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No man is an island, 
Entire of itself. 

Each is a piece of the continent, 
A part of the main. 

If a clod be washed away by the sea, 
Europe is the less. 

As well as if a promontory were. 
As well as if a manner of thine own 

Or of thine friend’s were. 
Each man’s death diminishes me, 

For I am involved in mankind. 
Therefore, send not to know 

For whom the bell tolls, 
It tolls for thee. 

 

 

John Donne (1572 – 1631) 
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Abstract: 
 

Die Biotechnologie hat sich innerhalb der letzten zwei Jahrzehnte  zu einem wichtigen Gebiet 
der Wissenschaft entwickelt, wobei enzymkatalysierten racemischen Reaktionen eine 
bedeutende Rolle bei der industriellen Produktion von Verbindungen zukommt. „Chiral 
switching“ wurde daher ein wesentliches Konzept, um enantiomerenreine Verbindungen zu 
erhalten. Die Enzymkinetik hat einen wesentlichen Anteil am Verständnis der Reaktionswege, 
wie auch an der Bestimmung der Reaktionsgeschwindigkeit. Dies ist eine Voraussetzung, um 
einen neuen Bioreaktor zu entwickeln und/oder die Reaktionsbedingungen zu optimieren.  
 

In der vorliegenden Arbeit wurde zunächst die Enantioselektivität analysiert, wobei das 
grundlegende Ziel darin besteht, die Enantioselektivität racemischer Reaktionen zu erhöhen. 
Anhand des Reaktionsmechanismus in der Bulkphase des Reaktionsmediums wurde die 
Enantioselektivität für eine biomolekulare Reaktion neu bestimmt.  
 

Weiterhin wurde ein grundlegendes mechanistisches Modell aufgestellt und unter der 
Annahme eines pseudostationären Zustands gelöst. Es wurde ein allgemeines 
Geschwindigkeitsgesetz für racemische Reaktionen mit der Software Maple aufgestellt. Um 
das Modell zu prüfen, wurde eine spezifische Reaktion zwischen Isopropyliedeneglycerol und 
Vinylacetat als Acyldonor als Modellreaktion herangezogen. Es hat sich dabei herausgestellt, 
daß das Modell problemlos auf diese Modellreaktion angewendet werden konnte. Die 
Geschwindigkeitskonstanten wurden mit einer zufallsbasierten nichtlinearen Regression 
(Matlab) simuliert.  
 

Dieses Modell wurde ebenso auf einzelne Enantiomere angewendet. Dabei hat sich 
herausgestellt, daß die Reaktionsgeschwindigkeit für diesen Fall einem 
Geschwindigkeitsgesetz nach Michaelis-Menten folgt. Die Michaelis-Menten-Konstanten 
beider Enantiomere Vmax,DS(0.677 mol/L.h), Km,DS (0.285 mol/L) und Vmax,LS( 0.66 mol/L.h) 
und Km,LS (0.98 mol/L) wurden separat bestimmt.   
 

Ein neuer, allgemeingültiger Ansatz für die Enantioselektivität wurde basierend auf dem 
mechanistischen Modell für alle Modellsysteme vorgeschlagen. Dieser Ansatz wurde für den 
irreversiblen Fall verifiziert. Es  hat sich dabei herausgestellt, daß die Ergebnisse mit den 
Literaturdaten zur Enantioselektivität für irreversible Reaktionen übereinstimmen.  
 

Das Modell, welches in dieser Arbeit aufgestellt wurde, kann für jeden Typ racemischer 
enzymatischer Reaktionen angewendet werden. Wenn der Mechanismus einer Reaktion 
aufgrund der molekularen Wechselwirkungen bekannt ist, ist es möglich, die Art der 
Reaktionen zwischen den Intermediaten zu bestimmen. Für irreversible Teilreaktionen 
können dementsprechend die Geschwindigkeitskonstanten der Rückreaktionen gleich Null 
gesetzt werden. Das Modell wird hierdurch auf ein Reaktionssystem zugeschnitten und die 
Koeffizienten können mit Programmen wie Matlab oder Maple berechnet werden. Das auf der 
Basis dieses Modells berechnete Enantiomerenverhältnis kann angewendet werden, um die 
Enantioselektivität von Enzymen zu bestimmen.   
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Abstract :  

Along the last two decades, the biotechnology has become a challenging field of science, in 
which the enzyme catalyzed racemic reactions play an important role in the production of 
enantiomerically pure industrial compounds. Thus, “chiral switching” became an important 
concept. The enzyme kinetics significantly takes good part in understanding the behavior of 
the reaction, as well as determining the rate of reaction, by which it is later possible to design 
a new bioreactor, and/or to optimize the reaction conditions.  

In this work, first the enantioselective ratio (E-value) has been analyzed, while the general 
aim is to increase the enantioselectivity of racemic reactions. The E value for the two 
component (bi-bi) reactions was newly suggested according to the overall mechanism in the 
bulk of the reaction medium.  

In addition, a general mechanistic model has been proposed and solved by making a pseudo-
steady state assumption. A general rate expression for any racemic reaction has been derived   
with a Maple software program. A specific reaction between isopropyliedeneglycerol and 
vinylacetate, as acyl donor, was considered as a case study to test the proposed model. It is 
obtained that the general model can easily be applied to this specific case, and a rate 
expression was derived for this specific reaction. The rate constants were simulated with 
random non-linear regression tool of Matlab software package.  

This model has also been applied to single enantiomer, and it is found that the rate of reaction 
becomes a simple Michaelis- Menten type, and the Michaelis- Menten constants for both 
enantiomeres Vmax,DS( 0.677 mol/L.h ), Km,DS (0.285 mol/L ) Vmax,LS( 0.66 mol/L.h ), Km,LS 
(0.98 mol/L ) were separately evaluated.  

A new general E- value based on mechanistic model has been suggested for all cases, after 
derivation of the general rate expression. This new equation was verified for the irreversible 
case and it is found that it simply turns to be the E-value suggested in the literature for the 
irreversible conditions.  

As a result, the general model proposed in this study can be used for any type of racemic 
enzymatic reactions. If the mechanism of a reaction can be defined depending on its 
molecular interactions, then it is possible to determine the type of reactions between 
intermediates. Accordingly, the reversible rate constants are equated to zero for the 
irreversible reactions, and the model becomes case specific one, whose coefficients can be 
calculated by computer programs like Matlab and Maple. The enantiomeric ratio based on 
mechanistic model can be used in studies to calculate the enantioselectivity of the enyzmes.  
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1.1. The Brief History of Biotechnology 
 

Biotechnology is an interdisciplinary field of science. Although it is exponentially grown up 

in the couple of last decades, it is the oldest science/technology, which developed silently via 

daily life of primitive tribes almost since 10,000 B.C. 

The first primitive ancestors of human beings hunted the animals and collected the plants to 

survive, since they did not invent the appropriate tools and appliances for breeding animals 

and harvesting crops. As they learned how to tackle with domesticating the animals and to 

plough for the plants, they went through the crucial transition from nomadic hunter, moving 

from one hunting area to another, to settled farmer in order to preserve their cultivated crops, 

which became vital for survival. These primitive ancient farmers found out a way to increase 

the yield and to improve the taste of crops by selecting seeds from particularly desirable 

plants, without any knowledge of the natural principles [1].  

As primitive wo/man founded their villages, they learnt to live together and also together with 

their animals and crops. The animals were the carrier of microorganisms, which ferried to 

human beings introducing them into dieses. They were, by the way, infected by the microbes 

and viruses as well as they utilized some organisms for their pre-historical biotechnological 

processes [2]. 

As a result of residence of wo/men, biotechnology has consequently flourished since 

prehistoric times. Its history begins when primitive wo/man became to gather and process 

herbs for medicine; make bread, later improving them for a soft and spongy one rather than a 

firm one, make beer by fermenting solutions of malt and hops; create many fermented food 

products using fruit juices for wine, converting milk into yogurt, cheese, and various soy 

products; create septic systems to deal with their digestive and excretory waste products, and 

to create vaccines to immunize themselves against diseases. The first farmers realized that 

different physical traits could be either magnified or lost by hybridizing appropriate pairs of 

animals, and  less or greater genetic variety of  plants [2,3,4]. 
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Some important milestones of biotechnology are briefly given at Table 1.1, whereby as 

clearly seen, it thoroughly ascends after 1980s and becomes a challenging science/technology 

of 21st century. However behind this drastic growing tendency exits the roots of modern 

biotechnology dating back a hundred year, to the works of Louis Pasteur, Robert Koch, who 

based the current science of microbiology, and Gregor Mendel, who first studied the genetic 

inheritance. 

In 1919 a Hungarian engineer Károly Ereky coined the term "biotechnology “for the first 

time. At that time, the term meant all the lines of work by which products are produced from 

raw materials with the aid of living organisms. Ereky envisioned a biochemical age similar to 

the stone and iron ages. The leaders of the "old biotechnology” were engineers and 

technicians who worked mainly in the specialized industrial plants associated with large scale 

production of breweries, wineries, tanneries, leather processing, canneries, sugar factories, 

and otherwise in the production of starch, yeast, alcohol, meat, milk and vegetable oil, etc.. 

From the beginning of the 20th
 century, in some centers of Europe and in the USA, specialized 

agricultural engineers started to organize the improvement of agricultural techniques. The 

mechanization of soil tillage, processes of cultivation, harvesting, transport and preservation, 

at the same time, use of chemical fertilizers, animal and plant breeding and many other new 

revolutionary technologies helped to replace the traditional agricultural production systems, 

like livestock raising, cultivation of cereals, horticulture, etc. [5-8]. 

The modern time of biotechnology started around 1953 as American biochemist James 

Watson and British biophysicist Francis Crick presented their double-helix model of DNA. In 

1973 Stanley Cohen and Herbert Boyer removed a specific gene from one bacterium and put 

it in other using restriction enzymes, which marked the beginning of recombinant DNA 

technology or genetic engineering. In 1977 genes were transferred from one organism to 

bacteria [5,6].  

After 1980’s, the states, or organizations has cobbled together a cluster of meaningful words 

and phrases to identify biotechnology. They grasped a frame of reference on which to build 

decision-making by regarding resource allocation, and the comparative analyses of the 

academic sector aspects; such as research, training and education and the funding for research. 

By this accumulation of knowledge, the governments or related associations defined 

biotechnology according to the application in their own countries. 
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Table 1.1.  Evolution of Biotechnology timeline 

8000BC   
 

Collecting of seeds for replanting. Evidence that Babylonians, Egyptians and Romans used selective 
breeding  practices to improve livestock. 

6000BC Brewing beer, fermenting wine, baking bread with help of yeast.
4000BC Chinese made yoghurt and cheese with lactic-acid-producing bacteria.
1500 Plant collecting around the world.
1797 Edward Jenner used living microorganisms to protect people from disease. 
1800 Nikolai I. Vavilov created comprehensive research on breeding animals. 
1856 Gregor Mendel started to work for the recombinant plant genetics.
1859 Charles Darwin hypothesized that animal and plant population adapt over time to best fit the 

environment. 
1864 Louis Pasteur, proved existence of microorganisms, showed that all living things are produced by 

other living things 
1865 Gregor Mendel investigated how traits pass from generation to generation called them actors.
1869 Johann Meischer, isolated DNA from the nuclei of white blood cells
1893 Koch, Pasteur, fermentation process patented
1910 Thomas H. Morgen, proved that genes are carried on chromosomes
1919 Karl Ereky, a Hungarian engineer, first used the word biotechnology 
1941 George Beadle, proposed “ one gene, one enzyme “ hypothesis 
1953 James Watson, Francis Crick, determined the double helix structure of DNA 
1957 Francis Crick, explained how DNA functions to make proteins 
1966 Marshall Nierenberg determined the sequence of three nucleotide bases (a codon) for each of 20 

amino acids 
1972 Paul Berg, cut sections of viral DNA and bacterial DNA with same restriction enzmye 
1973 Herbert Boyer, beginning of genetic engineering 
1973 Stanley Cohen produced first recombinant DNA organism 
1975 Method for producing monoclonal antibody developed by Kohler and Milstein 
1978 Genentech, Inc. used genetic engineering techniques to produce human insulin in E.coli.  
1980 Modern biotechnology was characterized by recombinant DNA technology. The prokaryote model,  

E. coli is used to produce insulin and other medicine, in human form.  
1981 The first gene-synthesizing machine, the first genetically engineered plant, mice are successfully 

cloned. 
1983 The first genetic transformation of plant cells by TI plasmids is performed 

The first artificial chromosome is synthesized. 
The first genetic markers for specific inherited dieases are found. 

1989 Microorganisms are used to clean up the Exxon Valdez oil spill. 
The gene responsible for cystic fibrosis is discovered.  

1992 FDA approves of the first GM food from Calgene: "flavor saver" tomato  
1994 The first breast cancer gene is discovered.  
1997 Scottish scientists report cloning a sheep, using DNA from adult sheep cells. 
1998 Human skin is produced in vitro. 

Embryonic stem cells are used to regenerate tissue and create disorders mimicking diseases. 
The first complete animal genome for the elegans worm is sequenced. 
A rough draft of the human genome map is produced, showing the locations of more than 30,000 
genes 

1999 The complete genetic code of the human chromosome is first deciphered. 
2000 A rough draft of the human genome is completed by Celera Genomics and the Human Genome 

Project. Pigs are the next animal cloned by researchers, hopefully to help produce organs for human 
transplant.  

2001 The sequence of the human genome is published in Science and Nature, making it possible for 
researchers all over the world to begin developing treatments. 

2002 Scientists complete the draft sequence of the most important pathogen of rice, a fungus that destroys 
enough rice to feed 60 million people annually.  

2003 Dolly, the cloned sheep that made headlines in 1997, is euthanized after developing progressive 
lung disease. Dolly was the first successful clone of a mammal.  

( by  courtesy of North Caroline Biotechnology Center, Biotechnology Industry Organization (BIO) , The National Health 
Museum, Washington and Biotechnology Institute in Arlington ; ref: [ 5 ] )  
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Although some countries, like USA, Israel, the Nederlands, France, Ireland, New Zealand 

have stated their own definition. Many countries, like Germany, accepted the common 

definition of OECD (Organization for Economic Co-operation and Development) [3,9,10]. The 

provisional single definition of biotechnology of OECD states that,  

"The application of Science & Technology to living organisms 
as well as parts, products and models thereof, to alter living or 
non-living materials for the production of knowledge, goods and 
services". 

 

As well as the basic understanding in microbiology, biochemistry and latterly molecular 

biology drastically exploited in the last couple of decades, the simultaneous application of 

traditional chemical engineering unit operations in this biological setting is central to making 

biotechnology processes a reality [10]. Industrial biotechnology applications have led to 

cleaner processes that produce less waste and use less energy and water in such industrial 

sectors as chemicals, pulp and paper, textiles, food, energy, metals and minerals. The 

tremendous production capacity increased year by year, e.g. the economical capacity reached 

$30 billion a year only in some 160 kinds of drugs and vaccines production [5]. 

In these industrial units, where a reaction takes place, a reactor is certainly the heart of the 

plant to produce the new product. Thus, in the application of chemical engineering in biology, 

the chemical reaction engineering and catalysis have been redefined as biotransformation in 

biotechnology. One definition of biotransformation is stated as; "the carrying out of a 

chemical reaction by biological systems." This biotransformation is usually carried out by 

using enzymes, either in a purified or semi-purified state, or whole cells (plant, animal or 

microbial) that contain the relevant enzyme. The use of enzyme biotransformation rather than 

traditional chemical conversions allows the use of mild temperatures and conditions, and 

significantly allows specific reactions to take place, such that a product may consists of single 

enantiomers [10]. 

As a result, the kinetic study of a reaction has become important still keeping its some 

complex biologically secret information in itself for the calculation, design and construction 

of industrially important reactors. 

 

 



6 
 

 

 

1.1.1.  Application of Biotechnology  
 
Based on the background knowledge of the structure and function of living systems, 

biotechnology has opened up a new vista for rapid agricultural, industrial and socioeconomic 

progress. It is highly science based, knowledge intensive, and an interdisciplinary field in 

which spectacular advances are taking place all over the world. The next step, after the 

development of the knowledge in biotechnology, was the process development in the 

industrially large quantity productions of the products. Biotechnological processes still 

improve and can now compete with other technologies widely used in the chemicals industry; 

pulp and paper production, textile and leather, food processing, metals and minerals, and 

energy. The process development also includes the development of media, buffers, reagents, 

solutions, and assays, biocatalysts and the choice of tools, such as bioreactors and 

chromatographic equipments for the upstream and/or downstream processing [3,8]. 

 
Table1.2: Application fields of Biotechnology [10,11]. 

 
Application Processes 

 
 
DNA-based 
 

Gene probes, DNA markers, bioinformatics, genomics, 
pharmacogenetics 
DNA sequencing/synthesis/amplification, genetic engineering., 
Micro-array 
 

 
 
Biochemistry/Immunology 
 

Vaccines/immune stimulants, drug design & delivery, 
diagnostic tests, antibiotics, synthesis/sequencing of proteins 
and peptides,  
cell receptors/signaling, structural biology, combinatorial 
chemistry,3-D molecular modeling, biomaterials, microbiology, 
virology, microbial ecology 
 

 
 
Bioprocessing-based 
 

Culturing/manipulation of cells: tissues, embryos,  
Extractions:, purifications, separations ,  
Fermentation: bio-processing, bio-transformation 
 

 
 
Environmental 
 

Bioleaching, bio-pulping, bio-bleaching,  
bio-desulfurization, bioremediation, bio-filtration,  
geo-microbiology, bio-weapons, bio-energy; bio-fuels,  
bio-hydrogen, biomass  
 

 
 
With this wide range of its application fields, biotechnology has become a source of economic 

development and a social providing access to technology on credit and peer markets to 

especially rural poor entrepreneurs in many developing countries [12]. 
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1.1.2. Sub-fields of Biotechnology 
 

Processes involved in biotechnology are not separately classified as a single industry for 

purposes of surveys of research, manufacturing, or service firms, since the application and 

development of modern biotechnologies is relatively recent, and incorporation into statistical 

accounts requires a specific process and takes some time. More important, as biotechnology is 

applied to a widening array of industrial applications, developing a single classification 

category for firms engaged in biotechnology-related activity is proving to be complex and 

difficult. Biotechnology applications defy attempts to categorize their boundaries that would 

restrict them to a particular industry [11]. 

 

Table 1.3.: Sub-fields of Biotechnology [8, 13 – 15].  
 

Sub-fields of Biotechnology Application 

Red biotechnology health, medical processes, diagnostic products and services 
intended for diagnosis and therapy of diseases 

Grey or white biotechnology 
industrial processes, white biotechnology tends to consume less 
resources that traditional processes when used to produce 
industrial goods. Gene-based bio-industries  

Blue biotechnology Aquaculture, coastal and marine biotechnology 

Green biotechnology 
Agricultural, environmental biotechnology; bio-fuels, bio-
fertilizers, bioremediation,  geo-microbiology, bio-pesticide, 
genetically modified animals and plants.  

 
As a result of intersection of many interdisciplinary sciences, the biotechnology has many 

number of jargon terms in its classification.  One of these classifications depends on the sub-

fields of application defined by terms of colors. 

 

1.1.3. Systems Biology; a way to enzyme kinetics 
 

Systems biology transmits the information between interdisciplinary sciences using the 

principles of chemical engineering with the accumulated knowledge of the biotechnology, and 

combines the mathematical modeling with biological experiments to elucidate a whole picture 

of complex biological systems in living organisms[16,17]. Thus, systems biology is 

characterized by synergistic integration of theory, computational modeling, and 

experiment[18,19]. 
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The mathematical modelling by a set of ordinary differential equations (ODEs) describes the 

variations in the series of biochemical reactions taking place within the system. As a result, 

enzyme kinetics is directly relevant to the ODEs, which is built with appropriately 

parametrized enzyme kinetic rate laws for each of the reactions involved. The model gives 

information about the derivation of quantitative structure-function relationships for the 

enzyme in modern enzymology. Structure-based systems biology provides insight into 

complex enzymatic reactions at a molecular level[20]. 

 

In this work, a model for the enantimeric enzyme catalyzed reaction has been suggested  and 

applied for the transesterificaton of isopropyledenglycerol ( IPG), as a case study. 
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1.2. Aim of the Thesis 

 
 
The systems biology has become a new challenging field to analyze the biologically complex 

systems in biotechnology. A main good part of this approach is to model the reactions in order 

to understand the kinetic mechanism and rate expressions. Determination of the reaction rate 

is significant in design of bioreactors in industry. 

 

Recently, the enantiomeric enzymatic reactions are important in industrial applications, 

especially in pharmaceutical industry. The separation of one racemate from other is mostly 

desired. Although various physical methods have been developed to achieve this separation, 

the study of reaction kinetics is also very important for controlling the production of desired 

component.  

 

Hence, it is aimed in this work to analyze the concept of enantioselectivity (E), and to model 

the kinetics of two component reactions, like transesterification reactions in which an acyl 

donor is used as second component.  

 

The aim of this work is to postulate a general kinetic model for enzyme catalyzed racemic 

reaction and to calculate the rate expression. Thus a new model was suggested, and a specific 

B. Cepacia lipase catalyzed reaction has been considered as a case study to verify the model. 

The reaction for case study is the transesterification reaction between isopropyledene–s-

glycerol (IPG), which is an important starting synthon for many pharmaceutical components, 

and vinyl acetate as acyl donor. These reactions were carried out in conventional organic 

solvent n-hexane and in supercritical CO2, as a new solvent suggested by medium 

engineering approach. 

 

Consequently, the result of this work might be further used to define the mechanism of any 

enzyme catalyzed racemic two component reaction, and to calculate its rate expression, by 

which a bioreactor for the production of industrially important products can be designed. 

 



 
 
 
 
Chapter II. Biocatalysis; Lipase and Medium Engineering 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
"in the field of observation, 

chance only favors the prepared mind" 
Louis Pasteur 

1854 
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2.1. Biocatalysis  
 

2.1.1. Enzymes 
 

From the first demonstration of fermentation by Lavoisier in the early 17th century[21], till 

Kuhne first coined the word “ enzyme “ meaning “ in yeast “ in Greek[22], the enzymes were 

called “ferment” as mentioned in the book writen by Mrs. Fullhame in 1794 [23]. The timeline 

of enzymology is given on Table 2.1 in detail. 

 

The enzymes are the biochemical catalysts evolved in nature to achieve the speed and 

coordination of a multitude of chemical reaction necessary to develop and maintain life in all 

organisms [24]. They are known to catalyze huge number of biochemical reactions[25]. They are 

a specific group of proteins, as a class of macromolecules that are synthesized by living cells 

to determine the patterns of chemical transformations, because of their capacity to specifically 

bind a very wide range of molecules. They catalyze reactions selectively by stabilizing a 

transition state; and an enzyme determines which one of several potential chemical reactions 

actually takes place [26]. 

 
Enzymes have three distinguishing characteristics as catalysts: 

 
1)  They accelerate the rates of reactions. 

2) They are selective: the rate of reaction of a particular substance may be 

accelerated dramatically, while that of a structurally closely related 

substance is not. 

3)  They may be subject to regulation: that is, catalytic activity may be 

strongly influenced by the concentrations of substrates, products, or other 

species present in solution. 

 

When an organic molecule combines to the surface of an enzyme, it may cause to change its 

active site configuration. Although the specificity of enzymes can be altered by this way [27], 

the selectivity of enzymes is the basis for much of their utility in organic synthesis. Enzymes 

offer the opportunity to carry out highly selective transformations, a feature of great value in 

working with chiral and polyfunctional molecules [28]. 
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Table 2.1. Timeline of enzymology[ 29-34]. 
 

