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So läuft diese Wissenschaft schließlich auf eine Hypothese hinaus, die Klarheit 

versinkt in einer Metapher, die Ungewißheit löst sich in einem Kunstwerk auf… 

Absurd ist der Zusammenstoß des Irrationalen mit dem heftigen Verlangen nach 

Klarheit, das im tiefsten Inneren des Menschen laut wird. 

 

Albert Camus (1913 – 1960) 
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Summary 

 

14-3-3 proteins are abundant in the brain and involved in various neurological disorders in the 

central nervous system of mammals, suggesting a critical role for these proteins in neuronal 

function. In search of 14-3-3-binding partners, with the long term goal of gaining a better 

understanding of the cellular functions of 14-3-3 proteins in the brain, non-erythroid alpha II 

spectrin and the cell adhesion molecule L1 were identified as potential 14-3-3-target proteins 

in this thesis work.  

 

Alpha II spectrin from mouse brain membrane fractions was identified as a 14-3-3β-binding 

partner using affinity chromatography and mass spectrometry. Pull-down experiments using 

adult mouse brain homogenates confirmed that 14-3-3β associates with alpha II spectrin. An 

in vivo association of these two proteins was shown by co-immunoprecipitation from mouse 

brain membrane fractions. Alpha II spectrin possesses a putative mode-2 14-3-3-binding 

motif encompassing Ser1302 in its spectrin repetitive unit 12. By mutagenesis analyses, a 

binding motif in spectrin repetitive unit 12 of alpha II spectrin was identified as the likely 

binding site for 14-3-3. The identified 14-3-3-binding site is a predicted target for casein 

kinase II (CK II), suggesting that the interaction is phosphorylation-dependent. Consistent 

with this prediction, binding in vitro of 14-3-3 to an alpha II spectrin fragment encompassing 

repetitive units 10-14 was more efficient in the presence of CK II. 14-3-3β-binding to alpha II 

spectrin fragment 10-14 was also enhanced in the presence of calmodulin. It is postulated that 

calmodulin binding to alpha II spectrin enhances the 14-3-3β – alpha II spectrin interaction by 

inducing conformational changes in alpha II spectrin. The enhancing effect of calmodulin was 

somewhat reduced in the presence of EDTA, suggesting that calmodulin is also able to 

interact with alpha II spectrin at low Ca2+ concentration. The ability of 14-3-3β and alpha II 

spectrin to associate with NCAM in the brain of mice suggests that 14-3-3β might play a role 

in NCAM-mediated molecular dynamics of cell recognition via the spectrin cytoskeleton. 

 
Two 14-3-3 genes are overexpressed in GFAP/L1 transgenic mice, and overexpression of 14-

3-3 in hippocampal neurons causes a specific reduction of L1-mediated neurite outgrowth. It 

was thus hypothesized that 14-3-3 is involved in downstream signaling of L1 and thereby 

influences L1 function. In this thesis, co-immunoprecipitation studies confirmed an 
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association of 14-3-3 with L1 in the brain of mice and suggested that 14-3-3 may directly bind 

to the intracellular domain of L1 (L1 ICD). ELISA experiments demonstrated that the β and ζ 

14-3-3 isoforms directly interact with L1 and pull-down experiments demonstrated that both 

non-phosphorylated and phosphorylated L1 ICD can bind 14-3-3ζ. A putative 14-3-3-binding 

motif, RSLESD, was identified in L1 ICD. The second Ser residue in this motif can be 

phosphorylated by CK II. Using site-directed mutagenesis, this Ser residue was identified as 

the principal mediator of the L1 ICD interaction with 14-3-3ζ. Notably, phosphorylation of 

the Ser by CK II was profoundly promoted by 14-3-3ζ. Given evidence that L1 

phosphorylation by CK II is required for proper endocytotic trafficking of L1, the distribution 

of 14-3-3ζ in L1 immunoprecipitates from endosomal fractions was also analyzed. I could 

show that 14-3-3ζ was enriched only in those immunoprecipitates where L1 amounts were 

reduced, suggesting a possible role of 14-3-3ζ in the sorting machinery of L1 trafficking from 

the plasma membrane to endosomes.  

 

Given that alpha II spectrin and L1 have been identified as 14-3-3-binding partners, it is 

important to further investigate the cellular consequences of these interactions in neurons. 

Future functional studies based on the findings of this thesis should lead to a better 

understanding of brain physiology and pathophysiology. 
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Zusammenfassung 

 

Mehrere Studien haben gezeigt, dass 14-3-3 Proteine in eine Vielzahl an physiologischen und 

pathologischen Prozessen des Zentralnervensystems involviert sind. Die hohe Abundanz 

dieser Proteine im Gehirn lässt unter anderem darauf schließen, dass die Mitglieder der 14-3-

3-Proteinfamilie eine wichtige Rolle im Zentralnervensystem ausüben. Deswegen wurde 

mittels der Affinitätschromatographie nach neuen Bindungspartnern im murinen Gehirn 

gesucht. Als Ergebnis der affinitätschromatographischen und massenspektrometrischen 

Analyse wurde das nicht-erythrozytäre Alpha II-Spectrin als ein potentieller 14-3-3β-

Bindungspartner aus der murinen Membranfraktion identifiziert. Hierbei handelt es sich um 

ein Protein, das den wesentlichen Bestandteil des neuronalen Membranskeletts ausmacht. Im 

Rahmen dieser Arbeit wurde die Alpha II-Spectrin – 14-3-3β-Interaktion mittels Pull-down-

Assay und Co-Immunpräzipitation bestätigt und die 14-3-3β-Bindungsstelle im Alpha II-

Spectrin Molekül näher charakterisiert. Des weiteren konnte gezeigt werden, dass die 

Proteinkinase Casein kinase II (CK II) die 14-3-3β-Bindung an Alpha II-Spectrin fördert. 

Weiterhin wurde eine erhöhte Bindung von 14-3-3β an die Alpha II-Spectrin-Untereinheiten 

10-14 in Anwesenheit von Calmodulin beobachtet. Calmodulin ist ein bekannter 

Bindungspartner von Alpha II-Spectrin, der durch die Bindung an die Spectrin-Untereinheit 

11 Veränderungen in der Konformation des Spectrins hervorruft. Da eine Komplexbildung 

von 14-3-3 mit NCAM und Alpha II-Spectrin beobachtet wurde, liegt der Schluss nahe, dass 

14-3-3 bei NCAM-vermittelten Strukturveränderungen des Zytoskeletts während des 

Neuritenwachstums eine Rolle spielt. 

 

In dieser Arbeit wurde auch die mögliche Bindung von 14-3-3ζ an das Zelladhäsionsmolekül 

L1 untersucht. Vorausgehende Studien der 14-3-3 – L1-Interaktion aus dem Institut 

Schachner hatten auf einen funktionalen Zusammenhang zwischen den beiden Proteinen 

hingedeutet. Mittels Co-Immunpräzipitation wurde eine Assoziation dieser Proteine im 

Gehirn der Maus gezeigt. Mit Hilfe des ELISA-Bindungstests konnte eine direkte Interaktion 

zwischen der intrazellulären Domäne von L1 (L1 ICD) und 14-3-3β bzw. ζ gezeigt werden. 

Des Weiteren konnte ich mittels Pull-down-Assay zeigen, dass sowohl phosphoryliertes als 

auch nicht-phosphoryliertes L1 ICD an 14-3-3ζ bindet. Das Zelladhäsionsmolekül L1 verfügt 

über einen Serinrest an Position 1181, der von der CK II phosphoryliert wird. Zusammen mit 
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den benachbarten Aminosäuren bildet er das potentielle Bindungsmotiv RSLESD, welches 

bekanntermaßen für die L1-Endozytose und somit auch für das L1-vermittelte 

Neuritenwachstum wichtig ist. Mutationsanalysen ergaben, dass Ser1181 die L1 ICD – 14-3-

3ζ-Interaktion vermittelt. Weiterhin konnte gezeigt werden, dass in Anwesenheit von 14-3-3ζ 

die CK II-vermittelte Phosphorylierung von L1 ICD verstärkt wurde. Die verstärkte L1 ICD-

Phosphorylierung in Anwesenheit von 14-3-3ζ und die Assoziation von 14-3-3ζ mit L1 in 

endosomalen Fraktionen sprechen für eine wichtige Funktion von 14-3-3-Proteinen bei der 

Regulation der Endozytose von L1. 

 

Weitere funktionale Untersuchungen der im Rahmen der vorliegenden Arbeit entdeckten und 

analysierten Interaktionen von 14-3-3 mit Alpha II-Spectrin bzw. L1 dürften zu einem 

besseren Verständnis der Physiologie und Pathophysiologie des Gehirns beitragen. 
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NCAM neural cell adhesion molecule 

OD  optical density 

p  pico (10-12) 

PAGE  polyacrylamide gel electrophoresis 

PBS  phosphate buffered saline 

PCR  polymerase chain reaction 

PMSF  phenylmethylsulfonyl fluoride 

RNA  ribonucleic acid 

RNase  ribonuclease 

rpm  revolutions per minute 

RT  room temperature 

SDS  sodium dodecyl sulfate  

TBS  tris buffered saline 

TEMED N,N,N’,N’-tetraethylenamine 

TM  transmembrane 
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V  volt 
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Amino acids are abbreviated using the 1- and 3-letter amino acid codes: 

• G - Glycine (Gly) 
• P - Proline (Pro)  
• A - Alanine (Ala)  
• V - Valine (Val)  
• L - Leucine (Leu)  
• I - Isoleucine (Ile)  
• M - Methionine (Met)  
• C - Cysteine (Cys)  
• F - Phenylalanine (Phe)  
• Y - Tyrosine (Tyr)  
• W - Tryptophan (Trp)  
• H - Histidine (His)  
• K - Lysine (Lys)  
• R - Arginine (Arg)  
• Q - Glutamine (Gln)  
• N - Asparagine (Asn)  
• E - Glutamic Acid (Glu)  
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• T - Threonine (Thr) 
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1. Introduction 

 
Signal transduction events in eukaryotic cells regulate the dynamics of cell behaviour by 

reversible assembly of large multiprotein complexes. Signaling cascades integrate and 

transmit the information that controls cell cycle progression, patterns of gene expression, 

programmed cell death and cytoskeletal rearrangements. The orchestration of many signal 

transduction events is tightly regulated by protein-protein interactions and posttranslational 

modifications of the signaling pathway components. The most prevalent means of 

posttranslational modification is probably reversible protein phosphorylation (Cohen, 2002). 

Within the past few years, the 14-3-3 protein family, whose members bind specific 

phosphorylated sites on diverse target proteins, has emerged as major regulator of cellular 

processes in all eukaryotes. 

 

1.1. 14-3-3 protein family 
 
14-3-3 proteins were the first molecules to be recognized as distinct pSer/Thr binding 

proteins (Fu et al., 2000). The term “14-3-3” denotes a family of dimeric α-helical molecules 

with diverse cellular functions (Fu et al., 2000). The 14-3-3 proteins were discovered and 

named during a systematic classification of brain proteins that was based on their fraction 

number after diethylaminoethyl (DEAE)-cellulose chromatography and their position after 

subsequent starch gel electrophoresis (Moore and Perez, 1967). However, their potential 

importance was not recognized until they were identified as activators of neurotransmitter 

synthesis (Ichimura et al., 1987). The most important step towards understanding 14-3-3 

protein action was the discovery that these proteins bind to specific phosphorylated motifs in 

target proteins (Muslin et al., 1996). Since then, several interacting partners have been 

identified that participate in cellular processes as diverse as cell cycle control, apoptosis and 

protein trafficking (Dougherty and Morrison, 2004; Aitken, 2006), demonstrating that 14-3-3 

proteins are key mediators of intracellular signaling.  

 

In mammals, 14-3-3 proteins exist as a family of several highly similar yet distinct protein 

isoforms. At present, seven isoforms, β, ε, γ, η, σ, τ, and ζ, each encoded by a distinct gene, 

have been identified. Two additional isoforms, α and δ, are the phosphorylated forms of β and 

ζ (Aitken et al., 1995). The τ and σ isoforms have been found in T-cells and epithelial cells, 
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respectively (Nielsen, 1991; Prasad et al., 1992; Leffers et al., 1993), whereas the other five 

isoforms were originally found in the mammalian brain (Ichimura et al., 1988). 14-3-3 

proteins occur in the cytoplasmic compartment, at the plasma membrane and in intracellular 

organelles (Fu et al., 2000). In humans, cattle, rats, and mice, 14-3-3 proteins are abundant in 

most areas of the central nervous system (CNS). In particular, 14-3-3 isoforms are highly 

expressed in the pyramidal cells of the hippocampus, the neurons of the cerebral cortex, 

olfactory bulb neurons, and Purkinje cells of the cerebellum (Watanabe et al., 1991; Watanabe 

et al., 1993, 1993; Watanabe et al., 1994; Toyooka et al., 2002). Remarkably, each isoform 

shows a specific distribution in the brain. The ζ isoform is present at high levels in the gray 

matter of rat brain. The β, γ, η, and τ isoforms are localized in similar areas. The γ isoform is 

specifically expressed in the nervous system and the β, γ, and η isoforms are enriched in the 

Purkinje cells of the cerebellum. In contrast, the ε isoform is enriched in the pineal gland and 

present in significant amounts in the retina, whereas the τ isoform is only found in glia-like 

cells of the white matter (Watanabe et al., 1993). These varations in distribution and amount 

of the 14-3-3 isoforms may reflect functional differences or participation in distinct signal 

transduction pathways in different cell types. 

 

1.1.1. Structure of 14-3-3 proteins 

 
14-3-3 proteins are small, acidic polypeptides with a monomeric molecular mass of 28-33 

kDa (Aitken, 2006). Crystallographic studies of the ζ isoform have shown that 14-3-3 

proteins form helical, cup-shaped dimers, with each monomer containing nine α-helices 

organized in an antiparallel manner (Fig. 1). Homo- and heterodimers can be formed from the 

multiple 14-3-3 isoforms that are present in a given eukaryotic cell. However, only certain 

combinations are generally observed, most likely a result of steric compatibility (Chaudhri et 

al., 2003). The three N-terminal helices of one monomer interact with those of the opposing 

monomer through a combination of salt bridges, hydrogen bonds and van der Waals contacts, 

forming a central pocket suitable for protein-ligand interactions. The phosphopeptide-binding 

pocket is the most highly conserved region within and across species. The residues equivalent 

to Lys49, Arg56, Arg127, and Tyr128 of human 14-3-3ζ, which bind to the phosphorylated 

residues of the bound protein, are completely conserved in all 14-3-3 proteins known (Yaffe 

et al., 1997; Petosa et al., 1998; Rittinger et al., 1999; Obsil et al., 2001; Wurtele et al., 2003). 

Although the conserved peptide binding groove is principally required for binding, other 
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regions of the 14-3-3 surface may also influence substrate specificity. For example, the acidic 

C-terminal region probably prevents non-specific ligand interaction with 14-3-3, by 

inhabiting the groove in the absence of ligand (Truong et al., 2002; Obsilova et al., 2004).  

 

 

 

 

1.1.2. 14-3-3-binding motifs 

 
Amino acid sequence comparisons of 14-3-3-binding partners have revealed two consensus 

sequence motifs that bind 14-3-3 proteins, RSXpSXP (mode-1) and RXXXpSXP (mode-2) 

(where X is any amino acid and pS is phosphoserine) (Muslin et al., 1996; Yaffe et al., 1997). 

In some 14-3-3-binding partners, phosphothreonine (pT) can replace pS (Muslin et al., 1996; 

Yaffe et al., 1997). The binding of 14-3-3 to many of its target proteins occurs in a 

phosphospecific manner. However, some of the identified 14-3-3-binding motifs, for example 

the sequence KGQSTpSRG of human p53 (Waterman et al., 1998), diverge from the 

consensus sequences. 14-3-3-binding sites have also been identified that do not require 

phosphorylation (Yaffe et al., 1997), for example the VTPEER sequence of the amyloid β-

protein precursor intracellular domain fragment (Sumioka et al., 2005). More recently, 

Coblitz et al. identified the C-terminal sequence SWpTX as a mode-3 14-3-3-binding motif 

(Coblitz et al., 2005). They showed that this motif, when present on the C-terminus of the 

Figure 1: 14-3-3 proteins bind phosphoserine 

peptides within the binding groove. Top 

panel: Each monomeric subunit of the dimeric 

14-3-3 molecule (blue and red, respectively) is 

composed of nine α helices (αA-αI), with each 

monomer capable of binding a phosphopeptide 

(shown in a stick representation). Bottom panel:

The phosphoserine phosphate from the peptide 

is coordinated by a basic pocket formed by the 

critical residues Lys49, Arg56, Arg127, and 

Tyr128. These 4 residues are located within the 

αC and αE helices (adapted from (Yaffe and 

Elia, 2001). 
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Kir2.1 potassium channel, was able to override endoplasmatic reticulum localization signals 

and facilitate transport of the channel to the plasma membrane. Similar findings with a 

related, though not identical, C-terminal sequence were also made for members of the TASK 

family of potassium channels (Rajan et al., 2002). 

 

Target proteins of 14-3-3 containing binding motifs that diverge from the consensus sequence 

bind the same domain of 14-3-3 proteins as their phosphorylated counterparts (Yaffe et al., 

1997). Co-crystal structures of 14-3-3 with peptide fragments containing non-phosphorylated 

motifs show that the same binding pocket is involved (Petosa et al., 1998), suggesting that 

non-phosphorylated target proteins can compete with phosphorylated ones for binding to 14-

3-3, which increases the level of complexity in 14-3-3-target protein recognition (Wang et al., 

1999).  

 

1.1.3. Role of 14-3-3 proteins in physiological and pathological processes of 

the CNS 

 
Since the first description of 14-3-3 proteins, the biological function of these proteins has 

been the subject of intense investigation. The first study to assign a specific role to 14-3-3 

proteins was that of Ichimura et al. (Ichimura et al., 1987). They showed that 14-3-3 proteins 

activate tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of 

Ca2+/calmodulin protein kinase II. Tryptophan 5-monooxygenase and tyrosine 3-

monooxygenase are rate-limiting enzymes in catecholamine biosynthesis, and are known 

targets of different regulatory factors (Ichimura et al., 1987). Structural and biochemical 

investigations have revealed a crucial role of 14-3-3 proteins in various physiological 

processes, such as cell growth, adhesion, differentiation, and apoptosis (Aitken, 1996; Pawson 

et al., 1997; Fu et al., 2000; Toska et al., 2002). 14-3-3 proteins may influence such processes 

by changing the activity of target proteins, altering protein-protein interactions or redirecting 

the intracellular localization of certain proteins. 

 

As mentioned above, 14-3-3 proteins are most abundant in the central CNS of mammals, not 

only during ontogenetic development but also in the adult brain. This points to a critical role 

of 14-3-3 in neuronal function. The importance of 14-3-3 isoforms in different physiological 

and pathological processes of the CNS has been shown in a couple of studies.  



 

Introduction 

 

 

12 

For example, significantly decreased levels of 14-3-3γ have been observed in the cortex of 

human embryos with Down’s syndrome, suggesting an important role of this isoform in 

neuronal differentiation and synaptic plasticity (Peyrl et al., 2002). The 14-3-3ε isoform also 

seems to have an important influence on neuronal migration. Migration of post-mitotic 

neurons from the ventricular zone to the cortical plate during embryogenesis comprises one of 

the most critical stages in brain development (Crome, 1956). Deficiency of this process often 

results in major brain malformations, for example human lissencephaly (smooth brain) 

(Crome, 1956). In patients with severe lissencephaly, extensive deletions of the chromosome 

segment that contains 14-3-3ε have been found (Kato and Dobyns, 2003) and mice lacking 

14-3-3ε show defects of neuronal migration (Toyo-oka et al., 2003), suggesting that the 

absence of 14-3-3ε may result in lissencephaly. The precise mechanisms by which 14-3-3ε 

regulates neuronal migration remain to be fully elucidated, but appear to involve the protein 

complexes Lis1/Nudel/dynein and Cdk5/p35 (Toyo-oka et al., 2003).  

