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Our great discovery was this:
God is Love, God is a Father!

Our heart opened up and reached out to Him
who loves us and makes of us
the very object of His love,
who even “counts the hair on our head”.

Nothing happens without His consent:
happy or sad circumstances acquire a new meaning.

We cannot fear anything anymore.

We find a new hope, a new strength,
a new confidence:
we experience the Love of the One
who follows the history of mankind
as well as the small history of each one of us
with an immense Love.

All this is God’s gift which makes us shout:

"We believe in Love”.

from Chiara Lubich
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Prof. Dr. Haihui Wang.
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posters (ICIM9, Lillehammer, Norway) was awarded as best poster in July 2006 and
in June 2008 I obtained the Zonta Award for Young Scientists for excellent scientific
performance and outstanding voluntary service. The following statement will point
out my contributions to the particular research articles included in this thesis. The
thesis comprises six selected research articles. Three of them are written by myself
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ment during the preparation of publications from my co-authors, particularly from
Dr. Armin Feldhoff, Dr. Mirko Arnold and Prof. Dr. Jiirgen Caro.

Two articles studying the synthetic process of (Bag 5Srg5)(FegsZng2)O3_5 perovskite-
type oxide (BSFZ) are presented in chapter 2. The first article, How (Bag5Sr05)(Feos
Zng2)O0s—s and (BagsSro5)(CopsFeyo)Os_s perovskites form via an EDTA /citric acid
complexing method, was written by myself. All experimental results on BSFZ and data
interpretation were done by me. I acknowledge the helpful cooperation with Dr. Armin
Feldhoff on transmission electron microscopy (TEM). He introduced me to all TEM
techniques and helped with any occurring problem. The contribution of Dr. Mirko
Arnold was the X-ray diffraction data of (Bag;Srg5)(Cops Fega)Os—s (BSCF). Addi-
tionally, I obtained support with the manuscript preparation from all co-authors.

The second article, The sol-gel synthesis of perovskites by an EDTA /citrate com-
plexing method involves nanoscale solid state reactions, was written by Dr. Armin
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sample preparation of sols, gels and powders, and the X-ray diffraction measurements
and interpretation were done by me. Furthermore, I performed the thermodynamic
experiments and calculations and I contributed to the manuscript preparation. The
provision of a vacuum apparatus for the decarbonation measurements by Dr. Sebas-
tian Hein from the Institute of Inorganic Chemistry of the Gottfried Wilhelm Leibniz
Universitdat Hannover is appreciated.

The third chapter presents the impact of grain size and grain boundaries on the trans-
port properties of electronic and ionic charge carriers in BSFZ and BSCF. The first
article, Influence of grain size on the orygen permeation performance of perovskite-type
(Bao 5S105)(Feg.sZng.2)Os—5 membranes, was written by myself and all investigations
and data interpretation were done by me. I acknowledge the fruitful discussions with
Dr. Mirko Arnold and Dr. Armin Feldhoff during manuscript preparation.




The elaboration of the second article in this assembly, Grain boundaries as barrier
for oxygen transport in perovskite-type membranes, was done together with Dr. Mirko
Arnold, Konstantin Efimov and Dr. Armin Feldhoff. The powder preparation, scan-
ning electron microscopy (SEM) along with the determination of grain size distribution
and the differential scanning calorimetry (DSC) were conducted by Konstantin Efimov
and me in equal shares.

The following two articles presented in chapter 4 comprehend the investigation of the
dependence of phase stability on valence and spin state for BSFZ and a (Bag5Sr¢5)
(Fep_, Al,)O3_s perovskite system with previously unreleased composition. The first
article, Spin-state transition of iron in (BagsSrys)(FeosZng2)0s_s perovskite, is the
result of an efficient cooperation of many outstanding scientists. I am very glad to
have contributed to the excellent in situ EELS investigations of Dr. Armin Feldhoff
with sample and standards preparation and complementary investigations, which were
SEM, differential thermoanalysis (DTA), thermogravimetric analysis (TGA) and (in
situ) XRD. I am grateful to Prof. Dr. Harald Behrens from the Institute of Mineralogy
at the Gottfried Wilhelm Leibniz Universitdt Hannover for putting his high pressure
apparatus at my disposal and offering therefore, the possibility of the preparation
of stoichiometric SrFeOg3 by filling the lattice with additional oxygen. I appreciate
the possibility of cooperation with Dr. Ulrich Vogt for the measurements of the co-
efficient of thermal expansion with dilatometry, which were done by myself, at the
Swiss Federal Laboratories for Materials Testing and Research (EMPA) in Diiben-
dorf, Switzerland.

Within this chapter, the second article, Aluminum doped perovskites as high per-
formance oxygen permeation materials, presenting a novel perovskite material with
aluminum doping was written by me. The development of this material was my idea
and sample preparation and TEM along with energy-dispersive X-ray spectroscopy
(EDXS) were conducted by myself. I kindly acknowledge the fruitful cooperation
with Dr. Mirko Arnold on the Rietveld refinements, with Prof. Dr. Vladimir Sepeldk
on Mossbauer spectroscopy and Dr. Armin Feldhoff on EELS and manuscript prepara-
tion. All other measurements and calculations included in the article were conducted
by Fangyi Liang under my supervision.
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Abstract

The presented thesis comprises six original research articles on the solid state chem-
istry of selected cubic perovskite-type oxides. Cobalt containing mixed conducting
perovskite-type materials like (Bag 5Sro5)(CopsFeg2)Os_5 (BSCF) show exceptionally
high oxygen fluxes. But serious long-term stability problems in the intermediate tem-
perature (IT) range of 500-800 °C and a high coefficient of thermal expansion due
to the flexible redox behavior of cobalt are reported. Thus, a great effort is put
into the development of cobalt-free perovskite-type oxides. This thesis presents re-
sults concerning two novel promising cobalt-free perovskite materials containing iron,
zinc or aluminum with the stoichiometries (BagsSrg5)(FegsZng2)Os_s (BSFZ) and
(Bag5Sro5)(Fe;_Al,)O3_s (BSFA). For an accurate atomic level understanding of
the solid state chemistry integrative investigations, like oxygen permeation or X-ray
diffraction, were combined throughout the whole thesis with microscopic studies de-
rived from analytical electron microscopy.

The sol gel-based synthesis of the BSFZ perovskite-type oxide is presented in chapter 2
and compared to the first formation steps of BSCF. The nanometer-scale solid state
reaction between the finely dispersed crystalline intermediates was examined. They
were identified as mixed carbonate and mixed spinel reacting over a stuffed tridymite
structure, a spinel, and ZnO to the final BSFZ perovskite-oxide. The profound know-
ledge of the perovskite formation process opens new ways to engage the microstructure
of the underlying ceramic material. For example in the way, that the common calci-
nation temperature for BSFZ can be decreased by 200 °C avoiding presintering.
Chapter 3 considers the transport properties of electronic and ionic charge carriers in
BSFZ and BSCF in dependence of the ceramic’s microstructure. The grain size distri-
bution in the green compacts can be controlled by variation of calcination temperature
in powder synthesis, and in the sintered membranes during ceramic production by vari-
ation of sintering time or using liquid phase sintering with BN as sintering aid. Grain
boundaries in the membranes were found to be atomically thin and no amorphous or
interfacial phase occurred. The oxygen permeation flux was lowered proportionally to
the abatement of the average grain size. Larger grains in the sintered ceramic and a
homogeneous grain size distribution are favorable for the oxygen permeation. Grain
boundaries were identified as barriers for the bulk diffusion and thus for the oxygen
permeation. BSFZ and BSCF are high mobility materials, but the transport rate of
the oxygen permeation is limited predominantly by bulk diffusion.

The dependence of phase stability on valence and spin state for BSFZ and BSFA
are investigated in chapter 4. An excellent phase stability demands a tailoring which
enables pure high-spin states of the polyvalent ions, even if mixed valence states are
present. A combination of in situ electron energy-loss and Mossbauer spectroscopy
disclosed the redox behavior of iron in BSFZ during heating. A partial reduction
of iron from a mixed valence state of Fe'™ (high-spin) and Fe3* (low-spin) at room
temperature to Fe*™ (high-spin) during heating was revealed. The gradual transition
of the valence and spin state takes place at around 500 °C and thus, BSFZ is a highly
attractive ceramic for I'T applications. In BSFA the iron species are both in high-spin
state already at room temperature. (BagsSrg5)(FepgAlg1)Os_s shows the highest oxy-
gen flux for all so far published iron and aluminum containing perovskites. This new
composition with a less flexible redox behavior and a stable high-spin configuration of
iron is expected to show outstanding performance for the IT range.




Keywords: Perovskite - Microstructure - Electron Microscopy
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Zusammenfassung

Die vorliegende Arbeit beinhaltet sechs Forschungsarbeiten zur Festkorperchemie aus-
gewahlter kubischer perowskitartiger Oxide. Kobalthaltige gemischtleitende Oxid-
keramiken wie (Bag5S1¢.5)(CogpsFep2)0s3_s (BSCF) weisen zwar hohe Sauerstofffliisse
auf, doch bei Untersuchungen der Langzeitstabilitéit zeigen sich Probleme im mittleren
Temperaturbereich von 500-800 °C und der thermische Ausdehnungskoeffizient ist we-
gen des flexiblen Redoxverhaltens des Kobalts sehr hoch. Deshalb wird zur Zeit mit
grofem Aufwand an der Entwicklung neuer kobaltfreier Materialien gearbeitet. Diese
Arbeit stellt Ergebnisse zu zwei neuen viel versprechenden eisen-, zink- oder alumini-
umhaltigen Oxiden mit den Stochiometrien (BagsSrgs)(FegsZngo)Os s (BSFZ) und
(Bag5Sro5)(Fe;_Al,)O3_s (BSFA) vor. Fiir ein Verstdndnis bis zur atomaren Ebene
wurden integrative und mikroskopische Untersuchungsmethoden kombiniert.

Die Sol-Gel basierte Synthese des BSFZ-Perowskiten wird in Kapitel 2 erlautert und
mit der von BSCF verglichen. Die Festkorperreaktion zwischen den feinverteilten
kristallinen Intermediaten wurde bis zur Nanometerebene untersucht. Die Interme-
diate wurden als gemischtes Karbonat und gemischter Spinell identifiziert, die iiber
einen gestopften Tridymit, einen weiteren Spinell und Zinkoxid zum BSFZ reagieren.
Das Wissen um die Perowskitbildung eroffnet neue Wege, um in die Mikrostruktur
der spéteren Keramik einzugreifen. Zum Beispiel konnte die Kalzinationstemperatur
um 200 °C herabgesetzt werden, um das Vorsintern zu verhindern.

Kapitel 3 handelt von den Transporteigenschaften der elektronischen und ionischen
Ladungstriger im BSFZ und BSCF in Abhéngigkeit von der Mikrostruktur. Die
Steuerung der Korngroflenverteilung im Griinkorper wird ermoglicht durch die Vari-
ation der Kalzinationstemperatur und in den gesinterten Membranen durch die Vari-
ation der Sinterzeit oder durch die Nutzung von Fliissigphasensintern mit Bornitrid
als Sinteradditiv. Korngrenzen innerhalb der Membran sind atomar diinn und es
treten keine amorphen Grenzflichenphasen auf. Der Sauerstofffluss nimmt propor-
tional mit der Verkleinerung der Korngréfien ab. Grofie Kérner in der gesinterten
Keramik und eine homogene Korngréfenverteilung sind also vorteilhaft fiir die Sauer-
stoffpermeation. BSFZ und BSCF sind Materialien mit grofler Sauerstoffmobilitét,
wobei der Sauerstofftransport bei den hier verwendeten Membrandicken hauptséch-
lich durch Diffusion limitiert ist.

Die Abhéngigkeit der Phasenstabilitdt von der Valenz und dem Spinzustand fiir BSFZ
und BSFA werden in Kapitel 4 untersucht. Eine exzellente Phasenstabilitat wird nur
erreicht, wenn auch bei gemischten Valenzen der reine High-Spin-Zustand der poly-
valenten Tonen moglich ist. Die Kombination von In-situ-Elektronen-Energieverlust-
und Mdossbauerspektroskopie offenbaren das Redoxverhalten des Eisens in BSFZ beim
Erhitzen. Die partielle Reduktion des Eisens von einem gemischten Fe** (high-spin)-
und Fe?" (low-spin)- Valenzzustand bei Raumtemperatur zu Fe®* (high-spin) beim
Erhitzen wurde festgestellt. Der graduelle Ubergang des Valenz- und Spinzustandes
findet bei etwa 500 °C statt und macht BSFZ damit zu einem hoch attraktiven Mate-
rial fiir die Anwendung im mittleren Temperaturbereich. Im BSFA liegen die Eisen-
spezies bereits bei Raumtemperatur beide im High-Spin-Zustand vor. BSFA zeigt die
hochsten Sauerstofffliisse von allen bisher veroffentlichten eisen- und aluminiumhalti-
gen Perowskiten. Von dieser neuen Zusammensetzung mit weniger flexiblem Re-
doxverhalten und stabiler High-Spin-Konfiguration des Eisens wird eine aulergew6hn-
liche Leistungsfahigkeit im mittleren Temperaturbereich erwartet.
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Chapter 1

Guidelines

1.1 Perovskite-type oxides

1.1.1 Introduction to the topic

In November 2008 the International Energy Agency released the actual World Energy
Outlook 2008 [1,2] and declared that current energy trends are patently unsustainable:
socially, environmentally and economically. Oil will remain the leading energy source,
but the era of cheap oil is over. Oilfield decline is the key determinant of investment
needs, because the oil and gas industry is undergoing lasting structural change, with
national companies in the ascendancy (80% of production in 2030). It is also now well
established that global warming, due to effluent gases emission and CO; in particu-
lar, is happening. To avoid abrupt and irreversible climate change we need a major
decarbonisation of the world’s energy system. Limiting temperature rise to 2 °C will
require significant emission reductions in all regions and technological breakthroughs.
The global warming situation is worsened by the continuously increasing power gen-
eration, since the world population keeps increasing at 1.2-2% per year [1-3].

These observations demonstrate that interest will rapidly increase regarding energy
related environment concerns (Fig.1.1) and that energy is one of the main factors that
must be considered in discussions of sustainable development. In response to the criti-
cal need for a cleaner energy technology, some potential solutions have evolved includ-
ing energy conservation through improved energy efficiency, a reduction in the fossil
fuels and an increase in the supply of environmentally friendly energy forms. This is
leading to the use of renewable sources (water, sun, wind, biomass, geothermal, hydro-
gen) as well as technologies and an alternative to standard sources of energy: the fuel
cells. A fuel cell is an energy conversion device that generates electricity and heat by
electrochemically combining fuel (hydrogen) and oxidant gases (oxygen from the air)
through electrodes and across an ion conducting electrolyte. The principal character-
istic of a fuel cell is its ability to convert chemical energy directly into electrical energy
giving much higher conversion efficiencies than any conventional thermo-mechanical
system. The electrical efficiencies of fuel cells are superior to that of heat engines and
the overall efficiency in the case of cogeneration of heat and electricity reaches 80%
and higher for solid-oxide fuel cells (SOFCs) [4]. Thus, fuel cells are extracting more
electricity from the same amount of fuel and operate in the case of hydrogen as fuel
without combustion, so they are virtually pollution free. The emission of fuel cells
running on hydrogen derived from a renewable source will be nothing but water va-
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por. The fuel cell does not run down or require any recharging, unlike a battery it will
produce energy as long as fuel is supplied. Fuel cells are presently under development
for a variety of power generation applications.
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Figure 1.1: World energy demand (in Mtoe: Million tonnes of oil equivalent) expands
by 45% between now and 2030 with an average rate of increase of 1.6% per year [1].

In 1839 Sir William Grove, a British lawyer and physicist, created the first fuel
cell type based on reversing the electrolysis of water [5]. Ceramic fuel cells came much
later and began with Nernst’s discovery of solid oxide electrolytes in 1899 [6] and
the operation of the first ceramic fuel cell at 1000 °C by Baur and Preis in 1937 [7].
Today, fuel cells are common in spaceflight, transportation and make sense for use
as home power generation, large power generation and even as portable power for
battery replacement [8]. They are sorted by their operating temperature and their
classification is generally done according to the nature of the electrolyte used. In
solid-oxide fuel cells the electrolyte consists of an oxygen ion conducting ceramic like
yttria-stabilized zirconia (YSZ) and they are operated in a wide temperature range
(500-1000 °C). The currently most widespread and investigated anode material for
the use with hydrogen as fuel is a nickel/YSZ cermet. The state-of-the-art cathodes
are (La,Sr;_,)MnO;_s for SOFCs operating at high temperature i.e. 800-1000 °C,
or mixed conducting (La,Sri_,)(Co,Fe;_,)O3_s for intermediate temperature opera-
tion, i.e. 500-800 °C. Among the variety of alternative materials, (Sm,Sry_,)CoO3_4
and (Ba,Sr1_;)(Co,Fe;_,)O3_5 are perovskites that show very good oxygen reduction
properties [9]. Perovskites are not only employed as cathode, but also as electrolyte or
anode materials and even full ceramic intermediate-temperature solid-oxide fuel cells
(IT-SOFCs) are possible [10-14].

In addition to the application in SOFCs ceramic membranes based on mixed ionic-
electronic conductors (MIECs) with perovskite structure are used in many other in-
dustrial processes, where the supply or removal of oxygen to or from reaction mixtures
with high selectivity and oxygen fluxes is needed. The separation of oxygen from air
by ceramic membranes is a key technology. Perovskite-type oxides of the composi-
tion ABOj3 can host many different cations on the A- and B-sites that allow tuning
conductivities from almost pure electronic to almost pure ionic (Figure 1.2, a de-
tailed description of the structure will be provided in section 1.1.2). Thus, numerous

2



1.1. Perovskite-type oxides

applications of MIECs with different elemental compositions have already been re-
ported, e.g. separation of oxygen from air, partial oxidation of carbon hydrides and
oxygen-enrichment in air [15-18|. Furthermore, perovskite materials offer in addition
to oxygen separation membranes even a wider range of application in many different
fields, which are listed in Chapter 2.2. Therefore, they have attracted much interest
in the last two decades, and it is likely that perovskite-type membranes will find their
way into the chemical process technology in the near future [15,19].

Figure 1.2: Structure of perovskite-type oxide.

In the large field of perovskite materials, some materials have stood out due to
their exceptionally high oxygen fluxes and excellent phase stability. One of the high-
est oxygen permeation fluxes reported so far for a perovskite membrane exhibits the
(Bag 5Sr0.5)(CogsFeg2)O03_s perovskite-type oxide (BSCF), which is under intense in-
vestigation [10,20-25]. But recently, serious stability problems for long-term peri-
ods with cobalt containing materials in the I'T range below 900 °C due to the spin-
state transition of the cobalt are discussed in the literature [26,27]. Therefore, a
great effort is put into the search for alternative materials and the development of
cobalt-free perovskite-type oxides. This thesis presents results concerning two novel
promising cobalt-free perovskite materials of A//B//HI/IV(Q, s type containing iromn,
zinc or aluminum with the stoichiometries (Bag5Srgs5)(FegsZng2)Os_s (BSFZ) and
(Bag 5Srg5)(Fe;_,Al,)O3_s (BSFA). Doping of the B-site of the perovskite structure
with a metal with fixed valence state like the divalent zinc or trivalent aluminum leads
to the diminution of non-stoichiometric oxygen variations and a more stable redox be-
havior of the material. The lattice expansion caused by the variation of temperature
or chemical oxygen potential is reduced, but the oxygen permeability due to higher
ionic conductivity improves. The BSFZ perovskite-type material was recently devel-
oped in our group to present an alternative to BSCF [28]. It showed high oxygen
permeation fluxes (2.55 mL min~! cm™ in the partial catalytic oxidation of methane
to syngas (POM) for 1.25 mm thick membrane disks) and an excellent phase stability
under low oxygen partial pressures (pOy; < 1x107® Pa in a 2% Hy-Ar atmosphere).
Furthermore, Wei et al. demonstrated the use of BSFZ as a cathode material in an
IT-SOFC at 500-650 °C at power densities of up to 180 mW cm~2 and quantified
the polarization resistances of symmetrical BSZF cathodes in air to be 0.23 € cm?,
0.48 2 cm?, and 1.06 2 cm? at 700 °C, 650 °C, and 600 °C, respectively [29,30].
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Extensive research on BSFZ was conducted and the results are presented in the follow-
ing chapters. In chapter 2 and 3 BSFZ was investigated in comparison to BSCF with
regard to the synthetic process as well as to the influence of grain size distribution and
grain boundaries on the oxygen permeation performance. Chapter 4 presents the char-
acterization of the novel BSFA material and the findings concerning the spin states
of iron in BSFZ and BSFA. These studies were aimed at the correlation of general
and broad results obtained for the whole sample e.g. X-ray diffraction or oxygen per-
meation measurements with microscopic findings e.g. with transmission or scanning
electron microscopy.

1.1.2 Perovskite structure and tolerance factor

To achieve a high oxygen permeation performance of ceramic materials perovskite-
type oxides of the composition ABOj3 are often chosen. The flexibility of perovskites
in accommodating a broad range of atomic substitutions on both A- and B-sites,
provides a substantial opportunity for probing correlations between structure, bulk
chemistry, and properties. The A- or B-sites can contain mixtures of two or more
different atoms, what provides the control of the positional ordering of the cations in
complex perovskites and the composition can be designed to stabilize new systems for
potential application. The structure of perovskites can be described as a cubic closed
packing of the A and oxygen ions with the B ions in the octahedron vacancies, shown in
Figure 1.2, or in terms of close packing of AOj layers, where the B-site cations occupy
100% of the resultant BOg oxygen octahedra (Figure 1.3a and Figure 1.4a). When
the AOj3 layers are arranged in cubic close packing, the BOg octahedra are connected
exclusively through corner sharing without tilting, and the structure is termed a cubic
perovskite. In an ideal cubic perovskite the A and B cations realize their equilibrium
bond distances to oxygen without inducing any distortion of the unit cell and adopt
the cubic space group Pm3m. SrTiOs is commonly regarded as the archetypal cubic
perovksite as its structure approaches closely that of the ideal ABO3 compound.

Figure 1.3: Perspective view of perovskite structure, a) ideal cubic perovskite, b)
distorted perovskite with tilted BOg octahedra t<1 [31].

Most perovskites are considered to be ionic compounds, and the ions comprising
them can be described to a first approximation as spheres with the ionic radii r. A
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1.1. Perovskite-type oxides

good guide as to whether a given assembly of ions will adopt the perovskite structure
is the tolerance factor t by Goldschmidt [32]. Following the Pythagorean Theorem
(a® + b* = ¢?), where a or b is the distance BOB (2 x (r5 +10)) and c is the distance
OAO (2x(r4 +10), illustrated in Fig. 1.2), the tolerance factor is defined as the sum
of the radii of the A-site cation and the oxygen ion divided by the sum of the radii of
the B-site cation and the oxygen ion multiplied by v/2. For the ideal cubic structure,
t should equal one. It was adopted to double perovskites by Anderson [33] and can
be calculated for ABO3 with weighted arithmetic mean values for the cationic radii 7
according to Feldhoff et al. [34]:

[2 X (Fa+710)]> =2 X [2x (T +10)]? (1.1)

2X (Fa+70) =V2x2x (Fg 4 10) (1.2)
_ TaA+T0

t= VIx [+ 7o) (1.3)

In many perovskites the A-O and B-O bond lengths are geometrically incompatible,
and lower symmetry structures are stabilized. When the A cation is undersized, t < 1,
the A-O distance can be shortened, and the coordination number of the A cation can be
lowered through a correlated tilting of the surrounding BOg octahedra (Figure 1.3b).
When the tolerance factor is >1, the AOj layers typically adopt mixed cubic (¢) and
hexagonal (h), or pure hexagonal, close-packed stacking sequences. The introduction
of hexagonal stacking is accompanied by face-sharing of adjacent BOg octahedra and
by the formation of 90° BOB bond angles (Figure 1.4b). The more t deviates from
unity, the less stable is the cubic perovskite [26,31,35,36].

: A A d

h o i @ i ° i
Figure 1.4: Perovskite structures viewed along (110): a) Ideal cubic with cubic close

packing of AOj layers and resultant corner sharing of BOg octahedra, b) t>1, cubic
(c) and hexagonal (h) layers are indicated (A cations are omitted for clarity) [31].
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Thus, the calculation of the tolerance factor for a desired perovskite composition
is a first step to predict the structure. This was done for the perovskites included in
this thesis at room temperature according to the weighted ionic radii presented by
Shannon [37,38] for both the cations of the B-site as well as for the A-site. Iron and
cobalt were determined for each composition to be in 2+, 3+ or 44 high-spin (HS)
or low-spin (LS) state, aluminum in 3+, and zinc in 2+ oxidation state as reported
in [39], chapter 2.3, and chapter 4.3 for the stoichiometries:

o (BaZt Srit ) (Cod o Col b Fedt7%) 0y 5 for BSCF with t = 1.004
o (Ba2t,Srat))(Fey b Fedt®7n2%,)0y.; for BSFZ with t = 1.030

o (BaZt,Sr2t ) (Fetl P Fedt:HI ARt 10, for BSFAO.1 with t = 1.025

Hence, cubic perovskite structures are expected for all three compositions and
these calculations were verified, after the structures were found to really be cubic
with Pm3m symmetry (chapter 2.3, 4.3 and [40]). However, this is only a simple
approximation in order to provide an idea which structure might be formed, and a
very important issue has not been taken into account. Importantly, the value of t is
an ambiguous guide to structural type, and is certainly not an indicator of the space
group that a particular perovskite will adopt, because factors other than ion size, e.g.
degree of covalency, metal-metal interactions, Jahn-Teller and lone pair effects play a
role in determining the space group and structure [36]. This aspect will be discussed
further in chapter 4.

Table 1.1: Effective cationic radii based on r(Y/0%*") = 140 pm [37,38] with coor-
dination number (CN) and for iron and cobalt in high-spin (HS) and low-spin (LS)
states.

Ton CN  Ionic radius [pm]
Ba?* 12 161
Sr2t 12 144
Zn** 6 74
AT 6 93.5
Fe't, HS 6 98.5
Fe’* HS 6 64.5
Fe* LS 6 55
Co** HS 6 61
Co*, LS 6 54.5
Co?**, HS 6 74.5
Co*t LS 6 65
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1.2 Synthetic process and membrane preparation

1.2.1 Powders

The characteristics of the powder have a remarkable effect on subsequent process-
ing, like consolidation of the powder to a green body and firing to obtain the desired
microstructure. Thus, powder synthesis is very important to the overall fabrication
of ceramics (for more details see chapter 3). First, the choice of a powder prepa-
ration method should be considered, which will depend on the production cost and
the capability of the method for achieving a certain set of characteristics. The meth-
ods available for powder preparation can be classified into gas-phase reactions, e.g.
chemical vapor deposition, solid state reactions, e.g melt casting or firing of powders,
and liquid precursor methods, e.g. sol-gel processing [41-43]. All three methods are
applied for perovskite synthesis, but in our particular case we chose the sol-gel pro-
cessing as synthetic method. This preparation from liquid solution was aimed at the
production of a homogeneous, high-purity powder with exactly defined composition
for improved sinter abilities with rather low calcination and sintering temperatures.
A schematic flow chart is displayed in Figure 1.5.

Ba(NOs), + Sr(NO,), + Fe(NO,)s
+ Zn(NO3),/ Co(NOs),/ AI(NOS),

Addition of EDTA, l pH=9
citric acid, NH;-H,0

Sol
Condensalion l T=150"°C
ef]]
T,=700°C
Thermal treatment 1 !
l T, =700-950 °C

(Bag 5Srg5)(FeyZn/Co/Al )05 5 powder

perovskite compact

Pressure-less sinfering l T = 1150 °C

perovskite membrane

Cold pressing F =140 kN

Figure 1.5: Flow chart of the sol-gel synthetic process for the perovskite preparation.

The synthesis of perovskite-type oxides from stoichiometric metal nitrates using a
citrate process was first introduced by Marcilly et al. in 1970 [44]. Variants of this
sol-gel procedure are widely used today and in this work a modification by Shao et
al. with the addition of EDTA to the reaction in order to improve the dispersion
of the metal cations was applied [20]. The liquid solution of the metal nitrates is
transformed into a solid over sol, gel and calcination. The metal compounds are
dispersed as very fine particles in the liquid (sol) and are converted into a highly
viscous mass (gel). It is common to add a complexing agent like ethylene-diamine-
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tetraacetic acid (EDTA) and a polymerization agent like citric acid. EDTA is chosen
because of its high complex formation ability (section 2.3, Table 1), which avoids
the partial segregation of the metal ions [45]. It offers six coordination sites for a
octahedral complexation of the cation. The condensation of the citric acid leads to
the formation of the polymerized network with particle sizes up to 10 nm. With
increasing temperature to 150 °C mainly water and ammonia are evaporated and a
three dimensional network is formed. After this gelation the metal complexes remain
finely dispersed in a polymeric matrix, which was revealed by scanning transmission
electron microscopy (STEM) in section 2.3, Figure 1. Afterwards, the gel is calcined
firing the organics and the solid is formed over solid state reactions. The decrease
in nitrogen and oxygen content during drying of the gel was monitored by energy-
dispersive X-ray spectroscopy (EDXS). Figure 1.6 shows the drop of N-K, and O-K,
X-ray lines relative to the Fe L, line that refers to a non-volatile constituent of the
gel [34].

——150°C:25h
——200°C:10h
——400°C: 2h

oK

Intensity [arb. units]

300 400 500 600 700 800
X-ray energy [eV]

Figure 1.6: EDX spectra monitoring the decrease of nitrogen and oxygen content of
the gel.

Despite the common use of sol-gel processes, details of the formation of the crys-
talline products are not investigated so far. Thus, the nano-scaled solid state reac-
tions of the intermediates are discussed extensively in chapter 2. Section 2.2 points
out the first crystalline intermediates in the synthesis of BSFZ compared to BSCF. A
mixed carbonate (Bag5Sr5)CO;3 as well as a mixed spinel (ZnggFeg4)FesO4 (BSFZ)
or (FepCop4)Co204 (BSCF) are the dominant phases present in this stage of the
reaction. When the reaction between the mixed carbonate and the mixed spinel
proceeds, it was found to be more intricate. A more detailed investigation of the in-
termediate phases in BSFZ was done in section 2.3 showing the formation of a stuffed
tridymite structure v-(Bag551r¢5)Fes0y, a ZnFe,Oy4 spinel and ZnO. Thermodynamic
measurements revealed that barium and strontium oxides are not evident during the
perovskite formation due to a higher decomposition temperature of the nano-sized
mixed carbonate than the perovskite formation temperature. The sol-gel method was
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found to be an excellent method to produce finely dispersed powder particles, which
can easily react to form the final solid. Particles on the nanometer scale are present
in the solid state reaction and thus, very thin product layers are formed during the
synthesis (section 2.2, Figure 1 and section 2.3, Figure 8). A solid state reaction in the
classical sense occurs when local transport of matter is observed in crystalline phases.
If the reactants are brought together at constant pressure and temperature in a closed
system, then the reaction will take place spontaneously if the Gibbs free enthalpy of
the system is thereby decreased. The transport of matter in the solid state, and thus
the reactivity of solids, are dependent on the mobility of the individual particles (i.e.
Ba, Sr, Fe, Zn, O) in the lattice. Since an ideally ordered crystal could only be moved
as a whole, and the motion of individual ions from their lattice sites would not oc-
cur, every case of mass transport in a solid phase directly depends on deviations from
ideal crystalline order. The higher the atomic disorder, the higher is the corresponding
transport coefficient. If two substances react with one another to form one or more
product phases which are separated from the reactants and from each other by phase
boundaries, then a heterogeneous solid state reaction occurs [42,46]. Following this
definition the perovskite formation is a heterogeneous reaction and the mass transport
can take place across phase boundaries between the carbonate, spinel, tridymite and
oxides, which exhibit high atomic disorder.

