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Abstract 

Abstract  

Voltage-gated calcium channels (VGCC) are multi-protein complex that are composed 

of a pore forming subunit CaVα1 and different regulatory subunits. CaVβ subunit is one 

of this modulatory subunits and it strongly regulates the voltage-dependent activation 

and inactivation of VGCCs. Different CaVβ isoforms share two highly conserved 

domains flanked by shorter variable sequences: a Src homology 3 (SH3) domain and a 

guanylate kinase (GK) domain. Here we studied the functional role of both domains on 

the function and expression of heterologous VGCCs in Xenopus oocytes, using the cut 

open oocytes technique. The CaVβ-SH3 and CaVβ-GK domain proteins were purified 

from bacteria and they were injected into oocytes expressing CaVα1 subunit. Our 

results demonstrated: 1) that CaVβ-SH3 promotes channel endocytosis through 

dynamin interaction and that CaVβ dimerization could be the signal that activates this 

pathway, 2) that CaVβ-GK can recapitulate key modulatory properties of full length 

CaVβ on channel activation and that it acts like a brake for channel inactivation. In 

general our findings have introduced a new perspective about the functions of the 

domains of CaVβ, in which the GK domain regulates channel gating while the SH3 

domain link the channel to intracellular process. 

 

Keywords: voltage-gated calcium channel β-subunit, modular structure, endocytosis  

 

  



Zusammenfassung 

Zusammenfassung 

 
Spannungsabhängige Kalziumkanäle (voltage-gated calcium channel: VGCC) sind 

Multiproteinkomplexe, die aus der porenbildenden Untereinheit CaVα1 und unterschiedlichen 

regulatorischen Untereinheiten bestehen. Eine dieser modulierenden Untereinheiten ist die 

CaVβ-Untereinheit. Sie steuert die spannungsabhängige Aktivierung und Inaktivierung der 

VGCCs. Verschiedene CaVβ-Untereinheiten weisen zwei hoch konservierten Domänen - eine 

Src homology 3 (SH3) Domäne und eine Guanylasekinase (GK) Domäne - auf, die von 

kürzeren variablen Sequenzen umgeben sind. Mit der Cut-Open-Technik wurde der Einfluss 

beider Domänen auf Funktion und Expression von heterolog in Xenopus Oozyten 

exprimierten VGCCs untersucht. Die aus Bakterien aufgereinigten SH3- und GK-Proteine der 

CaVβ-Untereinheit wurden direkt in Oozyten, die die CaVα1-Untereinheit exprimierten 

injiziert. Unsere Ergebnisse zeigen: 1) dass CaVβ-SH3 die Endozytose des Kanals über eine 

Interaktion mit Dynamin fördert und dass die CaVβ-Dimerisierung möglicherweise das 

aktivierende Signal dieses Signaltransduktionsweges ist und 2) dass CaVβ-GK modulierende 

Schlüsseleigenschaften auf die Kanalaktivierung des vollständigen CaVβ übernehmen kann 

und dass CaVβ die Kanalinaktivierung verlangsamt. Unsere Ergebnisse haben eine neue 

Perspektive über die Funktion der CaVβ Domänen eröffnet. Einerseits reguliert die GK-

Domäne das Schaltverhalten des Kanals, während die SH3-Domäne ihrerseits eine 

Verbindung zu intrazellulären Prozessen herstellt. 

 

Stichwörter: Spannungsabhängige Kalziumkanäle CaVβ Untereinheiten, modulare Struktur 

Endozytose 
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Introduction 

2. Introduction 
 
The intracellular and extracellular environments of a living cell are separated by a 

plasma membrane that by itself is impermeable to water, hydrophilic molecules and 

ions. Diverse proteins inserted inside of this membrane are responsible for the 

transport of these hydrophilic compounds. These proteins belong to two major groups: 

transporters and channels (Hill, 1993a) 

 

Ion channels are pores, which by opening allow the passive flow of specific ions in the 

direction of their electrochemical gradient. Opening of a channel can be accomplished 

in several ways, one of them is through a change in the membrane potential, and 

channels that open following this mechanism are called voltage-gated ion channels. 

 

Voltage-gated ion channels belong to a super family of ion channels that have in 

common the presence of a voltage sensor that led the opening of the pore after a 

membrane depolarization.  Voltage-gated calcium channels (VGCCs) belong to this 

family, they mediate the influx of Ca2+ ions into eukaryotic cells in response to 

membrane depolarization. Changes in intracellular calcium concentrations regulate 

various cellular functions including: neurotransmission, muscular excitation-

contraction coupling, hormone secretion and gene expression (Catterall, 2000). 

VGCCs have been found mainly in all excitatory eukaryotic cells but they are also 

present in low levels in not excitatory tissues. They play a crucial role in calcium 

signalling cascade (Dolphin, 2003a). 
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Introduction 

2.1 Subunit composition of voltage-gated calcium channels. 

Fatt and Katz in 1953 were the first that identified the VGCCs. Approximately thirty 

years later, the first calcium channel protein was isolated. They are heteromultimers 

consisting of a main pore forming subunit that associates with different auxiliary 

subunits to form functional channels.  The pore forming subunit was named Cavα1 and 

it contains all determinants for functional voltage gated ion channels. The auxiliary 

regulatory subunits were named Cavβ, Cavα2, Cavδ and Cavγ (Fig.2.1) (Flockerzi et al., 

1986; Sieber et al., 1987; Takahashi et al., 1987; Leung et al., 1988). 

 

2.2 Classification of VGCCs 

The first classification of the VGCCs was based on their electrophysiological 

properties. It was found that some calcium channels need only a small membrane 

depolarization to be activated while others need a higher change in the membrane 

potential. Based on this distinctive characteristic VGCCs were classified into two 

groups: low voltage activated (LVA) and high voltage activated (HVA) calcium 

channels (Carbone and Lux, 1984). Because of their little conductance LVA channels 

were also called T channels (T for Tiny).  

 

Further studies led to the identification of the pharmacological properties of VGCCs. 

Channels sensitive to 1,4-dihydropyridine (DHP) were called L-type (Hess et al., 

1984).  Additionally channels sensitive to ω-conotoxin GVIA were classified as N-

type channels and those sensitive to ω-agatoxin IVA as P-type. Other ω-agatoxin IVA 

sensitive channels were identified in cerebellar granule cells and termed Q-type, but 

they were combined with P-type and they were called P/Q. There is  another  group  of  

 10
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Figure 2.1 Proposed schematic structure of VGCCs. The Cavα1 is the pore forming 

subunit through which calcium ions can pass in the direction of their electrochemical 

gradient upon channel opening. Cavβ, Cavα2, Cavδ and Cavγ are regulatory subunits 

that modulate channel activity. 
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channels that are insensitive to these toxin and that were called R-type (McCleskey et 

al., 1987; Mintz et al., 1992; Randall et al., 1995). 

 

After the cloning of the Cavα1 subunit a nomenclature was established on the base of 

the differences in the amino acids sequences of each isoform (Table 2.1) (Dolphin, 

2003a). In the last years, with the increase on the number of cloned Cavα1 subunits, a 

new classification was proposed in which a number is give to each isoform (Table 2.1) 

(Ertel et al., 2000).  

 

2.3 Cavα1 subunits  

Cavα1 is the pore forming subunit of the VGCCs. It is a polypeptide chain with 24 

transmembrane segments. These segments are organized into four homologous repeats 

or domains, each containing six transmembrane segments (Fig 2.2). The four domains 

are linked through large cytoplasmic loops that are capable of interact with a number 

of modulatory proteins including the Cavβ subunit (Stotz et al., 2003). 

 

The sequence of Cavα1 reveals the presence of positive lysine and arginine residues in 

the S4 segment of each domain, which are supposed to form the voltage sensor that 

promotes the voltage activation. The pore is principally permeable to calcium and 

barium and the selectivity filter is attributed to four glutamate residues in close 

proximity in the loop linking the S5-S6 segments and that line the pore (Dolphin, 

2006).   
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α1S Cav 1.1 Skeletal Muscle 

α1C Cav 1.2 heart, smooth muscle 

α1D Cav 1.3 Neurons, secretory cells, heart 

 

 

DHP 

Sensitive 

 

 

L 

α1F Cav 1.4 Retina, sensory neurons 

P/Q α1A Cav 2.1 Neurons 

N α1B Cav 2.2 Neurons 

 

 

 

HVA 

 

DHP 

Insensitive R α1E Cav 2.3 Neurons 

α1G Cav 3.1 Brain 

α1H Cav 3.2 Brain 

 

LVA 

 

- 

 

T 

α1I Cav 3.3 Brain 

 

 

Table 2.1 Nomenclature, classification and tissue distribution of Cavα1 subunits 
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Figure 2.2 Membrane topology VGCCs. Blue barrels represent the transmembrane 

segments of Cavα1. In green is showed Cavβ subunit and in grey Cavα2δ subunit. AID 

represents the α interaction domain present in the loop I-II  
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The loop joining the domains I and II (loop I-II) is an important region for VGCC 

regulation. It contains an eighteen amino acids long consensus sequence, highly 

conserved among HVA VGCCs, the so called α interaction domain (AID). The AID 

sequence constitutes the primary binding site for the Cavβ subunit, the major 

regulatory subunit of VGCCs (Pragnell et al., 1994). Independent of its role like a 

binding pocket for Cavβ, several studies have found other functions to this loop. Leroy 

et al. (2005) and Dafi et al. (2004) described that mutations in this region affect the 

voltage-dependent inactivation of the channels and Bichet et al. (2000) reported that it 

contains an endoplasmic reticulum retention signal.  

 

The N-terminus and the C-terminus of the channels are intracellular located. The 

function of the N-terminus is not very well understood, but a mutant channel with 

truncations in this region exhibit a better membrane expression than the wild type (Wei 

et al., 1996). This supports the idea that this region contributes to intracellular 

trafficking of Cavα1. The role of the C terminus has been associated with the Ca2+ 

dependent inactivation mechanism in L-type channels and with voltage-dependent 

inactivation in other members of the family (Pitt et al., 2001). 

 

2.4 Cavα2δ subunits  

Cavα2δ subunits are encoded by four genes (Cavα2δ1 through Cavα2δ4) with molecular 

masses between 140 and 170 kDa. Cavα2 and Cavδ are proteolytically cleaved from 

one single polypeptide chain, which is later linked by a disulfide bond to yield the 

mature Cavα2δ subunit (Fig 2.2) (De Jongh et al. 1990). This subunit has modulatory 

effects on the time course and voltage dependence on current activation and 
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inactivation, and on the trafficking of Cavα1 subunits to the plasma membrane 

(Bangalore et al., 1996; Felix et al., 1997; Qin et al.; 1998).   

 

2.5 Cavγ subunits  

Cavγ are encoded by eight genes (Cavγ1 through Cavγ8). They have molecular masses 

of approximately 32 kDa. This subunit was originally found associated with the 

skeletal muscle L-type channels (Bosse et al., 1990; Jay et al.,1990) but recently some 

Cavγ isoforms have been found in other tissues (Klugbauer et al., 2000). The regulatory 

functions of this subunit remain unclear but some small inhibitory effects on channel 

activation have been observed (Freise et al., 2000; Arikkath et al., 2003). 

 

2.6 Cavβ subunits  

Cavβ is the main regulatory subunit of VGCCs. Until now four different non allelic 

genes encoding for this proteins have been identified and cloned, each one with 

different splices variants that make even higher the total number of Cavβ (Hullin et al., 

1992; Birnbaumer et al., 1998). 

 

Diverse studies have revealed the tissue distribution of the Cavβ. Cavβ1 is expressed in 

skeletal muscle, cardiac tissue and nervous system. Cavβ2 and Cavβ3 exist 

preferentially in cardiac muscle but also at low levels in neurons, Cavβ4 is present in 

the nervous system (Hullin et al., 1992; Perez Reyes et al., 1992; Castellanos et al., 

1993; Birnbaumer et al., 1998; Dolphin et al., 2003b). Analysis of the co-distribution 

of the Cavα1 and Cavβ subunits suggests that they could coexist in diverse 

combinations in different tissues, but some pairs could predominate over others, 
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depending of the subunit concentration and the difference in the affinities between 

them (Dolphin, 2003b). 

 

2.6.1 Structure of the Cavβ subunits  

The molecular masses of Cavβ subunits range between 52 and 78 kDa. Sequence 

alignments of several Cavβ isoforms reveal the presence of five regions: two central (II 

and IV) highly conserved among all Cavβ, flanked by three regions (I, III and V) 

variable in sequence and length (Fig. 2.3A).  

 

The crystallographic structures of three different Cavβ isoforms revealed that the first 

conserved domain encompasses a Src homology-3 (SH3) domain and the second a 

Guanylate Kinase (GK) domain. (Fig.2.3B)(Chen et al., 2004; Opatowsky et al., 2004; 

Van Petegem et al., 2004). These domains are found in members of the membrane-

associated guanylate kinase (MAGUK) family of scaffolding proteins. Typical 

MAGUKs also contain at the N-terminus one to three PDZ domains. Cavβ was then 

identified as a novel member of MAGUK family. 

 

The crystallographic structures of Cavβ were also solved in a complex with the AID 

peptide of the Cavα1 subunit (Fig. 2.3B).They show that the GK domain is interacting 

with the AID while SH3 does not contribute to this association and it is facing to the 

opposite side of the GK-AID interaction surface (Chen et al., 2004; Opatowsky et al., 

2004; Van Petegem et al., 2004).   
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The SH3 domains are modules controlling protein-protein interactions by binding to 

proline rich domains (PRD) presents in specific ligand proteins. In Cavβ many of the 

canonical SH3 residues necessary for the interaction with PRD are buried into the 

structure puzzling a possible function for this domain (Chen et al., 2004; Opatowsky et 

al., 2004; Van Petegem et al., 2004). 

 

The GK domain, like in many other MAGUK proteins, does not have enzymatic 

activity due to the fact that the glycine-rich ATP binding motif present in true 

Guanylate Kinase is not conserved in Cavβ-GK (Dolphin, 2003b).  

 

2.6.2 Functions of the Cavβ subunits  

The association of one single molecule of Cavβ subunit to Cavα1 suffices for 

modulation of the channel (Dalton et al., 2005). This association is reversible at the 

level of plasma membrane but the signal that promotes dissociation from the channel is 

unknown (Hidalgo et al., 2006).   

 

Cavβ subunits promote and increase the current density of VGCCs. This effect can be 

attributed to an increase on channel activation and/or on plasma membrane expression 

(Dolphin, 2006). All Cavβ subunits shift the voltage-dependence activation of the 

VGCCs toward higher hyperpolarizing voltages, which means that in the presence of 

Cavβ subunit the channel can achieve the same open probability with less membrane 

depolarization (Josephson and Varadi, 1996; Kamp et al., 1996). Cavβ increase the 

trafficking   of   the   channels   to   the   plasma   membrane,  probably  masking  some  
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A 

 

 

 

 

B  

 

 

 

 

 

 

 

 

 

Figure 2.3 Structural organization of Cavβ. A Representation of Cavβ primary 

structure showing the conserved D1 and D2 regions flanked by the variable regions, 

D1 encompass a SH3 domain and D2 a GK domain. B Three dimensional structure of 

Cavβ: D1 correspond to SH3 domain, D2 to GK domain, C to C-terminal, N to N-

terminal and AIDα1 to the AID sequence from Cavα1.          
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endoplasmic reticulum retention signals presents in the loop I-II of the Cavα1 subunits 

(Bichet et al., 2000).    

 

Cavβ effects channel inactivation in an isoform specific manner. All Cavβ isoforms 

except Cavβ2a inhibits inactivation while the other ones facilitate (Olcese et al., 1994). 

This particular property of Cavβ2a is attributed to palmytoilation of two cysteine 

residues at position three and four in N-terminus region of this protein (Chien et al., 

1996; Qin et al., 1998; Hurley et al., 2000; Restituito et al., 2000). 

 

In summary, Cavβ has a crucial role on the regulation of VGCCs function. It exhibits a 

modular structure consisting of two highly conserved protein-protein interaction 

domains, an SH3 and a GK domain. While the GK domain interacts directly with AID 

the SH3 domain does not participate at all in the binding to AID. This structural 

arrangement suggests that GK is responsible for channel modulation while no function 

for the SH3 domain can be deduced. It is likely that this domain interact with other 

cellular partners. Until now no functional role has been described for any of these 

domains.  

