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1.1 Neurotransmitter transporters 

 

The neuronal communication in the nervous system relies on the action of 

neurotransmitters at chemical synapses between neurons. An action potential 

promotes the release of the neurotransmitter, increasing its concentration 103–104-fold 

in the synaptic cleft. After being released, neurotransmitters specifically bind to 

postsynaptic receptors and thereby activate them. The neurotransmitter opens ligand-

gated ion channels, resulting in depolarization of the postsynaptic neuron and the 

generation of a postsynaptic receptor potential. This process, depending on the 

receptor type, leads to excitation or inhibition of the postsynaptic neuron. Intercellular 

communication in the central nervous system (CNS) requires the precise control of the 

duration and intensity of the neurotransmitter action. This regulation occurs via the 

inactivation of the transmitter, either by enzymatic degradation or active transport by 

neurotransmitter transporters. At many synapses integral membrane transport proteins 

located on presynaptic, postsynaptic and glial cells clear the transmitter from the 

synaptic cleft, reducing the concentration of transmitter to the basal level, thereby 

readying the synapse for a subsequent cycle of activation (Clements, 1996). The 

superfamily of plasma membrane transporters (Masson et al., 1999) can be classified 

into two distinct families based on their ionic dependency. The first is the 

neurotransmitter sodium symporter family (NSS), which consists of Na+/Cl--

dependent transporters including, for example, transporters for dopamine (DAT), 

serotonin (5-HT, SERT), GABA [GAT(1-3)], norepinephrine (NET), proline (PROT), 

taurine (TaurT), and glycine [GLYT(1a, -b, -c, and -2)]. All NSS proteins share the 

same topology and are 40 % to 60 % homologous to one another. The second family 

of the plasma membrane transporters is the family of sodium/dicarboxylate amino 

acid cation symporters (DAACS), which contains the eukaryotic Na+/K+-dependent 

glutamate transporters (excitatory amino acid transporters 1 to 5, or EAATs) and also 

includes prokaryotic glutamate, dicarboxylate and serine transporters. This study 

focuses on members of this last group, the glutamate transporters. The following 

sections will briefly introduce the relevant glutamate transporters existing in 

eukaryotes and their prokaryotic paralogs. As glutamate is the predominant 

neurotransmitter in many excitatory pathways of the mammalian CNS, understanding 

the mechanisms underlying coupled transport by glutamate transporters has high 

importance and was the target of this work.  
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1.2 L-glutamate as a neurotransmitter 

 

The amino acid L-glutamate (Fig. 1.1), abbreviated as Glu or E, is a non-

essential amino acid in vertebrates. It serves as a component of protein synthesis, 

energy metabolism and as predecessor for glutamine and also functions as the major 

excitatory neurotransmitter in the mammalian CNS (Fonnum, 1984; Cotman et al., 

1987; Robinson et al., 1987; Takeuchi, 1987).  

 
 

 

 

Figure 1.1 Chemical structure of L-glutamate. 

 

Glutamate is ubiquitously distributed in brain tissue, where it is present in high 

concentrations in comparison to other amino acids. Glutamate is involved in most 

processes and aspects of normal brain function, including memory, learning and 

cognition (Fonnum, 1984; Danbolt, 2001). Glutamate also plays major roles in many 

processes during CNS development, including neuronal migration (Rossi et al., 1993; 

Komuro et al., 1993) and GABAergic activity (van den Pol et al., 1998), as well as 

outgrowth of neuronal processes (Pearce et al., 1987). Furthermore, glutamate is 

important for synapse elimination (Rabacchi et al., 1992), and for functional synapse 

induction in the developing nervous system and also for long-term potentiation 

(Durand et al., 1996).  

Brain glutamate is abundant, but mostly intracellular. The concentration 

gradient of glutamate across the plasma membranes has a magnitude of several 

thousand, with the highest concentrations found inside nerve terminals (Danbolt, 

2001). Glutamate is continuously being released from cells and again removed from 

the extracellular fluid. Upon production of the action potential, L-glutamate is 

released from the presynaptic neuron into the synaptic cleft. After its release, the 

concentration of glutamate in the synaptic cleft rises from 1 µM to 1 mM and elicits 

the postsynaptic answer through interaction with glutamate receptors. Synaptic release 

of glutamate may activate several ionotropic and metabotropic receptors to mediate a 

complex array of functions. Glutamate taken up by pre- and postsynaptic cells may be 

used for metabolic purposes such as protein synthesis and energy metabolism; in pre-

synaptic cells it also may be reused as a transmitter (Danbolt, 2001). Glutamate taken 



 1. Introduction 4 
  

  

up by glial cells can be converted to glutamine in an ATP-dependent process 

(glutamate-glutamine cycle) (Broer et al., 2001). Glutamine is subsequently released 

from the glial cells and taken up by neurons via glutamine transporters. Neurons 

convert glutamine back to glutamate, which is then transported into the synaptic 

vesicles by vesicular glutamate transporters (Broer et al., 2001).  

Glutamate is a neurotoxin. At concentrations between 50 µM and 100 μM 

glutamate causes cell death after 5 minutes. Already after 90 seconds glutamate 

application produces the first morphologic changes in adult neurons (Choi et al., 

1987). It is therefore crucial that the resting extracellular glutamate concentration 

remains low. This is required for a high signal to background ratio in synaptic 

transmission and also for the protection of nerve cells from the toxic effects of 

glutamate. Considering the large amounts of glutamate in the brain and the importance 

of controlling the extracellular glutamate concentrations after its release, the CNS 

needs powerful protective machinery to prevent extracellular glutamate accumulation. 

In contrast to extracellular glutamate, intracellular glutamate is generally considered 

non-toxic (Danbolt, 2001). Finally, to conserve resources it is practical to reuse the 

released glutamate. Glutamate is removed by the neuronal and glial glutamate 

transporters, which Arriza et al. (1994) have termed „Excitatory Amino Acid 

Transporters“ (EAATs). Members of the EAAT family tightly control the glutamate 

concentration in the synaptic cleft (Billups et al., 1996; Kanner, 1996; Danbolt, 2001; 

Amara et al., 2002). EAATs are located in presynaptic, postsynaptic and glial cells 

and they rapidly remove glutamate from the synaptic cleft and the perisynaptic area.  

 

1.2.1 Role of glutamate uptake in disease 

 

Brain tissue needs a very high glutamate uptake activity to protect itself 

against glutamate toxicity because there is no extracellular conversion of glutamate 

(Danbolt, 2001), as there is for example for acetylcholine. Removal of glutamate from 

the synaptic cleft has high importance for two reasons: (1) the neurotoxicity of 

glutamate and (2) the necessity of exact and accurate regulation of signal transduction 

by the inactivation of glutamate (Danbolt, 2001). Rapid clearance of glutamate from 

the synapse by high-affinity sodium-dependent EAATs is required for normal 

excitatory neurotransmission and for the prevention of glutamate-induced 

excitotoxicity (Bergles et al., 1999; Danbolt, 2001). Failure in EAAT function 
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provokes neuro-excitotoxicity by elevation of the extracellular glutamate 

concentration, causing excessive stimulation of the glutamate receptors that, if 

prolonged, will result in processes leading to cell death (Rossi et al., 2000). A link 

between glutamate transporter dysfunction, increased extracellular glutamate level, 

and the onset of excitotoxic neuronal damage has been established in animal models 

(Rothstein et al., 1996) and in some human neurodegenerative diseases such as 

amyotrophic lateral sclerosis (ALS) (Rothstein et al., 1992; Rothstein et al., 1995; 

Howland et al., 2002), Alzheimer’s disease (Scott et al., 1995; Scott et al., 2002), 

apoplexy (Rothman, 1984), epilepsy (Nadler et al., 1978), schizophrenia, and 

depression (Dingledine et al., 1999). For this reason it is of high importance to study 

and understand the mechanisms underlying glutamate uptake by glutamate 

transporters.  

 

1.3 Glutamate transporters 

 

Glutamate transporters belong to the DAACS family (see section 1.1), which 

includes eukaryotic glutamate transporters, eukaryotic neutral amino acid transporters, 

and a large number of bacterial amino acid and dicarboxylic acid transporters 

(Slotboom et al., 1999; Danbolt, 2001; Kanai et al., 2003). Members of this family 

that have been functionally characterized can be classified into three groups based on 

their substrate specificity: (1) C4-dicarboxylate transporters found in prokaryotes, (2) 

glutamate/aspartate transporters found in prokaryotes and eukaryotes and (3) neutral 

amino acid transporters found in prokaryotes and eukaryotes (Slotboom et al., 1999). 

The phylogenetic tree of the DAACS family is presented in Fig. 1.2.  

All glutamate transporters can use L-glutamate, L-aspartate and D-aspartate as 

high-affinity substrates. The bacterial C4-dicarboxylate transporters transport 

succinate, fumarate, and malate, thereby contributing to the citric acid cycle (Finan et 

al., 1981; Finan et al., 1988). This group of transporters shares up to 40 % amino acid 

sequence identity with each other. Alanine, cysteine, serine, and threonine are high 

affinity substrates of the neutral amino acid transporters. Some members of this group 

show lower substrate specificity and also accept glutamine and asparagine with higher 

affinity, and some other amino acids with lower affinity (Arriza et al., 1993; 

Tamarappoo et al. 1996; Utsunomiya-Tate et al., 1996; Kekuda et al., 1996; Kekuda 

et al., 1997).  
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Figure 1.2 Phylogenetic tree of 35 members of the DAACS family (Slotboom et al., 1999). The tree 

is based on the part of the multiple-sequence alignment (Slotboom et al., 1999). No members of the set 

have higher than 70 % amino acid identity to one another. Abbreviated transporter names are shown in 

Table 7.1. 

 

1.3.1 Mammalian glutamate transporters (EAAT family) 

 

Excitatory amino acid transporters (EAATs) remove glutamate from the 

synaptic cleft to ensure low resting glutamate concentrations and to terminate 

glutamatergic synaptic transmission. Five different mammalian high-affinity sodium-

dependent glutamate transporters (EAAT1-5) have been cloned so far. EAAT1, 2 and 

3 were cloned from human motor cortex (Storck et al., 1992; Pines et al., 1992; Kanai 

et al., 1992; Arriza et al., 1994). EAAT4 was cloned from human cerebellum 

(Fairman et al., 1995) and EAAT5 was cloned from human retina (Fairman et al., 

1995; Arriza et al., 1997). Figure 1.3 shows the phylogenetic tree of some members of 

this family. 

Only the human isoforms of the excitatory amino acid transporters are termed 

EAATs, homologues in other species that were in some cases cloned earlier are 

GLAST (Glutamate Aspartate Transporter, rat equivalent of human EAAT1) (Storck 

et al., 1992), GLT1 (Glutamate Transporter 1, rat equivalent of human EAAT2) 

(Pines et al., 1992) and EAAC1 (Excitatory Amino Acid Carrier 1, rabbit equivalent 

of human EAAT3) (Kanai et al., 1992). The five cloned EAAT glutamate transporters 

 

Bacterial dicarboxylate 
transporters  

Bacterial serine 
transporters 

Bacterial glutamate transporters 

Mammalian glutamate 
transporters (EAATs) 

ASC (alanine, serine, cysteine) 
transporters 
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share 50 % to 60 % amino acid sequence identity with each other, and typically have 

30 % to 40 % identity to transporters for neutral amino acids (Arriza et al., 1993), and 

20 % to 30 % identity to proton-dependent bacterial glutamate and dicarboxylate 

transporters (Tolner et al., 1992; Danbolt, 2001). Among mammals, the five cloned 

glutamate transporter subtypes are approximately 90 % identical to their homologues 

in different species (Danbolt, 2001). 

 

Figure 1.3 Phylogenetic tree of some mammalian members of the glutamate transporter family. 

Glial glutamate transporters: hEAAT1 (Arriza et al., 1994; Larsson et al., 1996), rGLAST (Storck et 

al., 1992; Larsson et al., 1996), mEAAT1 (Tanaka, 1993), hEAAT2 (Arriza et al., 1994), mEAAT2 

(Kirschner et al., 1994), rEAAT2 (Pines et al., 1992). Neuronal glutamate transporters: hEAAT4 

(Fairman et al., 1995), mEAAT4 (Maeno-Hikichi et al., 1997), rEAAT4 (Lin et al., 1998), hEAAT5 

(Arriza et al., 1997), hEAAT3 (Arriza et al., 1994), mEAAT3 (Mukainaka et al., 1995), rEAAT3 

(Kanai et al., 1995; Larsson et al., 1996). Abbreviations: human (h), mouse (m), and rat (r) isoforms. 
 

All five EAATs proteins catalyze H+-, Na+- and K+-coupled transport of L-

glutamate and also of L- and D-aspartate. Originally, these transporters were referred 

to as the “sodium-dependent high-affinity transporters” to distinguish them from the 

“low-affinity transporters”. “Low-affinity” uptake has Km values of above 500 μM 

and, in contrast to the “high affinity system”, is sodium independent and sensitive to 

inhibition by D-glutamate and L-homocysteate. This uptake system has been 

rEAAT3

mEAAT3

hEAAT3

rEAAT2

mEAAT2
hEAAT2

hEAAT5

rEAAT4

mEAAT4
hEAAT4

mEAAT1

rGLAST

hEAAT1

    Neuronal 

       Glial 
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Postsynaptic dendritic spine 

Impulse transmission 

Electrical excitation 

 

Presynaptic ending 

suggested to supply brain cells with amino acids for metabolic purposes, but is poorly 

characterized (Danbolt, 2001). 

The neurotransmission of the signal and cell specific expression of the five 

EAATs are schematically demonstrated in simplified view of two excited nerve cells 

(Fig. 1.4). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.4 Signal transmission between two excited nerve cells by the neurotransmitter glutamate 

and its removal from the synaptic cleft via glutamate transporters (EAATs).  
  

