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ІI  Abstract 
 
Retrovirus-derived vectors are frequently used for the genetic modification of replicating cells 

and offer potential value for gene therapy. However, retroviral vector-mediated insertional 

mutagenesis has been shown to induce clonal imbalance and malignant transformation in 

animal models and humans, demonstrating the need for improved vector design to increase 

safety. The present study adressed the question of whether “self-inactivating” (SIN) retroviral 

vectors containing a weak cellular promoter/enhancer can reduce the risk of insertional 

mutagenesis. To evaluate the potential of retroviral vector sequences to activate 

neighbouring promoters, we compared cellular and retrovirus-derived promoter/enhancers in 

two different in-vitro assays. Furthermore, the impact of retroviral vector design on 

transforming potential was studied in cultured cells. Cellular promoters showed less 

enhancer activity than viral promoters, resulting in a strongly decreased potential to 

upregulate a cellular proto-oncogene Evi1, and thus a greatly decreased likelihood of 

immortalizing primary bone marrow cells. In summary, the cellular promoter/enhancers 

tested here are less likely to activate neighboring genes than are viral promoters, and are 

thus promising candidates to be incorporated in potential therapeutic vectors. 

RNA processing signals may also play an important role in improving the safety of retroviral 

vectors. The presence of a 5’splice site (ss) in retroviral vectors enhances transgene 

expression and titer. However, a 5’ss potentially enables the generation of fusion transcripts 

that link retroviral and cellular exons. Gammaretroviral vectors used in clinical trials harbor 

the authentic splice sites of murine leukemia virus (MLV). So far alternative splicing of MLV is 

not understood in detail and retroviral vector development would benefit from insights into the 

underlying mechanisms. We were able to show that MLV attenuates its 5’ss, in contrast to 

other retroviruses that control alternative splicing via weak 3’ss. Attenuation is achieved by 

upstream sequences that fold into a complex secondary structure. Most of the structure 

could be functionally replaced by a heterologous stem loop. Mechanistically, the secondary 

structure reduces the accessibility of the 5’ss for U1 snRNP, which normally directs the RNA 

into the splicing pathway. To increase the complementarity of the 5’ss to U1 snRNA we 

constructed hyper-stable U1 snRNA mutants and could thereby overcome the attenuation 

exerted by the secondary structure. In conclusion, MLV hides a 5’ss by the stem loop 

structure to reduce binding of U1 snRNP and this inefficient recognition leads to the 

alternative splice regulation in MLV. 

Taken together, this thesis offers improved insight into crucial determinants of retroviral gene 

regulation and gene vector biosafety. 
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ІII  Kurzzusammenfassung 
 
Retrovirale Vektoren werden häufig verwendet um replizierende Zellen genetisch zu 

modifizieren und sind für die Anwendung in der Gentherapie geeignet. Die Beobachtung, dass 

eine durch retrovirale Vektoren ausgelöste Insertionsmutagenese zu einem klonalen 

Ungleichgewicht und zu bösartigen Zellveränderungen im Tiermodell sowie beim Menschen 

führen kann, zeigte die Notwendigkeit, sicherere Vektoren zu entwickeln. Diese Arbeit 

beschäftigt sich mit der Frage, ob durch die Verwendung von selbstinaktivierenden 

retroviralen (SIN) Vektoren mit schwachen zellulären Promotor-/Enhancer-Sequenzen die 

Gefahr einer Insertionsmutagenese verringert werden kann. Um das Aktivierungspotential von 

retroviralen Vektor-Sequenzen auf benachbarte Promotoren zu validieren, verglichen wir 

zelluläre und retrovirale Promotor/Enhancer in zwei verschiedenen in-vitro Assays. Ferner 

wurde der Einfluss des retroviralen Vektordesigns auf das Transformationspotential von 

Zellkulturen untersucht. Zelluläre Promotoren zeigten eine geringere Enhancer-Aktivität als 

virale Promotoren, wodurch das Potenzial, ein Protoonkogen wie z.B. Evi1 zu aktivieren, 

deutlich reduziert ist. Dies verringert in hohem Maße die Wahrscheinlichkeit, dass es zu einer 

Immortalisierung primärer Knochenmarkszellen kommt. Mit dieser Arbeit konnte gezeigt 

werden, dass eine Aktivierung benachbarter Gene durch die hier getesteten zellulären 

Promotor/Enhancer unwahrscheinlich ist, wodurch ein Einsatz in therapeutischen Vektoren 

vielversprechend ist. 

RNA-Prozessierungssignale sind wahrscheinlich wichtig für die Verbesserung der Sicherheit 

retroviraler Vektoren. Das Vorhandensein einer 5’Spleißstelle (ss) in retroviralen Vektoren 

erhöht die Expression des Transgenes und des Titers. Hingegen können Fusionstranskripte 

aus retroviralen und zellulären Exons durch die Verwendung der retroviralen 5’ss entstehen. 

Die in klinischen Studien eingesetzten gammaretroviralen Vektoren besitzen die Spleißstellen 

des Murinen Leukämievirus (MLV). Bisher ist alternatives Spleißen von MLV nicht im Detail 

verstanden, jedoch könnte die weitere Entwicklung retroviraler Vektoren von der Aufklärung 

des Spleißmechanismus profitieren. Wir konnten zeigen, dass MLV im Gegensatz zu anderen 

Retroviren, die alternatives Spleißen über die Verwendung von schwachen 3’ss regulieren, 

die 5’ss attenuiert. Die Attenuierung wird erreicht durch stromaufwärts liegende Sequenzen, 

die eine komplexe Sekundärstruktur ausbilden. Der Hauptteil der Struktur konnte funktionell 

durch eine heterologe Sekundärstruktur ersetzt werden. Die Sekundärstruktur reduziert die 

Zugänglichkeit der 5’ss zu U1 snRNP, welches normalerweise das Spleißen der RNA dirigiert. 

Um die Komplementarität der 5’ss zu U1 snRNA zu erhöhen, konstruierten wir hyperstabile 

U1 snRNA-Mutanten und konnten damit die Attenuierung der 5’ss durch die Sekundärstruktur 

verringern. Im Ergebnis kann festgestellt werden, dass die Sekundärstruktur die 5’ss 

versteckt, wodurch die Bindung von U1 snRNP reduziert wird, was dann zu alternativem 

Spleißen beim MLV führt. Insgesamt erlauben die Ergebnisse dieser Doktorarbeit einen 

verbesserten Einblick in entscheidende Aspekte der retroviralen Genregulation und in die 

biologische Sicherheit von Genvektoren. 
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A  Introduction 
 

In the last 20 years the understanding and knowledge of the complex interplay of 

genetic information and cell fate has increased rapidly. One milestone was the 

sequencing of the human genome, finished at the beginning of the new millennium 

(Lander et al., 2001). These sequence data enabled scientists to discover the genetic 

background of many diseases. Further advances in genetic, diagnostic and 

molecular biology resulted in new techniques to cure diseases by directly modifying 

the mutated gene. Diseases like cystic fibrosis, hemophilia, and -thalassemia are 

predicated by a mutation of a single gene. In an autosomal recessive disorder like 

cystic fibrosis or adenosine deaminase deficiency (ADA) both alleles are mutated 

leading to the specific phenotype. Heterozygous individuals however, are often 

healthy due to compensation by the non-mutated allele. In the case of autosomal 

dominant disorders one allele is sufficient to show a phenotype. In addition, there are 

X chromosome-linked genetic diseases resulting in a dominant phenotype in males. 

Examples are the X-linked severe combined immune deficiencies (X-SCID) and the 

chronic granulomatous disease (CGD). Monogenetic diseases are potential 

candidates for gene therapy. 

 

1  Gene therapy 
 

Gene therapy is defined as the insertion of genes into the host cell genome in order 

to diagnose, prevent or to cure diseases (Mulligan, 1993). In general, somatic cells 

are used for genetic modifications, where the hematopoietic system, due to its 

regenerative capacity, is an ideal target for gene therapy (Fig.1). For a clinical 

approach hematopoietic stem cells (HSC) are isolated via a bone marrow biopsy or 

mobilization with G-CSF (granulocyte-colony stimulating factor). The genetic 

alteration is performed ex vivo and the modified cells are returned to the patient. 

Currently the most successful type of gene therapy to cure inherited disorders is 

gene addition (Aiuti et al., 2002; Cavazzana-Calvo et al., 2000; Gaspar et al., 2004). 

Here, a correct copy of the disease-causing gene leads to correction of the 

phenotype at the cellular level.  
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Figure 1: General model of hematopoiesis  

HSC are the source of all blood cell development and are regulated by several factors. HSC have the 
potential to self-renew or to differentiate into blood progenitors. These processes are mediated by 
several cytokines. Abbreviations: HSC hematopoietic stem cell, CMP common myeloid progenitor, 
CLP common lymphoid progenitor, MEP megakaryocyte erythroid progenitor, GM granulocyte 
progenitor, TNK T-cells and natural killer cells, BCP B-cell progenitor, MkP megakaryocyte progenitor, 
EP erythroid progenitor, MP monocyte progenitor, GP granulocyte progenitor, TCP T-cell progenitor, 
NKP natural killer cell progenitor, IL interleukin, TPO thrombopoietin, SCF stem cell factor, M-CSF 
macrophage-colony stimulating factor, GM-CSF granulocytemacrophage CSF, EPO erythropoietin 
(Kaushansky, 2006).  
 

 

Different techniques such as physicochemical gene transfer systems (Glover et al., 

2005) have been established to transport DNA into the nucleus of the target cell. 

Disadvantages of such approaches are limited efficacy, high cytotoxicity and a low 

frequency of stable integration. Viruses have been used as naturally occuring “gene-

shuttle” systems. For clinical approaches so called viral based vector systems have 

been established on the basis of adenovirus, herpes virus, adeno-associated virus, 

poxvirus, vaccinia virus and retroviruses (Thomas et al., 2003). Thereby, the 

therapeutic transgene is embedded into a full transcription unit, including 

promoter/enhancer and RNA processing elements.  
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Many vectors used in clinical gene therapy trials are based on retroviruses (~22%), 

which have the ability to catalyze the stable integration of their genome into the host 

cell chromosome (overview in http://www.wiley.co.uk/genetherapy/clinical/). The 

inserted DNA becomes part of the cellular genome and thus retroviral vectors offer 

the advantage of long-term gene expression. Furthermore, retroviral vectors have 

relatively simple genomes, are easy to use, show a broad cell tropism and a 

sufficient packaging capacity for the delivery of many therapeutic genes (Coffin et al., 

1997). Therefore retrovirus based vectors are a promising tool for gene therapy and 

have thus been optimized and investigated in the present study. 
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2  Retroviruses  
 

The first retrovirus was identified as a tumour causing agent in chicken in 1911 by 

P. Rous (Rous sarcoma virus). D.Baltimore, H.M. Temin and S. Mituzami discovered 

in 1970 that retroviruses encode a specific enzyme, which causes a retrograde 

information flow from RNA to DNA (Coffin et al., 1997). During their life cycle 

retroviruses reverse transcribe their RNA genome into double-stranded DNA and 

integrate as a “provirus” into the host genome. This feature gave retroviruses their 

name and the viral reverse transcriptase became an important tool for molecular 

biologists to study gene expression. Retroviruses belong to one of the best 

charaterized virus families, due to the discovery of the human immunodeficiency 

virus type 1 (HIV-1) in 1983 by L. Montagnier as the agent of the acquired 

immunodeficiency syndrome (AIDS) (Barre-Sinoussi et al., 1983; Lever & Berkhout, 

2008; Pincock, 2008). Retroviruses preferentially infect vertebrates, where they can 

induce multiple symptoms such as tumour diseases, immunodeficiencies or 

neurologic deficits, depending on the functional properties of the retroviral genome. 

In general, the family of the Retroviridae can be divided into exogenous retroviruses, 

where the infection occurs via viral particles, and endogenous retroviruses, which 

use vertical germline transfer. Based on their genome organization, structural 

morphology and their life cycle, retroviruses are subdivided into the following 

7 genera (Modrow et al., 2003). 

 

 -retrovirus (e.g. Rous sarcoma virus, RSV) 

 -retrovirus (e.g. Mason-Pfizer monkey virus, MPMV) 

 -retrovirus (e.g. Murine leukemia virus, MLV) 

 -retrovirus (e.g. Human T-cell leukemia virus type 1, HTLV-1) 

 -retrovirus (Fish retroviruses, e.g. Walleye dermal sarcoma virus, WDSV) 

 Lentivirus (e.g. Human immunodeficiency virus type 1, HIV-1) 

 Spumavirus (e.g. Human foamy virus, HFV) 

 

Depending on the presence of additional gene products encoded by the retroviral 

genome, retroviridae can be further classified into simple and complex retroviruses. 

Simple retroviruses (alpha, beta- and gammaretroviruses) only encode for three viral 

gene products (structural, enzymatic and envelope proteins) common to all 
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retroviruses. In contrast, complex retroviruses (delta-, lenti- and spumaviruses) 

harbor additional open reading frames (ORF) for accessory regulatory proteins 

(Coffin et al., 1997). Since the aim of this PhD thesis was to improve 

gammaretrovirus derived gene transfer vectors, the following sections will focus on 

the viral life cycle, viral gene expression and the vector development of simple 

retroviruses. 

 

2.1 The gammaretroviral genome 
 

Retroviruses are enveloped, single-stranded and positive-sense RNA viruses 

(7-11kb) that carry two copies of their genome per virion (Coffin et al., 1997). The 

viral RNA genome uses the cellular transcription machinery for replication and is 

similar to cellular messenger RNA (mRNA); exhibiting a 5’Cap and a 3’Poly(A) tail. All 

simple retroviruses are based on the same genomic organization as shown in 

Figure 2. A redundant region (R) is located at both termini of the viral RNA genome 

and includes the transcription start site and a weak polyadenylation signal. The 

5’R region is followed by the U5 (U=unique) region, the primer binding site (PBS), the 

5’splice site (5’ss) and the highly structured packaging signal () (D'Souza & 

Summers, 2005). Furthermore, the U5 region harbors one of the two attachment 

sites (att) whereas the PBS binds a cellular tRNA, which is used by the reverse 

transcriptase as a primer. The following coding region encodes three consecutive 

genes common for all retroviruses. The structural proteins (gag), the enzymes (pol; 

reverse transcriptase, integrase and protease) and the glycoprotein (env) that 

mediates viral entry. Whereas gag and pol are expressed from the same viral 

unspliced (genomic) RNA, the expression of env is directed from a spliced RNA 

using a 3’splice site (3’ss) located in pol. A polypurine tract (PPT) of at least 

9 purines is located downstream of the open reading frames (ORFs) and is important 

for reverse transcription. The viral promoter/enhancer sequences and the second 

attachment site are located in the U3 region at the 3’end of the genomic RNA 

followed by the terminal 3’R region. During the viral life cycle the retroviral RNA 

genome is reverse transcribed into double-stranded DNA and integrated as a 

provirus into the host genome. In the process of reverse transcription the regulatory 

sequences are duplicated at both ends of the viral genome to create the long 

terminal repeats (LTR). The LTR include the U3, R and the U5 region in the same 

order at the 5’ and at the 3’end of the DNA. 
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Figure 2: The gammretroviral RNA genome 

The figure schematically illustrates the genomic RNA, the provirus and the transcribed RNA species. 
The retroviral genome harbors, like celluar mRNAs, a 5’Cap and a 3’Poly(A) tail. The 5’UTR contains 
the 5’R region, U5, PBS, the 5’ss and the packaging signal, followed by the open reading frames for 
gag/pol and env. The 3’UTR contains the viral enhancer promoter elements (U3), which are copied 
after reverse transcription to the 5’end of the integrated provirus, and the 3’R region. After reverse 
transcription, the attachment sites for the integrase are located in U5 and U3. The provirus is flanked 
by the long terminal repeats (LTR), each consisting of the U3, R and U5 regions. Transcription of the 
viral RNAs is carried out by cellular transcription machineries and is directed by the promoter located 
in U3. The 3’ss is located in pol and expression of env is dependent on a single splice event removing 
the “gag/pol intron”. 
 

2.2 The gammaretroviral life cycle 
 

The whole retroviral RNA genome is packaged into a ribonucleoproteincomplex 

(RNP) consisting of the nucleocapsid and the reverse transcriptase and integrase 

proteins. Capsid proteins give the core its icosahedral structure. The outer shell of 

the virus is derived from the plasma membrane and contains viral envelope proteins 

like the surface (SU) and the transmembrane (TM) glycoprotein. Retroviruses use 

cell-surface molecules as specific receptors to enter their target cells by fusing with 

the host cell membrane, either directly or after endocytosis. The viral core is than 

released into the cytoplasm by membrane fusion (Coffin et al., 1997). Subsequently, 

the viral core undergoes an uncoating process through which the capsid is removed 

and the viral reverse transcriptase retrogradely translate the RNA genome into DNA 

(Baltimore, 1992; Coffin et al., 1997). Reverse transcription starts at the free 

3’hydroxyl group of the cellular tRNA molecule that is linked via hydrogen bonds to 

the PBS of the 5’untranslated region (5’UTR). The reverse transcriptase (RT) uses 
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the genomic RNA as a template for the minus strand synthesis and the emerging 

DNA is used for the plus strand elongation (Fig.3). During the reverse transcription 

process RNA/DNA hybrids are formed and cleaved by the RNase H activity of the 

RT. So the RT exhibits two enzymatic properties, DNA polymerase and RNase H 

activity. Compared to cellular DNA polymerase, the RT offers no proofreading 

activity, which leads to the high mutation rate observed in retroviruses 

(Goodenow et al., 1989; Preston et al., 1988). During reverse transcription the 

regulatory sequences are duplicated at both ends of the viral genome to create the 

long terminal repeats (LTR).  
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Figure 3: Reverse transcription 

(a) Reverse transcription is initiated from the 3’end of a primer tRNA (green) partially annealed to the 
PBS region of the retroviral genomic RNA (black). (b) The reverse transcriptase extends through the 
5’end and generates the minus-stranded strong stop DNA (red). The 5’end of the genomic RNA is 
degraded by RNase H. (c) strand transfer of the (-)ssDNA to the 3’R region of the retroviral genome. 
(d) Continued minus strand DNA synthesis occurs and RNase H degrades the RNA within the 
DNA/RNA hybrid except for the PPT sequences. (e) The PPT serves as a primer for plus strand 
synthesis (blue). Thereby the first 18 nucleotides of the tRNA primer are used for the generation of the 
PBS DNA sequence and degraded subsequently by RNase H. (f) The newly synthesized plus strand 
DNA is transferred to 5’end of the minus DNA strand. Base pairing of plus and minus DNA PBS 
sequences leads to a loop-like structure. (g) DNA synthesis resumes after second strand transfer with 
each strand using the other as template. Adapted and modified from (Basu et al., 2008). 
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The stable inserted provirus is a functional transcription unit flanked by the viral LTRs 

that is transcribed by the cellular RNA polymerase II, partially spliced, polyadenylated 

and exported to the cytoplasm. The glycoprotein (env) is expressed as a precursor 

molecule from the spliced RNA (Fig.2) and synthesized at the rER. In the Golgi 

apparatus env is cleaved by the cellular furin protease to produce the SU and the TM 

glycoproteins during the transport via the secretory pathway to the plasma 

membrane of the cell. In contrast, gag and gag/pol are synthesized at free 

polyribosomes and expressed from the unspliced genomic RNA. The translation of 

the gag/pol polyprotein of Moloney murine leukemia virus (MoMLV) requires a 

process called “translational suppression of termination”. Here an amber stop codon 

(UAG) of the gag reading frame is occasionally misread by the tRNA for glutamine. 

More precisely, a purine rich sequence 3’ of the stop codon and an RNA pseudoknot 

structure further downstream are suggested to be responsible for the competition 

between the glutamine tRNA and translation termination/release factors by causing 

the ribosome to pause. Another strategy to express two proteins from the same 

mRNA template has evolved in the rous sarcoma virus (RSV) which uses ribosomal 

frameshifting. Here the ribosome moves into a different reading frame in the 

-1 direction before reaching the gag stop codon and than continues the translation of 

pol. Gag/pol precursor proteins are produced by misreading the stop codon in about 

4 to 10% and by ribosomal frameshifting in about 5% of translation events 

(Flint, et al 2000). After synthesis of the viral proteins the assembly and budding of 

new virions occur at the plasma membrane of the cell. The gag and gag/pol 

precursor proteins are packaged into viral particles and cleaved into their single 

components by the viral protease. Gag consists of the matrix (MA, p15), p12, capsid 

(CA, p30), and nucleocapsid (NC, p10) proteins, whereas pol is processed into the 

protease (PR, p14), the reverse transcriptase (RT, p80) and the integrase (p46). The 

packaging of the genomic RNA is mediated by an interaction of the packaging signal 

 with the nucleocapsid domain of gag. Finally the maturation of infectious particles 

containing an activate env protein for fusion occurs by processing of TM proteins by 

the viral protease during virus budding to generate p12env and p2env molecules 

(Fig.4). 
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Figure 4: The gammaretroviral life cycle 

(a) Highly schematic illustration of a mature MLV particle. All retroviral components and their relative 
locations within the particle are indicated. IN: integrase, MA: matrix, CA: capsid, NC: nucleocapsid, 
PR: protease, RT: reverse transcriptase, SU: surface subunit, TM: transmembrane subunit. Adapted 
from (Galla, 2008). 
(b) The retroviral virion enters the cytoplasm in a receptor-mediated manner by fusing its envelope 
with the host cell membrane (entry). After uncoating, the reverse transcription of the viral genome is 
initiated and the resulting double-stranded DNA gains access to the host´s chromatin during mitosis. 
The viral integrase inserts the viral provirus into the host genome. Using the cellular transcription 
machinery the viral genome is transcribed, spliced in a defined ratio and the RNAs are exported to the 
cytoplasm. The gag and gag/pol precursor proteins are translated at free polyribosomes whereas the 
env proteins are synthesized at the rough endoplasmic reticulum (rER). The proteins are transported 
to the cell membrane where the assembly of the retroviral components and the budding process 
occurs. The maturation of infectious particles takes place during or shortly after budding (maturation). 
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2.3 Eukaryotic gene expression 
 

Gene expression by simple retroviruses is carried out by cellular machineries and is 

regulated at many steps during transcription, splicing, polyadenylation, export and 

translation of the mRNA. In contrast to prokaryotes, transcription and translation in 

eukaryotes are separated into two distinct cellular compartments i.e. the nucleus and 

the cytoplasm. Transcription of all protein-coding genes and most of the small 

nuclear RNAs (snRNAs) is catalyzed by RNA polymerase II (RNAP II). The 

expression level of most genes is regulated by transcription factors that bind to DNA 

regulatory sequences (enhancer) up to 10 kb upstream of the TATA-box where 

transcription is initiated. The accessibility of the gene locus to the transcriptional 

apparatus plays a pivotal role in regulating gene expression. Untranscribed regions 

of the genome are packaged into highly condensed “heterochromatin”. In contrast, 

transcribed genes are present in the more accessible “euchromatin” (Richards & 

Elgin, 2002). To induce transcription, activator proteins decondense repressive 

chromatin structures. Therefore transcription factors need co-activators/mediators 

like chromatin-modifying enzymes which facilitate the access of DNA-binding 

proteins to DNA and the recruitment of the RNA polymerase enzymes to the 

transcriptional start site (McKenna & O'Malley, 2002; Narlikar et al., 2002). For 

publication 1 it was important to understand the underlying mechanisms of promoter 

interactions and the ability of enhancers to activate neighboring genes over a long 

distance. 

 

The carboxy-terminal domain (CTD) of the RNAP II is crucial for coupling 

transcription to pre-mRNA processing. The CTD consists of 27 heptad repeats in 

yeast and 52 in humans, and the phosphorylation status of these repeats during 

transcription coordinates the recruitment of processing factors crucial for capping, 

splicing and polyadenylation (Dahmus, 1996; Komarnitsky et al., 2000). After 

initiation of transcription, capping of nascent transcripts is the first step of pre-mRNA 

proccessing and it occurs as soon as the 5’end emerges from the polymerase (Fig.5) 

(Hirose & Manley, 2000; Proudfoot et al., 2002; Shatkin & Manley, 2000).  
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The cap-binding complex including the capping enzymes is recruited via the CTD to 

the 5’end of the pre-mRNA. This 5’cap modification renders pre-mRNA and mRNA 

resistant to the activity of 5’ to 3’exonucleases (Beelman & Parker, 1995). During the 

switch of initiation to elongation, the CTD becomes hyperphosphorylated on the first 

two serine residues in the heptad YSPTSPS. Normally mammalian genes consists of 

coding (exon) and non-coding (intron) sequences. In order to generate a functional 

message from the DNA template the introns are removed by mRNA splicing (Berget 

et al., 1977). Thereby the exons are ligated together by a two-step transesterification 

reaction performed by the spliceosome. Since one important aim of the present study 

was to investigate how MLV regulates alternative splicing, the following paragraphs 

will focus on RNA splicing mechanisms and alternative splicing in more detail (see 

2.4 et seq). Transcription termination and release of RNAP II depends on the 

recognition of a functional poly(A) signal consisting of a highly conserved AAUAAA 

hexamer and cleavage at the next CA dinucleotide downstream of the poly(A) signal. 

