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1. Abstract 
 

As conventional anti-cancer regimens like radiation or chemotherapy often fail to cure human 

cancers new treatment strategies are required. The application of replication-competent 

viruses as anti-tumor agents – termed virotherapy – represents a novel and promising 

approach to selectively eradicate cancerous cells while concomitantly sparing normal tissue 

from destruction. Thereby the therapeutic vector propagated and infected cells are lysed. To 

restrict viral replication to tumor tissue it is important to understand the molecular 

mechanisms that govern cancer development, and the interactions of therapeutic viruses with 

their target cells. This thesis was aimed to explore the interaction between two different 

therapeutic viral agents – a conditionally replicating Adenovirus (crAd) and the natural tumor 

virus Vesicular Stomatitis Virus (VSV) – and human cancer cells.  

First, the altering transcriptional status of p53 in normal and transformed cells was utilized for 

the regulation of adenoviral replication applying a novel regulation mechanism that leads to 

the destruction of the vector genome in normal tissue. This mechanism is based on the p53-

dependent expression of the rare-cutting DNA endonuclease I-Sce I from yeast. In cells with 

active p53, I-Sce-I specifically cleaves the viral backbone as determined by PCR. 

Consequently, replication of I-Sce I-encoding viruses is impaired in contrast to EGFP-

expressing control vectors in p53-positive cell, whereas no difference in cells with non-

functional p53 could be observed. Furthermore, this concept can be combined with an 

additional transcriptional repressor Gal4-KRAB. In summary, tightly regulated, conditionally 

replicating adenoviruses have been established that combine transcriptional regulation as well 

as vector destruction mechanisms for improved safety and efficacy of virotherapeutic 

treatment of solid tumors. 

Second, the molecular mechanisms involved in VSV-induced apoptosis were investigated 

focusing on proteins of the B-cell lymphoma 2 (Bcl-2)-family. VSV was demonstrated to 

rapidly decrease myeloid cell leukemia 1 (Mcl-1) protein levels. Mcl-1 elimination depends 

on the combination of VSV-mediated block of cellular protein biosynthesis and continued 

proteasome-dependent degradation of Mcl-1. Rescue of Mcl-1 inhibited apoptosis confirming 

that Mcl-1 down-regulation contributes to VSV-induced apoptosis. In vitro and in vivo, VSV 

virotherapy in combination with chemotherapy revealed an enhanced therapeutic effect 

compared to single treatments. In summary, these data suggest that Mcl-1 is a key component 

of intracellular defense mechanisms against VSV infection. Additionally, strong evidence is 

provided that this anti-viral mechanism can be successfully exploited by oncolytic VSV to 

enhance anti-tumor therapy in combination with conventional chemotherapy in vitro and in 

vivo. 

 

Keywords: oncolytic virus, apoptosis, Mcl-1 
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2. Zusammenfassung 
 

Konventionelle Tumorbehandlungen wie Strahlen- oder Chemotherapie führen oftmals nicht 

zum Heilungserfolg, weshalb neuartige Therapieansätze nötig sind. Der Einsatz von 

replikativen Viren als therapeutische Agentien – bezeichnet als Virotherapie – stellt einen 

vielversprechenden und innovativen Ansatz zur selektiven Zerstörung von Krebszellen dar. 

Dabei wird ausgenutzt, dass virale Vektoren infizierte Zellen lysieren und es gleichzeitig zur 

Amplifikation der therapeutischen Viren kommt. Um die virale Replikation auf Tumorzellen 

zu beschränken, ist es von großer Bedeutung die molekularen Mechanismen der 

Krebsentwicklung und der Virus-Wirtsinteraktion zu verstehen. In dieser Arbeit wurden daher 

die Interaktionen zwischen therapeutisch relevanten Viren – einem konditionell-

replizierenden Adenovirus und dem natürlichen Tumorvirus Vesikuläres Stomatitis Virus 

(VSV) – und menschlichen Krebszelllinien analysiert. 

Der unterschiedliche transkriptionelle Status von p53 in normalen und transformierten Zellen 

wurde ausgenutzt, um die Replikation eines adenoviralen Vektors durch einen neuartigen, auf 

der Hefe-DNA-Endonuklease I-Sce I basierenden Regulationsmechanismus auf Krebszellen 

zu begrenzen. Virus-kodiertes I-Sce I wurde p53-abhängig exprimiert und spaltete in p53-

positiven Zellen das adenovirale Genom an bestimmten Stellen hochspezifisch, während das 

Gen in Tumorzellen nicht transkribiert wurde. Resultierende Schnittprodukte konnten in wt-

p53-Zellen aber nicht in p53-negativen Zelllinien nachgewiesen werden. Die Replikation I-

Sce I-kodierender Viren wurde durch diesen Schalter im Gegensatz zu entsprechenden EGFP-

Kontrollviren ausschließlich in p53-postiven aber nicht in p53-negativen Zelllinien gehemmt. 

Außerdem war der I-Sce I-Schalter mit einem weiteren transkriptionellen Repressor-

mechanismus (Gal4-KRAB) kombinierbar. Als Ergebnis wurden stark regulierte, konditionell 

replizierende Adenoviren entwickelt, die zwei neuartige Regulationsmechanismen 

kombinieren, um die Sicherheit der onkolytischen Therapie solider Tumoren zu erhöhen. 

Darüber hinaus wurde die Apoptose-Induktion durch VSV mit speziellem Fokus auf Proteine 

der Bcl-2-Proteinfamilie untersucht. Das Proteinniveau von Mcl-1 (myeloid cell leukemia 1) 

sank in VSV-infizierten Zellen schnell und stark ab, was auf der VSV-induzierten Hemmung 

der zellulären Proteinbiosynthese bei gleichzeitig fortgesetzter proteasomaler Degradation 

von Mcl-1 basiert. Die Expression von stabilisiertem Mcl-1-Protein führte zur Hemmung der 

Apoptose-Induktion. Die VSV-induzierte Eliminierung von Mcl-1 konnte in vitro und in vivo 

ausgenutzt werden, um die Wirkung einer chemotherapeutischen Therapie zu verstärken. 

Daraus ergibt sich, das Mcl-1 einen anti-viralen Schalter darstellt, der zudem für eine 

verstärkte Tumortherapie in vitro und in vivo ausgenutzt werden kann. 

 

Stichworte: Onkolytische Viren, Apoptose, Mcl-1 
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3. Introduction 
 

The development of biological science during the last decades allows the 

complementation of traditional treatment regimens by more targeted therapies. 

Virotherapy represents an innovative approach to treat human malignancies by 

viral means. Both a thorough understanding of the disease itself and the virus-host-

interactions can lead to concepts where certain viruses are engineered to permit 

cure of patients at high safety standards and increased success rates compared to 

standard therapies. In the work presented here, questions regarding both basic 

research on virus-host-interactions and applied virotherapy were addressed.  

 

3.1 Cancer and tumor development 
 
3.1.1 Cancer 

 
Cancer can be described as a group of diseases underlying one basic phenomenon: 

uncontrolled cell growth. In contrast to normal, differentiated cells that have lost 

their replicative capacity, cancer cells have regained the potential for unlimited 

cell division. Although many differences in genotype and phenotype of different 

cancers have been observed, there is ample evidence that the emergence of all 

cancers can be explained by a common set of only a few molecular alterations [1]. 

It was noted therefore, that neoplasms generally develop in the same way and 

show the same general behavioral characteristics [2].  

Solid tumors are cell masses that lack liquid areas and can be non-cancerous 

(benign) or cancerous (malignant). Often, a complex, integrated organ-like 

structure can be observed that comprises interstitial connective tissue, blood 

vessels and extra-cellular matrix [3;4]. This appearance has several implications 

for the treatment of solid tumors since accessibility for anti-cancer therapeutics is 

highly limited by encapsulation and fragmentation of the tumor by stromal 

components – a fact called physiological resistance [5;6]. Thus, therapeutic 

success in the treatment of malignant solid tumors especially in comparison to 

non-solid cancers needs to be improved. As conventional therapies only showed 

limited success, new strategies taking into account current knowledge of cancer 

development might pose promising alternatives. 
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3.1.2 Model of tumor development 
 
In multi-cellular organisms the organization of cells within tissues and organs is 

strictly regulated. As all mammalian cells carry similar molecular programs 

regulating their proliferation, differentiation and death, dysregulation of these 

molecular circuits might lead to the transformation of normal into malignant cells. 

Based on the observations of human cancers and animal models it was proposed 

that four to seven rate-limiting, stochastic events [7] suffice for the development of 

tumors. On the basis of genetic instability, tumor cells acquire up to six alterations 

that collectively dictate malignant growth: (I) self-sufficiency in growth signals, 

(II) insensitivity to growth-inhibiting signals, (III) limitless replicative potential, 

(IV) evasion of programmed cell death (apoptosis), (V) neoangiogenesis, and (VI) 

tissue invasion and metastasis (reviewed in [1]). Noteworthy, ancillary cells like 

fibroblast and endothelial cells as well as extracellular matrix components present 

in a tumor play a key role in driving tumor development by cell-to-cell signaling 

[1]. Furthermore, cancer phenotype is very much dependent on maintenance of the 

established modifications, a phenomenon termed “oncogene addiction” [8].  

Several barriers restricting tumor transformation have been observed in 

mammalian cells. Replicative lifespan of somatic cells usually is limited by lack of 

telomerase activity [9]. Telomeres are repetitive DNA sequences at the end of 

eukaryotic chromosomes with protective character to prevent end-to-end fusion 

with other chromosomes. During cell division telomeres are shortened and after 

continuous erosion the cell responds by entering the state of senescence. If those 

senescent cells harbor inactive retinoblastoma protein (RB) and tumor suppressor 

protein p53 pathways they regain ability to multiply until facing a state of massive 

cell death and karyotypic disarray termed crisis. Only a small number of cells is 

able to overcome the crisis, thereby acquiring unlimited replicative potential and 

reach the state of immortalization [10]. 

Genetic modifications (mutations, chromosomal aberrations) and epigenetic 

abnormalities promote cancer development in two ways: by inactivating genes that 

act as tumor suppressors like retinoblastoma protein (RB) and adenomatous 

polyposis coli (APC), and by transforming proto-oncogenes lsuch as Ras or certain 

receptor tyrosine kinases. While latter affect the proliferative and/or differentiation 

state of cells, tumor suppressor proteins represent cellular checkpoints that drive 

cells into apoptosis upon detection of abnormal intracellular conditions (e. g. 
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oncogene activation or DNA damage). The most prominent tumor suppressor 

protein is p53. This protein is involved in various processes that maintain genomic 

stability (suggesting a role as “guardian of the genome” [11]), induction of 

temporary or irreversible growth arrest and cell death [12;13]. Additionally, p53 

was demonstrated to influence innate immunity [14;15] and angiogenesis [16;17]. 

p53 unfolds its actions by protein-protein interactions and especially by its ability 

to act as transcription factor [12;13]. p53 responsive genes possess pro-apoptotic 

(Bax, Fas), cell cycle control (p21WAF1/CIP1, PCNA) and DNA repair activity 

(GADD45). This paramount position of p53 makes it a preferential target for 

functional inactivation necessary for tumor development. As a result, genetic 

modifications (homozygous deletion, mutation) of the p53 gene and altered p53-

regulating pathways can be observed in the majority of human tumors [18]. 

Notably, as p53 simultaneously is involved in anti-tumor and anti-viral defense, 

many viruses (e.g. Adenovirus) inactivate p53 to prevent premature induction of 

apoptosis to allow for productive viral amplification.  

The connection between anti-viral and anti-neoplastic pathways can be highlighted 

by the interferon (IFN) system. Interferons are multifunctional cytokines that are 

involved in cell growth, apoptosis, and anti-viral pathways. During tumor 

development, the selection pressure for relentless growth and insensitivity toward 

apoptosis might favour cells that inactivate the interferon system resulting in loss 

of expression of key interferon genes [19]. In contrast, tumors that disrupt the IFN 

system might be more susceptible to viral threats. Surprisingly, it has recently been 

reported that interaction of α/β-interferons and p53 cooperate in fighting viral 

infections [14;15]. 

A hallmark of tumor development is the resistance toward cell death signals as 

almost all cancers acquire this property during the transformation process. 

Apoptosis – termed programmed cell death I – appears in all metazoans. It is 

essential to maintain tissue homeostasis and ensure successful organogenesis. 

Following a precisely choreographed series of steps the morphological 

manifestations of apoptosis will be apparent: disruption of cellular membranes, 

break-down of cytoskeleton, extrusion of the cytoplasm, degradation of 

chromosomes by endonucleolytic cleavage of DNA and condensation of the 

nuclear compartment [20]. The components of the apoptotic machinery can 

roughly be divided into sensors and effectors. Sensors control the extra- and 
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intracellular environments for cell death promoting signals and subsequently 

regulate components functioning as effectors of apoptosis. While one axis of 

apoptosis – the so called extrinsic pathway – processes extracellular signals (e.g. 

FAS ligand, TNFα) eliciting cell death in a sometimes mitochondria-independent 

manner, the intracellular arm – termed intrinsic pathway – senses and transmits 

signals from within the cell. Finally, the majority of signals converge on the 

mitochondria that respond by releasing cytochrome C, a potent catalyst of 

apoptosis [21]. This process is tightly regulated by members of the Bcl-2 family of 

proteins. Consisting of three subgroups – classified by structural charateristics – its 

members possess apoptosis-promoting (Bim, Puma, Noxa, Bax, Bak) or anti-

apoptotic (Bcl-2, Bcl-xL, Mcl-1) functions. The cooperation of these members is 

crucial for balancing survival and cell death but is not yet fully understood [22]. 

Certain intracellular proteases (caspases) ultimately act as executors of apoptosis. 

Hierarchically arranged in the process of apoptosis execution, initiator caspases 

activate effector caspases that selectively destroy cellular structures, the organelles 

and the genome of the cell [23]. 

 

3.1.3 Therapeutic treatment strategies 
 

Conventional therapeutic strategies like radiation or anti-neoplastic chemotherapy 

primarily affect tumor tissue but their rather unselective action and leads to harsh 

adverse effects to neighboring tissue or even the whole patient. This brute-force 

approach was refined over years and significant progress could be achieved 

especially for non-solid tumors. Chemotherapies today target the high growth rate 

of cancer cells. Nonetheless, even the emergence of modern biologicals like 

therapeutic antibodies eventually could not prove to cure cancer patients but rather 

provides a limited survival advantage at higher quality of life. 

Taken together, great advances in cancer therapy have been achieved over the last 

60 years since Farber’s introduction of aminopterin as one of the first 

chemotherapeutics [24]. Unfortunately for certain cancers – especially solid 

tumors – the outlook often remains fatal as conventional therapies are not capable 

to eradicate the entire tumor. At this point, the concept of oncolytic virotherapy 

addresses the major drawback of these therapies: conventional therapies lack the 

capacity to extinguish the whole tumor entity. Therefore, oncolytic viruses are 

tailored, replication-competent viruses aimed to specifically kill tumor cells by 
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concurrently propagating to amplify the anti-tumor agent itself. Selectivity of these 

oncolytic viruses is achieved by exploiting oncogenic features or pathways of 

cancerous cells. Ideally, the viral propagation stops and virus is cleared from the 

body when the last susceptible tumor cells are killed. An idealized concept of 

virotherapy is schematically depicted in figure 1 and explained in detail in the 

following chapters. 

 

 
 
Figure 1. Theoretical concept of virotherapy. The therapeutic virus is injected into the 
patient and primarily targets cancer cells. Destruction of the infected cell and release of 
viral progeny allow infection malignant tumor tissue. As therapeutic viruses should be 
highly selective for cancer cells, healthy tissue is spared from cell lyses. When destruction 
of the tumor is completed, viral propagation comes to an end and remaining viral particles 
are cleared from the patient by immune cells. Particles that infected normal tissue will 
remain idle without causing viral replication and cell lysis. 
 
 
 
 

3.2 Virotherapy 
 

3.2.1 Development of cancer therapies by viral means 
 

With more than 2,400 known species viruses represent a vast biological resource. 

Usually known to cause severe illnesses ranging from infectious diseases to 

cancer, perception is not only recently emerging that these ‘miniature biological 

machines’ or ‘nanoparticles’ can be exploited to serve in the fight against several 

sicknesses [25;26]. First case reports documenting tumor regression coinciding 
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with naturally acquired viral infections go back to the mid-1880s [27;28]. 

Suggestions aiming at exploiting viruses for therapeutic use arose at the beginning 

of the 19th century, but only in the late 1940s first clinical experiments were 

performed [29]. A hallmark of virotherapy is represented by the studies of Moore 

who used newly developed rodent cancer models to show that a virus (Russian Far 

East encephalitis virus) can selectively kill cancer cells in vivo [30;31]. Among 

Hepatitis viruses, Epstein-Barr virus, flaviviruses and others, Adenoviruses were 

identified as oncolytic agents in the 1950s (then known as adenoidal-pharyngeal-

conjuctival virus) [32]. To control virulence and escape rapid clearance of the 

oncolytic agent by the patient’s immune system because of earlier encounters 

much attention was drawn on animal viruses resulting in the discovery of several 

so called naturally tumor viruses. Nonetheless, only Newcastle Disease Virus 

(NDV) [33] and Vesicular Stomatitis Virus (VSV) [34] have been pursued as 

natural oncolytics today. With the advent of reverse genetics, direct manipulation 

of viruses became feasible to target viruses more specifically to cancerous cells. 

Subsequent to the generation of non-replicative viruses the potential of replication-

competent agents was recognized. Eventually, this resulted in the first market 

approval for H101, a genetically modified human Adenovirus type 5, in 2005 for 

combination treatment with chemotherapy of patients suffering from head and 

neck cancer [35].  

In the following chapter an introduction to therapeutically exploited viruses is 

provided that focuses on the molecular background of replicative oncolytic viruses 

and strategies to increase their tumor selectivity in general (3.2.2). Subsequently, 

special attention is paid to human Adenoviruses (3.3) and Vesicular Stomatitis 

Virus (3.4) applied as virotherapeutic agents. 

 
3.2.2 Strategies for the exploitation of viruses as oncolytic agents 

 

The application of viruses for the treatment of human patients requires a high level 

of safety. Therefore, an oncolytic virus should display two properties: selective 

propagation in and destruction of tumor tissue while sparing normal cells. This not 

only includes a high specificity for cancer cells, but also the evolution of a 

therapeutic virus into a pathogen within the patient has to be prohibited.  

While some viruses display a natural specificity for cancer cells, others have to be 

engineered to increase therapeutic efficacy. The underlying targeting principles – 



3. INTRODUCTION  9 

   

irrespective of the oncolytic virus applied – can be reduced to four groups: 

transductional, transcriptional, translational and apoptosis targeting (reviewed in 

[26]). 

Transductional targeting includes different strategies to restrict entry of oncolytic 

viruses to cancer tissue. Other concepts allow infection of non-cancerous cells but 

aim to prevent viral replication by regulating transcription of viral key proteins 

(transcriptional targeting). Cells have developed different mechanisms to react on 

viral infections. During tumor development, cancer cells inactivate some of these 

anti-viral pathways what has been reported for the interferon system for example 

[36]. Thus, certain viruses preferentially replicate in cancer tissue exploiting the 

loss of anti-viral barriers. In contrast, normal cells block translation of viral 

mRNAs (translational targeting). Another concept is the modification of viral 

genes whose products are essential for virus propagation in normal cells but are 

dispensable in tumor cells (apoptosis targeting) [37]. 

 

 

3.3 Adenoviruses as oncolytic agents 
 

The family of Adenoviridae comprises non-enveloped viruses with a linear, non-

segmented, double-stranded DNA (30 – 38 kb) as genome. Until today, more than 

40 species of Adenoviruses are known to infect animals and men. Currently, there 

are over 50 serotypes known that infect humans primarily being responsible for 

mild diseases of the upper respiratory system but also for conjunctivitis and 

gastroenteritis. On the other hand, these viruses pose a major threat to immune-

compromised patients causing severe problems with high rates of mortality. First 

described in 1953 [32], Adenoviruses are well studied today. Adenoviral DNA is 

not integrated into the host genome, consequently risk of virus-induced 

mutagenesis is low, and particles can be produced of high titers and purity. Thus, 

certain adenoviral subtypes have been developed as anti-cancer therapeutics – so 

called oncolytic Adenoviruses [38-42]. So far, the adenoviral vectors called 

Gendicine (2003) – a non-replicative virus containing the tumor suppressor gene 

p53 – and H101/Oncorine (2005) – a modified replication-competent vector for 

oncolytic therapy – are the only viruses that have been approved for treating 

human cancers [35;43].  
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3.3.1 The human Adenoviruses type 5 
 

To infect target cells human Adenovirus type 5 relies on the presentation of the 

coxsackievirus adenovirus receptor (CAR) on the surface of cells. CAR is bound 

by the knob domain of the adenoviral fiber protein. Additional binding to the co-

receptor αV integrin (CD51) results in endocytosis of the virus particle via 

clathrin-coated pits. The virion is released to the cytoplasm by acidification of 

endosomes and subsequent structural changes of the capsid. Exploiting 

components of the cytoskeleton, the virion is transferred to nuclear pores where 

the viral DNA is released into the nucleus.  

The replication cycle of Adenoviruses consists of an early and a late phase in 

which distinct gene products are expressed. Early genes (E1 – E4) possess 

regulatory functions: first, host cell gene expression is altered to allow for viral 

DNA synthesis; second, premature cell death of an infected cell by innate or 

adaptive immune defense mechanisms is prevented; and third, other viral genes are 

activated [44]. Genes from the E1 locus are separated into E1A and E1B genes that 

both express various splice variants. These two early gene families are most 

prominent in modifying the infected cell to promote viral replication. E1A 

activates adenoviral transcription and targets RB family members to drive the host 

cell into S phase of the cell cycle. As the actions of E1A induce pro-apoptotic 

signals, E1B variants, like E1B-19k (a viral Mcl-1 mimic) and E1B-55k, inhibit 

apoptosis by sequestering p53 in the cytoplasm [45], impairing p53 function as 

transcriptional activator (E1B-55k) [46;47] and by inactivating pro-apoptotic Bax 

and Bak proteins (E1B-19k) [48;49]. In conjunction, these proteins are able to 

immortalize and transform primary cells in vitro [50]. Replication of the viral 

genome occurs with the terminal protein acting as primer by covalently binding to 

the 5’-ends of the genome. For adenoviral replication, entry of the host cell into S 

phase is a prerequisite [44]. In the late phase structural proteins for packaging the 

viral genome are produced. Assembly of viral particles occurs in the nucleus of the 

infected cell that is finally lysed to release infectious virions.  

 

3.3.2 Adenoviruses as oncolytic vector 
 

The fact that Adenoviruses are DNA viruses with a relatively small genome 

facilitated its application as genetically modified therapeutic agent. There have 
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been several developmental waves of recombinant Adenoviruses generated for the 

treatment of human diseases. First-generation vectors were rendered replication-

deficient by deleting E1 or both E1 and E3 region. Usually, these vectors were 

used to express therapeutic genes [51;52]. To minimize immunogenicity and to 

increase cloning capacity, second-generation vectors were constructed that 

additionally lack E2 and E4 genes. This trend finally led to third-generation 

adenoviral vectors – also termed gutless vectors – that completely lack the viral 

genomic information except of the inverted terminal repeat sequences (ITR) and 

the viral packaging signal [53].  

Since these vectors did not lead to satisfyingly therapeutic efficacy, replication-

competent Adenoviruses were constructed. Replicative vectors can elicit cell death 

in human cancer cells by different mechanisms: cytotoxicity mediated through 

viral proteins, induction of antiviral immunity, sensitization to chemotherapeutics 

or expression of heterologous therapeutic genes [38]. Limitation of side-effects 

while retaining oncolytic potential and the capacity to replicate efficiently can be 

achieved by targeting recombinant Adenoviruses to cancer cells by certain means. 

Adenoviruses can be transductionally targeted by replacing attachment proteins 

responsible for the native viral tropism. This can be necessary not only to gain 

selectivity but also because cancer cells often reduce or completely shut down 

expression of the native Adenovirus surface receptor CAR [54]. Additionally, 

tumor-selectively replicating adenoviral vectors were generated by modification of 

viral genes [40;55], repression of cellular genes that have essential character for 

virus replication [56] or even tumor-specific genome rearrangements of viruses 

[57]. Transcriptional control of adenoviral genes by tumor- or tissue-specific 

promoters (such as MUC1, AFP, PSA, kallikrein-2, pS2, alpha-lactalbumin, 

CXCR4, hTERT or Flk-1/endoglin) is another powerful tool to restrict replication 

to cancer cells [58-66]. Unfortunately, application of these promoters strongly 

narrows the virus to a certain cancer or tissue. However, the exploitation of a more 

general tumor feature would greatly broaden the field of application for 

transcriptionally targeted viruses.  