Fe3* + Zn2+

tridymite/

spinel/ carbonate
ZnO

Fed+ + Zn2+
Ba2+ + Sr2+

Figure 1.7: Schematic diagram showing the mechanism of formation of tridymite,
spinel and ZnO between spinel and carbonate (phase boundaries in black).

Figure 1.7 illustrates schematically how the intermediate phases (tridymite, spinel
and ZnO) are formed from the polycrystalline carbonate (BagsSrg5)CO3 and mixed
spinel (Zngg¢Feg4)FesOy. The reaction product, first the tridymite/spinel and ZnO,
second the perovskite, separates the reactants from one another, and the reaction
proceeds by diffusion of the participating components through the reaction product.
In this case the fluxes of the components in the reaction product are charged particles.
Therefore, in order to preserve local electrical neutrality, the fluxes of the different ions
must always be coupled with each other, either oppositely charged ions (Ba?", Sr?*
or Fe¥* Zn?* with O%*7) flow in the same direction (1: top of Figure 1.7), or ions
with similar charges flow in opposite directions through the reaction product (Ba®",
Sr?* against Fe*™, Zn?*) (2: bottom of Figure 1.7). It should be mentioned at this
point, that these are two possible mechanisms, since the reaction product can either
be formed on the expense of only one educt (1) or on the expense of both educts

(2) [42].
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1.2.2 Membranes

To obtain an oxygen permeable membrane from the perovskite powder, the latter
needs to be consolidated and afterwards sintered to a dense membrane. In the present
work, the BSFZ, BSCF, and BSFA powders were uniaxially pressed with 140 kN to
a green compact of ca. 1 mm thickness and 14 mm in diameter and condensed in
a pressure-less single step sintering process at temperatures close under the melting
point (ca. 1150 °C, Figure 1.5). The driving force for the sintering process is the
lowering of the free energy of the system, which can be accomplished by reducing the
surface free energy of the consolidated particles, by applying pressure or a chemical
reaction. In the following, only the effects of reducing the surface free energy will be
discussed due to the absence of an external stress or chemical reaction in the present
work. The reduction of the free energy is consistent with the variation of the free
enthalpy dG. For constant pressure dG is composed of the solid-vapor surface tension
s With the surface area A, the solid-solid boundary tension 7, with the boundary
area A, and a part for the volume of the grain boundaries in the dense body (> p1odN):

G = YA, + Yasd Ay + Y p1odN (1.4)

In the initial stage of the sintering process boundaries are formed due to the relo-
cation of powder particles, because the solid-solid boundary energy is smaller than the
solid-vapor surface energy (vss< 7). Afterwards, the porosity decreases with densi-
fication of the body (intermediate stage) and in the final stage the boundary area is
further decreased due to grain coarsening during grain growth. Thus, the change in
size and shape of the powder particles leads to a replacement of solid-vapor surface
energy with solid-solid boundary energy [41,47].

. Surface diffusion

. Lattice diffusion {from the
surface)

. Vapor transport

. Grain boundary diffusion

. Lattice diffusion (from the
grain boundary)

. Plastic flow

Figure 1.8: Mechanisms during the sintering. Only 1 to 3 lead to densification, but
all cause the necks to grow and so influence the rate of densification [41].
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As mentioned above the sintering process can be described in three stages, which
are further specified in the following part. During the initial stage the particles are
relocated and the number of next neighbors is increased. New grain boundaries are
formed and according to the two-sphere model the grain junctions are filled leading
to a neck growth between the grains and approach of the grain centers. Sintering
occurs by diffusional transport of matter along definite paths from regions of higher
chemical potential (source of matter) to regions of lower chemical potential (sink).
The six different mechanisms of sintering for a system of three particles are illustrated
in Figure 1.8: Mechanism 1 (surface diffusion), mechanism 2 (lattice diffusion), and
mechanism 3 (vapor transport) can only lead to coarsening and neck growth without
densification (nondensifying mechanisms). They reduce the curvature of the neck
surface and thus, the rate of the densifying mechanisms (4-6). Mechanism 4 (grain
boundary diffusion), mechanism 5 (lattice diffusion from the grain boundary), and
mechanism 6 (plastic flow) lead to densification. Densification and coarsening are
often discussed in terms of competing mechanisms since coarsening reduces the driving
force for the densification, which is the desired process. Up to 65% of the maximum
density are achieved at the initial stage.

The intermediate stage starts when the grains are not moving anymore due to the
highest coordination possible and the pores reached their equilibrium shape dictated
by the surface and the grain boundary tension (Figure 1.9), where v is the dihedral
angle. The pore phase is still continuous. A reduction in the pore cross section is
accomplished by steps 1, 4, 5 of Figure 1.8, whereas only steps 4 and 5 can contribute to
densification. Continuous porosity is replaced by isolated pores and the intermediate
stage is taken to end when 90% of the theoretical density is reached. When grains
start to grow at the expense of other grains and isolated pores at the grain corners are
eliminated, the sintering process reaches the final stage. The density further increases
up to 95%-98% and coarse grains form. If pores become trapped inside a grain, they
are difficult to remove from the ceramic. Thus, it is important to avoid the inclusion
of pores into the grains to achieve high density ceramics, which are therefore prepared
starting with small particles and with relatively low heating rates during the sintering
process in order to remove the pores from the solid before they are included into the

grains [41,47].
Tss ﬁ

Tsv

Figure 1.9: Equilibrium shape of a pore in a polycrystalline solid [41].

The knowledge of the sintering process is very important for the preparation of
ceramic membranes with different microstructure, what is described further in chap-
ter 3. Due to the investigation regarding the synthetic process of the perovskite
powder (chapter 2) we were able to start from smaller grain sizes for the ceramic
production and with the variation of sintering time for green compacts the grain size
of the ceramics was controlled. The impact of the changes of the grain size distri-
bution on the oxygen transport through the ceramic membranes is also discussed in
section 1.3.3 and in section 3.2. In section 3.3, we introduce the investigations on
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the liquid phase sintering of BSFZ and BSCF ceramic membranes with boron nitride
(BN) as a sintering aid with regards to controlling the grain size distribution of these
ceramics with similar relative densities. Liquid phase sintering is another way to in-
fluence the microstructure of the sintered ceramics and has been described in detail
by Rahaman [41]. It is a widespread method which is used to achieve high density ce-
ramics. Due to the introduction of a liquid phase during the sintering process, matter
transport for densification as described above is facilitated. We applied the transient
liquid phase sintering, in which the liquid is completely removed in contrast to the
persistent liquid phase sintering, where the liquid additive remains in the ceramic.

1.3 Oxygen permeation

1.3.1 Mixed ionic and electronic conductors

According to section 1.1.1 we already know that separation of oxygen from air by
ceramic membranes is a key technology and membranes based on MIECs with per-
ovskite structure are used in many industrial processes, where the supply or removal of
oxygen to or from reaction mixtures with high selectivity and oxygen fluxes is needed,
e.g. in SOFCs. To achieve good oxygen permeation we use perovskites which have
equal amounts of barium and strontium on the A-site and iron, cobalt, zinc, or alu-
minum on the B-site. The replacement of the B** ion by a lower oxidation state ion
causes an oxygen deficit § and thus oxygen vacancies in the perovskite structure are
caused (Figure 1.10a). This is the property which is most important for the oxygen
and electron conductivity.

Figure 1.10: Oxygen vacancy Vg in the perovskite structure (a) and the mechanism
for the oxygen transport through change of places (b).

Due to the oxygen vacancies introduced in the lattice the oxygen transport occurs
through a change of places and high oxygen permeability is achieved (Figure 1.10b).
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Using the Kroger-Vink notation for structure elements [48] and the assumption that
the oxygen deficit d is determined only by the presence of double ionized lattice oxygen
vacancies the oxygen insertion during permeation can be described as:

Oqg) + 2V 5 + 4By = 205 + 4B, (1.5)

The oxygen removal on the other side of the membrane follows the equation read
in the reverse direction [49]. The oxygen transport can also be described in terms
of electron holes h' and delocalized electrons denoted as e~ with the equations at the
bottom of Figure 1.11. The driving force for the oxygen transport in one direction
through the membrane is the chemical potential gradient Voo along the membrane.
For example one side of the membrane is exposed to air with a high oxygen partial
pressure p4 and the other side to helium with a low oxygen partial pressure of pp. The
chemical potential on the air side ug, is much higher than on the permeation side (15,)
and thus the oxygen ions are incorporated into the perovskite lattice and permeate
through the membrane by change of places. The oxygen flux is charge compensated by
the simultaneous counteracting flux of delocalized electrons occupying energy states
in electron bands (ambipolar diffusion).

Air side membrane Permeation side
Uy = p + RT<h1| L |
% y »
Vi
.“;, = .ug + RT-l.u| £ |
t] a2 | P
07 (Og)
b= ¢ o=t s e s e o '
ree
I (9]
4 ................. -
h*
fom o o s o o o mws mm owmw ’
-
) : e L -
oxygen insertion oxygen removal
Y 0,+V5 = 0p+ 208 Op+ 20 = Y, 0,475
| I " x
0 d

Figure 1.11: Principle of oxygen permeation through a perovskite membrane. Voo
is the chemical potential gradient between the air side with high oxygen partial pres-
sure p4 and the permeation side with low oxygen partial pressure pp. The chemical
potential on the air side j5, is much higher than on the permeation side (u5,).

The transport of oxygen through MIECs is commonly described using Wagner’s
theory [50,51], which is restricted to the simultaneous transport of a single ionic-type
defect (ionic conductivity) and a single electronic-type defect (electronic conductivity)
that are ideally diluted and do not interact. The oxygen flux joo is dependent on
the electrical conductivity o, the ionic conductivity o;.,, and the oxygen chemical
potential poo:

. 1 Oion0el
42F2 Oion + Oel

Joz2 = Vo2 (1.6)
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This equation is valid as long as the surface exchange reactions on both sides of the
membrane are fast and therefore have no influence on the oxygen transport through
the membrane. For the chemical potential ppo a linearity is assumed and the gradient
Vo2 has to be locally constant. Integration of equation 1.6 over the thickness L
without deviation of the flux and using the equation Vyugy = % leads to the
usual Wagner-Equation (1.7), where pp denotes the oxygen partial pressure of the
low chemical potential side and p4 denotes the oxygen partial pressure of the high

chemical potential side, and L is the membrane thickness:

RT inpp ionlUe
/ ionTel_ gy npo2 (1.7)
l

Joz = _42F2L Oion T+ O¢l

npa

The oxygen ionic conductivity is much lower compared to the electronic conduc-
tivity in perovskite-type oxides according to Bouwmeester [19]. Therefore, the oxygen
ionic conduction is the rate limiting step, and equation 1.7 can be simplified to:

, A
Jo2 = —m/ TiondInpos (1-8)
l

npaA

Hence, it is important to consider the influence of the microstructure of the ce-
ramic on the oxygen ionic conductivity in the interpretation of the oxygen permeation.
Nevertheless, two different processes, bulk transport and surface exchange, contribute
to the oxygen permeation. The oxygen permeation flux is mainly dominated by the
bulk transport as long as the membrane thickness does not drop below a critical value,
which is referred to as the critical membrane thickness. Further discussion of this as-
pect will be provided in section 1.3.3 and 3.2. These considerations are important
for the comparison of permeation experiments. In order to draw meaningful con-
clusions from permeation experiments each studied membrane needs to be of equal
thickness, which should be higher than the critical membrane thickness making the
bulk transport the rate determining process.

1.3.2 Oxygen permeation experiments

The oxygen permeation was measured in a high-temperature permeation cell using
a setup as illustrated in Figure 1.12. Disc-shaped membranes were gas tight sealed
onto a ceramic tube (e.g. with gold paste). After sealing, gas flow rates were deliv-
ered to the reactor by mass flow controllers and continuously read by an on-line gas
chromatograph. Air was fed to the air side (high oxygen chemical potential) and He
and Ne as the internal standard gases were fed to the permeation side (low oxygen
chemical potential) in order to transport the permeated oxygen away from the mem-
brane and thus to maintain the gradient of the oxygen chemical potential across the
membrane. The absolute flow of the effluents rate was determined by using neon as an
internal standardization. The permeation flux through the membrane could then be
calculated by the fraction of Oy in the effluents and the determination of the effective
permeation area of the membrane. The membranes used have a diameter of 14 mm
and a thickness of ca. 1 mm. Usually, permeation experiments are conducted in a
temperature range from 750 to 950°C. For a further description of such experiments,
the reader is referred to chapters 3 and 4.
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Figure 1.12: Oxygen permeation measurement setup for disc membranes with the
high-temperature permeation cell (left), the closer look on the membrane and the
sealing (middle) and a disc membrane and the on-line gas chromatograph (right).
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1.3.3 Effect of the microstructure

This section deals with the influence of the microstructure of the ceramic membrane
on the oxygen transport through it. Perovskite-type membranes for oxygen separation
are polycrystalline and therefore consist of a large number of single crystals connected
by grain boundaries. The grain size and grain boundary distribution and inhomoge-
neous grain and grain boundary compositions have to be considered. Since amorphous
phases or inclusions at the grain boundary seem to act as high diffusivity paths [52,53],
the influence of grain and grain boundary distribution is contradictory. The influence
of microstructure cannot be generalized and clearly depends on the chemical nature
of grains and grain boundaries, the powder synthesis and the ceramic process. The
increase of grain size leads to an enhanced oxygen permeation for several materials,
but to a decrease in oxygen permeation for others (for details see section 3.2). This
contradiction might be caused by a lack of important additional information. Like al-
ready explained above, two different processes, bulk transport and surface exchange,
contribute to the oxygen permeation. The oxygen permeation flux is mainly domi-
nated by the bulk transport as long as the membrane thickness does not drop below a
critical value, which is referred to as the critical membrane thickness, L.. Membranes
need to be of equal thickness, which should be higher than the critical membrane
thickness making the bulk transport the rate determining process [54]. For surface
exchange diffusion smaller grains are favorable due to bigger surface area. Thus, in
surface exchange controlled processes an increase in oxygen permeation is expected
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with decreasing grain size. In the following, we will assume that the surface exchange
is not the rate limiting process. For bulk transport domination it is obvious that
the grain size and the proportion of grain boundaries play an important role in the
acceleration of the diffusion processes. Therefore, the oxygen transport through the
bulk has to be separated into either diffusion of oxygen in the perovskite lattice (in-
tracrystalline) or as oxygen transport across the grain boundaries (intercrystalline) as
sketched in Figure 1.13. Whether the oxygen transport through the grain boundary
leads to a higher or lower oxygen flux needs to be answered.

. space
grain charge
boundary region

Figure 1.13: Schematic diagram for the diffusion through a ceramic with scarcely
permeable grain boundaries with oxygen diffusion along vacancies in the crystal lattice

(intracrystalline) (a) or highly permeable grain boundaries with oxygen diffusion along
grain boundaries (intercrystalline) (b).

A possible explanation for the influence of grain boundaries was delivered by Maier
et al., who are engaged in the influence of crystal defects on the transport properties
in electroceramics [55,56]. They found that interfaces (e.g. grain boundaries) exhibit
their own defect chemistry and special mobilities, and hence, can provide fast path-
ways or obstacles in addition to space charge effects. Assuming an atomically thin
grain boundary between two grains, i.e. no amorphous or other interfacial phase is
present, a space-charge layer is produced on the grain boundary due to its structural
singularity. There is a differentiation between high and low mobility materials. In
high mobility materials usually the bulk structure is optimized for point defect mo-
tion and then a structural modification as occurring in the grain boundary is likely to
depress the mobility (Figure 1.13a). Whereas for materials with very low mobilities
in the bulk, any structural perturbation is likely to increase the mobility significantly
(Figure 1.13b). For acceptor doped oxides like Fe doped SrTiOs, Y-doped ZrOs or
CeQOs, a positive space charge potential occurs at grain boundaries and hence, severe
depletion effects at the grain boundary are observed [57—65]. This implies the deple-
tion of oxygen vacancies (decreasing ionic conductivity) and electron holes. At high
oxygen partial pressures the presence and mobility of both carriers is important for
an effectively neutral mass transport. This leads to a pronounced chemical resistance
of a grain boundary with respect to oxygen transport across it. Hence, the variation
of the proportion of grain boundaries provides information about the nature of the
material (low or high mobility) depending on the grain boundaries as depletion or
accumulation layers, what will be discussed in detail in chapter 3.
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Chapter 2

Sol-gel based synthetic processes

2.1 Summary

This chapter reveals the sol gel-based synthesis of the complex (Bag 5Srq5)(Feg.sZng.2)
O3_s perovskite-type oxide (BSFZ) in comparison to the first formation steps of
(Bag.5Sr0.5)(CogpsFep2)O03_s (BSCF). The advantage of the utilized sol gel-based EDTA /
citric acid complexing method is the fine-scale intermixing of the reaction partners,
which leads to a nanometer-scale solid state reaction between finely dispersed crys-
talline intermediates. Thus, it was essential to conduct an extensive transmission
electron microscopic study using high resolution (HRTEM) and energy-filtered trans-
mission electron microscopy (EFTEM), scanning transmission electron microscopy
(STEM) in high-angle annular dark-field (HAADF), selected-area electron diffraction
(SAED) and electron energy-loss spectroscopy (EELS) with an emphasis on energy-
loss near-edge structures (ELNES). These methods were accomplished by scanning
electron microscopy (SEM) and X-ray diffraction (XRD).

In the first article we determined the first crystalline intermediates in the synthesis
of the two distinct ABOj3_s perovskites to be a complex spinel of the later B-site ions
and a complex carbonate in the aragonite polymorph of the later A-site ions. This
profound knowledge of the perovskite formation process opens new ways to engage the
microstructure of the underlying ceramic material, for example in the way, that the
common calcination temperature for BSFZ can be decreased from 950 °C to 750 °C
avoiding presintering.

The second article presents a more detailed investigation of the intermediate phases
in BSFZ. The reaction between the mixed carbonate (Bag5Srg5)CO3 and the mixed
spinel (ZnggFeg4)FesO4 was found to be more intricate, as it does not lead directly
to the perovskite structure, but a stuffed tridymite structure y-(BagsSrg5)FeaOy, a
ZnFe;04 spinel and ZnO are formed. Supplementary, the question, why barium and
strontium oxides are not evident during the perovskite formation, was resolved. Ther-
modynamic measurements disclosed the decomposition temperature of the nano-sized
mixed carbonate being at about 40 °C higher than the perovskite formation tem-
perature. Hence, the described reaction sequence between spinel and carbonate over
stuffed tridymite to the final perovskite structure was confirmed.
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2.2. How perovskites form

How the (Bao 5Sro.5)(Feo.sZN02)Os.5 and (Bao sSro.5)(C0osFe0.2)Os.5
perovskites form by the EDTA/citric acid complexing method**

By Julia Martynczuk, Mirko Arnold, Haihui Wang, Juergen Caro, and Armin Feldhoff*

Nowadays, numerous perovskite materials with different
elemental compositions bear a meaning for therewith affiliated
applications.  Perovskite-based ceramics are applied for
combustion of VOCs (volatile organic compounds), vehicular
emission control, electrical pulse induced resistance-change and
electric field devices, high-frequency capacitors, plasma activation
of CO,, electro- and thermochromic devices and microwave
applications like mobile communication systems and satellite
broadcast systems'. Furthermore, there is an interest in perovskites
for the chemical synthesis of ammonia at atmospheric pressure,
ammonia oxidation and the application as nanoparticles’. The
electrochemical importance of perovskite oxides is apparent in the
case of solid-oxide fuel cells (SOFC)’. After their first
employment as cathode materials, perovskites are now used as
electrolyte and anode materials; and in the end full intermediate-
temperature SOFCs are prepared4. Ceramics with both ionic and
electronic conductivities are often of perovskite-type. The basic
work was done by Teraoka et al., who proposed (La;Sr,)(Co.
yFe,)O35 as a membrane material with an high oxygen
permeability’. The oxygen permeation property® is used for the
separation of oxygen from air, partial oxidation of methane,
ethane and propane and oxygen-enrichment in air’.

Instead of the classical solid state synthesis route, that is the
blending and firing of powdered reactants, perovskite-type oxides
of complex stoichiometries are nowadays widely synthesised by
wet chemical methods like the combined citric acid and EDTA
(ethylene-diamine-tetraacetic acid) complexing method®, that is
investigated here and was first used by Shao et al.”.The synthesis
of mixed oxides by the decomposition of complex organic
mixtures has been introduced in the 1960s by Paris et al.'’. Some
years later Marcilly et al. described the first preparation of a
perovskite-type oxide from the respective metal nitrates in a
citrate process'". Until now the single stages of the latter described
synthesis route, which maintains a fine-scale intermixing of the
cations during all processing steps, are investigated insufficiently
although this is essential to open ways to utilize the full potential
of the material and to optimize the functional properties.

In our group the novel perovskite-type material
(Bag 5Srg 5)(FegsZng,)0s.5 has been developedlz. It shows high
oxygen permeation fluxes (2.55 mL min” em™ in the partial
catalytic oxidation of methane to syngas (POM) for 1.25 mm thick
membrane disks) and an excellent phase stability under low
oxygen partial pressures (pp, < 1:10%Pa in a 2% H,-Ar
atmosphere)'*. The doping of the B site of the perovskite structure
with a divalent metal like zinc, which exhibits a constant oxidation
state, leads to the elimination of non-stoichiometric oxygen
variations and lattice expansion caused by variations of the
temperature or the chemical potential of oxygen. The procedure of
the EDTA/citric acid complexing synthesis route is usually a low
temperature heating of the sol until gelation followed by a heat
treatment resulting in a pure perovskite powder. This workflow
was interrupted by quenching samples for a stepwise structure
analysis. The relevant stages from the gel to the pure perovskite
powder are the crystallisation of the amorphous gel at about 550 to

600 °C, the initiation of the perovskite structure formation at 600
to 650 °C and the total disappearance of the intermediates at
750 °C. Due to this stepwise refinement it was possible to
determine crystalline intermediates formed during the preparation
of a (Bay sSrg5)(FepsZng,)0;.5- perovskite as a two phase mixture
of ultra-finely  dispersed (Zng¢Fe4)Fe,O4  spinel  and
(BagsSrys)CO;  carbonate in aragonite modification as
intermediates. It is interesting to note that there is obviously a pre-
arrangement in groups of cations according to the later A (barium
and strontium) and B (iron and zinc) sites in the perovskite on a
nano-scale.

This finding was verified by the following characterization
methods. First, we proof the nano-scale location of the perovskite
formation between the intermediates by imaging it in the
transmission electron microscope (TEM) for ten different
conglomerations with homogeneous results. The specimen used
was prepared like described in the experimental part of a quenched
powder calcined at 750 °C for 2h (Fig. 5¢). The exemplary TEM
bright-field micrograph images the reaction pathway from spinel
and carbonate to perovskite (Fig. 1a). Crystal sizes are of about
100 nm as is evidenced by TEM dark-field imaging. Having a
particle with spinel and carbonate crystals neighbouring, the
perovskite is formed at their expense. The identification of the
three phases was carried out by electron energy-loss spectroscopy
(EELS), energy-filtered transmission electron microscopy
(EFTEM) (Figs. lb-e) and selected-area electron diffraction
(SAED). The presence of an Fe-L,; edge and the characteristic
energy-loss near-edge structure (ELNES) of the O-K ionization
edge in the top spectrum identify the spinel (Fig. lb). The
carbonate structure is specified by the bottom spectrum using Ba-
My s white lines and different characteristics of the O-K-ELNES.
In the middle the O-K, the Fe-L,3 and the Ba-Mys edge identify
the perovskite structure. The accurate location of the different
particles is illustrated by Figs. lc-e showing high elemental
concentrations of iron and barium by bright contrast and different
colours, respectively. The particle in the middle contains a high
amount of iron (white in c, blue in ¢) but no barium whereas the
bottom particle comprises no iron but barium (white in d, green in
e). The perovskite appears with moderate bright contrast in Figs.
lc, d and a green/blue mixture in Fig. le. For a more detailed
specification, an investigation on the particular compounds was
carried out by EELS in different energy ranges.

Electron energy-loss spectroscopy offers not only information
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Chapter 2. Sol-gel based synthetic processes

about the elements contained in the compound, but also about
their chemical environment. The inelastic scattered electrons can
be resolved energy-dependant, and the resulting energy
distribution with its characteristic ionization edges and energy-loss
near-edge structures allows conclusions on the element itself and,
moreover, on its bonds to other elements'*.

|
100 nm

Figure 1. Transmission electron micrographs showing the formation
of the perovskite phase between the intermediates. a, Insight into
the  EDTA/citric acid complexing synthesis of the
(BaosSros)(FeosZno2)Oss  perovskite. Crystalline intermediates
identified as (ZnosFeo.4)Fe204 spinel and (BagsSros)CO3 carbonate
in the aragonite modification by transmission electron microscopy. b,
Identification of these three phases by electron energy-loss
spectroscopy (EELS) (top: spinel, middle: perovskite, bottom:
carbonate). c-e, Accurate location of the different particles
illustrated by energy-filtered transmission electron micrographs
showing high elemental concentrations by bright contrast (c: iron, d:
barium) or in different colours (e: blue = iron, green = barium).

The specification of the carbonate structure comes to the fore by
Figs. 2b-d showing three EEL spectra in different energy ranges.
Two peaks in the C-K near-edge structure (290 eV, 300 eV, Fig.
2b) originate from excitations of carbon Is electrons into
unoccupied non-binding n* and o* orbitals'”. They reflect directly
the presence of C=O double bonds and C-O single bonds in the
carbonate ion (Fig. 2a). At 272eV and 282eV an Sr-M,;
ionization edge emerges. The low-loss spectrum in Fig. 2c is
characterized by Ba-O, 3 and Sr-N, ; edges at 15-29 eV. A Ba-Ngjs
edge appears at 95 eV. O-K and Ba-M, s edges are shown in Fig.
2d. The fine structure of the O-K edge at 532 eV is in good
agreement with that reported for SrCO;'®. Furthermore, neither an
Fe-M, 5 edge is present at 54 eV nor an Fe-M, 5 edge arises at 708
ev.

The spinel is indicated by two EEL spectra in Figs. 2e and f: in
the low loss region by the presence of an Fe-M, 3 edge at 54 eV
and at higher energy losses by Fe-L,; white lines (708 eV,

721 eV)'. The characteristic ELNES of the O-K ionization edge
is typical for spinels'” and distinctly different from the one
obtained for the carbonate in Fig. 2¢. Barium and strontium edges
at 15-29 eV and 781 eV are not found.

The formation of the perovskite between the spinel and
carbonate phases is evidenced by Figs. 2g and h. The low-loss
spectrum shows Ba-O,3 and Sr-N,; edges at 15-29eV.
Additionally, an Fe-M,; edge is found at 54 eV. At higher
energies the Fe-L,; (708 ¢V, 721eV) and Ba-M,s (781¢V,
796 eV) white lines appear. In addition, the characteristic O-K
ELNES confirms the perovskite structure'®.

Exemplary SAED pattern of the three phases involved in the
formation of the perovskite are shown in Figure 3. For the
carbonate in aragonite modification (Fig. 3a) along the [-1,7,-2]
zone axis three different lattice plane distances of d=1.77 A, d =
2.32 A and d = 2.85 A are indicated. The spinel exhibits lattice
plane distances of d = 4.22 A and d = 2.98 A along [0,0,1] zone
axis. The orientation of a perovskite particle along [1,-3,2] zone
axis resulted in lattice plane distances of d =1.77 A, d=1.61 A, d
=228Aandd=132A.

As the basis of these results we reason that the perovskite
structure comprises of spinel and carbonate at their expense in a
solid state reaction. Further on, we expect that the grain sizes of
the primarily formed perovskite crystals are in the same range as
those of the crystalline intermediates and coarsen afterwards with
evolving time during temperature treatment.

a b .

infensity [arb. units]

£ 280 300 aza 300

enengy loss [eV]

o
(=3

absence
of Fe-l,,

intensity [arb. units]
irensiy [arb. urite]

0

energy loss le] anergy loss leV]

e . § p—
1 0K

1 |p|asmnn peak { !

H N

LI | l P8 N' Fe-L ]

£ | ﬂ\ absance of | | : ‘B"‘;f‘:‘“ b

£y 18~ Ba-N,, | ‘ e i

tl/e Fe-M, |
] / K A~ R\
1 - |
B A S 500 550 600 850 700 750 800 B0 600

snergy loss [aV] snergy loss (5]

9 [ 1 ohf Fe-L

= | ||Ba-0,, | . |

5] SeN I8 ] ok Ba-M,,

& | | 1

k. A\ I \ |

z ] \ BN, | |

il Fe-M Lo | ‘|k ‘

=] 92 B I | e U [

/g — | 1 =

— —
@ 6 ® k% & e w [ rapt qpyerappesgpps gapcrane: ey aapett

energy less (eV] ameeqy loss [aV]

Figure 2. Identification of intermediates by elements and their
chemical environment a-d, Carbonate structure specified by three
EEL spectra in different energy ranges by a closer look at the
energy-loss near-edge structures (ELNES) at ionization edges for
barium, strontium, carbon and oxygen. e,f, Spinel indicated by two
EEL spectra: in the low-loss region and at higher energy losses by
Fe-edges and the characteristic ELNES of the O-K ionization edge
g,h, Formation of perovskite evidenced by two EEL spectra. The
low-loss spectrum shows Ba-O,3, Sr-N,3; and Fe-M,; edges. At
higher energies the characteristic O-K ELNES confirms the
perovskite structure.
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2.2. How perovskites form

Figure 3. Selected-area electron diffraction (SAED) of the three phases: a, carbonate along [-1,7,-2] zone axis and lattice plane distances of
d=177A(3,1,2;-11,4;-3,-1-2;1,-1,-4),d = 2.32 A (1,1,3; -1,-1,-3), d = 2.85 A (-2,0,1; -1,1,2), b, spinel along [0,0,1] zone axis and lattice
plane distances of d = 4.22 A (0,-2,0; 2,0,0; 0,2,0; -2,0,0), d = 2.98 A (2,-2,0; 2,2,0; -2,2,0; -2,-2,0), ¢, perovskite along [1,-3,2] zone axis and
lattice plane distances of d =1.77 A (2,0,-1; -2,0,1), d= 1.61 A (-1,1,2; 1,-1,-2),d = 2.28 A (1,1,1; -1,-1,-1), d = 1.32 A (3,1,0; -3,-1,0).