Cleavage is followed by the addition of around 200 adenosine residues by the 

poly(A) polymerase (PAP) (Wahle & Ruegsegger, 1999). This poly(A) tail stabilizes 

the RNA and facilitates downstream events like export and translation. After 

successful pre-mRNA proccessing the mRNA must be exported through the nuclear 

pore complexes (NPCs) (Allen et al., 2000; Ryan & Wente, 2000) to the cytoplasm, 

where translation of the mRNA is carried out by the cellular ribosomes. In addition, 

the NPC has a quality control function in that intron-containing mRNAs are retained 

to prevent faulty translation due to the presence of premature stop codons. Export of 

bulk mRNA is thought to be facilitated by the general export factor TAP/NXF1:p15 

Figure 5:  A contemporary view of gene   
expression 

The figure shows co-transcriptional pre-mRNA 
processing. Capping of the pre-mRNA usually 
initiates after synthesizing 20-30 nucleotides of 
RNA. Splicing of introns occurs co- and post-
transcriptionally, whereas the pre-mRNA must 
be cleaved before addition of around 200 
adenosine residues to the 3’end takes place. 
During transcription the RNA is packaged as a 
ribonucleo-proteincomplex and exported 
through nuclear pores to the cytoplasm. 
(Orphanides & Reinberg, 2002) 

3’ processing 
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and different adapter molecules like the REF/Aly and SR proteins (Dimaano & 

Ullman, 2004). All non-coding RNAs like tRNAs, rRNAs and U snRNAs are exported 

by members of the karyopherin family of Ran-dependent nucleoplasmic transport 

factors, also termed importins/exportins. For this to occur, nuclear export factors of 

the karyopherin class such as Crm1 or Exportin t bind their cargo in the presence of 

Ran-GTP in the nucleus and then release it via gradient Ran-GTP translocation to 

the cytoplasm (Allen et al., 2000; Cullen, 2003; Gorlich & Kutay, 1999).  

 

2.4 Splicing  
 

Most eukaryotic genes are interrupted by non-coding sequences (introns) and are 

transcribed as pre-mRNAs that are then converted to mRNA by splicing. The introns 

are removed and the coding sequences (exons) are ligated together. This process is 

catalyzed by the spliceosome, a dynamic 60S ribonucleoprotein particle (Staley & 

Guthrie, 1998), assembled from five subcomplexes composed of five small nuclear 

ribonucleoproteins (U1, U2, U4, U5 and U6 snRNP) and as many as 150 other 

proteins (Jurica & Moore, 2003; Will & Luhrmann, 2001; Zhou et al., 2002). Each 

exon/intron border exhibits consensus elements in cis, which are essential for the 

recognition by the spliceosome. Four short sequences define an intron. The 5’end of 

the intron, termed 5’splice site (5’ss), is marked by the consensus sequence 

AGIGURAGU, whereas the 3’splice site (3’ss) defines the 3’end of the intron by     

Yn-YAGIG (R, purine; Y, pyrimidine) (Gesteland, et al 2006). Another consensus 

sequence CURACUA (branchpoint) lies about 40 nt upstream of the 3’ss and harbors 

a highly conserved adenosine, which is important for the first transesterification 

reaction (Konarska & Query, 2005). Additionally, a pyrimidine-rich tract containing a 

run of about 13 pyrimidines is located between the branchpoint and the 3’ss. The 

branchpoint, the pyrimidine tract and the invariant AG dinucleotide define a 3’ss. The 

spliceosome assembles and rearranges itself in a highly ordered stepwise manner. 

Spliceosomal assembly proceeds through the E, A, B and C complex (Fig.6). Initial 

recognition starts with the binding of U1 snRNP to the 5’ss resulting in the 

E complex. The 5’ss is recognized through an RNA base pairing interaction with the 

consensus sequence of the 5’end of U1 snRNA. In parallel, a dimeric splicing factor 

U2AF binds the 3’ss and the adjacent pyrimidine tract which helps to recruit 

U2 snRNP to the branchpoint. The base pairing of the U2 snRNA to the branchpoint 

is the first ATP-dependent step, leading to the A complex. The addition of the 
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U4/U6·U5 triple snRNP to the spliceosome during B complex formation heralds a 

large number of RNA:RNA rearrangements (Nilsen, 1994), leading to the release of 

U4 snRNP and the replacement of U1 snRNP with U6 snRNP. As a result, the 

catalytically active C complex is formed by intramolecular base pairing between the 

U2, U6 and the pre-mRNA (Madhani & Guthrie, 1992; Sun & Manley, 1995). Base 

pairing between the U2 snRNA and the branch site sequence forms a duplex with a 

bulged adenosine, which engages in 2’OH linkage after attack of the guanosine at 

the 5’end of the intron. Crosslinking experiments showed that the U5 snRNP can 

interact with both 5’ and 3’exon sequences (Newman, 1997) and is thought to 

stabilize the reactive complex and to align both exons for the second catalytic step. 

Here the 3’OH of the 5’exon attacks the intronic 3’guanosine and exon-ligation 

occurs. The final products are the intron-less mRNA and a lariat-like structure formed 

of U6 and the removed branchpoint oligo (Kramer, 1996).  

 

 

 

Figure 6: Assembly of the spliceosome and the splicing reaction 

Stepwise assembly of the spliceosome with the complexes E, A, B, C. Step 1 and step 2 are both 
transesterification reactions. For more details see section 2.3. 
Adapted from (Gesteland, et al 2006). 
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Pre-mRNA splicing begins co-transcriptionally and continues post-transcriptionally as 

observed for example in Drosophila (Beyer & Osheim, 1988), and humans 

(Tennyson et al., 1995). Specifically, it has been shown for the Balbiani ring genes of 

Chironomous tentans that nascent mRNAs already lack introns at their 5’ends 

(Bauren & Wieslander, 1994; Wetterberg et al., 1996). The time taken for RNAP II to 

reach the end of a transcription unit defines the maximal time in which splicing can 

occur co-transcriptionally. Drosophila RNAP II has a transcription rate of                   

1-1.5 kb/minute, leading to a ~3 minute transcription time for introns (with an average 

of 3.300 bp) and only ~30 seconds for exons (with an average of ~300 bp). Intron 

removal in Drosophila has been observed ~4 minutes after 3’ss recognition. In 

mammalian systems splicing occurs both co- and post-transcriptionally in general 

with a 5’ to 3’direction. Consequently, terminal intron splicing often occurs post-

transcriptionally and is linked to transcriptional termination and polyadenylation of the 

mRNA (Neugebauer, 2002; Rigo & Martinson, 2008). 

 

2.5 Alternative splicing  

 

Sequencing of the human genome yielded an unexpectedly low number of genes 

(~26,000; Lander et al., 2001; Maniatis & Tasic, 2002) from which ca. 90,000 

functional proteins (Woodley & Valcarcel, 2002) are expressed. Splicing can either 

be constitutive or alternative. Constitutive splicing describes a situation in which all 

exons are always included in a given mRNA, whereas in alternative splicing, different 

exon combinations can be used, resulting in several possible products. Alternative 

splicing is important in cellular differentiation (and gene expression) and aberrant 

splicing is involved in many human diseases (Hastings & Krainer, 2001; Stoilov et al., 

2002). In fact, alternative splicing is the rule and not the exception. Depending on the 

genome database and microarray data used, estimates range from 50 to 75% of 

human genes that are alternatively spliced (Johnson et al., 2003; Modrek et al., 

2001). Thus, alternative splicing expands the proteome, resulting in a high number of 

protein isoforms encoded by a limited number of genes (Goldstrohm et al., 2001). In 

alternative splicing, splice site choice is thought to be regulated by the presence of 

additional non splice site regulatory elements within the exon or intron. Exonic or 

intronic RNA sequences that act positively to stimulate spliceosome recruitment are 

termed exonic/intronic splicing enhancers (ESE/ISE). In contrast, other RNA 
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elements that block spliceosome assembly are called exonic/intronic splicing 

silencers (ESS/ISS) (Black, 2003). Many of these elements are bound by RNA 

binding proteins like SR proteins or hnRNP proteins. SR proteins exhibit one or two 

N-terminal RNA recognition motifs and a variable-length C-terminal arginine/serine-

rich (RS) domain required for protein-protein interaction with other RS domains. 

Representative members of the SR protein family are ASF/SF2, SC35 and SRp55, 

which bind for example to exon sequences, where they enhance splicing of the 

adjacent intron (Graveley, 2000). Spliceosome recruitment can also be negatively 

influenced; for example by hnRNP binding to splicing silencer motifs. All hnRNPs 

share a common structure containing a RNA binding domain and a glycine-rich 

auxiliary domain that might mediate protein-protein interaction or facilitate protein 

localization (Krecic & Swanson, 1999). HnRNPs could interfere directly with the 

assembly of spliceosomal components by blocking recognition sites of the pre-

mRNA, or they could block splicing activation by SR proteins binding to adjacent 

ESEs. In addition to this complexity, it has also been shown that pre-mRNA 

secondary structures can influence splicing (Buratti & Baralle, 2004). The most 

common mechanism is represented by secondary structures that hinder the 

accessibility of splicing factors to the pre-mRNA.  

 

In general there are five major forms of alternative splicing (Fig. 7). Exon skipping is 

the most frequent event, which accounts for 38% of all alternative splicing events, 

whereas intron retention is responsible for less than 3% and is mainly observed in 

retroviruses. Furthermore, alternative usage of 5’ss or 3’ss (18% and 8%, 

respectively) can lead to either extended or shortened exons. Additionally, more 

complex events, such as mutually exclusive events, alternative transcription start 

sites and multiple polyadenylation sites account for the remaining 33% of the 

alternative splicing or processing events (Ast, 2004).    
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Figure 7: Types of alternative splicing 

Constitutive exons are shown in red and alternatively spliced regions in green, whereas dashed lines 
indicate the splicing events. Relative amounts of alternative splicing events are shown as percentage. 
Adapted from (Ast, 2004). 
 

2.6 Problems of retroviral gene expression 
 

Since viral gene expression is dependent on the cellular spliceosome, elucidation of 

the regulatory mechanisms of viral splicing has provided deep insights into the 

general regulation of mammalian RNA processing. Retroviruses have evolved 

strategies to express proteins from unspliced, incompletely spliced and fully spliced 

transcripts (Cochrane et al., 2006). As mentioned above, the best characterized 

system displaying intron retention are retroviruses, which harbor one or more introns 

in their genomic mRNA. For simple retroviruses like MLV, a single splice event is 

required to express the viral envelope protein (Boris-Lawrie et al., 2001; Cullen, 

1998). The unspliced RNA is needed for the expression of gag and gag/pol proteins 

and for packaging of genomic RNA into viral particles. So far the splicing regulation 

of the MoMLV is poorly understood, but several cis-acting elements have been 

proposed to be involved in viral splicing control (Hwang et al., 1984; 

Logg et al., 2007). In contrast, more complex retroviruses like HIV-1 encode for 6 

additional regulatory proteins by processing the 9 kb transcript into over 30 different 
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mRNAs through alternative splicing (Purcell & Martin, 1993; Schwartz et al., 1990). 

Splicing of the different transcripts is achieved through the combinatorial use of five 

5’splice sites and nine 3’splice sites. It was shown that the 5’ss are highly active but 

the 3’ss are weak due to degenerated consensus sequences of the branchpoint and 

the pyrimidine tract in conjunction with ESEs and ESSs (Amendt et al., 1995; Caputi 

et al., 1999; Kammler et al., 2006; O'Reilly et al., 1995; Si et al., 1997; Staffa & 

Cochrane, 1994; Tange et al., 2001). RSV evolved another strategy, whereby the 

5’ss competes with a decoy 5’ss for efficient recognition by the spliceosome. RSV 

harbors a negative regulator of splicing (NRS) near the actual 5’ss, which functions 

as an elaborate pseudo 5’ss that binds U1 snRNP and initiates the assembly of a 

non-productive splicing complex with the viral 3’ss.  

 

During the viral life cycle, incompletely spliced RNAs must be exported to the 

cytoplasm. This is normally restricted through quality control mechanisms at the 

nuclear pore by preventing the export of intron containing mRNAs. To avoid this, 

retroviruses have evolved distinct strategies to export their incompletely spliced 

mRNAs. For example, HIV-1 encodes the viral accessory protein Rev (Fischer et al., 

1995; Malim et al., 1988; Pollard & Malim, 1998) that binds to a highly conserved 

RNA stem loop structure located in the env gene, termed Rev responsive element 

(RRE). Rev functions as an adapter molecule for Crm1 (Fornerod et al.,1997; 

Ossareh-Nazari et al., 1997; Stade et al., 1997), shuttling genomic and incompletely 

spliced mRNAs through the nucleus by using the Crm1 protein export pathway. 

Simple retroviruses like the mason-pfizer monkey virus (MPMV) contain a cis-acting 

element at the 3’end of the genome, termed the constitutive transport element (CTE), 

which was shown to support Rev-independent HIV-1 structural protein expression. 

The CTE is a complex RNA secondary structure, which recruits the cellular mRNA 

export factor Tap directly to the genomic RNA (Bray et al., 1994; Ernst et al., 1997; 

Hammarskjold et al., 1994). The export pathway of the unspliced genomic RNA of 

MLV is poorly defined (Hoshi et al., 2002; Oshima et al., 1998). It may be, similarly to 

MPMV, that a cis-acting mechanism operates to export intron-containing genomic 

RNA into the cytoplasm. So far a stem-loop structure in the R region of MLV 

genomes has been described to be important for the export of unspliced RNAs 

(Trubetskoy et al., 1999).  
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Furthermore, retroviruses like HIV-1 and MLV exhibit polyadenylation signals in the 

R region at the 5’ and 3’ends of the integrated provirus. Therefore they have evolved 

mechanisms to suppress the first polyadenylation signal for successful replication. In 

the case of HIV-1 the recruitment of U1 snRNP to the 5’ss suppresses the 

5’polyadenylation signal (Ashe et al., 2000; Gunderson et al., 1998), whereas MLV 

adopted the use of inefficient signals, which due to failure RNA termination and 

readthrough transcripts including adjacent cellular DNA sequences (Furger et al., 

2001). 
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3 Viral vectors for gene therapy 
 

Retroviruses are a promising tool for gene therapy based on their properties and their 

life cycle. Since retrovirus-based vectors enter the cytoplasm of the host cell in a 

receptor mediated manner and stably integrate their genomes into the host 

chromatin, they have been used for efficient gene transfer into mammalian cells for 

more than 20 years. Generally the development of such vectors comprised the 

construction of a transfer vector containing all cis-active sequences required for 

packaging, reverse transcription and integration, such as the packaging signal, the 

primer binding site and the long terminal repeats. Additionally, the coding sequences 

of the viral genes are removed to avoid the generation of replication competent 

retroviruses (RCR) and are replaced by the gene of interest (transgene). Production 

of infectious viral vector particles requires a packaging cell line, containing the 

genetic information of the viral proteins gag, pol and env (Fig.8) either stably 

integrated or transiently expressed through co-transfection of helper plasmids (Miller, 

1990; Yu et al., 2003).  

 

 

 

Figure 8: Turning a virus into a gene transfer vector 

For the development of replication-deficient gammaretroviral vectors, the viral coding regions are 
replaced by the transgene. The gag/pol and env reading frames are separated on helper plasmids. 
Co-transfection into a packaging cell line together with the retroviral vector yields newly assembled 
retroviral vector particles in the supernatant (P: promoter; pA: Poly(A) signal). 
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Retroviral particles can be pseudo typed with env proteins from other viruses giving a 

broad cell tropism. For example the G-protein of the vesicular stomatitis virus                

(VSV-G), confering high stability of the particle, is used for the generation of 

gammaretroviral and lentiviral particles (Emi et al., 1991; Yang et al., 1995). VSV-G 

containing particles can easily be concentrated by ultracentrifugation to reach 

109 infectious particles/ml (Burns et al., 1993).  

 

3.1 Gammaretroviral vector development 
 

Retroviral vectors derived from gammaretroviruses (Miller & Rosman, 1989) or 

lentiviruses (Naldini et al., 1996) are frequently used in gene therapy trials. The 

sequences controlling transcription are located in the U3 promoter/enhancer region. 

It was shown that MLV and other retrovirally derived enhancer sequences are 

blocked or essential transcription factors are not expressed in early embryonic stem 

cells (Baum et al., 1999). This block was overcome by the development of a chimeric 

virus, containing all previously described positive features, leading to a new 

generation of vectors (Baum et al., 1995; Grez et al., 1990; Hildinger et al., 1999; 

Schambach et al., 2000). Recently, Trim28 has been identified as the factor 

responsible for the repression of the leader region of MoMLV in embryonic stem cells 

(Wolf & Goff, 2007). In detail the 5’LTR of the chimeric vectors contain sequences 

from MPSV (myeloproliferative sarcoma virus), the leader region is derived from 

MESV (murine embryonic stem cell virus) and the 3’LTR derives from SFFV (spleen 

focus forming virus). The so called FMEV (Friend-MCF-MESV hybrid) vector showed 

high transgene expression in hematopoietic cells (Baum et al., 1995; Eckert et al., 

1996). Next, all viral (gag) sequences and AUGs were deleted, which leads to the 

SF11, SF110 and SF91 vectors, which vary by the presence or absence of functional 

splice sites (Fig.9). In the SF91 vector the packaging signal is embedded into an 

intron using the authentic MLV splice sites. This configuration ensures packaging of 

intron-containing genomes during particle production. Here, the splicing ratio of 

genomic to spliced RNA is similar to the balanced splicing pattern observed in MLV. 

The SF11 vector only exhibits a functional 5’ss, whereas both splice sites of the 

SF110 are mutated. Compared to the SF110 vector, SF91 and SF11 generate higher 

titers of virus (Hildinger et al., 1999). It has been described that the presence of a 

5’ss can positively influence RNA stability, RNA export, RNA transcription and 

elongation (Damgaard et al., 2008; Fong & Zhou, 2001; Kornblihtt et al., 2004; Reed 
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& Hurt, 2002). In the case of the SF91 and SF11 vectors, the 5’ss increased the 

amount of genomic RNA leading to more infectious particles. Inclusion of the 

woodchuck post-transcriptional regulatory element (wPRE, derived from woodchuck 

hepatitis virus) enhanced transgene expression and viral titer (Schambach et al., 

2000; Zufferey et al., 1999) by mRNA stabilization and improvement of 

polyadenylation and export (Donello et al., 1998; Loeb et al., 1999; Popa et al., 

2002).  

 

Figure 9: Gammaretroviral-based vector design  

The SF91 vector is based on the FMEV (Friend-MCF-MESV) hybrid vector. All virus coding 
sequences (gag*) and AUG were deleted. The vector contains the whole leader region including the 
packaging signal flanked by the authentic viral splice sites. SF11 contain only the 5´ss, whereas the 
SF110 lacks both viral splice sites. Further modification leads to the introduction of the wPRE 
downstream of the transgene. 
 

3.2 Self inactivating vectors (SIN vectors) 
 

SIN vectors are termed as such because they generate, following reverse 

transcription, a defective, inactive promoter in the 5’LTR (Fig.10). In the packaging 

cell genomic RNA expression is driven by the 5’LTR, whereas after reverse 

transcription the expression of genomic RNA including the packaging signal and 

mobilization of endogenous viruses to generate RCRs is less likely. Due to the 

deletion of the U3 region expression of the transgene is driven, after reverse 

transcription and insertion into the host genome, by an internal promoter (Yu et al., 

1986). This configuration allows the usage of cellular promoters and reduces the 

promoter/enhancer elements from two to one. SIN vectors of the first generation 

were derived from MLV and are not applicable for gene therapy approaches due to 
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both low gene expression and low titers. Advanced SIN vector configurations were 

designed, based on the SF11 LTR vector, containing an internal SFFV promoter 

(Fig.10a). This configuration allowed a direct comparison of LTR- versus SIN-driven 

vectors with respect to safety aspects. Additionally, the introduction of the wPRE 

element and the presence of the viral 5’ss increased virus titer by stabilization of the 

RNA, enhanced RNA export and transcriptional elongation (Damgaard et al., 2008; 

Kraunus et al., 2004; Schambach et al., 2000). The problem of low titers was solved 

by the substitution of the 5’MPSV promoter with the RSV (rous sarcoma virus) 

promoter. This substitution increased the ratio of packable full-length RNA to the 

RNA initiated at the internal promoter by overcoming promoter competition in the 

packaging cell (Schambach et al., 2006).  

 

The search for other positions for internal promoter insertion led to the generation of 

SINSF91 (Kraunus et al., 2004). This vector showed a further drop in titer and was 

not suitable for clinical applications, but displayed an interesting splicing phenotype 

(Fig.10b). Compared with the balanced splicing ratio of the SF91, where the intron is 

located between the U5 sequences and the transgene, the same intron showed 

complete splicing when located between an upstream promoter and the transgene 

cassette (Kraunus et al., 2004). This indicates that the splice sites of MLV per se are 

efficient for complete splicing. In addition, alternative splicing of MLV-derived vectors 

has still been observed after replacing the viral 3’ss with a strong cellular 3’ss      

(Lee et al., 2004). This suggests alternative splicing in MLV is not regulated via weak 

3’ss.  

 

Retroviruses copy the R region, containing the weak polyadenylation signal, to the 

5’end of the inserted provirus during reverse transcription. Therefore, retroviral SIN 

vectors suffer from inefficient 3’end processing in the 3’R region, increasing the 

probability of read-through and fusion transcripts. These effects are compensated by 

incorporation of the wPRE. To improve 3’end processing further, various 

polyadenylation enhancer elements (or upstream sequence enhancers, USEs) 

derived from viral or cellular genes were inserted into the deleted 3’U3 region of SIN 

vectors. Two copies of the USE derived from simian virus 40 (2x SV USE) showed 

the best results i.e. enhanced polyadenylation, 3’end processing, and suppression of 

transcriptional read-through. Furthermore, this configuration increases mRNA 

stability, titer and potentially the biosafety of SIN vectors (Schambach et al., 2007). 
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Figure 10: SIN vector development 

a) Configuration of the SIN11 vector on the basis of the SF11 LTR vector. The internal promoter (IP) is 
located in front of the transgene and promoter/enhancer sequences of the 3´U3 are deleted. The 
introduction of a wPRE and the substitution of the 5’MPSV promoter by that of the RSV (rous sarcoma 
virus) further improved SIN vector design. b) SINSF91 contains an IP between the PBS and the 5’ss. 
As shown by northern blot analysis, this leads to complete splicing of the intron compared to the 
alternative splicing pattern of SF91 (Kraunus et al., 2004). 
 
 

3.3 Side effects and further modifications of viral vectors  
 

The insertion of retroviruses into the cellular genome is a known risk factor for tumor 

development (Baum et al., 2006; Baum et al., 2004) by insertional mutagenesis. 

Different in vivo and in vitro assays have been established in order to characterize 

the mutagenic potential of the vector backbone in target cells (Du et al., 2005; 

Modlich et al., 2006; Montini et al., 2006). Leukemia induction by MLV based vectors 

was reported in a murine model (Kustikova et al., 2005; Li et al., 2002; Modlich et al., 

2005), in macaques (Seggewiss et al., 2006) and in five patients in two different gene 

therapy trials for X-linked SCID (Baum, 2007; Hacein-Bey-Abina et al., 2008; Hacein-

Bey-Abina et al., 2003a; Howe et al., 2008). All leukemic clones are characterized by 

insertion of the vector into loci known as proto-oncogenes (Calmels et al., 2005; 
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Hacein-Bey-Abina et al., 2003b; Li et al., 2002; Schwarzwaelder et al., 2007). The 

vector insertion leads to mutagenic effects including deregulation of neighboring 

genes (Fung et al., 1983), the generation of read-through (fusion) transcripts      

(Benz et al., 1980) or gene disruption. Gene disruption usually produces a 

monoallelic, recessive defect that needs further mutation in the second allele to show 

a phenotype (Suzuki et al., 2006). In addition, fusion transcripts can be generated by 

the existence of a functional 5’ss in the vector backbone, thus leading to gene 

activation and insertional mutagenesis (Bokhoven et al., 2008). Because of such 

side-effects due to retroviral vector integration, a major focus of ongoing work is to 

improve the safety of vector architecture. Moreover, it is important to understand the 

RNA processing machinery of retroviruses in more detail and in particular RNA 

splicing regulation to adopt possible new insights into further vector development. 
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B  Aim of the study 
 

Retroviral based vectors are efficient tools for the gene delivery of therapeutic 

transgenes. Successful gene therapy trials for the correction of inherited diseases 

e.g. immunodeficiencies like adenosine deaminase deficiency (ADA) (Aiuti et al., 

2002), chronic granulomatous disease (CGD) (Ott et al., 2006) and X-linked severe 

combined immunodeficiency (Cavazzana-Calvo et al., 2000) using retroviral vectors 

have been performed. Observations of adverse effects after transgene insertion from 

animal models and humans illustrated the need for improved vector design to 

increase safety. One simple approach is to reduce the transactivating potential of 

promoter enhancer elements and thereby the risk of insertional mutagensis by using 

SIN vectors for gene therapy. Nevertheless, it was shown using an in vitro cell culture 

assay that although SIN vectors carrying strong viral internal promoter/enhancers 

derived from SFFV are weaker insertional mutagens than LTR driven vectors, they 

are still able to transform cells by insertional mutagensis (Modlich et al., 2006; 

Modlich et al., 2008). One approach to enhance the safety of SIN vectors is the 

replacement of the strong viral internal promoter/enhancer to weak cellular 

promoter/enhancers. Furthermore, the introduction of additional chromatin elements 

into the deleted U3 region of SIN vectors may avoid interactions of the vector with 

surrounding cellular promoters. Examples of such shielding sequences are so called 

insulator elements such as the chicken HS4 (Ellis, 2005; Emery et al., 2000; Rivella 

et al., 2000; Yusufzai & Felsenfeld, 2004) or scaffold attachment regions (Bode & 

Maass, 1988; Lutzko et al., 2003; Ramezani et al., 2003). The aim of publication 1 

was to analyze the impact of retroviral vector design on insertional transformation by 

using weaker cellular promoter/enhancer and insulator elements. 

