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Zusammenfassung 

Kürzlich wurden neun unterschiedliche Mutationen in der codierenden Region des Gens 

der humanen intestinalen Laktase-Phlorizin-Hydrolase (LPH) identifiziert. Die Mutante 

LPH-G1363S weist eine zusätzliche N-Glykosylierungsstelle auf und stellt sich bei 

Expression in COS-1-Zellen als missgefaltetes, enzymatisch nicht aktives Protein dar, 

welches das Endoplasmatische Retikulum (ER) nicht in Richtung Golgi-Apparat (GA) 

verlassen kann. Es ist eine partielle Temperatursensitivität zu beobachten, wobei 

sowohl der intrazelluläre Transport als auch die enzymatische Aktivität von LPH-

G1363S bei 20°C zum Teil wiederhergestellt werden können, nicht jedoch die korrekte 

Faltung. Des Weiteren zeigt sich, dass eine LPH-Form, welche die Mutationen G1363S 

und N1361A beinhaltet, und somit eine Re-Eliminierung der zusätzlichen N-

Glykosylierungsstelle aufweist, nicht die Eigenschaften des Wildtyp-Proteins besitzt, 

sondern die von LPH-G1363S. Daraus lässt sich ableiten, dass die zusätzliche 

Glykosyl-Gruppe nicht die Defekte von LPH-G1363S verursacht. Diese Analyse ist die 

erste Charakterisierung einer LPH-Mutante auf molekularer und subzellulärer Ebene, 

die in die Pathogenese der Congenitalen Laktase-Defizienz involviert ist und offenbart 

einen bislang unbekannten Mechanismus der Ursache von Laktose-Malabsorption. 

Der transportkompetente Protein-Vorläufer der LPH (pro-LPH) umfasst vier homologe 

Domänen. Der Einfluss jeder dieser Bereiche auf die strukturellen und funktionalen 

Eigenschaften von pro-LPH wurde durch gerichtete Umstrukturierung der Domänen-

Zusammensetzung analysiert. Dabei zeigte sich, dass das Entfernen von Domäne IV, 

welche die Laktase-Aktivität trägt, eine beschleunigte Transportkinetik nach sich zieht. 

Außerdem weist die Mutante (LPH∆4) eine verzögerte Dimerisierung im GA und eine 

reduzierte Verbundenheit mit Tween 20-resistenten Membranen im ER auf. Darüber 

hinaus kolokalisiert LPH∆4 teilweise mit dem Wildtyp-Protein in Laktase tragendenden 

apikalen Vesikeln (LAVs) aber nicht mit der Saccharase-Isomaltase (SI) in SI tragenden 

apikalen Vesikeln (SAVs). Das Fehlen von Domäne II führt zu einer verminderten 

Phlorizin-Hydrolase- und nicht mehr nachweisbaren Laktase-Aktivität, verzögerter 

Dimerisierung, jedoch kaum veränderter Transportkinetik. Die Mutanten, welchen die 

homologe Domäne III oder I fehlt sind nur teilweise gefaltet und verlassen das ER nicht. 

Die Domäne III alleine hingegen ist per se transportkompetent, enzymatisch aktiv und 

wird effizient zur apikalen Seite polarer Zellen sortiert, lässt sich jedoch nur als 

Monomer nachweisen. Daraus ergibt sich ein hierarchisches Modell der frühen 

Faltungsvorgänge der naszierenden pro-LPH, wobei der membranassoziierten Domäne 

IV bei der Protein-Zielsteuerung der pro-LPH eine regulatorische Rolle zukommt. 

Domäne III hingegen stellt die autonome Kern-Domäne des Gesamtproteins dar, 

fungiert als zweites intramolekulares Chaperon und trägt die Informationen für die 

apikale Sortierung. 
 

Schlagworte: Laktase-Phlorizin-Hydrolase, Congenitale Laktase-Defizienz, Faltung, 

intramolekulare Organisation, Zielsteuerung, Detergenz-resistente Membranen. 
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Abstract 

Recently, nine distinct mutations within the coding region of the human intestinal lactase 

phlorizin hydrolase (LPH) gene have been identified. The mutant LPH-G1363S carries 

an additional N-glycosylation site and constitutes a misfolded, enzymatically inactive 

protein, which is not able to leave the endoplasmic reticulum (ER) towards the Golgi 

apparatus (GA) when expressed in COS-1 cells. It displays partial temperature-

sensitivity, whereby its intracellular transport as well as its enzymatic activity can be 

restored in part during expression at 20°C, but correct folding can not. However, a form 

of LPH that contains the mutations G1363S and N1361A, which lead to re-elimination of 

the additional N-glycosylation site, does not display the features of wild type LPH but of 

LPH-G1363S. Thus, the additional glycosyl group is not required for the LPH-G1363S 

defects. This is the first characterization, at the molecular and subcellular levels, of a 

mutant form of LPH that is involved in the pathogenesis of congenital lactase deficiency. 

Mutant LPH accumulates predominantly in the ER but can partially mature at a 

permissive temperature; these features are unique for a protein involved in a 

carbohydrate malabsorption defect implicating LPH. 

The transport-competent protein precursor of LPH (pro-LPH) contains four homologous 

domains. The influence of each of the homologous domains on the structural and 

functional characteristics of the pro-LPH polypeptide has been analyzed by directed 

restructuring of the domain composition. Removal of domain IV, which carries the 

lactase activity, results in accelerated transport kinetics and altered patterns of 

quaternary structure and membrane association. These novel biosynthetic features of 

the mutant (LPH∆4) are directly associated with a retarded dimerisation of this mutant in 

the GA and a reduced association with Tween 20-resistant membranes in the ER. 

Furthermore, LPH∆4 co-localises partly with the wild type protein in lactase-carrying 

apical vesicles (LAVs) but not with sucrase-isomaltase in SI-carrying apical vesicles 

(SAVs). Moreover, deletion of domain II leads to a reduced phlorizin hydrolase and not 

detectable lactase activity, retarded dimerisation, but almost normal transport kinetics. 

The mutants, which lack domain I or III, respectively, are badly folded and not capable 

of leaving the ER. However, domain III alone is per se transport-competent, 

enzymatically active and efficiently sorted to the apical membrane in polarized cells, but 

can only be detected as monomeric forms. Altogether, the data strongly suggest a 

hierarchical model of the early folding events of nascent pro-LPH. Here, membrane 

associated domain IV has a regulatory role of in the trafficking of pro-LPH, while domain 

III constitutes the core domain of the whole protein, functions as a second 

intramolecular chaperone and comprises the information for apical sorting. 
 

Key words: Lactase phlorizin hydrolase, congenital lactase deficiency, folding, 

intramolecular organisation, trafficking, detergent resistant membranes. 
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1. Introduction      

 

The biological cell is the central unit within the self-organisation of an organism, the 

maintenance of its functions therefore is essential. One crucial presupposition is the 

supply of distinct subcellular compartments with specific proteins. The basis for 

correct protein trafficking and consequently the fulfillment of its biological role is the 

acquisition of a native conformation via correct folding. 

In virtue of the fact that misfolded polypeptides constitute the molecular basis of 

many inherited diseases, investigations on the mechanisms which contribute to and 

guarantee correct folding constitute a major and important part of current research. 

These mechanisms contain interactions between cellular protein components and 

structural elements within a polypeptide [Hammond and Helenius, 1994; Hutt et al., 

2009]. Therefore, insights into the intramolecular organisation of proteins are of great 

significance for the understanding of fundamental molecular and cell biological 

processes. That is why an extension of knowledge in this field is of use as a basis for 

diagnostic and therapeutic progress concerning disorders associated with this 

subject. 

 

 

1.1 Protein biosynthesis, folding, processing, and transport 

 

The achievement of the native conformation is the condition to be fulfilled that a 

protein can be transported to its target site and be functional. Therefore, correct 

folding is a prerequisite for its full functionality. 

Theoretically, a peptide with n amino acids could form 8n conformations, because in 

the peptide backbone stereochemically eight bond angles are possible; however, 

under cellular conditions only one is realized. In this most stable structure about 95% 

of all intracellular proteins are found [Lodish et al., 2004]. 

 

1.1.1 The secretory pathway 

Most of the proteins of a eucaryotic cell are encoded within the nucleus, but their 

biosynthesis occurs in two different ways. 

The mRNA of cytoplasmic, nuclear, mitochondrial, plastidal, and peroxisomal 

proteins is translated by free cytoplasmic ribosomes. After correct folding, the 
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polypeptides either remain in the cytoplasm or are transported to final destinations by 

means of their compartment-specific target and entry sequences. The proteins of the 

secretory pathway  – like proteins of the ER, the Golgi apparatus, the lysosomes, as 

well as secreted and integral membrane proteins [Griffiths and Simons, 1986; 

Palade, 1975] – are synthesized by cytoplasmic ribosomes bound to the membrane 

of the rough ER during translation. Fig. 1.1 gives an overview over the secretory 

pathway. 

 

 

 

 

B 

A 
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Fig. 1.1: Conventional secretory pathway (A) and unconventional transport of 
signal-peptide-containing proteins (B). 1-4 indicate different routes and 
mechanisms of unconventional protein transport. (From [Nickel and Rabouille, 2009]) 
 

 

 

1.1.2 Translocation in the ER 

Signal sequences within a pre-pro-peptide precursor play a crucial role for the 

interaction between ribosomes and the ER. These sequences are predominantly 

localized N-terminally and are revealed and exposed co-translationally. The 

hydrophobic core within a signal sequence of a nascent polypeptide binds to a 

signal-recognition particle (SRP). This SRP directs the ribosome to an SRP-receptor 

in the ER membrane and interacts with it. Subsequently, the ribosome binds a 

translocase associated with the SRP-receptor [Gilmore, 1993; Johnson and van 

Waes, 1999]. In coordination with other ER-specific proteins, the nascent, unfolded 

polypeptide [Rapoport et al., 1996; Shaw et al., 1988] is translocated through the 

translocase channel into the ER lumen or it is inserted into the ER membrane, 

respectively. 

Integral membrane proteins can be inserted in the lipid bilayer in different ways. 

Either a covalent bound glycosyl-phosphatidylinositol (GPI)-anchor is attached 

[Brown et al., 1989; Englund, 1993; Lisanti et al., 1989; Lisanti and Rodriguez-

Boulan, 1990; Lisanti et al., 1988], or one or more transmembrane domains exist as 

topogenic amino acid sequences. 

Topogenic sequences are responsible for the co-translationally determined 

orientation of the protein in the membrane [Hartmann et al., 1989]. Type-II-

membrane proteins have a cytoplasmic N-terminus and a luminal or extra-cellular C-

terminus, respectively, which is translocated in the ER after completed biosynthesis 

[Shaw et al., 1988]. Type-I-membrane proteins have an N-terminal, cleavable signal 

sequence and a C-terminally following stop-transfer signal-anchor sequence. 

Therefore, the N-terminus is located in the lumen or extra-cellularly, respectively, and 

the C-terminus is in the cytoplasm. 
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1.1.3 Folding in the ER 

The ER is the secretory pathway site-of-entry for newly synthesized proteins. Its 

lumen constitutes a specialized folding environment with several molecular 

chaperones and folding factors and because of this enables rapid folding into a 

native structure [Gething and Sambrook, 1992]. Therefore, in this compartment the 

pre-conditions for the achievement of transport competence and oftentimes of 

biological functions of many secretory and integral membrane proteins are created 

[Gething and Sambrook, 1992; Hurtley and Helenius, 1989; Hutt et al., 2009; 

Kornfeld and Kornfeld, 1985; Rose and Doms, 1988; Wiseman et al., 2007]. 

 

Co- and post-translational modifications influence biological activity, lifespan as well 

as intra- and extra-cellular localization of proteins and are therefore of decisive 

importance. These processes can be differentiated in partly reversible chemical 

modifications and generally irreversible proteolytic alterations. 

Reversible reactions are e.g. acetylation of terminal regions, phosphorylation and de-

phosphorylation of serine, threonine and tyrosine residues as well as glycosylation of 

asparagines, serine and threonine residues. 

Protein processing contains irreversible removal of C- or N-terminal amino acid 

residues by proteases or by auto-proteolysis [Lodish et al., 2004]. Existing cleavable 

signal sequences are removed proteolytically during translation by a signal peptidase 

and subsequentially degraded [Dalbey and Von Heijne, 1992]. 

The formation of intramolecular – and possibly later intermolecular – disulfide bonds 

occurs co-translationally, too, in the context of the folding process [Gething, 1997]. 

Disulfide bonds oftentimes are necessary for stability, further maturation, intracellular 

transport and protein function. This kind of chemical bonds can only form within the 

non-reducing milieu of the ER lumen [Wilson et al., 1998] and can therefore only be 

found for secreted proteins and exo-plasmatic domains of membrane proteins. 

Additionally, the spontaneous formation of disulfide bonds during ongoing protein 

biosynthesis can afterwards be re-organised by protein-disulfide isomerase (PDI) to 

guarantee the correct pairing of the cysteine residues [Bulleid and Freedman, 1988; 

Wilson et al., 1998]. 

Such isomerisation reactions, and others like the rotation of peptidyle-prolyle bonds 

by peptide-prolyle isomerase (PPI), are in many cases the rate-limiting events during 
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protein domain folding. Generally, small domains are stabilized at first and distant 

regions later [Lodish et al., 2004]. 

 

The information for the achievement of the native conformation is determined within 

the amino acid sequence of a protein, therefore folding can be considered as an 

auto-regulated process. However, a high folding efficiency at given intra-cellular 

conditions is only facilitated by chaperones [Ellis and Hemmingsen, 1989; Gething 

and Sambrook, 1992]. Chaperones inhibit any impermissible intermolecular 

interaction [Ellis and van der Vies, 1991] and thus avoid aggregation of unfolded 

proteins, and their early folding and assembly, respectively. They support folding 

processes and are capable of binding misfolded proteins and to adjust the structure 

of the latter [Wilson et al., 1998]. 

Two families of chaperones can be distinguished: molecular chaperones and 

chaperonines. Molecular chaperones protect unfolded or only partly folded proteins 

from degradation by intracellular peptidases. Chaperonines display an ATPase 

activity and are directly involved in protein folding. Some of the eucaryotic proteins 

like actin or tubuline depend on the presence of chaperonines like TciPs during their 

folding process, whereas bacterial chaperonines like GroEL and GroES play a more 

important role [Lodish et al., 2004]. 

Molecular chaperones are part of the Hsp70 protein family. Characteristic 

representatives are Hsp70 (in the cytoplasm and the mitochondrial matrix), BiP, 

Hsc70 (in the ER), and DnaK (in prokaryotes). They are fundamentally important for 

the formation of a transport-competent conformation [Munro and Pelham, 1986; Ou 

et al., 1993].  

 

1.1.4 Glycosylation 

Protein glycosylation is initiated co-translationally by covalent attachment of sugar 

chains. Most of the secreted and plasma membrane proteins carry at least one 

carbohydrate chain. Glycosylation is the most important and most frequent 

modification of these polypeptides [Reuter and Gabius, 1999]. 

The attachment of sugar chains begins in the ER. Subsequently, glycans are 

modified stepwise in this compartment and the Golgi apparatus; hence, glycan status 

and structure indicates the intracellular region of glycosylation. Cytosolic and nuclear 

proteins usually are not glycosylated [Lodish et al., 2004]. 
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Co- and post-translational attachment and modification of carbohydrate side-chains 

can be differentiated in two types of glycosylation: O- and N-glycosylation, which both 

can be found together with different frequency for one polypeptide. 

 

O-glycosylation 

As to O-glycosylation [Roth, 1984], oligosaccharides are short and comprise at most 

four monosaccharides. Its transfer occurs stepwise and is catalyzed by glycosyl-

transferases, which are highly specific, integral membrane proteins. 

Monosaccharides contained in the glycans of glyco-proteins and -lipids originate from 

sugar residues of cytoplasmic nucleotide precursors. These precursors are build up 

in the cytoplasm from nucleoside-tri-phosphate and monosaccharide-phosphates and 

transported in the lumen of the appropriate cellular compartment via antiport [Lodish 

et al., 2004]. O-glycosylation is initiated by the binding of N-acetyl-α-D-galactosamine 

(GalNAc) to the hydroxyl group of a serine or threonine in the cis-Golgi. After the 

adding of one galactose (Gal) molecule within the trans-Golgi, more GalNAc and Gal 

molecules can bind to this core structure. Finally, sialic acid and L-fucose are added 

[Reuter and Gabius, 1999]. 

 

N-glycosylation 

As to N-glycosylation, a sugar residue is bound to an amino group of an asparagine 

residue over an N-acetyl-glucosamine (GlcNAc) molecule. Thereby, the asparagine  

has to be part of the consensus sequence Asn-X-Ser/Thr, with the X being any 

amino acid except proline [Kornfeld and Kornfeld, 1985; Reuter and Gabius, 1999]. 

The actual addition of carbohydrate residues can not happen at all potential 

glycosylation sites, because not all sites are sterically accessible. Generally, potential 

N-glycosylation sites are more accessible for unfolded proteins [Allen et al., 1995]. 

Oligosaccharides contain mannose (Man) and GlcNAc and branches with a terminal, 

negatively charged sialic acid residue. Additionally, glucose (Glc), Gal and fucose 

can be bound. These carbohydrates are added to the protein co-translationally as a 

complex of fourteen sugar molecules en block by an oligosaccharide protein 

transferase (OSPT). This OSPT is anchored in the ER membrane and transiently 

associated with the glyco-protein synthesizing ribosome generating a spatial vicinity 

to the nascent polypeptide [Lodish 2004]. Before its transfer to the protein, the sugar 
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complex is bound to dolichol – an unsaturated isoprenoide, incorporated in the ER 

membrane – via a pyro-phosphate residue as oligosaccharide precursor [Kornfeld 

and Kornfeld, 1985]. The composition of three Glc, nine Man and two GlcNAc 

molecules [Trombetta and Helenius, 1998] is identical for plants, animals, and 

eucaryotic protozoa; a core of two GlcNAc and three Man molecules constitutes the 

structural element of all N-glycosidically bound oligosaccharides [Lodish et al., 2004]. 

After the oligosaccharide transfer its processing begins with the removal of one Man 

and three Glc molecules [Kornfeld and Kornfeld, 1985]. If the glyco-protein has not 

yet achieved its native conformation at this moment or is it misfolded, a Glc residue is 

re-added by the UDP-glucose:glycoprotein-glycosyl-transferase [Ponnambalam and 

Banting, 1996]. The latter identifies specific protein regions, which have an incorrect 

structure and therefore functions as a folding sensor [Ritter and Helenius, 2000]. 

Absence of N-glycosylation results in ER retention for many proteins. Secreted 

proteins, however, rarely accumulate, but in general are structurally more instable 

outside of the cell [Lodish et al., 2004].  

 

Most of the glyco-proteins are transported to the Golgi apparatus as Man-rich protein 

forms by COP-II vesicles [Klumperman, 2000]. There, glycans are variously modified 

by different enzymes of the cis-, medial and trans-Golgi cisterns [Elbein, 1991; 

Kornfeld and Kornfeld, 1985]. By that, the diversity of complex glycosylated protein 

forms – typical for mammalian cells – is generated step by step. If one of these steps 

does not occur, the following ones are omitted, too [Elbein, 1991]. 

Each O- and N-glycosylation site typically possesses several glycan structures. 

Therefore, a glyco-protein constitutes a mixture of different glyco-forms with a varying 

number, localization, and sequence of glycans [Elbein, 1991]. Glycosylation 

influences folding, oligomerisation, transport, proteolytic degradation, and enzymatic 

activity [West, 1986]. Furthermore, glycans play an important role for protein-protein 

and protein-lectin interactions inter alia in the context of cell adhesion and cell 

migration [Zhao et al., 2008]. 

 

1.1.5 ER-to-Golgi-transport 

The ER – and probably the Golgi apparatus, too – comprises a quality control system 

that retains most un- or misfolded proteins as well as monomers of proteins with an 

oligomeric quaternary structure [Anelli and Sitia, 2008; Ellis and Hemmingsen, 1989; 
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Fagioli and Sitia, 2001; Fink, 1999; Hurtley and Helenius, 1989; Propsting et al., 

2005]. Proteins, which do not achieve their energetically most advantageous 

conformation, do not have to be restricted in their function. However, they are 

structurally more instable and therefore more susceptible for degradation in general. 

 

Protein folding is a multi-step process, which is regulated on different levels. Firstly, 

there is a general folding control mechanism, which is characterized by the fulfillment 

of a particular folding order with few intermediate forms. Secondly, a cellular system 

exists, in which e.g. an increasing number of unfolded polypeptides in the ER 

induces an increase of (compartment-specific) chaperone and folding catalyst 

expression like Hsc70, PPI, and PDI [Lodish et al., 2004]. Additionally, gene 

expression of proteosomal proteins seems to be transcriptionally regulated because 

its increase is induced by the accumulation of misfolded polypeptides [Kaufman, 

1999; Mori et al., 1992; Ng et al., 2000]. 

 

The majority of incorrectly folded proteins does not reach the Golgi apparatus and 

accumulates [Hurtley and Helenius, 1989], their detection possibly occurs because of 

membrane spanning regions [Lodish et al., 2004]. Moreover, there seems to be a 

quality control system at the Golgi apparatus level. It identifies misfolding indicating 

structures and retains the corresponding proteins [Doms et al., 1987; Hauri et al., 

1985a; Naim et al., 1988; Propsting et al., 2005]. Most of them are translocated in the 

cytoplasm [Brodsky and McCracken, 1999; Wiertz et al., 1996], deglycosylated, 

ubiquitinated, and degraded by the proteasome [Hershko and Ciechanover, 1998; 

Vembar and Brodsky, 2008]. Furthermore, a rapid, directed protein degradation can 

also be induced by proteolytic sequences localized within the polypeptide itself, like 

the PEST sequence (Pro-Glu-Ser-Thr) [Rechsteiner and Rogers, 1996]. Generally, 

protein degradation limits lifespan of all proteins. Fig. 1.2 summarizes glycosylation 

and degradation events. 
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Fig. 1.2: N-linked glycosylation and the degradation of glycosylated proteins. 
(Taken from [Vembar and Brodsky, 2008])  
 

Beside the selective retention and re-location of incorrectly folded proteins, these 

processes can be observed for several compartment-specific polypeptides, too. One 

of the underlying retention signals [Rothman and Wieland, 1996] is the C-terminally 

localized KDEL-peptide (Lys-Asp-Glu-Leu) [Munro and Pelham, 1987], which results 

in the retention of luminal ER proteins [Lodish et al., 2004]. Another signal is the also 

C-terminally localized di-lysine motif of membrane-anchored ER proteins, e.g. the 

KDEL-receptor. This motif together with COP-I vesicles directs the corresponding 

polypeptides from the Golgi apparatus back to the ER [Pelham, 1995]. 