The grain size distribution of the perovskite particles is of high
importance for the later properties of the hence synthesized
ceramic. The smaller the grains of the powder underlying the
green compact of the later ceramic are, the merrier is the sintering
behaviour like lower sintering temperature and shorter time, less
pores and highly dense ceramics can be obtained. Thus, it is
essential to spy out the optimized calcination procedure to get a
perovskite powder of high purity, but as small grains as possible.

During the calcination process the organic compounds are
burned step by step under the elimination of CO;*, NO; and
NH,NO;. This can be confirmed by thermo gravimetry'®. After
crystallisation of the amorphous gel at about 550 to 600 °C, no
nitrogen containing compounds are found anymore, what indicates
the total release of NOy. Figures 4a, b show scanning electron
micrographs (SEM) of a powder calcined at 650 °C for two hours,
containing estimated by the XRD intensities approximately equal
amounts of intermediates and perovskite. At the initiation of the
perovskite structure formation at 600 to 650 °C, an evaporation of
CO, caused by the decomposition of the carbonate is observed.
Due to this evaporation, the powder is getting porous, but the
grain sizes remain in the range of 400 nm and smaller. The total
disappearance of the intermediates is observable after calcination
at 750 °C for ten hours (Fig. 4c, d). The grain coarsening is
slightly proceeded to grain sizes up to 700 nm. The calcination at
950 °C for two hours produces a powder run through a coarsening
of grains to sizes of around a micrometer. On account of the grain
growth at the expense of smaller grains the powder gets more and
more porous. Figure 4f images the pre-sintering in some parts of
the powder. Based on these results a chemical equation for the

solid state reaction between the intermediates has been
established:

3 - (Bay 5519.5)CO;3 (5) T (Zng sFep 4)Fe;04 ) _*0

3 - (Bag sSro.5)(FegsZng2)03.5 Oh 3:CO, ) M

This finding confirms that the primarily formed perovskite
crystals possess grain sizes of the same range as those of the
crystalline intermediates and that the usual calcination at superior
temperatures is not required, even not desirable due to grain
coarsening during further heat treatment. Additionally, the pre-
sintering of the powder should be avoided in order to facilitate the
pressing of the green compact for the ceramic production. Why is
the perovskite directly formed without the formation of barium
strontium oxides? The decomposition of the carbonate can take
place just if it forces a CO, potential that is higher than the one in
the surrounding atmosphere. The decomposition temperature for
the (BaysSrys)CO;3, which was calculated by the thermodynamic
data of the barium and strontium carbonate (Supplementary
Information 1), is 808 °C and thus higher than the temperature of
the perovskite formation. Zinc and iron do not form carbonates

because calculated by thermodynamic data (Supplementary
Information 1), in ambient air, zinc carbonate and iron carbonate
are not stable above 10 °C and 27 °C, respectively. Including
kinetic factors which inhibit the decomposition process the
measured temperature for zinc carbonate is in the range of 250 to
290 °C and above 300 °C for iron carbonate®. Among the iron
oxides, the spinel phase is the most stable phase in the relevant
temperature range as can be seen from AG curves®'. In presence of
Zn, however, the incorporation of Zn®* into the spinel is
energetically favourable as AGy lies in the range of -190 to
-130 kJ/mole for 500 to 800 °C for the reaction®*:

2 FeFeyOy )+ 3 - ZnOgg) + ¥ Oy — 3 - ZnFe,0y ) @)

The basis of the perovskite formation process of
(Bag 5Srg5)(FepsZng,)0s.5 -is now evidenced, and this knowledge
provides new possibilities to optimize the ceramic synthesis. But
how general are these results? To verify the assumption that the
perovskite oxide formation in an EDTA/citric acid complexing
synthesis route might proceed over analogous crystalline
intermediates, the (Bay sSr(5)(CoggFe,)0s.5- perovskite, which is
a promising reduced-temperature cathode for SOFCs®, was also
investigated. It was found that after gelation the first crystalline
phases were a (BagsSros)CO; carbonate in the aragonite
modification and an (Fe¢Cog4)C0,04 spinel documented by X-
ray diffraction. The diffraction pattern in Figure Sa was measured
of a (BagsSrs)(CogsFepr)Os.5 perovskite powder after
calcination at 600 °C for two hours. In comparison to the
diffraction pattern above (Fig. 5b), detected for a
(BagsSrys)(FepsZng,)0s.5 powder run though the same
temperature treatment, it badges that the identified phase coincide
with a difference in the spinel lattice caused by the diverse cations.
With this result we can expect that the perovskite oxide synthesis
with EDTA/citric acid complexing methods can proceed with the
formation of a spinel and carbonate after the gelation.

For the (BagsSrys)(FepsZng,)0;.5 perovskite oxide two
diffraction pattern in Figure 5¢ and d exhibit the reaction pathway
from the intermediates (BagsSros)CO; and (Zngg¢Feg4)Fe,0y
towards the perovskite. Upgrading the calcination temperature
step by step no other phase transition is detected and the
perovskite formation to the expense of the carbonate and the
spinel can be observed continuously. This was investigated in
steps of 10 °C from 600 to 750 °C and is shown for the heat
treatment from two hours at 600 °C to two hours at 750 °C to
finally pure perovskite at ten hours at 750 °C. With increasing
sizes of crystallites the perovskite reflexes narrow during
calcinations indicating a grain coarsening that was also observed
by electron microscopy.
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Figure 4. Grain coarsening and gaseous release during calcination at higher temperatures a,b, Scanning electron micrographs (SEM) of an
approximately equal amount of intermediates and perovskite containing powder calcined at 650 °C for two hours. Grains are at a size of 400
nm and smaller. c,d, Pure perovskite powder in the SEM after calcination at 750 °C for ten hours. Sizes of the grains are up to 700 nm. The
powder gets highly porous because of the release of gaseous CO, (Equation 1). e,f, Grain coarsening of perovskite powders to 1 micron

after calcination at 950 °C for two hours.

Advanced TEM methods together with SEM and XRD can give
important new insight into the initial formation of a perovskite
phase. A profound knowledge of the perovskite formation process
opens new ways to engage into the microstructure of the
underlying ceramic material e.g. to fine tune both grain
stoichiometries and grain boundaries in the ceramic material and
therewith to optimize the sintering behaviour like lower sintering
temperature and shorter time, to get less pores and highly dense
ceramics.

We achieved a structural determination of the fine-scale
intermixed intermediates formed during the perovskite preparation
by employing an EDTA/citrate process as spinel and carbonate in
aragonite modification. Thus, a pre-arrangement in groups of
cations according to the later A and B sites in the perovskite
structure is indicated. TEM and EFTEM as well as EELS provide
evidence that the perovskite structure is formed in a nano-scale
solid state reaction between the above mentioned intermediates
and at their expense. For this purpose not only the elemental
composition of the three phases was determined but also the near-
edge structures were considered for chemical environment
cognition and liken with current literature.

Grain sizes obtained in different perovskite synthesis steps
show that the primarily formed perovskite crystals are of the same
size as the intermediates and coarsen afterwards during
temperature treatment. The common calcination temperature of
950 °C can be decreased to 750 °C to avoid pre-sintering and
therewith facilitate the pressing of the green compact for the
ceramic production.

In the synthesis of two distinct perovskite oxides by a
EDTA/citric acid complexing method it was evidenced that the
perovskites form in nano-scale solid state reactions between finely
dispersed crystalline intermediates and that the first crystalline
intermediates are a complex spinel of the later B site ions and a

complex carbonate of the later A site ions of the perovskite. Hence,
it is expected that perovskite oxide syntheses via EDTA/citric acid
complexing methods go on generally with the formation of a
spinel and carbonate after the gelation.
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Figure 5. Analogy with synthesis of another perovskite and
development from intermediates to perovskite. X-ray diffraction
pattern for (BaosSros)(CoosFer2)Oss at 600 °C for two hours
provides evidence that the perovskite formation proceeds over
analogous intermediates (spinel and carbonate) like for the
synthesis of (BagsSros)(FeosZno2)Oss. The latter is formed by
treatments of two hours at 600 °C over two hours at 750 °C to 10
hours at 750 °C. The intermediates start to vanish due to the
formation of the perovskite.
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Experimental

A synthesis method with combined citric acid and EDTA acid as the
complexing agents was applied. A given amount of Ba(NOs), powder was
dissolved in an aqueous solution of Zn(NO;),, Fe(NO;);, and Sr(NO3),,
followed by the addition of EDTA acid. After agitation for a certain time,
a proper amount of citric acid was introduced, with the molar ratio of
EDTA acid : citric acid : total of metal cations controlled at around 1:1.5:1.
After addition of NH3-H,O, the pH value of the solution was adjusted in
the range of 6 to 9 by the addition of supplementary NH;-H,O. Water was
evaporated with stirring in the temperature range of 120 - 150 °C. After
evaporation for several hours the transparent solution transformed into a
dark purple gel. Further heat treatments were applied at temperatures up to
950 °C.

Transmission electron microscopy (TEM) was performed at 200 kV on
a field-emission instrument of the type JEOL JEM-2100F with an ultra-
high resolution pole piece (Cs = 0.5 mm) that provides a point-resolution
better than 0.19 nm. Moreover, the microscope was equipped with an
energy filter of the type Gatan GIF 2001 with a 1k-CCD camera. The filter
was employed to acquire energy-filtered transmission electron
micrographs (EFTEM) and electron energy-loss spectra (EELS) with a
special emphasis on energy-loss near-edge structures (ELNES) at
ionization edges. Powders were prepared for TEM investigations by
crushing them by mortar and pestle and afterwards epoxy gluing them
between two silicon single crystals. Further preparation was made by
cutting 1x1.5x3 mm pieces and polishing them on polymer embedded
diamond lapping films to 0.01x1x2.5 mm, approximately. Finally, Ar" ion
sputtering was employed at 3 kV (Gatan, model 691 PIPS, precision ion
polishing system) under shallow incident angles of 4-8 degrees until
electron transparency was achieved.

Scanning electron microscopy (SEM) was employed on a field-emission
instrument of the type JEOL JSM-6700F. Secondary electron (SE)
micrographs were taken at low excitation voltages in the range of 0.5 to
2kV.

X-ray diffraction (XRD) was performed on a Philips X'pert - MPD
instrument using monochromator-filtered Cu-K, radiation at 40 kV and
40 mA, receiving slit of 0.15mm and count times of 3 s/step. Data were
collected in a step-scan mode in the range of 20°- 50° with intervals of
0.03°. Data for interpretation were taken from the PDF-2 database with
PDF numbers FeFe,04 [19-629], ZnFe,O4 [22-1012], CoFe,04 [3-864],
BaCO; [45-1471], SrCO; [5-418], SrFeOs [34-641], BaFeO; [147-180].
Lattice parameters for the exact stoichiometries have been calculated
according to homogeneous solid solutions.
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Abstract

Nowadays, sol—gel procedures are well established in the synthesis of complex oxides as they allow to obtain phase pure products and to
control precisely their stoichiometry. This quality makes them a tool of choice for the preparation of perovskite-type oxides. To optimize the
functional properties of these materials, it is essential to set accurately their possible complex stoichiometries. However, details of the formation
of the perovskite crystal remain obscure. Different stages of an ethylene-diamine-tetraacetic acid (EDTA)/citrate-gel based synthesis process for
mixed conducting (Bag sSr¢ 5)(Feo gZng 2)O3_s of cubic perovskite structure are elucidated. The combination of analytical transmission electron
microscopy with X-ray diffraction reveals that the perovskite-type oxide is formed already at moderate temperatures at around 700 °C via
nanoscale solid state reactions between finely-dispersed crystalline intermediates identified as a spinel and a carbonate. The reaction scheme,
however, is intricate and includes stuffed tridymite structures as transient phases. The ultrafine intermixing of extremely small reactants makes
EDTA/citrate-gel based procedures superior to classical solid state routes with respect to applications that demand phase purity and stoichiom-
etry control.
© 2007 Elsevier Masson SAS. All rights reserved.

Keywords: Sol—gel synthesis; Perovskite; Reaction mechanism; Transmission electron microscopy; Carbonate; Spinel; Stuffed tridymite; Rietveld refinement;
Ellingham diagram

1. Introduction

Conventionally, complex oxides are prepared by the solid
state route that is the blending of powdered reactants, mostly
oxides and carbonates, and their firing at temperatures as
high as 1200 °C. At these high temperatures the loss of the
most volatile component may easily occur leading to non-
stoichiometric products with decreased functional properties.
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Alternative chemical synthesis processes have been introduced
in the 1960s by the thermal decomposition of stirred metal—
organic complexes that employ distinctly lower temperatures
in the range of 600—700 °C [1,2,3]. All these processes rely
on the chemistry of gels that contain all the cations in the
desired ratios [4,5]. Even though variants of these sol—gel pro-
cedures are widely used today, details of the formation of the
final crystalline product are still little known. The combined
ethylene-diamine-tetraacetic acid (EDTA)/citrate complexing
method under investigation has been introduced some years
ago [6]. It has been shown elsewhere [7—9] that complex
oxides of cubic perovskite structure are formed in nanoscale
solid state reactions between carbonate and spinel intermedi-
ates. The general reaction scheme has been outlined for the
perovskite stoichiometries (Bag sSrgs)(FepgZng,)O03_ s and
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(Bag 5519 5)(Cop gFep2)O03_5. The present study is devoted to
details of the formation of the Zn-containing perovskite that
turns out to be intricate on the atomic scale.

2. Materials and methods

The synthesis process is evaluated for a perovskite-type
oxide that is a prospective membrane material for oxygen
separation technologies [10—12] or electrode material for
solid oxide fuel cells [13]. In the temperature range of 700—
950 °C, (BagsSrg5)(FeggZng,)O3_g [14,15] is a mixed elec-
tron and oxygen conductor that provides high oxygen fluxes
and exhibits an excellent phase stability even under low
oxygen partial pressures, superior to other compositions.

The processing route employs both citric acid and EDTA as
the complexing and gelation agents [6] and has been adapted
for the specific stoichiometry under investigation. Proper
amounts of Ba(NOj),, Sr(NOs),, Fe(NO3);, and Zn(NOs),
were dissolved in water followed by the addition of citric
acid, EDTA and NH;. In the temperature range of 120—
150 °C, the reaction mixture was then heated under constant
stirring to obtain a purple-coloured gel. Afterwards, the gel
was pre-calcined for 1 h at 700 °C. The pre-calcined powders
were grounded and heated at temperatures up to 750 °C with
a heating rate of 3 °C/min. Intermediates as well as final pro-
ducts were analyzed by several techniques that are described
below.

X-ray diffraction (XRD) was conducted in a 6/26 geometry
on a Philips X pert-MPD instrument using monochromated Cu
Ko , radiation at 40 kV and 40 mA, receiving slit of 0.15 mm
and count times of 5 s/step. Data were collected in a step-scan
mode in the 26 range of 20—50° with intervals of 0.03°.

Data for interpretation were taken from the ICDD PDF-2
database with PDF numbers FeFe,O, [19-629], ZnFe,Oy4
[22-1012], Fe,05 [33-664], SrFeO5_, [34-641], and BaFeO;_,
[147-180]. Lattice parameters for the exact stoichiometries
have been calculated according to homogeneous solid solu-
tions. To index experimental data related to (Bag sSrg5)COs3,
the structure has been described with unit cell parameters ac-
cording to Ref. [16]. To index data related to (Ba,_,Sr,)Fe;0y,
the structure has been described in space group Cmc2; (No.
36) based on the structure given in Ref. [17].

For structure refinements of the product phase, X-ray
powder diffraction data were collected on a Bruker AXS D8
Advance diffractometer using a transmission geometry, a Go-
bel mirror and Cu Ko, , radiation. Six thousand data points
were collected with a step width of 0.02° in the 26 range
from 20° to 140°. XRD powder data Rietveld refinements
were carried out by using TOPAS 3.0 (Bruker AXS) software.
During refinements, general parameters such as the scale fac-
tor, seven background parameters and the zero point of the
counter were optimized. Profile shape calculations were car-
ried out on the basis of standard instrumental parameters using
the fundamental parameter method implemented in the pro-
gram, varying also the average crystal size (integral breadth)
and the strain parameter ¢; (FWHM based strain calculation
assuming intermediate strain broadening modelled by a Voigt
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function giving Ad/260 with a 50% probability). Additionally,
the cell parameter and the displacement parameters were re-
fined. In the case of site occupation with mixed atoms, linear
constraints were used for occupancy (occupancy of atom B is
equivalent to 1.0 minus occupancy of atom A) and displace-
ment parameters (atoms on the same position have the same
displacement parameter).

Transmission electron microscopy (TEM) and scanning
transmission electron microscopy (STEM) were performed
at 200 kV on a field-emission instrument of the type JEOL
JEM-2100F. The microscope was equipped with an ultra-
high-resolution pole piece that provides a point-resolution
better than 0.19 nm (spherical aberration constant Cg=
0.5 mm, chromatic aberration constant Cc=0.5 mm) and
allowed to make high-resolution transmission electron micros-
copy (HRTEM). STEM was conducted in high-angle annular
dark-field (HAADF) contrast that allows to obtain mass-thick-
ness information. The microscope was equipped with an
energy filter of the type Gatan GIF 2001 with a 1k charge-
coupled-device (CCD) camera. The filter was used to enhance
the dynamics in selected area electron diffraction (SAED) pat-
tern by elastic filtering with a bandwidth of 15 eV. The filter
was employed as well to acquire electron energy-loss spectra
(EELS) of core-loss energies with a special emphasis on
energy-loss near-edge structures (ELNES) at ionization edges.
To obtain elemental maps via energy-filtered transmission
electron microscopy (EFTEM), the three-window technique
was utilized with 40 eV energy slit and power law model
[18]. For the Fe-L edge energy slits were centered at 643,
683 eV (pre-edge) and 728 eV (post-edge). To avoid any over-
lap with Fe-L signals, for the Ba-M edge energy slits were
centered at 661, 751 eV (pre-edge) and 801 eV (post-edge).
Individual exposure times were 30 s, respectively. Elemental
analysis by energy-dispersive X-ray spectroscopy (EDXS)
was made using an Oxford Instruments INCA-200-TEM
system with an ultra-thin window that was attached to the
microscope.

To obtain specimen for TEM, dried gel was crushed in
ethanol by mortar and pestle. The suspension was dropped
from a pipette to a 300-mesh copper-supported carbon foil
(Quantifoil) that was placed on a piece of filter paper to
wick away excess ethanol. Calcined powders were prepared
for TEM investigations by epoxy gluing them between two
pieces of silicon wafer. These sandwiches were cut into
1 x 1.5 x 3 mm rectangular pieces and polished in cross-
section on polymer embedded diamond lapping films down
to 0.01 x 1 x 2.5 mm, approximately (Allied High Tech, Mul-
tiprep). Thinned sandwiches were glued onto a copper slot
grid, respectively, and Ar™ ion sputtered at 3 kV under an
incident angle of 6° (Gatan, model 691 PIPS, precision ion
polishing system) until electron transparency was achieved.

A quantity of 2 g of pure (BagsSrys)CO; powder and
(Zng ¢Feo.4)Fe;04 powder was synthesized by the EDTA/
citrate method, and phase purity and crystal size were deter-
mined by SEM (JEOL JSM-6700F), respectively. Experimen-
tal determination of the CO, equilibrium pressure above the
carbonate as a function of temperatures was performed in
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a quartz glass equipment flanged to a turbo molecular pump.
After sealing and evacuating the equipment from atmospheric
pressure to 1 Pa and heating to 700 °C, the pressure was mea-
sured with a Pirani gage in steps of 50 °C up to 1000 °C after
equilibration times of ca. 1/2 h, respectively.

3. Results and discussion
3.1. Early stages

Gelation takes place in the temperature range of 120—
150 °C due to the release of water and is accompanied by the
evaporation of ammonia. This leads to a decrease of the
nitrogen and oxygen content as it is shown elsewhere [7].
Fig. 1 shows a magnification series of Z-contrast HAADF
micrographs of the gel after 18 h at 150 °C. The gel is charac-
terized by a fine dispersion of metal complexes (high Z) in
a polymerized network (low Z). Individual metal atoms or clus-
tered metal complexes give rise to strong electron scattering

and thus bright contrast in the micrographs. The polymeric
matrix composed of atoms with much lower scattering cross-
sections appears with grey contrast. Concerning the stability
constants for the complex formation K given logarithmically
in Table 1, the distinctly higher K-values for EDTA for all
four cations make a total complexation with EDTA most likely.
On the contrary, the citric acid contributes to the gelation, and
formation of a polymeric network, by a condensation due to the
esterification of the alcohol group of the citric acid molecule
with the carboxyl group of another citric acid molecule or an
EDTA molecule. In Fig. 1a and b some relatively large clusters
of metal complexes with sizes of around 15 nm are present.
Predominantly, cluster sizes are distinctly smaller as it can be
seen in Fig. 1c and d. An eminent fraction of clusters is around
5 nm in size. Moreover, the close-up in Fig. 1d shows structural
details with sizes of just 1 nm that hint to the presence of very
small individual clusters of metal complexes. In conclusion, the
sol—gel method prevails a very fine intermixing of metal cat-
ions on the nanometer scale.

Fig. 1. Magnification series in high-angle annular dark-field contrast of the gel after 18 h at 150 °C.
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Table 1
Complex forming constants of metal cations (from Refs. [19,20])
EDTA, log K Citric acid, log K
Ba®t 7.86 2.73
S+ 8.74 3.02
Fe*" 25.1 1.2
Zn** 16.5 4.76

3.2. Crystalline intermediates and perovskite

During further heating the gel starts to crystallize at about
550—600 °C under the formation of intermediate phases that
can be detected by XRD. Typical diffraction pattern after 1 h
at 700 °C are given for three preparations in Fig. 2a—c show-
ing reflections from an aragonite-type carbonate (Fig. 2a,c and
f) and spinel-type (Zng¢Feq.4)Fe;0,4 oxide (Fig. 2b,c and g).
During cumulated further heat treatments of the powder in
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Fig. 2. X-ray powder diffraction of intermediates and perovskite. (a) Taken
from the synthesis of (BaysSrys)CO; after 10 h at 750 °C, (b) taken from
the synthesis of (Zng¢Fe( 4)Fe,04 after 1 h at 700 °C, (c—e) taken from the
synthesis of (Bag 5Srq 5)(Feo §Zng)O0;_s after (c) 1 h at 700 °C, (d) additional
12 h at 700 °C, (e) additional 10 h at 750 °C. (f—i) Assignment of diffraction
lines for different phases: (f) aragonite-type (BagsSros)CO; carbonate, (g)
(Zng gFep.4)Fe;04  spinel, (h) v-(BagsSros)Fe,O4, (1) perovskite-type
(Bag 5Srq.5)(Feo sZn0 2)03 .
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Fig. 2c, the reflections of the intermediate phases become
smaller, reflections of a further transient phase of stuffed tridy-
mite-type oxide arise (Fig. 2d), and finally the perovskite
structure is formed (Fig. 2e).

Fig. 2d shows an XRD pattern after heating the powder ad-
ditionally 12 h at 700 °C. The reflections of the intermediates
are less pronounced and broad reflections of a Ba—Sr—Fe
oxide dominate (marked by stars), which can be compared
to a y-(BagsSrgs)Fe,O4-type phase (Fig. 2h). More details
concerning the transient phase are discussed below in context
of Fig. 7. After additional heating for 10 h at 750 °C, the inter-
mediate and transient phases are completely vanished and
a pure perovskite powder is obtained (Fig. 2e and 1).

The XRD analysis points to a solid state reaction in the
nanoscale powder between the intermediates of the following
simplified type:

carbonateseiiy + Spinelsyiq)

+0; . . .
= perovsklte( )+ carbon dioxide gaseous)

(1)

The liberation of gaseous CO, is manifested in the evolu-
tion of a porous sponge-like solid that has been investigated
by scanning electron microscopy [7,8]. Details of this reaction
are, however, more intricate as it is manifested in additional
transient phases. All involved phases are discussed in the
following.

solid

3.2.1. Rietveld refinement of the
(Bay sSro.s)(Fep.sZnp2)0s_s product

The stoichiometry of the product has been determined by
EDXS during TEM experiments to be close to (BagsSrgs)
(FegsZng,)05_s as is described elsewhere [14]. By XRD
(Fig. 3), the perovskite was found to crystallize in the cubic
space group Pm-3m (No. 221) with a lattice parameter of
0.39900(2) nm. Barium and strontium were refined on the
same crystallographic position 1a (0,0,0) with 52(2)% occupa-
tion for the barium atoms corresponding to the chemical anal-
ysis and a displacement parameter of B = 1.4(1). Iron (80%)
and zinc (20%) were calculated on the 1b (1/2,1/2,1/2) posi-
tion showing a high displacement of B =2.4(1). An individual
refinement of the occupancy parameters for this position is not
possible. An equivalent high displacement of B =3.1(5) was
found for the oxygen atoms on the 3c (0,1/2,1/2) site. These
higher displacement parameters correspond to a strain param-
eter of ¢9=0.157(5) expressing the high distortion in the
structure caused by the mixed occupancy of the anionic posi-
tions in combination with the oxygen deficit introduced by the
lower 2+ charge of the zinc atoms in relation to the 2+4-/3+/4+
charge value of iron atoms. Refining the occupancy parameters
of the oxygen atoms, only 81(2)% could be found. This could
be a hint for a mainly 2+4/3+ oxidation state for the iron
atoms, but it has to be taken into account that the error for
the occupancy parameter is difficult to calculate caused by
the high scattering power of the cations in the structure. The
refinement converged to reliability factors of Rwp = 0.053
and Pp=0.042 for the pattern with a goodness of fit=1.01,
a Durban—Watson parameter of 1.92, and Bragg R-value of
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Fig. 3. Rietveld plot of (Bag 5Srgs)(FepgZng,)O5_s. The observed (blue) and calculated (red) intensities together with the difference between the observed and
calculated pattern (grey) as well as the possible reflex position (tick marks) are given.

0.007 for the perovskite structure. Further details could be
taken from CSD-No. 418850 [40]. Additionally, the average
crystal size was found to be 56(2) nm (Ly,-IB).

3.2.2. The mixed carbonate (Bay 5Sry 5)CO3

Very detailed considerations on the structure of the arago-
nite-type (BagsSrgs)CO5 carbonate are given elsewhere [7].
XRD pattern of the mixed carbonate indicates unit cell param-
eters a = 0.62450 nm, b = 0.52020 nm, and ¢ = 0.86420 nm in
space group Pnma (No. 62) which agrees well with data ac-
cording to Ref. [16] but deviates slightly from values given
by us elsewhere [7]. However, regarding the stability of the
carbonate at the applied temperatures, an Ellingham diagram
has been examined which is based on calculations that are
valid for bulk phases [7]. For nanocrystalline powders, the in-
fluence of the surface cannot be neglected, and the Thomson—
Freundlich equation [21] predicts a higher chemical potential
of carbon dioxide, ucq,, with respect to bulk phases. Conse-
quently, the decarbonation temperature will decrease with
decreasing particle size.

Thus, a pure (BagsSrgs)CO; powder with crystal sizes
below 100 nm has been synthesized, and CO, equilibrium
pressures have been measured. In the temperature range of
850—1000 °C, the CO, pressure above the nano-sized carbon-
ate increases from about 100 Pa to 2.3 kPa. Data points have
been connected with a spline function, and within the experi-
mental error, the experimental curve lies slightly above the
estimation from the Ellingham diagram (Fig. 4a). Considering
the corresponding chemical potential, pco,, each experimental
data point has been put into the Ellingham diagram in Fig. 4b
by squared points. Their positions deviate slightly to higher
values compared to the calculated mixed carbonate in bulk
phase (dashed line) are interpolated by the respective solid
line.

In contrast to the presentation in Ref. [7], the calculated El-
lingham diagram in Fig. 4b gives directly the chemical poten-
tial of carbon dioxide, uc,, in dependence of the temperature.

Different partial pressures of CO, are considered as well as
equilibrium values over mixtures of carbonates (BaCOs,
SrCO;5) and rocksalt-type oxides (BaO, SrO). The line that
presents (o, above a mixture of (BagsSrgs)CO; and
(Bag 5Srp.5)O is assumed to lie symmetrically between those
of the simple carbonate/oxide mixtures, indicated by a dashed
line.

As mentioned above, liberated CO, can easily evaporate
through the porous sponge-like body of the reaction product.
As all experiments were done under ambient atmospheres, it
is assumed that isobaric conditions apply; with the partial
pressure of CO, being that in air, pco, = 30 Pa. The carbonate
would thermally decompose if its oxidation forces a chemical
potential of CO, that is higher than in the surrounding atmo-
sphere. Considering bulk (BagsSrgs)CO3, a decomposition
temperature of 808 °C is read from Fig. 4b as the intersection
point of the “pco, in air” line with the respective carbonate
line (dashed). Considering the experimental data points
(square brackets), the line valid for the nano-sized carbonate
is shifted up by approximately 4 kJ/mol (solid line) so that
the decomposition temperature lies at about 790 °C. The anal-
ysis indicates that the decarbonation temperature of the nano-
sized carbonate is decreased by ca. 20 °C with respect to bulk
carbonate. But it is still approximately 40 °C higher than the
highest applied temperature of 750 °C, and thus stability
considerations support the solid state reaction pathway that
is given in Eq. (1).

However, in powder reactions the reaction interface is
large; especially if nanoscale powders are considered. This
can lead to the liberation of large amounts of heat [23,24]
and consequently to local overheating. Despite the moderate
heating rate of 3 °C/min up to a nominal maximum tempera-
ture of just 750 °C makes it unlikely that in any of the exper-
iments discussed here, the decomposition temperature of the
carbonate (ca. 790 °C) has been exceeded. This is supported
also by the fact that there have been observed in nanoscale re-
actions neither BaO nor SrO nor (Bag 5Srg 5)0O.
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Fig. 5. X-ray powder diffraction: taken from the synthesis of (Zng ¢Feo 4)Fe,04
(a) after 1 h at 700 °C, (b) after 10 h at 750 °C, (c) FeFe,O, (magnetite), (d)
ZnFe,04 (franklinite), (e) o-Fe,O3 (hematite).

Fig. 4b contains also pcg, plots for ZnCO3 and FeCO; to
illustrate that a formation of these carbonates do not play
any role in the solid state reaction scheme.