 

In some diseases correction of the phenotype needs a high expression level of the 

transgene (Lagresle-Peyrou et al., 2006), whereas many transgenes applied for 

human gene therapy require no high expression rates (Thornhill et al., 2008). 

However, further options to enhance transgene expression above the therapeutic 

threshold include improving the RNA processing of the vector by enhancing the 3’end 

processing or by using the positive effects of a 5’ss on transgene expression and titer 

(see above). Both splice sites of gammaretroviral vectors, which are used in clinical 

trials, are derived from MLV, but the mechanism of alternative splicing regulation of 

MLV is still not completely understood. The 5’ss matches the consensus sequence to 
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almost 100% and it is has been shown that the replacement of the viral 3’ss by a very 

strong cellular 3’ss (Lee et al., 2004) still leads to alternative splicing. Additionally, 

RNA analysis of the SINSF91 vector showed that both authentic splice sites can 

splice very efficiently. These observations suggest that alternative splicing of MLV is 

regulated by an unknown cis-acting mechanism. The purpose of publication 2 and 

the manuscript was to investigate how MLV regulates alternative splicing to express 

viral genes in a balanced ratio. 
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Abstract 

The possible activation of cellular proto-oncogenes as a result of clonal transformation is a 

potential limitation in a therapeutic approach involving random integration of gene vectors. 

Given that enhancer promiscuity represents an important mechanism of insertional 

transformation, we assessed the enhancer activities of various cellular and retroviral 

promoters in transient transfection assays, and also in a novel experimental system designed 

to measure the activation of a minigene cassette contained in stably integrating retroviral 

vectors. Retroviral enhancer-promoters showed a significantly greater potential to activate 

neighboring promoters than did cellular promoters derived from human genes, elongation 

factor-1α (EF1α) and phosphoglycerate kinase (PGK). Self-inactivating (SIN) vector design 

reduced but did not abolish enhancer interactions. Using a recently established cell culture 

assay that detects insertional transformation by serial replating of primary hematopoietic 

cells, we found that SIN vectors containing the EF1α promoter greatly decrease the risk of 

insertional transformation. Despite integration of multiple copies per cell, activation of the 

crucial proto-oncogene Evi1 was not detectable when using SIN-EF1α vectors. On the basis 

of several quantitative indicators, the decrease in transforming activity was highly significant 

(more than tenfold, P < 0.01) when compared with similarly designed vectors containing a 

retroviral enhancer–promoter with or without a well-characterized genetic insulator core 

element. In this manner, the insertional biosafety of therapeutic gene vectors can be greatly 

enhanced and proactively evaluated in sensitive cell-based assays. 
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Introduction 

It has been observed in recent clinical trials and animal models that induction of clonal 

imbalance and malignant transformation can occur following the mutagenic insertion of gene 

vectors.1–10 Clonal imbalance and transformation are particularly overt in, but not necessarily 

restricted to, hematopoietic cells that have a high capacity for clonal expansion. Murine 

models of bone marrow (BM) transplantation have demonstrated the leukemogenic potential 

of insertional mutagenesis in the contexts of various gammaretroviral vectors designed for 

human gene therapy.4,11 A recent study showed that self-inactivating (SIN) lentiviral vectors 

with a relatively weak internal promoter derived from the human phosphoglycerate kinase 

gene (PGK) did not accelerate tumor induction in lymphoma-prone mice, in contrast to 

gammaretroviral vectors with strong enhancer-promoter sequences located in the long-

terminal repeats (LTRs).12 However, the in vivo assays that are generally used for quantifying 

the impact of vector design on the genotoxic risk are hampered by long observation times, 

the need for large numbers of animals, the requirement to set induction of severe disease as 

the experimental endpoint, and the high costs involved. It therefore remained unclear 

whether it was the type of enhancer-promoter used, other features of the vector’s 

architecture, or the particular insertion pattern of lentiviral vectors that was responsible for the 

reported lack of tumorigenic side effects.12  

 

As has been recently pointed out,3 cell-based assays may provide quick and reliable results 

and mechanistic insights into crucial variables of gene vector biosafety. On the basis of a 

study by Du et al.,7 we have developed an assay to detect the clonal dominance of insertional 

mutants which expand in initially polyclonal cultures of primary murine hematopoietic cells 

within 2 weeks after gene transfer and acquire serial replating ability, the extent of which 

provides a measure of clonal fitness.6 Using this assay, we showed that gammaretroviral 

vectors with a SIN design, which are devoid of enhancer-promoter elements in the U3 region, 

are weaker insertional mutagens than their LTR driven counterparts. Nevertheless, SIN 

vectors with internal enhancer-promoters derived from spleen focus-forming virus (SFFV), an 

oncogenic murine leukemia virus (MLV), were able to transform cells by insertional activation 

of proto-oncogenes such as Evi1. It remained unclear whether relatively potent cellular 

promoters such as elongation factor-1α (EF1α)13 which, in hematopoietic cells, is only two- to 

threefold less active than MLV enhancer-promoters,14,15 may also induce clonal 

transformation. In order to address this important question, we used complementary 

approaches to evaluate enhancer promiscuity and transforming efficiency.  
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Results 

 

Enhancer activity of frequently used promoters assessed in transient transfection 

assays 

First, we used a plasmid-based reporter assay to analyze the enhancer interactions of 

various enhancer-promoter combinations on a minimal promoter driving a luciferase 

expression cassette. The elements of interest were cloned 3′ of a codon-optimized luciferase 

cassette in order to detect enhancer interactions with the upstream minimal promoter. 

Transcriptional readthrough was prevented by a strong termination site (Figure 1a). We 

focused our analysis on two widely used retroviral enhancer-promoters derived from the U3 

region of myeloproliferative sarcoma virus (MPSV) or SFFV, and two well-known cellular 

promoters derived from human genes, namely, PGK and EFS, the latter representing a short, 

intron-less form derived from human EF1α. EFS is only two- to threefold less active in 

hematopoietic cells than SFFV-U3 is, and therefore potent enough to express clinically 

relevant genes.15 Computer-assisted searches predict that EFS contains significantly fewer 

and less tightly clustered binding sites for transcription factors than the SFFV or MPSV 

sequences do (Figure 1b, for MPSV refer to ref. 16). Detailed functional studies of EFS17 in 

hematopoietic cells are not available, in contrast to SFFV-U3.16,18,19 The only motifs they both 

share are binding sites for the ubiquitous transcription factor SP117,18 (Figure 1b).  

 

Transient transfection in 32D cells (murine nonleukemogenic myeloid progenitor cells) 

revealed that both cellular promoters (PGK, EFS) exhibit significantly weaker enhancer 

activity on the thymidine kinase (TK) promoter than do the retroviral promoters derived from 

MPSV or SFFV (Figure 1c; P < 0.05, unpaired t-test), which is a finding consistent with the 

transcriptional activity observed in retroviral and lentiviral SIN vectors.15 Unexpectedly, the 

difference between SFFV and EFS did not reach statistical significance when testing cis-

activation of the minimal TK promoter. In 32D cells, the cellular promoters did not significantly 

enhance the activity of either of the cryptic promoters tested. In contrast, the EFS promoter 

showed residual enhancer activity in 293T cells (Supplementary Figure S1).  

 

We next used this assay to study the enhancer activity of a complete vector genome. The 

duplication of the MLV enhancer-promoter in the typical retroviral LTR configuration further 

increased the degree of reporter activation, whereas a SIN vector with an internal SFFV 

promoter showed a greatly reduced cis-activation potential. Interestingly, SIN vectors that 
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lacked an internal enhancer-promoter, nevertheless enhanced the minimal promoter (data 

not shown). The nature and localization of residual enhancer sequences in the SIN backbone 

remain to be identified. Importantly, when EFS or PGK were added as internal promoters, the 

enhancer activity of SIN vectors was not further increased (Figure 1d). Inserting the vector 

genome in the antisense orientation yielded similar results (Figure 1d). 

 

 
 
 

Figure 1: Transient transfection assays reveal low enhancer activity of cellular promoters and reduced 
enhancer activity of self-inactivating (SIN) vector in comparison with long-terminal repeat (LTR) vectors. 
(a) The reporter construct encodes a codon-optimized luciferase that is devoid of at least 300 known 
transcription factor binding sites. A synthetic polyadenylation (syn. pA) prevents potential readthrough from the 
enhancer-promoter cassette (Enh-P) cloned downstream of the termination site of the luciferase cassette. 
Alternatively, entire provirus sequences of LTR or SIN vectors were introduced in sense or antisense 
orientation. (b) Schema of transcription factor binding sites predicted by computer algorithms and functional 
data, revealing a dense clustering of binding sites in the SFFV-U3 region, in contrast to the cellular promoter 
elongation factor-1α (EF1α). (c) The retroviral Enh-P sequences derived from myeloproliferative sarcoma virus 
(MPSV) and spleen focus-forming virus (SFFV) show a significant induction of two different minimal promoters, 
in contrast to the cellular promoters [EFS and phosphoglycerate kinase (PGK)]. No, lack of Enh-P 3′ of the 
luciferase cassette. Error bars indicate standard deviations of four experiments. (d) When compared with LTR 
vectors, SIN vectors show a greatly decreased enhancer activity, even when they contain the same Enh-P. 
Enhancer activity is also more dependent on orientation (sense or antisense to the luciferase cassette) in the 
SIN configuration. CMV, cytomegalovirus; EGFP, enhanced green fluorescent protein; no, SIV vector lacking an 
interval Enh-P TK, thymidine kinase; WPRE, woodchuck hepatitis virus posttranscriptional regulatory element. 
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Enhancer interactions evaluated after stable gene insertion 

Having established that the MLV enhancers are significantly more promiscuous than the 

cellular ones tested here, we evaluated enhancer interactions in the context of stable gene 

insertion. For this purpose, we constructed a gammaretroviral SIN vector harbouring a 

minigene in the 3′U3 deletion activatable by the enhancer of the internal enhanced green 

fluorescent protein (EGFP) cassette (Figure 2a). The minigene consisted of a minimal 

cytomegalovirus (CMV) promoter in front of a truncated version of the CD34 surface marker 

gene (tCD34). Target cells were transduced at a low multiplicity of infection (MOI) so as to 

achieve a low average transgene copy number. Concordant with the transient transfection 

studies, the internally located retroviral enhancer-promoter activated the minigene cassette to 

the greatest extent. In SC1 fibroblasts that are highly permissive in respect of the two cellular 

enhancer-promoters (EFS and PGK), we found a very low induction of the minigene cassette 

(white bars in Figure 2b), in contrast to the results achieved with vectors containing the 

internal SFFV enhancer-promoter. In additional experiments, we ruled out the possibility that 

the tCD34 activity mediated by these constructs could be explained by reinitiation of 

translation in the transcript originating from the internal promoter (Supplementary Figure 

S2).  

 

Using these retroviral vectors, we could also test enhancer interactions in primary murine 

hematopoietic cells. When compared with fibroblasts, hematopoietic cells displayed a 

generally lower enhancer interaction. This finding was consistent with the data from the 

transfection studies referred to earlier, showing that only the internal SFFV enhancer-

promoter significantly induced the minigene (gray bars in Figure 2b). In order to rule out the 

possibility that cellular enhancers located adjacent to the vector had contributed to the 

observed results, we added a well-characterized, 250 base pair (bp) insulator core element 

(1×HS4) with potential enhancer-blocking activity20 into the LTR, upstream of the minigene 

cassette. This had no effect except that it revealed the high reproducibility of the assay 

conditions (Figure 2b). In view of the fact that the addition of an insulator did not result in a 

significant decrease in minigene activation, these data suggest that the minigene activity is 

mainly caused by the cryptic promoter in the 5′LTR. We assume that readthrough 

transcription from the internal promoter cassette suppresses the activity of the minigene 

located in the 3′LTR. These findings support the conclusion that the retroviral enhancer-

promoter is significantly more likely to activate neighboring promoters through enhancer-

mediated interactions than are the promoters derived from the human genes, EF1α and PGK. 
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Figure 2: Stably integrated “minigene” reporter constructs reveal the low enhancer activity of the 
cellular promoters tested.  
(a) The retroviral self inactivating (SIN) vector contains a minigene cassette in the U3 region of the long-terminal 
repeat (LTR), consisting of a minimal promoter followed by a truncated CD34 surface marker gene (tCD34). 
Termination is mediated by signals in the R region of the LTR. The same vectors were also tested with 1×HS4 
insulator element inserted upstream of the minigene cassette. Enh-P sequences were introduced as indicated. 
A control vector contained no minimal promoter (ΔCMV). (b) In SC1 fibroblasts and lineage-negative primary 
murine hematopoietic cells, only the internal spleen focus–forming virus (SFFV) promoter led to a significant 
activation of the minigene cassette. Background levels are reflected in the tCD34 expression of the construct 
that lacks a minimal promoter. Data obtained from SC1 cells are shown in white columns and lineage-negative 
cells in grey ones. The insets show representative flow cytometry data (SC1 cells) for illustration of the assay, 
CD34 expression shown on the y-axis. Potential activation of the minigene by transcriptional readthrough could 
be ruled out (Supplementary Figure S2). CMV, cytomegalovirus; EFS, short form of EF1α EGFP, enhanced 
green fluorescent protein; PGK, phosphoglycerate kinase. 
 
 
Reduced insertional risk of SIN vectors with internal cellular promoters 

Our third approach was to test the same retroviral SIN configurations in the clonal dominance 

assay.6 Previous studies had shown that a SIN vector with an internal SFFV-U3 has 

significantly less transforming efficacy than a vector with the same sequences contained in 

the LTRs,6 a finding in line with the transfection studies described earlier (Figure 1d). We 

conducted experiments in which we made side-by-side comparisons of the transforming 

capability of gammaretroviral SIN vectors harboring an internal MLV enhancer-promoter 

(SIN.SF.GFP) and the EFS enhancer-Promoter (SIN.EFS.GFP). In order to exclude the 

possibility that a potential failure to detect a residual transforming capacity of the 

SIN.EFS.GFP vector was because of an insufficient transgene copy number, we modified the 

originally described protocol, and transduced hematopoietic cells on four consecutive days, 

each time with a high MOI. As a result, well over 95% of the cultured cells expressed the 

transgene. This led to a high average copy number (typically >20 copies/cell, Table 1). Even 

under these extreme conditions, in the course of seven independent assays, we did not 

recover a single clone with continued replating capacity following transduction with 
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SIN.EFS.GFP, whereas clones arose in all the cultures that had been transduced with 

SIN.SF.GFP (Table 1; Figure 3). The average copy number of the SIN.SF.GFP-transduced 

bulk culture, determined at 4 days after the last exposure to the particles, never exceeded 27 

(19.9 ± 4.3), and similar copy numbers were achieved when using a tenfold lower MOI of this 

vector (Table 1). In contrast, under identical conditions, the vector SIN.EFS.GFP led to an 

average copy number of 40 ± 30 and showed a greater dependence on the MOI, thereby 

indicating a higher maximal tolerated dose. These data suggest an overdose inhibition effect 

encountered when using the more mutagenic vector (SIN.SF.GFP), perhaps caused by 

insertional disregulation of too many alleles in the same cell or by toxicity related to abundant 

expression of EGFP. Such overdose inhibition effects are known from studies with other 

genotoxic carcinogens,21 and may have contributed to the relatively low replating efficiency 

observed in two of the six experiments conducted with SIN.SF.GFP (Figure 3; see 

Discussion). Summarizing our studies in the clonal dominance cultures (details in Table 1), 

the minimal copy number to transform hematopoietic cells was ~2 for SIN.SF.GFP 

(containing the SFFV enhancer-promoter),6 and >40 for SIN.EFS. As the incidence of 

independent clones induced by SIN.SF.GFP was on average 2 per 100,000 exposed cells,6 

the assays conducted with this vector reflected at least 10 different mutants. In contrast, after 

transducing a total of 700,000 cells with SIN.EFS, no mutants with serial replating capacity 

were observed. The frequency of mutants was therefore ~2 ×10−5 for the vector with the 

internal SFFV promoter, and <1.43×10−6 for the EFS vector (more than tenfold lower).  

 

 
 

Figure 3: The clonal dominance assay shows a significant reduction in transformed cells following the 
use of a self-inactivating (SIN) vector with a physiological cellular promoter (EFS).  
The ratio of replating frequency (determined by limiting dilution cloning) per vector copy number (detected by 
real-time PCR) 4 days after transduction, is a measure of the degree of transformation. A SIN vector with an 
internal EFS promoter shows no transforming capacity. The efficiency of transformation is significantly reduced 
in comparison to an unmodified or insulated SIN vector with an internal retroviral promoter. All seven 
experiments conducted with SIN.EFS vectors yielded results that were below the detection limit, indicated as a 
horizontal line. For negative values, calculations are based on the assumption that a replating clone would have 
been detected when plating 97 instead of 96 wells. 



Publication 1                                                                                                                                         45  

-45- 

 
Abbrevations: Exp., experiment; NA, not applicable. 
aCalculation of only the values obtained with a multiplicity of infection (MOI) of 40. bCorresponding values shown in the logarithmic scale of 
Figure 3 assume that the 97th well would have been positive if 97 wells had been plated instead of 96. 
 

 

A single copy of the HS4 insulator core element (250 bp) is unable to block the 

transforming potential of the internal retroviral enhancer-promoter 

Further, using the clonal dominance assay, we investigated whether the well-characterized 

250-bp insulator core element derived from the chicken HS4 locus, and containing the 

boundary functions as well as the enhancer-blocking activity of the cHS4 insulator,20 could 

protect against being transformed by SIN.SF.GFP. 

 

The insulator was inserted into the SIN-U3 region of the vector. Although a duplication of this 

element (dimer) may be more effective in blocking enhancer interactions,20 it was found to 

lower vector titers, indicating genetic instability, and we therefore used the insulator as a 

monomer (Figure 4). In contrast, the vector with the single copy of the insulator located in the 

deleted U3 region of the LTR (SIN.SF.1×HS4.GFP) gave equal titers and expression levels of 

the transgene as the unmodified SIN vector (Figure 4). Using this vector, we conducted a 

total of seven clonal dominance assays, each time side-by-side with the corresponding 

uninsulated vector (SIN.SF.GFP). SIN.SF.GFP.1×HS4 induced a lower replating frequency 
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than the uninsulated counterpart in five of these assays, and a higher replating frequency in 

the two other assays (Table 1). The average copy number achieved was almost identical for 

both vectors (19.9±4.3 for SIN.SF.GFP; 20.0±2.3 for SIN.SF.GFP.1×HS4), as were the 

EGFP expression levels, underlining the reproducibility of our assay conditions. These 

experiments showed that incorporation of the insulator core element, although stably 

transmitted by the retroviral SIN vector, was not sufficient to protect against insertional 

transformation. However, the insulator clearly tended to reduce genotoxicity (P = 0.09, n = 7). 

 
Figure 4: Self-inactivating (SIN) vectors containing an internal retrovirus-derived enhancer–promoter 
(SF) and insulator sequences (HS4 250 base pair core element) in the otherwise deleted U3 region of the 
long-terminal repeat.  
(a) The vector with a single copy of the HS4 element (SIN.SF.GFP.1×HS4) has identical titers and expression 
levels (in SC1 fibroblasts) as the unmodified counterpart (SIN.SF.GFP) does. In contrast, a vector with a 
tandem repeat of the HS4 element had significantly reduced titers, indicative of genetic instability 
(SIN.SF.GFP.2xHS4). (b) Histogram of enhanced green fluorescent protein (EGFP) expression achieved with 
the different vectors under similar multiplicity of infection (SC1 fibroblasts). Differences in the replating 
frequency cannot be explained by variations in EGFP expression levels. t.u., transducing units. 
 
 
Lack of molecular evidence for upregulation of Evi1 when using the SIN vector with 

the internal cellular promoter 

Finally we tested, at the molecular level, whether the EFS vector was able to induce the 

upregulation of a cellular proto-oncogene by random insertion. Southern blot experiments 

performed with genomic DNA harvested from replating clones revealed multiple insertions 

when using vectors SIN.SF.GFP or SIN.SF.GFP.1xHS4 (Figure 5a). This can be explained 

by the high MOI used for transduction. Because many of these insertions may represent 

innocent bystander mutations,4 and previous studies had already confirmed that the replating 

assay correctly reflects insertional mutants,6,7 we did not attempt to clone the insertion sites. 

We rather chose Evi1 as an indicator allele for transcriptional disregulation because previous 

studies had shown that clones with serial replating capacity often have insertional events in 

this proto-oncogene, among others.6,7 Northern blot experiments performed with messenger 

RNA harvested from replating cells revealed upregulation of Evi1 transcripts, including low-

molecular-weight forms that are likely to represent alternative splice products of this complex 

gene (Figure 5b). Because Northern blot analyses showed the expression of relatively short 
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transcripts, we chose primers that span exons 4 and 5 for real-time reverse transcriptase 

PCR (the entire Evi1 gene contains 18 exons). Using this sensitive approach, we detected 

upregulation of Evi1 transcripts as early as day 6 after transduction-but only after 

transduction with vectors SIN.SF.GFP or SIN.SF.GFP.1×HS4 (Figure 5c). The vector with 

the cellular promoter (SIN.EFS) was unable to activate this allele beyond the levels detected 

in mock-treated cultures (Figure 5c).  

 
 

Figure 5: Molecular characterization of cultures and replating clones. 
(a) Southern blot analysis of replating clones shows multiple vector insertion sites when using vectors 
SIN.SF.GFP or SIN.SF.GFP.1×HS4. (b) Northern blot revealing transcriptional upregulation of Evi1 in replating 
clones. Mock-transduced lin−bone marrow cells cultured for >14 days served as negative control, and 18S RNA 
served as loading control. (c) Induction of Evi1 transcripts can be detected as early as 6 days after gene 
transfer, thereby suggesting a quick outgrowth of mutants. In contrast, cultures transduced with a vector 
containing the EFS internal promoter showed no detectable induction of Evi1 at any of the time points. MOI, 
multiplicity of infection; SIN, self-inactivating. 
 

Cytological studies performed with cells harvested before replating corroborated this finding, 

by revealing an increase in the frequency of occurrence of blasts only with the use of vectors 

SIN.SF.GFP or SIN.SF.GFP.1×HS4 (Figure 6). This suggested that even if upregulation of 

Evi1 could be induced by integration of SIN.EFS, the amount may be too small to trigger 

transient or permanent expansion under our experimental conditions. 
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Figure 6: Cytology of cultures before replating (May-Grünwald–Giemsa stain of cytospin preparations).  
Mock-treated and SIN.EFS transduced cultures both show a predominance of mature myeloid cells, whereas 
numerous blasts are present in cultures transduced with vectors SIN.SF.GFP or SIN.SF.GFP.1×HS4; SIN, self-
inactivating. 
 
 
Discussion 

The findings from our study show that, in hematopoietic cells, the cellular enhancer-

promoters tested here (EFS and probably also PGK) are much less likely to activate 

neighboring genes than are viral promoters; retroviral enhancer-promoters were particularly 

“promiscuous”, activating various types of promoters in different configurations, probably as a 

result of the dense clustering of potent binding sites available for a variety of cellular 

transcription factors. The introduction of the cHS4 insulator 250-bp core element into both 

flanks of the internal cassette was not sufficient to prevent immortalization of hematopoietic 

cells triggered by random insertion of a retroviral enhancer–promoter, although it tended to 

reduce the replating activity of mutants (P = 0.09,  n = 7). In contrast, SIN vectors using the 

EFS enhancer-promoter were unable to immortalize primary hematopoietic cells even in the 

absence of additional insulators, despite rather drastic dose escalation. Accordingly, these 

vectors did not lead to detectable levels of Evi1 upregulation in cultured cells. Quantitative 

indicators of the reduced transforming efficacy of the vectors containing physiological 

promoters are the number of immortalized clones induced per treated cell (more than tenfold 

lower) and the average copy number required for inducing clonal dominance (>20-fold 

higher). The weaker enhancer promiscuity of the EFS sequence (Figures 1 and 2) appears 

to be the most likely explanation for its inability to induce clonal dominance in cultured cells, 

thereby suggesting that cellular proto-oncogene activation needs to overcome a threshold in 
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order to induce transformation. An alternative mechanism of enhanced biosafety of SIN 

vectors containing cellular promoters is an altered integration pattern. The preintegration 

complex, which is responsible for tethering of proviral DNA to certain chromatin loci, might 

contain transcription factors binding to enhancer sequences in the LTR or elsewhere in the 

proviral DNA. As Evi1 does not seem to represent a hot spot of retroviral insertion events in 

unselected hematopoietic cells, thousands of insertion sites might have to be sequenced in 

order to address this question.22 We conclude that it is possible to design integrating vectors 

with increased biosafety even for those gene therapy settings that require relatively high 

expression levels of therapeutic genes.  