 

The aim of this work was to investigate the functional role of the SH3 and GK 

domains of Cavβ and their effect on modulation of VGCCs using a combination of 

electrophysiological, biochemical and molecular biology techniques. We demonstrated 

that while the SH3 domain promotes endocytosis by interacting with dynamin, an 

endocytic protein, the GK domain suffices for channel’s modulation. These results 
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provided a new functional map for Cavβ and added a new function to this regulatory 

subunit emphasizing its multifunctional nature.  
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Discussion 

3. Discussion  

Cavβ is a two-domain protein compose of a SH3 and a GK domain. It binds with high 

affinity to the AID sequence within the loop I-II of the Cavα1 subunit and regulates 

many electrophysiological properties of the channel functions. Despite of several 

attempts, any of the functions of the full length Cavβ have been related with any of its 

domains. Here we studied the functions of these domains analysing the effect of the 

injection of recombinant Cavβ-SH3 and Cavβ-GK domains into Xenopus oocytes 

expressing Cavα1 and using several biochemical and molecular biology methods. 

 

3.1 Cavβ-SH3 promotes endocytosis via dynamin interaction 

We purified from bacteria a recombinant Cavβ2a-SH3 that eluted as a mono-disperse 

peak from a size exclusion chromatography with a molecular weight corresponding to 

a monomeric form. 

 

We studied the effect of the injection of recombinant Cavβ2a-SH3 domain into oocytes 

expressing Cav1.2, using cut open oocytes technique. This technique allows us to 

measure ionic and gating currents. Total charge movement (Qon) were calculated as the 

integral of the gating currents and they represent the total number of charges that are 

moved leading to channel opening (Benzanilla and Stefani, 1998). Every channel has a 

fix number of charges that move in response to depolarization and, hence Qon it is 

proportional to the number of channels (Equation 3.1) (Hill, 1993b). 
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Qon= N x q         Equation 3.1 

Where N is the total number of channel on the plasma membrane and q are the charges 

of an unitary channel that move in response to depolarization 

 

After the injection of Cavβ2a-SH3 we observed a dramatic decrease in Qon (Fig 6.1C). 

This decrease proceeds without changes in the voltage or time dependence of Qon (Fig. 

6.1F and G) and it likely reflected a reduction in the number of channels in the cell 

surface. Channel surface expression using immunoassay experiment with oocytes 

expressing HA-tagged Cav1.2 channels showed that the drop of Qon corresponds to a 

decrease in the number of channels on the plasma membrane (Fig 6.2A).   

 

An arrest of channels exocytosis or enhanced endocytosis may be responsible for the 

reduction in the number of channels expressed on the plasma membrane upon    

Cavβ2a-SH3 injection. We discriminated between these two possibilities performing the 

experiments in the presence of bafilomycin or Dynamin K44A, the first is a blocker of 

the exocytosis and the second is a negative dominant mutant that produces an arrest of 

the endocytosis (Herskovits et al., 1993; Damke et al., 1994). Using this approach we 

could see that the effect was still active in the presence of bafilomycin (Fig 6.2B and 

C) but that it was inhibited by Dynamin K44A (Fig 6.3B and C) and we could 

conclude that the dramatic decrease observed in the number of channel after the 

injection of Cavβ2a-SH3 was due to an activation of the endocytosis of the channels. 

 

Any previous publication had reported this endocytic effect of Cavβ2a-SH3 or full 

length Cavβ2a and we did not know the possible mechanism. Three differents 
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crystallographic structure of Cavβ in a complex with the AID show that Cavβ-SH3 

does not associate directly with the AID sequence of Cavα1, but they can not exclude 

that the SH3 domain interact with other regions of the channel (Chen et al., 2004; 

Opatowsky et al., 2004; Van Petegem et al., 2004). We decided, as a first step to 

understand the causes of this effect, to test if the recombinant Cavβ2a-SH3 can directly 

interact with Cav1.2 subunit expressed in mammalian cells.  

 

Using pull-downs assay we were not able to detect interaction of Cavβ2a-SH3 with 

Cav1.2. This result excluded the possibility that Cavβ-SH3 associate with other 

segments of the channel different to AID and it corroborated the hypothesis that Cavβ-

SH3 could associate with other cytoplasmic proteins (Chen et al., 2004; Opatowsky et 

al., 2004; Van Petegem et al., 2004). 

 

The SH3 domains are modules that interact with PRD containing proteins (Solomaha 

et al., 2005). Dynamin is one of these proteins that contain a PRD and it has an 

important role in cellular endocytosisis (Takei et al., 2005; Newton et al., 2006). It is a 

multidomain protein with a molecular mass of approximately 100 kDa and with 

GTPase activity that it is responsible of excising the endocytic vesicle from the plasma 

membrane (Hinshaw, 2000; Mark et al., 2001). 

 

Because dynamin is a protein involved in the endocytosis and it contains a PRD (Grabs 

et al., 1997; Gad et al., 2000), we decided to study if the recombinant Cavβ2a-SH3 is 

able to interact in vitro with dynamin. 
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Using a pull-down assay we detected binding of the two proteins (Fig 6.4A). This 

interaction could be inhibited by pre-incubating the mix of both proteins with a GST 

fusion protein containing a peptide derived from the PRD of dynamin residues 829-

843 (GST-Dyn829-842) (Fig 6.4B). This suggests that the association dynamin-Cavβ2a-

SH3 is through the PRD of dynamin.  

 

Cavβ-SH3 contains all the canonical residues necessaries to interact with PRD 

domains, nevertheless, simulated docking predictions indicated that Cavβ-SH3 is 

unlikely to interact with PRD unless a considerable rearrangement occurs (Chen et al., 

2004). However, our results suggest that the interaction between dynamin PRD and 

Cavβ-SH3 may be mediated by non canonical residues in Cavβ-SH3 or alternatively, 

exposition of canonical residues may be tuneable by a yet unknown regulatory protein 

or event. 

  

In order to know if the interaction dynamin-Cavβ2a-SH3 was responsible of the 

endocytic effect promotes by Cavβ2a-SH3. We co-injected a mix of Cavβ2a-SH3 and 

GST-Dyn829-842 into oocytes expressing Cav1.2 and we found that the endocytosis 

promote by Cavβ2a-SH3 domain was inhibited ((Fig 6.3D), this proved that the 

interaction Dynamin-Cavβ2a-SH3 was the responsible of the activation of the 

endocytosis.  

 

The association of dynamin with SH3 domains containing proteins has been related 

with endocytosis and, even when the mechanism is not very well understood, it is 
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know that this association modulate the GTPase activity of dynamin and its 

oligomerization state (Yoshida et al., 2005) 

 

Dimerization is probably a crucial step in the endocytosis process. It has been reported 

that some of the SH3 containing proteins that interact with dynamin and that are 

involved in endocytosis form homo or heterodimers in vivo (Wigge et al., 1997; 

Ringstad et al., 2001). Using Blue Native PAGE (BN-PAGE) we demonstrated that at 

least in vitro Cavβ2a-SH3 dimerizes through a disulfide bond and a single substitution 

of cysteine to alanine at position 113 abolish dimerization and result in the 

dimerization-deficient mutant Cavβ2a-SH3 C113A  (Fig 8.1).  

 

We examined the ability of Cavβ2a-SH3 C113A to decrease Qon after injection in 

oocytes. This mutant exhibited a reduced capability to promote endocytosis, but still 

was able to interact with dynamin (Fig 8.2). This finding suggested that dimerization 

of Cavβ2a-SH3 is an important step to activate endocytosis. In order to prove this 

hypothesis we designed a concatameric Cavβ2a-SH3 C113A by joining through a linker 

two single molecules. We found that this protein could rescue the endocytic function 

of the wild-type Cavβ2a-SH3 (Fig 8.3C), demonstrating that Cavβ2a-SH3 dimerization 

is crucial to promote the effect. 

 

Because an endocytic function has never been described as a property of full length 

Cavβ, it was of crucial relevance for us to evaluate the effect of the full length protein. 

We found through measurements of Qon and cell surface assays that full length Cavβ2a 

can reduce the number of channels in the plasma membrane but just when the Cavα1-
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Cavβ primary interaction site is disrupted (Cav1.2 ΔAID mutant) (Fig 6.6). Cavβ2a co-

injected with loop I-II also failed to promote endocytosis of the Cav1.2 ΔAID mutant 

(Fig 8.4C), suggesting that Cavβ2a has to be free of any interaction with Cavα1 to 

promote this effect.  In vitro pull down assays showed also that Cavβ2a  binds to 

dynamin and that like in the case of Cavβ2a-SH3 this interaction is antagonized by 

GST-Dyn829-842 (Fig 6.5). 

 

Due to the fact that Cavβ2a-SH3 and full length Cavβ promote channel endocytosis 

without direct interaction with the channel protein, we examined their effects onto the 

distantly related Shaker potassium channel that lacks binding activity to the Cavβ 

(Bichet et al., 2000). Injection of Cavβ2a-SH3 to oocytes expressing the Shaker 

channel resulted in not changing in channel activation (Fig 6.S1) but ionic currents 

were dramatically reduced (Fig 6.5A) after protein injection, suggesting a decrease in 

the number of channel in the plasma membrane. This current reduction was also 

partially blocked by pre-incubation of Cavβ2a-SH3 with GST-Dyn829-842. Cavβ also 

reduce Shaker´s ionic currents to a similar degree as Cavβ2a-SH3 without changes in 

voltage dependent. This current was also antagonized by GST-Dyn829-842. These results 

corroborated that binding of Cavβ2a-SH3 or full length Cavβ to the protein to be 

sequestered is not necessary. 

 

Previous studies have reported the existence of homo-dimers in other members of the 

MAGUK family (Christopherson et al., 2003; Weifeng et al., 2008). Since our findings 

demonstrate that dimerization is a crucial step on the endocytosis process promoted by 
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Cavβ2a-SH3, we explored the ability of full length Cavβ2a to form dimers in vitro and in 

vivo.  

 

Using BN-PAGE and pull-down assays, we detected the presence of a dimeric form of 

this protein (Fig 8.4A and B) but we found also that full length Cavβ2aC113A is not a 

dimerization defective mutant, suggesting a dimeric conformation stabilized by 

additional interactions. We proposed that like in the case of Cavβ2a-SH3 dimerization 

of the full length protein is responsible of the endocytic effect. Unfortunately up to 

now we failed to produce a Cavβ dimerization-deficient mutant that can prove our 

hypothesis.  

 

It has been reported that just one Cavβ molecule suffices to regulated most of the 

electrophysiological properties of VGCCs, and that probably the stoichiometry Cavα1-

Cavβ is one-to-one (Dalton et al., 2005). Based in our results, we envision that 

dimerization could be the switch for controlling Cavβ functions and that it provides 

new regulatory characteristics to this protein. Hidalgo et al. (2006) have demonstrated 

that the interaction Cavα1-Cavβ in the plasma membrane is reversible, this mechanism 

could provide a source of free Cavβ that can dimerize. We proposed a model where 

Cavβ binds to the channel as a monomer and when unbound may dimerize, interact 

with dynamin and promote endocytosis (Fig 3.1).  
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Figure 3.1 Model for the functional switch of CaVβ from calcium channel modulator to 

endocytosis activator. CaVβ binds as a monomer to the AID site located within the 

intracellular loop joining domain I and II of CaVα1. For simplicity the other loops were 

removed). Dissociation of CaVβ allows its interaction with dynamin and dimerization. Only 

interaction of the dimeric form of CaVβ with dynamin with would leads to endocytosis. The 

mechanism by which this interaction results in vesicle internalization remains to be 

investigated.  
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3.2 Cavβ-GK suffices to modulate gating of the channel 

The crystallographic structure of Cavβ provides the information, that Cavβ-GK is the 

domain interacting directly with the AID. Despite several attempts, the ability of 

isolated Cavβ-GK to mimic Cavβ functions remained controversial (McGee et al., 

2004; Takahashi et al., 2004; Maltez et al., 2005; He et al., 2007; Richards et al., 

2007).  

 

First we assessed the ability of the Cavβ2a-GK expressed in mammalian cells to interact 

with the AID sequence present into the loop I-II of Cav1.2. We were able through a 

pull-down assay to detect that both proteins interact with each other (Fig 7.1D). This 

agrees with the information that provides the crystallographic structure (Chen et al., 

2004; Opatowsky et al., 2004; Van Petegem et al., 2004) and it suggests that probably 

Cavβ-GK suffices to modulate the channel. 

 

We studied the effect of the refolded Cavβ-GK modules on Xenopus oocytes 

expressing two types of α1 pore-forming subunits, Cav1.2 and Cav2.3, and compared it 

to the action of recombinant full length Cavβ isoforms. We expressed and purified 

from bacteria the GK of Cavβ1b and Cavβ2a. They were accumulated in inclusion bodies 

from where they were refolded (Fig 7.1C).  

 

We found that injection of Cavβ2a-GK into oocytes expressing Cav1.2 produces similar 

effect on channel activation that Cavβ2a, resulting in a leftward shift in the current-

voltage relationship (Fig 7.2B), but in the case of Cavβ2a-GK this effect was just seen 

when the channel expression levels were reduced to the minimum, maybe because the 
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concentration of the injected protein was very low and/or its stability into the oocytes 

is low too (Fig 7.2A). 

 

To overcome these two problems we generated a construct where the Cavβ2a-GK was 

covalently linked to Cav1.2 (Cav1.2- Cavβ2a-GK) and compared with Cav1.2 linked to 

Cavβ2a (Cav1.2-Cavβ2a) (Fig 7.3A). With a similar approach it was previously 

demonstrated that just one single Cavβ molecule is enough to modulate the channel 

(Dalton et al., 2005).  

 

When covalently linked to Cav1.2, Cavβ2a-GK was as efficient as Cavβ2a in increasing 

the ionic current to charge movement ratio (I/Q) and leftward shifting the current-

voltage relationship. This effect was abolished when the Cavα1-Cavβ primary 

interaction site was disrupted through a point mutation and it proves that Cavβ-GK 

suffices to modulate channel activation (Fig 7.3B and C). 

 

That isolate Cavβ-GK can recapitulate the modulatory properties of full length Cavβ on 

channel activation is a new finding. It implies that the association Cavα1-GK mediated 

by the AID is enough to regulate channel activation and that this interaction is critical 

for channel modulation as it was suggested by Van Petegem et al. (2008). 

 

The possible effect of Cavβ-GK on channel inactivation was also very interesting to 

study. It has been reported that different Cavβ isoforms have distinctive effect on this 

property. While Cavβ2a is unique in its ability to inhibit inactivation, the other Cavβ 

isoforms facilitate it. Cavβ2a slow-down inactivation, increases the fraction of non-
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inactivating current and it shifts the steady-state inactivation curve towards more 

positive potentials (Olcese et al., 1994; Qin et al., 1996; Sokolov et al., 2000; 

Restituito et al., 2000; Hering et al., 2000; Jones et al., 2000). Other isoforms, like for 

example Cavβ1b, accelerate channel inactivation and shift to more negative potentials 

the voltage-dependent inactivation (Olcese et al., 1994). These distinguishing 

modulatory properties of Cavβ2a have been broadly attributed to palmitoylation of the 

two contiguous cysteine residues at position 3 and 4 in the N-terminus region (Cavβ2a 

C3,4S) (Chien et al., 1996; Qin et al., 1998; Hurley et al., 2000; Restituito et al., 2000).   

 

We found that the injection of Cavβ2a-GK and Cavβ1b-GK into oocytes expressing 

Cav2.3 produces, in both case, a slow-down of the inactivation and a shift of the 

steady-state inactivation to more positive potentials, results that are similar to those 

obtained with Cavβ2a. That demonstrates that Cavβ-GK acts as a brake to inhibit 

voltage-dependent inactivation. An important corollary from this conclusion is that 

inhibition of the inactivation is the intrinsic characteristic of Cavβ, and that facilitation 

of the inactivation promoted by Cavβ1b and other isoforms requires the presence of 

additional structural determinants outside of the GK domain.  

