Diffusion, Speziation und Löslichkeit von Schwefel in Silikatschmelzen

Von der Naturwissenschaftlichen Fakultät der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des Grades eines DOKTORS DER NATURWISSENSCHAFTEN Dr. rer. nat.

genehmigte Dissertation von Dipl.-Geow. Jan Stelling geboren am 22.06.1979 in Bremerhaven

2009

Referent:Prof. Dr. rer. nat. Harald Behrens (Leibniz Universität Hannover)Koreferent:Prof. Dr.-Ing. habil. Joachim Deubener (TU Clausthal)

Mitglieder der Prüfungskommission:

Prof. Dr. sc. agr. Jürgen Böttcher (Vorsitzender)Prof. Dr. rer. nat. Harald BehrensProf. Dr.-Ing. habil. Joachim DeubenerProf. Dr. rer. nat. Marcus Nowak

Tag der Promotion: 23.07.2009

Erklärung zur Dissertation

Hiermit versichere ich, dass ich die Dissertation selbstständig angefertigt habe und alle benutzten Quellen und Hilfsmittel angegeben habe. Die Dissertation wurde nicht schon als Diplomarbeit oder ähnliche Prüfungsarbeit verwendet.

Hannover, 04.06.2009

Jan Stelling

Für meine Eltern Ute & Werner Stelling

Ich danke...

Prof. Dr. Harald Behrens & Prof. Dr. Joachim Deubener für die Möglichkeit in diesem Projekt arbeiten zu können.

Prof. Dr. Harald Behrens für die Leitung und Betreuung des Projekts in Hannover, seine Geduld, seine Diskussionen, seine Anregungen, seine Motivation und Tipps.

M. Sc. Linda Backnäs (!) für die vielen gemeinsamen Strahlzeiten an der XAS- & SUL-Beamline und die gemeinsame Arbeit am Projekt.

Dipl.-Geow. Oliver Beermann für hilfreiche Tipps und Diskussionen.

Dipl.-Min. Holger Strauß, Dipl.-Geow. Kai Spickenbom & Dr. Sandrin Feig für Ihre Unterstützung uns Einweisung in Sachen IHPV.

Dott. Sara Fanara für Unterstützung in letzter Minute.

Otto Diedrich für perfekte Probenpräparate. Ohne sein Geschick und sein zügiges Arbeiten wären viele Messtermine nicht machbar gewesen.

Dipl.-Geow. Wanja Dziony (!) & Dr. Jürgen Koepke für die Unterstützung und den Zeitaufwand an der Mikrosonde.

Prof. Dr. Marcus Nowak, Meikel Hofbauer & Silvio Haase für die technische Unterstützung und die fachlichen Ratschläge bei der Planung neuer Schaltschränke.

Willi Hurkuck, Bettina Aichinger, Ullrich Kroll & Marcus Köhler für die technische Unterstützung an der IHPV.

allen Mitarbeitern des Instituts für Mineralogie (v. a. den Doktoranden) für die tolle Arbeitsatmosphäre in den letzten acht Jahren (!), in denen ich vom Hiwi, über den Diplomanden zum Doktoranden geworden bin. In der Zeit hat sich viel getan und ich habe viele Post-Docs, Doktoranden und Besucher kennen gelernt. Allen gilt mein Dank für das Interesse an meiner Arbeit, gemeinsame Diskussionen, Feiern, Abende im Klein Kröpcke und EM- & WM-Tippspiele (2002, 2004, 2006, 2008), in denen ich stets versucht habe, alle Tipps fair auszuwerten. Es ist mir gelungen!

Dr. Max Wilke für die beiden gemeinsamen unterhaltsamen Aufenthalte am ESRF und seine Unterstützung bei der Datenverabeitung mit Igor Pro. Wir haben uns gegenseitig bewiesen, dass produktives Arbeiten auch noch nachts nach 01:00 Uhr möglich ist.

Dr. Jörg Göttlicher & Dr. Stefan Mangold für Unterstützung, Geduld und Zeit an den Beamlines an der ANKA.

Dr. Jean Susini, Dr. Marine Cotte & Dr. Emilie Chalmin für die hervorragende Unterstützung an der ID21 Beamline am ESRF.

Dr. Kevin Klimm für die Unterstützung beim Aufenthalt in Bristol.

B. Sc. Martin Lehmköster & Dipl.-Geow. André Stechern für die Mitarbeit am Projekt.

meinen Eltern, Geschwistern & Freunden für Unterstützung in allen Lebenslagen (besonders in den letzten eineinhalb Jahren). Es hat sich viel verändert...

Monika & Tjede für die Sonne in meinem Leben. Ein Leben ohne euch ist undenkbar!

Abstract

After H_2O and CO_2 , sulphur is the most abundant volatile component that is dissolved in natural silicate melts and its role particularly in processes of volcanic degassing is of great importance. In silicate melts of technical interest, sulphur is used as sulphate added to the glass melt in the fining process or in combination with Fe oxides to form chromophores in coloured glasses. Despite the difference between the industrial application and the importance of sulphur in earth sciences which is mainly given by the different pressure range, most of the relevant mechanisms are similar in their initial state. Sulphur occurs in oxidation states from S^{2-} (sulphide) to S^{6+} (sulphate) depending on oxygen fugacity, temperature and melt composition. The difference in structural incorporation and speciation has importance effects on the diffusion of sulphur and therefore on the degassing of the melt.

In this study the interconnection between structural incorporation, diffusion, speciation and the redox behaviour of sulphur was investigated experimentally in Na-trisilicate (NS3) and soda-lime-silicate (NCS) melts. In addition, the diffusion mechanisms of H_2O at high and low concentrations wer determined. To describe the correlation between speciation and diffusion of sulphur, experimental run products were characterised using different analytical and spectroscopic methods.

X-ray Absorption Near Edge Structure (XANES) analyses of syntheses product glasses show that sulphur is present as sulphate and sulphide in NS3 and NCS glasses. No prove for sulphite as a stable species has been detected. Even if Na_2SO_3 as sulphur source is added to the glass, sulphite disproportionates according to

$$4SO_3^{2-} \to S^{2-} + 3SO_4^{2-}$$

into sulphate and sulphide. It is not clear, if sulphite is stable at high temperatures above the glass transformation temperature in the melt. Additional fining syntheses experiments depict a strong decrease of sulphur solubility with increasing temperature.

Due to the strong variation in sulphur diffusion data a detailed interpretation is hardly possible. In NS3 and NCS melts the diffusion was investigated using the diffusion couple technique at 100 MPa. The diffusion of sulphur shows a strong temperature dependency and values similar to the Eyring diffusivity. Diffusion coefficients for sulphur in NS3 are ranging from log D = -13.53 ± 0.05 at 1000°C to log D = -11.97 ± 0.05 at 1250°C (D in m²/s). A pressure dependency in NS3 between 0.1 and 2.5 GPa has not been observed due to strong variation in diffusion data. In NCS melts diffusivity has been investigated for

sulphate and sulphide. The diffusion coefficients of both experimental sets at 100 MPa show values between log D = -13.12 ± 0.05 at 1050° C and log D = -11.18 ± 0.06 at 1300° C. Results of the investigation of internal redox reactions of sulphide and sulphate show unexpectedly low diffusivities up to 1.5 log units below Eyring diffusivity for sulphate and sulphide. In the experimental runs sulphur speciation does not change along the diffusion path as shown by XANES analyses and XRF profiles.

Redox experiments to investigate the oxidation reactions of sulphide in NS3 and NCS melts (200 MPa, 1000 to 1200°C) indicate changes in the coordination of S^{2–} and complexation with molecular H₂O (H₂O_m). At the reaction surface between sulphide- and H₂O-bearing part of the sample IR analyses show a formation of new H₂O_m absorption bands at 5020 and 3400 cm⁻¹ while the absorption band at 5225 cm⁻¹ decreases in intensity. XANES measurements demonstrate a correlating appearance of a new S *K* pre-edge excitation at 2466.5 eV and a decrease in the intensity of the sulphide peak at 2474.0 eV.

Results of the H₂O diffusion experiments in NCS at 200 MPa range from log $D_{H_2O}^{1.0wt\%} =$ -10.06 ± 0.10 at 1000°C to log $D_{H_2O}^{1.0wt\%} =$ -9.38 ± 0.10 at 1300°C. At high water contents of max. 3.0 wt% the diffusivity increases with concentration. At low concentrations of max. 0.3 wt% the diffusion coefficient is constant and ranges from log $D_{H_2O} =$ -13.08 ± 0.08 at 550°C to log $D_{H_2O} =$ -9.35 ± 0.20 at 1300°C. H₂O diffusion data were also obtained from sulphide oxidation experiments.

Keywords: Silicate melts, sulphur diffusion, sulphur speciation

Zusammenfassung

Schwefel ist nach H₂O und CO₂ die häufigste volatile Komponente, die gelöst in natürlichen Silikatschmelzen sowie in vulkanischen Emissionen von großer Bedeutung ist. In technischen Silikatschmelzen wird Schwefel in Form von Sulfaten im Läuterungsprozess oder z. B. im Zusammenhang mit Eisenoxid zur Bildung von Chromophoren für die Farbgebung von Glasprodukten verwendet. Trotz der großen Unterschiede zwischen industrieller Anwendung und geowissenschaftlicher Bedeutung, die v. a. durch den Druckbereich aufgezeigt werden, sind viele für Schwefel relevante Mechanismen vergleichbar. In welchem Oxidationszustand Schwefel (von S^{2–} (Sulfid) bis S⁶⁺ (Sulfat)) vorliegt, ist abhängig vom Sauerstoffpartialdruck, der Temperatur und der Schmelzzusammensetzung. Die unter den jeweiligen Bedingungen vorherrschende Spezies hat starken Einfluss auf den strukturellen Einbau und die Löslichkeit des Schwefels in der Silikatschmelze, was eng mit der Diffusion und der Entgasung verbunden ist.

In der vorliegenden Arbeit ist der Zusammenhang zwischen dem strukturellen Einbau, der Speziation, der Diffusion und dem Redoxverhalten von Schwefel in Na-Trisilikat-(NS3) sowie Kalk-Natron-Silikat-Schmelzen (NCS) experimentell untersucht worden. Verknüpft mit dem Redoxverhalten sind die Diffusionsmechanismen von H₂O bei hohen und niedrigen Konzentrationen bestimmt worden. Für die Charakterisierung der experimentellen Produkte werden mehrere analytische und spektroskopische Methoden angewendet, um Zusammenhänge zwischen Speziation und Diffusivität von Schwefel auflösen und beschreiben zu können.

XANES-Analysen von Glasprodukten aus Syntheseexperimenten zeigen, dass Schwefel in Form von Sulfat und Sulfid in den untersuchten silikatischen Gläsern vorliegt. Sulfit als stabile Schwefelspezies konnte nicht nachgewiesen werden. Selbst unter Zugabe von Na₂SO₃ disproportioniert Sulfit nach

$$4SO_3^{2-} \to S^{2-} + 3SO_4^{2-}$$

zu Sulfat und Sulfid. Unklar ist, ob Sulfit bei hohen Temperaturen weit oberhalb der Glastransformation stabil in der Schmelze vorliegt. Mit zusätzlichen Syntheseexperimenten zur Sulfatläuterung ist eine starke Temperaturabhängigkeit der Schwefelöslichkeit bei Umgebungsdruck gezeigt worden, die mit zunehmender Temperatur abnimmt. Die ermittelten Daten zur Schwefeldiffusion variieren teilweise durch konvektive Überprägung des Diffusionsprozesses stark, so dass eine detaillierte Interpretation kaum möglich ist. In NS3- und NCS-Schmelzen sind Experimente bei 100 MPa mit der Diffusionspaarmethode durchgeführt worden. Die Diffusion von Schwefel ist stark temperaturabhängig und liegt im Bereich der Eyring-Diffusivität. Diffusionskoeffizienten für Schwefel in NS3 reichen von log D = $-13,53 \pm 0,05$ bei 1000°C bis log D = $11,97 \pm 0,05$ bei 1250°C (D in m²/s). Eine Druckabhängigkeit in NS3 konnte zwischen 0,1 und 2,5 GPa aufgrund stark variierender Daten nicht festgestellt werden. Für NCS-Schmelzen ist die Diffusivität von Sulfat und Sulfid vergleichend untersucht worden, die ermittelten Diffusionskoeffizienten in den Versuchsreihen reichen bei 100 MPa von log D = $-13,12 \pm 0,05$ bei 1050°C bis log D = $-11,18 \pm 0,06$ bei 1300°C. Ergebnisse aus Experimenten zur Untersuchung interner Redoxreaktionen von Sulfat und Sulfid zeigen deutlich geringere Diffusivitäten bis zu 1,5 Größenordnungen unterhalb der Eyring-Diffusivität unabhängig von der Speziation des Schwefels. Mit XANES-Messungen und XRF-Profilen konnte belegt werden, dass sich die Schwefel-Speziation entlang des Diffusionspfades nicht verändert.

Redoxpaarexperimente zur Oxidation von Sulfid in NCS und NS3 (200 MPa, 1000– 1200°C) zeigten Veränderungen in der Koordination von S^{2–} und Komplexbildung mit molekularem H₂O (H₂O_m). IR-Messungen zeigen im Bereich der Reaktionsoberfläche zwischen dem wasserhaltigen und dem sulfidhaltigen Teil der Probe eine Bildung neuer Absorptionsbanden für H₂O_m bei 5020 bzw. 3400 cm⁻¹ und ein Verschwinden der Absorptionsbande bei 5225 cm⁻¹. Korrelierend dazu zeigen XANES-Messungen das Auftauchen einer S *K* Vorkanten-Anregung bei 2466,5 eV und eine Abnahme der Intensität der Sulfid-Anregung bei 2474,0 eV.

Ermittelte H₂O-Diffusionskoeffizienten für NCS reichen bei 200 MPa von log $D_{H_2O}^{1,0Gew.\%}$ = -10,06 ± 0,10 bei 1000°C bis log $D_{H_2O}^{1,0Gew.\%}$ = -9,38 ± 0,10 bei 1300°C. Bei hohen Wassergehalten von max. 3,0 Gew% nimmt die Diffusivität mit der Konzentration zu. Bei niedrigen Konzentrationen von max. 0,3 Gew.% ist der Diffusionskoeffizient konstant und reicht von log D_{H_2O} = -13,08 ± 0,08 bei 550°C bis log D_{H_2O} = -9,35 ± 0,20 bei 1300°C. Daten zur Diffusivität von H₂O wurden ebenfalls aus Oxidationsexperimenten mit S^{2–} und H₂O gewonnen.

Schlagwörter: Silikatschmelzen, Schwefeldiffusion, Schwefelspeziation

Inhaltsverzeichnis

1	Einl	eitung		1
2	Gru	ndlagen	1	5
	2.1	Natur ı	und Struktur silikatischer Gläser	5
	2.2	Stoffei	genschaften silikatischer Gläser	8
		2.2.1	Viskosität	8
		2.2.2	Dichte	9
		2.2.3	Absorption & Transmission	10
		2.2.4	Chemische Beständigkeit	11
	2.3	Diffusi	ion	12
		2.3.1	Die Fick'schen Gesetze	12
		2.3.2	Spezielle Lösung des 2. Fick'schen Gesetzes	13
		2.3.3	Temperaturabhängigkeit	13
		2.3.4	Diffusion & Viskosität	14
	2.4	Schwe	fel in Silikatischen Schmelzen	15
		2.4.1	Löslichkeit	16
		2.4.2	Schwefel-Speziation	21
		2.4.3	Schwefeldiffusion	26
3	Expe	eriment	elle Methoden	33
	3.1	Modell	lgläser dieser Arbeit	33
		3.1.1	Natriumtrisilikat (NS3)	33
		3.1.2	Kalknatronsilikat (NCS)	35
	3.2	Glassy	nthese	37
	3.3	Gasdru	ıckanlage	37
		3.3.1	Probenhalter	39

	3.4	Piston-Zylinder		
	3.5	Synthe	ese Schwefel- und H ₂ O-haltiger Gläser $\ldots \ldots \ldots \ldots \ldots \ldots$	43
		3.5.1	Hochdrucksynthesen	43
		3.5.2	Synthesen bei Umgebungsdruck	45
	3.6	Diffus	ionsexperimente	47
4	Ana	lytische	e Methoden	49
	4.1	Elektro	onstrahl-Mikrosonde (EMPA)	49
	4.2	IR-bas	sierte Gesamtschwefelanalyse	50
	4.3	Bestin	nmung der Schwefelspeziation	53
		4.3.1	ЕМРА	53
		4.3.2	Raman-Spektroskopie	54
		4.3.3	XANES-Spektroskopie	57
	4.4	Bestin	nmung des H_2O -Gehaltes	63
	4.5	Berech	hnung von Diffusionskoeffizienten	64
		4.5.1	Auswerten von Konzentrationsprofilen	64
		4.5.2	Berechnung des prä-exponentiellen Faktors D_0 und der Aktivie-	
			rungsenergie Q	66
5	Schv	wefelsp	eziation in silikatischen Schmelzen	67
	5.1	Synthe	eseexperimente in geschlossenen Au-Kapseln bei Umgebungsdruck	69
	5.2	Synthe	eseexperimente in Tiegeln bei Umgebungsdruck	70
	5.3	Synthe	eseexperimente unter Hochdruck	75
	5.4	Diskus	ssion	78
		5.4.1	Löslichkeitsmechanismen und Entgasung von Schwefel in silika-	
			tischen Schmelzen	78
		5.4.2	Quantifizierung der Schwefelspezies in silikatischen Gläsern	81
6	H_2O)-Diffus	sion in silikatischen Schmelzen	83
	6.1	Ergebnisse der H ₂ O-Diffusionsexperimente $\dots \dots \dots$		
	6.2	Ergebnisse der Redoxpaarexperimente - Typ iv		
	6.3	Diskus	ssion	90
		6.3.1	Auswertung	90
		6.3.2	Zeitabhängigkeit der Diffusionskoeffizienten	92

		6.3.3	Konzentrations- und Temperaturabhängigkeit der Diffusionskoef-	
			fizienten	93
		6.3.4	Vergleich mit früheren Arbeiten	98
7	Schv	vefeldif	fusion in silikatischen Schmelzen	101
	7.1	Sulfat-	& Sulfiddiffusion - Typ i & ii	102
		7.1.1	NS3	102
		7.1.2	NCS	107
	7.2	Redox	paarexperimente	118
		7.2.1	Interne Redoxreaktionen - Typ iii	119
		7.2.2	Externe Redoxreaktionen - Typ iv	121
	7.3	Diskus	sion	127
		7.3.1	Gesamtbetrachtung: Konvektion vs. Diffusion	127
		7.3.2	Reduktion von Sulfat & Bildung von H_2O	130
		7.3.3	We chselwirkung von S^{2-} und H_2O $\hfill O$ (hfill O) $\hfill O$ $\hfill O$ (hfill O) (here the hfill O) (hfill O)	132
8	Schl	ussbetra	achtung	137
Α	Tabe	ellen		157

Kapitel 1

Einleitung

Das Verhalten von Schwefel in Silikatschmelzen ist von großem Interesse für die Glas herstellende Industrie, die Materialwissenschaften (z.B. Läuterung von Schmelzen, Färben von Gläsern) und die Geowissenschaften (Entgasung von Magmen, vulkanische Eruptionen). Trotz sehr unterschiedlicher Druckbereiche sind die Mechanismen der dabei ablaufenden Prozesse in beiden Fällen ähnlich. Bei der Entgasung von Silikatschmelzen spielt die Diffusion und Löslichkeit von Schwefel eine entscheidende Rolle. Beide Eigenschaften sind eng verknüpft mit dem strukturellen Einbau des Schwefels in die Schmelze (z.B. als Sulfid, Sulfit und Sulfat). Abhängig vom Sauerstoffpartialdruck, der Temperatur und der Zusammensetzung des Glases, kann Schwefel in verschiedenen Oxidationszuständen von S^{2-} (Sulfid) bis S^{6+} (Sulfat) vorliegen. Die unter den jeweiligen Bedingungen vorherrschende Spezies hat nicht nur einen starken Einfluss auf die Löslichkeit des Schwefels in der Silikatschmelze, sondern auch auf die Farbgebung des Glases, i. b. im Zusammenhang mit Eisenoxid und der Bildung von Chromophoren in Braungläsern (Beerkens, 2003a, Papadopolous, 1973). Geringe Änderungen der Redoxverhältnisse können somit deutliche Änderungen des Oxidationszustandes des Schwefels in der Schmelze hervorrufen, woraus Blasenbildung und Farbabweichungen resultieren (Beerkens, 2003a). Zusätzliche Kenntnisse über die Diffusionskoeffizienten der diffundierenden Schwefelspezies ermöglichen die Modellierung von Entgasungsprozessen in natürlichen und industriellen Glasschmelzen, was im Falle der Produktion von industriellen Massengläsern für eine Reduzierung der Betriebs- und Herstellungskosten genutzt werden kann.

Schwefel ist ein wichtiger Bestandteil des Läuterprozesses industrieller Glasschmelzen. Als Läuterung wird die Reinigung der Glasschmelze von gelösten Gasen bezeichnet, die beim Einschmelzen der Rohstoffe im Gemenge verblieben sind (Beerkens, 1995).

1 Einleitung

Schwefel wird meist in Form von Sulfaten dem Gemenge als Läutermittel beigemischt. Jedoch kommt es auch zum Schwefeleintrag über die Ofenatmosphäre durch die Schwerölbefeuerung (Wondraczek, 2003) und über Sulfatverunreinigungen des Gemenges und von Recyclingscherben (Ortmann & Höhne, 1999). Vor der Läuterung ist die sogenannte Rauhschmelze sehr inhomogen und reich an Blasen. Diese Blasen sind mitunter sehr klein und enthalten Reaktionsprodukte eingeschlossener Gemengereaktionen (meist CO₂, H₂O und andere aus Verunreinigungen) und Reste der Hohlraumluft. Um einen Aufstieg dieser kleinen Blasen innerhalb einer akzeptablen Zeit zu ermöglichen, muss ein Blasenwachstum z. B. durch gezielte Gasübersättigung erreicht werden. Dies wird durch den Zusatz eines Läutermittels realisiert. Die daraus resultierende Blasenwachstumsgeschwindigkeit und infolgedessen auch die Aufstiegsgeschwindigkeit ist hierbei temperatur- und konzentrationsabhängig (Nölle, 1997).

Bei der Sulfatläuterung werden Na₂SO₄ oder andere Sulfate dem Gemenge beigemischt (Beerkens, 2003b, Müller-Simon, 1998), wodurch Na₂SO₄ und Na₂S (falls Reduktionsmittel wie C vorhanden sind) im Maße ihrer Löslichkeit gelöst in der Schmelze vorliegen. Ungelöster Überschuss an Na₂SO₄ schwimmt der Glasschmelze als Sulfatgalle auf. Ein zu großer Überschuß an Sulfatgalle führt zu thermischer Isolation und somit zur Unterkühlung der Schmelze. Oberhalb einer Temperatur von 1400°C dissoziiert Sulfat nach folgender Reaktion

$$SO_4^{2-} = SO_2 + \frac{1}{2}O_2 + O^{2-}.$$
 (1.1)

Infolge des Einschmelzprozesses hat die Schmelze einen bestimmten Sulfat- und Sulfidgehalt und daher bei jeder Temperatur bestimmte Gleichgewichtspartialdrücke für SO_2 und O_2 . So steigen die Gleichgewichtskonstanten der Gleichgewichtspartialdrücke mit der Temperatur. Sobald der SO_2 - oder der O_2 -Gleichgewichtspartialdruck der Schmelze größer ist, als der der Blase, beginnt diese zu wachsen und infolgedessen zu steigen (Nölle, 1997). Wachstum und Schrumpfen der Blasen werden durch die Parameter Löslichkeit, Diffusion und Anfangskonzentration der beteiligten Gase in der Schmelze sowie deren Partialdrücke in der Blase und oberhalb der Schmelze bestimmt (Nemec & Cincibusova, 2005).

Alternativ kann auch Natriumsulfit Na_2SO_3 als Läutermittel eingesetzt werden. Daneben wird vereinzelt Kohle zugesetzt oder SO_2 in die Schmelze eingeblasen, um den Läuterungsprozeß bei oxidierenderen Gemengen zu verbessern. Dies bewirkt ein kleineres Sulfat/Sulfid-Verhältnis in der Schmelze und folglich die Bevorzugung von SO_2 als Läutergas (Poole, 1969).

Kenntnisse über das Zusammenspiel zwischen schwefelhaltigen Fluiden und silikatischen Schmelzen sind jedoch nicht nur für die Kontrolle industrieller Herstellungsprozesse von Bedeutung, sondern auch im Hinblick auf vulkanische Entgasungsprozesse. In ihrer initialen Phase gleichen die Reaktionen und Redoxübergänge natürlicher magmatischer Entgasungsprozesse denen des Läuterns industrieller Schmelzen. In beiden Fällen führt eine Änderung der Verhältnisse zu einer Übersättigung an volatilen Komponenten und infolgedessen zu einer Blasenbildung innerhalb der Silikatschmelze und deren Entgasung. Schwefel ist nach H₂O und CO₂ die dritthäufigste Komponente in vulkanischen Gasen und tritt meist in Form von SO₂ und H₂S auf (Carroll & Webster, 1994, Webster & Mandeville, 2007). Die Wichtigkeit von Schwefel innerhalb von magmatischen Entgasungsprozessen wurde mehrfach beschrieben und ein direkter Zusammenhang in Bezug auf die Ausbruchsart und -intensität vulkanischer Eruptionen hergestellt (Aiuppa et al., 2004, 2002). Abhängig von Intensität und Zusammensetzung hat der Ausstoß vulkanischer Emissionen starke Auswirkungen auf das Klima, insbesondere wenn diese vulkanischen Aerosole hohe Gehalte an SO2 und H2SO4 aufweisen. So führte der Ausstoß von insgesamt etwa 17 Mio. t SO₂ beim Ausbruch des Pinatubo (Philippinen) im Juni 1991 (Gerlach et al., 1999) zu einem zwei Jahre anhaltendem Rückgang der globalen Durchschnittstemperatur um 0,5°C (Self, 2006, Self & Blake, 2008). Im Vergleich dazu lag die Summe der SO₂-Emissionen Deutschlands im Jahr 2004 bei 562.000 t (EEA, 2006). Dies verdeutlicht die globalen klimatischen Auswirkungen, die von einer einzigen Eruption ausgehen können.

Die Löslichkeit des Schwefels ist eine wichtige Kenngröße des resultierenden Glasproduktes oder der natürlichen Silikatschmelze und hat direkten Einfluss auf deren Eigenschaften. Arbeiten zur Untersuchung der Schwefellöslichkeit zeigen, dass diese von der Schmelztemperatur, der Sauerstofffugazität und Schwefelfugazität stark beeinflusst wird. Somit ist auch die Schwefelspeziation ein wichtiger Parameter, der die Schwefellöslichkeit beeinflusst. Diese Zusammenhänge wurden in zahlreichen Arbeiten für natürliche und industriell wichtige Silikatschmelzen aufgezeigt (Beerkens, 2003b, Carroll & Rutherford, 1988, Fincham & Richardson, 1954, O'Neill & Mavrogenes, 2002, Papadopolous, 1973, Scaillet & Pichavant, 2005, Wallace & Carmichael, 1994). Somit werden die Produkteigenschaften industriell hergestellter Gläser durch die Effizienz der Sulfatläuterung beeinflusst.

In der vorliegenden Arbeit wird die Speziation und Diffusivität von Schwefel in Na-Trisilikat- und Kalk-Natron-Silikat-Schmelzen untersucht. Die Hauptziele beinhalten die

1 Einleitung

Untersuchung (i) der Korrelation zwischen der Diffusion und der Speziation von Schwefel und (ii) der Mechanismen von Redoxreaktionen von Schwefel in silikatischen Schmelzen. Im Zusammenhang mit letzterer Fragestellung wird auch die H₂O-Diffusion untersucht. Die ermittelten Daten sollen Anwendung bei der Modellierung von Entgasungsprozessen von natürlichen und technischen Silikatschmelzen finden.

Kapitel 2

Grundlagen

2.1 Natur und Struktur silikatischer Gläser

Löslichkeiten, Diffusion und Speziationen bestimmter Ionen oder Moleküle sind eng mit der Struktur des silikatischen Glases oder der Schmelze verbunden. Basierend auf strukturellen Überlegungen ist es möglich Abschätzungen dieser Parameter vorzunehmen oder zu berechnen.

Generell wird Glas nach DIN 1259 als ein anorganisches Schmelzprodukt bezeichnet, das im wesentlichen ohne Kristallisation erstarrt. Jedoch ist diese Definition sehr allgemein gehalten und enthält keinerlei spezifische Aussagen. Kühlt eine Glasschmelze ab, so setzt im Normalfall bei der Schmelztemperatur T_S die Kristallisation ein. Hierbei erfolgt eine spontane Volumenabnahme. Dies zeigt, dass der Ausdehnungskoeffizient eines Kristalls geringer ist als bei einer Flüssigkeit/Schmelze. Kommt es zu einer schnelleren Abkühlung der Schmelze, so setzt bei T_S keine Kristallisation und das Volumen verringert sich stetig. In diesem Fall wird von einer unterkühlten Schmelze gesprochen, die sich in einem metastabilen thermodynamischen Gleichgewicht befindet. Die Kurve der Volumenänderung biegt bei einer bestimmten Temperatur ab und verläuft dann in etwa parallel zu der des Kristalls. Ursache dafür ist die zunehmende Viskosität der Schmelze. Dieses Kurvenintervall wird als Glastransformationstemperatur T_g bezeichnet und liegt für eine bestimmte Abkühlrate bei einer Viskosität von 10^{12} Pa·s (s. Abb. 2.1). Oberhalb von T_g wird Glas als Glasschmelze bezeichnet, unterhalb von ihr als Festkörper (Scholze, 1988).

Über die oben aufgeführten Definitionen kann man bereits auf eine Struktur des Glases schließen. Bereits 1932 wurde die Netzwerkhypothese nach Zacharasien (1932) veröffentlicht, die breite Zustimmung fand und durch Warren (1941) verfeinert wurde. Daher

Abbildung 2.1: Schematische Darstellung des Volumens in Abhängigkeit von der Temperatur am Beispiel der Glastransformation, nach Scholze (1988).

spricht man heute von der Netzwerkhypothese nach Zacharasien-Warren. Grundannahme von Zacharasien war, dass die Energieunterschiede zwischen einem Glas und einem Kristall gleicher Zusammensetzung aufgrund der niedrigen Schmelzenthalpie gering sind. Daher müssten im Glas dieselben Bindungszustände vorliegen, was in silikatischen Gläsern für SiO₄-Tetraeder spricht. Diese bilden im Gegensatz zum Kristall ein unregelmäßiges Netzwerk, in dem die Tetraeder durch Brückensauerstoffe verbunden werden (s. Abb. 2.2). Zacharasien (1932) stellte folgende Bildungsbedingungen für oxidische Gläser auf:

- Gläser besitzen ein nicht-periodisches Netzwerk molekularer Baugruppen (s. Abb. 2.2).
- Ein Sauerstoffion ist nicht an mehr als zwei Kationen gebunden.
- Die Koordinationszahl der netzwerkbildenden Kationen mit Sauerstoff beträgt 3 oder 4.
- Sauerstoff-Polyeder haben gemeinsame Ecken, jedoch keine gemeinsamen Kanten oder Flächen.
- Kationen mit einer Koordinationszahl ≥ 6 wirken als Netzwerkbildner.

Diese Bildungsbedingungen werden durch das Auftreten netzwerkbildender Polyeder wie B_2O_3 , As_2O_3 , P_2O_5 oder SiO₂ in Glas bestätigt. Jedoch ist die Hypothese nicht universell anwendbar, da sie von einem kristallchemischen Standpunkt ausgeht und die chemischen Bindungsverhältnisse im Glas nicht direkt beschreibt.

Abbildung 2.2: Ebene Darstellung eines a) periodischen und b) eines nicht-periodischen SiO₂-Netzwerks, nach Zacharasien (1932).

Die angegebenen Beispiele treffen nur für oxidische Gläser zu, die nur aus einer oxidischen Komponente bestehen. Jedoch sind Multikomponenten-Systeme auf deren Basis möglich. In binären (R₂O-SiO₂, R=Alkali) und ternären Systemen (MO-R₂O-SiO₂, M=Erdalkali, R=Alkali) wird durch den Einbau von Alkalien und Erdalkalien die Struktur des SiO₂-Netzwerks stark verändert. Dies wird v. a. deutlich, wenn das Hinzufügen von Na₂O zu einem SiO₂-Glas schematisch darstellt wird:

$$\equiv \mathrm{Si} - \mathrm{O} - \mathrm{Si} \equiv +\mathrm{Na} - \mathrm{O} - \mathrm{Na} \rightarrow \equiv \mathrm{Si} - \mathrm{O}^{-\mathrm{Na}}{}_{\mathrm{Na}} - \mathrm{O} - \mathrm{Si} \equiv .$$
(2.1)

Durch das Einbringen wird der zwischen den Si-Atomen bestehende Brückensauerstoff (BO - *Bridging Oxygen*) aufgebrochen und in der entstandenen Trennstelle wird Na₂O eingebaut. Die nicht-brückenbildenden Sauerstoffe werden demnach als Trennstellensauerstoffe (NBO - *Non-Bridging Oxygen*) bezeichnet. Aus diesem Grund werden die oxidischen Komponenten MgO, CaO und BaO (Erdalkalien) und Li₂O, Na₂O und K₂O als Netzwerkwandler bezeichnet. Chemische und physikalische Beständigkeit des Silikatglases werden durch den Gehalt der einzelnen Oxide stark beeinflusst. So ist die chemische Beständigkeit in Gläsern mit höheren CaO/Na₂O-Verhältnissen besser.

Die Struktur und auch die Stoffeigenschaften silikatischer Gläser, gegeben durch chemische Zusammensetzung, haben einen starken Einfluss auf Diffusion, Speziation und Löslichkeiten volatiler Elemente.

2.2 Stoffeigenschaften silikatischer Gläser

Physikalische und chemische Eigenschaften von silikatischen Schmelzen und ihren korrespondierenden Gläsern sind von großer Bedeutung im Herstellungsprozess wie auch im späteren Anwendungsbereich. Die wichtigsten dieser Eigenschaften, die für diese Arbeit von Bedeutung sind, seien hier beschrieben.

2.2.1 Viskosität

Die Viskosität ist der Proportionalfaktor zwischen Schubspannung τ und der dadurch verursachten Scherrate $d\gamma/dt$:

$$\tau = \eta \cdot \frac{d\gamma}{dt} \tag{2.2}$$

Angegeben wird die Viskosität in der modernen Literatur in $Pa \cdot s$. Die Viskosität ist stark temperaturabhängig und reicht von einem theoretischen Wert von 10^{18} Pa $\cdot s$ bei Zimmertemperatur bis 10 Pa $\cdot s$ bei den höchsten angewandten Temperaturen während des Herstellungsprozesses, was stark von der Zusammensetzung der Glasschmelze abhängt (Nölle, 1997). Die Viskosität kann bei verschiedenen Temperaturen durch Viskositätsfixpunkte charakterisiert werden. Die in Tabelle 2.1 aufgeführten Temperaturen der Viskositätsfixpunkte sind stark von der Zusammensetzung des Glases oder seiner Schmelze abhängig und können von einem Glastyp zum anderen große Unterschiede aufweisen (siehe Abschnitt 3.1).

Für den Herstellungsprozess von Massengläsern ist die Viskosität eine der wichtigsten Größen, viele Schritte der Herstellung wie Relaxieren und Verformen werden an bestimmte Viskositätsregimes gebunden. Oberhalb der Temperatur der Glastransformation

Viskosität	Bezeichnung	
(Pa s)		
$10^{13,5}$	Untere Kühltemperatur	
	15h-Entspannungspunkt	
	Strain-Point	
$10^{12,0}$	Obere Kühltemperatur	
	15min-Entspannungspunkt	
	Glastranformation T_g	
$10^{6,6}$	LITTLETON-Temperatur	
	Softening-Point	
$10^{4,0}$	Fließtemperatur	
	Flow-Point	
$10^{3,0}$	Einsink-Temperatur	
	Working-Point	

Tabelle 2.1: Viskositätsfixpunkte, aus Nölle (1997).

lässt sich die Viskosität von silikatischen Gläsern aufgrund der Temperaturabhängigkeit (man spricht vom Arrhenius-Verhalten wenn log $\eta \propto 1/T$, s. Abschnitt 2.3.3) mit Hilfe der Vogel-Fulchner-Tamman-Gleichung (VFT-Gleichung) berechnen. Unterhalb von T_g ist dieser Zusammenhang nicht mehr gegeben. Die Schreibweise der so genannten VFT-Gleichung (Fulchner, 1925, Tammann & Hesse, 1926, Vogel, 1921) lautet:

$$\eta = \eta_0 \cdot \exp\left(\frac{b}{T - T_0}\right) \tag{2.3}$$

Hierbei ist η die Viskosität, T die Temperatur und η_0 , b und T_0 sind als Konstanten zu verstehen. Üblich ist zudem die Darstellung in logarithmierter Form:

$$\log \eta = A + \frac{B}{T - T_0} \tag{2.4}$$

wobei A, B und T_0 Konstanten sind. Diese kann man aus drei Messpunkten auf Basis von η und T berechnen. Dadurch besitzt man richtig angewendet eine effektive Interpolationsformel.

2.2.2 Dichte

Unter Silikatgläsern ist reines SiO₂ das leichteste mit einer Dichte von 2.20 g/cm³. Je nach Zusammensetzung der Gläser kann die Dichte stark schwanken. So sind unter den tech-

nischen Silikatgläsern solche mit einem hohen Anteil an B_2O_3 die leichtesten, während Gläser mit einem hohen Anteil an PbO eine besonders hohe Dichte besitzen.

In dieser Arbeit ist die Dichte bei der Orientierung von Diffusionspaaren während eines Experiments von Bedeutung, da schwefelhaltige Gläser in der Regel eine geringere Dichte haben als schwefelfreie. Die Dichte von Silikatgläsern lässt z. B. sich nach Appen (1949) aus der Zusammensetzung berechnen (siehe Scholze, 1988).

2.2.3 Absorption & Transmission

Zu den wichtigsten optischen Eigenschaften von Gläsern zählen die Absorption und Transmission, die wichtige Stoffeigenschaften des jeweiligen Glases darstellen.

Verliert ein Lichtstrahl mit einer Intensität I_{λ} auf seinem Weg durch eine Schicht mit der Dicke dx an Intensität, wobei der Intensitätsverlust $-dI_{\lambda}$ proportional zur Dicke dx ist, so ergibt sich:

$$-dI_{\lambda} = \alpha_{\lambda} I_{\lambda} dx \tag{2.5}$$

Durch Integration erhält man das Absorptionsgesetz

$$\alpha_{\lambda} = \frac{I_{\lambda 1} - I_{\lambda 2}}{I_{\lambda} 1} = 1 - e^{\alpha_{\lambda} x}$$
(2.6)

 α_A ist der spektrale Absorptionskoeffizient, a_λ das Absorptionsvermögen bei der Wellenlänge λ . Diese Größen sind sowohl wellenlängen- als auch temperaturabhängig, a_λ ebenfalls abhängig von der Schichtdicke. Das Produkt $\alpha_\lambda x$ wird Extinktion genannt.

Der Transmissionsgrad eines Glases ist das Verhältnis von einfallender zu durchgehender Intensität eines Lichtstrahls. Angegeben wird der Transmissionsgrad I_T als

$$T = \frac{I_T}{I_0} \tag{2.7}$$

wobei I_0 die einfallende Intensität und I_T die transmittierte Intensität ist. Insgesamt verteilt sich die einfallende Intensität auf Reflexion, Absorption und Transmission:

$$I_0 = I_R + I_A + I_T (2.8)$$

Besonders in der IR-Spektroskopie (hier zur Bestimmung des H_2O -Gehaltes) sind die optischen Eigenschaften der verwendeten Gläser von großer Bedeutung.

2.2.4 Chemische Beständigkeit

Generell besitzen silikatische Gläser eine hohe Beständigkeit gegenüber Chemikalien bei üblichen Anwendungstemperaturen, wodurch sie ein breites Anwendungsspektrum abdecken. Eine Lösung herkömmlicher Gläser, die SiO₂ als Hauptkomponente besitzen, ist lediglich durch Flusssäure möglich:

$$\mathrm{SiO}_2 + 6\mathrm{HF} \to \mathrm{H}_2 \left[\mathrm{SiF}_6\right] + 2\mathrm{H}_2\mathrm{O} \tag{2.9}$$

Im Allgemeinen interagiert Glas auch mit H_2O , jedoch sind die Reaktionsgeschwindigkeiten in den meisten Fällen sehr langsam, so dass von einer Quasi-Resistenz gesprochen werden kann (Nölle, 1997). Die Reaktionen von Gläsern mit wässrigen Medien, Säuren oder Basen, die eine Veränderung des Erscheinungsbilds nach sich ziehen, bezeichnet man als Glaskorrosion (Scholze, 1988).

Die Beständigkeit von reinem Kieselglas (SiO₂) gegenüber Wasser und Säuren ist generell hervorragend, jedoch haben viele industrielle Massengläser große Anteile anderer Oxidkomponenten, wie z. B. Na₂O, K₂O oder CaO, um bestimmte Stoffeigenschaften für spezielle Anwendungsbereiche zu erreichen. Gerade diese Anteile führen jedoch bei einigen Glastypen zu einer leichteren Korrosionsanfälligkeit. Die Korrosion durch H₂O beruht auf dem Kationenaustausch von z. B. Na⁺ und H⁺:

$$\equiv \mathrm{Si} - \mathrm{O}^{-} \mathrm{Na}_{(q)}^{+} \rightleftharpoons \equiv \mathrm{Si} - \mathrm{OH}_{(g)} + \mathrm{Na}_{(l)}^{+}$$
(2.10)

wodurch die H⁺-Ionenkonzentration des Wassers abnimmt und die Alkaliionenkonzentration zunimmt. Zunächst handelt sich also um einen Säureangriff, der mit fortschreitender Korrosion zu einem Laugenangriff wird (Nölle, 1997, Priest & Levy, 1960, Scholze, 1988). Durch eine Zugabe von Al₂O₃, B₂O₃, MgO oder auch ZnO kann die chemische Beständigkeit von Silikatgläsern stark verbessert werden. Jedoch wirkt sich dies meist negativ auf die Bearbeitbarkeit der Gläser und i. b. auf die Viskosität aus (Nölle, 1997, Scholze, 1988).

Bei den untersuchten Natriumsilikat- und Kalknatriumsilikatgläsern kann es zu einer Reaktion mit Wasser sogar aus der Luftatmosphäre kommen. Bei Synthesen und Experimenten, die nominell trocken durchgeführt werden, ist daher eine thermische Vorbehandlung nötig.

2.3 Diffusion

Der selbständige Transport eines Stoffes in einem Medium wird als Diffusion bezeichnet. In dieser Arbeit wird die Diffusion von Schwefel in silikatischen Schmelzen untersucht. Wie in Abschnitt 1 beschrieben, wird Schwefel in Form von Sulfaten als Läutermittel eingesetzt. Der Transport von Schwefel und dessen Mobilität in silikatischen Schmelzen im Herstellungsprozess und speziell während der Läuterung beeinflusst verschiedene Prozesse wie die Bildung und Resorption von Blasen, die Kristallbildung und die Bildung von Sulfid-Schlacken auf der Glasschmelze. Letzteres führt zu einer thermischen Isolation der Schmelze gegen die Ofenatmosphäre.

Diffusion lässt sich in verschiedene Typen unterteilen. Dazu gehören z. B. Selbstdiffusion D, Tracerdiffusion D* und chemische Diffusion \tilde{D} . Die Selbstdiffusion beschreibt z. B. die thermische Beweglichkeit eines Teilchens in Abwesenheit von chemischen Potentialgradienten. Bei der Tracerdiffusion werden markierte Teilchen wie stabile oder radioaktive Isotope in sehr geringen Konzentrationen eingesetzt, um deren Beweglichkeit zu untersuchen. Die erhaltenen Diffusionskoeffizienten sind für Selbst- und Tracerdiffusion in der Regel ähnlich, allerdings kann D* durch Korrelationseffekte bei den Teilchensprüngen auch kleiner als \tilde{D} sein ($D^* = f \cdot \tilde{D}$). Unterschiede resultieren aus Korrelationseffekten bei Teilchensprüngen. Die chemische Diffusion beruht auf einem chemischen Gradienten, wie er auch häufig in natürlichen silikatischen Schmelzen auftritt. Im Gegensatz zur Tracerdiffusion ist die Konzentration des diffundierenden Stoffes bei der chemischen Diffusion jedoch deutlich höher, so dass entlang des Diffusionsprofils eine chemische Veränderung des Mediums zu beobachten ist (Chakraborty, 1995, Watson, 1994). Einen Sonderfall der chemischen Diffusion stellt die Interdiffusion dar, bei der sich Teilchenströme durch Ladungskopplung kompensieren (z. B. Na⁺ \leftrightarrow K⁺, Chakraborty, 1995).

2.3.1 Die Fick'schen Gesetze

Das Phänomen der Diffusion wurde 1855 von Adolph Fick zum ersten Mal beschrieben. Eine initial inhomogene Phase kann bei einer bestimmten Temperatur Homogenität erreichen. Erreicht wird dies durch die Diffusion von Atomen aus Regionen hoher Konzentration in Regionen niedriger Konzentration. Im *1. Fick'schen Gesetz* wird beschrieben, dass der eindimensionale Fluss eines Stoffes proportional zum Konzentrationsgradienten ist:

$$J = -D \cdot \frac{\partial c}{\partial x} \tag{2.11}$$

wobei *J* der Materiefluss in mol/m²s, *D* der Diffusionskoeffizient in m²/s, *c* die Konzentration in mol/m³ und *x* der Ort in Diffusionsrichtung in m ist.

Der zeitliche Aspekt der eindimensionalen Diffusion (D = const) wird mit dem 2. *Fick'schen Gesetz* beschrieben:

$$\left(\frac{\partial c}{\partial t}\right)_x = -D \cdot \frac{\partial^2 c}{\partial x^2} \tag{2.12}$$

wobei t die Zeit der Diffusion in s ist.

2.3.2 Spezielle Lösung des 2. Fick'schen Gesetzes

Um das 2. Fick'sche Gesetz für die in dieser Arbeit durchgeführten Diffusionsexperimente nutzen zu können, muss dieses unter Berücksichtigung spezieller Rand- und Anfangsbedingungen gelöst werden. Zahlreiche Lösungen sind in Crank (1980), Watson (1994) und Chakraborty (1995) gegeben. Bei den hier durchgeführten Experimenten handelt es sich um zylinderförmige Diffusionspaare, die in einem Edelmetallcontainer für eine bestimmte Zeit getempert wurden (s. auch Abb. 2.3).

