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Tbx15 and Tbx18 encode a closely related pair of T-box transcription factors that are charac-

terized by a conserved DNA binding domain, the T-box. Loss-of-function studies in the 

mouse have revealed a critical requirement of Tbx15 and Tbx18 during the development of 

various organs. The molecular mechanisms, however that underlie the mutant phenotypes are 

poorly understood. The aim of this thesis was to gain insight into the embryological roles of 

Tbx15 and Tbx18 by a comprehensive biochemical and genetic analysis. 

Biochemical analyses in vitro identified protein motives necessary for nuclear localization 

and co-repressor binding. Tbx18 repressed known T-box response promoters in a groucho-

dependent manner by competition with activating members of the T-box family. This was 

exemplified by the competition of Tbx6-mediated activation of the Delta-like 1 (Dll1) gene 

by Tbx18 that confers restriction of Dll1-expression to the posterior somite compartment. 

Efficient DNA-binding of Tbx15/18 in vitro requires dimerization or the association with 

other classes of specific transcription factors. The paired type homeobox transcription factor 

Pax3 was identified as a novel protein interaction partner of Tbx15 and Tbx18 and co-

operative functions during skeletal development were demonstrated by genetic interaction 

between mutant alleles of Pax3 and Tbx15/18 in vivo.  

The important function of Tbx15 for skeletal development is conserved in humans. In col-

laboration with a clinical research group this work contributed to the finding that the ‘Cousin 

syndrome’ is caused by mutations of the human TBX15 gene. 

Tbx15 and Tbx18 are co-expressed in the early limb bud mesenchyme but loss of either gene 

alone does not cause major limb defects. Since both proteins share biochemical properties, 

redundancy may underlie this finding. Analysis of double mutant embryos indeed revealed a 

critical but redundant function of Tbx15 and Tbx18 in the generation of proximal (stylopod 

and zeugopod), while the distal skeletal elements (autopod) were unaffected. Tbx15/18 func-

tion controls a cellular adhesion/repulsion program that generates a proximal tissue compart-

ment in the early limb bud mesenchyme. Eph/Ephrin molecules were identified as potential 

downstream mediators of Tbx15/18. Organ culture experiments uncovered regulatory mecha-

nisms for restricted expression of Tbx15/18 in the limb bud mesenchyme. In addition, using 

gain-of-function experiments it was possible to show that Tbx18 regulates a transcriptional 

repression program that is also sufficient to specify proximal limb identity.  

Taken together, this study sheds new light on how tissue complexity is achieved during verte-

brate development and substantially broadens our understanding of the molecular and cellular 

function of Tbx15 and Tbx18.  
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Tbx15 und Tbx18 kodieren für zwei nahe verwandte Transkriptionsfaktoren der T-Box Fami-

lie, deren Mitglieder sich durch eine konservierte DNA-bindende Domäne (T-Box) auszeich-

nen. Verlustmutationen in der Maus belegten wichtige Funktionen von Tbx15 und Tbx18 in 

zahlreichen Entwicklungsprozessen. Molekulare Mechanismen, welche diese Phänotypen 

hinreichend erklären, waren bisher aber unbekannt. Ziel dieser Arbeit war deshalb, durch eine 

umfassende molekulare Charakterisierung, neue Einblicke in die Funktion beider Proteine zu 

gewinnen. 

In biochemischen Experimenten konnten nukleäre Lokalisationssequenzen kartiert und funk-

tionell charakterisiert werden. Die Existenz eines Korepressor-Bindungsmotivs wurde aufge-

zeigt, und die Bindung an groucho-Proteine und deren funktionelle Bedeutung für die 

Transkription geklärt. Tbx18 vermittelt die Repression von bekannten, T-Box abhängigen 

Promotoren durch Kompetition mit aktivierenden Mitgliedern der T-Box Familie. Kompeti-

tion mit Tbx6 um T-Box Bindelemente im Delta-like 1 (Dll1)-Promotor wurde als Tbx18-

abhängiger Mechanismus erkannt, die Dll1-Expression auf posteriore Somitenhälften zu be-

schränken. Protein-Interaktionen spielen für eine effiziente DNA-Bindung von Tbx15 und 

Tbx18 eine wichtige Rolle. Der paired-Typ Transkriptionsfaktor Pax3 wurde als neuer Bin-

dungspartner von Tbx15/18 identifiziert. Genetische Interaktionsstudien konnte eine koopera-

tive Funktion von Tbx15/18 und Pax3 in der Somitogenese und der Gliedmaßenentwicklung 

bestätigen. 

In Zusammenarbeit mit einer klinischen Forschergruppe wurden Punktmutationen des huma-

nen TBX15 Gens als Auslöser des "Cousin-Syndroms" identifiziert und somit eine konservier-

te Funktion während der Skelettentwicklung belegt. 

Während der Gliedmaßenentwicklung werden Tbx15 und Tbx18 in der proximalen Region der 

Gliedmaßenknospe koexprimiert, Einzelmutanten beider Gene weisen jedoch keine Glied-

massendefekte auf. Durch Analyse von Tbx15/18 doppelmutanten Embryonen wurde eine 

essentielle redundante Funktion der beiden Proteine in der Entwicklung des proximalen 

Gliedmassenskeletts (Stylopod und Zeugopod) festgestellt, was in der Folge auf eine fehler-

hafte Kompartimentierung der frühen Gliedmassenknospe zurückgeführt wurde. Dabei regu-

lieren Tbx15 und Tbx18 ein zelluläres Adhäsionsprogramm, möglicherweise durch die Kon-

trolle der Expression des Ephrin-Signalsystems. Regulatorische Aspekte der Tbx15/18 Ex-

pression wurden untersucht und Signale zur Etablierung dieses bisher unbekannten Zellkom-

partiments ermittelt. Schließlich konnte durch Missexpressions-Experimente gezeigt werden, 

dass Tbx18 nicht nur notwendig sondern auch hinreichend für die Spezifizierung der proxi-

malen Zellidentität ist und in vivo eine Repressor-Funktion besitzt.  
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Die vorliegende Arbeit liefert somit neue Erkenntnisse zu Musterungsprozessen während der 

Organentwicklung und stellt einen wichtigen Beitrag zum Verständnis der molekularen und 

zellulären Funktion von Tbx15 und Tbx18 dar. 

 

 

 

 

 
Keywords: Tbx15, Tbx18, mouse development 

Schlagworte: Tbx15, Tbx18, Mausentwicklung 
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Introduction 
 

Embryogenesis is a fascinating process that leads to the formation of a complex organism 

from a single cell, the fertilized oocyte. As an important mechanism to achieve tissue diver-

sity, transcriptional regulation initiates diverse gene expression programs that allow the dif-

ferentiation of distinct cell types. 

T-box (Tbx) genes encode a multi-gene family of transcription factors that are involved in 

numerous developmental processes. Exhaustive searches have identified T-box genes in all 

metazoa ranging from hydra to man. The unifying feature of all family members is the highly 

conserved T-box, a region of 180 amino acid residues that confers specific DNA binding to 

conserved DNA-motifs, the T-box binding element (TBE), also known as T-half site. These 

elements are based on the consensus sequence 5’-AGGTGTGA-3’ that was initially identified 

in vitro as binding site for Brachyury (T), the founding member of this gene family (1).  

Among different T-box proteins considerable sequence diversity is found outside the T-box 

region, which reflects distinct molecular properties. Depending on the presence of activator or 

repressor domains, T-box proteins can differentially modulate target gene expression (2,3,4). 

In some cases it was found that the transcriptional role of T-box proteins also depends on the 

cellular and the promoter context (3,5). To date, a limited number of direct transcriptional 

target genes are known that preferentially contain several T-half sites in their upstream regu-

latory sequences, indicating that target selectivity is achieved by cooperative DNA binding 

(6-10). Furthermore, members of other transcription factor families have been recognized as 

T-box protein binding partners, which may also be involved in the generation of promoter 

specificity (11-15). 

The vast majority of T-box genes studied to date exhibit highly specific expression patterns 

during development. Loss-of-function studies in the mouse but also in other model organisms 

have revealed functional requirements of T-box genes in a diverse array of developmental 

processes, including formation and patterning of the mesoderm and organogenesis (for a re-

view 16). Notably, mutations in a number of T-box genes have been identified as underlying 

causes for human congenital disorders (17), illustrating the importance of this gene family in 

development and disease.  

 

Mammalian genomes are known to harbor 17 family members that have been divided in five 

major subfamilies based on sequence conservation of the T-box. Focus of this study is Tbx15 

and Tbx18, a closely related pair of T-box genes that together with Tbx22 form a subgroup of 

the Tbx1 subfamily in vertebrates. During mouse development Tbx18 expression is confined 
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to anterior somite halves, pro-epicardial and epicardial cells, and the mesenchyme of the limb 

bud and the septum transversum (18). Additional expression domains include the mesenchy-

mal precursor cells of the ureter and the otic fibrocytes (19,20).  

Mice carrying a null allele of Tbx18 die shortly after birth due to severe malformations of the 

axial skeleton, a phenotype that was traced back to the function of Tbx18 in somitogenesis 

(21). During this process epithelial somites are generated as segmental units on both sides of 

the neural tube from the unsegmented paraxial mesoderm, also known as presomitic meso-

derm. During development new somites are added posteriorly in a continuous manner, while 

the more mature somites start to differentiate into sclerotome and dermomyotome, which 

contain the precursors of the axial skeleton, and of muscles and dermis, respectively. Coupled 

to the process of segmentation, each somite becomes subdivided into a distinct anterior and 

posterior compartment, a process that is orchestrated by the interplay of Notch-signaling and 

the transcription factor Mesp2 in the anterior presomitic mesoderm (22,23). Somitic anterior-

posterior polarity is required for the metameric structure of the axial skeleton since both 

somite halves differentially contribute to the axial skeleton. Cell fate mapping studies in the 

chick have shown that the vertebral pedicles and proximal ribs are exclusively formed by the 

posterior somite half, whereas the vertebral bodies, laminae with the spinal processes, the rib 

heads, and the distal ribs derive from both somite halves (24). Tbx18-/- mutants display multi-

ple fusions of pedicles and proximal ribs. By analysis of Uncx4.1 expression, that marks the 

posterior somite compartment (25), it was shown that loss of anterior Tbx18 expression is 

accompanied with a progressive expansion of posterior somite identity, demonstrating that 

Tbx18 has a function in maintaining the anterior somite compartment. Interestingly, the ho-

mozygous loss of Uncx4.1 causes an opposite phenotype characterized by ectopic Tbx18 ex-

pression and a loss of skeletal structures derived from posterior somite halves (21,26). Misex-

pression experiments further demonstrated that Tbx18 is sufficient to confer anterior somite 

identity (21). These studies, thus, revealed a genetic circuit of two transcription factors, 

Tbx18 and Uncx4.1 that control the maintenance of anterior and posterior somite compart-

ments in a mutually antagonistic fashion. 

Additionally, Tbx18 plays an important role in a compartmentalization process during inner 

ear development (20). It was found that Tbx18 expression in the inner region of the otic mes-

enchyme is required for the correct subdivision of the otic mesenchyme in an inner region of 

prospective otic fibrocytes and the surrounding precursors of the otic capsule. Loss of Tbx18 

resulted in a disturbed boundary between both compartments and was associated with a defec-

tive differentiation of otic fibrocytes. Otic fibrocytes failed to condense at the lateral side of 
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the cochlear duct, which resulted in a disrupted formation of the stria vascularis, phenotypes 

that collectively caused deafness of Tbx18 mutant mice (20). 

Another patterning process that was shown to require Tbx18 function is the development of 

the ureter (19). The epithelium of ureter derives from an outgrowth of the Wolffian duct at the 

hindlimb level, known as ureteric bud. Guided by signals from the flanking metanephric mes-

enchyme the ureteric bud elongates and initiates branching morphogenesis at its proximal 

end. Branching, in concert with the induction of nephrogenesis in the metanephric mesen-

chyme, leads to the formation of the kidney. In the distal region of the ureteric bud branching 

morphogenesis is inhibited. The epithelium instead acquires a mesenchymal coating by con-

densation of periureteric cells that express Tbx18. Subsequently, mesenchymal and epithelial 

differentiation generates smooth muscle cells and the highly specialized ‘urothelium’, respec-

tively, that together are required for the appropriate drainage of urine from the kidneys into 

the bladder. Phenotypic analysis of Tbx18-deficient mice revealed that periureteric cells dislo-

calize to the kidney surface instead of covering the ureter stalk. This defect was accompanied 

by disrupted smooth muscle differentiation and secondarily also resulted in defective differen-

tiation of the urothelium. Failure in drainage of the urine then caused the emergence of hy-

droureter and hydronephrosis. Phenotypic analysis thus revealed a primary requirement for 

Tbx18 in condensation of the periureteric mesenchyme. 

During heart development Tbx18 expression in the septum transversum region defines a mes-

enchymal precursor population of cardiomyocytes that later surround the sinus horns, which 

are the myocardial parts of the caval veins. Very similar to the defects during ureter develop-

ment, Tbx18 mutant embryos showed a defective recruitment of mesenchymal precursors that 

resulted in a failure of myocardial differentiation of the sinus horns (27). 

  

Tbx15 (also known as Tbx8 or Tbx14) is the closest relative of Tbx18, as witnessed by more 

than 84% identity (87% similarity) of the amino acid sequences within the T-domain. The 

overall protein identity is 55% (67% similarity) and only extends to relatively short protein 

stretches outside the T-box region. Expression of Tbx15 has been reported in mesenchymal 

cells of the craniofacial region, cartilaginous elements of the axial and appendicular skeleton, 

the skin, and overlapping with Tbx18 in the limb bud mesenchyme during mouse develop-

ment (28,29).  