The localization of EAATs is well known. EAAT2 is the main glial glutamate 

transporter and the most abundant isoform in the forebrain (Danbolt et al., 1992; 

Rauen, 2000). EAAT1 is a glial glutamate transporter, expressed in astrocytes and 

Bergmann glia in the cerebellum (Storck et al., 1992; Rothstein et al., 1994). EAAT3 

is homogeneously distributed throughout the CNS. It is the predominant EAAT 

expressed in neurons of various brain areas, particularly in the thalamus, cerebellum, 

hippocampus, olfactory bulb, and striatum (Rothstein et al., 1994; Kanai et al., 1995; 

Berger et al., 1998). EAAT4 is the main cerebellar glutamate transporter, specifically 

in the Purkinje cells (Yamada et al., 1996; Furuta et al., 1997; Dehnes et al., 1998; 

Inage et al., 1998). A study using electron microscopy found the majority of the 

EAAT4 immunoreactivity in the plasma membrane of Purkinje cells and that the 

highest levels are extra-synaptic (Dehnes et al., 1998). Very little is known about 

EAAT5. This isoform seems to be retina-specific (Arriza et al., 1997; Eliasof et al., 

1998a; Eliasof et al., 1998b). It is present in both cone and rod photoreceptors as well 

Glial cell 

EAAT5 

EAAT1 / EAAT2 

EAAT3 / EAAT4 

Glutamate 
 

Glutamate receptor 
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as in amacrine, ganglial (Fyk-Kolodziej et al., 2004), bipolar and Müller cells (Eliasof 

et al., 1998b). 

Glutamate uptake also takes place in peripheral tissues and organs. Most cells 

and tissues have the ability to take up glutamate. Sodium-dependent glutamate uptake 

systems have been identified in fibroblasts from various tissues, in erythrocytes, 

macrophages,  platelets, muscles, prostate, liver, taste buds, mammalian oocytes, the 

intestine, kidney, pancreas, placenta, heart, bone and mammary gland (Danbolt, 

2001).  

 

1.3.2 Bacterial glutamate transporters 

 

Bacterial glutamate transporter proteins are nutritional transporters. Thus, in 

prokaryotes, glutamate transporters carry out the concentrative uptake of metabolites 

across the membrane by the co-transport of protons and/or sodium ions (Slotboom et 

al., 1999). 

Prokaryotic glutamate transporters are only distantly related to eukaryotic 

glutamate transporter isoforms (Fig. 1.2). Bacterial glutamate transporter proteins 

have more than 44 % amino acid homology and transport at least two cations in 

symport with glutamate (Tolner et al., 1992; Tolner et al., 1995a; Tolner et al., 

1995b). In Escherichia coli (E. coli) internalised glutamate is used as a carbon and 

nitrogen source (Halpern et al., 1965). As far as is known, E. coli has three different 

systems to take up glutamate: (1) a sodium-independent protein-dependent glutamate- 

and aspartate transport system, which is inhibited by cysteate (Halpern et al., 1973), 

(2) a sodium-dependent glutamate specific system (ecgltS), inhibited by α-methyl 

hydrate (Miner et al., 1974), and (3) a proton symport system for glutamate and 

aspartate (ecgltP), inhibited by o-hydroxy aspartate and cysteate (Schellenberg et al., 

1977). This study focuses on this last protein, ecgltP from E. coli. 

Bacterial glutamate transporters have aroused a lot of interest because the 

three-dimensional structure of the glutamate transporter GltPh from archaebacterium 

Pyrococcus horikoshii (P. horikoshii) was recently determined (Yernool et al., 2004). 

In addition, because the overexpression of protein in bacteria results in much higher 

yields of protein, in comparison to eukaryotic cell expression systems (Kück, 2005), 

and the experimental success depends on the amount and purity of the produced 

protein, it is technically more feasible to study prokaryotic paralogs. 
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1.3.3 Stoichiometry 

 

Glutamate transporters belong to the class of secondary active transporters that 

can use the potential energy of ion gradients to transport specific substrates against 

their concentration gradients. Glutamate transporters exhibit two fundamentally 

different transport mechanisms: the first is the coupled co-transport of substrate 

(glutamate or aspartate), with sodium, protons and potassium (Levy et al., 1998; 

Zerangue et al., 1996) and the second is a thermodynamically uncoupled, channel-like 

anion transport (anion channel function) (Fairman et al., 1995; Wadiche et al., 1995; 

Larsson et al., 1996; Billups et al., 1996; Melzer et al., 2003). The exact molecular 

basis of these two diverse functions is not yet understood. The ion gradients of sodium 

and potassium ions and also protons deliver the driving force for glutamate uptake 

(Zerangue et al., 1996).  

EAAT2 and EAAT3 have been shown to exhibit the following stoichiometry: 

the co-tansport of one glutamate molecule, three sodium ions and one proton into the 

cell is coupled to the counter-transport of one potassium ion out of the cell (Kanner et 

al., 1978; Stallcup et al., 1979; Schwartz et al., 1990; Szatkowski et al., 1990; 

Barbour et al., 1991; Erecinska et al., 1983; Zerangue et al., 1996), see Fig. 1.5. It 

cannot be taken for granted that EAAT1, EAAT4, and EAAT5 share the same 

stoichiometry. 

 

 
 

Figure 1.5 Stoichiometry of glutamate transporters. Coupled transport stoichiometry of mammalian 

glutamate transporters. One excitatory amino acid (EAA) molecule, three sodium ions (Na+) and one 

proton (H+) are co-transported into the cell and one potassium ion (K+) is counter-transported outside.  
 

Various EAATs paralogs have been identified in prokaryotes and shown to 

exhibit a variety of transport stoichiometries. Although these transporters have similar 

predicted structures, they exhibit distinct functional properties such as variations on a 
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common transport mechanism (Arriza et al., 1994; Melzer et al., 2003; Mim et al., 

2005). Whereas EAATs transport three sodium ions, one proton, and one glutamate 

molecule in counter-transport with one potassium ion, there are bacterial paralogs that 

only transport substrate (glutamate, aspartate) stoichiometrically coupled to protons, 

or to sodium. The glutamate transporters from Escherichia coli and from Bacillus 

subtilis use protons to drive glutamate uptake, and the glutamate transporter from 

Escherichia coli only depends on a proton gradient. The glutamate transporter from 

Pyrococcus horikoshii catalyzes aspartate transport solely coupled to sodium 

(Boudker et al., 2007; Ryan et al., 2009). A sodium / proton / L-glutamate symport 

has also been found for the glutamate transporters from Bacillus stearothermophilus 

and Bacillus caldotenax (Heyne et al., 1991). However, these transporters lost their 

coupling sodium selectivity when they were expressed in E. coli (Tolner et al., 1995a; 

Tolner et al., 1995b). 

Interest in bacterial glutamate transporters is high because there are indications 

that, by comparison, glutamate transport in eukaryotes is more complex and bacterial 

glutamate transporters exhibit less complicated transport processes, enabling more 

convenient analysis of the bacterial systems. In this work ecgltP, the glutamate 

transporter from E. coli, was used as a model protein to study the mechanisms 

underlying coupled glutamate transport. 

 

1.3.4 Structure 

 

Although they possess different functions, bacterial and mammalian glutamate 

transporters share strong homology to one another. Prokaryotic and eukaryotic 

glutamate and neutral amino acid transporters possess significant amino acid sequence 

homology throughout the entire primary structure, as revealed by multiple sequence 

alignments (Slotboom et al., 1999).  

Glutamate transporters are integral membrane proteins. Members of the 

glutamate transporter family share (1) similar transmembrane topology (Fig. 1.7) and 

(2) trimeric oligomerisation state (Gendreau et al., 2004; Yernool et al., 2004). ecgltP 

consists of 437 amino acids and a molecular mass of monomer is 47.2 kDa.  

ecgltP has a typical amino acid composition for membrane proteins: 66.3 % of 

amino acids are non-polar and 32.7 % are polar, 6.9 % are basic and 6.4 % acidic. 

ecgltP shares 48 % sequence homology and 22 % identity with the human EAAT2 
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isoform. GltPh shares 37 % amino acid identity with human EAAT2. GltPh and ecgltP 

are 33 % identical and 55 % homologous in their primary sequences (Fig. 1.6, Fig. 1.7 

B), (Table 7.2). A stretch of about 150 residues in the C-terminal half is particularly 

well conserved (Slotboom et al., 1999). This half of the protein contains several 

sequence motifs involved in recognition and/or translocation of glutamate and co-

transported cations (Slotboom et al., 2001b).  

 
 

 
 
 

 

Figure 1.6 Phylogenetic relationship of three distantly related glutamate transporters GltPh, 

ecgltP, and hEAAT2. The phylogram is based on a multiple amino acid sequence alignment of 

respective sequences GltPh (Accession no. AB009510), ecgltP (Accession no. P21345), hEAAT2 

(Accession no. P43004) (ClustalW, Chenna et al., 2003). Abbreviations: glutamate transporter from 

archaebacteria P. horikoshii (GltPh), bacterial glutamate transporter from E.  coli (ecgltP), and human 

isoform of excitatory amino acid transporters (hEAAT2). 

 

According to the crystal structure of the bacterial glutamate transporter GltPh 

from Pyrococcus horikoshii, the glutamate transporter is a bowl-shaped trimer (Fig. 

1.8) with a solvent-filled extracellular basin extending halfway across the membrane 

bilayer. At the bottom of the basin are three independent binding sites, each cradled 

by two helical hairpins, facing opposite sides of the membrane. Transport of 

glutamate is thought to be mediated by movements of the hairpins that allow 

alternating access to either side of the membrane (Yernool et al., 2004). 

GltPh is a homotrimer, each subunit of which consists of eight transmembrane 

helices. Each protomer (Fig. 1.9) contains eight transmembrane segments, two re-

entrant helical hairpins, and independent substrate translocation pathways. The first 

six transmembrane segments form a distorted “amino-terminal cylinder” and provide 

all interprotomer contacts, whereas transmembrane segments TM7 and TM8, together 

with hairpins HP1 and HP2, assemble to form a highly conserved core within the 

amino-terminal cylinder (Boudker et al., 2007). 
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Figure 1.7 Sequence identities of three distantly related glutamate transporters GltPh, ecgltP, and 

hEAAT2. (A) Schematic draw of transmembrane topology of glutamate transporters (modified from 

Yernool et al., 2004). (B) Multiple amino acid sequence alignment of respective sequences (ClustalW, 

Chenna et al., 2003). The rectangles above the sequences show the distributing of secondary structure 

elements based on results of the crystal structure of GltPh (Yernool et al., 2004). Glutamate binding 

domains are marked in black, highlighted with a brown rectangle. Abbreviations: * = identical amino 

acids, : conserved exchange, . semi-conserved exchange (ordered according to classification into basic, 

acidic, small and hydrophobic amino acids).  

B

A
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Figure 1.8 Crystal structure of a bacterial glutamate transporter GltPh from Pyrococcus 

horikoshii (Yernool et al., 2004). (A) Ribbon representation of the trimeric protein, in which the 

protomers are shown in red, blue and green, shown from the extracellular side of the plasma membrane. 

(B) View of the trimer parallel to the membrane. 
 

 

 

 

 

Figure 1.9 Protomer. Ribbon representation of the protomer viewed in the plane of the plasma 

membrane in which the transmembrane helices (1-8) and hairpins (HP1, HP2) are labelled and are 

shown in different colours (Yernool et al., 2004). 
 

 

 

BA
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The carboxy-terminal half of eukaryotic and prokaryotic transporters 

encompasses residues that are crucial for substrate binding, substrate transport and ion 

coupling (Kanner et al., 2002; Yernool et al., 2004 ; Boudker et al. 2007), whereas 

residues in the amino-terminal part are implicated in the thermodynamically 

uncoupled chloride flux (Ryan et al., 2004). 

Particularly, the arginine residue at position 447 was shown to play a role in 

determining substrate selectivity in EAAT3 (Bendahan et al., 2000). The glutamate 

residue at position 373 was proposed to be the proton acceptor in EAAT3 (Grewer et 

al., 2003). The same glutamate residue in GLT-1, the rat homolog of EAAT2 (E404), 

was proposed to bind K+ (Kavanaugh et al., 1997). Aspartate residues at position 367 

of EAAT3 (Tao et al., 2006; Tao et al., 2007) and 405 of GltPh (Boudker et al., 2007), 

were shown to be crucial for sodium binding.  
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1.4 Aim of the thesis 

 

This study focuses on the molecular, biochemical and functional 

characterization of a model transport protein, the bacterial glutamate transporter from 

Escherichia coli – ecgltP – using the methods of mutagenesis, protein purification 

with subsequent reconstitution into artificial lipid vesicles, and quantification of 

radiotracer substrate fluxes into proteoliposomes. The possibility of studying a 

purified prokaryotic glutamate transporter protein using functional tests without 

contaminations with other cellular compartments gives, in combination with the 

available structural information, promising preconditions for the determination of 

transport mechanisms of glutamate transporters. 

This project aims to characterize the functional properties of glutamate 

transporters in order to gain insights into the molecular mechanisms underlying 

coupled transport. To learn more about the structural basis of the transport properties 

of this prokaryotic glutamate transporter, the wild type ecgltP protein was 

characterized and compared with transporter carrying mutation, potentially affecting 

sodium binding (Fig. 1.10). N401D ecgltP contains an aspartate residue in TM8 at a 

position homologous to D405 of GltPh (Boudker et al., 2007), which was shown to be 

crucial for sodium binding.  

    

 
 

Figure 1.10 Localization of the N401D mutation. Schematic representation of ecgltP transmembrane 

topology showing the localization of mutated residue.  