 

3.3.3 p53-dependent adenoviral vectors 
 

Since the tumor suppressor protein p53 is impaired in the majority of human 

tumors by genetic alterations, decreased protein stability or other mechanisms [67-
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71] its transcriptional status (active or inactive) could be applied to differentiate 

between cancerous and normal cells and, thus, increase tumor-selectivity while 

potentially treating a wide range of tumors. In pioneering works it was 

hypothesized that deleting the p53-binding protein E1B-55k would restrict viral 

replication to cells with genetic defects in the p53 pathway [55]. However, p53-

dependency of the resulting adenoviral vector Addl1520 (Onyx-015) was 

questioned. Rather, differential late viral mRNA export seems to be determining 

selectivity of Onyx-015 [72].  

 

 
Figure 2. Schematic representation of the p53-dependent regulator system as part 
of the adenoviral genome. (A) Within an adenoviral backbone the p53-dependent 
promoter prMin-RGC drives the expression of the regulator gene Gal4-KRAB in presence 
of p53. The Gal4-Domain of the fusion protein binds to specific DNA-binding sequences in 
the artificial CMV promoter that controls expression of the E1A gene. Following, the 
KRAB-domain acts as a transcriptional repressor and E1A is not expressed. (B) In 
contrast, when p53 is absent or inactivated (like in the majority of human tumors) prMin-
RGC is inactive and, thus, E1A is transcribed and subsequently can start viral replication 
finally leading to viral offspring and lysis of the infected cell. 
 
 
In an alternative concept (figure 2), an artificial p53 dependent promoter called 

prMin-RGC has been constructed that allows for selective expression of genes in 

p53 wild type cells [73;74]. This promoter contains thirteen p53-binding sites 

derived from the ribosomal gene cluster (RGC), in combination with a minimal 

CMV-promoter providing a TATA-box motive. In a replication-competent 

Adenovirus, prMin-RGC controlled the expression of the transcriptional repressor 

fusion protein Gal4-KRAB (Gal4-DNA binding domain fused to the KRAB 

repressor). Gal4-KRAB in turn repressed E1A expression in p53 positive cells by 

binding to an artificial Gal4-KRAB-dependent CMV promoter that controls the 

expression of E1A. In absence of functional p53, Gal4-KRAB is not expressed, 

thus, allowing expression of E1A that promotes viral replication [74]. Supporting 

this strategy, in cells expressing functional p53 the protein level can be further 
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elevated by chemotherapy, e.g. Doxorubicin treatment. Furthermore, Adenoviruses 

itself stabilize p53 [75], thus enhancing prMin-RGC-controlled expression. To 

facilitate comprehension, the concept is depicted in figure 2.  

 

3.3.4 The endonucleolytic enzyme I-Sce I 
 

A replication deficient adenoviral vector was developed that expresses the rare-

cutting endonuclease I-Sce I [76]. In contrast to virotherapeutic approaches this 

concept focuses on DNA repair and gene targeting by generating specific DNA 

double strand breaks. Nonetheless, this enzyme might be suitable to increase 

selectivity of conditionally replicating Adenoviruses when applied in the right 

setup. 

 

 
Figure 3. I-Sce I recognition sequence. The 18 base pair long recognition sequence of 
I-Sce I is non-palindromic and therefore can be described in forward and reverse direction. 
Cleavage (red lines) results in two parts that differ in length. The icons on the right side 
will be employed in following figure. 
 
 
The meganuclease I-Sce I is a 26 kDa site-specific homing-endonuclease encoded 

by a mitochondrial intron of Saccharomyces cerevisiae [77-79]. Homing nucleases 

recognize long nucleotide sequences (14 – 40 bp) and therefore represent a class of 

extremely rare cutting enzymes. The core cleavage sequence of I-Sce I was 

revealed as a non-palindromic 18 bp long sequence [78] depicted in figure 3. On a 

random basis, this 18 bp sequence can be found as one in 70 billion base pairs (418 

bp), thus, allowing the introduction of a single or several cleavage sites into 

complex genomes, e.g. oncolytic DNA viruses. This capability makes the enzyme 

not only a powerful tool for the study of DNA repair processes [80;81] but also 

provides a smart instrument for targeted genome engineering in nearly all 

organisms like for example recombinant adenoviral vectors. Most likely, acceptor 

organisms are not affected by I-Sce I expression [82]. 
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3.4 Vesicular Stomatitis Virus (VSV) 
 
Vesicular Stomatitis Virus (VSV) is a bullet-shaped member of the Rhabdovirus 

family that causes a contagious disease among a broad range of host species 

including horses, cattle, and pigs [83], whereas the infection in humans is usually 

asymptomatic. In contrast, non-lethal infections of animals provoke lesions in the 

mucosa of nose and mouth and intranasally infected mice even suffer from 

neuropathy since neurons are highly susceptible for VSV infection. Naturally 

occurring in Latin America, VSV repeatedly caused epizootic diseases in the USA 

[84]. Serological analysis revealed the existence of at least two VSV serotypes 

known as New Jersey (VSV-NJ) and Indiana (VSV-IN) subtype [85].  

 
3.4.1 Structure of Vesicular Stomatitis Virus 

 
VSV is an enveloped virus with a non-segmented 11 kb long negative-stranded 

RNA genome that encodes five primary gene products, the nucleocapsid (VSV-N), 

polymerase proteins, (VSV-L) and (VSV-P), surface glycoprotein (VSV-G) and a 

peripheral matrix protein (VSV-M) [86]. Viral replication proceeds in the 

cytoplasm of infected cells. VSV does not undergo genetic recombination or 

reassortment. It neither and possesses known transforming potential nor it does 

integrate parts of its genome into the host DNA [87]. These properties make VSV 

attractive for use as therapeutic agent for humans.  

VSV-G is the major known antigen and is densely packed on the viral surface. As 

a consequence, intact virions exhibit only one antigenic site that is a target for 

neutralizing antibodies in vivo [88]. VSV-N encases the viral genome but 

polymerase proteins L and P are attached to the RNA as well. The multifunctional 

VSV-M protein binds to viral components like RNA genome/nucleocapsid core 

(RNP) and VSV-G. On the other hand, the matrix protein is the major component 

of VSV responsible for interactions with the host cell (as described below).  

 

3.4.1.1 Replication cycle of VSV 
 

The infection cycle of the Vesicular Stomatitis Virus (VSV) starts with the binding 

of the glycoprotein to a yet unidentified receptor on the surface of the target cell. 

According to the broad range of infected cell types including mammalian as well 

as insect cells, the receptor is supposed to be an ubiquitously occurring molecule 
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that acts as binding partner for VSV-G [89]. So far, it is known that phosphatidyl 

serine is required for endocytosis but it has been excluded to serve as prime 

surface receptor of VSV [90]. In the cytoplasm of the infected cell viral 

polymerase proteins carried within the virus capsid start sequential transcription of 

the five viral genes resulting in capped and polyadenylated RNAs that are 

translated by the host cell’s translation machinery [91;92]. Interestingly, the 

proteins generating the subgenomic RNAs are also responsible for the replication 

of the RNA genome. Newly synthesized N, P and L proteins associate with 

genomic RNA, thus forming RNP cores. These cores bind to regions of the cell 

membrane that are enriched with viral G and M proteins. Viral offspring will be 

released by budding that is followed by cell destruction. In comparison to other 

viruses VSV generates a tremendous amount of viral progeny within a short period 

of time. 

 
3.4.1.2 Virus-host-interactions 
 
3.4.1.2.1 VSV replication is highly susceptible to the actions of type I interferons 

 

Host cells facing a viral infection usually limit viral amplification by activating 

components of the immune system. The adaptive immunity clears virus infected 

cells and neutralizes free-floating virus. But even on the cellular level an arsenal of 

anti-viral mechanisms is available that have an adverse effect on virus replication. 

These mechanisms are part of the innate immune response that when altered 

renders cells highly susceptible to viral threats and also plays a crucial role in 

cancer development. A functional adaptive immune response can not compensate 

an impaired innate immunity since animals lacking innate immunity components 

die from the cytopathic nature of VSV infection. 

VSV is called a natural tumor virus or naturally smart virus as it is lytic to 

numerous transformed and malignant cell lines and much less so to normal tissue. 

It could be shown that VSV is extremely sensitive to the anti-viral action of the 

type I interferons [34;93]. The interferon (IFN) system mediates host defense by 

utilizing several components that sense a viral infection, promote signal 

transduction and affect virally transduced and uninfected neighboring cells. 

Signaling components like the Toll-like receptor pathway, the NF-κB pathway and 

interferon-regulatory factor 3 (IRF-3) initially sensing the infection by a virus 

induce transcription and secretion of IFN-β. Interferon α/β receptors (IFNARs) 
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transmit the signal to the Jak/STAT pathway which finally leads to the 

transcription of IFN-stimulated genes (ISGs) that provide an antiviral response 

[34;94]. Not surprisingly, VSV’s selectivity to human tumor cells is based on the 

fact that IFN-responsive pathways are often defective in human cancers 

[34;93;95;96]. In contrast, functional IFN pathways in normal cells limit VSV 

amplification by induction of a robust anti-viral response. Namely, type I 

interferons highly restrict transcription of subgenomic mRNAs [97;98], mRNA 

cap methylation [99], mRNA translation [100;101] and viral assembly [102]. 

Research on virus-host interactions revealed several key components of the IFN 

system to fight VSV which will be briefly described below. 

The eIF2α kinase PKR has been considered a crucial checkpoint against viral 

infections in general as it shuts down protein biosynthesis via phosphorylation of 

the eukaryotic initiation factor 2 (eIF2α) and elicits an apoptotic response after 

binding to the extensive secondary structures of double-stranded RNA (dsRNA). 

The role of PKR within the defense line against VSV is discussed controversially. 

VSV induces activation of PKR and mice lacking the interferon-inducible double-

stranded RNA-dependent protein kinase are reported to be highly susceptible to 

VSV infection in comparison to wild type mice [103;104]. Other studies support 

this point of view [105-107] while more recent publications are questioning the 

role of PKR as a major component of IFN-mediated resistance to VSV infection. 

Rather, two other members of the eIF2α kinase family, the general control non-

derepressible-2 (GCN2) protein and the endoplasmic reticulum (ER) kinase 

PERK/PEK which is activated by the presence of unfolded protein in the ER, are 

shown to exclusively contribute to the inhibition of VSV replication [108;109]. 

Additionally, while VSV can trigger IFN induction by recognition of single-

stranded RNA via toll-like receptor 7 (TLR7) [110;111] there was no dsRNA 

detectable in VSV infected cells – although being expected to emerge within the 

replication of the genomic RNA – that might have induced activation of PKR 

suggesting that other viral components are more relevant for the induction of an 

anti-viral response [112].  

Other members of the IFN-mediated anti-viral mechanisms that were reported to 

play a certain role in fighting VSV infections are the interferons themselves 

[113;114] and Stat-1 [115] suggesting the IFN system to be a key mechanism for 

the defense against VSV infections. 
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Interestingly, ISGs not only act anti-virally but concomitantly play a physiological 

role in preventing cancer development [36]. For example, induction of the tumor 

suppressor p53 was reported following interferon treatment [14] suggesting a 

possible anti-viral activity of p53. Although no VSV-associated mechanism is 

known that specifically targets p53 to abrogate its function – a common feature 

among viruses – two recent studies provide evidence of limiting VSV 

amplification by p53. Upon infection of mouse embryo fibroblasts (MEF) with 

VSV p53 is phosphorylated in an ataxia telangiectasia mutated (ATM)-dependent 

manner at Ser18 and subsequently leads to the transcription of p53 target genes 

[14]. Noteworthy, p53 up-regulation is dependent on the interferon α/β receptor 

(IFNAR) indicating a strong link between p53 and IFN pathways. Compared to 

p53-/- MEFs, wild type cells underwent a rapid induction of apoptosis, thus 

limiting viral production. In vivo, deletion of p53 renders mice susceptible to low 

doses of VSV while wild type mice remain unaffected. Questioning the pleiotropic 

effects of an absence of p53 on antiviral responses another group observed a 

limited VSV propagation in mice bearing an additional copy of the p53 gene 

(“super p53 mice”) and did explain it by an enhanced p53-dependent induction of 

apoptosis [116]. However, posing a significant effect in MEFs in vitro (virus yield 

in wild type mice was 10-fold higher than in super 53 mice and at certainly lower 

apoptotic levels) the survival rate of infected wild type and super p53 mice did not 

show statistical differences [116].  

 

3.4.1.2.2 VSV usurps the cellular protein biosynthesis machinery 
 

Although coding for only five proteins, VSV massively modulates protein 

biosynthesis of the infected cell including transcription, the export of mRNAs and 

translation. It has been reported that the multi-functional matrix protein of VSV 

inhibits the cellular RNA-polymerases I-III [117;118] preventing generation of 

mRNAs. By binding to the mRNA export factor Rae1, transfer of mRNAs to the 

cytoplasm is efficiently suppressed [119]. Another component of the host cell 

translation machinery that is primarily targeted to limit protein biosynthesis of the 

infected cell is a part of the multi-subunit eIF4F complex, termed eIF4E. VSV-

mediated dephosphorylation of eIF4E at serine 209 (via dephosphorylation of the 

eIF4E-binding protein 4E-BP-1) between 3 and 6 h post infection leads to the 

disassembly from the eIF4F complex resulting in a block of translation of host 
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mRNAs [120]. Thus, it has been reported that inhibition of interferon genes is 

achieved by general inhibition of host RNA and protein synthesis [121]. Despite 

this, the translation of viral 5’-capped mRNAs proceeds since viral mRNAs 

contain cis-acting structural elements that enhance translation efficacy of viral 

mRNAs [122]. This grants the virus exclusivity to cellular resources. By 

phosphorylation of the alpha-subunit of eIF2α infected cells can react on this 

hijacking of the cellular translation apparatus by blocking global translation. It 

should be noted, that in contrast to normal cells, the guanine nucleotide exchange 

factor eIF2B downstream of eIF2α was frequently aberrant in human tumors, 

reversing eIF2α activity and finally allowing VSV mRNA translation [96], and 

thus posing another selectivity mechanism for VSV.  

 

3.4.1.2.3 Induction of apoptosis in VSV-infected cells 
 

During evolution, many viruses have acquired mechanisms to interfere with 

induction of apoptosis, a major reaction of infected cells to limit viral spread. VSV 

infected cells induce apoptosis in a caspase-3/9-dependent manner [93;95;123-

127] wherein the pro-apoptotic Bax protein might represent a central point of 

convergence finally leading to mitochondrial membrane depolarization [128]. 

Mechanisms to prevent this induction are not known so far. However, it can rather 

be speculated whether this rapid induction by a virion constitutive component 

[125] could be beneficial for the virus. As wild type VSV induces apoptosis via the 

mitochondrial (intrinsic) pathway, it has been analyzed whether members of the 

Bcl-2 family influence viral amplification. For the pro-survival members Bcl-2 and 

Bcl-xL it was shown that over-expression promoted survival of infected cells of 

neural origin [126]. VSV-mediated apoptosis can even be partially suppressed by 

over-expression of Bcl-2 [126]. For currently developed VSV-M mutants that 

show a more promising safety profile than their wild type counterparts, natural 

Bcl-2 over-expression observed in primary chronic lymphocytic leukemia cells 

prevents the oncolytic effect of the viral therapeutic [129]. 

VSV causes a visible cytopathic effect characterized by the typical rounding of 

infected cells. This is due to the action of the matrix protein that disorganizes 

actin, microtubles and intermediate filaments in cooperation with the VSV-L 

protein [130;131]. This action of VSV-M is strongly correlated with its ability to 

shut down host gene expression [132]. Moreover, VSV disrupts cell-signaling 
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pathways such as STAT signaling probably attenuating inflammatory responses to 

VSV infection [133]. Another effect related to innate immunity is the suppression 

of antigen presentation by VSV-M [134]. Taken together, mainly – but not 

exclusively – by the multiple abilities of the M-protein, VSV hijacks the infected 

cell to transform it into a virus production factory. Due to these diversified roles of 

the matrix protein in VSV replication and pathogenesis it has even been termed the 

‘brain’ of the virus [135]. 

 

3.4.2 VSV as oncolytic vector 
 
The rapid replication cycle, the natural selectivity for tumor cells and the ability to 

infect a wide variety of human cancer cells make VSV an attractive tool for cancer 

therapy. Wild type VSV was repeatedly reported to cause growth inhibition on 

human cancer cell lines exploiting defects in the innate immune response. 

Additionally, the ability of the virus to kill cancer cells in vivo even when 

administered systemically in immunocompetent mice together with the fact that no 

overt symptoms could be observed in these animals holds great promise for wild 

type VSV as effective oncolytic agent [34;95;136]. Oberserving that interferon 

non-responsive tumors can be eradicated by VSV in vitro and in vivo [34], it 

became apparent that tumors that bear defects in the frontline anti-viral IFN 

system are susceptible for oncolytic VSV therapy [93]. Finally, the development of 

VSV as oncolytic vector was further promoted, first by engineering a DNA-based 

platform to generate recombinant VSV particles [137] and, second by the 

discovery of VSV mutants providing an enlarged therapeutic window as they 

induce a powerful IFN-β response [138].  

Certain mutations of the VSV matrix protein neutralize its abilities to impair the 

IFN response in infected cells. Namely, the resulting attenuated virus (AV) 

mutants AV1 (M51R), AV2 (V221F and S226R) and AV3 (M∆51) possess a 

vastly improved therapeutic index compared to wild type VSV as they potently 

induce an interferon response in neural tissue [94]. Whereas wild type and mutant 

viruses induce IFN-β transcription, in cells infected with mutant VSV these IFN-β 

mRNAs were detectable in the cytoplasm indicating that mutations of the VSV 

matrix protein disrupt the block of export of mature mRNAs to the cytoplasm [94]. 

In contrast to wild type VSV, the above described mutants induce apoptosis via the 

extrinsic pathway by Fas and Daxx [139;140]. 
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A wealth of different concepts regarding engineered VSV particles was established 

aiming at an increased selectivity of VSV for human cancer cells by recombinant 

means. Interestingly, recombinant VSV genomes can accommodate large amounts 

of foreign RNA, a strong prerequisite for successful modification [141]. 

Additionally, inserted genes are usually reported to be expressed at high levels. 

Like other viruses VSV has been armed with pro-drug-converting enzymes, such 

as HSV-thymidine kinase [142] and cytosine-deaminase [143] or 

immunomodulatory genes like interleukin-4 [142]. 

Modification of the viral tropism by replacing the glycoprotein by chimeric Sinbis 

virus surface proteins [144;145] yielded a higher selectivity for certain tumor cells 

by restricting the host cell range to cells exposing specific surface tumor markers. 

Furthermore, surface modifications of VSV influence the recognition of host 

adaptive immunity [146]. The integration of host innate immunity genes (IFN-β, 

IL-12) into the genome of VSV improved specificity and enhanced anti-tumor 

efficacy of the resulting vector by combining oncolytic and immunomodulatory 

strategies [147;148].  

In two recent studies the potential of VSV has been explored to augment an 

enhanced therapeutic effect when combined with conventional chemotherapy 

[149;150]. Both studies demonstrated in vitro and in vivo that VSV replication is 

not impaired by gemcitabine or cisplatin chemotherapy, and enhanced anti-tumor 

activity by combined virochemotherapy could be observed. However, both studies 

could not provide a molecular explanation for enhancement of therapy just 

assuming enhanced apoptosis on a narrow experimental basis. 
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4. Objectives 
 

The presented work is focused on advancing knowledge in the field of virotherapy 

of solid human tumors. First, a conditionally replicating adenoviral vector was 

constructed employing a novel tool to increase selectivity for cancer cells. Second, 

the virus-host-interaction between Vesicular Stomatitis Virus and different human 

cancer cell lines regarding induction of apoptosis was explored paying special 

attention to the members of the Bcl-2 family proteins. 

 

Several approaches to limit replication of oncolytic viruses for the treatment of 

human cancers have been described. However, silenced viral particles lying 

dormant in infected cells can be reactivated to start replication by physiological 

changes within the cell. Thus, destruction of the viral backbone in non-target cells 

would prevent the rise of break-through mutants after long persistence in normal 

cells. Hence, based on a p53-responsive system, a recombinant adenoviral vector 

was constructed to express the yeast endonuclease I-Sce I as a self-destruction 

switch in p53-dependent manner to disrupt the viral backbone and increase 

selectivity of the oncolytic vector. 

 

In a second project, infection of human cancer cells by wild type VSV rapidly 

leads to induction of apoptosis, but the underlying mechanisms are not yet fully 

understood. Previous work on other viruses strongly suggests the implication of 

proteins of the Bcl-2 family to be involved in sensing and reacting to viral 

infections. Here, the focus of the investigation was set on the role of the anti-

apoptotic proteins of the Bcl-2 family in fighting VSV infection. As these proteins 

are reported to confer resistance against chemotherapy, a possible sensitization 

mediated by VSV infection was explored. 



5. MATERIALS AND METHODS  22 

   

5. Materials and methods 
 
All experiments were performed in S1 or S2 laboratories at Hannover Medical 
School equipped for molecular biological work. Displayed exclusively are 
substances, devices or methods that might have influenced the outcome or the 
form of the experiments or exceed the status of standard laboratory equipment. 

 
5.1 Materials 
 
5.1.1 Cell lines 
 
5.1.1.1 Purchased/provided cell lines 

 
Cell 
line 

Origin Source Main items 

A549 Human, lung ATCC Adenocarcinoma, 
p53+/+ 

HepG2 Human, liver ATCC HCC, p53+/+ 
Huh-7 Human, liver Japanese Collection of 

Research Bioresources 
(JCRB) 

Hepatoma, mut-p53 
(220C, transcriptionally 
inactive form) 

H1299 Human, lung ATCC NSCLC, p53-/- 
Hep3B Human, liver ATCC HCC, p53-/- 
HEK 
293 

Human, kidney ATCC Expressing adenoviral 
E1A and E1B genes 

BSR 
T7/5 

Hamster, kidney  Matthias Schnell, Max 
von Pettenkofer 
Institut, Munich 

T7-Polymerase 
expressing BHK-21-
derivative 

Phoenix 
cells 

Human, kidney Lars Zender, HZI 
Braunschweig 

HEK 293 based 
packaging cell line for 
generation of retroviral 
particles 

 
All cell lines were maintained in growth medium (DMEM + Glutamax, Life 
Technologies) supplemented with 10 % fetal bovine serum (Life Technologies), 
100 units/mL penicillin and 100 µg/ml streptomycin (Seromed, Berlin, Germany) 
at 37°C in 5 % CO2. BSR T7/5 cells (kind gift of Matthias Schnell, Munich) 
required growth medium plus 4 % tryptose phosphate (Life Technologies). 

 
 

5.1.1.2 Stably transfected cell lines 
 

The following transgenic cell lines were generated in the context of this work: 
 

Parental 
cell line 

Inserted 
plasmid(s) 

Inserted promoter-gene 
combination 

Selection marker 
(concentration) 

pS4871 CMV-wt-hMcl-1 Puromycin (800 ng/ml) 
pS4865 CMV-mut-hMcl-1 Puromycin (800 ng/ml) 

A549 

pS5060 CMV-wt-hMcl-1 Neomycin (600 µg/ml) 
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Parental 
cell line 

Inserted 
plasmid(s) 

Inserted promoter-gene 
combination 

Selection marker 
(concentration) 

pS5070 CMV-mut-hMcl-1 Neomycin (600 µg/ml) 
pS5600 CMV-EGFP Neomycin (600 µg/ml) 
SK301 CMV-YFP-LC3 Neomycin (600 µg/ml) 

A549 

SK301 + 
pS4865 

CMV-YFP-LC3 +  
CMV-mut-hMcl-1 

Neomycin (600 µg/ml) +  
Puromycin (800 ng/ml) 

pS5060 CMV-wt-hMcl-1 Neomycin (300 µg/ml) 
pS5070 CMV-mut-hMcl-1 Neomycin (300 µg/ml) 
pS5600 CMV-EGFP Neomycin (300 µg/ml) 
SK301 CMV-YFP-LC3 Neomycin (300 µg/ml) 
pS5926 Scrambled shRNA Neomycin (800 µg/ml) 
pS5839 shRNA anti-Bax Neomycin (800 µg/ml) 
pS5848 shRNA anti-Bak Neomycin (800 µg/ml) 

Huh-7 

pS5862 shRNA anti-Bax/anti-Bak Neomycin (800 µg/ml) 
HepG2 SK301 CMV-YFP-LC3 Neomycin (800 µg/ml) 

 
Transgenic cell lines were generated by lenti- or retroviral gene transfer and 
propagated in growth medium supplemented with Neomycin (Calbiochem Corp. 
San Diego, CA) or Puromycin (Sigma-Aldrich, Taufkirchen, Germany). 

