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Abstract

Although neutral atoms do not naturally present electromagnetism, artificial gauge fields may
be induced by different means. This thesis is particularly concerned with the physics of cold
atomic gases in the presence of artificial electromagnetism, and more specifically with those
situations in which atoms experience a non-Abelian gauge field. This thesis hence brings
together two rather disparate areas, namely cold gases and non-Abelian gauge fields, towards
what we have called non-Abelian atom optics.

Gauge potentials, and gauge theories in general, are crucial for the understanding of funda-
mental forces between subatomic particles. The simplest example of a gauge potential is the
vector potential in the theory of electromagnetism. In this example the different vector com-
ponents are scalars, and hence they commute with each other, i.e. the gauge field is Abelian.
Non-Abelian situations, where the gauge potential is a matrix whose vector components do
not commute, are surprisingly scarce in nature. So far, candidates have mainly been restricted
to molecular systems which are largely approachable only by means of spectroscopy. Other
systems are liquid crystals which show the required non-Abelian symmetries.

An elegant derivation and description of the emergence of non-Abelian gauge potentials
has been presented by Wilczek and Zee [WZ84]. These authors showed that in the presence
of a general adiabatic motion of a quantum system with degenerate states, gauge potentials
will appear which are traditionally only encountered in high energy physics to describe the
interactions between elementary particles. Ultracold atomic clouds are particularly promising
candidates for realising such scenarios, since the access to physical parameters is, from an
experimental point of view, unprecedented. In this sense, it was recently proposed that properly
tailored laser beams, coupled to degenerate internal electronic states of a tripod configuration,
can be employed to induce non-Abelian gauge fields in the center of mass motion of cold atoms
[RJOF05]. With the implementation of these proposals, ultracold atoms would offer a unique
testbed for the analysis of non-trivial effects on the properties of multicomponent cold atomic
systems in the presence of non-Abelian gauge fields.

This thesis is devoted to both the detailed analysis of the generation of artificial non-Abelian
fields, as well as to the discussion of the novel physics expected for cold gases in the presence
of these fields. After introducing some fundamentals of atom optics in chapter 1, we discuss
in chapter 2 some simple laser arrangements that allow the creation of non-Abelian gauge
potentials for atoms with a tripod level scheme. We describe a simple experimental scheme
to achieve a constant, but non-Abelian gauge field in detail. Furthermore we investigate non-
Abelian generalizations of both the Landau and the symmetric gauge in detail and discuss how
these may be generated by means of realistically feasible lasers in a tripod scheme.

In chapter 3 we study the wave packet dynamics of a cloud of ultracold atoms in the presence
of non-Abelian gauge fields. First, we discuss the perspectives for the observation of a non-
Abelian Aharanov-Bohm effect in non-commutative interferometric arrangements. We propose
a possible optical tweezer experiment including a non-Abelian flux, for which the population
transfer crucially depends on the path taken. In the second part of this chapter we discuss
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intrinsic non-Abelian effects in the dynamics of cold atomic wavepackets.
Chapter 4 deals with the energy levels of the non-Abelian Hamiltonians, i.e. the Landau

levels of cold atomic gases in non-Abelian gauge fields are analyzed. In particular we identify
effects on the energy spectrum and density distribution which remarkably are due purely to
the non-Abelian character of the fields.

Another approach to understand these systems is to study their dispersion relation and its
effects. In chapter 5 we show that in the presence of a constant but non-Abelian gauge, the
dispersion law of the system presents a quasi-relativistic character (given by the appearance
of a Dirac cone-anticone) similar to that recently found for electrons in graphene. Again, as
for electrons in graphene, we show the possibility to achieve Veselago-type superlensing. As
another consequence of the particular dispersion relation we show in chapter 6, that atom
reflection shows unusual features, since an incident wave may split into two reflected waves at
a barrier, an ordinary specular reflection and an additional non-specular one. Remarkably, the
latter wave can exhibit negative reflection and may become evanescent if the angle of incidence
exceeds a critical value. These reflection properties are crucial for future designs in non-Abelian
atom optics.

In the outlook chapter 7 we discuss the inclusion of the interactions in these systems and
possible remarkable features which may occur in Bose-Einstein condensates in non-Abelian
gauge fields, as e.g. the possibility of creating a bright soliton with positive scattering lengths.

keywords: atom optics, non-Abelian gauge fields, artificial electromagnetism
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Zusammenfassung

Obwohl neutrale Atome auf herkömmliche Art keinen Elektromagnetismus zeigen, ist es den-
noch möglich künstliche Eichfelder mit verschiedenen Mitteln zu erzeugen. Diese Arbeit
beschäftigt sich vor allem mit der Physik kalter Gase in der Anwesenheit künstlicher elektro-
magnetischer Felder, insbesondere wenn die Atome nicht-Abelschen Eichfeldern ausgesetzt
sind. Diese Dissertation verbindet damit zwei bisher unabhängig betrachtete Gebiete der
Physik, nämlich kalte Gase und nicht-Abelsche Eichfelder, die wir zusammengeführt nicht-
Abelsche Atomoptik nennen möchten.

Eichtheorien im Allgemeinen sind entscheidend für das Verständnis der Kräfte zwischen sub-
atomaren Teilchen. Das einfachste Beispiel eines Eichpotentiales ist das Vektorpotential in der
Theorie des Elektromagnetismus. In diesem Beispiel sind die verschiedenen Vektorkomponen-
ten Skalare und kommutieren deswegen miteinander, d.h. das Eichfeld ist Abelsch. Nicht-
Abelsche Fälle, in denen das Eichpotential ein Matrix ist, dessen Vektorkomponenten nicht
miteinander kommutieren, sind überraschend selten in der Natur zu finden. Bislang waren
Kandidaten hauptsächlich auf Molekülsysteme beschränkt, die größtenteils nur mit spektrosko-
pischen Methoden zugänglich sind. Ein weiteres Beispiel sind Flüssigkristalle, welche ebenfalls
die erforderlichen nicht-Abelschen Symmetrien aufweisen.

Eine elegante Herleitung und Beschreibung der Entstehung nicht-Abelscher Eichpotentiale
wurde durch Wilczek und Zee [WZ84] aufgezeigt. Diese Autoren bewiesen, dass während
der adiabatischen Bewegung eines entarteten Quantensystems Eichpotentiale auftreten, die
normalerweise nur in der Hochenergiephysik angetroffen werden, um Wechselwirkungen zwi-
schen Elementarteilchen zu beschreiben. Ultrakalte Atomwolken sind insbesondere Kandidaten
für die Verwirklichung solcher Szenarien, weil die Zugriffsmöglichkeiten auf die physikalischen
Parameter aus experimenteller Sicht beispiellos ist. In dieser Hinsicht wurde vor kurzem
vorgeschlagen, dass entsprechend abgestimmte und mit entarteten internen elektronischen
Zuständen eines Tripod-Termschemas gekoppelte Laserstrahlen verwendet werden können, um
nicht-Abelsche Eichfelder für die Bewegung des Massenschwerpunktes zu erzeugen [RJOF05].
Mit der Verwirklichung dieser Vorschläge würden ultrakalte Atome eine einmalige Testumge-
bung für die Untersuchung dieser nichttrivialen Effekte an mehrkomponentigen Systemen in
Gegenwart nicht-Abelscher Eichfelder bieten.

Diese Dissertation widmet sich sowohl der detaillierten Untersuchung der Erzeugung nicht-
Abelscher Eichfelder, als auch der Diskussion neuartiger Physik, die man für kalte Gase in
diesen Feldern erwartet. Nach einer Einführung in die Grundlagen der Atomoptik in Kapitel 1
erörtern wir in Kapitel 2 einige einfache Laseranordnungen, die die Erzeugung nicht-Abelscher
Eichfelder für Atome mit Tripod-Termschema erlauben. Wir beschreiben im Detail ein ein-
faches experimentelles Schema, um ein konstantes, aber nicht-Abelsches Eichfeld zu erzeugen.
Die nicht-Abelsche Verallgemeinerung sowohl der Landau-Eichung, als auch der symmetrischen
Eichung werden ebenfalls untersucht. Auch für diese Fälle erörtern wir, wie man sie mit rea-
listischen Laserkonfigurationen in einem Tripod-Termschema erzeugen kann.

In Kapitel 3 erforschen wir die Dynamik von Wellenpaketen einer Wolke ultrakalter Atome
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unter dem Einfluss nicht-Abelscher Eichfelder. Zuerst diskutieren wir hier das Auftreten eines
nicht-Abelschen Aharanov-Bohm Effektes in nicht-kommutierenden interferometrischen Anord-
nungen. Wir schlagen weiterhin ein mögliches Experiment mit optischen Pinzetten vor, dass
zu einem nicht-Abelschen Fluss führt. In diesem hängt die Änderung der Besetzungszahlen
entscheidend vom eingeschlagenen Pfad ab. Im zweiten Teil dieses Kapitels diskutieren wir
weitere immanente nicht-Abelsche Effekte in der Dynamik kalter atomarer Wellenpakete.

Kapitel 4 beschäftigt sich mit den Energieniveaus (Landau-Niveaus) nicht-Abelscher Hamil-
tonfunktionen kalter atomarer Gase. Insbesondere identifizieren wir Auswirkungen auf das
Energiespektrum und die Dichteverteilung, die einzig durch den nicht-Abelschen Charakter
des Feldes entstehen.

Ein anderer Zugang zu diesen Systemen ist die Untersuchung der Dispersionsrelation und
ihrer Auswirkungen. Im Kapitel 5 zeigen wir, dass in Gegenwart eines konstanten aber
nicht-Abelschen Eichfeldes die Dispersionsrelation, wie unlängst auch in Graphen gefunden,
einen quasi-relativistischen Charakter (angesichts des Auftretens eines Dirac Doppelkegels)
annimmt. Ferner, wie für Elektronen in Graphen, demonstrieren wir die Möglichkeit eine
Veselago-Superlinse zu erzeugen. Als eine weitere Auswirkung dieser speziellen Dispersions-
relation zeigen wir in Kapitel 6, dass atomare Reflektion besondere Eigenschaften hat. Eine
einfallende Welle kann sich an einer Barriere in zwei reflektierte Wellen aufteilen, eine normale,
symmetrisch gespiegelte Reflektion und eine zusätzliche, nicht symmetrisch gespiegelte. Be-
merkenswerterweise kann letztere negative Reflektion aufweisen und sogar evaneszent werden,
wenn der Einfallswinkel einen kritischen Wert überschreitet. Diese Reflektionseigenschaften
sind entscheidend für die zukünftige Entwicklung nicht-Abelscher Atomoptik.

Im Ausblick in Kapitel 7 beschreiben wir die Einführung von Wechselwirkungen in diesen
Systemen. Wir diskutieren bemerkenswerte Eigenschaften die in Bose-Einstein-Kondensaten
in nicht-Abelschen Eichfeldern auftreten können, wie z.B. die Möglichkeit der Erzeugung heller
Solitonen mit positiver Streulänge.

Schlagwörter: Atomoptik, nicht-Abelsche Eichfelder, künstlicher Elektromagnetismus
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Chapter 1

Introduction

1.1 Overview

Over the last few decades atom optics has become one of the most active and interesting re-
search fields in atomic physics. In atom optics, compared to conventional photon optics, the
roles of light and matter are often reversed, using light to manipulate atomic matter waves.
In this chapter we give a brief overview of basic atom optics ideas. Section 1.2 is devoted to
an introduction to atom-light interaction as the fundamental principle for cooling and manip-
ulating cold atoms. In section 1.3 we discuss a selection of some atom optics basics which are
relevant for this thesis, such as the ideas of atomic mirror, atom interferometer and periodic
potentials for atoms. In section 1.4 we study the effects of a gradual decrease in temperatures
down to nK, and discuss the consequences of reaching the Bose-Einstein condensation regime.

1.2 Atom-Light-Interaction

1.2.1 Two-level atom

To describe the basic effects of atom-light interaction it is sufficient to consider a two-level atom
in a monochromatic light field, including the spontaneous emission γ of light as a dissipative
effect, see fig. 1.1.

red blue

|e〉

|g〉

γ
δ = ωL − ωA

δ = ωL − ωA

ωA

ωL ωL

Fig. 1.1: Atomic scheme for a two-level atom. δ = ωL−ωA is the detuning of the laser from the
atomic transition. The laser can have less energy than the transition (red detuned,
δ < 0), or more energy than the transition (blue detuned, δ > 0) or it can be resonant
(δ = 0).

The interaction between the atom and the laser light induces a mechanical force acting on
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Chapter 1 Introduction

the center of mass of the atom. Without entering into all calculational details (for a rigorous
discussion see e.g. ref. [Mey01]) we just mention that the resulting average force exerted by the
light on the atom acquires the form:

F = ~qiγρee − 2~qrδρee (1.1)

where δ is the laser detuning (laser frequency minus transition frequency), γ is the spontaneous
emission rate, Ω(z) = −eE(z)d/~ is the Rabi frequency (with E(z) the electric field and d the
electric dipole associated to the two-level transition), qr + iqi = 1

Ω
∂Ω
∂z and ρee = 〈e|ρ|e〉 is the

stationary population of the excited state.
The force eq. (1.1) consists clearly of two parts. The first term on the rhs is the radia-

tion pressure force, Frp, which may be explained on the grounds of absorption-spontaneous
emission cycles. The net force from spontaneous emission is 0 (since the photons are emitted
spontaneously in arbitrary directions) whereas the net force induced by the momenta of the ab-
sorbed lasers photons is given by F = ~κγρee where ~κ is the momentum transfer per absorbed
photon. The radiation pressure force is a dissipative force because the action of spontaneous
emission cannot be reversed, since the associated recoil gives a kick in a random direction.
Hence, the radiation pressure force can be used for cooling.

The second term on the rhs in eq. (1.1) is called dipole force and it is induced by the spatial
dependence of the laser intensity. The dipole force can be explained by recalculation of the
energies of the ground and excited state of a two level atom up to 2nd order in perturbation
theory. This leads to a force acting on ground-state atoms that corresponds to the left term
on the rhs in eq. (1.1). The dipole force is a conservative force and can therefore be used
for trapping atoms without any heating (as long as the detuning |δ| ≫ γ). For red detuning
(δ < 0) the atom in the ground state is driven towards regions of larger intensities (and it
may be trapped there) whereas for blue detuning (δ > 0) the atom is driven towards regions
of lower intensities (the laser repels the atoms), see fig. 1.2.

blue δ > 0

|g〉

|e〉

red δ < 0

|e〉

|g〉

Fig. 1.2: Energy shifts through the dipole force: for blue detuning (δ > 0) the atoms are
expelled from the laser beam, for red detuning (δ < 0) the atoms are attracted
towards the high intensity

The relative role of the radiation pressure and the dipole force depends on the particular case
considered. For laser plane waves there is no dipole force (since the laser intensity is constant)
but the absorption of ~k from the plane wave leads to a radiation pressure force. On the other
hand, for a laser standing wave the radiation pressure force F rp vanishes, but the minima and

2



1.2 Atom-Light-Interaction

maxima of the standing wave create a space-dependent dipole force. As mentioned above, the
radiation pressure is crucial in cooling techniques, whereas the dipole force (and the associated
dipole potential) is fundamental for the manipulation of atoms, e.g. by optical tweezers or in
the so-called optical lattices (see section 1.3.4).

1.2.2 Laser Cooling

As an example of the mechanical effects induced by radiation pressure on atoms we would like
to comment briefly on laser cooling. Laser cooling has been a prerequisite for the intensive
studies in the field of atom optics over the last few years. The importance of these techniques
was recognized with the Nobel prize in 1997 [Chu98, CT98, Phi98]. In this section we briefly
mention the simplest (and first proposed) laser cooling technique, i.e. Doppler cooling [HS75,
WD75]. For a more detailed introduction to laser cooling see [MdS99].

As the name suggests, Doppler cooling is based on the fact that the Doppler shift (−k · v)
leads to a velocity-dependent detuning. One may consider a two-level atom as the one discussed
previously and two counterpropagating lasers with the same frequency (ωL) and intensity (fig.
1.3). It is clear from fig. 1.4 that if the detuning δ < 0 then counterpropagating photons
are closer to resonance, and hence are absorbed with larger probability. After the photon
absorption, a spontaneous emission may occur in a random direction, leading to an atom recoil
in the opposite direction. This absorption-emission cycle will lead to a net viscous force, which
for v in the vicinity of 0 acquires the form −ηv, with η the friction coefficient, which depends
on the parameters of the system. The friction force is indeed very strong and this arrangement
has accordingly been called “optical molasses”.

The random recoil following a spontaneous emission and the randomness in the light ab-
sorption lead to a momentum diffusion, which sets a limit to the temperature reachable using
this technique: TDoppler = ~γ

2kB
, which for e.g. 23Na amounts for approximately 240µK. A first

experimental demonstration of Doppler cooling is discussed in refs. [PM82, ABLM82]. Lower
temperatures, down to tens of recoil temperature Trec = ~k2/2mkB, are possible by means
of polarization gradient techniques, such as Sisyphus cooling [LWWP88, DCT89]. But these
techniques are limited by Trec.

v

ωL,+k ωL,−k

Fig. 1.3: Doppler cooling is based on the Doppler effect, see the atomic level scheme in fig. 1.4.
The momentum transfer during the absorption leads to slowing down of the atom,
whereas the phonon emission in a random direction averages out over time.

3



Chapter 1 Introduction

ω→→L ω→←L ωL ωA

|e〉

|g〉

Fig. 1.4: Doppler cooling for a red detuned laser (ωL < ωA). Atoms counterpropagating to
the laser will see it with a higher frequency ω→←L = ωL + k · v and are more likely
to absorb a photon because they are closer to resonance. Atoms co-propagating with
the laser will see it with a frequency ω→→L = ωL − k · v.

1.2.3 Dark states

In the previous sections we discussed the simplified case of a two-level atom. However, many
relevant systems involve more than two levels. Multilevel atoms lead to interesting novel physics
induced by quantum interference, and in particular to the key concept of dark states, which
plays a crucial role at many points of this thesis.

|0〉@ω0

|1〉@ω1 |2〉@ω2

Ωp(r), ωp Ωc(r), ωc

Fig. 1.5: Three levels Λ-system with laser transitions as described by the Hamiltonian (1.2)
(except spontaneous emission from |0〉)

In this section we consider the case of a Λ-form three-level atom with two ground states (|1〉
and |2〉) and one excited state (|0〉) which are coupled as shown in fig. 1.5 by the so-called
control laser (with corresponding Rabi frequency ΩC(r) and frequency ωC) and the so-called
probe laser (with Rabi frequency ΩP (r) and frequency ωP ). The system is described by the
Hamiltonian

H = HCM +
2∑

j=0

~ωj|j〉〈j| + ~
(
ΩP e−iωP t|0〉〈1| + H.c.

)
+ ~

(
ΩCe−iωCt|0〉〈2| + H.c.

)
, (1.2)

where HCM denotes the Hamiltonian for the center of mass motion. At this point, to simplify
the discussion of the dark state concept [AO76], we do not consider the center of mass motion,
although we may already anticipate that it plays a fundamental role in important laser cooling
techniques and also at many points in this thesis.
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1.2 Atom-Light-Interaction

Solving the Schrödinger equation i~|Ψ̇〉 = H |Ψ〉, we obtain for each component of |Ψ〉 =
∑2

j=0 Ψj(r, t)|j〉 a set of coupled equations:

i~Ψ̇0 = ~ω0Ψ0 + ~
(
ΩP e−iωP tΨ1 + ΩCe−iωCtΨ2

)
, (1.3)

i~Ψ̇1 = ~ω1Ψ1 + ~Ω∗P eiωP tΨ0, (1.4)

i~Ψ̇2 = ~ω2Ψ2 + ~Ω∗CeiωCtΨ0. (1.5)

We remove the explicit time-dependence of the Hamiltonian by transforming

Ψ0 = Φ0e
−i(ω1+ωP )t, (1.6)

Ψ1 = Φ1e
−iω1t, (1.7)

Ψ2 = Φ2e
−i(ω1+ωP−ωC)t, (1.8)

obtaining

i~Φ̇0 = ǫ01Φ0 + ~ΩCΦ2 + ~ΩP Φ1, (1.9)

i~Φ̇1 = ~Ω⋆
P Φ0, (1.10)

i~Φ̇2 = ǫ21Φ2 + ~Ω⋆
CΦ0, (1.11)

where ǫ21 = ~ (ω2 − ω1 + ωC − ωP ) is the detuning from the 2-photon resonance (|1〉 ↔ |2〉)
and ǫ01 = ~ (ω0 − ω1 − ωP ) is the detuning from the single photon resonance (|1〉 ↔ |0〉). In
the following we consider the resonant case ǫ21 = 0. From the form of the equations it becomes
clear that the state

|D〉 =
1

Ω
(ΩC |1〉 − ΩP |2〉) Ω2 = Ω2

C + Ω2
P (1.12)

is not coupled to |0〉. As shown in fig. 1.6, the original Λ system reduces to an uncoupled dark
state |D〉, and two coupled states, namely |0〉 and the bright state

|B〉 =
1

Ω
(ΩP |1〉 + ΩC |2〉) . (1.13)

Up to this point we have not considered the spontaneous emission from |0〉 into the ground
states. This incoherent process populates both the bright and the dark state. Note however,
that the population pumped in this way into |D〉 cannot abandon the dark state, since it
is uncoupled from |0〉. This phenomenon receives the name of population trapping and it is
crucial for ideas like optical pumping and VSCPT cooling. The latter allows overcoming the
recoil temperature limit of laser cooling [AAK+88].

1.2.4 Trapping of neutral atoms

Trapping neutral atoms is of course crucial for the controlled study of cold gases. Trapping may
be induced by “conservative” traps based on the Zeeman effect for low-field seeking states (using
quadrupolar magnetic fields [MPP+85, BEM87] or Ioffe-Pritchard configurations [Pri83]) or by
means of optical dipole traps, based on the above mentioned dipole force [CBAC86, RPC+87,
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Chapter 1 Introduction

|0〉@ω0

|1〉@0 |2〉@0

Ωp(r) Ωc(r)

|D〉@0|B〉@0

|0〉@ω0

|D〉@0

|+〉@Ω

|−〉@ − Ω

Fig. 1.6: Different bases for the Λ-atom. The energies are shifted to ω1 = ω2 = 0: bare
states with laser couplings (left), space dependent dark-bright state basis (middle)
and dressed states basis (right).

GLJP88, MCH93, TK96]. The radiation pressure may also be employed to form a dissipative
trap, which combines both the molasses effect and a restoring force. Such traps are called
magneto-optical traps (MOT) [RPC+87]. In this section we just briefly comment on the MOT
as an example of how atoms may be trapped. A more rigorous description of MOTs and other
trapping schemes may be found e.g. in [MdS99].

Here we discuss the idea focusing in the 1D case. This scheme can be easily generalized
to 3D. We consider atoms with a ground state with angular momentum Jg = 0 and an ex-
cited state with Je = 1. The atom is affected by two counter-propagating lasers along z-axis
with the same intensity and frequency (red detuned from the atomic transition) but oppo-
site circular polarization (see fig. 1.7). A pair of coils in anti-Helmholtz configuration induce
an inhomogeneous magnetic field, which leads to an inhomogeneous linear dependence of the
Zeeman energy ∝ mz. If an atom moves to the right for z > 0, it absorbs preferentially the
counter-propagating photon, and will hence be pushed to the left. The contrary is true for
an atom at z < 0. Note that the arrangement is similar to that of Doppler cooling but with
the added ingredient of the spatial dependence of the detuning. The result is a force (in the
vicinity of z = 0) of the form −ηv−κz, where η and κ respectively are the friction and restoring
coefficients. Therefore the atom is not only cooled but also spatially confined.

0

mS = 0

mS = 0

mS = −1

mS = 1

E

B ∝ z

σ+ σ−

Fig. 1.7: Level scheme of a magneto-optical trap (MOT), for details see text
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1.3 Atom Optics

1.3 Atom Optics

1.3.1 Thermal de Broglie wavelength

In 1923 Louis de Broglie [dB37] suggested that, similar to the particle-wave duality of radiation,
matter should behave also as a wave, with an associated de Broglie wavelength λ = h/p, where
p is the momentum and h is Planck’s constant. The idea of a (quasi-)localized particle is
recovered by means of the wavepacket concept, i.e. a superposition of plane waves with different
frequencies that yield a localized solution.

Associated with this idea and the concept of temperature, here we encounter the key idea of
the thermal de Broglie wavelength. Let us consider a gas of particles in free space in thermal
equilibrium. The velocity distribution of the particles obeys the Maxwell-Boltzmann velocity
distribution [Hua87]

f0(p) ∝ e−(p−p0)
2/2mkBT . (1.14)

The width of the momentum distribution is directly related to the temperature ∆p =
√
mkBT ∝√

T . This is the reason why cooling is actually achieved by narrowing the velocity distribu-
tion. Due to the uncertainty principle the narrower the momentum distribution (i.e. the lower
the temperature) the larger the spatial delocalization of the particles, i.e. the more wave-like
they are. We can characterize this delocalization by means of the so-called thermal de Broglie
wavelength

λT =

√

2π~2

mkBT
. (1.15)

Rubidium atoms at room temperature have λT ≈ 1 · 10−11m, which is even smaller than
the Bohr radius (≃ 0.5Å). This of course explains why quantum mechanical effects are not
observable at high temperatures. On the contrary a combination of laser cooling and evapora-
tive cooling allows for temperatures of the order (or even below) 100 nK, for this temperature
λT ≈ 0.6µm, i.e. about 10000 times the Bohr radius. In that case matter wave phenomena are
obviously dominant. Indeed the atoms may enter into the regime of quantum degeneracy as we
discuss in following sections. Matter wave behaviour was first observed in electrons [MSS53]
and neutrons [GO79]. Atom optics considers the matter wave phenomenology of cold atoms.
However, matter wave behaviour is not restricted to single atoms. Diffraction and interference
have also been achieved with big molecules such as Fullerenes by Zeilinger’s group [ANVA+99].
In this section we briefly comment on some topics related to atom optics which are particularly
relevant for this thesis. For a good (and much more general) review see ref. [Mey01].