1752 Reamur  demonstrated the solvent power of the gastric juice of birds 

1783 Spallanzani  had extended the Reamur’sstudies to humans and other species 

1794 Mrs. Elizabeth Fulhame First suggestion of catalysis in her book “ An Essay on Combustion 
“ 

1833 Jöns Jacob Berzelius recognized that a natural catalyst, an amylase that causes the 
hydrolysis of starch 

1833 Payen & Peroz 
 

alcohol precipitate of barley holds heat labile components (proteins) 
that converts starch to sugars 

1836 Scwann isolated the enzyme pepsin from gastric juice 

1836 Jöns Jacob Berzelius The study of catalysis, coined the term of catalysis 

1878 F.W. Kühne  coins term 'enzyme Greek "in yeast" 

1880 Charles Adolph Wurtz Papain appears to form an insoluble compound with fibrin prior to 
hydrolysis; complex formation 

1890 Cornelius O’Sullivan and  
Frederick William Tompson 

The activity of invertase with temperature in absence and presence 
of sucrose 

1892 Adrian John Brown A study of rate of fermentation of sucrose 

1894 Emil Fischer  the specificity of enzyme action: Key-Lock hypothesis 

1897 Büchner The discovery of cell-free fermentation and zymase 

1898 Ducleaux  uses suffix "ASE" for enzyme names 

1900 E. Fischer stereospecificty of enzymes is discovered 

1901 Victor Henri Anticipated the enzyme actions 

1901 C. Eijkmann The first lipolytic activity  
 

1902 Adrian John Brown A study of existence of enzyme-substrate complex 

1907 Bodenstein The rate expression between H2 and Br2   

1911 Micahelis and Davicdson The effect of pH on enzyme active site 

1913 Michaelis-Menten At lower concentrations the rate becomes proportional to the 
concentration of substrate 

1923 Hartridge and Roughton Flow method  in which the solutions are forced together very rapidly 

1925 Georg Edward Briggs and John 
Burdon Sonderson Haldane 

Improved the M-M assumptions in kinetics 

1926 Sumner The first enzyme crystallized and shown to be a protein 

1940 Brittion Chance Stopped-flow method  

1941 John Alfred Valentine Butler The first kinetic studies with a pure enzyme; molecular kinetics 

1954 Eigen The relaxation method for fast intermediates 

1956 King and Altman The kinetics methods for the complex reactions 

1960s Werner Arber The discovery of restriction enzymes, cutting DNA helices 

1964 Garfinkel and Hess The computer studies of  methabolic pathways 

1965 Monod,Wyman,Changeux Allostericity of enzymes 

1973 Laidler and Bunting The kinetic studies with different enzymes 

1973 Kascer and Burns The methabolic control analysis 

1982 Chen and Sih The first definition of E for the enantioselectivity of one component 
reactions 
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2.1.2. Enzyme Nomenculature  
 

The naming of enzymes was not systematic in its early days. Enzymes were given trivial 

names that often meant little or were ambiguous. Many different enzymes were given the 

same name and, conversely, several names were given to the same enzyme, leading to much 

confusion. In general, the suffix “-ase “ was added to the name of the substrate[35]. A system 

of enzyme nomenclature is comprehensive, consistent and at the same time easy to use. The 

common names for the most enzymes derive from their most distinctive characteristic: their 

ability to catalyze a specific chemical reaction[36]. Each enzyme has been given a four digit 

number by the Enzyme Commission of the International Union of Biochemistry. The first 

three digits relate to the reaction catalyzed by the enzyme and the final one is required if 

several enzymes with different protein structures catalyze the same reaction[37]. 

 
Name of enzyme ( EC W.X.Y.Z )  ], where 

 
EC  –  Enzyme Commission number system 
W   –   indicates the reaction catalyzed ( 1 to 6 ) 
X    –   indicates the general substrate or group involved 
Y    –   indicates the specific substrate or coenzyme 
Z    –    the serial numer of the enzyme  

 
Table 2.2. Classification of enzymes [36-38]. 

 
Enzyme 

Comission 
number 

Enzyme type The type of reaction catalysed 

EC 1 
 
Oxidoreductases 
 

Transfer of H2 or O2 atom or electrons form one substrate to 
other. 

EC 2 
 
Transferases 
 

transfer of groups such as methyl or glycosyl groups from a 
donor molecule to an acceptor molecule. 

EC 3 Hydrolases the hydrolytic cleavage of C-C, C-N, P-O, and certain other 
bonds, including hydride bonds. 

EC 4 Lyases cleavage of C-C, C-O, C-N, and other bonds by elimination, 
leaving  double bonds, and also add groups to double bonds. 

EC 5 Isomerases 
 geometric or structural changes within a single molecule. 

EC 6 Ligases 
joining together of two molecules, coupled to the hydrolysis of 
a pyrophosphoryl group in ATP or a similar nucleoside 
triphosphate. 

 
 
Accordingly to the above mentioned way of nomenculature, the enzyme lipase utilized in this 

work is named as EC 3.1.1.3. From the table Table 2.2, EC3 corresponds to hydrolases. 

Following the nomenclature, EC 3.1 demonstrates that enzyme acts on ester bonds, as well as 

EC 3.1.1 is the representation for carboxylic ester hydrolases. The more specific revealing 

about type of enzyme is given by the serial number. As a result, lipase [EC.3.1.1.3] is the 
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enzyme with a full name of triacylglycerol lipase defined by International Union of 

Biochemistry and Molecular Biology (IUBMB). Evetually, lipases could be defined as the 

enzymes (triacylglycerol acylhydrolases, (EC 3.1.1.3) catalyzing the hydrolysis and the 

synthesis of esters formed from glycerol and long-chain fatty acids [39]. 

 
 

2.1.3. Specificity 

Since the enzymes are remarkable catalysts, which tremendously accelerate reactions under 

mild temperature and pressure conditions[40], one of their drastic properties is the specificity. 

The active site and specificity play a major role along the course of reaction. Many substrates 

are capable of undergoing a variety of different biochemical reactions, although the enzyme 

preferably catalyses only one of these reactions[41], depending on the three dimensional 

structure of their amino acid sequence. Thus this property is known as the specificity, which is 

the most distinctive feature of enzyme based catalysis. The specitify of an enzyme, as 

illustrated in Fig 2.1, was postulated as two analogies which are very well explained in 

literature. The first analogy is the key and lock model postulated by Emil Fischer in 1984[42-

45], and this rigid analogy was  improved by Daniel Koshland in 1958 as induced fit model for 

certain enzymes, which do not obey previos model[46-49]. 

  

   (a)       (b)   

             Fig 2.1. Enyzme models (a) Lock and Key Model, b) Induced-fit model [26]. 

Complementary shape, charge and hydrophilic/hydrophobic characteristics of enzymes and 

substrates are responsible for the specificity. Enzymes can also show impressive levels of 

stereospecificity, regioselectivity and chemoselectivity[50]. A few enzymes exhibit absolute 



15 
 

 

specificity; they will catalyze only one particular reaction. Other enzymes will be specific for 

a particular type of chemical bond or functional group[51].  

Enzymes are usually impressively specific in their action. The specificity toward substrate is 

sometimes almost absolute. For example in this work, the lipase tends to catalyse D-IPG more 

than L-IPG. 

 
2.1.4. Chirality 

 

Natural optical activity is perhaps the most well known property [52]. With the use of polarized 

light, first in 1815, Jean-Baptiste Biot stuided the the optical rotation of organic chiral 

liquids[53,54], and later in 1848, Louis Pasteur detected that the molecular structure of the 

tartaric acid crystals had a mirror image. He postulated the dissymmetric forces of nature 

according to the prevalence of only one of the two mirror-image enantiomers among natural 

organic products[55, 56]. As a result of these experiments, it was demonstrated that the same 

arrangement of the same atoms gave two different molecules, called racemates, which is 

derived from the Latin word “ racemus “meaning “for a bunch of grape”, since the tartaric 

acid had been isolated from wine[57].  

 

A chiral molecule is one that cannot be 

superimposed on its mirror image with the 

two mirror image forms referred to as 

enantiomers (see Fig. 2.2.). One isomer of 

a pair rotates plane polarized light in a 

clockwise direction and is known as 

dextrorotatory (D). The other pair rotates 

plane polarized light in a counterclockwise 

direction and is termed levorotatory (L) 
[65,66].  

The chiral asymmetry and optical activity 

have been considered with a principal 

criterion for the early stages life[58,59], 

although the chirality is universal property 

as detected on the indigenous enantiomeric 

excesses of L-amino acids in the 

Murchison meteorite fallen Australia in 

1969[60]. 

 
Fig 2.2. The two enantiomers  

 

It is generally presumed that chirality was 

needed in prebiotic times so proteins could 

have their well defined structures[61]. The 

organic constituents of all living organisms 

on Earth are optically pure while they are 
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always composed of one enantiomer from a chiral pair of molecules, as also found in our 

terrestrial life[62]. The symmetry aspects of optical activity had been called dissymmetry, which 

has been replaced by the word chirality, derived from the Greek work “chiros” meaning 'hand' in 

the nomenclature of stereochemistry[63]. The concept of chirality is inextricably linked to that of 

enantiomers (from the Greek enantios opposite, meras, part)[64]. 

 

A mixture of equal amounts of the two enantiomers is said to be a racemic mixture. In this work, 

the reagent used in the transesterifictation reaction is rac-IPG.  

 

An enantiomer can be best identified on the basis of their absolute configuration or their optical 

rotation in which it rotates the plane of plane polarized light. Nomenculature of chirality can be 

expressed conventionally in three ways, given on Table 2.3.[67]. 

 

Table 2.3. Nomenculature in Chirality 

Forms Latin Affixes & Names Direction of polarity of light 
D/L-form - Dextro- = right  ; Laevo or levo- = left Clockwise  ;Counterclockwise 

R/S-form Rectus = right  ; Sinister = left Clockwise ; Counterclockwise 

(+/-)- form +/– system for optical rotation (+) clockwise ;(-) counterclockwise 

Racemic (racemus) for a bunch of grape  

 

Among these notations, the R/S system has no fixed relation to the (+)/(−) system. The R/S 

system does not involve a reference molecule [68], and also has no fixed relation to the D/L 

system. This means that an R isomer can be either dextrorotatory (D) or levorotatory (L), 

depending on its exact substituents. For example, in 1973, the dermested beetle pheromone, 

which was levorotatory, was shown to be the (R)-enantiomer, because the synthetic (S)-isomer 

was dextrorotatory[69]. Hence, the D/L system remains in common use in certain areas of 

biochemistry. For this reason, the L/D nomenculature will be used along this work according to 

its common use. 
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2.2. Burkholderia cepacia vs Pseudomonas Cepacia 
 

The enzyme utilized in this work is isolated from previously called Pseudomonas cepacia which 

is later taxonomically renamed as Burkholderia cepacia, whose lipases were extensively studied 

and the most widely used during the past two decades for industrial use in biotechnology [70,71]. 

The genus Pseudomonas comprises a large assemblage of bacteria widely distributed in nature in 

a great variety of natural and artificial habitats[72]. B. cepacia can be found in infected plants, 

animals, humans, and in a variety of soil and rhizosphere environments; playgrounds, athletic 

fields, parks, hiking trails, residential yards, and gardens[73]. It was first described by Walter 

Burkholder in 1949, when he determined it to be the cause of bacterial rot of onion bulbs. It was 

originally named P. cepacia, which comes from Latin “cepa” (onion)[74], and Pseudomonas 

comes form ( greek “pseudo” = false, Latin “monas” = single unit ) as well[75]. The name P. 

cepacia was later changed to its current name B. cepacia, which refers to a complex of nine 

closely related cepacia species in the genus Burkholderia[76]. 

 

B. cepacia is an important gram-negative bacterial pathogen in patients with cystic fibrosis[77]. It 

may cause premature death in these patients. The species are recognized with seemingly 

increasing frequency as nosocomial pathogens[78] for which reservoirs, modes of transmission, 

and host factors predisposing to infection are still being defined[79]. B. cepacia has been 

registered, since 1992, as a microbial pesticide by the US Environmental Protection Agency[80]. 

This bacteria is motile by means of monotrichous or multitrichous polar flagella. Cell dimensions 

are generally between 0.5-1.0 µ by 1.5-4 µ[81]. Many produce a water-soluble green fluorescent 

pigment, and, while others are nonchromogenic[82]. The cells have a straight curved rod shape and 

no spores[72].  

 

The pathogen has undergone several taxonomic reclassifications in accordance with the 

Bacteriologic Code[83]. Most confusion surrounding this species name was initially due to its 

transfer from the genus Pseudomonas to the newly described genus Burkholderia in 1992[74]. In 

order to get rid of any confusion, the recent name B. Cepacia will be preferred after now along 

this work, instead of P. Cepacia, which had been used in previous works at Technical Chemistry 

Institute (TCI). 
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2.3. Lipases 
 
In 1856, Claude Bernard first discovered the lipase in pancreatic juice as an enzyme that 

hydrolysed insoluble oil droplets and converted them to soluble products[84]. Later in 1889, J. 

Reynolds Green showed that germinating seeds of the castor-oil plant contain an enzyme which 

is capable of hydrolyzing castor oil[85]. Consequently, it was detected that the fats are hydrolysed 

under the influence of lipases[86], which were well defined in kinetic terms, based on the 

phenomenon of interfacial activation, in 1958[87]. 

 

According to the IUBMB, lipases (EC 3.1.1.3) are defined in the class of hydrolyses[88-90], a 

detailed list of names is given in App.I., catalyzing the hydrolysis of carboxylic acid esters[91-96]. 

All hydrolases belong to main class 3 of the Enzyme Commission Nomenclature System and 

there are 1065 different EC numbers for hydrolases classified, recently[97]. Lipases are ubiquitous 

enzymes which play an important role in lipid metabolism. They are a versatile group of 

biocatalysts, which apparently hydrolyse insoluble triglycerides and other water insoluble highly 

lipophilic carboxylic acid esters by tailoring into the concomitant production of free fatty acids 

and glycerol during digestion as shown in Fig.2.3.[98-101]. 

 

 

 

 

 

 

 

Fig.2.3. Lipase catalysed hydrolysis of a triglyceride  
 

 

Lipases are versatile biocatalysts. In addition to their hydrolytic activity on triglycerides, they can 

also catalyze other reactions such as esterification, interesterification, acidolysis, alcoholysis, and 

aminolysis (Fig.2.4.)[102, 103]. 

 

 

 

O

O

O

O

O

O

+ 3H2O OH

O

OH

OH

OH

+ 3



19 
 

 

 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 2.4.  Different type of reactions catalysed by lipase[102, 104]. 
 

 

2.3.1. Sources of lipases 

 

Use of industrial enzymes allows the technologist to develop the gentle and efficient processes 
[84]. The source of the lipase is important; because their properties differ greatly depending on 

their origins [105]. Although lipases are ubiquitous throughout the Earth’s flora and fauna, they are 

found more abundantly in the plants, pancreas of mammals, and the microbial flora comprising 

bacteria, fungi, and yeast. In the field of biotechnology, much attention has been paid to the use 

of lipases of microbial origin, and commercially available lipases are usually derived from 

microorganisms. Since the advent of genetic engineering techniques, an increasing number of 

lipases are being commercially manufactured from recombinant bacteria and yeasts [39,92,106-107].  

 

Commercially available triacylglycerol lipases are produced from 34 different sources, including 

18 from fungi and 7 from bacteria [108]. Among more than 30 commercially available lipases [92, 

109] are frequently used in enantioselective acylation of alcohols and amines [110] or in 

esterification of carboxylic acids and hydrolysis of their esters [111-112], Burkholderia cepacia 

lipase (BCL) is the one of most thoroughly studied [113]. In this work also BCL has been used and 

its properties have been considered. 
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2.3.2. Industrial applications of lipases 

 

With the increased awareness of environment and cost issues, biotechnology drastically gains 

various advantages over conventional technologies [84]. Because of their biotechnological 

potential, lipolytic enzymes have an increasing enormous attention for a variety of 

biotechnological applications [114]. Especially, lipases have a rapid and steadily increasing usage 

as catalysts for industrial chemical reactions, since these biocatalysts act under extremely mild 

conditions with good regio- and stereo-selectivity in catalysis. They are active, highly stable in 

the solvents, and have a wide range of substrate specificity. They are generally environmentally 

benign, and produce few by-products [115-118]. Since lipases constitute the most important group of 

biocatalysts for biotechnological applications, their optimisation of industrially relevant 

properties can be achieved by directed evolution [119], which is nowadays widely used for the 

optimization of diverse enzyme properties like stability, high product purity, regioselectivity and 

in particular, enantioselectivity [120-121]. 

 

In order to increase the activity and stability of lipases and at the same time to facilitate their 

recovery, many immobilization techniques have been studied [122], e.g., on hydrophilic supports 
[123], hollow membrane [124], adsorption on solid supports, encapsulation and entrapment within 

the membrane. Recently, the entrapment of lipases in hydrophobic sol-gel materials with 

formation of heterogeneous biocatalysts having significantly enhanced the enzyme activities [125]. 

Furthermore, these will then determine desirable bioreactor design (batch, stirred tank, membrane 

reactor, column and plug-flow)[126]. 

 
The main application fields for lipases include dairy, diagnostics, oil processing, and 

biotransformations. Recently, special emphasis is lying on the production of chiral chemicals, 

which serve as basic building blocks in the production of active pharmaceuticals, agrochemical 

intermediates, food ingredients, and pesticides or insecticides [127,128]. They are also utilized, with 

general interest, in many other industrial applications, e.g., detergent formulations, oil and fats, 

baking, organic synthesis, hard surface cleaning, and paper industry [129]. These enzymes find 

promising applications in organic chemical processing, synthesis of biosurfactants, the 

oleochemical industry, the dairy industry, nutrition, and cosmetics [108]. As well as lipases have 

become of commercial importance as constituents of synthetic targets [130], their versatility makes 
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them the enzymes of choice for potential applications in the leather and textile industries [102]. 

Furthermore, novel biotechnological applications have been successfully established using 

lipases for the synthesis of biopolymers and biodiesel, the production of enantiopure 

pharmaceuticals, agrochemicals, and flavour compounds [119].  

 
One of the very important application is the synthesis of enantiomerically pure chiral compounds 

for the drugs produced in either pharmaceutical or agricultural industry for living organisms 
[128,131]. The increasing awareness of the importance of chirality in the context of biological 

activity has stimulated a growing demand for efficient methods for industrial synthesis of pure 

enantiomers in synthesis of the drugs [39]. Therefore, the kinetic study of enantiomeric reaction 

has become important to understand and control the production of desired racemate, as 

considered in the main topic of this work. 

 

 

2.4. Medium Engineering for Lipases 
 

The enzyme activity and the enantioselectivity are the important characteristics of enzymes. The 

biocatalyst itself and the reaction conditions can influence the measured enantioselectivity[132]. 

The choice of the optimal reaction conditions for an enzyme is a critical factor, since the enzyme 

activity and stability are greatly influenced by the reaction media[133]. Recently, the substrate 

specificity, enantioselectivity, prochiral selectivity, regioselectivity, and chemoselectivity of 

enzymes have been found dramatically to be dependent on the nature of the solvent[134]. Three 

approaches of using biocatalyst engineering, medium (solvent) engineering and substrate 

engineering have been proposed to improve the enzyme activity and enantioselectivity[135]. 

Medium engineering is a relevant technique to improve the efficiency and stability of enzymes 

with the selection of convenient medium[136]. As previously mentioned, the media for the 

transesterification reaction used in this work was performed in organic solvent, n-hexane, and 

supercritical CO2 medium, the both medium was explained in detail while the other solvents were 

explained briefly. 
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2.4.1. Aqueous Medium 

 

Water plays a central role in enzymatic catalysis and is a ubiquitous component in all biological 

processes such as biosynthesis, photosynthesis, metabolism and catabolism [137]. Historically, the 

enzymatic catalysis has been carried out primarily in aqueous systems, because the water is the 

natural medium of the enzymes [138]. It was previously difficult to visualize enzymes catalyzing 

reactions in the absence of water [139]. The enzyme maintains its native three dimensional 

conformations and its natural activity in water [140]. The amount of water associated with the 

enzyme molecules is controlled by the water activity [141-142]. A high hydration level leads to a 

more flexible enzyme[143-146], which is in some way directly related to the enantioselectivity of the 

reaction[133,147]. The rates of enzyme-catalyzed reactions are in many cases strongly dependent on 

the water activity of the reaction medium. The picture is more complex regarding the effect on 

enzyme enantioselectivity [148]. It is reported that lowering the water affinity (or water content), 

decreased[149-152], increased[153-157] or not affected [149, 158-160] the enantioselectivity.  

 

 

2.4.2. Organic Media 

 
The use of water as natural solvent in enzyme catalysis is often a problem because the most of the 

substrates are insoluble in water [161,162]. The water itself may become a reactant and frequently 

gives rise to unwanted side reactions. It sometimes degrades common organic reagents and shifts 

the equilibrium towards the reverse reaction [163-165]. In water, the transesterification reaction 

would not be possible because of the domination of the hydrolysis reaction [137]. Beyond all these 

circumstances, the thermodynamic equilibrium of many processes is unfavorable in water, and 

product recovery is sometimes difficult from this medium. In principle, the most of these 

problems might be overcome by switching the reaction media from water to organic solvent [94, 

128, 166, 167] or monophasic / biphasic mixture of water and organic solvent. In organic solvents, the 

hydrolysis of esters is negligible, and optically pure esters can be produced; e.g., in addition to 

the transesterification reactions, lipases can also catalyze intramolecular esterification [137]. 

Although the experiments to place enzymes in systems other than aqueous media began from the 

end of the nineteenth century[138,168], it was shown that enzymes are functional in both aqueous 
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and organic media in last two decades[137, 144]. The detection of the enzyme activity in an organic 

solvent has opened a totally new horizon for enzyme technologists[169], and greatly expanded the 

potential scope and economic impact of biocatalysis[170]. Studies of biocatalysts in non-aqueous 

environments have led to a deeper understanding of how enzymes function in unnatural 

surroundings as well as in water[171]. Later, it was determined that the activity, specificity, and 

stability of the catalyst depend on the type of the solvent[94, 172-175]. Especially, lipase catalyzed 

esterification reactions in organic solvents was often more enantioselective than the 

corresponding hydrolytic reactions in water[176]. Due to decreased enzyme flexibility in organic 

solvents, an increase in enzyme enantioselectivity has been observed[177]. Enzyme activity in 

organic solvents depends dramatically on such parameters as water activity, substrate-product 

salvation, pH control, enzyme form and the nature of the solvent. It became apparent that enzyme 

activity was higher in hydrophobic solvents than in hydrophilic ones[178], because the latter have a 

greater tendency to strip tightly bound water from the enzyme molecules[94,132]. 

 

However, it is very well documented that enzymes are denatured or highly inactivated in the 

presence of organic solvents. The specific catalytic activity of enzymes, that is stable in non-

aqueous environments, are generally lower than those in aqueous systems [179-181]. Improvement 

of enzyme activity in non-aqueous solvents has been of great significance in the field of non-

aqueous enzymology. This observation has led to numerous attempts to improve enzyme activity 

and stability in non-aqueous media, using strategies including: entrapment in water-in-oil 

microemulsions [182,183], utilization of solid enzymes (suspended in organic solvents) [172, 184,185], 

surfactant -coating and bioimprinting [186], immobilization on appropriate insoluble supports [187- 

193] to offer several advantages those include: reusability, rapid termination of reactions, low cost 

product formation, and ease of separation [194]. Another diversely used method is the enzyme- 

containing reverse micelle.systems, which has become an attractive proposition when substrates 

and/or products are hydrophobic and low water content is desired. This is often the case with 

lipase reactions, since the solubility of the substrate, e.g. a triglyceride, is markedly improved in 

an organic solvent [195]. Reverse micelles offer a unique possibility to overcome problems caused 

by medium heterogeneity [196]. Hovewer, an important problem for application of the lipase in 

reversed micelles is the deactivation of the enzyme [197]. 
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As a summary of all above mentioned acknowledgement about enzymatic catalysis in organic 

solvents, it can be simply revealed that enzymes significantly broadens conventional aqueous-

based biocatalysis [92, 163, 198- 202]. The advantages and disadvantages of biocatalysis in organic 

solvents are given on Table 2.4 in detail. 

 

 

2.4.3. Solvent free Systems (SFS) 

 

An alternative media to organic solvents is the possibility of avoiding the use of any reaction 

medium [203]. The SFS is simply a mixture of reactants without any organic solvent added [204]. 

The choice of solventless or specific non-organic solvent reaction medium will depend on several 

issues; including selectivity, stereochemistry, yield, waste, viscosity, ease of recycling, energy 

usage, and ease of isolation of products, competing reactions, and heat of reaction [205]. The SFS, 

which is a simple mixture of reactants, offers greater safety, increased reactant concentrations and 

high volumetric productivity [204,206]. A system, that presents the major advantage of the absence 

of solvents, facilitates downstream processing. Moreover, the elimination of solvents from the 

production step offers significant cost saving [207], and the environmental impact is minimum, 

since there is no solvent in the reaction system [163]. 
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2.4.4. Ionic liquids (ILs) 

 

Besides the organic solvents and supercritical fluids, the ionic liquids, ILs have been used as 

clean and green solvents not only for the enzymatic reactions in a wide variety of biochemical 

processes [214-217], but also as extremely excellent solvents or catalysts for a wide range of 

polar and non-polar organic, inorganic, and polymeric compounds [218-226]. In the last years ILs 

have gained much attention, because they can be used for all types of reactions [224, 225, 227- 230]. 