 
5.1.2 Bacteria 

 
Strain Genetic properties, supplier 
JM109 Modified E. coli safety strain; Gibco; prepared as electro- and 

chemically competent cells 
XL1-blue Modified E. coli safety strain; Stratagene; prepared as electro-

competent cells 
 
Bacteria were grown in LB medium containing Ampicillin (100 µg/ml) or 
Kanamycin (10 µg/ml) over night.  

 
5.1.3 Mice 
 

Strain Properties 
NMRI-
nu/nu 

Female, pathogen-free nude mice aged 6-8 weeks from the 
Central Animal Facilities of Hannover Medical School 

 
5.1.4 Plasmids 
 
5.1.4.1 Provided plasmids 
 

Plasmid Supplier/ 
Source 

Properties 

pBlueScript Stratagene Cloning vector (to sequence DNA fragments), 
used as nonsense-DNA for transfections 

pQCXIP Clontech Retroviral vector for the generation of stably 
transfected cell lines containing a CMV-gene 
of choice – IRES – Puromycin unit 

pQCXIN Clontech Retroviral vector for the generation of stably 
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Plasmid Supplier/ 
Source 

Properties 

transfected cell lines containing a CMV-gene 
of choice – IRES – Puromycin unit 

pGL2 Promega Reporter vector containing the firefly 
luciferase (luc) 

pGL4.12 Promega Reporter vector containing a modified firefly 
luciferase (luc2CP) to respond more rapidly 
and with greater magnitude to changes in 
transcriptional activity 

CMV-lacZ Florian Kühnel Vector containing a lacZ gene controlled by a 
CMV promoter, used to normalize efficiency 
of transfection 

CMV-GFP Florian Kühnel Vector containing an EGFP gene controlled 
by a CMV promoter, used to estimate 
efficiency of transfection microscopically 

Gal4-
KRAB 
(FK2337) 

Florian Kühnel Vector containing the gene of the fusion 
protein of Gal4-DNA-binding domain and the 
KRAB (Krüppel associated box) transcription 
repressor domain 

pAdHM4 Mark A. Kay Plasmid containing the genome of human 
Adenovirus type 5 lacking the E1 (342-3523 
bp) and E3 (28133-30818 bp) regions 

K92 Thomas Wirth Shuttle vector containing the Adenoviral E1 
region where E1B transcription is linked to 
EGFP by an IRES 

NW1187 Norman Woller pBluescript containing a U6-promoter to drive 
shRNA-expression 

SK301 Sarah Knocke pQCXIN containing the gene for the fusion 
plasmid YFP-LC3 [151] 

pVSV-G Norman Woller Plasmid coding for VSV-G controlled by a 
CMV promoter 

NW4739 Norman Woller pLVTHM w/o Xba I site 
pMDL g/p 
RRE 

Norman Woller Helper plasmid for Lentivirus generation 

pMD-G Norman Woller Helper plasmid for Lentivirus generation 
pRSV-Rev Norman Woller Helper plasmid for Lentivirus generation 
psiCHECK-
2 

Promega Vector designed to optimize RNAi target 
sequences by expressing two different 
luciferases: Renilla luciferase (with a multiple 
cloning site situated downstream of the stop 
codon to allow integration of target gene 
sequences) and firefly luciferase (for 
normalization of Renilla luciferase 
expression) 

pRK5.LHA
-Sce1 

Toni Cathomen 
(Charité, 
Institute of 
Viorology, 
Berlin) 

Plasmid containing a codon-optimized 
(humanized) version of the I-Sce I gene with 
N-terminal HA-tag and nuclear localization 
sequences 

FK1212 Florian Kühnel pBluescript vector containing a CMV350-
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Plasmid Supplier/ 
Source 

Properties 

promoter that controls a luciferase gene 
DS122 Florian Kühnel pBluescript vector containing a CMV350-

promoter, an artificial MCS and a poly-
adenylation signal (expression plasmid) 

FK1738 Florian Kühnel pGL-2 vector with p53-dependent prMin-
RGC-promoter driving the expression of 
luciferase reporter gene 

pIRES2-
EGFP 

Clontech Vector to co-express EGFP with a gene of 
choice linked by a internal ribosomal entry 
sequence (IRES) 

pVSV-XN2 Recombinant VSV genome (cloning 
platform) 

pVSV-GM-
CSF 

Recombinant VSV genome including an 
additional GM-CSF gene 

pVSV-
EGFP 

Recombinant VSV genome including an 
additional EGFP gene 

pBS-N Expression vector for VSV-N-protein 
pBS-P Expression vector for VSV-P-protein 
pBS-L 

John K. Rose 
(New Haven, 
CT, USA) 

Expression vector for VSV-L-protein 
FK6570 Florian Kühnel pBluescript vector containing a CMV230 

promoter with Gal4-binding sites upstream 
(15x) and downstream (5x) of the promoter 

pSE1A_1 Nina Strüver N-terminally deleted E1A (66bp) 
pSE1A_2 Nina Strüver Wt-E1A 
pSE1A_3 Nina Strüver N-terminally deleted E1A (66bp), insertion of 

a single BamHI-site 
pSE1A_4 Nina Strüver N-terminally deleted E1A (254bp) 
EG263 Engin Gürlevik NW1187 vector controlling a shRNA against 

EGFP under control of a U6-promoter 
p3xFLAG-
CMV-mut-
Mcl-1 

Xiaodong 
Wang, Dallas, 
TX, USA 

Plasmid containing the sequence of human 
Mcl-1 altered by certain Lys→Ala-changes to 
prevent ubiquitination of Mcl-1 

 
 

5.1.4.2 Constructed plasmids 
 

Plasmid Properties 
DS122-
prMin-RGC 

DS122 with the p53-dependent promoter prMin-RGC replacing 
the CMV promoter 

pS209 Expression plasmid for I-Sce I controlled by prMin-RGC-
promoter 

pS261 Expression plasmid for I-Sce I controlled by prMin-RGC-
promoter with a Kozak sequence and an C-terminal His6-tag 
sequence 

pS432 DS122-prMin-RGC controlling the expression of the Gal4-
KRAB gene 

pS584 K92 with excised IRES-EGFP region 
pS575 Expression plasmid for I-Sce I controlled by prMin-RGC-
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Plasmid Properties 
promoter with a Kozak sequence and an additional MCS 
between promoter and I-Sce I gene 

pS716 pS575 including the IRES from pIRES2-EGFP between 
promoter and I-Sce I gene 

pS725 pS716 with the Gal4-KRAB-sequence inserted between prMin-
RGC-promoter and IRES 

pS1111 DS122-prMin-RGC controlling the expression of EGFP with an 
5’-UTR-situated I-Sce I-recognition site (fw) 

FK6451 pGL2 vector containing the expression cassette: CMV350 – Scefw 
– EGFP – Scefw - luciferase 

FK6456 pGL2 vector containing the expression cassette: CMV350 – Scefw 
– EGFP – Scerev - luciferase 

pS2019 pGL2 vector containing the expression cassette: CMV350 –Scerev 
- luciferase 

pS3075 DS122 coding for the human Bcl-x gene  
pS3208 pS725 replacing the I-Sce I gene by EGFP 
pS3251 pBluescript vector containing a Gal4-KRAB sensitive CMV230 

promoter with an I-Sce I-recognition site (fw) at the 3’-end of 
the promoter fragment 

pS3288 Exchange of the IRES-EGFP module in K92 by an artificial 
sequence containing ATG triplets (one for each reading frame) 
and an I-Sce I-recognition site (fw) 

pS3310 Exchange of the IRES-EGFP module in K92 by an artificial 
sequence containing ATG triplets (one for each reading frame) 
and an I-Sce I-recognition site (rev) 

pS3399 pBluescript vector containing a Gal4-KRAB sensitive hTERT 
promoter with an I-Sce I-recognition site (fw) at the 3’-end of 
the promoter fragment 

pS3704 Exchange of the wt-E1A sequence in pS3310 by a N-terminally 
truncated form (del66) of E1A 

pS3786 Exchange of the wt-E1A sequence in pS3288 by a N-terminally 
truncated form (del66) of E1A 

pS4098 Insertion of the I-Sce I-sensitive CMV230-promoter (pS3251) 
into pS3704 upstream of E1A 

pS4112 Insertion of the I-Sce I-sensitive hTERT-promoter (pS3399) into 
pS3704 upstream of E1A 

pS4116 Insertion of the I-Sce I-sensitive CMV230-promoter (pS3251) 
into pS3786 upstream of E1A 

pS4129 Insertion of the I-Sce I-sensitive hTERT-promoter (pS3399) into 
pS3786 upstream of E1A 

pS4237 Insertion of prMin-RGC-I-Sce I-unit from pS261 into pS4116 
downstream of the E1 genes (CMV, Scefw §) 

pS4226 Insertion of prMin-RGC-I-Sce I-unit from pS261 into pS4098 
downstream of the E1 genes (CMV, Scerev 

§) 
pS4240 Insertion of prMin-RGC-I-Sce I-unit from pS261 into pS4129 

downstream of the E1 genes (hTERT, Scefw §) 
pS4233 Insertion of prMin-RGC-I-Sce I-unit from pS261 into pS4112 

downstream of the E1 genes (hTERT, Scerev 
§) 

pS4303 Insertion of prMin-RGC-Gal4-KRAB-IRES-I-Sce I-unit from 
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Plasmid Properties 
pS725 into pS4116 downstream of the E1 genes (CMV, Scefw 

§) 
pS4315 Insertion of prMin-RGC-Gal4-KRAB-IRES-I-Sce I-unit from 

pS725 into pS4098 downstream of the E1 genes (CMV, Scerev 
§) 

pS4356 Insertion of prMin-RGC-Gal4-KRAB-IRES-EGFP-unit from 
pS3208 into pS4129 downstream of the E1 genes (hTERT, Scefw 
§) 

pS4372 Insertion of prMin-RGC-Gal4-KRAB-IRES-EGFP-unit from 
pS3208into pS4116 downstream of the E1 genes (hTERT, Scerev 
§) 

pS4416 Insertion of IRES-EGFP from pIRES2-EGFP into DS122-
prMin-RGC 

pS4532 Insertion of prMin-RGC-I-Sce I-unit from pS4416 into pS4098 
downstream of the E1 genes (hTERT, Scerev 

§) 
pS4565 Insertion of prMin-RGC-I-Sce I-unit from pS4416 into pS4112 

downstream of the E1 genes (hTERT, Scerev 
§) 

pS4865 Integration of mut-Mcl-1 in pQCXIP 
pS4871 Integration of wt-Mcl-1 in pQCXIP 
pS5060 Integration of mut-Mcl-1 in pQCXIN 
pS5070 Integration of wt-Mcl-1 in pQCXIN 
Ad4226 Integration of E1 and prMin-RGC region of pS4226 in pAdHM4 
Ad4532 Integration of E1 and prMin-RGC region of pS4532 in pAdHM4 
Ad4233 Integration of E1 and prMin-RGC region of pS4233 in pAdHM4 
Ad4565 Integration of E1 and prMin-RGC region of pS4565 in pAdHM4 
Ad4303 Integration of E1 and prMin-RGC region of pS4303 in pAdHM4 
Ad4356 Integration of E1 and prMin-RGC region of pS4356 in pAdHM4 
Ad4315 Integration of E1 and prMin-RGC region of pS4315 in pAdHM4 
Ad4372 Integration of E1 and prMin-RGC region of pS4372 in pAdHM4 
pS5408 EGFP in pQCXIP 
pS5477 shRNA against Bax (shBax_1) in NW1187 
pS5483 shRNA against Bax (shBax_2) in NW1187 
pS5486 shRNA against Bax (shBax_3) in NW1187 
pS5490 shRNA against Bak (shBak_1) in NW1187 
pS5493 shRNA against Bak (shBak_2) in NW1187 
pS5498 shRNA against Bak (shBak_3) in NW1187 
pS5504 Fragment of the human Bak-gene in psiCHECK-2 
pS5510 Fragment of the human Bax-gene in psiCHECK-2 
pS5600 EGFP in pQCXIN 
pS5653 shRNAs against Bax (shBax_1) and against Bak (shBak_2) in 

NW1187 
pS5670 shRNAs against Bak (shBax_2) and against Bax (shBax_2) in 

NW1187 
pS5685 Puromycin resistance gene (PCR product from pQCXIP) in 

pBluescript 
pS5701 Neomycin resistance gene (PCR product from pQCXIN) in 

pBluescript 
pS5757 Puromycin resistance gene from pQCXIP in NW4739 
pS5779 Neomycin resistance gene from pQCXIN in NW4739 
pS5839 U6-promoter controlling shRNA against Bax (shBax_1) in 

pS5757 
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Plasmid Properties 
pS5848 U6-promoter controlling shRNA against Bak (shBax_2) in 

pS5757 
pS5862 U6-promoter controlling shRNA against Bax (shBax_1) and Bak 

(shBak_2) in pS5757 
pS5926 U6-promoter controlling shRNA against EGFP in pS5757 

 § Scefw: TAGGGATAACAGGGTAAT; Scerev: ATTACCCTGTTATCCCTA 
 
 
 

5.1.5 Adenoviruses 
 
5.1.5.1 Provided Adenoviral vectors 

 
Ad-
(Plasmid) 

Supplier/ 
Source 

Properties 

Ad-
p53Sensor 

Florian Kühnel Conditionally replicating human Adenovirus 
type 5 selective for cells with transcriptionally 
inactive p53 (from plasmid stock) 

wt-Ad5 Florian Kühnel Wild type human Adenovirus type 5 (from 
infectious particles) 

ONYX-015 Frank 
McCormick 

Conditionally replicating human Adenovirus 
type 5 with deleted E1B region from ONYX 
Pharmaceuticals, Inc. (from infectious 
particles) 

 
5.1.5.2 Constructed Adenoviral vectors 

 
Plasmid Properties 
Ad4226 Replicative human Adenovirus type 5 regulated by a prMin-

RGC-I-Sce I cassette (E1A controlled by CMV230-promoter) 
Ad4532 Replicative human Adenovirus type 5 regulated by a prMin-

RGC-EGFP cassette (E1A controlled by CMV230-promoter) 
Ad4233 Replicative human Adenovirus type 5 regulated by a prMin-

RGC-I-Sce I cassette (E1A controlled by hTERT-promoter) 
Ad4565 Replicative human Adenovirus type 5 regulated by a prMin-

RGC-EGFP cassette (E1A controlled by hTERT-promoter) 
Ad4303 Replicative human Adenovirus type 5 regulated by a prMin-

RGC-Gal4-KRAB-IRES-I-Sce I cassette (E1A controlled by 
CMV230-promoter) 

Ad4356 Replicative human Adenovirus type 5 regulated by a prMin-
RGC-Gal4-KRAB-IRES-EGFP cassette (E1A controlled by 
CMV230-promoter) 

Ad4315 Replicative human Adenovirus type 5 regulated by a prMin-
RGC-Gal4-KRAB-IRES-I-Sce I cassette (E1A controlled by 
hTERT-promoter) 

Ad4372 Replicative human Adenovirus type 5 regulated by a prMin-
RGC-Gal4-KRAB-IRES-EGFP cassette (E1A controlled by 
hTERT-promoter) 
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5.1.6 VSV 
 

VSV-
(Plasmid) 

Source Description 

wt-VSV 
Indiana 

Mahtab 
Nourbakhsh, 
MHH, 
Hannover 

Wild type Vesicular Stomatitis Virus Indiana 
serotype (from infectious particles) 

AV1 Oliver Ebert, 
TU Munich 

Attenuated VSV with mutant matrix protein 
(M51R) 

 
5.1.7 Oligonucleotides 

 
All oligonucleotides were purchased from Eurofins MWG GmbH.  

 
Name Sequence in 5’-3’-

direction 
Description 

SceHis_
3 

AGAAGCTTGCCACCATGGGA
TCAAGATCGCCAAAAAAG 

Insertion of a HindIII-cleavage site and 
a Kozak-site (italic) 

SceHis_
4 

AAGGATCCTTAATGGTGATG
GTGATGATGACTTCCTTTCA
GGAAAGTTTCGGAGGAGATA
GTG 

Insertion of a BamHI- cleavage site and 
a His6-tag (italic) 

Sce-
Primer_
5 

ATAGGCCTAAAAACTAGTGC
TAGCTATTCCATGGGATCAA
GATCGCCAAAAAAGAAGAGA
AAGG 

Insertion of cleavage sites for Stu I, Spe 
I, Nhe I and Nco I 

Sce-
Primer_
6 

CCAAGCTTCTGCAGGTCGAC
TCTAGAGGATCC 

Insertion of a BamHI- cleavage site 

SceEGF
P_fw 

ACAAGCTTGGATCCGATATC
TAGGGATAACAGGGTAATAG
CCACCATGGTGAGCAAGGGC
GAGG 

Insertion of cleavage sites for HindIII, 
BamHI, EcoRV, I-Sce I and Nco I and a 
Kozak-site (italic) 

SceEGF
P_rev 

AAAGATCTGTCGACACGCGT
CCTCTCTGTCTCGGGTAAGA
TACATTGATGAGTTTGGACA
AACC 

Insertion of cleavage sites for Bgl II, Sal 
I, and Mlu I 

bcl-
x_fwd 

AAGCTAGCAATGTCTCAGAG
CAACCGGGAGC 

Insertion of a Nhe I cleavage site 

bcl-
x_rev 

TTAGATCTGGATGGTCAGTG
TCTGGTCATTTCC 

Insertion of a EcoRI cleavage site 

sceE1B_
fw1 

AAGAATTCATGAAATAAAGC
AATGAATGCACACCAACAAC
ATCATATGGTAGGGATAACA
GG 

Insertion of a start codon (ATG) in all 
three reading frames and part of a I-Sce 
I-recognition site 

SceE1B
_rev1 

TTGCGGCCGCATTACCCTGT
TATCCCTACCATATGATGTT
GTTGG 

Insertion of an I-Sce I-recognition site 

sceE1B_
fw2 

AAGAATTCATGAAATAAAGC
AATGAATGCACACCAACAAC
ATCATATGGATTACCCTGTT
ATCC 

Insertion of a start codon (ATG) in all 
three reading frames and part of a I-Sce 
I-recognition site 

sceE1B_
rev2 

TTGCGGCCGCTAGGGATAAC
AGGGTAATCCATATGATGTT
GTTGG 

Insertion of an I-Sce I-recognition site 
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Name Sequence in 5’-3’-
direction 

Description 

sceCMV
230_fw 

AAGGATCACAGGGTAATCCA
TGGTGATGCGGTTTTGGCAG
TACATCAATGG 

Insertion of a Nco I-cleavage site 

sceCMV
230_rev 

TTGCTAGCTCTAGAATTACC
CTGTTATCCCTATAGCGGAT
CTGACGGTTCACTAAACCAG
C 

Insertion of an I-Sce I-recognition site 

scehTE
RT_fw 

AAGCGCCAGGGTACTCCATG
GATGCTGCGCTGTCGGGGCC
AGG 

Insertion of a Nhe I-cleavage site 

scehTE
RT_rev 

TTGCTAGCTCTAGAATTACC
CTGTTATCCCTACGAGCCCG
CTGCCTGAAACTCGC 

Insertion of an I-Sce I-recognition site 

Mcl_fw AAAAGCTTAAGGATCCATGT
TTGGCCTCAAAAGAAACGCG 

Insertion of cleavage sites for HindIII 
and BamHI, 

Mcl-rev TTTCTAGACCGAATTCCTAT
CTTATTAGATATGCCAAACC
AGCTCC 

Insertion of cleavage sites for Xba I and 
EcoRI 

E1A_cut
control_
rev 

CGAGGAGGCGGTTTCGCAGA
TT 

Forward primer to generate PCR 
product specific for I-Sce I dependent 
religation 

E1B_cut
control_
fw 

CTAAGATATTGCTTGAGCCC
GAGAGC 

Reverse primer to generate PCR product 
specific for I-Sce I dependent religation 

mir30-
Xba 

AAATCTAGAGAATTCCGAGG
CAGTAGGCA 

Primer providing a Xba I-site and 5’-
flanking sequnence for shRNAs 

mir30-
Xho 

TTCTCGAGAAGGTATATTGC
TGTTGACAGTGAGCG 

Primer providing a Xho I-site and 3’-
flanking sequnence for shRNAs 

 
Sequencing primer 

 
Name Sequence in 5’-3’-direction 
Seq-Luc-primer GGATAGAATGGCGCCGGG 

Rvprimer3 CTAGCAAAATAGGCTGTCCC 

Rvprimer4 GACGATAGTCATGCCCCGCG 

SeqPrim_E1B_end TGCTGGATGTGACCGAGG 

seq_E1Astart_rev CAAAGCGAACACATAATATCTGGGTCCCCC 

E1Bterm_fw TTAGGAACCAGCCTGTGATGCTGG 

ProtIX_rev TAGTAGAGTTTGCGGGCAGGACG 

SeqPrimpQCXI_fw CCATCCACGCTGTTTTGACC 

U6 primer 1.2 GGACTATCATATGCTTACCGTAACTTG 
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5.1.8 Antibodies 
 
5.1.8.1 Primary antibodies 
 

Antibody Antigen Origin Dilution Supplier 
sc-1615 Actin Goat, polyclonal 1:1000 Santa Cruz 

Biotechnology 
sc-430 Ad2-E1A Rabbit, polyclonal 1:1000 Santa Cruz 

Biotechnology 
Y164 
(ab32371) 

Bak Rabbit, polyclonal 1:500 Abcam plc 

E63 
(ab32503) 

Bax Rabbit, polyclonal 1:1000 Abcam plc 

N-19 (sc-
492) 

Bcl-2 Rabbit, polyclonal 1:100 Santa Cruz 
Biotechnology 

L-19 (sc-
1041) 

Bcl-XS/L Rabbit, polyclonal 1:1000 Santa Cruz 
Biotechnology 

AF680 Bid Goat, polyclonal 1:800 R&D Systems 
2819 Bim Rabbit, polyclonal 1:1000 Cell Signaling 

Technology 
BP7052 eIF2alpha 

(pSer52) 
Rabbit, polyclonal 1:1000 Acris Antibodies 

GmbH 
sc-577 Gal4-DNA-

binding domain 
Rabbit, polyclonal 1:2000 Santa Cruz 

Biotechnology 
12CA5 HA-tag Mouse, 

monoclonal 
1:1000 Roche Applied Science 

A190-
108A 

HA-tag Rabbit, polyclonal 1:2000 Bethyl Laboratories, 
Inc. 

AAP-240 Mcl-1 Rabbit, polyclonal 1:7000 Stressgen 
sc-372 NFkappaB (p65) Rabbit, polyclonal 1:1000 Santa Cruz 

Biotechnology 
IMG-
349A 

NOXA Mouse, 
monoclonal 

1:500 Imgenex 

4976 PUMA Rabbit, polyclonal 1:1000 Cell Signaling 
Technology 

53015.11 PARP Rat, polyclonal 1:1500 R&D Systems (Bettina) 
12-6766 PARP Rabbit, polyclonal 1:600 eBioscience 
AB-6 
OP43 

p53 Mouse, 
monoclonal 

1:500 Calbiochem 

632375 rGFP Mouse, 
monoclonal 

1:4000 BD Living Colors 

A190-
130A 

VSV-G Goat, polyclonal 1:5000 
1:100 (IHC) 

Bethyl Laboratories 
Inc. 

2042 XIAP Rabbit, polyclonal 1:1000 Cell Signaling 
Technology 

 
5.1.8.2 Secondary antibodies 

 
Antibody Antigen Origin, properties Dilution Suppli er 
AQ127P Mouse goat, HRP-coupled 1:10.000 Chemicon Intl. 
7074 Rabbit goat, HRP-coupled 1:10.000 Cell Signaling 

Technology 
sc-2056 Goat donkey, HRP-

coupled 
1:10.000 Santa Cruz 

Biotechnology 
705-066-
147 

Goat donkey, biotin-
coupled 

1:200 (IHC) The Jackson Laboratory 

 Rat donkey, HRP-
coupled 

1:10.000 Dianova 
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5.1.9 Chemicals 
 

All experiments were performed in S1 or S2 laboratories at Hannover Medical 
School equipped for molecular biological work. Displayed exclusively are 
chemical substances that might have influenced the outcome or the form of the 
experiments. 
 