 

 

 

 

N401D 
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2.1 Chemicals, materials and equipment  
 

2.1.1 Materials and equipment 
 

Equipment and materials were obtained from the following companies: Avestin 

Inc. (Ottawa, Canada), BD Microlance (USA), Beckman Coulter, Inc. (USA), Bio-Rad 

Laboratories GmbH (München, Germany), Biometra (Göttingen, Germany), Branson 

Ultrasonics Corp. (Danbury, USA), Corning (New York, USA), Eppendorf (Hamburg, 

Germany), GE Healthcare Bio-Sciences, formerly Amersham Biosciences (United 

Kingdom), Greiner Bio-One GmbH (Frickenhausen, Germany), G. Kisker GbR 

(Steinfurt, Germany), Hamilton Company (Nevada, USA), Heraeus (Newport Pagnell, 

United Kingdom), IBA (Göttingen, Germany), Ibidi GmbH (München, Germany), 

Infors HT AG (Bottmingen, Switzerland), Kimberley-Clarke (Roswell, USA), KNF 

Neuberger, Inc. (New Jersey, USA), Millipore Corporation (Billerica, USA), MJ 

Research, Inc. (Waltham, USA), PEQLAB Biotechnologie GMBH (Erlangen, 

Germany), PerkinElmer Life and Analytical Sciences (Rodgau, Germany), PTI (NJ, 

USA), QIAGEN GmbH (Hilden, Germany), Roth (Karlsruhe, Germany), Sartorius 

Biolab Products (Göttingen, Germany), Sarstedt (Nümbrecht, Germany), Schott 

Glaswerke AG (Mainz, Germany), Systat Software, Inc. (Point Richmond, VA, USA), 

Systec GmbH Labor-Systemtechnik (Wettenberg, Germany), VACUUBRAND GmbH 

(Wertheim, Germany), Whatman Laboratory Products, Inc. (Clifton, USA).  

 

2.1.2 Chemicals 
 

All chemicals and solutions had at least a purity grade of p.A. and were obtained 

from AppliChem GmbH (Darmstadt, Germany), ACROS ORGANICS (USA), Avanti 

Polar Lipids (Alabaster, AL, USA), JT Baker Chemical Co., (Phillipsburg, USA), 

Becton, Dickinson and Company (USA/France), Bio-Rad Laboratories GmbH 

(München, Germany), Calbiochem (Bad Soden, Germany), Carl Roth GmbH 

(Karlsruhe, Germany), Decon Laboratories Limited (East Sussex, United Kingdom), 

Fisher Scientific GmbH (Schwerte, Germany), Fluka (Neu-Ulm, Germany), GLYCON 

Biochemicals (Luckenwalde, Germany), Hartmann Analytic GmbH (Braunschweig, 

Germany), KMF Laborchemie Handels GmbH (Lohmar, Germany), Linde (Hannover, 

Germany), Merck KGaA (Darmstadt, Germany), MP Biomedicals, Inc. (Solon, USA), 

New England Biolabs GmbH (Frankfurt, Germany), PerkinElmer Life and Analytical 
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Sciences (Rodgau, Germany), Pierce (Rockford, USA), Serva GmbH (Heidelberg, 

Germany), Sigma-Aldrich (Hamburg, Germany), Stratagene (La Jolla, CA, USA), or 

USB Corporation (USA). Deionised water was prepared at 18.2 MΩ in a Milli Q plus 

system from Millipore (USA). For protein biochemical parts of the work, deionised and 

autoclaved water was also used.  
 

2.2 Molecular biology 

 

2.2.1 Sequence alignments 

 

Sequence alignments were made with use of Vector NTI Advance 10 software 

from Invitrogen (Invitrogen Corporation, CA, USA).  
 

2.2.2 Plasmids 

 

For ecgltP expression the vector pASK-IBA5 from IBA (IBA GmbH, Göttingen, 

Germany) was used. The cDNA encoding ecgltP was subcloned into the pASK IBA5 

vector, which adds an amino-terminal Strep-tag (MASWSHPQFEK). This allows a 
 

single step protein purification to 

purify the strep-ecgltP protein 

using Strep-Tactin® affinity 

chromatography (IBA). pASK 

IBA5 carries an ampicillin 

resistance cassette. The protein 

expression is under the control of 

Tet-promotors/operators, and can 

be induced by anhydrotetracycline 

hydrochloride. 

2.2.3 Mutagenesis 

 

2.2.3.1 Primers and resulting constructs 

 

Table 7.5 shows the primers used for mutagenesis. Each primer was checked in 

Vector NTI Advance 10 (Invitrogen) for the presence of a low amount of predicted 

loops, one or more cytosine or guanine at both termini, a length of 25 to 45 bases, a 
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melting temperature of ≥78 °C, the mutation being in the middle of the primer and no or 

small negative dG (Gibb’s free energy). A low dG value is associated with energetically 

stable interactions between palindromic sequences within primers and should therefore 

be avoided. 

Constructs were made by polymerase chain reaction (PCR) using pASK-IBA5 

ecgltP as the template (2.2.3.2). The desired mutation was introduced by cleavage of the 

PCR product and the DNA fragment was then ligated into the previously mentioned 

vector. Mutation N401D ecgltP was made with the Quikchange method (2.2.3.3) on 

pASK-IBA5 ecgltP with the indicated primers. The sequencing primers were from 

MWG Biotech AG and the Quikchange primers from Sigma Aldrich. All DNA 

constructs were sequenced.  

 

2.2.3.2 Polymerase Chain Reaction 

 

The PCR is a technique based on the work of Mullis (Mullis et al., 1990). Using 

PCR to generate multiple copies of a particular DNA sequence allows the amplification 

and qualitative analysis of DNA fragments. For analytical amplification and 

mutagenesis PCR the Taq-Polymerase (NEB, 5 U/mL) was used. 10-100 ng DNA-

template were mixed with 10 µM of each primer, 200 µM dNTPs and 0.05 U/µL Taq-

Polymerase in 1x PCR buffer. The reaction mixture was incubated in a thermocycler 

where, after denaturation at 94-96 °C for 1 minute, 35 cycles were performed.  

 

Denaturation  1 min   94 °C   

Annealing             1 min  40-72 °C (Tm-10 °C)  

Synthesis  3 min  72 °C 

 

Final synthesis took place at 72 °C for 10 min. The PCR product was purified 

using a QIAquick PCR Purification Kit or was electrophoresed on a 1 % agarose gel 

and then extracted from the gel using the QIAquick Gel Extraction Kit, to remove 

primers, nucleotides, salts and the DNA polymerase. 
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2.2.3.3 Quikchange method 

 

Site-directed Quikchange mutagenesis was performed using a reaction mixture 

containing 50 ng of template DNA, 125 ng sense primer, 125 ng antisense primer, 2 % 

(v/v) 10 mM dNTP mixture (Eppendorf or Qiagen), and 10 % (v/v) 10x reaction buffer 

(Stratagene). The reaction was filled to a volume of 49 µl with HPLC quality water 

before 1 µl of Pfu Turbo DNA polymerase (2.5 U/µl, Stratagene) was added. The 

reaction was performed in a thermocycler, with a starting denaturation for 2 minutes at 

95 °C followed by nineteen cycles.  

 

Denaturating   45 sec  95 °C 

   Annealing  1 min  55 °C 

 Synthesis  1 min/kbp 68 °C 

 

After these cycles the temperature was kept at 68 °C for 10 minutes more to 

allow the completion of the synthesis. The sample was then placed on ice for 2 minutes 

to cool the tube. 10 Units of DpnI (Fermentas or New England Biolabs) were added, 

which resulted in the selective digestion of the template DNA, leaving the mutated 

product intact, as DpnI only digests methylated DNA. Bacterial DNA is methylated, 

however the PCR synthesized DNA is not, as the appropriate enzymes are not present. 

The sample was incubated at 37 °C for 1 hour. Competent bacteria were transformed so 

that the target plasmid could be multiplied. 

 

 
Figure 2.1 Scheme of the Quikchange reaction. 
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2.2.4 Transformation 

 

Transformation of competent BL21 (DE3) and DH5α E. coli cells was 

performed according to the method of Hanahan (Hanahan, 1983), with some 

modifications.  

5 - 10 µl of ligation mixture, respectively 10 to 50 ng DNA purified plasmid 

DNA was added to 40 µl of competent Escherichia coli bacteria. After thawing the 

bacteria, the DNA was added and the mixture was incubated on ice for 20 minutes. The 

tube was transferred to a heat block for 60 seconds at 42 °C and then placed on ice for 2 

minutes. After the addition of 300 µl of LB medium, the bacteria were incubated at 

37°C for 1 hour, shaking at 220 rpm. The bacteria were spun down for 0.5 minutes at 

6,000 rpm, in a table centrifuge. The pellet was resuspended in a small part of the 

supernatant which was than transferred to an agar plate with the appropriate antibiotics 

(typically ampicillin, 0.05 mg/ml) to select for the desired plasmid. The plates were 

inverted to avoid the accumulation of condensed water on the colonies, and incubated 

overnight at 37 °C. For each transformation ligation mixture, a vector alone, a positive 

(50 ng of a high copy plasmid with the same antibiotics resistance) and negative 

(autoclaved deionised water or nothing instead of DNA) controls were used.  

 

2.2.5 Plasmid recovery / purification / storage 

 

Small amounts of DNA were recovered from 6 to 8 ml overnight cultures, grown 

at 37 °C and shaken at 220 rpm, in LB medium with the appropriate antibiotics. 

According to the  protocols of the Qiaprep 8 Miniprep Kit, or Qiaprep Spin Miniprep 

Kit with the use a vacuum pump or table centrifuge as applicable, the plasmids were 

isolated. Larger quantities of DNA were recovered/purified with the Qiagen HiSpeed 

Plasmid Maxi Kit. As preparation, 2 ml of LB medium with the appropriate antibiotics 

were inoculated with transformed E. coli as preculture, which grew at 37 °C for 8 hours. 

The preculture was given into 200 ml LB medium with the appropriate antibiotics. This 

culture was incubated overnight at 37 °C, shaking at 220 rpm . All steps were followed 

as recommended by the manufacturer. For storage, 1 ml of the grown culture was taken. 

The same volume of 50 % glycerol was added before the mix was flash frozen in liquid 

nitrogen. Afterwards these glycerol stocks were kept at –80 °C until used. 

 



 2. Materials and methods 23 

2.2.6 DNA concentration measurement 
 

DNA concentrations were measured after dilution 1:100 in autoclaved deionised 

water. The optical density (OD) was measured at 260 nm and 320 nm (baseline) in a 

spectrophotometer that automatically calculates the DNA concentration, or the DNA 

concentration was calculated manually. An OD260 of 1 represents 50 µg/µl of DNA. The 

following formula was used for the manual calculation:  

 

c(dsDNA)=ΔA(260 nm-320 nm) · 50 µg/ml. 

 

2.2.7 Agarose gel electrophoresis 

 

Agarose was dissolved in 1x TAE buffer (50x consists of 2 M Tris Base, 5.95 % 

(v/v) of 96 % Acetic acid, 10 % (v/v) 0.5 M EDTA, pH 8.0 or 3.72 % (w/v) Na2EDTA · 

2 H2O), at a concentration dependent on the size of the DNA fragments to be analysed. 

The agarose concentrations used were 1 % (w/v) for fragments smaller than 1000 

basepairs (bp) and 2 % (w/v) for fragments bigger than 1000 bp. Ethidium bromide was 

dissolved in the agarose gels at 0.002 % (v/v) at approximately 60°C. Ethidium bromide 

is an intercalating agent that fluoresces when exposed to UV-light, allowing the 

visualisation of DNA. The lambda DNA/EcoRI+HindIII marker or the GeneRuler DNA 

Ladder Mix was also loaded on the gel to provide a guide to the sizes of the DNA 

fragments. Samples were dissolved in 6x loading buffer (0.25 % bromophenol blue, 

0.25 % xylene cyanol FF, 30-40 % glycerol). Gels were run at 100 V for 1-2 hours, 

DNA-visualisation via a Gel Doc™XR documentation system took place and bands 

were then quantified using the Quantify One program (BioRad) under UV light (with a 

wavelength of 302 nm). Plasmid DNA was isolated from preparative agarose gels using 

the QIAquick Gel Extraction Kit from Qiagen according to the manufacturer’s 

instructions. 

  

2.2.8 DNA Restriction Enzymes 

 
For fragments up to 3000 bp in length, 5 µg and for bigger fragments 3 µg of 

DNA was used. The appropriate amount of DNA was used together with 10 % (v/v) 10x 

enzyme buffer, 1 % (v/v) BSA or SAM if required, the reaction was filled to a volume 
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of 48.5 µl with autoclaved deionised H2O and 1.5 µl of enzyme (New England Biolabs) 

was used. For a double digest with compatible buffers the reaction was filled to 47 µl 

and 1.5 µl of each of the two enzymes were added. When the buffers of the different 

enzymes were not compatible, but differed only in salt concentration, one digest was 

performed for 2 hours after which NaCl and the second enzyme could be added. If there 

were other differences between the two buffers to be used, the digested DNA was PCR 

purified using the Qiaquick PCR Purification Kit or electrophoresed on an agarose gel 

and then extracted from the gel. After these purification steps the DNA was then 

digested with the second enzyme in the appropriate buffer. Test restrictions were 

performed in a total reaction volume of 20 µl, of which 10 % (v/v) was DNA and 5 % 

(v/v) was enzyme. Restriction enzymes were applied in concentrations of from 2 to 10U 

per reaction mix. In preparative reactions from 500 ng to 2 µg DNA was used, and for 

analytical reactions 2-5 µl of miniprep-DNA was used. 

 

2.2.9 Gel extraction 

 

DNA was extracted from agarose gels by a QIAquick Gel Extraction Kit 

according to the manufacturer’s instructions. Alternatively, DNA fragments larger than 

1000 bp were purified with glass milk. The DNA fragment was cut out of the agarose 

gel and weighed. For the glass milk purification the gel was dissolved in 3 volumes of 

filtered sodium iodide solution (6 M NaI, 10 mM Na2SO3, and 20 mM Tris HCl) at 

65°C for at least 5 minutes. The mixture was cooled and then mixed with 10 µl vortexed 

glass milk. The mixture was vortexed several times during 10 minutes of incubation at 

room temperature. Centrifugation at 5,900 g for 10 seconds in a table centrifuge pelleted 

the glassmilk. The pellet was washed with 600 µl NEET wash solution (100 mM NaCl, 

1 mM EDTA, 50 % ethanol, 10 mM Tris HCl, pH 7.5), by vortexing and centrifugation. 