 
14-3-3 proteins are probably also involved in neurodegenerative diseases caused by the 

expansion of polyglutamine stretches, in particular spinocerebellar ataxia type 1 (SCA1). In a 

Drosophila model of SCA1, 14-3-3 mediates the neurotoxicity of ataxin-1 by binding to and 

stabilizing ataxin-1, thereby slowing its normal degradation (Chen et al., 2003). The Chen et 

al. study also showed that the association of ataxin-1 with 14-3-3 is regulated by Akt 

phosphorylation of ataxin-1 and that both 14-3-3 and Akt modulate neurodegeneration.  

 
The 14-3-3 protein family also appears to play a role in the pathogenesis of Parkinson’s 

disease (PD) and Alzheimer’s disease. Xu et al. (2002) could show that dopamine-dependent 

neurotoxicity is mediated by soluble protein complexes that contain α-synuclein and 14-3-3, 

which are elevated selectively in the substantia nigra in PD. The observation that 14-3-3 binds 

to α-synuclein in a protein complex suggests that elevated levels of this complex might 

increase neuronal vulnerability to apoptosis. 14-3-3 inhibits apoptosis by binding and 

inactivating pro-apoptotic proteins, such as the mitochondrial Bcl-2 family member BAD 

(Yuan and Yankner, 2000). It has been hypothesized that increased binding to α-synuclein 

may sequester 14-3-3 and reduce its anti-apoptotic activity (Xu et al., 2002), which, in turn, 

might increase neuronal vulnerability to reactive oxygen species generated by endogenous 

dopamine metabolism. 
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In Alzheimer’s disease, the Tau protein becomes abnormally phosphorylated and aggregates 

into neurofibrillary tangles. Abnormal phosphorylation may prevent Tau from performing its 

microtubule-related functions, causing cytoskeletal dysfunction and perhaps 

neurodegeneration (Goedert, 1993). Layfield et al. (1996) investigated the localization of 14-

3-3 in postmortem Alzheimer’s disease brains and detected 14-3-3 in neurofibrillary tangles. 

 
Further investigations showed that Tau interacts with 14-3-3β and 14-3-3ζ. 14-3-3ζ also 

stimulates Tau phosphorylation at certain Ser residues by protein kinase A. This 

phosphorylation is sufficient to block Tau-microtubule interaction, causing microtubule 

instability. These observations suggest that 14-3-3ζ may be a Tau-specific co-factor involved 

in the abnormal phosphorylation of Tau during Alzheimer’s disease development (Hashiguchi 

et al., 2000).  

 
Studies with Drosophila mutants lacking Leonardo, the fly ortholog of 14-3-3ζ, revealed an 

impairment of learning and synaptic plasticity. Leonardo is a typical member of the 14-3-3 

protein family, which shows 88% amino acid identity to its closest mammalian homolog, 14-

3-3ζ (Skoulakis and Davis, 1996). Several data support this study and suggest that 14-3-3 

proteins are involved in synaptic function and plasticity (Broadie et al., 1997; Philip et al., 

2001; Simsek-Duran et al., 2004).  

 
Taken together, these data from in vitro studies, animal models, and post mortem analyses of 

the brains of patients with different neurological disorders point to an important role of the 

14-3-3 proteins in CNS development and function.  

 

1.2. Spectrins  
 
Spectrins are a class of multifunctional proteins associated with the cortical cytoplasm of 

most cells and were first identified at the intracellular surface of the erythrocyte plasma 

membrane (Goodman et al., 1987). Spectrins are ubiquitous among simple metazoans and 

vertebrate tissues, and play an important role in cellular functions and maintenance of cell 

structure (De Matteis and Morrow, 2000; Gascard and Mohandas, 2000; Kordeli, 2000; 

Bennett and Baines, 2001; Giorgi et al., 2001). Mammalian spectrins are grouped in two 

classes: erythroid (αSpI or βSpI) and non-erythroid (αSpII or βSpII) spectrins. One of the 

first identified members in the class of non-erythroid spectrins was fodrin (Levine and 
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Willard, 1981). Fodrin was first identified in neurons and, as a result, was previously termed 

brain spectrin. At present, fodrin is more commonly known as alpha II spectrin. 

 

1.2.1. Localization and molecular structure of spectrins 

 
Spectrins are scaffolding proteins that act in association with a variety of adaptor proteins to 

organize membrane microdomains on the plasma membrane as well as on intracellular 

organelles. They are present at the plasma membrane, in the Golgi apparatus, in cytoplasmic 

vesicles, and also in the nucleus (De Matteis and Morrow, 1998; Stankewich et al., 1998; 

McMahon et al., 1999). Erythroid spectrins structure the erythrocyte its stability and 

viscoelastic properties. However, the role of spectrins in non-erythroid cells is less clear. They 

are not required for global membrane support, since they are often highly polarized and 

lacking in large areas of the plasma membrane. This polarization of spectrin isoforms within 

neurons has been best characterized in the cerebellum of the mouse (Zagon et al., 1984; 

Riederer et al., 1986; Zagon et al., 1986; Clark et al., 1994). In murine neurons, two different 

isoforms of spectrin are distributed to distinct cellular compartments. The existence of an 

erythroid β and non-erythroid α and β subunit has been shown by immunostaining studies, 

whereas the presence of the erythroid α subunit in neurons has not been widely accepted 

(Malchiodi-Albedi et al., 1993; Winkelmann and Forget, 1993).  

 

Non-erythroid spectrins are localized to axons and to presynaptic terminals. For example, 

immunoelectron microscopy studies by Zagon et al. (1986) demonstrated the association of 

non-erythroid spectrins with the cytoplasmic surface of the plasma membrane and of synaptic 

vesicles within the presynaptic terminal. Non-erythroid spectrins have also been found in 

postsynaptic compartments. Alpha II spectrin (previously termed α-fodrin or brain α-spectrin) 

is expressed in the neuronal dendritic compartment showing strong enrichment toward 

dendritic spines and postsynaptic densities (Bockers et al., 2001). In fact, alpha II spectrin has 

been shown to be a major constituent of postsynaptic density (Carlin et al., 1983).  

 
Like erythroid spectrins, most non-erythroid spectrins, in their simplest form, are 

heterodimers of non-identical α and β subunits, with molecular weights of 280 and 246 kDa, 

respectively (Bignone and Baines, 2003). The human spectrin family includes two α subunits 

and five β subunits (De Matteis and Morrow, 2000). Spectrin dimers self-associate head-to-
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head into tetramers at the so-called tetramerization site. The α I and β I chains that form 

spectrin tetramers found in red blood cells interact with lower affinity than the α II and β II 

chains in non-erythroid cells (Bignone and Baines, 2003).  

The basic structural unit of spectrin is a triple helical repeat (Speicher and Marchesi, 1984). 

The α spectrin chains are usually made up of 21 repeats and β spectrin chains of 17 repeats, 

except βV, which has 30 repeats (Fig. 2).  

 

 

 

 

 

The structural units are characteristic of spectrin family members (Bennett and Baines, 2001). 

They are ~106 amino acids long and folded in a coiled-coil structure made up of three helices 

(Speicher and Marchesi, 1984; Davison et al., 1989; Parry et al., 1992). In addition to these 

repeat units, spectrin isoforms can also contain several functional domains, such as an SH3 

Figure 2: Domain structure of 

spectrins. Schematics of the two α

spectrins and five β spectrins are shown 

here. Spectrins comprise repetitive units 

called spectrin repeats (yellow squares). 

Other domains, such as the Src-

homology domain (SH3, blue), EF-hand 

domain (a protein fold associated with 

calcium-binding activity) (red), and the 

calmodulin-binding domain (green) 

promote interactions with binding 

partners that are important for spectrin 

function. The pleckstrin-homology 

domain (black) promotes association 

with the plasma membrane via PI lipids, 

and the actin-binding domain (grey) 

tethers the spectrin-based membrane 

skeleton to short actin filaments, which 

are stabilized by accessory proteins. All 

spectrins are subject to alternative 

splicing, which further increases their 

functional diversity (Bennett and Baines, 

2001) (Figure adapted and modified 

from (Bennett and Healy, 2008)). 
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domain, EF hands, PH domains, and binding domains for ankyrin, actin, protein 4.1, and 

calmodulin (Bennett and Baines, 2001). 

 

Non-erythroid alpha II spectrin exhibits a low degree of homology (58% amino acid identity) 

with erythroid alpha I spectrin. The main difference is a non-homologous sequence inserted 

into the 11th repeat unit of the vertebrate alpha II spectrin subunit. This insertion is absent in 

erythroid alpha I spectrin. The non-homologous sequence is located near the SH3 domain and 

calmodulin binding site, and contains several cleavage sites for different proteases, including 

µ-calpain and caspases (Harris et al., 1988; Rotter et al., 2004).  

 

1.2.2. Function of spectrins 

 
The involvement of spectrins in many diverse cellular processes can be explained by their 

distinct patterns of distribution and by their modular structure that combines numerous 

protein-interacting domains. As the major component of the cytoskeletal network associated 

with the plasma membrane of vertebrate cells, spectrin, together with actin and ankyrin, 

controls the distribution of many integral and peripheral membrane proteins. Mutations in 

spectrin or its associated adapter protein ankyrin often destabilize the membrane, and their 

absence is embryonically lethal (Peters et al., 1992; Deng et al., 1995).  

 
Spectrins are tethered to cellular membranes by protein–protein interactions. The best studied 

spectrin-membrane adaptors are the ankyrins. Ankyrins are a family of peripheral membrane 

proteins controlling the interactions of spectrins with various transmembrane proteins 

(Bennett, 1992). They are known to bind to the beta spectrin subunit (Goodman et al., 1988). 

Ankyrins link spectrins to a number of physiologically important transmembrane proteins, 

including Na,K-ATPase, and the voltage-gated Na+ channel (Bennett, 1992).  

 
Ankyrins can also bind cell adhesion molecules (CAMs) of the CD44 family (Kalomiris and 

Bourguignon, 1988) and the L1 CAM family (e.g., L1, neurofascin, NrCAM, NgCAM in the 

vertebrate nervous system) (Davis and Bennett, 1994; Dubreuil et al., 1996). Evidence for L1 

CAM-ankyrin interactions includes findings that L1 CAM-members co-localize with ankyrin 

at nodes of Ranvier and axon initial segments (Davis et al., 1996) and are missorted in 

ankyrin-G-deficient-mice (Zhou et al., 1998).  
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Ankyrin-independent association of spectrins with membrane proteins is also possible. 

Spectrins can directly bind to NMDAR and acetylcholine receptors, and anchoring them 

within the postsynaptic density (Bloch and Morrow, 1989; Daniels, 1990; Bloch et al., 1997; 

Wechsler and Teichberg, 1998; Hirai and Matsuda, 1999). Spectrin-NMDAR interactions 

might form the basis for the actin-mediated regulation of NMDAR channel activity and 

represent one of the events leading to the plasticity-induced changes in spine morphology 

(Wechsler and Teichberg, 1998). Thus, receptor anchoring via spectrin at postsynaptic sites 

may regulate synaptogenesis and/or synaptic plasticity. Another example for an ankyrin-

independent binding partner of spectrins is NCAM 180, which previously has been 

demonstrated to bind brain spectrin (Pollerberg et al., 1987). This interaction is thought to 

limit the mobility of NCAM 180 within the plasma membrane (Pollerberg et al., 1986) and 

might also play a role in the control of NCAM-mediated signaling (Leshchyns'ka et al., 2003).  

 
Spectrin function is regulated by proteolysis, which is catalyzed by Ca2+-dependent proteases, 

in particular µ-calpain, as well as calmodulin, and phosphorylation. Calcium-dependent 

proteolytic modification of the alpha II spectrin subunit, particularly by µ-calpain, is linked to 

several physiological processes, such as the onset of long-term potentiation in hippocampal 

neurons, dendritic and postsynaptic density remodeling, and receptor-mediated endocytosis 

(Lynch and Baudry, 1984; Sheppard et al., 1993; Bahr et al., 1995; Bednarski et al., 1995; 

Dosemeci and Reese, 1995; Vanderklish et al., 1995; Faddis et al., 1997; Kamal et al., 1998). 

Cleavage of spectrin by µ-calpain is not only part of important physiological processes but it 

also follows hypoxic or ischemic injury (Seubert et al., 1989) and has been observed during 

apoptosis in neurons (Nath et al., 1996). The molecular basis for these divergent 

consequences of µ-calpain action, and their relationship to spectrin proteolysis, is not well 

understood.  

 
Calmodulin plays, among other things, an important role in synapse formation by binding to 

the alpha II spectrin subunit. Specifically, calmodulin binds to the above-mentioned non-

homologous sequence inserted in the 11th repeat unit of the vertebrate alpha II spectrin subunit 

(Harris et al., 1988; Simonovic et al., 2006). Calmodulin binding has been shown to enhance 

the susceptibility of a peptide bond (Tyr1176–Gly1177) near the calmodulin-binding site on 

alpha II spectrin to cleavage by µ-calpain and also renders the adjacent beta II spectrin 

subunit susceptible to µ-calpain cleavage (Glantz et al., 2007). The sensitivity of the cleavage 

site on the beta II spectrin subunit (Gln1441–Ser1442) is also regulated at the substrate level by 
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the phosphorylation of Tyr1176, which is mediated by src-family kinases and low-molecular-

weight phosphotyrosine phosphatase (Nicolas et al., 2002; Nedrelow et al., 2003). 

 

Thus, two Ca2+-dependent processes, calmodulin binding and calpain proteolysis, unless 

suppressed by Tyr phosphorylation of alpha II spectrin, act synergistically to regulate the 

proteolysis of spectrin and the organization and integrity of the cortical membrane skeleton. 

These events can occur in response to an elevation in Ca2+-ion levels (Harris and Morrow, 

1990) and synaptic activity (Vanderklish et al., 1995). Morphological alterations of the 

cytoskeleton during synaptic plasticity allows a rapid remodeling of synapses after 

stimulation. 

 

1.2.3. Spectrin and 14-3-3 

 
Several studies have indicated the involvement of 14-3-3 proteins in cellular processes and 

various neurological disorders in the brain. Based on these studies, we previously sought to 

identify further 14-3-3-binding target (Ramser, 2005). Using affinity chromatography and ESI 

tandem mass spectrometry (MS/MS) analysis, non-erythroid alpha II spectrin was identified 

as a potential 14-3-3-binding protein (Ramser, 2005). However, experiments to confirm the 

mass spectrometry data and characterize the possible interaction between 14-3-3 and alpha II 

spectrin were not performed previously. 

 

1.3. Neural cell adhesion molecules of the immunoglobulin 

superfamily 

 
Neural CAMs are key mediators of neuronal interactions (Hortsch, 1996; Kenwrick et al., 

2000; Chen et al., 2007; Maness and Schachner, 2007). Their roles during the developmental 

stages of the nervous system include cell migration, axon guidance, synaptic targeting, and 

synapse formation. In the mature nervous system, their principal role is preserving synaptic 

connections, cell-cell contacts, and neuron-glial interactions. One group of the well-studied 

CAMs in the nervous system is the immunoglobulin (Ig) superfamily, which includes L1 and 

NCAM. 
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1.3.1. L1 CAM 

 
L1 is a member of a subfamily of vertebrate CAMs that are related by structure and sequence 

(e.g., L1, NgCAM, NrCAM, neurofascin, CHL1, and neuroglian). These molecules mediate 

cell-cell adhesion through Ca2+-independent homophilic and heterophilic binding at the cell 

surface (Rathjen and Schachner, 1984; Grumet, 1991). L1 was first identified as a 

transmembrane glycoprotein in the CNS of mice (Lindner et al., 1983; Rathjen and 

Schachner, 1984).  

 

1.3.2. Molecular structure and localization of L1 

 
The L1 molecule is comprised of an extracellular region of six Ig-like domains, five 

fibronectin type III repeats, a single membrane-spanning region, and a highly conserved 

cytoplasmic domain (Fig. 3). L1 or L1-like molecules with this structural architecture have 

been identified in a variety of species. In all species investigated so far, these molecules have 

proved to be important components of the ligand-receptor network of guidance forces that 

influence axonal growth (Rathjen and Schachner, 1984; Grumet, 1991; Brummendorf and 

Rathjen, 1995; Hortsch, 1996).  

In mammals, L1 expression has been observed throughout the nervous system in developing 

neurons and on the axons of many differentiated nerve cells. Axonal expression of L1 seems 

to be concentrated at the surface that makes contact with neighboring axons, suggesting that 

L1 may be involved in the development of axon bundles. However, L1 is also found on 

growth cones, which are responsible for sensing extracellular guidance cues. Although 

primarily neuronal, L1 is also found on the Schwann cells of the peripheral nervous system 

Figure 3: Modular structure of L1 CAM. L1 belongs to the Ig superfamily. It is a transmembrane 

glycoprotein that contains six Ig-like, five fibronectin type III-like extracellular domains, a single membrane-

spanning region and a cytoplasmic tail.  
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when they make contact with axons, suggesting that L1 is implicated in the onset of 

myelination (Seilheimer and Schachner, 1988; Martini et al., 1994). L1 is also expressed by a 

subclass of leukocytes and on intestinal cells, indicating that L1 also has functions outside the 

nervous system (Thor et al., 1987; Kadmon and Altevogt, 1997). Because L1 is a cell 

adhesion molecule, its role in tumor metastasis has also been investigated (Johnson, 1991). 

 

1.3.3. Function of L1 in axonal outgrowth and neuronal migration 

 
L1 mediates cell migration, axon outgrowth and guidance, branching, and synaptogenesis in 

the nervous system (Hortsch, 1996; Chen et al., 2007). The ICD of neuronal L1 contains four 

additional amino acids (RSLE) compared to the L1 ICD expressed in non-neuronal cells 

(Miura et al., 1991). These extra residues are encoded by the alternatively spliced exon 27 and 

are important in several L1 functions. Several L1-associated cytosolic molecules participating 

in axon outgrowth and guidance have also been identified (Davis and Bennett, 1993; 

Kamiguchi et al., 1998; Dickson et al., 2002). However, the structural basis for L1-mediated 

intracellular signaling and cell remodelling has still not been unravelled. 

 
The function of L1 in regulation of axonal outgrowth and neuronal migration is dependent on 

CAM-mediated signaling to the inside of the neuron, rather than passive adhesion, and also 

requires coordination with the actin cytoskeleton. L1 does not bind directly to the actin 

cytoskeleton; rather, its interaction is regulated by membrane-cytoskeletal linker proteins, 

such as ankyrin and the ezrin, radixin, and moesin (ERM) protein family. Ezrin interacts 

directly with the L1 ICD and this interaction plays an important role in neurite branching 

(Turunen et al., 1994; Chishti et al., 1998; Dickson et al., 2002; Cheng et al., 2005). The 

interaction between L1 and ezrin involves two major sites in L1, one of which is the 
1176YRSLE region within the neuronal isoform of L1 ICD (Dickson et al., 2002; Cheng et al., 

2005). Dynamic regulation of the cell surface expression of adhesion molecules is also an 

important mechanism for controlling neuronal growth cone motility and guidance. L1-

controlled endocytosis plays a crucial role in the motility of the nerve growth cones 

(Kamiguchi and Yoshihara, 2001).  
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The amino acid sequence 1176YRSLE within the L1 ICD enables recruitment of L1 to the 

AP2-clathrin adapter for endocytosis (Kamiguchi et al., 1998). L1 internalization by clathrin-

mediated endocytosis within the central domain of the growth cone leads to recycling of L1 to 

the front, promoting motility through new adhesive contacts at the leading edge and the 

detachment of old adhesions (Fig. 4) (Kamiguchi and Lemmon, 2000). Endocytosis of L1 is 

regulated by pp60c-src, which can phosphorylate the cytoplasmic 1176YRSLE motif, thus 

inhibiting L1 binding to AP2-clathrin (Schaefer et al., 2002). The L1 ICD contains a Ser 

residue (Ser1181) adjacent to the AP-2 binding site that can be phosphorylated by casein kinase 

II (CK II) (Wong et al., 1996). Although the possible role of Ser1181 in L1 function has not 

been investigated so far, there is evidence that L1 phosphorylation at this site by CK II is 

required for proper endocytic trafficking of L1 and for L1-stimulated axon outgrowth (Nakata 

Figure 4: A model of L1’s internalization and trafficking in the axonal growth cone. L1 is internalized 

from the plasma membrane (left) at the C-domain via clathrin-mediated pathways. Endocytosed L1 is 

transported into the P-domain via sorting and recycling endosomes. Recycled L1 is reinserted into the plasma 

membrane at the leading edge (right). The ability of L1 to interact with clathrin adaptors is regulated by 

phosphorylation. Recycled L1 on the cell surface moves toward the C-domain by coupling to the retrogradely 

moving actin filaments via ankyrin or other linker proteins (Figure adapted from (Kamiguchi and Lemmon, 

2000)). 
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and Kamiguchi, 2007). The findings by Nakata and Kamiguchi also suggested that sorting 

pathways following L1 internalization might be regulated by Ser1181 phosphorylation. 

