
1

Deforming Lagrangian submanifolds by functions of their angle

Von der Fakultät für Mathematik und Physik

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades

Docktor der Naturwissenschaften

Dr. rer. nat.

genehmigte Dissertation

von

Diplome d’Etudes Approfondies (D.E.A.) Wassih Gilbert Laval Roger
Adémola MARCOS geboren am 04.02.1980 in Porto Novo, Benin



2

Referent: Prof Dr. Knut Smoczyk

Korreferent: PD Dr. Lutz Habermann

Tag der Promotion: 26. Oktober 2009



Wassih Marcos

Die Deformation von Lagrange
Untermannigfaltigkeiten entlang
ihres Lagrange-Winkels

November 9, 2009

Leibniz Universität Hannover





To my late mother

Rachidath Bello Thiamiyou

and my father

Ganiyou Marcos.



Acknowledgment. This research project would not have been possible with-
out the support of many people. I wish to express my gratitude to my supervi-
sor, Prof. Dr. Knut Smoczyk, who was abundantly helpful and offered invalu-
able assistance, support and guidance. Special thanks also to all my friends
and colleagues, especially to the members of the Institut für Differentialge-
ometrie; Dr. Matthias Bergner, Mykhaylo Chursin, PD Dr. Lutz Habermann,
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houndé for his advice and his support for the good evolution of my thesis.



VII

Zusammenfassung

Ein Ziel in der Geometrie war und ist es, minimale Untermannigfaltigkeiten
zu konstruieren. Ein Weg ist die Deformation einer gegebenen Unterman-
nigfaltigkeit entlang ihres mittleren Krmmungsvektors. Dieser so genannte
mittlere Krmmungsfluss ist zwar nicht der einzige mögliche Fluss, um min-
imale Untermannigfaltigkeiten zu erzeugen, aber der beste, da unter diesem
Fluss das Volumen der Mannigfaltigkeit am schnellsten verringert wird.
Auch unter anderen Flssen enstehen minimale Untermannigfaltigkeiten zum
Beispiel unter Donaldsons Fluss. In der vorliegenden Dissertation untersuchen
wir Lagrangesche Untermannigfaltigkeiten unter durch Funktionen des Lan-
grange Winkels definierten Flssen und versuchen so minimale Untermannig-
faltigkeiten zu erzeugen.
Stichwort: Lagrange Untermannigfaltigkeiten, Lagrange-Winkels, Maslov class.
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Abstract

Geometers have been interested in constructing minimal submanifolds for a
long time. One possible way is to deform a given submanifold by its mean cur-
vature vector. The so called mean curvature flow is not the only possible flow
to produce minimal submanifolds but the best one because it represents the
most effective way to decrease the volume of a submanifold. There are many
other possible ways to get minimal submanifolds, Donaldson’s flow [48], for
example. In this thesis, we also try to get minimal submanifold by deforming
Lagrangian submanifolds by functions of their angle.
Keywords: Lagrangian submanifolds, Lagrangian angle, Maslov class.
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Introduction

A smooth flow on a smooth manifold M is a smooth R-action µ : R×M → M.
By setting µt(x) := µ(t, x), for each t ∈ R, a flow µ defines a one-parameter
group (µt)(t∈R) of transformations of M. If the diffeomorphism µt : M → M
for each t ∈ R preserves some geometric structure given on M , then µ is called
a geometric flow.

Deforming submanifolds via various geometric parabolic flows has been a pow-
erful method in differential geometry. In [3], Brakke introduced the motion
of a submanifold moving by its mean curvature in arbitrary codimension and
constructed a generalized varifold solution for all time. This geometric flow is
called mean curvature flow. There are many other geometric flows. For exam-
ple, the harmonic map heat flow is the most famous geometric flow to deform
the maps between Riemannian manifold. It is precisely the gradient flow of
the energy functional of maps.

Geometers have been interested in constructing minimal submanifolds for a
long time. One possible way to produce such submanifolds is to deform a given
submanifold by its mean curvature vector. More precisely, one might evolve
the submanifold by the negative gradient flow of the volume functional. This
gives the well known mean curvature flow equation

(1.1)
dF

dt
(x, t) =

−→
H (x, t) ,

where F : M × [0, T ) → N , T > 0, is a smooth family of immersions of a
given smooth manifold M into some Riemannian manifold (N, g) and

−→
H (x, t)

denotes the mean curvature vector of M at (x, t) ∈ M × {t}, t ∈ [0, T ).

(1.1) is a quasi-linear parabolic equation (see for example [13]) and the
parabolic theory implies the mean curvature flow (1.1) has a smooth solu-
tion for short time if the initial submanifold M0 has bounded curvature. More
precisely, there exists T > 0 such that (1.1) has a smooth solution in the
time interval [0, T ). If the second fundamental form A on Mt := F (M, t) is
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uniformly bounded in t near T , then the solution can be extended smoothly
to [0, T + ε) for some ε > 0.

However, in general maxMt
|A|2 becomes unbounded as t → T . In this case

we say that the mean curvature flow blows up at T ; moreover, to classify the
singularities of the mean curvature flow of hypersurfaces, Huisken, according
to the blow-up rate of |A|, introduced the following notion: Suppose Mt is a
solution of the mean curvature flow and suppose that T > ∞ and

lim sup
t→T

|A|2 = ∞.

Then, if there exists a positive constant C such that

sup
Mt

|A|2 ≤ C

T − t
,

we say that the mean curvature flow develops a Type-I singularity at T ;
otherwise the singularity will be called type-II.

In case N = Rn+1, it has been shown by [27] that solutions of (1.1) form-
ing a Type-I singularity can be homothetically rescaled so that any resulting
limiting submanifold satisfies

H = −F⊥.(1.2)

The solutions of (1.2) are called self-similar solutions or more precisely self-
shrinking solutions of the mean curvature flow. Abresch and Langer [1] have
completely classified self-similar curves Γ ⊂ R2 and this result can be applied
to curves Γ ⊂ Rn equally well. Huisken classified all self-shrinking hypersur-
faces in Rn+1 with H > 0 [28]. In [46], Smoczyk extended this result and
proved that a self-shrinker in arbitrary codimension is a minimal submanifold
of the sphere, if and only if

−→
H 6= 0 and the principal normal is parallel.

(1.1) represents the most effective way to decrease the volume of a submanifold
in the sense that it is the negative gradient flow of the volume functional. For
the classical solution of the mean curvature flow, most work has been done
for hypersurfaces, in particular in euclidean space.

As mentioned above, the motion of surfaces by their mean curvature has been
studied by Brakke [3] from the viewpoint of geometric measure theory. Other
authors investigated the corresponding nonparametric problem (see [10], [17],
[51]). Huisken showed in ([26]) that if the initial hypersurface is compact
and uniformly convex in a complete manifold with bounded geometry then it
converges to a single point under the mean curvature flow in finite time and
the normalized flow (volume is fixed) converges to a sphere of that volume in
infinite (rescaled) time. Another classical result is due to Ecker and Huisken
([11]), where they study hypersurfaces in Rn+1 that can be represented as
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entire graphs over a flat plane. Their result says that any polynomial growth
rate for the height and the gradient of the initial hypersurface M0 is preserved
during the evolution and that in case of Lipschitz initial data with linear
growth, the mean curvature flow has a smooth solution for all time.

However, as time evolves, the mean curvature flow may develop singularities
which can be classified as type-I and type-II singularities according to the
blow-up rate of the second fundamental form with respect to time t (cf. [25]).
The existence, uniqueness, and regularity of a weak solution of the mean
curvature flow (the so-called viscosity solution) were studied by Chen-Giga-
Goto [6], Evans and Spruck [14], White [55], and others.

In general, the flow becomes much more complicated, if the codimension in-
creases. This is partially caused by the fact that the normal bundle T⊥M of
M in N might no longer be intrinsic, as is the case for hypersurfaces.

One interesting example of a nice mean curvature flow in higher codimension
is the Lagrangian mean curvature flow. This is the mean curvature flow under
the extra assumption that the initial submanifold is a Lagrangian submanifold
in a Kähler-Einstein manifold. Lagrangian submanifolds are n-dimensional
submanifolds L in 2n-dimensional symplectic manifolds (M, ω̄) such that
ω := ω̄TL = 0. There are important in physics and of course in pure and
applied mathematics as well. E.g., if M is a Calabi-Yau 3-fold, then H1,1(M)
and H2,1(M) can be recovered from associated Conformal Field Theories as
eigenspaces of a certain operator. The only difference between the Conformal
Field Theories representations for H1,1(M) and H2,1(M) is the sign of their
eigenvalue under a U(1)-action. Since the sign is only a matter of convention,
this led some physicists to conjecture that there should exist a Calabi-Yau
3-fold M̄ with the same Conformal Field Theories but with different signs for
the operators, so that H1,1(M) = H2,1(M̄) and the mirror conjecture was
born.

It was shown in [42] by Smoczyk (see also [53]) that the Lagrangian mean
curvature flow preserves the Lagrangian condition in such cases. The flow
becomes interesting for two main reasons. The first is, that the Lagrangian
condition implies that the tangent and normal bundles of M are isometric,
so that again (as in the hypersurface case) the normal bundle can be viewed
intrinsically. The second reason is, that the Lagrangian condition means that
the flow equation (1.1) can be (locally) integrated and the quasi-linear sys-
tem (1.1) will generate a single fully nonlinear parabolic equation of Monge-
Ampère type. In particular, in the regularity theory one gains one degree of
differentiability.

In [42], Smoczyk considered Lagrangian submanifolds generated by symplectic
maps and proved convergence to minimal Lagrangian maps under very natural
and sharp conditions for the Lagrangian angle α. In [43] he gave some crucial
condition based on terms of certain symmetric bilinear forms S in flat ambiant
manifolds. He got then a longtime existence and convergence smoothly to a
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flat Lagrangian submanifold. In [45] Smoczyk and Wang proved that if the
potential function of a Lagrangian torus in T 2n is convex, then the flow exists
for all time and converges smoothly to a flat Lagrangian submanifold.

Based on methods from geometric measure theory, Neves proved in [35] that
Lagrangian submanifolds with zero Maslov class do not develop type-I singu-
larities in finite time. K. Groh, M. Schwarz, K. Smoczyk and K. Zehmisch in
[20], used holomorphic disks to describe the formation of singularities in mean
curvature flow of monotone Lagrangian submanifolds in Cn. In this paper they
showed that the flow preserves the monotonicity of Lagrangian submanifolds
and they gave an elementary proof for non existence of type-I singularities
and gave an extension result of Neves in his paper [35].

Kai Cieliebak and Edward Goldstein in [9] proved a simple relation between
the mean curvature form, symplectic area, and the Maslov class of a La-
grangian immersion L in a Kähler-Einstein manifold (M,ω) whose Ricci cur-
vature is a multiple of the metric by a real number λ. This relation is the
following :

λω(F )− πµ(F ) = H(∂F )(1.3)

where F : Σ → M is a smooth map from a compact oriented surface Σ to
M whose (possibly empty) boundary ∂F := F (∂Σ) is contained in L, µ(F ) is
the Maslov class, ω(F ) :=

∫
Σ

F ∗ω and H is the mean curvature form of L. As
an immediate consequence, minimal Lagrangian immersions are monotone in
Kähler-Einstein manifolds with positive scalar curvature. The same relation
(1.3) was given in [32] by Morvan for Cn and in [2] by Arsie for Calabi-Yau
manifolds.

There are many other flows related directly or indirectly to mean curvature
flow. In [7], Jingyi Chen and Jiayu Li consider compact symplectic surfaces
moving by mean curvature flow in a Kähler-Einstein surface. They show that
symplectic surfaces remain symplectic along the flow and that the flow does
not develop any type-I singularities. J. Chen, J. Li and G. Tian in [8] showed
that the flow has longtime existence in the graphical case and converges to
a minimal surface. Yian Song and Ben Weinkove in their paper [48] prove
some basic properties of Donaldson’s flow of surfaces in a hyperKähler 4-
manifold. They show that if the initial submanifold is symplectic with respect
to one Kähler form and Lagrangian with respect to another, then certain
kinds of singularities cannot form, and a convergence result follows under
some condition.

In [52], Mu-Tao Wang considers the evolution of the graph of a smooth map
f : (

∑
1, g) → (

∑
2, h) in

∑
1×

∑
2 by mean curvature flow where (

∑
1, g) and

(
∑

2, h) are compact Riemannian manifolds of constant curvature k1 and k2

respectively. He showed that if k1 ≥ k2 and det(gij + (f∗h)ij) < 2, then the
mean curvature flow of the graph of f remains a graph and exists for all time.
Moreover if in addition k1 + k2 > 0, the mean curvature flow of the graph of
f converges to a graph of a constant map at infinity.
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Bernstein’s classical result says if the graph of a function f : R2 → R is min-
imal, then f is linear. In their paper [54], Tsui, Mao-Pei and Wang Mu-Tao
ask the following question : If Σ, the graph of f : Rn → Rm, is minimal,
what additional conditions on f force Σ to be planar? In codimension 1-case
(m = 1), it is well known that Bernstein’s result extends to n ≤ 7 without
additional hypothesis on f . Without restrictions on n, it also holds under cer-
tain growth conditions on f (e.g., |df | bounded; see [12]). In case n = m, with
the additional requirement that Σ be Lagrangian with respect to the stan-
dard symplectic form ω =

∑n
i=1 dxi ∧ dyi on R2n. This condition implies that

f = ∇F for some F : Rn → R. They show that, if λi ≤ K and λiλj ≥ −1,
where λi are the eigenvalues of D2F , any special Lagrangian graph is planar.
K. Smoczyk, G. Wang, and Y. L. Xin, also worked on Bernstein type theo-
rems and they proved Bernstein type theorems for minimal n-submanifolds in
Rn+p with flat normal bundle. Their results are natural generalizations of the
corresponding results of Schoen-Simon-Yau and Ecker-Huisken for minimal
hypersurfaces (see [12] and [37]).