 

1.1.6 Transport from the Golgi apparatus to the final destination 

Within the cisterns of the Golgi apparatus, more glycans can be added, present ones 

be modified, and further proteolytic events occur. The anterograde transport through 

this compartment occurs by the progression of cisterns. By that, cis-Golgi cisterns 

(including their contents) migrate to the trans-Golgi network (TGN) [Lodish et al., 

2004]. However, the cisternal maturation/progression model is not applicable for all 

cell types, e.g. for cells with a high secreting activity [Kartberg et al., 2005]. From the 

Golgi, the proteins which are not Golgi-resident are transported in vesicles to 

lysosomes, endosomes, or the plasma membrane, respectively, after sorting has 
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occurred [Griffiths and Simons, 1986]. Sorting itself depends on the interaction of 

distinct protein structures with specific receptors, i.e. cellular sorting machineries 

[Ikonen and Simons, 1998]. Particular secretory proteins are constitutively secreted, 

if no sorting signals exist, which could induce transport to certain intracellular regions. 

Other secretory proteins are concentrated and stored in secretory vesicles for 

regulated secretion in the form of exocytosis after a neuronal or hormonal signal. 

 

Moreover, concerning protein and lipid targeting in polarized epithelial cells, one has 

to differentiate between an apical and a basolateral membrane domain, which differ 

structurally as well as functionally [Rodriguez-Boulan and Powell, 1992; Simons and 

Wandinger-Ness, 1990]. Their spatial separation originates and is maintained by tight 

junctions. These cell-cell-connections prevent the flow of extracellular liquid through 

the epithelium as well as protein and lipid diffusion between both plasma membrane 

domains. These domains possess different protein and lipid compositions because of 

directed supply [Egan et al., 2004; Massey-Harroche, 2000; Mostov et al., 2000; 

Simons and Wandinger-Ness, 1990; van Meer and Simons, 1986]. The generation 

and the maintenance of this asymmetry are fundamentally important for the 

physiological processes in polarized cells, e.g. signal transduction, absorption, and 

secretion. 

During transport, basolateral and apical proteins are at first localized in the same 

TGN vesicles. However, they are found to be in different transport vesicles 

afterwards [Keller et al., 2001]. Thereby, signals within the transported proteins 

induce their segregation into different carrierss. Particular proteins on the surface of 

these vesicles – e.g. Rab [Chavrier et al., 1990] and v-SNARE proteins [Lodish et al., 

2004] – are crucial for correct transport to one or the other membrane domain and 

induce membrane fusion. 

 

A variety of intramolecular sorting signals could be found, which are identified by 

cellular components and carry the information for a directed transport [Casanova et 

al., 1991a; Casanova et al., 1991b; Delacour and Jacob, 2006; Hunziker et al., 1991]. 

Basolateral sorting signals appear in cytoplasmic domains of basolateral proteins 

[Brewer and Roth, 1991; Casanova et al., 1991a; Hunziker et al., 1991], e.g. as short 

amino acid sequences like the di-leucine [Hunziker and Fumey, 1994] and tyrosine 

motif [Brewer and Roth, 1991]. Basolateral proteins which lack the cytoplasmic 
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domain normally are sorted apically, wherefore apical sorting signals are likely 

localized in the transmembrane or ectodomain. Here, – and generally in protein 

sorting – N- and O-glycans could play a crucial role [Alfalah et al., 1999; Fiedler and 

Simons, 1995; Krahn et al., 2010; Naim et al., 1999; Scheiffele et al., 1995; Yeaman 

et al., 1997]. However, basolateral sorting signals are not dominant on apical signals 

on principle [Jacob et al., 1999]. 

 

The ER-to-Golgi transport kinetics varies between proteins. The reason for this could 

be the different development of folding and oligomerisation processes [Gething and 

Sambrook, 1992; Hurtley and Helenius, 1989]. The transport from the Golgi 

apparatus to the cell surface develops asynchronously in comparison to the ER-to-

Golgi transport because of the modification within the Golgi apparatus [Jascur et al., 

1991]. 

 

1.1.7 Lipid rafts and detergent resistant membranes   

The association of several apically transported proteins with membrane 

microdomains, detergent resistant membranes (DRMs) or rafts [Simons et al., 1997] 

influences the transport mechanism [Jacob and Naim, 2001; Lindner and Naim, 

2009; Pralle et al., 2000; Simons and Fuller, 1985; Simons and van Meer, 1988] for 

several transmembrane proteins [Krahn et al., 2010; Lin et al., 1998] and GPI-

anchored proteins [Harder and Simons, 1997] as well. For other apically transported 

membrane proteins no relationship between sorting and the association with 

membrane microdomains could be demonstrated. Therefore, a raft-dependent and a 

raft-independent transport mechanism exist [Danielsen, 1995; Roper et al., 2000; 

Weisz and Rodriguez-Boulan, 2009; Yeaman et al., 1997; Zheng et al., 1999] 

indicating the existence of sorting signals within proteins. 

 

Lipid rafts are central accumulations of cholesterol and glyco-sphingolipids in plasma 

membranes, characterized by a reduced flow capability in comparison to the 

surrounding lipids. They constitute microdomains of the liquid-ordered (lo) phase in 

biological membranes [Simons and Ikonen, 2000]. They have been investigated by 

the isolation of DRMs of the liquid-ordered phase. New insights into the formation of 

lipid rafts show that they are not the same as DRMs [Lindner and Naim, 2009]. 
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The liquid-ordered phase is a sterol-dependent state, in which the lipid-acyl-chains 

are tightly packed and extended and lateral diffusion of single lipid molecules occurs 

[Veatch and Keller, 2005]. It is supposed that membrane domains of the ordered 

phase form also in sterol-rich membranes like plasma membranes resulting in a co-

existence of the ordered and the dis-ordered phase (ld) [Lagerholm et al., 2005]. 

However, the rafts hypothesis results from the discovery that glyco-sphingolipids 

accumulate in the Golgi apparatus already before they are transported to the apical 

membrane of polarized epithelial cells [Simons and van Meer, 1988]. Fig. 1.3 

illustrates the spatial lipid-lipid and lipid-protein associations found in rafts. 

 

 

Fig. 1.3: Model of a raft with two intercalated proteins. The liquid-ordered phase 

is shown in red and the liquid-disordered phase in blue. (From [Simons and Ikonen, 

2000]). 

 

An early sign of the cellular existence of rafts was the observation that cellular 

membranes are not completely soluble in non-ionic detergents like Triton X-100 or 

CHAPS. Therefore, the unsoluble DRMs of the liquid-ordered phase remained, which 

were rich in cholesterol and GPI-anchored proteins and could be isolated by 

saccharose gradients [Brown and Rose, 1992]. The DRMs achieved a high density 

because of the interaction of cholesterol with the carbohydrate chains of the 
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sphingolipids, facilitated by stabilizing hydrogen bonds [Simons and Ikonen, 2000]. 

This high lipid density in the liquid-ordered phase inhibits the penetration of 

detergents in the lipid bilayer [Xu et al., 2001]. DRM isolation results in the 

concentration of mainly plasma membrane proteins. Enrichment of DRMs shows that 

these proteins were concentrated in lipid rafts and that raft targeting has great 

importance. In spite of all do the isolated DRMs not correspond to lipid rafts in living 

cells, inter alia because DRM isolation with Triton X-100 occurs at low temperatures 

[Melkonian et al., 1995]. 

 

 

1.2 Intramolecular protein organisation 

 

1.2.1 Protein domains 

Most of the secreted and some plasma membrane proteins are synthesized as pre-

pro-forms. These are modified proteolytically on their way from the TGN to the cell 

surface leading to mature or active protein forms, respectively [Barr, 1991; Robakis 

et al., 2008; Steiner et al., 1984]. Here, irreversible removal of N-terminally localized 

pro-peptides plays an important role [Barr, 1991; Steiner et al., 1984]. 

 

These pro-peptides consist – like the rest of the protein – of one or more structural 

domains of the tertiary structure. These domains can be compact globule modules or 

linking domains [Brunger, 2001]. Moreover, they can appear as clearly outlined 

regions with distinct boundaries, which border on flanking areas like membrane 

regions or long domain-separating coiled-coiled helices [Abrahams et al., 1994]. 

Structural domains contain one- to three-hundred amino acid residues [Gething, 

1997] and comprise various combinations of α-helices, β-sheets, hairpin structures 

and random balls. The frequency of the appearance of a particular amino acid in a 

particular protein region oftentimes is a special structural characteristic [Lodish et al., 

2004]. Frequently, protein domains contain specific conserved sequences and 

secondary structure motifs like zinkfingers or loops. They constitute semi-

independent three-dimensional units within proteins, which are capable to fold 

independently [Gething, 1997; Jaenicke, 1987] – and in eukaryotes also sequentially 

during translation [Bergman and Kuehl, 1979; Braakman et al., 1992; Gething, 1997; 

Kolb et al., 1994; Peters and Davidson, 1982].  
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Protein domains oftentimes are associated with specific functions, whereby a distinct 

area – e.g. a catalytic or binding domain – is related to the biological function of a 

protein. Such a functional domain can comprise several structural domains. This 

functional definition of a domain is less strict as the structural definition, but is of 

particular relevance, when the three-dimensional structure is unknown [Lodish et al., 

2004]. 

The subdivision of the whole tertiary structure in structural domains corresponds to 

the principle, that complex molecules are comprised of simple elements. In different 

proteins recombination [Teichmann et al., 2001] of similar domains can occur by 

gene fusion or exon shuffling [Gething, 1997]. Homologous proteins display an amino 

acid sequence similarity of the whole length and usually a similar function. These 

sequence similarities mostly result from evolutionary relationship and indicate one 

ancestor, wherefore homologous proteins can be classified in families together. In 

the context of rapid evolution of eucaryotic multi-domain proteins facilitated by the 

development of complex genes [Gething, 1997], domains could constitute units of 

evolution [Holm and Sander, 1994]. 

 

The knowledge of the exact boundaries of structural domains is especially important 

as well as for the determination of the three-dimensional structure [Gething, 1997] as 

for the functional characterization of protein regions. The prediction of a three-

dimensional structure (biomodeling) occurs on the basis of the amino acid sequence 

under the consideration of the frequency probability of single amino acids in distinct 

secondary structures [Lodish et al., 2004]. 

 

1.2.2 Intramolecular chaperones 

For a particular region of some proteins a function as intramolecular chaperone is 

postulated [Chen and Inouye, 2008], whereby specific domains support or regulate 

the folding process of other domains [Naim et al., 1994; Oberholzer et al., 1993; 

Sagherian et al., 1994]. The region, which functions as intramolecular chaperone can 

be part of the mature protein like for sucrase-isomaltase [Jacob et al., 2002b]. 

However, for the majority of the proteins with identified intramolecular chaperone a 

cleavable pro-peptide carries this function, e.g. for subtilisin [Barr, 1991; Zhu et al., 

1989], the bovine pancreatic trypsin inhibitor [Weissman and Kim, 1992], activin A 
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and TGF-β-1 [Gray and Mason, 1990], cathepsin C [Cigic et al., 2000], type-1-matrix-

metalloproteinase [Cao et al., 2000], and lactase phlorizin hydrolase [Jacob et al., 

2002a]. The pro-regions of these proteins are localized N-terminally, probably to 

facilitate an early participation in the folding process of the remaining protein part. 

However, C-terminally located intramolecular chaperones could be identified in 

mammalian [Jacob et al., 2002b] and non-mammalian cells [Conesa et al., 2001; 

Feller et al., 1998; Muhlenhoff et al., 2003]. 

 

 

1.3 Lactase phlorizin hydrolase 

 

Intestinal lactase phlorizin hydrolase (LPH; EC 3.2.1.62/108) is a physiologically 

important digestive enzyme in the mammalian small intestine. It belongs to the group 

of brush border membrane hydrolases, which include disaccharidases and 

peptidases [Buller et al., 1987; Danielsen et al., 1984; Mantei et al., 1988; Naim, 

1987]. 

 

1.3.1 Physiology and pathophysiology  

Based upon its site-of-function and its disaccharidase activity, LPH together with 

sucrase-isomaltase, maltase-glucoamylase [Naim, 1987], and trehalase builds the 

more narrow group of intestinal disaccharidases. LPH is a membrane-bound β-

glycosidase with two physically similar family-1-glycosyl hydrolase-domains  

[Colombo et al., 1973; Naim, 2001; Schlegel-Haueter et al., 1972; Skovbjerg et al., 

1981] localized on one polypeptide chain [Mantei et al., 1988] and comprises two 

enzymatic activities, lactase and phlorizin hydrolase activity.  

Phlorizin hydrolase (PH; glycosyl-N-acylsphingosine gluco-hydrolase) [Colombo et 

al., 1973; Kraml et al., 1972; Schlegel-Haueter et al., 1972; Skovbjerg et al., 1981] is 

a β-glycosyl-ceramidase with a broad specificity. The substrate range contains 

amongst others vertebrate alimentary β-glycosyl-ceramides [Leese and Semenza, 

1973], some aryl-β-glycosides like phlorizin  [Leese and Semenza, 1973; Zecca et 

al., 1998] as well as flavonoid-glycosides [Day et al., 2000]. The exact physiological 

role of PH still needs to be determined [Naim, 2001].  

Most of the disaccharides found in the food of mammals consist of α-glycosidic linked 

monosaccharides, but one example of β-linked monosaccharides is lactose, which is 
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the most important carbohydrate in milk. The portion of lactose in human breast milk 

is about 7% and therefore higher than in other mammals. All mammals produce milk, 

which is therefore the main nutrient for newborns. The most important physiological 

task of LPH is therefore the cleavage of lactose with its lactase activity, which has 

lactose as its specific substrate [Zecca et al., 1998]. This disaccharide is hydrolysed 

in the lumen of the small intestine to galactose and glucose [Colombo et al., 1973]. 

Absorption of monosaccharides occurs via the microvilli of the brush border 

membrane by means of a galactose-specific, membrane-bound, and energy-

dependent glucose/galactose transporter. 

Lactose can not be uptaken by the enterocytes as an uncleaved molecule. However, 

the limiting factor of lactose digestion is not monosaccharide uptake, but hydrolysis of   

lactose by lactase. In contrast to other disaccharidases, lactase has a distinctly lower 

enzymatic activity [Henning, 1981]. A further, pathological decrease or an complete 

absence of lactase activity leads to osmotic diarrhoea with accompanying symptoms 

after ingestion of lactose containing food [Buller and Grand, 1990; Phillips et al., 

1978]. This is the case for adult type hypolactasia concerning many mammals [Doell 

and Kretchmer, 1962; Henning, 1981]. However, the majority of human grown-ups 

are confronted with this widespread intestinal disorder also. Here, lactase activity 

declines rapidly and drastically after suckling period during early childhood or youth, 

respectively [Lebenthal et al., 1975]. This results in a substantially limited range of 

foods [Harvey et al., 1995; Wang et al., 1995]. Not afflicted are Northern Europeans, 

their descendants, and isolated groups in Africa and Asia, because lactase activity 

does not decrease and stays at high levels all one’s lifetime [Harvey et al., 1995; 

Wang et al., 1995]. 

This phenomenon is determined genetically, with an autosomal-dominant allele being 

the cause for lactase persistence and an autosomal-recessive variant of the same 

gene locus causing adult-type hypolactasia [Sahi et al., 1973]. However, ethnic and 

geographic variations of lactose malabsorption exist, e.g. the different rate of lactase 

persistence between North- and South-India is connected to the -13910C/T 

polymorphism [Babu et al., 2010], which constitutes the first discovered variant 

correlated to lactase intolerance [Enattah et al., 2002]. Moreover, other single-

nucleotide polymorphisms of the lactase gene are also linked to lactase persistence, 

whereby the alleles can be found in different pastoral populations. The -13910C/T 

polymorphism, for example, is not significantly correlated to lactase persistence in a 
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Chinese population, whereas the -22018A allele is [Xu et al., 2010]. Meanwhile, a 

database has been build up, which includes the worldwide distribution of lactase 

persistence and its correlation to the -13910T allele [Ingram et al., 2009a]. 

Interestingly, the European -13910T variant and the East-African -13907G allele, 

both associated with lactase persistence, were found to share the identical ancestral 

background – and probably history – because of the same cattle domestication event 

[Enattah et al., 2008]. A recently identified lactase persistence allele found in Arab 

populations has a different and divergent ancestral haplotype, suggesting that this 

variant developed independently, probably because of beginning camel milk 

consumption [Enattah et al., 2008].  

The convergent lactase persistence evolution in different populations most likely 

reflects the historical diversity of milk drinking culture adaption. Furthermore, several 

lactase persistent individuals could be identified, who do not have the allele 

supposed to be associated with lactase persistence, but other (rare) single-

nucleotide polymorphisms in the same genome region. For example, within a group 

of Somali camel-herds in Ethiopia eight new polymorphic sites were found including 

two significantly connected to lactase persistence [Ingram et al., 2009b]. However, a 

significant correlation between the hypolactasia genotype -13910C/C of a cohort of 

young Russians in North-West-Russia and the consumption of milk and milk-

containing formula could not be detected [Khabarova et al., 2009]. Additionally, the T 

allele of the -13910C/T polymorphism seems to be associated with the body mass 

index and increased prevalence of obesity [Kettunen et al., 2010], whereas -

13910C/C individuals are supposed to drink less milk and have a reduced calcium 

uptake [Laaksonen et al., 2009]. Besides, a correlation of milk consumption and 

lumbar bone mineral content as well as bone mineral density could also be detected 

[Esterle et al., 2009]. Very recently, another mechanism of lactase regulation was 

proposed. Here, the RNA-binding protein ‘quaking’ regulates differentiation of colon 

epithelia, acts as tumor suppressor and increases lactase expression after forced 

expression of ‘quaking’ [Yang et al., 2010].  

Further analyses of the molecular mechanisms and the forces driving evolution are 

necessary to understand lactase regulation completely. The latter constitutes a 

valuable model to elucidate gene-culture co-evolution as well as susceptibility 

towards diseases. Moreover does it show the limits of single-nucleotide tagging and 
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clarifies the potential and the importance of distant regulator elements [Ingram et al., 

2009a].  

 

1.3.2 Biosynthesis 

Biosynthesis of LPH in humans is representative for other investigated species 

[Buller et al., 1987; Danielsen et al., 1984; Naim, 1987]. LPH is synthesized as a 

single-chain precursor molecule. This pre-pro-LPH comprises an N-terminal 

cleavable signal peptide (Met1-Gly19), four homologous domains (Ser20-Thr1882), and 

a membrane-anchoring region (Ala1883-Leu1901), which crosses the lipid bilayer of the 

cellular membranes in a helical conformation and fixes the protein at the membrane. 

Moreover, a cytoplasmatic domain can be found at the C-terminal end (Ser1902-

Phe1927) [Mantei et al., 1988]. 

 

 

Fig. 1.4: Structural features of human pre-pro-LPH. 
 
 

The existence of four homologous, highly conserved domains and in particular the 

similarity of the profragment with the region containing domains III and IV suggest 

that LPH has evolved from two partially gene duplications of one ancestral gene 

[Mantei et al., 1988]. Additionally, each of the homologous domains shares 

similarities in size with prokaryotic β-glycosidases as well as sequence similarities 

with β-glycosidases of archaea, eubacteria and fungi. Therefore, LPH likely is a 

member of a super family of β-glucosidases and β-galactosidases [Mantei et al., 

1988; Naim, 2001]. 

The gene locus of human LPH is found on chromosome 2 [Kruse et al., 1988] and 

contains 17 exons within approximately 55kb [Boll et al., 1991]. The cDNA comprises 



                                                                                                                   Introduction 

19 

6274 bp [Boll et al., 1991; Kruse et al., 1988; Mantei et al., 1988] and pre-pro-LPH as 

primary product of translation is composed of 1927 amino acids [Mantei et al., 1988]. 

 

The signal peptide of LPH is essential for translocation into the ER [von Heijne, 1986] 

and is removed cotranslationally at the amino acid residues Gly19/Ser20 within the ER 

lumen [Mantei et al., 1988; von Heijne, 1986]. The resulting pro-LPH is fixed in the 

ER membrane via its C-terminal membrane-anchoring domain. Because of its Cin-

Nout-orientation, LPH is a type-I membrane protein [Blobel, 1980]. During the 

achievement of a correctly folded transport-competent conformation, highly 

mannose-rich glycosylation occurs (-> pro-LPHh; 215 kDa), whereas 15 potential N-

glycosylation sites exist within the molecule [Naim, 1992; Naim and Naim, 1996; 

Zecca et al., 1998]. Furthermore, a correctly folded transport-competent conformation 

is a precondition of the assembly of two subunits into one homodimer [Naim and 

Naim, 1996; Sterchi et al., 1990]. 

The molecular chaperone BiP has a stabilizing effect on unfolded or partially folded 

proteins [Gething and Sambrook, 1992] and is involved in the pro-LPH folding 

process in the ER [Jacob et al., 1995]. The C-terminally located membrane-anchor 

plays an important role for pro-LPH dimerisation, and dimerisation itself is essential 

for the protein in order to leave the ER and to acquire enzymatic activity [Naim and 

Naim, 1996].  

 

Within the Golgi apparatus, complex N-glycosylation occurs in consequence of the 

final processing of the N-glycans [Hauri et al., 1985b; Naim et al., 1991]. Also, O-

glycosylation of the complex is taking place [Hauri et al., 1985b; Naim, 1992; Naim et 

al., 1991; Naim, 1987], resulting in a four-fold increase of LPH enzymatic activity (-> 

pro-LPHc, 230kDa) [Naim and Lentze, 1992]. 

After that, the propeptide Ser20-Arg734 (LPHα) including complete homologous 

domain I and more than two thirds of domain II is removed in the trans-Golgi network 

[Jacob et al., 1994; Naim, 1992]. This occurs during a second proteolytic cleavage 

step [Danielsen et al., 1984] with a trypsin-like protease [Hauri et al., 1985b; Naim, 

1987; Skovbjerg et al., 1984] at Arg734 /Leu735 (-> LPHβinitial, 160kDa) [Jacob et al., 

1996; Wuthrich et al., 1996; Yeh et al., 1991]. Probably, LPHα is degraded 

subsequently [Naim et al., 1994; Ouwendijk et al., 1998]. 
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Finally, the protein is transported in vesicles from the trans-Golgi network to the 

apical surface of the enterocytes where the mature form of the polypeptide (-> 

LPHβfinal, 145kDa) can display its physiological function. LPHβfinal is generated by 

cleavage of luminal pancreatic trypsin within the small intestine at Arg868/Ala869 

[Jacob et al., 1996; Wuthrich et al., 1996]. The cleavage sites are indicated in Fig. 

1.4. 

The sorting signals are independent of glycosylation [Buller et al., 1989; Naim, 1994; 

Panzer et al., 1998] and the association with Triton X-100 resistant membrane 

microdomains [Alfalah et al., 1999; Danielsen, 1995; Jacob et al., 1999; Naim, 1994]  

but are presumably located in particular subdomains in the ectodomain [Jacob et al., 

1994; Jacob et al., 1999; Jacob et al., 1997; Panzer et al., 1998] or the 

transmembrane region [Jacob et al., 1999]. 