 

Our data are validated by previously published BM transplantation studies, for which a 

mechanistic explanation was provided. Database analyses of insertion sites associated with 

clonal dominance in vivo suggest that enhancer interactions account for the majority of 

transforming lesions induced by retroviral vectors.23 We suggest that the lack of tumor-

promoting potential observed with a lentiviral SIN vector is largely the result of the low 

enhancer promiscuity of the cellular promoter used (PGK).12 Also in line with our findings, the 

EF1α promoter poorly activated a neighboring tissue-specific promoter of a lentiviral vector in 

vivo.24 Although we observed a correlation between gene activation efficacy in reporter 

assays and transformation efficacy in primary hematopoietic cells (as determined by replating 

assays), the current study reveals that reporter assays alone would not be sufficient to 

assess the transforming potential of a given vector: the relatively weak enhancer activity of 

the complete SIN vector harboring an internal SFFV promoter (Figure 1d) stands in sharp 

contrast to the transforming potential detected in the replating assay (Figure 3). Major 

uncertainties that remain after analysis of the reporter assays are the predictive value of the 

cell background chosen and the threshold of gene activation required for cell transformation 

by upregulation of proto-oncogenes.25  

 

Our results also encourage further investigation of the use of insulator elements to increase 

vector biosafety. In our experimental setting, the 250-bp core element, which is reported to 

have enhancer-blocking activity, tended to reduce the incidence of transformation of primary 

murine hematopoietic cells by a vector containing a strong retroviral enhancer–promoter. 

This result is in line with observations made in polyclonal cultures of lentivirally transduced 

Jurkat cells.26 Modifications of this element, which is also of interest in relation to decreasing 

the position-dependence of gene expression, may further enhance vector biosafety,27,28 

thereby reaching the level of statistical significance in our assay. The insulated vector control 
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showed that the level of reporter gene expression had no transformation-promoting role in 

our experimental setting, as evidenced by a clear trend toward lower replating frequencies 

with the use of insulated vectors that mediated identical levels of EGFP expression. While 

EGFP may overload the cellular protein degradation machinery, there is no evidence hat its 

overexpression in hematopoietic cells is oncogenic.29 In agreement with this, we earlier 

observed a comparable induction of replating activity when using gammaretroviral vectors 

that express a strongly attenuated EGFP or the dsRed protein under control of the MLV 

enhancer-promoter.6 However, we cannot rule out the possibility that the extreme levels of 

EGFP expression mediated by multiple copies of SIN vectors with a strong internal promoter 

may have reduced cell fitness in our assay conditions. The gain in safety achieved with more 

physiological promoters may therefore be even higher than indicated in this report. Overdose 

inhibition effects may explain the finding that the maximal copy number achieved with vectors 

containing a strong enhancer-promoter (insulated or not) was ~20, whereas at least twice as 

high a maximal tolerated dose was observed with a vector containing a more physiological 

promoter. Fitness-reducing insertional lesions could also have contributed to the apparent 

overdose inhibition effect observed with vectors containing retroviral enhancer-promoters, in 

line with observations made with other genotoxic agents.21 The vector containing the 

physiological promoter derived from EF1α showed no evidence of overdose inhibition, with 

the cell fitness remaining indistinguishable from that in mock cultures, and identical results 

were achieved over a wide range of gene dosage (11-94 copies/cell, Table 1).  

 

In summary, this study not only demonstrates the robustness of the cell-culture-based clonal 

dominance assay for revealing the insertional genotoxicity of dose-escalated integrating 

vectors, but also reveals, for the first time, that a significant protection against insertional 

transformation can be achieved by modifying the vector’s enhancer-promoter elements. 

Redesigned randomly integrating vectors will probably lead to an increased therapeutic index 

in future studies of gene therapy targeting hematopoietic and other cells, and may also 

reduce the “insertional bias” in the use of retroviral or lentiviral vectors in basic research. 
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Materials and Methods 

 
Plasmid-based enhancer assay.  
 
pRG-TK (Promega, Madison, WI) is a basic reporter plasmid harboring the codon-optimized 

Renilla luciferase gene (hRluc) cleared of more than 300 known transcription factor binding 

sites. In this construct the herpes simplex virus–TK promoter was substituted with a minimal 

herpes simplex virus–TK (TKmin) or CMV (CMVmin) promoter, which can be activated by 

neighboring enhancer–promoter combinations. Promoters (EF1α short promoter, EFS; MPSV 

U3, MPSV; PGK; Rous sarcoma virus U3, SFFV) or complete LTR-driven or SIN vector 

cassettes (integrated proviral forms) were introduced into BamHI and SalI sites located 

downstream of the SV40 pA signal (Figure 1a). In order to reduce unspecific luciferase 

background activity, a synthetic pA/transcriptional pause site was cloned upstream of the 

minimal promoter. Luciferase values were corrected for GFP expression mediated by a co-

transfected plasmid so as to normalize for transfection efficiency.  

 
Retroviral vectors and vector production.  
 
The retroviral SIN vector backbones SIN.SF.GFP and SIN.PGK.GFP have been described 

earlier.15 They harbor the respective internal promoters (SF, SFFV-U3; PGK), the eGFP 

transgene (Clontech, Mountain View, CA), and an X-protein ORF deleted version of the 

woodchuck hepatitis virus posttranscriptional regulatory element.30 In order to construct 

SIN.EFS.GFP, the 240 bp intron-less promoter of EF1α short (EFS)15 was introduced as a 

BamHI/ClaI fragment. The cHS4 core insulator (250 bp; ref. 20) was cloned into the 3′ dU3 

region using NheI in single or duplicated version, 1×HS4 or 2×HS4, respectively. The 

minigene consists of a minimal CMV promoter followed by a truncated 400 bp version of the 

CD34 receptor (tCD34), which can be detected by a monoclonal mouse-anti CD34 antibody 

(clone qbend/10; AbD Serotec, Dusseldorf, Germany). The minigene cassette was 

introduced into the EcoRI site of the residual 3′ U3 region (Figure 2) of SIN.SF.GFP. In order 

to construct SIN.SF.GFP.ΔCMV minigene, the minimal CMV promoter was excised using 

NheI and MluI restriction sites. The details of construction are available on request. In this 

vector configuration, the majority of the minigene activity is expected to result from the 5′LTR, 

because the cassette located in the 3′LTR is likely subject to transcriptional suppression by 

readthrough from the upstream-located EGFP cassette. Cell-free viral supernatants were 

generated by transient transfection of 293T cells with vector-plus-packaging constructs 

encoding gag–pol proteins (M57-DAW)15 and ecotropic envelope (K73eco).31 Viral titers as 

determined on SC1 fibroblasts were in the range of 107 infectious transducing units/ml of 
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unconcentrated supernatant. All experiments were performed with thawed vector stocks of 

known titers. 

 
Isolation of lineage-negative BM cells and retroviral transduction. 
 
Lineage-negative (Lin−) BM cells of untreated C57BL6/J mice (Charles River Laboratories, 

Wilmington, MA) were transduced as described earlier.32 Briefly, Lin− cells were isolated from 

complete BM by magnetic sorting, using lineage-specific antibodies (Lineage Cell depletion 

kit; Miltenyi, Bergisch Gladbach, Germany) and were cryopreserved in aliquots. Before 

retroviral transduction, Lin-BM cells were prestimulated for 2 days in Iscove’s Modified 

Dulbecco’s Medium (Biochrom, Berlin, Germany) containing 50 ng/ml murine stem cell factor, 

100 ng/ml hFlt-3 ligand, 100 ng/ml hIL-11, 10 ng/ml mIL-3 (PeproTech, Heidelberg, 

Germany), 10% fetal calf serum, 1% penicillin/streptomycin, and 2 mmol/l glutamine at a 

density of 1–5 × 105 cells/ml. The cells were transduced on days 3, 4, 5, and 6 using 105 

cells and an MOI of 1–10 per transduction. Virus preloading was carried out on RetroNectin-

coated (10 μg/cm2; TaKaRa, Otsu, Japan) suspension culture dishes by spinoculation for 30 

minutes at 4 °C. The transduction starts with 1 × 105 cells seeded into 500 μl medium and 

was increased by 250 μl medium on the following days, so that the culture volume was 1.25 

ml on day 6. Real-Time PCR analysis (copy number) and flow cytometry (FACSCalibur; 

Becton-Dickinson, Heidelberg, Germany) were evaluated at the time points indicated in the 

text.  

 
Clonal dominance assay.  
 
After retroviral transduction, the BM cells were expanded as mass cultures for 2 weeks in 

Iscove’s Modified Dulbecco’s Medium containing 50 ng/ml murine stem cell factor, 100 ng/ml 

hFlt-3 ligand, 100 ng/ml hIL-11, 10 ng/ml mIL-3, 10% fetal calf serum, 1% penicillin/ 

streptomycin, and 2 mmol/l glutamine. During this time, the cell density was adjusted to 5 × 

105 cells/ml every 3 days. After mass culture expansion for 14 days the BM cells were plated 

into 96-well plates at densities of 100 cells/well and 10 cells/well.6 Two weeks later the 

positive wells were counted, and the frequency of replating cells was calculated based on 

Poisson statistics using L-Calc software (Stem Cell Technologies, Vancouver, Canada). 

Selected clones were expanded for further characterization.  

 
Taqman real-time PCR analysis and Northern blot.  
 
Quantitative PCR was performed on an Applied Biosystems 7300 Real-Time PCR System 

(Foster City, CA) using the Quantitect SYBR Green Kit (Qiagen, Hilden, Germany) as 
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described earlier.6 The woodchuck hepatitis virus posttranscriptional regulatory element 

specific primers (forward 5′-GAGGAGTTGTGGCCCGTTGT-3′ and reverse 5′-

TGACAGGTGGTGGCAATGCC-3′) amplified a 94 bp fragment. The woodchuck hepatitis 

virus posttranscriptional regulatory element specific signal was normalized by the signal of a 

housekeeping gene (flk-1 intron enhancer, gene ID AF061804, bases 352-459, forward 5′-

gtgaattgcagagctgtgtgttg-3′ and reverse 5′-attcattgtataaaggtgggattg-3′). Results were 

quantified using the comparative CT method. A standard curve for the PCR was derived 

using a 32D cell clone with a known number of insertions as determined by Southern blot. 

Day 4 was chosen for the real-time PCR studies, because potential plasmid contaminations 

resulting from the use of supernatants produced by transient transfection of packaging cells 

were no longer detectable at this time point under our assay conditions (data not shown). In 

order to evaluate messenger RNA expression, RNA was extracted from expanded clones 

using RNAzol (WAK chemicals, Steinbach, Germany) and the RNAeasy micro kit (Qiagen, 

Hilden, Germany). Reverse transcription was performed with 0.5–2 μg RNA using 

PowerScript MLV reverse transcriptase (Becton-Dickinson), and real-time PCR for Evi1 

expression using Taqman Gene Expression Assays (for Evi1 Mm00514810_m1, directed 

against exon boundary 4–5; Applied Biosystems, Foster City, CA) and a control assay 

against beta actin. Northern blots were performed using an Nco1 fragment of the Evi1 

complementary DNA, the GFP complementary DNA or 18S RNA as described in refs. 33,34. 

 
 
Statistical analysis.  
 
Data from experiments are expressed as mean values ±SD. Student’s unpaired t-test was 

used for comparing the variables in the transfection assays. For the immortalization assays, 

an analysis of variance test revealed that the differences in transforming efficacy observed in 

the replating assay were related to vector design. Student’s paired t-test was used for 

comparing differences between indicated groups. P < 0.05 was considered significant. 

 
Acknowledgments 
 
We thank Sabine Knoess and Maimona Id (Hannover Medical School) for technical 

assistance with replating and transfection assays and Meghan Williams and Shawnagay 

Clarke (Cincinnati Children’s Hospital) for assistance with cloning the insulator elements in 

self-inactivating vectors. The study was supported by grants from the the Else-Kröner 

foundation, the German Ministry for Research and Education (network grant TreatID), the 

Deutsche Forschungsgemeinschaft (network grant SPP1230 and Excellence Cluster 



Publication 1                                                                                                                                         54  

-54- 

REBIRTH), the Deutsche Studienstiftung, the European Union (integrated project CONSERT, 

LSHB-CT-2004-005242; network of excellence CliniGene, LHSB-CT-2006-018933), and the 

National Cancer Institute (R01-CA107492-01A2). 

 
Supplementary materials 
 
Figure S1. Similar to 32D cells, 293T cells show a significantly greater enhancer activity of 

the retroviral promoters in comparison with the cellular promoters. Figure S2. Expression of 

the CD34 minigene contained in the retroviral reporter vector cannot be explained by 

transcriptional readthrough.    
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Supplementary figure 1 
 
Similar to 32D cells, 293T cells show a significantly greater enhancer activity of the retroviral promoters in 
comparison with the cellular promoters.  
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Supplementary figure 2 
 
Similar to 32D cells (cf. to figure 1), 293T cells show a significantly greater enhancer activity of the retroviral 
promoters in comparison with the cellular promoters.  
 

 
 
Figure legend: 
a) Depiction of the integrated minigene vector where an additional poly(A) site is introduced upstream of the 
3’LTR. b) Compared to the minigene construct lacking the additional poly(A) site the titer is about one log 
decreased. C) Northern blot analysis of total RNA from transduced cells displaying the two constructs. The 
transcriptional polyadenylation occurs nearly to 100% at the additional poly(A) site.  
d) FACS analysis of the enhanced minigene cassette in transduced SC-1 cells 5 days after transduction.
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Alternative splicing of the primary transcript plays a key role
in retroviral gene expression. In contrast to all known mecha-
nisms thatmediate alternative splicing in retroviruses, we found
that in murine leukemia virus, distinct elements located
upstream of the 5� splice site either inhibited or activated splic-
ing of the genomic RNA. Detailed analysis of the first untrans-
lated exon showed that the primer binding site (PBS) activates
splicing, whereas flanking sequences either downstream or
upstream of the PBS are inhibitory. This new function of the
PBS was independent of its orientation and primer binding but
associated with a particular destabilizing role in a proposed sec-
ondary structure. On the contrary, all sequences surrounding
the PBS that are involved in stem formation of the first exon
were found to suppress splicing. Targetedmutations that desta-
bilized the central stem and compensatory mutations of the
counter strand clearly validated the concept that murine leuke-
mia virus attenuates its 5� splice site by forming an inhibitory
stem-loop in its first exon. Importantly, this mode of splice reg-
ulation was conserved in a complete proviral clone. Some of the
mutants that increase splicing revealed an opposite effect on
translation, implying that the first exon also regulates this proc-
ess. Together, these findings suggest that sequences upstreamof
the 5� splice site play an important role in splice regulation of
simple retroviruses, directly or indirectly attenuating the effi-
ciency of splicing.

A characteristic feature of all retroviruses is the process of
reverse transcription of the RNA genome into double-stranded
DNA. Following integration into the host genome, the proviral
DNA functions as one expression unit, which is transcribed by
cellular RNA polymerase II, yielding a single polycistronic pri-

mary transcript that serves as genomic RNA for progeny virus.
Productive infection and formation of new retroviral particles
require the well balanced expression of all viral genes. This is
accomplished by a combination of alternative splicing (intron
retention) and regulated nuclear export of the primary tran-
script on the RNAprocessing level and proteolytic cleavage and
translational read-through on the post-translational level
(reviewed in Refs. 1–4).
The genomic organization of all retroviruses is similar (Fig.

1A). The gag-pol open reading frame (ORF)3 encoding the inner
structural proteins (Gag), and the replication enzymes (Pol) is
located in the 5� half of the transcript and expressed from the
unspliced genomic RNA after nuclear export. The gag-polORF
in all primary retroviral transcripts is defined as an intron
through the presence of a preceding 5� splice site (ss) in the
5�-untranslated region and a functional 3�ss located toward the
end of the polymerase ORF (Fig. 1A). To express the glycopro-
teins (Env), which are encoded in the 3� half of the genomic
RNA, the gag-pol ORF is removed by a single splice event for
subsequent export of the fully spliced RNA (1, 3, 4). This one-
splice event strategy creates the challenge to export intron-con-
taining RNAs, which is typically not supported by the cell and
rather results in nuclear retention and degradation of the
respective RNA (5, 6). For export of their unspliced RNA, ret-
roviruses make use of constitutive transport elements as exem-
plified byMason-Pfizer monkey virus or trans-acting factors as
illustrated by HIV (7–9). Murine leukemia virus (MLV), a par-
adigmatic gammaretrovirus, supports the export of unspliced
mRNA by a yet unknown mechanism involving the so-called R
region stem-loop (RSL) formed by the cap-proximal 28 bases
(10).
As simple retroviruses encode no trans-acting regulators of

gene expression, alternative or inefficient splicing must be reg-
ulated entirely through cis-acting RNA motifs and cellular co-
factors. Such motifs may include non-consensus 3�ss, decoy
5�ss, and splice modulatory sequences such as splicing enhanc-
ers and silencers (11, 12, 16, 25, 34, 35, 41).
In MLV, the 5�ss matches to almost 100% the cellular con-

sensus sequence (Fig. 1B) and splices to a 3�ss within the pol
reading frame (13) (Fig. 1B). The 3�ss misses two relatively
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important nucleotides surrounding the AG. The polypyrimi-
dine tract (PPT), a second key feature of all 3�ss, is of suboptimal
length (10 nucleotides long when compared with 13 residues in
average) but not interrupted by weakening purines as most
PPTs of HIV (14). Interestingly, a recent study showed that in
the context of MLV-based retroviral vectors, the 3�ss can be
replaced by very efficient counterparts derived from the human
EF1� gene (15). Although the infectious titer was reduced by
about 1 order of magnitude, unspliced genomic RNA was still
formed, arguing for the existence of additional splice inhibitory
sequences.
Recently, we have observed that self-inactivating MLV vec-

tors display complete splicing of the retroviral intron when the
promoter was placed in between the primer binding site (PBS)
and the 5�ss (16). Using a number of mutants, we here demon-
strate that distinct sequence elements upstream of the 5�ss
either promote or inhibit splicing. Interestingly, this regulation
correlates with the stability of the RNA secondary structure
proposed by Mougel et al. (17). These data suggest a novel
mechanism of splice regulation in retroviruses, directly or indi-
rectly regulating the activity of the 5�ss through upstream
sequences.

EXPERIMENTAL PROCEDURES

Plasmids—The retroviral vector plasmids were derived from
pSF91 (18). Mutant vectors lacking the U5 region of the 5� long
terminal repeat located 70–145 bp downstream of the cap site
(pSF91delU5) or lacking the PBS located 146–163 bp down-
stream of the cap site (pSF91delPBS) were generated in a three-
fragment ligation using PCR-based deletion strategies (primers
are provided in the supplemental table). Using pSF91 as a tem-
plate, two separate PCR products were generated. For the dele-
tion of U5, the forward primer (forward, 5�-CAG ATG GTC
CCC AGA TGC-3�, position �150 regarding cap) was used in
combination with a reverse primer immediately upstream of
U5. The 3� primer (reverse, 5�-ACG CTG AAC TTG TGG
CCG-3�) of the 3� PCR product is located downstream of an
NcoI site (�706 regarding cap). This primer was used in com-
bination with a forward primer annealing just downstream of
the U5 region. The two products were then digested with XbaI

(5� fragment) andNcoI (3� fragment), leaving a blunt end in the
middle. The two products were ligated into XbaI/NcoI digested
pSF91. An analogous strategy was used for the deletion of the
PBS.
All other vector plasmids including deletion, antisense, and

othermutants were derived frompSF91 by overlap PCR. Again,
pSF91 was used as template. The outer 5� and 3� primers are
mentioned above. The inner primers bridge the deletion (in the
case of pSF91del33–182: sense primer, 5�-AGT CGC CCG
G-GA CCA CCG ACC CCC CCG CCG-3�; antisense primer,
5�-GTCGGTGGTC-CCGGGCGACTCAGTCAATCG-3�,
overlap is underlined, hyphen marks the deletion) or carry the
suitable point mutations (in the case of pSF91mlvPBS: sense
primer, 5�-CAT TTG GGG GCT CGT CCG GGA TTT GGA
GAC CCC TG-3�; antisense 5�-CCA AAT CCC GGA CGA
GCCCCCAAATGAAAGACCCC-3�, overlap is underlined,
mutations are bold). The overlapping PCR product was
digested with XbaI and NcoI and ligated into the pSF91 back-
bone. For the deletions ormutations named sm1, sm2, sm3, and
sm3comp, a different 3� primer (5�-AATGGGCCACAAAAC
GGG CCC CCG A-3�) was used, including an ApaI site. The
final overlap PCR product was then cloned via XbaI and ApaI.
All used primers (FW, forward; RV, reverse) are listed in the
supplemental table, indicating name, sequence, and final vector
construct. To transfer the PBS and the deletion 3�PBS to a com-
plete proviral clone, an EcoRI/PstI fragment of pMOVGFP
(kind gift from B. Schnierle, Paul-Ehrlich-Institute, Langen,
Germany) was subcloned into pBluescript (Stratagene).Within
this subclone, the AflII/PstI fragment (�464 to �563, regard-
ing the cap site as �1) was exchanged to the corresponding
pSF91 sequence and to that of SF91delPBS and SF91del3�PBS
viaAflII and PstI, yielding pMOVSFGFP, pMOVSFdelPBSGFP,
and pMOVSFdel3�PBSGFP, respectively. Correct deletions or
nucleotide replacements were confirmed by sequencing.
Cells, Transfections, and Reporter Assays—293T cells were

grown in Dulbecco’s modified Eagle’s medium (Biochrom, Ber-
lin, Germany) supplemented with 10% fetal calf serum, 2 mM

glutamine, and 1 mM sodium pyruvate including antibiotics.
7� 105 293T cells/well were seeded in a 6-well plate. For trans-

FIGURE 1. Genomic organization, RNA species, and splice sites of MLV. A, MLV proviral genome and mRNA species. The genome is flanked by the long
terminal repeats (LTRs, consisting of U3, R, and U5). The ORFs are shown as gray boxes. The transcription start site (cap) and the polyadenylation site (pA) mark
the length of the genomic RNA. In addition, the PBS, the packaging signal (�), and the splice sites (5�ss/3�ss) are shown. Below the mRNA species are depicted:
the genomic RNA corresponding to the full-length unspliced primary transcript and the spliced, subgenomic RNA. B, comparison of cellular and MLV consensus
(Con.) 5� and 3�ss. Dark to light gray marks the exon/intron junction, and vertical lines show matched nucleotides. The length of the PPT is indicated.
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fection, the medium was exchanged, and 25 �M chloroquine
(Sigma, Taufkirchen, Germany) was added. Retroviral vector
DNA (0.9�g)was transfected using the calciumphosphate pre-
cipitationmethod (19). Mediumwas exchanged 6 h after trans-
fection, and the cells were harvested after 48 h. Transfection
efficiencies ranging between 60 and 80%andprotein expression
were assessed by flow cytometry in a FACScalibur (BD Bio-
sciences, Heidelberg, Germany) using CellQuest software (BD
Biosciences).
Retroviral vector particles were produced by cotransfection

of 0.9 �g of retroviral plasmid pSF91 with expression plasmids
for MLV gag-pol (1.5 �g) and ecotropic envelope (0.3 �g) into
7 � 105 Phoenix GP (G. Nolan, Stanford University, Palo Alto,
CA) cells. In the case of pSF91artPBS, plasmids coding for arti-
ficial tRNAs (tRNA-x2-Lys, tRNA-x2-Pro (20)) were co-trans-
fected. Supernatants containing the viral particles were col-
lected 48 h after transfection, filtered through a 0.22-�m filter,
and used to transduce 1 � 105 target cells in serial dilutions for
titer determination. Transduction was assisted by adding 4
�g/ml protamine sulfate and centrifugation for 60min at 400�
g and 25–32 °C. Cells were grown for another 2 days before the
percentage of enhanced green fluorescent protein (eGFP)-pos-
itive cells was determined by flow cytometry. Further analysis
was limited to those experiments where less than 30% of target
cells were productively transduced.
RNA Preparation and Northern Blot—For preparation of

nuclear and cytoplasmic RNA, 8� 106 cells were collected 48 h
after transfection and treated according to the protocol ofWeil
et al. (21). Briefly, the cells were resuspended in 500 �l of Non-
idet P-40 lysis buffer (0.5% Nonidet P-40, 0.14 M NaCl, 10 mM
Tris, pH 8.4, 1.5 mMMgCl2, 10 mM EDTA, pH 8.0) for 5 min at
0 °C. After centrifugation at 470� g for 5min at 4 °C, the super-
natant containing the cytoplasmic fraction was harvested. The
nuclear pellet was washed twice with lysis buffer. RNA was
extracted from total cells or nuclear and cytoplasmic fractions
using the RNA Instapure reagent according to themanufactur-
er’s protocol (Eurogentec, Brussels, Belgium).
ForNorthern blot, 5–10�g of RNAwere separated at 2V/cm

in 1% agarose gels after denaturing RNA samples with glyoxal
(6%) and Me2SO (50%). Subsequently, RNAs were transferred
to Biodyne B membrane (0.45 �m, Pall) by capillary transfer
and UV cross-linked (Stratalinker, Stratagene). Specific probes
used for hybridization corresponded to the cDNAs of eGFP,
GAPDH, cytochrome c oxidase II, and the env fragment of
MLV. Probes (25 ng) were radiolabeled using the Prime-It II kit
(Stratagene, Amsterdam, The Netherlands) to an activity of at
least 5 � 108 cpm/�g and separated from unincorporated
nucleotides on spin columns (Molecular probes, Göttingen,
Germany). DNA template used for the in vitro transcription to
generate antisense RNA probes specific for the GAPDH intron
B was raised by PCR on genomic DNA using reverse primer
5�-GGA CTA GTT AAT ACG ACT CAC TAT AGG GTG
CGGTGGAGATCTG-3� containing the T7 RNApolymerase
promoter sequence (shown in bold) and forward primer
5�-CAA GGA GAG CTC AAG GTC-3�. Transcription reac-
tions were carried out with 0.5 �l of PCR product in a final
volume of 20 �l in transcription buffer (Promega, Mannheim,
Germany) containing 0.31 mM ATP, CTP, and GTP, 0.25 �M

UTP, 5.0 �M [�-32P]UTP (800 Ci/mmol; Hartmann Analytic,
Braunschweig, Germany), 5 mM dithiothreitol, 20 units of
RNasin (Promega), and 20 units of T7 RNA polymerase (Pro-
mega). The reaction was terminated by adding 10 �g of yeast
tRNAand 1 unit ofDNaseI (Promega) and incubated for 15min
at 37 °C. Unincorporated nucleotides were removed as above.
Hybridization solutions had a final activity of 106 cpm/ml.
Membranes were washed, sealed, and exposed to x-ray films
(Kodak X-omat-AR, Kodak, Stuttgart, Germany) or quantified
by PhosphorImager analysis (Fuji, Düsseldorf, Germany;
Amersham Biosciences, Freiburg, Germany) analysis.

