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Zusammenfassung 

Eisen und Silicium sind die viert- und zweithäufigsten chemischen Elemente in der Erdkruste. 

Grosses Interesse an der Fraktionierung ihrer Isotope in rezenten und fossilen Systemen kam 

durch die Einführung der Multikollektor induktiv gekoppelten Plasma Massenspektrometrie 

(MC-ICP-MS) vor ca. 10 Jahren auf. Diese ermöglicht es, die Isotopenverhältnisse schwerer 

Elemente präzise zu messen. Diese Arbeit beschäftigt sich mit einer Weiterentwicklung dieser 

Technik. UV Femtosekunden Laserablation, gekoppelt mit MC-ICP-MS, stellt eine 

ausgezeichnete Methode dar, Verhältnisse der stabilen Fe und Si Isotope in situ bei hoher 

räumlicher Auflösung (30 μm) in Festkörpern zu bestimmen. Mit dieser neuen 

Mikrostrahltechnik können Fe und Si Isotopenzusammensetzungen in einzelnen Mineralkörnern 

gemessen werden. Eine wissenschaftlich attraktive erste Anwendung ist die Untersuchung der 

Genese Präkambrischer gebänderter Eisenerze, deren Bildung mit großen Veränderungen in der 

Erdgeschichte, wie dem Anstieg atmosphärischen Sauerstoffs und der Entwicklung einfacher 

Formen des Lebens einherging. 

Femtosekunden Laserablation ICP-MS bietet große Vorteile gegenüber herkömmlich 

verwendeten Nanosekunden Laserablationssystemen. Die durch Laser induzierte und von der 

Partikelgröße abhängige Element- und Isotopenfraktionierung ist weitestgehend unterbunden, so 

dass eine Kalibration mit Referenzmaterialien unabhängig ihrer Matrix möglich ist.  Um das 

Potential dieser Methode für die Analyse stabiler Isotopenverhältnisse zu untersuchen, wurde 

die Fe Isotopenzusammensetzung von Biotit, Hornblende, Olivin (Fayalit und Forsterit), Granat 

und einer ozeanischen Fe-Mn Kruste bestimmt, wobei das Metallreferenzmaterial IRMM-014 

zur Kalibrierung verwendet worden ist. Die Genauigkeit der Laserablationsdaten wurde durch 

Lösungs-ICP-MS Daten überprüft, die von einem Teil der Proben nach Auflösen und 

chromatographischer Fe Abtrennung mit Lösungs-ICP gemessen worden sind. Alle 

Probenmaterialien ergeben δ56Fe und δ57Fe Werte, die mit den Lösungs-ICP-MS Werten 

übereinstimmen. Bei hohen Cr Gehalten (54Cr/54Fe > 0.1‰) jedoch, z.B. in Granat und Forsterit, 

wurden die δ56Fe und δ57Fe Werte aus 57Fe/56Fe Verhältnissen errechnet, da bei solchen Cr 

Gehalten das Verfahren zur Korrektur der isobaren Interferenz von 54Cr auf 54Fe unzureichend 

ist. Die externe Reproduzierbarkeit für homogene Materialien ist 0.1‰ (2 SD) für δ56Fe und 

0.2‰ (2 SD) für δ57Fe; diese Reproduzierbarkeit hängt nicht von der Probenmatrix ab. Damit 

wurde gezeigt, dass Femtosekunden Laserablation ICP-MS eine weitestgehend 

matrixunabhängige Methode ist, was in Betracht des vielfältigen Probenmaterials einen 

bedeutenden Vorteil für geologische Anwendungen darstellt. 
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Variationen stabiler Isotopeverhältnisse der Hauptelemente in gebänderten Eisenerzen, Fe und 

Si, in koexistierenden Mineralphasen zu messen ist eine neue Herangehensweise, die Genese 

dieser fossilen chemischen Sedimente zu rekonstruieren. Der Vergleich von gemessenen 

Unterschieden im Isotopenverhältnis koexistierender Mineralphasen mit publizierten 

Isotopenfraktionierungsfaktoren ermöglicht die Identifikation von Ablagerungsmechanismen 

und diagenetischen Prozessen. In der Archaischen Old Wanderer Iron Formation im Shurugwi 

Grünsteingürtel (Zimbabwe) weist Magnetit gleichbleibende δ56Fe Werte von ~0.9‰ auf, wobei 

die Kristalle allerdings intern zoniert sind. Für Eisenkarbonatlagen wurden ebenfalls relativ 

einheitliche δ56Fe Werte um 0‰ ermittelt. Die Isotopenverhältnisse einzelner Karbonatkristalle 

sind jedoch stark von der chemischen Zusammensetzung abhängig und ergeben δ56Fe Werte 

von bis zu 0.4‰ für Siderit und –0.7‰ für Ankerit. Der Unterschied in der Fraktionierung 

zwischen Eisenkarbonate und Magnetit deutet auf eine gekoppelte Magnetit-Eisenkarbonat 

Bildung während der Diagenese durch biotische oder abiotische Reduktion eines 

Eisen(III)(hydr)oxid Präkursors bei gleichzeitiger Oxidation organischer Kohlenwasserstoffe 

hin. Die Si Isotopenzusammensetzung in kieseligen Lagen weist deutliche Variationen von 

Lage zu Lage auf und ergibt δ30Si Werte zwischen –2.6 bis –1.0‰. Dies deutet auf Silica 

Ausfällung aus Meerwasser hin, das mit hydrothermalen Lösungen angereichert wurde. Die Fe 

und Si Isotopenzusammensetzungen variieren gleichförmig von Lage zu Lage. Dies belegt die 

Erhaltung primärer Signaturen, welche die Auftriebsdynamik hydrothermal dominierter 

Tiefenwässer widerspiegelt. Demzufolge hat die hydrothermale Aktivität im marinen Becken 

die Fe und Si Ausfällungsraten bestimmt und somit auch die Ausbildung der Lagen. 

Die Proterozoischen gebänderten Eisenerze der Hamersley Group (Australien) und der 

Transvaal Supergroup (Südafrika) zeigen eine andere Isotopenverteilung. Die untersuchten 

Kernabschnitte zeigen Variationen in der Fe Isotopenzusammensetzung, während die Si 

Isotopensignaturen gleich bleiben. Der Fe und Si Eintrag in die Ablagerungen scheint also auf 

getrennten Pfaden stattgefunden zu haben. Die Fe Isotopenzusammensetzung der Minerale 

wurde durch die Zusammensetzung des Meerwassers, die Fraktionierung bei der Ausfällung 

primärer Mineralphasen und der Eisenumverteilung nach der Ablagerung  beeinflusst. Magnetit 

zeigt negative δ56Fe Werte, die vom Eisen(III)(hydr)oxid Präkursor ererbt und durch 

diagenetische Eisenumverteilung bedingt worden sind. Primärer Siderit liegt vor, wenn ein 

isotopisches Ungleichgewicht zu koexistierendem Magnetit besteht, wohingegen Siderit und 

Magnetit, die den Gleichgewichtfraktionierungsfaktor widerspiegeln, als diagenetische Phasen 

interpretiert werden. Primäre Isotopensignaturen in Hämatit und Siderit implizieren eine 

variable Meerwasserzusammensetzung mit δ56Fe Werten zwischen –0.8 bis 0‰. Die Si 
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Isotopenzusammensetzung kieseliger Lagen wird als primäre Signatur interpretiert und ergibt 

δ30Si Werte zwischen –1.2 und –0.8‰. Die Ergebnisse sprechen für konstante Fe und Si 

Isotopenzusammensetzungen des Meerwassers während der Ablagerung der untersuchten 

Kernabschnitte, was im Einklang mit der langen Verweilzeit von Fe und Si und dem typischen 

Ablagerungsmilieu Proterozoischer gebänderter Eisenerze an kontinentalen Schelfgebieten  

entfernt von hydrothermalen und kontinentalen Einfluss steht.  Die für längere Zeiträume als die 

der hier untersuchten Dünnschliffe publizierte Fe Isotopenzusammensetzung gebänderter 

Eisenerze aus dem Hamersley und Transvaal Becken von ungefähr 0‰ wird durch ein 

stationäres Gleichgewichtsmodel im Ozeanbecken erklärt, in dem der hydrothermale Eintrag 

des Fe isotopisch dem der in gebänderten Eisenerzen gefundenen entspricht. Da die hier 

untersuchten Abschnitte jedoch überwiegend Fe mit negativen δ56Fe Werten enthalten,  muss 

dies leichte Fe durch Ablagerung isotopisch schwerer gebänderter Eisenerze an anderer Stelle 

oder Zeit ausgeglichen worden sein. Die Si Isotopensignaturen in diesen Kernabschnitten und in 

gebänderten Eisenerzen im Allgemeinen erscheinen im Vergleich zur angenommenen 

Zusammensetzung hydrothermaler und kontinentaler Zuflüsse als zu leicht. Dies impliziert 

entweder eine komplementäre Senke für isotopisch schweres Si im Ozeanbecken bei 

stationärem Gleichgewicht oder nicht-stationäre Bedingungen. Diese könnten etwa durch 

erhöhte hydrothermale Aktivität oder Verwitterung zur Zeit der Ablagerung gebänderter 

Eisenerze bedingt worden sein. 

Die Resultate dieser Doktorarbeit zeigen das Potential von UV Femtosekunden Laser Ablation 

ICP-MS in der Analyse stabiler Isotopenverhältnisse in hoher räumlicher Auflösung für 

geologische Fragestellungen. Diese Methode stellt ein gänzlich neues Werkzeug in der 

Untersuchung der Mikrostratigraphie chemischer Ablagerungen auf der Längenskala eines 

Dünnschliffes dar.  

 

Schlagwörter: UV Femtosekunden Laserablation, stabile Eisenisotope, stabile Siliciumisotope, 

gebänderte Eisenerze 
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Abstract 

Iron and silicon are the fourth and second most elements in the Earth’s crust. Immense interest 

in the fractionation of their isotopes in recent and ancient environments began ca. 10 years ago 

with the ability to measure their isotope ratios precisely by multiple collector inductively 

coupled plasma mass spectrometry (MC-ICP-MS). The topic of this thesis is a further 

development of this technique. UV femtosecond laser ablation in conjunction with MC-ICP-MS 

provides an excellent tool to analyse stable Fe and Si isotope ratios in solid samples in situ at 

high-spatial resolution (30 μm). This new microbeam tool allows the determination of Fe and Si 

isotope compositions on the mineral grain scale. An obvious first application is to explore the 

genesis of Precambrian iron formations whose deposition is associated with major changes in 

the Earth’s history as the rise of atmospheric oxygen and the evolution of early forms of life. 

Femtosecond laser ablation ICP-MS provides significant advantages over commonly employed 

nanosecond laser ablation systems. Laser-induced and particle size-controlled elemental and 

isotope fractionation is suppressed to such an extent that non-matrix matched calibration is 

feasible. To explore the capability of this system for stable isotope ratio analysis, the Fe isotope 

composition of biotite, hornblende, olivine (fayalite and forsterite), garnet and an oceanic Fe-

Mn crust has been determined using the metal reference material IRMM-014 for calibration. 

The accuracy of the laser ablation measurements was verified by solution ICP-MS data, 

measured after chromatographic Fe separation from aliquots. For all investigated sample 

materials, δ56Fe and δ57Fe values from laser ablation ICP-MS agree with those measured by 

solution ICP-MS. At high Cr content (54Cr/54Fe > 0.1‰), i.e. garnet and forsterite, δ56Fe and 

δ57Fe values were derived from 57Fe/56Fe ratios, as the correction mode of isobaric interference 

of 54Cr on 54Fe is unsatisfactory. An external reproducibility for homogeneous materials of 

0.1‰ (2 SD) for δ56Fe and 0.2‰ (2 SD) for δ57Fe is achieved regardless of the sample matrix. 

These results demonstrate that femtosecond laser ablation ICP-MS is a largely matrix-

independent method, which is a substantial advantage for geological applications considering 

the large spectrum of sample materials of interest. 

The determination of stable isotope variations of the major chemical constituents of 

Precambrian iron formations, Fe and Si, in coexisting mineral phases is a new approach to 

reconstructing their genesis. Depositional and diagenetic processes in Precambrian ocean basins 

are disclosed by comparison of isotope differences of coexisting minerals with published 

isotope fractionation factors. In the Archean Old Wanderer Iron Formation in the Shurugwi 

Greenstone Belt (Zimbabwe), magnetite shows an overall uniform δ56Fe value of ~0.9‰ on 
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crystals despite internal zonation. Bulk iron carbonates are also relatively uniform with δ56Fe 

values of near-zero, however individual δ56Fe values are highly composition-dependent with 

end member compositions of 0.4‰ for siderite and -0.7‰ for ankerite. These results are best 

explained by coupled magnetite-iron carbonate formation during diagenesis due to biotic or 

abiotic reduction of a ferric (hydr)oxide precursor by organic matter oxidation. The Si isotope 

composition of chert shows significant inter-layer variations ranging between -2.6 and –1.0‰ in 

δ30Si, which is indicative of silica precipitation from seawater with a hydrothermal signature. Fe 

and Si isotope compositions of bulk layers covary, indicating that primary signatures, which 

reflect the upwelling dynamics of hydrothermal-rich water, are preserved. Hence, hydrothermal 

activity seems to have governed the rates of Fe and Si precipitation and therefore also the 

development of layering.  

Proterozoic iron formations from the Hamersley Group (Australia) and Transvaal Supergroup 

(South Africa) record a very different isotope pattern from that of the Archean iron formation. 

The investigated core sections show variations in Fe isotope composition, but Si isotope 

signatures are uniform, implying independent pathways for Si and Fe. The Fe isotope 

composition was governed by that of seawater, the fractionation during precipitation of initial 

mineral phases, and post-depositional Fe redistribution. Magnetite exhibits negative δ56Fe 

values, which are inherited from the ferric (hydr)oxide precursor and caused by diagenetic Fe 

redistribution. Primary siderite is identified by isotopic disequilibrium to coexisting magnetite, 

whereas siderite and magnetite, which reflect the equilibrium fractionation factor, are 

interpreted to be diagenetic phases. Primary isotope signatures in hematite and siderite imply a 

range in δ56Fe between –0.8 and 0‰ for ancient seawater. The Si isotope composition of chert 

is interpreted as primary signature ranging between –1.2 and -0.8‰ in δ30Si. The results imply 

steady Fe and Si compositions of seawater during deposition of individual samples, which is 

consistent with the long residence times of Fe and Si as well as with the typical depositional 

settings of Proterozoic iron formations on continental shelf areas far from hydrothermal and 

continental influences. The published long-term Fe isotope composition of near-zero in the 

Hamersley and Transvaal iron formations is explained with a steady state ocean model in which 

the hydrothermal flux is isotopically balanced by deposition of Fe into iron formations. Hence, 

the isotopically light Fe in the iron formations investigated here has to be balanced by 

deposition of isotopically heavy iron formations elsewhere, or in a different period. The Si 

isotope signatures in these core sections and in iron formations in general appear to be too light 

as compared to the assumed hydrothermal and continental influx composition. This indicates 

either a complementary sink for isotopically heavy Si for a steady state ocean basin or non-
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steady state conditions due to extraordinary hydrothermal activity or weathering at the time of 

iron formation deposition. 

The results of this thesis demonstrate the capability of UV femtosecond laser ablation ICP-MS 

for analysing stable isotope ratios at high-spatial resolution in geological applications. 

Furthermore, it provides a novel tool to investigate microstratigraphy of chemical sediments at 

the thin section scale. 

 

Keywords: UV femtosecond laser ablation, stable iron isotopes, stable silicon isotopes, banded 

iron formations 
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1 

 

Introduction 

 

 
1.1. Overview and Fundamentals 

The employment of ultra-short pulses in laser ablation ICP mass spectrometry provides 

significant advantages for in situ elemental and isotope ratio analysis in solids, which open up 

applications in the field of heavy stable isotope geochemistry. In this thesis, a UV femtosecond 

laser ablation system coupled to a multiple-collector inductively coupled plasma mass 

spectrometer (MC-ICP-MS) was used to investigate the capability of precise Fe and Si isotope 

ratio analysis exploring the formation processes of Precambrian iron formations. To 

demonstrate the feasibility of this new approach, Fe isotope ratios were analysed in various 

matrices in order to investigate potential matrix effects for femtosecond laser ablation. The 

ability to determine stable isotope variations of the major chemical constituents of iron 

formations, Fe and Si, on the mineral grain scale offers the opportunity to reconstruct 

depositional and diagenetic mechanisms in Precambrian ocean basins.  

 

This thesis is subdivided into four chapters. The first chapter gives an introduction to the 

methods and theory used in following chapters, which comprise comprehensive manuscripts 

with separate introductions and conclusions and have been submitted for publication in 

international journals.  

Chapter 1 provides an overview of stable isotope fractionation with a focus on the stable Fe and 

Si isotope systems. Recent developments in laser ablation with respect to the advantages of 

ultra-short pulses are discussed, and the UV femtosecond laser ablation system at the Leibniz 

Universität Hannover is described. An overview is given on Precambrian iron formations with 

respect to the Si and Fe isotope records based on a concise survey of the literature. 
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Chapter 2 investigates potential matrix-effects for femtosecond laser ablation by determining 

stable Fe isotope ratios in silicate matrices including olivine, biotite, hornblende, garnet and an 

oceanic Fe-Mn crust. This chapter has been submitted for publication in Chemical Geology 

(Steinhoefel, G., Horn, I. and von Blanckenburg, F.: Matrix-independent stable Fe isotope ratio 

determination using UV femtosecond laser ablation ICP-MS. Chemical Geology – in review). 

Chapter 3 includes a study of Fe and Si isotope micro-tracing in the Archean Old Wanderer 

Iron formation from the Shurugwi Greenstone Belt (Zimbabwe) using UV femtosecond laser 

ablation. In this iron formation, covariant bulk Fe and Si isotope compositions of layers reflect 

the dynamics of hydrothermal activity, whereas the Fe isotope composition of specific minerals 

discloses diagenetic processes. The results of this study highlight the potential of micro-

analytical techniques for investigating heavy stable isotope variations. This chapter has been 

submitted for publication to Geochimica et Cosmochimica Acta (Steinhoefel, G., Horn, I. and 

von Blanckenburg, F.: Micro-scale tracing of Fe and Si isotope signatures in banded iron 

formation using femtosecond laser ablation. Geochimica et Cosmochimica Acta – in review).  

Chapter 4 presents a study of Fe and Si isotope composition in Proterozoic iron formations from 

the Hamersley Basin (Australia) and the Transvaal Basin (South Africa) determined by UV 

femtosecond laser ablation. Uniform Si compositions in these formations are consistent with 

continuous silica precipitation on continental shelf areas, a typical depositional setting for 

Proterozoic iron formations. Variations in Fe isotope composition of the major Fe-bearing 

minerals can be attributed to various processes including the isotope fractionation between 

seawater and the initially precipitated phases, variable degrees of partial Fe(II) oxidation in the 

upper water column and diagenetic Fe redistribution. The determination of stable isotope 

variations in the major chemical constitutes of iron formation on the mineral grain scale 

provides a significant advantage in reconstructing the temporal evolution of Proterozoic 

seawater and post-depositional diagenetic processes. This chapter is considered for publication 

in Geochimica et Cosmochimica Acta (Steinhoefel, G., von Blanckenburg, F., Horn, I., 

Konhauser, K. O., Beukes, N. and Gutzmer, J.: Deciphering formation processes of banded iron 

formation from the Transvaal and the Hamersley successions by combined Si and Fe isotope 

analysis using UV femtosecond laser ablation. Geochimica et Cosmochimica Acta – in review).  

1.1.1. Theory of stable isotope fractionation 

In recent years, ‘non-traditional’ isotope geochemistry has become a research field of immense 

interest driven by advances in mass spectrometry, and in particular by the introduction of MC-
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ICP-MS. Besides the ‘traditional’ stable isotope systems of H, C, N, O and S, commonly 

measured by gas source mass spectrometry, and Li, B, Cl, Sr and Br, commonly measured by 

thermal ionization mass spectrometry (TIMS), mass-dependent isotope fractionation has now 

been measured by MC-ICP-MS for many further elements including Mg, Si, Ca, Ti, Cr, Fe, Cu, 

Zn, Ge, Sr, Mo, Ag, Cd, Sb, Te, Hg and Tl.  These isotope systems are called ‘non-traditional’ 

stable isotope systems. Especially the stable isotopes of transition metals show pronounced 

mass-dependent isotope fractionation (see review of Anbar and Rouxel (2007)).  

Since natural isotope variations are typically in the range of parts per thousand to parts per 

hundred, a stable isotope ratio, R  (
X
XR light

heavy

= ), of an element X in a sample is commonly 

reported as permil deviation from a reference material, described as the δ notation: 

1000
‰

∗
−

=
standard

standardsample

R
RRδ

 .    (1.1) 

Isotope fractionation between two substances, A and B , is described by the fractionation 

factor,α , which is defined as 

B

A
BA R

R
=−α .       (1.2) 

Because isotope fractionation is relatively small, especially for heavy stable isotope systems, 

fractionation of isotopes between two phases are often reported as 

BABA δδ −=Δ − ,                 (1.3) 

where α is related to Δ  by 

αln103≈Δ .       (1.4) 

 

Below, the theory of stable isotope fractionation is briefly summarized based on recent reviews 

by Chacko et al. (2001), Hoefs (2004) and Schauble (2004). Basically, mass-dependent isotope 

fractionation can be caused by two different processes – equilibrium isotope fractionation and 

kinetic isotope fractionation. 

Equilibrium isotope fractionation 

Mass-dependent equilibrium isotope fractionation during chemical reactions is a fundamental 

quantum mechanical phenomenon mainly caused by shifts in the vibrational energies of 

molecules on isotopic substitution, associated with a change in the zero-point energy of the 

bond ( ZPE ) and therefore a change in bond strength (Bigeleisen, 1965; Urey, 1947). The ZPE  
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is predominately determined by the vibrational frequency of a bond, whereas rotational and 

translational frequencies have subordinate effects, particularly for solid phases such as minerals. 

An exception is hydrogen. This can be illustrated for a simple diatomic gas molecule, AB , 

where the ZPE  can described by 

hvZPE
2
1

= ,       (1.5) 

where υ  is the vibrational frequency of the bond and h  is the Plank’s constant.  

For a simple diatomic molecule, AB , the vibrational frequency of the bond can be 

approximated by a harmonic oscillator: 

μπ
υ

/2
1
k

= ,      (1.6) 

where k is the effective spring constant, which depends on the electronic configuration of the 

molecule, and μ is the reduced mass of the molecule AB  defined as 

mm
mm

BA

BA

+
=μ ,        (1.7) 

with Am  and Bm being the masses of the atoms A and B , respectively. 

Therefore, the ZPE  is a function of the masses of A  and B . The lower the ZPE  the greater 

the energy difference between the bonded and dissociated atoms. Bond strength increases when 

a heavier isotope substitutes for a lighter isotope; e.g. for two isotopes of A , Aheavy  and Alight , 

the bond of ABheavy  is stronger than that of ABlight . Hence, shifts in the ZPE  control 

equilibrium isotope fractionation. 

For a simple isotope exchange reaction: AABAAB lightheavyheavylight +⇔+ , the equilibrium 

constant eqk  is defined as the quotient of the activities of the products and  reactants: 

{ }{ }
{ }{ }AAB

AABk heavylight

lightheavy

eq = .     (1.8) 

Assuming an ideal mixing of isotopes in both phases, AB and A , the equilibrium constant in 

this simple example is equivalent to the equilibrium isotope fractionation factor AAB−α  : 

A

AB
AABeq R

Rk == −α .      (1.9) 

The equilibrium constant is related to the free energies of the reactants and products: 

( )eqkRTG ln0 −=Δ  giving ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ−
=

RT
Gkeq

0

exp ,  (1.10) 
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where 0GΔ is the Gibbs free energy change of the reaction, R is the molar gas constant, and 

T is the absolute temperature. 

The bond structure, and therefore the potential energy, of each molecule is unaffected by 

equilibrium isotope exchange reactions. Hence, only the kinetic energy of the bond resulting 

from atomic motion has to be considered. Changes in pressure P and volume V are negligible, 

except for some light stable isotope systems, such as hydogen. Under these conditions, the 

Gibbs free energy, G , is equivalent to the Helmholtz free energy F : 

PVFG += and FG Δ≈Δ ,     (1.11) 

giving the following expression for the equilibrium constant: 

⎟
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⎛ Δ−

==
RT

Fkeq expα .      (1.12) 

Approximating the atomic motion by a harmonic oscillator, the energy difference, FΔ , equals 

approximately the difference in the zero-point energy, ZPEΔ , which can be calculated using 

Equation (1.5): 

vhhvhvZPEF
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1
2
1

2
1

tanRePr

,  (1.13) 

where υ  is the vibrational frequency and h  is the Plank’s constant. 

Therefore, equilibrium isotope fractionation between two substances is driven by the difference 

in vibrational frequency, vΔ , which is related to the masses (see Equation 1.6). 

 

More accurately, the total energy of motion of a molecule including vibrational, rotational and 

translational energies can be described by statistical mechanics using partition functions, Q . 

Partition functions consider all energy states of a molecule and the probability to occupy 

particular states. It is related to the Helmholtz free energy according to 

QRTF ln−= .       (1.14) 

The vibrational partition function, vibQ , for harmonic vibrations describes the sum over all 

vibrational energies, nE , in a molecule: 

)/exp( kTEQ
n nvib ∑ −=  with hvnEn )

2
1( += ,   (1.15) 

where k  is the Boltzmann’s constant and n ( n = 0, 1, 2,…) describes the energy state, i.e. the 

quantum number, of the vibrational degree of freedom. For a molecule in the ground state, n = 

0, which defines the zero-point energy.  

Products Reactants 
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The partition functions for rotation and translation in a molecule, rotQ  and transQ , can be 

approximated by:  

2

28
h

IkTQrot
π

=  and      (1.16) 

2
3

2

2
⎟
⎠
⎞

⎜
⎝
⎛=

h
mkTVQtrans

π
,      (1.17) 

where I  is the moment of inertia of the molecule, V  is the volume of the molecule, and m  is 

its mass. Therefore, the total energy of atomic motion is 

)lnln(ln vibrottrans QQQRTF ++−=  

)ln( vibrottrans QQQRT ∗∗−=      (1.18) 

resulting in the following expression for the equilibrium constant, eqk , and therefore for the 

equilibrium isotope fractionation factor , α : 
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Inserting the partition functions in the equation above, the equilibrium fractionation factor, 

AAB−α , for the isotope exchange reaction : AABAAB lightheavyheavylight +⇔+  is 
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Therefore, to calculate an equilibrium fractionation factor, the vibrational frequencies, v , and 

the moment of inertia, I , have to be known, which can be determined by spectroscopic 

measurements (e.g. infrared, Raman, and inelastic neutron scattering measurements) or force 

field modeling (e.g. modified Urey-Bradley force field – MUBFF and density functional theory 

Products Reactants

Products 

Reactants

Reactants 

Products
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– DFT) and from the molecular structure, respectively (e.g. Anbar et al.; 2005; Georg et al., 

2007; Hill and Schauble, 2008; Jarzecki et al., 2004; Méheut et al., in press; Schauble et al., 

2001). Calculations based on Mössbauer spectroscopy data and inelastic nuclear resonant x-ray 

scattering (INRXS) are also used to predict inter-mineral stable isotope fractionation (e.g. 

Mineev et al., 2007; Polyakov and Mineev, 2000; Polyakov, 1997). 

 

Analogous to Equation 1.8, the equilibrium constant of the isotope exchange reaction between 

substance A  and B and therefore α can be expressed as partition function ratios: 

BB

AA
BA

heavylight

heavylight

QQ
QQ

=−α .      (1.21) 

Calculated partition function ratios are usually reported as reduced partition functions (β-

factors), which ignore translational and rotational energies. From these β-factors, the 

equilibrium fractionation factor can be calculated according to: 

B

A
BA β

β
α =−  or 

BABAa ββ ln1000ln1000ln1000 −=− .     (1.22) 

 

The sign and magnitude of equilibrium isotope fractionation is governed by many aspects, 

which have been summarized in a few simplified qualitative rules by Schauble (2004). These 

rules predict large equilibrium isotope fractionation between substances at low temperatures, 

where marked differences in oxidation state, bond partners, electron configuration or 

coordination number exist.  
- Equilibrium isotope fractionation decreases with increasing temperature roughly in the 

proportion 1/T2. 

- Fractionation is largest for elements of low atomic mass and large relative mass 

differences between the isotopes of interest. 

- Heavy isotopes of an element prefer the strongest bonds when incorporated into a 

substance. High bond stiffness correlates with the following properties: high oxidation 

state, bonding to elements near the top of the periodic table, highly covalent bonds, 

low-spin electronic configuration for transition elements and low coordination number. 
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Kinetic isotope fractionation 

Kinetic isotope fractionation between different phases can occur during incomplete isotope 

exchange reactions. Such a non-equilibrium effect can be caused by differences in the reaction 

rate constants of different isotopes of an element as a result of the mass-dependence of bond 

strength, i.e. ABheavy  reacts more slowly than ABlight . Kinetic isotope effects can occur during 

unidirectional reactions or incomplete processes, such as evaporation, diffusion or dissociation 

reactions. Many aspects drive kinetic isotope fractionation, however, one of the most common 

effects observed in nature and in laboratory experiments for various stable isotope systems are 

differences in the molecular and atomic velocity.   

The mass of a molecule or atom affects its velocity, which can lead to isotope fractionation 

during unidirectional reactions. This can be illustrated for an ideal gas, where the translational 

kinetic energy kinE  is equivalent for all molecules or atoms: 

2

2
1

2
3 mvkTEkin == ,      (1.23) 

where k is the Boltzmann’s constant, T  is the absolute temperature, m is the mass of the 

molecule or the atom, and v  is its velocity. For molecules or atoms of different isotope 

composition, the velocities differ according to:  

2

2

light

heavy

heavy

light

v
v

m
m

= .     (1.24) 

Therefore, the isotope fractionation process is governed by the molecular or atomic velocity 

giving a translational isotope fractionation factor naltranslatioα : 

light

heavy
naltranslatio m

m
=α .     (1.25) 

1.1.2. Natural Fe isotope variation 

The field of stable Fe isotope research emerged about 10 years ago when Fe isotope variations 

were discovered in many geobiological systems. In the last few years, research has been 

accelerated with over 200 articles being published on analytical methods, natural variation in Fe 

isotope ratios and experimental and theoretical investigations on mechanisms and degrees of 

isotope fractionation.  
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Fe is the most abundant element on Earth after O. As most of the Fe is concentrated in the 

Earth’s core, it represents the fourth-most abundant element in the Earth’s crust after O, Si and 

Al (Wedepohl, 1995). Fe is an important element in biogeochemical cycles on Earth, where it is 

a vital nutrient for organisms, and is a major element in many rock-forming minerals, including 

economically interesting Fe ore deposits. Fe participates in many abiotic and biotic mediated 

redox processes and has a variety of bonding partners and ligands, which mainly control 

equilibrium isotope fractionation. Fe has four stable isotopes, 54Fe, 56Fe, 57Fe and 58Fe with 

approximate abundances of 5.85%, 91.75%, 2.12% and 0.28% of total Fe, respectively (De 

Laeter et al., 2003). Fe isotope compositions are usually reported relative to the reference 

material IRMM-014 as followed: 
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The first attempts to measure stable Fe isotope compositions were carried out using thermal 

ionization mass spectrometry (TIMS) (e.g. Dixon et al., 1993; Walczyk, 1997). Significant 

analytical difficulties, for example high ionization potential of Fe and variable instrumental 

mass discrimination, are associated with this method. Nowadays, Fe isotopes are analyzed 

routinely in many laboratories using MC-ICP-MS, (e.g. see review of Dauphas and Rouxel 

(2006) and references therein). In addition, in situ techniques as laser ablation coupled to MC-

ICP-MS (e.g. Graham et al., 2004; Horn et al., 2006; this study), secondary ionization mass 

spectrometry (SIMS) (e.g. Whitehouse and Fedo, 2007) and time of flight resonant ionization 

mass spectrometry (RIMS) (e.g. Tripa et al., 2002) have been applied to the determination of Fe 

isotope variations at high spatial resolution.  