The pellet was washed again with 400 µl NEET wash solution and after removal of the 

supernatant it was additionally centrifuged at 16,100 g. The supernatant was completely 

removed and the glass milk was dried for 10 minutes of centrifugation at 30 °C under 

vacuum in a concentrator (vacuum concentrator 5301 from Eppendorf). The DNA was 

eluted from the glass milk by addition of 30 µl elution buffer from Qiagen and 

incubation for 10 minutes at 65 °C. Centrifugation for 30 seconds at 16,100 g was 

needed to obtain the supernatant. The centrifugation step was repeated to ensure that 

there was no glassmilk left in the DNA fraction.  
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2.2.9.1 Glass milk preparation 

 

50 g of silica was stirred for 1 hour in 200-300 ml of deionised water. After 2 

min without stirring the supernatant was transferred to a beaker and left to stand for 

another minute. The supernatant was discarded and the pellet was centrifuged for 5 

minutes at 1,200 g. The pellet was resuspended in 100 ml 50 % HNO3 and was boiled 

for 1 hour under a hood. After cooling down and centrifugation as before, the silica was 

washed 4 to 6 times with deionised water until the pH was 7.0. The pellet was 

resuspended in an equal volume of deionised water to form a 50 % suspension and was 

frozen at –20 °C in 0.5 ml aliquots. 

 

2.2.10 Ligation 

 

Restriction fragments were separated on a 1 % agarose gel and were visualised 

with the Gel-Documentation system, using the Quantify One program to quantify the 

bands. Ligations were composed of a ratio of 1:3 of the biggest plasmid fragment to the 

inserted fragments, 2 µl T4 DNA ligase buffer, autoclaved deionised H2O to a final 

volume of 19 µl and 1 µl T4 DNA ligase (Fermentas). Ligation took place for 2 hours at 

room temperature or 24 hours at 4 °C. After the ligation reaction was complete the 

bacteria were transformed with the reaction mixture. 

 

2.2.11 DNA sequencing 

 

250 ng of DNA, dissolved in HPLC quality water, was used. To the DNA 

10pmol of sense or antisense primer was added, 2 to 4 µl premix (Big Dye Terminator 

v1.1 Cycle Sequencing Kit from Applied Biosystems) and HPLC quality water to a total 

reaction volume of 10 µl. The sequencing PCR took place in a thermocycler with a 

heated lid for 25 cycles.   

  

Denaturation  30 sec  96 °C 

 Annealing  20 sec  45-52 °C (Tm 5 to 10) 

 Synthesis  4 min  60 °C 
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DNA was purified with a DyeEx 2.0 Spin Kit from Qiagen or by ethanol 

precipitation.  DNA was placed at 90 °C for 2 minutes for denaturing and then was 

incubated for 5 minutes on ice after which the reaction was transferred to a PCR 

sequencing facility (Department of Microbiology of the Hannover Medical School) 

where DNA sequence was analysed using the Genetic Analyser 3130 XL system from 

Applied Biosystems.  

 

2.2.11.1 Ethanol precipitation of sequenced DNA 

 

Sequencing mixture x µl was placed in a 0.5 ml tube and was subsequently 

mixed with a mixture of 90 µl HPLC quality water and 0.1 · x µl 3 M sodium acetate 

pH 5.2 and then with 2.5 · x µl 100 % ethanol (stored at –20 °C), and incubated for 10 

minutes at –20 °C. The mixture was then centrifuged for 20 minutes at 14,000 g after 

which the ethanol was removed. The pellet was washed with 250 µl 70 % ethanol and 

centrifuged for 7 minutes at 16,100 g. The supernatant was removed and the pellet was 

dried for 5 minutes at 30 °C under vacuum. The pellet was dissolved in 2.5 · x µl of 

HPLC quality water. 

 

2.2.12 LB medium, agar plates and antibiotics 

 

LB medium was made by dissolving 22.5 g Difco™ LB Broth, Miller (Luria-

Bertani) in deionised water to a final volume of 900 ml. After dissolving, the solution 

was autoclaved immediately.  For agar plates 22.5 g Difco™ LB Broth, Miller (Luria-

Bertani) and 18 g of Bacto™ Agar were dissolved to a total volume of 900 ml in 

deionised water, stirred and autoclaved. After cooling down to 50 °C the appropriate 

antibiotic was added to the flask to give a final 1x solution. Plates were poured under a 

clean bench and stored dry at 4 °C. In most cases, ampicillin was added. The ampicillin 

stock solution was prepared by dissolving ampicillin powder in autoclaved deionised 

water. A 1000x ampicillin stock solution contained 100 mg ml-1 (150 µg/ml), and was 

aliquoted. Aliquots were stored at –20 °C.  

 

2.2.13 Competent bacteria 
 

For the production of the chemically competent E. coli bacteria, E. coli BL21 

(DE3) or E. coli DH5α bacteria were added to 5 ml of LB medium and incubated 
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overnight at 37 °C, shaking at 250 rpm. 0.4 ml of this culture was diluted in 40 ml LB 

media and this culture of E. coli was grown to its exponential phase at an OD600 of 0.3-

0.5. Bacteria were harvested at 4 °C, 3,000 g for 10 min and were kept on ice from then 

on. The pellet was resuspended in 30 ml TFB I (100 mM RbCl, 50 mM MnCl2 · 2 H2O, 

30 mM potassium acetate, 10 mM CaCl2 · 2 H2O, 15 % (v/v) glycerol, pH 5.8) and was 

incubated for 20 to 90 min on ice. Bacteria were harvested again at 3,000 g at 4 °C for 

10 minutes and were resuspended in 3 ml TFB II (10 mM MOPS, 10 mM RbCl, 75 mM 

CaCl2 · 2 H2O, 15 % (v/v) glycerol, pH 8.0). These competent bacteria were aliquoted, 

immidiatelly frozen in liquid nitrogen and stored at –80°C. 

 

 

2.3 Protein biochemistry 

 

The protocol for the purification of ecgltP is based on the purification protocol 

for ClC channels (Maduke et al., 1999) and has been optimized in our laboratory.  

 

2.3.1 Expression of ecgltP 

 

As a pre-culture for induction, 70 ml LB media in a 250 ml flask was inoculated 

with E. coli BL21 (DE3) or DH5α bacteria cells containing the pASK IBA5-ecgltP 

plasmid, from a glycerol stock. Two flasks of medium were always inoculated to 

produce a sufficient volume of the culture to express the protein on the following day. 

70 µl of 100 mg/ml ampicillin stock in H2O was added to each flask. The following 

incubation was performed overnight at 37 °C, shaking at 250 rpm. 

The pre-culture was diluted 1:50 and grown in 450 ml LB media at 37 °C, 

shaking at 250 rpm until an OD600 of 0.6-0.7, was reached. After this protein expression 

was induced with 200 μg/l anhydrotetracycline hydrochloride (AHT) for the next three 

hours at 37 °C, and the bacteria were then harvested by centrifugation at 5,000 g at 4°C. 

At appropriate stages, before and after induction samples for SDS-PAGE 

(sodiumdodecylsulfat polyacrylamide gel electrophoresis) analysis were taken (see 3.1). 

Bacteria pellets were immediately flash frozen in liquid nitrogen and stored at –80 °C 

until used.  
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2.3.2 Bacteria lysis and membrane pellet preparation 

 

The bacteria pellet (corresponding to 450 ml culture) was thawed on ice for 5-10 

min and resuspended immediately in 40 ml pre-chilled buffer W (100 mM Tris-HCl, 

150 mM NaCl, 1 mM EDTA, pH 8.0). Protease inhibitors were added before before 

bacteria lysis by sonication: 1 µg/ml pepstatin, 10 mM β-mercaptoethanol, 1 µg/ml 

leupeptin, 1 mM PMSF. Sonication was performed on ice for 6 × 20 sec at 40 % power 

using an ultrasound sonifier 450 (Branson Ultrasonics Corp.), while the metal beaker 

was rotated, with a 20 sec pause in between the pulses. The next centrifugation step was 

done immediately at 4 °C in pre-chilled flasks at 12,000 g-15,000 g for 20 min. The 

supernatant was saved and transferred to pre-chilled ultracentrifuge tubes and 

ultracentrifuged for 60 min at 110,000 g at 4 °C to separate the membrane fraction. 

Each pellet was resuspend in 4 ml buffer W supplemented with 250mM sucrose and 

diluted to OD280 = 20. At appropriate stages samples for SDS-PAGE analysis were 

taken (see 3.1). The membrane fraction pellets were aliquoted and immediately flash 

frozen in liquid nitrogen and stored at –80 °C until used.  

 

2.3.3 Solubilization of ecgltP from the membrane pellet  

 

The frozen membrane pellet was thawed on ice. After solubilization of the 

membrane fraction with 15 mM n-Dodecyl-β-maltoside (DDM) for two hours, stirring 

at 4 °C, the solubilization mix was ultracentrifuged for 60 min at 110,000 g at 4 °C. The 

supernatant, containing soluble strep-ecgltP, was retained for further use. To asses 

solubilisation the pellet was resuspend in urea buffer (100 mM NaH2PO4, 10 mM Tris-

HCl, 8 mM urea, pH 8.0) to the original volume, a sample for the SDS-PAGE was taken 

(see 3.1) and the rest was discarded. 

 

2.3.4 Purification of ecgltP by affinity chromatography 

 

ecgltP was purified in one step by affinity chromatography using a Strep-

Tactin® Superflow® High Pressure column and the ÄKTAprime™plus system (from GE 

Healthcare Bio-Sciences) according to the manufacturer’s instruction manual. All 

reagents, solutions, columns and beakers were pre-cooled to the running temperature (4-

6 °C) in chromatography cabinet. The column was stored in buffer R (1 mM HABA in 
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buffer W), giving a red color to the resin. The column was washed twice with 5x 

column volume (CV) of buffer W. Equilibration of the column was performed with 4x 

CV with buffer W supplemented with 1 mM DDM. The supernatant containing the 

solubilized ecgltP protein was diluted 3 to 5 times in buffer W without DDM, to a final 

DDM concentration 3-5 mM.  

After this the protein sample was 

applied to the column. The column was 

washed with 5x CV of 1 mM DDM in 

buffer W until the baseline absorbance 

measured by the UV detector at 280 nm  

was reached, to ensure that all unbound 

proteins were removed. The buffer was 

then changed to the elution buffer E (2.5mM desthiobiotin in buffer W containing 1 mM 

DDM) for the following elution. The eluted protein was collected using the fraction 

collector, with a fraction volume equal to half of the CV. Protein was typically eluted in 

the 4th to 8th fractions. At appropriate stages, a sample for SDS-PAGE analysis was 

taken (see Fig. 3.1).  

 

2.3.5 Size-exclusion chromatography 

 

Purified ecgltP subjected to size-exculsion chromatography (SEC), also called 

gel-filtration or gel-permeation chromatography (GPC). SEC separates molecules of 

different sizes using porous matrix. It is generally used to separate biological molecules, 

and to determine molecular weights and molecular weight distributions of polymers, 

especially for proteins. Molecules larger than the larger pore size of the matrix can not 

enter the pores and elute in the void volume (Vo). Molecules that can enter the pores 

will have an average residence time that depends on the molecule’s size and shape. 

Different molecules therefore have different total transit times through the column. 

Molecules that are smaller than the pore size can enter all pores, and have the longest 

residence time on the column and elute later. The ecgltP sample was loaded to the 

Superdex 200 10/30 column, connected to fast protein liquid chromatography (FPLC) 

or to automatic ÄKTAprime™plus system, running buffer was buffer W, containing 1 

mM DDM. Applying 1 mM DDM detergent conserved the native trimeric (141.6 kDa) 

subunit of ecgltP (Gendreau et al., 2004). 
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2.3.6 SDS-PAGE analysis  
             

SDS-PAGE gel electrophoresis was performed using 12 % gels. Table 2.1 shows 

the constituents of the different solutions used for these gels. APS was prepared freshly 

as a 10 % solution in deionised H2O. The polymerisation of the running gel was allowed 

to proceed for about 30 minutes. After this the 3% stacking gel was poured. Gels were 

run in running buffer (25 mM Trisbase, 192 mM glycine and 3.5 mM SDS, pH 8.3), 

first at 100 V and when samples had entered the separation gel the voltage was 

increased to 180 V. 

 
Table 2.1 Constituents of the running and stacking gels of SDS gels. Protogel is an acrylamide-

bisacrylamide 37.5:1 mixture (Serva).  
 

Stock solution Running gel,

12 % 

Stock solution Stacking gel, 

3 % 

40 % Protogel  4 ml  7.5 % Protogel 650 µl 

1.5 M Tris, pH 8.8 2.5 ml  125 mM Tris-HCl, pH 6.8 1.2 ml 

10 % SDS 100 µl  10 % SDS 50 µl 

0.1 g/ml APS 100 µl  0.1 g/ml APS 25 µl 

TEMED 10 µl TEMED 5 µl 

SDS loading buffer (2x): 125 mM TrisHCl, 4.1 % SDS, 20 % glycerol, 200 mM DTT, 

0.014 mM bromphenol blue. 

 

2.4 Functional assays 

 

For functional tests ecgltP protein was reconstituted into artificial liposomes and 

transport was determined by measuring the accumulated radioactively labeled substrate 

inside the proteoliposome. 

 

2.4.1 ecgltP reconstitution protocol 

 

Reconstitution was performed essentially as described by Knol (Knol et al., 

1996). Liposomes were prepared from a n-pentane washed mixture of E. coli total Lipid 

Extract and L-α-phosphatidylcholine in 3:1 molar ratio in chloroform, dried under 

nitrogen and finally by vacuum to remove the chloroform. Lipids were resuspended in 
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buffer (50 mM KH2PO4, pH 7.0) to a final concentration of 20 mg of lipid per milliliter. 