In contrast to molten salts, ILs are the organic salts in liquid phase at/below room temperature 
[227, 229, 231-233]. They are entirely composed of ions [225], normally consisting of a bulky 

asymmetric organic cation and a wide variety of polyatomic inorganic anion [234]. In the 

future, solvents will be designed to control chemistry [235]. In this aspect, by changing the 

structure of anion or the R group of the cation, or both [236,237], (ILs) can be tuned for each 

specific enzymatic reaction system [238].  

 

2.4.4.1. Lipases in Ionic Liquids 

 

After the first report on enzyme catalysis in ILs [239, 240], the potential use of lipase catalysis in 

(ILs) [241-244] for improvement of enantioselectivity were immediately followed [245,246]. 

Lipase-catalysed reactions in (ILs) have some potential advantages besides environmental 

ones, including increased stability, high activity, high reaction rates, high thermal and 

operational stability, the regioselectivity [229,247-251], and the enhancement of  enantioselectivity 
[252-259]. It is also determined that the stable microbial lipases, like Burkholderia cepacia lipase 

(BcL), are catalytically quite active in the (ILs) [238, 260-263].  (ILs) offer an excellent media for 

many lipase-catalyzed trans/esterification reactions with an increased activity and 

specificity[222, 262, 264-268]. 

 

Nowadays, a new class of intensified processes comes into perspective, by combining ionic 

liquids and supercritical carbon dioxide (scCO2) as new study for the enzymatic reactions [269-

276].  
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2.5. SUPERCRITICAL FLUIDS ( scF) 

 
Recently, the most of the biotechnologically important materials are produced by enzymatic 

biotransformations on industrial scale [277], while the biocatalysts are generally non-toxic and 

produce less or almost no by-products [278]. The reaction media is known to be important, 

because they can change the activity, specificity and stereoselectivity of an enzyme along the 

course of the reaction [94]. Prevoiusly, all reactions in bioprosesses were essentially performed 

either in water or occasionally in organic solvents [277]. Although the aqueous medium is an 

environmentally benign and cheap, it is not a good solvent especially for the hydrolysis 

reactions using hydrolytic enzymes [173,279-291]. Thus, the reactions using hydrolytic enzymes 

have been usually taken place in non-aqueous organic solvents, e.g. lipase catalyzed 

esterification, transesterification reactions [292- 296]. 

 

As briefly mentioned in previous sections, the different solvent engineering methods have 

been searched to increase the efficiency and the yield of the enzymatic reactions by studying 

wide range of variuos reaction media. In this work, two solvents have been utilized for the 

kinetic studies. The first one is the widely used organic solvent n-hexane for lipase catalysed 

transesterification [297-303]. Unfortunately the use of n-hexane is under greater scrutiny due to 

increasing government restrictions and consumer concerns regarding the safe use of organic 

solvents [304]. The second solvent is the carbondioxide in its supercritical phase (scCO2) [153, 

279, 280, 299, 300, 305- 311] within which the reactions might be considered as solventless [286].  

 

Using scF as medium has several additional advantages as given in detail on Table 2.5. It can 

diffuse through solids like a gas, and dissolve materials like a liquid because of its low 

viscosity [312-315]. Supercritical fluids have been used as solvents for organic synthesis as well 

as for extraction and chromatography by taking advantage of both their gas-like low 

viscosities and high diffusivities and their liquid-like solubilizing power [316-320]. They have 

low surface tension allowing dissolved reactants to penetrate easily throughout macro- and 

micro-porous materials [321]. These unique transport properties enhance the mass transfer rates 

of substrates to active sites of enzymes [277, 316, 322-324]. Moreover, its properties, such as 

density, dielectric constant, diffusivity, viscosity, solubility and the partition coefficientcan be 

tuned by adjusting the pressure and temperature, which clearly distinguishes the supercritical 

fluids from conventional solvents [316-320, 325-328]. By tuning, it is possible to eliminate transport 

limitations on reaction rates [316].  
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Table 2.5.: Advantages and disadvantages of scCO2 [ ref: 313, 315, 320, 323, 325, 337-354] 
Advantages: Disadvantages 

 

● green chemistry 

● cheap 

● abundant and  available in high purity 

● better product uniformity 

● environmentally benign 

● high reaction rate and conversion 

● improved selectivity 

● inert 

● non-flammable,  

● energy reductions 

● ease of product recovery 

● reduction in side reactions 

● non-cancerogenic, 

● non-mutagenic,  

● non-flammable  

● non-toxic  

● non-corrosive 

● higher diffusivities and no mass transfer limitations 

● thermodynamically stable 

● low temperature for heat labile  materials 

● the control of dissolving power by tuning the  pressure 

and/or temperature  

● easy extract recovery  

● high boiling components are extracted at relatively low  

temperatures  

● the size, shape and morphology control of the material 

● similar solvating power as organic solvents  

● low viscosity 

● low surface tension 

● no microbial contamination in bioreactor  

● the solubilization of hydrophobic chemicals 

● elimination of side reactions 

● enzyme stability 

● gaseous under ambient conditions 

● moderate critical conditions to facilitate process design 

 

 

●CO2 is a potent inhibitor of the reaction   

●technological difficulties related to high pressure operations 

● high capital investment for equipment  

● poor solvent for high molecular weight or hydrophilic 

molecules because of its very low dielectric constant and 

polarizability per volume 

 

● scF technology requires sensitive process control 

● compression of solvent requires elaborate recycling 
measures to reduce energy costs  

● the phase transitions in the critical region is rather complex 

and difficult to measure and predict.  

● enzymes are insoluble in sSCF, and therefore recovery is 

straightforward and immobilization is unnecessary 

 

● scCO2 could strip essential water from the enzyme 

microenvironment, causing enzyme deactivation.  

 

● the hydrophobic nature of supercritical fluids hydrophylic 

reactants and products can not be dissolved.  

 

● the reactivity of scCO2 with amines to form carbamide 

may affect the stability and activity of enzymes by reaction 

with amino acid residues  

 

● CO2 reacts with water to form carbonic acid, which will 

lead to a drop in pH in non-buffered systems  

 

● complex character of the phase equilibrium in systems 

 

 

 

 

Especially from an industrial point of view, the scFs have also a great advantage of that the 

different products are obtained to a high level of purity upon de-pressurisation without the 

need for the extensive separation processes [321]. By this way, the reaction mixture and the 
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final product are freely separated from residual solvent [329,330]. The adjustable solvent power 

of the fluid allows the design of a production process with integrated downstream separation 

of products and un-reacted substrates [277]. One of the basic difficulties in using scFs is that the 

operation should be carried out in high pressure equipments. For optimal equipment design, 

the fundamental aspects involve phase behavior and solubility as well as density and 

interfacial tension. In addition, transport properties, including viscosity, thermal conductivity 

and diffusion coefficients are needed [304]. Safety aspects of any reactor should also be 

considered during design [322]. There are several reports on batch processes [331-333], and 

continuous processes [279, 334-336]. 

 

Although the supercritical properties were first observed in 1822 by Baron Charles Cagniard 

de la Tour, its industrial application first appeared in 1978 as given on brief historical 

timetable of scFs ( Table 2.6.). In the past twenty years, there has been a sudden expansion of 

the “critical fluid” technology platform with respect to using or combining multiple types of 

unit operations and compressed fluids in both their sub- and supercritical states [346]. 

Supercritical fluids (scF) have been focused on as a new reaction medium [316, 319, 352]. The 

thermophysical properties of many compounds, and their solubility parameters are very well 

listed in literature [320, 324, 349]. One of the interesting point on these data is that the solubility 

parameter for n-hexane and CO2 are 7.325 and 7.118 (cal/cm3)0.5 respectively [355]. This shows 

that scCO2 showed approximately equal polarity and solubility as n-hexane, and can be used 

instead of this conventional organic solvent [280,351,356]. Consequently, the enzymatic reactions 

under (scCO2) have become one of the most useful processes [283, 316, 319, 352, 357, 358-361]. A brief 

list of works on the enzymatic reactions in scCO2 are given on Table 2.7.  Among other scFs,  

supercritical carbon dioxide (scCO2 ) has found a widespread usage because of that it is non-

toxic, inflammable, relatively inert, abundant and inexpensive, stabile in radioactive 

applications, ease of separation from substrates and products, low viscosity, high diffusivity 

and ambient critical temperature (Tc = 31.0 °C). scCO2 has recently attracted attention as an 

environmentally friendly solvent for extraction, chemical reactions and chromatography [319, 

322, 378]. Its low critical temperature allows the heat sensitive materials to be processed without 

denaturation [379], and it has also been proved that the enzymes have stability, activity and 

specificity as weel as tunable enantioselectivity in scCO2 [284,285]. The limitation for scCO2 

usage is that it can only dissolve the non-polar solid compounds [289], because of the non-

polarity of carbon dioxide, which preferentially dissolves hydrophobic compounds [313, 346]. 
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Table 2.6.:Brief history of Supercritical Fluids ( ref : 284, 295, 323, 330, 349, 380- 394 )  

Year Scientist / Company Work / Process 
1822 Baron Charles Cagniard de la 

Tour 

Discovery of the critical point of a substance  

1861 Gore The first publications about phase behavior and solvent 

characteristics of near-critical, liquid carbon dioxide 

1879 Hannay and Hogarth The ability of a supercritical fluid to dissolve low-vapor-pressure 

solid materials 

1822 Baron Carniard de la Tour Discovery of the critical point of a substance 

1861 Gore Solvent properties of  compressed CO2 detected 

1869 Dr. Thomas Andrews A lecture about investigation of phase behavior of CO2  

1879 Amagat A method for compressing gases to -400 bar using mercury 

columns extending to the bottom of a mine shaft 

1879 Hannay & Hogart Several solids were extracted  with CO2  

1881 Ramsay Dissolved eosin in CO2   

1891 Cailletet Generation of high pressures with a mercury column  

1896 Villard Publicationf of a review of supercritical fluid solubility phenomena 

1906 Buchner The experimental data base of high pressure SCF-solute mixtures 

1913 Ipatiev & Rutala Homogeneous catalysis in SCFs 

1915 Prins Explored the solubility of naphthalene in both supercritical ethane 

and carbon dioxide 

1940 Pilat, S. and Godlewicz Patent for the fractionation of mineral oils using scCO2  

1954 Francis An extensive, quantitative study on the solvent properties of liquid 

CO; with hundreds of compounds 

1962 Klesper , et.al., Discovery of supercritical fluids chromatography 

1978 Kaffe Hag  A.G The first decaffeination of green coffee beans plant in Bremen 

1980 Carlton and United Breweries The liquid CO2 extration for hop flavours in Melbourne 

1980 Bart Raiser Co The first hop extraction plant in Wolnzach 

1980 SKW Trostberg Tea decaffeination Munchmunster  

1984 Tom & Debenetti RESS ( rapid Expansion of supercritical solutions) Process  

1985 Randolph et al., Nakamura The first reports on biotransformations in supercritical fluids 

1986 Nakamura The use supercritical carbon dioxide as a reaction media 

1992- 

1995 

Kamat Improved reaction rates, control of selectivities by pressure 

1992 Marty The kinetic behavior of an enzymatic reaction in scCO2 compared 

to that in a conventional organic solvent was studied. 

2002 Thomas Swan & Co. Ltd. Operating a 800 t/a of  heterogeneously catalyzed reactions in 

scCO2  
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  Table 2.7.:Enzymatic reactions in scCO2  
Enzymatic 

Reaction in scCO2 

References 

oxidation 362, 363, 364, 365 

hydrolysis 290, 348, 366 – 369  

esterification 321, 328, 341, 348, 358, 359  

interesterification 338, 370, 371, 372, 373 

transesterification 281, 329, 332, 374-377 

enantioselective 

synthesis 

278, 285, 327, 330 

 

The simple addition of a polar co-solvent, 

such as methanol and ethanol, greatly 

enhances the solubility of polar compounds 

in scCO2 [322, 378] due to specific 

intermolecular interactions between the co-

solvent and specific components of a 

mixture, since the solubility of all mixture 

components is enhanced due to the density 

effect [304].  

 
 

2.5.1. Physicochemical properties of the supercritical fluids  

 

A fluid is considered to be supercritical at a temperature and pressure above its 

thermodynamical critical point [395]. In the supercritical environment only one phase exists. 

The fluid is neither a gas nor a liquid, and combines properties of gases and liquids [349, 396]. 

Thus, a supercritical fluid (scF) is characterized by physical and thermal properties that are 

between those of the pure liquid and gas (Table 2.8.). In this phase, the fluid density is a 

strong function of the temperature and pressure. The diffusivity of scF is much higher than for 

a liquid and scF readily penetrates porous and fibrous solids [173, 325, 352]. The high diffusion 

rates in scFs cause the rapid mass transfer, which may be further enhanced by natural 

convection [397]. The dimensionless parameters in scFs were studied in detail [398-401], and the 

natural convection is expected to be a function of the Grashof number Gr, and the overall 

mass transfer may then be correlated as Sh = f(Re, Sc, Gr), where Sh is the Sherwood 

number, a dimensionless number useful for correlating the mass transfer coefficient, kc.(eqn 

2.1.).  

   ୗ୦ୗୡୋ୰భ రൗ = 1.692 ቀ ୖୣୋ୰భ మൗ ቁ଴.ଷହ଺
     (2.1.) 

 

A maximum in the mass transfer coefficient near the critical point, correlated with a 

maximum in the Grashof number defined as in the following correlation for mass transfer in 

SCFs [402, 403].  

 

The schematic phase diagram for pure carbon dioxide (Fig. 2.5) shows the projection on the 

P-T plane of the P-V-T surface, where carbon dioxide exists as a gas, liquid, solid or as a scF. 
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The solid-gas coexistence line, the triple point, and the solid-liquid and liquid-gas coexistence 

curves are shown [295]. The gas–liquid coexistence curve is known as the boiling curve. 

Moving upwards along the boiling curve with ascending temperature and pressure, the liquid 

becomes less dense due to thermal expansion and the gas becomes very dense as the pressure 

rises. This situation is well obversed by the video taken by Schwabe et.al. at Technical 

Chemistry Institute of Hannover University (Fig. 2.6 ).  

 

Table 2.8.: Comparison of Physical Properties of Liquids, Gases and scFs,  
        (Kinematic viscosity ν=η/ρ ), ( ref : 313, 324, 349, 352, 355 ) 

 

 
 

On f and g pictures of Fig. 2.6., it is quite clear how the surface become weak and the 

interface between gas and liquid disappears, then the boiling curve comes to an end at the 

critical point, where a liquid and gas phase in equilibrium converge into a single phase [379]. 

The critical point for CO2 occurs at a pressure of critical point Pc 7.39 MPa and a temperature 

of 304.1 K of a pure substance. Thus, above the critical temperature a gas cannot be liquefied 

by pressure. At slightly above the critical temperature, in the vicinity of the critical pressure, 

the line is almost vertical. A small increase in pressure causes a large increase in the density 

of the supercritical phase.  

 

The phase distinction was observed by setting up a vessel with a window, through which the 

meniscus between liquid and gas can be seen to disappear as the critical point is reached (Fig. 

2.6.). Photograph (a) shows a two phase liquid–gas system, with a clearly defined meniscus. 

As the temperature and pressure of the system are increased, the meniscus becomes weak 

(photograph b). This is due to the decrease in the difference between the densities of the two 
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Fig. 2.5.: Schematic phase diagram of CO2 (with the courtesy of ref.  404, 405) 

 

phases. As the pressure is increased more, the interfacial forces seem to be strong not to 

separate the two phases (d). Near the critical point, the interfacial surface forces beome more 

weak ( f, g) and, finally, in photograph (i), no meniscus is present and the system is now a 

single homogeneous scF [309]. Fig. 2.6 also supports this situation by the pictures taken from 

video at TCI by Schwabe et.al.    

 

 
Fig. 2.6.:  Pictural demonstration of phase diagram photographed in TCI, by Schwabe. et.al.,. 

 



34 
 

 

2.5.2. Applications Using Supercritical CO2 

 

The special properties of supercritical fluids bring certain advantages to chemical separation 

processes. Several applications ,given on Table 2.9, have been fully developed and 

commercialized. 

Table 2.9.: Application of scCO2 in Industry 
Industry Process References 

 
Cleaning 

 
Dry-cleaning of garments, usageof CO2 instead of PERC 
(perchloroethylene), cleaning of equipments and 
microparticles 
 

 
221, 313, 379, 
406-413 

 
Cosmetics 

 
Cosmetic compounds extracted from herbs   
 

 
414 - 419 

 
Energy 
 

 
Biofuel, biodiesel, biorefinery, nuclear power plants, the 
destruction of toxic waste, refrigeration,  
 

 
420 - 428 

 
Environmental 

 
Soil remedation, waste treatment, killing and inactivatiom of 
microorganisms 
 

 
353, 429 - 440 

 
Food and flavouring 

 
Extraction or syhthesis of edible and aromatical compounds, 
lipid extraction, cholesterol lowering, pasteurization, cheese 
maturation 
 

 
441 – 447  

 
Nanotechnology 
 

 
Tuneable pore sizes; high surface areas aerogel,  
drug delivery systems, catalyst for fuel cell, controlled crystal 
growth, semiconductor fabrication, bio-medical materials, 
polymeric nanocomposite foams, sensors, nanoparticle 
formation 
 

 
 
448 – 458  
 

 
Petrochemistry 
 

 
The destillation residue of the crude oil, regeneration of used 
oils and lubricants,plastic recycle, heterogeneous catalysts 
preparation 
 

 
459 – 471  

 
Pharmaceutical & 
medical 
 

 
Controlled or targeted drug delivery, biomedical devices, 
stem cell, producing of active ingradients from herbal plants, 
elimination of residual solvents from the products.  
 

 
354, 448,  
472 - 480 
 

 
Polymer  
 

 
Biodegradable polymers ; design for a specific particle shape 
and size ; plastic recycling ; Encapsulation ;  Plastic 
degradation ; Thin film formation ; Plastic foaming 
 

 
355, 481 – 492  
 

 
Supercritical fluid 
chromatography 

 
Chiral separations; analysis of high molecular weight 
hydrocarbons 
 

392, 493 – 498 
 

 
Textile 

 
Dyeing, scouring, bleaching, leather cleaning 
 

337, 499 - 508 

 
Tissue Engineering 

 
3D scaffholds preparation, foamed structure formation, 
sterilization, 
 

 
476, 509 - 524 



35 
 

 

 
2.5.3. Lipases in scCO2  

 

In the last two decades, the lipase-catalyzed reactions in scCO2 have been reported by 

numerous investigators[332, 333, 342, 525-532]. Enzymes in scFs can be used in their native form 

(powder, reversed micelles, liquid, etc.) [533] or used as immobilized enzymes on a carrier 

(resin, sol–gel matrix, etc.) [289, 326, 534-542]. They can be used as crosslinked enzyme crystals, 

crosslinked enzyme aggregates, and lipid coated enzymes. It is thus very difficult to predict 

the stability and activity of an enzyme in any scF [277]. Methods to enhance the activity of 

enzymes in scCO2 are studied much in detail [543]. The use of lipases in non conventional 

SCFs, has been proposed to enhance not only the activity, but also the utility of enzymes in 

anhydrous environments, the stability and enantioselectivity of the enzyme [329, 544- 549]. 

 

 

2.5.3.1. The effect of pressure on Lipase 

 

Change in pressure of scCO2 influences its density-dependent physical properties such as 

partition coefficient, dielectric constant and Hildebrandt solubility parameters (eqn 2.2) [550], 

that indirectly regulate the activity, specificity and stability of enzymes [551]. 

 

ߜ     = 1.25 ௖ܲଵ ଶൗ ൤ ఘఘ೗೔೜൨     (2.2) 

 

The pressure has direct and indirect effects on enzyme activity in scFs. Directly, it my lead to 

denaturation as a result of sudden depressurization, which influences the residual enzyme 

activity by unfolding of the enzyme [313,552]. The enzyme activity and selectivity are affected 

indirectly. Many ezymes are usually stable under high pressure [342], and pressurizing usually 

does not play an important role in changing enzyme activity. Hovewer, sometimes local 

changes may occur in the enzyme structue, causing an altered activity with a shift of the 

active state [277,553]. The effect of pressure on the efficiency of the reaction and 

enantioselectivity is indeed noteworthy. When the pressure of scCO2 was changed, the density 

of scCO2 does change, as given by Hildbrand solubility parameter equation (eqn 2.2) [286]. 

Pressure is also likely to have an indirect affect on the rate of the reaction [313], by changing 

the concentrations of reactants and products in solution because the partitioning of reaction 

components between the two phases depends on pressure [554]. Large changes in the scF 



36 
 

 

density as a result of increasing pressure altered the interaction between CO2 and the enzyme 

to progressively affect the enzyme conformation and, therefore, the enantioselectivity of the 

reaction [286]. 

 

 

2.5.3.2. The effect of temperature on Lipase 

 

Temperature is one of the most important reaction parameter, which influences enzyme 

activity much more than pressure [313].Temperature significantly affects enzyme catalysis in 

scCO2. This effect is strongly related to the enzyme activity, fluid density and stability and to 

the CO2 solvating power [555]. In scCO2 the increase in temperature increases the solubility 

and decreases the density. The lower density and viscosity of the scCO2 results in an increase 

in the mass transfer rate of the substrates and products. The reactants also easily surpass the 

activation energy barrier of the transition state at high temperature [556], consequently an in 

reaction rates is observed [557,558]. Beyond a very high temperature, the conversion decreased 

slightly probably caused by the vibration and movement of the enzyme molecule, which 

would affect the hydrogen bonds and other bonds in the lipase structure. Hence, the enzyme 

molecule will unfold and alter its tertiary and quaternary structure (three-dimensional 

conformation). Consequently the enzyme is denatured and results in the reduction of catalytic 

power [559]. Denaturation also affects the differential partition of substrates between the 

vapour and the liquid phase in contact with the enzyme phase [560]. 

 



 

 
 
 
 
Chapter III. Enantioselectivity and  
   Mechanistic Kinetics Modeling 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
A mathematical model is neither a hypothesis nor a theory.  

Unlike scientific hypotheses,  

a model is not verifiable directly by an experiment.  

For all models are both true and false… 

The validation of a model is not that it is "true"  

but that it generates good testable hypotheses relevant to important problems. "  

(R. Levins, Am. Scientist.54:421-31, 1966) 
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3. Enantioselectivity and Mechanistic Kinetics Modeling 
 
 
In this chapter, the concept of enantioselectivity, depending on the racemic reaction kinetics, is 

reviewed and an enantiomeric ratio (E-value) for two components case ( bi-bi ordered reaction ) 

is newly suggested. In addition to enantioselectivity concept, a general mechanistic kinetic 

model for the enzyme catalyzed enantiomeric reaction is postulated. In the following chapters, 

a specific transesterification reaction is considered as a case study to check the validity of this 

mechanistic model.  

 

The chemical engineers usually design and built a reactor to increase capacity or selectivity at 

minimum cost. For multiple reactions, not only the conversion but also the selectivity (S), 

defined as the ratio of the desired product per all products by eqn. 3.1, is investigated and 

controlled to produce the desired product and its yield. In fact, the selectivity is frequently 

much more important than conversion because the increase in the conversion can be achieved 

by using a larger reactor, a lower flow rate, or a higher temperature, but poor selectivity 

necessarily requires consumption of more reactant for a given amount of desired product, and 

separation of reactants [561]. 

 
 S୧ = େౌౚ౛౩౟౨౛ౚେఽ౥ିେఽ = ଢ଼ଡ଼     (3.1) 

 

where Y is the yield and X is the conversion. In order to understand the kinetic model, the basic 

rate definition can be taken into account as defined by Levenspiel [562]. 

 

For a single phase reaction below, 

 

                           
 

the determination of rate expression, for the design of suitable reactor in industry, is required, 

and defined by the following equation. 