The overall variation in δ56Fe observed in natural systems on Earth is about 5‰ (see overview 

in Figure 1.1). Mass-dependant fractionation up to several hundreds of permil and mass-

independent fractionation have been reported for extraterrestrial materials such as cosmic 

spherules, presolar SiC grains and calcium-aluminum-rich inclusions (CAIs) in meteorites (e.g. 

Engrand et al., 2005; Tripa et al., 2002; Völkening and Papanastassiou, 1989). However, the 

limited range of δ56Fe in chondrites, meteorites thought to originate from Mars and Vesta, lunar 

rocks, and igneous rocks from Earth suggest a largely homogeneous Fe isotope composition of 
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the solar system. Only small differences appear to exists between planetary bodies (e.g. 

Poitrasson, 2007; Schoenberg and  von Blanckenburg, 2006). The Fe isotope composition of 

igneous rocks seems to be influenced slightly by magmatic processes, as more evolved rocks 

show slightly higher δ56Fe values than less evolved rocks (e.g. Poitrasson and Freydier, 2005; 

Schuessler et al., in press; Teng et al., 2008). The bulk silicate Earth is estimated to have a δ56Fe 

value of about 0.1‰ (Beard et al., 2003).  

The degree of equilibrium isotope fractionation increases with decreasing temperature causing a 

larger variability in low temperature systems. In the biosphere, Fe is an important nutrient for 

plants and higher organisms. Investigations of plants, animals, and the human body, exhibit 

large fractionations with preferential incorporation of isotopically light Fe making Fe isotopes 

an attractive tracer for biological processes (e.g. Guelke and von Blanckenburg, 2007; Walczyk 

and von Blanckenburg, 2002; Walczyk and von Blanckenburg, 2005). Biological processes, 

redox changes and adsorption determine the variability of Fe isotope composition of modern 

aquatic systems, which exhibit largely negative δ56Fe values (e.g. Bergquist and Boyle, 2006; 

Fantle and De Paolo, 2004; Teutsch et al., 2005). Considerable variations in the marine 

environment provide information on the biogeochemical Fe cycle of the modern and ancient 

ocean. Modern mid-ocean ridge (MOR) hydrothermal fluids exhibit a limited range of Fe 

isotope compositions and are slightly depleted in isotopically heavy Fe (e.g. Beard et al., 2003; 

Severmann et al., 2004; Sharma et al., 2001). Sulfide deposits around oceanic smokers are 

variable with tendency to low δ56Fe values (Rouxel et al., 2004). Mobilized Fe in pore waters of 

sediments varies from strongly negative to slightly positive δ56Fe values, depending whether 

microbial dissimilatory iron reduction (DIR) or sulfate reduction dominates organic matter 

degradation (e.g. Bergquist and Boyle, 2006; Severmann et al., 2006). Phanerozoic organic-rich 

sediments (black shales) exhibit variations of up to 1‰, which is interpreted as diagenetic Fe 

cycling through several pathways including: microbial organic matter degradation liberating Fe 

from ferric (hydr)oxides and the diagenetic formation of pyrites and Fe carbonates (e.g. 

Matthews et al., 2004; Rouxel et al., 2005). In contrast, sediments with low organic content such 

as grey shales, turbidites, suspended river load, and loess exhibit a more restricted range close to 

the average igneous rock composition (e.g. Beard et al., 2003). Fe-Mn crusts and nodules show 

negative but variable δ56Fe values and may record recycled Fe from continental shelf sediments 

released by microbial activity (Chu, 2006; Levasseur et al., 2004; Zhu et al., 2000). Fe isotope 

studies on Precambrian sediments have revealed significant variations, providing insights into 

the ancient Fe cycle before the rise of oxygen in the atmosphere. Black shales and sedimetary 

pyrites show large Fe isotope fractionation ranging from positive to significant negative δ56Fe 
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values. A similar range is observed in iron formations. These variable Fe isotope compositions 

are interpreted to result from: partial Fe(II) oxidation in the upper ocean, variable seawater 

composition, diagenetic reduction of Fe oxides, and the formation of diverse Fe-bearing 

minerals (e.g. Dauphas et al., 2004; Johnson et al., 2003; Johnson et al., 2008a; Rouxel et al., 

2005; Whitehouse and Fedo, 2007; Yamaguchi et al., 2005; this study). Stromatolitic limestones 

are variably depleted in isotopically heavy Fe and may serve as proxy of the ancient seawater 

composition (von Blanckenburg et al., 2008). 

Fe ore deposits exhibit significant variations in Fe isotope composition, which are considered to 

result from partial Fe(II) oxidation and mineral-fluid fractionation during the formation of Fe 

ore mineral as sulfides, oxides and carbonates (e.g. Graham et al., 2004; Horn et al., 2006; 

Markl et al., 2005). 

In order to interpret Fe isotope variations in nature, equilibrium and kinetic fractionation factors, 

ranging from near-zero to about 3‰ for distinct reactions, have been determined by 

experimental and theoretical approaches. Laboratory studies have investigated abiotically and 

biotically mediated reactions involving different aqueous Fe species, Fe redox changes, 

adsorption, and mineral precipitation and dissolution (e.g. Brantley et al., 2004; Bullen et al., 

2001; Crosby et al., 2005; Crosby et al., 2007; Icopini et al., 2004; Johnson et al., 2002; Johnson 

et al., 2005; Matthews et al., 2001; Schuessler et al., 2006; Teutsch et al., 2005; Welch et al., 

2003; Wiederhold et al., 2006; Wiesli et al., 2004). Besides experimental work, Fe isotope 

fractionation has been predicted from vibrational force field modeling and from vibrational 

spectroscopic data for Fe complexes in solution (Anbar et al., 2005; Hill and  Schauble, 2008; 

Jarzecki et al., 2004; Schauble et al., 2001). Equilibrium fractionation factors between minerals 

have also been estimated using calculations based on Mössbauer spectroscopic data and 

inelastic nuclear resonant X-ray scattering (Mineev et al., 2007; Polyakov and Mineev, 2000; 

Polyakov, 1997). Relevant Fe isotope fractionation factors for the examination of Precambrian 

iron formation genesis are summarized in Chapter 3 (see Table 3.4). 



 28

 

 

 

 

 

 
Figure 1.1 Overview of natural Fe isotope variations (for references see recent reviews of 
Anbar and Rouxel (2007), Beard and  Johnson (2004) and Dauphas and Rouxel (2006)). 
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1.1.3. Natural Si isotope variation 

Si is the second-most abundant element in the silicate earth after O. It possesses three stable 

isotopes, 28Si, 29Si and 30Si, with approximate relative abundances of 92.22%, 4.69% and 3.09%, 

respectively (De Laeter et al., 2003). In recent years, Si isotope compositions are reported 

relative to the reference material NBS28 defined as: 
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Si is an important constituent in igneous and sedimentary rocks, soils, plants and biominerals. Si 

is utilized by diatoms, radiolaria and sponges and is present as a solute in aquatic systems. 

Continental weathering involves decomposition of silicates, resulting in the removal of CO2 

from the atmosphere (Berner, 1997). The formation of clay minerals and soils provides soluble 

Si for the terrestrial vegetation (Alexandre et al., 1997; Ma, 2003; Sommer et al., 2006). 

Continental drainage is the major source of dissolved Si entering the oceans (Elderfield  and  

Schultz, 1996; Treguer et al., 1995). In the modern ocean, Si is one of the main nutrients for 

phytoplankton production and biomineralization, i.e. primary diatoms, which control Si removal 

from seawater (Ragueneau et al., 2000). In the absence of silica-secreting organisms in the 

Precambrian ocean, Si precipitation might have been promoted by reaching the saturation state 

of amorphous silica gel causing the formation of extensive chert deposits such as the 

Precambrian iron formations and other siliceous deposits (Maliva et al., 2005; Siever, 1992). 

Up to 2008, nearly 100 articles on stable Si isotopes were published dealing with fractionation 

in natural systems and analytical methods. The majority of these articles have been released in 

the past 5 years demonstrating an immensely increased interest in this research field based on 

the new ability to routinely determine precise stable Si isotope ratios. Most studies have focused 

on the characterization of different Si isotope reservoirs, whereas investigations on processes 

causing Si isotope variations and quantification of the magnitude of isotope fractionation using 

theoretical or experimental methods are rare (e.g. Georg et al., 2007; Méheut et al., in press). 

The first investigations of stable Si isotopes in the 1950s (Allenby, 1954; Reynold and  
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Verhoogen, 1953) were compromised by the complexity of Si purification methods prior to 

analysis, as well as the poor analytical precision and accuracy achievable at that time. These 

early studies are only of historical interest as the large proposed variations in terrestrial samples 

could not be confirmed by later studies. In subsequent studies, more precise and accurate 

analysis of Si isotope ratios became possible by using isotope ratio mass spectrometry (IRMS), 

which combines laser fluorination with gas source mass spectrometry (De La Rocha et al., 

1998; Douthitt, 1982; Molini-Velsko et al., 1986; Tilles, 1961). However, the utilization of 

dangerous gases, i.e. F2 gas, has prevented a widespread application of this method. The 

introduction of MC-ICP-MS in the mid 1990s has open a wide field of applications in the Earth 

Sciences including the analysis of stable Si isotopes (e.g. André et al., 2006; Cardinal et al., 

2003; Cardinal et al., 2005; Cardinal et al., 2007; De La Rocha, 2002; Engström et al., 2006; 

Georg et al., 2006; van den Boorn et al., 2006). Prior to analysis using solution MC-ICP-MS, Si 

needs to be separated and purified by wet-chemical procedures after sample decomposition (e.g. 

Brzezinski et al., 2003; Cardinal et al., 2003; Georg et al., 2006; van den Boorn et al., 2006). In 

situ techniques such as laser ablation MC-ICP-MS (Chmeleff et al., 2008; Shahar and Young, 

2007; this study) and SIMS (Basile-Doelsch et al., 2005; Hua et al., 2005; Robert and 

Chaussidon, 2006), now provide the possibility for high-spatial resolution analysis while 

maintaining sufficient accuracy and precision to resolve Si isotope variations in natural samples. 

The variation of δ30Si found in nature covers a range of approximately 12‰, from -5.7‰ 

(siliceous cements in sandstones (Basile-Doelsch et al., 2005)) to 6.2‰ (rice grains (Ding et al., 

2005)) (Figure 1.2). An exception are presolar SiC grains and early solar calcium-aluminium-

rich inclusions (CAIs) in primitive meteorites which exhibit variations of several tens to 

hundreds of permil (Ding et al., 1996; Lugaro et al., 1999; Shahar and Young, 2007). The small 

range in δ30Si for chondrites and achondrites from Mars and Vesta implies Si isotope 

homogeneity in the Solar system (e.g. Georg et al., 2007). Mantle and mantle-derived mafic 

magmatic rocks overlap with meteorite compositions suggesting that early Earth differentiation 

and later mantle processes have had no major impact on Si isotope fractionation (Ding et al., 

1996; Douthitt, 1982; Georg et al., 2007). Crustal igneous rocks show a slight increase in δ30Si 

with increasing SiO2 content (Ding et al., 1996; Douthitt, 1982; Georg et al., 2007; Ziegler et 

al., 2005). The estimated Si isotope composition for the bulk silicate Earth is –0.4‰ (Douthitt, 

1982; Georg et al., 2007). Quartzites and sandstones are in the same range as crustal igneous 

rocks as these are derived from the latter (Ding et al., 1996). Clays, slates, schists and soils 

exhibit variable low δ30Si values (Ding et al., 1996; Ding et al., 2007; Ding et al., 2008; Street-

Perrott et al., 2008; Wu et al., 1997; Ziegler et al., 2005). Degradation of silicate minerals in 
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igneous rocks by weathering produces clay minerals of low δ30Si values and releases dissolved 

Si with high δ30Si values that dominate river waters (Alleman et al., 2005; De La Rocha et al., 

2000; Ding et al., 2004; Georg et al., 2006; Georg et al., 2007; Ziegler et al., 2005). Soluble Si 

is partially utilized by higher plants with preferential uptake of light Si isotopes and precipitated 

as biogenic opaline phytoliths (Ding et al., 1996; Ding et al., 2005; Ding et al., 2008; Douthitt, 

1982; Hodson et al., 2008; Opfergelt et al., 2006a; Opfergelt et al., 2006b;  Sun et al., 2008). 

Plants exhibit large δ30Si variations caused by uptake of dissolved Si with variable Si isotope 

composition and intra-plant fractionation. Recycling of phytoliths by the degradation of organic 

matter has a major impact on the Si composition of soils (e.g. Opfergelt et al., 2006a). Siliceous 

cements in sandstone exhibit strongly negative δ30Si values, which are attributed to quartz 

reprecipitation (Basile-Doelsch et al., 2005). The Si isotope budget of the ocean is mainly 

controlled by the supply of isotopically heavy river water (Alleman et al., 2005; De La Rocha et 

al., 2000; Ding et al., 2004; Georg et al., 2006; Georg et al., 2007) and the preferential removal 

of light Si isotopes by biomineralization (primary diatoms) (Alleman et al., 2005; Beucher et al., 

2008; Cardinal et al., 2005; Cardinal et al., 2007; De La Rocha et al., 1998; De la Rocha, 2003 ; 

Douthitt, 1982; Fripiat et al., 2007; Milligan et al., 2004; Varela et al., 2004), which promote 

positive δ30Si values in seawater (Beucher et al., 2008; Cardinal et al., 2005; Cardinal et al., 

2007; De La Rocha et al., 2000; Reynolds et al., 2006; Varela et al., 2004). Another source of Si 

to the ocean is mid-ocean ridge hydrothermal fluids, which appear to have slightly negative 

δ30Si values (De La Rocha et al., 2000). Seafloor siliceous deposits derived from those 

hydrothermal fluids show more negative δ30Si values (Ding et al., 1996; Douthitt, 1982). The 

same trend  is observed for continental hot springs and associated siliceous deposits (Ding et al., 

1996; Douthitt, 1982; Pan et al., 2001; Xu, 2001). Precambrian marine siliceous deposits 

originated from abiotic Si precipitation. Chert within Precambrian iron formation exhibits 

negative δ30Si values (André et al., 2006; Ding et al., 1996; Jiang et al., 1993; this study) in the 

range of modern seafloor siliceous deposits around oceanic smokers, whereas other Precambrian 

siliceous deposits show a wider range including positive δ30Si values (Robert and Chaussidon, 

2006; van den Boorn et al., 2007).   
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Figure 1.2 Overview of natural Si isotope variations (see text for references). 
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1.2. Laser Ablation 

With the introduction of commercially available inductively coupled plasma mass spectrometers 

(ICP-MS) in the mid 1980s, laser ablation was immediately investigated for the direct analysis 

of solid samples (Gray, 1985). Today, laser ablation is a powerful and very sensitive micro-

analytical technique for the determination of element and isotope compositions with wide 

applications in geosciences, chemistry and biosciences. Several advantages make laser ablation 

to an attractive alternative to solution analysis. There is no complicated sample preparation, 

which allows fast data acquisition while at the same time avoiding contamination. In addition, 

high-spatial resolution at high sensitivity is acquired with only small quantities of sample 

material consumed. However, major drawbacks of laser ablation are laser-related element and 

isotope fractionation and matrix-effects demanding a non-linear and matrix-matched calibration, 

which set limits on the obtainable precision and the applicability of the method. Nowadays, 

most laser ablation systems employ solid state Nd-YAG (Neodymium:Yttrium-Aluminum-

Garnet) lasers operating in the ultraviolet (UV) range at wavelengths of 266 nm and 193 nm or 

ArF gas Excimer lasers with a typical wavelength of 193 nm. Both types of laser provide pulses 

width typically between 5 and 23 ns (1 ns = 10-9 s). These lasers have been successfully applied 

to the analysis of elemental compositions and isotope ratio determinations of various non-

conducting materials such as silicate glasses and minerals (e.g. Gao et al., 2002; Jackson et al., 

1992; Jackson et al., 2004; Jochum and Willbold, 2006; Jochum et al. 2007; Yuan et al., 2004). 

The analysis of semi-conductors and conductors remains challenging due to  the heat-effected 

zone surrounding the laser ablated crater, leading to material redistribution (e.g. Bleiner and 

Graser, 2004; Košler et al., 2005). Many studies have investigated strategies to overcome these 

limitations for nanosecond laser ablation, with the conclusion that problems have to be solved 

individually for each specific application. Recent analytical developments in laser ablation favor 

the use of ultra-short pulses with a pulse width in the femtosecond range (1 fs = 10-15 s). fs 

pulses exhibit a different ablation behavior when compared to ns pulses having the potential to 

diminish many limitations previously observed during laser ablation. So far, only a few 

laboratories utilize femtosecond laser ablation systems either in conjunction with quadrupole 

ICP–MS for minor and trace element analysis or multiple collector ICP-MS (MC-ICP-MS) for 

the determination of isotope ratios. Recent studies illustrate the analytical potential of applying 

ultra-short pulses in the near infra-red (NIR) to UV range in laser ablation (see reviews of 

Fernández et al. (2007) and Horn (2008)). 
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1.2.1. Comparison between femtosecond and nanosecond laser ablation 

Ablation encompasses a sequence of processes: the deposition of the laser energy onto the solid 

sample, phase transformation of the laser affected material, ejection of the material from the 

sample surface and expansion of the plasma plume. For ns pulses, these processes overlap in 

time and consequently influence one another, whereas for fs pulses, the energy deposition ends 

before the material starts to react to the incoming pulse. The differences in material removal 

using fs pulses and ns pulses can be understood by considering the interaction of laser 

irradiation and sample material, which has been reviewed by Hergenröder et al. (2006a) (see 

also for references). The deposition of laser energy into any material is always mediated by 

electrons. An incoming electromagnetic wave in the form of a short pulse of light with a 

wavelength in the UV to near IR range excites the electrons, which transfer the energy via 

collision to the lattice, attaining thermodynamic equilibrium after ~10 ps (10-12 to 10-11 s) . This 

describes the boundary between thermal and non-thermal pathways and establishes the 

fundamental difference between ns and fs pulses for laser ablation, which is visible in crater 

morphology (Figure 1.3). 

  

 
Figure 1.3 Laser spots in pure iron of about 35 μm diameter using ns and fs pulses. A) Laser 
spot using an Eximer laser with a wavelength of 193 nm and a pulse width of 12 ns (ETH 
Zürich). The molten bottom of the crater, the high crater rim and the spherical particles around 
the crater are evidence for significant melting during ablation. B) Laser spot using a Ti:Sapphire 
regenerative amplifier system with a wavelength of 196 nm and a pulse width of ~200 fs 
(Leibniz Universität Hannover). Evidence of melting is not observed. The heterogeneity of the 
crater bottom reflects the heterogeneous energy distribution of the laser beam. C) Spot after ~ 
10 pulses using the same laser setup. The imprint of so-called Newton Rings reflects an 
interference pattern of the laser beam caused by apertures in the laser system. 

A B C 

ns fs fs
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Two-temperature model 

The difference between ns and fs pulses in the pathway of energy deposition into the material 

can be described by the two-temperature model, considering electrons and lattice as separate 

systems (e.g. Nolte et al., 1997). The energy of the laser irradiation is absorbed by free electrons 

without affecting the lattice. The time-scale of energy relaxation within the electrons is much 

shorter (~10-15 s) than the time necessary to transfer the energy to the lattice (10-12 to 10-11 s). As 

a result electrons and lattice are ascribed to two different temperatures. This is significant when 

applying pulses with pulse width of ~100 fs, as the laser irradiation is over before electrons and 

lattice attain thermal equilibrium. Energy deposition using ns pulses is much slower, therefore 

electrons and lattice are considered to have reached their equilibrium temperature during laser 

irradiation, and thermal diffusion in the lattice is significant carrying the energy away from the 

irradiated volume into the bulk material. 

Ablation mechanisms 

The ablation mechanism for ns and fs pulses always includes more than one process (e.g. 

Lorazo et al., 2006). While thermal pathways dominate the ns ablation process, non-thermal 

pathways are considered to be significant during the fs ablation process. Based on modeling, the 

ns ablation process occurs in thermodynamic equilibrium as the energy deposition on the laser-

irradiated spot is limited. Thermal diffusion distributes the energy to the bulk material. The 

incoming pulse interacts with the expanding plume as the onset of material removal takes places 

during the pulse after 1 to 100 ps. This phenomenon is known as plasma shielding and limits the 

energy transfer onto the sample surface (Mao and  Russo, 1997; Mao et al., 1996). Both thermal 

diffusion and plasma shielding limit the attainable energy density on the sample surface. The 

ablation process for ns pulses follows pathways in thermodynamic equilibrium from solid 

through liquid into a plasma state (pathway 1 in Figure 1.4). The long duration of the pulse 

initiates melting of the material and affects the material around the ablation crater, known as 

‘heat-effected’ zone, which in turn leads to non-stoichiometric ablation.  For metals, this ‘heat-

effected’ zone would be approximately 1 μm (Hergenröder et al., 2006). 
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Figure 1.4  Schematic illustration of the dominant thermodynamic pathways for ns pulses (red) 
and fs pulses (blue) in a temperature-density phase diagram of silicon (modified after Lorazo et 
al. (2006)): 1) normal vaporization and boiling, 2) explosive phase separation/explosive boiling, 
3) critical-point phase separation/spinodal decomposition and 4) ‘non-trivial’ fragmentation. 
The dashed line represents the binodal curve, which is the boundary between a one-phase and a 
two-phase regime. The dotted line is the spinodal curve, which describes the boundary to the 
absolute mechanical instability. The zone between the binodal and spinodal curve is the 
metastable zone. S = solid, L = liquid, V = vapour, CP = critical point, SF = supercritical fluid 
(T > Tcritical

 , σ > σcritical). See text for details. 
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The fs ablation process involves non-thermal pathways. The deposition of the laser energy ends 

before electron-lattice equilibrium is achieved and material removal occurs, therefore thermal 

diffusion and plasma shielding is considered to be negligible. This provides a high 

concentration of the energy onto the irradiated material turning the ablation processes away 

from thermal pathways. The material is heated isochorically to temperatures in the range of ~104 

K within the supercritical regime generating a high internal pressure gradient. Subsequently, 

adiabatic cooling promotes homogeneous expansion of the material until the onset of the 

material removal (pathways 2 to 4 in Figure 1.4). The short pulse duration allows full energy 

deposition on the irradiated spot, which initiates material removal under thermodynamic 

disequilibrium promising a way to stoichiometric ablation. The laser-effected zone around the 

crater is less than several 10’s of nm, even for metals with a high thermal diffusivity 

(Hergenröder et al., 2006). 

Although, it is clear that material removal during fs pulses differs significantly from that of ns 

pulses, the underlying mechanisms are still subject of intensive investigation. As experimental 

measurements of transient parameters such as temperature and pressure during ns and fs pulses 

are highly challenging, most efforts have been concentrated on theoretical approaches using 

molecular dynamics simulations to explore the ablation mechanisms of semi-conductors and 

conductors (e.g. Bouilly et al., 2007; Cheng and Xu, 2005; Lorazo et al., 2006; Miotello and 

Kelly, 1999; Perez and Lewis, 2003; Zhigilei and Garrison, 2000; Zhigilei, 2003). In the 

following paragraph, the general mechanisms of material removal are summarized based on the 

aforementioned references. Depending on the laser fluence and pulse width, the following 

ablation mechanisms may take place (see Figure 1.4): 

1. Normal vaporization and boiling 

2. Explosive phase separation (explosive boiling) 

3. Critical-point phase separation (spinodal decomposition) 

4. “Non-trivial” fragmentation 

5. Photomechanical spallation 

Normal vaporization and boiling are dominant processes governing ns ablation (pathway 1 in 

Figure 1.4). The sample material is heated slowly, reaching thermodynamic equilibrium. 

Heating of the material follows therefore the solid-liquid and liquid-vapor phase boundaries 

along the binodal curve. Normal vaporization occurs on the outer surface of the sample material, 

where atoms of the outer layer pass into the vapor phase. Normal boiling involves the 

heterogeneous formation of vapor bubbles in the liquid phase at boiling temperature, which 

escape by diffusion. The material is removed by heterogeneous melting and vaporization. 
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Explosive phase separation or explosive boiling refers to the explosion-like relaxation of a 

supercritical liquid (pathway 2 in Figure 1.4). This process appears to be significant at high 

energy densities (> 1011 W/cm2) either reached by high fluence (> 400 J/cm2) (Lu et al., 2002) 

or ultra-short pulses. As these extremely high fluences are not achievable by commercially 

available nanosecond laser ablation systems, this process seems to be only a dominant pathway 

for fs pulses with fluences between ~0.2 to 1.5 J/cm2. It is predicted that the material undergoes 

a rapid transition from an overheated liquid to a mixture of vapor bubbles and liquid droplets. 

After heating of the surface region into the subcritical state by laser irradiation, the superheated 

liquid undergoes rapid adiabatic cooling by expansion into the liquid-vapor regime entering the 

metastable region. Highly localized thermal fluctuations cause density fluctuations, which 

causes homogeneous nucleation of a stable vapor phase in the metastable liquid phase.  

Critical-point phase separation or spinodal decomposition (pathway 3 in Figure 1.4) is a 

principal ablation mechanism for fs pulses at high fluence (> 1.5 J/cm2). As a result of an 

extraordinary heating rate, the material exceeds the critical temperature and turns from the solid 

phase into a supercritical liquid. Phase separation occurs in the unstable zone, which is entered 

close to the critical point by adiabatically cooling.     

“Nontrivial” fragmentation may occur at high fluence (> 1.5 J/cm2) for fs pulses. In this case, 

the onset of ablation occur in the supercritical regime above the critical point (temperature T > 

Tcritical
 , density σ > σ critical) and hence cannot be ascribed to any phase transition. The high 

pressure gradient that builds up in the material by rapid isochoric heating causes rapid 

expansion of the initially homogeneous material. This leads to a heterogeneous clustered fluid 

through a ‘nontrivial’ fragmentation process. 

Photomechanical spallation might play a role at near-threshold fluence for ablation (for fs 

pulses: ~0.05 J/cm2) or in inhomogeneous materials, i.e. polycrystalline samples. The incoming 

laser irradiation generates tensile stress in the target, which can lead to subsurface cavitation and 

mechanical fracturing followed by ejection of large, irregular shaped particles. 

Particle characteristics 

The generation of particles by laser ablation, their size distribution and the chemical 

composition are of particular interest as the complexity of related elemental and isotope 

fractionation involving laser-, transport- and ICP-induced phenomena are common limitations 

for laser ablation analysis (e.g. Guillong and Guenther, 2002; Jackson and Guenther, 2003; 

Jeong et al., 1999; Koch et al., 2002; Koch et al., 2004; Kozlov et al., 2003; Outridge et al., 

1997). Laser-induced fractionation refers to the formation of particles by laser ablation, which 
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differ in their bulk composition from the sample material. This means that the ablation 

mechanism is non-stoichiometric. Transport- and ICP-related fractionations are related because 

both types are significant if large particles contribute to the aerosol. During transport from the 

ablation site to the ICP, selective particle deposition occurs due to gravitational settling and 

inertial deposition. Diffusion into the wall-material of the transport tube might be a factor for 

very small particles (e.g. Koch et al., 2004). ICP-induced fractionation results from incomplete 

vaporization of particles. Therefore the specific characteristics of an aerosol have a significant 

impact on the accuracy and precision of the analytical method. 

In general, aerosols consists of particles with a size roughly between 10 nm and 10 μm (see 

overview of Hergenröder (2006a) and references therein). Two types of particles can be 

distinguished: single solid, often spherical particles, and agglomerates of much finer nm-sized 

particulates (e.g. Perdian et al., 2008). Typically, particles generated by ns pulses show a 

bimodal size-distribution with the smaller fraction of ~10 nm in diameter and the larger fraction 

in the μm range. This indicates at least two distinct mechanisms of particle formation. 

Depending on the matrix, the overall composition of the aerosol can differ significantly from the 

bulk sample material, an effect, which is pronounced when analyzing conductors (Jackson and 

Guenther, 2003; Kuhn and Guenther, 2003; Liu et al., 2004; Outridge et al., 1996; Outridge et 

al., 1997). Using fs pulses, the generated particles are much smaller, largely between 10 and 100 

nm, and of a monomodal size-distribution. Recently, the use of fs pulses for ablation has proven 

to be a way to generate stoichiometric aerosols (Koch et al., 2004; Koch et al., 2005; Koch et 

al., 2006; Perdian et al., 2008).  

Generation of particles. The principle mechanisms of particle generation have been reviewed 

by Hergenröder (2006a) and include formation of particles from vapor, hydrodynamic 

sputtering, phase explosion and mechanical spallation. Particle formation processes are 

investigated by experimental studies and theoretical approaches, but actual the mechanisms are 

still not completely understood. Small particles (10 to 100 nm) appear to be formed from vapor 

in the expanding plume after ablation (Bäuerle, 2000; Hergenröder, 2006b; Noël et al., 2007). 

Rapid expansion promotes a decrease in pressure and temperature, which leads to nucleation 

and condensation in the supersaturated vapor state. Subsequent coagulation and coalescence of 

liquid droplets result in particles with a size of a few nm. This mechanism is considered to be 

the dominant process for the formation of particles with a diameter of less than 100 nm for 

nanosecond as well as for femtosecond laser ablation (Koch et al., 2004; Luk'yanchuk et al., 

1998). The prevailing formation of large spherical particles (μm-size) is related to 

hydrodynamic sputtering (Hergenröder, 2006c; Webb et al., 1997). This process refers to the 
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interaction of the expanding plume after ablation with a molten layer in the crater. The lateral 

expansion of the ablated material causes a surface tension effect in the liquid layer, which result 

in splashing of large particles. Efficient melting of the sample material occurs during ns pulses 

but is minimized when using fs pulses, suppressing this effect. Other mechanisms may also 

produce large particles when using fs pulses. Phase explosion potentially generates both small 

and large particles due to explosion-like relaxation of a supercritical liquid, which produces a 

mixture of droplets and vapor (Koch et al., 2004). Such an aerosol is likely for fs pulses at high 

fluence (Koch et al., 2004; Perez and Lewis, 2003; Russo et al., 2002). Large, irregular shaped 

particles are contributed by mechanical spallation, which is especially pronounced when 

ablating inhomogeneous materials (e.g. Brailovsky et al., 1995; Webb et al., 1997). 

Size distribution and chemical composition. Particle size distribution becomes relevant in light 

of particle size-dependent chemical compositions and the efficiency of transport and 

disintegration of large particles in ICP. The particle-size distribution and composition of the 

aerosol depends on many parameters including laser wavelength, fluence, pulse duration, 

sample material, carrier gas and the acquisition time and consequently the depth of the ablation 

crater (Amoruso et al., 2007; Eggins et al., 1998; Guillong and Guenther, 2002; Guillong et al., 

2003; Horn and Guenther, 2003; Horn et al., 2001; Koch and  Guenther, 2007; Koch et al., 

2004; Koch et al., 2005; Koch et al., 2006; Kuhn and Guenther, 2004; Liu et al., 2004; Russo et 

al., 2000; Russo et al., 2002; Vadillo and  Laserna, 2004). Wavelength has a major impact on 

the particle size distribution using ns pulses. The change from IR to the UV range reduces 

particle size-related fractionation, which is attributed to the generation of smaller particles 

(Guillong et al., 2003; Horn et al., 2003; Telouk et al., 2003). For fs pulses however, the particle 

size distribution appears to be largely independent of wavelength (Koch et al., 2006).  

Compative studies have revealed significant differences in the aerosols produced by 

femtosecond and nanosecond laser ablation of brass (Koch et al., 2004; Liu et al., 2004; 

Margetic et al., 2000; Margetic et al., 2001; Saetveit et al., 2008). Brass alloys are commonly 

chosen to investigate the properties of an aerosol because of the different thermal properties of 

Zn and Cu. In the study by Koch et al. (2004), particle size distribution and chemical 

composition have been evaluated using low pressure impaction and total reflection X-ray 

fluorescence (TXRF), respectively. The most promising results for reducing particle size-related 

fractionation effects have been obtained with NIR femtosecond laser ablation at low fluence (< 

5 J/cm2) using He as carrier gas. The ultra-fine aerosol shows a monomodal particle size 

distribution with a peak at 10 nm. The overall Cu/Zn ratio of this aerosol reflects the 

composition of the sample material, which indicates stoichiometric ablation. At high fluence (> 
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10 J/cm2), femtosecond laser ablation generates a bimodal aerosol with peaks at 20 nm and 1 

μm and a total Cu/Zn ratio which slightly differs from the bulk material. Similar particle-size 

distributions and stoichiometric aerosol composition have been determined for brass alloys and 

silicate glass by Koch et al. (2005), Liu et al. (2004), Saetveit et al. (2008) and Wälle et al. 