There are many possible ways to get minimal submanifolds. We can get it by
mean curvature flow, or Donaldson’s flow [48], and other flows. In this thesis,
we also try to get minimal Lagrangian submanifolds by deforming Lagrangian
submanifolds by functions of their Lagrangian angle. There exist examples of
similar situations in the literature. For example many people try to deform
hypersurfaces by functions of their mean curvature. We can cite for example
the work of Felix Schulze where he considers submanifolds deformed by a
power of their mean curvature (cf. [38], [39] and references therein).

A special example is the inverse mean curvature flow which was used by
Huisken and Ilmanen to settle the Riemannian Penrose conjecture and which
has also been studied by many other authors([4], [15], [16], [18], [19], [22], [23],
[24], [33], [34], [47], [49]).

In this thesis, we are interested in Lagrangian immersions L in Kähler-Einstein
manifolds (M̄, ḡ, J) evolving by functions of their Lagrangian angle. More
precisely, let

F0 : L → M̄

be a Lagrangian immersion from a manifold L into M̄ . We consider a one-
parameter family of immersions Ft : L → M̄ which evolves by :

dF

dt
= J∇f(1.4)

F (·, 0) = F0 ,

where f : R 7→ R is a function (at least C1) of the Lagrangian angle α, ∇f
denotes the gradient of f considered as a function on L w.r.t. the Levi-Civita
connection ∇ and J is the complex structure on TM̄ . In order to consider
functions of the angle, we must assume that there exists a globally defined
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Lagrangian angle. Usually there exists only a locally defined Lagrangian angle,
i.e. a function α with dα = H giving the mean curvature 1-form H = ḡ(J,

−→
H ).

α exists globally, iff H is exact which is equivalent to a trivial first Maslov class
m1 = [H]/π. In particular, this condition is satisfied for Lagrangian graphs
over Rn in Cn.

In case f(α) = α we obtain the usual Lagrangian mean curvature flow. In this
thesis we will consider a special class Fa,b,ε of functions f for which we will
prove short-time resp. long-time existence results and in the case of graphs in
euclidean space we will be able to describe the limit behavior of Lt := F (L, t)
as t approaches the maximal time of existence T .

In general, for the mean curvature flow (1.1), one cannot expect longtime
existence results without extra assumptions on the initial submanifold. In
[42], Smoczyk considered Lagrangian submanifolds generated by symplectic
maps and proved convergence to minimal Lagrangian maps under very natural
and sharp conditions for the Lagrangian angle α. In our flow, we will prove
that the flow will stay parabolic as long as the solution exists and we will give
another sufficient condition for longtime existence that entirely differs from
those conditions above but is similar to the conditions used in [43].

The organization of this thesis is as follows : In chapter 2, I summarize the
most relevant facts and geometric equations for Lagrangian submanifolds in
particular of Lagrangian submanifolds in Kähler-Einstein manifolds. I give
some examples of Lagrangian submanifolds and reprove some well-known re-
sults for Lagrangian submanifolds like the full symmetry of the second fun-
damental form, the Gauss formula, Gauss equation, Codazzi equation, Ricci
equation. I will also introduce and explain my notation in that chapter.

In chapter 3 I recall some basic methods from the theory of partial differential
equations, like the maximum principle for tensors and for functions, etc. that
are essential for the proofs of my theorems.

In chapter 4, I will discuss the main results of my thesis which are about
the deformation of Lagrangian submanifolds in Kähler-Einstein manifolds by
appropriate functions of their Lagrangian angle. Whereas some results are
more general, most of my work focuses on the flow in R2n or more generally
in flat spaces. After stating my main theorem (Theorem 4.2) I will first derive
the most relevant evolution equations for various geometric quantities, like
the metric, volume form, second fundamental and mean curvature form and
in particular the Lagrangian angle. After this I will show that the flow can
be integrated to some underlying parabolic equation of Monge-Ampère type.
Using the maximum principle for tensors I will derive the necessary a-priori
estimates in C2 in space and C1 in time. Based on methods due to Krylov
and Safonov I will then show a-priori estimates in space and time of the
type (C2,α, C1,α). Finally, a Harnack inequality can be applied to a suitable
function of the Lagrangian angle to obtain convergence of the solution to a flat
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graph. The thesis ends with some remarks concerning a monotonicity formula
for this flow.





2

Lagrange submanifolds

In symplectic geometry there is a distinguished class of immersions, known
as Lagrangian submanifolds. These are n-dimensional submanifolds L in 2n-
dimensional symplectic manifolds (M, ω) such that ω := ωTL = 0.
The most prominent examples of symplectic manifolds are Kähler manifolds
(M, J, g), where

ω(V, W ) = g(JV, W )

is the symplectic 2-form (Kähler form) induced by the Kähler metric g and
the complex structure J .
Let L be a compact manifold and let F0 : L −→ M be a smooth Lagrangian
immersion into a Kähler-Einstein manifold M.

The mean curvature form H of Lagrangian submanifolds in Kähler manifolds
(M, J, g) is related to

−→
H through

H(V ) = ω(
−→
H, V ).

If (M,J, g) is Kähler-Einstein, then H is closed and any locally defined func-
tion α with

dα = H(2.1)

is called a Lagrangian angle.

2.1 Examples of Lagrangian submanifolds

In this section we will give some standard examples of Lagrangian submani-
folds and we will also recall some of their alternative descriptions.

1) Curves in 2-dimensional manifolds. This is the easiest examples of all.
Any curve in 2-dimensional manifold is Lagrangian since a 2-form restricted
to a 1-dimensional manifold must vanish.
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2) Graphs of symplectomorphisms. Assume that (M1, ω1), (M2, ω2) are
two symplectic manifolds. A smooth map f : M1 → M2 is called symplectic
if f∗ω2 = ω1. A symplectomorphism is a symplectic diffeomorphism. Now
consider the symplectic manifold (M, ω), where M = M1 ×M2 and ω =
ω1⊕−ω2. A diffeomorphism f : M1 → M2 generates a graph in M namely

Γf := {(x, f(x)) : x ∈ M1.}

Then we can easily check that Γf is a Lagrangian immersion in (M, ω) if
and only f : (M1, ω1) → (M2, ω2) is a symplectomorphism.

3) Cotangent bundles. Let N be a differentiable manifold. The cotangent
bundle of N is given by

T ∗N = {linear mapsf : TqN → R, q ∈ N.}

If (q1, . . . , qn) are local coordinates on U ⊂ N, then for a fixed q ∈ U
a 1-form pidqi on TqN is defined by (p1, . . . , pn). This implies that local
coordinates for an element l ∈ T ∗N are given by (q1, . . . , qn, p1, . . . , pn).
l = pdq = pidqi is called Liouville form. Now define a 1-form θ on M =
T ∗N by

θ(X) := l(π∗X),

where X ∈ Tl(T
∗N) and π∗ : TT ∗N → TN is the derivative of the natural

projection. ω := dθ (see [44]) is a well defined symplectic form on T ∗N.
Locally we have ω = dp∧ dq. If η ∈ Ω1(N) is a smooth 1-form on N, then
η defines a graph in T ∗N by sending p ∈ N to (p, η(p)) ∈ T ∗N. This graph
is Lagrangian in (T ∗N, ω) if and only if η is closed.

2.2 A local property of Lagrangian submanifolds

Given two symplectic manifolds (M1, Ω1) and (M2, Ω2), does there exist a dif-
feomorphism ϕ : M1 → M2 such that ϕ∗Ω2 = Ω1? Such a diffeomorphism is
called a symplectomorphism (see above). The classification problem is still un-
solved. However, a local classification is achieved by Darboux theorem which
asserts that locally, all symplectic manifolds look alike. More precisely, we
have the following

Theorem 2.1 (Darboux) For any point x in the symplectic manifold (M, ω)
there exists an open neighborhood U of x and a local chart ϕ : U → R2n with
ϕ(x) = 0 and ϕ∗ωs = ω|U , where ωs is the standard symplectic structure on
R2n.

Now consider Rn ⊂ Cn = Rn ⊕ iRn and assume that we are given n different
height functions u1, . . . , un on an open domain Ω ⊂ Rn, i.e.
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ui : Ω → R

are smooth functions. The graph of (u1, . . . , un) is given by

Γu :=
{
(x1, . . . , xn, u1, . . . , un) ⊂ Cn, x ∈ Ω

}
.

It can be easily seen that Γu is Lagrangian in Cn if and only if the 1-form
uidxi on Ω is closed. Thus if Ω is simply connected we can find a potential u
such that ui = ∂u

∂xi . Since every submanifold can locally be written as a graph,
then by the theorem of Darboux 2.1, Lagrangian submanifolds can locally be
written as gradient graphs over their tangent planes. Thus the Lagrangian
condition can be understood as an integrability condition for the n height
functions. This fact is very useful in the analysis of Lagrangian submanifolds,
in particular we will exploit this in the analysis of the flows we consider in
this thesis.

2.3 Notations

In this section we explain some of our notation. To begin, assume that
(M̄, ḡ, J, ω̄) is the Kähler manifold with compatible complex structure J and
the Kähler form ω̄. Local coordinates on M̄ will be denoted by (yA)A=1,...,2n

whereas local coordinates for a Lagrangian submanifold L will be denoted by
(xi)i=1,...,n. Moreover, we use the Einstein convention to sum over repeated
indices, the sum is taken from 1 to 2n for Latin capital indices and from 1
to n for Latin small letter indices and that an underlined small letter denotes
the application of the complex structure J , e.g.

RABCD := R(
∂

∂yA
,

∂

∂yB
,

∂

∂yC
, J

∂

∂yD
).

We will denote ∇ the Levi-Civita connection on M̄ , by Γ
A

BC his Christoffel
symbols, RAB the Ricci curvature, ḡAB the metric, ω̄AB the Kähler form on
M̄ , and we will set

∂A :=
∂

∂yA

and
ΓAB := Γ

C

AB

∂

∂yC
.

Now, let
F : L → M̄

a Lagrangian immersion. We will set

∂i :=
∂

∂xi
,
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Fi :=
∂F

∂xi
,

νi := JFi,

Fij :=
∂2F

∂xi∂xj
.

By definition we have :

L0 := F (L) is Lagrangian :⇔ ω̄∗ := F ∗ω̄ = 0.

Then, this implies that νi is normal vector for each i = 1, · · · , n. In the sequel
we will often rise and lower indices w.r.t. the metric tensor gij , gij = ḡ(Fi, Fj),
for example hk

ij = gklhlij .

We will also denote ∇ the connection on the vector bundle F ∗(TM̄) over L.

The second fundamental tensor on L will be defined as :

hijk := ḡ(νi,∇∂j
Fk)

and the mean curvature form is given by

Hi := gklhikl.

We will also introduce
Aijkl := hijnhn

kl,

akl := A i
i kl = Hnhnkl,

bkl := A i
k li = h ij

k hijl.

We have
∇∂iFj = (∇∂iFj)> + (∇∂iFj)⊥

and we will set
∇>∂i

Fj := (∇∂iFj)> := Γ k
ijFk

and > means the tangential part of the submanifold and ⊥ means the normal
part of the submanifold.
∇> is a connection on the tangent bundle of the submanifold, and setting

∇⊥∂i
νj := (∇∂iνj)⊥

we define a connection ∇⊥ on the normal bundle NL of the submanifold.

The curvature on the vector bundle F ∗(TM̄) over L will be denoted R, the
one of tangent bundle of the submanifold will be denoted R>, and the one of
normal bundle of the submanifold will be denoted R⊥.

We will also denote

Rijkl := R>ijkl = ḡ
(
R>(∂i, ∂j)Fl, Fk

)
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and
Rij = Rk

ikj ,

Rijkl := −ḡ (R(∂i, ∂j)Fk, Fl) = −FA
i FB

j FC
k FD

l RABCD.

We also write

∇iRjklm := FA
i FB

j FC
k FD

l FE
m∇ARBCDE ,

Rijkl := −ḡ (R(∂i, ∂j)Fk, JFl) ,

Rij := FA
i FB

j RAB .

2.4 Geometric identities for Lagrangian submanifolds

In this section we list some identities for Lagrangian submanifolds, in partic-
ular for Lagrangian submanifolds in Kähler-Einstein manifolds.

We have the well-known following equations:

Proposition 2.1.

Full symmetry of the second fundamental tensor :

(2.2) hijk = hjik = hjki ,

Gauss formula :

(2.3) h n
jkνn = Fkj − Γn

jkFn + FA
j FB

k ΓAB ,

Gauss equation :

(2.4) R>ijkl = Rijkl + Aikjl −Ailjk ,

Codazzi equation :

(2.5) ∇ihjkl −∇jhikl = Rijkl ,

Traced Codazzi equation :

(2.6) ∇kHl −∇lHk = Rkl ,

Ricci equation :

R⊥(∂i, ∂j)νk = (R(∂i, ∂j)νk)⊥ − (Ais ∧As
j)(νk)(2.7)

= R s
ij kνs.
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For the convenience of the reader we will include some proofs here.

