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i

Zusammenfassung

Modell-basierte und Test-basierte Methoden werden meistens zur Analyse der Dosis-
Wirkung Beziehung verwendet. Der Gebrauch von ordnungseingeschränkten Hy-
pothesen ist eine einheitliche Methode, die Power vergröÿert, den alternativen Raum
einengend. Hiermit sind Änderungspunkte, einfache Ordnung und einfacher Baum
drei allgemeine Typen von Ordnungsbeschränkungen.

Wir werden diese zwei Methoden im Änderungspunkte-Entdeckungsproblem und an-
deren Ordnungsbeschränkungsproblem vergleichen. Die Modell-gegründete Methode
konzentriert sich auf, wie man die reale Information heraus�ndet. Auf der anderen
Seite konzentriert sich die Test-gegründete Methode auf, wie man eine Verteilung
aufbaut und das FWER kontrolliert. Nach dem Vergleich stellen, auch werden wir
ein modi�ziertes Informationskriterium präsentieren, das die FWER für die Muster-
auswahl unter der bestimmten Ordnungsbeschränkung kontrollieren kann.

Schlagworte: multiple Kontrasttests, ordnungseingeschränkten Hypothesen, In-
formationskriterium
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Abstract

Model-based (Royston et al., 1999) and test-based (Dosemeci and Benichou, 1998)
methods are most commonly used to analyze dose-response relationship. The use of
order-restricted hypotheses is a common approach which increases power by narrow-
ing down the alternative space. Hereby, Change-point, Simple-order and Simple-tree
are three common types of order restrictions.

In this thesis, we will compare model-based methods with test-based methods in
Change-point detection and other order restriction problems. The model-based
method focuses on the real information distance. On the other side, the test-based
method focuses on how to build a distribution and to control the Familywise er-
ror rate (FWER). After the comparison, we will also present a new method, called
Multiple Likelihood Test (MLT), which can control the FWER for model selection
under di�erent order restrictions. First, we build Mi and Hothorn Information Cri-
terion (MHIC) to do model selection. We will consider the null hypothesis and all
the elementary alternative models as candidate models. Second, the information
di�erences between the null model and the elementary alternative models will be
calculated. Finally, we will build the distribution of these di�erences and calculate
the critical value to control the FWER. In order to solve the "over�tting" problem,
we also modify the maximum likelihood estimators (MLE) into suitable likelihood
estimators (SLE) for calculating the information criterion under certain order re-
strictions, such as Simple-order restriction and Simple-tree oder restriction.

Keyword: Multiple Contrast Test, Order-restricted hypothesis test, Information
Criterion
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Chapter 1

Introduction

This thesis is focused on the application of statistics the �elds in biology, epidemiol-

ogy and pharmacology. The mount of data in this area is huge and there are always

random e�ects within the data. Therefore, we usually do not count the original �g-

ures one by one. The data will be arranged in several groups. Appropriate models

are built to describe the relationship among these groups.

For example, "Exposed with di�erent levels of sul�dic nickel, are nickel-re�nery

workers more likely to get lung cancer than others?", "How do the ages of the

parents e�ect the spontaneous abortion rate?" and "Is there any structure change

between functional motifs and 'junk-DNA' on the genomes?" are frequently asked

questions for building the appropriate models.

In the questions mentioned above, the null hypothesis, which usually assumes no

di�erences or no changes, should be tested �rst. After the null hypothesis is rejected

at a certain global level α, a model selection procedure is used to detect the relation-

ship. However, the test and model selection procedure after the test depend seriously

on the dose-response shape, which is unknown before the whole procedure. In this

situation, a procedure, which has good power over the order-restricted alternative

space, is required.

We will compare model-based method with test-based method in solving order re-

stricted problems. The previous knowledge of order, such as "The e�ects of higher

1



2 CHAPTER 1. INTRODUCTION

dose are stronger than lower dose and placebo" (Simple-order restriction) give more

power to the test.

An order restricted likelihood ratio test, which is test-based method, was developed

by Robertson et al. (1988). Chaudhuri and Perlman (2005) gave a former mathe-

matical de�nition to the common order restriction of Simple-order and Simple-tree

order restriction, which will be discussed in Chapter 3. The idea of taking advantage

of order restriction is widely used in testing methods. Several test-based approaches

are available for these problems, such as max-t statistics (Hirotsu and Srivastava,

2000), which is test-based and is formulated as maximum contrast approach belong-

ing to the broader class of Multiple Contrast tests (MCT). Mukerjee et al. (1987)

also recommended orthogonal contrasts which have a simple power function .

The Multiple Contrast test (MCT) uses the Maximum Likelihood Estimators (MLE)

to reject the global hypothesis and select the model with the largest test statistics

as the most possible model. Chaudhuri and Perlman (2005) also proved that this

estimator achieves the smallest squared error. However, the estimators which have

largest test statistics are just the value which �t the data best. The disadvantage

of MCT is that the score functions of MCT are not designed to do model selection,

although we can select model via them. It does model selection if and only if the

global null hypothesis is rejected. The local �nding rate of the true model of the

alternative is low.

Instead of using MCT, Bretz et al. (2005) suggested using Information Criterion

(IC) which is model-based method and is designed to do model selection. The fa-

mous Akaike Information Criterion (AIC) uses Kullback-Leibler distance to punish

models with numbers of unknown parameters (Akaike, 1974). Following the sim-

ilar idea, Anraku (1999) invented Order Restricted Information Criterion (ORIC)

for normal distributed data by using the same Kullback-Leibler distance to achieve

the best estimator which has the largest adjusted log-likelihood under simple-order

restriction. An algorithm for binomial data is also available (Hothorn et al., 2008).

Ninomiya (2005) also gave the penalty term under change-point order restriction.

Zhao and Peng (2002) developed a penalty term which is proportional to the loga-



3

rithm of the total sample size. Most of these methods focused on how to estimate

the adjusted unbiased information of di�erent elementary hypothesis. The compli-

cated distribution of the Information Criterion increases the di�culty of building

a test. "Furthermore, when the number of hypotheses increases, the adjustment

of multiplicity should also be considered." Robertson et al. (1988) proved that the

value of the log-likelihood ratio between the null hypothesis and the alternatives is

weighted chi-squared distributed under simple-order restriction. In another point of

view, Vuong (1989) focused on the distribution of the log-likelihood ratio under dif-

ferent model structures. The distributions of the log-likelihood ratio for non-nested,

nested and overlapping models are developed by him. Xiong and El Barmi (2002)

developed a non-parametric penalty term which selects the correct model among

multiple hypotheses with control of FWER.

These model-based methods use likelihood to �nd the most possible model. By

using pool-adjacent-violators algorithm (PAVA) (Robertson et al., 1988), the global

maximum likelihood estimator (gMLE) can be achieved. By using the gMLE, these

methods have better �nding rate of the true model, but have no control of FWER.

They treat the null model as one of the possible models among all others. These

methods are not constructed as hypothesis tests to reject the alternatives.

In this thesis, we will present a Multiple Likelihood Test (MLT), which is test-based

model selection method. It can control the FWER for model selection under di�erent

order restrictions. Our research is based on AIC, which has the idea of combining

information and likelihood. Our method is also similar to Anraku (1999); Xiong

and El Barmi (2002). But the di�erence between them can be described as follows:

Anraku (1999) looked for bias-adjusted information criterion under Simple-order re-

striction. In general, he focused on the mean of the information. On the other hand,

Xiong and El Barmi (2002) were trying to do model selection with controlling the

FWER under the null hypothesis, and they simulated the critical value. In this the-

sis, we extend the work of Robertson et al. (1988) to generate a parametric penalty

term for model selection under di�erent order restrictions with control of FWER.

Examples are given in Chapter 2. In Chapter 3, we de�ne and build the model,
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review the previous methods and give solutions for every order restrictions. Chapter

4 includes, the general theory to calculate the Information Distance and the penalty

term. In Chapter 5, we introduce our new test-based model selection method: Multi-

ple Log-likelihood Test (MLT). The relationship between model selection and test is

presented too. Power study will be given in Chapter 6. We also conduct a simulation

study to evaluate the new parametric penalty term and compare the correct model

selection rate with the previous methods. Chapter 7 provides software to calculate

multivariate normal distribution and to make the model selection with control of

FWER. Discussion and summary are given in Chapter 8.



Chapter 2

Motivations

In this chapter, examples of binomial order-restricted problems are presented. De-

tailed discussion will be given in the following chapters.

2.1 Dose-Response Studies

2.1.1 A clinical dose �nding study with an adverse events

rate

In pharmacology, drugs are the chemical substances which are used to prevent, treat

or cure disease. However, the drugs are commonly associated with adverse events,

if the patients overdose. The following example in Table 2.1 is part of a clinical

dose �nding study with adverse events rate (Bretz and Hothorn, 2002). Placebo or

cabergoline in di�erent dosages are given to the patients twice a week. Adverse events

are observed in both of the placebo group and dosage groups. The researchers want

to know if the adverse rate increases markedly at certain dose level of cabergoline.

If the answer is yes, how much is this dose level?

This is a special case of Single Change-point order restriction (de�nition will be

given in Chapter 3.1.1). From the given data, we could guess that one Change-point

exists between the lower dose (0.125mg) group and the higher dose (1.0mg) group.

5
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Treatment Placebo 0.125(mg) 1.0(mg)
Present xi 9 19 24

Absent ni − xi 11 24 17
Total ni 20 43 41

p̂i 0.45 0.44 0.58

Table 2.1: Presence or absence of adverse events.

Exposure Unexp. Low LtoM Medium MtoH High
Cancer xi 10 27 48 42 40 46

Normal ni − xi 57 93 95 92 94 94
Total ni 67 120 143 134 134 140

p̂i 0.149 0.225 0.336 0.313 0.299 0.329

Table 2.2: Lung cancer and exposure to nickel.

5

2.2 Epidemiological case-control studies

2.2.1 Sul�dic nickel and lung cancer

Nickel compounds are classi�ed as carcinogenic to humans by the International

Agency for Research on Cancer. The next example is part of a case-control study

of Norwegian nickel-re�nery workers (Grimsrud et al., 2002). The total amount

and quanti�cation of sul�dic nickel in the working area for di�erent workers are

recorded. The researchers want to know if there is a clear dose-dependent increase

in their studies. If there is a trend, of what type is it?

First they want to test if the Nickel compounds induce cancer. Then, a suitable

dose-response model for the e�ect of sul�dic nickel in lung cancer should be selected.

This problem can be interpreted as model selection under Simple-order restriction

(de�nition will be given in Chapter 3.1.3).

2.2.2 The e�ect of age on the spontaneous abortion rate

In general knowledge, women might have a higher spontaneous abortion rate if they

become pregnant at a higher age. However, this general knowledge is only "partly
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Males age < 25 25− 29 30− 34 35− 39
Abortion xi 33 37 3 7

Normal ni − xi 226 321 61 5
Total ni 259 358 64 12

p̂i 0.127 0.103 0.047 0.583

Table 2.3: Spontaneous abortion rate and age of the father.

true". The rate also depends on the age of the father. Slama et al. (2003) in-

vestigated the percentage rate of spontaneous abortion between weeks 5 and 20 of

pregnancy according to the age of the parents. A random cross-sectional population

of 1,151 French women, who had been pregnant between 1985 and 2000, are inter-

viewed by telephone. The strata of 20-24 years old females is selected and presented

in Table 2.3.

In this example, the researchers are interested in how does the age of the father e�ect

the abortion rate. They not only want to reject the null hypothesis, but also want

to know which group has higher abortion rate. If one of the parents' age is �xed,

such as the data in our table, a model selection procedure under Simple-tree order

restriction for Many-to-one comparison or under Simple-order restriction for trend

test, is suitable for this case (de�nition will be given in Chapter 3.1.3 and 3.1.4).

2.3 Bio-informatics: DNA-motif �nding

Huge amount of data is given in the research �eld of bio-informatics which is a

crossover science between mathematics and biology. The problem is data mining

rather than testing. Interesting candidates with some special genetic meanings

should be found, as much as possible. Biologists use these information in next

stage to uncover further relationship. A false positive report of candidate could

waste their money and time in building experiments. However, researchers care less

about the control of FWER than the motif �nding.

In DNA sequences, di�erent positions have di�erent degrees of conservation. The

DNA-binding proteins are bound to some very conservative base pairs, called motif
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Motif is bonding site for proteins

• actgctACTgcacAATTgcgaattctagtcg…tcaaatgc

GeneMotif 5-30bp

DNA-binding proteins RNA polymerase (protein)

Figure 2.1: Property about DNA Motif (Lewin, 2004).

(Lawrence and Reilly, 1990). The motif, which usually has a length from 5 bp (base

pairs) to 30 bp, is followed by one or more genes. In the protein producing procedure,

�rst a DNA-binding protein bounds itself to the motif, then RNA polymerase will

follow the binding protein and decode the gene region for producing new functional

proteins. The procedure of DNA-binding is shown in Figure 2.1.

Usually, the motif �nding procedures are carried out by two steps, alignment and

comparison. Alignment is a kind of algorithm, which �nds candidate regions where

the motif might locate. Many papers have discussed about how to align the motifs

for �nding the possible regions, such as the L-tuple method. The L-tuple method

cut the DNA sequences into small tuples. By prior assumption, the motifs exist in

every sequences. The frequency of the L-tuples, which are part of the motifs, are

higher in every sequences. L-tuple method picks up the higher frequency tuple and

aligns them into the DNA sequences to recover the motifs (Pevzner et al., 2001).

After alignment, the candidate regions are put together for detail comparison to �nd

out the exact code of the motif. Fourteen instances of the Gal4 binding site motif
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atacttCGGAGCACTGTTGAGCG (2.1)

agcgctCGGACAACTGTTGACCG (2.2)

CGGCGGCTTCTAATCCG (2.3)

tCGGAGGGCTGTCGCCCG (2.4)

CGGAGGAGAGTCTTCCG (2.5)

attgttCGGAGCAGTGCGGCGCG (2.6)

CGCGCCGCACTGCTCCGaacaat (2.7)

CGGAAGACTCTCCTCCG (2.8)

CGGGCGACAGCCCTCCGa (2.9)

CGGATTAGAAGCCGCCG (2.10)

tatCGGGGCGGATCACTCCGaac (2.11)

cacCGGCGGTCTTTCGTCCGtgc (2.12)

CGGCGCACTCTCGCCCG (2.13)

tCGGGGCAGACTATTCCGg (2.14)

Table 2.4: Aligned DNA motif: Saccharomyces Cerevisiae Promoter Database
(SCPD) (Zhu and Zhang, 1999)

in yeast, from the Saccharomyces Cerevisiae Promoter Database (SCPD) (Zhu and

Zhang, 1999), are listed in Table 2.4. Characters with upper case are the aligned

part. After alignment, the motifs are put together to get compared. Some parts are

very conservative while some other parts are less conservative or like random. For

example, In the motif matrix, the �rst column of the aligned motif has 14 "C", the

second column has 13 "G", only one "C". In these situations, the �rst and second

columns are conservative parts. Similarly, column 3, 15, 16 and 17 are conservative

parts too. The columns, which are not mentioned above, are the less conservative

part. For example, the eighth column has eight "C", one "T" and �ve "C".

The matrix Y = {yi,j, i=1,2,3,4; j=1,...,k} in Table 2.5 is estimated by counting

the numbers of the bases A, C, G and T along the columns of Table 2.4. The

{A,C, T,G} are assumed as multinomial distribution.

A list of sequences of length k is often described by a 4 by k Position speci�c Weight

Matrix (PWM), θ = {θi,j, i=1,2,3,4; j=1,...,k} (Stormo et al., 1982). The PWM are

widely used in motif �nding for simplicity in modeling and calculating. The PWM
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yi,j j=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
No. of A i=1 0 0 0 7 1 1 9 0 6 1 0 3 1 2 0 0 0
No. of C i=2 14 0 1 3 3 6 3 8 0 5 3 7 5 3 12 14 0
No. of G i=3 0 14 13 4 9 6 1 5 0 6 1 2 6 1 2 0 14
No. of T i=4 0 0 0 0 1 1 1 1 8 2 10 2 2 8 0 0 0

Table 2.5: 4 by k frequency table.

θ, which is gotten from the 4 by k frequency table, is given as following

θ =
1

14
×



0 0 0 7 1 1 9 0 6 1 0 3 1 2 0 0 0

14 0 1 3 3 6 3 8 0 5 3 7 5 3 12 14 0

0 14 13 4 9 6 1 5 0 6 1 2 6 1 2 0 14

0 0 0 0 1 1 1 1 8 2 10 2 2 8 0 0 0

(2.15)

In the conservative part (column 1, 2, 3, 15, 16 and 17), the frequency of some main

bases is very high. In the meanwhile, the frequencies of some other bases are very

low, we can simply assume that the other three bases are random error with equal

probability. In the less conservative part (e.g. position 4), some base (e.g. bases

A in position 4) has little higher occurrence rate than the other three, which are

usually not random errors. For simplicity, we just assume that the four bases in less

conservative parts are random error.

According to van Zwet et al. (2005), the entropies are calculated over all bases

Hj(θ) = −Σ4
i=1θi,j log θi,j, j = 1, ..., 17 (2.16)

in here, they consider the error as random error too.

Let us assume that the distribution of the dominate base, which is the maximum in

each column, is binomial and the distribution of the sum of the other less conservative

base is binomial too. The bases which have the largest occurrence are taken as

the most possible bases and are assumed to be binomial distributed after taking

maximum over the data. A contingency table is made in Table 2.6. In the table, xi
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Pos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
xi 14 14 13 7 9 6 9 8 8 6 10 7 6 8 12 14 14
ni 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
pi 1 1 .9 .5 .6 .4 .6 .6 .6 .4 .7 .5 .4 .6 .9 1 1

Table 2.6: Contingency table

are achieved by taking the maximum of the i-th column in the frequency Table 2.5,

i.e. xj = maxi yi,j, nj =
∑

i yi,j, pj =
xj

nj

In the position 4 and 14 of this table, two change points with the di�erences around

0.4 are suspected. The motif appears to have a high-low-high structure, which is

de�ned as Epidemic-order restriction (de�nition will be given in Chapter 3.1.2),

which is one common structure of a motif.

High part︷ ︸︸ ︷
p0 = ... = ps−1 > ps = ... = pj−1︸ ︷︷ ︸

Low part

<

High part︷ ︸︸ ︷
pj = ... = pk, 0 < s < j < k (2.17)

The high part is the epidemic state. Length of low part is larger than 3. It is the less

conservative part. Length of high parts is larger than 2. They are very conservative

parts. In the last example sequence length k = 17, the pattern of high-low-high is

3-11-3.

The starting point of this thesis is the order restriction model according to van Zwet

et al. (2005). Their approach used the Position-speci�c Weight Matrix for modeling

the motif. Then, they used the regression model based on MLE under speci�c order

restriction. However, no parameter adjustment is applied to these regression models.

They implemented three versions of the algorithm for unaligned data.

An improved method is demonstrated in this thesis. The same PWM are trans-

formed into binomial model. The values in the very conservative part are pooled to

take the average. The advantage of this method is that it uses the dependent infor-

mation of the conservative motif and uses parameter adjustment to have a better

selection result.
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Figure 2.2: The maximum and entropy values (van Zwet et al., 2005) of the aligned
DNA motif



Chapter 3

Model selection procedure

In this chapter, we will �rst build the mathematical model for the binomial order-

restricted problems given in previous chapter. Secondly, we will give a general

introduction of model selection. Finally, we will give a brief review of the previous

test methods and model selection methods for these problems.

3.1 Order restriction

3.1.1 Single Change-point order restriction

Let random variables X0, X1, ..., Xk be binomial distributed with sample size ni and

proportion pi = xi/ni, i = 0, ..., k where the observations xi are generated from the

distribution of Xi. The hypotheses can be formulated as

H0 : p0 = p1 = ... = pk

HA :
k⋃
j=1

Hj
A (3.1)

here, j−1 to j is the position of Change-point. We want to rejectH0 againstHA with

controlling the FWER over all k Single Change-points. When the H0 is rejected with

control of FWER, we want to select the elementary model, which has the largest

13
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Hypothesis p̃0 p̃1 p̃2

H0 : p0 = p1 = p2 0.5000 0.5000 0.5000
H1
A : p0 < p1 = p2 0.4500 0.5119 0.5119

H2
A: p0 = p1 < p2 0.4444 0.4444 0.5854

Table 3.1: Region of di�erent hypothesis of the adverse events rate.

test statistics, as the best model. The global alternative can be decomposed into k

elementary Single Change-points (Hirotsu and Marumo, 2002).

Hj
A : p0 = ... = pj−1 < pj = ... = pk, j = 1, ..., k (3.2)

The dose �nding study can be solved as Single Change-point detection problem, if

the researchers want to know on which dose the reverse e�ect increase signi�cantly.

The hypotheses are listed in Table 3.1. The region of di�erent hypotheses can

also be seen in Picture 3.1. In this picture, each point in the three dimension

space represents the three proportions for the three dose levels. x is the data we

observed. H0, H
1
A, H

2
A are the candidate models we want to select. H0, H1, H2 are

the estimated parameters in di�erent models i.e H0 ∈ H0, H1 ∈ H1
A, and H2 ∈ H2

A.

We simulate the random data points from these three di�erent estimators. Spheres

with di�erent colors are the 95% con�dence regions for corresponds models. From

the picture we see that X is close to point H2, so model H2
A is the "best" candidate

to be selected. However, these three spheres are overlapped and X is inside the

overlapping region. If we select H2
A as the best model, we cannot control the error

rate. So here we suggest the researcher increase the sample size to achieve higher

power and lower error for the selection.
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H A
2

H A
1

H 0

Figure 3.1: Simulation for the data: Points are generated proportions; Spheres are
the 95% con�dence regions
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3.1.2 Epidemic-order restriction

The Epidemic hypotheses can be formulated as

H0 : p0 = p1 = ... = pk

HA :

k,k⋃
s=1,j=2

Hs,j
A (3.3)

here, s, j are the positions of the down and up Change-points. The possible com-

bination number of these situations is calculated from the combination rules. We

should select two positions out of k positions, i.e. k!/2!(k − 2)! = k(k − 1)/2. We

want to reject H0 against HA globally with controlling the FWER over all these

k(k − 1)/2 alternatives. When the null is rejected with control of FWER, we want

to select one of the elementary model, which has the largest test statistics, as the

best model. The global alternative can be decomposed into k(k − 1)/2 elementary

ones.

Hs,j
A : p0 = ... = ps−1 > ps = ... = pj−1 < pj = ... = pk, 0 < s < j < k (3.4)

Epidemic-order restriction can be considered as a special restriction which has two

Single Change-points. So we give the reference of Single Change-point and Epidemic-

order restriction together. Yao (1993) developed a test for normal data under

Epidemic-order restriction. Ninomiya (2005, 2006) developed an Information Cri-

terion (IC) for normal and binomial data under Epidemic-order restriction. As we

have already mentioned in our previous example, the DNA-motif �nding problem

can be considered as a model selection procedure for binomial or multinomial data

under Epidemic-order restriction. A test for binomial data under Change-point or-

der restriction and its application in sequence analysis of HIV are given by Halpern

(1999):" accidental recombination between two viral genomes present in the same

host cell, the genetic sequence of the o�spring involves adjacent regions derived from

the two parental sequences, with a sharp Change-point in between."
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3.1.3 Simple-order restriction

The hypotheses can be described as

H0 : p0 = p1 = ... = pk

HA :
t⋃

j=1

Hj
A (3.5)

here, HA should have at least one inequality strict. We want to reject H0 against HA

globally with controlling the FWER over all k alternatives. When the null is rejected

at global level α, we want to �nd out all of the inequalities. Simple-order restriction

can be considered as a special restriction which has many Single Change-points. The

global alternative can be decomposed into 2k − 1 elementary ones (Hothorn et al.,

2008; Hirotsu and Marumo, 2002; Bretz and Hothorn, 2002; Robertson et al., 1988).

Here we use i to note the number of Single Change-points. Let C be the combination

calculator. There are in total Ci
k kind of combination, if there is exactly i in the

model Single Change-points. We use j, 1 ≤ j ≤ Ci
k to note the j-th combination

among those.

The elementary model for the j-th model with exactly i Single Change-points is

Hj
A : p0 ≤ ... ≤ ... ≤ pk︸ ︷︷ ︸

i inequalities

(3.6)

here, t = j−1+
∑i−1

l=1 C
l
k is the order of this model over the whole alternative models.

Hirotsu and Marumo (2002) introduced a MCT method to make the multiple deci-

sion under Simple-order restriction. Xiong and El Barmi (2002) also developed an

Information Criterion for this problem. Many application are founded for such type

of order restriction. For example, the spontaneous abortion rate study, introduced

in last chapter, can be solved as Simple-order problem. The researchers want to

know if the age of the fathers e�ects the rate. The hypotheses are listed in Table

3.2.
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Hypothesis p̃j,0 p̃j,1 p̃j,2 p̃j,3
H0: p0 = p1 = p2 = p3 0.115 0.115 0.115 0.115
H1
A: p0 < p1 = p2 = p3 0.115 0.115 0.115 0.115

H2
A: p0 = p1 < p2 = p3 0.113 0.113 0.131 0.131

H3
A: p0 = p1 = p2 < p3 0.107 0.107 0.107 0.583

H4
A : p0 < p1 < p2 < p3 0.107 0.107 0.107 0.583

H5
A : p0 = p1 < p2 < p3 0.107 0.107 0.107 0.583

H6
A : p0 < p1 = p2 < p3 0.107 0.107 0.107 0.583

H7
A : p0 < p1 < p2 = p3 0.113 0.113 0.131 0.131

Table 3.2: Region of di�erent hypothesis of the spontaneous abortion rate. p̃j,i are
the MLE

3.1.4 Simple-tree restriction

The hypotheses can be described as

H0 : p0 = p1 = ... = pk

HA :
k⋃
j=1

Hj
A (3.7)

here, j is the group which is higher than control. We want to reject H0 against

HA globally with controlling the FWER over all k alternatives. When the null is

rejected at global level α, we want to select all of the elementary models, which are

larger than the control. The global alternative can be decomposed into k elementary

ones (Robertson et al., 1988).

Hj
A : p0 < pj (3.8)

Simple-tree order restriction can also be interpreted as Many-to-one comparison,

since many treatment group are compared to one control group. Dunnett (1955)

introduced the MCT method for this problem. Chaudhuri and Perlman (2005)

analyzed the mean squared error for the one treatment and one control group. There

is no further IC method for this problem. In this thesis we are trying to use Mi and

Hothorn Information Criterion (MHIC) with Suitable Likelihood Estimator (SLE)

to solve it.



3.2. DEFINITION OF MODEL SELECTION 19

Hypothesis p̃0 p̃1 p̃2

H0: p0 = p1 = p2 0.5000 0.5000 0.5000
H1
A: p0 < p1 = p2 0.4500 0.5119 0.5119

H2
A: p0 = p1 < p2 0.4444 0.4444 0.5854

Table 3.3: Region of di�erent hypothesis of the adverse events rate. p̃i are the MLE

Many application are founded for such type of order restriction. For example,the

dose �nding study can be solved as Simple-tree problem. The researchers want

to know on which dose the reverse e�ect is signi�cantly di�erent to the control.