 
஺ݎ-  = − ଵ௏ ௗேಲௗ௧   =   (௔௠௢௨௡௧ ௢௙ ஺ ௗ௜௦௦௔௣௘௔௥௜௡௚)(௩௢௟௨௠௘)(௧௜௠௘)  ,   ቂ ௠௢௟௠య.௦ቃ    (3.2) 

 
 
 
 

aA + bB rR + sS
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The rates of reaction of all materials are related by 
 
 − ௥ಲ௔ =  − ௥ಳ௕  =  ௥ೃ௥  =  ௥ೄ௦         (3.3) 
 

This stoichiometric relation is important to calculate any immeasurable component via 

measurable ones. The understanding of the kinetic mechanism in a reaction is not only very 

important for design of a new reactor, but also to operate the system at optimum reaction 

conditions. Especially, for the racemic substrates, the concept of enantioselectivity plays a 

significant role during the enzymatic reactions, because enzyme selectively reacts more with 

one of the desired racemates.  

 
 
 
3.1. Enantioselectivity 
 
 
Enantiopure chiral compounds are frequently needed as building blocks in the pharmaceutical 

industry. To achieve such compounds, enzymes can be used for the kinetic resolution of 

racemates [563]. These enzymes do not always show satisfying performance in terms of activity, 

stability and most importantly enantioselectivity. These properties can be optimized by protein 

engineering techniques, by alteration of the substrates or the reaction system (medium 

engineering as detailed in previous chapter). The molecular basis for enantioselectivity is 

usually expressed as an E-value, which is the ratio of the activity towards each enantiomer[564]. 

Especially in the absence of structural data, predictions for how enantioselectivity will change 

are almost impossible [565]. 

 

The kinetic resolution is also important in the resolution of racemates. Kinetic resolution of 

racemic compounds is by far the most common transformation, in which the enzyme 

discriminates between the two enantiomers of racemic mixture, so that one enantiomer is 

readily transferred to the product faster than the other with a chiral entity [94,163,199, 200].  

 

A high E-value for a given substrate-enzyme pair is crucial for the success of a kinetic 

resolution, since a high E-value ensures not only a high (ee), but also a high yield[566]. In 1974, 

the enantiomeric relation was defined for a photodecomposition of a racemate of a racemic 

reaction by circularly polarized light[567]. A similar equation was derived for the chemocatalytic 

racemic reaction[568]. Later, in 1982, Chen et.al. showed that this relation also holds for 
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enzymatic catalysis with E as the selectivity parameter[564]; thus, similar equations and 

parameters are used to describe enantioselective photochemical, chemical, and enzymatic 

catalysis. 

 
 
 
3.1.1.  E-value for uni-uni irreversible reactions 

 

The basic enzymatic example is the irreversible conversion of a single racemic substrate, 

LS/DS, into a single chiral product, LP/DP, via a substrate-enzyme complex in a homogeneous 

batch reactor, in the absence of side reactions. 

 

 
 

 

As the reaction rate for each single reaction is written; 

 

   − ௗ[௅ௌ]ௗ௧ = ݇ଵ[ܧ][ܵܮ]          (3.4) 

  − ௗ[஽ௌ]ௗ௧ = ݇ଶ[ܧ][ܵܦ]          (3.5) 
 
The above equations were obtained, according to the definition of selectivity by eqn. 3.1 it the 

following form is derived; 

 
  ܵ = ௗ[௅ௌ]ௗ[஽ௌ] = ቀ௞భ௞మቁ [௅ௌ][஽ௌ]          (3.6) 
 
Integrating the above equation gives the result derived by Chen et.al.,[564]. 
 

  ቀ௞భ௞మቁ = ܧ = ௟௡ቂ ಽೄಽೄ೚ቃ௟௡ቂ ವೄವೄ೚ቃ          (3.7) 

 
This is the enantioselectivity value ( E –value) for irreversible uni-uni racemic reactions. 
 
 
 
 
 
 

E   k1

E  

LP

DS DPk2

LS +

+

E  

E  

+

+
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3.1.2.  E-value for uni-uni  reversible reactions 

 
Later, the model given in section 3.1.1., was extended to reversible reactions. If the resolution 

reaction is reversible, also the equilibrium constant K has to be taken into account[566]. The 

reaction used is a uni- uni reversible racemic reaction[569], and the scheme is as follows 

 

 
Where  ݇ଶ ≠ ݇ସ ≠ 0         (3.8) 
 
The rate of disappearance of LS and DS B are defined as 
 
  − ௗ[௅ௌ]ௗ௧ = ݇ଵ[ܧ][ܵܮ] − ݇ଶ[ܧ][ܲܮ]       (3.9) 

  − ௗ[஽ௌ]ௗ௧ = ݇ଷ[ܧ][ܵܦ] − ݇ସ[ܧ][ܲܦ]                 (3.10) 
 
Again by using the definition of selectivity by eqn 3.1, and defining the concentration terms 
 

  ൜ [ܲܮ] = [଴ܵܮ] − [ܲܦ][ܵܮ] = [௢ܵܦ] −  (3.11)                  [ܵܦ]

 
are obtained. From the equilibrium constans  
 
 K = ୩మ୩భ = ୩ర୩య  ⇒  kଶ = Kkଵ ⇒kସ = Kkଷ                (3.12) 
 
and by substitution of LP and DP concentration equalities ( eqn. 3.11) 
 
  ௗڿ௅ௌۀௗ[஽ௌ] = ௞భ[௅ௌ]ି௄௞భ([௅ௌ೚]ି[௅ௌ])௞య[஽ௌ]ି௄௞య([஽ௌ೚]ି[஽ௌ])                  (3.13) 
 
equation (3.13) is obtained.  

 

Rearranging this equation, the final definition of enantioselectivity is derived. 
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This is the equation derived to define the enantioselectivity for reversible uni-uni racemic 

reactions[570]. When ݇ଶ = ݇ସ = 0 , equation (3.14) reduces to homocompetitive equation (3.7) 

for the irreversible case[564]. These equations show that the enantioselectivity of enzyme-

catalyzed synthesis depends on the complex interaction of both kinetic (E) and thermodynamic 

(K) constant. 

 

When the enzyme shows no absolute enantioselectivity, optimization of the yield or 

enantiomeric excess (ee) of the resolution process requires kinetic knowledge of the enzyme 

reaction. Usually, the model of Chen et.al. is assumed to be valid. However, some deviations 

from this model were detected during the study of the lipase –catalyzed hydrolysis in which the 

determination of E-value according to Chen and coworkers[564,569] may not be conclusive[571]. 

Thus, a formal analysis of the kinetic studies of complicated enzymatic resolution processes 

were suggested by Staathof et.al.[572-575]. 

 
 
 
3.1.3.  E-value for two component (Bi-Bi) reactions  

 

The kinetics of the two pairs of reactions was simplified to irreversible first-order kinetics, 

when the reversible reaction does not exit. For the bi-bi reactions, such a simplification is not 

possible because equilibria are involved; thus, each substrate or product will influence the 

reaction rate. Therefore, the analysis of such kinetics for resolution reactions[573] was extended 

to a kinetic model for the tandem resolution reaction [574]. 

 

On kinetic grounds, different mechanism for bi-bi reactions can be suggested, e.g. the ping-

pong mechanism. The type of mechanisms also leads to different relations for the ratio of 

reaction rates of enantiomers in a racemic mixture. Therefore, at a certain degree of conversion, 

the enantiomeric excess may depend on the mechanism, and consequently on the kinetic 

parameters involved [572]. 

 

Equation (3.14) [569] is not recommended in any of the bi-bi cases. When the wrong model is 

used, an appearance of E-value will be found which may differ from the real value. Then 

incorrect conclusions may be drawn about the enantioselectivity of the enzyme.  
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Leaving the enzyme-complex intermediates and mechanism to be considered in the following 

section, a new general approach was studied in this work to analyze the two component racemic 

reactions ( bi – bi ordered reaction), according to the general chemical reaction engineering 

approach for the overall reaction rate in bulk medium. 

 
 
 
3.1.3.1. E-value for irreversible Mutli component reactions 

 

In this reaction type, it is assumed that enzyme reacts with n different excess components (Ci) 

within the reactor as well as racemic solution, LS and DS, and the multi products Pi., shown as 

follows; 

 
 

 
 

 
The overall rate expression for such reaction is written as 

 

  ቐ − ௗ[௅ௌ]ௗ௧ = ݇ଵ[ܵܮ][ܧ] ∏ −௡௜ୀଵ[௜ܥ] ௗ[஽ௌ]ௗ௧ = ݇ଶ[ܵܦ][ܧ] ∏ ௡௜ୀଵ[௜ܥ]                    (3.15) 

 

Because the total enzyme concentration [E] during the reaction remains constant, it may not be 

considered in the ratio of the rate expression, in equation (3.16). 

 

 
ௗ[௅ௌ]ௗ[஽ௌ] = ௞భ[௅ௌ] ∏ [஼೔]೔೙೔సభ௞మ[஽ௌ] ∏ [஼೔]೙೔సభ                       (3.16) 

 
Since ∏ ௜௡௜ୀଵܥ  term cancels each other for the calculation of E- value, the equation (3.16) 

reduces to equation (3.7) in all cases. In this work, it was demonstrated that the equation 

suggested by Chen et.al. can be applicable for any type of overall enzyme reaction if it is 

irreversible, where it can also be said that Keq does not exist. 
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3.1.3.2. E-value for reversible two component (bi-bi) reactions 

 

If overall reaction is reversible as shown in the flowing scheme, the overall consumption of 

excess component (C) (e.g. acyl donor for transesterification) is dependent on both of the 

 

 
 

racemates, and as one of the racemates used fast it is indirectly diluted in the slow reacting 

racemate in the time course of reaction. The excess component C and product P are defined as; 

 

[ܲܮ]  = ௢[ܵܮ] −  (3.17)                   [ܵܮ]

[ܲܦ]  = ௢[ܵܦ] −  (3.18)                  [ܵܦ]

 [ܲ] = [ܲܮ] +  (3.19)                   [ܲܦ]

[ܥ]  = ௢[ܥ] − [ܲܮ] −  (3.20)                  [ܲܦ]

 

in such kind of reactions. By writing the overall rate expression for each racemates, the 

following terms are obtained.  

 

  ቐ − ௗ[௅ௌ]ௗ௧ = ݇ଵ[ܵܮ][ܥ][ܧ] − ݇ଶ[ܲܮ][ܲ][ܧ]− ௗ[஽ௌ]ௗ௧ = ݇ଷ[ܵܦ][ܥ][ܧ] − ݇ସ[ܲܦ][ܲ][ܧ]                (3.21) 

 

Since the overall enzyme concentration at any time within the reaction course is to be constant, 

they cancel each other in equation (3.21) and it reduces to 

 

  
ௗ[௅ௌ]ௗ[஽ௌ] = ௞భ[௅ௌ][஼]ି௞మ[௅௉][௉]௞య[஽ௌ][஼]ି௞ర[஽௉][௉]                 (3.22) 

 

E + k1 E + LP 

E + E + D P 

k2

+ C 

+ C 
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P +k3

k4
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Substituting the concentration values in equations (3.17 to 3.20) into equation (3.22) in a Maple 

worksheet and arranging this expression (Appendix 2), the general definition for E-value is 

derived as; 

 

  
ௗ[௅ௌ]ௗ[஽ௌ] = ܧ (ఈభ[௅ௌ]మାఈమ[௅ௌ]ାఈభ[௅ௌ][஽ௌ]ାఈయ[஽ௌ]ିఈర)(ఈభ[஽ௌ]మାఈఱ[஽ௌ]ାఈభ[௅ௌ][஽ௌ]ାఈల[௅ௌ]ିఈళ)              (3.23) 

 
Where the constants ߙ values are given on the Table 3.1. 
 
 
            Table 3.1. Kinetic constat for E-value 

ଵߙ  = (1 −  (ܭ
ଶߙ  = ௢ܥ − [௢ܵܮ]ܭ2 − [௢ܵܦ] − [௢ܵܮ] +  [௢ܵܦ]ܭ
ଷߙ  =  [௢ܵܮ]ܭ
ସߙ  = ଶ[௢ܵܮ]ܭ +  [௢ܵܦ][௢ܵܮ]ܭ
ହߙ  = ௢ܥ + [௢ܵܦ]ܭ2 − [௢ܵܦ] − [௢ܵܮ] +  [௢ܵܮ]ܭ
଺ߙ  =  [௢ܵܦ]ܭ
଻ߙ  = ଶ[௢ܵܦ]ܭ +  [௢ܵܮ][௢ܵܦ]ܭ
 

 

When equilibrium constant K (defined in equation 3.12) was equated to zero in Maple 

worksheet, this general E-value given by equation (3.23) reduces to the simple irreversible case,  
 

  
ୢ[୐ୗ]ୢ[ୈୗ] = E [୐ୗ][ୈୗ] ,                             (3.24) 

 

which is same as the E-value suggested by Chen et.al.[564]. 

 

When the general E-value equation, suggested in this work, was mathematicallay analyzed, it is 

thoroughly seen that numerator  and denominator  is a function of both enantiomers. In this 

case, this general differential equation becomes a close function, whose solution has not been 

achieved by the known simpe calculus tools. It seems to be first order Abel types of differential 

equation. The general form of the first order Abel’s second kind non-linear differential equation 

is defined in mathematics as [576-578].  

  ௗ௨ௗ௫ = ௙మ(௫)௨మା௙భ(௫)௨ା௙೚(௫)௚భ(௫)௨ା௚೚(௫)                   (3.25) 
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Hence, the equation (3.23) is a non-linear differential equation, which is said to be Abel’s 

differential equation of the second kind, whose solution can be considered as in the field of 

applied mathematics. 

 

In order to determine the E values, either molecular basis or mechanistic model is studied. The 

molecular acknowledgment of how the enzyme behaves selectively was studied by several 

scientists. Tomic et.al. studied the molecular enantioselectivity for Burkholderia cepacia lipase 

(BCL) at the active site of this enzyme, and they have defined which amino acids are 

responsible for the selectivity [579-582]. In addition to the molecular basis, the E values must be 

the result of changes in the structures of the transition state intermediates of the elementary 

steps [575]. In the following section, a general mechanistic model is postulated for the 

enantiomeric kinetic resolution of racemic reactions. The E-value is surely the ratio of the rates 

on the left and right loops of the scheme suggested. 

 
 
3.2.  A General Kinetic Model for the Enantiomeric Reactions 
 

Esters are one of the most important natural flavor fragrances traditionally extracted from plant 

materials or direct biosynthesis by fermentation[583]. Many compounds which are very difficult 

to obtain can be synthesized by the transesterification reaction easily[584]. Chemical conversion 

of the oil to its corresponding fatty ester is called transesterification, which is the process of 

exchanging the alkoxy group of an ester compound by another alcohol (Fig. 2.4.) [585]. This 

process is an important one in conventional and modern industry as well as scientific study, 

especially in modern fine chemical process. Although numerous studies on transesterification 

of primary and secondary alcohols by lipases have been published[586-589], however there are 

actually few papers dealing with the kinetics of reactions[590-593]. 

 
Commercial implementation of lipase-catalyzed processes requires a determination of the rate 

expressions that describe the performance of the reactor in terms of the major factors that 

control the reaction rate (e.g., temperature, enzyme loading, concentrations of substrates, 

etc.)[594]. This actually provides information in terms of reaction kinetics and parameters. By the 

thorough investigation of the kinetic mechanism involved, the determination of the 

corresponding parameters becomes a key step in process development[590]. 
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The most investigations of the kinetics of lipase mediated reactions have focused on model 

systems that contain only a few different chemical species and/or enzyme complexes that lump 

several species into an appropriate representative surrogate. Several different mechanisms have 

been proposed in the scientific literature to explain lipase-catalyzed reactions like[595-599].  

 
  • irversible consecutive pseudo first-order reactions 

 • a generalized Michaelis-Menten mechanism 

 • a uni-bi mechanism  

 • an ordered bi-bi mechanism 

 

Although above mentioned cases have been investigated for the specific reaction types., a 

general kinetic study taking into account the reversibility and enantioselectivity of the reaction 

at the same time has not been presented. Berendsen et.al., studied a detailed model developed 

for reversible ping-pong bi-bi models by taking into account both reversibility and competitive 

inhibition[590], and Xiong et.al., studied one cycle of the reaction but not both reaction 

simultaneously[207]. However, these models are specific for the studied reactions. 

 

Thus, a most general model for the enantioselective enzyme reactions has been developed in 

this work, where it is the both enantiomers are effective simultaneously with the system. Before 

explaining the details of how to build the model, the methods of the kinetic analysis should be 

overlooked briefly by three different methods whouse details are given in the relative reference 

[600]: 

 

a) Derivation by determinants;  
 

The most rigorous method is to solve a series of simultaneous linear equations by determinants or by 
repetitive and judicial substitution of one equation into another. 

 
b) King Altman Method [32] ; 

 
It is operationally a graphical method, although it is based on the determinant method. In order to 
implement this method, the polygonal form of the chemical mechanism is drawn. All of the subforms of 
this figure in which all of the enzyme forms are connected, but which contain no closed polygons, are 
taken into account. 

 
c) Derivation by inspection,  

 
This is the most rapid and the most easily implemented method. It can be described rather briefly “net-
rate-constant” method. In this method, the steady-state approximation specifies that the rates of all steps 
are equal to each other, and the rate is also equal to the initial velocity. 
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3.2.1. Construction of a General Model for an Enantioselective Reaction 

 

The objective of this work is to develop a general mechanistic model for the two substrate (bi- 

bi ordered) reaction sequence treating both enantiomers as competing substrates. This new 

mathematical model is proposed to describe the enantioselective biocatalysis. The kinetic 

resolution of chiral reactions is a popular method, which represents conversion of primarily one 

of the two enantiomers of a racemic substrate, yielding either the substrate or the product in 

high enantiomeric purity. The unknown kinetic parameters can be estimated by nonlinear 

regression analysis from the experimental observations of selected experiments in any specific 

reaction types. In this work, the transesterification of isopropylidene glycerol (IPG) has been 

taken into account as a case- study for the verification of the model proposed. The combination 

of steady-state enzyme kinetics and mathematical modeling is frequently faced with data and 

the set of reasonable mathematical models[600]. 

 

The kinetic mechanism of an enantioselective reaction is a ping-pong bi–bi pattern[593,601]. A 

kinetic model based on reversible ping-pong bi–bi mechanism, taking into account the 

competition of both substrate enantiomers for the active site, was applied to describe the kinetic 

behavior of such kind of reactions, e.g., lipase catalyzed transesterification.  

 

The following assumption were taken into account in this model[524, 600, 602], 
 

• Even sized enzyme particles are uniformly distributed inside the medium  

• Enzyme deactivation is not taken into account.  

• The concentrations of all enzyme forms are constant during the measurement. 

• The inhibition of products was negligible.  

• Mass transfer resistance is negligible.  

• All other reaction conditions are constant during measurement. 

 

The spontaneous enantioselective reaction below was set as a parallel reaction for the following 

King-Altman scheme. 

 

 

E + k1 E + LP 

E + E + D P 

k2

+ C 

+ C 

+ P

P +k3

k4
D S 

L S 



49 
 

 

Derivation of rate equations for complex enzymatic reactions is a tedious task because of 

requirements of manipulation with massive algebraic expressions. A number of methods were 

proposed to derive rate equations for such enzymatic systems. The well known and commonly 

used one is King Altman method which mainly depends on schematic representation of the 

reactions[32]. But in order to apply this method to state the rate equations for the systems, it 

requires the system to be a closed one. Modern techniques of computer algebra systems 

perform the symbolic computations to be tackled with previously insoluble problems[603].  

 
 

ELS EDS EE

EC

EDP EELP 

k1[C] k2

k3k4

k5

k6

k7 k 8 

k9

k10

k 11

k 12 

k 13 k 14 

k 15 

k 16 

[P] 

[DS] 

[LS] 

[DP]

[LP] 

 
 

  Fig.3.1. Mechanism of the enantioselective reaction (King – Altman scheme) 

 
In this model enzyme E first reacts with the excess component C and the by-product P is 

produced. In trans/esterification reactions the excess component is usually the acyl donor 

component and the enzyme-acyl complex EC is formed. Then, the enzyme complex EC 

surrogates to EE complex by relaxation reaction. In addition, for the kinetic resolution of a 

racemic mixture, the competition of both enantiomers for the same active site should be 

considered. The relaxed EE complex is the key component to select any one of the racemates, 

which is more suitable to the active site of the enzyme. The both racemates compete to bind the 

active site of the EE complex. Consequently, two parallel pathways exist for the decomposition 

of the acyl-enzyme intermediate. When DS combines to EE, the right side of the loop on model 

is functional, and the same is valid for the LS component on the left loop of model. Depending 

on which component is combined to enzyme, EDS and ELS complexes formed and they soon 

get the relaxation reactions to form EDP and ELP complexes, respectively. In the final step, the 

enzyme releases the product DP and LP and becomes free in the reaction medium to react with 

next excess component. 
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A general kinetic resolution has been derived for this model, where all steps are considered as 

reversible. The benefit of this model is that the model can later be adapted any type of 

enantioselective reaction whose intermediates will be determined by their own chemical 

mechanism. Any corresponding mechanism is then obtained by equating the reversible k values 

to zero value. With the above mechanism and assumptions, the model equations can be written 

according to the each reaction path given as follows: 
 

[E]
k1[C]

[EC]
k2

[E]
k1

[EC]
k2

+ [C]

[EC] k3

k4

k3

k4
[EE]+ [P] [EC][EE]

[P]

[EE] + [DS] k5

k6

[EDS]
k5

k6

[DS]
[EE] [EDS]

[EE] + [LS] k11

k12

[ELS] [EE]
[LS]k11

k12

[ELS]

[EDS] [EDP]
k7

k8

[ELS] [ELP]
k13

k14

[EDS] [EDP]
k7

k8

[ELS] [ELP]k13

k14

[EDP] k9

k10

k9

k10

[E]+ [DP] [EDP][E]
[LP]

[ELP]
k15

k16

k15

k16

[E]+ [LP] [EC][E]
[LP]  

 
   Fig . 3.2. Each reaction path included in the proposed mechanism 
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Equating the relative k values, it is possible to determine the appropriate kinetic mechanism by 

reducing the very complex non-Michaelis Menten kinetics. The rate of formation (߭௜) of each 

intermediate is expressed according to the Table 3.2. follows; 
 
 
Table 3. 2.: the rate of formation (߭௜) of each intermediate in the general mechanistic model 
 

 
 ߭ଵ = ௗ[ா]ௗ௧ = −kଵ[C][E] + kଶ[EC] + kଽ[EDP] − kଵ଴[E][DP] + kଵହ[ELP] − kଵ଺[E][LP] = 0  (3.26) 
 
 ߭ଶ = ௗ[ா஼]ௗ௧ = ݇ଵ[ܧ][ܥ] − ݇ଶ[ܥܧ] − ݇ଷ[ܥܧ] − ݇ସ[ܧܧ][ܲ] = 0     (3.27) 
 
 ߭ଷ = ௗ[ாா]ௗ௧ = ݇ଷ[ܥܧ] − ݇ସ[ܧܧ][ܲ] − ݇ହ[ܧܧ][ܵܦ] + ݇଺[ܵܦܧ] − ݇ଵଵ[ܧܧ][ܵܮ] + ݇ଵଶ[ܵܮܧ] = 0  (3.28) 
 
 ߭ସ = ௗ[ா஽ௌ]ௗ௧ = ݇ହ[ܧܧ][ܵܦ] − ݇଺[ܵܦܧ] − ݇଻[ܵܦܧ] + [ܲܦܧ]଼݇ = 0     (3.28) 
 
 ߭ହ = ௗ[ா௅ௌ]ௗ௧ = ݇ଵଵ[ܧܧ][ܵܮ] − ݇ଵଶ[ܵܮܧ] − ݇ଵଷ[ܵܮܧ] + ݇ଵସ[ܲܮܧ] = 0     (3.29) 
 
 ߭଺ = ௗ[ா஽௉]ௗ௧ = ݇଻[ܵܦܧ] − [ܲܦܧ]଼݇ − ݇ଽ[ܲܦܧ] + ݇ଵ଴[ܧ][ܲܦ] = 0     (3.30) 
 
 ߭଻ = ௗ[ா௅௉]ௗ௧ = ݇ଵଷ[ܵܮܧ] − ݇ଵସ[ܲܮܧ] − ݇ଵହ[ܲܮܧ] + ݇ଵ଺[ܧ][ܲܮ] = 0     (3.31) 
 
௧௢௧[ܧ]  = [ܧ] + [ܥܧ] + [ܧܧ] + [ܵܦܧ] + [ܵܮܧ] + [ܲܦܧ] +  (3.32)     [ܲܮܧ]
 
  ௗ[஼]ௗ௧ = 0 
 
 

 
And the rates of formation of DP and LP are; 
 
 ߭஽௉ = − ௗ[஽ௌ]ௗ௧ = ௗ[஽௉]ௗ௧ = ݇ଽ[ܲܦܧ] − ݇ଵ଴[ܧ][ܲܦ]                (3.33) 
 
 ߭௅௉ = − ௗ[௅ௌ]ௗ௧ = ௗ[௅௉]ௗ௧ = ݇ଵହ[ܲܮܧ] − ݇ଵ଺[ܧ][ܲܮ]                (3.34) 
 

If it is required to solve these equations by the determinant model, the relative matrix form[604] 

of these equations is represented on Fig. 3.3.,  

 

ddt
ێێۏ
ێێێ
ۍێ [E][EC][EE][EDS][ELS][EDP][ELP] ۑۑے

ۑۑۑ
ېۑ =

ێێۏ
ێێێ
kଵ[C])−ۍێ + kଵ଴[DP] + kଵ଺[LP]) kଶ 0 0 0 kଽ kଵହkଵ[C] −(kଶ + kଷ) −kସ[P] 0 0 0 00 kଷ −(kସ[P] + kହ[DS] + kଵଵ[LS]) k଺ kଵଶ 0 00 0 kହ[DS] −(k଺ + k଻) 0 k଼ 00 0 kଵଵ[LS] 0 −(kଵଶ + kଵଷ) 0 kଵସkଵ଴[DP] 0 0 k଻ 0 −(k଼ + kଽ) 0kଵ଺[LP] 0 0 0 kଵଷ 0 −(kଵସ + kଵହ)ۑۑے

ۑۑۑ
ېۑ .