1.3.2 Atom Mirror

One of the most basic optical devices is a mirror. Cold atoms may be reflected by a sufficiently
strong repulsive potential. From our discussion of the dipole force we know that a blue detuned
laser induces a repulsive dipole potential. To use the dipole force efficiently to reflect atoms,
Cook and Hill [CH82] suggested an evanescent wave mirror. There, a laser is totally reflected
inside a prism and creates an evanescent wave outside the prism, which induces a dipole
potential with an exponential profile. The first implementation was accomplished by Balykin
and collaborators [BLOS87, BLOS88]. Alternatively, a sheet of alternating currents [RAB+95]
can produce a magnetic field above its surface, which decreases exponentially with distance from
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Chapter 1 Introduction

the surface. An atom with a magnetic moment antiparallel oriented to the mirror experiences
a repulsive potential (magnetic mirror).

1.3.3 Atom Interferometry

Atom interferometers are devices that coherently split, let evolve, and recombine matter waves.
At the recombination an interference pattern may appear that yields precise information about
the phase accumulated during the evolution. In this subsection we just review the main ideas
very briefly. For more details see e.g. [BMR99, GDSB01] or the book of Berman [Ber97].

In general, one distinguishes two kinds of atom interferometers: the internal state interfer-
ometer and the de Broglie interferometer. The internal state was proposed by Bordé in [Bor89].
There, a 2-level-atom in its ground state is split by a laser into a superposition of ground state
and excited state. These two states then undergo a different time evolution (the excited state
absorbs a photon). A second laser later recombines both states and yields an interference
pattern. Experiments can e.g. measure the effects of the geometric phase accumulated in the
different paths [MRG+92]. The de Broglie interferometers [ROB+95] do not explicitly employ
the internal states of the atoms but split the atoms spatially without changing the internal
state, allowing later a recombination. Using lasers as beam splitters one can also observe Bragg
scattering from a standing laser wave [GML95].

The applications for atom interferometers are numerous: Atom clocks, precision measure-
ment (gravitational constant G and tests of Newtons laws resp. effects of alternative gravita-
tional theories [SMB+98] [LCP99], fine-structure constant α), gravitometry, general relativity
tests etc. Furthermore atom interferometers can be used to measure the rotation of the in-
terferometer itself or that of the Earth (Sagnac effect [ABS94]) [RKWH91, HN93]. For the
experiments a variety of atoms are used, e.g. alkine (Li, Na, Rb, Cs), earth-alkaline metastable
atoms (Mg∗, Ca∗), rare gas metastable atoms (He∗, Ar∗, Ne∗), and molecules (I2, Na2, . . .).
Other experimentalists are concerned with extending the experiments to bigger objects, like
C60, organic molecules, and possibly even viruses. Recently, also Bose-Einstein-Condensates
(see following sections) have been used for interferometry. They remove some difficulties from
atom interferometry because they have a narrower momentum distribution and can permit e.g.
a longer interaction time and a higher particle flux [TSK+00].

1.3.4 Optical Lattices

An interesting possibility for manipulation of cold atoms is provided by the so-called optical
lattices. Two counterpropagating lasers induce a stationary wave which leads to a periodic
dipole potential (if the lasers are far detuned, we may neglect spontaneous emission and consider
the system as conservative)

V (z) = V0 sin2 (qz) (1.16)

where q = 2π/λ, with λ the laser wavelength, giving a lattice period of λ/2. Remarkably, the
physics of atoms in optical lattices is similar to that of electrons in crystals, linking cold gases
physics with fundamental problems of condensed-matter theory. Moreover, optical lattices
provide the additional advantage of being free from defects (and of course of phonons). As a
consequence, cold atoms in optical lattices have attracted a large interest in recent years. For
details see the reviews [LSA+07, BDZ08] and also earlier reviews [JD96, GR01, BG05].
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1.3 Atom Optics

As for the case of electrons in solid state physics, the periodicity of the potential results in
a band-like structure for the allowed energies of the atoms inside the lattice. The different
bands are characterized by a given dispersion law Eν(κ) as a function of the quasi-momentum
κ inside of the first Brillouin zone, which has an associated group velocity vg = ∂Eν/∂κ.
Forbidden regions (gaps) also appear (see fig. 1.8). The particular dispersion law in the different
bands results in striking observable phenomena for cold atoms in optical lattices, as e.g. Bloch
oscillations [DPR+96, WBM+96, MMC+01]. The latter are induced when a constant force
(e.g. gravity) is applied along the lattice axis. This force drags the wavefunction through the
dispersion relation as shown in fig. 1.9. The periodic character (positive and negative) of the
group velocity vg induces an oscillatory motion of the atom, i.e. the Bloch oscillations.
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−q qκ

E

Fig. 1.8: Band structure for the first Brillouin zone for a periodic potential. Allowed energy
E vs. quasi momentum κ, gaps (shaded areas), energy bands are periodic in quasi
momentum with period 2q = 2 2π

λ

−q−q−q qqq

EEE

κκκ

Fig. 1.9: Bloch oscillation in a periodic potential (κ=quasi momentum), shown is a wavepacket
prepared in the lowest band (see fig. 1.8), a constant force dragges the wavepacket
through the band resulting in an oscillatory motion of the atom in x-space.

Optical lattices have been thoroughly studied during the last years, including the observation
of band structure [GBM+01, DSH+02, FMB+02], coherent matter wave interferometry [AK98,
MCM+02], studies of superfluidity of moving condensates[BCF+01], quantum chaos [HHB+01],
collapse and revival in a matter wave field [GMHB02], etc. Interestingly for sufficiently deep
optical lattices, the physics may be reduced to the lowest energy band. The Hamiltonian
describing an interacting Bose gas can then be reduced to a Bose-Hubbard Hamiltonian (for
more details see e.g. [JZ05])

HBH = −J
∑

<i,j>

b†ibj +
U0

2

∑

j

b†jb
†
jbjbj +

∑

j

ǫjb
†
jbj , (1.17)
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Chapter 1 Introduction

where bi, b
†
i are the annihilation and creation operators of particles in the i-th lattice site, J

is the hopping rate, U0 is the interaction coupling constant describing the on-site interactions,
and ǫj describes a (possibly inhomogeneous) local on-site energy. The coefficients J and U0

are a function of the system parameters. As predicted for this model [FWGF89, JBC+98],
a superfluid to Mott insulator transition has been observed in a remarkable experiment in
2002 [GME+02]. The latter experiment has generated a huge theoretical and experimental
interest on optical lattices, which we do not review at this point, since it lies well beyond the
scope of this thesis.

1.4 Bose-Einstein condensation

Bose-Einstein condensation (BEC) in bosonic gases was predicted by A. Einstein in 1925 [Ein24,
Ein25] based on quantum statistic ideas developed by Bose [Bos24]. It took seven decades until
it was experimentally achieved [AEM+95, DMA+95, BSTH95] in a clean way (although the
idea of BEC played of course a major role in the theory of superfluid Helium [Lon38]). The
experimental realization of BEC was awarded with the Nobel prize 2001 to W. Ketterle [Ket02],
E. Cornell and C. E. Wieman [CW02].

Bose-Einstein condensation is a phase transition into a state characterized by the macroscopic
occupation of a single quantum state. Remarkably, this transition occurs even in an ideal
gas, i.e. in the absence of any interparticle interaction. A careful discussion of BEC in ideal
gases may be found in many textbooks [Hua87]. Here we just briefly mention the idea. As
discussed in section 1.3, when the temperature decreases the thermal de Broglie wavelength
λT ∝ 1√

T
increases, see fig. 1.10. For a sufficiently low temperature and sufficiently large

particle density λT becomes greater than the interparticle distance R. Below this temperature
quantum statistics starts to play an important role. In a homogeneous 3D Bose gas in free
space the ground state becomes macroscopically populated when the phase space density ρλ3

T >
2.612. This criterion defines the critical temperature (TC) for the onset of condensation

TC =
2π~

2

mkB

( n

2.612

)2/3

. (1.18)

R
RR

λT

λT

Fig. 1.10: Interparticle distance R = ρ−1/3 versus thermal de Broglie wavelength λT , the tem-
perature decreases from left to right
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1.4 Bose-Einstein condensation

The condensate fraction may then be expressed as:

N0(T )

N
= 1 −

(
T

TC

)3/2

. (1.19)

Typically, in experiments on alkali atoms, and due to the very low density of the gas samples,
extremely low temperatures (around 100 nK) are necessary to achieve condensation. Normally
a combination of laser and evaporative cooling, and of different trapping techniques is required.

1.4.1 Interactions in BECs: Introduction into the GPE

The previous discussion dealt with ideal, i.e. non-interacting particles. Interactions, however,
play a crucial role in quantum gases, inspite of their extreme diluteness (with typical densities
below 1014 atoms/cm3). In typical experiments, these interactions may be considered as short-
range van-der-Waals like interactions, decaying as 1/r6. In dilute gases we are interested in
asymptotic scattering properties. In principle one should perform a full analysis taking into
account scattering in different partial waves. However, at the very low temperatures considered
here, the centrifugal barrier associated with partial waves with non-zero angular momentum
becomes an unsurmountable barrier for such low energetic particles, and consequently only
s-wave scattering is significant. The s-wave scattering is characterized by a single parameter,
namely the s-wave scattering length a. Hence, we just need the value of a to fully describe
the scattering problem. Therefore, we may substitute the actual interaction potential by an
equivalent contact pseudopotential of the form

V (r) =
4πa~2

m
δ(r) ≡ gδ(r). (1.20)

Let us assume the following ansatz (for foundations see e.g. the review paper of Dalfovo et al.
[DGPS99] or the books of Pitaevskii and Stringari [PS04] and Pethick and Smith [PS02]). We
can separate the condensate part Ψ(r, t) from the excitations δΦ̂′ because the condensate part
is macroscopic and can be treated as a classical field

Φ̂(r, t) = Ψ(r, t) + δΦ̂′(r, t), (1.21)

where Ψ(r, t) acts as the condensate wavefunction (and also as the order parameter for the BEC
transition). The corresponding Ψ̂4 Hamiltonian leads, under this mean-field approximation, to
a non-linear Schrödinger equation (also known as Gross-Pitaevskii equation) for the condensate
wavefunction

i~
∂

∂t
Ψ(r, t) =

(

−~
2∇2

2m
+ Vext(r) + g|Ψ(r, t)|2

)

Ψ(r, t) , (1.22)

where Vext is the external trapping potential. Because of the cubic nonlinearity gΨ3, BEC
physics is hence inherently non-linear. Actually the previous non-linear Schödinger equation
is basically the same as the one found in other nonlinear media (most relevantly in nonlinear
optics in Kerr media). Due to this resemblance atom optics of condensates has been called
nonlinear atom optics.
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Chapter 1 Introduction

1.4.2 Solitons

One of the most striking phenomena resulting in various media from nonlinearity is the appear-
ance of solitons, first documented in shallow water channels by Russel in 1834 [Rus44]. A soliton
or solitary wave is a wavepacket with a self-preserving shape, as a result of the compensation
of the wavepacket spreading by the nonlinearity. One example of a system allowing solitary
solutions is the usual, rescaled Gross-Pitaevskii-equation for the order parameter Ψ(x, t) in one
dimension:

i
∂

∂t
Ψ(x, t) =

(

−∂
2
x

2
+ Vext(x) + g|Ψ(x, t)|2

)

Ψ(x, t). (1.23)

Let us consider Ψ(x, t) to be a localized wavepacket. The kinetic energy leads to a spreading of
the wavepacket. This can be compensated by a nonlinearity that compresses the wavepacket
when g < 0 (attractive interaction). When the wavepacket spreads the density |Ψ|2 is reduced
but −|g||Ψ|2 increases (i.e. the system gains nonlinear energy). Hence, the attractive non-
linearity works against the kinetic energy term. In a 1D environment (we discuss the issue
of dimensionality below) this leads to a stable wavepacket, the so-called bright soliton, see
fig. 1.11, which was observed in BEC experiments several years ago [SPTH02, KSF+02]. The
Gross-Pitaevskii-equation for g > 0 (repulsive interactions) also supports solitonic solutions,
the so-called dark solitons, which consist of a density notch (accompanied by a phase slip) prop-
agating without distortion (fig. 1.11). Dark solitons have also been experimentally realized in
BECs [BBD+99, DSF+00].

Although solitons are stable in 1D, they are not stable in higher dimensions. This point
is rather easy to understand for bright solitons by means of a simple Gaussian ansatz. Let’s
consider a d-dimensional Gaussian with width σ. The energy of the system results from the
combination of kinetic energy, trap energy and interaction energy E = Ekin + Etrap + Eint.
Inserting the Gaussian ansatz, we may easily obtain the scaling Ekin ∝ σ−2, Etrap ∝ σ2 and
Eint ∝ −σ−d. Clearly E possesses a minimum for a given σ only in 1D, and hence stable
solitonic solutions are only possible in 1D environments.

|Ψ|2

0
0

Eint

Ekin

x

|Ψ|2

0
0

Eint

Ekin

x

Fig. 1.11: Density profile of a dark soliton with positive mass and repulsive interaction (g > 0,
left) and bright soliton with positive mass and attractive interaction (g < 0, right)
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Chapter 2

Artificial Electromagnetism

In this chapter we discuss the idea of artificial electromagnetism induced in neutral atoms. We
shall review different possibilities to achieve this goal, with a special emphasis on the generation
of artificial electromagnetism using electromagnetically-induced transparency techniques and
the possibility of generating non-Abelian electromagnetism. In the last part of this chapter we
shall comment on the realization of different non-Abelian gauge fields.

2.1 Introduction

Before discussing artificial electromagnetism we recall in this section some basics of standard
electromagnetism, which, as it is well-known, is given by the four coupled Maxwell-equations
[Max65], which in vacuum are of the form

∇ ·E =
1

ǫ0
ρ ∇ ·B = 0 ∇ ×B = µ0J + µ0ǫ0

∂E

∂t
∇ ×E = −∂B

∂t
, (2.1)

where E is the electric field and B is the magnetic field. The homogeneous Maxwell equations
(second and fourth above when reading from left to right) are immediately satisfied with the
introduction of a vector potential A and a scalar potential φ:

B = ∇ ×A E = −∇φ− ∂A

∂t
. (2.2)

Both A and φ are not uniquely defined, since a gauge transformation

A′ = A+ ∇Λ φ′ = φ− ∂Λ

∂t
(2.3)

preserves the same fields B and E. Because of this indefiniteness in A and φ, they must be
specified for the calculations, i.e. we have to choose a gauge. Special types of gauge are the
Coulomb gauge (∇ · A = 0), which is of special interest in magnetostatics, and the Lorenz
gauge ( 1

c2

∂φ
∂t + ∇ · A = 0), which is particularly useful in the treatment of electromagnetic

waves.
In quantum mechanics the vector potentialA and the scalar potential φ are used to introduce

the electromagnetic fields into the Hamiltonian operator. This is accomplished via the so-called
minimal coupling. The Schrödinger equation for an electric charge q in the presence of an
electromagnetic field reads

i~
∂Ψ

∂t
=

(

− ~
2

2m

(

∇ − i
q

c
A
)2

+ qφ

)

Ψ , (2.4)
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Chapter 2 Artificial Electromagnetism

where we have introduced the minimal coupling transformation

∂

∂t
→ ∂

∂t
+ i

q

~
φ ∇ → ∇ − i

q

c
A. (2.5)

Artificial electromagnetism is the creation of Hamiltonians that effectively resemble the
structure of eq. (2.4), but without any real electromagnetic fields in the system and not even a
charge involved. At first, the idea of having electromagnetism in neutral atoms seems certainly
surprising. In principle one would not expect any electromagnetism in neutral atoms, especially
if we do not take into account the internal structure of the atoms.

Obtaining an artificial electric field is easier than creating an artificial magnetic field, since
it only requires an additional scalar potential. An artificial electric field can be created e.g.
by using the gravitational field as an equivalent electric field [AK98]. However, obtaining
a magnetic field demands the artificial creation of a vector potential. As we show in the
following sections of this chapter, this may be done by rotating a quantum gas (see section 2.2),
by properly tailoring the hopping rate in optical lattices (section 2.3), or in a continuous
implementation by dark-state techniques in Λ- and tripod-configurations (section 2.4). The
latter (also the lattice implementation) allows for the creation of non-Abelian gauge fields. We
study in detail this possibility in section 2.5 where we discuss general conditions for a non-
Abelian vector potential in a tripod configuration. We conclude this chapter in section 2.6.

2.2 Rotation

Experiments on cold quantum gases have reached an unprecedented degree of control, offering
thus extraordinary possibilities for the analysis of the effects of gauge fields on atomic systems.
A simple way of generating a gauge field in ultracold gases is to rotate Bose-Einstein conden-
sates with an angular frequency Ω. This is relatively easy to understand as follows [PS04]. Let
us start with a non-rotating BEC in a 2D pancake-trap.

Hlab =
1

2m
p2 +

1

2
mω2r2. (2.6)

We introduce a rotation with angular frequency Ω = (0, 0,Ω) (fig. 2.1). Moving into the
co-rotating frame we get:

Hrot = Hlab − Ω · L (2.7)

=
1

2m
p2 +

1

2
mω2r2 − Ω · (r×p) (2.8)

=
1

2m
(p −mA)2 +

1

2
m
(
ω2 − Ω2

)
r2 . (2.9)

In the rotating frame the Hamiltonian has an effective gauge field A = Ω×r. This leads to
a magnetic field B = 2Ω. This B is homogeneous and its direction is parallel to the axis
of rotation Ω. Furthermore, the new trap has a frequency of ω2 − Ω2. Thus, a rotating
condensate resembles a gas under the influence of a constant magnetic field B0 = mΩ. The
field of rotating gases is experimentally well-studied, e.g. BEC experiments by the groups of J.
Dalibard [MCWD00], W. Ketterle [ASRVK01] and E. Cornell [MAH+99]. These lead to the
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2.3 Discrete Systems: Lattices

observation of many interesting phenomena, including e.g. vortices, vortex-lattices, Landau
level physics and Quantum-Hall-like phenomena in rotating quantum gases [KMP00, SCE+04,
BSSD04, WG00].

x

y

z,Ω z,B

Fig. 2.1: Rotating BEC in a 2D pancake trap in the xy-plane as seen from the laboratory frame
(left, cf. eq. (2.6)). The same BEC in the rotating frame (right, cf. eq. (2.9)) feels an
effective magnetic field pointing parallel to the axis of rotation.

2.3 Discrete Systems: Lattices

Before discussing the effects of artificial electromagnetism in lattices, we will review briefly
the work of D. Hofstadter concerning electrons in a 2D square lattice of lattice size a under
the influence of a magnetic field perpendicular to the lattice [Hof76]. We restrict our analysis
to that of a single Bloch band (deep lattice). The Bloch energy function in the tight-binding
model acquires the form

H(k) = −2V0

(
cos(kxa) + cos(kya)

)
. (2.10)

In the following we perform the so-called Peierls substitution [Pei33] ~k→ p̂− eA/c, and thus
H → Ĥ. We then obtain the following eigenvalue equation

ǫΨ(x, y) = e−i∆AxΨ(x+ a, y) + ei∆AxΨ(x− a, y) + e−i∆AyΨ(x, y + a) + ei∆AyΨ(x, y − a) ,
(2.11)

where ∆ = ea
~c and ǫ = − E

V0
. The corresponding eigenenergies ǫ obey a fractal spectrum, the

so-called Hofstadter butterfly (see fig. 2.2). This is very different from the case without lattice
where equally spaced energy levels are expected, so-called Landau levels [Lan30] discussed in
sec. 4.2. Only for small magnetic fields (α ≪ 1, see fig. 2.2) or tending to the the continuum
(lattice spacing a → 0) these Landau levels are regained. It is however difficult to generate
high magnetic fields to measure this spectrum, because typical crystal lattice spacings are in
the order of 1 Å.

Eq. (2.11) shows that the magnetic field leads to defined phase jumps between different
lattice sites. This is a crucial observation, since it is the key for the simulation of magnetic
fields in neutral atoms in optical lattices, which was for the first time proposed by Jaksch and
Zoller [JZ03]. Now we are going to review how these phase jumps can be created artificially in
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0

0

4

−4
1
α

E/J

Fig. 2.2: The Hofstadter butterfly is the spectrum of the single-band Hamiltonian in a pe-
riodic potential in a magnetic field, e.g. the real magnetic field of the Hofstadter-
Hamiltonian (2.12) or the artificial magnetic field of the Jaksch-Zoller-Hamiltonian
(2.11). α = a2B

2π~c/e is a dimensionless parameter where a is the lattice spacing, h is
Plancks constant, c is the speed of light, e is the electric charge, and B is the mag-
netic field. The red lines in the lower left corner are the Landau levels obtained in
the continuum limit.

optical lattices using the Jaksch-Zoller scheme (which yields Abelian gauge fields), before we
continue with the generalisation of this scheme to non-Abelian gauge fields.

In the original proposal of ref. [JZ03] a 2D optical lattice traps atoms in the lowest band in
state |g〉 and another 2D lattice that traps atoms in state |e〉. In the total lattice the spacing
in y-direction will be half the spacing in x-direction, as shown in fig. 2.4. The bands are
tilted by e.g. an additional acceleration of the lattice in y-direction. In x-direction there is free
tunneling and in y-direction we have laser induced Raman transitions. This system leads to a
Hamiltonian

HJZ = J
∑

m,n

(
ei2παma†n,man,m+1 + a†n,man+1,m

)
+ H.c., (2.12)

where α is a phase determined by the system parameters (in particular the lattice spacing), m
and n are the lattice sites and a (a†) are bosonic destruction (creation) operators. Particles
moving along a closed path in this lattice acquire a phase factor corresponding to an effective
magnetic field. In this setup one can simulate very strong magnetic fields and consequently yield
the fractal energy spectrum discussed above. Note that since the origin of these electromagnetic
fields is artificial, they do not have to obey Maxwell’s equations [Mue04].

The scheme was generalized to Non-Abelian physics by Osterloh et al. [OBS+05]. Again
controlling the tunneling in a 2D lattice is the key point. The scheme is analogous, but
now one has two internal states trapped in each column of the optical lattice. The lattice is
accelerated as in the previous setup, see fig. 2.4, but this time we have state-specific Raman
transitions in x- and y-direction. The exact form of the gauge fields in their paper is then

A =
~c

ea

((
−π

2
π
2 eiφ

π
2 e−iφ −π

2

)

,

(
2πmα1 0

0 2πmα2

)

, 0

)

= (Ax, Ay(m), 0) (2.13)
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2.3 Discrete Systems: Lattices

Fig. 2.3: The Osterloh moth is the spectrum of a lattice-Hamiltonian in a non-Abelian gauge
field. It is the generalisation of the Abelian spectrum, i.e. the Hofstadter butterfly in
fig. 2.2. This is for the sake of completeness and should not be explained in detail.
(picture taken from [OBS+05])

with

B =

(

0, 0,

(
2πα1 0

0 2πα2

))

. (2.14)

Note that the vector potential A is not a vector with scalar components anymore. The com-
ponents are now 2 × 2 matrices, and in particular [Ax, Ay] 6= 0 in general, i.e. the gauge field
generated is in general non-Abelian. The energy spectrum constitutes a generalisation of the
Hofstadter Butterfly [Hof76] from section 1.3.4, although with richer 3D structure, a so-called
Osterloh “moth”, as shown in fig. 2.3.

The corresponding Schrödinger equation for this problem is (similar to the Hofstadter but-
terfly case) of the form:

i~Ψ̇m,n = ÛxΨm+1,n + Û †xΨm−1,n + ÛyΨm,n+1 + Û †yΨm,n−1 , (2.15)

where

Û =
~c

ea

((
0 eiφ

e−iφ 0

)

,

(
e−2πmα1i 0

0 e−2πmα2i

)

, 0

)

. (2.16)

The dynamics of a wavepacket on the lattice under the non-Abelian gauge may differ signifi-
cantly from that under an Abelian gauge (see fig. 2.5). Let us consider the expansion dynamics.
We start with a Gaussian distribution of e.g. σ = 2 on a 2D lattice with 121 × 121 sites, and
the following hopping operators:

Ûx =

(
0 1
1 0

)

ÛNon−Abel
y =

(
1 0
0 0.8

)

and ÛAbel
y =

(
1 0
0 1

)

. (2.17)

One observes the fringes in the non-Abelian expansion because of constructive and destructive
self-interference of the wavefunction. Let us consider the evolution from point A to B, see fig.
2.6: there are several paths a wave function can take to reach point B starting from A. At B
all these paths can meet again and together yield the wave function. But if the evolution on
different but otherwise symmetric paths gives different phases, we will get interference effects.
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Ω1

Ω1

Ω2

Ω2
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Ω2i
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Ûx Û †x
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0 0

−Φm
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Fig. 2.4: Optical lattices schemes for generating artificial magnetic fields. The Jaksch-Zoller
[JZ03] scheme (left column) generates an Abelian gauge field using two lattices trap-
ping the states |g〉 and |e〉. The laser assisted tunneling in y-direction leads to phase
factors simulating Abelian gauge fields. The spectrum of this system is the Hofstadter
butterfly shown in fig. 2.2. The Osterloh [OBS+05] scheme (right column) generates
a non-Abelian gauge field using two lattices trapping each two internal states |gi〉
and |ei〉 (i=1,2). Laser assisted tunneling in x- and y-direction leads to non-Abelian
phase factors simulating non-Abelian gauge fields, the spectrum of this system is the
Osterloh moth shown in fig. 2.3.
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Fig. 2.5: The expansion of a Gaussian wavepacket on a 121× 121 lattice shows the non-trivial
dynamics in non-Abelian gauge field. For the expansion in an Abelian gauge field
(left) the shape of the atom cloud seems unchanged, whereas in for the expansion in
a non-Abelian gauge field (right) we observe interference fringes, which also oszillate
in time. For the simulation we used the hopping operators (2.17).