(2008). In comparison, the study by Koch et al. (2004) shows that nanosecond laser ablation 

produces a typical bimodal aerosol, consisting of nano-size and μm-size spherical particles, with 

a significant portion of particles larger than 100 nm. The total Cu/Zn ratio diverges significantly 

from the sample material indicating non-stoichiometric ablation. Common to fs and ns pulsed 

ablation is that small particles tend to be enriched in volatile elements, while large particles are 

depleted in them (Koch et al., 2004; Liu et al., 2005). However, particle size-dependent 

variations in chemical composition are more pronounced in aerosols produced by ns pulses, as 

is to be expected considering the different mechanisms of particle generation discussed above. 

In general, fs pulses produce mostly particles and agglomerates ranging between 10 and 100 

nm. This type of aerosol can be transported over long distances (Arrowsmith and  Hughes, 

1988). Experimental studies show, that the transport efficiency of ultra-fine aerosols released by 

femtosecond laser ablation is close to 100%, regardless of the ablation cell geometry and the 

carrier gas used, which enhances signal intensity and stability in ICP-MS (Garcia et al., 2008a; 

Garcia et al., 2008b; Gonzalez et al., 2006; Koch et al., 2004; Koch et al., 2008; Liu et al., 

2004). All these features lead to a significant improvement in precision and accuracy for 

elemental and isotope analysis using femtosecond laser ablation over commonly employed 

nanosecond laser ablation systems.  

1.2.2. Element and isotope fractionation during laser ablation ICP-MS 

Non-stoichiometric effects, if present, are a severe drawback of laser ablation limiting the 

obtainable accuracy and precision. Elemental and isotope fractionation during laser ablation 

includes progressively changing elemental and isotope ratios in the course of an analysis, and 

matrix-dependent elemental or isotope ratios. Fractionation can occur during the ablation 

process, the transport of the aerosol to the ICP source and the excitation process in the ICP 

(Figg et al., 1998; Guillong and Guenther, 2002; Jackson and Guenther, 2003). Several 

processes have been associated with elemental and isotope fractionation during nanosecond 

laser ablation (see overview by Sylvester (2008)): redistribution of material within the heat-

effected zone around the crater (e.g. Košler et al., 2005), preferential vaporation of volatile 

elements at the ablation site (e.g. Hergenröder, 2006d), preferential condensation of refractory 
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elements at the crater wall (e.g. Eggins et al., 1998), differential transport of particles with size-

dependent composition from the ablation site to the ICP (e.g. Koch et al., 2002), non-congruent 

vaporization of large incompletely atomised particles in the ICP (e.g. Guillong et al., 2003), and 

ion-load-dependant mass discrimination in the ICP-MS (e.g. Kroslakova and Guenther, 2007). 

Recent investigations demonstrate that these laser-related fractionation processes are 

significantly reduced or even undetectable when using fs laser ablation. 

Laser-induced elemental fractionation  

The first type of fractionation results from different ablation characteristics of siderophile, 

chalcophile, lithophile and hydrophile elements (e.g. Longerich et al., 1996). Volatile elements 

evaporate preferentially into the carrier gas. This effects mainly siderophile elements, e.g. Zn, 

Pb, Au, Tl, while refractory elements, e.g. Ca, Th, U, the rare earth elements (REE) and high 

field strength elements (HFSE), are mobilized less efficiently. The different ablation behavior is 

related to the condensation temperatures derived from studies of meteorites. With increasing 

crater depth, the transport efficiency of refractory elements decreases due to condensation at 

high temperatures, whereas volatile elements remain preferentially in the gas phase and are 

transported more efficiently to the ICP. Therefore the ratio of a volatile element to a refractory 

element evolves from its true ratio to significant higher values during the course of a spot 

analysis. This fractionation effect has been studied extensively for the determination of the Pb/U 

ratio using nanosecond laser ablation as it limits the precision for applications in geochronology 

(e.g. Hirata and Nesbitt, 1995; Hirata, 2003; Horn et al., 2000; Jackson et al., 2004; Košler et 

al., 2001; Longerich et al., 1996). For a spot analysis, the Pb/U ratio increases up to 100% 

within an acquisition time of 100 s. Possible solutions to this problem are the use of short 

ablation times, the raster-mode or spot analysis, which are corrected by external calibration or 

mathematical approaches (e.g. Horn et al., 2000; Horstwood et al., 2003; Košler et al., 2001; 

Simonetti et al., 2005; Sláma et al., 2008). Laser-induced fractionation is significantly less 

prominent or even undetectable when using fs pulses in the NIR to UV range (Freydier et al., 

2008; Hirata and Kon, 2008; Horn and von Blanckenburg, 2007; Koch et al., 2006; Poitrasson et 

al., 2003; Russo et al., 2002). Wavelength and repetition rate seem to have no effect on the 

precision but fluence appears to have a significant influence. Best results have been obtained by 

Horn and von Blanckenburg (2007) with a precision of 0.2% (2 SD) for the 206Pb/238U ratio. The 

authors used a 196 nm fs laser abation system at a fluence of 1.5 J/cm2 coupled to a MC-ICP-

MS equipped with Faraday detector array (1011 Ω resistor). The Zn/Cu ratio is also commonly 

used to characterize this type of fractionation as it behaves in the same way as the Pb/U ratios. 
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While the Zn/Cu ratio is increased over the true ratio of the sample using nanosecond laser 

ablation, it approaches the true ratio for femtosecond laser ablation (Cromwell and Arrowsmith, 

1995; Koch et al., 2004; Liu et al., 2005; Mao et al., 1998; Saetveit et al., 2008). However, the 

obtainable precision for this ratio appears to be fluence-dependent. The best results were 

obtained at low fluences (< 5 J/cm2)  (Koch et al., 2004). 

Particle-size related elemental fractionation in the ICP  

Particle-size fractionation is related to incomplete disintegration of the aerosol in the ICP. 

Ionisation efficiency and the degree of fractionation depends mainly on particle size and particle 

composition, but temperature and particle trajectory in the ICP have also an effect (Aeschliman 

et al., 2003; Guillong and Guenther, 2002; Olesik, 1997; Perdian et al., 2008; Wang et al., 

2006). Fractionation occurs for the incongruent disintegration of a particle, which leads to 

continuous preferential vaporation of a certain element compared to another element. Although, 

the average residence time of an particle in the ICP is as short as 1 ms, there is evidence that 

particles obtain a time-dependent chemical- and isotope compositions when passing the ICP 

(e.g. Wang et al., 2006). This type of fractionation is commonly investigated by determining 

U/Th ratios as both elements possess very similar first ionisation potentials and atomic masses. 

During the course of a spot analysis, ns pulses generate an aerosol evolving from a wide range 

in particle size with large particles of up to several μm to a more confined distribution of 

significantly smaller particles, which strongly depends on the wavelength (Guillong and 

Guenther, 2002; Guillong et al., 2003). Incomplete ionisation in the ICP at the beginning of the 

analysis leads to a significant increase in the U/Th ratio of up to 200%, converging to the true 

ratio with continuing ablation (e.g. Gonzalez et al., 2008; Guillong and Guenther, 2002; Koch et 

al., 2004; Kuhn and Guenther, 2003; Kuhn et al., 2004). In contrast, fs pulses, independent of 

the wavelength, produce particles which are small enough to prevent this type of fractionation, 

resulting in a constant and accurate U/Th ratio over the acquisition time (Gonzalez et al., 2008; 

Hirata and Kon, 2008; Horn and von Blanckenburg, 2007; Koch et al., 2006). 

Isotope Fractionation during laser ablation ICP-MS 

Potential sources of artificial isotope fractionation using laser ablation coupled to ICP-MS have 

been discussed by Horn and von Blanckenburg (2007) and Horn (2008). Laser-induced isotope 

fractionation at the ablation site could be related to preferential vaporization of light isotopes, 

whereas heavy isotopes might preferentially condense within the laser crater (Jackson and 

Guenther, 2003; Norman et al., 2006). However, this effect seems unlikely, because the 
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formation of particles with a high mass prevents significant kinetic isotope effects. Particle size-

related isotope fractionation in the ICP, a mechanism similar to elemental fractionation, is the 

most likely process. The incomplete ionization of large particles in the ICP might result in 

strong kinetic isotope fractionation, which lead to the preferential evaporation of light isotopes 

(Horn and von Blanckenburg, 2007; Jackson and Guenther, 2003; Norman et al., 2006). 

Continuous kinetic fractionation occurs at simultaneous vaporation of light isotopes from the 

particle surface and a resupply by diffusion maintaining isotopic homogeneity in the particle. If 

the redistribution of isotopes by diffusion is ineffective, kinetic effects dominate only initially 

and the particle remains unfractionated. Consequently the significance of kinetic fractionation 

depends on the diffusion coefficient, a material property and is therefore matrix-dependent. 

Aerosols generated by ns pulses are characterized by a particle size distribution with large 

particles shifting towards smaller particles in the course of a spot analysis. This predisposes ns 

pulses towards this type fractionation, resulting in a transient isotope ratio. In contrast, the ultra-

fine aerosols generated by fs pulses likely prevent this type of fractionation. Another potential 

fractionation effect is related to the space charge effect in the ICP, which is influenced by the 

ion plasma load. A high ion plasma load forces the preferential extraction of heavy isotopes into 

the skimmer cone of the mass spectrometer (e.g. Kroslakova and Guenther, 2007).  The quantity 

of ablated material decreases for both ns and fs spot analysis, which leads to a change in the ion 

plasma load and can result in changing isotope ratios. Variation in the fraction of particle 

ionisation for ns ablation might amplify this effect, whereas particles of fs ablation appear to be 

completely ionisied. Heavy stable isotope ratios, i.e. Mg, Fe, Cu and Si have been determined 

by ns and fs laser ablation systems coupled to MC-ICP-MS, which provides insights into laser-

related isotope fractionation (Chmeleff et al., 2008; Graham et al., 2004; Hirata and Kon, 2008; 

Horn and von Blanckenburg, 2007; Horn et al., 2006; Ikehata et al., 2008; Jackson and 

Guenther, 2003; Košler et al., 2005 ; Norman et al., 2006; Shahar and Young, 2007; Young et 

al., 2002). The determination of heavy stable isotope ratios are challenging because their natural 

variations are in the order of parts per thousand, which demands highly precise and accurate 

analysis. 

A gradual increase of isotope ratios towards heavier compositions during ns spot analysis has 

been reported for the heavy stable isotope systems of Fe, Mg and Cu (Jackson and Guenther, 

2003; Košler et al., 2005; Norman et al., 2006), which supports particle-size related isotope 

fractionation in the ICP. To diminish artificial isotope fractionation for nanosecond laser 

ablation, raster-mode or line scans, matrix-matched calibration, filtering of the large particle 

fraction and large spot sizes have been applied for the analysis of Fe, Mg, Cu and Si isotope 
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ratios (Graham et al., 2004; Jackson and Guenther, 2003; Košler et al., 2005; Shahar and 

Young, 2007; Young et al., 2002). Significant improvements have been reported for the 

determination of Cu, Fe and Si isotope ratios using fs pulses (Chmeleff et al., 2008; Horn and 

von Blanckenburg, 2007; Horn et al., 2006; Ikehata et al., 2008; this study). For instance, fs spot 

analysis reveal constant Fe isotope ratios at transient signal intensities (Horn and von 

Blanckenburg, 2007). Precision and accuracy of isotope determination using femtosecond laser 

ablation have been characterized for the Fe and Si isotope systems by analyses of a variety of 

matrices using non-matrix matched calibration (Chmeleff et al., 2008; Horn et al., 2006; this 

study). Achievable precisions are ± 0.1‰ for 56Fe/54Fe  and ± 0.2‰ for 30Si/28Si, which are 

close to those for solution ICP-MS.  

1.2.3. Laser ablation instrumentation  

The UV fs laser ablation system is described in detail by Horn et al. (2006) and Horn and von 

Blanckenburg (2007) and is reviewed in this section (Figure 1.5). It is based on a 100 fs 

Ti:Sapphire regenerative amplifier system (Hurricane I, Spectra-Physics, USA) providing ultra-

short laser pulses in the IR spectrum. After frequency conversion into the UV spectrum the laser 

beam is steered into a New Wave Femto XP front end, which includes the sample stage with an 

8x objective, the ablation cell, and a visualization system. The ablated material is then 

transported by a carrier gas, He or Ar, to either a ThermoFinnigan Neptune MC-ICP-MS for 

isotope ratio measurements or to a Varian Vista Pro inductively coupled plasma optical 

emission spectrometer (ICP-OES) for element analysis. Instrumental parameters for Fe and Si 

isotope ratio analysis are given in Table 1.1. 

Femtosecond laser system  

The 100 fs Ti:Sapphire regenerative amplifier system (Hurricane I, Spectra-Physics, USA) is a 

compact computer-controlled assembly, which comprises a mode-locked Ti-sapphire 

femtosecond seed laser, a pulse stretcher and compressor, a Ti-sapphire regenerative amplifier 

and its pump laser. The Ti-sapphire femtosecond seed source is internally pumped by a 5 W 

Nd:YLF laser (Neodymium:Yttrium-Lithium–Fluoride), which is frequency-doubled to produce 

a wavelength of 532 nm resulting in an output wavelength tuneable from 775 to 785 nm. This 

range has been chosen instead of the factory default setting with a center wavelength of 800 nm 

in order to generate a frequency-quadrupled wavelength close to 193 nm, the ArF Excimer laser 

wavelength. The output is a pulsed seed beam with a repetition rate of 40 MHz, a pulse width of 
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~80 fs and a pulse energy of few nJ. In order to reach a useable pulse energy, the seed beam is 

injected into a regenerative amplifier, a Q-switched Ti-sapphire cavity, which is excited by a 10 

W internally frequency-doubled (532nm) Nd:YLF pump laser. The Ti-sapphire rod can be 

 
 
 
 
 

 
 
 
Figure 1.5 Schematic setup of the UV femtosecond laser ablation system at the Leibniz 
University of Hannover. The system consists of a compact 100 fs Ti:Sapphire regenerative 
amplifier system (Hurricane I, Spectra-Physics, USA), a frequency conversion setup, samples 
stages with visualisation units for the output beams with wavelength of 262 nm and 196 nm. 
The fundamental wavelength 1ω (785 nm) is partly frequency-doubled (2ω) and subsequently 
mixed with the second and third harmonics according to the schemes 1ω +2ω → 3ω (262 nm) 
and 1ω + 3ω → 4ω (196 nm). The laser ablation system can be connected either to a MC-ICP-
MS or ICP-OES. Abbreviations: WP = wave plate (adaption for type I frequency conversion); 
M = reflection coated mirrors; SHG, THG and FHG = second, third and fourth harmonic 
generators, respectively, which are type I BBO-crystals. 
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Table 1.1 
Instrumental parameters of UV fs LA-ICP-MS  
for Fe and Si isotope ratio analysis 
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pumped at relative high power without danger of damage but cannot handle the high peak 

power of fs pulses. Therefore, the ultra-short seed pulse needs to be temporally stretched to 

reduce power prior to amplification and subsequently recompressed. The pulse stretcher makes 

use of the fundamental relationship between pulse width and bandwidth. An ultra-short pulse 

exhibits a relatively broad wavelength range of about 20 nm. The stretching device consists of 

diffraction gratings, which delay the shorter wavelength (blue part) to the longer wavelength 

(red part) of the spectrum stretching the pulse over a longer time, which goes in hand with a 

reduction in pulse energy. Amplification occurs by passing of the stretched pulse multiple times 

through the excited Ti:sapphire rod. By rotating the polarisation direction through switching of 

a pockels cell in the amplifier, the strongest pulse of the pulse train is sent towards the 

compressor, which operates like a reversed stretcher to restore the pulse width to nearly its 

initial duration. The output of this system is an ~1.1 mJ/pulse at a pulse width of 100 fs and a 

wavelength of 785 nm. The repetition rate can be regulated from 1 to 1000 Hz. The laser beam 

exhibits a Gaussian intensity distribution.  

Frequency conversion  

The laser system delivers a beam in the IR spectrum with a fundamental wavelength of 785 nm, 

which is subsequently converted into the UV spectrum. Frequency conversion occurs in 

nonlinear optical crystals by sum frequency generation, in which two low-frequency photons 

with 1ω  and 2ω , respectively, are combined into a high-frequency photon with 3ω : 

321 ωωω =+  or  

321

111
λλλ

=+       (1.29) 

according to the relationships between angular frequency ω , wavelength λ , frequency f and 

speed of light c  of fc ∗= λ and fπω 2= .  

The implemented nonlinear optical crystals are type I BBO crystals (β-BaB2O4) (Figure 1.6). 

BBO crystals have the advantage of a broad phase-matching range, a large effective nonlinear 

coefficient and a high damage threshold. The relatively small acceptance angle and the large 

walk-off support high conversion efficiency. The acceptance angle defines the tolerance of the 

beam divergence relative to the phase-matching direction. The walk-off describes the 

divergence of the extraordinary wave relative to the ordinary wave in a nonlinear crystal. These 

conditions match the fundamental laser beam parameters as it has a very small divergence and 

needs not to be focused onto the crystal. In order to reach type I phase-matching on each single 



 49

BBO crystal, the polarization of input beams needs to be parallel within the phase-matching 

direction. Parallel polarization is maintained by wave plates, which are implemented in the 

beam path. These optical elements are used because the outgoing converted wavelength of a 

BBO crystal is tuned by 90° relative to the incoming wavelengths, which makes restoration of 

parallel polarization necessary for further frequency conversion by type I BBO crystals. 

 
Figure 1.6 Frequency conversion by a type I BBO crystal. The polarization of the two input 
laser beams of ω1 and ω2, respectively, is parallel, which is called type I phase-matching. The 
generated beam of ω3 is polarized perpendicular (y-axis) to the incoming beams. In contrast, 
input beams with polarizations perpendicular to each other demands crystals for type II phase-
matching. The BBO crystal can be rotated around its tilting axis (z-axis) to reach phase-
matching direction in order to optimise conversion efficiency. 
 
 

Within the first BBO crystal, the frequency is doubled resulting in a wavelength of 393 nm, 

with an efficiency of about 50%. By mixing of 393 nm and the fundamental wavelength of 785 

nm within the second BBO crystal, the third harmonics is generated with a wavelength of 262 

nm.  The total efficiency for the third harmonics is about 20%. However, it is not optimized in 

order to keep enough energy of the 785 nm beam to covert efficiently to the fourth harmonics. 

Using a time delay arrangement, 785 nm is mixed with 262 nm in a third BBO crystal to 

produce the fourth harmonics in the deep UV at 196 nm. The total frequency conversion 

efficiency is about 3%. The high reflection coated mirrors, which steer the laser beams are 

designed for a center wavelength of 266 nm and 193 nm, but can be utilized for 262 and 196 nm 

without significant loss of energy, since their bandwidths are significantly larger. The spot size 

can be varied continuously from 35 down to 2 μm in diameter by an iris, which is placed at a 

distance of 2 m to sample surface to generate a 100 fold demagnification ratio. The system 
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provides two usable laser beams for ablation in the UV range, at 262 nm with a pulse energy of 

0.25 mJ/pulse and at 196 nm with a pulse energy of 0.02 mJ/pulse. The pulse width is controlled 

by the intensity autocorrelation technique, which is a method to measure the pulse by itself.  For 

this process, the 785 nm beam is split in two pulses and one is delayed with respect to the other. 

Then, the two pulses are recombined and spatially overlapped in a SHG crystal (SHG = second 

harmonic generation) resulting in a frequency converted symmetrical signal. By recording the 

delay versus the signal by means of a CCD array (Charge Coupled Device), the so-called 

autocorrelation length, which is defined as the full width at half maximum (FWHM) of the 

signal, can be determined using an oscilloscope. The approximate pulse width can then be 

calculated with the knowledge of the temporal shape of the pulse, which has a Gaussian 

distribution. Frequent measurements after frequency conversion to the fourth harmonics of the 

785 nm beam have revealed pulse widths between 100 and 120 fs showing that the original 

pulse width measured at 100 fs using autocorrelation is preserved during frequency conversion. 

Because autocorrelation makes use of the second harmonic generation, which demands a high 

pulse energy and nonlinear optics availability, the pulse width of a beam in the UV spectra 

cannot be determined. Further optical elements, which deliver the beam to the sample surface 

include high reflection coated mirrors, an 8 x objective comprised of 5 lenses, and the fused 

silica window of the sample cell, which may stretch the pulse width slightly; it might be 

doubled to ~200 fs by this process. The working distance from the objective to the sample 

surface is about 20 mm. 

Ablation cell  

The ablation cell was designed to minimize volume while maintaining maximum area. This 

reduces wash-out times and allows mounting of a standard-size thin section together with 

calibration standards, which is essential when using the standard sample bracketing technique. 

The volume of the cell is 25 cm3. The cell is made of pyrex with a transparent bottom for 

transmitted light microscopy and an integrated fused silica window in the lid for beam delivery. 

This also permits the use of reflected light microscopy. To guarantee optimal transport of the 

aerosol the cell has three gas inlets with a nozzle size of 0.5 mm and one outlet of 6 mm in 

diameter.  
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1.3. Precambrian Iron Formation 

1.3.1. Nature and depositional environment of iron formations 

Precambrian iron formations are prominent chemical sediments consisting generally of 

alternating Fe-rich and Si-rich layers (see recent overviews of Beukes and  Gutzmer (2008), 

Clout and  Simonson (2005), Klein (2005) and Trendall (2002)). Their peak of deposition at 

around 2.4 Ga correlates with major changes in the Earth’s history such as the rise of oxygen in 

the atmosphere, the change from anoxic to oxic conditions in the ocean and the evolution of life. 

Therefore, iron formations represent an extraordinary record of ancient environmental 

conditions and have been used as proxies to infer oceanic and atmospheric chemistry and their 

redox conditions, seafloor hydrothermal activity, and the activity of early microbes.  

Iron formations are preserved within all major Precambrian shield areas and were deposited 

mainly from 3.8 through 1.8 Ga but reoccur from 0.8 to 0.6 Ga. Most Archean iron formations 

are associated with greenstone belts with close spatial and temporal relationship to volcanism 

(Simonson and Hassler, 1996) and are classified as ‘Algoma-type’ (Gross, 1973). Usually, 

theses iron formations are small tectonically deformed deposits, which have been 

metamorphosed to various grades and dismembered. In the Proterozoic, laterally extensive iron 

formation sequences were deposited on partially isolated platforms on the continental shelf 

regions of Archean cratons representing  the ‘Superior-type’ of Gross (1973). These deposits are 

usually well-preserved, and minimally deformed and metamorphosed. The reoccurrence of iron 

formations in the Neoproterozoic is considered to have occurred as a result of anoxic conditions 

resulting from an ice-covered ocean, referred to as ‘Snowball Earth’. They are associated with 

glacio-marine deposits and represent the ‘Rapitan-type’ (Gross, 1973).  

Iron formations exhibit a large spectrum of textural and mineralogical rock types with lateral 

and vertical facies variations. Many Precambrian iron formations, especially those of Archean 

age, are laminated and lack detrital components indicating a low-energy, basinal marine 

environment (< 200m) detached from terrigeneous influence by some form of physical barrier 

(e.g. Garrels, 1987; Trendall and  Blockley, 1970). These deposits are typical banded iron 

formation (BIF) deposited as orthochemical muds. Layering is observed on various scales from 

coarse macrobands (units of meters in thickness) through mesobands (several centimeter thick 

layers) to microbands (lamination in the order of millimeters) (Trendall and  Blockley, 1970). 

Some of the Proterozoic iron formations feature a granular texture containing oolites, granules 
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and other fragments embedded in a matrix, which is associated with high-energy, subtidal 

environments on platform areas (e.g. Gross, 1972). Except for the Neoproterozoic iron 

formations, the chemical composition is relative uniform with total Fe of about 20 to 40 wt.%, 

SiO2 of 43 to 56 wt.%., CaO of 1.75 to 9.0 wt.%, MgO of 1.20 to 6.7 wt.% and very low Al2O3 

of 0.09 to 1.8 wt.% devoid of detrital material (Klein, 2005). In general, the organic carbon 

content is low ranging from 0.01 to 0.20 wt.% with oxide-rich iron formations having higher 

organic carbon concentrations than siderite-rich iron formations (Beukes et al., 1990; Kaufman 

et al., 1990; Klein and Beukes, 1989; Klein and Beukes, 1993; Klein and Ladeira, 2004). Major 

mineral phases in low-grade metamorphosed iron formations consist of chert (microcrystalline 

quartz), magnetite, hematite and carbonates including siderite and members of dolomite-

ankerite series. Most common iron-silicates are greenalite, stipnomelane and minnesotaite, with 

pyrite occuring occasionally. Depending on the major Fe-bearing mineral phase, iron formations 

are classified as oxide, carbonate and silicate facies with several mixed facies. 

Fe and Si are the most abundant elements in iron formations, making fractionation of their 

isotopes ideally suited to exploring ancient environmental conditions and reconstructing the 

Precambrian Fe and Si geochemical cycles. Although Fe and Si have been deposited 

simultaneously in iron formations, the question of to what extent they have followed common 

pathways is still open. In the following sections, the ancient Fe and Si cycles during iron 

formation genesis are roughly outlined together with the available Precambrian Si and Fe 

isotope record. 

1.3.2. Geochemical Si cycle during iron formation deposition and the Precambrian Si 

isotope record 

Although most iron formations contain more SiO2 than total Fe, little attention has been paid to 

the Precambrian geochemical Si cycle (see reviews of Siever (1992), Perry and  Lefticariu 

(2003) and Maliva et al. (2005)). Nevertheless, it clearly differed from that of the Phanerozoic 

given that silica-secreting organisms (i.e. primary diatoms) were absent in the Precambrian 

ocean. Figure 1.7 shows a likely simplified Si cycle at the time of deposition of iron formation 

together with the Si isotope composition of main reservoirs as inferred from modern systems. 

The Si concentration likely reached saturation in Precambrian seawater. Depending on assumed 

temperature and pH conditions, estimates range between 60 and 120 ppm (e.g. Morris, 1993; 

Siever, 1992), which implies a long residence time on the order of 105 years in the Precambrian 

ocean. In contrast, the efficient Si precipitation by diatoms promote very low Si concentrations 
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in the modern ocean of 1 ppm or less (e.g. Perry and  Lefticariu, 2003; Siever, 1992). The origin 

of Si in the Precambrian ocean is controversial. Seafloor hydrothermal fluids and/or continental 

drainage are considered as potential sources (see discussion in Maliva et al. (2005)). 

Investigations of modern seafloor hydrothermal fluids indicate slightly negative δ30Si values 

(De La Rocha et al., 2000), however only two samples have been measured to date. The 

dissolved Si from continental drainage supply was controlled by weathering of igneous silicate 

minerals. Modern river systems, which are considered to reflect largely the weathering products 

of igneous rocks, reveal a mean δ30Si value of 0.8 ± 0.1‰ (1 SD, 4 rivers) (Georg et al., 2006). 

Therefore depending on the relative proportion of hydrothermal and terrigeneous input, the 

overall Si isotope signature of Si entering the Precambrian ocean might have been between 0 

and 0.8‰ in δ30Si. In the absence of biologically-mediated precipitation, the most likely Si 

removal process is direct precipitation of amorphous silica gel from seawater due to saturation 

(Maliva et al., 2005; Siever, 1992). Sorption of silica on clay minerals, Fe oxides, or organic 

matter could have played a role in nucleation and/or precipitation (e.g. Perry and  Lefticariu, 

2003; Siever, 1992). In contrast to the redox-sensitive element Fe, Si precipitation is 

independent from an oxidant and potentially occurred in the whole water column. While Fe-rich 

layers might reflect periods of intensive upwelling of Fe-rich water into the oxidizing upper 

water column, chert layers are thought to represent quiescent periods of Fe-poor background 

sedimentation (Morris, 1993). Chert within iron formations has negative δ30Si values ranging 

from -2.6 to -0.3‰, whereas other Precambrian marine siliceous deposits indicate a wider 

range, with δ30Si values up to 3‰ (André et al., 2006; Ding et al., 1996; Jiang et al., 1993; 

Robert and Chaussidon, 2006; van den Boorn et al., 2007; this study). Negative values are 

interpreted as hydrothermal signature, whereas positive δ30Si values may indicate an elevated 

temperature of the seawater, the influence of a continental source or precipitation from 

isotopically heavy seawater. Although Si isotope geochemistry still lacks accurately determined 

fraction factors, there is consensus that silica precipitation from solution favours isotopically 

light Si (Basile-Doelsch, 2006; Ziegler et al., 2005). Therefore ongoing precipitation might have 

driven the seawater composition to significant positive δ30Si values, which is estimated to be 

between 1.8 and 4.6‰ (De La Rocha and Bickle, 2005).  
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Figure 1.7 Simplified geochemical Si cycle during the deposition of iron formations and Si 
isotope compositions of the major reservoirs given as δ30Si values (see text for details). 

1.3.3. Geochemical  Fe cycle during iron formation deposition 

Figure 1.8 illustrates a simplified Fe cycle for the deposition of iron formations including the Fe 

isotope compositions of major iron reservoirs. Iron formations are thought to have been 

deposited within largely anoxic ocean basins containing a high concentration of dissolved Fe(II) 

(e.g. Holland, 1984), which is consistent with conditions of low atmospheric oxygen. The 

modern oxygenated ocean has a Fe concentration of ~0.05 ppb (Wu et al., 2001), which stands 

in marked contrast to estimated concentrations of 2 to 50 ppm for the Precambrian ocean 

(Canfield, 2005; Ewers, 1983; Sumner, 1997). The elevated Fe(II) inventory in the Precambrian 

ocean involves a long residence time in the order of between 105 to 106 years (Trendall, 2002) 

compared to about 70 to 140 years in the modern ocean (e.g. Bruland et al., 1994). Rare earth 

element patterns with pronounced positive Eu-anomalies and mantle-like Nd isotope signatures 

in iron formations indicate a seafloor hydrothermal Fe source (e.g. Bau and Dulski, 1996; Isley, 

1995; Jacobsen and Pimentel-Klose, 1988), possibly supplemented by continental drainage (e.g. 

Canfield, 1998). Modern mid-ocean ridge hydrothermal fluids exhibit δ56Fe values between -0.6 

and -0.2‰ (Beard et al., 2003; Severmann et al., 2004; Sharma et al., 2001) with higher values 
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corresponding to high Fe concentrations (Johnson et al., 2008a). Presumably higher 

Precambrian hydrothermal and heat fluxes (Bau and Möller, 1993) together with minimal 

oxidation rate close to the vent site under anoxic conditions might have promoted hydrothermal 

fluids with an Fe isotope composition closer to that of bulk oceanic crust, i.e. near-zero 

(Johnson et al., 2008a). The modern continental drainage appears to supply dissolved and 

colloidal Fe, mainly leached from soils, with slightly negative δ56Fe values between -1 and 0‰ 

(Bergquist and Boyle, 2006; Fantle and De Paolo, 2004). A higher proportion of Fe derived 

from weathering of igneous rocks and the absence of pronounced redox chemistry on 

Precambrian continents imply riverine supply with δ56Fe values of near-zero (Johnson et al., 

2008a; Yamaguchi et al., 2005). Therefore, the overall Fe source composition might have had 

an Fe isotope composition of near-zero, which is also assumed for the ancient seawater 

composition (e.g. Johnson et al., 2008a). The large inventory of Fe oxides in iron formations 

requires oxidation in a largely anoxic environment, which is generally explained with a 

stratified ocean model (e.g. Anbar and Knoll, 2002; Canfield, 1998; Klein and Beukes, 1989; 

Morris, 1993). Upwelling of Fe(II)-rich deep water in continental shelf regions (e.g. Klein and 

Beukes, 1989) or buoyancy of hydrothermal plumes (e.g. Isley, 1995) might transport Fe(II) to 

the upper ocean, where it is oxidized and subsequently precipitated as ferric oxyhydroxide. 