 

The brush-border LPH consists of homologous domains III and IV, the 

transmembrane region and the cytoplasmic tail and exerts its enzymatic functions as 

phlorizin-hydrolase, assigned to Glu1273 in domain III, and as lactase, assigned to 

Glu1749 in domain IV [Arribas et al., 2000; Zecca et al., 1998]. Nevertheless, the 

cleavage steps occurring in the Golgi apparatus of intestinal cells and in the small  

intestinal lumen are not required to generate a transport-competent [Naim et al., 

1991], a correctly sorted [Grunberg et al., 1992; Jacob et al., 1994; Jacob et al., 

1996] and an enzymatically active molecule [Naim et al., 1991]. 

The expression pattern of LPH on the mRNA and on the protein level is similar during 

development. The protein itself and the glycosylation pattern do not differ between 

LPH persistence and hypolactasia. Therefore, glycosylation  seems not to be 

weightily important for the regulation of LPH expression [Naim, 1987]. However, post-

translational mechanisms modify the final gene product, although the main 

mechanism of LPH regulation is transcriptional [Troelsen, 2005; Troelsen et al., 

1994a; Troelsen et al., 1994b]. LPH is hardly expressed in the crypts, the maximal 

expression occurs between the low and middle villus and decreases towards the 

villus top [Buller et al., 1989; Hauri et al., 1985b]. 

 

The cytoplasmic region contains an endocytic signal in close vicinity of the 

membrane, which is suppressed by the strong apical sorting signal localized in the 
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ectodomain or the transmembrane domain. Therefore, this signal is hardly accessible 

for interactions with chlathrin coated pits [Naim, 1992]. 

  

1.3.3 Intramolecular organisation 

The proportion of the complete pro-fragment Ser20-Arg868 from pre-pro-LPH is about 

45% and therefore is a sign of an important role of LPHα and the polypeptide stretch 

Leu735-Arg868. The significant homology with LPHβfinal led to the suggestion that the 

pro-fragment might have a glucosidase function in another cellular compartment 

[Mantei et al., 1988]. However, this was refuted by showing that pro-LPH and 

LPHβfinal have identical enzymatic activities [Naim et al., 1991], and by identifying the 

enzymatic centers [Zecca et al., 1998].  

 

LPHα is devoid of sorting signals [Grunberg et al., 1992; Jacob et al., 1994; Mantei et 

al., 1988] and catalytic activity [Zecca et al., 1998], neither complex N- nor O-

glycosylated [Naim et al., 1994] but rich in cysteine and hydrophobic amino acid 

residues suggesting a rapid folding to a compact globular domain [Jacob et al., 

2002a].  

Individual expression of LPHα [Jacob et al., 2002a] and LPHβfinal [Naim et al., 1994; 

Oberholzer et al., 1993] in COS-1 cells leads to localization of both polypeptides in 

the ER. Here, LPHα shows compact structural features stabilized by disulfide bonds 

[Jacob et al., 2002a], whereas LPHβfinal is identified predominantly as mannose-rich 

glycosylated protein form [Naim et al., 1994] with no measurable enzymatic activity 

[Jacob et al., 2002a]. 

Co-expression of LPHα and LPHβinitial results in the mature, trypsin-resistant, 

correctly folded, enzymatically active, and transport-competent LPHβinitial [Jacob et 

al., 2002a]. Individual expression of LPHβinitial, including the polypeptide stretch 

Leu735/Arg868 of homologous domain II, results in a temperature-sensitive and 

correctly sorted protein. It folds properly at 20°C, interacts with BiP [Jacob et al., 

2002a] in the ER, and is stable, trypsin-resistant, and enzymatically active. However, 

at 37°C it resides predominantly in the ER [Jacob et al., 2002a; Naim et al., 1994] as 

trypsin-sensitive and enzymatically inactive protein. During its biosynthesis at 37°C, 

LPHβinitial interacts sequentially with BiP and calnexin [Jacob et al., 2002a]. A small 

proportion reaches the Golgi apparatus and gets complex glycosylated. However, it 

is enzymatically inactive and trypsin-sensitive, because folding and N-glycosylation 
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pattern – especially considering the sialic acid residues – are different [Jacob et al., 

2002a]. 

 

These data show that LPHα indeed has the proposed intramolecular chaperone 

function [Mantei et al., 1988; Naim et al., 1994; Oberholzer et al., 1993] in enabling 

the correct folding of LPHβinitial during pro-LPH biosynthesis [Jacob et al., 2002a]. 

Furthermore, LPHα is expected to facilitate the formation or disulfide bonds like other 

profragments [Jacob et al., 1995] and to bind LPHβinitial directly. Its tendency to 

rapidly form a trypsin-resistant, enzymatically inactive core structure as folding 

template for the homologous domain LPHβinitial is LPH-specific and this intramolecular 

chaperone function can not be compensated by calnexin [Jacob et al., 2002a]. 

The data suggest that the stretch (Leu735/Arg868) together with LPHα plays an 

important role in the correct folding of the pro-LPH. 

 

 

1.4 Aim of the study   

 

Especially β-galactosidase, or lactase, has important applications in medicine, food 

technology and the environmental sciences. But preparation, for instance from the 

yeast Kluyveromyces lactis, is ineffective and therefore expensive due to the low 

stability and intracellular nature of the enzyme [Adam et al., 2004; Becerra et al., 

2004; Kim et al., 2004; Tahoun et al., 2002]. Consequently, inquiries on the structure-

function relationship of this and other homologous enzymes have economic 

relevance. 

 

The catalytic sites of the LPH are localized in homologous domains III and IV [Arribas 

et al., 2000; Zecca et al., 1998]. This has raised the question if these domains 

behave as autonomous regions and attain their enzymatically active conformation 

independently of each other in the context of the folding of the pro-LPH. And, 

supposing that these domains are indeed autonomous ones, one would ask if the 

possibility does exist to generate LPH mutants comprising more than two 

enzymatically active regions facilitating an increase of enzymatic activity.  
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Furthermore, the question which of the homologous domains, I or II, is more 

important, concerning the function of the removed polypeptide Ser20/Arg868 as an 

intramolecular chaperone, remained until present unanswered. 

 

LPH three-dimensional structure has not been worked out so far. A further 

characterisation of this protein with biochemical and cell biological procedures is 

necessary to achieve this goal and is a step in this direction. One aim of this study 

therefore was to investigate the influence of each of the four homologous domains on 

the structural and functional features of pro-LPH by directed change of domain 

composition. Moreover, the pathobiochemical and pathophysiological contexts of 

CLD have to be further investigated. In general, monogenetic diseases represent 

appropriate model systems to elucidate molecular, biochemical, cellular and 

physiological mechanisms and their analyses help to accelerate the development of 

individual diagnostic and therapeutic strategies. 
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2.  Materials and methods  

 

2.1  Materials    

 
2.1.1  Chemical reagents  

Acetic acid      Carl Roth GmbH (Karlsruhe, GE) 

Acrylamide Rotiphorese Gel30   Carl Roth GmbH (Karlsruhe, GE) 

Agarose, electrophoresis grade    Sigma Chem. Co. (Deisenhofen, GE) 

Ammonium peroxydisulfate (APS)   Carl Roth GmbH (Karlsruhe, GE) 

Ampicillin (D[-]-α-Aminobenzyle penicillin) Sigma Chem. Co. (Deisenhofen, GE) 

Bacto Agar       Carl Roth GmbH (Karlsruhe, GE) 

Bacto-Trypton      Carl Roth GmbH (Karlsruhe, GE)  

Bacto yeast extract     Carl Roth GmbH (Karlsruhe, GE)  

Bromphenole blue     Merck (Darmstadt, GE) 

Coomassie Brilliant Blue     Merck (Darmstadt, GE) 

Dimethyle sulfoxide (DMSO)    Carl Roth GmbH (Karlsruhe, GE) 

Dodecyl-β-m-maltoside     Sigma Chem. Co. (Deisenhofen, GE) 

Ethanol       Carl Roth GmbH (Karlsruhe, GE) 

Ethylenediaminetetraacetate (EDTA)   Serva Electrophoresis GmbH 

       (Heidelberg, GE) 

Fetal calf serum (FCS)    BioWest (Essen, GE) 

Glycerol       Carl Roth GmbH (Karlsruhe, GE) 

Isopropanol      Carl Roth GmbH (Karlsruhe, GE) 

Kanamycin       Sigma Chem. Co. (Deisenhofen, GE) 

Lactose       Sigma Chem. Co. (Deisenhofen, GE)  

Lubrol       MP Biomedicals GmbH (Eschwege, GE) 

L-[
35

S]methionine (>1000 Ci/mmol)  Amersham Biosci. Inc. (Freiburg, GE)  

N,N,N’,N’-tetramethylethylendiamine   Carl Roth GmbH (Karlsruhe, GE)   

  (TEMED)        

Phenol      Carl Roth GmbH (Karlsruhe, GE) 

Phlorizin       Sigma Chem. Co. (Deisenhofen, GE) 

Protein A-sepharose (PAS)    Amersham Biosci. Inc. (Freiburg, GE) 

Saponine      Sigma Chem. Co. (Deisenhofen, GE)  

Sodium deoxycholate    Carl Roth GmbH (Karlsruhe, GE) 
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Sodium dodecyl sulfate (SDS)    Carl Roth GmbH (Karlsruhe, GE) 

Sucrose      Carl Roth GmbH (Karlsruhe, GE) 

Trypsin inhibitor (from soya beans)   Sigma Chem. Co. (Deisenhofen, GE) 

Tris-hydroxymethyl-aminomethane (Tris)  Carl Roth GmbH (Karlsruhe, GE) 

Triton X-100       Sigma Chem. Co. (Deisenhofen, GE) 

Tween 20       Carl Roth GmbH (Karlsruhe, GE) 

 

All other reagents were of superior analytical grade. 

 

2.1.2   Enzymes 

Endo-β-N-acetylglucosaminidase H (Endo H) Roche Diagnostics (Mannheim, GE) 

Endo-β-N-acetylglucosaminidase F (Endo F) Roche Diagnostics (Mannheim, GE) 

Isis™ DNA-polymerase (and buffer)  Qbiogene (Heidelberg, GE) 

Restriction enzymes (and buffers)  MBI Fermentas (St. Leon-Rot, GE) 

RNAse A (from bovine pancreas)   Roche Diagnostics (Mannheim, GE) 

10 mg/ml stock solution  

T4 ligase      MBI Fermentas (St. Leon-Rot, GE) 

Trypsin       Sigma Chem. Co. (Deisenhofen, GE) 

Typ II-S from porcine pancreas    

    ca. 1800 BAEE units per mg solid 

  

2.1.3   Antibodies  

Monoclonal antibodies (mAbs) against human intestinal LPH were HBB 1/909 [Hauri 

et al., 1985b] and the MLac 1 to 10 [Maiuri et al., 1991]. The polyclonal antibody 

V496 is directed against the N-terminal part of the LPH prodomain [Naim et al., 

1994]. Anti-GFP antibodies were purchased from Invitrogen (Karlsruhe, GE). Anti-

FLAG andibodies were obtained from Sigma Chem. Co. (Deisenhofen, GE). 

 

2.1.4   Media, solutions, and buffers 

Media 

LB-Medium:    1% w/v NaCl  

1% w/v Bacto-Trypton  

0.5% w/v Bacto yeast extract  

autoclaved  
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LB solid medium:   LB-Medium + 1.5% w/v Bacto-Agar 

LB selection medium:   LB-Medium  

+30-50 mg/l Kanamycin or 

+50-100 mg/l Ampicillin  

 

DMEM (Dulbecco’s Modified Eagle Medium) Low Glucose (1 g/l ( D-)glucose) 

BioWest (Essen, GE) 

Culture medium:   DMEM  

+ 10% v/v FCS  

+ 1% v/v PSG  

MEM (Minimum Essential Medium) (w/o methionine) BioWest (Essen, GE) 

Starving medium   MEM + 1% v/v PSG  

Transfection medium:  DMEM+ 1% v/v PSG  

Hepes culture medium:  DMEM  

+ 10 mM Hepes  

 

Solutions 

ATP     Sigma Chem. Co. (Deisenhofen, GE) 

Benzyl-GalNAc   Sigma Chem. Co. (Deisenhofen, GE) 

Chloroquine:    Sigma Chem. Co. (Deisenhofen, GE) 

50 mg/ml, sterile filtered 

storage at –20 °C away from light 

Coloring solution:    0.1% w/v Coomassie Brilliant Blue  

  (for SDS-PAGE)   25% v/v isopropanol  

10% v/v acetic acid  

DEAE-dextran:    Amersham Biosci. Inc. (Freiburg, GE) 

  (Diethyle aminoethyle dextran) 50 mg/ml  

Discoloring solution:   25% v/v isopropanol  

  (for SDS-PAGE)   10% v/v acetic acid  

(1,4-)Dithiothreitol (DTT)   Carl Roth GmbH (Karlsruhe, GE) 

     1 M (for SDS-PAGE) 

     0.2 M (for ligation) 

dNTPs      MBI Fermentas (St. Leon-Rot, GE) 

  (Desoxynucleoside triphosphate) 25 mM dATP,dCTP,dGTP,dTTP 
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Ethidium bromide   Merck (Darmstadt, GE) 

10 µg/µl  

G418      Carl Roth GmbH (Karlsruhe, GE) 

Hepes :    Carl Roth GmbH (Karlsruhe, GE) 

  (N-2-Hydroxyethyle)piperazine-N-2-ethan-sulphonic acid) 1 M  

Monensin    Sigma Chem. Co. (Deisenhofen, GE) 

NaJ     Carl Roth GmbH (Karlsruhe, GE) 

6 M in TE-buffer 

Penicillin, streptomycin, glutamine (PSG): BioWest (Essen, GE) 

penicillin 50.000 U/l  

streptomycin 10 mg/l  

L-glutamine 292 mg/l  

Proteinase inhibitors:  Sigma Chemical Co. (Deisenhofen, GE) 

per ml (final concentration)  

1 mM PMSF (phenylmethylsulfonyl fluoride)  

100 µg trypsin/chymotrypsin inhibitor  

1 µg pepstatin  

5 µg antipain  

5 µg leupeptin  

1 µg aprotinin  

Solution 1 (for DNA preparation): 50 mM glucose  

10 mM EDTA  

25 mM Tris-HCl, pH 8.0  

Solution 2 (for DNA preparation): 0.2 mM NaOH  

1% w/v SDS  

Solution 3 (for DNA preparation): 3 M KAc, pH 4.8  

Trypsin-EDTA:   BioWest (Essen, GE) 

0.05% w/v trypsin (100 U/µl)  

0.02% w/v EDTA in PBS 

 

Buffers  

Denaturing buffer    0.5% w/v SDS  

1% v/v β-mercaptoethanol  

Electrophoresis buffer:   25 mM Tris  
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  (for SDS-PAGE)   250 mM glycine  

0.01% w/v SDS  

3x Laemmli buffer:    6% w/v SDS  

30% v/v glycerol 

150 mM Tris-HCl, pH 6.8  

0.02% w/v bromophenol blue 

150 mM DTT  

10x Ligation buffer:   0.5 M Tris pH 7.4 

     0.1 M MgCl
2
 

Matrix washing buffer:  50 mM NaCl 

     10 mM Tris pH 7.5 

2.5 mM EDTA 

50% EtOH  

PBS:     0.8% w/v NaCl  

  (phosphate buffered saline)  0.2% w/v KCl  

8 mM Na
2
HPO

4 
 

1.5 mM KH
2
PO

4 
 

pH 7.4; autoclaved 

6x sample buffer:    0.25% (w/v) bromophenol blue  

  (for agarose gels)   0.25% w/v xylencyanol 

30% v/v glycerol (in H
2
O)  

Separating gel buffer:  1.5 Tris-HCl, pH 8  

Stacking gel buffer:    1 M Tris-HCl, pH 6.8  

Standard lysis buffer:   25 mM Tris-HCl, pH 8.0  

  (for immunoprecipitation)  50 mM NaCl  

0.5% w/v sodium desoxycholate  

0.5% w/v Triton X-100  

TAE-buffer:     40 mM Tris-acetate  

1 mM EDTA, pH 8.0  

TE-buffer:    10 mM Tris-HCl  

1 mM EDTA, pH 8.0 

Washing buffer I:    0.5% v/v Triton-X-100 (in PBS)  

  (for immunoprecipitation)  0.005% w/v sodium desoxycholate in PBS  

Washing buffer II:    500 mM NaCl  
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  (for immunoprecipitation)  0.5% v/v Triton X-100  

10 mM EDTA  

125 mM Tris-HCl, pH 8.0 

 

2.1.5   Standards, systems, and software 

 

Molecular weight standards 

DNA standard (for agarose gels): 

As DNA marker a λ-phage-DNA - cleaved with the restricion enzymes EcoRI und 

HindIII - was used and purchased by MBI Fermentas (St. Leon-Rot, GE).  

 

fragment sizes (bp):  

21226, 5148, 4973, 4268, 3530, 2027, 1904, 1584, 1375, 947, 831, 564,125  

 

Protein standard: 

For the estimation of protein bands the standard SDS-6H (High Molecular Weight 

Standard Mixture for SDS Gel Electrophoresis; 29-205 kDa) from Sigma Chem. Co. 

(Deisenhofen, GE) was applied.  

 

protein:       molecular weight (kDa):  

myosin (rabbit muscle)     205  

ß-galactosidase (E.coli)     116  

phosphorylase B (rabbit muscle)    97.4  

albumine (bovine)      66  

albumine (chicken)      45  

carboanhydrase (bovine erythrocytes)  29 

 

Systems 

Metafectene™ Pro     Biontex (Martinsried, GE) 

Miniprep Express™ matrix    BIO 101 (La Jolla, USA) 

 

Software 

Image J software package    http://rsb.info.nih.gov/ij/ 

Quantity One®      BioRad (Munich, GE) 
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2.1.6   Equipment  

General equipment 

Vapor sterilizer (autoclave)    Integra Biosciences (Ruhberg, GE) 

Freezer –20 °C      Premium, Liebherr (Ochsenhausen, GE) 

Deep freezer –80 °C     C54285, New Brunswick Scientific 

       (Wesseling-Berzdorf, GE) 

Incubator       FunctionlineB12, Heraeus (Hanau, GE) 

Cooling centrifuge      Biofuge-fresco, Heraeus (Hanau, GE) 

Magnetic stirrer      RCT basic, IKA Labortechnik (Staufen, 

       GE)  

Photometer       Jenway, Genova (Staffordshire, UK) 

pH-Meter       PH538, WTW (Weilheim, GE) 

Precision balance      PT310, Sartorius (Goettingen, GE) 

Ultra-pure water supply     Milli Q, Millipore (Schwalbach, GE) 

Bench centrifuge      Biofuge-pico, Heraeus (Hanau, GE) 

Dry sterilizer       Heraeus (Hanau, GE) 

Vortexer       Minishaker MS2, IKA Labortechnik 

       (Staufen, GE) 

Water bath      E-BRU/PU19A, Jubalo (Seelbach, GE) 

 

Agarose gel electrophoresis 

Flat-bed apparatus, gel beds, combs   BioRad Laboratories (Munich, GE) 

Fluor-S
®

-Multiimager     BioRad Laboratories (Munich, GE) 

Chambers, Wide mini Sub
® 

Cell GT   BioRad Laboratories (Munich, GE) 

Power supply Power Pac 300    BioRad Laboratories (Munich, GE) 

UV-table      UVT-20 S/W, Herolab (Wiesloch, GE) 

 

SDS gel electrophoresis 

Glas plates, gel cast, combs, spacer   BioRad Laboratories (Munich, GE) 

Gel observer Molecular Imager
® 

FX,   BioRad Laboratories (Munich, GE) 

Gel chambers Protean
® 

II XI Cell,   BioRad Laboratories (Munich, GE) 

Gel drying device DC-3    Biometra (Goettingen, GE) 

Power supply Power Pac 1000    BioRad Laboratories (Munich, GE) 
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Phosphorimaging screens BAS-IP MS2025 Fujifilm Co. LTD (Duesseldorf, GE) 

 

Fluorescence microscopy 

Confocal laser scanning microscope TCS SP Leica Microsystems (Bensheim, GE)  

 

Cell culture 

Incubator Biosafe eco 70040    Integra Bioscience (Ruhberg, GE) 

Microscope DMIRB     Leica Microsystems (Bensheim, GE) 

Sterile bench Holten LaminAir S 2000 1.2  Thermo Fisher Scientific (GE) 

Tissue culture dishes, Falcon tubes, Transwell filters, and single-use pipetts 

Greiner (Hamburg, GE)  

 

PCR  

Programmable heater     Personal Cycler, Biometra  

       (Goettingen, GE) 

            Minicycler, MJ Research (Waltham,  

            MA, USA) 

 

2.1.7  Host bacteria 

Escherichia coli XL Gold 

Genotype:  

Tet
r 

∆ (mcrA)183 ∆(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 

relA1 lac Hte (F`proAB lacI
q

Z∆M15 Tn10 (Tet
r 

) Amy Cam
r

) 
a

, purchased by 

Stratagene  (Heidelberg, GE). 

 

2.1.8  Plasmids and oligonucleotides  

The mutation G1363S was introduced by site-directed mutagenesis into the wild type 

LPH cDNA cloned in the vector pSG5 (Stratagene, Amsterdam, The Netherlands) 

[Hoch, 2006] with the EcoRI sites of pLPH [Naim et al., 1991].1  

pcDNA3-LPH was generated by cloning the wild type LPH complementary DNA 

(cDNA) in the vector pcDNA3 (Invitrogen, Karlsruhe, GE) with the EcoRI sites of 

pLPH [Naim et al., 1991]. LPH was fused to YFP by subcloning the EcoRI/ScaI 

fragment from pcDNA3-LPH containing full-length LPH in-frame into the EcoRI/SmaI-
                                                 
1 This was done by Melanie Hoch. 
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digested pEYFP-N1 vector (Clontech-Takara, Saint-Germain-en-Laye, France) to 

create pLPH-YFP. pLPH-GFP was generated as desribed previously [Jacob et al., 

2000]. SI-cherry was constructed by replacing YFP in SI-YFP [Jacob and Naim, 

2001] with cherry, an improved monomeric red fluorescent protein [Shaner et al., 

2004].2 

The applied oligonucleotides for ∆-mutant and domain constructs were purchased by 

Sigma Chem. Co. (Deisenhofen, GE) and are listed in Table 2.1 and Table 2.2. 

 

 

 

  

 

 

                                                 
2 SI-cherry was generated by Zeynep Hein. 
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2.1.9  Cell lines 

COS-1 

COS-1 cells are derived from CV-1 monkey kidney cells from the African green 

monkey Cercopithecus aethiops. These cells were transformed with an origin-

defective SV40-mutant, which contains the wild type T-antigene [Gluzman, 1981]. 

The COS-1 cell line is an adherent, fibroblast-like, unpolar one, suitable for transient 

transfection with SV40-origin-of-replication-containing recombinant DNA.  