Mice homozygous for a targeted null allele of Tbx15, or for the spontaneous mutation droopy 

ear, in which Tbx15 is deleted, exhibit a general reduction of bone size and show defects in 

skin pigmentation and craniofacial development (29,30). These studies have revealed a pri-
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mary function of Tbx15 during dorso-ventral patterning of the mouse coat and endochondral 

bone formation. Already the cartilaginous preskeleton was reduced in size and mutant em-

bryos showed a transient delay in ossification. Reduced proliferation of prehypertrophic 

chondrocytes as well as of mesenchymal precursor cells, suggested that Tbx15 plays an im-

portant role during skeletal development by controlling the number of mesenchymal precursor 

cells and chondrocytes (29). 

 

 

Aims of this thesis 

Loss-of-function analyses of Tbx15 and Tbx18 in mice and conservation of expression in 

other vertebrates (31-33) has revealed the importance of this closely related pair of T-box 

transcription factors in an impressive number of patterning and differentiation processes dur-

ing vertebrate development (see above). In contrast, our current understanding of the molecu-

lar mechanisms underlying these phenotypes is scarce since neither protein interaction part-

ners nor transcriptional targets for either factor have been identified. As a step towards this 

goal, the objective of my thesis was to study the molecular properties of Tbx15 and Tbx18 at 

multiple experimental levels. 

Starting with a bioinformatic analysis I addressed, if the primary structures of the Tbx15/18 

proteins contain motives that can be correlated with a biochemical function. One aim was the 

identification of nuclear localization signals and protein-protein interaction domains. Candi-

date motifs were subsequently characterized by deletion analysis in a cellular system. As 

mentioned above Tbx15/18 target genes are unknown. The characterization of the DNA bind-

ing properties of both proteins should therefore provide important insights, how target speci-

ficity is achieved. To approach this question, the in vitro DNA binding properties of 

Tbx15/18 were analyzed and compared to other T-box proteins. Furthermore, it is unknown 

how Tbx15 and Tbx18 proteins influence the transcription process. Using reporter gene as-

says the effect of Tbx15/18 expression on basal transcription was studied followed by map-

ping of activator or repressor domains. For other members of the T-box family it was shown 

that the association with transcription factors of other classes is important to achieve target 

promoter specificity (see above). Knowledge about protein interaction partners of Tbx15/18 

may therefore improve the possibility to predict target genes. To identify potential protein-

binding partners a yeast-two-hybrid screen was performed. Functional significance of candi-

date interactions was subsequently evaluated both in vitro in a cellular context as well as in 

vivo in a mouse model.  
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The development of the vertebrate limb subsequently served as a model system to study the 

cellular and molecular function of the proteins in vivo. Both genes are co-expressed in early 

limb buds, however Tbx15 or Tbx18 single mutants lack major limb defects. To investigate 

possible redundant functions of both proteins during limb development a double mutant 

analysis was performed. The resulting phenotypes were characterized on a morphological, 

cellular and molecular level to integrate the role of Tbx15/18 into known developmental 

pathways. As a complementary approach conditional misexpression of Tbx18 was initiated. 

To this end, transgenic mouse lines were generated that allow the induced expression of 

Tbx18 following cre-mediated recombination in any tissue of choice. 

The highly specific expression patterns of Tbx15 and Tbx18 during mouse development 

(18,29) suggested a complex transcriptional regulation of both genes. However, activating or 

repressing signals that control Tbx15/18 expression are still unknown. The limb model was 

used to address this issue, because it provides an accessible system to study gene regulatory 

aspects in vitro. Early limb rudiments were cultured and the influence of adjacent tissues and 

growth factors on the expression of Tbx15 and Tbx18 was studied using RT-PCR and whole 

mount in situ hybridization analyses.  

This project thus represents a comprehensive experimental study that was aimed to provide 

important insights into the function and regulation of Tbx15 and Tbx18. 
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Transcriptional Repression by the T-box Proteins Tbx18 and
Tbx15 Depends on Groucho Corepressors*!

Received for publication, May 4, 2007, and in revised form, June 21, 2007 Published, JBC Papers in Press, June 21, 2007, DOI 10.1074/jbc.M703724200

Henner F. Farin, Markus Bussen, Martina K. Schmidt, Manvendra K. Singh, Karin Schuster-Gossler,
and Andreas Kispert1

From the Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany

Tbox18 (Tbx18) and Tbox15 (Tbx15) encode a closely related
pair of vertebrate-specific T-box (Tbx) transcription factors.
Functional analyses in the mouse have proven the requirement
of Tbx15 in skin and skeletal development and of Tbx18 in the
formation of the vertebral column, the ureter, and the posterior
pole of the heart. Despite the accumulation of genetic data con-
cerning the embryological roles of these genes, it is currently
unclear how Tbx18 and Tbx15 exert their function on the
molecular level. Here, we have initiated a molecular analysis of
Tbx18 and Tbx15 proteins and have characterized functional
domains for nuclear localization, DNA binding, and transcrip-
tional modulation. We show that both proteins homo- and het-
erodimerize, bind to various combinations of T half-sites, and
repress transcription in aGroucho-dependentmanner. Compe-
tition with activating T-box proteins may constitute one mode
of action as we show that Tbx18 interacts with Gata4 and
Nkx2–5 and competes Tbx5-mediated activation of the cardiac
Natriuretic peptide precursor type a-promoter and that ectopic
expression of Tbx18 down-regulates Tbx6-activated Delta-like
1 expression in the somitic mesoderm in vivo.

T-box (Tbx) genes encode a family of transcription factors
that regulate a variety of developmental processes. The unifying
and designating feature of all family members is a highly con-
served region of 180 amino acid residues that confers DNA
binding. To date, a limited number of direct target genes are
known that all contain one or several T half-sites in their
upstream promoter sequences. These elements are based on
the consensus sequence 5!-AGGTGTGA-3! that was initially
identified in vitro as a DNA binding site for Brachyury (T), the
founder of this gene family (1). Brachyury proteins preferen-
tially bind as dimers to a palindromic repeat of two anti-parallel
T half-sites. Orientation and spacing of T half-sites are likely to
affect DNA binding of specific T-box proteins (1–3). Target
gene specificity is additionally controlled by protein interaction

partners. T-box proteins have been shown to bind to several
classes of transcription factors including homeodomain and
zinc finger proteins conferring synergism in binding to adjacent
DNA binding elements (4–10).

Exhaustive searches have identified T-box genes in all meta-
zoa ranging from hydra to humans. Mammalian genomes are
known to harbor 17 family members that have been divided
into five major subfamilies based on sequence conservation of
the T-box. Loss-of-function studies in themouse have revealed
functional requirements of T-box genes in a diverse array of
developmental processes in the post-implantation embryo
including formation and patterning of themesoderm and orga-
nogenesis (11). Notably, mutations in a number of T-box genes
have been identified as underlying causes for human congenital
disorders (12).

Tbx18 and Tbx15 encode a closely related pair of T-box pro-
teins that, together with Tbx22, form a subgroup of the Tbx1
subfamily in vertebrates.Mice carrying a null allele ofTbx18 die
shortly after birth due to severemalformations of the axial skel-
eton, a phenotype that was traced back to the function ofTbx18
in maintaining anterior-posterior somite polarity (13). Addi-
tionally, Tbx18 regulates the condensation of mesenchymal
cells around the distal ureter stalk. Newborn Tbx18"/" mice
display a prominent hydroureter and hydronephrosis pheno-
type due to the lack of the smooth muscle layer of the ureter
(14). Finally, Tbx18 is essential for the formation of the sinus
horns from themesenchymeof the pericardialwall and for their
myocardial differentiation (15).

Mice homozygous for a targeted null allele of Tbx15 or for the
spontaneous mutation droopy ear, in which Tbx15 is deleted,
exhibit defects in skin pigmentation and in the skeleton. These
phenotypic changes reveal a role for Tbx15 in dorso-ventral pat-
terning of the mouse coat and in mesenchymal aggregation that
precedes endochondral bone formation (16, 17).

Loss-of-function analyses of Tbx15 and Tbx18 in mice and
conservation of expression in other vertebrates has revealed the
importance of this closely related pair of T-box transcription
factors in an impressive number of patterning and differentia-
tion processes during vertebrate development. In contrast, our
current understanding of the molecular mechanisms underly-
ing these phenotypes is scarce since neither protein interaction
partners nor transcriptional targets for either factor have been
identified. As a step toward this goal we initiated a molecular
analysis of Tbx18 andTbx15 proteins.Wehere characterize the
subcellular localization, DNA binding specificities, protein
interactions, and transcriptional properties and their structural
prerequisites in the two proteins.We provide evidence that com-

* This work was supported by a grant from the European Union FP6 contract
“HeartRepair” (LSHM-CT-2005-018630), by grants from the German
Research Council (DFG) and by the DFG-funded cluster of excellence
“REBIRTH.” The costs of publication of this article were defrayed in part by
the payment of page charges. This article must therefore be hereby
marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to
indicate this fact.

! This article was selected as a Paper of the Week.
1 To whom correspondence should be addressed: Medizinische Hochschule

Hannover, Institute for Molecular Biology, OE5250, Carl-Neuberg-Str. 1,
D-30625 Hannover, Germany. Tel.: 49-511-5324017; Fax: 49-511-5324283;
E-mail: kispert.andreas@mh-hannover.de.

25748 JOURNAL OF BIOLOGICAL CHEMISTRY

14

1) Repression by Tbx15 and Tbx18



petition with activating T-box proteins constitutes a possible
modeof regulation of the promoters forNppa (natriuretic peptide
precursor type a) andDll1 (Delta-like 1) in vitro and in vivo.

EXPERIMENTAL PROCEDURES

Expression Constructs—cDNA fragments encoding full-
length Tbx18 and Tbx15 and subregions thereof (see Fig. 1A)
were PCR-amplified from mouse cDNA AF306666 and
NM_009323, respectively. Full-length (aa2 1–436) and T-box
region (aa 41–225) of Brachyury were amplified from mouse
cDNA NM_009309. cDNA fragments encoding full-length
protein (aa 1–767) and the WD40 domain (aa 445–767) of
humanTLE3were amplified from the human cDNABC043247
(kind gift from S. Stifani). For in vitro expression of proteins,
cDNA fragments were cloned with C-terminal myc or HA tags
in the vector pSP64 (Promega) that was modified to contain a
5!-!-globin leader and a 3!-!-globin trailer (1). For cytomega-
lovirus promoter/enhancer-driven expression in cells, the
globin leader/cDNA/globin trailer cassette was shuttled into
HindIII and EcoRI sites of pcDNA3 (Invitrogen). The Tbx18-
VP16 fusion construct was generated by introduction of the
Herpes simplexVP16 activator fragment (aa 419–490, kind gift
of D. Kessler) in front of the stop codon of Tbx18. GAL4 fusions
of Tbx18 and Tbx15 were generated by subcloning the coding
sequences into the yeast-two hybrid vector pGBKT7 (Clon-
tech) 3! of the DNA binding domain of GAL4 (aa 1–147) fol-
lowed by the SV40 nuclear localization signal (NLS). cDNA
fragments encoding GAL4 fusion proteins were released with
HindIII (5!) and SalI (3!) and directionally cloned into the
HindIII andXhoI sites of pcDNA3. Expression plasmids encod-
ing Gata4.HA, Nkx2–5.FLAG, Tbx5.HA, and Tbx2 cloned into
pcDNA3 were a kind gift from V. Christoffels, and expression
plasmids pcDNA3.Tbx6, pcDNA3.Tbx6-VP16, pCS2#.Tcf1e,
and pCS2#.!-cateninS33Awere provided by B. Herrmann and
have been described previously (18, 19). Bacterial expression
constructs were generated as N-terminal glutathione S-trans-
ferase (GST) fusions in pGEX-4T3 (Amersham Biosciences).
All plasmids were sequenced, and expression was tested on
Western blot. Details on cloning strategies and primer
sequences are available upon request.

Site-directed mutagenesis was performed as described (20).
Mutagenesis primers for the deletion of NLS sequences were
5!-GAGAAGCAGCAACAGCTTCAATTAATCACGGAAGA-
GGCGGCGGG-3! (Tbx18) and 5!-GCCTTGATCGGCTCAA-
ATATCGATTGGGAGGAGAAGGGGCTG-3! (Tbx15), and
primers for the generation of pointmutants in the eh1motif were
5!-CTAAGCCTCAAGGCGCACGCATTAATTGTGGAGGC-
ACTGATCGGC-3! (Tbx18) and 5!-GAGCTCCCGAGCACAT-
GCATTAATCGTTGAAGCCTTGATCGGC-3! (Tbx15).
RandomBinding Site Selection andEMSA—Proteins used for

binding site selection and electrophoretic mobility shift assay
(EMSA)were generated frompSP64 expression constructs using

the SP6-coupledTNT rabbit reticulocyte lysate (Promega) accord-
ing to the supplier’s instructions. The binding site selection
was essentially carried out as described (1). After four
rounds, the gel-eluted PCR products were subcloned in
pBluescript and sequenced. Oligonucleotides used in EMSA
were: BS.pF, 5!-GATCCGGTTTCACACCTAGGTGTGAAA-
GGA-3!; BS.pR, 5!-GATCTCCTTTCACACCTAGGTGTGA-
AACCG-3!; BS.invF, 5!-GATCCGGAGGTGTGAAATTTCA-
CACCTGGA-3!; BS.invR, 5!-GATCTCCAGGTGTGAAATT-
TCACACCTCCG-3!; BS.dirF, 5!-GATCCGGAGGTGTGAA-
GGTGTGAAAGGA-3!; and BS.dirR, 5!-GATCTCCTTTCA-
CACCTTCACACCTCCG-3!. Oligonucleotides were boiled
for 5 min and cooled slowly down to room temperature to
anneal. Double-stranded fragments were end-labeled with
T4-PNK (New England Biolabs) in the presence of ["-32P]ATP.
Binding reactions for gel shift assays contained 2–5#l of in vitro
translated myc-tagged protein in a total volume of 20 #l of
Nonidet P-40 buffer (5 mM Tris, pH 7.5, 80 mM NaCl, 50 mM
NaF, 1 mM MgCl2, 0.1% Nonidet P-40) with 1$ Complete pro-
tease inhibitor mixture (Roche Applied Science) and 1 #g of
double-stranded poly(dI-dC). Reactions were preincubated for
20 min on ice before 10,000 counts of probe were added. For
supershift experiments, 1 #l of anti-myc antibody (9E10,
Sigma) was added to the lysate. Complexes were allowed to
form at room temperature for 20min, before the reactionswere
loaded on a native 4% polyacrylamide gel (0.5$ Tris-borate-
EDTA). Gels were run at 10 V/cm at 4 °C for 5 h before they
were dried and exposed to autoradiography film.
Cell Culture, Transient Transfections, and Reporter Assays—