 

Our results also suggest that the palmitoylation of the N-terminus region of Cavβ2a 

seems just to have a secondary role on the modulatory properties of this protein on 

channel inactivation. Maybe, palmitoylation just masks and avoids that some amino 

acids residues outside of the GK domain, and that could be necessaries for facilitate 

channel inactivation; undergo posttranslational modification, but until that moment any 
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previous report supported the idea that channel inactivation can be regulated by 

posttranslational modifications on Cavβ. 

 

On previous reports that describe facilitation of channel inactivation promoted by 

some Cavβ isoforms, Cav2.3 channels have been co-expressed with cRNAs encoding 

Cavβ1b or the palmytolation deficient mutant Cavβ2a C3,4S (Olcese et al., 1994; Qin et 

al., 1996; Qin et al., 1998; Sokolov et al., 2000; Restituito et al., 2000; Hering et al., 

2000; Jones et al., 2000). In these experiments the molecules of Cavβ subunits are for 

some days into the oocytes and in this time they could suffer multiples 

posttranslational modifications.  

 

We decided to study the effect on channel inactivation of recombinant Cavβ1b and 

Cavβ2a C3,4S proteins that were injected just some hours before of perform the 

electrophysiological recordings (late-injection) into oocytes expressing Cav2.3. Under 

this condition these proteins probably will not undergo any posttranslational 

modification and this could reflect a variation in the inactivation phenotype. We found 

that the late-injection of these proteins inhibited the inactivation compared with 

oocytes expressing Cav2.3 alone (Fig 7.7). This it is a dramatic different compared 

with the phenotype that these proteins confer when they are co-express with the 

channel. To be sure that this different was not due to an unfolding of the recombinant 

proteins, we co-injected them together with the cRNA encoding Cav2.3 (co-injection) 

and indeed we found that inactivation was facilitated like in the co-expression 

experiment (Fig 7.7). We concluded that after posttranslational modifications during 
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biogenesis of the channel complex, Cavβ can switch the phenotype conferred to Cav2.3 

from slow-inactivating to fast-inactivating.         

 

All these results demonstrate that Cavβ-GK acts as inhibitory brake for channel 

inactivation and therefore the facilitation of inactivation conferred by isoforms like 

Cavβ1b, requires of additional structural determinants that undergo posttranslational 

modifications and that counteract with this GK-brake like effect.  

 

As new protein partners are being discovered, the functional role of Cavβ is expanding 

rapidly (28;29). Here we found that the SH3 module of CaVβ binds to the endocytotic 

protein dynamin and promotes endocytosis and we also reported that the GK module 

regulates calcium channel function. Together these findings introduce a new 

perspective of Cavβ. Calcium entry through VGCCs upon membrane depolarization 

ensues a transient change in intracellular calcium concentration that regulates diverse 

cellular functions. Integration of these different cellular processes must be tightly 

coordinated in living cells and the domain arquitecture of Cavβ with two functionally 

independent modules appears particularly well suited to orchestrate calcium signaling. 

We suggest that while GK regulates calcium entrance, the SH3 domain links channel 

activity to other cellular processes.  
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4. Conclusions 

Our findings have introduced a new perspective about the functions of the domains of 

Cavβ. Calcium entry through VGCCs on membrane depolarization ensures a transient 

change in intracellular calcium concentration that regulates diverse cellular functions. 

Integration of these different cellular processes must be tightly coordinated in living 

cells, and the architecture of Cavβ, with its two functionally independent domains, 

appears particularly well suited for orchestrating calcium signaling. We suggest that 

whereas Cavβ-GK regulates calcium entrance, the Cavβ-SH3 can down-regulates the 

channels from the plasma membrane under certain physiological conditions and at the 

same time links channel activity to other cellular processes by binding to additional 

cytoplasmic proteins. 
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6.1 Abstract   

High voltage–gated calcium channels enable calcium entry into cells in response 

to membrane depolarization.  Association of the auxiliary β-subunit to the α-

interaction-domain in the pore-forming α1-subunit is required to form functional 

channels.  The β-subunit belongs to the membrane associated guanylate kinase 

class of scaffolding proteins containing a Src homology 3 and a guanylate kinase  

domain. While the latter is responsible for the high affinity binding to the α-

interaction-domain, the functional significance of the Src homology 3 domain 

remains elusive.  Here, we show that injection of isolated β-subunit Src homology 

3 domain into Xenopus laevis oocytes expressing the α -subunit1  reduces the 

number of channels in the plasma membrane.  This effect is reverted by 

coexpressing α1 with a dominant-negative mutant of dynamin, a GTPase involved 

in receptor-mediated endocytosis.  Full length β-subunit also downregulates 

voltage-gated calcium channels but only when lacking the α-interaction-domain. 

Moreover, isolated Src homology 3 domain and the full length β-subunit were 

found to interact in vitro with dynamin and to internalize the distantly related 

Shaker potassium channel. These results demonstrate that the β-subunit regulates 

the turnover of voltage-gated calcium channels and other proteins in the cell 

membrane. This effect is mediated by dynamin and depends on the association 

state of the β-subunit to the α1-pore forming subunit.  Our findings define a novel 

function for the β-subunit through its Src homology 3 domain and establish a link 

between voltage-gated calcium channels activity and the cell endocytic machinery. 
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6.2 Introduction 

Cellular processes including muscle contraction, endocrine secretion, synaptic 

transmission and gene expression (1) depend on the regulated influx of calcium 

through voltage-gated calcium channels (VGCCs). VGCCs are multi-protein 

complexes containing a pore-forming subunit (CaVα1) and a variable number of 

auxiliary subunits. Association of the auxiliary  β-subunit (CaVβ) to a site shared by all 

CaVα1, the so called AID (α-interaction domain), is mandatory to form a fully 

functional VGCC. Homology modelling (2) and the recent high resolution crystal 

structures of three Ca β isoforms (3-5) identified CaV Vβ as a novel member of the 

membrane–associated guanylate kinase (MAGUK) class of scaffolding proteins 

containing a Src homology 3 (SH3) and a guanylate kinase (GK) domain (Fig. 6.1A).  

As shown by the crystal structure of CaVβ complexed to AID, the CaVβ-GK binds to 

the AID whereas CaVβ-SH3 interacts with GK.  Although SH3 domains are known to 

mediate protein-protein interactions by binding to proline rich motifs in ligand proteins 

(6), no interactions mediated by the CaVβ-SH3 have been described yet. Moreover, the 

functional integrity of CaVβ-SH3 domain is uncertain since the residues homologous to 

the ones critical for binding PXXP motifs in canonical SH3 modules are occluded in 

the crystal structure of CaVβ. Intriguingly, canine and human cardiac cells express 

splicing variants encoding short versions of the CaVβ that only encompass the variable 

N- terminal region and the SH3 domain (7;8) (V1 and C1 in Fig. 6.1A, respectively).   

 

Here, we studied the effect of isolated CaVβ-SH3 on calcium channel function and 

expression.  The SH3 domain of the rat β2a isoform of Ca β (βV 2a-SH3) was expressed 
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in bacteria, purified and injected into Xenopus oocytes expressing the cardiac CaVα1 

(CaV1.2) subunit isoform. We found that the β2a-SH3 induces removal of channels 

from the plasma membrane in a dynamin dependent fashion. This function is preserved 

by full length CaVβ in the absence of CaVα1 subunit or when binding to it is disrupted 

by deleting the AID site. Our results define a novel interaction and outline a new 

function for the calcium channel β-subunit.  
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6.3 Materials and Methods 

6.3.1 Recombinant Proteins 

The cDNA encoding the SH3 domain of the rat β2a isoform (Swiss-Prot 

entry:Q8VGC3) encompassing residues 24 to 136 was subcloned between BamHI and 

EcoRI restriction sites by conventional PCR methods into pRSETB vector (Invitrogen) 

to introduce a polyhistidine tag at the N-terminal. The molecular mass predicted by the 

amino acid sequence of the CaVβ2a-SH3 His tagged protein is 16.7 kDa.  The CaVβ2a-

SH3 His tagged was expressed in BL-21 (DE-3) E.coli bacteria by 2-hour induction 

with 0.5 mM Isopropyl-β-D-thiogalactopyranoside at 37 °C. Cells were harvested by 

centrifugation, flash frozen and stored until use at -80°C. Right before protein 

purification the cells were resuspended in phosphate buffer (50 mM sodium phosphate 

buffer and 300 mM NaCl, pH 7.0) containing EDTA-free protease inhibitor cocktail 

(Roche Applied Science) and disrupted by ultrasonication. After centrifugation, the 

protein was purified from the cleared cell lysate by using a cobalt based metal-affinity 

chromatography (Talon, BD Biosciences) according to the manufacturer´s instructions, 

followed by size-exclusion chromatography onto a superdex™ S-200 column 26/60 

(GE Healthcare Life Sciences) pre-equilibrated with Buffer containing 20 mM Tris 

buffer, 300 mM NaCl, 1 mM EDTA, pH 8.0. The fractions containing the protein were 

pooled, concentrated up to 1-2 mg/ml by centrifugation using Amicon Ultra tubes 

10.000 MWCO (Millipore), aliquoted, flash frozen and stored at -80 °C until use. The 

full length CaVβ2a was prepared as described (9). The apparent molecular mass of 

CaVβ2a-SH3 His tagged determined from the size exclusion chromatography 

calibration curve was obtained from the partition coefficient value (Kav) calculated 

from its elution volume as described (10), where Kav is equal to (Ve-Vo)/(Vt-Vo), 
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and: Ve is the elution volume of the protein; Vo is the void volume of the column 

calibrated with Blue dextran and Vt is the total bed volume. A set of globular protein 

standards was used as indicated in the figure. Mass spectrometry analysis was 

performed in the Mass spectrometry laboratory, Zentrums Pharmakologie und 

Toxikologie, Medizinische Hochschule Hannover. The protein was digested by trypsin 

and the peptides were analyzed in Ultraflex MALDI-TOF/TOF Mass Spectrometer 

(Bruker Daltonics).  

 

The GST-Dyn829-842 peptide was prepared as follows: two overlapping 

oligonucleotides were designed according to the dynamin sequence (Swiss-Prot entry: 

Q05193), to encode the peptide sequence from residues 829 to 842 (829-

PPQVPSRPNRAPPG). After annealed, the oligonucleotides were ligated into pGEX 

vector (GE Healthcare Life Sciences) to fuse a GST at the N-terminal (GST-Dyn829-842 

peptide). The GST alone and GST-Dyn829-842 peptide were expressed in bacteria and 

purified as described (10). Dynamin mutation and CaV1.2 ΔAID deletion were done by 

standard overlapping PCR using complementary oligonucleotides  

 

6.3.2 Binding assay 

Pull down assays using His-tagged CaVβ2a-derivatives as baits were performed as 

described (10). Briefly His-CaVβ2a derivatives were coupled to cobalt based agarose 

for one hour at 4°C and incubated for another hour with pre-cleared tsA201 cell extract 

obtained 24-48 hours after transfection with dynamin or with YFP-CaV1.2 expression 

vector. The beads were pelleted, washed five times and bound fractions eluted with 

SDS-PAGE loading buffer and resolved on SDS-PAGE. In the binding assays to 
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dynamin the gel was transferred to nitrocellulose membrane and subjected to 

inmunoblot analysis using anti dynamin antibody (BD biosciences). Binding to YFP-

CaV1.2 was visualized by fluorescence scanning using a Typhoon imager (GE 

Healthcare Life Sciences)    

 

6.3.3 Xenopus Oocytes preparation, injection and electrophysiological recordings 

Xenopus laevis oocytes were prepared, injected and maintained as in previous report 

(10). All capped cRNA were synthesized using the MESSAGE-machine (Ambion, 

Austin TX, USA), resuspended in 10 µl water and stored in 2 µl aliquots at –80 °C 

until use. The CaV1.2-subunit used in this study bears a deletion of 60 amino acids at 

the amino terminal end that increase expression (11). Electrophysiological recordings 

on CaV1.2 expressing oocytes were performed two to five hours after protein injection 

(50 nl of the protein stock solution, 1-2 mg/ml, per oocyte) and five to seven days after 

cRNA injection using the cut-open oocyte technique with a CA-1B amplifier (Dagan 

Corp., Minneapolis MN USA) as described (9). The external solution contained in 

mM, 10 Ba2+, 96 n-Methylglucamine, and 10  pH 7.0 and the internal solution 120 n-

Methylglucamine, 10 EGTA, and 10 HEPES, pH 7.0. Data acquisition and analysis 

were performed using the pCLAMP system and software (Axon Instruments Inc., 

Foster City CA USA). Currents were filtered at 2 kHz and digitized at 10 kHz. Linear 

components were eliminated by P/-4 prepulse protocol. The normalized charge 

movement-voltage plot and the average current-voltage plot were obtained as 

described (12) using a CA-1B amplifier (Dagan). Currents were filtered at 1 kHz and 

digitized at 20 kHz. Ionic currents mediated by Shaker potassium channel were 

recorded one day after cRNA injection with two-electrode voltage clamp technique 
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using a Dagan TEV 200A or Warner OC725A and filtered at 10 kHz. For the 

Bafilomycin treatment, oocytes were incubated with 500 nM Bafilomycin A1 (Sigma-

Aldrich) 24 hours prior to protein injection (9). The Shaker channel used, Sh IR 

(Inactivation Removed) bears an N-terminal deletion that removes fast inactivation 

(13). 

 

6.3.4 Surface expression measurements in Xenopus Oocyte 

Surface expression of CaV1.2 channels bearing the HA epitope (CaV1.2-HA) was 

measured by immunoassay as described (9). Briefly, five to seven days after CaV1.2 

RNA injection, oocytes were separated in two groups; for electrophysiological 

recordings and for inmmunoassay. Oocytes were incubated in blocking buffer 

containing 1% BSA followed by incubation with 1 µg/ml rat monoclonal anti-HA 

antibody (3F10, Roche Molecular Biochemicals). After washing, oocytes were 

incubated with HRP-coupled secondary antibody (goat anti-rat FAB fragments, 

Jackson ImmunoResearch), extensively washed and individual oocytes placed in 50 µl 

of SuperSignal ELISA femto substrate (Pierce) in 96 wells microplates (Optiplate, 

PerkinElmer) and chemiluminescence quantified 30 seconds later with a luminometer 

(Viktor2, PerkinElmer). 
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6.4 Results 

6.4.1 β2a-SH3 reduces the number of channels expressed in the plasma membrane.   

The purified SH3 domain of the Ca βV 2a with an expected molecular mass of 16.7 kDa 

elutes as a monodisperse peak from a size exclusion chromatography (Fig. 6.1B). The 

size exclusion chromatography calibration curve yielded an apparent molecular mass 

of 20.8 kDa that is compatible with a monomeric conformation of the protein. Mass 

spectrometry analysis on the purified β2a-SH3 confirmed its identity (data not shown).  

β2a-SH3 was injected in Xenopus oocytes expressing CaV1.2 and gating and ionic 

currents were measured using the cut-open oocyte voltage clamp technique.  Injection 

of β2a-SH3 into oocytes causes a dramatic decrease in charge movement (Qon, Fig. 

6.1C) that develops with a time constant of 0.9 hours (Fig. 6.1D). Qon stems from the 

conformational changes leading to channel opening (14) and, hence it is proportional 

to the number of channels. Since decrease in Qon proceeds without changes in the 

voltage or time dependence (Fig. 6.1E-G), it likely reflects a reduction in the number 

of channels in the cell surface (9). In contrast, injection of full length CaVβ,  does 

modify channel gating as expected (15) (Fig. 6.1E). We corroborated that the drop of 

Qon upon β2a-SH3 injection stems from a decrease in the number of channels in the 

plasma membrane by immunoassay (9). Channel surface expression was measured in 

oocytes expressing HA-tagged CaV1.2 channels and compared to Qon measurements on 

the same group of oocytes as shown in Fig. 6.2A.  

 

Impaired assembly and forward trafficking or enhanced backward trafficking may be 

responsible for the reduction in the number of channels expressed in the plasma 

membrane upon β2a-SH3 injection. To discriminate between these two possibilities we 
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examined the effect of β2a-SH3 when incorporation of new proteins into the plasma 

membrane was inhibited by bafilomycin. We have previously shown that indeed 

bafilomycin treatment interrupt incorporation of new CaV1.2 channels in oocytes and 

causes a net reduction of channel density due to constitutive turnover (9). Injection 

of β2a-SH3 in bafilomycin treated oocytes resulted in 35% reduction in Qon (Fig 6.2C) 

that compares to the 29% observed in control conditions (Fig. 6.2B). Thus, down-

regulation induced by β2a-SH3 was not prevented by bafilomycin, indicating that this 

domain interferes with the backward trafficking rather than with the incorporation of 

newly formed channels.  

