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Abstract

This thesis deals with the coupling of finite elements and boundary elements for time-

dependent electromagnetic interface problems in R
3.

We consider a linear and a nonlinear eddy current problem which are induced by a current

in a conductor Ω and can be described by Maxwell’s equations. For the determination

of the electric field in Ω and the magnetic field on the boundary we derive variatio-

nal formulations for which we show existence and uniqueness. Using the Stratton-Chu

representation formula we can compute the solution in the exterior domain R3 \ Ω.

For the approximation of the solution of the electric field in Ω we use H(curl,Ω)-

conforming vector-valued piecewise linear polynomials, and for the magnetic field on the

boundary we use surface curls of hat functions. The approximation in time is done with

the aid of the discontinuous Galerkin method with linear functions. For the solution of

the resulting linear systems we use the fast solvers HMCR and GMRES combined with

different preconditioners like multigrid and block inverses.

For the linear eddy current problem we derive a priori and a posteriori error estimates,

with the resulting error indicators we perform an adaptive algorithm in space.

In the case of the nonlinear eddy current problem the magnetic permeability µ addi-

tionally depends on the magnetic field and on time. For solving the related nonlinear

variational formulation we use Newton’s method.

Our numerical experiments underline our theoretical results. We examine reliability and

efficiency of our a posteriori error estimates and compare different preconditioners. Fur-

thermore, we perform an adaptive algorithm using hanging edges.

Key words. Eddy current problem, FEM/BEM-coupling, discontinuous time stepping

Galerkin method, a posteriori error estimates, adaptive algorithm.
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Zusammenfassung

Diese Arbeit behandelt die Koplung von finiten Elementen und Randelmenten für zeit-

abhängige elektromagnetische Interface-Probleme in R3.

Wir untersuchen ein lineares und ein nichtlineares Wirbelstromproblem, die durch einen

Strom in einem Leiter Ω verursacht und die durch die Maxwell-Gleichungen beschrieben

werden. Zur Bestimmung des elektrischen Feldes in Ω und des magnetischen Feldes

auf dem Rand leiten wir variationelle Formulierungen her, für die wir Existenz und

Eindeutigkeit der Lösung zeigen. Mit Hilfe der Stratton-Chu-Darstellungsformel läßt

sich die Lösung für den Außenraum R3 \ Ω bestimmen.

Zur Approximation der Lösung des elektrischen Feldes in Ω benutzen wir H(curl,Ω)-

konforme vektorwertige stückweise lineare Polynome und für das magnetische Feld auf

dem Rand Flächenrotationen von Hutfunktionen. Die Approximation in der Zeit wird

mit Hilfe der Diskontinuierlichen Zeitschritt Galerkin Methode mit stückweise linearen

Funkionen durchgeführt. Zur Lösung der resultierenden linearen Gleichungssysteme be-

nutzen wir als schnelle Löser HMCR und GMRES in Kombination mit verschiedenen

Vorkonditionierern wie Multigrid und Block-Inverse.

Für das lineare Wirbelstromproblem leiten wir a priori und a posteriori Fehlerabschätzun-

gen her. Mit den zugehörigen Fehlerindikatoren führen wir einen adaptiven Algorithmus

im Raum durch.

Im Falle des nichtlinearen Wirbesltromproblems hängt die mangetische Permeabilität µ

zusätzlich vom Magnetfeld und der Zeit ab. Zur Lösung der zugehörigen variationellen

nichtlinearen Formulierung nutzen wir das Newton-Verfahren.

Unsere numerische Experimente unterstreichen unsere theoretischen Resultate. Wir un-

tersuchen die Fehlerabschätzungen auf Effizienz und Zuverlässigkeit und vergleichen ver-

schiedene Vorkonditionierer. Weiterhin führen wir einen adaptiven Algorithmus mit Hilfe

von hängenden Kanten durch.

Schlagwörter. Wirbelstromproblem, FEM/BEM-Kopplung, Diskontinuierliche Zeit-

schritt Galerkin Methode, a posteriori Fehlerabschätzungen, adaptive Algorithmen.

ii



Contents

1 Foundations 1

1.1 Spaces for the Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . 1

1.2 Trace operators and trace spaces . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Boundary integral operators . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 The Stratton-Chu representation formula . . . . . . . . . . . . . . . . . . 11

1.5 The Lebesgue Space Lp(0, T ; X) . . . . . . . . . . . . . . . . . . . . . . . 13

2 Interpolation 15
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Introduction

Many problems in science and engineering have to deal with the analysis of electroma-

gnetic phenomena. For solving these problems the focus lies on the study of Maxwell’s

equations, a system of partial differential equations which relates to the magnetic field

H, the magnetic induction B, the electric field E, the electric displacement D, and the

electric current density J, and is given by

∂B

∂ t
+ curlE = 0 , Faraday’s law

divD = ρ , Gauss’ law

∂D

∂ t
− curlH = −J , Ampère’s law

div B = 0 ,

where ρ denotes the distribution of charges (cf. Bastos [5], Monk [59] ).

Eddy currents can be found in any conducting medium, which is subjected to a time-

varying magnetic field or a relative motion between the conductive medium and the

magnetic field. In applications where the displacement current existing in a metallic

bounded conductor Ω is negligible compared to the conduction current, it is possible

to use a magneto-quasistatic sub-model of Maxwell’s equations, which is known as the

eddy current problem.

The eddy current problem is defined in the whole space R3 with decay conditions for

the magnetic and electric fields at infinity. One efficient method for dealing with this

problem is the coupling of finite elements and boundary elements (FE/BE), such that

the initial problem becomes a problem of transmission between the bounded domain

Ω and the unbounded exterior domain R3 \ Ω. Using the Stratton-Chu formula the

solution in the unbounded domain can be represented by functions on the transmission

boundary. Significant theoretical and numerical results of boundary elements for exterior

problems in electromagnetism can be found in MacCamy & Stephan [43, 44, 45, 46] and

Nédélec [62, 64], and more recent results for instance in Bossavit [7] and Buffa et. al.

[12, 14, 15].

In recent years, symmetric methods for the coupling of finite elements and boundary

elements for electromagnetic problems have been developed (see e.g. Hiptmair [37, 38]),

following the approach of Costabel [21]. The key concept is to use the Calderón projector
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Introduction

acting on the Cauchy data of the problem.

The main objective of this work is the implementation and analysis of the h-version of

the symmetric FE/BE coupling method to solve the eddy current problem for the time

dependent Maxwell’s equations. For a fixed time t, the electric field is chosen as primary

unknown. Furthermore, the non-local boundary condition on the FE/BE coupling in-

terface is deduced directly from the Stratton-Chu integral representation of the electric

field. Using these formulas we obtain a symmetric variational coupling formulation. For

the space discretization, we use H(curl,Ω)-conforming vector-valued polynomials to ap-

proximate the electric field in the conductor Ω and H(div,Ω)-conforming polynomials

on the transmission boundary Γ to approximate the twisted tangential trace of the ma-

gnetic field on Γ. As the resulting variational formulation is not coercive in the energy

norm, we modify it by adding a penalty term.

Time-stepping methods for systems of ordinary (or partial) differential equations are

frequently used to obtain a fully-discrete scheme in time and space, e.g. Costabel, Ervin

& Stephan [23] introduce a full discretization for a symmetric FE/BE coupling of a

parabolic-elliptic problem using the Crank-Nicolson method for the time discretization

and Mund [60] applies the discontinuous Galerkin time stepping method to solve the

time-dependent FE/BE coupling covering scalar problems (e.g. Laplace/heat equations).

An extension of this time stepping method to time dependent electromagnetic problems

is treated in this thesis. Using this method, the approximate solution is sought as a

piecewise polynomial function of degree l in t and is not necessarily continuous in the

nodes of the time mesh. Here, we consider piecewise linear test and trial functions in

time. A complete analysis of the discontinuous Galerkin method can be found e.g. in

Eriksson et al. [28, 27], Lippold [41], and Thomée [74].

While there is a considerable amount of work covering implementations to time-dependent

Maxwell’s equations and on the convergence of numerical schemes for stationary Max-

well’s equations and related models (see e.g. Assous et. al. [3], Ciarlet & Zou [17], Med-

dahi & Selgas [54]), few works exist on the convergence analysis for semidiscrete or fully

discrete numerical methods for the time dependent Maxwell’s equations (see e.g. Ciarlet

& Zou [18], Monk [58], Meddahi & Selgas [55, 56]). We provide a convergence analysis

of our fully discrete system for uniform meshes in time, in that e.g. error estimates are

derived at the nodal points. Moreover, an a posteriori error estimate is derived, which

guarantees a quasi-optimal bound of the error in the energy norm. The residual based

local error indicators allow us to present an adaptive feedback algorithm for the mesh

refinement of the coupling procedure, which is presented in Algorithm 1, Page 66.

To solve the large linear equation system (3.26), Page 44, we use in our work fast solvers

as e.g. the Generalized Minimal Residual Method (GMRES) (see e.g. [70]), an extension

of MINRES to nonsymmetric systems, and the Hybrid Modified Conjugate Residual

method (HMCR) (see e.g. [71]), a stable variant of MINRES. For the unpreconditio-
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ned system the condition number κ(A) of the Galerkin matrix A, behaves like O(N)

with respect to the number of degree of freedom N , i.e. A is ill-conditioned (see Table

4.1). Hence, we consider a preconditioned system, which in turn is more appropiate for

iterative methods and has the same solution as our unpreconditioned linear system.

The strategy is to use a diagonal preconditioner for the matrix A as

P =

(
PMR

PV

)

with

PMR =



−2PA 6PA

6PA −12PA


 , PV =




2PB −6PB

−6PB 12PB


 ,

PA := (
1

kn
M+ R̃)−1 and PB := (V + Ph)

−1.

The preconditioner P is obtained by using the Inverses block preconditioner (see

Maischak & Tran [52]), i.e. PA (the inverse of the FEM matrix) and PB (the inverse

of the BEM matrix) are calculated by solving an auxiliary problem with CG and using

LR decomposition, respectively. Also Multigrid can be applied and for this case we

use a V (ν1, ν2)-multigrid algorithm like in Hiptmair [35] for the FEM part and the

multigrid method like in Stephan & von Petersdorff [75, 76] for the BEM part. In the

preconditioned system with the inverses block as preconditioner the condition number

κ(PA) is bounded and independent of the time step (see Table 4.5, Page 91), while in

the preconditioned system with multigrid as preconditioner the condition number κ(PA)

depends on the time step (see Table 4.7 and Figure 4.16).

In the following Ω represents a Lipschitz domain with boundary Γ := ∂Ω.

The thesis is organized as follows. In Chapter 1 we recall main concepts and definitions,

which are necessary in the forthcoming analysis. Here, we focus on the Sobolev spaces

H(curl,Ω), H(div,Ω), and related spaces used for the analysis of Maxwell’s equations.

For the boundary element analysis we need the tangential trace operator γDu := n ×
(u×n) and the twisted tangential trace γ×

D
u := u×n, which define the following trace

spaces

H
−1/2
‖ (divΓ,Γ) = γ×D (H(curl,Ω)), H

−1/2
⊥ (curlΓ,Γ) = γD(H(curl,Ω)).

Section 1.3 gives the definition of the boundary integral operators for Maxwell’s equa-

tions and summarizes their mapping properties on the trace spaces H
−1/2
‖ (divΓ,Γ) and

H
−1/2
⊥ (curlΓ,Γ). In Section 1.4 we quote the Stratton-Chu representation formula as an
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Introduction

essential tool to obtain the desired FE/BE coupling, and finally in Section 1.5 we recall

some basic spaces and properties needed for the study of a time dependent problem.

In Chapter 2 the spaces needed for the discretization of the spaces H(curl,Ω), H(div,Ω),

H
−1/2
‖ (divΓ,Γ) and H

−1/2
⊥ (curlΓ,Γ) are presented. For this, we consider a shape-regular

mesh Th (with tetrahedral or hexahedral elements) on the domain Ω with mesh size

h > 0, which induces a mesh Kh of triangles or of quadrilaterals on the boundary Γ.

Section 2.1 defines the k−order Nédélec elements NDk(Th), a H(curl,Ω)−conforming

space used to discretize the electric field (see Nédélec [63, 65]). These elements fulfill

the H(curl,Ω)−conformity condition, i.e. the continuity of the tangential trace between

adjacent elements. In order to achieve this condition Nédélec ([63]) introduces degrees of

freedom which are based on integral moments that are used for the definition of the basis

functions and also for the definition of an interpolation operator. Section 2.1.4 gives an

error estimate for this operator. In Section 2.2 we concisely describe the main properties

of the Raviart-Thomas space RT k(Th), a H(div,Ω)−conforming space used to discreti-

ze our unknown on the boundary which satisfies RT k(Kh) = γ×
D

(NDk(Th)). With this

result we obtain a discretization of the trace space H
−1/2
‖ (divΓ,Γ) (see Sections 2.2.2

and 1.2.3). For the discretization in H
−1/2
⊥ (curlΓ,Γ) we introduce in Section 2.2.3 the

space T NDk(Th) := γD(NDk(Th)) as the tangential trace space of the Nédélec space.

In Section 2.3 we consider the de Rham diagram which gives us the connection between

the different finite element spaces. In Section 2.4 we define discrete spaces and interpo-

lation operators for the time dependent spaces. Moreover, we prove an inequality using

a duality argument, known also as Aubin Nitsche Trick. This result is necessary for the

proof of the a priori estimate in Theorem 3.3.1.

Chapter 3 is devoted to the time dependent eddy current problem. Initially in Section

3.1 the time dependent eddy current problem is formulated. Employing the Stratton-Chu

representation formula and boundary integral operators, a symmetric FE/BE coupling

formulation for the unknowns u ∈ W 1(0, T ;H(curl ,Ω)), which represents the electric

field in the domain Ω, and λ := curlu × n ∈ L2(0, T ;H
− 1

2

‖ (divΓ0,Γ)) is derived. A

difficulty of this initial variational formulation is, that for an arbitrary and fixed t it is

not coercive in the energy norm. To cope with that problem we add a penalty term to

ensure coercivity. This augmented weak formulation is used in the following. To achieve

the semi-discrete scheme we use Nédélec functions of the first order to approximate

the electric field u in the interior of the domain and divergence free Raviart-Thomas

functions to approximate the twisted tangential trace of the magnetic field.

In Section 3.2 we deduce a full discretization using the discontinuous time stepping

Galerkin method with piecewise linear test and trial functions. An a priori error analysis

for constant time step k is carried out, a convergence rate of the order O(hr + k2)

is obtained in the L2−error estimates at the nodal points, and in the energy norm

a convergence rate of the order O(hr0 + k2) is expected, where r := α + min{s, 1}
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Introduction

and r0 := min{s, 1} with α > 1
2

and s ∈]1
2
, 1[∪N. Finally, we derive an a posteriori

error estimate for the solution of the fully discrete discontinuous Galerkin method (see

Theorem 3.3.2), using residual error estimator for the h-version. Here, singular, weakly

singular, and hypersingular boundary integral operators appearing in the variational

coupling formulation show up in the terms of the error estimators as well. Moreover, the

residual based local error indicators allow us to present an adaptive feedback algorithm

for the mesh refinement of the coupling procedure. So far an error analysis for the FE/BE

coupling of electromagnetic problems was restricted to time-independent problems (see

Teltscher [73] who uses results by Beck et al. [6] for the FE-part). As a key for extending

these results to the time dependent case we have extended here the results of Mund [60]

who first derived a priori and a posteriori error estimates for the time-dependent FE-BE

coupling using the discontinuous Galerkin method.

In Chapter 4 we present numerical experiments underlining the theoretical results de-

rived in Theorems 3.3.1 and 3.3.2. For it we implement in the scientific program package

Maiprogs [50] among other the full discrete system (3.26), obtained by using the dis-

continuous Galerkin method, the error estimators presented in Theorem 3.3.2, and the

inverse block and multigrid preconditioners presented in Section 4.2.1. To accomplish

the implementation the divergence free Raviart-Thomas functions RT 0
1(Kh) can be re-

presented by curlΓS1(Kh), where S1(Kh) denotes the space of piecewise polynomials on

the triangulation Kh [34]. Our different numerical experiments show the realibility and

efficiency of our error estimators. We also compare the different preconditioners.

Chapter 5 examines a nonlinear variant of the time dependent eddy current problem.

Here the magnetic permeability µ depends on the magnetic field and on the time. For this

problem we derive a variational formulation and show the existence and the uniqueness of

the solution (Theorem 5.1.1). To solve the full discrete problem using the discontinuous

Galerkin method we present a Newton’s algorithm. A numerical experiment shows the

convergence of the procedure.

Throughout this work, vector-valued functions or spaces are written in bold letters,

scalar functions in normal typed letters. C denotes a generic positive constant, usual-

ly independent of the characteristic mesh size h. The symbol . signifies “≤ up to a

multiplicative constant C > 0”. The symbol ≃ means “. and &”.
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1 Foundations

1.1 Spaces for the Maxwell’s equations

We start this chapter with a brief introduction into the main concepts and definitions

connected with the Sobolev spaces used and some standard notation for distributions

(see e.g. Girault & Raviart [29], McLean [53] and Lions & Magenes [40] ).

Let U ⊂ Rn be a non-empty open subset. For a sufficiently smooth φ : U → R the partial

derivatives of φ are denoted by

∂αφ :=
∂|α|φ

∂xα1
1 · · ·∂xαn

n

where α =
(
α1, · · · , αn

)
∈ Zn

+ is a multi-index, i.e., an n-tuple of non-negative integers

with |α| :=∑n
i=1 αi.

Ck(U) denotes the space of k times continuously differentiable functions on U , and suppφ

denotes the support of φ, which is given by the closure in U of the set {x ∈ U : φ(x) 6= 0}.

Then,

Ck
0 (U) :=

{
φ ∈ Ck(U) : suppφ ⊂ K ⊆ U , K compact

}

and

C∞0 (U) :=
⋂

k≥0

Ck
0 (U) .

The space of distributions C∞0 (U)′ ≡ D′(U
)

is the dual space of C∞0 (U) in the sense

that a linear functional ψ : C∞0 (U) → C is contained in D′(U
)
, provided that for every

compact set K ⊂ U there exist constants C > 0 and k ∈ N such that

|ψ(φ)| ≤ C
∑

|α|≤k

sup
K
|∂αφ|

for all φ ∈ C∞0 (U). Moreover for every 1 ≤ p <∞ we define

Lp
(
U
)

:=

{
φ : U → C,

∫

U
|φ|p dx <∞

}
.
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1 Foundations

Let Ω ⊂ Rn, n = 1, 2, 3 be an open and connected set. For each integer s ≥ 0 and real

number 1 ≤ p <∞, we define the Sobolev space

W s,p(Ω) := {φ ∈ Lp(Ω) : ∂αφ ∈ Lp(Ω) for all |α| ≤ s} .

W s,p(Ω) is a Banach space with norm

‖φ‖W s,p(Ω) =


∑

|α|≤s

∫

Ω

|∂αφ(x)|p dx




1/p

and corresponding semi-norm

|φ|W s,p(Ω) =


∑

|α|=s

∫

Ω

|∂αφ(x)|p dx




1/p

.

Notice that the space W s,p(Ω) is separable for 1 ≤ p <∞ and reflexive for 1 < p <∞.

For n = 2, 3 and p = 2 define

Hs(Ω) :=
{
φ ∈ D′(Ω) : φ = u|Ω for some u ∈ W s,2(Rn)

}
.

Let Ω be an open subset of Rn, m a non-negative integer and s, p ∈ R with s ≥ 0 and

1 ≤ p <∞ and s = m+ γ where γ ∈ R with 0 < γ < 1. The space W s,p(Ω) denotes the

spaces of all distributions φ ∈ D′(Ω) such that φ ∈Wm,p(Ω) and

∫

Ω

∫

Ω

|∂αφ(x)− ∂αφ(y)|p
|x− y|n+γp

dx dy <∞ for all |α| = m ,

equipped with the norm

‖φ‖W s,p(Ω) :=



‖φ‖

p
W m,p(Ω) +

∑

|α|=m

∫

Ω

∫

Ω

|∂αφ(x)− ∂αφ(y)|p
|x− y|n+γp

dx dy





1/p

.

The space W s,p(Ω) is a separable, reflexive Banach space for 1 < p < ∞ and s ∈ R

with s ≥ 0. This space with fractional order is used in the analysis of boundary values

of functions and boundary integral operators.

In the following, let Ω ⊂ R
3 denote a bounded domain with a Lipschitz continuous

boundary Γ := ∂Ω in the sense of Grisvard [30, Def. 1.2.1.2], i.e., for every x ∈ Γ

there exists a neighborhood U of x in R3 and a new orthogonal coordinate system

y =
(
y1, y2, y3

)
≡
(
y′, y3

)
and there exist

• a vector a ∈ R3 with x ∈ U := {y ∈ R3 : |yi| < ai, ∀i = 1, 2, 3},
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1.1 Spaces for the Maxwell’s equations

• a Lipschitz continuous function ϕ : U ′ → R with |ϕ
(
y′)| ≤ a3

2
for all y′ ∈ U ′, where

U ′ :=
{
y′ ∈ R

2 : |yi| < ai, ∀i = 1, 2
}
,

such that

Ω ∩ U =
{
y ∈ U : y3 < ϕ

(
y′), y′ ∈ U ′} ,

Γ ∩ U =
{
y ∈ U : y3 = ϕ

(
y′), y′ ∈ U ′} .

Essentially, this definition means that locally U is below the graph of some function ϕ

and Γ is represented by the graph of ϕ. We shall say that Ω is a Lipschitz domain when it

has a Lipschitz continuous boundary. Note that every bounded polyhedral is a Lipschitz

domain.

Define Ωe := R3 \ Ω with the outer unit normal vector n on Γ pointing from Ω into Ωe,

which exists almost everywhere for Lipschitz domains.

In the following, we introduce proper spaces which are necessary for the investigation of

the Maxwell’s equations. In three dimensions these are the spaces H(curl,Ω), H(div,Ω)

and the trace spaces on Γ of H(curl,Ω) (using the tangential trace γD and the twisted

tangential trace γ×
D

) H
−1/2
⊥ (curlΓ,Γ) and H

−1/2
‖ (divΓ,Γ), respectively. On smooth boun-

daries the theory is well established, see Paquet [68], Alonso & Valli [1], Girault &

Raviart [29] and Nédélec [66, Section 5.4.1]. Their results have been extended to poly-

hedra by Buffa [9] and Buffa & Ciarlet [10, 11, 12]. For the case of Lipschitz domains,

see Buffa et al. [13].

Let u ∈ D′(Ω) be a scalar function and u := (u1, u2, u3) ∈ D′(Ω) :=
(
D′(Ω)

)3
be a three

dimensional vector function.

On Ω we consider the spaces L2(Ω) := (L2(Ω))3 and the space of tangential vector fields

L2
t (Γ) := {u ∈ L2(Γ) : u · n = 0 a.e. on Γ} (1.1)

with the complex dualities

(u,v)Ω :=

∫

Ω

u(x) · v(x) dx, u, v ∈ L2(Ω),

〈λ, ζ〉Γ :=

∫

Γ

λ(x) · ζ(x) dx, λ, ζ ∈ L2
t (Γ).

Besides the usual Sobolev spaces Hs(Ω) for scalar functions and Hs(Ω) := (Hs(Ω))3 for

vector fields of order s ∈ R (cf. Grisvard [30]), we use the spaces

H(curl,Ω) :=
{
u ∈ L2(Ω) : curlu ∈ L2(Ω)

}
,

H0(curl,Ω) := {u ∈ H(curl,Ω) : u× n = 0 on Γ},

3



1 Foundations

H0(curl 0,Ω) := {u ∈ L2(Ω) : curlu = 0, u× n = 0 on Γ},
H(curl curl,Ω) := {u ∈ H(curl,Ω) : curl curlu ∈ L2(Ω)},

H(div,Ω) := {u ∈ L2(Ω) : divu ∈ L2(Ω)},
H0(div,Ω) := {u ∈ H(div,Ω) : u · n = 0 on Γ},

H0(div 0,Ω) := {u ∈ H0(div,Ω) : divu = 0}.

Furthermore, we define for s ≥ 0

Hs(curl,Ω) := {u ∈ Hs(Ω) : curlu ∈ Hs(Ω)}.

The associated graph norms in H(curl,Ω), H(div,Ω) and Hs(curl,Ω) are given by

‖u‖2H(curl,Ω) := ‖u‖2L2(Ω) + ‖ curlu‖2L2(Ω),

‖u‖2H(div,Ω) := ‖u‖2L2(Ω) + ‖ divu‖2L2(Ω),

‖u‖2Hs(curl,Ω) := ‖u‖2Hs(Ω) + ‖ curlu‖2Hs(Ω),

respectively.

1.2 Trace operators and trace spaces

Let γ : H1(Ω) → H1/2(Γ), γ(u) = u|Γ denote the standard trace operator acting on

vectors. We assume Ω as a polyhedral domain and that the boundary Γ is split into N

faces Γi with Γ =
⋃N

i=1 Γi. Also, we define the space

H
1/2
− (Γ) :=

{
ϕ ∈ L2

t (Γ) : ϕ|Γj
∈ H1/2(Γj), 1 ≤ j ≤ N

}
,

the Dirichlet trace (tangential surface trace) as

γD :
(
C∞0 (Ω)

)3 → H
1/2
− (Γ)

u 7→ n(x)× (u(x)× n(x))|Γ
(1.2)

and the twisted tangential trace as

γ×
D

:
(
C∞0 (Ω)

)3 → H
1/2
− (Γ)

u 7→ u(x)× n(x)|Γ .
(1.3)

Thus, for a vectorial function u ∈ H1(Ω) we obtain for almost all x ∈ Γ that

γDu(x) := n(x)× (u(x)× n(x)) = u(x)−
(
n(x) · u(x)

)
n(x),

Let φ ∈ H2(Ω) be a scalar function. We then define the surface gradient of φ on Γ by

gradΓ φ := γD(gradφ) (1.4)
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1.2 Trace operators and trace spaces

and the vectorial surface rotation on Γ by

curlΓ φ := γ×
D

(gradφ) = gradΓ φ× n.

The scalar surface rotation on Γ of a vectorial function u ∈ H2(Ω) with u ·n = 0 on

Γ is given by

curlΓu := curlu · n
and the surface divergence by

divΓ u := div(γDu) = − curlΓ(u× n) = − curl(u× n) · n.

The above definitions are valid on all regular points of Γ but can be extended to Lipschitz

domains, see e.g. Buffa & Ciarlet [10, 11].

On smooth domains the following dualities hold

〈gradΓ φ,u〉Γ = −〈φ, divΓ u〉Γ ,
〈curlΓ φ,u〉Γ = 〈φ, curlΓu〉Γ .

Next, we define spaces of tangential traces on non-smooth domains due to Buffa &

Ciarlet [10, 11].

For two faces Γi and Γj with a common edge eij we define tij as the unit tangential

vector and ti(j) := tij × ni where ni denotes the unit normal vector on eij w.r.t. Γi.

Furthermore, let Ij denote the set of those indices i such that Γi shares an edge with

Γj. Then, we define

H1/2
∗ (Γ) :=

{
u ∈ L2

t (Γ) : u|Γj
· tj(i), u|Γj

· tij ∈ H1/2(Γj) ∀ i ∈ Ij , ∀ j = 1, . . . , n
}

and

H
1/2
‖ (Γ) :=

{
u ∈ H1/2

∗ (Γ) : N ‖
i,j(u) <∞ ∀i ∈ Ij, ∀j = 1, . . . , n

}
, (1.5)

H
1/2
⊥ (Γ) :=

{
u ∈ H1/2

∗ (Γ) : N⊥
i,j(u) <∞ ∀i ∈ Ij , ∀j = 1, . . . , n

}
, (1.6)

with the functionals

N ‖
i,j(u) :=

∫

Γi

∫

Γj

|(u · tij)(x)− (u · tij)(y)|2
|x− y|3 ds(x)ds(y),

N⊥
i,j(u) :=

∫

Γi

∫

Γj

|(u · ti(j))(x)− (u · tj(i))(y)|2
|x− y|3 ds(x)ds(y).

Loosely spoken, H
1/2
‖ (Γ) contains the tangential surface vector fields that are in H1/2(Γi)

for each smooth surface piece Γi of Γ and fulfill a suitable “weak tangential continuity”

across the edges of the Γi. For H
1/2
⊥ (Γ) a corresponding “weak normal continuity” is

fulfilled.
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The spaces H
−1/2
⊥ (Γ) and H

−1/2
‖ (Γ) are then defined as the dual spaces of H

1/2
⊥ (Γ) and

H
1/2
‖ , resp., with L2

t (Γ) as pivot space, see [10].

The above defined surface differential operators can now be extended to other Sobolev

spaces.

Lemma 1.2.1 ( [10, Proposition 3.2], [11, Theorem 4.6; Proposition 4.7 ]) aa

Assuming that Γ is Lipschitz regular we can extend the surface differential operators

gradΓ and curlΓ to linear and continuous mappings

gradΓ : H1/2(Γ)→ H
−1/2
⊥ (Γ),

curlΓ : H1/2(Γ)→ H
−1/2
‖ (Γ)

and their adjoints

divΓ : H
1/2
⊥ (Γ)→ H−1/2(Γ),

curlΓ : H
1/2
‖ (Γ)→ H−1/2(Γ)

are linear, continuous and surjective. There holds

Ker
(
curlΓ(H

−1/2
⊥ (Γ))

)
= Im

(
gradΓ(H1/2)

)
,

Ker
(
divΓ(H

−1/2
‖ (Γ))

)
= Im

(
curlΓ(H1/2)

)
.

Furthermore, we have the duality pairings

〈gradΓ φ,u〉Γ = −〈φ, divΓ u〉Γ ∀φ ∈ H1/2(Γ), u ∈ H
1/2
⊥ (Γ),

〈curlΓ φ,u〉Γ = 〈φ, curlΓ u〉Γ ∀φ ∈ H1/2(Γ), u ∈ H
1/2
‖ (Γ).

We are now in the position to define the following trace spaces.

H
−1/2
⊥ (curlΓ,Γ) :=

{
u ∈ H

−1/2
⊥ (Γ) : curlΓ u ∈ H−1/2(Γ)

}
,

H
−1/2
‖ (divΓ,Γ) :=

{
u ∈ H

−1/2
‖ (Γ) : divΓ u ∈ H−1/2(Γ)

}
,

H
−1/2
‖ (divΓ 0,Γ) := {u ∈ H

−1/2
‖ (divΓ,Γ) : divΓ u = 0}.