 

1.3.4. L1 and 14-3-3 

 
The GFAP/L1 mouse is a transgenic mouse expressing L1 ectopically in glial fibrilliary acidic 

protein (GFAP)-expressing astrocytes. This transgenic mouse model was generated to study 

the effects of L1 on learning and synaptic plasticity (Wolfer et al., 1998). Results from several 

experiments performed with this model led to the hypothesis that L1-expression in astrocytes 

alters gene expression, thereby leading to increased flexibility and selectivity in spatial 

learning. Serial analysis of gene expression (SAGE) in GFAP/L1 mice hippocampi also 

revealed an overexpression of 14-3-3β and ζ genes (R. Löbbert, U. Wirkner, and O. Kreft, 

Lion BIOSCIENCE AG, Heidelberg; unpublished observations). The observation that 14-3-3 

genes were overexpressed in this transgenic mouse model led to the hypothesis that 14-3-3 

could be involved in downstream signaling of L1 and thereby influence L1 function. Data 

from the Schachner laboratory also suggested a possible functional connection between L1 

and 14-3-3: overexpression of 14-3-3 led to a specific reduction of neurite length in L1-

mediated neurite outgrowth (T. Tilling, unpublished results). Previously, attempts were made 

to demonstrate an interaction between L1 and 14-3-3 but results were inconclusive (Ramser, 

2005).  
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1.4. Aim of this study 
 

14-3-3 proteins are most abundant in the CNS of mammals, not only during ontogenetic 

development but also in the adult brain, pointing to a critical role for 14-3-3 in neuronal 

function. Results from previous experimentation had suggested that non-erythroid alpha II 

spectrin and L1 may interact with 14-3-3. The aim of this study was to demonstrate and 

specifically characterize the interactions of these two neuronal proteins with 14-3-3, by 

employing molecular biological and biochemical approaches. 
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2. Materials and methods 

 

2.1. Materials 
 

2.1.1. Chemicals 

 
All chemicals were obtained in analytical grade quality from the following companies: 

BioRad Laboratories (Munich, Germany), PerBio Science (Bonn, Germany), Santa Cruz 

Biotechnology (Heidelberg, Germany), SERVA Electrophoresis (Heidelberg, Germany), 

Sigma-Aldrich Chemie GmbH (Deisenhofen, Germany) and Th. Geyer (Hamburg, Germany). 

Plasmids and molecular cloning reagents were obtained from Invitrogen (Karlsruhe, 

Germany), Stratagene (Waldbronn, Germany) and Qiagen (Hilden, Germany). Restriction 

enzymes were obtained from New England Biolabs (Frankfurt am Main, Germany). 

Oligonucleotides were ordered from metabion (Munich, Germany). All nucleotides used in 

this thesis work are listed in the Appendix section. Plasmid Maxi Kit and QIAquick Gel 

Extraction Kit were obtained from Qiagen (Hilden, Germany). GFX Micro Plasmid Prep Kit 

was obtained from GE Healthcare (München, Germany). Cell culture materials were obtained 

from PAA Laboratories GmbH (Cölbe, Germany). 

 

2.1.2. Buffers and solutions 

 
0.25 M sucrose  0.25 M sucrose 

in Tris buffer (For  1 mM MgCl2 

isolation of endosomes) 1 mM CaCl2 

    1 mM NaHCO3 

    5 mM Tris-HCl pH 7.4 

 

0.32 M sucrose  0.32 M sucrose 

in Tris buffer (For whole 1 mM MgCl2 

brain homogenization and 1 mM CaCl2 

membrane fraction  1 mM NaHCO3 

isolation)   5 mM Tris-HCl pH 7.4 
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0.5 M sucrose    0.5 M sucrose 

in Tris buffer (For  1 mM MgCl2 

isolation of endosomes) 1 mM CaCl2 

    1 mM NaHCO3 

    5 mM Tris-HCl pH 7.4 

 

0.8 M sucrose   0.8 M sucrose 

in Tris buffer (For  1 mM MgCl2 

isolation of endosomes) 1 mM CaCl2 

    1 mM NaHCO3 

    5 mM Tris-HCl pH 7.4 

 

1 M sucrose   1 M sucrose 

in Tris buffer (For  1 mM MgCl2 

membrane fraction  1 mM CaCl2 

isolation)   1 mM NaHCO3 

    5 mM Tris-HCl pH 7.4 

 

1.1 M sucrose   1.1 M sucrose 

in Tris buffer (For  1 mM MgCl2 

isolation of endosomes) 1 mM CaCl2 

    1 mM NaHCO3 

    5 mM Tris-HCl pH 7.4 

 

1.2 M sucrose   1.2 M sucrose 

in Tris buffer (For  1 mM MgCl2 

membrane fraction  1 mM CaCl2 

isolation)   1 mM NaHCO3 

    5 mM Tris-HCl pH 7.4 

 

1.3 M sucrose   1.3 M sucrose 

in Tris buffer (For  1 mM MgCl2 

isolation of endosomes) 1 mM CaCl2 
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    1 mM NaHCO3 

    5 mM Tris-HCl pH 7.4 

 

2 M sucrose   2 M sucrose 

in Tris buffer (For  1 mM MgCl2 

isolation of endosomes) 1 mM CaCl2 

    1 mM NaHCO3 

    5 mM Tris-HCl pH 7.4 

 

Blocking solution  1% BSA in TBS 

(For ELISA) 

 

Blocking solution  5% skimmed milk powder in TBST or PBST 

(For protein immunostaining) 

 

Buffer A   TBS 

(For ELISA)   1% BSA 

1 mM CaCl2 

1 mM MgCl2  

0.05% Tween 

 

µ-Calpain proteolysis buffer 20 mM Tris pH7.4 

(µ-Calpain proteolysis 25 mM NaCl 

assay)    0.15 mM CaCl2 

    0.03 µg µ-Calpain (Sigma) 

 

DNA-sample buffer   20% (w/v) glycerol in TAE 

(5x concentrated)  0.025% (w/v) orange G 

(For DNA agarose gels) 

 

DNA elution buffer  10 mM Tris-HCl pH 8.0 

 

Elution buffer   50 mM Tris-HCl pH 7.4 
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(For GST protein  20 mM glutathione, reduced 

purification) 

 

Elution buffer   50 mM NaH2PO4 

(For His protein  300 mM NaCl 

purification)   250 mM imidazole 

    pH 8.0 

 

Ethidium bromide solution 10 µg/ml ethidium bromide in 1xTAE 

(For DNA agarose gels) 

 

Lysis buffer   50 mM K2HPO4 

(For GST protein  400 mM NaCl 

purification)   100 mM KCl 

    10% (v/v) glycerol 

    0.5% (v/v) Triton X-100 

    10 mM imidazole 

    Protease Inhibitor Cocktail EDTA-free (Roche) 

 

Lysis buffer   50 mM NaH2PO4 

(For His protein  300 mM NaCl 

purification)   10 mM imidazole 

    pH 8.0 

 

Modified RIPA buffer 50 mM Tris-HCl pH 7.4 

(For brain homogenates and 150 mM NaCl 

membrane fractions)  2 mM EDTA 

    1 mM NaF 

    1 mM Na3VO4 

    1% NP-40 

    0.5% SDS 

    100 µM PMSF (added just before use) 

Protease Inhibitor Cocktail EDTA-free (Roche) 
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    Phosphatase Inhibitor Cocktail I (Sigma-Aldrich) 

 

Modified RIPA buffer 50 mM Tris-HCl pH 7.4 

(For cell lysates)  150 mM NaCl 

    1 mM EDTA 

    1 mM NaF 

    1 mM Na3VO4 

    1% NP-40 

    100 µM PMSF (add just before use) 

    Protease Inhibitor Cocktail EDTA-free (Roche) 

    Phosphatase Inhibitor Cocktail I (Sigma-Aldrich) 

 

PBS    150 mM NaCl 

    10 mM Na2HPO4 

    2.5 mM NaH2PO4 

    3 mM KCl 

    pH 7.4 

 

PBST    150 mM NaCl 

(For protein   10 mM Na2HPO4 

immunostaining)  2.5 mM NaH2PO4 

    3 mM KCl 

    0.05% Tween-20 

 

PBSCM   PBS with Ca2+ and Mg2+ (PAA) 

 

Pull-down buffer  20 mM Tris pH 7.4 

 100 mM NaCl 

 

Quenching solution  20 mM glycine in PBSCM 

(For cell surface  

biotinylation) 
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Sample buffer with DTT 8% SDS 

for protein gels  320 mM Tris-HCl pH 6.8 

(4x concentrated)  40% Glycerol 

    10 mg/ml DTT 

    0.1% bromphenol blue 

 

SDS-PAGE   192 mM glycine 

running buffer   25 mM Tris 

    0.1% SDS 

 

Staining solution  40% (v/v) ethanol 

(For Coomassie staining 10% (v/v) acetic acid 

of SDS-PAGE gels)  0.1% (w/v) Coomassie Brilliant blue R250 

 

Stripping buffer  25 mM glycine 

(For protein   1 % SDS 

immunostaining)  pH 2.0 

 

Substrate solution  100 mM sodium acetate pH 5.0 

(For ELISA)   2% ABTS 

    30 % H2O2 

 

Sulfo-NHS-LC-Biotin in PBSCM 

(Pierce) (For cell surface 

biotinylation) 

 

TBS    100 mM Tris 

(10x concentrated)  1.5 M NaCl 

    pH 7.4 

 

TBST    10 mM Tris 

(For protein   150 mM NaCl 

immunostaining)  0.05% Tween-20 
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    pH 7.4 

 

Transfer buffer  192 mM glycine 

(For Western blotting  25 mM Tris 

of SDS-polyacrylamide gels) 10-20% methanol 

 

Tris EDTA acetate (TAE) 2 M Tris-Acetate, pH 8.0 

DNA gel running buffer 100 mM EDTA 

(50x concentrated) 

 

Tris buffer   5 mM Tris-HCl pH 7.4 

(For membrane fraction Protease Inhibitor Cocktail EDTA-free (Roche) 

isolation) 

 

Washing buffer  PBS 

(For GST protein   1% Triton X-100 

purification)   1 mM DTT 

 

Washing buffer  50 mM NaH2PO4 

(For His protein  300 mM NaCl 

purification)   20 mM imidazole 

    pH 8.0 

 

2.1.3. Primary antibodies 

 
Primary antibodies used in this thesis, their characteristics, and sources: 

 

Name Host Epitope Source 

14-3-3 (H8) Mouse N-terminus of human  
14-3-3β  

Santa Cruz 
Biotechnology 

14-3-3β Rabbit  N-terminus of human  
14-3-3β 

Immunobiological 
Laboratories  
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14-3-3ζ Rabbit N-terminal part of human 14-3-3ζ 
(residues MDKNELVQK) 

 

Immunobiological 
Laboratories  

Alpha II spectrin 
(non-erythroid) 

Mouse  C-terminus of non-erythroid 
alpha II spectrin 

(15-20 repetitive units) 

Chemicon 
International 

c-Myc (9E10) Mouse  C-terminal domain of human c-
Myc 

(residues 408-439) 

Santa Cruz 
Biotechnology 

GST Goat  Unknown GE 
Healthcare 

 

L1 557 Rat Fibronectin type III repeats 2 and 
3 (FNIII2/3) of the L1 
extracellular domain  

Schachner 
laboratory 

L1 Cell 
Adhesion 

Molecule Ab-1 
(Clone UJ127) 

Mouse Unknown Dianova GmbH 

L1 CAM Rabbit Extracellular domain of murine 
L1  

PINEDA 

L1 Monoclonal 
Antibody 

Mouse  Cytoplasmic domain of murine 
L1 

(adjacent to the YRSL sorting 
signal) 

HISS Diagnostics 
GmbH 

NCAM 1β1 Rabbit  Extracellular domain of murine 
NCAM 

Schachner 
laboratory 

NCAM 1β2 Rabbit  Extracellular domain of murine 
NCAM 

Schachner 
laboratory 

Penta-His Mouse  N-terminal, C-terminal, and 
internal 6xHis tags 

Qiagen GmbH 
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2.1.4. Secondary antibodies 

 
Secondary antibodies used in this thesis and their sources: 

 

2.1.5. Bacterial and mammalian cell culture medium 

 
Bacterial media were autoclaved and antibiotics were supplemented prior to use. 

 

DMEM   Dulbecco’s MEM, high glucose 

(For HEK 293 cells)  10% fetal calf serum 

    20 ml/l penicillin/streptomycin solution (100x) 

    10% L-Glutamine 

    10% sodium pyruvate 

 

 

Name Source 

Peroxidase-conjugated mouse anti-rabbit 

IgG (H + L) 

Jackson ImmunoResearch laboratories; 

purchased through Dianova GmbH 

(Hamburg, Germany). 

Peroxidase-conjugated goat anti-mouse IgG 

+ IgM (H + L) 

Jackson ImmunoResearch laboratories; 

purchased through Dianova GmbH 

(Hamburg, Germany). 

Peroxidase-conjugated donkey anti-mouse 

IgG (H+L) 

(min X Bov, Ck, Gt, GP, Sy Hms, Hrs, Hu, 

Rb, Shp Sr Prot) 

Jackson ImmunoResearch laboratories; 

purchased through Dianova GmbH 

(Hamburg, Germany). 

Peroxidase-conjugated donkey anti-rabbit 

IgG (H+L)  

(min X Bov, Ck, Gt, GP, Sy Hms, Hrs, Hu, 

Ms, Rat, Shp Sr Prot) 

Jackson ImmunoResearch laboratories; 

purchased through Dianova GmbH 

(Hamburg, Germany). 
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LB medium   10 g/l Bacto-tryptone 

    10 g/l Na Cl 

    5 g/l Yeast extract 

 

LB ampicillin medium 100 mg/l ampicillin in LB medium 

 

LB ampicillin plates  20 g/l agar in LB medium 

    100 mg/l ampicillin  

 

LB kanamycin medium 25 mg/l kanamycin in LB medium 

 

LB kanamycin plates  20 g/l agar in LB medium 

    25 mg/l kanamycin 

 

LB ampicillin/kanamycin 100 mg/l ampicillin  

medium   25 mg/l kanamycin in LB medium 

 

LB ampicillin/kanamycin 20 g/l agar in LB medium 

plates    100 mg/l ampicillin  

    25 mg/l kanamycin 

 

LB chloramphenicol/  20 g/l agar in LB medium 

ampicillin plates  34 mg/l chloramphenicol 

    100 mg/l ampicillin 

 

2.1.6. Bacterial cells 

 
E. coli BL21(DE3)  F-, ompT, hsdSB (rb

-
mb

-
), gal dcm (DE3) 

(For protein overexpression) Novagene, VWR International GmbH (Darmstadt, 

    Germany) 

 

E. coli BL21(DE3)pLysS F-, ompT, hsdSB (rb
-
mb

-
), gal dcm (DE3) pLysS (CamR) 

(For protein overexpression) Invitrogen GmbH (Karlsruhe, Germany) 
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E. coli BL21-AITM  Invitrogen GmbH (Karlsruhe, Germany) 

(For protein overexpression) 

 

E. coli DH5α   F-, ϕ80dlacZ∆M15, ∆(lacZYA-argF)U169,  

(For cloning)   deoR, recA1, endA1, hsdR17(rk--,mk
+
), phoA, 

    supE44, λ-, thi-1, gyrA96, relA1 

    New England Biolabs GmbH (Frankfurt am Main, 

    Germany) 

 

E. coli TOP10F’  F′ lacIq, Tn10(TetR) mcrA ∆(mrr-hsdRMS-mcrBC) 

(For cloning)   Φ80lacZ∆M15 ∆lacΧ74 recA1 deoR 

    araD139 ∆(ara-leu)7697 galU galK rpsL (StrR) endA1  

    nupG 

 

E. coli M15   derived from E. coli K12 

(For protein overexpression) NaIS, StrS, RifS, Thi–, Lac–, Ara+, Gal+, Mtl–, 

    F–, RecA+, Uvr+, Lon+
 

    Qiagen GmbH (Hilden, Germany) 

 

2.1.7. Cell lines 

 
Mammalian cell lines were utilized for ectopic protein expression. 

 

HEK293 cells Human Embryonic Kidney (HEK) epithelial cell line 

 

SH-SY5Y cells  Derivative of neuroblastoma cell line SK-N-SH 

 

2.1.8. Plasmid constructs 

 
pcDNA3-L1   For expression of full length neuronal L1 in mammalian cells.

    Obtained from A. Rünker, ZMNH, Germany 
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pcDNA3/6xmyc  Mammalian expression vector for 6x myc-tagged proteins. 

    Derived from pcDNA3 vector (Invitrogen) and generated in the 

    Schachner laboratory 

 

pcDNA3/6xmyc – 14-3-3β For expression of 6x myc-tagged full-length 14-3-3β 

    in mammalian cells 

 

pcDNATM3.1/myc-his –  For expression of myc-histidine-tagged alpha II spectrin 10-14 

alpha II spectrin 10-14 in mammalian cells 

 

pcDNATM3.1/myc-his –  For expression of myc-histidine-tagged alpha II spectrin 10-14 

alpha II spectrin 10-14 mutant S1302A in mammalian cells. Generated by S1302A

    site-directed mutation of Ser1302 to Ala in pcDNATM3.1/myc-his

    – alpha II specrin 10-14 

 

pCI - alpha II spectrin  For expression of flag-tagged full length non-erythroid alpha II  

    spectrinin mammalian cells. Provided by Dr. J. Morrow, Yale

    University School of Medicine, New Haven, CT, USA 

 

pDEST15 - 14-3-3β For overexpression of glutathione S transferase (GST)-tagged 

full length 14-3-3β protein in bacteria. Obtained from Dr. H. Fu, 

Emory University, Atlanta, GA, USA 

 

pDEST15 – 14-3-3ζ  For overexpression of GST-tagged 14-3-3ζ protein in bacteria

    Obtained from Dr. H. Fu, Emory University, Atlanta, GA, USA 

 

pDEST26 - 14-3-3ζ  For expression of histidine-tagged 14-3-3ζ in mammalian cells

    Obtained from Dr. H. Fu, Emory University, Atlanta, GA, USA 

 

pDEST26 - 14-3-3ζ Κ49Ε For expression of histidine-tagged 14-3-3ζ K49E in mammalian

    cells. Obtained from Dr. H. Fu, Emory University, Atlanta, GA, 

    USA 
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pGEX-2T - 14-3-3β  For overexpression of GST-tagged 14-3-3β in bacteria. Provided

    by Dr. Y. Takihara, Osaka University, Osaka, Japan 

 

pGEX-4T-2   Expression vector for GST-tagged recombinant proteins 

    in bacteria 

 

pGEX-4T-2 – alpha II For overexpression of GST-tagged alpha II spectrin 10-14 in 

spectrin 10-14   bacteria 

 

pGEX-4T-2 – alpha II For overexpression of GST-tagged alpha II spectrin 10-14 in 

spectrin 10-14-S1302A mutant S1302A in bacteria. Generated by mutating Ser1302 

    to Ala in pGEX-4T2 – alpha II spectrin 10-14 

 

pQE30 – µ2   For overexpression of histidine-tagged µ2 subunit  

    of the adaptor protein AP2 in bacteria. Provided by Dr.  