Proof:
hijk := ḡ

(
νi,∇∂j

Fk

)
.

Now ∇∂j
Fk := Fjk + FA

j FB
k ΓAB = ∇∂k

Fj .

So,
hijk = hikj .

Also
hijk := ḡ(νi,∇∂j

Fk) = −ḡ(∇∂j
νi, Fk) = −ḡ

(∇∂j
JFi, Fk

)
.

From ∇J = 0, we get

hijk = −ḡ
(
J∇∂j

Fi, Fk

)
= ḡ

(∇∂j
Fi, JFk

)
= ḡ

(∇∂j
Fi, νk

)
= hkji.

We get then the full symmetry of the second fundamental form.

We have ∇jFk := ∇∂j Fk − Γn
jkFn = (∇∂j Fk)⊥ = hn

jkνn.

Now, ∇∂j
Fk := Fjk + FA

j FB
k ΓAB . We get then the Gauss formula.

To prove Gauss and Codazzi equations, we compute

R(∂i, ∂j)Fk := ∇∂i∇∂j Fk −∇∂j∇∂iFk −∇[∂i,∂j ]Fk

= ∇∂i∇∂j Fk −∇∂j∇∂iFk.

But
∇∂j Fk = (∇∂j Fk)> + (∇∂j Fk)⊥ = ∇>∂j

Fk + hs
jkνs.

Then,

∇∂i∇∂j Fk = ∇∂i(∇>∂j
Fk + hs

jkνs)

= ∇>∂i
∇>∂j

Fk + (∇∂i∇>∂j
Fk)⊥ + (∇∂i(h

s
jkνs))> +∇⊥∂i

(hs
jkνs)

= ∇>∂i
∇>∂j

Fk + (∇∂i(Γ
s
jkFs))⊥ + (∇∂i(h

s
jkνs))> +∇⊥∂i

(hs
jkνs)

= ∇>∂i
∇>∂j

Fk + (∇∂i(Γ
s
jkFs))⊥ + (∇∂i(h

s
jkνs))> + ∂i(hs

jk)νs

+hs
jk∇⊥∂i

νs.

Now,

∇⊥∂i
νs = ∇⊥∂i

JFs

= (∇∂iJFs)
⊥

.

From ∇J = 0, we get

∇⊥∂i
νs = (J∇∂iFs)

⊥

= J∇>∂i
Fs

= J(Γm
is Fm)

= Γm
is νm.(2.8)



2.4 Geometric identities for Lagrangian submanifolds 15

So

∇∂i
∇∂j

Fk = ∇>∂i
∇>∂j

Fk + (∇∂i
(Γ s

jkFs))⊥ + (∇∂i
(hs

jkνs))> + ∂i(hs
jk)νs

+Γm
is hs

jkνm

= ∇>∂i
∇>∂j

Fk + gmlḡ
(∇∂i(Γ

s
jkFs), νm

)
νl

+gmlḡ
(∇∂i

(hs
jkνs), Fm

)
Fl +∇i(hs

jk)νs + Γm
ij hs

mkνs + Γm
ik hs

jmνs

= ∇>∂i
∇>∂j

Fk + gmlΓ s
jkhismνl − gmlhs

jkhismFl

+∇i(hs
jk)νs + Γm

ij hs
mkνs + Γm

ik hs
jmνs

= ∇>∂i
∇>∂j

Fk + Γm
jkhs

imνs − hs
jkhl

isFl

+∇i(hs
jk)νs + Γm

ij hs
mkνs + Γm

ik hs
jmνs.

So,

R(∂i, ∂j)Fk = R>(∂i, ∂j)Fk

+(hs
ikhm

js − hs
jkhm

is)Fm +∇i(hs
jk)νs −∇j(hs

ik)νs

Taking the scalar product of the right and left hand of this latter equation
with Fl, we get the Gauss equation. And making scalar product of the right
and left hand of this latter equation with νl, we get Codazzi equation.
To prove the traced Codazzi equation, we use the Codazzi equation and we
get :

gkl(∇ihjkl −∇jhikl) = gklRijkl .

That gives
∇iHj −∇jHi = gklRijkl.

Now by Kähler identity (RABCD = RABCD) we have gklRijkl = 1
2R

C

ijC . We

now use the well-known identity R
C

ABC = 2RAB and we get gklRijkl = Rij

and then we obtain the result.

To prove the Ricci equation, we compute

∇∂i∇∂j νk = ∇∂i

(
(∇∂j νk)> +∇⊥∂j

νk

)

= ∇∂i(−hs
jkFs +∇⊥∂j

νk)

= −∇>∂i
(hs

jkFs)− (∇∂i(h
s
jkFs))⊥ + (∇∂i∇⊥∂j

νk)> +∇⊥∂i
∇⊥∂j

νk

= −∂i(hs
jk)Fs − Γm

is hs
jkFm − (∇∂i(h

s
jkFs))⊥

+(∇∂i∇⊥∂j
νk)> +∇⊥∂i

∇⊥∂j
νk

(2.8)
= −∇ih

s
jkFs − Γm

ij hs
mkFs − Γm

ik hs
jmFs

−gmlḡ
(∇∂i(h

s
jkFs), νm

)
νl

+gmlḡ
(∇∂i(Γ

s
jkνs), Fm

)
Fl +∇⊥∂i

∇⊥∂j
νk

= −∇ih
s
jkFs − Γm

ij hs
mkFs − Γm

ik hs
jmFs

−hs
jkhl

isνl − Γ s
jkhl

isFl +∇⊥∂i
∇⊥∂j

νk.
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So,

R(∂i, ∂j)νk := ∇∂i
∇∂j

νk −∇∂j
∇∂i

νk −∇[∂i,∂j ]νk

= ∇∂i
∇∂j

νk −∇∂j
∇∂i

νk

= R⊥(∂i, ∂j)νk − (∇ih
s
jk −∇jh

s
ik)Fs

−(hs
jkhl

is − hs
ikhl

js)νl.

Then,

R⊥(∂i, ∂j)νk = (R(∂i, ∂j)νk)⊥ + (hs
jkhl

is − hs
ikhl

js)νl.

q.e.d.
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Methods and auxiliary material

3.1 Maximum principle

The maximum principle has proved to be a powerful tool in partial differen-
tial equations. In particular, the maximum principle of parabolic systems for
tensors developed by R. Hamilton ([21]) plays an important role in the study
of geometric evolution equations. The theorem is the following :
Let uk be a vector field and let gij ,Mij and Nij be symmetric tensors on a
compact manifold M which may depend on time t and gij is the metric ten-
sor on M. Assume that Nij = p(Mij , gij) is a polynomial in Mij formed by
contracting products of Mij with itself using the metric. Furthermore, let this
polynomial satisfy a null-eigenvector condition, i.e. for any null-eigenvector X
of Mij we have NijX

iXj ≥ 0. Then we have

Theorem 3.1 (Hamilton) Suppose that on 0 ≤ t < T the evolution equa-
tion

∂

∂t
Mij = 4Mij + uk∇kMij + Nij

holds, where Nij = p(Mij , gij) satisfies the null-eigenvector condition above.
If Mij ≥ 0 at t = 0, then it remains so on 0 ≤ t < T.

We will also repeatedly use the strong and weak parabolic and elliptic maxi-
mum principle for functions on compact manifolds. In the non-compact case
the following maximum principle for the mean curvature flow has been proved
by Ecker and Huisken

Theorem 3.2 (Ecker-Huisken) Suppose the function f : M × [0, T ) → R
satisfies the inequality

(
d

dt
−4

)
f ≤ g(a,∇f)
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for some a which is uniformly bounded on M × [0, t1] for some t1 > 0, then

sup
Mt

f ≤ sup
M0

f

for all t ∈ [0, t1].

The proof of this theorem is based on the monotonicity formula for mean
curvature flow [11].

3.2 Miscellaneous results

The following theorem is well-known:

Theorem 3.3 There are no minimal closed submanifolds in Rm.

There is a very simple proof of this, namely

Proof: Let F : Ln → Rm be an immersion and L closed. We have ∆|F |2 =
∇i∇i|F 2| = ∇i(2〈Fi, F 〉) = 2〈H, F 〉 + 2n, where H is the mean curvature
vector and 〈·, ·〉 is the euclidean metric. So if L is minimal (H = 0), we get
∆|F |2 = 2n and we obtain a contradiction by the strong elliptic maximum
principle. q.e.d.

In [42], Smoczyk proved the following longtime existence and convergence
result for the Lagrangian mean curvature flow in Kähler-Einstein manifold
of nonpositive scalar curvature. We will later use the same technique in the
proof of this theorem to prove a similar result for our flow which will be very
useful to prove our main theorem 4.2.

Proposition 3.1. Let L be a compact manifold and F0 : L −→ M be a smooth
Lagrangian immersion into a Kähler-Einstein manifold (M,J, g) that is either
compact or complete with bounded curvature quantities. Further assume that
[0, T ), 0 < T ≤ ∞ is the maximal time interval on which the Lagrangian mean
curvature flow admits a smooth solution. Then the following is true:
(a) Assume there exists a constant C0 < ∞ such that

max
Lt

|A|2 ≤ C0,∀t ∈ [0, T ),

where |A|2 is the squared norm of the second fundamental tensor A. Then for
any m ≥ 0 there exists a constant Cm < ∞ depending on m, L0,M such that

max
Lt

|∇mA|2 ≤ Cm, ∀t ∈ [0, T ).

(b) If T < ∞, then
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lim sup
t→T

max
Lt

|A|2 = ∞.

(c) If in addition to (a) the initial mean curvature form of L0 is exact, the
ambient Kähler-Einstein manifold has non-positive Ricci curvature and the
induced Riemannian metrics F ∗t g on L are all uniformly equivalent, then T =
∞ and the Lagrangian submanifolds Lt converge smoothly and exponentially
to a smooth compact minimal Lagrangian immersion L∞ ⊂ M.





4

Deforming Lagrangian submanifolds by
functions of their angle

Let
F0 : L 7→ M̄

be a Lagrangian immersion from a n-dimensional manifold L into a Kähler-
Einstein manifold (M̄, ḡ, J) with metric ḡ and complex structure J and sup-
pose that the first Maslov class m1 = [H]/π = 0, where H = ḡ(J ·,−→H ) denotes
the mean curvature 1-form on L0 and

−→
H is the mean curvature vector field

along L0. From the Codazzi equation we obtain that the mean curvature form
is closed if L0 is a Lagrangian submanifold in a Kähler-Einstein manifold and
if m1 = 0, we get a globally defined function α (unique up to adding a con-
stant) with dα = H. α is called the Lagrangian angle of L0. We are looking
for a one-parameter family of immersions Ft : L 7→ M̄ which evolves by :

dF

dt
= J∇f(4.1)

F (·, 0) = F0 ,

where we assume that m1(t) = 1
π [H(·, t)] = 0 which means that H(·, t) =

dα(·, t) for every t where the solution of (4.1) exists. The normalization of
αt := α(·, t) is α0 = α and f : R 7→ R is a function (at least C1) of the
Lagrangian angle αt and∇f denotes the gradient of f considered as a function
on L w.r.t. the Levi-Civita connection ∇.

(4.1) is equivalent to

dF

dt
= f ′

−→
H = f ′ tr(∇dF )(4.2)

F (·, 0) = F0 ,

where the last term is the trace of the second fundamental form A = ∇dF .
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Before we will be able to formulate our main theorems, we need to discuss a
special class of endomorphisms on R2n that will be essential in the analysis
of the flow in the case of graphs.

4.1 Semilinear involutions

In this section we will (like in [43]) consider a class C of endomorphisms on
R2n that satisfy certain conditions. We will say S ∈ End(R2n) belongs to C ,
if the following is true:

SJ = −JS ,(4.3)

S
t
= S ,(4.4)

S
2

= Id .(4.5)

Here J ∈ End(R2n) denotes the standard complex structure on R2n. Hence
S ∈ C are the self-adjoint, semi-linear involutions of R2n = Cn.

Example 4.1. The standard example for a tensor S ∈ C is complex conju-
gation

SV := V , V ∈ R2n = Cn .

Lemma 4.2. The complex structure J operates on C by

S 7→ S
∗

:= SJ .

Moreover
S S

∗
= J = −S

∗
S .

Proof:
(S
∗
)2 = SJSJ = −S

2
J2 = −J2 = Id ,

S
∗
J = SJJ = −JSJ = −JS

∗

and
(S
∗
)t = (SJ)t = J tS

t
= −JS = SJ = S

∗
.

Moreover,
S S

∗
= S

2
J = J

proves the last statement. q.e.d.