 

Madin Darby Canine Kidney II-cells (MDCK-II) 

The MDCK-II cell line is one strain of cells derived from cocker spaniel kidney cells 

isolated by S. H. Madin and N. B. Darby in 1958. These cells form a monolayer in 

vitro, and therefore are appropriate e. g. for the analysis of transport behavior of 

intestinal proteins [Leighton et al., 1969; Richardson et al., 1981]. 

 

All cell lines were obtained from the American Type Culture Collection (Rockeville, 

USA). 

 

 

2.2  Methods   

 

2.2.1  Manipulation of DNA  

 

2.2.1.1  Amplification of cDNA fragments (PCR) 

The polymerase chain reaction (PCR) [Saiki et al., 1988] is a method, with which 

copies of a particular DNA sequence can be generated specifically and in great 

numbers. For the amplification of particular LPH cDNA fragments a 50µl PCR 

reaction mixture comprised 50ng template DNA, 5µl 10x PCR buffer, 1µl dNTP mix, 

50pmol forward primer, 50pmol reverse primer, 1U Isis DNA polymerase and aqua 

bidest. The PCR parameter program included a pre-denaturation step (95°C for 

4min), 30 cycles of denaturation (95°C for 1min), annealing (55°C for 45sec), and 

elongation (2min/1kb at 72°C), as well as one final elongation step (72°C for 10min). 

The reaction was carried out in a heated-lid (98°C) thermocycler and performed as 

hot-start PCR, whereby the polymerase was added after the pre-denaturating step to 

avoid unspecific products. 
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2.2.1.2  Generation of sticky ends by restriction digestion 

Before ligation, PCR product ends were digested with restriction enzymes (5U) within 

the reaction mixture to generate sticky ends. Moreover, the vector was prepared for 

ligation by mixing plasmid DNA (5µg), aqua bidest., enzyme buffer, and restriction 

enzymes (5U). The mix was incubated at optimal enzyme working temperature for 

2h. 

 

2.2.1.3  Agarose gel electrophoresis 

After the reactions were finished the complete mixtures were added to 1/5 volume of 

6x sample buffer and loaded on a 0.8% ethidium bromide stained agarose/TAE gel. 

The PCR product, the vector, and the λ-DNA standard were separated with 120V, the 

gel was analyzed by visualizing the DNA on a UV-table, and the bands 

corresponding to the LPH fragment and the vector, respectively, were cut out from 

the gel. Subsequently, the DNAs were isolated from the gel pieces and purified with 

Miniprep Express™ matrix.  

 

2.2.1.4  Purification of DNA from agarose gels 

The gel pieces were put into a 1.5ml tube, overlayed with 6M NaJ, and incubated at 

52°C until the gel has melted. Then, the matrix was resuspended by vortexing, 100µl 

were added to the DNA, and the mixture was incubated at 52°C for 5min. After 

resuspension of the pellet, incubation was repeated, and the DNA-matrix pellet was 

washed three times with matrix washing buffer. The DNA was eluted by adding 10µl 

of aqua bidest. to the pellet and incubation at 52°C for 5min. The elution step was 

repeated, the eluates were combined, and the DNA concentration was determined. 

 

2.2.1.5  Determination of DNA concentration via band intensity comparison 

From the eluate, 2µl were mixed with 8µl aqua bidest. and 2µl 6x sample buffer. The 

mix and different amounts of λ-DNA standard were loaded on a 0.8% ethidium 

bromide stained agarose/TAE gel. After the gel run the sample band intensity was 

compared to the marker bands intensities which correspond to known DNA amounts 

and by that the sample DNA amount could be determined. 
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2.2.1.6  Ligation  

For ligation of the LPH cDNA fragment into a vector, the total volume of the ligation 

mixture was 20µl. Generally, the number of insert molecules was 3 to 4 times of the 

acceptor molecules and the total DNA amount did not exceed 80ng. Before ligation, 

vector and insert DNA were incubated at 37°C for 5min in the required volume of 

aqua bidest. Then, the DNA was put on ice and 2µl of 10x ligation buffer, 1µl of 20x 

DTT (0.2M), 2µl of 10x ATP (10mM), as well as 1µl T4 ligase (5U) were added. The 

mix was pipetted up and down, spinned down, and incubated for 4h at room 

temperature or over night at 16°C. Subsequently, T4 ligase was inactivated by 

incubation at 65°C for 10min, the ligation mix was put on ice, and 5µl was used for 

transformation of 100µl competent E.coli. 

 

2.2.1.7  Generation, transformation, and storage of competent E.coli 

Generation and transformation of competent E.coli was performed according to Inoue 

[Inoue et al., 1990]. Competent E.coli were stored at –80°C. 

 

2.2.1.8  Isolation of plasmid DNA from E.coli    

Bacterial colonies grown on LB agar plates with selective medium were used for the 

inoculation of 5ml over night fluid cultures and bacteria grew at 37°C in a shaker. 

Plasmid DNA was isolated from E.coli  by the rapid alkaline extraction procedure of 

Birnboim and Doly [Birnboim and Doly, 1979], purified and concentrated via ethanol 

precipitation. The DNA pellets were resuspended in TE-buffer and the over night 

culture remainders were stored in the refrigerator until the identification of positve 

clones.   

 

2.2.1.9  Identification of positive clones by fragment restriction analysis 

Putative positive clones were identified by fragment restriction analysis. For that, 2µl 

of the DNA from the over night clultures were mixed with aqua bidest., restriction 

enzyme buffer, and 2U of one or more restriction enzymes according to the 

manufacturers recommendation and dependent of the supposed recombinant DNA 

molecule. As a control, empty vector DNA was digested also. After incubation at the 

enzyme-specific temperature for at least 2h, the reaction was stopped by adding 1/5 

volume of 6x sample buffer. Sample, control and marker DNA was separated on an 

ethidium bromide stained agarose gel, and the restriction patterns were analyzed by 
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visualizing the DNA on a UV-table. Overnight culture remainders of positive clones 

were mixed with glycerol to 50% v/v and stored at –80°C. 

 

2.2.1.10  Large-scale DNA preparation  

In order to receive large amounts of plasmid DNA, 10µl of a small over night culture 

or a piece from a glycerol culture were used to inoculate 200ml of LB selection 

medium. Bacteria were incubated at 37°C over night in a shaker and were afterwards 

centrifuged at 5000xg for 5min. The rapid alkaline extraction procedure of Birnboim 

and Doly [Birnboim and Doly, 1979] was performed as follows. 

The pellet was resuspended in 8ml solution 1 with RNAse A and incubated for 10min 

at room temperature. Then, the cells were lysed by adding 16ml of solution 2 and 

gently mixing, as well as incubation for another 10min at room temperature. 

Subsequently, 12ml of solution 3 were added, mixed gently, and incubated on ice for 

10min. The precipitate of chromosomal DNA and proteins was removed by filtering 

the mixture through two folded filters. The flow-through was added to 0.8x volumes of 

isopropanol, mixed intensively, and centrifuged for 20min at 15000xg and 4°C to 

precipitate plasmid DNA. The Pellet was washed with 70% ethanol and centrifuged 

again for 5min at 15000xg and 4°C. The pellet was dried and resuspended with 600µl 

TE-buffer. 

For further purification, the DNA was mixed with 1 volume of phenol, centrifuged for 

15min at 15000xg and 4°C. The resulting upper watery phase was transferred to 

another tube, mixed with 1 volume of chloroform, and centrifuged for 2min at 

15000xg. This washing step was repeated once. To precipitate plasmid DNA, the 

upper watery phase was again transferred to another tube, mixed intensively with 

0.8x volumes of isopropanol and 150mM sodium acetate (pH 7.4; final 

concentration), and centrifuged for 20min at 12000xg and 4°C. The pellet was 

washed with 70% ethanol, dried, and resuspended in 200-500µl of TE-buffer 

(depending on the pellet size). 

 

2.2.1.11  Determination of DNA concentration via UV-light 

The DNA concentrations of solutions from large-scale DNA preparation were 

determined by measuring the UV-absorption at 260nm and application of a quartz 

cuvette with a thickness of 1cm. The purity of nucleic acids was estimated by the 

ratio of extinctions at 260nm and 280nm, whereby the optimum is between 1.8 and 2. 
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2.2.1.12  Site-directed mutagenesis and loop-out PCR 

In order to change only small parts of a cDNA, e. g. single nucleotides, site-directed 

mutagenesis was performed. Here, two complementary oligonucleotides carrying 

both a mutation were used as primers. They bind double-stranded plasmids 

sequence-specifically during a PCR and are elongated by the DNA-polymerase; the 

PCR products are complete plasmids carrying the mutation. The template plasmids 

were eliminated afterwards by adding DpnI (5U per PCR) and incubation for 2h at 

37°C. The restriction enzyme DpnI digests the methylated template DNA, but not the 

non-methylated PCR products. Subsequently, DpnI was inactivated at 65°C for 

10min, the mixture was cooled down on ice and 5µl were used for transformation 

followed by subsequent experiments (cp. 2.2.1.7 - 2.2.1.11). In order to facilitate a 

rapid detection of positive clones by restriction fragment analysis, a second (silent) 

mutation had been introduced in the oligonucleotides, resulting in either an 

elimination or addition of a restriction site but not in changes of amino acids. 

For the deletion of a larger cDNA area a special form of site-directed mutagenesis 

was applied, namely loop-out PCR. Here, the primers are designed in a way, that the 

first half of one oligonucleotide is complementary to the sequence directly in front of 

the area to be deleted, and the second half is complementary to the area localized 

directly behind the cDNA area to be deleted. During the annealing and elongation 

step of the PCR, the template cDNA area to be deleted forms a loop while the 

primers bind in front and behind it. This loop is not amplificated and the result is a 

smaller plasmid, with a cDNA deleted in part. 

The carrying out of the mutagenesis PCR differed from the PCR described above 

(cp. 2.2.1.1) in some points. Firstly, only 5pmol per primer were used. Secondly, 

because of the amplification of whole plasmids, the elongation times were longer and 

only 18 cycles of denaturation, annealing, and elongation were performed. Thirdly, 

the PCR mixture was used directly for transformation after incubation with DpnI. 

 

2.2.1.13  DNA Sequencing 

The correctness of every generated construct was verified by sequencing. This was 

done by MWG (Ebersberg, GE) according to the companies protocols. 
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2.2.2  Cell culture procedures and transfection 

 

2.2.2.1  Transient transfection of COS-1 cells 

COS-1 cells were transiently transfected with DNA using DEAE-dextran essentially 

as described previously [Naim et al., 1991]. 

 

2.2.2.2  Establishment of stable MDCK-II cell lines 

MDCK cells were transfected using Metafectene™ Pro following manufacturer’s 

instructions. Stable transfected MDCK cells were selected in the presence of 

0.5mg/ml active G418 and after 14-21 days colonies were isolated, subcultured and 

stable transformants were screened by immunoprecipitation. 

 

 

2.2.3  Isolation, detection, and analysis of proteins  

 

2.2.3.1  Biosynthetic labeling 

The cells were biosynthetically labeled with 80 µCi of [35S]methionine in MEM after 

2h of incubation with methionine-free MEM. Labeling was either performed 

continuously or following a pulse-chase protocol where the labeled cells were chased 

with non-radioactive methionine for different periods of time. 

 

2.2.3.2  Standard cell lysis and immunoprecipitation 

Standard cell lysis and immunoprecipitation of LPH from detergent extracts of the 

labeled cells was performed according to Naim et al. [Naim, 1987] using a mixture of 

mAb anti-LPH (HBB 1/909 and MLac1, MLac2, MLac4, MLac6 and MLac10) and 

V496. This mixture recognizes different conformations of LPH. GFP- and FLAG-

tagged proteins were isolated with anti-GFP and anti-FLAG antibodies, respectively. 

 

2.2.3.3  Manipulation of glycosylation 

Deglycosylation 

A further characterization of glycoproteins can occur by the use of endoglycosidases 

[Maley et al., 1989]. Immunoprecipitates were treated with endo H or endo F where 

indicated according to Naim et al. [Naim, 1987] followed by analysis using SDS-

PAGE. 
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Inhibition of glycosylation 

To test the role of inhibitors of the maturation process of D3, inhibitors of 

glycosylation were separately added to the medium during the preincubation of 

MDCK-D3 cells in methionine-free medium as well as during the labeling with 

[35S]methionine. Benzyl-GalNAc was used as an inhibitor of O-glycosylation at 4mM 

final concentration, whereas monensin as inhibitor of N-glycosylation was given to 

cells at 1µM final concentration. 

 

2.2.3.4  Trypsin treatment of immunoprecipitates 

To assess the sensitivity of the mutants to trypsin, immunoprecipitated proteins were 

washed for additional two times with PBS containing 0.2% Triton X-100, were 

supplemented with 10 µg bovine serum albumin (BSA) as a carrier and incubated 

with 0.33 mg/ml trypsin for the indicated times at 37°C. The reaction was stopped by 

boiling for 5 min in SDS-PAGE sample buffer prior to gel electrophoresis.  

 

2.2.3.5  Trypsin treatment of COS-1 cell surface proteins 

Detection of deletion mutants at the cell surface was performed by adding 50µg/ml 

trypsin to the cell culture medium for 15min at 37°C during biosynthetic labeling or 

chase period to remove LPHα. The reaction was stopped by incubating the cells with 

cold FCS containing 500µg/ml trypsin inhibitor for 15min at room temperature. 

 

2.2.3.6  Enzymatic activity assay 

Lactase and phlorizin-hydrolase activities were assessed as follows. The 35S-labeled 

immunoprecipitates were washed with PBS containing 0.2% Triton X-100 and 

incubated with 100 µl of this buffer containing lactose or phlorizin at 28 mM final 

concentrations. The samples were incubated at 37°C for 2h and the amount of 

released glucose was assessed by high-performance liquid-chromatography 

(HPLC).3 The quantification of the specific activity was related to the radioactive 

protein band detected by autoradiography and the number of methionines for each 

construct. 

 

 

                                                 
3 HPLC was performed by Uwe Glockenthör. 
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2.2.3.7  SDS-polyacrylamide gel electrophoresis  

One-dimensional SDS-polyacrylamide gel electrophoresis was performed according 

to Laemmli [Laemmli, 1970]. 
 

stacking gel:    separating gel: 5% 6% 7% 9% 10% 

aqua bidest. (ml) 15.6   aqua bidest. (ml) 17.5 16.5 15.5 13.4 12.3 

Acrylamide (ml) 3.9   Acrylamide (ml) 5.2 6.2 7.2 9.2 10.3 

1M Tris, pH 6.8 (ml) 2.9   1.5M Tris, pH 8.8 (ml) 7.7 7.7 7.7 7.7 7.7 

10% SDS (µl) 230   10% SDS (µl) 310 310 310 310 310 

TEMED (µl) 23   TEMED (µl) 23 23 23 23 23 

10% APS (µl) 230   10% APS (µl) 310 310 310 310 310 
 

Table 2.3: Ingrediens for polyacrylamide gels. 

 

The radioactively labeled protein bands were visualized by phosphorimaging. Protein 

bands were quantified with Quantity One® software. 

 

2.2.3.8  Immunofluorescence 

Immunofluorescence was performed essentially as described previously [Castelletti 

et al., 2006]. 

 

2.2.3.9  Confocal fluorescence microscopy 

COS-1 cells grown on cover slips were transfected and confocal images of living 

cells were acquired 2 days after transfection on a Leica TCS SP2 microscope with a 

x63 water planapochromat lens (Leica Microsystems, Bensheim, GE) [Jacob and 

Naim, 2001] and processed with the public domain Image J software package. For 

colocalization studies the cells were co-transfected with GFP- or YFP-tagged LPH 

cDNA or the mutant LPH cDNA and the protein marker for the ER dsRed2-ER and 

for the Golgi apparatus Golgi-CFP (Clontech-Takara, Saint-Germain-en-Laye, 

France). 

 

2.2.3.10  Cell lysate fractionation on sucrose density gradients  

Quaternary structures of LPH wild type and mutants were analyzed according to 

Naim [Naim and Naim, 1996]. In brief, COS-1 cells were biosynthetically labeled and 

solubilized in 6mM dodecyl-β-m-maltoside, 50mM Tris-HCl, 100mM NaCl, pH 7.5 and 

protease inhibitors. The cell extracts were centrifuged at 100000xg for 1h at 4°C and 
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the supernatant was loaded onto an 11.5ml sucrose gradient that consisted of 10 to 

30% or 15 to 25% sucrose (w/v), 50mM Tris-HCl, 100mM NaCl, pH 7.5, 6mM 

dodecy-β-m-maltoside and the protease inhibitors mentioned above except PMSF. 

The gradient was centrifuged at 100000xg for 18h at 4°C and divided into 0.5ml 

fractions followed by immunoprecipitation and SDS-PAGE. 

 

 

2.2.4  Extraction of detergent resistant lipid microdomains 

Extraction of detergent resistant lipid microdomains was performed essentially as 

described previously  [Castelletti et al., 2008].  
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3.  Results  

         

3.1  Impaired trafficking and subcellular localization of a mutant 

   lactase associated with congenital lactase deficiency  

 

3.1.1  Location and description of the Gly1363 mutation in CLD 

Diseases caused by one or more defects in one gene can result in individually 

different phenotypic appearances like those observed in cases of congenital sucrase-

isomaltase deficiency [Fransen et al., 1991; Keiser et al., 2006; Naim et al., 1988]. 

Recently, nine distinct mutations in the coding region of the lactase gene have been 

identified in patients suffering from congenital lactase deficiency (CLD), one of them 

is G1363S [Kuokkanen et al., 2006; Torniainen et al., 2009]. Table 3.1.1 compiles the 

LPH primary sequence in different species and demonstrates that the residue Gly1363 

is conserved. This together with the generation of a potential N-glycosylation site (cp. 

1.1.4, Glycosylation) as result of G1363S exchange suggests that these amino acids 

play crucial roles in the context of folding determinants.  

 

 

Table 3.1.1: Comparison of the amino acid stretch encompassing the mutation 
G1363S. Sequence alignment between amino acids 1353 to 1373 of LPH from 
different species, indicating important functions of this region.  
 
 

 

3.1.2  The G1363S mutation results in an intracellular localization and altered  

    biosynthesis and processing of LPH  

The influence of the residue Gly1363 on the folding and transport events of newly 

synthesized LPH was investigated by highlighting possible differences between wild 

type LPH and LPH bearing the G1363S mutation. Since this mutation appeared as a 

compound heterozygote together with an Y1390X mutation in the same patient 
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[Kuokkanen et al., 2006], it was also asked if this amino acid substitution per se can 

influence the enzyme function. For this, the mutation G1363S was introduced into 

wild type LPH (indicated LPH-G1363S). 

 

Fig. 3.1.1 shows a schematic drawing of the structure and membrane association of 

LPH as well as the location of the mutation G1363S in the homologous domain III 

that comprises the phlorizin-hydrolase activity.  

 

Fig. 3.1.1: Location of the G1363S mutation in LPH. Main features of intestinal 
LPH structure. Prepro-LPH consists of a cleaveable signal sequence (SS; Met1-Gly19) 
and an extracellular region comprising homologous domains I-IV (Ser20-Thr1882). The 
initial cleavage step takes place between Arg734 and Leu735 generating LPHβinitial, 
removal of the polypeptide stretch Leu735/Arg868 occurs by a luminal trypsin creating 
LPHßfinal. Cleavage and mutation sites are indicated by arrows, location of the 
phlorizin-hydrolase (Glu1273) and lactase (Glu1749) activities, respectively, are 
indicated by asterisks. MACT refers to the membrane anchor (MA) and cytoplasmic 
tail (CT). 
 

The LPH-G1363S mutant and its wild type counterpart were expressed in COS-1 

cells (Fig. 3.1.2), biosynthetically labeled and immunoprecipitated with anti-LPH 

antibodies. Fig. 3.1.2 (upper panel) shows that wild type LPH revealed an endo H-

sensitive 215-kDa mannose-rich polypeptide within 1.5 h of labeling. Another 

glycosylated 230-kDa protein band appeared at 8 h of labeling that was endo H-

resistant and represents therefore a complex glycosylated mature band that has 

been processed in the Golgi apparatus. By contrast, the LPH-G1363S mutant 

revealed exclusively an endo H-sensitive 215-kDa glycosylated protein that retained 
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its mannose-rich type of glycosylation even after 8 h of labeling and has not been 

therefore processed in the Golgi apparatus (Fig. 3.1.2, lower panel).  

 

 

Fig. 3.1.2: Expression of wild type and mutant LPH in COS-1 cells. COS-1 cells 
were transiently transfected with cDNAs encoding wild type LPH and LPH-G1363S, 
biosynthetically labeled for 1.5h and 8h followed by cell lysis and 
immunoprecipitation. The immunoprecipitates were divided into equal aliquots and 
treated with endo H or not treated. The proteins were subjected to SDS-PAGE on 5% 
slab gels and autoradiography. 
 
 
The biochemical data were corroborated by immunofluorescence analyses of the 

subcellular and cell surface localization of the wild type and mutant LPH-G1363S 

using confocal laser microscopy. As shown in Fig. 3.1.3 cell surface labeling revealed 

strong labeling of wild type LPH at the cell surface in contrast to LPH-G1363S which 

was barely detected (upper panel). In permeabilized cells, LPH-G1363S was 

predominantly located in intracellular compartments. In fact, LPH-G1363S was found 

to colocalize with an ER marker. Taken together, the biochemical and 

immunofluorescence data indicate that the LPH-G1363S mutant does not exit the 

ER. 
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Fig. 3.1.3: Subcellular localization of LPH-G1363S in transiently transfected 
COS-1 cells. A) Wild type and mutant LPH forms were expressed in COS-1 cells 
grown on cover slips and their cell surface and subcellular localization was compared 
by immunofluorescence and confocal microscopy. B) Colocalization of wild type and 
mutant proteins with the ER marker DsRed2-ER (colocalizations are shown in 
yellow). Scale bars, 20 µm. 

A 

B 
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3.1.3  Mutant LPH-G1363S is a malfolded and enzymatically inactive protein 

Given the predominant intracellular location of the mutant LPH-G1363S, one 

question was whether the trafficking arrest is the consequence of gross structural 

alterations elicited by the mutation G1363S. Firstly, the enzymatic activity of the 

mutant towards lactose and phlorizin were determined and were found to be below 

detection limit (Fig. 3.1.4). These measurements are indicative of an altered folding of 

at least around the activity centers of phlorizin-hydrolase, Glu1273, and lactase, 

Glu1749 (cp. Fig. 3.1.1).   

 

 

Fig. 3.1.4: Enzymatic activity of LPH and LPH-G1363S. COS-1 cells were 
transiently transfected with wild type and mutant LPH cDNA. 48h posttransfection the 
cells were lysed and immunoprecipitated with mAb anti-LPH, and the lactase and 
phlorizin activities were measured by determining the concentration of released 
glucose with HPLC. 
    

Then, the enzymatic measurement data were corroborated by comparing the 

protease sensitivity of wild type and mutant LPH-G1363S towards trypsin. In the 

intestinal lumen a pancreatic trypsin cleaves wild type LPHβinitial upon insertion into 

the brush border membrane to generate LPHβfinal, which is trypsin resistant (cp. Fig. 