A very important result for these spaces is given by

Lemma 1.2.2 ( [11, Theorem 5.4]) The spaces H
−1/2
‖ (divΓ,Γ) and H

−1/2
⊥ (curlΓ,Γ)

are dual with respect to L2
t (Γ) as pivot space.

We can now summarize the following mapping properties of the trace operators.
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Lemma 1.2.3 The trace operators γD and γ×
D

can be extended to linear, continuous and

surjective mappings

γD :H1(Ω)→ H
1/2
‖ (Γ),

γD :H(curl,Ω)→ H
−1/2
⊥ (curlΓ,Γ),

γ×
D

:H1(Ω)→ H
1/2
⊥ (Γ),

γ×D :H(curl,Ω)→ H
−1/2
‖ (divΓ,Γ).

Furthermore, γD : H(curl,Ω) → H
−1/2
⊥ (curlΓ,Γ) and γ×D : H(curl,Ω) → H

−1/2
‖ (divΓ,Γ)

possess both a continuous right inverse.

Proof. The proof for smooth domains can be found in Nédélec [66] and for Lipschitz

domains in the articles of Buffa & Ciarlet [10, Proposition 2.7, Theorem 3.9, 3.10] and

[11, Theorem 5.4].

The following result may be found in [10, Section 3.2] and is helpful in the computations.

Lemma 1.2.4 For u ∈ H(curl,Ω) there holds

divΓ(u× n) = n · curlu. (1.7)

There holds the following Green formula:

Lemma 1.2.5 ([10, Theorem 3.9]) For u ∈ H(curl,Ω) and v ∈ H1(Ω) there holds
∫

Ω

(curlv · u− v · curlu) dx =
〈
γ×

D
u, γDv

〉
‖,1/2,Γ

.

Here, 〈·, ·〉‖,1/2,Γ denotes the H
−1/2
‖ (Γ)-H

1/2
‖ (Γ)-duality with L2

t (Γ) as pivot space.

For u ∈ H(curl curl,Ω) the Neumann trace γNu ∈ H
−1/2
‖ (divΓ,Γ) is defined by (see

Hiptmair [37])

〈γNu, γDv〉Γ = ±(curlu, curlv)Ω ∓ (curl curlu,v)Ω ∀v ∈ H(curl,Ω). (1.8)

Here, the upper signs are applied to the interior domain Ω and the lower signs are used

for the exterior domain Ωe. As for smooth fields there also holds γNu = γ×D (curlu).

Lemma 1.2.6 ([37, Lemma 3.3]) The trace operator

γN : H(curl curl,Ω)→ H
−1/2
‖ (divΓ,Γ)

is linear and continuous and there holds for u ∈ H(curl,Ω) with curl curlu = 0

‖γNu‖H−1/2
‖

(divΓ,Γ)
≤ C‖ curlu‖L2(Ω).
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Furthermore, we define for u ∈ H(div,Ω) the weak normal trace γnu by

〈γnu, φ〉1/2,Γ = (divu, φ)Ω + (u, gradφ)Ω ∀φ ∈ H1(Ω). (1.9)

Here, 〈·, ·〉1/2,Γ denotes the duality pairing between H−1/2(Γ) and H1/2(Γ).

Lemma 1.2.7 γn : H(div,Ω)→ H−1/2(Γ) is continuous and surjective.

Proof. The continuity can be found in Girault & Raviart [29, Theorem 2.5] and the

surjectivity is proven in Nédélec [66, Theorem 5.4.1].

Remark 1.2.1 For u ∈ C1(Ω) there holds γnu = u · n.

1.3 Boundary integral operators

Here, we define the boundary integral operators which are used for the coupling formu-

lations. The fundamental solution of the Laplace equation is given by

Φ(x,y) :=
1

4π
|x− y|−1, x 6= y.

There holds ∆Φ(x,y) = 0 and gradx Φ(x,y) = −grady Φ(x,y). We then define the

scalar single layer potential for u ∈ L2(Γ) by

S(u)(x) :=

∫

Γ

Φ(x,y)u(x) ds(y), x 6∈ Γ.

It can be extended to a continuous mapping S : H−1/2(Γ) → H1
loc(R

3) and satisfies the

jump relations

[γS(u)]Γ = 0, [γ gradS(u)]Γ = −un
with the normal n on Γ pointing into the exterior domain, where [γu]Γ := γ+u − γ−u
denotes the jump of the trace γ of a function u over the boundary Γ and γ+ and γ−

denote the exterior and interior traces. The second relation can be written as

[γn gradS(u)]Γ = −u, [gradΓ S(u)]Γ = 0. (1.10)

This leads to the definition of the boundary integral operator

V (u)(x) := γS(u)(x), x ∈ Γ, (1.11)

which is continuous from H−1/2(Γ) to H1/2(Γ) and defines a positive definite bilinear

form on H−1/2(Γ) (cf. Costabel [22]), and

Su(x) := gradΓ V u(x), x ∈ Γ, (1.12)
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which is continuous from H−1/2(Γ) to H
−1/2
⊥ (curlΓ,Γ) due to the properties of gradΓ

and V . Analogously, we define the vectorial single layer potential for λ ∈ L2(Γ) by

V(λ)(x) :=

∫

Γ

Φ(x,y)λ(y) ds(y), x 6∈ Γ,

which can be extended to a continuous mapping from H
−1/2
‖ (Γ) to H1

loc(R
3) (see Buffa

et al. [15, Theorem 3.8] or Hiptmair [37, Section 5]). We will make use of the following

result by MacCamy & Stephan [45].

Lemma 1.3.1 For λ ∈ H
−1/2
‖ (divΓ,Γ) there holds

div V(λ) = V (divΓ λ) in L2(R3).

We define the vectorial double layer potential for λ ∈ H
−1/2
⊥ (Γ) by

K(λ) := curlV(n× λ)

and further

W(λ) := curlK(λ) = gradV (divΓ(n× λ)). (1.13)

The last equation follows from the identity curl curl ≡ grad div−∆, the fact that

∆Φ = 0 and Lemma 1.3.1. Using the continuity of v and the fact that the mapping λ 7→
n×λ is an isometry between H

−1/2
⊥ (curlΓ,Γ) and H

−1/2
‖ (divΓ,Γ) (this is a consequence

of Lemma 1.2.3), one sees that K is a continuous mapping from H
−1/2
⊥ (curlΓ,Γ) to

Hloc(curl curl,R3 \ Γ) ∩H(div 0,R3 \ Γ) (see [15, Section 3.3] and [37, Section 5]).

The vectorial single and double layer potentials satisfy the following jump relations, (see

[15, 37]): For λ ∈ H
−1/2
‖ (divΓ,Γ) there holds

[γDV(λ)]Γ = 0, [γNV(λ)]Γ = −λ, (1.14)

and for λ ∈ H
−1/2
⊥ (curlΓ,Γ) there holds

[γDK(λ)]Γ = λ, [γNK(λ)]Γ = 0. (1.15)

We now define the following vectorial boundary integral operators as exterior traces of

the layer potentials for x ∈ Γ

V(λ) := γ+
D

V(λ) = γ+
D

∫

Γ

Φ(x,y)λ(y) ds(y), (1.16)

K(λ) := γ+
D

K(λ) = γ+
D

curlx

∫

Γ

Φ(x,y)(n× λ)(y) ds(y), (1.17)

K̃(λ) := γ+
N V(λ) = (γ×D )+K(λ× n) = γ+

N

∫

Γ

Φ(x,y)λ(y) ds(y), (1.18)

9



1 Foundations

W(λ) := γ+
N

K(λ) = (γ×
D

)+W(λ) = γ+
N

curlx

∫

Γ

Φ(x,y)(n× λ)(y) ds(y). (1.19)

From the regularity properties of the potentials and the trace operators we get the

following lemma (see Hiptmair [37]).

Lemma 1.3.2 The operators

V : H
−1/2
‖ (Γ)→ H

1/2
‖ (Γ),

K : H
−1/2
⊥ (curlΓ,Γ)→ H

−1/2
⊥ (curlΓ,Γ),

K̃ : H
−1/2
‖ (divΓ,Γ)→ H

−1/2
‖ (divΓ,Γ),

W : H
−1/2
⊥ (curlΓ,Γ)→ H

−1/2
‖ (divΓ,Γ)

are continuous.

Furthermore there holds

Lemma 1.3.3 ([37, Section 6]) The boundary integral operators satisfy the following

properties:

1. The bilinear form induced on H
−1/2
‖ (divΓ 0,Γ) by V is symmetric and elliptic, i.e.,

there exists a constant c > 0, such that

〈Vu,u〉Γ ≥ c‖u‖2
H

−1/2
‖

(divΓ,Γ)
∀u ∈ H

−1/2
‖ (divΓ 0,Γ).

2. The boundary integral operator K̃ is adjoint to K − I, i.e.,

〈K̃u,v〉Γ = 〈u, (K − I)v〉Γ ∀u ∈ H
−1/2
‖ (divΓ 0,Γ),v ∈ H

−1/2
⊥ (curlΓ,Γ).

3. There holds with the pairing 〈·, ·〉−1/2,Γ between H
−1/2
‖ (divΓ,Γ) and H

−1/2
⊥ (curlΓ,Γ)

〈Wu,v〉Γ = −〈V (curlΓ u), curlΓ v〉−1/2,Γ ∀u,v ∈ H
−1/2
⊥ (curlΓ,Γ).

4. The bilinear form induced on H
−1/2
⊥ (curlΓ,Γ) by W is symmetric and negative

semidefinite, in particular there exists a constant C > 0 such that

−〈Wu,u〉Γ ≥ C‖ curlΓ u‖2H−1/2(Γ) ∀u ∈ H
−1/2
⊥ (curlΓ,Γ).

We now define integral operators for λ ∈ L2
t (Γ) and x ∈ Γ by

Lλ(x) :=

∫

Γ

Φ(x,y)λ(y) ds(y),

10



1.4 The Stratton-Chu representation formula

Mλ(x) :=

∫

Γ

curlx(Φ(x,y)λ(y)) ds(y) =

∫

Γ

gradx Φ(x,y)× λ(y) ds(y).

The above integral can be defined as Cauchy-principal value. Using the jump conditions

one can prove the following representation of the boundary integral operators, see e.g.

Mitrea et al. [57, Section 3] and Colton & Kress [20, Section 6.3].

Vλ = −n× (n×Lλ),

Kλ =M(n× λ) +
1

2
λ,

K̃λ = −n×Mλ− 1

2
λ,

Wλ = −n× gradV (divΓ(n× λ)) = − curlΓ V (curlΓλ).

(1.20)

The last equation holds due to n× gradφ = − curlΓ φ and divΓ(n× λ) = − curlΓ λ.

Using these relations we can prove the useful equation

Lemma 1.3.4 For u, v ∈ H
−1/2
⊥ (curlΓ,Γ) there holds

〈Wu,v〉 = −〈V curlΓu, curlΓ v〉. (1.21)

The following Lemma is necessary for the proof of the residual error estimator in Chap-

ter 3.

Lemma 1.3.5 ([73, Lemma 4.3.2]) For u ∈ H(curl,Ωe), λ ∈ H
−1/2
‖ (divΓ 0,Γ) there

holds

1. divΓK̃λ = 0 in H−1/2(Γ),

2. divΓWγDu = 0 in H−1/2(Γ).

1.4 The Stratton-Chu representation formula

In this Section we introduce an integral representation formula for the solutions of the

Maxwell’s equations. This is the main ingredient to derive the coupling formulations in

the next chapters. The formula is based on the results of Stratton & Chu [72]. We cite

here Colton & Kress [20] for smooth boundaries but the results also hold for Lipschitz

boundaries, see e.g. Buffa et al. [12, Theorem 3].

We consider the Maxwell’s equations

curlE− iκH = 0, (1.22)

11



1 Foundations

curlH + iκE = 0, (1.23)

where E and H denote the electric and the magnetic field, resp. Thus, there holds for E

curl curlE = κ2E.

Here Φ(x,y) := 1
4π

eiκ|x−y|

|x−y| , x, y ∈ R3, x 6= y define the fundamental solution of the

Helmholtz equation. We obtain the following representation Theorem, see Colton &

Kress [20, Section 6.2].

Theorem 1.4.1 (Stratton-Chu formula) Let Ω be a bounded domain with smooth

boundary and let n denote the unit normal vector to the boundary Γ = ∂Ω directed into

the exterior of Ω. Let E, H ∈ C1(Ω) ∩ C(Ω) be a solution to the Maxwell’s equations

(1.22) and (1.23) in Ω. Thus, there hold the Stratton-Chu formulas

E(x) =− curl

∫

Γ

(
n(y)× E(y)

)
Φ(x,y) ds(y)

+
1

iκ
curl curl

∫

Γ

(
n(y)×H(y)

)
Φ(x,y) ds(y), x ∈ Ω,

and

H(x) =− curl

∫

Γ

(
n(y)×H(y)

)
Φ(x,y) ds(y)

− 1

iκ
curl curl

∫

Γ

(
n(y)× E(y)

)
Φ(x,y) ds(y), x ∈ Ω.

For the unbounded domain there holds

Theorem 1.4.2 (Stratton-Chu formula) Let Ωe := R3 \ Ω, where Ω is a smooth

domain and let n denote the unit normal vector to the boundary ∂Ω directed into the

exterior of Ωe. Let E, H ∈ C1(Ωe) ∩ C(Ωe) be a solution to the Maxwell’s equations

(1.22) and (1.23) in Ωe. Furthermore, we assume that E and H satisfy the Silver-Müller

radiation conditions

lim
|x|→∞

(H× x− |x|E) = 0 (1.24)

or

lim
|x|→∞

(E× x+ |x|H) = 0 (1.25)

uniformly in all directions x
|x| . Then, there holds

E(x) = curl

∫

Γ

(
n(y)× E(y)

)
Φ(x,y) ds(y)

− 1

iκ
curl curl

∫

Γ

(
n(y)×H(y)

)
Φ(x,y) ds(y), x ∈ Ωe,

(1.26)

12
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and

H(x) = curl

∫

Γ

(
n(y)×H(y)

)
Φ(x,y) ds(y)

+
1

iκ
curl curl

∫

Γ

(
n(y)×E(y)

)
Φ(x,y) ds(y), x ∈ Ωe.

(1.27)

Furthermore, there holds, see [20, (6.10)],

1

iκ
curl curl

∫

Γ

(
n(y)×H(y)

)
Φ(x,y) ds(y)

= −iκ
∫

Γ

(
n(y)×H(y)

)
Φ(x,y) ds(y) + grad

∫

Γ

(
n(y) ·E(y)

)
Φ(x,y) ds(y).

(1.28)

Thus, using H = 1
iκ

curlE, the relation (1.26) can be rewritten as

E(x) = curl

∫

Γ

(
n(y)× E(y)

)
Φ(x,y) ds(y)

+

∫

Γ

(
n(y)× curlE(y)

)
Φ(x,y) ds(y)

− grad

∫

Γ

(
n(y) · E(y)

)
Φ(x,y) ds(y), x ∈ Ωe.

(1.29)

In Chapter 3 we use this formula for the derivation of the coupling formulations.

1.5 The Lebesgue Space Lp(0, T ; X)

This section introduces some basic ideas and spaces needed to study time dependent

problems. A complete analysis can be found in Zeidler [78, Chapter 23].

Definition 1.5.1 Let X be a Banach space and 0 < T <∞.

1. Cm([0, T ],X), m ∈ N, denotes the space of all continuous functions u : [0, T ]→ X

which have continuous derivates up to order m on [0, T ] with the norm

‖u‖Cm([0,T ],X) :=

m∑

i=0

max
0≤t≤T

|u(i)(t)| (1.30)

where u(0) means u. We write C([0, T ],X) instead of C0([0, T ],X).

2. The space Lp(0, T ; X) with 1 ≤ p <∞ consists of all measurable functions

u : (0, T )→ X for which

‖u‖Lp(0,T ;X) :=

(∫ T

0

‖u‖p
X
dt

)1/p

<∞ (1.31)

holds.

13



1 Foundations

Lemma 1.5.1 ([78, Proposition 23.2 ]) aa

1. Cm([0, T ],X) with the norm (1.30) is a Banach space.

2. Lp(0, T ; X) with the norm (1.31) is a Banach space in the case where one identifies

functions that are equal almost everywhere on ]0, T [.

3. C([0, T ],X) is dense in Lp(0, T ; X) and the embedding C([0, T ],X) ⊆ Lp(0, T ; X) is

continuous.

4. The set of all polynomials w : [0, T ]→ X, i.e., w(t) = a0 + a1 t+ · · ·+ an t
n with

ai ∈ X for all i and n = 0, 1, . . . is dense in C([0, T ],X) and Lp(0, T ; X).

Definition 1.5.2 (Evolution Triples) We understand an evolution triple

V ⊆ H ⊂ V
∗

to be the following:

1. V is a real, separable, and reflexive Banach space.

2. H is a real, separable Hilbert space.

3. The embedding V ⊆ H is continuous, i.e., ‖v‖H ≤ C‖v‖V for all v ∈ V, for some

C > 0, and V is dense in H.

With evolution triples we describe the fact that two spaces V and H appear in evolution

equations.

Lemma 1.5.2 ([78, Proposition 23.23]) Let V ⊆ H ⊂ V∗ be an evolution triple, and

1 < p <∞, p−1 + q−1 = 1, 0 < T <∞. Then the following hold:

1. For X = Lp(0, T ; V) and X∗ = Lq(0, T ; V∗)

W 1
p (0, T ; V,H) := {u ∈ X : u′ ∈ X

∗}

forms a real Banach space with the norm

‖u‖W 1
p

= ‖u‖Lp(0,T ;V) + ‖u′‖Lq(0,T ;V∗).

2. The embedding W 1
p (0, T ; V,H) ⊆ C([0, T ],H) is continuous.

3. The set of all polynomials w : [0, T ] → V, that is w(t) =
∑

i ait
i with ai ∈ V for

all i, is dense in the space W 1
p (0, T ; V,H), Lp(0, T ; V) and Lp(0, T ; H).
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Let Th be a triangulation (with tetrahedral or hexahedral elements) of the domain Ω ⊂
R3. We assume that Th is quasi-uniform with mesh size h > 0 and shape-regular, i.e.,

there exists a positive constant c1 such that

hT

ρT

≤ c1 ∀T ∈ Th

where hT is the diameter of an element T ∈ Th and

ρT := max {r : Sr ⊆ T, Sr := {x : ‖x− x0‖ < r,x0 ∈ T}} .

This mesh induces a quasi-uniform mesh Kh := {T ∩ Γ : T ∈ Th} of triangles or quadri-

laterals on the boundary; we denote by hF the maximal diameter of a face F ∈ Kh.

We define by Nh(D),Eh(D),Fh(D) the sets of vertices, edges and faces in D ⊆ Ω.

If D = Ω, for the sake of brevity we will write Nh, Eh, Fh and denote by Nint
h , Eint

h ,

Fint
h and NΓ

h, EΓ
h, FΓ

h the sets of vertices, edges and faces located in the interior of Ω and

on the boundary Γ, respectively.

In the following for an integer k ≥ 0, Pk(T) denotes the linear space of polynomials of

degree less or equal to k on T.

2.1 Nédélec basis functions for the H(curl,Ω)−FE space

We consider finite elements which will be used to discretize the electric field in Maxwell’s

equations. While the elements of lower order were discovered by other authors (e.g.

Whitney [77] ), the general case is studied initially in Nédélec [63]. For that reason these

elements are commonly known as Nédélec elements. The lowest order Nédélec elements

are termed edge elements because the degrees of freedom are associated with edges of

the mesh (see Figures 2.1 and 2.2). The constraint for the H(curl,Ω)-conformity is that

the tangential component on adjacent elements has to be continuous (see [63, Lemma

6])

Following [63, Definition 6] and [59], we consider initially the definition of the Nédélec fi-

nite elements.
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2 Interpolation

2.1.1 Definition on the reference tetrahedron

The element of Nédélec is defined as follows:

(a) The reference tetrahedral is

T̂ := {x ∈ R
3 : x1, x2, x3 ≥ 0, x1 + x2 + x3 ≤ 1}

with edges ej , j = 1, · · · , 6.

(1, 0, 0)

(0, 0, 1)

(0, 1, 0)

E1

E2

E3

E4

E5

E6

Figure 2.1: Numbering of the edges and a graphical representation of ΣbT

(in red) for the edge element lowest-order on the tetrahedron T̂.

(b) The local space is defined by

NDk(T) := (Pk−1(T))3 +
{
p ∈ (Pk(T))3 : p(x) · x = 0, ∀x ∈ T

}
.

From this, we obtain for the lowest order case k = 1 the representation

ND1(T) :=
{
x 7→ α + β × x : α, β ∈ R

3
}
⊂ (P1(T))3.

(c) The degrees of freedom ΣbT
on NDk(T̂) are given as follows:

i. For each edge E ∈ Eh(T̂) with unit tangent t and p ∈ Pk−1(E)

u 7→
∫

E

u · t p ds,

ii. For each face F ∈ Fh(T̂) with normal n and p ∈ (Pk−2(F ))2

u 7→
∫

F

u× n · p dσ,
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2.1 Nédélec basis functions for the H(curl,Ω)−FE space

iii. For the volume T̂ and for all q ∈ (Pk−3(T̂))3

u 7→
∫

bT

u · q dx.

From this there are k degrees of freedom associated to an edge E, k(k−1) degrees of

freedom associated to a face F and
k(k − 1)(k − 2)

2
degrees of freedom associated

to the interior. Hence the total number of degrees of freedom is

|ΣbT
| = 6k + 4k(k − 1) +

k(k − 1)(k − 2)

2
=
k(k + 2)(k + 3)

2

which is equivalent to dimNDk(T̂).

Lemma 2.1.1 ([63, Theorem 1],[59, Theorem 5.37]) aa

A finite element defined by (a) - (c) is H(curl,Ω) unisolvent and conforming.

2.1.2 Definition on the reference cube

The element of Nédélec is defined as follows:

(a) The reference cube T̂ = [−1, 1]3 with edges ej, j = 1, · · · , 12.

E4

E2

E3

E1

E7 E8

E5 E6

E12E11

E10E9

Figure 2.2: Numbering of the edges and a graphical representation of ΣbT
(in

red) for the edge element lowest-order on the reference cube T̂.

(b) The local space is defined by

NDk(T̂) := Qk−1,k,k(T̂)×Qk,k−1,k(T̂)× Qk,k,k−1(T̂).

where Ql,m,n(T̂) denotes the space of polynomials in three variables (x, y, z) with

maximum degrees l in x, m in y and n in z.
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(c) The degrees of freedom ΣbT
on NDk(T̂) are given as follows:

i. For each edge E ∈ Eh(T̂) with unit tangent t and p ∈ Pk−1(E)

u 7→
∫

E

u · t p ds,

ii. For each face F ∈ Fh(T̂) with normal n and p = (p1, p2) ∈ Qk−2,k−1×Qk−1,k−2

u 7→
∫

F

u× n · p dσ,

iii. For the volume T̂ and for all q ∈ Qk−1,k−2,k−2 ×Qk−2,k−1,k−2 × Qk−2,k−2,k−1

u 7→
∫

bT

u · q dx.

Hence, we get k degrees of freedom associated to an edge E, 2k(k − 1) degrees of

freedom associated to a face F and 3k(k−1)2 degrees of freedom associated to the

interior, i.e., the total number of degrees is

12k + 12k(k − 1) + 3k(k − 1)2 = 3k(k + 1)2

which is also the dimension of the space NDk(T̂).

Lemma 2.1.2 ([63, Theorem 5], [59, Theorem 6.5]) aa

A finite element defined by the cube T̂, the space NDk(T̂) and the set ΣbT
is unisolvent

and conforming in H(curl,Ω).

A consequence of the Lemmata 2.1.1 and 2.1.2 is that the space

NDk(Th) := {u ∈ H(curl,Ω) : u|T ∈ NDk(T̂), for all T ∈ Th} (2.1)

determines the global finite element space on a mesh Th.

For the sake of brevity we consider for the description of the calculation of the basis

functions only the reference cube.

We use the degrees of freedom defined previously to calculate the basis functions. Hence

mj(u) :=





∫
E
u · t p ds, for all p ∈ Pk−1(E)

∫
F
u× n · p dσ, for all p = (p1, p2) ∈ Qk−2,k−1 × Qk−1,k−2∫

bT
u · p dx, for all p ∈ Qk−1,k−2,k−2 ×Qk−2,k−1,k−2 × Qk−2,k−2,k−1

18



2.1 Nédélec basis functions for the H(curl,Ω)−FE space

for j = 1, . . . , 3k(k + 1)2.

In general, we require that the basis functions bi ofNDk(T̂) have to satisfy the conditions

mj(bi) = δij, mj ∈ ΣbT
, i, j = 1, . . . , 3k(k + 1)2.

This leads to a linear system depending on the choice of test and trial functions. One

possibility is to use monomials as basis for NDk(T̂). For computations they are ordered

by

ψi(x, y, z) :=





xryszt e1, r ≤ k − 1, s ≤ k, t ≤ k if i= 1, . . . , k(k + 1)2

xryszt e2, r ≤ k, s ≤ k − 1, t ≤ k if i= k(k + 1)2 + 1, . . . , 2k(k+1)2

xryszt e3, r ≤ k, s ≤ k, t ≤ k − 1 if i= 2k(k + 1)2+1, . . . , 3k(k+1)2

.

Here, e1, e2, e3 denote the unit Cartesian vectors. Then, there holds

NDk(T̂) = span{ψi, i = 1, . . . , 3k(k + 1)2},

hence the basis functions bi have a representation

bi =

3k(k+1)2∑

l=1

ailψl

with the coefficients ail as the solution of the linear system

mj(bi) =

3k(k+1)2∑

l=1

ailmj(ψl) = δij , i, j = 1, . . . , 3k(k + 1)2.

In order to calculate the moments mj one could use monomials as test functions. It is

also possible to use different polynomial basis functions of the polynomial spaces.

For the lowest order k = 1 we get the following basis functions associated to the edges

of the reference element, see Figure 2.2.

b(E1) =
1

8
(1− y)(1− z)e1, b(E2) =

1

8
(1 + y)(1− z)e1,

b(E3) =
1

8
(1− y)(1 + z)e1, b(E4) =

1

8
(1 + y)(1 + z)e1,

b(E5) =
1

8
(1− x)(1− z)e2, b(E6) =

1

8
(1 + x)(1− z)e2,

b(E7) =
1

8
(1− x)(1 + z)e2, b(E8) =

1

8
(1 + x)(1 + z)e2,

b(E9) =
1

8
(1− x)(1− y)e3, b(E10) =

1

8
(1 + x)(1− y)e3,

b(E11) =
1

8
(1− x)(1 + y)e3, b(E12) =

1

8
(1 + x)(1 + y)e3.
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Analogously we get for k = 1 on the reference tetrahedral the following basis functions,

see Figure 2.1,

b(E1) = (1− y − z)e1 + xe2 + xe3, b(E4) = ze1 − xe3,

b(E2) = ye1 + (1− x− z)e2 + ye3, b(E5) = ze2 − ye3,

b(E3) = ze1 + ze2 + (1− x− y)e3, b(E6) = ye1 − xe2.

We remark that the edge functions are constant on the edge which they are associated

to.

2.1.3 Affine transformations for Nédélec functions

An important point in the theory of FE and BE are appropiate mappings from the

reference element to an arbitrary local element. In our case this map should ensure that

the transformed function has a well-defined curl.

Suppose that T̂ is the reference tetrahedron or the reference hexahedron defined in

sections 2.1.1 - 2.1.2, and that T denotes the image of the reference element T̂ under the

affine transformation

MT : T̂→ T

x̂ 7→ BT x̂+ d =: x,
(2.2)

where BT ∈ L(T̂,R3) and d ∈ R3. Suppose û ∈ H(curl , T̂) and u ∈ H(curl ,T), we

transform û to u via the transformation (2.2) so that

u ◦MT = (BT

T
)−1û. (2.3)

A consequence of this formula is that the curl of u and the curl of û are related by

∇× u =
1

det(BT)
BT ∇̂ × û

where ∇̂× · denotes the curl with respect to the coordinate system for T̂ (see Monk [59,

Corollary 3.58]).

If {b̂j , j = 1, . . . , nk} is a basis of NDk(T̂), then applying the affine transformation MT

we obtain a local basis on T given by

bj(x) = (BT

T
)−1 b̂j(x̂), j = 1, . . . , nk. (2.4)

Moreover, the local finite element space NDk(T) is invariant under this transformation

(see [63, Proposition 2], [59, Lemma 5.32]). Thus, we can define the global finite element

space NDk(Th), if we connect those local basis functions that belong to an edge or a

face to a global basis function.
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2.1 Nédélec basis functions for the H(curl,Ω)−FE space

2.1.4 An interpolation operator defined by Σ
T̂

on NDk(T̂)

Considering the degrees of freedom associated to the edges, faces and the volume,

mE , mF , mT, respectively, we can define for any u ∈ (C∞(T))3 a unique interpolate

ΠTu ∈ NDk(T) such that

mE
j1

(u− ΠTu) = mF
j2

(u− ΠTu) = mT

j3
(u− ΠTu) = 0,

with ji = {1, · · · , Ji}, i = 1, 2, 3 and J1 + J2 + J3 = |ΣbT
|. Here J1, J2 and J3 denote the

number of all degree of freedom associated to the edges, faces and volume, respectively.

Using this we can define a global interpolant Πh
ku ∈ NDk(Th) element by element by

Πh
ku|T := ΠTu, for all T ∈ Th. (2.5)

Remark 2.1.1 The interpolants ΠT are not well-defined for all functions u ∈ H(curl,Ω).

In fact, Amrouche et al. [2, Lemma 4.7] prove that the interpolants are well-defined

for u ∈ Lp(T), curlu ∈ Lp(T) and u × n ∈ (Lp(∂T))2 for some p > 2. Moreover

Monk [59, Lemma 5.38] shows that it is valid also if u ∈ H1/2+δ(T), δ > 0 such that

curlu ∈ Lp(T), p > 2.

For the interpolant one can prove the following error estimate .

Lemma 2.1.3 ([59, Theorems 5.41 and 6.6 ] ) Let Th be a regular mesh on Ω. For

u ∈ Hs(curl,Ω), 1/2 + δ ≤ s ≤ k, δ > 0, there exists C > 0, dependent only on s, k,

and the shape regularity of Th

‖u− Πh
ku‖H(curl,Ω) ≤ Chs‖u‖Hs(curl,Ω).