Lemma 4.3. Let S ∈ C be as above. Suppose

F : L → R2n
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is a Lagrangian immersion and define

S ∈ End(TL) , SV :=
(
SV

)>
, ∀V ∈ TL ,

S∗ ∈ End(TL) , S∗V :=
(
S
∗
V

)>
, ∀V ∈ TL ,

where W> denotes the orthogonal projection of W ∈ R2n onto the tangent
space of L. Then

[S, S∗] = 0 ,(4.6)
S2 + (S∗)2 = Id .(4.7)

Proof: Suppose p ∈ L is a fixed point on a Lagrangian immersion in R2n. We
choose an orthonormal basis {e1, . . . , en} ∈ TpL. We set νk := Jek ∈ T⊥p L (by
the Lagrangian condition). Then for any vector V ∈ TpL we have

SV = SV − (SV )⊥

= SV −
n∑

k=1

〈SV, νk〉νk

= SV +
n∑

k=1

〈JSV, ek〉νk

(4.3)
= SV −

n∑

k=1

〈S∗V, ek〉νk

= SV − J

(
n∑

k=1

〈S∗V, ek〉ek

)

= SV − J

(
n∑

k=1

〈S∗V, ek〉ek

)

= SV − J (S∗V ) .(4.8)

From (4.8) we obtain

S∗SV = (S
∗
SV )>

= (S
∗
SV − S

∗
JS∗V )>

= (−JV − SJ2S∗V )>

= (SS∗V )>

= SS∗V

and
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S2V = (SSV )>

= (S
2
V − SJS∗V )>

= (V − S
∗
S∗V )>

= V − (S∗)2V .

Hence
[S, S∗] = 0 and S2 + (S∗)2 = Id .

q.e.d.

4.2 The flow equation

In the sequel we will consider a special class F̃a,b,ε of functions f̃ .

Definition 4.4. Suppose f̃ : (a, b) → R is a smooth function on some open
interval (a, b) ⊂ R and let 1 > ε > n√

n2+4
be fixed where n is the dimension

of L. We will say f̃ belongs to F̃a,b,ε, if the following holds:

f̃ ′(α) > 0 , ∀α ∈ (a, b),(4.9)
f̃ ′′(α) ≤ −f ′(α) , ∀α ∈ (a, b),(4.10)

2ε

n
f̃ ′(α) + f̃ ′′(α)

√
1− ε2 ≥ 0 , ∀α ∈ (a, b),(4.11)

Example 4.5. As example, we can give

1.
f̃(α) := ln(α) with α ∈ (a, b) :=

( n

2ε

√
1− ε2, 1

)
.

2.

f̃(α) := −Ae−α + B, where A,B are constants and A > 0.

The next theorem states that there is short-time existence of smooth solutions
of d

dtF = f ′
−→
H with f = f̃ ◦α with f̃ satisfying (4.9), if the initial Maslov class

is trivial and the angle α lies in the interval (a, b).

Theorem 4.1 Let L0 ⊂ M̄ be a compact Lagrangian immersion and suppose
L0 has trivial Maslov class so that there is a globally defined Lagrangian angle
α0 on L0. Let f̃ be a function that satisfies (4.9) on (a, b) and suppose α0(p) ∈
(a, b) for all p ∈ L0 Then the evolution equation (4.1) with f = f̃ ◦ α has a
unique smooth solution Lt for a short time (0, T ), T > 0 and Lt is Lagrangian.
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Proof: We observe that as long as f ′ := f̃ ′ ◦ α is positive, (4.1) is a quasi-
linear parabolic system. Then the statement follows from the standard theory
of parabolic equations. Since L0 is Lagrangian and J∇f is the Hamiltonian
vector field of the function f , the flow is indeed a Hamiltonian deformation of
the initial Lagrangian immersion and it is well known that this preserves the
Lagrangian condition. q.e.d.

Later we will see that (4.1) actually becomes uniformly parabolic in euclidean
space, if f̃ satisfies (4.9) , α ∈ (a, b) and L is compact. More precisely, from
the evolution equation for the Lagrangian angle (4.21) in Lemma 4.12 and
from the maximum principle we can see that, if

α(0, x) ∈ [ã, b̃] ⊂ (a, b) ,

then for every t > 0, we have also α(t, x) ∈ [ã, b̃] and thus f ′ = f̃ ◦ α stays
uniformly bounded from above and below by some positive constants.

In general we do not expect longtime existence and in fact we may easily
construct counterexamples but under some additional assumptions we will
later derive longtime existence and convergence results for these flows, i.e. we
will prove the following main theorem:

Theorem 4.2 Let F0 : L → R2n be a compact Lagrangian submanifold in R2n

such that its universal cover L̃ is Rn immersed as a Lagrangian graph into
R2n and such that the Lagrangian angle α lies in the interval (a, b). Suppose
there exists an ε ∈ ( n√

n2+4
, 1) and a tensor S ∈ C as in Section 4.1 with

S(V, V ) := F ∗0 S(V, V ) > ε|V |2 ∀V ∈ TL ⊂ R2n, V 6= 0.

Then for any f̃ ∈ Fa,b,ε the flow d
dtF = f ′

−→
H with f ′ := f̃ ′◦α has the following

properties:

a) All induced metrics gt := F ∗t (<,>) are uniformly equivalent to the initial
metric g0.

b) The flow has a longtime existence (T = ∞) and the Lagrangian submani-
folds converge smoothly to a flat Lagrangian submanifold.

4.3 Evolution equations

To start a more detailed analysis of (4.1) we will now derive several evolution
equations for geometrically reasonable quantities, like the induced metric,
volume form and second fundamental form.

Lemma 4.6. The induced metrics gij satisfies the evolution equations
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∂

∂t
gij = −2f ′aij .(4.12)

Proof: We use normal coordinate system at a fixed point F (p) ∈ M̄ to compute

∂

∂t
gij =

∂

∂t
(ḡ(Fi, Fj))

= ḡ

(
∂

∂t
Fi, Fj

)
+ ḡ

(
Fi,

∂

∂t
Fj

)
.

Now let us compute ∂
∂tFi. We have :

∂

∂t
Fi =

∂

∂xi

∂

∂t
F

=
∂

∂xi
(f ′H lνl)

= ∇∂i
(f ′H lνl)− f ′FA

i H lνB
l ΓAB

= ∇⊥∂i
(f ′H lνl) + (∇∂i(f

′H lνl))> − f ′FA
i H lνB

l ΓAB

= ∇i(f ′H l)νl + gsm
〈∇∂i(f

′H lνl), Fs

〉
Fm − f ′FA

i H lνB
l ΓAB

= f ′∇iH
lνl + f ′′HiH

lνl − gsmf ′H l 〈νl,∇∂iFs〉Fm − f ′FA
i H lνB

l ΓAB

= f ′∇iH
lνl + f ′′HiH

lνl − f ′H lh m
il Fm − f ′FA

i H lνB
l ΓAB

= f ′∇iH
lνl + f ′′HiH

lνl − f ′a s
i Fs − f ′FA

i H lνB
l ΓAB .(4.13)

Then in a double normal coordinate system at a fixed point (p, F (p)) ∈ L×M ,
we have

∂

∂t
Fi = f ′∇iH

lνl + f ′′HiH
lνl − f ′a s

i Fs.

So we get

∂

∂t
gij = −2f ′aij .

q.e.d.

Lemma 4.7. The second fundamental form satisfies the evolution equation

∂

∂t
hijk = −f ′a s

i hjks + f ′′Hk∇jHi + f ′∇k∇jHi

+f (3)HkHjHi + f ′′∇kHjHi

+f ′′∇kHiHj − f ′as
jhksi − f ′HsRijks.

Proof: We use normal coordinate system at a fixed point F (p) ∈ M̄ to compute
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∂

∂t
hijk =

∂

∂t
ḡ(νi,∇ ∂

∂xj
Fk)

= ḡ(
∂

∂t
νi,∇ ∂

∂xj
Fk) + ḡ(νi,

∂

∂t
∇ ∂

∂xj
Fk).

Then, in a double normal coordinate system at a fixed point (p, F (p)) ∈ L×M̄ ,
we have

∂

∂t
∇ ∂

∂xj
Fk =

∂

∂t
(Fjk + FA

j FB
k ΓAB)

=
∂

∂t
Fjk + f ′FA

j FB
k HsνC

s ∂CΓAB .

From (4.13), we compute

∂

∂t
Fij =

∂

∂xj

∂

∂t
Fi

=
∂

∂xj
(f ′∇iH

lνl + f ′′HiH
lνl − f ′a s

i Fs − f ′FA
i H lνB

l ΓAB)

= f ′′Hj∇iH
lνl + f ′(∇j∇iH

l − Γ l
jk∇iH

k + Γ k
ij∇kH l)νl

+f ′(−h s
jl ∇iH

lFs −∇iH
lFA

j νC
l ΓAC + Γ s

jl∇iH
lνs)

+f (3)HjHiH
lνl + f ′′∇jHiH

lνl + f ′′Γ s
ijHsH

lνl

+f ′′∇jH
lHiνl − f ′′Γ l

jsHiH
sνl − f ′′h s

jl HiH
lFs

−f ′′FA
j νB

l HiH
lΓAB + f ′′Γ s

jlHiH
lνs − f ′′Hja

s
i Fs

−f ′(∇ja
s
i + Γm

ij as
m − Γ s

jmam
i )Fs − f ′as

i Fjs − f ′′HjF
A
i H lνB

l ΓAB

−f ′(FA
ij H lνB

l + FA
i νB

l ∇jH
l

−FA
i νB

l HsΓ l
js − as

jF
A
i FB

s − FA
i FC

j νD
l H lΓ

B

CD + H lFA
i νB

s Γ s
jl)ΓAB

−f ′FA
i FC

j H lνB
l ∂CΓAB .

So,
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∂

∂t
Fij = (f ′′Hj∇iH

l + f ′∇j∇iH
l

+f ′Γ k
ij∇kH l + f (3)HjHiH

l

+f ′′∇jHiH
l + f ′′Γ s

ijHsH
l + f ′′∇jH

lHi)νl

−(f ′h s
jl ∇iH

l + f ′′h s
jl HiH

l + f ′′Hja
s

i

+f ′(∇ja
s
i + Γm

ij as
m − Γ s

jmam
i ))Fs

−f ′as
i Fjs − f ′′HiF

A
j H lνB

l ΓAB − f ′′HjF
A
i H lνB

l ΓAB

−f ′∇iH
lFA

j νB
l ΓAB

−f ′(FA
ij H lνB

l + FA
i νB

l ∇jH
l

−FA
i νB

l HsΓ l
js − as

jF
A
i FB

s − FA
i FC

j νD
l H lΓ

B

CD + H lFA
i νB

s Γ s
jl)ΓAB

−f ′FA
i FC

j H lνB
l ∂CΓAB .

And then in double normal coordinate system at a fixed point (p, F (p)) ∈
L× M̄

∂

∂t
Fij = (f ′′Hj∇iH

l + f ′∇j∇iH
l + f (3)HjHiH

l

+f ′′∇jHiH
l + f ′′∇jH

lHi − f ′as
i h

l
js )νl

−(f ′h s
jl ∇iH

l + f ′′h s
jl HiH

l

+f ′′Hja
s

i + f ′∇ja
s
i )Fs

−f ′FA
i FC

j H lνB
l ∂CΓAB .

From (4.13) we derive:

∂

∂t
νi =

∂

∂t
JFi

=
∂

∂t
(JA

B FB
i ∂A)

=
∂

∂t
(JA

B FB
i )∂A

= ∂CJA
B

∂

∂t
FCFB

i ∂A + JA
B (f ′∇iH

lνB
l + f ′′HiH

lνB
l

−f ′a s
i FB

s − f ′FD
i H lνC

l Γ
B

DC)∂A

= f ′(∇CJA
B + JA

DΓ
D

BC − JE
B Γ

A

CE)H lνC
l FB

i ∂A − f ′∇iH
lFl

−f ′′HiH
lFl − f ′a s

i νs − f ′JA
B FD

i H lνC
l ΓB

DC∂A

= −f ′H lνC
l FB

i JE
B ΓCE − f ′∇iH

lFl

−f ′′HiH
lFl − f ′a s

i νs.
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Then in a double normal coordinate system at a fixed point (p, F (p)) ∈ L×M̄ ,
we have

∂

∂t
νi = −f ′∇iH

lFl − f ′′HiH
lFl − f ′a s

i νs

Then :

∂

∂t
hijk = −f ′a s

i hjks + f ′′Hk∇jHi + f ′∇k∇jHi

+f (3)HkHjHi + f ′′∇kHjHi

+f ′′∇kHiHj − f ′as
jhksi − f ′FA

j FB
k HsνC

s ḡ(νi, ∂BΓAC − ∂CΓBA).

Now in normal coordinates, we have

∂BΓAC − ∂CΓBA = ∂B∇∂A
∂C − ∂C∇∂B

∂A

= ∇∂B
∇∂A

∂C −∇∂C
∇∂B

∂A

= ∇∂B
∇∂C

∂A −∇∂C
∇∂B

∂A

= R(∂B , ∂C)∂A

= R
D

ABC∂D.

q.e.d.

Lemma 4.8. The mean curvature form satisfies the evolution equation

∂

∂t
Hj = ∇j(f ′d†H) + f ′

R

2n
Hj +∇j(f ′′|H|2)

where R is the scalar curvature of M̄ and d†H := ∇iHi.