A

B

Fig. 2.6: Two out of many possible symmetric paths in expansion from A to B. In the non-
Abelian setup these paths collect different phases which explains the non-Abelian
expansion dynamics in fig. 2.5.
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Chapter 2 Artificial Electromagnetism

2.4 Continuous Systems: Lambda and Tripod schemes

2.4.1 Effective gauge fields for non-degenerate eigenstates

In this section we discuss the creation of an artificial gauge field for an adiabatic motion of a
system in a non-degenerate eigenstate. The results of this section will be applied in section
2.4.3 on Λ-atoms. For the derivation we will follow the seminal paper of Berry [Ber84]. We take
as a starting point the time-dependent Schrödinger equation where the Hamiltonian depends
on a time-dependent parameter R

i~
d

dt
|ψ(t)〉 = H(R(t))|ψ(t)〉 . (2.18)

The adiabatic theorem [BF28, Kat50, ASY87, AHS90, Mes90] states, that if we start with an
eigenstate |ψ(0)〉 = |n(R(0))〉 and change the system slowly, then we will stay in the same
eigenstate |n(R(t))〉 we started with at t = 0:

H(R(t))|n(R(t))〉 = En(R(t))|n(R(t))〉 . (2.19)

At each instant t ∈ R, the eigenstates |n(R(t))〉 of H form a basis of our Hilbert space and the
wave function is a linear combination of them:

|ψ(t)〉 =
∑

n

cn(t)|n(R(t))〉. (2.20)

Applying this to the time-dependent Schrödinger equation i~|ψ̇(t)〉 = H(R(t))|ψ(t)〉 and using
the eigenvalue equation H(R(t))|ψ(t)〉 = En(R(t))|ψ(t)〉 yields

∑

n

i~ċn|n(R(t))〉 +
∑

n

cni~
d

dt
|n(R(t))〉 =

∑

n

cnEn(R(t))|n(R(t))〉 . (2.21)

With 〈m(R(t))| acting from the left, one gets along with the orthogonality condition

i~ċm +
∑

n

cn〈m(R(t))|i~ d

dt
|n(R(t))〉 = cmEm(R(t)). (2.22)

In the adiabatic approximation the off-diagonal elements in the second term on the left side
turn out to be zero (because: adiabatic 〈m| d

dt |n〉 = 〈m|∇R|n〉 d
dtR ≈ 0 ∀m 6= n since

d
dtR≪ 1). It remains

i~ċm = Em(R(t))cm − i~〈m|ṁ〉cm (2.23)

with the solution

cm(t) = exp

(

− i

~

∫ t

0

Em(R(t′))dt′ −
∫ t

0

〈m|ṁ〉dt′
)

cm(0) . (2.24)

Assume we start with the eigenstate |n〉 at t = 0: cm(t = 0) = δmn

|ψ(t)〉 = exp

(

− i

~

∫ t

0

En(R(t′))dt′
)

exp (iγn(t))|n(R(t))〉, (2.25)
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2.4 Continuous Systems: Lambda and Tripod schemes

γn(t) = i

∫ t

0

〈n|ṅ〉dt′ . (2.26)

Now assume that the system describes a cyclic evolution in the parameter space during the
time T , i.e. R(T ) = R(0) and |n(R(T ))〉 = |n(R(0))〉. We denote the cyclic path from R(0) to
R(T ) in parameter space by C and finally get:

|ψ(T )〉 = exp

(

− i

~

∫ T

0

dt′En(R(t′))

)

︸ ︷︷ ︸

dynamic phase

exp (iγn(C))

︸ ︷︷ ︸

geometric phase

|n(R(0))〉 (2.27)

γn(C) = i

∮

C

〈n(R)|∇Rn(R)〉 · dR (2.28)

=

∮

C

An(R) · dR (2.29)

An(R) = i〈n(R)|∇Rn(R)〉 . (2.30)

The equations above are the fundamental formulas for the Berry phase in the case of a gen-
eral adiabatic and cyclic evolution of the parameter R in parameter space. Note that γ is
real: 〈n(R)|∇Rn(R)〉 is purely imaginary because: 〈n(R)|n(R)〉 = 1, ∇R〈n(R)|n(R)〉 = 0,
〈∇n(R)|n(R)〉+〈n(R)|∇n(R)〉 = 0, 〈n(R)|∇|n(R)〉+〈n(R)|∇∗|n(R)〉 = 0, 2Re〈n(R)|∇|n(R)〉 =
0. The phase γ is actually time-independent in the sense that only its trace in parameter space
matters. It does not matter, how fast the path in the parameter space is traced out – as long
as it is adiabatic. Therefore it is called geometric phase and sometimes topologic phase.

We can compute γ easily by using the identity:

〈m(t)|∇|n(t)〉 =
〈m(t)| (∇H(t)) |n(t)〉

Em(t) − En(t)
. (2.31)

The above equation can be derived by applying the gradient to the stationary Schrödinger
equation. If the loop in parameter space comes close to a degeneracy, the terms there will
dominate eq. (2.31) and the theory for adiabatic evolution will break down in case of degener-
ate eigenstates (Em(t) − En(t) = 0).

The phase factor γn(C) in eq. (2.29) can be written as an integral over the vector field V n

γn(C) =

∫

S

V n(R) · dS, (2.32)

where V n(R) plays the role of a magnetic field for An(R). The vector A is sometimes referred
to as the Berry connection and is related to a curvature (an effective “magnetic” field) B as

Bi =
1

2
ǫikl F

kl, Fkl = ∂kAl − ∂lAk, (2.33)

where F is the gauge field strength tensor, ǫikl are the elements of the totally antisymmetric
unit tensor. In vector notation we recover the familiar form B = ∇ ×A.
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Chapter 2 Artificial Electromagnetism

Instead of considering the final result of the evolution as in eq. (2.27) we may consider the
Schrödinger equation of the system, which is initially in the eigenstate |m〉,

i~|ṁ〉 =
1

2m
(−i~∇ −Am)

2 |m〉 . (2.34)

Because of the interpretation of the Berry phase in terms of an effective gauge potential, it is
useful to look at some generalizations of the standard Berry phase. Many generalizations of the
Berry phase have been found by removing the restrictions in the derivation step by step, see e.g.
reviews [WS89, BMK+03, CJ04]. For example, in the Aharonov-Anandan-phase [AA87] the
adiabatic approximation is no longer required. Another generalization is the Samuel-Bhandari-
phase [SB88] where the evolution does not even have to be cyclic. Until now we have only
considered pure states. The analysis for mixed states was done by Uhlmann [Uhl86, Uhl95]
and continued by Sjöqvist et al. [SPE+00]. It was later further generalized to cover also de-
generated density operators by Singh et al. [STB+03]. Complex geometric phases appear in
non-Hermitian Hamiltonians resp. dissipative systems [GW88]. Off-diagonal geometric phases
[MP00] are used to uncover interference effects when the usual geometric phase is undefined.
The most general ansatz is the quantum kinematic approach by Mukunda and Simon [MS93].
An important insight is that the geometric phase can be looked at in a differential geometric
framework too [Sim83].

If the adiabatic condition does not apply for eq. (2.22) we would then get off-diagonal terms
in the effective vector potential Amn = 〈m|∇n〉 (whereas before we considered only diagonal
terms Am = Amm) during the evolution of our N non-degenerate eigenstates. This kind of
(N ×N) potential Amn is not exactly the non-Abelian gauge potential we will be looking for
in the next section. There we consider q out of N eigenstates to be degenerate. The adiabatic
evolution of these q eigenstates within their degenerate subspace will give us a non-Abelian
vector potential.

2.4.2 Effective gauge fields for degenerate eigenstates

The seminal paper of Wilczek and Zee [WZ84] shows that non-Abelian gauge fields can appear
during an adiabatic evolution [BF28, Kat50, ASY87, AHS90, Mes90] if there are degenerate
eigenstates. In our case we shall employ degenerate dark states in laser coupled atoms, which
do not show spontaneous emission. This construction of non-Abelian gauge potentials in the
presence of nontrivial light fields coupled to degenerate electronic states of cold atoms was
carried out in a recent paper [RJOF05]. These authors considered atoms with N internal
states. For a fixed position r the internal Hamiltonian Ĥ0(r) including the space-dependent
laser interaction can be diagonalized to give a set of N dressed states |χn(r)〉 with eigenvalues
εn(r), where n = 1, 2, 3 . . .N . The full quantum state of the atom describing both internal and
motional degrees of freedom can then be expanded in terms of the dressed states according to

|Ψ〉 =

N∑

n=1

Ψn(r)|χn(r)〉. (2.35)
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2.4 Continuous Systems: Lambda and Tripod schemes

Plugging this ansatz into the corresponding time-dependent Schrödinger equation we obtain:

i~
∂

∂t
|Ψ〉 =

[
1

2m
(−i~∇)2 +H0 + V

]

|Ψ〉 (2.36)

=
1

2m

∑

n

(−i~∇)
2
Ψn|χn〉 +

∑

n

H0Ψn|χn〉 +
∑

n

VΨn|χn〉 (2.37)

= − ~
2

2m

∑

n

(
∇

2Ψn

)
|χn〉 −

~
2

2m

∑

n

2(∇Ψn)(∇|χn〉) −
~

2

2m

∑

n

Ψn∇
2|χn〉

+
∑

n

H0Ψn|χn〉 +
∑

n

VΨn|χn〉 (2.38)

Applying 〈χm| from the left at both sides of the equation we obtain

i~
∂

∂t
Ψm = − ~

2

2m

∑

n

δmn∇
2Ψn − ~

2

2m

∑

n

2(∇Ψn)〈χm|∇|χn〉 −
~

2

2m

∑

n

Ψn〈χm|∇2|χn〉

+
∑

n

εnΨn〈χm|χn〉 +
∑

n

〈χm|V |χn〉Ψn (2.39)

and using integration by parts we get

=
∑

n,l

1

2m

(

− i~δml∇ − i~〈χm|∇|χl〉
)(

− i~δln∇ − i~〈χl|∇|χn〉
)

Ψn

+
∑

n

(

εnδmn + 〈χm|V |χn〉
)

Ψn (2.40)

We may then re-write this without index notation:

i~
∂

∂t
Ψ =

[
1

2m
(−i~∇ −A)2 + V

]

Ψ, (2.41)

where the N ×N potentials are given by

Anm = i~〈χn(r)|∇χm(r)〉 (2.42)

Vnm = εn(r) δnm + 〈χn(r)|V (r)|χm(r)〉. (2.43)

As mentioned in the last section, a non-Abelian situation may be achieved if the off-diagonal
elements 〈χn(r)|∇χm(r)〉 (m 6= n) do not vanish (as they vanish in the adiabatic motion case),
but this is not the kind of non-Abelian character we are going to explore. There is another
way to get the non-Abelian vector potential within adiabatic motion: if two states |χm〉 and
|χn〉 are degenerate they can have transitions between themselves even in the adiabatic case.

If we rewrite the Hamiltonian in eq. (2.41) into an equation for the coefficients of the eigen-
states as in eq. (2.24), we will get the following result:

cm(t) = exp

(

− i

~

∫ t

0

Em(R(t′))dt′
) N∑

n=1

P exp

(

i

∮

C

Amn · dx
)

cn(0), (2.44)

where P is the path-ordering operator, because Amn = 〈m|i∂x|n〉 does not commute with itself
at different points. Instead of these difficult to evaluate final states cm(t), we will concentrate
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on writing the Hamiltonian (2.41) with the explicit form of A and use other means of solving
the resulting Schrödinger equation, e.g. numerically or using the dispersion relation.

We note that this non-Abelian geometric phase can be used for topological and universal
quantum computation [ZR99, PZR00, PC00]. The geometric phase has the advantage of being
robust against distortion, similar to the Aharonov-Bohm effect, where the accumulated phase
does not depend on the details of the path around the solenoid.

Consider only the subspace of q degenerate dressed states (which are well separated from
the others), and no transitions to other states. We want to obtain an effective Hamiltonian
for these degenerate states. To achieve this goal we project out the full (N ×N)-Hamiltonian
onto a (q × q)-Hamiltonian. We cannot just truncate H , as a correction would occur in that
case. Only the important term A2 is shown in intermediate steps of the following calculation:

i~
∂

∂t













Ψ1

...
Ψq

Ψq+1

...
ΨN













=

[
1

2m

(
−~

2
∇

2 +A2 + mixed terms
)

+ V

]













Ψ1

...
Ψq

Ψq+1

...
ΨN













(2.45)

apply P q = (1 . . . 1
︸ ︷︷ ︸

q

0 . . . 0) from the left

=
1

2m
(1 . . . 1
︸ ︷︷ ︸

q

0 . . . 0)m

N∑

l=1

Aml ·Aln













Ψ1

...
Ψq

Ψq+1

...
ΨN













n

(2.46)

=
1

2m
(1 . . . 1
︸ ︷︷ ︸

q

0 . . . 0)m

N∑

n=1

N∑

l=1

Aml ·AlnΨn (2.47)

=
1

2m

N∑

m=1

Pm

N∑

n=1

N∑

l=1

Aml · AlnΨn. (2.48)

m and n are truncated easily when projecting to the q-dimensional subspace, but the summa-
tion over l is not reduced in the same easy way and remains:

i~
∂

∂t






Ψ1

...
Ψq






m

=










1

2m
(−i~∇ −A)

2
+ V +

1

2m

N∑

l=q+1

Aml · Aln

︸ ︷︷ ︸

Φmn















Ψ1

...
Ψq






n

(2.49)

In the truncated q × q Hamiltonian the range where l > q in the above sum is not included,
i.e. the whole term Φmn is missing.
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Summarizing, we just showed, that if there are q degenerate dressed states and if the transitions
to the other states are negligible, we obtain a coupled q-level system Ψ̃ of the form

i~
∂

∂t
Ψ̃ =

[
1

2m
(−i~∇ −A)2 + V + Φ

]

Ψ̃. (2.50)

Φnm is an additional scalar potential that remains after projecting out the Hamiltonian to the
subspace of degenerate dressed states. The potentials in eq. (2.50) are given by

Anm = i~〈χn(r)|∇χm(r)〉 (2.51)

Vnm = εn(r) δnm + 〈χn(r)|V (r)|χm(r)〉 (2.52)

Φnm =
1

2m

N∑

l=q+1

Anl · Alm (2.53)

=
~

2

2m

(

〈∇χn|∇χm〉 +

q
∑

k=1

〈χn|∇χk〉〈χk|∇χm〉
)

. (2.54)

Analogous to eq. (2.33), the q× q matrix A (sometimes referred to as the Berry connection)
is related to the curvature (an effective “magnetic” field) B as

Bi =
1

2
ǫikl F

kl, Fkl = ∂kAl − ∂lAk − i

~
[Ak, Al]. (2.55)

Note that the term 1
2ǫikl[A

k, Al] = (A × A)i does not vanish in general, since the vector
components of A do not necessarily commute. In fact this term reflects the non-Abelian
character of the gauge potentials. For only one “degenerate” state our results coincide with
these of section 2.4.1.

2.4.3 Artificial Abelian fields: Three-level Λ-systems

In this subsection we consider atoms with an accessible three-level Λ-system as that introduced
in sec. 1.2.3. Recall from that section that we may introduce combinations of the ground state
levels which form a dark state |χD〉 uncoupled to the lasers. We shall restrict our calculations
to the dark state, and calculate (following the reasonings of previous sections) the effective
potentials A,Φ, V in the effective Hamiltonian Heff = 1

2m (−i~∇−Aeff)
2
+ V + Φ. Note that

the effective gauge fields are Abelian, since the degenerate space consists just of one state.
The Rabi frequencies ΩP and ΩC (we follow the same notation as in sec. 1.2.3) can be

parametrized by expressing ζ = ΩP /ΩC = tan θ eiS. Thus,

Aeff = i~〈χD(r)|∇χD(r)〉 = i~
ζ⋆∇ζ − ζ∇ζ⋆

2 (1 + |ζ|2) (2.56)

Beff = ∇×Aeff = i~
∇ζ⋆ ×∇ζ

2 (1 + |ζ|2)2
(2.57)

V = εD(r) + 〈χD(r)|V (r)|χD(r)〉 =
V1(r) + |ζ|2V2(r)

1 + |ζ|2 (2.58)

Φ =
~

2

2m
(〈∇χD|∇χD〉 + 〈χD|∇χD〉〈χD|∇χD〉) =

~
2

2m

∇ζ⋆∇ζ
2 (1 + |ζ|2)2

. (2.59)
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The effective magnetic field is Beff = −~∇(sin2 θ) × ∇S. A non-vanishing Beff requires a
relative angular momentum of the two light beams. This is e.g. the case for light beams with
a vortex (i.e. with optical angular momentum) as in [JO04, JROK05, JRO05, JO05]. It is
however also possible to implement it without an optical angular momentum, using shifted
spatial beam profiles [JROF06], see fig. 2.7. For recent proposals and experiments in this
direction see [GCY+09, LCP+09, Juz09].

Ω1

Ω1

Ω2

Ω2

|0〉

|1〉 |2〉

Fig. 2.7: The Λ coupling scheme (of sec. 2.4.3) forms one dark state. The two laser beams Ωi

(i = 1, 2) are counterpropagating and have shifted spacial beam profiles as suggested
in [JROF06]. This leads to an effective Hamiltonian for the dark state with an Abelian
gauge field.

Ω1 Ω2 Ω3

Ω1 Ω3

Ω2

|0〉

|1〉 |2〉 |3〉

Fig. 2.8: The tripod coupling scheme (of sec. 2.4.4) forms two degenerate dark states with a
non-adiabatic coupling. The three laser beams Ωi (i = 1, 2, 3) are arranged in the
figure as two counter propagating beams (Ω1 and Ω2) and one beam (Ω3) (of double
intensity) in the perpendicular direction. This leads to an effective Hamiltonian for
the two dark states with a constant non-Abelian gauge field (see sec. 2.5.1).

2.4.4 Non Abelian electromagnetism: Four-level tripod-systems

To construct a scheme that leads to a U(2) gauge potential, we need two degenerate (or nearly
degenerate) dressed states |D1〉 and |D2〉. Such a condition is fulfilled in the case of the tripod
system shown in fig. 2.8. The beams couple four internal atomic levels in a tripod configuration,
in which the atoms are characterized by three lower levels |1〉, |2〉 and |3〉 and an excited level
|0〉. The j-th laser induces a transition (with a Rabi frequency Ωj) between the j-th lowest level
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2.4 Continuous Systems: Lambda and Tripod schemes

|0〉@ω0

|1〉@ω1 |2〉@ω2 |3〉@ω3

Ω1, ω̄1

Ω2, ω̄2

Ω3, ω̄3

Fig. 2.9: A tripod level atom with laser coupling scheme as described by the Hamiltonian (2.60)
(except the spontaneous emission)

and the excited level |0〉. A truly non-Abelian situation emerges if the off-diagonal element
i~〈D1(r)|∇D2(r)〉 is non-zero. The Hamiltonian of the tripod system in fig. 2.9 is according
to [RJOF05, UFSB98, USB99]

H = HCM +

3∑

j=0

~ωj|j〉〈j| + ~

3∑

j=0

(
Ωje
−iω̄jt|0〉〈j| + H.c.

)
, (2.60)

where HCM accounts for the center-of-mass motion and |Ψ〉 =
∑3

j=0 Ψj |j〉. Now, solving the

Schrödinger equation i~|Ψ̇〉 = H |Ψ〉 we get for each component (without considering for the
moment HCM )

i~Ψ̇0 = ~ω0Ψ0 + ~
[
Ω1e

−iω̄1tΨ1 + Ω2e
−iω̄2tΨ2 + Ω3e

−iω̄3tΨ3

]
(2.61)

i~Ψ̇1 = ~ω1Ψ1 + ~Ω∗1e
iω̄1tΨ0 (2.62)

i~Ψ̇2 = ~ω2Ψ2 + ~Ω∗2e
iω̄2tΨ0 (2.63)

i~Ψ̇3 = ~ω3Ψ3 + ~Ω∗3e
iω̄3tΨ0. (2.64)

These equations can be simplified by transforming the time-dependency away by Ψ0 = Φ0e
−i(ω̄1+ω1)t,

Ψ1 = Φ1e
−iω1t, Ψ2 = Φ2e

−i(ω1+ω̄1−ω̄2)t, and Ψ3 = Φ3e
−i(ω1+ω̄1−ω̄3)t.

i~Φ̇0 = ~ [(ω0 − ω1) − ω̄1] Φ0 + ~(Ω1Φ1 + Ω2Φ2 + Ω3Φ3) (2.65)

i~Φ̇1 = ~Ω∗1Φ0 (2.66)

i~Φ̇2 = ~ [(ω2 − ω1) − (ω̄1 − ω̄2)] Φ2 + ~Ω∗2Φ0 (2.67)

i~Φ̇3 = ~ [(ω3 − ω1) − (ω̄1 − ω̄3)] Φ3 + ~Ω∗3Φ0. (2.68)

For the case of resonance the equations may be further simplified: ω2 − ω1 = ω̄1 − ω̄2 ,
ω3−ω1 = ω̄1−ω̄3. Now we are in the so-called interaction representation where the Hamiltonian
looks like

Ĥ0 = HCM − ~

(

Ω1|0〉〈1| + Ω2|0〉〈2| + Ω3|0〉〈3| + H.c.
)

. (2.69)

Proceeding as for the case of the Λ-scheme, we find two dark dressed states |D1〉 = −Ω3

Ω1
|1〉+

|3〉 and |D2〉 = −Ω2

Ω1
|1〉 + |2〉 which are decoupled from the light field. In the dark-bright

27



Chapter 2 Artificial Electromagnetism

|1〉@0 |2〉@0 |3〉@0

Ω1
Ω2

Ω3

|D1〉@0 |D2〉@0

|+〉@Ω

|−〉@ − Ω

|D1〉@0 |D2〉@0|B〉@0

|0〉@ω0|0〉@ω0

Fig. 2.10: Different bases for the tripod atom (energy shifted to ω1 = ω2 = ω3 = 0): bare state
bases (left), dark-bright state basis (middle) and complete dressed state basis (right)

basis |0〉 is only coupled to the bright state |B〉 = (Ω∗1|1〉 + Ω∗2|2〉 + Ω∗3|3〉)/Ω, where Ω =
(|Ω1|2 + |Ω2|2 + |Ω3|2)1/2 is the total Rabi frequency. The two states |B〉 and |0〉 split into a
dressed doublet |±〉 = (|B〉 ± |0〉)/

√
2 with energies ±~Ω.

We assume that the light fields are sufficiently strong, so that Ω is large compared to the
two-photon detuning, due to the laser mismatch and/or Doppler shift. The dark states are thus
well separated in energies from the doublet |±〉, and the internal atomic state evolves within
the dark state manifold. The full atomic state-vector |Φ〉 can then be expanded in terms of
the dark states, |Φ〉 =

∑2
j=1 ΦDj

(r)|Dj(r)〉, where Ψj(r) is a wave-function for the center of
mass motion of an atom in the j-th dark state. The two-component spinor-like wavefunction
{ΦD1

,ΦD2
}T obeys the Schrödinger equation i~∂Ψ/∂t = HΨ, with the Hamiltonian from

section 2.4.2

i~
∂

∂t

(
ΦD1

ΦD2

)

=

[
1

2m
(−i~∇−A)2 + V + Φ

](
ΦD1

ΦD2

)

(2.70)

Anm = i~〈χn(r)|∇χm(r)〉 n,m ∈ {1, 2} (2.71)

Φnm =
1

2m

∑

l∈{+,−}
Anl ·Alm n,m ∈ {1, 2} (2.72)

=
~

2

2m

(

〈∇χn|∇χm〉 +

2∑

k=1

〈χn|∇χk〉〈χk|∇χm〉
)

(2.73)

Vnm = εn(r) δnm + 〈χn(r)|V (r)|χm(r)〉 n,m ∈ {1, 2}, (2.74)

where A,Φ, V are effective potentials for the case of an adiabatic motion.