Three mechanisms are discussed in the literature for oxidation of Fe(II) to Fe(III): oxidation by 

free oxygen (e.g. Drever, 1974; Holland, 1973), by anaerobic photosynthesis (e.g. Konhauser et 

al., 2002; Widdel et al., 1993), and by UV photochemical oxidation (e.g. Cairns-Smith, 1978). 

Recently, experimental investigations of Konhauser et al. (2007) have excluded the latter as a 

process for efficient oxidation. The two proposed processes involve micro-organisms. During 

oxygenic photosynthesis, cyanobacteria or their predecessors use water as electron donator and 

release oxygen, which in turn oxidizes Fe(II) to Fe(III). Alternatively, during anaerobic 

photosynthesis, bacteria play a more active role by utilizing Fe(II) as electron donor generating 

Fe(III).  

Fe(III) has a low solubility in water, which promotes precipitation of ferric oxyhydroxide. 

Besides ferric oxyhydroxide, siderite might be a primary phase (e.g. Klein and Beukes, 1989; 

Sumner and Grotzinger, 2004; Sumner, 1997; Tice and Lowe, 2004). The concentration of 

dissolved Fe(II) may increase with depth in a ocean basin, which slows down calcite 

precipitation and triggers supersaturation of siderite. Siderite might have precipitated directly 

from seawater or formed at the water-sediment interface.  

After initial deposition of primary phases, diagenetic processes involve dehydration of the 

hydrous sediments, Fe mobilization and formation of diagenetic mineral phases. Microbial 
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dissimilatory Fe(III) reduction (DIR) coupled to organic carbon oxidation mobilizes Fe(II) 

during diagenesis. An estimated 70% of the Fe(III) precipitated initially might have been 

recycled to the seawater during this process (Konhauser et al., 2005). Investigations of modern 

marine sediments  have revealed Fe isotope compositions of pore waters ranging between –3.0 

and 0.4% depending on whether microbial dissimilatory Fe(III) or sulfate reduction dominates 

organic matter degradation (Bergquist and Boyle, 2006; Severmann et al., 2006).  

The Fe isotope compositions of Fe-bearing mineral phases in iron formations reflect these 

processes. Investigations of early and late Archean iron formations, the voluminous ~2.5 Ga 

iron formations from the Hamersley and Transvaal successions and the 1.9 Ga Biwabik Iron 

Formation, have revealed an overall range in δ56Fe for hematite from –0.9 and 0.8‰, magnetite 

yields δ56Fe values between –1.1 and 1.2‰, Fe carbonate ranges from –2.2 to 1.1‰, and pyrite 

exhibits δ56Fe values between –2.4 and 1.1‰ (Figure 1.8) (Dauphas et al., 2004; Dauphas et al., 

2007; Frost et al., 2007; Johnson et al., 2003; Johnson et al., 2008; Rouxel et al., 2005; Valaas 

Hyslop et al., 2008; Whitehouse and Fedo, 2007; this study). The reactions of possible 

formation pathways for hematite, magnetite and siderite are summarized in Figure 1.9 and are 

discussed in the light of these minerals’ Fe isotope composition in Chapter 3 and 4.  

 

 

Figure 1.8 Simplified geochemical Fe cycle during the deposition of iron formations and the Fe 
isotope compositions of the major reservoirs expressed as δ56Fe (see text for details). 
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Figure 1.9 Summary of possible formation pathways of Fe-bearing mineral phases in iron 
formations and relevant fractionation factors discussed in Chapter 3 and 4 in light of the Fe 
isotope record (for references see Chapter 3 and 4).  
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1.3.4. The Precambrian Fe isotope record 

The largest variability in Fe isotope composition is recorded in Precambrian marine deposits 

encompassing shales, sedimentary sulfides buried in shales, microbial carbonates, and iron 

formations (see Figure 1.1 and 1.10). This variability suggests major recycling of Fe involving 

multiple pathways, which fractionated Fe isotopes prior to ultimate fixation in the sediment. The 

record includes different rock types, containing information on a variety of environments. While 

marine shales are derived from terrestrial weathering products, and modified by diagenetic 

processes, iron formations are chemical marine sediments that are the product of initial 

precipitates from seawater and subsequent diagenetic and metamorphic processes. Both deposits 

formed in moderately deep water. In contrast, microbial carbonates, i.e. primary stromatolites in 

the Precambrian formed within coastal areas by microbially-induced carbonate precipitation. 

Precambrian organic carbon–poor shales exhibit a limited range in δ56Fe from –0.6 to 0.2‰, 

whereas organic carbon-rich sediments (black shales) reveal large variation with δ56Fe values as 

low as –2.5‰ (Yamaguchi et al., 2005). The isotope composition of Precambrian Fe-poor 

shales with low organic carbon and carbonate content is indistinguishable from that of 

Phanerozoic low-C and low-S clastic sediments (Beard et al., 2003; Fehr et al., 2008), and is 

close to the average igneous rock composition of 0.1‰ (Beard et al., 2003). If these sediments 

have experienced limited diagenetic alteration they provide information on terrestrial 

weathering products. The restricted range in δ56Fe suggests that chemical weathering produces 

no isotope fractionation in bulk sedimentary debris throughout Earth history (Yamaguchi et al., 

2005). Weathering processes seem to be dominated by the congruent dissolution of minerals 

without redox changes preserving the isotope signature of igneous rocks. In contrast, carbon-

rich sediments rich in siderite or magnetite experienced diagenetic Fe cycling through several 

pathways. This diagenesis resulted in a large variability of δ56Fe with strong negative values, 

which is attributed to the incorporation of isotopically light Fe(II) released by DIR (Yamaguchi 

et al., 2005). DIR is considered as one of the earliest forms of microbial respiration (Vargas et 

al., 1998) and seems to be an important process during diagenesis since at least 2.9 Ga 

(Yamaguchi et al., 2005). Precambrian microbial carbonates are likewise characterized by 

negative δ56Fe values between –0.5 ad –2.1‰, which might provide direct evidence for the Fe 

isotope composition of surface seawater as inferred from modern microbial carbonates (von 

Blanckenburg et al., 2008). However, systematic studies have to be carried out to evaluate this 

potential seawater proxy. 
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Figure 1.10 The Precambrian Fe isotope record. Fe isotope variations in Precambrian iron 
formation of different ages and grades of metamorphism including data of distinct mineral 
phases and bulk rock analysis (Dauphas et al., 2004; Dauphas et al., 2007; Rouxel et al., 2005; 
Frost et al., 2007; Valaas-Hyslop et al., 2008, Whitehouse and Fedo, 2007; Johnson et al., 2003; 
Johnson et al., 2008a; this study). The gray bars indicate the overall range in δ56Fe for distinct 
periods. Early and late Archean iron formations (~3.8 Ga Isua, Akilia and Innersuatuut 
(Greenland), ~3.8 Ga Innuksuac (Canada), ~2.7 Ga Old Wanderer Iron Formation, Shurugwi 
Greenstone Belt and Manjeri Formation, Belingwe Belt (Zimbabwe)) show overall positive 
δ56Fe values, whereas the voluminous ~2.5 Ga iron formations from the Hamersley and 
Transvaal Basins (Australia and South Africa, respectively) exhibit a more variable Fe isotope 
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composition ranging from negative to positive δ56Fe values. Younger Proterozoic iron 
formations appear to return to more positive δ56Fe values (~1.9 Ga Biwabik Iron Formation and 
Ironwood Iron Formation (USA)). Precambrian organic-rich shales, sedimentary pyrites and 
microbial carbonates are more variable with the tendency to very negative δ56Fe values around 
2.5 Ga compared to Phanerozoic samples (Rouxel et al., 2005; Yamaguchi et al., 2005; von 
Blanckenburg et al., 2008). Organic-poor shale exhibits little variations over time (Yamaguchi 
et al., 2005). Modern pore fluids of marine environments exhibit very negative to slightly 
positive δ56Fe values depending whether microbial dissimilatory iron reduction (DIR) or sulfate 
reduction dominates organic matter degradation (Bergquist and Boyle, 2006; Severmann et al., 
2006). The compositions of modern sediments and pore fluids are shown as bars on the left side 
of the diagram. 
 

Fe isotope data of iron formations are available from three formation periods (Stage 1 to 3 in 

Figure 1.10), which are characterized by distinct Fe isotope variations and depositional 

environments. Sedimentary sulfides extracted from black shales exhibit a similar trend in Fe 

isotope systematic. These sulfides have been interpreted as direct proxy for the ancient seawater 

composition (Rouxel et al., 2005), but more likely represent a diagenetically altered signature 

(Yamaguchi and Ohmoto, 2006). Temporal variations in iron formation and sedimentary sulfide 

correlate roughly with other indicators of the redox state of the atmosphere and ocean as the S 

and C isotope record (see review of Dauphas and Rouxel (2006)) and seems to be related to the 

evolution of microbial metabolism. 

Stage 1. In general, Archean iron formations formed within greenstone belts, probably in close 

relationship to hydrothermal systems (e.g. Simonson and Hassler, 1996), and are characterized 

by Fe mineral phases with positive Fe isotope signatures (Dauphas et al., 2004; Dauphas et al., 

2007; Rouxel et al., 2005; Whitehouse and Fedo, 2007; this study). In contrast, sedimentary 

sulfides exhibit variably negative δ56Fe values (Rouxel et al., 2005). The occurrence of mass-

independent S isotope fractionation until about 2.45 Ga indicates low atmospheric oxygen for 

this period (Farquhar and  Wing, 2003; Farquhar et al., 2001), although there is some evidence 

for early evolution of atmospheric oxygen in paleosols (Ohmoto, 1996). These low oxygen 

levels would have caused high Fe(II) and low sulfate concentrations in the ocean (e.g. Canfield 

2000). The occurrence of Fe oxides in Archean iron formations requires oxidation in a largely 

anoxic environment, which was likely dominated by anaerobic photosynthesis (Canfield et al., 

2006) prior to the widespread evolution of oxygen-producing cyanobacteria. Early Archean iron 

formation deposits are highly deformed and metamorphosed and contain magnetite with 

strongly positive δ56Fe values up to ~2‰ (Dauphas et al., 2004; Dauphas et al., 2007; Rouxel et 

al., 2005; Whitehouse and Fedo, 2007). The high δ56Fe values and a study of the Proterozoic 

contact-metamorphosed Biwabik Iron Formation by Frost et al. (2007) indicate that magnetite 

preserved its original Fe isotope composition during prograde metamorphism. Hence, the 
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positive δ56Fe values appear to reflect a primary or early diagenetic signature, which is 

interpreted as inherited from a ferric oxyhydroxide precursor formed in the upper water column 

by partial Fe(II) oxidation. Consequently, the oxidant was the limiting factor for Fe(III) 

precipitation. Late Archean iron formations reveal a similar picture, showing moderately 

positive δ56Fe values (Rouxel et al., 2005; this study), which might indicate a higher degree of 

partial Fe(II) oxidation. Fe isotope fractionation in Archean iron formations appears to be 

dominated by partial Fe(II) oxidation, while diagenetic redistribution of Fe is minor. In contrast, 

late Archean sedimentary sulfides are highly variable and are dominated by strong negative 

values as low as –3.5‰, indicating multiple isotope fractionation processes. The combined 

effect of partial Fe(II) oxidation and Fe(III) reduction, Rayleigh distillation, and the apparent 

preferential incorporation of isotopically light Fe in pyrite might have resulted in variably 

negative δ56Fe values. Partial reduction of ferric (hydr)oxide by oxidation of organic matter due 

to the activity of DIR releases large quantities of isotopically light Fe(II) (Crosby et al., 2005; 

Crosby et al., 2007; Johnson et al., 2008b), which could have caused very negative δ56Fe in 

sulfides. The covariance of Fe and S isotope signatures in pyrites from Belingwe basin are 

interpreted as coupled microbial Fe and sulfate reduction via organic carbon oxidation (Archer 

and  Vance, 2006). The organic origin of carbon in these sediments is supported by very low 

δ13C values typical for carbon subjected to photosynthesis (Grassineau et al., 2001). In addition, 

low δ56Fe values might have been promoted by reservoir effects in the ocean basin due to 

removal of isotopically heavy Fe recorded in iron formations (Rouxel et al., 2005).  

Stage 2. The Fe isotope record between 2.4 and 1.6 Ga is characterized by highly variable δ56Fe 

values in mineral phases of iron formations and a trend from very negative to unusually high 

δ56Fe values in sedimentary sulfides. This period encompasses the rise of atmospheric oxygen at 

about 2.4 Ga (e.g. Holland, 1984) as indicated by the appearance of mass-dependent S isotope 

fractionation (Bekker et al., 2004), which induced a redox-related change in the global Fe cycle. 

Alternatively, atmospheric oxygen might have reached considerable levels much earlier as 

suggested by Ohmoto (1996). Free oxygen is the result of oxygenic photosynthesis by 

cyanobacteria or their ancestors, which were present in the environment at least since 2.7 Ga 

(e.g. Blankenship, 1998; Brocks et al., 1999). Multiple lines of evidence indicate a rather 

dynamic process with a progressively increasing oxygen level (see overview in Canfield 

(2005)). In response to rising oxygen levels, the Fe(II) concentration declined in the ocean, 

whereas the sulfate concentration increased due to oxidative weathering of pyrites in soils (e.g. 

Canfield, 2005). The peak of iron formation deposition overlaps the beginning rise of 

atmospheric oxygen. However, before oxygen could reach significant levels, all sinks for 
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atmospheric oxygen had to be consumed. The high concentration of Fe(II) in the seawater 

represented an important sink, which would enforce precipitation of Fe(III) before the rise of 

oxygen (Johnson et al., 2008b). Increased Fe(III) precipitation and organic carbon production in 

the ocean would have supported the activity of DIR, which appears to play an important role in 

the diagenesis of iron formation (Johnson et al., 2008a). The large well-preserved ~2.5 Ga iron 

formations of the Hamersley and Transvaal Basins are typical Proterozoic iron formations 

deposited on partially isolated platforms within continental shelf areas. The fine lamination of 

these rocks suggests deposition in low-energy, basinal environments (e.g. Trendall and  

Blockley, 1970). Their mineral phases exhibit a large variability in the Fe isotope composition 

but reveal an overall average of near-zero in δ56Fe, which is in balance with the Fe influx 

composition from hydrothermal and continental sources (Johnson et al., 2003; Johnson et al., 

2008; this study). Contemporaneous sedimentary sulfides likewise exhibit a large range in the 

Fe isotope composition and reach strongly negative δ56Fe values. These variations are 

interpreted as the fingerprint of the interaction of a series of processes including primary 

precipitation and subsequent diagenetic processes (Johnson et al., 2008a; Johnson et al., 2008b). 

Positive to nero-zero δ56Fe values of Fe oxides and carbonates might be inherited from variable 

degrees of partial Fe(II) oxidation in the upper water column. Alternatively, Fe oxides with a 

positive Fe isotope signature could represent the isotopically heavy residuum after partial 

Fe(III) reduction by DIR. Siderite with δ56Fe values of about –0.5‰ seems to have formed in 

equilibrium with seawater and hence represents primary precipitates. Significant negative values 

of Fe(II)-bearing minerals are attributed to the contribution of isotopically light Fe(II) released 

by DIR. The variable but overall balanced Fe isotope signature of the Hamersley and Transvaal 

iron formations may indicate major diagenetic Fe redistribution on Proterozoic shelf areas 

similar to modern environments. Recent investigations in the Black Sea and the Baltic Sea 

suggest a flux of isotopically light Fe(II) released by DIR from oxic to euxinic environments 

(Fehr et al., 2008; Severmann et al., 2008). The expanded range in δ56Fe for sedimentary 

sulfides are associated with large variations in the sulfur isotope record, which is interpreted as 

bacterial sulfate reduction (BSR) under sulfate excess conditions (e.g. Cameron, 1982). This 

analogy argues for concurrent activity of DIR and BSR, producing variable δ56Fe values as 

measured in the Belingwe pyrites by Archer and  Vance (2006).  

Stage 3. With the exception of Neoproterozoic iron formations, the final episode of iron 

formation at ~1.8 Ga indicate an apparent return to low oxygen conditions before the definitive 

establishment of an oxygenated atmosphere (e.g. Canfield, 2005). The granular texture of the 

1.9 Ga Biwawik BIF is characteristic for deposition in a high-energy environment near the 
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seashore (e.g. Lanier, 1989). Similar to Archean iron formations, this deposit yields mostly 

positive δ56Fe values (Frost et al., 2007; Valaas Hyslop et al., 2008). Sedimentary pyrites from 

this period are characterized by unusually high δ56Fe between –0.3 and 1.2‰ (Rouxel et al., 

2005). Once the sulfate concentration is high in the ocean, BSR might dominates over DIR for 

organic matter degradation, which prevents the release of Fe with negative isotope signatures 

(Johnson et al., 2008b). Positive values might result from partial Fe(II) oxidation during initial 

precipitation or post-depositional Fe redistribution similar to modern environments in the Black 

Sea and the Baltic Sea (Fehr et al., 2008; Severmann et al., 2008). After 1.8 Ga, iron formations 

are no longer formed and sedimentary sulfides exhibit a limited range from –1 to 0‰. By this 

time, free oxygen has reached considerable levels accompanied by high sulfate concentrations 

in the ocean (e.g. Canfield, 2005). Instead of oxygen (e.g. Holland, 2004), high sulfide 

concentrations produced by sulfate reduction could have removed dissolved Fe(II) from solution 

establishing a sulfidic deep ocean (Canfield, 1998). These euxinic conditions might have 

promoted near complete scavenging of dissolved Fe(II) by reaction with biogenic sulfide 

forming Fe sulfide minerals. Therefore mass balance may limit the Fe isotope variability in 

pyrites (Johnson et al., 2008b). 
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2 

 

Matrix-independent stable Fe isotope ratio determination 

using UV femtosecond laser ablation ICP-MS 

 

 

Abstract 

UV femtosecond laser ablation coupled to MC-ICP-MS provides a promising in situ tool to 

investigate elemental and isotope ratios by non-matrix matched calibration. In this study, we 

investigate Fe isotope composition in siliceous matrices including biotite, hornblende, garnet, 

fayalite and forsterite (San Carlos Olivine), and an oceanic Fe-Mn crust using the iron reference 

material IRMM-014 for calibration. To test the accuracy of the laser ablation data, Fe isotope 

compositions were obtained independently by solution ICP-MS after chromatographic 

separation of Fe. Sample materials with low Cr content, i.e. biotite, hornblende, fayalite and the 

Fe-Mn crust, reveal δ56/54Fe and δ57/54Fe values that agree with those from solution ICP-MS data 

within the measured precision. For high Cr concentration (54Cr/54Fe > 0.0001), i.e. in the garnet 

and forsterite sample, δ56/54Fe and δ57/54F values were derived from 57Fe/56Fe ratios as correction 

of the isobaric interference of 54Cr on 54Fe is unsatisfactory. This approach provides accurate 

results for both minerals. Moreover, the garnet crystal exhibits isotopic zonation with 

differences of 0.3‰ in δ56/54Fe showing that substantial heterogeneities exist in high-

temperature metamorphic minerals. Multiple analyses of homogeneous sample materials reveal 

a repeatability of 0.1‰ (2 SD) for δ56/54Fe and 0.2‰ (2 SD) for δ57/54Fe, respectively. This 

precision is obtained regardless of the sample matrix and is only twice as high as that obtained 

by solution ICP-MS. This study adds to the observations of Horn et al. (2006) who have shown 

that the determination of Fe isotope ratios in various matrices including iron alloys, iron oxides 

and hydroxides, iron sulfide and iron carbonates can be performed with high accuracy and 

precision at high spatial resolution using UV femtosecond laser ablation ICP-MS. These results 
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demonstrate that femtosecond laser ablation ICP-MS is a largely matrix-independent method, 

which provides a substantial advantage over commonly employed nanosecond laser ablation 

systems 

2.1. Introduction 

In the past two decades, laser ablation (LA) in conjunction with inductively coupled plasma 

mass spectrometry (ICP-MS) has become a powerful in situ micro-analytical technique with 

broad applications in elemental and isotope ratio analysis. Today, most laser ablation systems 

operate in the UV range with a pulse duration of several nanoseconds (1 ns = 10-9 s). However, 

a major drawback of this technique is laser-related elemental and isotope fractionation, which 

introduces a strong matrix-dependency into the results (e.g. Sylvester, 2008). To control this 

effect, matrix-matched calibration standards are required. For geological applications, this 

approach is not always practicable, because sample materials cover a large spectrum of 

matrices. Recent developments in LA employ lasers with shorter pulse durations ranging from 

~60 to several hundreds of femtoseconds (1 fs =  10-15 s) (see reviews of Fernández et al. (2007) 

and Horn (2008)). The use of fs pulses for ablation provides significant improvements with 

respect to laser-induced and particle-size related fractionation so that non-matrix-matched 

calibration turns out to be feasible. fs LA-ICP-MS using non-matrix-matched calibration has 

been successfully applied to the analysis of element ratios, i.e. Zn/Cu, Pb/U and U/Th (Bian et 

al., 2005; 2006 ; González et al., 2004; Horn and von Blanckenburg, 2007; Koch et al., 2006; 

Mozna et al., 2006; Poitrasson et al., 2003) and of isotope ratios of heavy stable isotope 

systems, i.e. Cu, Fe and Si (Chmeleff et al., 2008; Horn and von Blanckenburg, 2007; Horn et 

al., 2006; Ikehata et al., 2008; Steinhoefel et al., submitted; Steinhoefel et al., submitted). The 

measurement of heavy stable isotope ratios is particularly challenging as the natural mass-

dependent fractionation is very small, in the range of parts per thousand, which requires highly 

precise and accurate analysis. For instance, the natural variation in δ56/54Fe is about 5‰ (e.g. 

Dauphas and Rouxel, 2006). The absence of matrix-effects has been demonstrated for Fe 

isotope ratio determinations by UV-fs-LA coupled to a multiple collector ICP-MS (MC-ICP-

MS) for a variety of matrices including native iron, iron alloys, iron sulfides, Fe-carbonates, 

iron oxides and hydroxides using the isotopically certified iron reference material IRMM-014 

for calibration (Horn et al., 2006). A similar approach demonstrates the matrix-independency 

for the determination of Si isotope ratios in siliceous materials including pure silicon, quartz, 

olivine and diopside by using the quartz reference standard NBS28 for calibration (Chmeleff et 
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al., 2008). Non-matrix matched calibration using near IR-fs-LA has also been successfully 

applied for the determination of Cu isotope ratios in Cu-rich minerals including cuprite, 

chalcocite and chalcopyrite by using the pure copper standard NIST-SRM 976 (Ikehata et al., 

2008).  

In this study, we show that accurate and precise Fe isotope ratios can be determined in silicate 

minerals using UV-fs-LA coupled to a MC-ICP-MS, which is a substantial advancement 

considering that 90% of the Earth’s surface consists of silicates. Olivine (fayalite and forsterite), 

hornblende, biotite, garnet and complex matrices such as Fe-Mn crusts have been analysed 

using the iron reference material IRMM-014 for calibration. In these sample materials, the 

complexity of the matrix and the low Fe concentrations provide a formidable challenge. 

2.2. Methods 

The in-house built fs LA system at the Leibniz University of Hannover is based on a 100 fs 

Ti:sapphire regenerative amplifier system (Spectra Physics Hurricane I, USA) with a 

fundamental wavelength of 785 nm, which is consecutively frequency-quadrupled providing an 

output laser beam in the deep UV region at 196 nm with a  pulse energy of 0.02 mJ. Sample and 

standard materials can be placed as thin sections or as polished sections in a sample cell with an 

integrated fused silica window, which has three gas inlets and one outlet and a volume of 30 

cm3. The sample cell is mounted on a New Wave XP sample stage for visualization and precise 

positioning. The ablation rate for silicates is about 1.5 nm per pulse (Chmeleff et al., 2008). 

More details on the laser ablation system are given by Horn and von Blanckenburg (2007). The 

UV fs laser ablation system is coupled to a ThermoFinnigan Neptune MC-ICP-MS, which is 

equipped with conventional Ni skimmer and sampler cones running under standard conditions 

(Table 2.1). The aerosol is transported to the mass spectrometer using He as carrier gas and is 

mixed with Ar gas before entering the torch. Fe isotope ratios were determined following the 

analytical protocol of Horn et al. (2006). The ThermoFinnigan Neptune MC-ICP-MS provides 

high mass resolution, which is able to resolve all molecular interference on the Fe isotopes 

excluding isobaric isotope interferences. As well as the Fe isotopes 54Fe, 56Fe, 57Fe and 58Fe, 
52Cr and 60Ni were measured by Faraday cups in static collection mode to correct for isobaric 

interferences of 54Cr on 54Fe and 58Ni on 58Fe. The correction modes for the LA data are 

identical to the method described and tested in detail for solution ICP-MS data by Schoenberg 

and von Blanckenburg (2005).  
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The analyses were performed using the standard-sample bracketing technique and the iron 

reference material IRMM-014. This external calibration technique involves the analysis of a 

reference standard of known isotope composition prior to and after the measurement of the 

sample material to correct for the instrumental mass discrimination and its temporal drift. The 

instrumental drift has to be less than 0.1‰ on the 56Fe/54Fe ratio between standard 

measurements to apply this method successfully to the analysis of stable Fe isotopes. To 

stabilize measurement conditions for the analysis of silicates, the siliceous sample material was 

continuously ablated for about one hour prior to analysis. This procedure conditions the 

interface region, which stabilizes the interaction of the ions with skimmer and sampler cones 

through a coating. Conditioning enables alternating analyses of silicate and Fe metal matrices, 

which is required for calibration by the sample-standard-bracketing method and therefore 

precise Fe isotope measurements. 

 

Table 2.1 
Instrumental parameters of the Neptune MC-ICP-MS  
for fs LA 

 

 

 

 

 

 

Cool gas: Ar [L min-1] 15.00

Auxiliary gas: Ar [L min-1] 0.7-1.0

Sample gas: Ar [L min-1] 0.7-0.8

Add gas: He [L min-1] 0.9-1.0

RF generator power [W] 1200

Acceleration voltage [V] -10000

Extration [V] -1200

Focus [V] -600

Sample cone Ni, orifice 1.1 mm diameter

Skimmer cone H-type, Ni, orifice 0.8 mm diameter

Mass resolution ~8000

Amplifiers [Ω] 1011

Faraday cup setup:
52Cr (L4),54Fe (L2),56Fe (Central),57Fe (H1),58Fe (H2),60Ni (H4)

Cycle integration time [s] 2

Number of cycles 40-80
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To explore the behaviour of different siliceous matrices, we analysed the following sample 

materials: olivine (fayalite and forsterite), biotite, hornblende, garnet and a Fe-Mn crust. Olivine 

with fayalite composition is from the contact metamorphosed Biwabik Iron Formation (USA) 

(sample E in Frost et al. (2007)). San Carlos Olivine (SC Olivine), a well-established δ18O 

mineral standard, is of forsterite composition and is often used in experimental petrology (e.g. 

Costa and  Chakraborty, 2008; Galer and  O'Nions, 1989; Holzheid and Grove, 2002). The 

biotite sample B-4B is a mineral standard for K-Ar dating (Flisch, 1982). The hornblende 

sample Siss 3 is from the Bergell tonalite in the southeast Central Alps (Villa and von 

Blanckenburg, 1991). The garnet sample is a piece from the rim of a large almandine crystal 

formed in schist. The Fe-Mn crust (cruise VA13/2, sample 327 KD) is from the Central Pacific 

(von Stackelberg et al., 1984) and was analysed at its surface. The in-house metal standard 

Puratronic (Johnson Matthey) is frequently analysed as control sample during our laser ablation 

sessions. The major element composition of the sample materials are reported in Table 2.2. 

 

Table 2.2 
Chemical composition in weight percent with anhydrous, F and Cl exluded 

The chemical compositions are averages obtained from data published by 
aFrost et al. (2007), bGaler and O'Nions (1989), cVilla and von Blanckenburg 
(1991) and dvon Stackelberg et al. (1984). The compositions of biotite B-4B 
and garnet were obtained by electron microprobe. 
 

 
Sample materials and iron reference material IRMM-014 were analysed in raster-mode using a 

spot diameter of ~30 μm. The acquisition parameters were set to acquire 50 to 80 cycles per 

analysis, with a cycle integration time of 2 s. On-peak-zero measurements were usually not 

subtracted as the background signal on mass 56Fe was less than 1.5 mV compared to signal 

intensities of 8 to 12 V on a 1011 Ω resistor when analysing the sample material. Exceptions are 

biotite and forsterite, where signal intensities on mass 56Fe of only 5 V could be achieved. In 

SiO2 30.72 40.54 37.63 35.04 43.80 6.40
Al2O3 - 0.03 21.21 18.10 9.22 -
TiO2 - 0.01 0.01 2.88 1.53 -
Cr2O3 - 0.02 0.11 - 0.01 -
MgO 3.64 48.82 4.96 7.14 11.23 1.11
FeO 64.75 9.81 33.63 21.88 17.16 12.65
MnO 1.10 0.14 0.60 0.33 0.39 20.10
CaO 0.04 0.08 2.40 - 11.91 1.25
Na2O - 0.02 0.02 0.08 1.17 -
K2O - - - 9.40 1.16 -
Total 100.25 99.39 100.58 95.09 97.55 41.51

Sample
Fe-Mn Crust dSC Olivine b Garnet Biotite Hornblende c

(forsterite)
Olivine a

(fayalite)
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theses cases, the background levels for all detected isotopes were measured for 30 cycles prior 

to each analysis by closing the laser shutter and were subtracted from each measured cycle. To 

compensate for different Fe concentrations and light absorption efficiencies between sample and 

standard materials, Fe signal intensities were matched by applying different laser repetition rates 

(Table 2.3). Multiple analyses were performed for each sample to investigate the external 

repeatability. Each sample was analysed in one to three measuring sessions within 12 months. 

 

Table 2.3 
Repetition rates and signal intensities for UV fs LA-ICP-MS 

*Faraday cups are equipped with 1011 resistors. 

 

To prove the accuracy of the LA data, Fe isotope composition of the sample materials were 

obtained independently by solution nebulization ICP-MS following the procedure described in 

Schoenberg and von Blanckenburg (2005). Forsterite, biotite, garnet and hornblende were 

digested in HF-HNO3. The Mn-Fe crust was dissolved in 6 mol/L HCl. Fe was separated by 

anion-exchange chromatography. For the Fe-Mn crust, Fe was additionally precipitated with 

NH4(OH) after anion-exchange chromatography to remove residual transition metals. The Fe 

isotope compositions were then determined on a ThermoFinnigan Neptune MC-ICP-MS from 

solutions by the standard-sample bracketing method using the iron reference material IRMM-

014. The external reproducibility at the 95% confidence level of solution nebulization ICP-MS 

for δ56/54Fe and δ57/54Fe are 0.049‰ and 0.071‰, respectively (Schoenberg and von 

Blanckenburg, 2005).  

LA and solution data are reported as δ56/54Fe, δ57/54Fe and δ57/56Fe values relative to IRMM-014, 

e.g. for δ56/54Fe:  
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⎜
⎝
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−IRMM

Sample

FeFe
FeFeFeδ

   (2.1) 

IRMM-014/ SC Olivine Olivine Biotite Hornblende Garnet Fe-Mn Crust
Puratronic (forsterite) (fayalite)

Repetition rate [Hz] 2-5 90-350 60 50-70 60 100 20

Ion beam on 56Fe* [V] 5-10 5 10 5 9 12 8

Sample
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2.3. Results 

All LA data of the individual samples are presented in three-isotope plots as δ56/54Fe versus 

δ57/54Fe together with the independently obtained solution ICP-MS data as reference values 

(Figure 2.1). Mean Fe isotope data of fs LA-ICP-MS and solution ICP-MS are summarized in 

Table 2.4. Accurate data have to plot along the mass-dependent fractionation line defined by the 

mass differences with a slope of 1.4881 and should agree with the solution ICP-MS values 

within their respective precision. Data that plots elsewhere in the diagram are affected by 

isobaric interferences.  