Unter der Annahme, dass der Diffusionskoeffizient *D* unabhängig von der Zusammensetzung (also konstant), die effektive Länge des Diffusionspaares in beide Richtungen unendlich ist und ein initialer Konzentrationssprung an der Kontaktfläche vorliegt, erhält man folgende Beziehung:

$$c_{x,t} - c_2 = \frac{1}{2} \left(c_1 - c_2 \right) \cdot \left(1 - erf \frac{x}{\sqrt{4Dt}} \right)$$
(2.13)

wobei x die Distanz von der initialen Kontaktfläche x=0, c_1 die initiale Konzentration bei $x \le 0$, c_2 die initiale Konzentration bei $x \ge 0$ sind, und 1 - erf die konjugierte Error-Funktion bezeichnet.

2.3.3 Temperaturabhängigkeit

Diffusion ist ein thermisch induzierter Prozess. Empirisch dargestellt hängt der Diffusionskoeffizient D in m²/s in einem bestimmten Temperaturintervall (meist über T_g) von der Temperatur T in K nach der Arrhenius-Beziehung ab:

$$D = D_0 \cdot \exp\left(-\frac{Q}{RT}\right) \tag{2.14}$$

wobei D_0 in m²/s der prä-exponentielle Faktor und Q in kJ/mol eine temperaturunabhängige Konstante des diffundieren Stoffes und des Mediums sind. Die Aktivierungsenergie

Abbildung 2.3: Schematische Darstellung eines Diffusionspaarexperiments vor dem Tempern bei t=0 und nach experimenteller Laufzeit t>0. Die mathematische Beziehung wird in Gleichung 2.13 beschrieben.

Q lässt sich aus der Geradensteigung einer Arrhenius-Darstellung mit der inversen Temperatur (1000/T, T in K) gegen log D (D in m²/s) extrahieren. Beispiele aus der Literatur beschreiben, dass die Diffusion in kristallinen silikatischen Materialen von der linearen Beziehung abweichen kann (Dingwell, 2006, Gligor & de Leeuw, 2006). Diese Möglichkeit sollte nicht außer Acht gelassen werden, gerade wenn multivalente Elemente oder Volatile untersucht werden, deren Speziation von verschiedenen Parametern wie Temperatur, Druck oder Sauerstofffugazität anhängen (Watson, 1994). Außerdem wurden Abweichungen im Bereich der Glastransformation (T_q) festgestellt (Hart, 1981).

2.3.4 Diffusion & Viskosität

Um den Zusammenhang des Transports zwischen Viskosität und Diffusion herzustellen, wurden zwei empirische Gleichungen hergeleitet, die *Stokes-Einstein-* und die *Eyring-Gleichung*. Für molekulare Flüssigkeiten oder Schmelzen wurde die Stokes-Einstein-Gleichung aufgestellt:

$$D = \frac{k \cdot T}{6 \cdot \pi \cdot \eta \cdot r} \tag{2.15}$$

wobei k die Boltzmann-Konstante (1,38065 \cdot 10²³ J/K), T die Temperatur in K, η die Viskosität in Pa·s und r der Radius des Moleküls in m ist. Fälschlicherweise wird die *Stokes-Einstein-Gleichung* oft für silikatische Schmelzen angewendet. Jedoch hängen in silikatischen Schmelzen Diffusion und Viskosität von thermisch induzierten Sprüngen ab (Chakraborty, 1995, Dingwell, 2006). Dadurch wird eine Darstellung des Zusammenhangs zwischen Viskosität und Diffusion mit Hilfe der *Eyring-Beziehung* möglich:

$$D_{\eta} = \frac{k \cdot T}{\lambda \cdot \eta} \tag{2.16}$$

wobei k die Boltzmann-Konstante (1,38065 $\cdot 10^{23}$ J/K), T die Temperatur in K, λ die Sprunglänge in m und η die Viskosität in Pa·s sind. Mit der *Eyring-Beziehung* kann die Selbstdiffusion von Netzwerkbildnern wie Si und Al, also das viskose Fließen des Silikatnetzwerks, beschrieben werden. Dieses viskose Fließen ist nur zum Teil mit der eigentlichen Diffusion vergleichbar. Die Eyring-Beziehung basiert auf der Annahme, dass beim viskosen Fließen und der Diffusion von Elementen der gleiche Übergangszustand durchlaufen wird. Hierfür ist das Aufbrechen und Verknüpfen von Brückensauerstoffen der SiO₄-Tetraeder ein fundamentaler Schritt bei beiden Prozessen. Dadurch erhält man für die *Eyring-Beziehung* eine Sprunglänge λ von 0,25 bis 0,30 nm, was dem Si-Si-Abstand zweier benachbarter SiO₄-Tetraeder (siehe Abbildung 2.4) entspricht (Henderson, 2005, Henderson et al., 2006). Aus diesem Grund ist der Ansatz von Gleichung 2.16 in diesem Zusammenhang passender. Einige Arbeiten wie Behrens & Haack (2007) zeigen jedoch, dass niedrige Aktivierungsenergien auf einen geringeren Zusammenhang zwischen Diffusion und der Viskosität des silikatischen Mediums schließen lassen.

2.4 Schwefel in Silikatischen Schmelzen

Abhängig vom Sauerstoffpartialdruck liegt Schwefel in unterschiedlichen Oxidationsstufen von -2 bis +6 vor. Weiter haben auch die Temperatur und die Zusammensetzung der Silikatschmelze einen starken Einfluss auf die Speziation des Schwefels. Die folgenden Abschnitte sollen einen Überblick über die Löslichkeit und Speziationen des Schwefels in Abhängigkeit der zuvor genannten Parameter in verschiedenen silikatischen Schmelzen geben. Als multivalentes Element kann Schwefel in folgenden Oxidationsstufen vorliegen:

Abbildung 2.4: Schematische Darstellung des SiO₄-Tetraeder-Netzwerks eines reinen Kieselglases (SiO₂) mit Si (hellgrau) und O (dunkelgrau).

Sulfat	
chemisch gelöst als SO_4^{2-} , physikalisch als SO_3	
Sulfit	
chemisch gelöst als SO_3^{2-} , physikalisch als SO_2	
elementarer oder nativer Schwefel	
Mono-Sulfid	
Di-Sulfid	

Hierdurch ergeben sich für die verschiedenen Schwefelspezies auch unterschiedliche Anionen- bzw. Kationenradien (s. Tab. 2.2).

2.4.1 Löslichkeit

Die Löslichkeit von Schwefel wurde in einer Vielzahl von Arbeiten in Abhängigkeit vom Sauerstoffpartialdruck oder der Glaszusammensetzung untersucht (z. B. Beerkens, 2003b, Botcharnikov et al., 2004, Carroll & Webster, 1994, Haughton et al., 1974, Kramer, 1996, Papadopolous, 1973, Webster & Mandeville, 2007). Die Löslichkeit von Schwefel in silikatischen Schmelzen bzw. den äquivalenten Gläsern liegt hierbei abhängig von Druck, Temperatur, Redoxbedingungen und Grundzusammensetzung zwischen nur wenigen ppm

Ion	Oxidationszustand	Radius (Å)
S^{2-}	-2	1,70
S	0	1,04
S^{4+}	+4	0,51
S^{6+}	+6	0,43
SO_3^{2-}	+4	2,74
SO_4^{2-}	+6	2,78
O^{2-}	-2	1,26

Tabelle 2.2: Anionen- und Kationenradien der Schwefelspzies, nach Shannon (1976)

(parts per million - 10⁻⁶) und einigen Gew.%. Um zudem eine Berechnung und Quantifizierung der vorherrschenden Schwefelspezies zu ermöglichen, wurden für verschiedene natürliche und technische silikatische Schmelzen auf Basis experimenteller Daten Modelle erstellt (Moretti & Ottonello, 2005, Fincham & Richardson, 1954, O'Neill & Mavrogenes, 2002, Scaillet & Pichavant, 2005, Wallace & Carmichael, 1992), die für atmosphärische Umgebungsdrücke wie auch für hohe georelevante Druckverhältnisse gültig sind.

Hierbei wird angenommen, dass Sulfat unter oxidierenden Bedingungen und Sulfid unter reduzierenden Bedingungen stabil ist. Um die Stabilitätsfelder der jeweiligen Schwefelspezies zu definieren haben Fincham & Richardson (1954) erstmals verschiedene silikatische Gläsern mit SO₂-haltigen Atmosphären ins Gleichgewicht gebracht. Verifiziert wurden diese Experimente mit ähnlichen Ansätzen durch Nagashima & Katsura (1973), Katsura & Nagashima (1974), Carroll & Rutherford (1988), Beerkens (2003b) und Jugo et al. (2005). In diesen Arbeiten wurde belegt, dass der Übergang zwischen Sulfid- und Sulfat-Stabilitätsfeld in silikatischen Gläsern nur über einen engen Bereich der Sauerstofffugazität stattfindet (QFM¹+0,5 bis QFM+1,5). Dies zeigt ein gegensätzliches Verhalten zum Übergang von Fe²⁺ zu Fe³⁺ in silikatischen Schmelzen, der kontinuierlich über einen breiten Redoxbereich stattfindet (siehe Abb. 2.5, Kress & Carmichael, 1991, Behrens & Gaillard, 2006). Anzumerken ist, dass der Umschlagspunkt von Sulfat zu Sulfid nicht wesentlich abhängig von der Zusammensetzung des Grundglases ist und Löslichkeits- und Speziationsmodelle von z. B. Moretti & Ottonello (2005) gut mit experimentell bestimmten Werten übereinstimmen. Jedoch berücksichtigen diese experimentellen Arbeiten und

 $^{^{1}\}log fO_{2}$ des Quarz-Fayalit-Magnetit-Puffer

Modelle nur Sulfat (SO₄²⁻ bzw. S⁶⁺) und Sulfid (S²⁻) als in silikatischen Schmelzen lösbare Spezies.

Abbildung 2.5: Anteil der jeweiligen oxidierten Spezies am Gesamtgehalt von Eisen (Fe) und Schwefel (S) in silikatischen Schmelzen. Daten von Moretti & Ottonello (2005) und Kress & Carmichael (1991) modelliert, übrige Daten experimentell ermittelt.

Schwefel löst sich nach Holmquist (1966) in Form von Sulfat (z.B. als Na_2SO_4) in silikatischen Schwelzen nach:

$$Na_2SO_4 \rightleftharpoons Na_2O + SO_3 \tag{2.17}$$

$$\mathrm{SO}_4^{2^-} \rightleftharpoons \mathrm{SO}_3 + \mathrm{O}^{2^-} \tag{2.18}$$

Demnach entspricht die Gleichgewichtskonstante dieser Reaktionen:

$$K_{SO_4^{2-}} = \frac{[Na_2O] \times P_{SO_3}}{[Na_2SO_4]} = \frac{[O^{2-}] \times P_{SO_3}}{[SO_4^{2-}]}$$
(2.19)

18

wobei eckige Klammern molare Konzentrationen in der Schmelze entsprechen. Oberhalb von 1100°C zersetzt sich SO₃ bei Umgebungsdruck (1 atm) nach der Gleichgewichtsreaktion:

$$SO_3 \rightleftharpoons SO_2 + \frac{1}{2}O_2 \tag{2.20}$$

$$K_{SO_3} = \frac{P_{SO_2} \cdot P_{O_2}^{1/2}}{P_{SO_3}}$$
(2.21)

Zusammengefügt ergeben die Gleichungen 2.17 und 2.20:

$$Na_2SO_4 \rightleftharpoons Na_2O + SO_2 + \frac{1}{2}O_2$$
(2.22)

$$SO_4^{2-} \rightleftharpoons O^{2-} + SO_2 + \frac{1}{2}O_2$$
(2.23)

$$K_{SO_4^{2-}} = \frac{[Na_2O] \cdot P_{SO_2} \cdot P_{O_2}^{1/2}}{[Na_2SO_4] \cdot K_{SO_3}} = \frac{[O^{2-}] \cdot P_{SO_2} \cdot P_{O_2}^{1/2}}{[SO_4^{2-}] \cdot K_{SO_3}}$$
(2.24)

SO₃ liegt zu einem kleinen Anteil in der Schmelze gelöst vor, dieser nimmt aus Entropiegründen mit steigender Temperatur ab. Ausgehend von diesen Gleichgewichtsreaktionen sollte Sulfit als stabile Schwefelspezies in silikatischen Gläsern und Schmelzen diskutiert werden. In den Arbeiten von Nagashima & Katsura (1973), Katsura & Nagashima (1974), Beerkens (2003b) und Beerkens (2005) wird in diesem Zusammenhang eine Minimum-Löslichkeit von Schwefel in silikatischen Schmelzen abhängig vom Sauerstoffpartialdruck aufgezeigt (siehe Abb. 2.6). Zumeist liegen die Löslichkeiten von Schwefel bei intermediären Redoxverhältnissen nahe oder sogar unterhalb der analytischen Nachweisgrenze.

Jedoch gibt es Arbeiten wie von Klouzek et al. (2007), die die Entgasung von SO_2 (S⁴⁺) aus silikatischen Schmelzen mit gaschromatographischen Methoden belegen. Bei einem Umgebungsdruck von 1 atm und Entgasung aus einem offenen System kann SO_2 auf mehreren Wegen gebildet werden:

$$3SO_{4\,(m)}^{2-} + S_{(m)}^{2-} \rightleftharpoons 4SO_{2\,(g)} + 4O_{(m)}^{2-}$$
(2.25)

$$2SO_{4(m)}^{2} \rightleftharpoons 2SO_{2(g)} + O_{2(g)} + 2O_{(m)}^{2}$$
(2.26)

Abbildung 2.6: Schwefellöslichkeit in Abhängigkeit des Sauerstoffpartialdrucks in Nasilikatischen (Na₂O·xSiO₂) Schmelzen nach Nagashima & Katsura (1973).

$$\mathrm{SO}_{3(\mathrm{m})}^{2-} \rightleftharpoons \mathrm{SO}_{2(\mathrm{g})} + \mathrm{O}_{(\mathrm{m})}^{2-}$$
 (2.27)

Abhängig von den Redoxverhältnissen und der Zusammensetzung der Glasschmelze treten diese Reaktionen in unterschiedlichen Temperatur-Bereichen auf. So tritt die Sulfatzersetzung in Kalknatronsilikatischen Schmelzen ab 1050°C bei reduzierenden Bedingungen unter Anwesenheit von S^{2–} nach der Reaktion in Gleichung 2.25 auf, bevor sie von 1300 bis 1600°C nach Gleichung 2.26 stattfindet (Klouzek et al., 2007). Zur Entgasung von SO₂ kommt es bei der Herstellung technischer Gläser, wenn der SO₂-Partialdruck 1 bar überschreitet. Die Löslichkeit nimmt rapide ab und es kommt zur Blasenbildung und -erweiterung führt, und letztendlich zum Aufstieg der Blasen, wodurch die
Schmelze zusätzlich homogenisiert wird. Führt man dem Gemenge jedoch ein Reduktionsmittel wie Kohlenstoff zu, so kommt es je nach molarem C/S-Verhältnis zur partiellen Reduktion von Sulfat (SO_4^{2-}) nach

$$SO_{4(m)}^{2} + 2C_{(m)} \rightleftharpoons 2CO_{2(g)} + S_{(m)}^{2}$$
 (2.28)

$$2SO_{4(m)}^{2} + C_{(m)} \rightleftharpoons CO_{2(g)} + SO_{2(g)} + O_{(m)}^{2}$$
(2.29)

Diese Reaktionen treten bereits unterhalb von 1000°C auf, was weit unter den üblichen Läuterungstemperaturen liegt. Durch das Umsetzen von Sulfat zu Sulfid wird der Läuterungseffekt entweder verringert oder ganz unterdrückt, da eine SO₂-Bildung nicht mehr oder nur noch begrenzt möglich ist (Klouzek et al., 2007). Nachteilig kann sich wegen der hohen Viskosität auch Schaumbildung auf der Schmelze auswirken.

2.4.2 Schwefel-Speziation

Wie am Anfang des Kapitels bereits beschrieben wurde, kann Schwefel als multivalentes Element in verschiedenen Oxidationsstufen von S^{2–} bis S⁶⁺ vorliegen. In Silikatschmelzen geowissenschaftlicher Relevanz werden oft nur diese beiden Oxidationszustände berücksichtigt, was auf die Komplexität der Lösungsmechnismen von Schwefel bei unterschiedlichen Redoxbedingungen und die vorhandenen Messmethoden zur Unterscheidung der Schwefel-Speziation in den äquivalenten Gläsern zurückzuführen ist. Bei einfacheren Zusammensetzungen, wie in der Massenproduktion von Gläsern, wird jedoch in Bezug auf die Löslichkeitsmechanismen (s. Gl. 2.17 bis 2.24) die Anwesenheit von S⁴⁺ (Sulfit) als intermediäre Spezies in silikatischen Schmelzen diskutiert. Aussagekräftige Ergebnisse zur Schwefel-Speziation in silikatischen Gläsern können nur mit wenigen analytischen Methoden erzielt werden.

Carroll & Rutherford (1988) synthetisierten schwefelhaltige Gläser natürlicher Zusammensetzung (Trachyandesit, Dazit, Basalt) bei Temperaturen von 900 bis 1150°C, Drücken von 100 bis 450 MPa und relativ zum QFM-Puffer bei reduzierenden und oxidierenden Bedingungen. Die experimentellen Produkte wurden mit einer Elektronenstrahl-Mikrosonde (EMPA²) analysiert. Verglichen wurden die Proben mit kristallinen Standard-Substanzen, die jeweils nur Sulfat (Anhydrit) oder Sulfid (Pyrrhotit) enthielten und sich deshalb in der Lage ihres S *K*-Peaks um $2,27 \cdot 10^{-3}$ Å unterscheiden (Tsujimura et al.,

²EMPA - Electron Microprobe Analyzer

2004). Eine Aussage über den jeweiligen Sulfat- bzw. Sulfidgehalt der jeweiligen Proben ist möglich, jedoch kann Sulfit nicht berücksichtigt werden. Durch die Breite der Peaks kommt es bei dieser Analysemethode zu einer Überlappung, so dass lediglich die reduzierteste (S^{2-}) und die oxidierteste (S^{6+}) Form des Schwefels ins Betracht gezogen werden kann. Die Ergebnisse der Studie von Carroll & Rutherford (1988) werden durch Abb. 2.5 illustriert.

Couch et al. (2004) untersuchten silikatische Gläser einfacher Zusammensetzung (Na-Silikate, K-Silikate, Haplogranite), die bei 900°C und Drücken zwischen 100 und 200 MPa synthetisiert wurden. Schwefel wurde als angereichertes Isotop ³³S zugesetzt, um die spätere Analyse mit NMR zu ermöglichen. Die Redoxbedingungen lagen um den NNO³-Puffer. Die experimentellen Produkte wurden mit ³³S MAS NMR untersucht. Die Ergebnisse von Couch et al. (2004) zeigten, dass silikatische Gläser mit einem Schwefelgehalt von etwa 1 Gew.% mit ³³S MAS NMR untersucht werden können, Schwefel als Sulfat vorlag und in haplogranitischen Proben bevorzugt Verbindungen mit Ca bildet. Die chemische Verschiebung liegt für die sulfathaltigen Gläser zwischen 320 und 370 ppm, bei sulfidhaltigen Gläsern hätte dieser bei etwa 600 ppm liegen müssen.

Tsujimura et al. (2004) untersuchten Na-silikatische Gläser mit Raman-Spektroskopie, die bei Temperaturen von 1000 und 1300°C und Drücken zwischen 100 und 200 MPa synthetisiert wurden. Die Schwefelkonzentration in den Gläsern lag bei 0,2 bis 1,8 Gew.%. Die Gläser waren zumeist sulfathaltig und zeigten mit steigendem Schwefelgehalt einen neuen ausgeprägteren Peak in Raman-Spektren bei einer chemischen Verschiebung von 990 cm^{-1} . Zugesetzt wurde Schwefel als Na_2SO_4 , Na_2SO_3 , $Na_2S_2O_3$ oder nativem Schwefel, um Unterschiede zwischen den zugegebenen Speziationen im Einbau in das Silikatnetzwerk zu untersuchen. Tsujimura et al. (2004) untersuchten außerdem die Struktur des Silikatnetzwerks mit ²⁹Si MAS NMR, um Rückschlüsse auf den Einbau von Schwefel in silikatischen Gläsern zu erhalten. Die Ergebnisse zeigten, dass eine leichte Abnahme der Polymerisation des Silikatnetzwerks zu beobachten war. Mögliche Gründe dafür sind erhöhte Anteile von Na₂SO₄-Verbindungen, geringere Anteile reduzierterer Schwefel-Speziationen in Form von S-S-Verbindungen und eine Änderung des Na/Si-Verhältnisses der Schmelze. Auffälligkeiten bezüglich des Austauschbarkeit von S^{2-} und O^{2-} in SiO_{4-n}S_n ($n \ge 1$) im Silikatnetzwerk konnten nicht festgestellt werden. McKeown et al. (2001) untersuchten sulfathaltige Borosilikatgläser im Vergleich zu kristallinen Sulfatsubstanzen und zeigten, dass isolierte Sulfat-Tetraeder vorzugsweise von Netzwerk-

 $^{^{3}\}log fO_{2}$ des Ni-NiO-Puffers

wandlern wie Na in silikatischen Gläsern umgeben werden. Zudem ist die Sulfatumgebung unabhängig vom borosilikatischen Netzwerk und die Bindungen der Tetraeder sind ungeordneter und schwächer als in kristallinen Substanzen.

Abbildung 2.7: Vergleich der Position der S *K*-Kante von schwefelhaltigen kristallinen Substanzen, die gestrichelte Linie zeigt die Zunahme der Position des Peakmaximums mit der Oxidation (Fleet, 2005).

Eine gute Methode zur Bestimmung der Schwefel-Speziation in silikatischen Gläsern bietet die XANES⁴-Spektroskopie. Dank der hohen spektralen Auflösung kann deutlich zwischen den einzelnen Schwefel-Spezies unterschieden werden. Abhängig von der Kalibration reicht der Bereich des Peakmaximums reicht von 2469,0 eV (reduzierteste Spezies - S²⁻) bis zu 2482,5 eV (oxidierteste Spezies - S⁶⁺) und variiert somit um 13,5 eV. Auffällig ist hierbei, dass die Position des Haupt-Peaks von Sulfit (S⁴⁺) und Sulfat (S⁶⁺) aufgrund der nächsten Nachbarn (O²⁻) in der Koordinationssphäre sehr stabil ist und nicht schwankt. Betrachtet man jedoch die Position der Whiteline von Sulfid (S²⁻) in sulfidhaltigen kristallinen Substanzen, so schwankt diese stark, was v. a. mit den unterschiedlichen

⁴XANES - X-ray Absorption Near Edge Structure

Abbildung 2.8: S *K* XANES von schwefelhaltigen kristallinen Substanzen, alle Spektren wurden auf den Kantensprung normalisiert. Je oxidierter die Schwefelspeziation der Substanz ist, desto höher ist die Absorptionsenergie an der S *K* Kante (McKeown et al., 2004).

Bindungstypen zusammenhängt (siehe Abb. 2.7). Dieser Unterschied tritt in kristallinen Strukturen und auch in silikatischen Gläsern auf, wodurch eine qualitative und in Grenzen auch eine quantitative Analyse der Schwefelspeziation möglich ist (Backnäs et al., 2008, Bonnin-Mosbah et al., 2002, Fleet, 2005, Fleet et al., 2005, McKeown et al., 2004, Paris et al., 2001). Für die Identifikation der Schwefelspeziation ist die Analyse an der S *K*-Kante am verbreitetsten (siehe Abb. 2.8).

Sulfit in silikatischen Gläsern wurde zunächst mit S *K* XANES durch Métrich et al. (2002) nachgewiesen. Jedoch stellte sich heraus, dass S⁴⁺ als Artefakt der Messmethode erzeugt wurde (Wilke et al., 2008). Durch Messbedingungen, die mit einem fokussierten

Abbildung 2.9: Beispiel normalisierter S K XANES von basaltischen Gläsern, die unter oxidierten und reduzierten Bedingungen synthetisiert wurden. Die gezeigten Spektren repräsentieren die typischen Anregungsenergien für Sulfid (2476,5 eV) und Sulfat (2482,5 eV) in basaltischen Gläsern, zusätzlich ist die Lage des Sulfit-Peaks (2478,5 eV) angegeben. Aus Wilke et al. (2008).

Strahl $\leq 20 \,\mu\text{m}$ durchgeführt werden, kommt es in silikatischen Gläsern zur Photoreduktion bzw. Photooxidation von S⁶⁺ bzw. S^{2–} zu S⁴⁺. Die Effekte sind stark abhängig von der Intensität der Röntgenstrahlung auf die Proben und der Länge der Zähl- oder Analysezeiten. Jedoch wird Sulfit als analytisches Artefakt nicht nur durch μ XANES-Messungen erzeugt, sondern auch durch Analysen mit der Elektronenstrahl-Mikrosonde. In beiden Fällen besteht eine starke Abhängigkeit zwischen der Dosis und der Fokussierung. Durch Anpassen der Messbedingungen können derartige Phänomene jedoch unterdrückt werden (Wilke et al., 2008). Typische S *K* XANES Spektren für oxidierte und reduzierte Schwefelspezies in basaltischen Gläsern zeigt Abb. 2.9.

2.4.3 Schwefeldiffusion

Die Diffusion von Schwefel in silikatischen Gläser ist bislang noch unzureichend untersucht. Die Gründe liegen v. a. im komplexen Löslichkeitsverhalten von Schwefel, das abhängig von den Redoxbedingungen ist (siehe Abschnitt 2.4.1 u. 2.4.2). Darüber hinaus sind bei der Untersuchung der Schwefeldiffusion viele verschiedene Methoden und Bedingungen angewendet worden, die einen direkten Vergleich erschweren. Wie in Abschnitt 2.3 wird zwischen verschiedenen Diffusionstypen unterschieden. Für Schwefel wurde in silikatischen Schmelzen zumeist die *chemischen Diffusion* mit folgenden Ansätzen untersucht:

- Diffusion von Schwefel aus einer Sulfatgalle (Na₂SO₄) in eine silikatische Schmelze (Brückner, 1962).
- Diffusion von Schwefel aus einer silikatischen Schmelze in Gasblasen (Nemec & Mühlbauer, 1981, Nemec et al., 1998).
- Diffusion von Schwefel aus einer schwefelhaltigen Atmosphäre (z.B. SO₂) in eine silikatische Schmelze (Nemec & Klouzek, 1995, Schreiber et al., 1989, 1987).
- Modellierungen anhand thermodynamischen Berechnungen bezüglich des Verhaltens von Blasen (Nemec, 1980a,b).
- Diffusive Kristallauflösung (z.B. Anhydrit oder Pyrit) in silikatischen Schmelzen (Baker & Rutherford, 1996).
- Diffusionspaarexperimente, in denen schwefelhaltige und schwefelfreie Glaszylinder in Kontakt gebracht werden ((s. Abb. 2.3, Watson, 1994, Winther et al., 1998, Freda et al., 2005)).

Darüber hinaus fand auch eine Methode der Tracerdiffusion Anwendung:

• Kapillar-Methode, bei der zwischen zwei Glaszylindern eine Tracer-Flüssigkeit (hier Na₂SO₄ (³⁵S)) aufgebracht und getrocknet wird. Anschließend werden die Zylinder in eine Pt-Kapillare überführt (Szurman et al., 2007, Watson, 1994).

Die experimentellen Produkte wurden mit unterschiedlichen analytische Methoden untersucht, um die Diffusionskoeffizienten zu ermitteln. So wurden nasschemische Verfahren (Brückner, 1962, Schreiber et al., 1989, 1987), Bildanalyseverfahren (Nemec & Klouzek, 1995), Mikrosondenmessungen (Baker & Rutherford, 1996, Freda et al., 2005, Watson, 1994, Winther et al., 1998), Messung der radioaktiven Restaktivität (Szurman et al., 2007), sowie mathematische Modellierungen (Nemec, 1980a,b) verwendet.

Schwefeldiffusion in technischen Silikatschmelzen

Einige Datensätze sind bereits für Kalk-Natron-Silikatgläser (NCS) und Flachgläser vorhanden, die jedoch mit unterschiedlichen Methoden erarbeitet wurden. So ergab die experimentelle Studie von Nemec & Mühlbauer (1981), die sich mit der Schwefeldiffusion auf Basis der Entgasung von SO₃ im unteren Läuterungsbereich (1000 bis 1400°C) befasste, folgende Arrhenius-Beziehung:

$$D_{SO_3} = 4,447 \cdot 10^{-7} \frac{m^2}{s} \exp\left(\frac{127,7\frac{kJ}{mol}}{RT}\right)$$
(2.30)

Als Basis für die Berechnung der Diffusionskoeffizienten diente der SO₂-Partialdruck innerhalb von Gasblasen in der abgeschreckten Glasschmelze. Nemec et al. (1998) untersuchten die SO₃-Diffusion aus einer schwefelhaltigen Atmosphäre in eine NCS-Schmelze mit der gleichen Zusammensetzung des in dieser Arbeit verwendeten NCS-Glas (76,0 Gew.% SiO₂, 16,0 Gew.% Na₂O, 10,0 Gew.% CaO; s. Abschnitt 3.1.2). Der Unterschied ist die Berücksichtigung der Sulfatzersetzung nach Gl. 2.17 und 2.20. Die von Nemec et al. (1998) ermittelte Arrhenius-Beziehung lautet:

$$D_{SO_2} = 3,15 \cdot 10^{-4} \frac{m^2}{s} \exp\left(\frac{217,0\frac{kJ}{mol}}{RT}\right)$$
(2.31)

Sulfat wurde in beiden Fällen als Na_2SO_4 zugesetzt, Diffusionskoeffizienten anderer volatiler Komponenten wie z. B. N_2 , CO_2 oder H_2O wurden ebenfalls bestimmt. Die genauen experimentellen Bedingungen wurden in beiden Fällen nicht angegeben.

Die verbreitetste Methode zur Bestimmung von Schwefel-Diffusionskoeffizienten in technischen Silikatschmelzen ist die Lösung von Schwefel aus einer SO₂-haltigen Gasatmosphäre in die flüssige Silikatschmelze. Zumeist wurden die Gläser nasschemisch aufgeschlossen und auf ihren Sulfat- und Sulfidgehalt analysiert (Brückner, 1962, Schreiber et al., 1989, 1987). Dadurch konnte gezeigt werden bei welchen Redoxbedingungen Sulfat oder Sulfid als dominierende Spezies vorlag.

Diffusionsexperimente, bei denen die Methode der Tracerdiffusion und anschließende Messung der Restaktivität zur Anwendung kam, sind weniger verbreitet und wurden bisher nur in einem Glastyp systematisch durchgeführt (Szurman et al., 2007).

Glastyp	Methode	Temperatur	Analyse	Literatur
		(°C)		
NCS	Diffusionspaar	1300	Nasschemie	Brückner (1962)
	SO_2	1250-1450	Bildanalyse	Nemec & Klouzek
				(1995)
	SO_3	1000-1400	Modellierung	Nemec & Mühlbauer
				(1981)
	SO_2	1100-1300	Modellierung	Nemec et al. (1998)
Borosilikat	SO_2	1050-1150	Nasschemie	Schreiber et al. (1987)
Borosilikat	Na ₂ SO ₄ (Pulver)	600-900	SNMS	Zimova & Frischat (un-
(AF45)				publ.)
	³⁵ S Tracer	600-750	Radioaktivität	Zimova & Frischat (un-
				publ.)
	³⁵ S Tracer	900-1400	Radioaktivität	Szurman et al. (2007)
E-Glas	SO_3	1100-1500	Nasschemie	Schreiber et al. (1989)

Tabelle 2.3: Übersicht verfügbarer Arbeiten zur Schwefeldiffusion in technischen Silikatschmelzen.

Auffallend unter den verfügbaren Ergebnissen zur Schwefeldiffusion in technischen Silikatschmelzen ist der Unterschied der ermittelten Diffusionskoeffizienten von Gläsern mit E-Glas- und borosilikatischer Zusammensetzung (Schreiber et al., 1989, 1987) zu kalk-natron-silikatischen Zusammensetzungen (Nemec & Klouzek, 1995, Nemec et al., 1998, Nemec & Mühlbauer, 1981). In Ersteren ist die Schwefeldiffusion bis zu einer Größenordnung schneller. Begründet wird dies mit dem höheren Angebot an möglichen Diffusionspfaden in borosilikatischen Schmelzen im Gegensatz zu Kalk-Natron-Silikatschmelzen. Die über die Tracerdiffusion ermittelten Daten in Alumoborosilikatglas (AF45) zeigen nochmals eine mehr als eine Größenordnung langsamere Schwefediffusion. Daten zur Schwefeldiffusion in technischen Silikatschmelzen sind in Abb. 2.10 und Tab. 2.3 zusammengefasst.

Schwefeldiffusion in natürlichen Silikatschmelzen

Natürliche Silikatschmelzen sind im Vergleich zu technischen Silikatgläsern meist differenzierter in ihrer Zusammensetzung. Der Gehalt verschiedener Spurenelemente und

Abbildung 2.10: Schwefeldiffusion in technischen Silikatschmelzen verschiedener Zusammensetzung.

volatiler Komponenten (z. B. CO_2 , H_2O , Cl, F) kann sich zudem stark auf die Löslichkeit, Speziation und Diffusivität von Schwefel auswirken (Baker et al., 2005, Carroll & Webster, 1994, Webster & Mandeville, 2007). Daten zur Schwefeldiffusion in natürlichen Silikatschmelzen sind in Abb. 2.11 und Tab. 2.4 zusammengefasst.

Erste systematische Experimente zur Untersuchung der Schwefeldiffusion in natürlichen Silikatschmelzen wurden von Watson (1994) in andesitischen und dazitischen Schmelzen durchgeführt. Hierbei wurde in den Experimenten in den andesitischen Schmelzen der H₂O-Gehalt variiert. Neben Diffusionspaarexperimenten wurden zur Untersuchung des Einflusses von H₂O auch Tracerdiffusionsexperimente durchgeführt. Die Produkte aus den Diffusionspaarexperimenten wurden mit der Mikrosonde analysiert, die Tracerdiffusionsproben wurden auf ihre Restaktivität hin analysiert. Die unter reduzierenden Verhältnissen bei 1 GPa durchgeführten Diffusionspaarexperimente ergaben folgende Arrhenius-

Abbildung 2.11: Schwefeldiffusion in natürlichen Silikatschmelzen verschiedener Zusammensetzung.

Beziehungen für die Schwefeldiffusion in Andesit:

$$D_S = 1, 0 \cdot 10^{-6} \frac{m^2}{s} \exp\left(\frac{-191\frac{kJ}{mol}}{RT}\right)$$
(2.32)

und Dazit:

$$D_S = 1, 4 \cdot 10^{-4} \frac{m^2}{s} \exp\left(\frac{-263 \frac{kJ}{mol}}{RT}\right)$$
(2.33)

Winther et al. (1998) führten Diffusionspaarexperimente bei 1300 bis 1500°C und 1 GPa Gesamtdruck in nominell H₂O-freien Albitschmelzen durch. Die Diffusionsprofile wurden mit der Mikrosonde analysiert, Informationen über die Schwefelspeziation wurden über Raman-Spektroskopie gewonnen. Es wurde festgestellt, dass Sulfid schneller diffundiert als Sulfat. Für die Schwefeldiffusion wurde folgende Beziehung ermittelt, wobei

hier eine sehr hohe Aktivierungsenergie vorliegt:

$$D_S = 14, 7\frac{m^2}{s} \exp\left(\frac{-458, 1\frac{kJ}{mol}}{RT}\right)$$
(2.34)

Baker & Rutherford (1996) ermittelten Diffusionskoeffizienten für rhyolitische Schmelzen über diffusive Kristallauflösung von FeS (Pyrrhotit) oder CaSO₄ (Anhydrit). Die Experimente wurden bei verschiedenen Wassergehalten, Drücken von 0,1 bis 200 MPa und Temperaturen von 800 bis 1100°C durchgeführt. Die Redoxbedingungen reichten von fO_2 -Puffern wie QFM über NNO zu MNO (MnO-Mn₃O₄), außerdem wurden Experimente bei Umgebungsdruck und unter Luftatmosphäre durchgeführt. Zur Analyse diente auch hier die Elektronenstrahl-Mikrosonde. Die erhobenen Daten zeigten, dass wechselnde Redoxbedingungen die Schwefelspezies (hier S^{2–}) über einen großen Redoxbereich die Schwefeldiffusion kontrolliert. Um Effekte des Wassergehaltes auszuschließen wurden Experimente unter Luftatmosphäre durchgeführt, die im Vergleich ein bis zwei Größenordnungen langsamere Diffusionsgeschwindigkeiten zeigten, als in den übrigen Experimenten (s. Abb. 2.11):

$$D_S = 5, 0 \cdot 10^{-6} \frac{m^2}{s} \exp\left(\frac{-221 \pm 80 \frac{kJ}{mol}}{RT}\right)$$
(2.35)

Freda et al. (2005) führten Diffusionspaarexperimente in trockenen und wasserhaltigen (3,5 Gew.%) basaltischen Schmelzen unter reduzierenden Bedingungen durch. Der Gesamtdruck betrug 0,5 oder 1,0 GPa, die Temperatur variierte zwischen 1225 und 1450°C. Die Experimente ergaben, dass die Schwefeldiffusion in den wasserhaltigen Proben bis zu einer halben Größenordnung schneller war als in den trockenen Basalten. Für die Schwefeldiffusion im trockenen Basalt gilt:

$$D_S = 2,19 \cdot 10^{-4} \frac{m^2}{s} \exp\left(\frac{-226, 3 \pm 58, 3\frac{kJ}{mol}}{RT}\right)$$
(2.36)

In wasserhaltigen Basalten gilt:

$$D_S = 5,91 \cdot 10^{-7} \frac{m^2}{s} \exp\left(\frac{-130,8 \pm 82,6\frac{kJ}{mol}}{RT}\right)$$
(2.37)

Für alle Beispiele muss angefügt werden, dass eindeutige oder gar quantifizierbare Daten über Schwefelspeziationen bei den Versuchsbedingungen nicht vorliegen. Zudem

Schmelztyp	Methode	Temperatur	Analyse	Literatur
		(°C)		
Rhyolit	FeS- & CaSO ₄ -	800-1100	Mikrosonde	Baker & Rutherford
	Auflösung			(1996)
Dazit	Diffusionspaar	1300-1500	Mikrosonde	Watson (1994)
Albit	Diffusionspaar	1300-1500	Mikrosonde	Winther et al. (1998)
Andesit	Diffusionspaar	1300-1500	Mikrosonde	Watson (1994)
Basalt	Diffusionspaar	1225-1450	Mikrosonde	Freda et al. (2005)

Tabelle 2.4: Übersicht verfügbarer Arbeiten zur Schwefeldiffusion in natürlichen Silikatschmelzen.

besteht die Möglichkeit, dass zwei oder mehrere Spezies koexistieren, sodass lediglich von einer Mischdiffusion gesprochen werden kann. Die Auflösung herkömmlicher analytischer Verfahren wie z. B. der Mikrosonde reicht nicht aus, um die Peaklage der verschiedenen Speziationen komplett aufzulösen.

Die Schwefeldiffusion variiert abhängig von der Zusammensetzung der silikatischen Schmelze bei konstanter Temperatur um bis zu sieben Größenordnungen (vgl. Abb. 2.10 & 2.11). Außerdem nimmt die Diffusivität von Schwefel mit abnehmender Polymerisation oder zunehmendem H₂O-Gehalt zu.

Kapitel 3

Experimentelle Methoden

3.1 Modellgläser dieser Arbeit

Für die in dieser Arbeit durchgeführten Experimente kamen zwei Glastypen mit der Modellzusammensetzung Natriumtrisilikat (NS3) und Kalknatronsilikat (NCS) zum Einsatz. Die Wahl dieser Zusammensetzungen gewährleistet Relevanz der Experimente für technische und natürliche Silikatschmelzen. Beide Systeme sind in früheren Arbeiten ausführlich untersucht worden (Bornhöft & Brückner, 1999, Haller et al., 1974, Kracek, 1930, Nölle, 1997, Prado et al., 2003, Richet, 1984, Schrimpf & Frischat, 1982, Williamson & Glasser, 1965), wodurch Daten zu Viskositäten und Phasenbeziehungen bekannt sind. Somit wird die Wahl der experimentellen Parameter erleichtert.

Die Gläser für die experimentellen Untersuchungen wurden durch die Fa. SCHOTT in Form von Glasblöcken zur Verfügung gestellt oder aus Oxid- und Carbonatpulvern hergestellt (s. Abschnitt 3.2). Die Zusammensetzungen wurden mit einer Elektronenstrahlmikrosonde verifiziert (s. Abschnitt 4.1).

3.1.1 Natriumtrisilikat (NS3)

Natriumtrisilikatglas (NS3) ist Teil des binären Mischsystems SiO₂-Na₂O (siehe Abb. 3.1). Ausführlich beschrieben wurde das System erstmals durch Kracek (1930). Aufgrund des niedrigen Schmelzpunktes der NS3-Zusammensetzung (\sim 890°C) lassen sich die geplanten Experimente schon bei Temperaturen ab 900°C mit einer reinen Schmelze durchführen. Aufgrund der schlechten chemischen Beständigkeit tritt jedoch sehr schnell Glaskorrosion durch Reaktionen mit H₂O und CO₂ aus der Luftatmosphäre (Nölle, 1997). Daher ist auf adäquate Lagerung zu achten, um Einflüsse auf die experimentelle Durchführung und Analytik zu vermeiden. Das binäre Mischsystem Na_2O -SiO₂ nach Haller et al. (1974), Kracek (1930) und Williamson & Glasser (1965) ist in Abbildung 3.1 dargestellt. Viskositätsdaten sind mit Hilfe von VFT-Parametern von Richet (1984) unter Anwendung von Gleichung 2.4 berechnet worden und in Abbildung 3.3 dargestellt. Die spezifischen Temperaturen wichtiger Viskositätsfixpunkte sind in Tabelle 3.3 angegeben.

Tabelle 3.1: Normierte Zusammensetzungen der verwendeten NS3-Gläser, NS3 Schott wurde von der Fa. SCHOTT zur Verfügung gestellt, NS3 Hannover vor Ort synthetisiert. Angegebene Fehler 1σ aus zehn Einzelmessungen (EMPA).

Gew.%		NS3 Schott		hott NS3 Hannover	
Oxide	Soll	Ist	±	Ist	±
SiO ₂	76	76,23	0,69	76,36	0.75
Na_2O	24	22,97	0,58	23,23	0.60
Σ	100	99,20	0,81	99,60	0.80

Abbildung 3.1: Ausschnitt aus dem Phasendiagramm des binären Mischsystems Na₂O-SiO₂, nach Haller et al. (1974), Kracek (1930) und Williamson & Glasser (1965).

Gew.%		NCS Schott		NCS Hannover	
Oxide	Soll	Ist	\pm	Ist	\pm
SiO ₂	74	75,21	0,41	75,62	0,33
Na_2O	16	16,68	0,41	16,16	0,47
CaO	10	9,63	0,24	10,39	0,29
Σ	100	101,52	0,68	102,17	0,39

Tabelle 3.2: Normierte Zusammensetzungen der verwendeten NCS-Gläser, NCS Schott wurde von der Fa. SCHOTT zur Verfügung gestellt, NCS Hannover vor Ort synthetisiert. Angegebene Fehler 1σ aus zehn Einzelmessungen (EMPA).

3.1.2 Kalknatronsilikat (NCS)

Kalknatronsilikatglas ist Teil des ternären Mischsystems Na₂O-CaO-SiO₂. Die gewählte Zusammensetzung (s. Tab. 3.2) entspricht der Basis vieler Floatglaszusammensetzungen (Nölle, 1997). Der Liquidus liegt bei etwa 1050°C (s. grüner Bereich in Abb. 3.2). Zur vorliegenden NCS-Zusammensetzung sind eine Vielzahl von Arbeiten zur Viskosität verfügbar. Viskositätsdaten sind mit VFT-Parametern aus Bornhöft & Brückner (1999), Prado et al. (2003) und Schrimpf & Frischat (1982) berechnet worden (s. Abb. 3.3) und unterscheiden sich bei bestimmten Temperaturen um bis zu einer halben Größenordnung. Spezifische Temperaturen wichtiger Viskositätsfixpunkte sind in Tabelle 3.3 angegeben.

Die chemische Beständigkeit von NCS-Glas, insbesondere gegenüber Luftfeuchtigkeit und Wasser, ist im Vergleich zu NS3 deutlich besser, was zu einer deutlichen Erleichterung bei der Handhabung und Durchführung von Synthesen und Experimenten führt.

Viskosität	Bezeichnung	NS3	NCS
(Pa s)	Dezerennung	T (°C)	T (°C)
$10^{13,5}$	Strain-Point	442	528
$10^{12,0}$	Glastransformation T_g	468	556
$10^{6,6}$	Softening-Point	637	729
10^{4}	Flow-Point	819	910
10^{3}	Working-Point	934	1024

Tabelle 3.3: Viskositätsfixpunkte von NS3- und NCS-Gläsern, berechnet mit VFT-Parametern von Richet (1984) und Prado et al. (2003).

3 Experimentelle Methoden

Abbildung 3.2: Phasendiagramm des ternären Mischsystems Na₂O-CaO-SiO₂ nach Nölle (1997). Die rot bzw. grün markierten Felder geben die Basis vieler Floatglaszusammensetzungen an.

Abbildung 3.3: Entwicklung von Viskosität mit steigender Temperatur bei NS3- und NCS-Zusammensetzungen, Abweichungen für NCS durch leichte Unterschiede der Zusammensetzung bedingt.

3.2 Glassynthese

Neben den von SCHOTT bereitgestellten Gläsern wurden zusätzlich NS3- und NCS-Gläser selbst hergestellt.

Um ein äquivalentes, synthetisches Glas herzustellen, wurden zuvor berechnete Anteile an Oxiden (hier SiO₂) und Karbonaten (CaCO₃, Na₂CO₃) in Pulverform getrocknet und eingewogen, wobei der Anteil der Karbonate aus ihren jeweiligen Oxiden (CaO, Na₂O) berechnet wurde. Diese Prozedur ist nötig, da sich die Karbonate bei hohen Temperaturen nach

$$CaCO_{3(f)} \rightarrow CaO_{(f)} + CO_{2(g)}$$

$$(3.1)$$

zersetzen. Die Ausgangssubstanzen wurden bei 150°C für mindestens zwölf Stunden getrocknet. Aufgrund der starken Hygroskopie des feinkörnigen SiO₂-Pulvers, wurde dies bei 800°C ebenfalls für mindestens zwölf Stunden ausgeglüht.