HEK293 and HeLa cells were seeded at 20–30% confluency in
Dulbecco’s modified Eagle’s medium supplemented with 10%
fetal calf serum, grown overnight, and transfected using the
calcium phosphate method. For reporter assays, HeLa cells
were seeded in six-well dishes and transfected with constant
amounts of reporter plasmids and 25 ng of pCMV! (Clontech)
for normalization. The total amount of expression plasmid was
kept constant by adding empty pcDNA3. Per transfection, 250
ng of 5xGAL4UAS-tk-luciferase reporter plasmid (a kind gift of
J. Milbrandt), 75 ng of pGL3.Nppa-luciferase, containing a
0.7-kb fragment of the mouse Nppa promoter (a kind gift of V.
Christoffels), or 75 ng of pKS.msd-luciferase (kindly provided
by B. Herrmann) was used (18, 19); luciferase and !-galactosid-
ase activities were measured 48 h after transfection. All trans-
fections were performed in duplicates, and experiments were
repeated at least three times. After normalization, the mean
luciferase activities and standard deviations were plotted as
“fold activation” when compared with the empty expression
plasmid. p values were determined with the Student’s t test.
Immunofluorescence—Experiments in HEK293 cells were

performed according to standard protocols. Primary antibodies
used were rat anti-HA (3F10, Roche Applied Science) and
mouse anti-myc (9E10, Sigma), both at 1:200 dilutions, and sec-
ondary antibodies were donkey anti-rat IgG(H# L) fluorescein
isothiocyanate and donkey anti-mouse IgG(H # L) rhodamine
(both Dianova), at 1:200 dilutions. Immunofluorescent detec-
tion of proteins was repeated at least three times, and repre-
sentative examples were photographed on a Leica DM5000
microscope with DFC300FX camera (Leica).

2 The abbreviations used are: aa, amino acids; eh1, engrailed homology 1;
NLS, nuclear localization sequence; TLE, transducin-like enhancer of split;
HA, hemagglutinin; GST, glutathione S-transferase; EMSA, electrophoretic
mobility shift assay; RT, reverse transcription; CtBP, C-terminal-binding
protein; N, N-terminal domain; C, C-terminal domain; T, T-domain.
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GST Pulldown and Co-immunoprecipitation Assays—GST
and GST-Tbx18 fusion proteins were produced in the Esche-
richia coli strain BL21 and bound to glutathione-Sepharose 4T
beads (Amersham Biosciences). HA- or myc-tagged prey pro-
teins were produced in HEK293 cells that were lysed in pull-
down buffer (20 mMHEPES, pH 7.9, 100 mMNaCl, 10 mM KCl,
5 mM MgCl2, 0.5 mM EDTA, 5% glycerol, 0.05% Triton X-100,
and 1 mM dithiothreitol). The binding reaction was performed
as described (21). For co-immunoprecipitation assays, HEK293
cells were seeded in 10-cm dishes and either transfected with
myc-tagged expression construct alone or transfected together
with a HA-tagged bait construct. After 48 h, cells were lysed in
500 #l of Nonidet P-40 buffer, cellular debris was precipitated
by centrifugation for 30 min at 4 °C, and the supernatant was
precleared from nonspecific binding by incubation with 25 #l
of protein A-agarose (Roche Applied Science). 5 #l of anti-HA
antibody and 25 #l of protein A-agarose were added to the
supernatant for 2 h at 4 °C, before the beads were washed three
times with 500 #l of Nonidet P-40 buffer. Proteins eluted from
the beads were analyzed by Western blot with anti-myc and
anti-HA antibodies, and 5%of the inputwas loaded as a control.
Quantification of Endogenous Nppa Expression—Themouse

atrial cardiomyocyte tumor cell line HL-1 was cultured as
described (22). For transfections, 1.3 $ 106 cells were seeded in
60-mm dishes. Transfections were performed on the following
day using FuGENE HD (Roche Applied Science, 20 #l of each)
according to the supplier’s instructions. Each transfection was
performed using 250 #l of OptiMEM (Invitrogen), 3 #g of
expression plasmid, and 3 #g of pMACS4.1 (Miltenyi Biotech),
which encodes a truncated CD4 cell surfacemarker. After 48 h,
magnetic cell sorting of CD4# cells was carried out using anti-
CD4 magnetic beads and MS columns (Miltenyi Biotech) fol-
lowing the manufacturer’s instructions. In a control experi-
ment, the transfection of pd1EGFP-N1 (Clontech) resulted in
an approximate efficiency of 5% GFP# cells before and 50%
GFP# cells aftermagnetic cell separation. From the eluted cells,
total RNAwas isolatedwithPeqGOLD (Peqlab), and cDNAwas
synthesized using 0.75 #g of RNA and avian myeloblastosis
virus reverse transcriptase (Promega). Quantitative RT-PCR
using anABI Prism7000 cycler and SYBRGreenwas performed
in triplicates with primers specific for Nppa and HPRT as
endogenous control. Primer sequences are available upon
request. Mean relative gene expression levels and standard
deviations were calculated from two independent transfections
with the comparative threshold cycle (CT) method following
the ABI Prism user manual. Additionally, p values were deter-
mined from %CT values using the Student’s t test.
In Situ Hybridization Analysis—Embryos for expression

analysis were derived from matings of mice heterozygous for a
mutant allele of Uncx4.1 (23). Genomic DNA prepared from
yolk sac or tail biopsies was used for genotyping by PCR. For
timed pregnancies, vaginal plugs were checked in the morning
after mating; noon was taken as embryonic day 0.5. Fetuses
were dissected in phosphate-buffered saline and fixed in 4%
paraformaldehyde in phosphate-buffered saline.Whole-mount
in situ hybridization was performed following a standard pro-
cedure with digoxigenin-labeled antisense riboprobes (24).
Stained specimens were transferred into 80% glycerol prior to

documentation on a LeicaM420microscopewith a Fujix digital
camera HC-300Z. All images were processed in Adobe Photo-
Shop 7.0.

RESULTS

Tbx18 and Tbx15 Harbor a Classical Nuclear Localization
Signal—To analyze the subcellular localization of Tbx18, we
transfected a series of Tbx18 expression constructs (Fig. 1A) in

FIGURE 1. Tbx18 and Tbx15 harbor a classical NLS close to the N terminus.
A, schematic representation of the primary structure of Tbx18 and Tbx15 and
their deletion mutants used in this study; the T-box (T) is shaded in black, and
the N- and C-terminal domains (N and C) are shown in white. The numbers
indicate the length of the proteins and their domains, respectively. B, intra-
cellular localization of myc-tagged Tbx18 and Tbx15 proteins and their dele-
tion mutants in transiently transfected HEK293 cells as detected by anti-myc
immunofluorescence. All proteins containing the N-terminal region are
exclusively localized to the nucleus (compare nuclear staining with 4!,6-dia-
midino-2-phenylindole (DAPI)). Deletion of this region causes relocalization
to the cytoplasm. Tbx15 T # C and full-length %NLS proteins are partially
retained in the nucleus (white arrowheads). C, amino acid sequence of the
identified NLS in Tbx18 and Tbx15. Basic residues are marked in red, and
amino acid residues deleted in full-length %NLS constructs are underlined.
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HEK293 cells and detected themyc tag by immunofluorescence
(Fig. 1B). Full-length Tbx18 protein showed exclusive nuclear
localization in HEK293 (Fig. 1B) and in NIH3T3 cells (data not
shown). Deletion of the C-terminal region did not alter this
distribution, whereas removal of the N-terminal region
resulted in relocalization to the cytoplasm. The N-terminal
region alone was found in the nucleus, demonstrating that it is
not only necessary but also sufficient for nuclear import. Simi-
lar results were obtained for Tbx15. However, a truncation
mutant of Tbx15 lacking the N-terminal region retained partial
nuclear localization (Fig. 1B, white arrowhead). Inspection of
the primary structure of Tbx18 and Tbx15 revealed a cluster of
5 basic amino acid residues resembling a classical NLS at a
conserved position at the N terminus of the two proteins (Fig.
1C, marked in red). Deletion of this cluster resulted in exclusive
(Tbx18) and predominant (Tbx15) cytoplasmic localization of
the full-length proteins (Fig. 1B). Our results demonstrate that
a classical NLS mediates constitutive nuclear localization of
Tbx18. Tbx15 might possess additional sequences mediating
nuclear localization as it has been previously seen in other
DNA-binding proteins including T-box transcription factors
(25, 26).
Tbx18 and Tbx15 Bind to Repeats of T Half-sites—To date,

transcriptional targets of Tbx18 and Tbx15 have not been

described. As a first step toward the
identification and validation of
potential target genes, we deter-
mined the DNA binding specifici-
ties of the two proteins using a PCR-
based in vitro cyclic binding site
selection protocol (1). DNA frag-
ments recovered after four rounds
of the selection protocol were iso-
lated by molecular cloning and
sequenced (Fig. 2). In each pool,
some oligonucleotides were repre-
sented several times, indicating that
the complexity of the selected pool
had decreased at this stage in favor
of strong binding sites. All oligonu-
cleotides represented repeats of the
core sequence 5!-AGGTGTGA-3!
(Fig. 2,upper panel) that is known as
a common T half-site. A consensus
target sequence for Tbx18was iden-
tified through the compilation of 19
sequences. It constitutes an imper-
fect palindrome, composed of two
anti-parallel T half-sites. The orien-
tation of these half-sites is inversed
with respect to the reported binding
site of Brachyury (BS.p (see Ref. 1))
and was therefore designated
BS.inv. For Tbx15, nine of fifteen
selected oligonucleotide sequences
matched the BS.inv consensus
sequence (Fig. 2, middle panel). A
smaller fraction (6 of 15 sequences)

featured a direct repeat of the T half-site, indicating differences
in binding specificity between the two proteins (Fig. 2, lower
panel). The consensus of this directly repeated binding site was
named BS.dir.

We next compared the DNA binding properties of Tbx18,
Tbx15, and the distant familymember Brachyury by EMSA. All
three proteins failed to bind toDNA fragments harboring single
T half-sites under our experimental conditions (data not
shown). In contrast, DNA fragmentswith repeats of T half-sites
supported protein-DNA binding of full-length, in vitro trans-
lated Tbx18, Tbx15, and Brachyury (Fig. 3). All three proteins
formed specific complexes with the consensus sites BS.inv,
BS.dir, and the palindromic binding site identified for
Brachyury, BS.p (Fig. 3A). Brachyurywas found to bind strongly
toBS.p andBS.inv butweakly toBS.dir. In the case ofTbx18 and
Tbx15, BS.inv and BS.dir sites supported stronger binding than
the BS.p site (Fig. 3C, open arrowheads). The addition of spe-
cific antibody resulted in the generation of slower migrating
complexes (supershifts), confirming the specificity of DNA
binding (Fig. 3C, black arrowheads). We next determined
whether the T-box region is sufficient to recapitulate the bind-
ing characteristics of the full-length proteins (Fig. 3D). T-box-
containing peptides of Tbx18, Tbx15, and Brachyury exhibited
strongly diminished DNA binding (Fig. 3D, lanes 3), indicating

FIGURE 2. DNA binding sites of Tbx18 and Tbx15 contain variably arranged T half-sites. Sequences of DNA
fragments isolated after four rounds of PCR-assisted in vitro binding site selection are shown. In total, 20 bound
fragments were analyzed for Tbx18 (upper panel), and 15 were analyzed for Tbx15 (lower panel), respectively;
some fragments were isolated several times. Sequences were aligned at the invariant core 5!-AGGTG-3! and
grouped according to the orientation of the half-sites. Consensus sequences were derived for nucleotide
positions that were found in &70% of the cases. All except one site selected by Tbx18 exhibit a palindromic
orientation, whereas Tbx15 selected both direct repeats and palindromes. The arrows indicate the orientation
of the half-sites. Conserved positions are marked in gray color, and linker sequences are shown in lowercase
letters.
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that the N- and C-terminal regions participate in protein-DNA
complex formation. T-boxes of Tbx18 and Tbx15, but not of
Brachyury, exclusively bound to the BS.inv site (Fig. 3D, open
arrowheads), suggesting that the T-boxes of Tbx18 and Tbx15
possess an inherent binding specificity for this sequence. A
strong increase in protein-DNA complex formation was
observed for all truncated T-box peptides and full-length pro-
teins after the addition of anti-myc antibody (Fig. 3, C and D,
black arrowheads). Since this effect was not observed using a
probe containing a single T half-site (data not shown), we
assume that the divalent antibodymay stabilize binding to com-
posite sites as dimers.
Tbx18 and Tbx15 Dimerize—The composite nature of the