The fayalite sample exhibits a mean LA δ56/54Fe value of –0.19 ± 0.15‰ (2 SD, n = 8) 

compared to –0.18‰ in δ56/54Fe obtained by solution ICP-MS (Figure 2.1a). For the SC Olivine 

(fosterite) (Figure 2.1b), the LA data yielded lower δ56/54Fe values than solution ICP-MS giving 

mean δ56/54Fe values of -0.32 ± 0.13‰ (2 SD, n = 18) and –0.04‰, respectively. Moreover, not 

all LA data plot on the fractionation line giving evidence for isobaric interferences. Garnet 

revealed a mean LA δ56/54Fe value of –0.23 ± 0.34‰ (2 SD, n = 44) (Figure 2.1c). Isotopic 

difference exists within the garnet crystal when comparing the data of the outer rim (‘top’) with 

data obtained in 2 cm distance from it (‘bottom’) (see Table 2.4), although its chemical 

composition is homogeneous. Some of the data points for garnet do not plot on the fractionation 

line. Solution ICP-MS obtained a δ56/54Fe value of –0.18‰ for garnet. Biotite revealed a mean 

LA δ56/54Fe value of 0.22 ± 0.15‰ (2 SD, n = 11) and a solution ICP-MS δ56/54Fe value of 

0.09‰ (Fig. 1d). For hornblende (Figure 2.1e), the mean LA δ56/54Fe value is -0.01 ± 0.11‰ (2 

SD, n = 12), and solution ICP-MS revealed a δ56/54Fe value of 0.08‰. LA-ICP-MS analyses of 

the surface of the Fe-Mn crust give a mean δ56/54Fe value of –0.23 ± 0.10‰ (2 SD, n = 11) as 

compared to –0.30‰ in δ56/54Fe obtained by solution ICP-MS (Fig. 1f). All data obtained for 

fayalite, biotite, hornblende and the Fe-Mn crust plot on the mass-dependent fractionation line.  
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Figure 2.1 Three-isotope plots for the analysed sample materials showing normalized isotope 
ratios obtained by UV fs LA-ICP-MS using the raster-mode (closed squares) and conventional 
solution nebulization ICP-MS (open cycles). With the exception of forsterite (SC Olivine) and 
garnet, all data plot along the mass-dependent fractionation line demonstrating the absent of 
molecular or elemental interferences during UV fs LA-ICP-MS. The LA data of forsterite (SC 
Olivine) (B) are shifted towards lower values along a vector with the slope of ~1 (dashed line) 
indicating if compared to solution ICP-MS data a significant under-correction of the isobaric 
interference of 54Cr on 54Fe. The same effect is observable for garnet but to less extent. 
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Table 2.4 
Mean Fe isotope data obtained by UV fs LA-ICP-MC and solution ICP-MS 

UV fs LA-ICP-MS and solution ICP-MS data are given as mean values in permil [‰], though 
all data are plotted in Figure 2.1. Uncertainies give the external reproducibility as 2 standard 
deviations yielded by multiple analyses (n). δ56/54Fe*mean values are calculated from δ57/56Fe 
values by multiplying with a factor of 1.9944, which  corresponds to the mass difference 
between 56Fe and 54Fe relative to the mass difference between 57Fe and 56Fe. δ56/54Fe* and 
δ57/56Fe values are preferred if 54Cr/54Fe > 0.0001 as the Cr correction becomes unsatisfactory 
(Schoenberg and von Blanckenburg, 2005). apublished by Frost et al. (2007). 
 

2.4. Discussion 

Matrix effects during LA-ICP-MS cause deviation from the assumed true Fe isotope 

composition, i.e. solution ICP-MS values. Well-known matrix-dependent processes for ns LA 

are 1) fractionation at the ablation site, which leads to non-stoichiometric aerosols (e.g. Eggins 

et al., 1998; Hergenröder, 2006; Košler et al., 2005) and 2) particle size-related fractionation 

due to incomplete transport and ionisation of large particles in the ICP (e.g. Koch et al., 2002; 

Guillong et al., 2003). These effects, however, appear to be largely absent for fs LA (Garcia et 

al., 2008a, b; Horn and von Blanckenburg, 2007; Koch et al., 2004; 2005; Liu et al., 2004; 

Margetic et al., 2000; Saetveit et al., 2008; Wälle et al., 2008). Other matrix effects can be 

relevant for both ns and fs LA. For instance, variable plasma-loads can affect the instrumental 

mass discrimination (e.g. Kroslakova and Guenther, 2007), which might arise from the 

requirement to match the intensities of Fe ion beams by adjusting the laser repetition rates 

between sample and standard material, thereby introducing a higher load of non-Fe ions for the 

sample.  

Sample 
material n δ56/54Femean δ57/54Femean n

Puratronic 0.08 ± 0.09 0.12 ± 0.14 0.04 ± 0.08 0.08 ± 0.17 0.0000035 83 0.09 0.13 4
(pure iron)

Olivine -0.19 ± 0.15 -0.23 ± 0.22 -0.04 ± 0.07 -0.08 ± 0.15 0.0000019 8 -0.18 a -0.21 a 2
(fayalite)

SC Olivine -0.31 ± 0.13 -0.37 ± 0.23 -0.06 ± 0.15 -0.13 ± 0.30 0.0011 18 -0.04 -0.05 4
(forsterite)

Garnet    total -0.23 ± 0.34 -0.32 ± 0.49 -0.09 ± 0.19 -0.17 ± 0.38 0.0010 44 -0.18 -0.27 1
                 top -0.28 ± 0.13 -0.40 ± 0.20 -0.12 ± 0.13 -0.25 ± 0.25 0.0010 23
           bottom 0.01 ± 0.30 0.05 ± 0.37 0.04 ± 0.13 0.07 ± 0.25 0.0010 11

Biotite 0.22 ± 0.15 0.32 ± 0.25 0.12 ± 0.13 0.24 ± 0.26 0.000017 11 0.09 0.18 2

Hornblende -0.01 ± 0.11 0.00 ± 0.18 0.00 ± 0.08 0.01 ± 0.16 0.000082 12 0.08 0.14 2

Fe-Mn Crust -0.23 ± 0.10 -0.35 ± 0.16 -0.12 ± 0.08 -0.24 ± 0.16 0.0000077 11 -0.30 -0.40 2

Solution ICP-MSUV fs LA-ICP-MS

δ57/54Femeanδ56/54Femean δ56/54Fe*mean
54Cr/54Femeanδ57/56Femean
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Other effects are isobaric inferences, which can compromise the results. At high Cr 

concentration of the sample material, the isobaric interference of 54Cr on 54Fe limits the accurate 

determination of 56Fe/54Fe and 57Fe/54Fe ratios for the MC-ICP-MS measurements.  

2.4.1. Isobaric Cr interference 

The isobaric interference of 54Cr on 54Fe is corrected using the method described in Schoenberg 

and von Blanckenburg (2005) but can become unsatisfactory at high Cr concentration. 52Cr is 

measured to calculate 54Cr by making the following assumptions, all of which introduce minor 

uncertainties: 1) the instrumental mass discrimination of Cr isotopes is calculated from 57Fe/56Fe 

ratio of samples relative to the certified IRMM-014 value, even though the instrumental mass 

discrimination might differ between these ratios (Albarède and  Beard, 2004), 2) the 57Fe/56Fe 

ratio of the sample differs up to 1.5‰ from IRMM-014 and 3) the ratio  54Cr/52Cr is considered 

to be constant, although natural mass-dependent fractionation exists (e.g. Schoenberg et al., 

2008). An incorrect Cr correction should result in data that does not follow the mass-dependent 

fractionation line in a δ56/54Fe versus δ57/54Fe plot, but a minor insufficient 54Cr correction can 

easily escape notice. In a three isotope plot, under- or over-correction shifts the data along a 

vector with the slope of 1, whereas the fractionation line has a slope of 1.4881. LA data can be 

shifted by about ± 0.2‰ in δ56/54Fe and still appear within errors to plot along the fractionation 

line. This correction method has been demonstrated to be sufficient for solution ICP-MS data 

with low Cr concentrations and 54Cr/54Fe ratios up to 0.0001, (Schoenberg and von 

Blanckenburg, 2005). Therefore this correction was adopted with the same Cr limit for LA-ICP-

MS in this study. The LA data of the samples fayalite, biotite, hornblende, and Fe-Mn crust 

reveal 54Cr/54Fe ratios of 0.0001 or lower, and agree with the solution ICP-MS data within their 

respective precision (Table 2.4). This demonstrates an adequate Cr correction for these samples 

and excludes other matrix-effects. The SC Olivine (forsterite) exhibits a 54Cr/54Fe ratio of 

0.0011. The δ56/54Fe data obtained by LA are on average 0.3‰ lower when compared to 

solution data giving evidence for under-correction of 54Cr on 54Fe (Figure 2.1b). Garnet 

revealed a similar 54Cr/54Fe ratio of 0.0010, but the data appear to be less affected on average. 

The mean LA δ56/54Fe value does not differ significantly from the solution ICP-MS value 

(Figure 2.1c). To circumvent this limitation for high Cr concentrations, δ56/54Fe can be 

calculated from the unaffected δ57/56Fe value by multiplying with a factor of 1.9944, which 

corresponds to the mass difference between 56Fe and 54Fe relative to the mass difference 

between 57Fe and 56Fe and an exponential fractionation law. For the SC Olivine, this approach 
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reveals an inferred mean δ56/54Fe value of –0.13 ± 0.30‰ (2 SD, n=18) as compared to –0.04‰ 

in δ56/54Fe obtained by solution ICP-MS, which is consistent within its precision. The inferred 

mean δ56/54Fe value for garnet is -0.17 ± 0.38‰ (2 SD, n=11), which agrees well with –0.18‰ 

in δ56/54Fe revealed by solution ICP-MS.  

For sample materials with a 54Cr/54Fe ratio higher than 0.0001, δ56/54Fe values should be inferred 

from δ57/56Fe, since Cr correction becomes unreliable. All analysed matrices yield accurate 

results within their precision after careful evaluation of the Cr correction demonstrating matrix 

independency. 

2.4.2. Variable mass load in the ICP-MS 

Variable ion loads in the mass spectrometer may be present if sample and standard material 

were ablated with different laser repetition rates in order to compensate for variable Fe 

concentrations of the materials (Table 2.3). Mass load induced-matrix effects in the mass 

spectrometer can result in variable instrumental mass discrimination and potentially occur for 

both ns and fs laser ablation (e.g. Horn and von Blanckenburg, 2007; Kroslakova and Guenther, 

2007). A changing ion load might influence the space charge effect in the ICP, which describes 

the preferential extraction of heavy ions, and the extraction conditions in the ion optical system 

of the mass spectrometer. Despite the application of very different repetition rates and therefore 

highly variable mass loads (Table 2.3), this effect appears to be negligible as accuracy is 

maintained for all analyzed samples.  

2.4.3. Precision and accuracy 

The external repeatability of Fe isotope analysis for the various matrices have been determined 

by multiple analyses (n > 10), which have been obtained in one to three measuring sessions 

within a period of 12 months. For hornblende and the surface of the Fe-Mn crust, a precision of 

close to 0.10‰ was achieved in δ56/54Fe (2 SD), which is identical to the precision obtained for 

pure iron (Puratronic) (Table 2.4) and other homogeneous materials, e.g. iron oxides and iron 

meteorites (Horn et al., 2006). Fayalite and biotite exhibit slightly increased standard deviations 

of ± 0.15‰ (2 SD), respectively. This results from low signal intensities for biotite, e.g. 5 V on 

mass 56Fe, and from sample heterogeneity in the case of fayalite. Although the fayalite 

crystallized at high temperatures during contact metamorphism in the Biwabik Iron Formation, 

it exhibits slightly heterogeneous Fe concentrations (Frost et al., 2007). Because of high Cr  
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Figure 2.2 Comparison of mean δ56/54Fe and δ57/54Fe values obtained by in situ UV fs LA-ICP-
MS with those measured by solution ICP-MS. Gray data points were published in Horn et al. 
(2006), black data points are from this study. All LA data agree with the data obtained from 
solution within errors. While maintaining high precision and accuracy, the reliability of matrix-
independent calibration is now validated for metals, oxides, hydroxides, carbonates, sulfides, 
silicates and the complex matrix of Mn-Fe crusts. Large error bars for some of the LA data are 
caused by heterogeneous sample material. Due to high Cr concentrations in forsterite and 
garnet, the δ56/54Fe and δ57/54Fe values are inferred form δ57/56Fe values which increases their 
errors. 
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concentrations relative to the Fe contents in SC Olivine and garnet, δ57/56Fe values are preferred. 

These values have a slightly increased uncertainty of 0.15‰ (2 SD) for SC Olivine due to the 

low Fe concentration. For δ56/54Fe values inferred from δ57/56Fe values, propagation doubles 

uncertainties. Garnet exhibits a large error in δ57/56Fe of ± 0.38‰ (2 SD), which can be 

explained by a heterogeneous Fe isotope composition of the crystal, although its chemical 

composition is homogenous. The outer rim of the crystal revealed a mean inferred δ56/54Fe 

values of –0.25‰, which differs significantly from 0.07‰ obtained in 2 cm distance from the 

rim (two-sample Student‘s t-test, 99% confidence level) (Table 2.3). This Fe isotope zonation in 

garnet indicates different growth stages of the crystal and shows that substantial Fe isotope 

heterogeneities exist in high-temperature metamorphic minerals.  

2.5. Conclusions 

These results support the observations of Horn et al. (2006) and demonstrate that UV fs LA 

coupled to MC-ICP-MS provide highly precise and accurate Fe isotope data at high spatial 

resolution using non-matrix matched calibration. This applies even for sample materials with 

complex matrices and low Fe concentrations (< 10wt.% FeO).   

1) For the analysis of siliceous matrices, continuous ablation of the sample material prior to 

analysis establishs stable conditions by conditioning the interface region of the ICP-MS. 

2) Due to the isobaric interference of 54Cr on 54Fe in the ICP-MS, a careful consideration of the 

Cr correction is necessary for sample materials with high Cr concentrations. δ57/56Fe values are 

preferred for sample materials with a 54Cr/54Fe ratio higher than 0.0001. Commonly used 

δ56/54Fe and δ57/54Fe values can be inferred by multiplying δ57/56Fe with the relative mass 

difference of the desired isotope ratio because of the mass-dependent fractionation behaviour of 

Fe isotopes, both in nature and during analytical mass discrimination.  

3) The accuracy and precision of Fe isotope have been verified for following matrices: pure 

iron, iron meteorites, iron oxides and hydroxides, iron sulfides, iron carbonates, biotite, olivine 

(forsterite and fayalite), hornblende, garnet and a Fe-Mn crust (this study, Horn et al., 2006). All 

of which have been measured using non-matrix matched calibration, which demonstrates that 

matrix effects are absent within the obtainable precision of 0.1‰ (2 SD) in δ56/54Fe and 0.2‰ (2 

SD) in δ57/54Fe independent of the matrix. 

fs LA-ICP-MS provides an excellent tool to study Fe isotope variations in situ at high spatial 

resolution independent of the matrix while maintaining precision and accuracy. This capability 

opens a wide spectrum of applications allowing the investigation of Fe isotope variations in 
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coexisting mineral phases in order to constrain processes in low and high temperature 

environments. An example for this type of application is the study of Fe isotopes in 

Precambrian banded iron formations to reconstruct their genesis (Steinhoefel et al., submitted a, 

b). Precise Fe isotope analysis of silicate mineral phases is of particular interest when 

investigating processes in metamorphic and igneous rocks, which exhibit small variation in Fe 

isotope composition (e.g. Beard and  Johnson, 2004; Poitrasson and Freydier, 2005; 

Schoenberg, 2009; Schuessler et al., 2006; Schuessler et al., 2009). The potential to explore 

high-temperature processes becomes obvious considering the Fe isotope zonation with 

differences of 0.3‰ in δ56/54Fe discovered in garnet. Many applications using tracer studies in 

the material sciences now also appear to be possible. 
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3 

 

Micro-scale tracing of Fe and Si isotope signatures in banded 

iron formation using femtosecond laser ablation 

 

 

Abstract 

We have detected micrometer-scale differences in Fe and Si stable isotope ratios between 

coexisting minerals and between layers of banded iron formation (BIF) using a UV femtosecond 

laser ablation system connected to a MC-ICP-MS. In the magnetite-carbonate-chert BIF from 

the Archean Old Wanderer Formation in the Shurugwi Greenstone Belt (Zimbabwe), magnetite 

shows neither intra- nor inter-layer trends giving overall uniform δ56Fe values of ~0.9‰, but 

exhibits intra-crystal zonation. Bulk iron carbonates are also relatively uniform at near-zero 

values, however their individual δ56Fe value is highly composition-dependent: both siderite and 

ankerite and mixtures between both are present, and δ56Fe end member values are 0.4‰ for 

siderite and -0.7‰ for ankerite. The data suggest either an early diagenetic origin of magnetite 

and iron carbonates by the reaction of organic matter with ferric oxyhydroxides catalysed by 

Fe(III)-reducing bacteria; or more likely an abiotic reaction of organic carbon and Fe(III) during 

low-grade metamorphism. Si isotope composition of the Old Wanderer BIF also shows 

significant variations with δ30Si values that range between -1.0 and -2.6‰ for bulk layers. These 

isotope compositions suggest rapid precipitation of the silicate phases from hydrothermal-rich 

waters. Interestingly, Fe and Si isotope compositions of bulk layers are covariant and are 

interpreted as largely primary signatures. Moreover, the changes of Fe and Si isotope signatures 

between bulk layers directly reflect the upwelling dynamics of hydrothermal-rich water which 

govern the rates of Fe and Si precipitation and therefore also the development of layering. 

During periods of low hydrothermal activity, precipitation of only small amounts of ferric 

oxyhydroxide was followed by complete reduction with organic carbon during diagenesis 
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resulting in carbonate-chert layers. During periods of intensive hydrothermal activity, 

precipitation rates of ferric oxyhydroxide were high, and subsequent diagenesis triggered only 

partial reduction, forming magnetite-carbonate-chert layers. We are confident that our micro-

analytical technique is able to detect both the solute flux history into the sedimentary BIF 

precursor, and the BIF's diagenetic history from the comparison between coexisting minerals 

and their predicted fractionation factors. 

3.1. Introduction 

Banded iron formations (BIFs) are chemical marine sediments that formed periodically 

throughout the Precambrian (3.8 to 0.5 Ga) and are usually characterized by alternating Fe- and 

Si-rich layers. The peak in BIF formation between 2.5 and 2.3 Ga appears to correlate with 

major changes in the Earth’s history such as the rise of atmospheric oxygen and the change 

from anoxic to oxic conditions in the ocean (Canfield, 2005; Holland, 2006). BIFs are the 

product of chemical precipitation from seawater and subsequent depositional, diagenetic and 

metamorphic processes. Because of this extraordinary record of the early Earth, it is of major 

interest to understand the genetic history of BIFs. 

The investigation of light stable isotope systems in BIFs, namely O, C and S isotope ratios, has 

a long tradition (e.g. Becker and Clayton, 1972, 1976; Perry et al., 1973, 1978; Goodwin et al., 

1976; Baur et al., 1985; Beukes et al., 1990; Kaufman et al., 1990; Mojzsis et al., 1996; Fedo et 

al., 2006). In recent years, advances in analytical techniques have provided the opportunity to 

study the stable isotope fractionation of the two major elements in BIFs, Fe and Si. The 

investigation of fractionation mechanisms of stable Fe isotopes is now well-advanced, and 

shows an overall range of ~5 ‰ in δ56Fe (for overview see Anbar, 2004; Beard and Johnson, 

2004; Dauphas and Rouxel, 2006). The largest variability in the Fe isotope composition in any 

single type of sample has so far been measured in BIFs (Johnson et al., 2003, 2008; Dauphas et 

al., 2004, 2007; Rouxel et al., 2005; Frost et al., 2007; Whitehouse and Fedo, 2007; Valaas 

Hyslop et al., 2008) and ranges from about -2.5 to 1.6‰ in δ56Fe. It has been shown that Fe 

isotope heterogeneities in BIFs can be preserved during diagenesis and metamorphism (Frost et 

al., 2007; Whitehouse and Fedo, 2007). Magnetite, for example, appears to be of diagenetic 

origin and preserves its Fe isotope signature throughout all but the highest grades of prograde 

contact metamorphism (Frost et al., 2007). Therefore, Fe isotopes appear to be a powerful tool 

for the reconstruction of the early history of BIF deposition, and much effort is now being 

directed at deciphering the underlying processes that have caused their heterogeneous Fe isotope 
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composition. For example, the appearance of BIFs that are depleted in heavy Fe isotopes have 

been interpreted as evidence for bacteria-mediated Fe reduction during diagenesis (Johnson and 

Beard, 2006; Johnson et al., 2008). Dissimilatory Fe reduction appears to be a significant form 

of metabolism since at least 2.9 Ga (Vargas et al., 1998). In contrast, BIFs which are enriched in 

heavy Fe are regarded to reflect partial oxidation of Fe in the upper levels of ocean water 

(Dauphas et al., 2004; 2007; Johnson and Beard, 2006; Johnson et al., 2008). 

The variability of stable Si isotope ratios has also been explored in natural systems, with an 

overall fractionation of ~12‰ in δ30Si (for overview see André et al., 2006; van den Boorn et 

al., 2007). However, experiments on processes and degrees of Si isotope fractionation are yet to 

be carried out. Chert within BIFs exhibits a largely negative Si isotope signature ranging from 

about -2.5 to -0.5‰ in δ30Si which has been interpreted as a hydrothermal signal (Jiang et al., 

1993; Ding et al., 1996; André et al., 2006). Positive δ30Si values in Precambrian chert may 

reflect elevated temperature of the seawater, the influence of a continental source, or 

precipitation from isotopically heavy seawater (Robert and Chaussidon, 2006; van den Boorn et 

al., 2007). 

The questions posed by these studies generally revolve around the relative impact of variable 

source isotope compositions as opposed to those caused by diagenesis. In previous studies, these 

issues are left unresolved, to some extent, by the experimental approach which is mostly based 

on bulk rock or bulk mineral concentrate analysis and may obscure small-scale fractionation 

processes within layers of a BIF or temporal developments between layers. These issues may be 

resolved by an increased spatial resolution of the measurement. In this study, we present the 

results on the first in situ determination of Fe and Si isotope compositions using an UV 

femtosecond laser ablation system coupled to a multicollector inductively coupled plasma mass 

spectrometer (MC-ICP-MS). The advantage of this in situ method is the high spatial resolution 

while maintaining a high precision of the isotope ratio measurement. This approach provides the 

opportunity to investigate potential small-scale temporal trends and processes as based on the 

composition of individual mineral phases. We show that small-scale intra-layer fractionations 

are of diagenetic origin, while secular trends in the BIF isotope stratigraphy reveal the source of 

the contributing fluids. 

3.2. Investigated BIF 

The investigated sample material represents an Algoma-type iron formation from the Wanderer 

Formation within the late Archean Shurugwi Greenstone Belt in Zimbabwe and was collected 
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from the Old Wanderer Mine (Figure 3.1). The Shurugwi Greenstone Belt belongs to the 

Bulawayan Supergroup, a well-preserved greenstone belt sequence in the Zimbabwe craton. 

Isotope age data of this sequence range from 2.88 to 2.65 Ga (Moorbath et al., 1987; Wilson et 

al., 1995). The evolution and the tectonic setting of the Bulawayan Greenstone Belt Sequence 

are still subjects to controversy. It is now generally believed that the belt is associated with a 

passive continental margin setting and the interaction of mantle plumes during the beginning 

continental break-up (Prendergast, 2004).  

 

 

Figure 3.1 Simplified geological map of the Shurugwi Greenstone Belt. A) Greenstone belts 
(white) and Great Dyke (grey) within the Archean Zimbabwe Craton (modified after Oberthuer 
et al., 1990). B) Part of the ca. 2.7 Ga old Shurugwi Greenstone Belt (modified after Tyndale-
Biscoe, 1949). Rocks of the greenstone belt include epidiorite, basaltic schist and serpentine. 
The Wanderer Formation consists of banded iron formation and clastic rocks including 
conglomerate, grit, quartzite and phyllitic schist. The investigated sample was collected in the 
area of the Old Wanderer Mine. 
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The Wanderer Formation is a sequence of clastic and chemical sediments with a number of ore 

bodies of approximately 100 m in thickness, which partly contain gold mineralizations 

(Tyndale-Biscoe, 1949; Foster and Gilligan, 1987). The iron formation within this succession is 

described as a mixed silicate carbonate facies. The chondrite-normalized rare earth element 

(REE) distribution of this iron formation exhibits a flat pattern with a distinct positive Eu-

anomaly and depleted absolute concentrations which is typical for Archean Fe-rich sediments 

(Oberthuer et al., 1990). The presence of positive Eu-anomalies in BIFs indicates a dominant 

high-temperature hydrothermal source for Fe (Bau and Dulski, 1996). Gold mineralizations 

occur mainly in phyllite. They are rare in iron formation, where they are associated with high 

abundance of iron sulphide (Tyndale-Biscoe, 1949; Oberthuer et al., 1990). The metamorphic 

overprint of this area is at the most greenschist facies as conversion of chlorite to biotite is rare 

in phyllite (Tyndale-Biscoe, 1949).  

The magnetite-carbonate-chert BIF investigated in this study (Figure 3.2) is pristine: primary 

textures and structures are well preserved, replacements of secondary iron sulfides are absent, 

and quartz occurs in the form of microcrystalline chert. Layers of several millimetres thickness 

are composed of variable amounts of chert, iron carbonates (siderite and ankerite), magnetite, 

and minor pyrite and chlorite (Figure 3.3, Table 3.1). Greenish layers are magnetite-rich with 

minor chlorite. Fe concentrations are high with ~35 wt.%. In these layers, the chemical 

composition of iron carbonates is dominated by siderite; ankerite is a minor constituent. Light 

layers are dominated by iron carbonate and chert and contain no magnetite. These layers exhibit 

much lower Fe concentrations of ~10 wt.%, and ankerite and siderite may reach equal 

proportions. The chemical compositions of magnetite, siderite and ankerite have been 

investigated by electron microprobe and are presented in Table 3.2. The very pure magnetite of 

stoichiometric composition exhibits grains of 10 to 50 µm in diameter with sub- to euhedral 

habit and is concentrated within well-defined bedding planes. Iron carbonate occurs as siderite, 

(Fe0.75-0.90, Mg0.10-0.25)CO3, and ankerite, Ca(Fe0.60-0.75, Mg0.25-0.40)(CO3)2, in variable proportions. 

Both types of iron carbonates exhibit chemically zoned crystals indicating a complex growth 

history. In the thin section, cores of irregular shape show distinct transitions to interlocked 

overgrowths which differ in the relative proportion of Mg and Fe (Figure 3.2b). Average 

chemical compositions of the two siderite and ankerite varieties, respectively, are given in Table 

3.2. Xenomorphic quartz occurs in form of microcrystalline chert grains with grain-sizes 

between 5 to 50 µm in diameter. Assuming similar depositional rates as estimated for other BIF 

deposits (Trendall et al., 2004, Pickard 2002; 3003), the investigated thin section may represent 

some 102 to 103 years of deposition.   



 84

 

 

 

 

 

 

 

 

Figure 3.1 Photograph and backscattered electron (BSE) image of the Old Wanderer BIF from 
the ca. 2.7 Ga old Shurugwi Greenstone Belt with mag=magnetite, sid=siderite, ank=ankerite 
and qz=chert. A) The investigated thin section exhibits alternating carbonate-chert and 
magnetite-carbonate-chert layers. B) The BSE image shows laser ablation craters in magnetite 
crystals. Both types of iron carbonates exhibit chemically zoned crystals indicating a complex 
growth history. Cores of irregular shape show distinct transitions to interlocked overgrowths 
which differ in Mg substitution.  
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Figure 3.1 BSE images of representative sections of the investigated layers with 
mag=magnetite, sid=siderite, ank=ankerite and qz=chert. The numbering of the layers 
corresponds to Figure 3.2a. Fe isotope analyses in magnetite (spots) and in Fe carbonates (short 
line scans) are labelled with δ56Fe values in ‰ (black numbers). Si isotope analyses in chert 
(rasters) are indicated with δ30Si values in ‰ (white numbers). 
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Table 3.1 
Estimated modal abundance and Fe and Si isotope
composition of bulk layers 

The major mineral phases are qz=quartz, mag=magnetite,
sid=siderite, and ank=ankerite. The Fe isotope
composition of bulk layers is calculated from Fe isotope
data of the major Fe-bearing mineral phases, their
estimated modal abundances, and Fe contents. The Si
isotope composition of bulk layers is inferred from
multiple analyses of chert (see Table 3.4). The Fe and Si
values of bulk layers are covariant with a correlation
factor of 0.71, significant at the confidence level of 95%.
Numbering of layers corresponds to Figure 3.2a. 
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Table 3.2 
Average chemical composition (in weight % ± 1 SD) for Fe-bearing mineral phases of the Old 
Wanderer BIF determined by  electron microprobe 

Siderite and ankerite appear each in two distinct chemical compositions with variable 
proportions of Mg and Fe, as indicated by sid1 & sid2 and ank1 & ank2, respectively. 

3.3. Methods 

The Fe and Si isotope compositions of major Fe-bearing minerals and chert, respectively, were 

determined by in situ femtosecond laser ablation ICP-MS (LA-ICP-MS) measurements at a high 

spatial resolution. Fe isotope ratios of bulk mineral separates were also measured by solution 

ICP-MS. All isotope ratios were determined on a Thermo Finnigan Neptune MC-ICP-MS at the 

Leibniz University of Hannover and corrected for the instrumental mass discrimination using 

standard-sample-bracketing. The data are reported as δ56Fe and δ30Si relative to the reference 

materials IRMM-014 and NBS28, respectively. 
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3.3.1. In situ LA-ICP-MS 

The Fe and Si isotope composition of the different mineral phases of the investigated BIF were 

determined using our in-house built UV femtosecond laser ablation system coupled to a Thermo 

Finnigan Neptune MC-ICP-MS. The laser ablation system is based on an amplified frequency-

quadrupled femtosecond laser (Spectra Physics Hurricane I, USA) operating at a wavelength of 

196 nm which avoids laser-induced isotope and elemental fractionation and minimizes the 

matrix dependency of analyses (Horn and von Blanckenburg, 2007). The accuracy and precision 

for Fe and Si isotope measurements have been verified for different types of matrices by Horn et 

al. (2006) and Chmeleff et al. (2008), respectively. Fe isotope ratios were determined by spot 

analysis with a diameter of 18-35 µm. For an average signal of 10 V for 56Fe on a faraday cup 

equipped with a 1011 Ω resistor, a spot analysis of 2 minutes creates a crater of ~8 μm depth at a 

diameter of 30 μm in pure iron (reference material IRMM-014). A total consumption of ~45 ng 

Fe per analysis can be calculated. Because ion beam intensities between standard and sample 

materials should be matched, the analysis of minerals with lower Fe concentrations demands 

higher repetition rates resulting in a greater crater depth. The Si isotope ratios were measured in 

the raster mode using a spot size of ~35 µm. The raster size was about 50 μm x 500 μm. The 

ablated volume is ~36 x 103 μm3 for quartz giving a consumption of ~50 ng Si per analysis 

(Chmeleff et al., 2008). The acquisition parameters were set to acquire 30 to 60 cycles per 

analysis, with a cycle integration time of 2 seconds using the medium mass resolution for the 

mass spectrometer. The potential tapping of different phases during ablation are identified from 

shifts in the isotope ratios and/or variations in signal intensity, and such measurements were 

discarded. 

Fe isotope measurements. The Fe isotope composition of magnetite, siderite and ankerite were 

determined following the analytical procedure of Horn et al. (2006). Previous investigations 

have shown that the overall reproducibility of different types of matrixes including iron oxides 

and iron carbonates is better than ± 0.1‰ (2 SD) for δ56Fe and that the results are consistent 

with those obtained by conventional solution ICP-MS measurements (Horn et al., 2006). Over 

the course of 9 months, replicated spot analyses of the metal standard Puratronic (Johnson 

Matthey) resulted in mean values of 0.08‰ for δ56Fe and 0.12‰ for δ57Fe relative to IRMM-

014, with an external precision of ± 0.08 and ± 0.14‰, respectively (2 SD, n=101) (Figure 3.4). 

This agrees well with the average value of 0.09 ± 0.05 ‰ for δ56Fe (2 SD, n=4) and 0.13 ± 
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0.08‰ for δ57Fe (2 SD, n=4) obtained by solution ICP-MS measurements in our laboratory. The 

data show a Gaussian distribution and plot along the theoretical fractionation line for δ56Fe 

versus δ57Fe which confirms the long-term accuracy and reproducibility of the LA-ICP-MS 

measurements. 