Substance Supplier 
5-Fluorouracil Hannover Medical School 
5x Bradford-solution Bio-Rad Laboratories GmbH 
Ampicillin Sigma-Aldrich 
ATP (for DNA ligation) Sigma-Aldrich 
Carbenicillin Serva Electrophoresis GmbH 
Chloroquine Sigma-Aldrich 
4’,6-Diamidino-2-
phenylindole 
dihydrochloride (DAPI) 

Sigma-Aldrich 

Doxorubicin Hannover Medical School 
Kanamycin Sigma-Aldrich 
Lipofectamin2000 Invitrogen Corp. 
MG132 Calbiochem 
Mowiol Roth 
Neomycin Calbiochem 
10x PBS Invitrogen Corp. 
Polyethylenimine (25 kD) Polysciences Europe GmbH 
Puromycin Sigma-Aldrich 
To-Pro3 Invitrogen Corp. 
zVAD-fmk Calbiochem 

 
5.1.10 Molecular weight standards 

 
Name Application Supplier Cat. 

number 
1 kb plus DNA ladder DNA Invitrogen Corp. 10787-018 
peqGOLD Prestained 
Protein-Marker III 

Protein Peqlab Biotechnolgie 
GmbH 

27-1110 

 
5.1.11 Enzymes 

 
Antarctic phosphatase New England Biolabs GmbH 
DNA Polymerase I, Klenow fragment New England Biolabs GmbH 
Herculase Hotstart DNA Polymerase Stratagene Europe 
Lysozyme Sigma-Aldrich Chemie GmbH 
Proteinase K Roche Diagnostics GmbH 
Restriction endonucleases New England Biolabs GmbH 
Reverse Transcriptase Qiagen GmbH 
RNase Boehringer 
Streptavidine-HRP Zymed Laboratories 
T4-DNA Ligase New England Biolabs GmbH 
T4-Polynucleotide kinase New England Biolabs GmbH 
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5.1.12 Kits 
 
Qiagen Endofree Plasmid Midi/Maxi Kit Qiagen GmbH 
QIAquick Nucleotide Removal Kit Qiagen GmbH 
QIAquick Gel Extraction Kit Qiagen GmbH 
QIAquick PCR Purification Kit Qiagen GmbH 
Qiagen RNeasy Kit Qiagen GmbH 
ECL detection Kit GE Healthcare Europe GmbH 
Adeno-X rapid titer Kit Clontech 
Vivapure AdenoPACK 20 Sartorius AG 
AEC Histostain Plus Broad Spectrum Kit  Zymed Laboratories,  
In Situ Cell Death Detection Kit, POD  Roche Diagnostics GmbH 
Caspase-3 Activity Assay Kit Clontech 
 

5.1.13 Devices 
 
Fluorometer Biotek Instruments GmbH 
Photometer Biotek Instruments GmbH 
Lumat (Luminometer) Berthold 
HM 500 OM Cryostat Microm 
Zeiss LSM 510 Meta scan head on ZEISS  Carl-Zeiss MicroImaging  
Axiovert 200M equipped with an oil immersion  
objective lense 63 × /1.4, zoom factor 2.0 
Axiovision software Carl-Zeiss MicroImaging 
Zeiss LSM Image Browser 4.2 Carl-Zeiss MicroImaging 
QWinV3 software Leica 
GraphPad Prism 3.02 GraphPad Software Inc. 
 

5.1.14 Media and buffers 
 
For cell culture 
 
Storage medium for liquid nitrogen 
80 % DMEM + 10 % FCS, 10 % DMSO, 10 % FCS; sterile filtration 
 
For culture of bacteria 
 
LB medium: 10 g bactotryptone, 5 g yeast extract and 10 g NaCl solved in water 
adjusted 1 l and autoclaved. The medium is supplemented with antibiotics prior 
usage. Storage at room temperature. 
 
Agar plates: LB medium containing 1.5 % agar select was autoclaved, chilled to ~ 
60°C and supplemented with antibiotics. The final mix was applied to agar dishes 
and chilled until solidified. Storage at 4°C. 
 
SOC medium: 2 g tryptone, 0.5 g yeast extract, 0.05 g NaCl, 1 ml 1 M MgCl2, 1 
ml 1 M MgSO4 and 0.4 g glucose are filled up with water up to 100 ml sterilely 
filtered. Storage at -20°C. 
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Buffers 
 
1 M TRIS pH 6.8 1 M TRIS-HCl pH 6.8 
 0.4 % SDS 
  
1.5 M TRIS pH 8.8 1.5 M TRIS-HCl pH 8.8 
 0.4 % SDS 
 
1x TAE 40 mM TRIS-HCl pH 8.5 
 1 mM EDTA 
 40 mM acetic acid 
 
2x BBS pH 6.95 280 mM NaCl 
 50 mM BES 
 1.5 mM Na2HPO4 x (2H2O) 

pH 6.95 (optimization by transfection experiments 
necessary) 
sterile filtration 

 
2x storage buffer (Adenovirus) 10 mM TRIS-HCl pH 8.0 
 100 mM NaCl 
 0.1 % BSA 
 50 % Glycerol 
 sterile filtration 
 
5x extraction buffer (luciferase) 125 mM TRIS-HCl pH 7.8 (H3PO4) 
 10 mM EDTA 
 50 % glycerine 
 5 % Triton-X-100 
 
5x SDS protein load 310 mM TRIS-HCl pH 6.8 
 250 mM DTT 
 20 % glycerine 
 2 % SDS 
 0.2 % bromophenol blue 
 
10x DNA loading buffer 20 % Ficoll 400 

100 mM EDTA pH 8.0 
1 % SDS 
bromophenol blue 

 
10x SDS buffer 250 mM TRIS HCl pH 8.3 
 1.92 M glycerine 
 1 % SDS 
 
ATP stock for luciferase assay 100 mM ATP 
 200 mM TRIS 
 storage at -20°C 
 
β-Galactosidase reaction buffer 60 mM Na2HPO4 
 39 mM NaH2PO4 
 10 mM KCl 
 1 mM MgSO4 
  
 prior use: 
 2 mM DTT 
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 1 mg/ml ONPG 
 
Cesium chloride gradient density 1.2 g/ml (50 ml) 
  13.25 g CsCl 
  0.5 ml 1 M TRIS-HCl pH 7.5 
 density 1.4 g/ml (50 ml) 
  26.75 g CsCl 
  0.5 ml 1 M TRIS-HCl pH 7.5 
 
Dialysis buffer 10 mM TRIS-HCl pH 8.0 
 1 mM MgCl2 
 140 mM NaCl 
 
Luciferine 25 mM D-luciferine sodium salt in water 
 storage at -20°C 
  
Luciferase reaction buffer 25 mM glyceryl glycine 
 15 mM MgSO4 
 50 mM ATP prior use 
 
RIPA-buffer 60 ml 10x PBS 
 6 ml Igepal 
 3 g deoxycholic acid-sodium salt 
 0.6 g SDS 
 final volume adjusted 600 ml 
 

Before use: 5 µl protease inhibitor mix 
(Calbiochem) per 1 ml 

 
STET buffer 50 mM TRIS-HCl pH 8.0 
 50 mM EDTA 
 8 % sucrose 
 0.5 % Triton X-100 
 
TAIL buffer 50 mM TRIS-HCl pH 8.0 
 100 mM EDTA pH 8.0 
 5100 mM NaCl 
 1 % SDS 
 20 µg/ml proteinase K added before use 
 
TE 10 mM TRIS-HCl pH 8.0 
 1 mM EDTA pH 8.0 
 
TBS-Tween 20 mM Tris-HCl pH 7.6  
 150 mM NaCl 
 0.3 % Tween 20 
 
Western blot transfer buffer 40 mM glycine 
 50 mM TRIS-HCl pH 8.3 
 1 mM SDS 
 1 l methanol 
 final volume adjusted 5 l  
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5.2 Cell biological methods 
 
5.2.1 Cell culture techniques 

 
Cell culture was performed according to modern guidelines for S1 and S2 safety 
levels. Regularly, contaminations with mycoplasma species were checked by a 
PCR protocol. 75 cm2 T-flasks, DMEM supplemented with FCS and an antibiotic 
Penicillin/Streptomycin were usually used to grow cells in incubators providing 
37°C and 5 % CO2. 
To propagate cells, medium was discarded and the cell layer washed with 1x PBS. 
Trypsinization (0.5 % Trypsin in 1x PBS) was performed to detach cells. Cells 
were resuspended in fresh medium and grown to 70 – 90 % confluence before next 
passage. 
To determine viable cell number per ml medium hemocytometer was used. Dead 
cells were excluded by Trypan blue staining. 
Cells were stored in liquid nitrogen resuspended in freezing medium consisting of 
80 % growth medium, 10 % DMSO and additional 10 % FCS. To prevent 
contamination with microorganisms the solution was sterilely filtered.  
Culturing cells from nitrogen storage started with a quick thaw. Washing with 
growth medium eliminated residual DMSO traces. Cells were resuspended in fresh 
medium that was refreshed after cell attachment to remove cellular debris. 
 

5.2.2 Transfection of cell lines 
 
5.2.2.1 Lipofectamin2000 

 
Cells were propageted in a 60 mm plate to achieve a nearly confluent layer (~ 90 
%). Immediately before transfection medium was replaced by 2 ml Optimem 
(serum-free medium). 8 µg DNA were resolved in 500 µl Optimem as was the 
transfection reagent (16 µl; Lipofectamine2000). Both solution were combined and 
mixed gently. About 20 min at RT the mix was applied to the cells and incubated 
at 37°C for 4 h. Transfected cells were treated according to the manufacturer’s 
protocol. 
 

5.2.2.2 Calciumphosphate 
 
About 0.9x 106 cells were seeded to 60 mm plates and grown to about 70 % 
confluence. For transfection 5 µg of DNA were mixed with 150 µl 250 mM CaCl2 
and 150 µl 2x BBS and spun down according to Chen and Okayama. After 
incubation an RT for 15 – 25 min the mixture was applied to cells with 2 ml 
freshly provided growth medium by slightly shaking the plate. Fresh medium was 
provided 12 -15 h after start of the transfection. Cells were monitored and treated 
due to the experimental setup. 
 

5.2.2.3 Polyethylenimine (PEI) 
 
Cells were seeded in 60 mm plates to achieve about 90 % confluence 
(approximately 1.2x 106 cells). Before transfecting target cells medium without 
FCS had to be applied. 5 µg DNA and 10 µl of a 10 mg/ml PEI solution were 
separately resolved in 200 µl serum-free medium. Both solutions were mixed and 
incubated at RT for additional 25 min to form complexes. 400 µl of the 
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transfection mix were added to the cells and incubated for 4 h. Then, the 
transfection medium was discarded and replaced by fresh growth medium. Cells 
were monitored and harvested due to the experimental setup. 
 

5.2.3 Microscopical methods 
 
5.2.3.1 Fluorescence microscopy 

 
TUNEL and nuclear staining with DAPI were analyzed at the fluorescence 
microscope Leica DM4000B. Merged images of both signals were created by 
Leica QWinV3 software (blue – DAPI staining; green – TUNEL staining). 
 

5.2.3.2 Confocal Laser Scanning Microscope (CLSM) 
 
The intracellular distribution of the fusion protein YFP-LC3 that was stably 
expressed in A549, HepG2 and Huh-7 cell lines was analyzed by confocal laser 
scanning microscopy at the Laser Microscopy Facility at Hannover Medical 
School with a Zeiss LSM 510 Meta scan head on ZEISS Axiovert 200M equipped 
with an oil immersion objective lense 63 × /1.4. Generally a zoom factor of 2.0 
was applied to record fluorescence images. Later on these images were processed 
with software from Carl-Zeiss MicroImaging (Axiovision software, Zeiss LSM 
Image Browser 4.2). 
 
1 – 2x 105 cells were grown on cover glasses in 6 well plates over night. For 
experiments medium was refreshed (1 ml) and 100 µl of virus or chloroquine 
solution was added. After incubation of indicated times cover glasses were rinsed 
with 1x PBS and fixed in 4 % paraformaldehyde for 10 min at RT. After an 
additional washing step cover glasses were tissue dried and cells were stained with 
about 60 µl of 1 µM To-Pro3 solution (nuclear staining). Glasses were incubated 
(10 min, RT) in a humid and dark chamber to prevent fading of the dye. After a 
washing step (1x PBS) cover glasses were dried and put on a glass slides prepared 
with mounting medium (Mowiol). Incubation at RT (30 min) and 4°C (over night) 
provided samples appropriate for CLSM analysis. 
 
Before recording microscopic parameters for adequate measurement range were 
set by positive and negative control samples. This preparation was performed 
before each experiment but the established configuration was never changed 
within a single experimental setup. Pictures were recorded as single slices on a 
certain cellular level and as scanning picture series (up to 15 slices per cell). 
Resulting files were processed with the above mentioned software to present YFP, 
To-Pro3 signals and merged images of both signals. 
 

5.2.4 Tissue staining 
 
To test the intratumoral effect of applied therapies, tumors were analyzed by tissue 
staining. Preparation of tumor slices, Haematoxylin/Eosin (HE) and VSV-G 
staining were performed by Meriame Nasiri and Gisela Weier at Hannover 
Medical School. 
For this reason A549 tumors were grown on nude mice, treated like indicated and 
finally explanted. To perform HE staining and staining against VSV-glycoprotein 
protein tumors were incubated in 4 % paraformaldehyde in PBS over night (4°C) 
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and embedded in paraffin to prepare 5 µm sections from tumor tissue. Resulting 
sections were subjected to specific staining that is described in the following two 
chapters. 
 

5.2.4.1 Haematoxylin/Eosin (HE) 
 
A549 tumors in nude mice were treated for several weeks and subsequently 
explanted. Paraffin tumor sections were dried, deparaffinized and, rehydrated. 
Haematoxylin staining was performed for 30 – 90 s. After washing with water 
samples were Eosin stained and dehydrated. Samples were covered with glasses 
using Entelan. Samples were analyzed with a bright light microscope. 
 

5.2.4.2 Immune histochemistry 
 
Distribution of VSV within A549 tumors was analyzed by detecting the 
glycoprotein of VSV (VSV-G) that is located in the cell membrane of infected 
cells. Tumor sections were stained with goat-anti VSV-G antibody (1:100), 
biotinylated donkey-anti-goat antibody (1:200) and streptavidine-HRP. Using the 
AEC Histostain Plus Broad Spectrum Kit (Zymed Laboratories, San Francisco, 
CA) infected cells were visualized. Samples were monitored with a bright field 
microscope. 
 

5.2.4.3 TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) 
staining 
 
A549 tumors in nude mice were treated for up to 5 days and subsequently 
explanted. Paraffin tumor sections were dried and deparaffinized. TUNEL assay 
was performed according to the manufacturer’s guidelines (In Situ Cell Death 
Detection Kit, POD Roche Diagnostics GmbH). Cellular peroxidases were blocked 
by incubating slides in 3 % H2O2 (in methanol) for 10 min. Washing twice in 
water preceded an incubation in 0.01 M citrate buffer (pH 6.0) for 5 min at 750 W 
and additional 15 min at 150 W in a microwave. After chilling the slides for 10 
min at RT and washing twice in 1x PBS the tissue was permeabilized with 
proteinase K (20 µg/ml in 1x PBS) for 30 min. Proteinase K was removed by 
washing twice in 1x PBS. Then, samples were fixed in 4 % paraformaldehyde for 
1 h and washed again. Before the final TUNEL reaction samples were incubated in 
0.1 % sodium citrate and 0.1 % Triton-X-100 for 30 min and washed twice in 1x 
PBS. Freshly prepared TUNEL reaction mix to stain DNA double strand breaks 
was applied to the samples for 1.5 h and removed by washing with 1x PBS. 
Finally, nuclei were counterstained with DAPI and covered with glasses in 
mounting medium (Mowiol). Images were recorded on a fluorescence microscope. 

 
 
 
5.3 Protein biochemical methods 
 
5.3.1 Preparation of protein extracts from cell culture 

 
Cell layers were controlled by bright field microscopy. After washing the cell layer 
twice with 1x PBS cells were harvested in RIPA buffer containing a pan-protease 
inhibitor cocktail and incubated on ice for 30 min. Cell debris was pelleted in a 
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table top centrifuge (10,000 g, 10 min, 4°C) and supernatants were transferred to 
fresh tubes. 
 

5.3.2 Determination of protein concentration 
 
Dilutions of protein containing 0 to 6 mg/ml BSA (NEB) were applied as 
standards (in the same buffer as samples are harvested). 
The purchased Bradford solution was diluted 1:4 in water. Fresh tubes were 
provided with 198 µl water and 2 µl of sample/standard. 800 µl of diluted 
Bradford solution was added to each protein dilution and mixtures were shaken 
slightly. Per sample 200 µl of the final mixture were applied to a flat bottomed 96 
well plate. Absorbance was measured from duplicates at 595 nm and 
concentrations were calculated by Gen5 software (Biotek Instruments GmbH). 
 

5.3.3 SDS-PAGE and western blot analysis 
 
Separation of protein solutions was performed by denaturing SDS-polyacrylamid 
gel electrophoresis. Composition of the resolving gels (10 or 12.5 %) and the 
stacking gel is shown in the tables below. 
 
Resolving gels 
% Acrylamid/ 

Bisacrylamid 
1.5 M TRIS pH 8.8 

+ 0.4 % SDS 
H2O 10 % 

APS 
TEMED 

10.0 8 ml 6 ml 9.75 ml 240 µl 10 µl 
12.5 10 ml 6 ml 7.75 ml 240 µl 10 µl 

 
Stacking gel 
 Acrylamid/ 

Bisacrylamid 
1 M TRIS pH 6.8 

+ 0.4 % SDS 
H2O 10 % 

APS 
TEMED 

 1.65 ml 2.5 ml 5.85 ml  50 µl 10 µl 
 
10 – 100 µg protein were separated using a Biometra apparatus. Subsequently, 
proteins were transferred to a HyBond N-membrane (Millipore, Eschborn, 
Germany) by electroblotting. Membranes were blocked in TBS-Tween containing 
5 % milk and subjected to immunostaining. Antibodies were diluted in TBS-
Tween containing 5 % milk and applied to the blocked membrane over night (4°C) 
or for 1 h (RT). Membranes were washed in TBS-Tween six times for 10 min and 
incubated with the secondary antibody solution (in TBS-Tween) for 1 h. After 
washing in TBS-Tween (6x 10 min) membrane were developed applying the 
enhanced chemiluminescence detection system (ECL) according to the 
manufacturer’s protocol (Amersham, GE Healthcare Europe GmbH). 
 

5.3.4 Luciferase assays 
 
5.3.4.1 Firefly 

 
Transfected cells were incubated in growth medium for a certain time, then 
washed twice with 1x PBS. 5x Extraction buffer was freshly prepared and 350 µl 
were applied to the rinsed cell layer. After 10 min incubation at RT lysed cells 
were transferred to a fresh tube and centrifuged (16,000 g, 5 min, 4°C) to separate 
cell debris. Supernatant was applied to a fresh tube and stored at -20°C. 
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Measurement of luciferase activity was performed usinga Lumat apparatus. For 
this purpose 300 µl of freshly prepared reaction buffer were mixed with 50 µl 
harvested cell lysat in measurement tubes and luciferine solution was applied. Per 
sample two measurements were carried out. 
 

5.3.4.2 Dual luciferase reporter system 
 
Promega’s psiCHECK-2-system allows analysis of shRNA efficiencies and 
simultaneous normalization of transfection efficiencies by expression of two 
different luciferases. The 3’-UTR of Renilla luciferase contains a MCS for 
integration of shRNA target gene sequences of choice. Firefly luciferase is 
expressed constitutively in an unaffected manner to allow for normalization of 
Renilla luciferase expression. 
 
Target gene sequences were generated by PCR from cDNA of A549 and inserted 
in psiCHECK-2 by Xho I and Not I cleavage. Plasmids coding for specific shRNA 
sequences controlled by a U6-promoter and the psiCHECK-2 vectors were co-
transfected in HepG2 cells. 48 h after transfection cells were lysed in freshly 
prepared extraction buffer and measurement of activities of both luciferases were 
performed according to the manufacturer’s protocols. Comparison of the 
normalized Renilla luciferase activities of specific shRNAs against a non-target 
shRNA revealed the down regulating potential of certain shRNA sequences. Based 
on these results shRNA sequences were selected for the generation of cell lines 
constitutively down regulating certain genes.  
  

5.3.5 β-Galactosidase assay 
 
To normalize transfection efficiencies plasmids coding for lacZ gene were co-
transfected. Activity of the β-galactosidase enzyme was analyzed by the ONPG 
assay. 20 mg ONPG (the substrate of β-galactosidase) was mixed with 20 ml β-
Galactosidase reaction buffer and 40 µl 1 M DTT. 10 µl cell lysat were applied to a 96 
well plate and the final ONPG solution (150 µl) was added. The reaction was carried out 
at RT (high β-galactosidase activity) or at 37°C (low β-galactosidase activity). After 
stopping the conversion of ONPG to a yellow product by applying 75 µl of 1 M Na2CO3 
the absorption was measured at 405 nm in Biotek’s photometer and normalization was 
usually performed by Excel calculation. 
 

5.3.6 Caspase-3-activation assay 
 
Cell death by induction of apoptosis can be monitored by measuring the activity of 
the enzyme caspase-3 playing a decisive role in this pathway. Clontech’s Caspase-
3 Activity Assay was applied to all experiments described in this work. 
For this reason, cells were seeded in 60 mm plates and treated according to the 
experimental plan. Cells were harvested by cell scraper in medium, centrifuged 
(1,000 g, 2 min, 4°C) and washed with 1x PBS. Pelleted cells were lysed in about 
200 µl of the provided cell lysis buffer and incubated for 10 min on ice. Samples 
were shock frozen in liquid nitrogen and stored at -80 C. 
 
Cell debris was removed by centrifugation (20,000 g, 2 min, 4°C). Protein 
concentrations of the remaining supernatants were determined by Bradford assay. 
According to the manufacturer’s protocol caspase-3 activities of 7 µl of sample 



5. MATERIALS AND METHODS  41 

   

were measured 20 and 80 min after applying an enzyme substrate (Ac-DVED-
AFC-substrate, 5 mM in DMSO) or an inhibitor (Ac-DEVD-CHO, 1.5 mM in 
DMSO). Fluorescence (502 nm) was measured at the fluorometer (Bioteck 
Instruments GmbH) and fluorescence units per µg protein and hour were 
calculated. 
 
 
 

5.4 Molecular biological methods 
 
5.4.1 DNA amplification and purification 

 
In this work different techniques were applied to purify DNA out according to 
requirements for amount and/or quality of the purified DNA and will be described 
in this chapter. The E. coli safety strains JM109 and XL1-blue were used to 
amplify plasmids. While XL1-blue cells were electroporated exclusively JM109 
bacteria were accessible as chemically competent preparations as well. 
 

5.4.1.1 Mini format 
 
DNA from agar plate colonies or pAdHM4 plasmid was usually extracted from 
bacteria by a specific preparation protocol (preventing use of resins to bind DNA). 
Transformed bacteria were grown 7 – 14 h in LB medium and centrifuged (3,000 
g, 2 min, 4 °C). Medium was discarded except residual 100 µl to resuspend cells 
by vigorous shaking. The suspension was mixed with 300 µl STET buffer + 300 
µg/ml lysozyme. To weaken bacterial cell walls by lysozymal digestion cells were 
incubated 2 min at RT prior to boiling at 95°C for 90 s. The supernatant of the 
following centrifugation (20,000 g, 20 min, 4°C) was mixed with 400 µl 2-
propanol and centrifuged (20,000 g, 15 min, 4°C) again to precipitate DNA. The 
resulting pellet was washed with 70 % ethanol and resuspended in 15 – 30 µl TE 
buffer. 
 

5.4.1.2 Midi/Maxi format 
 
For the preparation of highly purified DNA in midi or maxi format appropriate kits 
(Qiagen Endofree Plasmid Midi/Maxi Kit) from Qiagen GmbH were applied. The 
purification method is based on a modified alkaline lysis procedure and functions 
by binding of plasmid DNA to an anion exchange resin.  
 

5.4.1.3 Phenol-Chlorofrom extraction 
 
In certain cases large DNA plasmids (e. g. pAdHM4) were purified by phenol-
chloroform extraction as this preparation method minimizes the problem of DNA 
shearing in contrast to column based methods, e. g. purification kits described 
above. 
The DNA containing solution was adjusted to 100 µl by TE buffer and mixed with 
100 µl commercial phenol-chloroform solution from Roth (Roti-
Phenol/Chloroform). After vigorous shaking aqueous and phenolic phases were 
separated by centrifugation (20,000 g, 2 min, 4°C). The upper hydrophilic phase 
was transferred to a fresh tube and supplemented with 25 µl 10 M ammonium 
acetate and 400 µl 100 % ethanol. DNA was precipitated by incubation at -20°C 
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(30 min), adding glycogen and a final centrifugation (20,000 g, 15 min, 4°C). 
After washing the pellet with 70 % ethanol DNA was resuspended in an 
appropriated volume of TE buffer or 10 mM TRIS-HCl pH 8.0. 
 

5.4.2 DNA sequencing 
 
For sequencing DNA fragments commercial services of GATC Biotech AG, 
Konstanz and Eurofins MWG GmbH, Ebersberg were employed. 
 