 

6.4.2 β2a-SH3 induced reduction of Qon depends on dynamin.   

Removal of membrane proteins from the surface implicates endocytosis.  Several SH3-

containing proteins participate in the regulation of this process by associating with 

dynamin, a GTPase that excises endocytic vesicles from the plasma membrane (16-

19). The proline rich domain (PRD) of dynamin binds to SH3 domains in the partner 

protein and this interaction recruits dynamin to the plasma membrane. Moreover, 

endocytosis of ion channels and receptors through a dynamin dependent process has 

been reported (20-22).  Therefore, we investigated the potential role of dynamin in β2a-

SH3 induced channel internalization. We first verified the presence of endogenous 

dynamin in Xenopus oocytes by western blot analysis using anti-dynamin antibody and 
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Fig 6.1.  β2a-SH3 reduces charge movement in Xenopus oocytes  expressing CaV1.2. A, 

CaVβ domains: V1, V2 and V3 denote variable regions, C1 and C2 conserved SH3 and GK like 

domains, respectively. Numbers refer to amino acid sequence in the β2a rat isoform used in this study.  

B, Size exclusion chromatography profile of purified β2a-SH3 domain and molecular mass calibration 

curve on Superdex 200 10/30 column (GE Healthcare Life Sciences). 1, void volume and 2, 3 and 4 

denotes the elution volume of Albumin (67 kDa), Ovalbumin (43 kDa), and Ribonuclease A (13.7 kDa), 

respectively. The inset shows a SDS-PAGE performed on purified β2a-SH3 with numbers corresponding 

to the molecular mass of standards in kDa.  C, Average Qon from CaV1.2-expressing oocytes before 

(132.6 ± 11.6 pC, n=18) and after β2a-SH3 (26.0 ± 3.8 pC, n=25) or buffer injection (123.6 ± 10.5 pC, 

n=22) as control. Qon was measured by integrating gating current during a step near IBa reversal potential 

as shown in the inset. Voltage near IBa reversal potential was determined empirically by stepping to 

several potential in 2 mV increments. D, Time course of the β -SH3-induced decrease in Q2a on in CaV1.2-

expressing Xenopus oocytes.  Each point corresponds to the average of Qon measured as in Fig. 1c for 

several oocytes recorded at different times following the injection of β2a-SH3. Averages for each time 

point includes measurements up to 30 minutes before the indicated time and t = zero corresponds to the 

average Q [ ] min)/(exp QtQQ oon +−= τon from non-injected oocytes. The data was fitted to where Qo 

is the estimated Qon at time = 0 in pC (108 pC), Q is the residual Qmin on (25.7 pC) and τ time constant in 

hours (0.90 hours). E, Average current-voltage plot normalized by Qon from CaV1.2-expressing oocytes 

before protein injection (○) and after β2a-SH3 (●) or CaVβ2a (♦) injection. F, Representative gating 

currents traces and voltage-dependence of Qon from Ca 1.2-expressing oocytes before (○) and after βV 2a-

SH3 injection (●) during 20 ms voltage pulses from -80 mV to +40 mV in 5 mV increments from a 

holding potential of -90 mV recorded in 2 mM external Co2+.  G, Representative gating currents traces 

and time-dependence of Qon from Ca 1.2-expressing oocytes before (○) and after βV 2a-SH3 injection (●) 

during pulses to +40 mV of variable duration (0.5 to 12.5 ms in 0.5 increments) from a holding of -90 

mV.  Proteins were injected 1-5 h before recordings. See details in supplemental Table 6.S1 and 6.S2. 
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detected a protein of molecular mass similar to a heterologous expressed HA-tagged 

dynamin I (Fig. 6.3A). Coexpressing CaV1.2 with dynamin did not have a direct 

impact on channel expression and β2a-SH3 induced reduction of Qon was equivalent 

(compare Fig. 6.1C and 6.3B).  We then examined the effect of expressing a dominant-

negative mutant of dynamin lacking GTPase activity that inhibits endocytosis 

(dynamin K44A) (23). Co-expression with dynamin K44A reduced oocytes survival 

rate and yielded smaller Qon than CaV1.2 alone or with dynamin WT.  Although causes 

for these changes are unclear, we still observed that β2a-SH3-induced reduction of Qon 

was blunted by expression of dynamin K44A (Fig. 6.3C).  

  

To further test the role of dynamin, we fused a 14 amino acid residues peptide 

spanning the proline rich region of dynamin I to GST protein to produce GST-Dyn829-

842 peptide.  This peptide is known to disrupt the interaction between dynamin and SH-

3 domains and to inhibit endocytosis in synaptic vesicles (24;25). Figure 6.3D shows 

that pre-incubation of β2a-SH3 with GST-Dyn829-842 peptide, but not with GST alone, 

inhibits its potency to reduce Qon. Furthermore, β2a-SH3 binds in vitro to dynamin 

(Fig. 6.4A) and, consistently with the electrophysiological data, this binding is 

partially blocked by GST-Dyn829-842 peptide but not by GST (Fig. 6.4B). We tested the 

ability of β2a-SH3 to bind to the full length channel. Using a similar pull down assay, 

we did not observe binding of β2a-SH3 to CaV1.2 fused to the Yellow Fluorescent 

Protein (YFP-CaV1.2; Fig. 6.4C).  In contrast and as expected, CaVβ and the functional 

core of CaVβ (26) encompassing the SH3 and GK domains (C1 to C2 in Fig. 6.1A) 

bound to the channel. 
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Fig 6.2. β2a-SH3-induced reduction of charge movement is not abolished by bafilomycin. A, 

Chemiluminescence and Qon of oocytes expressing Ca 1.2-HA alone or after βV 2a-SH3 injection. 

Chemiluminencence was integrated for 0.2 s and expressed as 105 count per second (cps). Qon was 

measured as in Fig. 1c. Non inj., non-injected oocytes. B, Average Qon measured from Xenopus oocytes 

expressing CaV1.2 in control conditions before (184.3 ± 23.3 pC, n = 9) and after β2a-SH3 injection 

(54.0 ± 14.6 pC, n = 8).  C, Average Qon measured from Xenopus oocytes expressing CaV1.2 treated 

with 500 nM Bafilomycin for 24 hours before (80.9 ± 9.8 pC, n = 8) and after β2a-SH3 injection (28.9 ± 

7.3 pC, n = 7).  In both cases the reduction in Q  following βon 2a-SH3 injection is significant (t-test, 

p<0.01).   
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Fig 6.3.  β2a-SH3-induced reduction of charge movement relies on interaction with dynamin.  A, 

Western blot analysis from Xenopus oocytes homogenates.  Lane 1, non injected control oocytes, lane 2, 

oocytes injected with HA-tagged dynamin-WT cRNA and lane 3, with HA-tagged dynamin-K44A 

cRNA.  Membranes were analyzed with anti-dynamin or anti-HA antibodies as indicated. B, Average 

Qon from oocytes  coexpressing  Ca 1.2 and dynamin-WT before (126.3 ± 13.5 pC, n=24) and after βV 2a-

SH3 injection (19.2 ± 3.2 pC, n=28).  C, Average Qon from oocytes coexpressing CaV1.2 and dynamin-

K44A before (78.3 ± 12.8 pC, n=19) and after β -SH3 injection (50.6 ± 6.9 pC, n=19).  D, Average Q2a on 

from Ca 1.2-expressing oocytes before (190.8 ± 18.8 pC, n=25) and after injection of βV 2a-SH3 pre-

incubated in equal weight ratio with either GST (33.3 ± 6.1 pC, n=37) or GST-Dyn829-842 peptide (98.3 ± 

13.1 pC, n=32) as indicated.   
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6.4.3 β2a-SH3 and full length CaVβ2a down-regulate the distantly related Shaker 

potassium channel expressed in Xenopus oocytes.   

Because β2a-SH3 promotes channel internalization without binding to the channel 

protein, we examined the effect of β2a-SH3 onto the distantly related Shaker potassium 

channel that lack binding activity to the CaVβ-subunit (27). Injection of β2a-SH3 to 

oocytes expressing the Shaker channel resulted in no changes in channel gating 

(supplemental Fig. 6.S1) but ionic currents were reduced by approximately 60% one 

hour after protein injection (Fig. 6.5A). This current reduction was also partially 

blocked by pre-incubation of β2a-SH3 with GST-Dyn829-842 peptide but not with GST 

(Fig. 6.5B). Full length CaVβ2a  preserves the ability of β2a-SH3 to downregulate 

Shaker channels expressed in oocytes.  CaVβ2a  reduced ionic currents to similar degree 

as β2a-SH3 (Fig. 6.5C) without changes in the voltage dependency (supplemental Fig. 

6.S2). This current decrease was also antagonized by GST-Dyn829-842 peptide.  

Moreover, CaVβ2a  bound in vitro to dynamin and this interaction was inhibited by 

GST-Dyn829-842 peptide (Fig. 6.5D).  These results indicate that CaVβ still acts through 

the dynamin dependent endocytic pathway.  

 

6.4.4 Full length Ca reduces the number of plasma membrane CaVβ2a V1.2 

channels lacking the AID but not WT channels.  

A corollary from the above results is that free CaVβ may also be able to reduce surface 

expression of CaV1.2 channels when the Ca -CaVα1 Vβ primary interaction site is 

disrupted.  To test this possibility we deleted the AID site of CaV1.2 (residues 459 to 

475) to obtain CaV1.2-ΔAID channels.  This mutated channel yields gating currents 
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Fig 6.4. β2a-SH3 binds in vitro to dynamin but not to CaV1.2.  A, Anti-dynamin western-blot.  His-

β 2+-SH3 coupled to Co2a  beads was incubated with lysate from cells expressing dynamin I (lane 2).  

Control binding with uncoupled Co2+ beads (lane 1).  B, As in A, except that either GST (lane 1) or 

GST-Dyn829-842 peptide (lane 2) was added during incubation with dynamin-containing lysate.  C, 

Binding of His-tagged Ca  derivatives to YFP-CaβV 2a V1.2.  Lane 1, crude lysate from cells expressing 

YFP-Ca 1.2; lane 2, control binding with uncoupled Co2+ beads; lane 3, binding to full length Ca βV V 2a; 

lane 4, to β2a-core and lane 5, to β -SH3.  YFP-Ca2a V1.2 bands were visualized by fluorescence scanning 

using Typhoon-9410 imaging system (GE Healthcare Life Sciences).  Binding experiments were 

repeated three, two and five times in A, B and C, respectively. 
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Fig 6.5.  β2a-SH3 and full length CaVβ2a reduce ionic currents mediated by Shaker potassium 

channels expressed in Xenopus oocytes.  A, Representative ionic currents traces from oocytes 

expressing Shaker IR (Sh IR) before (top) and after β2a-SH3 injection either pre-incubated with GST 

(middle) or with GST-Dyn829-842 peptide (bottom).  Each panel corresponds to 60 traces recorded once 

per minute during the pulse protocol depicted on top.  B, Normalized current amplitudes over time for 

Sh IR-expressing oocytes before (□) ( n=7) and after injection of β2a-SH3 pre-incubated with either GST 

(●) (n=11) or GST-Dyn829-842 (▲) (n=6).  C, Time course of current reduction measured as in B from Sh 

IR-expressing oocytes before (□) (n=7) and after injection of Ca βV 2a pre-incubated with a six fold excess 

(w/w) of either GST (●) (n=8) or GST-Dyn829-842 (▲) (n=9).  D, Anti-dynamin western-blot (as in Fig. 

4B).  His-Ca  was coupled to Co2+βV 2a  beads and incubated with dynamin I cell lysate plus GST (lane 1) 

or GST-Dyn  peptide (lane 2). 829-842
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that, with respect to their voltage and time dependence, are indistinguishable from wild 

type CaV1.2 (Fig. 6.6 A,B), but as expected, CaVβ2a loses its ability to potentiate ionic 

currents (Fig. 6.6C). As recently corroborated by chemiluminescent enzyme 

immunoassay (9), surface expression of CaV1.2 channels in oocytes is not altered by 

injection of CaVβ2a protein (Fig. 6.6D).  In contrast, in oocytes expressing CaV1.2-

ΔAID injection of CaVβ2a reduces Qon to the same extent as did β2a-SH3 in oocytes 

expressing wild type CaV1.2 (Fig. 6.6E).  To further prove that channels lacking the 

AID are indeed expressed in the plasma membrane and that CaVβ decreases the 

number of channels at the cell surface, we performed the surface expression assay with 

CaV1.2-ΔAID HA-tagged channels. CaVβ2a injection decreased Qon and 

chemiluminescence signal in CaV1.2-ΔAID expressing oocytes (Fig. 6.6F).  
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Fig 6.6.  Full length CaVβ2a internalizes calcium channels devoid of the AID site but not WT 

channels. A, Representative ionic and gating currents traces from oocytes expressing CaV1.2ΔAID 

channels during 60 ms voltage pulses to –30, 0 and +30 mV from a holding potential of –80 mV.  B, 

Voltage- and time-dependence (inset) of Qon from Ca 1.2- (continuous line) and CaV V1.2ΔAID-

expressing oocytes before (□) and after Ca βV 2a injection (■) measured as in Fig. 1F and G.  See details 

in supplemental Table S1 and S2.  C, Average current-voltage plot normalized by Qon from 

Ca 1.2ΔAID-expressing oocytes before (□) and after Ca βV V 2a injection (■).  For comparison, the data 

from Ca  was included (dotted line).  D, Average Q1.2-WT with CaV Vβ2a on from CaV1.2 expressing 

oocytes before (135.4 ± 14.4 pC, n=27) and after (137.3 ± 17.4 pC, n=31) Ca βV 2a injection. E, Average 

Qon from Ca 1.2ΔAID-expressing oocytes before (151.2 ± 12.4 pC, n=32) and after Ca βV V 2a injection 

(37.4 ± 7.8 pC, n=39). F, Chemiluminescence and Qon on oocytes expressing CaV1.2ΔAID-HA alone 

(20.7 ± 0.4x105 cps, n=23 and 129.5 ± 9.9 pC, n=14) or after Ca  injection (0.5 ± 0.23x105βV 2a  cps, n=23 

and 26.5 ± 18.3 pC, n=12).  Non-inj., non-injected oocytes (0.06 ± 0.02x105 cps, n=35). 
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6.5 Discussion 

We here show that SH3 domain of the β-subunit of the voltage-gated calcium channels 

promotes internalization of membrane proteins in a dynamin dependent manner. In 

addition, we found that CaVβ-SH3 binds in vitro to dynamin and, since this association 

is inhibited by GST-Dyn829-842 peptide, we propose that this interaction is mediated by 

the PRD of dynamin. Nevertheless, simulated docking predictions indicate that CaVβ-

SH3 is unlikely to interact with PXXP motifs unless a considerable structural 

rearrangement occurs (4).  The dynamin PRD-CaVβ-SH3 interaction may be mediated 

by non-canonical PXXP binding residues in CaVβ-SH3 or alternatively exposition of 

canonical residues may be tuneable by a yet unknown regulatory protein or event.  The 

interaction between recombinant β2a-SH3 and dynamin may reflect an in vivo 

phenomenon given that a SH3-only form of the CaVβ protein is expressed in cardiac 

cells (8).  

 

Binding of CaVβ-SH3 to the protein being sequestered is not required, since no 

interaction between the β2a-SH3 and the whole CaV1.2 channel was observed and 

certainly no association occurs with the Shaker channel. CaVβ-SH3 has been reported 

to associate only with isolated regions or truncated CaVα1 channels (28;29).  Thus, it is 

conceivable that other cytoplasmic regions within the whole channel hinder this 

association. 