The hypotheses are listed in Table 3.3. Schaarschmidt et al. (2009) also introduced

simultaneous con�dence intervals for this Many-to-one comparisons.

3.2 De�nition of model selection

"Statistical modeling is a crucial issue in scienti�c data analysis. Models are used to

represent stochastic structures, predict future behavior, and extract useful informa-

tion from data." (Konishi and Kitagawa, 2008). A good statistical model extracts

useful information from observed data. Then it uses this information to represent

the stochastic structures. Finally, it uses the structure to predict the future out-

comes. The last step is more important than any others in real applications. A

parametric model H is decided by �nite or in�nite many of parameters θ.

"Model selection is the task of selecting a statistical model from a set of poten-

tial models, given data" (Burnham and Anderson, 2002). Generally, the number

of possible models is in�nite. The researchers must de�ne a �nite set of models.

The true model is assumed to be "well" described by one model from this �nite

model set. Once the sets are decided, the statistical methods allow us to select one

model from these as the best model. The word "well" has many de�nitions, which

focus on di�erent principles, such as "unbiased estimator", "section average", "least

square error", "maximum likelihood", "smallest information distance" and "smallest

future product error". Here we use T to note the function, which can calculate this

prede�ned standard.
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The models we used here are sub sets of the parameter space. We assume that

the observed data vector is x = {x1, x2, ..., xk}, which is generated from the true

parametric model H. We have candidate model H0, H1, ..., Hq, (q < k) and want to

select one of them as an estimation of the best model. The value of x is projected into

each model to �nd out the most likely parameters θ which generates x. θ̂j(x) ∈ Hi,

is the projection point of x on the space of Hi. We select the model Hj, which has

the largest "score" to "well" describe the true model, as the best estimation of the

true model H. The value of j can be estimated as follow

j = arg max
i
{T (θ̂i(x)|x, θ̂i(x) ∈ Hi} (3.9)

the maximum of the score is noted as

Tmax = max
i
{T (θ̂i(x)|x, θ̂i(x) ∈ Hi} = Tj (3.10)

Here T (θ) is the score function. There are many criterion with good interpretation

that can be chosen as the score function. E.g likelihood ratio or weighted square

distance which will be discussed in detail in the next following sections.

A good model selection method should achieve the balance between the "goodness of

�t" and complexity, in order to give a accurate future prediction. The more complex

the models are, the better the models �t the data. However, the observed evidences

are just part of whole event space. Since truth can never be uncovered, the complex

models just �t the observed data, but not the true model. The "goodness of �t"

can be described by maximum likelihood and the complexity increases if the number

of unknown parameter increases. Akaike (1974) found a connection between them

and introduced Akaike Information Criterion (AIC) as a model selection principle.

He de�ned the good model as the one that has the closest distribution distance to

the true model. As mentioned in the examples, the researchers not only want to do

model selection from possible models, but also want to test all of these elementary

models against the null model. In the following section, we give the de�nition of
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familywise error rate, which controls the error for this multiple pairwise test.

3.3 Familywise error rate (FWER) control

In hypothesis test, usually the alternative hypothesis HA will be tested against the

null hypothesis H0, which is usually the simplest hypothesis that we have mentioned

in former sections. The score function T0 of the H0 is also easy to �nd. In hypothesis

test, it is usually the critical value, T0 = zα.

We use the value of the score function from alternative model to accept or reject

the hypothesis. When the maximum value of the score function T (θ) is larger than

certain critical value zα, we can reject the null hypothesis. However, it might happen

that the true model is H0 and the highest score is still larger than the critical value.

In this situation we will reject the null hypothesis by mistake, when it is still true!

This event is noted as

{T > zα|H0} (3.11)

In this situation, a Type I error (also noted as false positive) is made by the test. In

general, this error will be reduced by simply increasing the value of critical value.

When we perform a multiple pairwise test, the familywise error rate (FWER) can

be de�ned as a probability that the number of false discoveries of this test is not

zero, i.e.

FWER = 1− P (V = 0) = P (V ≥ 1) (3.12)

where, V is the number of false discoveries (Type I error). The event of no false

discovery is equivalent to the event that the test statistics Tmax for the multiple
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testing procedure is not signi�cant when the null hypothesis is true,

{V = 0} = {Tmax ≤ zα|H0} (3.13)

As discussed in the last section, we use the score function T (θ) to value every model.

When the true model is H0 i.e. θ ∈ H0, the null model H0 should be selected as

the best model. However, we could still select some other models, which have the

largest "score" to "well" describe the true model, as the best estimation of the true

model. In this case we declare a false positive.

The probability to make such error is

FWER = P (V ≥ 1)

= P (Tmax > zα)

= P (max
i
{T (θ̂i(X)|X), θ̂i ∈ Hi} > zα}|θ ∈ H0) (3.14)

which is equivalent to

FWER = 1− P (max
i
{T (θ̂i(X)|X), θ̂i ∈ Hi} ≤ zα}|θ ∈ H0) (3.15)

3.4 Previous test methods

In this section, we will review three test methods which focus on error rate control.

They are Likelihood Ratio Test (LRT) (Bartholomew, 1959), Multiple Contrast Test

(MCT) (Robertson et al., 1988) and Cochran-Armitage Test (CAT) (Cochran, 1954;

Armitage, 1955).

Although LRT was introduced for problems under Simple-order, LRT for problems

under Simple-tree exists too. The LRT uses the ordered structure of the mean to

gain good average power over the whole alternative space. In general, the power

can be optimized via maximizing the likelihood ratio. However the exact likelihood

function is complicated to calculate. The power function is even harder to achieve,
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so MCT, which has similar behaviors as LRT and is easier to calculate than LRT,

is invented. The LRT can be represented or approximated by a correspond MCT.

In contradict to achieve good global power, CAT is a locally most powerful test to

detect certain trend. This property of CAT is useful, when some extra information

of the model is known. E.g. Additive e�ect is often assumed in a whole genome

association study.

3.4.1 Likelihood Ratio Test (LRT)

Let random variables X = {X0, X1, ..., Xk} be binomial distributed with proportion

vector P = {p0, p1, ..., pk} and sample size N = {n0, n1, ..., ni}. The observations

x = {xi, i = 0, ..., k} are observed from data group. Bartholomew (1959) developed

LRT for normal distributed data with variance σ2. The LRT for binomial data is

(Agresti and Coull, 1996)

LRT =
SUP (L(ĝ(y|x), y ∈ Hj

A))

SUP (L(ĝ(y|x), y ∈ H0))
≈

k∑
i=0

ni(p̃i − p)2

p(1− p)
(3.16)

here, L is the likelihood function. p =
∑k

0 xi/
∑k

0 ni is the global mean estimator

and p̃i is the MLE for pi under order restriction. p̃is can be obtained by pool-

adjacent-violators algorithm (PAVA) under Simple-order restriction:

p̃i = min
l≥i

max
m≤i

∑j=m
l xj∑j=m
l nj

(3.17)

Since p̃is are MLE, they can also be represented by PN(x|HA), which is least squares

projection of the observation into the global alternative space HA (Wright, 1988).

From the de�nition of least squares projection, we know that vector PN(x|HA) has

the smallest Euclidean norm from observation x to model HA.

According to Robertson et al. (1988), the distribution is distributed as weighted

chi-square, under H0.



24 CHAPTER 3. MODEL SELECTION PROCEDURE

3.4.2 Single Contrast Test (SCT)

Before we introduce MCT, a binomial statistics of Single Contrast Test (SCT) is

built for further description. A score function of the binomial statistics is de�ned

as a standardized linear combination of the group sample means pi divided by the

pooled sample deviation estimator.

T =

∑k
i=0

ci
ni
Xi√

{p(1− p)
∑k

i=0
c2i
ni
}

(3.18)

Here, cis are the contrast coe�cients.
√
{p(1− p)

∑k
i=0

c2i
ni
} is the estimator of the

variance under H0. The test statistics T is asymptotic normal distributed, under

H0.

From the event {T ≤ zα|H0} that T is smaller that the critical value under H0, we

can formulate a con�dence interval, in which the value of the estimated proportion∑k
i=0

ci
ni
Xi is likely to be included under H0 with Type I error α.

 k∑
i=0

ci
ni
Xi − zα

√√√√{p(1− p) k∑
i=0

c2
i

ni
, +∞

 (3.19)

This interval is one-sided, since we are focused on problem under order restriction.

Event that T is smaller that the critical value with Type I error α, is equivalent to

event that zero lies in the con�dence interval of the estimated proportion with Type

I error α.

The Contrast Coe�cients

The contrast coe�cients cis are constrained by
∑k

i=0 ci = 0. This constrain will

make the mean of all the test statistics T equal to zero if the the null hypothesis is

true. We will show the proof of this shortly
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E(T ) = E(

∑k
i=0

ci
ni
Xi√

{p(1− p)
∑k

i=0
c2i
ni
}

)

= E(
k∑
i=0

ciXi) ∗
∑k

i=0
1
ni√

{p(1− p)
∑k

i=0
c2i
ni
}

= {
k∑
i=0

ciE(Xi)} ∗
∑k

i=0
1
ni√

{p(1− p)
∑k

i=0
c2i
ni
}

(3.20)

under the null hypothesis, all the Xi are from same distribution and they all have

same expectation E(Xi) = E(X)

E(T ) = E(X) ∗

0︷︸︸︷
k∑
i=0

ci ∗
∑k

i=0
1
ni√

{p(1− p)
∑k

i=0
c2i
ni
}

= 0 (3.21)

Besides the above constrain, cis are free to be chosen.

Geometrically, the vector of contrasts C = {c1, ..., ck} is orthogonal to the unit vector

1 = {1, ..., 1}, because the linear product of these two vectors is zero C × 1 = 0.

This means the contrasts vector will extract extra information, which describes how

the observation is deviate from the center. Under balanced sample size situation,

i.e. ni = n, i = 0, 1, ..., k, equation 3.18 can be rewritten as:

T =

∑k
i=0

ci
n
Xi√

{p(1− p)
∑k

i=0
c2i
n
}

=

∑k
i=0

ci
n
Xi −

0︷ ︸︸ ︷
pn

k∑
i=0

ci
n√

{p(1− p)
∑k

i=0
c2i
n
}

=

∑k
i=0

ci
n

(Xi − pn)√
{p(1− p)

∑k
i=0

c2i
n
}

(3.22)
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T is maximized if we choose an adaptive contrast coe�cients with ci = Xi/n − p.

Thus, ci can be interpreted as the predictor of the di�erences between proportions

Xi/n and p. Generally, this is also true for unbalanced sample size situation (Bretz

et al., 2005).

The Estimated Variance

This estimated variance
√
{p(1− p)

∑k
i=0

c2i
ni
} has poor behavior, e.g. when the

proportion p is closed to 0, this variance will be very small. Then we lost the

accuracy of T .

The idea of adjusted this problem comes from the justi�cation of con�dence interval.

There are several alternative variance estimators, such as Add-4-method and Add-

2-method, which can be used in adjusted the variance in many to one comparison

(Schaarschmidt et al., 2009). Since reject the hypothesis by critical value and reject

the hypothesis by correspond con�dence interval are equivalent, we can use the

adjust variance from con�dence interval to calculate the value of T .

Here we just give a brief description of the Add-4-method. The Add-4-method for

binomial proportions is invented by Agresti and Ca�o (2000). The new proportion

is achieved by adjusting the 2 by 2 table with two "successes and two "failures". i.e.

x′i = xi + 1, n′i = ni + 2 and p′ =
∑k

0 x
′
i/

∑k
0 n
′
i.

The variance is adjusted to
√
{p′(1− p′)

∑k
i=0

c2i
n′i
}.

3.4.3 Multiple Contrast Test (MCT)

Even mentioned by many older articles (for example Dunnett (1955) and Abelson

and Tukey (1963)), the Multiple Contrast Test (MCT) was introduced by Mukerjee

et al. (1987). Bretz and Hothorn (2002) also introduced the MCT method for

binomial data. Here we will quote the result from Bretz and Hothorn (2002, 2003).

In SCT, for every vector of contrast coe�cients Cj = (cj,0, ..., cj,k), there exists a

correspond predict model Hj
A. By putting �nite many prediction models together to



3.4. PREVIOUS TEST METHODS 27

test the null hypothesis, we get the MCT, which can be de�ned as the maximum over

certain chosen SCT. The test statistic is Tmax = MAX(T1, T2, ..., Tq). Under the null

hypothesis, the test statistic (T1, T2, ..., Tq) is q-variate central normal distributed

under the null hypothesis and correlation the matrix is R = {ρj,l} (detail will be

given in Chapter 7).

The estimated correlation is:

ρj,l =

∑k
i=0 cj,icl,ip̂i(1− p̂i)/ni√

(
∑k

i=0 c
2
j,ip̂i(1− p̂i)/ni)(

∑k
i=0 c

2
l,ip̂i(1− p̂i)/ni)

(3.23)

The asymptotic power of multiple contrast tests is given by

P (max
16l6q

{Tl} > zq,1−α | HA)

=1− P (T1 ≤ zq,1−α, and...and,Tq ≤ zq,1−α | HA)

=1− Φq((zq,1−α)diag(
1√

V (T1 )
, ...,

1√
V (Tq)

); e,R) (3.24)

Here, zq,1−α is the q-variate normal 100(1 − α)-equipercentage point under H0.

e ={(E(T1), ..., E(Tq))} and v ={(
√
V (T1), ...,

√
V (Tq))} are the mean vector and

the variance vector of {T1, T2, ..., Tq} under HA (Bretz and Hothorn, 2002).

3.4.4 Cochran-Armitage Test (CAT)

The Cochran-Armitage Test is a linear weighted regression test, which is locally

most powerful test if some extra information is known. Here we use the results from

Agresti (2002). A linear model is assumed as

pi = α + βwi (3.25)

which will be �tted by weighted least squares. Here, w = {wi, i = 0, ..., k} is the

score vector, which describes the distances between the treatments, e.g. dose level.

The null hypothesis of this independence test is H0 : β = 0. w̄ =
∑k

0 niwi/
∑k

0 ni is
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the average score. We can apply linear regression and predict the true value pi as

p̂i = p+ β̂(wi − w̄) (3.26)

where

β̂ =

∑k
0 ni(pi − p)(wi − w̄)∑k

0 ni(wi − w̄)2
(3.27)

The test statistics for Cochran-Armitage Test is

CAT =
β̂2

∑k
i=0 ni(wi − w̄)2

p(1− p)
(3.28)

which is chi-squared distributed with one degree of freedom. The critical values are

z1−α = χ2
1,1−α for two-sided test.

For our order restriction problem, we can also restrict the slope parameter β to be

strict positive, i.e. β′ = max(β, 0). When β > 0

CAT ′ =
β̂′2

∑k
i=0 ni(wi − w̄)2

p(1− p)
(3.29)

When β ≤ 0, CAT ′ = 0

The critical value can be calculated as z1−α = χ2
1,1−2α

3.4.5 Advantages and disadvantages of test methods

The advantage of these test methods is that LRT has a good "average" power over

the global alternative. If the contrasts are "strategically" chosen within the global

alternative space, MCT can achieve a good power too. (Bretz, 1999)

However, MCT and LRT are not designed to do model selection. The PAVA esti-

mator which maximizes LRT is the MLE for the global alternative. LRT only tests
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the global alternative. It is impossible to select the model from local alternatives.

The estimator which maximize the MCT is the MLE for the local alternative. But

MCT selects the model which has the MLE or in other words "Best �ts the data",

as the best model. As we discussed in the previous section, model selection should

achieve the balance between the model �tting and complexity. Bretz et al. (2005)

described the over �tting problem to use MCT for model selection and suggested

Information Criterion method for model selection.

The disadvantage for Cochran-Armitage Test (CAT) is obvious that it is a trend

test and it need extra information to be the most powerful test. Furthermore, CAT

cannot do model selection after the test. In Chapter 8, we will show that it is not a

suitable method to solve our problems.
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Chapter 4

Information Criterion (IC) for model

selection

In Chapter 3, we have already discussed about what a good model is. In this chap-

ter, we will introduce Kullback-Leibler (KL) distance which measures the di�erences

between the estimated model and the true model. However, the calculation of KL

distance is not easy. Usually people use adjusted maximum likelihood to approx-

imate it (Akaike, 1974). In the following sections, we will also give an algorithm

to minimize the distance and calculate the adjustment of the distance under di�er-

ent situations. Finally, we will discuss about Akaike Information Criterion (AIC)

for general situations, Order Restricted Information Criterion (ORIC) for one-sided

order restriction and a new Information Criterion, which considers the complexity

during distance calculation and adjusts the bias. In order to help the readers under-

stand the procedure better, we also give a short and brief calculation of the problems

mentioned in the former chapter.

4.1 Kullback-Leibler (KL) distance

Kullback-Leibler (KL) distance is a measurement for the Information distance be-

tween the estimated model density function ĝ(y) and the true model density function

31
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g(y)(Anraku, 1999).

KL(g(y), ĝ(y)) =

∫
g(y) ∗ log g(y)dv(y)−

∫
g(y) ∗ log ĝ(y)dy ≥ 0 (4.1)

The equality is achieved if and only if g(y) = ĝ(y) almost surely. The �rst term is a

constant which is always lager than or equal to the second term. Then we have

KL(g(y), ĝ(y|θ̂(x))) = Constant−
∫

g(y) ∗ log ĝ(y |θ̂(x ))dy (4.2)

here, ĝ(y|θ̂(x)) is the estimated distribution function given by observed data x =

{x1, x2, ...xn} ∈ X, X is the set of all the observations and θ̂ = {θ̂1, θ̂2, ...θ̂m,m < n}

is the estimated parameter of the true parameter θ. The second term includes the

true distribution which is unknown. It cannot be calculated, but can be estimated

by the maximum likelihood estimator θ̃

KL(g(y), ĝ(y|θ̃(x)) ≈Constant− log ĝ(x |θ̃(x )) (4.3)

4.1.1 Bias of the Log-Likelihood

In this section, we will calculate the bias between the estimated KL distance and the

true KL distance. The readers should notice that θ̃
n−→ θ is not a su�cient condition

for

f(θ̃)
n−→ f(θ) (4.4)

Even if we have unbiased estimators of all the parameters, the KL distance, which is

calculated by these estimators, are still biased. Many people have discussed about

the method to calculate the bias under di�erent situations (Akaike, 1974; Akaike

and Kitagawa, 1998; Anraku, 1999; Burnham and Anderson, 2004; Hughes and King,

2003; Konishi and Kitagawa, 2008). We put the MLE θ̃ in Equation 4.3 and Equation

4.2. Then we use Equation 4.3 to substitute Equation 4.2. Now we have the bias,

which is caused by θ̃, as the expected value of the di�erence (Konishi and Kitagawa,
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2008; Hughes and King, 2003)

Bias(g(y), ĝ(y|θ̃(x)))

=EX{Constant−
∫

g(y) ∗ log ĝ(y |θ̃(x ))dy} − EX{Constant− log ĝ(x |θ̃(x )))}

=EX{log ĝ(x |θ̃(x ))−
∫

g(y) ∗ log ĝ(y |θ̃(x ))dy} (4.5)

This di�erence can be separated into 3 parts,

Bias(g(y), ĝ(y|θ̃(x))) =EX{log ĝ(x |θ̃(x ))− log g(x |θ(x ))dy}

+EX{log g(x |θ(x ))−
∫

g(y) ∗ log g(y |θ(x ))dy}

+EX{
∫

g(y) ∗ log g(y |θ(x ))dy −
∫

g(y) ∗ log ĝ(y |θ̃(x ))dy}

=D1 +D2 +D3 (4.6)

Calculation of D3

Let the second term of Equation 4.2 be a function of parameter ϑ′, we have

η(θ′) =

∫
g(y) ∗ log g(y |θ′(x ))dy (4.7)

Let θ′ = θ̃ we make a Taylor expansion of η(θ̃) around the true parameter θ

η(θ̃) =η(θ) + Σm
i=1(θ̃i − θi)

∂η(θ)

∂i

+
1

2
Σm
i=1Σm

j=1(θ̃i − θi)(θ̃j − θj)
∂2η(θ)

∂i∂j
+ ... (4.8)

here θ̃ = {θ̃1, θ̃2, ...θ̃m} and θ = {θ1, θ2, ...θm}. Because θ is the true parameter, so it

maximizes function η(θ̃), i.e. ∂η(θ)
∂i

= 0. Now we have

η(θ̃) ≈η(θ) +
1

2
Σm
i=1Σm

j=1(θ̃i − θi)(θ̃j − θj)
∂2η(θ)

∂i∂j

=η(θ) +
1

2
(θ̃ − θ)tH(θ′)|θ′=θ(θ̃ − θ) (4.9)



34CHAPTER 4. INFORMATION CRITERION (IC) FOR MODEL SELECTION

H(θ′) is the Hessian matrix of η(θ′). Put this approximation of η(θ̃) back in to D3,

we have

D3 =EX

∫
g(y) ∗ log g(y|θ(x))dy −

∫
g(y) ∗ log ĝ(y |θ̃(x ))dy}

=EX{η(θ)− η(θ)− 1

2
(θ̃ − θ)tH(θ′)|θ′=θ(θ̃ − θ)}

=
1

2
(θ̃ − θ)tI(θ′)|θ′=θ(θ̃ − θ) (4.10)

where I is the information matrix.

Calculation of D2

The calculation of D2 is quite simple, since no estimation here

D2 =EX{log g(x |θ(x ))−
∫

g(y) ∗ log g(y |θ(x ))dy}

=EX{log g(x |θ(x ))− EY {log g(x |θ(x ))

=0 (4.11)

In some references (e.g. Hughes and King (2003)), D2 andD3 are considered together

as the bias caused by the MLE θ̃, while D1 is considered as the bias caused by the

estimated function.

Calculation of D1

Similar as what we have done to calculate D3, Taylor expansion will be used to get

the approximation. Let l(θ′) = log g(x|θ′), we expand l(θ′) around the MLE θ̃

l(θ′) =l(θ̃) + Σm
i=1(θ′i − θ̃i)

∂l(θ̃)

∂i

+
1

2
Σm
i=1Σm

j=1(θ′i − θ̃i)(θ′j − θ̃j)
∂2l(θ̃)

∂i∂j
+ ... (4.12)
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Since θ̃ is the MLE we have ∂l(θ̃)
∂θ′

= 0. Similar as what we have calculated D3, the

value of l(θ) can be estimate by l(θ̃) as

l(θ) ≈l(θ̃) +
1

2
Σm
i=1Σm

j=1(θi − θ̃i)(θj − θ̃j)
∂2l(θ̃)

∂i∂j

=l(θ̃) +
1

2
(θ − θ̃)tH(θ′)|θ′=θ̃(θ − θ̃) (4.13)

here H(θ′) is the Hessian matrix of l(θ′). Put this approximation back in to D1, we

have

D1 =EX{log ĝ(x |θ̃(x ))− log g(x |θ(x ))dy}

=
1

2
(θ̃ − θ)tI(θ′)|θ′=θ̃(θ̃ − θ) (4.14)

where I is the information matrix.

Finally we have the bias as

D1 +D2 +D3

=EX{log ĝ(x |θ̃(x ))− log g(x |θ(x ))dy}

+EX{log g(x |θ(x ))−
∫

g(y) ∗ log g(y |θ(x ))dy}

+EX{
∫
g(y) ∗ log g(y|θ(x))dy} −

∫
g(y) ∗ log ĝ(y |θ̃(x ))dy}

=
1

2
(θ̃ − θ)tI(θ′)|θ′=θ̃(θ̃ − θ) + 0 +

1

2
(θ̃ − θ)tI(θ′)|θ′=θ(θ̃ − θ)

=
1

2
(θ̃ − θ)tI(θ̃)(θ̃ − θ) +

1

2
(θ̃ − θ)tI(θ)(θ̃ − θ)

≈(θ̃ − θ)tI(θ̃)(θ̃ − θ) (4.15)

These two terms are asymptotic equivalent. In later part of this thesis, we consider

them as the same information term. Under di�erent conditions, the information

term is di�erent. In next sections, we will introduce One-sided AIC (OSAIC), which

is developed by Hughes and King (2003). AIC and ORIC can also be generated as

a special case of KL distance too.
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4.1.2 One-sided AIC (OSAIC) and ORIC

In this section, we will introduce One-sided AIC (OSAIC), which is developed by

Hughes and King (2003). The twice of the information term mentioned in last

section, i.e.

2(θ̃ − θ)tI(θ′)|θ′=θ̃(θ̃ − θ) (4.16)

is "asymptotically equivalent to the distribution under H0 the partially inequal-

ity constrained Wald test statistics" (Hughes and King, 2003). Under elementary

alternative model

Hj
A : p1 = p2 = ... < pj1 = ... < pjr = ... = pk, j = 1, ...,

k!

r!(k − r)!
, 1 < j1 < ... < jr < k

(4.17)

with exact r inequality constrains, twice of the information term is asymp-

totic weighted chi-square distributed with k − r + m degrees of freedom∑r
m=0w(r,m)χ2(k − r + m), where w(r,m) are weighted probability i.e.∑r
m=0w(r,m) = 1. We can use the level probability developed by Robertson et al.

(1988) to calculate this weighted probability as following

w(r,m) = P{r,m, ω{Hj
A}} (4.18)

For any value of r, we can calculate the bias as

Bias(g(y), ĝ(y|θ̃(x))) =D1 +D2 +D3

=
1

2
(θ̃ − θ)tI(θ′)|θ′=θ̃(θ̃ − θ) +

1

2
(θ̃ − θ)tI(θ′)|θ′=θ(θ̃ − θ)

≈(θ̃ − θ)tI(θ′)|θ′=θ̃(θ̃ − θ)

=E(
r∑

m=0

w(r,m)χ2(k − r +m))

=
r∑

m=0

w(r,m)(k − r +m) (4.19)
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We have the OSAIC under alternative model Hj
A as

OSAIC(Hj
A) = log ĝ(x |θ̃(x ))−

r∑
m=0

w(r ,m)(k − r + m) (4.20)

For binomial data we have

OSAIC(Hj
A) =

k∑
i=0

log
ni !

xi !(ni − xi)!
(p̂xi

i ∗ (1 − p̂i)
ni−xi )−

r∑
m=0

w(r ,m)(k − r + m)

(4.21)

and another common form is achieved by multiplying "-2" to the former one

OSAIC(Hj
A) = −2logL(model) + 2

r∑
m=0

w(r,m)(k − r +m) (4.22)

When r = k, the last model

H2k−1

A : p1 < p2 < ... < pk, (4.23)

has exactly k inequality. The bias is reduced to

Bias(g(y), ĝ(y|θ̃(x))) =
r∑

m=0

w(r,m)(k − r +m)

=
k∑

m=0

w(k,m)m (4.24)

which is the bias term developed by Anraku (1999). For binomial data we have

ORIC =
k∑

i=0

log
ni !

xi !(ni − xi)!
(p̂xi

i ∗ (1 − p̂i)
ni−xi )−

k∑
m=0

w(k ,m)m (4.25)

When r = 0 the bias is reduced to

Bias(g(y), ĝ(y|θ̃(x))) =
r∑

m=0

w(r,m)(k − r +m)

=k (4.26)
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which is the bias term developed by Akaike (1974).