    V. Haucke, Freie Universität Berlin, Germany 

 

pQE30 – L1 ICD  For overexpression of histidine-tagged L1 ICD in bacteria. 

    Obtained from G. Wolters, ZMNH, Germany 

 

pQE30 – L1 ICD-S1181A For overexpression of histidine-tagged L1 ICD mutant 

    S1181A in bacteria. Generated by of Ser1181-> Ala mutation  

in pQE30 – L1 ICD 

 

pQE30 – L1 ICD  For overexpression of histidine-tagged L1 ICD with a  

∆RSLESD   RSLESD-motif deletion in bacteria. RSLESD sequence deleted 

    in pQE30 – L1 ICD generated by PCR 

 

2.1.9. DNA and protein standards 

 
1 kb DNA ladder  Invitrogen GmbH 

 

Precision Plus Protein TM Bio-Rad Laboratories GmbH 
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Dual Color Standards 

 

2.2. Methods 
 

2.2.1. Molecular biology 

 

2.2.1.1. Transformation of chemically-competent bacteria 

(Sambrook, 1989) 

 
To 100 µl of competent BL21(DE3), BL21(DE3)pLysS, DH5α, M15 or TOP10F’ cells, either 

50-100 ng of plasmid DNA, 10 µl of DNA ligation mixture (see 2.1.3b), or 10 µl of DpnI-

treated PCR-mutagenesis mixture (see 2.1.8) were added and incubated on ice for 30 minutes. 

After a heat shock (2 minutes, 42°C) and a brief incubation period on ice (3 minutes), 800 µl 

of either LB or SOC medium (without antibiotics) were added to the bacteria and the cells 

were incubated at 37°C for 1 h. The cell suspension was then centrifuged (1,000 x g, 1 

minute, RT) and the supernatant removed. The cells were resuspended in 50 µl of LB medium 

and aliquots of suspension were plated on LB plates containing the appropriate antibiotics. 

Plates were incubated at 37°C overnight. 

 

2.2.1.2. Plasmid isolation 

 
All plasmids were isolated using Qiagen or GE Healthcare plasmid preparation kits (see 

2.1.1) according to the respective manufacturer’s instructions. 

 

2.2.1.3. DNA restriction and ligation 

2.2.1.3a. Restriction digestion of DNA 

 
All restriction digestions were carried out using restriction enzymes supplied by New England 

Biolabs (NEB) in accordance with the supplied instructions and technical references 

(http://www.neb.com). 
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2.2.1.3b. Ligation of DNA fragments 

(Rapid ligation Kit, Roche) 

 

Ligation of DNA fragments was performed by mixing 10 fmol of vector DNA with either 30 

or 50 fmol of insert DNA in 1x concentrated DNA dilution buffer. 1 µl of T4 DNA ligase and 

10 µl of ligation buffer were added to a final volume of 40 µl. The reaction was incubated 

overnight at RT. 10 µl of the ligation mixture were used for transformation of bacteria. 

 

2.2.1.4. DNA gel electrophoresis 

(Sambrook et al., 1989) 

 

DNA fragments were separated in agarose gels by horizontal electrophoresis in DNA 

electrophoresis chambers (Bio-Rad Laboratories). To prepare the gels, agarose (1% w/v) was 

dissolved in 1x concentrated TAE buffer by heating, poured into gel electrophoresis trays, and 

allowed to solidify. Thereafter, the gels were placed in appropriate electrophoresis chambers 

and covered with 1x concentrated TAE buffer. DNA samples for electrophoresis were 

prepared by mixing the necessary volume of DNA with DNA sample buffer. The mixtures 

were pipetted into the agarose gel sample pockets and the gel was run at constant voltage (10 

V/cm gel length). Afterwards, the gel was stained with ethidium bromide staining solution for 

20-30 minutes and documented using the E.A.S.Y. UV-light documentation system (Herolab, 

Wiesloch, Germany). 

 

2.2.1.5. Extraction of DNA fragments from agarose gels 

 
To extract DNA fragments from agarose gels, ethidium bromide-stained gels were illuminated 

shortly with UV-light and the appropriate DNA band was excised from the gel with a clean 

scalpel. The excised band was placed into an Eppendorf tube. The DNA was extracted from 

the agarose using the QIAquick gel extraction kit (Qiagen) following the manufacturer’s 

protocol. The extracted DNA was resuspended in elution buffer. 
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2.2.1.6. Determination of DNA concentration 

 
DNA concentrations were determined by UV spectroscopy. In general, an aliquot of the DNA 

sample was diluted with distilled water for analysis. The DNA concentration of the diluted 

sample was determined by measuring the absorbance at 260 nm (A260) and 280 nm (A280). 

A260 readings between 0.1 and 1.0 were considered reliable. The DNA concentration of the 

sample was calculated from the A260, taking into account the dilution factor of the analyzed 

sample (A260 = 1 corresponds to a concentration of 50 µg/ml of double stranded DNA). A 

A260/A280 ratio of between 1.8 and 2.0 was used as a measure of adequate purity of the DNA 

preparation for further experimentation. 

 

2.2.1.7. DNA sequencing 

 
DNA sequencing was performed by the ZMNH sequencing facility in Hamburg. For 

sequencing, 1 µg of DNA was diluted in 7 µl double distilled water along with the appropriate 

sequencing primer (10 pM final concentration). 

 

2.2.1.8. DNA amplification 

 
Amplification of DNA fragments was performed in a 50 µl reaction mixture using the 

HotStarTaq Master Mix (Qiagen). The following composition was used for a typical 

amplification reaction: 

 

Component Volume/amount 

HotStarTaq Master Mix 25 µl 

Forward primer  20 pmol 

Reverse primer  20 pmol 

Template DNA 50 ng (< 1 µg/50 µl reaction) 

Total volume 50 µl 
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2.2.1.9. Site-directed mutagenesis 

 
Single amino acid mutations were made using the QuikChange® II XL Site-Directed 

Mutagenesis Kit (Stratagene) following the protocol provided by the manufacturer. The 

following composition was generally used for site-directed mutagenesis reactions: 

 

Component Volume/amount 

10x reaction buffer 5 µl 

double-stranded DNA template 50 ng 

mut primer-5’ (0.1 µg/µl) 2.5 µl 

mut primer-3’ (0.1 µg/µl) 2.5 µl 

dNTP mix (proprietary mixture) 1 µl 

QuikSolution 3 µl 

H2O Adj. to 50 µl 

Pfu Ultra HF polymerase (2.5 U/µl) 1 µl 

 

2.2.2. Protein biochemistry 

 

2.2.2.1. Protein quantification (Bicinchoninic Acid assay) 

 
Protein concentrations were determined with the bicinchoninic acid (BCA) protein 

quantification kit (Pierce) following the manufacturer’s instructions. 

 

2.2.2.2. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

 

Protein samples were subjected to SDS-PAGE under reducing conditions using the Mini-

Protean II system (Bio-Rad) and following standard SDS-PAGE protocols (Laemmli, 1970). 

The percentage of acrylamide to be used (8-14 %) was determined based on the molecular 

weight of the protein being analyzed. The following gel composition was used for the running 

gel: 375 mM Tris-HCl pH 8.8, 0.1% SDS, 0.025% APS, and 0.001% TEMED, plus 

acrylamide/bis solution 29:1 based on the required acrylamide content. For the stacking gel, 

the following composition was used: 125 mM Tris-HCl pH 8.8, 0.1% SDS, 0.06% APS, and 

0.025% TEMED, plus acrylamide/bis solution 29:1 required for 5% (w/v) acrylamide. After 
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polymerisation of the gels, the electrophoresis chamber was assembled as described by the 

manufacturer. Samples were diluted with appropriate amounts of 2x concentrated SDS sample 

buffer then boiled for 5 min at 95°C in order to completely denature the proteins. After 

loading the samples onto the gel, the gel chamber was filled with 1x concentrated SDS 

running buffer. Electrophoresis was performed at a constant voltage of 90 V for 

approximately 15 minutes to allow the proteins to fully enter the stacking gel, and then at 120 

V until the bromophenol blue running front had reached the bottom of the gel. Gels were 

either stained with Coomassie or subjected to Western blotting. 

 

2.2.2.3. Coomassie staining of SDS-polyacrylamide gels 

 

Gels were stained in Coomassie staining solution for 1 h at RT under constant agitation. 

Afterwards, the gels were incubated in de-staining solution until the background of the gel 

appeared nearly transparent. 

 

2.2.2.4. Western blotting 

 
Proteins separated by SDS-PAGE were transferred onto a Protran nitrocellulose membrane 

using a MINI TRANSBLOT-apparatus (Bio-Rad Laboratories). After equilibration of the 

polyacrylamide gel in transfer buffer, a blotting sandwich was assembled as described in the 

manufacturer’s protocol. Proteins were transferred at 4°C in blotting buffer at constant 

voltage (90 V for 1-2 h). Prestained protein markers from Bio-Rad Laboratories were used as 

molecular weight indicators and to monitor successful protein transfer to the nitrocellulose 

membrane. 

 

2.2.2.5. Protein immunostaining 

 
After electrophoretic transfer, membranes were removed from the blotting sandwiches and 

placed with the protein-bound side up in glass or plastic vessels. Membranes were washed 

once with TBST for 5 minutes and then incubated under gentle shaking for 1 h at RT in 

blocking solution to block the unreacted sites on the membranes to reduce the amount of non-

specific binding of proteins in subsequent steps. After the blocking step, membranes were 

incubated overnight at 4°C with an appropriate primary antibody diluted in either blocking 
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solution or PBST with 3-5% (w/v) BSA. The primary antibody solution was removed the next 

day and membranes were washed 6x 5 minutes with TBST under constant shaking. The 

membranes were incubated with the appropriate horseradish peroxidase (HRP)-conjugated 

secondary antibody, diluted 1:10,000 in blocking solution, for 1-3 h at RT, then washed 6x 5 

minutes as before. Immunoreactive bands were visualized using the SuperSignal West Dura 

or SuperSignal West Pico enhanced chemiluminescence detection system (Pierce). The 

membranes were soaked for 5 min in detection solution (1:1 mixture of solutions I and II). 

The solution was removed and the blots were placed between transparent plastic sheets. The 

membranes were exposed to BIOMAX ML (Kodak) for several time periods (between 1 min 

and 6 h) to visualize protein bands. 

 

2.2.3. Expression of recombinant proteins in Escherichia coli 

 
For recombinant expression of proteins in E. coli, the appropriate E. coli strain was 

transformed with the expression plasmid encoding the construct of interest and transformants 

were selected on LB plates containing the proper selection antibiotic. LB medium (20 – 50 

ml) with the selection antibiotic was inoculated with a single colony and incubated overnight 

at 37°C with constant agitation. The overnight bacterial culture was used as a starter inoculum 

at a ratio of 1:20 – 1:50 and incubated at 37°C under constant agitation until the culture had 

reached an optical density (A600) of 0.4 – 0.6. Protein expression was induced by adding IPTG 

(0.5-1.0 mM) or L-arabinose (0.2%) to the culture with further incubation for 3-4 h at 37°C. 

Bacteria were collected by centrifugation (4,000 x g, 4°C, 20 minutes) and pellets stored at –

20°C. Protein expression was examined by Western blot analysis of small samples taken from 

the culture supernatant before and after IPTG/L-arabinose induction. 

 

2.2.3.1. Bacterial lysis by French press 

 
Bacterial pellets were resuspended in lysis buffer (10- 20 ml lysis buffer per 500 ml culture). 

The suspension was transferred to a pre-cooled French-Pressure-20K-chamber (capacity 40 

ml). Bacteria were compressed (Spectronic Instruments/SLM Aminco, 10000 psi, 3 minutes) 

and lysed by opening the valve carefully. This procedure was repeated 3 times. The lysate 

was then centrifuged (10,000 x g, 20 minutes, 4°C) in a Beckman centrifuge to pellet the 

cellular debris. 



 

Materials and methods 

 

 

43 

2.2.3.2. Protein purification (native conditions) 

 
Glutathione S transferase- (GST-) tagged proteins were purified using glutathione agarose 

beads (Sigma-Aldrich). The captured protein was eluted from the beads according to the 

manufacturer’s protocol. Histidine-tagged proteins were purified using Ni-NTA agarose beads 

(Qiagen), and protein purification was carried out following the manufacturer’s protocol. 

 

2.2.4. Protein-protein interaction detection methods 

 

2.2.4.1. GST-pull down assay 

 

Protein pull-down experiments were performed to investigate the direct interaction between 

14-3-3ζ protein and the ICD of L1. Recombinant 14-3-3ζ protein tagged with GST was 

expressed in bacteria and purified on glutathione sepharose bead columns (Sigma-Aldrich). 

GST alone was bound to glutathione sepharose beads and used as a control. All steps of the 

experiments were carried out on ice or at 4°C. GST-14-3-3ζ and GST bound to beads (50 µl) 

were washed once with pull-down buffer (~150 µl). Pull-down buffer containing 5% (w/v) 

BSA was added to the protein-loaded beads and the beads were incubated at 4°C for 2 h with 

constant shaking. Recombinantly expressed and purified L1 ICD constructs were added to the 

mixture and the samples allowed to incubate overnight at 4°C with constant gentle shaking. 

The beads were washed once with pull-down buffer supplemented with 0.5% NP-40 and once 

with pull-down buffer. 2x concentrated SDS sample buffer (75 µl) was added to the bead 

mixture and samples were boiled at 95°C for 5 minutes to elute bound proteins for Western 

blot analysis. 

 

2.2.4.2. Enzyme-linked Immunosorbent Assay (ELISA) 

 

ELISA experiments served to investigate the direct interaction between 14-3-3 proteins and 

the ICD of L1. 14-3-3β or ζ protein tagged with GST- and histidine-tagged L1 ICD were 

expressed in bacteria and purified. Purified L1 ICD (5 µg/ml in TBS) was immobilized 

overnight at 4°C on a polyvinyl chloride surface in a 96-well plate (Nunc-Immunomodule 

Maxisorb, Nunc, Roskilde, Denmark) under constant gentle shaking (50 µl/well). 

Recombinant NCAM 180 intracellular domain was used as a control. The subsequent 
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incubation and washing steps of the ELISA experiments were performed at RT. All 

incubation steps were performed with 50 µl/well and washing steps with 100 µl/well. First, 

blocking of unreacted sites on the membrane was performed with blocking solution for 1 h. 

GST-14-3-3β or ζ protein diluted in buffer A was added and incubated for 1 h. The wells 

were then washed 3 times with TBST. Primary antibody and its respective HRP-coupled 

secondary antibody were used for the detection of bound protein. For visualization of protein 

binding, 50 µl of freshly prepared ABTS substrate solution was applied to the wells. The 

product of the HRP-catalyzed reaction was quantified by measuring the absorbance at 405 nm 

using an ELISA reader (Kcjunior). 

 

2.2.4.3. Co-immunoprecipitation 

 

Immunoprecipitation experiments were conducted with several different antibodies using 

protein A or protein A/G sepharose beads (Santa Cruz Biotechnology). 1-2 mg of total protein 

from brain homogenates, total membrane fractions, or HEK 293 cell lysates were incubated 

with 1-2 ml of ice-cold radio immunoprecipitation assay (RIPA) lysis buffer for 1 h at 4°C 

under constant gentle shaking. Samples were centrifuged at 10,000 x g for 20 minutes at 4°C. 

The pellet was discarded and the supernatant was pre-cleared with 15 µl of resuspended 

sepharose protein A or A/G beads by incubating 3 hours at 4°C with constant gentle shaking. 

After pre-clearing, the beads were pelleted down by centrifugation at 500 x g for 5 minutes. 

The supernatant was carefully transferred to a clean tube and then incubated with 

corresponding antibodies or antibody control overnight at 4°C with constant mixing. 

Antibody-target protein-complexes were captured with the respective sepharose beads by 

incubating the samples for up to 3 h at 4°C, followed by washing 3 times with ice-cold RIPA 

buffer and once with PBS. Captured proteins were eluted by adding 2x concentrated SDS 

sample buffer and boiling at 95°C for 5 minutes. The eluted proteins were analyzed by 

Western blotting. 

 

2.2.4.4. Casein kinase II phosphorylation in vitro 

 
To phosphorylate recombinant GST- or histidine-tagged fusion proteins in vitro, purified 

proteins were incubated with 1 unit of CK II (500 Units/ml, NEB), 200 µM ATP, and 1x 
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concentrated casein kinase II buffer (NEB) for 3 h at 30°C in a total reaction volume of 50 µl. 

The phosphorylated proteins were used for further experiments. 

 

2.2.4.5. Calpain cleavage assay 

 
Calpain cleavage of recombinant GST-alpha II spectrin 10-14 was performed by incubating 

the protein with 0.03 µg of µ-calpain (Sigma), 150 µM CaCl2, 20 mM Tris (pH 7.5), 25 mM 

NaCl, and 10 mM DTT for 30 min at 30°C in a total reaction volume of 25 µl. The cleavage 

reaction was stopped by adding 1x concentrated SDS sample buffer. 

 

2.2.5. Subcellular fractionation of mouse brain homogenates by differential 

density gradient centrifugation 

 

2.2.5.1. Isolation of total membrane fraction 

 
Whole brains of 3-weeks-old mice (C57BL/6J) were dissected quickly on ice and either 

frozen in liquid nitrogen for storage (–80°C) or immediately processed. To obtain sufficient 

amounts of total membrane fraction, at least 2 mouse brains were used. Each brain was 

homogenized in 2 ml of ice cold 0.32 M sucrose in Tris buffer using 15 strokes of a Dounce 

homogenizer to obtain a homogenate. All tissues and buffers were maintained at 4°C 

throughout the experiment. All centrifugation steps were done at 4°C using pre-chilled 

centrifuges, rotors and tubes. The homogenates of 2 brains were mixed and a 50 µl aliquot 

was taken for analysis of brain homogenate protein levels. The mixture of homogenates 

obtained was centrifuged at 1,400 x g for 10 minutes to pellet tissue debris, nuclei and large 

myelin fragments (pellet P1). The supernatant (S1) was carefully decanted and placed in a 

tube on ice. The pellet was resuspended and centrifuged again at 700 x g for 10 minutes. This 

centrifugation step was performed two more times. The pellet fractions were pooled and 

resuspended in 1 M sucrose in Tris buffer by repeated pipetting (final volume of 20 ml). The 

pooled pellet fractions were layered on 10 ml of 1.2 M sucrose in Tris buffer. On top of this 

first layer, 6 ml of 0.32 M sucrose in Tris buffer was carefully layered. Pellet P5, obtained by 

centrifugation of S4 at 17,500 x g for 15 min and resuspended in 0.32 M sucrose in Tris 

buffer to a final volume of 5 ml, was carefully layered on top of a second sucrose gradient. 

This second gradient consisted of 20 ml 1 M sucrose in Tris buffer on a cushion of 10 ml of 
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1.2 M sucrose in Tris buffer. Both sucrose gradients were centrifuged at 82,705 x g for 2 h. 

The interface between 1 M and 1.2 M sucrose was enriched in the crude membrane fraction. 

This interface was carefully collected with a Pasteur pipette from both gradients and pooled. 

The collected crude membrane fraction was purified on a gradient again. The fraction thus 

obtained was resuspended with 1 M sucrose in Tris buffer (20 ml total volume). The 

suspension was layered onto 10 ml of 1.2 M sucrose in Tris buffer to create a discontinuous 

gradient. As before, 6 ml of 0.32 M sucrose in Tris buffer was carefully layered on top and 

the gradient was centrifuged at 82,705 x g for 2 h. The interface between 1 M and 1.2 M 

sucrose contained the 2-fold enriched membrane fraction. The enriched membrane fraction 

was resuspended in 5 mM Tris buffer containing protease inhibitor cocktail (Roche) and 

centrifuged again at 82,705 x g for 30 minutes. Appropriate amounts of protease inhibitors 

were added and the fraction was stored at –80°C until further use.  