 

In the presence of the full length CaVβ-subunit, calcium channels lacking the AID site, 

but no WT channels, are down-regulated, as though binding to CaVβ prevents the 
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channel complex to be internalized. Since association of the CaVβ to VGCCs insures 

normal channel activity, this would constitute an efficient quality control mechanism 

in which the same protein insures functional fitness and survival of the channel in the 

plasma membrane (Fig. 6.7). Our recent finding that the Ca -CaVα1 Vβ interaction is 

reversible at the level of the plasma membrane (9) supports this mechanism. The 

ability of this auxiliary subunit to influence internalization of other membrane proteins 

anticipates that replacement of complete signal transduction assemblies may be 

triggered by the presence of free CaVβ. Whereas the whole picture is certainly still 

incomplete, our findings outline a novel signaling pathway for the regulation of 

intracellular calcium concentration. 
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Fig 6.7.  Model for CaVβ and dynamin interaction.  The cartoon depicts that association of CaVβ to 

Ca 1.2 masks the SH3-module. Upon dissociation from Ca αV V 1 the SH3 domain becomes available to 

interact with dynamin leading to down-regulation of calcium currents through endocytosis.  How the 

interaction with Ca β-SH3 recruits dynamin to its anchor site remains to be investigated. V
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6.7 Suplemental Data 
 
 
 
 
 
Table 6.S1 
 
 

 
 
Mean ± S.E.M of parameters defining the Boltzmann distribution that best fitted the Normalized Qon vs 

Vm plots for Xenopus oocytes expressing Ca 1.2 (Fig. 6.1F) and CaV V1.2.AID (Fig. 6.6B) with and 

without injection of the corresponding protein. The following equation was adjusted to the data:  

 / 1+ exp [zF (V ) / RT]     eq. 6.S1 Q (V) = Qon max  ½ - Vm

 
where Q  is the maximum Q , V  is the voltage at which the Q  is 50% of Q , Vmax on 1/2 on max m is the 

membrane potential and z the effective valence. 
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Table 6.S2 
 

 

 

Mean ± S.E.M of parameters defining the mono-exponential function that best described the time course 

of Normalized Qon for Xenopus oocytes expressing Ca 1.2 (Fig. 6.1G) and CaV V1.2.AID (Fig. 6.6B, 

inset) with and without injection of the corresponding protein. The following equation was adjusted to 

the data:  

  (1- exp[-t / τ]) eq. 6.S2 Qon (t) = Qmax

where Q  is Qmax on extrapolated to steady state and τ time constant for the development of  Q . on
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Fig 6.S1 Normalized membrane conductance (G/G ) as function of membrane potential (Vmax m) and 

mean ± S.E.M of parameters defining the Boltzmann distribution (bottom) that best fitted the data for 

Xenopus oocytes expressing Shaker IR (□) with different protein combinations. β2a-SH3 was injected 

either together with GST (●) or with GST-Dyn  (▲). The G/G829-842 max vs V plots were obtained from the 

current amplitude (Im) evoked by 50 ms pulses from –80 mV to +60 mV in 10 mV increments with 

holding potential of -90 mV. The membrane conductance (G) was calculated as G = Im/(Vm-Erev) 

assuming a reversal potential (Erev) of -90 mV; Vm is the membrane potential during the pulse. Data was 

fitted according to equation:  

G (V) = Gmax  / 1+ exp [zF (V ) / RT]     eq. 6.S3  ½ - Vm

where G  is the maximum conductance, Vmax 1/2 is the voltage at which the G is 50% of  

G , and z the effective valence. max
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Fig 6.S2 G/G  vs Vmax m plot from Xenopus oocytes expressing Shaker IR (□) with full length Ca βV 2a 

injected either together with GST (●) or with GST-Dyn829-842 (▲). The G/V plots and statistical 

treatment were obtained as in Fig. 6.S1.  
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7.1 Abstract 

Inactivation of voltage-gated calcium channels is crucial for the spatio-temporal 

coordination of calcium signals and prevention of toxic calcium build-up. Only one 

member of the highly conserved family of calcium channel β-subunits (CaVβ) inhibits 

inactivation and this unique feature has been attributed to short variable regions of the 

protein. Here we report instead, that this inhibition is conferred by a conserved guanylate 

kinase domain and moreover, that this domain alone recapitulates CaVβ-mediated 

modulation of channel activation. We expressed and refolded the guanylate kinase domain 

of CaVβ2a, the unique variant that inhibits inactivation, and of CaVβ1b, an isoform that 

facilitates it. The refolded domains of both CaVβs inhibit inactivation of CaV2.3 channels 

expressed in Xenopus laevis oocytes. These results suggest that the guanylate kinase (GK) 

domain endows calcium channels with a brake restraining voltage-dependent inactivation 

and thus, facilitation of inactivation by full-length CaVβ requires additional structural 

determinants to antagonize GK effect. We found that CaVβ can switch the inactivation 

phenotype conferred to CaV2.3 from slow to fast following post-translational 

modifications during channel biogenesis. Our findings provide a novel framework to 

understand modulation of inactivation and a new functional map of CaVβ in which the 

guanylate kinase domain regulates channel gating while the other conserved domain, 

namely, Src homology 3, may couple calcium channels to other signaling pathways.  
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7.2 Introduction 

Calcium  signals mediate various cellular processes including neurotransmission, 

excitation-contraction coupling, hormone secretion, and gene expression (1). Voltage-

gated calcium channels (VGCCs) activate and inactivate upon membrane depolarization 

allowing transient increases in cytosolic Ca2+ concentration. Voltage-dependent activation 

and inactivation of VGCCs strongly depend on association of the ancillary β-subunit 

(CaVβ) to a highly conserved sequence within the intracellular loop joining the first and 

second repeats (loop I-II) of the pore-forming subunit (CaVα1), the so-called α-interaction-

domain (AID) (2).  

 

CaVβ is encoded by four non-allelic genes (β1-4), each with multiple splice variants, and 

except for a few short splicing forms (3), all  share a common structural arrangement. This 

consists of two highly conserved regions separated and flanked by shorter variable 

sequences (Fig 7.1A). Crystallographic studies revealed that while the first region 

encompasses a Src homology 3 (SH3) domain, the second a guanylate kinase (GK) 

domain. The AID sequence forms an α-helix that fits into a hydrophobic cleft of GK 

module that lies on the opposite side of the SH3 domain (Fig. 7.1B) (4-6). This suggests 

that the isolated GK module may preserve at least some of the modulatory capabilities of 

the full CaVβ. However, despite several attempts using different CaVβ constructs and 

experimental approaches (7-11), the functional competence of isolated GK and its ability 

to mimic CaVβ function remains unresolved. A contributing factor may be the reduced 

stability of some GK-containing constructs (11). To overcome this difficulty, we 
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expressed and refolded the GK domain of two CaVβ isoforms, CaVβ1b and CaVβ2a. These 

isoforms share modulatory effects on voltage-dependent activation and exhibit opposite 

actions on voltage-dependent inactivation.  

 

We studied the effect of the refolded GK modules on Xenopus oocytes expressing two 

types of α1 pore-forming subunits, CaV1.2 and CaV2.3, and compared it to the action of 

recombinant full length and the core of the CaVβ protein containing both, SH3 and GK 

domains.  While CaVβ2a is unique in its ability to inhibit voltage-dependent inactivation, 

the other CaVβ isoforms facilitate it (12-17). CaVβ2a decelerates inactivation, increases the 

fraction of non-inactivating current and it shifts the steady-state inactivation curve towards 

more positive potentials. These distinguishing modulatory properties of CaVβ2a has been 

broadly attributed to palmitoylation of the two contiguous cysteine residues at position 3 

and 4 in the N-terminus region (15;18-20).   

 

Here we show, instead, that the GK modules derived from both CaVβ2a and CaVβ1b inhibit 

inactivation of CaV2.3 channels. This finding indicates that the structural determinants of 

inhibition of inactivation by CaVβ2a are not encoded in variable regions but within the GK 

domain. GK appears to endow calcium channels with a brake to impair voltage-dependent 

inactivation and, thus, facilitation of inactivation occurs by masking the inhibitory effect 

of GK.  
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We show that CaVβ acquires this capability when co-expressed with CaVα1 but not when 

added later during channel biogenesis. Moreover, we found that CaVβ2a-GK increases 

peak currents and shifts the activation curve toward more negative potentials of CaV1.2 

channels.  Thus, GK emerges as a functional unit that recapitulates the hallmarks of CaVβ 

modulation.  
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7.3 Materials and Methods 

7.3.1 Construction of cDNA and protein expression.  

cDNA encoding the GK domain (residues 201 to 422), the SH3-GK core (residues 24 to 

422) of rat β2a (Swiss-Prot Q8VGC3-2), and GK domain (residues 209 to 413) of the rat 

β1b (Swiss-Prot P54283), were subcloned by PCR methods into pRSET vector 

(Invitrogen). The predicted molecular masses of CaVβ1b-GK, CaVβ2a-GK and CaVβ2a-SH3-

GK constructs, including the N-terminal His Tag, a transcript stabilizing sequence and the 

enterokinase cleavage recognition site, are 26.9 kDa, 28.6 kDa and 48.2 kDa, respectively. 

CaVβ2a-SH3 was prepared as in (24), full-length CaVβ2a, the mutant bearing two 

substitutions at position 3 and 4 (CaVβ2a C3,4S) and CaVβ2a-SH3-GK as in (22) while full-

length CaVβ1b as in (30). CaVβ1b-GK and CaVβ2a-GK were expressed in bacteria and 

recovered from inclusion bodies as reported (30). The GK domains were refolded by batch 

dilution (11-fold dilution) in refolding buffer (L-arginine 400 mM, NaEDTA 2 mM, 

glutathione oxidized 0.5 mM, Tris base 100 mM, pH 7.0) and subsequently purified by 

size-exclusion chromatography onto a Superdex S-200 column (GE Healthcare Life 

Sciences) pre-equilibrated with non-denaturing buffer (20 mM Tris, 300 mM NaCl, 1 mM 

EDTA at pH 8.0). Proteins were concentrated up to 0.1 mg/ml by ultra-filtration (Amicon 

Ultra-4 10 kDa MWCO), fast frozen and stored at -80°C until use. The identity of the 

purified proteins was confirmed by mass spectrometry analysis performed in the Mass 

spectrometry laboratory, Zentrum für Pharmakologie und Toxikologie, Medizinische 

Hochschule Hannover. The protein was digested by trypsin and the peptides were 

analyzed in Ultraflex MALDI-TOF/TOF Mass Spectrometer (Bruker Daltonics).   
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The loop I-II of CaV1.2 (Swiss-Prot P15381) fused to glutathione S-transferase (GST-loop 

I-II) was prepared as in (30). The yellow fluorescent protein was fused to CaVβ2a-GK at its 

N-terminus (YFP-CaVβ2a-GK) and subcloned into pcDNA 3.1 vector. The cDNA 

encoding CaV1.2 was fused to GK domain at the carboxyl-terminal end (CaV1.2- CaVβ2a-

GK) by overlapping extension PCR which incorporate the sequence 

“MGRDLYDDDDKD” at residue 2164 of CaV1.2. All constructs were verified by DNA 

sequencing. 

 

7.3.2 Binding assay.  

TsA201 cells were transfected with YFP-CaVβ2a-GK or YFP alone encoding vector and 

lysed after 24-36 hours. Pre-cleared cell extracts were incubated one hour with glutathione 

beads coupled to either GST-loop I-II or GST alone. The beads were pelleted, washed and 

bound proteins were eluted with SDS/PAGE loading buffer. Proteins were then resolved 

on SDS/PAGE and visualized by fluorescence scanning (Typhoon imager, GE Healthcare 

Life Sciences). 

 

7.3.3 Oocytes injection and electrophysiological recordings.  

cRNA were synthesized and  Xenopus laevis oocytes were prepared, injected, and 

maintained as previously reported (30). The CaV2.3 encoding cDNA was sequenced and 

when compared to the Swiss-Prot entry Q15878 the following changes were noticed: 

I649M, W837L, P838A and insertion of a glycine residue at position 839. The CaV1.2-

subunit used in this study bears 60 amino acids deletion at the amino terminal (31). 
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Electrophysiological recordings were performed with the cut-open oocyte technique four 

to six days after cRNA injection and one to seven hours after protein injection as 

described (22). For details see 7.SI Materials and Methods. 
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7.4 Results 

7.4.1 Refolding and binding assay of Cavβ-GK domain.  

The GK domain derived from CaVβ1b (CaVβ1b-GK) and CaVβ2a (CaVβ2a-GK) (Fig.7.1A) 

were expressed in bacteria where they accumulate in inclusion bodies and were refolded 

by batch dilution. The purified GK domains were concentrated up to 0.1 mg/ml since 

further concentration resulted in progressive protein aggregation as judged by high 

molecular mass peaks that appear in the void volume of the size-exclusion 

chromatography column. At 0.1 mg/ml, CaVβ2a-GK eluted from the size-exclusion 

chromatography in a predominant peak while CaVβ1b-GK shows a shoulder at this position 

and a main peak eluting near the albumin peak (Fig.7.1C).  

 

Both GK constructs migrate with an apparent molecular mass larger than predicted by 

their amino acid sequences. This may reflect either an aberrant migration or formation of 

higher oligomeric states. To determine whether the refolded GK domains form multimers, 

we performed sucrose gradient analysis [Supporting Information (SI) Fig.7.S1-S3]. 

CaVβ2a-GK distribution overlaps with a protein standard of 66 kDa, while CaVβ1b-GK 

appears over a wider range reaching a second standard of 29 kDa. Thus, our data is 

consistent with CaVβ2a-GK being essentially a dimer and CaVβ1b-GK existing as a mixture 

of dimers and monomers. 
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Fig. 7.1 Domain structure, purification and binding assay of CaVβ constructs. (A), Schematic 

representation of CaVβ2a, CaVβ1b and derived protein constructs used in this study. CaVβ consists of two 

highly conserved regions, D1 and D2, (boxes) that are connected and flanked by variable regions 

(continuous lines). Boxed in grey is the SH3 module and in black, the GK module. The two cysteines 

residues at the N-terminus of CaVβ2a that undergo palmitoylation are indicated by arrows. (B) Ribbon 

diagram of the crystal structure of CaVβ in complex with AID (PDB accession code 1T3L). (C) Size-

exclusion chromatography elution profile on Superdex 200 10/30 column (GE Healthcare Life Sciences) of 

refolded CaVβ2a-GK and CaVβ1b-GK. Number 1 indicates void volume; 2, elution volume of albumin (67 

kDa) and 3, of ovalbumin (43 kDa). The inset shows Coomassie-stained SDS/PAGE gels of the indicated 

proteins. Numbers indicate the molecular mass of standards in kDa. (D) SDS/PAGE gel of the binding 

reaction with the indicated proteins. YFP-CaVβ2a-GK binds specifically to GST-loop I-II (last lane). The 

binding assay was repeated 3 times. 
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To asses binding ability of CaVβ2a-GK to the loop I-II, we fused the former to the yellow 

fluorescence protein (YFP-CaVβ2a-GK) and the latter to GST (GST-loop I-II). CaVβ2a-GK 

binds specifically to loop I-II, since no association between GST and YFP-CaVβ2a-GK or 

between YFP and the GST-loop I-II was detected (Fig. 7.1D). 

 

7.4.2 Cavβ2a-GK increases peak current amplitude and shifts the current-voltage 

relationship of Cav1.2 channels.  

To investigate modulation of voltage-dependent activation by CaVβ2a-GK, we used the 

CaV1.2 α1-subunit because it exhibits little inactivation and the coupling between voltage 

sensor and channel opening is extremely sensitive to the presence of CaVβ.  This CaVα1 

isoform is also more amenable to monitor channel expression through gating currents 

measurements (21).  

 

Injection of recombinant full-length CaVβ2a into oocytes expressing CaV1.2 channels 

results in an increase in the ionic-current to charge-movement ratio (I/Q) and a leftward 

shift in the current-voltage relationship (22). CaVβ2a-SH3-GK is equally robust in 

modulating activation of CaV1.2 channels (Fig. 7.2A and SI Fig. 7.S4 and Table 7.S1). 

Here, as in a previous report (22), we measured charge movement by integrating outward 

transient currents at the onset of depolarizing pulses to the ionic current reversal potential. 