Um das heterogene Pulver nach dem Einwiegen zu homogenisieren, wurde es in einer Kugelmühle mit Achat-Einsatz für etwa 15 Minuten homogenisiert. Das homogenisierte Pulver wurde in einen Platintiegel überführt und in einem Kammerofen bei 1600°C für zwei Stunden aufgeschmolzen. Anschließend wurde die Schmelze auf eine Messingplatte ausgegossen. Dieser Vorgang wurde nach Aufmahlen wiederholt, um die Homogenität des synthetisierten Glases zu gewährleisten

Das synthetisierte Glas wurde für die späteren Experimente und Synthesen auf eine Korngröße von 100 bis 200 µm gemahlen und gesiebt.

3.3 Gasdruckanlage

Ein Teil der Synthesen schwefelhaltiger Gläser und die Diffusionsexperimente wurden in einer intern beheizten Gasdruckanlage (IHPV¹) durchgeführt. Mit diesen Apparaturen ist es möglich die Druck- und Temperaturverhältnisse in der oberen Erdkruste experimentell nachzuempfinden. Die Gasdruckanlagen am Institut für Mineralogie der Leibniz Universität Hannover erreichen Drücke bis maximal 700 MPa. Eine detailierte Beschreibung findet sich in Berndt et al. (2002). Die experimentell realisierbaren Temperaturen sind abhängig vom verwendeten Versuchsaufbau und können bis 1250°C (Normaltemperatur-Konfiguration) bzw. 1500°C (Hochtemperatur-Konfiguration) erreichen. Als Druckmedium dient Argon, für das Einstellen reduzierender Verhältnisse während des Experiments

¹IHPV - engl.: Internally Heated Pressure Vessel

wird eine vorher berechnete Menge Wasserstoff dem Argon zugemischt.

Abbildung 3.4: IHPV. a) Foto einer IHPV während des experimentellen Betriebs, b) schematische Skizze eines Autoklaven mit Stahlkörper (hellgrau) und eingesetztem Ofen (dunkelgrau) und Probenhalter (weiß).

Die Gasdruckanlagen bestehen aus mehreren Komponenten, (i) dem *Autoklaven*, (ii) dem *Druckverstärker*, (iii) dem *Vordruckpumpenstand* und (iv) der *Schalteinheit*. Der Autoklav besteht aus einem zu beiden Seiten offenen mehrlagigem Stahlzylinder. In diesen werden für die experimentelle Durchführung ein Ofen und ein Probenhalter von oben bzw. von unten eingesetzt und verschraubt. Die Abdichtung nach außen erfolgt durch eine Pilzkopfdichtung mit einer Bronze-Teflon-Kupfer-Packung, die an Ofen- und Probenhalterseite vorhanden ist. Ein Aufheizen des Druckkörpers während des experimentellen Betriebs verhindert eine Kühlwasserwicklung aus Kupferrohr, die kontinuierlich mit Kühlwasser (~ 18–19°C) gespeist wird (s. Abb. 3.4).

Die Kontrolle der Temperatur am Probenhalter erfolgt über insgesamt vier Thermoelemente (Pt-PtRh10 (S-Typ) oder Ni-NiCr (K-Typ)), von denen zwei zur Steuerung des Ofens über einen Programmregler (EUROTHERM 2600 Serie) eingesetzt werden. Dadurch wird eine genaue Regelung zweier Ofenwicklungen aus Molybdändraht (Ø 0,5 mm), der um ein Keramikrohr (99,9% Al₂O₃) gewickelt ist, ermöglicht. Die Kontrolle des Gesamtdrucks innerhalb der Anlage und des Intensifiers erfolgt über einen DMS-Hochdrucksensor (Fa. BURSTER Typ 8221, Genauigkeit \pm 1%). Die Hochdrucksensoren sind mit DMS-Digitalanzeigen (Fa. BURSTER Typ 9180) in der Schalteinheit verbunden, von denen die Anzeige des Druckverstärkers zur Druckregelung genutzt werden kann. Isobares Aufheizen und Abkühlen sowie Druckregulierung bei experimentellen Bedingungen wird durch das Setzen von Grenzwerten (z. B. 100 und 105 MPa) ermöglicht. Innerhalb dieser Grenzwerte wird über das Pumpenaggregat des Druckverstärkers der Druck reguliert.

Für jegliche Hochdruck-Experimente wurden die Probenkapseln zunächst in den Probenhalter (s. Abschn. 3.3.1) eingebracht (Diffusionsexperimente horizontal), der dann in die IHPV eingesetzt wurde. Nach Erreichen des Zieldrucks wurde das Heizprogramm (s. Abb. 3.5) gestartet. Alle Experimente wurden mit Hilfe der Druckregulierung isobar durchgeführt. Für Diffusionsexperimente wird die effektive Versuchslaufzeit berechnet, wobei neben der Haltezeit auch die Aufheiz- und die Abkühlzeit berücksichtigt werden (Koepke & Behrens, 2001):

$$t_{eff} = \int \frac{D_{T(t)}}{D_{T1}} dt = \int \exp\left(\frac{-Q}{R} \cdot \left(\frac{1}{T(t)} - \frac{1}{T1}\right)\right) dt$$
(3.2)

3.3.1 Probenhalter

Für die IHPV stehen je nach Anwendung verschiedene Probenhalter-Einsätze zur Verfügung. Genutzt wurden ein *Normal Quench-* (*NQ* - Syntheseeinsatz), *Rapid Quench-* (*RQ* - ermöglicht sehr schnelle Abkühlraten) und *Rapid Heat/Quench-Probenhalter* (*RHQ* - ermöglicht schnelle Aufheiz- und Abkühlraten).

Für Synthesen wurde der *NQ-Probenhalter* verwendet. Durch das im Vergleich zu RQund RHQ-Probenhaltern erhöhte Volumen (17,0 mm Innen-Ø), lassen sich größere Mengen Glas synthetisieren. Durch Abschalten des Heizprogramms werden Abkühlraten zwischen 150 - 200 K/min erreicht. Die Temperaturkontrolle sowie -steuerung wurde über K-Typ-Thermoelemente vorgenommen. Die maximale Betriebstemperatur des Probenhalters ist 1250°C, er kann ausschließlich in Normaltemperaturöfen (20,5 mm Innen-Ø) verwendet werden. Ein Großteil der Diffusionsexperimente wurde ebenfalls in diesem Einsatz durchgeführt.

Weitere Experimente wurden in zwei Typen von *RQ-Probenhaltern* (s. Abb. 3.6) durchgeführt. Sie stehen für Hochtemperatur- (17,0 mm Innen-Ø) und Normaltemperaturöfen zur Verfügung. Der Innen-Ø des Probenraums beträgt lediglich 9,0 mm, was die Maximalgröße der Proben einschränkt. Die Probenkapsel ist über einen Keramikring an einen Platin-Draht eingehängt, der mit zwei Elektroden verbunden ist. Über den oberen Teil des

Abbildung 3.5: Zeit-Temperatur-Verlauf eines typischen Hochdruckexperimentes im NQ-Probenhalter bei 100 MPa und 1200°C mit a) Heizrampe (30°C/min),
b) Haltezeit bei Zieltemperatur (1h) und c) Quenchbereich (150 bis 200°C/min initial).

Probenhalters wird ein Keramikschutzrohr geschoben. Eine Beendigung der Experimente wird durch Anlegen eines Stroms an die Elektroden durchgeführt. Hierdurch wird der Pt-Draht, an dem die Probe fixiert wurde, geschmolzen, was zum Fall der Probe in die kalte Zone des Probenhalters führt. Hierdurch werden Abkühlraten von 150 bis 200K/s erreicht (Berndt et al., 2002).

Diffusionsexperimente mit besonders kurzen Laufzeiten (bis max. ~ 20 min.) wurden in einem *RHQ-Probenhalter* (s. Abb. 3.7) durchgeführt. Der Aufbau des Probenhalters ermöglicht sehr schnelle Aufheiz- (700 - 800K/min) und Abkühlraten (bis 250K/s). Ein Aufheizen der Probe wird durch das Anlegen eines Stroms an eine Kupferspule im unteren Bereich des Probenhalters ermöglicht. Die Probe wird auf einem Keramikstab fixiert, der einen keilartigen Eisenkern besitzt und zentral im Probenhalter lagert. Wird ein Strom angelegt, wird der Keramikstab mit der Probe in einer Keramikkapillare (Innen-Ø 5,2 mm) in den bereits heißen Bereich des Probenhalters befördert. Bei einem Abschalten des Stroms fällt der Keramikstab wieder in seine Lagerposition zurück. Die Temperatur an der Lagerposition ist abhängig von der Temperatur in der heißen Zone und beträgt maximal 350°C. Der RHQ-Einsatz wird ausschließlich in Hochtemperaturöfen eingesetzt.

Abbildung 3.6: Schematische Skizze eines RQ-Probenhalters mit Detailvergrößerung der Probenregion (verändert nach Berndt et al. (2002)): (1) Pt-Quenchdraht,
(2) Quenchdraht-Elektroden, (3) Keramikring, (4) Probenkapsel(n),
(5) Keramikrohr, (6) S-Typ-Thermoelemente, (7) Messingabdeckung,
(8) Quench-Elektroden, (9) Stahl-Konen, (10) Anschlüsse Quench-Elektroden, (11) Erdung Quench-Elektroden, (12) Kupferblock, (13) Verschlusskopf, (14) Anschlüsse Thermoelemente.

3 Experimentelle Methoden

Abbildung 3.7: Schematische Skizze eines RHQ-Probenhalters, die Größenverhältnisse entsprechen Abb. 3.6.

3.4 Piston-Zylinder

Ein Teil der Diffusionsexperimente wurde in einem Piston Zylinder (PCA²) am *Department of Earth Sciences* an der *University of Bristol (GB)* durchgeführt. Diese Experimente dienten der Untersuchung der Druckabhängigkeit der Schwefeldiffusion bis 2,0 GPa.

Im Gegensatz zur IHPV wird der Druck in einem PCA mechanisch aufgebaut. Dies geschieht über die Druckübertragung einer Hydraulikpresse auf einen Wolframcarbid-Stempel (Piston), der in den Probenraum bewegt wird. Ein gegenüberliegendes *End load* ermöglicht das Erreichen höherer Drücke, was jedoch durch die Größe der Probenzelle limitiert wird. Die Probe befindet sich eingebettet in komprimiertem feinen Al₂O₃-Pulver (*crushed alumina*) im Graphitofen einer 3/4 Zoll-Zelle aus Talk und Pyrex (s. Abb. 3.8). Durch das Anlegen eines Stroms können Temperaturen bis maximal 1700°C erreicht werden. Durch den Aufheizprozeß und den Druckaufbau wird die Talk-Pyrex-Zelle duktil, eine Korrektur des Druckes muss aufgrund von Reibungsverlusten durchgeführt werden (McDade et al., 2002), und übeträgt den mechanisch erzeugten Druck über das Al₂O₃-Pulver auf die Probe. Druckaufbau und -regulierung erfolgten manuell, die Temperatur wurde über ein W-Typ-Thermoelement (W-W74Re26) kontrolliert und über einen EU-ROTHERM-Controller (Serie 900EPC) reguliert.

3.5 Synthese Schwefel- und H₂O-haltiger Gläser

Zylindersynthesen und Synthesen schwefel- und H_2O -haltiger Gläser wurden unter Hochdruck oder bei Umgebungsdruck durchgeführt. Die Syntheseprodukte wurden anschließend mit der Mikrosonde (s. Abschnitt 4.2) und einem CS-Analysator (s. Abschnitt 4.1) auf ihren Schwefelgehalt geprüft. Die Schwefelspeziation wurde mit XANES-Spektroskopie (s. Abschnitt 4.3.3) bestimmt.

3.5.1 Hochdrucksynthesen

Die Hochdrucksynthesen wurden bei Gesamtdrücken von 100 MPa (nominell trocken, schwefelhaltig) bzw. 200-400 MPa (H₂O-haltig) durchgeführt. Schwefelhaltige Syntheseexperimente wurden in Au-Kapseln verschiedener Größen durchgeführt, da diese gegen Reaktionen mit Schwefel und insbesondere Sulfid weitestgehend resistent sind. Hierfür

²PCA - engl.: Piston Cylinder Apparatus

Abbildung 3.8: Foto eines PCA (Piston Cylinders Apparatus) und schematischer Aufbau einer Talk/Pyrex-Probenzelle mit Graphitofen: (1) W-Typ-Thermoelement, (2) Thermoelement-Kapillare, (3) Pyrophyllit, (4) Stahlverschlussstück, (5) & (13) Al₂O₃-Endstücke, (6) Pt-Blech, (7) komprimiertes Al₂O₃-Pulver, (8) Probenkapsel, (9) Graphitofen, (10) Pyrex, (11) Talk, (12) Pb-Folie, (14) Graphit-Kontaktplatte.

wurde das Glaspulver (NS3 oder NCS) mit verschiedenen Schwefelquellen in oxidierter (Na₂SO₄, CaSO₄), intermediärer (Na₂SO₃, nativer Schwefel) oder reduzierter (FeS, FeS₂, Na₂S, PdS) Form in einem Achatmörser vermischt und homogenisiert. Die Mischung wurde in die einseitig geschlossenen Au-Kapseln gefüllt und anschließend zugeschweißt. Um den Effekt von Wasser auf die Schwefelspeziation zu untersuchen wurde in einige Kapseln eine definierte Menge deionisiertes H₂O hinzugefügt. Anschließend wurden die Synthesen in einer IHPV durchgeführt, wobei die Synthesetemperaturen maximal 1050°C, begrenzt durch den Schmelzpunkt von Au (bei 100 MPa ca. 1065°C (Mirwald & Kennedy, 1979)), betrugen. Die Laufzeit der Synthesen lag zwischen 18 und 24 Stunden.

Für H₂O-haltige Zylindersynthesen späterer H₂O-Diffusionsexperimente wurde NCS-Pulver mit einer definierten Menge deionisiertem H₂O (hier $\sim 3,0$ Gew.%) in eine einseitig geschlossene Edelmetallkapsel (Pt, Innen-Ø 5,0 mm) gefüllt, komprimiert und zugeschweißt. Die Synthesedauer in der IHPV lag bei 1200°C bei etwa drei Stunden, was ausreichend war, um ein Glas mit homogenem H₂O-Gehalt herzustellen (Behrens, 2006). Schwefelhaltige Syntheseexperimente von Glaszylindern wurden ebenfalls auf diese Weise durchgeführt, als Kapselmaterial wurde Au verwendet, das eine hohe Resistenz gegenüber Schwefel aufweist, jedoch die Temperatur einschränkte (max. 1065°C bei 100 MPa).

Nach den Syntheseexperimenten wurden die Kapseln in 3,5 bis 4,0 mm lange Stücke gesägt. Aus diesen Kapselfragmenten wurden anschließend mit einem Kernbohrer Zylinder (s. Abb. 3.9) mit einem Durchmesser von 3,9 mm erbohrt und die Stirnfläche einseitig poliert.

3.5.2 Synthesen bei Umgebungsdruck

Schwefelhaltige Gläser wurden ebenfalls bei Umgebungsdruck hergestellt. Diese wurden entweder in geschlossenen Au-Kapseln in einem Kammerofen (Ø 18 mm, Länge 30 mm) oder in Pt- bzw. Graphit-Tiegeln in einem *GERO Typ HTRV 70-250* Vertikalofen (Regeleinheit *GERO RETTH380*) durchgeführt.

Syntheseversuche in geschlossenen Au-Kapseln im Kammerofen wurden mit in einem Achatmörser homogenisierten Mischungen aus Na₂SO₄- bzw. Na₂SO₃-Pulver mit NS3-Glaspulver durchgeführt. Die Temperatur betrug 1000°C, die Laufzeit der Synthesen zwei Stunden.

Für die Syntheseversuche im Vertikalofen wurden zwei verschiedene Ansätze für sulfatbzw. sulfidhaltige Gläser angewendet. Für Sulfatsynthesen wurde NCS- bzw. NS3-Pulver mit Na₂SO₄-Pulver in einem Achatmörser vermischt und homogenisiert, so dass die Mischung 1,0 Gew.% Schwefel enthielt. Anschließend wurde die Mischung in einen offenen Pt-Tiegel überführt und bei 1050°C im Vertikalofen zehn Minuten aufgeschmolzen. Anschließend wurde die Mischung mit 300K/h auf Temperaturen zwischen 1400 und 1650°C gebracht und für 30 Minuten bzw. drei Stunden getempert. Nach den in Abschnitt 2.4.1 beschriebenen Reaktionen zersetzt sich das Sulfat, so dass nur ein Teil des ursprünglichen Sulfats im synthetisierten Glasprodukt verbleibt. Nach der Synthesezeit wurde der Tiegel mit der Glasschmelze aus dem Ofen auf eine Keramikplatte gestellt. Die dadurch erzeugte Abkühlgeschwindigkeit reichte aus um kristall- und blasenfreie Gläser zu erzeugen.

Für sulfidhaltige Gläser wurde Glaspulver mit FeS- bzw. Na₂S-Pulver vermischt und homogenisiert. Im Fall des Na₂S-dotierten Glases, wurde ein kristall- und blasenfreies NCS-Glas synthetisiert, dass etwa 7 Gew.% Sulfid enthielt, und ein NS3-Glas, dass etwa 1,5 Gew.% enthielt. Diese Gläser wurden als Basis zur Verdünnung genutzt, um Gläser mit etwa 0,15 Gew.% Schwefel zu synthetisieren. FeS-dotierte Gläser wurden bereits im ersten Syntheseschritt auf 0,15 Gew.% eingestellt. Danach wurden die Mischungen

in einen Graphittiegel überführt der mit einem Graphitdeckel verschlossen wurde. Dies minimierte den Einfluss der sauerstoffreichen Ofenatmosphäre und erhielt die Schwefelspeziation. Um ein Abbrennen des Graphittiegels im Ofen zu verhindern, wurde dieser in einen mit einem Pt-Deckel versehenen Keramiktiegel in den Ofen überführt. Die Temperaturen betrugen 1450 bis 1550°C, die Laufzeit betrug etwa eineinhalb bis drei Stunden. Nach der Synthesezeit wurde der Keramiktiegel aus dem Ofen auf eine Keramikplatte gestellt. Die Abkühlgeschwindigkeit war in diesem Fall ebenfalls ausreichend, um blasen- und kristallfreie Gläser zu erzeugen. Durch die hohe Oberflächenspannung zwischen Schmelze und Graphit kam es während der Synthese nicht zur festen Verbindung zwischen Glasschmelze und Graphittiegel, d. h. es wurden kugelförmige Glaskörper erhalten. Durch die stark unterschiedlichen Ausdehnungskoeffzienten von Graphit und Glasschmelze konnte das erkaltete Glasstück einfach aus dem Tiegel gelöst werden.

Die synthetisierten Gläser wurden anschließend für etwa zwei Stunden bei T_g relaxiert und mit 5K/min auf Raumtemperatur abgekühlt. Dadurch wurde ein mögliches Zerspringen des Glaskörpers bei der folgenden Präparation vermieden. Aus den Syntheseprodukten wurden für die Diffusionsexperimente Zylinder (s. Abb. 3.9) erbohrt und einseitig poliert.

Abbildung 3.9: Für die Diffusionspaarexperimente vorbereitete Zylinder; a) schwefelfrei, b) schwefelhaltig (Hochdrucksyntheseprodukte).

3.6 Diffusionsexperimente

Die Diffusionsexperimente wurden mit der Diffusionspaartechnik (z. B. Behrens, 2006, Hahn et al., 2005, Nowak et al., 2004) durchgeführt, Abbildung 2.3 zeigt den schematischen Aufbau einer Diffusionspaarprobe. Neben den synthetisierten Zylindern (H₂O-, sulfid- oder sulfathaltig) wurden zusätzlich schwefelfreie Glaszylinder aus Glasblöcken erbohrt und einseitig poliert.

Diffusionsexperimente wurden in Au- oder Pt-Kapseln (Ø: 4,4 mm außen, 4,0 mm innen) bei 100 bzw. 200 MPa Gesamtdruck und Temperaturen zwischen 1000 und 1400°C in einer IHPV durchgeführt. Einige Experimente wurden in einer Doppelkapsel durchgeführt, wobei die eigentliche Pt-Probenkapsel in eine größere Pt-Kapseln (Ø: 5,4 mm außen, 5,0 mm innen) zugefügt wurde. Zusätzlich wurde in diesem Fall H₂O₂ oder Fe₂O₃ in die Aussenkapsel eingefügt und die Kapsel wurde verschlossen. Dieser Ansatz diente der Minimierung des Einflusses von eindiffundierendem H₂ aus dem Druckmedium (Ar) in das Kapselinnere und somit einer Pufferung (Behrens & Haack, 2007). Wasserstoff ist eine in geringer Konzentration auftretende Unreinheit des Druckmediums.

Der Ar-Druck diente hierbei primär der Stabilisation der Probenform und dem Verhindern von Blasenbildung innerhalb der experimentellen Laufzeit. Für die Experimente wurden schwefelfreie und schwefelhaltige NCS- bzw. NS3-Glaszylinder mit ihren polierten Oberflächen in einer einseitig geschlossenen Edelmetallkapsel in Kontakt gebracht. Um Spuren von H₂O aus der Kapsel und von den Glasoberfächen zu entfernen, wurde die beladene Kapsel für zehn Minuten bei 600°C getempert (nur bei nominell trockenen Proben). Danach wurde sie umgehend zugeschweißt. Um die Dichtigkeit der Kapseln zu gewährleisten wurden diese anschließend bei etwa 40 bis 50 MPa einem Drucktest unterzogen. Nach erfolgreichem Test sollte der Edelmetallcontainer eng an der Probe anliegen, bzw. die Probenform nachbilden.

Es wurden verschiedene Ansätze zur Untersuchung der Schwefeldiffusion angewendet, hierzu gehören Experimente zur Untersuchung (i) der *Sulfatdiffusion* (sulfathaltige vs. schwefelfreie Glaszylinder), (ii) der *Sulfiddiffusion* (sulfidhaltige vs. schwefelfreie Zylinder, Interdiffusion) und (iii) von *internen Redoxreaktionen* (sulfid- vs. sulfathaltige Glaszylinder). Zusätzlich wurden (iv) Experimente zur Untersuchung *externer Redoxreaktionen* bzw. extern induzierter Oxidation von Sulfid in NCS- und NS3-Glas durchgeführt, in denen H₂O-haltige Glaszylinder mit sulfidhaltigen Zylindern in Kontakt gebracht wurden. In weiteren Experimenten wurden H₂O-Diffusionskoeffizienten bestimmt. Die Diffusionsexperimente vom Typ (i) und (ii) dienen der Bestimmung der chemischen Diffusionskoeffizienten von Schwefel. Hier wurden Sulfat (S^{6+}) und Sulfid (S^{2-}) als zu untersuchende Schwefelspezies gewählt, da diese als oxidiertes und reduziertes Endglied mit der Mikrosonde sehr gut unterschieden werden können (Carroll & Rutherford, 1988).

Experimente vom Typ (iii) konnten mit der Mikrosonde lediglich auf ihren Schwefelgehalt geprüft werden. Schwefel wurde als FeS bzw. Na₂S oder Na₂SO₄ in zuvor durchgeführten Syntheseexperimenten eingebracht. Ein Diffusionsprofil kann mit der Mikrosonde nicht aufgenommen werden, da Sulfat- und Sulfid-Peaks teilweise überlappen (s. Abb. 4.4). Das Auflösen der Diffusionsprofile ist hier nur mit μ XANES (s. Abschnitt 4.3.3) möglich.

Experimente vom Typ (iv) dienen der Untersuchung von Redoxreaktion von Sulfid mit H₂O, dass in diesen Experimenten als Oxidationsmittel dient. Wie in Experimenten vom Typ (iii) wurde Sulfid als FeS bzw. Na₂S in zuvor durchgeführten Syntheseexperimenten eingebracht. Aufgrund der großen Unterschiede in der Diffusionsgeschwindigkeit kann Sulfid in diesen Experimenten als quasi-stationär betrachtet werden. Somit kann der Einfluss eindiffundierenden Wassers in das sulfidhaltige Glas untersucht werden. Die Ergebnisse können Rückschlüsse auf die Reaktionen von natürlichen Magmen mit Fluiden geben. Eine mögliche Änderung der Schwefelspeziation entlang des Diffusionsprofils durch den Einfluss des eindiffundierenden H₂O wurde mit μ XANES untersucht. Die H₂O-Konzentrationsprofile wurden mit MIR-Spektroskopie untersucht (s. Abschnitt 4.4). Die Schwefel-Konzentrationsprofile wurden in allen Fällen mit der Mikrosonde aufgenommen. Vergleichend zu Experimenten vom Typ (iv) wurden Experimente mit sulfidhaltigen Glaszylindern und etwa 6,0 Gew.% freiem H₂O in geschlossenen Pt-Kapseln bei 100 MPa und 1050°C durchgeführt.

H₂O-Diffusionsexperimente wurden ebenfalls mit der Diffusionspaartechnik durchgeführt. Hierfür wurden H₂O-freie Glaszylinder und H₂O-haltige Glaszylinder (\sim 3,0 Gew.% H₂O) bzw. Glasquader (\sim 0,3 Gew.% H₂O) verwendet. Eigenständig wurden Experimente bei einem Druck von 200 MPa und bei Temperaturen von 1000 bis 1300°C zur Untersuchung der Diffusion bei \sim 3,0 Gew.% H₂O und 1300°C \sim 0,3 Gew.% H₂O durchgeführt. Bereits bestehende Daten für die Diffusion bei niedrigen H₂O-Konzentrationen, die bei 100 MPa und Temperaturen von 550 bis 1000°C durchgeführt wurden, wurden somit erweitert (s. Anhang A, Tab. A.2).

Kapitel 4

Analytische Methoden

In der vorliegenden Arbeit wurden verschiedene Analysemethoden verwendet. Dies betrifft vor allem die Analyse der Schwefelspeziation. Die Funktion der analytischen Methoden, sowie die Auswertung der gewonnenen Daten wird im Folgenden beschrieben.

4.1 Elektronstrahl-Mikrosonde (EMPA)

Die Elementkonzentrationen in den Silikatgläsern wurden mit einer Elektronenstrahlmikrosonde *CAMECA SX-100* bestimmt. Zum einen wurden die Gläser auf ihre Gesamthomogenität analysiert, zum anderen auf ihre Schwefel-Konzentration.

Die Analysen wurden mit zwei aufeinanderfolgenden Einstellungen durchgeführt. Die erste Einstellung beinhaltet die Messung der Glasmatrix mit den Elementen Na, Ca und Si. Zusätzlich werden Al, Ti, K, Fe, Mg und Mn analysiert, um etwaige Kontaminationen zu erkennen. An der Peakposition des jeweiligen Elementes wurde 4 bzw. 8 Sekunden gemessen, der Hintergrund jeweils in der Hälfte der Zeit. Die Gehalte in den Grundgläsern (s. Tab. 3.1 & 3.2) dieser Elemente bewegten sich allerdings unterhalb der Nachweisgrenze. Analysiert wurden die Elemente mit 4 nA Strahlstrom, 15 kV Beschleunigungsspannung und einer Fokussierung von 20 μ m. Schwefel wurde anschließend mit einer seperaten Einstellung auf einem Spektrometer mit LPET-Kristall gemessen, hier lagen die Messbedingungen bei 40 nA, 15 kV und 20 μ m Fokussierung. Mit diesen Bedingungen wurden ebenfalls die Schwefel-Konzentrationsprofile in den Proben der Diffusionsexperimente analysiert. Der Abstand zwischen den Messpunkten der Profile lag bei 200 bis 300 μ m, im Bereich des eigentlichen Profiles (Nähe des Umschlagspunkt) bei 25 bis 32 μ m.

Durch den Peak-Shift von Sulfid zu Sulfat mussten vor der Probenanalyse wds¹-Spektren aufgenommen werden (s. Abschnitt 4.3). Die ermittelte Peaklage von sulfid- und sulfathaltigen Proben wurde anschließend mit den Schwefelpeaks des ZnS- und CaSO₄-Standards verifiziert.

4.2 IR-basierte Gesamtschwefelanalyse

Für die schnelle Analyse des Schwefel-Gehaltes wurde ein Analysator ELTRA CS-800 verwendet. Abhängig vom erwarteten Schwefelgehalt der Probe werden 25 bis 200 mg grob zerstoßenes Glaspulver zusammen mit 1500 (\pm 50) mg Wolfram- und 300 mg (\pm 30) Eisen-Granulat in einen Al₂O₃-Tiegel eingewogen. Das zugesetzte Eisen dient dem Zünden des Gemisches im Hochfrequenz-Generator. Durch das Verbrennen des Wolframs im Sauerstoffstrom des Induktionsofens werden laut Hersteller Temperaturen von über 2000°C erreicht, wodurch Kohlenstoff und Schwefel aus der Probe freigesetzt werden. Da die Kohlenstoff- und Schwefelgehalte des Eisen- und Wolfram-Zuschlags (C = 1,3 \pm 0,2 µg/g, S = 0,1 \pm 0,1 µg/g; zertifiziert nach DIN/EN 10204) sehr gering sind, ist die Auswirkung auf die Probenmessung zu vernachlässigen. Dennoch werden während der Messreihen Blindanalysen (nur Fe und W) durchgeführt, um den Einfluss von Fe, W, Al₂O₃-Tiegel und den allgemeinen analytischen Bedingungen auf die Messergebnisse zu ermitteln und die Messbedingungen zu überwachen.

Der durch die Verbrennung freigesetzte Schwefel und Kohlenstoff wird im Sauerstoffstrom zu CO₂ und SO₂ oxidiert, von Verunreinigungen gereinigt sowie getrocknet und in die IR-Messzellen geleitet. Die Messung der Schwefel- bzw. Kohlenstoffkonzentration basiert auf dem *Lambert-Beer'schen Gesetz*:

$$c = \frac{A}{\varepsilon \cdot d} \tag{4.1}$$

wobei *C* die Konzentration, *A* die Absorbanz, ε der Extinktionskoeffizient und *d* die Länge der Messzelle sind. Laut Hersteller liegt die Sensitivität der IR-Messzelle für Kohlenstoff uns Schwefel bei 0,05 µg, die obere Nachweisgrenze bei 500 µg für Kohlenstoff bzw. bei 1500 µg für Schwefel. Je nach erwarteten Gehalten wird die Einwaage des Probenpulvers angepasst. Für 0,1 Gew.% Schwefel wurden etwa 100 mg Probenpulver eingewogen. Oberhalb einer Probeneinwaage von 200 mg hat sich für Glas- und Gesteinsproben herausgestellt, dass eine gleichmäßige Verbrennung nicht mehr gewährleistet werden kann.

¹wds - wavelength-dispersive, wellenlängendispersiv

Abbildung 4.1: Typischer Verlauf einer Schwefelanalyse (Eltra CS-800) mit Analysezeit vs. Detektorspannung, die maximale Detektorspannung beträgt 10V.
Einfach-Peaks wie in diesem Beispiel zeigen ein erfolgreiche komplette Verbrennung des Probenmaterials, Doppelpeaks würden auf unvollständige und fehlerhafte Verbrennung hindeuten.

Den schematischen Aufbau des Induktionsofens und der Infrarot-Messzelle zeigt Abbildung 4.2.

	Kohlenstoff	Schwefel
Kalibrationsfaktoren (CS-800)	0,000030384	0,0001777
Korrekturwert	1,0228	1,095
Richtigkeit der Kalibration (mg)	0,0079	0,0033

Tabelle 4.1: Kalibrations- und Korrekturwerte für Eltra CS-800 (Stand 03/2009).

Kalibriert wurde der CS-800 Analysator mit Hilfe verschiedener zertifizierter Stahlund eigens hergestellter Standards. Abbildung 4.3 zeigt, dass die gemessenen Schwefelbzw. Kohlenstoffkonzentrationen in guter Übereinstimmung mit den angegebenen Konzentrationen sind. Tabelle 4.2 zeigt eine Zusammenstellung der Standards, die während der Analysesitzungen gemessen wurden. Die mit dem Analysator ermittelten Konzentra-

Abbildung 4.2: Schematischer Aufbau des a) Induktionsofens (Ort der Probenverbrennung und der b) IR-Messzelle (Ort der Analyse) eines Eltra CS-800 Analysators.

tionen wurden mit Hilfe des Korrekturwertes der Standardkalibration (s. Tab. 4.1) korrigiert:

$$c_{kalib} = Einwaage \cdot \frac{c_{Analysator}}{100} \cdot Korrekturwert$$
(4.2)

wobei die *Einwaage* die Probenmenge in mg und $c_{Analysator}$ die vom Analysator gemessene Konzentration darstellt. Anschließend wurde eine Blindwertkorrektur durchgeführt:

$$c_{korr} = \left(\frac{c_{kalib} - c_{Blindwert}}{Einwaage}\right) \cdot 100 \tag{4.3}$$

wobei c_{kalib} die standardkorrigierte Konzentration mg, $c_{Blindwert}$ der Mittelwert der gemessenen Blindwerte in mg und *Einwaage* die Probenmenge in mg ist. Der Fehler der Einzelanalyse wird wie folgt ermittelt:

$$c_{err} = \left(\frac{\sqrt{\Delta c_{kalib}^2 - \Delta c_{Blindwert}^2}}{Einwaage}\right) \cdot 100 \tag{4.4}$$

mit Δc_{kalib} als Richtigkeit der Kalibration in mg und $\Delta c_{Blindwert}$ als Standardabweichung der Mittelwerte in mg.

Abbildung 4.3: 1:1-Darstellung aller Standards, die während der relevanten CS-Messungen durchgeführt wurden.

4.3 Bestimmung der Schwefelspeziation

Um den Oxidationszustand des in die Silikatgläser eingebrachten Schwefels zu bestimmen, wurden drei verschiedene Methoden auf ihre Anwendbarkeit getestet.

4.3.1 EMPA

Eine äußerst verbreitete Methode zur Bestimmung der Schwefelspeziation in silikatischen Gläsern und Mineralen ist die Bestimmung des Peak Shift zwischen Sulfat (S^{6+}) und Sulfid (S^{2-}) (Carroll & Rutherford, 1988).

Vor einer Messserie wurde stets auf den Proben über die Messung eines wds-Spektrum die genaue Peaklage bestimmt und anschließend in die jeweiligen Messeinstellungen eingetragen. Dadurch konnte gewährleistet werden, dass die anschließende Schwefel-Kon-

Standard	Substanz	C soll (Gew.%)	S soll (Gew.%)
381 Basic Slag	Stahlspäne	k. A.	0,1900
030-4 BAM	Stahlspäne	0,4560	0,0210
033-1 BAM	Stahlspäne	0,0430	0,0215
281-1 EuroCRM	Stahlspäne	0,0480	0,0160
383 (PMA 69) Alcomax III	Stahlspäne	0,0250	0,2000
GG34 LMP	Stahlspäne	2,3100	0,1300
0,2 S	$SiO_2 + Na_2SO_4$	k. A.	0,2000
0,5 S	$SiO_2 + Na_2SO_4$	k. A.	0,5000
1,0 S	$SiO_2 + Na_2SO_4$	k. A.	1,0000

Tabelle 4.2: Während der CS-Analysen gemessene Standardsubstanzen.

zentrationsbestimmung möglichst korrekt durchgeführt wurde. Vor der Aufnahme der wds-Spektren wurden zunächst die Schwefel-Peakpositionen der Standards CaSO₄ (S⁶⁺, sin θ = 0,61382) und ZnS (S²⁻, sin θ = 0,61425) mit einer Feinsuche verifiziert, da der S *K* Peak Shift lediglich einem sin θ = 0,00043 entspricht. Die wds-Spektren der schwefelhaltigen Silikatgläsern wurden mit einer CAMECA SX-100 auf einem Spektrometer mit LPET¹-Kristall aufgenommen. Die Messparameter betrugen 40 nA Strahlstrom, 15 kV Beschleunigungsspannung, der Strahlfokus betrug 20 µm. Aufgenommen wurden 200 Punkte von sin θ = 0,61308 bis 0,61507 (0,00001 pro Schritt), die Akkumulierung pro Schritt betrug eine Sekunde. Um Photooxidation oder -reduktion während der Aufnahme (Wilke et al., 2008) des Spektrums zu vermeiden, wurde die Probe unter dem Elektronenstrahl bewegt.

Abbildung 4.4 zeigt die wds-Spektren zweier Gläser mit etwa 2000 ppm Sulfat bzw. Sulfid. Deutlich zu erkennen ist der S *K* Peak Shift zwischen sulfid- und sulfathaltigem Glas. Da die Peaks jedoch stark überlappen, ist eine Identifikation intermediärer Schwefelspeziationen wie z. B. Sulfit (S^{4+}) nicht möglich.

4.3.2 Raman-Spektroskopie

Die Grundlage der Raman-Spektroskopie bildet der *Raman-Effekt*. Bei Bestrahlung von Molekülen mit monochromatischem Licht, wird dieses gestreut. Zerlegt man nun das Streulicht, so zeigen sich neben der Spektrallinie der Lichtquelle zusätzliche Spektrallini-

¹LPET - Large Pentaerithritol, d = 4,375 Å

Abbildung 4.4: wds-Spektren und eines sulfat- bzw. sulfidhaltigen NCS-Glases.

en, die gegenüber der Frequenz der Lichtquelle verschoben sind. Die verschobenen molekülspezifischen Linien bezeichnet man als Raman-Linien. Moleküle und Molekülgitter führen stets Schwingungen aus. Die Wechselwirkung von Licht mit Molekülen und Molekülgittern kann als Sprungvorgang bezeichnet werden. Zwei grundlegende Sprungarten werden unterschieden. Beim *elastischen Sprung* eines Photons bestimmter Energie mit einem Molekül verändert sich der Energiezustand des Moleküls und die Frequenz der Streustrahlung gegenüber der Lichtquelle nicht. Dieser Vorgang wird als Rayleigh-Streuung bezeichnet. Der *Raman-Effekt* beschreibt einen inelastischen Sprung, der in *Stokes-* und *Anti-Stokes-Streuung* aufgeteilt werden kann. Bei der *Stokes-Raman-Streuung* befindet sich das Molekül nach der Anregung in einer höheren Schwingungsenergie, das Streulicht ist dabei energieärmer geworden und weist damit eine geringere Frequenz auf. Die beobachtbaren Spektrallinien werden als Stokes-Linien bezeichnet. Bei der *Anti-Stokes-Raman-Streuung* besitzt das Molekül nach dem Sprung eine niedrigere Schwingungsenergie und die Energie des gestreuten Lichts ist größer geworden und weist eine höhere Frequenz auf. Die beobachtbaren Spektrallinien werden als Anti-Stokes-Linien bezeichnet. Dieser Fall ist nur möglich, wenn das Molekül sich vor dem Stoß in einem höheren Energiezustand befindet (Ferraro et al., 2003).

Abbildung 4.5: Ausgewählte Sulfat-Standards der RRUFF-Datenbank mit den indizierten Positionen der 1) O-S-O Sulfat-Biegeschwingung (630 cm⁻¹), 2) S-O Sulfat-Streckschwingung (990-1017 cm⁻¹) und 3) S-O asymetrischen Sulfat-Streckschwingung (1100 cm⁻¹).

Untersuchungen von schwefelhaltigen NS3-Gläsern mit Raman-Spektroskopie wurden am *GZG*² (Abteilung Experimentelle und Angewandte Mineralogie) der *Universität Göttingen* durchgeführt. Die Messungen wurden an einem konfokalen HORIBA JOBIN Yvon HR 800 UV Raman Spektrometer in Kombination mit einem OLYMPUS BX41-Mikroskop (100x Objektiv) durchgeführt. Die Anregung eines luftgekühlten Ar⁺-Lasers bei 488 nm (polarisierter Strahl mit 25 mW, entsprechend 6 mW auf der Probe), ein Beugungsgitter mit 600 l/mm, eine konfokale Blende von 200 µm und ein gekühlter CCD mit

²Geowissenschaftliches Zentrum der Universität Göttingen
1024x256 Pixeln ergaben eine spektralen Dispersion von 2,0 cm⁻¹. Bei diesen Bedingungen ist die laterale Auflösung bzw. das Anregungsvolumen $\sim 1 \,\mu\text{m}$, die Tiefenauflösung $\sim 6 \,\mu\text{m}$. Aufgenommen wurden die Raman-Spektren von 0 bis 2100 cm⁻¹ in doppelter Erfassung (je 60 s), um die Signalqualität zu verbessern.

Abbildung 4.5 zeigt ausgewählte Standards sulfathaltiger Minerale der RRUFF¹- Datenbank, die zum Vergleich der gemessenen Proben dienten.

4.3.3 XANES-Spektroskopie

Bei der Wechselwirkung von Röntgenstrahlen (500 eV - 500 keV oder Wellenlängen von 2 Å bis 0.25 Å) kommt es mit jeder Art von Materie zum photo-elektrischen Effekt (s. Abb. 4.6) und zur Absorption. Hierbei wird ein Röntgenphoton absorbiert, wodurch ein Elektron als Photo-Elektron aus dem Atom freigesetzt wird und sich das Atom in einem angeregten Zustand befindet. Dieser Prozess findet statt, wenn die Bindungsenergie des Elektrons niedriger ist als die des einfallenden Röntgenphotons. Der Zerfall des angeregten Zustands kann auf zwei Wegen, der *Röntgenfluoreszenz-Strahlung* und dem *Auger-Effekt*, stattfinden. Beim Zerfall über die *Röntgenfluoreszenz-Strahlung* fällt ein Elektron höherer Energie auf ein niedrigeres Energieniveau und füllt die durch die einfallende Röntgenfluoreszenz-Strahlung verursachte Lücke. Bei diesem Prozess wird Röntgenstrahlung definierter Energie freigesetzt (s. Abb. 4.6). Die entstandene Röntgenstrahlung kann indirekt in Transmission oder direkt in Fluoreszenz aufgenommen und als Spektrum (s. Abb. 4.8) dargestellt werden (Als-Nielsen & McMorrow, 2001).

XAFS-Spektren können in *Transmission* und/oder *Fluoreszenz* (s. Abb. 4.7) gemessen werden. Der *Absorptionskoeffizient* μ kann bei Transmissionsmessungen über eine Form des *Lambert-Beer'schen Gesetzes* abgeleitet werden:

$$I = I_0 e^{-\mu t} \tag{4.5}$$

wobei I die Intensität nach Transmission der Probe, I_0 die Intensität des einfallenden Röntgenstrahls und t die Dicke der Probe ist. Messungen in Transmission eignen sich hauptsächlich für dünne Proben, in denen das zu untersuchende Element konzentriert (Gew.%-Bereich) vorliegt. Bei Proben mit geringeren Gehalten ist die Qualität der Fluoreszenzspektren deutlich hochwertiger, da die Probendicke in Verbindung mit der Konzentration die Intensität des Transmissionssignals stark beeinflusst. Für Fluoreszenz

¹http://rruff.info/

Abbildung 4.6: Röntgenabsorption mit a) photo-elektrischem Effekt mit Absorption eines Röntgenphoton und Freisetzung eines Photo-Elektron, und b) Röntgenfluoreszenz-Strahlung (nach Als-Nielsen & McMorrow (2001)).

Abbildung 4.7: Probenanordnung in a) Transmission und b) Fluoreszenz.

gilt vereinfacht:

$$\mu(E) \propto \frac{I_f}{I_0} \tag{4.6}$$

Da jede Art von Materie Röntgenstrahlen abschwächt und dadurch auch die Intensität der Röntgenfluoreszenz und der XAFS-Oszillationen, kann dieser Selbstabsorptionseffekt der Probe unter Annahme, dass der Fluoreszenz-Detektor in einem Winkel von 45° zur Probe steht, wie folgt korrigiert werden und die Intensität der Fluoreszenz ist:

$$I_f = I_0 \in \left(\frac{\Delta\Omega}{4\pi}\right) \frac{\mu_{\chi}(E)}{\mu(E) + \mu(E_f)} \left[1 - e^{-\left(\mu(E) + \mu\left(E_f\right)\right)d}\right]$$
(4.7)

wobei $\Delta\Omega$ der Winkel des Detektors zur Probe, $\mu_{\chi}(E)$ die Absorption des untersuchten Elements, $\mu(E)$ die Gesamtabsorption der Probe und E_f die Energie der Röntgenfluores-

zenz ist und der Parameter \in die Fluoreszenz-Ausbeute relativ zu den Auger-Übergängen wiedergibt (Als-Nielsen & McMorrow, 2001).

XAFS³-Spektren lassen sich in XANES⁴- und EXAFS⁵-Teil aufspalten. XANES liefert Informationen über unbesetzte Elektronenzustände (Orbitale) für das untersuchte chemische Element und somit über den Oxidationszustand bzw. die Speziation des absorbierenden Elementes. EXAFS gibt Auskunft über die Bindungs- bzw. Atomabstände und die Koordinationszahl des absorbierenden Elementes. Abbildung 4.8 zeigt am Beispiel von ZnSO₄ die Aufteilung eines XAFS-Spektrums an der Schwefel *K* Kante.

Beamlines & Messbedingungen

XAFS-Analysen schwefelhaltiger Gläser an der Schwefel *K* Kante wurden an unterschiedlichen Messplätzen für Synchrotronstrahlung durchgeführt, deren Aufbau und Messbedingungen sich unterscheiden. Zu diesen Messplätzen⁶ gehören XAS und SUL-X (beide ANKA⁷, FZ Kalrsruhe, Deutschland) und ID21 (ESRF⁸, Grenoble, Frankreich).

Der Speicherring *ANKA* wird bei einer Elektronenenergie von 2,5 GeV und Strahlströmen bis 200 mA betrieben, der Umfang des Hauptringes beträgt 110,4 m. Der *XAS-MP* nutzt als Strahlenquelle einen 1,5 T Ablenkmagneten ($E_C = 6$ keV) und kann bei Energien von 2,4 bis 27,0 keV genutzt werden. Um höhere Harmonische des DCM⁹ zu unterdrücken wird ein Si(111)-DCM in Kombination mit einem planaren Zerodur-Spiegel zur Fokussierung des Strahls verwendet. Im Strahlengang folgen horizontale und vertikale Schlitze, die es ermöglichen, den abgebildeten Strahl auf der Probe zu beschneiden. Die übliche Dimension des Messpunktes auf der Probe betrug 6,5 x 1,0 mm. Analysen in Transmission wurden mit Hilfe einer Ionisationskammer (*Oxford*, Füllung: N₂, 85 mbar) aufgenommen, für Fluoreszenzmessungen standen Ge-Detektor (5 Elemente, solid-state, *Canberra*) oder ein Si-Drift-Detektor (*Vortex*, SDD) zur Verfügung.