 
Figure 3.3 Reproducibility of Fe isotope spot analyses by LA-ICP-MS. A) The metal standard 
Puratronic was repeatedly measured against the reference material IRMM-014 over a course of 
about 9 months and plotted in a three-isotope diagram. The error ellipse indicates the 95% 
confidence level of the Puratronic data. B) Histogram of Puratronic data shows a Gaussian 
distribution. 
 

The Fe isotope measurements by LA-ICP-MS on the BIF sample were carried out as follows. 

Magnetite crystals were analysed by spot analyses (Figure 3.2b, 3.3). The size of the crater 

ranged between 25 and 35 µm in diameter. The analyses were performed preferentially along 

the boundaries between layers to disclose potential intra-layer isotope trends but a number of 

analyses were also carried out in the center of the layers. Siderite and ankerite were analysed 

using the raster mode or short line scans on areas of 50 by 50 to 100 by 100 µm (Figure 3.3).  

To detect potential isotope zonation within single magnetite crystals (< 50 µm), we developed a 

new analytical procedure that involves sequential coring - the core of the mineral phase is 

determined first using a spot diameter of 18 to 25 µm. In a second step, a spot analysis with a 

diameter of ~35 µm is superimposed onto the same location. This step removes a ring of 
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material around the pit of the first analysis and determines the Fe isotope composition of the 

outer part (rim) of the mineral phase for a cubic crystal structure. This procedure was validated 

prior to the analysis of magnetite using the spatially homogeneous metal standard Puratronic 

(Johnson Matthey). Figure 5 shows the result of 13 pairs of such core-rim analyses on the metal 

standard Puratronic in terms of their δ56Fe compositions. The mean of δ56Fecore and δ56Ferim is 

determined at 0.07 ± 0.08‰ and 0.06 ± 0.17‰, respectively, showing no significant difference 

of the distributions (two-sample Student‘s t-test, 95% confidence level). This result indicates 

that femtosecond laser-induced lateral damages or alterations of the material surrounding an 

ablation crater are undetectable at a precision level of 0.1‰ (2 SD) with respect to the Fe 

isotope composition. 

 

 
Figure 3.3 Fe isotope zonation in magnetite crystals in the Old Wanderer BIF. Corresponding 
pairs of core-rim analysis show that magnetite crystals tend to be heavier in their Fe isotope 
composition towards the rim. Considering all data the relative mean difference between core 
and rim is 0.14‰ in δ56Fe. To verify this method, the same experiment was carried out 
successfully on the homogeneous metal standard Puratronic. Here the inner spot analyses 
(=core) are identical with the outer spot analyses (=rim) within the analytical precision. 
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Si isotope measurements. The Si isotope composition were investigated in chert by LA-ICP-

MS using the method described in detail by Chmeleff et al. (2008) which is similar to that of Fe 

isotope analysis. Accuracy and precision have been previously verified for different types of 

matrices including quartz giving a overall reproducibility of 0.24‰ (2 SD) for δ30Si (Chmeleff 

et al., 2008). Chert was analysed by narrow rasters of about 50 by 500 µm to reach a high 

spatial resolution perpendicular to the layering (Figure 3.3).  

3.3.2. Solution ICP-MS  

In addition to LA-ICP-MS, the Fe isotope composition of iron carbonate and magnetite was 

investigated as bulk mineral leachates for several layers by solution ICP-MS. Individual layers 

were sampled using either a diamond tipped core bit or tungsten carbide mirco-drill bits. The 

extracted material was crushed in an agate mortar if necessary and the different mineral phases 

were separated and dissolved as follows. The magnetite was removed magnetically and 

dissolved in aqua regia. Carbonates were leached with 10% acetic acid at 35°C to avoid 

dissolution of minor iron phases as chlorite, pyrite and any residual magnetite following the 

procedure of von Blanckenburg et al. (2008). Dissolution tests conducted under the same 

conditions have shown that 10% acetic acid does not dissolve magnetite, other iron oxides or 

pyrite. Layer 6 was used to test whether siderite and ankerite, exhibiting widely different 

isotope composition when analysed in situ (Table 3.3, Figure 3.6a, b), are leached in 

representative proportions. The calculated Fe isotope composition for bulk iron carbonate 

(based on estimated modal abundances of siderite and ankerite, their average Fe contents and 

their isotope compositions obtained by LA-ICP-MS) is -0.02‰ – this value shows no 

significant difference to 0.09‰ determined by solution ICP-MC and the leacheates are 

considered representative. The Fe isotope composition of magnetite and iron carbonate were 

determined after chemical purification following the procedure described by Schoenberg and 

von Blanckenburg (2005). The obtained long-term external reproducibility of the solution ICP-

MS measurements is better than ± 0.05‰ (2 SD). 
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3.4. Results 

3.4.1. Fe isotope composition 

The Fe isotope compositions of the major Fe-bearing mineral phases are presented in Table 3.3 

and Figures 3.6a, b and 3.7. Solution ICP-MS of magnetite exhibits δ56Fe values of 0.82 to 

1.00‰. LA-ICP-MS reveals significant variation in the magnetite Fe isotope composition in 

lateral as well as in vertical directions. However, Fe isotope compositions averaged over entire 

layers are surprisingly uniform (Figure 6b). Comparison of the standard deviation of magnetite 

populations with the standard deviation of a dataset obtained from homogeneous material shows 

that in most cases the variations exceed the analytical precision. This demonstrates that small-

scale variations in magnetite-rich layers exist, and can be measured. The maximal observed 

range within a stratigraphic level is 0.45 to 0.76‰ in δ56Fe giving a mean of 0.66 ± 0.18‰ (2 

SD, n=11). Standard deviations of magnetite populations range from ± 0.08 to 0.21‰ (2 SD, 

n=5 to 17). The means of the layers obtained by LA-ICP-MS range from 0.71 to 1.02‰. 

Although heterogeneities exist, neither intra- nor inter-layer trends can be observed within 

layers 9 to 15, in which more than 5 analyses have been performed. Taking all spot analyses 

obtained in these layers, the dataset shows a Gaussian distribution giving an average of 0.72 ± 

0.17‰ (2 SD, n=77) (Figure 3.7). 

The magnetite crystals are internally heterogeneous in their Fe isotope composition, as revealed 

in layer 13 by the sequential coring method (Figure 3.5). Depending on the cut of the magnetite 

crystals in the thin section, the cores are up to 0.3‰ lighter in their Fe isotope composition than 

the rims. The mean δ56Fecore is 0.75 ± 0.13‰ (2 SD, n=21) which presents a resolvable 

difference from the mean δ56Ferim of 0.89 ± 0.24‰ (2 SD, n=18) (two-sample Student‘s t-test, 

95% confidence level). 

Comparing average LA and solution ICP-MS measurements of magnetite in designated layers 

(Table 3.3, Figure 3.6b), the solution data appear to indicate a slightly heavier Fe isotope 

composition than the corresponding LA data. This discrepancy can be explained by the isotope 

zonation found in magnetite crystals. Spot analyses are usually placed away from crystal edges 

to avoid mixing of different phases. Because the outer rim is also the isotopically heaviest part 

of the crystals, the LA data is biased towards lighter compositions. 

The iron carbonates were investigated in several layers via bulk mineral solution ICP-MS. The 

δ56Fe values range from -0.13 to 0.25‰ giving an average of about 0‰. LA-ICP-MS of siderite 
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and ankerite show significant variations in their Fe isotope composition. Because pure iron 

carbonate phases are usually smaller than the area required for a LA analysis and cannot easily 

be distinguished from each other using the optical microscope integrated in the LA system, most 

analyses are likely to represent mixtures of siderite and ankerite. As expected from their distinct 

chemical composition with variable degrees of Mg- and Ca-substitution, Fe isotope 

compositions vary. Ankerite shows values which are always isotopically lighter when compared 

to siderite within a given layer. If we assume the lowest δ56Fe values to represent the best 

estimate of ankerite compositions, whereas the highest δ56Fe corresponds to those of the siderite 

end member, then ankerite exhibits δ56Fe values as low as -0.70‰, whereas siderite shows 

consistently positive δ56Fe values of up to 0.43‰. The relative difference of δ56Fe observed in 

layers where both mineral phases were examined is ~0.4 to 1.1‰. 

 
Figure 3.6 Fe and Si isotope variations in the Old Wanderer BIF within a section of 3.5 cm. The 
numbering of layers corresponds to Figure 3.2a.  Carbonate layers consists of siderite, ankerite 
and chert (in white), whereas magnetite-rich layers are mainly composed of magnetite, siderite 
and chert (in grey). A) Fe isotope data for magnetite, siderite and ankerite obtained by LA-ICP-
MS. Single magnetite crystals were investigated by LA spot analyses revealing significant 
variations in the Fe isotope composition. Siderite and ankerite were analysed by LA using the 
raster procedure. The variation in the Fe isotope composition of siderite and ankerite are largely 
attributed to variable mixing proportions of these end member minerals. The lowest and the 
highest δ56Fe values represent the best estimates of ankerite and siderite end member 
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composition, respectively. B) Fe isotope composition of bulk mineral separates obtained by 
solution ICP-MS and summary of Fe isotope data obtained by LA-ICP-MS. The estimated Fe 
isotope composition of bulk layers is indicated by vertical bars. C) Si isotope composition of 
chert obtained by LA-ICP-MS using raster-mode. Average Si isotope composition of layers is 
indicated by vertical bars. The Fe and Si isotope compositions of bulk layers show a covariance 
(correlation factor=0.71).  
 

 

Figure 3.7 Histograms of Fe isotope data of magnetite obtained by LA spot analyses. The 
population exhibits a Gaussian distribution. The standard deviation differs significantly from the 
external reproducibility (error bar) indicating true heterogeneity in the Fe isotope composition 
on a sub-millimeter scale. 

3.4.2. Si isotope composition 

The Si isotope data are presented in Table 3.4 and Figure 3.6c. Chert in the investigated BIF 

exhibits strong variations in its Si isotope composition perpendicular to layering giving a mean 

δ30Si value of -1.56 ± 0.76‰ (2 SD, n=68). The calculated mean composition of the layers 

ranges between -1.04 to -2.55‰. Intra-layer variations are minor with ± 0.09 to 0.44‰ (2 SD), 

which is close to the achievable precision of ± 0.24‰ (2 SD). 
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Table 3.3 
Fe isotope data  obtained by LA-ICP-MS and solution ICP-MS 

The numbering of layers corresponds to Figure 3.2a, letters refer to different stratigraphic levels 
within layers. LA-ICP-MS data are presented as mean values, but all data are plotted in Figures 
3.6 and 3.7. 2 SD refers to multiple analyses (n). In addition, we provide potential end member 
ratios (δ56Feem) for ankerite and siderite, respectively. The minimal value represents the 
endmember composition of ankerite, whereas the maximal value corresponds best to the end 
member composition of siderite. 
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Table 3.4 
Si isotope data of chert obtained by LA-ICP-MS 

The numbering of layers corresponds to Figure 3.2a. 
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3.5. Discussion 

3.5.1. Significance of bulk Fe and Si isotope composition in the Old Wanderer BIF 

The overall Fe and Si isotope compositions of the 2.7 Ga Old Wanderer BIF is within the 

observed range of previously investigated BIFs (see overviews in André et al., 2006; Johnson 

and Beard, 2006; van den Boorn et al., 2007). Iron carbonates with a bulk Fe isotope 

composition of ~0‰ and magnetite with δ56Fe of ~0.9‰ reveal an overall enrichment in heavy 

Fe isotopes. Chert displays an overall depleted Si isotope signature, even though strong inter-

layer variations exist ranging from -1.04 to -2.55‰ in δ30Si.  

Although the geochemical cycles of Fe and Si in the Precambrian are still poorly understood it 

is clear that they differed from that of the Phanerozoic. Under anoxic conditions in Precambrian 

ocean, the Fe concentration in seawater would have been much higher than today, between 2 

and 50 ppm (Ewers, 1983; Sumner, 1997; Canfield, 2005). The abundance of iron oxides 

requires oxidation in a largely anoxic ocean which is generally explained by a stratified ocean 

system with an oxidising upper water column (e.g. Klein, 2005). Oxidation and subsequent 

precipitation of ferric oyxhydroxide was most likely caused by anaerobic photosynthesis (e.g. 

Konhauser et al., 2002; Kappler et al., 2005) or atmospheric oxygen (e.g. Holland, 1973; 

Drever, 1974; Ehrenreich and Widdel, 1994; Kaufman et al., 2007). In the absence of silica-

secreting organisms, the Si concentration in the Precambrian ocean could have been as high as 

110 ppm, the saturation state of amorphous silica (Maliva et al., 2005). Therefore the direct 

precipitation of silica from seawater in form of siliceous gel is the most likely Si removal 

process. Sorption of silica on clay minerals, iron oxides, or organic matter may have played a 

role in the nucleation and/or precipitation (Perry and  Lefticariu, 2003; Konhauser et al., 2007). 

BIFs within greenstone belts, such as the Old Wanderer BIF, are generally regarded to have 

formed in close vicinity to hydrothermal systems (e.g. Klein, 2005). In this regard, we can 

assume a predominantly hydrothermal fluid source providing the solutes, from which the 

sedimentary BIF precursor was precipitated. This is certainly suggested by REE patterns 

showing a positive Eu-anomaly which is interpreted as hydrothermal signature (Bau and Dulski, 

1996; Oberthuer et al., 1990). Si isotopes are also compatible with a hydrothermal origin. Even 

though vent fluids carry Si with δ30Si of -0.2 to -0.4‰ (De La Rocha et al., 2000), silica-rich 

deposits precipitated around oceanic smokers are even lighter with δ30Si of -1.6 ± 0.7‰ (2 SD, 

n=25) (Ding et al., 1996). This compares well to the mean δ30Si measured in the Old Wanderer 
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BIF which is strongly negative at -1.56 ± 0.76‰ (2 SD, n=57). Fe isotopes can also be 

explained by precipitation from a hydrothermal Fe source. δ56Fe values measured in 

hydrothermal fluids typically range between -0.6 and -0.2‰ (Sharma et al., 2001; Beard et al., 

2003; Severmann et al., 2004) with higher values corresponding to high Fe concentrations. 

Together with a presumably higher Precambrian hydrothermal flux, an elevated heat flux (Bau 

and Möller, 1993) and minimal oxidation rate close to the vent site under anoxic conditions, 

Johnson et al. (2008) have argued that ancient hydrothermal fluids would have exhibited a Fe 

isotope composition closer towards bulk oceanic crust, i.e. near-zero. This is roughly the 

composition of bulk Fe in the Old Wanderer BIF. 

However, given that both Fe and Si precipitated simultaneously but with variable intensity as 

BIFs are characterized by alternating Fe-rich and Si-rich layers, their isotope fractionations must 

be considered together. The precipitation of amorphous silica favours light Si (De La Rocha et 

al., 1997; Ziegler et al., 2005; Basile-Doelsch, 2006). Fe precipitation by partial oxidation is 

dominated by ferric oxyhydroxide which is ~1.5‰ heavier than Fe(II)aq (Bullen et al., 2001; 

Skulan et al., 2002; Welch et al., 2003; Croal et al., 2004; Anbar et al., 2005). Potential Fe and 

Si isotope fractionation of the precipitates is illustrated in Figure 8. Considering the presumably 

long residence times for both Fe and Si in the order of 106 years (Siever, 1992; Trendall, 2002), 

steady state conditions of the ocean are likely and short-term changes of well-mixed seawater 

within the deposition time of some 102 to 103 years for the investigated BIF section are 

unexpected. In this case, a steady state system must exist between hydrothermal influx and 

chemical deposition. 

In the Old Wanderer BIF, however, steady state conditions have not been attained as bulk 

layers, which reflect presumably primary signatures (see section 5.2.), are variable in their 

isotope compositions and differ in most cases from the hydrothermal signature. It is more likely 

that the residence time of both Fe and Si was short relative compared to precipitation time 

scales, and that pulses of hydrothermal emanations triggered episodic recharge and precipitation 

events. The result is that the degree of Fe and Si depletion of hydrothermal solutions can be 

variable, and Rayleigh distillation style modifications becomes visible in the Fe and Si isotope 

signatures. Therefore, both seawater and sediment composition depend on the fraction of Fe and 

Si precipitation. Because steady state is never achieved, isotope ratios of the precipitates are 

between those of the hydrothermal fluid (for complete precipitation) and the fractionation factor 

Δprecipitate-solution (for incomplete precipitation). The data of the Old Wanderer BIF indicate high 

fractions of Fe precipitation (ca. 85-100%) whereas those of Si are low (ca. 1-40%) (Figure 

3.8). This is compatible with a situation in which Si is precipitated by saturation from the entire 
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water column of an episodically discharged hydrothermal plume, whereas Fe is almost entirely 

precipitated as ferric oxyhydroxide, the precursor of magnetite and iron carbonate (see section 

5.2.), via Fe(II)aq oxidation of the plume in the upper water column. 

Surprisingly perhaps, δ56Fe and δ30Si values of bulk layers are covariant with a correlation 

factor of 0.71, significant at the confidence level of 95% (Figures 3.6 and 3.8, Table 3.1). 

However, given the opposite precipitation fractionation factors for Fe oxidation and Si 

precipitation, one may expect an anticorrelation.  

The only plausible explanation for this phenomenon is one in which high fractions of Fe 

precipitation are simultaneous in space and time with low fractions of Si precipitation, and vice 

versa. An example is shown by the model curve in Figure 8, in which the fraction of 

precipitated Fe is always opposite to that of precipitated Si.  

Figure 3.9 shows a possible scenario of an episodically active hydrothermal system. At periods 

of low plume dispersion (Figure 3.9a), silica precipitation occurs from a largely unaffected fluid 

near the venting site causing strongly negative δ30Si values, whereas the low supply of Fe to the 

oxidizing upper water column promotes complete oxidation resulting in ferric oxyhydroxide 

with δ56Fe values close to the hydrothermal signature, i.e. near-zero. This situation is compatible 

with the origin of carbonate-chert layers which exhibit low Fe contents together with low δ56Fe 

and δ30Si values relative to magnetite-rich layers. An extreme situation might be reflected by 

pure chert layers of exceptionally low δ30Si values, i.e. layer 4 reveals –2.55‰. In this case, the 

hydrothermal plume dispersion might be limited to the lower water column preventing Fe 

precipitation.  

In periods, the upwelling plume reaches the surface of the ocean (Figure 3.9b), the fluid is 

modified by ongoing silica precipitation causing Rayleigh distillation or by mixing with 

ambient seawater with a strong positive isotope composition. Both shift the isotope signature of 

the precipitating silica towards heavier values (André et al., 2006; van den Boorn et al., 2007). 

The supply of large quantities of Fe(II)aq into the upper water column triggers partial oxidation 

as the oxidant becomes the limiting factor resulting in high rates of ferric oxyhydroxide 

formation with positive δ56Fe values. Such a situation might be reflected in magnetite-

carbonate-chert layers. They show significantly higher Fe contents together with significantly 

positive δ56Fe and increased δ30Si values compared to carbonate-chert-layers. This model of an 

episodically recharged hydrothermal plume explains the Fe and Si signatures of the Old 

Wanderer BIF but of course fractionation factors and source compositions that change with time 

cannot be excluded. 
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Figure 3.8 Conceptual model of the variability in δ30Si and δ56Fe for the initial precipitates, 
silica and ferric oxyhydroxide depending on the precipitated fraction f. A hypothetical 
hydrothermal solution is emanated with δ56Fe and δ30Si of 0‰, respectively. Precipitation from 
this fluid takes place with Fe(III) that is 1.5‰ heavier (through oxidation and ferric 
oxyhydroxide precipitation, Table 3.5), and SiO2 (from oversaturation of seawater with Si) that 
is 1.5‰ lighter. Two opposing scenarios can be envisaged. In the first case, the hydrothermal 
influx and the depositional output have the same isotope compositions of 0‰ which can be 
attained either by steady state conditions or 100% precipitation of the dissolved Fe and Si. In the 
second case, precipitation of small fractions from seawater with a hydrothermal signature results 
in isotope compositions reflecting the fractionation factors of -1.5‰ in δ30Si and 1.5‰ in 
δ56Fe. The diagonal line illustrates the isotope evolution by Rayleigh distillation for 
precipitating equal fractions of dissolved Si and Fe, and the axes of the inset indicate the 
fractions of Fe and Si precipitated. The data of bulk layers of the Old Wanderer BIF (only δ30Si 
- δ56Fe pairs are shown) plot below this line indicating low degrees of Si precipitation (1-40%) 
at high degrees of Fe precipitation (85-100%) but not steady state conditions. The correlation of 
the data roughly follows a curve of opposite fractions of cumulative precipitated Si and Fe 
(f(Si↓)+f(Fe↓)=100%). A possible scenario for the end members of the data indicated by a) and 
b) is sketched in Figures 3.9a und b, respectively. 
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Figure 3.9 Scenario of episodic recharge and precipitation events by pulses of hydrothermal 
fluids and the origin of BIF layering. Silica (small open cycles) is likely to precipitate from the 
entire water column, whereas the formation of ferric oxyhydroxide (small black cycles) is 
restricted to the oxidizing surface. Magnetite (black squares) and iron carbonate (open 
diamonds) are diagenetic products of reduction of initial precipitated ferric oxyhydroxide by 
oxidizing of organic matter (greys ellipsoids); silica consolidates to chert (large open cycles).  
A) Low spatial expansion of the hydrothermal plume leads to layers which have low δ30Si and 
δ56Fe values at low Fe contents corresponding to the data marked with a) in Figure 3.8. Silica 
precipitates from a pristine fluid near the venting site and represents a small fraction of the 
dissolved Si resulting in strong negative δ30Si values. The supply of Fe(II)aq into the oxidizing 
upper water column is limited causing near complete oxidation at low rates of ferric 
oxyhydroxide precipitation with δ56Fe values close to the hydrothermal signature, i.e. 0‰. 
Subsequently, silica, ferric oxyhydroxide and organic matter are deposited and buried together 
at the seafloor. The low quantity of ferric oxyhydroxide deposition promotes conditions of 
organic carbon excess which triggers complete reduction of Fe(III) and conversion to iron 
carbonate during diagenesis/metamorphism. For example, one mole of organic carbon can 
reduce eight moles of ferric oxyhdroxide (e.g. Lovley, 1990). These periods are documented by 
carbonate-chert layers which show low δ30Si and δ56Fe values at low Fe contents. B) Expansion 
and upwelling of the hydrothermal plume results in layers with higher δ30Si and δ56Fe values at 
high Fe contents which is marked with b) in Figure 3.8. Now, silica precipitates predominately 
from a fluid that has previously been modified by ongoing precipitation of isotopically light 
products with distance to the venting site or by mixing with ambient seawater with a strong 
positive isotope composition. Both shift the isotope signature towards heavier values (André et 
al., 2006; van den Boorn et al., 2007). The supply of large quantities of Fe(II)aq into the 
oxidizing zone triggers partial oxidation as the oxidant becomes the limiting factor resulting in 
high rates of ferric oxyhydroxide precipitation with significant positive δ56Fe values. The large 
quantities of ferric oxyhydroxide deposition triggers partial reduction of Fe(III) as now the 
organic carbon becomes the limiting factor resulting in the formation of iron carbonate and 
magnetite. After diagenesis, these periods are represented by magnetite-carbonate-chert layers 
which exhibit significant positive δ56Fe values and moderate negative δ30Si values at high Fe 
contents. 
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3.6.2. Diagenesis and the formation of magnetite and iron carbonate  

The origin of magnetite and iron carbonates in BIFs is controversial and may involve more than 

one formation pathway (Johnson et al., 2008). Magnetite possibly originates from a primary 

hydro-magnetite precursor (Klein, 2005) but more likely through biomineralization or 

diagenetic processes. Nano-particles of magnetite can be precipitated either intra-cellularly by 

magnetotactic bacteria (e.g. Karlin et al., 1987; Chang et al., 1989; Konhauser, 1998) or, more 

efficiently, by extracellular processes due to dissimilartory Fe reduction (DIR) of Fe(III) by 

oxidation of organic matter (e.g. Lovley, 1997; Konhauser et al., 2005). Further pathways 

involve the abiotic reduction of Fe(III) (e.g. Perry et al., 1973; Morris, 1993). Alternatively, 

magnetite incorporates hydrothermal Fe(II) (Ohmoto, 2003). Siderite is regarded either as direct 

precipitate from seawater (Klein and Beukes, 1989; Kaufman et al., 1990; Klein, 2005; Sumner, 

1997) or diagenetic product possibly coupled to the formation of magnetite (Ewers and Morris, 

1981; Lovley, 1991).  

The advantage of Fe isotope analyses of coexisting mineral phases is that they allow one to 

infer these processes. For example, independent formation pathways of magnetite and siderite 

result in Fe isotope disequilibrium, whereas coupled diagenetic formation of magnetite and 

siderite by biotic or abiotic reduction of Fe(III) have to show Fe isotope equilibrium in 

coexisting mineral phases. The comparison of measured Fe isotope differences of coexisting 

mineral phases with published fractionation factors (see Table 3.5) enables us to identify 

formation processes.  

The direct formation of iron carbonates from seawater appears unlikely in the light of the 

isotope fractionation factors for Fe(II) incorporation into carbonate. Although the equilibrium 

fractionation factor is still not well constrained, siderite seems to prefer light Fe(II) relative to 

Fe(II)aq; an ankeritic component increases the fractionation factor (see Table 3.5 for references). 

δ56Fe values of bulk iron carbonates (siderite + ankerite) in the Old Wanderer BIF cluster 

around 0‰ which requires ancient seawater with a heavier δ56Fe value than measured for iron 

carbonates. Taking the equilibrium fractionation factor of Wiesli et al. (2004), the ancient 

seawater would have had a heavy δ56Fe value of at least 0.4 to 0.6‰ which is inconsistent with 

a strong hydrothermal influence suggesting a Fe isotope signature of the seawater of not more 

than 0‰. 

The most likely scenario is a largely simultaneous diagenetic or metamorphic formation of 

magnetite and siderite. Both would have formed from a common precursor substrate by the 
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partial reduction of previously precipitated ferric oxyhydroxides by oxidation of organic matter 

(Han, 1978; Perry et al., 1973; Ewers and Morris, 1981; Lovley et al., 1991). Given that 

coexisting magnetite and siderite in the investigated sample show a uniform relative difference 

of ~0.9‰ and that this difference agrees with that expected from isotope equilibrium 

fractionation (see Table 3.5), the coupled formation under equilibrium conditions is suggested. 

The Fe(II) released by reduction reacts either with residual ferric (hydr)oxides to produce 

magnetite or with bicarbonate to form siderite. Several studies of C isotope compositions in 

Precambrian BIFs indicate that extensive magnetite and iron carbonate deposition resulted from 

organic carbon oxidation coupled to Fe(III) reduction (Perry et al., 1973; Walker, 1984; Baur et 

al., 1985; Kaufman et al., 1990). In this process, layering is of diagenetic origin that is 

controlled by the relative amount of organic matter to ferric (hydr)oxide in a given layer. This 

ratio controls the degree of ferric (hydr)oxide dissolution and the pH-Eh conditions and 

therefore the abundance of siderite and magnetite (Figure 3.9).  

An early diagenetic pathway involves dissimilatory Fe reducing bacteria which use Fe(III) as 

electron donor when oxidizing organic matter to produce energy (Lovley et al., 1987; Lovley, 

1991; Roden, 2004; Konhauser et al., 2005). In the Old Wanderer BIF, magnetite - siderite pairs 

show a relative difference of ~0.9‰. Very similar values have been reported for the Kuruman 

BIF in the Transvaal Basin, South Africa (Johnson et al., 2003), and the Biwabik BIF (Frost et 

al., 2007) which have been interpreted as resulting from a coupled diagenetic formation process 

of siderite and magnetite due to DIR. Experimental work by Johnson et al. (2005) has revealed 

an equilibrium fractionation factor ∆siderite-magnetite of -1.3‰ for DIR, whereas Johnson et al. 

(2008) prefer a fractionation factor of -1.8‰  (see Table 3.5). An ankeritic component would 

increase the fractionation factor (Polyakov and Mineev, 2000; Johnson et al., 2005, see Table 

3.5). Both fractionation factors are considerable higher than the observed difference which may 

either indicate that another process is involved or the formation of magnetite and iron 

carbonates occurred at an elevated temperature.  

Alternatively, magnetite and siderite might have formed by abiotic reduction of ferric 

(hydr)oxides by oxidation of organic matter during late diagenesis or low-grade metamorphism 

(Perry et al., 1973; Morris, 1993; Frost et al., 2007). Predictions from Mössbauer data 

(Polyakov and Mineev, 2000; Mineev et al., 2007; Polyakov et al., 2007) give an equilibrium 

fractionation factor ∆siderite-magnetite between -1.8 and -2.8‰ at 22°C which decreases to -0.8 to -

1.2‰ at 200°C (Table 3.5). This elevated-temperature estimate is consistent with the observed 

difference of -0.9‰ in magnetite-rich layers.  
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Ankerite is considered as late diagenetic phase forming at the expense of siderite (e.g. Kaufman 

et al., 1990). Both experimental and Mössbauer approaches indicate that ankerite incorporates 

lighter Fe(II) than siderite under equilibrium conditions (see Table 3.5). This is also observed in 

the Old Wanderer BIF, where ankerite is 0.4 to 1.1‰ lighter in its isotope composition than 

siderite. 

Major post-depositional redistribution of Si and Fe, such as recycling to the ocean or 

equilibration across layering in the course of diagenetic/metamorphic processes, appears 

unlikely in the Old Wanderer BIF. The significant variations in δ30Si for chert on a millimeter-

scale supports the notion that Si isotopes are largely unaffected, and that chert preserves the 

primary isotope signature (André et al., 2006; van den Boorn et al., 2007).  

Redistribution of Fe across layering can potentially be caused by different degrees of ferric 

(hydr)oxide reduction which produces gradients in Fe(II)aq activity and pH conditions and drive 

diffusion of Fe(II)aq perpendicular to layers (Ewers, 1983). However, evidence from this sample 

as well as evidence from other BIFs (Frost et al., 2007; Johnson et al., 2008) suggest that 

mineral phases from adjacent layers in BIFs did not form in Fe isotope equilibrium and that 

significant isotope exchange in BIF across layering is absent. In the 1.9 Ga old Biwabik Iron 

Formation, differences in the oxygen fugacity and in δ56Fe of up to 0.8‰ for magnetite in 

adjacent layers argue for the absence of significant transport of Fe perpendicular to the layering 

(Frost et al., 2007). The comparison of Fe isotope compositions of magnetite and siderite from 

adjacent layers in BIFs from the ~2.5 Ga old Hamersley and Transvaal successions exhibit 

isotope disequilibrium throughout indicating insufficient Fe isotope exchange between layers 

(Johnson et al., 2003; Johnson et al., 2008). Predominantly layer-parallel fluid flow is also 

assumed for the sample investigated for the following reasons, although minor Fe redistribution 

across layering cannot be excluded: 1) There is no obvious reason why the Fe and Si isotope 

composition of bulk layers should covary if Fe was redistributed between layers. 2) Adjacent 

greenish and light layers exhibit significant differences in their Fe concentrations with ~35 and 

~10 wt%, respectively. 3) The high abundance of chert, especially in carbonate-chert layers  

(see Figure 3.3 and Table 3.1) have likely prevented major advection and diffusion 

perpendicular to layering in this sample. Early silica cementation in BIFs limited the 

permeability and also restriced the exchange between early diagenetic pore fluids and seawater 

(Beukes and Gutzmer, 2008). 4) Siderite in adjacent layers shows variable Fe isotope 

composition. For instance, the LA data reveal δ56Fe of 0.1‰ for siderite in the magnetite-rich 

layer 5 which is close to the bulk iron carbonate value as siderite is the dominating iron 

carbonate phase. In the adjacent carbonate layer 6, siderite exhibits δ56Fe of 0.4‰, but the Fe 
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isotope composition of bulk iron carbonate is very similar due to ankerite with a negative 

signature. The only other reason for differences in siderite from adjacent layers arises from 

variable proportions of siderite from different growth generations (see Figure 3.2) which carry 

different Fe isotope values. 

Therefore bulk layers in the Old Wanderer BIF are assumed to reflect largely primary Si and Fe 

isotope signatures. During diagenesis, Fe is partitioned within layers into iron carbonate and 

magnetite, which each provide diagenetic Fe isotope signatures, whereas primary signatures are 

preserved in bulk layer compositions.  