RESULTS

The MLV-derived Vector SF91 Shows Balanced Splicing—
TheMLV-based vector SF91 (18) (Fig. 2A) was used to investi-
gate the potential splice regulatory role of sequences located
upstream of the 5�ss, namely R, U5, PBS, and a short region
downstream of PBS (here referred to as 3�PBS). The SF91 vec-
tor is derived fromMLV by deleting the gag-polORF and intro-
ducing the env 3�ss including its PPT and branch point
sequences 3� of the packaging signal (�) followed by the origi-
nal gagATG,which allows translation of a reporter gene such as
eGFP. Importantly, the vector SF91 contains a 460-bp splice-
able intron in the 5�-untranslated region, which uses the same
5�ss and 3�ss as the proviral gag-pol intron. For a detailed anal-
ysis of splicing, vector plasmids were transiently transfected
into human 293T cells. These were harvested 48 h after trans-
fection to prepare nuclear and cytoplasmic RNA. 5 or 10 �g of
each RNA fraction were analyzed by Northern blotting.
The vector SF91 showed balanced splicing with a predomi-

nance of the unspliced RNA in the nucleus (Fig. 2B, lane 2, left
panel), whereas the cytoplasmic compartment revealed an
accumulation of spliced message, most likely caused by more
efficient export of processed RNA (Fig. 2B, lane 2, right panel).
Due to this imbalance in the export kinetics of spliced and
unsplicedRNAs, we investigated bothRNA fractions, assuming
that mutants with inhibited splicing would be underrepre-
sented in total RNA and in the cytoplasmic fraction. To control
the RNA fractionation procedure, two probes were devised.
The first recognized intron B of GAPDH (Fig. 2B, Intron),
whose signal should be confined to the nuclear fraction. Using
the intron probe, we detected two specific bands at 6.8 kb and
about 13 kb in the nucleus, corresponding to the pre-mRNA
(NCBI accession number NC_000012.10) and a longer tran-
script, which was observed previously (22); these transcripts
were much weaker or absent in the cytoplasm (Fig. 2B, right
panel). Another band at 5 kbwas detectable in both nuclear and
cytoplasmic fractions (Fig. 2B). The size matched to the large
ribosomal RNA (28 S), and since this was also seen with other
probes, we regarded it as unspecific. The second probe was a
fragment of cytochrome c oxidase II (CytC), a gene exclusively
transcribed in the mitochondria, thus serving as a cytoplasmic
marker. Due to incomplete removal of mitochondria from the
nucleus, the nuclear fraction was never fully devoid of CytC
RNA (Fig. 2B, left panel). In summary, we established a simpli-
fied system to study retroviral splice regulation and nuclear
export of MLV RNA.
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Distinct Elements in the Untranslated First Exon Regulate
Splicing and RNA Export—Next we focused on the region
upstream of the 5�ss and its role in splice regulation. Following
earlier experiments (16), we deleted bases �33 to �182 (with
the cap site being �1) upstream of the 5�ss, resulting in the
vector SF91del33–182 (Fig. 2A).When analyzed in parallel with
SF91, SF91del33–182 showed an increased splicing efficiency
in the nuclear fraction (Fig. 2B, lane 3, left panel). Accordingly,
the cytoplasm contained almost exclusively spliced RNA,
whereas unspliced RNA could only be detected after prolonged
exposure (data not shown). This experiment revealed that the

deleted sequences, located upstream of the 5�ss, play a major
role in retroviral RNA processing. This rather large deletion
also seems to lower the RNA level (Fig. 2B, lanes 2 and 3, left
panel). In contrast, smaller deletions that also increased the
efficiency of splicing did not affect RNA levels (see below).
To examine the role of the RSL, previously shown to promote

the appearance of unspliced RNA in the cytoplasm (10), we
constructed another vector lacking the bases 4–31 of the R
region (SF91delRSL, Fig. 2A) and thus the entire RSL. When
compared with SF91, deletion of the RSL enhanced nuclear
splicing by 2.5-fold (as determined by PhosphorImager analy-
sis). In addition, deleting the RSL inhibited the accumulation of
unspliced RNA in the cytoplasm (Fig. 2B, lanes 2 and 4). The
ratio of spliced/unspliced RNA in the cytoplasm was 2.3 for
SF91 and changed to 8.6 for SF91delRSL (3.8-fold enhance-
ment). These data confirm that the RSL is involved in RNA
export (10); moreover, our data suggest that the RSL partici-
pates in balancing the retroviral splice reaction.
Splicing Is Blocked in Vectors Lacking the PBS—To study the

role of the remaining sequences in the untranslated first exon in
more detail, we deleted parts of this region separately. The vec-
tors as shown in Fig. 3A were SF91delR2 (R deletion 3� of the
RSL), SF91delU5 (deletion of U5), SF91delPBS (deletion of the
PBS), and SF91del3�PBS (deletion of bases �164 to �182,
immediately downstream of the PBS). Following transient
transfection of 293T cells and fractionation of nuclear and cyto-
plasmic RNA, Northern blots were performed as described
above. Deletions of R2, U5, or 3�PBS produced similar amounts
of total RNAbut strongly enhanced the accumulation of spliced
message already in the nucleus (Fig. 3B, lanes 3, 4, and 7, left
panel). The overloaded lanes 4 and 7 revealed that unspliced
RNA was still detectable with these deletion mutants. In con-
trast, splicing was nearly blocked when deleting the PBS (Fig.
3B, lane 6, left panel). Another deletion mutant with the com-
bined deletion of PBS sequences and downstream sequences
�164 to �182 (SF91delPBS-3�PBS, Fig. 3A) demonstrated a
similar phenotype as SF91del3�PBS, in which only the bases
�164 to �182 were deleted (Fig. 3B, compare lanes 5 and 7).
Therefore, the latter mutation was dominant over the deletion
of the PBS.
For all thesemutants except the onewith the deleted PBS, we

detected only spliced RNA in the cytoplasmic fraction (Fig. 3B,
right panel, compare lane 6 with lanes 3, 4, 5, and 7). This
reflected the strength of the nuclear splicing reaction. As over-
exposure of the blot showed unspliced RNA in these cases (data
not shown), a strong effect of the deleted sequences on RNA
export was unlikely.
The correctness of the transcripts was proven by RT-PCR

and subsequent sequence analysis (data not shown). The addi-
tional band observed in the nucleus was refractory to sequence
analysis due to PCR-intramolecular hybridization. However,
scoring the first untranslated exon in a splice site prediction
program (available from the Berkeley Drosophila Genome Pro-
ject) revealed a cryptic 5�ss at 262 nucleotides (3� to the major
5�ss, consistent with the observed band). Interestingly, splicing
at this site was not inhibited by deletion of the PBS (Fig. 3B, lane
6, left panel). In summary, these data revealed an exceptional

FIGURE 2. Sequences of the untranslated first exon change the splicing
pattern of the MLV-derived vector SF91. A, in SF91 (top), coding sequences
from MLV are replaced with eGFP using the original gag ATG site as the trans-
lational start site. The viral 3�ss, including branch point and PPT, is cloned
upstream of eGFP. Thereby, a shortened intron comprising 460 nucleotides
harboring identical splices sites as the MLV provirus is reconstituted. The
region of the untranslated first exon (cap site to 5�ss) is enlarged below. The
mutant SF91del33–182 (middle) lacks the bases �33 to �182 regarding cap
as �1. The mutant SF91delRSL lacks the bases of the RSL that has been shown
to be involved in accumulation of unspliced RNA in the cytoplasm (10). LTR,
long terminal repeat. B, Northern blots from fractionated lysates of trans-
fected 293T cells, prepared as described under “Experimental Procedures.”
The blots were hybridized with a radiolabeled eGFP-specific probe (upper
panel). Rehybridization with a GAPDH-specific probe served as loading con-
trol (second panel). The efficiency of fractionation was checked with a probe
specific for an intron of GAPDH (Intron) as a nuclear marker (third panel) and
with a cytochrome c oxidase II-specific probe (CytC) as cytoplasmic marker
(lower panel). The unspliced and spliced RNAs are identified on the right.
Molecular mass standards (M) in kb are shown on the left. Mock,
mock-transfected.
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role of the PBS being the only ele-
ment within the first untranslated
exon that promotes retroviral splic-
ing from the 5�ss, whereas the sur-
rounding sequences inhibit this
process.
Deletion of U5 and 3�PBS Impairs

Translational Utilization—Taking
advantage of eGFP encoded by the
vectors, we also determined the
influence of the 5�-untranslated
region deletions on the protein level
in transfected 293T cells. Although
the deletion of U5 and 3�PBS pro-
duced almost exclusively spliced
RNA in the cytoplasm, the mean
fluorescence intensitywasmarkedly
decreased (Fig. 3C). Both U5 and
3�PBS deletions reduced the mean
fluorescence intensity by 80% when
compared with the parental vector
SF91. Thus, in these deletion
mutants, the amount of spliced
RNA in the cytoplasm did not cor-
relate with translational utilization
(compare Fig. 3B, right panel with
Fig. 3C). However, deleting the PBS
reduced GFP expression by 40%,
which correlated with the reduced
amount of spliced RNA. We
extended these observations to
293T-based packaging cells, which
stably produce MLV Gag-Pol. The
presence of Gag did not alter the
translational regulation (data not
shown). Moreover, identical data
were obtained in transfected HeLa
cells (data not shown). These data
suggest that the sequences involved
in splice regulation also contribute
to translational control of the retro-
viral transcript.
The Splice-promoting Effect of the

PBS Is Independent of Its Genotype
and Primer Binding—To find out
whether the role of the PBS in splice
regulation is dependent on the type
of the corresponding tRNA and is
therefore dependent on the PBS
sequence or whether primer bind-
ing itself regulates splicing, we
developed another set of PBS
mutants. MLV typically contains a
PBSwith a specificity for the proline
tRNA. Our vectors contain a PBS
with a specificity for the glutamine
tRNA as this PBS does not inhibit
transcription in primitive embry-

FIGURE 3. The splice enhancing PBS is surrounded by splice inhibitory elements. A, a schematic illus-
tration of the first untranslated exon (cap to 5�ss) of SF91 (top) and the deletion mutants. Sequences are
deleted as indicated: SF91delR2 (�33-�69 deleted); SF91delU5 (�70-�145 deleted); SF91delPBS-3�PBS
(�146-�182 deleted); SF91delPBS (�146-�163 deleted); SF91del3�PBS (�164-�182 deleted). In
SF91mlvPBS and SF91mlvPBSdel3�PBS, the PBS sequence (annealing to tRNAGln in SF91) is mutated in the
PBS sequence original used in MLV for tRNAPro. On the right, splicing efficiency as determined in B is
shown. B, Northern blot analysis of RNA from transfected 293T cells. Using the eGFP-specific probe (upper
panel), the blots represent the ratio of unspliced and spliced RNA in the nuclear (left) and cytoplasmic
(right) fraction. GAPDH-, intron-, and CytC-specific probes served as controls for loading and fractionation.
Molecular mass standards (M) in kb are shown on the left. Mock, mock-transfected. C, translation efficiency
of the untranslated region mutants as indicated by mean fluorescence intensity (MFI) of eGFP determined
in unsorted cell pools comprising 10,000 single events. Median and standard deviation of 3–9 independ-
ent experiments are given. rel., relative.
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onic and hematopoietic stem cells (23, 24). Exchanging the PBS
for tRNAGln used in SF91 to the PBS for tRNAPro usually found
in MLV (five point mutations within the 18 bases of the PBS)
yielded SF91mlvPBS (Fig. 3A). In the transient transfection
assay, SF91 and SF91mlvPBS showed similar splicing patterns,
as shown in Fig. 3B (lanes 2 and 8, left and right panel). The
independence of the kind of PBS and corresponding tRNA in
splice regulation was also confirmed by a mutant containing
the MLV-PBS followed by a deletion of �164 to �182
(SF91mlvPBSdel3�PBS, Fig. 3A).When compared with its SF91
counterpart (SF91del3�PBS), a similar splice alteration was
observed in both cases (Fig. 3B, compare lanes 7 and 9, left and
right panel). These data showed that the dominant splice inhib-
itory effect of the region 3� of the PBS is independent of the type
of the neighboring PBS and that the experimental system pro-
vided highly reproducible results.
Annealing of the tRNA to the PBS takes place during virion

assembly (25). However, it is still possible that tRNA precur-
sors, which are present in the nucleus (26), might anneal to the
PBS of the pre-mRNA. To rule out any effects of primer tRNA
binding in splice regulation, we designed vectors containing an
artificial PBS (SF91artPBS), which does not bind any cellular
tRNA, adapting the approach developed by Pedersen and col-
leagues (20), as described in Ref. 27. With this method, it is
possible to examine splicing in the absence or presence of a
bound tRNA primer. We found that the potential annealing of
a matching tRNA did not alter splicing efficiency, strongly sug-
gesting that binding of a tRNA primer is not important for
splice regulation (data not shown).
Evidence for a Structural Role of the PBS in Splice En-

hancement—The previous experiments imply that the role of
the PBS in balanced splicing is not dependent on tRNA speci-
ficity or primer binding. To analyze whether the role of the PBS
in splice regulation is largely sequence-independent, we devel-
oped a mutant that carries the PBS in antisense orientation
(SF91asPBS, Fig. 4A). Indeed, this construct showed an identi-
cal splice phenotype as the wild type SF91 (Fig. 4B, compare
lanes 3 and 5). Thiswas confirmed by quantification of theRNA
ratios (Fig. 5). Thus, the phenotype of the PBS deletion, namely
a block in splicing, was reverted when introducing the PBS in
antisense (Fig. 4B, lanes 4 and 5, and Fig. 5).
In great contrast to the deletion of the PBS, deleting the 19

bases downstream of the PBS (mutant SF91del3�PBS) strongly
enhanced splicing (Fig. 3B, compare lanes 6 and 7; confirmed in
Fig. 4B, lanes 4 and 6, and quantified in Fig. 5). To investigate
whether the role of the sequence downstream of the PBS in
splice regulation is dependent on its sequence, we cloned a
mutant that contained this region in antisense orientation
(SF91as3�PBS; Fig. 4A). In this case, the deletion and antisense
orientation produced similar phenotypes, i.e. increased splicing
(Fig. 4B, lanes 6 and 7; quantified in Fig. 5). Identical results
were obtained when transfecting murine SC-1 fibroblasts,
revealing that the observed effects are not species-specific (data
not shown).
We conclude that the role of the PBS in splice regulation is

largely independent of its sequence. Instead, our data suggest
that the PBS modulates splicing by forming a spacer within a
larger structural framework.

The Splice Regulation Mediated by the PBS and Adjacent
Sequences Also Applies to a CompleteMLV Proviral Clone—To
test whether the above results apply to an entire proviral
genome, we transferred the two deletionmutants with themost
prominent phenotypes, namely the PBS deletion (inhibits splic-
ing) and the 3�PBS deletion (increases splicing), into a replica-
tion-competent MLV construct called MOVGFP (28).
MOVGFP contains the entire MLV proviral genome with the
eGFP gene inserted into the proline-rich region of env. We
cloned the different leader regions also containing a part of the
SF91 U3 (SF) into the proviral plasmid MOVGFP yielding a
MOVSFGFP and the respective deletion mutants, MOVSF-
delPBSGFP and MOVSFdel3�PBSGFP. Based on analysis of
total RNA, introducing the SF91 leader into MOVGFP slightly
increased splicing of the env RNA (Fig. 6, compare lanes 4 and

FIGURE 4. Role of the PBS and downstream regions in RNA processing.
A, a drawing of the first untranslated exon of SF91. Black arrows (PBS) and
white arrows (3�PBS) indicate the orientation of the two elements. SF91asPBS
(middle) carries the PBS sequence in antisense orientation. The other mutant
(SF91as3�PBS, bottom) carries the 19 bases downstream of the PBS in anti-
sense orientation. The right column shows the splicing efficiency as deter-
mined in B. B, Northern blot data were obtained as described before. eGFP-
transcript ratios (upper panel) of the wild type vector SF91 were directly
compared with the transcripts of the PBS deletion (SF91delPBS) and the anti-
sense (SF91asPBS) mutant. Additionally, the deletion mutant of the sequence
3� of the PBS (SF91del3�PBS) was compared with its antisense counterpart
SF91as3�PBS. The last lane shows the combined deletion of both regions PBS
and 3�PBS. Control probes (lower panels) were used as indicated. Molecular
mass standards (M) in kb are shown on the left. Mock, mock-transfected.
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3). Deleting the PBS led to accumulation of unspliced RNA, as
predicted by the above studies (Fig. 6, lane 5). In contrast, delet-
ing the region 3� of the PBS severely reduced the amount of
genomic RNA and generated much higher levels of spliced env
RNA (Fig. 6, lane 6). As an additional control, an unmodified
wild typeMLVwas used (Fig. 6, lane 2). Thus, the data obtained
in the context of the subgenomic vector system (Figs. 2–5) were
predictive for RNA processing of a complete provirus. The data
also show that the distance to the splice acceptor is not a critical
parameter of the splice inhibitory effects of the sequences
located upstream of the 5�ss.
To test whether the env splice acceptor is required in this

context, we designed vectors lacking this sequence, the preced-
ing PPT, and the branch point; these constructs still allow cryp-
tic splicing to a minor splice acceptor located in the packaging
signal. In this context (data not shown) as well as in the vectors
containing the authentic env splice acceptor (Fig. 4) or the pro-
viral context shown above (Fig. 6), deleting sequences 3� of the
PBS enhanced splicing. Together, these data reveal that the
splice regulationmediated by sequences upstream of the 5�ss is
independent of the size of the intron and the type of the splice
acceptor. This leaves the 5�ss as themost likely interaction part-
ner of the splice regulatory sequences located in the first
untranslated exon.
Detailed Mapping of the Sequence Downstream of the PBS

Validates a StructuralModel for Splice Regulation—To analyze
whether splicing in MLV depends on sequence or structure of
the first untranslated exon, we focused on the validated second-
ary structure (17) and introduced further mutations into the
region 3� to the PBS (Fig. 7A). First, the deletion 3�PBS was
divided into smaller deletions named sm1 and sm2 (stem
mutants 1 and 2). We then analyzed total RNA by Northern
blot. The parental construct SF91 was compared with

SF91delPBS and SF91del3�PBS (Fig. 7B, lanes 2, 3, and 4, upper
panel), reproducing the effects on splicing from previous anal-
yses performed with fractionated RNA. The deletion sm1,
which compromises the first half of del3�PBS, shifted the bal-
ance toward the spliced RNA (Fig. 7B, compare lanes 4 and 5,
upper panel). The deletion of the second half of del3�PBS (sm2)
displayed the same phenotype as the complete del3�PBS (Fig.
7B, compare lanes 4 and 6, upper panel). Since a potential bind-
ing motif for hnRNPA1, a splice repressor, coincides with sm2
(AGGGA), we destroyed it by mutation to ACCGA (sm3; Fig.
7A, boxed motif). This mutant again showed a similar pheno-
type as sm2 and del3�PBS (Fig. 7B, lanes 7, 6, and 4), suggesting
that potential hnRNPA1 binding at this site is not involved in
MLV splice regulation. To ultimately test whether the sequence
motif or the secondary structure is important, we introduced
compensatory mutations into the corresponding bases on the
ascending side of the stem (sm3comp, Fig. 7A, boxed motif).
Importantly, these mutations restored the wild type splicing
phenotype (Fig. 7B, compare lanes 8 and 2). A lower RNA
amount for sm3 was only observed in this particular experi-
ment and not in others (Fig. 7B, two extra lanes). PhosphorIm-
ager analysis confirmed that the splice inhibitory effect mainly

FIGURE 5. Quantification of the splicing ratios. Northern blots containing
constructs from Figs. 2– 4 were quantified using PhosphorImager technol-
ogy. The relative amounts of spliced and unspliced RNA are shown. Values
represent the median of 3–5 independent experiments.

FIGURE 6. Sequences upstream of the 5�ss regulate splicing in a complete
MLV proviral clone. Northern blot analysis of 293 T cells transfected with an
MLV wild type plasmid (MLV wt) and a variant carrying the eGFP gene in the
proline-rich region (MOVGFP; 28). The SF91 leader (SF) and two deletion
mutants, mainly delPBS and del3�PBS, were cloned into MOVGFP, resulting in
MOVSFGFP, MOVSFdelPBSGFP, and MOVSFdel3�PBSGFP. 10 �g of total RNA
were separated on a denaturing agarose gel. MLVs specific RNAs were
detected with a probe corresponding to the env ORF. Rehybridization with a
GAPDH-specific probe served as loading control (bottom panel). Molecular
mass standards in kb are given on the left, and the RNA species are identified
on the right. Mock, mock-transfected.
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resides in the lower part of the stem (del3�PBS, sm2 and sm3)
and that the compensation of sm3 restores the wild type bal-
ance (Fig. 7B, lower panel). By RT-PCR and sequencing, all
mutants were shown to splice to the correct 3�ss (data not
shown). These findings strongly suggest that alternative splic-
ing in MLV is regulated via a secondary structure upstream of
the 5�ss.

DISCUSSION

The present study investigated the impact of sequences
located upstream of the 5�ss of MLV, a paradigmatic gamma-
retrovirus, on retroviral splice regulation. Our data reveal that
sequences surrounding and including the PBS are crucial deter-
minants of alternative splicing. These sequences show a higher
degree of conservation with other gammaretroviruses (such as
gibbon ape leukemia virus, 84% identity) when compared with
other regions (such as the active site of reverse transcriptase,
74% identity), whereas the packaging signal shows no homol-
ogy. We have shown that the PBS plays an exceptional role in
MLV splice regulation by counteracting adjacent strong splice
inhibitory structures, without the need for primer binding. This
points to a previously unknownmechanism of splice regulation

in simple retroviruses, possibly also relevant for eukaryotic cel-
lular genes. This mechanism involves sequences located
upstreamof the 5�ss to regulate alternative splicing, without the
need for a virus-encoded trans-acting factor.
Interestingly, deleting the putative export element ofMLV

(RSL) slightly enhanced splicing. However, in the case of
SF91, the export efficiency of the unspliced transcript is
rather low so that most of the unspliced RNA stays in the
nucleus. Therefore, it is not very likely that complete splicing
of other mutants can be attributed to a prolonged nuclear
retention. In addition, all of these mutants still contain the
putative export element.
Regulation of alternative splicing is an essential step in the

life cycle of all retroviruses and thus subject to tight evolution-
ary control. HIV, as a complex retrovirus, and RSV, as an exam-
ple for a simple retrovirus, are the best studied viruses in this
respect. In HIV, all 5�ss match the cellular consensus sequence
(29), in contrast to the 3�ss, which are weakened by several
means, including short and interrupted PPTs (14). Besides, the
exons and introns of HIV contain a well balanced assembly of
splicing silencers and enhancers (30–32). RSV explores a dif-
ferent mechanism in addition to weak 3�ss for env and src (32).