DNA binding site of T-box proteins had previously suggested

that dimerization of T-box proteins
increases DNA binding specificity
and/or affinity (27, 28). However,
dimerization in the absence of
DNA and in living cells had not
been explored experimentally. To
address the possibility that Tbx18
dimerizes in vitro, we performed
pulldown assays using bacterially
expressed GST-Tbx18 proteins
that were incubated with lysates
from HEK293 cells transfected
with expression constructs for
myc-tagged Tbx18, Tbx15, or
Brachyury protein. Since GST-
Tbx18 full-length protein could
not be expressed in bacteria, we
used a series of bacterially
expressed fusion proteins of GST
with the N- and C-terminal region
and the T-box of Tbx18 instead
(Fig. 4A, left). Tbx18 specifically
bound to GST-Tbx18(N # T) and
-Tbx18(T) but not to GST-
Tbx18(N) or -Tbx18(C) (Fig. 4A,
right), showing that dimerization
via the T-box region occurred in
the absence of DNA binding. A
weaker interaction was observed
with Tbx15 but not with
Brachyury, indicating that related
T-box proteins are able to form
heterodimers.
To address whether dimerization

occurs in cells, we analyzed the sub-
cellular distribution of the myc-
tagged Tbx18%NLS or Tbx15%NLS
proteins (described above) by
immunofluorescence in HEK293
cells upon coexpression ofwild-type
Tbx18 or Tbx15 (HA-tagged) pro-
teins. Unlike forNLSmutants alone,
we now detected nuclear localiza-
tion of both Tbx18%NLS and

Tbx15%NLS proteins (Fig. 4B), strongly suggesting that dimer-
ization has occurred in these cells. The absence of nuclear
recruitment upon coexpression of unrelated nuclear proteins
confirmed the specificity of the interaction (data not shown).
Tbx18 and Tbx15 Are Potent Transcriptional Repressors—

Members of the T-box gene family encode specific DNA-bind-
ing proteins that can activate or repress RNA polymerase II-
mediated transcription (11). We performed luciferase reporter
assays inHeLa cells to analyze howTbx18 and Tbx15modulate
transcription. We used full-length Tbx18 and Tbx15 proteins
fused to the GAL4-DNA binding domain cotransfected with a
reporter plasmid containing five copies of the GAL4 binding
site in front of the thymidine kinase minimal promoter
(5xGal4UAS-tk-luciferase, Fig. 5A). We observed a strong and

FIGURE 3. Comparative DNA binding analysis of Tbx18, Tbx15, and Brachyury. A, double-stranded oligo-
nucleotides with different orientation of half-sites (arrows) were tested for binding in electrophoretic mobility
shift assays. B, assays were performed with equal amounts of in vitro synthesized myc-tagged Tbx18, Tbx15,
and Brachyury full-length proteins (left) and their T-boxes (right), respectively, as determined by anti-myc
Western blot. C, Tbx18 and Tbx15 bind to composite sites irrespective of the orientation of the half-sites (open
arrowheads). Specificity of binding is confirmed by the addition of anti-myc antibody that results in the forma-
tion of a supershifted complex (black arrowheads). Binding experiments were performed under the following
conditions: lane 1, probe alone; lane 2, non-programmed lysate; lane 3, programmed lysate; lane 4, pro-
grammed lysate plus anti-myc antibody. D, T-box regions of Tbx18 and Tbx15 preferentially bind to BS.inv;
experiments were performed as in C.
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dose-dependent repression of
reporter gene activity by GAL4-
Tbx18 with a maximal reduction of
the basal activity to 5.5 ' 0.2% (Fig.
5B). The GAL4-DNA binding
domain alone did not affect the
transcription of the reporter gene.
GAL4-Tbx15-mediated repression
of the reporter to 8.4 ' 0.1% dem-
onstrates that Tbx18 and Tbx15 do
not only share similar DNA binding
properties but also strong transcrip-
tional repressor activities.
We then asked whether Tbx18

contains any identifiable domain that
mediates this repression. GAL4-
Tbx18(N#T),GAL4-Tbx18(N), and
GAL4-Tbx18(C) proteins (data not
shown) all repress 5xGal4UAS-TK-lu-
ciferase reporteractivity inHeLacells,
although more weakly than the full-
length protein (Fig. 5C), suggesting
that Tbx18 contains multiple regions
capable of transcriptional repression.
Tbx18 and Tbx15 Interact with

Groucho Corepressors—Transcrip-
tional repression by tissue-specific
transcription factors is mediated by

binding to corepressor complexes that in turn modify chroma-
tin structure. We wondered whether we could identify core-
pressors of Tbx18 by analyzing the primary structure of Tbx18
for motifs known to recruit such molecules. Near the N termi-
nus of the protein, we identified an eh1motif (engrailed homol-
ogy 1) (Fig. 6A) that had also recently been noted in a genome-
wide screen (29). The eh1 motif comprises a stretch of 7 amino
acid residues that is present in a large number of transcription
factors of various classes and is necessary for binding of Grou-
cho proteins (30). Groucho proteins constitute a family of
highly conserved corepressors, with the members Grg1–5
(Groucho-related genes) in mouse and TLE1–4 (Transducin-
like enhancers of split) in humans (31). Interestingly, the eh1
motif is also found at a conserved N-terminal position in
murine Tbx15, Tbx22, and Tbx20 proteins (Fig. 6A), sug-
gesting that these members of the Tbx1 subfamily may also
act as Groucho-dependent repressors.
To experimentally explore this possibility, we tested Tbx18

binding to Groucho proteins in vitro. Pulldown assays were
performed using GST-Tbx18 fusions (compare Fig. 4A) that
were incubatedwith lysates ofHEK293 cells transfectedwith an
expression construct for HA-tagged TLE3. Strong binding of
TLE3 was observed with GST-Tbx18(N#T) and GST-
Tbx18(N) but not with GST-Tbx18(T) or GST-Tbx18(C), indi-
cating that the eh1-containing N-terminal domain is necessary
and sufficient for an interaction with Groucho proteins (Fig.
6B). Co-immunoprecipitation experiments in HEK293 cells
cotransfected with expression constructs for myc-tagged
Tbx18 alone or together with HA-tagged TLE3 confirmed the
presence of a Tbx18-TLE3 complex in a cellular environment

FIGURE 4. Tbx18 and Tbx15 form homo- and heterodimers. A, dimerization in vitro. Left, GST and fusion
proteins of GST and N # T-, N-, T-, and C-domains of Tbx18 were purified from E. coli extracts and analyzed for
integrity and quantity by Coomassie Brilliant Blue staining of SDS-polyacrylamide gels. Right, GST pulldown
assays with protein extracts from HEK293 cells transfected with myc-tagged Tbx18, Tbx15, and Brachyury
full-length expression constructs. B, dimerization in cells. HEK293 cells were transfected with expression con-
structs for myc-tagged Tbx18%NLS or Tbx15%NLS (red) in the presence or absence of HA-tagged wild-type Tbx18
or Tbx15 (green). Both NLS-deficient proteins are efficiently relocalized to the nucleus upon coexpression of wild-
type Tbx18 or Tbx15 (compare 4!,6-diamidino-2-phenylindole (DAPI) nuclear counter staining).

FIGURE 5. Tbx18 and Tbx15 act as transcriptional repressors. A, schematic
representation of the 5xGal4UAS-tk-luciferase-reporter plasmid containing a pen-
tamer of the GAL4 binding site, the minimal promoter of the thymidine kinase
gene (tk), and the luciferase reporter gene. B, HeLa cells were cotransfected with
the reporter plasmid and increasing amounts of GAL4, GAL4-Tbx18, or GAL4-
Tbx15 expression constructs. Tbx18 and Tbx15 dose-dependently repress lucif-
erase reporter gene activity. C, full repressionactivityofTbx18requiresN-andC-ter-
minal regions as well as the T-box. HeLa cells were cotransfected with GAL4-Tbx18
deletion constructs (each 25 ng) and the 5xGal4UAS-tk-luciferase reporter plasmid.
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(Fig. 6C, left). Site-directed mutagenesis of the eh1 motif by
replacing the amino acids phenylalanine and serine by leucine
and isoleucine (Tbx18%eh1) abolished complex formation. Not
unexpectedly, Tbx15 also showed eh1-dependent binding to
TLE3 (Fig. 6C, right). Groucho proteins are known to bind the
eh1 motif with their C-terminal WD40 domain (32). To delin-
eate the region in TLE3 that mediates interaction with the eh1
motif in Tbx18 andTbx15, we performed immunofluorescence
experiments in HEK293 cells expressing the HA-taggedWD40
domain of TLE3 in the presence or absence of myc-tagged
Tbx18 or Tbx15. When expressed alone, the WD40 domain of
TLE3 is distributed in the cytoplasm as it lacks a functional
NLS. Coexpression of Tbx18 or Tbx15 led to nuclear translo-
cation of the WD40 domain (Fig. 6D), an effect that was not
observed following coexpression of Tbx18 or Tbx15 protein
with amutant eh1motif, confirming the specificity of the inter-
action. Next, we determined whether the interaction of Tbx18
or Tbx15 with Groucho is required for transcriptional repres-
sion. Therefore, we compared the repression activities of wild-
type and eh1 mutant versions of GAL4-Tbx18 and GAL4-
Tbx15 on the 5xGal4UAS-tk-luciferase-reporter in HeLa cells.
Wild-type and eh1 mutant proteins were expressed at equal
levels (data not shown). Both eh1 mutant proteins exhibit an
approximate 50% reduction of repressor activity (Fig. 6E) with a

release of repression from 17.8 ' 3.4 to 31.4 ' 2.1% for GAL4-
Tbx18 and 35.0 ' 0.0 to 64.3 ' 4.7% for GAL4-Tbx15. We
conclude that a major part of the repression activity of Tbx18
and Tbx15 is mediated through the eh1 motif. Overexpression
of Groucho protein failed to increase repression by Tbx18 and
Tbx15 wild-type proteins (data not shown), indicating that
abundant endogenous expression in mammalian cell lines was
sufficient to saturate the repression (33).
Tbx18 Interacts with Gata4 and Nkx2–5 and Represses the

Nppa Promoter by Competition with Tbx5—Cooperativity
between transcription factors in DNA binding plays a crucial
role in target promoter specificity. For T-box proteins, thismay
be achieved by dimerization on multiple T half-sites and/or
through interaction with other proteins (10, 28, 34–36). A well
established paradigm for the latter is the interaction of Tbx2,
Tbx5, and Tbx20 with the transcription factors Gata4 and
Nkx2–5 to regulate cardiac expression of Nppa (natriuretic
peptide precursor type a, also known as atrial natriuretic factor,
Anf) (4–7, 18, 37, 38). The 700-bp upstream region of Nppa
contains all the necessary control elements to confer correct
spatial expression in the developing heart (18). Binding ofTbx5,
Tbx20, NK-type homeodomain proteins, and GATA proteins
to their respective recognition sequences synergistically acti-
vates this promoter, whereas binding of Tbx2 releases activa-

FIGURE 6. Tbx18 and Tbx15 interact with the corepressor Groucho. A, sequence alignment of mouse Tbx18 (AF30666), Tbx15 (NM_009323), Tbx22
(NM_145224), and Tbx20 (NM_194263) demonstrates the presence of an N-terminal eh1 motif; the numbers refer to the position within the protein. The eh1
consensus sequence (a, aromatic, l, aliphatic, p, polar, b, bulky amino acids (see Ref. 29)) is shown. B, interaction of Tbx18 with Groucho protein (TLE3) in vitro.
Pulldown assays with GST-Tbx18 deletion mutants were carried out as outlined in the legend for Fig. 4 with extracts from HEK293 cells transfected with a
TLE3.HA expression construct. C and D, interaction of Tbx18 and Tbx15 with Groucho in vivo requires the eh1 motif. C, HEK293 cells were transfected with
expression constructs for wild-type (wt) or eh1-deleted (%eh1) myc-tagged Tbx18 (left) and Tbx15 (right), respectively, either alone or in combination with a
construct encoding HA-tagged TLE3. Lysates were immunoprecipitated with anti-HA antibody followed by Western blot (WB) analysis of input (in) and
immunoprecipitated fractions (IP) with anti-myc and anti-HA antibodies. Signals for Tbx18 and Tbx15 (open arrowheads), TLE3 (black arrowheads), and
IgH-bands (asterisk) are highlighted. D, nuclear recruitment assay. Coexpression of myc-tagged Tbx18 or Tbx15 (middle row) translocates the cytoplasmic
WD40 domain of TLE3 (HA-tagged, upper row) to the nucleus as shown by immunofluorescence in HEK293 cells after cotransfection. DAPI, 4!,6-diamidino-2-
phenylindole. E, repression activity of Tbx18 and Tbx15 partially depends on the presence of the eh1 motif. Expression constructs for fusion proteins of GAL4
with wild-type Tbx18 or Tbx15 and eh1 mutants (25 ng), respectively, were transfected in HeLa cells together with the 5xGal4UAS-thymidine kinase-luciferase
reporter plasmid. *, p ( 0.05.
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tion. Although Tbx2, Tbx5, and Tbx20 belong to different
T-box subfamilies, they share several interacting partners.
We therefore decided to investigate whether Tbx18 was also
capable of interacting with GATA zinc finger and NK-type
homeodomain proteins. Indeed, we found in GST pulldown
assays that HEK293-expressed Gata4 strongly binds to GST-
Tbx18(N#T) and GST-Tbx18(T), binds slightly more weakly
to GST-Tbx18(N), but does not bind to GST-Tbx18(C) (Fig.
7A). A similar binding patternwas observedwithNkx2–5, indi-
cating that both transcription factors either bind to two differ-
ent sites in the T-box and N-terminal region or bind within the
short stretch of overlapping amino acids present in both fusion
proteins of Tbx18 (aa 148–157, Fig. 1A). We confirmed the
interaction of Gata4 and Nkx2–5 with Tbx18 by a nuclear
recruitment assay with Tbx18%NLS protein in HEK293 cells
(Fig. 7B).