Proof: From lemma 4.7 we obtain :
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∂

∂t
Hj =

∂

∂t
(gikhijk)

= −gisgmk ∂

∂t
gsmhijk + gik(−f ′a s

i hjks + f ′′Hk∇jHi

+f ′∇k∇jHi + f (3)HkHjHi + f ′′∇kHjHi

+f ′′∇kHiHj − f ′as
jhksi − f ′HsRijks)

= f ′aikhijk − f ′a s
j Hs + f ′′Hi∇jHi

+f ′∇i∇jH
i + f (3)Hj |H|2

+f ′′Hi∇iHj + f ′′Hjd
†H − f ′HsR

i

ij s

(4.16)
= f ′aikhijk − f ′a s

j Hs + f ′′Hi∇jHi

+f ′∇j∇iH
i + f ′HsRi

sij + f (3)Hj |H|2

+f ′′Hi∇iHj + f ′′Hjd
†H − f ′HsR

i

ij s

= f ′aikhijk − f ′a s
j Hs + f ′′Hi∇jHi

+f ′∇jd
†H + f ′HsRsj + f (3)Hj |H|2

+f ′′Hi∇iHj + f ′′Hjd
†H − f ′HsR

i

ij s.

But, by the first Bianchi identity, we obtain

−R
i

ij s = R
i

i sj + R
i

isj

so
−R

i

ij s = R
i

sji + R
i

isj .

Since ḡ(Fi, Fj) = ḡ(νi, νj) and the curvature operator is of type-(1, 1) then

2R
i

sji = R
i

sji + R
i

sji = R
C

sjC = 2Rsj .

So
−R

i

ij s = Rsj + R
i

isj .

From Gauss equation, we also have Rsj = asj − bsj + R
i

sij . So
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∂

∂t
Hj = f ′aikhijk + f ′(−as

j + Rs
j + R

s i

i j )Hs

+f ′∇j(d†H) + f ′RsjH
s + f (3)Hj |H|2

+f ′′Hi∇iHj + f ′′Hi∇jHi + f ′′Hjd
†H

= f ′aikhijk − f ′bs
jHs + f ′∇j(d†H)

+f ′RsjH
s + f (3)Hj |H|2

+f ′′Hi∇iHj + f ′′Hi∇jHi + f ′′Hjd
†H

= f ′∇j(d†H)

+f ′RsjH
s + f (3)Hj |H|2

+2f ′′Hi∇iHj + f ′′Hjd
†H,

where we used in the last equality the Kähler-Einstein condition and (2.6)
which give

∇iHj = ∇jHi.(4.14)

So since (M̄, J, ḡ) is Kähler-Einstein, we get :

∂

∂t
Hj = f ′∇j(d†H) + f ′

R

2n
Hj + f (3)Hj |H|2

+2f ′′Hi∇iHj + f ′′Hjd
†H(4.15)

(4.14)
= ∇j(f ′d†H) + f ′

R

2n
Hj +∇j(f ′′|H|2).

q.e.d.

Lemma 4.9. The norm of the mean curvature vector satisfies the evolution
equation

∂

∂t
|H|2 = f ′4|H|2 − 2f ′|∇H|2 + 2f ′bijHiHj − 2f ′R

isj

sHiHj

+f ′
R

n
|H|2 + 2f (3)|H|4 + 4f ′′HiHj∇iHj + 2f ′′|H|2d†H.

Proof: From (4.15), we derive:
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∂

∂t
|H|2 =

∂

∂t
(HjHj)

(4.12)
= (2f ′a k

j Hk + f ′∇j(d†H) + f ′
R

2n
Hj + f (3)Hj |H|2

+2f ′′Hi∇iHj + f ′′Hjd
†H)Hj

+Hj(f ′∇j(d†H) + f ′
R

2n
Hj + f (3)Hj |H|2

+2f ′′Hi∇iHj + f ′′Hjd
†H)

= 2f ′ajkHjHk + 2f ′Hj∇j(d†H) + f ′
R

n
|H|2

+2f (3)|H|4 + 4f ′′HiHj∇iHj + 2f ′′|H|2d†H.

We have also

4|H|2 = ∇k∇k|H|2
= ∇k∇k(HjHj)
= ∇k(Hj∇kHj + Hj∇kHj)
= 2|∇H|2 + 2Hj∇k∇kHj

(4.14)
= 2|∇H|2 + 2Hj∇k∇jHk

(4.16)
= 2|∇H|2 + 2Hj∇j∇kHk + 2Rk s

jk HsH
j

= 2|∇H|2 + 2Hj∇j(d†H) + 2Rs
jHsH

j .

So

∂

∂t
|H|2 = f ′4|H|2 − 2f ′|∇H|2 + 2f ′bijHiHj − 2f ′R

isj

sHiHj

+f ′
R

n
|H|2 + 2f (3)|H|4 + 4f ′′HiHj∇iHj + 2f ′′|H|2d†H.

q.e.d.

Lemma 4.10. |A|2 satisfies

∂

∂t
|A|2 = f ′4|A|2 − 2f ′|∇A|2 + 2f ′|bis|2 + 2f ′|Aiujs −Aijus|2

−2f ′biuR
s

isu − 2f ′hijkHsRijks

+2f ′hijk∇iR
s

jsk + 2f ′hijk∇sRsijk

−4f ′Aij
suR

s u

ij + 6f ′′aij∇jHi + 2f (3)aijHiHj .

Proof: First we get
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∂

∂t
|A|2 =

∂

∂t
(hijkhijk)

= hijk ∂

∂t
hijk + hijk

∂

∂t
hijk

= hijk ∂

∂t
hijk + hijk

∂

∂t

(
gmigjngkshmns

)

= (−f ′a s
i hjks + f ′′Hk∇jHi + f ′∇k∇jHi

+f (3)HkHjHi + f ′′∇kHjHi

+f ′′∇kHiHj − f ′as
jhksi − f ′HsRijks)hijk

+(2f ′amihjk
m + 2f ′ajnhik

n + 2f ′akshij
s )hijk

+
(

∂

∂t
hijk

)
hijk

Then, if we take into account the evolution equation for hijk, we obtain

∂

∂t
|A|2 = (−f ′a s

i hjks + f ′′Hk∇jHi + f ′∇k∇jHi

+f (3)HkHjHi + f ′′∇kHjHi

+f ′′∇kHiHj − f ′as
jhksi − f ′HsRijks)hijk

+
(
2f ′amihjk

m + 2f ′ajnhik
n + 2f ′akshij

s

)
hijk

+(−f ′a s
i hjks + f ′′Hk∇jHi + f ′∇k∇jHi

+f (3)HkHjHi + f ′′∇kHjHi

+f ′′∇kHiHj − f ′as
jhksi − f ′HsRijks)hijk

= −2f ′aisbis + 6f ′′aij∇jHi + 2f ′hijk∇k∇jHi

+2f (3)aijHiHj − 2f ′ajsbjs − 2f ′hijkHsRijks

+2f ′aisbis + 2f ′ajsbjs + 2f ′aksbks

= 2f ′aisbis + 6f ′′aij∇jHi + 2f ′hijk∇k∇jHi

+2f (3)aijHiHj − 2f ′hijkHsRijks.

Also

4|A|2 = ∇s∇s(hijkhijk)
= ∇s(2hijk∇shijk)
= 2|∇A|2 + 2hijk∇s∇shijk

(2.5)
= 2|∇A|2 + 2hijk∇s∇ihsjk − 2hijk∇sRsijk.

Now setting h = huvtdxu ⊗ dxv ⊗ dxt, we have
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∇s∇mhijk −∇m∇shijk = ∇2h(∂s, ∂m) (∂i, ∂j , ∂k)−∇2h(∂m, ∂s) (∂i, ∂j , ∂k)
= {R(∂s, ∂m)h} (∂i, ∂j , ∂k)
=

{
R(∂s, ∂m)(huvtdxu ⊗ dxv ⊗ dxt)

}
(∂i, ∂j , ∂k)

= huvt

{
R(∂s, ∂m)(dxu ⊗ dxv ⊗ dxt)

}
(∂i, ∂j , ∂k)

= huvt

{
R(∂s, ∂m)dxu ⊗ dxv ⊗ dxt

}
(∂i, ∂j , ∂k)

+huvtdxu ⊗ {
R(∂s, ∂m)dxv ⊗ dxt

}
(∂i, ∂j , ∂k)

+huvtdxu ⊗ dxv ⊗ {
R(∂s, ∂m)dxt

}
(∂i, ∂j , ∂k)

= huvt(R u
smw dxw ⊗ dxv ⊗ dxt

+R v
smw dxu ⊗ dxw ⊗ dxt

+R t
smw dxu ⊗ dxv ⊗ dxw) (∂i, ∂j , ∂k)

= hujkR u
smi + hiukR u

smj + hijuR u
smk .(4.16)

So, we get

4|A|2 = 2|∇A|2 + 2hijk∇i∇shsjk + 2hijkhujkRs u
is

+2hijkhsukRs u
ij + 2hijkhsjuRs u

ik − 2hijk∇sRsijk

(2.5)
= 2|∇A|2 + 2hijk∇i∇jHk

−2hijk∇iR
s

jsk + 2bi
uR u

i

+4hijkhsukRs u
ij − 2hijk∇sRsijk.

Then we obtain

∂

∂t
|A|2 = f ′4|A|2 − 2f ′|∇A|2 + 2f ′aisbis

+6f ′′aij∇jHi + 2f (3)aijHiHj − 2f ′hijkHsRijks

+2f ′hijk∇iR
s

jsk − 2f ′biuRiu

−4f ′hijkhsukRs u
ij + 2f ′hijk∇sRsijk.

Now from Gauss equation (2.4), we have

Riu = aiu − biu + R
s

isu,

so we have
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∂

∂t
|A|2 = f ′4|A|2 − 2f ′|∇A|2 + 2f ′|bis|2 − 2f ′biuR

s

isu

+6f ′′aij∇jHi + 2f (3)aijHiHj − 2f ′hijkHsRijks

+2f ′hijk∇iR
s

jsk − 4f ′Aij
suRs u

ij + 2f ′hijk∇sRsijk

(2.4)
= f ′4|A|2 − 2f ′|∇A|2 + 2f ′|bis|2 − 2f ′biuR

s

isu

+6f ′′aij∇jHi + 2f (3)aijHiHj − 2f ′hijkHsRijks

+2f ′hijk∇iR
s

jsk − 4f ′Aij
suAs u

ji + 4f ′Aij
suAsu

ij

−4f ′Aij
suR

s u

ij + 2f ′hijk∇sRsijk

= f ′4|A|2 − 2f ′|∇A|2 + 2f ′|bis|2 − 2f ′biuR
s

isu

+6f ′′aij∇jHi + 2f (3)aijHiHj − 2f ′hijkHsRijks

+2f ′hijk∇iR
s

jsk + 2f ′|Aiujs −Aijus|2

−4f ′Aij
suR

s u

ij + 2f ′hijk∇sRsijk.

q.e.d.

Lemma 4.11.

∂

∂t
d†H = f ′4(d†H) + 4f ′aij∇iHj + 2f ′′Hi∇i(d†H)

+f ′′
R

2n
|H|2 + f ′

R

2n
d†H + f (4)|H|4 + 2f (3)|H|2d†H

+2f (3)Hi∇i|H|2 + f ′′4|H|2 + f ′′(d†H)2 + 2f ′′H lHiail

−f ′′|H|4 − 2f ′HsH lR
i

sil.

Proof:

∂

∂t
d†H =

∂

∂t
(gij∇iHj)

(4.12)
= 2f ′aij∇iHj + gij ∂

∂t
∇iHj .

Now

∇iHj =
∂

∂xi
Hj − Γ k

ijHk.

So in normal coordinates at a fixed point P ∈ L, we have
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∂

∂t
∇iHj =

∂

∂xi

∂

∂t
Hj − ∂

∂t
Γ k

ijHk

= ∇i
∂

∂t
Hj − ∂

∂t
Γ k

ijHk

(4.15)
= ∇i(f ′∇j(d†H) + f ′

R

2n
Hj + f (3)Hj |H|2

+2f ′′Hk∇kHj + f ′′Hjd
†H)

−1
2
gkl

(
∇i(

∂

∂t
gjl) +∇j(

∂

∂t
gil)−∇l(

∂

∂t
gij)

)
Hk

= ∇i(f ′∇j(d†H) + f ′
R

2n
Hj + f (3)Hj |H|2

+2f ′′Hk∇kHj + f ′′Hjd
†H)

+H l(∇i(f ′ajl) +∇j(f ′ail)−∇l(f ′aij))

= f ′′Hi∇j(d†H) + f ′∇i∇j(d†H) + f ′′
R

2n
HiHj + f ′

R

2n
∇iHj

+f (4)|H|2HiHj + f (3)|H|2∇iHj

+f (3)Hj∇i|H|2 + 2f (3)HiH
k∇kHj + 2f ′′∇iH

k∇kHj

+2f ′′Hk∇i∇kHj + f (3)d†HHiHj + f ′′d†H∇iHj

+f ′′Hj∇i(d†H) + f ′′H lHiajl + f ′′H lHjail − f ′′|H|2aij

+f ′H l∇iajl + f ′H l∇jail − f ′H l∇laij .