FIGURE 7. The secondary structure upstream of the 5�ss regulates alternative splicing in MLV. A, a schematic illustration of the secondary structure of the
MLV first untranslated exon according to the structure by Mougel et al. (17). The RSL (first 32 bases), the U5 region, the PBS, the region downstream of the PBS
(3�PBS), and the 5�ss are indicated. The large gray arrow points to the invariant GU dinucleotide at the 5�ss also being the first two nucleotides of the intron.
Downstream of the 5�ss follows the packaging signal (�). Key sequences are shown in detail; other stems are represented as thick black lines, and loops are
represented as thick black half-open circles. For the RSL, the PBS, the consensus 5�ss, and the mutated nucleotides in sm3/sm3comp, the important nucleotides
are emphasized by gray circles. B, upper panel, Northern blot of total RNA from the indicated constructs. RNA species are indicated on the right, and molecular
size markers (M) are noted in kb on the left. A GAPDH-specific probe was used as a loading control. The two extra lanes represent a different experiment for the
two most important mutations. The lower panel shows the quantification of the experiment depicted in the upper panel by PhosphorImager analysis. Spliced
and unspliced RNA are indicated as in Fig. 5. Mock, mock-transfected.
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The gag gene contains a sequence known as negative regulator
of splicing, which acts as a decoy 5�ss to generate a non-produc-
tive spliceosome, thereby reducing the efficiency of the actual
upstream 5�ss (33).
The mechanisms of splice regulation in the otherwise well

investigatedMLV have not been subject to detailed studies (13,
34). Several lines of evidence led us to hypothesize that MLV
negatively regulates the 5�ss instead of the 3�ss, in contrast to
many other retroviruses. Although theMLV 3�ss does not fully
match the consensus (Fig. 1B), the preceding PPT is close to the
cellular average in length and, more importantly, not inter-
rupted by attenuating purines. Such a relatively strong PPT can
substitute for either a weak branch point or poor sequence con-
servation of the actual 3�ss (35). Moreover, introducing a very
efficient cellular 3�ss into MLV vectors did not fully prevent
the formation of genomic RNA (15). Finally, when con-
structing a new generation of retroviral self-inactivating vec-
tors, we placed the internal promoter 18 bp downstream of
the PBS and thus 24 bp upstream of the 5�ss. In this config-
uration, we observed complete splicing of the retroviral
intron, strongly suggesting that sequences located upstream
of the promoter insertion site (comprising the second half of
R, U5, and 18 bp 3� of the PBS) negatively regulate gamma-
retroviral splicing (16).
These observations and the opposite, splice-promoting

effect of the PBS in MLV splice regulation can be explained by
the secondary structure of the first untranslated exon. Mougel
et al. (17) determined the structure of the leader region ofMLV
by chemical probing. Their stem-loop model is schematically
shown in Fig. 7A. The 5�ss is located at the bottom of the stem,
where the first G residue of the intron is still paired (Fig. 7A).
Within the stem structure, the PBS is the only sequence ele-
ment that loops out. This is likely a prerequisite for its main
function, binding of the tRNA in the producer cell (17), and
thus a consequence of a strong evolutionary pressure. Interest-
ingly, deleting the PBS leads to an evenmore stable structure as
determined by the MFOLD program (36), whereas deletion of
U5 and sequences 3� of the PBS destabilize the structure. Thus,
the stability of this region correlates with the degree of 5�ss
attenuation. In addition, fine mapping of the 3�PBS region
revealed that in particular, the lower part of the stem is impor-
tant to form a splice inhibitory structure (Fig. 7). Compensatory
mutations strongly argue for the correctness of the structural
model.
The stability may well affect the frequency of stem-loop for-

mation.A similar phenomenonhas also been reported for alter-
native splicing of the fibroblast growth factor receptor mRNA,
where two regulating sequences are juxtaposed by formation of
a stem (37, 38). If the stability of the upstream region is impor-
tant for negative regulation of the 5�ss, one could envision that
recognition of the 5�ss by U1snRNP would be impaired, thus
leading to balanced splicing. Examples for this kind of splice
regulation have been found in two cellular genes: adenosine
deaminase (39) and tau (Ref. 40 and reviewed in Ref. 41). In
these two cases, the complete 5�ss is part of the stem, whereas
we favor a model for MLV of an inhibitory secondary structure
formed by sequences located upstream of the 5�ss. This struc-
ture may determine the accessibility for cellular splice regula-

tors, whose identity and recognition motifs remain to be deter-
mined. Interestingly, a secondary structure is also implicated in
the function of the negative regulator of splicing of RSV (42).
In this case, a single nucleotide deletion leads to an increase in
stability of the stem-loop structure in analogy to the PBS dele-
tion. As a result, the mutated negative regulator of splicing dis-
plays a reduced binding of U1snRNP, and the authors conclude
that for balanced splicing, amoderately destabilized structure is
necessary (42).
In summary, the complex structure of the first untranslated

exon of MLV is important for several steps in the retroviral life
cycle and represents a compromise of several evolutionary
needs. The RSL is required for the export of the unspliced RNA,
in line with previous results (10). The U5, in particular the stem
structure upstreamof the PBS and the pairingwith the region 3�
of the PBS, is important for the initiation of reverse transcrip-
tion (43). In addition, both deletions affect the translational
utilization of the respective RNAs (Fig. 3C), reminiscent of the
role of the R/U5 region of spleen necrosis virus in translational
regulation (44, 45). The main finding of the current study is a
novel function for the sequences downstream of the RSL, and
especially for the PBS, in retroviral splice regulation.
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Abstract 
 

Multiple types of regulation are used by cells and viruses to control alternative 

splicing. In murine leukemia virus, accessibility of the 5’splice site (ss) is regulated by 

an upstream region, which can fold into a complex RNA stem-loop structure. The 

underlying sequence of the structure itself is negligible, since most of it could be 

functionally replaced by a simple heterologous RNA stem loop preserving the wild-

type splicing pattern. Increasing the RNA duplex formation between U1 snRNA and 

the 5’ss by a compensatory mutation in position +6 led to enhanced splicing. 

Interestingly, this mutation affects splicing only in the context of the secondary 

structure, arguing for a dynamic interplay between structure and primary 5’ss 

sequence. The reduced 5’ss accessibility could also be counteracted by recruiting an 

RS domain via a modified MS2 coat protein to a single binding site at the tip of the 

simple RNA stem loop. The mechanism of 5’ss attenuation was revealed using 

hyperstable U1 snRNA mutants, showing that restricted U1 snRNP access is the 

cause of alternative splicing.    
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Introduction 
 

Cells and retroviruses heavily depend on alternative splicing for differential gene 

expression. In human cells alternative splicing expands the proteome, giving rise to 

roughly 100,000 protein isoforms from only 25,000 genes (Maniatis & Tasic, 2002). In 

retroviruses a single pre-mRNA corresponding to the complete genome undergoes 

alternative splicing in order to express all viral genes (Coffin et al., 1997).   

 
The splicing reaction is executed by the spliceosome (Staley & Guthrie, 1998). The 

core of the spliceosome consists of the small nuclear RNPs (U snRNPs) (Will & 

Lührmann, 2006). Some of the U snRNPs participate in splice site recognition via 

RNA:RNA interactions (Valadkhan, 2007; Konarska & Query, 2005). The first steps 

towards mRNA splicing is the recognition of the 5’ss by the free, complementary 

5’end of U1 snRNA (Mount et al., 1983; Rinke et al., 1984; Zhuang & Weiner, 1986). 

Therefore, the hydrogen bonding pattern between the 5’ss and U1 snRNA 

determines the intrinsic strength of a 5’ss and thus contributes to its recognition and 

frequency of usage, creating a first layer of regulation (Burge et al., 1999; Freund 

et al., 2003).  

 
In contrast to yeast, where almost all splice sites strictly follow the consensus 

sequence (Burge et al., 1999), splice sites in retroviral and mammalian genomes are 

much more degenerated and recognition is assisted by a number of proteins 

(Hastings & Krainer, 2001; Stoltzfus & Madsen, 2006). In addition, regions 

surrounding the splice sites often represent exonic or intronic splicing enhancers 

(Dirksen et al., 1994; Blencowe, 2000) or silencers (Amendt et al., 1994; Tange et al., 

2001). These elements modulate the intrinsic strength of splice sites via recruitment 

of splicing factors like SR proteins or hnRNPs (Hertel, 2008). The efficiency of splice 

sites is also modulated by RNA structure (Solnick, 1985; Buratti & Baralle, 2004). 

Alternatively, binding of splicing regulatory proteins may also depend on the local 

RNA structure (Marchand et al., 2002). On top of this, transcriptional elongation also 

regulates alternative splicing, illustrating the close connection between splicing and 

transcription (Kornblihtt et al., 2004).  

 

Retroviruses represent very valuable model systems for studying alternative splicing 

(Cochrane et al., 2006). They synthesize only one polycistronic primary transcript, 

which undergoes alternative splicing for full viral gene expression                    
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(Fig.1A; Coffin et al., 1997). Thus, retroviruses need to tightly control the use of their 

splice sites to ensure optimal levels of unspliced vs. spliced RNAs (Pollard & Malim, 

1998). The unspliced or genomic RNA is both packaged into progeny virus and 

serves as a translation template for the structural and enzymatic proteins Gag and 

Pol, whereas the spliced RNA encodes the envelope protein (Env) in simple 

retroviruses (Fig.1A). Therefore the correct ratio between Gag and Env partly 

determines viral infectivity. Retroviral splicing is mainly regulated via weak 3’ss in 

conjunction with ESEs or ESSs (Amendt et al., 1995; Caputi et al., 1999; Tange & 

Kjems, 2001; Kammler et al., 2006). For HIV, it has been shown that most PPTs are 

interrupted by weakening purines (O'Reilly et al., 1995) and, in one case, a PPT is 

additionally attenuated by a secondary structure (Jacquenet et al., 2001). For simple 

retroviruses like Rous sarcoma virus (RSV) or murine leukemia virus (MLV), 

alternative splicing has been attributed to weak 3’ss too (McNally & Beemon, 1992; 

Lee et al., 2004; Logg et al., 2007). In addition, RSV harbors a decoy 5’ss, which 

redirects splicing activity from the actual 5’ss to the non-productive one (McNally 

et al., 1991; McNally & McNally, 1999).  

 
We could previously show that in MLV the 5’ss instead of the 3’ss is negatively 

regulated via upstream sequences, which can form a secondary structure (Kraunus 

et al., 2006). Moreover, the stability and integrity of this structure correlates with 5’ss 

attenuation (Kraunus et al., 2006). We now demonstrate that this structure restricts 

access to U1 snRNP. A heterologous simple RNA stem loop was able to replace the 

structure while preserving the wild-type splicing pattern. Furthermore, we tethered 

SR proteins to the RNA structure via modified MS2 coat proteins. The RS domain 

was able to overcome the restricted access of U1 snRNP to the 5’ss presumably by 

stabilizing the RNA duplex formation. In addition, we discovered that the RNA 

secondary structure exerts its effect in conjunction with limited base pairing of the 

5’ss to U1 snRNA at position +6. Interestingly, low complementarity affects splicing 

only in the context of the secondary structure, arguing for a novel dynamic interplay 

between structure and primary 5’ss sequence.  
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Results 

 

Improvement of the 5’splice site at position +6 enhances splicing in 

conjunction with the secondary structure   

 
In order to clarify the molecular mechanism of splicing regulation in murine leukemia 

virus (MLV), we used our previously described splicing reporter SF91 (Kraunus et al., 

2006). SF91 is derived from an MLV provirus and contains the packaging signal (ψ) 

embedded in an intron flanked by the authentic MLV 5’ and 3’splice sites (Fig.1A; 

Hildinger et al., 1999). Immediately downstream of the 3’ss the eGFP ORF was 

inserted (Fig.1A). The intron displays alternative splicing as the provirus (Fig.2A; 

Kraunus et al., 2006). We could previously show that a complex secondary structure 

attenuates the 5’ss based on the RNA structure of the leader region (Fig.1B; Mougel 

et al., 1993) and the functional evaluation of deletions upstream of the 5’ss (Kraunus 

et al., 2006).  

 
In addition to the presence of an inhibitory secondary structure, we recognized that 

the primary sequence of the 5’ss deviates from the cellular consensus at position +6 

(Fig.1B, inset). Genome wide, this position displays a low level of conservation 

(Hartmann et al., 2008), but it has been implicated in the recognition of weak 5’ss 

due to mismatches in other parts of the consensus sequence or the presence of 

splicing silencers (Ibrahim el et al., 2007; Hartmann et al., 2008). We therefore 

converted position +6 from C to U (Fig.1B), thereby increasing complementarity to 

U1 snRNA. In order to compare the splicing efficiency of the C6U mutant, we took 

advantage of a structural mutant (sm3; Fig.1B), which affects stem formation and 

leads to an eight-fold enhancement of splicing (Fig.1C, lane 3; Kraunus et al., 2006). 

After transient transfection of 293T cells, the C6U mutant displayed enhanced 

splicing, but not to the same extent as the sm3 mutation (Fig.1C, D, compare lanes 

4,3). A combination of the two mutations resulted in a slightly stronger enhancement 

of splicing (Fig.1C, lane 5). The effect of the +6 mutation is also detectable in the 

context of a deletion of the primer binding site (dPBS; Fig.1B and C, lanes 6,7), 

which leads to a more stable stem structure and a stronger attenuation of the 5’ss 

(Fig.1B; (Kraunus et al., 2006). In summary, splicing at the 5’ss is regulated on two 

layers: secondary structure and primary splice site sequence.   
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Figure 1:  Dual attenuation of a 5’ss via the structure and a mismatch at position +6 
 
(A) Schematic drawing of the murine leukemia provirus. The retrovirus is characterized by the terminal 
repeats (LTRs, open boxes), the presence of the genes gag, pol and env (gray boxes) and the primer 
binding site (PBS). The packaging signal (ψ) and the gag/pol reading frame is flanked by 5’ and 3’ss. 
Below this, the MLV-derived splicing reporter SF91 is depicted. The proviral 3’ss was cloned 
downstream of the packaging signal and upstream of the eGFP start codon (gray box). Therefore, 
SF91 encodes a genomic RNA (black line), which contains an intron constituted by the authentic MLV 
splice sites. (B) RNA secondary structure of the region upstream of the packaging signal. The 
structure is adapted from the chemically validated structure (Mougel et al., 1993). The regions R and 
U5 are part of the LTR. The nucleotides representing the primer binding site and the 5’ss are 
highlighted by gray circles. At the 5’ss, the +6 C to U mutation is marked on the right. In the central 
region of the stem, the structural mutant sm3 including the nucleotide exchanges is depicted. The 
inset shows the MLV 5’ss pairing to U1 snRNA. Below this, the consensus 5’ss sequence is paired to 
U1 snRNA. Base pairs are depicted as solid vertical lines. (C) Northern blot using 10 µg total RNA 
from 293T cells transiently transfected with 5 µg of the indicated constructs and harvested 48h post-
transfection. The blot was probed with an eGFP-specific probe. The identity of the RNA species is 
stated on the right. As a loading control, the blot was re-hybridized with a probe corresponding to 
18S rRNA. (D) Phosphoimager analysis of Northern blot as shown in C. The extent of alternative 
splicing is given as a percentage of unspliced RNA. The mean values and standard deviations of three 
independent experiments are shown.  
 

 
The regulation of splicing is conserved in a replication-competent provirus  

 
We were previously able to show that deletion mutants of sequences upstream of the 

5’ss affect splicing in the context of a replication-competent MLV provirus          

(Kraunus et al., 2006). We now wanted to confirm that splicing in the provirus is also 

regulated on two layers: structure and primary 5’ss sequence. Cloning of two key 

splicing mutations, namely sm3 (structural mutant; Fig.1C, lane 3) and C6U (splice 

site mutant; Fig.1C, lane 4), into the provirus (Fig.1A) yielded an enhancement of the 
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level of splicing identical to that seen in the splicing reporter (Fig.2A, lanes 1-3). Even 

though the provirus splices less efficiently than the reporter, the magnitude of splicing 

enhancement of the particular mutants is maintained (Fig.2B).  

 

 

 
Figure 2:  Splicing regulation is transferable to a complete provirus and an HIV 5’ss 
 
(A) Northern blot of 10 µg of total RNA from 293T cells transfected with 10µg of the proviral constructs 
(Fig.1A) harboring two splicing mutants (sm3 and C6U; Fig.1C). Molecular weight standard is given on 
the left and the RNA species are named on the right. (B) Phospho-imager analysis. The extent of 
splicing is given as the percentage of unspliced RNA. The mean values and standard deviations of 
three independent experiments are shown. (C) Schematic drawing of the NLCenv plasmid. NLCenv is 
derived from the HIV molecular clone NL4-3. Expression is directed by the authentic LTR sequences 
except that the HIV promoter was replaced by CMV. ORFs are shown as boxes. The splice sites are 
indicated as well as the primer binding site. Below this, the hybrid construct SCSenv is shown. The 
gray region highlights the SF91-derived sequence in the HIV backbone. (D) Northern blot of 10 µg of 
total RNA from HeLaP4 cells transiently transfected with 2.75 µg of the indicated constructs. Two 
splicing mutants were transferred to SCSenv (sm3 and dPBS; Fig.1B). The RNA species are named 
on the right. The lane containing SCSenv dPBS was overexposed to display the ratio between 
unspliced and spliced RNA. (E) Phosphoimager analysis as described in Figure 2C. The mean values 
and standard deviations of five independent experiments are shown.     
 

 

We also tested whether the mutants hamper viral replication. A 4-fold decrease in 

viral titer for the sm3 mutant after replication in murine cells compared to the wild-

type was observed (data not shown). Thus, there is a correlation between the extent 

of splicing and viral fitness. Oversplicing of the genomic RNA leads to reduced levels 
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of full-length RNA to be packaged into viral progeny and to lower amounts of the 

structural proteins since they are translated only from the unspliced RNA (see 

Fig.1A).  

 
To sum up, the regulation of alternative splicing is conserved in the context of the 

complete provirus and mutations that severely affect splicing ratios impede viral 

replication. 

 

The attenuating effect of the secondary structure is transferable to a 

heterologous 5’splice site 

 
Next we asked: does the inhibitory secondary structure represent a general mean of 

splicing regulation? And did it evolve and function only in murine leukemia virus? In 

addition, we wanted to rule out the possibility that sequences downstream of the 5’ss 

are involved in its attenuation. For this purpose, we used the previously described 

HIV-NLenv system (Fig.2C; (Bohne et al., 2005). Briefly, this subviral envelope 

expression system is based on the HIV-1 proviral clone NL4-3. Using the Tat-

independent CMV promoter instead of the viral LTR (NLCenv), the construct 

expresses a sequence-identical HIV env mRNA, which can alternatively splice to 

yield nef mRNA (Fig.2C; Bohne et al., 2007). RNA analysis showed that NLCenv 

displays alternative splicing due to the weak 3’ss upstream of nef (Fig.2D, lane 2) 

(Zhu et al., 2001; Marchand et al., 2002; Bohne et al., 2005).  

 
In order to transfer the splicing regulation from MLV to a heterologous 5’ss, we 

inserted the 5’leader sequence of MLV (bases 1-203; Fig.1B) immediately upstream 

of the HIV 5’ss, thereby creating the SCSenv construct (light gray box, Fig.2C). 

SCSenv expresses an MLV/HIV fusion transcript containing the MLV-derived 

secondary structure (Fig.1B) followed by the complete HIV 5’ss and downstream env 

mRNA sequences. In addition, we transferred two structural mutants (sm3; dPBS; 

Fig.1C) to SCSenv. Transfection into HeLaP4 cells revealed that the MLV-derived 

sequences can strongly attenuate the HIV 5’ss (Fig.2D, compare lanes 2,3). The 

level of unspliced RNA is enhanced 2.5-fold (Fig.2E) and exceeds the level of 5’ss 

attenuation observed for the basic construct SF91 containing the identical leader 

sequence (Fig.1D). Comparison of the two 5’ss using the HBond score algorithm 

(Freund et al., 2003) revealed that the HIV 5’ss is intrinsically weaker than MLV (HIV 

HBond score 15.7; MLV HBond score 17.1). This is in agreement with our hypothesis 
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that a 5’ss with lower complementarity should be even more prone to attenuation via 

the RNA secondary structure. Moreover, the mode of splicing regulation could be 

transferred onto a heterologous 5’ss since the sm3 mutant is spliced more efficiently 

and a deletion of the PBS leads to more unspliced RNA (Fig.2E, compare columns 

4,5 and Fig.1). Furthermore, no downstream MLV-derived sequences were 

necessary for 5’ss attenuation. We noted that the sm3 mutant did not splice to the 

same extent as NLCenv, although the 5’ss should be accessible to the spliceosome 

(Fig.2E). However, this can firstly be explained by the presence of a purine-rich 

splicing enhancer only present in the HIV leader sequence upstream of the 5’ss 

(Kammler et al., 2001; Caputi et al., 2004). Secondly, the degree of splice site 

attenuation seems to influence the total amount of RNA (Fig.2D). The dPBS mutant 

in particular displayed the highest level of unspliced RNA, but the lowest amount of 

RNA in total (Fig.2D, lanes 5,6). In order to visualize the ratio of unspliced vs. spliced 

RNA, this part of the Northern blot had to be overexposed (Fig.2D, lane 6).  

 
The experiments using the HIV env expression system demonstrate that the splicing 

regulation observed is not restricted to MLV, but can be transferred to a heterologous 

5’ss. Moreover, this implies some sort of generality in the underlying mechanism of 

5’ss attenuation. 

 
 

Replacement of the RNA structure with random sequences capable of stem 

formation results in proper splicing regulation  

 
In order to differentiate between whether mere structural requirements of the leader 

region or specific sequences harboring splicing regulatory protein binding sites cause 

5’ss attenuation, we replaced the upper part of the RNA structure with a heterologous 

stem loop harboring the ability to form a stem with free energy similar to the wild-type 

structure (Fig.1B and 3A; SF91: ΔG = -49.6 kcal/mol; heterologous stem-loop: 

ΔG = -7.2 kcal/mol). Transfection of the stem-loop construct almost perfectly 

resembles the splicing pattern of the wild-type reporter (Fig.3B, lanes 1,2). Thus, 5’ss 

attenuation can be attributed to RNA stem-loop formation and not to the primary 

sequence, which forms the structure. As a control, we reversed the descending part 

of the stem, resulting in a stem-loop antisense (as) construct, which is unable to form 

the secondary structure. This vector displayed complete splicing (Fig.3B, lane 3). In 

contrast, strengthening the stem by a 20 bp extension on either side                      
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(ΔG = - 68.8 kcal/mol) led to more unspliced RNA (Fig.3B,C; lane 4), reminiscent of 

the deletion of the PBS (Fig.1C, lane 6). Also, the C6U mutation enhances splicing 

as in the wild-type context, suggesting that this interplay does not require specific 

cellular proteins binding to the MLV stem loop (Fig.3B, lane 5). In addition, we noted 

that, reminiscent of the SCSenv plasmid (Fig.2D), the splicing efficiency correlated 

with the overall transcript levels (Fig.3B, compare lanes 3,4). Therefore, the lane 

containing the stem-loop antisense (as) was underloaded for proper visualization 

(Fig.3B, lane 3). In addition, the antisense mutant showed that the 5’ss could function 

highly efficiently in the absence of the stem loop despite the mismatch at position +6. 

This position became only critical in conjunction with the secondary structure, 

pointing to a novel dynamic interplay between structure and primary splice site 

sequence.   

 
 
Figure 3:  A heterologous stem loop perfectly resembles MLV splicing regulation 
 
(A) The secondary structure is depicted as in Figure 1B. The vertical black line marks the insertion of 

heterologous sequences forming the synthetic stem-loop. On each side of the stem an EcoRI 

restriction site is indicated. The 5’ss is highlighted by gray circles. (B) Northern blot analysis of 10 µg 

total RNA from transfected 293T cells. The RNA species are marked on the right. Note that only 5 µg 

RNA were loaded in the stem-loop antisense (as) lane due to the high expression of this construct.   

(C) Phosphoimager analysis. Mean values and standard deviation represent three independent 

experiments.  
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SR-protein domains targeted to the heterologous stem-loop partially overcome 

5’ss attenuation 

 
It has been shown in yeast that 5’ and 3’ss mutants can be rescued by SR proteins 

even though S. cerevisiae does not code for such proteins (Shen & Green, 2006). 

This hints at a mechanism where SR proteins might stabilize RNA:RNA interactions 

at weak splice sites. Since the secondary structure may restrict access to U1 snRNP, 

we anticipated that targeting an RS domain into the vicinity of the 5’ss would possibly 

overcome this attenuation. We made use of the MS2-fusion tethering system (Selby 

& Peterlin, 1990; Peabody, 1993). However, due to structural constraints, the 

heterologous RNA stem loop accommodates only one MS2 binding site. We 

therefore used the ΔFG variant of the MS2 coat protein leading to an increase in 

RNA binding affinity at the expense of dimer:dimer formation (Chao et al., 2008). This 

modification should theoretically result in enhanced binding to a single site in vivo 

(Fig.4A). In a co-transfection assay, we tested various RS domains fused to 

MS2ΔFG along with the SF91 construct and two RNA stem-loop variants harboring a 

single MS2 binding site (Fig.4B). Transfection of SF91 and a plasmid encoding the 

RS domain of SRp55 fused to MS2ΔFG is not neutral, as observed for SF91, and 

leads to a slight statistically significant enhancement of splicing (Fig.4B, lanes 1,2 

and Fig.4C, P value = 0.03). However, in the context of the RNA stem loop and the 

extended stem loop construct, co-transfection of the MS2-SRp55 plasmid led to a 

highly significant enhancement of splicing (Fig.4B,C, compare lanes 3,4 and 5,6; 

P value = 0.009 and 0.002).  

 

In general, these experiments proved for the first time in vivo that MS2ΔFG mutants 

can be targeted to a single binding site with reasonable efficiency. Moreover, 

tethering of an RS domain to the heterologous RNA stem loop partially overcomes 

5’ss attenuation, in agreement with previous results that the RNA structure restricts 

access to U1 snRNP. 
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Figure 4:  An RS domain can partially relieve 5’ss attenuation 
 
(A) Depiction of the heterologous stem-loop structure as in Figure 4A. In addition to the 5’ss, the MS2 
binding site is also highlighted by gray circles. MS2-RS fusion proteins recognize the MS2 binding site 
as dimers. (B) Northern blot performed as in Figure 1C. As a control, a plasmid encoding just the MS2 
coat protein was co-transfected as indicated. The RS domain of SRp55 was fused to the modified 
MS2 protein. The RNA species are marked on the right. (C) Phosphoimager analysis. Splicing 
efficiency is displayed as unspliced/spliced RNA ratio. Student’s t-test was performed using mean 
values from four independent experiments.           P values are * = 0.03; ** = 0.009; *** = 0.002. 
 