Binding of Tbx18 to Nkx2–5 and Gata4 as well as coexpres-
sion ofGata4, Tbx5, and Tbx18 in the sinus horn mesenchyme
(15, 39) suggest that failure of Nppa activation in this region of
the developing heartmight at least partly be caused by the repres-

sive activity of Tbx18. We tested this
hypothesis by analyzing the effect of
Tbx18 in anNppa-luciferase reporter
assay (pGL3.Nppa-luciferase, Fig.
7C). Low concentrations of Tbx18
alone had little effect on the activity
of the reporter. Coexpression of
Gata4 with Nkx2–5 caused a mod-
erate activation, in agreement with
previous observations (40). Low
concentrations of Tbx18 caused
further activation when constant
amounts of Gata4 andNkx2–5were
present, suggesting that Tbx18 effi-
ciently recruited the activators
Gata4 andNkx2–5 to theNppa pro-
moter. However, at higher doses of
Tbx18, this activation was reversed
to base line levels, indicating the
dominance of Tbx18-mediated
repression. Coexpression of Gata4
andNkx2–5with Tbx5 led to strong
activation, demonstrating syner-
gism of the three transcription fac-
tors in activating the Nppa pro-
moter (4–6, 18). This activation
was efficiently repressed in a dose-
dependent manner upon the addi-
tion of Tbx18, suggesting that
Tbx18 repressed the Nppa pro-
moter by competition with the acti-
vator Tbx5 (Fig. 7D). An activator
form of Tbx18 (Tbx18-VP16)
caused transcriptional activation,
which was synergistically increased
whenGata4 andNkx2–5were coex-
pressed (Fig. 7E), demonstrating
cooperative binding of Tbx18,

Gata4, and Nkx2–5 proteins to DNA binding sites in the Nppa
promoter.

To addresswhetherTbx18 is also sufficient to repress endog-
enous Nppa expression, we performed overexpression experi-
ments inHL-1 cardiomyocytes (22). Sincewe achieved only low
transfection efficiency of these cells, we enriched transfected
cells by coexpression of a cell surface marker followed by mag-
netic cell separation. Endogenous Nppa expression levels were
measured by quantitative RT-PCR. As shown in Fig. 7F, trans-
fection of Tbx18 resulted in a weak but significant decrease of
Nppa mRNA to 81.5 ' 8.4% of the control. As a positive con-
trol, we expressed the known repressor ofNppa, Tbx2 (18, 38),
which resulted in a stronger repression ofNppamRNA expres-
sion (56.1 ' 8.4%).
Tbx18 Represses Delta-like 1 Expression in Somites—Tbx6,

in cooperation with canonical Wnt signaling, directly acti-
vates the presomitic expression of the Notch ligand Delta-
like 1 (Dll1) (19, 41, 42). After segmentation, the expression
of Dll1 is confined to the posterior halves of epithelialized
somites, which is complementary to Tbx18 expression that is

FIGURE 7. Tbx18 binds Gata4 and Nkx2–5 and represses the Nppa promoter by competition with
Tbx5. A, interaction of Tbx18 with Gata4 and Nkx2–5 in vitro. Pulldown assays with GST-Tbx18, as described in
the legend for Fig. 4, with lysates of HEK293 cells transfected with expression constructs for HA-tagged Gata4
or Nkx2–5, were performed. Bound protein was detected by anti-HA Western blot. B, nuclear recruitment of
Tbx18%NLS by Gata4 or Nkx2–5. Immunofluorescence in HEK293 cells transfected with an expression con-
struct for myc-tagged Tbx18%NLS either alone or in the presence of HA-tagged Gata4 or Nkx2–5. DAPI, 4!,6-
diamidino-2-phenylindole. C, schematic diagram of the Nppa luciferase reporter (pGL3.Nppa-luciferase). The
numbers indicate the genomic positions relative to the transcription start site. D, Tbx18 counteracts the
transcriptional activation of the Nppa promoter mediated by Tbx5. HeLa cells were transfected with
increasing amounts of an expression construct for Tbx18 (0 –200 ng), alone (white bars), together with
constant amounts of Gata4 and Nkx2–5 expression constructs (100 ng of each, gray bars), or with expres-
sion constructs for Gata4, Nkx2–5, and Tbx5 (100 ng of each, black bars). E, the expression of Tbx18-VP16
(white bars) activates the Nppa promoter and causes a synergistic activation in combination with Gata4
and Nkx2–5 (gray bars). F, forced expression of Tbx18 or Tbx2 decreases Nppa mRNA levels in HL-1
cardiomyocytes. Transfected cells were enriched, and endogenous Nppa expression was measured by
quantitative RT-PCR. Mean relative mRNA expression levels were derived from two independent transfec-
tions and triplicate RT-PCR measurements. *, p ( 0.02; **, p ( 10"4.
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restricted to anterior somite halves. We therefore hypothe-
sized that Tbx18 antagonizes Tbx6-mediated activation to
restrict the expression of Dll1 to the posterior somite com-
partment. We failed to detect ectopic expression of Dll1 in
anterior somite halves in Tbx18"/" embryos; however, coex-
pression of the closely related Tbx22 gene in newly formed
somites may compensate for the loss of Tbx18 function in

this context (43). Restriction of
Tbx18 expression to anterior
somite halves is achieved by the
transcription factor Uncx4.1 in
posterior somite halves (13). In
Uncx4.1 mutant embryos, Tbx18
expression is found throughout
the somites, providing a natural
situation to study the effect of
ectopic Tbx18 on Dll1 somitic
expression. Indeed, we found a
down-regulation of Dll1 expres-
sion and of the Notch target gene
Hey1 (44) in Uncx4.1"/" somites
(Fig. 8A), suggesting that Tbx18
represses Dll1, and thus, Notch sig-
naling in this tissue. To confirm this
possibility at the molecular level, we
performed reporter assays in HeLa
cells using a luciferase reporter
under control of the Dll1 msd
upstream enhancer fused to the
Dll1 minimal promoter (pKS.msd-
luciferase (Fig. 8B) (Ref. 19)). The
1.4-kbp msd fragment is sufficient
to direct Dll1 transcription to the
presomitic mesoderm, the somites,
and the dermomyotome (45) and
contains six T half-sites as well as
four Tcf/Lef binding sites that are
required to mediate this activity in
vivo (19). Neither expression of
Tbx6 at various concentrations
(0–250 ng) nor of Tcf1e together
with !-catenin (both 100 ng) stimu-
lated the activity of the msd-lucifer-
ase reporter in our experiments.
Cotransfection of Tbx6 and Tcf1e/
!-catenin dose-dependently acti-
vated the reporter (Fig. 8C) in
accordance with previous data (19).
In contrast, Tbx18 alone repressed
the basal reporter activity moder-
ately and was unable to synergisti-
cally activate themsd reporter when
coexpressed with Tcf1e/!-catenin
(Fig. 8C). In addition, Tbx18 effi-
ciently antagonized the activation
mediated by Tbx6 together with
Tcf1e and !-catenin (Fig. 8C) and
was also able to compete with an

even stronger synergistic activation caused by an activator form
of Tbx6 (Tbx6-VP16) in combinationwith Tcf1e and!-catenin
(Fig. 8D). An activator form of Tbx18 (Tbx18-VP16) caused
transcriptional activation of the reporter gene, arguing that the
effects of Tbx18 on the msd promoter are caused by competi-
tive binding to T half-sites and not merely by protein interac-
tions (data not shown).

FIGURE 8. Tbx6/Wnt-mediated activation of Dll1 promoter activity is antagonized by Tbx18. A, overex-
pression of Tbx18 in somites coincides with the down-regulation of Dll1 and Hey1 expression in the posterior
trunk region. Whole mount in situ hybridization of mouse embryonic day 10.5 wild-type and Uncx4.1"/"

embryos. Genotypes and probes are as indicated in the figure. The arrowheads denote onset of segmentation.
B, schematic representation of the pKS.msd-luciferase reporter plasmid containing the Dll1 msd upstream
enhancer fused to the Dll1 minimal promoter (as described in Ref. 19); the numbers indicate genomic positions
relative to the transcription start site. C and D, the transcriptional effects of Tbx18 and Tbx6 (C) or Tbx6-VP16 (D)
alone (white bars) or in combination with Wnt mediators Tcf1e and !-catenin (gray bars) on msd-luciferase
reporter activity. Tbx18 causes a repression of the basal activity and abolishes the activation caused by cotrans-
fection of Tcf1e and !-catenin (!-cat) together with Tbx6 (C) or Tbx6-VP16 (D) expression constructs (black
bars).
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DISCUSSION

Genetic analyses have shown that the closely related
T-box genes Tbx18 and Tbx15 are crucial players in the for-
mation of the heart, the ureter, the vertebral column, and the
skin during mouse development. As a first step toward
understanding the molecular pathways regulated by these
two proteins, it is critical to define their molecular properties
and the mode of regulation of direct transcriptional targets.
Here, we have shown that Tbx15 and Tbx18 act as transcrip-
tional repressors that may exert their function by antagoniz-
ing transcriptional activators of the same family. During car-
diac development, Tbx18 may counteract Tbx5-mediated
activation of the Nppa promoter and Tbx6-mediated activa-
tion of Dll1 during somitogenesis. Interaction with Groucho
corepressors is at least partially responsible for transcrip-
tional repression. DNA binding specificity and protein inter-
action partners are likely to dictate target specificity of
Tbx15 and Tbx18. Finally, we show that Tbx15 and Tbx18
are biochemically equivalent, suggesting redundant function
in embryogenesis.
Repression by Tbx18 through Antagonizing T-box Activa-

tors in Somite and Heart Development—Mice carrying a null
allele of Tbx18 die shortly after birth due to severe malfor-
mations of the axial skeleton, a phenotype that was traced to
the function of Tbx18 in maintaining anterior-posterior
somite polarity (13). Anterior-posterior somite polarity is
established in the anterior presomitic mesoderm by the
combined action of Mesp2 and Notch-Delta signaling (46).
The latter induces expression of Uncx4.1 in posterior somite
halves (47) that is required to restrict the expression of
Tbx18 to anterior somite halves (13). In Tbx18"/" embryos,
Uncx4.1 expression gradually expands into anterior somite
halves, suggesting inhibition of Uncx4.1 activation by Tbx18
(13). To date, the lack of clarity on the mode of target gene
regulation by Tbx18 has made it difficult to hypothesize on
the molecular pathways controlled by Tbx18 in the somitic
mesoderm. Our studies have now shown that Tbx18 is likely
to act as a transcriptional repressor in vivo. Expansion of
Uncx4.1 expression in Tbx18"/" somites is therefore com-
patible with a direct transcriptional repression of Uncx4.1,
and alternatively, with an indirect inhibition ofUncx4.1 acti-
vation by repression of components of the Delta/Notch sig-
naling pathway. The first possibility seems unlikely given the
relatively slow expansion ofUncx4.1 expression in Tbx18"/"

somites. However, coexpression of Tbx22, a closely related
Tbx gene, in anterior somite halves of newly formed somites
(43) might prevent an immediate derepression of Uncx4.1
transcription. The second possibility gains support from our
data on the transcriptional control of the Dll1 promoter in
vitro and from analysis of molecular changes accompanying
Tbx18 overexpression in Uncx4.1"/" embryos. Tbx18 abro-
gates the Tbx6-mediated activation of the Dll1 promoter,
most likely by competition for T half-sites in vitro, and
ectopic expression of Tbx18 in posterior somites coincides
with the down-regulation of Dll1 and Notch-Delta signaling
in vivo. Expression of Tbx6 mRNA and protein is restricted
to the presomitic mesoderm (42), arguing for a role of Tbx6

in activating rather than maintaining somitic expression of
Dll1. Tbx18 might therefore counteract Tbx6 to restrictDll1
expression to posterior stripes in the anterior presomitic
mesoderm and/or might antagonize an as yet unidentified
somitic activator to restrict Dll1 to posterior somite halves.
As a third possibility, expansion of Uncx4.1 expression in
Tbx18"/" embryos may merely reflect immigration of cells
from posterior into anterior somite halves due to loss of
adhesion or repulsion mechanisms.

The Nppa promoter is subject to a spatially complex pat-
tern of regulation in which both activating and repressing
T-box proteins may bind and compete for the same set of
binding sites. Nppa expression in the chamber myocardium
of the heart is established by synergistic action of Nkx2–5,
Gata4, and Tbx5 transcriptional activators (4–6). Exclusion
ofNppa expression from regions of the primary myocardium
in the atrioventricular canal and the outflow tract is achieved
by binding of the Tbx2 repressor to T half-sites in the Nppa
promoter, competing Tbx5 activation (18, 38). Our studies
show that Tbx18 might play a similar role in the sinus horn
mesenchyme that is also devoid of Nppa expression. How-
ever, repression of Nppa expression in the posterior pole of
the heart does not exclusively depend on the presence of
Tbx18 but also on the absence of Nkx2–5 (15), providing an
additional level of safety to exclude Nppa expression from
this area.

Our analysis ofNppa repression by Tbx18 sheds light onto
the molecular control of target site specificity of T-box
genes. Tbx5 and Tbx18 are members of distantly related Tbx
subfamilies, arguing for diverse modes of DNA and protein
interactions. However, regulation of the same promoter
clearly indicates that both proteins bind to the same DNA
binding sites, a situation that is similarly found for Tbx6 and
Tbx18 in the Dll1 promoter. To date, all T-box proteins
analyzed, including Tbx15 and Tbx18 tested here, recognize
DNA binding sites containing a T half-site 5!-AGGTGT-
GAA-3!. Earlier reports and this study suggest that in vitro
selected (strong) binding sites are not necessarily present in
the genome as such but that combinations of two or more
(less conserved) T half-sites including their particular orien-
tation and spacing influence DNA binding specificity in vivo
(1–3, 28, 34). Along this line, we failed to detect the selected
perfect binding sites of Tbx15 and Tbx18 in the mouse
genome. Since binding affinities of Tbx18 and Tbx15 for
paired T half-sites was considerably higher than for a single
half-site, a cooperative mode of DNA binding seems manda-
tory. Indeed, we found that Tbx15 and Tbx18 are able to
dimerize in the absence of DNA in vitro and in cells, provid-
ing a mechanism to stabilize weak monomer-DNA interac-
tions. Moreover, the enhanced dimerization by the addition
of antibody greatly increased the DNA binding affinity, an
effect that was previously reported for other T-box proteins
(1, 3). The available DNA-protein co-crystal structure of the
Xenopus Brachyury homolog Xbra together with the palin-
dromic binding site has implicated critical residues of the
T-domain that mediate dimerization (27). Most of these res-
idues are conserved in Tbx18 and Tbx15 (data not shown).
However, the binding to paired T half-sites of inverted or
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directly repeated orientations implies an alternative quater-
nary structure of the protein dimer-DNA-complex, arguing
for additional dimerization interfaces in Tbx18 and Tbx15
proteins. Furthermore, our finding that flanking N- and
C-terminal protein regions confer high affinity DNA binding
suggests that regions outside the T-box participate in dimer
formation.