The suspension was frozen in liquid nitrogen, thawed slowly and extruded through a 

400 nm polycarbonate membrane filter (Mayer et al., 1986) using Membrane Extruder 

for Laboratory (from Avestin Inc.). The liposomes thus obtained were diluted 6-fold in 

the same buffer and treated with increasing amounts of 10 % Triton X-100. The 

solubilization of the liposomes with Triton X-100 was followed by measuring the 

optical density at 540 nm (Rigaud et al., 1995) and the purified ecgltP was added (Fig. 

2.2). 
 

 

 

 

 
 

 

 

 
 

 

Figure 2.2 Solubilization of liposomes. Treatment of the liposome solution with increasing amounts of 

10 % Triton X-100. The optical density was monitored at 540 nm.   
 

Unless otherwise stated, a protein/lipid ratio of 15 µg/mg was used. After 

addition of the purified protein, the mixture was rotated first at room temperature for 30 

minutes, after which proteoliposomes were formed by removal of the detergent by three 

successive extractions with Bio-Beads SM-2 Adsorbent™ polystyrene beads. The first 

extraction was performed at room temperature for 2 hours, and the second and third 

were at 4 °C for 2 hours and 16 hours, respectively. The beads were removed by 

filtration over glass wool, and the proteoliposomes were recovered by 

ultracentrifugation at 100,000 g for 30 minutes. The proteoliposomes were resuspended 

in the appropriate buffer and flash frozen in liquid nitrogen and stored at –80 °C until 

used.  

 

2.4.2 L-[3H]-glutamate / L-[3H]-aspartate uptake 

 

Assays of L-[3H]-glutamate / L-[3H]-aspartate uptake driven by artificial 

gradients were performed essentially as described by Konings group (Tolner et al., 
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1995b). For uptake experiments, to ensure a homogenous distribution of vesicle size, 

vesicles were frozen, thawed and subsequently extruded through the 400 nm 

polycarbonate membrane filter. Unless otherwise stated, the proteoliposomes were 

resuspended in buffer A (20 mM MES, 100 mM potassium acetate, 5 mM MgSO4, pH 

6.0). Uptake was measured at 22 °C. If necessary, temperatures were modified (Fig. 

3.15) by incubation in the Thermostat Plus system (Eppendorf). 

L-[3H]-glutamate / L-[3H]-aspartate uptake was initiated by diluting 25 μl of the 

proteoliposomes in 650 μl of buffer B (unless otherwise stated buffer B contains 

120mM MES, 100 mM NaOH, 5 mM MgSO4, and 0.0175 μM L-[3H]-glutamate or 

0.0175 μM L-[3H]-aspartate, pH 6.0). After the specified incubation periods, the 

samples were diluted in 1 ml of ice-cold stop solution (100 mM LiCl, 100 mM HEPES, 

pH 8.0) followed by immediate filtration over cellulose nitrate filters (pore size 0.45 

µm) from Sartorius. Filters were washed with an additional 3 ml of stop solution and 

were assayed for the presence of radioactivity and then measured using a liquid 

scintillation counter (TRICARB 2800 TR). Vesicles without protein were used in 

control experiments.  

 
Figure 2.3 Schematic demonstrations of ecgltP reconstitution in lipid vesicles and the uptake 

experiment. 

 

To study the underlying transport mechanism, the intra- and extravesicular ionic 

composition was modified. In all experiments, the intravesicular buffering capacity was 

increased by equimolar substitution of acetate with HEPES.  Buffers A and B were 

modified to study glutamate transport at different ionic conditions, and for clarity the 

conditions of each experiment are also shown schematically in the respective figures. 

The intravesicular solution was modified by several rounds of ultracentrifugation 

(100,000 g for 30 minutes), and resuspension of the proteoliposomes in solutions with 

differing composition and extrusion through a 400 nm polycarbonate membrane filter. 

[Na+] and [K+] concentrations were modified by equimolar substitution with NMDG. 

The pH was adjusted by replacing MES with the appropriate buffer hydroxides of the 

³H 
³H-L-glutamate /  
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accumulation 
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major cations. In some of the experiments, intravesicular acetate was replaced with 

AMPSO, HEPES, or MES in order to increase the buffering capacity of the 

intravesicular solution.  

In the majority of experiments, to study the underlying transport mechanism the 

membrane potential of vesicle was modified by the addition of valinomycin to the 

vesicle suspension at a concentration of 2.5 µM, either in order to hyperpolarize the 

vesicles or to clamp their membrane potential to 0 mV. For static head experiments 

(Fukuhara et al., 1984; Turner, 1985) (Fig. 3.12), proteoliposomes were loaded with L-

[3H]-glutamate by incubation with 0.34 µM L-[3H]-glutamate at intra- and 

extravesicular 120 mM MES, 100 mM KOH, 5 mM MgSO4, 2.5 µM valinomycin, pH 

7.0 until reaching steady-state values. Control vesicles were formed in the same 

medium, containing 0.34 µM L-[3H]-glutamate, by repeated freezing, thawing, and final 

sonicating. The experiment was initiated by diluting the vesicles 1:9 in modified buffer 

B with pHs of 5.0, 6.0, 6.75, and 6.8, supplemented with 2.5 µM valinomycin.  

 

2.4.3 Data analysis 

 

Nonlinear regression fits of experimental and calculated data were performed 

using SigmaPlot (Systat Software, Inc). Each figure either shows means ± SEM from at 

least four samples of at least two separate experiments or a representative experiment 

that was performed at least four times. In each graph, data generated using at least two 

different proteoliposome preparations under different uptake conditions were compared. 

Transport rates were determined as inverse time constants from a fit of the time course 

of radioactive glutamate accumulation inside the vesicle with a monoexpontential 

function. The time constants were then converted into transport rates given as the 

number of glutamate molecules transported per second using the L-[3H]-glutamate 

calibration curve of scintillation counter. Dividing this value by the number of ecgltP 

monomers obtained from Bradford analysis resulted in unitary transport rates. 

Temperature coefficients (Q10) and apparent activation energies (EA) were extracted 

from individual transport rates using the Arrhenius equation:  
RTAEAeTv /)( −=  

where v is the initial transport rate at 0 s, T the temperature, R the gas constant, and A 

the constant factor. The Q10 was calculated from EA according to: 

Q10 = v(T+10K)/v(T) for T = 283  
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3.1 ecgltP protein purification  

 

ecgltP was cloned and overexpressed in E. coli. The membrane fraction was 

isolated from bacteria and purification was performed by one affinity chromatography 

step (Fig. 3.3 A). This resulted in a pure and homogenous population of trimeric ecgltP 

as shown by the results of size-exclusion chromatography (Fig. 3.3 B) and SDS PAGE 

analysis (Fig. 3.1, Fig. 3.2). 

     1    2     3      4     5     6     7     8     9    10    11         Lines: 

  
 

      

    12        13       14      15        16        17        18 

                  

              
 
Figure 3.1 Overexpression and purification of ecgltP. Coomassie staining of a 12 % SDS-PAGE gel. 

Lanes 5 and 18: molecular mass standard LMW (low molecular weight marker from GE Healthcare) is 

shown with the molecular weight in kDa. MW, molecular weight. 
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                       19   20   21    22   23                   

                                                              Lines:                      

                   
 

Figure 3.2 Purified ecgltP. Coomassie staining of a 12 % SDS-PAGE gel of strep-tagged ecgltP purified 

from E. coli. Lane 19: molecular mass standard LMW (low molecular weight marker from GE 

Healthcare) is shown with the molecular weights indicated in kDa. MW, molecular weight. A protein 

band can be seen at approximately 40 kDa, corresponding to monomeric ecgltP (Gendreau et al., 2004). 
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Figure 3.3 Affinity and size-exclusion chromatography elution profiles of ecgltP. (A) Monitoring at 

280 nm of different steps of the strep-tagged affinity chromatography purification using a Strep-

Tactin® Superflow® High Pressure column: (1) equilibration of the column, (2) loading of the protein 

containing sample, (3) washing step and (4) elution of the ecgltP protein. (B) Elution profile monitored at 

280 nm from size exclusion chromatography using a Superdex 200 column (24-ml bed volume). Vo, void 

volume, Alb., the elution volume of albumin (67 kDa). (A, B) Both columns were equilibrated with 1 mM 

DDM in Buffer W: 100 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, pH 8.0. 
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3.2 Purified and reconstituted ecgltP mediates substrate transport into 

proteoliposomes  

 

3.2.1 Glutamate accumulation by proteoliposomes containing purified ecgltP  

 

The time course of radioactive glutamate accumulation by proteoliposomes 

containing purified ecgltP in standard intravesicular and extravesicular solutions (see 

2.4.2) is shown in figure 3.4. At t = 0 min, the radioactive sample was applied and 

proteoliposomes containing ecgltP accumulated glutamate, reaching a steady state after 

40 min. A control experiment was carried out in parallel using vesicles without the 

ecgltP protein. Uptake into the control vesicles was negligible. Thus, reconstitution 

resulted in assembly of functional ecgltP in the artificial vesicular membranes. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Purified and reconstituted ecgltP mediates glutamate transport into liposomes. Time 

course (solid lines give fits to these time dependences with monoexponential functions) of L-[3H]-

glutamate accumulation in ecgltP-containing vesicles ( , n = 4) or control vesicles without protein ( , 

n≥ 4) at symmetrical potassium concentrations, pHo 6.0 and pHi 8.0, in the presence of valinomycin.  

 

The transport rates rise in a linear fashion dependent on the amount of 

reconstituted ecgltP present, from 2 to 10 µg/mg lipid (Fig. 3.5), indicating complete 

reconstitution of functional transporter in this range of protein/lipid ratios. Increased 

protein/lipid ratios result in larger percentages of vesicles containing at least one 

functional transporter and therefore an increased fraction of vesicles capable of 

accumulating L-[3H]-glutamate. This data indicate, that vesicular L-[3H]-glutamate 

accumulation is a specific result of glutamate transport by purified and reconstituted 

ecgltP.  
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3.2.2 Substrate specificity of ecgltP 

 
In order to test the specificity of the E. coli gltP-encoded glutamate transporter, 

the initial rates of L-[3H]-glutamate transport were determinate in the presence of other 

potential substrates, i.e. alanine, aspartate, cysteine, cystine, and serine (Fig. 3.6.) 
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Figure 3.6 L-[3H]-glutamate uptake in the presence of various non-radioactive substrates at a 

concentration of 500 µM.  ecgltP (n ≥ 4),  control (n ≥ 4). L-[3H]-glutamate levels were 

measured after 10 min of incubation. 
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Fig. 3.5 Protein concentration-dependence of the transport rate (A) and accumulation (B) of L-[3H]-

glutamate into ecgltP proteoliposomes. In (B) accumulated L-[3H]-glutamate levels were measured after 

10 min of incubation ( , n = 3). 
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The radiotracer uptake is reduced in the presence of all potential substrates apart 

from D-alanine (p < 0.01), indicating competition between these compounds and 3H-L-

glutamate. A decrease comparable to the effect of non-radiolabeled L-glutamate was 

only observed for L-aspartate. A non-related neurotransmitter, dopamine, did not cause 

a significant reduction of radioactive glutamate fluxes, indicating a specific substrate 

transport by ecgltP.  

In addition, the vesicular uptake of L-serine and of dopamine as a negative 

control was studied using radiotracer flux measurements directly (Fig. 3.7). In contrast 

to mammalian EAATs (Bendahan et al., 2000), ecgltP does transport L-[14C]-serine, but 

in comparison to L-glutamate the serin transport is strongly reduced. Transport of 

radioactively labeled dopamine was not observed.  

 

 

 

3.3 Cation selectivity of ecgltP 

3.3.1 Glutamate uptake by ecgltP is sodium- and potassium-independent 

Secondary-active transport utilizes transmembrane voltage and ion gradients. 

Eukaryotic glutamate transporters carry one glutamate molecule together with three Na+ 

ions and one H+ in counter-transport with one K+ ion, resulting in the movement of two 

net charges per transport cycle (Levy et al., 1998; Zerangue et al., 1996). To assess the 

coupling ratio of Na+ or K+ to glutamate transport by ecgltP, 3H-L-glutamate uptake in 

the presence of varying Na+ or K+ concentrations was measured. In contrast to 

mammalian EAATs, variation of neither the external [Na+] nor the intravesicular [K+] 

Figure 3.7 Uptake levels of 0.0175 µM L-[3H]-glutamate, L-[14C]-serine and [3H]-dopamine. 

ecgltP (n = 4),  control (n = 4). Accumulated radioactivity levels were measured after 10 min. 
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modifies equilibrium glutamate uptake by ecgltP (Fig. 3.8 A and B). A discrepancy in 

the uptake levels between (A) and (B) may be due to the presence of N-methyl-D-

glucamine (see 2.4.2), which may have some influence on transport, as has been shown 

for GltPh (Ryan et al., 2009).  

According to these results, it is possible to conclude that there is no change of 

transport activity under these conditions, indicating that the transport is not coupled to 

other cations beside protons.  

     
 

 

 

 

 

Figure 3.8 L-[3H]-glutamate uptake at various concentrations of extravesicular Na+ (A) or 

intravesicular K+ (B). Accumulated L-[3H]-glutamate levels were measured after 10 min (n = 4). 

Standard intra- and extravesicular solutions with symmetrical pH, without addition of valinomycin.  