Lemma 2.1.4 (Ciarlet & Zou [18], Hiptmair [36], Monk [58], Nédélec[65]) aa

Let Th be a regular mesh on Ω. For s ∈ ]1
2
, 1[∪N, k ∈ N0, the interpolation operator Πh

k

satisfies

(a)

‖u− Πh
ku‖L2(Ω) ≤ Chmin{s,k+1}‖u‖Hs(curl ,Ω),

(b)

‖ curl
(
u− Πh

ku
)
‖L2(Ω) ≤ Chmin{s,k+1}‖ curlu‖Hs(Ω)

where C > 0 depends only on the shape regularity of the mesh Th.

21



2 Interpolation

2.2 Raviart-Thomas basis functions on the space H(div,Ω)

In this section we analyze the space H(div,Ω). Nédélec [63] extends to three dimensions

the divergence conforming elements of Raviart-Thomas. The lowest order H(div,Ω)-

elements are associated with faces in the mesh and due to that these elements are known

also as face elements. The constraint for H(div,Ω)-conformity is that the normal

component, i.e., u · n is continuous between adjacent elements, cf. Nédélec[63].

2.2.1 Divergence conforming elements

Definition on the reference tetrahedron

The element is defined as follows

(a) The reference tetrahedron is

T̂ := {x ∈ R
3 : x1, x2, x3 ≥ 0, x1 + x2 + x3 ≤ 1}

with edges ej , j = 1, . . . , 6.

(1, 0, 0)

(0, 0, 1)

(0, 1, 0)

Figure 2.3: Reference tetrahedron T̂ and graphical representation of ΣbT

(in red) for the face element lowest-order on T̂.

(b) The local space is defined by

RT k(T̂) := (Pk−1(T̂))3 ⊕ x P
0
k−1(T̂)

where P0
k(T̂) denotes the space of all homogeneous polynomials of degree k on T̂.

This space has dimension 1
2
k(k+1)(k+3) [63, Lemma 5]. We obtain for the lowest

order case k = 1:

RT 1(T̂) :=
{
x 7→ α+ βx : α ∈ K

3, β ∈ K
}

where K can be R or C.
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2.2 Raviart-Thomas basis functions on the space H(div,Ω)

(c) The degrees of freedom ΣbT
on RT k(T̂) are given as follows:

i. For each face F ∈ Fh(T̂) with normal n̂ and for all p̂ ∈ Pk−1(F )

û 7→
∫

F

û · n̂ p̂ dσ.

ii. For the volume T̂ and for all q̂ ∈ (Pk−2(T))3

û 7→
∫

bT

û · q̂ dx.

Remark 2.2.1 The moments presented above are not well-defined for all functions

û ∈ H(div,Ω), these moments are well defined for û ∈ Lp(T̂), p > 2 and ∇̂ · û ∈
L2(T̂) ([8], cf. [59, Lemma 5.15]).

Analogously the Raviart-Thomas space on the reference cube T̂ := [−1, 1]3 is given by

RT k(T̂) := Qk,k−1,k−1 × Qk−1,k,k−1 × Qk−1,k−1,k.

The dimension of this space is 3k2(k + 1) and the degrees of freedom are defined by

i. For each face F ∈ Fh(T̂) with normal n̂ and for all p̂ ∈ Qk−1,k−1(T̂)

û 7→
∫

F

û · n̂ p̂ dσ.

ii. For the volume T̂ and for all q̂ ∈ Qk−2,k−1,k−1 ×Qk−1,k−2,k−1 ×Qk−1,k−1,k−2

û 7→
∫

bT

û · q̂ dx.

Let T ∈ Th be an element with diameter h and T̂ the reference element. The affine

transformation between these elements is given in (2.2). For functions q̂ : T̂ → R3 and

q : T→ R3 the H(div)-conforming Piola transformation is then given by, see e.g. [63],

q ◦MT =
1

det BT

BT q̂ (2.6)

As in the case of the Nédélec space the local basis function on T are given by

bj(x) =
1

det BT

BT b̂j(x̂), j = 1, . . . , nk.

Now, finite elements defined as above are unisolvent on a reference tetrahedron or he-

xahedron T̂ ([59, Lemma 5.21, Theorema 6.2]). This implies that there is a well-defined
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2 Interpolation

interpolation operator ΠRT on T̂, such that if u satisfies Remark 2.2.1 then there is a

unique finite element function ΠRT u ∈ RT k such that

mF
j1

(u− ΠRT u) = mT

j2
(u− ΠRT u) = 0,

where ji = {1, · · · , Ji}, i = 1, 2 and J1 + J2 = |ΣbT
|.

Combining together the local basis belonging to a common face we obtain global basis

functions. Therefore we can define the space RT k(Th) which is invariant under the

transformation (2.2) if we transform the basis functions by (2.6). As for the H(curl,Ω)-

conforming space we can define the global interpolation operator Π
RT k
h , c.f. (2.5). There

holds the following approximation result, see e.g. Hiptmair [33].

Theorem 2.2.1 ([59, Theorems 5.25 and 6.3 ]) aa

Let Th be a regular mesh on Ω, 0 < δ < 1
2
. For u ∈ Hs(Ω), 1/2 + δ ≤ s ≤ k, there is a

constant C independent of h and u such that

‖u− Π
RT k
h u‖L2(Ω) ≤ Chs‖u‖Hs(Ω).

2.2.2 Raviart-Thomas basis functions for the approximation in

H
−1/2
‖ (divΓ,Γ)

In this section we consider the approximation in H
−1/2
‖ (divΓ,Γ). Lemma 1.2.3 shows

that γ×
D

: H(curl,Ω) → H
−1/2
‖ (divΓ,Γ) can be extended to a linear, continuous and

surjective mapping, i.e., there holds

γ×
D

(H(curl,Ω)) = H
−1/2
‖ (divΓ,Γ).

Moreover, from Section 2.1 we known that the space H(curl,Ω) can be discretized

using the Nédélec space NDk(Th), hence a key to discretize H
−1/2
‖ (divΓ,Γ) should be

the twisted tangential trace of the space NDk(Th). Hiptmair [35, Lemma 2.4] shows that

the twisted tangential trace of the space NDk(Th) is exactly the finite element space

of Raviart-Thomas functions of order k in two dimensions denoted by RT k(Kh). This

space was first considered by Raviart & Thomas [69], see also Brezzi & Fortin [8] and

Nédélec [63].

As in the three-dimensional case the constraint for H(div,Γ)-conformity is that the

normal component u · n is continuous between adjacent elements.

The definition of the basis functions is again done locally and we use the transformation

between different elements to construct the global space in the same way as for the

Nédélec functions.
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2.2 Raviart-Thomas basis functions on the space H(div,Ω)

Definition on squares

We first consider the reference square K̂ = [−1, 1]2. Furthermore, Ql,m denotes all poly-

nomials with maximum degrees l in x- and m in y-direction. The local Raviart-Thomas

space of order k is then defined by

RT k(K̂) := Qk,k−1 × Qk−1,k.

The dimension is then 2k(k+1). Moreover the divergence free RT k elements are defined

by

RT 0
k := {q | q ∈ RT k, div q = 0} .

In literature (e.g. Brezzi & Fortin [8, Section III.3.2]) this space is sometimes denoted

by RT k−1(K̂), but we use the same counting scheme as in Nédélec[63].

In order to ensure continuity of the normal component we can construct basis functions

ϕi using the following moments.

i. For each edge E ∈ Eh(K̂) with unit normal n and for all p ∈ Pk−1(E)

u 7→
∫

E

u · n p ds.

ii. On K̂ for all p = (p1, p2) ∈ Qk−2,k−1 × Qk−1,k−2

u 7→
∫

bK

u · p dσ.

The basis functions are calculated in the same way as the Nédélec basis functions (cf.

Section 2.1.2), i.e., for the construction of a basis of RT k(K̂) we first use monomials

and we consider

ψi(x, y) :=

{
xryse1, r ≤ k, s ≤ k − 1, if i = 1, . . . , k(k + 1)

xryse2, r ≤ k − 1, s ≤ k, if i = k(k + 1) + 1, . . . , 2k(k + 1)

with the unit Cartesian vectors e1 and e2 and we get the local space by RT k(K̂) =

span {ψi, i = 1, . . . , 2k(k + 1)}. We get the following basis functions on K̂ for the poly-

nomial degrees k = 1. ( For the numbering of the edges, see Figure 2.4.)

λ(E1) :=
1

4
(y − 1)e2, λ(E2) :=

1

4
(x+ 1)e1,

λ(E3) :=
1

4
(y + 1)e2, λ(E4) :=

1

4
(x− 1)e1.

These basis functions are constant on the edge which they are associated to. On the

other edges their normal components vanish.
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E4 E2

E3

E1

(1, 1)(−1, 1)

(1,−1)(−1,−1)

K̂

Figure 2.4: Numbering of the edges on the unit square K̂.

Let u ∈ H(div, K̂). Indeed the degrees of freedom previously described always imply the

moments of u on the faces (or sides) of an elements. But the functions q ∈ RT k−1(∂K̂)

do not belong to H1/2(∂K̂), and it is not possible in general to compute expressions like∫
∂ bK
u · n p ds as u · n is only defined in H−1/2(∂K̂). Such a construction is possible in

the following set:

W (K̂) := {u ∈ (Lp(K̂))2 | divu ∈ L2(K̂)}, p > 2,

and an interpolation operator π bK : W (K̂)→RT k(K̂) can be defined by,

∫

∂ bK

(u− π bKu) · n q ds = 0 for all q ∈ RT k−1(∂K̂),
∫

bK

(u− π bKu) · q dσ = 0 for all q ∈ Qk−2,k−1 × Qk−1,k−2.

Let K̂ be associated to the face F0 (z = −1) of the reference cube T̂. Comparing the

degrees of freedom with the ones of NDk(T̂) one finds out that there holds

γ×D
(
NDk(T̂)

)
= RT k(T̂).

In general, we can define a global interpolation operator πRT k which is related to the

global interpolation operator ΠNDk by the trace γ×
D

. This results is presented in the

following lemma.

Lemma 2.2.1 (Hiptmair [35, Lemma 2.4]) The mapping

γ×
D

: NDk(Th)→ RT k(Kh), u 7→ u× n

is continuous and surjective. Furthermore, the degrees of freedom are transformed, i.e.,

γ×
D

ΠNDku = πRT kγ×
D
u for all u ∈ H(curl,Ω).
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2.3 The de Rham diagram

2.2.3 Discretization of H
−1/2
⊥ (curlΓ,Γ)

Finally, we analyze the approximation in the space H
−1/2
⊥ (curlΓ,Γ). This is the tangential

trace space of H(curl,Ω) and also the image of H
−1/2
‖ (divΓ,Γ) under the map Ru :=

n × u. We define the space T NDk(Kh) as the tangential trace space of NDk(Th), see

also Teltscher [73],

T NDk(Kh) := γD(NDk(Th|Γ)).

Hence, we see that for the reference square K̂ = [−1, 1]2 there holds

T NDk(K̂) := Qk−1,k ×Qk,k−1

and that dim T NDk(K̂) = 2k(k + 1). The basis functions can easily be calculated from

the NDk-basis functions. For the lowest polynomial degree there holds

ϕ0 :=
1

4
(1− y)e1, ϕ1 :=

1

4
(1 + x)e2,

ϕ2 :=
1

4
(1 + y)e1, ϕ3 :=

1

4
(1− x)e2.

2.3 The de Rham diagram

In this subsection we consider the so-called de Rham diagram. It describes the mapping

behavior of the differential operators grad, curl and div in the corresponding Sobo-

lev spaces. Furthermore, we consider further properties of the canonical interpolation

operators. Most of the results can be found in the articles of Hiptmair [35, 34, 37, 36].

For Ω ⊂ R3 we consider the following de Rham diagram, see e.g. Monk [59]

H1(Ω)
grad−→ H(curl,Ω)

curl−→ H(div,Ω)
div−→ L2(Ω).

A similar result holds for homogeneous boundary conditions

H1
0 (Ω)

grad−→ H0(curl,Ω)
curl−→ H0(div,Ω)

div−→ L2(Ω)/R.

In these diagrams, the range of one operator is contained in the kernel of the following

one. The range space of each operator is a closed subspace of the related operator with

finite codimension, see Monk [59, Theorem 3.40].

The discrete de Rham diagram takes the following form

Sk(Th)
grad−→ NDk(Th)

curl−→ RT k(Th)
div−→ Sk−1(Th).

There also holds the following commuting diagram property, see e.g. Hiptmair [35, 34],

where Ih
k denotes the canonical interpolation operator for Sk(Th) and D(·) denotes the

domain of the interpolation operators.
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Theorem 2.3.1 For all k ≥ 1 the following diagram commutes

D(Ih
k ) ⊂ H1(Ω)

grad−−−→ D(Πh
k) ⊂ H(curl,Ω)

curl−−−→ D(πh
k) ⊂ H(div,Ω)yIh

k

yΠ
h
k

yπh
k

Sk(Th)
grad−−−→ NDk(Th)

curl−−−→ RT k(Th)

.

This also holds true if we impose homogeneous boundary conditions.

Thus we have

curlΠh
ku = πh

k curlu ∀u ∈ H(curl,Ω).

Furthermore, the kernels of the differential operators are preserved:

u ∈ D(Πh
k), curlu = 0 =⇒ curlΠh

ku = 0,

u ∈ D(πh
k), divu = 0 =⇒ div πh

ku = 0.

2.4 Discrete, time dependent spaces

It is the aim of this section to present suitable spaces and operators needed to obtain

the convergence analysis in Theorem 3.3.1.

Initially, we consider a partition 0 = t0 < t1 < t2 < . . . < tN = T of the time interval

[0, T ] into subintervals In := (tn−1, tn] of length kn := tn− tn−1, and associate with each

time interval a triangulation T n
h := Thn (with tetrahedral or hexahedral elements) of Ω

and an induced mesh Khn of triangles or quadrilaterals on the boundary Γ. We assume

that T n
h is quasi-uniform with mesh size h > 0 and shape-regular (see Ciarlet [19]). In

the following we set X := H(curl ,Ω), Y := H
− 1

2

‖ (divΓ0,Γ).

The spaces L2 (In; X) and L2
(
In; Y

)
are defined in the sense of the Definition 1.5.1, i.e.,

L2 (In; X) :=

{
u : In 7→ X;

(∫

In

‖u‖2Xdt
)1/2

<∞
}

and

L2 (In; Y) :=

{
λ : In 7→ Y;

(∫

In

‖λ‖2Ydt
)1/2

<∞
}
.

As the Nédélec functions of first order, ND1(Th), are used to discretize functions

u(., t) ∈ X (see Section 2.1) and the space of divergence free Raviart-Thomas functions,

RT 0
1(Kh) := {λh ∈ RT 1(Kh), divΓλh = 0} ,
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are used to discretize functions λ(., t) ∈ Y (see Section 2.2.2), the spaces

L2 (In;ND1(Thn)) :=
{
v ∈ L2 (In; X) ; v (·, t) ∈ ND1(Thn) a.e. t ∈ In

}
(2.7)

L2
(
In;RT 0

1(Khn)
)

:=
{
ψ ∈ L2

(
In; Y

)
; ψ (·, t) ∈ RT 0

1(Khn) a.e. t ∈ In
}

(2.8)

define the global finite element space on Thn and boundary element space on Khn to

discretize the spaces L2 (In; X) and L2 (In; Y), respectively.

Now, in order to achieve a fully discrete scheme applying the discontinuos time stepping

method in Section 3.2.1, we consider the set of polynomial functions of degree l in t with

coefficients in the discrete spaces ND1(Thn) and RT 0
1(Khn) defined in In as

Vn,l
h :=

{
v ∈ L2 (In;ND1(Thn)) ; v(t) =

l∑

i=0

tiΦi , Φi ∈ ND1(Thn), t ∈ In
}

and

Ṽn,l
h :=

{
ϕ ∈ L2

(
In;RT 0

1(Khn)
)

; ϕ(t) =
l∑

i=0

tiψi , ψi ∈ RT 0
1(Khn), t ∈ In

}
.

Moreover, the sets

W l
hn :=

{
v ∈ L2 ([0, T ];ND1(Th)) ; v|In ∈ Vn,l

h , n = 1, . . . , N
}

and

W̃ l
hn :=

{
ψ ∈ L2

(
[0, T ];RT 0

1(Kh)
)

; ψ|In ∈ Ṽn,l
h , n = 1, . . . , N

}

extend the definition to the whole interval (0, T ]. Note that a function v ∈ W l
hn (resp.

ψ ∈ W̃ l
hn) can be discontinuous at the nodal points, but has to be continuous in the

time interval (tn−1, tn). Besides the initial value v(0) (resp. ψ(0)) has to be specified

separately since 0 /∈ I1. In the following we consider only the cases l = 0, 1.

Following Eriksson et al. [27], we define the L2-projection in time onto the space Vn,l

πl : L2 (In;ND1(Thn)) → Vn,l
h , l = 0, 1,

of a function v as

π0v :=
1

kn

∫

In

v dt, (2.9)

π1v := π0v +
12

k3
n

(
t− tn−1 −

kn

2

) ∫

In

(
s− tn−1 −

kn

2

)
v ds

= v1 +
t− tn−1

kn
v2 (2.10)

where

v1(x) :=
1

kn

∫

In

(
4− 6

s− tn−1

kn

)
v(x, s) ds
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v2(x) :=
1

kn

∫

In

(
12
s− tn−1

kn
− 6

)
v(x, s) ds.

π0 and π1 are well-defined, since v ∈ L2 (In;ND1(Thn)) has the form

v(x, t) =
M∑

i=1

ci (t)Φi(x).

Thus there holds, e.g.

π0v(x) =

M∑

i=1

(
1

kn

∫

In

ci (t) dt

)
Φi(x) ∈ Vn,0

h

where {Φi}i=1,...,M is a basis of ND1(Thn). In analogous form we define for l = 0, 1

π̃l : L2
(
In;RT 0

1(Kh)
)
→ Ṽn,l

h .

The L2-orthogonal projection in time is proved in the following lemma.

Lemma 2.4.1 Let be v ∈ L2(In;ND1(Th)) and ζ ∈ L2(In;RT 0
1(Kh)). Then for all

w ∈ L2(In;L2(Ω)), w polynomial of degree l in t, and for all ψ ∈ L2(In;L2(Γ)), ψ

polynomial of degree l in t:

∫

In

(πl v(t),w(t)) dt =

∫

In

(v(t),w(t)) dt , (2.11)

∫

In

〈π̃l ζ(t),ψ(t)〉 dt =

∫

In

〈ζ(t),ψ(t)〉 dt and (2.12)

∫

In

A(πl v(t), π̃l ζ(t) ; w(t),ψ(t)) dt =

∫

In

A(v(t), ζ(t) ; w(t),ψ(t)) dt , (2.13)

where A is an arbitrary bilinear form.

Proof. In the following we prove only (2.11). For this we consider the cases l = 0, 1

separately. The proof of (2.12) and (2.13) is derived using the same arguments.

case l = 0. Using (2.9) there holds

∫

In

(π0 v(t),w(t)) dt = kn (π0 v(t),w) = kn

(
1

kn

∫

In

v(t) dt,w

)
=

∫

In

(v(t),w) dt
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case l = 1. Using (2.10) there holds for all w ∈ L2(Ω):

∫

In

(π1 v(t),w) dt =

∫

In

(
v1 +

t− tn−1

kn
v2,w

)
dt =

(
knv1 +

kn

2
v2,w

)

=

(∫

In

v(t) dt,w

)
=

∫

In

(v(t),w) dt,

and
∫

In

(
π1 v(t),

t− tn−1

kn
w

)
dt =

∫

In

(
v1 +

t− tn−1

kn
v2,

t− tn−1

kn
w

)
dt =

(
kn

2
v1 +

kn

3
v2,w

)

=

(∫

In

t− tn−1

kn

v(t) dt,w

)
=

∫

In

(
v(t),

t− tn−1

kn

w

)
dt.

Finally, we prove a theorem which is essential in the proof of Theorem 3.3.1. For the

proof we need a duality argument.

2.4.1 A duality argument

In our FE analysis, Ω is assumed to be a simply connected polyhedral domain, not

necessarily convex. Note that even for non-convex domains there holds the Helmholtz

decompositions (see [36, Lemma 2.4]). In the following, we consider the Helmholtz de-

composition (see [24])

H0(curl,Ω) = M 0(Ω)⊕M⊥
0 (Ω) (2.14)

where

M 0(Ω) :=
{
u ∈ L2(Ω), curlu = 0,u|Γ × n = 0

}
=: H0(curl 0,Ω)

and

M⊥
0 (Ω) := {u ∈ H0(curl,Ω), (u,v)L2(Ω) = 0 ∀v ∈M 0(Ω)} .

Now, with the aim to obtain an estimate for ‖u−Uh‖L2(Ω) by using ‖u−Uh‖H(curl ,Ω)

we apply the Aubin-Nitsche trick to an auxiliary problem where u ∈ H0(curl,Ω), Uh ∈
ND1(Th) satisfies the equations

(u,v)Ω + (curlu, curlv)Ω =
(
f̃ ,v

)
Ω

∀v ∈ H0(curl,Ω),
(
Uh,vh

)
Ω

+
(
curlUh, curlvh

)
Ω

=
(
f̃ ,vh

)
Ω

∀vh ∈ ND1(Th).

For this we consider the following lemma, which remains the idea of Hiptmair [36,

Theorem 5.8] and allows us to obtain necessary conditions for the proof of the a priori

estimates.
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Theorem 2.4.1 For given f̃ ∈ H(div,Ω) let u ∈ H0(curl,Ω) be the solution of the

problem

B(u,v) := (u,v)Ω + (curlu, curlv)Ω =
(
f̃ ,v

)
Ω

∀v ∈ H0(curl,Ω) (2.15)

and Uh ∈ ND1(Th) be the solution of the discrete problem

(
U h,vh

)
Ω

+
(
curlUh, curlvh

)
Ω

=
(
f̃ ,vh

)
Ω

∀vh ∈ ND1(Th). (2.16)

If u−Uh ∈M⊥
0 (Ω) then there exists 1

2
< s ≤ 1 such that

‖u−Uh‖L2(Ω) ≤ C hs ‖u−U h‖H(curl ,Ω) (2.17)

with C > 0 independent of h.

Proof.

We consider the error e := u−Uh and split e ∈ H0(curl,Ω) into

e = e⊥ + e0 (2.18)

where e⊥ ∈ M⊥
0 (Ω) and e0 ∈ M 0(Ω). As the error is assumed in M⊥

0 (Ω) we analyze

the first component of the error.

Estimate for e⊥: Define g ∈M⊥
0 (Ω) as the solution of

B (g,v) =
(
e⊥,v

)
Ω

∀v ∈M⊥
0 (Ω) . (2.19)

As div g = 0, from Amrouche et al. [2, Proposition 3.7] we get that for some s̃ > 1
2

that

g ∈ Hs̃(Ω), and that

‖g‖Hs̃(Ω) ≤ ‖g‖H(curl ,Ω). (2.20)

Furthermore, the equation (2.19) means that g satisfies, in the sense of distributions,

curl curlg + g = e⊥ in Ω.

Thus, w = curl g fulfils curlw = e⊥ − g ∈ L2(Ω), div w = 0 and γnw = 0. From

Hiptmair [36, Lemma 4.2], we obtain that w ∈ Hs′(Ω) for some 1
2
< s′ ≤ 1 and

‖w‖Hs′ (Ω) ≤ C
(
‖w‖L2(Ω) + ‖ curlw‖L2(Ω) + ‖ div w‖L2(Ω)

)

≤ C
(
‖g‖H(curl ,Ω) + ‖e⊥‖L2(Ω)

)
.

(2.21)

In the following we take s := min{s̃, s′}.

The coercitivity and continuity of B guarantees the existence and uniqueness of the

solution of (2.19). Then the following inf-sup condition is valid

sup
v ∈H0(curl,Ω)

|B(u,v)|
‖v‖H(curl ,Ω)

≥ C ′‖u‖H(curl ,Ω) ∀u ∈ H0(curl,Ω)
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with C ′ > 0. From this and (2.19) it follows that

‖g‖H(curl ,Ω) ≤ C ′−1‖e⊥‖L2(Ω).

Combined with (2.20) and (2.21), this yields

‖g‖Hs(Ω) + ‖ curlg‖Hs(Ω) ≤ C ‖e⊥‖L2(Ω) (2.22)

where C = C(Ω) > 0.

Due to the Galerkin orthogonality B(u − Uh,vh) = 0, for all vh ∈ ND1(Th) it follows

that

‖e⊥‖2L2(Ω) = B(g, e⊥) = B(g, e⊥ + e0)

= B(g,u−Uh)

= B(g − Πhg ,u−Uh)

. ‖g − Πhg‖H(curl ,Ω)‖u−Uh‖H(curl ,Ω).

(2.23)

Due to s > 1
2
, the operator Πh is well defined (c.f. Remark 2.1.1), moreover it is valid

from Lemma 2.1.4 that

‖g − Πhg‖L2(Ω) . hs
(
‖g‖Hs(Ω) + ‖ curlg‖Hs(Ω)

)
,

‖ curl
(
g − Πhg

)
‖L2(Ω) . hs‖ curlg‖Hs(Ω).

Combining this with (2.22) we obtain

‖g − Πhg‖H(curl ,Ω) ≤ Chs ‖e⊥‖L2(Ω).

Finally, this and (2.23) give the result for e⊥, i.e.,

‖e⊥‖L2(Ω) . hs‖u−U h‖H(curl ,Ω). (2.24)

Remark 2.4.1 In particular, if u is an irrotational function and u−U h ∈M 0(Ω) we

just get

‖u−Uh‖H(curl ,Ω) ≈ ‖u−Uh‖L2(Ω).

Thus the convergence of ‖u−U h‖L2(Ω) is expected of the same order as ‖u−U h‖H(curl ,Ω).

In the other case the curl plays a strong role and we expect a better order of convergence

of ‖u−Uh‖L2(Ω) with regard to ‖u−Uh‖H(curl ,Ω).
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3 The eddy current problem

This chapter discusses a mathematical analysis for the time dependent eddy current

problem. In Section 3.1 we derive a symmetric FE/BE coupling formulation for the un-

knowns u ∈ W 1(0, T ;H(curl ,Ω)), which represents the electric field in the domain

Ω, and λ := curlu × n ∈ L2(0, T ;H
− 1

2

‖ (divΓ0,Γ)), the twisted tangential trace of

the magnetic field on the boundary. Moreover, we obtain a semi-discrete scheme using

Nédélec functions of first order to approximate the electric field u in the interior of the

domain and divergence free Raviart-Thomas functions to approximate the unknown λ.

Section 3.2 gives a full discretization of the problem using the discontinuous time step-

ping Galerkin method with piecewise linear test and trial functions in time. Finally, in

Section 3.3 we prove an a priori estimate in Theorem 3.3.1 and an a posteriori error

estimate in Theorem 3.3.2. The residual based local error indicators allow us to intro-

duce an adaptive feedback algorithm for the mesh refinement of the coupling procedure,

which is presented in Algorithm 1, Page 66.

3.1 The time dependent eddy current problem

Let Ω ⊂ R3 be a bounded, open polyhedral domain with a Lipschitz continuous boundary

Γ := ∂Ω. We assume Ω and Γ to be simply connected and denote by Ωe := R3 \ Ω the

exterior domain and by n the unit normal vector on Γ pointing into Ωe.

nJ(x, t)

Ωe := R3 \ Ω

Ω

Figure 3.1: Model configuration for eddy current problem.

We consider the eddy current problem induced by a given current density J(t,x) in a

conductor represented by the bounded domain Ω. The problem describes a submodel of
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3 The eddy current problem

Maxwell’s equations obtained by neglecting the displacement currents, where the electric

and magnetic fields E(t,x) and H(t,x) are solutions of the following problem:

µ ∂tH + curlE = 0 in (0, T )× R
3 , (3.1)

curlH = J+σE in (0, T )× R
3 , (3.2)

div εE = 0 in R
3 \ Ω , (3.3)∫

Γ

(εE)+ · n ds = 0 on Γ, (3.4)

H(0,x) = H0(x), E(0,x) = E0(x) in R
3 , (3.5)

[E × n]Γ = [H × n]Γ = 0 on Γ, (3.6)

H(t,x) = E(t,x) = O
(
|x|−1) |x| → ∞ . (3.7)

In (3.4) (εE)+ denotes the trace of εE from Ωe to Γ. Here, the permeability µ = µ(x) ∈
L∞(R3), the permittivity ε = ε(x) ∈ L∞(R3) and the conductivity σ = σ(x) ∈ L∞(R3)

are real valued, bounded functions, and

µ1 ≥ µ(x) ≥ µ0 > 0 for a.e. x ∈ Ω with µ(x) = µ0 in R
3 \ Ω

ε1 ≥ ε(x) ≥ ε0 > 0 for a.e. x ∈ Ω with ε(x) = ε0 in R
3 \ Ω

σ1 ≥ σ(x) ≥ σ0 > 0 for a.e. x ∈ Ω with σ(x) = 0 in R
3 \ Ω

where µi, σi, and εi (i = 0, 1), are positive constants.

We assume that supp(J) ⊂ Ω. Thus, there holds J = 0 in Ωe and J·n = 0 on Γ,

i.e., no current flows through Γ. In Ωe, as σ ≡ 0 equation (3.2) becomes curlH = 0.

Hence, E cannot be uniquely determined in Ωe and requires the further gauging condition

div (εE) = 0, known as Coulomb gauge condition. The transmission conditions (3.6)

result from requiring E, H ∈ L2
loc(R

3) and the radiation condition (3.7) follows from the

Silver Müller conditions (see [20, (6.19)]).

Remark 3.1.1 If Γ is connected, the condition (3.4) is changed by

∫

Γi

(εE) ·n ds. = 0 ∀Γi, i = 1, · · · , N,

where Γi, i = 1, · · · , N , are the connected components of Γ.

3.1.1 Symmetric FE/BE Coupling

In the following we obtain an E-based symmetric FE/BE coupling for the problem

(3.1) - (3.7). For this we set X := H(curl ,Ω), Y := H
− 1

2

‖ (divΓ0,Γ) and u := E ∈
W 1(0, T ;H(curl ,Ω)).
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3.1 The time dependent eddy current problem

By taking the rotational of equation (3.1) in the bounded domain Ω, we obtain

∂t

(
curlH

)
+ curl

(
µ−1 curlu

)
= 0 in (0, T )× Ω. (3.8)

Now, inserting (3.2) in (3.8) and testing with a function v ∈ H(curl ,Ω) yields

(∂tJ,v)Ω + (σ∂tu,v)Ω +
(
curl

(
µ−1 curlu

)
,v
)
Ω

= 0. (3.9)

Integration by parts of the third term on the left hand side leads to

(σ∂tu,v)Ω +
(
µ−1 curlu, curlv

)
Ω
−
〈
γ−Nu, γ

−
Dv
〉
Γ

= − (∂tJ,v)Ω , (3.10)

where γD
− and γN

− are the traces on Γ from Ω defined in (1.2) and (1.8), respectively.