Injection of CaVβ2a-SH3-GK into CaV1.2-expressing oocytes, increases I/Q from 0.3±0.6 

nA/pC (n=15) to 4.6±0.7 nA/pC (n=17) which is comparable to values obtained following 

injection of CaVβ2a (4.6±0.9 nA/pC, n=18). The effect of CaVβ2a-GK was seen more 
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clearly at reduced channel expression levels where gating currents are barely visible and 

thus I/Q plots were not readily measurable. Nevertheless, the normal current-voltage 

relationship was shifted to more negative potentials and to similar extent with CaVβ2a (as 

protein or cRNA), CaVβ2a-SH3-GK or CaVβ2a-GK (Fig. 7.2B). 

 

 

We attributed the limited activity of refolded CaVβ2a-GK to the low concentration of this 

protein, calculated to be 0.3 μM for a 525 nl oocyte. In addition, at high expression levels, 

a large amount of CaV1.2 subunit remains in the cytoplasm and may be acting as a sink. 

Another contributing factor could be the protein’s reduced stability (see below). To 

overcome this potential problem, and inspired by the experiment showing that CaVβ2a 

recapitulates channel modulation when attached to the C-termini of CaVα1 (23), we 

covalently linked CaVβ-GK to CaV1.2 (CaV1.2-CaVβ2a-GK) and compared to CaV1.2 

linked to CaVβ2a (CaV1.2-CaVβ2a). Fig. 7.3 shows gating and ionic currents from oocytes 

expressing CaV1.2-CaVβ2a or CaV1.2-CaVβ2a-GK. When covalently linked to CaV1.2, 

CaVβ2a-GK appears as efficient as full-length CaVβ2a in increasing I/Q and shifting the 

voltage dependence of activation. This effect was abolished by a mutation in the 

conserved tryptophan within the AID (W470S) shown to prevent binding to CaVβ (22), 

indicating that the changes in gating properties come about through specific association of 

the fused GK moiety to the AID site and not from alterations of channel activity generated 

by the GK linkage. 
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Fig.7.2 Refolded CaVβ2a-GK and CaVβ2a-SH3-GK shift the current-voltage relationship of CaV1.2-

mediated currents. (A) Representative gating and ionic currents traces from oocytes expressing CaV1.2 

cRNA alone and following injection of either CaVβ2a-SH3-GK or CaVβ2a-GK. Currents were evoked by 50 

ms pulses to -30, 0 and +30 mV from a holding potential of -80 mV. (B) Normalized current-voltage plot 

from oocytes expressing the different subunit combinations. CaV1.2 cRNA (n=11), CaV1.2 + CaVβ2a-SH3-

GK (n=14) and CaV1.2 + CaVβ2a-GK (n=16). For comparison, normalized current-voltage curve for CaV1.2 

+ CaVβ2a, either injected as a protein (dashed line) or co-injected as cRNA (continuous line) are shown (see 

SI Table 7.S1 for details). 

 

 94



The GK domain of the β-subunit of VGCCs suffices to modulate gating 

 

Fig.7.3 CaVβ2a-GK covalently linked to CaV1.2 WT, but not to CaV1.2 W470S, increases peak current 

amplitudes and shifts the current-voltage relationship. (A) Representative gating and ionic currents 

traces from oocytes expressing CaV1.2 WT covalently linked to either CaVβ2a (CaV1.2-CaVβ2a) or CaVβ2a-GK 

(CaV1.2-CaVβ2a-GK) and, CaV1.2 W470S covalently linked to CaVβ2a-GK (CaV1.2 W470S-CaVβ2a-GK). 

Currents were evoked by 50 ms pulses to -30, 0 and +30 mV from a holding potential of -80 mV. (B) Ionic 

current from oocytes expressing the different constructs were normalized by charge movement (I/Q) and 

plotted versus voltage. For CaV1.2-CaVβ2a peak I/Q was 2.44±0.44 nA/pC (n=17), for CaV1.2-CaVβ2a-GK it 

was 2.71±0.52 nA/pC (n=17) and for CaV1.2 W470S-CaVβ2a-GK 0.35±0.03 nA/pC (n=17). For comparison, 

average I/Q from 15 oocytes expressing CaV1.2 alone are shown as dashed line (0.30±0.06 nA/pC). (C) 

Normalized tail currents from oocytes expressing the different constructs. Continuous lines correspond to 

the fit of the sum of two Boltzmann distributions and the dashed line to the fit obtained from CaV1.2 

expressing oocytes (see SI Fig. 7.S4 and Table 7.S1 for details). The fit to CaV1.2 W470S-CaVβ2a-GK was 

excluded from the plot for clarity. 
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7.4.3 Cavβ2a-GK inhibits inactivation of Cav2.3 WT channels.  

Next, we investigated the ability of CaVβ2a-GK to regulate inactivation kinetics, using the 

fast inactivating CaV2.3 channels (Fig. 7.4).  Injection of refolded CaVβ2a-GK into CaV2.3 

expressing oocytes results in a six-fold increase in the decay time to half peak current 

amplitude (t½, Fig. 7. 4A, B). However, when CaVβ2a-GK is co-injected as cRNA fails to 

modulate CaV2.3-mediated currents. A larger increase in t½ was observed upon injection 

of full-length CaVβ2a, either injected as protein or co-injected as cRNA, and CaVβ2a-SH3-

GK. Consistently with our previous report, CaVβ2a-SH3 decreased ionic currents without 

changing its time course (24). The effect of refolded CaVβ2a-GK vanishes five hours after 

being injected, indicative of some degree of protein instability (Fig. 7.4C).  The latter may 

also explain the lack of effect of CaVβ2a-GK cRNA.  

 

Both CaVβ2a-GK and CaVβ2a-SH3-GK shifted the steady-state inactivation curve of 

CaV2.3-mediated currents to more positive potentials. A residual current at the end of the 

pulse also emerges, but it is only a fraction of what is observed with full-length CaVβ2a 

(Fig. 7.5). Half-inactivation voltages (V½), derived from the fit to a Boltzmann distribution 

plus the residual component, were similar with CaVβ2a-GK, CaVβ2a-SH3-GK and full-

length CaVβ2a, but were significantly more positive than CaV2.3 alone (Fig. 7.5B and 

Table 7.SII). Overall, CaVβ2a derivatives appear less effective than full-length CaVβ2a in 

inhibiting inactivation and may reflect contribution of unoccupied CaV2.3 subunits. 

Nevertheless, inactivation of CaV2.3 channels bearing the W386S mutation that disrupt 

binding  to  CaVβ  (25),  were   not  modulated  by  CaVβ2a   or   CaVβ2a-GK  (SI Fig. 7.S5),  
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Fig. 7.4 CaVβ-GK slows down inactivation of CaV2.3-mediated currents. (A) Representative current 

traces from oocytes expressing CaV2.3 cRNA alone or following injection of the indicated protein during a 

10 s pulse to 0 mV from a holding potential of -90 mV. (B) Average decay times to half peak current 

amplitude (t½) for the different subunit combinations. For CaV2.3 cRNA t½= 0.33 ± 0.03 s (n=26), for CaV2.3 

+ CaVβ2a-GK cRNA t½= 0.41±0.05 s (n=13), for CaV2.3 + CaVβ2a-GK t½= 1.85±0.44 s (n=13), for CaV2.3 + 

CaVβ2a-SH3-GK t½= 3.57±0.42 s (n=21), for CaV2.3 + CaVβ2a cRNA t½= 4.11±0.65 s (n=12), for CaV2.3 + 

CaVβ2a t½= 4.76±0.70 s (n=16), and for CaV2.3 + CaVβ2a-SH3 t½= 0.35±0.04 s ( n=13). t½ from CaV2.3 + 

CaVβ2a-GK, CaV2.3 + CaVβ2a-SH3-GK, and CaV2.3 + CaVβ2a were significantly different from t½ measured 

in oocytes expressing CaV2.3 alone (t-test, p <0.01). (C) Time course of inhibition of inactivation by CaVβ2a-

GK. Each bar corresponds to the average t½ measured at different time intervals following protein injection. 

The first bar includes recordings from 12 to 50 min (n=4), the second from 51 to 100 min (n=6) and every 

100 min thereafter (n=7, 2 and 4, respectively). The dashed line corresponds to t½ for CaV2.3 alone. 

 

 97



The GK domain of the β-subunit of VGCCs suffices to modulate gating 

indicating that CaVβ2a-GK action is AID-dependent and does not involve non-specific 

binding. As in previous work (25), we also observed that this substitution results in CaV2.3 

channels that inactivates more slowly than wild-type channels. Taken together, these 

findings reveal that the N-terminus of CaVβ2a is not mandatory for inhibiting inactivation 

and predict, due to the highly conserved nature of GK domain, that inhibition of 

inactivation is a property shared by all GKs in the different CaVβ isoforms.  

 

7.4.4 Cavβ1b-GK resembles Cavβ2a in inhibiting inactivation of Cav2.3 WT channels.  

We studied the effect of a GK module derived from CaVβ1b, an isoform that accelerates 

inactivation and shifts the steady state inactivation curve to more negative potentials when 

co-expressed as cRNA (12). Refolded CaVβ1b-GK injected into oocytes expressing CaV2.3 

channels yields currents that inactivate slowly (t½=4.20±0.87 s, n=16, Fig. 7.6A). CaVβ1b-

GK also shifts the steady-state inactivation curves toward more depolarizing potentials 

and, like CaVβ2a-GK, it induces a residual current (Fig. 7.6B, C). We conclude then that 

the GK module encompasses the minimal structural requirements to inhibit voltage-

dependent inactivation. A question that naturally arises is what determines facilitation of 

inactivation by full length CaVβ proteins. 

 

7.4.5 Full-length CaVβ proteins switch CaV2.3-inactivation phenotype depending on 

the time of injection.  

Our finding that the GK module inhibits inactivation implies that full-length proteins that 

facilitate inactivation must be able to counteract the GK effect. This facilitation has been  
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Fig.7.5 CaVβ-GK shifts mid-point voltage for the steady-state inactivation of CaV2.3-mediated 

currents. (A) Representative traces of CaV2.3-mediated currents in the presence of the indicated protein 

during a steady-state inactivation pulse protocol. This consisted of a 10 s conditioning period to voltages of 

increasing amplitude, from -120 mV to +30 mV in 15 mV increments, followed by a 0.4 s test pulse to 0 

mV.  Pulses were delivered once every 50 s from a holding potential of -90 mV. (B) Average steady-state 

inactivation curves from oocytes expressing CaV2.3 alone (n=22) or following injection of full-length CaVβ2a 

(n=13), CaVβ2a-SH3-GK (n=23) or CaVβ2a-GK (n=15). Continuous lines correspond to Boltzmann 

distributions plus a non-inactivating current component that best described each set of data. For comparison, 

the Boltzmann distributions that best described CaV2.3 + CaVβ2a cRNA data (dashed line) are shown. V½ 

from CaV2.3 + CaVβ2a-GK and CaV2.3 + CaVβ2a-SH3-GK were significantly different from V½ measured in 

oocytes expressing CaV2.3 alone (t-test, p <0.01) (see SI Table 7.S2 for details). 
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Fig. 7.6. CaVβ1b-GK slows down inactivation of CaV2.3-mediated currents and shifts the steady-state 

inactivation toward more depolarized potentials. (A) Representative currents traces from a CaV2.3 

expressing oocytes injected with CaVβ1b-GK during a 10 s pulse to 0 mV from a holding potential of -90 

mV. (B) Current traces evoked with the steady-state inactivation pulse protocol from the same oocytes 

shown in A. (C) Average steady-state inactivation curve from oocytes expressing CaV2.3 and injected with 

CaVβ1b-GK-protein (n=14). For comparison, the Boltzmann distributions that best described CaV2.3 and 

CaV2.3 + CaVβ2a data from Fig. 5 are shown (dashed lines). V½ from CaV2.3 + CaVβ1b-GK was significantly 

different from V½ measured in oocytes expressing CaV2.3 alone (t-test, p <0.01) (see SI Table 7.S2 for 

details). 
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documented for CaV2.3 channels co-expressed with cRNA encoding full-length CaVβ1b or 

a palmitoylation deficient mutant of CaVβ2a  bearing two cysteine-to-serine substitutions at 

position 3 and 4 (CaVβ2a, C3,4S) (12;18).  

 

Here we report that these CaVβ constructs injected as proteins into oocytes already 

expressing CaV2.3 channels (late-injection) slowed the time course of inactivation 

compared to CaV2.3 alone (Fig. 7.7A, B). Furthermore, CaVβ C3,4S shifted the steady-

state inactivation curve toward more positive potentials (Fig. 7.7C, D and Table 7.S2). 

Assuming that these full-length proteins are correctly folded, we reasoned that post-

translational modifications requiring longer times than allowed by the experiment are 

necessary to confer their native phenotype. Therefore, we co-injected these proteins 

together with the cRNA encoding CaV2.3 subunit (co-injection), and indeed found that 

inactivation was accelerated (Fig. 7.7A, B) and the steady-state inactivation curve shifted 

toward more negative potentials (Fig. 7.7C, D and Table 7.S2). These findings indicate 

that the recombinant proteins are properly folded and that, following post-translational 

modifications during biogenesis of the channel complex, CaVβ can switch the phenotype 

conferred to CaV2.3 from slow to fast inactivating.  
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Fig.7.7. CaV2.3-inactivation phenotype induced by full-length CaVβ1b and CaVβ2aC3,4S depends on the 

time of injection. (A) Representative current traces from oocytes expressing CaV2.3 channels with CaVβ1b 

or CaVβ2aC3,4S either injected 2 to 7 hours before recording (late-injection) or co-injected with CaV2.3-

encoding cRNA (co-injection). Currents were evoked by a 10 s pulse to 0 mV from a holding potential of -

90 mV. (B) Average t½ for both subunit combinations shown in A. Using CaVβ1b, t½ for co-injection 

(0.29±0.02 s, n=11) and late-injection (2.19±0.25 s, n=14) experiments were significantly different. With 

CaVβ2aC3,4S, t½ was also significantly different between co-injected (0.82±0.08 s, n=13) and late-injection 

(2.86±0.48 s, n=16) experiments (t-test, p<0.01). (C) Steady-state inactivation curves from oocytes either 

co-injected or late injected with CaVβ1b. Continuous lines correspond to the Boltzmann distributions that 

best describe each set of data.  For comparison, the Boltzmann distributions that best described CaV2.3 data 

from Fig. 7.5 are shown (dashed lines). (D) As in C but for CaVβ2aC3,4S. With both proteins, co-injection 

experiments yield V½ significantly more negative than late injection (t-test, p <0.01). With CaVβ2a C3,4S, V½ 

from late and co-injection experiments were significantly different to CaV2.3 alone (t-test, p <0.01). With 

CaVβ1b, V½ differs from CaV2.3 alone only in co-injection experiments. With both proteins, t½ in late and co-

injection experiments were significantly different from each other and from CaV2.3 alone (t-test, p <0.01) 

(see SI Table 7.S2 for details). 
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7.5 Discussion 

Here we demonstrate that the GK module of the voltage-gated calcium channel β-subunit 

recapitulates key modulatory properties of the full length protein and thus, CaVβ-GK 

emerges as a functional competent domain. This implies that CaVα1/GK interaction 

suffices for channel gating regulation. Moreover, we show that regulation by GK is 

abolished by mutating the AID sequence consistent with the idea that the AID/GK binding 

surface is critical for channel modulation (26).  

 

Although, our size-exclusion chromatography and sucrose gradient analysis reveals that 

purified GK domains forms dimers in solution, the fact that a CaVβ2a-GK covalently 

linked to CaV1.2 pore-forming subunit fully recapitulates activation properties of the 

channel (Fig. 7.3) proves that the functional unit is a single GK molecule.  

 

Our experiments also demonstrate that CaVβ-GK can sustain inhibition of voltage-

dependent inactivation of CaV2.3 channels. The prevailing view is that this phenotype is 

conferred uniquely by CaVβ2a because it is anchored to the membrane and constrains the 

movement of the inactivating particle encoded by loop I-II (15;27). Our results reveal 

instead that inhibition of inactivation is not a unique feature of CaVβ2a but rather an 

inherent property of the GK module that appears to act as a brake that impairs voltage-

dependent inactivation.  
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A corollary of this conclusion is that facilitation of inactivation by full-length CaVβ 

requires additional structural determinants to antagonize GK brake-like effect. Full length 

proteins, CaVβ1b and CaVβ2a C3,4S, were able to counteract GK action only when co-

injected with the CaV2.3 encoding cRNA as if these determinants were acquired within a 

restricted time window during channel biogenesis.  