Then
∂

∂t
d†H

(4.14)
= f ′4(d†H) + 2f ′aij∇iHj + 2f ′′Hi∇i(d†H)

+f ′′
R

2n
|H|2 + f ′

R

2n
d†H + f (4)|H|4 + 2f (3)|H|2d†H

+2f (3)Hi∇i|H|2 + f ′′4|H|2 + f ′′(d†H)2 + 2f ′′H lHiail

−f ′′|H|4 + 2f ′H l∇iail − f ′H l∇l|H|2
= f ′4(d†H) + 4f ′aij∇iHj + 2f ′′Hi∇i(d†H)

+f ′′
R

2n
|H|2 + f ′

R

2n
d†H + f (4)|H|4 + 2f (3)|H|2d†H

+2f (3)Hi∇i|H|2 + f ′′4|H|2 + f ′′(d†H)2 + 2f ′′H lHiail

−f ′′|H|4 − 2f ′HsH lR
i

sil,

where the last equality comes from

2f ′H l∇iail = 2f ′H l∇i(Hshsil)
= 2f ′H lhsil∇iHs + 2f ′H lHs∇ihsil

(2.5)
= 2f ′ais∇iHs + 2f ′HsH l∇sHl + 2f ′HsH lR

i

sil

= 2f ′ais∇iHs + f ′Hs∇s|H2| − 2f ′HsH lR
i

sil.
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This completes the proof of the lemma. q.e.d.

4.3.1 Evolution equations in the euclidean space

In this section and in the sequel, the ambient Kähler-Einstein manifold is
(R2n, J, 〈·, ·〉) where 〈·, ·〉 is the euclidean metric and J := i is the usual com-
plex structure on R2n. Now the above evolution equations simplify and we
obtain:

Lemma 4.12. For the flow d
dtF = f ′

−→
H we have the following evolution equa-

tions in R2n:

∂

∂t
gij = −2f ′aij ,(4.17)

∂

∂t
hijk = −f ′a s

i hjks + f ′′Hk∇jHi + f ′∇k∇jHi

+f (3)HkHjHi + f ′′∇kHjHi

+f ′′∇kHiHj − f ′as
jhksi,(4.18)

∂

∂t
|A|2 = f ′4|A|2 − 2f ′|∇A|2 + 2f ′|bis|2

+2f ′|Aiujs −Aijus|2 + 6f ′′aij∇jHi

+2f (3)aijHiHj ,(4.19)
∂

∂t
Hj = ∇j(f ′d†H) +∇j(f ′′|H|2),(4.20)

∂

∂t
α = f ′4α + f ′′|∇α|2,(4.21)

∂

∂t
dµ = −f ′|H|2dµ,(4.22)

∂

∂t
|H|2 = f ′4|H|2 − 2f ′|∇H|2 + 2f ′bijHiHj + 2f (3)|H|4

+4f ′′HiHj∇iHj + 2f ′′|H|2d†H,(4.23)
∂

∂t
d†H = f ′4(d†H) + 4f ′aij∇iHj + 2f ′′Hi∇i(d†H)

+f (4)|H|4 + 2f (3)|H|2d†H
+2f (3)Hi∇i|H|2 + f ′′4|H|2 + f ′′(d†H)2

+2f ′′H lHiail − f ′′|H|4.(4.24)

Proof: These equations follow from those obtained in the last section for the
more general situation. For (4.21) we note that this is a consequence of (4.20)
because Hj = ∇jα. (4.22) is a consequence of (4.17). q.e.d.
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Now let S ∈ C be one of the tensors described in Section 4.1. We will also
denote by S the (0, 2) tensor on L defined by Sij :=< S(Fi), Fj >. We get

Sij := SABFA
i FB

j ,

where SAB :=< S(∂A), ∂B > .

Lemma 4.13. S and S∗ are symmetric operators, i.e

Sij = Sji(4.25)

and

S∗ij = S∗ji.(4.26)

Proof: From (4.4) and (4.5) we get

S(S
t
) = Id .

Then, we have

Sij : =
〈
S(Fi), Fj

〉

=
〈
S

(
S(Fi)

)
, S(Fj)

〉

(4.5)
=

〈
Fi, S(Fj)

〉

=
〈
S(Fj), Fi

〉

= Sji.

Using the lemma 4.2, we do the same thing for S∗ij :=
〈
S
∗
(Fi), Fj

〉
and

we will get S∗ij = S∗ji. q.e.d.

Lemma 4.14. F ∗S := Sijdxi ⊗ dxj holds

∂

∂t
Sij = f ′4Sij + f ′′HiH

lS∗lj + f ′′HjH
lS∗li − f ′R l

i Slj

−f ′R l
j Sli + 2f ′h mk

i h n
jk Smn.

Proof: Setting

ḞA :=
∂

∂t
FA

we get
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∂

∂t
Sij = ∇CSABḞCFA

i FB
j + SAB∇iḞ

AFB
j + SAB∇jḞ

BFA
i

= SAB∇i(f ′H lνA
l )FB

j + SAB∇j(f ′H lνB
l )FA

i

= f ′′HiSABH lνA
l FB

j + f ′∇iH
lSABνA

l FB
j

+f ′′HjSABH lνB
l FA

i + f ′∇jH
lSABνB

l FA
i

−f ′H lSAB(h k
il FA

k FB
j + h k

jl FB
k FA

i )

= f ′′HiH
lS∗lj + f ′∇iH

lS∗lj + f ′′HjH
lS∗li

+f ′∇jH
lS∗li − f ′a k

i Skj − f ′a k
j Sik

We also have

4Sij = ∇k∇k(SABFA
i FB

j )

= ∇k(h l
ik SABνA

l FB
j + h l

jk SABνB
l FA

i )

= ∇kh l
ik SABνA

l FB
j +∇kh l

jk SABνB
l FA

i

−h l
ik SAB(h km

l FA
mFB

j − h km
j νB

mνA
l )

+h l
jk SAB(h km

i νB
l νA

m − h km
l FB

mFA
i )

= ∇iH
lS∗lj +∇jH

lS∗li − b k
i Skj

−b k
j Ski − 2h lk

i h m
jk Slm,

where we used in the last equation (2.5) and the vanishing of the curvature
in R2n and the lemma 4.13.
We obtain then the result. q.e.d.

Defining function s := gijSij we get from the lemma 4.14 and from (4.17):

Lemma 4.15. The function s satisfies the evolution equation

∂

∂t
s = f ′4s + 4f ′bijSij + 2f ′′HiHjS∗ij .

4.4 Evolution of graphs

Now in this section, we are interested in Lagrangian graphs in Cn evolving
by functions of its Lagrangian angle. We will consider graphs for which S :=
F ∗S > ε〈·, ·〉 for some ε ∈ (0, 1) and for some tensor S as in Section 4.1. Since
S

2
= Id, then the eigenvalues of S are either 1 or −1. If X is a eigenvector
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of S such that S(X) = X, then JX is also eigenvector of S because by the
condition (4.3) we have S(JX) = −JS(X) = −JX. So, 1 and −1 are exactly
the two eigenvalues of S and J maps the eigenspace belonging to 1 to that
belonging to −1. Consequently we can split R2n into the orthogonal direct
sum

R2n = E ⊕D,

where E is the linear hull of all eigenvectors e belonging to 1 and D := JE is
the linear hull of eigenvectors d belonging to −1.
Now let L ⊂ R2n be a compact Lagrangian submanifold in R2n such that its
universal cover L̃ is Rn immersed as a Lagrangian graph into R2n. Let

F : Rn → R2n

F (x) := xiei + δijuidj

be this Lagrangian immersion and where u1, . . . , un : Rn → R are functions
and e1, . . . , en is a orthonormal frame spanning E and dj := Jej .

The tangent vectors Fi := ∂F
∂xi are given by

Fi = ei + δklukidl(4.27)

where uki := ∂ui

∂xk .
The Lagrangian condition 〈JFi, Fj〉 = 0 implies that uij−uji = 0. This means
that the 1-form on Rn, β := uidxi is closed. Since H1(Rn) = 0 then β must
be exact. So there exist a function u : Rn → R such that β = du which means
ui = ∂u

∂xi for any i = 1, . . . , n and on all Rn.
Here the Lagrangian angle α exists for every time as long as the solution of
(4.1) exists and they are given by either

α = −arctan(
a

b
),

or by

α = arctan(
b

a
)

depending on whether

a := Im(det(δkl + iukl))

or
b := Re(det(δkl + iukl))

is nonzero.
Indeed a and b cannot both be zero because the induced metric

gij := 〈Fi, Fj〉 = δij + δkluikujl = I + A2 = (I + iA)(I − iA)
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where I the identity matrix and A = (uij)i,j .
So det(gij) = det(I+ia)det(I−iA) = det(I+iA)det(I + iA) = (b+ia)(b + ia).
Then

det(gij) = a2 + b2

and must not vanish.
As in [43] we transform the flow (4.1) into a parabolic equation for u, because

d

dt
F = J∇f = f ′Hmνm = f ′Hm(dm − δlpulmep)

implies the equations

dxi

dt
= −f ′Hmδliulm(4.28)

and

δip dup

dt
= f ′Hi(4.29)

But
dup

dt
=

∂up

∂t
+ upl

dxl

dt

and since Hm = ∇mα, then (4.29) and (4.28) implies

δjp ∂2u

∂t∂xp
− f ′δjpupl∇mαδliuim = f ′∇jα.

Now

gij := 〈Fi, Fj〉
= δij + δkluikujl(4.30)

so

δjp ∂2u

∂t∂xp
− f ′δjp(gpm − δpm)∇mα = f ′∇jα,

or

∂2u

∂t∂xj
− f ′δjp∇pα + f ′∇jα = f ′∇jα,

or

∂2u

∂t∂xj
− f ′∇jα = 0.

Then we obtain the following parabolic equation for u :
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P [u] :=
∂u

∂t
− f = 0(4.31)

with dα = H. We now compute

∂P [u]
∂uij

=
∂f

∂uij
.

Now Hk = gijhijk = gijuijk and

f ′Hk =
∂

∂xk
f =

∂f

∂uij

∂uij

∂xk
=

∂f

∂uij
uijk

So ∂
∂uij

f = f ′gij then
∂P [u]
∂uij

= f ′gij

which means that P [u] is always parabolic. We also have

∂2P [u]
∂uij∂ukl

=
∂f ′gij

∂ukl

= f ′′gklgij − f ′gisgjm ∂gsm

∂ukl

(4.30)
= f ′′gklgij − f ′gisgjm(δpqupsδ

k
q δl

m + δpquqmδk
pδl

s)

= f ′′gklgij − f ′(gisgjl + gilgjs)δpkups

where the second equality comes from ∂f ′

∂ukl
= f ′′ ∂α

∂ukl
and ∂α

∂ukl
= gkl because

∂α
∂xi = Hi = gklukli and ∂α

∂xi = ∂α
∂ukl

∂ukl

∂xi = ∂α
∂ukl

ukli.

Setting cij := vimvjm, then for any symmetric tensor vij we have

∂2P [u]
∂uij∂ukl

vijvkl = cij(f ′′gij − 2f ′uij)

= cij(f ′′gij + f ′S∗ij)

= f ′cij(S∗ij +
f ′′

f ′
gij),

where the second equality comes from S∗ij = −2uij . Indeed we have :

S
∗
ij : = S(JFi, Fj).

Since
S(ei, ej) = δij ,
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S(di, dj) = −δij ,

S(ei, dj) = S(di, ej) = 0,

then from (4.27), we get

Sij : = S(Fi, Fj)
= δij − δkluikujl(4.32)

and
S
∗
ij = −2uij .

Now the operator P [u] is called concave if

∂2P [u]
∂uij∂ukl

vijvkl ≤ 0.

Lemma 4.16. The operator P [u] = ∂u
∂t − f is concave.

Proof: Since the tensor cij is positive defined, so we only have to prove that
the tensor Mij := S∗ij + f ′′

f ′ gij holds Mij ≤ 0. From (4.7), we have

Mij ≤ (1 +
f ′′

f ′
)gij .

So with f̃ ∈ F̃a,b,ε, Mij ≤ 0 and we get the result. q.e.d.

Lemma 4.17. Assume there exist ε > 0 and S ∈ C such that

Mij := Sij − εgij > 0

holds on a compact L at t = 0. Then this is also true for t ∈ [0, T ).

Proof: From evolution equation of Sij and of the metric, we obtain :

∂

∂t
Mij = f ′4Mij + f ′bn

i Snj + 2εf ′aij

+f ′bn
j Sni − f ′an

i Snj − f ′an
j Sni

+2f ′h mk
i h n

jk Smn + f ′′HiH
kS∗kj + f ′′HjH

kS∗ki.

Setting

Nij : = f ′bn
i Snj + 2εf ′aij

+f ′bn
j Sni − f ′an

i Snj − f ′an
j Sni

+2f ′h mk
i h n

jk Smn + f ′′HiH
kS∗kj + f ′′HjH

kS∗ki.
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To get the proof, we need to use the theorem 3.1. So we must show that
NijV

iV j ≥ 0 for any null eigenvector V of Mij := Sij − εgij , that occurs for
the first time t0 at the point P .
Since MijV

i = 0 then SijV
i = εVj . So, we get :

NijV
iV j = 2εf ′bijV

iV j + 2f ′h mk
i h n

jk SmnV iV j + 2f ′′HiH
kS∗kjV

iV j .