In the exterior domain Ωe, we observe from (3.1), (3.2) and (3.3) that curl curlu = 0

and div u = 0 gives

∆u = grad div u− curl curlu = 0 in Ωe, for a.e. t ∈ (0, T ).

Therefore, u is given by the Stratton-Chu representation formula, see (1.29),

u(x) = curl

∫

Γ

(n× u)(y)Φ(x,y)ds(y) +

∫

Γ

(n× curlu)(y)Φ(x,y)ds(y)

− grad

∫

Γ

(n · u)(y)Φ(x,y)dS(y), x ∈ Ωe,

(3.11)

where Φ(x,y) =
1

4π
‖x− y‖−1 denotes the Laplace kernel.

Then, taking traces, we obtain for x tending to Γ the jump relations

γ+
Du = K(γ+

Du)− V(γ+
Nu)− γ+

D
grad

∫

Γ

(n · u)(y)Φ(x,y)ds(y) , (3.12)

γ+
Nu =W

(
γ+
Du
)
− K̃

(
γ+

Nu
)
, (3.13)

with the limits γ+
Du and γ+

Nu from Ωe onto Γ of the traces γDu and γNu, and the integral

operators K, K̃, V and W defined in (1.16) - (1.19).

(1.4) yields for the third term of the right hand side of (3.12):

gradΓ V (γ+
n u) = γ+

D grad

∫

Γ

(n · u)(y)Φ(x,y)ds(y),

and applying to this the duality between the surface gradient and the surface divergence

(see Page 5) with ϑ ∈ Y we get

〈gradΓ V (γnu),ϑ〉Γ = −〈V (γnu), divΓ ϑ〉Γ = 0.

Thus, testing (3.12) with a function ζ ∈ Y we obtain

〈
(I −K)γ+

Du, ζ
〉
Γ

+
〈
Vγ+

Nu, ζ
〉
Γ

= 0 . (3.14)
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3 The eddy current problem

Choosing uΓ := γDu and λ := γNu = curlu × n, we consider the interface conditions

(3.6), i.e., [γNu] = [γDu] = 0 on Γ, and inserting the integral equation (3.13) into (3.10),

and adding the integral equation (3.14) there follows the weak formulation:

Find u ∈W 1(0, T ; X),λ ∈ L2(0, T ; Y) such that

(σ∂tu,v)Ω +
(
µ−1 curlu, curlv

)
Ω
− 〈WuΓ,vΓ〉Γ +

〈
K̃λ,vΓ

〉
Γ

= − (∂tJ,v)Ω ,

〈(I −K)uΓ, ζ〉Γ + 〈Vλ, ζ〉Γ = 0,

u(·, 0) = u0|Ω, λ(·, 0) = n× curlu0|Γ

(3.15)

for all v ∈ X and ζ ∈ Y and almost all t ∈ (0, T ).

Remark 3.1.2 Lemma 1.5.2 shows that the initial condition u(·, 0) = u0|Ω is appro-

priate due to the continuous embedding

W 1(0, T ;H(curl ,Ω)) →֒ C0(0, T ; L2(Ω)) .

In order to obtain a coercive bilinear form, we now add a penalty function term λ̃ (u,v)Ω

to the left-hand side of (3.15), for arbitrary λ̃ ∈ R+. Introducing the bilinear form

B(u,λ;v, ζ) := λ̃ (u,v)Ω +
(
µ−1 curlu, curlv

)
Ω
−〈WuΓ,vΓ〉Γ +

〈
K̃λ,vΓ

〉
Γ

+ 〈(I −K)uΓ, ζ〉Γ + 〈Vλ, ζ〉Γ ,
(3.16)

and the linear form

L(v) = L(t,v) := − (∂tJ,v)Ω (3.17)

we obtain the penalty weak formulation:

Find u ∈W 1(0, T ; X),λ ∈ L2(0, T ; Y) such that

(σ u̇,v)Ω + B(u,λ;v, ζ) = L(v), (3.18a)

u(·, 0) = u0|Ω, λ(·, 0) = n× curlu0|Γ . (3.18b)

for all v ∈ X and ζ ∈ Y, almost all t ∈ (0, T ) and λ̃ > 0 given.

Lemma 3.1.1 ([37, Theorem 7.1 ]) The bilinear form B is elliptic and continuous

in X := H(curl ,Ω)×H
− 1

2

‖ (divΓ0,Γ).

Proof. The continuity is an immediate consequence of the continuity of the boundary

integral operators (see Lemma 1.3.2), and the uniform boundedness of µ and σ in the
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3.1 The time dependent eddy current problem

domain Ω. Lemma 1.3.3 shows that the operators V and W are elliptic, and that the

operator K̃ is adjoint to K − I. Therefore we get

|B(u,λ;u,λ)| =
∣∣∣λ̃ (u,u)Ω +

(
µ−1 curlu, curlu

)
Ω
− 〈WuΓ,uΓ〉Γ

+
〈
K̃λ,uΓ

〉
Γ

+ 〈(I −K)uΓ,λ〉Γ + 〈Vλ,λ〉Γ
∣∣∣

=
∣∣∣λ̃ (u,u)Ω +

(
µ−1 curlu, curlu

)
Ω
− 〈WuΓ,uΓ〉Γ + 〈Vλ,λ〉Γ

∣∣∣
& (u,u)Ω + (curlu, curlu)Ω + ‖ curlΓuΓ‖2H−1/2(Γ) + ‖λ‖2

H
− 1

2
‖

(divΓ,Γ)

& ‖u‖2H(curl,Ω) + ‖λ‖2
H

− 1
2

‖
(divΓ,Γ)

.

3.1.2 A semi-discrete Galerkin method

Let Th be a triangulation (with tetrahedral or hexahedral elements) of the domain Ω.

We assume that Th is quasi-uniform with mesh size h > 0 and shape-regular in the sense

of Ciarlet [19], i.e., there exists a positive constant c1 such that

hT

ρT

≤ c1 ∀T ∈ Th

where hT is diameter of element T ∈ Th and

ρT := max {r : Sr ⊆ T, Sr := {x : ‖x− x0‖ < r,x0 ∈ T}} .

This mesh induces a mesh Kh := {T ∩ Γ : T ∈ Th} of triangles or quadrilaterals on the

boundary. On these meshes we define our polynomial spaces.

We consider Nédélec functions of first order ND1(Th), a conforming finite element

space of H(curl,Ω), for the discretization of the unknown u := u(t,x) with u ∈
W 1(0, T ;H(curl ,Ω)), see Section 2.1. Furthermore for the discretization of λ := λ(t,x) =

curlu×n, with λ ∈ L2(0, T ;H
− 1

2

‖ (divΓ0,Γ)), we use the space of divergence free Raviart-

Thomas functions RT 0
1(Kh) := {λh ∈ RT 1(Kh), divΓ λh = 0} a conforming finite ele-

ment space of H
− 1

2

‖ (divΓ 0,Γ), see Section 2.2.2.

Then the semi-discrete Galerkin system reads:

Find Uh(t) ∈ ND1(Th), λ
h(t) ∈ RT 0

1(Kh) such that

(
σU̇h,vh

)
Ω

+ B(Uh,λh;vh, ζh) = −
(
∂tJ,v

h
)
Ω

(3.19)

for all vh ∈ ND1(Th), ζ
h ∈ RT 0

1(Kh), 0 < t ≤ T subject to the initial conditions

Uh(·, 0) = u0 ∈ ND1(Th) and λh(·, 0) = λ0 ∈ RT 0
1(Kh) .
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3 The eddy current problem

Here u0 and λ0 are the L2-projections of u(x, 0) and λ(x, 0) into the spaces ND1(Th)

and RT 0
1(Kh), respectively.

3.2 A fully-discrete coupling method

In order to obtain a fully-discrete scheme for (3.18), we consider a piecewise polynomial

approximation in time for the unknowns using the discontinuos Galerkin method.

Let XT :=
(
W 1(0, T ;H(curl ,Ω)), L2(0, T ;H

− 1
2

‖ (divΓ0,Γ))
)
. The discontinuous Galerkin

method is based on an approximation of the solution (u,λ) ∈ XT of (3.18a) sought

as a piecewise polynomial test and trial function in t of degree at most l, which is not

necessarily continuous at the nodes of the chosen partition of the time interval [0, T ],

T > 0.

3.2.1 The discontinuous Galerkin method

In the following we denote by {Φk}k=1,...,M a basis ofND1(Th) and by {ψk}k=1,...,m a basis

of RT 0
1(Kh). Then the discrete function Uh(x) ∈ ND1(Th) can be represented as a line-

ar combination of the basis functions, i.e., Uh = Uh(x) :=
∑M

i=1U
h
i Φi(x) ∈ ND1(Th).

Without loss of generality we identify the functionUh with the vectorUh := (Uh
i )i=1,...,M .

Analogously we identify the function λh = λh(x) :=
∑M

i=1 λ
h
iψi(x) ∈ RT 0

1(Kh) with

the vector λh = (λh
i)i=1,...,m.

We consider a partition 0 = t0 < t1 < t2 < . . . < tN = T of the time interval [0, T ]

into subintervals In := (tn−1, tn] of length kn := tn − tn−1, and associate with each time

interval a triangulation T n
h := Thn (with tetrahedral or hexahedral elements) of Ω and

an induced mesh Khn of triangles or quadrilaterals on the boundary Γ. We assume that

T n
h is quasi-uniform with mesh size h > 0 and shape-regular.

For the fully-discrete scheme we use the following finite dimensional subspaces (see

Section 2.4)

Vn,l
h =

{
v : In → ND1(Thn) , v(t) =

l∑

i=0

tiΦi , Φi ∈ ND1(Thn), t ∈ In
}
,

Ṽn,l
h =

{
ϕ : In →RT 0

1(Khn) , ϕ(t) =

l∑

i=0

tiψi , ψi ∈ RT 0
1(Khn), t ∈ In

}
,

and

W l
hn = {v ; v|In ∈ Vn,l

h for n = 1, . . . , N},
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3.2 A fully-discrete coupling method

W̃ l
hn = {ψ ; ψ|In ∈ Ṽn,l

h for n = 1, . . . , N} .

Note that a function v ∈W l
hn (resp. ψ ∈ W̃ l

hn) can be discontinuous at the nodal points,

but has to be continuous in the time interval (tn−1, tn). Besides the initial value v(0)

(resp. ψ(0)) has to be specified separately since 0 /∈ I1.

Now, defining

v+
n := lim

t→0+
v(tn + t) , v−n := lim

t→0−
v(tn + t) and [v]n := v+

n − v−n

the discontinuous Galerkin method reads

Find Uh ∈W l
hn and λh ∈ W̃ l

hn such that

∫ T

0

{
(σU̇h,v) + B(Uh,λh;v, ζ)

}
dt+

N∑

n=2

([σUh]n−1,v
+
n−1) + (σUh

0

+
,v+

0 )

= (σUh
0

−
,v+

0 ) +

∫ T

0

L(v) dt

for all v ∈W l
hn and all ζ ∈ W̃ l

hn, where Uh
0

−
:= u0.

This formulation is equivalent to:

For n = 1, . . . , N , find Uh
n ∈ Vn,l

h and λh
n ∈ Ṽn,l

h such that

∫

In

{
(σU̇h

n ,v) + B(Uh,λh
n;v, ζ)

}
dt+ (σ

[
Uh
]
n−1

,v+
n−1) =

∫

In

L(v) dt . (3.20)

for all v ∈ Vn,l
h and all ζ ∈ Ṽn,l

h .

In the following we consider the case of constant (l = 0) and linear (l = 1) basis functions

in time.

Piecewise constant in time (l = 0) a

Here the test and trial functions are piecewise constant in the time intervall In, n =

1, . . . , N . Thus U̇h
n ≡ 0, U h+

n−1 = Uh
n , U h−

n−1 = Uh
n−1, v

+
n−1 = v and (3.20) reduces to:

For n = 1, . . . , N , find Uh
n ∈ ND1(Thn) and λh

n ∈ RT 0
1(Khn) such that

kn B(Uh
n ,λ

h
n;v, ζ) + (σUh

n ,v) = (σUh
n−1,v) +

∫

In

L(v) dt, (3.21)

for all v ∈ ND1(Thn) and all ζ ∈ RT 0
1(Khn) .

This is a variant of the backward Euler method (see Luskin[42]). In matrix form this is

equivalent to:
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3 The eddy current problem



(
λ̃ + σ

kn

)
M+R∗ −W C

B V





Uh

n

λh
n


 =



F̃1

0


 (3.22)

with

F̃1 :=
σ

kn

MUh−
n−1 +

1

kn

F

and

Mij := (Φi,Φj), R∗
ij := (µ−1 curlΦi, curlΦj),

Fi :=

(∫

In

−∂tJ dt,Φi

)
, Wij := 〈W(γDΦi), γDΦj〉,

Bij := 〈(I −K)γDΦi,ψj〉, Cij := 〈K̃(γNψi), γDΦj〉,

Vij := 〈Vψi,ψj〉,

where {Φk}k=1,...,M is a basis of ND1(Thn) and {ψk}k=1,...,m a basis of RT 0
1(Khn).

Piecewise linear in time (l = 1) a

In this case we consider piecewise linear test and trial functions on the time intervall In.

We may write the trial functions Uh
n (x, t) and λh

n(x, t) as

Uh
n (x, t) := Uh

n,1(x) +
t− tn−1

kn

Uh
n,2(x),

λh
n(x, t) := λh

n,1(x) +
t− tn−1

kn

λh
n,2(x)

for some Uh
n,1,U

h
n,2 ∈ ND1(Thn) and λh

n,1,λ
h
n,2 ∈ RT 0

1(Khn).

Let Φ(x) denote an arbitrary basis function of ND1(Thn), thus our test functions are

defined by

Φ1(x, t) := Φ(x) and Φ2(x, t) :=
tn − t
kn

Φ(x)

and respectively for ψ, an arbitrary basis function of RT 0
1(Khn).

Considering the test and trial functions above defined, we get

1

kn

∫

In

(Uh
n ,Φ1) dt =

1

kn

∫

In

(
Uh

n,1(x) +
t− tn−1

kn

Uh
n,2(x),Φ

)
dt

=
1

kn

∫

In

(
Uh

n,1(x),Φ
)
dt+

1

kn

∫

In

t− tn−1

kn

(
Uh

n,2(x),Φ
)
dt

=
1

kn

(
U h

n,1(x),Φ
) ∫

In

dt+
1

kn

(
Uh

n,2(x),Φ
) ∫

In

t− tn−1

kn

dt

= (Uh
n,1,Φ) +

1

2
(Uh

n,2,Φ)
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and

1

kn

∫

In

(Uh
n ,Φ2) dt =

1

kn

∫

In

(
Uh

n,1(x) +
t− tn−1

kn
Uh

n,2(x),
tn − t
kn

Φ(x)
)
dt

=
1

kn

∫

In

tn − t
kn

(
Uh

n,1(x),Φ
)
dt+

1

kn

∫

In

(t− tn−1

kn

)(tn − t
kn

)(
Uh

n,2(x),Φ
)
dt

=
1

k2
n

(
Uh

n,1(x),Φ
) ∫

In

(
tn − t

)
dt+

1

k3
n

(
Uh

n,2(x),Φ
) ∫

In

(
t− tn−1

)(
tn − t

)
dt

=
1

2
(Uh

n,1,Φ) +
1

6
(Uh

n,2,Φ) .

Analogously, we obtain the following identities
∫

In

(U̇h,Φ1) dt = (Uh
n,2,Φ) ,

∫

In

(U̇h,Φ2) dt =
1

2
(Uh

n,2,Φ)

and (Uh+

n−1,Φ
+
1,n−1) = (Uh+

n−1,Φ
+
2,n−1) = (Uh

n,1,Φ) .

Then (3.20) reduces to

For n = 1, . . . , N , find Uh
n,1,U

h
n,2 ∈ ND1(Thn) and λh

n,1,λ
h
n,2 ∈ RT 0

1(Khn), such that

B(U h
n,1,λ

h
n,1;v, ζ) +

1

kn
(σUh

n,1,v) +
1

2
B(Uh

n,2,λ
h
n,2;v, ζ) +

1

kn
(σUh

n,2,v) =

=
1

kn
(σUh−

n−1,v) +
1

kn

∫

In

L(v) dt (3.23)

and

1

2
B(U h

n,1,λ
h
n,1;v, ζ) +

1

kn

(σUh
n,1,v) +

1

6
B(Uh

n,2,λ
h
n,2;v, ζ) +

1

2kn

(σUh
n,2,v) =

=
1

kn
(σUh−

n−1,v) +
1

kn

∫

In

tn − t
kn
L(v) dt (3.24)

for all v ∈ ND1(Thn) and all ζ ∈ RT 0
1(Khn).

We observe that (3.23) and (3.24) are equivalent to the following linear system of equa-

tions:



(
λ̃+ σ

kn

)
M+R∗−W C

(
λ̃
2
+ σ

kn

)
M+ 1

2
R∗− 1

2
W 1

2
C

B V 1
2
B

1
2
V

(
λ̃
2
+ σ

kn

)
M+ 1

2
R∗− 1

2
W 1

2
C
(

λ̃
6
+ σ

2kn

)
M+ 1

6
R∗− 1

6
W 1

6
C

1
2
B

1
2
V 1

6
B

1
6
V







Uh
n,1

λh
n,1

Uh
n,2

λh
n,2




=




F̃1

0

F̃2

0




(3.25)

where

F̃1 :=
σ

kn
MUh−

n−1 +
1

kn
F1, F̃2 :=

σ

kn
MUh−

n−1 +
1

k2
n

F2,
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3 The eddy current problem

(F1)i :=

(∫

In

−∂tJ dt,Φi

)
, (F2)i :=

(∫

In

(tn − t)∂tJ dt,Φi

)
, i = 1, . . . ,M,

and the matrices M, R∗, W, V, C and B are defined on Page 42.

Furthermore, Lemma 1.3.3 shows that K̃ is adjoint to K− I, hence this is equivalent to:



(
λ̃+ σ

kn

)
M+R∗−W −B⊤ (

λ̃
2
+ σ

kn

)
M+ 1

2
R∗− 1

2
W −1

2
B⊤

B V 1
2
B

1
2
V

(
λ̃
2
+ σ

kn

)
M+ 1

2
R∗− 1

2
W −1

2
B⊤ (

λ̃
6
+ σ

2kn

)
M+ 1

6
R∗− 1

6
W −1

6
B⊤

1
2
B

1
2
V 1

6
B

1
6
V







Uh
n,1

λh
n,1

Uh
n,2

λh
n,2




=




F̃1

0

F̃2

0



.

Rearranging the variables, we finally obtain




(
λ̃+ σ

kn

)
M+R∗−W

(
λ̃
2
+ σ

kn

)
M+ 1

2
R∗− 1

2
W −B⊤ −1

2
B⊤

(
λ̃
2
+ σ

kn

)
M+ 1

2
R∗− 1

2
W

(
λ̃
6
+ σ

2kn

)
M+ 1

6
R∗− 1

6
W −1

2
B⊤ −1

6
B⊤

B
1
2
B V 1

2
V

1
2
B

1
6
B

1
2
V 1

6
V







Uh
n,1

Uh
n,2

λh
n,1

λh
n,2




=




F̃1

F̃2

0

0




.

(3.26)

Lemma 3.2.1 The fully-discrete system in (3.20) has a unique solution.

Proof. Let us define the Galerkin matrix as

A :=



M̂ −B̂⊤

B̂ V̂




where M̂ ∈ R2M×2M , V̂ ∈ R2m×2m, −B̂⊤ ∈ R2M×2m and B̂ ∈ R2m×2M .

Notice that u ∈ H(curl,Ω) yields

(u,u)Ω ≥ 0, (curlu, curlu)Ω ≥ 0 , (u,u)Ω + (curlu, curlu)Ω ≥ c‖u‖H(curl ,Ω),

and from Lemma 1.3.3 there exists cV > 0 and cW > 0 such that

〈Vu,u〉Γ ≥ cV‖u‖2
H

−1/2
‖

(divΓ,Γ)
∀u ∈ H

−1/2
‖ (divΓ 0,Γ) ,

−〈Wu,u〉Γ ≥ cW‖ curlΓ u‖2H−1/2(Γ) ∀u ∈ H
−1/2
⊥ (curlΓ,Γ) .

We obtain that the mass matrixM is positive definite, the stiffness matrix R∗ and the

matrix −W are positive semi-definite and V is positive definite, hence M̂ and V̂ are

positive definite. Then, the Galerkin matrix A is positive definite and thus the linear

system (3.26) has a unique solution.
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3.3 Error analysis

3.3 Error analysis

3.3.1 A priori estimate

The following Lemma gives us a necessary outcome for the proof of the convergence

analysis of the fully-discrete system (3.20).

Lemma 3.3.1 Given u ∈ Hs(Ω) and curlu ∈ Hs(Ω) for s > 1
2
. Let z1 ∈ ND1(Th)

and z2 ∈ RT 0
1(Kh) be defined by the elliptic projection, i.e.,

B(u,λ;vh,ψh) = B(z1, z2;vh,ψh) ∀vh ∈ ND1(Th) , ψh ∈ RT 0
1(Kh) .

Then, there are positive constants γ1 and γ2 depending only on the geometry and the

material parameters σ and µ, such that

‖u− z1‖L2(Ω) ≤ γ1 h
r
[
‖u‖Hs(Ω) + ‖ curlu‖Hs(Ω)

]
, (3.27)

‖λ− z2‖
H

− 1
2

‖
(divΓ,Γ)

≤ γ2 h
r0
[
‖ curlu‖Hs(Ω) + ‖ curl curlu‖Hs(Ω)

]
(3.28)

where r0 := min{s, 1}, r := α + r0, α ∈
(

1
2
, 1], if u − z1 ∈ M⊥

0 (Ω) (see (2.17)), else

α = 0.

Proof. Since z1 is an orthogonal projection of u in ND1(Th) relative to the bilinear

form B defined in (3.16), it follows that

‖u− z1‖H(curl,Ω) ≤
∥∥u− Πhu

∥∥
H(curl,Ω)

(3.29)

where Πh is the canonical interpolation operator for the space ND1(Th) presented in

Section 2.1.4. The operator Πh is well defined on the space

{
v ∈ (Lp(K))3; curl v ∈ (Lp(K))3;v × n ∈ (Lp(K))2, K ∈ Th

}
,

for any p > 2, see Amrouche et al. [2, Lemma 4.7]. For Πh there holds the estimate (see

Lemma 2.1.4)

‖u− Πhu‖H(curl,Ω) ≤ γ̃ hmin{s,1} {‖u‖Hs(Ω) + ‖ curlu‖Hs(Ω)

}
(3.30)

where γ̃ is a positive constant depending only on the shape-regularity of the mesh. Now

if u − z1 ∈ M⊥
0 (Ω), due to the Theorem 2.4.1 there exist C > 0 and 1

2
< α ≤ 1 such

that

‖u− z1‖L2(Ω) ≤ Chα ‖u− z1‖H(curl,Ω) . (3.31)

Combining the inequalities (3.29),(3.30) and (3.31) proves (3.27).
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3 The eddy current problem

The inequality (3.28) follows by

‖λ− z2‖
H

− 1
2

‖
(divΓ,Γ)

=
∥∥γ×D curlu− z2

∥∥
H

− 1
2

‖
(divΓ,Γ)

≤
∥∥γ×D curlu− γ×D Πh curlu

∥∥
H

− 1
2

‖
(divΓ,Γ)

≤
∥∥curlu− Πh curlu

∥∥
H(curl,Ω)

. hr0
[
‖ curlu‖Hs(Ω) + ‖ curl curlu‖Hs(Ω)

]
,

(3.32)

with r0 := min{s, 1}. The second inequality is due to Hiptmair [37, p. 58]

Remark 3.3.1 In our examples in chapter 4 we get different convergence rates depen-

ding on whether the function is divergence-free or not. In example 4.2.1 we consider a

non divergence-free function, and in example 4.2.2 we have a divergence-free function.

As predicted in (3.27) the convergence rate in the first example is less than in the second

example.

Now, we can proof a converge theorem for our fully-discrete system. The ideas of the

proof are similar to the ideas of Theorem 4.4 in Mund [60].

Theorem 3.3.1 For some time interval [0, T ], with (0, T ] :=
⋃N

n=1(tn−1, tn] and tn :=

nk = n T
N

, let (u,λ) denote the solution of (3.15) and (Uh,λh) the solution of (3.20).

Then there holds for u ∈ C1([0, T ];Hs(curl,Ω)) ∩ C3([0, T ];L2(Ω)), s > 1
2

max
1≤n≤N

‖(Uh − u)(t−n )‖L2(Ω) = O(hr + kl+1) , (3.33)
∥∥Uh − u

∥∥
L2(0,T ; H(curl,Ω))

= O(hr0 + kl+1) , (3.34)
∥∥λ− λh

∥∥
L2(0,T ; H

− 1
2

‖
(divΓ,Γ))

= O(hr0 + kl+1) , (3.35)

where l = 0, 1 and r := α + min{s, 1}, r0 := min{s, 1} with α > 1
2
.

Proof.

Throughout this proof we use for brevity ‖ · ‖ := ‖ · ‖L2(Ω) and ‖ · ‖2σ,Ω := (σ · , ·).

We define z1 ∈ L2([0, T ];ND1(Th)) and z2 ∈ L2([0, T ];RT 0
1(Kh)) through the elliptic

projection

B(u(t),λ(t) ; w,ψ) = B(z1(t), z2(t) ; w,ψ) (3.36)

for allw ∈ ND1(Th) , ψ ∈ RT 0
1(Kh), t ∈ [0, T ] and the bilinear form B defined in (3.16).

As u ∈ C3([0, T ],L2(Ω)), we note that z1 ∈ C3([0, T ],ND1(Th)). Moreover, for i = 1, 2, 3

and for all t ∈ [0, T ] there holds

B(
∂i

∂ti
u(t),λ(t) ; w,ψ) = B(

∂i

∂ti
z1(t), z2(t) ; w,ψ) (3.37)
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3.3 Error analysis

for all w ∈ ND1(Th) , ψ ∈ RT 0
1(Kh) and t ∈ [0, T ]. Let In := (tn−1, tn] denote the

nth-time subinterval, and πl z1|In and π̃l z2|In the L2-orthogonal projections of zi into

the discrete spaces Vn,l
h and Ṽn,l

h . For all w ∈ Vn,l
h ,ψ ∈ Ṽn,l

h , (2.13) and (3.36) yield
∫

In

B(πl z1 − u, π̃l z2 − λ ; w,ψ) dt

=

∫

In

B(πl z1 − z1, π̃l z2 − z2 ; w,ψ) dt+

∫

In

B(z1 − u, z2 − λ ; w,ψ) dt = 0 . (3.38)

Choosing ξ := (Uh − πl z1)|In and η := (πl z1 − u)|In, the error e :=
(
Uh − u

)
|In can

be written as e = ξ + η, and we observe that

‖(Uh − u)(t−n )‖ ≤ ‖ξ−n ‖+ ‖η−
n ‖ . (3.39)

Furthermore,
∫

In

(
(σ ξ̇,w) + B(ξ,λh − π̃l z2 ; w,ψ)

)
dt+ (σ ξ+

n−1,w
+
n−1)

=

∫

In

(
(σ U̇h,w) + B(U h,λh;w,ψ)

)
dt+ (σUh+

n−1,w
+
n−1)

−
∫

In

(
(σ

∂

∂t
πl z1,w) + B(πl z1, π̃l z2 ; w,ψ)

)
dt− (σ πl z

+
1,n−1,w

+
n−1).

From this we get using (3.20), (3.38) and (3.18a)
∫

In

(
(σ ξ̇,w) + B(ξ,λh − π̃l z2 ; w,ψ)

)
dt+ (σ ξ+

n−1,w
+
n−1)

= (σUh−
n−1,w

+
n−1) +

∫

In

L(w) dt

−
∫

In

(
(σ

∂

∂t
πl z1,w) + B(u,λ;w,ψ)

)
dt− (σ πl z

+
1,n−1,w

+
n−1)

=
(
σ (Uh − u)−n−1,w

+
n−1

)
+

∫

In

(
(σ u̇,w) + B(u,λ;w,ψ)

)
dt+ (σu+

n−1,w
+
n−1)

−
∫

In

(
(σ

∂

∂t
πl z1,w) + B(u,λ;w,ψ)

)
dt− (σ πl z

+
1,n−1,w

+
n−1)

= −
∫

In

(σ η̇,w) dt− (σ η+
n−1,w

+
n−1) +

(
σ (Uh − u)−n−1,w

+
n−1

)

= −
∫

In

(σ η̇,w) dt− (σ [η]n−1,w
+
n−1) + (σ ξ−n−1,w

+
n−1) .

Now, choosing w := ξ and ψ := λh|In − π̃l z2|In it follows
∫

In

(σ ξ̇, ξ) dt+ (σ ξ+
n−1, ξ

+
n−1) +

∫

In

B(ξ,λh − π̃l z2 ; ξ,λh − π̃l z2) dt

≤ −
∫

In

(σ η̇, ξ) dt− (σ [η]n−1, ξ
+
n−1) + (σ ξ−n−1, ξ

+
n−1) .

47



3 The eddy current problem

From this and the identities
∫

In

(σ ξ̇, ξ) dt =
1

2
‖ξ−n ‖2σ,Ω −

1

2
‖ξ+

n−1‖2σ,Ω,

(σ ξ+
n−1, ξ

+
n−1)− (σ ξ−n−1, ξ

+
n−1) =

1

2
‖ξ+

n−1‖2σ,Ω +
1

2
‖[ξ]n−1‖2σ,Ω −

1

2
‖ξ−n−1‖2σ,Ω

(3.40)

we get

1

2
‖ξ−n ‖2σ,Ω −

1

2
‖ξ−n−1‖2σ,Ω+

1

2
‖[ξ]n−1‖2σ,Ω +

∫

In

B(ξ,λh − π̃l z2 ; ξ,λh − π̃l z2) dt

≤ −
∫

In

(σ η̇, ξ) dt− (σ [η]n−1, ξ
+
n−1) .

(3.41)

Note that B(ξ,λh − π̃l z2 ; ξ,λh − π̃l z2) ≥ 0. From this we obtain

1

2
‖ξ−n ‖2σ,Ω −

1

2
‖ξ−n−1‖2σ,Ω +

1

2
‖[ξ]n−1‖2σ,Ω ≤ −

∫

In

(σ η̇, ξ) dt− (σ [η]n−1, ξ
+
n−1) . (3.42)

Next we consider two different cases of polynomial degree l.