 

2.2.5.2. Isolation of endosomes 

 
To isolate endosomal fractions, 7-days-old mice (C57BL/6J; n = 20-40) were dissected 

quickly on ice and immediately homogenized in ice cold 0.32 M sucrose in Tris buffer. The 

brain homogenates were centrifuged at 17,000 x g for 1 h. The 17,000 x g-supernatant thus 

obtained was centrifuged at 100,000 x g for 1 h. The subsequent 100,000 x g-pellet was 

homogenized in 0.32 M sucrose in Tris buffer and loaded onto a step gradient comprising 

layers of 2, 1.3, 1.1, 0.8, 0.5 and 0.25 M sucrose. The gradients were centrifuged at 100,000 x 

g for 2 h. Nine 1 ml-fractions were collected from the top of the gradient and homogenized in 

0.32 M sucrose in Tris buffer. After another centrifugation step at 100,000 x g for 30 min, 

each of the nine fractions, enriched in distinct endosomes, was collected and the total amount 

of protein was estimated by the BCA test. These endosomal fractions were used for further 

experiments. 

 

2.2.6. Mammalian cell culture 

 

2.2.6.1. Maintenance of HEK 293 and SH-SY5Y cells 

 
HEK 293 or SH-SY5Y cells were cultured in DMEM with 10% fetal calf serum (FCS) and 

2% penicillin/streptomycin at 37°C, 5% CO2 and 90% relative humidity in 75 cm2 flasks (10 
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ml medium) or in six-well plates with 2 ml of medium. Cells were passaged when they were 

confluent (usually after 2-3 days). Medium was removed and cells were detached by 

incubation with 2 ml trypsin/EDTA solution (0.05%/0.02%) for up to 5 minutes at RT. Cells 

were resuspended in 8 ml fresh medium and were split 1:10 for continued culturing or they 

were seeded into 6-well plates for transfection. 

 

2.2.6.2. Transient transfection of HEK 293 and SH-SY5Y cells 

 
HEK 293 cells or SH-SY5Y cells were transfected transiently with plasmids using FUGENE 

6 (Roche) as per the manufacturer’s instructions. Transfected cells were grown for 24-48 

hours to allow for recombinant protein expression. 

 

2.2.6.3. Lysis of HEK 293 cells 

 
After growing transiently-transfected HEK 293 cells, medium was removed from the cells 

and they were washed twice with ice-cold PBS. Cells were scraped into PBS, transferred to a 

1.5 ml Eppendorf tube and pelleted at 1,000 x g for 10 minutes at 4°C. The cells were lysed in 

0.3-0.6 ml of RIPA buffer per well with constant agitation for 1 hour at 4°C. Cellular debris 

was removed by centrifugation (10,000 x g, 4°C, 15 minutes). The supernatant was used for 

immunoprecipitation. 

 

2.2.6.4. Cell surface biotinylation 

 
To investigate the presence of L1 at the surface of transfected SH-SY5Y cells, cell surface 

biotinylation was performed as described before (Baqui et al., 2003). SH-SY5Y cells, 

expressing L1 endogenously, were transfected with 14-3-3ζ constructs in a 6-well plate (2 µg 

of DNA per well). Two days after transfection, cells were washed twice with ice-cold 

PBSCM. Surface proteins were biotinylated by incubating cells with 0.5 mg/ml cell-

impermeant Sulfo-NHS-LC-Biotin (Pierce) (1 ml/well) in PBSCM for 10 min on ice. 

Biotinylation was quenched by incubation with 20 mM glycine in PBSCM on ice followed by 

washing with PBSCM (1 ml/well, 2 times). Biotinylated cells were lysed by addition of RIPA 

buffer (350 µl/well), followed by incubation at 4°C for 30 min. The supernatants were 

collected after centrifugation (700 x g) at 4°C for 10 min and protein concentrations were 

determined using the BCA kit (Pierce). The amount of surface-localized proteins was 
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determined by precipitating biotinylated proteins from the cell lysate with streptavidin 

coupled magnetic beads (DYNAL Biotech, Invitrogen) at 4°C overnight. To determine the 

proportion of surface L1, aliquots of the supernatant were collected before and after the 

addition of streptavidin beads. The beads were pelleted on a magnetic stand, washed twice 

with 1 ml of RIPA buffer, then once with PBS. Precipitated proteins were solubilized by 

addition of 50 µl of 2x concentrated SDS sample buffer to the beads. Proteins were separated 

by SDS-PAGE and Western blot analysis was performed with an anti-L1 (human) mouse 

monoclonal (Dianova) and the isoform-specific anti-14-3-3ζ monoclonal antibody 

(Immunobiological Laboratories). 
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3. Results 

 

The results section consists of two parts. The first part describes the finding that brain alpha II 

spectrin is a direct binding partner of the signaling protein 14-3-3β, and the characterization 

of the interaction between 14-3-3 and alpha II spectrin (see pages 49-57). In the second part, 

the discovery of the cell adhesion molecule L1 as a 14-3-3-binding partner is documented. 

This part includes an analysis of the L1 - 14-3-3-interaction and its implications for L1 

phosphorylation (see pages 58-68).  

 

3.1. Alpha II spectrin interacts with the signaling molecule 14-3-3 

 

3.1.1. Identification of alpha II spectrin as a potential 14-3-3ββββ-interacting 

protein  

 
14-3-3 proteins are known to regulate a variety of both general and specialized signaling 

pathways by binding to specific phosphoserine- and phosphothreonine-containing motifs 

within target proteins (Muslin et al., 1996). The functional complexity of 14-3-3 proteins is 

reflected in the increasing number of binding partners that have been identified so far (Fu et 

al., 2000). Although 14-3-3 proteins are highly abundant in the brain, the number of identified 

14-3-3-binding partners in brain is small so far.  

 

In the course of my diploma thesis (Ramser, 2005), I used affinity chromatography to identify 

cellular proteins from the brain that may interact with 14-3-3 proteins. Human GST-tagged 

14-3-3β was coupled to GSH-agarose and incubated with soluble and membrane fractions 

isolated from 3 week-old wild-type mouse brains. 14-3-3-interacting proteins were purified 

from both fractions by elution with R18 peptide (Petosa et al., 1998; Wang et al., 1999). 

Proteins from the membrane fraction bound to GST-14-3-3β were compared to the eluate 

from a GST-tag column to control for non-specific protein interactions. Among the eluted 

proteins, a protein of ~280 kDa was specifically enriched in the GST-14-3-3β eluate (Fig. 5). 

Analysis of this 280 kDa protein by ESI tandem mass spectrometry (MS/MS), which was 

performed by Dr. Fritz Buck (Universitätsklinikum Hamburg-Eppendorf), identified it as the 

cytoskeletal protein alpha II spectrin.  
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The interaction of non-erythroid alpha II spectrin with 14-3-3β protein was further 

investigated in the present study.  

 

3.1.2. 14-3-3ββββ binds endogenous alpha II spectrin from mouse brain 

 
To validate the interaction of 14-3-3β with alpha II spectrin, a GST-14-3-3β pull-down 

experiment was conducted. The experiment was performed with murine brain membrane 

fractions to confirm the association between the two proteins. As shown in Fig. 6, full-length 

alpha II spectrin (∼280 kDa) was efficiently pulled down with beads on which recombinant 

GST-tagged 14-3-3β had been immobilized, but not with beads loaded with GST alone 

(control). C-terminal breakdown products (BDP: ∼150 kDa and ∼145 kDa), resulting from 

calpain and caspase cleavage during post-lysis proteolysis (Wang et al., 1998; Nedrelow et 

al., 2003), could also be detected via the monoclonal anti-mouse alpha II spectrin antibody 

(Fig. 6), which binds to the C-terminal region of the alpha II spectrin molecule (Wang et al., 

1998). 

 

 

Figure 5: Identification of non-

erythroid alpha II spectrin as a 14-3-3 

interacting protein from murine brain 

membrane fraction. Colloidal 

Coomassie-stained SDS-PAGE gel of 

membrane fraction eluates from the 

GST-14-3-3β affinity column and GST-

only column (control). 
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3.1.3. Co-immunoprecipitation of alpha II spectrin with 14-3-3ββββ  

 
Co-immunoprecipitation was chosen as a further method to confirm the interaction of alpha II 

spectrin with 14-3-3 proteins. For this experiment, a 14-3-3β isoform-specific antibody was 

used to co-precipitate alpha II spectrin from mouse brain membrane fractions solubilized in 

detergent-containing buffer. Western blot analysis of the 14-3-3β immunoprecipitates 

revealed the presence of full-length alpha II spectrin (280 kDa) (Fig. 7; upper panel). Spectrin 

cleavage products were also detected in the 14-3-3β precipitate, but no co-

immunoprecipitation of alpha II spectrin was observed when a control IgG was used for 

immunoprecipitation (Fig. 7; upper panel). These results strongly suggest that alpha II 

spectrin is associated with 14-3-3β in the brain, and further confirm the interaction shown in 

the chromatography and pull-down assay. 

 

 

 

 

 

 

 

 

 

 

Figure 7: Co-immunoprecipitation reveals 14-3-3ββββ

- alpha II spectrin complexes in mouse brain. 

Upper panel: Co-immunoprecipitation from crude 

brain membrane fractions (MF) was performed using 

an antibody against 14-3-3β. Proteins were resolved 

by SDS-PAGE and analyzed by Western blotting 

(WB) with an anti-alpha II spectrin antibody. Lower 

panel: Western blot analysis of the co-precipitates was 

also performed with an anti-14-3-3β antibody, in order 

to show that 14-3-3β was successfully precipitated 

from the membrane fraction. 

Figure 6: 14-3-3ββββ binds endogenous alpha II 

spectrin from crude brain membrane fraction. 

Murine brain membrane fraction was incubated with 

GST-14-3-3β coupled to glutathione beads or GST 

control beads. Bound protein was resolved by SDS-

PAGE and analyzed by Western blotting with the 

indicated antibody. Cleavage products probably 

generated by calpain and caspase were also 

detectable with the monoclonal anti-alpha II 

spectrin antibody (indicated by arrows). 
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3.1.4. NCAM – spectrin - 14-3-3 complexes in mouse brain 

 
Alpha II spectrin forms heterotetramers with the beta I spectrin subunit (Goodman et al., 

1995), which is known to bind NCAM 180 and 140 (Leshchyns'ka et al., 2003). I therefore 

wished to analyze whether alpha II spectrin and 14-3-3β also associate with NCAM. The 1β1 

NCAM polyclonal antibody preparation was used to precipitate NCAM from membrane 

fractions isolated from 3 week-old wild-type mouse brains. Western blot analysis of the 

NCAM immunoprecipitates with an anti-14-3-3β isoform-specific antibody and an anti-alpha 

II spectrin monoclonal antibody revealed the presence of 14-3-3β and alpha II spectrin in 

these immunoprecipitates (Fig. 8; left, upper panel; right panel), indicating that these two 

proteins are indeed associated with NCAM in mouse brain.  

 

 

3.1.5 S1302A mutation in alpha II spectrin repetitive units 10-14 disrupts 

14-3-3ββββ binding 

 
It is generally believed that 14-3-3 proteins function through their ability to bind specific 

phosphoserine sites (Muslin et al., 1996; Yaffe et al., 1997). Two main consensus 14-3-3-

binding motifs have been identified: RSXpSXP and RXXXpSXP (pS represents the 

phosphorylated Ser residue) (Yaffe et al., 1997). A 14-3-3-binding motif (RLIQS1302HP) 

Figure 8: Immunoprecipitation reveals NCAM – spectrin - 14-3-3 complexes in mouse brain. Left, 

upper panel: Immunoprecipitation (IP) of NCAM from crude brain membrane fractions (MF) was performed 

with an antibody to NCAM. Proteins were resolved by SDS-PAGE and analyzed by Western blotting (WB) 

with an anti-14-3-3β antibody. Left, lower panel: Western blot analysis of the co-precipitates was also 

performed with an anti-NCAM antibody in order to show that NCAM was successfully precipitated from 

membrane fractions. Right panel: IP of NCAM from brain membrane fractions (MF) was performed with an 

antibody to NCAM. Western blot was performed with an anti-alpha II spectrin antibody. Precipitation with 

rabbit non-immune IgGs (IP: Ig) served as a negative control. 
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within the alpha II spectrin repetitive unit 12 corresponds to the consensus 14-3-3-binding 

motif RXXXpSXP and is the only consensus 14-3-3-binding motif found in the alpha II 

spectrin molecule, as predicted by the PATTINPROT algorithm of the Network Protein 

Sequence Analysis (Combet et al., 2000). To determine whether alpha II spectrin requires 

phosphorylated Ser1302 to interact with 14-3-3 (Fig. 9), binding assays were performed with 

GST-14-3-3β.   

 

 

 

 

 
Recombinant alpha II spectrin repetitive units 10-14 and alpha II spectrin 10-14 with a 

Ser1302->Ala substitution were compared as 14-3-3-interaction partners. The alpha II spectrin 

constructs were expressed as myc-tagged proteins in HEK 293 cells, precipitated with anti-c-

myc-agarose conjugate from HEK 293 cell lysates, and incubated with equal amounts of 

recombinant GST-14-3-3β protein. Western blot analysis revealed that the Ser1302 to Ala 

mutation resulted in substantially reduced alpha II spectrin – 14-3-3β-interaction (Fig. 10; 

upper panel), indicating that Ser1302 of alpha II spectrin is important for the interaction with 

14-3-3β. 

 

 

Figure 9: Scheme representing the recombinant fusion protein alpha II spectrin repetitive units 10-14. 

The calpain cleavage site (Cal) and the calmodulin-binding domain (CaM) are sequences inserted into the 

spectrin repeat 11. The novel 14-3-3-binding site (RLIQS1302HP) is located within the spectrin repeat 12. 

Ser1302 (highlighted in red) is the phosphorylation target within a consensus phosphorylation site for casein 

kinase II. The alpha II spectrin 10-14 construct was overexpressed as 6xmyc-tagged protein in HEK 293 cells 

and used in pull-down experiments. 
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3.1.6. In vitro casein kinase II phosphorylation of alpha II spectrin 

repetitive units 10-14 stimulates 14-3-3 binding 

 
The Ser1302 residue in alpha II spectrin domain 12, which was shown above to be important 

for the interaction with 14-3-3, is part of a consensus phosphorylation site for casein kinase II 

(CK II). To determine whether phosphorylation is required for the interaction of alpha II 

spectrin repetitive units 10-14 and 14-3-3, recombinant GST-alpha II spectrin 10-14 bound to 

GSH agarose beads was preincubated with or without CK II in the presence of 200 µM ATP, 

followed by an incubation with crude brain membrane fractions isolated from 3 week-old 

wild-type mice. Immunoblot analysis (Fig. 11; left panel) revealed that preincubation of GST-

alpha II spectrin 10-14 with CK II was indeed necessary for 14-3-3 binding.  

A dot blot analysis performed with an anti-pSer antibody confirmed that GST-alpha II 

spectrin 10-14 was phosphorylated after CK II treatment (Fig. 11; right panel). 

Figure 10: Ser
1302 

-> Ala substitution in alpha 

II spectrin repetitive units 10-14 disrupts 

binding to 14-3-3ββββ. Wild-type and mutant alpha 

II spectrin constructs were transfected into 

HEK293 cells. Myc-tagged proteins from cell 

lysates were precipitated with anti-myc-

conjugated agarose beads and subjected to in vitro

binding assays. Binding of GST-14-3-3β to 

precipitated myc-tagged wild-type and mutated 

alpha II spectrin 10-14 was analyzed by Western 

blotting. Upper panel: GST-14-3-3β protein 

bound to myc-tagged alpha II spectrin 10-14 was 

detected by using an anti-GST antibody. Lower 

panel: Western blot analysis of the precipitated 

myc-tagged wild-type and mutated alpha II 

spectrin 10-14 was performed with an anti-c-myc 

antibody (*precipitated myc-alpha II spectrin 10-

14 and Ser1302Ala mutant; hc Ig, Immunoglobulin 

heavy chain). 
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3.1.7. Calmodulin enhances 14-3-3ββββ binding to alpha II spectrin 10-14 

 
Having investigated the phosphorylation-dependent interaction of alpha II spectrin 10-14 with 

14-3-3β above, I wished to investigate whether other proteins might influence the interaction 

of 14-3-3β with alpha II spectrin 10-14. Calmodulin is known to bind at the end of the non-

homologous sequence inserted in the 11th repeat unit of the vertebrate alpha II spectrin subunit 

(Harris et al., 1988; Simonovic et al., 2006). Calmodulin binding to alpha II spectrin induces 

conformational changes in the molecule (Simonovic et al., 2006) and may influence binding 

of interaction partners to alpha II spectrin. To investigate whether calmodulin influences 14-

3-3β binding to alpha II spectrin 10-14, a binding assay was performed. Recombinant GST-

alpha II spectrin 10-14 (Fig. 12) bound to GSH agarose beads was preincubated with CK II 

and then washed. Afterwards, beads were incubated with lysates from HEK293 cells 

transiently expressing 6xmyc-14-3-3β in the presence of increasing concentrations of 

histidine-tagged calmodulin. As shown by Western blot analysis (Fig. 13; left, upper panel; 

Figure 11: In vitro CK II phosphorylation of alpha II spectrin 10-14 stimulates 14-3-3 binding. Left   

panel: Alpha II spectrin repetitive units 10-14 were expressed as a GST fusion protein in bacteria and 

immobilized on glutathione-Sepharose 4B beads. The beads were incubated in the presence or absence of CK 

II and then washed. Murine membrane fractions were incubated with the beads. Western blot analysis of the 

eluates from the beads with the antibody H8 recognizing 14-3-3 showed that 14-3-3 was pulled down with 

CK II-treated GST-alpha II spectrin 10-14 but not with either GST-alpha II spectrin 10-14 preincubated in 

the absence of CK II or GST alone. Right panel: Dot blot analysis of GST-alpha II spectrin 10-14 after 

incubation with or without CK II was performed with an anti-pSer antibody. Phosphorylation of GST-alpha 

II spectrin 10-14 was evident after CK II treatment. 
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right panel), myc-14-3-3β-binding to alpha II spectrin 10-14 was enhanced in the presence of 

calmodulin.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Scheme representing the recombinant fusion protein alpha II spectrin repetitive units 10-

14. The calpain cleavage site (Cal) and the calmodulin-binding domain (CaM) are sequences inserted into the 

spectrin repeat 11. The novel 14-3-3-binding site (RLIQS1302HP) is located within the spectrin repeat 12. 

Ser1302 (highlighted in red) is the phosphorylation target within a consensus phosphorylation site for casein 

kinase II. The alpha II spectrin 10-14 construct was recombinantly expressed as a GST-tagged protein, 

purified from bacterial lysates and used in pull-down experiments. 