But
bijV

iV j := hiklh
kl

j V iV j = |V ihijk|2 ≥ 1
n (trace(V ihijk))2 = 1

n (〈H, V 〉)2.
Now, by lemma 4.13, S and S∗ are symmetric operators, then we can diago-
nalize them. Since by (4.6), S and S∗ commute, we can choose orthonormal
vectors (e1, ..., en) for TpLt0 such that Sij and S∗ij become diagonal. We also
choose e1 = V then V i = δ1

i . We will denote λi, i = 1, · · · , n the eigenvalues
of Sij and λ∗i , i = 1, · · · , n the one of S∗ij . So, choosing, λ1 the smallest one,
we get

2f ′h mk
i h n

jk SmnV iV j = 2f ′hmk
1 hn

k1Smn = 2f ′hmk
1 hm

k1λm = 2f ′|hmk
1 |2λm

≥ 2f ′|hmk
1 |2λ1 ≥ 2f ′

n
(H1)2λ1 =

2εf ′

n
(〈H,V 〉)2.

So
NijV

iV j ≥ 4ε

n
f ′(< H, V >)2 + 2f ′′HiH

kS∗kjV
iV j .

Now 2f ′′HiH
kS∗kjV

iV j = 2f ′′λ∗1(H1)2(V 1)2 = 2f ′′λ∗1(〈H, V 〉)2. So

NijV
iV j ≥ (

4ε

n
f ′ + 2f ′′λ∗1)(〈H, V 〉)2.

But by lemma 4.3, we have (λ1)2 + (λ∗1)
2 = 1, then f ′′λ∗1 ≥ −|f ′′|

√
1− λ2

1 =
−|f ′′|√1− ε2. So

NijV
iV j ≥ (

4ε

n
f ′ − 2|f ′′|

√
1− ε2)(〈H, V 〉)2.

So for f := f̃ ◦ α with f̃ ∈ Fa,b,ε we have 4ε
n f ′ − 2|f ′′|√1− ε2 ≥ 0 and then

NijV
iV j ≥ 0. q.e.d.

Then

Lemma 4.18. Assume that t = 0 we have F ∗0 S(V, V ) > ε|V |2 ∀V ∈ TL, V 6=
0. Then we have uniform C2-estimates in space directions for (4.31).

Proof: Since Sij := S(Fi, Fj) = δij − δkluikulj (see (4.32)), then from lemma
4.17, we get the result. q.e.d.

Consequently, we have
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Lemma 4.19. Assume that t = 0 we have F ∗0 S(V, V ) > ε|V |2 ∀V ∈ TL, V 6=
0. Then the metrics are uniformly equivalent.

Proof: gij := δij +δkluikulj and from lemma 4.18, we get the result. q.e.d.

Lemma 4.20. Let g̃ij be the following, to gij conformally equivalent metric

g̃ij :=
1
f ′

gij .

If r is the real function that satisfies r′ = (f ′)
n
2 , then r ◦ α (again denoted by

r) satisfies the evolution equation

ṙ = ∆̃r ,

where ∆̃ is the Laplace-Beltrami operator w.r.t. the metric g̃.

Proof: For a general smooth function h we have

(4.33) ∆̃h = f ′∆h− n− 2
2

f ′′〈∇α,∇h〉 ,
where ∇ denotes the gradient w.r.t. g. To see this we compute the Christoffel
symbols of g̃ij

Γ̃ k
ij =

1
2
g̃kl(g̃il,j + g̃jl,i − g̃ij,l)

= Γ k
ij −

f ′′

2f ′
gkl(glj∇iα + gli∇jα− gij∇lα)

= Γ k
ij −

f ′′

2f ′
Hiδ

k
j −

f ′′

2f ′
Hjδ

k
i +

f ′′

2f ′
gijH

k(4.34)

so that

∆̃h = g̃ij(hij − Γ̃ k
ijhk)

= f ′gij(hij − Γ k
ijhk +

f ′′

2f ′
gkl(glj∇iα + gli∇jα− gij∇lα)hk)

= f ′∆h− n− 2
2

f ′′〈∇α,∇h〉 .
Then we compute

ṙ = r′α̇

= r′(f ′∆α + f ′′|∇α|2)
= f ′∆r + (r′f ′′ − f ′r′′)|∇α|2

(4.33)
= ∆̃r +

n− 2
2

f ′′〈∇α,∇r〉+ (r′f ′′ − f ′r′′)|∇α|2

= ∆̃r + (
n

2
r′f ′′ − f ′r′′)|∇α|2

= ∆̃r ,
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since n
2 r′f ′′ − f ′r′′ = 0. q.e.d.

Now, let r be a solution of this differential equation :

r′ = (f ′)
n
2

r(0) = 0.

We can see that r must be positive because it is increasing function and
r(0) = 0. And by lemma 4.20, r is a positive solution of a heat equation.
We now have the following Harnack inequality for a positive solution of heat
equation, proved by Huai-Dong Cao in [5] :

Theorem 4.3 (Huai-Dong Cao) Let M be a compact manifold of dimen-
sion n and let gij(t), 0 ≤ t < ∞, be a family of Riemannian metrics on M
with the following properties :

C1gij(0) ≤ gij(t) ≤ C2gij(0),(4.35)

|∂gij

∂t
|(t) ≤ C3gij(0),(4.36)

Rij(t) ≥ −Kgij(0),(4.37)

where C1, C2, C3, and K are positive constants independent of t. Let 4t denote
the Laplace operator of the metric gij(t). If φ(x, t) is a positive solution for
the equation

∂

∂t
φ(x, t) = 4tφ(x, t)

on M × [0,∞), then for any α > 1, we have

Supx∈Mφ(x, t1) ≤ infx∈Mφ(x, t2)
(

t2
t1

)n
2

exp(
1

4(t2 − t1)
C2

2d2

+(
nαK

2(α− 1)
+ C2C3(n + A))(t2 − t1))

where d is the diameter of M measured by the metric gij(0), A = sup‖∇2logφ‖
and 0 < t1 < t2 < ∞.

Now we want to apply this Harnack inequality theorem of Cao to r, a positive
solution of heat equation, such that

r′ = (f ′)
n
2

r(0) = 0

(see lemma 4.20.) Here the metric is g̃ij := 1
f ′ gij . From 4.21, α is uniformly

bounded and since f ′ := f ′(α) is smooth, then 1
f ′ is uniformly bounded too.



4.4 Evolution of graphs 47

Now by lemma 4.19, the metric g̃ij(t) is uniformly equivalent. So the first
assumption of the theorem, i.e (4.35), is satisfied. To check the second as-
sumption, we have to compute ∂

∂t g̃ij . We have

∂

∂t
g̃ij =

∂

∂t
(

1
f ′

gij)

= − f ′′

(f ′)2
∂α

∂t
gij +

1
f ′

∂

∂t
gij

(4.21)
= − f ′′

(f ′)2
(f ′4α + f ′′|∇α|2)gij +

1
f ′

(−2f ′aij)

= − f ′′

(f ′)2
(f ′trace(∇H) + f ′′|H|2)gij − 2aij .

We now need to prove that the second form fundamental (hij)i,j is bounded
and all its covariant derivatives. To get this, we utilize the C2,α-estimate in
space and the C1,α-estimate in time for nonlinear parabolic equations (4.31)
by Krylov [30] or [31] (see Section 5.5 in this paper) to get C∞-estimates for u.
To apply it, we need the uniform C2-estimate in space for u and the uniform
C1-estimate in time for u and the concavity of the operator (4.31).

So, assume that t = 0 we have F ∗0 S(V, V ) > ε|V |2 ∀V ∈ TL, V 6= 0. Then
lemma 4.18 gives the uniform C2-estimate in space for u. We also have C1-
estimates in time for u because by maximum principle α is uniformly bounded.
Now by lemma 4.16, the operator P [u] is concave. So with C2,α-estimate in
space and the C1,α-estimate in time for nonlinear parabolic equations (4.31),
standard Schauder estimates give C∞-estimates both in space and time for
u. In particular the full norm of the second fundamental form is uniformly
bounded because hijk = uijk and all its covariant derivatives are bounded as
well. This implies that H, ∇H and aij are uniformly bounded. Indeed, from

|hijk − c(Higjk) + Hjgki + Hkgij |2 ≥ 0

we obtain, choosing c = 1
n+2 , the inequality

|H|2 ≤ n + 2
3

|A|2.

So this gives a uniform bound for H. We also know that |∇H|2 ≤ c(n)|∇A|2
where c(n) is a constant dependent only of n = dim L. And this gives a uniform
bound of |∇H|. Now about aij , we have |aij |2 = bijH

iHj =
∑n

i=1 βi(Hi)2

where we write bij = diag(β1, β2, · · · , βn) in a base of eigenvectors ((bij)i,j is
indeed symmetric matrix then we can diagonalize it). Now (bij)i,j is positive
defined because for every vector field V , we have bijV

iV j := hiklh
kl

j V iV j =
|V ihijk|2 ≥ 0. That means all βi are positive. So |aij |2 ≤

∑n
i=1 βi|H|2 =

trace((bij))|H|2 = |A|2|H|2 and then |aij | is also uniformly bounded. Then,
we get a uniform bound for ∂

∂t g̃ij . Since the metrics g̃ij are uniformly bounded,
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the second assumption, i.e (4.36), is also satisfied.
To get the last assumption (4.37), we need to compute R̃ij where R̃ijkl is the
curvature operator of the metric g̃ij . We have

R̃(∂i, ∂j)∂k = ∇̃∂i
∇̃∂j

∂k − ∇̃∂j
∇̃∂i

∂k

= ∇̃∂i(Γ̃
s
jk∂s)− ∇̃∂j (Γ̃

s
ik∂s)

= ∂i(Γ̃ s
jk)∂s + Γ̃ s

jk∇̃∂i
∂s − ∂j(Γ̃ s

ik)∂s − Γ̃ s
ik∇̃∂j ∂s

= ∂i(Γ̃ s
jk)∂s − ∂j(Γ̃ s

ik)∂s + Γ̃ s
jkΓ̃m

is ∂m − Γ̃ s
ikΓ̃m

js ∂m(4.38)

(4.34)
= ∂i(Γ s

jk)∂s − ∂j(Γ s
ik)∂s − ∂i

(
f ′′

2f ′
Hj

)
∂k

−∂i

(
f ′′

2f ′
Hk

)
∂j + ∂i

(
f ′′

2f ′
gjkHs

)
∂s

+∂j

(
f ′′

2f ′
Hi

)
∂k + ∂j

(
f ′′

2f ′
Hk

)
∂i − ∂j

(
f ′′

2f ′
gikHs

)
∂s

+
(

Γ s
jk −

f ′′

2f ′
Hjδ

s
k −

f ′′

2f ′
Hkδs

j +
f ′′

2f ′
gjkHs

)
(Γm

is −
f ′′

2f ′
Hiδ

m
s

− f ′′

2f ′
Hsδ

m
i +

f ′′

2f ′
gisH

m)∂m

−
(

Γ s
ik −

f ′′

2f ′
Hiδ

s
k −

f ′′

2f ′
Hkδs

i +
f ′′

2f ′
gikHs

)
(Γm

js −
f ′′

2f ′
Hjδ

m
s

− f ′′

2f ′
Hsδ

m
j +

f ′′

2f ′
gjsH

m)∂m.

So,
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R̃(∂i, ∂j)∂k = ∂i(Γ s
jk)∂s − ∂j(Γ s

ik)∂s + Γ s
jkΓm

is ∂m − Γ s
ikΓm

js ∂m

−∇i

(
f ′′

2f ′
Hj

)
∂k − f ′′

2f ′
Γ s

ijHs∂k −∇i

(
f ′′

2f ′
Hk

)
∂j

− f ′′

2f ′
Γ s

ikHs∂j + gjk∇i

(
f ′′

2f ′
Hs

)
∂s +

f ′′

2f ′
Γm

ij gmkHs∂s

+
f ′′

2f ′
Γm

ik gjmHs∂s − f ′′

2f ′
Γ s

imgjkHm∂s +∇j

(
f ′′

2f ′
Hi

)
∂k

+
f ′′

2f ′
Γ s

ijHs∂k +∇j

(
f ′′

2f ′
Hk

)
∂i +

f ′′

2f ′
Γ s

jkHs∂i

−gik∇j

(
f ′′

2f ′
Hs

)
∂s − f ′′

2f ′
Γm

ij gmkHs∂s − f ′′

2f ′
Γm

jkgimHs∂s

+
f ′′

2f ′
Γ s

jmgikHm∂s − f ′′

2f ′
Γ s

jkHi∂s − f ′′

2f ′
Γ s

jkHs∂i

+
f ′′

2f ′
Γ s

jkgisH
m∂m − f ′′

2f ′
Γm

ik Hj∂m +
(f ′′)2

4(f ′)2
HiHj∂k

+
(f ′′)2

4(f ′)2
HjHk∂i − (f ′′)2

4(f ′)2
gikHjH

m∂m − f ′′

2f ′
Γm

ij Hk∂m

+
(f ′′)2

4(f ′)2
HiHk∂j +

(f ′′)2

4(f ′)2
HjHk∂i − (f ′′)2

4(f ′)2
gijHkHm∂m

+
f ′′

2f ′
Γm

is gjkHs∂m − (f ′′)2

4(f ′)2
gjkHiH

m∂m − (f ′′)2

4(f ′)2
gjk|H|2∂i

+
(f ′′)2

4(f ′)2
gjkHiH

m∂m +
f ′′

2f ′
Γ s

ikHj∂s +
f ′′

2f ′
Γ s

ikHs∂j

− f ′′

2f ′
Γ s

ikgjsH
m∂m +

f ′′

2f ′
Γm

jkHi∂m − (f ′′)2

4(f ′)2
HiHj∂k

− (f ′′)2

4(f ′)2
HiHk∂j +

(f ′′)2

4(f ′)2
gjkHiH

m∂m +
f ′′

2f ′
Γm

ij Hk∂m

− (f ′′)2

4(f ′)2
HjHk∂i − (f ′′)2

4(f ′)2
HiHk∂j +

(f ′′)2

4(f ′)2
gijHkHm∂m

− f ′′

2f ′
Γm

js gikHs∂m +
(f ′′)2

4(f ′)2
gikHjH

m∂m +
(f ′′)2

4(f ′)2
gik|H|2∂j

− (f ′′)2

4(f ′)2
gikHjH

m∂m.