Der *SUL-X-MP* nutzt als Strahlenquelle einen Wiggler (27 Pole/74 mm). Möglich sind μ XANES-Analysen mit einem minimalen Fokus von etwa 30 x 25 μ m auf der Probe. Als DCM wird eine Kombination aus Si(111) und Si(311) verwendet. Vertikal fokussiert wird

³XAFS - X-ray Absorption Fine Structure

⁴XANES - X-ray Absorption Near Edge Structure

⁵EXAFS - Extended X-ray Absorption Fine Structure

 $^{^{6}}$ Im Folgenden Messplatz = MP

⁷Angströmquelle Karlsruhe

⁸European Synchrotron Radiation Facility

⁹DCM - Double Crystal Monochromator

Abbildung 4.8: Aufteilung eines XAFS-Spektrums an der Schwefel *K* Kante in XANES und EXAFS am Beispiel von ZnSO₄, mit Pre-Edge (Vorkante) (1) und Post-Edge (hier Gesamtschwefel) (2).

der Strahl vor und hinter dem DCM durch dreifach beschichtete zylindrische Spiegel. Die Feinfokussierung wird durch ein KBM¹⁰-Paar ermöglicht. Die Strahlgröße auf der Probe betrug 50 x 50 µm. Das Fluoreszenz-Signal wurde mit einem Si(Li) Fluoreszenz-Detektor (7 Elemente) gemessen.

Der Speicherring der *ESRF* wird bei einer Energie von 6,0 GeV und bis zu einem Strahlstrom von 200 mA betrieben, der Umfang des Hauptringes beträgt 844,4 m. Der *ID21-MP* nutzt als Strahlenquelle einen linearen Undulator (U42d). Verwendet wird ein Si(111)-Monochromator. Der Strahl kann über vertikale und horizontale zylindrische Spie-

¹⁰KBM - Kirkpatrick-Baez-Mirror

gel und ein KBM-Paar fokussiert werden. Die Feinfokussierung wird durch Kombination einer Fresnel-Zonenplatte mit einer OSA¹¹ (Au, Dicke 100 µm) ermöglicht, abhängig von der Energie beträgt der minimale Messpunkt 0,3 bis 1,0 µm. Messpunkte von z. B. \geq 50 µm wurden nur durch das Einsetzen der OSA eingestellt. Das Fluoreszenz-Signal wurde mit einem SDD aufgenommen.

Glasproben wurden als Pulver oder unpolierte Glasstücke auf einem Kapton-Film (XAS & SUL-X), auf einem Dünnschliff (Probendicke ca. 200 µm, SUL-X) oder als doppelseitig polierte Dünnschliffe (Probendicke 200 µm, ID21) auf einem Probenhalter fixiert. Aufgrund der starken Anfälligkeit der Proben auf Strahlenschäden (Wilke et al., 2008), wurde bei XANES-Messungen ein Messpunkt auf der Probe nicht unter 50 µm gewählt. An den ANKA-Messplätzen wurden XANES-Spektren von 2450 bis 2580 bzw. 2650 eV (EXAFS - k = 6.5 Å⁻¹, Schrittlänge k = 0.25 Å⁻¹) aufgenommen. Die Schrittweite der Scans betrug 1 eV, um die S K Kante wurde eine Schrittweite von 0,2 eV gewählt. Abhängig von der Schwefelkonzentration in den Glasproben wurde die Akkumulationszeit pro Schritt von 1 bis 12 Sekunden variiert. Pro Probe wurden bis zu vier Spektren aufgenommen. Am ID21-Messplatz des ESRF wurden XANES-Spektren von 2450 bis 2550 eV als Quick-Scans aufgenommen. Hierfür wurde der Monochromator (Si (111)) kontinuierlich entlang der Schwefel K Kante gescant, die Schrittweite der Spektren betrug 0,23 eV. Abhängig von der Schwefelkonzentration in der Probe wurden 20 bis 40 XANES-Scans (ca. 1 min/Scan) akkumuliert, um eine gute Signalqualität zu erhalten. Neben XANES wurden am ID21- und SUL-X-Messplatz XRF Scans entlang des Diffusionspfades von Schwefel mit einem Messpunkt auf der Probe von 1 und 50 µm aufgenommen. Hierfür wurden Start- und Endpunkt, sowie Schrittweite und -länge an den charakteristischen Energien der S K Kante (Vorkante - 2460,0 eV, Vorkanten-Anregung - 2466,5 eV, Sulfid -2474,0 & 2477,0 eV, Sulfat - 2482,5 eV, Nachkante - 2515,0 eV) definiert, um Änderungen in der Schwefelspeziation entlang des Diffusionspfades zu erkennen. Die Schrittweite betrug zwischen 10 und 50 µm, die Akkumulationszeit pro Schritt betrug 2 bis 10 s. Aufgrund der geringen Schwefelkonzentration in den Proben wurden diese ausschließlich in Fluoreszenz gemessen.

Am XAS-MP wurden neben den Gesamtanalysen der Schwefelspeziation in Gläsern auch XANES-Spektren von kristallinen Referenzmaterialien aufgenommen. Hiervon wurden die Transmissions- und Fluoreszenz-Signale aufgenommen.

¹¹OSA - Order Selecting Aperture (Lochblende)

Datenverarbeitung & Auswertung

XAFS-Spektren müssen vor einem Vergleich mit anderen Spektren normiert werden. Die Daten der ANKA-MP wurden mit Athena aus dem IFEFFIT¹-Softwarepaket bearbeitet (Ravel & Newville, 2005). Um eine inkorrekte Normierung bei manchen XANES-Spektren durch ein Abfallen der Nachkante unter $\mu(E)=0$ zu vermeiden, werden die Daten mit einer *Kantensprung-Normierung* bearbeitet:

$$\chi(E) = \frac{\mu(E) - \mu_0(E)}{\mu_0(E_0)}$$
(4.8)

Hierbei wird auf die Vorkante (≤ 0) und die Nachkante (≥ 1) normiert (s. Abb. 4.8). Zur optischen Bewertung der Spektren kann über eine zusätzliche Option das Abfallen der Nachkante im normierten Spektrum verhindert werden, so dass alle Werte ab einem definierten *e0*-Wert (gewöhnlich ab der Whiteline des Spektrums) auf einen Wert y=1 künstlich angehoben werden.

Daten des ID21-MP wurden mit einer Kombination aus *Arctangens*- (oberer Teil) und *Pseudo-Voigt*-Funktion (Kombination aus Lorentz- und Gauss-Funktion, unterer Teil) angepasst:

$$y(E) = \frac{1}{\pi} \cdot [h1] \cdot \arctan\left(2 \cdot \frac{E - [p1]}{[w1]} + \frac{[h1]}{2}\right) + \left(f \cdot \left([h2] \cdot \frac{[w2]^2}{(4 \cdot (E - [p2])^2 + [w2]^2)}\right) + (1 - f) \cdot [h2] \cdot \exp\left(-\frac{(E - [p2])^2}{2 \cdot [w2]^2}\right)\right)$$
(4.9)

wobei h1 die Höhe, w1 die Breite und p1 die Position für den Arctangens-Teil, und h2 die Höhe, w2 die Breite und p2 die Position für den Pseudo-Voigt-Teil der Funktion darstellen. Die Arctangens-Funktion wird zum Anpassen des Kantensprungs (*edge step*), die Pseudo-Voigt-Funktion für den Whiteline-Peak verwendet. In den meisten Fällen wurde lediglich eine Gauss-Funktion für das Anpassen der Whiteline verwendet, daher wurde der Parameter f=0 gesetzt. Die Auswertung und Datenverarbeitung von XAFS-Daten mit dieser Funktion wurde mit *Wavemetrics Igor Pro* durchgeführt. Aufgrund der Unterschiede in der Kalibration der Messplätze am ESRF und ANKA wurden die Peaklagen aller Spektren auf die Sulfat-Anregung bei 2482,5 eV normiert.

¹http://cars9.uchicago.edu/ifeffit/

4.4 Bestimmung des H₂O-Gehaltes

IR-Analysen im NIR¹² und MIR¹³ wurden mit einem BRUKER IFS88 FTIR Spektrometer unter Anwendung einer Globarstift-Lichtquelle mit einem KBr-Strahlteiler durchgeführt. Für die mikroskopische Untersuchung ist das Spektrometer mit einem IR-Mikroskop IR scope II verbunden. Das analysierte Probenfläche wurde für synthetisierte Gläser mit einer Blende auf 100 x 100 µm, für H₂O-Diffusionsproben auf 30 x 100 µm beschränkt. Für jedes Spektrum wurden 50 Einzelscans akkumuliert, die spektrale Auflösung betrug im MIR 2 cm⁻¹, im NIR 4 cm⁻¹. H₂O-Konzentrationen und Profile der Experimente zur Untersuchung von externen Redoxreaktionen von Schwefel wurden am Synchrotron IR-Messplatz ID21 (ESRF Grenoble, Frankreich) mit einem THERMO NICOLET NEXUS FTIR Spektrometer durchgeführt. Zur mikroskopischen Untersuchung ist das Spektrometer mit einem THERMO NICOLET CONTINUUM IR Mikroskop verbunden. Der Messpunkt auf der Probe betrug 10 x 10 µm, für jedes Spektrum wurden 128 Einzelscans akkumuliert, die spektrale Auflösung betrug 2 cm $^{-1}$. Die Proben für die IR-Analysen waren stets doppelseitig polierte Gläser mit Dicken zwischen 60 und 500 µm (je nach Spektralbereich und H₂O-Konzentration). Die Probendicke wurde mit einem MITUTOYO Mikrometer bestimmt, die Genauigkeit betrug $\pm 2 \,\mu m$.

Bei Analysen im NIR-spektralen Bereich wurde die H₂O-Konzentration anhand der relevanten Banden bei 4500 cm⁻¹ (Streck- & Biegeschwingung von OH-Gruppen in der Glasstruktur) und bei 5200 cm⁻¹ (Streck- & Biegeschwingung von H₂O-Molekülen) berechnet:

$$C_{OH}(wt\%) = \frac{100 \cdot M_{H_2O} \cdot A_{4500}}{\rho \cdot d \cdot \varepsilon_{4500}}$$
(4.10)

$$C_{H_2O}(wt\%) = \frac{100 \cdot M_{H_2O} \cdot A_{5200}}{\rho \cdot d \cdot \varepsilon_{5200}}$$
(4.11)

$$C_{H_2O_t}(wt\%) = C_{OH} + C_{H_2O} \tag{4.12}$$

Hierbei ist *A* die Absorbanz, *d* die Probendicke in cm, ρ die Dichte des Mediums in g/L und ε der lineare molare Absorptionskoeffizient in L/(mol⁻¹ · cm⁻¹). Die Absorptionskoeffizienten für das verwendete NCS-Glas betragen nach Stuke et al. (2006) für ε_{4500} = 0,52 ±0,03 und für ε_{5200} = 0,87 ±0,04. Anhand von KFT-Daten wurden für NS-Gläser

 $^{^{12}\}mathrm{NIR}$ - Nahinfrarot, 12800 cm $^{-1}$ bis 4000 cm $^{-1}$

 $^{^{13}}$ MIR - Mittleres Infrarot, 4000 cm⁻¹ bis 400 cm⁻¹

die Absorptionskoeffizienten von Yamashita et al. (2008) kalibriert. Interpoliert ergeben sich für NS3 $\varepsilon_{4500} = 0.39 \pm 0.03$ bzw. $\varepsilon_{5200} = 0.57 \pm 0.03$.

Bei Analysen im MIR-spektralen Bereich wird die H₂O-Konzentration unter Anwendung des Zwei-Banden-Modells nach Behrens & Stuke (2003) und Scholze & Mulfinger (1959) berechnet. Hierfür werden die Banden bei 2850 cm⁻¹ (OH-Streckschwingung) und bei 3550 cm⁻¹ (Gesamt-H₂O) genutzt:

$$C_{H_2O}(wt\%) = \frac{100 \cdot M_{H_2O}}{\rho \cdot d} \left(\frac{A_{3550}}{\varepsilon_{3550}} + \frac{A_{2850}}{\varepsilon_{2850}}\right)$$
(4.13)

Hierbei betragen die Absorptionskoeffizienten $\varepsilon_{2850}=50.8 \pm 2.0$ und für $\varepsilon_{3550}=49.6 \pm 1.5$ für NCS-Gläser > 0.5 Gew.% H₂O bzw. $\varepsilon_{3550}=39.9 \pm 3.3$ für NCS-Gläser < 0.5 Gew.% H₂O. Es wurde eine horizontale Basislinie relativ zu A₄₀₀₀ verwendet.

Der absolute spezifische Fehler der H_2O -Konzentration in Gew.%, die mit Hilfe der NIR- bzw MIR-Spektren berechnet wurde, ergibt sich nach

$$\Delta H_2 O_{(1,2)} = \sqrt{\left(\frac{\Delta A_{(1,2)}}{A_{(1,2)}}\right)^2 + \left(\frac{\Delta d}{d}\right)^2 + \left(\frac{\Delta \varepsilon_{(1,2)}}{\varepsilon_{(1,2)}}\right)^2 + \left(\frac{\Delta \rho}{\rho}\right)^2 \times H_2 O} \quad (4.14)$$

$$\Delta H_2 O_{ges} = \sqrt{\Delta H_2 O_{(1)} + \Delta H_2 O_{(2)}}$$
(4.15)

wobei x der Fehler der Dickenmessung des Probenpräparats in cm, ρ die Dichte des zu analysierenden Glases in g/L, A₁ die Absorbanz bei 5200 bzw. 3550 cm⁻¹, A₂ die Absorbanz bei 4500 bzw. 2850 cm⁻¹, ε_1 der Absorptionskoeffizient für die Bande bei 5200 cm⁻¹ bzw. 3550 cm⁻¹, ε_2 der Absorptionskoeffizient für die Bande bei 4500 cm⁻¹ bzw. 2850 cm⁻¹. Die H₂O-Konzentration wird in Gew.% angegeben.

Bei H₂O-Diffusionsexperimenten betrug die Schrittlänge zwischen den Messpunkten 20 bis 50 µm. Damit wurde eine ausreichende laterale Auflösung des resultierenden Konzentrationsprofils gewährleistet.

4.5 Berechnung von Diffusionskoeffizienten

4.5.1 Auswerten von Konzentrationsprofilen

Fehlerfunktion

Um Diffusionsgeschwindigkeiten und -koeffizienten angeben zu können, wurden die Profile der Schwefel- bzw- H₂O-Konzentration der Diffusionspaarproben (s. Abb. 2.3) ausgewertet. Die Konzentrationsprofile wurden mit einer speziellen Lösung des 2. *Fick'schen* *Gesetzes* (s. Gl. 2.13) unter Annahme eines konstanten Diffusionskoeffizienten angepasst (Crank, 1980):

$$c_{x,t} = c_2 + \frac{c_1 - c_2}{2} \cdot (1 - erf((x - x_I) \cdot d))$$
(4.16)

wobei $c_{x,t}$ die Schwefelkonzentration an Punkt x zur Zeit t ist, c_1 die maximale und c_2 die minimale Konzentration sind und x_I die Lage des Wendepunktes des Profils auf der x-Achse darstellt. Zur Berechnung des Diffusionskoeffizienten in m²/s wird Parameter d verwendet:

$$D = \frac{1}{4 \cdot d^2 \cdot t} \tag{4.17}$$

Für das Anpassen der Funktion an die gemessenen Schwefel-Konzentrationsprofile mit *Systat TableCurve 5.01* und *fityk 0.8.6* wurde Gl. 4.16 wie folgt umgeformt:

$$y = A_0 + A_1 \cdot (1 - erf((x - A_2) \cdot A_3))$$
(4.18)

Hier entspricht Parameter A_3 Parameter d in Gl. 4.16. Somit wird dieser zur Berechnung von D nach Gl. 4.17 verwendet.

Der Fehler des Diffusionskoeffizienten wird nach folgender Gleichung berechnet:

$$\frac{\Delta D}{D} = \sqrt{\left(Q \cdot \frac{\Delta T}{RT^2}\right)^2 + \left(\frac{\Delta t}{t}\right)^2 + \left(\frac{2 \cdot \Delta x}{5 \cdot \sqrt{2 \cdot \Delta d \cdot t}}\right)^2 + \left(\frac{2 \cdot \Delta d}{d}\right)^2} \qquad (4.19)$$

wobei Q die Aktivierungsenergie in J/(mol⁻¹·K⁻¹), T die Temperatur in K, R die allgemeine Gaskonstante in J/(mol⁻¹·K⁻¹), t die Zeit in s und x die Distanz in m ist.

Boltzmann-Matano-Methode

Um den Zusammenhang zwischen Konzentration und Diffusion zu analysieren, wurden im Fall der H₂O-Diffusion die Konzentrationsprofile mit einer nach Sauer & Freise (1962) modifizierten Boltzmann-Matano-Methode analysiert:

$$D(x) = \frac{1}{-2 \cdot t \cdot (\partial C/\partial x)_x} \left[(1 - C_x) \int_x^{+\infty} C dx + C_x \int_{-\infty}^x (1 - C) dx \right]$$
(4.20)

wobei x die Distanz in m, t die Zeit in s und C die normalisierte H_2O -Konzentration ist:

$$C = \frac{C - C_{\min}}{C_{\max} - C_{\min}} \tag{4.21}$$

Im Vergleich zu den ursprünglichen Methoden von Boltzmann (1894) und Matano (1932) zeichnet sich die modifizierte Methode durch eine höhere Präzision aus (Nowak & Behrens, 1997). Um die Diffusionskoeffizienten berechnen zu können, wurden die Konzentrationsprofile mit einem Polynom siebter Ordnung angepasst.

4.5.2 Berechnung des prä-exponentiellen Faktors D_0 und der Aktivierungsenergie Q

Die Temperaturabhängigkeit des Diffusionskoeffizienten D wird bei konstantem Druck mit einer Arrhenius-Beziehung (s. Gl. 2.14) beschrieben. Um die Aktivierungsenergie Qund den prä-exponentiellen Faktor D_0 berechnen zu können, werden zunächst die reziproke Temperatur (1000/K) gegen den Diffusionskoeffizienten log D (D in m²/s) dargestellt. Anschließend wird eine lineare Regression an die graphisch dargestellte Datenreihe angepasst. Der Wert für log D₀ ergibt sich aus dem Schnittpunkt der Regressionsgeraden bei 0 auf der Achse der reziproken Temperatur. Die Auswertung der Arrhenius-Beziehung erfolgt nach der Gleichung

$$\ln D = \ln D_0 - \frac{Q}{R} \cdot \frac{1}{T} \tag{4.22}$$

welche der Geradengleichung

$$y = b + m \cdot x \tag{4.23}$$

gleichgesetzt werden kann. Hierbei ist y = ln D, $b = ln D_0$, m = -Q/R und x = 1/T. Die Aktivierungsenergie Q wird mit Hilfe der Geradensteigung m berechnet:

$$Q = -m \cdot R \cdot \ln 10 \tag{4.24}$$

Kapitel 5

Schwefelspeziation in silikatischen Schmelzen

Im Folgenden sind die Ergebnisse bezüglich der Untersuchung von Speziation und Löslichkeit von Schwefel in den verwendeten Gläsern zusammengefasst und diskutiert. Eine ausführliche Aufstellung der Probencharakteristik und der Synthesebedingungen ist in Anhang A (Tabelle A.1) tabellarisch aufgeführt. Ein Teil der Ergebnisse und Diskussionen dieses Kapitels wurde in Backnäs et al. (2008) veröffentlicht.

Ein Großteil der synthetisierten Gläser wurde mit XANES- bzw. Raman-Spektroskopie oder EMPA auf ihre Schwefelspeziation untersucht. Kristalline Referenzmaterialien, an denen die Ergebnisse verglichen wurden, finden sich in den Abbildungen 4.5 (Spektren aus der RRUFF-Datenbank, Raman) und 5.1 (XANES). Im Fall der Raman-Spektroskopie werden nur molekulare Strukturen erfasst, die raman-aktiv sind und meist eine hohe molekulare Symmetrie aufweisen. Eine Analyse des in den Gläsern gelösten S²⁻ war im Gegensatz zu H₂S-Molekülen oder FeS- bzw. CdS-Molekülen (Chirita, 2009, Ma et al., 2008) nicht möglich. Analysen der Schwefelspeziation eines sulfid- bzw. sulfathaltigen Glases zeigt Abbildung 4.4 in Form von wds-Spektren, die mit einer Mikrosonde aufgenommen wurden. Da hier S^{2-} und S^{6+} -Peaks stark überlappen, ist keine Aussage über evtl. vorkommende intermediäre Spezies wie S⁴⁺ möglich. Mit XANES-Spektroskopie ist es möglich, alle vorkommenden Schwefelspeziationen konzentriert in kristallinen Substanzen und verdünnt in Gläsern zu analysieren. Selbst analysierte Referenzmaterialien zeigen, dass die Lage der Schwefel K Kante von S²⁻ zu S⁶⁺ von 2470,6 bis 2482,5 eV zunimmt. Dieser Unterschied von 11,9 eV macht eine qualitativ zuverlässige Aussage über die vorherrschende Schwefelspeziation möglich, da sich die für silikatische Gläser relevanten Oxidationsstufen S^{2–}, S⁴⁺ und S⁶⁺ klar voneinander trennen lassen (s. Abb. 5.1). Hierbei nimmt die Peaklage mit zunehmender Oxidationsstufe von S^{2–} nach S⁶⁺ zu. Die Lage der spezifischen Peaks oder Whitelines¹ ist für S⁴⁺- bzw. S⁶⁺-Verbindungen sehr stabil und liegt grundsätzlich bei 2478,2 bzw. 2482,5 eV. Dies hängt v. a. mit dem stabilen Umfeld des Schwefels in SO^{2–}₃- und SO^{2–}₄-Gruppen und der damit klar definierten Koordination durch Sauerstoffatome zusammen. Sulfid-Verbindungen besitzen diese stabile Koordinationssphäre nicht, vielmehr ist durch die wechselnden Bindungen von S^{2–} zu verschiedenen Kationen wie Fe³⁺, Fe²⁺, Ca²⁺, Na⁺, K⁺ oder anderen die Koordinationssphäre für sulfidischen Schwefel sehr verschieden, so dass die Peakposition stark schwankt (s. auch Abschnitt 2.4.2). Außerdem fällt die Ausbildung der spezifischen Speziationsanregungen mit zunehmendem Oxidationszustand sehr viel intensiver aus. Dies kann die qualitative Bewertung der Spektren und auch der Konzentrationsverhältnisse erschweren.

Abbildung 5.1: Auswahl von XANES-Spektren kristalliner Referenzmaterialien mit Angabe spezifischer Peaklagen, der Messpunkt auf der Probe betrug 7 x 1 mm. Gemessen am XAS-MP (ANKA, Forschungszentrum Karlsruhe).

¹spezifische Hauptanregung

5.1 Syntheseexperimente in geschlossenen Au-Kapseln bei Umgebungsdruck

Erste Syntheseversuche bei Umgebungsdruck wurden in geschlossenen Au-Kapseln (s. Abschnitt 3.5.2) für 2 h bei 1000°C durchgeführt. Diese führten zu blasigen bzw. schaumigen Glasprodukten. Initial wurde eine Mischung NS3 + Na₂SO₄ bzw. Na₂SO₃ eingewogen, die einem Gehalt von 1000 ppm² Schwefel entsprechen. Die Schwefelkonzentration, die mit Hilfe der CS-Analyse an den aufgemörserten Syntheseprodukten bestimmt wurde, ist im Glasprodukt, dem Sulfit als Na₂SO₃ zugefügt wurde, deutlich geringer (s. Abb. 5.2). XANES-Spektroskopie zeigte, dass in beiden Fällen Sulfat (S⁶⁺) die vorherrschende Schwefelspezies im Glas ist. Im Fall von Na₂SO₃ als Schwefelquelle ist Sulfit im Glasprodukt nicht erkennbar (s. Abb. 5.2). Im Vergleich zu kristallinen Sulfaten (s. Abb. 5.1) zeigen beide Proben nur einen Sulfat-Peak bei 2482,5 eV, aber keine klar aufgelösten Strukturen bei höheren Energien.

Abbildung 5.2: XANES-Spektren schwefelhaltiger Gläser aus Synthesen in geschlossenen Au-Kapseln bei Umgebungsdruck (1000°C, 2h), die gestrichelte Linie gibt die Position der Sulfat-Anregung bei 2482,5 eV an. Der Messpunkt auf der Probe betrug 7 x 1 mm.

²ppm - parts per million, 1 ppm = 0,0001 %, die Angabe ppm im Text bedeutet grundsätzlich Gew.ppm

5.2 Syntheseexperimente in Tiegeln bei Umgebungsdruck

Weitere Syntheseexperimente wurden bei Umgebungsdruck in einem Vertikalofen durchgeführt. Ein Teil dieser Syntheseexperimente wurden von Martin Lehmköster im Rahmen seiner Bachelor-Arbeit im Studiengang Geowissenschaften durchgeführt (Lehmköster, 2008). In diesen Experimenten wurde die Sulfatläuterung in NCS- bzw. NS3-Schmelzen nachgestellt, zusätzlich sollte die Vergleichbarkeit verschiedener analytischer Methoden wie CS-Analyse (s. Abschn. 4.2) und Elektronenstrahlmikrosonde (s. Anschn. 4.1) demonstriert werden. Die Abhängigkeit der Schwefelkonzentration von der Temperatur bei unterschiedlichen Haltezeiten und Zieltemperaturen sind in Abbildung 5.3 und 5.4 dargestellt. Die Glasprodukte aus den Läuterungssynthesen waren stets blasen- und kristallfrei. Der H₂O-Gehalt wurde an einigen Proben exemplarisch analysiert (s. Anhang A, Tabelle A.1). Maximalwerte der H₂O-Konzentration betrugen 85 \pm 68 ppm.

Abbildung 5.3: Abhängigkeit der Sulfatkonzentration von der Temperatur in NCS- und NS3-Gläsern aus Läuterungssynthesen (30 min), gestrichelt - Regressionsgeraden. Den angegebenen Konzentrationen liegen zehn (EMPA) bzw. drei Analysen (CS) zugrunde (angegebene Fehler 2σ).

Auffallend ist, dass die Glasprodukte der NS3-Gläser immer deutlich höhere Variatio-

nen im Schwefelgehalt im Vergleich zu den NCS-Gläsern aufweisen und die Schwefelgehalte teilweise doppelt so hoch sind. Für eine Haltezeit der Zieltemperatur von drei Stunden wurde eine komplette Synthesereihe lediglich mit NCS-Schmelzen durchgeführt. Hier ist der Effekt der Temperaturabhängigkeit wesentlich stärker erkennbar. Die Schwefelkonzentrationen nach drei Stunden Haltezeit waren bei hohen Temperaturen (\geq 1500°C) deutlich geringer als nach 30 Minuten (s. Abb. 5.3 & 5.4). Bis 1450°C sind diese noch vergleichbar. Die Unterschiede bei hohen Temperaturen nach längeren Temperzeiten lassen sich durch den schnelleren Schwefeltransport und die damit einhergehenden niedrigere Viskosität und schnellere Diffusion erklären. Bei den Syntheseprodukten der Experimente bei 1650°C bewegt sich der Schwefelgehalt nur knapp über der unteren Nachweisgrenze von etwa 55 ppm (für beide Analyseverfahren in diesem Fall identisch).

Abbildung 5.4: Abhängigkeit der Sulfatkonzentration von der Temperatur in NCS- und NS3-Gläsern aus Läuterungssynthesen (3 h), gestrichelt - Regressionsgeraden. Den angegebenen Konzentrationen liegen zehn (EMPA) bzw. drei Analysen (CS) zugrunde (angegebene Fehler 2σ).

Ausgewählte Syntheseprodukte wurden mit μ XANES auf ihre Schwefelspeziation untersucht. Beide Glaszusammensetzungen zeigen in den XANES-Spektren keine SulfidAnregung und eine stark ausgeprägte Sulfat-Anregung bei 2482,5 eV. Eine geringe Ausbildung der Sulfit-Anregung bei einer Energie von 2478,4 eV könnte durch eine Photoreduktion von Sulfat durch den Synchrotronstrahl verursacht worden sein (s. Abb. 5.5). Hierbei handelt es sich um ein analytisches Artefakt, dass bei hoher Fokussierung kombiniert mit einer hohen Strahlintensität auftritt (Wilke et al., 2008). Die Spektren zeigen, dass während der Syntheseexperimente Sulfat als Schwefelspeziation komplett erhalten werden konnte.

Abbildung 5.5: XANES-Spektren polierter NCS- und NS3-Glasprodukte aus Läuterungsexperimenten, der Messpunkt auf der Probe betrug 200 µm.

Ergänzend zu den Syntheseexperimenten der Sulfatläuterung wurden Synthesen sulfidhaltiger Gläser durchgeführt. In allen Fällen waren die hergestellten Glasprodukte blasen- und kristallfrei, was für die konzentrierten sulfidhaltigen Gläser mit etwa 7,0 Gew.% (NCS) und 1,5 Gew.% Schwefel zutraf, wie auch für die verdünnten Äquivalente mit etwa 1500 ppm S. Die maximal ermittelten H₂O-Gehalte betrugen 66 \pm 6 ppm (s. Anhang A, Tabelle A.1). Abbildung 5.6 zeigt XANES-Spektren von drei verschiedenen NCS-Gläsern. Die Gläser, in denen Na₂S als Sulfidquelle verwendet wurde, wurden als Pulver und als poliertes Glasstück unabhängig voneinander an unterschiedlichen XAS-Messplätzen (SUL-X ANKA, ID21 ESRF) analysiert und führten zu denselben Ergebnissen. In den NCS-Glasprodukten konnte Sulfid als einzig nachweisbare Schwefelspezies erhalten werden. Der Einbau von Sulfid ins Silikatnetzwerk aus unterschiedlichen Sulfidquellen (FeS, Na₂S) hat keinen sichtbaren Einfluss auf die XANES-Spektren, die Sulfid-Anregung hat eine stabile Position als Doppel-Peak bei 2474,0 und 2477,0 eV.

Abbildung 5.6: XANES-Spektren polierter und gepulverter NCS-Glasprodukte aus Syntheseexperimenten im Vertikalofen bei 1450 bis 1550°C mit Na₂S und FeS als Sulfidquelle, der Messpunkt auf der Probe betrug 7 x 1 mm für Pulverpoben und 200 μm für polierte Glasproben.

Aufgrund der niedrigeren Selbstabsorptionseffekte wurde nach der Verdünnung des konzentrierten sulfidhaltigen NCS-Glases ein Unterschied zwischen Spektren festgestellt, die an frisch aufgemahlenen Glaspulvern defokussiert (7 x 1 mm) und an polierten Glasstücken fokussiert (200 x 200 μ m bis 50 x 50 μ m) aufgenommen worden sind. Die polierte Probe zeigt bei 2466,5 eV eine schwach ausgebildete unbekannte Vorkanten-Anregung, die im Bereich der Nb L2-Kante (2465,0 eV) liegt (s. Abb. 5.6). Ursache und Herkunft dieser Anregung wird in Abschnitt 7.2 auzsführlich diskutiert. Sulfidhaltige Syntheseexperimente wurden im Vertikalofen ebenfalls mit NS3-Gläsern durchgeführt. Auch hier diente ein Glas, in dem Sulfid als Na₂S konzentriert mit 1,5 Gew.% gelöst werden konnte,

zur späteren Verdünnung. Während Sulfid als einzig nachweisbare Schwefelspezies in den konzentrierten NS3-Proben erhalten blieb, gelang dies für das verdünnte Äquivalent nicht. Dies ist durch Sauerstoffzufuhr während der Syntheselaufzeit aus der Ofenatmosphäre zu erklären. Sulfid ist in den verdünnten Gläsern dennoch die vorherrschende Schwefelspezies (s. Abb. 5.7). Auch in den NS3-Gläsern ist die Position der Sulfid-Anregung stabil bei 2474,0 und 2477,0 eV. Beide Gläser zeigen ebenfalls eine schwach ausgebildete Vorkanten-Anregung bei 2466,5 eV. Das Auftreten sowie mögliche Ursachen der Vorkanten-Anregung werden in Abschnitt 7.2 ausführlich diskutiert.

Abbildung 5.7: XANES-Spektren polierter und gepulverter NS3-Glasprodukte aus Syntheseexperimenten im Vertikalofen bei 1450 bis 1500°C mit Na₂S als Sulfidquelle, der Messpunkt auf der Probe betrug 200 μm.

Es ist anzumerken, dass die Syntheseexperimente in halboffenen Systemen durchgeführt wurden. Dadurch kann es teilweise zu einem Stoffaustausch mit der Umgebung (z. B. der Ofenatmosphäre) kommen. Bei den Läuterungsexperimenten wird streng genommen kein Gleichgewicht erreicht, d. h. nach der Entgasung durch Blasenbildung erfolgt eine Änderung im Inneren der Schmelzen nur sehr langsam durch Diffusion und/oder Konvektion.

5.3 Syntheseexperimente unter Hochdruck

Um eine Blasenbildung während des Experimentes zu verhindern, wurden Synthesen unter Hochdruckbedingungen bei 1000°C und 100 MPa in einer IHPV durchgeführt. Die Versuchslaufzeit betrug für alle Synthesen 20 Stunden. In einigen Fällen wurde u. a. der Einfluss von H₂O auf die Schwefelspeziation untersucht. Die Syntheseprodukte waren in allen Fällen blasen- und kristallfreie Gläser.

Bei experimentellen Bedingungen sind die als Containermaterial verwendeten Au-Kapseln permeabel für eindiffundieren H₂ aus der Ofen- bzw. Autoklavatmosphäre und die Sauerstofffugazotät innerhalb der Probenkapsel ist abhängig von der Wasserfugazität nach

$$H_2 + \frac{1}{2}O_2 = H_2O \tag{5.1}$$

Bei H₂O-gesättigten Bedingungen ist die Sauerstofffugazität bei intrinsischer H₂-Fugazität ungefähr im Bereich des MnO-Mn₃O₄-Puffers bei log $fO_2 \sim -6.7$ (1000°C, 100 MPa) für die verwendeten Synthesebedingungen (Berndt et al., 2002). Da die H₂O-Konzentrationen der Syntheseprodukte (s. Anhang A, Tabelle A.1) deutlich geringer sind als die Wasserlöslichkeit für alumosilikatische Schmelzen bei 100 MPa von etwa 5 Gew.% (Behrens & Jantos, 2001), liegt die tatsächliche fO_2 deutlich niedriger. Die Temperatur hat im Gegensatz zum Druck nur einen geringen Einfluss auf die Wasserlöslichkeit (Behrens & Jantos, 2001). Es wird angenommen, dass die fO_2 während der Experimente um $10^{-7.5}$ bar lag (Berndt et al., 2002). Eine exakte Angabe der fO_2 ist nicht möglich und hängt insbesondere vom spezifischen H₂O-Gehalt der Schmelze ab.

Hochdrucksyntheseexperimente von NS3 mit Na₂SO₄ wurden nominell trocken und mit Zusatz von 0,5, 1,0 und 5,0 Gew.% deionisiertem H₂O durchgeführt. Das nominell trockene Glas wie auch die beiden synthetisierten Gläser mit 0,5 bzw. 1,0 Gew.% H₂O zeigen eine Ausprägung der Sulfid-Anregung bei 2473,8 eV. Bei einem H₂O-Gehalt von 5,0 Gew.% ist diese nicht mehr erkennbar. Zudem nimmt die Stärke der Sulfat-Anregung bei 2482,5 eV mit steigendem H₂O-Gehalt zu (s. Abb. 5.8). Es ist anzumerken, dass nominell trockene Gläser, die unter Hochdruck synthetisiert wurden, einen H₂O-Gehalt von bis zu 0,5 Gew.% aufweisen (s. Anhang A, Tabelle A.1). Um 0,5 Gew.% H₂O zu erhalten, sind 0,13 Gew.% Schwefel als Sulfat notwendig, um nach folgender Gleichung zu Sulfid zu reagieren:

$$SO_4^{2-} + 4H_2 = S^{2-} + 4H_2O (5.2)$$

Abbildung 5.8: XANES-Spektren schwefelhaltiger NS3-Glaspulver aus Hochdrucksynthesen (100 MPa, 1000°C, 20h) mit Na₂SO₄. Die gestrichelten Linien geben die Positionen der Sulfid- bzw. Sulfat-Anregung bei 2473,8 und 2482,5 eV an. Der Messpunkt auf der Probe betrug 7 x 1 mm.

Syntheseexperimente von NS3 mit Na₂SO₃ und Na₂S wurden ebenfalls nominell trocken und mit Zusatz von 1,0 Gew.% deion. H₂O durchgeführt. Syntheseprodukte aus Experimenten mit Na₂S zeigen zum überwiegenden Teil Schwefel als Sulfid. Produkte aus Synthesen, in denen Na₂SO₃ als Schwefelquelle verwendet wurde, zeigen deutlich erkennbare Peaks im Bereich der Sulfid- bzw. Sulfat-Anregung (2473,4 bzw. 2482,5 eV), jedoch nicht im Bereich der Sulfit-Anregung (2478,2 eV, s. Abb. 5.9, vgl. Abb. 5.1). Die Zugabe von 1,0 Gew.% H₂O führte sowohl bei Synthesen mit Na₂SO₃, als auch mit Na₂S zur Reduktion der Sulfid-Anregung und einer stärkeren Ausprägung des Sulfat-Peaks (s. Abb. 5.8). Hochdrucksyntheseprodukte, die ohne Zusatz von deion. H₂O synthetisiert wurden, wurden auch mit Raman-Spektroskopie analysiert, um weitere Rückschlüsse auf die Schwefelspezation im Glas zu gewinnen. Abbildung 5.10 zeigt Spektren von NS3-Gläsern, denen Schwefel in Form von Na₂S, Na₂SO₃ und Na₂SO₄ zugeführt wurde. Erkennbar ist eine ausgeprägte Sulfatbande (S-O Sulfat-Streckschwingung) bei 991 cm⁻¹ (S-O Sulfat-Streckschwingung, Manara et al., 2007, Tsujimura et al., 2004) im Schulter-

Abbildung 5.9: XANES-Spektren schwefelhaltiger NS3-Glaspulver aus Hochdrucksynthesen (100 MPa, 1000°C, 20h) mit Na₂SO₃ und Na₂S, der Messpunkt auf der Probe betrug 7 x 1 mm.

bereich der spezifischen Bande des Silikatnetzwerkes bei etwa 1100 cm⁻¹ (assymetrische Streckschwingung, Mysen & Frantz, 1994). Erkennbar ist auch eine leichte Sulfatbande bei 630 cm⁻¹ (O-S-O Sulfat-Streckschwingung), die jedoch stark von einer Doppelbande des Silikatnetzwerks zwischen 500 und 600 cm⁻¹ überlagert wird (Mysen & Frantz, 1994, Stebbins, 1987, Virgo et al., 1980). Die Sulfatbande bei 991 cm⁻¹ nimmt mit zunehmender Oxidation des Schwefels in der Probe relativ zur Bande des Silikatnetzwerks bei 1100 cm⁻¹ an Intensität zu, zusätzliche Absorptionsbanden für Sulfid (450 cm⁻¹, El Jaroudi et al., 1999) oder Sulfit (1135 cm⁻¹, Frost & Keeffe, 2009) sind nicht zu erkennen. Die Ergebnisse der Raman-Analysen gleichen sulfathaltigen Borosilikatgläsern, die von Manara et al. (2007) untersucht wurden. Eine Quantifizierung der Sulfatkonzentration wurde nicht durchgeführt, da die Methode nur exemplarisch zum Vergleich mit XANES-Untersuchungen verwendet wurde. XANES-Spektren dieser Proben zeigen die Abbildungen 5.8 und 5.9.

Hochdrucksyntheseexperimente wurden auch mit NCS-Glas durchgeführt, jedoch ohne Zusatz von deion. H₂O. Im Gegensatz zu den übrigen Syntheseexperimenten wurde

Abbildung 5.10: Raman-Spektren schwefelhaltiger NS3-Gläser aus Hochdrucksyntheseexperimenten, die gestrichelte Linien geben die Position der Sulfat-Banden bei 630 und 991 cm⁻¹ an, durchgehende Linien markieren Positionen von dominierenden Banden des Silikatnetzwerks an.

Sulfid in diesem Fall als FeS (S^{2–} - Sulfid) und FeS₂ (S^{2–} - Mono-Sulfid) hinzugefügt. In beiden Fällen konnte Sulfid als dominierende Schwefelspezies nicht erhalten werden (s. Abb. 5.11).

5.4 Diskussion

5.4.1 Löslichkeitsmechanismen und Entgasung von Schwefel in silikatischen Schmelzen

Die vorliegenden Ergebnisse der Syntheseexperimente bei Hoch- und Umgebungsdruck zeigen, dass Sulfat und Sulfid in NS3- und NCS-Gläsern z. T. nebeneinander vorliegen können. In den unter Hochdruck synthetisierten Gläsern konnte Sulfat als alleinige Spezies nicht erhalten werden, was v. a. auf die H₂O-untersättigten Bedingungen zurückzuführen ist. Im Vergleich zu Sulfid ist Sulfat hier jedoch die dominierende Spezies. Ein Nachweis für Sulfit als stabile Schwefelspezies in den vorliegenden Silikatgläsern konnte nicht erbracht werden, was auch für die Syntheseexperimente mit Na₂SO₃ als Schwe-

Abbildung 5.11: XANES-Spektren schwefelhaltiger NCS-Glaspulver aus Hochdrucksynthesen mit FeS bzw. FeS₂ als Schwefelquelle, der Messpunkt auf der Probe betrug 7 x 1 mm.

felquelle zutrifft. Dies weist darauf hin, dass in den verwendeten silikatischen Schmelzen Sulfit zu Sulfat und Sulfid disproportioniert. Die Reaktion kann beschrieben werden durch (Backnäs et al., 2008)

$$4SO_3^{2-} \to S^{2-} + 3SO_4^{2-} \tag{5.3}$$

Es konnte nicht geklärt werden, ob Sulfit möglicherweise bei hohen Temperaturen eine stabile Spezies in der Schmelze ist und sich das Gleichgewicht erst bei der Abkühlung zum Glas auf die rechte Seite der Reaktion verschiebt. In dem Fall wäre die Gleichgewichtskonstante für eine solche Speziationsreaktion sehr stark temperaturabhängig, da die bei Raumtemperatur gemessene Schwefelspeziation die Gleichgewichtsspeziation bei T_f wiedergibt. Eine solche retrograde Speziationsreaktion könnte in Fe-haltigen Schmelzen wie Schlacken und Basalten erwartet werden, wo ein Zusammenhang zwischen Redoxreaktionen von Schwefel mit dem Fe²⁺/Fe³⁺-Verhältnis stattfinden könnte (Müller-Simon, 1998). Generell ist die strukturelle Relaxation des Silikatnetzwerks (Relaxationszeit τ) bei Temperaturen unterhalb T_f zu langsam, um ein solches Einstellen des Reaktionsgleichgewichts und eine Koordination der Schwefelatome zu erlauben (Behrens & Nowak, 2003, Dingwell & Webb, 1990, Zhang et al., 1997). Voraussetzung dafür wäre eine Kopplung der Schwefelspeziation an die Netzwerkrelaxation, was bei den strukturellen Bindungen möglich ist. Nach Gleichung 5.3 müssten an einer solchen Reaktion 4 SO_3^{2-} beteiligt sein. Da die Schwefelkonzentration und Mobilität der Schwefelspezies sehr gering sind (s. Abschn. 7.1), erscheint eine solche komplexe retrograde Speziationsreaktion als eher unwahrscheinlich. Eine andere Möglichkeit wäre aber ein stufenweise ablaufender Prozess, bei dem die Zwischenprodukte eine sehr kurze Lebensdauer haben.

Um die Sulfit-Stabilität in silikatischen Schmelzen dennoch nachzuweisen oder auszuschließen, sind Methoden notwendig, die die Schwefelspeziation in situ in der Schmelze analysieren können, wie z. B. in situ XANES-Messungen oberhalb von 1000°C. Solche Messungen stellen eine technische Herausforderung dar und sind bislang nicht etabliert.

Mit den durchgeführten Läuterungsexperimenten bei Umgebungsdruck wurden blasenfreie und trockene Gläser mit einem Sulfatgehalt von 100 bis 4500 ppm Schwefel synthetisiert. Die Ergebnisse bestätigen, dass die Schwefellöslickeit stark temperaturabhängig ist. Mit zunehmender Temperatur zersetzt sich Sulfat nach folgender Reaktion (Beerkens, 2003b):

$$Na_2SO_4 \leftrightarrow Na_2O + SO_2 + \frac{1}{2}O_2 \tag{5.4}$$

Der SO₂-Partialdruck in der Schmelze nimmt mit der Temperatur zu und überschreitet 1 bar. Je nach Schwefelgehalt beginnen sich im Zuge einer Übersättigung Blasen zu bilden und in der Schmelze aufzusteigen. Wird die Temperatur weiter erhöht, nimmt die Übersättigung an SO₂ weiter zu, was zu stärkerem Blasenwachstum und einem effektiveren Läuterprozess durch eine stärkere Extraktion der Blasen führt. Je höher die initiale Sulfatkonzentration in der Schmelze ist, desto tiefer liegt die Temperatur, an der die Läuterung einsetzt. Für NCS-Schmelzen liegt diese nach Beerkens (2003b) und Laimböck (1998) zwischen 1300°C und 1450°C. Die Läuterung ist ein innerer Prozess der Silikatschmelze, bei dem Bildung, Wachstum und Aufstieg von Blasen die entscheidenden Mechanismen für eine Neueinstellung des Schwefelgehaltes darstellen. Eine Homogenisierung erfolgt dem Läuterungsprozess nachgeschaltet und wird ausschließlich über Diffusion bzw. Konvektion erreicht. Somit ist der Schwefelgehalt im Inneren der Schmelze mit einem hohen Schwefelpartialdruck äquilibriert worden. Über der Schmelze dürfte der Schwefelpartialdruck im Gegensatz dazu deutlich geringer sein, da es zu einer Verdünnung mit anderen Gasen kommt. Dadurch könnte man die z. T. starke Inhomogenität der Glasprodukte erklären (s. Abb. 5.3 & 5.4).

5.4.2 Quantifizierung der Schwefelspezies in silikatischen Gläsern

Der Ansatz nach Carroll & Rutherford (1988) mit Hilfe von Mikrosondenmessungen und des S *K* Peak Shift in wds-Spektren wurde nicht systematisch durchgeführt. Der Grund hierfür liegt im Fall der Mikrosondenanalysen im sehr geringen der S *K* Peak Shift von lediglich sin θ = 0,00043 (s. Abschn. 4.3). Durch die ebenfalls auftretende starke Überlappung des Sulfat- und Sulfid-Peaks ist eine verlässliche Aussage über die Konzentration der Schwefelspezies nicht möglich. Intermediäre Spezies wie S⁴⁺, S⁰ oder auch Unterschiede in der Sulfid-Koordination können nicht aufgelöst werden. Ein Beispiel dieser Überlappung zeigt Abbildung 4.4 anhand von wds-Spektren S^{2–} bzw. S⁶⁺-haltigen Gläser. Eine Quantifizierung der Sulfat- bzw. Sulfid-Konzentration in den Gläsern mit Hilfe von linear-kombinierten Anpassungen der XANES-Spektren synthetisierter Gläser mit verschiedenen kristallinen Referenzmaterialen (s. Abb. 5.1) ist aufgrund der unterschied-lichen Umgebung des Schwefels im Silikatnetzwerk des Glases nicht möglich und führt zu mangelhaften Ergebnissen (Backnäs et al., 2008, McKeown et al., 2004). Daher ist lediglich eine qualitative vergleichende Bewertung der XANES-Spektren möglich.