5’splice site attenuation can be rescued by hyperstable U1 snRNA suppressor 

mutants 

 
In addition to protein:protein contacts of U1 snRNP with exonic or intronic sequences 

(Du & Rosbash, 2002; Lund & Kjems, 2002), recognition of 5’ss is initiated by 

RNA:RNA interactions (Zhuang & Weiner, 1986; Seraphin et al., 1988). Therefore, 

the hydrogen bonding pattern between U1 snRNA and the 5’ss is critical and can 

either be enhanced by mutations within the 5’ss (C6U mutant, Fig.1, lane 4) or by 

overexpression of U1 snRNA suppressor mutants that increase the complementarity 

to a given 5’ss. In yeast, hyperstable U1 snRNA mutants cannot be displaced by 

U6 snRNA and therefore splicing is inhibited (Staley & Guthrie, 1999). In contrast, in 

mammalian cells, an extended U1 snRNA/5’ss interaction does not decrease splicing 
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efficiency, but rather increases 5’ss recognition (Freund et al., 2005; Singh et al., 

2007). We constructed two U1 snRNA mutants containing one substitution            

(U1 G11C) leading to 8 complementary base pairs with the MLV 5’ss (Fig.5A; HBond 

score 18.8) or a perfect match of U1 snRNA leading to 11 continuous base pairs   

(U1 perfect; Fig.5A; HBond score 23.8). Overexpression of these suppressor mutants 

along with wild-type U1 snRNA led to an increase in splicing depending on the 

intrinsic strength of the RNA duplex (Fig.5B,C). Even an increase in complementarity 

of one base pair, in the case of the U1 G11C mutant (Fig.6A, lower panel) led to a 

strong enhancement of splicing (Fig.5C). This argues for a dynamic balance between 

secondary structure and accessibility of the 5’ss to U1 snRNA. In addition, we looked 

at direct interaction between U1 snRNP and the 5’ss in vitro by EMSA. We incubated 

purified U1 snRNP with in vitro transcribed RNA containing either the heterologous 

stem loop or the antisense mutant (Fig.3A). We could observe an enhanced binding 

of U1 snRNP in the absence of the RNA secondary structure (i.e. the antisense 

mutant) and reduced binding upon formation of the structure (suppl. Fig.1).  

 
These experiments clearly demonstrate that splicing regulation in MLV uses 

restricted access of U1 snRNP to the 5’ss exerted by the upstream secondary 

structure and limited complementarity of the primary 5’ss sequence to U1 snRNA. 

 
 

 

Figure 5 :                                                
Hyperstable U1 snRNA suppressor mutants 
enhance splicing     
 
(A) The top line shows the MLV 5’ss. Possible 
base pairs to U1 snRNA are shown as solid 
vertical lines. In the middle and lower panel, 
pairing of the MLV 5’ss with the two U1 snRNA 
mutants is depicted. Mutated nucleotides in 
U1 snRNA are in bold. On the right-hand side, 
the HBond (HBS) score is indicated. (B) 
Northern blot using 10 µg of total RNA from 
transiently transfected 293T cells. 
Transfections were performed using 5 µg of 
SF91 plasmid and 10 µg of the respective 
U1 snRNA plasmid. The RNA species are 
named on the right. (C) Phosphoimager 
analysis. The efficiency of splicing is shown as 
the relative level of unspliced RNA. SF91 in the 
presence of co-transfected U1 wt plasmid was 
set to 1. Mean values and standard deviations 
represent five independent experiments.  
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Discussion 

 

As presented here, murine leukemia virus uses a dynamic interplay between RNA 

secondary structure and primary 5’ss sequence to restrict access of U1 snRNP to its 

5’ss, which ultimately results in alternative splicing and full viral gene expression.  

 
Secondary structure has been implicated in alternative splicing early on (Solnick, 

1985; Fu & Manley, 1987; Eperon et al., 1988). Cellular examples of attenuated 5’ss, 

which are part of a secondary structure, were discovered in association with different 

genetic diseases (Grover et al., 1999: Singh, 2007 #616; Bratt & Ohman, 2003). 

Modulation of splicing efficiency by RNA secondary structures has recently also been 

described for the HIV-1 leader RNA structure, where the major 5’ss is embedded in a 

semistable hairpin (Abbink & Berkhout, 2008). However, contrary to HIV-1, splicing 

regulation at the MLV 5’ss seems to be even more complex, since stem mutations 25 

nucleotides upstream of the 5’ss already provoke an eight-fold enhancement of 

splicing (Fig.1). Certainly, secondary structures cannot only sequester 5’ss, but also 

modulate the binding efficiency of hnRNPs or SR proteins. On a global scale, it was 

shown that splicing enhancers and silencers are present mostly in single-stranded 

regions (Hiller et al., 2007). There is also a particular example from HIV, where a 

change in secondary structure allows hnRNP H to bind and influence splicing 

(Jablonski et al., 2008). RNA secondary structures are also statistically associated 

with alternative 5’ss (Shepard & Hertel, 2008), allowing splice site selection via 

conformational variability.  

 
An exchange of the upper part of the structure with a heterologous stem-loop proved 

that the main function of the stem is to force the 5’ss into an inhibitory conformation 

and the extent of splicing inhibition correlates closely with the free energy of the 

structure (Fig.3). Not surprisingly, the complex RNA stem loop possesses additional 

functions in the viral life cycle. It is the scaffold to loop out the primer binding site, 

which binds a cellular tRNA as a primer to initiate reverse transcription (Coffin et al., 

1997). Yet, splicing regulation could be transferred to a complete provirus and to a 

heterologous HIV 5’ss (Fig.2). Using the MLV/HIV hybrid plasmids, it seemed that the 

degree of 5’ss inhibition correlates inversely with the overall RNA amount (Fig.2D, 

compare lanes 5, 4 and 2). Similar effects have been observed in other studies, 

where splice sites are able to enhance transcriptional elongation (Fong & Zhou, 

2001) and gene expression in general (Furger et al., 2002). It appears that the CMV 
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promoter is highly dependent on this positive feedback exerted by the interaction of 

U1 snRNP with a proximal 5’ss (Bohne & Krausslich, 2004; Damgaard et al., 2008). 

Thus, this was the first direct evidence that the secondary structure restricts access 

of U1 snRNP. Additional evidence was obtained by tethering RS domains to the 

heterologous stem loop (Fig.4). RS domains may play a dual role in splice site 

selection. They can enhance RNA:RNA interactions (Valcarcel et al., 1996; Shen & 

Green, 2006) at degenerated splice sites or engage in protein:protein interactions, 

since an excess of SR proteins can select 5’ss in the absence of U1 snRNP (Crispino 

et al., 1994). In our case, the RS domain may directly facilitate U1 snRNA binding to 

the attenuated 5’ss, since the strongest enhancement of splicing was observed with 

the long and continuous RS domain from SRp55 and not with four copies of the 

SF2/ASF RS domain (data not shown).  

 
In addition, the retroviral 5’ss is characterized by a mismatch at position +6. 

Reversion of this position into a matching nucleotide with U1 snRNA enhances 

splicing 2.5-fold. Although this position is less conserved on a genome scale, it turns 

into a preserved nucleotide if the 5’ss is degenerated or weakened by surrounding 

elements (Hartmann et al., 2008). For example, a C6U mutation in the 5’ss flanking 

exon 20 of the IKBKAP gene causes exon skipping, resulting in familial 

dysautonomia (Slaugenhaupt et al., 2001). Here, attenuation is due to a weak 

upstream 3’ss and possible splicing silencers (Ibrahim el et al., 2007). In this line, 

position +6 of the MLV 5’ss regulates efficiency only in the context of the secondary 

structure. So there is a dynamic interplay between structure and the 5’ss sequence. 

The same result was obtained when we fused the complete second intron from β-

globin to the MLV secondary structure. Alternative splicing occurred only after 

lowering the complementarity at positions +6 or -3 of the globin 5’ss (D. Z. and J. B., 

unpublished results). We also mutated positions +7 and +8 of the MLV 5’ss back to 

the consensus and observed an enhancement of splicing (data not shown). However, 

the enhancement was not as strong as observed for position +6. One may speculate 

that not solely complementarity to U1 snRNA, but also the length and neighborhood 

of the 5’ss:U1 snRNA duplex determines the strength of a splice site. 

 
Succinctly, splicing regulation in MLV functions via a dynamic interplay of RNA 

secondary structure and primary 5’ss sequence adding another layer of complexity to 

the fine tuned regulation of alternative splicing and to the deciphering of the splicing 

code. 
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Materials and Methods 

 

Plasmids 

 
All retroviral vector plasmids were derived from pSF91 (Hildinger et al., 1999). The 

mutants sm3 (stem-loop mutant 3) and the compensation thereof (sm3comp) and the 

deletion of the primer binding site (dPBS) were described previously (Kraunus et al., 

2006). All overlap PCRs used the outer primers XbaI and ApaI (Kraunus et al., 2006) 

to generate the final PCR fragment, which was cloned into the XbaI/ApaI sites of 

SF91. Vectors carrying the C6U mutation of the 5’ss were cloned by overlap PCR 

using SF91, SF91 sm3, SF91dPBS and SF91 stem-loop as a template (fw: 5`-TAA 

GTT GGC CAG CGG TCG TTT CG-3`; rv: 5`-GGC CAA CTT ACC TCC CGG C-3’). 

For the introduction of the heterologous stem loop (SF91stem-loop) into the leader 

region of SF91, the Kpn1/Msc1 fragment was replaced by a PCR product including 

the heterologous stem-loop sequences (fw: 5´-GTA CGG TAC CGT ATT CCC AAT 

AAA GCC TCT TGC TGT TTG CAT CCG AAT CGT GGA GGT CAA GAA TTC GCG 

GAC ACC ATC-3`; rv: 5`-GCA TCC TGG CCA GCT TAC CTC CCG GCG GAG GTC 

AAG AAT TCG CGG ACC CTG ATG GTG TCC GCG AAT TCT TGA CCT CCA CGA 

TTC-3`). The extended stem-loop was generated by introducing 20 additional base 

pairs into the EcoR1 sites of SF91stem-loop (fw:5`-[Phos] AAT TCG ATA TCC CGT 

GCG GAC ACC ATC AGG GTC CGC ACG GGA TAT CG -3`; rv: 5`[Phos] CGA TAT 

CCC GTG CGG ACC CTG ATG GTG TCC GCA CGG GAT ATC GAA TT-3` ) by 

ligation. By using the SF91stem-loop as a template, the SF91stem-loop antisense 

mutant (fw: 5`-CGC CTC CAG TTC TTA AGC GCC TCG GGA GGT AAG CTG GCC 

AGC GGT CGT TTC G-3`; rv: 5’-AGG CGC TTA AGA ACT GGA GGC GCC CTG 

ATG GTG TCC GCG AAT TCT TGA C-3`) was generated by overlap PCR and the 

final PCR product was cloned into the XbaI/ApaI sites of SF91. The SCSenv 

HIV/MLV hybrid constructs were also cloned by overlap PCR. The 5´PCR product 

was generated by using SCS11 (Schambach et al., 2006) as template (fw: 5`-GCG 

GTA TAC GCT AGC TTA AGT AG-3`; rv: 5`-TAC TTA CTG CCC GGC GGG GGG 

GTC GGT G-3`). To generate the 3`PCR product containing the HIV 5´ss NLenv was 

used as template (fw: 5`-CCC CCC CGC CGG GCA GTA AGT AGT ACA TGT AAT 

GC-3´; rv: 5`-GGT TGC TTC CTT CCA CAC AGG TAC-3`). Using the outer primers 

the final PCR product was cloned into the Bst1107I/BstEII sites of the NLCenv 

backbone (Bohne et al., 2007). In order to transfer the sm3 and the C6U mutant in an 
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MLV provirus an AflII/PstI fragment of the respective SF91 plasmids was generated 

and ligated into MOVSFGFP (Erlwein et al., 2003; Kraunus et al., 2006). 

 
U1 snRNA mutants were cloned by PCR using a reverse primer (rv: 5`- CGC GGA 

TCC TCC ACT GTA GGA TTA AC-3’) including a BamHI restriction site and different 

forward primers containing the U1 mutations flanked by a BglII restriction site         

(fw U1G11C: 5´-GCC CGA AGA TCT CAT ACT TAC CTC GCA G-3’; fw U1 perfect: 

5`-GCC CGA AGA TCT CCA GCT TAC CTC GCA G-3`). The PCR products were 

cloned as a BamHI/BglII fragment into the pUC19 U1wt plasmid (kind gift of 

A. Weiner, Seattle, USA). 

 
For construction of plasmid SV SD4/SA7 NLS-MS2 SRp55pA, the BamHI/XhoI 

fragment of SV NLS-MS2 9G8 (Caputi et al., 2004) was replaced by a PCR product 

using primers (fw: 5’-GGT GGA TCC CGC ACA AGC CAT AGG CGA TC-3’;           

rv: 5’-AGA CTC GAG TTA ATC TCT GGA ACT CGA CCT GG-3’) using CMV myc 

SRp55 (kindly provided by A. Cochrane, Toronto, Canada) as a template. Plasmid 

SV NLS-MS2-ΔSR has been described (Caputi et al., 2004). SV SD4/SA7 NLS-

MS2ΔFG-ΔSR and SVSD4/SA7 NLS-MS2 ΔFG-SRp55 were generated by 

substitution of the XmaI/EcoRI fragment by a PCR-amplified fragment using primers 

(fw: 5’-GAC CCC GGG ATG GGG CCG CAA AAA ACG CCG C-3’ and rv: 5’- TCG 

GAA TTC GTA GCG AAA ATT GGA ATG GTT AGT TCC ATA TTT AAG TAC GAA 

CGC CAG GCG CCT-3’), containing a deletion of the sequence encoding the flexible 

α-helical loop connecting the two β-strands F and G (FG loop) within the MS2 coat 

protein, using SV SD4/SA7 NLS-MS2-ΔSR as a template. 

 

Cells and transfections 

 
293T cells were grown in Dulbecco's modified Eagle's medium supplemented with 

10% fetal calf serum, 1 mM sodium pyruvate and 1% ampicillin. The day before 

transfection, 4 x 106 293T cells were seeded in a 10 cm plate. Transfections were 

performed using the calcium phosphate precipitation method with 5 µg of the SF91 

plasmid (10 µg for proviral constructs). Medium was exchanged 8h after transfection, 

and the cells were harvested after 48h. Transfection efficiency was measured by 

FACS analysis and ranged between 40-60% (FACSCalibur; Becton-Dickinson, 

Heidelberg, Germany). The co-transfection assays (MS2 and U1) were performed 

using 5 µg SF91 plasmid and 10 µg U1 plasmid or 5 µg MS2-plasmid.  
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HeLaP4 cells (Kimpton & Emerman, 1992) were cultured in the same conditions 

used for 293T cells. The day before transfection, 6 x 105 HeLaP4 cells were seeded 

in a 6 cm plate. Cells were transfected using the ICAFectin™ 441 DNA transfection 

reagent (Eurogentec, Brussels, Belgium) and 2.75 µg plasmid DNA. RNA was 

harvested 36h later. 

 

RNA preparation and analysis 

 
Preparation of total RNA, gel electrophoresis, blotting and detection with a 

radiolabeled probe were performed as described previously (Wodrich et al., 2001). 

The eGFP-specific probe was generated by digestion of SF91. To detect 18S rRNA, 

a genomic fragment was PCR-amplified and subcloned into pCR2.1 (Invitrogen, 

Karlsruhe, Germany). The probes were radiolabeled using the DecaLabel Kit 

(Fermentas, St. Leon-Rot, Germany). RNA was quantified photometrically and 10µg 

were used for Northern blot analysis, if not stated otherwise. 

 

Phosphoimager analysis 

 
The different RNA species were quantified by phosphoimager analysis (Storm 820; 

GE Healthcare). The percentage of unspliced RNA was calculated using the 

following formula: (unspliced RNA / (spliced RNA + unspliced RNA)) x 100 = % 

unspliced RNA  

 

Computer software tools 

 
RNA folding analysis of the leader region and mutants thereof was performed using 

the mFOLD software (Zuker, 1989); web access: http://mfold.bioinfo.rpi.edu). RNA 

structures were assembled using the XRNA software 

(http://rna.ucsc.edu/rnacenter/xrna /xrna. html). Strength of 5’ss was determined 

using the HBond-score algorithm (http://www.uni-duesseldorf. de/ rna/ html /hbond_ 

score.php). Statistical analysis was performed using Graph Pad Prism 4 software. 
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Supplementary figure 1 
 
 

 
 

 
Figure legend 
  
Folded free RNA was incubated with increasing amounts of purified U1snRNP (50 ng, 
125 ng and 250 ng). The native gel readily reveals the folding of stem-loop containing 
RNA in contrast to the control where one part of the structure is present in antisense 
orientation. In the presence of U1snRNP complex formation takes place. At higher 
concentrations almost all of the free antisense RNA is bound to U1snRNP (lane 8). The 
stem-loop construct also bind U1snRNP, but with a lower efficiency.  
  
 
Supplementary Methods 
  
Using SF91stem-loop and stem-loop antisense templates PCR products were 
generated carrying a T7 promoter at the 5’end and the 5’ss at the 3’end. The products 
were ligated into pCR2.1. The resulting plasmids were linearized and approximately 
500 ng were used for in-vitro transcription using Ambion’s Maxiscript kit in the 
presence of 50 µCi of [32P]UTP (400 Ci/mmol, Hartmann Analytic) and unlabeled UTP 
to final concentration of 40 µM. Free nucleotides were removed by MoBiTec S300 
columns and probes were purified using denaturing PAGE.  The radiolabeled RNA 
Probe (25000 Counts) was incubated in 25 mM Tris-HCl, pH 7.9, 5mM MgCl2, 10% 
(v/v) glycerol, 0.4 mM dithiothreitol, 0.5 mM EDTA, 10U RNAse Inhibitor, 4µg BSA and 
1 µg of tRNA in a total volume of 15 µl for 30 min at 20 °C after denaturating for 2 min 
at 90°C to allow folding of the RNA structure. Purified U1snRNP (Phadia, Freiburg, 
Germany) were added 10 min prior loading on a 6% (60:1) polyacrylamid gel run in 
Tris-borate-EDTA buffer.  
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F  Discussion & Outlook 
 
The following section combines the results of publication 2 and the manuscript into 

an integrated model, explaining the function of the MLV leader region in the viral life 

cycle.  

 

Alternative splicing is an essential step in the gene expression of all retroviruses and 

is carried out by the cellular spliceosome. As mentioned before the splicing regulation 

of MLV is poorly understood. Several cis-acting elements have been suggested to 

control alternative splicing in simple gammaretroviruses. A deletion of sequences 

downstream of the 3’ss resulted in a total loss of spliced RNAs (Oshima et al., 1998), 

whereas the deletion of an element located 140 nt upstream of the branchpoint 

showed more spliced RNA (Hwang et al., 1984). All these possible cis-acting 

sequences are not present in the SF91 vector, which still displays alternative splicing. 

Furthermore, splicing analysis of the SINSF91 vector (see above) showed that both 

splice sites per se are efficient, arguing that additional cis-acting sequences are 

required for the splice inhibitory effect.  

 

Hide and seek: secondary structure and splicing control 
 

The present study demonstrated that MLV uses a dynamic interplay between RNA 

secondary structure and primary 5’ss sequence to restrict the access of the 

U1 snRNP to its 5’ss, which leads to alternative splicing of the viral RNA. In general, 

RNA forms highly stable secondary and tertiary structures in vitro and in vivo (Brion & 

Westhof, 1997; Conn & Draper, 1998; Fontana et al., 1993). It has been observed 

that altering of these structures represents a well-known regulatory mechanism for 

many cellular processes (Klaff et al., 1996). Various RNA binding proteins have been 

found to bind single-stranded RNA in a sequence-specific manner (Antson, 2000; 

Chabot et al., 1997; Perez-Canadillas & Varani, 2001). Others recognize double-

stranded RNA independently of its sequence (Carlson et al., 2003). The binding of 

several positive (SRp55, B52 and NOVA-1) and negative (hnRNP A1) splicing 

regulators depends on the primary sequence and in some cases on RNA secondary 

structure (Buckanovich & Darnell, 1997; Damgaard et al., 2002; Jablonski et al., 

2008; Nagel et al., 1998; Shi et al., 1997). In the manuscript we have shown, by 
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replacing the wild type secondary structure with a heterologous stem loop, that MLV 

requires no further splicing regulatory proteins for 5’ss attenuation.  

 

The most common mechanism of splicing regulation by secondary structures is a 

reduced accessibility of the conserved splice sites for splicing factors, as shown in 

humans for the tau gene (Grover et al., 1999), the Hprt gene (Hennig et al., 1995; Tu 

et al., 2000), and the hnRNP A1 gene (Blanchette & Chabot, 1997). Here the 

attenuated splice sites are part of the secondary structure and are not accessible to 

the spliceosome. However, in the case of MLV the 5’ss is located at the bottom of a 

stem and not completely paired, leading to the question: How is binding of U1 snRNA 

to the 5’ss restricted in MLV? In a first model, it is suggested that MLV genomic RNA 

may exist in two forms. A certain percentage of RNA molecules may form the 

described stem loop structure (Mougel et al., 1993) in which the 5’ss cannot be 

recognized by the spliceosome. Another portion of the RNA molecules may exist with 

a relatively unfolded structure in which splicing can occur. Thus, the ratio of folded to 

unfolded RNA, i.e. the proportion of stem loop structure within the population may 

determine the accessibility of the 5’ss to U1 snRNA resulting in the production of a 

defined amount of spliced RNAs. In a second model the RNA is always folded into a 

stem loop structure. Here, recognition of the 5’ss is a very rare event, because of 

steric hindrance and the fact that only 4 positions are available for U1 snRNA 

binding. Binding to the other complementary positions, including the invariant 

positions +1 and +2 (GU), requires of the secondary structure to be dissolved. Here, 

a dynamic competition between base pairing of the 5’ss with U1 snRNA and 

sequestering of the 5’ss into the secondary structure could take place.  

 

Both models fit to the results of the delPBS mutant and the extended stem loop 

mutants, where we observed more unspliced RNA by strengthening the stem 

structure. For the second model the extended or continuous stem increases the free 

energy of the stem, leading to reduced recognition and binding of U1 to the 5’ss. 

Moreover, it is likely that by strengthening the stem structure the ratio of folded to 

unfolded RNA species is shifted to folded RNA, also leading to more unspliced RNA 

in the second model. The observation that the 5’ss alone is strong enough to drive 

complete splicing, as shown for the stem loop antisense mutant, suggested that an 

unfolded leader region with an accessible MLV 5’ss would also result in complete 

splicing. This indicates that by using the second model we could only enhance 
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splicing by increasing the ratio of folded to unfolded RNA and not by increasing the 

complementarity of the 5’ss to U1. In contrast to this we have shown, using 

hyperstable U1 snRNA mutants, that we can enhance splicing by increasing the 

complementarity of U1 snRNA to the 5’ss. The same was observed for the C6U 

mutant, where position +6 of the primary splice site sequence is converted to the 

consensus sequence increasing the complementarity. These results apply to the 

second model, whereas additional base pairing of U1 snRNA to the 5’ss could 

facilitate the dissolving of the intramolecular paired splice site positions leading to 

enhanced splicing (Fig.11). Furthermore, the results of the primary splice site 

mutants +7 and +8, in which the splicing activity was again increased, support the 

hypothesis that splice sites lacking complementarity to U1 snRNA on their 5’end can 

be rescued by increasing the complementarity at their 3’end (Hartmann et al., 2008).  

 

 
 

 

 

Figure 11: Reduced accessibility to U1 snRNA results in alternative splicing  

The figure shows model 2, in which the MLV 5’ss (blue/green) is located at the bottom of the stem 
loop structure. Four possible binding sites (green) of the 5’ss are accessible for U1 snRNA (pink) 
binding, leading to reduced recognition of the 5’ss by the spliceosome. Base pairing to the four binding 
sites dissolves the stem loop structure. This allows base pairing at three additional positions of the 
5’ss to U1 snRNA, including the invariant positions +1 and +2 (GU). 
 

 

Moreover the results of the MS2-fusion tethering system strengthen the second 

model, showing that the RS domain of SRp55 increase splicing efficiency about 

2-fold. SR proteins are not present in Saccharomyces cerevisiae, and probably not 

needed due to highly conserved consensus sequences of the splice sites. Recently it 

has been demonstrated that SR proteins can rescue mutated 5’ and 3’ss in 

S. cerevisiae possible by stabilizing RNA:RNA interactions between U1 snRNA and 

5’ss (Shen & Green, 2006). The authors suggest a common mechanism for one of 

the RS domain functions from yeast to humans. Since SR proteins contain an 

alternating arrangement of positively and negatively charged argenine and serine 
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residues, we hypothesize that the basic amino acid side chains may neutralize the 

negatively charged phosphates of the nucleic acids, thereby facilitating pairing of two 

RNA strands; in this case U1 snRNA and the 5’ss. By using the MS2-fusion tethering 

system we tested different RS domains and observed the strongest enhancement of 

splicing with the long and continuous RS domain from SRp55 and not with four 

copies of the SF2/ASF RS domain. With this experiment we did not increase 

complementarity of U1 snRNA with the 5’ss, but we facilitated annealing of 

U1 snRNA to a partially sequestered 5'ss. These results indicate for the first time that 

RS domains probably stabilize RNA:RNA interactions in mammals. 

 

In conclusion we hypothesize that MLV hides its 5’ss by the stem loop structure to 

prevent binding of U1 snRNA and that this inefficient recognition leads to the 

alternative splicing in MLV. 

 

The PBS loop is crucial for infection 
 

In addition to the stem loop mutants we have designed a SF91PBScomp mutant, 

introducing additional complementary nucleotides on the opposite side of the PBS. 