4.1.3 Partition sets and its estimators

In the last section, we have used level probability to calculate the ORIC. In this sec-

tion, we will introduce partition sets and will show how to calculate level probability

by using partition sets.

De�nition

The partition sets estimator θ̌(x) is the pooled mean within each partition sets, which

has already been discussed in previous chapters. It is a very important statistic to

calculate local MLE and SLE.

Under di�erent models, the regions, which are separated by inequalities, are called

Partition sets. The partition sets estimator θ̌ is the pooled mean within each parti-

tion set. For example, under Single Change-point model, alternative model Hj
A has

two partition sets, p0 = ... = pj−1 and pj = ... = pk. The partition sets estimators

are

p̌0 = ... = p̌j−1 =

∑j−1
i=0 xi∑j−1
i=0 ni

p̌j = ... = p̌k =

∑k
i=j xi∑k
i=j ni

(4.27)

Under Simple-order restriction, the last alternative model H2k−1
A : p0 < ... < pj−1 <

pj < ... < pk, has k partition sets and each partition set only has one parameter.

The partition sets estimators are just the same as the simple estimator

p̌j =
xj
nj

(4.28)
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Hypothesis No. of Partition p̌0 p̌1 p̌2

H0: p0 = p1 = p2 1 0.5000 0.5000 0.5000
H1
A: p0 < p1 = p2 2 0.4500 0.5119 0.5119

H2
A: p0 = p1 < p2 2 0.4444 0.4444 0.5854

H3
A: p0 < p1 < p2 3 0.4500 0.4400 0.5854

Table 4.1: The partition sets under Simple-order restriction

Example

Let us combine the two kinds of models we mentioned above to have a mixed alter-

native model and give a real example. In our previous example of adverse events, we

want to test if there is a Simple-order restriction. For k = 2, the alternative model

are mixed by three elementary models, HA = H1
A

⋃
H2
A

⋃
H2k−1
A . Here H1

A and H2
A

are elementary alternative models for Single Change-point. H2k−1
A = H3

A is ele-

mentary alternative models for Simple-order. The partition sets under Simple-order

restriction are given in Table 4.1

4.1.4 Level probability

The level probability P{k, l, ω{Hj
A}} is developed by Robertson et al. (1988) under

Simple-order and Simple-tree order restriction. Hughes and King (2003) extended

it to weighted probability w(r,m) for all kinds of one-sided order restriction. Here

we just give a short and brief description of the numerical calculation algorithm

developed by Robertson et al. (1988) for normal data and by Hothorn et al. (2008)

for binomial data.

The level probability P{k, l, ω{Hj
A}} under model H

j
A can be de�ned as following:

Given k random variables {Y1, Y2, ..., Yk} ∈ Hj
A, P{k, l, ω{H

j
A}} is the probability

that theses variables can be divided into l partition sets.

For example, for binomial data, let k = 2, given {Y1 = x1

n1
, Y2 = x2

n2
} ∈ H2k−1

A , where

H2k−1
A = {Y1 < Y2} is under the Simple-order restriction for dimension two, the level
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probabilities are

P{2, 2, ω{Hj
A}} = P{Y1 < Y2} = P{1, 2, ω{Hj

A}} = P{Y1 ≥ Y2} =
1

2
(4.29)

For binomial data, let k = 3, given {Y1 = x1

n1
, Y2 = x2

n2
, Y3 = x3

n3
} ∈ H2k−1

A , where

H2k−1
A = {P1 < P2 < ... < Pk} is the total Simple-order restriction, the level

probabilities are (Robertson et al., 1988)

P{3, 3, ω{Hj
A}}

=P{Y1 < Y2 < Y3}

=
1

4
+

1

2π
arcsin(ρ) (4.30)

here ρ =
√

n1n3

(n1+n2)(n2+n3)
.

P{2, 3, ω{Hj
A}}

=P{Y1 = Y2 < Y3}+ P{Y1 < Y2 = Y3}

=P{x1 + x2

n1 + n2

< Y3}P{2, 2, ω{Hj
A}}+ P{Y1 <

x2 + x3

n2 + n3

}P{2, 2, ω{Hj
A}}

=
1

2

P{1, 3, ω{Hj
A}}

=1− P{2, 3, ω{Hj
A}} − P{3, 3, ω{H

j
A}}

=
1

4
− 1

2π
arcsin(ρ) (4.31)

4.1.5 Ninomiya AIC (NIC)

Note the number of Change-points as m. The AIC and ORIC only consider the bias

term caused by unknown parameters, pi. If the sequence is long enough(k/m > 3),

the bias term caused by Change-points should also be taken into account. Ninomiya
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(2005) considered the position of Change-point as extra unknown parameter and

used the information of this to make a better approximation of the Taylor Expansion.

The calculation of the information matrix is quite complicate. The readers can refer

to his paper for detail.

Under epidemic Change-points order restriction, the NIC for di�erent hypotheses

are

NIC(H0) =log(L(ĝ(x|θ̃(x))))− 1

=− {
k∑

i=0

log
ni !

xi !(ni − xi)!
(p̃xi

j ,i ∗ (1 − p̃j ,i)
ni−xi )} − 1

(4.32)

NIC(Hj
A) =log(L(ĝ(x|θ̃j(x))))− 2− 3 ∗m

=− {
k∑

i=0

log
ni !

xi !(ni − xi)!
(p̃xi

j ,i ∗ (1 − p̃j ,i)
ni−xi )} − 2− penalty

(4.33)

According to Ninomiya (2006), we use the following equation to calculate the penalty

term for binomial data.

Bias for one Change-point from B(n, p(1)) to B(n, p(2)) is

b(p(1), p(2)) =
c2

1σ
4
2 + c1c2σ

2
1σ

2
2 + c2

2σ
4
1

c1c2(c1σ2
2 + c2σ2

1)

where

c1 = n log
1− p(1)

1− p(2)
− np(1) log

p(2)(1− p(1))

p(1)(1− p(2))

c2 = n log
1− p(2)

1− p(1)
− np(2) log

p(1)(1− p(2))

p(2)(1− p(1))
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σ2
1 = np(1)(1− p(1))log

p(2)(1− p(1))

p(1)(1− p(2))

2

σ2
2 = np(2)(1− p(2))log

p(2)(1− p(1))

p(1)(1− p(2))

2

Therefore, NIC for Epidemic-order (p(1) = ... = p(1) > p(2) = ... = p(2) < p(1) = ... =

p(1))is

logL(x|p̃(1), p̃(2))− 2− b(p̃(1), p̃(2))− b(p̃(2), p̃(1))

the term "2" is because there are two unknown parameter.

4.1.6 Akaike Information Criterion (AIC)

In this section, we generate AIC from KL distance by simplifying the penalty term.

We want readers to notice that AIC is a simple approximation of KL distance. The

index i is from 0 to k. So here we have one more unknown parameter than before.

The penalty term is changed from k to k + 1.

Akaike (1974) used Taylor expansion to estimate the second term as log-likelihood

minus bias adjustment term, which is equal to the number of unknown parameters.

The adjustment term is always positive, so it is also called penalty term.

AIC =− Ex (

∫
g(y) ∗ log ĝ(y |θ̂(x ))dy)

=− {log ĝ(x |θ̃(x )) + TaylorExpansion(ĝ(x |θ̃(x ))}

≈ − {log ĝ(x |θ̃(x ))−Penalty(ĝ(x |θ̃(x ))}

=− log ĝ(x |θ̃(x )) + {Penalty = m} (4.34)

Here estimator θ̂(x) is the MLE θ̃(x). If true density function g(y) has normal

distribution N(ui, σ), i = 0, ..., k and ĝ(y) is the estimated density function which
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has normal distribution N(ûi, σ), i = 0, ..., k, the expected distance between them is

(Konishi and Kitagawa, 2008)

Ex(KL(g(y), ĝ(y)))

=Constant− Ex (

∫
g(y) ∗ log ĝ(y)dy)

≈Constant− {log
k∏

i=0

1

2πσ2
exp{−(xi − ûi)

2

2σ2
} − penalty(ĝ)}

=Constant′ − {−1

2

k∑
i=0

(xi − ûi)
2

σ2
− (k + 1 )} (4.35)

If true density function g(y) has binomial distribution B(pi, ni), i = 0, ..., k and

ĝ(y) is the estimated density function which has binomial distribution B(p̂i, n̂i), i =

0, ..., k, then we have the expected KL distance as

Ex(KL(g(y), ĝ(y)))

=Constant− Ex (

∫
g(y) ∗ log ĝ(y)dy)

≈Constant− {log
k∏

i=0

ni !

xi !(ni − xi)!
(p̂xi

i ∗ (1 − p̂i)
ni−xi )− penalty(ĝ)}

=Constant− {
k∑

i=0

log
ni !

xi !(ni − xi)!
(p̂xi

i ∗ (1 − p̂i)
ni−xi )− (k + 1 )} (4.36)

Based on entropy, AIC o�ers a measurement which balances "goodness of �t" and

complexity for statistic modeling. It builds connections between likelihood and

information criterion. Many people give improvement of it, such as NIC, ORIC and

OSAIC. The ICs based on AIC build a big "family". Here we just have introduced

some members of them.

The disadvantages of these methods, which use information criterion, are that theses

methods do not control the FWER. They are designed for model selection other than

testing.
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4.2 Improve the maximum likelihood estimator by

penalty term

Usually it is impossible to calculate the KL distance, because the "true" distribu-

tion is unknown. Therefore, di�erent types of information criterion, such as AIC

for general situation and ORIC for order restriction, are developed to estimate the

expectation of the KL distance. They are adjusted by di�erent to achieve the unbi-

ased estimation of the KL distance.The model, which has the smallest KL distance

to the true model, is selected as the most possible model.

In order to calculate the smallest KL distance, we need to maximize the di�erence

between the log-likelihood and penalty term of di�erent models. The maximum like-

lihood estimator (MLE) can be calculated under di�erent situations, such as order

restriction. The MLE is not hard to calculate by analytical method or numerical

method, but the penalty terms usually depend on the MLE and its calculating al-

gorithms. Furthermore, if we use too many parameters to �t the data, the penalty

term will be so large that the e�ort achieved by increasing the number of parameters

is totally "underperformed"(Zucchini, 2000).

AIC is the most well known one for model selection and is simple and easy to

achieve. However, it has disadvantage that the extra Information from the structure

and sample sizes is not used. The original Taylor expansion which is a function of

the full model, is simpli�ed by AIC only as the number of unknown parameters.

Furthermore, the MLE, which maximizes AIC, might not maximize the true KL

distance. Because the KL distance depends on both of the maximum likelihood

and the penalty term. Under certain order restriction, such as under Simple-order

restriction, the penalty term for some alternative hypotheses could be very large,

if too many parameters are estimated. Noticing that the penalty term is always

positive, we realize that the MLE used by Akaike (1974); Anraku (1999) has too

many degrees of freedom and becomes biased in such situation. Improved statistic

models which concur such "underperformance" are introduced. In these models,
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only one variable, which describes the total divergence between the partition sets

and the overall mean, is considered. So the whole models have only two degrees of

freedom.

4.2.1 Noti�cation of the global, local and Suitable Likelihood

Estimators

In the following sections of this chapter, we will use �ve kinds of estimators to

calculate the likelihood. So here we list them together for readers to take a brief

review of them. The most important one is the Partition sets estimator (PE),

which is a very important statistics to calculate the Maximum likelihood estimator

(MLE) and the Suitable likelihood estimator (SLE). We will also explain what is

the di�erence between global MLE and local MLE. The global MLE, which can be

calculated by PAVA, is treated as the projection of observed data in the alternative

space HA, while local MLEs can be treated as the projections of observed data in

the alternative spaces Hj
A. Local MLE is more reasonable to use in model selection

than the traditional global MLE.

Let the general estimated parameter (GEP) θ̂(x) present the estimated parameter

with some given statistic models and θ presents the true parameter. θ̂(x) is estimated

from the observed data x. It can be chosen as MLE, SLE or any other estimators.

Let ĝ(x|θ̂(x)) present the estimated density function of the true distribution g(x|θ)

with given estimator θ̂(x).

Global MLE

The global Maximum likelihood estimator (gMLE), θ̃(x), is one of the most im-

portant kinds of estimators. It maximizes the likelihood of the estimation function

ĝ(x|θ̂). So we have

θ̃ = arg max
θ̂
ĝ(x|θ̂) (4.37)
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An algorithm, which calculates the gMLE θ̃ = {p̃0, ..., p̃k} under Simple-order re-

striction, is given by Robertson et al. (1988) for normal distributed data.

As we have already discussed in last section, the log-likelihood for binomial data is

logL(H) ={
k∑

i=0

log
ni !

xi !(ni − xi)!
(pxi

i ∗ (1 − pi)
ni−xi )} (4.38)

Hothorn et al. (2008) calculated the gMLE for binomial data as

p̃i = min
l≥i

max
m≤i

∑j=m
l xj∑j=m
l nj

(4.39)

The maximum log-likelihood is calculated by putting the gMLE into Equation 4.38

logL(H) ={
k∑

i=0

log
ni !

xi !(ni − xi)!
(p̃xi

i ∗ (1 − p̃i)
ni−xi )} (4.40)

Under Simple-order restriction, Anraku (1999) and Hughes and King (2003) used

this global MLE for all elementary models to achieve the maximum likelihood. Sim-

ulation shows that this algorithm is "underperformed" when k is larger than two

(Hothorn et al., 2008). Here we introduced our algorithm, which calculates MLE

under each given elementary alternatives. This local MLE also reduces the "under-

performce". After introducing all the model selection method, we will give a short

and brief comparison to clear this. As we will see in Table 4.5, a simulation study

is given to compare ORIC method with di�erent likelihood estimators.

Local MLE

In this subsection, we will show how to calculate the local MLE (lMLE) and how is

the relationship between lMLE and gMLE.

We can get the local MLE in the following steps. First, the partition sets estimator

θ̌j(x) = {p̌j,0, ..., p̌k,j} for each elementary alternative model Hj
A is calculated. Then
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we order the pooled mean estimator of each partition sets. This estimator has full

order restriction per de�nition. Then the local MLE is calculated by these partition

sets estimator

p̃i,j = min
l≥i

max
m≤i

∑v=m
l p̌j,v∑v=m
l nv

(4.41)

put it in to the log-likelihood equation, we have

logL(Hj
A) ={

k∑
i=0

log
ni !

xi !(ni − xi)!
(p̃xi

i ,j ∗ (1 − p̃i ,j )
ni−xi )} (4.42)

Without the loss of generality, all the MLE in later part of the this thesis is referred

to local MLE. The ORIC for binomial data listed in this thesis is an improved version

of the old one developed by Hothorn et al. (2008).

Suitable likelihood estimator

The Suitable likelihood estimator (SLE), θ̄(x), is another important kind of esti-

mator. It is designed to obtain the unbiased KL distance to concur the "under-

performance". Even strong evidence has been shown in simulation study. We still

category the prove of unbiasness as our third open question.

Let p̂ =
∑k

i=0(xi

ni
) to be the overall mean. The total di�erence is de�ned as

∆ =

∑k
i=0 |xi − p̂ni|

1/(k + 1) ∗
∑k

i=0 ni
(4.43)

For the null hypothesis, the "suitable" likelihood estimators (SLE) are the same as

the MLE for AIC.
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p̄ = p̃ =

∑k
i=0 xi∑k
i=0 ni

(4.44)

The SLEs for given alternative hypotheses Hj
A are changed to

p̄i,j = p̂+
cj,i
Cj
∗∆ (4.45)

here, ci,j is the contrast coe�cients for MCT and Cj = |
∑k

i=0 cj,i|. By doing this

we have built a model selection method which shares the estimators with MCT. We

are trying to build a bridge between model selection and test. Further discussion

for this will be given later.

Put the SLE in to the log-likelihood equation, we have

logL(Hj
A) ={

k∑
i=0

log
ni !

xi !(ni − xi)!
(p̄xi

i ,j ∗ (1 − p̄i ,j )
ni−xi )} (4.46)

The advantage to use SLE is that the degrees of freedom for log-likelihood under all

elementary alternatives are equal to two. We can use this property to calculate the

penalty terms, which are all the same.

Relationship of these estimators

Simply to prove per de�nition, the log-likelihood of these estimators has the following

relationship.

logL(gMLE) ≥ logL(lMLE) ≥ logL(SLE) (4.47)

where the equality only achieves when the estimators are totally the same. This

means the projection points are overlapped. However, this result does not show that

gMLE is the best among those. In the simulation study section, we will see that
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gMLE is sometimes the worst estimator, which is unstable and "overperformed".

4.2.2 Estimators under Single Change-point order restriction

Under Single Change-point order restriction, the MLE for the null model H0 is

p̃0,0 = ... = p̃0,k =

∑k
i=0 xi∑k
i=0 ni

= p̂ (4.48)

For the alternative model Hj
A, where j is the position of the Change-points, we

calculate the estimator in two steps. In the �rst step, we estimate the values of

partition sets before Change-point and the values after Change-point separately by

Equation 4.27

p̌j,0 = ... = p̌j,j−1 =

∑j−1
i=0 xi∑j−1
i=0 ni

p̌j,j = ... = p̌j,k =

∑k
i=j xi∑k
i=j ni

(4.49)

In the second step, we use the information from order restriction that the estimator

before Change-point is smaller than the estimator after Change-point:p0 < pk. If

p̌j,0 ≥ p̌j,k, a contradiction happens and the estimator should be calculated again to

ful�ll the requirement. Therefore, the MLE of Hj
A under order restriction should be

calculated under two di�erent situations. The �rst situation is that p̌j,0 < p̌j,k, so

we have two partition sets. The MLE of the lower level set is

p̃j,0 = ... = p̃j,j−1 = p̌j,0 (4.50)

while the MLE of the higher level set is

p̃j,j = ... = p̃j,k = p̌j,k (4.51)

The second situation is that p̌0 ≥ p̌k, so we have only one level set. All the estimators
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are recalculated to avoid the con�icts and they achieve the maximum likelihood

p̃j,0 = ... = p̃j,k =

∑k
i=0 xi∑k
i=0 ni

= p̂ (4.52)

Under the null hypothesis, all the parameters have the same mean and variance.

The probability of the �rst situation is

P (p̃j,0 < p̃j,k) = P (

∑j−1
i=0 xi∑j−1
i=0 ni

<

∑k
i=j xi∑k
i=j ni

) = 0.5 (4.53)

Similarly, we can get the probability for the second situation as

P (p̃j,0 ≥ p̃j,k) = 0.5 (4.54)

The AIC for model H0 is

AIC(H0) =log(L(ĝ(x|θ̃0(x))))− 1

={
k∑

i=0

log
ni !

xi !(ni − xi)!
(p̃xi

0 ,i ∗ (1 − p̃0 ,i)
ni−xi )} − 1 (4.55)

here θ̃0(x) = {p̂, ..., p̂} is vector of the estimated parameters under null hypothesis

H0. The AIC for model Hj
A can be calculated as

AIC(Hj
A) =log(L(ĝ(x|θ̃j(x))))− r

={
k∑

i=0

log
ni !

xi !(ni − xi)!
(p̃xi

j ,i ∗ (1 − p̃j ,i)
ni−xi )} − 2 (4.56)

here θ̃j(x) = {p̃j,0, ..., p̃j,k} is vector of the MLE under di�erent alternatives Hj.

r = 2 is the number of unknown means.

In order to use the extra advantages of order restriction, Anraku (1999) introduced

ORIC, which uses the one-sided information to calculate the penalty term under

simple order restriction. We still note the method, which uses one-sided information

and local MLE, as ORIC-lMLE. Under Single Change-point order restriction, the
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ORIC-lMLE of di�erent hypotheses are

ORIC − lMLE(H0) =log(L(ĝ(x|θ̃0(x))))− 1

={
k∑

i=0

log
ni !

xi !(ni − xi)!
(p̃xi

0 ,i ∗ (1 − p̃0 ,i)
ni−xi )} − 1

ORIC − lMLE(Hj
A) =log(L(ĝ(x|θ̃j(x))))−

2∑
m=0

w(2,m)m

={
k∑

i=0

log
ni !

xi !(ni − xi)!
(p̃xi

j ,i ∗ (1 − p̃j ,i)
ni−xi )} − 1.5

(4.57)

here

2∑
m=0

w(2,m)m

=
2∑
l=0

l ∗ P{l, r, ω{Hj
A}

=0 + 1 ∗ 0.5 + 2 ∗ 0.5

=1.5 (4.58)

The example of adverse events rate: Change-point detection

Take the adverse events rate case given in previous section as an example. The

researchers want to know if the adverse rate increases markedly at certain level of

cabergoline. If the answer is yes, can this Change-point be estimated?

Treatment Placebo 0.125(mg) 1.0(mg)

Present xi 9 19 24

Absent ni − xi 11 24 17

Total ni 20 43 41

p̂i 0.45 0.44 0.58

The hypotheses and estimators of partition sets are
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Hypothesis p̃0 p̃1 p̃2 DF

H0: p0 = p1 = p2
x0+x1+x2

n0+n1+n2

x0+x1+x2

n0+n1+n2

x0+x1+x2

n0+n1+n2
1

H1
A: p0 < p1 = p2

x0

n0

x1+x2

n1+n2

x1+x2

n1+n2
2

H2
A: p0 = p1 < p2

x0+x1

n0+n1

x0+x1

n0+n1

x2

n2
2

By calculating the estimator of partition sets and adjusting contradictions by the

following equation

p̃j,i = min
l≥i

max
m≤i

∑m
v=l p̌j,v∑m
v=l nv

(4.59)

we get the values of the local MLE as

Hypothesis p̃j,0 p̃j,1 p̃j,2

H0: p0 = p1 = p2 0.5000 0.5000 0.5000

H1
A: p0 < p1 = p2 0.4500 0.5119 0.5119

H2
A: p0 = p1 < p2 0.4444 0.4444 0.5854

Finally, we can calculate the log-likelihood, the ICs and the penalty terms by Equa-

tion 4.56 and 4.57 as following

Method H0(Tmax) H1
A H2

A selected model

log-likelihood -6.902 -6.779 -5.913

ORIC-lMLE -7.902 -8.279 -7.413 H2
A

AIC -7.902 -8.779 -7.913 H2
A

here the penalty terms are given by Equation 4.58 as following

Penalty H0 H1
A H2

A

ORIC-lMLE 1 1.5 1.5

AIC 1 2 2

From the result we can see that both AIC and ORIC-lMLE select model H2
A and

draw the conclusion that higher dose of such medicine has the reverse e�ect. Since

these two methods are model selection methods, neither of them can reject the null

hypothesis with certain alpha level.
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4.2.3 Estimators under Epidemic-order restriction

The MLE ofH0 is the same as former section. For the alternative modelH
(s,j)
A , where

r and s are the positions of the Change-points. The MLE of di�erent partition sets

are estimated separately

p̌j,0 = ... = p̌j,r−1 = p̌j,s = ... = p̌j,k =

∑r−1
i=0 xi +

∑k
i=s xi∑r−1

i=0 ni +
∑k

i=s ni

p̌j,r = ... = p̌j,s−1 =

∑s−1
i=r xi∑s−1
i=r ni

(4.60)

Similar as Single Change-point order restriction, we will use the information from

order restriction that pr = ps < p0 = pk. If a contradiction happens, then the

estimators should be calculated again to ful�ll the requirement. So, the MLE for

Hr,s
A under order restriction has two situations. The �rst situation is that p̌j,r < p̌j,k,

so we have two partition sets. The MLE of the higher level set is

p̃j,0 = ... = p̃j,r−1 = p̃j,s = ... = p̃j,k = p̌j,0 =

∑r−1
i=0 xi +

∑k
i=s xi∑r−1

i=0 ni +
∑k

i=s ni
(4.61)

and the MLE of the lower level set between the Change-points is

p̃j,r = ... = p̃j,s−1 = p̌j,r =

∑s−1
i=r xi∑s−1
i=r ni

(4.62)

and the second situation is that p̌j,0 ≥ p̌j,k, so we have only one partition sets. All

the estimators are the same

p̃j,0 = ... = p̃j,k =

∑k
i=0 xi∑k
i=0 ni

= p̂ (4.63)

Under the null hypothesis, the probability of the �rst situation is

P (p̌j,0 < p̌j,r) = 0.5 (4.64)
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Similarly, we get the probability for the second situation as

P (p̌j,0 ≥ p̌j,r) = 0.5 (4.65)

For multiple Change-points problem the MLE can be calculated in the similar way.

The parameters are divided by Change-points into di�erent partition sets. The

pooled mean can be taken as the MLE. Similarly we can calculate the AIC and

ORIC-lMLE.

Under epidemic Change-points order restriction, the NIC for di�erent hypotheses

are calculated from Equation 4.32 and 4.33 as

NIC(H0) =log(L(ĝ(x|θ̃(x))))− 1

=− {
k∑

i=0

log
ni !

xi !(ni − xi)!
(p̃xi

j ,i ∗ (1 − p̃j ,i)
ni−xi )} − 1

(4.66)

and

NIC(Hj
A) =log(L(ĝ(x|θ̃j(x))))− 2− 3 ∗m

=− {
k∑

i=0

log
ni !

xi !(ni − xi)!
(p̃xi

j ,i ∗ (1 − p̃j ,i)
ni−xi )} − 2− b(p̃(1), p̃(2))− b(p̃(2), p̃(1))

(4.67)

DNA-motif �nding

In previous section, we have successfully transformed the DNA-motif �nding problem

into a contingency table (Table 4.2). The aim for this study is to �nd out the Change-

points and to locate the motif around Change-points. The MLEs are calculated

similarly as Single Change-point order restriction. The log-likelihood is calculated

with given MLE and the penalty term is equal to one under null hypothesis and 8
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Pos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
xi 14 14 13 7 9 6 9 8 8 6 10 7 6 8 12 14 14
ni 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
p̂i 1 1 .9 .5 .6 .4 .6 .6 .6 .4 .7 .5 .4 .6 .9 1 1

Table 4.2: Contingency table for the DNA-motif

under alternative hypothesis. The second penalty term is the sum of penalty from

two Change-points and two unknown parameters (Ninomiya, 2005). Since we have

two unknown Change-points, the results are listed in a two-dimension table. Here

is part of the table

s=13 s=14 s=15 s=16

r=1 -51.2 -44.9 -50.5 -57.1

r=2 -45.4 -38.1 -43.3 -50.5

r=3 -40.6 -33.4 -35.1 -42.3

r=4 -46.7 -42.7 -45.4 -51.2

and the value of the null model is −54.1. We can select position "3" and "14" as

the best prediction of the Change-points.