Figure 13: Influence of calmodulin on 14-3-3ββββ-binding to alpha II spectrin 10-14. Left, upper panel:

Recombinant GST-alpha II spectrin 10-14 encompassing the calmodulin-binding domain and the 14-3-3-

binding site was preincubated with CK II followed by incubation with 6xmyc-14-3-3β from HEK 293 cell 

lysates and increasing concentrations of recombinant calmodulin (CaM). Western blot analysis was 

performed with an anti-c-myc antibody to detect bound 14-3-3β. Left, lower panel: GST and GST-alpha II 

spectrin 10-14 (GST-aIIsp10-14) were detected by Western blot (WB) with an anti-GST antibody. Right 

panel: Quantification of pulled 6xmyc-14-3-3β, with the value for pulled 6xmyc-14-3-3β in the absence of 

CaM normalized to 1. Error bars denote standard deviation from 4 independent experiments. 
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In order to confirm that the enhancement of 14-3-3β-binding to alpha II spectrin 10-14 by 

calmodulin was a specific effect, the binding assay was performed in the presence of EDTA 

to inhibit calmodulin activity. Western blot analysis of bound 14-3-3β revealed that 

calmodulin only slightly stimulated the interaction between 14-3-3β and alpha II spectrin 10-

14 if EDTA was present (Fig. 14; left, upper panel; right panel). These results indicate that 

only active calmodulin enhances 14-3-3β – alpha II spectrin 10-14 binding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Effect of Calmodulin on 14-3-3ββββ binding to alpha II spectrin 10-14 is slightly reduced in the 

presence of EDTA. Left, upper panel: Recombinant GST-alpha II spectrin 10-14 encompassing the 

calmodulin-binding domain and 14-3-3-binding site was preincubated with CK II followed by incubation 

with 6xmyc-14-3-3β from HEK 293 cell lysates and increasing concentrations of recombinant calmodulin in 

the presence of 2 mM EDTA. Western blot analysis was performed with an anti-c-myc antibody. Left, lower 

panel: GST and GST-alpha II spectrin 10-14 were detected by Western blot (WB) with an anti-GST 

antibody. Right panel: Quantification of pulled 6xmyc-14-3-3β, with the value for pulled 6xmyc-14-3-3β in 

the absence of CaM normalized to 1. This experiment was performed only twice.  
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3.2. Cell adhesion molecule L1: a novel 14-3-3-binding protein 
 

Serial analysis of gene expression (SAGE) in hippocampi of GFAP/L1 mice revealed an 

overexpression of 14-3-3β and ζ genes. These transgenic mice, which ectopically express the 

cell adhesion molecule L1 in astrocytes, were generated to study the effects of L1 on nerve 

regeneration, synaptic plasticity and learning (Wolfer et al., 1998). The observation that 14-3-

3 genes were overexpressed in transgenic animals relative to wild-type littermates suggested 

an involvement of 14-3-3 in signaling downstream of L1, thereby influencing L1 function. 

Furthermore, unpublished data from the laboratory of Melitta Schachner (T. Tilling, pers. 

communication) revealed a possible functional connection between L1 and 14-3-3 proteins. 

14-3-3 overexpression in hippocampal neurons led to a specific reduction of L1-mediated 

neurite outgrowth. Therefore, in the present study, molecular and biochemical approaches 

were used to investigate and characterize the L1 – 14-3-3-interaction in order to understand 

14-3-3’s function in L1 downstream signaling. 

 

3.2.1. 14-3-3 associates with L1  

 
Immunoprecipitation experiments were performed to investigate whether L1 and 14-3-3 form 

complexes in the brain. An L1 polyclonal antibody preparation was used to precipitate L1 

from membrane fractions isolated from 3 week-old wild-type mice brains. Western blot 

analysis of the L1 immunoprecipitates with an anti-14-3-3 monoclonal antibody revealed the 

presence of 14-3-3 in these immunoprecipitates (Fig. 15; upper panel), indicating that 14-3-3 

is associated with L1 in mouse brain.  

 

 

 

 

 

Figure 15: Immunoprecipitation reveals 14-3-3

– L1 complexes in mouse brain. Upper panel:

Immunoprecipitation (IP) of L1 from crude brain 

membrane fractions (MF) was performed using an 

antibody to L1. Proteins were resolved by SDS-

PAGE and analyzed by Western blotting (WB) 

with the H8 anti-14-3-3 antibody. Lower panel:

Successful immunoprecipitation of L1 was shown 

by Western blot analysis of the precipitates with 

an anti-L1 antibody. 
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3.2.2. 14-3-3 isoforms ββββ and ζζζζ directly interact with the intracellular domain 

of L1 

 
Based on the finding that 14-3-3 co-immunoprecipitates with L1, it was hypothesized that 14-

3-3 may directly bind to the intracellular domain of L1 (L1 ICD). To test this hypothesis, an 

ELISA-based direct binding assay was performed. Recombinantly expressed L1 ICD was 

immobilized on microtiter plate wells, and its ability to bind 14-3-3ζ and β was measured in a 

semiquantitative manner. GST-14-3-3ζ and GST-14-3-3β bound in a concentration-dependent 

manner to L1 ICD (Fig. 16). There was no binding of GST-14-3-3ζ and β to the intracellular 

domain of a non-homologous cell adhesion molecule, NCAM180 (Fig 16; left and right 

panel), indicating that the interaction between L1 ICD and 14-3-3 is specific. Correction for 

potential GST background signals was performed by subtracting absorbance values in wells 

incubated with GST only (not shown). Taken together, these data demonstrate that 14-3-3ζ 

and β directly bind L1 ICD. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Direct binding of 14-3-3 isoforms β β β β and ζζζζ to L1 intracellular domain (L1 ICD). 

Recombinantly-expressed L1 ICD was immobilized on microtiter plate wells and assayed by ELISA for its 

ability to bind GST-14-3-3ζ (left panel) and GST-14-3-3β (right panel). Binding to the intracellular domain 

of a non-homologous cell adhesion molecule, NCAM180, served as a negative control. Specific absorbance 

values were calculated by subtracting total observed absorbance from absorbance in wells incubated with 

GST only. Error bars denote standard deviation based on 3 independent experiments. 
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3.2.3. Location of the 14-3-3ζζζζ-binding region/site within the L1 intracellular 

domain 

 
In the above experiments, it was observed that the 14-3-3ζ isoform binds the L1 ICD more 

strongly than 14-3-3β. Therefore, further experiments were performed with 14-3-3ζ. The next 

aim was to investigate which part of L1 ICD 14-3-3ζ binds preferentially. To this end, an 

ELISA was performed with peptides spanning the entire L1 intracellular domain (Fig. 17). 

 

The L1 peptides were immobilized, and GST-14-3-3ζ was applied in increasing 

concentrations to the coated plates. GST-14-3-3ζ bound specifically and in a concentration-

dependent manner to the L1 peptides 2, 3a and 3b (Fig. 18), which comprise the central part 

of L1 ICD. Weak binding of GST-14-3-3ζ was observed to L1 peptides 1 and 4, 

encompassing the N- and C-termini of the L1 ICD, respectively. These results suggest that 

GST-14-3-3ζ preferentially binds to the central portion of the L1 ICD. 

 

 

 

 

 

 

Figure 17: Synthetic peptides representing parts of the L1 intracellular domain. The L1 intracellular 

domain (L1 ICD) is shown in the single-letter amino acid code. Sequences of the L1 ICD peptides, which 

span the entire L1 intracellular domain, are indicated by the red dotted lines, with the respective number 

given at the N terminus. The synthetic peptides were used in an ELISA binding assay (Fig. 18). 

Figure 18: Concentration-

dependent binding of GST-14-3-

3ζζζζ to the central part of the L1 

ICD. Fixed amounts of peptides 

comprising the L1 ICD were 

immobilized and the ability of 

GST-14-3-3ζ to bind these 

peptides in ELISA was 

determined. GST-14-3-3ζ was 

applied at increasing 

concentrations to the plates.  
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3.2.4. 14-3-3ζζζζ interacts with both non-phosphorylated and CK II-

phosphorylated L1 ICD  

 
In the majority of cases documented so far, 14-3-3 interacts with phosphoproteins. However, 

the above experiments showed that 14-3-3ζ is able to interact with non-phosphorylated 

recombinant L1 ICD and synthetic peptides representing the ICD. I therefore sought to more 

closely investigate whether phosphorylation of L1 ICD affects its interaction with 14-3-3ζ. To 

this end, L1 ICD was preincubated with CK II. This kinase was used here because the L1 ICD 

is specifically phosphorylated at Ser1181 in vitro by CK II (Wong et al., 1996). Furthermore, 
1177RSLES1181D, containing the Ser1181 residue, was hypothesized as a potential 14-3-3-

binding site in the L1 ICD. In order to monitor the specificity of CK II phosphorylation, 

4,5,6,7-tetrabromobenzotriazole (TBB), a specific inhibitor of CK II (Sarno et al., 2001), was 

utilized. We observed that 14-3-3ζ is indeed able to bind non-phosphorylated L1 ICD (Fig. 

19; left, upper panel). However, L1 phosphorylation resulted in a stronger interaction with 14-

3-3ζ compared to non-phosphorylated L1 (Fig. 19; left, upper panel; right panel), supporting 

the preferential interaction of 14-3-3 with phosphoproteins. We also observed that in the 

presence of TBB, CK II activity was partially inhibited because non-phosphorylated L1 ICD 

was present in the GST-14-3-3ζ eluate (Fig. 19; left, upper panel, lane 3: L1 ICD, CK II and 

TBB). 
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3.2.5. Ser
1181

->Ala substitution and RSLESD sequence deletion in the L1 

ICD disrupt 14-3-3ζ ζ ζ ζ binding 

 
Based on the above observations, I wished to identify the 14-3-3-binding site in L1 ICD. The 

central part of the L1 ICD contains the amino acid sequence RSLESD. The second serine 

within this sequence, Ser1181 (Fig. 20), can be phosphorylated by CK II (Wong et al., 1996) 

and RX2-3pS is a potential 14-3-3-binding motif (Fu et al., 2000). To determine whether the 

RSLESD sequence and, in particular, Ser1181, are important for 14-3-3ζ binding to L1 ICD, 

pull-down assays were performed by comparing the ability of GST-tagged 14-3-3ζ to interact 

with in vitro CK II-phosphorylated L1 ICD and mutants L1 ICD-S1181A and L1 

ICD∆RSLESD  (Fig. 21). Both mutations, S1181A and ∆RSLESD, substantially reduced L1 

Figure 19: 14-3-3ζζζζ pulled down phosphorylated and non-phosphorylated L1 ICD. Left, upper panel:

Recombinant His-tagged L1 ICD was incubated in the presence or absence of CK II. To specifically inhibit 

CK II, 5 µM TBB was used. After treatment, a GST-14-3-3ζ pull-down was performed to investigate direct 

binding of L1 ICD to 14-3-3. Pull-down eluates were analyzed by Western blotting (WB) with the 74-5H7 

anti-L1 antibody. Left, lower panel: GST and GST-14-3-3ζ were detected by Western blot (WB) with an 

anti-GST antibody. Right panel: L1-immunoreactive bands in lane 1 (L1 ICD only) and lane 2 (L1 ICD and 

CK II) were quantified and the percentage of bound L1 ICD and CK II-phospho-L1 ICD bound to GST-14-3-

3ζ were graphed. Error bars denote standard deviation based on 3 independent experiments. 
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ICD binding to 14-3-3ζ  (Fig. 21; upper panel). These data suggest that 14-3-3 binding to L1 

requires the amino acid sequence RSLESD, in particular the second serine, Ser1181. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Scheme of recombinant L1 intracellular domain constructs. The full-length L1 intracellular 

domain construct contains the RSLESD sequence (boldface). L1 ICDS1181A has a single amino acid 

substitution (S1181A) of a serine residue in the motif. S1181 can be phosphorylated by casein kinase II. The 

RSLESD sequence, a potential 14-3-3 binding motif, is deleted in L1 ICD∆RSLESD. Wild-type and mutated 

L1 ICD constructs were recombinantly expressed as 6xHis-tagged proteins, purified from bacterial lysates 

and used in pull-down experiments. 

Figure 21: Ser
1181

->Ala substitution and 

RSLESD deletion in L1 ICD disrupt binding 

to 14-3-3ζζζζ. Upper panel: 6xHis-tagged 

proteins, purified from bacterial lysates, were 

subjected to GST-14-3-3ζ pull-down assays 

after treatment with CK II. GST was used as a 

control. Pull-down eluates were analyzed by 

Western blotting (WB) with the 74-5H7 anti-L1 

antibody. Lower panel: GST and GST-14-3-3ζ

were detected by Western blot (WB) with an 

anti-GST antibody. 
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3.2.6. 14-3-3ζζζζ stimulates CK II-catalyzed L1 ICD phosphorylation 

 
CK II is known to phosphorylate Ser1181 in the L1 ICD (Wong et al., 1996) and mutation of 

Ser1181 had shown that this residue is important for L1 ICD interaction with 14-3-3ζ (see 

above). To gain further insight into the function of the L1 ICD - 14-3-3ζ-interaction, the 

influence of 14-3-3ζ on CK II-catalyzed L1 ICD phosphorylation was examined. To this end, 

L1 ICD was preincubated overnight with GST-14-3-3ζ (or GST only as a negative control) 

and then subjected to CK II phosphorylation. At various time points, the CK II-catalyzed 

phosphorylation reaction was stopped by adding SDS-PAGE loading buffer. The effect of 

GST-14-3-3ζ on L1 ICD phosphorylation was analyzed by Western blotting using an anti-L1 

monoclonal antibody. Phosphorylation of L1 ICD was evident by an upward shift in mobility 

in SDS-PAGE relative to non-phosphorylated L1 ICD (Fig. 22). Western blot analysis with 

anti-L1 revealed that the band intensities of phosphorylated L1 increased over time when L1 

ICD was preincubated with GST-14-3-3ζ (Fig. 22; upper panel).  
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When L1 ICD was preincubated with GST, there was no significant change in the band 

intensities over time (Fig. 22; upper panel). A quantitative comparison of band intensities at 

time points 0 and 180 min indicated that at the latter time point, L1 ICD phosphorylation was 

~15 times greater in the presence of 14-3-3ζ than in its absence (Fig. 22; lower panel). These 

data indicate that 14-3-3ζ promotes phosphorylation of L1 ICD by CK II. 

 

To investigate whether the time-dependent CK II-catalyzed phosphorylation of L1 ICD 

requires Ser1181, the above experiment was repeated with an L1 ICD-S1181A mutant. In 

contrast to wild-type L1 ICD, no band shift was observed over time with the mutants (Fig. 

Figure 22: Time-dependent phosphorylation of L1 ICD by casein kinase II in the presence of 14-3-3ζζζζ. 

Upper panel: L1 ICD was preincubated in the presence or absence of 14-3-3ζ followed by incubation with 

casein kinase II. At different time points, CK II phosphorylation was stopped, and the level of L1 ICD 

phosphorylation was determined by comparing the intensities of the upper band, which presumably 

represents phosphorylated L1 ICD, and the lower band, most probably non-phosphorylated L1 ICD. Lower 

panel: Blot bands at time points 0 and 180 min were quantified and the relative intensities were graphed. 

Error bars denote standard deviation based on 3 independent experiments. 
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23), indicating that Ser1181 is the specific CK II phosphorylation site on L1 ICD and is 

stimulated by 14-3-3ζ.  

 

 

 

 

 

 

 

3.2.7. The adaptor protein µ-AP2 does not affect L1 ICD binding to 14-3-3ζζζζ 

 
Having investigated the phosphorylation-dependent interaction of L1 with 14-3-3ζ above, I 

next wished to investigate whether other proteins might influence the interaction of 14-3-3ζ 

with L1. The adaptor protein µ-AP2 is known to bind Tyr1176, immediately preceding the 

RSLESD sequence. The underlined sequence forms a Tyr-based sorting motif that is 

necessary for endocytosis of L1 via the AP-2/clathrin-mediated pathway (Kamiguchi and 

Lemmon, 1998). To investigate whether µ-AP2 competes with 14-3-3 for the RSLESD 

binding site, a competition pull-down assay was performed. CK II-preincubated L1 ICD was 

incubated in the presence of 14-3-3ζ and increasing concentrations of µ-AP2. There was no 

difference in the level of 14-3-3-bound L1 in the presence or absence of µ-AP2, suggesting 

that µ-AP2 does not compete with 14-3-3ζ for L1 binding (Fig. 24; upper panel). Thus, the 

results revealed that µ-AP2 does not affect L1 ICD binding to 14-3-3ζ. 

Figure 23: Time-dependent phosphorylation of L1 ICDS1181A by CK II in the presence of 14-3-3ζζζζ. L1 

ICDS1181A mutant was preincubated in the presence or absence of 14-3-3ζ followed by incubation with 

casein kinase II. At different time points the CK II phosphorylation was stopped, and a possible L1 

ICDS1181A phosphorylation was investigated by checking for an additional L1-specific band at slightly 

higher molecular weight (compare Fig. 21). 
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3.2.8 14-3-3ζζζζ is enriched in endosomal fractions  

 
Endosomes are intracellular vesicles important for the organization of intracellular membrane 

dynamics (Schmidt and Haucke, 2007). Recycling of endocytosed L1 occurs via sorting and 

recycling endosomes (Kamiguchi and Lemmon, 2000). Previous studies by Nakata et al. 

demonstrated that Ser1181 phosphorylation by CK II is implicated in normal endocytic 

trafficking of L1 (Nakata and Kamiguchi, 2007). Having shown the direct interaction of L1 

with 14-3-3ζ above, we wished to analyze the distribution of 14-3-3ζ in endosomal fractions. 

To this end, crude membrane preparations from P7 wild-type mice were fractionated to obtain 

endosomal fractions. The 557 anti-L1 rat monoclonal antibody was used to precipitate L1 

from these endosomal fractions. Western blot analysis of the L1 immunoprecipitates showed 

that full length L1 (~200 kDa) was succesfully precipitated and enriched in certain endosomes 

(Fig. 25; upper panel). Western blot analysis with an isoform-specific anti-14-3-3ζ antibody 

revealed the presence of 14-3-3ζ (~30 kDa) in L1 immunoprecipitates. These results indicated 

that 14-3-3ζ is associated with L1 in certain endosomes. Interestingly, we also observed that 

14-3-3ζ was most strongly associated with L1 in the endosomal fraction 6, which contains 

relatively low L1 amounts (Fig. 25; upper panel), suggesting an influence of 14-3-3ζ on the 

distribution of L1 in endosomes during L1 endocytosis. 

 

Figure 24: µ-AP2 does not compete with 

14-3-3ζζζζ for L1 binding. Upper panel:

Recombinant L1 ICD encompassing the µ-

AP2-binding domain and 14-3-3-binding site 

was preincubated with CK II followed by 

incubation with increasing concentrations of 

recombinant µ-AP2 and in the presence of 

GST-14-3-3ζ. Bound L1 ICD from GST-14-

3-3ζ pull-down eluates was analyzed by 

Western blot with the 74-5H7 anti-L1 

antibody. Lower panel: GST and GST-14-3-

3ζ were detected by Western blot (WB) with 

an anti-GST antibody. 
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Figure 25: Co-immunoprecipitation of 

14-3-3ζζζζ with L1 from endosomal 

fractions. Preparation of endosomal 

fractions was performed from crude 

membrane fractions, followed by 

immunoprecipitation of L1. Upper 

panel: Immunoprecipitation (IP) of L1 

from endosomal fractions was performed 

using the anti-L1 monoclonal antibody 

557. Proteins were resolved by SDS-

PAGE and analyzed by Western blotting 

(WB) with an anti-L1 antibody (74-

5H7), showing that L1 was successfully 

precipitated. Lower panel: Western blot 

analysis of the L1 immunoprecipitates 

was also performed with an isoform-

specific anti-14-3-3ζ antibody, revealing 

the presence of 14-3-3ζ in L1 eluates of 

endosomal fractions. This experiment 

was performed with the help of Gerrit 

Wolters. Crude: crude endosomal 

preparation; supernatant: cytosolic 

compounds; pellet: crude membrane 

fraction; Ig: control IgG used for 

immunoprecipitation. 
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4. Discussion 

 

The aim of this thesis was to investigate and specifically characterize neuronal 14-3-3-binding 

partners, with the long-term goal of gaining a better understanding of the cellular functions of 

14-3-3 proteins in the brain. The first major finding was the identification of alpha II spectrin 

as a 14-3-3β-binding partner. Alpha II spectrin was found to associate with 14-3-3β in the 

mouse brain and a mode-2 14-3-3-binding motif was identified within alpha II spectrin repeat 

unit 12. A Ser residue at position 1302 within this binding motif was discovered as a critical 

mediator of alpha II spectrin interaction with 14-3-3β. This interaction was more efficient in 

the presence of CK II, indicating the necessity for phosphorylation. The presence of 

calmodulin was found to enhance 14-3-3β-binding to an alpha II spectrin 10-14 fragment.  