Compared to the delPBS, the PBScomp strengthened the stem by adding 16 bp, 

leading to more unspliced RNA. Interestingly, viral particles produced with the 

PBScomp mutant were almost non-infectious. It has been shown by our lab that 

reverse transcription-deficient retroviral vectors, like the SF91 delPBS, mediate 

ectopic expression of proteins in target cells in a process called retroviral particle-

mediated mRNA transfer (RMT) (Galla et al., 2004). Here, infection delivers retroviral 

RNA, which serves directly as a template for translation. The delPBS cannot bind the 

tRNA and initiate reverse transcription, allowing RMT to occur. After infection with the 

PBScomp we observed GFP expression by RMT, showing that the mutated genomic 

RNA is packaged into viral particles during virus production. In contrast to the 

delPBS, the PBScomp still contains the 18 bp necessary for tRNA primer binding. To 

control for any negative effects of the additional 16 bp, a mutant was designed 

containing 16 non-complementary base pairs. In contrast to the PBScomp the control 

mutant is able to generate infectious particles, showing that the tRNA binds to the 

PBS and RNA is reverse transcribed into DNA. Consequently we suggest that the 

PBS has to be looped out for efficient tRNA primer binding, and that reverse 

transcription is inhibited when the PBS becomes a part of the stem (Fig.14). Further 
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experiments have to be performed to confirm this hypothesis. A simple, but relatively 

indirect approach to show that no tRNA primer can bind to the paired PBS, is the 

analysis of strong stop DNA (Fig.3). 

 

Does MLV also regulate the second step of spliceosome assembly? 
 

We have shown that U1 snRNA binding is disturbed by the secondary structure of 

the MLV leader region and that we can enhance splicing by increasing the number of 

possible binding sites of U1 snRNA to the 5’ss. In addition to the U1 snRNA 

suppressor mutants shown in Figure 5 of the manuscript, we mutated the 

corresponding position to the C6U mutant in the U1 snRNA (U1 A3G) in order to 

increase the number of possible binding sites from 7 to 8 (Fig.12).  

 

 

 

Figure 12: Mutation of +3 in U1 snRNA corresponding to +6 shows no enhanced splicing 

a) The top line shows the 5’ss pairing to U1 snRNA in wild type MLV. Possible base pairs with 
U1 snRNA are shown as solid vertical lines. The next panel shows the new U1 snRNA mutant, and 
the two lower panels show pairing between the U1 snRNA wt and the U1 snRNA mutant with the 
SF91 5’ss mutant on position +6 (SF91 C6U). Mutated nucleotides in U1 snRNA and in SF91 are in 
bold. On the right-hand side, the number of possible binding sites is indicated. b) Phosphoimager 
analysis. The efficiency of splicing is shown as the relative level of unspliced RNA. SF91 in the 
presence of co-transfected U1 wt plasmid was set as 1. Mean values and standard deviations 
represent five independent experiments. 
 

 

Surprisingly, we could not observe an enhancement of splicing for this mutant in 

comparison to the parental C6U mutant. The mutant in U1 snRNA shows the same 

splicing ratio as the wild type (Fig.12). There are two possible explanations for these 

results. The first and very simple explanation is that this U1 snRNA mutant has an 
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unknown defect. In a control experiment we co-transfected the new U1 snRNA 

mutant with the SF91 C6U splice site mutant. It is theoretically possible that a G·U 

non Watson-Crick-pair could form on position +6, but it has been described that non 

Watson-Crick-pairs only form when they are adjacent to Watson-Crick-pairs (Freund 

et al., 2003). This is not the case in our mutant at position +7. Additionally by using 

this mutant pair we reduced the complementarity of U1 snRNA with the 5’ss from 8 to 

7, i.e. to the same level as in the wild type. As a result we restored the level of 

unspliced RNA nearly to the wild type level (Fig.12). This indicates that the mutant is 

generally functional. 

  

The 5’ss consensus sequence in higher eukaryotes corresponds to perfect Watson–

Crick base pairing to the U1 snRNA 5’terminus (Horowitz & Krainer, 1994) and plays 

a critical role in 5’ss selection (Seraphin et al., 1988; Siliciano & Guthrie, 1988; 

Zhuang & Weiner, 1986). After U1 recognizes the 5’ss, a conformational 

rearrangement during spliceosome assembly results in the replacement of U1 by 

U6 snRNA, which has been proposed to contribute to the high fidelity of the reaction 

(Staley & Guthrie, 1999). It has been reported that U6 snRNA and high 

concentrations of SR proteins can substitute for the absence, or limiting amount, of 

U1 snRNA and restore splicing in U1-depleted extracts (Crispino et al., 1994; 

Crispino & Sharp, 1995; Tarn & Steitz, 1994). Thereby the SR proteins promote the 

association of U2 snRNP with the branchpoint. The distal nucleotides in the 5’ss    

(+2 to +6) may solely be recognized by U6 snRNA with the assistance of SR 

proteins. However, a second explanation for the unexpected results of the U1 snRNA 

mutant could be that the SF91 C6U splice site mutant displays an increased 

complementarity to both U1 and U6 snRNA (Fig.13). In the wild type position +6 can 

neither be recognized by U1 nor by U6 snRNA leading to 7 bp complementarity for 

U1 and 2 bp for U6 snRNA, respectively. If we mutate the corresponding position in 

U1 snRNA we increase the binding sites from 7 bp to 8 bp, whereas U6 binding is not 

affected and still exhibits only 2 possible binding sites. In contrast, the replacement of 

position +6 with the primary 5’ss consensus sequence leads to an increase of one 

Watson-Crick-basepair for both U1 snRNA and U6 snRNA. It is possible that the 

differences between the two situations on position +6 are not due to the increase in 

U1 snRNA binding to the 5’ss, but rather that the replacement of U1 snRNA by 

U6 snRNA in the second step of splicing is facilitated.  
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To test our hypothesis, we replaced the corresponding nucleotides in U6 snRNA in 

the same manner as we had done for the U1 mutant. However, preliminary data from 

co-transfection of SF91 wt with U6 wt showed that over-expressing U6 snRNA is not 

neutral. We observed enhanced splicing compared to our control experiment using 

SF91 wt + pUC19. Moreover, the critical position of U6 snRNA binds intermolecularly 

to U2 snRNA and it is likely that changing the primary sequence leads to difficulties 

during spliceosomal assembly (Sun & Manley, 1995). For future work new 

experiments have to be designed. It is possible that we could establish an in vitro 

cross-linking assay for U6 snRNA (Valcarcel et al., 1996). 

 

Figure 13: Watson-Crick-base pairing of U6 snRNA to 
the 5’ss of MLV  

Possible base pairs to U1 snRNA and U6 snRNA are 
shown as solid vertical lines. The next panel shows 
SF91 wt combined with the U1 snRNA A3G mutant. The 
lower panel shows pairing of U1 snRNA wt with the SF91 
5’ss mutant on position +6 (SF91 C6U). Mutated 
nucleotides in U1 snRNA and in SF91 are in bold and 
position +6 and corresponding positions in U1 and 
U6 snRNA are in red. On the right-hand side, the 
possible binding sites to U6 snRNA are indicated in red 
and to U1 snRNA in black. 
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Is that all? Or is there a third layer of splicing regulation? 
 

All retroviruses harbor a highly structured RNA leader region, in which only the PBS 

is looped out to bind a cellular tRNA. In order to find conserved sequence motifs we 

analyzed various leader regions of different retroviruses and observed GGGA motifs 

in several genera (Fig.14). Such sequences are usually recognition motifs for RNA 

binding proteins belonging to the hnRNP family. By using two different prediction 

tools for RNA binding proteins (http://www.ebi.ac.uk/asd-srv/wb.cgi?method=8 and 

http://www.introni.it/splicing.html), we recognized several putative hnRNP recognition 

motifs in the MLV leader region adjacent to the PBS and 5’ss. Interestingly, the 

ascending side of the stem exhibits only one potential binding site. In addition to the 

stem mutants of publication 2 (Fig.7) we destroyed this putative recognition motif in 

the same manner as we did for the sm3/sm3comp mutants. As expected, the sm4 

mutant alone showed the same splicing enhancement as the sm3 mutant. 

Surprisingly, the sm4comp could not restore the splicing pattern compared to 

sm3comp and still showed complete splicing. This result led to the hypothesis that 

binding of an hnRNP protein is prevented, resulting in enhanced splicing. This 

surprising observation did not match to the results of the artificial stem loop, which 

suggested that no additional splicing regulating proteins, such as hnRNPs or SR 

proteins are necessary for regulating alternative splicing in MLV. It is likely that the 

wild type stem loop of MLV needs additional proteins for stabilization, due to non-

paired regions like the PBS. In contrast, the heterologous artificial stem probably 

needs no additional proteins because the stem is continuous.  

 

Moreover, it has been described that proteins of the hnRNP family can self-interact 

and form intermolecular dimers (hnRNP duplex) if they are bound on opposite sides 

to an RNA stem (Martinez-Contreras et al., 2006; Nasim et al., 2002). It is likely that 

MLV uses hnRNP duplex formation to stabilize the stem structure adjacent to the 

looped out PBS. Hence, it is likely that by destroying the motif on the left and right 

side (sm4comp) we inhibited potential duplex formation of two hnRNP proteins 

(Fig.15). This would then disrupt the stem upstream of the 5’ss, finally leading to 

enhanced splicing. 
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                 Lentivirus                          -retrovirus                   -retrovirus                     -retrovirus 
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                       -retrovirus 
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PBS
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Figure 14: Conserved GGGA motifs  

a) Depiction of various leader sequences of different 
retroviruses including GGGA sequence elements, boxed in 
red. A relatively conserved motif is located near the PBS 
loop either on the left or on the right side of the stem, 
adapted from (Berkhout & van Wamel, 2000; Beerens & 
Berkhout, 2002). b) RNA secondary structure of MLV. The 
structure is adapted from the chemically validated structure 
(Mougel et al., 1993). GGGA sequences are boxed in red. 
The mutations destroying the GGGA sequence on the right 
side of the stem; sm3 and sm3comp are analyzed in 
publication 2 Figure 7. The mutant pair sm4/sm4comp is 
shown upstream of the stem, destroying the GGGAGGG 
motif on the left side of the stem in the same manner as for 
the sm3/sm3comp pair. 

a) 
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Further experiments are needed, including disrupting other potential hnRNP motifs 

that  probably allow hnRNP duplex formation (upstream of the 5’ss and upstream the 

PBS) and siRNA approaches to elucidate a potential involvement of hnRNPs in the 

stabilization of the stem structure. Additionally, a combination of the sm4comp and 

the deletion of the PBS would be interesting, since such a mutant would probably 

need no additional hnRNPs, due to its continuous stem structure. 

 

 

 

 

Figure 15: Putative hnRNP dimers stabilize the retroviral stem loop structure 

Depiction of the stem-loop structure of MLV. Bioinformatic analysis of the primary sequence indicates 
putative hnRNP binding sides. HnRNPs are shown as grey circles. Three possible hnRNP dimer 
formations are indicated, whereas the putative hnRNP recognition motif, destroyed by the sm3comp 
mutation, has no counterpart on the opposite side of the stem. 
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Why so complicated? 
 

During the viral life cycle unspliced or incompletely spliced viral RNA species must be 

exported to the cytoplasm. Usually, incompletely spliced RNAs are retained in the 

nucleus and degraded (Fasken & Corbett, 2005; Jensen et al., 2003). Importantly, all 

retroviruses have to overcome this quality control and have evolved several 

strategies to circumvent the nuclear retention/degradation of their unspliced RNA 

(see introduction). As mentioned before the export mechanism of unspliced RNA 

from MLV and other gammaretroviruses has still not been elucidated; additionally, 

new data from our lab indicate that the stem loop structure of the R region (RSL) is 

not involved in the export of unspliced RNA as was previously suggested (Trubetskoy 

et al., 1999). Since MLV expresses no accessory proteins such as Rev, it might have 

evolved a different strategy to escape the quality control of unused splice sites by the 

nuclear pore complex. The present study showed that in contrast to other 

retroviruses that use suboptimal 3’ss for differential gene expression MLV attenuates 

its 5’ss. What might be the reason for MLV to develop such a strategy? Our 

hypothesis is that by preventing the recognition of the 5’ss by U1 snRNP, MLV 

renders a defined portion of its genomic RNA intron-less to circumvent the cellular 

quality control. Alternative splicing control via a weak 3’ss without any export factors 

would not result in export of the unspliced RNA, as 5’ss recognition by U1 snRNP 

occurs co-transcriptionally and this would lead to mRNA retention and degradation.  

 

For future approaches we want to use a mutant that results in complete splicing of 

the genomic RNA, like the sm3 mutant. This mutation will be combined with 

mutations that inactivate the actual 3’ss and two additional cryptic sites. All these 

modifications will result in an RNA in which the 5’ss can efficiently bind U1 snRNP, 

but which is not able to splice due to the lack of 3’ss. If our hypothesis is true we 

would generate an RNA that should be blocked in nuclear export, due to the 

recognition of the 5’ss by U1 snRNA. 
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Conclusions of the secondary structure model 
 

We have shown that MLV attenuates its 5’ss and not its 3’ss to ensure alternative 

splicing. During evolution retroviruses had to solve two problems related to their 

genome organization. Since retroviruses synthesize a polycistronic pre-mRNA they 

have to export intron-containing RNA. MLV may solve the export problem by masking 

unspliced RNA or, in other words, the unspliced genomic RNA is not recognized as 

an intron-containing RNA and slowly exported. In addition to the export of the 

genomic RNA, a co-expression strategy is needed to express all viral proteins. Our 

hypothesis is that MLV evolved this complex splice regulation to ensure both export 

of its genomic RNA and alternative splicing. Furthermore, the stem loop structure is 

important for reverse transcription. We suggest that for efficient tRNA primer binding 

the PBS has to be looped out. These results fit to our hypothesis that MLV probably 

needs additional RNA binding proteins to stabilize the stem loop structure 

surrounding the PBS. In all retrovirus genera secondary structure analysis indicates 

that the PBS is looped out (Fig.14). We hypothesize that in general the stem loop 

structure functions as a scaffold to loop out the PBS and that this mechanism is 

conserved throughout all retroviruses. 

 

Furthermore, we compared the primary sequences of MLV, the gibbon ape leukemia 

virus (GaLV), feline leukemia virus (FeLV), spleen focus forming virus (SFFV), koala 

retrovirus (KoRV) and the newly identified xenotropic MuLV-related virus (XMRV), 

which can produce authenticated human infections (Urisman et al., 2006). The 

alignment showed that the leader region is highly conserved compared to other 

regions like the packaging signal which is very heterogeneous. In addition, the 

primary sequence of the 5’ss is highly conserved (Fig.16). All viruses exhibit a 

guanosine at position +6 instead of the conserved uracil and only have 7 possible 

binding sites of the 5’ss to U1 snRNA, including position –2 to +5.  
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Figure 16: Comparison of 5’ss sequences of gammaretroviruses 

The comparison of the 5’ss of various gammaretroviruses show high conservation and all viruses 
exhibit seven possible base pairs to U1 snRNA. 
 

 

Using the Mfold software (http://mfold.bioinfo.rpi.edu/cgi-bin/rna-form1.cgi) we could 

show that the stem loop structure of the leader region is conserved, including the 

looped out PBS and the 5’ss at the bottom of the stem (data not shown). These 

results indicate that gammaretroviruses in general attenuate their 5’ss to ensure 

alternative splicing in the same manner as we have shown with the present study for 

MLV. Furthermore, it is likely that all gammaretroviruses use the same export 

strategy by masking their intron-containing genomic RNA as intron-less. 

 

In conclusion, the stem loop structure of the leader region retroviruses is crucial for 

the viral life cycle. Gammretroviruses have evolved a complex alternative splice 

mechanism, maybe allowing additional export of their unspliced genomic RNA. 
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Safer vectors for gene therapy 
 

The integration of MLV-based vectors into the host genome increases the risk of  

adverse events in gene therapy due to transcriptional deregulation of cellular genes 

which could potentially stimulate tumorigenesis. The occurrence of leukemia after 

vector integration in five patients in a gene therapy trial for SCID-X1 illustrated the 

requirement for improved vector design. We have shown that in hematopoietic cells a 

weak cellular promoter/enhancer reduced the genotoxic risk of retroviral-based 

vectors. In contrast to cellular promoters, viral promoter/enhancer elements consist of 

dense clusters of binding sites for a variety of cellular transcription factors         

(Baum et al., 1997). Therefore, they are able to activate neighboring genes more 

potently than cellular promoters. New results from our lab showed (Modlich, 2008) 

that the strong viral enhancer sequences are responsible for their transforming 

capacity in primary hematopoietic cells. Two SF91 mutants containing either a 

deletion of the promoter or the enhancer sequences were compared. Using the 

clonal dominance assay no mutants with serial replating capacity were observed with 

the SF91 vectors lacking enhancer sequences. In contrast, the deletion of the 

promoter region showed nearly the same level of transforming capacity compared to 

the wild type SF91. This indicates that the choice of the enhancer sequences is 

crucial for the protection against insertional mutagenesis. 

 

Cellular enhancers have also the potential to activate a number of neighboring genes 

over a large chromosomal region (Nobrega et al., 2003). However, several cellular 

restriction mechanisms exist to shield certain gene loci from activation. This is 

achieved by specialized DNA sequences, termed insulators (Gaszner & Felsenfeld, 

2006). We have also tested an insulator element to increase vector safety. We have 

shown that the insulator core element (250 bp) was not sufficient to protect against 

insertional transformation, but that it clearly tended to reduce genotoxicity. The 

distribution of the replating frequency is very heterogeneous, indicating that the 

efficiency of the shielding effect of this insulator depends on the distinct integration 

site. Recently, another group showed by using the clonal dominance assay (Modlich 

et al., 2006) that the transforming potential of SIN retroviral and lentiviral vectors, 

containing a novel insulator element, was reduced to background levels compared to 

their unshielded counterparts (Ramezani et al., 2008). These results suggest that 
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insulator may additionally improve the safety of retroviral vectors (Cathomen & 

Joung, 2008). 

 

Furthermore, homologous recombination can be used instead of retroviral vectors for 

stable gene transfer into the host genome. Cells use homologous recombination 

(HR) to repair DNA damage. Therapeutic gene targeting is the process of replacing a 

gene by HR, using an exogenous donor fragment and the cellular repair mechanism 

(Yanez & Porter, 1998). HR frequency is low and therefore gene targeting is not very 

efficient in mammalian cells (Cathomen & Joung, 2008). However, it has been shown 

that the insertion of a DNA double-stranded break (DSB) using endonucleases can 

increase HR by several 100-fold in various cells (Rouet et al., 1994; Smih et al., 

1995). Zinc finger nucleases (ZFNs) are used to introduce site-specific DSBs into a 

genomic locus. ZFNs are artificial nucleases exhibiting an engineered zinc finger 

domain linked to the cleavage domain of the restriction endonuclease Fok1          

(Kim et al., 1996). The zinc finger domain binds sequence-specifically to the DNA 

and can be designed to recognize a target site consisting of 18 or 24 bp, which is 

statistically large enough to define a unique site in a human genome (Bohne & 

Cathomen, 2008). Besides the advantage of gene targeting over gene addition 

regarding the decreased risk of insertional mutagenesis several studies observed 

ZFN-induced cytotoxicity. Cell death and apoptosis is most likely caused by cleavage 

at unspecific (off-target) sites, which can be repaired by non-homologous end-joining 

leading to insertions or deletions and chromosomal translocations (Cornu et al., 

2008; Lieber et al., 2003).  

 

However, therapeutic gene targeting will be the gold standard for future gene therapy 

approaches. But today the technology is still in its infancy and has to be improved 

concerning delivery, efficacy and safety aspects before it could be used as a gene 

therapy tool (Bohne & Cathomen, 2008). At the moment there is no safer and more 

efficient gene transfer system for long term expression available than 

retrovirus-based vectors. But they have to be optimized to be as safe as possible for 

future gene therapy trials. 
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Positive and negative effects of the 5’ss in retroviral vector design 
 

The existence of a 5’splice site in retroviral-based gene transfer vectors has been 

described to enhance RNA stability, RNA export, RNA transcription and elongation 

(Damgaard et al., 2008; Fong & Zhou, 2001; Kornblihtt et al., 2004; Reed & Hurt, 

2002), leading to a higher titer. In contrast to these positive features the risk of 

insertional mutagenesis increases due to the generation of fusion transcripts (Dupuy 

et al., 2005; Ott et al., 2006). To further improve the vector design for clinical 

applications, the 5’ss has to be deleted. A splice site deficient vector (SF110) has 

already been described and characterized (Fig.9). Compared to the SF11, containing 

a 5’ss, the titer of the SF110 is about one log decreased (Hildinger, 1999). Therefore, 

an ideal vector should have functional 5’ss in the packaging cell line and not in the 

target cell. We have shown in the manuscript, that we can manipulate splicing 

activity, by using U1 snRNA suppressor mutants. Here, replacing the corresponding 

nucleotides in U1 snRNA to the 5’ss increased the complementarity of the 5’ss to 

U1 snRNA. For future vector design we could alter the primary sequence of the 5’ss 

in such a way that wild type cellular U1 snRNA could not bind to the mutated 5’ss 

(Fig.17). We could further design a U1 snRNA suppressor mutant which is 

complementary to the mutated 5’ss. This U1 snRNA mutant could be transiently or 

stably expressed during vector production and recognize the mutated 5’ss. This 

would be likely to enhance the virus titer, due to the positive effects of U1 snRNP 

binding to the pre-mRNA. In the target cell the mutated 5’ss would not be able to be 

recognized by the spliceosome, due to the altered consensus sequence, and so 

would prevent the production of fusion transcripts. This vector design would improve 

safety without the loss of titer. 
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Figure 17: Mutated 5’ss for a safer vector  

The top line shows the SIN11 vector backbone containing a 5’ss upstream of the internal promoter 
(IP). Possible mutation of the 5’ss would lead to inhibited recognition by U1 snRNA. The panel shows 
the situation in the packaging cell line where the mutated 5’ss could be recognized through a 
co-expressed U1 snRNA mutant by complementary base pairing. The lower panel shows the 
integrated vector backbone as a provirus, from which the mutated 5’ss would not be recognized by 
wild type U1 snRNA expressed by the cell. 

 

Design of new co-expression vectors 
 

In the present study we have designed “minigene” reporter constructs to analyze and 

compare the enhancer activity of the cellular and viral promoter/enhancer. Here the 

internal promoter/enhancer of the SIN vector activated the minigene cassette located 

in the deleted U3 region. The enhancer activity could be measured by flow cytometry. 

This configuration can also be used for the co-expression of two transgenes e.g. a 

fluorescence marker gene, a drug resistence gene or a surface antigen. Co-

expression is usually achieved by using IRES-based dual gene transfer vectors 

(Martinez-Salas, 1999). The IRES configuration displayed some limitations because 

of the lower efficiency compared to Cap-dependent expression, and to the variablity 

in IRES performance according to the type of transgene and target cell (Hennecke et 

al., 2001; Mizuguchi et al., 2000). With our minigene design we could express two 

transgenes from two different transcripts by using the enhancer activity of the internal 
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promoter. So far we have tested this approach successfully for the co-expression of a 

transgene, driven by the internal promoter and a fluorescent marker gene (eGFP and 

dsRed) driven by the minimal CMV promoter, in retroviral and lentiviral based SIN 

vectors. This vector is not applicable for gene therapy,due to the observation that the 

minigene cassette, located after reverse transcription in the 5’LTR, is able to 

transcribe packable genomic RNA transcripts. But nevertheless it is a new option 

compared to the IRES configuration and an interesting tool for usage in co-

expression studies.  

 

Furthermore, alternative splicing as a co-expression strategy has been described      

(De Felipe & Izquierdo, 2000). For the development of a new co-expression vector it 

would be possible to use the SF91 stem loop mutant (manuscript; Fig.3), lacking viral 

sequences upstream of the 5’ss. In this vector the stem loop structure including the 

intron flanked by the 5’ss and 3’ss could be introduced downstream of the internal 

promoter. The intron could be replaced by a marker gene and if removed another 

transgene could be expressed. To manipulate the transgene expression we could 

use the same strategy discussed above. The primary 5’ss sequence can be mutated 

and is then only recognized by using U1 suppressor mutants complementary to the 

altered 5’ss. Transgene 2 would then only be expressed when U1 suppressor 

mutants are present in the target cell. Furthermore, we could use integrase-defective 

lentiviral episomal vectors (Vargas et al., 2004) to express the mutated U1 snRNAs 

transiently in the target cell. This configuration would be not a potential vector for 

gene therapy but it would allow controlled expression of the transgene 2 and is so 

maybe an interesting tool to distinguish between effects due to integration of the 

vector backbone into the host genome and effects of a transgene. Additionally, we 

have shown that the ratio of spliced/unspliced RNA species is determined by the 

strength of the artificial stem loop. So it is possible that we could control the splicing 

ratio of transgene 1 to transgene 2 by strengthening the stem loop. Finally we could 

combine the minigene approach with the stem loop intron to an “all in one vector” and 

would thereby be able to express three different genes from one vector.  
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Figure 18: Splicing as co-expression strategy 

A new possible SIN vector backbone is depicted, in which an additional intron is cloned downstream of 
the internal promoter (IP). The intron is derived from the stem loop mutants (manuscript; Fig. 3), where 
the mutated 5’ss is downstream of an artificial stem loop. Transgene 1 is located in the intron and 
expressed from unspliced RNA. Splicing and expression of transgene 2 could only occur if U1 snRNA 
mutant is expressed in the target cell due to the mutated 5’ss (see Fig.17). 
 
 
Retrovirally based vectors are so far the best available vehicles for efficient gene 

transfer into hematopoietic stem cells. Non-viral gene delivery is potentially safer, but 

at present limited by the low efficiency. We have shown that SIN vectors containing 

weak enhancer elements decrease the risk of insertional transformation. In some 

diseases high expression of the transgene is required to correct the phenotype. 

Further improvement of the RNA processing of SIN vectors and of the transgene 

itself may lead to a general usage of weak promoter/enhancer for gene therapy 

applications.  
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