Anhand von XANES quantitative Aussagen über die Konzentration verschiedener Oxidationsstufen eines Elementes in silikatischen Gläsern zu treffen, ist für divalente Elemente (z. B. Fe) in Grenzen möglich (Wilke et al., 2004). Für multivalente Elemente wie Schwefel, bei denen z. B. die Position der Sulfid-Anregung sehr stark von der lokalen Umgebung des Schwefels im vorliegenden Material abhängt, gestaltet sich dies jedoch schwieriger. Eine Aussage über Gläser, die mehr als eine Schwefelspezies enthalten, ist mit einer linear-kombinierten Anpassung anderer Referenzsubstanzen (kristallin oder Glas) kaum möglich (Backnäs et al., 2008). Durch die stark unterschiedliche Umgebung zwischen Gläsern und Mineralen, sind Intensitätsmaxima und Feinstrukturen im Bereich der Whitelines und danach (+ 25 eV) unterschiedlich ausgeprägt (Bonnin-Mosbah et al., 2002). Bei Sulfat-Mineralen ist die Intensität des Maximums der Whiteline stark abhängig von der Struktur und den ladungskompensierenden Kationen (z. B. Ca²⁺, Na⁺, Fe²⁺). Die Feinstrukturen sind aufgrund der Sauerstoffkoordination von Schwefel sehr stark ausgeprägt, bei Silikatgläsern ist dies nicht der Fall (vgl. Abb. 5.1, 5.2 & 5.5). Auch ein Vergleich solcher Gläser mit synthetisierten Endgliedern, die Schwefel nur als Sulfid bzw. Sulfat enthalten, ist nur bedingt möglich. Linear-kombinierte Anpassungen von Gläsern, die Sulfat und Sulfid enthielten, zeigten grundsätzlich eine Überschätzung des Sulfatgehaltes mit dieser Methode. Gründe dafür können z. B. starke unterschiedlich ausgeprägte Whitelines für S^{2-} und S^{6+} , Gesamtschwefelegehalt, Messbedingungen, Korngröße des analysierten Präparats oder die aufgebrachte Probenmenge sein. Dadurch kann der Grad der Selbstabsorption und damit die Ausbildung der Sulfid- bzw. Sulfatresonanzen beeinflusst werden. Zusätzlich ist anzumerken, dass bei XANES im Vergleich zu anderen spektroskopischen Analysemethoden (z. B. NMR-Spektroskopie) die Fläche unter den zu untersuchenden Peaks nicht nur von der Konzentration der vorliegenden Spezies abhängt, sondern ebenso von der lokalen Umgebung der Spezies im Medium. Eine Bewertung der relativen Intensitäten ist daher im besten Fall semi-quantitativ möglich, wenn Probenpräparation und Messbedingungen identisch sind und die Schwefelgehalte so niedrig sind, dass Selbstabsorption vernachlässigbar ist.

Kapitel 6

H₂O-Diffusion in silikatischen Schmelzen

Im Folgenden Abschnitt sind die Ergebnisse und die Diskussion zu Untersuchung der H₂O-Diffusion in NCS-Schmelzen dargestellt und diskutiert. Die Bestimmung des Diffusionskoeffizienten war Grundlage für die Untersuchung extern induzierter Redoxreaktionen von Sulfid in den verwendeten Schmelzen (s. Abschnitt 7.1). Außerdem wurde ein bereits bestehender Datensatz zur H2O-Diffusion erweitert, um zu klären ob die Diffusion von Wasser in den verwendeten silikatischen Schmelzen vom Wassergehalt abhängt. Durchgeführt wurden Diffusionspaarexperimente mit nominell trockenen und wasserhaltigen Gläsern bei 100 bzw. 200 MPa und Temperaturen von 550 bis 1300°C. Hierbei wurden auf der wasserreichen Seite Gläser mit 0,3 Gew.% bzw. 3,0 Gew.% H₂O eingesetzt. Die ausführlichen experimentellen Bedingungen sowie Ergebnisse der H₂O-Diffusionsexperimente sind in Anhang A (Experimente Nr. 1-13 in Tabelle A.2) tabellarisch aufgeführt. Neu durchgeführt wurden alle Experimente mit hohen H₂O-Konzentrationen und zwei Experimente mit niedrigen Konzentrationen bei 1300°C. Die Glasprodukte der normalen H2O-Diffusionsexperimente wurden mit einem konventionellen FTIR-Mikroskop an doppelseitig polierten Dünnschliffen mit $\sim 60 \ \mu m$ Dicke untersucht. Zusätzliche Diffusionsdaten wurden aus Versuchen zur externen Oxidation von Sulfid (s. Abschnitt 7.2) ermittelt. Diese Proben wurden am IR-Messplatz ID21 am ESRF in Grenoble mit einem modifizierten FTIR-Mikroskop untersucht, dass Synchrotron als Strahlenquelle verwendet (s. Abschn. 4.4). In diesem Fall wurden Dickschliffe mit $\sim 200 \,\mu m$ Dicke im NIR analysiert. Grund hierfür war eine primäre Präparation für XANES-Spektroskopie. Die Ergebnisse und Bedingungen sind ebenfalls in Anhang A (Experimente Nr. 14-21 in

Tabelle A.2) aufgeführt.

Abbildung 6.1: MIR-Spektren der Probe SLS-JS1, das Diffusionsexperiment wurde bei 200 MPa und 1000°C durchgeführt, die Laufzeit betrug 10 Minuten. Die Dicke des Probenschliffs, der zur Messung verwendet wurde, betrug 63 µm. Analysiert mit einem konventionellen FTIR-Mikroskop.

6.1 Ergebnisse der H₂O-Diffusionsexperimente

Die experimentellen Produkte der H_2O -Diffusionsexperimente zeigten in allen Fällen keinerlei Deformierungen. In den polierten Glaspräparaten waren in den H_2O -haltigen Seiten der Diffusionspaare mit hoher H_2O -Konzentration wenig fein verteilte Blasen zu erkennen. Kristallbildung wurde in keinem der Gläser beobachtet, die Kontaktfläche zwischen H_2O -freiem und H_2O -haltigem Teil der Probe war in allen Fällen deutlich erkennbar und zeigte keine Verschiebung bzw. Verformung.

Abbildung 6.1 zeigt exemplarisch MIR-Spektren entlang des Konzentrationsprofils von H₂O in einer Probe. Die Konzentration wurde mit Hilfe der markierten Absorptionsbanden bei 3550 cm⁻¹ und 2850 cm⁻¹ für jeden Messpunkt berechnet (s. Abschnitt 4.4). Eine Darstellung der Distanz in m gegen die aus den MIR-Spektren berechnete H₂O-Konzentration zeigt Abbildung 6.2. Ebenfalls dargestellt ist die an das Profil angepasste Fehlerfunktion nach Gleichung 4.16 (gestrichelt) sowie eines Polynoms 7. Ordnung (graue Linie). Erkennbar ist eine Abweichung der Daten von der angepassten Fehlerfunktion bei hohen H₂O-Konzentrationen. Dem Abfall des Wassergehaltes bei niedrigen

Abbildung 6.2: H₂O-Konzentrationsprofil der Probe SLS-JS1 (weiße Punkte - Messpunkte) mit dem angepassten Profil eines Polynoms 7. Ordnung (graue Linie).
 Die Fehlerangabe bezieht sich auf den durchschnittlichen Fehler berechnet durch die Fehlerfortpflanzung der Einzelmessung.

x-Werten könnten messtechnische Ursachen (Variabilität der Schliffdicke etc.) oder eine leichte Ausdiffusion zur Kapselwandung zu Grunde liegen. Mit einer Laufzeit von 10 Minuten bei 200 MPa und 1000°C wurde nach Gleichung 6.1 ein Diffusionskoeffizient von $\log D^1 = -10,05 \pm 0,10^2$ ermittelt.

Um eine Überlagerung oder Beeinflussung der H₂O-Diffusion durch konvektive Bewegungen innerhalb der Probe während der Experiments zu erkennen, wurden für die Versuchsreihen mit geringer und hoher H₂O-Konzentration bei 1300 bzw. 1100°C Duplikate mit unterschiedlichen Laufzeiten durchgeführt. In beiden Fällen unterscheiden sich die ermittelten Diffusionskoeffizienten um etwa 0,3 Größenordnungen (s. Abb. 6.11 & Tab. A.2 (Anhang)), wobei die Experimente mit der kürzeren Laufzeit höhere Diffusionskoeffizienten ergaben. Dies entspricht der zweifachen Diffusionsgeschwindigkeit, verglichen mit dem Unterschied in der Versuchszeit. Auffälligkeiten während der Versuchslaufzeit wurden nicht festgestellt. Um die Form der Konzentrationsprofile zu vergleichen, wurden

¹wenn nicht anders beschrieben, werden D und D₀ in dieser Arbeit grundsätzlich in m²/s angegeben ²approximierter experimenteller Fehler von $\sim 20\% = 0.1$ Größenordnung

diese in einer Darstellung mit der auf die Maximalwerte normierten H₂O-Konzentration gegen $x/t^{0,5}$, wobei *x* der Ort des Profils in m und *t* die korrigierte Versuchslaufzeit in Sekunden ist, dargestellt. Im Fall einer ausschließlich temperaturabhängigen Diffusion sollten beide Profile übereinander zum Liegen kommen. Abbildung 6.3 zeigt normierte Konzentrationsprofile der Experimente SLS_JS2 und SLS_JS3. Die Profile weichen leicht voneinander ab. Derselbe Effekt kann bei den Proben mit geringerer H₂O-Konzentration in Abbildung 6.4 beobachtet werden, hier ist die Übereinstimmung jedoch deutlich besser. In beiden Fällen ist die Steigung am Wendepunkt bei den Proben mit längeren Laufzeiten größer.

Abbildung 6.3: Vergleich der normierten H₂O-Konzentrationsprofile der Proben SLS-JS2 und SLS-JS3 als Funktion von x/t^{0,5}.

6.2 Ergebnisse der Redoxpaarexperimente - Typ iv

Neben den Ergebnissen aus den reinen H₂O-Diffusionspaarexperimenten wurden aus den Experimenten zur Untersuchung der extern induzierten Oxidation von Sulfid (s. Abschnitt 7.2) ebenfalls H₂O-Diffusionskoeffizienten ermittelt. Diese Experimente wurden in NCSund NS3-Schmelzen durchgeführt. Eine Quantifizierung der H₂O-Konzentrationen in den Proben der NS3-Versuchsreihe war aufgrund nicht vorhandener Absorptionskoeffizienten nicht möglich. Im Gegensatz zu den IR-Analysen der NCS-Gläser, wo für das nahe Infra-

Abbildung 6.4: Vergleich der normierten H₂O-Konzentrationsprofile der Proben SLS-JS6 und SLS-JS7 als Funktion von x/t^{0,5}.

rot eine Kalibration für H₂O-haltige Gläser nach Stuke et al. (2006) zur Verfügung stand, wurden Absorptionskoeffizienten für NS3 nach Yamashita et al. (2008) interpoliert. Die mit Hilfe der Interpolation berechneten Wassergehalte für die H₂O-reichen Seiten der NS3-Gläser lagen deutlich unter dem Wassergehalt des Ausgangsmaterials und bewegten sich zwischen 1,40 und 1,55 Gew.% anstelle von etwa 3,0 Gew.%. Die Ursachen hierfür können die sehr geringen Peakhöhen in Kombination mit einer schlecht definierten Basislinie sein. Ein Einfluss von experimentellen Parametern wie Druck und Abkühlungsrate kann ebenfalls nicht ausgeschlossen werden. Daher können die IR-Spektren der NS3-Experimente nur qualitativ betrachtet und vergleichend herangezogen werden. Die H₂O-Konzentrationen entlang des Diffusionspfades wurde für NCS-Gläser mit Hilfe von Absorptionsbanden von H₂O und OH⁻ im NIR-spektralen Bereich berechnet. Hierfür wurden die Banden bei 5200 cm⁻¹ bzw. 4500 cm⁻¹ verwendet (s. Abschn. 4.4). Alle experimentellen Produkte zeigten keinerlei Formveränderungen. Die Kontaktfläche zwischen S^{2–}-haltigem und H₂O-haltigem Teil der Probe war nach dem Versuch klar erkennbar und zeigte ebenfalls keine Verschiebung oder Verformung.

Abbildung 6.5 und 6.6 zeigen NIR- bzw. MIR-Spektren mit Angabe der Distanz zur Kontaktfläche der S^{2–}- bzw. H₂O-haltigen Zylinder. Zu beobachten ist das Auftauchen einer neuen H₂O-Absorptionsbande bei 5020 cm⁻¹ nahe der Kontaktfläche des Diffusi-

Abbildung 6.5: NIR-Spektren der Probe G22, mit abnehmender H₂O-Konzentration von oben nach unten. Die gestrichelten Linien markieren das Verschwinden bzw. Auftauchen der Absorptionsbanden bei 5225 und 5020 cm⁻¹ (H₂O) bzw. eine Verschiebung von 4500 auf 4530 cm⁻¹ (OH⁻). Die Dicke des Probenschliffes betrug 210 μm. Analysiert mit einem für Synchrotronanwendung modifiziertem FTIR-Mikroskop Untergrund mit Spline-Kurve angepasst.

onspaares, während die NIR-Bande bei 5225 cm⁻¹ kontinuierlich verschwindet. Die in Abbildung 6.5 aufgeführten Spektren zeigen, dass ab dem Auftauchen der neuen NIR-Bande 325 µm vor der Kontaktfläche (2,24 ± 0,10 Gew.% H₂O) zum sulfidhaltigen Teil der Probe der H₂O-Gehalt systematisch unterschätzt wird. Der daraus resultierende Fehler nimmt mit sinkenden Gehalten zu. Einhergehend taucht eine weitere scharf ausgebildete Absorptionsbande im MIR bei 3400 cm⁻¹ auf. Zusätzlich verschiebt sich die OH⁻-Absorptionsbande von 4500 auf 4530 cm⁻¹, die kontinuierliche Verschiebung dieser Bande zu niedrigeren Wellenzahlen mit zunehmender H₂O-Konzentration wurde bereits von Stuke et al. (2006) beobachtet und kann allein durch die stärkere Hydratisierung der Gläser erklärt werden. Das beschriebene Verschwinden der H₂O_m-Absorptionsbande bei 5225 cm⁻¹ im Bereich geringer H₂O_t-Gehalte \leq 1,0 Gew.% ist deutlich zu erkennen. Mit weiter abnehmender H₂O-Konzentration nimmt eine neue Bande bei 5020 cm⁻¹ an Intensität zu. Im Vergleich zum sulfidfreien Teil der Proben ist ein Unterschied im NIR nur am Bandensystem 5225 - 5020 cm⁻¹ zu erkennen, so dass dieser Effekt auf den An-

Abbildung 6.6: MIR-Spektren der Probe G22, mit abnehmender H₂O-Konzentration von oben nach unten. Die gestrichelten Linien markieren die Absorptionsbanden bei 3550 cm⁻¹ (H₂O) bzw. 3400 cm⁻¹. Die Dicke des Probenschliffes betrug 210 μm. Analysiert mit einem für Synchrotronanwendung modifiziertem FTIR-Mikroskop.

 Abbildung 6.7: H₂O-Konzentrationsprofil der Probe G22 (weiße Punkte - Messpunkte) mit dem angepassten Profil eines Polynoms 7. Ordnung (graue Linie). Die Schrittweite zwischen den Messpunkten beträgt 25 μm.

teil des molekularen H₂O im Glas beschränkt werden kann. Die MIR-Spektren zeigen die scharf ausgebildete H₂O-Bande bei 3400 cm⁻¹, die mit abnehmender Wasserkonzentration ebenfalls zunimmt. Ähnliche Beobachtungen wurden für Vergleichsexperimente festgestellt, bei denen freies deion. H₂O zu einem sulfidhaltigen Zylinder gegeben wurde.

Abbildung 6.7 zeigt ein H₂O-Konzentrationprofil dargestellt als Distanz in m gegen die aus den NIR-Spektren berechnete H₂O-Konzentration. Das angepasste Profil eines Polynoms 7. Ordnung weicht bei niedrigen Konzentrationen unter 0,5 Gew.% von den berechneten Gehalten ab. Eine Angabe verlässlicher Diffusionskoeffizienten ist nur zwischen H₂O-Konzentrationen von etwa 1,2 und 2,6 Gew.% möglich. Trotz der Abweichung bei niedrigen H₂O-Gehalten wurden die ermittelten Diffusionsdaten mit denen der reinen H₂O-Diffusionsexperimente mit hohen H₂O-Konzentrationen verglichen (s. Abschnitt 6.3).

6.3 Diskussion

6.3.1 Auswertung

Eine Abweichung zur Fehlerfunktion zeigen zudem die Konzentrationsprofile der Redoxpaarexperimente bei niedrigen Wassergehalten nahe der Kontaktfläche des Diffusionspaares. Ein Absorptionskoeffizient für die neu auftretende NIR-Bande bei 5020 cm⁻¹ konnte nicht bestimmt werden. Somit kann der dadurch repräsentierte H₂O-Anteil nicht berechnet werden. Lediglich eine Abschätzung ist möglich. Die Abweichung beträgt maximal 2000 ppm, bewegt sich meist aber zwischen 1300 und 1700 ppm. H₂O-Diffusionskoeffizienten für NS3 konnten aus den vorliegenden Experimenten (s.o.) nicht ermittelt werden. Eine qualitative Betrachtung der Spektren ergab, dass die Auffälligkeiten im NIR sowie das Auftauchen der MIR-Bande bei 3400 cm⁻¹ vergleichbar in Intensität und Ausbildung zur NCS-Versuchsreihe auftreten. Ein Einfluss von Ca als zusätzliche Komponente des Silikatnetzwerkes in NCS im Vergleich zu NS3 auf die Ausbildung der Absorptionsbanden konnte nicht festgestellt werden.

Auffälligkeiten im IR-spektralen Bereich lassen sich kombiniert im NIR ($5225 \rightarrow 5020$ cm⁻¹) und MIR (3400 cm⁻¹) beobachten. Weiterhin treten diese in Experimenten, in denen Glaszylinder aus Syntheseexperimenten verwendet wurden, in denen Sulfid als FeS oder Na₂S zugesetzt wurde, gleichermaßen auf. Ein Effekt von Fe auf die Bandenverschiebung kann somit bei den vorliegenden Gehalten von etwa 2000 ppm FeO nahe der

Kontaktfläche ausgeschlossen werden. Eine weitere Absorptionsbande für molekulares H_2O bei 1600 cm⁻¹ (z. B. Mandeville et al., 2002, Behrens & Stuke, 2003) konnte bei den NCS- und NS3-Proben nicht festgestellt werden. Da die für die Messungen verwendeten doppelseitig polierten Dickschliffe eine Dicke von etwa 200 µm hatten, um sie für XAN-ES und Synchrotron-NIR-Messungen verwenden zu können, konnte bei den vorliegenden Wassergehalten die Absorptionsbande bei 1600 cm⁻¹ nicht mehr aufgelöst werden. Weitere Messungen mit dünneren Präparaten im mittleren Infrarot-Bereich sind notwendig, um einen Zusammenhang der MIR-Banden bei 3400 und 1600 cm^{-1} und ein daraus resultierendes Auftreten der NIR-Bande bei 5050 cm⁻¹ analytisch nachweisen zu können. Die leichte Verschiebung der OH⁻-Absorptionsbande bei 4500 cm⁻¹ kann konzentrationsabhängig in silikatischen Gläsern auftauchen (Stuke et al., 2006). Da keine Auffälligkeiten OH⁻-spezifischer Absorptionsbanden beobachtet wurden, kann ausgeschlossen werden, dass in diesem Zusammenhang OH⁻ involviert ist. Die Auffälligkeiten im MIR und NIR in Zusammenhang mit XANES-Messungen und XRF-Profilen werden in Abschnitt 7.2 diskutiert, da µXANES-Analysen Effekte zeigen, die eine Wechselwirkung von molekularem H_2O mit Sulfid erkennen lassen (s. Abschnitt 7.2).

Die Form der H₂O-Konzentrationsprofile, die aus den MIR- bzw. NIR-Spektren berechnet wurden, ist in allen Fällen für wasserreiche Proben mit bis zu 3,0 Gew.% H₂O leicht assymmetrisch, so dass eine konzentrationsabhängige H₂O-Diffusion angenommen werden kann. Um den Zusammenhang der Wasserkonzentration (H_2O_t) und dem Diffusionskoeffizienten ($D_{H_2O_t}$) zu analysieren, wurden die Profile mit einem Polynom 7. Ordnung angepasst. Anschließend konnten mit dessen Hilfe die Diffusionskoeffozienten mit einer modifizierten Boltzmann-Matano-Analyse nach Sauer & Freise (1962) ermittelt werden (s. Gl. 4.20 oder auch Behrens et al., 2004, Nowak & Behrens, 1997). Details zu dieser Methode sind in Abschnitt 4.5 angegeben. Ein Anpassen der Profile mit einer Fehlerfunktion (s. Gl. 4.16) wird daher nur vergleichend vorgenommen und als schwarze Linie in den Abbildungen dargestellt. Abhängig von der Qualität des gemessenen Profils und der Präzision der Methode können für diese Experimente verlässliche Diffusionskoeffizienten im Bereich von etwa 0,5 bis 2,4 Gew.% H₂O angegeben werden (Behrens & Nowak, 1997, Behrens & Zhang, 2009, Behrens et al., 2004, Zhang et al., 2000). Proben mit geringer H₂O-Konzentration bis max. 0,3 Gew.% zeigten keinerlei Abweichungen von der verwendeten Fehlerfunktion. Eine Bearbeitung der Daten mit der modifizierten Methode nach Boltzmann-Matano wurde zum Vergleich ebenfalls durchgeführt.

6.3.2 Zeitabhängigkeit der Diffusionskoeffizienten

Wie aus den H_2O -Diffusionsexperimenten bei gleicher Temperatur und unterschiedlichen Versuchslaufzeiten hervorging, zeigten die Experimente mit den kürzeren Laufzeiten stets den größeren Diffusionskoeffizienten (s. Tab. 6.1, Abb. 6.3 & 6.4).

Probenname	H_2O	Т	Laufzeit	Laufzeit	log D	
	(Gew.%)	(°C)	(min)	korr. (s)	(D in m^2/s)	\pm
SLS_JS2	max. 3,0	1100	9	526	-9,75	0,10
SLS_JS3	max. 3,0	1100	4	226	-9,51	0,10
SLS_JS5	max. 3,0	1300	4	227	-9,38	0,10
SLS_JS6	max. 0,3	1300	4	227	-9,63	0,11
SLS_JS7	max. 0,3	1300	2	107	-9,35	0,20

Tabelle 6.1: H₂O-Diffusionsexperimente verschiedener Laufzeiten bei 1100 bzw. 1300°C, für Diffusionsexperimente mit max. 3,0 Gew.% H₂O sind die Diffusionskoeffizienten bei einer Konzentration von 1,0 Gew.% angegeben.

Eine Ursache könnte hierbei in den unterschiedlichen H₂O-Gehalten des Zylinderpaares liegen. Durch den Wassergehalt des Glases wird die Viskosität und damit auch die Temperatur des Glasübergangs T_g stark beeinflusst. Bei einer H₂O-Konzentration von 3,0 Gew.% liegt die Viskosität im Vergleich zu einem trockenen Glas oder einer trockenen Schmelze im Bereich der Glastransformation mehr als eine Größenordnung niedriger und T_q des trockenen Glaszylinders kann bis zu 200°C höher liegen als im H₂O-haltigen Teil des Diffusionspaares (Del Gaudio et al., 2007). Durch die unterschiedlichen Eigenschaften der Gläser kann ein initialer Vermischungseffekt einsetzen, der durch eine starke Differenz in der Aufschmelztemperaturen verursacht wird. Werden nun Experimente bei gleicher Temperatur mit unterschiedlichen Laufzeiten durchgeführt, so kann es durch diesen Effekt zu einer Überprägung der Profile bei kurzen Laufzeiten kommen. Bei längeren Laufzeiten wird dieser zeitabhängige Effekt zunehmend von geringerer Bedeutung sein. Tabelle 6.1 veranschaulicht dies für Experimente mit 3,0 Gew.% H₂O. Im Falle der Diffusion bei 0,3 Gew.% ist dieser Effekt ebenfalls zu beobachten, der Unterschied von T_q zwischen beiden Zylindern liegt hier nach Del Gaudio et al. (2007) bereits bei etwa 50°C. Die aus den Oxidationsexperimenten bestimmten Ergebnisse zeigen ähnliche Auffälligkeiten. So ist der Diffusionskoeffizient bei 1050°C und 5 Minuten Laufzeit bis zu 0,3 Größenordnungen höher als im Vergleich zu Experimenten mit 20 Minuten Laufzeit
(Proben G1-G4, s. Tab. A.2).

Um den Überprägungseffekt umfassend bewerten zu können, sind weitere systematische Versuchsreihen mit unterschiedlichen H₂O-Konzentrationen und Laufzeiten notwendig.

6.3.3 Konzentrations- und Temperaturabhängigkeit der Diffusionskoeffizienten

Diffusionsexperimente mit max. 3,0 Gew.% H₂O

Für die Interpretation der Diffusionsdaten der Versuchsreihe mit maximal 3,0 Gew.% H_2O wurden vier der fünf durchgeführten Experimente berücksichtigt. Da sich die Ergebnisse der Proben, die bei 1100°C durchgeführt wurden, stark unterscheiden (etwa 0,3 Größenordnungen), wurde das Experiment mit der kürzeren Laufzeit (SLS_JS3) aus den in Abschnitt 6.3.2 beschriebenen Gründen nicht eingeschlossen. Abbildung 6.8 zeigt die Diffusionskoeffizienten dieser Experimente in Abhängigkeit von der Gesamt-H₂O-Konzentration (H₂O_t), die aus der modifizierten Boltzmann-Matano-Analyse nach Sauer & Freise (1962) abgeleitet wurden. Erkennbar ist eine leicht exponentiell zunehmende Diffusivität mit steigender H₂O_t in allen Experimenten. Außerdem nimmt die Diffusivität mit zunehmender Temperatur zu.

Die Ergebnisse lassen sich unter der Annahme einer exponentiellen Abhängigkeit des Diffusionskoeffizienten vom Wassergehalt beschreiben durch

$$D = D_0 \cdot e^{b \cdot C_{H_2O}} \cdot e^{\frac{-Q}{RT}} \tag{6.1}$$

wobei *D* der Diffusionskoeffizient, D_0 der prä-exponentielle Faktor, *b* eine Konstante, C_{H_2O} die H₂O-Konzentration in Gew.%, *Q* die Aktivierungsenergie in kJ/mol, *R* die allg. Gaskonstante in J/mol und *T* die Temperatur in K sind. Logarithmiert ergibt sich:

$$\log D = \log D_0 + b \cdot C_{H_2O} - \frac{Q}{RT}$$
(6.2)

Da für alle Temperaturen die Steigung identisch ist, ergibt sich folgende Funktion zum Anpassen der Diffusionskoeffizienten (s. Abb. 6.8):

$$\log D = a + b \cdot C_{H_2O} - \frac{d}{T} \tag{6.3}$$

Ausgewählt für die Analyse wurden nur Datenbereiche, in denen kein starkes Ansteigen oder Abfallen der Diffusivität zu beobachten war. Dies tritt meist bei hohen bzw. nied-

Abbildung 6.8: H₂O-Diffusionskoeffizienten der Experimente max. 3,0 Gew.% H₂O, dargestellt als Funktion des Wassergehaltes. Gestrichelte Linien zeigen berechnete Trends nach Gl. 6.1.

rigen Konzentrationen auf, in denen die Präzision der modifizierten Boltzmann-Matano-Analyse nachlässt. Die zuverlässigsten Ergebnisse liegen bei einer Berücksichtigung der Werte zwischen 0,5 und 2,4 Gew.% H₂O vor, was mit Werten aus früheren Arbeiten übereinstimmt (20 - 80% von H₂O_t, Nowak & Behrens, 1997). Die in Abbildung 6.8 dargestellten rot gestrichelten Linien, geben das Ergebnis der Datenanalyse wieder. Basierend auf den dargestellten Daten kann die Diffusion von H₂O in NCS-Schmelzen bei Konzentrationen von maximal 3,0 Gew.% und Temperaturen von 1000 bis 1300°C bei einem Druck von 200 MPa wie folgt beschrieben werden:

$$\log D = (-6, 27 \pm 0, 08) + (0, 19 \pm 0, 01) \cdot C_{H_2O} - \frac{(5064 \pm 112)}{T}$$
(6.4)

Die Ergebnisse dieser Datenanalyse liegen innerhalb des abgeschätzten experimentellen Fehlers von ~ 0.1 Größenordnung (Fit Std. Error = 0,0571). Abbildung 6.9 zeigt einen Vergleich der Diffusionskoeffizienten aus Redoxpaarversuchen und normalen H_2O -Diffusionsversuchen mit max. 3,0 Gew.%. Die Proben G1 und G6 sind nicht dargestellt, da die Profile nicht weit genug in den H_2O -haltigen Teil der Probe gemessen wurden. Dadurch war eine Datenanalyse mit Hilfe der Boltzmann-Matano-Methode nicht möglich.

Abbildung 6.9: H₂O-Diffusionskoeffizienten aller Experimente mit max. 3,0 Gew.% H₂O inkl. der Redoxpaarproben (Typ iv), dargestellt als Funktion des Wassergehaltes.

Aufgrund des systematischen Fehlers in den H₂O-Konzentrationen der Redoxpaarproben, dessen Einfluss auf die ermittelten Diffusionskoeffizienten unterhalb 2,2 Gew.% unklar ist, wurde auf ein Anpassen der Daten mit Gleichung 6.1 verzichtet. Für das Anpassen mit dem Polynom 7. Ordnung wurden Daten im Bereich von 0,2 bis etwa 1,0 Gew.% nicht berücksichtigt. Ein Profil ähnlich der Trends für normale H₂O-Diffusionsversuche wurde nur mit Werten oberhalb von 1,0 Gew.% angepasst. Dies kann jedoch zu systematischen Verfälschungen besonders bei niedrigen Wassergehalten führen. Trotz dieser Unzulänglichkeiten sind die ermittelten Diffusionskoeffizienten in guter Übereinstimmung zu Gleichung 6.4, mit einer maximalen Abweichung von \pm 0,2 Größenordnungen.

Ein Vergleich der Ergebnisse der modifizierten Boltzmann-Matano-Analyse mit den aus der angepassten Fehlerfunktion gewonnenen Diffusionskoeffizienten (bei Annahme konst. Diffusion), ist in Anhang A in Tabelle A.2 aufgeführt.

Diffusionsexperimente mit max. 0,3 Gew.% H₂O

Abbildung 6.10 zeigt die Diffusionskoeffizienten dieser Experimente in Abhängigkeit von der H_2O -Konzentration für die beiden selbst durchgeführten Experimente mit maximal 0,3 Gew.% H_2O .

Abbildung 6.10: H₂O-Diffusionskoeffizienten der Experimente mit max. 0,3 Gew.% H₂O, dargestellt als Funktion des Wassergehaltes.

In diesen Proben ist keine Zunahme der Diffusionskoeffizienten mit der Konzentration

erkennbar. Die hohen Werte im Bereich niedriger Konzentrationen ist auf die schlechte Präzision der Boltzmann-Matano-Analyse in diesem Datenbereich zurückzuführen. Die Diffusionskoeffizienten, die für diese Proben aus der angepassten Fehlerfunktion (s. Gl. 4.16) extrahiert wurden, sind mit den Ergebnissen der Boltzmann-Matano-Analyse identisch bzw. liegen im Fehler der Fehlerfortpflanzung. Im Vergleich zu den Versuchen mit hohen Wassergehalten sind nach Gleichung 6.4 für typische H₂O-Konzentrationen in technischen Silikatgläsern von bis zu 0,1 Gew.% nur sehr geringe Variationen mit dem Wassergehalt zu erwarten ($\leq 0,02$ Größenordnungen), die experimentell nicht aufzulösen sind. Daher kann der Diffusionskoeffizient als quasi-konstant angesehen werden. Daher werden hier die Ergebnisse der angepassten Fehlerfunktion berücksichtigt.

Die Diffusivität von H₂O zeigt eine deutliche Temperaturabhängigkeit (s. Abb. 6.11). Diese lässt sich für eine Konzentration bis maximal 0,3 Gew.% aufgrund der konzentrationsunabhängigen Diffusion für diese Wassergehalte mit einer einfachen Arrhenius-Beziehung nach Gleichung 2.14 für Temperaturen zwischen 550 und 1300°C bei 100 bzw. 200 MPa wie folgt beschreiben:

$$D_{H_2O(low)} = (1, 19 \pm 0, 47) \cdot 10^{-5} \frac{m^2}{s} \cdot \exp\left(-\frac{132, 0 \pm 6, 9\frac{kJ}{mol}}{RT}\right)$$
(6.5)

Gesamtbetrachtung der H₂O-Diffusionsexperimente

Abbildung 6.11 zeigt eine Gesamtdarstellung der ermittelten H₂O-Diffusionskoeffizienten im Vergleich zu Literaturdaten ähnlicher Glaszusammensetzungen. Aufgeführt sind alle ermittelten Diffusionskoeffizienten inklusive der Ergebnisse aus den Redoxpaarexperimenten, die ebenfalls mit Konzentrationen von maximal 3,0 Gew.% H₂O durchgeführt wurden. Für die Gesamtbetrachtung und einen Vergleich der Diffusionsdaten bei hoher Konzentration mit Diffusionsdaten niedriger Konzentration und Literaturdaten werden extrapolierte Diffusionskoeffizienten bei 0,0 Gew.% angegeben. Zu erkennen ist eine starke Temperaturabhängigkeit der Wasserdiffusion. Die ermittelten Daten niedriger und hoher (extrapoliert) Konzentration sind in guter Übereinstimmung und liegen im Bereich der Regressionsgeraden für die Wasserdiffusion bei max. 0,3 Gew.% H₂O, mit maximalen Abweichungen von maximal \pm 0,2 Größenordnungen.

Abbildung 6.11: Ermittelte H₂O-Diffusionsdaten im Vergleich zu Literaturdaten für ähnliche (FG) bzw. gleiche (NCS) Zusammensetzungen des Basisglases.
Die Regressionsgerade bezieht sich auf die Datenreihe der Wasserdiffusion bei maximal 0,3 Gew.%. Die Diffusionskoeffizienten für die Datenreihen bei max. 3,0 Gew.% wurden extrapoliert (vgl. Abb. 6.9.

6.3.4 Vergleich mit früheren Arbeiten

Eine konzentrationsabhängige H₂O-Diffusion wurde in den Experimenten mit Alumosilikatschmelzen und Gesamtwassergehalten im Gewichtsprozentbereich beobachtet (Behrens, 2006, Behrens & Nowak, 1997, Behrens et al., 2004, Nowak & Behrens, 1997, Zhang et al., 1991), Hinweise wurden ebenfalls für SiO₂-Glas beobachtet (Moulson & Roberts, 1961, 1958). Zuerst durch Shaw (1973) für rhyolitische Schmelzen festgestellt,

wurde eine lineare Zunahme des Diffusionskoeffizienten $D_{H_2O_t}$ mit H_2O_t durch spätere Arbeiten für andere Zusammensetzungen bestätigt (Delaney & Karsten, 1981, Friedman & Long, 1976, Jambon, 1979, Karsten et al., 1982, Lapham et al., 1984, Doremus, 1995). Zhang et al. (1991) zeigten, dass molekulares $H_2O(H_2O_m)$ in rhyolitischen Schmelzen die diffusionsbestimmende Spezies ist und der Diffusionskoeffizient von H_2O_m bei geringen Konzentrationen ≤ 0.2 Gew.% konstant ist. Dieser Trend kann jedoch nicht zu hohen H₂O-Konzentrationen extrapoliert werden (Nowak & Behrens, 1997). Es ist mehrfach darauf hingewiesen worden, dass die Wasserdiffusion nicht nur vom H_2O_t abhängt, sondern auch stark durch den Polymerisationsgrad beeinflusst wird (Behrens, 2006, Behrens et al., 2004, Liu et al., 2004). Behrens et al. (2004) und Behrens & Zhang (2009) beschreiben, dass besonders bei hohen Temperaturen die Abhängigkeit von $D_{H_2O_t}$ auf H_2O_t mit zunehmender Depolymerisation abnimmt. Gründe dafür können durch den steigenden Einfluss anderer Wasserspeziationen oder Komponenten als H_2O_m wie OH^- , H_3O^+ oder H⁺ auf $D_{H_2O_t}$ gegeben sein (Behrens & Nowak, 1997). Eine Diffusion freier OH⁻-Gruppen, die nicht an das Silikatnetzwerk (Si oder Al der Tetraeder) gebunden sind, kann ebenfalls über die Reaktion von H₂O mit NBOs³ am Wassertransport beteiligt sein:

$$H_2O + [T - O^-] = [T - OH] + OH^-$$
(6.6)

Gleichung 6.6 würde eine kombinierte Diffusion von H⁺ und freier OH⁻-Gruppen über Zwischengitterplätze ermöglichen (Cockram et al., 1969, Haider & Roberts, 1970, Scholze & Mulfinger, 1959). Haider & Roberts (1970) deuteten außerdem an, dass die Diffusion von H₂O_t stark von der Konzentration der Alkali-Oxide beeinflusst werden könnte. Eine Verbindung der Diffusion von OH⁻-Gruppen mit der Interdiffusion von Na⁺ oder ein kombinierter Transport von H⁺ und OH⁻ bei geringen H₂O_t ist in diesem Zusammenhang wahrscheinlich (s. auch Behrens & Nowak, 1997). Da in den durchgeführten Experimenten D_{H₂O_t nur bei den Experimenten mit $\gg 0,3$ Gew.% H₂O vom H₂O_t abhängt, ist es möglich, dass in den vorliegenden NCS-Schmelzen (s. Tab. 3.2) D_{H₂O_t bei geringen Konzentrationen nicht durch die Diffusion von H₂O_m bestimmt wird, sondern durch die beschriebene Diffusion verschiedener Speziationen. Aufgrund der geringen Konzentrationsabhängigkeit im Vergleich zu alumosilikatischen Zusammensetzungen und der relativen Konsistenz der Daten für niedrige und hohe Wassergehalte (s. Abb. 6.11) ist anzunehmen, dass eine Änderung im Transportmechanismus zwischen hohen und niedrigen Gehalten nicht unmittelbar notwendig ist. Der Zusammenhang zwischen der Diffusion von OH⁻-}}

³NBO - non-bridging oxygen, nicht-brückenbildener Sauerstoff

Anionen und Protonenleitung (H⁺) wie sie erstmals von Haider & Roberts (1970) und Cockram et al. (1969) für depolymerisierte Gläser postuliert wurde, ist in den durchgeführten Experimenten wahrscheinlich. Da die Konzentration an NBO (O⁻) relativ hoch ist, können Protonen (H⁺) mit diesen OH-Gruppen bilden. Die Folge davon wäre ein lokales Ladungsungleichgewicht, dass sich in NCS-Gläsern bei Na⁺-Kationen einstellen würde. Ein solcher Vorgang erleichtert die Bindung diffundierender OH⁻-Gruppen an einer getrennten Si-O-Si-Brücke, wodurch sich die Koordination von Na⁺ erhöht. Das Resultat wäre eine sofortige Lösung der Bindung zur OH⁻-Gruppen, eine folgende Neubildung der Si-O-Si-Brücke und eine anschließende Bewegung des Protons, um einen Ladungsausgleich herzustellen.

Im Vergleich zu Literaturdaten zur H_2O -Diffusion in ähnlichen (Floatglas, Kreisberg et al., 2001, Müller et al., 2005) und gleichen (NCS, Müller et al., 2005, Scholze & Mulfinger, 1959, Schreiber et al., 1989, Swarts, 1986) Zusammensetzungen liegen die extrapolierten Diffusionskoeffizienten für die Versuchsreihe mit maximal 3,0 Gew.% H_2O bei hohen Temperaturen von 1000 bis 1300°C etwa 0,2 bis 0,4 Größenordnungen höher (s. Abb. 6.11). Alle verglichenen Arbeiten untersuchten die Wasserdiffusion bei sehr niedrigen Konzentrationen bis 500 (Scholze & Mulfinger, 1959, Schreiber et al., 1989, Swarts, 1986) bzw. bis maximal 2500 ppm (Müller et al., 2005). Die Diffusionskoeffizienten aus Experimenten mit max. 0,3 Gew% H_2O weichen um bis zu einer Größenordnungen von den Daten von Schreiber et al. (1989) und Swarts (1986) ab. Bei Temperaturen zwischen 550 und 700°C sind die ermittelten Werte in sehr guter Übereinstimmung mit den Werten früherer Arbeiten.

Die Experimente, die bei hohen Temperaturen durchgeführt wurden, können durch den in Abschnitt 6.3.2 beschriebenen Zeitabhängigkeits-Effekt höhere Diffusionskoeffizienten zeigen. Abweichende Werte können außerdem auf unterschiedliche Methoden (Dehydrierungsexperimente vs. Diffusionspaarexperimente) zurückgeführt werden. Die dargestellten Literaturwerte stammen aus Arbeiten, die ausschließlich bei Umgebungsdruck durchgeführt wurden. Nach Nowak & Behrens (1997) und Ni & Zhang (2008) kann ein Druckeffekt auf die H₂O-Diffusivität bei den hier verwendeten Drücken ausgeschlossen werden, da im Vergleich die Diffusivität in granitischen Schmelzen von 100 bis 500 MPa lediglich um 0,3 Größenordnungen abnimmt.

Kapitel 7

Schwefeldiffusion in silikatischen Schmelzen

Experimente zur Untersuchung der Schwefeldiffusion in silikatischen Schmelzen wurden mit unterschiedlichen experimentellen Ansätzen durchgeführt, um Unterschiede im Transport- und Redoxmechanismus von Sulfat und Sulfid untersuchen zu können. Zunächst wurden Diffusionspaarexperimente zur Untersuchung der reinen Sulfat- bzw. Sulfiddiffusion (Typ i & ii) durchgeführt, weiter zur Untersuchung von Redoxmechanismen Diffusionsexperimente mit Sulfid und Sulfat (Typ iii) sowie Sulfid und H₂O (Typ iv). Für NS3-Schmelzen wurde die Druckabhängigkeit der Schwefeldiffusion bei Drücken von 0,1 bis 2,0 GPa untersucht. Die Ergebnisse dieser Experimente sind tabellarisch in Anhang A (Tabellen A.3 bis A.8) zusammengefasst. Die Konzentrationsprofile wurden mit einer Fehlerfunktion nach Gleichung 4.16 angepasst. Teilweise zeigten die Konzentrationsprofile Anzeichen für konvektive Effekte oder Inhomogenitäten, so dass die Anpassung bei einigen Proben nicht sinnvoll war. Um die Anwendbarkeit verschiedener Methoden zur Analyse der Schwefeldiffusionsprofile zu vergleichen, wurden ausgewählte Proben mit der Mikrosonde und XAS (XRF-Profile) untersucht. Alle experimentellen Produkte waren blasen- und kristallfreie Gläser. Die Kontaktfläche war nach dem Experiment nur in Ausnahmefällen erkennbar und z. T. leicht deformiert. Experimentelle Produkte mit starker Verformung bzw. Vermischung des Zylinderpaares werden in Tabelle A.4 und A.5 (Anhang A) nicht aufgeführt.

7.1 Sulfat- & Sulfiddiffusion - Typ i & ii

7.1.1 NS3

Schwefeldiffusionsexperimente in NS3-Schmelzen wurden ausschließlich mit Zylinderpaaren durchgeführt, die zuvor in Hochdrucksyntheseexperimenten hergestellt wurden. Aufgrund der in Abschnitt 5 beschriebenen Reaktion eindiffundierenden Wasserstoffs mit eingebrachtem Sulfat und dem aus dieser Reaktion generierten Wasser (s. Gl. 5.2), beträgt der H₂O-Gehalt der nominell H₂O-freien Proben zwischen 0,25 und 0,65 Gew.% (s. Anhang A, Tab. A.3). Die verwendeten schwefelhatigen Glaszylinder wurden mit Sulfat-(Na₂SO₄) und Sulfidquellen (PdS, FeS₂) synthetisiert. Eine systematische Kontrolle der stabilen Schwefelspeziation fand lediglich vor Durchführung der Diffusionsexperimente statt, nach dem Diffusionsversuch wurden nur exemplarisch XANES-Testmessungen an ausgewählten Präparaten durchgeführt (s. Abb. 7.2). In Abschnitt 5 wurde gezeigt, dass Sulfat als alleinige Schwefelspezies in Zylindersynthesen unter Hochdruck nominell H₂O-freier Gläser nicht erhalten werden konnte. Daher beschreibt die Schwefeldiffusion in allen Experimenten dieser Versuchsreihe eine Mischdiffusion von Sulfat und Sulfid.

Diffusionsexperimente wurden bei 100 MPa und Temperaturen von 1000 bis 1250°C in einer IHPV durchgeführt. Bei 1000°C wurden Experimente mit schwefelhaltigen Zylindern durchgeführt, die mit unterschiedlichen Schwefelquellen synthetisiert wurden. Zusätzlich wurde eine isotherme Versuchsreihe zur Untersuchung der Druckabhängigkeit der Schwefeldiffusion in einem PCA bei Drücken von 0,75 bis 2,50 GPa durchgeführt. In allen Fällen waren die experimentellen Produkte blasen- und kristallfreie Gläser. Die Form der Probenkapseln und somit der Probengeometrie wurde in den Experimenten, die in der IHPV durchgeführt wurden, stets erhalten. Eine Verschiebung bzw. Verformung der Kontaktfläche zwischen schwefelfreiem und schwefelhaltigem Teil der Probe konnte nicht festgestellt werden. Meist war der Übergang zwischen den Zylindern nach dem Experiment am präparierten Dünnschliff nicht mehr erkennbar. Verformungen der Probenkapsel lagen nur nach Experimenten im PCA vor, die Kontaktfläche zwischen den Zylindern war auch hier nicht mehr erkennbar. Generell zeigten die Na₂O- und SiO₂-Konzentrationen entlang der Diffusionsprofile keine Änderungen außerhalb des Messfehlers.