ێێۏ
ێێێ
ۍێ [E][EC][EE][EDS][ELS][EDP][ELP] ۑۑے

ۑۑۑ
ېۑ =

ێێۏ
ێێێ
ۑۑے0000000ۍ

ۑۑۑ
ې
 

 
Fig. 3.3.: Martix form of rate of each intermadiates. 
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The net result is that the corresponding network of equations contains so many parameters that 

meaningful numerical solutions of these differential equations can be very difficult to obtain. 

Therefore, the number of variables and the number of equations should be equal for the model 

to be solved.  

 

By steady-state approach to calculate the intermediates, the each rate (velocity) of the 

intermediates is equated to zero. There are 16 parameters of k1 to k16, and 13 variables which 

are: [E], [EE], [EC], [EDS], [EDP], [DP], [DS], [LS], [LP], [ELP], [ELP], [P] and [C]. These 

variables have 8 equations (eqns. 3.26 to 3.32) given on Table 3.2.  

 

Since [P] and [C] are dependent on [LS] and [DS],  

 

[ܥ]   = [଴ܥ] − [ܲܦ] −  (3.35)                  [ܵܮ]

  [ܲ] = [ܲܦ] +  (3.36)                   [ܲܮ]

 

The equations (3.35 & 3.36) reduce the number of variables by 2 and 13 – 2 = 11 variables left. 

At any time, the total enzyme concentration [E]tot, total [LS] and total [DS] remain constant 

over time course of the reaction.  

 

[௢ܵܦ]   = [ܵܦ] + [ܵܦܧ] +  (3.37)                 [ܲܦܧ]

[௢ܵܮ]   = [ܵܮ] + [ܵܮܧ] +  (3.38)                 [ܲܮܧ]

 

As a result, three more variables are reduced and 11 – 3 = 8 variables left. 

 

It is assumed that all enzyme bound complexes are at steady states, which means all derivatives 

involving enzyme species are set to zero. By this way, the six more variables [EE], [EC], 

[EDS], [EDP], [ELP] and [ELP] are reduced to result in two variables (8-6=2 variables left). 

The rest two variables are the rate of formations of DP and LP defined in equations (eqns. 3.33 

and 3.34). Accordingly, the model equation consequently becomes soluble. A detailed 

derivation of the rate expression is given on Appendix 3, and it is verified by Maple software 

(Appendix 4). The final non - Michaelis Menten form of rate expression was derived by the 

pseudo-steady-state approximation of rate of each enzyme bound intermediates given in 

equations (Table 3.2). These kinetic equations were solved with use of MAPLE software. 
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The rate controlling step has been considered where the production of DP and LP takes place. 

After defining the intermediates and total E in terms of measurable quantities and substituting 

into rate equations ; 

 

 ௗ[஽௉]ௗ௧ =  ݇ଽ[ܲܦܧ] − ݇ଵ଴[ܧ][ܲܦ]                   (3.33) 

 ௗ[௅௉]ௗ௧ =  ݇ଵହ[ܲܮܧ] − ݇ଵ଺[ܧ][ܲܮ]                   (3.34) 

 

The general rate expression of mechanistic model for the enantioselective racemic reactions 

have been derived as; 

 

  
ௗ[஽௉]ௗ௧ = ா೚(∆భ[஽ௌ]ି∆మ[஽௉])(௵రା௵ఱ[஽ௌ]ା௵ల[௅ௌ])(ఆభାఆమ[௅௉]ାఆయ[஽௉])(௵రା௵ఱ[஽ௌ]ା௵ల[௅ௌ])ା(ఆరାఆఱ[஽ௌ]ାఆల[௅ௌ])(௵భା௵మ[஽௉]ା௵య[௅௉]) 

 

                      (3.39) 

 

 
ௗ[௅௉]ௗ௧ = ா೚(∆య[௅ௌ]ି∆ర[௅௉])(௵రା௵ఱ[஽ௌ]ା௵ల[௅ௌ])(ఆభାఆమ[௅௉]ାఆయ[஽௉])(௵రା௵ఱ[஽ௌ]ା௵ల[௅ௌ])ା(ఆరାఆఱ[஽ௌ]ାఆల[௅ௌ])(௵భା௵మ[஽௉]ା௵య[௅௉]) 
 

                      (3.40) 

 

Where the constants Δi, Ωi, Θi are combinations of rate contants k given in Appendix 3 and 4.  

 

Since the both racemates are effective in the bulk of reactions, the rate expression of DS and LS 

cannot be considered separately. In order to make data fitting and to evaluate the kinetic 

parameters, these two equations must be solved simultaneously, as a system of differential 

equations. 

 

Mathematical modeling of biological systems provides better understanding of the biological 

complexity. Such models of biochemical reaction networks have large number of variables and 

parameters involving nonlinear differential equations with a number of parameters whose 

values are not known generally. Analysis of these networks includes both analytical and 

numerical work[604]. Evaluation of the kinetic parameters is a central point in enzyme research, 

but the graphical methods, commonly suggested to determine these parameters, have some 
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limitations because of the massive algebraic expressions that may become challenging due to 

the inherent nonlinearities and unknown parameters in the model. Hence the constants can be 

evaluated using data sets of substrate concentration as a function of time[605]. Computer algebra 

systems (CASs), which are also capable of performing calculations with symbols and computer 

codes for numerical computations, are excellent tools in such analysis[606]. 

 

 

3.3. Enantioselectivity based on Mechanistic model 

 

After postulating a general rate expression for each enantiomers, it could be possible to work on 

a general enantiomeric ratio, E value, and suggest a general equation based on mechanistic 

model. Since selectivity is the ratio of both rates of racemic components (eqn 3.39 and 3.40 ), 

taking this ratio it is shown that; 
 

ܧ  = (ଵା௄ಽೄ)(ଵା௄ವೄ) ୪୬((ଵା௄ವೄ) ವೄವೄ೚ି௄ವೄ)୪୬ ((ଵା௄ಽೄ) ಽೄಽೄబି௄ಽೄ)                  (3.41) 

 

where the detailed derivation of above equation and details of the constants Keq,DS  and Keq,LS 

are given  on Appendix V.  

 

Later this equation ( 3.41) has been studied for the possible cases. 

 

a) If any reverse reaction of the D-racemate is inhibited ( Keq,DS=0), and L-racemate 

stays reversible, then E value becomes as;  

ܧ  = ൫ଵା௄೐೜,ಽೄ൯୪୬ ( ವೄವೄ೚)୪୬(൫ଵା௄೐೜,ಽೄ൯) ಽೄಽೄబି௄೐೜,ಽೄ)                 (3.42) 

b) If any reverse reaction of the L-racemate is inhibited (Keq,LS=0), and D-racemate 

stays reversible, then E value becomes as; 

ܧ  = ୪୬((ଵା௄ವೄ) ವೄವೄ೚ି௄ವೄ)(ଵା௄ವೄ)୪୬ ( ಽೄಽೄబ)                   (3.43) 

c) If both enantiomers are irreversible ( this is the usual case, since enzyme react in the 

same way with both enantiomers,  

 ௗ[஽ௌ]ௗ[௅ௌ] = ௞ఱ௞భభ ஽ௌ௅ௌ   ௗ[஽ௌ]ௗ[௅ௌ] = ܧ ஽ௌ௅ௌ                 (3.44) 
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The case c (discussed in section 3.1.1 and 3.1.2. ) and equation 3.43, turns to be in the form of 

irreversible reactions. The result is the same as E value suggested by Chen& Sih[564]. 

Comapring the equation 3.43 with the Chen & Sih definition, 

 

ܧ   = ௞ఱ௞భభ                   (3.45) 

 

Enantioselectivity ratio becomes the ratio of rate constant of active enzyme (EE) for DS and LS 

components. These rate constants are the ones where the racemic substrates compete to react 

with the active enzyme. 

 



 
 

Chapter IV. Materials und Methods 
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4.1. Experimental Setup for reactions in n-Hexane (ref: [303]) 

 

4.1.1. The transesterification of IPG with Vinyl acetate in n-Hexane 

 

In this study, the Burkholderia cepacia lipase (BCL) catalyzed reaction of isopropylidene 

glycerol (IPG) with vinyl acetate, as acyl donor[153,607], has been examined in n-Hexane. The 

chemicals used in this work were listed at Appendix VI. This specific reaction was considered 

as a case study for the general mechanistic model of transesterification reactions, constructed 

in the previous section. The experiments at different temperatures have been taken place with 

10 mmol racemic (IPG) (Fluka, Buchs, Switzerland) and 30 mmol vinyl acetate (Merck, 

Darmstadt, Germany) as excess component in a 20 ml volume of a batch bioreactor. As soon as 

the total volume was completed to 10 ml by adding n-Hexane (Fluka, Buchs, Switzerland), 50 

mg of lipase (Amano, Nagoya,Japan) was consequently suspended in this conventional medium 

to start the reaction. Three different set of data were taken for the curve fitting and to check 

the reliability of results calculated according to the model developed. 

 

i. Experiments at different temperatures 

ii. Experiments at different concentrations of excess compound 

iii. Experiment at different enzyme concentrations 

 
 
4.1.2.  Reaction unit for n - Hexane Experiments 
 

The reaction was carried out in a 20 ml bioreactor, which is kept constant at desired 

temperature with use of a water bath. The reaction medium was homogeneously agitated with 

a magnetic stirrer. The whole set-up was constructed in an isothermal incubator (model BE 

50,Memmert, Schwabach, Germany) in order to eliminate any temperature fluctuation within the 

system. 

 
 
4.1.3.  Sample taking  
 

At the beginning of reaction, 300 µl samples were taken with a sensitive pipette (Eppendorf) in 

each half an hour intervals. As the reaction tends to reach the steady state after 12 hours, the 

samples were taken in one hour intervals. The pipette tips were changed after each sample to 

eliminate any experimental error due to any possible dilution error, as a result of the previous 
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samples. The samples were immediately centrifuged, and the settled enzyme was removed 

from reaction medium to stop the reaction. Consequently, the enzyme free medium is diluted 

10 times more with acetone, and analyzed with the gas chromatography (GC-14A, Shimadzu, 

Tokyo, Japan), whose column consists of FS-Hydrodex® ß-3P with a length of 25 m and an 

inside diameter of 0.25 mm (Macherey-Nagel, Düren, Germany), according to the procedure 

given in Appendix VIII.  
 
 
4.2.  Supercritical CO2 set-up (ref: [310]) 

 

A setup for the experiments under supercritical carbon dioxide conditions, within which many 

experiments have been carried out, was securely constructed in Technical Chemistry Institute 

(TCI) by many workers , e.g. Bornscheuer, Tservistas, Schwabe, Hartmann[279, 308, 309, 310], 

respectively. A schematic High Pressure Reactor (HPR) constructed in TCI, and the one used 

by Tservistas is shown in Fig. 4.1. 

 

 
 Fig. 4.1.: Experimental setup of HPR with external sample collection unit[310]. 

 
4.2.1.  The construction of scCO2 reaction unit 

 

The each component used in constructiong a supercritical unit was listed on Appendix VII. 

During the construction of an experimental setup for the supercritical CO2 experiments, a 

cylindrical stainless steel vessel, with 1 cm wall thickness and an inner volume of 60 ml, was 

constructed in the mechanical workshop of TCI. The top of the vessel was fitted with a screw 

cap and sealed with O-rings of Viton 500 (Otto Gehrkens GmbH, Pinneberg, Germany). A 
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sapphire glass window (Spindler & Hoyer, Göttingen, Germany) was integrated in the reactor cap 

for controlling the dissolution of reagent, visually. The sampling system was constructed from 

stainless steel HPLC-tubing (1/16“ OD, 10 mm ID, Knauer, Berlin, Germany), a 4-port-

injektion valve with 200 µl sample-loop (Knauer, Berlin, Germany), a needle valve (Milli Mite –

Hoke, Bad Vilbel, Germany), a two-way-needle-valve (SSI), two manometers (Heusinger & 

Salmon, Bielefeld, Germany) and a circulation pump (Verder, Haan, Germany).  
 

The HPR had at least two steel capillary pipe connections. One of these pipes provides the 

inlet of scCO2 and the other is connected to a needle valve to release the content of the vessel 

to clean the reactor after finishing the experiment.  
 

 
Fig. 4.2. High pressure reactor for scCO2  

 

 

The different volume of the reactors was 

constructed in workshop of TCI, such as 

19.8 ml, 60 ml of reactors. A high pressure  

pump (mini-pump duplex, NSI33R, Milton-

Roy, Obertshausen, Germany) with 

cryostatic head (-12 °C) was used to 

compress CO2 into the system. The 

pumped gas was passed through a long 

capillary pipe lying in a water bad, before 

it reaches the reaction unit. This pre-

heating was done to stabilize the pressure 

by controlling any temperature fluctuations 

within the system. 

 

The pressure was monitored by manometers (Hensinger & Salmon, Germany) and needle valves 

(ERC, Altegolfsheim, Germany) were used to open and close connections. The whole apparatus 

was set in a isothermal incubator (Memmert, Schwabach, Germany) to keep the whole system at 

the desired constant temperature in[608]. 

 

For the security point of view, a piece of rupture disc (bursting disc) was constructed to 

reactor. This disc resists up to 20 MPa and bursts immediately as soon as the system exceeds 

the uncontrollable maximum pressure. Although the (HPR)s run under high pressure, the 

setup was constructed in such a flexible way that it is quite easy to dismantle, clean and 

recharge for a new experiment. 
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4.3. Reaction in scCO2  
 

For the transesterification reaction in scCO2 (grade 4.5, Linde AG), 20 mmol rac-

isopropylideneglycerol (IPG), (Fluka, Buchs, Switzerland), was put in one side of chamber in 

reactor shown on Fig 3.2. 60 mmol of the excess component vinyl acetate (Merck, Darmstadt, 

Germany) and 100 mg lipase from Burkholderia cepacia (Amano, Nagoya,Japan) were put into 

the other chamber of the reactor (Fig. 4.3). The apparatus was then pressurized up to 10 MPa 

and the magnetic stirrer and the circulation pump was turned on. As the system becomes 

supercritical, the reagents dissolve in this homogeneous single supercritical phase. As a result, 

the reaction starts as soon as the components reach to enzyme distributed in the reactor.  

 

   Fig. 4.3. Inside the reactor for scCO2 system 
 

The exit of the capillary pipe, connected to sample loop, was filtered with a membrane. This 

membrane protects any enzyme loss from the reaction volume, as well as prevents the 

capillary pipes from being plugged with enzyme. 100 μl of samples were taken through a 

sample loop, which is controlled with a needle valve. This sample was expanded into a small 

cup (Eppendorf, Hamburg, Germany) and rinsed with 1.5 ml acetone. The samples were 

analyzed by gas-chromatography (GC-14A, Shimadzu, Tokyo, Japan) using a chiral capillary-

column (Hydrodex-ß3P, Macherey-Nagel, Düren, Germany) according to the gas 

chromatography procedure given on Appendix VIII. By these experiments, it is aimed to 

observe how the concentration varies with respect to time elapsed during the reaction course. 

These results were used during the numerical calculations to understand how the general 

model works for a specific reaction. 
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4.4. Calculation Methods 

 

4.4.1. Goodness of fit (R2) 

 

Nonlinear regression changes the values of the variables to minimize the sum of squares (SS), 

which is the sum of the square of the vertical distances of the points from the curve.  

 

The goodness of a fit can be quantified by the R2 value, which is a dimensionless fraction 

between 0.0 and 1.0. Higher R2 values indicate that the model fits the data better. When 

R2=1.0, it means that all points lie exactly on the curve. R2 is computed from the sum of the 

squares of the distances of the points from the best-fit curve determined by nonlinear 

regression. This sum of squares value is called SSreg, which is in the units of the Y-axis 

squared. The results are normalized to the sum of the square of the distances of the points 

from a horizontal line through the mean of all Y values, called SStot.  

 

 
Fig 4.4. SStot , the sum of the square of the 

distances of the points from a horizontal 

line through the mean of all Y values,  

Fig 4.5. SSreg, the sum of the square of the 

distances of the points from the fitted line 

by regression 

 

R2 is calculated using the equation    ܴଶ = 1 − ௌௌೝ೐೒ௌௌ೟೚೟                  (4.1) 

 

If SSreg is larger than SStot, R2 will be negative and the best fit curve fits the data worse than a 

horizontal line at the mean Y value. Thus R2 is not actually the square of R, but only a 

denoion that the fraction may not be negative, since the squared values cannot have a negative 

value.  
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4.4.2. Bootstrap Method 

 

The bootstrap method was first proposed by Efron in 1979 to study properties of various 

nonlinear statistics. It is a computer based procedure for estimating the accuracy of a 

statistical estimate derived from a set of experimental data. The method involves generation 

of a large number of independent resamples or bootstrap samples, each drawn from the 

original sample with replacement.  

 

There are parametric and non-parametric bootstrap methods. A parametric model is fitted to 

the data, and samples of random numbers are drawn from this fitted model. Usually the 

sample drawn has the same sample size as the original data. Then the quantity, or estimate, of 

interest is calculated from these data.  

 

In their book “An introduction to the bootstrap” Efron &Tibshirani described this method 

mathematically as follows; 

 

Suppose that experimental data points for n independent variables (ݔଵ, ,ଶݔ … . ,  ௡) areݔ

observed for convenience denoted by vector x= (ݔଵ, ,ଶݔ … . ,  ௡)  from which a statistic ofݔ

interest s(x) can be computed. A bootstrap sample x* = (ݔଵ∗, ,∗ଶݔ … , ∗௡ݔ  ) is obtained randomly 

sampling n times with replacement, from the original data point (ݔଵ, ,ଶݔ … . ,  ௡). Theݔ

bootstrap algorithm begins by generating B amount of independent bootstrap samples (࢞ଵ∗, ࢞ଶ∗ , … , ࢞஻∗  ), each of size n.  Corresponding to each bootstrap sample, there is a bootstrap 

replication of s, namely (ݔ௕∗), with its value evaluated at (ݔ௕∗). The bootstrap estimate of 

standard deviation (se) of the bootstrap replications, 

 

The means (Φ) and standard deviation (SD) of parameters are calculated by 

 

ഥߔ   = ଵ஻ ∑ ௜஻௜ୀଵߔ , where ߔ௜ =  (4.2)       (∗௜ݔ)ݏ

 

(ߔ)ܦܵ   = ට ଵ஻ିଵ ∑ ௜ߔ) − ഥ)ଶ஻௜ୀଵߔ         (4.3) 
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As B goes to ∞, the bootstrap standard deviation approaches to population standard error 

value. Therefore the large number of bootstrap sampling, B, results in more trustable 

estimations. In this work, B=1000 has been considered during the calculations.  

 

The bootstrap generates the values for the desired statistic. This is usually immediately 

followed by a histogram, which is simply the computed value of the statistic versus the 

subsample number. The bootstrap histogram shows the location and variation of the sampling 

distribution of the statistic.  

 

 

 

 

 

 

 



 

 
 
Chapter V. Case study:  
   Transesterification of isopropylidene glycerol  

with Burkholderia cepacia lipase 
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In this chapter, the general mechanistic model developed in Chapter 3 for the enantioselective 

reactions will be applied for a specific reaction; the transesterification reaction between vinyl 

acetate, as acyl donor, and an industrially important synthon component racemic 

isopropylideneglycerol (IPG) in n-hexane[303], and also the reaction in supercritical CO2 were 

considered[310]. 

 

5.1. Significance of IPG 

 

There is an increasing demand for optically pure enantiomers in the chemical industry[609]. 

The chiral compounds are obviously important due to the demands of the pharmaceutical 

industry. More drugs are marketed as single enantiomer instead of a racemic mixture, and this 

process is named as “chiral switching”[610,611]. Organic acids and amino acids represent a large 

portion of this market, but for these useful organic compounds, only one enantiomer is known 

to be normally biologically active. Many researchers have attempted to separate one of 

optically active compounds [569, 612]. The methods (crystallization, solvent extraction, etc)[613] 

to separate one of the enantiomer from racemic mixture is generally time-consuming and 

prone to interconversion of enantiomers [614]. 

 

Chiral 1,2-O-isopropylideneglycerols ( D)-(1) and (L)-1 and the corresponding aldehydes (L)-

(2) and ( D)-(2) , ( IPG also called solketal), is an important chiral building synthon for the 

synthesis of many optically active compounds[615], such as glycerophospholipids[616,617], β- 

adrenoceptor antagonists[618], PAF (Platelet Aggregating Factor)[619,620], 

aryloxypropanolamines, prostaglandins [621], and leucotrienes used in the treatment of epilepsy 

and hypertension[622-624]. 

 
The chemical synthesis of IPG costs much for industrial applications since it requires chiral 

starting materials, multistep reactions, and expensive separation procedures[625]. Despite the 

simplicity of the reactions, the costs of production are high, so research has focused on 

developing biotechnological methods which allow the production of enantiomerically 

enriched chiral synthons with high yields and low costs[626]. Biological methods to obtain 

enantiomerically pure (s)-1,2-0- isopropylideneglycerol have thus received increasing 

attention[627,628].  
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The use of commercial lipases was shown to be moderately enantioselective for the 

esterification of IPG esters[629-631]. Different methods have been reported to enhance the 

enantioselectivity of lipase catalyzed reactions[257].  

 

In present work, the transesterification of isopropylidene-glycerol (D,L – IPG ) with vinyl 

acetate as an acyl donor[632-634] under B.Cepacia lipase catalysis in n-hexane[280,300,310] has 

been examined (Fig.5.1). In order to apply the general model to this specific reaction, the 

molecular basis for lipase catalyzed enantioselective transesterification can guide the rational 

improvement and tailoring of catalyst performance. By combining approaches from chemistry 

and biology, much information is revealed about the most important parameters controlling 

lipase enantioselectivity for organic synthesis[148].  

 

 
Fig.5.1. Reaction of isopropylideneglycerol with vinylacetate as acyl donor 

 
 
5.2. Active site of Burkholderia cepacia lipase 
 
The molecular-mechanics based modeling of substrate pathways toward reaction sites remains 

a difficult and time consuming task[635]. The methods used to investigate the molecular factors 

of enantioselectivity generally combine kinetic results and molecular modelling[636]. 

Enantioselectivity is mainly governed by the existence of appropriate fitting between the 

enzyme and each enantiomer, this being responsible for the preferred kinetic transformation 

of one of them[637].  

 

Most lipases consist of a mobile element at the surface, a lid, which covers the active site [638]. 