For a systematic study of these potentials we parametrize the Rabi frequencies Ωµ with an
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2.4 Continuous Systems: Lambda and Tripod schemes

angle (on a sphere) and phase variables (eiSj ) according to

Ω1 = Ω sin θ cosφ eiS1

Ω2 = Ω sin θ sinφ eiS2

Ω3 = Ω cos θ eiS3 ,

(2.75)

where Ω2 = |Ω1|2 + |Ω2|2 + |Ω3|2. This leads to

|D1〉 =
cos θ eiS31

sin θ cosφ
|1〉 − |3〉 (2.76)

|D2〉 =
cos θ eiS31

sin θ
|1〉 + |2〉 (2.77)

with Sij = Si − Sj . The dressed states basis is not unique, if we change Ψ̃ → U(r)Ψ̃, so do

A→ U(r)AU †(r) − i~ (∇U)U †(r) (2.78)

Φ → U(r)ΦU †(r) (2.79)

B → U(r)BU †(r). (2.80)

This allows us to obtain a form of the dark states analytically simpler than eqs. (2.76, 2.77).
We consider the linear combination

|Dnew
1 〉 = − cosφ eiS32 |D2〉, (2.81)

|Dnew
2 〉 = − sin θ|D1〉 + cos θ sinφ eiS32 |D2〉. (2.82)

Dark and bright states are hence now

|D1〉 = sinφ eiS31 |1〉 − cosφ eiS32 |2〉 (2.83)

|D2〉 = cos θ cosφ eiS31 |1〉 + cos θ sinφ eiS32 |2〉 − sin θ|3〉 (2.84)

|B〉 = sin θ cosφ eiS31 |1〉 + sin θ sinφ eiS32 |2〉 + cos θ|3〉. (2.85)

Projecting the state of our system |Ψ〉 on our new basis states we get

ΦD1
= 〈D1|Ψ〉 = sinφ e−iS31Φ1 − cosφ e−iS32Φ2 (2.86)

ΦD2
= 〈D2|Ψ〉 = cos θ cosφ e−iS31Φ1 + cos θ sinφ e−iS32Φ2 − sin θΦ3 (2.87)

ΦB = 〈B|Ψ〉 = sin θ cosφ e−iS31Φ1 + sin θ sinφ e−iS32Φ2 + cos θΦ3, (2.88)

which has the inverse transformation

Φ1 = [sinφΦD1 + cos θ cosφΦD2 + sin θ cosφΦB] eiS31 (2.89)

Φ2 = [− cosφΦD1 + cos θ sinφΦD2 + sin θ sinφΦB] eiS32 (2.90)

Φ3 = − sin θΦD2 + cos θΦB. (2.91)
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Now we can rewrite the effective potentials in terms of (experimentally accessible) laser pa-
rameters

Anm = i~〈χn(r)|∇χm(r)〉 n,m ∈ {1, 2} (2.92)

A11 = ~
(
cos2 φ∇(S2 − S3) + sin2 φ∇(S1 − S3)

)
(2.93)

A12 = ~ cos θ

(
1

2
sin(2φ)∇(S1 − S2) − i∇φ

)

(2.94)

A22 = ~ cos2 θ
(
cos2 φ∇(S1 − S3) + sin2 φ∇(S2 − S3)

)
. (2.95)

This relatively complicated expression for A can become non-Abelian under certain conditions,
as we shall show below. The effective magnetic and scalar fields are hence:

B11 = 0 (2.96)

B12 = i~ sin θ e−iS∇θ ×∇φ− ~ cos θ e−iS∇S ×∇φ
(
1 + cos2 θ

)
(2.97)

B22 = −2~ cosθ sin θ∇θ ×∇S (2.98)

Φnm =
1

2m

∑

l∈{+,−}
Anl · Alm n,m ∈ {1, 2} (2.99)

=
~

2

2m

(

〈∇χn|∇χm〉 +

2∑

k=1

〈χn|∇χk〉〈χk|∇χm〉
)

(2.100)

Φ11 =
~

2

2m
sin2 θ

(
1

4
sin2(2φ)(∇S12)

2 + (∇φ)2
)

(2.101)

Φ12 =
~

2

2m
sin θ

(
1

2
sin(2φ)∇S12 − i∇φ

)(
1

2
sin(2θ)(cos2 φ∇S13 + sin2 φ∇S23) − i∇θ

)

(2.102)

Φ22 =
~

2

2m

(
1

4
sin2(2θ)

(
cos2 φ∇S13 + sin2 φ∇S23

)2
+ (∇θ)2

)

. (2.103)

The scalar potential can be represented as Φij = ~
2

2mκ
∗
i · κj , where

κ1 = sin θ

(
1

2
sin(2φ)∇S12 + i∇φ

)

(2.104)

κ2 =
1

2
sin(2θ)(cos2 φ∇S13 + sin2 φ∇S23) − i∇θ. (2.105)

Finally the trapping potential is of the form

V = V1(r)|1〉〈1| + V2(r)|2〉〈2| + V3(r)|3〉〈3|, (2.106)

where Vj(r) is the trapping potential for an atom in the original internal state j = 1, 2, 3.
Note that the potential Vj can also accommodate a possible detuning of the j-th laser from
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2.4 Continuous Systems: Lambda and Tripod schemes

the resonance of the j → 0 transition. Using Vjk = 〈Dj |V |Dk〉, we get

Vnm = εn(r) δnm + 〈χn(r)|V (r)|χm(r)〉 n,m ∈ {1, 2} (2.107)

V11 = V2 cos2 φ+ V1 sin2 φ (2.108)

V12 =
1

2
(V1 − V2) cos θ sin(2φ) (2.109)

V22 = (V1 cos2 φ+ V2 sin2 φ) cos2 θ + V3 sin2 θ . (2.110)

The previous expression for A, Φ and V provide a remarkable versatility. Recent advances
in shaping both the phase and the intensity of light beams, make it possible to choose (al-
most) any form of the induced gauge potential, provided the corresponding light field obeys
Maxwell’s equations. This is certainly the case in a two-dimensional geometry, but also in
three dimensions light beams can be tailored [MSM+03, WC05].

Possible experimental realizations of the above discussed tripod scheme include the transition
5S1/2 (F = 1) ↔ 5P3/2 (F = 0) in 87Rb (see fig. 2.11). Even if there is no suitable ground
state available, one can use metastable states as ground states, as for example the transition
23S1 ↔ 23P0 in 4He∗, see fig. 2.12.

5P3/2

5S1/2

F = 0

F = 1

F = 1

F = 2

F = 2

F = 3

F = 3

mF = −1 mF = 0 mF = +1

σ− σ+

π

Fig. 2.11: Transition 5S1/2 (F = 1) ↔ 5P3/2 (F = 0) in 87Rb.
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11S0

23S1

33S1

23PJ

33PJ

J = 0

J = 1
J = 2

mJ = −1 mJ = 0 mJ = +1

σ− σ+

π

en
er

gy

Fig. 2.12: Transition 23S1 ↔ 23P0 in 4He∗.
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2.5 General conditions for non-Abelian gauges

Using the parametrized Rabi frequencies from the last section (eq. (2.75)) we can write a very
general expression for the vector potential A

A

~
=

(
cos2 φ − cos θ cosφ sinφ

− cos θ cosφ sin φ cos2 θ sin2 φ

)

∇S23

+

(
sin2 φ cos θ cosφ sinφ

cos θ cosφ sinφ cos2 θ cos2 φ

)

∇S13

+ cos θσ̂y∇φ . (2.111)

For easier computation we will rewrite A as a sum of Pauli sigma matrices:

A

~
=

cos2 φ

2
(1̂+ σ̂z)∇S23 +

cos2 θ sin2 φ

2
(1̂− σ̂z)∇S23 − cos θ sinφ cosφ σ̂x∇S23

+
sin2 φ

2
(1̂+ σ̂z)∇S13 +

cos2 θ cos2 φ

2
(1̂− σ̂z)∇S13 + cos θ sinφ cosφ σ̂x∇S13 + cos θ σ̂y∇φ

(2.112)

=

[
1

2

(
cos2 φ+ cos2 θ sin2 φ

)
∇S23 +

1

2

(
sin2 φ+ cos2 θ cos2 φ

)
∇S13

] 1̂
+

[
1

2

(
cos2 φ− cos2 θ sin2 φ

)
∇S23 +

1

2

(
sin2 φ− cos2 θ cos2 φ

)
∇S13

]

σ̂z

+ cos θ sinφ cosφ∇S12 σ̂x + cos θ∇φ σ̂y (2.113)

In the following we shall assume that the atoms are strongly trapped in the z-direction, hence
they are confined to the xy-plane. Given two orthogonal vectors ξ and η in the xy-plane,
we shall be interested in non-Abelian situations, in which Âξ ≡ Â · ξ and Âη ≡ Â · η fulfill
[Âξ, Âη] 6= 0.

[Âξ, Âη] = − i cos θ[u× ∇φ]λσ̂x

+ i cos θ sin θ cosφ[u× ∇S12]λσ̂y

+ 2i cos2 θ sinφ cosφ[∇S12 × ∇φ]λσ̂z , (2.114)

where u = (cos2 φ − cos2 θ sin2 θ)∇S23 + (sin2 φ − cos2 θ cos2 φ)∇S13. This general condition
may be achieved in at least one of the following ways:

• (u× ∇φ)z 6= 0 (e.g. the constant gauge discussed in section 2.5.1)

• (u× ∇S12)z 6= 0 (e.g. the Landau gauge discussed in section 2.5.2 )

• (∇S12 × ∇φ)z 6= 0, (e.g. the symmetric gauge, discussed in section 2.5.3)

2.5.1 Constant non-Abelian gauge

We will consider first homogeneous intensity profiles, i.e. both φ and θ are now space indepen-
dent. We choose the particular case with φ = π/4. Let ξ ≡ x, η ≡ y, λ ≡ z. For constant φ the
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non-Abelian character demands ∇S23×∇S13 6= 0. Let us parametrize the laser parameters as
Sj3 = αjx+ βjy (∇Sj3 = αj x̂+ βj ŷ), where αj , βj are constants. A simple laser arrangement
fulfilling the non-Abelian condition is given by α2β1 6= α1β2:

Ax =
1

4
(1 + cos2 θ)(α2 + α1)1̂+

1

4
(1 − cos2 θ)(α2 + α1)σ̂z +

1

2
cos θ(α1 − α2)σ̂x (2.115)

Ay =
1

4
(1 + cos2 θ)(β2 + β1)1̂+

1

4
(1 − cos2 θ)(β2 + β1)σ̂z +

1

2
cos θ(β1 − β2)σ̂x (2.116)

The scalar potential is given by Φij = ~
2

2mκ
∗
i · κj with

κ1 =
1

2
sin θ (∇S13 − ∇S23) =

1

2
sin θ ((α1 − α2)x̂+ (β1 − β2)ŷ) (2.117)

κ2 =
1

4
sin (2θ) (∇S13 + ∇S23) − i∇θ =

1

4
sin (2θ) ((α1 + α2)x̂+ (β1 + β2)ŷ) − i (∂xθx̂+ ∂yθŷ) .

(2.118)

Let us choose for concreteness θ = π/4. The scalar gauge Φ and the scalar potential V for
this particular case are:

Φ =
~

2

2m

(
1
8

[
(α1 − α2)

2 + (β1 − β2)
2
]

1
8
√

2

[
(α2

1 − α2
2) + (β2

1 − β2
2)
]

1
8
√

2

[
(α2

1 − α2
2) + (β2

1 − β2
2)
]

1
16

[
(α1 + α2)

2 + (β1 + β2)
2
]

)

(2.119)

V =

(
V1+V2

2
V1−V2

2
√

2
V1−V2

2
√

2
V3

2 + V1+V2

4

)

=
V1 + V2

2
1̂+

(

0 V1−V2

2
√

2
V1−V2

2
√

2

V3−(V1+V2)/2
2

)

. (2.120)

On the other hand, by choosing Vj(r) = ∆Ej + U(r), with detunings:

∆E1 = − ~
2

16m

[
(α2

1 − α2
2) + (β2

1 − β2
2)
]

(2.121)

∆E2 =
~

2

16m

[
(α2

1 − α2
2) + (β2

1 − β2
2)
]

(2.122)

∆E3 = − ~
2

16m

[
(α2

1 + α2
2) + (β2

1 + β2
2)
]
, (2.123)

one can prove that (up to an irrelevant constant) V + φ = U(r) where U(r) is a common
trapping potential for all components Vi (i = 1, 2, 3). The vector potential is

Ax =
3

8
(α2 + α1)1̂+

1

8
(α2 + α1)σ̂z +

1

2
√

2
(α1 − α2)σ̂x (2.124)

Ay =
3

8
(β2 + β1)1̂+

1

8
(β2 + β1)σ̂z +

1

2
√

2
(β1 − β2)σ̂x. (2.125)

A gauge transformation eliminates the terms proportional to the identity matrix in Ax and
Ay . Let ~κy = (β1 − β2)/2

√
2, ~qy = (β1 + β2)/8 ~κx = (α1 − α2)/2

√
2, ~qy = (α1 + α2)/8 .

A rotation

σ̂x → cos η σ̂x + sin η σ̂z (2.126)

σ̂x → − sin η σ̂x + cos η σ̂z (2.127)
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with tan 2η = κy/qy, provides

Ax = ~κ̃xσ̂x + ~q̃xσ̂z , (2.128)

Ay = ~q̃yσ̂z (2.129)

where κ̃x = cos(2φ)κx−sin(2φ)qx, q̃x = cos(2φ)qx +sin(2φ)κx, and q̃y = cos(2φ)qy +sin(2φ)κy.
The situation discussed above may be easily implemented experimentally. From the parametriza-

tion (2.75) we see that φ = π/4 and θ = π/4 means that laser 1 and 2 must have equal intensi-
ties, whereas laser 3 has twice that intensity: Ω1 = Ω

2 eiS1 , Ω2 = Ω
2 eiS2 , Ω3 = Ω√

2
eiS3 . Assuming

V1 = V2 the potentials acquire the form:

A =
~

2

(

∇(S13 + S23)
1√
2
∇S12

1√
2
∇S12

1
2∇(S13 + S23)

)

(2.130)

Φ =
~

2

16m





(∇S12)
2 1√

2
(∇S12) · ∇ (S13 + S23)

1√
2

(∇S12) · ∇ (S13 + S23)
1
2

(

∇ (S13 + S23)

)2



 (2.131)

V =

(
V1 0
0 (V1 + V3)/2

)

. (2.132)

Assuming the phases Sj as z-independent, the components of the vector potential are of the
form:

Ax =
~

2

(

∂x(S13 + S23)
1√
2
∂xS12

1√
2
∂xS12

1
2∂x(S13 + S23)

)

=
~

2

{

∂x(S13 + S23)

(
3

4
1̂+

1

4
σ̂z

)

+
1√
2
∂xS12σ̂x

}

(2.133)

Ay =
~

2

{

∂y(S13 + S23)

(
3

4
1̂+

1

4
σ̂z

)

+
1√
2
∂yS12σ̂x

}

. (2.134)

The corresponding commutator is:

[Ax, Ay] =
~

2

4

{
1

4
√

2
[∂x(S13 + S23)∂yS12] [σ̂z, σ̂x] +

1

4
√

2
[∂xS12∂y(S13 + S23)] [σ̂x, σ̂z ]

}

=
~

2

16
√

2
{∂xS12∂y (S13 + S23) − ∂x (S13 + S23) ∂yS12} [σ̂x, σ̂z] , (2.135)

and hence the non-Abelian condition requires

∂xS12∂y (S13 + S23) − ∂x (S13 + S23) ∂yS12 6= 0. (2.136)
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Ω1 = Ωeikx Ω2 = Ωe−ikx

Ω3 =
√

2Ωe−iky

Fig. 2.13: Proposed scheme for generating a constant non-Abelian gauge.

The example (fig. 2.13), where S1 = kx, S2 = −kx and S3 = −ky results in

Ax =
~k√

2
σ̂x =

~κ√
2

(
0 1
1 0

)

(2.137)

Ay = ~k

(
3

4
1̂+

1

4
σ̂z

)

= ~κ

(
1 0
0 1

2

)

(2.138)

Φ =
~

2

2m

k2

2

(
1 0
0 1

2

)

(2.139)

Surprisingly, the generation of a non-Abelian gauge field, which as we show in the next chapters
already leads to a rather non-trivial physics, does not require any elaborate laser arrangement.

2.5.2 Landau Gauge

The classical Landau gauge A(r) = (0, B0x, 0) creates a magnetic field in z-direction. Its most
natural non-Abelian generalization would be to transform the vector potential

A(r) = (~κMx, B0Myx, 0) , (2.140)

where Mx and My are non-commuting matrices and κ is a constant describing the strength
of the non-Abelian character. This kind of gauge field will appear if we consider the case
S13 = S23 = S from the beginning of section 2.5. In that case the non-Abelian character
demands (∇S × ∇φ)z 6= 0. Let ξ ≡ x, η ≡ y, λ ≡ z and use the parametrization S =
αx + βy (∇S = αx̂+ βŷ) and φ = γx+ δy (∇φ = γx̂+ δŷ) giving the potentials

Ax = α(1 + cos2 θ)1̂+ α(1 − cos2 θ)σ̂z + γ cos θσ̂x (2.141)

Ay = β(1 + cos2 θ)1̂+ β(1 − cos2 θ)σ̂z + δ cos θσ̂x (2.142)

κ1 = i sin θ (γ, δ, 0) (2.143)

κ2 =
1

2
sin 2θ (α, β, 0) − i∇θ (2.144)
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2.5 General conditions for non-Abelian gauges

The non-Abelian condition (eq. (2.136)) is in this case αδ 6= γβ. We choose the following laser
parametrization: cos θ = x

Rc
, sin θ = z−zc

Rc
, R2

c = x2 + (z − zc)
2, z ≈ 0, zc ≫ |x|. Then up to

linear order

Ax = α(1̂+ σ̂z) + γ

(
x

zc

)

σ̂y +O

((
x

zc

)2
)

(2.145)

Ay = β(1̂+ σ̂z) + δ

(
x

zc

)

σ̂y +O

((
x

zc

)2
)

. (2.146)

For the particular case of γ = 0

Ax = α(1̂+ σ̂z) (2.147)

Ay = β(1̂+ σ̂z) + δ

(
x

zc

)

σ̂y. (2.148)

The scalar potential is given by Φij = ~
2

2mκ
∗
i · κj , where

κ1
∼= i(0, δ, 0) (2.149)

κ2
∼= x

zc
(α, β, 0) +

i

zc

(

1, 0,
x

zc

)

. (2.150)

Hence:

Φ11
∼= ~

2

2m
δ2 (2.151)

Φ12
∼= −i

~
2

2m
βδ

(
x

zc

)

(2.152)

Φ22
∼= ~

2

2mz2
c

. (2.153)

Assuming for simplicity β = 0, the scalar potential becomes

Φ =
~

2

2m

(
δ2 0
0 1

z2
c

)

, (2.154)

which may be easily removed by choosing proper detunings such that

V1 = − ~
2

2m
δ2 = V2 (2.155)

V2 = − ~
2

2mz2
c

. (2.156)

Then, we eliminate the scalar potential, and recover an effective vector potential of the form:

Ax = α(1̂ + σ̂z) (2.157)

Ay = δ

(
x

zc

)

σ̂y, (2.158)
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Ω1 = Ω cos (qy) eik(x+y+z)/2

Ω2 = Ω cos (qy) eik(x+y+z)/2

Ω3 = Ω x
zc

eik(y−x+z)

Fig. 2.14: Suggested scheme for generating a non-Abelian Landau-type gauge.

the identity part of Ax can easily be gauged out

Ax = ασ̂z (2.159)

Ay = B0xσ̂y (2.160)

where B0 = δ/zc. Note that x/zc ≪ 1, but this does not mean that δ or α have to be ≪ 1, i.e.
B0 can be large. In addition, note that α controls the non-Abelian part.

A possible example of laser arrangement leading to a Landau-gauge field as the one above
would be:

Ω1 = Ω cos (δy) eiα(x+y)/2+κ̃z (2.161)

Ω2 = Ω sin (δy) eiα(x+y)/2+κ̃z (2.162)

Ω3 = Ω
x

zc
eiα(y−x)/2+κ̃z. (2.163)

2.5.3 Symmetric Gauge

We recall that a standard symmetric gauge is of the form A ∝ ρϕ̂. Let us choose S13 = 0,
S23 = −S12 = S. A symmetric non-Abelian gauge field will appear if we consider the case
(∇S × ∇φ)λ 6= 0 from the beginning of section 2.5. Let us choose the coordinates ξ ≡ ρ,
η ≡ ϕ, λ ≡ z and parametrizations S = αϕ (∇S = α

ρ ϕ̂) and φ = κρ+ φ0 (∇φ = κρ̂). In order
to avoid divergencies (in A and Φ) we need cosφ ∝ ρ and cos θ ∝ ρ for small ρ. This is true if

φ = κρ+ φ0 with φ0 = −π
2

(2.164)

θ = κ̃ρ+ φ0 with φ0 = −π
2
. (2.165)
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2.6 Summary

Then:

1

~
Aρ = κ sin (κ̃ρ) σ̂y (2.166)

1

~
Aϕ =

1

2

[
sin2 (κρ) + sin2 (κ̃ρ) cos2 (κρ)

] α

ρ
1̂+

1

2

[
sin2 (κρ) − sin2 (κ̃ρ) cos2 (κρ)

] α

ρ
σ̂z

+ [sin (κ̃ρ) cos (κρ) sin (κρ)]
α

ρ
σ̂x. (2.167)

A gauge transformation e−i κ
κ̃

cos (κ̃ρ) σ̂yΨ eliminates the Aρ part and transforms Aϕ into Cϕ,
where

Cϕ

~
=

1

2

[
sin2(κρ) + sin2(κ̃ρ) cos2(κρ)

] α

ρ
1̂

+
1

2

[
sin2(κρ) − sin2(κ̃ρ) cos2(κρ)

] α

ρ
ei κ

κ̃
cos(κ̃ρ)σ̂y σ̂z e−i κ

κ̃
(cos κ̃ρ)σ̂y

+ [sin(κ̃ρ) cos(κρ)]
α

ρ
e−i κ

κ̃
cos(κ̃ρ)σ̂y σ̂x ei κ

κ̃
cos(κ̃ρ)σ̂y . (2.168)

The components of the scalar potential become:

Φ11 =
~

2

2m

[
α2

ρ2
cos2(κρ) sin2(κρ) + κ2

]

cos2(κ̃ρ) (2.169)

Φ12 =
~

2

2m

[

sin(κ̃ρ) cos2(κ̃ρ) cos3(κρ) sin(κρ)
α2

ρ2
+ κκ̃ cos(κ̃ρ)

]

(2.170)

Φ22 =
~

2

2m

[

sin2(κ̃ρ) cos2(κ̃ρ) cos4(κρ)
α2

ρ2
+ κ̃2

]

(2.171)

Assuming κ, κ̃ small, we may expand up to order O(κ2, κ̃2, κκ̃) to obtain

Cϕ
∼= αρ

{
κ2 + κ̃2

2
1̂+

κ2 − κ̃2

2
ei κ

κ̃
σ̂y σ̂ze

−i κ
κ̃

σ̂y + κκ̃e−i κ
κ̃

σ̂y σ̂xei κ
κ̃

σ̂y

}

= αM̂ρ (2.172)

Φ ∼= ~
2

2m
(α2 + 1)M̂. (2.173)

Hence, the Hamiltonian becomes of the form

ĤΨ =

[
~

2

2m

[

−i∇ + αM̂ρϕ̂
]2

+
~

2m

(
α2 + 1

)
M̂ + U(r)

]

Ψ . (2.174)

Note that, contrary to the construction of the gauge fields in the previous section, this construc-
tion leads by definition to small fields. In addition, it is always accompanied by a non-removable
scalar potential.

2.6 Summary

Summarizing, in this chapter we have discussed different possible alternatives for generating
artificial electromagnetism in cold neutral gases. We have made particular emphasis in the
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Chapter 2 Artificial Electromagnetism

generation of artificial gauge fields using dark-state arrangements. In particular a four-level
tripod-scheme may allow for the generation of non-Abelian electromagnetism. We have dis-
cussed the general condition for achieving non-Abelian fields. We then have analyzed three
different arrangements: a simple arrangement which leads to a spatially constant field (which
we will employ in following chapters), and the non-Abelian equivalent of the Landau-gauge
and the symmetric gauge (which we shall also employ in a following chapter).
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Chapter 3

Non-Abelian Atom Optics

3.1 Introduction

In this chapter we investigate the wavepacket dynamics of a cloud of ultracold atoms in the
presence of a non-Abelian gauge potential. In sec. 3.2 we discuss how this undoubtedly rather
exotic scenario can be envisaged in a sample of cold atoms where the internal electronic energy
levels are addressed by laser fields with a nontrivial spatial phase and intensity distribution.
This setup opens up a number of new scenarios for ultracold gases, allowing for the study of non-

Abelian atom optics, which naturally ties together optical and magnetic effects. Remarkably,
as shown in the next section, even very simple laser arrangements may induce non-trivial
cold-atom dynamics. As a first example of this non-trivial dynamics, we discuss in sec. 3.3
a possible optical tweezer experiment including a non-Abelian flux, for which the population
transfer between internal states crucially depends on the path taken. This is the non-Abelian
generalization of the Aharonov-Bohm effect [AB59]. This effect resembles indeed what one
would expect from scattering protons onto a non-Abelian flux line where the proton can be
transfered into a neutron [Hor86]. The tweezer experiment discussed in sec. 3.3 just involves
the internal-state dynamics, without exploring the rich dynamics resulting from the interplay
between external and internal degrees of freedom in non-Abelian gauge fields. Sec. 3.4 is
devoted to the analysis of this interplay. In particular, we show that the dynamics of cold-
atom wavepackets can be significantly affected by intrinsically non-Abelian effects, which are
crucially dependent on the initial momentum distribution of the wavepacket. We consider in
particular the relevant examples of wavepacket propagation and wavepacket reflection at an
atomic mirror. Finally, we conclude in sec. 3.5.

3.2 Laser-induced non-Abelian gauge fields

In section 2.5.1 we showed that non-Abelian gauge potentials can be constructed in the presence
of nontrivial light fields coupled to degenerate electronic states of cold atoms. For this we
considered atoms with multiple internal states, see fig. 2.8. For a fixed position r the internal
Hamiltonian Ĥ0(r) including the laser interaction can be diagonalized to give a set of 4 dressed
states |χn(r)〉 with eigenvalues εn(r), where n = 1, 2, 3, 4. The full quantum state of the atom
describing both internal and motional degrees of freedom can then be expanded in terms of
the dressed states according to |Φ〉 =

∑4
n=1 Ψn(r) |χn(r)〉. If there are two degenerate dressed

states and we can neglect the transitions to the other states we obtain a coupled two level
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system of the form

i~
∂

∂t
Ψ̃ =

[
1

2m
(−i~∇−A)2 + V + Φ

]

Ψ̃, (3.1)

where the 2 × 2 potentials are given by

Vn,m = εn(r) δn,m + 〈χn(r)|V (r)|χm(r)〉, (3.2)

An,m = i~〈χn(r)|∇χm(r)〉. (3.3)

Φn,m =
~

2

2m

(

〈∇χn|∇χm〉 +
2∑

k=1

〈χn|∇χk〉〈χk|∇χm〉
)

. (3.4)

Surprisingly, the generation of a non-Abelian gauge field does not require any elaborate
shaping of the three laser beams employed as we showed in section 2.5.1.Two lasers of equal
intensity are counter-propagating in the x-direction with wave vector κ while the third one (of
double intensity) propagates in the y-direction also with a wave vector κ. The resulting vector
potential is of the form:

A = ~κ

(
−ey ex/

√
2

ex/
√

2 −ey/2

)

, (3.5)

whereas

V + Φ =

(

V1 + ~
2κ2

4m 0

0 (V1 + V3)/2 + ~
2κ2

8m

)

. (3.6)

By choosing the laser detuning such that V3 − V1 = ~
2κ2/4m we obtain a scalar potential

proportional to the unit matrix, V + Φ = V11. Therefore the scalar potential can be safely
neglected as far as the wavepacket dynamics is concerned.