 

The second major finding was the observation that 14-3-3ζ associates with L1 in the mouse 

brain and profoundly stimulates CK II-catalyzed in vitro phosphorylation of the L1 ICD. 14-

3-3ζ was found to interact directly with both phosphorylated and non-phosporylated L1 ICD; 

a Ser residue located at position 1181 within the sequence RSLESD, a putative 14-3-3-

binding site, was found to mediate the L1 ICD interaction with 14-3-3ζ. 14-3-3ζ co-purified 

with L1 from endosomal fractions and was enriched in L1 immunoprecipitates when L1 

amounts were reduced.  

 

4.1. Alpha II spectrin interaction with 14-3-3 
 

4.4.1. Phosphorylation-dependent interaction of alpha II spectrin with 14-3-

3ββββ 

 
The 14-3-3 protein family is ubiquitous and known to play an important role in many 

intracellular processes (Aitken et al., 2002). Given that 14-3-3 proteins exert their functions 

by binding other proteins, identifying target proteins that interact with 14-3-3 has proven to be 

useful in characterizing the molecular mechanisms of these cellular events (Darling et al., 

2005). 14-3-3 proteins are highly abundant in the brain, and although only a few binding 

partners have been postulated so far, 14-3-3 proteins are clearly critical for brain 

development, memory, and learning, and have been implicated in neurological disorders as 
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well (Berg et al., 2003; Mackintosh, 2004). This study provides clear evidence of an 

interaction between alpha II spectrin and 14-3-3β in the brain.  

 
In an attempt to identify new 14-3-3-binding proteins, several groups have performed affinity 

chromatography and mass spectrometry analysis (Suginta et al., 2001; Jin et al., 2004; Meek 

et al., 2004; Angrand et al., 2006). In the present study, affinity chromatography also proved 

useful for identifying additional 14-3-3β-binding proteins located in the brain. Using mouse 

brain membrane fractions, alpha II spectrin, a major constituent of the cytoskeletal network 

that is associated with the plasma membrane of cells in the brain (De Matteis and Morrow, 

2000; Bennett and Baines, 2001), was identified as a 14-3-3β target (Fig. 5). This result 

mirrors that from a previous study by Angrand et al., in which alpha II spectrin was identified 

as a putative 14-3-3ζ-binding partner using a tandem affinity purification (TAP)-MS method 

to look for 14-3-3ζ-binding targets in the brain of transgenic mice (Angrand et al., 2006). 

However, the interaction between alpha II spectrin and 14-3-3ζ was not investigated further in 

the Angrand et al. study. Here, the interaction of 14-3-3β with alpha II spectrin was 

confirmed by GST-14-3-3β pull-down experiments using adult mouse brain homogenates and 

co-immunoprecipitation of alpha II spectrin with 14-3-3β from mouse brain membrane 

fractions (Figs. 6 and 7).  

 
14-3-3 proteins typically interact with specific phosphoserine residues on their binding 

partners. A putative 14-3-3-binding motif, 1298RLIQSHP1304, (putative phosphoserine, Ser1302, 

underlined) within the alpha II spectrin repetitive unit 12 corresponds to the consensus 14-3-

3-binding motif RXXXpSXP (Yaffe et al., 1997). The RLIQSHP sequence is the only 

consensus 14-3-3-binding motif in the entire alpha II spectrin molecule, as predicted using the 

PATTINPROT algorithm of the Network Protein Sequence Analysis web server (http://npsa-

pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_server.html; (Combet et al., 2000)). 

Loss of 14-3-3β binding upon mutating Ser1302 to Ala in alpha II spectrin repetitive units 10-

14 confirmed Ser1302 as an important mediator of the 14-3-3β interaction (Fig. 10). A more 

detailed characterization of the interaction between alpha II spectrin and 14-3-3β was not 

achievable during this thesis work. For example, it might be of interest to determine the 

affinity of the interaction between these two proteins by performing surface plasmon 

resonance (SPR), as has been done in other studies (Muslin et al., 1996; Sadik et al., 2009). 
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Such analyses would allow determination of the specificity of the two partners, and compare 

the strength of this binding with other known interactions of alpha II spectrin. 

 

4.1.2. CK II phosphorylation is required for efficient 14-3-3ββββ binding to 

alpha II spectrin 

 
The Ser1302 residue noted above is located within a consensus site (S1302HPE) for CK II 

phosphorylation. CK II, which is highly abundant in neurons, is suggested to perform 

essential roles during neurite outgrowth in developing neurons (Blanquet, 2000). The general 

determinants of a CK II substrate site are acidic residues C-terminal to the Ser/Thr residue to 

be phosphorylated, with a crucial acidic residue at the +3 position (Pinna, 1990). The ability 

of CK II to promote 14-3-3β binding to alpha II spectrin fragment 10-14 in vitro (Fig. 11) 

demonstrates the importance of Ser1302 phosphorylation for binding. It should be mentioned 

that the phosphorylation-dependent interaction was shown only for alpha II spectrin fragment 

10-14, which encompasses 5 of the 21 spectrin repeats of alpha II spectrin and includes the 

predicted 14-3-3-binding motif. The possibility of further 14-3-3-binding motifs within the 

native alpha II spectrin molecule that may not be predictable by the PATTINPROT algorithm 

used here cannot be fully excluded. Therefore, it may be of interest for future studies to 

investigate the interaction of 14-3-3β with full-length alpha II spectrin. To further define the 

extent to which 14-3-3β depends on alpha II spectrin phosphorylation for binding, it might 

also be interesting to analyze the interaction of the two proteins in vitro after alkaline 

phosphatase treatment or inhibition of CK II-mediated phosphorylation in cells with the 

specific inhibitor TBB (Battistutta et al., 2001; Sarno et al., 2001; Pagano et al., 2004). We 

hypothesize that CK II could be one of several protein kinases that function through the 

assembly of cytoskeleton-associated multiprotein complexes together with 14-3-3 to 

coordinate signaling mechanisms underlying synaptic plasticity in neurons.  

 

4.1.3. 14-3-3ββββ as a possible target of NCAM-mediated cell dynamics 

 
It is known that alpha II spectrin forms heterotetramers with the beta I spectrin subunit 

(Goodman et al., 1995), which binds to the 180 and 140 kDa isoforms of the cell adhesion 

molecule NCAM (Pollerberg et al., 1985; Leshchyns'ka et al., 2003; Sytnyk et al., 2006). The 

NCAM 180 – spectrin association may be important for the organization of membrane 
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proximal signaling complexes, for example in the postsynaptic density (Ditlevsen et al., 

2008). The ability of 14-3-3β and alpha II spectrin to co-precipitate with NCAM (Fig. 8) from 

the brain suggests that these two proteins form complexes with NCAM in neuronal cells.  

 
One might conclude from this observation that 14-3-3β plays a role in NCAM-mediated 

molecular dynamics of cell recognition via the spectrin cytoskeleton. Because it is assumed 

that CK II is involved in the regulation of spectrin (Clari and Moret, 1985), phosphorylated 

alpha II spectrin might recruit 14-3-3β, which may help to reorganize the cytoskeleton during 

NCAM-mediated neurite outgrowth. From previous studies, it is known that NCAM 180 and 

the growth-associated protein, GAP-43, form a functional complex with spectrin that may 

control cytoskeleton dynamics to induce neurite outgrowth (Korshunova et al., 2007). The 

phosphorylated form of GAP-43 and GAP-43-like proteins are implicated in the 

reorganization of the cytoskeleton (Aarts et al., 1999; Frey et al., 2000; Laux et al., 2000). 

Therefore, I hypothesize that 14-3-3β, like GAP-43, may play a role in the reorganization of 

the spectrin cytoskeleton by binding directly to CK II-phosphorylated spectrin during NCAM-

mediated neurite outgrowth. More studies will be required to better comprehend the 

participation of 14-3-3β in NCAM-mediated neuronal processes, e.g. neurite growth and 

synaptic plasticity.  

 

4.1.4. Calmodulin activity affects 14-3-3ββββ - alpha II spectrin interactions 

 
Calmodulin is known to bind to a sequence contained in the 11th repeat unit of the vertebrate 

alpha II spectrin subunit, thereby influencing the interaction of alpha II spectrin with other 

binding partners (Harris et al., 1988; Simonovic et al., 2006). For example, calmodulin has 

been reported to stimulate the proteolytic modification of alpha II spectrin by calpain during 

postsynaptic density remodeling (Harris and Morrow, 1990; Dosemeci and Reese, 1995). 

Other studies have shown that calmodulin, together with 14-3-3, controls the subcellular 

distribution of the Ras-related GTPase subfamily members Kir/Gem that are involved in 

cytoskeletal reorganization (Beguin et al., 2005). In the present study, calmodulin’s influence 

on the alpha II spectrin – 14-3-3β-interaction was shown by calmodulin-enhanced 14-3-3β 

binding to alpha II spectrin 10-14 (Fig. 13). The enhanced binding of 14-3-3β might be due to 

conformational changes in the alpha II spectrin molecule caused by the calmodulin - spectrin-

interaction, resulting in a better exposure of the 14-3-3β-binding motif on alpha II spectrin. 
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Addition of EDTA only led to a slight reduction of 14-3-3β binding to the alpha II spectrin 

fragment 10-14 in the presence of calmodulin, suggesting that calmodulin is able to bind 

alpha II spectrin at low Ca2+ concentrations. Future studies will need to address this question 

more critically by mutating the calmodulin-binding site within alpha II spectrin.  

 

4.1.5. Influence of 14-3-3ββββ on alpha II spectrin proteolysis by µµµµ-calpain 

 
The proteolysis of alpha II spectrin by µ-calpain may be physiologically relevant to synaptic 

remodeling, long-term potentiation, and memory formation (Dosemeci and Reese, 1995; 

Vanderklish et al., 1995; Faddis et al., 1997). Alpha II spectrin proteolysis by µ-calpain is 

regulated by phosphorylation, Ca2+ and calmodulin (Croall and DeMartino, 1991; Chan and 

Mattson, 1999; Nicolas et al., 2002; Nedrelow et al., 2003; Simonovic et al., 2006; Glantz et 

al., 2007). Therefore, the potential influence of 14-3-3β on alpha II spectrin proteolysis by µ-

calpain was also investigated in this work. Initial studies showed that proteolysis of GST-

tagged alpha II spectrin 10-14 by µ-calpain can occur in vitro (data not shown). However, no 

effect of 14-3-3β on proteolysis of alpha II spectrin 10-14 by µ-calpain was observed. A 

possible avenue of further experimentation to answer this question would be to express an 

alpha II spectrin construct with two different tags, one at the N- and one at the C-terminus. 

The use of tags at each end of the protein might allow better assaying of proteolytic fragments 

in the presence or absence of 14-3-3β.  

 

4.1.6. 14-3-3 – alpha II spectrin binding: implications for synapse formation 

 
In summary, this study has shown that alpha II spectrin from mouse brain membrane fractions 

associates with 14-3-3β. This work also provides evidence of residue Ser1302 in the alpha II 

spectrin site as the critical site for 14-3-3β binding. Finally, a more efficient binding of 14-3-

3β to alpha II spectrin was observed in the presence of CK II, suggesting a phosphorylation-

dependent interaction. In this context, it is noteworthy that alpha II spectrin is able to form 

heteromeric complexes with beta I spectrin, which is suggested to occur postsynaptically in 

hippocampal neurons (Ursitti et al., 2001).  

 
Previous studies by Carlin et al. suggested that alpha II spectrin is a major constituent of the 

postsynaptic density (Carlin et al., 1983). Selective phosphorylation- and calmodulin-
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dependent processing of alpha II spectrin in response to synaptic activity might lead to a 

structural rearrangement of the synapse, allowing a rapid remodeling of synapses after 

stimulation (Harris and Morrow, 1990; Vanderklish et al., 1995). Therefore, it would be 

highly interesting to investigate whether the alpha II spectrin – 14-3-3β-interaction is 

involved in synapse formation. By selective binding to CKII-phosphorylated alpha II spectrin, 

14-3-3β may exert a significant influence on cytoskeletal remodeling during synaptogenesis. 

It is tempting to speculate that the 14-3-3β – spectrin-interaction functions as a molecular 

switch, regulating binding of other ligands to alpha II spectrin in the postsynaptic density. 

Thus, further investigations to elucidate the physiological interaction of alpha II spectrin with 

14-3-3β will likely contribute to the characterization of alpha II spectrin function in the brain, 

in particular in the synaptic context. 

 

4.2. L1 interaction with 14-3-3 
 

L1 is a cell adhesion molecule that plays an important role in mediating cell migration and 

axon outgrowth during neural development and regeneration (Hortsch, 1996; Kenwrick et al., 

2000; Chen et al., 2007; Maness and Schachner, 2007). L1 is able to function as a mediator of 

signal transduction via its highly conserved ICD. One important aspect of the L1 ICD is the 

regulation of L1 recycling via endocytic pathways during axon outgrowth (Kamiguchi and 

Yoshihara, 2001). Prior to the work presented here, experiments performed with 14-3-3-

transfected hippocampal neurons showed a specific reduction of neurite length in L1-

mediated outgrowth (T. Tilling, unpublished data), suggesting the possible involvement of 14-

3-3 as an intracellular mediator of L1 downstream signaling. This study provides the first 

evidence that 14-3-3 interacts directly with L1 and thereby possibly influences L1 function. 

The direct association between L1 and 14-3-3 was demonstrated by  

o Co-precipitation of 14-3-3 and L1 from mouse brain membrane fractions (Fig. 15),  

o Direct binding of a GST-14-3-3ζ fusion protein to L1 ICD (Fig. 16), and  

o Co-precipitation of 14-3-3ζ protein and L1 from mouse brain endosomal fractions 

(Fig. 25) 

Direct association of L1 and 14-3-3ζ depends on Ser1181 within the ICD of L1. Mutation of 

Ser1181 to Ala (S1181A) resulted in greatly reduced binding to 14-3-3ζ (Fig. 21). Furthermore, 
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I found that phosphorylation of L1 ICD at Ser1181 by CK II was profoundly stimulated by 14-

3-3ζ (Fig. 22 and 23).  

 

4.2.1. 14-3-3 proteins interact directly with L1 

 
14-3-3 was found to co-immunoprecipitate with L1 form mouse brain membrane fractions 

(Fig. 15), suggesting a physiological association between 14-3-3 and L1. ELISA binding 

studies with histidine-tagged L1 ICD protein and GST-tagged 14-3-3ζ or 14-3-3β 

demonstrated the direct interaction of L1 with both 14-3-3 isoforms (Fig. 16). Interestingly, 

the interaction between the ζ isoform of 14-3-3 and L1 ICD appeared to be stronger than the 

one between 14-3-3β and L1 ICD. How might this isoform specificity be explained? 14-3-3 

proteins interact with target proteins via a highly conserved binding groove (cf. Fig. 1). 

Although the residues that form the binding groove are conserved in all seven 14-3-3 

isoforms, their binding intensities differ for the same ligand. For example, all 14-3-3 isoforms 

bind tryptophan hydroxylase with the same affinity, whereas only the β and ζ isoforms bind 

Raf (Freed et al., 1994; Reuther and Pendergast, 1996; Aitken, 2002; Truong et al., 2002). 

Furthermore, ELISA experiments with L1 ICD-derived peptides and GST-14-3-3ζ localized 

the 14-3-3 – L1-interaction to the central part of the ICD of L1 (Fig. 18). The ICD of L1 

contains several amino acids that are negatively charged, most of them occuring in the central 

part of L1 ICD (Fig. 17), which may mediate the interaction with 14-3-3ζ.  

 

4.2.2. Enhanced binding of phosphorylated L1 ICD to 14-3-3ζζζζ 

 
The above-mentioned experiments showed that 14-3-3ζ interacts with non-phosphorylated 

recombinant L1 ICD and synthetic peptides encompassing the ICD. Although most known 

14-3-3 ligands possess phosphoserine- or phosphothreonine-based motifs, several interactions 

between 14-3-3 and non-phosphorylated motifs within ligand proteins have been described. 

Examples include the sequences VTPEER of the amyloid β-protein precursor ICD fragment 

(Sumioka et al., 2005), WLDLE of the synthetic peptide R18 (Petosa et al., 1998; Wang et al., 

1999), and LDSLDL of the exoenzyme S cytotoxin from Pseudomonas aeruginosa (Masters 

et al., 1999; Henriksson et al., 2000). A common feature of these non-phosphorylated 14-3-3-

binding motifs is that they contain negatively charged residues that mediate the interaction 
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with positively charged residues in the 14-3-3 amphipathic groove. Thus, the observed 

interaction of 14-3-3 with non-phosphorylated L1 was not entirely surprising. However, by 

performing pull-down experiments with L1 ICD and in vitro CK II phosphorylated L1 ICD, I 

could demonstrate that the L1 phosphorylation resulted in a stronger interaction with 14-3-3ζ 

compared to non-phosphorylated L1 (Fig. 19), thus, supporting the preferential interaction of 

14-3-3 with phosphoproteins.  

 
These results are in line with a previous study by Hashiguchi et al. (2000), who showed that 

14-3-3ζ is able to interact with non-phosphorylated and phosphorylated forms of the Tau 

protein from bovine brain. However, their observations suggested that phosphorylation of Tau 

does not improve 14-3-3ζ binding. Hashiguchi et al. (2000) proposed that 14-3-3ζ is a Tau 

protein effector and may be involved in the abnormal Tau phosphorylation occuring during 

Alzheimer’s disease. To further examine the interaction of L1 ICD with 14-3-3ζ under 

phosphorylation-dependent and phosphorylation-independent conditions, it might be fruitful 

to determine the equilibrium dissociation constants (Kd) for these interactions by performing 

SPR.  

 
The central part of the L1 ICD contains the amino acid sequence RSLESD. The second serine 

within this sequence, Ser1181 (Fig. 20), can be phosphorylated by CK II (Wong et al., 1996) 

and RX2-3pS is a potential 14-3-3-binding motif (Fu et al., 2000). This CK II-phosphorylation 

site is evolutionarily well-conserved among L1 orthologs and L1 family CAMs and, therefore, 

is likely to be required for subsequent interactions of L1 proteins in signaling cascades and to 

serve a significant role in L1 function. In this thesis, I have shown that Ser1181 in the amino 

acid sequence 1177RSLESD1182 of the L1 ICD mediates the 14-3-3ζ interaction (Fig. 21). 

Substitution of Ser1181 with Ala and deletion of the entire RSLESD motif resulted in abolition 

of 14-3-3ζ binding. It is worth noting that the RSLE sequence occurs only in the neuronal 

isoform of L1 (Miura et al., 1991), and that the CK II phosphorylation site in L1 is adjacent to 

this alternatively spliced, neuron-specific motif. Given that the general determinants for a CK 

II substrate site are acidic residues C-terminal to the Ser and a crucial acidic residue at the +3 

position, it was not expected that the RSLE domain itself would have an effect on the 

phosphorylation of Ser1181. Thus, it is arguable whether 14-3-3ζ also interacts with the non-

neural form of L1. Further studies will be needed to elucidate whether 14-3-3ζ specifically 

interacts with L1 only in neurons. 
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Based on the observation that 14-3-3ζ interacts with non-phosphorylated and phosphorylated 

L1 ICD, the question arose whether 14-3-3ζ exclusively utilizes the identified binding site 

(RSLESD) for phosphorylation-dependent and –independent interaction with L1, or whether 

the L1 ICD contains more than one binding site for 14-3-3ζ. Notably, previous studies 

showed that 14-3-3ζ interacts with phosphorylated and non-phosphorylated Tau protein and 

that 14-3-3ζ utilizes two distinct binding sites for these interactions (Hashiguchi et al., 2000; 

Sadik et al., 2009). Both studies also demonstrated that the phosphorylation of the Tau protein 

by PKA increased its affinity for 14-3-3ζ. This observation is reminiscent of the influence of 

CK II on the 14-3-3ζ - L1-interaction, as CK II phosphorylation enhanced binding of 14-3-3ζ 

to L1 ICD. These observations might reflect a more general mechanism of regulating 14-3-3 – 

ligand-interactions: in a first step, 14-3-3 could bind to its non-phosphorylated ligand with 

low affinity. Phosphorylation of the ligand, e.g. as a consequence of a physiological stimulus, 

could then tighten the 14-3-3 – ligand-interaction. 