 

We envision that in cRNA or protein co-injection experiments, the formation the CaVα1-

CaVβ complex in early compartments, such as the endoplasmic reticulum, allows chemical 

or structural modifications necessary for counteracting the brake-like effect of GK. Within 

this framework, palmitoylation may sequester CaVβ2a to other membranous 

compartements early during biogenesis, hindering the formation of CaVα1-

CaVβ complexes in the compartment that is permissive for these structural modifications. 

Alternatively, CaVβ protein may gradually switch to fast inactivation-conferring 

phenotype over a period of several days independently of its location or association state. 

In any case, the conclusion is that fast inactivation relies on further post-translational 

modifications of CaVβ, although the precise molecular mechanism remains to be solved.  

 

In clear contrast to the protein injection experiments, we did not observe any modulation 

when CaVβ-SH3-GK or CaVβ-GK was co-injected as cRNA. Most likely, variable parts of 

CaVβ are important for either efficient translation or stability of the protein in the oocyte 

cytoplasm. Indeed, modulation of inactivation by CaVβ2a-GK, injected as protein, is rather 

transient compared to the full-length protein, indicating a reduced lifetime. This may 
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explain why previous attempts, either by co-expressing or co-injecting the protein more 

than 24 hours prior to the recordings, yield seemingly contradictory results (7-11). 

Although, the time course of CaVβ2a-GK effect on CaV1.2 activation could not be 

determined, linking GK to CaV1.2 proved to be an effective strategy to stabilize this 

module and increase its potency. So far, we have been unable to express a concatamer of 

CaV2.3 with either the full-length CaVβ or the GK domain. 

 

As new protein partners are being discovered, the functional role of CaVβ is expanding 

rapidly (28;29). We recently found that the SH3 module of CaVβ binds to the endocytotic 

protein dynamin (24) and now we report that the GK module regulates calcium channel 

function. Together these findings introduce a new perspective of CaVβ. Calcium entry 

through VGCCs upon membrane depolarization ensues a transient change in intracellular 

calcium concentration that regulates diverse cellular functions.  

 

Integration of these different cellular processes must be tightly coordinated in living cells 

and the domain arquitecture of CaVβ with two functionally independent modules appears 

particularly well suited to orchestrate calcium signaling. We suggest that while GK 

regulates calcium entrance, the SH3 domain links channel activity to other cellular 

processes by binding to additional proteins.  
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 7.7 Supplemental Data 

7.SI Materials and Methods 

Sucrose Density Gradient Centrifugation. Sucrose gradient analysis on purified proteins 

was performed as previously described (1). Purified Cavβ2a-GK and Cavβ1b-GK alone or 

together with a protein marker were fractionated on a linear sucrose gradient (0-15% in 

Buffer A). Gradients were generated by a gradient mixer to a final volume of 4 ml, the 

proteins were layered on top of separate gradients and centrifuged in a Beckman SW-41Ti 

rotor at 100,000 g for 16 h at 4°C. After sedimentation, individual gradients were 

fractionated bottom-to-top by drow-wise collection into 14 to16 tubes and all fractions 

were analyzed by SDS-PAGE and western blot. All sucrose gradients were repeated at 

least twice. 

 

Western Blot Analysis. Aliquots from the different sucrose gradient fractions were 

resolved on a reducing SDS-PAGE and the gels were electroblotted onto nitrocellulose 

membrane Hybond-ECLTM, GE Healthcar Life Science) using sodium carbonate buffer, 

pH 9.9. After blocking with 3% BSA, the membrane was incubated with either anti-Penta-

His antibody (Qiagen). Secondary horseradish peroxidise (HRP)-coupled rabbit anti-

mouse IgG antibody (Pierce) was used for detection of immune complex by enhanced 

chemiluminescence (Super ELISA femto maximum sensitivity substrate, Pierce) using a 

GeneGnome Syngene Bioimaging System. 
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Electrophysiological Recording. Electrophysiological Recordings were performed four 

to six days after cRNA injection and two to seven hours after protein injection (50 nl of 

the protein stock solution) using the cut-open oocytes technique (2) with a CA-1B 

amplifier (Dagan Corp., Minneapolis MN USA) as described (3). The external solution 

contained in mM, 10 Ba2+, 96 n-Methylglucamine and 10 HEPES, pH 7.0 and the internal 

solution 120 n-Methylglucamine, 10 EGTA and 10 HEPES, pH 7.0. For a better control of 

calcium-activated chloride currents EGTA was replaced by BAPTA in the internal 

solution when recording oocytes expressing the Cav2.3 subunit. Data acquisition and 

analysis were performed using the pCLAMP system and software (Axon Instruments Inc., 

Foster City CA USA). Currents were filtered at 2 kHz and digitized at 10 kHz. Linear 

components were eliminated by P/-4 prepulse protocol (4). 
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Fig 7.S1 Sucrose Gradient analysis of molecular standards. Two molecular mass standards, albumin (66 

kDa, Sigma) and carbonic anhydrase, CA; (29 kDa, Sigma) were loaded onto a 0-15% linear sucrose 

gradient. After sedimentation, the gradient was fractionated bottom-to-top into 14 fractions and each fraction 

was resolved onto SDS-PAGE to monitor the protein distribution profile. Albumin and CA distributed 

throughout the second half of the gradient, with CA appearing at later fractions as expected from its reduced 

molecular mass 
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Fig 7.S2 Sucrose Gradient analysis of Cavβ2a-GK. Two separated 0-15% linear sucrose gradients were 

loaded with Cavβ2a-GK either together with albumin (A) or alone (B). After sedimentation, the gradient was 

fractionated bottom-to-top into 15 fractions and each fraction resolved onto SDS-PAGE. The presence of 

albumin did not alter the sedimentation profile of Cavβ2a-GK. Cavβ2a-GK with a predicted molecular mass of 

28.6 kDa, co-distributes with albumin, indicating the presence of dimers. 
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Fig 7.S3 Sucrose Gradient analysis of Cavβ1b-GK. Two separated 0-15% linear sucrose gradients were 

loaded with Cavβ1b-GK either together with albumin (A) or alone (B). After sedimentation, the gradient was 

fractionated bottom-to-top into 16 fractions and each fraction resolved onto SDS-PAGE. The presence of 

albumin did not alter the sedimentation profile of Cavβ1b-GK. Cavβ1b-GK distributes along with albumin and 

CA (see Fig 7.S1), indicating the presence of dimers and monomers. 
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Fig 7.S4 Cavβ2a-SH3-GK is as effective as full length Cavβ2a in modulating activation of Cav1.2-

mediated currents. (A) Representative gating and ionic currents traces from oocytes expressing Cav1.2 

cRNA alone and following injection of Cavβ2a or Cavβ2a-SH3-GK during a 60 ms pulse to -30,0 and +30mV 

from a holding potential of  -80mV. (B) Current-voltage plot normalized by charge movement (I/Q) from 

oocytes expressing the different subunit combination shown in A. Peak I/Q for oocytes expressing Cav1.2 

alone was 0.30 ± 0.06 nA/pC (n=15), for Cav1.2 + Cavβ2a-SH3-GK 4.6 ± 0.7 nA/pC (n=17) and for Cav1.2 + 

Cavβ2a 4.5 ± 0.9 nA/pC (n=18). (C) Normalized tail currents from oocytes expressing the different subunit 

combinations shown in B. Continuous lines correspond to the fit of the sum of the two Boltzmann 

distributions that best described each set of data (for details, see SI Table 7.S1). 
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Fig 7.S5 Mutation of a fully conserved tryptophan within the AID sequence yields Cav2.3 channels 

insensible to full length Cavβ2a and refolded Cavβ2a-GK. (A) Representative current traces from oocytes 

expressing Cav2.3 W386S cRNA alone or following injection of either full length Cavβ2a or Cavβ2a-GK 

during a 10 s pulse to 0 MV from a holding potential of -90 mV. (B) Average decay times to half peak 

current amplitude (t1/2) for the different subunit combinations shown in A. (C) Representative current traces 

evoked with the steady-state inactivation pulse protocol consisting of a 10 s conditioning period to voltages 

of increasing amplitude, from -120 mV to +30 mV in 15 mV increment, followed by a 0.4 s test pulse to 0 

mV. (D) Average steady state inactivation curves from oocytes expressing Cav2.3 W386S cRNA alone or 

following injection of either full length Cavβ2a or Cavβ2a-GK. Continuous lines correspond the fit to 

Boltzmann distributions plus a non-inactivating current component that best describes each set of data (for 

details, see SI Table 7.S2). 
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Table 7.S1. Parameters defining the sum of two Boltzmann distributions that best fitted normalized 

tail currents for the indicated Cav1.2 subunit combinations. Mean ± SEM of maximal current normalized 

by total charge movement (I/Q) and parameters defining the best fit to the sum of the two Boltzmann´s 

distributions that describe the activation curve. Peak tail currents (Itail) were measured during deactivation at 

-40 mV following a 65 ms pulse of increasing voltage, normalized and plotted versus to pre-pulse potential 

to yield the GV curve that was then fitted to: 

 

 

Where R is Universal Gas Constant, F the Faraday’s Constant, T is temperature, V is the voltage preceding 

repolarization to -40mV, IMAX1 and IMAX2 the contribution of each Boltzmann distribution, characterized by 

slope factors z1 and z2 and half activation potential V1 and V2. Normalized conductances were obtained by 

Itail / ( IMAX1 + IMAX2) yielding G1 and G2 fractions. * denotes t-test p< 0.01 compared to values measured in 

oocytes expressing Cav1.2 alone. † denotes t-test p< 0.01 compared to values measured in oocytes 

expressing Cav1.2-Cavβ2a concatamer. 
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Table 7.S2 Average t1/2 and parameters defining the Boltzmann distribution and the percentage of 

non-inactivating current component that best fitted steady-state inactivation for the indicated Cav2.3 

subunit combinations.  Steady state parameters were obtained by plotting the peak currents in a test pulse 

to 0 mV after a pre-pulse to different voltages and fitting to the follow equation: 

 

 

 

Where Imax is the current at peak, Ires is the non inactivating current, F is the Faraday’s constant, R the 

Universal constant of gases, T is temperature (298 K), V is the membrane voltage and V1/2 is the voltage 

where the fraction of channels inactivated and non-inactivated is equal. N/A, not applicable.  * denotes t-test 

p< 0.01 compared to values measured in oocytes expressing Cav2.3 alone. † denotes t-test p< 0.01 compared 

to values measured in oocytes expressing Cav1.2 + Cavβ2a. # denotes t-test p< 0.01 compared to values 

measured in oocytes expressing Cav1.2 + Cavβ1b cRNA. 
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8.1 Abstract 

The auxiliary β-subunit of voltage-gated calcium channels (CaVβ) is traditionally 

known as a potent regulator of channel function. However it also participates in other 

cellular functions including endocytosis. CaVβ encompasses an Src homology 3 

(CaVβ-SH3) and a guanylate kinase (CaVβ-GK) domain.  While CaVβ-GK associates 

to the α1 pore-forming subunit and modulates channel function, CaVβ-SH3 interacts 

with dynamin and promotes endocytosis. The molecular mechanism by which CaVβ-

SH3 supports endocytosis is completely unknown. Here, we show that substitution of 

the single cysteine residue in CaVβ2a-SH3 by alanine (CaVβ2a-SH3 C113A) abolishes 

dimerization indicating that formation of dimers occurs through a single cystine 

bridge. CaVβ2a-SH3 C113A still binds to dynamin but does not internalize CaV1.2 

channels expressed in Xenopus oocytes. Endocytosis is restored when two CaVβ2a-SH3 

C113A molecules are covalently linked to form a concatamer. Thus, dimerization 

appears essential for the endocytic function exhibited by CaVβ2a-SH3. Moreover we 

found that full-length CaVβ also dimerizes. We propose that dimerization enables this 

modular protein to switch from channel regulator to endocytosis activator.  
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8.2 Introduction 

The auxiliary β-subunit of voltage-gated calcium channels (CaVβ) has traditionally been 

recognized for its role in modulation of high-voltage gated calcium channels (Arikkath and 

Campbell, 2003; Catterall, 2000; Dolphin, 2003). More recently it has been shown that the 

same subunit mediates several other cellular processes (for review see, Hidalgo and Neely, 

2007), including regulation of insulin secretion (Berggren et al., 2004), gene transcription 

(Hibino et al., 2003) and endocytosis (Gonzalez-Gutierrez et al., 2007). Crystallographic 

studies provided the molecular basis for such functional versatility. They identified CaVβ as 

a member of the membrane associated guanylate kinase (MAGUK) family of scaffolding 

proteins containing two protein-protein interactions modules: an Src homology 3 (SH3) 

and a guanylate kinase (GK) domain, (Chen et al., 2004; Opatowsky et al., 2004; Van 

Petegem F. et al., 2004). While modulation of channel activity is achieved by association 

of the GK domain with the α1-interacton domain (AID), a highly conserved site in the α1 

pore-forming subunit (CaVα1), interaction between the SH3 domain and dynamin mediates 

endocytosis (Gonzalez-Gutierrez et al., 2007; Gonzalez-Gutierrez et al., 2008; Pragnell et 

al., 1994). Dynamin is a major endocytic protein belonging to the family of large GTPases 

that besides the GTPase domain encompasses a proline-rich domain that interacts with SH3 

domains of various proteins (Gout et al., 1993). CaVβ-SH3 appears also to interact within 

the proline rich domain of dynamin, but the molecular events leading to activation of 

endocytosis by CaVβ-SH3 are completely unexplored (Gonzalez-Gutierrez et al., 2007). It 

has been proposed that the recruitment of dynamin to clathrin-coated pits in nerve 

terminals is driven by heterodimerization of amphiphysin (Wigge et al., 1997). 

Amphiphysin is an SH3-containing protein that expresses at high levels in mammalian 

brain and binds dynamin through its SH3 domain (Owen et al., 1998; Wigge and 
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McMahon, 1998).  Here we investigate a potential role of CaVβ-SH3 dimerzation in 

promoting endocytosis. Using blue-native polyacrylamide gel electrophoresis (BN-PAGE) 

we found that CaVβ-SH3 forms dimers in vitro through a single disulfide bond. 

Substitution of the unique cysteine residue by alanine not only abolishes dimerization but 

also endocytosis promoted by CaVβ-SH3 though interaction with dynamin is preserved. 

The endocytic function of this domain is rescued by covalently linking two molecules of 

CaVβ-SH3 dimerization-deficient mutant. Our findings demonstrate that dimerization of 

CaVβ-SH3 is a crucial step to mediate endocytosis. 
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8.3 Materials and Methods 

8.3.1 cDNA constructs and recombinant proteins.  

CaV1.2 channel construct and dynamin fused to the hematoagglutinin tag (HA) has 

been described elsewhere (Gonzalez-Gutierrez et al., 2007) . Full length CaVβ2a wild 

type (Swiss-Prot entry:Q8VGC3), wild-type CaVβ2a-SH3 and CaVβ2a-SH3 C113A 

monomers and concatamers were prepared as described (Gonzalez-Gutierrez et al., 

2007;Hidalgo et al., 2006). All protein constructs bear a six histidine tag (His6) fused 

at the N-terminal end of the protein. GST alone and GST fused to CaV1.2 loop I-II 

(GST- CaV1.2 loop I-II) were expressed in bacteria and purified as described (Hidalgo 

et al., 2006).   

 

8.3.2 Immunoprecipitation.  

Cells (tsA201) were transfected with HA-dynamin expression plasmid and lysed after 

24-30 hours transfection. The cell lysate was incubated with anti HA antibody (Roche 

Applied Sciences) and recombinant CaVβ2a-SH3 protein derivatives for one hour on 

ice. Protein G beads were added (GE Healthcare Life Sciences) and the mix incubated 

one additional hour at 4°C. After extensive washes the bound proteins were eluted with 

SDS-loading buffer, resolved in SDS-PAGE and detected by western blot using anti-

His antibody (Qiagen) and chemiluminescence. 