3.2.3. The complex spinel (Zny sFey 4)Fe>0y
To prove the formation of the (ZnggFeq4)Fe,04 spinel
during the perovskite synthesis, the sol—gel method was
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Fig. 6. Thermodynamic calculations for the system Zn—Fe—O under different
O, partial pressures [22]. Free enthalpy of formation for the (Zng ¢Feg 4)Fe,Oy4
spinel has been calculated in consideration of the activities according to
Ref. [26]. Standard free enthalpies of O, versus temperature plots for different
partial pressures are shown with dashed lines in the range of 1—10'2 pa (p((])z =
101.3 kPa). All reactions illustrated proceed under atmosphere conditions
(po, in air = 21.3 kPa).
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Fig. 7. Close-up X-ray powder diffraction of intermediates and perovskite in the 26 range between 22° and 34°. (a) Taken from the synthesis of (Bag sSrys)CO;
after 10 h at 750 °C, (b) taken from the synthesis of (Zng ¢Feg 4)Fe,Oy4 after 1 h at 700 °C, (c—e) taken from the synthesis of (Bag sSro 5)(Feo sZng,)O03_s after (c)
1h at 700 °C, (d) additional 12h at 700 °C, (e) additional 10h at 750 °C. (f—i) Assignment of diffraction lines for different phases: (f) aragonite-type
(Bag 5S1( 5)CO; carbonate, (g) (Zng cFep.4)Fe,0y4 spinel, (h) y-(Bag sSrg s)Fe,04, (i) perovskite-type (Bag sStq s)(FepsZng»)O05_5, (j) close-up of peaks related to
240 and 221 of (Ba,_,Sr,)Fe,0y, (k) close-up of peaks 061 and 002 of (Ba;_,Sr,)Fe,0y.

performed without barium and strontium. After calcination for
1 h at 700 °C the formation of a (Zng ¢Feg4)Fe,04 spinel was
confirmed by XRD measurements (Fig. 2b) and EDXS. Fig. 5a
(1 hat 700 °C) shows details of the diffraction pattern in the 26
range of 34—37.5°, in the vicinity of the most intense (311)
spinel reflex. After heat treatment in air for additional 10 h

Table 2

Crystallographic data for y-(Bag sSrg 5)Fe,O4

Atom Site X y z Occ
Ba 4(a) 0 0.1307 0.2500 0.5
Sr 4(a) 0 0.1307 0.2500 0.5
Ba 4(a) 0 0.6173 0.2270 0.5
Sr 4(a) 0 0.6173 0.2270 0.5
Fe 8(b) 0.2776 0.0424 0.7320 1
Fe 8(b) 0.2913 0.2803 0.7740 1
o 8(b) 0.2430 0.0370 0.4030 1

o 8(b) 0.2250 0.1230 0.9170 1

o 8(b) 0.2913 0.2090 0.4170 1

o 4(a) 0 0.4530 0.2260 1

(0] 4(a) 0 0.2800 0.2260 1
Space group Cmc2; (No. 36) with a=0.8448 nm, b =1.9050 nm,

¢=0.5390 nm (unit cell dimensions according to Ref. [17]).

at 750 °C, the (311) and (222) spinel reflexes shift by about
0.14° to smaller diffraction angles 26. That indicates an incor-
poration of a larger ion like Zn>" for Fe*" (61 pm — 75 pm
[25]) into the A site of the spinel structure. A slightly larger
shift in the diffraction angle 26 by about 0.16° is noticed
between FeFe,O, (Fig. 5¢) and ZnFe,O,4 (Fig. 5d) that corre-
sponds to an increase of the unit cell dimension from 0.8394 to
0.8442 nm. Additionally, another reflection occurs at 35.6°
(see Fig. 5b), which was identified with attention to comple-
mental diffraction peaks in the 26 range of 20—60° (Fig. 2b)
as belonging to a-Fe,O3 (hematite, Fig. Se). In conclusion,
the (ZngeFep4)Fe,0,4 spinel formed at 700 °C decomposes
in the absence of (Bag sSry5)CO3 carbonate at higher temper-
atures to a spinel with ZnFe,O, stoichiometry and Fe,O3 as
hematite.

To check whether this conclusion is in agreement with ther-
modynamics, calculations have been performed, the results of
which are displayed in Fig. 6. Free enthalpy of formation for
the (Zng ¢Fep4)Fe 04 spinel has been calculated considering
the activities according to Ref. [26]. Because the graph for
AGRr lies lower than that for O, partial pressure in air
(po, in air = 21.228 kPa), dashed line in Fig. 6, the oxidation
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Fig. 8. Transmission electron micrographs showing the formation of the (Ba,_,Sr,)Fe,O,4 phase between the ZnFe,O, spinel and (Bag st 5)CO; carbonate in the
aragonite modification. (a) Bright-field micrograph with indicated area of high-resolution TEM, of Fig. 9, (b—c) location of the different particles illustrated by
energy-filtered transmission electron micrographs showing high elemental concentrations by bright contrast: (b) iron, (c) barium, (d) location of the different par-
ticles illustrated by energy-filtered transmission electron micrographs showing high elemental concentrations by different colours (blue = iron, green = barium).

of the (Zng¢Fep4)Fe>O4 spinel to ZnFe,O,4 and Fe,O; takes
place at atmospheric conditions in the whole temperature
range of 20—1300 °C. Due to the fact that all graphs in
Fig. 6 are below the “po, in air” line, these reactions proceed
regarding thermodynamics. In the presence of zinc oxide, the
iron spinel favours to form the (Zng¢Fe 4)Fe,O4 or ZnFe,Oy4
spinels, and in its absence hematite is formed. However, in
presence of zinc oxide, the reaction of hematite to ZnFe,O4
spinel is thermodynamically advantageous, too. Strictly speak-
ing, these thermodynamic considerations are valid for bulk
phases only and not for nanoscale powders. But with the con-
templations that have been made in context of Fig. 4, all AGg
curves in Fig. 6 would be shifted slightly down to represent the
situation for nanopowders. Anyway, the relative stabilities of
the different phases would not be affected.

Recapitulatory, the (Zng ¢Feg 4)Fe,04 spinel is not the most
stable spinel in the Zn—Fe—O system due to its decomposition
at elevated temperatures. Thus, it is essential that the reaction
towards the perovskite with the carbonate takes place immedi-
ately after the formation of the (Zng¢Feq 4)Fe,O,4 spinel.

3.2.4. Complex (Ba,Sr)-Fe oxide intermediates
Asinvestigated by XRD pattern, crystalline intermediates that
are formed during the synthesis process are (ZngcFeg4)Fe,O4
spinel and (Bag sSry5)CO3 carbonate in the aragonite modifi-
cation. Against our previous assumption, the final perovskite
might be formed directly between the spinel and the carbonate
[7,8], we now deliver results that indicate a more complex re-
action pathway. This is due to the consideration of quenched
specimen that represents earlier intermediate stages in that
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c)

Fig. 9. (a and b) High-resolution transmission electron micrographs as indicated in Fig. 8a. (c) Diffraction data via FFT related to ZnFe,Oy spinel. (d) Diffraction

data via FFT related to (Ba,Sr;_,)Fe,0y4.

the perovskite structure is not yet clearly developed compared
to Refs. [7,8]. Fig. 7 displays XRD patterns given in Fig. 2
with special emphasize on the 26 range between 22° and
35°. A first glance on the XRD pattern of Fig. 2d might lead
to the conclusion the perovskite structure is already evident
in the intermediate powder. Against this, a detailed examina-
tion of the XRD pattern in Fig. 7d indicates that a different
phase is formed in the first place. The XRD pattern of Fig. 7d
could be satisfactorily indexed by a mixed oxide, namely
(Ba;_,Sr,)Fe;0,4. Oxides of this kind have been intensively
discussed by several authors in the past decades [17,27—31].
These oxides can be regarded as stuffed tridymite structures
which are build of six-membered rings of corner-sharing
FeOy-tetrahedra while the arrangement of the tetrahedra cor-
ners within the rings determine the crystal structure [27]. Be-
cause of the particular arrangement of the FeO,-tetrahedra
within these structures, a channel-like network is evident

which can be occupied by the larger Ba>" (160 pm [25])
and Sr** (144 pm [25]) ions, respectively. We found that the
orthorhombic crystal structure of y-BaFe,O, fits best to the
obtained XRD pattern [26].

In order to index XRD pattern as well as HRTEM micro-
graphs, the structure has been described in space group
Cmc2, (No. 36), see Table 2. It differs from Bb2;m given in
Ref. [17] by a permutation of the crystal axes. At this point,
it has to be stressed, that the investigated phases are deter-
mined within a mixture that contains at least three different
phases. Additionally, it should be considered that the ideal
stoichiometry of y-BaFe,O, should not be found in the reac-
tion sequence, due to the cation ratio that has been applied
in the reaction mixture. Thus, various stoichiometries like
(Ba;_,Sr,)Fe,0,4 should be evident. The existence of crystals
with various, slightly different, lattice parameter can be con-
cluded from Fig. 7j and k as many reflections for the same
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Cc

Fig. 10. (a) High-resolution transmission electron micrograph of contact zone of two (Ba,Sr,_,)Fe,0, grains. (b—d) Diffraction data via FFT related to grains as

indicated in (a).

plane are observed. This seems to be reasonable as similar
structures like (Bag sSrg s)Fe,O4 have been already described
[28], and they show polymorphism [29]. In order to support
XRD findings, TEM bright-field experiments have been
conducted with powders as in the XRD pattern in Fig. 7d.
Fig. 8 shows a TEM micrograph exhibiting the reaction
zone between ZnFe,O, spinel (i), the above mentioned
(Ba;_,Sr)Fe,O4 phase (ii) and (BagsSrgs5)CO3 carbonate
(iii). Energy-filtered TEM (EFTEM) micrographs of this par-
ticle display the cation distributions by colours. Obviously,
the inner core (i) contains no barium, whereas barium is
evident in the border (ii) as well as in site (iii). Contrary to
barium, iron can be found in the inner core as well in the bor-
der (ii) but not in site (iii). EFTEM investigations have been
confirmed by quantitative EDXS of respective specimen areas.
It has been found that the inner core (i) exhibits a stoichiometry
like ZnFe,0,4, whereas no zinc can be found in the border (ii)

and in site (iii). Further proof for this supposition can be found
in Fig. 9a and b in which HRTEM micrographs of the contact
zone between ZnFe,O,4 and (Ba,_,Sr,)Fe,O, are displayed.
Structure determinations have been conducted via two-dimen-
sional fast Fourier transformation (FFT) of the corresponding
areas (Fig. 9c and d). The indexed pattern in Fig. 9c and d give
hint to an orientation relationship between spinel (c¢) and stuf-
fed tridymite (d) of the following type: (0,2,—2). || (0,—2,1)4
and [4,1,1]. || [1,1,2]4. These findings agree well with the
observations displayed in Figs. 5 and 6. Below 1400 °C, the
(Zng ¢Feq.4)Fe;04 spinel structure tends to separate into
ZnFe,0,4 and Fe,O; with hematite structure (Fig. 6). Taken
this into account, it can be concluded, that the (Ba;_,Sr,)FeO,
phase has been grown at the expense of the Fe,O3 which is one
reaction product of the spinel separation. In order to underline
the assumption of the formation of a (Ba;_,Sr,)Fe,O4 phase,
several other particles have been investigated with respect to
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this phase. Fig. 10a displays an HRTEM micrograph exhibit-
ing two grains of the (Ba;_,Sr,)Fe,O, phase, but in different
orientation. As it can be seen from FFTs in Fig. 10b—d, the
grain related to (b) is viewed along the [0,1,4] zone axis, while
grain related to (d) is viewed along [3,2,4]. Thus, (—1,4,— 1)y, ||
(0,—2,3)4 and [0,1,4];, || [3,2,4]4. Additionally, Fig. 10d shows
an FFT of the contact zone as indicated in Fig 10c. Fig. 11
displays an HRTEM micrograph of the same grain as in
Fig. 10d now viewed along the [2,1,2] zone axis instead of
[3,2,4] (after tilting the sample holder). Summing up the above
findings, we postulate a rather complicated reaction sequence.
After formation of spinel and carbonate, the formation of
a (Ba;_,Sr,)Fe,O4 phase is postulated. Considering that the
spinel structure (B3O,4) consists only of type-B cations (ac-
cording to the perovskite terminology ABOj) it is not surpris-
ing that structures like AB,O, are evident which can be
understood as intermediate compositions regarding the type-
A cation concentration in the spinel and the perovskite. After
prolonged reaction time, the diffusion processes, which have
to be studied in more detail, between ZnFe,O, spinel and
the (Ba,_,Sr,)Fe,O,4 phase might finally lead to the perovskite
structure.

EEL spectra of the phases under consideration are given in
Fig. 12a—d in the energy-loss range of 500—850 eV. These
show up O-K, Fe-L, 3, and Ba-M, 5 ionization edges. The rel-
ative intensities of Fe-L,3; and Ba-M,s white lines clearly
show that the stuffed tridymite structure (Fig. 12b) contains
more iron relative to barium compared to the perovskite struc-
ture (Fig. 12a). The oxygen K-edge reveals characteristic sig-
natures of the different phases that are shown in more detail in
Fig. 12e—h. The O-K ELNES of Fig. 12a,c,d,e,g, and h corre-
spond to fingerprints given in the literature for spinel [32,33],
carbonate [34], and perovskite [35], respectively. The stuffed
tridymite structure shows after a pronounced leading peak
a peak doublet (arrows in Figs. 12b and f) and is in good
agreement with the spectral signature given in Ref. [36] for
CaAl,O, that is structurally related.

4. Conclusions

It is evidenced that in the sol—gel based synthesis route em-
ployed here, the cubic perovskite-type (Bag sStg 5)(Feg.sZng )
05_; is formed in a nanoscale solid state reaction between
finely-dispersed crystalline intermediates, i.e. a (BagsSrgs)
COj3 carbonate and a (ZnggeFeg4)Fe 04 spinel. Obviously,
the reaction pathway goes from cubic spinel over transient
phases of orthorhombic stuffed tridymite-type finally to cubic
perovskite-type. XRD and TEM snapshots on quenched sam-
ples reveal some details of the intricate reaction mechanism on
the atomic scale, however, not all questions can be answered
satisfactorily.

The technologically so important spinel/perovskite inter-
faces or superstructures [37,38] might suggest that a simple
topotactic arrangement of both cubic structures, spinel and
perovskite, with low lattice misfit could be expected in these
nanoscale solid state reactions. Our investigations make clear
that this is not the case. In the quenched specimens from
different stages of the synthesis process, we may find even ad-
ditional phases that could be different from the so far found
ones. For instance in the analogous synthesis of a cobalt con-
taining cubic perovskite-type oxide, (BagsSrgs)(CogsFeo2)
0;_;, tetragonally distorted perovskite phases are involved
[9].

From a general point of view it is nebulous how the spinel
structure with FeO,4 and ZnOy tetrahedra and FeOg octahedra
transforms to stuffed tridymite structures with FeO,4-tetrahedra
and finally to a perovskite structure with FeOg and ZnOg octa-
hedra. Zinc seems to be squeezed first into a ZnFe,O, spinel
and then probably into ZnO what was seen in some quenched
specimen [7]. Incorporation of zinc into the perovskite struc-
ture occurs obviously late in the reaction sequence. At which
stage, and how, this proceeds is not understood. In addition,
the stuffed tridimyite (Ba,Sr)-Fe,Oy4-type phases show poly-
morphism [29] so that in very detail everything is undoubtedly
even more intricate. And, in these technologically so important

Fig. 11. (a) High-resolution transmission electron micrograph of (Ba,Sr,_,)Fe,O, grain as in Fig. 9d viewed along different zone axis. (b) Diffraction data via FFT.
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Fig. 12. Electron energy-loss spectra showing O-K, Fe-L, 3 and Ba-M, s ionization edges and O-K energy-loss near-edge structures of different phases. (a and e)
Perovskite-type (Bag sSro.s)(FepsZng2)O3_s, (b and f) stuffed tridymite-type (Ba,Sr;_,)Fe,Oy, (c and g) (Bag sSrys)CO; carbonate, (d and h) (Zng ¢Fe 4)Fe,O4

spinel.

nanoscale powder reactions, mechanisms are more difficult to
understand than in bulk solid state reactions by principle [39].

All in all it is somehow astonishing that the sol—gel proce-
dure passes the same intermediate phases (carbonate and spi-
nel) that are employed in classical solid state routes. However,
several advantages of the sol—gel procedure are evident. Start-
ing from the solution over the gel to the crystalline intermedi-
ates a nanoscale intermixing of cations is preserved that is the
key to homogeneous products of complex stoichiometries.

Solid state reactions in minute reaction couples form tiny
product layers and thus do not require the activation of long
range diffusion processes. So, the reaction temperature can
be kept below the decomposition temperature of the relevant
carbonate. Conclusively, the reaction pathway is different
from the classical solid route, even if the same type of reaction
couples are employed. Reaction temperatures distinctly below
1000 °C diminish the risk of the evaporation of the most vol-
atile constituents (in the systems under investigation Co or Zn)
and are thus advantageous for the synthesis of homogeneous
products of complex stochiometries. Moreover, low reaction
temperatures lead to nanoscale grains that are favourable
with respect to several demands.
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Chapter 3

Grain size and grain boundaries

3.1 Summary

The results presented in the following two sections consider the transport properties
of electronic and ionic charge carriers in BSFZ and BSCF, which are examined via
SEM, HRTEM, EELS and energy-dispersive X-ray spectroscopy (EDXS), differential
scanning calorimetry (DSC), XRD and oxygen permeation measurements.

In the first article the effect of grain size distribution on the permeation performance
of BSFZ membranes is investigated by variation of calcination temperature in powder
synthesis and sintering time for membranes. We are able to control the grain sizes in
the green compact and thus, in the sintered membranes during ceramic production. An
increase in dwell time during sintering results in larger grains at the surface as well as
in the bulk of the membrane as long as the grains are in good contact from the stage of
green compact production. Grain boundaries were found to be atomically thin without
any interfacial phases. Larger grains in the sintered ceramic and a homogeneous
grain size distribution are favorable for the oxygen permeation. Grain boundaries
were identified as barriers for the bulk diffusion and thus for the oxygen permeation,
because the increase in grain size is accompanied by a decrease of grain boundary
ratio. This leads to the conclusion that the transport rate of the oxygen permeation
is limited predominantly by bulk diffusion and that BSFZ is a high mobility material.
The second article describes the effect of microstructure on the oxygen permeation
performance of BSFZ and BSCF using liquid phase sintering with BN as sintering aid.
Prior to sintering BN with concentrations up to 10 mol-% was added to the perovskite
powders and dense ceramic membranes of BSFZ and BSCF were successfully prepared
without any remaining boron after sintering. The sintering temperature could be
lowered by 50-100 °C. The membranes exhibit excellent phase stability. The addition
of BN as sintering aid turned out as an other suitable method to decrease the grain
size of both membrane materials, BSFZ as well as BSCF, and the findings of the
first section of this chapter were confirmed. The oxygen permeation flux was lowered
proportionally to the abatement of the average grain size with increasing BN addition.
Due to the fact that no amorphous material or interfacial phase were found to be
incorporated at the grain boundaries, we come to the conclusion that a lattice misfit
between the grains and associated straining of regions near to grain boundaries have
a negative impact on the oxygen ion transport.
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The effect of grain size distribution in perovskite-type (BagsSro s )(Feo.sZno2)O3_s (BSFZ) ceramics on their
oxygen permeation behaviour has been investigated by variation of calcination temperature in powder
production and sintering time for the ceramics. The membranes were examined via scanning electron
microscopy (SEM), transmission electron microscopy (TEM) and oxygen permeation experiments. We
found that the dwell time during sintering has an important influence on the microstructure of the ceramic.
The longer the dwell time, the further proceeds the grain coarsening, which affects the oxygen permeation
in a positive way and leads to an enhanced permeation. Supplementary, decreasing calcination tempera-
Grain size distribution ture in perovskite powder synthesis delivers fine powders with grain sizes less than one micrometer and
Microstructure thus smaller grains in the ceramic. Unfortunately, the grain size distribution in sintered membranes is
BSFZ not constant through membrane cross-sections since grains in the bulk are smaller compared to those
Oxygen permeation at the surface which is not favorable for the oxygen permeation of the ceramics. The activation energy
was determined to be in the range of 51-53 kJ/mol and its variation does not exhibit a dependence of
grain size changes. High-resolution transmission electron microscopy proved that grain boundaries are
atomically thin without any interfacial phases. We come to the conclusion that the transport rate of the
oxygen permeation is limited predominantly by bulk diffusion and due to the fact that grain boundaries
in BSFZ act as barriers for bulk diffusion, this material is a high mobility material.

© 2008 Elsevier B.V. All rights reserved.

Keywords:
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1. Introduction tial pressure pO, of less than 1 x 10~ Pa [1,2]. Doping of the B

site of the perovskite structure with a divalent metal like zinc

Various applications demand ceramic materials that exhibit
both high ionic and electronic conductivities. Perovskite-type
oxides of the composition ABO3; can host a lot of different cations
on the A and B sites and thus they can show conductivities
from almost pure electronic to almost pure ionic. P-type elec-
tron conductors usually exhibit high electronic conductivity and
low O, conductivity. The introduction of lower valence state
ions into the perovskite structure induces oxygen vacancies lead-
ing to an improved ionic conductivity benefiting the oxygen
permeability. Recently, a novel perovskite material of A!BVO;-
type with the stoichiometry (BagsSrgs)(FeggZng2)03_5 (BSFZ)
has been developed that shows high oxygen permeation fluxes
(membrane disks: ~2.55mLmin~! cm~2 for the partial catalytic
oxidation of methane to syngas (POM)) as well as an excellent
phase stability under a 2% H,-Ar atmosphere with an oxygen par-

* Corresponding author. Tel.: +49 511 762 3555; fax: +49 511 762 19121.
E-mail address: julia.martynczuk@pci.uni-hannover.de (J. Martynczuk).

0376-7388/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.memsci.2008.05.064

leads to the diminution of non-stoichiometric oxygen variations
and lattice expansion caused by the variation of temperature
or chemical oxygen potential and improves the oxygen perme-
ability due to higher ionic conductivity. Wei et al. [3] showed
with impedance spectroscopy that BSFZ is a mixed conductor
that can provide simultaneous transport of oxygen ions and elec-
trons.

The oxygen transport properties are the major reason for the
various applications of polycrystalline perovskite materials, e.g.
in oxygen separation or solid oxide fuel cells (SOFC) [4-8]. It
has often been ignored that these properties are largely influ-
enced by differences in the microstructure of the material, i.e.
grain size and grain boundary distribution or inhomogeneous
grain and grain boundary composition. Recently, some research
was done by different groups to elucidate its importance and
to address the dependence of the oxygen permeation on the
microstructure. Since amorphous phases or inclusions at the grain
boundary seem to act as high diffusivity paths [9,10], the influ-
ence of grain and grain boundary distribution is contradictory.
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The influence of microstructure cannot be generalized and clearly
depends on the chemical nature of grains and grain boundaries,
the powder synthesis and the ceramic process. For example there
is no homogeneous explanation for the following findings: the
increase of grain size leads to an enhanced oxygen permeation for
LaCoO3,5, L30.3SF0_7C003,5. and Lao‘55r0'4C00'2F60_303,5 [11—14],
but to a decrease in oxygen permeation for LagsSrgsFeOs_s,
Lag1Srp9CopgFen103_s, and LaggSrg4Fep9Gag103_s [15-17]. This
contradiction might be caused by missing of important additional
information which should always be considered. The first infor-
mation needed is L, the characteristic thickness of the ceramic
below which the oxygen flux will be predominantly controlled
by surface exchange kinetics. If the ceramic exceeds L, the trans-
port rate of the oxygen permeation is not limited anymore by
surface exchange but predominantly by bulk diffusion [18]. It
is obvious that the grain size and grain boundary ratio play an
important role in the acceleration of the diffusion processes. For
surface exchange diffusion smaller grains are favorable due to big-
ger surface area. Thus in surface exchange controlled processes
an increase in oxygen permeation is expected with decreasing
grain size, what explains the behaviour of LaySri_yFeyGaj_,05_s.
Etchegoyen et al. and Kim et al. proved independently that the
oxygen flux is controlled by a surface exchange mechanism and
the oxygen exchange coefficient increases significantly when the
average grain size on membrane surface decreases [17,19]. Com-
parable findings where made for SrCoggFep203_s. Zhang et al.
[20] found a dependence of increasing permeation with decreasing
grain size and Bouwmeester et al. [18] suggested already in 1994
that the oxygen flux is affected by the surface exchange kinetics.
SrCopgFep203_5 is a good example to show that the incorpora-
tion of either an additional A (e.g. Ba) or B (e.g. Cu, Cr or Al)
cation into the ABO3 perovskite structure can totally invert the
behaviour. Contradictory to the prior findings a positive correlation
between bigger grains and the oxygen permeation was found for
Bag 5Sro5CoggFep205_s by Wang et al. and Arnold et al. [21,22] as
well as for SrCo(Fe,M)03_g (M = Cu or Cr) and SrFe(Al)O3_s-SrAl,O4
composites by Kharton et al. [23,24]. It is disputable if this change
in behaviour is just ascribable to an increase of the characteristic
thickness due to the new cations or if there are also other aspects
to consider.

Joachim Maier is engaged in the influence of crystal defects
on the transport properties in electro ceramics [25]. He found
that interfaces (e.g. grain boundaries) exhibit their own defect
chemistry and special mobilities, and can hence, provide fast path-
ways or obstacles in addition to space charge effects. There is
a differentiation between high and low mobility materials. In
high mobility materials usually the bulk structure is optimized
for point defect motion and then a structural modification as
occurring in the grain boundary is likely to depress the mobil-
ity. Whereas for materials with very low mobilities in the bulk
any structural perturbation is likely to increase the mobility
significantly. For acceptor doped oxides like Fe doped SrTiOs, Y-
doped ZrO, or Ce0O,, a positive space charge potential occurs
at grain boundaries and hence, severe depletion effects at the
grain boundary are observed [26-33]. This implies the depletion
of oxygen vacancies (decreasing ionic conductivity) and holes.
At high oxygen partial pressures the presence and mobility of
both carriers is important for an effectively neutral mass trans-
port. This leads to a pronounced chemical resistance of a grain
boundary with respect to oxygen transport across it. Hence, the
variation of the grain boundary ratio provides information about
the nature of the material (low or high mobility) depending on
the grain boundaries as depletion or accumulation layers, but also
the characteristic thickness of the material should be taken into
account.

2. Experimental

A synthetic method with combined citric acid and ethylene-
diamine-tetraacetic acid (EDTA) as the complexing agents was
applied (Fig. 1). A given amount of Ba(NOs); powder was dis-
solved in an aqueous solution of Zn(NOs ),, Fe(NO3 )3, and Sr(NO3 ),,
followed by the addition of EDTA acid. After agitation for a cer-
tain time, a proper amount of citric acid was introduced, with
the molar ratio of EDTA acid: citric acid: total of metal cations
controlled at around 1:1.5:1. After addition of NH3-H,O, the pH
value of the solution was adjusted at around 9 by the addition of
supplementary NH3-H,0. Water was evaporated with stirring at
150°C. After evaporation for several hours the transparent solution
transformed into a dark purple gel. Further heat treatments were
applied at temperatures up to 950 °C. The fine-scale mixed interme-
diates appearing during the perovskite synthesis were determined
as (ZngFegg)Fe;,04 spinel and (Bag 5Srg5)C0O3 carbonate in arag-
onite modification followed by the formation of stuffed tridymite
structures as transient phases. The perovskite structure formation
was found to be completed at calcination at 800°C for 10 h with
grain size diameters up to 700 nm. The calcination at 950°C for
10 h produces a powder run through a coarsening of grains to sizes
of around a micrometer [34-37]. Thus, a variation of the calcination
temperature was used to adjust the grain sizes of the as-synthesized
perovskite. The calcined powders were uniaxially pressed under
140 kN into pellets and sintered pressurelessly at 1150 °C to ceramic
discs of 14 mm in diameter and a thickness of around 1.15 mm.

Ba(NO,), + Sr(NO,), + Fe(NO,);+ Zn(NO,),

I

: |

: I

' Addition of EDTA, |

! citric acid, NHy H,0O | pH=9 |

\ I

b I

i Condensation Sol/ Gel | T=150°C :

! I

| Thermal treatment T = 650-700 °C !

- I
1

! "T=8OU°C T=2950°C i

I

! I

i | BSFZ powder BSFZ powder | '

! I

:. < lpm > 1 um .l

Cold pressing :

$ F =140 kN ‘L I

l

I

I

| BSFZ green compacts |

Pressure-less sintering
v T=1150°C v

| BSFZ membranes ‘

Al 10h

]

Fig. 1. Scheme of the membrane fabrication.
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The oxygen permeation was measured in a high-temperature
permeation cell [21]. Discs were sealed onto a ceramic tube with
gold-paste (conducting 130 paste, C5754, Heraeus) at 950°C for
2 h. After sealing, gas flow rates were delivered to the reactor by
mass flow controllers (Bronckhorst Hi-Tech) and continuously read
by an on-line gas chromatograph (Agilent Technologies, HP 6890,
equipped with a Carboxen 1000 column). Air was fed at a rate
of 150mLmin~"! to the air side; He (29.0mLmin~!, 99.995%) and
Ne (1.0mLmin~1, 99.995%) as the internal standard gases were
fed to the sweep side. The absolute flow of the effluents rate was
determined by using neon as an internal standardization. For that
purpose the concentration of neon in effluents was measured. Since
the flow rate of neon is known it is thus possible to calculate the
total effluents flow rate. Nitrogen was also detected in the effluents
by the gas chromatograph because of slight imperfections in the
sealing, and the leakage of oxygen was subtracted in the calculation
of the oxygen permeation flux. The relative leakage of O, was found
to be less than 8%. The permeation flux through the membrane
could then be calculated by the fraction O, in the effluents and the
determination of the effective permeation area of the membrane.

The density was determined by the Archimedes principle using
a Sartorius balance model BP211D with a resolution of 0.01 mg
completed by a support for the determination of density.

Scanning electron microscopy (SEM) was employed on a field-
emission instrument of the type JEOL JSM-6700F. Secondary
electron (SE) micrographs were taken at a low excitation volt-
age of 2kV. In order to analyze the microstructure of the sintered
membranes, SEM was conducted on both surfaces and on fracture
surfaces, and grain size distributions were evaluated. Fracture sur-
faces were etched with aqueous HCl (2 M) for 2-5s in order to
visualize grain boundaries. An EDX spectrometer of the type Oxford
Instruments INCA-300 with ultra-thin window was used for ele-
mental analysis. Adobe Photoshop CS2 (Version 9.0) and Image]
(1.33 u) was used as image analysis software for the determination
of the grain size distribution.

X-ray diffraction (XRD) was measured with a Philips X'pert-MPD
instrument using monochromator-filtered Cu Ko radiation at 40 kV
and 40 mA, receiving slit of 0.15 mm and count times of 3 s per step.
Data were collected in a step-scan mode in the range of 20-50° with
intervals of 0.03°.

Additionally, TEM was conducted at 200kV with a JEOL JEM-
2100F-UHR field-emission instrument equipped with a Gatan GIF
2001 energy filter and a 1k-CCD camera. EDXS was carried out
by a light-element detector using the Cliff-Lorimer quantifica-
tion technique (INCA 200 TEM, Oxford Instruments). Furthermore,
the specimen for TEM investigations was prepared as follows.
First, pieces of 1 mm x 1.5mm x 3 mm were cut out of the mem-
brane followed by covering of both sides with silicon single crystal
using epoxy. Accordingly, the protected membrane pieces were
polished on polymer embedded diamond lapping films down to
0.02 mm x 1 mm x 3 mm and epoxy-glued onto a copper slot grid.
Electron transparency was achieved by Ar* ion sputtering at 3kV
under incident angles of 6° and 4° (Gatan, model 691 PIPS).