5.4.3 Transformation 
 
5.4.3.1 Chemical Transformation 

 
To amplify DNA plasmids 80 µl chemically competent JM109 cells were 
incubated with up to 15 µl DNA solution (e. g. ligation mix) for 30 min on ice. 
Bacterial solution was heat-shocked at 42°C for 90 s and subsequently cooled on 
ice for 2 min. After resuspending cells in 100 µl SOC medium and culturing at 
37°C for 30 min bacteria were spread on an agar plate and cultured over night. 
Plasmids from arising colonies were monitored by restriction enzyme analysis. 
 

5.4.3.2 Electroporation 
 
To transform bacteria with large DNA plasmids a method termed electroporation 
was used. 40 µl of electro-competent JM109 or XL1-blue cells were mixed with 
up to 1.5 µl of DNA solution and applied to a chilled electroporation cuvette 
between to electrodes. Electroporation was performed at voltages of 1.7 – 1.8 kV 
in a specialized apparatus called electroporator (Bio-Rad E. coli pulser). 
Immediately after the voltage pulse up to 1 ml of SOC medium was added to the 
bacteria and transformed cells were incubated at 37°C for 30 min. After spreading 
on an agar plate bacteria were cultured over night and resulting colonies were 
analyzed for plasmid specimen. 
 

5.4.4 DNA recombination techniques 
 
To recombine different DNA fragments DNA was cleaved using restriction 
enzymes purchased from New England Biolabs, Inc. (NEB). If necessary, sticky 
DNA ends resulting from enzyme cleavage were blunted using Klenow fragment 
(NEB). Desired fragments were separated by agarose gel electrophoresis and 
purified using Qiagen’s Gel Extraction Kit. Appropriate DNA fragments were 
mixed and in vitro ligated by T4 DNA ligase (NEB). To prevent religation of DNA 
5’-ends cleaved vectors were dephosphorylated by Antarctic phosphatase (NEB) 
prior ligation. Subsequent transformation of successfully ligated plasmids resulted 
in transformed bacteria that were applied for DNA amplification. 
 
Constructed, purified or provided plasmids were analyzed by restriction enzyme 
cleavage. Resulting fragments were separated on agarose gels and compared to 1 
kb+ DNA standard to gain knowledge of the quality of analyzed plasmid sample. 
If the cleavage pattern was not applicable for analysis target DNA regions were 
sequenced. 
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5.4.5 PCR 
 
In this work the polymerase chain reaction was used to introduce cleavage sites for 
restriction enzymes, to extend hybridized oligonucleotides and to detect certain I-
Sce I-mediated DNA religation products. All three procedures are described 
below. 
 

5.4.5.1 Insertion of RE sites 
 
To introduce certain recognition sites for restriction enzymes oligonucleotides 
were designed comprising corresponding sequences. To estimate annealing 
temperatures (TM) the following formula was applied for primers > 20 bases: 
 
TM  = 58.9°C + 0.41x (GC) – 600x (length) 
 
  GC % of G or C nucleotides in the binding sequence 
  length number of nucleotides that bind to the template 
 
When RE sites were introduced usually two annealing temperatures had to be 
calculated (for partial and total annealing of the primers) and the PCR program 
consisted of two-parted. 
For the generation of UTR-modified genes proof-reading HotStart Herculase was 
used to minimize the rate of mutation. In some cases DMSO (1 – 5 %) and melting 
substances were necessary to generate the desired products. 
 

5.4.5.2 Generation of miR30 DNA fragments 
 
MiR30 short hairpin sequences (116 bp) were generated within a single 
polymerase chain reaction using Herculase Hotstart DNA Polymerase. Four 
primers were used, two constant and two specific for the desired shRNA sequence 
(figure 4). Depicted below are the composition of a 100 µl PCR mix and a 
schematic picture of the PCR principle: 
 

 concentration volume (µl) 
Herculase reaction buffer 10x 10 
DMSO 100 % 2 
dNTP 10 mM 4 
shPrimer forward 100 µM 1 
shPrimer reverse 100 µM 1 
mir30-Xba 100 µM 1 
mi30-Xho 100 µM 1 
Herculase enzyme 5 u/µl 1 
water  79 
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Figure 4. Generation of functional shRNA molecules by PCR. Two primers providing 
flanking sequences and cleavage sites for cloning and two primers specific for every 
target RNA region were applied in a single PCR to generate a single shRNA molecule. 
 
 
The reaction program was three-parted: 
 

Temperature (°C) Time (s) Repeats 
95 600  
95 30 
55 30 
72 30 

 
5x 

95 30 
56 30 
72 30 

 
5x 

95 30 
60 30 
72 30 

 
30x 

72 600  
 
 

5.4.5.3 PCR-assisted detection of I-Sce I-cleavage products of the E1 region 
 
The activity of Adenovirus-encoded I-Sce I protein could be detected by a simple 
PCR method that exploits the efficient religation of a certain cleavage product by 
host cell DNA repair mechanisms. Briefly, a fragment of the Adenoviral genome 
spanning about 3,000 nucleotides is framed by two I-Sce I recognition sites. When 
cleaved the linear DNA could be religated at a certain position. This two-step-
event could be monitored by a PCR method. 
 
Target cells were infected with recombinant Adenoviruses and incubated for an 
indicated time. Cell layers were washed and lysed by TAIL buffer and DNA was 
prepared by 2-propanol precipitation and RNA digestion. 300 ng of the purified 
DNA were added to the PCR mixture with a total volume of 50 µl: 
 

 concentration volume (µl) 
Template (purified DNA) 50 ng/µl 6 
Primer E1A_cutcontrol_rev 10 µM 2.5 
Primer E1B_cutcontrol_fw 10 µM 2.5 
DMSO 100 % 2 
Taq-Master (Qiagen) 2x 25 
Water  12 
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The PCR program is depicted below: 
 

Temperature (°C) Time (s) Repeats 
95 600  
95 30 
55 30 
72 45 

 
35x 

72 600  
 
PCR products were analyzed in agarose gel and by DNA sequencing. 
 

5.4.6 DNA extraction from cell culture 
 
About 1x 106 PBS-washed cells were lysed in TAIL buffer and incubated at 56°C 
over night. Cell debris was removed by centrifugation (10,000 g, 10 min, 4°C). 
Supernatant was mixed with the same volume 2-propanol and centrifuged (20,000 
g, 15 min, 4°C) to precipitate DNA. After washing with 70 % ethanol DNA was 
resuspended in 25 µl TE buffer and RNA was digested for 1 h at 37 °C. The 
concentration of DNA was determined by photometric measurement.  
 
 
 

5.5 Virological techniques 
 
In the context of this work recombinant Adenoviruses and wild type Vesicular 
Stomatitis Virus were analyzed regarding their host cell interaction. For this 
purpose, stably expressing cell lines were created by the help of retro- or lentiviral 
gene transfer. Methods related to the virus-assisted generation of these cell lines 
are described in this chapter likewise. 
 

5.5.1 Adenovirus 
 
5.5.1.1 Cloning 

 
Construction of recombinant replicative Adenovirus vectors was based on an in 
vitro ligation method described by Mizuguchi and Kay 1998. To insert foreign 
DNA cassettes into an adenoviral DNA backbone two unique restriction sites (I-
Ceu I and PI-Sce I) were introduced in a vector – termed pAdHM4 (30.3 kb) – 
containing a complete E1, E3-deleted human Adenovirus type 5 genome. A 
pHM3-based shuttle plasmid providing the Adenoviral E1 region was used as 
construction platform for the development of DNA cassettes coding for regulative 
elements.  
The final recombinant E1-region was inserted in pAdHM4 according to Mizuguchi 
and Kay. Briefly, 2 µg shuttle plasmid and 3 µg of a DNA minipreparation of 
pAdHM4 were digested with I-Ceu I and PI-Sce I. Insert DNA was gel-purified 
and concentrated by QIAquick Gel Extraction Kit. To prevent shearing of the large 
pAdHM4 DNA it was exclusively purified by phenol-chloroform extraction. In 
vitro ligation was performed over night at 16°C and 1.5 µl of the ligation mix was 
used to transform XL1-blue cells by electroporation. After selection of positive 
clones by restriction analysis DNA was used to transform electro-competent 
JM109 cells yielding a higher amount of DNA than XL1-blue.  
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5.5.1.2 Production and amplification 

 
Final pAdHM4 based plasmids coding for recombinant Adenoviral genomes were 
Pac I cleaved to generate linear DNA that could be utilized as transcription and 
replication template. About 9x 105 HEK 293 cells were seeded in a 60 mm plate 
and transfected with the linearized vector. 5 days after transfection cells were 
scraped in medium and viral particles were released by three freeze-thaw-cycles 
(in liquid nitrogen/37°C). Cell debris was removed by centrifugation and the 
remaining supernatant was added to a fresh layer of HEK 293 cells. About 50 h 
later cells were harvested again as described above. Successful virus production 
could be monitored by cytopathic effect and rapid turning of the medium’s color to 
yellow. Scaling up the number of infected cells increased the produced virus 
amount.  
Two different purification methods were applicable for Adenoviral particles: 
ultracentrifugation and a column-based procedure. The first required about 40 
confluent 75 cm2-flasks of infected HEK 293 cells, the latter 2 flasks. 
 
Adenovirus purification by ultracentrifugation 
 
About 40 75 cm2-flasks of infected HEK 293 cells were infected with an 
Adenovirus vector and harvested about 60 h later when a clear CPE occurred. 
Cells were separated by centrifugation (500 g, 5 min, 4°C) and resuspended in 
dialysis buffer. To free viral particles from cell nuclei cells were freeze-thawed 
three times. The lysat was cleared by centrifugation (2,000 g, 5 min, 4°C) and the 
pelleted cells subjected to an additional freeze-thaw cycle. After centrifugation 
both supernatants were combined and layered over a discontinuous CsCl-gradient 
containing 3.5 ml CsCl density 1.2 g/ml and 3.5 ml of CsCl density 1.4 g/ml in a 
polypropylene tube (Beckman) for SW28i rotor. Particles were sedimented by 
ultracentrifugation for 4 h at 28,000 rpm (10°C). The visible virus band was 
harvested by a fine syringe (0.8 mm, Braun) puncturing the centrifugation tube 
carefully. To increase purity the obtained virus solution was adjusted 7 ml with 
dialysis buffer and centrifuged again in a CsCl gradient. Harvested virus was 
dialysed to remove excessive CsCl and stored at -80°C. Viral titers were 
determined for total and infectious particles. As this purification methods yield 
high amounts of purified virus it is required for execution of animal experiments. 
 
 
Adenovirus purification by Vivapure AdenoPACK 20  
 
According to the manufacturer’s protocol two flasks of infected HEK 293 cells 
were detached from the flask’s bottom and separated from the medium by 
centrifugation. Adenoviral particles were released from cells by freeze-thawing 
and centrifuged together with the retained supernatant (1,800 g, 5 min, 4°C). Free 
DNA was degraded by provided benzonase digestion (1h, 37°C) and major 
particles removed by filtration (0.45 µm). The resulting volume was mixed with 
1/9 volume of 10x loading buffer while constantly shaking to minimize osmotic 
shock. The solution (~ 20 ml) was applied to an equilibrated AdenoPACK 20 
Maxi Column and centrifuged (500 g, 5 min, 4°C) for membrane adsorption 
(Delmdahl, Nature Methods 3, (2006)). After washing twice with 1x washing 
buffer (18 ml) bound viral particles were eluted by 750 µl of the provided elution 
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buffer. The run-through solution was loaded again and incubated at RT for 10 min 
before centrifugation. Eluted particles were subsequently concentrated using the 
Vivaspin 20 centrifugal concentrator. Volume decreased from about 1,500 µl to 
300 – 500 µl and was determined approximately by pipette. For long time storage 
at -20°C the virus solution was mixed with the same volume of 2x storage buffer 
and stored under S2 conditions. Viral titers were determined for total and 
infectious particles. 
 

5.5.1.3 Determination of Adenovirus titer 
 
The infectious titer of the produced Adenoviruses was determined using the 
antibody-based Adeno-X Rapid Titer Kit (Clontech). According to the 
manufacturer’s protocol HEK 293 cells were used and infected with diluted virus 
solutions. After 48 h infected cells exposing Adenoviral hexon protein were 
immuno-stained by a specific antibody against hexon protein and a secondary 
antibody coupled to HRP. Stained cells were monitored in a bright field 
microscope, the number of primary infected cells per field of vision counted and 
the concentration of infectious viral particles (pfu/ml) calculated by the following 
formula: 
 
TiterInf  = (stained cells x field factor) / (V in ml x dilution factor) 
 
Field factor is provided by Clontech and depends on the object lens applied (79 for 
10x, 331 for 20x). 
In addition, the total number of viral particles (infectious and non-infectious) was 
determined by photometric measurement. 25 µl virus stock solution were solved in 
475 µl 0.1 % SDS and incubated at RT for 15 min to free DNA from particles. 
Optical density (OD) was determined and the total amount of Adenovirus particles 
calculated: 
 
Titerparticles = OD x dilution x 1012 
 
The ratio of total particles / infectious particles was used as a quality feature of the 
preparation. Usually at about 50 – 80 the ratio means only 1-2 % of purified viral 
particles form plaques in target cell layers. 

 
5.5.1.4 Determination of oncolytic potency (oncolysis assay) 

 
Target cells were seeded in 24 well plates (8x 104 cells or 1.6x 105 when 
doxorubicin was added) and grown over night. Certain virus solutions (100 µl) 
were applied to the cells for infection (8 h after chemotherapeutic treatment) at 
multiplicity of infections ranging from 5 to 0.0005. Cells were incubated until 
cytopathic effect was clearly visible by microscopic analysis (depending on the 
cell line 7 – 11 days). Viable cells were stained by crystal violet staining. 
Cells were washed with 1x PBS and fixed in 10 % formalin in 1x PBS for 10 min 
at RT. After washing with water cells were exposed to 0.1 % crystal violet (in 10 
% ethanol) and incubated for 30 min on a shaker. After washing and drying wells 
could be analyzed for cell lysis. Stained wells represent viable cells (without 
oncolysis). 
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5.5.2 Vesicular Stomatitis Virus (VSV) 
 
5.5.2.1 Preparation and storage 

 
Infectious viral particles of VSV were applied to confluent layers of the BHK-21 
derivative cell line BSR T7/5. Cells were incubated for 24 h, then, supernatant was 
collected and purified from cells and cell debris by centrifugation. Aliquots were 
prepared (~300 µl) and stored at -80°C. 
 

5.5.2.2 Determination of VSV titer 
 
The determination of VSV titers was usually conducted by TCID50 assay. To 
verify the obtained data plaque assay was run a few times. 
 

5.5.2.3 TCID50 
 
BSR-T7/5 cells were seeded in 96 well plates at a density of 1x 104 cells per well 
(100 µl) and grown over night. Single dilutions (10-5 – 10-12; 90 µl) of prepared 
infectious supernatants were applied to one row (12 wells) and incubated for 2 – 4 
days. Wells displaying a cytopathic effect were counted and processed according 
to Kärber’s statistical method. The results represent three independent 
measurements and are expressed as plaque forming untis per ml (pfu/ml). 
 

5.5.2.4 Plaque assay 
 
To determine VSV titer by plaque assay BSR T7 cells were seeded at 1.2x 106 
cells per 60 mm plate and incubated over night. After infection with dilutions of 
infectious supernatant cells were incubated 2 h at 37°C and then washed twice 
with 1x PBS to remove residual VSV particles. 3 ml of 1 % low melting agarose in 
growth medium were added to the plate and incubated at 4°C for 1 h to solidify the 
agarose layer. After returning to a 37°C incubator this layer maintains its gel-like 
constitution and prevents viral spreading over larger distances. Within 2-4 days 
visible plaques indicate cytopathic effect by VSV. These plaques were counted. 
The amount of plaques was multiplied with the dilution step and divided by the 
initial VSV containing volume of medium (in ml) to calculate the viral titer in 
pfu/ml. 
 

5.5.3 Retrovirus 
 
5.5.3.1 Cloning 

 
In this work constructed retroviral vectors were exclusively based on Clontech’s 
pQCXI plasmids with resistance genes for neomycin (pQCXIN) or puromycin 
(pQCXIP). Resulting viral particles are non-replicative and allow a rapid 
generation of stably expressing cell lines. 
 
The mentioned plasmids control expression of a desired gene by the CMV 
immediate early promoter. Genes were inserted by EcoRI and BamHI enzymes 
into the MCS succeeding the promoter. The expression of the selection marker was 
coupled by IRES to the expression of the genes of interest. Final DNA constructs 
were prepared as LPS free plasmids for transfection. 
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5.5.3.2 Production and application 

 
For production of non-replicative retroviral particles a 293 based amphotropic 
packaging cell line (phoenix cells) was utilized that provides certain retroviral 
genes (gag-pol, env) in trans. Resulting particles are infectious and integrate in the 
host cell’s genome but lack replicative capacity. 
 
Phoenix cells were seeded in two 60 mm plates (9x 105) and grown over night. 
The retroviral plasmid containing the gene of interest together with a plasmid 
coding for the glycoprotein of VSV were co-transfected using PEI. VSV-G allows 
transduction of a broad range of target cells. 1 h before transfection chloroquine 
(final concentration: 25 µM) was applied to the cells to increase transfection 
efficiency. After transfection fresh medium was added that was supplemented with 
2 % FCS only. 24 h later medium of the first plate was filtered (0.45 µm) and 
added to the target cells (about 25 % confluence) together with polybrene (final 
concentration: 8 µg/ml). After 4 h the process was repeated with the second plate 
of packaging cells. When viral transduction rate was insufficient larger volumes of 
virus solution were prepared and concentrated by ultracentrifugation. After the last 
transduction step medium was replaced by growth medium supplemented with the 
selecting chemical (neomycin or puroycin). 
After 14 days of selection cells were used for experiments. Expression of the 
inserted gene was controlled by western blot analysis. 
 

5.5.4 Lentivirus 
 
In contrast to retroviral vectors lentiviruses are usually used to transduce non-
replicating cells. In this work a lentiviral vector based on pLVTHM (Trono Didier, 
EPFL, Lausanne, Switzerland) – called NW4739 – was used to stably express 
shRNAs in human cells. NW4739 lacks H1 promoter and Tet operon between 
BamH I and Cla I.  
 

5.5.4.1 Cloning 
 
The GFP gene of NW4739 was replaced by the neomycin resistance gene from 
pQCXIN (pS5757) to allow for permanent selection of transgenic cells. In this 
vector the U6-promoter-shRNA-cassettes were inserted by BamHI and Xba I 
restriction enzymes. The resulting vectors were prepared as LPS free plasmids for 
transfection. 
 

5.5.4.2 Production and application 
 
To produce infectious lentiviral particles 293T cells were co-transfected with the 
lentiviral construct and three helper plasmids (pMDL g/p RRE, pMD-G, pRSV-
Rev) in a 10 cm dish. 24 and 48 h after transfection supernatants were collected, 
combined, filtered (0.45 µm) and centrifuged (SW32, 15,000 rpm, 90 min, 4°C) to 
increase concentration of viral particles. Huh-7 cells (60 mm plate, ~20 % 
confluence) were infected with the remaining lentiviral supernatant over night. 
Then, fresh medium containing neomycin was added to the target cells.  
Two weeks after the start of selection cells were used for experiments. The effect 
of the inserted shRNAs was checked by western blot analysis. 
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5.6 Animal experiments 

 
5.6.1 Application number 

 
Experiments regarding VSV were performed according to the German legal 
requirements (TierSchG). Number of application: 08/1569. 
 

5.6.2 Tumor inoculation 
 
6 – 8 weeks old nude mice from the Animal Research Institute of the MHH were 
anesthetized by diethyl ether and each mouse received 1x107 A549 cells in a total 
volume of 150 µl (adjusted with growth medium) subcutaneously in the right flank 
applying a syringe. Tumors were grown to an approximate size of 250 mm3 before 
experiment was started. 

 
5.6.3 Application of virus and chemotherapy 

 
Xeno-grafted mice were treated with 100 µl Doxorubicin (20 µg), 1x 107 
infectious particles wt-VSV (in 150 µl) or both treatments twice a week over an 
indicated period. Application of Doxorubicin occurred intravenously. 6 h later 
mice were infected intratumorally under diethyl ether anesthesia.  
 

5.6.4 Determination of tumor size 
 
Tumor size was measured every 5 days using a digital caliper and tumor volume 
was calculated by using the equation V (tumor) = (length x width2) / 2. 
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6. Results 
 

6.1 Development of conditionally replicating Adenoviruses harboring 
a self-destruction switch 

 
6.1.1 In vitro analysis of I-Sce I-cleavage capacity 

 

The major aim of this project was to design and construct conditionally replicating 

Adenoviruses that are degraded in p53-positive cells by the yeast endonuclease I-

Sce I. First, to basically understand I-Sce I-mediated cleavage and its properties to 

be applied in an adenoviral setting the enzyme and its activity were analyzed on 

plasmid basis under cell culture conditions. I-Sce I was derived from an expression 

vector containing a full length CMV promoter kindly provided by Toni Cathomen 

(Berlin). Since planned adenoviral target constructs for I-Sce I-mediated cleavage 

are DNA molecules situated in the cell nucleus, the enzyme should be efficiently 

translocated to this compartment since it is provide with an N-terminally nuclear 

localization sequences (NLS). Intracellular localization was determined by 

separation of nuclear and cytoplasmic compartments and subsequent western blot 

analysis. As shown in figure 5A, the majority of the endonuclease could be 

detected in nuclear extracts. Importantly, expression of I-Sce I did not impair cell 

morphology or growth indicating a non-genotoxic character of I-Sce I expression 

for human cells what is in concordance with literature data [82].  

In preliminary experiments, reporter plasmids were designed encoding only a 

single I-Sce I recognition sequence. Unfortunately, co-transfection of reporter and 

I-Sce I-encoding plasmids failed to result in a detectable cleavage activity. I-Sce I-

induced linearization was probably reversed by rapid and potent cellular DNA 

repair activities [152]. In order to unravel I-Sce I-cleavage activity, the 

experimental setup had to be changed to prevent the rapidly occurring repair of I-

Sce I-mediated DNA cleavage. Thus, the I-Sce I-target plasmids were modified, 

then encoding two I-Sce I-recognition sequences. 

Therefore, three constructs were designed to detect I-Sce I cleavage activity (figure 

5B). In a control vector, a CMV promoter was separated from a luciferase gene by 

a single I-Sce I recognition sequence. In two other plasmids, the CMV promoter 

controlled the expression of an EGFP gene that was enframed by two I-Sce I-

cleavage sites in directed (termed Sce_dir) or inverted (termed Sce_inv) direction. 
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Downstream of these sequences an intact luciferase gene was located. As cellular 

DNA repair mechanisms obviously efficiently reverse I-Sce I-mediated DNA-

double strand breaks, it was hypothesized that cleavage and repair of a reporter 

vector in a single-molecule-reaction resulted in increased luciferase activity. 

 

 
 

Figure 5. In vitro-analysis revealed nuclear localization and cleavage activity of I-
Sce I. (A) Cells were transfected with an plasmid encoding I-Sce I (+) or mock transfected 
(-). Nuclear and cytoplasmic compartments were separated and analyzed for I-Sce I 
presence by western blot analysis. (B) Schemes of I-Sce I-sensitive reporter vectors that 
were generated to act as targets for I-Sce I-cleavage. (C) HepG2 cells were co-
transfected with an I-Sce I expression vector and an indicated reporter vector in circular or 
linearied form. LacZ-normalized luciferase values were compared against the control (100 
%) and are depicted in relative values (mock-transfected cells resulted in relative 
luciferase activity of 0.2%) (data presented are means ± standard errors of the means 
(SEM). 
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For this purpose, HepG2 cells were co-transfected with an I-Sce I-encoding 

plasmid, one of the three I-Sce I-sensitive reporter vectors and an LacZ-encoding 

plasmid for normalization. With regard to the planned application (the adenoviral 

genome is linear), all reporter plasmids were tested in both circular and linearized 

form. Cells were harvested after 48 hours and luciferase activity was determined 

subsequently. In figure 5C, I-Sce I-expression is supposed to lead to excision of 

the EGFP gene in the reporter vectors containing two I-Sce I-cleavage sites. 

Religation of the promoter to the luciferase gene would allow expression of 

functional luciferase protein. In contrast, cleavage of the control vector results in 

rejoining of the promoter to the luciferase gene. Thus, measured activity from the 

control vector was set 100 %. Luciferase activities from the EGFP-containing 

vectors Sce_inv and Sce_dir were compared to the control plasmid. Circular 

Sce_inv and Sce_dir plasmids generated a markedly increased luciferase activity 

of 20 – 30 % of the control. Importantly, cells transfected with pBluescript instead 

of I-Sce I-encoding plasmid (mock-transfection) did only exhibit relative activities 

of 0.2 %. Thus, ligation of the luficerase gene to the CMV promoter implies I-Sce 

I-mediated excision of the EGFP gene. Backbone-cleavage of plasmids resulted in 

linearization to resemble the conditions in the adenoviral genome. As compared to 

the control vector, up to 85 % luciferase activity were measured.  