An additional level of target specificity might be achieved by
protein-protein interaction with other DNA binding transcrip-
tion factors. Our study has shown that Tbx18 can directly bind
to the homeodomain transcription factor Nkx2–5 and the zinc
finger protein Gata4 in vitro as well as in mammalian cells, two
proteins that were previously identified as binding partners of
Tbx1, Tbx2, Tbx5, and Tbx20 (4–7, 10). During heart develop-
ment, transcription factors of all three families cooperatively
regulate cardiac gene expression programs.

We found that the binding to Nkx2–5 andGata4 is mediated
by the T-box and (more weakly) by theN-terminal region, indi-
cating that both transcription factors either bind to two differ-
ent sites in the T-box and N-terminal region or bind within the
short stretch of overlapping amino acids present in both fusion
proteins of Tbx18 (aa 148–157). This is in line with previous
studies that have shown that interaction of Tbx5 and Nkx2–5
proteins is mediated both by the N-terminal region outside the
T-box as well as by the N-terminal part of the T-box (4). The
high conservation of the T-box domain of different family
membersmight thus not only be a prerequisite for shared DNA
binding specificity but also for conserved binding to protein
interaction partners. Nonetheless, it is likely that specific pro-
tein interaction domains are present in the regions outside the
T-box, providing an additional level of specificity in target gene
recognition by T-box transcription factors.
Repression by Recruitment of Corepressors—Transcription

factors of various classes including basic helix-loop-helix, Tcf/
HMG (high mobility group), homeodomain, runt domain, and
zinc finger domain proteins have previously been reported to
function as Groucho-dependent repressors (31). Groucho pro-
teins are known to recruit histone deacetylases (48, 49) that
remove acetyl groups from histone tails, thus rendering the
chromatin inaccessible for transcriptional activation. Our anal-
ysis provides the first evidence that thismode of repression also
extends to members of the T-box family of transcription fac-
tors. The eh1motif thatmediates binding to theWD40 domain
of Groucho was not only identified at a conserved N-terminal
position within the vertebrate homologues of Tbx18, Tbx15,
Tbx22, and Tbx20 but also in the ancestral Amphioxus Tbx15/
18/22 protein as well as in the Drosophila Tbx20 homologues
Midline and H15 (data not shown). This evolutionary conser-
vation strongly implies that all T-box proteins within the
Tbx18/15/22/20 branch of the Tbx1 subfamily act as Groucho-
dependent repressors. Widespread expression of vertebrate
Groucho proteins is compatible with a corepressor function for
these T-box proteins in diverse developmental contexts. How-
ever, it will be important to determine the functional signifi-
cance of this interaction in vivo since Groucho recruitment
might be tissue-specific as shown for the transcription factor
Runx3 (50).

Mutation of the eh1 motif resulted in only partial loss of
Tbx18 and Tbx15 repression activities, indicating the presence
of additional repression domains, i.e. interfaces for recruitment
of other corepressors. In the case of Tbx15, a recruitmentmotif
for C-terminal-binding protein (CtBP) is present at amino acid
positions 39–43. Two members of this corepressor family in
the mouse, CtBP1 and CtBP2, also interact with histone
deacetylase (HDAC) (51), suggesting an additional mode of
gene silencing by Tbx15 that can be experimentally explored in
the future. The mode of repression exerted by Tbx15 and
Tbx18 is clearly distinct from that of the T-box factors Tbx2
and Tbx3 since the C-terminal motif that mediates repression
by direct binding to HDAC1 is not found in Tbx15 and Tbx18
(52). Restriction of Tbx15 and Tbx18 function to transcrip-
tional repression is clearly precocious at this point. The close
relative Tbx20 was reported to contain both activation and
repression domains, arguing for a more complicated context-
dependent transcriptional modulation by T-box proteins (7).
Functional Redundancy of Tbx15 and Tbx18—Tbx15 and

Tbx18 form a pair of structurally related T-box proteins.
Sequence conservation between Tbx18 and Tbx15 amounts to
92% in the T-box region and extends to short stretches in the
less well conserved N- and C-terminal domains, suggesting
conservation of important functional interfaces for DNA and
protein binding. Indeed, our biochemical analysis of Tbx15 and
Tbx18 has demonstrated identical DNA binding properties,
subcellular localization, and Groucho-dependent transcrip-
tional repression activities. Together with our finding that
Tbx18 and Tbx15 hetero- and homodimerize, this indicates
that the two proteins are likely to regulate a similar set of targets
when coexpressed in one tissue. Although Tbx15 and Tbx18
show highly specific and largely non-overlapping expression
duringmouse development (39, 53), they are coexpressed in the
proximal region of the developing limb bud. Lack of defects in
the appendicular skeleton of Tbx18"/" mice and mild pheno-
typic changes inTbx15"/" limbsmight thus indicate functional
redundancy in the development of this structure.

This biochemical equivalence group is likely to include
Tbx22, the third member of the Tbx15/18/22 subgroup in the
Tbx1 subgroup of murine T-box genes. The T-box of Tbx22 is
highly related to those of Tbx15 and Tbx18, exerting similar
DNA binding preference to T half-sites, and also acts as a tran-
scriptional repressor in reporter assays (54). Coexpression of
Tbx18 and Tbx22 in anterior halves of epithelial somites sug-
gests functional redundancy in anterior-posterior somite pat-
terning and may explain the delayed expansion of posterior
somite fates in Tbx18"/" embryos (13, 39, 43). Phenotypic
characterization of compound mutants of Tbx15, Tbx18, and
Tbx22 will clarify functional redundancy of these T-box family
members in vivo.

As a single copy representative of the subgroup is present in
urochordates (Tbx15/18/22 ofCiona intestinalis) and in cepha-
lochordates (Branchiostoma floridaeTbx15/18/22) (55, 56), the
three vertebrate genes probably arose from a chordate-specific
precursor by two gene duplication events. Evidence suggests
that basic transcriptional properties of themembers of this sub-
group have been preserved throughout vertebrate evolution.
Functional specificity may have been acquired by unique
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expression domains and by new protein interactions outside
the T-box region.
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The compartmentalization of somites along their anterior-
posterior axis is crucial to the segmental organization of the
vertebral column. Anterior-posterior somite polarity is gener-
ated in the anterior presomitic mesoderm by Mesp2 and Delta/
Notch signaling and is further maintained by two transcrip-
tional regulators, Uncx4.1 and Tbx18, acting in the posterior
and anterior somite compartment, respectively. Here, we report
that the paired box transcription factor Pax3 cooperates with
the T-box protein Tbx18 in maintaining anterior somite half
identity. Our findings that both genes are co-expressed in the
anterior presomitic mesoderm and in early somites, that Pax3
andTbx18 proteins physically interact, and that the loss ofPax3
gene function enhances the vertebral defects (i.e. the gain of
vertebral elements derived from posterior somite halves in
Tbx18 mutant mice) suggests that the two proteins coopera-
tively regulate the gene expression programnecessary formain-
taining anterior-posterior somite polarity. Genetic interaction
of Pax3 with Tbx18 and the closely related T-box gene Tbx15
was also observed in the development of the scapula blade, indi-
cating an additional cooperative function for these genes in the
paraxial mesoderm.

The metameric organization of the vertebral column derives
from the somites, segmentally repeated units in the paraxial
mesoderm. Somites form in a highly periodic and synchronized
fashion by condensation and subsequent epithelialization of
groups of mesenchymal cells at the anterior end of the pre-
somitic mesoderm (PSM)3 on both sides of the neural tube.
Under the influence of signals from surrounding tissues,
somites start to differentiate along their dorso-ventral axis. The
ventral part undergoes an epithelial-mesenchymal transition to
form the sclerotome,which contains precursors of the vertebral
column and parts of the ribs. The dorsal part remains epithelial
and generates the dermomyotome, from which skeletal mus-

cles and the dermis of the skin will develop. In addition to dif-
ferentiation along the dorso-ventral axis, somites become sub-
divided into distinct anterior and posterior compartments.
Anterior-posterior (AP) polarization of somites underlies the
segmental arrangement of the peripheral nervous system, since
trajectories of neural crest and spinal nerves are confined to
anterior somite halves. On the level of the sclerotome, the dif-
ferential contribution of either compartment to the forming
vertebra affects the structure of the axial skeleton. Vertebral
bodies, laminaewith the spinal processes, the rib heads, and the
distal ribs derive from both somite halves, whereas pedicles
with their transverse processes and proximal ribs derive from
posterior somite halves only (1–3).
Establishment of somitic AP polarity is closely coupled to the

segmentation process.Work from a variety of vertebratemodel
systems has shown that somite formation is governed by an
oscillator known as the segmentation clock that operates in the
PSM (4, 5). It is now believed that synchronized oscillations of a
number of signaling pathways, including Wnt, fibroblast
growth factor, and Notch signaling, are involved in the mecha-
nism of the segmentation clock. Gradients of secreted signaling
molecules cooperatively define the segmentation border within
the anterior PSM. In this region, Notch oscillation is stabilized
to a narrow domain, in which cells with a high Notch pathway
activity will constitute the posterior half of a newly forming
somite. In an adjacent stripe of cells, Notch signaling is sup-
pressed by the action of the basic helix-loop-helix transcription
factorMesp2. The expression domain ofMesp2 thereby defines
the anterior somite half, and its anterior limit demarcates the
next segmental border to be formed (6). Correspondingly, loss
of Mesp2 activity leads to posteriorization of somites, whereas
loss of Delta-like1 (Dll1) gene function and Notch signaling
results in somites that bear only features of anterior halves (7).
Molecular players required for the further maintenance of

somitic AP polarity have recently surfaced. Genetic evidence
from both loss- and gain-of-function studies in the mouse sug-
gest that this process is controlled by the combined action of a
pair of transcription factors, the T-box (Tbx) protein Tbx18
and the paired type homeobox protein Uncx4.1, which are
expressed in anterior and posterior somite halves, respectively
(8, 9). Uncx4.1 is specifically required for the development of
pedicles and proximal ribs (10, 11), elements exclusively
derived from the posterior lateral sclerotome. In contrast, loss
ofTbx18 function results in expansion of pedicles and proximal
ribs in the cervical and thoracic region of the axial skeleton (12).
Notably, the forcedmisexpression ofTbx18 in posterior somite
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halves results in reduction of pedicles and proximal ribs (12),
suggesting that Tbx18 is sufficient to specify anterior versus
posterior somite fates. Opposing phenotypic consequences of
loss of either factor are based onmolecular cross-regulation. In
Uncx4.1mutants, Tbx18 expression is derepressed in posterior
somite halves, whereas in Tbx18 mutants, expression of
Uncx4.1 progressively expands in anterior somite halves (12).
On themolecular level, Uncx4.1may therefore act as transcrip-
tional repressor ofTbx18, whereasTbx18may regulateUncx4.1
indirectly by controlling expression of the Notch ligand Dll1
(13). To get further insight into the molecular function of
Tbx18, thus into the control of AP-somite compartmentaliza-
tion, we sought to identify and characterize protein binding
partners of Tbx18. This may also help to define transcriptional
targets of Tbx18 and their molecular regulation.

Here, we report on the identification of the paired box
(Pax) transcription factor Pax3 as a protein binding partner
of Tbx18. We characterize this interaction on the biochem-
ical level and define genetically that both transcription fac-
tors synergize in the development of the paraxial mesoderm,
including anterior-posterior somite compartmentalization
and scapula development.

EXPERIMENTAL PROCEDURES

Expression Constructs—Bacterial expression constructs were
generated as N-terminal glutathione S-transferase (GST)-
fusions in pGEX-4T3 (GE Healthcare). Generation of
GST-Tbx18 fusion proteins has been described (13), and
constructs covering the T-box region of mouse Tbx15 (aa
110–313), human TBX22 (aa 96–291), and mouse
Brachyury (aa 41–225) were PCR-amplified from the cDNAs
NM_009323, NM_016954, and NM_009309, respectively.

For in vitro expression of proteins, cDNA fragments were
cloned with C-terminal Myc or HA tags in the vector pSP64
(Promega) that was modified to contain a 5!-!-globin leader
and a 3!-!-globin trailer. Fragments encoding Pax3 partial (Fig.
1D) and full-length (aa 1–479) proteins were amplified from
the mouse cDNA NM_008781. Expression plasmids of full-
length Pax1 (aa 1–361), Pax7 (aa 1–503), and Pax9 (aa 1–342)
were amplified frommouse cDNAs NM_008780, NM_011039,
and NM_011041, respectively. For cytomegalovirus promoter/
enhancer-driven expression in cells, the globin leader/
cDNA/globin trailer cassette was shuttled into EcoRI andHindIII
sites of pcDNA3 (Invitrogen). The expression vector for
Tbx18"NLS has been described (13). All plasmids were
sequenced; details on cloning strategies and primer sequences are
available upon request.
Yeast Two-hybrid Screen—The construct for the generation

of a fusion protein between the DNA binding domain of GAL4
and Tbx18 (aa 1–345) was cloned into pGBKT7 (Clontech).
This bait vector was transformed into the yeast strain AH109
(Clontech), that was subsequently mated to the yeast strain
Y187 that was pretransformed with a prey library of poly(T)-
primed mouse embryonic day 11.5 (E11.5) whole embryo
cDNAs (Clontech) following the manufacturer’s instructions.
Clones were selected on plates lacking leucine, tryptophan, his-
tidine, and alanine. After this selection step, prey plasmids were
isolated, amplified in Escherichia coli, and sequenced.