Case l = 0

As ξ is constant on In there holds ξ = ξn = ξ+
n−1, and due to (3.42) we obtain

1

2
‖ξn‖2σ,Ω −

1

2
‖ξn−1‖2σ,Ω ≤−

(∫

In

σ η̇ dt+ σ [η]n−1 , ξn

)

=− (σ η−
n − σ η−

n−1, ξn)

≤‖η−
n − η−

n−1‖σ,Ω

(
‖ξn‖σ,Ω + ‖ξn−1‖σ,Ω

)
.

Hence,

‖ξn‖σ,Ω − ‖ξn−1‖σ,Ω ≤ 2‖η−
n − η−

n−1‖σ,Ω .

Summing over the first J time intervals now leads to

‖ξJ‖σ,Ω ≤ ‖ξ0‖σ,Ω + 2
J∑

n=1

‖η−
n − η−

n−1‖σ,Ω . (3.43)

Here ξ0 := u0(x)− z1,0 where u0(x) is the projection of the electric initial data u(·, 0)

on ND1(Th) and z1,0 the L2-projection of u0(.) on ND1(Th) with respect to B(· ; ·).
Then, due to (3.27) we have

‖ξ0‖ . hr
[
‖u0‖Hs(Ω) + ‖ curlu0‖Hs(Ω)

]
= O(hr),

with r = min{s, 1}, and from the triangle inequality and the continuity in time of z1

and u it holds

‖η−
n −η−

n−1‖σ,Ω ≤ ‖(π0z1−z1)
−
n −(π0z1−z1)

−
n−1‖σ,Ω+‖(z1−u)(tn)−(z1−u)(tn−1)‖σ,Ω .

(3.44)
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Considering (3.27) and taking u ∈ C1([0, T ],Hs(curl,Ω)) it follows

J∑

n=1

‖(z1 − u)(tn)− (z1 − u)(tn−1)‖σ,Ω =

J∑

n=1

∥∥∥∥
∫

In

∂

∂t
(z1 − u) dt

∥∥∥∥
σ,Ω

≤
J∑

n=1

∫

In

∥∥∥∥
∂

∂t
(z1 − u)

∥∥∥∥ dt

.

J∑

n=1

∫

In

hr
[
‖∂tu‖Hs(Ω) + ‖ curl ∂tu‖Hs(Ω)

]
dt

. hr

∫ T

0

[
‖∂tu‖Hs(Ω) + ‖ curl ∂tu‖Hs(Ω)

]
dt

= O(hr) .

(3.45)

Next we consider the first term in (3.44). Using the definition of π0 yields

(π0z1 − z1)
−
n − (π0z1 − z1)

−
n−1 =

1

k

∫

In

z1(t) dt−
1

k

∫

In−1

z1(t) dt− (z1(tn)− z1(tn−1))

=

∫

In

(
z1(t)− z1(t− k)

k
− ż1(t)

)
dt ,

and using the Taylor expansion of ‖z̈1(τ)‖σ,Ω

J∑

n=1

‖(π0z1 − z1)
−
n − (π0z1 − z1)

−
n−1‖σ,Ω ≤

∫ T

0

∥∥∥∥
z1(t)− z1(t− k)

k
− ż1(t)

∥∥∥∥
σ,Ω

dt

≤ T
k

2
max

0≤τ≤T
‖z̈1(τ)‖σ,Ω = O(k) .

Combining this with (3.43), (3.44) and (3.45) we obtain

‖ξJ‖ = O(hr + k) . (3.46)

Furthermore for the second term on the right hand side of (3.39) there holds

‖η−
J ‖ ≤ ‖u(tJ)− z1(tJ)‖+ ‖π0z1(t

−
J )− z1(tJ)‖ .

The first term behaves like O(hr). For the second term we apply the mean value theorem

for integrals to π0z1 and Taylor’s expansion of z1 to get

‖π0z1(t
−
J )− z1(tJ)‖ =

∥∥∥∥
1

k

∫

IJ

z1(t) dt− z1(tJ)

∥∥∥∥

≤ k max
τ∈IJ

‖ż1(τ)‖ = O(k)

and thus

‖ηJ‖ = O(hr + k) . (3.47)

Combining (3.39), (3.46) and (3.47) we obtain for J = 1, 2, . . . , N the final result

‖(Uh − u)−J ‖ = O(hr + k) .
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3 The eddy current problem

Case l = 1

As ξ is linear on In, the first term of the right hand side of (3.42) becomes

−
∫

In

(σ η̇(t), ξ(t)) dt = −
∫

In

(
σ η̇(t) , ξ+

n−1 +
t− tn−1

k
(ξ−n − ξ+

n−1)
)
dt

= −
(∫

In

σ η̇(t) dt , ξ+
n−1

)
−
(∫

In

t− tn−1

k
σ η̇(t) dt , (ξ−n − ξ+

n−1)

)

≤
( ∥∥∥∥
∫

In

η̇(t) dt

∥∥∥∥
σ,Ω

+

∥∥∥∥
∫

In

t− tn−1

k
η̇(t) dt

∥∥∥∥
σ,Ω

)(∥∥ξ−n
∥∥

σ,Ω
+
∥∥ξ+

n−1

∥∥
σ,Ω

)
.

Using
∥∥ξ+

n−1

∥∥
σ,Ω
≤
∥∥ξ−n−1

∥∥
σ,Ω

+ ‖[ξ]n−1‖σ,Ω and (3.42) this results in

1

2

∥∥ξ−n
∥∥2

σ,Ω
− 1

2

∥∥ξ−n−1

∥∥2

σ,Ω
+

1

2
‖[ξ]n−1‖2σ,Ω ≤

(∥∥ξ−n
∥∥

σ,Ω
+
∥∥ξ−n−1

∥∥
σ,Ω

+ ‖[ξ]n−1‖σ,Ω

)

×
(∥∥∥∥
∫

In

η̇(t) dt

∥∥∥∥
σ,Ω

+

∥∥∥∥
∫

In

t− tn−1

k
η̇(t) dt

∥∥∥∥
σ,Ω

+ ‖[η]n−1‖σ,Ω

)
.

There exist γ1 ≥ 1
2

and γ2 ≥ 0, such that

∥∥ξ−n
∥∥2

σ,Ω
−
∥∥ξ−n−1

∥∥2

σ,Ω
+ ‖[ξ]n−1‖2σ,Ω ≥ γ1

(∥∥ξ−n
∥∥

σ,Ω
−
∥∥ξ−n−1

∥∥
σ,Ω

+ γ2 ‖[ξ]n−1‖σ,Ω

)

×
(∥∥ξ−n

∥∥
σ,Ω

+
∥∥ξ−n−1

∥∥
σ,Ω

+ ‖[ξ]n−1‖σ,Ω

)
.

Thus we obtain
∥∥ξ−n

∥∥
σ,Ω
−
∥∥ξ−n−1

∥∥
σ,Ω

+ γ2 ‖[ξ]n−1‖σ,Ω

≤ 2

γ1

(
‖[η]n−1‖σ,Ω +

∥∥∥∥
∫

In

η̇(t) dt

∥∥∥∥
σ,Ω

+

∥∥∥∥
∫

In

t− tn−1

k
η̇(t) dt

∥∥∥∥
σ,Ω

)
.

Choosing γ1 = 1
2

and γ2 = 0 the summing this expression from n = 1 to J for n = 1, . . . , J

it follows that

∥∥ξ−J
∥∥

σ,Ω
≤ ‖ξ0‖σ,Ω+4

J∑

n=1

‖[η]n−1‖σ,Ω+4

J∑

n=1

∥∥∥∥
∫

In

η̇(t) dt

∥∥∥∥
σ,Ω

+4

J∑

n=1

∥∥∥∥
∫

In

t− tn−1

k
η̇(t) dt

∥∥∥∥
σ,Ω

.

(3.48)

From the first case we know that ‖ξ0‖σ,Ω = O(hr). Now we proceed to estimate the

remaining terms on the right hand side. First using the definition of π1 for fixed x ∈ Ω

gives

[η]n−1 = (π1z1)
+
n−1 − (π1z1)

−
n−1

=
1

k

∫

In

(
4− 6

s− tn−1

k

)
z1(s) ds
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− 1

k

∫

In−1

(
4− 6

s− tn−2

k

)
z1(s) ds−

1

k

∫

In−1

(
12
s− tn−2

k
− 6

)
z1(s) ds

=
1

k

∫

In

(
4− 6

s− tn−1

k

)
z1(s) ds−

1

k

∫

In−1

(
6
s− tn−2

k
− 2

)
z1(s) ds

=
1

k

∫ k

0

(
4− 6

t

k

)
z1(tn−1 + t) dt− 1

k

∫ k

0

(
6
k − t
k
− 2

)
z1(tn−1 − t) dt

=
1

k

∫ k

0

(
4− 6

t

k

)
(z1(tn−1 + t)− z1(tn−1 − t)) dt

=
1

k

∫ k

0

(
4− 6

t

k

)(
2tż1(tn−1) +

1

3
t3
∂3z1(τ)

∂t3

)
dt

for τ = τ(t) ∈ In ∪ In−1.

∫ k

0

(
4− 6

t

k

)
t dt = 0 and

∫ k

0

1

3

∣∣∣∣4− 6
t

k

∣∣∣∣ t
3 dt <

1

5
k4 ,

yield

[η]n−1 <
k3

5
max

τ∈In∪In−1

∣∣∣∣
∂3z1(τ)

∂t3

∣∣∣∣ .

Thus the second term on the right hand side of (3.48) can be estimated by

4
J∑

n=1

‖[η]n−1‖σ,Ω ≤
4

5
k2

J∑

n=1

k max
t∈In

∥∥∥∥
∂3z1(t)

∂t3

∥∥∥∥
σ,Ω

≤ 4

5
k2 T max

0≤t≤T

∥∥∥∥
∂3z1(t)

∂t3

∥∥∥∥
σ,Ω

= O(k2) .

(3.49)

For the third term on the right hand side of (3.48) there holds

J∑

n=1

∥∥∥∥
∫

In

η̇(t) dt

∥∥∥∥
σ,Ω

=
J∑

n=1

∥∥η−
n − η+

n−1

∥∥
σ,Ω

≤
J∑

n=1

(
‖(u− z1)(tn)− (u− z1)(tn−1)‖σ,Ω +

∥∥(π1z1 − z1)
−
n − (π1z1 − z1)

+
n−1

∥∥
σ,Ω

)
.

The first term does not depend on l due to continuity of u and z1. Therefore we can use

(3.45) to get
J∑

n=1

‖(u− z1)(tn)− (u− z1)(tn−1)‖σ,Ω = O(hr) .

Again, due to the definition of π1 there holds for τ1 ∈ In

(π1z1 − z1)
−
n − (π1z1 − z1)

+
n−1 =

=
1

k

∫

In

(
12
s− tn−1

k
− 6

)
z1(s) ds− (z1(tn)− z1(tn−1))
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=
1

k

∫

In

(
12
s− tn−1

k
− 6

)
·
(
z1(tn−1) + (s− tn−1)ż1(tn−1)

+
1

2
(s− tn−1)

2z̈1(tn−1) +
1

6
(s− tn−1)

3∂
3z1(τ1)

∂t3

)
ds

− kż1(tn−1)−
1

2
k2z̈1(tn−1)−

1

6
k3∂

3z1(τ2)

∂t3

≤
(

1

6k

∫

In

∣∣∣∣12
s− tn−1

k
− 6

∣∣∣∣ (s− tn−1)
3 ds+

1

6
k3

)
max
τ∈In

∣∣∣∣
∂3z1(τ)

∂t3

∣∣∣∣

=
31

96
k3 max

τ∈In

∣∣∣∣
∂3z1(τ)

∂t3

∣∣∣∣ .

Here was used that

1

k

∫

In

(
12
s− tn−1

k
− 6

)
ds = 0 ,

1

k

∫

In

(
12
s− tn−1

k
− 6

)
(s− tn−1) ds = k ,

1

k

∫

In

(
12
s− tn−1

k
− 6

)
(s− tn−1)

2 ds = k2 ,

and
1

k

∫

In

∣∣∣∣ 12
s− tn−1

k
− 6

∣∣∣∣ (s− tn−1)
3 ds =

15

16
k3 .

Hence

4

J∑

n=1

∥∥∥∥
∫

In

η̇(t) dt

∥∥∥∥
σ,Ω

≤ 31

24
k2

J∑

n=1

k max
t∈In

∥∥∥∥
∂3z1(t)

∂t3

∥∥∥∥
σ,Ω

+O(hr)

= O(hr + k2) .

(3.50)

Analogously, for the last term in (3.48) there holds

4
N∑

n=1

∥∥∥∥
∫

In

t− tn−1

k
η̇(t) dt

∥∥∥∥
σ,Ω

= O(hr + k2) (3.51)

and therefore ∥∥ξ−J
∥∥

σ,Ω
= O(hr + k2) . (3.52)

As in the first case there holds
∥∥η−

J

∥∥
σ,Ω
≤ ‖u(tJ)− z1(tJ)‖σ,Ω︸ ︷︷ ︸

=O(hr)

+
∥∥π1z1(t

−
J )− z1(tJ)

∥∥
σ,Ω

and

π1z1(t
−
J )− z1(tJ) =

1

k

∫

IJ

(
6
s− tJ−1

k
− 2

)
z1(s) ds− z1(tJ)

=
1

k

∫ k

0

(
4− 6

t

k

)
z1(tJ − t) dt− z1(tJ)

≤ 1

2k
max
t∈In

|z̈1(t)|
∫ k

0

∣∣∣∣4− 6
t

k

∣∣∣∣ t
2 dt = O(k2) .

(3.53)

52



3.3 Error analysis

Thus, ∥∥η−
J

∥∥
σ,Ω

= O(hr + k2) . (3.54)

Since the norms ‖ · ‖ and ‖·‖σ,Ω are equivalent, we can estimate (3.39) for J = 1, . . . , N

to get the final result

‖(Uh − u)−J ‖ = O(hr + k2)

which is the assertion (3.33). This finishes the proof of the L2-estimate for the cases

l = 0 and l = 1.

Next, we show (3.34). In the following we only consider the case l = 1. The case l = 0

is proven analogously.

As the bilinear form B is coercive in X := H(curl,Ω) × H
− 1

2

‖ (divΓ0,Γ), we get from

(3.41):

1

2
‖ξ−n ‖2σ,Ω −

1

2
‖ξ−n−1‖2σ,Ω +

1

2
‖[ξ]n−1‖2σ,Ω +

∥∥(ξ,λh − π̃l z2)
∥∥2

L2(In ; X)

≤ −
∫

In

(σ η̇, ξ) dt− (σ [η]n−1, ξ
+
n−1) .

(3.55)

Let ξ := ξ+
n−1 + t−tn−1

k
(ξ−n − ξ+

n−1), from the triangle inequality we obtain

2

∫

In

‖ξ‖σ,Ω dt ≤ k
(∥∥ξ−n

∥∥
σ,Ω

+
∥∥ξ+

n−1

∥∥
σ,Ω

)
.

Combining this with (3.49), (3.50) and (3.55) we obtain

−
∫

In

(σ η̇, ξ) dt− (σ [η]n−1, ξ
+
n−1) . (hrk + k3)

(∥∥ξ−n
∥∥

σ,Ω
+
∥∥ξ+

n−1

∥∥
σ,Ω

)
.

The sum over all time intervalls In now leads to

1

2
‖ξ−N‖2σ,Ω −

1

2
‖ξ−0 ‖2σ,Ω +

∥∥(ξ,λh − π̃l z2)
∥∥2

L2(0,T ; X)

≤ C(hr + k2)
N∑

n=1

k
(∥∥ξ−n

∥∥
σ,Ω

+
∥∥ξ+

n−1

∥∥
σ,Ω

)

≤ 2C(hr + k2)

∫ T

0

‖ξ(t)‖σ,Ω dt

. (hr + k2)

∫ T

0

‖ξ(t)‖H(curl,Ω) dt

. (hr + k2)
√
T ‖ξ‖L2(0,T ; H(curl,Ω)) .

Using that ‖ξ−N‖2σ,Ω ≥ 0, ‖ξ−0 ‖2σ,Ω = O(hr) and the Cauchy-Schwarz inequality, we obtain

∥∥(ξ,λh − π̃l z2)
∥∥

L2(0,T ; X)
= O(hr + k2). (3.56)
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Furthermore, from Lemma 3.3.1 and (3.53) it follows that

‖η‖L2(0,T ; H(curl,Ω)) ≤ ‖u− z1‖L2(0,T ; H(curl,Ω)) + ‖z1 − π1 z1‖L2(0,T ; H(curl,Ω))

= O(hr0 + k2) ,
(3.57)

and finally we obtain

∥∥Uh − u
∥∥

L2(0,T ; H(curl,Ω))
≤ ‖ξ‖L2(0,T ; H(curl,Ω)) + ‖η‖L2(0,T ; H(curl,Ω)) = O(hr0 + k2) .

Analogously to the proof of (3.35), from (3.28) and (3.53) it follows

‖λ− π̃1 z2‖
L2(0,T ; H

− 1
2

‖
(divΓ,Γ))

≤ ‖λ− z2‖
L2(0,T ; H

− 1
2

‖
(divΓ,Γ))

+ ‖z2 − π̃1 z2‖
L2(0,T ; H

− 1
2

‖
(divΓ,Γ))

= O(hr0 + k2)

and combining this with (3.56) we obtain

∥∥λ− λh
∥∥

L2(0,T ; H
− 1

2
‖

(divΓ,Γ))
≤ ‖λ− π̃1 z2‖

L2(0,T ; H
− 1

2
‖

(divΓ,Γ))
+
∥∥π̃1 z2 − λh

∥∥
L2(0,T ; H

− 1
2

‖
(divΓ,Γ))

= O(hr0 + k2) .

3.3.2 A posteriori estimate

In order to derive the a posteriori error estimate in Theorem 3.3.2 we define the set of

faces Fh of Th, the set of exterior faces FΓ
h := {F ∈ Fh : F ⊂ Γ} and the set of interior

faces FC
h := Fh \FΓ

h and Fh(T) as the set of faces of the element T ∈ Th. Let hT denote

the maximal diameter of an element T ∈ Th and hF the maximal diameter of a face

F ∈ Fh. Furthermore we assume that the mesh is regular, i.e., there holds

hT′ . hT ∀T,T′ ∈ Th, T ∩ T′ 6= ∅,
hF . hT ∀F ∈ Fh(T).

For a common face F ∈ FC
h of two elements T1,T2 and the normal n pointing into T2

we define the jump of a function q by

[n · q]F := n · q|F⊂T1
− n · q|F⊂T2

.

For F ∈ FΓ
h we define

[n · q]F := n · q|F .
Analogously,

[n× q]F := n× q|F⊂T1
− n× q|F⊂T2

, F ∈ FC
h ,

[n× q]F := n× q|F , F ∈ FΓ
h .
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Let DT and DF denote the set of elements containing at least one vertex of the element

T or of the face F , resp. and let D1
T

and D1
F denote the set of elements containing at

least one edge of the element T or the face F , respectively (see [6]). Then for all ψ ∈ H1,

q ∈ H1 and φ ∈ H1/2(Γ) the following approximation properties hold

|P 1
hψ|H1(T) . |ψ|H1(DT), ‖P1

hq‖L2(T) . ‖q‖H1(D1
T
),

‖P 1
hψ‖L2(T), . hT‖ψ‖H1(DT), ‖q −P1

hq‖L2(T) . hT|q|H1(D1
T
), (3.58)

‖ψ − P 1
hψ‖L2(T) . hT|ψ|H1(DT), ‖q −P1

hq‖L2(F ) . h
1/2
F |q|H1(D1

F ),

‖ψ − P 1
hψ‖L2(F ) . h

1/2
F |ψ|H1(DF ), ‖φ− p1

hφ‖L2(F ) . h
1/2
F |v|H1(DF ),

where

P 1
h : H1 (Ω)→ S1 (Th) , P1

h : H(curl,Ω)→ ND1 (Th) , and p1
h : H1/2(Γ)→ S1(Kh)

are the interpolation operators analyzed in Beck et. al. [6, Sections 4 and 5], Monk [59,

Section 5.6] and Teltscher [73, Theorem 3.3.3].

The following theorem is devoted to derive a residual based a posteriori error estimate.

The ideas of the proof can be found in Teltscher [73] and Mund & Stephan [61]. The

derived error indicators are used later for the implementation of adaptive algorithms.

Theorem 3.3.2 Let ∂tJ (x, t) ∈ C2([0, T ] ;L2(Ω)), (u,λ) be the solution of (3.15) with

u ∈ C1([0, T ]; Ω) and
(
Uh,λh

)
be the solution of (3.20). Then there exists a constant

c > 0, such that

∥∥(Uh − u,λh − λ
)∥∥

L2(In;X)
≤ c

[( 11∑

i=1

Ri,n

)
+T1,n +T2,n +

∥∥∥
(
U h − u

)−
n−1

∥∥∥
L2(Ω)

]
(3.59)

where X := H(curl,Ω)×H
− 1

2

‖ (divΓ0,Γ),

R2
1,n := kn max

t∈In

∑

T∈Th

h2
T

∥∥∥√µ
(
∂tJ + λ̃Uh + σ U̇h + curl

(
µ−1 curlUh

))∥∥∥
2

0,T
,

R2
2,n := kn max

t∈In

∑

F∈FC
h

hF

∥∥∥√µA[µ−1 curlUh × n]F

∥∥∥
2

0,F
,

R2
3,n := kn max

t∈In

∑

F∈FΓ
h

hF

∥∥∥
√
µ−1 curlUh × n−√µWU h

Γ +
√
µ K̃λh

∥∥∥
2

0,F
,

R2
4,n := kn max

t∈In

∑

T∈Th

h2
T

∥∥∥
√
σ−1
(
div ∂tJ + λ̃ divUh + div σ U̇h

)∥∥∥
2

0,T
,

R2
5,n := kn max

t∈In

∑

F∈FC
h

hF

∥∥∥√σA
−1

[
(
σ U̇h + λ̃Uh

)
· n]F

∥∥∥
2

0,F
,
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R2
6,n := kn max

t∈In

∑

F∈FΓ
h

hF

∥∥∥
(√

σ U̇h +
√
σ−1 λ̃Uh

)
· n
∥∥∥

2

0,F
,

R2
7,n := kn max

t∈In

∑

F∈FΓ
h

hF

∥∥∥curlΓ (K − I)U h
Γ − curlΓ Vλh

∥∥∥
2

0,F
,

R2
8,n :=

1

kn

∑

T∈Th

h2
T

∥∥∥
[
σUh

]
n−1

∥∥∥
2

0,T
,

R2
9,n :=

1

kn

∑

T∈Th

h2
T

∥∥∥
√
σ−1 div

[
σUh

]
n−1

∥∥∥
2

0,T
,

R2
10,n :=

1

kn

∑

F∈FC
h

hF

∥∥∥
√
σA

−1
[[
σU h

]
n−1
· n
]

F

∥∥∥
2

0,F
,

R2
11,n :=

1

kn

∑

F∈FΓ
h

hF

∥∥∥
√
σ
[
Uh
]
n−1
· n
∥∥∥

2

0,F
,

and

T1,n :=
√
kn

−1
∥∥∥
[
σUh

]
n−1

∥∥∥
0,Ω

,

T 2
2,n := k5

n max
t∈In

‖∂3
t J‖2L2(Ω).

Proof.

Let B and L be the bilinear and linear forms defined in (3.16) and (3.17), respective-

ly . Since (u,λ) is the solution of (3.15), (u(t),λ(t)) ∈ X and analogously we have(
Uh(t),λh(t)

)
∈ X n,1

h := Vn,1
h × Ṽn,1

h .

Let e = e(t) :=
(
u−Uh

)
(t), ε = ε(t) :=

(
λ− λh

)
(t), and define ‖ · ‖σ,τ := ‖σ · ‖L2(τ)

and ‖ · ‖0,τ := ‖ · ‖L2(τ).

Now, as Ω is assumed to be convex, we use the Helmholtz decomposition

H(curl,Ω) = M(Ω)⊕ gradH1(Ω)/C

with M(Ω) = H0(div 0,Ω)∩H(curl,Ω). This follows from the L2-orthogonal decompo-

sition

L2(Ω) := H0(div 0,Ω)⊕ gradH1(Ω)/C

for connected Lipschitz domains, see Dautray and Lions [24, Chap. IX, §1, Prop. 1] .

We split the error e ∈ H(curl,Ω) into

e = e⊥ + e0 (3.60)

where e⊥ ∈M(Ω), e0 = gradψ, for ψ ∈ H1(Ω) and there holds

‖e⊥‖H1(Ω) . ‖ curle‖L2(Ω), ‖ gradψ‖L2(Ω) ≤ ‖e‖H(curl,Ω) . (3.61)
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The first estimate is due to the fact that M(Ω) is continuously embedded in H1(Ω), see

Amrouche et al. [2, Theorem 2.17]. The second one follows from the definition of the

H(curl,Ω)-norm.

Set

eh := P1
he

⊥ + gradP 1
hψ ∈ ND1(Th) (3.62)

where e⊥, ψ as from (3.60).

Since ε ∈ H
− 1

2

‖ (divΓ 0,Γ) = curlΓH
1
2 (Γ)/C, there exists a φ ∈ H

1
2 (Γ) such that ε =

curlΓ φ. Now, choose φh = p1
hφ and εh = curlΓ φh and take

E := π1 eh and Ẽ := π̃1 εh (3.63)

as the orthogonal L2 - projection (defined in (2.10)) of eh := eh(t) and εh := εh(t) into

the space Vn,1
h and Ṽn,1

h , respectively.

From the equality (cf. (3.40))
∫

In

(σ ė, e) dt+
(
[σ e]n−1 , e

+
n−1

)
=

1

2
‖e−n ‖2σ,Ω −

1

2
‖e−n−1‖2σ,Ω +

1

2
‖ [e]n−1 ‖2σ,Ω

and the fact that the operator B(u,λ;w, ζ) is coercive, we obtain that there exists a

constant α1 > 0, such that

α1 ‖(e, ε)‖2L2(In;X ) +
1

2
‖e−n ‖2σ,Ω −

1

2
‖e−n−1‖2σ,Ω +

1

2
‖ [e]n−1 ‖2σ,Ω

≤
∫

In

(
(σ ė, e) + B (e, ε; e, ε)

)
dt+

(
[σ e]n−1 , e

+
n−1

)

=

∫

In

(
(σ u̇, e) + B (u,λ; e, ε)

)
dt

−
∫

In

((
σ U̇h, e

)
+ B

(
Uh,λh; e, ε

))
dt−

([
σUh

]
n−1

, e+
n−1

)
,

(3.64)

since [u]n−1 = 0. From (3.18a) and (3.20) we obtain:

∫

In

((σ u̇, e) + B (u,λ; e, ε)) dt =

∫

In

L(e) dt,

∫

In

{
(σ U̇ h,E) + B(Uh,λh; E, Ẽ)

}
dt+ (σ

[
Uh
]
n−1

,E+
n−1) =

∫

In

L(E) dt .

(3.65)

Inserting (3.65) into (3.64) yields

α1 ‖(e, ε)‖2L2(In;χ) +
1

2
‖e−n ‖2σ,Ω −

1

2
‖e−n−1‖2σ,Ω +

1

2
‖ [e]n−1 ‖2σ,Ω (3.66)

≤
∫

In

L(e) dt−
∫

In

((
σ U̇h, e

)
+ B

(
Uh,λh; e, ε

))
dt−

([
σUh

]
n−1

, e+
n−1

)
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3 The eddy current problem

=

∫

In

L(e− E) dt−
∫

In

((
σ U̇h, e− E

)
+ B

(
Uh,λh; e− E , ε− Ẽ

))
dt

−
([
σUh

]
n−1

,
(
e− E

)+
n−1

)

=

∫

In

L(e− eh) dt+

∫

In

L(eh − E) dt−
∫

In

B
(
Uh,λh; e− eh, ε− εh

)
dt

−
∫

In

B
(
Uh,λh; eh − E, εh − Ẽ

)
dt−

([
σUh

]
n−1

,
(
e− E

)+
n−1

)

−
∫

In

(
σ U̇h, e− eh

)
dt−

∫

In

(
σ U̇h, eh − E

)
dt

=

∫

In

L(e− eh) dt+

∫

In

L(eh − E) dt−
∫

In

B
(
Uh,λh; e− eh, ε− εh

)
dt

−
([
σU h

]
n−1

,
(
e− E

)+
n−1

)
−
∫

In

(
σ U̇h, e− eh

)
dt, (3.67)

where we have used that for the projection properties of P 1
h , P1

h, p
1
h, E := π1eh and

Ẽ := π̃1εh there holds:
∫

In

B
(
Uh,λh; eh − E, εh − Ẽ

)
dt = 0 ,

∫

In

(
σ U̇h, eh − E

)
dt = 0 .

(3.68)

For the left hand side of (3.67), there exists γ1 ≥ 1
4

such that

α1 ‖(e, ε)‖2L2(In;X) +
1

2
‖e−n ‖2σ,Ω −

1

2
‖e−n−1‖2σ,Ω +

1

2
‖ [e]n−1 ‖2σ,Ω

≥ γ1

(√
2α1 ‖(e, ε)‖L2(In;X) + ‖e−n−1‖σ,Ω +

√
‖e−n ‖2σ,Ω + ‖ [e]n−1 ‖2σ,Ω

)

×
(√

2α1 ‖(e, ε)‖L2(In;X) − ‖e−n−1‖σ,Ω

)
.

(3.69)

Combining (3.67) and (3.69) we see that
(√

2α1 ‖(e, ε)‖L2(In;X) + ‖e−n−1‖σ,Ω +
√
‖e−n ‖2σ,Ω + ‖ [e]n−1 ‖2σ,Ω

)

×
(√

2α1 ‖(e, ε)‖L2(In;X) − ‖e−n−1‖σ,Ω

)

.

∫

In

L(e− eh) dt−
∫

In

((
σ U̇h, e− eh

)
+ B

(
Uh,λh; e− eh, ε− εh

))
dt

(3.70)

−
([
σU h

]
n−1

,
(
e− E

)+
n−1

)

+

∫

In

L(eh − E) dt

=: S1 + S2 + S3.

(3.71)

The estimates of S1, S2 and S3 are discussed in the Lemmas 3.3.2, 3.3.3 and 3.3.4. The

proof of Theorem 3.3.2 is finished on page 65.
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3.3 Error analysis

Lemma 3.3.2 (estimate of S1)

S1 :=

∫

In

{
L(e− eh)−

(
σ U̇h, e− eh

)
− B

(
Uh,λh; e− eh, ε− εh

)}
dt

. (R1,n +R2,n +R3,n +R4,n +R5,n +R6,n +R7,n) ‖(e, ε)‖L2(In,X )

(3.72)

where R1,n, · · · , R7,n are defined in Theorem 3.3.2.