The lid is opening at a hydrophobic interface, making the active site accessible for substrates 

and enhancing the activity of the lipase[87]. Because the exterior of the lid is hydrophilic and 

its interior is hydrophobic, the hydrophobic surface of lipases increases upon lid opening [639]. 
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All lipases have a similar architecture, the α/β hydrolase fold[640-643]. Viewing the catalytic 

triad Asp264–His286–Ser87, the binding site of BCL has been found to consist of three 

subsites that are responsible for the hydrolysis reaction of the substrates by the enzyme[642, 644, 

645]: 
i) The large hydrophobic pocket includes the catalytic triad formed by the residues Ser87, 

His286, and Asp264, where the acyl chain binds. This pocket is flanked by residues Val266 

and Val267 on the left, Leu167 on the right, Phe119 at the top, and Pro113 in the middle, 

shown as green space fill above the catalytic triad on fig A1. In size 7X6.6×4.4 A°, 

 

ii) The medium sized pocket is the oxyanion hole formed by Gln88 (yellow space fill on Fig A1) 

and Leu17 (red spac efill on Fig A1). This pocket stabilizes the negative charge present on one 

of the oxygens of the tetrahedral intermediates by hydrogen bonding. The nucleophile is placed 

here and is adjacent to the catalytic His286 and Leu287. In size 1.8x1.8×1.5A 

 

iii) The alternate hydrophobic pocket to the right of the medium pocket, which can also bind parts 

of the nucleophile. This alternate hydrophobic pocket lies below the catalytic triad in a narrow 

region between Ile290, Leu287, Thr18, and Tyr29. the alternate hydrophobic pocket (dark blue 

space fill on Fig A1). it is estimated in size 2A° wide and 1.9A° 

 
BCL is a globular enzyme with approximate dimensions of 30Åx40Åx50Å and its structure 

may be divided into one large and two smaller domains[646]. The active site of BCL is located 

at the bottom of a narrow 17 °A deep pocket[647,648]. 

 

 
 
Fig. 5.2. BCL active-site structure from X-ray 
crystallography [ref: 645] 
 

 
 
Fig 5.3. Perpendicular cross section of BCL 
cavity (at level Ser87) showing the funnel 
shape of  the access path (Ser87 at the bottom 
and His286, Asp264 at the left).[ref: 648] 
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5.3. Molecular Modeling of Transition State Analogues of IPG bound to BCL 
 
 
Transesterification is the result of a two-step mechanism with an acylation leading to the 

formation of an acyl-enzyme intermediate, which is then followed by a deacylation step[636].  

 
In this work, the King–Altman scheme for the model was proposed and drawn as given on 

Fig. 5.4[32]. In the model, the first chemical step is that the acyl donor attacks to the hydroxyl 

group of serine in the active site, forming a tetrahedral intermediate. Collapse of this 

tetrahedral intermediate releases the alcohol[649]. In this specific reaction considered for the 

verification of the model, the acyl donor is the vinyl acetate (denoted as C on the scheme), 

which covalently bonds to the free enzyme (E). The excess component vinyl acetate (C) is a 

potential and practical acetylating reagent for the optical resolution of enantiomers in the 

racemate by lipase catalyzed transesterification in organic solvent. It irreversibly reacts with 

the active serine (Ser) residue in lipase to give the acyl-enzyme intermediate (corresponds to 

EC on the scheme, Fig 5.4)[650]. Acyl –enzyme complex is an irreversible step in the 

mechanism[651], and these complexes are crucial intermediates in all lipase catalyzed 

reactions[652]. As vinyl acetate (C) attacks to –OH group of serine, the H atom binds to carbon 

atom of –C=O part of the acetate and double bound cleaves towards the O atom. As a result of 

this reaction, vinyl alcohol formed as a by-product undergoes keto–enol tautomerization 

yielding the corresponding carbonyl compound (acetaldehyde, denoted as P on the 

scheme)[653-655]. This irreversibility is considered to accelerate the reaction rate. These steps 

correspond to ܧ → → ܥܧ   .steps on the scheme ܧܧ

 

An acyl-enzyme intermediate followed by the release of alcohol forms an enzyme–ester 

complex (EE). This intermediate itself is formed by a hydrogen transfer from the serine, and it 

is the central complex upon isomerization forming the acyl-enzyme intermediate, after the 

release of the by-product, which is aldehyde (P)in this specific reaction. The transition state 

involved in formation of first tetrahedral intermediate (EE) defines the selectivity of BCL 

toward alcohols[649]. Consequently, enantioselectivity can occur during the steps involving the 

nucleophilic attack of an alcohol. The nature of the binding interactions between an ester’s 

acyl and alcohol moieties and the active site binding pocket of a lipase critically affects 

enzyme performance [656,657].  
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The second substrate, (D,L)-IPG reacts to the acyl-enzyme intermediate and forms other 

complexes ( EDS or ELS) according to the selected form of the racemate. These intermediates 

further undergo isomerization to form the ester–enzyme complexes (EDP and ELP), which 

consequently brake into the final products, (D,L) - IPG-acetate ( DP and LP ) and the free 

enzyme. Final decomposition of the enzyme-substrate complex with the release of the 

transesterified product is considered as the rate controlling step and the calculations in the 

model were based on this step. 

 

Eventually, the overall goal of a kinetic study is to discriminate the model and to identify the 

parameters for interpretation of modeling results. Thus, the obtained parameters can then be 

used for comparison with findings from a molecular modeling point of view[590]. As the above 

mechanism is drawn in King –Altman scheme, it is demonstrated as follows; 

 
 

 

ELS EDS EE

EC

EDP EELP 

k1[C] 

k3

k5

k7 k 8 

k9

k 11

k 13 k14 

k 15 

[DS] 

[LS]

[DP]

[LP] 

 
 

Fig. 5.5. King – Altman scheme of the enantioselective IPG transesterication with BCL. 
 
 
The solution of the rate expression for individual reactions (on Fig 5.6.) includes a 

combination of both symbolic (solution of simultaneous equations, substitution of variables, 

determination of higher derivatives) and numerical (solution of differential equations, finding 

roots of a polynomials, fitting experimental data) computation methods[606].  
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   Fig.5.6. The reaction steps of each intermediate 
 
 
The mathematical model for the kinetics of the each reaction and the computation with this 

system in MAPLE’s syntax [Waterloo, Ont., Canada] was used and the set of general 

reversible rate expressions was written for the above case by consideration of related 

irreversible reaction. The results can be defined as follows:  
 

v1:=k1*E-k2*EC:  (k2=0)   v2:=k3*EC-k4*EE:  (k4=0) 

v3:=k5*EE*DS-k6*EDS: (k6=0)   v4:=k7*EDS-k8*EDP: 

v5:=k9*EDP-k10*E*DP: (k10=0)  v6:=k11*LS*EE-k12*ELS: (k12=0) 

v7:=k13*ELS-k14*ELP:    v8:=k15*ELP-k16*E*LP: (k16=0) 

 
E:=E[0]-(E+EC+EE+EDS+EDP+ELP+ELS): 

 

E
k1

EC+ [C]

[EC] k3 + [P][EE]

[EE] + [DS] k5 [EDS]

[EE] + [LS] k11 [ELS]

[EDS] [EDP]
k7

k8

[ELS] [ELP]
k13

k14

[EDP] k9 + [DP][E]

[ELP]
k15 + [LP][E]
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These sets were computed with MAPLE syntax,[658-660], whose detailed enzyme kinetics 

explanation, in the applied mathematics point of view, is given by Yildirim et.al.[661-663]. 

 

In modifying the general model for this specific reaction mechanism of the transesterification 

of IPG, it can be easily seen the number of 16 rate constant parameters reduces to 10 

parameters, because some intermediate steps are irreversible, which means that relative rate 

constants are equal to zero ( ݇ଶ = ݇ସ = ݇଺ = ݇ଵ଴ = ݇ଵଶ = ݇ଵ଺ = 0 ). The basic assumption 

done during this derivation is that the excess components is relatively very much in amount 

compared to the reactants, such that it remains almost constant along the course of the 

reaction ( ௗ஼ௗ௧ = 0 ). In other words, it could be said that the derivation is performed under 

pseudo-steady state assumptions. In order to determine the rate of reaction for each 

enantiomer, these k values are substituted in the rate expressions derived for the general 

mechanism given by the equations, eqn.(3.39) and (3.40) on the maple worksheet, and the 

specific rate expression for D,L- IPG with vinylacetate in Burkholderia cepacia lipase (BCL) 

were derived. The derivation and the open form of the consntants in the equation as a result of 

Maple worksheet was given in Appendix IX and the general rate expressions simply reduce 

into the following forms for this specific reaction, 

 

஽ௌߥ   = − ௗ[஽ௌ]ௗ௧ = ௞భ௞ఱ஼೚ா೚[஽ௌ](௄ಾభ஼೚ା௞భభ)[௅ௌ]ା(௄ಾమ஼೚ା௞ఱ)[஽ௌ]ା௞భ஼బ     (5.1) 

 

௅ௌߥ   = − ௗ[௅ௌ]ௗ௧ = ௞భ௞భభ஼೚ா೚[௅ௌ](௄ಾభ஼೚ା௞భభ)[௅ௌ]ା(௄ಾమ஼೚ା௞ఱ)[஽ௌ]ା௞భ஼బ      (5.2) 

 

 

5.4. Estimation of parameters 

 

In determining the constants in the above derived rate expressions, the number of 10 k 

parameters reduces to 5 parameters, while the effective rate constants KM1,and KM2, are the 

combinations of other constants. In the simulations, these two effective constants could be 

evaluated in addition to k1, k5, k11. Thus, the number of parameters was reduced to 5, by 

which simulation of data becomes more reliable. 

 

The rate constants k1, k5, k11 and effective kinetic constants (KM1, KM2) for the proposed 

model were obtained from a global estimation by non linear regression of all experimental 
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data. On the whole, data from 22 different experiments at five temperature values [35°C, 40 

°C, 45 °C, 50 °C, 55 °C] were used in the calculations, comprising approximately 350 

experimental data points taken into account to fit the mechanistic model in kinetics point of 

view.  

 

Since each rate is a function of both of the racemates (DS, LS), the changes in the 

concentration of each enantiomer has an effect on the rate of other one. This means that both 

rates should have been solved simultaneously. As a result of this fact, the experimental data 

for the both reactions should be undoubtly used at the same time and this brings a benefit of 

increasing the number of data for the estimation of parameters. It is clear that temperature is 

an important parameter in kinetic calculations, since k values are function of this parameter 

related by Arrhenius equation[664]: 
 

 ݇ =  ாೌ/ோ்           (5.3)ି݁ܣ
 

Hence, the data from the experiments at the same temperatures could be considered as a one 

set of data for fitting[665]. The Matlab algorithm has been written considering this opportunity. 

Another opportunity of the Matlab code is that it gives rise to possibility by which the 

reliability of the code could be tested. In verifying the coherency of the code, it is possible to 

select certain experiments in fitting and simulate the other experiments with the estimated 

values obtained by the simulation. 

 

In running the Matlab code, the simulation was started by taking the initial conditions of the 

total enzyme Eo (25, 50, 75, 100 mg), the excess component vinyl acetate Co( 10–30 mM) and 

each enantiomers as D-IPGo, L-IPGo,( 10 – 180 mM for rac- IPG ). The limiting cases were 

adjusted to be as lower range of 10-12 and upper range of 108. The kinetic parameters were 

determined by fitting the model to the experimental data, through minimization of the sum of 

the squared residues[666]. A software system of non-linear least square regression in MATLAB 

consisting of the software packages (curve fitting toolbox) [The MathWorks, Inc., Michigan, 

USA] was used for the parameter estimation., This toolbox works to find the comparison 

between the measured data with predicted ones by the proposed kinetic equation of the 

suggested mechanistic model[667]. 
 

ܨ   = ∑ ([ܳ]ௌ௜௠௨௟௔௧௘ௗ೔ − [ܳ]்௛௘௢௥௘௧௜௖௔௟೔)ଶ௜                   (5.4) 
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At the minimum point of the objective function F due to equation (5.4), the small residual 

errors are obtained in each point when using estimated values for selected kinetic parameters. 

For each simulated pair of concentration R against time, one of the residual errors is randomly 

selected, and then added into the simulated data in turn. By this way, a set of new values for Q 

concentrations are obtained. Then, these values are used as though they were simulated data 

in a second round of minimization to calculate new estimates for selected parameters. After 

repeating this many times, the best fit is detected. The experimental data and the theoretical 

fitting model are compared if they are in a good agreement by terms of R2 values given at the 

description of each figure. Convergence of the estimation procedure is tested for the 

experimental data which was not used in estimation[663]. 

 

In the following section, the experiments will be fitted with the model according to this 

parameter estimation method. 

 

 

5.5. Simulation of Experimental Data with the proposed model 

 

For the simulation of the experimental data, the rate expression derived from the suggested 

model has been used. The experiments were categorized according to the temperature, 

because the rate constants are function of the temperature. 

 

5.5.1.  The simulation of the rates at 35 °C  

 

In these experiments, the transesterification of rac- IPG (10 mmol ) with of vinyl acetate (30 

mMol) in different amount of enzymes (50, 75, 100 mg ) at 35 °C has been investigated. In 

each experiment, the difference was only in the amount of the enzyme. The experimental data 

points and the simulated curves obtained with the model developed are shown in Fig. 5.7. In 

order to verify the written Matlab code, first only two experiments at 50 and 75 mg of lipase 

at 35 °C (Fig 5.7.) were simulated.  

 

The curves 1 and 2 on the Fig.5.7 are the results of the experiments for the 25 and 50 mg of 

lipase, and curve 3 is for 75 mg of lipase. First, only the curves 1 and 2 were simulated 

together from the all data of both experiments. The curve 3 was plotted due to the estimanted 

parameters of the curves 1and 2. The result seems to be fit quite well.  
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 Fig 5.7. The verification of validity of the model by the simulation.  

 

After this verification, the Matlab has run 100 times for the experiments at 35 °C for the 

amount of 25, 50 and 50 mg of enzyme ( curves 1, 2, 3 respectively on Fig 5.8) and to fit the 

data set simulatenously. The 100 mg of lipase data was fitted separately on Fig 5.9, because of 

the reason that there might be experimental error on the data, which distribute scatteringly. 

The R2 values (as described in section 4.4.1.) were given for each curve to satistfy that the 

model fits quite well. 

 

 
Fig. 5.8. The data fit of the experiments simulated by the mechanistic model proposed 

 

   
  

Fig.5.9. The simulation of the data for 100 mg lipase at 35 °C 
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5.5.2.  The simulation of the rates at 50 °C  

 

The lipase supplying company informs that B. Cepacia lipase has an optimum temperature at 

50 °C (Fluka Buchs, Switzerland). Therefore, the most of the experiments were carried out at 

this temperature.  

 

The Matlab code’s algorithm was written in such a way that it is possible to simulate the data 

either from one experiment only or from a set of the experiments simulatenously. In the 

experiments, the temperature of the reacton, the amount of enzyme, initial concentration of 

rac-IPG and the amount of acylating agent were changed. Since the reaction rate constant k is 

a function of temperature, the whole data obtained from all experiments at 50 °C with 50 mg 

of lipase can be simulated at the same time (curves 1-4 at Fig 5.10), and it has been observed 

that the data fit well at this temperature. The curves at other temperatures were also drawn 

according to the estimated parameters of experiments at 50 °C. As expected, the curves 5 to 7 

at Fig 5.10 do not fit reasonably, because the reactons were at 35, 40, 45, 55 °C. However, an 

unexpected result was obtained on the curve 8, on which L-IPG fits relatively well although 

the reaction temperature was at 55 °C.  

 

The model can used for the detailed works for the perdiction of reaction conditions. Either of 

initial concentration, amount of excess component or enzyme quantity may be preferably 

changed and studied due to the results pointed out from the model simulations. 

 

The effective KM1, and KM2 values were calculated using the data 50 °C at which more than 

10 different experiments were carried out. Some of the data have been left to verify the 

model. After simulation of the data fit, the reliability of the results was tested by generating 

the data points with the estimated parameters and plotting with the experiments which was not 

used for this check up. 
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Fig. 5.10. The simulation of data at 50 °C and data fitting with estimated paramentes for the 

experiments at different temperatures. 
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In the derivation of the mechanistic model, the basic assumption was that the acyl donor 

component is in excess amount compared to the racemates, which means its concentration 

remains almost constant. Another fitting was perfomed for the validity of the model to verify 

the effect of this liminting condition by using the data obtained from the experiment where 

15, 20 mmol of vinylacatate were used with an increasing amount of the enzyme at 50 °C, 

which are plotted  in the curve 1 and 2 on Fig 5.11, respectively. 

 
Fig 5.11. The simulation for the less amount of acylating agent  

 

However, it is seen that the data for the experiments, with 35 mg of lipase and 2/6 mmol of L-

IPG to D-IPG, and 45 mg of lipase with 4/6 ratio of racemates, have the same rate of reaction. 

On curve 1 and 2, the rate of L-IPG is relatively slow since the production of acylated active 

enzyme (EE in model) is not so much, and D-IPG was used up selectively more. As the 

amount of D-IPG reduces then a sudden decrease in L-IPG reduction resulted in a sigmoid 

shape on the figure. 

 

The curves 3 and 4 are plotted with the use of the estimated parameters from the curves 1 and 

2. The result shows that the same rate can ben obtained by adjusting the reaction conditions, 

like amount of enzyme, acylating agent or racemates ratio.  
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5.5.3.  The simulation of the rates at 40, 45, 55 °C 

 

In this section, the experiments done at different temperatures were considered. The same 

amount of vinyl acetate (30 mmol) and D,L-IPG (10 mmol) were used with 50 mg of lipase.  

The results of simulations on 40 °C and 45 °C are given on Fig. 5. 12 

 

 
Fig. 5.12.  The simulation of the data set at (1) 40 °C , (2) 45 °C 

 

When the data from the experiment at 55 °C with 50 mg enzyme was simulated and it was 

interstingly detected that these estimated parameters can also fit the data of the experiment at 

50 °C, with 75 mg of lipase (Fig. 5.13). This shows that the same reaction rate can be 

obtained by adjusting the enzyme concentration and reaction temperatures.  

 

 

 
Fig. 5.13. The simulation of the data set at (1) 55 °C, (2) of the data at 45 °C with estimated 

parameter from (1) 
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5.5.4. Estimated rate constants 

 

The reaction rate parameters have been evaluated by fitting the data points. In this fitting 

process, how to trust the data was inquired, and this question was solved with the goodness of 

the best fit, which is verified by the use of R2 method (section 4.4.1).  

 

The error analysis of the data has been performed with bootstrap method (section 4.4.2.), in 

which the big number of bootstrap sampling is preferred to obtain the reasonable results. 

Therefore the bootstrap sampling of thousand (B = 1000) has been considered during the 

calculations. The reaction rate constants have been determined due to the bootstrap 

histograms. A sample rate constant determination for the experiment at 35 °C and 25 mg 

lipase with the use of bootstrap histogram was given on Appendix X.  

 

The estimated kinetic constants at all temperatures used in the experiments have been given 

on the following table (Table 5.1), and the enantiomeric ratio has been calculated according to 

these parameters. 

 

 Table 5.1. Estimated rate constants and enantiomeric ratio 

Temp. 

°C 
k1(1/h) k5(1/h) k11(1/h) KM1(mmol/L) KM2(mmol/L) E=k5/k1 

35 5.113  
±  6.7x10-3  

0.0274 
± 8x10-4 

0.011 
±15x10-4 

2.932 
±0.005x10-3 

0.502   
± 27.8 x10-4 

2,49 

40 4.273 
± 12.5x10-3 

0.0222   
± 48 x10-4 

0.0112    
± 27x10-4 

2.452   
± 4x10-3 

0.565   
± 15 x10-4 

2,01 

45 3.425  
± 15 x10-3 

0.0249   
± 71x10-4 

0.0118  
± 35x10-4 

2.489   
± 6.2x10-3 

0.584   
± 7.3x10-4 

2,11 

50 3.0299  
± 42.7x10-3 

0.0743  
± 8.7x10-4 

0.0318 
±42x10-4 

2.485 
±37.2x10-3 

0.595 
±10.6x10-4 

2,34 

55 2.850  
± 10.2x10-3 

0.0484  
± 24x10-4 

0.0258   
±13.4 x10-4 

2.099  
± 8x10-3 

0.560  
± 27x10-4 1.87 
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5.6. Single reactions of each racemates; Only L- IPG and D – IPG  
 

In enantioselective reactions, the substrate inhibition by both enantiomers on the active site of 

the enzyme becomes significant. In order to understand the behavior of the enzyme towards 

the single enantiomer, the kinetic investigations involving ping-pong bi-bi models have been 

reported for cases, where only one enantiomer is converted[668]. To analyze this situation, the 

experiments were performed with D – IPG in the absence of L- IPG, and with L- IPG in the 

absence of D – IPG[303]. 

 

In this experiment, 10 mmol of single D and single L – IPG is mixed with 30 mmol of vinyl 

acetate in 50 mg of B. Cepacia lipase, and the total reaction volume was completed to 10 ml 

of n- hexane in 20 ml of bioreactor. The reaction was carried out at temperature of 50 °C.  

 

As a result of these experiments, it is observed that the lipase reacts with each enantiomer 

almost with the same rate (Fig 5.14). 

 

 

 Fig.5.14. The overlapping of the D- L-IPG reactions in the absence of each other[303]. 

 

In this work, the rate expression for the single enantiomeric reactions has also been winnowed 

out after specifying the conditions of single enantiomeric reaction according to the general 

mechanistic model applied for a case study; IPG transesterification reaction. 

 

For single D – IPG reaction, k11 = 0, hence the left side of the scheme (Fig 5.15) vanishes, and 

the same is true for the right side of scheme for the single L- IPG, when k5 = 0. Consequently, 

the following scheme is obtained as independent of each other. 
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Fig. 5.15. The King –Altman scheme for single enantiomer a) for L- IPG, b) D- IPG 

 

For determining the rate expressions of each enantiomers, this special case was solved with 

the Maple software, where k5=0, and k11= 0. The rates obtained by Maple software were later 

analytically tackled with for further mathematical simplifications, and it was found that the 

result simply turned to be an exact Michaelis - Menten kinetics. The details of derivation for 

the Michaelis – Menten form and Vmax, Km constants for each enantiomer were given on 

Appendix XI. 

 

 ஽ܸௌ = ௗ[஽௉]ௗ௧ = − ௗ[஽ௌ]ௗ௧ = ௏೘ೌೣ,ವೄ[஽ௌ]௄೘,ವೄା[஽ௌ]         (5.5)

  
 

 ௅ܸௌ = ௗ[௅௉]ௗ௧ = − ௗ[௅ௌ]ௗ௧ = ௏೘ೌೣ,ಽೄ[௅ௌ]௄೘,ಽೄା[௅ௌ]         (5.6) 

 

Actually, this integrated equation is useful to obtain more accurate kinetic parameters[669]. 

Therefore, the integrated form of the above equations were derived and given as ; 

 

[ܵܦ]   − ௢[ܵܦ] + ௠ܭ ln ቀ ஽ௌ஽ௌ೚ቁ = ௠ܸ௔௫(5.7)      ݐ
  
[ܵܮ]   − ௢[ܵܮ] + ௠ܭ ln ቀ ௅ௌ௅ௌ೚ቁ = ௠ܸ௔௫(5.8)       ݐ
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However, the integrated form of Michaelis – Menten equation is an implicit function, in 

which the concentration terms cannot be collected on one side of the reaction. This result 

brings difficulties to calculate the Vmax and Km terms by direct simulation of the experimental 

data. Therefore further linearization is done as by use of conversion term, as follows; 

 

The turnover ratio is defined as  ܷ = [ௌ]ି[ௌ೚][ௌ೚]       (5.9) [ܵ] = [ܵ௢](1 − ܷ) and is obtained                 (5.10) 

 ௧௎ = ௄೘ఔ೘ೌೣ ቂଵ௎ ln ( ଵଵି௎)ቃ + [ௌ೚]ఔ೘ೌೣ                   (5.11) 

for any species. Vmax and Km terms can now be calculated if equation (5.11) is plotted for  ௧௎ 

vs ቂଵ௎ ln ( ଵଵି௎)ቃ terms. 

 

In the program code written in Matlab, this situation has also been considered, and the 

constants were solved with nonlinear least square regression. The data points and the 

simulated curve were given on (Fig.5.16). 

 

 
Fig.5.16. The simulation of single racemates (10 mmol D and L form of IPG with 30 

mmol vinylacetate in 50 mg of enzyme in 10 ml solution) 
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                       Fig.5.17. Integrated Michaelis – Menten equation of D-IPG with  
                                        50 mg lipase at 50 °C. 
 

 
 
                     Fig. 5.18. Integrated Michaelis – Menten equation of L-IPG with  
                                     50 mg lipase at 50 °C. 
 
 
                              Tab. 5.2. The values of ߥ௠௔௫ and ܭ௠ of D and L – IPG at 50 °C. 
 