But ∂i(Γ s
jk)∂s − ∂j(Γ s

ik)∂s + Γ s
jkΓm

is ∂m − Γ s
ikΓm

js ∂m = R(∂i, ∂j)∂k (compare
with the proof of (4.38).)
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R̃(∂i, ∂j)∂k = R(∂i, ∂j)∂k −∇i

(
f ′′

2f ′
Hj

)
∂k −∇i

(
f ′′

2f ′
Hk

)
∂j

+gjk∇i

(
f ′′

2f ′
Hs

)
∂s +∇j

(
f ′′

2f ′
Hi

)
∂k +∇j

(
f ′′

2f ′
Hk

)
∂i

−gik∇j

(
f ′′

2f ′
Hs

)
∂s +

(f ′′)2

4(f ′)2
HjHk∂i − (f ′′)2

4(f ′)2
HiHk∂j

+
(f ′′)2

4(f ′)2
gjkHiH

m∂m − (f ′′)2

4(f ′)2
gikHjH

m∂m

+
(f ′′)2

4(f ′)2
gik|H|2∂j − (f ′′)2

4(f ′)2
gjk|H|2∂i.

Now,

R̃jk : = g̃ilR̃ijlk

= f ′gilR̃ijlk

= f ′gilg̃
(
R̃(∂i, ∂j)∂k, ∂l

)

= f ′gil 1
f ′

g
(
R̃(∂i, ∂j)∂k, ∂l

)

= gilg
(
R̃(∂i, ∂j)∂k, ∂l

)
.

So, we get

R̃jk = Rjk −∇k

(
f ′′

2f ′
Hj

)
−∇j

(
f ′′

2f ′
Hk

)

+gjk∇i

(
f ′′

2f ′
Hi

)
+∇j

(
f ′′

2f ′
Hk

)
+ n∇j

(
f ′′

2f ′
Hk

)

−∇j

(
f ′′

2f ′
Hk

)
+ n

(f ′′)2

4(f ′)2
HjHk − (f ′′)2

4(f ′)2
HjHk

+
(f ′′)2

4(f ′)2
gjk|H|2 − (f ′′)2

4(f ′)2
HjHk +

(f ′′)2

4(f ′)2
gjk|H|2

−n
(f ′′)2

4(f ′)2
gjk|H|2

= Rjk + (n− 2)∇j

(
f ′′

2f ′
Hk

)
+ (n− 2)

(f ′′)2

4(f ′)2
HjHk

+
(
∇i

(
f ′′

2f ′
Hi

)
− (n− 2)

(f ′′)2

4(f ′)2
|H|2

)
gjk.(4.39)

So, we obtain

R̃jk = Rjk + (n− 2)∇j∇k ln(f ′)
1
2 + (n− 2)

(f ′′)2

4(f ′)2
HjHk

+
(
4 ln(f ′)

1
2 − (n− 2)|∇ ln(f ′)

1
2 |2

)
gjk.
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Now, by Gauss equation Rjk = ajk − bjk, the Ricci tensor Rjk is uniformly
bounded because the tensors ajk and bjk are uniformly bounded. Indeed we
have already prove that the tensor ajk is uniformly bounded. To see that the
tensor bjk is uniformly bounded we know that trace(bij) = |A|2 and since the
tensor bij is positive defined, then |bij |2 ≤ n|A|2.
Now, since ∇H, H are uniformly bounded, then from (4.39), the tensor R̃jk

is uniformly bounded. Since the metrics g̃jk are uniformly equivalent, the last
assumption, i.e (4.37) is also satisfied. So, we can apply the Harnack inequality
theorem of Cao (theorem 4.3).

We are now ready to prove our main result (theorem 4.2):

Proof of the main theorem. We have already shown in Lemma 4.19 the
first part of the theorem. As for the second part, we already know that the
full norm of the second fundamental form and all its covariant derivatives are
uniformly bounded so we have the longtime existence of the flow, i.e T = ∞.
To get the convergence, we will use Harnack inequality theorem above and we
will apply it to the function r. r is a positive function which satisfies

∂

∂t
r = 4̃r.

Therefore it follows from the maximum principle for the parabolic equation
that supx∈M r(x, t) is decreasing and infx∈M r(x, t) is increasing. As in Cao’s
paper ([5]) we now define for any integer m > 1

φm(x, t) = sup
x∈M

r(x,m− 1)− r(x,m− 1 + t)

ψm(x, t) = r(x,m− 1 + t)− inf
x∈M

r(x,m− 1)

osc(t) = sup
x∈M

r(x, t)− inf
x∈M

r(x, t)

Since supx∈M r(x, t) is decreasing, then we have

sup
x∈M

r(x, m− 1) > sup
x∈M

r(x, m− 1 + t).

Therefore φm is a positive function. All the same, since infx∈M r(x, t) is in-
creasing, then we also have

inf
x∈M

r(x, m− 1) < inf
x∈M

r(x, m− 1 + t).

We also conclude that ψm is a positive function. It is easy to check that φm and
ψm hold the heat equation. Now, we apply the Harnack inequality theorem of
Cao, above to these functions with t1 = 1

2 and t2 = 1, and we obtain :

sup
x∈M

r(x,m− 1)− inf
x∈M

r(x,m− 1
2
) ≤ γ( sup

x∈M
r(x,m− 1)− sup

x∈M
r(x,m))
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sup
x∈M

r(x,m− 1
2
)− inf

x∈M
r(x,m− 1) ≤ γ( inf

x∈M
r(x,m)− inf

x∈M
r(x,m− 1))

where γ > 1 is a constant.
Add these last two inequalities, we have

osc(m− 1) + osc(m− 1
2
) ≤ γ(osc(m− 1)− osc(m)).

This implies that

osc(m− 1) ≤ γ(osc(m− 1)− osc(m))

and hence
osc(m) ≤ δosc(m− 1),

with δ = γ−1
γ < 1.

By induction we obtain

osc(m) ≤ δmosc(0)(4.40)

and osc(0) = supx∈M r(x, 0)− infx∈M r(x, 0).
Since the oscillation function osc(t) is decreasing in t, then we conclude from
(4.40) that

osc(t) ≤ C4e
−at(4.41)

where C4 and a are positive constants that do not depend on t and e−a = δ.
Therefore osc(t) goes to zero as t goes to ∞. That implies that r(x, t) =
r ◦ α(x, t) converges uniformly to a constant as t goes to ∞. From (4.41),
since by the maximum principle, r = r(α) is bounded, we can find a constant
C5 such that

|r(α)− C5| ≤ 2C4e
−at.(4.42)

Now, since (L, g) is a compact Riemannian manifold, there exists a constant
depending only on L and g such that for any smooth functions s the interpo-
lation inequality

|∇s|2 ≤ C6|s|(|∇2s|+ |∇s|)
holds. Since gt is a family of uniformly equivalent metrics on L, then one can
choose C6 independent of t. From this we deduce that for s = r(α)− C5

|r′H|2 ≤ C6|r(α)− C5|(|r′∇H|+ |r′′H|+ |r′H|).
Since |∇H|2 ≤ c(n)|∇A|2 ≤constant, we get from (4.42)

|H|2 ≤ C7e
−at

where C7 is a constant independent of t. Consequently the mean curvature
vector tends to zero exponentially. Now we can integrate the evolution equa-
tion ∂

∂tF = f ′
−→
H and the exponential decay of |H| shows that for any ε > 0

we can find a time t0 such that for all t ≥ t0 the immersion Lt will stay in an
ε-neighborhood of Lt0 . Then this proves convergence. The compactness of L
implies that the limit manifold must be flat. q.e.d.
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4.5 Selfsimilar solutions

A solution of (4.1) is called self-similar, if

∇jf = c〈F, νj〉

for some constant c. A solution of this equation just moves by homotheties.

Theorem 4.4 There are no closed Lagrangian selfsimilar solution of the flow
(4.1).

Proof: We have H = dα, where α is a globally defined Lagrangian angle.
Assume that L ⊂ R2n is selfsimilar solution of the flow (4.1). That means
that there exist a constant c such that J∇f = cF⊥, which is equivalent to

∇jf = c < F, νj > .(4.43)

Differentiating (4.43) once and using Lagrangian condition, we get

∇i∇jf = −chk
ij < F,Fk > .(4.44)

Now if we take the trace of (4.44) we get

4f + c < F,∇α >= 0.(4.45)

But 4f := ∇i∇if = ∇i(f ′Hi) = f ′′|H2| + f ′d†H. Now H = dα, so 4f =
f ′′|∇α|2 + f ′4α. So (4.45) becomes

f ′4α + f ′′|∇α|2 + c < F,∇α >= 0

which is an elliptic equation. Then by the strong maximum principle, we
obtain that α is constant and then H = 0. This is a contradiction since there
are no closed minimal submanifolds in euclidean space (see theorem 3.3).

q.e.d.

4.6 Monotonicity formula

In this section we ask, if there is a monotonicity formula for our flow.

To this end let ρ(x, t) be the backward heat kernel at point (0,t0), i.e,

ρ(x, t) =
1

(4π(t0 − t))n/2
exp

(
− |x|2

4(t0 − t)

)
t < t0.

Setting τ := t0 − t, we have :
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∂

∂t
ρ(F (p, t), t) =

n

2
4π

1
(4πτ)n/2+1

exp
(
−|F (p, t)|2

4τ

)

− 1
(4πτ)n/2

(
2f ′ 〈F, H〉 4τ + 4|F |2

16τ2

)
exp

(
−|F (p, t)|2

4τ

)

=
1

(4πτ)n/2

(
2nπ

4πτ
− f ′ 〈F, H〉

2τ
− |F |2

4τ2

)
exp

(
−|F (p, t)|2

4τ

)

= ρ(F (p, t), t)
(

n

2τ
− f ′ 〈F, H〉

2τ
− |F |2

4τ2

)
.

From ∂
∂tdµt = −f ′|H|2dµt we get

∂

∂t

∫

Mt

ρ(F (p, t), t)dµt = −
∫

Mt

ρ

(
f ′|H|2 − n

2τ
+ f ′

1
2τ
〈F,H〉+

|F |2
4τ2

)
dµt

= −
∫

Mt

ρ

(
f ′|H|2 − n

2τ
+ f ′

1
2τ

〈
F⊥,H

〉
+
|F |2
4τ2

)
dµt

For Y ∈ F ∗(R2n) we set divY := gij 〈∇∂iY, Fj〉 . We have

divY = gij
〈∇∂iY

>, Fj

〉
+ gij

〈∇∂iY
⊥, Fj

〉

= gij
〈∇>∂i

Y >, Fj

〉− gij
〈
Y ⊥,∇∂iFj

〉

= divY > − gij
〈
Y, (∇∂iFj)⊥

〉

= divY > − 〈H, Y 〉 ,

where Y > is the tangent part of Y and Y ⊥ is its normal part. Since L is
closed, then from divergence theorem, we obtain

∫

Mt

divY dµt = −
∫

Mt

〈H,Y 〉 dµt.(4.46)

Now taking Y = 1
2τ ρF , we have

divY =
1
2τ

ρdivF +
〈
∇(

1
2τ

ρ), F
〉

=
nρ

2τ
− gij ρ

4τ2
〈F, Fi〉 〈F, Fj〉

=
nρ

2τ
− ρ

4τ2
|F>|2.(4.47)

Then combining (4.46) and (4.47) we get :
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∂

∂t

∫

Mt

ρ(F (p, t), t) dµt = −
∫

Mt

ρ

(
f ′|H|2 +

(f ′ + 1)
2τ

〈
F⊥,H

〉
+
|F⊥|2
4τ2

)
dµt

= −
∫

Mt

ρ

∣∣∣∣
√

f ′H +
(f ′ + 1)
4τ
√

f ′
F⊥

∣∣∣∣
2

dµt

+
∫

Mt

ρ

(
(f ′ + 1)2

16f ′τ2
− 1

4τ2

)
|F⊥|2 dµt.

So we obtain

∂

∂t

∫

Mt

ρ(F (p, t), t) dµt = −
∫

Mt

ρ

∣∣∣∣
√

f ′H +
(f ′ + 1)
4τ
√

f ′
F⊥

∣∣∣∣
2

dµt

+
1

16τ2

∫

Mt

ρ
(f ′ − 1)2

f ′
|F⊥|2 dµt.

Unfortunately, the second term in the right hand side of this equation has a
bad sign (positive one). So we don’t get a monotonicity formula for this flow.
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