Proof.

L(e− eh)−
(
σ U̇h, e− eh

)
− B

(
Uh,λh; e− eh, ε− εh

)

= −
(
∂tJ + λ̃Uh + σ U̇h, e− eh

)
Ω
−
(
µ−1 curlUh, curl (e− eh)

)
Ω

+
〈
WU h

Γ, (e− eh)Γ

〉
Γ
−
〈
K̃λh, (e− eh)Γ

〉
Γ
−
〈
(I −K)Uh, ε− εh

〉
Γ
−
〈
Vλh, ε− εh

〉
Γ

≤
∣∣∣
(
∂tJ + λ̃Uh + σ U̇h, ẽ⊥

)
Ω

+
(
µ−1 curlUh, curl ẽ⊥)

Ω
−
〈
WUh

Γ − K̃λh, (ẽ⊥)Γ

〉
Γ

∣∣∣

+
∣∣∣
(
∂tJ + λ̃Uh + σ U̇h, gradψ − gradP 1

hψ
)

Ω
−
〈
WU h

Γ − K̃λh, gradΓψ − gradΓP
1
hψ
〉

Γ

∣∣∣

+
∣∣∣
〈
(K − I)Uh

Γ + Vλh, curlΓ φ− curlΓ p
1
hφ
〉
Γ

∣∣∣,
(3.73)

where ẽ⊥ := e⊥ −P1
he

⊥, (ẽ⊥)
Γ

:= γDẽ
⊥ and Uh

Γ := γDU
h. First, we consider the term(

µ−1 curlUh, curl ẽ⊥)
Ω
. Since Uh is only elementwise in H(curlcurl,Ω) we use the

Green’s formula to obtain
(
µ−1 curlUh, curl ẽ⊥)

Ω
=
∑

T∈Th

(µ−1 curlUh, curl ẽ⊥)T

=
∑

T∈Th

(
(curl

(
µ−1 curlUh

)
, ẽ⊥)T +

〈
µ−1γNU

h, ẽ⊥
Γ

〉
∂T

)

=
∑

T∈Th

{
(curl

(
µ−1 curlUh

)
, ẽ⊥)T +

〈
µ−1 curlUh × n, ẽ⊥

Γ

〉
∂T

}

=
∑

T∈Th

(curl
(
µ−1 curlUh

)
, ẽ⊥)T +

∑

F∈Fh

〈
[µ−1 curlUh × n]F , ẽ

⊥
Γ

〉
F
.

(3.74)

Here we have used that the terms µ−1 curlUh × n ∈ L2(∂T) and (e⊥ −P1
he

⊥)
Γ
∈

L2(∂T) (as Uh
|T is a polynomial and e⊥,P1

he
⊥ ∈ H1(T)), such that we can consider the

H
− 1

2

‖ (divΓ, ∂T)−H
− 1

2
⊥ (curlΓ, ∂T)-duality 〈·, ·〉∂T

as a L2(∂T)-duality.

Next, we consider the term
(
∂tJ + λ̃Uh + σU̇h, gradψ − gradP 1

hψ
)
Ω

and Green’s

formula to obtain:

(∂tJ + λ̃Uh + σ U̇h, gradψ − gradP 1
hψ)Ω

=
∑

F∈Fh

〈
[
(
σ U̇h + λ̃Uh

)
· n]F , ψ − P 1

hψ
〉

F
−
(
div ∂tJ + λ̃ divU h + div σ U̇h, ψ − P 1

hψ
)
Ω
.

(3.75)
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3 The eddy current problem

In (3.75) due to the regularity of Uh we have interpreted the H− 1
2 (∂T)−H 1

2 (∂T)-duality

as a L2(∂T)-duality. Furthermore, we use the fact that there is no jump of ∂tJ · n over

Γ due to the assumption that there is no flow of J through Γ and the continuity of J in

Ω (see Page 36).

In the following we examine the terms with the boundary integral operators. First we

analyze the term
〈
WU h

Γ − K̃λh, gradΓψ − gradΓP
1
hψ
〉

Γ
, which represents an H

− 1
2

‖ (divΓ,Γ)−

H
− 1

2

⊥ (curlΓ,Γ)-duality pairing (the first term is in H
− 1

2

‖ (divΓ,Γ) as a result of (1.18) and

(1.19), and the second term as tangential trace of H(curl,Ω)-functions is in H
− 1

2

⊥ (curlΓ,Γ)).

We use the facts that for functions Φ = curlΓϕ1 + gradΓϕ2 ∈ H
− 1

2

‖ (divΓ,Γ) and

Ψ = gradΓψ1 + curlΓψ2 ∈ H
− 1

2
⊥ (curlΓ,Γ) it follows

〈Φ,Ψ〉Γ = −〈ϕ1,∆Γψ2〉Γ − 〈∆Γϕ2, ψ1〉Γ
= 〈ϕ1, curlΓ Ψ〉Γ − 〈divΓΦ, ψ1〉Γ .

(3.76)

Moreover, Lemma 1.3.5 provides that for v ∈ H(curl ,Ωe) and λ̃ ∈ H
− 1

2

‖ (div 0Γ,Γ) there

holds

divΓWγDv = 0 and divΓK̃λ̃ = 0 in H−1/2(Γ) . (3.77)

Then, from (3.77) and (3.76) we deduce

〈
WγDU

h − K̃λh, gradΓψ − gradΓP
1
hψ
〉

Γ

= −
〈
divΓWγDU

h − divΓK̃λh, ψ − P 1
hψ
〉

Γ
= 0.

(3.78)

Finally, we examine the term
〈
(K − I)Uh

Γ − Vλh, curlΓ φ− curlΓ p
1
hφ
〉
Γ

which constitu-

tes an H
− 1

2
⊥ (curlΓ,Γ)−H

− 1
2

‖ (divΓ,Γ)-duality pairing (the left hand side is in H
− 1

2
⊥ (curlΓ,Γ)

as a result of (1.16) and (1.17) , and the right hand side as vectorial surface rotation on

Γ is in H
− 1

2

‖ (divΓ,Γ) ). This and (3.76) gives

〈
(K − I)Uh

Γ − Vλh, curlΓ φ− curlΓ p
1
hφ
〉
Γ

=
〈
curlΓ (K − I)Uh

Γ − curlΓ Vλh, φ− p1
hφ
〉
Γ
.

(3.79)

Combining the equations (3.73), (3.74), (3.75), (3.78) and (3.79) yields

L(e− eh)−
(
σ U̇h, e− eh

)
− B

(
Uh,λh; e− eh, ε− εh

)

.
∑

T∈Th

∣∣∣(∂tJ + λ̃Uh + σ U̇ h + curl
(
µ−1 curlUh

)
, ẽ⊥)T

∣∣∣

+
∑

F∈FC
h

∣∣∣
〈
[µ−1 curlU h × n]F , ẽ

⊥
Γ

〉
F

∣∣∣

+
∑

F∈FΓ
h

∣∣∣
〈
µ−1 curlUh × n−WUh

Γ + K̃λh, ẽ⊥
Γ

〉
F

∣∣∣

60



3.3 Error analysis

+
∑

T∈Th

∣∣∣
(
div ∂tJ + λ̃ divUh + div σ U̇h, ψ − P 1

hψ
)

T

∣∣∣

+
∑

F∈FC
h

∣∣∣
〈
[
(
σ U̇h + λ̃U h

)
· n]F , ψ − P 1

hψ
〉

F

∣∣∣ (3.80)

+
∑

F∈FΓ
h

∣∣∣
〈(
σ U̇h + λ̃U h

)
· n, ψ − P 1

hψ
〉

F

∣∣∣

+
∑

F∈FΓ
h

∣∣∣
〈
curlΓ (K − I)Uh

Γ − curlΓ Vλh, φ− p1
hφ
〉

F

∣∣∣.

Integrating over In and applying the Cauchy-Schwarz inequality, where all scalar pro-

ducts are interpreted as L2-products, the continuity of the integral operators (see [73,

Lemma 4.3.3]) and the estimates properties in (3.58) we get

∫

In

{
L(e− eh)−

(
σ U̇h, e− eh

)
− B

(
Uh,λh; e− eh, ε− εh

)}
dt

≤
{(∫

In

∑

T∈Th

h2
T

∥∥∥√µ
(
∂tJ + σ U̇h + curl

(
µ−1 curlUh

))∥∥∥
2

0,T
dt
)1/2

+
(∫

In

∑

F∈FC
h

hF

∥∥∥√µA[µ−1 curlUh × n]F

∥∥∥
2

0,F
dt
)1/2

+
(∫

In

∑

F∈FΓ
h

hF

∥∥∥
√
µ−1 curlU h × n−√µWU h

Γ +
√
µ K̃λh

∥∥∥
2

0,F
dt
)1/2




∣∣∣ 1√
µ
e⊥
∣∣∣
L2(In,H1(Ω))

+

{(∫

In

∑

T∈Th

h2
T

∥∥∥
√
σ−1
(
div ∂tJ + div σ U̇h

)∥∥∥
2

0,T
dt
)1/2

(3.81)

+
(∫

In

∑

F∈FC
h

hF

∥∥∥
√
σA

−1
[σ U̇h · n]F

∥∥∥
2

0,F
dt
)1/2

+
(∫

In

∑

F∈FΓ
h

hF

∥∥∥
√
σ U̇h · n

∥∥∥
2

0,F
dt
)1/2



 ‖
√
σ gradψ‖L2(In,L2(Ω))

+




(∫

In

∑

F∈FΓ
h

hF

∥∥∥curlΓ (K − I)U h
Γ − curlΓ Vλh

∥∥∥
2

0,F
dt
)1/2



 ‖ curlΓ φ‖L2(In,H−1/2(Γ)),

where σ, µ on Γ are always refering to the interior σ, µ, i.e., the trace from Ω, and σA

and µA denote the average of σ and µ on a face F .

We conclude the proof of estimate (3.72) due to ‖√σ gradψ‖L2(Ω) . ‖e0‖H(curl,Ω),

‖curlΓφ‖H−1/2(Γ) = ‖ε‖H−1/2(Γ), and
∣∣∣ 1√

µ
e⊥
∣∣∣
H1(Ω)

can be estimated from above by ‖e‖H(curl,Ω)

due to (3.61). �
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3 The eddy current problem

Lemma 3.3.3 (estimate of S2)

S2 : =
([
σUh

]
n−1

, (E − e)+
n−1

)

.
(( 11∑

i=8

R2
i,n

)
+ T1,n

)( ∥∥e−n−1

∥∥
0,Ω

+ ‖[e]n−1‖0,Ω + ‖e‖L2(In ;H(curl,Ω))

) (3.82)

where R8,n, · · · , R11,n and T1,n are defined in Theorem 3.3.2

Proof. The definition of the orthogonal L2-projection in (2.10) leads to the following

representation formula for E :

E (x, t) := π1eh(x, t) = E1(x) +
t− tn−1

kn
E2(x) (3.83)

with

E1(x) :=
1

kn

∫

In

(
4− 6

s− tn−1

kn

)
eh(x, s)ds , (3.84)

E2(x) :=
1

kn

∫

In

(
12
s− tn−1

kn
− 6

)
eh(x, s)ds . (3.85)

From
∫ 1

0
(4− 6s) ds = 1 we obtain

(E − e)+
n−1 =

1

kn

∫

In

(
4− 6

s− tn−1

kn

)(
eh(s)− e+

n−1

)
ds

=
1

kn

∫

In

(
4− 6

s− tn−1

kn

)((
eh(s)− e

)
+
(
e− e+

n−1

))
ds

=
1

kn

∫

In

(
4− 6

s− tn−1

kn

)((
P1

he
⊥ − e⊥

)
+ grad

(
P 1

hψ − ψ
)

+
(
e− e+

n−1

))
ds

(3.86)

Inserting (3.86) in S2 it follows that

([
σUh

]
n−1

,
(
E − e

)+
n−1

)
:= S2,1 + S2,2 + S2,3 (3.87)

where

S2,1 :=
([
σUh

]
n−1

,
1

kn

∫

In

(
4− 6

s− tn−1

kn

)(
P1

he
⊥ − e⊥

)
ds
)
,

S2,2 :=
([
σUh

]
n−1

,
1

kn

∫

In

(
4− 6

s− tn−1

kn

)(
grad

(
P 1

hψ − ψ
))
ds
)
,

S2,3 :=
([
σUh

]
n−1

,
1

kn

∫

In

(
4− 6

s− tn−1

kn

)(
e− e+

n−1

)
ds
)
.

(3.88)
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We start with the term S2,1. By applying Cauchy’s inequality and the approximation

properties cited in (3.58) we obtain

S2,1 ≤
∑

T∈Th

∥∥∥
[
σUh

]
n−1

∥∥∥
0,T

∥∥∥∥
1

kn

∫

In

(
4− 6

s− tn−1

kn

)(
P1

he
⊥ − e⊥

)
ds

∥∥∥∥
0,T

≤
∑

T∈Th

∥∥∥
[
σUh

]
n−1

∥∥∥
0,T

2√
kn

∥∥P1
he

⊥ − e⊥
∥∥

L2(In;L2(T))

.
∑

T∈Th

∥∥∥
[
σUh

]
n−1

∥∥∥
0,T

hT√
kn

|e⊥|L2(In;H1(D1
T
))

.

(
1

kn

∑

T∈Th

h2
T

∥∥∥
[
σUh

]
n−1

∥∥∥
2

0,T

)1/2

|e⊥|L2(In;H1(Ω)) .

(3.89)

Next, we consider the term S2,2. Since
[
Uh
]

is only elementwise in H(div,Ω) we use

Green’s formula for a fixed t to obtain

(
[
σUh

]
n−1

, gradP 1
hψ − gradψ)Ω

= −
(
div
[
σUh

]
n−1

, P 1
hψ − ψ

)
Ω

+
∑

F∈Fh

〈[[
σU h

]
n−1
· n
]

F
, P 1

hψ − ψ
〉

F
. (3.90)

Combining (3.90) and the definition of S2,2 yields

S2,2 .
∑

T∈Th

∣∣∣
(

div
[
σUh

]
n−1

,
1

kn

∫

In

(
4− 6

s− tn−1

kn

)(
P 1

hψ − ψ
)
ds

)

T

∣∣∣

+
∑

F∈FC
h

∣∣∣
〈[[

σUh
]
n−1
· n
]

F
,

1

kn

∫

In

(
4− 6

s− tn−1

kn

)(
P 1

hψ − ψ
)
ds

〉

F

∣∣∣

+
∑

F∈FΓ
h

∣∣∣
〈[
σUh

]
n−1
· n, 1

kn

∫

In

(
4− 6

s− tn−1

kn

)(
P 1

hψ − ψ
)
ds

〉

F

∣∣∣ .

(3.91)

We apply to (3.91) the Cauchy-Schwarz inequality (here all scalar products are inter-

preted as L2-products) and the estimate properties in (3.58) to obtain

S2,2 .

{( 1

kn

∑

T∈Th

h2
T

∥∥∥
√
σ−1 div

[
σUh

]
n−1

∥∥∥
2

0,T

)1/2

+
( 1

kn

∑

F∈FC
h

hF

∥∥∥√σA
−1
[[
σUh

]
n−1
· n
]

F

∥∥∥
2

0,F

)1/2

+
( 1

kn

∑

F∈FΓ
h

hF

∥∥∥
√
σ
[
Uh
]
n−1
· n
∥∥∥

2

0,F

)1/2



 ‖
√
σ gradψ‖L2(In,L2(Ω)) .

(3.92)
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Finally, we consider the term S2,3 and use the Cauchy-Schwarz inequality to get

S2,3 :=
([
σUh

]
n−1

,
1

kn

∫

In

(
4− 6

s− tn−1

kn

)(
e− e+

n−1

)
ds
)

≤
∑

T∈Th

∥∥∥
[
σUh

]
n−1

∥∥∥
0,T

∥∥∥∥
1

kn

∫

In

(
4− 6

s− tn−1

kn

)(
e− e+

n−1

)
ds

∥∥∥∥
0,T

≤
∑

T∈Th

∥∥∥
[
σUh

]
n−1

∥∥∥
0,T

2√
kn

∥∥(e− e+
n−1

)∥∥
L2(In;L2(T))

≤
∥∥∥
[
σUh

]
n−1

∥∥∥
0,Ω

( 1√
kn

‖e‖L2(In;L2(Ω)) +
∥∥e+

n−1

∥∥
L2(Ω)

)
.

(3.93)

We conclude the proof of estimate (3.82) combining the inequalities (3.89), (3.92) and

(3.93) and the fact that ‖√σ gradψ‖L2(Ω) . ‖e‖H(curl,Ω) and that
∣∣∣ 1√

µ
e⊥
∣∣∣
H1(Ω)

can be

estimated from above by ‖e‖H(curl,Ω) due to (3.61). �

Lemma 3.3.4 (estimate of S3)

S3 :=

∫

In

L(eh − E) dt . k5/2
n max

t∈In

‖f̈‖L2(Ω) ‖e‖L2(In ;H(curl,Ω)) (3.94)

where f = f(x, t) := −∂tJ(x, t) and L(eh − E) = (f, eh − E)Ω.

Proof.

Define the linear interpolate of the function f at tn−1 and tn

f := f+
n−1 +

t− tn−1

kn

(
f−

n − f+
n−1

)
t ∈ In (3.95)

Then from Lemma 2.4.1 we obtain that
∫

In
(f, eh − E)Ω dt = 0. Hence

∫

In

(f, eh − E)Ω dt :=

∫

In

(f − f, eh − E)Ω dt

≤
∥∥f − f

∥∥
L2(In;L2(Ω))

‖eh − E‖L2(In;L2(Ω))

. k2
n‖f̈‖L2(In;L2(Ω)) ‖eh‖L2(In;L2(Ω))

. k5/2
n max

t∈In

‖f̈‖L2(Ω) ‖eh‖L2(In;L2(Ω)) .

(3.96)

Now, from the definition of eh and the properties in (3.58) we obtain

‖eh‖L2(Ω) =
∥∥P1

he
⊥ + gradP 1

hψ
∥∥

L2(Ω)
≤
∥∥P1

he
⊥∥∥

L2(Ω)
+
∥∥gradP 1

hψ
∥∥

L2(Ω)

.
∥∥e⊥

∥∥
H1(Ω)

+ ‖gradψ‖L2(Ω) . ‖e‖H(curl,Ω) .
(3.97)
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3.3 Error analysis

From (3.97) and (3.96) it follows that

∫

In

(f, eh − E)Ω dt . k5/2
n max

t∈In

‖f̈‖L2(Ω) ‖e‖L2(In ;H(curl,Ω)) . (3.98)

�

Conclusion of the proof of Theorem 3.3.2: Finally, the assertion follows immediately by

inserting (3.72), (3.82) and (3.94) in the inequality (3.70).

From the global error indicators Ri,n we can derive local error indicators ηi,n(T) for each

T ∈ Th. These local error indicators are defined as follows:

(η1,n(T))2 := kn max
t∈In

h2
T

∥∥∥√µ
(
∂tJ + λ̃Uh + σ U̇ h + curl

(
µ−1 curlUh

))∥∥∥
2

0,T
,

(η2,n(T))2 := kn max
t∈In

∑

F∈FC
h (T)

hF

∥∥∥√µA[µ−1 curlUh × n]F

∥∥∥
2

0,F
,

(η3,n(T))2 := kn max
t∈In

∑

F∈FΓ
h (T)

hF

∥∥∥
√
µ−1 curlUh × n−√µWU h

Γ +
√
µ K̃λh

∥∥∥
2

0,F
,

(η4,n(T))2 := kn max
t∈In

h2
T

∥∥∥
√
σ−1
(
div ∂tJ + λ̃ divU h + div σ U̇h

)∥∥∥
2

0,T
,

(η5,n(T))2 := kn max
t∈In

∑

F∈FC
h (T)

hF

∥∥∥√σA
−1

[
(
σ U̇h + λ̃Uh

)
· n]F

∥∥∥
2

0,F
,

(η6,n(T))2 := kn max
t∈In

∑

F∈FΓ
h (T)

hF

∥∥∥
(√

σ U̇h +
√
σ−1 λ̃Uh

)
· n
∥∥∥

2

0,F
,

(η7,n(T))2 := kn max
t∈In

∑

F∈FΓ
h (T)

hF

∥∥∥curlΓ (K − I)Uh
Γ − curlΓ Vλh

∥∥∥
2

0,F
,

(η8,n(T))2 :=
1

kn

h2
T

∥∥∥
[
σUh

]
n−1

∥∥∥
0,T

,

(η9,n(T))2 :=
1

kn

h2
T

∥∥∥
√
σ−1 div

[
σUh

]
n−1

∥∥∥
2

0,T
,

(η10,n(T))2 :=
1

kn

∑

F∈FC
h (T)

hF

∥∥∥
√
σA

−1
[[
σUh

]
n−1
· n
]

F

∥∥∥
2

0,F
,

(η11,n(T))2 :=
1

kn

∑

F∈FΓ
h (T)

hF

∥∥∥
√
σ
[
Uh
]
n−1
· n
∥∥∥

2

0,F
.

The local mesh size and the length of the time steps are determined by the following

adaptive feedback algorithm. A version of this algorithm is implemented by Mund &

Stephan [61].
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3 The eddy current problem

Algorithm 1 Adaptive feedback algorithm

Require: Initial mesh T 0
h , error tolerance ϑ > 0, percentage of refined

elements denoted by δ ∈ [0, 1] , initial time step k1 > 0

for n = 1, 2, · · · do

1. Compute the Galerkin solution (Uh,λh) of the fully-discrete system

(3.26) in the time intervall (tn−1, tn].

2. Compute for each T ∈ Th the local error indicators ηi,n, i = 1, . . . , 11

and set

ηn(T) : =
11∑

i=1

ηi,n(T), ηn
max : = max

T′∈Th

ηn(T′).

3. Refine any T ∈ Th where δ · ηn
max ≤ ηn(T). If necessary refine adjacent

elements.

4. If

ηT

n :=

11∑

i=1

(
∑

T′∈Th

η2
i,n(T

′)

) 1
2

≤ ϑ

go to step 5. Otherwise repeat the step 1-4 for the refined mesh.

5. Choose kn+1 such that

(
kn+1

kn

) 5
2

(T1,n + T2,n) = ηT

n .

Stop if tn+1 = tn + kn+1 ≥ T .

The implementation of this algorithm was performed using the program package Mai-

progs (see [50]). The corresponding results are given in Chapter 4. For the implementa-

tion we allow hanging nodes and start the refinements at each time level with the initial

triangulation T 0
h .
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h and Uh
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η2
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) 1
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3 The eddy current problem
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4 Numerical experiments

In this Chapter we will present numerical experiments underlining the theoretical results

derived in Chapter 3. For this purpose we compare the numerical approximation obtained

by (4.2) with the exact solution of Problem (4.1).

All numerical experiments were performed using the scientific program package Mai-

progs [50],[49], which is a Fortran-based program package used for various kinds of

numerical simulations [51]. Initially developed by M. Maischak, Maiprogs has been

extended for electromagnetics problem by Teltscher [73] and Leydecker [39].

We realized the fully-discrete system (4.2) within Maiprogs. Moreover, we extended

Maiprogs by the error estimator presented in Theorem 3.3.2, the Newton scheme as

presented in Chapter 5 and the inverses block and multigrid preconditioners presented

in Section 4.2.1.

For the implementation of the FE and BE matrices we follow the guidelines contained

in [49]:

1. The (global) basis functions are based on a mesh.

2. On every mesh element we have a given set of local basis functions.

3. The local basis functions are generated by mapping a reference element to the

mesh element.

4. Basis functions are a linear combination of local basis functions.

5. Every local basis functions belongs only to one and only one global basis function.

which gives the implementation scheme for Maiprogs. Now, using these fundamental

assumptions we have the following objects to deal with:

• The mesh consisting of mesh elements: Ti.

• The mappings ϕi : Q 7→ Ti from the reference element to the mesh elements.

• The set of basis function on the reference element: φref
k : Q 7→ R.

• The local basis functions on every element: φi,k(x) = φref
k (ϕ−1

i (x)) : Ti 7→ R.
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4 Numerical experiments

Then every global basis function can be represented in the following way:

φj(x) =
∑

j=ri,k

wi,kφi,k(x).

Here wi,k are weights belonging to every local basis functions and ri,k denotes the global

basis functions to which every local basis function belongs to.

Every local basis function has a representation consisting of monomials and transforma-

tion factors, e.g., for Raviart-Thomas function of degree p we get

ϕ = e(1)

p∑

m=0

p−1∑

n=0

c(1)mnx
m
1 x

n
2 + e(2)

p−1∑

m=0

p∑

n=0

c(2)mnx
m
1 x

n
2

on the reference square [−1, 1]2.

The implementation of the integrals in the Galerkin system (3.25) leads to integrals over

monomials. Using suitable transformations (see Leydecker [39] and Teltscher [73]) we

get integrals of the form

∑

k,l,m,n

∑

s=1,2,3

c
(s)
k,lc

(s)
m,ne

(s)

∫

Q

∫

Q

Φ(x,y)xk
1x

l
2y

m
1 y

n
2 dx dy,

with kernel Φ. Those integrals can be evaluated analytically, see Maischak [47, 48].

For our numerical experiments we have implemented functions of the formw = f(t)v(x),

a general transient function is not implemented. In the implementation of all examples

we use the special property that the right hand side J has the form J(x, t) = f(t)u(x),

which allows us to calculate the right hand side in the linear system (4.2), e.g., as

(F1)i =

(∫

In

−∂tJ dt,Φi

)
= −

∫

In

f ′(t) dt

∫

Ω

u(x)Φi(x) dx

= −
∫

In

f ′(t) dt
∑

k,l,m

∑

s=1,2,3

c
(s)
k,l,me(s)

∫

Q

xk
1x

l
2x

m
3 u

(s)(x) dx dy.

In the following we analyze the a priori estimate of the Section 3.3.1, the residual error

estimate of the Section 3.3.2 and present an analysis for the fast solvers and precondi-

tioners used for solving the linear system.
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4.1 Framework

4.1 Framework

Let Th be a regular mesh (with tetrahedral or hexahedral elements) of the domain Ω

and Kh := {T ∩ Γ : T ∈ Th} the induced mesh on Γ (c.f. Page 15). To perform our

experiments we consider a simply connected polyhedral domain Ω represented by a cube

using only hexahedral elements.

We consider Nédélec functions of first order ND1(Th), a conforming finite element

space of H(curl,Ω), for the discretization of the unknown u := u(t,x) with u ∈
W 1(0, T ;H(curl ,Ω)). Furthermore the divergence free Raviart-Thomas functions space

RT 0
1(Kh) :=

{
λh ∈ RT 1(Kh), divΓ λ

h = 0
}
⊂ RT 1(Kh),

a conforming finite element space of H
− 1

2

‖ (divΓ 0,Γ), is used for the discretization of the

boundary unknown λ := λ(t,x) = curlu× n, with λ ∈ L2(0, T ;H
− 1

2

‖ (divΓ0,Γ)). As Γ

is simply connected there holds

RT 0
1(Kh) = curl ΓS1(Kh),

where S1(Kh) denotes the space of piecewise polynomials on the triangulation Kh (see

Hiptmair [34]).

Thus, instead of seeking λh ∈ RT 0
1(Kh), we now seek a function ϕh ∈ S1(Kh)/C such

that λh := curl Γϕh. In order to ensure a unique ϕh we require that
∫
Γ
ϕh(x)dSx = 0 .

This can be reformulated in a weak sense and used for computations by

P(ϕh, τh) :=

(∫

Γ

ϕh(x) dSx

)(∫

Γ

τh(x) dSx

)
= 0 for all τh ∈ S1(Kh).

Note that the bilinear form P(ϕ, τ) is positive semidefinite (P(ϕ, ϕ) = |
∫
Γ
ϕ(x) dSx|2 )

and that the corresponding matrix has rank 1. Then the Galerkin system (3.19) becomes:

Find Uh(t) ∈ ND1(Th), ϕh(t) ∈ S1(Kh) such that

(
σU̇h,vh

)
Ω

+ A
h
(
Uh ; vh

)
+ Bh

1

(
Uh, ϕh ; vh

)
= − (∂tJ,vh)Ω ,

Bh
2

(
Uh, ϕh ; τh

)
= 0

(4.1)

for all vh ∈ ND1(Th), τh ∈ S1(Kh), where

A
h
(
Uh;vh

)
:= λ̃

(
U h,vh

)
Ω

+
(
µ−1 curlUh, curlvh

)
Ω
,

Bh
1

(
Uh, ϕh;vh

)
:= −

〈
WγDU

h, γDvh

〉
Γ

+
〈
K̃curl Γϕh, γDvh

〉
Γ
,

Bh
2

(
Uh, ϕh; τh

)
:=
〈
(I −K)γDU

h, curl Γτh
〉
Γ

+ 〈Vcurl Γϕh, curl Γτh〉Γ + P(ϕh, τh).
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4 Numerical experiments

Moreover, applying the discontinuous Galerkin method and taking piecewice linear func-

tions in time we obtain the following linear system (see Section 3.2.1)



(
λ̃+ σ

kn

)
M+R∗−W

(
λ̃
2
+ σ

kn

)
M+ 1

2
R∗− 1

2
W B⊤ 1

2
B⊤

(
λ̃
2
+ σ

kn

)
M+ 1

2
R∗− 1

2
W

(
λ̃
6
+ σ

2kn

)
M+ 1

6
R∗− 1

6
W 1

2
B⊤ 1

6
B⊤

−B −1
2
B V 1

2
V

− 1
2
B −1

6
B

1
2
V 1

6
V







Uh
n,1

Uh
n,2

λh
n,1

λh
n,2




=




F̃1

F̃2

0

0



, (4.2)

which is equivalent to the fully discrete system (3.20). Here the matricesM, R∗, W, F̃1

and F̃2 are defined on Pages 42 and 44, and

V := [〈Vcurl Γψi, curl Γψk〉+ P(ψi,ψk)]
i=1,...,m
k=1,...,m

B := [〈(K − I)γDΦi, curl Γψk〉]i=1,...,m
k=1,...,M

where {Φk}k=1,...,M is a basis of ND1(Th) and {ψk}k=1,...,m is a basis of S1(Kh).