GST Pull-down, Immunofluorescence, and Co-immunopre-
cipitation Assays—These assays were performed as described
(13).
Mice and Genotyping—Mice carrying a null allele of Pax3

(Pax3lacZ) (14), Tbx18 (Tbx18tm2Akis (12) (synonym: Tbx18GFP),
and Tbx15 (Tbx15tm1Akis) (15) (synonym: Tbx15lacZ) were main-
tained on an outbred (NMRI) background. For the generation of
compoundmutants, doubleheterozygousmicewere intercrossed.
Genomic DNA prepared from yolk sacs or tail biopsies was used
for genotyping by PCR (details on PCR strategies are available
upon request). For timed pregnancies, vaginal plugswere checked
in themorning after mating, and noon was taken as E0.5.
Skeletal Preparations—Skeletal preparations of E14.5

embryos and newborns were prepared essentially as previously
described (12). Embryos were fixed in 95% ethanol overnight,
and cartilaginous elements were then stained for 2 days in
Alcian blue solution (150 mg/liter Alcian blue 8GX in 80%
ethanol, 20% acetic acid). Embryos were transferred in metha-
nol and cleared in benzylbenzoate/benzylalcohol (2:1).
In SituHybridizationAnalysis—Wholemount in situhybrid-

ization analysis was performed with digoxigenin-labeled anti-
sense riboprobes following a standard procedure (16). Stained
specimens were transferred into 80% glycerol prior to docu-
mentation on a Leica M420 microscope with a Fujix digital
camera HC-300Z. Images were processed in Adobe Photoshop
CS. Details about probes are available upon request.

RESULTS

T-box and Pax Proteins Interact in Vitro—In order to identify
protein interaction partners of Tbx18, we performed a yeast
two-hybrid screen. We initially tested a number of fusion con-
structs of the GAL4-DNA-binding domain with subregions of
Tbx18 protein for their quality as bait. A construct encoding a
fusion proteinwith theN terminus and theT-domain of Tbx18,
which was expressed and lacked autoactivation in yeast, was
transformed into yeast, and the resulting bait strain was mated
to a strain pretransformed with a mouse cDNA library from
E11.5 whole embryos. One of the clones identified by the yeast
two-hybrid screenharbored a partial cDNA forPax3, amember
of the gene family encoding paired box transcription factors
(data not shown).

To validate and further investigate the interaction between
Tbx18 and Pax3, we performed a series of in vitro binding
assays using bacterially expressed subregions of Tbx18 fused to
GST and in vitro expressed HA-tagged Pax3 protein (Fig. 1, A
andB). InGSTpull-down assays, Pax3was specifically bound to
GST-Tbx18 fusion proteins harboring the N-terminal domain
and the T-box region (GST-Tbx18(N#T)) and the T-box
region alone (GST-Tbx18(T)), respectively. Binding was
observed neither with GST nor with GST-Tbx18(N) or GST-
Tbx18(C), indicating that the T-domain of Tbx18mediated the
binding to Pax3 (Fig. 1C).

We next generated a series of deletion mutants of the Pax3
cDNA for expression in vitro as HA-tagged peptides to deter-
mine which region of Pax3 confers interaction with Tbx18 (Fig.
1,D and E). Pax proteins are characterized by the presence of a
conserved N-terminal DNA-binding region, the paired
domain. Some of the eight murine family members, including
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Pax3, additionally contain a homeodomain as a second DNA-
binding region. Pax3 peptides containing the paired domain
were efficiently bound to GST-Tbx18(N#T), whereas peptides
containing the homeodomain only and/or the C terminus of
Pax3 were not efficiently retained (Fig. 1E). In summary, our in
vitro binding assays showed that binding of Tbx18 and Pax3 is
mediated by the two conserved DNA binding regions, the
T-domain and the paired domain.

The interaction between Tbx18 and Pax3 was additionally
validated in a mammalian cell system using a nuclear recruit-
ment assay. Transfection of an expression construct for HA-
tagged Pax3 revealed constitutive nuclear localization of Pax3.
In contrast, Myc-tagged Tbx18 protein lacking the nuclear
localization signal (Tbx18"NLS) (13) was excluded from the
nucleus and localized to the cytoplasm.Upon co-transfection of
constructs encoding HA-tagged Pax3 protein and Myc-tagged
Tbx18"NLS protein, nuclear localization of Tbx18 was
regained (Fig. 1F), suggesting that Tbx18"NLS in complexwith
Pax3 is shuttled to the nuclear environment.

Furthermore, co-immunopre-
cipitation assays were performed in
HEK293 cells transfected with full-
length constructs for Myc-tagged
Tbx18 alone or in the presence of
HA-tagged Pax3. In immunopre-
cipitates obtained with the HA anti-
body, an enrichment of Myc-tagged
Tbx18 protein was detected only
upon co-transfection of the Pax3
expression construct (Fig. 1G, left).
Conversely, Pax3.HA protein was
specifically coimmunoprecipitated
with the anti-Myc antibody when
Tbx18.Myc protein was present
(Fig. 1G, right), providing further
proof for complex formation of
Tbx18 and Pax3 in a cellular system.
T-box and Paired Box Interaction

Is Promiscuous—We next investi-
gated whether binding of Tbx18 to
Pax3 is unique among T-box and
Pax proteins or whether Tbx18 and
Pax3 interact with additional mem-
bers of the other family as well. In a
GST pull-down assay, we found
that, similar to Pax3, the closely
related Pax7 and themore divergent
proteins Pax1 and Pax9 exhibited
binding to the T-domain of Tbx18
(Fig. 2A). This interaction was con-
firmed in the nuclear recruitment
assay, where Tbx18"NLS was shut-
tled to the nucleus upon co-expres-
sion of HA-tagged Pax1 and Pax9
but not with unrelated nuclear pro-
teins (data not shown).

Conversely, we analyzed if Pax3 is
able to bind to othermembers of the

T-box protein family. Therefore, GST fusions of the T-box
region of the closely related Tbx15, Tbx18, and Tbx22 proteins
and the distant family member Brachyury (Fig. 2B) were
expressed in bacteria, purified (Fig. 2C), and incubated with in
vitro expressed Pax3 protein. Binding of Pax3 protein was
detected to all T-box proteins analyzed; however, binding of
Pax3 to Tbx18 was the strongest (Fig. 2D).
Together, these findings suggest promiscuity of binding

between T-box and paired box regions, but binding affinities
between individual family members might differ substantially.
Comparative Expression Analysis of Tbx15, Tbx18, Tbx22,

andPax3—The facts thatweonlydetectedPax3butnototherPax
familymember inouryeast two-hybrid screenandthehighaffinity
binding of Tbx18 with Pax3 in the in vitro assays prompted us to
analyzewhether this interaction is functionally relevant in vivo. To
determine in which tissues such a molecular interaction may
occur, we compared the expression patterns of Pax3 and Tbx18
and the two closely related Tbx15 and Tbx22 genes using in situ
hybridization analysis of E9.5 wild-typemouse embryos (Fig. 3).

FIGURE 1. Tbx18 and Pax3 interact in vitro. A–C, mapping of the Tbx18 interaction domain with Pax3. A, sche-
matic representation of the GST-Tbx18 deletion mutants used in this study; the T-box (T) is shaded in black, and
N- and C-terminal domains (N and C) are shown in white. The numbers refer to the length of the expressed
proteins in aa. B, Coomassie Brilliant Blue-stained gel of the purified GST-Tbx18 proteins. C, Western blot
analysis of HA-tagged Pax3 protein in GST pull-downs. The T-box region of Tbx18 mediates binding to Pax3.
D, schematic representation of a series of the Pax3 deletion mutants (HA-tagged) with the paired domain (PD)
marked in black and the homeodomain (HD) marked in gray. E, binding analysis of Pax3 peptides to GST alone
or GST-Tbx18(N#T) protein (18). The paired box region of Pax3 mediates binding to Tbx18. 10% of the input
fraction (in) was loaded as control. F, Pax3 mediates nuclear recruitment of Tbx18"NLS in HEK293 cells. HEK293
cells were transfected with expression constructs for Myc-tagged NLS-deficient Tbx18 (Tbx18"NLS; upper row)
in the presence or absence of HA-tagged full-length Pax3 protein (middle row). The white arrowhead indicates
that Tbx18"NLS is efficiently relocalized to the nucleus upon co-expression of Pax3 (compare 4!,6-diamidino-
2-phenylindole (DAPI) nuclear counter staining). G, complex formation between Myc-tagged Tbx18 and HA-
tagged Pax3 as revealed by co-immunoprecipitation assays in transfected HEK293 cells. Western blot (WB)
analysis of input fractions and immunoprecipitates (IP) using anti-HA or anti-Myc antibodies.
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At this stage, Tbx15 expression was confined to the mesen-
chyme of the forelimb buds (Fig. 3A, arrow). Tbx18 was co-
expressed with Tbx15 in this tissue (Fig. 3B, arrow) but showed
additional expression domains in the sinus venosus, the proepi-
cardial organ (Fig. 3B, white arrowhead), and the head mesen-
chyme (Fig. 3B, black arrowhead). In derivatives of the paraxial
mesenchyme, Tbx18 expression was observed in the anterior
halves of epithelial somites and additionally in two stripes rep-
resenting the anterior halves of somites that were about to form
(S0 and S$1) (Fig. 3E). With differentiation of somites, Tbx18
expression in anterior somite halves became restricted to the
lateral sclerotome (Fig. 3E, arrow). Tbx15 expression was
absent during somite development (Fig. 3A). However, the
closely related Tbx22 gene was co-expressed with Tbx18 in
anterior halves of somitomeres and early somites (S$1 to S1)
(Fig. 3, C and F). Expression of Tbx22 in anterior somite halves
was then rapidly down-regulated, but expression was reiniti-
ated in forming myotomes (Fig. 3F, arrow).

Pax3 was strongly expressed in the dorsal neural tube (Fig.
3D, arrow). Furthermore, Pax3 expression was found in the
anterior PSMand in epithelial somites (Fig. 3,D andG). Expres-
sionwasmaintained in the dermomyotomal compartment (Fig.
3G, arrow) and inmigrating precursors of the limbmusculature
(Fig. 3D, arrowhead) (17).

Hence,Tbx18,Tbx22, and Pax3 are co-expressed in the PSM
and undifferentiated somites, but expression domains segre-
gate during the differentiation of the sclerotome,myotome, and
dermomyotome.
Tbx18 and Pax3 Cooperate in the Development of the Axial

Skeleton—The observed physical interaction and the co-ex-
pression ofTbx18 (andTbx22) with Pax3 during somitogenesis
suggested that these factors also interact genetically during this
process. We analyzed this possibility by generating embryos
compound mutant for null alleles of Tbx18 (Tbx18GFP) and
Pax3 (Pax3lacZ). On the outbred background on which we
maintained these alleles, Pax3$/$ embryos were viable at
E14.5. This is in contrast to studies where lethality of Pax3$/$

embryos was observed between E13.5 and E14.5 when the
mutant allele was kept on an inbred background, such as a mix
of C3H/101 and BA/Ca or C57Bl6 (17, 18). Tbx18$/$ embryos
died shortly after birth as reported before (12).

Mice double heterozygous for Tbx18GFP and Pax3lacZ
mutant alleles were viable and fertile and were intercrossed to
obtain all possible allelic combinations. We harvested embryos
at E14.5 and analyzed the skeletons as a read-out of defects of
somite patterning and differentiation. We noted that embryos
double homozygous for Pax3 and Tbx18 null alleles were
severely underrepresented at this stage. Of a total of 123
embryos harvested, we only obtained two double mutants
(1.6%) instead of the expected eight (1 of 16; 6.3%). Similarly,
the observed number of nine Tbx18$/$,Pax3#/$ embryos
(7.3%) displayed a reduction from the expected value (15
embryos; 1 of 8; 12.5%), suggesting that the removal of one or
two copies of one wild-type allele in the mutant background of
the other gene dramatically enhanced the severity of the embry-
onic defects. All other genotypes were found in the expected
Mendelian frequencies (data not shown).

In wild-type embryos of E14.5, the cartilagenous preskeleton
was invested with a segmental array of orderly spaced ribs and
vertebra (Fig. 4A). At the thoracic level, ribs were connected to
vertebral pedicles (Fig. 4G, black arrowhead).

Strikingly, in 12 of 30 embryos (40%) double heterozygous for
both Tbx18 and Pax3 null alleles, we detected isolated expan-
sions of proximal ribs (Fig. 4, B and H, white arrowhead),
whereas these malformations were never observed in single
heterozygous embryos.

In Tbx18$/$ embryos, pedicles and proximal ribs were
expanded and formed contiguous cartilagenous bands in the
vertebral column at the cervical and thoracic levels and the rib
cage, respectively (Fig. 4, C (brackets) and I (arrowheads)) (12).
In all Tbx18$/$,Pax3#/$ embryos analyzed (n % 9), expan-

sions of proximal ribs were increased in frequency and
extendedmore caudally (Fig. 4D, brackets) andmedially (Fig. 4J,
white arrowheads) compared with Tbx18$/$ embryos. A fur-
ther expansion of pedicles was not observed (Fig. 4J, black
arrowhead).

FIGURE 2. Interaction between T-box and paired box regions is promiscu-
ous. A, Western blot analysis of HA-tagged full-length Pax1, Pax7, and Pax9
proteins in GST pull-downs with GST-Tbx18 fusion protein, as shown in Fig. 1.
B, schematic representation of GST fusion proteins of the T-box regions of
Tbx15, Tbx18, Tbx22, and Brachyury (Bra). C, visualization of purified GST pro-
teins by Coomassie Brilliant Blue staining. D, Western blot analysis of HA-
tagged Pax3 protein in GST pull-downs.
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Inmutants double homozygous forTbx18 andPax3null alle-
les, the body axis was dramatically shortened (n % 2; Fig. 4E).
The severity of the skeletal defects in cervical vertebrae was
unchanged comparedwithTbx18mutant embryos. In contrast,
the lateral parts of the vertebrae, neural arches and pedicles,
were largely expanded at the thoracic and lumbar level (Fig. 4E,
black arrowhead) and frequentlymisconnected to the vertebral
bodies that were often split (Fig. 4E, asterisks and white arrow,
respectively). Proximal parts of ribs constituted large contigu-

ous plates of cartilage on both sides
of the vertebral column (Fig. 4K,
white arrowheads).