Results indicate that the expressed enzyme was functional since it specifically 

cleaved its recognition sequences. Interestingly, arrangement of the two I-Sce I-

sites relative to each other seems to be important for this setting as Sce_inv yielded 

significantly higher luciferase activity values than the plasmid containing the 

directed setup. 

 

6.1.2 Concept of I-Sce I-mediated destruction of the adenoviral vector in a p53-selective 
manner 
 

From results shown in figure 5, a concept was derived that is presented in figure 6. 

In an E1/E3-deleted adenoviral backbone an I-Sce I-recognition sites-enframed E1 

cassette was inserted. Downstream of the E1 region, a p53-dependent promoter 

(prMin-RGC) was inserted controlling the expression of the I-Sce I gene (figure 

6A).  

In this concept the adenoviral vector shall be inactivated by I-Sce I-mediated 

cleavage in the presence of transcriptionally active p53. As p53 allows expression 
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of I-Sce I, the enzyme recognizes its target sequences within the viral backbone. 

Ideally, complete cleavage should lead to separation of the E1A-controlling 

promoter from the E1A gene thus blocking E1A functions, and of the E1 cassette 

from the residual backbone (figure 6C). In contrast, in cancer cells with deleted or 

impaired p53 – resulting in loss of p53 transcriptional activity – I-Sce I is not 

expressed, the viral backbone remains intact and E1A is transcribed normally to 

allow for unaltered replication. Thus, due to the expression of E1A the infected 

cell initiates viral replication finally leading to release of adenoviral particles by 

cell lysis (figure 6C). 

 

 
Figure 6. Concept of a conditionally replicating adenoviral vector that harbors a 
p53-dependent self-destruction switch. (A) Linear adenoviral DNA of an E1/E3-deleted 
adenoviral vector harboring a modified E1 region. (B) In normal cells, p53 is 
transcriptionally active, thus binding to the p53-dependent promoter prMin-RGC (1) and 
allowing transcription (2) of the adenovirally encoded DNA-cleaving enzyme I-Sce. I-Sce I 
cleaves the DNA binding sequence (SCE) framing the adenoviral E1 genes within the viral 
backbone (3). I-Sce I-mediated cleavage disintegrates the viral backbone and 
consequently averts viral replication and cell lysis (4). (C) In tumor cells, p53 is often 
functionally inactivated or deleted. The p53-dependent promoter is silent and I-Sce I will 
not be expressed (1, 2). The viral backbone cannot be cleaved and remains functional (3). 
E1A is expressed and viral replication proceeds to final cell lysis (4). 

 
 
6.1.3 Generation of conditionally replicating adenoviral vectors 

 
The concept described above was realized employing the ligation method 

introduced by Mizuguchi and Kay [153]. The backbone vector pAdHM4 contains 
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an E1/E3 deleted adenoviral genome flanked by Pac I recognition sites to produce 

a linear adenoviral DNA [153]. In this vector, recombinant E1 regions were 

inserted (figure 7A, B). In all viruses, the native E1A gene was replaced by an N-

terminally truncated mutant (deletion of 66 bp) lacking amino acids 3 – 25 to 

inhibit binding to CBP/p300 and p53. E1A transcription was controlled either by a 

small CMV (230 bp) promoter or an hTERT promoter. Human cancer cells 

frequently activate the hTERT promoter. Since this is in stark contrast to normal, 

differentiated human cells it can be exploited to increase selectivity of oncolytic 

viruses (reviewed in [154]). Further, these promoter fragments were attached to 

binding sites of Gal4. Resulting promoters have been reported to be sensitive to 

the expression of the fusion protein Gal4-KRAB leading to inactivation of the 

expression unit. While the Gal4-domain mediates specific DNA-binding, Krüppel-

associated box (KRAB) domains are potent transcriptional repression modules 

[74]. This construction allows for combination of the destruction switch concept 

with the p53-dependent transcriptional repressor termed Gal4-KRAB via an 

internal ribosomal entry sequence (figure 7B). The complete E1 region (E1A and 

E1B genes) was flanked by two inverted I-Sce I recognition sequences. Thus, 

complete I-Sce I-cleavage would excise the region of the adenoviral genome that is 

essential for initiating viral replication. 

 

 
 
Figure 7. Basic setup of the E1 regions of conditionally replicating Adenoviruses 
harboring a self-destruction switch or EGFP. E1 genes are flanked by inverted I-Sce I-
recognition sites (Sce) and are controlled by a CMV230-promoter. Alternatively, instead of 
the CMV fragment a hTERT promoter was used (not shown; entitled analogously). Instead 
of the native E1A gene a N-terminally deleted mutant (del 66 bp) is used for all viruses. 
(A) The p53-dependent prMin-RGC promoter controls the expression of I-Sce I or EGFP. 
(B) In an additional setup, the I-Sce I-concept is combined with the application of the 
transcriptional repressor Gal4-KRAB that silences the promoter controlling the E1A gene. 
This artificial promoter contains 15 target sequences (G4K) for the Gal4-DNA binding 
domain of the fusion protein. Transcriptional repression is mediated by the KRAB domain. 
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Stepwise construction of the heterologous E1 region was examined by restriction 

enzyme cleavage and functional assays (data not shown) to ensure integrity of the 

final constructs. After production of infectious viral particles from the resulting 

plasmids the expression patterns of the resulting viruses were analyzed by western 

blotting (figure 8). Both I-Sce I and EGFP (in the control vectors) were expressed 

properly. Gal4-KRAB was correctly expressed by the viruses encoding the 

transcriptional repressor. 

 

Actin

EGFP

Gal4-KRAB

I-Sce I

Ad-CM
V-Sce

Ad-CM
V-EGFP

Ad-hTERT-Sce

Ad-hTERT-EGFP

Ad-CM
V-G4K-Sce

Ad-CM
V-G4K-EGFP

Ad-hTERT-G4K-Sce

Ad-hTERT-G4K-EGFP

Viruses encoding
Gal4-KRAB

 
Figure 8. Expression patterns of the recombinant adenoviral vectors. p53-positive 
A549 cells were transduced with recombinant Adenoviruses as indicated at MOI = 5. 
Protein expression was controlled 40 hours post infection by western blot analysis. (In 
viruses, Gal4-KRAB is abbreviated by G4K.) 
 
 
In summary, eight conditionally replicating Adenoviruses were generated that 

express certain regulatory proteins including the yeast meganuclease I-Sce I and 

the fusion protein Gal4-KRAB in a p53-selective manner.  

 

6.1.4 Adenovirus-encoded I-Sce I recognizes and cleaves its target sequences within the 
viral backbone 
 

As shown above in figure 5, the capacity of I-Sce I to recognize and cleave its 18 

bp long recognition sequence was analyzed in cell culture on plasmid level. To 

determine the activity that was originated from virus-encoded I-Sce I, it was 

assumed again that mammalian cells rapidly react on generation of DNA double 

strand breaks in the above described manner. Figure 9A shows examples of 
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reorganized adenoviral DNA after I-Sce I-cleavage and repair. It was hypothesized 

that the E1 region following excision could preferably be circularized in an intra-

molecular reaction by DNA repair mechanisms. This molecule is theoretically 

detectable by a specific PCR where primers will be elongated across the religation 

point (figure 9A) thus rendering the reaction unique for this circular DNA 

molecule.  
 

prMin-RGC varying seqProm Sce G4K Sce pAE1A / E1B pAmin

d
el

prMin-RGC varying seqG4K Sce pAE1A / E1B pAmin

d
el
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Figure 9. Adenovirus-encoded I-Sce I is expressed in p53-positive cells and cleaves 
its recognition sequence. (A) Cleavage of recombinant adenoviral DNA molecules 
activates cellular DNA repair mechanisms finally leading to a variety of possible cleavage-
religation products. The majority of these products should remain linear except of excised 
E1 regions. These about 3,000 bp large fragments can be religated to circular DNA 
molecules in an intra-molecular-reaction (size not to scale). Design of a PCR that 
amplifies sequences across the religation point (about 650 bp product size) allows for 
detection of these molecules. (B) Agarose-gel analysis of a PCR that was performed on 
purified DNA from cells infected with an I-Sce I-encoding virus for 24 hours. Subsequent 
DNA sequencing confirmed the nature of the resulting DNA fragment. 
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Figure 9B represents the results of the experiment to determine I-Sce I-activity. 

p53-positive A549 cells and Huh-7 cells that harbor a transcriptionally inactive 

p53 mutant were infected with a low MOI of Ad-CMV-Sce or the control virus 

Ad-CMV-EGFP. DNA was extracted 24 hours after infection and subjected to 

PCR analysis. Whereas neither adenovirally infected Huh-7 cells nor Ad-CMV-

EGFP infected A549 cells produced any detectable PCR product, a DNA fragment 

of about 650 bp could be amplified from A549 cells infected with the I-Sce I-

encoding virus (figure 9B). Product size matched calculated length and thus, 

further was analyzed by DNA sequencing revealing the 650 bp fragment to contain 

E1A and E1B sequences fused to an I-Sce I-site. 

Taken together, it was demonstrated that I-Sce I-harboring adenoviral vectors can 

be cleaved specifically by the encoded endonuclease. Thus, certain cleavage 

products have been detectable for Sce-viruses but not for EGFP-encoding control 

viruses. Furthermore, application of the prMin-RGC-promoters resulted in a 

limitation of endonucleolytic activity to p53-positive cells. These results provide 

evidence that I-Sce I can be successfully applied in the designed concept. 

 

6.1.5 I-Sce I-encoding Adenoviruses are superior to their EGFP controls in terms of 
selectivity regarding p53-selectivity 
 

In this work, recombinant adenoviral vectors were designed that replicate p53-

selectively based on a novel regulation mechanism. Data obtained in preceding 

experiments (figure 8) revealed that constructed viruses did show the correct 

expression patterns of regulatory proteins. Furthermore, expression of the virus-

encoded endonucleolytic enzyme I-Sce I was capable to cleave certain inserted 

target sequences within the adenoviral backbone in p53-positive cells (figure 9). In 

a subsequent experiment is was analyzed whether these data finally lead to a 

restriction of amplification of the recombinant vectors in p53-positive cell lines 

(A549, HepG2) compared to p53-dys-functional cells (Huh-7, H1299, Hep3B). 

Oncolytic activity was assessed 7 to 10 days after infection by crystal violet 

staining. In cells that possess only inactivated or even no p53 all viruses exhibited 

a lytic behavior (Figure 10, left panel). Importantly, corresponding I-Sce I and 

EGFP-control viruses did not show differences in their lytic capacities. 

Nonetheless, viruses using a CMV promoter to control the E1A gene exhibited a 

slightly higher lytic power than the hTERT-viruses. Since I-Sce I was expressed in 
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a p53-dependent manner, a regulation could only be expected in the p53-positive 

cell lines depicted in figure 10, right panel. In A549 cells, Ad-CMV-Sce lysed 

cells only at much higher employed MOIs than its control vector Ad-CMV-EGFP. 

The results correspond to hTERT-vectors where I-Sce I-expression led to reduced 

oncolysis. In HepG2 cells, the combination of I-Sce I with the transcriptional 

control of E1A by the hTERT promoter resulted in higher selectivity. Surprisingly, 

this was not observed in A549 cells. 

 

 
 

Figure 10. Oncolytic activity of recombinant adenoviral vectors in cells with 
transcriptionally active and impaired p53. Human cancer cell lines were seeded in 24 
well plates and infected with decreasing amounts (resulting in MOIs 20 – 0.0005) of the 
indicated viruses. 8 hours prior to infection cells were supplemented with 50 ng/ml 
Doxorubicin to activate p53 protein. Repeated infection cycles were allowed for 7 – 11 
days depending on the cell line. Cell staining was performed with crystal violet. Blue areas 
indicate non-lysed cells whereas unstained wells indicate extensive viral cytolysis. (Huh-7, 
mut-p53; H1299 and Hep3B, p53-deleted; A549 and HepG2, wt-p53) 
 
 
Vectors applying the additional regulatory mechanism of Gal4-KRAB did exhibit 

an I-Sce I-regulation as well (in A549, HepG2). However, compared to I-Sce I-

only viruses the extent was lower (half to one log step). Noteworthy, combining 
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the Gal4-KRAB and the I-Sce I regulation mechanisms resulted in a gain of 

selectivity. 

Induction of a cytopathic effect in Huh-7, H1299 and Hep3B cells differs 

markedly. Beside replication, the infectivity of a particular cell type contributes to 

the oncolytic effect of a given vector [155]. Considering the results of the control 

viruses (wt-Ad5, ONYX-015, Ad-CMV-Gal4-KRAB) indicates that Huh-7 cells 

can not be infected as good as H1299 or Hep3B cells by adenoviral vectors. 

Importantly, there were no or only very limited (hTERT-viruses in H1299) 

differences between an I-Sce I-encoding virus and its corresponding EGFP-control 

virus.  

In conclusion, recombinant adenoviral particles have been constructed that were 

demonstrated to be regulated by a p53-dependent endonucleolytic switch. 

Resulting, viral replication is highly restricted in wt-p53 cells, whereas oncolytic 

potency was not impaired in cell lines harboring dys-functional p53. This clearly 

indicates the functionality of the regulation concept employing I-Sce I. 
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6.2 Vesicular Stomatitis Virus 
 

In a second project the virus-host interaction of a natural tumor virus – Vesicular 

Stomatitis Virus (VSV) – were analyzed in human cancer cell lines. Special 

interest was paid to the action of the Bcl-2-family members that are involved in 

regulating apoptotic cell death. 

 

6.2.1 VSV-mediated decrease of Mcl-1 in human cancer cell lines 
 
In order to analyze levels of proteins of the Bcl-2-family following VSV-infection, 

human cancer cell lines were infected with wild type VSV (Indiana) at MOI 0.1 

and protein lysates were prepared (up to 48 hours post infection) with special 

interest on apoptosis-related proteins. Within the first 6 – 10 hours after infection a 

rapid decline of cellular levels of myeloid cell leukemia 1 (Mcl-1 ) protein was 

observed (figure 11A) in all tested cell lines. In contrast, levels of all other proteins 

including pro- and anti-apoptotic members of the Bcl-2 family as well as p53 

remained unchanged. Elimination of Mcl-1 seems to be independent of the p53 

status of an infected cell since p53 positive (HepG2, A549), mutant-p53 

expressing (Huh-7) and p53-negative (H1299, data not shown) cell lines were 

affected similarly in a comparable time frame. Unfortunately, it was not possible 

to detect transcriptional activation of the pro-apoptotic genes Puma (p53 target 

gene) and Noxa (by a p53 independent mechanism) that has been described 

elsewhere [94;116;156]. 

Mechanisms that lead to the destruction of Mcl-1 could be the following: first, it 

has been reported that Mcl-1 is specifically cleaved by caspase-3 at Asp-127 and 

Asp-157 inhibiting its pro-survival function [157-161]; further, Mcl-1 protein 

levels are reported to be regulated by ubiquitin-mediated proteasomal degradation 

through the ubiquitin E3 ligase MULE/LASU1 [162;163]; additionally, an enzyme 

related to growth factor pathways, glycogen synthase kinase 3 beta (GSK-3β), 

targets Mcl-1 for destruction by specific phosphorylation at Ser159 located within 

the PEST domain of Mcl-1 that subsequently leads to proteasomal degradation via 

a different E3 ligase called β-TrCP [164]. Additionally, it can not be excluded that 

VSV proteins directly degrades Mcl-1 or targets Mcl-1 for degradation. To test 

caspase and proteasome dependence of the VSV-mediated Mcl-1 decrease, A549 

cells were infected with VSV (MOI = 0.1) and concurrently treated with potent 
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pan-caspase (z-VAD-fmk) or proteasome inhibitors (MG132) for up to 12 hours 

(figure 11B). Z-VAD-fmk-treated cells showed kinetics of Mcl-1 decrease 

comparable to cells infected with VSV only. In contrast, proteasomal inhibition 

strongly stabilized the protein indicating that following VSV-infection Mcl-1 is 

not cleaved by activated caspases but is preferentially targeted for degradation via 

the ubiquitin-proteasome pathway by an unspecified E3 ubiquitin ligase.  

 

 
 
Figure 11. Decrease of Mcl-1 protein levels following VSV infection depends on 
VSV-mediated block of de novo proteins synthesis and proteasomal degradation of 
Mcl-1. (A) Human cancer cell lines were infected with wt-VSV (MOI = 0.1) and levels of 
apoptosis-related proteins were determined by western blotting. (B) A549 cells were 
infected with wt-VSV (MOI = 0.1) alone (control) or in combination with the pan-caspase-
inhibitor z-VAD-fmk (20 µM; z-VAD) or the proteasome inhibitor MG132 (20 µM). Cell 
lysates were analyzed by western blotting. (C) A549 cells were treated with various 
concentrations of the transcription inhibitor Actinomycin D (Act D) and harvested after 6 h. 
Alternatively, A549 cells were treated with 1 µg/ml Actinomycin D, harvested after 
indicated times (h) and then subjected to western blot analysis. (D) HepG2 cells were 
infected with mutant VSV (attenuated virus 1, AV1) at MOI = 0.1 and harvested after the 
indicated times. Protein extracts were prepared and analyzed by western blotting for Mcl-1 
and actin. 



6. RESULTS  63 

   

In general, Mcl-1 is rapidly turned over and, thus possesses a short half-life of 

smaller than 2 hours depending on the cell line [165-168]. VSV is known to block 

cellular protein biosynthesis globally by several mechanisms. This disrupted 

production of host cell proteins in conjunction with a constitutive protein 

degradation via the proteasome leads to rapidly declining levels of short-lived 

proteins – explaining Mcl-1’s elimination following VSV infection. In an attempt 

to investigate inhibition of cellular protein biosynthesis separated from other viral 

effects, A549 cells were treated with different concentrations of the transcription 

inhibitor Actinomycin D (Act D) and harvested after 6 hours or after up to 36 h 

(figure 11C). Resulting data clearly showed that effects of Act D-induced block of 

transcription on cellular Mcl-1 protein levels resemble those elicited by VSV. 

Comparable data have been achieved for Huh-7 cells (data not shown).  

The attenuated VSV mutant AV1 is unable to inhibit export of host mRNAs from 

the nucleus to the cytoplasm [94]. Following, the protein expression of AV1-

infected cells was demonstrated to act normally [94]. In order to analyze the effect 

of AV1 on the Mcl-1 level of human cancer cells, HepG2 cells were infected with 

AV1 (MOI = 0.1) and protein lysates were prepared every 12 hours (0 – 48 h). 

Western blot analysis clearly showed that AV1 – in contrast to wt-VSV – does not 

induce a decline of cellular Mcl-1 protein levels (figure 11D). Thus, it can be 

assumed that VSV-mediated block of cellular protein synthesis in conjunction with 

normal proteasomal degradation leads to the observed Mcl-1 decrease.  

Collectively, these data for the first time show that wt-VSV infection leads to a 

rapid decline of Mcl-1 protein level based on rapid proteasomal degradation. A 

similar decrease could not be observed for other pro- or anti-apoptotic Bcl-2-

family members in these experiments. 

 

6.2.2 VSV induces apoptosis via a strong activation of caspase-3 
 

It has been demonstrated previously, that wt-VSV infection leads to induction of 

apoptosis via caspase-9 and caspase-3-like proteases [124;169]. This indicates the 

involvement of the intrinsic pathway in wt-VSV-mediated apoptosis induction. 

To test whether VSV is capable to induce apoptosis in the used human cell lines 

caspase-3 activation was measured (figure 12). In HepG2 and Huh-7 cells caspase-

3 activities reached comparable top levels at 24 to 36 hours while those of 

uninfected controls remain low. In contrast, infected A549 cells exhibited only 



6. RESULTS  64 

   

about 10 % of these activities culminating at 36 hours. A typical cytopathic effect 

of VSV is rounding of the infected cell after induction of apoptosis [170]. This 

effect was detectable by bright field microscopy for all three cell lines. 

 

 
Figure 12. Human cancer cell lines induce apoptosis by activation of caspase-3 
following infection with wt-VSV. A549, HepG2 and Huh-7 cells were infected at low 
MOIs (MOI = 0.1) of wt-VSV (black marks) or left uninfected (open marks) and harvested 
after indicated times. Caspase-3 activity was calculated in fluorescence units per µg 
protein and hour. Data represent results of three independent measurements and are 
presented as means ± standard errors of the means (SEM). 
 
 
 

6.2.3 VSV mediates cleavage and subcellular relocalization of LC3 indicating induction 
of autophagy 

 
Accompanied with apoptosis, is was reported that VSV induces autophagy in 

plasmacytoid cells and mouse embryo fibroblasts [171;172]. Autophagy is not 

only another programmed cell death mechanism but is additionally known to be 

part of the innate and adaptive immune response against viral infections [171]. To 

analyze induction of autophagy in human cancers the fusion protein of LC3 and 

YFP was applied. LC3B is a mammalian autophagy associated protein 8 (Atg8) 

homologue that is widely used as marker for autophagy. Induction of autophagy is 

known to coincide with cleavage of LC3 into LC3-I and -II and subsequent 

relocalization to nascent autophagolysosomal structures [151].  
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Figure 13. VSV infection induces autophagy in human cancer cell lines. Transgenic 
cells expressing the fusion protein YFP-LC3 were treated with wt-VSV (MOI = 10), wild 
type human Adenovirus type 5 (MOI = 10) or the autophagy-inducing agent chloroquine 
(25 µM). (A) Time courses of autophagy induction by chloroquine, VSV and wt-Ad5. After 
treatment cells were analyzed by western blotting. Generation of cleaved LC3-YFP (lower 
band) indicates induction of autophagy. (B) Human cancer cell lines stably expressing 
YFP-LC3 were infected with wt-VSV (MOI = 0.1) and protein extracts were analyzed for 
YFP-LC3 cleavage by western blotting. (C) Transgenic human cancer cell lines A549 and 
Huh-7 were treated like indicated (control = untreated, CQ = 25 µM, VSV-MOI = 0.1) and 
analyzed by confocal laser scanning microscopy after 12 h. YFP-signals (green), nuclear 
staining with To-Pro3 (red) and merged pictures are shown. Formation of 
autophagolysosomal structures can be observed by emergence of YFP-LC3-foci in 
contrast to diffuse distribution in untreated cells (control). 
 
 
Following treatment with the potent autophagy inductor chloroquine (25 µM; CQ) 

LC3 was rapidly cleaved in stably transfected A549 cells (Figure 13A, left image). 

Infection with VSV or human wt-Adenovirus type 5 at MOIs = 10 revealed LC3-

cleavage and, thus induction of autophagy (figure 13A, right image). Weaker 

protein levels in case of VSV (for 24 – 48 hours) are an effect of the virus-

mediated block of protein production impairing the levels of the YFP-LC3. 
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Cleavage of LC3 could be detected in all three cell lines analyzed (figure 13B) 

even when low viral multiplicities (MOI = 0.1) were used. In addition to western 

blot analysis, induction of autophagy by VSV was confirmed by confocal laser 

scanning microscopy (CLSM)-aided monitoring of the relocalization of YFP-LC3 

to focused dots representing autophagolysosomes (figure 13C). In summary, the 

data indicate that VSV-induced apoptosis in human cancer cell lines is 

accompanied by induction of autophagy. 