3.3 Non-Abelian Aharonov-Bohm effect

In ref. [OBS+05] it was proposed that non-Abelian gauge fields created in lattices can be
employed to construct non-Abelian atom interferometers. However, the read-out of any non-
Abelian atom interferometer may be crucially handicapped by the non-trivial interplay between
external and internal degrees of freedom in the wavepacket dynamics of atoms in non-Abelian
gauge fields (see sec. 3.4). This coupling between external and internal dynamics may be
prevented by considering atoms trapped in mobile optical tweezers. If the tweezer potential is
strong enough, the system may be investigated in the so-called single-mode approximation, in
which both components share exactly the same center-of-mass wavepacket. As a consequence,
the non-Abelian gauge field will just affect the internal dynamics of the atoms. In the following
we envisage an experiment in which a cloud of ultra cold atoms is trapped by an optical tweezer
under the conditions discussed above. When moving in the xy-plane the atoms experience the
gauge potential given by eq. (3.5). We consider the case where the atoms are moved in the
x and y direction (fig. 3.1) along two different paths: (clock-wise, L) from (0, 0) to (0, s) and
then from (0, s) to (s, s); (anti clock-wise, R) from (0, 0) to (s, 0) and then from (s, 0) to (s, s).
The initial state of the atom is assumed to be a linear superposition of both dark states:

|Ψ(0)〉 = cos(η)|D1〉 + eiϕ sin(η)|D2〉 , (3.7)
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3.3 Non-Abelian Aharonov-Bohm effect

where η is the mixing angle, and ϕ is a relative phase. The dynamics of the two level system
obviously depends on the initial state, but more importantly, the final populations of the two
dark states depend on which path is taken. After performing the clock-wise path the atoms
are in the state

|ΨL〉 = eiÂxs/~eiÂys/~|Ψ(0)〉 = cL1 |D1〉 + cL2 |D2〉 , (3.8)

whereas after performing the anti clock-wise path we have:

|ΨR〉 = eiÂys/~eiÂxs/~|Ψ(0)〉 = cR1 |D1〉 + cR2 |D2〉 . (3.9)

Using the vector potential given by eq. (3.5) a straight forward calculation yields

cL1 = e−iκs cos

(
κs√

2

)

cos(η)+ iei(ϕ−κs/2) sin

(
κs√

2

)

sin(η) (3.10)

cL2 = ie−iκs sin

(
κs√

2

)

cos(η) + ei(ϕ−κs/2) cos

(
κs√

2

)

sin(η) (3.11)

cR1 = e−iκs cos

(
κs√

2

)

cos(η) + iei(ϕ−κs) sin

(
κs√

2

)

sin(η) (3.12)

cR2 = ie−iκs/2 sin

(
κs√

2

)

cos(η) + ei(ϕ−κs/2) cos

(
κs√

2

)

sin(η). (3.13)

Fig. 3.2 shows the final population difference between the two dark states for both paths as a
function of the path length κs. It becomes clear that the outcome of choosing the L or R path
can be very different. We stress that this effect is not directly linked to the appearance of off-
diagonal terms in the corresponding matrices of the vector potential, but rather it is inherently
due to the non-Abelian character of the matrices Âx and Ây. This effect is remarkably similar
to the scattering of protons onto a non-Abelian flux line, where a conversion of the proton into
a neutron is anticipated [Hor86]. A more complete picture is obtained by defining the pseudo
spin S(cL,R

1 , cL,R
2 ) as

Sx =
1

2i
(c1c2

∗ − c1
∗c2) (3.14)

Sy =
1

2
(c1c2

∗ + c1
∗c2) (3.15)

Sz =
1

2
(|c1|2 − |c2|2). (3.16)

With the pseudo spin representation we can follow the rotation of the spin vector as a function
of position along the different paths. This is shown in fig. 3.3 where the spin vector is seen to
follow circular paths whose orientation changes when the direction of the atoms in real space
changes. The role of the initial state is now immediately clear. Only a superposition between
|D1〉 and |D2〉 will result in a different final state of S as a function of taking either the L or R
path. Note that, in contrast to the previously considered laser-driven population transfer for
tripod atoms [UFSB98, USB99], here the non-Abelian dynamics is due to the time-dependence
of the phases of light fields “seen” by moving atoms rather than due to the time-dependence of
the intensities of laser pulses.
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Chapter 3 Non-Abelian Atom Optics

Fig. 3.1: The envisaged experiment. An optical tweezer moves the cloud of atoms along the
left (L) path or the right (R) path in the presence of a non-Abelian gauge field. The
final dark state population will depend on which path was taken.
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Fig. 3.2: The difference in the populations in the two dark states depends on which path is
taken. Fig. (a) shows the total difference |cL1 |2−|cL2 |2 as a function of the path length
κs, whereas in fig. (b) we depict |cR1 |2−|cR2 |2. We assume as initial conditions η = π/4
and ϕ = π/2.
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Fig. 3.3: The pseudo spin trajectories depend on the initial state and which path is taken: a)
Left path with η = π/8, ϕ = 0, b) Right path with η = π/8, ϕ = 0, c) Left path with
η = π/4, ϕ = π/4, d) Right path with η = π/4, ϕ = π/4. The spheres in each figure
indicate the initial state (I) and the final state (F). The black circle is always the path
first embarked on. In all cases we have chosen κs = 34.5. This will cause the spin
vector to traverse the circular paths several times in each plane.
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3.4 Wavepackets in free space

The non-Abelian Aharonov-Bohm effect is a striking example where the internal dynamics of a
two-level system is highly nontrivial. A question which is not often addressed in the context of
non-Abelian systems is the dynamics of a wavepacket. This situation is clearly more complex
compared to the previous non-Abelian Aharonov-Bohm scenario where an adiabatic motion
with respect to center of mass excitations and shape oscillations was assumed. We now have
to take fully into account the coupled internal and external degrees of freedom.

In the following we discuss the evolution of a cold atomic wavepacket in the presence of a
non-Abelian gauge field Â = {Âx, Ây, 0}. We consider that the atomic gas is sufficiently dilute,
and hence in this chapter we neglect the effects of the interatomic interactions. We restrict
ourselves to the case in which both matrices Âx and Ây are space-independent. In order to
simplify the discussion below, we consider Âj = ~κM̂j, with j = x, y, where κ has units of
wavenumber, and M̂2

j = 1̂. We assume as well that the scalar potential may be considered as
a multiple of the identity matrix (as discussed above). Removing unimportant global energy
shifts, the Hamiltonian for a free particle becomes

Ĥ = − ~
2

2m
∇21̂− i

~
2κ

m

(

M̂x
∂

∂x
+ M̂y

∂

∂y

)

. (3.17)

The atomic wavepacket can be represented by a spinorial wavefunction of the form

Ψ(r, t) =

∫

dp eip·r/~Φ(p, t) . (3.18)

Thus, we have

ĤΨ(r, t) =

∫

dp Ĥp(p)Φ(p, t)eip·r/~, (3.19)

where

Ĥp(p) ≡ p2

2m
1̂+

~κ

m

(

M̂xpx + M̂ypy

)

. (3.20)

Hence for any given momentum p the equation of motion i~Φ̇(p, t) = Ĥp(p)Φ(p, t) yields

Φ(p, t) = exp
[

iĤp(p)t/~
]

Φ(p, t = 0) . (3.21)

This evolution can be obtained analytically after diagonalizing the matrix Ĥp(p) for every p.
We are interested in comparing the wavepacket evolution in the presence of Abelian and

non-Abelian fields. If the fields are Abelian, i.e. [M̂x, M̂y] = 0, then we may find a common
eigenbasis for both operators, in which M̂j =diag{λ+

j , λ
−
j }. As a consequence, the eigenvectors

ξ± of Ĥp(p) are independent of p, and the total wavefunction is at any time a linear combination
of the form Φ(r, t) = Φ+(r, t)ξ+ + Φ−(r, t)ξ−, where

Φ±(r, t) = e−iφ±

∫

dp e−i p2t
2m~ eip·r/~Ψ±(p− η±, t = 0), (3.22)

with η± = ~κ(λ±x , λ
±
y ), and φ± = (η±)2t

2m~
+ η± · r/~. Hence, the wavepacket evolution can

be considered as an independent scalar evolution for the wavepackets in each component. In
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3.4 Wavepackets in free space

particular, it may be easily shown that the center of mass position of the wavepacket Φ±(r, t)
grows linearly in time with a velocity (〈p〉 + η±)/m. Hence the two wavepackets tend to
separate during the time evolution.

The picture changes completely if [M̂x, M̂y] 6= 0. In this case the eigenvectors of Ĥp(p)
do depend on the momentum p considered, and hence the time-evolution of the wavepacket
depends in a non-trivial way on the momentum distribution of the original wavepacket. We
analyze in particular the center of mass (CM) motion of the wavepacket. The x-coordinate
of the CM after a given time t is better calculated in the momentum representation: 〈x〉t =

〈i~∂/∂px〉t = 〈eiĤt/~i~∂/∂pxe−iĤt/~〉0, where we have employed the Heisenberg picture. One
can then easily obtain that:

〈x〉t = 〈x〉0 +
t

m
〈px〉0 +

〈

eiÔi~
∂

∂px

[

e−iÔ
]〉

0

, (3.23)

where Ô = (κt/m)(M̂xpx + M̂ypy). The last term in the previous equation leads to non-trivial
effects, which are easily illustrated by considering the particular example M̂x = σ̂x, M̂y = σ̂z :

〈x〉t = 〈x〉0 +
t

m
〈px〉0 +

~κt

m

{
〈c2σ̂x + scσ̂z〉0

+

〈
sin(2q)

2q
s2σ̂x − sin(2q)

2q
scσ̂z − sin2 q

q
sσ̂y

〉

0

}

, (3.24)

where c = px/p, s = py/p, q = κtp/m, and p2 = p2
x + p2

y. Let us consider an initial Gaussian
wavepacket

Ψ(r) = Ψ(r)

(
cos η eiϕ/2

sin η e−iϕ/2

)

, (3.25)

where Ψ(r) is a Gaussian centered in x = y = 0 and with the Fourier-Transform Φ(p) ∼
exp(−p2/∆p2). Then:

〈x〉τ =
~√
2∆p

τ

[

1 +

√
π

2

e−τ2

τ
erfi(τ)

]

sin(2η) cosϕ, (3.26)

where erfi(τ) is the imaginary error function at τ = ∆pκ√
2m
t. Note, that contrary to the Abelian

case, we have two inherently non-Abelian effects. On one hand, the evolution of the center
of mass motion is in general a non-trivial non-linear function of time. However, for τ ≫ 1 a
linear behavior 〈x〉τ ≃ ~√

2∆p
τ is recovered, i.e. there is a characteristical transient stage where

an inherently non-Abelian-induced non-linear CM evolution occurs (see fig. 3.4). On the other
hand, contrary to the Abelian (or scalar) evolution, the evolution of the CM motion depends
on the initial width ∆p of the momentum distribution. This effect can be traced back to the
dependence of the eigenstates ξ± on p.

A third effect can be observed if we consider a Gaussian wavepacket with an initial < py >0 6=
0. In that case, if < px >0= 0, one obtains:

〈x〉t =
~κ

t

[

1 −
〈(

sin(2q)

2q
− 1

)
p2

y

p2

〉

0

]

sin(2η) cosϕ. (3.27)
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Fig. 3.4: Evolution of the center of mass coordinate 〈x〉 in units of
√

2∆p/~, as a function of
τ = ∆pκt/

√
2m, for Âx = ~κσ̂x, and Ây = ~κσ̂z, η = π/4, ϕ = 0. The dashed line is

the function f(τ) = τ . For short times the nonlinear evolution of the center of mass
becomes clear.

Hence, the x-dynamics depends on the momentum distribution in the y-direction, contrary to
the case of Abelian evolution.

Note that the details of the momentum distribution play a very important role in the
wavepacket evolution in non-Abelian gauge fields. Obviously, if |〈p〉| ≫ ~κ the non-Abelian
effects become negligible. But even if |〈p〉| . ~κ, an Abelian evolution is recovered if ∆p≪ ~κ,
i.e. the non-Abelian effects are clearer for wavepackets which at t = 0 are localized in space
with uncertainties . 1/~κ. The latter effect may be explained, because if ∆p ≪ ~κ then Ĥp

may be (to a good approximation) simultaneously diagonalized for all relevant values of p in
the distribution, and hence again two separated wavepackets as those for the Abelian evolu-
tion are recovered. In addition, it is important to realize that the particular evolution also
depends on the initial spinor configuration of the wavepacket (although this dependence is not
inherently non-Abelian since it also occurs in the Abelian evolution).

Fig. 3.5 shows the results of our numerical simulations of the wavepacket evolution for the
Gauge field discussed above. Note that contrary to the usual Abelian (or scalar) evolution,
there is a stark difference in the evolution of the shape of the wavepacket for different values
of the momentum spreading ∆p/~κ.

The non-Abelian character of the gauge field leads also to interesting effects in the reflection
of atomic wavepackets. Ultra cold atomic wavepackets can be reflected at laser or magnetic
mirrors [ASB+93, BBB+99, APSH06]. For typical situations the reflection of the center of mass
of the wavepacket can be considered as specular, i.e. the angle of reflection of the wavepacket
with the normal vector of the mirror is exactly minus the angle of incidence of the original
wavepacket. Mathematically, the reflection can be considered as the superposition (in absence
of mirror) of the original wavepacket and an image wavepacket travelling with opposite mo-
mentum and with a dephase π. For the case of wavepackets in non-Abelian gauge fields, the
effect of the mirror cannot be mimicked by this symmetric picture, since contrary to the scalar
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xκ

xκ

y
κ

y
κ

(b)

(a)

Fig. 3.5: Total density of the wavepacket in the xy-plane after t = 10(2m/~κ2), for (a) ∆p =
0.2~κ and (b) ∆p = 0.6~κ. At t = 0, η = 0, ϕ = 0 and 〈p〉 = 0. In the strong
non-Abelian case the wavepacket expands asymmetrically. In an Abelian situation
with a radially symmetric effective magnetic field the expansion would be symmetric.
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Chapter 3 Non-Abelian Atom Optics

case, a sinusoidal solution is not an eigenstate of Ĥp. As a consequence the intuitive specular-
reflection picture must be revised in the case of wavepackets in non-Abelian gauge fields, even
for the cases discussed below resp. in figs. 3.6 and 3.7, in which both internal components
experience exactly the same mirror potential.

Fig. 3.7 shows the reflection of the wavepacket for ∆p = ~κ (i.e. for momentum spreadings
for which, as discussed above, the non-Abelian effects are significant). It is clear from the
snapshots in fig. 3.7 that the non-Abelian dynamics after the reflection is certainly not trivial.
Remarkably, the center-of-mass position does not show a specular reflection in general. Fig. 3.6
shows the sum of the angle of incidence and that of reflection for different incident angles in the
non-Abelian regime. For usual scalar (or Abelian) evolution, this sum equals zero. However,
due to inherently non-Abelian effects, this sum is significantly different from zero. Moreover,
contrary to the usual scalar (or Abelian) evolution, the angle of reflection crucially depends
on the absolute value of the incoming momentum, and on the momentum spreading of the
wavepacket. In chapter 6 we discuss even more bizarre effects related with the reflection of
atomic wavepackets in the presence of non-Abelian gauge fields.

0
π
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−

π

4
−

π

8

π

8
θi

0θr

0.05

0.1

-0.1

-0.05

θi
+

Fig. 3.6: The reflected angle plus the incident angle, θr + θi, as a function of the incident angle
θi. The deviation from the standard case, θr + θi = 0, for a non-Abelian system is
clearly seen. The parameters were chosen to be κ = 1, ∆p = 1 and initial momentum
|p0| = 8.
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3.4 Wavepackets in free space

Fig. 3.7: The reflection dynamics of a non-Abelian wavepacket compared to a zero gauge field
situation. The reflection takes place at x = −7 where a steep potential is envisaged
(gray area). The parameters were chosen to be κ = 1, ∆p = 1 and initial momentum
p0 = − 8√

2
(x̂ + ŷ). a) The initial density distribution of the atomic cloud. The initial

momentum kick is indicated by the arrow. b) The non-Abelian path of the center of
mass, the inner (green) path, for the reflection is clearly different from the standard
wavepacket reflection with κ = 0 (red outer path). c) A snap shot of the wavepacket
at the time corresponding to the mirror image with respect to the x-axis. For the
Abelian case (κ = 0) the reflected angle is the same as the incident angle. d) A
snap shot of the wavepacket at the same time as in c). For the non-Abelian case the
reflection dynamics is highly non-trivial where the center of mass path is no longer
described by an incident angle equal to the reflected angle.
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3.5 Summary

Using a very simple laser configuration, spatially homogeneous but non-Abelian vector po-
tentials can be generated. In spite of this spatial homogeneity, the non-Abelian character
of the vector potentials can lead to a surprisingly rich physics for the wavepacket dynamics
of ultra cold gases. On one hand, the free expansion dynamics of wavepackets crucially dif-
fers from what would be expected in scalar (or Abelian) cases. In the latter, the wavepacket
center-of-mass follows a linear dependence in time. In the presence of non-Abelian fields, the
wavepacket presents a non-linear time dependence during a transient time. In addition, and
again contrary to the scalar (or Abelian) case, the center-of-mass dynamics crucially depends
on the momentum spreading of the wavepacket. Moreover, in spite of the apparent separabil-
ity of the corresponding Hamiltonian, the non-Abelian gauge fields introduce a dependence of
the dynamics in different spatial directions. The wavepacket reflection off an atomic mirror
is also significantly distorted by the non-Abelian gauge field. In particular, the reflection of
the center-of-mass ceases in general to be specular, and the angle of reflection depends on the
incoming velocity and the initial momentum spreading, which is different from the standard
scalar case. The complex interplay between external and internal dynamics should make the
read-out of non-Abelian interferometers difficult. However, an experiment performed with op-
tical tweezers, may allow for the analysis of non-Abelian effects in the internal dynamics of
the atoms. We have shown that such an arrangement can be employed for the analysis of
the equivalent of the non-Abelian Aharanov-Bohm effect, where the final internal state of the
atoms crucially depends on the particular path chosen.
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Chapter 4

Non-Abelian Landau Levels

4.1 Introduction

This chapter is devoted to the analysis of non-Abelian effects on the spectral properties of
ultracold atomic systems. In particular, we show how purely non-Abelian effects lead to the
eventual destruction of the Landau level structure, and may significantly modify the ground
state density profile of ideal quantum gases.

In sec. 4.2 and 4.3 we briefly introduce the basic physics of the Landau level and the Fock-
Darwin spectrum. In sec. 4.4 we study how to generate different forms of non-Abelian gauge
fields, including non-Abelian constant fields, as well as the non-Abelian generalization of the
Landau gauge. Sec. 4.5 is devoted to the analysis of constant non-Abelian gauge fields. Sec. 4.6
discusses the non-Abelian Landau gauge, and in particular the destruction of the Landau level
structure and the corresponding modified de Haas–van Alphen–effect. In sec. 4.7 we discuss
the non-Abelian symmetric gauge. Finally, in sec. 4.8 we conclude and discuss some promising
future directions.

4.2 Landau Levels

Landau levels [Lan30] are the allowed energy levels of particles in a magnetic field. In elec-
trodynamics a classical particle performs a cyclotron motion in a plane perpendicular to the
magnetic field B. But in quantum mechanics, due to quantisation, only cyclotron orbits with
an energy equal to the eigenenergy of the Hamiltonian H = 1

2m (−i~∇ + A)2 are allowed.
Different choices of A, i.e. different gauges, can describe the same magnetic field. Let us con-
sider a constant magnetic field in z-direction B = (0, 0, B0). This can be obtained by means
of the Landau gauge (see fig. 4.1)

ALandau(r) = B0 (0, x, 0) (or ALandau(r) = B0 (−y, 0, 0)) . (4.1)

Another way is employing the so-called symmetric gauge (see fig. 4.2)

Asymmetric(r) =
1

2
B0 (−y, x, 0) . (4.2)

For calculating the Landau levels for a magnetic field in z-direction one does not need
the Landau gauge, but per definitionem any gauge creating the desired magnetic field gives
the same result. Depending on the symmetry of the Hamiltonian and boundary conditions,
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Fig. 4.1: vector potential in Landau gauge
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zB

Fig. 4.2: vector potential in symmetric gauge

calculations in a certain gauge are easier. The Landau gauge is suitable if the Hamiltonian
is translationally invariant. In this case the eigenfunctions of the translation operator τy can
be used. The symmetric gauge is helpful when dealing with rotational invariant Hamiltonians
and the eigenfunctions of Lz = xpy − ypx are useful. The geometry and boundary conditions
are also considered in choosing a gauge. For problems on a disc we would prefer the symmetric
gauge, whereas for problems defined on a rectangular sample we would opt for the Landau
gauge.
Consider the example of a box with periodic boundary conditions. Let us solve this problem
in the Landau gauge:

EΨ =
1

2m

[

p2
x + (py +B0x)

2
]

Ψ . (4.3)

Periodic boundary conditions are assumed for simplicity of the discussion. We can use an
exponential ansatz for the wave function, Ψ =

∑

ny
ei 2π

L
nyyu(ny, x), to get

Eu(q) =

[

p2
q

2m
+

1

2
mω2

cq
2

]

u(q) , (4.4)

where q = x + ~
2πny

LB0
and ωc = B0/m. The Landau levels are the corresponding eigenstates,

which hence resemble the energy structure of a harmonic oscillator. All ny give the same
spectrum and lead to a degeneracy g ∝ BL2 as shown in figs. 4.3 and 4.4.
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Fig. 4.3: Landau level structure. Each pos-
sible energy level presents a given
maximal degeneracy ∝ BL2 (see
text).
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Fig. 4.4: Visualization of the possible val-
ues of ny. The bars show that
they are independent, opposed to
the non-Abelian case later-on
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4.3 Fock-Darwin spectrum

4.3 Fock-Darwin spectrum

Related to the Landau levels discussed above, we may study the problem of a charged particle
in a uniform magnetic field and a 2D harmonic oscillator potential

H =
1

2m
(p+A)

2
+

1

2
mω2ρ2. (4.5)

For small resp. no magnetic field one recovers the harmonic oscillator eigenvalues and their
correct degeneracy, see fig. 4.5. For large magnetic fields the trapping term becomes negligible
and one recovers the Landau level structure, see fig. 4.6. This is an important toy model
e.g. for quantum dots and for trapped Bose-Einstein condensates. Its solution is the so-called
Fock-Darwin spectrum [Foc28, Dar30], see fig. 4.7.
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Fig. 4.5: 2D harmonic oscillator energy lev-
els vs. angular momentum l with-
out a magnetic field, arrows denote
maximum shift due to a magnetic
field
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Fig. 4.6: 2D harmonic oscillator energy lev-
els vs. angular momentum l in a
high magnetic field, if the trapping
is negligible we regain the Landau
levels

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.5  1  1.5  2  2.5  3  3.5  4

E

b0

Fig. 4.7: Fock-Darwin spectrum E in units of ~ω
√

1 + b20 for the Abelian cases as a function of
b0 = ωc/ω, where b0 is the ratio between the cyclotron frequency ωc associated with
the magnetic field and the trap frequency ω of the harmonic confinement.
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4.4 Laser-induced non-Abelian Gauge fields

In this section we discuss concrete non-Abelian gauge fields following our general discussion in
chapter 2.

4.4.1 Constant intensities

First, we will consider homogeneous intensity profiles, as in section 2.5.1, i.e. both φ and θ are
now space independent. We choose the case with φ = θ = π/4. For constant φ the non-Abelian
character demands ∇S23 × ∇S13 6= 0. A simple laser arrangement fulfilling this condition is
Sj3 = αjx+ βjy, where αj , βj are constants such that α2β1 6= α1β2. The corresponding x and
y components of the vector potential are of the form

Âx =
1

8
(α1 + α2)(31̂+ σ̂z) +

1

2
√

2
(α1 − α2)σ̂x, (4.6)

Ây =
1

8
(β1 + β2)(31̂+ σ̂z) +

1

2
√

2
(β1 − β2)σ̂x. (4.7)

On the other hand, by choosing Vj(r) = ∆Ej + U(r), with ∆E1 = −(~2/16m)[(α2
1 − α2

2) +
(β2

1−β2
2)] = −∆E2, and ∆E3 = −(~2/16m)[(α2

1+α2
2)+(β2

1 +β2
2)], one can prove that (up to an

irrelevant constant) V̂ + φ̂ = U(r) with U(r) a common trapping potential for all components.
A gauge transformation eliminates the terms proportional to the identity matrix in Âx and

Ây . Let ~κy = (β1−β2)/2
√

2, ~qy = (β1+β2)/8, ~κx = (α1−α2)/2
√

2, and ~qy = (α1+α2)/8.
A rotation σ̂x → cos ησ̂x+sin ησ̂z , σ̂x → − sin ησ̂x+cosησ̂z , with tan 2η = κy/qy, provides Ây =

~q̃yσ̂z , with q̃y = cos 2φqy +sin 2φκy, and Âx = ~κ̃xσ̂x+~q̃xσ̂z, with κ̃x = (cos 2φκx−sin 2φqx),
and q̃x = (cos 2φqx + sin 2φκx). We will use this form in sec. 4.5.

4.4.2 Landau-like gauge

In this subsection we shall consider the case similar to section 2.5.2, S13 = S23 = S. In that
case the non-Abelian character demands (∇S × ∇φ)z 6= 0. We will choose the phase S = κx,
and φ = qy, which gives a non-Abelian gauge potential unless κ = 0 or q = 0. In addition, we
take cos θ = x/Rc, where R2

c = x2 + (z − zc)
2, such that for the relevant x-range, |x| ≪ zc is

fulfilled. As a consequence, and up to first order in (x/zc) we obtain:

Â ≃ ~κ(1̂+ σ̂z)x̂+B0xσ̂y ŷ, (4.8)

where B0 = q/zc. Note that, although x≪ zc, B0 can actually have large values. In addition,
and again up to first order in (x/zc), we obtain V̂ + φ̂ = U(r), if V1(r) = V2(r) = ~

2q2/2m+
U(r), and V3(r) = ~

2/2mz2
c . Using a simple gauge transformation Ψ → exp (iκx)Ψ to eliminate

the identity matrix term in Âx, and applying a unitary spin transformation U †ÂU , with U =
(σ̂z + σ̂y)/

√
2, we obtain Â ≃ ~κσ̂yx̂ + B0xσ̂z ŷ, which we will employ in sec. 4.6. A simple

laser arrangement which would lead to this particular gauge is provided by

Ω1 = Ω cos(qy) eiκ(x+y+z)/2, (4.9)

Ω2 = Ω sin(qy) eiκ(x+y+z)/2, (4.10)

Ω3 = Ω
x

zc
eiκ(x−y+z)/2, (4.11)
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4.5 Constant non-Abelian gauge

where we assume that the illuminated atoms are confined to a region for which |x| ≪ zc holds.

4.4.3 Symmetric gauge

Although we discussed in section 2.5.3 that the tripod scheme is not suitable for the experimen-
tal realization of this gauge, due to the appearance of a spurious scalar potential, we include
later (section 4.7) the analysis of this gauge field for completeness of our discussion.