 

 

3.3.2 ecgltP co-transports glutamate and H+ 

 

Glutamate transport by the EAATs is also coupled to the co-transport of one 

proton (Zerangue et al., 1996). To test if transport by ecgltP is similarly coupled to H+, 
3H-L-glutamate uptake in the presence of two different pH-gradients was measured 

(Fig. 3.9).  

ecgltP-mediated glutamate uptake is dependent on the proton gradient, for two 

different external pHs. The application of an intravesicular pH (pHi) of 8.0 and an 

external pH (pHo) of 6.0 causes a fast glutamate accumulation that reaches equilibrium 

at higher internal L-[3H]-glutamate concentrations than for an external pH of 7.0. Thus, 

acidic pH stimulates glutamate transport and increases the steady-state concentration, 

indicating that ecgltP mediates a coupled transport of one glutamate and at least one 

proton.  
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Figure 3.9 ecgltP-mediated glutamate uptake is dependent on the proton gradient, for two different 

external pHs. pH dependence of the time course of L-[3H]-glutamate accumulation into ecgltP-

containing proteoliposomes at pHi 8.0 in the presence of valinomycin, (n = 4). 

 

3.4 Determination of the transport stoichiometry of ecgltP  

 

3.4.1 Electrogenecity of glutamate transport by ecgltP 

 

Was tested, if ecgltP-mediated L-glutamate transport is an electrogenic process. 

For this purpose the vesicular membrane potential was modified by the addition of 

valinomycin and the establishment of a potassium gradient across the vesicle 

membrane. Valinomycin (Fig. 3.10) is a highly selective potassium ionophore. 

Therefore, the application of symmetrical potassium and valinomycin concentrations 

clamped the membrane potential of the vesicles to 0 mV, and the application of 

potassium internally but not externally, in presence of valinomycin hyperpolarizes the 

vesicle. 

 

  
Figure 3.10 Valinomycin structure. (A) Primary structure of valinomycin. (B) Crystal structure of the free 

valinomycin. (C) Crystal structure of the potassium complex of valinomycin. 
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Figure 3.11 Glutamate transport by ecgltP is electrogenic.  Time course of the L-[3H]-glutamate 

uptake at two different vesicular potentials, in the presence or absence of valinomycin, at pHi = 6.0 and 

pHo = 6.0.  

 

With a K+-free external solution, permeabilization of the liposomes with 

valinomycin causes a passive efflux of K+ and hyperpolarizes the vesicle interior. At a 

symmetrical pH of 6.0, such a process results in increases in both the speed of uptake 

and steady state level of the radioactive glutamate (Fig. 3.11). The conclusion is that 

glutamate uptake is associated with the movement of positive charges across the 

membrane. Since glutamate is negatively charged, glutamate transport must be coupled 

to the movement of at least two protons.  

 

3.4.2 Determination of the coupling stoichiometry of ecgltP by the static head method 

 

H+/glutamate symport terminates when the electrochemical gradients for protons 

and glutamate compensate for each other. The relationship between the equilibrium 

concentrations is given by equation (1): 
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Where V represents the transmembrane voltage and n the transport stoichiometry 

or coupling coefficient, i.e. the number of H+ coupled to the transport of one glutamate. 



 3. Results 43 

In a semilogarithmic plot, this equation predicts a linear relationship between the 

accumulated radioactivity and the calculated transmembrane potential, with a slope of 

n–1. 

Next, to determine the coupling coefficient the static head method was employed 

(Fukuhara et al., 1984; Turner, 1985), see also 2.4.2. Vesicles were first loaded with L-

[3H]-glutamate and kept in an external medium with the same concentration of labeled 

glutamate as in the loaded vesicles. After establishing an outwardly directed 1:10 

glutamate gradient by 1:9 dilution into solutions with variable pHs, the change of 

intravesicular L-[3H]-glutamate concentration over time was measured (Fig. 3.12 A). In 

these experiments, vesicles were clamped to 0 mV using symmetrical K+ and 

valinomycin.  

The net substrate flux depends on the glutamate and the proton gradients and 

will be zero at ionic conditions at which the driving force for the coupled transport is 

zero:   
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Under the conditions applied here, this can be simplified to: 

 

1)( =− oi pHpHn                         (4) 

 

At an extravesicular pH of 6.0, glutamate is transported into the vesicles, 

whereas glutamate moves out of the vesicle at a pHo of 6.8 (Fig. 3.12 A). Glutamate 

transport by ecgltP is very slow under these conditions, preventing an accurate 

determination of the time constants and steady-state values of intravesicular glutamate 

concentrations. However, vesicular glutamate concentrations obtained in this 

experiment allow determination of the pH at which the H+/glutamate transport is at 
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equilibrium. Figure 3.12 (B) gives the normalized glutamate accumulation on a 

logarithmic scale for three different pHo values 20 minutes after dilution of the vesicles. 
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Figure 3.12 Static head experiment. (A) Time course of the normalized intravesicular L-[3H]-glutamate 

concentration at three external pHs after 1:9 dilution in a static head experiment. (B) Plot of the vesicular 

L-[3H]-glutamate, measured 20 min after dilution, from the experiments shown in (A), versus the external 

pHs. The solid line gives mean values from control vesicles, the dashed lines control mean values ± SEM.  

 

The pH dependence is well described by a straight line that crosses the x-axis at 

pH 6.67. Measurements 10 min after dilution produced similar results (data not shown), 

indicating that H+/glutamate symport is at equilibrium at pH 6.67. The conclusion is 

that, under the tested experimental conditions, ecgltP sustains a coupled transport of 

three protons and one glutamate.  

 

3.4.3 Determination of the coupling stoichiometry of ecgltP by voltage dependence 

measurements  

 

In order to determine the coupling stoichiometry of the H+/glutamate symport, 

the glutamate uptake was compared at different membrane potentials. Vesicular 

potentials were modified by variation of the extravesicular K+ concentration in the 

presence of 2.5 µM valinomycin, to produce potentials of –20 mV, –37 mV, and –50 

mV. Reduction of [K+]o resulted in increased uptake rates and steady state glutamate 

accumulations after 40 min of incubation. The voltage dependence of glutamate 

transport (Fig. 3.13) allowed the determination of the number of protons that are co-

transported with one glutamate by ecgltP.  

A B
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Figure 3.13 Voltage dependence of glutamate transport by ecgltP. Vertical bars show the accumulated 

glutamate at steady state, after 40 min of incubation at different voltages (n = 4), ecgltP. 

 

For a coupled transporter that only transports protons and glutamate, as is the 

case for ecgltP, the ratio of intravesicular glutamate to extravesicular glutamate depends 

on the transmembrane proton gradient and voltage (equation 1, see 3.4.2). This 

relationship can be expressed using a logarithmic plot of the intravesicular glutamate 

concentration versus the transmembrane voltage. The linear fit (Fig. 3.14) to this 

relationship (equation 1) gives the number of co-transported protons. The red lines show 

the predicted glutamate accumulation, assuming a coupling ratio of 3 or 2 co-

transported protons. The voltage dependence of the accumulated glutamate 

concentration reveals that three protons are co-transported with one glutamate by 

ecgltP. 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 3.14 Coupling stoichiometry of ecgltP. Predicted glutamate accumulation assuming a coupling 

ratio of 3 or 2 co-transported protons (red lines), ( ) plotted from Fig. 3.13 data of the voltage 

dependence of glutamate transport by ecgltP.  
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3.5 Temperature dependence of ecgltP-mediated glutamate uptake  

 

Active transport mechanisms are processes, which are required for the uphill 

movement of substrates. Temperature coefficients (Q10) and apparent activation 

energies (EA) are obtainable by extraction from individual transport rates using the 

Arrhenius equation (see also 2.5.4). For this purpose, the rate of glutamate accumulation 

at various temperatures (Fig. 3.15) was measured. Under described conditions 

experiments indicate that the uptake rates increase with temperature with a Q10 of 8. An 

Arrhenius plot of transport rates with hyperpolarized vesicular potentials (Fig. 3.16), 

demonstrates that glutamate transport is associated with an apparent activation energy 

of 160 kJ/mol.  

                                  

 

 

 

 

 

 

 

 

 
Figure 3.15 Temperature dependence of ecgltP glutamate transport. Time course of L-[3H]-glutamate 

accumulation in vesicles at three different temperatures  4 °C (n = 4),  15 °C (n = 4), and  25 °C (n 

= 4).  
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Figure 3.16 Arrhenius plot for initial transport rates. Plot based on data shown in Fig. 3.15. 
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3.6 Characterization of N401D ecgltP 

 

3.6.1 N401D ecgltP mediates glutamate/aspartate transport into liposomes  

 

 N401D ecgltP contains an aspartate residue at a position homologous to D405 of 

GltPh, which was shown to be crucial for sodium binding (Boudker et al., 2007). The 

time course of radioactive glutamate accumulation by proteoliposomes containing 

purified N401D ecgltP in standard intravesicular and extravesicular solutions (see 2.4.2) 

is shown in Fig. 3.17 A. Control experiment was carried out in parallel using vesicles 

without the ecgltP protein. Because N401D ecgltP dramatically reduces the transport 

rate of L-glutamate (Fig. 3.17), for the following experiments L-aspartate with a higher 

transport rate was used as a substrate. Furthermore, in order to get uptake rates of 

N401D ecgltP significantly above the control level, it was also necessary to modify the 

membrane potential and to increase a protein/lipid ratio to 45 µg/mg (2.4.1). Figure 3.17 

B shows values of the accumulated radioactivity after 40 min of incubation for WT 

ecgltP and N401D ecgltP with two different substrates (glutamate or aspartate). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17 Substrate transport into proteoliposomes via N401D ecgltP.  (A) Time courses of the L-

[3H]-glutamate uptake at negative vesicular potentials, in the presence of valinomycin, at symmetrycal pH 

= 6.0. ( ) WT ecgltP (n = 3), ( ) N401D ecgltP (n = 2), and ( ) control were vesicles without protein 

(n = 4). A protein/lipid ratio of 15 µg/mg for WT ecgltP and N401D ecgltP was used. (B) Graphs show 

values of the accumulated radioactivity after 40 min of incubation with two different substrates, WT 

ecgltP (n = 4) and N401D ecgltP (n = 4). Control uptake values were substracted. Protein/lipid ratios of 

15 µg/mg for WT ecgltP and 45 µg/mg for N401D ecgltP were used. 
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3.6.2 N401D ecgltP mediates electrogenic co-transport of substrate and protons 

 

To test if transport by N401D ecgltP is similarly coupled to H+ as by WT ecgltP, 
3H-L-aspartate uptake in the presence of various pH-gradients was performed (Fig. 

3.18). N401D ecgltP-mediated glutamate uptake is dependent on the proton gradient. 

The application of an intravesicular pH of 6.0 and an external pH of 6.0 causes a fast 

glutamate accumulation that reaches equilibrium at higher internal L-[3H]-aspartate 

concentrations than for other external pHs. Again, acidic pH stimulates substrate 

transport and increases the steady-state concentration, indicating that N401D ecgltP 

mediates a coupled transport of one glutamate and at least one proton.  

 

 

             
 

 

 

 

 

 

 

 

 

 

 

Figure 3.18 N401D ecgltP co-transports aspartate and H+. pH dependence of the time course of L-

[3H]-aspartate accumulation in N401D ecgltP-containing proteoliposomes at pHi 8.0, in the presence of 

valinomycin, vesicles without protein were used as a control (n = 3). 

 

 

Glutamate transport by WT ecgltP is electrogenic. In order to determinate, if 

N401D ecgltP-mediated substrate transport is also an electrogenic process following 

experiments were performed. Figure 3.20 shows time courses of the accumulated 

glutamate at different voltages. Vesicles without protein were used as a control. Data 

demonstrate, that substrate transport via N401D ecgltP is also an electogenic process. 

Since aspartate carriers a net single negative charge, the aspartate co-transport via 

N401D ecgltP must be coupled to the movement of at least two positive charges. 
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3.6.3 Aspartate uptake by N401D ecgltP is Na+-independent 

 

This mutant was designed with the expectation of finding a sodium dependent 

transport mechanism, lacking in the WT ecgltP. However, aspartate uptake by N401D 

ecgltP is sodium independent (Fig. 3.19). This indicates that the negative charge that is 

found in the homologous position in GltPh is not alone responsible for Na+-coupling. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19 L-[3H]-aspartate uptake via N401D ecgltP at various concentrations of extravesicular 

Na+. Standard intra- and extravesicular solutions with symmetrical pH and 2.5 µM valinomycin were 

applied. Accumulated L-[3H]-aspartate levels were measured after 40 min (n = 4). 

 

 

3.6.4 Determination of the coupling stoichiometry of N401D ecgltP by voltage 

dependence measurements  

 

As was shown for the wild type ecgltP (Fig. 3.13 and 3.14), voltage dependence 

of glutamate transport allowed the determination of the number of protons that are co-

transported with one glutamate by N401D ecgltP. In order to determine the coupling 

stoichiometry of the H+/glutamate symport via N401D ecgltP the same method of 

voltage dependence measurements (see also 3.4.3) was applied (Fig. 3.20, Fig. 3.21). 
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Figure 3.20 The voltage dependence of glutamate transport by N401D ecgltP. Time courses of the 

accumulated glutamate at different voltages are demonstrated (n = 4). 

 

 

 

 

Figure 3.21 Coupling stoichiometry of WT ecgltP and N401D ecgltP.  Predicted glutamate 

accumulation assuming a coupling ratio of 3 or 2 co-transported protons (red lines). Plotted data of the 

voltage dependence at steady state (after 40 min of incubation) of glutamate transport by WT ecgltP 

(from Fig. 3.13) and by N401D ecgltP (from Fig. 3.20). 
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The voltage dependence of the glutamate accumulation by N401D ecgltP reveals 

that, in contrast to the wild type, the mutant transports one glutamate stoichiometrically 

coupled to two protons. Obviously, N401 residue plays a role in defining the number of 

co-transported protons in ecgltP. 
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Glutamate transport proteins play a crucial role in both eukaryotic and 

prokaryotic cells. Although their functions in both kingdoms are very different, the 

correlation of the conclusions from mutagenesis experiments on eukaryotic glutamate 

transporters with the high-resolution structure of a prokaryotic glutamate transporter 

GltPh from Pyrococcus horikoshii indicates that eukaryotic and prokaryotic glutamate 

transporters share a common architecture, sequence, oligomerisation state, structure, 

and basic mechanism of transport. However, little is known about the functional 

mechanisms of the prokaryotic transporters. The gltP gene of Escherichia coli encodes a 

protein homologous to the mammalian EAAT-type glutamate transporters. The study of 

ecgltP allows the application of molecular, functional, and biochemical methods to 

elucidate the molecular mechanisms underlying coupled transport by this glutamate 

transporter. The transport mechanisms determined for ecgltP may be similar to those in 

its eukaryotic homologues, and thus it may be possible to extrapolate from the 

information obtained in this study to gain a better understanding of the molecular 

determinants of coupled transport by eukaryotic glutamate transporters. In this thesis, a 

detailed functional characterization of ecgltP is presented, where the ion dependence of 

this glutamate transporter is described. Like the EAATs, glutamate transport by ecgltP 

is coupled to the co-transport of H+. In contrast to the EAATs, this process is not 

coupled to the co-transport of Na+ ions or the counter-transport of K+ ions. 