3. Results and discussion

The effect of grain size distribution on the oxygen permeation
behaviour has been investigated by variation of calcination tem-
perature and sintering time, but a constant membrane thickness.
The powder calcined at 800 °C had an average grain size of 700 nm
and leaded to membranes A1-3. Membranes A1 had average sur-
face grain areas of 377 wm? and bulk grain areas of 9 um? (Table 1).
Fig. 2 displays the different grain sizes by SEM micrographs of the
surface (a), fracture surface (b), and the cross-section (c) etched

2 s with hydrochloric acid. Due to the faster etching of the grain
boundaries the grains of the fracture surface are visible but at the
same time they seem more loosely. With shorter time of etching the
grain boundaries of the single grains are not visible and the grains
are in good contact, but a grain size determination is not possible.
From the grain size distribution of surface and bulk (Fig. 2d) it is
obvious that it has been possible to synthesize membranes with
distinctly smaller grains in the bulk than at the surface starting
from powders with small particles (A1-3). Fig. 2c gives evidence
of a sandwich-effect. There is a region of approximately 160 pum
depth of big grains, similar to those at the surface, followed by a
changeover to the smaller grains in the bulk (marked by a hori-
zontal line). This effect is also observed for membranes A2 and A3.
Supplementary, the sintering temperature and dwell time influence
the final microstructure of the ceramic. The ceramics pressed out
of small size powder (A1-3) have been sintered for different times
at 1150°C (Fig. 1). As can be seen from Table 1 the grain coarsening
in the bulk of the membrane proceeds slower than at the surface
(A1 to A2). But after a dwelling time of 40 h the bulk grains seem to
grow at the expense of the surface grains, thus, the average surface
grain area becomes smaller due to increasing average bulk grain
area.

To receive larger grains in the sintered ceramics, the calcination
temperature of the powder has been changed to 950°C and the
dwell time for the sintering was elongated (B1-3). The membrane
B1 was prepared from a powder with a calcination temperature
of 950°C for 10 h with grain sizes of around a micrometer and a
dwell time of 10h at 1150°C during sintering. The average grain
area of the membrane was determined as 435 wm? at the surface
and 302 wm? for the bulk. The average grain area for the surface
increased from 435 over 652 to 1029 wmZ. This effect has also been
observed for the bulk from 302 over 609 to 781 wm?. Fig. 3a and
b show some grains of the surface and the fracture surface of B3
etched 2 s with hydrochloric acid. The grains are visible due to the
faster etching of the grain boundaries, but the grain surfaces are
also etched a little (etching cavity), what should not be mistaken
as porosity. Fig. 3d illustrates that the grain size distribution for the
surface is similar to that in the bulk. A slight difference between
bulk and surface grain sizes remains, but SEM investigations show,
that the sandwich-effect, where the smaller bulk grains merge into
the bigger surface grains is negligible. The relative densities shown
in Table 2 lie in a reasonable range like reported elsewhere [21].
Although there is a slight trend to higher densification with grain
coarsening from B1 to B3, the grain size distribution at the sur-
face is similar to that in the bulk. In contrast to that the grain size
distribution for A1 points out that the grains at the surface have
a bigger size than in the bulk, but a difference in density is not
the explanation. According to the initial stage model for the sin-
tering process [38], which consists of two spheres in contact, it
is very important for the formation of sintering necks during the
sintering process to have grains in good contact, because for the
densifying mechanisms the model accounts for interpenetration
of the spheres (i.e., shrinkage) as well as neck growth. It might be
necessary to increase the pressure during uniaxial pressing of the
membranes for small size powders to avoid big differences in grain
size distribution, since the volume reduction of small size pow-
ders during pressing is greater than for powders with bigger grain
sizes and thus the contact between single perovskite powder grains
might be worse in a powder with small grains compared to larger
grains leading to a deceleration of the sintering process and thus
to smaller grains in the final membrane. Fig. 4 illustrates that for
the membranes of kind B an increase in dwell time during sintering
results in larger grains at the surface as well as in the bulk, whereas
for membranes A1-A3 the dwell time has a slight influence on the
surface grain size and hardly any modification of the grain sizes of
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Fig. 2. SEM micrographs of A1 and grain size distribution: (a) surface, (b) fracture surface (bulk) etched 2 s with HCI (2 M), (c) cross-section etched 2 s with HCI (2 M) and (d)
grain size distribution of surface and bulk.
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Fig. 3. SEM micrographs of membrane B3 and grain size distribution: (a) surface, (b) fracture surface (bulk) etched 2 s with HCl (2 M), (c) cross-section etched 2 s with HCl
(2M) and (d) grain size distribution of surface and bulk.
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Table 1
Average grain area and synthesis conditions for membranes A1-3 and B1-3

Powders Membranes

Calcination 10h at (°C) Average grain area

Dwell time at 1150 °C during sintering (h)

Surface (pm?)

Bulk (pm?)

Al 377
A2 800 530
A3 384

B1 435
B2 950 652
B3 1029

® 10
8 20
46 40

302 10
609 20
781 40

" 1 n 1 L 1
surface B .
fracture surface B
surface A r
fracture surface A L

10004

,
2O 4@
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600 *
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average grain area [um’]

04 = * L
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dwell time at 1150°C during sintering [h]

Fig. 4. Plot of the average grain area in dependence of the dwell time at 1150°C
during sintering for each of the three membranes of kind A and B for the surface and
fracture surface.

the bulk is evident. When the grains in the A membranes are in
poor contact from the beginning of the sintering process, then an
extension of the dwell time during sintering does not result in a
progression of the sintering process.

To make sure that the materials were all cubic perovskite-type
without any impurities, XRD was applied to all powders and to
all membrane surfaces. There was no evidence for impurities and
therefore please find comparable data with Rietveld refinement
published in [37]. Cross-sections of the membranes were analysed
by EDXS, and no impurities or non-stoichiometries in the material
composition were found. An example for an EDX spectrum is shown
in [2].

Furthermore, the nature of grain boundaries has been evidenced
by transmission electron microscopy (TEM). Membrane B3 was
chosen because it showed the highest oxygen permeation. Fig. 5a-c
shows high-resolution micrographs at three rising magnifications
of a grain boundary of two grains with different zone axes. Fig. 5d
and e shows the selected area electron diffraction (SAED) taken

Table 2

with an 120 nm aperture of the left and right grain, respectively,
which allows the determination of the zone axes of [201] for the
grain at the left side and [0 0 1] for the grain at the right side. In this
example the two lattice planes at the grain boundary are (010) and
the grains are twisted with respect to each other by a dislocation
angle of approximately 26° (Fig. 5b). The grain boundaries were
found to be atomically thin without any interfacial phases (Fig. 5c)
and the right grain merges into the left grain by leaving some planes
unpaired, which is necessary to accommodate the dislocation angle
of 26°. Comparable findings were already made for membranes of
kind B1 [35].

It is very interesting to see the impact of the grain size distri-
bution on the oxygen permeation (Fig. 6a). Membranes A1-3 with
lower calcination temperature (800 °C) exhibit lower oxygen per-
meation abilities. The permeation increases with dwell time, but
remains below that of B1. Thus, it is not favorable for the oxy-
gen permeation to start from smaller grains in the green compact
with the applied sintering conditions. But in principle the BSFZ
synthesis provides the possibility of the preparation of nano-scale
powders, which might be more favorable for the membrane abili-
ties with different pressing or sintering conditions. Nevertheless,
the increase of the dwell time for green compacts is expedient.
For B2 and B3 with dwell times of 20 and 40 h, respectively, the
oxygen permeation has been significantly enhanced. For 950°C
the oxygen permeation for B3 is with 1.08 mL/mincm?2 higher
than that for B1 (0.96 mL/mincm?2) and B2 (1.06 mL/mincm?).
Comparable results have been found for BagsSrgsCoggFep203_5
membranes [21]. Wang et al. found that the oxygen perme-
ation flux increased considerably with the increase of the grain
size.

For the determination of the activation energy Fig. 6b shows
the logarithmic plot for the oxygen permeation flux depending
on the inverse temperature. Regression analysis gives values for
the activation energy E, in the range of 50-60 kJ/mol, which are
listed in Table 2. Actually E, lies between 51 and 53 k]J/mol and
just the value for A2 is an outlier with 59 kJ/mol. The variation
of the activation energy does not exhibit a dependence of grain
size changes, whereas the oxygen permeation flux increases with
increasing grain size, what is illustrated by Fig. 7 for the sintered
membranes at 950 °C permeation temperature.

Experimental conditions, thickness, relative density (Archimedes method) and calculated activation energies for membranes A1-3 and B1-3 from 820 to 950°C

Dwell time at 1150 °C during sintering (h)

Thickness of membrane (mm)

Relative density (%) Activation energy, E, (kJ/mol)

Al 10 1.17
A2 20 L1
A3 40 1.15
B1 10 1.15
B2 20 1.15
B3 40 115

96 53
96 53
96 51
94 51
95 59
96 53
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Fig. 5. TEM of a grain boundary in B3: (a-c) HRTEM at three different magnifications, (d) and (e) SAED of the left and right grain, respectively.
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for the oxygen permeation flux depending on the inverse temperature, and linear
fittings.

Due to the fact that the thickness of the membranes (Table 2)
was not significantly changed, the transport mechanism control
- surface exchange or bulk diffusion - is expected to be the
same for all investigated membranes. For surface exchange diffu-
sion smaller grains are favorable due to bigger surface area thus
in surface exchange controlled processes an increase in oxygen
permeation is expected with decreasing grain size. The finding
that the oxygen permeation is enhanced with increasing grain
sizes leads to the conclusion that the ceramic exceeds L. and the
transport rate of the oxygen permeation is not limited by surface
exchange but predominantly by bulk diffusion [18]. An increase in
grain size is accompanied by a decrease of grain boundary ratio,
thus grain boundaries in BSFZ act as barriers for the bulk diffu-
sion and thus for the oxygen permeation. Following the theory of
Maier [25] this material is a high mobility material, because the
bulk structure is optimized for point defect motion and a struc-
tural modification as occurring in the grain boundary is likely to
depress the mobility due to a pronounced chemical resistance
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Fig. 7. Oxygen permeation flux of sintered membranes at 950 °C in dependence of
the average grain area of the bulk.
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of the grain boundary with respect to oxygen transport across
it.

4. Conclusion

A variation of the calcination temperature of the as-synthesized
perovskite powder in a sol-gel based process was used to control
the grain sizes for the green compact for the ceramic produc-
tion. Due to these grain size variations in the starting powder, we
were able to control the grain sizes in the sintered ceramic. Mem-
branes with distinctly smaller grains in the bulk than at the surface
were synthesized. Supplementary, the sintering temperature and
dwell time during sintering influence the final microstructure of
the ceramic. An increase of dwell time produced membranes with
larger grains in the sintered ceramics. For membranes of kind A (cal-
cination of the powder at 800 °C for 10 h) the dwell time has a slight
influence on the surface grain size and hardly any modification of
the grain sizes of the bulk is evident. This can be explained by the
poor contact of the grains in the green compact from the beginning
of the sintering process. Whereas, for membranes of kind B (calci-
nation of the powder at 950°C for 10 h) an increase in dwell time
during sintering results in larger grains at the surface as well as in
the bulk. High-resolution transmission electron microscopy proved
that grain boundaries are atomically thin without any interfacial
phases.

The oxygen permeation can be enhanced by an increase of the
dwell time during sintering of the membrane. This has been shown
for both kinds of ceramics. A second finding is that a huge differ-
ence in grain size distribution between surface and fracture surface
resulting in a sandwich-effect, where the size differences have to be
balanced, leads to a decrease in oxygen permeation. Thus, it is not
favorable for the oxygen permeation to start from smaller grains in
the green compact with the applied pressing and sintering condi-
tions. The activation energy was determined to be in the range of
51-53 kJ/mol with an outlier at 59 kJ/mol and its variation does not
exhibit a dependence of grain size changes. The finding that the
oxygen permeation is increased with increasing grain sizes leads
to the conclusion that the transport rate of the oxygen permeation
is limited predominantly by bulk diffusion. An increase in grain
size is accompanied by a decrease of grain boundary ratio, thus
grain boundaries in (Bag5Srg5)(Feg.gZng;)03_g act as barriers for
the bulk diffusion and thus for the oxygen permeation. Following
[25] this material is a high mobility material.
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Abstract

Perovskite-type membranes of (BagsSrys)(CopsFep2)0s—s (BSCF) and (BagsSrys)(FegsZng»)05_s (BSFZ) were successfully prepared via
liquid-phase sintering using BN as sintering aid. The obtained membranes were examined via powder X-ray diffraction pattern (XRD), differential
scanning calorimetry (DSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and oxygen permeation experiments.
It has emerged that the use of BN as sintering aid lowers sintering temperatures in order to obtain dense membranes with relative densities in the
range of 93-96% as proven by the Archimedes method. It was further shown that the perovskite structure could be maintained after sintering with
BN. Additionally, BN was completely removed from the sintered membranes. Investigation of the microstructure revealed that the average grain
size of the membranes was influenced by the amount of BN added prior the sintering process. It was found that large amounts of BN effectively
lower the average grain size. Oxygen permeation experiments have shown that the lower the average grain size the lower the oxygen permeation
performance, particularly in the case of BSCF. Transmission electron microscopy revealed that no evidence for an amorphous layer or any other

interfacial phase in the grain boundary is present.
© 2007 Elsevier B.V. All rights reserved.

Keywords: BSCF; BSFZ; Oxygen permeation; Grain boundaries; Transmission electron microscopy; Perovskite; Liquid-phase sintering; BN; Grain size distribution

1. Introduction

Nowadays, mixed ionic—electronic conductors (MIECs) with
perovskite structure are applied in many different processes as
they allow to selectively separate oxygen from gaseous mix-
tures. Due to their intrinsic mixed conductivity, they are of great
interest for many industrial processes in which a constant supply
or removal of oxygen to or from reaction mixtures is required
[1]. Applications such as the usage of MIEC as cathode material
in solid-oxide fuel cells as well as in the production of oxygen
enriched air and in the conversion of hydrocarbons to synthe-
sis gas have been reported [2—-6]. Major advantages of these
membranes are their almost infinite permselectivity and remark-
able high oxygen fluxes in the range observed on microporous
materials [1].

Within the MIECs, (Bag 5Srq 5)(CogsFeg2)O3_s (BSCF) is
regarded to be one of the most promising materials as mem-
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branes made of it show high oxygen permeation fluxes and
excellent phase stability even under low oxygen partial pres-
sures and reducing gas atmospheres [7-9]. Recently, a new
perovskite system (Bags5Srgs)(FegsZng2)O3—s (BSFZ) was
invented which also exhibits excellent phase stability and
remarkably high oxygen fluxes [10-12]. As these perovskite
systems display two of the state-of-the-art materials, they are of
special interest and thus investigated regarding their microstruc-
ture and oxygen permeation performance in the presented study.

Several groups have reported that the microstructure and
thus the relation between bulk and grain boundary oxygen
ion diffusivity within dense ceramic membranes significantly
influences the oxygen permeation performance [13-19]. Dif-
ferent perovskite systems were studied in these reports and no
clear trend is visible whether the transport along grain bound-
aries displays a barrier or acts as a pathway for fast oxygen
transport. Diethelm et al. found for (Lags5Srgs)FeOs_s that
the larger the obtained grains — and thus the fewer the grain
boundaries — the smaller the observed oxygen permeation per-
formance [13—14]. Similar findings were reported for LaCoO3_s
by Kharton and Marques [15]. Contrary to that, in ceramics
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of Ca(TipgFep2)03_s — prepared by mechanical activation —
grain boundaries are suggested to act as a barrier for oxygen
permeation [16]. Most remarkably, opposite results were found
within the system (Baj_,Sry)(Cop gFep2)O3—_s5. The end mem-
ber Sr(Cop gFep2)03_s provides improved oxygen permeation
performance by decreasing the average grain size, whereas for
(Bag.5Srg 5)(Cog.sFep2)O3_s opposite observations have been
obtained [17-19]. As several parameters during the prepara-
tion influence the properties of the membrane, the effect of the
microstructure on the oxygen permeation has to be studied more
systematically. This could be done by varying the microstruc-
ture in different perovskite systems via the same way, i.e. the
sintering temperature and dwelling time. Additionally, care has
to be taken by comparing results, if the raw perovskite powder
has been prepared in different ways, which might also influence
the properties of the final membrane.

In this study, we have applied a liquid-phase sintering to
obtain BSCF and BSFZ membranes using BN as sintering aid.
The method was described by Ho on the BaTiO3 perovskite sys-
tem [20]. It was shown that the application of BN as sintering aid
allows to lowering the sintering temperature, and no incorpora-
tion of boron into the perovskite lattice was observed. Due to the
fact that during the sintering process a liquid-phase is eminent in
the membrane, a lowering of the average grain size is expected
[21]. In order to study the changes in microstructure and its
influence on the oxygen permeation performance, membranes
of BSCF and BSFZ with varying BN content during sinter-
ing were prepared. Investigations of the microstructure were
carried out by scanning electron microscopy (SEM) combined
with energy-dispersive X-ray spectroscopy (EDXS). Transmis-
sion electron microscopy (TEM) along with EDXS and electron
energy-loss spectroscopy (EELS) was conducted to examine the
microstructure and elemental composition of grain boundaries.
Additionally, differential scanning calorimetry (DSC), X-ray
diffraction (XRD) and oxygen permeation experiments as well
as relative density measurements were applied for characteriza-
tion purposes.

2. Experimental

BSCF and BSFZ powders were synthesized via a combined
citrate and ethylene-diamine-tetraacetic acid (EDTA) complex-
ing method according to Shao et al. [9]. Proper amounts of
Ba(NO3)2, Sr(NO3)2, Co(NO3)2-6(H20), Fe(NO3)3-9(H20),
and Zn(NO3)2-2(H,O) were dissolved in water, followed by
the addition of citric acid, EDTA and NH3-(H,O). The reac-
tion mixtures were then heated under constant stirring to obtain
a purple-coloured gel. Afterwards the gels were pre-calcined
for 2 h at 700 °C. The pre-calcined powders were grounded and
finally fired for 10 h at 950 °C to get the pure perovskite phases.
The pure perovskite powders were then carefully grounded
together with certain amounts of hexagonal-BN (space group:
P63/mme (194), a=2.5044 A, ¢ =6.6562 A; Powder Diffraction
File: 34-421, average particle size of @=1 pm): 2.5, 5, 7.5, and
10 mol%. The grounded powders were then coldly pressed under
140-150kN for 20 min to prepare “green” membranes which
were finally sintered at 1050 °C (BSCF) and 1100 °C (BSFZ)

with a dwelling time of 10h in an ambient air atmosphere. In
order to estimate the optimal sintering temperature, the melting
point of each membrane was measured via (DSC) on a SETSYS
TGA-DSC instrument. Relative densities of the sintered mem-
branes were acquired via the Archimedes method on a Sartorius
balance model BP 211D with a resolution of 0.01 mg equipped
with compatible attachment.

To study the oxygen permeation performance of the sintered
membranes, several permeation experiments were carried out on
a self-made high temperature permeation cell which is described
in detail elsewhere [18]. Discs of BSCF and BSFZ (@ = 14 mm,
thickness = 1.15 mm) were sealed onto a ceramic tube with gold-
paste (conducting paste, C5754, Heraeus) at 950 °C for 2 h. After
sealing, gas flow rates were delivered to the reactor by mass
flow controllers (Bronkhorst Hi-Tech) and continuously read by
an on-line gas chromatograph (Agilent Technologies, HP 6890,
equipped with a Carboxen 1000 column). The feed side (outer
site of the ceramic tube onto the membrane was sealed) of the
membrane was flushed with synthetic air. On the sweep side
(inner site of the ceramic tube onto the membrane was sealed)
pure helium and neon were applied. The total flow rate on the
feed side of the membrane was set to be 150 ml/min, and the
total flow rate on the sweep side to 30 ml/min. The absolute
flow rate of the permeate stream (sweep plus permeated oxygen
plus leakage) was determined by using neon as an internal stan-
dardization. The permeate stream (consisting of helium, oxygen,
nitrogen, and neon) was examined by gas chromatography. For
each component a quantitative calibration with known standards
was conducted. Thus, the area of each component chromatogram
was directly related to a certain percentage of this component.
As the supplied sweep flow rate (i.e. helium and neon with no
permeated oxygen) was known, it was thus possible to determine
the total permeate flow rate from the concentration of neon in
the permeate stream. The total leakage (<5%) was calculated
by the amount of nitrogen, i.e. the percentage nitrogen found
in the permeate stream was treated as the leakage. The related
amount of oxygen was then subtracted from the total oxygen
in the chromatogram leading to the net permeated oxygen. The
permeation flux through the membrane could then be calcu-
lated by the fraction Oj in the effluents and the determination
of the effective permeation area of the membranes. Permeation
experiments were conducted in the temperature range from 800
to 925 °C with steps of 25°C. For each temperature step, an
equilibrium time of 60 min was set. The actual temperature was
measured slightly above the membranes.

In order to analyze the microstructure of the sintered mem-
branes, SEM combined with EDXS as well as XRD were
conducted on both surfaces and on fracture surfaces. Grain size
distributions were evaluated by SEM on a JEOL JSM-6700F
field-emission instrument using a secondary electron detector
(SE) at an accelerating voltage of 2kV. Fracture surfaces were
etched with aqueous HCl (2M) for 2-5s in order to visualize
grain boundaries. EDX spectra were obtained at an accelerat-
ing voltage of 15kV using a light-element detector (INCA 300,
Oxford Instruments). To determine the crystal structure of sin-
tered membranes, XRD were conducted with monochromated
Cu K, radiation in the range of 20-50° 20 at room temperature
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Fig. 1. DSC data obtained from a “green” BSCF membrane containing 10 mol% BN in a synthetic air atmosphere. The asterisk indicate a sensitivity switch of the

instrument.

(Philips X'Pert-PW1710) on surfaces and grounded membranes.
Powder XRD data for interpretation were taken from literature,
ZnO: ICDD database PDF number [36-1451], BSCF [22], BSFZ
[23].

Additionally, TEM was conducted at 200kV with a JEOL
JEM-2100F-UHR field-emission instrument equipped with a
Gatan GIF 2001 energy filter and a 1k-CCD camera in
order to obtain EEL spectra. EDXS was carried out by a
light-element detector using the Cliff-Lorimer quantification
technique (INCA 200 TEM, Oxford Instruments). Furthermore,
the specimen for TEM investigations was prepared as fol-
lows. First, pieces of 1 mm x 1 mm x 2 mm were cut out of the
membrane followed by covering of both sides with silicon sin-
gle crystal using epoxy. Accordingly, the protected membrane
pieces were polished on polymer embedded diamond lapping
films down to 0.02mm x 1 mm x 2 mm and glued onto a cop-
per slot grid. Electron transparency was achieved by Ar* ion
sputtering at 3kV under incident angles of 6° and 4° (Gatan,
model 691 PIPS).

3. Results and discussion

Fig. 1a and b shows DSC data obtained from a “green”
BSCF membrane containing 10mol% BN in a synthetic air
atmosphere. Around 800 °C (point 1), BN starts to oxidise yield-
ing in BO3 as indicated by an endothermic process. As B,O3
starts to melt immediately after oxidisation, we postulate that
the endothermic process of oxidisation covers the endothermic
melting process. Thus, the heat flow of this melting process is
not directly visible. At 1078 °C (point 2), an endothermic heat
flow is observed, which is clearly related to the melting process
of the membrane followed by the decomposition of the melt.

For both materials, BSCF and BSFZ, respectively, excellent
phase maintenance after sintering with BN has been observed as
it can be concluded by comparing the obtained XRD pattern with
those obtained from pure BSCF and BSFZ powders [22,23] as
visible in Fig. 2a and b. Despite the fact the perovskite structure
could be maintained even after sintering with BN, small amounts
of CoO have been found in the BSCF membrane that was sin-
tered with 10 mol% (not visible in XRD pattern but confirmed by
EDXS of the fracture surface). In the case of BSZF membranes
that were sintered with 7.5 and 10 mol% small amounts of ZnO
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Fig. 2. XRD pattern taken of sintered membranes (surfaces) as synthesized: (a)
BSCF, (b) BSFZ. XRD data obtained of pure BSCF and BSFZ and ZnO are
displayed for comparison.
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Fig. 3. SEM micrographs showing surfaces and fracture surfaces of sintered BSCF membranes (a—f). (a) Surface, (b) fracture surface, and (c) grain size distribution
of a BSCF membrane containing 2.5 mol% BN. (d) Surface, (e) fracture surface, and (f) grain size distribution of a BSCF membrane containing 10 mol% BN.

have been detected on the surface as shown in Fig. 2b. Addi-
tionally, two unidentified reflections with very low intensities at
28.6° 20 and 30.4° 26 were found in these membranes.

In order to examine the microstructure of the sintered mem-
branes, SEM was conducted on both surfaces and fracture
surfaces on each membrane (Figs. 3 and 4). Fig. 3 displays SEM

micrographs and corresponding grain size distributions of BSCF
membranes after sintering with 2.5mol% BN (a—c) and with
10mol% BN (d—f) for 10h at 1050 °C, respectively. As it can
be seen in Fig. 3, dense membranes of BSCF sintered with BN
have been achieved with low level of porosity even if the sin-
tering temperature was decreased to 1050 °C. Wang et al. found
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Fig. 4. SEM micrographs showing surfaces and fracture surfaces of sintered BSFZ membranes (a—f). (a) Surface, (b) fracture surface, and (c) grain size distribution
of a BSFZ membrane containing 2.5 mol% BN. (d) Surface, (e) fracture surface, and (f) grain size distribution of a BSFZ membrane containing 10 mol% BN.

60



3.3. Grain boundaries as barrier

M. Arnold et al. / Journal of Membrane Science 316 (2008) 137-144 141

Table 1
Summary of melting points of membranes after sintering with indicated mol%
BN obtained via DSC

Table 3
Relative densities of BSCF and BSFZ membranes after sintering obtained by
the Archimedes method

BSCF (mol% BN) Tinelt (°C) BSFZ (mol% BN) Tinelr (°C) mol% BN BSCF (%) BSFZ (%)
25 1131 25 1218 10 94 92
5 1102 5 1161 75 9% 94
75 1088 75 1142 5 9% 95

10 1078 10 1117 25 93 93

that sintering temperatures of at least 1150 °C were needed to
obtain dense BSCF membranes with negligible porosity [18].
Obviously, the sintering aid BN helped to lower the sintering
temperature of the prepared dense membranes. This was con-
firmed by DSC, as the melting point of the membranes was
decreased using BN as sintering aid. A summary of the melt-
ing temperatures of the sintered BSCF and BSFZ membranes is
given in Table 1.

Quantitative evaluation of the grain size distribution via SEM
have shown that the addition of large amounts of BN lead to a
decrease of the average grain size (Fig. 3c and f). The average
grain size of BSCF-membranes sintered with 2.5 mol% BN has
been determined to be 242 wm? at the surface and 265 pm? at
the fracture surface, respectively. Contrary, membranes sintered
with 10 mol% exhibit average grain sizes of 140 um? (surface)
and 155 pm? (fracture surface). In the case of 10mol% BN,
small particles of CoO (~1 wm?) have been found on the fracture
surface as confirmed by EDXS.

Similar experiments were conducted for membranes of
BSFZ. It has emerged, that melting temperatures of BSFZ mem-
branes with BN as sintering lie generally up to 70 °C higher
than that for the BSCF membranes (Table 1). In Fig. 4, SEM
micrographs and grain size distributions of membranes after sin-
tering with 2.5 mol% BN (a—c) and membranes sintered with
10mol% BN are displayed (d—f). As for the case of BSCF,
BSFZ membranes sintered with BN exhibit a low level of poros-
ity and the same trend for the average grain size was found
as for the BSCF membranes: The higher the amount of added
BN the lower the average grain size. The average grain size of
membranes sintered with 2.5 mol% has been determined to be
98 }Lmz (surface) and 93 pmz (fracture surface) compared to
38 }Lmz (surface) and 24 umz (fracture surface) if 10 mol% BN
was added (Fig. 4c and f). It has to be noted that small parti-
cles (~1 Mm2) of ZnO (Fig. 4d) were found on the membrane
surface after sintering with 7.5 and 10 mol% BN, respectively.
Table 2 summarizes average grain sizes found in each membrane
and it clearly demonstrates that increasing the amount of BN as

sintering aid leads to a decrease in the average grain size. Addi-
tionally, it has to be emphasized that no boron has been found by
EDXS in the surface or in the fracture surface in membranes of
BSCF and BSFZ, respectively. Relative densities, displayed in
Table 3, of the sintered membranes by the Archimedes method
are estimated to vary randomly from 93 to 96% which display
reasonable values as reported elsewhere [18].

As already found by Wang et al. [18], grain boundaries may
affect the oxygen permeation in BSCF membranes in a nega-
tive manner. Therefore, oxygen permeation experiments were
conducted in order to determine the influence of the average
grain size (and thus the impact of grain boundaries) on the oxy-
gen transport through the perovskite membranes. Fig. 5a and
b displays the temperature-dependent oxygen permeation flux
of BSCF and BSFZ membranes sintered with varying BN con-
tent. For all membranes, an almost linear slope for the oxygen
permeation is observed in the temperature regime studied here.
BSCF membranes sintered with 2.5 mol% BN exhibit an oxy-
gen permeation performance that varies from 1.50 ml/min cm?
at 850°C to 2.60 ml/min cm? at 925 °C. As the amount of BN
was increased during sintering, a diminution of the oxygen per-
meation flux has been observed (0.80 ml/mincm? at 850°C
to 1.60 ml/min cm? at 925 °C for 10mol% BN added). In the
case of BSFZ membranes sintered with BN, the oxygen per-
meation performance is not as strongly affected by the addition
of BN as in the case of BSCF. Up to 7.5 mol% BN added as
sintering aid no change in the oxygen permeation performance
could be found and its ranges from 0.40 ml/min cm? (850 °C) to
0.85 ml/min cm? (925 °C) which is in the same order of magni-
tude as reported for membranes without sintering aid [10]. Only
if the BN addition was set to 10 mol%, a distinct diminution in the
oxygen permeation performance has been observed, as the oxy-
gen permeation flux is found to range between 0.37 ml/min cm?
(850°C) and 0.80 ml/min cm? (925 °C) in this case.

In order to better visualize the dependence of oxygen perme-
ation performance on the amount BN added to the membranes

Table 2

Summary of average grain sizes in sintered membranes with varying BN content

BSCF BSFZ

mol% BN Area (um?) (surface) Area (um?) (fracture surface) mol% BN Area (um?) (surface) Area (um?) (fracture surface)
2.5 242 265 2.5 98 93
5 250 218 5 68 69
7.5 216 199 7.5 46 33

10 140 155 10 38 24
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Fig. 5. Temperature-dependent oxygen permeation flux of sintered membranes
with different BN content: (a) BSCF, (b) BSFZ. Conditions: feed synthetic air
flow rate 150 ml/min, sweep flow rate 30 ml (helium 29 ml/min, neon 1 ml/min).

before sintering, oxygen permeation fluxes are plotted against
the BN content and the average grain size on the surface at fixed
temperature (Fig. 6a and b). At a temperature of 900 °C the oxy-
gen permeation decreases from 2.30 ml/min cm? (2.5 mol% BN)
down to 1.40 ml/min cm? (10 mol% BN) for BSCF membranes,
whereas the oxygen permeation flux of BSFZ membranes range
from 0.80 down to 0.70 ml/min cm? at 900 °C (Fig. 6a). The
influence of the average grain size of the membranes on the
oxygen permeation performance is displayed in Fig. 6b. For the
case of BSCF membranes a decrease of the oxygen permeation
flux from 2.30 down to 1.40 ml/min cm? is observed whereas the
corresponding average grain size ranges from 265 to 155 um?
at the fracture surface. It should be stressed that the oxygen per-
meation performance decreases proportionally to the average
grain size. In order to draw a general conclusion, membranes
that have been sintered without boron nitride were also studied.
Permeation experiments show that membranes consisting of an
average grain size of 468 wm? (surface) and 430 wm? (fracture
surface) exhibit an oxygen flux of 2.70 ml/mincm? at 900 °C,
which is in excellent agreement with results discussed above.
In the case of BSFZ, the oxygen permeation flux varies
from 0.77 to 0.72ml/mincm? at 900°C whereas the average
grain size at the fracture surface ranges from 93 to 24 um?.