 D - IPG L - IPG ߥ௠௔௫ (mol / L. h ) 0.677 0.66 ܭ௠     (mol /L) 0.285 0.98 
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5.7. Reaction kinetics in scCO2 medium [310] 
 
 
In previous reaction  was done in the conventional medium organic medium, n-hexane, which 

is explained in detail in chapter 2. Recently, the environmentally benign mediums are usually 

preferred, among which scCO2 is mostly preferrd due its physicochemical properties. In 

scCO2 , the mass transfer limitations are  negligible, thus a faster rate is expected. 

 
An experiment in scCO2 at 10 MPa and 40 °C, with 60 mmol of vinyl acetate and 20 mmol of 

D;L IPG with  101,62 mg of lipase made in Technical Chemistry Institute (TCI) by Tservistas 

[310]. The reaction taking place in this medium has been simulated with the model developed 

in this work. A very good ftting with the data was obtained ( Fig.5.19). 

 
 Fig. 5.19.  The simulation of the data taken in super critical CO2.  
 

where the values of the estimation parameters are given on the table 5.3, and the enantiomeric 

ratio was calculated as 2.3 for the reaction in supercritical conditions. 
 
       Table 5.3. Estimated rate constant in sc CO2  

Parameterandard  Value Standard Error 

k1(1/h) 8.5117 ±1.0815 

k5(1/h) 0.0181 ±0.0013 

k11(1/h) 0.0079 ±0.00052 

KM1(mmol/L) 2.2221 ±0.52930 

KM2(mmol/L) 0.4604 ±0.1802 

 



86 
 

 

5.8. Enantioselectivity by mechanistic model 

 

As previously derived that, enantioselective ratio E, (E-value) has become the ratio of the rate 

constant at the activated enzyme intermediate, where it selects either of the racemates. 

Experimentally it is observed that the enantioselectivity ratio E is around 2, which has been 

evaluated by the model as ܧ = ௞ఱ௞భభ = 2.27. This is the ratio of rate constants where EE reacts 

with any one of the enantiomers.  

 

 
Fig.5.20. The effect of temperature on the enantioselectivity [303] 

 

In above  Fig.5.18, the eantioselectitivity dependent on temperature is given. It is obvious that 

there is no big change between E- values at 35, 40, 45, 50, 55 °C temperature.  

 

It is been observed in the experiments that the enantioselectivity descends very slowly almost 

remaining in the range of 2.2, although the amount of enzyme increases. This is what can be 

explained by the ratio of k5/ k11 is 2.47. As the amount of enzyme increases, the more 

enzymes can possibly react with L-IPG thus a slight tendency for decrease could be this 

result. 

 

The experimental and the estimated E values by the model (the ratio of  ௞ఱ௞భభ ) was given on the 

Table ( 5.3). The experimental enantioselectivity ratio has been calculated by the equation; 

 

ܧ     = [௅ௌ]ି[஽ௌ][௅ௌ]ା[஽ௌ]                  (5.12) 
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Table 5.4.: Comparision of enantioselectivity between experimental data and model  

Enzyme ( mg) Temperature ( °C) Experimental E Estimated E 

25 35 2.269 2.41 

50 35 2.24 2.49 

50 40 2.27 2.01 

50 45 2.25 2.11 

50 50 2.24 2.34 

50 55 2.249 1.87 

75 35 2.24 2.43 

100 35 2.21 2.5 

Mean  2.25 2.27 

 

 

The experimental results and the the ones evaluated by the estimated parameters seems to be 

suitable in te range of 2. It is found that the E value became in this range even in all iteration 

values. 

 

 

 

 

 



 

 

Chapter 6.  Discussion and Conclusion 
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6.1. Discussion 

 

 

Either in scientific research area or in industry, the enantioselectivity is an important field 

studied over the years. The aim is to increase the enantiomeric ratio ( E- value ) of the enzyme 

to produce the desired product.  

 

In this work, a general mechanistic model for the enantioselective reactions was proposed and 

its kinetic equations were derived with pseudo-steady state assumption. It was successfully 

pondered that this model can be used for any other type of the enzyme catalysed racemic 

reactions.  

 

A general rate expression was derived with the use of Maple software package and this model 

has been used in this work. In the first part of the chapter 3, the concept of enantioselectivity 

was overviewed and a general enantioselectivity for overall bi-bi reactions was derived. In 

fact this is equation is an Abel’s type equation, whose solution might be further studied. 

Fortunately, this handicap was eliminated by the mechanistic model. The enantioselectivity 

based on mechanistic model has resulted in a general equation which was tested if it becomes 

the well known equation for the irreversible reactions given in literature. It is demonstrated 

that is converts the same equation for the irreversible one if the rate constants are zero. 

 

The use of this equation may give information if all rates are reversible. In this case it could 

be possible to calculate the enantioselectivity if any path of the reaction is inhibited. 

 

After derivation of the model from mechanism of the reaction, the experimental data was 

fitted with least square toolbox of Matlab software package. The model was based on the 

pseudo-steady state assumption, since the acyl donor was in excess amount and assumed to be 

constant during the course of the reaction. It has been also shown that the model fits well for 

the less amount of excess reagent. The model could be in future modified by considering the 

excess component as variable. 
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In fact, Matlab coding can be modified for the real case fitting, which means all differential 

equations of the each intermediates are solved simultaneously. In such a case, it is possible to 

find out the concentration variation of each intermediate along the reaction. 

 

The model was simulated with different experimental data and it has been shown that it works 

quite well in fitting these data. The goodness of the curve fit has been statistically verified 

with R2 analysis (Section 4.4.1). The error analysis has been done with bootstrap method 

(Section 4.4.2).  

 

The enantiomeric selectivity is an intrinsic property of the enzyme. The factors affecting this 

property have been studied in the literature as given in chapter 2 in detail. The type of solvent, 

solute, enzyme structure and the reaction temperature may be effective on the 

enantioselectivity.  

 

One of the interesting results derived is that E value has become the ratio ( ௞ఱ௞భభ) of the rate 

constants of acylated active enzyme, EE, towards the enantiomers. This is physically logical 

but derivations have also proved this reality. 

 

For the specific reaction of D,L – IPG considered as a case study in this work, the 

experiments have been performed in the temperature range of 35 – 55 °C, and the enzyme 

amount from 25 -100 mg. During the calculations, it is detected that the enantiomeric ratio has 

shown a robust character, and has not been drastically changed, staying almost around 2.  

 

The enantiomeric ratios calculated from experiment done by Yildirim in his master work[303] 

and from model were compared and almost the same results were obtained. 

 

Parameter 
Experimental 

E-value 

E-value 

by Model 

Temperature 2,26 2,11 

Enzyme consentration 2,24 2,27 

 

In fact except the rate constants ݇ଵ, ݇ହ, ݇ଵଵ, the other k constants for related intermediates 

cannot be estimated with this model, since some of them are in the combination as effective 

constants, ݇ெଵ, ݇ெଶ. In order to determine each k constant, the inhibition for each step in 
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general mechanism can be studied. Since intermediates are in very small time intervals (e.g. 

nano or femto second), very sophisticated and sensitive spectrophotometric analysis is 

required. In order to eliminate any volume change effect in the reactor, an online measuring 

system is strongly suggested.  

 

As well as experiments done in conventional mediums, the effect tof medium on the rate 

constants can be studied with the use of the model, by this way the effect of mass transfer 

limitations on the rate can be determined.  

 

The influence of acyl donor and temperature were investigated in details for many reactions in 

the literature. These two factors are very important to be analyzed and the general model may 

allow the scientists to work further by changing these parameters in the model.  

 

The general mechanistic model can be later investigated for the different mechanisms given in 

the literature for any specific reactions. As well as the model considers the effect of one 

enantiomer on the other, the elimination of this effect has also been analyzed for single 

racemates. During the derivation of the rate expression for single enantiomer, it was not 

expected that the reaction becomes a Michaelis – Menten type, since the rate of 

enantioselective transesterification of IPG was derived as a non- Michaelis – Menten reaction 

type.  

 

The Vmax, DS, Vmax, LS, and  Km,DS , Km,LS of single IPG at 50 °C were given at Table 5.2 in this 

work. In future these constants can be calculated for the reactions at different temperatures to 

get more information about the kinetics of single D or L - IPG reaction. 

 

In fact this mechanistic model is for a general enantioselective reaction kinetics, and can be 

applied any type of racemic reaction. The systems of differential equations have been 

simulated with the experimental data from in vitro measurement, i.e, not in living cell. Thus, 

in future work, this study can hopefully be applied to large living systems or human lipase 

metabolism from the systems biology point of view. 
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6.2. Conclusion: 

 

The mechanistic model developed in this work may be further applied for the online 

measuring systems. The program algorithm written for general enantioselective reactions may 

be used for any type of enzymatic reaction which can be defined by equating the k values to 

zero for the irreversible paths, according to mechanism proposed due to organic chemistry. 

 

A close system is strongly suggested for the kinetic analysis. The benefit of the close systems 

is that any disturbance into reaction media from the environment is eliminated, thus more 

trustable data could be collected. Software can be developed for simultaneous analysis of the 

parameters within system. Thus, the dynamics of the reaction course depending on the 

mechanistic model can be performed simultaneously during the experiments carried out. 
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Appendix I.  Nomenclature of Lipase (EC 3.1.1.3) 
 
 
Accepted name: triacylglycerol lipase 
 
Reaction: triacylglycerol + H2O = diacylglycerol + a carboxylate 
 
Other name(s): lipase; triglyceride lipase; tributyrase; butyrinase; glycerol ester hydrolase; 
tributyrinase; Tween hydrolase; steapsin; triacetinase; tributyrin esterase; Tweenase; amno N-
AP; Takedo 1969-4-9; Meito MY 30; Tweenesterase; GA 56; capalase L; triglyceride 
hydrolase; triolein hydrolase; tween-hydrolyzing esterase; amano CE; cacordase; 
triglyceridase; triacylglycerol ester hydrolase; amano P; amano AP; PPL; glycerol-ester 
hydrolase; GEH; meito Sangyo OF lipase; hepatic lipase; lipazin; post-heparin plasma 
protamine-resistant lipase; salt-resistant post-heparin lipase; heparin releasable hepatic lipase; 
amano CES; amano B; tributyrase; triglyceride lipase; liver lipase; hepatic monoacylglycerol 
acyltransferase 
 
Systematic name: triacylglycerol acylhydrolase 
 
Comments: The pancreatic enzyme acts only on an ester-water interface; the outer ester links 
are preferentially hydrolysed. 
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1. Korn, E.D. and Quigley, T.W. Lipoprotein lipase of chicken adipose tissue. 
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2. Lynn, W.S. and Perryman, N.C. Properties and purification of adipose tissue lipase. 
 J. Biol. Chem.Vol. 235(7), pp: 1912-1916, (1960) [PDF]  
 
3. Sarda, L. and Desnuelle, P. Action de la lipase pancréatique sur les esters en emulsion 
Biochim. Biophys. Acta 30 (1958) 513-521. [PDF] 
 
4. Singer, T.P. and Hofstee, B.H.J. Studies on wheat germ lipase. I. Methods of estimation, 
purification and general properties of the enzyme. Arch. Biochem. 18 (1948) 229-243. 
 
5. Singer, T.P. and Hofstee, B.H.J. Studies on wheat germ lipase. II. Kinetics. 
Arch. Biochem. 18 (1948) 245-259. 
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Appendix II. Maple Sheet for Two component enantioselectivity 
 
>  
>  
>  
>  
>  
> 
>#LS+C+E<==========>LP+P+E 
>#DS+C+E<==========>DP+P+E 
> 
>  
>   

 
>  
>  
>  
>  
>  
>  
>  
>  
>  
>  
>  
>  
>  
>  

>  

>  
> 
>  
>  
>  
>  
>  
>  
>  
>  
>  
>  
>  
>  
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APPENDIX III.: DERIVATION OF THE MODEL UNDER STEADY STATE ASSUMPTION  
   ON ENZYME BOUND COMPLEXES 

 

 

ELS EDS EE

EC

EDP EELP 

k1[C] k2

k3k 4

k5

k6

k7 k 8 

k9

k10

k 11

k 12 

k 13 k14 

k 15 

k 16 

[P] 

[DS] 

[LS]

[DP]

[LP] 

 

Equation Chapter (Next) Section 1 

1 4 2 3
d[EC] =k C[E] + k [EE]  (k P + k )[EC]

dt
−        (1.1) 

3 6 12 5 11 4
d[EE] =k [EC] + k [EDS] + k [ELS]  (k [DS] + k [LS] + k )[EE]

dt
−    (1.2) 

11 14 13 12
d[ELS] =k [LS][EE] + k [ELP]  (k  + k )[ELS]

dt
−      (1.3) 

13 16 15 14
d[ELP] =k [ELS] + k [LP][E]  (k + k )[ELP]

dt
−       (1.4) 

5 8 7 6
d[EDS] =k [DS][EE] + k [EDP]  (k  + k )[EDS]

dt
−      (1.5) 

7 10 8 9
d[EDP] =k [EDS] + k [DP][E]  (k  + k )[EDP]

dt
−       (1.6) 

9 10
d[DP] =k [EDP]  k [E][DP]

dt
−         (1.7) 

15 16
d[LP] =k [ELP]  k [E][LP]

dt
−         (1.8) 
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If enzyme complexes are all at steady state, then all the time derivatives vanish from 

EqFehler! Verweisquelle konnte nicht gefunden werden. through 

EqFehler! Verweisquelle konnte nicht gefunden werden.. That is to say 

d[EC] d[EE] d[ELS] d[ELP] d[EDS] d[EDP]= = = = = =0
dt dt dt dt dt dt

     (1.9) 

We assume total concentration of DS and LS remain unchanged during the reaction period, so 

we can write 

0DS =[DS] + [EDS] + [EDP] + [DP]        (1.10) 

0LS =[LS] + [ELS] + [ELP] + [LP]        (1.11) 

Since enzyme concentration is too small compare to initial LS and DS concentrations by 

assumption, we can ignore contributions of the enzyme bound complexes in the conservation 

of total LS and DS concentrations. So we get 

0DS [DS] + [DP]≈          (1.12) 

0LS [LS]  [LP]≈ +          (1.13) 

We also assume the enzyme is stable throughout the reaction and its total concentration 

remains constant that gives us,  

0E [E] + [EC] + [EE] + [EDS] + [ELS] + [ELP] + [EDP]=    (1.14) 

Solve [ELP] Eqn for [ELP] to get 

0 1[ELP]=α [ELS] + α [E][LP]        (1.15) 

where,   

( )

( )

0 13 14 15

1 16 14 15

α = k k  + k

α = k k  + k
         (1.16) 

Solve [EDP] Eqn for [EDP] to get 

2 3[EDP]=α [EDS] + α [E][DP]        (1.17) 
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( )

( )

2 7 8 9

3 10 8 9

α = k k + k

α = k k  + k
         (1.18) 

Put [ELP] into [ELS] then solve it for [ELS] to get 

4 5[ELS]=α [LS][EE] + α [E][LP]        (1.19) 

Here,  

11 14 15
4

12 14 15 13 15

14 16
5

12 14 15 13 15

k (k  + k )α =
k (k + k ) + k k

k k α =
k (k  + k )  k k+

        (1.20) 

Put [EDP] into EDS eqn and then solve it for [EDS] to get 

6 7[EDS]=α [DS][EE] + α [E][DP]       (1.21) 

5 8 9
6

6 8 9 7 9

8 10
7

6 8 9 7 9

k (k k )α =
k (k k ) k k

k kα =
k (k k ) k k

+
+ +

+ +

        (1.22) 

Solve [EC] Eqn to get [EC] as: 

8 9[EC]=α [E] + α [EE]          (1.23) 

1C
8

2P 3

4
9

2P 3

kα =
k +k

kα =
k +k

          (1.24) 

Put [EC] in [EE] eqn and solve it for [EE] to get 

0[EE]=g [E]           (1.25) 
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( ) ( )
3 8 6 7 12 5

0
4 3 9 5 6 6 11 12 4

k α  + k α [DP] + k α [LP]g =
k -k α  + k k α [DS] + k k α [LS]− −

    (1.26) 

1 2 3
0

4 5 6

 + [DP] + [LP]g =
 + [DS] + [LS]

Θ Θ Θ
Θ Θ Θ

        (1.27) 

Here, iΘ ’s are defined as 

1 3 8 2 6 7 3 12 5 4 4 3 9 5 5 6 6 6 11 12 4=k α , =k α , =k α , =k k α , =k k α ,  = k k αΘ Θ Θ Θ − Θ − Θ −  (1.28) 

Put [EE] into [EC] equation above and solve it for [EC] 

( )8 9 0[EC]= α  + α g [E]         (1.29) 

Put [EE] into [EDS] Eqn and solve it for [EDS] to get 

( )6 0 7[EDS]= α [DS]g  + α [DP] [E]        (1.30) 

Put [EE] into [ELS] Eqn and solve it for [ELS] to get 

( )4 0 5[ELS]= α g [LS] + α [LP] [E]         (1.31) 

Put [ELS] into [ELP] eqn and solve it for [ELP] to get 

( )( )0 4 0 0 5 1[ELP]= α α g [LS] + α α  + α [LP] [E]       (1.32) 

Put [EE] into [EDS] to get 

6 0 7[EDS]=α [DS]g [E] + α [E][DP]        (1.33) 

Then substitute [EDS] into EDP to get 

( )( )2 6 0 2 7 3[EDP]= α α g [DS]+ α α  + α [DP] [E]       (1.34) 

Let's 0E  is the total enzyme concentration when time t=0. Since we assume that the total 

enzyme concentration remains constant throughout the reactions, we can write  

0E =[E] + [ELP] + [EDP] + [ELS] + [EDS] + [EE] + [EC]     (1.35) 
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After substituting the expressions we derived for each enzyme bound complexes in this 

equation we get 

( ) ( )

6 0 7

0

0

20 4 0

8 9

6 0 3 2 70 5

04 0

1

5

1 +  +  
E  = [E]

+  + 

α α g [LS] + 

α g [DS] + 

α α g [DS] + α  + α α [

 + gα g [LS] + α [LP α  + α α[

α  + α α

DP]  +

[

g

L ]

 

P D 

]

] P⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (1.36) 

After some rearrangements made, solution of this equation for [E] becomes 

( ) ( )
0

0 4 0 1 0 5 2 6 0 3 2 7

4 0 5 6 0 7 0 8 9 0

EE = 
1 + α α g [LS] + α  + α α [LP] + α α g [DS]+ α  + α α [DP] 

+ α g [LS] + α [LP] + α g [DS] + α [DP] + g  + α +α g

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

  (1.37) 

( )( ) ( )( )

( ) ( )( )

0

8 1 5 0 3 2 7

9 4 0 6 2 0

EE = 
1 + α + α +α α +1 [LP] + α + 1+α α [DP] 

+   1 +α α 1+ α [LS] + α 1+ α [DS] g

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟+⎝ ⎠

   (1.38) 

( )
0

1 2 3 4 5 6 0

E[E] = 
 + [LP] + [DP] +  + [DS] + [LS] gΩ Ω Ω Ω Ω Ω

   (1.39) 

where,  

( )1 8 2 1 0 5 3 3 2 7 4 9 5 6 2 6 4 0 = 1+α , = α +(1+α )α ,  = α +(1+α )α ,  = 1 + α , = α 1+α , =α (1+α )Ω Ω Ω Ω Ω Ω
 (1.40) 

After putting g0 given by EqFehler! Verweisquelle konnte nicht gefunden werden. into we 

get [E] as 

( )
0

1 2 3
1 2 3 4 5 6

4 5 6

E[E] = + [DP] + [LP] + [LP] + [DP]+  + [DS] + [LS]
+ [DS] + [LS]

Θ Θ ΘΩ Ω Ω Ω Ω Ω
Θ Θ Θ

         (1.41) 

After some rearrangement made, then E becomes 
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( )
( )( )

( )( )

0 4 5 6

1 2 3 4 5 6

4 5 6 1 2 3

E  + [DS] + [LS]
[E] = 

 + [LP] + [DP]  + [DS] + [LS]

+  + [DS] + [LS]  + [DP] + [LP]

Θ Θ Θ
Ω Ω Ω Θ Θ Θ⎛ ⎞

⎜ ⎟
⎜ ⎟
⎜ ⎟Ω Ω Ω Θ Θ Θ⎝ ⎠

   (1.42) 

The rate of [DP] Production is given by 

9 10
d[DP]  = k [EDP]  k [E][DP]

dt
−        (1.43) 

Putting [EDP] and [E] expressions into this equation gives us 

( ) ( )
( )( )

( )( )

0 4 5 6
1 2

1 2 3 4 5 6

4 5 6 1 2 3

E  + [DS] + [LS]d[DP]  = [DS] [DP]
dt  + [LP] + [DP]  + [DS] + [LS]

+  + [DS] + [LS]  + [DP] + [LP]

Θ Θ Θ
Δ − Δ

Ω Ω Ω Θ Θ Θ⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟Ω Ω Ω Θ Θ Θ⎝ ⎠

  (1.44) 

Here 1Δ  and 2Δ  are defined as   

( )

1 9 2 6

2 10 9 2 7 3

Δ  = k α α

Δ  = k k α α  + α  >0−
        (1.45) 

The rate of [LP] Production is given by 

15 16
d[LP]  = k [ELP] - k [E][LP]

dt
       (1.46) 

Putting [ELP] and [E] expressions into this equation gives us 

( ) ( )
( )( )

( )( )

0 4 5 6
3 4

1 2 3 4 5 6

4 5 6 1 2 3

E  + [DS] + [LS]d[LP]  = [LS] [LP]
dt  + [LP] + [DP]  + [DS] + [LS]

+  + [DS] + [LS]  + [DP] + [LP]

Θ Θ Θ
Δ − Δ

Ω Ω Ω Θ Θ Θ⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟Ω Ω Ω Θ Θ Θ⎝ ⎠

   (1.47) 

Here 3Δ  and 4Δ  are defined as 

( )

3 15 0 4

4 16 15 0 5 1

=k α α

=k k α α  + α  >0

Δ

Δ −
   (1.48)  
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Appendix IV.:  Maple worksheet of derivation given on Appendix 3 
 
############################################################## 

DERIVATION OF THE MODEL UNDER STEADY STATE 
ASSUMPTION ON ENZYME BOUND COMPLEXES 

#################################################################### 

> restart;with(Groebner): 

Rates for individual reactions 

v1:=k[1]*E-k[2]*EC: 

v2:=k[3]*EC-k[4]*EE: 

v3:=k[5]*EE*DS-k[6]*EDS: 

v4:=k[7]*EDS-k[8]*EDP: 

v5:=k[9]*EDP-k[10]*E*DP: 

v6:=k[11]*LS*EE-k[12]*ELS: 

v7:=k[13]*ELS-k[14]*ELP: 

v8:=k[15]*ELP-k[16]*E*LP: 

Mathematical Model 

  dELP:=v7-v8; 

  dEDP:=v4-v5; 

> dEC:=v1-v2; 

> dEEE:=v2-v3-v6; 

dELS:=v6-v7; 

dEDS:=v3-v4; 
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dDP:=v5; 

dLP:=v8; 

 

 

 

 

 

 

 

 

>  
> ELP1:=collect(solve(dELP,ELP),[ELS,LP],`recursive`); 

> ELP:=alpha[0]*ELS+alpha[1]*E*LP; 

A0:=coeff(ELP1,ELS);  

A1:=coeff(coeff(ELP1,LP),E); 

 

 

 

 

> EDP1:=collect(solve(dEDP,EDP),[EDS,DP],`recursive`);; 

> EDP:=alpha[2]*EDS+alpha[3]*E*DP; 

 

 

 

> A2:=coeff(EDP1,EDS); 
A3:=coeff(coeff(EDP1,DP),E); 
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> ELS1:=collect(solve(dELS,ELS),[EE,LS,LP],`recursive`); 

> ELS:=beta[0]*LS*EE+beta[1]*E*LP; 

 

 

 

> B0:=simplify(subs(alpha[0]=A0,coeff(coeff(ELS1,LS),EE))); 

B1:=simplify(subs(alpha[0]=A0,alpha[1]=A1,coeff(coeff(ELS1,LP)

,E))); 

 

 

> 

EDS1:=collect(subs(a2=A2,a3=A3,solve(dEDS,EDS)),[EE,DS,DP],`re

cursive`); 

> EDS:=beta[2]*DS*EE+beta[3]*E*DP; 

B2:=simplify(coeff(coeff(EDS1,EE),DS)); 

B3:=simplify(coeff(coeff(EDS1,DP),E)); 

 