 

4.1 Purified and reconstituted ecgltP mediates glutamate uptake into 

proteoliposomes  

 

After expression in E. coli, ecgltP was purified by one affinity chromatography 

step from bacteria and than eluted predominantly as a single symmetrical peak (Fig. 3.3 

B), indicating that the majority of the purified protein (>95 %) exists in one oligomeric 

conformation. The use of 1 mM DDM detergent in the protein purification procedure 

conserves the native trimeric subunit stoichiometry of ecgltP (Gendreau et al., 2004). 

Purified ecgltP was reconstituted in artificial lipid vesicles. Radiotracer flux 

measurements into ecgltP-containing proteoliposomes were then used to characterize 

the transport properties of ecgltP. Reconstitution experiments demonstrated that ecgltP 

was able to sustain coupled transport. The dependence of L-[3H]-glutamate 

accumulation – determined after 10 min – on the protein/lipid ratio is well described by 

a mono-exponential function (Fig. 3.5 B), as expected for a Poisson distribution 
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(Heginbotham et al., 1998). It was shown that glutamate transport by ecgltP is 

electrogenic (Fig. 3.11 A, Fig. 3.11 B) and depends only on the proton concentrations 

on both sides of the membrane (Fig. 3.9), but is not affected by the presence, absence or 

concentration of Na+ (Fig. 3.8 A) or K+ (Fig. 3.8 B). ecgltP has already been studied 

using radiotracer flux experiments with cytoplasmic bacterial membrane vesicles or 

whole bacteria cells after the overexpression in E. coli (Deguchi et al., 1989; Wallace et 

al., 1990). In both reports, as well as in this work, a sodium-independent, electrogenic 

uptake of glutamate was reported. The conditions of protein purification and 

reconstitution and the method of performing the functional tests therefore do not modify 

the transport properties of ecgltP. The techniques used in the work presented here 

allowed the study of ecgltP in artificial liposomes without possible contamination by 

other cellular components.  

 

4.2 ecgltP has less substrate specificity than eukaryotic EAAT glutamate 

transporters 

 

ecgltP is mainly selective for glutamate and aspartate (Fig. 3.6, Fig. 3.7) but also 

sustains a secondary-active transport for alanine, cysteine, cystine, and serine, albeit 

with a lower affectivity. This property contrasts with the specificity of the EAAT 

glutamate transporters (Danbolt, 2001).  

This difference between prokaryote and eukaryote substrate specificity makes 

sense in light of the fact that glutamate transporter function in both kingdoms is 

different. Little is known about the biological function of ecgltP but one may speculate 

that the reason for such a broad spectrum of transported substrates, is that as bacterial 

glutamate transporter proteins are nutrition transporters, it is beneficial for the bacteria 

not only to accumulate glutamate (Halpern et al., 1965) but also other amino acids. 

 

4.3 Stoichiometry of ecgltP: three protons are electrogenically co-transported with 

one glutamate 

 

In marked contrast to mammalian glutamate transporters and to some other 

bacterial glutamate transporters, transport by ecgltP does not depend on sodium (Fig. 

3.8 A) or potassium (Fig. 3.8 B). Glutamate transport by purified ecgltP is therefore not 

energetically coupled to the movement of these ions, in agreement with earlier results 
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on cytoplasmic bacterial membranes and on whole bacteria (Deguchi et al., 1989; 

Wallace et al., 1990) or on purified and reconstitution in E. coli lipids glutamate 

transporter GltT from Bacillus stearothermophilus (Gaillard et al., 1996). GltT-

mediated glutamate transport has also been reported as independent of external [Na+]. 

The results presented here demonstrate that ecgltP-mediated H+:glutamate co-

transport is electrogenic (Fig. 3.11), with a coupling stoichiometry of 3:1 (Fig. 3.12, 

Fig. 3.14). Two different methods were applied to determine the coupling stoichiometry 

of ecgltP: the static head method (Fukuhara et al., 1984; Turner, 1985) and 

measurements of the voltage dependency of accumulated substrate at the steady state. 

Both techniques produced the same result and showed that three protons are co-

transported together with one glutamate by ecgltP, demonstrating that the properties of 

Na+ co-transport and K+ counter-transport with glutamate are not conserved between 

evolutionarily distant members of the glutamate transporter family: ecgltP and EAATs. 

This is especially interesting because ecgltP lacks a glutamate residue at position 

320. In GLT-1, the rat homolog of EAAT2, a glutamate residue at the equivalent 

position (E404) was proposed to bind K+ (Kavanaugh et al., 1997). The demonstrated 

K+-independence of glutamate transport via ecgltP and the absence of this residue in 

ecgltP are consistent with that proposed role of this glutamate residue as a K+ acceptor. 

On the other hand, in another isoform – EAAT3 – the same residue was proposed to be 

responsible for H+ binding (Grewer et al., 2003). ecgltP transports three protons without 

having a glutamate residue at this position, demonstrating that this binding site is not 

conserved between mammalian and prokaryotic  glutamate transporters. 

 

4.4 Determination of unitary transport rates and temperature dependence of 

ecgltP-mediated glutamate uptake  

 

Secondary-active transporters are usually thought to function using an 

alternating access mechanism (Jardetzky, 1966; Kavanaugh, 1998). In this canonical 

transport scheme, one or more permeation pathways possess gates at the intra- and 

extracellular sides of the plasma membrane. These gates are never simultaneously open, 

but instead open sequentially to allow alternating access to the cytoplasmic and 

extracellular compartments. An alternative mechanism for secondary-active transport is 

one in which multiply-occupied channels contain a variety of substrates moving in 

single-file (Läuger, 1979; Läuger, 1980; Su et al., 1996; DeFelice et al., 2001). In such 
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transport processes, ions move when another ion enters the pore from either direction, 

and this coupling of substrate transport is capable of sustaining the channel-mediated 

transport of one substrate against its electrochemical gradient. Alternating access and 

channel-like transporters differ in their transport rates and in the conformational 

changes necessary for substrate transport. In this study, the unitary transport rates and 

the temperature dependence of ecgltP-mediated glutamate transport were therefore 

determined to define the mechanism used by the ecgltP transporter (see 2.4.3 and 3.5). 

The ecgltP transporter consists of three subunits (Gendreau et al., 2004), each of 

which has been shown to be able to transport glutamate independently (Yernool et al., 

2004; Grewer et al., 2005; Koch et al., 2005). Time course measurements of radioactive 

glutamate accumulation and the calculation of the number of ecgltP subunits present in 

the tested vesicle sample, yielded an estimate of a transport rate of 4 glutamate 

molecules/sec at 0 mV vesicle potential and of 62 molecules/sec for a hyperpolarized 

membrane potential achieved by adding valinomycin to a K+-free external solution. This 

is closely similar to the values for mammalian EAAT glutamate transporters of 1.3 

molecules s-1 for purified rat glutamate transporters (Danbolt et al., 1990) and between 

4 and 27 molecules s-1 for human EAAT2 heterologously expressed in Xenopus oocytes 

(Wadiche et al., 1995).   

Measurements of ecgltP uptake were performed at different temperatures (4 °C, 

15 °C and 25 °C) (Fig. 3.15). Based on this data an Arrhenius plot (see 2.4.3., 3.5 and 

Fig. 3.16) of transport rates with hyperpolarized vesicular potentials demonstrates that 

glutamate transport is associated with an apparent activation energy of 160 kJ/mol. The 

apparent activation energy of glutamate transport is much larger than values 

characteristic for diffusion-limited processes (Hille, 1992) and strongly supports a 

transport mechanism that involves large conformational changes of the transport 

protein. Measurements of individual transport rates and their temperature dependence 

indicated a transport process that encompasses major conformational changes, 

consistent with alternating access models. Glutamate transport by ecgltP can therefore 

be considered to be associated with major conformational changes of the protein and 

resembles transport by mammalian homologues in general.  

The temperature dependence data and measurements of individual transport rates 

support the notion that conformational changes are associated with the ecgltP transport 

mechanism, which is also in agreement with the results of functional characterization of 

GltPh (Ryan et al., 2009). 
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4.5 Characterization of N401D ecgltP 

 

The aspartate at position 405 of GltPh and the homologous residues in other 

glutamate transporters are known to bind Na+ during the glutamate transport process 

(Tao et al., 2006, Tao et al., 2007; Boudker et al., 2007). In wild type ecgltP, this 

residue is exchanged to asparagine. To elucidate the role of this residue in ecgltP, a 

mutant – N401D ecgltP – bearing the conserved aspartate at this position was studied.  

Transport by N401D ecgltP does not depend on sodium (Fig. 3.19). This finding 

demonstrates that coupling of glutamate and Na+ transport cannot be transplanted from 

mammalian EAATs, or from GltPh to ecgltP by inserting a single negative charge and 

also that other amino acids take part in Na+ transport and that the molecular 

requirements for coupled sodium-glutamate transport are more complex than currently 

thought.  

The voltage dependency of the glutamate accumulation by the N401D ecgltP 

mutant reveals that, in contrast to the wild type ecgltP, which mediates the 

stoichiometrically coupled co-transport of one glutamate and three protons, N401D 

ecgltP presents voltage-dependent transport of one glutamate stoichiometrically coupled 

to two protons (Fig. 3.20, Fig. 3.21). 

Surprisingly, instead of changing the glutamate transport to a Na+-dependent 

mechanism the introduction of aspartate at this position (N401) altered the H+:glutamate 

transport stoichiometry to 2:1. Moreover, N401 plays an additional role in defining the 

number of co-transported protons in ecgltP. It appears possible that D401 acts as a 

possible binding site for protons. One could imagine that the incorporated aspartate 

increases affinity for one proton. The proton can no longer dissociate, but remains 

bound and is therefore not transported.  
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4.6 Conclusions 

 

The functional characterization of ecgltP transporter presented in this study 

demonstrates that: 

 

 

• Na+ co-transport and K+ counter-transport are not conserved between ecgltP and 

EAATs. 

 

• ecgltP mediated H+:glutamate co-transport has a coupling stoichiometry of 3:1. 

 

• substantial conformational changes are associated with ecgltP transport function, 

supporting an alternating access model. 

 

• residue N401 plays a role in defining the number of co-transported protons in 

ecgltP. 

 

• coupling of glutamate and Na+ transport can not be transplanted to ecgltP by 

inserting a single negative charge at position 401. 

 

• ecgltP represents a model to study the mechanisms underlying glutamate transport 

and coupled transport in general. The existence of such a protein model provides a 

good system to test hypotheses concerning different steps in the glutamate uptake 

cycle.  
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4.7 Further research 

 

Glutamate transporter proteins are still incompletely understood. The bacterial 

glutamate transporter from E. coli – ecgltP – represents an interesting model to study 

glutamate transport. A complete understanding of Na+- and K+-binding sites in 

mammalian isoforms could potentially be achieved by transferring these sites to ecgltP 

mutants. Performing such experiments using ecgltP would thus help future 

understanding of coupled transport in EAATs. 

In addition, interesting questions are still open regarding the oligomerisation 

state of the protein and its influence on the mechanism of glutamate uptake. The ecgltP 

transporter consists of three subunits (Gendreau et al., 2004) each of which are able to 

transport glutamate independently (Yernool et al., 2004; Grewer et al., 2005; Koch et 

al., 2005). The detergent DDM conserves the native trimeric subunit stoichiometry 

(Gendreau et al., 2004), while LDAO disrupts this assembly and produces a 

monodispersed fraction of monomeric ecgltP. Producing by applying of different 

detergents in purification procedure or by mutagenesis and comparing functional 

properties of the two types of ecgltP transporters – trimers and monomers – could give 

information about the impact of oligomerisation on transport functions.  
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5.1 Abstract, English 

 

Functional characterization of a glutamate transporter from Escherichia coli 
 

Glutamate is the major excitatory neurotransmitter in the mammalian CNS. 

After its release from glutamatergic nerve terminals, glutamate is rapidly taken up into 

glial and neuronal cells by mammalian Na+-dependent glutamate transporters 

(excitatory amino acid transporters 1 to 5, EAATs). In recent years, various EAAT 

paralogs have been identified in prokaryotes and shown to exhibit different transport 

stoichiometries. Whereas EAATs transport 3 Na+, 1 H+, and 1 glutamate in 

countertransport with 1 K+, there are bacterial paralogs that only transport 

glutamate/aspartate stoichiometrically coupled to H+, or to Na+. The simplicity of the 

transport stoichiometry of bacterial transporters might allow transplantation of transport 

mechanisms from one isoform to the other and thus provide insights into molecular 

determinants of coupled transport. Radiotracer flux accumulation by purified and 

reconstituted glutamate transporter from E. coli (ecgltP) was studied. In marked contrast 

to mammalian EAATs, glutamate transport by ecgltP is independent of Na+ and K+. 

ecgltP transports H+ and glutamate, and the voltage dependence of radiotracer flux 

accumulation allowed the determination of a transport stoichiometry of one glutamate 

coupled to three protons. Measurements of individual transport rates of ecgltP and their 

temperature dependence demonstrated a transport process that encompasses major 

conformational changes, consistent with alternating access models. WT ecgltP was 

characterized in comparison to the N401D ecgltP mutation. In sodium-dependent 

aspartate transporters, a conserved aspartate in TM8 (D405 in GltPh) is known to bind 

Na+ during the glutamate transport process. In ecgltP an asparagine is present instead of 

aspartate. Insertion of this candidate binding site into ecgltP does not convert this into a 

sodium-coupled glutamate transporter. It solely reduces the number of cotransported 

protons from 3 to 2. This finding demonstrates that coupling of glutamate and Na+ 

transport cannot be transplanted from mammalian EAATs to ecgltP by inserting a single 

negative charge and also that other amino acids take part in Na+ transport and that the 

molecular requirements for coupled sodium-glutamate transport are more complex than 

currently thought.  