Abbildung 7.1 zeigt exemplarisch ein mit der Mikrosonde gemessenes Schwefelkonzentrationsprofil mit der angepassten Fehlerfunktion für die in der IHPV prozessierte Probe NS3-D06-1000. Die Schrittweite zwischen den Messpunkten betrug 25 µm. Das Expe-

Abbildung 7.1: Schwefelkonzentrationsprofil der Probe NS3-D06-1000 mit dem angepassten Profil nach Gl. 4.16 (gra Linie). Der angegebene Fehler stellt die zweifache Standardabweichung des statistischen Messfehlers dar.

riment wurde bei reduzierenden Bedingungen und einem PH_2 von ~ 12 bar durchgeführt. Der schwefelhaltige Zylinderteil des Diffusionspaares wurde zuvor in einem Syntheseexperiment bei gleichen Bedingungen hergestellt. Mit den aus der angepassten Fehler-Funktion des Profils gewonnenen Daten wurde der Diffusionskoeffizient bestimmt (s. Abschn. 4.5). Bei einer Versuchslaufzeit von 18 Stunden bei 1000°C wurde bei einer Profillänge von etwa 1000 µm ein Diffusionskoeffizient von log D = -12,28 ±0,05 ermittelt. Auffallend ist ein leichtes Abfallen der Schwefelkonzentration vor dem eigentlichen Start des Profilumschlags. Solche Effekte wurden bei einigen Konzentrationsprofilen für die Schwefeldiffusion in NS3 und NCS festgestellt. Dieser Punkt wird am Ende des Abschnittes umfassend diskutiert (s. Abschn. 7.3). Ergänzend zum Konzentrationsprofil der Probe NS3-D06-1000 wurden XANES-Spektren entlang des Profils aufgenommen, um eine mögliche Änderung der Schwefelspeziation entlang des Diffusionspfades zu untersuchen.

Die aufgenommenen Spektren zeigen vier Anregungen bei 2466,5, 2472,0, 2477,2 und 2482,5 eV. Die Anregungen zwischen 2472,0 und 2477,2 eV lassen sich sulfidischem Schwefel in Gläsern dieser Zusammensetzung zuordnen. Der Peak bei 2482,5 eV repräsentiert Sulfat. Bei 2466,5 eV ist die bereits in Abschnitt 5 beschriebene unbekann-

Abbildung 7.2: XANES-Spektren entlang des Diffusionspfades von Schwefel in Probe NS3-D06-1000. Der nominelle Schwefelgehalt nimmt von unten nach oben ab. Der Messpunkt auf der Probe betrug 200 μm.

te Anregung im Bereich der Nb L2-Kante zu erkennen. Ein scharfes Signal bei 2478 eV, dass für Sulfit charakteristisch wäre, kann nicht beobachtet werden. Das Peakhöhen-Verhältnis von $S_{2472,0eV}^{2-}/S_{2482,5eV}^{6+}$ ändert sich entlang des Kontrationsprofils von 0,95 bei hohen Schwefelkonzentrationen zu 0,78 bei niedrigen Konzentrationen. Somit nimmt der Anteil von Sulfat in der Probe leicht zu, die zu beobachtende Änderung liegt im Bereich von maximal 10%. Eine Quantifizierung der Spezies-Anteile ist aufgrund der geringen Gesamtkonzentration und der daraus resultierenden verrauschten XANES-Spektren nicht möglich. Sulfid ist in diesem Fall die dominierende Schwefelspezies. Es ist anzumerken, dass die Intensität der Sulfid-Anregung bei gleicher Konzentration grundsätzlich sehr viel geringer ist als die der Sulfat-Anregung (s. Abschn. 5).

Temperatur- & Druckabhängigkeit

Abbildung 7.3 zeigt die ermittelten Diffusionskoeffizienten in einer Arrhenius-Darstellung. Die gemessenen Konzentrationsprofile zeigen z. T. Auffälligkeiten im schwefelreichen Bereich, die ein Anpassen der Fehlerfunktion nach Gleichung 4.16 erschweren und auf Inhomogenitäten bzw. konvektive Vorgänge schließen lassen. Auffälligkeiten wie deformierte Probenkapseln oder verformte Kontaktflächen der Diffusionspaare konnten jedoch nicht beobachtet werden. Auch eine Korrelation mit experimentellen Parametern (P, T, t) war nicht festzustellen. Vergleichend dargestellt ist die Eyring-Diffusivität, die die Selbstdiffusion der Netzwerkbildner (hier Si) wiedergibt. Diese ist stark an die Viskosität der Schmelze gebunden und stellt die Diffusion der Netzwerkbilnder des Silikatnetzwerks dar. Berechnet nach Gleichung 2.16 mit Viskositätsdaten von Richet (1984) und einer Sprunglänge von 0,3 nm, ist die Eyring-Diffusivität als gestrichelte Linie zusammen mit den Ergebnissen der durchgeführten Diffusionsexperimente in NS3-Schmelzen aufgeführt. Unter der Annahme, dass individuelle Bewegungen von Netzwerkbildnern (Öffnen und Neuverknüpfen von Si-O-Bindungen) bestimmend sind, definiert die Eyring-Diffusivität die Untergrenze der Diffusionskoeffizienten. Tatsächlich liegt aber ein Großteil der ermittelten Daten zwischen 0,3 und 0,5 Größenordnungen niedriger. Nur das Experiment bei reduzierenden Bedingungen (NS3-D06-1000) liegt 0,5 Größenordnungen über den durch die Viskosität gegebenen Werten.

Für die Auswertung der Geradensteigung wurde ein Versuch bei 1200°C (NS3-D11-1200), der 0,7 Größenordnungen oberhalb der Eyring-Diffusivität liegt, nicht berücksichtigt. Durch die hohe Abweichung zu den übrigen ermittelten Diffusionskoeffizienten, wird angenommen, dass der Diffusionsprozess in diesem Experiment konvektiv überprägt wurde. Einen eindeutigen Beweis dafür lieferten die gemessenen Profile allerdings nicht. Die Auswertung der Geradensteigung der Experimente in der IHPV bei 100 MPa und intrinsischen Bedingungen ($PH_2 \sim 0,2$ bar) in der Arrhenius-Darstellung ergab eine Aktivierungsenergie Q = 170,0 ± 25,5 kJ/mol (acht Werte, Fit. Std. Error = 0,1834, s. blaue Linie in Abb. 7.3). Im Vergleich dazu beträgt die Aktivierungsenergie der Diffusion der Netzwerkbildner, abgeleitet aus Viskositätsdaten, 189 kJ/mol (Richet, 1984) bzw. 176 kJ/mol (Bornhöft & Brückner, 1999). Somit ist die ermittelte Aktivierungsenergie vergleichbar. Eventuelle Unterschiede können durch einen Druckeffekt erklärt werden, da die Viskositätsparameter bei Umgebungsdruck bestimmt wurden. Nach Gleichung 2.14 kann die sulfat-dominierte Schwefeldiffusion wie folgt beschrieben werden:

$$D_{S(NS3)} = (5, 20 \pm 0, 54) \cdot 10^{-7} \frac{m^2}{s} \exp\left(\frac{170, 0 \pm 25, 5\frac{kJ}{mol}}{RT}\right)$$
(7.1)

Ergebnisse der Experimente zur Untersuchung der Druckabhängigkeit der Schwefeldiffusion sind in Abbildung 7.4 dargestellt. Die ermittelten Diffusionskoeffizienten variieren sehr stark und reichen von log D = -12,77 bis -11,73 und decken somit eine ganze Größenordnung ab. Ein systematischer Trend ist nicht erkennbar, so dass eine Druckabhängigkeit im Rahmen der durchgeführten Experimente weder bestätigt noch negiert

Abbildung 7.3: Arrhenius-Darstellung der ermittelten Schwefeldiffusionsdaten in NS3-Schmelzen bei 100 MPa. Die blaue Linie gibt die Regressionsgerade der Versuchsreihe bei $PH_2 \sim 0,2$ bar wieder, die gestrichelte Linie die Selbstdiffusion des Silikatnetzwerks an, berechnet nach Richet (1984).

werden kann. Anzumerken ist hierbei, dass von den Experimenten, die im PCA durchgeführt worden sind, lediglich die Hälfte ein messbares Profil zeigten. Die restlichen Proben waren weitestgehend homogenisiert. Vermutlich sind in dieser Versuchsreihe nur die niedrigsten Werte durch Diffusion dominiert, die mit Gleichung 7.1 konsistent sind. Proben mit höheren Diffusionskoeffizienten repräsentieren unter dieser Annahme einen Mischprozess zwischen Diffusion und Konvektion. Tests der Temperaturverteilung in der Heizund Druckzelle des PCA (s. Abb. 3.8) zeigten z. T. starke Temperaturvariationen von bis zu 30°C entlang der Probenkapsel (Länge bis etwa 15 mm). Ein Einfluss von konvektiven Bewegungen innerhalb der Schmelze während des Experiments ist daher wahrscheinlich.

Abbildung 7.4: Ergebnisse zur Untersuchung Druckeinflusses auf die Schwefeldiffusion bei 1100°C. Experimente bis 0,5 GPa wurden in einer IHPV durchgeführt, Experimente ab 0,75 GPa in einem PCA. Die gestrichelte Linie gibt log D_{η} bei 1100°C nach (Richet, 1984) an.

7.1.2 NCS

Für NCS-Schmelzen wurden systematisch Versuchsreihen zur Untersuchung der Sulfidund der Sulfatdiffusion durchgeführt. Beide Versuchsreihen wurden bei intrinsischen Bedingungen ($PH_2 \sim 0,2$ bar) und einem Druck von 100 MPa durchgeführt. Die synthetisierten Glaszylinder stammen ausschließlich aus Syntheseexperimenten, die bei Umgebungsdruck mit Na₂SO₄ als Sulfat- und Na₂S als Sulfidquelle durchgeführt wurden (s. Abschnitte 3.5.2 & 5). Die Temperatur der durchgeführten Diffusionsexperimente reichte von 1000 bis 1300°C. Um den Einfluss der Versuchszeit bzw. von konvektiven Prozessen während der Experimente beurteilen zu können, wurden bei 1100°C für Sulfid- und Sulfatdiffusionspaare Experimente unterschiedlicher Versuchslaufzeiten durchgeführt. Um den Einfluss des Aufheizprozesses bzw. der Abkühlphase auf die Diffusion zu prüfen, wurde ein Experiment mit der üblichen Heizrate von 30°C/min auf 1100°C aufgeheizt und sofort wieder abgekühlt (etwa 150°C/min). Der H₂O-Gehalt der Diffusionspaare wurde exemplarisch für ausgewählte Proben bestimmt und lag für Sulfatproben nach dem Experiment bei maximal 0,076 \pm 0,009 Gew.% (NCS-Dox-1000), für Sulfidproben bei maximal 0,009 \pm 0,013 Gew.%. Der große Unterschied im H₂O-Gehalt zwischen sulfid-haltigen und sulfat-haltigen Diffusionspaaren ist wahrscheinlich auf die partielle Reduktion von S⁶⁺ und die damit einhergehende Bildung von H₂O zurückzuführen. Dieser Vorgang wird in Abschnitt 7.3.2 ausführlich diskutiert. Na₂O-, CaO- und SiO₂-Konzentrationen zeigten entlang der Diffusionsprofile keine Änderungen im Bereich des Messfehlers.

Abbildung 7.5: Schwefelkonzentrationsprofil der Probe NCS-Dox-1150 mit dem angepassten Profil nach Gl. 4.16 (schwarze Linie). Der angegebene Fehler stellt die Gesamtvariation der zweifachen Standardabweichung des statistischen Messfehlers dar.

Sulfatdiffusion

Abbildung 7.5 zeigt das Schwefelkonzentrationsprofil der Sulfatdiffusionsprobe NCS-Dox-1150 mit dem angepassten Profil der Fehlerfunktion nach Gleichung 4.16. Bei einer Versuchslaufzeit von 18 Stunden bei 1150°C wurde bei einer Profillänge von etwa 1800 µm ein Diffusionskoeffizient von log D = $-12,17 \pm 0,04$ ermittelt. Von dieser Probe wurde vergleichend ein XRF-Intensitätsprofil entlang des Diffusionspfades aufgenommen (s. Abb. 7.6), Abweichungen von der angepassten Fehlerfunktion bei dieser Probe werden als analytisch bedingt angesehen und treten bei den übrigen Proben nicht systematisch auf. Diese Profile wurden an der S⁶⁺-Absorptionskante bei 2482,5 eV und mit einer Zählzeit von zwei bis vier Sekunden und einer Schrittweite von etwa 50 µm am SUL-Messplatz der ANKA (FZ Karlsruhe) gemessen. Die aus den Intensitätsprofilen extrahierten Diffusionskoeffizienten sind bis auf Probe NCS-Dox-1050 in guter Übereinstimmung mit den Ergebnissen der Mikrosondenanalysen (s. Anhang A, Tab. A.4). Der Diffusionskoeffizient, der mit dieser Messmethode ermittelt wurde, beträgt für Probe NCS-Dox-1150 log D = $-12,16 \pm 0,04$. Die Abweichung zum Mikrosondenergebnis liegt innerhalb des errechneten Fehlers der Fehlerfortpflanzung.

Abbildung 7.6: XRF-Intensitätsprofil der Probe NCS-Dox-1150 mit dem angepassten Profil nach Gl. 4.16 (schwarze Linie). Die Schrittweite zwischen den Messpunkten betrug etwa 50 µm, bei einer Akkumulationszeit von 4s.

Ein Nachweis, dass Sulfat während des Experiments in der Silikatschmelze erhalten werden konnte und sich der ermittelte Diffusionskoeffizient auf die Sulfatdiffusion bezieht, konnte mit Hilfe von XANES-Spektroskopie erbracht werden. Abbildung 7.7 zeigt XANES-Spektren der Proben NCS-Dox-1050, NCS-Dox-1150 und NCS-Dox-1250. Die Spektren wurden im zentralen Bereich des sulfathaltigen Probenteils aufgenommen. Die experimentelle Laufzeit dieser Proben variiert zwischen vier (NCS-Dox-1250) und 24 Stunden (NCS-Dox-1050). Die Spektren zeigen ausschließlich Sulfat als erkennbare Schwefelspezies und repräsentieren exemplarisch zwei bis drei verschiedene Messpunkte pro Probe. Genauere Aussagen über die Sulfatstabilität lassen sich anhand von XRF-Profilen im Randbereich der Proben machen. Profile dieser Art wurden

am ID21-Messplatz des ESRF (Grenoble, Frankreich) durchgeführt.

Abbildung 7.7: XANES-Spektren ausgewählter Sulfatdiffusionsproben, die gestrichelte Linie gibt die Position der Sulfat-Anregung bei 2482,5 eV an. Die Akkumulationszeit pro Schritt (0,2 bis 1,0 eV) betrug 4s.

Abbildung 7.8 zeigt Sulfid- und Sulfat-Profile vom Rand in Richtung Mitte des sulfathaltigen Teils der Probe. Die Profile wurden auf den Kantensprung normalisiert, d. h. auf die Intensitäten der Vorkante bei 2460,0 eV und des Gesamtschwefels bei 2515,0 eV (s. auch Abb. 7.7). Auffallend ist, dass Sulfid im Randbereich die vorherrschende Schwefelspezies ist. Die Reduktionsfront, die durch in die Probenkapsel eindiffundierendes H₂ aus dem Druckmedium (Ar) verursacht wird, reicht etwa 200 µm in die Probe hinein. An der Kontaktfläche zum schwefelfreien Teil der Probe wurde ein solcher Reaktionssaum nicht beobachtet, so dass angenommen werden kann, dass der Diffusionsprozess von Sulfat nicht durch partielle Reduktion beeinflusst wurde. Doppelkapselexperimente, in denen die geschlossenen Pt-Kapseln mit den Zylinderpaaren in Außenkapseln mit H₂O₂ oder Fe₂O₃ eingebettet wurden, erwiesen sich als wenig wirksam, da die Reduktionsfront in diesen Proben im gleichen Maße ausgeprägt war. H₂O₂ bzw. Fe₂O₃ sollten in diesen Experimenten als Puffer wirken und vermeiden, dass eindiffundierender H₂ in die Innenkapsel gelangt. Ursache für die Unwirksamkeit der Puffermaterialien kann z. B. Kontakt zwischen dem Metall der Innen- und Außenkapsel sein, wodurch die Puffer-Barriere wieder aufgehoben würde. In den Dünnschliffen der Sulfatproben ist die Reduktionsfront meist als dünner Reaktionssaum am Rand des sulfat-haltigen Teils der Probe zu erkennen. Im Bereich der Kontaktfläche ist dieser jedoch nicht ausgeprägt. Im zentralen Bereich der Proben ist Sulfat als alleinige Schwefelspezies erhalten geblieben. Die Mechanismen der Sulfatreduktion werden in Abschnitt 7.3.2 ausführlich diskutiert.

Abbildung 7.8: XRF-Profile bei 2474,0 (Sulfid) und 2482,5 eV (Sulfat) im Randbereich von Probe G28 verdeutlichen die Ausbildung einer Reduktionsfront. Die Intensität ist normalisiert auf den Kantensprung dargestellt.

Sulfiddiffusion

In Abbildung 7.9 ist exemplarisch ein Schwefelkonzentrationsprofil der Sulfiddiffusionsprobe NCS-Dred-1050 mit dem angepassten Profil der Fehlerfunktion nach Gleichung 4.16 dargestellt.

Die Profillänge beträgt 1500 µm. Der ermittelte Diffusionskoeffizient beträgt log D = $-12,25 \pm 0,03$, das Experiment wurde bei 1050°C mit einer Laufzeit von 24h durchgeführt. Für diese und zwei weitere Sulfiddiffusionspaare wurden ebenfalls XRF-Profile bei 2474,0 eV (Sulfid-Anregung) entlang des Diffusionspfades von Sulfid aufgenommen. In allen drei Fällen sind die ermittelten Diffusionskoeffizienten in guter Übereinstimmung mit den Ergebnissen der Mikrosondenmessungen (log D ± 0,1, s. Anhang A, Tab. A.5). Exemplarisch aufgenommene XANES-Spektren zeigen, dass Sulfid als alleinige Schwe-

Abbildung 7.9: Schwefelkonzentrationsprofil der Probe NCS-Dred-1050 mit dem angepassten Profil nach Gl. 4.16 (schwarze Linie). Der angegebene Fehler stellt die zweifache Standardabweichung des statistischen Messfehlers dar.

felspezies erhalten werden konnte (s. Abb. 7.10). Anzumerken ist, dass alle drei mit XAN-ES analysierten Proben die Vorkanten-Anregung bei 2467,0 eV zeigen, die bereits in Anschnitt 5 angesprochen wurde. Die Intensität dieses Peaks ist im gesamten sulfid-haltigen Teil der Probe stabil, so dass kein Einfluss auf den Diffusionskoeffizienten angenommen wird.

Zeit- & Temperaturabhängigkeit der Diffusionskoeffizienten

Die Beurteilung der Zeitabhängigkeit wird meist herangezogen, um zu beurteilen, ob der beobachtete Vorgang diffusionskontrolliert ist. Zeitabhängige Diffusionskoeffizienten würden bedeuten, dass sich das Medium (hier die Silikatschmelze) mit der Zeit verändert oder ein anderer Mechanismus (z. B. Konvektion) Einfluss auf die Entwicklung der Konzentrationsprofile hat. Daher wurden bei 1100°C Diffusionsexperimente in NCS-Schmelzen mit unterschiedlichen experimentellen Laufzeiten durchgeführt. Abbildung 7.11 zeigt die Proben NCS-Dox-1100-I bis -III mit den auf ihre Maximalwerte normierten Schwefelkonzentrationen als Funktion von $x/t^{0,5}$ (mit *x* in m und *t* in s, s. auch Abb. 6.3 & 6.4).

Abbildung 7.10: XANES-Spektren ausgewählter Sulfiddiffusionsproben, die gestrichelte Linien markieren die Lage der Vorkanten-Anregung bei 2467,0 eV, und des Sulfid-Doppelpeaks bei 2474,0 und 2477,0 eV. Die Akkumulationszeit pro Schritt (0,2 bis 1,0 eV) betrug 4s.

Für eine zeitunabhängige Diffusion sollten alle drei dargestellten Profile übereinander zum Liegen kommen. Während die Proben mit Versuchslaufzeiten von einer bzw. drei Stunden nur geringe Unterschiede zeigen, weicht das Profil der Probe mit neun Stunden Laufzeit deutlich von den anderen ab. Mit zunehmender experimenteller Laufzeit nimmt bei den dargestellten Proben der Diffusionskoeffizient von log D = -13,10 auf log D = -12,26 zu (s. auch Abb. 7.13). Zwei weitere Experimente ergaben Diffusionskoeffizienten von log D = -13,81 (NCS-DC-1100, 18 h Laufzeit) und log D = -12,90 (G28, 8 h Laufzeit). Die Proben zeigten keine Auffälligkeiten, die eine solche Differenz von ungefähr 1,6 Größenordnungen erklären. Um eine Verformung und Vermischung feststellen zu können, wurden Schwefelkonzentrationsprofile parallel und senkrecht zum Diffusionspfad einiger Proben mit der Mikrosonde gemessen. Parallele Profile (Abstand 500 bis 1000 µm) zeigten einen identischen Verlauf, während senkrechte Profile keine Variationen im Schwefelgehalt aufwiesen. Lichtmikroskopische Untersuchungen der Probendünnschliffe zeigten jedoch vereinzelt leicht bis stark verformte Kontaktflächen zwischen schwefelfreiem und schwefelhaltigem Teil der Probe. Diese Verformungen waren jedoch nur schwach

Abbildung 7.11: Vergleich der normierten Schwefelkonzentrationsprofile der Proben NCS-Dox-1100-I bis -III als Funktion von x/t^{0,5}.

und schemenhaft zu erkennen. Ein Großteil der Proben zeigte keinerlei Auffälligkeiten bzw. waren die Kontaktflächen nicht mehr zu identifizieren. Abbildung 7.12 zeigt Beispielskizzen beobachteter Kontaktflächen-Verformungen, die mit einem Lichtmikroskop bei einigen Proben schemenhaft festgestellt wurden. a) zeigt die Original-Kontaktfläche, von b) nach e) nimmt die Deformierung stark zu. Während Verformungen in Form von b) und c) den Diffusionsprozess noch nicht sehr stark überlagern, ist im Fall von d) und e) eine Trennung von Konvektion und Diffusion nicht mehr möglich.

Diffusionskoeffizienten von Proben mit einer verformten Kontaktfläche nach dem Schema von d) und e) wurden nicht zur Datenauswertung herangezogen, da in diesen Fällen eine konvektive Überlagerung des Diffusionsprozesses sehr wahrscheinlich ist. Abbildung 7.13 zeigt Diffusionskoeffizienten für Sulfid und Sulfat als Funktion der experimentellen Laufzeit. Auffallend ist, dass die Diffusivität mit dieser zunimmt. Die mit einem Stern gekennzeichneten Proben zeigten stark deformierte Kontaktflächen. Eine Trennung von Konvektion und Diffusion war in diesen Proben nicht mehr möglich.

Aufgrund der starken Variation der Diffusionskoeffizienten (s. Abb. 7.13) und den lichtmikroskopischen Beobachtungen (s. Abb. 7.12) wurden Konvektionstests zur Untersuchung von Konvektion in den Proben während der experimentellen Laufzeit durchge-

Abbildung 7.12: Schematische Skizzen beobachteter Kontaktflächen-Verformungen in Diffusionsproben.

Abbildung 7.13: Sulfat- bzw. Sulfid-Diffusionskoeffizienten (NCS - 100 MPa, 1100°C) in Abhängigkeit von der experimentellen Laufzeit. Die markierten Proben zeigten erkennbare Verformungen der Kontaktfläche und wurden für die Gesamtauswertung nicht berücksichtigt.

führt. Dafür wurden zwei schwefelfreie NCS-Zylinder wie in den übrigen Diffusionspaarexperimenten in eine Pt-Kapsel eingeschweißt. Einer der Zylinder stammt jeweils aus einer Synthese, bei der dem Glaspulver etwa 2500 ppm CoO zugesetzt wurden, um das Glas blau einzufärben. Durch den Farbunterschied der Zylinder waren nach den Konvektionstests die Übergänge zwischen den Zylindern noch zu erkennen, jedoch stark verformt und durch Diffusion von Co²⁺ verschmiert. Durchgeführt wurden diese Tests ebenfalls bei 100 MPa und 1100°C mit unterschiedlichen Laufzeiten von 1, 3 und 6 h. Die Testkapseln wurden wie alle anderen Probenkapseln horizontal in der IHPV gelagert. Die Ergebnisse der Experimente, die in PCAs durchgeführt wurden, zeigen, dass eine vertikale Lagerung zu derselben Problematik führt (s. Abb. 7.4). Die Testergebnisse zeigten, dass sich die Kontaktfläche mit zunehmender Versuchsdauer stärker verformt. Abbildung 7.14 zeigt zwei NCS-Zylinderpaare dieser Testversuche nach einer bzw. drei Stunden Laufzeit bei 100 MPa und 1100°C. Klar erkennbar ist die starke Verformung der Kontaktfläche zwischen den Probenzylindern, die insbesondere bei längeren Versuchslaufzeiten auftritt. Bei den Diffusionsexperimenten war bei der Mehrzahl der Proben die Kontaktfläche nach dem Experiment nicht mehr erkennbar, so dass über solche konvektiven Einflüsse keine Aussage gemacht werden konnte. Ein weiteres Problem ist, dass die Proben als zweidimensionaler Anschnitt analysiert wurden. Komplexere Verformungen und Konvektionsvorgänge können also nur begrenzt beschrieben werden. Aufgrund der Diversität der Ergebnisse für die Sulfat- bzw. Sulfid-Diffusion liegt nahe, dass in einigen Proben Konvektion die Diffusion in einem gewissen Maße überlagert. Dadurch gibt der ermittelte Diffusionskoeffizient nicht die reine Diffusion wieder.

Abbildung 7.14: Konvektionstests schwefelfreier NCS-Zylinderpaare (einseitig durch CoO eingefärbt), a) nach 1 h Laufzeit und b) nach 3 h Laufzeit bei 100 MPa und 1100°C.

Ein Vergleich der ermittelten Diffusionskoeffizienten der Sulfat- bzw. Sulfiddiffusionsexperimente mit der Eyring-Diffusivität (gestrichelte Linie) ist in Abbildung 7.15 dargestellt.

Abbildung 7.15: Arrhenius-Darstellung der ermittelten Schwefeldiffusionsdaten in NCS-Schmelzen bei 100 MPa und der abgeleiteten Arrheniusgeraden nach Gl. 7.2 & 7.3. Die gestrichelte Linie gibt die Selbstdiffusion des Silikatnetzwerks an, berechnet nach Bornhöft & Brückner (1999).

Die Eyring-Diffusivität wurde mit Viskositätsdaten von Bornhöft & Brückner (1999) und einer Sprunglänge von 0,3 nm berechnet. Erkennbar ist eine starke Variation beider Datensätze um etwa eine Größenordnung im Bereich der berechneten Diffusivität des Silikatnetzwerks (\pm 0,5 Größenordnungen). Die aus den Doppelkapselexperimenten ermittelten Diffusionskoeffizienten liegen noch etwa eine Größenordnungen unterhalb der übrigen Daten. Eine grundsätzliche Aussage über Unterschiede zwischen Sulfat- und Sulfid-Diffusion in NCS-Schmelzen ist mit den vorliegenden Datensätzen nur sehr be-

grenzt möglich. Die Sulfid-Diffusion ist bei niedrigen Temperaturen von 1000°C etwa 0,4 Größenordnungen schneller als die Sulfat-Diffusion, nähert sich zu höheren Temperaturen von 1300°C auf ungefähr 0,2 Größenordnungen an. Eine Auswertung der Geradensteigung (neun Werte, Fit Std. Error = 0,3802, log $D_0 = -3,85 \pm 2,0$) der Arrhenius-Darstellung ergibt für die Sulfat-Diffusion in NCS-Schmelzen folgende Beziehung:

$$D_{S^{6+}(NCS)} = 1,49 \cdot 10^{-4} \frac{m^2}{s} \exp\left(\frac{230,7 \pm 66,2\frac{kJ}{mol}}{RT}\right)$$
(7.2)

Die Auswertung der Geradensteigung der Datenreihe der Sulfid-Diffusion (zehn Werte, Fit Std. Error = 0,3551, $\log D_0 = -6,13 \pm 1,45$) ergibt:

$$D_{S^{2-}(NCS)} = 7,43 \cdot 10^{-7} \frac{m^2}{s} \exp\left(\frac{162,3 \pm 39,8\frac{kJ}{mol}}{RT}\right)$$
(7.3)

Die Aktivierungsenergie für die Selbstdiffusion des Silikatnetzwerks beträgt zwischen 222 kJ/mol (Bornhöft & Brückner, 1999) und 247 kJ/mol (Schrimpf & Frischat, 1982). Die ermittelte Aktivierungsenergie für Sulfat ist somit vergleichbar, für Sulfid liegt diese 60 bis 85 kJ/mol niedriger. Aufgrund der Variation der ermittelten Diffusionskoeffizienten ist die Auswertung der Geradensteigung der Arrhenius-Darstellung jedoch sehr fehlerbehaftet (s. Fit Std. Errors). Es ist anzunehmen, dass ein Teil der experimentellen Ergebnisse durch Konvektion überprägt wurde, was jedoch nicht nachgewiesen werden konnte. Daher kann man in beiden Fällen nicht von klaren Trends sprechen.

7.2 Redoxpaarexperimente

Die durchgeführten Redoxpaarexperimente dienten der Untersuchung von Redoxreaktionen der Schwefelspezies und ihrer Kinetik. In Abschnitt 3.6 wurde die experimentelle Durchführung bereits kurz beschrieben. Experimente zur Untersuchung interner Redoxreaktion (Typ iii) wurden ausschließlich in NCS-Schmelzen durchgeführt, Experimente vom Typ iv (externe Redoxreaktionen, Sulfidoxidation) in NCS- und NS3-Schmelzen. Untersucht wurden die experimentellen Produkte mit μ XANES (ID21-ESRF), mit der Mikrosonde und mit Synchrotron-NIR-Spektroskopie. Experimente vom Typ iii können nur begrenzt als intern bezeichnet werden, da durch in die Pt-Kapsel eindiffundierenden H₂ Sulfat partiell reduziert und H₂O gebildet wird (s. Abb. 7.8). Sulfat- und sulfidhaltige Gläser wurden hier ebenfalls in Syntheseexperimenten bei Umgebungsdruck hergestellt, wobei Sulfat als Na₂SO₄ und Sulfid als Na₂S bzw. FeS zugesetzt wurde. Beide Versuchsreihen dienen durch den geringen Fe-Gehalt der mit FeS hergestellten Zylinder von etwa 2000 ppm auch der Untersuchung des Einflusses von Eisen auf eventuelle Redoxreaktionen. Nach den Experimenten waren die Kontaktflächen bei Versuchen von Typ iv klar erkennbar und zeigten keine Verformung, in Typ iii Experimenten war diese teilweise nicht mehr zu erkennen und zeigte leichte Deformationen im Randbereich der Proben. Die Glasprodukte waren stets blasen- und kristallfrei.

7.2.1 Interne Redoxreaktionen - Typ iii

Kernfrage dieser experimentellen Versuchsreihe ist, ob die entgegengesetzte Diffusion von Sulfat und Sulfid als schneller Ladungstransfer durch eine mobilen Spezies oder als Interdiffusion (S^{2-} vs. SO_4^{2-}) stattfindet. Experimente zur Untersuchung interner Redox-reaktionen oder der Sulfid-Sulfat-Interdiffusion in NCS-Schmelzen wurden mit sulfidund sulfathaltigen Zylindern durchgeführt, die mit polierten Stirnflächen in Kontakt gebracht wurden (s. Abschn. 3.6). Die Experimente wurden bei 100 MPa und 1100 bzw. 1200°C durchgeführt.

Abbildung 7.16: XANES-Spektren entlang der Diffusionspfades von Sulfid bzw. Sulfat in Probe G14. Der Messpunkt auf der Probe betrug 50 x 50 μm, die gestrichelten Linien markieren die Sulfid- und Sulfat-Anregung bei 2474,0 eV bzw. 2482,5 eV, bei 2467,0 eV ist die Position der Vorkanten-Anregung markiert.

Abbildung 7.16 zeigt XANES-Spektren von Experiment G14, die Laufzeit betrug bei 1200°C 4,5 h. Sulfid wurde im sulfidhaltigen Zylinder als FeS eingebracht. Die Spektren im oberen Teil der Abbildung zeigen die Schwefelspeziation im sulfathaltigen Teil des Zylinderpaares, im unteren Teil sind die des sulfidhaltigen dargestellt. In beiden Zylinderteilen ist die Schwefelspeziation, die in den Syntheseexperimenten eingestellt wurde, erhalten worden. Bei 2467,0 eV ist eine geringe Ausprägung der Vorkanten-Anregung im sulfidhaltigen Teil der Probe zu erkennen. In den übrigen Proben dieser Versuchsreihe ist dieser Peak deutlicher ausgeprägt, Unterschiede zwischen Fe-haltigen und Fe-freien Proben sind hierbei nicht zu beobachten. Eine Sulfatreduktion durch eindiffundierenden H₂ wie sie in Abbildung 7.8 gezeigt wurde, konnte in diesen Experimenten ebenfalls bis maximal 200 μ m ins Probeninnere festgestellt werden. Im Bereich der Kontaktfläche trat dieser Effekt nicht auf.

Abbildung 7.17: XRF-Profile entlang der Diffusionsachse von Sulfid und Sulfat in Probe G14. Der Messpunkt auf der Probe betrug 20 x 20 μm, Sulfid- und Sulfat-Intensität wurden bei 2477,0 eV bzw. 2482,5 eV entlang des Profils aufgenommen.

Die Diffusionskoeffizienten für Sulfid und Sulfat wurden aus den XRF-Intensitätsprofilen extrahiert. Abbildung 7.17 zeigt die XRF-Intensitätsprofile für Sulfid und Sulfat in Probe G14 mit den zugehörigen angepassten Profilen nach Gleichung 4.16. Wie in Abbildung 7.16 zu erkennen ist, lassen sich die Peaks für Sulfid (2477,0 eV) und Sulfat (2482,5 eV) klar trennen, so dass ein gegenseitiger Einfluss auf die dargestellten Profile ausgeschlossen werden kann. Spektren und Profile lassen keine individuelle Änderung der Schwefelspezies entlang des jeweiligen Diffusionspfades erkennen, so dass der beobachtete Prozess als einfache Interdiffusion der Schwefelspezies beschrieben werden kann $(S^{2-}$ gegen $SO_4^{2-})$. Auffällig ist, dass die Profile mit Längen von etwa 250 µm sehr kurz sind. Eine Berechnung der theoretischen Profillänge durch die Eyring-Diffusivität ergibt mit Viskositätsdaten von Bornhöft & Brückner (1999) 925 µm. Damit sind die gemessenen Profile um 675 µm kürzer, als durch die Diffusivität der Netzwerkbildner erwartet. Die sich daraus ergebenden Diffusionskoeffizienten für Experiment G14 betragen für Sulfid $\log D_{S^{2-}}$ = -13,58 \pm 0,09 und für Sulfat log $D_{S^{6+}}$ = -13,52 \pm 0,06, mit D in m²/s. Damit sind die Ergebnisse für die Sulfid- und Sulfat-Diffusion sehr ähnlich und liegen im Bereich ihrer Fehler, was einen zusammenhängenden Diffusionsprozess von Sulfid und Sulfat in diesen Experimenten vermuten lässt. Auffallend ist eine deutliche geringere Diffusivität von Sulfid und Sulfat im Vergleich zur Eyring-Diffusivität von log D $_{\eta}$ = 11,98 bei 1200°C (nach Bornhöft & Brückner, 1999). Dies trifft für alle Proben dieser Versuchsreihe zu (s. Anhang A, Tab. A.6), jedoch variieren die ermittelten Diffusionskoeffizienten bei gleicher Temperatur unsystematisch um bis zu 0,6 bzw. 1,1 Größenordnungen bei 1100 (8 h Laufzeit) und 1200°C (1 bzw. 4,5 h Laufzeit). Ein direkter Vergleich der Experimente mit den Experimenten der einfachen Sulfat- bzw. Sulfid-Diffusion (Typ i & ii) ist nicht möglich, da diese nicht parallel durchgeführt wurden. Eine strukturelle Veränderung, die die Diffusivität einschränkt und so zu dessen Verlangsamung führt, wird in Anschnitt 7.3.1 diskutiert. Die ermittelten Diffusionsdaten sind in Abbildung 7.18 im Vergleich zu den Daten der Sulfat- und Sulfiddiffusion und zur Eyring-Diffusivität dargestellt.

7.2.2 Externe Redoxreaktionen - Typ iv

Experimente zur Untersuchung externer Redoxreaktionen in NCS- bzw. NS3-Schmelzen von Sulfid wurden mit sulfid- und H₂O-haltigen Zylindern durchgeführt, die mit ihren polierten Stirnflächen in Kontakt gebracht wurden. Die sulfidhaltigen Zylinder stammen aus den gleichen Synthesen wie für die Experimente vom Typ iii. H₂O dient in diesen Experimenten als externes Oxidationsmittel, dass während des Experiments in den sulfidhaltigen Teil des Redoxpaares eindiffundiert. Vergleichend wurden auch Experimente durchgeführt, in denen sulfidhaltige Zylinder mit freiem deionisierten H₂O in eine Pt-Kaspsel eingeschweisst wurden. Die experimentellen Bedingungen lagen bei 200 MPa und 1000 bis 1200°C. Die Experimente in NCS-Schmelzen wurden mit sulfidhaltigen Zylindern durchgeführt, die keine erkennbare weitere Schwefelspezies enthielten. Sulfidhaltige Zy-

Abbildung 7.18: Arrhenius-Darstellung der ermittelten Schwefeldiffusionsdaten der Experimente zur Untersuchung Sulfat- und Sulfid-Interdiffusion (Typ iii) in NCS-Schmelzen bei 100 MPa. Die gestrichelte Linie gibt die Selbstdiffusion des Silikatnetzwerks an, berechnet nach Bornhöft & Brückner (1999).

linder der Experimente in NS3-Schmelzen enthielten zusätzlich Sulfat, jedoch ist Sulfid in diesem Fall die dominierende Schwefelspezies (s. Abschn. 5).

Abbildung 7.19 zeigt die entgegengesetzten Konzentrationsprofile von Wasser und Sulfid in Probe G1 mit den zugehörigen angepassten Profilen nach Gleichung 4.16. Der sulfidhaltige Zylinder war Fe-frei (Zusatz von S^{2–} als Na₂S). Durchgeführt wurde das Experiment bei 1050°C mit einer Laufzeit von 20 Minuten. Somit war die Versuchszeit kurz genug, um das H₂O-Konzentrationsprofil auszuwerten, da dieses noch nicht das Ende des Sulfidteils der Probe erreicht hatte. Während das H₂O-Konzentrationsprofil eine Länge von etwa 2200 µm erreicht, ist die Länge des Sulfid-Profils nur etwa 300 µm. Die aus den

Abbildung 7.19: Konzentrationsprofile von H₂O und Sulfid in Probe G1, aufgenommen mit Synchrotron-NIR-Spektroskopie bzw. EMPA. Gestrichelte graue Linien zeigen die das angepasste Profil nach Gl. 4.16.

angepassten Profilen berechneten Diffusionskoeffizienten betragen für H₂O log D_{H₂O} = $-10,16 \pm 0,05$ und für Schwefel log D_{S²⁻} = $-11,67 \pm 0,05$, mit D in m²/s. Die Diffusionskoeffizienten der Redoxpaarexperimente für H₂O fügen sich gut in die Ergebnisse der H₂O-Diffusionsexperimente ein, auch wenn die Konzentrationen im Bereich niedriger Konzentrationen durch die beschriebenen Auffälligkeiten im NIR nicht korrekt bestimmt werden konnten (s. Abschn. 6, Abb. 6.11).

Durch die erhöhte H₂O-Konzentration im Bereich der Kontaktfläche wird die Sulfid-Diffusion durch die herabgesetzte Viskosität der Schmelze in diesen Experimenten deutlich beschleunigt. Die aus Schwefel-Konzentrationsprofilen unter Anwendung von Gleichung 4.16 abgeleiteten Diffusionskoeffizienten liegen für NCS-Schmelzen im Schnitt etwa 0,5 bis 0,7 Größenordnungen über der Schwefeldiffusion, die aus den Sulfat- und Sulfid-Diffusionsexperimenten (Typ i & ii) ermittelt wurde (vgl. Tab. A.4-7). Für NS3-Schmelzen beträgt die Differenz 0,7 bis 1,0 Größenordnungen (vgl. Tab. A.3 & A.8).

Abbildung 7.20 zeigt XANES-Spektren entlang des Diffusionspfades von H₂O und S²⁻ in Probe G1. Von unten nach oben nimmt die H₂O-Konzentration am jeweiligen Messpunkt zu. Erkennbar sind drei systematische Veränderungen mit steigendem H₂O-Gehalt, (i) im S *K* Vorkantenbereich nimmt die Intensität des Peaks bei 2466,5 eV zu, (ii) der Sulfid-Peak bei 2474,0 eV verschwindet, während die Anregung bei 2477,0 eV

Abbildung 7.20: XANES-Spektren entlang der Diffusionsachse von H₂O und S²⁻ in Probe G1 (NCS). Markiert sind die Positionen der Vorkanten-Anregung (2466,5 eV) und des Sulfid-Doppelpeaks (2474,0 & 2477,0 eV), der Messpunkt auf der Probe betrug 50 x 50 μm. Die Sulfid-Konzentration nimmt von unten nach oben ab.

in der Intensität stabil bleibt und (iii) ein weiterer Peak an der Schulter des Sulfid-Peaks entsteht bei 2472,5 eV. Peaks im S K Vorkantenbereich, die aufgrund ihrer vorgelagerten Position nicht sulfidischem Schwefel zugeordnet werden können, wurden in basaltischen Gläsern von Métrich et al. (2009) bei 2469,5 eV festgestellt. Eine systematische Ausbildung dieser Anregung oder ein Zusammenhang mit anderen Komponenten ist bislang jedoch ungeklärt.

Abbildung 7.21 zeigt XRF-Profile entlang des H_2O - bzw. S^{2-} -Diffusionsprofils (s. auch Abb. 7.19). Deutlich erkennbar ist der Einfluss des eindiffundierenden H_2O . Während die Intensität des Sulfid-Peaks bei 2477,0 eV stabil bleibt, nimmt die des Sulfid-Peaks bei 2474,0 eV mit abnehmender Entfernung vom Umschlagspunkt des Profils (Kontaktfläche der Glaszylinder) deutlich ab. Gleichzeitig nimmt die Intensität der Vorkanten-Anregung bei 2466,5 eV stark zu. Eine Intensitätszunahme der Sulfat-Anregung bei 2482,5 eV ist nicht erkennbar. Diese Veränderungen der Sulfid-Umgebung in der Glasstruktur lassen sich in allen experimentellen Produkten dieser Versuchsreihe beobachten.

Abbildung 7.21: XRF-Profile entlang der Diffusionsachse von H₂O und S²⁻ in Probe G1 (NCS). Analysiert wurde die Intensität bei 2466,5 eV (Vorkanten-Anregung), 2474,0 eV (Sulfid I), 2477,0 eV (Sulfid II) und 2482,5 eV (Sulfat). Vergleichend wurden Profile bei 2460,0 eV (Hintergrund - Vorkante) und bei 2515,0 eV (Gesamtschwefel) aufgenommen. Der Messpunkt auf der Probe betrug 0,60 x 0,88 µm, die Akkumulationszeit pro Punkt 2s, die Schrittweite 10 µm.

Ein Einfluss des geringen Fe-Gehaltes einiger Proben der NCS-Gläser, durch den Zusatz von Sulfid als FeS während der Synthesen, auf diesen Prozess ist nicht erkennbar. Auch der geringe Sulfatanteil der sulfidhaltigen NS3-Zylinder führt zu keiner Veränderung. Eine Zunahme der Sulfat-Intensität ließ sich nur in einer Probe beobachten (s. Anhang A, Tab. A.7-8). Diese Änderungen in der Schwefelspeziation korrelieren mit der Bandenverschiebung im NIR und der Entstehung der neuen Bande im MIR. Diese Effekte treten im gleichen Bereich der Probe auf. Basierend auf der in Abschnitt 6 beschriebenen Abweichung des H₂O-Konzentrationsprofils von bis zu 2500 ppm von der angepassten Fehlerfunktion (Gl. 4.16), kann angenommen werden, dass dieser Anteil in Wechselwirkung mit Sulfid steht und durch die auftretende NIR-Bande bei 5050 cm⁻¹ beschrieben wird. In diesen Bereichen der Proben beträgt die Schwefelkonzentration, die mit der Mikrosonde bestimmt wurde zwischen 1300 und 1700 ppm. Da nur die Sulfid-Anregung bei 2474,0 eV in ihrer Intensität mit zunehmender H₂O-Konzentration zunimmt, nimmt nur ein Teil des Sulfides, dass zur Verfügung steht an dieser Wechselwirkung bzw. Komplexbildung teil. Eine genaue der Quantifizierung der beteiligten H₂O- bzw. S^{2–}-Anteile ist bislang nicht möglich, da nicht klar angegeben werden kann, wie hoch der Schwefelanteil ist, der jeweils durch die Sulfid-Peaks bei 2474,0 und 2477,0 eV ist. Unter der Annahme, dass etwa 50% (relativ) des im Glas vorhandenen Sulfids an einer Reaktion mit molekularem H₂O teilnehmen, ist es möglich eine grobe Abschätzung würde ein H₂O/S^{2–}-Verhältnis von etwa 2:1 geben.

Abbildung 7.22: XANES-Spektren in den Randbereichen und im Zentrum von Probe G18. Der Messpunkt auf der Probe betrug 50 x 50 µm.

In zwei vergleichenden Experimenten, in denen etwa 6,0 Gew.% freies deion. H_2O einem sulfidhaltigen Glaszylinder hinzugefügt wurde, konnte diese Wechselwirkung zwischen H_2O und Sulfid nicht beobachtet werden. Hier ist der Oxidationsprozess schon weiter fortgeschritten. Abbildung 7.22 zeigt XANES-Spektren von Probe G18 (100 MPa, 1050°C, 20min). Deutlich erkennbar ist eine nahezu komplette Oxidation von Sulfid zu Sulfat in den Randbereichen des Probenzylinders. Im Zentrum der Probe ist Sulfid dagegen noch stabil. Der Sulfid-Peak bei 2474,0 eV ist bereits verschwunden und die Vorkanten-Anregung bei 2466,5 eV klar zu erkennen. Im Randbereich, wo Sulfid nur noch eine untergeordnete Rolle spielt, ist diese nicht mehr nachzuweisen. XRF-Intensitätsprofile, aufgenommen vom Rand in Richtung Probenmitte bei typischen Sulfid- (2476,0 eV)

und Sulfat-Anregungsenergien (2482,5 eV), bestätigen diese Beobachtung. Abbildung 7.23 zeigt, dass die Oxidationsfront, hervorgerufen durch eindiffundierendes H₂O, etwa 200 μ m in das Probeninnere vordringt. Erklärt werden kann dieser Unterschied im Vergleich zu den anderen Oxidationsexperimenten (Typ iv) durch die höhere H₂O-Aktivität, wodurch oxidierendere Bedingungen eingestellt werden. Zudem kann H₂ sich im Fluid des freien H₂O lösen. Dadurch wird die Reaktion nicht mehr lokal gepuffert.