4.5 Constant non-Abelian gauge

Let us consider a constant matrix gauge of the form Â = (Âx, Ây, 0). We have already shown
that these fields can be generated in a tripod scheme using a simple laser arrangement. Then,
the Hamiltonian of the 2D system becomes:

Ĥ =
1

2m

[

(p̂x + Âx)2 + (p̂y + Ây)2
]

. (4.12)

In the Abelian case [Âx, Ây] = 0. We can therefore choose a common eigenbasis for both
matrices: Âx/~ = diag{q1x, q2x}, Ây/~ = diag{q1y, q2y}. As a consequence, we recover two
independently displaced quadratic spectra Ej(k) = ~

2

2m (k + q)
2, where qj = (qjx, qjy).

In the non-Abelian case, on the other hand, we cannot simultaneously diagonalize both
matrices, and as a consequence the spectrum becomes distorted. Let us consider a simple, but
representative, case, namely Âx = qxσ̂x, Ây = qyσ̂z . Employing the Fourier-like transformation

ψ(x, y) =
∑

kx,ky

eikyyσ̂z

(
1 + iσ̂y√

2

)

eikxxσ̂zφ(kx, ky) (4.13)

with kx,y = 2πnx,y/L, we may transform the time-independent Schrödinger equationEψ(x, y) =

Ĥψ(x, y) into

2mE

~2
φ(kx, ky) =

[
k2

x + q2x + (ky + qy)2
]
φ(kx, ky) + 2qxkxφ(kx,−ky). (4.14)

Diagonalizing the system of equations for φ(kx,±ky), we obtain two eigenenergies

2mE±
~2

= k2
x + q2x + k2

y + q2y ± 2
√

k2
xq

2
x + k2

yq
2
y . (4.15)

Note that in the Abelian situation qx = 0 (or qy = 0) and, as expected, there is no coupling
between momenta in different directions. However, due to the non-Abelian character, even for
a constant gauge there is a non trivial coupling between the different directions.

4.6 Landau-like Non-Abelian gauge

4.6.1 Periodic boundary conditions

We consider in the following a matrix generalization of the Landau gauge, namely

Â = (~κM̂x, B0M̂yx, 0) (4.16)

57



Chapter 4 Non-Abelian Landau Levels

(the usual Landau gauge is of the form Â = (0, B0x, 0)). We will assume that the matrices M̂x

and M̂y are constant. Then the Hamiltonian of the 2D system becomes:

Ĥ =
1

2m

[

(p̂x + ~κM̂x)2 + (p̂y +B0M̂yx)
2
]

. (4.17)

We first discuss the typical text book situation, in which the particles are assumed to be
confined on a xy-plane of length L with periodic boundary conditions (i.e. a toroidal configu-
ration). We are particularly interested in how the non-Abelian character of the fields destroys
the usual Landau-level structure of the energy eigenstates. In the following subsection we shall
discuss a slightly different scenario closer to actual experimental conditions.

As in sec. 4.5, if [M̂x, M̂y] = 0, one can find a common eigenbasis {e1, e2}, such that in this
basis M̂x = diag{γ1, γ2}, and M̂y = diag{λ1, λ2}, and hence the Hamiltonian is also diagonal
in this basis. Since we assume periodic boundary conditions we can consider wavefunctions of
the form

ψj(r) =
∑

ny

ei 2π
L

nyy+iκγjqvj(ny, x)ej , (4.18)

such that

Evj(q) =

[
p̂2

2m
+

1

2
mω2

j q
2

]

vj(q). (4.19)

where q = x +
2π~ny

LB0λj
, p = −i~∂/∂q, and ωj = B0|λj |/m is the cyclotron frequency for the

state j. Hence, for the Abelian case we obtain two different sets of Landau levels with energies
Ej(n) = ~ωj(n + 1/2), and degeneracies gj = B0λjL

2/2π~. Note that if |λ1| = |λ2|, as it is
the case for My = σ̂z , then the two sets of Landau levels are degenerate.

Let us now discuss what happens if on the contrary [M̂x, M̂y] 6= 0. We work (without lack
of generality) in the basis in which My = σ̂z . Note that the Ansatz

ψ(r) =
∑

ny

ei 2π
L

nyyσ̂zu(ny, x) (4.20)

also fulfills periodic boundary conditions. We insert this Ansatz into the eigenvalue equation
to obtain

Eu(ny, x) =

[

(px + ~κMx)
2

2m
+

1

2m

(
~2πny

L
+B0x

)2
]

u(ny, x)

+
1

2

[

σz
(px + ~κMx)

2

2m
σz − (px + ~κMx)

2

2m

]

[u(ny, x) − u(−ny, x)] (4.21)

Eu(ny, x) =

[

Π̂2

2m
+

~
2

2m

(
2πny

L
+
B0

~
x

)2
]

u(ny, x)

+
[

σ̂z [Π̂
2, σ̂z ]

] [u(ny, x) − u(−ny, x)

4m

]

, (4.22)

where Π̂ = p̂x + ~κM̂x. For the Abelian case, [M̂x, σ̂z] = 0, the last term vanishes, and we
get the same equation (eq. (4.19)) as previously. However, for the non-Abelian case, the last
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4.6 Landau-like Non-Abelian gauge

term introduces a coupling between the modes with ny and −ny, and hence there is an explicit
dependence on ny. As a consequence of that, the degeneracy of the Landau levels is lifted.

For the particular case of M̂x = σ̂y, we get the following set of coupled equations
(ǫ = E − ~

2κ2/2m):

ǫu(ny, x) =

[

p̂2
x

2m
+
B2

0

2m

(

x+
2π~ny

B0L

)2
]

u(ny, x)

+
~κ

m
p̂xσ̂yu(−ny, x) (4.23)

ǫu(−ny, x) =

[

p̂2
x

2m
+
B2

0

2m

(

x− 2π~ny

B0L

)2
]

u(−ny, x)

+
~κ

m
p̂xσ̂yu(ny, x). (4.24)

The coupling prevents the re-absorption of ny in the definition of a new q variable, as it was
done in the Abelian case, and hence the spectrum explicitly depends on ny. Note that we are
imposing periodic boundary conditions, and therefore x is in a ring of perimeter L. In this
sense, ±L/2 are the same point, and this must be taken into account when considering the
harmonic oscillator potential in each equation. Fig. 4.8 depicts the couplings of the different
ny in the equations above, compared to the Abelian case of fig. 4.4. Note that the previous
equations involve the coupling of harmonic oscillator wavefunctions centered in ±xc(|ny|), with
xc(|ny|) = 2π~|ny|/B0L. Hence, the smaller the overlapping between coupled wavefunctions
(see fig. 4.8), i.e. the larger xc, the smaller the coupling, and as a consequence only sufficiently
small values of ny will be affected by the non-Abelian coupling. This point becomes clear after
performing first order perturbation theory assuming a small coupling κ. A straightforward
calculation shows that the lowest Landau levels, which correspond to the lowest eigenvalues of
each harmonic oscillator, experience a maximal energy shift

∆E

~ωc
= (κlc)

ny

∆ny
e−n2

y/∆n2
y , (4.25)

where l2c = ~/mωc is the magnetic length, and ∆ny =
√

g/2π, with g the degeneracy of the
unperturbed Landau levels. Note that for ny = 0 the first correction should be quadratic in
κ, whereas for ny 6= 0 it should be linear. Clearly, the relative importance of the non-Abelian
corrections should decrease as g−1/2. In particular, the maximal energy shift 〈∆E〉 averaged
over the different ny can be approximated as 〈∆E〉/~ωc ≃ (κlc)/

√
2πg.

We have solved numerically for the eigenvalues of eqs. (4.23) and (4.24) imposing periodic
boundary conditions, for different values of g which controls the strength of the magnetic field
applied, and κlc which provides the strength of the non-Abelian corrections. The value of
L/lc =

√
2πg is chosen in all simulations. Fig. 4.9 shows the behavior of the lowest eigenvalue

as a function of ny for g = 128 and κlc = 0, 0.2, 0.4, 0.6, 0.8, 1.0 (from the uppermost to the
lowermost curve). The figure follows approximately the perturbative result. For ny = 0 a
higher order contribution appears, but note that a quadratic law for small κ follows, and not
a linear one, as in the case for ny 6= 0. As expected from the previous calculations only values
of ny up to the order of

√
g contribute significantly to the shift of the lowest Landau level.
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−1 +1

ny

nmax

0

Fig. 4.8: Visualization of the possible values of ny. The Gaussians show that the different ny

are coupled, contrary to the Abelian case in fig. 4.4, and the overlap determines the
strength of their coupling.
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Fig. 4.9: Lowest eigenvalue ǫ0 in units of ~ωc as a function of ny, for g = 128 and κlc =
0, 0.2, 0.4, 0.6, 0.8, 1.0 (from the uppermost to the lowermost curve).

Fig. 4.10 show the behavior of the Landau levels for g = 128, and κlc = 0, 0.2, 0.4, 0.6, 0.8, 1.0.
The figures are presented as histograms in intervals of 0.05~ωc, in order to reveal more clearly
the destruction of the Landau levels. Note that the gaps (of energy ~ωc) between the Landau
levels are filled, and the peaks in the density of states are progressively reduced. For sufficiently
large κ the Landau level structure therefore disappears.

4.6.2 Absorbing boundary conditions

In the previous section we discussed how the non-Abelian character of the gauge field signifi-
cantly modifies the text-book Landau level structure. In the following, we consider a slightly
different physical scenario which is closer to the actual experimental conditions discussed in
sec. 4.4. The particular procedure devised for the generation of the non-Abelian Landau gauge
demands that the x coordinate cannot be considered as periodic. We take the same box con-
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Fig. 4.10: Landau level structure for periodic boundary conditions, g = 128, and κlc ∈
{0, 0.2, 0.4, 0.6, 0.8, 1.0}. We employ (see text) M̂x = σ̂y and M̂y = σ̂z .

figuration as for the previous subsection, but assume absorbing boundary conditions in the
x direction, while keeping for simplicity periodic boundary conditions in the y-direction. We
consider exactly the same gauge discussed in the previous subsection. The spectrum is pro-
vided by eqs. (4.23) and (4.24) but imposing absorbing boundary conditions. Fig. 4.11 shows
the lowest Landau levels for the same cases discussed in Fig. 4.10.

Even for the Abelian case the Landau level structure is affected by the absorbing boundary
conditions. In the Abelian case, as discussed in the previous section, the problem reduces
to two decoupled equations for harmonic oscillators centered at ±xc(|ny|). Clearly, when
xc approaches L the levels of the resulting potential become largely distorted, leading to a
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Fig. 4.11: Same cases considered in fig. 4.10 but with absorbing boundary conditions, κlc ∈
{0, 0.2, 0.4, 0.6, 0.8, 1.0}

significant modification of the Landau level structure when ny approaches g. This reduces
the effective degeneracy of the lowest Landau levels to values smaller than g. The effective
degeneracy, as shown in the figures, becomes smaller for higher Landau levels. The non-
Abelian effect leads, as in the previous subsection, to the eventual destruction of the Landau
level structure.
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4.6 Landau-like Non-Abelian gauge

4.6.3 de Haas–van Alphen–Effect

In the last section we predicted the change of Landau levels. In this section we remind the
reader how the Landau level structure can be experimentally measured by means of the de
Haas–van Alphen–effect [LL02]. The filling of Landau levels (fig. 4.3) using N non-interacting
fermions at low temperatures causes oscillations in physical observables as a function of the
magnetic field B. This is the so-called de Haas–van Alphen–effect.

The degeneracy of the Landau Level is g = BL2

2π~
. At very high magnetic fields B, if g(B) > N ,

all fermions are in the lowest Landau Level (LLL) n = 0. For decreasing magnetic field one
reaches a critical point Bc for which g(Bc) = N . In the case of further decrease to B < Bc

the fermions have to hop to the next level n = 1. If the magnetic field decreases more i.e.
B < Bc/2 the fermions will hop to n = 2. Further decreasing of B will lead to the occupation
of higher and higher Landau Levels, 1

n0+1 >
B
Bc

> 1
n0+2 , meaning the first n0 Landau levels

are fully occupied and level n0 + 1 is partially occupied. Levels larger than n0 + 1 are empty.
Let use now consider the energy at different magnetic fields B. For B > Bc the energy grows
linearly with B. After passing B = Bc the energy will increase first with decreasing magnetic
field, see fig. 4.12. This yields the characteristic oscillations of the energy. Assume that N
non-interacting fermions at low temperatures fill all the states starting from the lowest energy
eigenvalue. The ground state energy E0 is then the sum of the energies ǫn over the N lowest
1-particle-states:

E0(B) = g(B)

n0∑

n=0

ǫn +

[

N −
n0∑

n=0

g

]

ǫn0+1

= 2µBB

{

g(B)

n0∑

n=0

(

n+
1

2

)

+ [N − (n0 + 1)g(B)]

(

n0 +
3

2

)}

= 2µBBN

{(

n0 +
3

2

)

− B

2Bc
(n0 + 1)(n0 + 2)

}

. (4.26)

Using the energy E0 we calculate the magnetisation M = − 1
V

∂E0

∂B and susceptibility χ =

− 1
V

∂2E0

∂B2 :

E0(B)

N
=

{

µBB if B > Bc

µBB
{

(2n0 + 3) − B
Bc

(n0 + 1)(n0 + 2)
}

if 1
n0+2 <

B
Bc

< 1
n0+1

(4.27)

M =

{

− 1
νµB if B > Bc

− 1
νµB

{

(2n0 + 3) − B
Bc

(n0 + 1)(n0 + 2)
}

if 1
n0+2 <

B
Bc

< 1
n0+1

(4.28)

χ =

{

0 if B > Bc

2µB

Bcν

{

(2n0 + 3) − B
Bc

(n0 + 1)(n0 + 2)
}

if 1
n0+2 <

B
Bc

< 1
n0+1

, (4.29)

where (ν = V/N). Hence the susceptibility χ shows plateaus and M oscillates (fig. 4.12). This
is the so-called de Haas–van Alphen–effect.
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Fig. 4.12: De Haas–van Alphen–effect (theory). The degeneracy of the Landau levels depends
on the magnetic field B. Therefore, the filling of the Landau levels causes oscilla-
tory behaviour in the energy per particle Ē as a function of B. Consequently, the
magnetisation M oscillates as well and the susceptibility χ shows plateaus.

4.6.4 Modified de Haas–van Alphen–Effect

The destruction of the Landau level structure has experimentally relevant consequences for
the behavior of cold atomic gases. As an example we can consider the case of an ideal two-
component Fermi gas under the previously mentioned non-Abelian gauge potential (we consider
a temperature T ≪ TF , where TF is the Fermi temperature). Equivalently to the well-known
de Haas–van Alphen–effect (see last section), we may study the energy per particle, Ē = E/N ,
of the Fermi gas, as a function of the applied magnetic field B, or equivalently of g. This energy
may be monitored by measuring the released energy in time-of-flight experiments. For κ = 0
(Abelian case) d2Ē(B)/dB2 presents a typical configuration of plateaux, due to the degeneracy
of the Landau levels. The destruction of the Landau level structure significantly distorts this
picture, rounding-off or eventually destroying this plateaux configuration (see fig. 4.13).
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Fig. 4.13: De Haas-van Alphen-effect (simulation): Values of Ē, M ∝ −∂Ē/∂B and χ ∝
−∂2Ē/∂B2 as a function of the applied magnetic field B. These are the same cases
as discussed in fig. 4.10 for κ = 0 (red filled circles), κ = 0.2 (green daggers) and
κ = 0.4 (blue hollow circles).
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4.7 Symmetric gauge

In this section we consider an ideal cold atomic sample in an isotropic harmonic trap of fre-
quency ω, in the presence of a non-Abelian generalization of the symmetric gauge of the form
Â = Âρρ̂+ ρÂϕϕ̂. Although the tripod scheme is not suitable for the experimental realization
of this gauge, we include the analysis of this gauge field for completeness of our discussion.
Other ways of generating non-Abelian gauge fields, as lattice techniques [OBS+05] should be
employed in this case. In the following we consider Aρ = ~κÛρ, Aϕ = B0Ûϕ, where Ûρ,ϕ are
linear combinations of {1̂, σ̂x, σ̂y, σ̂z}.

The corresponding time-independent Schrödinger equation is of the form

Eψ =
1

2m

[

−i~∇ + Â
]2

ψ +
mω2

2
ρ2ψ. (4.30)

Performing the gauge transformation ψ = exp[−iÂρρ/~]φ, the Schrödinger equation trans-
forms into

Eψ =
1

2m

[

−i~∇ + ϕ̂Ĉϕ(ρ)ρ
]2

ψ +
mω2

2
ρ2ψ, (4.31)

where
Ĉϕ(ρ) = eiÂρρ/~Âϕe−iÂρρ/~. (4.32)

Note that Ĉϕ becomes ρ–dependent and different from Âϕ if [Âρ, Âϕ] 6= 0.
If we now consider the solutions with angular momentum l, φ = Rlρ

|l|eilϕ, we obtain

ERl = −1

2

[
d2

dρ2
Rl +

(2|l| + 1)

ρ

d

dρ
Rl

]

+
1

2

[

1 + Ĉϕ(ρ)2
]

ρ2Rl + lĈϕ(ρ)Rl, (4.33)

where we reduce the equations to a dimensionless form by employing oscillator units for the
energy (~ω) and for the length (lho =

√

~/mω). In the previous equation

Ĉϕ(ρ) ≡ (ωc/ω) exp[iκÛρρ]Ûϕ exp[−iκÛρρ] , (4.34)

where ωc = B0/m is the corresponding cyclotron frequency.
As mentioned above the non-Abelian character of the gauge field induces an additional ρ–

dependent potential. This severely distorts the standard Fock-Darwin spectrum expected for
the Landau-level structure in the presence of a symmetric gauge and a harmonic potential
(Fig. 4.14). An inspection of the level structure shows that not only the eigenenergies are
modified, but also the ordering of the different eigenstates becomes distorted as a consequence
of the non-Abelian potential.

Note that for the non-Abelian case

Ĉϕ(ρ) = −b0 (cos(2κb0ρ)σ̂z + sin(2κb0ρ)σ̂x) (4.35)

and
Ĉ2

ϕ(ρ) = −b201̂. (4.36)

When κ becomes very large Ĉϕ(ρ) averages to zero, and we recover a harmonic oscillator with
frequency ω

√

1 + b20, see fig. 4.15. For κ > 5 we then observe no further relevant change in the
spectrum.
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κb0σ̂x.  0

 5

 10

 15

 20

 25

 30

 0  0.5  1  1.5  2  2.5  3  3.5  4

E

κ

67



Chapter 4 Non-Abelian Landau Levels

As a consequence of this extra ρ–dependent potential in eq. (4.31), the shape of the eigen-
functions change as well, see e.g. fig. 4.16 for the shape of the first four eigenfunctions with
angular momentum l = 4. There one still recognizes the excitation number by counting the
notches. Therefore an ideal Fermi gas at zero temperature shows a significantly distorted den-
sity profile in the presence of the non-Abelian gauge field, as shown in fig. 4.17, where we
summed over the first 56 eigenlevels to obtain a density profile at zero temperature.
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Fig. 4.16: Distortion of the eigenfunctions in the non-Abelian regime, due to the additional
ρ–dependent potential. The panels above show the the density of the first four
eigenfunctions (nr = 0 . . . 3) for angular momentum l = 4, b0 = 2, κ = 1 in the
Abelian case (red line, Âϕ = boσ̂z and Âρ = κb01̂) and non-Abelian case (green line,
Âρ = κb0σ̂x).
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Fig. 4.17: Comparison between the density profile for an ideal Fermi gas occupying up to
56 eigenlevels at zero temperature for the Abelian (solid) and non-Abelian cases
discussed in the text with different values of κ = 1 (dashed), and κ = 5 (dotted).

4.8 Summary

In this chapter we have analyzed the physics of ultracold gases in the presence of a non-Abelian
gauge field. We have first studied how different types of non-Abelian fields may be created
by means of relatively simple laser arrangements with atoms described by an electronic tripod
level scheme, including a non-Abelian generalization of the Landau gauge. In a second part
we have considered the non-trivial effects that the non-Abelian character has on the eigenlevel
structure of the cold atomic system. In particular we have shown that exclusively due to the
non-Abelian character of the field, the usual Landau level structure is severely distorted, and
even eventually destroyed. We have shown that this effect may be observable in an equivalent
experiment to the well-known de Haas–van Alphen–effect. The distortion of the Landau levels
leads to a significant modification of the usual plateaux-like susceptibility characteristic for the
de Haas–van Alphen–effect. Finally, we have completed our analysis of a non-Abelian version of
the symmetric gauge. We have shown that the Fock-Darwin spectrum is significantly distorted
in the presence of non-Abelian fields, due to the presence of an extra potential, which is a
purely non-Abelian effect.
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Chapter 5

Quasi-Relativistic Physics with Cold Gases.

Veselago Lensing

5.1 Introduction

In this chapter we employ the constant non-Abelian gauge potential, proportional to an oper-
ator of spin 1/2, A = (σx, σy , 0) = σ, suggested by [JRL+08], which is similar to the constant
potential we introduced in section 2.5.1:

H =
1

2m
(p+ κσ)2 + V . (5.1)

Then we demonstrate that this Hamiltonian resembles for small momenta the Hamiltonian of
ultra-relativistic two-component Dirac fermions

H = ~vFσ · k , (5.2)

where vF is the Fermi velocity. This is also the Hamiltonian of electrons in graphene [NGM+05,
MF06, KNG06, GN07, NJZ+07, MP07, JP07, Pen07, CFA07] — a two dimensional hexago-
nal crystal of carbon atoms. Close to the Fermi level the electrons in graphene behave like
massless ultra-relativistic two-component Dirac fermions [BLP82] moving with a velocity vF

as in eq. (5.2). There one expects remarkable effects, such as a half integer quantum Hall effect
[NGM+05, GN07, NJZ+07] and the Klein paradox [KNG06]. It has also been proposed that
electrons in graphene [Pen07, CFA07] should undergo negative refraction at a potential barrier,
similar to the electromagnetic waves impinging on a barrier where the dielectric permitivity
and the magnetic permeability are negative [Ves68, Pen00]. We show in this chapter that cold
atoms can experience negative refraction and Veselago-type lensing [Ves68].

The Fermi velocity vF in (5.2) is in ultra-relativistic physics the vacuum speed of light
c ≈ 3 · 108 m/s, but it is three orders of magnitude smaller for electrons in graphene, around
105 m/s. However, in cold atoms the ultra-relativistic effects can even be observed at velocities
of 10−2 m/s, which is even 10 orders of magnitude smaller than the speed of light. Other
proposals to generate quasi-relativistic dynamics of cold atoms use lattices instead, e.g. one-
dimensional [RDJ02] or 2D hexagonal (graphene-type) [ZWD07] lattices.

5.2 Laser-induced non-Abelian gauge fields

Let us consider the adiabatic motion of tripod atoms with laser couplings as discussed in 2.4.4.
To generate our spin 1/2 gauge potential we start with the general parametrization of the lasers
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coupling the tripod levels, as in eq. (2.75) of section 2.4.4. We are particularly interested in the
case of the first two lasers having the same intensities and counter-propagating in x-direction
while the third laser propagates in the negative y-direction with the same wave number κ

Ω1 = Ω sin θ e−iκx/
√

2, (5.3)

Ω2 = Ω sin θ eiκx/
√

2, (5.4)

Ω3 = Ω cos θ e−iκy, (5.5)

where Ω =
√

|Ω1|2 + |Ω2|2 + |Ω3|2 is the total Rabi frequency, and θ the mixing angle defining
the relative intensities.

The electronic Hamiltonian of the tripod atom reads in the interaction representation as in
eq. (2.69)

Ĥ0 = −~

(

Ω1|0〉〈1| + Ω2|0〉〈2| + Ω3|0〉〈3|
)

+ H.c. , (5.6)

and the two dark states of this Hamiltonian are

|D1〉 =
1√
2
e−iκy

(
eiκx|1〉 − e−iκx|2〉

)
(5.7)

|D2〉 =
1√
2
e−iκy cos θ

(
eiκx|1〉 + e−iκx|2〉

)
− sin θ|3〉 . (5.8)

With the Rabi frequencies Ωj beeing space dependent, the states |D1〉 and |D2〉 are spatially
dependent as well. The adiabatic approximation assures that the internal states of the Hamil-
tonian (5.6) evolve within the dark state manifold. The atomic state-vector |Φ〉 can then be
expanded in terms of the dark states according to |Φ〉 =

∑2
j=1 Ψj(r)|Dj(r)〉, where Ψj(r) is

the wave-function for the center of mass motion of the atom in the j-th dark state.
Thus the atomic center of mass motion is described by a two-component wave-function

Ψ = (Ψ1,Ψ2)
T . The column-matrix Ψ obeys the Schrödinger equation

i~
∂

∂t
Ψ =

[
1

2m
(−i~∇−A)2 + V + Φ

]

Ψ, (5.9)

where m is the atomic mass, and A, Φ and V are 2 × 2 matrices. The gauge potentials A
has the elements An,m = i~〈Dn(r)|∇Dm(r)〉, the scalar potential is Vn,m = 〈Dn(r)|V̂ |Dm(r)〉
with V̂ = V1(r)|1〉〈1| + V2(r)|2〉〈2| + V2(r)|3〉〈3|, where Vj(r) is the trapping potential for
an atom in the internal state j = 1, 2, 3. Note that the potential Vj can also accommodate
a possible detuning of the j-th laser from the resonance of the j → 0 transition. In chapter
2, the potentials A, Φ and V have been considered for arbitrary light fields. In the present
configuration of the light fields, the potentials take the form

A = ~κ

(
ey −ex cos θ

−ex cos θ ey cos2 θ

)

, (5.10)

Φ =

(
~

2κ2 sin2 θ/2m 0
0 ~

2κ2 sin2(2θ)/8m

)

, (5.11)

V =

(
V1 0
0 V1 cos2 θ + V3 sin2 θ

)

, (5.12)
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where the external trapping potential is assumed to be the same for the first two atomic states,
V1 = V2.