Average grain size
fracture surface (um2)

Fig. 6. Oxygen permeation flux of sintered membranes with different BN con-
tent at 900 °C. (a) Oxygen permeation flux in dependence of BN content and
(b) oxygen permeation flux in dependence of average grain size at fracture sur-
face. Conditions: feed synthetic air flow rate 150 ml/min, sweep flow rate 30 ml
(helium 29 ml/min, neon 1 ml/min).

Again, membranes without BN addition were prepared. It was
found that a membrane with an average grain size of 435 m?
(surface) and 317 wm? (fracture surface) show an oxygen
permeation flux of 0.80 ml/mincm? at 900 °C, which is higher
than in the case of the membrane sintered with 2.5 mol% BN
(oxygen permeation flux for this membrane: 0.77 ml/min cm?).

In the case of BSCEF, it is obvious that the larger the grain
sizes the greater the oxygen permeation flux. This is in good
agreement with findings of Wang et al. who also found a positive
correlation between larger grains and higher oxygen permeation
flux [18]. BSFZ membranes do not exhibit an influence of the
average grain size that is as strong as for BSCF membranes.

In order to achieve a better understanding of the microstruc-
ture at the grain boundaries, an HRTEM study was conducted on
a BSCF membrane which was sintered with 10 mol% BN as it is
shown in Fig. 7. A TEM micrograph of two BSCF grains which
can be discriminated by bright contrast is displayed in Fig. 7a.
BSCEF stoichiometry of these two grains has been confirmed by
an EDXS analysis. For that purpose an ovally shaped convergent
electron beam was used. The convergent beam mode allows to
acquire as much signal as possible from the grain boundary.
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Fig. 7. TEM micrographs obtained from a BSCF membrane containing 10 mol% BN showing two different grains (a—d). (a) TEM bright-field micrograph, (b and
¢) HRTEM micrographs, and (d) inverse FFT of HRTEM micrograph as shown in (c). Black lines indicate direction of Moiré pattern.

From the EDXS analysis no difference in the elemental com-
position of grain I, grain II, and the grain boundary have been
found as it can be seen in Table 4. As EDXS might not be the
most sophisticated method to elucidate light elements like boron,
electron-energy loss spectroscopy (EELS) was also conducted.
Even via EELS, no boron could be found. Fig. 7b and ¢ show
HRTEM micrographs of a selected part of this grain boundary.
Neither an interfacial phase nor an amorphous layer has been
found to be located between the two grains as it can be seen in
Fig. 7c. No zone axis could be determined for grain I but the
observed plane spacing was determined to be 0.23 nm which
is related to the (1,1,1)-plane of BSCFE. The zone axis of grain

Table 4
Quantitive analysis of elemental composition by EDXS of grain I, grain II and
grain boundary as shown in Fig. 7

Element  Grain I (atom%)  Grain II (atom%)  Grain boundary (atom%)
Ba 28 29 28
Sr 24 23 25
Co 37 37 36
Fe 11 11 11

II was found to be [1,1,1]. Thus, the grain boundary displays
the contact zone between (1,1,1)-planes of grain I and (1,1,0)-
planes of grain Il whereas the angle between these planes is
determined to be 21°. An inverse fast-Fourier transformation
(based on (1,1,1) of grain I and (1,1,0) of grain II) was con-
ducted which is shown in Fig. 7d. As indicated by black lines,
Moiré pattern has been observed indicating an overlap of approx-
imately 6 nm of grain I and grain II. As the contrast of the lattice
planes do not abate towards the contact zone, no indication for
an amorphous layer is given. Diethelm et al. suggested that in
the case of (Lag 5Srg5)FeO3_s an amorphous layer at the most
of 0.5 nm may be prominent [13,14]. As reported for this mate-
rial, smaller average grain sizes promote the oxygen permeation
flux. Thus, the amorphous layer may act as fast diffusion path-
way. This finding could further deliver an explanation for the
blocking effect of the grain boundaries in the study presented
here, as we believe no amorphous or interfacial layer is eminent
in the grain boundaries of BSCF. Feldhoff et al. [11] reported
even in BSFZ the grain boundaries are atomically thin contain-
ing no second phase, which underlines the findings presented
here.
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4. Conclusion

Dense ceramic membranes of BSCF and BSFZ with BN
as sintering aid were successfully prepared via liquid-phase
sintering. It has emerged that using BN as sintering aid the sin-
tering temperature could be lowered down to 1050 °C in the
case of BSCF membranes and down to 1100 °C in the case of
the BSFZ membranes. It is also shown that the obtained mem-
branes exhibit excellent phase stability after sintering with only
very few impurities and no boron remained in the membranes
after the sinter process. For both membrane materials BSCF and
BSFZ, an increase of the added amount BN lead to a decrease of
the average grain size. Oxygen permeation experiments deliv-
ered evidence that membranes containing particularly larger
grains exhibit a better oxygen permeation performance. This
effect is especially pronounced in the case of BSCF membranes
in which the oxygen permeation flux is lowered proportion-
ally to the abatement of the average grain size. A TEM study
gives first indication that no amorphous material or interfacial
phase is incorporated at the grain boundaries. That leads to the
assumption that a lattice misfit between the grains and associ-
ated straining of grain boundary near regions could have negative
impact on the oxygen ion transport. Considering former reports
on the correlation of microstructure and oxygen permeation,
future investigations should focus on the microstructure of the
grain boundaries as their nature may give a better understanding
of the oxygen permeation through dense ceramic membranes.
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Chapter 4

Valence and spin state

4.1 Summary

The dependence of phase stability on valence and spin state for BSFZ and a (Bag 5Srg5)
(Fep_Al,)O3_s (BSFA) perovskite system (0<x<0.2) with previously unreleased com-
position is investigated in this chapter. An excellent phase stability of perovskite-based
membranes demands a tailoring which enables pure high-spin states of the polyvalent
cations during experimental conditions, even if mixed valence states are present. For
an accurate atomic level understanding of the redox behavior a combination of in
situ EELS and Mossbauer spectroscopy is necessary. Further characterization of the
materials was conducted by SEM, TEM, EDXS, differential thermoanalysis (DTA),
thermogravimetric analysis (TGA), in situ XRD, dilatometry and oxygen permeation
experiments.

The first article deals with the redox behavior of iron in BSFZ during heating. It
revealed a mixed valence state of 3.75+ (75% Fe'* in high-spin state and 25% Fe3*
predominantely in low-spin state) at room temperature and a reduction of iron to
3.25+ (25% Fe't and 75% Fe™ both in high-spin state) during heating to 900 °C.
The reason for the transition from a mixed low- and high-spin to a pure high-spin
state of Fe?T is the decreasing hybridization of Fe 3d - O 2p orbitals because of ther-
mal expansion. The gradual transition of the valence and spin state takes place under
500 °C and correlates with anomalies of weight-loss, due to release of oxygen, and
thermal expansion behavior monitored by X-ray diffraction and dilatometry. Thus,
above 500 °C BSFZ is a highly attractive ceramic for intermediate temperature appli-
cations (IT: 500-800 °C).

The second article introduces and characterizes a novel BSFA perovskite-type oxide.
Cubic perovskites were successfully synthesized for aluminum contents up to 9-10%.
A higher fraction of Fe*' instead of Fe3" is replaced by AI*T and the iron species
are both in high-spin state. The observed lattice expansion with increasing aluminum
fraction can be explained due to the abatement of covalent character in the bonding of
Fe-O. High temperature stability of the materials up to 1350 °C is revealed by in situ
XRD and TG/DTA measurements. (BagsSros)(FepoAlp1)O3_5 as oxygen permeation
material shows the highest oxygen flux for all so far published iron and aluminum con-
taining perovskites. In comparison to cobalt containing materials, which show serious
stability problems at I'T, this new composition with a less flexible redox behavior and
a stable high-spin configuration of iron is expected to show an improved long-term
stability and thus, an outstanding performance for the I'T range.
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Abstract

The redox behavior of iron during heating of a high-
performance perovskite for ceramic oxygen separation
membranes was studied by combined electron energy-
loss (EELS, esp. ELNES) and Méssbauer spectroscop-
ical in situ methods. At room temperature, the iron
in (Bag.5Sr0.5)(Feg.8Zng.2)03_s (BSFZ) is in a mixed
valence state of 75 % Fe*t in the high-spin state and
25 % Fe3* predominantely in the low-spin state. When
heated to 900 °C, a slight reduction of iron is observed
that increases the quantity of Fe3* species. However,
the dominant occurence is a gradual transition in the
spin-state of trivalent iron from a mixed low-spin/high-
spin to a pure high-spin configuration. In addition, a
remarkable amount of hybridization is found in the
Fe-O bonds that are highly polar rather than purely
ionic. The coupled valence/spin-state transition corre-
lates with anomalies in thermogravimetry and thermal
expansion behavior observed by X-ray diffraction and
dilatometry, respectively. Since the effective cationic
radii depend not only on the valence but also on the
spin-state, both have to be considered when estimating
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Research for Advanced Materials, Tohoku University, Sendai
980-8577, Japan
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under which conditions a cubic perovskite will toler-
ate specific cations. It is concluded that an excellent
phase stability of perovskite-based membrane materi-
als demands a tailoring which enables pure high-spin
states under operational conditions, even if mixed va-
lence states are present. The low spin-state transition
temperature of BSFZ provides that all iron species are
in a pure high-spin configuration already above ca.
500 °C making this ceramic highly attractive for in-
termediate temperature applications (500 - 800 °C).

1 Introduction

Ceramic membranes can provide remarkable oxygen
permeation fluxes at infinite selectivity without the
need of external electrodes when they are based on
heavily doped anion deficient cubic perovskite-type
Al,IA;Bl,yB;Og,g oxides exhibiting mixed oxygen-
ion and electron conductivities at elevated tempera-
tures (500 - 1000 °C).! While the partial conductivity
of electrons is distinctly higher than that of oxygen
ions, 12 the oxygen deficit § correlates directly with
the obtainable permeation flux via the concentration
of disordered oxygen vacancies. The perovskite lattice
can tolerate a remarkable number of vacant oxygen
sites if a reducible transition metal cation is located
at the crystallographic B site in the center of the BOg
octaeder. Upon heating under constant pressure, en-
tropy may free up even more oxygen from a previously
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equilibrated perovskite. The quantity of released oxy-
gen may be quite high as the requirement of charge
neutrality is no longer preserved solely by small con-
centrations of cation vacancies but by the possibly flex-
ible redox behavior of the B site cation(s). However,
one requirement for the oxygen vacancies to be mobile
is to preserve a cubic perovskite structure,? where the
redox behavior of the B site cation(s) plays the key
role as well. Hence, a better understanding of the re-
dox behavior can be used to tailor improved membrane
materials with excellent phase stability under strongly
reducing conditions.

The pioneering work of Teraoka et al. in the
1980s* 7 exceeded the already high standards for ob-
tainable oxygen fluxes. As a consequence, the search
for high-flux materials (i.e., exhibiting oxygen per-
meation fluxes of one to two orders of magnitude
higher than cubically stabilized zirconia equipped with
shortcircuit external electrodes®#®) focused until today
mostly on complex perovskites hosting cobalt on their
crystallographic B site. The current state-of-the-art
material with respect to oxygen permeation and phase
stability above 900 °C is (Bag.5Sr0.5)(Cog.sFeg.2)O3_s
(BSCF). 39711 Recently, in situ high-temperature elec-
tron energy-loss spectroscopy (HT-EELS) on BSCF
has shown that cobalt is reduced from an average for-
mal oxidation state of 2.6+ to 2.2+ and iron from 3.0+
to 2.8+, if BSCF is heated in the vacuum chamber of
a transmission electron microscope (TEM) from room
temperature to 950 °C.'2 The average valence of the
B site cations, 2.7+ at room temperature and 2.3+
at 950 °C, give oxygen contents 3 — § of 2.3 and 2.2,
respectively. That is in good agreement with oxygen
stoichiometries estimated by thermogravimetric anal-
ysis (TGA) and neutron powder diffraction.!® The ex-
periments in'? however, give direct proof of the eas-
ier reducibility of cobalt over iron in a highly doped
perovskite-type oxide. Also, comparative TGA of dif-
ferent perovskite-type materials indicate that during
heating the polyvalent B-site cobalt ions are reduced
far more easily than iron, manganese or nickel.

The flexible redox behavior of cobalt provides on
the one hand high oxygen fluxes at high tempera-
tures. On the other hand it leads to two major prob-
lems hindering the reliable use of the BSCF material
(and cobaltites in general) under important technical
requirements. First, it causes a large coefficient of
thermal expansion (CTE) that can lie in the range of
20—24 x10%- K1 over a wide temperature range. 131
The resulting dilatation causes huge thermal stresses
and thus cracks form easily in the membranes, es-
pecially if operated at steep oxygen potential gradi-
ents. The steep gradients are obtained by making
the cross-section of supported or self-standing mem-
branes very thin (i.e., < 200 pm).'*17 This is of in-
terest to increase flux densities for the design of com-
pact membrane units. Second, the valence instability
of cobalt introduces inherent phase instability to the

cobaltites at intermediate temperatures (ITs, ca. 500
- 800 °C).%18:19 This is due to a coupled valence/spin-
state transition of cobalt, and cobaltites containing
CoOg octaeder with Co®* in low-spin configuration
tend to prefer face sharing (contributions of hexago-
nal stacking) rather than corner sharing (cubic stack-
ing).!? The breakdown of the cubic perovskite struc-
ture principally limits the long-time stability of the
BSCF material under the conditions required for the
operation of a membrane material in the IT range. The
IT range, however, is of special interest for membrane-
based dehydrogenation processes in the synthesis of
basic chemicals like ethylene 2 and propylene?! at high
selectivity, and for the novel concept of solid oxide fuel
cells (SOFCs). 22

Recently, the search for alternative materials has
led to the development of the cobalt-free perovskite-
type oxide (Bag.5Sro.5)(Feg.sZng.2)Os_5 (BSFZ).23:24
Wang et al.2? demonstrated its potential for use in a
membrane reactor for the partial oxidation of methane
(POM) at 900 °C. The reported oxygen permeation
flux of 2.5 ml'min™'- cm~2 on 1.25 mm-thick mem-
branes at 900 °C indicates a high conductivity as well
as high surface exchange rates for oxygen. Wei et
al.2%26 quantified the latter by measuring low polar-
ization resistances of 0.22, 0.46, and 0.98 -cm? at 700,
650, and 600 °C, respectively. They also use BSFZ as
a cathode material in an IT-SOFC at 500 - 650 °C
at power densities up to 180 mW - cm™2. The room
temperature structure of BSFZ has been refined in a
cubic unit cell (a = 0.3990(0) nm) by the Rietveld
method.?” In situ X-ray diffraction (XRD) has shown
that BSFZ remains in the cubic structure if heated
to 900 °C in air or in low oxygen partial pressures
down to 10 x 1077 Pa.?* Good phase stability of cubic
BSFZ in the IT range is implied by the observation
that it can be synthesized by a sol gel-based method
in the pure phase at 750 °C.27-2% This is contrary to
the cobaltite BSCF that requires higher temperatures
in an analogous synthesis (950 °C).1%:39 The present
work focuses on a thorough atomic level understand-
ing of electronic effects in the redox beahviour of the
BSFZ perovskite. Combined in situ electron energy-
loss spectroscopy (EELS) and Mossbauer spectroscopy
show that a coupled Fe** /Fe3* valence and Fe?* low-
spin to high-spin transition play a key role. This is re-
flected in anomalies found in integrative investigations
of temperature-dependent weight-losses and lattice di-
latations.

2 Experimental

The BSFZ material was synthesized from nitrate
precursors via an ethylene-diamine-tetraacetic acid
(EDTA)/citrate acid complexing method at 950 °C for
10 hours as described in detail elsewhere.?” 29 BSFZ
ceramics were sintered at 1150 °C for 10 hours and
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shaped by cutting, grinding, and polishing into disks
approximately 3 mm in diameter and 80 pm in thick-
ness. To obtain TEM specimens, these disks were dim-
ple grinded from one side to a residual thickness of 10
pm (dimple grinder, model 656, Gatan Inc.). Finally,
Art ion sputtering was employed at 3 kV under an
incident angle of 6 degrees (PIPS, precision ion polish-
ing system, model 691, Gatan Inc., Pleasanton (CA),
USA) until electron transparency was achieved.

To obtain a standard for Fe’, a metallic iron wire
0.25 mm in diameter (purity 99.99+ %, Chempur)
was polished on polymer-embedded diamond foils to
a thickness of 50 pum using 1,2-propanediol as a lu-
bricant. The bar was epoxy-glued onto a copper slot
grid (1 x 2 mm; 50 pm) and then ion-milled with 3kV-
Art. The specimen was immediately transferred from
the vacuum chamber of the ion mill to the transmission
electron microscope (TEM). To prevent the undesired
influence of local oxidation of thin specimen areas on
the observed EEL fine structures near the Lj 3 ion-
ization edge of iron (Fe-Ly 3 ELNES), it was carefully
checked for the absence of any O-K signal in EEL and
energy dispersive X-ray (EDX) spectra.

Commercial powders of FeTiO3 (purity 99.8 %, Alfa
Aesar, CAS-Nr. 12022-71-8) and a-Fe;O3 (>95 %,
Riedel-de-Haen, CAS-Nr. 1309-37-1) were used as
standards for Fe?* and Fe3T, respectively. FeTiO3 (il-
menite) is a more reliable standard for Fe?* than FeO
(wlistite), as the latter is often iron deficient and con-
sits of Fe;_,O with noticable contributions of Fe?t.31

To obtain a standard for Fe**, a procedure simi-
lar to those chosen in®233 was applied; although here
an EDTA /citrate acid complexing method (like for the
synthesis of the BSFZ material) instead of a solid-state
process was used to synthesize SrFeO3_s. Phase purity
was confirmed by XRD. Subsequently, stoichiometric
SrFeO3 was observed by filling the lattice with ad-
ditional oxygen. The additional oxygen was inserted
into the lattice using KClO4 in a gold capsule with
an internal oxygen pressure of approximately 9 bar
(six-fold excess) in an autoclave under 1.2 kbar and
530 °C for 22 h. All standards were carefully checked
by Mossbauer spectroscopy to exhibit just the desired
iron valence. For TEM, the powders were crushed,
dispersed in ethanol, dropped onto copper-supported
holey carbon films, and dried.

TEM investigations at room temperature (JEM-
2100F-UHR, Cs = 0.5 mm, Cc = 1.2 mm, JEOL
Ltd., Tokyo, Japan) and at high temperature (CM20
FEG Super TWIN microscope, Cg = 1.2 mm, C¢c =
1.2 mm, Philips, Eindhoven, Netherlands) were per-
formed at 200 kV with the specimen at 2—4 x107° Pa.
Both microscopes were equipped with a post-column
imaging filter (GIF, Gatan Inc.) employing a 1024 x
1024 pixel charge-coupled device (CCD) camera and
a light-element energy-dispersive X-ray spectrometer.
The Schottky-type emitter gave a full width at half
maximum (FWHM) of the zero-loss peak of 1 eV. Cal-

ibration of the GIF drift tubes was done using the
first maximum of the Ni-Lz edge of a NiO standard
(853 eV 34). The energy dispersion of the spectrometer
setup at nominally 0.1 eV/pixel was calibrated by ac-
quiring the zero-loss peak with an offset of 50 eV given
to the calibrated drift tube and without any offset. All
EEL spectra were taken in diffraction-coupled mode.
Magnifications of the TEMs were set in combination
with a 2 mm entrance aperture of the GIF so that ca.
150 nm circular areas were analyzed. These were care-
fully chosen to be thin and in the case of powder spec-
imens were not supported locally by a carbon film. An
objective aperture was inserted to limit the collection
half-angle to ca. 32 mrad, respectively. This means
that the dipole selection rule primarily applies and re-
stricts, with respect to parity and angular momentum,
the nature of empty states to be probed. In principle
this provides measurement of the site, spin-state, and
symmetry of the selective ions. To measure the ab-
solute position of core-loss details, pairs of core-loss
and low-loss spectra were acquired with 10 s exposure,
while the switching of energy ranges was made within
a few seconds by removing offsets to the drift tube
of the GIF (O-K: 530 eV; Fe-La3: 710 e€V; Ba-Mys5:
780 eV;). Illumination was almost parallel but was ad-
justed for low-loss acquisition by defocusing the con-
densor lens (CL-3) to avoid overexposure of the CCD
camera. The CM20FEG was equipped with a dou-
ble tilting heating holder (model 652-Ta, Gatan Inc.).
Heating from room temperature to 900 °C was done
with a ramp of ca. 5 °C - min~!, and the specimen
was equilibrated at the respective temperature for 15
min before acquiring in situ EEL spectra.

Scanning electron microscopy (SEM) was made on a
field-emission instrument at 2 kV (JSM-6700F, JEOL
Ltd., Tokyo, Japan).

Modssbauer spectroscopic measurements were per-
formed in transmission geometry using a conventional
spectrometer in constant acceleration mode. In situ
spectra were taken in the temperature range of 20 °C
to 900 °C in air. BSFZ powder specimen was fixed on
a quartz support (a 200 m thick plate). A 57Co/Rh ~-
ray source was used. The velocity scale of the spectra
was calibrated relative to ®”Fe in Rh. ’Recoil’ spec-
tral analysis software3® was used for the quantitative
evaluation of the Mdssbauer spectra. The Voigt-based
fitting method provided distributions of hyperfine pa-
rameters for multiple species in a spectrum.

Differential thermoanalysis (DTA) and TGA were
measured on 99.5 mg calcined BSFZ powder in a
DTA/TG crucible of Al;O3 from 20 - 1400 °C with
a heating rate of 5 °C/min under an air flowrate of
100 ml - min~! (STA 429 CD, Netsch, Selb, Ger-
many). The oxygen content of calcined BSFZ powder
was measured by the carrier gas hot extraction method
with a commercial oxygen analyser (TC 436DR, Leco,
St. Joseph, USA). The powders were weighed (about
20 mg) into a metallic capsule of nickel (0.4 g) with
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Stoichiometric mixture of nitrates

Ba(NO),, Sr((NO5),,
Fe(NO,); Zn(NOy),

BSFZ powder

Green compact

Sol

Gel

BSFZ ceramic

EDTA acid
+ citric acid
+ NH; H,O (pH = 6-9)

Condensation

Calcination

Cold pressing |~

Pressure-less
sintering

Figure 1: From nano to macro. Outline of the sol gel-based synthetic process with snapshots of different steps:
(a) STEM-HAADF of the gel showing finely dispersed and cross-linked metal-organic complexes, (b) SEM of
calcined perovskite powder, (¢) SEM surface view of grain structure in sintered BSFZ ceramic, (d) photograph

of a disk membrane.

the addition of a tin tablet (0.2 g). This pressed pack-
age was dropped into an outgased high temperature
graphite crucible that was electrically heated with a
power-time-program. Two infrared selective detectors
registered simultaneously the formed reaction species
CO and COs. The calibration was carried out with
ZrQOs for the CO detector and with carbon dioxide gas
dosing for the CO4 detector. A reproducibility of 0.5 %
relative standard deviation (RSD) for this method has
been shown for many oxides. 3¢

In situ high-temperatrure XRD measurements were
performed with monochromator-filtered Cu-K,, radia-
tion (Ka2/Ka1: 0.5) at 40 kV and 40 mA with a receiv-
ing slit of 0.19 mm (X’pert-MPD instrument, Philips).
Data were collected in a step-scan mode in the range
of 29-33° 20 with intervals of 0.02° and count times
of 30 s per step. The sample was tested in an HT cell
(HDK 2.4 with REP 2000, Edmund Biihler, Hechin-
gen, Germany) with a Pt-Rh holder, which has no re-
flexes in the applied 20 range. The applied tempera-
ture range was 30 - 1000 °C with 3°-min~! in air and
an equilibrium time of 30 min for each data acquisition.
The maximum of the (110) reflex was estimated by a
combined Gaussian and Lorentzian fitting and the cell
parameters were refined by using TOPAS-Academic
V4.1 (Coelho Software, Brisbane, Australia).

Measurements of the linear thermal expansion of
BSFZ ceramics were conducted in the 20 - 1000 °C

range, using a difference dilatometer with inductive
transducers (DIL 802L, Bahr, Hiillhorst, Germany).
Quartz specimens were used for calibration and as in-
ert bodies. To study the influence of po,, the expan-
sion measurements were carried out in a flowing gas
atmosphere of argon (0.5 Pa Oz) and argon/Os mix-
tures under different Oy partial pressures. In all cases,
dense rods (5 x 2 x 15 mm?) with polished frontal faces
were successively heated and cooled two times at the
rate 5 K - min~!. The coefficient of thermal expan-
sion (CTE) follows directly from these measurements
as for the cubic perovskite the strain tensor is fully
determined by a single scalar. 37

3 Results and discussion

Figure 1 illustrates the sol gel-based synthetic process
for BSFZ starting from an aqueous solution of stoi-
chiometric amounts of nitrates with EDTA, citric acid,
and ammonia. The stage of the gel (after 18 h at
150 °C) is characterized by an ultrafine dispersion of
cross-linked metal-organic complexes (bright features
in Fig. 1a). The fine-scale intermixing is considered a
major advantage over classical solid-state routes if a
homogeneous product of complex stoichiometry is de-
sired, as in case of BSFZ. After calcination, the BSFZ
perovskite is a fine powder with grains of nanoscale

70



4.2. Spin-state transition
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Figure 2: Details of a grain boundary in a BSFZ ceramic: (a) TEM bright-field of a triple junction, (b) HRTEM
with indices assigned to lattice planes, (¢) HRTEM with indication of unpaired atomic planes.

size that are eventually sintered together (Fig. 1b).
After green compacting and sintering at ambient pres-
sure, a BSFZ ceramic is obtained with grain sizes in
the order of several tens of micrometers (Fig. 1c). Ce-
ramic membranes for oxygen permeation experiments
are disks having 14 mm diameter and 1.2 mm thick-
ness (Fig. 1d) or fibers having a diameter of 1 mm and
a wall thickness of 150 pm.3®

The grain boundaries in sintered membranes are
atomically thin, with the absence of any interfacial
phase. A typical example is shown in Fig. 2. The
lattice misfit between the (011) lattice planes of grain
A (0.282 nm) and the (012) lattice planes of grain
B (0.178 nm) is accommodated by misfit dislocations
(marked by T’s in Fig. 2c¢). Obviously, it is ener-
getically favorable to reduce strain by leaving every
third (012) atomic plane of grain B unpaired, and
thus loose coherency. In3%%° it was shown that this
kind of grain boundary acts as a barrier for oxygen
permeation. In the present article, however, we focus
on the bulk properties of the BSFZ material during
temperature-induced reduction.

It is therefore essential to have a look at the elec-
tronic states or bands in the BSFZ material (Fig. 3).
The location of the O-2p states just a few eV be-
low the partly filled Fe-3d states means a small elec-
tronic oxygen ligand to iron charge transfer energy
Agp = eFe,gd—eo,gp.‘u This causes partial hybridiza-
tion in the Fe-O bonds that become strongly polar

P Ba-4f/ sr-4d
s Zn-4sp
1
Er -3~ e e3¢ 0 iA"
B O-2p 5V %
I /n-3d 10
I Ba-5p 15
I Sr-4p/ O-2s 20
I Ba-5s/ Sr-4s 40
I Fe-3p 55
o I /n-3p 85
T‘.', Y | = Ba-4d /Fe-3s 95
w | ©| s Sr-3d/Zn-3s 135
—— Ba-4p 190
| Ba-ds 250
—— Sr_3p 270
I Sr-3s 360
- —— O-1s 530
- - - —— FE-2P 710
—  Ba-3d 780

Figure 3: Schematic sketch of the electronic states or
energy bands in the cubic BSFZ perovskite with bind-
ing energies down to 780 eV. Electronic transitions
from O-1s and Fe-2p into unoccupied states above the
Fermi level Er indicate the origin of O K- and Fe Ly 3-
ELNES.
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Figure 4: Electronic configurations for iron ions in an octahedral ligand field.

rather than purely ionic. For the same reason, hy-
bridization of O-2p with unoccupied Zn-4sp, Ba-4f,
Sr-4d, and Fe-4sp is expected (see Fig. 3). Because
the occupied O-2p and Zn-3d states are energetically
similar, an anomalous valence band cation-d—anion-p
hybridization is expected as well.*?

Starting with an ionic model for iron allows impor-
tant details of the electronic structure to be derived.
The average d electron energy is given by the elec-
trostatic Madelung energy of the ions. Due to intra-
atomic exchange coupling, indistinguishable electrons
in the partly filled ten d orbitals cause a splitting by
Acz.*3 This splits the d states for majority spin ”+”
and minority spin ”-” (Fig. 4). It has to be taken
into account that iron is octahedrally coordinated by
oxygen in the cubic perovskite structure. Thus, the
additional crystal field splitting A, of the two sets of
five d orbitals into three ¢y, and two e, orbitals, re-
spectively, has to be considered. Depending on the
relative magnitude of A., and A, there are differ-
ent electronic configurations, three of which are shown
in Fig. 4: high-spin Fe!V with 3d},¢ = (t3,)%(ef)",
low-spin Fe”’ with 3d} ¢ = (t3,)(t3,)?, and high-spin
Fe!ll with 3dyq = (t3,)%(ef)?. Consider that the
amount of hybridization is different for the three con-
figurations. The e, orbitals are directed to the ligand,
giving a large overlap with O-2p orbitals. The ¢y, or-
bitals point towards the corners of the cubic unit cell
and overlap lessly with the O-2p orbitals. It can be as-
sumed that the amount of hybridization of e, is twice
that of tz4 44 due to a stronger overlap with O-2p or-
bitals. As a consequence e,-derived bands are broader
than t4-derived bands, even though both bands are
narrow.