We compute the approximate solution (Uh,λh) at each time step k on a series of uniform

meshes in space and define the approximation errors

e1 = max
1≤n≤N

‖(Uh − u)(t−n )‖L2(Ω) , (4.3)

e2 =
∥∥Uh − u

∥∥
L2(0,T ; H(curl,Ω))

, (4.4)

e3 =
∥∥λ− λh

∥∥
L2(0,T ; H

− 1
2

‖
(divΓ,Γ))

(4.5)

(cf. Theorem 3.3.1). In most of our examples we compare the error in the energy norm

e :=
√
‖u−Uh‖2

H(curl,Ω) + ‖λ− λh‖2
H

−1/2
‖

(divΓ,Γ)
(4.6)

with the value of the residual error estimator ηn(T) :=
∑11

i=1 ηi,n(T), where ηi,n represent

the local error indicator for each T ∈ Th defined on Page 65.

The experimental convergence rate αh is obtained by evaluating the errors and the

degrees of freedom of two successive meshes by

αh =
log(ei,j/ei,j+1)

log(hi,j/hi,j+1)
= 3

log(ei,j/ei,j+1)

log(Ni,j+1/Ni,j)
, i = 1, 2, 3.

Here we use that h ∼ N−1/3; and define ei,j and Ni,j as the error ei and the degree of

freedom for the mesh Thj
, respectively.

The effectivity index q is the quotient of the error estimator η and the error e,

q :=
η

e
.

The time interval (0, T ] is divided into N subintervals of uniform length k = T
N

, thus the

Galerkin matrix of (4.2) is independent of the choosen subintervall In := ((n− 1)k, nk].
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4.1 Framework

4.1.1 Analysis of the unpreconditioned system

The fully discrete scheme (4.2) can be written as


M̂ B̂⊤

−B̂ V̂




︸ ︷︷ ︸
A



Uh

λh


 =




F

0


 (4.7)

or 
M̂ B̂⊤

B̂ −V̂




︸ ︷︷ ︸
AH



Uh

λh


 =




F

0


 , (4.8)

where

M̂ :=

(
M11 M12

M21 M22

)
=



(

λ̃+ σ
kn

)
M+R∗−W

(
λ̃
2
+ σ

kn

)
M+ 1

2
R∗− 1

2
W

(
λ̃
2
+ σ

kn

)
M+ 1

2
R∗− 1

2
W

(
λ̃
6
+ σ

2kn

)
M+ 1

6
R∗− 1

6
W


 ,

B̂ :=




B
1
2
B

1
2
B

1
6
B


 , B̂

⊤ :=




B⊤ 1
2
B⊤

1
2
B⊤ 1

6
B⊤


 ,

V̂ :=



V 1

2
V

1
2
V 1

6
V


 , Uh =




Uh
1

Uh
2


 , F =



F1

F2


 .

In the following the given CPU times refer to the computation of the Galerkin matrix

A and the solution of the linear system (4.7) (or the equivalent system (4.8)) for the

Example 4.2.1

Table 4.1 shows that for small linear systems up to 3280 degrees of freedom the as-

sembling of the Galerkin matrix is more expensive than solving the linear system with

the Gauss’s algorithm. For more degrees of freedom, iterative solvers seem to be most

appropriate. Their order of convergence, however, depends strongly on the spectrum of

the Galerkin matrix. Initially we consider for the unpreconditioned system two iterative

solvers: the Generalized Minimal Residual Method (GMRES) and the Hybrid Modified

Conjugate Residual method (HMCR).

The GMRES method was originally introduced by Saad and Schultz [70] and is an

extension of MINRES to nonsymmetric systems, hence we apply this iterative solver to

the matrix A in the linear system (4.7).

HMCR, a stable variant of MINRES [26], can be applied to linear systems of equations

with symmetric, indefinite matrices [71]. Hence we apply this method to (4.8) in which

the system matrix AH is symmetric and indefinite.
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4 Numerical experiments

Degree of freedom Solution

N = NU h+Nλh κ(A) Matrix assembling GAUSS GMRES HMCR

160 = 108 + 52 783 35.71 0.44 0.26 0.29

400 = 288 + 112 1536 92.61 3.24 4.38 1.73

796 = 600 + 196 3120 219.79 17.24 34.56 7.99

1384 = 1080 + 304 5788 460.48 68.98 391.44 28.08

2200 = 1764 + 436 9822 881.72 234.90 753.95 99.79

3280 = 2688 + 592 15460 1531.97 658.84 2472.36 256.78

4660 = 3888 + 772 23000 2470.22 1908.22 8011.43 826.70

6376 = 5400 + 976 32670 3866.40 3907.34 12540.05 1513.33

8464 = 7260 + 1204 44760 5659.13 7258.46 25785.11 2659.70

10960 = 9504 + 1456 59520 8147.21 13860.23 48060.22 6332.32

Table 4.1: Condition number (κ(A)) and cpu time (in seconds) for the solution

of example 4.2.1 using the cube (−1, 1)3 and time t = 0.2.

In Table 4.1 one observes growing condition numbers and cpu-times for the matrix

assembling compared to the solvers times for Gauss, GMRES and HMCR.

Figure 4.16 shows that for refined space discretizations the condition number κ(A) of

the matrix A increases like O(N), i.e., the Galerkin matrix is ill-conditioned. Thus, the

unpreconditioned GMRES does not work properly. However, the HMCR solver behaves

well for the unpreconditioned system.

As for unpreconditioned systems the condition number κ(A) deteriorates on very fine

space meshes, we need efficient preconditioners. This is discussed in Section 4.2.1.

4.2 Examples

Example 4.2.1 In Ω := (−1, 1)3, we choose µ = σ = ε = 1 and consider the irrotatio-

nal function

u(t,x) = g(t) v(x) = sin tgrad

∫

Ω

1

‖x− y‖ρ(y) dy, t ∈ [0, π] (4.9)

with density function

ρ(x) = ((1− x2
1)(1− x2

2)(1− x2
3))

2x1x2x3, x ∈ Ω

as exact solution of the system of equations (3.1)-(3.7) .

For a fixed time t, v is both divergence free and irrotational in the exterior domain Ωe,

hence u is harmonic. In Ω there holds curlu = 0 and divu = −4π sin t ρ(x). Combining
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4.2 Examples

this with (3.9) we obtain for the right hand function:

−∂tJ = σ ∂tu+ curlµ−1 curlu =

{
σ cos tv(x) in Ω

0 in Ωe.

Moreover it is valid that for the boundary unknown λ = µ−1 curlu×n = 0. We remark

that the exact energy norm of λ is extrapolated using the sequence of uniformly refined

meshes.

As a consequence of this analysis, we observe in the experimental results that the norms

‖λ−λh‖
H

−1/2
‖

(divΓ,Γ)
and ‖ curlu−curlUh‖L2(Ω) are considerably smaller than the norm

of ‖u − U h‖L2(Ω), e.g. for t = 1.0 and h = 1
6

(i.e., 13900 total degree of freedom ) we

obtain

‖u−Uh‖L2(Ω) = 6.514× 10−3,

‖ curlu− curlUh‖L2(Ω) = 3.609× 10−5,

‖λ− λh‖
H

−1/2
‖

(divΓ,Γ)
= ‖λh‖

H
−1/2
‖

(divΓ,Γ)
= 3.969× 10−11

and hence

e ≈ ‖u−Uh‖L2(Ω).

For uniform meshes in time we calculate the errors e1, e2 and e defined in (4.3) - (4.6)

using piecewise linear polynomials in time and analyze the experimental convergence rates

proved in Theorem 3.3.1. As the exact solution is an irrotational function we expect a

convergence of order O(h + k2) (see Remark 2.4.1), i.e., choosing k =
√
h we look for

convergence rates αh1 = 1 and αh2 = 1, for the errors e1 and e2, respectively. Table

4.2 shows the computed rates αh. In Figure 4.1 the L2-norm of the error is plotted for

different meshes of length h taking a constant time step kn = 0.2 for the time interval

[0, 3.2], which shows that the L2-norm of the error is monotone with respect to h.

Next, in Figures 4.2 - 4.5 the error in the energy norm and the error estimator η =∑11
i=1Ri,n (obtained in Theorem 3.3.2) are plotted versus the degrees of freedom for the

time intervals (0,0.2], (0.4,0.6], (1.0,1.2] and (1.4,1.6]. We remark that in the subin-

terval (1.4,1.6] the maximum of the error occurs (cf. Figure 4.1). One can see that

the residual error estimator behaves like the error. Moreover, the tables below show the

convergence rates of the error in the energy norm α, which have the same behavior, in-

dependent of the time intervals, and the effectivity indices q, which are stable, but depend

on the time interval.
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time
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 ||
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2 (Ω
)

 

 
h=1
h=2/3
h=2/4
h=2/5
h=1/3
h=2/7
h=2/8
h=2/9
h=1/5

Figure 4.1: ‖(u−Uh)(tn)‖L2(Ω) calculated on tn = n · 0.2, n = 1, 16 for diverse

meshes of length h = 2/J, J = 2, · · · , 10.

h DOF e1 αh1 e2 αh2

2/2 108 0.0464 - 0.0578 -

2/4 600 0.0216 1.1031 0.0256 1.3508

2/5 1080 0.0181 0.8945 0.0267 1.1119

2/6 1764 0.0153 1.0320 0.0215 0.7148

2/7 2688 0.0132 1.0630 0.0191 1.2219

2/8 3888 0.0116 1.0674 0.0161 0.8618

2/9 5400 0.0103 1.0646 0.0128 1.1184

2/10 7260 0.0093 1.0601 0.0114 1.2138

Table 4.2: Error e1, e2 and convergence rates αh1, αh2 for Example 4.2.1.

indicadores y errores 701
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10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

Degree of freedom

 ||
 . 

||  L
2 (Ω

)

Time interval 1

 

 

e
η

Degree of freedom

160 400 796 1384 2200 3280 4660 6376 8464 10960

η 0.1407 0.1288 0.1053 0.0889 0.0767 0.0673 0.0600 0.0542 0.0494 0.0455

e 0.0092 0.0045 0.0043 0.0036 0.0031 0.0026 0.0023 0.0020 0.0018 0.0017

q = η
e

15.252 28.948 24.4891 24.616 25.130 25.628 26.063 26.441 26.777 27.082

α - 2.3414 0.1982 1.2103 0.9679 1.3212 1.0474 1.3373 1.1158 0.6635

Figure 4.2: Error in energy norm, value of the residual indicators and effectivity indices

calculated in time intervall (0.0, 0.2] for Example 4.2.1.

10
2

10
3

10
4

10
5

10
−3

10
−2

10
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 ||
 . 

||  L
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)

Time interval 3

 

 

e
η

Degree of freedom

160 400 796 1384 2200 3280 4660 6376 8464 10960

η 0.1185 0.1101 0.0903 0.0763 0.0659 0.0579 0.0516 0.0466 0.0425 0.0391

e 0.0262 0.0126 0.0122 0.0102 0.0087 0.0075 0.0065 0.0058 0.0052 0.0048

q = η
e

4.5205 8.7116 7.3958 7.4508 7.6126 7.7658 7.8979 8.0128 8.1144 8.2068

α - 2.3968 0.1406 0.9711 1.0296 1.1149 1.2225 1.0903 1.1564 0.92918

Figure 4.3: Error in energy norm, value of the residual indicators and effectivity indices

calculated in time intervall (0.4, 0.6] for Example 4.2.1.
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indicadores y errores 701

10
2
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3
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4
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5

10
−3

10
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10
−1
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 ||
 . 

||  L
2 (Ω

)

Time interval 6

 

 

e
η

Degree of freedom

160 400 796 1384 2200 3280 4660 6376 8464 10960

η 0.0521 0.0514 0.0425 0.0361 0.0313 0.0275 0.0246 0.0222 0.0203 0.0187

e 0.0433 0.0209 0.0202 0.0169 0.0143 0.0123 0.0108 0.0096 0.0087 0.0079

q = η
e

1.2040 2.4621 2.1075 2.1352 2.1887 2.2373 2.2786 2.3141 2.3453 2.3735

α - 2.3848 0.1485 0.9674 1.0813 1.1317 1.1114 1.1270 1.0425 1.1198

Figure 4.4: Error in energy norm, value of the residual indicators and effectivity indices

calculated in time intervall (1.0, 1.2] for Example 4.2.1.
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e
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Degree of freedom

160 400 796 1384 2200 3280 4660 6376 8464 10960

η 0.0046 0.0060 0.0050 0.0043 0.0037 0.0033 0.0029 0.0026 0.0024 0.0022

e 0.0464 0.0224 0.0216 0.0181 0.0153 0.0132 0.0116 0.0103 0.0093 0.0084

q = η
e

0.0989 0.2682 0.2305 0.2371 0.2441 0.2495 0.2534 0.2564 0.2587 0.2606

α - 2.3843 0.1586 0.9588 1.0878 1.1091 1.1038 1.1373 1.0816 1.1815

Figure 4.5: Error in energy norm, value of the residual indicators and effectivity indices

calculated in time intervall (1.4, 1.6] for Example 4.2.1.
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Example 4.2.2 We define Ω := (−1, 1)3 and consider for t ∈ [0, 6] the function

u(t,x) = g(t)v(x) = te−
1
3
t curl IΩ(ρ(y))(x), x ∈ Ω,

as solution of (3.1) - (3.7), where

IΩ(ρ(y))(x) =

∫

Ω

1

‖x− y‖ρ(y) dy

with

ρ(x) := ((1− x2
1)(1− x2

2)(1− x2
3))

2x1x2x3(1, 1, 1)T, x in Ω.

As ρ = 0 and ∂xj
ρ = 0 (j = 1, 2, 3) on Γ, we obtain using partial integration

v = curl IΩ(ρ(y))(x) = IΩ(curlρ(y))(x).

Moreover,

curlv = curl curl IΩ(ρ)

= (grad div−∆)IΩ(ρ) =

{
grad IΩ(divρ) + 4πρ in Ω,

grad IΩ(divρ) in Ωe.

Note that the exact solution u has a non-vanishing curl . Now, as ρ = 0 on Γ it holds

that curlu is continuous on Γ, and we set

λ := curlu× n = g(t) grad IΩ(div ρ)× n on Γ.

Furthermore,

curl curlv =

{
curl 4πρ in Ω

0 in Ωe

,

and div v = 0 ∈ R3, hence u is harmonic in the exterior domain Ωe. Therefore, choosing

σ = µ = ε = 1 we define the function −∂tJ (used in the right side) by

−∂tJ = ∂tu+ curl curlu = g′(t)v + 4πg(t) curlρ.

Here, g′(t) means the first derivative of the function g(t) w.r.t. the time variable.

For a uniform time step kn, we calculate e1, e2, e3 and e (see Page 72) using piecewise

linear polynomials in time and analyze the experimental convergence rates of the solution

for the fully-discrete system (4.2). The exact energy norm of λ is extrapolated using the

sequence of uniformly refined meshes.

We choose k =
√
h and study the convergence rate for e1, e2 and e3. From Theorem

3.3.1 we expect convergence rates 1 < αh1 ≤ 2 and αh2 = αh3 = 1. Table 4.3 shows that

the computed rates αh are bounded and have average values αh1 = 1.33, αh2 = 1.13 and

αh3 = 1.13. Figure 4.6 shows the L2(Ω)−error for different meshes of length h, we take
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Figure 4.6: Error in L2(Ω) for h = 2/J, J = 2, . . . , 11 vs time.

a constant time step kn = 0.2 for the time interval [0, 6], here we note the monotonicity

of the error w.r.t. the mesh length h.

In Figures 4.7 - 4.10 we plot the error in the energy norm e, the error estimator η =∑11
i=1Ri,n and the error indicators R1,n, R2,n, R3,n, R5,n, R6,n, R7,n, R8,n, R10,n, R11,n

(obtained by Theorem 3.3.2) versus the degrees of freedom for the time intervals (0,0.2],

(0.4,0.6], (1.4,1.6] and (3.0,3.2]. The latter is just the subinterval, in which the maximum

of the error occurs (cf. Figure 4.6). The indicators R4,n and R9,n are not indicated because

they are of order 10−8. The plots show a similar behavior of the error e, the indicators and

the error estimator η on all four time intervals. The tables below the figures list the values

of e, η, the effectivity indices q = η
e

and the convergence rates α. In every time interval

the effectivity index is quite constant, and the convergence rates are approximately 1 (as

expected in Theorem 3.3.1)

h DOF e1 αh1 e2 αh2 e3 αh3

2/3 400 0.0526 - 0.1709 - 0.0093 -

2/4 796 0.0355 1.6108 0.1224 1.3656 0.0083 0.4939

2/5 1384 0.0264 1.5070 0.0952 1.2806 0.0070 0.9042

2/6 2200 0.0211 1.3690 0.0787 1.1635 0.0061 0.9400

2/7 3280 0.0176 1.2803 0.0676 1.0870 0.0052 1.1896

2/8 4660 0.0152 1.2240 0.0595 1.0360 0.0045 1.1920

2/9 6376 0.0133 1.1857 0.0533 1.0102 0.0035 2.4800

2/10 8464 0.0119 1.1823 0.0483 0.9866 0.0033 0.7101

Table 4.3: Convergence rate analysis for Example 4.2.2.
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DOF η e q = η
e

α

160 0.3069 0.0579 5.2988 -

400 0.2279 0.0569 4.0076 0.0562

796 0.2051 0.0441 4.6495 1.0379

1384 0.1764 0.0356 4.9594 1.0974

2200 0.1529 0.0298 5.1231 1.0735

3280 0.1345 0.0257 5.2251 1.0531

4660 0.1201 0.0227 5.3004 1.0414

6376 0.1085 0.0202 5.3631 1.0349

8464 0.0990 0.0183 5.4190 1.0312

10960 0.0911 0.0167 5.4708 1.0314
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Figure 4.7: Error in energy norm, value of the residual indicators and effectivity

indices calculated in time intervall (0.0, 0.2] for Example 4.2.2.
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DOF η e q = η
e

α

160 0.6742 0.1521 4.4317 -

400 0.4952 0.1492 3.3202 0.0604

796 0.4422 0.1157 3.8234 1.0396

1384 0.3792 0.0933 4.0648 1.0969

2200 0.3279 0.0783 4.1883 1.0728

3280 0.2878 0.0675 4.2628 1.0525

4660 0.2564 0.0594 4.3166 1.0410

6376 0.2313 0.0530 4.3612 1.0347

8464 0.2109 0.0479 4.4010 1.031

10960 0.1939 0.0437 4.4378 1.030
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Figure 4.8: Error in energy norm, value of the residual indicators and effectivity

indices calculated in time intervall (0.4, 0.6] for Example 4.2.2.
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DOF η e q = η
e

α

160 1.2160 0.2908 4.1817 -

400 0.8899 0.2850 3.1225 0.0614

796 0.7911 0.2210 3.5798 1.0398

1384 0.6767 0.1782 3.7964 1.0969

2200 0.5840 0.1496 3.9049 1.0728

3280 0.5121 0.1290 3.9690 1.0525

4660 0.4557 0.1135 4.0149 1.0410

6376 0.4108 0.1014 4.0529 1.0347

8464 0.3741 0.0915 4.0870 1.0312

10960 0.3438 0.0835 4.1186 1.0301
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Figure 4.9: Error in energy norm, value of the residual indicators and effectivity

indices calculated in time intervall (1.4, 1.6] for Example 4.2.2.

83



4 Numerical experiments

DOF η e q = η
e

α

160 1.4027 0.3412 4.1111 -

400 1.0256 0.3344 3.0669 0.0616

796 0.9106 0.2593 3.5118 1.0399

1384 0.7784 0.2091 3.7218 1.0970

2200 0.6714 0.1755 3.8262 1.0728

3280 0.5885 0.1514 3.8875 1.0525

4660 0.5236 0.1332 3.9314 1.0410

6376 0.4718 0.1189 3.9676 1.0347

8464 0.4297 0.1074 4.0001 1.0312

10960 0.3947 0.0979 4.0303 1.0301
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Figure 4.10: Error in energy norm, value of the residual indicators and effec-

tivity indices calculated in time intervall (3.0, 3.2] for Example. 4.2.2
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Example 4.2.3 In this example we use the L-block Ω = [−1, 1]3 \ ([0, 1]2 × [−1, 1]). As

given current we take the singularity function (r and φ polar coordinates)

J(x, t) = t
4
3 grad(r

2
3 sin

2

3
φ), t ∈ [0, 0.5].

We start by computing the Galerkin solution for the uniform mesh with 6 hexahedrons.

The refinement algorithm then proceeds by first refining the 10% of the elements on which

the local contributions of the residual error estimator are the greatest and then by further

refining in order to eliminate hanging nodes that violate the one-constraint rule, i.e.,

only one edge has at most two smaller neighboring edges on the other element (see e.g.

Demkowicz et al. [25], Oestmann[67] and Leydecker [39]).

We extrapolate the error using a sequence of uniform meshes and compare the error of

the adaptive and uniform sequences in Figure 4.11. After several refinements the error

of the adaptive algorithm is less than the error in the uniform refinement.

Our adaptive algorithm produces a sequence of refined meshes, which is shown in Figu-

re 4.12. As expected our algorithm refines towards the singular edge.

 0.001

 0.01

 0.1

 1

 10

 100  1000  10000

 
 
 
 

e (uniform)
e (adaptive)

η (uniform)

η (adaptive)

Degrees of freedom

Figure 4.11: Error in the energy norm e and error estimators for adaptive and

uniform refinement for the Example 4.2.3.

The complete implementation of the adaptive feedback Algorithm 1, Page 66, requires

not only the use of the hanging nodes for Nédélec elements but also the use of certain

interpolation techniques for Nédélec elements between different meshes and splines with

hanging nodes, which has to be done in the future. Therefore, the adaptive algorithm was

just tested for one time step.
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N = 140 N = 378

N = 1312 N = 4006

N = 9200 N = 15886

Figure 4.12: The adaptive meshes (levels of refinement: 1, 3, 6, 8, 9, 10,11)

for Example 4.2.3 with N degrees of freedom using the residual error

estimator
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Example 4.2.4 In this example we use the residual error estimator to construct an

adaptive mesh. We use hexahedral elements with hanging nodes on Ω = (−1, 0)3 and for

t ∈ [0, 0.2] we choose the right-hand side function

−∂tJ = σ∂tu+ curl (curlu) + 0.001u (4.10)

such that the exact solution is

u(t,x) = g(t) v(x) := sin t (f1(x), f2(x), f3(x))⊤ = sin t




x2x3(1− x2)(1− x3)

x1x2(1− x1)(1− x3)

x1x2(1− x1)(1− x2)


 .

Note, that we violate the (physical but not technical) assumption ∂tJ ·n = 0 on Γ. But

-0,05

-0,3
y

-0,55

-0,8

-1,05

-0,05

x

-0,3-0,55
-0,8

-1,05

-1,05

-0,8

-0,55z

-0,3

-0,05

Figure 4.13: Vector field of the function u of Example 4.2.4.

this creates no difficulty, we must only consider in the error estimators r6,n and r11,n the

corresponding term ∂tJ, i.e., we substitute

rF,Γ
6 = r6,n :=

√
knhF max

t∈In

∥∥∥
(√

σ U̇h +
√
σ−1 λ̃Uh

)
· n
∥∥∥

0,F

by

r̃F,Γ
6 =

√
knhF max

t∈In

∥∥∥
(√

σ U̇h +
√
σ−1 λ̃Uh + ∂tJ

)
· n
∥∥∥

0,F
.

Also in Example 4.2.3 we perform an adaptive refinement starting with a uniform mesh

with 8 hexahedrons. We also compute the same problem with uniform refinement. The

comparison between the residual error estimator obtained by using uniform and adaptive

refinement is displayed in Figure 4.14.

We compare the meshes in figure 4.15 with the vector field in figure 4.13 and note that, as

expected, the mesh is refined in places where the function u possesses a large variation.

ss
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sum indicators (uniform)
sum indicators (adaptiv)

Figure 4.14: Residual error estimator using uniform and adaptive refinement,

Example 4.2.4.

Adaptive Uniform

DOF η DOF η

160 1.9263 160 1.9263

214 1.6831 400 1.5212

354 1.4692 796 1.2814

566 1.2650 1384 1.1216

880 1.1332 2200 1.0062

1380 1.0152 3280 0.9182

2270 0.8852 4660 0.8485

3672 0.7796 6376 0.7916

5978 0.6845 8464 0.7441

9900 0.6043 10960 0.7037

16472 0.5341 13900 0.6689

Table 4.4: Degrees of freedom and residual error estimator for Figure 4.14.
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Figure 4.15: The adaptive meshes (levels of refinement: 2, 3, 4, 5, 6, 8) for

Example 4.2.4 using the residual error estimator.
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4.2.1 Preconditioned system

Inverse-Block preconditioner

Maischak & Tran [52] analyse a diagonal block preconditioner for a symmetric coupling

of finite elements and boundary elements for the time harmonic eddy current problem.

The authors apply successfully a diagonal preconditioner as follows

P =


(M+ R̃)−1

(V + Ph)
−1


 (4.11)

to the matrix

AMT =



M+ R̃ −W B⊤

B −V − Ph


 , (4.12)

where R̃ := [(curlΦi, curlΦj)]
i=1,...,M
j=1,...,M and the matricesM,R∗,B,V are the one defined

on page 42 and 72. Correspondingly, we consider the preconditioners

PA = (
1

kn

M+ R̃)−1 and PB = (V + Ph)
−1 (4.13)

for the matrix

A =
1

kn
M+ R̃ −W and B = V + Ph,

respectively, and apply to the Galerkin matrix A in (4.7) the block diagonal precondi-

tioner

P =


PMR

PV


 (4.14)

where

PMR =



−2PA 6PA

6PA −12PA


 , PV =




2PB −6PB

−6PB 12PB


 .

For the FEM matrix PA, we obtain this inverse by solving an auxiliary problem with

CG and the inverse for the BEM matrix B is obtained using LR decomposition.

Table 4.5 and Table 4.6 give the condition number for the block-diagonal preconditioner

using the solvers GMRES and HMCR. Note that κ(A) is bounded and does not depend

on the time step.
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Solver time(Sec.) Number of iterations

DOF κ(A) GMRES HMCR GMRES HMCR

160 37.22 0.013 0.012 2 2

400 37.22 0.182 0.187 6 6

796 37.22 0.810 0.964 8 9

1384 37.22 2.920 2.523 11 11

2200 37.22 8.993 6.656 14 13

3280 37.22 9.484 13.962 15 14

4660 37.22 35.377 28.635 16 18

6376 37.22 62.404 53.025 17 18

8464 37.22 91.410 79.412 17 19

10960 37.22 141.581 127.977 16 20

13900 37.22 191.428 164.690 16 19

17320 37.22 278.700 226.032 17 18

21256 37.22 359.180 301.520 16 18

Table 4.5: Condition number κ(A) for preconditioned sytem (kn = 0.20).

time step kn κ(A)

0.500 37.217

0.250 37.217

0.167 37.215

0.125 37.214

0.100 37.214

0.083 37.213

0.055 37.213

Table 4.6: Condition number κ(A) for preconditioned sytem for time step kn.

Multigrid preconditioner

Multigrid methods are used very often, because (if they work) their convergence rate can

be independent of the problem size, in contrast to the classical iterative methods. As a

consequence, their complexity is optimal, since the computational work is proportional

to the number of unknowns [31]. Usually a multigrid method is constructed, based on

the following recursive algorithm:
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4 Numerical experiments

Algorithm 2 Multigrid algorithm for solving Alx = bl

Require: r,b

Ensure: r

procedure MG(l, r,b)

if l = 0 then

r ← A
−1
0 b0

else

for i = 1, ν1 do

r ← Sl(r,b) {presmoothing}
σ ← R(Alr − b) {Restriction}
η ← 0

for i = 1, γ do

MG(l − 1,η,σ)

r ← r + Pη {Correction}
for i = 1, ν2 do

r ← Sl(r,b) {postsmoothing}
r← r

Following Hiptmair [35] for the FEM part, we assume a nested sequence of quasi-uniform

triangulations Tl, l ∈ {0, · · · , L} ⊂ N, with mesh size hl > 0 of the domain Ω, created

by regular refinement of an initial mesh T0. The mesh size hl > 0 of Tl is considered

to decrease in a geometric progression hl ≈ 2lh0. The meshes generated in this way are

nested, and so are the finite element spaces, i.e., ND0
1(Tl−1) ⊂ ND0

1(Tl), l ∈ N.

The prolongation operator P : ND0
1(Tl−1) → ND0

1(Tl) and the restriction operator

R : ND0
1(Tl) → ND0

1(Tl−1) designate the canonical intergrid tranfers in the Nédélec

spaces, induced by the natural embedding of these spaces [32].

The algorithm with γ = 1 corresponds to the V-cycle and the algorithm with γ =

2 corresponds to the W-cycle. ν1 and ν2 are the number of pre- and postsmoothing

steps using the smoothing procedure Sl, respectively. For the implementation is used a

smoother Sl like the hybrid smoother used in [35] and described by the Algorithm 3.

Note that the iterative solver (e.g. Gauss-Seidel, Jacobi) used in this algorithm carries

out smoothing sweeps in both the space of edge elements and the scalar potential spaces

S0
1 (Tl). Aditionally, ∆l stands for the stiffness matrix related to the bilinear form in

S0
1 (Tl), namely

(φl, ψl)→ (gradφl, gradψl)L2(Ω)

and Tl : S0
1 (Tl)→ ND0

1(Tl) is the transfer operator defined by the embeddings gradS0
1 (Tl) ⊂

ND0
1(Tl) (see Section 2.3).
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Algorithm 3 Hybrid smoother Sl

Require: r,b

Ensure: r

procedure Sl(r,b)

Damped Iterative Solver sweep on Alr = b

ρ← b−Alr

ρ← T∗
l ρ

ψ ← 0

Damped Iterative Solver sweep on ∆lψ = ρ

r← b + Tlψ

Now, since there holds for W : H
−1/2
‖ (divΓ,Γ)→ H

−1/2
⊥ (curlΓ,Γ) (see Lemma 1.3.3) :

〈Wu,v〉Γ = −〈V0(curlΓ u), curlΓ v〉−1/2,Γ,

we can use the multigrid method development by Stephan & von Petersdorff, for the

implementation of the hypersingular operator for the Laplace operator [75, 76]. We

assume Kl (induced mesh by Tl on Γ = ∂Ω) to posses a mesh size hl ≈ 2lh0 and consider

the standard Algorithm 2 with damped Jacobi as the smoothing procedure Sl.

Our goal is to calculate the inverses PA and PB on (4.13) for the implementation of

the preconditioner (4.14) using preconditioned GMRES and preconditioned HMCR as

iterative solvers. For this purpose we approximate it using a multigrid preconditioner

V (ν1, ν2)-cycle, where ν1 and ν2 are the presmoothing and postsmoothing step, respec-

tively. A W (ν1, ν2)-cycle was also used, but the results are very similar to those obtained

by applying a V (ν1, ν2)-cycle, because this we present only results using V (ν1, ν2)-cycle.