4.2.4 Estimators under Simple-order restriction

The Simple-order restriction can be treated as multiple Change-points problem

which has ordered means. The inequality relationship is considered as ordered

Change-points. If two near partition sets are in the second situation that the order

restriction does not hold, we can take the pooled mean as the average mean for

both of them. Many model selection methods, such as AIC and ORIC-lMLE, are

available.
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Under Simple-order restriction, the ORIC-lMLE of di�erent hypotheses are

ORIC − lMLE(H0) =log(L(ĝ(x|θ̃0(x))))− 1

=− {
k∑

i=0

log
ni !

xi !(ni − xi)!
(p̃xi

0 ,i ∗ (1 − p̃0 ,i)
ni−xi )} − 1

ORIC − lMLE(Hj
A) =log(L(ĝ(x|θ̃j(x))))−

k∑
m=0

w(k,m)m

=− {
k∑

i=0

log
ni !

xi !(ni − xi)!
(p̃xi

j ,i ∗ (1 − p̃j ,i)
ni−xi )} −

r∑
l=1

l ∗ P{l , r , ω{H j
A}}

(4.68)

here, l is the number of partition sets under Hj
A and P{l, r, ω{Hj

A}} is the level

probability de�ned by Robertson et al. (1988).

However, ORIC-lMLE does not work well in selecting the correct model because

of the "underperformance", which we have discussed in former section. Later, the

simulation study also veri�es this conclusion. We have developed a new IC, which

use SLE and called Mi and Hothorn IC (MHIC), to solve this problem.

Our new IC (MHIC) are de�ned as

MHIC(H0) = AIC(H0) =log(L(ĝ(x)|θ̄0(x)))− 1

=− {
k∑

i=0

log
ni !

xi !(ni − xi)!
(p̄xi

0 ,i ∗ (1 − p̄0 ,i)
ni−xi )} − 1

MHIC(Hj
A) =log(L(ĝ(x)|θ̄j(x)))−

2∑
m=0

w(2,m)m

=− {
k∑

i=0

log
ni !

xi !(ni − xi)!
(p̄xi

j ,i ∗ (1 − p̄j ,i)
ni−xi )} − 1.5

(4.69)
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Males age < 25 25− 29 30− 34 35− 39
Abortion xi 33 37 3 7

Normal ni − xi 226 321 358 5
Total ni 259 358 64 12

p̂i 0.127 0.103 0.047 0.583

Table 4.3: Spontaneous abortion rate.

here

2∑
m=0

w(2,m)m

=
2∑
l=0

l ∗ P{l, r, ω{Hj
A}

=0 + 1 ∗ 0.5 + 2 ∗ 0.5 = 1.5 (4.70)

θ̄0(x) = {p̄, ..., p̄} is the vector of the estimated parameters under null hypothesis

H0 and θ̄j(x) = {p̄j,0, ..., p̄j,k} is the SLE vector under alternatives Hj
A. From the

following example, we will see that the MHIC with SLE achieves worse KL distance

than ORIC-lMLE for the wrong model. MHIC has stronger power to exclude the

wrong model.

Spontaneous abortion rate

The hypotheses and estimators of partition sets are

Hypothesis p̌j,0 p̌j,1 p̌j,2 p̌j,3 DF

H0: p0 = p1 = p2 = p3 p̂ p̂ p̂ p̂ 1

H1
A: p0 < p1 = p2 = p3

x0

n0

x1+x2+x3

n1+n2+n3

x1+x2+x3

n1+n2+n3

x1+x2+x3

n1+n2+n3
2

H2
A: p0 = p1 < p2 = p3

x0+x1

n0+n1

x0+x1

n0+n1

x2+x3

n2+n3

x2+x3

n2+n3
2

H3
A: p0 = p1 = p2 < p3

x0+x1+x2

n0+n1+n2

x0+x1+x2

n0+n1+n2

x0+x1+x2

n0+n1+n2

x3

n3
2

H4
A : p0 < p1 < p2 < p3

x0

n0

x1

n1

x2

n2

x3

n3
4

H5
A : p0 = p1 < p2 < p3

x0+x1

n0+n1

x0+x1

n0+n1

x2

n2

x3

n3
3

H6
A : p0 < p1 = p2 < p3

x0

n0

x1+x2

n1+n2

x2

n2

x3

n3
3

H7
A : p0 < p1 < p2 = p3

x0

n0

x1

n1

x2

n2

x3

n3
3
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here p̂ = x0+x1+x2+n3

n0+n1+n2+n3
is the overall mean. By using the following equation

p̃j,i = min
l≥i

max
m≤i

∑v=m
l p̌j,v∑v=m
l nv

(4.71)

the values of local MLE are calculated as

Hypothesis p̃j,0 p̃j,1 p̃j,2 p̃j,3

H0: p0 = p1 = p2 = p3 0.115 0.115 0.115 0.115

H1
A: p0 < p1 = p2 = p3 0.115 0.115 0.115 0.115

H2
A: p0 = p1 < p2 = p3 0.113 0.113 0.131 0.131

H3
A: p0 = p1 = p2 < p3 0.107 0.107 0.107 0.583

H4
A : p0 < p1 < p2 < p3 0.107 0.107 0.107 0.583

H5
A : p0 = p1 < p2 < p3 0.107 0.107 0.107 0.583

H6
A : p0 < p1 = p2 < p3 0.107 0.107 0.107 0.583

H7
A : p0 < p1 < p2 = p3 0.113 0.113 0.131 0.131

while the SLE are

Hypothesis p̂j,0 p̂j,1 p̂j,2 p̂j,3

H0: p0 = p1 = p2 = p3 0.115 0.115 0.115 0.115

H1
A: p0 < p1 = p2 = p3 0.115 0.115 0.115 0.115

H2
A: p0 = p1 < p2 = p3 0.113 0.113 0.131 0.131

H3
A: p0 = p1 = p2 < p3 0.107 0.107 0.107 0.583

H4
A : p0 < p1 < p2 < p3 0.077 0.102 0.128 0.153

H5
A : p0 = p1 < p2 < p3 0.090 0.090 0.115 0.165

H6
A : p0 < p1 = p2 < p3 0.065 0.115 0.115 0.165

H7
A : p0 < p1 < p2 = p3 0.065 0.115 0.140 0.140

which are calculated by the following equations
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Penalty H0 H1
A H2

A H3
A H4

A H5
A H6

A H7
A

ORIC-lMLE 1 1.5 1.5 1.5 2.07 1.83 1.83 1.83
MHIC 1 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Table 4.4: Penalties of the ICs

Hypothesis p̂j,0 p̂j,1 p̂j,2 p̂j,3 DF

H0: p0 = p1 = p2 = p3 p̂ p̂ p̂ p̂ 1

H1
A: p0 < p1 = p2 = p3 p̂+ c1,0

C1
∗∆ p̂+ c1,1

C1
∗∆ p̂+ c1,2

C1
∗∆ p̂+ c1,3

C1
∗∆ 2

H2
A: p0 = p1 < p2 = p3 p̂+ c2,0

C2
∗∆ p̂+ c2,1

C2
∗∆ p̂+ c2,2

C1
∗∆ ... 2

H3
A: p0 = p1 = p2 < p3 p̂+ c3,0

C3
∗∆ p̂+ c3,1

C3
∗∆ ... ... 2

H4
A : p0 < p1 < p2 < p3 p̂+ c4,0

C4
∗∆ ... ... ... 2

H5
A : p0 = p1 < p2 < p3 p̂+ c5,0

C5
∗∆ ... ... ... 2

H6
A : p0 < p1 = p2 < p3 p̂+ c6,0

C6
∗∆ ... ... ... 2

H7
A : p0 < p1 < p2 = p3 p̂+ c7,0

C7
∗∆ ... ... ... 2

The contrasts of MCT for di�erent hypothesis are

Hypothesis cj,0 cj,1 cj,2 cj,3

H1
A: p0 < p1 = p2 = p3 c1,0 = −3 c1,1 = 1 c1,2 = 1 c1,3 = 1

H2
A: p0 = p1 < p2 = p3 c2,0 = −2 c2,1 = −2 c2,2 = 2 c2,3 = 2

H3
A: p0 = p1 = p2 < p3 c3,0 = −1 c3,1 = −1 c3,2 = −1 c3,3 = 3

H4
A : p0 < p1 < p2 < p3 c4,0 = −3 c4,1 = −1 c4,2 = 1 c4,3 = 3

H5
A : p0 = p1 < p2 < p3 c5,0 = −1 c5,1 = −1 c5,2 = 0 c5,3 = 2

H6
A : p0 < p1 = p2 < p3 c6,0 = −1 c4,1 = 0 c4,2 = 0 c4,3 = 1

H7
A : p0 < p1 < p2 = p3 c7,0 = −2 c4,1 = 0 c4,2 = 1 c4,3 = 1

The �nal ICs and penalty term are given as following by Equation 4.68 and 4.69

Meth. H0(Tmax) H1
A H2

A H3
A H4

A H5
A H6

A H7
A Sel.M.

MHIC -19.08 -19.58 -19.48 -11.78 -21.74 -19.21 -23.73 -25.90 H3
A

ORIC-lMLE -19.08 -19.58 -19.48 -11.78 -12.35 -12.11 -12.11 -19.81 H3
A

The penalties are listed in Table 4.4 here the penalty term of MHIC is calculated by

Equation 4.69. We just give the detail for the penalty term of ORIC-lMLE which is
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calculated by Equation 4.68. The values under model H1
A, H

2
A and H3

A are similar

as what we have before and easy to be calculated as

r∑
l=1

l ∗ P{l, r, ω{H1
A}

=
2∑
l=1

l ∗ P{l, r, ω{H1
A}

=1 ∗ 0.5 + 2 ∗ 0.5 = 1.5 (4.72)

The value under model H5
A, H

6
A, H

7
A are similar. So here we calculate only for model

H5, which have r = 3 partition sets. The probability is

r∑
l=1

l ∗ P{l, r, ω{H5
A}}

=
3∑
l=1

l ∗ P{l, 3, ω{H5
A}}

=1 ∗ P{1, 3, ω{H5
A}}+ 2 ∗ P{2, 3, ω{H5

A}}+ 3 ∗ P{3, 3, ω{H5
A}}

=1.83 (4.73)

The value under model H4 has r = 4 partition sets. The probability is

r∑
l=1

l ∗ P{l, r, ω{H4
A}

=
4∑
l=1

l ∗ P{l, 4, ω{H4
A}

=1 ∗ P{1, 4, ω{H4
A}}+ 2 ∗ P{2, 4, ω{H4

A}}+ 3 ∗ P{3, 4, ω{H4
A}}+ 4 ∗ P{4, 4, ω{H4

A}}

=2.07 (4.74)

The conclusion for the problem is that we select model H3
j as the best model. Be-

cause both MHIC and ORIC-lMLE methods are model selection methods, we cannot

control the FWER. These two methods are not identical under Simple order restric-

tion. For ORIC-lMLE method, the degrees of freedom for the chi-square distribution
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are larger than two.

4.2.5 Estimators under Simple-tree order restriction

The hypothesis under Simple-tree order restriction can be described as

H0 : p0 = p1 = ... = pk

HA :
k⋃
j=1

p0 < pj (4.75)

Each elementary alternative model has only two parameters while the global null

hypotheses have k + 1 parameters. In order to make the ratio test, we separate the

null hypothesis into elementary null models too.

H0 :
k⋃
j=1

p0 = pj

HA :
k⋃
j=1

p0 < pj (4.76)

We calculate the di�erence of log-likelihood directly from this two elementary mod-

els.

ratio = L(Hj
A)− L(Hj

0) (4.77)

The MLE here is di�erent as what we have before. For Hj
0

p̂0,0 = p̃0,0 = p̂j,0 = p̃j,0 =
x0 + xj
n0 + nj

(4.78)
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For Hj
A

p̂j,0 = p̃j,0 = min(
x0

n0

,
x0 + xi
n0 + ni

) (4.79)

and

p̂j,j = p̃j,j = max(
xj
nj
,
x0 + xj
n0 + nj

) (4.80)

Here we use OSAIC to calculate the ratio too, the equation is

OSAIC =
k∑

i=0

log
ni !

xi !(ni − xi)!
(p̂xi

j ,i ∗ (1 − p̂j ,i)
ni−xi )−

r∑
m=0

w(r ,m)(k − r + m)

(4.81)

for the elementary null models, there is no inequality, so r = 0

OSAIC(Hj
0) =

∑
i=0 ,j

log
ni !

xi !(ni − xi)!
(p̂xi

i ,0 ∗ (1 − p̂i ,0 )ni−xi )− 1 (4.82)

since we have only inequality for the elementary alternative models i.e. r = 1 implies

OSAIC(Hj
A) =

∑
i=0 ,j

log
ni !

xi !(ni − xi)!
(p̂xi

j ,i ∗ (1 − p̂j ,i)
ni−xi )− 1 .5 (4.83)

the ratio is OSAIC(Hj
A)−OSAIC(Hj

0)

The example of adverse events rate: many-to-one comparison

Take the adverse events rate case given in previous section as an example. The

researchers want to know if the dose groups are signi�cantly di�erent to the control

group. If the answer is yes, can these groups be estimated?
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Treatment Placebo 0.125(mg) 1.0(mg)

Present xi 9 19 24

Absent ni − xi 11 24 17

Total ni 20 43 41

p̂i 0.45 0.44 0.58

The hypotheses and estimators of partition sets are

Hypothesis p̌0 p̌1 p̌2 DF

H0: p0 = p1 = p2
x0+x1+x2

n0+n1+n2

x0+x1+x2

n0+n1+n2

x0+x1+x2

n0+n1+n2
1

H1
A: p0 < p1

x0

n0

x1

n1
1

H2
A: p0 < p2

x0

n0

x2

n2
1

By calculating the estimator of partition sets and adjusting contradictions by the

following equations

For Hj
0

p̂0,0 = p̃0,0 = p̂j,0 = p̃j,0 =
x0 + xj
n0 + nj

(4.84)

For Hj
A

p̂j,0 = p̃j,0 = min(
x0

n0

,
x0 + xi
n0 + ni

) (4.85)

and

p̂j,j = p̃j,j = max(
xj
nj
,
x0 + xj
n0 + nj

) (4.86)

we get the values of the local MLE as
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Hypothesis p̃j,0 p̃j,1 p̃j,2

H1
0 : p0 = p1 0.445 0.445

H1
A: p0 < p1 0.45 0.45

H2
0 : p0 = p2 0.515 0.515

H2
A: p0 < p2 0.45 0.58

Finally, we can calculate the log-likelihood, the ICs and the penalty terms by Equa-

tion as following

Method H0(Tmax) H1
A H2

A selected model

ORIC-lMLE -0 -0.500 -0.004 H0

here the penalty terms are given by Equation 4.58 too, as following

Penalty H0 H1
A H2

A

ORIC-lMLE 1 1.5 1.5

From the result, we can see that ORIC-lMLE selects model H0. We can draw the

conclusion that no dose of such medicine is signi�cantly di�erent to the control.

This result is di�erent from what we get before. The ICs under Simple-tree order

restrictions has less information than under Simple-order.

Since this method is model selection method, it cannot reject the null hypothesis

with certain α level either.

4.3 Simulation study for comparing gMLE, lMLE

and SLE

In last section we have introduced gMLE, lMLE and SLE to calculate the likeli-

hood. Theoretically, they can be interpreted as projections (estimations) to di�erent

spaces. This in�uences the �nal classi�cation rate. In this section, we will give a

short simulation example of the correct model selection rate over di�erent alterna-

tives under Simple-order restriction. In these simulations, we generate 1000 random

binomial data for k = 3 isotonic means 0.4 ≤ p0 ≤ ... ≤ pk ≤ 0.4 + ∆ = 0.6, and
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Alternatives Methods H0(Theor.) H0 H1
A H2

A H3
A

0.4/0.6/0.6 ORIC-gMLE - 0.004 0.555 0.014 0.427
0.4/0.6/0.6 ORIC-lMLE - 0.001 0.568 0.013 0.418
0.4/0.6/0.6 MHIC-SLE 0.0073 0.002 0.811 0.009 0.178

0.4/0.4/0.6 ORIC-gMLE - 0.008 0.014 0.557 0.422
0.4/0.4/0.6 ORIC-lMLE - 0.006 0.013 0.586 0.395
0.4/0.4/0.6 MHIC-SLE 0.0073 0.007 0.010 0.817 0.166

0.4/0.5/0.6 ORIC-gMLE - 0.021 0.223 0.221 0.536
0.4/0.5/0.6 ORIC-lMLE - 0.020 0.221 0.233 0.526
0.4/0.5/0.6 MHIC-SLE 0.0170 0.020 0.236 0.224 0.520

Table 4.5: 1000 random binomial data for k = 3, proportions p0 = ... = pj−1 =
0.4,pj = 0.4, 0.5, 0.6, pj+1 = ... = pk = 0.6, and sample size ni is 100.

Method IC New IC? Estimator New Estimator?
ORIC-gMLE ORIC NO gMLE NO
ORIC-lMLE ORIC NO lMLE YES
MHIC-SLE MHIC YES SLE YES

Table 4.6: Our NEW IC with NEW estimator

the sample size is 100. ORIC with lMLE, ORIC with gMLE and our new method

MHIC which uses SLE, are compared together.

From this simulation study, we see that ORIC with lMLE is slightly better than

ORIC with gMLE. However, both of them have a very high misclassi�cation rate in

identifying model H1
A and H2

A under Simple-order restriction.

An improvement for ORIC with lMLE could be made. We leave the question of how

to calculate a suitable penalty for ORIC with lMLE as an open question.
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Chapter 5

Test-based model selection

In the last chapter we have already reviewed former model-based methods and intro-

duced our MHIC method for solving the previous problems. Simulation studies in

Chapter 6.2 shows that MHIC with "suitable" likelihood estimators (SLE), achieves

a higher model selection rate than traditional ORIC method. However, model-based

methods are designed for model selection, not test. They cannot control the FWER.

In this chapter, we will introduce a test-based method, which uses the IC value devel-

oped from last chapter as test statistics and controls the FWER. We will also study

the "power", correct model selection rate (CR) and misclassi�cation rate (MR) for

all these methods. First, we will discuss about the distribution of the likelihood.

Second, the critical value will be calculated from the quantile of certain distribution

to control the FWER.

5.1 Relationship between Log-likelihood Ratio Test

(LRT) and Multiple Contrast Test (MCT)

In this section, we will compare the relationship between LRT and MCT. Because

MCT is a 'collection' of Single Contrast Test (SCT), we �rst �gure out the relation-

ship between SCT and LRT.

67
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For SCT, the choice of the contrast coe�cients cis is free. According to Wright

(1988), a SCT is very powerful if we have some previous knowledge of the true mean

vector U = {u0, u1, ..., uk}. However, in order to achieve a good power in "average"

as LRT, they suggested choose cis properly such that cis are "strategically" located

in the whole alternative space. Here we describe the idea of them brie�y. The alter-

native space of LRT is a polyhedral cone and the null hypothesis is a linear subspace

on the boundary this cone (Pincus, 1975). For di�erent order restrictions, the region

of the polyhedral cone is di�erent. For Simple-tree order restriction, Wright (1988)

developed corner vectors which are the edges of the cone. Furthermore, they sug-

gested people using orthogonal contrasts, which are linear combinations of the corner

vector, for simplifying the calculation. Contrasts with similar functionality are de-

veloped by Hirotsu and Marumo (2002) for Single Change-point order restriction and

simple-order restriction. "Then maximal contrast type test is derived systematically

as the likelihood ratio test for each of those Change-point hypotheses" (Hirotsu and

Marumo, 2002).

5.1.1 Distribution of the log-likelihood under Single Change-

point order restriction

According to Robertson et al. (1988), for normal distributed data under the null

hypothesis, the di�erence of log-likelihood between the alternative model and the

null model are distributed as a weighted chi-squared distribution.

The critical value of weighted chi-squared distribution is hard to calculate. But we

can transform the distribution into square of normal distribution if the data are

under Single Change-point order restriction. We have q = k di�erent elementary

alternatives.

In the following prove, we assume that the sample size is large enough, so the bino-

mial data can be treated asymptotically as normal distributed. The distribution of
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the di�erences for elementary alternatives Hj
A against the H0 are noted as TCj that

TCj = log(L(ĝ(θ̂j|x)), x ∈ Hj
A)− log(L(ĝ(θ̂0|x)), x ∈ H0)

= {−0.5N log(2π)− 0.5
k∑
0

ni log σ̂i − 0.5
k∑
0

ωi(xi − p̂j,i)2}

− {−0.5N log(2π)− 0.5
k∑
0

ni log σ̂ − 0.5
k∑
0

ωi(xi − p̂)2}

(5.1)

We can omit all the terms that pis are not involved (Robertson et al., 1988; Hughes

and King, 2003).

TCj ≈− 0.5{
k∑
0

ωi(xi − p̂j,i)2 −
k∑
0

ωi(xi − p̂)2}

=− 0.5{(
k∑
0

ωi(p̂j,i − p̂)2 + 2
k∑
0

ωi(xi − p̂)(p̂− p̂j,i))︸ ︷︷ ︸
=0

}

=− 0.5
k∑
0

ωi(p̂j,i − p̂)2

∼− 0.5χ2
01 (5.2)

here, θ̃j = {p̃j,0, ..., p̃j,k} is the vector of the estimators for elementary alternativeHj
A,

θ̃0 = {p̂, ..., p̂} is the vector of the estimators for null hypothesis H0 and ωi = ni/σ̂2
i ,∑k

0 ωi = 1 and σ̂2
i is the estimated variances. The distribution of χ2

01 is,

P [0.5χ2
01 ≥ c] =

l∑
m=1

P{m, l, ω{Hi}}P [0.5χ2
df=m−1 ≥ c] (5.3)

Here, χ2
df=m−1 is univariate chi-square distribution with df degrees of freedom and

χ2
0 = 0, l is the number of total partition sets under hypothesis and P{m, l, ω{Hi}} is

the level probability that under hypothesis {Hi}, there are m di�erent values among

the l partition sets. If we have m di�erent values, then the number of Change-point
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is m− 1. (Robertson et al., 1988; Hughes and King, 2003)

For the special case of Single Change-point order restriction, the level probability is

quite simple

P{1, 2, ω{Hi}} = P{2, 2, ω{Hi}} = 0.5 (5.4)

the critical value for given α is (Xiong and Barmi, 2002)

α = P{0.5χ2
01 ≥ z1−α} =0.5P{0.5χ2

df=1 ≥ z1−α}+ 0.5P{0.5χ2
df=0 ≥ z1−α}︸ ︷︷ ︸

0

=0.5P{0.5χ2
df=1 ≥ z1−α} (5.5)

then we have the following relationship

P{0.5χ2
df=1 ≥ z1−α} = 2α (5.6)

The critical value for single elementary alternative can be calculated by a one-sided

chi-square distribution

z1−α = 0.5χ2
df=1{p = (1− 2α)} (5.7)

The log-likelihood ratios of all hypotheses minus the null are multivariate weighted

chi-square distributed with covariance matrix Σchi.

Xiong and El Barmi (2002) indicated that the distribution is complicated and gave

a simulated critical value scα

P{[ max
1≤j≤k

log(L(ĝ(x), x ∈ Hj
A))− log(L(ĝ(x), x ∈ H0))] ≥ scα} = α (5.8)

However, for Single Change-point problem, the critical value can be calculated by

multivariate normal distribution. Here we �rst assume balanced design that n0 =

... = nk = n. By extending the MLE into Equation 5.2, we get the value of new test

statistics TCj for Single Change-point problem.
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As we have discussed in last chapter, when p̌0 < p̌k, there are two partition sets.

The probability for this event is P{2, 2, ω{Hi}} = 0.5. The MLEs are

p̃j,0 = ... = p̃j,j−1 =

∑j−1
i=0 xi∑j−1
i=0 ni

=

∑j−1
i=0 xi
jn

p̃j,j = ... = p̃j,k =

∑k
i=j xi∑k
i=j ni

=

∑k
i=j xi

(k − j + 1)n

p̂ =

∑k
i=0 xi∑k
i=0 ni

=

∑k
i=0 xi

(k + 1)n
(5.9)

By putting above values in Equation 5.2, we have

TCj = 0.5
k∑
0

ωi(p̃j,i − p̂)2

=0.5ω{j(
∑j−1

i=0 xi
jn

−
∑k

i=0 xi
n(k + 1)

)2 + (k − j + 1)(

∑k
i=j xi

(k − j + 1)n
−

∑k
i=0 xi

n(k + 1)
)2}

=0.5ω{j((k + 1)
∑j−1

i=0 xi
jn(k + 1)

− j
∑k

i=0 xi
jn(k + 1)

)2

+ (k − j + 1)(
(k + 1)

∑k
i=j xi

(k − j + 1)n(k + 1)
− (k − j + 1)

∑k
i=0 xi

(k − j + 1)n(k + 1)
)2}

=0.5
n

σ2
{j((k − j + 1)

∑j−1
i=0 xi

jn(k + 1)
−
j
∑k

i=j xi

jn(k + 1)
)2

+ (k − j + 1)(
j
∑k

i=j xi

(k − j + 1)n(k + 1)
− (k − j + 1)

∑j−1
i=0 xi

(k − j + 1)n(k + 1)
)2}

=0.5
n

σ2
{
j−1∑
i=0

−(k − j + 1)xi +
k∑
i=j

jxi}2 ∗ {j( 1

jn(k + 1)
)2 + (k − j + 1)(

1

(k − j + 1)n(k + 1)
)2}

=0.5
n

σ2
{
j−1∑
i=0

cj,ixi +
k∑
i=j

cj,ixi}2 ∗ { 1

j(k − j + 1)(k + 1)n2
}

=0.5{
∑k

i=0 cj,ixi√
nσ2(k + 1)j(k − j + 1)

}2

=0.5{
∑k

i=0 cj,ixi√
nσ2j(k − j + 1)2 + (k − j + 1)j2

}2

=0.5{
∑k

i=0 cj,ixi√
nσ2

∑j−1
i=0 cj,i +

∑k
i=j c

2
j,i

}2

=0.5T 2
j (5.10)
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Tj is the test statistics of MCT for the same alternative Hj
A in Equation 3.22 and ci is

the contrasts for Change-point. We have proved that the value of TCj is proportion

to the square of Tj. When p̌0 ≥ p̌k, there is only one level set. All the MLEs have

the same value that p̃j = p̂. The probability for this event is P{1, 2, ω{Hi}} = 0.5.

Put values above in Equation 5.2, we have

TCj

=0.5
k∑
0

ωi(p̃j,i − p̂)2

=0 (5.11)

Simply to prove, in this case the correspond MCT Tj < 0. For Single Change-point

problem, the critical value (cα > 0) of multivariate weighted chi-square distribution

can be calculated from multi normal distribution

α =P ( max
1≤j≤k

2TCj > 2z1−α)

=P{1, 2, ω{Hi}}P ( max
1≤j≤k

2TCj > 2z1−α)︸ ︷︷ ︸
0

+P{2, 2, ω{Hi}}P ( max
1≤j≤k

2TCj > 2z1−α)

=P{1, 2, ω{Hi}}P ( max
1≤j≤k

Tj >
√

2z1−α)︸ ︷︷ ︸
0

+P{2, 2, ω{Hi}}P ( max
1≤j≤k

Tj >
√

2z1−α)

=P ( max
1≤j≤k

Tj >
√

2z1−α) (5.12)

Finally we have

P ( max
1≤j≤k

2TCj > 2z1−α) = P ( max
1≤j≤k

Tj >
√

2z1−α) = α (5.13)

For the multivariate central weighted chi-square distribution with all degrees of free-

dom equal to one, we can use the correspond multivariate normal distribution with

covariance matrix R to calculate the critical value asymptotically.

z1−α = 0.5{Φ−1
k (p = 1− α; 0,R)}2 (5.14)
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which means

z1−α = 0.5Z2
k,1−α (5.15)

Zk,1−α is the α quantile for k-variate normal distribution.

