the direction of the cusp F . Therefore we have to consider

CHn(F ) = CHn/U(F )Z.

By standard calculations we can give an identi�cation

CHn(F ) ∼= C∗ × Cn−1, (4.18)

as there is an action by iax on one component while the remaining components
stay the same.
For this identi�cation we will introduce new variables α and wi as follows:

t1 7→ α ∈ C,
ti 7→ wi ∈ C, 2 ≤ i ≤ n.

Sometimes we will deal with the vector given by the wi's, and therefore denote it
by w.
As we need an explicit description of the action of the stabiliser group restricted
to Γ we will state the action of the group N(F ) on CHn(F ). The restriction is
de�ned as N(F )Z := N(F ) ∩ Γ

Lemma 4.10. If

g =

 u v w
0 X y
0 0 z

 ∈ N(F ),

then g acts on CHn by

α 7→ 1

z

(α
z

+ vw + w
)
, (4.19)

w 7→ 1

z
(Xw + y) . (4.20)

Proof. This easily follows from the computation

 u v w
0 X y
0 0 z

 α
w
1

 =

 uα + vw + w
Xw + y

z

 =


uα + vw + w

z
Xw + y

z
1

 .

and the property u = 1
z
given in Lemma 4.5.

Now we will introduce the algebraic torus T from section 1.2.2. This is

T := U(F )C/U(F )Z ∼= C∗, (4.21)
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as U(F )C/U(F )Z is isomorphic to C/Z.
Since we will study the singularities at the boundary in the next section we choose
a variable θ on the algebraic torus T . This variable is given by

θ := expa(α) :=

 e

2πi

ia
lcm(sp,rD′q)

rD′p
√
−D

α

= e
2πrD′p

a lcm(sp,rD′q)
√
−D

α
, D ≡ 2, 3 mod 4,

e

2πi

ia
lcm(sp,rD′q)

2rD′p
√
−D

α

= e
4πrD′p

a lcm(sp,rD′q)
√
−D

α
, D ≡ 1 mod 4.

(4.22)

For this de�nition we use the same notation for r, s, p, q,D′ as we did in the proof
of Lemma 4.9.
One can see that this is the right choice as follows. We know that the variable
θ has to be invariant under the action of U(F )Z, or more explicitly under the
action

α 7→ α+ iax.

This is true for iax computed in the proof of Lemma 4.9.
As we have to use this exponent later again, de�ne

σ :=

{
ia lcm(sp,rD′q)

rD′p

√
−D, D ≡ 2, 3 mod 4,

ia lcm(sp,rD′q)
2rD′p

√
−D, D ≡ 1 mod 4.

(4.23)

Using this de�nition we can write iax = σb for a b ∈ Z.
Now we de�ne G(F ) as N(F )Z/U(F )Z. Let g ∈ G(F ) and suppose g has order
m, where we can assume m > 1. We will also write g if we think of g as an
element of N(F ).

If we want to compactify Γ\CHn in the direction of F we have to follow the steps
mentioned in 1.2.2. Thus we have to replace the torus T by the toric variety TΣ.
But as already shown in 1.2 the toric variety is simply TΣ = C.
In our situation the compacti�cation of Γ\CHn locally means that we allow θ to
be zero.
If we do this we add one point for each point over the basis Cn−1 as given in
(4.18). In the local situation this means that we add

{0} × Cn−1

to the boundary. This has to be divided by the action of G(F ), which by Propo-
sition 1.26 extends uniquely to the boundary.

4.4 Singularities at the boundary

Having constructed the toroidal compacti�cation and described its structure, we
will now consider the singularities that can arise at the boundary. As in Chapter
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3 we will show that we can choose the dimension high enough (under a restriction
on D) such that the compacti�cation has canonical singularities.
Similarly to the interior case we make use of the Reid-Tai criterion. Therefore
we will make analogous assumptions as those we needed in 3.
Suppose that g �xes the boundary point (0, w0) for an arbitrary �xed w0 ∈ Cn−1.
Now we are in a situation as before and can de�ne the Reid-Tai-sum Σ(g) =∑{

ai

m

}
, where ζai denote the eigenvalues of the action on the tangent space and

ζ a primitive mth root of unity, as g is assumed to be of order m.
In the following proposition we have to make use of the units in the number �eld
we are considering.

Remark 4.11. It is classical result in algebraic number theory that the invertible
elements in the ring of integers OQ(

√
D) of an imaginary quadratic number �eld

Q(
√
D) are 

〈ζ4〉 , if D = −1,

〈ζ6〉 , if D = −3,

{±1}, otherwise,

where ζk denotes, as usual, a primitive kth root of unity.

Similar to the previous chapter we will �rst exclude quasi-re�ections.

Proposition 4.12. Let no power of g act as a quasi-re�ection on the boundary
point (0, w0) and D < D0. Then Σ(g) ≥ 1.

Proof. As D < D0 we can assume that z = ±1, because z is invertible in O as
zu = 1 by Lemma 4.5 and Remark 4.11. Now we have to determine the action
of g on the tangent space. This is for obvious reasons given by the matrix(

expa(±(vw0 + w)) 0
∗ ±X

)
. (4.24)

We denote the order of X by mX and investigate the decomposititon of the
representation X. As before the representation decomposes into a direct sum of
Vd's. Remember that we denote by Vd the irreducible representation, so it can
mean Vd or Vd

′ resp. Vd
′′, as in De�nition 3.23. We have to distinguish two cases.