 
Where might the putative additional 14-3-3ζ-binding site be located within the L1 ICD? In 

ELISA experiments performed with L1 peptides, I observed a preferential binding of 14-3-3ζ 

to the L1 peptides 2, 3a and 3b (Fig. 18), which comprise the central part of the L ICD. The 

Ser1181 residue described in this study as important for the L1 ICD interaction with 14-3-3ζ is 

located only within the L1 peptide 2 and, thus, further 14-3-3ζ-binding sites within the L1 

peptide 3a and 3b may be possible. Additional studies are warranted to further examine these 

binding sites within L1 ICD that may mediate the phosphorylation-independent interaction 

with 14-3-3ζ. 

 

4.2.3. 14-3-3ζζζζ stimulates CK II-catalyzed L1 ICD phosphorylation 

 
Previous studies by Nakata et al. suggested that CK II regulates endocytic L1 trafficking in 

the axonal growth cone via phosphorylation of the L1 ICD (Nakata and Kamiguchi, 2007). 

Growth cones need regulatory mechanisms to select the correct endocytic pathway for L1 

molecules. One possibility is a regulated CK II phosphorylation of L1 ICD, allowing 

subsequent binding of molecules at this site or other residues in the vicinity. Regulation is 

also likely to be mediated by cytosolic molecules that bind to L1 ICD and influence 

endocytosis (Kamiguchi, 2003). As demonstrated above, 14-3-3ζ binds to L1 ICD, and their 
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phosphorylation-dependent interaction is mediated by Ser1181, which is phosphorylated by CK 

II. Results from a time-dependent CK II phosphorylation assay performed with L1 ICD that 

has been preincubated with 14-3-3ζ demonstrated that phosphorylation of L1 ICD on 

Ser1181 by CK II is profoundly enhanced by 14-3-3ζ (Fig. 22 and 23). These data suggest that 

14-3-3ζ is an effector of CK II-mediated L1 ICD phosphorylation. This modulation of L1 

ICD phosphorylation may play a role in controlling L1 sorting and trafficking between 

plasma membranes and endosomes in neuronal growth cones.  

 

How might 14-3-3ζ enhance phosphorylation of L1 by CK II? One explanation is that L1 

phosphorylation is promoted by initial interactions between 14-3-3ζ and (non-

phosphorylated) L1 ICD, resulting in L1 ICD conformational changes and, consequently, 

increased susceptibility for CK II phosphorylation. From the literature it is known that 14-3-3 

behaves in essence like a molecular anvil, deforming its bound ligands while undergoing only 

minimal structural alterations itself. For example, in the case of serotonin N-acetyl 

transferase, and presumably exoenzyme S, 14-3-3 binding deforms the catalytic residues so as 

to promote substrate binding and product formation, perhaps through inducing a conformation 

that stabilizes the transition state of the enzyme:substrate complex (Henriksson et al., 2000; 

Obsil et al., 2001). For other proteins, 14-3-3-mediated conformational changes might 

facilitate the interaction with their binding partners, leading for example to enhanced 

phosphorylation (Yaffe, 2002). 

 
Another possible explanation for 14-3-3-enhanced phosphorylation of L1 by CK II is that 14-

3-3ζ acts as a scaffolding protein by recruiting CK II to L1 ICD. Even though there is no 

direct evidence at present for an association between 14-3-3ζ and CK II, there is some 

evidence suggesting that 14-3-3ζ needs to dimerize in order to act as a scaffolding protein. It 

is possible that GST-14-3-3ζ forms dimers as a result of dimerization by the glutathione S-

transferase (Wilce and Parker, 1994), thus, allowing 14-3-3ζ to function as a scaffold for CK 

II. 

 
Several earlier studies have suggested that the ability of 14-3-3 to bind its target proteins is 

independent of 14-3-3 dimerization (Ichimura et al., 1995; Luo et al., 1995; Yaffe et al., 1997; 

Tzivion et al., 1998; Rittinger et al., 1999). However, other studies, including more recent 

ones, have shown that 14-3-3 dimerization is important for the phosphorylation-dependent 
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binding of cellular proteins (Jones et al., 1995; Shen et al., 2003; Sumioka et al., 2005). 

Interestingly, Woodcock et al. (2003) showed that the dimeric status of 14-3-3 can be 

regulated in vivo by site-specific phosphorylation at the dimer interface, yet phosphorylation-

induced monomerization does not prevent 14-3-3 binding to a phosphopeptide target. 

Therefore, further experiments investigating the CK II-catalyzed phosphorylation of L1 in the 

presence of a 14-3-3ζ dimer and a dimerization-deficient 14-3-3ζ may help to further 

elucidate how the dimeric structure of 14-3-3ζ may influence L1 phosphorylation. 

 

4.2.4. 14-3-3ζζζζ is enriched in endosomal fractions  

 
Results obtained here from studying the interaction between L1 ICD and 14-3-3ζ have 

suggested that 14-3-3ζ might play a role in controlling L1 sorting and trafficking between 

endosomes and plasma membranes (cf. section 4.2.3). I therefore investigated the possible 

interaction between L1 and 14-3-3ζ in endosomal fractions from mouse brain. I could show 

that 14-3-3ζ associates with L1 in endosomes and observed that 14-3-3ζ was enriched in L1 

immunoprecipitates from endosomal fractions with rather low amounts of L1 (Fig. 25). The 

association of 14-3-3ζ and L1 in endosomal fractions further supports an involvement of 14-

3-3ζ in L1 sorting and trafficking. It would be beneficial to characterize the endosomal 

fractions to determine the type of endosome (i.e., early, late, or recycling endosome) in which 

the co-localization of 14-3-3ζ with L1 ICD occurs more precisely. This might be done by 

using antibodies against marker proteins specifically expressed in distinct endosome 

populations.  

 
Cell surface biotinylation was performed in an attempt to investigate whether 14-3-3ζ 

overexpression in SH-SY5Y neuroblastoma cells results in reduced L1 amounts at the cell 

surface due to increased L1 endocytosis. However, we were unable to analyze the amount of 

L1 at the cell surface in the presence of 14-3-3ζ. Unfortunately, 14-3-3ζ overexpression in 

SH-SY5Y cells could not be achieved, even after repeated attempts. Attempts to co-express 

14-3-3ζ constructs with L1 construct in HEK 293 cells also failed. It is not clear why 14-3-3 

overexpression in the presence of endogenous or exogenous L1 was not possible in these cell 

lines. 
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4.2.5. The adaptor protein µ-AP-2 does not affect L1 ICD binding to 14-3-

3ζζζζ 

 
The adaptor protein µ-AP-2 is known to bind Tyr1176, immediately preceding the RSLESD 

sequence in L1 ICD; 1176YRSLESD1182 forms a tyrosine-based sorting motif that is necessary 

for endocytosis of L1 via the AP-2/clathrin-mediated pathway (Kamiguchi and Lemmon, 

1998). Given that we could show binding of 14-3-3ζ to almost the same region of L1 ICD, 

suggesting an involvement in L1 trafficking control, we investigated whether µ-AP-2 

competes with 14-3-3ζ for L1 binding. We found that L1 ICD is able to bind 14-3-3ζ also in  

the presence of µ-AP-2 (Fig. 24), implying that the adaptor protein does not measurably affect 

L1 ICD binding to 14-3-3ζ. µ-AP-2 and 14-3-3ζ might therefore bind independently of each 

other to L1 although their binding regions overlap. Alternatively, they might interact with L1 

at different stages of L1 endocytosis. Further studies will need to clarify whether 14-3-3ζ 

might impair the interaction between L1 and AP-2. 

 

4.2.6. A model of L1 – 14-3-3-interaction 

 
Endocytosis is a basic cellular process that is used by cells to internalize a variety of 

molecules. Because these molecules can be quite diverse, understanding the different 

pathways that mediate their internalization and how these pathways are regulated is important 

in many areas of cell and developmental biology.  

 
The highly conserved ICD of the L1 molecule plays an important role in its endocytic 

trafficking (Kamiguchi et al., 1998), yet the molecular mechanisms that regulate L1 

trafficking have not been fully unraveled. Previous investigations suggest that L1 

internalization in neuronal growth cones may be induced by the spatially restricted activation 

of the clathrin endocytic machinery and its associated molecules (Kirchhausen et al., 1997; 

Kamiguchi et al., 1998; Hinshaw, 2000; Schmid et al., 2000). Most probably, there are several 

critical points at which the endocytosed L1 might follow distinct pathways after 

internalization from the plasma membrane and during trafficking through endosomal 

compartments within the growth cone. Such a critical point is located at sorting endosomes, 

where during axonal growth, most of the endocytosed L1 should be sorted into recycling 

endosomes, but not into late endosomes/lysosomes to be degraded (Kamiguchi, 2003).  
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14-3-3 proteins have been shown to modulate the trafficking of ATP-sensitive K+ channels, 

TASK-1 and TASK-3 channels (O'Kelly et al., 2002; Rajan et al., 2002; Yuan et al., 2003; 

O'Kelly and Goldstein, 2008). Furthermore, Efendiev et al. could show that 14-3-3 provides 

the signal to initiate endocytosis of the Na+, K+ -ATPase (Efendiev et al., 2005). It has been 

reported more recently that 14-3-3 in complex with other molecules plays a role in 

modulating epidermal growth factor receptor endocytosis (Tomassi et al., 2008). The 

examples mentioned here illustrate that it is reasonable to assume that 14-3-3 plays a role in 

L1 endocytic trafficking. 

 

The results obtained in this thesis work are not sufficient to provide full detail of the 

mechanistic control of the L1 – 14-3-3-interaction. Nevertheless, the following model is 

proposed to illustrate the findings from this study in the greater context of L1 trafficking (Fig. 

26).  
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It has been shown that a post-translational modification in the L1 ICD could be responsible 

for region-specific endocytosis of L1 ICD. The L1 ICD is subject to 

phosphorylation/dephosphorylation in vivo at Tyr1176, the critical Tyr residue for AP-2 

binding (Schaefer et al., 2002). Phosphorylation of Tyr1176 prevents L1 from interacting with 

AP-2, thus preventing clathrin-mediated endocytosis of L1. L1 endocytosis may be triggered 

by dephosphorylation of Tyr1176 (step 1) (Fig. 26). This hypothesis is supported by a study by 

Schaefer et al. (2002) showing that in growth cones Tyr1176-dephosphorylated L1 is found in 

vesicle-like structures. µ-AP-2 binding to the 1176YRSLE1180 sequence in L1 ICD then enables 

L1 to be endocytosed via the clathrin-dependent pathway (step 2), as demonstrated in a study 

by Kamiguchi et al. (1998). The endocytosed L1 molecules are sorted into early endosomes 

(step 3). These early endosome-sorted L1 molecules can then follow two different pathways: 

reinsertion into the plasma membrane via recycling endosomes (step 4) or degradation via late 

endosomes and lysosomes (steps 4' and 5) (Fig. 26A). In the present study, I provide evidence 

to suggest that 14-3-3 orchestrates the trafficking of L1 molecules after endocytosis. In vitro 

binding assays revealed that 14-3-3 interacts with L1 ICD, and co-immunoprecipitation 

experiments demonstrated that 14-3-3 associates with L1 in vivo. It was also shown that 14-3-

3 associates with L1 in distinct endosomal fractions, suggesting the presence of 14-3-3 – L1-

complexes during trafficking/sorting through endosomal compartments such as early and late 

Figure 26: Model of 14-3-3 association with the intracellular domain (ICD) of L1 in the context of L1 

endocytic trafficking. L1 molecules (extracellular domain (ECD), red [knob]; ICD, black [coil]) on the cell 

surface are phosphorylated at Tyr1176 (P-Y1176) in the ICD. Dephosphorylation of Tyr1176 (step 1) may trigger 

L1 endocytosis (step 2). Dephosphorylated L1 molecules are then internalized via the AP-2/clathrin-

dependent pathway and sorted into early endosomes (step 3). (A) Known pathways of L1 endocytic 

trafficking indicating potential endosomal routes for reinsertion of L1 into the plasma membrane (step 4) and 

L1 degradation (steps 4' and 5). The particular pathway taken by L1 is postulated to be regulated by 14-3-3.

(B) Postulated pathway of L1 endocytic trafficking under conditions of low intracellular 14-3-3 

concentrations. Due to low levels of 14-3-3 relatively few L1 molecules are phosphorylated by CK II at 

Ser1181 in early endosomes. As a consequence, L1 is routed to recycling endosomes (step 4) and reinserted 

into the plasma membrane. (C) Postulated pathway of L1 endocytic trafficking at high levels of 14-3-3. The 

binding of 14-3-3 to L1 molecules in early endosomes enhances CK II phosphorylation of endocytic L1 ICD. 

Strong phosphorylation of the L1 ICD is postulated to result in L1 sorting into late endosomes (step 4') and 

then lysosomes for degradation (step 5). µ-AP-2: µ subunit of adaptor protein AP-2; CKII: casein kinase II; 

EE: early endosome; LE: late endosome; Lys: lysosome; RE: recycling endosome. The different coloring of 

the endosomes is to represent different marker proteins that are specific to each endosomal stage. 
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endosomes. Furthermore, I hypothesize that only L1 and AP-2 interact at the plasma 

membrane, with 14-3-3 interaction occurring further downstream. Support for this hypothesis 

is provided by results obtained in this study showing that AP-2 does not influence binding of 

L1 ICD to 14-3-3.  

 
Enhanced L1 phosphorylation of L1 ICD by CK II was observed in the presence of 14-3-3. 

Although the physiological relevance of this finding in the context of L1 sorting is not 

entirely clear at present, the level of phosphorylation, presumably regulated by 14-3-3, 

determines whether L1 is recirculated to the plasma membrane or is degraded. Independent 

results show that overexpression of 14-3-3 in hippocampal neurons results in a specific 

reduction of L1-mediated neurite outgrowth (T. Tilling, unpublished data). I speculate that in 

the absence of 14-3-3, less L1 is phosphorylated by CK II and reinsertion of L1 into the 

plasma membrane occurs (step 4) (Fig. 26B). In contrast, enhanced phosphorylation of L1 due 

to the interaction with 14-3-3 leads to sorting into late endosomes, then lysosomes and 

degradation of L1 (steps 4' and 5) (Fig. 26C).  

 
Taken together, these data suggest that 14-3-3 is a key molecule in regulating CK II-catalyzed 

phosphorylation of L1, thereby directing endocytic L1 trafficking. 14-3-3 interacts directly 

with L1 ICD and this interaction is required for CK II-dependent phosphorylation of L1. 

More studies will be required to investigate the function of 14-3-3 in L1 trafficking during 

neurite outgrowth in detail. Also, the identification of additional molecules that are part of 

critical sorting points would greatly enhance our understanding of how cells are able to 

regulate intracellular cell adhesion molecule trafficking. 
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9. Appendix 

 

A. Oligonucleotides 
 

1. Sequencing primers Sequence (5’-3’) 

1. pQ30 T7 promoter fwd ccc gaa aag tgc cac ctg 

2. pcDNA3 ctg ctt act ggc tta tcg aa 

3. L1 ICD 3431 fwd gct cta tca aag gca gca a 

4. GST 615 fwd gat gcg ttc cca aaa tta gtt tg 

5. Alpha II spectrin 2605 fwd gga cat gaa cca gcg atc aa 

6. Alpha II spectrin 3236 fwd ggc agg agc aga ttg aca at 

7. Alpha II spectrin 3650 fwd aaa ctg att cca aga cag cc 

8. Alpha II spectrin 3885 fwd gga cat gat ctc gcc agt gt 

9. Alpha II spectrin 4537 fwd gcg tag agg ctc tga tca aa 

10. 14-3-3 β 413 fwd ggg caa aga gta ccg tga 

11. 14-3-3 β 834 fwd cag ctg ctc agg gac aat ctc ca 

  

2. Mutagenesis primers Sequence (5’-3’) 

1. Alpha II spectrin S1302A fwd aca gca gag cgc ctg acc cag gcc cat ccc gag tca gca gaa 

gac 

2. Alpha II spectrin S1302A rev gtc ttc tgc tga ctc ttt atg ggc ctg ggt cag gcg ctc tgc tgt 

3. L1 ICDS1181A fwd ggc gag tac agg tcc ctg gag gct gac aat gaa gag aag gcc ttt 

4. L1 ICDS1181A rev aaa ggc ctt ctc ttc att gtc agc ctc cag gga cct gta ctc gcc 

5. L1 ICD∆∆∆∆RSLESD fwd gac gag acc ttc ggc gag tac aat gaa gag aag gcc ttt ggc 

6. L1 ICD∆∆∆∆RSLESD rev gcc aaa ggc ctt ctc ttc att gta ctc gcc gaa ggt ctc gtc 

3. PCR primers Sequence (5’-3’) 

1. 14-3-3 β fwd  ata ctc gag cat gga taa gag tga gct ggt a 

2. 14-3-3 β rev  ata tct aga tgg ttc tct ccc tct cca gca t 

3. Alpha II spectrin 10-14 Kozak fwd  ata gaa ttc gcc acc atg ttt atg ttg ttc cgt gaa gcg aat 

4. Alpha II spectrin 10-14 Kozak rev  ata ctc gag gac ctc att gcg ccg gct aga 

5. Alpha II spectrin 10-14 fwd  ata gaa ttc cct tta tgt tgt tcc gtg aag cga at 
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6. Alpha II spectrin 10-14 rev  ata ctc gag tgc cca aga gct ggc tcc gtt c 

 

B.1. Generation of pcDNA3/6xmyc-14-3-3ββββ 
 
pcDNA3/6xmyc-14-3-3β was generated for expression of 6xmyc-tagged 14-3-3β in 

mammalian cells. cDNA encoding the open reading frame of the 14-3-3β isoform was 

amplified by PCR using pGEX-2T-14-3-3β as a template and the above listed primers 3.1 and 

3.2 (see A3). The PCR product was digested with Xba I-Xho I and then ligated into 

pcDNA3/6xmyc vector.  

 

B.2. Generation of pGEX-4T-2-alpha II spectrin 10-14 
 
For overexpression of glutathione S transferase- (GST-) tagged alpha II spectrin 10-14 in 

bacteria, alpha II spectrin 10-14 was amplified using pCI - alpha II spectrin (cDNA kindly 

obtained from Jon Morrow, Yale University) as a template and the above listed primers 3.5 

and 3.6 (see A3). The PCR product, encompassing nucleotides 3376-4683 of the human alpha 

II spectrin sequence, was digested with EcoR I-Xho I and then ligated into the EcoR I/Xho I 

cloning sites of pGEX-4T-2 vector.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1: pGEX-4T-2 vector map (GE Healthcare; www.gehealthcare.com) 
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B.3. Generation of pcDNA
TM

3.1/myc-his – alpha II spectrin 10-14 
 
For mammalian expression of myc-histidine-tagged alpha II spectrin 10-14, alpha II spectrin 

10-14 was amplified using pCI - alpha II spectrin (cDNA provided by Jon Morrow, Yale 

University) as a template and the above listed primers 3.3 and 3.4 (see A3). The PCR product, 

encompassing nucleotides 3376-4683 of the human alpha II spectrin sequence, was digested 

with EcoR I-Xho I and then ligated into the EcoR I/Xho I cloning sites of pcDNATM3.1/myc-

his vector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: pcDNA
TM

3.1/myc-his A vector map (Invitrogen; www.invitrogen.com) 

 

B.4. Mutations in L1 ICD 
 
Mutants of histidine-tagged L1 ICD were generated using a QuikChange Site-directed 

mutagenesis kit (Stratagene) and primers listed in A2. Mutation sites were: Ser1181 to Ala and 

deletion of RSLESD sequence (positions 1177-1182). The specific base changes in all 

mutants were confirmed by DNA sequence analysis. 

 

 

 



 

Appendix 

 

 

 

103 

B.5. Mutations in alpha II spectrin 10-14 
 
A Ser to Ala mutant (Ser1302 to Ala) of myc-histidine-tagged alpha II spectrin was generated 

using a QuikChange Site-directed mutagenesis kit (Stratagene) and primers listed in A2. The 

specific base changes were confirmed by DNA sequencing. 

 