5.2 Multiple Log-likelihood Test (MLT) with con-

trol of FWER

In this section, we will build a Multiple Log-likelihood Test (MLT) with control

of FWER for Binomial order-restricted problems, by using the quantile which is

developed in the last section. The test statistics are the di�erences discussed in the

last section

TCj = log(L(ĝ(x|θ̂j)), x ∈ Hj
A)− log(L(ĝ(x|θ̂0)), x ∈ H0) (5.16)

here, θ̂j = { ˆpj,0, ..., ˆpj,k} is the vector of the general estimators for elementary alter-

native Hj
A, θ̂0 = {p̂, ..., p̂} is the vector of the general estimators for null hypothesis

H0. Under the null hypothesis TC = max{TC1, ..., TCq} is asymptotically q-variate

weighted chi-square distributed, where q is the number of elementary alternatives.

The choice of di�erent likelihood estimators will a�ect the degrees of freedom of

the weighted multivariate chi-square distribution. Here we discuss them in di�erent

situations. The chi-square distributions with SLE have one degree of freedom for

all. We can simply prove it per de�nition.

5.2.1 Critical value

The critical value z1−α is de�ned as

P{[ max
1≤j≤q

log(L(ĝ(x), x ∈ Hj
A))− log(L(ĝ(x), x ∈ H0)))] ≥ z1−α} = α (5.17)
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Except the Epidemic-order restriction, we use SLE to make the test statistics of

MLT to be central q-variate chi-square distribution with all degree of freedom equal

to one. MLE is the only choice for the Epidemic-order restriction until now.

From last section, we have already known that the critical value of asymptotically

q-variate chi-square distribution with all degree of freedom equal to one, can be

calculated from a q-variate normal distribution.

z1−α = 0.5Z2
q,1−α (5.18)

Zq,1−α is the α quantile for q-variate normal distribution.

5.3 ORIC-lMLE, MHIC and MLT under order re-

striction

In this section, we will calculate the ORIC-lMLE, MHIC and MLT under di�erent

order restriction alternative models Hj
A.

5.3.1 Single Change-point order restriction

For ORIC-lMLE and MHIC methods, the GEP θ̂j are taken as the MLE θ̃j which

is equivalent to SLE θ̄j in this special case, i.e.

θ̂j = θ̄j = θ̃j = {p̃j,1, p̃j,2, ..., p̃k,j} (5.19)

with

p̂j,i = p̃j,i = min
l≥i

max
m≤i

∑v=m
l p̌j,v∑v=m
l nv

(5.20)

Under the null hypothesis TC = max{TC1, ..., TCq}, q = k is asymptotically q-

variate chi-square distributed. All of them have degree one.
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The e�ect of using SLE and MLE are identical in this situation. We also have

MHIC = ORIC − lMLE.

ORIC − lMLE =
k∑

i=0

log
ni !

xi !(ni − xi)!
(p̂xi

j ,i ∗ (1 − p̂j ,i)
ni−xi )−

r∑
m=0

w(r ,m)(k − r + m)

(5.21)

since we have only one Change-point, r = 1 here implies

ORIC − lMLE =
k∑

i=0

log
ni !

xi !(ni − xi)!
(p̂xi

j ,i ∗ (1 − p̂j ,i)
ni−xi )− 1 .5 (5.22)

The MLT is given by

MLT =
k∑

i=0

log
ni !

xi !(ni − xi)!
(p̂xi

j ,i ∗ (1 − p̂j ,i)
ni−xi )− z1−α (5.23)

Relationship of the ICs

Under alternatives Hj
A, we have

MLT −ORIC − lMLE ≤ 1.5− z1−α (5.24)

5.3.2 Epidemic-order restriction

For AIC and NIC methods, θ̂j are taken as the MLE θ̃j = {p̃j,1, p̃j,2, ..., p̃k,j} where

p̃j,i = min
l≥i

max
m≤i

∑v=m
l p̌j,v∑v=m
l nv

(5.25)

Under the null hypothesis TC = max{TC1, ..., TCq} with q = (k − 2)(k − 1) is

asymptotically central q-variate chi-square distributed. All of them have degree

two.
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Since we have two Change-points here

NIC =
k∑

i=0

log
ni !

xi !(ni − xi)!
(p̃xi

j ,i ∗ (1 − p̃j ,i)
ni−xi )− 2 − 2b(p ′1 , p

′
2 ) (5.26)

here b(p′1, p
′
2) is the extra penalty under Change-point order restriction for binomial

data. p′1 and p
′
2 are the estimated proportion around the Change-points.

Relationship of the ICs

No MLT method is developed for this case. Under alternatives HA, we have

NIC = AIC − 2b(p′1, p
′
2) (5.27)

5.3.3 Simple-order restriction

For ORIC method, θ̂j are taken as the MLE θ̃j. Under the null hypothesis TC =

max{TC1, ..., TCq} with q = k2 − 1 is asymptotically centered q-variate chi-square

distributed with di�erent degree of freedom which depends on the elementary models.

We have θ̂j = θ̃j and

ORIC =
k∑

i=0

log
ni !

xi !(ni − xi)!
(p̃xi

j ,i ∗ (1 − p̃j ,i)
ni−xi )−

r∑
m=0

w(r ,m)(k − r + m)

(5.28)

with

p̃j,i = min
l≥i

max
m≤i

∑v=m
l p̌j,v∑v=m
l nv

(5.29)

For MHIC method, θ̂j are taken as the SLE θ̄i. Under the null hypothesis TC =

max{TC1, ..., TCq} with q = k2 − 1 is asymptotically central q-variate chi-square
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distributed. All of them have degree one.

MHIC =
k∑

i=0

log
ni !

xi !(ni − xi)!
(p̄xi

j ,i ∗ (1 − p̄j ,i)
ni−xi )−

r∑
m=0

w(r ,m)(k − r + m)

(5.30)

with

p̄j,i = p̂+
cj,i
Cj
∗∆ (5.31)

which is de�ned in Equation 4.44.

The MLT is given by using the same SLE as

MLT =
k∑

i=0

log
ni !

xi !(ni − xi)!
(p̄xi

j ,i ∗ (1 − p̄j ,i)
ni−xi )− z1−α (5.32)

As shown in the simulation study section, when the degree of freedom is higher than

two, the e�ect of ORIC with MLE and MHIC with SLE are not identical. ORIC

uses MLEs, so it is usually larger than MHIC

MHIC + 1.5 � ORIC − lMLE + 1.5 (5.33)

Relationship of the ICs

Under alternatives Hj
A, we have

MLT −ORIC − lMLE ≤ 1.5− z1−α (5.34)

5.3.4 Simple-tree order restriction

For all methods, θ̂j are taken as the MLE θ̃i. Under the null hypothesis TC =

max{TC1, ..., TCq}, q = k is asymptotically q-variate chi-square distributed. All
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of them have degreeone. The e�ect of using SLE and MLE are identical in this

situation. We also have MHIC = ORIC − lMLE. The MLE here is di�erent as

what we have before. For i = 0 we the MLE of p̂j,0 = p̃j,0 is

p̂j,0 = p̃j,0 =
x0

n0

(5.35)

For i 6= 0 the MLEs are

p̂j,i = p̃j,i = max(
xi
ni
,
x0 + xi
n0 + ni

) (5.36)

Here we use ORIC-lMLE too

ORIC − lMLE =
k∑

i=0

log
ni !

xi !(ni − xi)!
(p̂xi

j ,i ∗ (1 − p̂j ,i)
ni−xi )−

r∑
m=0

w(r ,m)(k − r + m)

(5.37)

since we have only inequity, r = 1 here implies

ORIC − lMLE =
k∑

i=0

log
ni !

xi !(ni − xi)!
(p̂xi

j ,i ∗ (1 − p̂j ,i)
ni−xi )− 1 .5 (5.38)

The MLT is given by

MLT =
k∑

i=0

log
ni !

xi !(ni − xi)!
(p̂xi

j ,i ∗ (1 − p̂j ,i)
ni−xi )− z1−α (5.39)

Relationship of the ICs

Under alternatives Hj
A, we have

MLT −ORIC − lMLE = 1.5− z1−α (5.40)
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5.4 Relationship between MCT and MLT

In our last section, we have already seen that our MLT method has very similar

behaviors as MCT when the normal approximation is true. In this section, the re-

lationship between these two methods will be uncovered. Without order restriction,

maximal likelihood estimator (MLE) is equivalent to least square estimator (LSE)

for normal distributed data. When the data is not normal distributed, MLE has

advantages over LSE.

Based on these MLE and SLE, MLT can be interpreted as information distance in

general cases and when the data is normal distributed, MLT can be interpreted as

quadratic distance (also true as information distance) while MCT can be interpreted

as linear distance. According to Hirotsu (Hirotsu and Marumo, 2002): " ... the test

statistic is also interpreted as the standardized maximum of the projections of the

e�cient score vector onto the k-1 corners of the polyhedral cone, where an e�cient

score vector is de�ned as the derivative of the log likelihood with respect to the

parameter ... "

Observing the result from previous Single Change-point problems, we �nd that our

MLT method is equivalent to MCT when the data is asymptotically normal dis-

tributed. This veri�es Hirotsu's interpretation. The critical value of our new method

is also calculated by taking quadratic of the critical value of correspond MCT.

But in principle, MCT and MLT are two di�erent methods. MCT focused on test.

The test statistics of MCT are multi-variate norm distributed and the critical value is

easier to be calculated than MLT, which is designed to select the suitable model with

control of FWER. In model selection procedure, Information Criterion is introduced

to measure the distance between the estimation and the "truth". Under asymptotic

normality assumption, Information distance can be interpreted as square distance

and the distribution is multi-variate weighted chi-square distribution, which is quite

complicated to calculate.

The square of the test statistics of MCT is multi-variate non-central chi-square

distributed too. Under Single Change-point order restriction, both multi-variate
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non-central chi-square distribution and multi-variate weighted chi-square distribu-

tion degenerate into multi-variate chi-square distribution with all degrees of freedom

one. MCT and MLT are identical in this special case.

5.5 Algebraic space

In this section, former literatures of the Algebraic space will be reviewed. A descrip-

tion is given and an algebraic proof is developed for better understanding and it is

also useful for the future study of the higher degrees of freedom case.

Algebraic space is a very useful tool to prove properties the test and model selection.

Let the real true sample space to be an in�nite dimensional real number space. The

estimated models can be considered as a �nite subspaces of the true space.

In the past, methods with consideration about orthogonal bases are developed (Mc-

Dermott, 1999). This idea is simple and its computation is fast. But in many cases

the orthogonal bases are hard to build. A more common corner vector space is in-

troduced (Mukerjee et al., 1987). In the following part of this section, we show that

MCT and MLT are identical under Single Change-point order restriction by using

algebraic method. It would be better if the reader should have some basic knowledge

of algebra. Or they can simply ignore this subsection, which is not important for

understanding the whole method, and jump to next section.

Let random vector X = {X0, X1, ..., Xk} ∈ Rk+1, X0, X1, ..., Xk are normal dis-

tributed. X is multi-variate normal distributed with diagonal covariance matrix,

X ∼ N(u, Iσ2). X can be considered as a random point in (k+ 1) Euclidean space.

Under certain order restriction, the null hypothesis H0 ∈ Rk+1 can be considered

as a line and the alternative hypothesis can be considered as a closed convex cone,

namely HA ∈ Rk+1, in this Euclidean space.

For example, as we have already discussed in former chapter, under Single Change-

point order restriction, H0 = {Y : y0 = y1 = ... = yk} ∈ Rk+1, H1
A = {Y : y0 ≤ y1 =

... = yk} ∈ HA, ..., HA =
⋃k
j=1 H

j
A ∈ Rk+1. If we also consider the contrasts as vec-
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tors in Rk+1, then each single contrast belongs to correspond elementary alternative

model. For example, C1 = {−k, 1, ..., 1} ∈ H1
A.

Bretz(2005) gives a good interpretation of the relationship between the contrasts

and the test statistics. Each elementary alternative Hj
A is a sub plane of HA and

vector Cj ∈ Hj
A is contrast coe�cients of the correspond elementary alternative. The

contrast vector can be interpreted as prospected direction of the di�erence between

vector X and its globe mean under null hypothesis. The maximal value of the MCT

test statistics is bounded.

MCT de�nes the prediction as direction vector, while MLT de�nes the prediction

in another way. Let Û0 be the estimation of mean for X in H0, Û0 = {û, û, ..., û} ∈

H0, û = 1
k+1

∑k
i=0Xi, (X − Û0)⊥H0. By the same de�nition, we can de�ned the

estimators under elementary alternatives. Let Û j
A be the mean estimator of X in Hj

A,

Û j
A = {û0, û1, ..., ûk} ∈ Hj

A, (X − Û j
A)⊥Hj

A. Further more, vector (Û j
A − Û0) ∈ Hj

A,

so we have (X − Û j
A)⊥(Û j

A − Û0). In Rk+1, points X, Û j
A, Û0 form a right triangle.

De�ne the Norm in Rk+1 as ‖Z‖ =
√∑k+1

0 z2
i . We have,

‖(X − Û j
A)‖2 + ‖(Û j

A − Û0)‖2 = ‖(X − Û0)‖2 (5.41)

The Log-likelihood L(Hj
A)can be interpreted as half quadratic distance between the

observation X and estimation X̂j
A.

2L(Hj
A) = −

k∑
i=0

(Xi − ûi)
2

σ2/n
= − n

σ2
‖X − Û j

A‖
2 (5.42)

2L(H0) = −
k∑

i=0

(Xi − û)2

σ2/n
= − n

σ2
‖X − Û0‖2 (5.43)

Until now we have two sides of the right angle. The third one is given as following:

Given two vectors A = {a0, ...ak} ∈ Rk+1 and B = {b0, ...bk} ∈ Rk+1, we can de�ne
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the inner product 〈A,B〉 =
∑k

i=0(aibi) and 〈A,A〉 = ‖A‖2. Then
∑k

i=0(cixi) can be

noted as 〈C,X〉. Because of 〈C, X̂〉 = 0, we get the following,

〈C,X〉 = 〈C,X〉 − 0 = 〈C,X〉 − 〈C, Û0〉 = 〈C, (X − Û0)〉 (5.44)

since Cj, Û
j
A ∈ H

j
A, (Û j

A − Û0) ∈ Hj
A, (X − Û j

A)⊥(Û j
A − Û0) we have,

0 ≤ ∠(Û j
A − Û0, X − Û0) ≤ ∠(Cj, (X − Û0)) ≤ π/2 (5.45)

The best prediction of vector X − Û0 in plane is Û j
A − Û0. The equality of our last

equation holds when,

Cj = λ
Û j
A − Û0

‖Û j
A − Û0‖

(5.46)

Here, λ is any positive constant.

Under the condition of known variance and equal sample size, contrast test statistics

for alternative Hj
A can be written as,

MCT (Hj
A) =

∑
ci
n
xi√

{σ2
∑ c2i

n
}

=

√
n

σ2
∗ 〈Cj, (X − Û0)〉√

〈Cj, Cj〉

=

√
n

σ2

〈Cj, (X − Û0)〉
‖Cj, Cj‖‖X − Û0‖

‖X − Û0‖

=

√
n

σ2
cos(Cj, (X − Û0)) ∗ ‖X − Û0‖

≤
√

n

σ2
cos(∠(Û j

A − Û0, X − Û0)) ∗ ‖X − Û0‖

=

√
n

σ2
‖Û j

A − Û0‖ (5.47)
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Putting Equation 5.42, 5.43 and 5.47 into Equation 5.41, �nally we have,

‖(X − Û j
A)‖2 + ‖(Û j

A − Û0)‖2 = ‖(X − Û0)‖2

n

σ2
‖(X − Û j

A)‖2 +
n

σ2
‖(Û j

A − Û0)‖2 =
n

σ2
‖(X − Û0)‖2

2 ∗ (L(Hj
A)− L(H0)) ≥MCT (Hj

A)2 (5.48)

Under Single Change-point order restriction, Cj satis�es the condition in Equation

5.46 and the equality holds

2 ∗ (L(Hj
A)− L(H0)) = MCT (Hj

A)2 (5.49)

This veri�es the same result from Equation 5.10. This relationship holds true, after

adjusted for unequal sample size case.

According to Robertson et al.(1988): "...it can be shown that the LRT statistic may

be expressed as the maximum of an in�nite number of contrast statistics." Our result

shows that the LRT statistics may also be considered as the maxinf of correspond

local log-likelihood statistics.

An virtual example is given as following (here we enlarge the sample size to get the

asymptotic normality),

X0 X1 X2

Present xi 200 200 300

Absent ni − xi 300 300 200

Total ni 500 500 500

p̂i 0.40 0.40 0.60



84 CHAPTER 5. TEST-BASED MODEL SELECTION

H0 H1
A H2

A

MCT (Hj
A) 3.65 7.31

MCT (Hj
A)2 13.39286 53.57143

L(H) -36.807100 -28.575150 -8.439637
2*L(H) -73.61420 -57.15030 -16.87927

2*(L(H i
A)-L(H0)) 16.4 56.7

Table 5.1: Example of the relationship when k = 3.

The hypotheses of the null and alternatives are,

H0 : p0 = p1 = p2

H1
A : p0 < p1 = p2

H2
A : p0 = p1 < p2

(5.50)

The calculated test statistics are in Table 5.1. The relationship for this 3 dimension

case is also described in Figure 5.1 and 5.2. In Figure 5.1, we give an overview

of the three models. The axes are labeled by the observed proportions x0, x1, x2.

The red plane is elementary alternative H1
A = {Y : y0 ≤ y1 = y2} and the green

plane is elementary alternative H2
A = {Y : y0 = y1 ≤= y2}. The null model

H0 = {Y : y0 = y1 = y2} is a line which lies in between the other two models i.e.

H0 is the boundary of these two open sets. The three balls are con�dence region for

these three model.

The enlarged picture is shown in Figure 5.2. In this picture X is the observed data

vector. H0 ∈ H0, H1 ∈ H1
A and H2 ∈ H2

A are the predicted data vector on null

hypothesis space H0, elementary alternative plane H1
A and H2

A, i.e.

(X −H0) ⊥ H0, (X −H1) ⊥ H1
A and (X −H2

A) ⊥ H2
A (5.51)

The blue, cyan and purple ellipse are simulated con�dence regions from the predicted

data vector H0, H1 and H2. In this picture, we have two triangles which can be
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noted as (X,H2, H0) and (X,H1, H0). It is simply to prove that

(X −H2) ⊥ (H2−H0) and (X −H1) ⊥ (H1−H0) (5.52)

By the triangle rules we have

‖(X −H0)‖2 − ‖(X −H2)‖2 = ‖(H2−H0)‖2 (5.53)

and

‖(X −H0)‖2 − ‖(X −H1)‖2 = ‖(H1−H0)‖2 (5.54)

Putting Equation 5.42, 5.43 and 5.47 into these equation, �nally we have

2 ∗ (L(H1
A)− L(H0)) = MCT (H1

A)2

2 ∗ (L(H2
A)− L(H0)) = MCT (H2

A)2 (5.55)

and check the real value calculated from Table 5.1, we have

2 ∗ (L(H1
A)− L(H0)) = 16.4,MCT (H1

A)2 = 13.4

2 ∗ (L(H2
A)− L(H0)) = 56.7,MCT (H2

A)2 = 53.6 (5.56)

These results verify Equation 5.56.

5.6 Model selection with control of FWER for MLT

When the null hypotheses is rejected, we select the model which has the smallest KL

distance as the best model. MLT is a simultaneous procedure which can do model se-

lection after the test by meaning of KL distance. Furthermore, for given elementary
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Figure 5.1: Three dimension plot for simulated binomial data k=2
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Figure 5.2: Enlarged three dimension plot for simulated binomial data k=2
.
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alternative model the ICs of MLT and MHIC have the following relationship

MLT −MHIC = 1.5− z1−α ≤ ORIC − lMLE −MHIC (5.57)

For given null model, the ICs of AIC, ORIC, ORIC-lMLE, MLT and MHIC have

the following relationship

MLT = MHIC = AIC = ORIC = ORIC − lMLE (5.58)



Chapter 6

Power study and simulation

As we have seen in the last chapter, there is a connection between MCT and MLT

that T 2
max ≤ 2TC. In this chapter, we will use this relationship to calculate the

power, the correct model selection rate and the misclassi�cation rate of MLT. A

simulation study will also be given to compare the model selection methods under

di�erent order restrictions.

6.1 Expressions

The power is the rate that the test successfully rejects the null hypothesis with

certain error level, when the alternative model is true. Under order restriction, no

uniformly powerful test exists Bretz (1999). Most of the tests are specialized by their

background assumption, e.g. MLT for Single Change-point are very "powerful", if

there is one and only one Change-point in the uncovered data structure. In this case,

we see that MLT achieves its "maximum power". In certain other contradict cases,

MLT will not behave as the way we expected. One of these cases, e.g. Simple-order

and Simple-tree order let these MLT achieve its "minimum power". At the same

time, ORIC is more sensitive to detect the Simple-order. We will see the evidence

in the simulation section.

The correct model selection rate (CR) is the rate that the test successfully selects the

89
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right model. The CR of test method is usually lower than those of model selection

method, because of the error control.

The Misclassi�cation rate(MR) describes how often that we select the wrong model.

It can be easily proved that the sum of MR and CR is equal to one.

6.1.1 Expression of the power

Similarly as MCT, the asymptotic power of MLT can be calculated by,

P (max
16l6q

{TCl > z1−α} | HA)

=1− P (TC1 ≤ z1−α, and...and,TCq ≤ z1−α | HA) (6.1)

under alternatives it is multivariate non-central chi-square distributed. But for Sin-

gle Change-point problem and any other problem that uses SLE as estimators, the

power of them can be calculated by non-central normal distribution

=1− P (T1 ≤
√

2z1−α, and...and,Tq ≤
√

2z1−α | HA)

=1− Φq((
√

2z1−α)diag(
1

v1

, ...,
1

vq

); e,R)

=1− Φq((zq,1−α)diag(
1

v1

, ...,
1

vq

); e,R) (6.2)

Here, we use the relationship of zq,1−α =
√

2z1−α in Equation 5.15. Under the

condition of Single Change-point and large enough sample size, our new method

and MCT share the asymptotic power. Furthermore, if we replace z1−α by the

penalty term (i.e. cORIC−lMLE = 1.5, cAIC = 2) of ORIC-lMLE or AIC methods, we

can calculate the equivalent power of these methods. Examples will be given in the

simulation study and summary sections.
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6.1.2 Correct model selection rate (CR)

Correct model selection rate(CR) describes how often that we select the correct

model. We could use mathematical language to de�ne it as "CR=P(we select model

i| the true model is i)".

The CR of the null model has already been well described by FWER. So here we

focus on the CR for the alternative models, which is also called sensitivity. It is the

model selection rate of Hj
A, when the real model is Hj

A. Two requirements must be

ful�lled: First, the globe alternative should be rejected. Second, the test statistics

should be the highest among them. As presented in the previous section, our MLT

shares the likelihood estimator and critical value of MCT. Furthermore, they shares

the power expression under Single Change-point order restriction. In the next part

of this section, we will show how to use the CR of MCT to approximate the CR of

MLT.

The CR of MCT is,

P(selectH j
A|H

j
A)

= P (Tj > T1, ...,Tj > Tj−1 ,Tj > zq,1−α,Tj > Tj+1 , ...,Tj > Tq |H j
A) (6.3)

This is a multi-variated normal probability with random upper limits. It is not easy

to calculate, so we make the following transformation. Let

T ′l =


Tl − Tj, 0 ≤ l ≤ j − 1

zq,1−α − Tj, l = j

Tl − Tj, j + 1 ≤ l ≤ q

(6.4)

here e′ =(E(T ′1), ..., E(T ′q)) and v
′ =(V (T ′1), ..., V (T ′q)) are the means and variances

of new vector T ′ = {T ′1, T ′2, ..., T ′q} under H
j
A. R

′ is the new correlation matrix. We

use simulated value of the variance v′ instead of calculating it. The CR of MCT is
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transformed to

P(selectH j
A|H

j
A)

=P (T ′1 < 0, ...,T ′j−1 < 0 ,T ′j < 0 ,T ′j+1 < 0 , ...,T ′q < 0 |H j
A)

=Φq((e
′)diag(

1

v ′1
, ...,

1

v ′q
); 0,R′) (6.5)

The CR of MLT is non-centred chi-square distributed, but we can also use the CR

of MCT as an approximation.

P(selectH j
A|H

j
A)

= P (TCj > TC1, ...,TCj > TCj−1 ,TCj > z1−α,TCj > TCj+1 , ...,TCj > TCq |H j
A)

≈ P (Tj > T1, ...,Tj > Tj−1 ,Tj >
√

2z1−α,Tj > Tj+1 , ...,Tj > Tq |H j
A) (6.6)

Similarly as we get the power for ORIC-lMLE and AIC methods, the equivalent CR

of them can be calculated by replacing zq,1−α with
√

2cAIC or
√

2cORIC−lMLE in the

CR equation of MCT.

6.1.3 Misclassi�cation rate(MR)

The Misclassi�cation rate(MR) describes how often that we select the wrong model.

We could use mathematical language to de�ne it as

P (selectH j
A|H̄

j
A) (6.7)

here, H̄j
A is the complementary set of event that "The true model is Hj

A", i.e. H̄
j
A =

(
⋃
i 6=j H

i
A)

⋃
H0 The MR for MCT can be described as

P (selectH j
A|H̄

j
A)

=P (Tj > T1, ...,Tj > Tj−1 ,Tj > zq,1−α,Tj > Tj+1 , ...,Tj > Tq |H̄ j
A) (6.8)
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No algorithm available until now to calculate this probability. We could only calcu-

late the upper bound of this probability as

P (selectH j
A|H̄

j
A) ≤ P(H j

A|H̄0 ) +
∑
i 6=j

P(H j
A|H̄

i
A) (6.9)

The equality holds if and only if all the models are not overlapped. Furthermore,

we cannot use the MR of MCT to approximate MR of MLT. If the value of MCT is

small, the error will be relatively large. So the problem of calculating MR for MLT

is left as the second open question in this thesis.

6.2 Simulation study

In this chapter, we will make a simulation study for the four types of order restriction

we discussed before. MCT, MLT, ORIC-lMLE and MHIC methods will be compared

here. For Single Change-point order restriction we use ORIC-lMLE which is an

improvement of ORIC.

6.2.1 Single Change-point order

We generate 10000 random binomial data for k = 2 with means p0 = 0.4, p1 = 0.4,

p2 = 0.4 + ∆ = 0.6, and simple size 25, 50, 100. There is only one Change-point.