3.1.1). As such trypsin is a convenient protease that could be used to probe possible 

folding alterations, whereby variations in the tryptic digestion pattern are indicative of 

a conformational change in LPH. 

For this, wild type and mutant LPH were isolated from biosynthetically labeled COS-1 

cells that are known not to cleave pro-LPH to LPHβinitial intracellularly [Naim et al., 

1991]. Subsequently, the immunoprecipitates were treated with trypsin at a 
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concentration capable of cleaving wild type LPH into the profragment and LPHβfinal. 

As shown in Fig. 3.1.5 at 0 min of trypsin treatment, wild type LPH consisted of two 

bands, the mannose-rich 215-kDa form, and the complex-glycosylated 230-kDa form. 

2 min of trypsin treatment were sufficient to convert both forms to 160-kDa and 135-

kDa polypeptides. The intensities of these polypeptides did not significantly change 

after 10 min of trypsin treatment strongly suggesting that no additional trypsin sites 

were exposed in wild type LPH4. LPH-G1363S appeared as a mannose-rich 215-kDa 

species after 0 min and was completely degraded within 2 min. The marked 

difference in the reactivity of this mutant and wild type LPH is indicative of altered 

folding patterns.  

 

 

 

Fig. 3.1.5: Folding of wild type and mutant proteins.  Trypsin sensitivity assay of 
LPH and LPH-G1363S. Transiently transfected COS-1 cells were biosynthetically 
labeled at 37°C followed by immunoprecipitation of LPH proteins from the cell 
lysates. The immunoprecipitates were treated with trypsin for the indicated times and 
analyzed by SDS-PAGE.  
 

 

3.1.4  The mutation G1363S is responsible for an increased turnover rate of 

    LPH-G1363S as compared with wild type LPH 

The fate of the malfolded mutant was next addressed by delineating its trafficking 

kinetics as compared to the wild type protein utilizing pulse-chase experiments (Fig. 

                                                 
4 The profragment LPHα is not shown, since it is further cleaved by trypsin to a lower molecular weight 
that runs at the front of the gel. 
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3.1.6). The conversion of the 215-kDa mannose-rich precursor to the complex 

glycosylated 230-kDa form occurs only for the wild type protein between 0.5 h and 

1 h of chase (upper panel). By contrast, the LPH-G1363S mutant persisted as a 

mannose-rich glycosylated protein through out the chase and its intensity started to 

decrease at 4 h of chase with clear reduction observed at 8 h and 12 h of chase 

(lower panel) pointing to its degradation in the ER, perhaps by the ER-associated 

degradation pathway (ERAD) [Nakatsukasa et al., 2008]. The intensity of the 

complex glycosylated wild type LPH decreases also, but not to a similar extent as the 

mutant protein compatible with a longer turnover rate of the wild type as compared to 

the mutant.   

 

 

Fig. 3.1.6: Transport kinetics and turnover of wild type and mutant proteins. 
Transiently transfected COS-1 cells were pulsed with [35S]methionine followed by 
chases for different times at 37°C. Cells were lysed, and the immunoprecipitates 
were analyzed by SDS-PAGE and autoradiography.  
 

3.1.5  LPH-G1363S is a temperature-sensitive mutant 

The majority of naturally occurring mutants that are implicated in diseases are not 

capable of escaping the quality control machinery of the ER and are retained in that 

organelle. However, a few mutant phenotypes differ from this general scheme with 

respect to their in vitro sensitivity towards reduced non-physiological temperatures 

and the acquisition at these permissive temperatures to a partially correctly folded 

conformation that enables them to exit the ER. Known examples of this type of 

mutants are phenotype II in congenital sucrase-isomaltase deficiency [Propsting et 

al., 2005], the DeltaF508 mutant of the cystic fibrosis transmembrane conductance 

regulator [Cheng et al., 1990] and the temperature-sensitive ts045 mutant of the G 
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protein of the vesicular stomatitis virus [Doms et al., 1987]. Finally, individual 

expression of LPHβinitial without its LPHα profragment at a permissive temperature of 

20°C generates a stable, trypsin-resistant, and an enzymatically active polypeptide 

indicating that its individual expression results in a temperature-sensitive 

conformation [Jacob et al., 2002a]. 

Therefore the question arose whether LPH-G1363S belongs to this family of 

transport-defective mutants and meets the requirements of a temperature-sensitive 

mutant. For this, the influence of reduced temperatures on the trafficking behavior of 

LPH-G1363S was investigated in a pulse-chase experiment. Fig. 3.1.7 shows that 

biosynthetic labeling of cells expressing LPH-G1363S at a permissive temperature of 

20°C revealed a complex glycosylated endo H-resistant protein band after 22 h of 

labeling. The proportion of the complex glycosylated form, on the other hand, was 

clearly below that detected for the wild type under similar labeling conditions. 

Nevertheless, the results unequivocally demonstrate that the mutant LPH-G1363S is 

temperature-sensitive and has been transported to and processed in the Golgi 

apparatus at the permissive temperature. The control sample in which the mutant 

was chased for 10 h at 37°C showed exclusively the mannose-rich polypeptide of 

mutant LPH-G1363S, while as expected the wild type revealed complex glycosylated 

forms under these conditions. Interestingly, complex glycosylated LPH-G1363S form 

is slightly larger than that of the wild type protein. This becomes more obvious when 

the patterns of the endo H-digested proteins are considered. Here, the difference in 

the electrophoretic mobilities of the endo H-products of the LPH-G1363S mutant is 

clearly higher than that of its wild type counterparts. This result demonstrates that 

LPH-G1363S is more glycosylated than the wild type protein and that the additional 

N-glycosylation site generated by the mutation (cp. Table 3.1.1) has been accessible 

to glycan transfer. The maturation of LPH-G1363S at 20°C is sufficient for its 

transport to the cell surface, when the temperature is raised to 37°C. In fact, 

immunofluorescence analysis of cells expressing LPH-G1363S that have been 

cultured at 20°C for 22 h followed by 2 h chase at 37°C reveal strong fluorescence 

signals corresponding to LPH-G1363S exposed at the cell surface (Fig. 3.1.7). 

Finally, the question arose whether the observed transport-competence is due to 

acquired correct folding and probed therefore for its protease sensitivity with trypsin. 

The protein maintained its trypsin-sensitivity and was completely degraded in 
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contrast to the wild type protein, which revealed as shown above the trypsin-resistant 

polypeptides (160-kDa and 135-kDa) [Behrendt et al., 2009].  

 

 

 

            

Fig. 3.1.7: Biosynthesis, transport kinetics, glycosylation pattern, and 
subcellular localization of wild type LPH and LPH-G1363S at 37°C and 20°C. A) 
Transiently transfected COS-1 cells were pulsed 48h after transfection with 
[35S]methionine and chased for the indicated time points at 37°C, 20°C or both and 
treated with endo H or endo F or not treated. B) COS-1 cells grown on cover slips 
and expressing wild type LPH and LPH-G1363S were cultured at 20°C followed by 
incubation at 37°C. The subcellular localization was compared by 
immunofluorescence and confocal laser microscopy. Scale bars, 20 µm. 
 
 

Further, the enzymatic activity pattern of the mutant at the permissive temperature 

was assessed and a slight increase in the activity towards lactose and phlorizin could 

be detected (Fig. 3.1.8). Together, these results demonstrate that LPH-G1363S did 

A 

B 
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not acquire a folding pattern similar to that of the wild type LPH at the permissive 

temperature. Nevertheless, this partial folding is apparently sufficient for proteins to 

leave the ER in line with novel concepts that have proposed the existence of quality 

control mechanisms beyond the ER and contradicting previous concepts of the 

absolute requirement for correct folding prior to exit from the ER [Ellgaard and 

Helenius, 2003]. 

 

Fig. 3.1.8: Enzymatic activity of LPH and LPH-G1363S after incubation at 20°C. 
COS-1 cells were transiently transfected with wild type and mutant LPH cDNA. 48h 
posttransfection the cells were incubated at 20°C and 37°C, lysed and 
immunoprecipitated with anti-LPH antibodies, and the lactase and phlorizin activities 
were measured by determining the concentration of released glucose with HPLC. 
The error bars represent standard deviations. 
 

 

3.1.6  The potential glycosylation site generated by the G1363S mutation is 

    not the cause of defective trafficking of LPH-G1363S or its reduced 

    enzymatic activity 

Recent data show that addition of N-glycosylation sites can alter protein features as 

quaternary  structure, transport [Jacob et al., 2000] and sorting [Vagin et al., 2005]. It 

was therefore necessary to elucidate, if the additional glycosylation of LPH-G1363S 

is the reason for impaired folding and trafficking of the protein. For this, the additional 

N-glycosylation site was re-eliminated by generating another mutant containing the 

amino acid substitutions N1361A and G1363S, denoted LPH-N1361A/G1363S. In a 

fashion similar to LPH-G1363S, this mutant was not capable of exiting the ER at 
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37°C, and showed a similar pattern to LPH-G1363S at 20°C (Fig. 3.1.9), suggesting 

that the additional glycosylation does not alone lead to altered LPH characteristics in 

LPH-G1363S. 

 

 

 

 

Fig. 3.1.9: Biosynthesis and glycosylation pattern of wild type LPH, LPH-
G1363S and LPH-N1361A/G1363S at 37°C and 20°C. COS-1 cells were transiently 
transfected with the cDNAs encoding LPH or its mutants. 48h after transfection the 
cells were continuously labeled (A) or pulse labeled and chased at 20°C and 37°C 
(B). LPH proteins were immunoprecipitated and treated with endo H or endo F or not 
treated and analyzed by SDS-PAGE on 5% slab gels followed by autoradigraphy. 
Arrowheads indicate the complex glycosylated 235-kDa LPH-G1363S protein form. 
 

 

A 

B 
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3.2  Structural hierarchy of regulatory elements in the folding and 

    transport of an intestinal multi-domain protein:  

    Domain III constitutes the structural core while domain IV 

    has a regulatory role  

      

LPH comprises four extracellular regions which contain 38-55% identical residues 

[Mantei et al., 1988]. An interval of about 100 amino acids within each domain is 

even more homologous and this internal homology can also be found by comparison 

of LPH primary sequences of different species. While the function of domains I and II 

that constitute the profragment or proregion of LPH, LPHα, has been assessed 

before and shown to act as an intramolecular chaperone [Jacob et al., 2002a], the 

individual roles of the two other domains III and IV are poorly understood. Homology-

based models of domains III and IV reveal typical TIM-barrel structures of family 1 

glycoside hydolases and show distinct differences between these two domains 

[Behrendt et al., 2010]. The impact of these homologous domains on the generation 

of a transport-competent configuration of pro-LPH was addressed in conjunction with 

the question of whether either domain can fold independently. For this, several cDNA 

constructs each lacking the coding region of one homologous domain were 

generated (Fig. 3.2.1, B). Previous in silico analysis provided the potential domain 

boundaries as a basis for site-directed loop-out mutagenesis.5 For better 

comparability, the main structural and functional features of human intestinal LPH are 

given in Figure 3.2.1, A. 

 

 
 

                                                 
5 This was done by Julio Polaina, Instituto de Agroquímica y Tecnología de Alimentos, Consejo 
Superior de Investigaciones Científicas, Apdo. de Correos 73, Burjassot, Valencia, E46100, Spain. 
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Fig. 3.2.1: Schematic presentation of wild type and LPH deletion mutants. A) 
Main features of intestinal LPH structure. B) Schematic drawing of domain deletion 
mutants generated by loop-out mutagenesis. Location of phlorizin hydrolase (Glu1273) 
and lactase (Glu1749) activities, respectively, are indicated by stars. MACT, 
membrane anchor and cytoplasmic tail. 
 
 

3.2.1  Expression of wild type pro-LPH and domain deletion mutants in COS-1 

 cells   

To examine the contribution of each of the two homologous domains to the structural, 

functional and trafficking features of LPH, the LPH deletion mutants were expressed 

in COS-1 cells and their characteristics compared to those of wild type LPH (Fig. 

3.2.2). Cell lysates were immunoprecipitated and the precipitated proteins were 

treated with endo H to determine their glycosylated state as a measure of trafficking 

capacity. LPH∆4 acquired endo H-resistance concomitant with complex glycosylation 

in and trafficking of these mutants to the Golgi apparatus. By contrast, the mutant 

lacking homologous domain III, LPH∆3, was not transport-competent and the 

introduction of a spacer containing seven glycines to avoid possible sterical 

hindrances did not alter its trafficking characteristics. Assessment of the proportions 

of the mannose-rich and complex glycosylated forms after scanning of the gels 

revealed a substantial increase in the proportion of the complex glycosylated LPH∆4 

as compared to the wild type counterpart. This was surprising, since it indicated that 

the deletion of domain IV in LPH∆4 leads to a more rapid processing of this deletion 

mutant than the wild type protein. 

B 
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Fig. 3.2.2:  Glycosylation pattern of LPH wild type and domain deletion mutants 
in COS-1 cells. A) Transiently transfected COS-1 cells were biosynthetically labeled 
for 8h with [35S]methionine followed by immunoprecipitation. The immunoprecipitates 
were divided into two aliquots and treated with endo H, or not treated. The proteins 
were subjected to SDS-PAGE followed by autoradiography. B) densitometric 
scanning of the endo H treated biosynthetic forms of wild type and mutant LPH 
shown in (A). 
 
 
The subcellular distribution of the mutant proteins was further investigated in more 

detail by confocal laser microscopy. As shown in Figure 3.2.3, LPH∆3 was retained 

intracellularly and colocalized with the ER-DsRed marker. By contrast, and consistent 

with the biochemical data LPH∆4 colocalized with markers of the ER, Golgi and was 

detected at the plasma membrane in a fashion similar to the wild type protein.  

A 

B 



                                                                                                                           Results 

56 

 
 
 
 

    
         
 

 
 

A 

B 

C 



                                                                                                                           Results 

57 

Fig. 3.2.3:  Subcellular distribution of LPH wild type and domain deletion 
mutants in COS-1 cells. A) confocal analysis of transfected COS-1 cells. B-C), 
colocalization of LPH mutants with ER and Golgi markers, respectively, in transfected 
COS-1 cells. COS-1 cells were co-transfected with GFP-tagged LPH proteins and 
ER-DsRed or YFP-tagged LPH proteins and galactosyl transferase (GT)-CFP, 
respectively. Confocal analysis with living cells was performed 48h after transfection. 
n, nucleus; arrowheads, cell surface; bars, 20 µm. 
 

3.2.2 Requirements for the LPH deletion mutants to exit the ER  

Dimerisation of LPH in the ER is absolutely required for LPH to egress this organelle 

to the Golgi apparatus [Naim and Naim, 1996]. The differential intracellular 

distribution and maturation patterns of the deletion mutants as well as the variable 

proportions of the glycoforms have altogether lead to examine the quaternary 

structures of the mutants and assess their relevance to their transport out of the ER. 

Fig. 3.2.4 depicts the results obtained using sucrose density gradients. As has been 

previously shown, the mannose-rich LPH form was retained in the light as well as 

dense gradient fractions concomitant with its monomeric and dimeric states 

respectively and indicative of dimerisation occurring along the early secretory 

pathway. The complex glycosylated protein on the other hand is detected exclusively 

in the dense fractions indicating that the dimerisation of the mannose-rich form of 

LPH precedes its complex glycosylation and maturation in the Golgi [Naim and Naim, 

1996]. Surprisingly, the transport-competent LPH∆4 deletion mutant did not require 

dimerisation of its mannose-rich form in the ER prior to ER egress. As shown in Fig. 

3.2.4 (the second top panel) the mannose-rich form of LPH∆4 persisted as a 

monomeric protein and the complex glycosylated LPH∆4 initially appeared in the 

monomeric fractions. The majority of the complex glycosylated molecules were 

mainly found in the denser gradient fractions. Interestingly, complex glycosylated 

LPH∆4 was revealed in two peaks in the gradient compatible with two quaternary 

states, a dimeric and presumably a tetrameric state. A tetrameric LPH∆4 form would 

be in line with the results obtained by [Panzer et al., 1998] for the LPH1646MACT 

mutant lacking 236 amino acids at the C terminus of homologous domain IV. 

By contrast, LPH∆3 was exclusively detected in the lighter fractions of the gradients 

in its mannose-rich glycoform compatible with retention in the ER as a monomeric 

protein. 
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Fig. 3.2.4: Assessment of the quaternary structure. Transiently transfected COS-1 
cells were biosynthetically labeled and solubilized in 6 mM dodecyl-β-m-maltoside. 
Cell lysates were layered on a sucrose density gradient. After centrifugation for 18h 
at 100,000 x g, fractions were collected, immunoprecipitated and analyzed on SDS-
PAGE. 
 

3.2.3 Transport kinetics of LPH wild type and deletion mutants  

Next, the transport kinetics of the mutants in comparison to wild type LPH were 

analyzed in pulse-chase experiments. Complex glycosylated LPH∆4 appeared within 

1.5 h of chase and its proportion was higher than its counterpart in the wild type 

protein (Fig. 3.2.5, compare also Fig. 3.2.2) indicating that it is more efficiently 

transported to the Golgi apparatus than wild type LPH. By contrast, LPH∆3 persisted 

as a mannose-rich polypeptide compatible with ER localization. Further, the labeling 

intensity of this mannose-rich form of LPH∆3 decreased continuously within 

prolonged chase time points suggesting that this mutant undergoes degradation in 

the ER, presumably by ER-associated degradation (ERAD). The Gly-spacer 

containing LPH∆3-7xGly mutant revealed also similar biosynthetic features as 

LPH∆3 (not shown).  
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Fig. 3.2.5: Transport kinetics of wild type LPH and mutant proteins. Transfected 
COS-1 cells were pulse labeled for 1.5h with [35S]methionine and chased for the 
indicated periods of time with cold methionine. The immunoprecipitates were 
analyzed by SDS-PAGE on 6% slab gels. c, complex glycosylated protein form;  h, 
high mannose or mannose-rich protein form. 
 

3.2.4 Folding of the LPH deletion mutants  

The variations in the quaternary structure of the deletion mutants as well as in their 

transport kinetics raised the question of causal folding variations. Therefore, the 

folding of these mutants was examined by using three procedures. In the first the 

mutants were probed for their protease sensitivity using trypsin, in the second 

procedure the enzymatic activities of the mutants were measured and finally in the 

third reactivity of the mutants with epitope-specific antibodies were assessed. 

 

Trypsin treatment 

The tryptic digestion patterns of the wild type and mutant proteins are depicted in Fig. 

3.2.6. Wild type LPH was digested to two main bands corresponding to cleaved 

mannose-rich and complex glycosylated LPH (cp. Fig. 3.1.5). This pattern did not 

change with prolonged digestion times. Similarly, LPH∆4 pattern was also cleaved to 

two protein products that correspond to the mannose-rich and complex glycosylated 

forms. The smaller apparent molecular weights products fit well with a reduction 

corresponding to the size of the deleted domain IV. In a fashion similar to wild type 

LPH the cleaved products of LPH∆4 were also resistant to trypsin. Importantly, the 

cleavage of LPH∆4 to the final products was not preceded by major intermediate 

cleaved forms suggesting that one major trypsin site is exposed in the deletion 

mutant, which is in all likelihood the same as that in wild type LPH.  

By contrast to wild type LPH and LPH∆4, LPH∆3 was completely degraded by trypsin 

already after 1 min of treatment concomitant with the exposure of several trypsin 

cleavage sites and thus altered folding in comparison to wild type LPH and LPH∆4.  
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Fig. 3.2.6: Trypsin sensitivity assay of wild type and LPH mutants. Transiently 
transfected COS-1 cells were biosynthetically labeled followed by 
immunoprecipitation of LPH proteins from the cell lysates. The immunoprecipitates 
were treated with trypsin for different times and analyzed by SDS-PAGE on 7% slab 
gels. 
 

Enzymatic activities of LPH deletion mutants  

Another approach to examine the folding and maturation pattern of a protein is to 

assess its biological function. Therefore, the enzymatic activities of lactase and 

phlorizin-hydrolase in these mutants in comparison to their wild type counterparts 

were analyzed (Fig. 3.2.7). LPH∆4 revealed slightly reduced activities of phlorizin 

hydrolase. The lactase activity was as expected absent, since the lactase active site 

is found in residue Glu1749 of domain IV. The lactase activity in LPH∆3 was not 

detected. The data provides another support for malfolded LPH∆3 and correct folding 

of LPH∆4. 
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Fig. 3.2.7: Enzymatic activity of deletion mutants (∆-mutants) of LPH. COS-1 
cells were transiently transfected. 48h posttransfection, labeled cells were lysed and 
proteins immunoprecipitated. Immunoprecipitates were incubated with lactose and 
phlorizin, respectively, and the lactase and phlorizin hydrolase activities were 
measured by determining the concentration of released glucose by HPLC. The 
enzyme activities of the mutants were compared with those of wild type LPH. The 
error bar represents standard error. 
 

Epitope mapping of domain deletion mutants 

The deletion mutants were immunoprecipitated with a panel of mAbs, which are 

specific in recognizing native or unfolded conformations of LPH [Naim and Naim, 

1996]. The control samples utilized immunoprecipitation of the GFP-tagged mutants 

with anti-GFP. Fig. 3.2.8 shows that LPH∆4 and LPH∆3 were isolated with anti-GFP 

antibody. Surprisingly none of the mAbs against LPH recognized LPH∆3, even the 

two mAbs, MLac6 and MLac10, that recognize unfolded and denatured forms of LPH. 

LPH∆4, on the other hand, reacted with all the antibodies utilized with the exception 

of MLac6 and MLac10. Given that the antibodies were raised against the mature form 

of LPH, i.e. LPHβ that comprises the two domains III and IV, it is obvious that all 

antibodies except MLac6 and MLac10 possess epitopes in domain III of LPH. Since 

MLac6 and MLac10 are directed against unfolded forms of LPH the results indicate 

that LPH∆4 is properly folded lending a strong support to the protease sensitivity 

data. LPH∆3, on the other hand, is malfolded and is therefore not recognized by the 
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antibodies. It is also likely that none of epitopes is found on LPH∆3. This view is 

supported by the observation that in immunoprecipitation experiments LPH∆3 does 

not react with MLac6 or MLAc10, which are directed against malfolded forms of LPH. 

 

 

Fig. 3.2.8: Epitope mapping of LPH mutants. COS-1 cells were transfected with 
DNA coding for GFP-tagged deletion mutants and biosynthetically labeled 48 h after 
transfection. Cell lysates were divided into equal aliquots and immunoprecipitated 
with anti-GFP and different anti-LPH mAb. The immunoprecipitated proteins were 
analyzed by SDS-PAGE. 
 

3.2.5 Domain III is a transport-competent and functional protein  

The data gathered so far strongly suggest that domain III is a central autonomous 

component of LPH. The next step was therefore to express this domain 

independently and examine its trafficking and functional properties. As shown in Fig. 