Abbildung 7.23: XRF-Intensitätsprofile für die Vorkanten-Anregung (2467,0 eV), Sulfid (2476,0 eV) und Sulfat (2482,5 eV) vom Rand in Richtung Probenmitte. Der Messpunkt auf der Probe betrug 50 x 50 μm, Intensität normalisiert auf den Strahlstrom.

7.3 Diskussion

7.3.1 Gesamtbetrachtung: Konvektion vs. Diffusion

Zu diskutieren ist welche experimentellen Versuchsreihen die Diffusion beschreiben und welche von Konvektion überlagerte Diffusion. Da konvektive Vorgänge im Allgemeinen zu einer Beschleunigung des Vermischungsprozesses führen, könnten die dargestellten Ergebnisse aus Doppelkapselexperimenten und Redoxpaarexperimenten (Typ iii) die unbeeinflusste Schwefeldiffusion darstellen. Verformte Kontaktflächen wurden in diesen Experimenten nicht oder nur leicht festgestellt und waren in den Redoxpaarproben z. T. noch gut erkennbar. Die ermittelten Ergebnisse dieser Experimente liegen allerdings bis zu 1,5 Größenordnungen unter der Diffusivität des Silikatnetzwerkes und variieren ebenfalls stark.

Abbildung 7.24: NS3- & NCS-Diffusionsdaten für Schwefel im Vergleich zu ermittelten Werten technischer Gläser. Ähnliche Glaszusammensetzungen als schwarze Linien dargestellt (gestrichelt & durchgezogen).

Abbildung 7.24 zeigt die ermittelten Ergebnisse zur Schwefeldiffusion exklusive der Werte aus den Redoxpaarexperimenten (Oxidationsexperimente, Typ iv), da diese durch den hohen H_2O -Gehalt beeinflusst wurden. Die ermittelten Ergebnisse liegen 0,5 bis 1,0 Größenordnungen unter den Werten anderer Arbeiten für Floatglas- und NCS-Gläser
(Brückner, 1962, Nemec & Mühlbauer, 1981, Nemec & Klouzek, 1995, Nemec et al., 1998). Ein Grund für den Unterschied zu den in diesen Arbeiten ermittelten Werten könnten unterschiedliche experimentelle Methoden sein, die zur Anwendung kamen. Brückner (1962) untersuchten die Schwefeldiffusion aus einer Salzschmelze in die Glasschmelze, Nemec & Klouzek (1995) die Diffusion von Schwefel aus einer SO₂-haltigen Atmosphäre in die Schmelze und Nemec et al. (1998) und Nemec & Mühlbauer (1981) die Diffusion von Schwefel aus der Schmelze in Gasblasen. Durch die unterschiedlichen Methoden ist ein Vergleich nur bedingt möglich, insbesondere welche Rolle konvektive Beiträge bei den älteren Arbeiten gespielt haben.

Da besonders die ermittelten Diffusionskoeffizienten von Schwefel aus den Redoxpaarexperimenten (Typ iii) und den Doppelkapselexperimenten deutlich geringer sind, als durch die Eyring-Diffusivität vermutet, scheinen zusätzliche oder veränderte Mechanismen den Transport von SO_4^{2-} bzw. S^{2-} zu bestimmen. Ein bestimmender Faktor hierfür kann die Größe der Sulfid- und Sulfatanionen bzw. Abstände und Bindungsstärke zu interagierenden Kationen sein. S-O-Abstände in Sulfat-Tetraedern betragen etwa 1,5 Å bei einer O-O-Kantenlänge von 2,5 Å (Hawthorne & Ferguson, 1975, McKeown et al., 2004, Nord, 1973). Im Vergleich hierzu beträgt der Si-Si-Abstand zweier benachbarter SiO₄-Tetraeder etwa 3,0 Å, dieser Wert wurde in dieser Arbeit als Sprunglänge zur Berechnung der Eyring-Diffusivität verwendet. Es ist möglich, dass durch die relative Größe des Sulfat-Anions sehr viel mehr Verbindungen zwischen SiO₄-Tetraedern für dessen Transport geöffnet werden müssen als angenommen, was den Diffusionsprozess verlangsamen würde. Nach Coenen et al. (1984) wird der Einbau von Sulfat-Tetraedern in der Silikatschmelze durch die Anwesenheit von Kationen wie Na⁺ ermöglicht oder deutlich gesteigert. Weiter gehen Coenen et al. (1984) von einem teilweisen Ersetzen von SiO₄durch SO_4^{2-} -Tetrader aus, wodurch ein für die Schwefeldiffusion ähnlicher Mechanismus wie für Si (Aufbrechen und Neuverknüpfen von T-O-Bindungen, Eyring-Verhalten) zu erwarten wäre. Durch die höhere Feldstärke der Schwefelatome im Vergleich zu Si wird das Silikatnetzwerk verdichtet und der Anteil der kovalenten Bindungen zunehmen. Die Folge ist eine Versteifung des Silikatgerüsts. Wie groß der Einfluss dieser Versteifung bei den hier vorliegenden Schwefelkonzentrationen von 1000 bis 3000 ppm auf die Viskosität der Schmelze bei den experimentellen Bedingungen ausfällt, ist unklar. Es kann jedoch davon ausgegangen werden, dass diese durch den beschriebenen Effekt zunimmt. Der Diffusionsmechanismus von S^{2-} -Anionen sollte jedoch anders funktionieren. Anzunehmen ist ein Einbau als nichtbrückenbildendes Sulfid (entsprechend NBO), was energetisch günstig wäre (Coenen et al., 1984, Tsujimura et al., 2004). Die um die gleiche Größenordnung von der Eyring-Diffusivität abweichende Sulfid-Diffusion in den Redoxpaarexperimenten (Typ iii) könnte durch ein versteiftes Silikatnetzwerk des sulfathaltigen Gegenstücks und eine daraus resultierende höhere Viskosität erklärt werden, die durch den strukturellen Einbau von Sulfat-Tetraedern hervorgerufen wird.

Um solche strukturellen Veränderungen nachweisen zu können sind vergleichende Viskositätsuntersuchungen schwefelfreier und schwefelhaltiger Silikatschmelzen gleicher Zusammensetzung notwendig.

7.3.2 Reduktion von Sulfat & Bildung von H₂O

Eine Reduktion von Sulfat zu Sulfid im Randbereich von Diffusionspaaren (s. Abb. 7.8) tritt in allen durchgeführten Sulfatdiffusionsexperimenten auf. Im aufgeführten Beispiel in Abbildung 7.8 reichte der Reduktionssaum, in dem Sulfid dominierende Schwefelspezies ist, etwa 100 μ m in das Probeninnere. Im Vergleich dazu war die Länge des Schwefelkonzentrationsprofils mit 400 μ m viermal länger. Abbildung 7.25 zeigt schematisch die Ausbildung eines solchen Reduktionssaums.

Abbildung 7.25: Reduktionssaum in sulfathaltigen Diffusionspaaren.

Verursacht wird dies durch eindiffundierenden H_2 durch die Pt-Kapselwandung, der nach

$$4H_2 + SO_4^{2-} \to S^{2-} + 4H_2O \tag{7.4}$$

mit Sulfat zu Sulfid und H₂O reagiert. Diese Reaktion ist in den Sulfat-Diffusionsexperimenten nicht auszuschließen, da hier im Vergleich zu Sulfid-Diffusionsexperimenten höhere H₂O-Konzentrationen vorliegen (s. Tab. A.4 & A.5). Bestimmende Faktoren für diese Reaktion sind die H₂-Permeation des Kapselmaterials und die S⁶⁺-Konzentration in der Schmelze. Nach Chou (1987) und Harvie et al. (1980) lässt sich die Menge des eindiffundierenden Wasserstoffs in Abhängigkeit von der Wasserstofffugazität innerhalb und außerhalb der Kapsel, des Kapselmaterials und seiner Dimension nach

$$mH_2 = \frac{2\pi kl}{\ln\frac{r_a}{r_i}} \cdot \left(fH_{2(innen)}^{0,5} - fH_{2(aussen)}^{0,5} \right) \cdot t$$
(7.5)

berechnen. Dabei ist mH_2 die Menge des eindiffundierten Wasserstoffs in g, k Permeabilitätskonstante von H₂ für ein bestimmte Edelmetalllegierung in g/(m·s·bar)^{0,5}, l die Länge der Kapsel in m, r_i und r_a Innen- bzw. Außendurchmesser der Kapseln in m und fH_2 die Wasserstofffugazität innerhalb und außerhalb der Probenkapsel in bar. Für Pt als Kapselmaterial beträgt log k = -8,84 (k in g/m·s·bar^{0,5}) bei 2000 bar und 1100°C. Für typische Kapseldimensionen von $r_a = 4,4$ mm, $r_i = 4,0$ mm und l = 15,0 mm und H₂-Fugazitäten von $fH_{2(innen)} = 0$ bar und $fH_{2(aussen)} = 0,2$ bar (intrinsisch, Berndt et al., 2002) und eine Versuchslaufzeit von 8 h erhält man nach Gleichung 7.5 eine eindiffundierte H₂-Menge von 1,84·10⁻³ g. In einer Kapsel mit zwei Glaszylindern à 100 mg, von denen einer 1500 ppm S⁶⁺ enthält, befinden sich insgesamt 1,5·10⁻⁴ g S⁶⁺. Nach Gleichung 7.4 sind 4 Mol H₂ notwendig, um 1 Mol SO²⁻₄ in S²⁻ + 4 H₂O umzusetzen. Nach der vorliegenden Beispielrechnung herrscht also ein Überangebot an H₂ für diese Reaktion. Die Ergebnisse der XRF-Profilaufnahmen und XANES-Messungen zeigen jedoch, dass die Reduktionsfront bei den der Berechnung zugrunde liegenden Bedingungen (1100°C, 8h) nur etwa 200 µm in das Innere des sulfathaltigen Glaszylinders vorgedrungen ist.

Ähnliche Beobachtungen wurden von Gaillard et al. (2002), Gaillard et al. (2003b) und Gaillard et al. (2003a) gefunden, die die Kinetik der Fe³⁺-Reduktion in rhyolitischen Schmelzen untersuchten. Die Kinetik der Reduktion von S⁶⁺ zu S²⁻ ist jedoch nur begrenzt vergleichbar, da für die Reduktion von Fe³⁺ zu Fe²⁺ nur ein Mol H₂ benötigt wird. Für eine Sulfatreduktion (SO²⁻₄ \rightarrow S²⁻) sind sehr viel komplexere strukturelle Änderungen notwendig. Ein weiteres Vordringen der Reduktionsfront ist auch abhängig vom Verhältnis der Konzentration zur Diffusivität von Wasserstoff in silikatischen Schmelzen. Einige Arbeiten wie Hercule & Ingrin (1999), Kohlstedt & Mackwell (1998) und Gaillard et al. (2003a) zeigten, dass die Diffusion von H₂ in Silikaten und silikatischen Schmelzen sehr schnell verläuft. Im Gegensatz dazu ist jedoch die Löslichkeit von molekularem H₂ in silikatischen Schmelzen gering (Schmidt et al., 1998). Um eine Reduktion nach Gleichung 7.4 zu ermöglichen, muss durch das gelöste H₂ in der Schmelze ein gewisser *P*H₂ überschritten werden. Dieser Vorgang wird durch die niedrige Konzentration jedoch gehemmt, der lokale PH_2 bleibt niedrig und die Reaktion kann nicht lokal gepuffert werden. Außerdem sind nach Gleichung 7.4 4 H₂-Moleküle nötig, um Sulfat zu Sulfid zu reduzieren.

7.3.3 Wechselwirkung von S^{2-} und H_2O

In Abschnitt 6 und 7.2 wurden systematische Zusammenhänge zwischen Änderungen von MIR- und NIR-Banden von molekularem H₂O und Veränderungen der Sulfid-Orientierung im silikatischen Glas festgestellt. Ein systematisches Auftreten einer neuen Absorptionsbande im NIR bei 5020 cm⁻¹ auf Kosten der H₂O-Absorptionsbande bei 5225 cm⁻¹ in Abhängigkeit vom S²⁻/H₂O-Verhältnis konnte festgestellt werden. Ähnliche Effekte zeigen XANES-Spektren und XRF-Profile (s. Abb. 7.20 & 7.21) bei einer Energie von 2466,5 bzw. 2467,0 eV in Form einer scharfen neuen Anregung, die sulfidischem Schwefel nicht klar zugeordnet werden kann. Die Ausbildung dieser Anregung ist auch hier stark an das S²⁻/H₂O-Verhältnis gebunden. Die Kombination der Ergebnisse der Synchrotron-NIR- und XAS-Analysen zeigt eine auftretende Wechselwirkung zwischen S²⁻ und molekularem H₂O in den Redoxpaarexperimenten (Typ iv). Es ist jedoch unklar, ob diese S²⁻-H₂O-Komplexe auch bei hohen Temperaturen in silikatischen Schmelzen stabil sind. Aufgrund der Gleichgewichtsreaktion

$$H_2 O + O^{2-} \leftrightarrow 2OH^- \tag{7.6}$$

$$K_{H_2O_t} = \frac{[OH^-]^2}{\{[H_2O] [O^{2-}]\}}$$
(7.7)

verschiebt sich das Gleichgewicht der stabilen H₂O-Spezies mit zunehmender Temperatur aus Gründen der Entropie in silikatischen Schmelzen nach rechts (z. B. Behrens & Yamashita, 2008). Die Speziation von H₂O_t bei hohen Temperaturen kann unterhalb T_g nicht erhalten werden, da die Verschiebung des Gleichgewichts der Reaktion zu schnell geschieht. Die H₂O-Speziation im erstarrten Glas repräsentiert die Speziation, die bei einer Temperatur stabil ist, bei der die erstarrte Struktur nahezu mit der Schmelzstruktur im Gleichgewicht ist (Romano et al., 1995). Diese Temperatur wird fiktive Temperatur (T_f) genannt. Wird davon ausgegangen, dass das Speziationsgleichgewicht von H₂O durch die strukturelle Relaxation des Silikatnetzwerks bestimmt wird, so kann T_f nach der Relaxationstheorie bei bekannter Abkühlungsrate bestimmt werden (Dingwell & Webb, 1990). Der Zusammenhang von Viskosität η^* bei der Temperatur der Glastransformation (T_g) und der Abkühlungsrate q (K/s) kann für Alkali-Silikat-Gläser nach Scherer (1984) mit

$$\log \eta^* = 11, 3 - \log |q| \tag{7.8}$$

berechnet werden, wobei log η^* in Pas angegeben wird. Im Fall der Redoxpaarexperimente betrug die Ankühlrate etwa 2,5 K/s. Daraus ergibt sich log $\eta^* = 10,9$. Legt man diesem Wert Vikositätsdaten für NCS-Zusammensetzungen nach Bornhöft & Brückner (1999) zugrunde, so beschreibt dieser eine fiktive Temperatur $T_f = 570^{\circ}$ C. Bei dieser Temperatur ist H₂O die vorherrschende Spezies. Die einfachste Berechnung der Relaxationszeit basiert auf Untersuchungen von Maxwell (1867):

$$\tau = \frac{\eta}{\sigma} \tag{7.9}$$

wobei τ die Relaxationszeit in s, η die Viskosität in Pas und σ das Schubmodul in Pa darstellt. τ beschreibt die mittlere Lebensdauer eines Zustandes für ein Teilchen, wobei sich der relative Anteil des dieses Zustandes im System nicht ändert. Bei einem Schubmodul für silikatische Schmelzen von log $\sigma = 10$ (Bansal & Doremus, 1986, Bucaro & Dardy, 1974, Dingwell & Webb, 1990) und $\log \eta = 10.9$ erhält man $\tau = 10^{0.9} = 7.9$ s. Bei den vorliegenden niedrigen Abkühlraten ist molekulares H₂O die dominierende Spezies in den Gläsern (s. auch Silver et al., 1990, Silver & Stolper, 1989). Der Vorgang, der während des Abkühlens stattfinden könnte, ist eine zunehmende Komplexierung von H₂O-Molekülen mit S^{2-} -Anionen über H-Brückenbindungen (s. Abb. 7.26). Bei hohen Temperaturen werden diese im Gegensatz dazu kontinuierlich schwächer (z. B. Behrens & Schmidt, 1998), so dass ein solcher Zustand bei 1000 bis 1200°C eher unwahrscheinlich ist. Eine solche Koordination ist möglich, wenn die Ionen- bzw. Molekülradien ähnlich sind. Für S^{2-} beträgt dieser 1,70, für O^{2-} 1,40 und für H₂O 1,37 (Shannon, 1976, Zhang & Xu, 1995). Wechselwirkungen von S²⁻ mit OH⁻-Gruppen, die in derselben Intensität auftreten, sind nicht zu erwarten, da eine Beeinflussung der Konzentration von OH⁻-Gruppen nach den Beobachtungen im NIR nicht ersichtlich ist. Die systematischen Veränderungen oder Bildung der S^{2–}-H₂O-Komplexe entstehen aufgrund des Gleichgewichtes zwischen H₂O und OH⁻ zwischen Hoch- und Tieftemperaturbedingungen erst während des Abkühlens. Ähnliche Wechselwirkung können auch für basaltische Gläser angenommen werden (Métrich et al., 2009).

Die scharfe Ausbildung der Vorkanten-Anregung in den vorliegenden Proben kann nur mit einer klar definierten S^{2–}-Koordination erklärt werden. Da Schwefel in Sulfid-Mineralen wie Li₂S, Na₂S, K₂S oder NaLiCdS₂ ist S^{2–} im Zentrum eines Tetraeders

Abbildung 7.26: Schematische Darstellung möglicher S^{2–}-H₂O-Komplexe in NCS- bzw. NS3-Gläsern.

angeordnet ist (Deng et al., 2007, Eithiraj et al., 2007), könnte sich eine solche Koordination auch im Bereich T_g in den vorliegenden silikatischen Gläsern zwischen Sulfid und H₂O einstellen. Die dadurch entstandene klar definierte lokale Struktur führt zu den beobachteten Effekten, die im NIR- und MIR-spektralen Bereich (Auftreten neuer Banden) sowie mit XANES-Spektroskopie (Auftreten einer Vorkanten-Anregung) festgestellt wurden. Weitere strukturelle Untersuchungen sind jedoch notwendig um dies definitiv zu belegen.

Eine Oxidation von S^{2–} zu S⁶⁺ findet in den Redoxpaarexperimenten (Typ iv) nicht statt, da aufgrund der niedrigen H₂O-Konzentration der *P*H₂O relativ niedrig ist und eine entgegengesetzte Reaktion zu Gleichung 7.4 nicht ausreichend gepuffert werden kann. Bei den Vergleichsexperimenten, die mit freiem zugesetzten deion. H₂O (etwa 6,0 Gew.% im System) durchgeführt wurden, war dies jedoch gegeben, wodurch im Randbereich Sulfid komplett zu Sulfat umgesetzt werden konnte. Generell ist eine Oxidation von S^{2–} zu S⁶⁺ sehr viel komplexer anzusehen als die Verschiebung des Redoxverhältnisses Fe²⁺/Fe³⁺. Wie bei der Schwefelreduktion sind die strukturellen Änderungen sehr kompliziert, wenn man die lokale Koordination von SO^{2–}₄-Tetraedern und S^{2–}-Anionen betrachtet.

Durch die vorliegenden Ergebnisse kann angenommen werden, dass das Auftreten der Vorkanten-Anregung bei 2466,5 eV grundsätzlich auf die Anwesenheit von molekularem H₂O zurückzuführen ist. In nominell wasserfreien Sulfid-Diffusionsproben war dieser Peak ebenfalls im gesamten sulfid-haltigen Teil der Probe gleichmäßig ausgebildet (s. Abb. 7.10). Der Gesamtwassergehalt dieser Proben betrug maximal 0 bis 130 ppm. Somit kann die Vorkanten-Anregung auch als Indikator für geringe Wassergehalte in sulfid-haltigen Gläsern genutzt werden. Die normalisierte Intensität der Vorkanten-Anregung ist in diesen Proben vergleichbar mit der Intensität im H₂O-freien Teil der Redoxpaarproben und liegt bei $0,30 \pm 0,05$ (normalisierte Fluoreszenz). In den Redoxpaarproben steigt diese auf bis zu 1,30 im Bereich der Kontaktfläche zum H₂O-haltigen Teil der Probe an. In den Sulfid-Diffusionsproben ist der Gehalt an molekularem H₂O jedoch sehr gering (\ll 1 % relativ, Stuke et al., 2006). Eine weitere Untersuchung der Gläser auf Auffälligkeiten im NIR- (5225 \rightarrow 5020 cm⁻¹) und MIR-spektralen Bereich ist daher notwendig.

7 Schwefeldiffusion in silikatischen Schmelzen

Kapitel 8

Schlussbetrachtung

Eine experimentelle Studie zur Untersuchung der Diffusion, Speziation und Löslichkeitsmechanismen von Schwefel in silikatischen Schmelzen wurde in NCS- und NS3-Schmelzen durchgeführt. In NCS-Schmelzen wurden zusätzlich die Diffusionsmechanismen von H_2O untersucht.

Festgestellt wurde, dass Schwefel in Form von Sulfat und Sulfid in silikatischen Schmelzen vorliegt und Sulfit innerhalb der analytischen Möglichkeiten nicht nachweisbar war. Zudem disproportioniert Sulfit bei Zugabe von z. B. Na₂SO₃ zu Sulfat und Sulfid. Unklar ist, ob Sulfit bei hohen Temperaturen weit oberhalb der Glastransformation stabil in der Schmelze vorliegt. Um die Sulfit-Stabilität nachzuweisen oder auszuschließen, sind Methoden notwendig, die die Schwefelspeziation in situ in der Schmelze analysieren können, wie z. B. in situ XANES-Messungen oberhalb von 1000°C. Solche Messungen stellen eine technische Herausforderung dar und sind bislang nicht etabliert. Mit Läuterungssyntheseexperimenten wurde gezeigt, dass die Schwefellöslichkeit bei Umgebungsdruck stark von der Temperatur abhängt. Gleichzeitig eigneten sich die gewonnenen Produkte als nominell trockene blasenfreie, sulfathaltige Ausgangsmaterialien zur Untersuchung der Sulfatdiffusion. Trockene sulfidhaltige Gläser wurden mit einem ähnlichen Ansatz hergestellt.

Die aus mehreren experimentellen Ansätzen gewonnenen Daten zur Schwefeldiffusion (NCS und NS3) zeigen eine starke Variation, die eventuell aufgrund einer konvektiven Überlagerung der Diffusionsprofile hervorgerufen wurde. Da nach den Experimenten die Kontaktflächen zwischen schwefelhaltigem und schwefelfreiem Glaszylinder in der Regel kaum oder gar nicht zu erkennen waren, sollte in zukünftigen Untersuchung dieser Art ein Farbunterschied der unterschiedlichen Zylinder durch das Einbringen von z. B. CoO eingestellt werden, um konvektive Vorgänge nach dem Experiment identifizieren zu können. Nachteilig könnte sich allerdings die mögliche Beeinflussung der Schwefeldiffusion durch Kopplung an diese Verunreinigung auswirken, die in ähnlicher Konzentration vorliegen müsste, um einen Farbeffekt hervorzurufen. Die ermittelten Diffusionsdaten liegen im Bereich der Eyring-Diffusivität, einige Datensätze zeigen jedoch deutlich niedrigere Diffusionskoeffizienten.

Redoxpaarexperimente (Typ iii, NCS) zeigten in der experimentellen Studie die niedrigsten Diffusionskoeffizienten für Schwefel. Durch XANES-Messungen konnte bewiesen werden, dass Sulfat bzw. Sulfid in den jeweiligen Experimenten als Schwefelspezies erhalten werden konnte, so dass Diffusionskoeffizienten für die Sulfat und Sulfid ermittelt wurden. Ein Vergleich mit Literaturwerten für NCS- und Floatglas (Brückner, 1962, Nemec, 1980a,b, Nemec & Klouzek, 1995, Nemec et al., 1998) zeigte, dass diese deutlich über den experimentell ermittelten Werten dieser Arbeit liegen.

Redoxpaarexperimente (Typ iv) zur Untersuchung der extern induzierten Oxidation von Sulfid durch eindiffundierendes H₂O in silikatischen Schmelzen (NCS und NS3) zeigten systematische Veränderungen in der Koordination von molekularem H₂O und S^{2–}, die mit Hilfe von XANES-, MIR- und NIR-Messungen belegt werden konnten. Veränderungen in der H₂O-Koordination zeigten sich v. a. durch das Auftreten einer neuen Absorptionsbande im NIR (5025 cm⁻¹) und MIR (3400 cm⁻¹), für S^{2–} wurde mit XANES-Spektroskopie eine neue Anregung im S *K* Vorkantenbereich beobachtet.

Zusätzlich gewonnene H₂O-Diffusionsdaten für NCS-Gläser zeigen für die Diffusion bei hohen Wassergehalten von maximal 3,0 Gew.% eine leichte Konzentrationsabhängigkeit. Bei niedrigen Konzentrationen von maximal 0,3 Gew.% kann der ermittelte Diffusionskoeffzient als konstant angesehen werden. Die Ergebnisse fügen sich gut in bereits bestehende Datensätze für Float- und NCS-Glas (Kreisberg et al., 2001, Müller et al., 2005, Scholze & Mulfinger, 1959, Schreiber et al., 1989, Swarts, 1986) ein.

Die in dieser Arbeit ermittelten Ergebnisse verbessern das Verständnis der Löslichkeitsmechanismen, der Speziation und der Redoxreaktionen von Schwefel in einfachen silikatischen Schmelzen durch die Kombination von Ergebnissen mehrerer spektroskopischer Untersuchungsmethoden. Aufgrund der Variationen der Diffusionsdaten von Schwefel ist eine Bewertung dieser nur bedingt möglich. H₂O-Diffusionsdaten für NCS lassen sich mit Datensätzen, die mit anderen experimentellen Methoden gewonnen wurden, vergleichen und können somit zur Modellierung der H₂O-Diffusion in NCS-Schmelzen verwendet werden. Die neuen Erkenntnisse aus der XANES-Spektroskopie sowie den damit zusammenhängenden XRF-Profilmessungen an der S *K* Absorptionskante zeigen, dass mit diesen Methoden komplexe Veränderungen in der Schwefel-Speziation (speziell Sulfid) aufgelöst werden können. Um die Wechselwirkungen zwischen Sulfid und molekularem H₂O und die damit zusammenhängenden Auffälligkeiten in IR- und XANES-Spektren besser verstehen und interpretieren zu können, sind weitere Untersuchungen und Messungen mit beiden Methoden notwendig.

8 Schlussbetrachtung

Literaturverzeichnis

- Aiuppa A., Federico C., Giudice G., Gurrieri S., Paonita A. & Valenza M. (2004). Plume chemistry provides insights into mechanisms of sulfur and halogen degassing in basaltic volcanoes. *Earth Planet. Sci. Lett.* 222(2), 469–483.
- Aiuppa A., Federico C., Paonita A., Pecoraino G. & Valenza M. (2002). S, Cl and F degassing as an indicator of volcanic dynamics: The 2001 eruption of Mount Etna. *Geophys. Res. Letters* 29(11).
- Als-Nielsen J. & McMorrow D. (2001). *Elements of Modern X-ray Physics*. Wiley, 336 pages.
- Appen A.A. (1949). Berechnung der optischen Eigenschaften, der Dichte, und des Ausdehnungskoeffizienten von Silikatgläsern aus ihrer Zusammensetzung. *Ber. Akad. Wiss. UdSSR* 69, 841–844.
- Backnäs L., Stelling J., Behrens H., Göttlicher J., Mangold S., Verheijen O., Beerkens R.G.C. & Deubener J. (2008). Dissolution Mechanisms of Tetravalent Sulphur in Silicate Melts: Evidences from Sulphur K Edge XANES Studies on Glasses. J. Am. Ceram. Soc. 91, 721–727.
- Baker D.R., Freda C., Brooker R.A. & Scarlato P. (2005). Volatile diffusion in silicate melts and its effects on melt inclusions. *Ann. Geophys.* 48(4-5), 717.
- Baker L.L. & Rutherford M.J. (1996). Sulfur diffusion in rhyolite melts. *Contrib. Mineral. Petrol.* 123(4), 335–344.
- Bansal N.P. & Doremus R.H. (1986). Handbook of Glass Properties. Academic Press, 680 pages.
- Beerkens R.G.C. (1995). The role of gases in glass melting processes. *Glass Sci. Technol.* 68(12), 369–380.

- Beerkens R.G.C. (2003a). Amber chromophore formation in sulphur- and iron-containing soda-lime-silica glasses. *Glass Sci. Technol.* 76(4), 175.
- Beerkens R.G.C. (2003b). Sulfate decomposition and sodium oxide activity in soda-limesilica glass melts. J. Am. Ceram. Soc. 86(11), 1893–1899.
- Beerkens R.G.C. (2005). Sulphate decomposition and sulphur chemistry in glass melting processes. *Glass Technol.* 46(2), 39–46.
- Behrens H. (2006). Water diffusion in silicate glasses and melts. *Adv. Sci. Technol.* 46, 79–88.
- Behrens H. & Gaillard F. (2006). Geochemical aspects of melts: Volatiles and redox behavior. *Elements* 2(5), 280.
- Behrens H. & Haack M. (2007). Cation diffusion in soda-lime-silicate glass melts. J. Non-Cryst. Solids 353, 4743–4752.
- Behrens H. & Jantos N. (2001). The effect of anhydrous composition on water solubility in granitic melts. *Am. Mineral.* 86(1-2), 20.
- Behrens H. & Nowak M. (1997). The mechanisms of water diffusion in polymerized silicate melts. *Contrib. Mineral. Petrol.* 126(4), 377–385.
- Behrens H. & Nowak M. (2003). Quantification of H_2O speciation in silicate glasses and melts by IR spectroscopy - In situ versus quench techniques. *Phase Transitions* 76(1-2), 45–61.
- Behrens H. & Schmidt M.O. (1998). Infrared spectroscopy of hydrous silicic glasses at temperatures up to 600°C and implications for the incorporation and dynamics of water in glasses. *Neues Jahrbuch Fur Mineralogie-Abhandlungen* 172(2-3), 203–226.
- Behrens H. & Stuke A. (2003). Quantification of H₂O contents in silicate glasses using IR spectroscopy - a calibration based on hydrous glasses analyzed by Karl-Fischer titration. *Glass Sci. Technol.* 76(4), 189.
- Behrens H. & Yamashita S. (2008). Water speciation in hydrous sodium tetrasilicate and hexasilicate melts: Constraint from high temperature NIR spectroscopy. *Chem. Geol.* 256(3-4), 306–315. ISSN 0009-2541.

- Behrens H. & Zhang Y.X. (2009). H₂O diffusion in peralkaline to peraluminous rhyolitic melts. *Contrib. Mineral. Petrol.* 157(6), 765–780.
- Behrens H., Zhang Y.X. & Xu Z.G. (2004). H₂O diffusion in dacitic and andesitic melts. *Geochim. Cosmochim. Acta* 68(24), 5139–5150.
- Berndt J., Liebske C., Holtz F., Freise M., Nowak M., Ziegenbein D., Hurkuck W. & Koepke J. (2002). A combined rapid-quench and H₂-membrane setup for internally heated pressure vessels: Description and application for water solubility in basaltic melts. *Am. Mineral.* 87(11-12), 1717–1726.
- Boltzmann L. (1894). Zur Integration der Diffusionsgleichung bei variabeln Diffusionscoefficienten. Annalen der Physik 53, 959–964.
- Bonnin-Mosbah M., Metrich N., Susini J., Salome M., Massare D. & Menez B. (2002). Micro X-ray absorption near edge structure at the sulfur and iron K-edges in natural silicate glasses. *Spectrochim. Acta B* 57(4), 711–725.
- Bornhöft H. & Brückner R. (1999). Elastic and inelastic properties of soda lime silicate glass melts. *Glass Sci. Technol.* 72(10), 315–328.
- Botcharnikov R.E., Behrens H., Holtz F., Koepke J. & Sato H. (2004). Sulfur and chlorine solubility in Mt. Unzen rhyodacitic melt at 850°C and 200 MPa. *Chem. Geol.* 213(1-3), 207–225.
- Brückner R. (1962). Zur Kinetik des Stoffaustausches an den Grenzflächen zwischen Silikatglas- und Salzschmelzen und des Stofftransportes in Silikatglasschmelzen unter besonderer Berücksichtigung des Verhaltens von Na2SO4 und seinen Zersetzungsprodukten. Teil III. Thermische. *Glass Sci. Technol.* 35(2), 93–105.
- Bucaro J.A. & Dardy H.D. (1974). High-Temperature Brillouin-Scattering In Fused Quartz. J. Appl. Phys. 45(12), 5324–5329.
- Carroll M.R. & Rutherford M.J. (1988). Sulfur Speciation in Hydrous Experimental Glasses of Varying Oxidation-State Results from Measured Wavelength Shifts of Sulfur X-Rays. Am. Mineral. 73(7-8), 845–849.
- Carroll M.R. & Webster J.D. (1994). Solubilities of Sulfur, Noble-Gases, Nitrogen, Chlorine, and Fluorine in Magmas. *Rev. Mineral.* 30, 231–279.

Chakraborty S. (1995). Diffusion in silicate melts. Rev. Mineral. 32, 411-503.

- Chirita P. (2009). Iron monosulfide (FeS) oxidation by dissolved oxygen: characteristics of the product layer. *Surf. Interface Anal.* 41(5), 405–411.
- Chou I.M. (1987). Oxygen Buffer and Hydrogen Sensor Techniques at Elevated Pressures and Temperatures, pages 61–99. John Wiley and Sons, New York.
- Cockram D.R., Haider Z. & Roberts G.J. (1969). Diffusion Of Water In Soda-Lime Glass Within And Near Transformation Range. *Phys. Chem. Glasses* 10(1), 18–&.
- Coenen M., Schueller K.H. & Sendlbeck H. (1984). Einfluss von Spuren von Schwefel auf die Heißverarbeitung von Glas. *Glass Sci. Technol.* 57, 121–131.
- Couch S., Howes A.P., Kohn S.C. & Smith M.E. (2004). ³³S solid state NMR of sulphur speciation in silicate glasses. *Solid State Nucl. Magn. Reson.* 26(3-4), 203–208.
- Crank J. (1980). *The Mathematics of Diffusion*. Oxford University Press, 2nd edition, 424 pages.
- Del Gaudio P., Behrens H. & Deubener J. (2007). Viscosity and glass transition temperature of hydrous float glass. *J. Non-Cryst. Solids* 353(3), 223–236. ISSN 0022-3093.
- Delaney J.R. & Karsten J.L. (1981). Ion Micro-Probe Studies Of Water In Silicate Melts -Concentration-Dependent Water Diffusion In Obsidian. *Earth Planet. Sci. Lett.* 52(1), 191–202.
- Deng B., Chan G.H., Huang F.Q., Gray D.L., Ellis D.E., Van Duyne R.P. & Ibers J.A. (2007). Synthesis, structure, optical properties, and electronic structure of NaLiCdS₂. J. Solid State Chem. 180(2), 759–764.
- Dingwell D.B. (2006). Transport properties of magmas: Diffusion and rheology. *Elements* 2(5), 281–286.
- Dingwell D.B. & Webb S.L. (1990). Relaxation in silicate melts. *Eur. J. Mineral.* 2(4), 427–449.
- Doremus R.H. (1995). Diffusion of water in silica glass. J. Mater. Res. 10(9), 2379-2389.
- EEA (2006). Annual European Community greenhouse gas inventory 1990–2004 and inventory report 2006. Technical report, European Environment Agency.

- Eithiraj R.D., Jaiganesh G., Kalpana G. & Rajagopalan A. (2007). First-principles study of electronic structure and ground-state properties of alkali-metal sulfides - Li₂S, Na₂S, K₂S and Rb₂S. *Physica Status Solidi B-Basic Solid State Physics* 244(4), 1337–1346.
- El Jaroudi O., Picquenard E., Gobeltz N., Demortier A. & Corset J. (1999). Raman spectroscopy study of the reaction between sodium sulfide or disulfide and sulfur: Identity of the species formed in solid and liquid phases. *Inorg. Chem.* 38(12), 2917–2923.
- Ferraro J.R., Nakamoto K. & Brown C.W. (2003). *Introductory Raman Spectroscopy*. Academic Press Amsterdam, 2nd edition, 448 pages.
- Fincham C.J.B. & Richardson F.D. (1954). The Behaviour Of Sulphur In Silicate And Aluminate Melts. Proceedings Of The Royal Society Of London Series A-Mathematical And Physical Sciences 223(1152), 40–62.
- Fleet M.E. (2005). XANES spectroscopy of sulfur in Earth materials. *Can. Mineral.* 43(6), 1811–1838.
- Fleet M.E., Liu X.Y., Harmer S.L. & King P.L. (2005). Sulfur K-edge xanes spectroscopy: Chemical state and content of sulfur in silicate glasses. *Can. Mineral.* 43, 1618.
- Freda C., Baker D.R. & Scarlato P. (2005). Sulfur diffusion in basaltic melts. *Geochim. Cosmochim. Acta* 69(21), 5061–5069.
- Friedman I. & Long W. (1976). Hydration Rate Of Obsidian. *Science* 191(4225), 347–352.
- Frost R.L. & Keeffe E.C. (2009). Raman spectroscopic study of the sulfite-bearing minerals scotlandite, hannebachite and orschallite: implications for the desulfation of soils. *J. Raman Spectrosc.* 40(3), 244–248.
- Fulchner G.S. (1925). Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339–355.
- Gaillard F., Pichavant M., Mackwell S., Champallier R., Scaillet B. & McCammon C. (2003a). Chemical transfer during redox exchanges between H₂ and Fe-bearing silicate melts. *Am. Mineral.* 88(2-3), 308–315.
- Gaillard F., Scaillet B. & Pichavant M. (2002). Kinetics of iron oxidation-reduction in hydrous silicic melts. *Am. Mineral.* 87(7), 829–837.

- Gaillard F., Schmidt B., Mackwell S. & McCammon C. (2003b). Rate of hydrogeniron redox exchange in silicate melts and glasses. *Geochim. Cosmochim. Acta* 67(13), 2427–2441.
- Gerlach T.M., Westrich H.R. & Symonds R.B. (1999). Preeruption vapor in magma of the climatic Mount Pinatubo eruption: Source of the giant stratospheric sulfur dioxide cloud. Technical report, US Geological Survey.
- Gligor F. & de Leeuw S.W. (2006). Lithium diffusion in rutile structured titania. *Solid State Ionics* 177(26-32), 2741–2746.
- Hahn M., Behrens H., Tegge-Schuring A., Koepke J., Horn I., Rickers K., Falkenberg G. & Wiedenbeck M. (2005). Trace element diffusion in rhyolitic melts: comparison between synchrotron radiation X-ray fluorescence microanalysis (mu-SRXRF) and secondary ion mass spectrometry (SIMS). *Eur. J. Mineral.* 17(2), 233–242.
- Haider Z. & Roberts G.J. (1970). The diffusion of water into some simple silicate and aluminosilicate glasses at temperatures near the transformation range. *Glass Technol*. 6, 158–163.
- Haller W., Blackburn D.H. & Simmons J.H. (1974). Miscibility Gaps In Alkali-Silicate Binaries - Data And Thermodynamic Interpretation. J. Am. Ceram. Soc. 57(3), 120– 126.
- Hart S.R. (1981). Diffusion compensation in natural silicates. *Geochim. Cosmochim. Acta* 45(3), 279–291. ISSN 0016-7037.
- Harvie C., Weare J.H. & O'keefe M. (1980). Permeation of hydrogen through platinum: A re-evaluation of the data of Chou et al. *Geochim. Cosmochim. Acta* 44(6), 899–900. ISSN 0016-7037.
- Haughton D.R., Roeder P.L. & Skinner B.J. (1974). Solubility of Sulfur in Mafic Magmas. *Econ. Geol.* 69(4), 451–467.
- Hawthorne F.C. & Ferguson R.B. (1975). Anhydrous sulphates; II, Refinement of the crystal structure of anhydrite. *Can. Mineral.* 13, 289–292.
- Henderson G.S. (2005). The structure of silicate melts: A glass perspective. *Can. Mineral.* 43(6), 1921–1958.

- Henderson G.S., Calas G. & Stebbins J.F. (2006). The structure of silicate glasses and melts. *Elements* 2(5), 269–273.
- Hercule S. & Ingrin J. (1999). Hydrogen in diopside: Diffusion, kinetics of extractionincorporation, and solubility. *Am. Mineral.* 84(10), 1577–1587.
- Holmquist S. (1966). Oxygen Ion activity and the solubility of sulfur trioxide in sodium silicate melts. J. Am. Ceram. Soc. 49(9), 467–473.
- Jambon A. (1979). Diffusion of water in a granitic melt: an experimental study. *Carnegie Institution Yearbook* pages 352–355.
- Jugo P.J., Luth R.W. & Richards J.P. (2005). Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts. *Geochim. Cosmochim. Acta* 69(2), 503.
- Karsten J., Holloway J. & Delaney J. (1982). Ion microprobe studies of water in silicate melts: Temperature-dependent water diffusion in obsidian. *Earth Planet. Sci. Lett.* 59(2), 420–428. ISSN 0012-821X.
- Katsura T. & Nagashima S. (1974). Solubility of Sulfur in Some Magmas at 1 atmosphere. *Geochim. Cosmochim. Acta* 38(4), 517–531.
- Klouzek J., Arkosiova M., Nemec L. & Cincibusova P. (2007). The role of sulphur compounds in glass melting. *Glass Technol.* 48(4), 176–182.
- Koepke J. & Behrens H. (2001). Trace element diffusion in andesitic melts: An application of synchrotron X-ray fluorescence analysis. *Geochim. Cosmochim. Acta* 65(9), 1481–1498.
- Kohlstedt D.L. & Mackwell S.J. (1998). Diffusion of hydrogen and intrinsic point defects in olivine. Zeitschrift Fur Physikalische Chemie-International Journal Of Research In Physical Chemistry & Chemical Physics 207, 147–162.
- Kracek F.C. (1930). The System Sodium Oxide-Silica. J. Phys. Chem. 34(7), 1583–1598.
- Kramer F.W. (1996). Solubility of gases in glass melts. *Ber. Bunsenges. Phys. Chem.* 100(9), 1512–1514.
- Kreisberg V.A., Rakcheev V.P. & Smith I.H. (2001). Gas-transport processes in industrial float glasses. *XIX International Congress on Glass* page 669.

- Kress V.C. & Carmichael I.S.E. (1991). The Compressibility Of Silicate Liquids Containing Fe₂O₃ And The Effect Of Composition, Temperature, Oxygen Fugacity And Pressure On Their Redox States. *Contrib. Mineral. Petrol.* 108(1-2), 82–92.
- Laimböck P. (1998). *Foaming of Glass Melts*. Ph.D. thesis, Technische Universiteit Eindhoven.
- Lapham K.E., Holloway J.R. & Delaney J.R. (1984). Diffusion of H₂O and D₂O in obsidian at elevated temperatures and pressures. J. Non-Cryst. Solids 67(1-3), 179– 191. ISSN 0022-3093.
- Lehmköster M. (2008). Entgasungsverhalten von sulfathaltigen Kalknatron-Silikatschmelzen. Master's thesis, Leibniz Universität Hannover.
- Liu Y., Zhang Y.X. & Behrens H. (2004). H₂O diffusion in dacitic melts. *Chem. Geol.* 209(3-4), 327–340.
- Ma G.J., Yan H.J., Shi J.Y., Zong X., Lei Z.B. & Li C. (2008). Direct splitting of H₂S into H₂ and S on CdS-based photocatalyst under visible light irradiation. *J. Catal.* 260(1), 134–140.
- Manara D., Grandjean A., Pinet O., Dussossoy J.L. & Neuville D.R. (2007). Sulfur behavior in silicate glasses and melts: Implications for sulfate incorporation in nuclear waste glasses as a function of alkali cation and V₂O₅ content. J. Non-Cryst. Solids 353(1), 12–23.
- Mandeville C.W., Webster J.D., Rutherford M.J., Taylor B.E., Timbal A. & Faure K. (2002). Determination of molar absorptivities for infrared absorption bands of H₂O in andesitic glasses. *Am. Mineral.* 87(7), 813–821.
- Matano C. (1932). On the relation between the diffusion coefficient and concentration of solid metals. *Jap. J. Phys.* 8, 109–113.
- Maxwell J.C. (1867). On the Dynamical Theory of Gases. *Phil. Trans. R. Soc. Lond.* 157, 49–88.
- McDade P., Wood B.J., Van Westrenen W., Brooker R., Gudmundsson G., Soulard H., Najorka J. & Blundy J. (2002). Pressure corrections for a selection of piston-cylinder cell assemblies. *Mineral. Mag.* 66(6), 1028.

- McKeown D.A., Muller I.S., Gan H., Pegg I.L. & Kendziora C.A. (2001). Raman studies of sulfur in borosilicate waste glasses: sulfate environments. J. Non-Cryst. Solids 288(1-3), 191–199.
- McKeown D.A., Muller I.S., Gan H., Pegg I.L. & Stolte W.C. (2004). Determination of sulfur environments in borosilicate waste glasses using X-ray absorption near-edge spectroscopy. J. Non-Cryst. Solids 333(1), 74–84.
- Mirwald P.W. & Kennedy G.C. (1979). The meling curve of gold, silver, and copper to 60 kbar: A Reinvestigation. *J. Geophys. Res.* 84, 6750–6756.
- Müller R., Gottschling P. & Gaber M. (2005). Water concentration and diffusivity in silicates obtained by vacuum extraction. *Glass Sci. Technol.* 78(2), 76–89.
- Müller-Simon H. (1998). Oxygen balance in sulfur-containing glass melts. *Glass Science Technology* 71(6), 157–165.
- Moretti R. & Ottonello G. (2005). Solubility and speciation of sulfur in silicate melts: The Conjugated Toop-Samis-Flood-Grjotheim (CTSFG) model. *Geochim. Cosmochim. Acta* 69(4), 801–823.
- Moulson A.J. & Roberts J.P. (1958). Entry of Water Into Silica Glass. *Nature* 182(4629), 200–201.
- Moulson A.J. & Roberts J.P. (1961). Water In Silica Glass. *Transactions of the Faraday Society* 57(8), 1208–1216.
- Métrich N., Berry A.J., O'Neill H.S. & Susini J. (2009). The oxidation state of sulfur in synthetic and natural glasses determined by X-ray absorption spectroscopy. *Geochim. Cosmochim. Acta* 73(8), 2382–2399. ISSN 0016-7037.
- Métrich N., Bonnin-Mosbah M., Susini J., Menez B. & Galoisy L. (2002). Presence of sulfite (S-IV) in arc magmas: Implications for volcanic sulfur emissions. *Geophys. Res. Letters* 29(11).
- Mysen B.O. & Frantz J.D. (1994). Silicate Melts At Magmatic Temperatures In-Situ Structure Determination To 1651°C And Effect Of Temperature And Bulk Composition On The Mixing Behavior Of Structural Units. *Contrib. Mineral. Petrol.* 117(1), 1–14.