Figure 5 shows the room temperature Lo 3 energy-
loss near-edge structures (ELNESs) of iron in differ-
ent compounds exhibiting pure valence states® com-
pared to the BSFZ material (grey curves). Because of
Fe-2p spin-orbit coupling, the overal spectral shapes
are similar for all iron species with an intense peak at
around 708 - 710 eV (L3) and a less intense peak at
721 - 723 eV (Ls). Respective spectra in Fig. 5 match
those obtained for FeO (Fe?t), LaFeO3 (Fe3t), and
SrFeO3 (Fe't) by X-ray absorption near-edge struc-
tures (XANES) and by multi-electron configuration
interaction calculations. %47 These findings show that
the chemical shift between Fe®, Fe?t, Fe3t, and Felt
is in the range of 2 eV, making accurate measurement
of the absolute position of fine structure details essen-
tial. Positions of the first peak (L3) in the Fe-Lgy 3
ELNES in Fig. 5 were estimated by the weighted cen-
troid’s abscissa, based on the non-linear least squares
fitting of multiple Gaussian functions (see!?), respec-
tively. The first peak in the Fe® Ly 3-ELNES has its
centroid’s abscissa at 708.1 eV, and the whole spec-
trum is in agreement with the one presented in.*® The
centroid’s abscissa of the Lz peak of FeTiO; (Fe?T)
is located at 709.3 eV and that of a-Fe,O3 (Fe3*) at
710.8 e€V. The high-energy shoulders of the L3 and Lo
peaks of Fe?T as well as the low-energy shoulders of
the L and Ly peaks of Fe3T are usually taken as indi-
cations of a high-spin state of iron in the crystal field
of the oxygen ligand, respectively.4%°? The Lz peak of
SrFeO; (Fe**) has its centroid’s abscissa at 710.7 eV.
The centroid’s abscissa of the first peak in the Fe Ly 3-
ELNES of the BSFZ material is at 710.6 eV and coin-
cides with that of the Fe3t and Fe'* standards. The
Lo peak centroid’s abscissa is at 723.0 eV. The over-
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Figure 5: Room temperature ELNES of iron Ls 3 for
different ionization states: Fe® (metallic iron), Fe?*
(FeTiO3), Fe®t (a-Fe;03), and Fe'* (SrFeOj). Gray
curves refer to a BSFZ ceramic. Spectra are back-
ground substracted, scaled to the same height of the
respective maximum, and vertically shifted for clarity.
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Figure 6: In situ iron Ly 3-ELNES of a BSFZ ce-
ramic. Spectra are background substracted, scaled to
the same height of the first maximum, and vertically
shifted for clarity.

all shape and position of the Ly 3-ELNES suggests an
Fe** /Fe®* mixed valence of iron in the BSFZ material
at room temperature. It is noted that other spectral
regions of the BSFZ material are shown in.2° Because
the Ls and Lo peaks in all the oxides presented do
not split significantly it is concluded that the crystal
field splitting A, and the intra-atomic exchange split-
ting A, having nearly identical values (cf. Fig. 4).
However, the first peak in the Ly 3-ELNES of the Fe?*
and Fe?t standards still shows some splitting. In con-
trast, this peak does not show any separation for the
Fe** standard (3.5 eV) or BSFZ (2.8 eV), and the full
width at half maximum is just 3.5 eV and 2.8 eV, re-
spectively. Hence, the energy difference |A., — A.| in
BSFZ is even smaller than for all investigated oxide
standards. Moreover, it is concluded that the abso-
lute values of A, and A, are small compared to the
actual energy resolution of 1 eV in the experiments.
That means that the e;r and ¢, states are positioned
almost at the same energy leading to the competition
of high- and low-spin states and the eventual break
down of Hund’s rule.*3

The ELNES of Fe-Lj 3 and O K-edges of the BSFZ
material were monitored from room temperature to
900 °C. Significant changes in shape or energy posi-
tion were not observed. Some in situ spectra of Fe-
Ly 3 are shown in Fig. 6.0Over the entire temperature
range they show similar features to those discussed
for the BSFZ spectrum in Fig. 5 with the same peak
width and separations, indicating that iron stays in an
Fe?* /Fe3t mixed valence state during the in situ ex-
periment. Pre-peak A (522 - 530.5 eV) originates from
transitions of O-1s electrons into the unoccupied Fe-
3d fraction that have 2p character due to hybridization
with O-2p orbitals. 12445152 If compared with,42:53:54
peak B (530.5 - 546 eV) can be assigned to Zn-4sp,
Ba-4f, and Sr-4d orbitals hybridized with O-2p orbitals
(see Fig. 3). Feature C (above 546 eV) are unoccupied
Fe-4s and Fe-4p states weakly hybridized with O-2p
orbitals (see Fig. 3). Neither fitting procedures 25! or
integration of intensities gave a trend in the relative
amount of pre-peak A as a function of temperature.
Integration revealed that the relative amount of the
pre-peak A intensities in the spectral range from 522 -
546 eV scatters from 13 - 15%. It is concluded that
the amount of O-2p hybridization with Fe-3d relative
to that with other metal cations does not change with
the bond length expansion associated with lattice di-
latation during heating of BSFZ. However, a shoulder
in the high-energy flank of peak B is noted at high
temperatures, and it remains present after cooling of
the specimen to room temperature. It must be noted
that if the heating occurs in the vacuum chamber of a
TEM, the reverse filling oxygen in the perovskite lat-
tice will not reach the initial level. A more accurate
designation of the spectral features in the high-energy
flank of peak B would require band structure calcu-
lations for this complex perovskite that is beyond the
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scope of this work. Nevertheless, because the pre-peak
A does not show splitting, it is emphasized once again
that the energies A.; and A, as well as their difference
|Aez — Ac| are small in BSFZ under all experimental
conditions.

Room temperature Mossbauer spectra of a BSFZ
powder before and after heat treatments in air up to
900 °C are almost identical (see Fig. 8). However, a
small difference is noted that hints to some irreversibil-
ity in the oxygen release and pick-up process. The
room temperature spectra are well fitted by the super-
position of three subspectra (Fig. 8, bottom). Based
on their isomer shifts (ISpje = -0.19 mm/s, IS,cq
= 0.26 mm/s) and on their symmetric quadrupole
splitting (QSpiue = 0.48 mm/s, QS;eq = 1.11 mm/s)
these blue and red subspectra are attributed to Fe!V,
(t3,)*(ef)!, and Fe!TT jons, (t3,)%(ef)?, respectively,
both in octahedral coordination and high-spin config-
urations. 6 The isomer shift of the third subspec-
trum (ISgreen = 0.53 mm/s) can be attributed to Fe®,
(153'9)3(152;)27 also in octahedral coordination,5%°¢ but
in a low-spin configuration. It should be noted that
the green subspectrum shows almost no quadrupole
splitting and supports the above made designation of
d orbital occupancies that give different electric field
gradients at the iron nucleus.®® The average relative
intensities of the subspectra, calculated from the room
temperature spectrum before the heating cycle, are as
follows: Ipe = 67.9 %, Igrcen = 8.1 %, Liea = 24.0 %.
In Fig. 8 it is shown that the green subspectrum disap-
pears with increasing temperature from room temper-
ature to ca. 500 °C. At temperatures above 500 °C,
the spectra become narrower. The vanishing of the
Fe'® fraction from the spectrum indicates a partial
spin-state transition by an increase of Ag, — A, (cf.
Fig. 4). The Mossbauer spectra of the sample taken
above 500 °C could be fitted by the superposition of
just two subspectra (blue and red). The intensity of
the red subspectrum increases at the expense of the
blue one. At 900 °C, the intensities of the red and
blue subspectra are 62.5 % Fe!V and 37.5 % Fel!, re-
spectively (see Table 1 for more details). If the intensi-
ties of the subspectra are taken to indicate the relative
amount of different iron species, a very slight reduction
of iron is noted; the deduced oxygen stoichiometry 3—¢
of the BSFZ compound does not change significantly,
from 2.67 at room temperature to 2.65 at 900 °C in air.
The change in iron valencies deduced would be mini-
mal, 3.7+ at room temperature and 3.6+ at 900 °C,
respectively. But the mixed low- and high-spin state
of the Fe3t ion changes to a purely high-spin configu-
ration. For room temperature the deduced 6§ (and cor-
responding iron valences) are in good agreement with
Fig. 9, but, at high temperature they deviate remark-
ably by an underestimation of Fe?*+ species. Remem-
ber, the spectral intensities of subspectra are propor-
tional to the recoil-free fraction of various iron species
in the sample and can be correlated directly to real
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Figure 7: In situ oxygen K-ELNES of a BSFZ ce-
ramic. Spectra are background substracted, scaled to
the same integral counts in the range of 522 - 546 eV,
and vertically shifted for clarity.
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Figure 8: In situ Mdossbauer spectra of BSFZ powder
conducted in air. The subspectra are fitted in color
(Fe!V blue, Fe'® green, and Fe!!! red) and are verti-
cally shifted for clarity.
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Figure 9: DTA and TGA curves of BSFZ with indication of the oxygen content 3 — 4.

concentrations only if constant atomic displacement
factors are assumed for all species. Even though in the
cubic perovskite the different iron species occupy just
one crystallographic site, a measure of likely individual
thermal vibration amplitudes has to be estimated by
temperature-dependent neutron, X-ray or (convergent
beam) electron diffraction on single-crystals combined
with appropriate modeling. This is of special concern
for the BSFZ perovskite, as the average atomic dis-
placement parameter for the 1b Wyckoff position (iron
and zinc) is already high as B = 2.440.1 at room tem-
perature. 2® The situation is even more complicated by
the complex stoichiometry of BSFZ. However, to allow
a reliable quantification of the spectra once additional
knowledge about the BSFZ material is ontained, we
provide complete spectral information in a condensed
form in Table 1.

In addition, it should be mentioned that with in-
creasing temperature there is a large center shift of all
subspectra to the left. This means essentially that
the charge density at the °"Fe nucleus decreases®”
even though a contribution from second-order Doppler
shift 58 should be considered. One principal reason for
the observation could be a decrease of the probability
density of ligand orbitals (oxygen) at the position of
the ®"Fe nucleus when the lattice is thermally dilated.
The second principal reason is related to the observed
spin-state transition and a change in the population
of orbitals with e4- and to4-character. Remember, the
amount of hybridization of e, orbitals pointing to the
ligand, can be assumed to be twice that of t5, orbitals
due to larger overlap integrals with O-2p orbitals. 4344

DTA proves the thermal stability of the perovskite
by the absence of exo- or endothermic peaks in the
temperature range from 100 - 1000 °C (see Fig. 9,
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Figure 10: In situ XRD pattern in air of a narrow
angular range around the (110) reflex of a BSFZ pow-
der with indication of respective lattice parameters for
the cubic cell. Diffractograms are vertically shifted for
clarity.
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Table 1: Fitting results of the in situ Mossbauer spectra of BSFZ. A Lorentzian linewidth of 0.24 mm - s~

1

resulting from the fit of the room temperature spectrum of the sample was chosen for the fits of the spectra
taken at elevated temperatures. CS refers to the center shift of the whole spectrum.

FelV Feiit Felll
high-spin low-spin high-spin

T IS QS intensity IS QS intensity IS QS intensity CS
°C mm-s~' mm-s! mm-s~t  mm-s7! mm-s~t  mm-.s! mm - s~ !
23 -0.19 0.48 67.9 % +0.53 0.21 24.0 % +0.26 1.11 8.1 % +0.02
100 -0.23 0.50 62.0 % +0.47 0.21 24.0 % +0.20 1.06 14.0 % 0.00
300 -0.27 0.64 69.5 % +0.38 0.14 14.0 % +0.08 1.00 16.5 % -0.12
500 -0.30 0.33 62.5 % +0.27 0.18 4.8 % -0.34 1.00 32.7 % -0.29
700 -0.33 0.39 74.3 % - - - -0.41 1.05 25.7 % -0.35
800 -0.40 0.36 71.8 % -0.51 1.08 28.2 % -0.43
900 -0.46 0.30 62.5 % - - - -0.57 1.00 375 % -0.50
23 -0.19 0.51 61.7 % +0.53 0.21 19.7 % +0.26 1.10 18.6 % +0.04

right scale). Hence, phase transformations or decom-
position can be ruled out. The constant increase of
the DTA signal displays an exothermic process span-
ning from 100 - 900 °C and is attributed to the release
of oxygen from the perovskite lattice. The oxygen re-
lease is monitored by a continuous weight loss as seen
in the TGA curve (Fig. 9, left scale). The slope of
the TGA curve becomes distinctly steeper at around
450 °C, correlating with the vanishing of the Fe?® frac-
tion (cf. Fig. 8). It should be noted that the result-
ing high-spin configurations have a higher occupancy
of the eg-based states (see Fig. 4) with stronger hy-
bridization effects and thus a higher electronegativity.
This is favorable for a larger release rate of oxygen.
The accompanied reduction of iron is obviously easier
if no spin-flip are involved. However, above 800 °C
the mass loss (Fig. 9, left scale) becomes very small
and the oxygen release seams to stagnate at a relative
weight loss of ca. 1.6 wt.%. The DTA shows constant
values above 800 °C and decreases above 900 °C, signi-
fying the end of the exothermic process, i.e., the oxy-
gen release. The oxygen content in a BSFZ powder
at room temperature was estimated by carrier hot gas
extraction to 20.25+0.19 wt.% after double heating-
cooling in a thermoanalyser apparatus (STA449, Net-

zsch, Selb, Germany) between room temperature and
1000 °C at a heating/cooling rate of 20 K-min~—!. The
measurements gave an oxygen content 3 — § of about
2.70+0.03. Using this data the TGA curve can be in-
terpreted directly in terms of the oxygen content in
the BSFZ perovskite (Fig. 9, very left scale). It shows
a decrease of the oxygen content from 2.70 at room
temperature to 2.50 at 900 °C. That corresponds to
a reduction of iron from an average valence of 3.75+
down to 3.25+, if the other cations are considered to
have a constant valence: Ba?t, Sr?*, and Zn?*. In
other words, iron in BSFZ is in a mixed 75 % Fe** /
25 % Fe®* valence at room temperature. Upon heat-
ing to 900 °C in air it will be reduced to a 25 % Fe't /
75 % Fe®* valence. We should mention that the TGA
curve in Fig. 9 agrees with the one published by Wei
et al.?% for the heating of BSFZ in air. However, their
room temperature value for the oxygen content esti-
mated by iodiometric titration is lower (2.59). Thus,
they estimate the oxygen content at 900 °C to be just
2.40, which would implicitly predict a reduction of iron
to less than 3+ with some Fe?* species being present.
However, this can be ruled out by Mossbauer spec-
troscopy (Fig. 8) as well as by EELS (Figs. 5 and 6).
We state that our results are self-consistent.

10
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Figure 11: Coeflicient of thermal expansion of BSFZ as a function of temperature for different oxygen partial
pressures: (a) 100 % Oz, po, = 100 kPa, (b) 20 % Oz, po, ~ 20 kPa, (c) "pure” argon, < 3 ppm O,

po, < 0.3 Pa.

In situ XRD patterns of a BSFZ powder in air and
in reducing gas mixtures (Ar, 2 % Oq-Ar, and 2 % Ha-
Ar) in the 26 range of 20° - 90° from room tempera-
ture to 900 °C have been presented in.2* They show
excellent phase stability under all applied conditions
by the conservation of the cubic perovskite structure.
Figure 10 shows the 26 angular position of the (110)
reflex of the cubic BSFZ during in situ heating in air
up to 1000 °C with indication of the respective lat-
tice parameters. The absolute reflex position after the
heating cycle is shifted by 0.1° towards smaller an-
gles and indicates that the changes are not completely
reversible, probably due to kinetic effects. This is con-
sistent with observations by EELS (cf. Fig. 7) and
Méossbauer spectroscopy (cf. Fig. 8). A change in the
rate of expansion of the BSFZ powder crystals is noted
between 400 °C and 600 °C. From these XRD data,
the CTE is estimated to be around 11 x 1076 K~! and
24 x 1079 K~! in the temperature ranges 30 - 400 °C
and 600 - 1000 °C, respectively.

The dilatometric measurement of the CTE for a
BSFZ ceramic is presented in Fig. 11 as a function of
different oxygen partial pressure. The measurements
were conducted at 100 % and 20 % Os, and under Ar.
The CTE is nearly independent of the oxygen partial
pressure po,, although it slightly decreases with de-
creasing po,. There is a constant CTE between 300 -
600 °C of ca. 15 x 107 . K=1 and between 750 -
1000 °C of ca. 22 x 1079 x K~!, which corresponds to
the XRD data obtained on powders. Strain-induced
phase transitions can be ruled out by the in situ XRD

11

and DTA observations. Therefore, the CTE in the
current experiment is a combination of a steady ther-
mal expansion caused by anharmonic thermal lattice
vibrations and an additional term of a chemical expan-
sion®%Y due to the coupled valence/spin-state transi-
tion of iron and the accompanied increase of its ionic
radius during heating.

4 Conclusions

The performed EELS, esp. ELNES analyses of the Fe-
Ly 3 edge have revealed that iron in the BSFZ per-
ovskite is in a mixed Fe** /Fe3* valence state at room
temperature. Upon heating to 900 °C the reduction
of iron is so weak that no Fe?t species are involved.
Moreover, at the O-K edge hybridization effects of O-
2p orbitals with empty Fe-3d, Zn-4sp, Ba-4f, Sr-4d,
and Fe-4sp orbitals are noticed. The relative amount
of hybridization does not change upon heating of the
BSFZ perovskite. Méssbauer spectroscopy identified a
gradual spin-state transition of the Fe3* species from
a mixed low-spin/high-spin configuration to a high-
spin configuration. Above ca. 500 °C the Fe3* frac-
tion is in a pure high-spin state. The Fe**t fraction
is in a pure high-spin state under all applied condi-
tions. Concerning the redox state of iron, weights of
Mossbauer subspectra give a reliable estimate at room
temperature only. At elevated temperatures obviously
the Fe3* recoil-free fraction is lower than the Fel*
recoil-free fraction as a consequence of different tem-
perature coefficients of the respective atomic displace-
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ment parameters. However, the accurate determina-
tion of the oxygen content by carrier hot gas extrac-
tion (3—4 = 2.70) gave an average Fe valence of 3.75+
in BSFZ at room temperature. Based on these values,
monitoring the released amount of oxygen by weight
loss upon heating shows that the oxygen content drops
to 2.50 and iron is reduced to an average valence of
3.25+ at 900 °C in air. The oxygen release rate and
the accompanied reduction of iron increase at around
450 °C, which is the Fe?* spin-state transition. The
spin-state transition also reflects in an increase of lat-
tice expansion above ca. 600 °C as monitored by XRD
and dilatometry.

The spin-state transition should be elucidated in
more detail. Since the intra-atomic exchange cou-
pling A., decreases with larger radial extension of
the crystalline wave functions,*3 A, (F e4+) exceeds
Aey (Fe3+). Increasing A, with decreasing hy-
bridization is forced by a lattice expansion in or ex-
periments. Contrary, the cubic ligand field split-
ting A. increases with increasing hybridization and
A, (Fe‘”) <A, (F€3+). An increase of the Fe-O dis-
tance, and thus smaller Fe-3d—O-2p interactions leads
to a lower A, and a more stable high-spin state. As
oxygen is located at the face centers of the cubic unit
cell, the Fe-O distance can be read for different tem-
peratures directly from Fig. 10 as half of the respective
lattice parameter. It increases from 199.5 pm at room
temperature, to 200.0 pm at 400 °C, to 201.0 pm at
600 °C, and so forth. The effective ionic radii from
Shannon’s compilation®! for Fe!V (58.5 pm), Fellf
(64.5 pm), and Fe'™ (55.0 pm) sum with that of 02~
(140.0 pm) to 198.5 pm, 204.5 pm, and 195.0 pm, re-
spectively. The lack of additivity to the bond length
of the radii of the Fe?t species can be attributed to
some covalence (covalent shortening) and maybe elec-
tron delocalization.b! It directly points at the higher
electronegativity of Fe?* compared to Fe** in the per-
ovskite framework. The corresponding Fe-3d-O-2p
hybdrization is indeed proved by the pre-peak A in
the O K-ELNES (Fig. 7). However, the considera-
tion of summarized effective ionic radii indicates that
it is favorable for iron to leave the low-spin configura-
tion with increasing Fe-O bond length. Changes in the
the occupancy of ty, and ey states affect the amount
of hybridization and the strength of Fe-O bonds, so
additional anharmonic terms are introduced into the
elastic energy. This might be the reason why the spin-
state transition correlates with the observed changes
in the rate of lattice expansion (cf. Figs. 10 and 11).
The decrease of hybridization with thermal expansion
is reflected in the center shift of the Mossbauer spec-
tra (cf. Fig. 8 and Tab. 1). Remember that the elastic
energy is anharmonic in principle. Otherwise, no ther-
mal expansion would be observed and the amplitude
of atomic vibrations would rise without a shift of the
center of gravity with increasing temperature.3”

The redox chemistry of transition metals in these

12

complex perovskites cannot be described by a sim-
ple change in valence. Hybridization enables gradual
charge transfer in bonds with oxygen and thus changes
of the electronegativity of the transition metal during
oxidation or reduction.®? From the transition metals
perspective lattice expansion corresponds to an oxi-
dation and removal of oxygen from the lattice to a
reduction. For the heating of BSFZ, reduction of iron
from Fe*t to Fe3T is compensated partly by the O-2p
band. Lowering po, in the surrounding atmosphere,
i.e., picking more oxygen from the perovskite lattice,
gives two electrons per removed oxygen atom to the
lattice and may enhance hybridization of Fe-3d-O-2p
bonds. The Fe-O bonds become stronger with decreas-
ing po, and we expect a smaller CTE. This systematic
trend can be seen in Fig. 11.

We restricted our discussion of the electronic struc-
ture in context with Fig. 3 somehow to a simple ionic
model with electrons being localized around iron sites
to highlight some important points. However, the ex-
cellent transport properties of BSFZ for oxygen ions
and electrons 24726 suggest further investigations of the
tag- and eg-based energy bands are warranted. The
eg orbitals with higher amount of hybridization give
broader bands. The partly filled t;g- and e -based
bands are narrow and not widely separated, which is
essential in the observed spin-state transition and indi-
cated by the sharp first peak (2.8 eV FWHM) in the Fe
L, 3-ELNES (Figs. 5 and 6). The spin-state transition
is manifested in the crossing and finally the separation
of t;q— and e, -based bands. Immediately before the
separation a metal-like band of maximum width is ob-
served, and a maximum in the electrical conductivity
can be expected, which correlates well with the obser-
vation by Wei et al.?6 of a maximum in the electrical
conductivity of BSFZ at around 600 °C (9.4 S-em™1).

Oxygen K-ELNES showed that the amount of O-
2p hybridization with Fe-3d relative to other metal
cations (Zn-4sp, Ba-4f, and Sr-4d) does not change
with the bond length expansion associated with lat-
tice dilatation during heating of BSFZ. This is in
clear contrast to observations in the BSCF perovskite,
which show a relative switch in hybridization of O-2p
with Ba-4f and Sr-4d upon Fe-3d and Co-3d.'? The
comparison with?? makes the relative stabilization
of transition-metal-oxygen-ligand to earth alkaline-
metal-oxygen-ligand hybridization plausible by an
anomalous Zn-3d—O2p hybridization caused by a very
small energy difference (cf. Fig. 3).

It is worth noting that the lowest temperature of
successful synthesis of BSCF (950 °C)1%3° or BSFZ
(750 °C)2729 correlates with spin-state transitions of
one of the polyvalent transition metal ions. As al-
ready mentioned, it has to be emphasized that both,
valence and spin-state, modify the effective radii of
transition metal cations, which govern Goldschmidt’s
tolerance factor, providing a principal criterion for the
expectable perovskite symmetry. Therefore, a careful
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choice of a membrane material for specific operational
conditions has to take into account, that a high sta-
bility of the cubic perovskite structure can only be
achieved in a pure high-spin state material with its
higher ionic radius. This is seen as a big advantage for
BSFZ in the IT range compared to BSCF. However,
spin-state transition and its effect on the functionality
of membrane materials must be investigated in more
detail.

Integration over the CTE from room temperature to
700 °C (Fig. 20) gives a dilatation of 0.94 % for BSFZ,
compared to 1.6 % for the cobaltite BSCF (based on
the CTE given in'3). The relatively low dilatation
of the BSFZ material combined with the peculiar re-
dox behavior of iron, good transport properties, and
phase stability 2426 makes it superior to cobaltites for
prospective applications in the intermediate tempera-
ture range (500 - 800 °C).

5 Summary

It has been shown that the iron in the BSFZ perovskite
has a mixed 75 % Fe*t / 25 % Fe®* valence (3.75+)
at room temperature. Upon heating to 900 °C in air
it is reduced to a 25 % Fe't / 75 % Fe3t valence
(3.254). The Fe't fraction is always in a high-spin
state, and the Fe3t fraction makes a transition from
a predominantly low-spin to a pure high-spin config-
uration at intermediate temperatures. A decrease in
the amount of Fe-3d—O-2p hybridization during lat-
tice expansion is seen as the reason for the spin-state
transition as the exchange coupling A., increases and
the cubic ligand-field splitting A, decreases for each
species. The coupled valence/spin-state transition is
seen as anomalies of weight-loss, due to release of oxy-
gen, and thermal expansion behavior. It is concluded
that to provide excellent phase stability of perovskite-
based membrane materials it is crucial to tailor the
materials in a way that they exhibit pure high-spin
states under operational conditions, even in the pres-
ence of mixed valence states. This is the case for BSFZ
above ca. 500 °C, making it highly attractive for in-
termediate temperature applications (500 - 800 °C).
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Abstract

Previously unreleased compositions of
(BagsSrg.5)(Fe1_,Al,)O3_s5 perovskites in the
range of 0<x<(0.2 were synthesized and studied with
respect to electronic and crystallographic structure,
as well as oxygen permeation. The perovskite phase
in all synthesized oxides was found to be cubic,
without any impurities for aluminum fractions in the
range x= 0.01-0.09. Electron energy-loss spectroscopy
(EELS) revealed a significant amount of covalency
by Fe-3d-0O-2p hybridization and a mixed Fe3T /Fe**
valence state of iron for all synthesized perovskites,
which was quantified by Maossbauer spectroscopy.
Trivalent aluminum replaces a higher fraction of
Fe't than of Fe3t while both iron species are in
high-spin state. The Maossbauer quadrupole split-
tings indicate a greater disorder around iron with
increasing aluminum content and, together with the
EELS result of an abatement of covalent character in
the bonding of iron and oxygen, the observed lattice
expansion can be understood. In-situ XRD and
TG/DTA measurements revealed high temperature
stability of the materials up to 1350 °C. The oxygen
permeation increases with rising aluminum content
from 0 to 0.1, and the (Bag.5Sro.5)(Feg.9Aly.1)O03—s
membranes show a very high oxygen permeation
(1.19 ml ecm~2 7! at 950 °C) compared to known
perovskite membranes. Even among the previously
published iron and aluminum containing membranes,
they exhibit the highest oxygen permeation.

1 Introduction
Many industrial processes require the supply or

removal of oxygen to or from reaction mixtures with
high selectivity and oxygen fluxes. The separation

of oxygen from air by ceramic membranes is a
key technology. Membranes with both high flux
and selectivity are based on mixed ionic-electronic
conductors (MIECs) with perovskite structure.!:2
Perovskite-type oxides of the composition ABO3 can
host many different cations on the A- and B-sites,
which enables us to tune conductivities from almost
pure electronic to almost pure ionic. Numerous
applications of perovskite membranes with different
elemental compositions have already been reported,
e.g. separation of oxygen from air, partial oxidation of
carbon hydrides and oxygen-enrichment in air.38 The
electrochemical importance of perovskite oxides is
apparent in the case of solid-oxide fuel cells (SOFCs)
for power generation.® In this application, perovskites
are employed as cathode, electrolyte or anode mate-
rials, and even full ceramic intermediate-temperature
solid oxide fuel cells (IT-SOFCs, ca. 500-800 °C) are
possible. 1914 For membrane-based dehydrogenation
processes in the synthesis of basic chemicals like
ethylene!® and propylene 6 at high selectivity, and for
IT-SOFCs,'7 the long-time stability of the materials
is of special interest. However, perovskite materials
offer, in addition to oxygen separation membranes,
an even wider range of application in many different
fields, which are listed elsewhere. 18

Due to their multiple applications, new perovskite
materials are of major interest for natural scien-
tists, like chemists and materials scientists. The
current state-of-the-art material, due to its high
oxygen permeation flux and phase stability above
900 OC, is (Baof,sro,g,)(COo,gFeo'z)Og_g (BSCF) 1,10,19
However, recently, serious stability problems with
cobalt-containing materials in the IT range have been
discussed in the literature.2%2! If the cubic BSCF is
kept at temperatures below 900 °C for long time peri-
ods, a decomposition into a three-phase mixture takes
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Chapter 4. Valence and spin state

place due to a reversible reordering of the hexagonal
AOgs-layer stacking sequence in the cubic perovskite.
The breakdown of the cubic perovskite structure leads
to the long-term instability of the BSCF material
in the IT range. The driving force for this reaction
was identified to be the cobalt site (Co**/Co3%),
because trivalent cobalt shows a high-spin (HS) to
low-spin (LS) transition and prefers a low-spin config-
uration at intermediate temperatures. Furthermore,
it was shown by in situ high-temperature electron
energy-loss spectroscopy (HT-EELS) on BSCF?2?
and comparative TGA of different perovskite-type
materials?® that the redox behavior of polyvalent
B-site cobalt ions is much more flexible than that of
iron, manganese or nickel. The flexible redox behavior
of cobalt in BSCF causes a large coefficient of thermal
expansion (CTE) in the range of 20-24x 1076 K~12425
resulting in huge thermal stresses and, in the worst
case, crack formation.

Therefore, the search for alternative materials and
the development of cobalt-free perovskite-type oxides
are of great interest. The introduction of lower
valence state ions into the perovskite structure ABO3
induces oxygen vacancies, leading to an improved
ionic conductivity that benefits the oxygen per-
meability.  This paper presents novel cobalt-free
perovskite materials of A/BHI/IVQ4_s-type, con-
taining iron and aluminum with the stoichiometries
(Bag.5Srg.5)(Fe1_,Al,)O3_s (BSFA). Doping of the
B-site of the perovskite structure with a metal with a
fixed valence state, like the trivalent aluminum, is ex-
pected to lead to the diminution of non-stoichiometric
oxygen variations and a more stable redox behavior
of the material. The lattice expansion caused by the
variation in temperature or chemical oxygen potential
is likely to be reduced, but the oxygen permeability
due to higher ionic conductivity should improve.

We are not the first to investigate the idea of
aluminum doping. There are several lanthanum-
based?633 as well as strontium-based3246 alu-
minum doped perovskite materials reported in
the literature.  Even though Holc et al.  sug-
gest (Lao'gsro'z)(F6171A11)03,5 with x = 07
0.3, and 0.5 as candidates for IT-SOFCs,?26
most researchers have reported a deterioration
in the oxygen permeation for lanthanum-based
aluminum doped perovskite materials, e.g. for
(La0‘5Sr0‘5)F603,(;7 (Lalfxcam)(Ala/F61711)03,5 and
La(Gag.g_-Mgo.1Al,)03_5.293932 A decrease in the
ionic and electronic conductivity was also published for
strontium-based aluminum doped perovskites by Dong
et al. for Sr(Cog.4Fep.6—Al;) O35 and Kharton et al.
for (Sr0,7LaO,3)(Fel_zAlz)Og_(;, SI‘(Fel_yAly)Og_g7
and (STQ,7L&0'3)(COO‘8 A10_2)03,5.35 38 To our
knowledge, the only barium containing aluminum
doped perovskite reported in the literature is
(Srp.8Bag.2)(Cop.5Alg 3Fep.2)Os_5, and only the coeffi-
cient of thermal expansion (CTE: 22.4x107% K~! for

773<T<1273 K) for this cobalt containing material is
tabulated. 46

The structural characterization of the novel
(Bag.5Srg5)(Fe1_,Al,)O3_5 material was carried
out by (in-situ) X-ray diffraction (XRD) and Ri-
etveld refinements. Electron energy-loss spectroscopy
(EELS) and Méssbauer spectroscopy revealed the iron
oxidation and spin-states and the hybridization of iron
and oxygen. Scanning electron microscopy (SEM),
combined with energy-dispersive X-ray spectroscopy
(EDXS) and transmission electron microscopy (TEM)
along with EDXS, were conducted to examine the
microstructure and elemental composition.  Addi-
tionally, differential thermal analysis (DTA) and
oxygen permeation experiments were conducted for
characterization purposes.