Therefore MHIC and ORIC-lMLE methods are equivalent for this situation. The

model selection rate of MCT, ORIC-lMLE and MLT are compared in Picture 6.1.

In these 3 pictures we see that the correct model selection rate (CR) increases when

the sample size or the value of ∆ increases. It can be sure that the CR of these

three methods will convergent to one if the sample size or ∆ is large enough. In

the third one of Picture 6.1, we see that MLT and MCT are almost identical. This

veri�es our former proof that MLT and MCT are asymptotical equivalent under

Single Change-point order. However, MLT has a little bit higher CR than MCT
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Figure 6.1: Simulation of power and model selection rate

when the sample size is smaller (see in the �rst one of Picture 6.1). This veri�es our

former conclusion that KL distance is more useful in model selection than general

di�erence or LSE. Both of MLT and MCT control FWER in these three di�erent

situations, while ORIC-lMLE cannot. However, ORIC-lMLE has a higher CR than

the other two.

When non-centrality is large enough, both estimators of MCT and ORIC-lMLE have

similar variance. But in general, the estimator chosen by ORIC-lMLE has smaller

variance than MCT (Chaudhuri and Perlman, 2005). So ORIC-lMLE method has

larger identi�cation rate than MCT in identifying the correct alternative models.

For rejecting the null hypothesis, the situation is quite di�erent. ORIC-lMLE
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method is a sensitive one to detect the Change-point, but it is too sensitive that

it has very high false positive error rate α . It selects model without α control. A

false positive is reported. This over-estimation is kind of "underperformance", which

is discussed by Roberts and Martin (2006) and Zucchini (2000). Over-estimation

under the null is a common problem of IC methods, because they are not designed

to make a test. In our example here, ORIC-lMLE identi�es only around 60% of

the null model when ∆ = 0, while MCT and our method identi�es 95% of the null

model. The following tables give further examples of the correct model selection

rate over di�erent alternatives.

For asymptotic normal case, we generate 10000 random binomial data for k = 5 with

means p0 = ... = pj−1 = 0.4, pj = ... = pk = 0.4+∆ = 0.6, and the sample size is 50.

The result is shown in Table 6.1. As shown in the table, the correct model selection

rates vary from di�erent patterns. This result also veri�es the theoretical value of

the power and correct model selection rate. MHIC is not considered here, because

it is totally identical with ORIC-lMLE under Single Change-point order restriction.

For anastomotic normal case, we generate 10000 random binomial data for k = 5

with means p0 = ... = pj−1 = 0.01, pj = ... = pk = 0.01 + ∆ = 0.07, and the sample

size is 100. The result is shown in Table 6.2. From this simulation example, we can

�nd out that MLT is stable in selecting model H1
A and H2

A when the sample size is

getting smaller. In the situation when normality is not ful�lled, MLT still controls

the FWER, and also has good CR, while MCT has problems in model selection.

In Table 6.3, we study the equivalent power of ORIC-lMLE. Let the critical value

equal to the penalty term of ORIC-lMLE, i.e. z1−α = 1.5. Using the relationship

between MCT and MLT Zq,1−α =
√

2z1−α. By solving Z6,1−α =
√

2 ∗ 1.5, we get

α = 0.41. Now, we change the α rate of MCT into 41%, namely "MCT059", and

other situations are totally the same as the �rst simulation. The "MCT059" has

similar behaviors as MLT method.

In the last table (Table 6.4), we also try the unbalanced sample size. The power

estimation of model H5
A has problems. Under a small sample size, the assumption
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Alternatives Meth. Asy.H0 H0 H1
A H2

A H3
A H4

A H5
A Sel.rate

.4/.4/.4/.4/.4/.4 MLT .9498 .9479 .0110 .0114 .0098 .0101 .0098 .9498

.4/.4/.4/.4/.4/.4 MCT .9498 .9486 .0111 .0122 .0096 .0099 .0086 .9498

.4/.4/.4/.4/.4/.4 ORIC-lMLE .5916 .5933 .0927 .0711 .0674 .0776 .0979 .5916

.6/.6/.6/.6/.6/.6 MLT .9500 .9465 .0110 .0098 .0114 .0102 .0111 .9500

.6/.6/.6/.6/.6/.6 MCT .9500 .9483 .0089 .0090 .0116 .0109 .0113 .9500

.6/.6/.6/.6/.6/.6 ORIC-lMLE .5916 .5869 .0995 .0793 .0703 .0692 .0948 .5916

.4/.6/.6/.6/.6/.6 MLT .2943 .3037 .5857 .0586 .0264 .0141 .0115 .6249

.4/.6/.6/.6/.6/.6 MCT .2943 .3031 .5902 .0586 .0260 .0125 .0096 .6249

.4/.6/.6/.6/.6/.6 ORIC-lMLE .0285 .0288 .7788 .0906 .0450 .0295 .0273 .8158

.4/.4/.6/.6/.6/.6 MLT .1036 .1206 .0541 .7229 .0707 .0217 .0100 .7304

.4/.4/.6/.6/.6/.6 MCT .1036 .1203 .0531 .7264 .0703 .0209 .0090 .7304

.4/.4/.6/.6/.6/.6 ORIC-lMLE .0044 .0054 .0676 .7981 .0835 .0297 .0157 .7976

.4/.4/.4/.6/.6/.6 MLT .0708 .0800 .0183 .0683 .7474 .0675 .0185 .7643

.4/.4/.4/.6/.6/.6 MCT .0708 .0802 .0165 .0676 .7510 .0668 .0179 .7643

.4/.4/.4/.6/.6/.6 ORIC-lMLE .0024 .0026 .0229 .0770 .7971 .0771 .0233 .8188

.4/.4/.4/.4/.6/.6 MLT .1036 .1148 .0106 .0252 .0672 .7238 .0584 .7182

.4/.4/.4/.4/.6/.6 MCT .1036 .1139 .0095 .0228 .0675 .7285 .0578 .7182

.4/.4/.4/.4/.6/.6 ORIC-lMLE .0044 .0052 .0163 .0318 .0807 .7971 .0689 .8023

.4/.4/.4/.4/.4/.6 MLT .2944 .3104 .0131 .0140 .0240 .0595 .5790 .6240

.4/.4/.4/.4/.4/.6 MCT .2944 .3099 .0119 .0127 .0230 .0614 .5811 .6240

.4/.4/.4/.4/.4/.6 ORIC-lMLE .0285 .0301 .0280 .0301 .0449 .0920 .7749 .8077

Table 6.1: 10000 random binomial data for k = 5, proportions p0 = ... = pj−1 = 0.4,
pj = ... = pk = 0.6, sample size ni is 50.



6.2. SIMULATION STUDY 97

Alternatives Meth. j Asy.H0 H0 H1
A H2

A H3
A H4

A H5
A

.01/.01/.01/.01/.01/.01 MLT - 0.9498 0.9447 0.0145 0.0098 0.0079 0.0108 0.0123

.01/.01/.01/.01/.01/.01 MCT - 0.9498 0.9498 0.0054 0.0064 0.0081 0.0122 0.0181

.01/.01/.01/.01/.01/.01 ORIC-lMLE - 0.5916 0.5806 0.1110 0.0782 0.0635 0.0714 0.0953

.07/.07/.07/.07/.07/.07 MLT - 0.9500 0.9239 0.0002 0.0220 0.0192 0.0170 0.0177

.07/.07/.07/.07/.07/.07 MCT - 0.9500 0.9351 0.0000 0.0007 0.0087 0.0194 0.0361

.07/.07/.07/.07/.07/.07 ORIC-lMLE - 0.5915 0.5066 0.1821 0.0936 0.0834 0.0602 0.0741

.01/.07/.07/.07/.07/.07 MLT 1 0.0557 0.1871 0.7118 0.0582 0.0224 0.0120 0.0085

.01/.07/.07/.07/.07/.07 MCT 1 0.0557 0.3256 0.4860 0.0894 0.0450 0.0291 0.0249

.01/.07/.07/.07/.07/.07 ORIC-lMLE 1 0.0017 0.0062 0.8575 0.0752 0.0293 0.0180 0.0138

.01/.01/.07/.07/.07/.07 MLT 2 0.0047 0.0396 0.0386 0.8455 0.0556 0.0148 0.0059

.01/.01/.07/.07/.07/.07 MCT 2 0.0047 0.0575 0.0044 0.7677 0.1017 0.0440 0.0247

.01/.01/.07/.07/.07/.07 ORIC-lMLE 2 0.0000 0.0005 0.0410 0.8757 0.0592 0.0161 0.0075

.01/.01/.01/.07/.07/.07 MLT 3 0.0019 0.0187 0.0088 0.0515 0.8586 0.0505 0.0119

.01/.01/.01/.07/.07/.07 MCT 3 0.0019 0.0238 0.0002 0.0121 0.8211 0.1042 0.0386

.01/.01/.01/.07/.07/.07 ORIC-lMLE 3 0.0000 0.0005 0.0096 0.0531 0.8714 0.0523 0.0131

.01/.01/.01/.01/.07/.07 MLT 4 0.0047 0.0358 0.0035 0.0176 0.0516 0.8461 0.0454

.01/.01/.01/.01/.07/.07 MCT 4 0.0047 0.0319 0.0000 0.0021 0.0170 0.8457 0.1033

.01/.01/.01/.01/.07/.07 ORIC-lMLE 4 0.0000 0.0017 0.0073 0.0187 0.0537 0.8686 0.0500

.01/.01/.01/.01/.01/.07 MLT 5 0.0556 0.1366 0.0026 0.0165 0.0227 0.0529 0.7687

.01/.01/.01/.01/.01/.07 MCT 5 0.0556 0.1041 0.0000 0.0010 0.0056 0.0245 0.8648

.01/.01/.01/.01/.01/.07 ORIC-lMLE 5 0.0017 0.0143 0.0174 0.0207 0.0303 0.0653 0.8520

Table 6.2: 10000 random binomial data for k = 5, proportions p0 = ... = pj−1 =
0.01,pj = ... = pk = 0.07, sample size ni is 100.
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Alternatives Meth. Asy.H0 H0 H1
A H2

A H3
A H4

A H5
A

0.6/0.6/0.6/0.6/0.6/0.6 MLT 0.9501 0.9472 0.0113 0.0098 0.0108 0.0091 0.0118
0.6/0.6/0.6/0.6/0.6/0.6 MCT059 0.5901 0.5846 0.1062 0.0710 0.0719 0.0760 0.0903
0.6/0.6/0.6/0.6/0.6/0.6 ORIC-lMLE 0.5916 0.5895 0.1019 0.0677 0.0718 0.0762 0.0929

0.4/0.4/0.4/0.4/0.6/0.6 MLT 0.1034 0.1107 0.0130 0.0243 0.0701 0.7246 0.0573
0.4/0.4/0.4/0.4/0.6/0.6 MCT059 0.0044 0.0053 0.0147 0.0279 0.0808 0.8039 0.0674
0.4/0.4/0.4/0.4/0.6/0.6 ORIC-lMLE 0.0044 0.0053 0.0161 0.0308 0.0808 0.7987 0.0683

0.4/0.4/0.4/0.4/0.4/0.6 MLT 0.2941 0.2972 0.0123 0.0156 0.0233 0.0638 0.5878
0.4/0.4/0.4/0.4/0.4/0.6 MCT059 0.0282 0.0265 0.0279 0.0307 0.0386 0.0929 0.7834
0.4/0.4/0.4/0.4/0.4/0.6 ORIC-lMLE 0.0285 0.0273 0.0292 0.0311 0.0400 0.0912 0.7812

Table 6.3: ORIC-lMLE is equivalent to a MCT with lower control of FWER (=0.41)
under the given situation.

Alternatives Methods Asy.H0 H0 H1
A H2

A H3
A H4

A H5
A

0.4/0.4/0.4/0.6/0.6/0.6 MLT - 0.0927 0.0250 0.0669 0.7343 0.0633 0.0178
0.4/0.4/0.4/0.6/0.6/0.6 MCT059 - 0.0072 0.0905 0.1340 0.7258 0.0256 0.0169
0.4/0.4/0.4/0.6/0.6/0.6 ORIC-lMLE - 0.0066 0.0315 0.0779 0.7894 0.0711 0.0235

0.4/0.4/0.4/0.4/0.4/0.6 MLT 0.2946 0.5155 0.0178 0.0197 0.0294 0.0760 0.3416
0.4/0.4/0.4/0.4/0.4/0.6 MCT059 - 0.0881 0.0702 0.0637 0.0755 0.1212 0.5813
0.4/0.4/0.4/0.4/0.4/0.6 ORIC-lMLE - 0.1171 0.0472 0.0445 0.0608 0.1324 0.5980

Table 6.4: 10000 random data with unbanlanced sample size 100/50/50/50/25/25

of asymptotic normal is not ful�lled.

6.2.2 Epidemic-order

One application of model selection under Epidemic-order restriction is DNA-motif

�nding, which requires fast and e�cient algorithm to �nd out the position of Change-

points. Both MCT and IC methods ful�ll this requirement. However, IC method

works faster in motif �nding because it simpli�es the critical value calculation with

a constant penalty term. Here we mainly present the result of NIC and MLT. But

MCT still have the advantage that it can calculate the asymptotic power. For the

power study of log-likelihood test, three simulations are generated 10,000 times for

each.

As shown in Figure 6.2, the data under the null is generated. All the positions have

the same parameter, noted as p1. In this situation, at 99% of the time, the null

hypotheses are accepted. When the sequence length becomes larger, the variation
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Figure 6.2: According to the null, the �nding rate of NIC is acceptable

of the data becomes greater and the �nding rate becomes smaller.

As shown in Figure 6.3, the data with 3-x-3 symmetric structure are generated. The

lengths of higher parts are 3 in both sides and the length of lower part is k − 6 in

the middle. The sample size and δ, which is the di�erence between the two part,

a�ect the �nding rate. The value of the higher part (p1) also a�ects the result, but

not obviously. In the common motif �nding problem, e.g. former example: δ=0.4,

sample size=14 and p1=0.95, the �nding rate is around 0.80. The �nding rate can

be increased with scarify of α control. For example, if we use MLT or MCT method

with α = 0.95, the �nding rate is higher than 99.9%.

As shown in Figure 6.4, the data with 5-x-3 asymmetric structure are generated. The

higher parts are 5 and 3 while the length of lower part is k − 8 in the middle. The

length of the sequences k also a�ects the result. The di�erences between symmetric

and asymmetric are very small.
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Figure 6.3: Under the alternative,asymmetric 3x3 pattern: power of NIC
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Figure 6.4: Under the alternative, asymmetric 5x3 pattern: power of NIC
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Alternatives Methods Asy.H0 H0 H1
A H2

A H3
A

0.4/0.4/0.4 MLT 0.9500 0.9600 0.0100 0.0180 0.0120
0.4/0.4/0.4 MCT 0.9500 0.9600 0.0100 0.0190 0.0110
0.4/0.4/0.4 ORIC-lMLE - 0.4850‡ 0.0980 0.0910 0.3260 ‡
0.4/0.4/0.4 MHIC 0.7414 0.7160 0.1190 0.1010 0.0640

0.6/0.6/0.6 MLT 0.9500 0.9600 0.0160 0.0120 0.0120
0.6/0.6/0.6 MCT 0.9500 0.9610 0.0170 0.0110 0.0110
0.6/0.6/0.6 ORIC-lMLE - 0.5200‡ 0.0910 0.0930 0.2960 ‡
0.6/0.6/0.6 MHIC 0.7415 0.7360 0.0900 0.0910 0.0830

0.4/0.6/0.6 MLT 0.0708 0.0890 0.7370 0.0060 0.1680
0.4/0.6/0.6 MCT 0.0708 0.0890 0.7380 0.0060 0.1670
0.4/0.6/0.6 ORIC-lMLE - 0.0010 0.5680 0.0130 0.4180 ‡
0.4/0.6/0.6 MHIC 0.0073 0.0020 0.8110 0.0090 0.1780

0.4/0.4/0.6 MLT 0.0707 0.0880 0.0080 0.7490 0.1550
0.4/0.4/0.6 MCT 0.0707 0.0880 0.0080 0.7490 0.1550
0.4/0.4/0.6 ORIC-lMLE - 0.0060 0.0130 0.5860 0.3950 ‡
0.4/0.4/0.6 MHIC 0.0073 0.0070 0.0100 0.8170 0.1660

0.4/0.5/0.6 MLT 0.1319 0.1330 0.1960 0.1900 0.4810
0.4/0.5/0.6 MCT 0.1319 0.1330 0.1950 0.1910 0.4810
0.4/0.5/0.6 ORIC-lMLE - 0.0200 0.2210 0.2330 0.5260
0.4/0.5/0.6 MHIC 0.0170 0.0200 0.2360 0.2240 0.5200

Table 6.5: 1000 random binomial data for k = 3, proportions p0 = ... = pj−1 =
0.4,pj = 0.4, 0.5, 0.6, pj+1 = ... = pk = 0.6, and sample size ni is 100.

6.2.3 Simple-order

In this section, we will give further examples of the correct model selection rate

over di�erent alternatives under Simple-order restriction. In these simulations, we

generate 10000 random binomial data for k = 3 and 4 with isotonic means 0.4 ≤

p0 ≤ ... ≤ pk ≤ 0.4 + ∆ = 0.6. The sample sizes for k = 3 are 100 (Table 6.5).

The sample sizes for k = 4 are 100 (Table 6.6) and 10 (Table 6.7). When k = 4 the

behavior of alternative H6
A is strange for both sample sizes. We could also take H6

A

out to achieve a higher classi�cation rate.

6.2.4 Simple-tree order

For asymptotic normal case, we generate 10000 random binomial data for k = 5

with means p0 = ... = pj−1 = .4, pj = ... = pk = .4 + ∆ = .6, and the sample

size is 5. This simulated data is totally the same as what we generate in previous
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Alternatives Methods Asy.H0 H0 H1
A H2

A H3
A H4

A H5
A H6

A H7
A

H0

.4/.4/.4/.4 MLT .951 .950 .011 .012 .011 .004 .004 .003 .005

.4/.4/.4/.4 MCT .951 .949 .010 .011 .011 .004 .005 .005 .005

.4/.4/.4/.4 ORIC-lMLE .672 .672 .102 .091 .110 .000 .005 .014 .005

.4/.4/.4/.4 MHIC .672 .669 .086 .079 .094 .012 .021 .016 .023

H0

.6/.6/.6/.6 MLT .950 .952 .011 .010 .012 .002 .005 .004 .004

.6/.6/.6/.6 MCT .950 .952 .010 .009 .011 .002 .005 .006 .004

.6/.6/.6/.6 ORIC-lMLE .672 .680 .104 .088 .105 .000 .006 .013 .004

.6/.6/.6/.6 MHIC .672 .676 .089 .077 .091 .011 .023 .017 .017

H1
A

.4/.6/.6/.6 MLT .060 .067 .655 .012 .002 .022 .002 .051 .189

.4/.6/.6/.6 MCT .060 .063 .629 .009 .001 .018 .002 .082 .197

.4/.6/.6/.6 ORIC-lMLE .003 .004 .663 .012 .002 .015 .002 .151 .151

.4/.6/.6/.6 MHIC .003 .003 .702 .015 .003 .023 .002 .054 .197

H2
A

.4/.4/.6/.6 MLT .018 .020 .001 .771 .001 .100 .052 .004 .051

.4/.4/.6/.6 MCT .018 .019 .001 .736 .001 .102 .069 .004 .067

.4/.4/.6/.6 ORIC-lMLE .001 .001 .003 .612 .004 .061 .154 .007 .158

.4/.4/.6/.6 MHIC .001 .001 .002 .785 .002 .101 .053 .004 .053

H3
A

.4/.4/.4/.6 MLT .060 .068 .002 .011 .653 .021 .193 .053 .000

.4/.4/.4/.6 MCT .060 .065 .000 .009 .627 .018 .198 .082 .001

.4/.4/.4/.6 ORIC-lMLE .003 .005 .002 .013 .664 .018 .145 .152 .001

.4/.4/.4/.6 MHIC .003 .005 .004 .014 .696 .022 .201 .056 .001

H4
A

.4/.46/.53/.6 MLT .111 .121 .046 .174 .051 .226 .123 .138 .120

.4/.46/.53/.6 MCT .111 .114 .036 .154 .044 .212 .134 .174 .132

.4/.46/.53/.6 ORIC-lMLE .008 .009 .072 .181 .074 .136 .147 .233 .148

.4/.46/.53/.6 MHIC .008 .008 .061 .204 .066 .237 .137 .152 .135

H5
A

.4/.4/.46/.6 MLT .074 .083 .002 .110 .241 .110 .377 .066 .009

.4/.4/.46/.6 MCT .074 .081 .002 .091 .225 .101 .401 .089 .010

.4/.4/.46/.6 ORIC-lMLE .004 .005 .006 .098 .293 .072 .368 .141 .016

.4/.4/.46/.6 MHIC .004 .005 .004 .127 .265 .118 .396 .072 .011

H6
A

.4/.5/.5/.6 MLT .152 .167 .131 .036 .129 .128 .076 .264 .070

.4/.5/.5/.6 MCT .152 .152 .096 .031 .095 .114 .078 .361 .074

.4/.5/.5/.6 ORIC-lMLE .013 .014 .130 .056 .134 .076 .064 .464 .062

.4/.5/.5/.6 MHIC .013 .014 .168 .048 .169 .141 .086 .294 .080

H7
A

.4/.53/.6/.6 MLT .074 .085 .245 .115 .003 .109 .010 .069 .365

.4/.53/.6/.6 MCT .074 .082 .232 .096 .002 .101 .011 .089 .386

.4/.53/.6/.6 ORIC-lMLE .004 .005 .298 .100 .006 .072 .016 .142 .361

.4/.53/.6/.6 MHIC .004 .004 .273 .132 .005 .115 .012 .074 .384

Table 6.6: 1000 random binomial data for k = 4, and sample size ni is 100.
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Alternatives Methods Asy.H0 H0 H1
A H2

A H3
A H4

A H5
A H6

A H7
A

H0

.4/.4/.4/.4 MLT .950 .949 .017 .009 .007 .002 .005 .007 .004

.4/.4/.4/.4 MCT .950 .950 .016 .008 .005 .001 .006 .010 .004

.4/.4/.4/.4 MHIC .672 .685 .084 .068 .088 .009 .021 .019 .026

H0

.6/.6/.6/.6 MLT .950 .944 .011 .010 .014 .006 .009 .003 .003

.6/.6/.6/.6 MCT .950 .948 .006 .010 .011 .004 .010 .007 .004

.6/.6/.6/.6 MHIC .672 .668 .091 .073 .084 .020 .026 .018 .020

H1

.4/.6/.6/.6 MLT .768 .798 .094 .025 .019 .014 .007 .015 .028

.4/.6/.6/.6 MCT .768 .794 .084 .019 .013 .012 .009 .039 .030

.4/.6/.6/.6 MHIC .324 .329 .314 .096 .080 .034 .020 .045 .082

H2

.4/.4/.6/.6 MLT .706 .682 .025 .162 .027 .026 .034 .009 .035

.4/.4/.6/.6 MCT .706 .692 .017 .147 .021 .027 .039 .018 .039

.4/.4/.6/.6 MHIC .259 .250 .092 .346 .093 .044 .072 .034 .069

H3

.4/.4/.4/.6 MLT .768 .761 .018 .024 .116 .019 .036 .017 .009

.4/.4/.4/.6 MCT .768 .761 .012 .021 .096 .017 .042 .042 .009

.4/.4/.4/.6 MHIC .324 .314 .062 .112 .311 .038 .085 .052 .026

H4

.4/.46/.53/.6 MLT .774 .753 .032 .062 .045 .030 .042 .011 .025

.4/.46/.53/.6 MCT .774 .758 .026 .053 .034 .028 .041 .029 .031

.4/.46/.53/.6 MHIC .326 .328 .119 .162 .153 .056 .074 .040 .068

H5

.4/.4/.46/.6 MLT .762 .780 .013 .066 .071 .013 .033 .013 .011

.4/.4/.46/.6 MCT .762 .787 .008 .056 .061 .015 .035 .027 .011

.4/.4/.46/.6 MHIC .315 .311 .070 .182 .232 .031 .090 .059 .025

H6

.4/.5/.5/.6 MLT .794 .784 .046 .036 .058 .023 .013 .022 .018

.4/.5/.5/.6 MCT .794 .783 .034 .034 .041 .020 .017 .055 .016

.4/.5/.5/.6 MHIC .350 .381 .159 .113 .173 .036 .039 .057 .042

H7

.4/.53/.6/.6 MLT .762 .760 .075 .057 .020 .021 .013 .017 .037

.4/.53/.6/.6 MCT .762 .762 .066 .051 .009 .020 .014 .038 .040

.4/.53/.6/.6 MHIC .315 .320 .236 .164 .068 .037 .034 .048 .093

Table 6.7: 1000 random binomial data for k = 4, and sample size ni is 10.
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Alternatives Meth. j Asy.H0 H0 H1
A H2

A H3
A H4

A H5
A

.4/.4/.4/.4/.4/.4 MLT - .9501 .9440 .0080 .0200 .0105 .0105 .0070

.4/.4/.4/.4/.4/.4 MCT - .9501 .9505 .0084 .0191 .0090 .0080 .0050

.4/.4/.4/.4/.4/.4 ORIC-lMLE - .5861 .5470 .0800 .1053 .0754 .0882 .1041

.6/.6/.6/.6/.6/.6 MLT - .9501 .9429 .0120 .0101 .0118 .0119 .0113

.6/.6/.6/.6/.6/.6 MCT - .9501 .9476 .0106 .0094 .0109 .0109 .0106

.6/.6/.6/.6/.6/.6 ORIC-lMLE - .5862 .5568 .0784 .0807 .0906 .0890 .1045

.4/.6/.6/.6/.6/.6 MLT 1-5 .2303 .2425 .1299 .1327 .1554 .1611 .1784

.4/.6/.6/.6/.6/.6 MCT 1-5 .2303 .2499 .1280 .1321 .1541 .1593 .1766

.4/.6/.6/.6/.6/.6 ORIC-lMLE 1-5 .0131 .0094 .1666 .1730 .1972 .2121 .2417

.4/.4/.6/.6/.6/.6 MLT 2-5 .2690 .2930 .0003 .1647 .1660 .1812 .1948

.4/.4/.6/.6/.6/.6 MCT 2-5 .2690 .3136 .0003 .1596 .1608 .1752 .1905

.4/.4/.6/.6/.6/.6 ORIC-lMLE 2-5 .0190 .0157 .0005 .2203 .2299 .2520 .2816

.4/.4/.4/.6/.6/.6 MLT 3-5 .3247 .3484 .0001 .0003 .1959 .2091 .2462

.4/.4/.4/.6/.6/.6 MCT 3-5 .3247 .3703 .0001 .0003 .1877 .2030 .2386

.4/.4/.4/.6/.6/.6 ORIC-lMLE 3-5 .0302 .0222 .0004 .0006 .2860 .3098 .3810

.4/.4/.4/.4/.6/.6 MLT 4-5 .4119 .4487 .0004 .0007 .0009 .2630 .2863

.4/.4/.4/.4/.6/.6 MCT 4-5 .4119 .4632 .0004 .0007 .0009 .2557 .2791

.4/.4/.4/.4/.6/.6 ORIC-lMLE 4-5 .0560 .0502 .0016 .0023 .0028 .4377 .5054

.4/.4/.4/.4/.4/.6 MLT 5 .5712 .6010 .0026 .0016 .0020 .0020 .3908

.4/.4/.4/.4/.4/.6 MCT 5 .5712 .5921 .0023 .0017 .0021 .0018 .4000

.4/.4/.4/.4/.4/.6 ORIC-lMLE 5 .1373 .1232 .0112 .0100 .0106 .0097 .8353

Table 6.8: 10000 random binomial data for k = 5, proportions p0 = ... = pj−1 = .4,
pj = ... = pk = .6, sample size ni is 50.

section(see Table 6.1). But the models are di�erent. We want to �nd out if there is

any treatment which is di�erent from the control. The result is shown in Table 6.9.