- Nagashima S. & Katsura T. (1973). Solubility of Sulfur in Na₂O-SiO₂ Melts under Various Oxygen Partial Pressures at 1100°C, 1250°C, and 1300°C. *Bull. Chem. Soc. Jpn.* 46(10), 3099–3103.
- Nemec L. (1980a). The Behavior of Bubbles in Glass Melts. Part 1. Bubble Size Controlled by Diffusion. *Glass Technol.* 21(3), 134–138.
- Nemec L. (1980b). The Behavior of Bubbles in Glass Melts. Part 2. Bubble Size Controlled by Diffusion and Chemical Reaction. *Glass Technol.* 21(3), 139–144.
- Nemec L. & Cincibusova P. (2005). The bubble distribution in glass refining channels. *Ceram.-Silik.* 49(4), 269–277.
- Nemec L. & Klouzek J. (1995). Determination of Diffusion-Coefficients of Gases in Glass Melts Using the Method of Absorbed Gas Volume. *Ceram.-Silik.* 39(1), 1–7. ISSN 0862-5468.
- Nemec L., Klouzek J. & Ullrich J. (1998). The technological significance of interactions between gases and glasses. *Ceram.-Silik.* 42(4), 186–198.
- Nemec L. & Mühlbauer M. (1981). Verhalten von Gasblasen in der Glasschmelze bei konstanter Temperatur. *Glass Sci. Technol.* 54(4), 99–108.
- Ni H. & Zhang Y. (2008). H₂O diffusion models in rhyolitic melt with new high pressure data. *Chem. Geol.* 250(1-4), 68–78. ISSN 0009-2541.
- Nölle G. (1997). Technik der Glasherstellung. DVG, 3rd edition, 206 pages.
- Nord A.G. (1973). Refinement Of Crystal-Structure Of Thenardite, Na₂SO₄ (V). *Acta Chemica Scandinavica* 27(3), 814–822.
- Nowak M. & Behrens H. (1997). An experimental investigation on diffusion of water in haplogranitic melts. *Contrib. Mineral. Petrol.* 126(4), 365–376.
- Nowak M., Schreen D. & Spickenbom K. (2004). Argon and CO₂ on the race track in silicate melts: A tool for the development of a CO, speciation and diffusion model. *Geochim. Cosmochim. Acta* 68(24), 5127–5138.
- O'Neill H.S.C. & Mavrogenes J.A. (2002). The sulfide capacity and the sulfur content at sulfide saturation of silicate melts at 1400°C and 1 bar. *J. Petrol.* 43(6), 1049–1087.

- Ortmann D. & Höhne L. (1999). Die Schwefelproblematik im Zusammenhang mit dem Altglasscherbeneinsatz. In *Tagungsband der 73. DGG Tagung*, pages 208–213.
- Papadopolous K. (1973). Solubility of SO₃ in Soda-Lime-Silica Melts. *Phys. Chem. Glasses* 14(3), 60–65.
- Paris E., Giuli G., Carroll M.R. & Davoli I. (2001). The valence and speciation of sulfur in glasses by X-ray absorption spectroscopy. *Can. Mineral.* 39, 331–339.
- Poole J.P. (1969). Fundamentals of Fining. In *Proceedings of the Annual Meeting of the ICG*, pages 169–176.
- Prado M.O., Fredericci C. & Zanotto E.D. (2003). Isothermal sintering with concurrent crystallization of polydispersed soda-lime-silica glass beads. J. Non-Cryst. Solids 331(1-3), 145–156.
- Priest D.K. & Levy A.S. (1960). Effect Of Water Content On Corrosion Of Borosilicate Glass. J. Am. Ceram. Soc. 43(7), 356–358.
- Ravel B. & Newville M. (2005). ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchr. Rad. 12(4), 537–541.
- Richet P. (1984). Viscosity and Configurational Entropy of Silicate Melts. *Geochim. Cosmochim. Acta* 48(3), 471–483.
- Romano C., Dingwell D.B. & Behrens H. (1995). The Temperature-Dependence Of The Speciation Of Water In NaAlSi₃O₈-KAlSi₃O₈ Melts - An Application Of Fictive Temperatures Derived From Synthetic Fluid Inclusions. *Contrib. Mineral. Petrol.* 122(1-2), 1–10.
- Sauer F. & Freise V. (1962). Diffusion in binären Gemischen mit Volumenänderung. *Zeitschrift Fur Elektrochemie* 66(4), 353–363.
- Scaillet B. & Pichavant M. (2005). A model of sulphur solubility for hydrous mafic melts: application to the determination of magmatic fluid compositions of Italian volcanoes. *Ann. Geophys.* 48(4-5), 671–698.
- Scherer G.W. (1984). Use of the Adam-Gibbs Equation in the Analysis of Structural Relaxation. *J. Am. Ceram. Soc.* 67(7), 504–511.

- Schmidt B.C., Holtz F.M. & Bény J.M. (1998). Incorporation of H₂ in vitreous silica, qualitative and quantitative determination from Raman and infrared spectroscopy. J. Non-Cryst. Solids 240(1-3), 91–103. ISSN 0022-3093.
- Scholze H. (1988). *Glas. Natur, Struktur und Eigenschaften*. Springer Berlin, 3. neubearbeitete auflage edition, 407 pages.
- Scholze H. & Mulfinger H. (1959). Der Einbau des Wassers in Gläser. V. Die Diffusion des Wassers in Gläsern bei hohen Temperaturen. *Glass Sci. Technol.* 32, 381–385.
- Schreiber H.D., Kozak S.J., Balazs G.B., Fritchman A.L. & Schreiber C.W. (1989). Equilibrium and Transport-Properties of Gases in E-Glass Melts. J. Am. Ceram. Soc. 72(9), 1680–1691.
- Schreiber H.D., Kozak S.J., Leonhard P.G. & McManus K.K. (1987). Sulfur Chemistry in a Borosilicate Melt .1. Redox Equilibria and Solubility. *Glass Sci. Technol.* 60(12), 389–398.
- Schrimpf C. & Frischat G.H. (1982). Some Properties Of Nitrogen-Containing Na₂O-CaO-SiO₂ Glasses. J. Non-Cryst. Solids 52(1-3), 479–485.
- Self S. (2006). The effects and consequences of very large explosive volcanic eruptions. *Philosophical Transactions Of The Royal Society A-Mathematical Physical And Engineering Sciences* 364(1845), 2073–2097.
- Self S. & Blake S. (2008). Consequences of explosive supereruptions. *Elements* 4(1), 41–46.
- Shannon R.D. (1976). Revised Effective Ionic-Radii And Systematic Studies Of Interatomic Distances In Halides And Chalcogenides. Acta Cryst. A 32(SEP1), 751–767.
- Shaw H.R. (1973). Diffusion of H₂O in granitic liquids, I, experimental data and II, mass transfer in magma chambers. In Geochemical Transport and Kinetics, pages 139–170.
 634. Carnegie Institution of Washington, Washington, DC.
- Silver L. & Stolper E. (1989). Water In Albitic Glasses. J. Petrol. 30(3), 667–709.
- Silver L.A., Ihinger P.D. & Stolper E. (1990). The Influence Of Bulk Composition On The Speciation Of Water In Silicate-Glasses. *Contrib. Mineral. Petrol.* 104(2), 142–162.

- Stebbins J.F. (1987). Identification Of Multiple Structural Species In Silicate-Glasses By ²⁹Si NMR. *Nature* 330(6147), 465–467.
- Stuke A., Behrens H., Schmidt B.C. & Dupree R. (2006). H₂O speciation in float glass and soda lime silica glass. *Chem. Geol.* 229(1-3), 64–77.
- Swarts E.L. (1986). Gases in Glass. *Ceramic Engineering and Science Proceedings* 7, 390–403.
- Szurman M., Heide G. & Frischat G.H. (2007). Sulphur diffusion in silicate glass melts with particular reference to Schott AF45 glass. *Glass Technol.* 48(5), 242–246.
- Tammann G. & Hesse W. (1926). Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Zeitschrift für anorganische und allgemeine Chemie 156(1), 245–257.
- Tsujimura T., Xue X., Kanzaki M. & Walter M.J. (2004). Sulfur speciation and network structural changes in sodium silicate glasses: Constraints from NMR and Raman spectroscopy. *Geochim. Cosmochim. Acta* 68(24), 5081–5101. ISSN 0016-7037.
- Virgo D., Mysen B.O. & Kushiro I. (1980). Anionic Constitution Of 1 atm Silicate Melts
 Implications For The Structure Of Igneous Melts. *Science* 208(4450), 1371–1373.
- Vogel D.H. (1921). Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten. *Physikalische Zeitschrift* 22, 645–646.
- Wallace P. & Carmichael I.S.E. (1992). Sulfur in Basaltic Magmas. Geochim. Cosmochim. Acta 56(5), 1863–1874.
- Wallace P.J. & Carmichael I.S.E. (1994). S-speciation in submarine basaltic glasses as determined by measurements of Sk-alpha x-ray wavelength shifts. *Am. Mineral.* 79(1-2), 167.
- Warren B.E. (1941). Summary of the work on atomic arrangement in glass. J. Am. Ceram. Soc. 24, 256–261.
- Watson E.B. (1994). Diffusion in volatile-bearing magmas. Rev. Mineral. 30, 371-411.
- Webster J. & Mandeville C. (2007). Fluid Immiscibility in Volcanic Environments. *Rev. Mineral.* 65, 313–362.

- Wilke M., Jugo P.J., Klimm K., Susini J., Botcharnikov R., Kohn S.C. & Janousch M. (2008). The origin of S⁴⁺ detected in silicate glasses by XANES. *Am. Mineral.* 93, 235–240.
- Wilke M., Partzsch G.M., Bernhardt R. & Lattard D. (2004). Determination of the iron oxidation state in basaltic glasses using XANES at the K-edge. *Chem. Geol.* 213(1-3), 71–87.
- Williamson J. & Glasser F.P. (1965). Phase Relations In System Na₂Si₂O₅-SiO₂. *Science* 148(3677), 1589–1591.
- Winther K.T., Watson E.B. & Korenowski G.M. (1998). Magmatic sulfur compounds and sulfur diffusion in albite melt at 1 GPa and 1300-1500°C. *Am. Mineral.* 83(11-12), 1141–1151.
- Wondraczek L. (2003). Zur on line-Absorptionsspektroskopie der Atmosphäre von Glasschmelzöfen im mittleren Infrarotbereich. Ph.D. thesis, Technische Universität Clausthal.
- Yamashita S., Behrens H., Schmidt B.C. & Dupree R. (2008). Water speciation in sodium silicate glasses based on NIR and NMR spectroscopy. *Chem. Geol.* 256(3-4), 231–241. ISSN 0009-2541.
- Zacharasien W.H. (1932). The atomic arrangement in glass. J. Am. Chem. Soc. 54, 3841–3851.
- Zhang Y., Jenkins J. & Xu Z. (1997). Kinetics of the reaction $H_2O + O \rightarrow 2OH$ in rhyolitic glasses upon cooling: Geospeedometry and comparison with glass transition. *Geochim. Cosmochim. Acta* 61(11), 2167–2173. ISSN 0016-7037.
- Zhang Y., Xu Z. & Behrens H. (2000). Hydrous species geospeedometer in rhyolite: improved calibration and application. *Geochim. Cosmochim. Acta* 64(19), 3347–3355. ISSN 0016-7037.
- Zhang Y.X., Stolper E.M. & Wasserburg G.J. (1991). Diffusion of Water in Rhyolitic Glasses. *Geochim. Cosmochim. Acta* 55(2), 441–456.
- Zhang Y.X. & Xu Z.J. (1995). Atomic Radii Of Noble-Gas Elements In Condensed Phases. *Am. Mineral.* 80(7-8), 670–675.

Zimova M. & Frischat G.H. (unpubl.). Sulphur Diffusion in borosilicate glass.

Literaturverzeichnis

Anhang A

Tabellen

Im Folgenden sind die Versuchbedingungen der durchgeführten Synthese- und Diffusionsexperimente tabellarisch zusammengestellt. Bei den angegebenen analytischen Messfehlern handelt es sich um die einfache Standardabweichung σ (EMPA) bzw. Fehlerfortpflanzung der Einzelmessung (IR & CS).

2		S zugesetzt H	² O zugesetzt						Schwef	elkonzenti	ation (Ge	(%.w	H_2O	
# Probenname	Schwefelquelle	(Gew.%)	(Gew.%) dı	ırchgeführt in	P (bar) I	o (MPa)	T (°C)	Laufzeit (h)	CS^1	+	ΞMPA^2	+	Gew.%) ³	+I
1 NS3_S6+_1atm	Na_2SO_4	0.10		Kammerofen	1	0.1	1000	2.0	0.0672	0.0033	n.a.		n.a.	
2 NS3_S4+_latm	Na_2SO_3	0.10	'	Kammerofen	1	0.1	1000	2.0	0.0302	0.0032	n.a.		n.a.	
3 NS3_001	Na_2SO_4	0.10		IHPV	1000	100	1000	20.0	n.a.		0.1011	0.0070	0.3879	0.0026
4 NS3_002	$\mathrm{Na_2SO_4}$	0.10	0.5	VdHI	1000	100	1000	20.0	n.a.		0.1071	0.0087	0.4350	0.0013
5 NS3_003	Na_2SO_4	0.10	1.0	VdHI	1000	100	1000	20.0	n.a.		0.0945	0.0010	1.3790	0.0059
6 NS3_ox	Na_2SO_4	0.10	5.0	VdHI	1000	100	1000	20.0	0.1137	0.0080	n.a.		4.9520	0.0103
7 NS3_008	Na_2SO_3	0.15		VdHI	1000	100	1000	20.0	0.1595	0.0042	n.a.		0.2770	0.0081
8 NS3_012	Na_2SO_3	0.25	1.0	VdHI	1000	100	1000	20.0	0.2439	0.0046	n.a.		1.1860	0.0084
9 NS3_010	Na_2S	0.15	'	VdHI	1000	100	1000	20.0	0.1270	0.0056	n.a.		0.5380	0.0013
10 NS3_011	Na_2S	0.25	1.0	VdHI	1000	100	1000	20.0	0.2167	0.0053	n.a.		0.9400	0.0054
11 NCS_008	FeS	0.15		VdHI	1000	100	1000	20.0	0.1387	0.0064	n.a.		n.a.	
12 NCS_009	FeS_2	0.10		VdHI	1000	100	1000	20.0	0.1137	0.0047	n.a.		n.a.	
13 NCS_F1	Na_2SO_4	1.00		Vertikalofen	1	0.1	1378	0.5	0.2140	0.0043	0.1576	0.0045	0.0085	0.0068
14 NCS_F2	Na_2SO_4	1.00		Vertikalofen	-	0.1	1429	0.5	0.1695	0.0045	0.1549	0.0310	n.a.	
15 NCS_F3	Na_2SO_4	1.00		Vertikalofen	-	0.1	1481	0.5	0.1895	0.0054	0.1165	0.0167	0.0083	0.0045
16 NCS_F4	Na_2SO_4	1.00	'	Vertikalofen	-	0.1	1532	0.5	0.1548	0.0053	0.1581	0.0053	0.0064	0.0042
17 NCS_F5	$\mathrm{Na_2SO_4}$	1.00	'	Vertikalofen	1	0.1	1584	0.5	0.1256	0.0069	0.1099	0.0298	n.a.	
18 NCS_F6	$\mathrm{Na_2SO_4}$	1.00	'	Vertikalofen	1	0.1	1635	0.5	0.0794	0.0074	0.0616	0.0108	n.a.	
19 NCS_F7	$\mathrm{Na_2SO_4}$	1.00		Vertikalofen	1	0.1	1378	3.0	0.2171	0.0248	0.2218	0.0093	n.a.	
20 NCS_F8	Na_2SO_4	1.00	'	Vertikalofen	1	0.1	1450	3.0	0.1953	0.0128	0.2066	0.0070	n.a.	
21 NCS_F9	$\mathrm{Na_2SO_4}$	1.00		Vertikalofen	1	0.1	1481	3.0	0.1097	0.0035	0.1342	0.0000	n.a.	
22 NCS_F10	Na_2SO_4	1.00	'	Vertikalofen	1	0.1	1532	3.0	0.0984	0.0066	0.1289	0.0359	n.a.	
23 NCS_F11	Na_2SO_4	1.00	'	Vertikalofen	1	0.1	1600	3.0	0.0351	0.0031	0.0358	0.0029	n.a.	
24 NCS_F12	Na_2SO_4	1.00	'	Vertikalofen	1	0.1	1650	3.0	0.0067	0.0026	0.0238	0.0032	n.a.	
25 NS3_F1	$\rm Na_2SO_4$	1.00		Vertikalofen	1	0.1	1378	0.5	0.3672	0.0047	0.4657	0.0273	n.a.	
26 NS3_F2	$\rm Na_2SO_4$	1.00		Vertikalofen	1	0.1	1429	0.5	0.3645	0.0040	0.3488	0.1154	n.a.	
27 NS3_F3	Na_2SO_4	1.00	ı	Vertikalofen	-	0.1	1481	0.5	0.3365	0.0057	0.3166	0.0961	n.a.	
28 NS3_F4	Na_2SO_4	1.00	ı	Vertikalofen	-	0.1	1532	0.5	0.3495	0.0072	0.3793	0.0524	n.a.	
29 NS3_F5	Na_2SO_4	1.00	'	Vertikalofen	-	0.1	1584	0.5	0.3655	0.0068	0.2765	0.0952	n.a.	
30 NS3_F6	Na_2SO_4	1.00	ı	Vertikalofen	-	0.1	1635	0.5	0.2877	0.0073	0.2411	0.0477	n.a.	
31 NS3_F7	Na_2SO_4	1.00	ı	Vertikalofen	-	0.1	1532	3.0	0.2569	0.0040	0.2809	0.0436	n.a.	
32 NCS_S2_1	Na_2S	7.50	ı	Vertikalofen	1	0.1	1429	1.5	6.9455	0.0555	6.8329	0.0523	0.0066	0.0006
33 NCS_S2_2	FeS	0.15	1	Vertikalofen		0.1	1429	1.5	0.1472	0.0055	0.1417	0.0088	0.0024	0.0030
34 NCS_S2_3	Na_2S	0.15	ı	Vertikalofen	1	0.1	1532	1.5	0.1591	0.0162	0.1689	0.0094	0.0019	0.0026
35 NS3_S2_1	Na_2S	1.75	ı	Vertikalofen	1	0.1	1481	1.5	1.4629	0.0075	n.a.		0.0028	0.0030
36 NS3_S2_2	Na_2S	0.15		Vertikalofen	1	0.1	1481	1.0	0.1399	0.0038	n.a.		0.0021	0.0041
37 NS3_S6_1	Na_2SO_4	1.00		Vertikalofen	1	0.1	1429	3.0	0.2809	0.0072	n.a.		0.0010	0.0020
¹ Mittelwert aus dre	i Analysen													
² Mittelwert aus zeh	in Messpunkten													
³ Mittelwert aus zeh	in Messpunkten n	nit jeweils 50 E	linzelscans											
n.a nicht analysie	art ,	2												

# Probenname	H ₂ O	durchgeführt	diffundierende	Ь	Р	PH ₂ F	Heizrate	Т	Abkühlrate L	aufzeit]	aufzeit	Profillänge ⁶	$\log D_{\rm const}$	_	$\log D_{1.0 Gew.\%}^{2,3,\iota}$		log D _{0.0Gew.%} ⁵	
	(Gew.%)	in	Spezies	(bar) (MPa)	(bar)	(K/s)	(°C)	(K/s)	(min)	korr. (s)	(mn)	(D in $m^2/$;) ±	$(D \text{ in } m^2/s)$	+1	$(D \text{ in } m^2/s)$	+1
1 SLS_JS1 [§]	тах. 3.0	NQ-IHPV	H_2O	2000	200	~ 0.2	0.5	1000	~ 2.5	10	720	1700	-10.(0.0	-10.0	5 0.10	-10.20	0.10
$2 SLS_JS2^{\$}$	тах. 3.0	КНQ-ІНРV	H_2O	2000	200	~ 0.2	15	1100	~ 150	6	526	1500	3.6-	35 0.0	-9.7	5 0.10)6.9-	0.10
3 SLS_JS3 [§]	max. 3.0	КНQ-ІНРV	H_2O	2000	200	~ 0.2	15	1100	~ 150	4	226	1700	-9.	0 0.1	1 -9.5	0.10	02.6-	0.10
$4 \text{ SLS}_JS4^{\$}$	max. 3.0	КНQ-ІНРV	H_2O	2000	200	~ 0.2	15	1200	~ 150	Ζ	406	2000	-9.	57 0.0	8 -9.4	3 0.10	-9.65	0.10
5 SLS_JS5 [§]	тах. 3.0	КНQ-ІНРV	H_2O	2000	200	~ 0.2	15	1300	~ 150	4	227	1800	6-	13 0.1	1 -9.3	3 0.10	-9.55	0.10
6 SLSDC1 [*]	max. 0.3	CSPV	H_2O	1000	100	1	1	706	~ 3	1440	s.	2500	-11.8	86 0.0	6		·	
$7 SLSDC2^*$	max. 0.3	CSPV	H_2O	1000	100	T	I	606	~ 3	7000	s,	1900	-12.8	33 0.0	7			1
8 SLSDC3 [*]	max. 0.3	CSPV	H_2O	1000	100	1	ı	550	~ 3	4320	۰ م	1000	-13.4	0.0 0.0	8		·	
9 SLSDC4*	max. 0.3	CSPV	H_2O	1000	100	1	1	652	~ 3	1200	s,	1300	-12.3	0.0 68	6		·	
10 SLSDC5*	max. 0.3	NQ-IHPV	H_2O	1000	100	~ 0.2	0.5	1000	~ 200	60	s,	3200	-10.3	8 0.1	0		·	
11 SLSDC9 [*]	max. 0.3	NQ-IHPV	H_2O	1000	100	~ 0.2	0.5	1000	~ 200	30	s, I	3000	5.6-	0.1	8			
$12 \text{ SLS}_{JS6^{\$}}$	max. 0.3	КНQ-ІНР V	H_2O	2000	200	~ 0.2	15	1300	~ 150	4	227	1500	-9.6	53 0.1	1		·	
13 SLS_JS7 [§]	max. 0.3	RHQ-IHPV	H_2O	2000	200	~ 0.2	15	1300	~ 150	2	107	1400	-9.3	5 0.2	0		·	
$14 \text{ G1}^{\$}$	max. 3.0	NQ-IHPV	H_2O	2000	200	~ 0.2	0.5	1050	~ 2.5	20	1305	2000	-10.	6 0.0	5			
$15 \text{ G2}^{\$}$	тах. 3.0	NQ-IHPV	H_2O	2000	200	~ 0.2	0.5	1050	~ 2.5	20	1305	2200	5.6-	5 0.0	-9.8	4 0.10)6.9-	0.10
$16 \text{ G3}^{\$}$	max. 3.0	NQ-IHPV	H_2O	2000	200	~ 0.2	0.5	1050	~ 2.5	5	405	1400	-9.	8 0.0	-9.6	5 0.10	-9.8	0.10
$17 \text{ G4}^{\$}$	тах. 3.0	NQ-IHPV	H_2O	2000	200	~ 0.2	0.5	1050	~ 2.5	5	405	1500	3.6-	35 0.0	-9.6	0.10	-10.15	0.10
$18 \text{ G5}^{\$}$	тах. 3.0	NQ-IHPV	H_2O	2000	200	~ 0.2	0.5	1150	~ 2.5	5	419	2100	-9	5 0.0	-9.3	5 0.10	-9.55	0.10
$19 \text{ G6}^{\$}$	тах. 3.0	NQ-IHPV	H_2O	2000	200	~ 0.2	0.5	1150	~ 2.5	5	419	2100	-9.	69 0.0	<i>ц</i>		·	
$20 \text{ G21}^{\$}$	max. 3.0	NQ-IHPV	H_2O	2000	200	~ 0.2	0.5	1150	~ 2.5	5	419	2100	-9.	6 0.0	-9.2	5 0.10	-9.55	0.10
$21 \text{ G} 22^{\$}$	max. 3.0	NQ-IHPV	H_2O	2000	200	~ 0.2	0.5	1150	~ 2.5	5	419	2100	-9.6	61 0.0	-9.4	7 0.10	-9.65	0.10
*Experimente durchg	geführt von l	H. Behrens & A.	Kaltenbach, für C	SPV-ExJ	perimente	e wird ei	n Zeitfehle	sr von 15	5 min. angenc	mmen								
[§] Experimente eigenh.	ändig durch	geführt																
^s aufgrund der langen	t Laufzeit ist	t eine Laufzeitko	rrrektur nicht notw	/endig														
¹ unter Annahme eine	s konstantei	n Diffusionskoef	fizienten															
² unter Annahme eine	ss konzentra	tionsabhängigen	Diffusionskoeffiz	ienten be	i einer H	20-Konz	entration	von 1.0	Gew.% (Fehle	erabschät:	zung ~ 20	% = 0.1 Größe	nordnung)					
³ für Experimente mit	t max. 0.3 G	iew.% H2O ist de	sr Diffusionskoeff	izient koi	nstant													
⁴ Proben G1 und G6 1	mit unvollst:	ändigen Profilen,	, daher mit modifi	zierter B	oltzmann	-Matano	-Analyse 1	nicht zu	bearbeiten									
⁵ für Diffusionsprobe	n mit max. 2	3.0 Gew.% H ₂ O	extrapolierte Wer	fe														
⁶ Profillänge für Diffi	ısionspaare	definiert als $\left(\frac{-}{c}\right)$	$\frac{c-c_0}{\sum_{m=1}^{\infty}-c_0} = 5.$	$\sqrt{2Dt}$	Ŋ	n 0.01 b	is 0.99											
		/																

PPPL ₂ Heizrate TAbkühlrate Laufzeit Laufzeit Profillänge log DH ₂ O Bemerkungen & Bewertung de Austrations austrations and the statements and th	$(bar) (MPa) (bar) (Kmin) (*C) initial (Kmin) (h,min) kort. (s) (\mu m) (D in m/s) \pm (UeW, %) \pm (UeW, %) = (UeW$	1000 100 ~ 0.2 30 1000 150 21h 75747 1000 -13.13 0.08 n.a. inhomogen auf S-haltiger Seite	$1000 \ 100 \ \sim 0.2$ 30 1000 150 24h 86547 900 -13.53 0.05 0.257 0.012 ok	1000 100 ~ 0.2 30 1000 150 5h18min 19227 400 -13.31 0.07 0.247 0.014 ok, schecht aufgelöst	1000 100 ~ 0.2 30 1000 150 18h05min 65247 400 -13.22 0.06 0.235 0.007 ok, Störung	1000 100 ~12.0 30 1000 9000 16h01min 57789 700 -12.28 0.05 0.724 0.012 ok	1000 100 ~ 0.2 30 1100 150 7h 25369 500 -12.59 0.06 0.440 0.011 ok	1000 100 ~ 0.2 30 1150 150 5h 18086 550 -12.77 0.06 0.229 0.009 ok	1000 100 ~ 0.2 30 1200 150 2h 7392 250 -12.40 0.06 0.113 0.020 Störung, Kontaktfäche leicht	1000 100 ~ 0.2 30 1200 150 2h 7392 250 -12.53 0.04 0.113 0.020 Schräg	1000 100 ~ 0.2 30 1200 150 3h 10992 2000 -10.89 0.03 0.515 0.012 ok	1000 100 ~ 0.2 30 1250 150 2h 7297 800 -11.97 0.05 0.275 0.009 Störung	3000 300 ~ 0.2 30 1100 150 7h02min 25400 900 -11.98 0.07 0.266 0.009 Störung S-Bereich	5000 500 ~ 0.2 30 1100 150 7h04min 25532 600 -12.84 0.07 0.280 0.009 Störung S-Bereich	12500 1250 1800 50 1077 2700 6h01min 21692 1600 -11.76 0.14 3.570 0.089 ok	7500 750 1300 50 1077 2700 9h07min 32912 1100 -12.25 0.14 0.680 0.013 ok, Kapsel deformiert	15000 1500 1200 50 1077 2700 8h 28892 600 -12.55 0.14 0.642 0.012 ok, Kapsel deformiert	20000 2000 1200 50 1077 2700 7h56min 28652 1000 -12.20 0.14 0.572 0.011 ok, Kapsel deformiert	10000 1000 1400 50 1077 2700 7h30min 27092 1300 -11.73 0.14 0.487 0.012 Kapsel deformiert, Störung	
(mm)		1000	906	400	400	700	500	550	250	250	2000	800	006	600	1600	1100	600	1000	1300	
3	KOIT. (S)	75747	86547	19227	65247	57789	25369	18086	7392	7392	10992	7297	25400	25532	21692	32912	28892	28652	27092	
	(n,m,n)	21h	24h	5h18min	18h05min	16h01min	Τh	5h	2h	2h	3h	2h	7h02min	7h04min	6h01min	9h07min	8h	7h56min	7h30min	
	utual (K/min)	150	150	150	150	0006	150	150	150	150	150	150	150	150	2700	2700	2700	2700	2700	
	(.C) III	1000	1000	1000	1000	1000	1100	1150	1200	1200	1200	1250	1100	1100	1077	1077	1077	1077	1077	
	(K/min)	30	30	30	30	30	30	30	30	30	30	30	30	30	50	50	50	50	50	
1 112	(bar)	~ 0.2	~ 0.2	~ 0.2	~ 0.2	~ 12.0	~ 0.2	~ 0.2	~ 0.2	~ 0.2	~ 0.2	~ 0.2	~ 0.2	~ 0.2	1800	1300	1200	1200	1400	
ч ((MPa)	100	100	100	100	100	100	100	100	100	100	100	300	500	1250	750	1500	2000	1000	
1	(bar)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	3000	5000	12500	7500	15000	20000	10000	
aurengenunn	Ħ	NQ-IHPV	NQ-IHPV	NQ-IHPV	NQ-IHPV	H ₂ -RQ-IHPV	NQ-IHPV	NQ-IHPV	NQ-IHPV	NQ-IHPV	NQ-IHPV	NQ-IHPV	NQ-IHPV	NQ-IHPV	PCA	PCA	PCA	PCA	PCA	zelscans feldiffusion
airiunalerenae	Spezies		+0	-2-	-2-	-2-	+9	+9+	-9		+9	+9	+9	+9	+9	+9	+9	-9	+9+	iit jeweils 50 Ein igkeit der Schwel
-ialawn	juelle	SO4 S	SO4 S	5 S	5 S	S	SO4 S	SO4 S	SO4 S	SO4 S	SO4 S	SO4 S	SO4 S	SO4 S	SO4 S	SO4 S	SO4 S	SO4 S	SO4 S	punkten n ıckabhäng
2 2 2	9	$0 Na_2$	0 Na ₂ .	0 FeS	0 FeS	Spd 0	0 Na ₂ ,	0 Na ₂ ,	Na_{2}	Na_{2}	0 Na ₂ ,	0 Na ₂ ,	0^{2} Na ₂ ,	0^2 Na ₂ ,	$Na_{2^{\prime}}$	Na_{2}	Na_{2}	Na_{2}	Na_{2}	nn Messi der Dru
Probennan		IS3-D01-10(4S3-D02-100	VS3-D04-100	VS3-D05-10C	NS3-D06-10C	NS3-D09-110	NS3-D16-115	G31	G31 (XRF)	NS3-D11-120	NS3-D13-125	NS3-D14-110	NS3-D15-110	J#05-1100 ²	J#08-1100 ²	J#09-1100 ²	J#10-1100 ²	J#11-1100 ²	telwert aus ze Untersuchung

# Probenname	Schwefel-	diffundierende	durchgeführt	Р	Р	PH2]	Heizrate	Т	Abkühlrate	Laufzeit	Laufzeit	Profillänge	$\log D$		H_2O	Bemerkungen & Bewertung der Profile
	quelle	Spezies	in	(bar) ((MPa)	(bar)	(K/min)	(°C)	initial (K/min)	(h,min)	korr. (s)	(mn)	$(D \text{ in } m^2/s)$	+1	(Gew.%) ¹	+
1 NCS-Dox-1000	Na_2SO_4	S ⁶⁺	NQ-IHPV	1000	100	~ 0.2	30	1000	150	48h	172947	1300	-12.75	0.04	0.076	0.009 ok, Kristallisation im Randbereich
2 NCS-Dox-1050	Na_2SO_4	S^{6+}	NQ-IHPV	1000	100	~ 0.2	30	1050	150	24h	84638	700	-13.12	0.05	0.025	0.005 ok
3 NCS-Dox-1050 (XRF)	Na_2SO_4	S^{6+}	NQ-IHPV	1000	100	~ 0.2	30	1050	150	24h	84638	750	-12.87	0.03	0.025	0.005 ok
4 NCS-DC-1100	Na_2SO_4	S^{6+}	NQ-IHPV	1000	100	~ 0.2	30	1100	150	18h	64969	300	-13.75	0.05	n.a.	ok
5 NCS-Dox-1100I	Na_2SO_4	S^{6+}	NQ-IHPV	1000	100	~ 0.2	30	1100	150	lh	3889	250	-13.13	0.09	n.a.	ok, sehr kurz, schlecht aufgelöst
6 NCS-Dox-1100II	Na_2SO_4	S^{6+}	NQ-IHPV	1000	100	~ 0.2	30	1100	150	3h	10969	300	-12.95	0.06	n.a.	ok
7 NCS-Dox-1100III	Na_2SO_4	S^{6+}	NQ-IHPV	1000	100	~ 0.2	30	1100	150	9h	32569	1100	-12.26	0.06	n.a.	Kontaktfläche schräg, Störung
8 G28	Na_2SO_4	S^{6+}	NQ-IHPV	1000	100	~ 0.2	30	1100	150	8h	28969	400	-12.90	0.03	0.021	0.007 ok
9 G28 (XRF)	Na_2SO_4	S ⁶⁺	NQ-IHPV	1000	100	~ 0.2	30	1100	150	8h	28969	400	-12.98	0.03	0.021	0.007 ok
10 NCS-Dox-1150	Na_2SO_4	S ⁶⁺	NQ-IHPV	1000	100	~ 0.2	30	1150	150	18h	65220	1750	-12.17	0.04	0.046	0.008 ok, Kontaktfläche leicht schräg
11 NCS-Dox-1150 (XRF)	Na_2SO_4	S^{6+}	NQ-IHPV	1000	100	~ 0.2	30	1150	150	18h	65220	1800	-12.16	0.04	0.046	0.008 ok, evtl. Störungen
12 NCS-DC-1200	Na_2SO_4	S ⁶⁺	NQ-IHPV	1000	100	~ 0.2	30	1200	150	4h	14592	250	-13.00	0.05	n.a.	ok, sehr kurz, schlecht aufgelöst
13 NCS-Dox-1200II	Na_2SO_4	S^{6+}	NQ-IHPV	1000	100	~ 0.2	30	1200	150	lh	3792	650	-11.87	0.07	n.a.	Störungen
14 NCS-Dox-1250	Na_2SO_4	S ⁶⁺	NQ-IHPV	1000	100	~ 0.2	30	1250	150	4h	14208	1600	-11.52	0.03	0.012	0.006 ok
15 NCS-Dox-1250 (XRF)	Na_2SO_4	S^{6+}	NQ-IHPV	1000	100	~ 0.2	30	1250	150	4h	14208	1550	-11.53	0.12	0.012	0.006 ok
¹ Mittelwert aus zehn Messp	unkten mit je	weils 50 Einzelsca	ns													
n.a nicht analysiert	2															

geführt P P	PH, Heizrate	e T	Abkühlrate I	aufzeit	Laufzeit	Profillänge	log D	H	°,0
(bar) (K/min)	-	, Q	initial (K/min)	h,min)	korr. (s)	(μm) (I) in m ² /s)	+ (Ge	v.%) ¹
0.2 31	_	0 1000	150	48h	172947	1600	-12.66	0.03	n.a.
0.2 3		0 1050	150	24h	84638	1500	-12.25	0.03	0.009
~ 0.2	~	0 1050	150	24h	84638	1600	-12.22	0.03	0.009
~ 0.2	$\tilde{\mathbf{\omega}}$	0 1100	150	1h	3889	250	-12.82	0.10	n.a.
~ 0.2	\mathcal{C}	0 1100	150	3h	10969	450	-12.78	0.07	n.a.
~ 0.2	\mathcal{C}	0 1150	150	18h	65220	2000	-11.84	0.04	0.009
0.2 3		0 1150	150	18h	65220	2000	-11.73	0.03	0.009
) ~ 0.2 3		0 1200	150	4h	14607	1850	-11.53	0.06	n.a.
0.2 3		0 1200	150	lh	3792	650	-12.02	0.04	n.a.
) ~ 0.2 3(0	1250	150	4h	14208	1550	-11.61	0.06	n.a.
0.2 30	0	1250	150	4h	14208	1500	-11.71	0.03	n.a.
~~ 0.2 30	0	1300	150	3h	9277	1500	-11.18	0.06	n.a.
	0	1300	150	7min	595	350	-11.49	0.09	n.a.

Tabelle A.6: Zusa	immenstellung	z von Schwefel-Dit	ffusionsexperime	inten zur	Untersu	chung vor	internen	Redoxrea	ktionen (Ty	p iii) in NG	CS-Schmel	zen				
# Probennam	e Schwefel-	diffundierende	durchgeführt	Р	Ч	PH ₂ He	izrate 7	r Ab	kühlrate	Laufzeit	Laufzeit	Profillänge	$\log D^2$		H_2O	Bemerkungen & Bewertung der Profile
	quelle	Spezies	in	(bar) (MPa)	(bar) (K	/min) (°0	C) initia	il (K/min)	(h,min)	korr. (s)	(mn)	$(D \text{ in } m^2/s)$) +	Gew.%) ¹	+
1 G11	Na_2S	S^{2-}	NQ-IHPV	1000	100	~ 0.2	30 12	000	150	1h	3770	160	-12.89	0.07	n.a.	Störungen
	Na_2SO_4	S^{6+}										160	-13.01	0.07	n.a.	Störungen
2 G12	FeS	S^{2-}	NQ-IHPV	1000	100	~ 0.2	30 12	000	150	1h	3770	120	-13.38	0.11	n.a.	ok, kurz
	Na_2SO_4	S^{6+}										110	-13.46	0.10	n.a.	ok, kurz
3 G13	Na_2S	S ²⁻	NQ-IHPV	1000	100	~ 0.2	30 12	000	150	4h30m	16367	250	-13.46	0.11	n.a.	ok
	Na_2SO_4	S^{6+}										250	-13.45	0.07	n.a.	ok
4 G14	FeS	S^{2-}	NQ-IHPV	1000	100	~ 0.2	30 12	000	150	4h30m	16367	250	-13.58	60.0	n.a.	ok
	Na_2SO_4	S^{6+}										250	-13.52	0.06	n.a.	ok
5 G15	Na_2S	S^{2-}	NQ-IHPV	1000	100	~ 0.2	30 1	00	150	8h	28946	180	-13.68	0.08	n.a.	Störung
	Na_2SO_4	S^{6+}										180	-13.70	0.06	n.a.	ok
6 G16	FeS	S^{2-}	NQ-IHPV	1000	100	~ 0.2	30 1	00	150	8h	28946	150	-13.85	0.08	n.a.	ok
	Na_2SO_4	S^{6+}										130	-14.10	0.09	n.a.	ok
7 G23	Na_2S	S^{2-}	NQ-IHPV	1000	100	~ 0.2	30 12	000	150	4h30m	16392	150	-13.88	0.10	0.011	0.013 Störung
	$\mathrm{Na_2SO_4}$	S^{6+}										150	-13.67	0.07	0.011	0.013 leichte Störung
8 G24	FeS	S^{2-}	NQ-IHPV	1000	100	~ 0.2	30 12	000	150	4h30m	16392	130	-14.06	0.12	0.012	0.013 Störung
	Na_2SO_4	\mathbf{S}^{6+}										150	-13.85	0.08	0.012	0.013 leichte Störung
¹ Mittelwert aus ze	shn Messpunk	ten mit jeweils 50	Einzelscans													

²bei sehr kurzen Profilen kann angenommen werden, dass die Variation zwischen S^2 - und S^{6+} Diffusion in einem Experiment den analytischen Fehler wiedergeben n.a. - nicht analysiert

		+1	0.05	0.05	0.07	0.08	0.07	0.07	0.07	0.07	ı	ı					+1	ľ	'	ı	ı				
	log D _{H2Oconst.}	$(D \text{ in } m^2/s)^1$	-10.16	-9.95	-9.78	-9.85	-9.55	-9.59	-9.56	-9.61		I				$\log D_{\rm H20}^{1,2}$	$(D \text{ in } m^2/s)$	I	I	ı	ı				
		+1	0.05	0.04	0.08	0.23	0.09	0.10	0.10	0.07		'					+1	0.10	0.07	0.09	0.08				
	$\log D_{\rm S}$	D in m ² /s)	-11.67	-11.70	-11.56	-12.10	-11.17	-11.45	-11.02	-11.26	ı	'	rdnung)			$\log D_{\rm S}$	D in m ² /s)	-11.48	-11.61	-11.44	-10.91				
	rofillänge	(mn) (J	300	300	200	100	300	200	300	250	I	').1 Größenoi			rofillänge	(mn) (J	200	250	250	400	zu ermitteln			
Schmelzen	Laufzeit P	korr. (s)	1305	1305	405	405	419	419	419	419	ı	·	c ~ 20% = (Schmelzen	Laufzeit P	korr. (s)	338	518	352	367	nicht exakt			
in NCS-	aufzeit	(min)	20	20	5	5	5	5	5	5	20	20	chätzung		in NS3-	aufzeit	(min)	4	7	4	4	Profils			
tionen (Typ iv)	Abkühlrate L	uitial (K/min)	150	150	150	150	150	150	150	150	150	150	v.% (Fehlerabs		tionen (Typ iv)	Abkühlrate L	uitial (K/min)	150	150	150	150	lagspunktes des	nitteln		
doxreak	F	(°C) ir	1050	1050	1050	1050	1150	1150	1150	1150	1050	1050	1.0 Gev		doxreak	Г	(°C) ir	1000	1000	1100	1200	Umschl	tht zu eri		
xternen Re	Heizrate	(K/min)	30	30	30	30	30	30	30	30	30	30	tration von		xternen Re	Heizrate	(K/min)	30	30	30	30	en nahe des	ationen nic		
g von e	$P{ m H}_2$	(bar)	~ 0.2	~ 0.2	Konzen		g von e	PH_2	(bar)	~ 0.2	~ 0.2	~ 0.2	~ 0.2	Itratione	onzentr										
rsuchun	Р	(MPa)	200	200	200	200	200	200	200	200	100	100	er H ₂ O-		rsuchun	Р	(MPa)	200	200	200	200	-Konzer	: H ₂ O-K	1	
zur Unte	Ч	(bar)	2000	2000	2000	2000	2000	2000	2000	2000	1000	1000	n bei ein		zur Unte	Р	(bar)	2000	2000	2000	2000	n ⁻¹ H ₂ O	mittelter		
experimenten :	e durchgeführt	in	NQ-IHPV	NQ-IHPV	nskoeffizientei	Gew.%	experimenten	e durchgeführt	in	NQ-IHPV	NQ-IHPV	NQ-IHPV	NQ-IHPV	⁻¹ nach 5050 ci	er fehlerhaft er										
fel-Diffusions	diffundierend	Spezies	S^{2-}, H_2O	-		skoeffizienten gigen Diffusic	aximal 1,20	fel-Diffusions	diffundierend	Spezies	S^{2-}, H_2O	S^{2-}, H_2O	S^{2-}, H_2O	S^{2-}, H_2O	von 5200 cm	enten und dah									
ig von Schwe.	H_2O	(Gew.%)	einseitig 3.0	frei 6.0	frei 6.0	ten Diffusion: rationsabhäng	der Proben n	g von Schwei	H_2O	(Gew.%)	einseitig 3.0	einseitig 3.0	einseitig 3.0	einseitig 3.0	bung im NIR	tionskoeffizie									
ammenstellun	ne Schwefel-	quelle	Na_2S	FeS	Na_2S	FeS	Na_2S	FeS	Na_2S	FeS	Na_2S	FeS	eines konstan eines konzenti	Randbereich	ammenstellun	ne Schwefel-	quelle	Na_2S	Na_2S	Na_2S	Na_2S	andenverschie	ender Absorp		
Tabelle A.7: Zusi	# Probennan		1 G1	2 G2	3 G3	4 G4	5 G5	6 G6	7 G21	8 G22	9 G17 ³	$10 \text{ G}18^3$	¹ unter Annahme	³ H ₂ O-Gehalte im	Tabelle A.8: Zus	# Probennan		1 G7	2 G8	3 G9	4 G10	¹ aufgrund von Ba	² aufgrund unpass)	
Lebenslauf

Persönliche Daten

Name:	Stelling
Vorname:	Jan
Anschrift:	Grombacher Straße 27
	D-75045 Walzbachtal
Geburtsdatum:	22. Juni 1979
Nationalität:	Deutsch
Familienstand:	verheiratet,
	eine Tochter

Schulbildung

1986 – 1990	Tjede-Peckes-Grundschule
	Wremen
1990 - 1992	Orientierungsstufe
	Schulzentrum Dorum
1992 – 1999	Gymnasium Wesermünde

Bremerhaven Abschluss: Allgemeine Hochschulreife

Zivildienst

1999 - 2000	Seeparkschule für körperberhinderte Kinder
	Debstedt

Hochschulausbildung

2000 – 2005 Leibniz Universität Hannover Studiengang: Geowissenschaften Abschluss: Diplom-Geowissenschaftler (Dipl.-Geow.)

Berufliche Tätigkeit

2005 - 2009	Wissenschaftlicher Mitarbeiter am
	Institut für Mineralogie der
	Leibniz Universität Hannover
2009 –	Wissenschaftlicher Mitarbeiter am
	Institut für Mineralogie und Geochemie des
	Karlsruher Institut für Technologie