2 Experimental Section

(Bag.55rg.5)(Fei—, Al )O3_5 powders were synthesized
by a combined citric acid and ethylene-diamine-
tetraacetic acid (EDTA) method, as described in de-
tail elsewhere.®4748 Given amounts of Ba(NOs3)s,
Zn(NOs3)2, Fe(NOg3)s, and Sr(NO3)s were dissolved in
water, followed by the addition of EDTA acid and cit-
ric acid with the molar ratio of EDTA acid: citric acid:
total of metal cations controlled at around 1:1.5:1. Af-
ter agitation for a given time, the pH value of the so-
lution was adjusted to approximately 9, by the addi-
tion of NH3-HoO. Water was evaporated with stirring
at 150 °C. The transparent solution transformed into
a dark purple gel following several hours of evapora-
tion. Further heat treatments were applied, i.e., the
pre-calcination for 2 h at ca. 700 °C and the final
calcination to obtain the pure perovskite phases for
10 h at 950 °C. The calcined powders were uniaxially
pressed under 140 kN into pellets and sintered pres-
surelessly at 1150 °C for 2 h to ceramic discs of 14
mm in diameter and a thickness of 1.1 mm.

X-ray diffraction (XRD) was measured with a Philips
X’pert-MPD instrument using a flat sample geome-
try and monochromator-filtered Cu Ka radiation at
40 kV and 40 mA, a receiving slit of 0.19-0.38 mm
and count times of 3-25 s per step. Data were col-
lected in a step-scan mode in the range of 15-100°
with intervals of 0.005 to 0.03°. Data for interpre-
tation were taken from the PDF-2 database with PDF
numbers BaAlyO4 [17-306] and BagAl;Og [25-75]. In-
situ XRD measurements were taken with steps of 200
K with a heating rate of 5 K/min, respectively, in or-
der to achieve a good overview within the tempera-
ture range 20-1000 °C. Before each data acquisition,
an equilibrium time of 1/2 h was set, five scans were
performed at 1000 °C, and the temperature was held
for 10 h. Ambient air was used as the atmosphere
within the chamber. Rietveld refinements on the XRD
powder data were carried out by using Topas Aca-
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Table 1: Tolerance factors of BSFA with the assumption of sole Fe?*, sole Fe** or with the ratio of Fe3* /Fet*
both in high-spin state calculated from integral intensities of ®”Fe Mdssbauer subspectra.

tolerance factor t for elemental fractions
Fe?t  Fe?t/Fett Fett | Fedt TFett AR
BSF 1.011 1.022 1.042 | 63.6 364 O
BSFA0.01 | 1.012 1.023 1.042 | 639 351 1
BSFA0.05 | 1.014 1.024 1.043 | 62.7 323 5
BSFAO0.1 1.019 1.025 1.046 | 61.7 289 94
BSFA0.2 1.022 1.033 1.047 | 444 356 20

demic 4.1 software. During refinements, general pa-
rameters, such as the scale factor, background parame-
ters and the zero point of the counter, were optimized.
Profile shape calculations were carried out using the
Thompson-Cox-Hastings function implemented in the
program by varying the strain parameter as well. Ad-
ditionally, the cell parameter and the displacement pa-
rameters were refined. In the case of site occupation
with mixed atoms, linear constraints were used for the
occupancy (the occupancy of atom B is equivalent to
1.0 minus the occupancy of atom A) and the displace-
ment parameters (atoms on the same position have the
same displacement parameter).

57Fe Mossbauer spectroscopic measurements were per-
formed in transmission geometry using a conventional
spectrometer in constant acceleration mode at temper-
ature T = 293 K. A 57Co/Rh y-ray source was used.
The velocity scale of the spectra was calibrated rela-
tive to ®"Fe in Rh. 'Recoil’ spectral analysis software4®
and the Voigt-based fitting method were used for the
quantitative evaluation of the Mossbauer spectra. IS
is the isomer shift relative to Fe in Rh at 293 K. QS
is the quadrupole splitting. A Lorentzian linewidth of
0.30 mm/s, resulting from the fit of the spectrum of
the BSF sample, was chosen for fitting the spectra of
the other investigated samples. The estimated stan-
dard deviations are lower than 1 % for intensity I and
lower than 0.01 mm/s for the IS and QS parameters.

Scanning electron microscopy (SEM) was performed
with a JEOL JSM-6700F. Secondary electron (SE)
micrographs were taken at a low excitation voltage
of 2 kV. In order to analyze the microstructure of
the sintered membranes, SEM was conducted on both
surfaces and on fracture surfaces, and grain size dis-
tributions were evaluated using image analysis soft-
ware (Adobe Photoshop CS2 (Version 9.0) and Im-
ageJ (1.33 1)).5% Fracture surfaces were etched with
aqueous HCI (0.5 M) for 1-2 min in order to visualize
grain boundaries. An EDX spectrometer, Oxford In-
struments INCA-300, with an ultra-thin window was
used for elemental analysis.

Thermogravimetric analysis (TGA) and differential

thermal analysis (DTA) were measured on calcined
BSFA powders in DTA/TG crucibles of Al,O3 with
a SETSYS TGA-DSC instrument from 20 to 1200 °C
with a heating rate of 20 K/min and from 1200 to 1420
°C with a heating rate of 1 K/min under air (flowrate:
100 ml/min).

Transmission electron microscopy (TEM) and electron
energy-loss spectroscopy (EELS) were conducted at
200 kV with a JEOL JEM-2100F-UHR field-emission
instrument equipped with a Gatan GIF 2001 energy
filter and a 1k-CCD camera. EDXS was carried out
by a light-element detector using the Cliff-Lorimer
quantification technique (INCA 200 TEM, Oxford In-
struments). EELS was performed in diffraction cou-
pled mode while taking care to measure accurately
the absolute position of core-loss details.?! The prepa-
ration of standards for Fe** (SrFeO3) and Fe3* (a-
Fe;03), which were carefully checked by Mossbauer
spectroscopy to exhibit only the desired iron valence,
is described elsewhere.®! Furthermore, the specimen
for TEM investigations was prepared similar to Mar-
tynczuk et al.?® Membranes were cut, covered on both
sides with silicon single crystals, polished on poly-
mer embedded diamond lapping films and epoxy-glued
onto a copper slot grid. Electron transparency was
achieved by Ar' ion sputtering (Gatan, model 691
PIPS).

The oxygen permeation was measured in a high-
temperature permeation cell®® from 800 to 950 °C in
steps of 25 °C with an equilibrium time of 15 min.
Discs were sealed onto a ceramic tube with gold-paste
(conducting 130 paste, C5754, Heraeus) at 950 °C for 2
h. The actual temperature was measured 1 cm above
the membrane with a quartz glass protected Pt/Rh
thermocouple. After sealing, gas flow rates were de-
livered to the reactor by mass flow controllers (Bron-
ckhorst Hi-Tech) and continuously read by an on-line
gas chromatograph (Agilent Technologies, HP 5890,
equipped with a Carboxen 1000 column). Air was fed
at a rate of 150 mL min~! to the air side; He (29.0 mL
min~!, 99.995 %) and Ne (1.0 mL min~1!, 99.995 %) as
the internal standard gases were fed to the sweep side.
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Figure 1: X-ray diffraction data of a) all synthesized BSFA oxides with various aluminum fractions calcined at
950 °C for 10 h, b) zoom of reflex at the Miller index (110) for determination of lattice parameters a. Reflex
positions for perovskite (p) belong to BSF with a = 0.3943 nm.

The absolute flow rate of the effluents was determined
by using neon as an internal standardization. For that
purpose, the concentration of neon in the effluents was
measured. Since the flow rate of neon is known, it is
thus possible to calculate the total flow rate of the ef-
fluents. Nitrogen was also detected in the effluents by
gas chromatography because of slight imperfections in
the sealing, and the leakage of oxygen was subtracted
in the calculation of the oxygen permeation flux. The
relative leakage of Oy was found to be less than 5 %.
The permeation flux through the membrane could then
be calculated by the fraction of Og in the effluents and
the determination of the effective permeation area of
the membrane.

3 Results and Discussion

The incorporation of aluminum into the perovskite lat-
tice was conducted systematically. Due to the small
ionic radius of trivalent aluminum (r(A1>*) = 0.535 A),
it was expected to be incorporated at the B-position
of ABO3 (A: r(Ba®t) = 1.61 A, r(Sr®>t) = 1.44 A, B:
r(Fedt, HS) = 0.645 A, r(Fe**, HS) = 0.585 A, r(0?")
=1.40 A).5% A good benchmark for the degree of alu-
minum doping in a cubic perovskite is the tolerance
factor t described by Goldschmidt.?* For the ideal cu-
bic structure, t should equal one. It was adapted to
double perovskites by Anderson® and can be calcu-
lated for ABO3 with weighted arithmetic mean values
for the cationic radii 7 according to Feldhoff et al.:*7

_ Ta+tro
= alrn +ro] o

For the composition (Bag5Srgs5)(Fej_,Al,)Os5_5 the
values for t are labeled in Table 1 for Fe3*, Fe't, and
for the ratio of Fe?* to Fe?t determined by Méssbauer
spectroscopy. The values for t are in the range of 1.01
to 1.05 for 0<x<0.2. When the tolerance factor is
t>1, the AOj layers typically adopt mixed cubic and
hexagonal, or pure hexagonal, close-packed stacking
sequences. 2956 The more t deviates from unity, the
less stable the cubic perovskite; thus, it is reasonable
to expect a cubic perovskite with very low aluminum
doping. Apparently, the maximum aluminum doping
for BSFA is around x = 0.1 with a tolerance factor of
1.025. This conclusion can be drawn from Figure 1.

The crystal structure of the synthesized powders with
various aluminum fractions calcined at 950 °C for 10
h was examined by X-ray powder diffraction from 20
to 60 °26 at room temperature (Figure 1la). The ox-
ides with aluminum fractions of 0<x<0.05 crystallize
as cubic perovskites with lattice parameters around
0.396 nm, which are labeled in Figure 1b in a zoom of
reflex at the Miller index (110) for lattice parameter
determination. The perovskite phase in all synthesized
oxides is cubic perovskite, and the highest aluminum
fraction for a formation of pure cubic perovskite with-
out any impurities is in the range of x= 0.09-0.1. The
BSFA oxides with aluminum fractions of x>0.1 do not
form a pure cubic perovskite phase. In the BSFAOQ.1
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Figure 2: Rietveld refinement for BSFA0.1 (calcined at 950 °C for 10 h). The observed (blue) and calculated
intensities (red) together with the difference (green) between the observed and calculated pattern as well as

the possible reflex position (tick marks) are given.

Table 2: Parameters obtained by fitting the room-temperature Mossbauer spectra of the BSFA samples. IS is
the isomer shift relative to Fe in Rh at 293 K. QS is the quadrupole splitting.

BSF BSFA0.01 BSFA0.05 BSFAOQ.1 BSFA0.2
Felt Te3+ TFelt TFed3+ TFelt Fedt TFelt TFedt  TFedt TFedt  Felt  TFedt
IS (mm/s) |-0.17 0.18 -0.17 0.18 -0.17 0.18 -0.17 0.18 -0.17 -0.14 0.10 0.28
QS (mm/s) | 048 0.70 0.54 0.72 0.51 0.72 0.49 0.73 0.47 0.83 0.72  0.80
1(%) 36.4 63.6 355 64.5 34.0 66.0 31.9 68.1 214 231 11.9 43.6

powder a minor impurity (3.3 %) of BaAloO4 was de-
termined by Rietveld refinements (Figure 2).

The Rietveld refinement of BSFA0.1 revealed a two
phase mixture consisting of the perovskite and a sec-
ond oxide (BaAlyO4). The perovskite was found to
crystallize in the cubic space group Pm-3m (No. 221)
with a lattice parameter of 0.39630(3) nm. Barium and
strontium were refined on the same crystallographic
position la (0,0,0) with 52(2) % occupation for the
strontium atoms corresponding to the chemical analy-
sis and a displacement parameter of B = 1.3 (1). Iron
(91 %) and aluminum (9 %) were calculated at the 1b
(1/2,1/2,1/2) position, showing a high displacement
of B = 1.7 (1). An equivalently high displacement of
B = 2.8 (5) was found for the oxygen atoms on the
3¢ (0,1/2,1/2) site. The refinement converged to re-
liability factors of RWP = 0.127 and RP = 0.09 for
the pattern with a goodness of fit = 1.265, a Durban-
Watson parameter of 1.345, and a Bragg R-value of
0.022 for the perovskite structure.

The second oxide was identified as hexagonal BaAloOy4

with space group P6322 (No. 182), as reported by Ar-
lett et al.’” Quantitative analysis revealed that the
perovskite structure is the major phase, accounting
for 96.7 %, and the BaAlO4 accounts for 3.3 %.
For BSFA0.2 two impurities were found and identi-
fied as 6 % of hexagonal BaAl,O4 and 8 % of cu-
bic BagAlyOg°® with space group Pag (No. 205, Fig-
ure la). The tolerance factor is nevertheless a good
benchmark for the predictability of perovskite forma-
tion. When the aluminum fraction was higher than
0.1 (t>1.025), the aluminum was not completely in-
corporated into the perovskite lattice, and instead of a
hexagonal perovskite, the excessive aluminum formed
an extra hexagonal phase containing predominantly
barium at the A-site. For this reason, the BSFA0.2
perovskite does not contain an Al fraction of x =
0.2, but rather less than that, and therefore, the lat-
tice constant decreases again. Astonishingly, the lat-
tice parameter increases with higher aluminum doping
(x<0.1, Figure 1b), although a decrease due to the
smaller ionic radius of aluminum could be expected.
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Figure 3: Room-temperature EEL spectra a) of the Fe-Ly 3 edge for BSF, BSFA0.01, BSFA0.05, and BSFA0.1
compared to Fet and Fe*t standards, b) of the O-K edge for BSF, BSFA0.01, BSFA0.05, and BSFAO.1.

Hence, this aspect cannot be explained by the assump-
tion of a purely ionic crystal, but by the results of
EELS.

Table 3: Summary of average grain size areas (Ag;)
and oxygen permeation flux (Jo,) of sintered mem-
branes at 900 °C.

membrane | Ay [pm]  Jo, [ml cm™2 571
BSF 166 0.61
BSFA0.01 75 0.76
BSFA0.05 146 0.83
BSFAO0.1 10 0.98
BSFAO0.2 0.41 0.55

In order to investigate the electronic structure, the iron
Ly 3- (Figure 3a) and oxygen K-edge (Figure 3b) were
examined by EELS measurements. The iron Lj 3-edge
displays an electronic transition from the Fe-2p core
orbitals to the partly unoccupied Fe-3d orbitals (en-
ergetic location displayed schematically in Feldhoff et
al.®!). The validity of the dipole selective rule in prin-
ciple attributes the sensitivity of this measurement to
the chemical environment of iron with respect to coor-
dination, valence and spin configuration.’® Figure 3a
shows no significant changes of the overall shape and
position of the iron Ly 3-edge for the different BSFA
samples. However, compared to standards for Fe**

(SrFeO3) and Fe?t (a-Fes03) all BSFA samples show
a smaller FWHM of the L3 white line. That indi-
cates a mixed valence of Fe3T /Fe?t and a small energy
difference between the intra-atomic exchange splitting
and the cubic crystal field splitting, making a com-
petition of iron high-spin and low-spin states likely.
The presence of Fe?* or Fef* can be excluded. The
oxygen K-edge is caused by the transition of oxygen
1s orbitals into orbitals with oxygen 2p character. If
the iron 3d orbitals are hybridized with the oxygen
2p ligand orbitals, the energy-loss near-edge structure
of the oxygen K-edge also reflects the occupation of
the iron 3d orbitals. That means the charge distribu-
tion between oxygen and iron is reflected in both the
iron Ly 3-edge and the oxygen K-edge. % Figure 3b dis-
plays the oxygen K-edge, which is separated into three
parts: the low energy part A (525-532 eV), reflect-
ing the hybridization of the oxygen 1s orbitals with
the partly occupied iron 3d orbitals; a middle energy
part B (532-547 eV), reflecting the hybridization of the
oxygen 2p orbitals with the barium 4f, strontium 4d
and aluminum 3p orbitals; and the high energy part C
(above 547 V), reflecting the hybridization with the
empty iron 4sp band.?!61:62 The occurrence of the A
peak of the O K-edge leads to the conclusion that there
is a significant amount of covalency due to the iron
3d-oxygen 2p hybridization. As the formal valence of
iron decreases, the occupation of the hybridized 3d or-
bitals with the oxygen 2p ligand is diminished. There-
fore, the probability of exciting a core electron into
these orbitals is lower. This is reflected in the peak
area.%36% The intensity ratio B/A follows from esti-
mating the integral intensities in the energy-loss inter-
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Figure 4: Mossbauer results a) room-temperature

spectra of BSF, BSFA0.01, BSFA0.05, BSFAO0.1, and
BSFA0.2, b) variation of the amount of Fe?* and Fe**
cations in BSFA samples with respect to total iron
content (# total B-site occupancy) as a function of Al
content.

vals 532-547 eV and 525-532 eV. It increases from 4.55
(BSF) to 5.26 (BSFAOQ.1). Thus, the hybridization of
Fe-3d with O-2p decreases slightly relatively to that of
the other cations (Ba-4f, Sr-4d, Al-3p). Obviously alu-
minum takes part in the charge transfer, and thus, the
covalent mixing of iron and oxygen orbitals decreases,
leading to the extension of the lattice with increasing
aluminum content.

The mixed Fe®t/Fe*t valence state of iron can
be quantified by Mossbauer spectroscopy. Figure 4a
and Figure 4b show the Mossbauer room-temperature
spectra of BSFA with 0<x<0.2 and the variation
of the amount of Fe3t and Fe'* cations in the
BSFA samples as a function of aluminum content.
The spectra of the BSF, BSFA0.01, BSFA0.05 and
BSFA(Q.1 samples were fitted with two doublets, with
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Figure 5: In situ X-ray diffraction data for BSFAQ.1
(calcined at 950 °C for 10 h), heated up from 35 to
1000 °C and cooled down again in steps of 200 °C
(heating rate 5 K/min) with an equilibrium time of
1/2 h in ambient air.

the values of isomer shift of -0.17 mm/s and 0.18
mm/s characteristic of tetravalent (Fe**) and triva-
lent (Fe3*) cations, both in the high-spin state, respec-
tively.51:65:66 Note that the isomer shift values corre-
sponding to Fe**t cations are in agreement with those
reported for SrFe;_,Al,O3_5.%° The spectrum of the
BSFA(0.2 sample, however, is not well fitted with only
two subspectra. Based on the information that the
sample contains more than one phase, we have fitted
its spectrum with four components. The analysis of
the spectrum revealed the presence of two nonequiv-
alent sites for both Fe?t and Fe!* cations. The hy-
perfine parameters obtained by fitting the spectra of
the (Bag.5Sr0.5)(Fe1_,Al;)O3_5 samples are listed in
Table 2. As shown in Table 2 and Figure 4b, the inten-
sity of the doublet corresponding to Fe3T cations in-
creases monotonically with increasing Al-substitution.
Thus, Al-addition increases the proportion of triva-
lent iron in (Bag 5Sr.5)(Fe1—;Al;)O3_s, as it has al-
ready been observed for Ga-doped SrFeOgs_s based
phases®” and similar compositions with tetravalent B-
site dopants. **%8 The quadrupole splitting value char-
acteristic of Fe3T cations slightly increases with Al
content, indicating greater disorder around Fe3*. Sim-
ilarly as in the work of Waerenborgh et al., " it can be
assumed that the Al-doping leads to a localization of
electron states around oxygen by introducing greater
ionic character to the Fe-O-Fe network. In summary,
Mossbauer results show Fe** and Fe3* cations both in
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Figure 6: Scanning electron micrographs showing sur-
faces and grain size distributions at 1150 °C for 10
h of sintered membranes a) BSF, b) BSFA0.01, c)
BSFA0.05, d) BSFA0.1, e) BSFA0.2 (note different
scale), ) and grain size area distribution.

the high-spin state and greater disorder around Fe3*,
which - with respect to EELS - also can be interpreted
as less covalent mixing of the iron d- and oxygen p-
orbitals resulting in an expanded perovskite lattice.
Table 1 labels the weighted values for the crystallo-
graphic B-position in the perovskite lattice including
aluminum. It is evident that the ratio of Fe3T is
almost constant. This leads to the conclusion that
aluminum replaces predominantly Fe?T in the lattice.
There are two competing effects during the aluminum
incorporation. First, Fe?* and Al have similar ionic
radii, but the oxygen deficit has to be increased due to
the lowering of charge. Second, Fe*t and AI** have
the same oxidation state, but different ionic radii.
The second effect seems to be the weaker driving
force, compared to the effect of the similar radius,
hence most of the AI** replaces Fe?* in the lattice.
This causes a higher oxygen vacancy concentration,
which is increased even more with rising temperature
due to oxygen removal. The material might not be
stable at higher temperatures and even collapse into
brownmillerite phase with ABOs5 stoichiometry.%’
To examine the high temperature stability of the
(Bag.55r0.5)(Fer—Al;)Os_s perovskites, in-situ XRD
and TG/DTA measurements were conducted. The
in-situ XRD measurements of BSFA0.1 are shown
in Figure 5. The sample was heated up from 35 to
1000 °C and cooled down again in steps of 200 °C in

Figure 7: Scanning transmission electron micrograph
of BSFAQ.1 (a) and element distribution of b) oxygen,
¢) aluminum, d) barium, e) iron, and f) strontium.

ambient air. The cubic perovskite phase is stable over
the whole temperature range. Due to the thermal
expansion of the material, a shift of lattice parameters
of 0.0063 nm is evident, and the CTE was determined
to be 16x107% K1

TG/DTA measurements revealed that the perovskites
are stable until 1350 °C. Above that temperature
a decomposition slowly sets in, and the defini-
tive melting points (T,,,) are between 1380 and
1400 °C (T,np(BSF) = 1381 °C, T, (BSFA0.01) =
1392 °C, T,,,(BSFA0.05) = 1389 °C, T,,,(BSFA0.1)
= 1399 °C, T,,,(BSFA0.2) = 1356 °C). BSFA0.01
exhibits the highest stability. Due to the knowledge
of the decomposition and melting points, the sinter
temperature for the perovskite membranes could be
chosen as high as 1150 °C. XRD measurements of
the surfaces and fracture surfaces of the membranes
were similar to those in Figure 1. Previous to oxygen
permeation measurements, membranes were carefully
checked for density, i.e., crack or channel formation,
and depletion or accumulation of any element by
SEM. Additionally, the grain size distribution and the
correlation between grain size and oxygen permeation
was investigated.

Figure 6 illustrates the scanning electron micrographs
of the membrane surfaces and the grain size distri-
butions of all synthesized perovskite powders. The
membranes do not show cracks or channels, only
some small pores are visible at the surface, which are
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not connected throughout the membrane. This was
evidenced by SEM of the fracture surfaces.
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Figure 8: Oxygen permeation flux a) temperature de-
pendence for BSF,”" BSFA0.01, BSFA0.05, BSFAOQ.1
and BSFA0.2, membrane thickness = 1.1 mm, b) for
membranes with various aluminum fractions at differ-
ent temperatures. The lines are guides for the eye and
indicate a maximum at an Al fraction of 0.1.

Grain size distribution was the same for surfaces and
fracture surfaces for each kind of membrane. This was
already demonstrated for (Bag 5Sr¢.5)(Feo.sZng.2)O03_s
and (Bag,5Sr¢.5)(Cog.sFep.2)03_5.7 Table 3 summa-
rizes the average grain size areas A,; and shows that
they are very different for the BSFA membranes and do
not correlate with the aluminum doping. Membranes
of BSF have the biggest Ay, with 166 pm. Grain sizes
for the pure phases BSFA0.01 and BSFA0.05 are in-
creasing and decreasing again as soon as impurities
are formed for BSFA0.1 and BSFA0.2. The formation
of the other phases inhibits the grain growth.

Since mappings by EDXS of the surfaces and frac-
ture surfaces showed a homogeneous distribution of
all elements without any depletion or accumulation,
they are not presented here. The quantification con-
firms the stoichiometries (Bag.5Sro.5)(Fei—;Al,)O5_s
with 0<x<0.2, respectively. Hence, a BSFA0.1 and a
BSFA(0.2 membrane were prepared for TEM. We were

interested in seeing if the impurities are located in
the grain boundaries or as separate particles. Fig-
ure 7 shows a transmission electron micrograph of
BSFAQ.1 and the element distribution of oxygen, alu-
minum, barium, iron, and strontium. The impurity
phases were found to be located as separated grains
between the perovskite grains. The higher aluminum
fraction of the BaAl,O4 can be seen in Figure 7c. Fig-
ure 7e and f show a weak signal of iron and stron-
tium for the BaAl,O4 phase, which was quantified as
a small solubility of 3 % strontium of the barium site
and 8 % iron of the aluminum site. The latter was
also reported by Yaremchemko et al. for a iron sol-
ubility in SrAl,O4 below 5 % of the aluminum sites
and by Kharton et al. below 7 %.32%% The per-
ovskite in BSFA0.1 and BSFA0.2 was quantified as
(BaOASSI'OA{,Q)(FeOAglAlvog)Og_g with Shght deviations
very close to impurity grains.

For an impression of the application of BSFA materi-
als, the oxygen permeation behavior was investigated.
The oxygen permeation results are displayed in Fig-
ure 8. Figure 8a shows the temperature dependence
for membranes with different aluminum fractions in
comparison to the data of a BSF membrane measured
by Chen et al.”! The oxygen permeation increases
with rising Al content from 0 to 0.1 to a maximum
of 1.19 ml cm™2 s~ ! at 950 °C and decreases again for
BSFAO0.2 to values comparable to BSF. The change in
oxygen permeation for membranes with varying alu-
minum fractions at different temperatures is presented
in Figure 8b. The maximum for BSFA0.1 demon-
strates that the very small impurity of 3.3 % does not
disturb the oxygen transport through the membranes,
but a higher impurity content of 14 % (BSFA0.2) leads
to a decrease in oxygen permeation.

We also found that the grain size is not directly cor-
related with oxygen permeation (Table 3). Oxygen
permeation depends primarily on the materials com-
position. In spite of the reduction in grain size from
BSF to BSFA0.01 the oxygen permeation rises, but
with increasing grain size from BSFA0.01 to BSFA0.05
a further rise in permeation is observed. Due to the im-
purity in BSFAQ.1 the grain growth was inhibited, but
the permeation increases even more. Further measure-
ments for oxygen permeation dependence on grain size
are required to draw final conclusions. The BSFAO0.1
membranes show high oxygen permeation in compari-
son to the currently known perovskite membranes la-
beled in Table 4. Among the Fe and Al containing
membranes, they have the highest oxygen permeation.
Only (Bag.5510.5)(Cog.sFep.2)O3_5, the current state-
of-the-art material above 900 °C, reaches higher val-
ues.! However, in the intermediate temperature range
the novel aluminum doped perovskite BSFAO0.1 is ex-
pected to show a better performance in application
than the cobalt containing BSCF due to an improved
long-time stability preserved by a less flexible redox
behavior and a stable high-spin configuration of iron.
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Table 4: Oxygen permeation flux across different membranes with iron and aluminum at the B-site compared to
other perovskite materials containing barium on the A-site of the lattice. Values marked with * are extrapolated

with the assumption of linearity. ** not stable for long time (>300 h).

19-21

perovskite membranes thickness [mm] | oxygen permeation flux at [ml cm=2 s7!]
800 °C 850 °C 900 °C 950 °C
(Ba.5Sto.5) (Fei_»AlL)O3_5 (x = 0.1) 1.1 063 082 098 1.19
Sr(Fei—Al,)O5_5 (x = 0.3)3¢ 1.0 0* 0.05 0.13  0.20
(Lag.3Sro.7) (Fer_ Al )O3_s (x = 0.2)3 1.0 0.05 008 013 021
(Bag.5Sro.5) (Fe.sZn ) O35> 115 049 065 080  0.96
(Bag.5Sr0.5)(Cop.sFeg.2) 05 19 15 0927  1.18** 139 157
Ba(CoyFe,Zr.)05_s (x +y + 2 = 1)72 1.0 0.5 0.6 0.7 0.8

4 Conclusions

The systematic aluminum doping of
(Bag.55r0.5)(Fe1—zAl;)Os_s  was  conducted in
the range of 0<x<0.2 with regard to the calculation
of the tolerance factors. With XRD, the perovskite
phase in all synthesized oxides was found to be
cubic perovskite, and the highest aluminum fraction
for a formation of pure cubic perovskite without
any impurities was in the range of x= 0.09-0.1. In
the BSFAO0.1 powder a minor impurity (3.3 %) of
BaAl;0,4 was determined by Rietveld refinements, and
for BSFA0.2 two impurities were found and identified
as BaAl,O4 and BagAlyOg. The impurity phases are
located as separated grains between the perovskite
grains (TEM). Because of the smaller ionic radius of
aluminum, the lattice parameters were expected to
decrease. However, the reverse was found by XRD.
EELS together with Mdssbauer spectroscopy revealed
that, with the increasing replacement of iron with
aluminum at the B-position of the perovskite (x<0.1),
a higher fraction of Fe3* instead of Fe'* is observed
and due to the decreased covalent mixing of the iron
3d and oxygen 2p orbitals the lattice expands. Fe*t is
predominantly substituted by Al** due to their simi-
lar ionic radii, but with this substitution the oxygen
deficit has to be increased. This results in a higher
oxygen vacancy concentration, which might cause
instability of the material at higher temperatures.
However, in-situ XRD and TG/DTA measurements
reveal high temperature stability up to 1350 °C. The
oxygen permeation increases with rising Al content
from 0 to 0.1 to a maximum of 1.19 ml cm~2 s™! at
950 °C and decreases again for BSFA0.2 to values
comparable to BSF. The maximum for BSFAO.1
demonstrates that the very small impurity does not
disturb the oxygen transport through the membranes.
We also found that the oxygen permeation is primarily
dependent on the materials composition, since the
grain size is not directly correlated with the oxygen

permeation. The BSFA0.1 membranes show very high
oxygen permeation, in comparison to the currently
known perovskite membranes. Additionally, among
the iron and aluminum containing membranes they
have the highest oxygen permeation. Due to an im-
proved long-time stability preserved by a less flexible
redox behavior and a stable high-spin configuration of
iron, a good performance in the intermediate temper-
ature range, where cobalt containing perovskites have
serious stability problems, is expected in application.
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