3.5.3. The significance of zoned magnetite crystals 

The fact that magnetite crystals in the Old Wanderer BIF exhibit isotopically heavier rims than 

cores (Figure 3.5) corroborates the diagenetic/metamorphic models discussed above. The 

observed isotope zonation may also account for the range in δ56Fe determined in individual 

layers. Similar heterogeneities in magnetite have been found in a BIF from the 3.7 Ga old the 

Isua Greenstone Belt using secondary ion mass spectrometry (SIMS) (Whitehouse and Fedo, 

2007). In Isua, the variability is attributed to isotope reservoir effects in pore waters during 

diagenesis which is also supported by the data presented here.  

Ongoing crystallization of magnetite might have changed successively the Fe isotope 

composition of the pore water by a Rayleigh distillation process, which in turn influences the Fe 

isotope composition of magnetite. Several processes can change the pore water composition and 

cause the observed isotope zonation: 

1) Kinetic isotope effects lead to fractionation at rapid precipitation rates if crystal growth is 

surface-controlled; or fractionation in the fluid phase if crystal growth is transport-controlled. 

The first effect can be ruled out as an experimental study has shown for the precipitation of 

hematite from solution that equilibrium conditions are already attained after some days (Skulan 

et al., 2002), and recrystallization during diagenesis takes place at a time scale of several 

thousand years (Berner, 1980). More likely is a kinetic effect during the transport of soluble Fe 

in a fluid phase if advection is negligible and molecular diffusion dominates. Despite the 

presence of Fe(II)aq as hexaquo complex in aqueous solution which decreases the relative mass 

differences between isotopes and therefore limits kinetic fractionation effects (Richter et al., 

2006), an experimental study of (Rodushkin et al., 2004) postulates a discrimination of 

dissolved 56Fe relative to 54Fe of -0.3‰ by diffusion. 
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2) If siderite and magnetite form simultaneously by abiotic reactions and compete for a limited 

reservoir of Fe(II)aq during diagenesis, their isotope composition might affect each other. Both, 

siderite and magnetite tend to preferentially incorporate light Fe relative to Fe(II)aq (Table 3.5) 

but siderite prefers lighter Fe than magnetite under equilibriums conditions. Hence siderite 

formation enriches the fluid in heavy Fe in the residual Fe(II)aq. This process could be reflected 

in the magnetite crystals which contain heavy Fe in the rim. 

3) An increasing degree of dissolution of ferric (hydr)oxides can produce a temporal evolution 

towards a heavy residue. Fe isotope studies of reactive Fe(III) in modern anoxic marine 

sediments have shown such a process due to DIR (Severmann et al., 2006; Staubwasser et al., 

2006). There, ferric (hydr)oxides become successively enriched in heavy Fe as light Fe is 

preferentially dissolved resulting in a cumulative Fe isotope composition of the pore-water 

which converges to the initial value of the ferric (hydr)oxides. If magnetite crystallizes from the 

reaction of ferric (hydr)oxides with Fe(II)aq in the pore water, growing magnetite crystals will 

accumulate successively heavier Fe with preceding reduction of ferric (hydr)oxide which causes 

the observed isotope zonation. 

3.6. Conclusions 

The evidence provided here for the Old Wanderer BIF suggests that the isotope variations of 

bulk layers in Fe and Si isotope are largely of primary origin and post-depositional 

redistribution across layering or recycling to the ocean was minor. Also, the simultaneous 

precipitation of light carbonate and a heavy iron oxide from seawater can be discounted. Rather, 

we suggest that both magnetite and iron carbonate are of secondary origin due to the reaction of 

organic matter with initially precipitated ferric oxyhydroxide either catalyzed by bacteria during 

early diagenesis, or more likely abiotically during late diagenesis or low-grade metamorphism at 

temperatures as high as 200°C. Isotope zonation in magnetite is caused by an evolving fluid and 

reflects dynamic processes during diagenesis. The heavy bulk Fe composition and the light Si 

composition suggest rapid precipitation events from an episodically recharged hydrothermal 

fluid. Steady state of Fe and Si was never achieved. The covariance of Fe and Si isotope 

signatures of bulk layers reflects the upwelling dynamics of hydrothermal-rich waters. The Fe 

isotope composition of bulk layers therefore indicates variable degrees of partial oxidation in a 

stratified ocean. The variability of the Si isotope composition might reflect modifications of 

hydrothermal fluids with distance to the venting site caused by Rayleigh distillation and/or 

mixing with ambient seawater. The development of layering depends on the relative proportion 
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of organic carbon to ferric (hydr)oxide. This proportion might be governed by the rate of ferric 

oxyhydroxide precipitation, which is determined by the hydrothermal activity. Periods of low 

hydrothermal activity are documented by layers with low Fe content which represent conditions, 

in which an excess of organic carbon has led to complete conversion of ferric (hydr)oxide to 

carbonate. Layers in which the Fe content is high represents intensive hydrothermal activity and 

organic carbon was the limiting factor resulting in the additional formation of magnetite. 

The analysis of BIF mineral isotope compositions by in situ femtosecond laser ablation analysis 

provides unprecedented insights into the genetic history of these rocks that cannot be achieved 

by bulk layer or bulk mineral analysis. Future studies of this kind will allow researchers to 

decipher the factors controlling BIF formation. For example, variations in iron oxide 

compositions between layers will allow us to infer temporal variations in the Fe source or in 

genetic processes. The further development of the laser technique to higher sensitivity and 

higher spatial resolution will facilitate studies aimed at ascertaining the detailed isotope 

composition and hence genesis of zoned iron carbonates. In situ analysis is the method of choice 

for the study of Precambrian iron formations. 
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4 

 

Deciphering formation processes of banded iron formations 

from the Transvaal and the Hamersley successions by 

combined Si and Fe isotope analysis using UV femtosecond 

laser ablation 

 

 

Abstract 

We determined the Fe and Si isotope composition of coexisting mineral phases in samples from 

the ~2.5 billion year old Kuruman Iron Formation (Transvaal Supergroup, South Africa) and 

Dales Gorges Member of the Brockman Iron Formation (Hamersley Group, Australia) by UV 

femtosecond laser ablation coupled to a MC-ICP-MS. Si in chert yields δ30Si values between –

1.3 and -0.8‰, but is isotopically homogeneous in each investigated core section. This 

uniformity suggests that Si precipitated from well-mixed seawater far removed from its sources 

such as hydrothermal vents or continental drainage. Given that none of theses sources releases 

isotopically light Si, the negative Si isotope signature requires a complementary sink of 

isotopically heavy Si in order to maintain steady state in the basin. Alternatively, light Si will be 

precipitated if seawater was temporarily fertilized by extraordinary hydrothermal activity or 

continental weathering. The Fe isotope composition in Fe-bearing mineral phases is much more 

heterogeneous than that of Si due to variable degrees of partial Fe(II) oxidation in surface 

waters and post-depositional Fe redistribution. However, as with Si, the negative bulk isotope 

composition in the BIF samples investigated have to be balanced either spatially or temporally 

by deposition of isotopically heavy BIFs. This can be assumed since the overall Fe isotope 

composition of the Hamersley and Transvaal BIFs of near-zero indicate steady state conditions. 

We can estimate the ancient seawater composition from presumably primary isotope signatures 

in hematite and siderite, revealing a minimum range in seawater δ56Fe between –0.8 and 0‰. 
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Magnetite exhibits negative δ56Fe values, which can be attributed to a variety of diagenetic 

pathways: either the light Fe isotope composition was inherited from the ferric (hydr)oxide 

precursor or heavy Fe was lost by reduction of the ferric Fe precursor, or light Fe(II) was gained 

from external fluids. We also detected micrometer-scale heterogeneity of δ56Fe in Fe oxides that 

is caused by variable degrees of oxidation and by diagenetic Fe redistribution. Diagenetic 

Fe(III) reduction caused by oxidation of organic matter and its redistribution is supported by the 

C isotope composition of a carbonate-rich sample containing primary siderite. These carbonates 

yield δ13C values of ~ -10‰, which hints at a mixed carbon source of both organic and 

inorganic carbon. These results show that the new ability to determine stable isotope variations 

of the major chemical constituents of BIFs on the mineral grain scale provides a significant 

advantage in our effort to reconstruct the temporal evolution of ancient seawater and post-

depositional diagenetic processes.  

4.1. Introduction 

Banded Iron Formations (BIFs) are prominent chemical marine sediments of  Precambrian age 

whose peak of deposition between 2.3 and 2.5 Ga encompasses a period of dramatic change in 

the form of the evolution of first large scale microbial activity and the associated change in the 

atmospheric chemistry. Typically, BIFs contain total Fe of 20-40 wt% and SiO2 of 43-56 wt% 

(Klein, 2005) and are characterized by alternating Fe-rich and Si-rich layers. Therefore, these 

sediments represent an extraordinary record of ancient Fe and Si cycles, which are poorly 

understood but clearly differ from those of the Phanerozoic.  

The formation of Fe oxide layers are interpreted to reflect periods of intensive upwelling of 

Fe(II)-rich deep waters or hydrothermal plumes into the oxidizing surface layers of a largely 

anoxic ocean, which in turn led to the precipitation of a ferric oxyhydroxide precursor (e.g. 

Beukes and  Gutzmer, 2008; Isley, 1995; Klein and Beukes, 1989). Rare earth element (REE) 

patterns with positive Eu anomalies and mantle-like Nd isotope signatures reveal a 

predominately hydrothermal origin for Fe (e.g. Alibert and McCulloch, 1993; Bau and Dulski, 

1996; Bau et al., 1997; Jacobsen and Pimentel-Klose, 1988; Klein and Beukes, 1989). It is 

believed that the chert layers record periods of hydrothermal quiescence and Fe-poor 

sedimentation (e.g. Morris, 1993). In the absence of silica-secreting organisms in the 

Precambrian, Si likely precipitated directly from Si-saturated seawater in the form of an 

amorphous silica gel (e.g. Siever, 1992). The source of Si in the Precambrian seawater is 

thought to include supply by hydrothermal fluids and/or continental weathering (Hamade et al., 
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2003; Maliva et al., 2005). Although Fe and Si have been deposited simultaneously, it is sill 

unclear to what extent they have followed common pathways.  

Recent analytical advancements now provide the opportunity to study stable Fe and Si isotopes 

to decipher the genetic processes of BIFs. Mineral phases formed and altered during different 

stages of BIF genesis involved processes during primary precipitation from seawater, diagenesis 

and metamorphism, all of which might be recorded in their Fe or Si isotope signatures. A first 

combined study of Fe and Si isotopes of the Archean Old Wanderer BIF in the Shurugwi 

Greenstone Belt (Zimbabwe) has unravelled correlated Fe and Si isotope signatures, which has 

been interpreted to reflect the upwelling dynamics of hydrothermal-rich waters (see Chapter 3). 

Fe isotope compositions alone have been studied on a number of BIFs of various ages and 

different grades of metamorphism (Dauphas et al., 2004; Dauphas et al., 2007; Frost et al., 

2007; Johnson et al., 2003; Johnson et al., 2008a; Rouxel et al., 2005; Valaas Hyslop et al., 

2008; Whitehouse and Fedo, 2007; this study). The relevant fractionation factors are beginning 

to be established (see Table 3.4 in Chapter 3), which facilitates the exploration of the formation 

pathways of Fe-bearing mineral phases. Specifically, investigations of the voluminous ~2.5 Ga 

BIFs of the Hamersley and Transvaal successions have revealed large variations in Fe isotope 

composition (Johnson et al., 2003; Johnson et al., 2008a). In these studies, positive δ56Fe in Fe 

oxides and carbonates are interpreted as inheritance from a ferric oxyhydroxide precursor 

formed in the upper water column by partial Fe(II) oxidation, i.e. only part of the reservoir of 

dissolved Fe(II) was oxidized as the oxidant was the limiting factor. Carbonates with δ56Fe 

values of ~-0.5‰ are suggested to have formed in equilibrium with seawater. In contrast, 

magnetite and carbonates with strong negative δ56Fe values are attributed to the activity of 

microbial dissimilatory iron reduction (DIR) during diagenesis, which seems to have played an 

important role in the formation of BIFs. Si isotope variations in chert have been investigated in 

few BIF samples so far giving a range from –2.6 to -0.5‰ (André et al., 2006; Ding et al., 1996; 

Jiang et al., 1993). Although the fractionation occurring at silica precipitation still lacks 

experimental calibration, researchers agree that the light isotopes of Si preferentially precipitate 

(Basile-Doelsch, 2006; De La Rocha et al., 1997; Ziegler et al., 2005). Precambrian chert 

deposits appear to have preserved their original isotope signature. Negative δ30Si values are 

considered as hydrothermal signature (André et al., 2006; Ding et al., 1996; Jiang et al., 1993), 

whereas positive δ30Si values may reflect elevated temperature of the seawater, the influence of 

a continental source or precipitation from isotopically heavy seawater (Robert and Chaussidon, 

2006; van den Boorn et al., 2007).   



 112

In this study, we present high-spatial resolution Fe and Si isotope data on BIFs of the Transvaal 

and Hamersley successions determined by femtosecond laser ablation coupled to a 

multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS). This analytical 

setup allows us to investigate the relative isotope differences of coexisting mineral phases in 

distinct BIF layers, an ability that presents a significant advantage in exploring the genetic 

processes of BIF formation together with temporal changes of these processes as BIFs are 

deposited.   

4.2. Geological Background 

The most lateral extensive and best preserved BIFs were deposited within the Transvaal 

Supergroup, South Africa and the Hamersley Group, Australia (for a recent review see Beukes 

and  Gutzmer (2008)). They represent typical Proterozoic iron formations formed within 

continental shelf areas. Most of these BIFs have experienced only low-grade metamorphism, 

which makes them ideally suited for this study. The iron formations exhibit a broad spectrum of 

textural and mineralogical rock types (e.g. Beukes and  Gutzmer, 2008). They range from 

clastic-textured allochemical to orthochemical microbanded micritic iron formations, which 

were deposited from high energy environments within shallow-shelf areas to deep water basins. 

Depending on the major Fe-bearing mineral phases, they are classified as oxide, carbonate and 

silicate facies with several mixed facies. 

The Transvaal Supergroup is mainly preserved within the Transvaal and the correlated 

Griqualand West Basin in South Africa on the Archean Kaapvaal Craton. The northeastern part 

is thought to be deposited within small basins that widened to the southwest towards the open 

ocean (Bau and Dulski, 1992). The Transvaal BIFs are regarded as relatively shallow water 

shelf deposits extending the basinal facies of a carbonate platform succession and were formed 

in an back-arc environment (Klein and Beukes, 1989). Our samples have been taken from the 

Kuruman Iron Formation in the Griqualand West Basin and from the correlated Penge Iron 

Formation in the Transvaal Basin. The Kuruman Iron Formation consists essentially of 

alternating siderite-chert-magnetite microbanded macrocycles (Beukes, 1980) and experienced 

very low-grade metamorphism with temperatures between 110° and 170°C (Miyano and 

Beukes, 1984). The Penge Iron Formation was affected by contact metamorphism of up to 

500°C caused by the 2.06 Ga Bushveld intrusion (Sharpe and  Chadwick, 1982; Walraven et al., 

1990). Hydrothermal orebodies were formed  by hydrothermal oxidative fluids, a late event 

related to the Bushveld intrusion, and were further improved by deep lateritic weathering 
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(Gutzmer et al., 2005). SHRIMP U-Pb zircon ages of stilpnomelane-rich tuffaceous mudstones 

yield an upper age of 2.46 Ga for the Kuruman Iron Formation (Pickard, 2003). 

The sediments within the Hamersley Basin were deposited on the Archean Pilbara Craton in 

Western Australia. The investigated sample material was taken from the 160 m thick Dales 

Gorge Member, which is the lowermost unit of the Brockman Iron Formation of the Hamersley 

Group, which is part of the Mount Bruce Supergroup. The Hamersley succession is considered 

to be formed on a semi-isolated marine platform within backarc basin (Blake and Barley, 1992; 

Morris, 1993). The unit comprises 33 Fe oxide-rich and carbonate-silicate-rich “macrobands” 

alternating in a scale of decimeter to meter (Trendall and  Blockley, 1970). U-Pb SHRIMP data 

of zircons from intercalated tuffaceous layers reveal a depositional age between 2.49 and 2.46 

Ga  for the whole member (Trendall et al., 2004). The unit experienced very low-grade 

metamorphism with temperatures between 60 and 160°C at the Paraburdoo area, from which the 

sample material originated (Ewers and Morris, 1981; Kaufman et al., 1990).   

The similar depositional ages indicate that the Kuruman Iron Formation and the Brockman Iron 

Formation were deposited synchronously (Pickard, 2003). Sedimentation rates of consolidated 

material are in the range of about 33 m per 106 year for both BIFs based on SHRIMP U-Pb ages 

(Pickard, 2002; Pickard, 2003). REE patterns with positive Eu anomalies and mantle-like Nd 

isotope signatures of the BIFs reveal a strong influence of a hydrothermal component in the 

seawater (Alibert and McCulloch, 1993; Bau and Dulski, 1992; Bau and Dulski, 1996; Bau et 

al., 1997; Klein and Beukes, 1989; Morris, 1993). Similarities in age and stratigraphy between 

the Transvaal and the Hamersley successions (see review of Beukes and  Gutzmer (2008)) give 

rise to speculations whether these iron formations have been deposited on the same continent 

within a single restricted ocean basin (e.g. Beukes and  Gutzmer, 2008; Cheney, 1996) and 

might have been the response to widespread magmatic events (e.g. Isley and Abbott, 1999; 

Nelson et al., 1999).  

4.3. Sample Description 

Most of the investigated sample material is from pristine orthochemical mircobanded micritic 

iron formations belonging to the oxide to carbonate facies and were deposited in rather similar 

environments. The chemical composition of the various mineral phases in the investigated BIF 

samples were examined by electron microprobe. Fe oxides exhibit very pure stoichiometric 

compositions; the variability in Fe carbonate composition is presented in Table 4.1.  
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Table 4.1 
Average chemical composition (in weight % ± 1 SD) determined by electron microprobe and 
mean Fe isotope composition of iron carbonate phases 

The stratigraphic position of each investigated iron carbonate phase is indicated by mm 
corresponding to Figure 4.3. Complete Fe isotope data sets are provided in Table 4.2. As 
visible in Figure 4.1a, sample DGM-36 exhibits siderite rhombs with two growth stages 
indicated by 'sid (rim)' and 'sid (core)'. 
 

Sample TBT represents a BIF altered by iron ore mineralization. It originates from the Penge 

Iron Formation and was collected in the mining area around Thabazimbi in the northern 

Transvaal Basin. It consists of alternating micro-layers of hematite and chert, as well as layers 

of massive chert, which are pigmented by very fine hematite dust. Hydrothermal ore formation 

in the Thabazimbi area is related to a hydrothermal fluid infiltration event, which caused 

oxidative carbonate metasomatism (De Kock et al., 2008; Gutzmer et al., 2005).  As a 

consequence, hematite replaced magnetite, grunerite and Fe carbonates. This hematite chert BIF 

sample might represent a former magnetite chert BIF as other relics than magnetite are absent. 

The sample is almost completely oxidized as all chert layers appear red and evidence for 

incomplete martitization processes (= transformation of magnetite into hematite by oxidation of 

magnetite (e.g. Mücke, 2003) is very rare. Evidence of supergene modifications as leaching of 

chert are absent. The core sections, 3/79 and 3/59, are from the Kuruman Iron Formation and 

were sampled at Pomfret located in the north of the Griqualand West Basin. Sample 3/79 

represents a magnetite hematite chert BIF consisting of alternating Fe oxide- and chert-rich 

layers in the scale of millimeter to centimeter. Magnetite is the major Fe oxide phase, which is 

partly intergrown with hematite. Both minerals occur as anhedral aggregates. Chert layers are 

mm Mineral n

Kuruman Iron Formation 3/59 (Transvaal)
38.70 ank 18.71 ± 0.53 1.33 ± 0.09 7.98 ± 0.30 27.43 ± 0.53 7 -0.72

Mg-sid 39.79 ± 1.11 1.20 ± 0.22 17.48 ± 1.05 0.38 ± 0.17 19 -0.88
sid 50.77 ± 1.77 1.97 ± 0.37 6.99 ± 1.87 0.48 ± 0.21 9 -0.72

38.55 ank 16.95 ± 3.33 1.02 ± 0.32 9.49 ± 3.49 27.92 ± 0.50 11 -0.66
Mg-sid 39.79 ± 0.30 1.13 ± 0.10 18.09 ± 0.07 0.33 ± 0.18 3 -0.90

37.75 ank 17.86 ± 1.96 1.21 ± 0.19 8.04 ± 2.28 27.95 ± 0.32 6 -0.84
20.80 ank 19.16 ± 1.20 1.26 ± 0.24 8.27 ± 0.76 26.51 ± 0.40 19 -0.89

sid 51.98 ± 1.97 1.72 ± 0.35 6.50 ± 1.47 0.49 ± 0.17 20 -0.65
3.65 sid 52.32 ± 1.46 1.65 ± 0.39 5.84 ± 0.96 0.51 ± 0.18 8 -0.83
3.45 sid 52.40 ± 1.28 1.64 ± 0.32 5.84 ± 0.74 0.44 ± 0.18 -0.69
3.00 sid 52.19 ± 1.49 1.65 ± 0.34 5.85 ± 1.00 0.46 ± 0.39 5 -0.75

0 Mg-sid 45.10 ± 0.75 2.03 ± 0.06 11.74 ± 0.23 0.58 ± 0.12 2 -1.13
ank 17.71 ± 2.32 1.48 ± 0.16 8.96 ± 1.82 27.19 ± 0.28 3 -1.20

Dales Gorge Member DGM-36 (Hamersley)
35.82 sid 43.07 ± 4.60 0.64 ± 0.37 13.56 ± 4.66 1.26 ± 0.81 6 -2.18
24.84 sid (rim) 49.08 ± 1.20 0.74 ± 0.13 9.65 ± 0.79 0.34 ± 0.14 16

sid (core) 51.99 ± 0.67 0.89 ± 0.15 6.77 ± 1.34 0.77 ± 0.59 4
-1.97

FeO MnO MgO CaO δ56Femean
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pigmented by fine hematite dust. Core section 3/59 represents a typical laminated magnetite 

carbonate chert BIF (Figure 4.1c). Magnetite crystals are sub- to euhedral of about 30 μm in 

size. Carbonate phases comprising calcite, siderite and ankerite form either distinct compact 

layers or occur as finely distributed aggregates. The Fe-bearing varieties are ankerite, Ca(Fe0.30-

0.60, Mg0.40-0.70)(CO3)2, and siderite with variable Mg-substitution, (Fe0.70-0.80, Mg0.20-0.30)CO3 and 

(Fe0.55, Mg0.45)CO3. Their chemical compositions of each investigated layer are presented in 

Table 4.1 and depicted in Figure 4.2. Chert is occasionally red pigmented by hematite dust. The 

lamination is defined by variable proportions of the constituent minerals.  

 

 

Figure 4.1 Backscattered electron (BSE) images of BIF samples with sid = siderite, Mg-sid = 
Mg-rich siderite, ank = ankerite, mag = magnetite, hem = hematite and chert = quartz. A) and 
B) The images show laser ablation craters in siderite rhomboids and magnetite, respectively in 
sample DGM-36. C) Carbonate magnetite chert layers in sample 3/59. Magnetite exposes 
abrupt shifts in the Fe isotope signature within few microns as observable between 38.70 and 
38.55 mm of the core section. 
 

Core sample DGM-36 represents BIF macroband 16 of the Dales Gorge Member of the 

Brockman Iron Formation. It originated from drillhole DDH-44 at Paraburdoo sited at the 

south-west edge of the Hamersley Basin. The sample is a finely laminated hematite magnetite 

siderite chert BIF. Fe-rich layers consist mainly of hematite, magnetite and minor siderite. 
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Hematite is texturally variable displaying massive, anhedral to fine platy habits. Subhedral 

magnetite typically occurs as overgrowths on hematite laminae (Figure 4.1b). Siderite, (Fe0.75, 

Mg0.25)CO3, appears as very finely distributed phase or in the form of subhedral rhomboids with 

distinct growth zones (Figure 4.1a). Chert is interbedded with Fe-rich layers. Detailed 

petrographic and geochemical information on this sample are given by Pecoits et al. (in review).  

 

 
Figure 4.2. Carbonate composition, as mole percent of CaO, MgO and FeO and observed 
ranges in mean δ56Fe values of sample 3/59. The data are listed in Table 4.1 and 4.2. The Fe 
carbonate phases, sid = siderite, Mg-sid = siderite with significant Mg substitution and ank = 
ankerite each show uniform chemical compositions but differ in the range of their Fe isotope 
composition. Siderite exhibits a small range in δ56Fe, whereas siderite with significant Mg 
substitution and ankerite are depleted in heavy Fe relative to siderite to a range of degrees. 

4.4. Methods 

High-spatial resolution Fe and Si isotope data of the investigated BIFs were obtained in situ 

from thin sections by laser ablation ICP-MS (LA-ICP-MS). The instrumental setup at the 

University of Hannover consists of our in-house built UV femtosecond laser ablation system 

coupled to a ThermoFinnigan Neptune MC-ICP-MS and has been described in detail by Horn 

and von Blanckenburg (2007). The analytical method followed the procedure of Chmeleff et al. 

(2008), Horn et al. (2006)) and see Chapter 3. The instrumental mass discrimination was 

corrected by standard-sample-bracketing using the reference materials IRMM-014 and NBS28 
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for Fe and Si isotope analysis, respectively. The external reproducibilities of δ56/54Fe and δ57/54Fe 

are better than 0.1‰ (2 SD) and 0.2‰ (2 SD), respectively,  and has been verified for different 

types of matrices including those investigated herein. Analyses of Si isotopes reveal an overall 

precision for δ29/28Si and δ30/28Si of 0.15‰ (2 SD) and 0.24‰ (2 SD), respectively. 

We investigated the Fe isotope compositions of all major Fe-bearing mineral phases in selected 

layers of the sampled BIFs. Fe oxides were analysed by spot analysis with a diameter of 20 to 

30 μm. Single magnetite crystals in sample 3/59 were investigated by the experimental 

procedure described in Chapter 3 to examine potential intra-mineral isotope zonation. 

Sequential coring by laser ablation using different spot sizes allows to analysis the Fe isotope 

composition of the crystal core and the rim, separately in crystals as large as 30 μm. Fe 

carbonates were investigated prior to Fe isotope analysis by electron microprobe to distinguish 

distinct phases. Backscattered electron (BSE) images assisted to analyse pure phases using short 

line scans. Multiple analyses were performed parallel and perpendicular to the lamination to 

investigate the variability of the Fe isotope composition of the different mineral phases. The Fe 

isotope data are reported as δ56/54Fe and δ57/54Fe relative to the reference material IRMM-014. 

The Si isotope composition was investigated in chert. Analyses using narrow rasters of about 50 

μm x 500 μm provide a high-spatial resolution in chert layers. The Si isotope data are presented 

as δ29/28Si and δ30/28Si relative to the reference material NBS28. 

In addition to Fe and Si isotope ratios, we investigated the C isotope composition in sample 

3/59, in which Fe carbonates represents one of the major mineral phases. Micro-sampling of 

individual layers was performed on a thick section using a 0.5 mm diameter steel drill bit tipped 

with synthetic diamonds. The analyses were carried out at the Leibniz Institute for Applied 

Geosciences in Hannover using a fully automated preparation system (ThermoFinnigan 

Gasbench 2) directly coupled to a ThermoFinnigan Delta Puls XP isotope ratio mass 

spectrometer following a standard procedure (e.g. Spotl and  Vennemann, 2003). All samples 

were measured in duplicate and reported as mean δ13C value relative to the PDB standard. The 

external reproducibility is better than 0.2‰ (2 SD).  

4.5. Results 

4.5.1. Fe isotope composition 

The Fe isotope compositions of the various Fe-bearing mineral phases in the investigated BIF 

samples are presented in Figure 4.3 and in Table 4.2. The chemical composition of Fe carbonate 
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phases and their corresponding mean δ56Fe values are summarized in Table 4.1 and depicted in 

Figure 4.2.  

Hematite micro-layers of sample TBT exhibit significant lateral variation in their δ56Fe values 

composition on a sub-millimeter scale, which exceed the analytical error. Average Fe isotope 

compositions within micro-layers however remain surprisingly uniform (Figure 4.3a, b). The 

maximal observed lateral range is -1.17 to -0.27‰ in δ56Fe with an average of -0.47 ±  0.52‰ 

(2 SD, n=14) at 11.15 mm of the investigated section. Similar variations have been found within 

other layers with ±  0.11 to 0.44‰ (2 SD, n=8 to 16). A comparison of the mean values of the 

boundaries of micro-layers reveals no significant differences in most cases (Student’s t-test, 

95% confidence level); also inter-layer trends are absent (Figure 4.3b). Therefore, the dataset 

can considered together showing a Gaussian distribution and a mean of -0.39  ± 0.31‰  (2 SD, 

n=181). This observation may indicate one dominating process, which has caused the small-

scale variation in the Fe isotope composition.  

In sample 3/79, magnetite and hematite show homogeneous Fe isotope compositions within 

several layers, respectively, although differences from layer to layer do exist (Figure 4.3d, e). 

Hematite reveals little variations in δ56Fe giving mean values between -0.02 and -0.17‰ for 

different stratigraphic levels, while magnetite is more variable with mean δ56Fe values ranging 

between -0.59 and -0.14‰. Magnetite shows constantly lower δ56Fe than hematite with relative 

difference between them ranging between 0.08 and 0.50‰. 

In sample 3/59, magnetite and the Fe carbonate phases (siderite, Mg-rich siderite and ankerite) 

were investigated (Figures 4.2, 4.3g-h, 4.4). Repeated analyses reveal that all mineral phases are 

homogeneous in their Fe isotope composition within the lamination. Increased standard 

deviations of multiple analyses of individual Fe carbonate phases are attributed to slightly 

variable chemical compositions. Magnetite exhibits significant variations in δ56Fe perpendicular 

to the lamination with abrupt shifts within a few microns giving mean values between -0.02 and 

-0.86‰ (Figures 4.1c, 4.3h). The examination of individual magnetite grains at 39.20 mm of 

the investigated core section reveals isotopically homogeneous crystals within the analytical 

precision giving mean δ56Fe values of -0.48 ± 0.11% (2 SD, n=18) for the crystal core and -0.44 

± 0.25% (2 SD, n=12) for the crystal rim (Figure 4.4). The Fe isotope composition of Fe 

carbonate phases show no direct correlation with their chemical composition (see Table 4.1 and 

Figure 4.2). Mean δ56Fe values for siderite are relatively constant ranging between –0.83 and -

0.65‰, whereas siderite with significant Mg-substitution is slightly more variable with δ56Fe 

values between -1.13 and -0.88‰. Ankerite is the most variable phase giving mean δ56Fe values 

between -1.20 and -0.66‰. In the sample DGM-36, hematite and magnetite show little inter-
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layer variations with mean δ56Fe values ranging from -0.90 and -0.76‰ and from -0.94 to -

0.82‰, respectively (Figures 4.3j-k). Variations of ± 0.13 to 0.41‰ (2 SD, n=6 to 19) for 

multiple analyses partly differ from the analytical precision indicating slightly heterogeneous Fe 

isotope compositions within individual layers. When occurring together, hematite and magnetite 

expose identical Fe isotope compositions within analytical precision. Very fine distributed 

siderite occurring adjacent to magnetite and hematite could be analysed only once giving a 

δ56Fe value of -2.18‰. Siderite rhombs within a hematite-siderite-rich layer reveal a mean δ56Fe 

value of -1.97‰. 

4.5.2. Si isotope composition 

The Si isotope data of chert in the investigated BIFs are presented in Table 4.4 and depicted in 

Figure 4.3. All samples reveal homogeneous Si isotope signatures depleted in isotopically 

heavy Si as the variability is close to the achievable precision. Samples from the Transvaal 

succession TBT, 3/59 and 3/79 exhibit mean δ30Si values of  -0.82 ± 0.22‰ (2 SD, n=31), -1.22 

± 0.31‰ (2 SD, n=27) and –0.77 ± 0.26‰ (2 SD, n=31), respectively. DGM-36 from the 

Hamersley Basin is slightly more variable giving a mean δ30Si values of  -1.25 ± 0.40‰ (2 SD, 

n=36). 