3.2.9 domain III expression in COS-1 cells revealed a predominant endo H- and endo 

F-sensitive protein band in the cell lysates indicating that it is a mannose-rich 

glycosylated form of domain III. The cell culture medium contained an endo H-

resistant and endo F-sensitive protein compatible with a complex glycosylated 

domain III. These results clearly indicate that domain III is secreted into the cell 

exterior immediately and rapidly upon maturation in the Golgi apparatus. To 

substantiate the data with a further approach live cell imaging was performed. This 

shows that domain III was located in the ER compatible with the major mannose-rich 

form in the cell lysates. When the cells were subjected to a 20°C temperature block, 

domain III was found in the Golgi apparatus.  

 

 

A 
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Fig. 3.2.9: Expression of domain III (D3) in COS-1 cells. A) schematic 
representation of the D3 construct. B) transfected COS-1 cells were biosynthetically 
labeled and proteins were immunoprecipitated from cell lysates and – where 
indicated – from cell culture media. Immunoprecipitates were treated with endo H or 
F, or not treated, analyzed by SDS-PAGE and visualized by autoradiography. C) 
confocal analysis of GFP-tagged D3 in transfected COS-1 cells. ER, endoplasmic 
reticulum; n, nucleus; G, Golgi apparatus. Scale bars, 20 µm. 
 

Assessment of the quaternary structure of domain III – performed at 20°C in order to 

analyze mannose-rich and complex glycosylated proteins – revealed monomeric 

forms of the mannose-rich protein as well as the complex glycosylated form (Fig. 

3.2.10). It should be noted that the overall labeling intensity of the complex 

glycosylated protein in all the lanes as compared to the mannose-rich polypeptide did 

not comprise more than 10% of total domain III in the cell lysates.  

Continuous metabolic labeling was performed to determine the transport rate of 

domain III and domain III appeared in the medium after 90 min of labeling. Finally, 

the folding of domain III was probed utilizing trypsin sensitivity and measurement of 

B 

C 
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its enzymatic activity. Fig. 3.2.10 shows that domain III is predominantly resistant to 

trypsin. Its phlorizin hydrolase activity is, however, reduced by about 50%. 
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Fig. 3.2.10: Structural and functional features of domain III (D3). A) assessment 
of the quaternary structure of D3. Transiently transfected COS-1 cells were 
biosynthetically labeled at 20°C to avoid secretion and solubilized in 6 mM dodecyl-β-
m-maltoside. Cell lysates were layered on a sucrose density gradient. After 
centrifugation for 18h at 100,000 x g, fractions were collected, immunoprecipitated 
and analyzed on SDS-PAGE. B) transport kinetics of D3. Biosynthetically labeled 
proteins were immunoprecipitated from cell lysates and cell culture media after the 
indicated labeling times and analyzed by SDS-PAGE. C) trypsin sensitivity assay with 
D3. Transiently transfected COS-1 cells were biosynthetically labeled followed by 
immunoprecipitation of LPH proteins from cell lysates and cell culture media. The 
immunoprecipitates were treated with trypsin for different times and analyzed by 
SDS-PAGE. lys, lysate; med, medium. D) enzymatic activity of domain III (D3). COS-
1 cells were transiently transfected with wild type and D3 cDNA, respectively. 48h 
posttransfection cell lysates and cell culture media were immunoprecipitated with 
anti-LPH mAbs. The immunopreciptitates were incubated with phlorizin and the 
phlorizin-hydrolase activity was measured by determining the concentration of the 
released glucose by HPLC. The enzyme activity of the mutant was compared with 
wild type LPH. The error bar represents standard error. n=4. 
 

3.2.6  Impact of N- and O-glycosylation on the transport of domain III in 

    polarized MDCK cells 

To investigate whether the extensive N- and O-glycosylation of D3 may modulate 

intracellular transport and delivery of D3 to the cell surface, glycosylation inhibitors 

were utilized in combination with immunoprecipitation of cell lysate and cell culture 

media proteins (Fig. 3.2.11). Here, it could be observed that inhibition of N-

glycosylation has not more effect than inhibition of O-glycosylation, and that the ratio 

of intracellular and secreted domain III is similar for treated and untreated cells. 

These results are in line with the data obtained for wild type LPH [Naim and Lentze, 

1992].  
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Fig. 3.2.11: Impact of glycosylation inhibitors on D3 transport. MDCK-II cells 
stably expressing D3 were biosynthetically labeled with [35S]methionine in the 
presence or absence of  modulators of N-glycosylation  (monensin) as well as O-
glycosylation (benzyl-GalNAc). D3 was immunopreciptated from cell lysates and cell 
culture media. The immunoprecipitates were finally analyzed by SDS-PAGE on 9% 
gels and subjected to a phosphorimaging device. 
 

3.2.7  Sorting of domain III in polarized MDCK cells  

LPH is sorted into the apical membrane in polarized MDCK cells and intestinal cells 

with high fidelity. Since it is proposed that putative apical sorting signals are located 

in the ectodomain of the LPH mature form and domain III builds one half of LPHβ, its 

sorting was analyzed in a polarized cell line to determine whether or not this region 

contains putative signals for apical sorting of LPH. Domain III was stably expressed 

in MDCK cells and its sorting was analyzed in a membrane filter system as described 

previously [Jacob et al., 1994]. Fig. 3.2.12 demonstrates that domain III is secreted 

predominantly at the apical surface of MDCK cells. In fact, more than 80% of this 

protein was found at the apical side, indicating that the sorting of domain III is not as 

efficient as for wild type LPH. These data suggest that domain IV is most likely 

devoid of putative apical sorting signals. 
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Fig. 3.2.12: Polarized sorting of domain III (D3). A) MDCK-II cells stably 
expressing D3 were cultured on transwell filters and biosynthetically labeled with 
[35S]methionine. Proteins that have been secreted into the apical and the basolateral 
medium, respectively, were isolated by adding anti-LPH mAb and PAS to the 
collected media. Intracellular proteins were isolated by immunoprecipitation after cell 
lysis. The immunoprecipitates were analyzed by SDS-PAGE on 9% slab gels 
followed by phosphorimaging. B) The quantification of secreted D3 was performed 
with Quantity One® software. The error bars represent standard errors. ic, 
intracellular; ap, apical; bl, basolateral. n=5. 
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3.3 Structural hierarchy of regulatory elements in the folding and

   transport of an intestinal multi-domain protein:  

   Domain I initiates folding of the whole protein while domain 

   II regulates enzymatic activities  

    

Having analyzed so far the roles of homologous domains comprised by mature 

LPHfinal (III and IV), still open questions remain concerning the intramolecular 

organisation and function of the firstly synthesized part of LPH, its profragment 

encompassing domains I and II, or LPHα and the polypeptide stretch Leu735/Arg868 

(=LPHstretch), respectively (cp. Fig. 3.1.1). The presence of LPHstretch within LPHβinitial 

seems to be important during the transport from the ER to the apical plasma 

membrane, at least because it is not removed intracellularly (like the intramolecular 

chaperone LPHα) but at last by luminal trypsin, constituting the final step in LPH 

biosynthesis. Moreover, the fact that the theoretical boundary between homologous 

domains I and II revealed by intramolecular sequence alignment and in silico analysis 

does not correspond to the cleavage site between LPHα and LPHβinitial 

(Arg734/Leu735) [Mantei et al., 1988] suggests that the folding of the LPH profragment 

is not a simple linear process. Therefore, the impact of these homologous domains 

on the generation of a transport-competent configuration of LPH was also addressed 

in conjunction with the question of whether either domain can fold independently. For 

this, several cDNA constructs each lacking the coding region of one homologous 

domain were generated (Fig. 3.3.1). In silico analysis again provided the potential 

domain boundaries as a basis for site-directed loop-out mutagenesis.6 

 

 

Fig. 3.3.1: Schematic presentation of the LPH deletion mutants ∆1 and ∆2. 
 
 
 
 

                                                 
6 This was done by Julio Polaina, Instituto de Agroquímica y Tecnología de Alimentos, Consejo 
Superior de Investigaciones Científicas, Apdo. de Correos 73, Burjassot, Valencia, E46100, Spain. 
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3.3.1 Expression of wild type pro-LPH and domain deletion mutants in COS-1 

 cells 

To examine the contribution of each of the two homologous domains to the structural, 

functional and trafficking features of LPH, the LPH deletion mutants were expressed 

in COS-1 cells and their characteristics compared to those of wild type LPH (Fig. 

3.3.2). For a better comparability, the wild type data already shown in chapter 3.2 

were displayed again. Cell lysates were immunoprecipitated and the precipitated 

proteins were treated with endo H to determine their glycosylated state as a measure 

of trafficking capacity (Fig. 3.3.2, A and B). LPH∆2 acquired endo H-resistance 

concomitant with complex glycosylation in and trafficking of these mutants to Golgi 

apparatus. By contrast, the mutant lacking homologous domain I, LPH∆1, was not 

transport-competent. Assessment of the proportions of the mannose-rich and 

complex glycosylated forms after scanning of the gels revealed a similar proportion of 

the complex glycosylated LPH∆2 as compared to the wild type counterpart (Fig. 

3.3.2, B). This was surprising, since it indicated that the deletion of the complete 

homologous domain II in LPH∆2 leads to a similar processing of this deletion mutant 

than the wild type protein.  

 

 

A 
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Fig. 3.3.2: Glycosylation pattern of LPH wild type and domain deletion mutants 
in COS-1 cells. A) Transiently transfected COS-1 cells were biosynthetically labeled 
for 8h with [35S]methionine followed by immunoprecipitation. The immunoprecipitates 
were divided into two aliquots and treated with endo H, or not treated. The proteins 
were subjected to SDS-PAGE followed by autoradiography. B) densitometric 
scanning of the endo H treated biosynthetic forms of wild type and mutant LPH 
displayed in (A).  
 

The subcellular distribution of the mutant proteins was further investigated in more 

detail by confocal laser microscopy. As shown in Figure 3.3.3, LPH∆1 was retained 

intracellularly and colocalized with the ER-DsRed marker (Fig. 3.3.3, B) and not with 

the Golgi marker (Fig. 3.3.3, C). However, LPH∆2 did colocalize with the ER marker, 

but only little with the Golgi marker and was not detected at the plasma membrane 

(Fig. 3.3.3, B-C), which is in contrast to the biochemical data (cp. Fig. 3.3.2). Since it 

is known that the transport kinetics of LPH-GFP/-YFP is slower than that of untagged 

LPH [Jacob and Naim, 2001], immunofluorescence was performed with COS-1 cells 

expressing untagged LPH∆2. Here, the protein could be detected intracellularly and 

at the cell surface (Fig. 3.3.3, D), suggesting that the presence of a large reporter 

protein within LPH∆2-GFP/-YFP reduces the kinetics beyond a certain threshold 

leading to degradation instead of ER exit.   

 

B 



                                                                                                                           Results 

71 

 

 

 

 

 

 
 

A 

B 

C 



                                                                                                                           Results 

72 

 
Fig. 3.3.3: Subcellular distribution of LPH wild type and domain deletion 
mutants in COS-1 cells. A) confocal analysis of transfected COS-1 cells grown on 
cover slips. B-C) colocalization of LPH mutants with ER and Golgi markers, 
respectively, in transfected COS-1 cells. COS-1 cells were co-transfected with GFP-
tagged LPH proteins and ER-DsRed or YFP-tagged LPH proteins and galactosyl 
transferase (GT)-CFP, respectively. D) immunofluorescence was performed with 
COS-1 cells transfected with LPH∆2 cDNA. Confocal analysis with living cells and 
immunofluorescence were performed 48h after transfection. n, nucleus; arrowheads, 
cell surface; bars, 20 µm. 
 

3.3.2 Requirements for the LPH deletion mutants to exit the ER 

Dimerisation of LPH in the ER is absolutely required for LPH to egress this organelle 

to the Golgi apparatus [Naim and Naim, 1996]. The differential intracellular 

distribution and maturation patterns of the deletion mutants as well as the variable 

proportions of the glycoforms have altogether lead to examine the quaternary 

structures of the mutants and assess their relevance to their transport out of the ER. 

Fig. 3.3.4 depicts the results obtained using sucrose density gradients. As has been 

shown previously (cp. 3.2.2), the dimerisation of the mannose-rich form of LPH 

precedes its complex glycosylation and maturation in the Golgi [Naim and Naim, 

1996]. Surprisingly, the transport-competent LPH∆2 deletion mutant did not require 

dimerisation of its mannose-rich form in the ER prior to ER egress. As shown in Fig. 

3.3.4, A (the second top panel) the mannose-rich form of LPH∆2 persisted as a 

monomeric protein and the complex glycosylated LPH∆2 initially appeared in the 

monomeric fractions. The majority of the complex glycosylated molecules were 

mainly found in the denser gradient fractions. Interestingly, complex glycosylated 

LPH∆2 was revealed in two peaks in the gradient compatible with a monomeric and a 

D 
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dimeric state. By contrast, LPH∆1 was exclusively detected in the lighter fractions of 

the gradients in its mannose-rich glycoform compatible with retention in the ER as a 

monomeric protein. 

 

 

Fig. 3.3.4: Assessment of the quaternary structure. Transiently transfected COS-
1 cells were biosynthetically labeled and solubilized in 6 mM dodecyl-β-m-maltoside. 
Cell lysates were layered on a sucrose density gradient. After centrifugation for 18h 
at 100,000 x g, fractions were collected, immunoprecipitated and analyzed on SDS-
PAGE. 
 

 

3.3.3 Transport kinetics of LPH and deletion mutants 

Next, the transport kinetics of the mutants in comparison to wild type LPH in pulse-

chase experiments was analyzed. Complex glycosylated LPH∆2 appeared within 1.5 

h of chase (Fig. 3.3.5, cp. also Fig. 3.3.2) indicating that it is as efficiently transported 

to the Golgi apparatus as wild type LPH. By contrast, LPH∆1 persisted as a 

mannose-rich polypeptide compatible with ER localization. Further, the labeling 

intensity of this mannose-rich form of LPH∆1 decreased continuously within 

prolonged chase time points suggesting that this mutant undergoes degradation in 

the ER, presumably by ER-associated degradation (ERAD).  
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Fig. 3.3.5: Transport kinetics of wild type LPH and mutant proteins. Transfected 
COS-1 cells were pulse labeled for 1.5h with [35S]methionine and chased for the 
indicated periods of time with cold methionine. The immunoprecipitates were 
analyzed by SDS-PAGE on 6% slab gels.  
 

3.3.4 Folding of the deletion mutants 

The variations in the quaternary structure of the deletion mutants as well as in their 

transport kinetics raised the question of causal folding variations. Therefore, the 

folding of these mutants was examined by using the same procedures described 

above (cp. 3.2.4).  

 

Trypsin treatment 

The tryptic digestion patterns of the wild type and mutant proteins are depicted in Fig. 

3.3.6. Wild type LPH was digested to two main bands corresponding to cleaved 

mannose-rich and complex glycosylated LPH (cp. 3.2.4 and 3.1.5). However, LPH∆2 

pattern was also cleaved to two protein products that correspond to a mannose-rich 

and a complex glycosylated form although both cleavage sites are not present in 

LPH∆2 because they are located within homologous domain II. In a fashion similar to 

wild type LPH the cleaved products of LPH∆2 were also resistant to trypsin. 

Importantly, the cleavage of LPH∆2 to the final products was preceded by major 

intermediate cleaved forms suggesting that several trypsin sites are exposed in the 

deletion mutant, indicating misfolded protein subdomains. Therefore, the cleavage 

products are supposed to contain domain III, which is resistant to trypsin (cp. 3.2.5) 

and which fit well to the smaller apparent molecular weights.  
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By contrast to wild type LPH and LPH∆2, LPH∆1 was completely degraded by trypsin 

already after 1 min of treatment concomitant with the exposure of several trypsin 

cleavage sites and thus altered folding in comparison to wild type LPH and LPH∆2. 

 

 

Fig. 3.3.6: Trypsin sensitivity assay of wild type and LPH mutants. Transiently 
transfected COS-1 cells were biosynthetically labeled followed by 
immunoprecipitation of LPH proteins from the cell lysates. The immunoprecipitates 
were treated with trypsin for different times and analyzed by SDS-PAGE on 7% slab 
gels. 
 

Enzymatic activities of LPH deletion mutants  

In order to assess its biological function, the enzymatic activities of lactase and 

phlorizin-hydrolase in these mutants were analyzed in comparison to their wild type 

counterparts (Fig. 3.3.7). LPH∆2 revealed highly reduced activities of phlorizin 

hydrolase. The lactase activity was absent. Both enzymatic activities in LPH∆1 were 

not detectable. The data provides another support for malfolded LPH∆1 and not 

completely correct folding of LPH∆2. 
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Fig. 3.3.7: Enzymatic activity of deletion mutants (∆-mutants) of LPH. COS-1 
cells were transiently transfected. 48h posttransfection labeled cells were lysed and 
proteins immunoprecipitated. Immunoprecipitates were incubated with lactose and 
phlorizin, respectively, and the lactase and phlorizin hydrolase activities were 
measured by determining the concentration of released glucose by HPLC. The 
enzyme activities of the mutants were compared with those of wild type LPH. 
 

Epitope mapping of domain deletion mutants 

The deletion mutants were immunoprecipitated with a panel of mAbs, which are 

specific in recognizing native or unfolded conformations of LPH [Naim and Naim, 

1996]. The control samples utilized immunoprecipitation of the GFP-tagged mutants 

with anti-GFP. Fig. 3.3.8 shows that LPH∆2 and LPH∆1 were isolated with anti-GFP 

antibody. Interestingly, all of the mAbs against LPH recognized LPH∆1, even the two 

mAbs, MLac6 and MLac10, that recognize unfolded and denatured forms of LPH. 

LPH∆2, on the other hand, reacted well with all the antibodies utilized with the 

exception of MLac6 and MLac10. 
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Fig. 3.3.8: Epitope mapping of LPH mutants. COS-1 cells were transfected with 
DNA coding for GFP-tagged deletion mutants and biosynthetically labeled 48h after 
transfection. Cell lysates were divided into equal aliquots and immunoprecipitated 
with anti-GFP and different anti-LPH mAb. The immunoprecipitated proteins were 
analyzed by SDS-PAGE. 

 

 

3.3.5 Influence of LPHstretch on the transport competence of domain III and 

LPHβ 

The results obtained so far strongly suggest that domain II is not a central 

autonomous component of LPH concerning the attainment of a fully transport-

competent conformation, but crucially influences both enzymatic activities, lactase 

and phlorizin-hydrolase, respectively. The most interesting as well as 

uncharacterized part of homologous domain II constitutes LPHstretch. The next step 

therefore was to express transport competent and enzymatically active proteins 

domain III and LPHβ with and without LPHstretch and examine the trafficking and 

functional properties of all constructs. As shown in Fig. 3.3.9, B, LPHβinitial and 

LPHβfinal expression in COS-1 cells revealed that the presence of LPHstretch hampers 

the transport competence of LPHβ drastically, because no complex glycosylated 

protein form can be detected for LPHβinitial in contrast to LPHβfinal, which displays 

complex glycosylation (see also [Jacob et al., 2002a]). A similar effect of LPHstretch 

could be seen when it is fused to domain III alone. Here, the presence of LPHstretch 

also results in reduced protein transport. However, a small portion of D3stretch is 

secreted into the cell culture medium as N- and O-glycosylated protein forms, 

whereby the N-glycan/O-glycan-ratio seems to be shifted to the O-glycans indicating 

an effect of LPHstretch on glycosylation events. 
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Fig. 3.3.9: Expression of LPHβfinal, LPHβinitial, Domain III and Domain IIIstretch in 
COS-1 cells. A) schematic representation of the LPHβfinal, LPHβinitial, Domain III and 
Domain IIIstretch constructs. B-C) COS-1 cells were biosynthetically labeled 48h 
posttransfection. Proteins were immunoprecipitated from cell lysates and - where 
indicated - from cell culture media, treated with endo H or F, or not treated, analyzed 
by SDS-PAGE and visualized by autoradiography. 
 
 
 

B 

C 
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3.3.6 Association of domain III with other extracellullar LPH domains 

reduces its  transport competence 

In order to investigate the role of LPHstretch during LPH biosynthesis in more detail 

constructs were generated, which contain domain III – the autonomously folded core 

domain (cp. 3.2.5) – as well as LPHstretch and other LPH domains. 

Interestingly, as shown by Fig. 3.3.10, B, the construct comprising LPHα, LPHstretch 

and domain III (denoted D123) is efficiently transported and secreted into the cell 

culture medium as endo H-resistant and endo F-sensitive protein similar as domain 

III (cp. 3.2.5 and 3.3.5). However, the protein composed of the complete LPH 

ectodomain (see also [Naim and Naim, 1996]) as well as the protein consisting of 

homologous domains II and III do not attain transport competent conformations and 

are retained in the ER.    

 

 

 

  

Fig. 3.3.10: Expression of homologous Domain III-containing LPH regions in 
COS-1 cells. A) schematic representation of the, Domain I-II-III, Domain I-II-III-IV, 
Domain II-III constructs. B) COS-1 cells were biosynthetically labeled 48h 
posttransfection. Proteins were immunoprecipitated from cell lysates and - where 
indicated - from cell culture media, treated with endo H or F, or not treated, analyzed 
by SDS-PAGE and visualized by autoradiography. 

A 
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3.3.7 Expression of profragment subdomains reveals non-transport-

 competent proteins 

The analysis of the role of LPHstretch on LPH biosynthesis and function so far revealed 

that LPHstretch containing proteins are only transport competent when i) domain III is 

present, ii) domain IV is absent, and iii) LPHα is completely present or absent and not 

in part, presumably because LPHα can positively act as intramolecular chaperone 

only as a whole. 

In order to further elucidate the interactions and the structural hierarchy of LPHα and 

LPHstretch, or homologous domains I and II, respectively, constructs containing parts 

of the LPH profragment were generated and expressed in COS cells (Fig. 3.3.11). 

pAb V496 binds the first part of homologous domain I and could therefore be used for 

immunoprecipitation of domain I, LPHα and the profragment (denoted D12). Domain 

II was fused to a FLAG-tag und isolated with mAb anti-FLAG. The results revealed 

that none of them attains transport competence and that all are retained in the ER.   

 

 

  

A 
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Fig. 3.3.11: Expression of LPH profragment domains in COS-1 cells. A) 
schematic representation of the LPHα, Domain I-II, Domain II3xFLAG and Domain I 
constructs. B) transiently transfected COS-1 cells were biosynthetically labeled 48h 
posttransfection. Proteins were immunoprecipitated from cell lysates and cell culture 
media with pAb V496 or anti-FLAG antibodies, respectively, treated with endo H or F, 
or not treated, analyzed by SDS-PAGE and visualized by autoradiography. 
Arrowheads indicate unspecific protein bands.  