As shown in the table, the correct model selection rates vary from di�erent patterns.

This result also veri�es the theoretical value of the asymptotic power and correct

model selection rate. MHIC is not considered here, because it is totally identical

with ORIC-lMLE under Simple-tree order restriction.

6.3 Conclusion

The simulation studies we have done in last section, verify that "no uniformly pow-

erful test exits" under order restriction and "no uniformly powerful model selection

method exits". MCT and MLT have a higher correct model selection rate (CR)

to detect the Change-point than ORIC-lMLE. ORIC-lMLE is very good to detect

Simple-order, however the misclassi�cation rate (MR) for ORIC-lMLE is also high
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Alternatives Meth. Asy.H0 H0 H1
A H2

A H3
A

0.3/0.3/0.3 MLT - 0.9438 0.0226 0.0204 0.0132
0.3/0.3/0.3 MCT - 0.9456 0.0233 0.0176 0.0135
0.3/0.3/0.3 ORIC-lMLE - 0.5012 0.0882 0.0922 0.3184
0.3/0.3/0.3 MHIC - 0.7264 0.1050 0.1145 0.0541
0.7/0.7/0.7 MLT - 0.9514 0.0158 0.0194 0.0134
0.7/0.7/0.7 MCT - 0.9527 0.0140 0.0201 0.0132
0.7/0.7/0.7 ORIC-lMLE - 0.5155 0.0849 0.0899 0.3097
0.7/0.7/0.7 MHIC - 0.7406 0.1023 0.1049 0.0522
0.3/0.6/0.7 MLT - 0.0039 0.5308 0.0120 0.4533
0.3/0.6/0.7 MCT - 0.0039 0.5327 0.0118 0.4516
0.3/0.6/0.7 ORIC-lMLE - 0.0002 0.3472 0.0115 0.6411
0.3/0.6/0.7 MHIC - 0.0003 0.5334 0.0123 0.4540
0.3/0.5/0.7 MLT - 0.0087 0.1399 0.1471 0.7043
0.3/0.5/0.7 MCT - 0.0087 0.1401 0.1470 0.7042
0.3/0.5/0.7 ORIC-lMLE - 0.0005 0.0993 0.1024 0.7978
0.3/0.5/0.7 MHIC - 0.0005 0.1421 0.1498 0.7076
0.3/0.4/0.7 MLT - 0.0038 0.0124 0.5323 0.4515
0.3/0.4/0.7 MCT - 0.0038 0.0122 0.5354 0.4486
0.3/0.4/0.7 ORIC-lMLE - 0.0002 0.0122 0.3438 0.6438
0.3/0.4/0.7 MHIC - 0.0002 0.0125 0.5348 0.4525
0.3/0.4/0.6 MLT - 0.0849 0.0696 0.3759 0.4696
0.3/0.4/0.6 MCT - 0.0853 0.0688 0.3839 0.4620
0.3/0.4/0.6 ORIC-lMLE - 0.0099 0.1060 0.3447 0.5394
0.3/0.4/0.6 MHIC - 0.0088 0.0819 0.4138 0.4955
0.3/0.4/0.5 MLT - 0.3705 0.1663 0.1617 0.3015
0.3/0.4/0.5 MCT - 0.3721 0.1637 0.1656 0.2986
0.3/0.4/0.5 ORIC-lMLE - 0.0886 0.3290 0.2595 0.3229
0.3/0.4/0.5 MHIC - 0.0864 0.2654 0.2497 0.3985
0.3/0.35/0.35 MLT - 0.8678 0.0651 0.0288 0.0383
0.3/0.35/0.35 MCT - 0.8679 0.0649 0.0289 0.0383
0.3/0.35/0.35 ORIC-lMLE - 0.4311 0.2040 0.1165 0.2484
0.3/0.35/0.35 MHIC - 0.5505 0.2241 0.1165 0.1089
0.3/0.4/0.4 MLT - 0.7291 0.1614 0.0352 0.0743
0.3/0.4/0.4 MCT - 0.7292 0.1614 0.0354 0.0740
0.3/0.4/0.4 ORIC-lMLE - 0.2946 0.3483 0.1261 0.2310
0.3/0.4/0.4 MHIC - 0.3480 0.3897 0.0999 0.1624
0.3/0.5/0.5 MLT - 0.2947 0.5158 0.0183 0.1712
0.3/0.5/0.5 MCT - 0.2947 0.5174 0.0187 0.1692
0.3/0.5/0.5 ORIC-lMLE - 0.0551 0.5079 0.0673 0.3697
0.3/0.5/0.5 MHIC - 0.0634 0.6810 0.0360 0.2196
0.3/0.6/0.6 MLT - 0.0009 0.9269 0.0000 0.0722
0.3/0.6/0.6 MCT - 0.0009 0.9326 0.0000 0.0665
0.3/0.6/0.6 ORIC-lMLE - 0.0002 0.6001 0.0000 0.3997
0.3/0.6/0.6 MHIC - 0.0002 0.9275 0.0000 0.0723

Table 6.9: 10000 random binomial data for k = 3, with di�erent none center param-
eters. Sample size is 50.
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when the true model is not the Simple-order.

From the simulation, we also �nd that MLT has a very similar power behavior

as MCT, under asymptotic normality. Under Simple-order, Simple-tree and Single

Change-point order restriction, there is a one-to-one correspondence between MLT

and MCT, i.e. under these tree order restrictions, for each MCT method we could

�nd a corresponded MLT whose power is no less than the MCT.

Here we recommend our readers to use MLT which has an �empirical average power�

too. Furthermore, from our simulation we see that MLT is no worse than MCT and

MLT is a test-based model selection method.



Chapter 7

Software

7.1 Multivariate Normal Distribution and package

Mvnorm

As seen in last chapter, the distribution functions of multivariate normal (mvn)

which is the fundamental evaluations of the test statistics studied over the whole

thesis, need to be calculated. In the �rst section of this chapter, three algorithms

for calculating mvn are introduced and compared. A short and brief code for how

to use our package Biotrend, will also be given.

Miwa et al. (2003) proposed an numerical algorithm for evaluating multivariate nor-

mal probabilities. Starting with version 0.9-0 of the mvtnorm package (Hothorn

et al., 2001), this algorithm is available to the R community. In this section we will

give a brief introduction to Miwa's procedure and compare it to a quasi-randomized

Monte-Carlo procedure proposed by Genz and Bretz (1999), which has been avail-

able through mvtnorm for some years now, both with respect to computing time

and accuracy. Craig (2008) made an improvement in Miwa's algorithm and pro-

posed the Auto Regression (AR) and Moving Average (MA) model to describe the

structure of the correlation matrix. The Miwa's algorithm and Craig's algorithm

are both applicable to problems with dimension smaller than 20, whereas the pro-

107
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cedures by Genz and Bretz (1999) can be used to evaluate 1000-dimensional normal

distributions. At the end of this section, a suggestion is given for choosing a suitable

algorithm in di�erent situations.

All the codes and software that mentioned in this chapter are included in the CD-

rom.

7.1.1 De�nition and properties

The important role of mvn distribution played in this thesis, is to calculate the

rectangular quartile of the test statistics for LRT and MCT. In the next section, we

will also transform the q-variate chi-square distribution to mvn distribution. Many

literatures have discussed about mvn distribution and the de�nition from Srivastava

and Carter (1975), Bretz (1999) and Miwa et al. (2003) will be used.

Let random variables Y = {y1, ..., yk} be i.i.d standard normal distributed, i.e.

N(UY , σ
2
Y . A random variable vector X = {x1, ..., xk} is called k-variate mvn dis-

tribution Nk(U,Σ) if X has the same distribution as U + BY , where B is a k by k

matrix such as BBt = Σ and U = {u1, ..., uk} is a vector of constants. U is called

the mean of X. We denote the covariance matrix Σ = {σij}, 1 ≤ i, j ≤ k and

R = {ρij} = { σij√
σiiσjj

} is the correlation matrix of X.

The covariance matrix Σ has many special structures. The distribution of X is

called singular if the determinant of Σ, noted as |Σ|, is equal to zero and is called

non-singular if the value of |Σ| is bigger than zero. Since singular mvn distribution

can be transformed into non-singular mvn distribution, here only the non-singular

situation is considered. In special case with k = 1, U = 0 and Σ = {1}, N1(0, 1) is

the traditional univariate standard norm distribution.

For given mean U and covariance matrix Σ, the probability density function of X is

φk(X;U,Σ) =
1

(2π)k/2|Σ|
exp{−1

2
(X − U)tΣ−1(X − U)} (7.1)

The problem for calculating any non-centered orthant probability of a non-singular
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multivariate normal distribution is described by Miwa et al. (2003).

Pk(U,Σ) = Pr{xi ≥ 0; 1 ≤ i ≤ k}

=

∫ ∞

0

...

∫ ∞

0

φk(X;U,Σ) dx1...dxk (7.2)

For given upper limit D = {d1, ..., dk}, the one-sided normal distribution function

can be expressed as a non-centered orthant probability

Φk(D) = Pr{xi ≤ di; 1 ≤ i ≤ k}

= Pr{−xi ≥ −di; 1 ≤ i ≤ k}

= Pk(−U +D,Σ)

=

∫ ∞

0

...

∫ ∞

0

φk(X;−U +D,Σ) dx1...dxk

=

∫ d1

−∞
...

∫ dk

−∞
φk(X;U,Σ) dx1...dxk (7.3)

One special case of the orthant probability is the orthoscheme probability. An

orthant probability Pk(U,R) is called orthoscheme probability, if the correlation

matrix R is a tridiagonal matrix. More details of orthoscheme probability will be

given in Section 7.1.3.

The two-sided probability, with D = {d1, ..., dk} and E = {e1, ..., ek} as the upper

and lower limits, is de�ned as following

Φk(E,D) = Pr{ei ≤ xi ≤ di; 1 ≤ i ≤ k}

=

∫ d1

e1

...

∫ dk

ek

φk(X;U,Σ) dx1...dxk (7.4)

and can be calculated from 2k k-dimensional one-sided probabilities which have the
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same mean and covariance matrix.

Φk(E,D) = Pr{ei ≤ xi ≤ di , 1 ≤ i ≤ k}

= Pr{xi ≤ di , 1 ≤ i ≤ k}

−
k∑
j=1

(Pr{x1 ≤ d1, ..., xj ≤ ej, ..., xk ≤ dk}

+
k∑
j=1

k∑
h=j

(Pr{x1 ≤ d1, ..., xj ≤ ej, ..., xh ≤ eh, ..., xk ≤ dk}

−
k∑
j=1

k∑
h=j

k∑
l=h

... (7.5)

Miwa et al. (2003) provided a numerical algorithm which is not linear in dimension

k. Genz and Bretz (1999) developed a Monte-Carlo procedure which can calculate

the two-sided probability in linear time. In the following chapters, for simplicity, we

assume that the random vector X has unit variances, the mean U = {u1, ..., uk} =

{0, ..., 0} and the covariance matrix Σ is equal to the correlation matrix R.

7.1.2 Monte-Carlo algorithm

Genz (1992) transformed the k dimensional integral of two-sided probability into a

k − 1 dimensional integral over a hypercube. By doing this, this algorithm avoids

the in�nite integral bound which is hard to deal with. Furthermore, many e�cient

numerical integral algorithms can be applied in this hypercube region. Genz and

Bretz (1999) gave further improvement of this algorithm.

The multi-dimensional two-sided probability of X with zero mean is

Φk(E,D) = Pr{ei ≤ xi ≤ di; 1 ≤ i ≤ k}

=

∫ d1

e1

∫ d2

e2

...

∫ dk

ek

1

(2π)k/2|Σ|
exp{−1

2
X tΣ−1X}dX (7.6)

here, D = {d1, ..., dk} and E = {e1, ..., ek} are the upper and lower limits of the

integral region. The correlation matrix Σ, which is mentioned in last section, can
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be decomposed into BBt. B is the Cholesky triangle, which is a lower triangular

matrix. Note Y = {y1, ..., yk} as the decomposition vector and X = BY . This

implies X tΣ−1X = Y tBtB−tB−1BY = Y tY and dX = |B|dY = |Σ−1/2|dY . By

knowing the integral region of X as E ≤ X = BY ≤ D, we can calculate the

integral region (E ′, D′) of Y , where E ′ = {e′1, ..., e′k} and D′ = {d′1, ..., d′k} are the

upper and lower limits of the integral region for Y

(E ′ ≤ Y ≤ D′) =



ei
bii
≤ yi ≤

di
bii
, i = 1

ei −
∑i−1

j=1 bijyj

bii
≤ yi ≤

di −
∑i−1

j=1 bijyj

bii
, i=2,...,k

(7.7)

The probability function is transformed to

Φk(E,D) =
1

(2π)k/2

∫ d′1

e′1

∫ d′2(y1)

e′2(y1)

...

∫ d′k(y1,...yk−1)

e′k(y1,...yk−1)

exp{−1

2
Y tY }dY

=
1

(2π)k/2

∫ d′1

e′1

exp−
y2
1
2

∫ d′2(y1)

e′2(y1)

exp−
y2
2
2 ...

∫ d′k(y1,...yk−1)

e′k(y1,...yk−1)

exp−
y2
k
2 dY (7.8)

Now random variable X has been successfully separated by Cholesky decomposi-

tion. However the integral function of Y is still a complicated exponential function.

Transformation is made again to reduce the complicity. The components of Y are

independent. They can be transformed separately as yi = Φ−1
1 (zi), where

Φ1(yi) =
1

(2π)1/2

∫ yi

−∞
exp−

v2

2 dv (7.9)

has been de�ned as univariate standard norm distribution in former part of this

section and φ1 is the density function of it. The following equation is achieved by

di�erentiating both sides of it

dzi = dΦ1(yi) = d

∫ yi

−∞
exp−

v2

2 dv =
1

(2π)1/2
exp−

y2
i
2 dyi (7.10)
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furthermore,

dZ = {dz1, ..., dzk}

= { 1

(2π)1/2
exp−

y2
1
2 dy1, ...,

1

(2π)1/2
exp−

y2
k
2 dyk} (7.11)

By putting this into Equation 7.8, they have got

Φk(E,D) =

∫ d′′1

e′′1

∫ d′′2 (z1)

e′′2 (z1)

...

∫ d′′k(z1,...zk−1)

e′′k(z1,...zk−1)

dZ (7.12)

with the integral region of Z

(E ′′ ≤ Z ≤ D′′) =


Φ1(ei/bii) ≤ zi ≤ Φ1(di/bii), i = 1

Φ1(
ei −

∑i−1
j=1 bijΦ

−1
1 (zj)

bii
) ≤ zi ≤ Φ1(

di −
∑i−1

j=1 bijΦ
−1
1 (zj)

bii
), i=2,...,k

(7.13)

The integral region of Equation 7.12, is hard to calculate by common numerical

integral algorithms. For example, the upper and lower limit of zk is a function of

{z1, ..., zk−1}. Assume G is the number of grid points for one variable, we need in

total Gk−1 grid points to evaluated the function of

f(z1, ...zk−1) =

∫ d′′k(z1,...zk−1)

e′′k(z1,...zk−1)

dzk (7.14)

An Monte-Carlo algorithm, which can calculate integral within closed region in linear

time, is suggested by Bretz (1999). However, special cases, such as orthoscheme

probabilities that the integral region of zk is only a function of zk−1, can be evaluated

in linear time by recursive numerical method (Miwa et al., 2003). Detailed discussion

of these situations will be given in next section.

Before applying Monte-Carlo integral algorithm, the integral region should be uni-

formed for easier programming and better error estimation. Genz (1992) transformed

the equation again to uniform the integral region by taking Z = E ′′+W (D′′−E ′′).



7.1. MULTIVARIATE NORMAL DISTRIBUTION AND PACKAGEMVNORM113

Because E ′′ ≤ Z ≤ D′′, the integral region of W is 0 ≤ W ≤ 1, where 0 and 1 are

k-dimension constant vectors. After transform the original integral for three times,

we have the �nal integral as

Φk(E,D) = (d′′′1 − e′′′1 )

∫ 1

0

(d′′′2 − e′′′2 )

∫ 1

0

...(d′′′k − e′′′k )

∫ 1

0

dW

=

∫ 1

0

∫ 1

0

...

∫ 1

0

f(w)dW (7.15)

here, f(w) = (d′′′k − e′′′k )(d′′′k − e′′′k )...(d′′′k − e′′′k ) with value D′′′ and E ′′′ which can be

described by function of W :

e′′′1 = Φ1(e1/b11), d′′′1 = Φ1(d1/b11), i = 1

e′′′i =
ei −

∑i−1
j=1 bijΦ

−1
1 (e′′′j + wj(d

′′′
j − e′′′j ))

bii
, i=2,...,k

d′′′i =
ei −

∑i−1
j=1 bijΦ

−1
1 (e′′′j + wj(d

′′′
j − e′′′j ))

bii
, i=2,...,k

(7.16)

This integral can be calculated by the quasi-randomized Monte-Carlo procedure

developed by Genz and Bretz (1999) in linear time.

7.1.3 Numerical algorithm

In former sections we have seen that the structures of the correlation matrix have

a strong in�uence to the calculation algorithm of the integral. Before introducing

Miwa's algorithm and Craig's algorithm, we �rst give de�nition and discussion of

the structure. Here also for simplicity, the random vector X is assumed to have unit

variances.

Miwa's algorithm

A tridiagonal matrix is a matrix which has nonzero entries only in its main diagonal

row, the one above this row and the one below this row. For example, matrix R1

is a n by n tridiagonal correlation matrix for k-variate mvn random vector X =
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{x1, ..., xk}:

R1 =



1 r1

r1 1 r2

r2 1 r3

. . . . . . . . .

rn−1 1 rn

rn 1


Note B1 as the Choleshy decomposition of R1. Then we have R1 = B1B

t
1, where B

have only nonzero entries along the diagonal row and the one below this row

B1 =



1

b21 b22

b32 b33

. . . . . . . . .

b(n−1)(n−2) b(n−1)(n−1)

bn(n−1) bnn


By using transformation matrix B1, we can transform X = {x1, ..., xk} into Y that

X = B1Y , where vector Y = {y1, ..., yk} is i.i.d standard normal distributed as

we de�ned in former chapter. By considering {x1, ..., xk} as an ordered time series

process, we have x1 = y1 and xi = bi(i−1)yi−1 + biiyi for i > 1, so X is a time

series process which has Moving Average (MA) order one(Craig, 2008). In order

to distinguish from the MA process in time series, we note the order of the MA

process here as Miwa-MA(1). Miwa et al. (2003) developed a numerical algorithm

to calculate the orthoscheme probability, Pk(U,R1) where R1 is tridiagonal matrix

whose order is Miwa-MA(1) .

Now we give a former de�nition for Miwa-MA model. Let Rb be a k by k correlation

matrix and its Cholesky decomposition matrix is B that Rb = BBt. A k-variate

mvn random vector X can be transformed into Y , which is a vector of k i.i.d normal

variables, by X = BY . Sequence X = {X1, ...Xk} with correlation matrix Rb is
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called Moving Average (MA) order r or in short Miwa-MA(r) process, when

xi =
i∑

j=1

bijyj, i ≤ r

xi =
i∑

j=i−r

bijyj, i > r

(7.17)

I.e, random vector Xb with a 4 by 4 correlation matrix

Rb =


1 .5 0 0

.5 1 .5 0

0 .5 1 .5

0 0 .5 1


is a Miwa-MA(1) process. Here we have Xb = BY , where B is the decompose matrix

of Rb that Ra = BBt and Y is k-vector of i.i.d standard norm distribution.

Slightly di�erent from Miwa's procedure, we apply the results from last section to

introduce the algorithm which calculate the orthoscheme probablities and show that

Miwa's algorithm and Genz/Bretz' algorithm only have di�erence in the last inte-

gral calculation step for calculating orthoscheme probability. Let E = −U ,D =

{∞, ...,∞} and tridiagonal correlation matrix R1, the orthoscheme probability

Pk(U,R1) can be calculate from two-sided probability Φk(E,D) with zero mean

and same correlation matrix R1 by

Pk(U,R1) = Φk(E,D)

=

∫ ∞

−u1

...

∫ ∞

−uk

φk(X; 0, R1) dx1...dxk (7.18)
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by applying Equation 7.8, we have

Pk(U,R1)

=

∫ ∞

−u1

...

∫ ∞

−uk

φk(X; 0, R1) dx1...dxk

=
1

(2π)k/2

∫ ∞

e′1

exp−
y2
1
2

∫ ∞

e′2(y1)

exp−
y2
2
2 ...

∫ ∞

e′k(yk−1)

exp−
y2
k
2 dY

=
1

(2π)k/2

∫ ∞

−u1

exp−
y2
1
2

∫ ∞

(−u2−b21y1)/b22

exp−
y2
2
2 ...

∫ ∞

(−uk−bk(k−1)yk−1)/bkk

exp−
y2
k
2 dY

(7.19)

Miwa et al. (2003) introduced a recursive computational approach which can calcu-

late this integral in linear time. He de�ned

fk−1(y) =
1

(2π)1/2

∫ ∞

(−uk−bk(k−1)y)/bkk

exp−
v2

2 dv

fi−1(y) =
1

(2π)1/2

∫ ∞

(−ui−bi(i−1)y)/bii

fi(v) exp−
v2

2 dv, 2 ≤ i ≤ k − 1, (7.20)

so that the required probability is transformed into

Pk(U,R1) =
1

(2π)1/2

∫ ∞

−u1

f1(v) exp−
v2

2 dv (7.21)

Then fk−1(y) is calculated �rst over an optimal designed grid points. The value of

fk−1 is stored in an array which is correspond to the grid points. By using Equation

7.29, fk−2, fk−3, ... are calculated consequently. So this algorithm is linear algorithm

for arbitrary value of k and su�cient accuracy can be achieved by increasing the

number of the grid point.

Here we also improve this algorithm by using the results from former section. Apply

Equation 7.8 and Equation 7.12, the probability is

Pk(U,R1) =

∫ ∞

−u1

∫ ∞

(−u2−b21Φ−1
1 (z1))/b22

...

∫ ∞

(−uk−bk(k−1)Φ
−1
1 (zk−1))/bkk

dZ (7.22)
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Similar as Miwa, we de�ne

f ′k−1(z) =

∫ ∞

(−uk−bk(k−1)Φ
−1
1 (z))/bkk

dv

f ′i−1(z) =

∫ ∞

(−ui−bi(i−1)Φ
−1
1 (z))/bii

f ′i(v)dv, 2 ≤ i ≤ k − 1, (7.23)

so that the required probability is transformed into

Pk(U,R1) =

∫ ∞

−u1

f ′1(v)dv

(7.24)

By saving the time from multiplication and making the value of the standard normal

distribution function into pre-calculated tables, this algorithm is faster than the

former one.

Simply to show, algorithm for two-side probabilities with tridiagonal correlation

matrix is also available, such that we can transforms the probabilities into

Φ(E,D) =

∫ e1

e1

∫ (d1−b21Φ−1
1 (z1))/b22

(e1−b21Φ−1
1 (z1))/b22

...

∫ (dk−bk(k−1)Φ
−1
1 (zk−1))/bkk

(ek−bk(k−1)Φ
−1
1 (zk−1))/bkk

dZ (7.25)

For probabilities, which are not orthoscheme, Miwa et al. (2003) also gave an algo-

rithm which transform the probabilities into sum of many orthoscheme probabilities.

The total number of the orthoscheme probabilities depends on the complexity of the

correlation matrix, which can be measured by orthoscheme order. Miwa et al. (2003)

has given a de�nition of it:

"For 0 ≤ r ≤ m − 3 an m × m symmetric matrix Σ = {σij} is said to have

'orthoscheme order r' if σij = 0 for 1 ≤ i ≤ r, i+ 2 ≤ j ≤ m and σr+1,j 6= 0 for some

j satisfying r + 3 ≤ j ≤ m. A tridiagonal matrix is de�ned to have orthoscheme

order m− 2."
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For example, for 6-dimension correlation matrix

R6,6 =



1 × 0 0 0 0

× 1 × × × ×

0 × 1 × × ×

0 × × 1 × ×

0 × × × 1 ×

0 × × × × 1


here × represents the nonzero entries, the orthoscheme order is one. However, this

de�nition has a disadvantage that the orthoscheme order may be changed by per

permutation. I.e. if we interchange the 2nd and 4th rows of R6,6, a new correlation

matrix

R′6,6 =



1 0 0 0 × 0

0 1 × × × ×

0 × 1 × × ×

0 × × 1 × ×

× × × × 1 ×

0 × × × × 1


has orthoscheme order zero. We left the problem, that how to permutate a ma-

trix properly, as an open question and assumed that the matrix have already been

properly permutated.

Let Rr be any k by k correlation matrix which has orthoscheme order r, here 0 ≤

r ≤ k− 3. Then for any given mean vector U , the one-sided orthant probability can

be calculated from at most k−r−1 one-sided orthant probabilities whose correlation

matrices have orthemscheme order larger than r. By repeating this procedure, the

one-sided orthant probability can be calculated from at most (k−1)! orthemscheme

probabilities. The algorithm for calculating such probabilities is a recursive linear

integration procedure. The total order of a one-sided problem is G× k!, where G is

the number of grid points for integration. The total order of this two-sided problem

is G× k!× 2k, where G is the number of grid points for integration. For more detail
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of this procedure, please refer to the paper of Miwa et al. (2003).

Craig's algorithm

By using the duality between Moving Average model and Auto Regression (AR)

model, we can introduce AR model which is another important model in time series.

For correlation matrix Ra that the reverse of Ra is tridiagonal, we can decompose

Ra into Ra = A−tA−1, where A is a Cholesky decomposition matrix. Then we have

AX = Y . By considering {x1, ..., xk} as an ordered time series process, we have

x1 = y1 and aiixi = −ai(i−1)xi−1 + yi for i > 1, so X is a time series process which

has AR order one. In order to distinguish from the AR process in time series, we

note the order of the AR process here as Craig-AR(1). A numerical algorithm is

also developed to calculate this edge orthoscheme probability Pk(U,Ra), where Ra

is reverse tridiagonal matrix whose order is Craig-AR(1) (Craig, 2008).