Table 4.7 shows the condition number κ(A) of the preconditioned matrix, the solver

time and the number of iterations for V (ν, ν)-cycle with ν = 1, 2, 3, 4 using as smoother

for both the FEM matrix PA and the BEM matrix PB the damped Jacobi with ω = 1
2
.

Table 4.8 gives a comparation of the condition number, the solver time and the number

of iterations for the V (ν, ν)-Cycle with ν = 1, 2 using as smoothers for the FEM matrix

PA damped Gauss-Seidel or damped Jacobi with ω = 1
2

and for both cases we use the

dampened Jacobi with ω = 1
2

for the BEM matrix PB . The iteration stops if the last

relative change of the iterate is less than 10−7 and the preconditioned GMRES was set

to restart after maximal 1100 iterations.
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V (1, 1)−cycle

Solver time(Number of iterations)

h DOF κ(A) GMRES HMCR

2/2 160 87.73 0.08 (2) 0.08 (2)

2/4 796 164.69 5.25 (120) 2.90 (63)

2/8 4660 584.37 304.62 (544) 96.10 (156)

V (2, 2)−cycle

Solver time(Number of iterations)

h DOF κ(A) GMRES HMCR

2/2 160 55.80 0.08 (2) 0.07 (2)

2/4 796 83.83 3.80 (68) 2.97 (52)

2/8 4660 293.65 166.14 (250) 85.59 (109)

V (3, 3)−cycle

Solver time(Number of iterations)

h DOF κ(A) GMRES HMCR

2/2 160 46.12 0.07 (2) 0.08 (2)

2/4 796 56.88 3.32 (49) 2.97 (43)

2/8 4660 196.75 134.22 (175) 73.73 (90)

V (4, 4)−cycle

Solver time(Number of iterations)

h DOF κ(A) GMRES HMCR

2/2 160 41.91 0.08 (2) 0.09 (2)

2/4 796 43.42 3.33 (42) 2.85 (35)

2/8 4660 148.29 129.52 (149) 73.86 (79)

Table 4.7: Estimated condition number κ(A), solver time and number of GM-

RES and HMCR iterations (in parentheses) for Example 4.2.1 using multi-

grid preconditioner with V (i, i)-cycle, i = 1, · · · , 4, and the damped Jacobi

with ω = 1
2 as smoother. Time step kn = 0.25.
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V (1, 1)−cycle

κ(A) Solver time(Number of iterations)

DOF D. Jacobi D. Gauss-Seidel D. Jacobi D. Gauss-Seidel

160 94.76 91.41 0.07 (2) 0.87 (89)

796 304.61 81.46 7.04 (165) 36.63 (275 )

4660 1144.10 264.00 528.98 (943) 4775.34 (995)

V (2, 2)−cycle

κ(A) Solver time(Number of iterations)

DOF D. Jacobi D. Gauss-Seidel D. Jacobi D. Gauss-Seidel

160 55.80 56.19 0.07 (2) 1.03 (73)

796 153.78 52.20 4.75 (87) 44.32 (198)

4660 573.51 132.1 274.62 (416) 4523.55 (500)

Table 4.8: Estimated condition number κ(A), solver time and number of GM-

RES iterations (in parentheses) for Example 4.2.1 using multigrid pre-

conditioner with smoother damped Jacobi and damped Gauss-Seidel for

V (i, i) cycle, i = 1, 2 and time step kn = 0.5.

In Table 4.9 we see that the condition number κ(A), obtained by applying our multigrid

preconditioner, is in general depending on the time step kn, but for small time step kn

is bounded.

time step kn κ(A) Solver time(N. of iterations)

0.500 304.608 7.59 (155)

0.250 164.686 6.05 (123)

0.167 118.053 4.91 (99)

0.125 94.740 4.39 (88)

0.083 78.450 3.73 (77)

0.071 78.454 3.46 (68)

0.063 78.450 3.33 (65)

0.056 78.450 3.16 (65)

0.050 78.450 3.17 (62)

Table 4.9: Estimated condition number κ(A), solver time and number of GM-

RES iterations (in parentheses) for Example 4.2.1 using multigrid precon-

ditioner with smoother damped Jacobi for h = 1/2 (DOF=796), time step

kn and V (1, 1)-cycle.
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Figure 4.16: Condition numbers for unpreconditioned system, multigrid

precondicioner (V (1, 1)−cycle) and inverse block preconditioner

vs. degrees of freedom.

Figure 4.16 shows a comparison of the condition numbers κ(A) for different solution

procedures: no preconditioning, multigrid V (1, 1)−cycle and inverse block preconditioner

collecting the results from Tables 4.1, 4.5 and 4.7. For the unpreconditioned system the

condition number κ(A) behaves like O(N). While the multigrid preconditioner is not

optimal in this case the inverse block preconditioner results in a constant condition

number.

4.2.2 Concluding remarks

As we have seen in the last two sections the observed convergence rates in space and time

are not quite the ones predicted in Theorem 3.3.1, see e.g. Example 4.2.2, where we get

an average rate of 1.33 instead of at least 1.5. We fix the space and time discretization for

the time and space converge analysis, respectively. Due to the enormous computational

demands of three dimensional MOT (Marching on in time) algorithms (cf. Table 4.1)

we were not able to fix the time or space discretization on a sufficiently fine level for

the space or time convergence analysis, respectively. Therefore, the approximation errors

in time and space could not be studied separately but the approximation error in time

influenced the converge analysis in space and vice versa.
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5 A nonlinear, time dependent eddy

current problem

5.1 Problem description

Let Ω ⊂ R3 be a bounded, simply connected polyhedral domain with a Lipschitz conti-

nuous and simply connected boundary Γc = ∂Ω, Ωe := R3 \ Ω the exterior domain and

n be the unit normal vector on Γ pointing into Ωe.

Eddy current problems describe very low-frequency electromagnetic problems. For these

problems the displacement currents may be neglected and the problem is modeled by

quasi-static Maxwell’s equations. In constrast to the eddy current problem given in

Chapter 3 here we examine a nonlinear variant where the magnetic permeability µ

depends on the magnetic field and on the time.

We consider the eddy current induced by a given current density J(t,x) in a conductor

represented by the bounded domain Ω (see Figure 3.1), where the electric and magnetic

fields E(t,x) and H(t,x) fulfill

curl E = −∂tB in (0, T )× R
3 , (5.1)

curlH = J + σE in (0, T )× R
3 , (5.2)

div εE = 0 in Ωe , (5.3)∫

Γ

(εE) · n ds = 0 on Γ , (5.4)

H(0,x) = H0(x), E(0,x) = E0(x) in R
3 , (5.5)

[E × n]Γ = [H × n]Γ = 0 on Γ , (5.6)

H(t,x) = E(t,x) = O
(
|x|−1

)
uniformly for |x| → ∞ (5.7)

where B denotes the magnetic flux density, the permeability µ = µ(t,x) ∈ L∞((0, T )×
R3), the permittivity ε = ε(x) ∈ L∞(R3) and the conductivity σ = σ(x) ∈ L∞(R3) are

real valued and bounded functions, which satisfy

µ1 ≥ µ(t,x) ≥ µ0 > 0 a.e. in (0, T )× Ω with µ(t,x) = µ0 a.e. in (0, T )× Ωe ,

ε1 ≥ ε(x) ≥ ε0 > 0 a.e. x ∈ Ω with ε(x) = ε0 in Ωe ,

σ1 ≥ σ(x) ≥ σ0 > 0 a.e. x ∈ Ω with σ(x) = 0 in Ωe.
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5 A nonlinear, time dependent eddy current problem

Here µi, σi and εi (i = 0, 1) are positive contants.

Additionaly we consider the material relations

B = µH . (5.8)

Note that in general µ, σ and ε can depend on many factors (i. e., position, the frequency

of the field applied, magnetic field, electric field,. . .). Disregarding the effects of hyste-

resis, we assume that the magnetic permeability depends on the magnetic field (see e.g.

[5, Chapter 2]) , i.e., µ := µ (|H|). Considering the nonlinear relation (5.8) between B

and H, the magnetic reluctivity is defined by ν = ν (|B|) := 1
µ(|H|) and satisfies

H = ν (|B|)B . (5.9)

ν is assumed to be a continuous function ν : R
+
0 → R

+
0 , which due to the physical

background satisfies

0 < ν1 ≤ ν(s) ≤ ν0, ∀s ∈ R
+
0

s 7→ ν(s)s is strictly monotone and Lipschitz continuous,

where ν0 is the reluctivity in vacuum.

We assume that supp(J) ⊂ Ω. Then, J = 0 in Ωe and J ·n = 0 on Γ. Moreover, since

σ ≡ 0 in Ωe it follows from (5.2) that curlH = 0 in Ωe. Hence, E cannot be uniquely

determined in Ωe and requires the further gauging condition div (εE) = 0, known as

Coulomb gauge.

In the bounded domain Ω we denote by

u(t,x) :=

∫ t

0

E(s,x) ds

the time primitive of the electric field and obtain by the integration of (5.1) with respect

to t on the time intervall [0, t] that

curlu = B(0,x)−B(t,x)

= B(0,x)− µ(t,x)H(t,x) .

We assume that B(0,x) = 0. From this and (5.2) it follows that

σ
∂u

∂t
+ curl

(
µ−1 curlu

)
= −J(t,x) =: f (t,x) . (5.10)

Now, using the definition of the magnetic reluctivity we obtain

σ
∂u

∂t
+ curl

(
ν (|curlu|) curlu

)
= f . (5.11)
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5.1 Problem description

Procceding as in Chapter 3, testing this with a function v ∈ H(curl ,Ω) yields

(
σ
∂u

∂t
,v

)

Ω

+
(
curl

(
ν (|curlu|) curlu

)
,v
)
Ω

= (f ,v)Ω .

Integration by parts of the second term on the left hand side leads to

(
σ
∂u

∂t
,v

)

Ω

+ (ν (|curlu|) curlu, curlv)Ω −
〈
γ−Nu, γ

−
Dv
〉
Γ

= (f ,v)Ω (5.12)

where γD
− and γN

− are the traces on Γ from Ω defined in (1.2) and (1.8).

In the exterior domain Ωe, we observe from (5.2), (5.1) and (5.3) that curl curlu = 0

and div u = 0 gives

∆u = grad div u− curl curlu = 0 in Ωe

for a.e. t ∈ (0, T ). Therefore, u is given via the Stratton-Chu representation formula

u(x) = curl x

∫

Γ

(n× u)(y)Φ(x,y)ds(y) +

∫

Γ

(n× curlu)(y)Φ(x,y)ds(y)

− gradx

∫

Γ

(n · u)(y)Φ(x,y)dS(y), x ∈ Ωe

(5.13)

with Laplace kernel Φ(x,y) =
1

4π
‖x− y‖−1.

Taking traces, we obtain for x −→ Γ the jump relations

γ+
Du = K(γ+

Du)− V(γ+
Nu)− gradΓ V (γ+

n u) , (5.14)

γ+
Nu =W

(
γ+
Du
)
− K̃

(
γ+

Nu
)

(5.15)

with the limits γ+
Du and γ+

Nu from Ωe onto Γ of the traces γDu and γNu, and the integral

operators defined in (1.20) .

Now, we test (5.14) with a function ζ ∈ H
− 1

2

‖ (divΓ0,Γ) and as for the third term of the

right hand side yields

〈gradΓ V (γnu), ζ〉Γ = −〈V (γnu), divΓ ζ〉Γ = 0

we obtain

〈(I −K)uΓ, ζ〉Γ + 〈Vλ, ζ〉Γ = 0 . (5.16)

Choosing uΓ := γDu and λ := curlu × n, we consider the interface conditions (5.6),

i.e., [γNu] = [γDu] = 0 on Γ, and replacing the integral equation (5.15) into (5.12), and

adding the integral equation (5.16) it follows the weak formulation:
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5 A nonlinear, time dependent eddy current problem

Find u ∈W 1(0, T ;H(curl ,Ω)),λ ∈ L2(0, T ;H
− 1

2

‖ (divΓ0,Γ)) such that

(σ∂tu,v)Ω + (ν (|curlu|) curlu, curlv)Ω − 〈WuΓ,vΓ〉Γ +
〈
K̃λ,vΓ

〉
Γ

= (f ,v)Ω ,

〈(I −K)uΓ, ζ〉Γ + 〈Vλ, ζ〉Γ = 0,

u(·, 0) = u0|Ω = 0, λ(·, 0) = n× curlu0|Γ

(5.17)

for all v ∈ H(curl ,Ω) and ζ ∈ H
− 1

2

‖ (divΓ0,Γ).

Notice that the initial condition u(·, 0) = u0|Ω is meaningful, due to the continuous

enbeddding W 1(0, T ;H(curl ,Ω)) →֒ C0(0, T ; L2(Ω, σ)) (cf. page 38).

To obtain coercitivity, we now add a penalty function term λ̃ (u,v)Ω to the left-hand

side of (5.17), where λ̃ ist an arbitrary positive real constant. Then, considering

A(u,λ;v, ζ) := λ̃ (u,v)Ω − 〈WuΓ,vΓ〉Γ +
〈
K̃λ,vΓ

〉
+ 〈(I −K)uΓ, ζ〉Γ + 〈Vλ, ζ〉Γ ,

Aν(u,v) := (ν (|curlu|) curlu, curlv)Ω and

Cν(u,λ;v, ζ) := Aν(u,v) +A(u,λ;v, ζ) ,

(5.18)

the formulation can be rewritten as:

Find u ∈W 1(0, T ;H(curl ,Ω)),λ ∈ L2(0, T ;H
− 1

2

‖ (divΓ0,Γ)) such that

(σ u̇,v)Ω + Cν(u,λ;v, ζ) = (f ,v)Ω , (5.19a)

u(0) = u0|Ω = 0, λ0 :=n× curlu0|Γ (5.19b)

for all v ∈ H(curl ,Ω) and ζ ∈ H
− 1

2

‖ (divΓ0,Γ).

The existence and uniqueness of solution is provided by the following theorem.

Theorem 5.1.1 We assume u0 ∈ L2(Ω), λ0 ∈ L2(Γ) and f ∈ L2((0, T ),H(curl,Ω)′).

Let s → ν(s) be a continuous function with 0 < ν1 ≤ ν(s) ≤ ν0 for all s ∈ R
+
0 , and the

function s → ν(s) s be monotone. Then we have unique u ∈ W 1(0, T ;H(curl ,Ω)) and

λ ∈ L2(0, T ;H
− 1

2

‖ (divΓ0,Γ)) which solve (5.19).

Proof. The idea of the proof is similar to Cartensen & Stephan [16, Corollary 2] and

Bachinger et al. [4, Theorem 1].

As H(curl,Ω) is separable and reflexive, the embedding H(curl,Ω) ⊂ L2(Ω) is conti-

nuous and H(curl,Ω) is dense in L2(Ω). Hence,

H(curl,Ω) ⊂ L2(Ω) ⊂ H(curl,Ω)′ .

Moreover, the nonlinear reluctivity ν implies a nonlinear operator

A : H(curl,Ω)→ H(curl,Ω)′
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which is defined as

(A(u),v) := Aν(u,v) = (ν (|curlu|) curlu, curlv)Ω .

This nonlinear operator is monotone, due to the function s → ν(s) s is monotone and

strictly positive and there exists a positive constant α0 such that

(A(u)−A(v),u− v) = (ν (|curlu|) curlu− ν (|curlv|) curlv, curl (u− v))Ω

≥ α0‖ curl(u− v)‖2L2(Ω) ≥ 0 .

Moreover, the bilinear form A(u,λ;v, ζ) from (5.18) is also monotone.

Using Lemma 1.3.3 we have that the operators V and −W are elliptic, and the operator

K is adjoint to K − I. Therefore, we obtain

A(u,λ;u,λ) = λ̃ (u,u)Ω − 〈WuΓ,uΓ〉Γ +
〈
K̃λ,uΓ

〉
Γ

+ 〈(I −K)uΓ,λ〉Γ + 〈Vλ,λ〉Γ
= λ̃ (u,u)Ω − 〈WuΓ,uΓ〉Γ + 〈Vλ,λ〉Γ
& (u,u)Ω + ‖ curlΓ uΓ‖2H−1/2(Γ) + ‖λ‖2

H
− 1

2
‖

(divΓ,Γ)

& ‖u‖2L2(Ω) + ‖λ‖2
H

− 1
2

‖
(divΓ,Γ)

≥ 0.

Thus Cν(u,λ;v, ζ) satisfies

• Monotonicity.

Cν(u,λ;u− v,λ− ζ)− Cν(v, ζ;u− v,λ− ζ) = (A(u)− A(v),u− v)

+A(u− v,λ− ζ;u− v,λ− ζ)
≥ 0.

• Coercivity.

Cν(u,λ;u,λ)) = (A(u),u) +A(u,λ;u,λ)

& ‖ curlu‖2L2(Ω) + ‖u‖2L2(Ω) + ‖λ‖2
H

− 1
2

‖
(divΓ,Γ)

= ‖(u,λ)‖2
H(curl,Ω)×H

− 1
2

‖
(divΓ,Γ)

.

• Continuity. It is an immediate consequence of the continuity of the boundary integral

operators (see Lemma 1.3.2) and because the reluctivity ν is bounded from above.

Hence there exist a positive constant α1 such that

|Cν(u,λ;v, ζ))| ≤ α1‖(u,λ)‖
H(curl,Ω)×H

− 1
2

‖
(divΓ,Γ)

‖(v, ζ)‖
H(curl,Ω)×H

− 1
2

‖
(divΓ,Γ)

.
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In conclusion, due to the assumptions of the main theorem on existence and uniqueness

of nonlinear parabolic problems are fulfilled (see Zeidler [79, Theorem 30.A]) there exist

unique u ∈W 1(0, T ;H(curl ,Ω)) and λ ∈ L2(0, T ;H
− 1

2

‖ (divΓ0,Γ)) which solve (5.19)

For the numerical solution of (5.19) we obtain a full-discrete system using a standard

Galerkin method for the space discretization and for the discretization in time the dis-

continuous Galerkin method in time (see Section 3.2).

5.2 Solution procedure

Let Th be a triangulation (with tetrahedral or hexahedral elements) of the domain Ω.

We assume that Th is quasi-uniform with mesh size h > 0 and shape-regular (cf. Section

3.1.2). This mesh induces a mesh Kh := {T ∩ Γ : T ∈ Th} of triangles or quadrilaterals

on the boundary.

In the interior domain we use Nédélec functions of first order ND1(Th), a confor-

ming finite element space of H(curl,Ω), for the discretization of the unknown u =

u(t,x) with u ∈ W 1(0, T ;H(curl ,Ω)), furthermore we use the divergence free Raviart-

Thomas functions space RT 0
1(Kh) a conforming finite element space of H

− 1
2

‖ (divΓ 0,Γ),

for the discretization of the boundary unknown λ = λ(t,x) = curlu × n, with λ ∈
L2(0, T ;H

− 1
2

‖ (divΓ0,Γ)). Now, if {Φk}k=1,...,M denotes a basis ofND1(Th) and {ψk}k=1,...,m

denotes a basis of RT 0
1(Kh), we can identify the vector U h := (Uh

i )i=1,...,M with the dis-

crete function Uh = Uh(x) :=
∑M

i=1U
h
i Φi(x) ∈ ND1(Th) without loss of generality.

Analogously we identify the function λh = λh(x) :=
∑M

i=1 λ
h
iψi(x) ∈ RT 0

1(Kh) with

the vector λh = (λh
i)i=1,...,m.

Aditionally we consider a partition 0 = t0 < t1 < t2 < . . . < tN = T of the time interval

[0, T ] into subintervals In := (tn−1, tn] of length kn := tn − tn−1 and associate with each

such time interval a triangulation T n
h := Thn (of tetrahedral or hexahedral elements) of

Ω and an induced mesh Khn of triangles or quadrilaterals on the boundary Γ.

The approximate solution of (5.19) is obtained by solving the following problem (cf.

(3.20)):

For n = 1, . . . , N , find Uh
n ∈ Vn,l

h and λh
n ∈ Ṽn,l

h such that
∫

In

{
(σU̇h

n,v) + Cν(Uh
n,λ

h
n;v, ζ)

}
dt+ (σ

[
Uh
]
n−1

,v+
n−1) =

∫

In

L(v) dt , (5.20)

for all v ∈ Vn,l
h and all ζ ∈ Ṽn,l

h .

Here we use the definitions

v+
n := lim

t→0+
v(tn + t) , v−n := lim

t→0−
v(tn + t) and [v]n := v+

n − v−n .
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5.2 Solution procedure

We solve this nonlinear problem by means of Newton’s method. The widespread use of

this technique is due to its fast convergence: Newton’s method is locally superlinearly

(or even quadratically) convergent.

Considering the bilinear form

Qw(u,λ;v, ζ) :=

∫

In

{(σu̇,v) + (ν̃(curlw) curlu, curlv)Ω +A(u,λ;v, ζ)} dt

+ (σ
[
u
]
n−1

,v+
n−1)

where for x ∈ R
3, ν̃(x) ∈ R

3×3 denotes the Jacobian of x 7→ ν(|x|)x, i.e.,

ν̃(x) = ν(|x|)I3×3 + ν ′(|x|)x · x
⊤

|x| .

Newton’s scheme for the solution of the nonlinear system (5.20) is presented in Algo-

rithm 4.

We seek to find solution for (5.24) by means of the discontinuous Galerkin method using

piecewice linear functions in time, i.e., we choose l = 1.

Analogously to the Section 3.2.1, we define the trial functions as

Dn(x, t) := Dn,1(x) +
t− tn−1

kn
Dn,2(x),

δn(x, t) := δn,1(x) +
t− tn−1

kn
δn,2(x)

for some Dn,1(x),Dn,2(x) in ND1(Thn) and δn,1(x), δn,2(x) in RT 0
1(Khn). Moreover,

our test functions are defined by

Φ1(x, t) := Φ(x), Φ2(x, t) :=
tn − t
kn

Φ(x) and Φ(x) ∈ ND1(Thn) .

Similary we define the test functions for ψ ∈ RT 0
1(Khn).

Then, considering the bilinear operator

Bw(u,λ;v, ζ) :=

∫

In

{(ν̃(curlw) curlu, curlv)Ω +A(u,λ;v, ζ)} dt

the problem (5.24) is equivalent to:

For n = 1, . . . , N , find Dn,1,Dn,2 ∈ ND1(Thn) and δn,1, δn,2 ∈ RT 0
1(Khn), such that

B
U

(j)
n

(Dn,1, δn,1;v, ζ) +
1

kn
(σDn,1,v) +

1

2
B

U
(j)
n

(Dn,2, δn,2;v, ζ) +
1

kn
(σDn,2,v) =

=
1

kn
(σD−

n−1,v)−
1

kn
bn(U (j)

n ,λ(j)
n ;v, ζ) (5.21)
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and

1

2
B

U
(j)
n

(Dn,1, δn,1;v, ζ) +
1

kn

(σDn,1,v) +
1

6
B

U
(j)
n

(Dn,2, δn,2;v, ζ) +
1

2kn

(σDn,2,v) =

=
1

kn

(σD−
n−1,v)− 1

2kn

bn(U (j)
n ,λ(j)

n ;v, ζ) (5.22)

for all v ∈ ND1(Thn) and all ζ ∈ RT 0
1(Khn) .

Notice that (5.21) and (5.22) are equivalent to the following linear system of equations:




(
λ̃+ σ

kn

)
M+R∗−W C

(
λ̃
2
+ σ

kn

)
M+ 1

2
R∗− 1

2
W 1

2
C

B V 1
2
B

1
2
V

(
λ̃
2
+ σ

kn

)
M+ 1

2
R∗− 1

2
W 1

2
C
(

λ̃
6
+ σ

2kn

)
M+ 1

6
R∗− 1

6
W 1

6
C

1
2
B

1
2
V 1

6
B

1
6
V







Dn,1

δn,1

Dn,2

δn,2




=




A1

G1

A2

G2




(5.23)

where right hand side is abreviated by

A1 :=
σ

kn
M
(
D−

n−1 + U−
n−1

)
+

1

kn
F1 −

σ

kn
M
(
U

(j)
n,1 + U

(j)
n,2

)
−RNL +WU(j)

n − Cλ(j)
n ,

A2 :=
σ

kn
M
(
D−

n−1 + U−
n−1

)
+

1

k2
n

F2 −
σ

2kn
M
(
2U

(j)
n,1 + U

(j)
n,2

)
− 1

2
RNL +

1

2
WU(j)

n −
1

2
Cλ(j)

n ,

G1 := −BU(j)
n − Vλ(j)

n ,

G2 := −1

2
BU(j)

n −
1

2
Vλ(j)

n

and

(F1)i :=

(∫

In

f dt,Φi

)
,

(
RNL

)
i
:= (ν

(
|curlU(j)

n |
)
curlU(j)

n , curlΦi),

(F2)i :=

(∫

In

(tn − t)f dt,Φi

)
, (R∗)ik := (ν̃

(
curlU(j)

n

)
curlΦi, curlΦk),

(M)ik := (Φi,Φk), (W)ik := 〈W(γDΦi), γDΦk〉,

(B)ik := 〈(I −K)γDΦi, ψk〉, (C)ik := 〈K̃(γNψi), γDΦk〉,

(V)ik := 〈Vψi, ψk〉,

where {Φk}k=1,...,M is a basis of ND1(Thn) and {ψk}k=1,...,m a basis of RT 0
1(Khn).
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5.2 Solution procedure

Algorithm 4 Newton’s Algorithm for the solution of the nonlinear system

Require: • Set the partition 0 = t0 < t1 < · · · < tN = T of the time interval [0, T ]

into subintervals In := (tn−1, tn] of length kn := tn − tn−1.

• Set the initial condition

U−
0 = lim

t→0−
U1(0 + t) = 0 .

• Set the tolerance ǫ > 0.

• Set initial solution (U
(0)
1 ,λ

(0)
1 ), which can be the solution of the linear

problem, i.e., ν ≡ const. , or choose (U
(0)
1 ,λ

(0)
1 ) = (0, 0).

for n = 1, 2, · · · , N do

for j = 0, 1, 2, · · · do

(i) Compute the load vector

bn(U (j)
n ,λ(j)

n ;v, ζ) : =

∫

In

{
(f ,v)− (σU̇n

(j)
,v)− Cν(U (j)

n ,λ(j)
n ;v, ζ)

}
dt

− (σ
[
Un

]
n−1

,v+
n−1)

(ii) If ‖bn‖l2 :=
√

bn · bn ≤ ǫ, then goto (b)

(iii) Find the increment (D(j+1)
n , δ(j+1)

n ) ∈ Vn,l
h ×Ṽn,l

h by solving the problem

Q
U

(j)
n

(D(j+1)
n , δ(j+1)

n ;v, ζ) = bn(U (j)
n ,λ(j)

n ;v, ζ) (5.24)

for all v ∈ Vn,l
h and all ζ ∈ Ṽn,l

h .

(iv) Update the solution

(U(j+1)
n ,λ(j+1)

n ) = (U(j)
n ,λ(j)

n ) + (D(j+1)
n , δ(j+1)

n ) ∈ Vn,l
h × Ṽn,l

h .

(v) Set j = j + 1 and goto (a)

Initialise the next time step:

• Set

U−
n = lim

t→0−
Un+1(tn + t) = U(j)

n (tn).

• Set initial solution (U
(0)
n+1,λ

(0)
n+1), which can be the solution of the linear

problem, i.e., ν ≡ const. , or (U
(0)
n+1,λ

(0)
n+1) := (0, 0).

If n < N , goto (a). Otherwise exit, if the final time T is achieved.

(a)

(b)

(c)
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5 A nonlinear, time dependent eddy current problem

Example 5.2.1 We define Ω := (−1, 1)3 and for t ∈ [0, 1] we consider that the exact

solution of (5.2) - (5.7) is given by

u(t,x) = g(t)v(x) = te−
1
3
t curl IΩ(ρ(y))(x), x ∈ Ω,

where

IΩ(ρ(y))(x) =

∫

Ω

1

‖x− y‖ρ(y) dy

with

ρ(x) := ((1− x2
1)(1− x2

2)(1− x2
3))

2x1x2x3(1, 1, 1)T, x in Ω,

(cf. Example 4.2.2).

We consider a linear and a nonlinear problem, i.e., we choose ν = ν(1) or ν = ν(2) in

(5.19a) where

ν(1)(s) = 1.0, (5.25)

ν(2)(s) = 0.001 + (1.0− α)
s8

s8 + β
(5.26)

with α = 0.001 and β = 100. The right hand side is chosen to yield the exact solution

 0
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 1

 0  1  2  3  4  5  6

Figure 5.1: Graph of the function ν(2)(s).

(see Page 79) in both cases.

We obtain the solution of the scheme (5.20) by applying the Newton method presented

in Algorithm 4, which stops if the Euclidean norm of (D, δ) on each nodal point tn is

less than 10−6 The linear system (5.23) are solved using Inverse block preconditioners

(see Section 4.2.1) and HMCR as fast solver.

Figures 5.2 and 5.3 give the error e1 := ‖u − U h‖L2(Ω) and the error in energy norm

e2 and their respectives convergence rates with respect to the degree of freedom DOF.

Column 6 on Figure 5.2 gives the Newton’s steps needed for convergence.
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10
2

10
3

10
4

10
−2

10
−1

 

 

e
2

e
1

DOF e1 αnl1 e2 αnl2 Iter

160 0.0245 - 0.1529 - 10

400 0.0242 -0.0163 0.1497 -0.0231 16

796 0.0172 -0.4934 0.1170 -0.3582 19

1384 0.0135 -0.4386 0.0955 -0.3678 23

2200 0.0113 -0.3805 0.0812 -0.3485 27

4660 0.0089 -0.3230 0.0637 -0.3228 36

Figure 5.2: L2−error e1 := ‖u−Uh‖L2(Ω), error in energy norm e2, convergence

rates αnl1, αnl2 and Newton’s iterations in tn = 0.6 for the non-linear case

in Example 5.2.1.
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10
2

10
3

10
4

10
−2

10
−1

 

 

e
1

e
2

DOF e1 αli1 e2 αli2

160 0.0237 - 0.1521 -

400 0.0233 -0.0208 0.1492 -0.0216

796 0.0157 -0.5756 0.1157 -0.3696

1384 0.011 -0.53347 0.0933 -0.3885

2200 0.009 -0.48133 0.0783 -0.3785

4660 0.006 -0.43827 0.0594 -0.3675

Figure 5.3: L2−error e1 := ‖u − Uh‖L2(Ω), error in energy norm e2 and con-

vergence rates αli1, αli2 for the linear case in Example 5.2.1.
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