 

 

B 
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3.4  Elimination of a homologous domain of an intestinal  

    hydrolase results in changed intracellular trafficking via 

    altered membrane association  

 

The results gathered so far shed light on pathobiochemical mechanisms of CLD by 

characterizing a distinct mutation (cp. 3.1) as well as on the intramolecular 

organisation of the LPH protein by loop-out mutagenesis and construction of deletion 

or individual domain forms (cp. 3.2 and 3.3). Further experiments were planned and 

performed, in order to reveal LPH-related biochemical and physiological 

mechanisms. Here, LPH – besides other model proteins – is used as an experimental 

tool to elucidate general biochemical, physiological and cell biological mechanisms. 

 

3.4.1  LPH∆4’s intracellular transport differs from that of wild type LPH and SI 

Jacob and Naim could clearly show by confocal laser microscopy that LPH and 

another intestinal brush border membrane hydrolase, sucrase-isomaltase (SI), are 

transported from the Golgi apparatus to the cell surface in the same transport 

vesicles [Jacob and Naim, 2001]. In these vesicles areas could be detected, in which 

only SI is located in distinct clusters, whereas LPH is equally distributed over the 

vesicle surface. After both enzymes have passed the trans-Golgi network (TGN), 

they are distributed to separate vesicles [Jacob and Naim, 2001]. Subsequent 

experiments displayed that these different vesicles – denoted SI- and LPH-carrying 

apical vesicles (SAVs and LAVs), respectively – are transported with their divergent 

cargo by different cytoscelettal structures [Jacob et al., 2003]. In order to find out if 

the deletion of homologous domain IV has an effect on LPH trafficking in more detail, 

COS-1 cells grown on cover slips were co-transfected with cDNAs coding for 

fluorescence-tagged LPH∆4 and wild type LPH or SI, respectively (Fig. 3.4.1). 

Interestingly, LPH∆4 was predominantly found in vesicular structures and not in the 

Golgi apparatus, whereas the subcellular localization of LPH was vice versa when 

coexpressed in COS-1 cells and analysed after 4 h at 20°C followed by 20 min at 

37°C (Fig. 3.4.1, A). Furthermore, LPH could be found in the same vesicles as 

LPH∆4, but almost no colocalization was detectable within these vesicles (shown in 

white). When SI and LPH∆4 were coexpressed, SI was also found in the Golgi and in 

vesicles like LPH (Fig. 3.4.1, B), but in contrast, LPH∆4 and SI did colocalize 

moreoften within these vesicles (shown in yellow). The 20°C block and the 37°C 
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chase were performed in the presence of cycloheximide to eliminate background 

fluorescence by inhibition of protein synthesis. 

 

          

Fig. 3.4.1: Colocalization of LPH∆4 with wild type LPH and sucrase-isomaltase. 
LPH∆4 colocalizes partly with wild type LPH but not with sucrase-isomaltase (SI). 
COS-1 cells were cotransfected with LPH-YFP and LPH∆4-CFP (A) or SI-cherry and 
∆4-GFP (B). 36h posttransfection, the cells were incubated for 4h at 20°C to 
accumulate proteins in the Golgi apparatus. This incubation was performed in the 
presence of 1.6 mM cycloheximide to inhibit protein synthesis. After the block, the 
cells were incubated at 37°C for 20 min to chase the proteins out of the TGN, fixed 
and analyzed by confocal microscopy. Bars, 20 µm. 
 

3.4.2 LPH∆4 associates differently with detergent resistant membranes  

Both apically sorted hydrolases, LPH and SI, are associated with the membrane via 

transmembrane protein domains. However, SI is located in Triton X-100-resistant, 

sphingolipid/cholesterol-enriched membrane microdomains or lipid rafts, while LPH is 

not [Jacob and Naim, 2001]. Lipid rafts are supposed to be sorting platforms [Alfalah 

et al., 2005; Lindner and Naim, 2009; Simons and Ikonen, 1997] and LPH∆4 

displayed different trafficking characteristics than wild type LPH and SI. Therefore, 

the next experimental step was to investigate, how the lack of homologous domain IV 

– which is in closest vicinity to the membrane in contrast to the rest of the LPH 

ectodomain (cp. Fig. 3.1.1) – effects the association of LPH∆4 with different kinds of 

detergent resistant membranes in comparison to wild type LPH. In order to have 

comparable experimental conditions as in the colocalization study described above, 

cells were transfected with cDNAs coding for fluorescence-tagged SI, LPH and 

LPH∆4 proteins. 

 

 

A B 
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3.4.2.1  Triton X-100-resistant membranes  

The detergent used to isolate ‘classical’ rafts is Triton X-100 [Brown and Rose, 1992; 

Simons and Ikonen, 1997], therefore LPH∆4 membrane association was analyzed by 

isolating Triton X-100-resistant membranes. SI showed the known pattern of 

membrane association in pelletation experiments, i.e. the complex glycosylated 

protein form could be isolated from the pellet, while the mannose-rich glycosylated 

portion was not [Alfalah et al., 1999]. However, although LPH was mainly found in the 

supernatant, a clear portion of complex as well as mannose-rich glycosylated protein 

was also found in the pellet, which is in contradiction to the published data [Jacob 

and Naim, 2001]. A contamination of the DRM fraction with non-DRM material can be 

excluded because of the control (SI) and the fact that a low-speed centrifugation step 

was performed before ultracentrifugation (cp. 2.2.4, Extraction of detergent resistant 

lipid microdomains). In order to further exclude artificial DRM-association, floating 

experiments should be performed. LPH∆4 also showed a weak association with 

Triton X-100-resistant membranes.  

 

 

Fig. 3.4.2: Association of LPH∆4 with Triton X-100-resistant membranes. 
Metabolic labeling of transfected COS-1 cells was performed for the indicated times, 
followed by solubilization in ice-cold Triton X-100. Proteins were immunoprecipitated 
from the detergent-soluble (s) and from the detergent-insoluble pellet (p) fractions. 
 

3.4.2.2  Lubrol WX-resistant membranes 

Lipids and proteins as main components of membranes are the basis for the 

heterogenous structures of cellular organelles [Sprong et al., 2001] and membrane 

subdomains [Roper et al., 2000], whereby the heterogeneity of the latter does not 
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only depend on selective lipid and protein enrichment, but also on their locations and 

functions. Based on this, it is likely that membrane-bound proteins associate with 

different kinds of membranes on their route to the final destination.  

Many proteins, which are completely soluble in Triton X-100, show a certain 

insolubility in other mild detergents [Drevot et al., 2002; Holm et al., 2003; Roper et 

al., 2000]. Additionally, the membrane microdomains isolated with these detergents 

reveal differences in protein and lipid constitution [Schuck et al., 2003]. Castelletti et 

al. could show that the prostate-specific membrane antigen (PSMA) is detectable in 

two different kinds of detergent-resistant membranes [Castelletti et al., 2008]. Here, 

its biosynthetic forms associate with membrane microdomains of different constitution 

and suggest a role of compartment-specific detergent-resistant membranes in protein 

transport. 

In order to investigate, if the results obtained for PSMA are reproducible for LPH and 

if the difference between LPH and LPH∆4 in trafficking is due to an altered 

association with Lubrol-DRMs, pelletation experiments with Lubrol WX were 

performed (Fig. 3.4.3). Continous metabolic labeling revealed that both wild type LPH 

protein glycoforms – mannose-rich and complex glycosylated – are predominantly 

found in the DRMs (Fig. 3.4.3, A). However, complex glycosylated LPH∆4 is mainly 

found in the DRMs, whereas the mannose-rich glycoform is mainly soluble. For the 

analysis of early trafficking protein-membrane interaction dynamics a pulse-chase 

protocol was followed (Fig. 3.4.3, B). 

The data obtained so far suggest for both proteins – wild type and LPH∆4 – that the 

mannose-rich protein form (which appears first) is predominantly soluble in Lubrol 

WX. Subsequently, this glycoform could also be detected in DRMs. Then, the 

complex glycosylated protein form appears first in the soluble fraction, before its 

portion in the DRM fraction increases. 
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Fig. 3.4.3: Association of LPH∆4 with Lubrol WX-resistant membranes. 
Metabolic  labeling of transfected COS-1 cells was performed continuously (A) or 
following a pulse-chase protocol (B) with 1h pulse (upper panel) and 30 min pulse 
(lower panel), respectively, followed by the indicated chase times and solubilization in 
ice-cold Lubrol. Proteins were immunoprecipitated from the detergent-soluble (s) and 
detergent-insoluble pellet (p) fractions.  
 

3.4.2.3  Tween 20-resistant membranes 

Another mild non-ionic detergent utilzed in the investigations concerning protein 

transport, trafficking and sorting constitutes Tween 20. It was found to entirely 

solubilze basolateral but not apically sorted membrane proteins indicating protein 

sorting events at the stage of the ER [Alfalah et al., 2005]. Moreover, Tween 20-

resistant membranes seem to be involved in early trafficking control mechanisms 

between the ER and the cis-Golgi apparatus [Hein et al., 2009].  

B 
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Since LPH wild type and LPH∆4 differences are mainly found in the early secretory 

pathway – e.g. ER-Golgi transport kinetics (cp. 3.2.3) and quaternary structure (cp. 

3.2.2) – the association with Tween 20-resistant membranes was analyzed (Fig. 

3.4.4). Biosynthetic labeling following a pulse-chase protocol revealed that mannose-

rich protein forms of SI, LPH and LPH∆4 are predominantely associated with DRMs 

after 1 h of labeling (Fig. 3.4.4, A). After 5 h of labeling, complex and mannose-rich 

glycosylated SI were mainly found in the pellet, whereas a large portion of mannose-

rich LPH and LPH∆4 could be detected in the soluble fraction and – in contrast to SI 

– the complex form was mainly found in the soluble fraction after 5 h chase. 

Surprisingly, almost no more mannose-rich LPH∆4 was found to be associated with 

DRMs. 

To further elucidate the mechanisms underlying early protein trafficking and its 

connection with intracellular membrane diversity and heterogeneity, the association 

with Tween 20-DRMs was investigated at 15°C, a temperature which blocks protein 

transport between the ER and cis-Golgi [Tomas et al., 2010]. Again, LPH∆4 was less 

associated with DRMs than SI and LPH. Additionally, the soluble portion of LPH∆4 

was clearly smaller than its counterpart of the the DRM fraction, indicating a 

difference in glycosylation. This observed distribution of the investigated proteins 

could also be found, when the cells were treated with brefeldin A (BFA) during 

metabolic labeling, a drug known to inhibit retrograde protein transport from the Golgi 

leading to accumulation of proteins in the ER [Nebenfuhr et al., 2002], confirming the 

difference in membrane association between wild type LPH and LPH∆4 in the early 

trafficking pathway.   
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Fig. 3.4.4: Association of LPH∆4 with Tween 20-resistant membranes. Metabolic  
labeling of transfected COS-1 cells was performed following a pulse-chase protocol 
at 37°C (A) or continuously at 37°C and 15°C (upper panel) or at 37°C in the 
presence of BFA (lower panel), respectively (B) followed by solubilization in ice-cold 
Tween 20. Proteins were immunoprecipitated from the detergent-soluble (s) and 
detergent-insoluble pellet (p) fractions. 
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4.  Discussion   

 

4.1  Impaired trafficking and subcellular localization of a mutant 

  lactase associated with congenital lactase deficiency 

 

Carbohydrate malabsorption associated with brush border LPH occurs in two forms, 

adult-type hypolactasia and congenital lactase deficiency or alactasia. Adult-type 

hypolactasia is mainly linked to a DNA variant, C/T-13910, about 14 kb upstream 

from the gene locus of LPH and also to another variant, G/A-22018, 8 kb telomeric to 

C/T-13910, both of which are associated with low lactase digesting capacity [Enattah 

et al., 2002],. Congenital lactase deficiency, on the other hand, is a more severe and 

life-threatening form of lactose malabsorption in the newborn, where milk is the only 

food. While the symptoms of adult-type hypolactasia increase with age and many 

patients develop signs of lactose intolerance in adolescence and adulthood, the 

typical symptoms of CLD start a few days after birth with the onset of breast (or 

lactose-containing formula) feeding. They consist of liquid and acid diarrhea, 

meteorism, and severe malnutrition. Until very recently the genetic background of 

CLD has been completely unknown. Genetic analysis of several Finnish families has 

unraveled multiple mutations in the coding region of the lactase gene that are 

associated with CLD [Kuokkanen et al., 2006; Torniainen et al., 2009]. Strikingly, 

84% of the patients were homozygous for a nonsense mutation, c.4170T-->A 

(Y1390X). This stop codon would generate a translated product of LPH from which 

the entire homologous domain IV that contains the lactase active site, Glu1749, has 

been truncated. Obviously this deletion mutant is enzymatically inactive and therefore 

triggers the onset of lactose malabsorption. 

The G1363S mutation, on the other hand, does not affect the length of the translation 

LPH product and has been therefore investigated further at the protein and cellular 

levels. As shown here substantial alterations in the posttranslational processing and 

maturation of LPH are elicited by this mutation. Interestingly the mutation occurs in a 

region that is highly conserved in different species (cp. Table 3.1.1) and additionally 

generates a potential N-glycosylation site suggesting that the Gly1363 residue plays an 

essential role in the context of folding of the homologous domain III in particular and 

the LPH in general. While N-glycosylation per se is required for correct folding and 

dimerisation of LPH, additional N-glycosylation in domain IV in the immediate 
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proximity of the membrane anchor sterically hinders the generation of stable dimeric 

LPH forms and reduces substantially the trafficking rates of LPH from the ER to the 

Golgi apparatus [Jacob et al., 2000]. While the data presented here reveal an 

increased N-glycosylation of mutant LPH-G1363S, this additional glycosylation site is 

not immediately implicated in the pathogenesis of the CLD phenotype. In fact, 

elimination of this site in the LPH-N1361A/G1363S mutant reveals similar 

biosynthetic, structural and functional features to LPH-G1363S. Remarkably, LPH-

G1363S reveals the characteristics of a temperature-sensitive mutant that acquires 

partial transport-competence and is capable to exit the ER at a permissive 

temperature of 20°C. The partial transport-competence is paralleled by an increase in 

the enzymatic activity of lactase, but not by the acquisition of trypsin-resistance and 

hence wild type-like folding determinants. It appears that at this reduced temperature 

subdomains of the LPH protein implicated in the enzymatic activity acquire partial 

folding and hence partial enzymatic activity.  

 

Temperature-sensitive and trafficking-impaired mutants of glycoproteins are 

associated with the pathogenesis of disease. Examples of these mutant proteins are 

sucrase-isomaltase phenotype II (SI-Q1098P) in congenital sucrase-isomaltase 

deficiency [Propsting et al., 2005], the DeltaF508 mutant of the cystic fibrosis 

transmembrane conductance regulator in cystic fibrosis [van Barneveld et al., 2006], 

the NPC1(I1061T) mutation in Niemann-Pick type C1 disease [Gelsthorpe et al., 

2008] or the bile salt export pump in progressive familial intrahepatic cholestasis type 

2 [Plass et al., 2004].  

These mutants can exit the ER at the permissive temperature and are able to recycle 

between the ER and the cis-Golgi bypassing thus the ER quality control machinery 

[Propsting et al., 2005]. Another feature of these mutants is their sensitivity towards 

chemical chaperones that facilitate correct folding and subsequent acquisition of 

functional properties. Chemical chaperones are small cell- and ER-permeable 

molecules, which stabilize the native folding status of proteins within the ER [Ulloa-

Aguirre et al., 2004] with the potential of altering the folding of mutant proteins, thus 

weakening distinct diseases that are caused by such misfolded protein mutants. One 

chemical chaperone is curcumin (1,7-Bis(4-hydroxy-3-methoxyphenyl)-1,6-

heptadiene-3,5-dione), the yellow main substance of the spice curcuma, isolated 

from Curcuma longa. It shows anti-inflammatorial, anti-oxidative and anti-proliferative 
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features [Ammon and Wahl, 1991; Salvioli et al., 2007]. Another chemical chaperone 

is cyclosporin A, which constitutes an unpolar, cyclic oligopeptide and metabolite of 

the fungus Tolypocladium inflatum. It has strong immunosuppressive characteristics 

and influences T-lymphocytes [Borel et al., 1976] by inhibiting nuclear proteins 

related to T-cell activation [Emmel et al., 1989]. Chemical chaperoning is utilized in 

diseases like Chorea Huntington [Dikshit et al., 2006] and Cystic Fibrosis [Egan et al., 

2004; Harada et al., 2007]. Exposure of the DeltaF508 of the cystic fibrosis 

transmembrane conductance regulator to curcumin [Egan et al., 2004] or to small 

chemical chaperones, such as osmolytes glycerol and trimethylamine N-oxide 

[Fischer et al., 2001; Zhang et al., 2003], rescue the folding defect of this mutant and 

restore partially its activity. It is tempting to propose that the temperature-sensitive 

LPH-G1363S mutant may behave in a similar fashion towards this type of 

chaperones.    
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4.2  Structural hierarchy of regulatory elements in the folding and transport of 

   an intestinal multi-domain protein:  

   Domain III constitutes the structural core while domain IV has a 

 regulatory role 

 

Characterization of the structure, biosynthesis and trafficking of the individual 

subdomains within pro-LPH, an essential brush border membrane enzyme, 

constitutes an important step towards understanding its function and impact to the 

intestinal epithelial cell physiology. Given that the three-dimensional structure of LPH 

has not been elucidated yet, alternative approaches have to be designed to 

determine the significance and relevance of the individual subunits to each other in 

the context of this multiple domain protein. 

Lactases, or more properly, ß-galactosidases, are grouped within 4 of the near 100 

families of glycosyl hydrolases (GHs) that have been characterized [Coutinho and 

Henrissat, 1999]. Mammalian intestinal lactase (LPH) is classified in the GH1 family, 

along with enzymes present in a variety of organisms acting against different types of 

ß-glycosides. While most GH1 enzymes (mostly bacterial) thus far characterized are 

conformed by a single domain, intestinal lactase is synthesized as a multidomain 

precursor protein that is encoded by a gene resulting from the fusion of 4 tandemly-

arranged repetitions of an ancestor gene [Mantei et al., 1988; Naim et al., 1991]. 

Maturation of the enzyme generates the brush border form comprized by the last 2 

domains, III and IV [Jacob et al., 2002a] each with differential activity. Domain III 

shows specificity towards glycosides, such as phlorizin, while domain IV is 

specifically active against lactose [Arribas et al., 2000]. Interestingly, individual 

expression of domain III of LPH reveals a correctly folded, transport-competent and 

rapidly secreted molecule underscoring thus its autonomous character that has been 

conserved from prokaryotes to eukaryotes. 

Despite its strong homologies with domain III, domain IV is not a folding-competent, 

transport-competent or an enzymatically active species per se. This domain, 

however, plays a central regulatory role in the context of the function and trafficking 

of LPH. It contains the LAC236 stretch that is required for dimerisation of LPH [Jacob 

et al., 2000; Panzer et al., 1998]. The essential function of domain IV within the LPH 

complex becomes evident when considering its role in the dimerisation of LPH. In 

fact, domain III does not dimerise and the phlorizin-hydrolase activity of this domain 
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is elevated by a factor of 2.5 fold in the dimeric LPH molecule. Additionally, domain 

IV is rate-limiting along the secretory pathway of LPH from the ER to the Golgi. In 

fact, LPH∆4, a deletion mutant that lacks the entire homologous domain IV, acquires 

more rapidly complex glycosylation than its wild type counterpart proposing a role of 

this domain in decelerating LPH processing. Importantly, LPH∆4 does not dimerise in 

the ER lending a strong support to the view that dimerisation is initiated by 

homologous domain IV and supporting previous data that assigned a role of LAC236 

an essential role in dimerisation. It is very likely therefore that the retarded trafficking 

of wild type LPH in comparison to LPH∆4 is due to its dimerisation prior to the ER 

exit, while this additional step is not required for LPH∆4 to acquire transport-

competence. Interestingly, epitope mapping with a panel of mAbs against the mature 

brush border form of LPH (domains III and IV) demonstrated a similar pattern of 

recognition for LPH∆4 and LPH strongly suggesting that the epitopes tested are 

located in domain III. Given that these antibodies (except MLac6 and MLac10) react 

only with native LPH species, but not with denatured LPH the data strongly suggest 

that the tertiary structure of LPH∆4 is comparable with its counterparts in human wild 

type LPH and that domain III represents the structural core of the mature protein.  

On the other hand, domain IV is not an autonomous region. It harbours the lactase 

catalytic site at Glu1749 [Arribas et al., 2000; Zecca et al., 1998] and acquires activity 

only when LPH dimerises [Naim and Naim, 1996]. Domain IV plays therefore a role 

as a regulatory switch that triggers the dimerisation of the LPH molecule thus 

activating itself and elevating the phlorizin hydrolase activities in domain III.  

Concerning of the correctness of the chosen domain boundaries, the question can 

arise, how it can be ruled out that the reason for the negative results regarding 

deletion of homologous domain III is just that domain boundaries might extend 

beyond the deleted fragment. Here, the possibility exists that the evolutionary related 

domains have evolved into intertwined folds that can hardly be disentagled by simple 

deletions.  However, in this case in which structural information about related proteins 

is abundant – as well as in other domain-shuffling strategies – the problem is not so 

much defining the limits of the domains as it is to sort out possible interactions 

between domains that have coevolved as parts of a single polypeptide. As an 

indication that the domain boundaries were defined correctly and that domain III, 

even in the absence of domain IV, it is able to fold properly into a viable structure 

serves in any case the fact that the LPH construction lacking domain IV retains 
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substantial phlorizin hydrolase activity. Moreover, it shows that the structural 

determinants of dimerisation are totally, or at least partially, outside domain III. For 

sure, one has to be more cautious in the interpretation of negative results, but the 

results of this work support the conclusion that domain IV requires of domain III to 

develop a stable conformation. It is likely therefore that the mutation G1363S within 

domain III has induced conformational changes in homologous domain IV that 

harbors the lactase activity. 

The data present a hierarchical model of LPH in which the homologous domain III 

constitutes a fully autonomous core domain within the LPH molecule. In addition it 

represents another intramolecular chaperone of LPH besides the profragment LPHα 

(Fig. 4.2.1). This model assumes that the profragment [Jacob et al., 2002a] and 

homologous domain III (the data presented here) attain their native conformation 

autonomously. While domain III is transport-competent and enzymatically active per 

se, it requires homologous domain IV for elevation of its enzymatic activity and 

regulation of its trafficking kinetics. This occurs via dimerisation of the entire LPH 

molecule, an event that is triggered by domain IV. Nevertheless, domain IV is a non-

autonmous domain that can not fold independently; it requires the profragment as 

well as domain III as templates for correct folding. Correctly folded domain IV is now 

capable of triggering the dimerisation of LPH in the ER [Naim and Naim, 1996], an 

event that is required for LPH to exit the ER, for regulation of its transport kinetics 

and elevation of its enzymatic activities. The profragment and domain III function 

therefore as switches for correct folding of domain IV, which in turn “pays back” by 

giving domain III an increased phlorizin-hydrolase activity and gaining more activity 

as the lactase active site. 

To my knowledge, this is the first example of a mechanism, in which a protein has 

two intramolecular chaperones and is not activated by propeptide cleavage like 

described for zymogens, neuropeptides, and prohormones [Barr, 1991; Steiner et al., 

1984], but by intramolecular organisation and oligomerisation. 