4.5.3. C isotope composition 

The C isotope composition was investigated in carbonate-rich layers in sample 3/59. δ13C values 

range between –10.91 and -8.95‰ giving a mean value of –9.85 ± 1.26‰ (2 SD, n=9) (Table 

4.3, Figure  4.5). 



 120

 



 121 



 122

Figure 4.3 Fe and Si isotope variations in the Penge and Kuruman Iron Formation from the 
Transvaal succession and in the Dales Gorge Member of the Brockman Iron Formation from the 
Hamersley succession. Mineral phases are presented by hem = hematite, mag = magnetite, sid = 
siderite, Mg-sid = Mg-rich siderite, ank = ankerite and chert = quartz. A), D), G) and J) shows 
all obtained Fe isotope data, whereas B), E), H) and K)  present mean δ56Fe values of multiple 
analyses. Fe isotope data on sample TBT were obtained from the marked section. C), F), I) and 
L) display δ30Si values of single raster analyses. The investigated core sections represent about 
1000 to 1500 years of deposition assuming a deposition rate of 0.033 mm/y (Pickard, 2002; 
2003). 
 

 
 
Figure 4.4 Investigation of intra-crystal Fe isotope heterogeneity in magnetite using the method 
described in Chapter 3. Magnetite crystals in the Archean Old Wanderer BIF from the 
Shurugwi Greenstone Belt (Zimbabwe) show zonation in the Fe isotope composition revealed 
by corresponding pairs of core-rim analysis (see Chapter 3), whereas magnetite in sample 3/59 
from the Kuruman Iron Formation exhibits homogeneous crystals. The analytical procedure has 
been validated on the homogeneous metal standard Puratronic showing that the inner spot 
analyses (= core) are identical with the outer spot analyses (= rim) within the analytical 
precision. 
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Table 4.2 Fe isotope data of investigated BIFs obtained by LA-ICP-MS 

The stratigraphic positions of the analysed mineral phases are indicated by mm 
corresponding to Figure 4.3. Uncertainties given by 2 standard deviations refer to multiple 
analyses (n) .   
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Figure 4.5 C isotope composition of sample 
3/59 from the Kuruman Iron Formation, 
Transvaal (South Africa). Despite variable 
chemical composition of Fe carbonates, the C 
isotope composition is largely homogeneous 
indicating a mixed carbon source of inorganic 
and organic origin. 

4.6. Discussion 

4.6.1. Seawater to sediment cycling of  Si and Fe  

The Fe isotope signatures in the investigated Hamersley and Transvaal BIFs show variations on 

small spatial scale, whereas the Si isotope signature is uniform in each core section (see Figure 

4.3 and 4.7). These characteristics imply different pathways for Si and Fe during their 

formation. In this regard, Proterozoic BIFs may differ from Archean BIFs associated with 

greenstone belts. For instance, the 2.7 Ga Old Wanderer BIF within the Shurugwi Greenstone 

Belt (Zimbabwe) shows correlated small-scale variations in both the Si and Fe isotope 

signatures, which have been interpreted to reflect the dynamics of hydrothermal activity (see 

Chapter 3).  
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3.45 20% ank, 80% sid -11.17
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Table 4.5 C isotope data of bulk layers for
Kuruman Iron Formation 3/59 (Transvaal) 

The stratigraphic position of the samples
indicated by mm corresponds  to Figure 4.5.
The carbonate composition is inferred from
estimated modal abundances. 
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Figure 4.6 Conceptual models for the temporal evolution of the Fe and Si isotope composition 
in an ocean basin. The ocean basin presents a single compartment with no isotope fractionation 
at intake, but isotope fractionation at precipitation into sediment with an associated isotope 
fractionation factor Δout-seawater. A) At non steady-state, the isotope composition of seawater 
δseawater equals that of the influx δin. The isotope composition of the outflux δout, i.e. the 
precipitated Fe and Si, is determined by δseawater and Δout-seawater. B) At steady state, the influx 
equals the outflux in quantity and isotope composition. Hence, δseawater evolves towards δin - Δout-

seawater. In C) and D), the temporal evolution of Fe and Si isotope signatures of the influx, the 
seawater and the outflux are delineated as the system evolves from non-steady state to steady 
state conditions. Here, we assume fractionation factors of –1.5‰ and 1.5‰ for Si and Fe 
precipitation from solution, respectively, and an isotope composition of 0‰ for both sources, Fe 
and Si. This temporal evolution is not a Rayleigh type process. 
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In general, chert in BIFs is considered to result from direct silica precipitation from seawater 

(e.g. Maliva et al., 2005) and is likely to preserve its original Si isotope signature (André et al., 

2006; van den Boorn et al., 2007; and see Chapter 3). The homogeneous Si isotope signatures 

of the investigated core sections suggest continuous silica precipitation from well-mixed 

seawater with a steady Si isotope composition. The absence of short-term variations is 

consistent with a presumably long residence time of Si on the order of 105 to 106 years (Siever, 

1992). These conditions are characteristic of the typical depositional setting of Proterozoic BIFs 

on partially isolated continental shelf platforms. These areas are removed from the direct 

influence of either hydrothermal venting systems or continental drainage (e.g. Klein, 2005). In 

contrast, the Fe isotope composition is controlled by many factors including seawater 

composition, the initially precipitated Fe phases, partial Fe(II) oxidation and diagenetic Fe 

redistribution, which have caused large variations (see section 4.6.2.).  

Considering the bulk layer Si and Fe isotope composition of the investigated BIFs, both systems 

exhibit lower values than expected for a steady state ocean model. We can say this because the 

deposited BIFs did not obtain the assumed composition of the influx, a condition required for 

the ocean basin to be at steady state (Figure 4.6). Figure 4.7 presents a conceptual isotope 

model for Si and Fe precipitation and defines two end member scenarios for Precambrian 

seawater: steady state and non-steady state conditions. In the first case, both quantity and 

isotope composition of the outflux corresponds to the influx implying that BIFs would carry the 

Si and the Fe isotope composition of the hydrothermal source (see also Figure 4.6b). This 

source composition is near 0‰ for both systems (Beard et al., 2003; De La Rocha and Bickle, 

2005; Severmann et al., 2004; Sharma et al., 2001). A terrigeneous component contributing to 

the Si influx would produce more positive δ30Si values (see discussion below). In the non-steady 

state case, the isotope signatures in BIFs would reflect the equilibrium fractionation factors for 

Si and Fe precipitation from solution, respectively, which leads to overall negative δ30Si and 

positive δ56Fe values (see also Figure 4.6a). In the following, we evaluate the Si and Fe isotope 

mass balance of the Precambrian seawater. 

The Si isotope composition of chert in BIFs appears to be in disequilibrium with the Si influx. 

All BIFs investigated to date including the Hamersley and Transvaal BIFs are depleted in 

isotopically heavy Si, ranging from –2.6 to –0.5‰ in δ30Si (André et al., 2006; Ding et al., 

1996; Jiang et al., 1993; this study). These values are in marked contrast to the assumed Si 

influx from hydrothermal fluids, which is at near 0‰ (De La Rocha et al., 2000) and also differ 

from continental weathering of igneous minerals with ~0.8‰ (Georg et al., 2006). Nonetheless,  
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Figure 4.7 Hypothetical model for δ30Si and δ56Fe of initial precipitates, silica and ferric 
oxyhydroxide depending on the precipitated fraction f. Precipitation takes place from seawater 
with a hypothetical hydrothermal signature with δ56Fe and δ30Si of 0‰, respectively. Ferric 
oxyhydroxide is 1.5‰ heavier in δ56Fe, whereas SiO2 is 1.5‰ lighter compared to seawater. 
Two end-member scenarios can be defined: 1) The isotope composition of the depositional 
outflux corresponds to the hydrothermal influx of 0‰, which is realized either by steady state 
conditions or 100% precipitation of the dissolved Fe and Si. 2) Precipitation of small fractions 
from seawater with a hydrothermal signature results in isotope compositions reflecting the 
fractionation factors of -1.5‰ in δ30Si and 1.5‰ in δ56Fe representing non-steady state 
conditions. The diagonal dotted line shows the isotope evolution by Rayleigh distillation for 
precipitating equal fractions of dissolved Si and Fe (f(Si↓)=f(Fe↓)). The dotted curve illustrates 
the trend of opposite fractions of cumulative precipitated Si and Fe (f(Si↓)+f(Fe↓)=100%). The 
axes of the inset indicates the removed fractions of Fe and Si.  
The Archean Old Wanderer BIF from the 2.7 Ga Shurugwi Greenstone Belt (Zimbabwe) (open 
cycles) exhibits covariable Si and Fe isotope data for bulk layers, which plot roughly along the 
curve of opposite fractions of cumulative precipitated Si and Fe. This feature has been 
interpreted as direct influence on Si and Fe precipitation by hydrothermal activity (for details 
see Chapter 3). In contrast, the estimated bulk layer compositions of the Proterozoic Hamersley 
Transvaal BIFs (grey cycles) plot below the quadrant of expected Si and Fe isotope composition 
and show independent Si and Fe isotope signatures. The low but uniform Si isotope signatures 
suggest precipitation at constant conditions indicating either non-steady state conditions or a 
complementary sink of isotopically heavy Si. The low δ56Fe values imply isotopically light 
seawater or diagenetic alteration towards lower δ56Fe (see discussion for details).  
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both steady state and non-steady state scenarios in the ocean basins are compatible with the 

negative Si isotope signature of BIFs. In the steady state case, the seawater would adapt a 

significantly positive Si isotope signature caused by the preferential precipitation of isotopically 

light Si (De La Rocha and Bickle, 2005). Assuming that BIFs with negative δ30Si values 

represent the predominant Si deposit in the Precambrian ocean, the source of this Si also had to 

have carried a significantly negative Si isotope signature. However such a source composition 

contradicts estimates from modern hydrothermal (~0‰) and terrigeneous (~0.8‰) Si supply 

rendering this scenario unlikely. Alternatively, chert in BIFs represents the sink of isotopically 

light Si, whereas the heavy counterpart is deposited elsewhere. Positive δ30Si values have been 

reported for some Archean marine chert deposits, indicating that this complementary sink might 

exist (Robert and Chaussidon, 2006; van den Boorn et al., 2007). Non-steady state conditions in 

the ocean basins could have prevailed if BIF formation represents a period of extraordinary 

hydrothermal activity or continental weathering (see discussion in Maliva et al. (2005)), which 

increased the Si influx into the basin temporally. In this case, the seawater would have carried 

the isotope signature of the source, but the deposits would have obtained a negative signature 

(Figure 4.6c) Chert with strongly negative δ30Si values, such as found in samples 3/59 and 

DGM-36 with mean δ30values of -1.22 and -1.25‰, respectively, are close to the Si isotope 

composition of modern siliceous deposits around oceanic smokers with an average δ30Si value 

of –1.56 ± 0.38 (1 SD, n=25) (Ding et al., 1996). Chert with comparatively more heavy δ30Si 

values, i.e. samples TBT and 3/79 with mean δ30values of –0.82 and –0.77‰, respectively, 

suggest an enhanced terrigeneous influence. An alternatively explanation is an ocean basin that 

is in a transitional stage. Then, strongly negative δ30Si values in chert reflect seawater 

dominated by a hydrothermal influence, while moderately negative values indicate a 

development away from the hydrothermal signature back to steady state conditions.  

Quite differently to the Si isotope signature, the overall Fe isotope composition of the 

Hamersley and Transvaal BIFs is consistent with a steady state ocean model (Johnson et al., 

2008a). Although the major Fe-bearing mineral phases in unmetamorphosed BIFs, magnetite 

and Fe carbonate, exhibit large variations, the overall bulk BIF Fe isotope signature is close to 

0‰, which seems to be in balance with the influx composition. δ56Fe values of magnetite range 

from –1.1 to 1.3‰ with an average of –0.1 ± 0.5‰ (1 SD, n = 117), whereas δ56Fe values of Fe 

carbonates vary between –2.2 and 1.1‰ giving an average of –0.6 ± 0.5‰ (1 SD, n = 95) 

(Johnson et al., 2003; Johnson et al., 2008a; this study) (see Figure 4.8). The Fe supply to the 

seawater by hydrothermal fluids and minor continental drainage (e.g. Canfield, 1998; Jacobsen 
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and Pimentel-Klose, 1988) has been suggested to have carried a Fe isotope composition 

between –0.5 and 0‰ (Yamaguchi et al., 2005). However, the investigated samples here are all 

on the lower end of the Fe isotope range displaying temporal disquilibrium. Several 

explanations are possible for these negative Fe isotope signatures:  

1) Mineralogy-controlled Fe isotope fractionation during precipitation of Fe minerals from 

seawater can cause a moderately negative Fe isotope signature in sediments.  For example, the 

precipitation of primary siderite would incorporate preferentially isotopically light Fe (Wiesli et 

al., 2004). However, Fe oxide dominates over siderite in all investigated core sections, which 

excludes this option.  

2) The seawater could have carried a negative Fe isotope signature. Long-term enrichment of 

the seawater in isotopically light Fe has been suggested to be driven by the preferential 

deposition of isotopically heavy Fe following partial Fe(II) oxidation in the upper water column 

(Rouxel et al., 2005). Alternatively, the seawater composition could be dominated by Fe 

recycled from sediments by DIR analogues to modern shelf environments, which release large 

quantities of Fe(II)aq with low δ56Fe values (Bergquist and Boyle, 2006; Severmann et al., 2006; 

Severmann et al., 2008; Staubwasser et al., 2006). If the original seawater composition is 

conserved in bulk BIF throughout diagenesis, the oxide minerals provide an upper limit of the 

seawater Fe isotope composition due to their preferential incorporation of heavy Fe isotopes, 

which is likely for sample DGM-36 from the Dales Gorge Member containing hematite with 

δ56Fe values of ~-0.8‰ (see section 4.6.2.).  

3) Post-depositional supply of isotopically light Fe(II) or loss of isotopically heavy Fe(II) can 

shift the overall Fe isotope signature in the sediments to negative values. Large quantities of 

Fe(II)aq with low δ56Fe values might have been released elsewhere by DIR and would have 

diffused into the consolidating sediments making up the majority of the Fe(II) inventory in BIF 

(Johnson et al., 2008a). Alternatively, loss of isotopically heavy Fe(II) could have resulted from 

abiotic Fe(III) reduction in BIFs during late diagenesis or low-grade metamorphism. A 

diagenetically induced shift to low δ56Fe values seems likely for the samples from the Kuruman 

Iron Formation, 3/59 and 3/79, in which magnetite was formed  - usually considered to 

represent a secondary mineral (see section 4.6.2.).  

Regardless of the actual cause, the final preservation of isotopically light Fe in these samples 

requires a balance by deposition of heavy Fe elsewhere if the near 0‰ steady state condition is 

fulfilled. Recent investigations in the Black Sea and the Baltic Sea have revealed a net transfer 

of isotopically light Fe released by DIR from oxic to anoxic environments (Fehr et al., 2008; 

Severmann et al., 2008). A similar redistribution of Fe might also have occurred in Precambrian 
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ocean basins, which could have promoted the simultaneous formation of both isotopically light 

and heavy BIF that are separated in space. Alternatively, secular variations in Fe deposition 

could have led to cyclic deposition of BIF with variable composition.  

 

 

 
 
Figure 4.8 Fe isotope data of the Kuruman and Griquatown Iron Formation from the Transvaal 
succession and the simultaneously deposited Brockman Iron Formation from the Hamersley 
succession including the data of (Johnson et al., 2003; Johnson et al., 2008a) and this study 
(modified after Johnson et al. (2008a)). The time scale refers to a depositional rate of 
consolidated sediment of of 33 m/106years (Pickard, 2002; Pickard, 2003). 
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4.6.2. Formation of Fe-bearing minerals  

Formation of hematite from ferric oxyhydroxide  

In virtually unmetamorphosed BIFs, hematite is an early diagenetic product formed by 

dehydration of the ferric oxyhydroxide precursors (e.g. Klein, 2005). Ferric oxyhydroxide, in 

turn, is considered to originate from oxidation of Fe(II)aq in surface waters followed by settling 

of particles through Fe(II)-rich anoxic bottom water. Oxidation of Fe(II)aq was most likely 

caused by anaerobic photosynthesis (e.g. Kappler et al., 2005; Konhauser et al., 2002; Widdel et 

al., 1993) or atmospheric oxygen (e.g. Drever, 1974; Ehrenreich and Widdel, 1994; Holland, 

1973; Kaufman et al., 2007). UV photo-oxidation has also been considered as possible 

mechanism (e.g. Cairns-Smith, 1978), but has been recently excluded as cause of efficient iron 

precipitation (Konhauser et al., 2007). Both mechanisms precipitate ferric hydr(oxide) with a Fe 

isotope composition that is around 1.5‰ heavier than seawater (Anbar et al., 2005; Croal et al., 

2004; Skulan et al., 2002; Welch et al., 2003). Such isotope fractionation is evident when a 

small quantity of Fe is oxidised, i.e. partial Fe(II) oxidation. In contrast, no fractionation occurs 

between solution and solid when 100% of the Fe(II) is oxidized. In this case, the isotope 

signature of the seawater would have been transferred into the precipitate. Hematite preserves 

this initial isotope composition, unless a diagenetic alteration of this signature has taken place. 

During diagenesis, biotic or abiotic reduction of ferric (hydr)oxide and the subsequent release of 

Fe(II)aq into pore fluids can shift the residues isotope signature to higher δ56Fe values (Crosby et 

al., 2005; Crosby et al., 2007; Pedersen et al., 2005; Severmann et al., 2006; Severmann et al., 

2008; Staubwasser et al., 2006; Williams and Scherer, 2004).  

We suggest that hematite in the core sections 3/79 and DGM-36 reflects a primary Fe isotope 

composition (Figure 4.3). This suggestion is supported by the consistency of Fe isotope 

composition in these samples. Furthermore, isotope differences to coexisting magnetite, a likely 

product of DIR, are variable suggesting that hematite or its precursor have conserved the 

original isotope ratio, while the various fractionation of Fe mobilisation by DIR are recorded in 

magnetite. Therefore, the Fe isotope composition of hematite appears to be directly related to 

the degree of partial Fe(II) oxidation in the upper water column. Hematite in samples 3/79 and 

DGM-36 reveals average  δ56Fe values of ~0‰ and ~-0.8‰, respectively, providing upper 

limits for the seawater composition at the time of deposition.  
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Primary siderite precipitation 

Several authors have suggested primary siderite precipitation during the formation of BIFs (e.g. 

Kaufman et al., 1990; Klein and Beukes, 1989; Sumner, 1997). The concentration of dissolved 

Fe(II) may increase with depth in the ocean, which slows calcite precipitation and triggers 

supersaturation of siderite. Siderite then precipitated directly from the water column or formed 

at the water-sediment interface, where pore fluids were in equilibrium with seawater providing 

information on the ancient seawater composition. According to the results of the experimental 

work of Wiesli et al. (2004), siderite is ~0.5‰ lighter in its Fe isotope composition than 

dissolved Fe(II) under equilibrium conditions.  

We propose that siderite is primary in sample 3/59 (Figure 4.3). The differences in δ56Fe 

amongst coexisting magnetite and Fe carbonate phases in individual layers are variable and also 

inconsistent with suggested fractionation factors. This observation implies isotopic 

disequilibrium and decoupled formation pathways for magnetite and Fe carbonates, 

respectively. Siderite exposes a uniform δ56Fe value of ~-0.7‰ in the core section, which is 

consistent with a steady seawater composition of -0.2‰ based on the fractionation factor 

siderite-Fe(II)aq of -0.5‰ (Wiesli et al., 2004). In contrast, Mg-rich siderite and ankerite are 

considered as diagenetically altered phases formed at the expense of siderite (Kaufman et al., 

1990). They exhibit variably lower δ56Fe values compared to siderite ranging from –1.2 to -

0.7‰.  

The C isotope composition of this sample provides additional information (Figure 4.5, Table 

4.3). Regardless of the chemical composition of carbonates in layers, δ13C values are largely 

constant around -10‰, which is in the range of previously investigated BIFs of the Transvaal 

succession with δ13C values between –3 and -14‰ (Beukes and Klein, 1990; Beukes et al., 

1990; Fischer et al., in press; Kaufman, 1996). Relatively high δ13C  values in carbonates from 

BIFs have been suggested to reflect a ‘mantle-like’ seawater composition, whereas carbonates 

with significant negative δ13C  values have been interpreted to have incorporated predominately 

carbon derived from organic matter degradation (Beukes and Klein, 1990; Beukes et al., 1990; 

Kaufman et al., 1990; Kaufman, 1996). Therefore, carbonates in sample 3/59 with intermediate 

δ13C values have a mixed carbon source of inorganic and organic origin.  
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Diagenetic siderite and magnetite formation by reduction of ferric (hydr)oxide during 

organic matter degradation 

A likely process in the genesis of BIF is the diagenetic formation of siderite and magnetite due 

to reduction of ferric (hydr)oxides as organic carbon is oxidized (e.g. Ewers and Morris, 1981; 

Han, 1978; Lovley, 1991). The Fe(II)aq released reacts either with residual ferric oxyhydroxide 

to form magnetite or with bicarbonate to produce siderite. This conversion is either catalysed by 

DIR during early diagenesis or is an abiotic spontaneous reaction at late diagenesis or low-grade 

metamorphism (e.g. Lovley, 1991). Isotope fractionation and the kinetics of isotope exchange in 

a system involving DIR have been investigated in detail (Crosby et al., 2005; Crosby et al., 

2007; Johnson et al., 2005). In contrast, the fractionation in the abiotic system is largely 

unknown. Coexisting magnetite and siderite, which have formed simultaneously, should reflect 

the equilibrium magnetite-siderite fractionation factor. This factor is estimated to be 1.8 ‰ for 

the pathway involving DIR by experimental studies (Johnson et al., 2008a and references 

therein) and decreases to 1.6 to 0.8‰ for abiotic reduction at temperatures between 120 to 

170°C as predicted from Mössbauer data (Mineev et al., 2007; Polyakov and Mineev, 2000; 

Polyakov et al., 2007).  

Coupled diagenetic formation of magnetite and siderite by biotic or abiotic Fe(III) reduction is a 

likely process in sample DGM-36 (Figure 4.3). Even though the magnetite-siderite assemblage 

could not be measured in direct contact at many locations, both minerals show uniform Fe 

isotope compositions giving an overall difference of ~1.2‰. It might be surprising that the Fe 

isotope composition of magnetite and hematite are identical in this sample. This isotopic 

agreement can be explained by the low abundance of siderite. Fe(II)aq released by reduction is 

nearly quantitatively incorporated into magnetite and only to a much lesser extent into the rare 

occurrences of siderite. Therefore, mass balance dictates that the Fe isotope compositions of 

magnetite and hematite are virtually indistinguishable. Hence, the low δ56Fe values of magnetite 

are inherited from the ferric(hydr)oxide precursor. 

In samples 3/79 and 3/59 diagenetic siderite is absent, hence reductive diagenesis would have 

only formed magnetite. Since magnetite is lighter than hematite in sample 3/79, diagenetic 

magnetite formation by an abiotic reductive processes is likely. For these, approaches using 

Mössbauer data propose 0.1 to –0.5‰ for the equilibrium magnetite-Fe(II)aq fractionation factor 

at ambient temperatures (Anbar et al., 2005; Mineev et al., 2007; Polyakov et al., 2007). Hence, 

magnetite evolves towards lighter Fe isotope composition than the original Fe(III) substrate, 

depending on the amount of isotopically heavy Fe(II)aq loss. Although hematite is not available 

for direct comparison with magnetite in sample 3/59, a minimum δ56Fe value for a ferric 
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(hydr)oxide precursor can be inferred from primary siderite as it equals the derived seawater 

composition of –0.2‰ (see Primary siderite precipitation). This inferred δ56Fe value for ferric 

(hydr)oxide is higher the than δ56Fe values of magnetite ranging between –0.1 and -0.9‰, 

therefore abiotic Fe(III) reduction accompanied by loss of isotopically heavy Fe(II) is also likely 

in  this sample. 

Alternatively, the lower δ56Fe values of magnetite compared to the original Fe(III) substrate in 

samples 3/59 and 3/79 can also be attributed to the addition of isotopically light Fe(II)aq derived 

from DIR elsewhere. Such addition would represent an alternative mechanism to the of loss of 

isotopically heavy Fe. 

Replacement of magnetite by hematite in metamorphosed BIF  

Sample TBT from Penge Iron Formation of the Transvaal succession represents an altered BIF, 

which was effected by contact metamorphism during to the Bushveld intrusion and later 

hydrothermal oxidative fluid infiltrations (Gutzmer et al., 2005). In this sample, hematite has 

most likely replaced magnetite during hydrothermal iron ore formation. Magnetite preserves its 

original Fe isotope composition throughout prograde contact metamorphism (Frost et al., 2007). 

Oxidative metasomatism is unlikely to mobilize Fe. Therefore magnetite is likely to have been 

quantitatively transformed into hematite without significant Fe redistribution, which preserves 

the original Fe isotope composition. Hence, the Fe isotope composition in hematite of ~-0.4‰ 

in δ56Fe reflects the Fe isotope composition of the original magnetite, which likely formed 

during diagenesis by one of the processes discussed above.  

Small-scale heterogeneities 

Fe oxide phases exhibit small-scale heterogeneities in the Fe isotope composition including both 

lateral and vertical variations.  

1) In sample 3/79, magnetite exhibits a homogeneous Fe isotope composition within a given Fe 

oxide-rich layer but is variable between layers. In contrast, its mineralogical precursor, hematite, 

shows a uniform Fe isotope composition (Figure 4.3d). These observations suggest a diagenetic 

origin of the variability. The inter-layer variability implies that diagenetic fluids have dispersed 

mainly laterally and supports that significant Fe exchange across layering is absent in BIFs 

(Frost et al., 2007; Johnson et al., 2008a; and see Chapter 3). The homogeneous Fe isotope 

composition within layers suggests magnetite formation under Fe(II)aq excess conditions. 

2) Shifts in the Fe isotope composition of magnetite within a few microns as observed in sample 

3/59 (Figures 4.1c and 4.3h) suggest a pre-depositional origin as diagenetic fluids would rather 
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reduce than cause variations on this scale. It is unlikely that these small-scale heterogeneities 

reflect variable seawater composition as the assumed long residence time of Fe would have 

prohibited short-term changes (Johnson et al., 2008a). Moreover, the identification of primary 

siderite in this sample suggests a constant seawater compositions for the period represented by 

the investigated core section. Hence, most likely this small-scale shifts in magnetite are 

inherited from its precursor reflecting variable degrees of partial Fe(II) oxidation in the upper 

water column. 

3) Variable Fe isotope composition in both hematite and magnetite within the lamination as 

observed in sample DGM-36 (Figure 4.3j) is thought to be primary, although diagenetic effect 

on minerals cannot be excluded. Variable oxidation rates within the upper water column could 

have caused this effect. 

4) Lateral heterogeneities in magnetite can also result from Fe(II)aq-limiting conditions during 

crystallization. Reservoir effects in pore fluids have accounted for isotopically zoned crystals 

observed in the Archean Old Wanderer BIF (see Chapter 3 and Figure 4.4) and random 

heterogeneities as found in Isua (Whitehouse and Fedo, 2007). During metamorphism, the 

heterogeneity of magnetite can be  passed on to secondary hematite. For example in sample 

TBT, hematite formed from magnetite by a oxidative hydrothermal fluid event related to the 

Bushveld intrusion; its variability might have been inherited from a heterogeneous magnetite 

precursor. 

4.7. Conclusions 

The combined analyses of Si and Fe isotope compositions in two major BIF deposits suggests 

distinct pathways of Si and Fe within Precambrian ocean basins. The uniform Si isotope 

signatures in chert indicates steady silica precipitation from seawater with a invariant Si isotope 

composition. Such a scenario is consistent with a depositional setting on a partially isolated 

platform within continental shelf areas. The long residence time of Si in seawater must have 

been long. However, the pronounced negative Si isotope signatures in all studied BIF samples 

stand in marked contrast to the composition of the assumed Si influx to the ocean, which 

presumably featured a δ30Si of between near-zero and moderately positive values depending on 

the relative proportions of hydrothermal versus terrigeneous supply. Therefore, preferential 

precipitation of light Si was taken place that had to be balanced by a complementary sink for 

isotopically heavy Si. The only other possibility is transient perturbation of the steady state that 

would shift the seawater away its assumed heavy composition. An entirely different picture 
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emerges from the range in Fe isotope compositions. These variations in space and time can be 

contributed to different mechanisms: 1) different phases initially precipitated into the newly 

formed sediment, each with their associated fractionation factor; 2) variable degrees of partial 

Fe(II) oxidation in the upper water column with simultaneous fractionation would have led to 

variable composition in the precipitates in a Rayleigh-style fashion; 3) variable seawater 

composition; and 4) diagenetic Fe redistribution by reduction of ferric (hydr)oxide. Reductive 

diagenetic processes through organic matter oxidation are also indicated by C isotope 

compositions of BIF layers with primary siderite, which suggests a mixed carbon source of 

inorganic and organic origin. Nevertheless, the overall Fe isotope record of the Hamersley and 

Transvaal BIFs of near-zero is consistent with a steady state ocean as suggested by (Johnson et 

al., 2008). It is noteworthy, however, that our BIF samples contain more negative Fe isotope 

signatures than bulk samples investigated over a longer stratigraphic section (Johnson et al., 

2003; Johnson et al., 2008). This disequilibrium might be balanced temporally or spatially by 

deposition of isotopically heavy BIFs without disturbing overall steady state conditions in the 

ocean due to the long residence time of Fe.  

We suggest that Proterozoic seawater Fe isotope composition can be inferred from both 

hematite, if the oxidation of dissolved Fe(II) was quantitative and no diagenetic Fe 

redistribution occurred, and siderite, that we consider primary if an isotope disequilibrium to 

other phases exists, thereby excluding diagenetic siderite formation. From this analysis, we 

conclude that the seawater composition was steady within the depositional period of the 

individual core sections investigated here. The inferred range of δ56Fe is –0.8 to 0‰. The lower 

boundary of δ56Fe in seawater might be caused either by remobilisation of sedimentary Fe by 

DIR or by preferential deposition of isotopically heavy Fe elsewhere due to partial Fe(II) 

oxidation.  

The grain to grain isotope analysis identifies distinct diagenetic pathways. Magnetite formed by 

variably diagenetic processes: 1) It has formed in equilibrium with siderite by biotic or abiotic 

Fe(III) reduction. In this case, magnetite has inherited its low δ56Fe value from a ferric 

oxyhydroxide precursor precipitated from isotopically light seawater. 2) Magnetite formed 

independently from siderite by either abiotic Fe(III) reduction accompanied by loss of 

isotopically heavy Fe(II)aq or incorporation of isotopically light Fe(II)aq released by DIR 

elsewhere in the sediment section. Magnetite replacement by hematite due to oxidative 

hydrothermal ore forming processes likely preserves the original Fe isotope composition. Not 

all diagenetic Fe carbonates are the product of simultaneous oxidation of organic matter and Fe 

oxide reduction. Fe carbonate varieties such as ankerite and siderite with significant Mg-
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substitution are diagenetic phases, but they are variably depleted in isotopically heavy Fe when 

compared to the original primary siderite.  

This study shows that despite the similar mineralogical composition of BIFs investigated herein, 

unique formation pathways of the mineral phases do not exist. Although the general Fe isotope 

composition of the Hamersley and Transvaal BIFs are in equilibrium with those of the Fe 

sources, the much lighter samples investigated here indicate either post-depositional loss of 

isotopically heavy Fe or gain of light Fe, or precipitation from isotopically light seawater. These 

findings pose the questions of whether the complementary heavy Fe is deposited elsewhere or at 

a different time, and what mechanisms led to these variations. Similarly, at the current state of 

knowledge of Si sources and isotope fractionation during precipitation, the Si isotope signature 

in our samples, and apparently in all BIF samples, appears to be too light when compared to the 

likely input. Here the question arises if the time of BIF deposition represents either steady state 

in the ocean basin demanding a complementary sink, which needs to be identified or non-steady 

state conditions caused by increased hydrothermal activity or continental weathering.  
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