 

8.3.3 Pull-down assays.  

Pull down assays using CaVβ2a fused to Strep-tag II™ tag (IBA GmbH) as bait and 

CaVβ2a fused to yellow fluorescence protein (YFP-CaVβ2a) as prey were performed as 

described (Neely et al., 2004). Strep-CaVβ2a and YFP-CaVβ2a were expressed in 
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tsA201 cells and the cell extract obtained 24-48 hours after transfection was incubated 

with Strep-tactin™ (IBA GmbH) beads for one hour at 4°C. The beads were pelleted, 

washed and bound proteins were eluted with SDS loading buffer and resolved on SDS-

PAGE which was later visualized by fluorescence scanning using a Typhoon imager 

(GE Healthcare Life Sciences).    

 

8.3.4 Xenopus Oocytes preparation, injection and electrophysiological recordings. 

Xenopus laevis oocytes were prepared, injected and maintained as in previous report 

(Neely et al., 2004). All capped cRNA were synthesized using the MESSAGE-

machine (Ambion, Austin TX, USA), resuspended in 10 µl water and stored in 2 µl 

aliquots at –80 °C until use. Electrophysiological recordings on CaV1.2 expressing 

oocytes were performed using the cut-open oocyte technique with a CA-1B amplifier 

(Dagan Corp., Minneapolis MN USA) as described (Hidalgo et al., 2006). Briefly, 

recordings were done two to five hours after protein injection (50 nl of the protein 

stock solution, 1 mg/ml, per oocyte) and five to seven days after cRNA injection.  The 

external solution contained in mM, 10 Ba2+, 96 n-Methylglucamine, and 10  pH 7.0 

and the internal solution 120 n-Methylglucamine, 10 EGTA, and 10 HEPES, pH 7.0. 

Charge movement Qon was measured by integrating gating current during a step near 

the reversal potential for the permeant ion (Barium) determined empirically by 

stepping to several potentials in 2-mV increments (Gonzalez-Gutierrez et al., 2007). 

Data acquisition and analysis were performed using the pCLAMP system and software 

(Axon Instruments Inc., Foster City CA USA). Currents were filtered at 2 kHz and 

digitized at 10 kHz. Linear components were eliminated by P/-4 prepulse protocol. 

Currents were filtered at 1 kHz and digitized at 20 kHz.  
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8.3.5 Blue native polyacrylamide gel electrophoresis (BN-PAGE). 

BN-PAGE were done as described (Niepmann and Zheng, 2006). Briefly, proteins 

were incubated with loading buffer alone or either supplemented with DTT or SDS 

for 30 minutes at room temperature and resolved in a gradient gel (4-20% of 

acrylamide) overnight at 4 °C.   
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8.4 Results and Discussion 

8.4.1 CaVβ2a-SH3 dimerizes through a single disulfide bond 

Here, we used BN-PAGE analysis to investigate the oligomeric structure of CaVβ-SH3. 

Purified CaVβ-SH3 migrates in BN-PAGE as two bands suggesting the co-existence of two 

populations with different number of subunits (Fig. 8.1A). Incubation with denaturating 

agent (SDS) produces no changes in the mobility of both forms. However, dithiothreitol 

(DTT) leads to the disappearance of the slower migrating band while migration of the 

faster one remains unchanged. The mobility of the protein in non-denaturating 

electrophoresis depends on the shape and hence, estimation of the numbers of monomers 

assembled per complex is not readily calculated from molecular mass standards.  To asses 

the number of monomeric units assembled in each population we engineered a 

concatameric construct consisting in two CaVβ-SH3 molecules covalently linked. This 

concatamer migrates at approximately the same position as the higher molecular weight 

band observed in native conditions indicating that this form corresponds to a homodimer 

and hence the faster migrating band to a monomer. All together, these results show that 

CaVβ-SH3 dimerizes via disulfide bonding. Accordingly, we expressed in bacteria and 

purified a mutant of CaVβ-SH3 carrying a substitution of the single cysteine residue in at 

position 113 by alanine (CaVβ2a-SH3 C113A). This mutant elutes as a monodisperse peak 

from a size exclusion chromatography indicating a homogenous protein population and 

migrates as a single band in a blue native gel (Fig. 1B-C). When compared to CaVβ2a-SH3 

concatamer this single band migrates faster indicating that it corresponds to the monomeric 

form. Thus, substitution of the single cysteine residue in CaVβ2a-SH3 C113A abolishes 

dimer formation. 
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Fig. 8.1.  BN-PAGE analysis of wild type CaVβ2a-SH3 and CaVβ2a-SH3 C113A. A, CaVβ-

SH3 domain resolved in BN-PAGE (4-20% gradient) under different treatments. CaVβ-SH3 in native 

conditions (lane 1) and after 30 min incubation with DTT (lane 2) or SDS (lane 3). Lane 4 was loaded 

with CaVβ-SH3 concatamer construct. B, Size exclusion chromatography profile from Superdex 200 

10/30 column (GE Healthcare Life Sciences) of purified CaVβ-SH3 C113A. The elution volume for 

molecular mass standards is shown. 1, void volume and 2, 3 and 4 denotes the elution volume of 

Albumin (67 kDa), Ovalbumin (43 kDa), and Ribonuclease A (13.7 kDa), respectively. C, Same as A 

but for CaVβ C113A SH3 in native conditions (lane 1) and after 30 min incubation with DTT (lane 2) or 

SDS (lane 3). Lane 4 was loaded with CaVβ-SH3 concatamer construct as control. 
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8.4.2 CaVβ2a-SH3 C113A dimerization-deficient mutant associates with dynamin but 

does not promote endocytosis  

Wild-type CaVβ2a-SH3 interacts with dynamin and promotes internalization of cardiac 

CaV1.2 channels expressed in Xenopus laevis oocytes (Gonzalez-Gutierrez et al., 2007). To 

examine the ability of CaVβ2a-SH3 dimerization-deficient mutant to interact with dynamin 

we expressed HA-tagged dynamin (HA-dynamin) in tsA201 cells and perform 

coimmunoprecipitation assays with CaVβ2a-SH3 C113A and wild-type CaVβ2a-SH3 as 

control. Immunoprecipitation of HA-dynamin coprecipitates wild-type CaVβ2a-SH3 and 

CaVβ2a-SH3 C113A to a similar extent (Fig 8.2A), indicating that substitution of cysteine 

113 impairs does not prevent binding to dynamin. Here as in previous reports (Gonzalez-

Gutierrez et al., 2007;Hidalgo et al., 2006) we used gating currents measurements which 

result from the charge movement (Qon) of a defined number of charged residues that lead to 

channel opening during activation (Bezanilla and Stefani, 1998). The total charge moved, 

that is proportional to the number of channel in the plasma membrane, is obtained by 

integrating the area down the gating current (Fig. 8.2B). A strict correlation between 

number of channels assessed by Qon and by immunoassay using epitope-tagged channels 

has already been established elsewhere (Hidalgo et al., 2006). Injection of wild-type 

CaVβ2a-SH3 into oocytes expressing CaV1.2 channels decreases dramatically Qon while 

injection of CaVβ2a-SH3 C113A results in no significant changes (Fig. 8.2B). It appears 

then that binding of CaVβ2a-SH3 to dynamin is required but not sufficient to promote 

endocytosis.  Formation of CaVβ2a-SH3 dimers emerges as a crucial step. Dynamin uses 

GTP hydrolysis to generate the force required for scission of newly formed vesicles from 

the plasma membrane during endocytosis (Marks et al., 2001).  The GTPase activity can be  
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Fig. 8.2. Association with dynamin and endocytocis activity of wild type CaVβ2a-SH3 and CaVβ2a-

SH3 C113A dimerization-deficient mutant. A, Western blot of the coprecipitation assay of His6-CaVβ-

SH3 and His6-CaVβ-SH3 C113A with HA-dynamin expressed in tsA201 cells. Cell lysate from cells 

expressing HA-dynamin was incubated with either His6-CaVβ-SH3 (lane 1) or His6-CaVβ-SH3 C113A 

(lane 2) and immunoprecipitated with anti-HA antibody (Roche Applied Sciences). Bound proteins were 

eluted with SDS loading buffer, resolved in SDS-PAGE and analyzed by western blot using anti-His 

antibody. For lane 3 and 4, cells lysate were replaced by buffer. B, Average Qon from CaV1.2-expressing 

oocytes before (109.4 ± 17.8 pC, n=11) and after CaVβ2a-SH3 (8.8 ± 2.8 pC, n=12) or CaVβ2a-SH3 

C113A injection (81.7 ± 10.7 pC, n=17). Qon was measured by integrating gating current during a step 

near reversal potential for barium as shown in the inset.  
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stimulated by several factors including self-assembly and binding to SH3-domain 

containing proteins (Gout et al., 1993;Warnock et al., 1996;Zheng et al., 1996).  

Dimerization of CaVβ2a-SH3 may facilitate dynamin self-assembly and thus endocytosis. 

  

8.4.3 Concatameric CaVβ2a-SH3 113A rescues endocytosis  

If dimerization through cysteine bridge formation at position 113 is crucial for CaVβ2a-SH3 

endocytic function we expect that spatially confining two CaVβ2a-SH3 C113A molecules 

by joining them together may rescue this function. We engineered a concatameric version 

of CaVβ2a-SH3 C113A by covalently linking two CaVβ2a-SH3 C113A molecules in a single 

open reading frame and compare its effect with a wild type CaVβ2a-SH3 concatamer. 

Association to dynamin was preserved in wild type and mutant concatamers (Fig. 8.3A). 

Injection of wild type CaVβ2a-SH3 concatamer into CaV1.2-expressing Xenopus oocytes 

reduced Qon as efficient as its monomeric counterpart does, indicating that the idea that no 

major structural rearrangements were induced by linking the two molecules together (Fig. 

8.3B). In contrast to its monomeric version, CaVβ2a-SH3 C113A concatamer downregulate 

CaV1.2 channels (Fig. 8.3C). Thus, CaVβ2a-SH3 C113A concatamer rescues the ability of 

the wild-type protein to promote endocytosis which is loss in CaVβ2a-SH3 C113A 

monomer. These findings reinforce the idea that dimerization of CaVβ2a-SH3 is required for 

its role in mediating endocytosis.  
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8.4.4 CaVβ forms dimers 

After establishing the functional relevance of CaVβ2a-SH3 we explored the ability of 

the full length CaVβ to form dimers using BN-PAGE and pull down assays. We 

rationalized that dimerization may constitute a molecular switch contributing to the 

functional plasticity of CaVβ. CaVβ2a resolved in BN-PAGE also exhibits two protein 

populations suggesting the coexistence of monomers and dimers (Fig. 8.4A).  

However, neither treatment with DTT nor with SDS leads to disaggregation of the 

higher molecular weight complex. Consistently, incorporation of the C113A mutation 

in the full-length protein (CaVβ C113A) did not change the protein migration in the 

BN-PAGE suggesting that the oligomer state is stabilized by additional interactions 

beside SH3-SH3 contacts (data not shown). Moreover, CaVβ C113A exhibit same 

endocytic activity as the wild type protein (data not shown). 

 

To investigate dimer formation in intact cells we generated a CaVβ fused to either the 

yellow fluorescence protein (YFP-CaVβ) or to the strep tactin II™ tag (Strep-CaVβ) 

and coexpressed them in tsA201 cells. Strep-CaVβ pulled down specifically YFP-CaVβ 

indicating that CaVβ dimers are formed inside the cell (Fig. 8.4B).  

 

It has been established that one molecule of CaVβ suffices for calcium channel 

function modulation (Dalton et al., 2005). However, CaVβ down-regulates only 

calcium channels that lack the highly conserved AID site but not wild type channels 

indicating that only the unbound form is able to promote endocytosis (Gonzalez-

Gutierrez et al., 2007).  This mechanism would provide a very efficient quality control 

mechanism  assuring  functional fitness   and  survival  of  the  channel  in  the  plasma 
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Fig. 8.3.  Association with dynamin and endocytocis activity of wild type CaVβ2a-SH3 and CaVβ2a-

SH3 C113A concatamers. A, Western blot of the coprecipitation assay of His6-CaVβ-SH3 concatamer 

and His6-CaVβ-SH3 C113A concatamer with HA-dynamin expressed in tsA201 cells as in Fig. 2A. B, 

Average Qon from CaV1.2-expressing oocytes before (144.6 ± 7.72 pC, n=12) and after injection of 

either CaVβ2a-SH3 concatamer (12.8 ± 2.8 pC, n=10) or CaVβ2a-SH3 monomer (32.8 ± 7.1 pC, n=10). C, 

Average Qon from CaV1.2-expressing oocytes before (137.9 ± 13.0 pC, n=15) and after injection of 

either CaVβ2a-SH3 C113A concatamer (25.9 ± 5.7 pC, n=17) or CaVβ2a-SH3 C113A monomer (130.4 ± 

13.6 pC, n=16). Qon was calculated as in Fig. 2B. 
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membrane. We envision that free CaVβ dimerizes and its association with CaVα1 pore 

forming subunit regulates its oligomerization state. This predicts that pre-association 

of CaVβ with the AID would impair its endocytic ability by preventing dimerization of 

CaVβ. We coinjected CaVβ2a alone and pre-incubated with loop I-II of CaVα1 that 

encompasses the AID site in oocytes expressing CaV1.2 channels lacking the AID site. 

 

Association of CaVβ with AID indeed prevented internalization of CaV1.2 ΔAID 

channels (Fig 8.4C). Thus it appears likely that dimerization of CaVβ plays a relevant 

role in determining the multifunctionality of this protein.  

 

8.4.5 Speculation 

Dimerization is an important event in signal transduction and plays a crucial role in 

signaling events at the plasma membrane (Klemm et al., 1998). We propose that 

dimerization of CaVβ regulates the functional switch of CaVβ from calcium channel 

modulator to endocytosis activator. This is consistent with the yet well-established 

one-to-one stoichiometry of CaVα1-CaVβ interaction that modulates calcium channels 

function (Dalton et al., 2005) and the reversible nature of this interaction (Hidalgo et 

al., 2006).  CaVβ would bind the channel as monomer and when dissociates may 

interact with dynamin, dimerize and promote endocytosis (Fig 8.5).  Whereas the 

whole picture is certainly still incomplete, our findings constitute a first step towards 

unveiling the molecular basis of CaVβ functional versatility. They outline a novel 

mechanism for the functional plasticity of CaVβ which clearly has became a 

multifunctional regulatory protein besides modulation of calcium channels (Hidalgo et 

al., 2007). 
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Fig. 8.4.  BN-PAGE and pull down assays of CaVβ2a. A, CaVβ2a domain resolved in BN-PAGE (4-

20% gradient) under different treatments. CaVβ2a in native conditions (lane 1) and after 30 min 

incubation with DTT (lane 2) or SDS (lane 3). B, Pull down assay using Strep-CaVβ2a as bait and YFP-

CaVβ2a  as prey expressed in tsA201 cells. Bound proteins were eluted with SDS loading buffer, 

resolved in SDS-PAGE and visualized by fluorescence scanning. Lane 1-3, pull down assay using:  lane 

1, Strep-CaVβ2a and YFP-CaVβ2a; lane 2, YFP-CaVβ2a alone and lane 3, Strep-CaVβ2a and YFP. Lane 4-

6, crude extract from cell expressing: lane 4, Strep-CaVβ2a and YFP-CaVβ2a; lane 5, YFP-CaVβ2a alone 

and lane 6, Strep-CaVβ2a and YFP. C, Average Qon from CaV1.2 ΔAID-expressing oocytes before (112.1 

± 19.1 pC, n=19) and after injection of CaVβ2a either pre-incubated with GST (14.3 ± 5.2 pC, n=19) or 

with GST fused to loop I-II of CaVα1 encompassing AID site (113.7 ± 23.2 pC, n=20). 
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Fig. 8.5. Model for the functional switch of CaVβ from calcium channel modulator to endocytosis 

activator. CaVβ binds as a monomer to the AID site located within the intracellular loop joining domain 

I and II of CaVα1. For simplicity the other loops were removed). Dissociation of CaVβ allows its 

interaction with dynamin and dimerization. Only interaction of the dimeric form of CaVβ with dynamin 

with would leads to endocytosis. The mechanism by which this interaction results in vesicle 

internalization remains to be investigated.  
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