 



                                                                                                                    Discussion 

95 

 

Fig. 4.2.1: Hierarchy model of LPH biosynthesis in the ER. The LPH precursor is 
synthesized at the ER and translocated in the ER lumen starting with the 
independently folding N-terminal profragment (A). Subsequently, autonomous 
domain III is synthesized and acquires correct folding independent of other domains 
(B), while homologous domain IV that associates LPH with the membrane is not 
capable of folding independently (C) and requires the profragment and domain III as 
folding templates (D). Finally, the correctly folded monomer LPH interacts with 
another monomer via the correctly folded domain IV to form a transport-competent 
LPH dimer that exits the ER and acquires full lactase and phlorizin hydrolase 
activities (E).  
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4.3 Structural hierarchy of regulatory elements in the folding and transport of 

   an intestinal multi-domain protein: 

  Domain I initiates folding of the whole protein while domain II regulates

  enzymatic activities  

 

Many proteins comprise specific sequences, which are important for folding 

processes but not for protein function directly. They act as intramolecular chaperones 

and are eliminated in post-translational modification events [Chen and Inouye, 2008]. 

LPH contains an N-terminally located propeptide, which is almost as large as the 

mature protein [Naim et al., 1994]. For the major part of this profragment, LPHα, it 

could be shown that it acts as an intramolecular chaperone [Jacob et al., 2002a], but 

the role of the minor part, LPHstretch, needs to be further elucidated. Moreover, the 

exact intramolecular organisation of LPH is a complex process, since i) homologous 

domain III constitutes the second intramolecular chaperone, ii) domain IV is 

supposed to have a regulatory function (cp. 3.2), and iii) the membrane anchor 

together with the cytoplasmic tail are also important for the attainment of a transport-

competent conformation [Naim and Naim, 1996]. Additionally, recent findings of a first 

structural and dynamics study of a nascent protein support the hypothesis that a 

native tertiary structure of a polypeptide chain can be reached already on the 

ribosome [Hsu et al., 2007]. Therefore, the elucidation of early events in the 

biosynthesis of the nascent LPH polypeptide is of great interest for the understanding 

of the intramolecular organisation of multi-domain membrane-anchored proteins in 

general.  

The absence of homologous domain II as part of the profragment including the 

polypeptide stretch Leu735-Arg868 (LPHstretch) results in a protein with a transport 

competence comparable to the wild type protein, therefore homologous domain II 

could be a slow folding domain like domain IV which decelerates LPH processing 

maybe by interacting with other proteins likely within the ER. Domain III and domain 

IV are the mainly glycosylated regions (each domain contains five potential N-

glycosylation sites, whereas domains I and II contain two and three sites, 

respectively). That is why for LPH∆2 - like for wild type LPH - the mannose-rich and 

the complex glycosylated protein forms are clearly distinguishable without endo H 

treatment, but not for LPH∆4, because here the highly glycosylated domain IV is 

absent (cp. Fig. 3.2.2 and Fig. 3.3.2). The LPH∆1 protein - lacking homologous 
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domain I, which is completely included within the intramolecular chaperone LPHα - is 

not transport competent and - like domain III - domain I seems to be also structurally 

important for the whole protein facilitating ER export and more important for the 

chaperone function than the first part of homologous domain II. 

LPH∆2 dimerises, but in the Golgi apparatus and not in the ER like wild type LPH. 

Like LPH∆4 it seems to be involved in the oligomerisation process, but in contrast to 

LPH∆4 it does not form higher oligomers and therefore domain II is not supposed to 

stabilize dimeric forms. Finally, domain I seems to be also important for LPH 

quaternary structure, since LPH∆1 does not dimerise. This influence can be directly 

by facilitating dimerisation or indirectly by influencing other LPH regions by its 

chaperone effect. 

The analysis of the LPH∆-mutant transport kinetics revealed that indeed LPH∆1 is 

not transport competent and what is more is degraded, because the band intensities 

of the mannose-rich forms decrease with time. Transport kinetics of LPH∆2 is slower 

than for the wild type, but its mannose-rich protein form seems to be stable and 

converted to the complex glycosylated form and not degraded like for LPH∆1. 

Therefore, domain II - as part of the intramolecular chaperone LPHα - is not a slow 

folding domain but supports folding of other LPH regions. 

The protease sensitivity assay with trypsin shows that LPH∆1 is degraded and 

therefore badly folded, because more potential trypsin cleavage sites are exposed. 

Moreover, LPH∆2 is also reduced in size to two trypsin resistant protein forms like 

wild type LPH and LPH∆4, but this reduction occurs over intermediate forms. One 

reason for this is most likely that the two cleavage sites exposed in wild type (cp. Fig. 

3.2.1) are absent because domain II is deleted. Another reason is that LPH∆2 seems 

not to be folded properly, because the resulting bands have a size comparable to the 

cleavage products of LPH∆4 and not of wild type, although LPH∆2 incorporates 

LPHβfinal like LPH wild type. Therefore, the presence of domain II, encompassing a 

part of LPHα and the polypetide stretch between the protease cleavage sites, seems 

to be crucial for the correct folding of the other domains and the whole protein. 

The analyses of the enzymatic activity of the LPH∆-mutants revealed that only 

LPH∆4 and to a lesser extend LPH∆2 show phlorizin-hydrolase activity, from which 

can be concluded that all LPH domains are crucial for the attainment of a correct 

lactase and phlorizin-hydrolase activity subdomain conformation except domain IV.  



                                                                                                                    Discussion 

98 

During the epitope mapping all of the antibodies reacted with all mutants except 

LPH∆3 (cp. 3.2.4 and 3.3.4, Epitope mapping of domain deletion mutants). The 

antibodies tested were all raised against mature LPH, and it is likely therefore that 

conformation-specific antibodies are among those used. The results strongly suggest 

that the LPH epitopes tested were present or were not substantially modified in the 

mutants LPH∆4, LPH∆2 and LPH∆1 as compared with wild type LPH, and that 

therefore all epitopes are localized in domain III.  

Initial cleavage of mature pro-LPH in the Golgi occurs between Arg734 and Leu735 and 

generates LPHβinitial that is transported with high fidelity to the apical membrane. In 

the intestinal lumen LPHβinitial undergoes another cleavage at Arg868/Ala869 by 

pancreatic trypsin to generate LPHβfinal [Jacob et al., 1996; Wuthrich et al., 1996]. 

The significance of the stretch between Leu735 and Arg868 in the context of trafficking 

and sorting of LPH has been until present obscure. The data presented here assign a 

role to this region (in association with domain III) in the sorting of LPH to the apical 

membrane. It is interesting to note that domain III per se is not as efficiently 

transported to the apical membrane in polarized MDCK cells as wild type LPH 

strongly proposing that the polypeptide stretch Leu735-Arg868 in domain II could be 

important for the fine-tuning of polarized sorting.  

Another reason, why LPHstretch is not already eliminated intracellularly like LPHα, but 

at the cell surface by luminal trypsin is its implication in the formation of an 

enzymatically active conformation. This hypothesis is supported by the observation 

that LPH∆2 – which lacks LPHstretch – is transport competent but almost completely 

devoid of enzymatic activity. Moreover, LPH∆2 is cleaved to two small protein forms 

by trypsin, although it lacks both trypsin cleavage sites exposed in wild type LPH, 

indicating that the lack of domain II does not result in a properly folded protein. 

Furthermore, LPHstretch is not capable to attain a transport competent conformation 

autonomously, because its presence reduces transport competence of domain III and 

prohibits ER exit of LPHβ. However, the presence of LPHstretch together with LPHα in 

D123 does not inhibit ER exit, indicating that the intramolecular chaperone LPHα 

counteracts the slow-folding effect of LPHstretch. Interestingly, the presence of only a 

part of LPHα in D23 and LPH∆1 is not sufficient to attain transport competence. 

Additionally, the presence of LPHα, LPHstretch as well as domain III and domain IV is 

also not enough to exit the ER, if the membrane anchor and the cytosolic tail are 

absent like in D1234 [Naim and Naim, 1996]. 
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In order to further unravel the spatiotemporal hierarchy and the structural-functional 

correlation of LPH intramolecular organisation events, more comparative analyses 

have to be performed, e.g. on the sorting of efficiency LPH∆2, domain IIIstretch and 

D123 as well as on enzymatic activities of all constructs containing phlorizin 

hydrolase, i.e. D123, D23, LPHβinitial, LPHβfinal, domain IIIstretch and domain III. Finally, 

it will be inevitable to investigate the structure of LPH directly by cristallization 

studies, for which the transport competent proteins domain IIIstretch, domain III and 

D123 constitute the appropriate constructs, because these are soluble and do not 

have hydrophobic regions. 

 

The group of protein profragments can be classified into two subgroups, based upon 

their different ways of acting as an intramolecular chaperone [Chen and Inouye, 

2008]. Type I intramolecular chaperones are mostly N-terminally located and support 

the formation of tertiary structures, like described for α-lytic protease [Anderson et al., 

1999], nerve growth factor (NGF) [Kliemannel et al., 2004], and proinsulin [Munte et 

al., 2005]. Type II intramolecular chaperones are mainly found at the C-terminus and 

do not influence the formation of tertiary structures, but support the assembly of 

quaternary structures to functional protein complexes, e.g. the endosialidase of 

coliphage K1F [Schwarzer et al., 2009], fibril-forming collagen [Khoshnoodi et al., 

2006], and the von Willebrand factor (VWF) [Rosenberg et al., 2002]. The question, if 

LPH belongs to one subgroup or the other remains to be answered. Finally, the 

possibility exists that this classification does not reflect the complexity of the folding 

processes of multi-domain membrane-anchored glycoproteins. 
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4.4  Elimination of a homologous domain of an intestinal 

 hydrolase results in changed intracellular trafficking via

 altered membrane association 

 

In polarized epithelial cells, like enterocytes, two distinct domains of the plasma 

membrane do exist, the basolateral and the apical domain. The latter is the site, to 

which LPH and other hydrolases of the brush border membrane, e.g. SI, dipeptidyl 

peptidase IV (DPPIV) or aminopeptidase N (APN), are delivered. The diverse and 

heterogeneous mechanisms of apical protein transport are reviewed by [Delacour 

and Jacob, 2006] as well as [Weisz and Rodriguez-Boulan, 2009]. 

 

Live cell imaging performed to elucidate LPH and SI apical sorting mechanisms 

revealed that SI – which is associated with Triton X-100 detergent resistant 

membranes (DRMs) – and LPH – which is not DRM-associated – can be found in 

different compartments in the same post-TGN vesicle. There, SI localizes at certain 

sites while LPH is equally distributed over the vesicle surface. Subsequently, both 

proteins are separated to smaller, different transport vesicles and for the first time a 

post-TGN separation event could be detected [Jacob and Naim, 2001]. Further 

experiments showed that transport of SAVs (SI-carrying apical vesicles), but not 

LAVs (LPH-carrying apical vesicles), is actin-dependent and requires the motor 

protein myosin Ia [Jacob et al., 2003] as well as the annexin II-S100A10 complex 

[Jacob et al., 2004] and alpha-kinase 1 (ALPK1) [Heine et al., 2005]. 

For LPH and LAVs, however, it could be shown that the beta-galactoside binding 

lectin galectin-3 (gal-3) is implicated in raft-independent, carbohydrate-dependent 

glycoprotein transport. Gal-3 acts as a sorting receptor by interacting directly with 

LPH in the LAV lumen and its depletion leads to basolateral sorting of LPH [Delacour 

et al., 2006]. Moreover, without gal-3 no high-molecluar-weight clusters are formed, 

in which non-raft-dependent glycoproteins are cross-linked prior to apical sorting 

[Delacour et al., 2007]. The direct interaction of gal-3 and LPH also occurs in vivo 

confirming the previous data from MDCK cells. Interestingly, for the raft-associated 

apical enzyme DPPIV this direct interaction could also be shown. Furthermore, gal-3 

depletion results in cytoarchitectural defects of enterocytes, indicating an important 

role for this lectin not only in apical trafficking but also in epithelial morphogenesis 

[Delacour et al., 2008]. What is more, is that reduction of cellular gal-3 levels results 



                                                                                                                    Discussion 

101 

in changes in the microtubular network as well as in the membrane 

compartimentalization in vitro and in vivo. Moreover, gal-3 is transiently associated 

with the centrosome during cell differentiation and seems to be involved in 

centrosome formation and/ or stabilization [Koch et al., 2010]. It is tempting to 

speculate that – because of its connection to the centrosome – gal-3 is also 

implicated in early trafficking events, since the intermediate compartment (IC) is also 

connected to the centrosome as well as to the endocytic recycling compartment 

[Marie et al., 2009]. The question, if the differences between LPH and LPH∆4 in ER-

Golgi-transport, quaternary structure as well as membrane association are related to 

the lack of a gal-3-LPH∆4 interaction still needs to be answered. The observation 

that LPH∆4 can be found in the same vesicles as wild type LPH – and therefore is 

localized in LAVs – but does not colocalize within these carriers suggests that the 

absence of homologous domain IV rather than the difference in membrane 

association may cause a disturbed or inhibited gal-3-LPH∆4 interaction together with 

reduced or even eliminated incorporation of LPH∆4 into high-molecular.weight 

clusters. In general, galectins are known to have a variety of effects on the transport 

of proteins to their final destination [Delacour et al., 2009].  

Very recently, the kinesin motor KIF5C was found to be involved in apical sorting of 

raft-dependent and raft-independent proteins directly after TGN-release [Astanina 

and Jacob, 2010]. Subsequently, SI and LPH are transported together in the same 

vesicle transendosomally and colocalize with Rab4-, Rab8-, and Rab11-positive 

endosomes before they are segregated to distinct vesicles [Cramm-Behrens et al., 

2008]. If the absence of domain IV in LPH∆4 influences the transendosomal 

transport still needs to be elucidated. 

 

Protein-lipid and protein-protein interactions within biological membranes play key 

roles in arranging and regulating cellular mechanisms [Lindner and Naim, 2009; 

Lingwood and Simons, 2010]. For SI it could be shown that N- and O-glycosylation 

together with the localization of the enzyme in Triton X-100-DRMs enables the 

protein to become enzymatically active [Wetzel et al., 2009]. Another example is the 

PSMA protein. Here, three distinct glycoforms were identified with different 

detergents, displaying that the intracellular transport of each biosynthetic form 

happens through distinct membrane microdomains [Castelletti et al., 2008]. 

Furthermore, utilization of the mild non-ionic detergent Tween 20 made it possible to 
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discriminate apically and basolaterally sorted proteins early in the secretory pathway 

by isolation of ER-membrane enriched DRMs. By that, the existence of an early 

polarized sorting mechanism occurring before protein maturation could be proposed 

[Alfalah et al., 2005]. Although LPH and domain III are efficiently transported to the 

apical membrane of polarized cells, the possibility exists that LPH∆4 is not, because 

it is weaker associated with Tween 20-DRMs. 

Isolation and analysis of Tween 20-DRMs also suggested an early trafficking control 

for membrane proteins operating between the ER and Golgi apparatus, because an 

anchor-less mutant of the membrane dipeptidase (MDP) showed a retarded 

maturation together with complete solubility [Hein et al., 2009].  

 

Similar to the prerequisition of gal-3-dependent high-molecular-weight clusters for 

apical sorting of raft-independent glycoproteins [Delacour et al., 2007], the 

oligomerisation of raft-associated GPI-anchored proteins prior to apical transport has 

also been observed [Paladino et al., 2004]. Additionally, it has been shown by the 

same group that some raft-independent apical transmembrane proteins do not 

oligomerise before they reach the apical plasma membrane [Paladino et al., 2007]. 

Moreover, coexpression of wild type and a mutant form of the prion protein resulted 

in an altered transport rate a well as increased DRM-association of both proteins 

most likely because the mutant influences the subcellular localization and membrane 

microenvironment of the wild type protein by direct interaction [Schiff et al., 2008]. It 

would be interesting to know if the LPH-G1363S mutant (or a deletion mutant) is able 

to form dimers with wild type LPH in vitro when coepressed – imitating a 

heterozygous in vivo situation – and if this pseudo-heterodimer is transport 

competent or not. By that, the intramolecular organisation of the LPH protein and the 

strengths of its intramolecular chaperones could be further elucidated. 

Furthermore, cholesterol-dependent membrane domains exist at the apical and the 

basolateral sites of polarized cells, whereby the actin cytoskeleton is implicated in 

organizing apically sorted transmembrane proteins independently of rafts [Lebreton 

et al., 2008].  Finally, a connection between DRM-association, oligomerisation and 

apical sorting could be observed for GPI-anchored proteins. Interestingly, addition of 

cholesterol resulted in oligomerisation of a basolaterally sorted protein and 

subsequent missorting to the apical membrane [Paladino et al., 2008].  
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Taken together, the correlation of oligomerisation and membrane association in the 

context of polarized sorting is still obscure, but LPH and LPH∆4 represent valuable 

tools for further analyses.  
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6. Appendix 
 
 
6.1  List of abbreviations 
 
A alanine; adenine 
Ala alanine 
ALPK1 alpha-kinase 1 
ap apical 
APN aminopeptidase N 
APS  Ammoniumperoxidsulfate 
Aqua bidest.  Aqua bidestillata  
Arg arginine 
Asn asparagine 
Asp aspartate 
ATP adenosine triphosphate 
bl basolateral 
bp  base pair(s)  
BFA brefeldin A 
BiP binding immunoglobulin protein 
°C degree Celsius 
C cytosine 
cDNA  complementary DNA  
CFP cyan fluorescent protein 
CLD congenital lactase deficiency 
cm centimeter 
conc. concentration 
COP coat protein 
cp. compare 
CT cytoplasmic tail 
D asparagine 
D3,DIII domain III 
Da  Dalton  
dATP  deoxyadenosine triphosphate  
dCTP  deoxycytosine triphosphate  
DEAE diethyle-amino-ethyle 
dGTP  deoxyguanosine triphosphate  
DMEM Dulbecco’s modified Eagle Medium 
DMSO  dimethyl sulfoxide  
DNA  deoxyribonucleic acid  
DNAse  deoxyribonuclease  
dNTP  deoxynucleotide triphosphate  
DPPIV dipeptidyl peptidase IV 
DRM(s) detergent resistant membrane(s) 
DTT  dithiotreitol (Cleland’s reagent) 
dTTP  deoxythymidine triphosphate  
E glutamate 
E.coli  Escherichia coli  
EDTA  ethylenediaminetetraacetate 
e.g. (exempli gratia) for example 
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Endo H endo-β-N-acetylglucosaminidase H (from Streptomyces  
         plicatus) 
Endo F endo-β-N-acetylglucosaminidase F (from Flavobacterium 
        meningosepticum) 
ER endoplasmic reticulum; Endoplasmatisches Retikulum 
ERAD ER-associated degradation 
et al.  et alii  
evtl. eventuell 
F phenylalanine 
FCS fetal calf serum 
Fig.  figure  
g  gram(s)  
x g accelaration of gravity 
G glycin; guanine 
GA Golgi apparatus; Golgi-Apparat 
Gal galactose 
gal-3 galectin-3 
GalNAc N-acetyl-α-D-galactosamine 
GE Germany 
GFP green fluorescent protein 
GH glycosyl hydrolase 
Glc glucose 
GlcNAc N-acetyl-glucosamine 
Glu glutamate 
Gly glycine 
GPI glycosyl-phosphatidylinositol 
GT galactosyl transferase 
h  hour(s)  
HPLC high-performance liquid chromatography 
Hsp70  heat shock protein 70  
ic intracellular 
IC intermediate compartment 
i.e. id est 
IgG  immunoglobulin G  
k  kilo  
K lysine 
kb  kilo base pair(s)  
kDa  kilo Dalton  
KOAc potassium acetic acid 
l  liter  
L leucine 
LB  Luria Bertani 
ld liquid-disorderd 
Leu leucine 
lo liquid-ordered 
LPH lactase phlorizin hydrolase (all forms) 
lys lysate 
Lys lysine 
M  molar  
m  milli  
µ  micro  
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mA milliampere 
mAb monoclonal antibody 
MA membrane anchor; Massachusetts 
Man mannose 
MDCK Madin Darby Canine Kidney 
MDP membrane dipeptidase 
med medium    
MEM Minimum Essential Medium 
Met methionine 
mg milligram 
min  minute(s)  
ml  milliliter  
µl microliter 
mM millimolar 
mRNA  messenger RNA  
n  nano; nucleus  
N asparagine 
NaCl sodium cloride 
NAD  nicotine amide dinucleotide  
NaOAc sodium acetic acid 
NGF nerve growth factor 
NSF N-ethylmaleimide-sensitive factor 
OD

xxx  
optical density at xxx nanometers  

ORF  open reading frame  
OS(P)T oligosaccharide (protein) transferase 
p  pico; pellet 
P proline 
pAb polyclonal antibody 
PAS protein A-sepharose 
PBS phosphate buffered saline 
PCR  polymerase chain reaction  
PDI protein-disulfide isomerase 
PH phlorizin hydrolase 
Phe phenylalanine 
PMSF  phenylmethylsulfonyl fluoride  
PPI peptide-prolyle isomerase 
Pro proline 
PSG penicillin, streptomycin, glutamine 
PSMA prostate-specific membrane antigen 
Q glutamine 
R arginine 
RNA  ribonucleic acid  
RNAse  ribonuclease  
rpm  rounds per minute  
s supernatant 
S serine  
SDS sodium dodecyl sulfate 
SDS-PAGE  sodium dodecyl sulfate-polyacrylamide gel electrophoresis  
sec  second(s)  
Ser serine 
SI sucrase isomaltase 
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SNAP soluble NSF attachment protein 
SNARE SNAP receptor 
SRP signal-recognition particle 
SS signal sequence 
T thymine 
TAE Tris acetate EDTA 
TE Tris-EDTA 
TEMED N,N,N’,N’-tetramethylethylendiamine 
TGF transforming growth factor 
TGN trans-Golgi network 
Thr threonine 
Tris Tris-hydroxymethyl-aminomethane 
U  unit  
UDP uridine diphosphate 
UK United Kingdom 
USA United States of America 
UV  ultraviolet  
V  volt  
v/v  volume by volume  
VWF von Willebrand factor 
w/o without 
w/v  weight by volume  
WT;wt  wild type  
Y tyrosine 
YFP yellow fluorescent protein 
®  registered trademark  
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6.2  List of figures 
 

figure  title page 

1.1 Conventional secretory pathway (A) and unconventional transport of 
signal-peptide-containing proteins (B). 

2 

1.2 N-linked glycosylation and the degradation of glycosylated proteins. 9 

1.3 Model of a raft with two intercalated proteins. 12 

1.4 Structural features of human pre-pro-LPH. 18 

3.1.1 Location of the G1363S mutation in LPH. 43 

3.1.2 Expression of wild type and mutant LPH in COS-1 cells. 44 

3.1.3 Subcellular localization of LPH-G1363S in transiently transfected COS-
1 cells. 

45 
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50 
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52 
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