Now we give a former de�nition for Craig-AR model. Let Ra be a k by k correlation

matrix and the Cholesky decomposition matrix for its reverse matrix is A that

R−1
a = AAt. A k-variate mvn random vector X can be transformed into Y , which

is a vector of k i.i.d normal variables, by AX = Y . Sequence X = {X1, ...Xk} with

correlation matrix R−1
a is called AR order r or in short Craig-AR(r) process, when

aiixi =
i−1∑
j=1

aijxj + yi, i ≤ r

aiixi =
i−1∑
j=i−r

aijxj + yi, i > r (7.26)

I.e, let vector Xa with a 4 by 4 reverse tri-diagonal correlation matrix Ra

Ra =


1.000 −0.612 0.408 −0.250

−0.612 1.000 −0.667 0.408

0.408 −0.667 1.000 −0.612

−0.250 0.408 −0.612 1.000
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here R−1
a is a tri-diagonal matrix

R−1
a =


1 0.5 0 0

0.5 1 0.5 0

0 0.5 1 0.5

0 0 0.5 1



Then Xa is a Craig-AR(1) process. Here we have Xa = A−1Y , where A is the

decompose matrix of R−1
a that R−1

a = AAt and Y is k-vector of i.i.d standard norm

distribution.

In time series, a process comes from the past and goes to the future. But our process

begins in time "1" and end at time "k". The value of x1 can be considered as initial

value which does not depend on the past.

Similarly we could de�ne the Auto Regression Moving Average(ARMR) model. Un-

fortunately, there is no algorithm available until now to solve ARMR(1,1) probabil-

ity. So we left these problem as challenging problems of the future.

For simplicity, let Xis have unit variances, zero mean and correlation matrix Ra,

which is reverse tridiagonal, the edge orthoscheme probability Pk(U,Ra) can be

calculate from a Markov chain

Xi ∼ N(0, 1), i = 1

Xi+1|Xi ∼ N(ρiXi, σ
2
i ), i > 1 (7.27)

here ρi = corr(Xi+1, Xi) and σ2
i = 1 − ρ2

i . Note Rm = {ρij}, 1 ≤ i, j ≤ m as the

correlation matrix for random vector X1,m = {X1, ..., Xm}. Rm is just sub matrix of

Ra and Rk = Ra. We can calculate the one-side probability of the edge orthoscheme
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by

Pk(U,Ra)

=

∫ ∞

−uk

...

∫ ∞

−u1

φk(X; 0, Ra) dx1...dxk

=

∫ ∞

−uk

...

∫ ∞

−u1

P (xk|xk−1)φk−1(X1,k−1; 0, Rk−1) dx1...dxk−1dxk

=

∫ ∞

−uk

∫ ∞

−uk−1

P (xk|xk−1)

∫ ∞

−uk−2

...

∫ ∞

−u1

φk−1(X1,k−1; 0, Rk−1) dx1...dxk−2dxk−1dxk

=
1

σk

∫ ∞

−uk

∫ ∞

−uk−1

φ1(
xk − ρk−1xk−1

σk−1

)

∫ ∞

−uk−2

...

∫ ∞

−u1

φk−1(X1,k−1; 0, Rk−1) dx1...dxk−2dxk−1dxk

(7.28)

Craig (2008) introduced a recursive computational approach which can calculate

this integral in linear time. He de�ned

f1(x1) = φ1(x1) =
1

(2π)1/2
exp−

x2
1
2

fi(xi) =
1

σi

∫ ∞

−ui−1

φ1(
xi − ρi−1xi−1

σi−1

)fi−1(xi−1)dxi−1 (7.29)

so that the required probability is transformed into

Pk(U,Ra) =

∫ ∞

−uk

fk(xk) dxk (7.30)

Then fi(y)s are calculated one by one from fast Fourier transformation(FFT).

Similarly as Miwa's orthoscheme order theorem, Craig also showed that any k-variate

orthant probability can be calculated from at most (k− 1)! edge orthoscheme prob-

abilities. Furthermore, the total number of edge orthoscheme probabilities needed

to be calculated is usually smaller than or equal to the number of edge orthoscheme

probabilities.
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7.1.4 Examples for calculating mvn

A new algorithm argument to pmvnorm and qmvnorm has been introduced in

mvtnorm version .9-0 in order to switch between two algorithms: GenzBretz() is the

default and triggers the use of the above mentioned quasi-randomized Monte-Carlo

procedure by Genz and Bretz (1999). Alternatively, algorithm = Miwa() applies the

procedure discussed here. Both functions can be used to specify hyper-parameters

of the algorithm. For Miwa(), the argument steps de�nes the number of grid points

G to be evaluated.

The following example shows how to calculate the probability

Φ3(E,D)

= {−1 < x1 < 1,−4 < x2 < 4,−2 < x3 < 2}.

with mean U = (0, 0, 0)t and correlation matrix

R3 =


1 1/4 1/5

1/4 1 1/3

1/5 1/3 1


by using the following R code:

"

library("mvtnorm")

m <- 3

S <- diag(m)

S[2, 1] <- S[1, 2] <- 1 / 4

S[3, 1] <- S[3, 1] <- 1 / 5

S[3, 2] <- S[3, 2] <- 1 / 3

pmvnorm(lower = -c(1,4,2), upper = c(1,4,2), mean=rep(0, m), sigma = S, algo-

rithm = Miwa())

"

The upper limit and lower limit of the integral region are passed by the vectors
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Algorithm m = 5 m = 10
ρ = 1

2
ρ = −1

2
ρ = 1

2
ρ = −1

2

Genz & Bretz (ε = 10−4) 0.08468833 0.001385620 0.008863600 2.376316× 10−8

Genz & Bretz (ε = 10−5) 0.08472561 0.001390769 0.008863877 2.319286 × 10−8

Genz & Bretz (ε = 10−6) 0.08472682 0.001388424 0.008862195 2.671923× 10−8

Miwa (G = 128) 0.08472222 0.001388889 0.008863235 2.505205× 10−8

Exact. 0.08472222 0.001388889 0.008863236 2.505211× 10−8

Table 7.1: Value of probabilities with tri-diagonal correlation coe�cients, ρi,i±1 =
ρ, 1 ≤ i ≤ m and ρj,i = 0,∀|i− j| > 1. ρ = 2−1 or ρ = −2−1.

upper and lower. The mean vector and correlation matrix are given by the vector

mean and the matrix corr. From the result, we know that p = 0.6536804 with given

correlation matrix .

7.2 Accuracy and time consumption

In this section, we compare the accuracy and time consumption of the imple-

mentation of the algorithm of Miwa et al. (2003) with the default procedure for

approximating multivariate normal probabilities in mvtnorm by Genz and Bretz

(1999). The experiments were performed using an Intelr Pentiumr processor with

2.8 GHz.

Algorithm m=5 m=9
ρ = 1

2
sec. ρ = 1

2
sec.

Genz & Bretz (ε = 10−4) 0.1666398 0.029 0.09998728 0.231
Genz & Bretz (ε = 10−5) 0.1666719 0.132 0.09998277 0.403
Genz & Bretz (ε = 10−6) 0.1666686 0.133 0.09999726 0.431
Miwa (G = 128) 0.1666667 0.021 0.09999995 89.921
Exact. 0.1666667 0.10000000

Table 7.2: Accuracy and time consumption of centered orthant probabilities with
correlation coe�cients, ρj,i = 2−1, i 6= j, 1 ≤ i ≤ m.
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7.2.1 Probabilities with tri-diagonal correlation matrix

The exact value of Pm(, ) is known if has some special structure. For example, when

is a m-dimensional tri-diagonal correlation matrix with correlation coe�cients

ρj,i =

 −2−1 j = i± 1

0 |i− j| > 1
1 ≤ i ≤ m

the value of Pm(0, ) is ((1 + m)!)−1 (Miwa et al., 2003). The accuracy of Miwa

algorithm (G = 128 grid points) and the Genz & Bretz algorithm (with absolute

error tolerance ε = 10−4, 10−5, 10−6) for probabilities with tri-diagonal correlation

matrix are compared in Table 7.1.4. In each calculation, we have results with small

variance. The values, which do not hold the tolerance error, are marked with bold

characters and are underlined in the tables. When the dimension is larger than �ve,

Genz & Bretz' algorithm with error tolerance smaller than 10−5 is hard to achieve.

While Miwa's algorithm with grid points G = 128 achieves error tolerance smaller

than 10−7.

Both algorithms are linear in this simplest case and very fast (<0.01 second), so the

time consumption is not discussed here.

7.2.2 Centered orthant probabilities

When is the correlation matrix with

ρj,i = 2−1, i 6= j, 1 ≤ i ≤ m

the value of Pm(0, ) is known to be (1 + m)−1 (Miwa et al., 2003). Accuracy and

time consumption of Miwa's algorithm and Genz & Bretz' algorithm for this situ-

ation are compared in Table 7.2. As a numerical algorithm, Miwa's algorithm still
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Dimension Miwa (G = 128) Genz & Bretz (ε = 10−4)
One-sided Two-sided One-sided Two-sided

m = 5 0.021 0.441 0.029 0.085
m = 6 0.089 8.731 0.089 0.149
m = 7 0.599 156.01 0.083 0.255
m = 8 9.956 4hours 0.138 0.233
m = 9 89.921 - 0.231 0.392

Table 7.3: Time consumption of centered orthant probabilities (measured in sec-
onds).

has better tolerance error. However, the time consumption of Miwa's algorithm in-

creases none-linearly when the dimension of the orthant probabilities increases. A

detail time consumption analysis for both methods is given in Table 7.3. Miwa's

algorithm is much slower than Genz & Bretz' algorithm in calculating two-sided

orthant probability when the dimension m is larger than 7.

We have implemented an interface to the procedure of Miwa et al. (2003) in the

package mvtnorm. For small dimensions, it is an alternative to quasi-randomized

Monte-Carlo procedures, which are computed by default. However, Miwa's algo-

rithm has some disadvantages. When the dimension m increases, the time con-

sumption of Miwa's algorithm increases dramatically. Moreover, it can't be applied

to singular problems which are common in multiple testing problems, for example.

7.3 Package Binotrend

Package Binotrend is used for testing linear trend in binomial data. Function "bi-

noint()", "Likelihood()" and "Likelihoodep()" are three major functions. "binoint()"

runs the MCT developed by Bretz (1999); Bretz and Hothorn (2003). "Likelihood()"

uses the IC method developed in these thesis to detect the linear trend. "Likeli-

hoodep()" is a special and fast single function for detecting motif under Epidemic-

order.
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binoint()

binoint(present,samplesize,type,cmatrix,alternative,conf.level=.95)

here argument present and samplesize are the number of observations and

sample sizes. type de�nes the contrasts type. User can also use cmatrix to de�ne

their own type. alternative can be chosen as one-sided test(alternative=less,

alternative=greater) or two-sided test(two.sided). conf.level controls the FWER.

Sample size calculation for MCT

binoint(Pi,type,alternative,expect.power)

here argument Pi is the proportion from data. expect.power is equal .80 by

default.

Likelihood()

Likelihood(X,N,formo�ikelihood,penalty)

here argument X and N are the number of observations and sample sizes.

formo�ikelihood de�nes the IC type. The user can also change penalty to have

extra bias adjustment. The value of penalty is 1.5 by default.

Likelihoodep()

Likelihoodep(X,N,formo�ikelihood,penalty)

This function is a special and fast version for doing DNA-motif �nding. The

value of penalty is 2 by default.
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Cochran-Armitage Test

CA.test2<-function(success, failure, scores, alternative="two.sided")

This function is written by Schaarschmidt et al. (2009) to make the Cochran-Amitage

Test. success is the number of present and failure is the number of absent. scores

is the scores among di�erent doses.

7.4 Code for summary section

7.4.1 Single Change-point order restriction

Adverse events rate

# data input

X=c(9, 19, 24)

N=c(20,43, 41)

# MCT

binoint(present=X,samplesize=N,type="Changepoint",alternative="less",conf.level=.95)

# Sample size calculation of MCT with given power

binoint(Pi=X/N,type="Changepoint",alternative="two.sided",expect.power=.80)

# MLT

Likelihood(X,N,"changepoint-alpha-control")

# ORIC-lMLE
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Likelihood(X,N,"Anraku")

# AIC

Likelihood(X,N,"Anraku",penalty=2)

Cochran-Amitage Test

# data input

adverserate <- data.frame(dose = rep(c(0, 1, 2), c(20, 43, 41)),

tumor = c(rep(c(0, 1), c(11, 9)),

rep(c(0, 1), c(24, 19)),

rep(c(0, 1), c(17, 24))))

Success= table(adverserate)[,2]

Failure= table(adverserate)[,1]

# CA test

CA.test2(Success,Failure,score=c(0,1,2))

7.4.2 Epidemic-order restriction

DNA-motif �nding

# data input



7.4. CODE FOR SUMMARY SECTION 129

entrmatrix<-matrix(c(0,0,0,7,1,1,9,0,6,1,0,3,1,2,0,0,0,

14,0,1,3,3,6,1,8,0,5,3,7,5,3,12,14,0,

0,14,13,4,9,6,3,5,0,6,1,2,6,1,2,0,

14,0,0,0,0,1,1,1,1,8,2,10,2,2,8,0,0,0),

nrow = 4, ncol=17, byrow=TRUE,dimnames = list(c("A", "C","G","T") ,c(1:17)))

X=14*maxmatrix(entrmatrix)

N=rep(14,17)

# MCT

binoint(present=X,samplesize=N,type="newone",alternative="less",conf.level=.95)

# NIC

Likelihoodep(X,N,"Nino")

7.4.3 Simple order restriction

Spontaneous abortion rate

# data input

X=c(33, 37, 3, 7)

N=c(259, 358, 64, 12)

# contrasts matrix input

cmatrix=t(matrix(

c(

-3,1,1,1,
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-1,-1,1,1,

-1,-1,-1,3,

-3,-1,1,3,

-1,-1,0,2,

-1,0,0,1,

-2,0,1,1 ),4,7

)

)

# MCT

output=binoint(present=X,samplesize=N,cmatrix=cmatrix,alternative="less",conf.level=.95)

# the output here is very long, so it could be better to use output $ to look into the

detail.

# MLT

Likelihood(X,N,"Isotonic-4-dim-alpha-control")

# MHIC

Likelihood(X,N,"Mi-Hothorn-IC")

# ORIC-lMLE

Likelihood(X,N,"Isotonic-4-dim-Anraku")

Cochran-Amitage Test

# data input

adverserate <- data.frame(dose = rep(c(0, 1, 2,3), c(259, 358, 64, 12)),
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tumor = c(rep(c(0, 1), c(33, 226)),

rep(c(0, 1), c(37, 321)),

rep(c(0, 1), c(3, 61)),

rep(c(0, 1), c(7, 5))))

Success= table(adverserate)[,2]

Failure= table(adverserate)[,1]

# CA test

CA.test2(Success,Failure,score=c(0,1,2,3))

7.4.4 Simple-tree restriction

Adverse events rate

# data input

X=c(9, 19, 24)

N=c(20,43, 41)

# MCT

typeofbio="Dunnett"

binoint(present=X,samplesize=N,type=typeofbio,alternative="less")

Di�erent from the result given before, function Likelihood() returns log-likelihood

ratios directly. We also use PenaltySimpleTreeAlphaControl() calculate the critical

value for MLT method

# MLT
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CV=PenaltySimpleTreeAlphaControl(k=3,x=X,n=N,�ag=1)

Likelihood(X,N,"log-ratio-simple-tree",penalty=CV-1)

# ORIC-lMLE

Likelihood(X,N,"log-ratio-simple-tree",penalty=1.5-1)



Chapter 8

Summary

In this chapter, we will give a solution to the previous examples. Four methods,

which are MLT, MCT, ORIC-lMLE and MHIC, will be compared together for the

power, CR and MR. The �nal conclusion and open questions will be discussed in

the end.

8.1 Solution to the previous examples

8.1.1 Single Change-point order restriction

Adverse events rate

We can calculate the log-likelihood and the ICs. MCT and MLT are also listed in

for comparison. Under Single Change-point order restriction, all these methods will

use the MLE as the best estimator.

133
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Method H0(Tmax) H1
A H2

A α 1− β selected model

MCT (1.898) 0.511 1.349 .050 .317 H0

log-likelihood -6.902 -6.779 -5.913

MLT -7.902 -9.624 -8.759 .050 .317 H0

MHIC -7.902 -8.279 -7.413 N. .720 H2
A

ORIC-lMLE -7.902 -8.279 -7.413 N. .720 H2
A

AIC -7.902 -8.779 -7.913 N. N. H2
A

here the penalty term are given as following

Penalty H0 H1
A H2

A

MLT 1 2.95 2.95

MHIC 1 1.5 1.5

ORIC-lMLE 1 1.5 1.5

AIC 1 2 2

Comparisons with Cochran-Armitage Test

In the following equations, we will calculate LRT and CAT from our last example.

Method H0(Tmax) H1
A H2

A chi-square(ratio) DF p-value

log-likelihood -6.902 -6.779 -5.913 (0.989) -

LRT - - - (1.878) 1 0.1705

CAT' - - 1.422 1 0.1161(one-sided)

CAT has a smaller p-value in this case. It is more sensitive to detect the linear trend.

However it is only a trend test, which does not assume any alternative model. So,

it cannot do model selection and has no indication of the back ground structures.

Results

From the result we can see that AIC, MHIC and ORIC-lMLE select model H2
A and

draw the conclusion that higher dose of such drug has the adverse e�ect. Since these

three methods are model selection methods, none of them can test the null hypothesis
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s=13 s=14 s=15 s=16
r=1 -51.2 -44.9 -50.5 -57.1
r=2 -45.4 -38.1 -43.3 -50.5
r=3 -40.6 -33.4 -35.1 -42.3
r=4 -46.7 -42.7 -45.4 -51.2

Table 8.1: Adjusted log-likelihood value of the DNA problem

with certain α level. On the other hand, MCT and MLT test the hypothesis. They

cannot reject the null hypothesis with certain FWER level, but they calculate the

power and suggest increase the sample to get a higher power. For example, in order

to achieve higher power of 80% i.e. 1 − β = .80, we need the total sample size

increase to 417 for blanched case (Bretz et al., 2005). After that they will probably

select model H2
A as the best model.

8.1.2 Epidemic-order restriction

NIC method

The MLEs are calculated similarly as Single Change-point order restriction. The

log-likelihood is calculated with given MLE and the penalty term is one under null

hypothesis and under alternative hypothesis. The later penalty term is the sum of

penalty from two Change-points and two unknown parameters (Ninomiya, 2005).

Since we have two unknown Change-points, the result are listed in a two dimensions

table. Part of the table is given in Table 8.1 and the value of the null model is −54.1.

We can select position "3" and "14" as the best prediction of the Change-points.

MCT method

We can also use MCT to �nd the Change-points. The results are shown in following

pictures. The pattern in the circle is the possible pattern ranked from 1 to 5. With

comparing these �ve patterns, the most possible pattern and its "neighbors" are

founded. The asymptotic power can also be calculated.
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Figure 8.1: Simultaneous con�dence intervals for all possible models. Here we plot
the value test statistics (the black points) and their intervals for di�erent models
simultaneously. The largest value is obtained by model Hr=3,s=13

A . We also �nd that
model Hr=2,s=13

A , Hr=3,s=14
A , Hr=3,s=12

A and Hr=3,s=14
A also have relatively larger value

among others.
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Rank 1 :  11 11 11 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 11 11 11
Rank 2:  12 12  12 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 12 12
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Figure 8.2: Contrasts for the top 5 pattern and the entropy comparison of the most
possible pattern.
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Meth. H0(Tmax) H1
A H2

A H3
A H4

A H5
A H6

A H7
A α 1− β Sel.

MCT (1.83) 2.97 3.84 5.24 4.57 5.02 4.83 3.47 .05 .94 H3
A

MLT -19.08 -20.76 -20.66 -12.96 -22.92 -20.39 -24.91 -27.08 .05 .94 H3
A

MHIC -19.08 -19.58 -19.48 -11.78 -21.74 -19.21 -23.73 -25.90 N .97 H3
A

ORIC-lMLE -19.08 -19.58 -19.48 -11.78 -12.35 -12.11 -12.11 -19.81 N N H3
A

Table 8.2: Value of the ICs

Comparision with Cochran-Armitage Test

CAT is a trend test which requires monotone trend. The expected structure here is

concave. CAT is not available for this problem.

Results

From the result we can see that NIC and MCT select model H3,14
A and detect two

Change-points at position "3" and "14". NIC cannot reject the null hypothesis

with certain α level. But from the simulation study we know that it has very good

error control, While MCT controls FWER level. But FWER is not the topic here.

The researchers care about "power" more than "Error control". Also the calculation

time for multivariate normal distribution is very long if we have hundreds of possible

patterns. So IC method is the simple and fast method we recommend. By using

NIC, we �nd pattern "CGG�GCG" as the most possible pattern of motif. We also

suggest check pattern "CG�GCG" and CGG�CG".

8.1.3 Simple-order restriction

Spontaneous abortion rate

The �nal ICs are given in Table 8.2

The the penalties are liested in Table 8.3
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Penalty H0 H1
A H2

A H3
A H4

A H5
A H6

A H7
A

MLT 1 3.23 3.23 3.23 3.23 3.23 3.23 3.23
MHIC 1 1.5 1.5 1.5 1.5 1.5 1.5 1.5

ORIC-lMLE 1 1.5 1.5 1.5 2.07 1.83 1.83 1.83

Table 8.3: Penalties of the ICs

Comparisons with Cochran-Armitage Test

We get the test statistics of LRT and CAT. In the following equations, we will

calculate them from our last example.

Method H0(Tmax) H3
A chi-square(ratio) DF p-value

log-likelihood -19.089 -11.781 (7.308) -

LRT - - (14.616) 3 0.002

CAT' - 0.4167 1 0.2093(one-sided)

LRT has a smaller p-value in this case. It also rejects the null hypothesis. CAT fails

to reject the null hypothesis. By comparing the result from Section 8.1.1, we know

that CAT is not always powerful. It is very powerful, if there is a strong linear trend

in the data structure.

Results

All methods detect a trend and select model H3
j as the best model. Because both

MHIC and ORIC-lMLE methods are model selection methods, we cannot control

the FWER by using these two methods. For MLT and MCT methods, we select

model H3
j as the best model with FWER control. The asymptotic power is 0.94.

The conclusion for the problem is that we select model H3
j as the best model, i.e.

when the age of the father is higher than 35, the mother's abortion rate will be much

higher than others.
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8.1.4 Simple-tree order restriction

Adverse events rate

Finally, we can calculate the log-likelihood ratio and the ICs. MCT and MLT are

also listed in for comparison. Under Simple-tree order restriction, all these methods

will use the MLE as the best estimator.

Method H0(Tmax) H1
A H2

A α 1− β selected model

MCT (1.882) -0.060 0.992 0.050 0.193 H0

MLT-ratio 0.000 -1.771 -1.276 0.050 0.193 H0

ORIC-lMLE 0 -0.500 -0.004 N. - H0

here the penalty term are given as following

Penalty H0 H1
A H2

A

MLT 1 2.77 2.77

MHIC 1 1.5 1.5

ORIC-lMLE 1 1.5 1.5

Comparisons with Cochran-Armitage Test

We are testing many dose to the control group. there is no trend here. CAT is not

available for this many-to-one comparison.

Results

The test for Simple-tree order tests 2 groups at one time for each alternative model.

The sample size here is so small that we cannot reject the null hypothesis. No dose

level is signi�cantly di�erent to the control group.

In order to achieve higher power of 80% i.e. 1−β = .80, we need the total sample size

increase to 612 for blanched case (Bretz et al., 2005). After that they will probably

select mode H2
A as the best model.
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8.2 Conclusions

8.2.1 Main results

We have developed Multiple Log-likelihood Test(MLT) with FWER controlled

under di�erent order restrictions. For MLT method, the penalty term is also the

critical value of a test, so it selects the model and controls the α rate at the same

time. We can consider it as a bridge between contrasts method and IC method.

2 ∗ (MLT (Hj
A)−MLT (H0)) ≥MCT (Hj

A)2 (8.1)

MLT, which is identical to MCT for normal and binomial data in order restricted

problem, with lower α (α ≈ 25%) rate, can be used for model selection for 3 types:

Many-to-one (Simple-tree), Change-point and Simple-order.

MCT de�nes di�erent contrasts for all elementary alternative models and tests all of

them in a multiple contrast test; after rejecting the null for at least one alternatives,

selects the one with the largest test statistics. While, AIC, MHIC, ORIC-lMLE

and MLT method use Information Criterion and select the models with the largest

adjusted log-likelihood.

8.2.2 The relationship

The relationships among MCT, MLT and ICs can be described in detail as following:

MLT and MCT

The ICs from MLT and the test statistics of MCT satisfy equation (8.1) under the

alternative model.

Under Single Change-point order restriction, the condition in Equation 5.46 is sat-
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AIC LRT

MCTORIC

gMLE

MHIC
SLE

lMLE

MLT

Figure 8.3: The relationship of test-based method, model-based method and our
new method. The new creations are marked in bold
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is�ed and the equality holds

2 ∗ (MLT (Hj
A)−MLT (H0)) = MCT (Hj

A)2 (8.2)

The critical value of MLT using SLE, can be calculated from chi-square distribution

z1−α = 0.5Z2
q,1−α (8.3)

Zq,1−α is the α quantile for q-variate normal distribution.

MLT and ICs

For given null model the ICs of AIC, ORIC-lMLE MLT and MHIC have the following

relationship

MLT (H0) = MHIC(H0) = AIC(H0) = ORIC − lMLE(H0) (8.4)

For given elementary alternative model the ICs of MLT and MHIC have the following

relationship

ORIC − lMLE(Hj
A) ≥MHIC(Hj

A) = MLT (Hj
A)− 1.5 + z1−α (8.5)

For given elementary alternative model under Single Change-point order restriction,

the ICs of MLT and MHIC have the following relationship

AIC(Hj
A) + 0.5 = ORIC − lMLE(Hj

A) = MHIC(Hj
A) = MLT (Hj

A)− 1.5 + z1−α

(8.6)
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The Bridge

Using the relationship given above we have

2 ∗ ((ORIC − lMLE(Hj
A) + 1.5− z1−α)−ORIC − lMLE(H0))

≥2 ∗ (MLT (Hj
A)−MLT (H0))

≥MCT (Hj
A)2 (8.7)

Under Single Change-point order restriction, the condition in Equation 5.46 is ful-

�lled and the equality holds.

Outlook

This bridge can be extended to any MCT that uses ordered contrast. For any

MCT, we can use the same SLE to build a Multiple Likelihood Test, which is test-

based model selection procedure and has similar power behavior as the correspond

MCT. Furthermore, we can use the same SLE to build Mi and Hothorn Information

Criterion, which has higher correct model selection rate than others, to do model

selection.

For further development of this extension and power estimation, we need a powerful

software which can calculate weighted multivariate chi-square distribution.

For small sample size problems, the variance estimators and con�dence intervals

could have be improved by using Add-4-method (Schaarschmidt et al., 2009).
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