 

6.2.4 Effects of Mcl-1 on activation of apoptosis and VSV amplification 
 

Previous results indicated that proteasomal degradation is responsible for Mcl-1 

elimination from VSV-infected cells (figure 11). To analyze more in detail the 

underlying mechanisms that target Mcl-1 for degradation an ubiquitination-

resistant mutant of Mcl-1 (mut-Mcl-1) was used (kindly provided by Xiaodong 

Wang, Dallas, TX, USA) where crucial lysine residues (targeted by 

MULE/LASU1) were replaced by alanines [162]. Cells harboring a Mcl-1 protein 

that can not be ligated to ubiquitin by MULE/LASU1, will not be normally 

processed by proteolytic activity of the proteasomes [162]. Then, A549 and Huh-7 

cells stably over-expressing wild type- or mutant-Mcl-1 were infected with wt-

VSV and Mcl-1 protein levels up to 36 hours post infection were compared (figure 

14A). While in parental cell lines Mcl-1 decreased rapidly, wt-Mcl-1-over-

expressing cells showed a markedly prolonged presence of the protein. Thus, mut-

Mcl-1 was detectable in VSV-infected cells up to 36 hours. The anti-apoptotic 

effect of Mcl-1 was analyzed by monitoring VSV-induced apoptosis in parental 

and transgenic (wt-Mcl-1, mut-Mcl-1, EGFP) A549 and Huh-7 cells. Results 

represented in figure 14B showed an impressive decrease of caspase-3 induction 

for both wt- and mut-Mcl-1-over-expressing cells in contrast to parental and 

EGFP-over-expressing controls. While A549 cells reached highest activation 

levels around 36 hours, Huh-7 values culminated earlier at about 24 hours post 

infection. To test whether increased Mcl-1 protein levels affect virus amplification, 

supernatants of infected cells were harvested every 12 hours to monitor produced 

viral progeny for a given period of time (figure 14C). Mcl-1 over-expression 

increased the produced VSV level at a statistically significant basis for all three 

time points. This might be directly attributed to lower levels of apoptosis induction 

for cells over-expressing mut-Mcl-1 (figure 14B). 
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Figure 14. Over-expression of wt-Mcl-1 or mut-Mcl-1 impairs induction of apoptosis 
in wt-VSV-infected human cancer cells. (A) Native A549 and Huh-7 cell lines and wt- or 
mut-Mcl-1-over-expressing derivatives were infected with wt-VSV (MOI = 10). Protein 
levels of Mcl-1 and actin were analyzed by western blotting to determine effect of VSV-
infection on cellular levels of the over-expressed Mcl-1 proteins depending on the time 
post infection. (B) Parental and transgenic A549 and Huh-7 cells expressing wt-Mcl-1, 
mut-Mcl-1 or EGFP were infected with wt-VSV (MOI = 0.1) and harvested after the 
indicated time points. Caspase-3 activity indicating induction of apoptosis was determined 
(data presented are means ± standard errors of the means (SEM)). (C) Parental and 
indicated transgenic A549 cells were infected with wt-VSV (MOI = 0.1). Supernatants 
were collected after the indicated times and viral titers were determined by TCID50 
analysis. Statistically significant differences were calculated from three experiments by 
Mann-Whitney-Test (*; p < 0.05). 
 
 
Taken together, over-expression of wt-Mcl-1 and a stabilized ubiquitination-

resistant mutant of Mcl-1 led to an increased protein level of Mcl-1 in VSV- 

infected human cancer cells. Increased protein levels subsequently impaired 
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induction of apoptosis measured by caspase-3 induction. Protein stabilization and 

less activation of the apoptotic cell death pathway coincided with higher viral 

titers. 

 

6.2.5 Mcl-1 does not influence VSV-induced autophagy 
 
 

 
Figure 15. Induction of autophagy by wt-VSV is not influenced by over-expression 
of wt- or mut-Mcl-1 in human cancer cells. (A) Transgenic A549 cells expressing YFP-
LC3 or YFP-LC3 and mut-Mcl-1 were infected with wt-VSV (MOI = 10). Western blot 
analysis determined LC3-cleavage and the Mcl-1 status. (B) The same transgenic cells 
were infected with VSV (MOI = 0.1), treated with chloroquine (CQ, 25 µM) or left untreated 
(control). Formation of autophagolysosomes indicating induction of autophagy was 
monitored by confocal laser scanning microscopy after 12 h (MOI = 0.1). Depicted are 
YFP-signals (green), nuclear staining with To-Pro3 (red) and merged pictures. 
 
 
Beside apoptosis, VSV was observed to induce autophagy in human cancer cell 

lines (figure 13). As Mcl-1 significantly influences VSV-induced apoptosis (figure 

14B), its actions on autophagic cell death were analyzed as well. For this purpose, 

A549 cells were stably transfected with YFP-LC3 alone or YFP-LC3 and the 

ubiquitination-resistant Mcl-1 mutant. Western blot analysis revealed no 

significant differences regarding the emergence of the LC3-cleavage product 

(figure 15A). To underpin this result, both cell lines were infected with low MOIs 
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of wt-VSV and 12 h post infection monitored for YFP-LC3-localization using 

CLSM. The typical formation of focused YFP-LC3 signals occurred in both cell 

lines independent of the Mcl-1 status (figure 15B). Whereas, untreated controls did 

not show any differences in both transgenic A549 cell lines, the number and 

intensity of the YFP-LC3-dots appeared to be minimally increased in CQ- and wt-

VSV-treated A549-YFP-LC3-mut-Mcl-1 cells compared to A549-YPF-LC3 cells. 

Thus, microscopic data support the notion that Mcl-1 does not or not detectably 

influence induction of autophagy by wt-VSV. 

 
6.2.6 Combination of VSV-virotherapy and Doxorubicin chemotherapy 

 

Over-expression of Mcl-1 is known to confer resistance to chemotherapeutic 

treatment in different human cancers [173;174]. Hence, virotherapy-mediated 

reduction of Mcl-1 protein levels would greatly improve treatment opportunities. 

As VSV infection rapidly leads to decreased levels of Mcl-1 (figure 11) it should 

be tested if the potential of combined treatment with VSV and Doxorubicin to 

induce apoptosis exceeded that of single treatments.  

A549 and Huh-7 cell lines over-expressing EGFP or mut-Mcl-1 were treated either 

with 100 ng/ml Doxorubicin or VSV (MOI = 0.1) or with a combination of 

Doxorubicin and VSV. Activation of caspase-3 was determined 24 h post infection 

(figure 16A). In general, expression of mut-Mcl-1 reduced apoptosis induction as 

already shown in figure 14B. A549 and Huh-7 cells expressing mut-Mcl-1, 

application of Doxorubicin did not or only slightly amplify the caspase-3-signal. In 

contrast, in control cells expressing EGFP instead of Mcl-1 caspase-3 values of 

combined treatment outstripped those of VSV single treatment of about 25 % in 

A549 and 50 % in Huh-7. This difference was statistically significant. 
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Figure 16. Combination of VSV-virotherapy and chemotherapy. (A) Transgenic A549 
and Huh-7 cells expressing EGFP or mut-Mcl-1 were exposed to 100 ng/ml Doxorubicin 
(Dox), VSV (MOI = 0.1), a combination of both or left untreated and activation of caspase-
3 was determined after 24 h. (B) Knock-down transgenic derivatives of Huh-7 cells 
expressing shRNAs against Bax, Bak or both were generated and effect on the indicated 
protein levels was determined by western blot analysis. (C) Knock-down transgenic 
derivatives of Huh-7 cells were subjected to caspase-3 activation analysis under indicated 
treatment strategies (100 ng/ml Doxorubicin, VSV-MOI = 0.1). Significance of differences 
was calculated using Mann-Whitney-Test (*; p < 0.05). (D) A549 and Huh-7 cells were 
treated with 100 ng/ml Doxorubicin (Dox) or 10 µg/ml 5-Fluorouracil (5-FU) in combination 
with VSV or exclusively with VSV (MOI = 0.1). Supernatants were collected every 12 
hours and viral titer was determined by TCID50 analysis (result of three measurements is 
shown). In general, data presented are means ± standard errors of the means (SEM). 
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Mcl-1, in concert with its pro-apoptotic binding partners Bak and Bax, regulates 

the permeability of the mitochondrial outer membrane. Therefore, the involvement 

of Bax and Bak in VSV-mediated apoptosis and chemotherapy-induced caspase-3 

activation was analyzed in Huh-7 cells stably expressing shRNAs directed against 

Bax, Bak or both proteins (figure 16B). Silencing of Bax and Bak resulted in a 

strong reduction of caspase-3 activation in VSV or combination-treated cells 

(figure 16C). In contrast to control cells (parental, scrambled shRNA), knock-

down of Bax and/or Bak led to an impaired sensitization of virally transduced 

tumor cells against chemotherapy.  

An important prerequisite for the application of oncolytic viruses in combination 

with conventional chemotherapy is an unimpaired viral replication to maintain 

virotherapeutic efficacy. The influence of chemotherapy on viral amplification was 

assessed for Doxorubicin (100 ng/ml) and 5-Fluorouracil (10 µg/ml) by 

determining viral offspring in the supernatants of infected cells produced in 12 

hours-periods in the course up to 48 hours post infection. Results of figure 16D 

demonstrated that VSV replication is not altered by therapeutically relevant 

concentrations of the applied chemotherapeutic agents.  

In summary, VSV-mediated decrease of cellular Mcl-1 protein level could be 

rescued either by stabilization of Mcl-1 or by knock-down of the pro-apoptotic 

Mcl-1 binding partners Bax and Bak. It could be demonstrated that 

chemotherapeutic treatment does not interfere with viral replication. 

 
6.2.7 Combination of VSV and chemotherapy enhances treatment efficacy of xeno-

transplanted human tumors in vivo 
 

Data obtained in vitro as described above suggest a relation between VSV and 

Mcl-1 that can be therapeutically exploited by additional chemotherapy to enhance 

apoptosis. Confirmation of this principle in vivo would greatly support the 

significance of in vitro results. For this purpose, A549 tumors were inoculated in 

nude mice and grown tumors were treated with a combination of 20 µg 

Doxorubicin intravenously and 1x 107 particles VSV intratumorally twice a week. 

Figure 17A illustrates the treatment success by development of the tumor size. 

Untreated or Doxorubicin-treated tumors constantly grew without a detectable 

difference. In contrast, tumors treated with VSV showed a marked delay of 

growth. Only application of the combined virochemotherapy was capable to 
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induce shrinkage of tumor size (of about 10 %) demonstrating the therapeutic 

succes. These results were supported by HE stained tumor sections (figure 17B) 

that were prepared from the treated tumors after day 40. VSV alone caused areas 

of cytopathic effects (no cell nuclei detectable, loss of normal cell morphology) 

that were significantly enlarged when tumors were treated with VSV and 

Doxorubicin in combination. 

  

Figure 17. Destruction of xeno-transplanted A549-tumors on nude mice is superior 
for combination over single treatments. A549 tumors were implanted on nude mice 
and treated twice weekly with 20 µg Doxorubicin intravenously and/or 1x 107 infectious 
VSV particles intratumorally or left untreated (four groups each of 6 animals). Tumor 
growth was assessed every 5 days by a digital caliper. (A) Tumor volume was calculated 
and is depicted in relative representation (day 0 = 100 %), statistical significance was 
determinded by Mann-Whitney-Test (*; p < 0.05). Data presented are means ± standard 
errors of the means (SEM). (B) Mice were sacrificed at day 40 and tumors were 
embedded in paraffin and sections stained with hematoxylin/eosin. Areas displaying 
cytopathic effects are encircled. 
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Further experiments were performed to analyze this effect more in detail. 

Detectable effects of VSV treatment on the molecular level in vivo such as 

apoptosis induction or viral spreading are only hard to investigate when tumors 

were infected for several times over a long period of time like described for figure 

17. Consequently, the experimental setting was altered. A549 tumors on nude mice 

were treated with Doxorubicin and VSV alone or in combination. In contrast to the 

formerly depicted experiment (figure 17), treatment was performed only once and 

tumors were harvested 1, 3 or 5 days later. Immuno-histochemical staining (anti-

VSV-G-staining) of tumor sections was performed. In uninfected tumors, VSV-G 

was not detectable (figure 18A). In tumors that had been treated with VSV with or 

without additional Doxorubicin application the resulting staining reveals the 

presence of VSV-G protein. However, VSV-G appeared to be rather weak and can 

not be satisfyingly detected. HE staining from figure 17B demonstrated extensive 

cytopathic effects for VSV-infected tumors, so presence of VSV is necessary for 

this effect. Staining would be expected to be near to or at the rim of the destroyed 

tissue area. It might be speculated whether VSV in general spreads very slowly or 

cytopathic effect occurs only after repeated virus application. Other reports 

depicting vast intra-tumoral spreading of VSV were performed in rats and applied 

monoclonal mouse-anti-VSV-G antibodies [136;175-177]. This antibody would 

not be applicable in the used mouse model. Surprisingly, literature provides only 

very few references demonstrating histological staining of intra-tumoral VSV-

spreading in mice by applying polyclonal antibodies against VSV-G. However, 

presented images have not achieved quality of results obtained within rats [149]. 

Thus, presumably intratumoral VSV-G detection is limited by technical reasons 

indicating the need for a potent, non-murine antibody for IHC applications. 

Consequently, in vivo-data could not prove differences between treatment 

strategies regarding viral spreading (figure 18A). On the other hand, this would be 

in concordance with results obtained from cell culture experiments where viral 

replication was not affected by chemotherapy (figure 16D). 
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Figure 18. Biochemical analysis of tumor sections. A549 tumors were implanted on 
nude mice, treated once as indicated (1x107 VSV particles intratumorally, 20 µg 
Doxorubicin (Dox) intravenously), harvested after 1, 3 or 5 days and embedded in paraffin. 
(A) Paraffin sections (day 5) were stained for VSV surface glycoprotein compared to an 
isotype control. Brown dots (marked with arrows) indicate areas of VSV presence. (figure 
is continued on next page) 
 
 
Induction of apoptosis in vivo was assessed by detecting apoptotic cells by 

terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay 

(figure 18B). Untreated tumors (control) did not show any TUNEL-positive 

signals. Doxorubicin-treated tumors exhibited only a small fraction of cells that 

underwent apoptosis (figure 18B, left column), however, TUNEL-signals increase 

up to day 5. VSV is a potent inducer of apoptosis in xeno-transplanted tumors 

since figure 18B demonstrated an impressive TUNEL-signal already 24 hours after 

VSV infection (middle column). Yet, in concordance with in vitro results, 

combination of chemotherapy and virotherapy was demonstrated to induce 

apoptosis at an even higher fraction of cells (figure 18, right column, days 3 and 
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5). As TUNEL signals multiply for days 3 and 5 compared to day 1 viral spreading 

must have occurred. Together, both results of apoptosis induction (TUNEL assay) 

and the observation of an amply cytopathic effect by HE staining contrast the 

results from immuno-histochemical analysis of infected tumors. 

 

 

 
Figure 18. Biochemical analysis of tumor sections (continued). (B) Detection of 
apoptotic cells was performed by staining DNA nicks by TUNEL assay (terminal 
deoxynucleotidyl transferase dUTP nick end labeling) (green signals), cell nuclei were 
colored by DAPI-staining (blue). Representative pictures were chosen for display.  
 
 
Concluding, results from the here illustrated in vivo experiments demonstrate that 

VSV-mediated down-regulation in vivo can be exploited to sensitize human 

tumors to standard chemotherapy, since combination of VSV and Doxorubicin 

treatment led to higher extent of apoptotic areas and areas with cytopathic effects 

within tumor sections compared to VSV or Doxorubicin treatment alone. Thus, 

results obtained in vivo underpin in vitro data (figure 16). VSV spreading appeared 

not to be impaired in vivo (figure 18A) indicating that increased apoptosis 
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originates from the combined effect of VSV and Doxorubicin treatment and not 

from improved viral spreading. 
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7. Discussion 
 

Oncolytic viruses represent a novel class of anti-cancer agents. Development of 

replication-competent viruses addresses the limited capacity of standard therapies 

to cure solid human cancers. Therapeutic success of oncolytic agents finally will 

depend on a thorough understanding of both the biology of the therapeutic virus 

and its interaction with cancerous and non-cancerous tissue. In the thesis presented 

here, virus-host-interactions between oncolytic viruses and human cancer cell lines 

were investigated to tightly restrict oncolytic virus infection to tumor cells. In a 

first project, a novel concept was established that for the first time refers to the 

destruction of oncolytic viruses in normal cells, thus aiming to prevent generation 

of viral break-through long time after treatment. This approach involved the 

application of a highly specific DNA endonuclease from yeast (I-Sce I) that was 

expressed by the oncolytic Adenovirus in a p53-selective manner. Secondly, the 

Vesicular Stomatitis Virus (VSV) is a long studied animal virus but only for about 

35 years its meaning as anti-tumor agent is unraveled. Research is focused on wild 

type, mutant and engineered viruses. Nonetheless, the interaction of VSV and 

mammalian cells appears to be rather complex especially when considering that 

the virus only encodes five proteins and that a major part the matrix protein is 

responsible for manipulating the infected cell. Here, special emphasis was set on 

the meaning of proteins of the Bcl-2-family in VSV infected tumors. 

 

7.1 Recombinant adenoviral vectors  
 

The literature provides a wealth of concepts to restrict adenoviral replication and 

subsequent cell lyses to cancerous cells while normal tissue is spared (reviewed in 

[42]). In practice, infection of tumors with a self-replicating agent eventually will 

lead to infection of normal cells as well. Frequently, this issue has been addressed 

by development of mechanisms that prevent replication of viral therapeutics in 

non-target cells. According to the underlying strategies, four different regulation 

principles can be defined: transductional, transcriptional, translational and 

apoptosis targeting [26]. 

The modification of attachment proteins on the virus surface can be applied to 

target tumor cells exposing receptor molecules that are exclusively or at least 

preferentially expressed on tumor cells, e.g. the Her2/neu tyrosine kinase receptor 
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or the epidermal growth factor receptor (EGFR) [144;178]. This so called 

transductional targeting leads to preferential virus entry into cancer cells. This 

strategy includes the activation of viral surface proteins by proteases that are 

abundant in tumor-specific microenvironments [179] and expression of virus-

encoded soluble fusion molecules [180].  

Another concept (apoptosis targeting) involves the modification of viral genes 

whose products are essential for virus propagation in normal cells but are 

dispensable in tumor cells [37]. Deletion of adenoviral E1 genes that inhibit 

apoptosis and cell cycle arrest in infected cells renders Adenoviruses sensitive for 

p53 and RB induced apoptosis in normal cells. In contrast, in tumor cells with 

frequently occurring non-functional p53 and RB proteins E1-deleted Adenoviruses 

still are capable of generating infectious offspring without inducing cell death 

[181;182]. 

DNA viruses like Herpes Simplex Virus or Adenovirus can be transcriptionally 

restricted to tumor cells by inserting promoters that are primarily active in tumor 

tissue and regulate the transcription of genes that are essential for viral replication. 

In the case of Adenoviruses, promoters of the prostate specific antigen (PSA) 

[183] or the human telomerase reverse transcriptase (hTERT) [184] allowed a 

conditional replication in tumor cells. In recent years, development switched from 

rather simple promoter arrangements to more complex gene networks to limit virus 

replication to cancer cells. One example was introduced by our group applying a 

p53-sensor and a transcription repressor element [74]. 

It was suggested recently that genes responsible for cancer development are 

involved in anti-viral defense mechanisms as well [14;15]. A prominent example 

is the interferon system that represents a key module of innate anti-viral immunity 

and is often inactivated in tumor cells [36]. This difference between normal and 

cancerous cells for example can be exploited by the naturally tumor-selective virus 

Vesicular Stomatitis Virus (translational targeting). Normal VSV-infected cells 

initiate a strong IFN response leading to a global shut down of translation in 

neighboring cells. In contrast, cancer cells with impaired IFN signaling pathways 

remain susceptible to VSV infection since biosynthesis of VSV proteins is not 

inhibited. Based on this concept VSV vectors were created that show an increased 

specificity for cells with impaired IFN-pathways. In a first study, mutation of a 
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viral key protein (VSV-M) restored interferon release [94] while in another 

approach an IFN-β gene was inserted into the virus genome [147]. 

However, these regulatory circuits are observed to be overcome by physiological 

circumstances finally allowing the emergence of viral particles from normal tissue 

(“leakiness”) [185;186]. This was attributed to several mechanisms such as “auto-

activation” feedback loops of regulated viral genes and limited attenuation of the 

applied tissue-specific promoters that control viral genes essential for replication 

[186-189]. Additionally, infection of non-target cells with high amounts of 

infectious particles will allow for undesired viral replication. Thus, more 

sophisticated regulation concepts are required to increase safety profiles of 

existing oncolytic viruses. 

The concept presented here (figure 6) provides a novel approach to render 

adenoviral vectors permanently non-functional by specific destruction of the viral 

genome. Central tool to achieve vector DNA destruction is the yeast endonuclease 

I-Sce I. In contrast to other endonucleases, the rare-cutting enzyme I-Sce I displays 

promising properties for the application in this concept. It has been reported that 

expression of the enzyme is well tolerated by mammalian cells suggesting that 

these complex genomes do not or only to a very limited extent provide I-Sce I-

recognition sequences [82]. Importantly, the 18 bp long recognition sequence can 

not be found in the genomic information of human Adenovirus type 5.  

To learn about functional properties of I-Sce I, first experiments were performed 

on basis of plasmids in cell culture. It could be observed that the enzyme is 

properly localized to the cell nucleus of human cancer cells and that it does 

possess a detectable capacity to specifically cleave circular or linear target reporter 

vectors (figure 5). However, data suggest a strong reaction of human cells on I-Sce 

I-mediated cleavage as they efficiently repair DNA double strand breaks ([152], 

personal communication with F. Pagues, Cellectis SA). To enable proper 

monitoring of I-Sce I-cleavage, it appeared to be reasonable to insert more than a 

unique I-Sce I-recognition site in the viral genome. Since I-Sce I is reported to be 

more efficient when concentration of target sequences was low [190] the number 

of recognition sequences in the adenoviral backbone was limited to two I-Sce I-

sites. Furthermore, two I-Sce I-sites can be placed in inverted or directed 

orientation in an adenoviral genome because the 18 bp long recognition sequence 

is non-palindromic. In general, excision of a recognition site-framed adenoviral 



7. DISCUSSION  80 

   

DNA region was supposed to lead to a rapid circularization of the resulting 

fragment. This circularization would prevent a latter recruiting as a possibly 

“missing piece fragment” into other cleaved fragments to render an inactivated 

adenoviral backbone functional again. Noteworthy, fusion of DNA ends with no or 

only little sequence homology by the non-homologous endjoining (NHEJ) 

pathway leads to destruction of intact cleavage sites. Thus, adenoviral backbones 

encoding the inverted recognition site setup upon cleavage and religation would 

result in an excised, circular DNA fragment that could not be rescued by I-Sce I-

cleavage since the recognition site is destroyed during the religation step [152]. In 

contrast, the directed orientation could result in re-cleavable fragments. 

Nonetheless, these mechanisms have to be further investigated in detail. 

Since E1A has been demonstrated to be the major regulator of adenoviral 

replication it was chosen as target for transcriptional regulation in a variety of 

studies. Most prominently, heterologous promoters are utilized to restrict E1A 

expression to a desired cell type or tissue [58-62;184]. Therefore, one cleavage 

sites of I-Sce I was inserted 5’ of the E1A gene to separate the gene from its 

driving promoter upon I-Sce I cleavage (figures 6, 7). The second recognition 

sequence was situated downstream of the E1B genes. This setup allows the 

excision of the whole E1 gene family that is essential for initiation of adenoviral 

replication – and for cellular transformation. Integration of an intact E1 DNA 

region into a mammalian genome has previously been reported to be sufficient for 

transforming human embryonic kidney cells [50]. 

Upon generation, recombinant adenoviral particles were analyzed for their protein 

expression patterns to check functional integrity of the constructed genomes. 

Correct expression of regulatory proteins was a prerequisite for the functioning of 

the concept. Subsequently, the activity of virus-encoded I-Sce I protein was 

analyzed. To this end, it was hypothesized that – within a pool of very different 

cleavage-religation products – circularized E1 fragments might have emerged that 

could be detected by PCR indicating I-Sce I cleavage. As a matter of fact, expected 

PCR products were exclusively detected in p53-positive cells. In contrast, for 

EGFP-encoding viruses or in p53-impaired cells, the cleavage activity could not be 

examined. This underlines the selectivity of the p53-dependent promoter prMin-

RGC and its use in the provided concept.  
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After exploring certain characteristics of the regulation system, the test of the 

constructed viruses provided evidence for proof of the concept in oncolysis assays 

applying p53-positive and p53-deleted/impaired cell lines. Viruses being regulated 

by a prMin-RGC-I-Sce I-switch were more selective to p53 than their control 

vectors (factor 10 – 100) while exposing comparable lytic levels in p53-impaired 

cell lines. Surprisingly, the CMV-setup provided a higher selectivity than the 

hTERT-viruses in A549 cells. In contrast, in HepG2 cells the hTERT viruses were 

superior to CMV-viruses regarding restriction. Activation of hTERT expression is 

an essential element of cancer development in humans while this is not observed in 

normal differentiated cells [65]. Thus, integration of an hTERT promoter in an 

adenoviral setup to control E1A expression adds an additional level of selectivity 

to the replication regulation mechanism. According to this, it seems questionable 

that differences regarding hTERT status of HepG2 and A549 might explain the 

differing results. Rather, an experiment including non-transformed cells would 

yield reasonable results on this issue. 

Similar results were observed as well when I-Sce I-switch and an additional 

transcriptional regulation by Gal4-KRAB were combined. For these viruses (Ad-

CMV- or Ad-hTERT-Gal4-KRAB-I-Sce I) gain of selectivity showed comparable 

values (factor 10 – 100) when compared to the corresponding EGFP-controls. As 

viruses harboring both regulation principles showed an almost similar lytic pattern 

in cells with impaired p53 status, it can be concluded that combining these 

regulators renders the viruses more selective. This is in concordance with former 

reports about combining two separate regulatory elements [61;66]. 