To simplify the sum of the scalar potentials V +Φ we take V3−V1 = ~
2κ2 sin2 θ/2m. This is

obtained by detuning the third laser from the two-photon resonance by ∆ω3 = ~κ2 sin2 θ/2m.
Therefore the overall trapping potential can be made proportional to an identity matrix:

V + Φ = V11 (up to a constant). Both dark states are affected by the same trapping potential
V1 ≡ V1(r). Furthermore, to represent the gauge potential in a symmetric way in terms of the
Pauli matrices σx and σz, we choose θ = θ0 such that sin2 θ0 = 2 cos θ0, giving cos θ0 =

√
2− 1

and
A = ~κ′(−exσx + eyσz) + ~κ0ey1, (5.13)

where κ′ = κ cos θ0 ≈ 0.414κ and κ0 = κ(1 − cos θ0).
To obtain the spin 1/2 operator in the xy-plane one introduces new dark states:

|D′1〉 =
1√
2

(|D1〉 + i|D2〉) eiκ0y, (5.14)

|D′2〉 =
i√
2

(|D1〉 − i|D2〉) eiκ0y. (5.15)

The transformation from the old to the new two-component wave function is

Ψ′ = exp(−iκ0y) exp
(

−i
π

4
σx

)

Ψ . (5.16)

The exponential factor exp(−iκ0y) leads to a shift in the origin of the momentum k→ k−κ0ey.
The Hamiltonian of the new dark states has the vector potential A′ = −~κ′σ⊥, where σ⊥ =
exσx + eyσy. Finally, the equation of the atomic motion is

i~
∂

∂t
Ψ′ =

[
1

2m
(−i~∇ + ~κ′σ⊥)2 + V1

]

Ψ′. (5.17)

The vector potential governing the atomic motion is hence proportional to the spin operator
σ⊥.

5.3 Dispersion relation

If the trapping potential in eq. (5.17) is constant, we can assume plane-wave solutions

Ψ′(r, t) = Ψkeik·r−iωkt, Ψk =

(
Ψ1k

Ψ2k

)

, (5.18)

where ωk is the eigen-frequency in the stationary Schrödinger equation HkΨk = ~ωkΨk. The
k-dependent Hamiltonian is:

Hk =
~

2

2m
(k + κ′σ⊥)2 + V1. (5.19)

In the case of small wave-vectors (k ≪ κ′) this Hamiltonian reduces to the Hamiltonian for the
2D relativistic motion of a two-component massless particle of the Dirac type (Weyl equation)
[Mag05],

Hk = ~v0k · σ⊥ + V1 +mv2
0 . (5.20)
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The velocity v0 = ~κ′/m of such quasi-relativistic particles is given by the recoil velocity
corresponding to the wave-vector κ′, which is typically of the order of one centimeter per
second.

The 2D chirality operator σk = k · σ⊥/k, which commutes with the Hamiltonian Hk, has
the eigenstates

Ψ±
k

=
1√
2

(
1

±kx+iky

k

)

, (5.21)

according to σkΨ±k = ±Ψ±k . The chirality here is associated with the subspace of the dark
states given by eqs. (5.14) and (5.15) instead of normal spin states. Note that one can also
construct the Poincaré sphere associated with two dark states. The eigenstates (5.21) of the
chirality operator are also the eigenstates of the Hamiltonian Hk with eigenenergies ωk ≡ ω±k .
Assuming the atomic motion is restricted to the xy-plane, the dispersion relation is given by

~ω±
k

= ~v0(k
2/2κ′ ± k) + V1 +mv2

0 , (5.22)

see fig. 5.1 in which V1 = −mv2
0/2. If the direction k/k is fixed, the dynamics in two different

dispersion branches is described by different chirality. For small wave-vectors (k ≪ κ′) the
dispersion reduces to

~ω±k = ±~v0k + V1 +mv2
0 , (5.23)

where the upper (lower) sign corresponds to a linear cone with a positive (negative) group
velocity, v±g = ±v0. Exactly the same dispersion governs the motion of electrons near the
Fermi level in graphene [NGM+05, MF06, KNG06, GN07, NJZ+07].
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Fig. 5.1: Upper (red solid) and lower (green dashed) dispersion branches for a tripod atom
in light fields. The arrow indicates the transition for the Veselago lens simulated in
fig. 5.3 with the barrier height V0 as described in section 5.4.
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5.4 Veselago lensing

Fig. 5.2: Negative refraction of cold atoms at a potential barrier. The incoming and outgoing
atoms are in the upper (red) dispersion branch, whereas the atoms inside the barrier
are in the lower (green) one.

5.4 Veselago lensing

As a consequence of the constructed Hamiltonian (5.20), the quasi-relativistic atoms can show
negative refraction at a potential barrier and thus exhibit focussing by Veselago-type lenses
[Ves68, Pen00]. Consider incident atoms that are in the upper dispersion branch (see fig. 5.1)
and propagate along the y-axis with a wave-vector k = key. Let us place a potential barrier
of a height 2~v0k at an angle of incidence α (see fig. 5.2). Inside the barrier the atoms are
transferred to the lower dispersion branch with kt = −k[cos(2α)ey + sin(2α)ex]. This would
lead to the negative refraction of cold atoms at the barrier as shown in fig. 5.2. Thus the
potential barrier can act as a flat lens which refocuses the atomic wavepacket.

As another example we demonstrate the simulation of a Veselago lens, see fig. 5.3. The
wavepacket is prepared as a squeezed Gaussian, such that it will travel towards the barrier in a
way that roughly resembles rays coming from a point source at (-70,0). The wavepacket has an
initial momentum of k = 0.6κ in the x-direction. The barrier has a height of V0 = 2k = 1.2κ,
see fig. 5.1. Therefore the main bulk of the wavepacket will experience a vertical transition
in the dispersion relation and hence a refraction index of n = −1. Due to the finite width of
the wavepacket in momentum space there is a tail of the wavepacket not matching exactly the
vertical transition. This part of the wavepacket experiences transitions that are not exactly
vertical in the dispersion relation and refract with an index n 6= −1.

In the simulation of our example with k = 0.6κ we observe a drastic slowing down of the
wavepacket inside the lens. This is due to the reduced group velocity at k = 0.6κ while going
from the upper to the lower branch (the ratio is v+

v−
= k+1

k−1 = 1.6
0.4 = 4).
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Fig. 5.3: Simulation of a Veselago lens. A gaussian atomic cloud initially centered at (-70,0)
with a width σx = 25, σy = 3.75 and an initial momentum k = 0.6κ in the x-
direction. For x > 0 the potential barrier has a height of V0 = 1.2κ. The plots are at
t = 0, 1, 2, 3, 4, 6, 11 and 15.
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5.5 Summary

5.5 Summary

In this chapter we have shown how the atomic motion can be equivalent to the dynamics of
ultra-relativistic (massless) two-component Dirac fermions. As a result the ultracold atoms
can experience negative refraction and focusing by Veselago-type lenses.

77



Chapter 5 Quasi-Relativistic Physics with Cold Gases. Veselago Lensing

78



Chapter 6

Negative Reflection under Non-Abelian

Gauge Fields

6.1 Introduction

Atomic mirrors, created by optical or magnetic potential barriers, play a crucial role in atom
optics, i.e. in the manipulation of matter waves [Mey01]. Wave reflection at a mirror is typi-
cally specular, where the reflection angle equals the incidence one. However, richer reflection
scenarios are also possible. For optical waves a double reflection appears in optically active
media, such as in chiral liquids characterized by different refractive indices for left and right
polarized light [Bar04]. This manifests itself as a tiny splitting of the reflected wave into two
parts [GF06]. An additional striking example is Andreev reflection [And64, Bee06] in which
an electron incident at the interface between a normal metal and a superconductor is reflected
to a positively charged hole propagating backwards, where the missing charge of 2e enters the
superconductor as a Cooper pair.

In this chapter we analyze atom reflection in the presence of a non-Abelian vector potential
proportional to a spin-1/2 operator produced by a relatively simple laser arrangement for
tripod-scheme atoms. We show that the appearance of two different dispersion branches with
positive or negative chirality leads to a double reflection at the mirror, an ordinary specular
reflection, and an additional non-specular one. Remarkably, the latter can exhibit a negative
reflection, resembling the Andreev reflection [And64, Bee06]. The negatively reflected wave
becomes evanescent if the angle of incidence exceeds a critical value. These reflection properties
could become crucial for the design of future non-Abelian atom optics devices, as e.g. non-
Abelian atom interferometers.

6.2 Laser arrangement

In the following we consider an atom with a tripod electronic level scheme {|0〉, |1〉, |2〉, |3〉}
(see chapter 2) under the influence of three stationary laser beams. Although elaborate laser
configurations may allow for a wealth of possible gauge potentials in the tripod scheme, as
shown in chapter 2, here we concentrate on a relatively simple laser setup providing non-
Abelian potentials. The first two laser beams are assumed to counterpropagate with the same
intensity along the x-axis, Ω1 = Ω sin θe−iκ0x/

√
2 and Ω2 = Ω sin θeiκ0x/

√
2, and the third one

propagating in the z-direction, Ω3 = Ω cos θeiκ0z [JRL+08]. Here κ0 is the wave-number, and
the mixing angle θ characterizes the relative intensity of the third laser. A set of two dark
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states is then given by

|D1〉 =
1√
2

(
|1̃〉 − |2̃〉

)
e−iκ′z , (6.1)

|D2〉 =

[
1√
2

cos θ
(
|1̃〉 + |2̃〉

)
− sin θ|3〉

]

e−iκ′z , (6.2)

with κ′ = κ0(1 − cos θ), where the modified atomic state-vectors |1̃〉 = |1〉 exp[iκ0(x + z)] and
|2̃〉 = |2〉 exp[−iκ0(x − z)] accommodate the phases of the laser fields. An additional phase
factor exp(iκ′z) introduces a shift in the origin of the momentum k→ k + κ′ez. By imposing
cos θ =

√
2 − 1, the vector potential becomes A = −~κσ⊥, where σ⊥ = exσx + ezσz is the

operator of spin 1/2 in the xz-plane, and κ = κ0 cos θ ≈ 0.414κ0. The Cartesian components
Ax and Az are proportional to the Pauli matrices σx and σz which do not commute, so the
vector potential A is non-Abelian.

Furthermore we take the trapping potentials V1 = V2 and V3 − V1 = ~
2κ2

0 sin2 θ/2M . This
can be achieved by detuning properly the third laser from the two-photon resonance. Hence
the overall trapping potential V +Φ becomes proportional to the unit matrix, both dark states
being affected by the same potential V1 ≡ V1(r), giving

H =
1

2M
(−i~∇ + ~κσ⊥)2 + V1(r) . (6.3)

6.3 Dispersion law

We shall consider a two dimensional case where the atomic motion is confined to the xz-plane.
If the trapping potential V1 is constant, the eigenfunctions of the Hamiltonian (6.3) are the
plane waves

Ψ±k (r) = g±k eik·r , g±
k

=
1

2

(
1 ∓ ieiϕk

−i ± eiϕk

)

, (6.4)

where ϕk is the angle between the atomic wave-vector k and the x-axis. The two-component
spinors g±k are eigenfunctions of the chirality operator σk = σ · k/k representing a spin along
the atomic motion, σkg

±
k = ±g±k . It should be emphasized that the chirality is here associated

with the subspace of two dark states rather than with the spin in the usual sense.
The corresponding eigenenergies of the Hamiltonian (6.3) are isotropic, ~ω±k ≡ ~ω±k , with

~ω±k =
~

2

2M
(k ± κ)2 + ~ω0 + V1, (6.5)

where ω0 = ~κ2/2M is the recoil frequency. The relative dispersion ω±k /ω0 is plotted in
fig. 6.1 for V1 = −~ω0. The upper (lower) dispersion branch is characterized by a positive
(negative) chirality. For small wave-numbers k ≪ κ the dispersion is linear, ω±k ∼ ±k, so the
atoms behave like ultra-relativistic Dirac fermions [JRL+08] similar to electrons in graphene
[GN07, NGM+05]. For larger wave-numbers each k = k1 < 2κ has a counterpart, k2 =
2κ−k, characterized by the same eigen-frequency ~ω−k2

= ~ω−k1
and opposite slope in the lower

dispersion branch (a similar kind of dispersion appears for optical waves in a medium with
a single chiral resonance considered by [Pen04], as one can see comparing our figure 6.1 with
the figure 2c by Pendry [Pen04]). As shown in the following sections, this leads to unusual
reflection properties.
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Fig. 6.1: Upper (blue dashed) and lower (red solid) dispersion branch for tripod atoms in our
light fields.

6.4 Double and negative reflection of atoms

The incident atoms are assumed to be in the lower dispersion branch with a wave-vector
k = kez. This can be achieved using the following procedure. Initially all three lasers are
off. The atom is in the internal state |3〉 and its center of mass motion is characterized by a
wave-vector kin = k − κ′ez, i.e. |Φ〉 = |3〉 exp(ikin · r) (the cold atoms can be set in motion
using various techniques, e.g. by means of a two-photon scattering which induces a recoil
momentum ~kin = ~k2phot to the atoms, where k2phot is the wave-vector of the two-photon
mismatch, see e.g. [DHW+99]). Subsequently the lasers 1 and 2 are switched on first followed
by the laser 3, so that initially the atomic internal state coincides with the second dark state,
|3〉 = |D2〉 exp(iκ′z). If the lasers are switched on sufficiently slowly, the atom remains in the
dark state |D2〉, and the lasers prepare the atom in the state |Φ〉 = i|D2〉 exp(ik ·r). By taking
k = kez, the corresponding multi-component wave-function Ψ−k (r) is in the lower dispersion
branch with a negative chirality as required. The atoms prepared in this way will propagate
along the z axis for k > κ or opposite to it for k < κ. Note that the duration of the switching-on
should be short enough to avoid any atomic motion at this stage.

The atoms are impinging on an infinitely high potential barrier at an angle of incidence α.
We shall take k < 2κ, so that both reflected waves Ψ−k1

and Ψ−k2
remain in the lower dispersion

branch with wave-numbers k1 = k and k2 = 2κ− k. Fig. 6.3 show the case of an incident wave
with κ < k < 2κ. Here the group velocity v−k = ∂ω−k /∂k is positive, so the wave-vectors of the
incident and second reflected waves point inwards to the surface, whereas the wave-vector of
the first reflected wave points outwards from the surface. Since v−k = v−k1

= −v−k2
, the forward

propagation of the incident wave and backward propagation of the reflected ones are ensured.
Fig. 6.2 illustrates a situation where 0 < k < κ. Here the group velocity v−k is negative and
hence the wave-vectors are reversed.

We will first discuss the case where 0 < k < κ. In front of the barrier the solution to the
stationary Schrödinger equation (H−~ω−k )Ψ = 0 is a linear superposition of the incident wave
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Fig. 6.2: Reflection of atoms with negative chirality for 0 < k < κ. The incoming wavepacket
is located on the left side of the lower dispersion branch (e.g. at k/κ = 0.5). At
the mirror the wavepacket is split. A part of it stays at k1 = k, the other part is
transferred to the right side of the lower dispersion branch to k2 = 2κ − k (e.g. to
k/κ = 1.5).

and two reflected waves:
Ψ = Ψ−

k
+ r1Ψ

−
k1

+ r2Ψ
−
k2
. (6.6)

The wave-vector is conserved along the reflection plane, k‖ = k1‖ = k2‖, so the first wave
exhibits an ordinary reflection with the reflection angle equal to the angle of incidence, α1 = α.
The second wave is characterized by the opposite group velocity v−k2

= −v−k = −v−k1
, and hence

it experiences a negative reflection at an angle

α2 = arcsin

(
k

k2
sinα

)

. (6.7)

The reflection coefficients r1 and r2 are determined using Eqs. (6.4) and (6.6) together with
the boundary condition at the potential barrier Ψ|barrier = 0, giving

r1 =
eiα − eiα2

e−iα + eiα2
, r2 = −1 − r1 . (6.8)

The corresponding reflection probabilities are

P1 = |r1|2, P2 =
cosα2

cosα
|r2|2 , (6.9)

with P1 + P2 = 1, where the weight factor cosα2/ cosα appears when calculating the flow of
atoms in and out of the surface for the incident and reflected waves. The probabilities P1 and
P2 plotted in Figure 6.4 depend both on the angle of incidence α and also on the wave-number
k. For small angles, α≪ 1, there is predominantly a negative reflection to the second branch,
|P1| ≪ 1 and |P2| ≈ 1. For large angles of incidence (α→ π/2) and 0 < k < κ we have mostly
a specular reflection to the first branch, |P2| ≪ 1 and |P1| ≈ 1.
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Fig. 6.3: Reflection of atoms with negative chirality for κ < k < 2κ. The incoming wavepacket
is located on the right side of the lower dispersion branch (e.g. at k/κ = 1.5). At
the mirror the wavepacket is split. A part of it stays at k1 = k, the other part is
transferred to the left side of the lower dispersion branch to k2 = 2κ − k (e.g. to
k/κ = 0.5).

If κ < k < 2κ, the situation is more complex. In this case the second reflected wave becomes
evanescent when the angle of incidence α exceeds a critical value given by sinαcrit = k2/k, i.e.
for k‖ = k2‖ > k2. Consequently the out-of-plane projection of the wave-vector k2 becomes

imaginary, k2⊥ = −iq, with q =
√

k2
‖ − k2

2 . In the region where x < 0 we can once again use

eq. (6.6) in which Ψ−k2
is now an evanescent wave. The boundary condition at the potential

barrier gives the reflection coefficient

r1 =
eiα
√
k‖ + q − i

√
k‖ − q

e−iα
√
k‖ + q + i

√
k‖ − q

, (6.10)

with |r1| = 1. Thus, there is a total reflection to the first mode at an angle α1 = α accompanied
by a phase shift, with the second reflected wave being evanescent. The phenomenon resembles
the total internal reflection of optical waves at an interface with an optically thinner medium.
In our situation, however, the evanescent wave is the reflected wave rather than the refracted
one.

Our plane-wave analysis may be easily extended to the case of wavepacket reflection. Similar
results may be found if the momentum width of the wavepacket ∆k is sufficiently small with
respect to κ. Fig. 6.5 displays the double and negative reflection of atomic wavepackets from
an atomic mirror, for an incident wavepacket Ψ (r) = g−

k̄
eik̄·rf(r), with f(r) a Gaussian, and

k̄ the central wavenumber. The propagation direction and population of each of the reflected
wavepackets are in good agreement with the analytical plane-wave results (6.7)-(6.9). Similar
results are also found for more realistic Gaussian or evanescent atomic mirrors, as long as the
potential barrier is sufficiently high compared to the incident kinetic energy.

Let us now consider finitely high potentials and smooth barriers. For small barriers, where
the potential height is small compared to the energy of the wavepacket considered, we expect
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Fig. 6.4: Reflection probabilities P1 and P2 for k/κ = 0.5 and k/κ = 1.1 versus angle of
incidence α (in degrees).

transmission and tunneling. Let us have a look at the intermediate case, where the maximum
height of the barrier is bigger than the energy of the wavepacket. We consider a smooth barrier
around position xp = 50, with maximum barrier height V0 = 0.8 (around twice the energy of
the wavepacket prepared at k = 0.5κ and k = 1.5κ, see fig. 6.6), i.e.

V (x) =
V0

2

(
tanh (s(x− xp)) + 1

)
, (6.11)

where s determines the smoothness of the barrier, the smaller s the wider the transition region,
see fig. 6.7 for examples.

For the numerical simulations we assume again that the wavefunction in momentum space
is initially a Gaussian around (k0

x, k
0
y) with k = 1.5κ (or 0.5κ) and with width σx = 10 . For an

infinitely high barrier a part of the wavefunction will transfer directly to k = 0.5κ (or 1.5κ), as
described before. Also for the smooth barrier in fig. 6.7 (s = 3) the wavepacket still undergoes
double reflection without change. But for the very smooth barrier (having a transition region
of the order of the wavepacket size σx = 10) in fig. 6.7 (s = 0.03) the wavepacket will undergo
only negative reflection, see fig. 6.8. In momentum space one can observe that the wavepacket
will move continuously from k = 1.5κ to k = 0.5κ. This can be explained in the following
way: the wavepacket sees (theoretically infinitesimally small, infinitely many) small potential
steps. At these small steps it will gain potential energy. Due to energy conservation it will lose
kinetic energy and the kinetic energy will hence follow the dispersion relation continuously.
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Fig. 6.5: Reflection of an atomic wavepacket with a negative chirality for α = 15◦, k = 1.5κ
(left) and α = 65◦, k = 0.5κ (right). The incident wavepacket is taken to be Gaussian
with momentum width ∆k = 0.1κ. An additional green arrow indicates the incident
direction.
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Fig. 6.6: Smooth and sharp barriers imply different reflection behaviour which can be outlined
in the dispersion relation. Assume we start with a wavepacket on the right side of
the lower branch at k/κ = 1.5 and choose the height of the potential barrier V0 = 0.8
more than twice as high. For an infinetely sharp barrier a part of the wavefunction
will directly transfer to the left side, i.e. to k/κ = 0.5, giving the negative dispersion
branch. For a smooth barrier the kinetic energy of the wavepacket has to move along
the lower dispersion relation and all population is transferred continuously to the
negative reflection branch.
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Fig. 6.7: Tanh-barrier V (x) = V0

(
tanh (s(x− xp)) + 1

)
/2. If the transition region of the re-

flection potential is relatively narrow (s = 3, dashed-dotted line) compared to the
wavepacket width σx = 10 we obtain the usual double reflection. The smoother bar-
rier (s = 0.3, dotted line) leads to mainly negative reflection, whereas for the very
smooth barrier (s = 0.03, dashed line) only negative reflection is observed, as shown
in fig. 6.8.

Fig. 6.8: Reflection of an atomic wavepacket with a negative chirality on a smooth barrier for
α = 15◦, k = 1.5κ (left) and α = 65◦, k = 0.5κ (right). The incident wavepacket is
taken to be Gaussian with momentum width ∆k = 0.1κ. An additional green arrow
indicates the incident direction.
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6.5 Summary

Summarizing, the reflection of atoms under a non-Abelian gauge potential presents unusual fea-
tures. In particular, one can have a double reflection comprising a specular and a non-specular
one. Remarkably, the latter wave shows negative reflection due to the special properties of the
dispersion law, and becomes evanescent for sufficiently large incident angles. Atom mirrors are
a key tool in atom optics. Hence, the anomalous reflection properties may be of crucial im-
portance for the design of non-Abelian atom optics elements, e.g. atom interferometers which
exploit the non-Abelian Aharanov-Bohm effect.
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Chapter 7

Trapped and Interacting Bose Gases in

Non-Abelian Gauge Fields

In the previous chapters we have mainly considered the case of a non-interacting untrapped cold
atomic cloud under the influence of non-Abelian gauge fields. In the prior discussion we have
considered neither the effects of trapping nor the phenomenon of Bose-Einstein condensation,
and we have neglected interactions. This final chapter is devoted to these issues and constitutes
mainly an outlook at interesting future directions.

7.1 Trapped gas in the presence of a “simple” non-Abelian

gauge: Single branch case

In chapter 5 we have first introduced the simple non-Abelian gauge A = ~κσ̂⊥, with σ⊥ =
(σx, σy). In this section we would like to discuss in some detail the scenario in which a 2D
atomic cloud in the presence of this non-Abelian gauge is confined in an optical trap. All
components of the ground-manifold of the tripod scheme are assumed to experience the same
harmonic trapping potential, which for simplicity of the discussion is considered as isotropic
(with frequency ω). The Hamiltonian is then of the form:

Ĥ =
1

2M
(p̂− ~κσ̂⊥)2 +

1

2
Mω2r2. (7.1)

We may express this Hamiltonian more conveniently in the momentum representation:

Ĥ = −~
2

2
Mω2

∇
2
p +

1

2M
(p̂− ~κσ̂⊥)2. (7.2)

As we already know, the eigenenergies (in absence of a trap) present the dispersion branches
E±(p) = (|p|±~κ)2/2M . The eigenvectors are of the form ξT

± = (exp(−iφ/2),± exp(iφ/2)) /
√

2.
In the following we consider the situation in which only momenta close to the dispersion
minimum of the E− branch are relevant. Assuming that no other energy is high enough to
enable population transfer from the E− to the E+ branch, we can restrict our discussion to
the lowest branch. The case in which this approximation is violated will be treated in the next
section.

Adiabatically eliminating the upper branch, we obtain the effective Hamiltonian for the
lowest branch:

Ĥ− = −~
2

2
Mω2

(

∇
2
p +

1

4p2

)

+
1

2M
(p− ~κ)2. (7.3)
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Note that the single-branch approximation must be taken with some care. In particular, the
extra factor 1/4p2 in eq. (7.3) results from the angular dependence of the eigenvectors. Let
ρ = p/(~lHO), ρ0 = κlHO, with lHO =

√

~/(mω), and Ĥ ≡ Ĥ−/~ω. Hence, we obtain the
dimensionless Hamiltonian

Ĥ = −1

2
∇

2 +
1

2
(ρ− ρ0)

2 +
1

8ρ2
. (7.4)

This is actually the Hamiltonian for a particle moving in a Mexican-hat potential centered
at ρ = ρ0 (with an additional repulsive potential 1/8ρ2). We shall assume that ρ0 ≫ 1, i.e.
κlHO ≫ 1, which in turn implies that ~

2κ2/2M ≫ ~ω (fully consistent with our assumption
that only the lowest branch is to be considered). The eigenstate of Ĥ are of the form

Ψm(r) ∝ eimφϕm(ρ)√
ρ

, (7.5)

such that

Emϕm = −1

2

d2

dρ2
ϕm +

[
1

2
(ρ− ρ0)

2 +
m2

2ρ2

]

ϕm. (7.6)

Since ρ0 ≫ 1, we may use for m2 ≪ ρ2
0 the approximation

[

Em − m2

2ρ2
0

]

ϕm = −1

2

d2

dρ2
ϕm +

1

2
(ρ− ρ0)

2ϕm. (7.7)

The rhs of the previous equation is a 1D harmonic oscillator centered at ρ0, and hence the
problem may be easily solved in terms of the harmonic oscillator levels and eigenfunctions.
Restoring the original units we obtain then the eigenenergies:

En,m

~ω
= n+

1

2
+

m2

(2κlHO)2
(7.8)

and the corresponding (unnormalized) eigen-spinor

Ψn,m(k) = eimφ 1√
klHO

e−(k−κ)2l2HO/2Hn

(
(k − κ)lHO

)
ξ−(φ). (7.9)

We recall that these expressions are just valid for momenta klHO ≫ 1. Note that due to the
φ -dependence of the spinors, the wavefunctions are uniquely determined only if m± 1/2 = m̃
is an integer. Hence m = m̃∓ 1/2.