(1) First assume that mX > 2. In this case we are in the situation of Lemma
3.24, as we are in case D < D0 and the only irreducible 1-dimensional
representations are V1 and V2. So by the lemma we get Σ(g) ≥ 1.

(2) Now let mX = 1 or mX = 2. The action of −1 ∈ Γ is trivial and so we can
get z = 1 by replacing g by −g.
First assumemX = 1 and henceX = I. As the element g �xes the boundary
point (0, w0) we get y = 0 from Lemma 4.10 and then by the group relations
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of Lemma 4.5 we have v = 0 as Hva = 0. So the element g has to have the
form

g =

 1 0 w
0 I 0
0 0 1

 ,

and for this reason g ∈ U(F )Z. This implies that, viewed in N(F )Z/U(F )Z,
g is the identity.
Finally we have to check the case mX = 2. So g2 ∈ U(F )Z, and therefore
we get the relations

v + vX = 0, (4.25)

Xy + y = 0,

2w + vy ≡ 0 mod σ, (4.26)

where σ is as before.
We will only consider the case D ≡ 2, 3 mod 4 as the case D ≡ 1 mod 4
is analogous (cf. proof of Lemma 4.9).
De�ne t := vw0 + w which is the argument of the above given exponential
map in the Jacobi matrix of the action on the tangent space. We want to
show 2t ≡ 0 mod σZ as this implies

expa(t) = ±1.

We will now use w0 = Xw0 + y as g �xes the boundary point and the
relations (4.25), (4.26). Hence we get

2t = 2vw0 + 2w ≡ 2vw0 − vy

= vw0 + vw0 − vy = vw0 + v(w0 − y)

= vw0 + vXw0 = v(I +X)w0

≡ 0 mod σZ.

Therefore all the eigenvalues on the tangent space are ±1, because X has
order 2 and expa(t) = ±1 for t as above.
So there are two possibilities: All but one eigenvalues are +1, so g acts as a
re�ection (in this case all quasi-re�ections have order 2), or there are at least
two eigenvalues −1 and the remaining are +1, so we will have Σ(g) ≥ 1.

So if we use this proposition we can give a result for the divisors at the boundary
over a boundary component.

Corollary 4.13. At the boundary there are no divisors at the boundary over a
dimension 0 cusp F that are �xed by a non-trivial element of N(F )Z/U(F )Z in
the case D < D0.
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Proof. Each divisor at the boundary has θ = 0. The only elements �xing
a divisor are the quasi-re�ections. The variable θ corresponds to the entry
expa(±(vw0+w)) from the induced action on the tagent space. From the proof of
Proposition 4.12 each matrix X belonging to a quasi-re�ection has order greater
1. Thus no divisor θ = 0 is �xed.

Finally we have to mention quasi-re�ections at the boundary. We will do this
similary as for Proposition 3.34. Therefore de�ne Σ′(g) for g ∈ G(F ) as before
and h = gk to be a quasi-re�ection, where k is chosen minimal with this property.

Proposition 4.14. Let g ∈ G(F ) be such that h = gk is a quasi-re�ection.
Assume that n ≥ 13 and D < D0, where D0 = −3. Then Σ′(gf ) ≥ 1 for every
1 ≤ f < k.

Proof. The proof is similar to the proof of [GHS07, Proposition 2.30]. We will
again study the action of h on the tangent space. If the eigenvalue not equal to
1 is expa(t), then X

f contributes at least 1 to Σ′(gf ).
Now denote this unique eigenvalue of h on the tangent space by ζ 6= 1. Let ν be
the exceptional eigenvector of of h with the property h(ν) = ζ · ν. Assume that
ν occurs in the representation Vd, where we consider the decomposition of X as
a g-module. The dimension of Vd has to be 1 as otherwise it would contribute
another eigenvalue not equal to 1. Now we study the g-module

E⊥
Q(
√

D)
/(EQ(

√
D) + Q(

√
D)ν),

which is (n− 2)-dimensional. We can refer to Theorem 3.25 as long as D < D0.
So if n− 2 ≥ 11 we get Σ(g) ≥ 1 and therefore Σ′(g) ≥ 1.

In the proof we use that for D < D0 the only 1-dimensional representations are
V1 and V2. Now we can state the main theorem that gives a bound for canonical
singularities for the toroidal compacti�cation.

Theorem 4.15. Let n ≥ 13 and D < D0. Then the toroidal compacti�cation
(CHn/Γ)∗ of CHn/Γ has canonical singularities. Furthermore, there are no �xed
divisors in the boundary.

Proof. This is a consequence of Theorem 3.35, Proposition 4.12, Proposition 4.14
and Corollary 4.13.

As in section 3.5 one could ask for singularities in the case D = −3.

Remark 4.16. When we assume D = −3 most of the techniques we used will
still work. But one should watch out in the proof of Proposition 4.12. There are
two steps that has to be studied more intensively:

(1) In the proof we can assume z = ±1. This is no longer true as the units are
now elements of 〈ζ6〉.
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(2) At some point we make a statement about the irreducible 1-dimensional
representations. In case D = −3 there are some more representations to
consider.

The same is true for D = −1,−2 (in case D = −2 the problem mentioned in (1)
does not occur).
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