 

Keywords: 

glutamate transporters, ecgltP, EAATs 
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5.2 Zusammenfassung 

 

Funktionelle  Charakterisierung eines Glutamattransporters aus Escherichia coli 

 

Die Aminosäure L-Glutamat ist der wichtigste exzitatorische Neurotransmitter 

im zentralen Nervensystem von Säugetieren. Glutamat wird nach der Freisetzung aus 

glutamatergen Nervenendigungen durch Natrium abhängige exzitatorische 

Aminosäuretransporter (excitatory amino acid transporters 1-5, EAAT) in gliale und 

neuronale Zellen aufgenommen. In den vergangenen Jahren wurden in Prokaryoten 

verschiedene EAAT Paraloge identifiziert, die sich in der Transportstöchiometrie von 

Säugetierisoformen unterscheiden. Während eukaryotische Transporter (EAATs) drei 

Natriumionen, ein Proton und ein Glutamat im Gegentransport mit einem Kaliumion 

transportieren, ist in prokaryotischen Transportern der Transport eines Glutamats / 

Aspartats nur an Protonen oder nur an Natriumionen gekoppelt. 

In dieser Studie wurde ein Glutamattransporter aus E. coli  (ecgltP) mit Hilfe 

von Radiotracerflux-Techniken untersucht. EcgltP transportiert Glutamat zusammen mit 

Protonen. Aus der Spannungsabhängigkeit der Glutamatakkumulation konnte ein 

Kopplungskoeffizient von einem Glutamat zu drei Protonen bestimmt werden. Um die 

molekularen Determinanten des gekoppelten Transports besser zu verstehen, wurde eine 

potenzielle Natriumbindungsseite aus eukaryotischen Transportern in ecgltP imitiert. 

EcgltP unterscheidet sich u.a. in dieser potenziellen Natriumbindungsstelle von 

natriumabhängigen Glutamattransportern. Die Modifikation dieses potenziellen 

Bindungsplatzes durch eine Punktmutation (N401D) ist jedoch nicht ausreichend für 

einen natriumgekoppelten Glutamattransport in ecgltP. N401D ecgltP weist weiterhin 

eine Natrium-unabhängige Stöchiometrie mit einem Glutamat und zwei Protonen auf. 

Dies zeigt, dass ecgltP, auch wenn alle bekannten Natriumbindungsplätze durch 

molekulare Modifikationen vorhanden sind, immer noch keine Natriumionen 

transportieren kann, und dass die molekularen Anforderungen für den gekoppelten 

Natrium-Glutamat-Transport  komplexer sind, als bisher angenommen. 

 

Stichwörter: 

Glutamattransporter, ecgltP, EAATs 
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7. Supplemental Information  
 
Table 7.1 Members of the of the DAACS family. From Slotboom et al., 1999. 

 
Table 7.2 Score Table of three distantly related glutamate transporters GltPh, ecgltP, and hEAAT2. 

The table is based on a multiple amino acid sequence alignment using ClustalW (Chenna et al., 2003). 

Abbreviations: glutamate transporter from archaebacteria P. horikoshii (GltPh), bacterial glutamate 

transporter from E.  coli (ecgltP), and human isoform of excitatory amino acid transporters (hEAAT2). 
 

SeqA Name     Len(aa)  SeqB Name     Len(aa)  Score 
=================================================== 
1    GltPh    425      2    ecgltP   437      33    
1    GltPh    425      3    hEAAT2   574      32    
2    ecgltP   437      3    hEAAT2   574      26    
=================================================== 
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Table 7.3 List of equipment and materials used. 
 
Equipment / Consumption items Company 

Agarose gel system PEQLAB Biotechnologie GMBH  

Amicon Ultra (Ultracel 30 k) Millipore 

Autoclave Systec D-150 Systec GmbH 

Affinity chromatography:  

ÄKTAprime™plus system  GE Healthcare Bio-Sciences  

Strep-Tactin® Superflow® High Pressure column IBA 

Cellulose nitrate filter (0.45 µm) Sartorius Biolab Products 

Cuvettes:  

             Cuvettes REF 67.742 Sarstedt 

             UVette 220-1600 nm Eppendorf 

Centrifuges:         

             Rotanta 460R Heraeus Fresco 17 centrifuge Thermo Scientific 

             Micro centrifuge MiniSpin®  Eppendorf 

             Table centrifuge 5415C  Eppendorf 

             Avanti™ J-25 centrifuge Beckman Coulter, Inc. 

             Ultracentrifuge Optima™ LE-80k Beckman Coulter, Inc. 

             Rotors for the ultracentrifuge: 70 Ti.1, SW-41 TI Beckman Coulter, Inc. 

Centrifuge tubes (15 ml, 30 ml, 50 ml)  Beckman Coulter, Inc. 

Centrifuge tubes (15 ml, 30 ml, 50 ml)  G. Kisker GbR 

Glass microfiber filters 934-AH™ Whatman  

Fast protein liquid chromatography (FPLC) system:  

Superdex column 200 – 10/30 GE Healthcare Bio-Sciences 

Optical Unit UV-1 GE Healthcare Bio-Sciences 

Pump P-500 GE Healthcare Bio-Sciences 

Collector Frac-100 GE Healthcare Bio-Sciences 

Recorder Rec 112 GE Healthcare Bio-Sciences 

Program GP-250 Plus GE Healthcare Bio-Sciences 

Gel Doc™XR documentation system BioRad Laboratories GmbH 

Glassware Schott Glaswerke AG  

Plasticware Roth 

Illustra NAP-10 Column GE Healthcare Bio-Sciences 

Membrane Extruder for Laboratory:  

            LiposoFast-Basic   Avestin Inc. 
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            LiposoFast-Stabilizer  Avestin Inc. 

            Polycarbonate membrane 400 nm Avestin Inc. 

            Hamilton Syringe 1 ml Hamilton Company 

Milli Q  plus  Millipore 

MillexGP   Millipore 

Needle 22G Nr. 12 BD Microlance  

Osmomat 030  Gonotec 

pH meter 720A  ORION 

TRICARB 2800 TR Packard Tri-Carb Liquid Scintillation 
Counter 
 

PerkinElmer  

PCR-Thermocycler T Gradient Thermomixer compact Biometra 

PD-10 Desalting column  GE Healthcare Bio-Sciences 

Petri dishes for Bacterial culture (92 x 16 mm, PS) Sarstedt  

Photometer Ultrospec 2100 pro GE Healthcare Bio-Sciences 

Pipettes Eppendorf 

Plastic tubes (1.5 ml, 2 ml) Eppendorf 

Polypropylene tubes (14 ml) Greiner Bio-One GmbH 

Quantamaster 2  PTI 

Reaction tubes (0.5 ml, 1.5 ml, 15 ml and 50 ml) Sarstedt 

Reaction tubes (safe lock 1.5 ml, 2 ml) Greiner Bio-One GmbH 

SDS-PAGE system with Power Supply PowerPac™ Basic    BioRad 

Spectrophotometer Ultrospec 2100 pro  Amersham Biosciences 

Sterile filter Millex-GP Filter Unit Millipore Corporation 

Thermocycler Biometra or MJ Research 

Thermostat Plus system Eppendorf 

Unitron coulter Infors HT 

Ultrasound Sonifier 450  Branson Ultrasonics Corp. 

Vacuum concentrator 5301 Eppendorf 

Vacuum pump VACUUBRAND or KNF Neuberger 
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Table 7.4 List of chemicals used. 

 

Chemicals Company 

Acetic acid (100 %)  Merck 

Acetone Baker  

Acrylamide-Bisacrylamide 37.5:1 mixture SERVA 

Agarose Serva 

AHT (anhydrotetracycline hydrochloride) ACROS ORGANICS 
 
APS (ammonium persulphate) 
 

Serva 
 

Ampicillin, sodium salt 
 

Serva 
 

AMPSO (N-(1,1-Dimethyl-2-hydroxyethyl)-3-amino-2-
hydroxypropanesulfonic acid) 

Sigma-Aldrich 
 

Aspartic acid, L-[2,3-3H]- MP Biomedicals, Inc.  

Bacto™ Agar  Becton, Dickinson and Company 

Bio-Beads SM-2 Adsorbent™  BioRad 

BSA (bovine serum albumin)  Sigma-Aldrich 

Borat sodium salt Merck 

Bromophenol blue sodium salt AppliChem GmbH 

Calcium chloride dihydrate Merck 

dATP (2'-deoxyadenosine 5'-triphosphate) GE Healthcare Bio-Sciences 

Desthiobiotin Invitrogen 

Difco™ LB Broth, Miller (Luria-Bertani) Becton, Dickinson and Company 

di-Sodium hydrogen phosphate dihydrate Merck 

DMF (dimethylformamide) Sigma-Aldrich 

DMSO (dimethylsulfoxide) Merck 

Deoxynucleotide triphosphates (dNTPs): 100 mM dATP, 
dCTP, dGTP, dTTP 

 
Sigma-Aldrich 
 

DDM (n-Dodecyl-β-maltoside)  GLYCON Biochemicals  

DTT (dithiothreitol) Roth 

Decon 90 Decon Laboratories Limited 

EDTA (ethylendiamintetraacetic acid, anhydrous) Merck 

E. coli total Lipid Extract Avanti Polar Lipids 

Ethanol absolute Baker 

Ethidium bromide tablets USB Corporation 
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GeneRuler DNA Ladder Mix  Fermentas 

Glutamic acid, L-[3,4-3H]- Hartmann Analytic GmbH 

D-Gluconic acid, 45 to 50 wt % solution in water Sigma-Aldrich 

Glycerol (99 %, water free)  KMF Laborchemie Handels GmbH 

Glycine  Sigma-Aldrich 

Imidazole  Sigma-Aldrich 

Isoamyl alcohol Merck 

Isopropanole (2-Propanole)  Merck 

HABA (4’-Hydroxyazobenzene-2-carboxylic acid) Sigma-Aldrich 

Potassium acetate extra pure Merck 

Potassium hydrogen phosphate trihydrate Merck 

Liquid nitrogen  Linde 

Leupeptin Serva 

Lithium chloride Serva 

Lambda DNA/EcoRI+HindIII marker  Fermentas 

Low molecular weight marker (LMW) GE Healthcare 

Sulfuric acid AppliChem 

Magnesium chloride hexahydrate Merck 

Magnesium sulfate Merck 

β-Mercaptoethanol  Serva 

Methanol  Baker 

MES (morpholinoethanesulfonic acid) Sigma-Aldrich 

NMDG (N-methyl-D-glucamine) Sigma 

PCR-H2O  Braun 

PMSF (phenylmethylsulphonylfluoride) Serva 

n-Pentane Merck 

Pepstatin Serva 

Phenol:chloroform:isoamyl alcohol (25:24:1) Roth 

L-α-phosphatidylcholine Sigma-Aldrich 

PIPES (piperazine-N,N′-bis(2-ethanesulfonic acid)) Sigma-Aldrich 

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) 
 
Sigma-Aldrich 

Premix ABI PRISM BigDye Terminator v1.1 
 
 
 

 
Applied Biosystems 
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QIAGEN Kits:  QIAGEN GmbH 

Plasmid DNA Purification Kit  

QIAprep Spin Miniprep Kit  

QIAquick Gel Extraction Kit  

QIAquick PCR Purification Kit   

Qiaprep 8 Miniprep Kit   

Qiaprep Spin Miniprep Kit  

Qiagen HiSpeed Plasmid Maxi Kit  

DyeEx 2.0 Spin Kit  

Roti-Blue Colloidal Coomassie staining (5x)   Roth 

Hydrochloric acid, HCl (38 %) Baker 

SAM (S-adenosyl methionine) Sigma-Aldrich 

Scintillation cocktail Rotiszint® eco plus Roth 

Silica  Sigma-Aldrich 

SDS (sodiumdodecylsulfate)  Merck 

Sodium acetate Merck 

Sodium chloride  Merck 

Sodium hydrogen phosphate Merck 

Sodium hydroxide  Merck 

Sucrose Baker 

Filter-Count LSC-cocktail PerkinElmer  

TCEP (tris(2-carboxyethyl)phosphine hydrochloride) PIERCE 

TEMED (N,N,N',N' tetramethylethylenediamine) Serva 

TRIS (tris(hydroxymethyl)aminomethane)  Merck 

Triton X-100 Sigma-Aldrich 

Valinomycin Sigma 

Water HPLC quality  Fluka 
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Table 7.5 Oligonucleotides used. Abbreviations: s = sense, as = antisense. 

 

Construct s/as Sequence primer 

pASK IBA5 ecgltP N401D  s GAACGTGGTGGGTGATGCGCTGGCGGTG 

 as CACCGCCAGCGCATCACCCACCACGTTC 

 

 

Table 7.6 Used Escherichia coli-strain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E.coli K12: Genotype 

BL-21 (DE3) F-, ompT, hsdSβ(rβ-mβ-), dcm, gal, (DE3) tonA 

DH5α F-, φ80dlacZΔM15, Δ(lacZYA-argF)U169, deoR, recA1, endA1, 

hsdR17(rk-, mk+), phoA, supE44, λ-, thi-1, gyrA96, relA1 
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