We may already notice a rather important fact at this stage: Let us consider an ideal gas ofN
bosons under the above mentioned conditions. Note that in the thermodynamic limit N → ∞,
ω → 0, but Nω2 remains finite. It is clear that in the thermodynamic limit lHO → ∞, and
hence En,m/~ω → n+1/2. The spectrum hence reduces to an m-fold degenerate 1D harmonic
oscillator. Obviously, strict condensation into the lowest eigenstate (n,m) = (0,±1/2) is then
precluded due to the divergence in the occupation of the (n,±1/2) 6= (0, 0) states in the
thermodynamic limit. The absence of condensation has been discussed recently by Stanescu
and collaborators [SAG08].

In a finite-size trap the situation is different, and at least quasi-condensation may be achieved.
The lowest eigenstate is in principle a linear combination of Ψn,1/2(k) and Ψ0,−1/2(k), and
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hence the system shows an SU(2) symmetry in addition to the usual U(1) symmetry of scalar
BECs. The SU(2) symmetry is the result of the degeneracy of the dark states and is either
spontaneously broken or broken by slight deviations from degeneracy. In the following we
consider that the system at zero temperature condenses into the (unnormalized) spinor

Ψ0,1/2(k)T =
1√
k

e−(k−κ)2/2
(
1,−eiφ

)
≡ ψ(k)

(
1,−eiφ

)
, (7.10)

where we have introduced again the oscillator units. We may then Fourier transform to obtain
the condensate wavefunction in real space in both components D1 and D2

ψD1(r) =

∫

d2kψ(k)eik·r ∝
∫ ∞

0

dk
√
kJ0(kr)e

−(k−κ)2/2, (7.11)

and similarly

ψD2(r) = eiα

∫ ∞

0

dk
√
kJ1(kr)e

−(k−κ)2/2, (7.12)

where α is the polar angle in real space. In fig. 7.1 we depict the corresponding density profile
for κ = 6. Remarkably, an ideal 2D BEC in an isotropic trap with a dispersion law provided
by the lowest branch E− shows a density profile characterized by the appearance of concentric
rings for D1 and D2. Note that D1 and D2 show a different dependence, since D2 shows a
zero at the trap center (x, y) = (0, 0) (due to the J1 dependence above), whereas D1 shows a
maximum in the center. Furthermore, if the SU(2) symmetry mentioned above is spontaneously
broken the imaging of the densities of D1 and D2 may give in general a large fluctuation from
shot to shot, since the general situation would randomly interpolate between the profiles shown
in the figure. In the next section we shall show that a full calculation taking into account all
branches converges nicely to this result for large κ.
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Fig. 7.1: Density of the condensate wavefunction in real space for κ = 6. D1 (left, cf. eq. (7.11))
shows a maximum at the trap center and D2 (right, cf. eq. (7.12)) is zero at the center
of the trap.
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7.2 Trapped gas in the presence of a “simple” non-Abelian

gauge: Two branch case

In the previous section we considered the case in which the additional gauge potential was
sufficient to reduce the discussion to the lowest branch E−. However, this is generally not the
case. In this section we discuss the situation in which both branches must be considered, i.e.
full spinor character of the wavefunctions must be taken into account. We consider as in the
previous section a two-dimensional system with the simple constant non-Abelian gauge ~

2κσ⊥
and an additional isotropic harmonic trapping:

Ĥ =
1

2m
[−i~∇ − ~κσ̂⊥]2 +

1

2
mω2ρ2. (7.13)

In sec. 7.1 we reduced Ĥ to the lowest dispersion branch, and hence the problem could be
reduced to an equivalent Hamiltonian in momentum space. If this cannot be done, in particular
because the gauge potential is not strong enough with respect to the trapping potential, we
must proceed in a different way. Except for a constant energy ~κ2/2M we may write the
Hamiltonian in the form

Ĥ = ĤHO +
i~2

M
κσ̂⊥ · ∇, (7.14)

where σ⊥ = (σx, σy), and ĤHO is the Hamiltonian of the 2D harmonic oscillator. We may then
employ the basis of eigenstates of the Harmonic oscillator |n, α〉, where n = {nx, ny} denotes
the eigenstates of the harmonic oscillator, and α = 1, 2 denotes the internal spinor state. Using
oscillator units Ĥ ≡ Ĥ/~ω, κ ≡ κlHO, and x ≡ x/lHO, the matrix elements of the Hamiltonian
in the oscillator basis are of the form:

〈n, α|Ĥ |n′, β〉 = (nx + ny + 1)δn,n′δα,β + iκ〈n, α|σx∂x + σy∂y|n′, β〉. (7.15)

The second term at the rhs of eq. 7.15 is zero if α = β. Employing the well-known relation
∂x = (â− â†)/

√
2lHO (with â the ladder operator of the x-harmonic oscillator), we may obtain

the form of the off-diagonal terms:

〈n, {1, 2}|Ĥ|n′, {2, 1}〉
iκ

=
δny,n′

y√
2

[√

n′xδnx,n′
x−1 −

√

n′x + 1δnx,n′
x+1

]

∓ i
δnx,n′

x√
2

[√

n′yδny,n′
y−1 −

√

n′y + 1δny,n′
y+1

]

. (7.16)

We then obtain the eigenstates of the Hamiltonian after diagonalizing the previous matrix. The
results are shown in figs. 7.2 - 7.4 for different values of κ = 0.2, 1.0, and 6.0. The comparison
of the figure with κ = 6 and that obtained for the same value of κ in the single-branch
approximation show an excellent agreement.

7.3 Interaction Hamiltonian in the tripod system

Up to this point of the thesis we did not consider the effects of the interparticle interactions. In
this section we introduce short-range interactions in the tripod scheme. Since the ground-state
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Fig. 7.2: Phase and density for the condensate wavefunction D1 (left) and D2 (right) for κ = 0.2

Fig. 7.3: Phase and density for the condensate wavefunction D1 (left) and D2 (right) for κ = 1

Fig. 7.4: Phase and density for the condensate wavefunction D1 (left) and D2 (right) for κ = 6
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of the tripod scheme is a spin-1 system, we consider in the following first the general theory
for the short-range interactions of a spinor system in the manifold of the three ground states
of the tripod system. We shall then project into the dark state basis and assume that the
interparticle interactions do not mix the dark states and the bright state. The latter demands
of course sufficiently large laser intensities. First we present the general case (with different
scattering lengths for the different interaction channels) and then obtain a simplified interaction
Hamiltonian for the case of equal scattering lengths in all interaction channels.

In the following we restrict our discussion to the case of bosons with spin-1 (lowest three
states of the tripod system). We do not consider interactions with the upper state of the
tripod, since, as always, we assume a very low population of the excited state. By symmetry
arguments, s-wave scattering (the only scattering relevant at low energies) is just possible
between two identical bosons for colliding pairs with even total angular momentum. For spin-1
bosons this restricts the interactions to a total spin S = 0 and S = 2 (we denote the spin as
S although it must be understood as the composition of the individual hyperfine momenta).
The interaction Hamiltonian is then of the form

ĤSR =
1

2

∫

d3r
∑

S=0,2

gSPS(r), (7.17)

where gS = 4π~
2aS/m is the interaction strength, with aS the s-wave scattering length in the

S channel, and PS(r) is the projection onto the subspace with total spin S = 0, 2:

PS(r) =

S∑

M=−S

A†SM (r)ASM (r), (7.18)

with

ASM (r) =

1∑

m1=−1

1∑

m2=−1

〈S,M |1,m1; 1,m2〉Ψ̂m1
(r)Ψ̂m2

(r). (7.19)

In the previous expression we introduced the field operators for particles in the states, and
〈S,M |1,m1; 1,m2〉 are the Clebsch-Gordan coefficients. In the following, and for simplicity of
future discussions below, we employ the notation m = 1, 2, 3 instead of m = −1, 1, 0. Using
the tables of Clebsch-Gordan coefficients, we obtain

A00 =
−1√

3
Ψ̂3Ψ̂3 +

2√
3
Ψ̂2Ψ̂1 (7.20)

A20 =

√

2

3
Ψ̂3Ψ̂3 +

√

2

3
Ψ̂2Ψ̂1 (7.21)

A21 =
2√
2
Ψ̂2Ψ̂3 (7.22)

A2−1 =
2√
2
Ψ̂1Ψ̂3 (7.23)

A22 = Ψ̂2Ψ̂2 (7.24)

A2−2 = Ψ̂1Ψ̂1. (7.25)

94



7.3 Interaction Hamiltonian in the tripod system

In the following we substitute the operators by C-numbers. Although, strictly speaking,
this may be just performed at the final stage, when considering the Bogoliubov approximation
associated to the condensate in the dark states, the final results (for the interactions in the
dark state manifold) are not modified and the expressions are then enlightened. The different
projectors acquire the form:

P0 =
1

3

(
|Ψ3|4 + 4|Ψ2|2|Ψ1|2 − 2(Ψ∗3)

2Ψ2Ψ1 − 2Ψ∗2Ψ
∗
1Ψ

2
3

)
, (7.26)

P2 =
2

3

(
|Ψ3|4 + |Ψ2|2|Ψ1|2 + (Ψ∗3)

2Ψ2Ψ1 + (Ψ3)
2Ψ∗2Ψ

∗
1

)

+2|Ψ2|2|Ψ3|2 + 2|Ψ1|2|Ψ3|2 + |Ψ2|4 + |Ψ1|4 (7.27)

and hence the final form of the interaction Hamiltonian is

HSR =

∫

d3r

{(g0
6

+
g2
3

)

|Ψ3|4 +

(
g2
3

+
2g0
3

)

|Ψ2|2|Ψ1|2

+g2|Ψ2|2|Ψ3|2 + g2|Ψ1|2|Ψ3|2 +
g2
2
|Ψ2|4 +

g2
2
|Ψ1|4

+
(g2

3
− g0

3

) [
(Ψ∗3)

2Ψ2Ψ1 + Ψ∗2Ψ
∗
1Ψ

2
3

]}

. (7.28)

Since we are interested in the dark states of the tripod scheme, we project at this point
onto the basis of the two dark states. Using the parametrization of the laser arrangement
introduced in section 2.4.4 we may express the dark-state wavefunctions (and equivalently the
corresponding field operators) as a function of the original tripod levels

ΨD1
= sinφ e−iS31Ψ1 − cosφ e−iS32Ψ2 (7.29)

ΨD2
= cos θ cosφ e−iS31Ψ1 + cos θ sinφ e−iS32Ψ2 − sin θΨ3, (7.30)

with the corresponding inverse transformation

Ψ1 = (sinφΨD1
+ cos θ cosφΨD2

) eiS31 (7.31)

Ψ2 = (− cosφΨD1
+ cos θ sinφΨD2

) eiS32 . (7.32)

The corresponding interacting terms in the coupled Gross-Pitaevskii equations for the dark
states (we indicate with the notation ∝ that we just consider here the interaction terms) become
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hence of the form:

i~Ψ̇D1
= i~ sinφe−iS31Ψ̇−1 − i~ cosφe−iS32Ψ̇1

∝ 1

6
(g0 + 5g2 + (−g0 + g2) cos 4φ) |ΨD1

|2ΨD1

− 1

3
(g0 − g2) cos θ cos 2φ

(

− sin2 θe−i(S31+S32) + cos2 θ sin 2φ
)

|ΨD2
|2ΨD2

+
1

3
(g0 − g2) cos θ sin 4φ|ΨD1

|2ΨD2

+
2

3
(g0 − g2) cosφ sinφ

(

e−i(S31+S32) sin2 θ − cos2 θ sin 2φ
)

Ψ∗D1
(ΨD2

)2

+
1

6
(g0 − g2) cos θ sin 4φΨ∗D2

Ψ2
D1

+
1

6
(g0 + 5g2 + (g0 − g2)(cos 2θ + 2 cos2 θ cos 4φ))|ΨD2

|2ΨD1

(7.33)

i~Ψ̇D2
= i~ cos θ cosφe−iS31Ψ̇−1 + i~ cos θ sinφe−iS32Ψ̇1 − i~ sin θΨ̇0

∝ 1

6
(g0 − g2) cos θ sin 4φ|ΨD1

|2ΨD1

+
1

3

(
cos2 θ (g0 + 2g2 + (g0 − g2) cos 4φ) + 3g2 sin2 θ

)
|ΨD1

|2ΨD2

− 1

3
(g0 − g2) cos θ cos 2φ

(

− sin2 θe−i(S31+S32) + cos2 θ sin 2φ
)

Ψ∗D1
(ΨD2

)2

+
2

3
(g0 − g2) cosφ sinφ

(

ei(S31+S32) sin2 θ − cos2 θ sin 2φ
)

Ψ∗D2
Ψ2

D1

+
2

3
(g0 − g2) cos θ cos 2φ

(

ei(S31+S31) sin2 θ − cos2 θ sin 2φ
)

|ΨD2
|2ΨD1

+
1

48
(9g0 + 39g2 − (g0 − g2) (4 cos 2θ − 3 cos 4θ

+8 cos4 θ cos 4φ+ 8 cosS31 + S32 sin2 2θ sin 2φ
))

|ΨD2
|2ΨD2

(7.34)

These complicated general expressions simplify enormously for the case g0 = g2 = g. Note
that typically g0 and g2 are very close to each other, and hence corrections to this approximation
may be considered in typical experiments as being of higher order (although spin-changing
collisions, which occur when g0 6= g2 may induce interesting physics which may be the topic
of future research). Under the previous approximation we obtain a very simple expression for
the coupled Gross-Pitaevskii equations

Ψ̇D1
∝ g

(
|ΨD1

|2 + |ΨD2
|2
)
ΨD1

(7.35)

Ψ̇D2
∝ g

(
|ΨD1

|2 + |ΨD2
|2
)
ΨD2

. (7.36)

Note that the interaction term just depends on the total density, and it is the same for ΨD1,2

and any combination of them. This, of course, notably simplifies the analysis of the problem.
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The effective Ψ4 Hamiltonian for the dynamics of the interacting spinor system becomes hence
of the form

Ĥ =

∫

d2rΨ̂
†
(r)

[

− ~
2

2m
(∇ −A)2 + Vext(r)

]

Ψ̂(r)

+
g

2

∫

d2r
(

Ψ̂
†
(r) · Ψ̂(r)

)(

Ψ̂
†
(r) · Ψ̂(r)

)

. (7.37)

Assuming pseudo-condensation (as we mentioned above strict condensation is precluded in the
thermodynamic limit) we may reduce the previous equation to the Gross-Pitaevskii equation
for the spinor quasi-BEC under the non-Abelian gauge:

Ĥ =

∫

d2rΨ∗(r)

[

− ~
2

2m
(∇ −A)2 + Vext(r)

]

Ψ(r)

+
g

2

∫

d2r (Ψ∗(r) · Ψ(r))
2
. (7.38)

7.4 Effects of interactions in trapped condensates in the

presence of the “simple” gauge: an outlook

In the discussion of secs. 7.1 and 7.2 we have assumed that our Bose gas could be considered as
ideal. In the previous section we showed how interactions could be incorporated in the tripod
theory. Although a careful analysis of the role of interactions in BECs in non-Abelian gauge
potentials is well beyond the scope of this thesis, we would like to point out briefly at this point
that due to the relatively small splitting (E0,m+1 − E0,m)/~ω = (2m + 1)/(κlHO)2 especially
for low m, the conditions for non-interacting BEC in this particular case is necessarily rather
restrictive. The mean interaction energy U must satisfy U ≪ ∆E ≡ ~ω/(κlHO)2. Since we
assume κlHO ≫ 1, we may attain a situation in which U ≪ ~ω, but U ≫ ∆E. In that case,
the interactions should produce a strong mixing between different ideal (0,m) states, without
mixing n = 0 with other n 6= 0. Note that the interactions are local in real space, and hence
completely non-local in momentum space. As a consequence, the system can be discussed as
a quasi-1D ring in momentum space with completely nonlocal interactions. This system is
in general only tractable by means of many-body (beyond mean-field) approaches. This is a
particularly intriguing situation, which certainly deserves a future analysis.

Another interesting future research direction could be the analysis of fluctuations in trapped
systems. As already mentioned at several points quasi-condensation is actually a finite-size
effect in the discussed systems, due to the absence of strict condensation in the thermodynamic
limit. Although the finite trapping may allow for quasi-condensation, fluctuations may play
hence a very relevant role, similar as e.g. the case of one-dimensional quasi-BECs in the absence
of artificial electromagnetism.
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7.5 Solitons in 1D systems in the presence of the “simple”

non-Abelian gauge

As an illustration of the effects that the artificial non-Abelian gauge may induce in an interact-
ing Bose gas, we would like to discuss in some detail the case of solitons in a one-dimensional
configuration. Solitons are indeed one of the most fascinating phenomena in nonlinear physics.
As discussed in section 1.4.2, the one-dimensional Gross-Pitaevskii-equation

i~
∂

∂t
Ψ(x, t) =

(

− ~
2

2m
∂2

x + g|Ψ(x, t)|2
)

Ψ(x, t) (7.39)

allows a bright soliton in the case of attractive interactions (g < 0). In this section we shall
show that solitons with repulsive interactions (g > 0) may be attained in the presence of the
“simple” non-Abelian gauge ~κσ̂⊥.

In the following we restrict our discussion to the x-direction. In absence of interactions the
Hamiltonian of the system is hence given by

Ĥ =
1

2m
(px −Ax)

2
+ V + Φ, (7.40)

where we follow the same notation as in chapter 5. We consider the simple gauge laser ar-
rangement, which provides:

Ax = ~κ

(
0 − cos θ

− cos θ 0

)

= ~κ′σx, (7.41)

Φ = ~
2κ2/2m

(
sin2 θ 0

0 sin2(2θ)/4

)

, (7.42)

V =

(
V1 0
0 V1 cos2 θ + V3 sin2 θ

)

. (7.43)

Contrary to previous discussion we assume at this point that V + Φ = ∆σz , with 2∆ =
V11 + Φ11 − V22 − Φ22. This arrangement leads hence to the effective Hamiltonian

H =
1

2m
(px − κσx)

2
+ ∆σz (7.44)

with eigenvalues

E± =
~

2

2m

(

k2 + κ2 ± 2
√

∆2 + k2κ2
)

, (7.45)

and (unnormalized) eigenvectors

ΨT
± =

(

∆ ±
√

∆2 + k2κ2

kκ
, 1

)

. (7.46)

In fig. 7.5 we depict the dispersion law E±. Note that the finite ∆ opens a gap between the
upper and the lower branch. Note also that for the lower branch there is a region of negative
curvature and hence of negative mass, close to k = 0. This resembles the situation at the
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Fig. 7.5: Dispersion relation E± = ~
2

2m

(
k2 + κ2 ± 2

√
∆2 + k2κ2

)
for ∆ = 0.2. The dashed lines

show the dispersion relation for ∆ = 0. The lower dispersion branch supports in a
region centered at k = 0 a negative effective mass m⋆.

border of the Brillouin zone for atoms in optical lattices [Mey01]. For the lower dispersion
branch the effective mass m⋆ is given by

1

m⋆
=

1

~2

∂2E−
∂k2

=
1

m

(

1 − κ2

√
∆2 + k2κ2

+
k2κ2

(∆2 + k2κ2)
3/2

)

. (7.47)

At k ≃ 0 we have m∗/m = |∆|/(|∆| − κ2). Hence, |∆| < κ2 is needed to obtain a negative
mass at k = 0.

In the following we will consider the situation in which a (quasi-)condensate is prepared
in the region of negative mass of the lower branch. Following our discussion of sec. 7.3, we
introduce interactions and consider the spinor Gross-Pitaevskii equation

i~Ψ̇(x, t) =

[
1

2m
(px − κσx)

2
+ ∆σz + gΨ(x, t)∗ · Ψ(x, t)

]

Ψ(x, t) . (7.48)

For k close to zero and assuming only population of the lowest branch we may approximate
the Gross-Pitaevskii equation as

i~Ψ̇(x, t) =

[−~
2

2m∗
∂2

x + g|Ψ(x, t)|2
]

Ψ(x, t). (7.49)

The existence of the soliton may be understood by considering a Gaussian ansatz for the
atomic wavefunction:

Ψ(x) =
1

√√
πσ

e−
x2

2σ2 . (7.50)

The kinetic energy is then

Ekin = − ~
2

2m⋆

∫ ∞

−∞
Ψ⋆(x)∂2

xΨ(x)dx =
~

2

4σ2m

|∆| − κ2

|∆| (7.51)
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and the interaction energy

Eint = gN

∫ ∞

−∞
|Ψ|4dx =

gN√
2πσ

. (7.52)

Derivating with respect to the Gaussian width σ, we find an extremal point for

σ =
~

2

2m

κ2 − |∆|
|∆|

√
2π

gN
. (7.53)

Actually the energy is strictly maximized, but due to the negative mass, the system behaves
as “moving backwards in time”, and hence this extremal value of σ is actually the equilibrium
width of the soliton as shown below. We have simulated numerically, by evolving eq. (7.49)
in imaginary time (which is a well-established method to find ground state solutions). In
the following we employ energy units of ~

2κ2

2m and length units of 1/κ. Figure 7.6 shows the
imaginary time evolution for an initial Gaussian wavepacket with ∆ = 0.25 and gN = 0.03.
The parameters are chosen in such a way, that the function in momentum space is well within
the above mentioned range of negative curvature, and such that the effective mass is constant
within the momentum space wavepacket. Furthermore the energy of the wavepacket is smaller
than the gap, so that we do not have significant mixing with the upper branch. Clearly, the
wavepacket width gets into an equilibrium solutions with a width σ ≃ 256.8 in very good
agreement with our Gaussian ansatz solution σ = |∆|−1

|∆|

√
2π

gN ≈ 250. The slight departure is
due to the fact that the actual soliton shape is not a Gaussian but rather a sech function.

 200

 220

 240

 260

 280

 300

 500000 400000 300000 200000 100000 0

t

σ
x

Fig. 7.6: The width σ of the density |Ψ(x)|2 vs. time in the imaginary time evolution. The
calculations start with a Gaussian of widths σ equal to 200, 230, 250, 260, 280, and
300.

Hence, the modification of the dispersion law induced by the “simple” non-Abelian gauge
field may induce a significant modification of the nonlinear properties of a quasi-BEC. Indeed
the nonlinear physics of BECs in the presence of artificial electromagnetism (both Abelian and
non-Abelian) is a fascinating topic of future research. Although a detailed discussion of these
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possibilities lies beyond the scope of this thesis, we would like to mention that inhomogeneous
electromagnetic fields may lead to intriguing vortex lattice patterns, and possibly to novel
types of modulational instabilities.
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Chapter 8

Conclusions

In this thesis we have investigated the basic physics governing atoms in the presence of artificial
electromagnetism and, more specifically, novel phenomena appearing in atom optics under the
influence of non-Abelian gauge fields.

In Chapter 2 we explained different ways of inducing artificial electromagnetism, with a
specific emphasis on the method employing dark state techniques. For the tripod laser scheme
we established general conditions that the arrangement must fulfill to provide a non-Abelian
gauge field. We then discussed particular arrangements that allow for a simple constant non-
Abelian gauge (which we have denoted as the simple gauge), the non-Abelian version of the
Landau gauge, and the non-Abelian version of the symmetric gauge.

In Chapter 3 we discuss the physics of atomic wavepackets in the presence of the simple

gauge, demonstrating that the wavepacket propagation may show effects that are intrinsically
due to the non-Abelian character of the fields. We analyzed as well a tweezer atomic interfer-
ometer which may allow for the observation of the non-Abelian Aharanov-Bohm effect.

In Chapter 4 we pointed out that the Landau level structure is significantly modified
in the presence of a non-Abelian Landau gauge field. In particular, the degeneracy of the
levels is broken and the gap between different Landau levels is filled by additional states.
Hence, a sufficiently large non-Abelian part in the potential may completely destroy the Landau
level structure. This destruction may be actually observed in Fermi gases in time-of-flight
experiments by means of the de Haas-van Alphen-effect. In the same chapter we considered
the modification of the Fock-Darwin spectrum in the presence of a non-Abelian symmetric
gauge, involving the observation of a changed density profile for Fermi gases.

We extend our discussion in Chapter 5 towards quasi-relativistic physics induced in cold
gases by the simple gauge. For low momenta, the Hamiltonian becomes Dirac-like, resembling
the case of electrons in graphene. This scenario opens the possibility of achieving Veselago
superlensing in cold atomic gases, as for electrons in graphene.

In Chapter 6 we explored further the remarkable effects that such simple non-Abelian
gauge field may have in atom optics. We showed in detail that atomic reflection at a laser
barrier may be significantly distorted, leading to the occurence of double reflection including
also the possibility of negative reflection.

Finally, in Chapter 7 we considered the case of trapped gases in the presence of the simple

gauge, showing that strict condensation is actually forbidden in the thermodynamical limit.
For finite size systems, we have discussed that the quasi-condensate density presents a striking
oscillatory character, which may be traced to a condensation in Mexican-hat like effective
potential in momentum space. Last of all, we have introduced interactions using the theory
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of spinor gases, and discussed some particularly interesting perspectives for interacting Bose
gases in non-Abelian gauge fields, for both the nonlinear physics of quasi-condensates (as e.g.
solitons) and the particularly exciting physics of strongly interacting systems in these non-
Abelian fields.

We would like to mention that the vast majority of the arrangements discussed in this thesis
are readily feasible within the current experimental state of the art, and in particular the
simple gauge. Actually, recent progresses [LCP+09] allow to foresee exciting experimental
perspectives for artificial elelectromagnetism in the next future.
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[JRO05] G. Juzeliūnas, J. Ruseckas, and P. Öhberg. Effective magnetic fields induced by

EIT in ultra-cold atomic gases. J. Phys. B: At. Mol. Opt. Phys. 38, 4171–4183,
2005. doi:10.1088/0953-4075/38/23/001.
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