 

 

 

> EC1:=collect(solve(dEC,EC),[E,EE],`recursive`); 
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> EC:=alpha[8]*E+alpha[9]*EE; 

A8:=coeff(EC1,E); 

A9:=coeff(EC1,EE); 

>  

 

 

 

 

> EE1:=collect(solve(dEEE,EE),[E,EE],`recursive`); 

 

> g00:=coeff(EE1,E); 

 

> 
G0:=(Theta1+Theta2*DP+Theta3*LP)/(Theta4+Theta5*DS+Theta6*LS); 

 

> Theta1:=coeff(coeff(numer(g00),LP,0),DP,0); 
Theta2:=coeff(numer(g00),DP); 
Theta3:=coeff(numer(g00),LP); 
Theta4:=coeff(coeff(denom(g00),DS,0),LS,0); 
Theta5:=coeff(denom(g00),DS); 
Theta6:=coeff(denom(g00),LS); 

 

 

 

 

 

 

 

> EEx:=g0*E; 
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> EE2:=collect(subs(EE=EEx,EC),E); 

 

> ELS2:=collect(subs(EE=EEx,ELS),E); 

 

> ELP2:=collect(subs(EE=EEx,ELP),E); 

 

> EDP2:=collect(subs(EE=EEx,EDP),[E,DP],`recursive`); 

 

> E1:=solve(subs(EE=EEx,E[0]=(E+EC+EE+EDS+EDP+ELP+ELS)),E); 

 

> 
E2:=E[0]/(Omega1+Omega2*LP+Omega3*DP+(Omega4*DS+Omega5+Omega6*
LS)*g0); 
 

 

> Omega1:=coeff(coeff(coeff(denom(E1),LP,0),g0,0),DP,0); 
Omega2:=collect(coeff(denom(E1),LP),beta[1]); 
Omega3:=collect(coeff(denom(E1),DP),beta[3]); 
Omega4:=collect(coeff(coeff(coeff(denom(E1),g0,1),DS,0),LS,0),
beta[3]); 
Omega5:=collect(coeff(coeff(denom(E1),g0,1),DS),beta[2]); 
Omega6:=collect(coeff(coeff(denom(E1),g0,1),LS),beta[0]); 
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Rate equations 

DP production rate: 

v1:=collect(collect(subs(EE=EEx,dDP),[DP]),E); 

 

> Delta[1]:=coeff(coeff(coeff(v1,DS),E),g0); 
> Delta[2]:=coeff(coeff(v1,DP),E); 
Delta[11]:=simplify((subs(alpha[2]=A2,(subs(beta[2]=B2,Delta[1
]))))); 
Delta[22]:=simplify((subs(alpha[2]=A2,subs(alpha[3]=A3,(subs(b
eta[3]=B3,Delta[2])))))); 

 

 

 

 

LP production rate: 
v2:=collect(collect(subs(EE=EEx,dLP),[LP]),E); 

 

> Delta[3]:=coeff(coeff(coeff(v2,LS),E),g0); 
Delta3:=simplify((subs(alpha[0]=A0,(subs(beta[0]=B0,Delta[3]))
))); 
 

 

 

> Delta[4]:=coeff(coeff(v2,LP),E); 
Delta4:=simplify((subs(alpha[1]=A1,alpha[0]=A0,(subs(beta[1]=B
1,Delta[4]))))); 

 

>  
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Appendix V.  Derivation of Enantioselectivity based on Mechanistic Model 

 

The rate expressions found in model were; 

 

  ௗ[஽௉]ௗ௧ = ா೚(∆భ[஽ௌ]ି∆మ[஽௉])(௵రା௵ఱ[஽ௌ]ା௵ల[௅ௌ])(ఆభାఆమ[௅௉]ାఆయ[஽௉])(௵రା௵ఱ[஽ௌ]ା௵ల[௅ௌ])ା(ఆరାఆఱ[஽ௌ]ାఆల[௅ௌ])(௵భା௵మ[஽௉]ା௵య[௅௉]) 
 

            (App.1) 

 

 ௗ[௅௉]ௗ௧ = ா೚(∆య[௅ௌ]ି∆ర[௅௉])(௵రା௵ఱ[஽ௌ]ା௵ల[௅ௌ])(ఆభାఆమ[௅௉]ାఆయ[஽௉])(௵రା௵ఱ[஽ௌ]ା௵ల[௅ௌ])ା(ఆరାఆఱ[஽ௌ]ାఆల[௅ௌ])(௵భା௵మ[஽௉]ା௵య[௅௉]) 
 

                   (App.2) 

 

 ௗ[஽௉]ௗ௧ = − ௗ[஽ௌ]ௗ௧  

   ௗ[௅௉]ௗ௧ = − ௗ[௅ௌ]ௗ௧  

 

 

By the definition of enantioselectivity, it is the ratio of both enantioselective rate,  

 

 ௗ[஽ௌ]ௗ[௅ௌ] = (∆భ[஽ௌ]ି∆మൣ[஽ௌ]೚ି[஽ௌ]൧)(∆య[௅ௌ]ି∆ర[[௅ௌ]೚]ି[௅ௌ])        (App 3) 

 

  ௗ[஽ௌ]ௗ[௅ௌ] = (∆భା∆మ)[஽ௌ]ି∆మ[஽ௌ]೚(∆యା∆ర)[௅ௌ]ି∆రమ[௅ௌ]೚       (App.4) 

 

Taking the numerator and denominator by ∆ଵand ∆ଷ, the it is obtained as, 

 

  ௗ[஽ௌ]ௗ[௅ௌ] = ∆భቀଵା∆మ∆భቁ[஽ௌ]ିቀ∆మ∆భቁ[஽ௌ]೚∆యቀଵା∆ర∆యቁ[௅ௌ]ିቀ∆ర∆యቁ[௅ௌ]೚        (App.5) 

 

Substituting ∆ଵ, ∆ଶ, ∆ଷand ∆ସ from Appendix 4 in Maple worksheet it simplifies to be the 

multiplication of equilibrium constants of each racemate. 
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  ∆మ∆భ = ௘௤,஽ௌܭ = ௞ల௞ఴ௞భబ௞ఱ௞ళ௞వ         (App.6) 

  ∆ర∆య = ௘௤,௅ௌܭ = ௞భమ௞భర௞భల௞భభ௞భయ௞భఱ       (App.7) 

If enantiomeric ratio is defined to be the ratio of rate constants; ∆భ∆య 

ܧ   = ∆భ∆య = ௞ఱ௞ళ௞వ(௞భమ௞భరା௞భమ௞భఱା௞భయ௞భఱ)௞భభ௞భయ௞భఱ(௞ల௞ఴା௞ల௞వା௞ళ௞వ)      (App.8) 

 

Substituting equations (App,6,7,8) into eqn( App.5); 

 

  ௗ[஽ௌ]ௗ[௅ௌ] = ܧ ൫ଵା௄೐೜,ವೄ൯[஽ௌ]ି௄೐೜,ವೄ[஽ௌ]೚൫ଵା௄೐೜,ಽೄ൯[௅ௌ]ି௄೐೜,೗ೞ[௅ௌ]೚        (App.9) 

 

This equation can now become explicit and arranging for DS; LS, it becomes as; 

 

  ௗ[஽ௌ]൫ଵା௄೐೜,ವೄ൯[஽ௌ]ି௄೐೜,ವೄ[஽ௌ]೚ = ܧ ௗ[௅ௌ]൫ଵା௄೐೜,ಽೄ൯[௅ௌ]ି௄೐೜,೗ೞ[௅ௌ]೚    (App.10) 

 

Integration of ( App.10) is in the form of 

 

 

׬   ଵ(௔∗௫ି௕) ݔ݀ = ଵ௔ ݈݊ (௔௫ି௕)௔௫೚ି௕)௫௫೚  

 

 

ܧ   = (ଵା௄ಽೄ)(ଵା௄ವೄ) ୪୬((ଵା௄ವೄ) ವೄವೄ೚ି௄ವೄ)୪୬ ((ଵା௄ಽೄ) ಽೄಽೄబି௄ಽೄ)       (App.11) 

 

a) If  D-racemate is irrversible, L-racemate reversible 

 

Since none of forward rate constant could not be zore, the situations where any of the 

reversible reaction has been considered.  When anyone of the reversible reaction on DS loop, 

k6=k8, k10 = 0, then Keq,DS becomes zero and Enantioselectivity turns to be 

 

If right loop on scheme becomes irreversible, any of the rate is irreversible ( e.g. inhibited) 
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ܧ  = ൫ଵା௄೐೜,ಽೄ൯୪୬ ( ವೄವೄ೚)୪୬(൫ଵା௄೐೜,ಽೄ൯) ಽೄಽೄబି௄೐೜,ಽೄ)       (App.12) 

b)  If D-racemate reversible, L-rac irreversible 

 

If any of reversible rate constant on LS loop is zero, k12=k14=k16 = zero 

 

 

ܧ   = ୪୬((ଵା௄ವೄ) ವೄವೄ೚ି௄ವೄ)(ଵା௄ವೄ)୪୬ ( ಽೄಽೄబ)        (App.13) 

 

 

c) If enzyme irreversibly reacts with enantiomers 

d)  

For an irreversible enantioselective reaction, 

 

For case study rate expression : 

 

 ௗ[஽ௌ]ௗ[௅ௌ] = ௞ఱ௞భభ ஽ௌ௅ௌ   ௗ[஽ௌ]ௗ[௅ௌ] = ܧ ஽ௌ௅ௌ      (App.14) 

This is same as Chen and Sih definition , then 

ܧ   = ௞ఱ௞భభ          (App.15) 

For the specific case, where both enantiomers are irreversible k6 and k12 are zero the general 
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Appendix VI.: List of Chemicals 
 
 
 

 

Racemic IPG (C6H12O3 ) , with synonyms  

1,2-isopropylidene glycerol, 

Solketal = 2,2-Dimethyl-4-hydroxymethyl-1,3-dioxolane (TFA), 

acetone gylcerol ,  

glycerol dimethylketal , 

 

Chemicals 

 
 

Aceton 
 
n-Hexan 
 
D-L-- Isopropylidene glycerol 
 
 
 

 
 
Fluka, Buchs, Switzerland 
 
 
 
 

Carbondioxide (CO2) 
 
 
 
Isopropylidene glycerol, Solketal Enantiomers 
 
 
 
Vinylacetate  
 
 
 
Lipase 
 

Linde 
 
 
 
Aldrich 
 
 
 
Merck, Darmstadt, Germany 
 
 
 
Amano, Nagoya,Japan 
 

 

 

 

 

 

 

 

  



 

 

112

112

Appendix VII. Apparatus used in Experiments 

 

Sampling  Appratus : Vortexer Heidopf 

    Zentrifuge Eppendorf 

 

Components of High Pressure Reactor Unit for scCO2 system 

 

High pressure pump ( mini-pump duplex)  NSI 33R ,Milton-Roy 

Circulation pump     PKP P250V 225 BTG, Buddeber 

Thermostate,      RM 6 (-15 C° +100 C°) mgw, Lauda 

Capillary pipes  Knauer    stainless steel, 1/16 AD 10 mm ID,  

Ferrule       stainless steel, Knauer 

O- Ring ,     Viton 500 Balster , Otto Gehrkens GmbH 

Manometer      Hensing&Salmon 

Needle valve      Mill Mite, 1/16 Hoke 

Needle valve      Two Way, SSI 

Needle valve     ERC, Altegolfsheim, Germany 

6-Port/ 3-Channel-Injection valve   Knauer 

7-Port- distrubutor     Knauer 

Probenschlaufe 100 μl     Knauer 

Sapphire glass window    Spindler & Hoyer 
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Appendix VIII. Gas Chromatography 
 
In this work, the gas chromatography CC-14A (Shimadzu) with a terminal C-R4AX 
CHROMATOPAC from the same company has been used. 
 
The column of FS-Hydrodex® ß-3P (Heptakis(2,6-di-Omethyl-3-O-pentyl)-ß-cyclodextrin) 

with 25 m length inner diameter of 0,25 mm (Macherey-Nagel) was utilized for the analysis 

of chiral components. 

 
7.1. Adjustment oft he Chromatography 

 
Carrier Gas H2   1,2 bar 

Synthetic airt    0,65 bar 

Make-up Gas    0,5 bar 

Injector temperatur   180 °C 

Detector temperatur   250 °C 

Injection volume   1 µl 

 

7.2  Retention time 

 

Fig .App 7.1 Chromatogram of a IPG sample  
 
(D)-IPG    6, 13 min 
(L)-IPG    6, 45 min 
(D)-IPGA    8, 24 min 
(L)-IPGA    8, 83 min 
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Appendix IX.        Derivation of rate expressions for lipase catalyzed IPG reaction. 
 
 

> restart;with(Groebner):                 ## (1) ##  
k[2]:=0:k[4]:=0:k[6]:=0:k[12]:=0:k[16]:=0:k[10]:=0: 

Rates for individual reactions 
v1:=k[1]*C[0]*E-k[2]*EC: 

v2:=k[3]*EC-k[4]*EE: 

v3:=k[5]*EE*DS-k[6]*EDS: 

v4:=k[7]*EDS-k[8]*EDP: 

v5:=k[9]*EDP-k[10]*E*DP: 

v6:=k[11]*LS*EE-k[12]*ELS: 

v7:=k[13]*ELS-k[14]*ELP: 

v8:=k[15]*ELP-k[16]*E*LP: 

eqE:=E[0]-(E+EC+EE+EDS+EDP+ELP+ELS): 

Mathematical Model 
dELP:=v7-v8; 

dEDP:=v4-v5; 
> dEC:=v1-v2; 
> dEEE:=v2-v3-v6; 
dELS:=v6-v7; 
dEDS:=v3-v4; 
dDP:=v5; 
dLP:=v8; 

 
 

 
 
 
 

 
 

 

> E:=solve(E0-(E+EC+EE+EDS+EDP+ELP+ELS),E); 

 := dELP − − k13 ELS k14 ELP k15 ELP
 := dEDP − − k7 EDS k8 EDP k9 EDP

:= dEC − k1 C0 E k3 EC
 := dEEE − − k3 EC k5 EE DS k11 LS EE
 := dELS − + k11 LS EE k13 ELS k14 ELP
 := dEDS − + k5 EE DS k7 EDS k8 EDP

:= dDP k9 EDP
:= dLP k15 ELP
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> 
dLPfull:=subs(alpha[0]=A0,alpha[1]=A1,alpha[2]=A2,alpha[3]=A3,alpha[4]=A4,a
lpha[5]=A5,alpha[6]=A6,alpha[7]=A7,alpha[8]=A8,alpha[9]=A9,dLP); 

 

> 
LPn:=subs(alpha[0]=A0,alpha[1]=A1,alpha[2]=A2,alpha[3]=A3,alpha[4]=A4,alpha
[5]=A5,alpha[6]=A6,alpha[7]=A7,alpha[8]=A8,alpha[9]=A9,numer(dLP)); 

 
> 
LPd:=collect(simplify(subs(alpha[0]=A0,alpha[1]=A1,alpha[2]=A2,alpha[3]=A3,
alpha[4]=A4,alpha[5]=A5,alpha[6]=A6,alpha[7]=A7,alpha[8]=A8,alpha[9]=A9,den
om(dLP))),[LS,DS,C[0]],'recursive'); 

 

>  
> `dLP/dt=k1*k11*E0*C0*LS/(k1*C0+(Km1*C0+k11)*LS+(Km2*C0+k5)*DS`; 

 
>  
> 
dDPfull:=subs(alpha[0]=A0,alpha[1]=A1,alpha[2]=A2,alpha[3]=A3,alpha[4]=A4,a
lpha[5]=A5,alpha[6]=A6,alpha[7]=A7,alpha[8]=A8,alpha[9]=A9,dDP); 

 

> 
DPn:=subs(alpha[0]=A0,alpha[1]=A1,alpha[2]=A2,alpha[3]=A3,alpha[4]=A4,alpha
[5]=A5,alpha[6]=A6,alpha[7]=A7,alpha[8]=A8,alpha[9]=A9,numer(dDP)); 

E E0 ( )−  +  + k3 α9 k5 DS k11 LS k3 α8 C0 α7 DP k11 LS α5 LP k5 DS+ + ( := 

α5 LP k11 LS α8 C0 k5 DS α8 C0 k11 LS α3 DP k3 α9 α3 DP k5 DS +  +  +  −  + 

α3 DP k11 LS α1 LP k3 α9 α1 LP k5 DS α1 LP k11 LS α2 α7 DP k3 α9 +  −  +  +  − 

α2 α7 DP k5 DS α2 α7 DP k11 LS α0 α5 LP k3 α9 α0 α5 LP k5 DS +  +  −  + 
α0 α5 LP k11 LS k11 LS k5 DS k3 α9 α6 DS k3 α8 C0 α7 DP k5 DS + +  + − + + 

α7 DP k3 α9 α4 LS k3 α8 C0 α5 LP k3 α9 α2 α6 DS k3 α8 C0 −  +  −  + 

α0 α4 LS k3 α8 C0 + )

dLPfull k11 LS k1 C0 E0 k1 C0

k1 C0 k5 DS
k3

k1 C0 k11 LS
k3

k11 LS k5 DS +  +  +  + 
⎛

⎝
⎜⎜⎜

 := 

k11 LS k1 C0

k15

k5 DS k1 C0

k9

k5 ( ) + k8 k9 DS k1 C0

k7 k9

k11 ( ) + k14 k15 LS k1 C0

k13 k15
 +  +  +  + 

⎞

⎠
⎟⎟⎟

:= LPn E0 k11 LS k1 C0

LPd
( ) + + + k1 k11 k3 k9 k7 k13 k1 k11 k15 k9 k7 k13 k11 k1 k3 k9 k7 k14 k11 k1 k3 k9 k7 k15 C0

k3 k15 k9 k7 k13

⎛

⎝
⎜⎜⎜

 := 

k11 + 
⎞

⎠
⎟⎟⎟

LS
⎛

⎝
⎜⎜⎜

 + 

 + 
( )+ + + k1 k5 k15 k9 k7 k13 k1 k5 k3 k15 k7 k13 k5 k1 k3 k15 k13 k8 k5 k1 k3 k15 k13 k9 C0

k3 k15 k9 k7 k13
k5

⎞

⎠
⎟⎟⎟

DS k1 C0 + 

dLP/dt=k1*k11*E0*C0*LS/(k1*C0+(Km1*C0+k11)*LS+(Km2*C0+k5)*DS

dDPfull k5 DS k1 C0 E0 k1 C0

k1 C0 k5 DS
k3

k1 C0 k11 LS
k3

k11 LS k5 DS +  +  +  + 
⎛

⎝
⎜⎜⎜

 := 

k11 LS k1 C0

k15

k5 DS k1 C0

k9

k5 ( ) + k8 k9 DS k1 C0

k7 k9

k11 ( ) + k14 k15 LS k1 C0

k13 k15
 +  +  +  + 

⎞

⎠
⎟⎟⎟
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> 
DPd:=collect(simplify(subs(alpha[0]=A0,alpha[1]=A1,alpha[2]=A2,alpha[3]=A3,
alpha[4]=A4,alpha[5]=A5,alpha[6]=A6,alpha[7]=A7,alpha[8]=A8,alpha[9]=A9,den
om(dDP))),[LS,DS,C[0]],'recursive'); 

 

>  
 

஽ௌߥ  = − ݐ݀[ܵܦ]݀ = ݇ଵ݇ହܥ௢ܧ௢[ܵܦ](ܭெଵܥ௢ + ݇ଵଵ)[ܵܮ] + ௢ܥெଶܭ) + ݇ହ)[ܵܦ] + ݇ଵܥ଴ 

௅ௌߥ  = − ݐ݀[ܵܮ]݀ = ݇ଵ݇ଵଵܥ௢ܧ௢[ܵܮ](ܭெଵܥ௢ + ݇ଵଵ)[ܵܮ] + ௢ܥெଶܭ) + ݇ହ)[ܵܦ] + ݇ଵܥ଴ 

 

ெଵܭ  = ൬݇ଵ݇ଷ݇଻݇ଽ݇ଵଵ݇ଵଷ + ݇ଵ݇଻݇ଽ݇ଵଵ݇ଵଷ݇ଵହ + ݇ଵ݇ଷ݇଻݇ଽ݇ଵଵ݇ଵସ + ݇ଵ݇ଷ݇଻݇ଽ݇ଵଵ݇ଵହ݇ଷ݇଻݇ଽ݇ଵଷ݇ଵହ ൰ +௢ܥ ݇ଵଵ ܭெଶ = ൬݇ଵ݇ହ݇଻݇ଽ݇ଵଷ݇ଵହ + ݇ଵ݇ଷ݇ହ݇଻݇ଵଷ݇ଵହ + ݇ଵ݇ଷ݇ହ଼݇݇ଵଷ݇ଵହ + ݇ଵ݇ଷ݇ହ݇ଽ݇ଵଷ݇ଵହ݇ଷ݇଻݇ଽ݇ଵଷ݇ଵହ ൰ +௢ܥ ݇ହ 

 

  

:= DPn E0 k5 DS k1 C0

DPd
⎛

⎝
⎜⎜⎜

 := 

( ) +  +  + k1 k11 k3 k9 k7 k13 k1 k11 k15 k9 k7 k13 k11 k1 k3 k9 k7 k14 k11 k1 k3 k9 k7 k15 C0

k3 k15 k9 k7 k13

k11 + 
⎞

⎠
⎟⎟⎟

LS
⎛

⎝
⎜⎜⎜

 + 

 + 
( ) +  +  + k1 k5 k15 k9 k7 k13 k1 k5 k3 k15 k7 k13 k5 k1 k3 k15 k13 k8 k5 k1 k3 k15 k13 k9 C0

k3 k15 k9 k7 k13
k5

⎞

⎠
⎟⎟⎟

DS k1 C0 + 



 

 

117

117

 
Appendix X.  Bootstrap histogram for estimations of thereaction rate constants  
 
A sample histogram for the determination of the parameters was given for the experiment 
carried out at 35 °C and  25 mg of lipase in 30 mM vinly acetate. 
 

 
 
 

 
 
 

 Bootstap mean Standard error 
mean 0.7726 ±0.1193 
k1(1/h 3.8939 ±0.0447 
k5(1/h 0.0331 ±0.0002 
k11(1/h) 0.0169 ±0.0032 
KM1(mmol/L) 2.3835 ±0.0296 
KM2(mmol/L) 0.2553 ±0.0138 
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Appendix XI.      Derivation of the rates for the non-enantiomeric single reactions. 

 

In this derivation, the results obtained in Appendix IX. Have been rearranged. 

 

For single DS and LS forms, 

 

a) If only DS exits, where LS = 0, 

 

LS terms in the denominator disappears and rate becomes 

஽ௌߥ  = − ݐ݀[ܵܦ]݀ = ݇ଵ݇ହܥ௢ܧ௢[ܵܦ](ܭெଶܥ௢ + ݇ହ)[ܵܦ] + ݇ଵܥ଴ 

 

Dividing numerator and denominator by (ܭெଶܥ௢ + ݇ହ), it is obtained that; 

 

஽ௌߥ = − ݐ݀[ܵܦ]݀ = ݇ଵ݇ହܥ௢ܧ௢(ܭெଶܥ௢ + ݇ହ) [ܵܦ][ܵܦ] + ݇ଵܥ଴(ܭெଶܥ௢ + ݇ହ) 

 

This is the Michaelis –Menten form where Vmax and KM are defined as; 

 

௠ܸ௔௫,஽ௌ = ݇ଵ݇ହܥ௢ܧ௢(ܭெଶܥ௢ + ݇ହ) 

ெ,஽ௌܭ = ݇ଵܥ଴(ܭெଶܥ௢ + ݇ହ) 

Thus the rate of the single DS can be written as, 

஽ௌߥ  = − ݐ݀[ܵܦ]݀ = ௠ܸ௔௫[ܵܦ]ܭெ +  [ܵܦ]
 

 

b) If only LS exits, where DS =0 

 

By the same prodecure explained above, then the rate of the LS is; 
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௅ௌߥ = − ݐ݀[ܵܮ]݀ = ௠ܸ௔௫,௅ௌ[ܵܮ]ܭெ,௅ௌ +  [ܵܮ]
 

௠ܸ௔௫,௅ௌ = ݇ଵ݇ଵଵܥ௢ܧ௢(ܭெଵܥ௢ + ݇ଵଵ) 

ெ,௅ௌܭ  = ݇ଵܥ଴(ܭெଵܥ௢ + ݇ଵଵ) 
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