The first and very prominent oncolytic adenoviral vector, Addl1520 (Onyx-015), 

was tested as control vector. Originally, replication of ONYX-015 was reported to 

be exclusively dependent on the p53 status of an infected cell. This assumption 

was based on deletion of the E1B-55k gene that is known to inactivate functional 

p53 protein. While ONYX-015 replicated normally in p53-dys-functional cells it 

did not propagate in p53-positive cell lines. However, following reports questioned 

the role of p53 on selectivity of ONYX-015. Rather, differential late viral mRNA 

export seems to be determining selectivity of Onyx-015 [72]. Independently of 

these discussions, ONYX-015 has maintained its meaning as important standard 

vector since it is currently subject of clinical trials. Compared to ONYX-015 all I-

Sce I-encoding viruses exhibited a higher restriction in p53-positive cells, thus 
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demonstrating functionality of the I-Sce I-concept. Importantly, I-Sce I-encoding 

viruses performed equally or even better in cells with deleted or mutated p53 genes 

(figure 10). 

Taken together, the application of a genome-destruction switch that acts p53-

selectively and specifically on adenoviral DNA provides a new tool for restricting 

viral replication to cancer cells. Nonetheless, based on the provided data questions 

arise that will have to be answered to demonstrate an advantage over previously 

described regulative mechanisms. First, results for selectivity have to be verified in 

other additional lines to provide evidence for a generalized application. Performing 

experiments in isogenic cell lines only differing in the transcriptional status of p53 

[191] would greatly enhance validity of the so far obtained data. Next, it can be 

speculated whether excision of a genomic region that is essential for viral 

replication results in decreased levels of mRNA and protein of E1A since cleavage 

separates the driving promoter from the E1A gene. It can be assumed that there is 

a competition between prMin-RGC-promoter and the promoter controlling E1A. If 

transcription of the E1A gene is initiated rapidly and leads to high amounts of 

functional protein, I-Sce I-cleavage will not result in block of adenoviral 

replication. This can be observed for high applied MOIs in oncolysis assays (figure 

10, MOIs = 5 – 20, A549, HepG2). Importantly, these examinations should be 

performed within the early phase after infection. 

As alternative to this “transcriptional explanation”, in a replication-based theory it 

could be argued that decreased numbers of adenoviral genome templates (lacking 

the essential left ITR) are responsible for the observed effects. Analysis of the 

number of genomic DNA templates in p53-positive and –negative cell lines would 

address this question.  

Thirdly, the concept claims to inactivate viruses in normal cells. Generation of free 

DNA-ends by destruction of adenoviral DNA activates DNA repair pathways that 

could activate cell death programs [152]. Thus, survival of infected normal cells 

has to be tested to exclude apoptosis-targeting as underlying regulation 

mechanism.  

If all these questions are answered, a fourth point seems worth to be explored: 

cleavage products of adenoviral DNA might be subjected to error-prone repair and 

can be incorporated into the cells genome. Integration of the E1 region should be 

prevented as the combination of these genes possesses transformative potential 
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[50]. It has been previously shown that I-Sce I-mediated excision of an EGFP gene 

from a plasmid vector leads to integration into Xenopus genomes [192]. This 

indicates that integration of DNA fragments is not only a theoretical challenge. 

Additionally, this observation supports the strategy to limit the number of I-Sce I-

recognition site to minimize the amount of cleavage products. In order to prevent 

insertion of functional adenoviral genes into the host genome, an alternative 

positioning of the I-Sce I-cleavage sites – such as within the E1A gene – might 

pose a solution.  

In addition to the potential transformative potential of the generated cleavage 

products, there occurs another problem based on the action of DNA repair 

processes. Cleavage and subsequent religation of adenoviral cleavage products 

might result in functional adenoviral backbones that were rendered I-Sce I-

insensitive by destruction of one or both inserted cleavage sites. To limit the 

emergence of these I-Sce I-insensitive break-through mutants, it might be 

promising to insert additional I-Sce I-sites in the adenoviral backbone. 

Alternatively, and in conjunction with the aim to reduce the transformative 

potential of this concept, altered positioning of cleavage sites within the E1A gene 

would be a smart solution. Since DNA repair processes were demonstrated to be 

highly error-prone (deletions and insertions of nucleotides were reported) [152], 

this would inactivate the E1A gene e. g. by frame-shift-mutations.  

Noteworthy, this concept requires novel virus production processes. Usually, 

adenoviral vectors are propagated in 293 cells. These cells are stably transfected 

with an intact adenoviral E1 region that leads to degradation of p53. However, 

monitoring virus infection clearly demonstrates residual p53 function since prMin-

RGC promoter allowed expression of EGFP in control viruses. Thus, it has to be 

assumed that I-Sce I is expressed as well. This certainly increases the risk of 

amplification of I-Sce I-insensitive mutant particles that impair safety of the 

vector. However, preliminary experiments with p53-deficient H1299 and Hep3B 

cells resulted in unsatisfying viral titers thus requiring different cell lines. 

 

In summary, it can be concluded that the application of the yeast meganuclease I-

Sce I represents a promising strategy to degrade conditionally replicating 

Adenoviruses in p53-selective manner. The provided results demonstrated a high 

selectivity and efficacy profile of the constructed vectors that is superior to other 
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established regulation mechanisms. Future efforts will be made to promote the 

established concept by providing valid data on the mechanism of action.  

 

 

 

7.2 VSV-mediated Mcl-1 destruction 
 

The natural tumor virus Vesicular Stomatitis Virus (VSV) is known to selectively 

infect and destroy human cancer cells while normal cells are spared from cell lysis. 

Great effort has been made to investigate underlying mechanisms for tumor 

selectivity. Several studies have demonstrated a strong dependence of VSV on an 

impaired interferon system [34;93]. Other cellular components like the tumor 

suppressor protein p53 have also been reported to play a role in handling VSV 

infection in mammalian cells [14;116]. Importantly, oncolytic viruses destroy 

infected cells subsequent to infection. In this process induced apoptosis seems to 

play a more or less important role for the replication cycle of different 

therapeutically exploited viruses. Usually, induction of apoptosis limits viral 

amplification, and therefore viruses have developed different strategies to prevent 

premature apoptotic cell death prior to the completion of the viral life cycle 

[193;194]. On the other hand, virus-induced apoptosis can not simply be 

interpreted as anti-viral defense mechanism. Rather, it was described that 

apoptosis might facilitate release of viral offspring from infected cells to enhance 

viral spreading [195;196]. For VSV the process and meaning of induced apoptosis 

have been investigated in several studies. VSV was reported to trigger apoptosis at 

early stages in the viral life cycle [125]. Shortly after infection and uncoating of 

virions but prior to synthesis of viral proteins and start of replication, apoptosis is 

induced. Surprisingly, even UV-inactivated viruses were capable to induce 

apoptotic cell death. This observation is not unique for VSV but is in concordance 

with results obtained for other viruses like Sinbis virus [197], reovirus [198] and 

vaccinia virus [199]. For VSV, a crucial role for the viral matrix protein was 

suggested in inducing apoptosis since transfection of mRNA of the viral M-protein 

is sufficient to elicit apoptosis in human neural cells in the absence of other viral 

components [126;127]. In the same study, for BHK cells the contribution of 

another unknown viral component that contributes to induction of apoptosis has 

been proposed [127]. On the molecular level it has been described that VSV 
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infection leads to activation of caspase-3 and caspase-3-like proteases 

[124;126;127]. For murine fibroblasts an Apaf1-mediated activation of caspase-9 

was observed [200]. Following VSV infection, caspase-9 is activated in simian 

kidney fibroblast Vero-76 cells [169], HeLa and BHK cells [201]. While for wild 

type VSV caspase-8 activation has been challenged [169], certain mutant VSV 

strains exclusively induce apoptosis via the extrinsic pathway employing caspase-8 

[139]. In the here presented study, caspase-3 activation was measured to evaluate 

induction of apoptosis. For the analyzed human cancer cell lines HepG2, A549 and 

Huh-7 caspase-3 activity markedly increased 24 hours post infection at MOI = 0.1. 

In concordance, for Vero-76 cells an increase of caspase-3 activity has been 

reported 2 – 3 hours post infection, though cells were infected with much higher 

amounts of virus (MOI = 50) [169]. 

In HeLa cells caspase-8 and -9 activities were reported to be reduced by over-

expression of the anti-apoptotic Bcl-2 protein [202]. Furthermore, over-expression 

of Bcl-2 was shown to inhibit downstream effects of VSV-mediated activation of 

caspase-3 such as PARP-cleavage and DNA fragmentation [124]. Additionally, the 

cellular level of Bcl-xL declines in VSV infected Vero-76 cells [169]. These 

results demonstrate an important role for members of the Bcl-2 family of proteins 

in virus-host-interaction. In order to investigate the impact of VSV on this protein 

family, human cancer lines were infected with low MOIs of wild type VSV and 

subsequently analyzed for levels of proteins associated to apoptotic pathways. In 

line with earlier results Bcl-2 and Bax protein levels were not altered following 

VSV infection, whereas the decline for Bcl-xL was not reproducible in these 

experiments [124;169]. Surprisingly, one member of the Bcl-2 family of proteins, 

myeloid leukemia cell 1 (Mcl-1) protein, showed a marked decrease of protein 

levels when cells are infected with wild type VSV (figure 11A). This decrease was 

not demonstrated to be dependent of the p53 status of the infected cells. 

Additionally, this decrease is independent of caspase cleavage since general 

inhibition of caspase activity by the pan-caspase inhibitor z-VAD-fmk was unable 

to stabilize Mcl-1 protein levels. In contrast, application of MG132 resulted in 

significant recovery of Mcl-1 protein levels suggesting a role of the proteasome 

system in Mcl-1 degradation. This is consistent with former results where E1A- or 

DNA-damage-mediated Mcl-1 destruction could be blocked by application of 

MG132 or the structurally different proteasome inhibitor epoxomicin [167;203]. 
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Block of general protein biosynthesis by the transcription inhibitor Actinomycin D 

led to a drop of cellular Mcl-1 levels that displayed a noticeable similarity to VSV-

mediated Mcl-1 elimination (figure 11C). Furthermore, in a very recent report it 

was demonstrated, that the VSV mutant AV1 – that lacks the capacity to 

efficiently block host cell protein biosynthesis due to a mutation in the viral M-

protein – did not influence Mcl-1 levels what is in striking contrast to the wild type 

virus [129]. Preliminary experiments with HepG2 cells (figure 11D) confirm that 

AV1 does not influence Mcl-1 protein levels like wt-VSV.  

 

 
Figure 19. Influence of wt-VSV on host cellular protein biosynthesis. Uninfected cells 
(left side) perform protein biosynthesis by transcribing genes into mRNA, subsequent 
ripening, export and translation of these mRNAs in the cytoplasm of the cell. After protein 
folding and post-translational modifications proteins are turned over in a specific manner. 
Infection of cells with wt-VSV (right side) is followed by a rapid block of certain steps (so 
far reported for transcription, translation, and especially mRNA-export) of the host cellular 
protein production machinery to inhibit actions of anti-viral pathways. This results in lack of 
new functional host (but not viral) proteins and leads to a detectable decline of short-lived 
host cell proteins. 
 
 
In summary, these data provide evidence that VSV infection leads to a rapid 

decline of Mcl-1 protein based on the combination of blocked de novo protein 

synthesis by VSV and continuous proteasomal degradation of Mcl-1 (figure 19). It 

has been demonstrated that a Mcl-1 mutant that can not be ubiquitinated is 
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significantly more stable following VSV infection (figure 14A). This indicates that 

proteasomal degradation is mediated by the Mcl-1 ubiquitin-E3-ligase 

MULE/LASU1 [162]. However, the results described here do not exclude the 

possibility that VSV directly targets Mcl-1 for proteasomal destruction. 

Furthermore, it could not be evaluated whether GSK-3β is involved in targeting 

Mcl-1 for ubiquitination. Although it can not be ruled out, a contribution of GSK-

3β appears rather unlikely as this enzyme today is primarily known to play 

important roles in energy metabolism, cell development and body pattern 

formation [204]. The recently demonstrated link between GSK-3β and the intrinsic 

apoptotic pathway [164] might hold promise for further investigations including a 

possible role of GSK-3β in fighting viral infections via Mcl-1 phosphorylation.  

The Mcl-1 protein, among Bcl-2, Bcl-xL, Bcl-w and A1 is a member of the pro-

survival subgroup of the Bcl-2 family of proteins, although differing in certain 

structural and functional characteristics from the other proteins. Mcl-1 is situated 

in the outer mitochondrial membrane and inhibits release of cytochrome c 

[158;166]. Pro-apoptotic Bim, Bid, Puma and Noxa proteins are known binding 

partners of Mcl-1 [203;205-209]. The interaction of pro-apoptotic Bak protein and 

Mcl-1 suggests a scenario where sequestration of the Bak protein by Mcl-1 

prevents oligomerization of the pore-forming Bak molecules. However, 

mechanisms by which Mcl-1 blocks the onset of apoptosis are not yet fully 

understood and are still under constant debate.  

In contrast to other Bcl-2-family members, Mcl-1 is an early-response gene that 

can be rapidly induced and turned over [166;210;211]. This property makes Mcl-1 

an ideal early-response element in the apoptotic signaling cascades, thus playing a 

protective role against DNA damage, adenoviral infection, growth factor 

withdrawal, and treatment of cytotoxic agents [167;203;212-217]. Disappearance 

of Mcl-1 has been reported to contribute to the onset of apoptosis and is provoked 

by combining blockade of protein synthesis and continued protein degradation 

[167;203]. Consistently, when cells over-expressing wild type or a stabilized 

mutant of Mcl-1 were infected with VSV levels of apoptosis induction dropped 

markedly (figure 14B). This inhibition of apoptosis coincides with elevated levels 

of viral progeny that is produced within the first 36 hours after infection (figure 

14C). Comparable results for virus titers were reported for Jurkat cells over-

expressing Bcl-2 [124]. According to the data mentioned, it might be speculated 
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whether Mcl-1 is a general anti-viral switch that facilitates induction of apoptosis 

in RNA and DNA virus-infected cells. Based on its short half-life, Mcl-1 is ideal 

for sensing viral hijacking of the translation machinery. Involvement in anti-viral 

defense is further supported since Mcl-1 has been reported to be down-regulated 

by other viruses (Adenoviruses, infectious pancreatic necrosis virus) as well 

[203;218].  

While the role of Mcl-1 in the apoptotic pathways is getting clearer much less is 

known about its involvement in autophagy. Autophagy is an ancient cellular 

degradation process for proteins, organelles and cytoplasm, that promotes both cell 

death and survival and participates in innate and adaptive anti-viral immune 

responses [219]. Recently, a weak interaction between Mcl-1 and Beclin-1, a Bcl-2 

interacting protein that promotes autophagy has been reported [220]. Since VSV 

was observed (figure 13) and reported to induce autophagy [171;172] it was 

interesting to investigate a possible contribution of Mcl-1 to autophagy. The over-

expression of a stabilized Mcl-1 mutant in VSV-infected cells did not significantly 

alter the observed state of autophagy compared to infected parental cells indicating 

that Mcl-1 neither directly nor indirectly is involved in autophagy in VSV-infected 

cells. The contribution of autophagy to cancer and virus infection is ambivalent. 

Autophagy was reported to promote or to restrict cancerous development 

[221;222]. In virally infected cells, autophagy might provide a defense strategy of 

the infected cell or, in contrast, a viral mechanism to gain access to cellular 

resources [223;224]. Experiments carried out here can more or less suggest an 

exclusion of a decisive role for Mcl-1 in VSV-induced autophagy.  

In a variety of human hematopoietic and lymphoid cancers, including B-cell 

lymphoma, chronic lymphocytic leukemia, chronic myeloid leukemia, mantle cell 

lymphoma and multiple myeloma, Mcl-1 has been shown to be over-expressed 

[225-230] suggesting a role in cancer development for Mcl-1. Additionally, cells 

with elevated Mcl-1 levels exhibit a more resistant phenotype to conventional 

chemotherapeutic treatment than cells with normal Mcl-1 protein levels [173;174]. 

Thus, several strategies to target Mcl-1 have been described including small 

molecule inhibitors [209;231-234], anti-sense molecules and RNA interference 

[235;236]. In this work it was shown that VSV leads to Mcl-1 clearance from 

infected cells. Therefore, the possibility was investigated that these infected cells 

are rendered more susceptible to apoptotic stimuli in particular conventional 
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chemotherapy (Doxorubicin). As a result, combined VSV-virochemotherapy 

induced apoptosis to a higher extent than VSV or Doxorubicin treatment alone. 

This result could be observed in vitro and in vivo (xeno-transplanted nude mice). 

Based on the results of different apoptosis assays (caspase-3 activation, TUNEL), 

it can be concluded that the enhanced anti-tumor effect of combined 

virochemotherapy depends on higher levels of apoptotic cell death. In concordance 

with former reports applying different Mcl-1 inhibition strategies [209;230-236], 

this is caused by VSV-mediated sensitization of cancer cells to Doxorubicin 

treatment.  

Several viruses such as alpha and gamma herpesviruses or adenoviruses are known 

to express homologues of Bcl-2 family members to prevent premature cell death 

by inhibiting release of cytochrome c from mitochondria [237;238]. A well 

illustrating example appears to be Adenoviruses that harbors E1B-19k [239]. E1B-

19k takes over anti-apoptotic function from Mcl-1 (binding Bax and Bak) that is 

degraded in consequence of adenoviral E1A expression [203]. It has been reported 

that VSV produces higher levels of progeny when Bcl-2 protein is stabilized [124]. 

Additionally, in the here presented work Mcl-1 was shown to be a cellular factor 

that is degraded following VSV infection. Stabilization of Mcl-1 led to increased 

VSV titers like demonstrated for Bcl-2 stabilization. Based on the mentioned data, 

the question might be raised why VSV did not acquire the ability to express a Bcl-

2 homologue during evolution as observed in other viruses? VSV infects a wide 

range of organisms thus lacking a clear host specificity. Expressing an additional 

gene product like a Bcl-2-homologue on one hand might improve virus 

amplification to a limited extent. Concomitantly, this might be accompanied by 

loosing fitness as a longer genome probably will demand more resources (time, 

energy) to replicate thus reverting the before mentioned positive effect. 

Importantly, in contrast to Adenoviruses, expression of Bcl-2 or Mcl-1 did not 

completely abrogate apoptosis while viral replication proceeded. While the 

adenoviral replication cycle takes about 48 hours, VSV amplifies in less than 24 

hours. Therefore, inhibition of apoptosis might be irrelevant for VSV. Taken 

together with the fact that induction of apoptotic cell death is not required for VSV 

replication [124], additional suppression of apoptosis by Bcl-2 homologues simply 

might not tremendously improve viral amplification rates.  
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This study is the first to describe a physiologically important relationship between 

VSV and Mcl-1 in apoptosis with implications for cancer therapy demonstrating 

that Mcl-1 can be down-regulated by VSV infection in a proteasome dependent 

manner. Furthermore, as the VSV-mediated Mcl-1 decrease can be exploited 

therapeutically, this study represents a potential advancement in the understanding 

of oncolytic VSV therapy of human cancers. Though several findings point to 

protein biosynthesis shut-down to be responsible, further direct signaling to Mcl-1 

can not be excluded, and could represent an interesting issue for further studies. 

 

7.3 Outlook 
 

The present work focused on investigations on the interactions of oncolytic viruses 

with human cancer cell lines. The data provided here demonstrate that application 

of highly specific DNA endonucleases represents a powerful tool to control 

replication and perhaps maintenance of oncolytic DNA viruses. Furthermore, 

cleavage of viral backbones not only allows for selective destruction of oncolytic 

viruses in normal cells but prevents a later break-through of underlying replication 

control mechanisms. To test this hypothesis further research on stress response 

pathways and an involvement of apoptosis in the established concept is necessary. 

The natural tumor virus VSV initiates the destruction of the anti-apoptotic Bcl-2 

family member Mcl-1 in human cancer cell lines rapidly after infection. Data 

indicate that the Mcl-1 protein is a key component of the cell’s defence against 

VSV infection. Additionally, the obtained data provide strong evidence that this 

anti-viral mechanism can be successfully exploited to enhance anti-tumor therapy 

in combination with conventional chemotherapy in vitro and in vivo.  

Independently of the here presented work, it has to be noted that oncolytic 

virotherapy – the underlying concept of this thesis – can only be one component of 

a mosaic of amultimodal therapeutic strategies that might finally achieve to cure 

cancer. In recent years, simple reliance on oncolytic vectors has been replaced by 

concepts activating the patient’s innate and adaptive immunity against neoplastic 

lesions by the help of viruses. Thus, pure virotherapeutic approaches might end up 

as part of a bigger picture, though, having paved the road for novel therapeutics to 

treat solid human cancers. 
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9.2 Abbreviations 
 

Ad Adenovirus 
APS ammonium persulfate 
ARF another reading frame 
ATP adenosine triphosphate 
ATCC Amercian Tissue Culture Company 
ATP adenosine triphosphate 
AV1 attenuated virus 1 (mutant VSV) 
β-gal β-galactosidase 
Bcl-2 B-cell lymphoma 2 
bp base pairs 
BSA Bovine serum albumin 
CMV Cytomegalovirus 
CO2 carbon dioxide 
CPE cytopathic effect 
CQ chloroquine 
DAPI  4',6-diamidino-2-phenylindole dihydrochloride 
DMEM Dulbecco’s modified eagle medium 
DMSO dimethyl sulfoxide 
DNA deoxyribonucleic acid 
dNTPs deoxyribonucleotides (dATP, dGTP, dCTP, dTTP) 
DTT dithiothreitol 
E.coli Escherichia coli 
E1A Adenovirus early region 1A 
E1B Adenovirus early region 1B 
EDTA ethylenediaminetetraacetic acid 
eIF2α eukaryotic initiation factor 2 alpha 
EGFP enhanced green fluorescent protein 
EtOH ethanol 
FCS fetal calf serum 
fw forward 
g acceleration of gravity 
h hour 
H2O  water 
HCC hepatocellular carcinoma 
HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
HRP horseradish peroxidase 
hTERT human telomerase reverse transcriptase 
i.t. intratumoral 
i.v.  intravenous 
I-Sce I intron-encoded meganuclease from the Saccharomyces cerevisiae 
IL interleukin 
IRES internal ribosomal entry sequence 
kDa  kilodalton 
KRAB Krüppel associated box 
lacZ β-galactosidase 
LB Luria Broth 
LC3 microtubule-associated protein 1 light chain 3 
luc luciferase 
M molar 
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Mcl-1 myeloid cell leukemia 1  
MCS multiple cloning site 
mg  milligram 
MHH Hannover Medical School 
min  minute 
ml  millilitre 
mM millimolar 
µg  microgram 
µl microlitre 
µm  micrometre 
µM  micromolar 
MOI multiplicity of infection (= viral particles per cell) 
NSCLC  non-small cell lung cancer 
OD optical density 
ONPG ortho-nitrophenyl-β-galactoside 
ONYX-015 conditionally replicating Adenovirus of ONYX Pharmaceuticals, Inc. 
PAGE polyacrylamide gel electrophoresis 
PBS phosphate buffered saline 
PCR polymerase chain reaction 
pfu plaque forming unit 
prMin-RGC p53-dependent promoter 
rev reverse 
RNA ribonucleic acid 
RNase ribonuclease A 
RNAi RNA interference 
rpm rounds per minute 
RT room temperature 
S.D. standard deviation 
SDS sodium dodecyl sulfate 
SDS-PAGE sodium dodecyl sulfate polyacrylamid gel electrophoresis 
shRNA short-hairpin RNA 
TAE Tris/acetate/EDTA buffer 
TBS  tris-buffered saline 
TBST  tris-buffered saline plus Tween20 
TE Tris/EDTA buffer 
TEMED N,N,N',N'-Tetramethylethylenediamine 
Tris 2-Amino-2,2-hydroxymethylpropan-1,3-diol 
TUNEL deoxynucleotidyl transferase (TdT)- mediated dUTP nick end labeling 
UTR untranslated region 
VSV wild type Vesicular Stomatitis Virus 
VSV-G glycoprotein of the Vesicular Stomatitis Virus 
VSV-L Vesicular Stomatitis Virus polymerase 
VSV-M matrix protein of the Vesicular Stomatitis Virus 
VSV-N nucleocapsid protein of the Vesicular Stomatitis Virus 
VSV-P phosphoprotein of the Vesicular Stomatitis Virus 
v/v volume per volume 
w/v weight per volume 
w/o without 
wt  wild type 
YFP yellow fluorescent protein 
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