In Pax3$/$ embryos, defects of
the axial skeleton, including fusions
of neural arches of adjacent verte-
brae, occurredmainly in the lumbo-
sacral region (Fig. 4F, arrowhead),
and rib fusions and bifurcations
were apparent (Fig. 4F, arrow).
However, skeletal defects were gen-
erally less severe than the ones
described for Pax3 alleles main-
tained on inbred genetic back-
grounds (17, 18). Notably, and in
contrast to Tbx18 mutants, the
proximal ribs were unaffected, and
the pedicles were spaced regularly
(Fig. 4L).

Together, our results demon-
strate genetic interaction of Pax3
and Tbx18 in the formation of the
axial skeleton. Removal of Pax3
function enhances the phenotypic
changes associated with the loss of
Tbx18, namely the expansion of
derivatives of the posterior lateral
sclerotome, pedicles, and proximal
ribs.
Tbx18 and Pax3 Cooperate in the

Maintenance of Anterior Somite
Halves—Co-expression of Tbx18
and Pax3 in undifferentiated
somites suggests that not only the
lateral sclerotome but also other
somitic compartments could be
affected by the combined loss of
Pax3 and Tbx18 functions. To
determine patterning and differen-
tiation of the somitic mesoderm
intomyotome and sclerotomemore
carefully, we analyzed expression of
molecular markers at E10.5. Within
the collected embryos at this stage
(n % 221), all genotypes were found
in the expected frequencies, indicat-
ing that lethality of Tbx18/Pax3
double mutant embryos occurred
between E10.5 and E14.5.

In the E10.5 wild-type embryo,Myogenin was expressed in
the myotomes in a repeating metameric pattern (Fig. 5A)
(19). In Pax3$/$ embryos, Myogenin was segmentally
expressed in myotomes, but its hypaxial domain appeared
truncated (Fig. 5C, arrowhead). This is in agreement with the
known role of Pax3 as a regulator of migration and survival of
myotomal cells (20–23). In Tbx18 mutant embryos, Myoge-
nin expression was unchanged (Fig. 5B), and no increase of
the Pax3$/$ phenotype was observed in double mutants

FIGURE 3. Comparative expression analysis of Tbx15, Tbx18, Tbx22, and Pax3. Whole mount in situ hybrid-
ization analysis of E9.5 wild-type mouse embryos using RNA probes specific for Tbx15 (A), Tbx18 (B and E), Tbx22
(C and F), and Pax3 (D and G). A–C, overview of the expression of Tbx15 (A) in forelimb buds (arrow); Tbx18 (B) in
the mesenchyme of the forelimb (arrow), the proepicardial organ and sinus venosus (white arrowhead), and
head mesenchyme (black arrowhead); and Tbx22 (C). D, expression of Pax3 in the dorsal neural tube (arrow) and
precursors of limb muscles (arrowhead). E–G, higher magnification of expression domains in somitogenesis;
presumptive (S$1 and S0) and newly formed somites (S1–S4) are labeled. E, Tbx18 is expressed in anterior
halves of somitomeres (S0 and S$1), epithelial somites, and differentiating sclerotomes (Sc). F, Tbx22 in somi-
tomeres and early somites (S$1 to S1) and in the forming myotomes (M). G, Pax3 expression can be seen in the
anterior PSM (S$1 to S0), the entire epithelial somite, and later in the dermomyotome (Dm).

FIGURE 4. Dose-dependent requirement of Tbx18 and Pax3 in the formation of the axial skeleton. Alcian
blue-stained preparations of cartilaginous preskeletons of E14.5 Tbx18/Pax3 compound mutant embryos with
genotypes indicated on the top. A–F, dorsal views; G–L, magnifications of the boxed regions. The arrangement
of pedicles (black arrowheads) and proximal ribs (white arrowheads) is highlighted. In contrast to wild-type
embryos (A and G), a fraction of Tbx18#/$,Pax3#/$-embryos (12 of 30; 40%) displays expansions of proximal
ribs (B and H). Tbx18$/$ embryos show contiguous bands of proximal ribs (C, bracket) and expanded pedicles (I,
black arrowhead). Rib defects are further increased in severity in Tbx18$/$,Pax3#/$ compound (D, bracket; J, white
arrowheads) and Tbx18$/$,Pax3$/$ double homozygous embryos (K, white arrowheads). In Tbx18$/$,Pax3$/$

embryos, pedicles and neural arches are contiguous in thoracic and lumbar regions (E and K, black arrowheads) and
frequently unconnected to the vertebral bodies (E, asterisks). The white arrow indicates split vertebra. In contrast,
fusions of neural arches in Pax3 single mutants are present mainly in lumbar regions (F, arrowhead), and rib fusions
and bifurcations occur more distally (F, arrow).
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(Fig. 5D, arrowhead), indicating that both genes do not
cooperate in the myogenic program.
Next we analyzed Pax9 that is expressed in the ventro-lateral

sclerotome compartment with a strong up-regulation in the
posterior somite halves in wild-type embryos (Fig. 5E) (24). In
Pax3$/$ embryos, polarized expression of Pax9 was main-
tained, whereas inTbx18$/$mutant embryos, Pax9 expression
became progressively homogenous with somite maturation
(Fig. 5F). In Tbx18$/$,Pax3$/$ embryos (n % 3), Pax9 expres-
sion was homogeneously strong in somites along the entire
axial extension (Fig. 5H), suggesting that Pax3 cooperates with
Tbx18 in AP-somite polarization.
To further analyze AP-somite patterning in Tbx18/Pax3

compound mutant embryos, we used Uncx4.1 as a marker of
the posterior somite half and the caudo-lateral sclerotome (Fig.
5I) (9). InTbx18mutant embryos,Uncx4.1 expression was pro-
gressively expanded, demonstrating the gain of posterior and
the loss of anterior somite fates (Fig. 5J) (12). In Pax3 mutant
embryos (n % 2), the domain of Uncx4.1 was reduced in its
dorso-ventral extension. However, AP polarization of expres-
sion was largely unaffected (Fig. 5K). In Pax3$/$,Tbx18$/$

embryos (n% 2), up-regulation ofUncx4.1 expression was even

enhanced comparedwithTbx18$/$

embryos, demonstrating a further
expansion of posterior somitic iden-
tity (Fig. 5L). In embryos heterozy-
gous mutant for Pax3 or Tbx18,
Uncx4.1 expression was normal. In
contrast, in 3 of 10 double heterozy-
gous embryos, expansions ofUncx4.1
expression into anterior halves of dif-
ferentiated somites were detected
(Fig. 5M, arrowheads).
Cooperativity of Pax3 and Tbx18

in AP polarization of somites may
also derive from mutual regulation
of the two genes in early somitogen-
esis. However, unchanged expres-
sion of Tbx18 in Pax3$/$ somites
(Fig. 5O) and of Pax3 in Tbx18$/$

embryos (Fig. 5Q) indicates that
genetic cooperativity more likely
stems from co-regulation of tran-
scriptional target genes.
Genetic Interactions in the Devel-

opment of the ScapulaBlade—Upon
inspection of the skeletal prepara-
tions of E14.5 Tbx18/Pax3 com-
pound mutant embryos (for num-
bers see above), we detected
additional defects in the appendicu-
lar skeleton indicative of a genetic
interaction of the two genes in scap-
ula development. In 4 of 19 embryos
of the Tbx18#/$,Pax3$/$ genotype
(21%), a central hole was present in
the scapular blades on both sides (Fig.
6E).Thisphenotypewasnotobserved

in Tbx18$/$ and Pax3$/$ single or in Tbx18$/$,Pax3#/$ com-
poundmutant embryos (Fig. 6,A–D), demonstrating a stronger
contribution of Pax3 in the genesis of this phenotypic trait.
Interestingly, the appendicular skeleton of the pelvic girdle was
unaffected (data not shown).
Since a similar scapula phenotype has been reported formice

homozygous mutant for Tbx15 (15, 25), the gene most closely
related to Tbx18, we decided to test whether Pax3 shows
genetic interaction with Tbx15 in scapula development as well.
All combinations of compound mutants were found in the
expected ratio in E14.5 embryos (n % 63).

Similar to Tbx18, we observed the scapula defect in
Tbx15#/$,Pax3$/$ embryos (Fig. 5F), although with a much
higher penetrance (5 of 7 embryos; 71%). In addition, we noted
that loss of Pax3 in the Tbx15 mutant background caused a
dose-dependent increase in the phenotypic severity of the scap-
ula defects (Fig. 5, G–I). In fact, in Tbx15,Pax3 double mutant
embryos, the proximal region of the scapula was almost com-
pletely absent (Fig. 5I).
Comparative expression analysis of Pax3 and Tbx15, Tbx18,

and Tbx22 during limb development revealed co-expression of
Tbx15 and Tbx18 in mesenchymal precursor cells of the scap-

FIGURE 5. Tbx18 and Pax3 cooperate in AP-somite compartmentalization. A–M, expression analysis of somite
differentiation markers in E10.5 Tbx18/Pax3 compound mutant embryos. Lateral views of differentiated somites at
the interlimb level, with anterior to the left. Genotypes are indicated on top. A–D, Myogenin expression reveals that
combined loss of Tbx18 and Pax3 does not affect formation of the myotome. The hypaxial domain of the dermo-
myotome is truncated equally in Pax3$/$ (C) and Tbx18$/$,Pax3$/$ embryos (D, arrows). E–H, polarized expression
of the lateral sclerotome marker Pax9 is cooperatively regulated by Tbx18 and Pax3. Segment boundaries are high-
lighted with black lines, demonstrating expansion of Pax9 expression in Tbx18$/$ embryos into anterior (a) somite
halves (F). In Tbx18$/$ Pax3$/$ embryos (n % 3), Pax9 expression appears almost homogenous between anterior
and posterior (p) somite halves (H). Note that in somites of Pax3$/$ embryos, polarization of Pax9 expression is
normal (G). I–M, restriction of Uncx4.1 expression to the sclerotome of posterior somite halves depends on both
Tbx18 and Pax3. Anterior expansion of Uncx4.1 somite expression in Tbx18$/$ embryos (J) is further increased by
additional loss of Pax3 (n % 2) (L). Note that in Pax3$/$ embryos, Uncx4.1 is restricted to the sclerotome of posterior
somite halves (n % 2) (K). Isolated expansions of adjacent Uncx4.1-positive segments were observed in 3 of 10
Tbx18#/$,Pax3#/$ embryos (M, arrowheads). N–Q, comparative in situ hybridization analysis of Tbx18 expression in
E9.5 wild-type (N) and Pax3$/$ embryos (O) and of Pax3 expression in E9.5 wild-type (P) and Tbx18$/$ embryos (Q)
shows that somitic expression of Tbx18 and Pax3 is independent of each other.
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ula in the proximal region of the E11.5 embryo limb bud (Fig. 6,
J,K,N, andO) (26). Expression ofTbx22was not detected in this
region (Fig. 6, L and P). Surprisingly, Pax3was not expressed in
these cells (Fig. 6, M and Q), suggesting that scapular defects
might arise from an earlier requirement of Tbx15, Tbx18,
and/or Pax3 in precursor cells of the somitic mesoderm from
which the scapula is derived.

DISCUSSION

Members of the T-box and the paired box families of tran-
scriptional regulators control a diverse array of processes dur-

ing vertebrate embryonic develop-
ment. Here, we provide evidence
that two individual members of
these gene families, Tbx18 and
Pax3, cooperatively regulate sub-
programs in the development of the
axial and appendicular skeletons.
Direct interaction of Tbx18 and
Pax3 proteins in vitro and in mam-
malian cells, co-expression ofTbx18
and Pax3 in the anterior PSM and
in newly formed somites, and
enhancement of phenotypic defects
ofTbx18mutant embryos upon loss
of Pax3 gene function in the deriva-
tives of the lateral sclerotome and
the scapula blade suggest that these
proteins cooperatively regulate
gene expression programs neces-
sary for the maintenance of the AP-
somite compartmentalization and
the formation of the scapula blade.
Tbx18 and Pax3 Cooperate in

the Maintenance of AP-somite
Polarity—Loss-of-function muta-
tions of Pax3 cause a wide array of
developmental defects. In mice, the
spontaneous Pax3mutation Splotch
causes the lack of limb muscles,
spina bifida and exencephaly, and
defects in neural crest derivatives
(27). Human patients with impaired
Pax3 function suffer from Waar-
denburg syndrome (28), a disease
complex characterized by varying
degrees of deafness, defects in struc-
tures arising from the neural crest,
and pigmentation anomalies. These
defects have been conceptualized by
a functional requirement for Pax3
in survival, migration, and differen-
tiation of the hypaxial dermomyo-
tome and the neural crest (20–23).

In the present study, we report on
the genetic interaction of Pax3 and
Tbx18 that results in phenotypic
alterations affecting the develop-

ment of the axial skeleton, demonstrating that beyond its well
established function in the dermoyotome, Pax3 also affects the
development of the sclerotomal lineage.

InTbx18mutant embryos, pedicles, and proximal ribs, deriv-
atives of the posterior lateral sclerotome are expanded. This
phenotype was traced back to a failure in maintaining the com-
partmentalization of somites into distinct anterior and poste-
rior halves (12). The severity of the Tbx18 mutant phenotype
was dose-dependently increased by loss of one or two alleles of
Pax3, resulting in an even stronger loss of anterior somite iden-
tity and expansion of elements derived from the posterior

FIGURE 6. Genetic interaction between Pax3 and Tbx18/Tbx15 in the development of the scapula
blade. A–I, Alcian blue-stained preparations of cartilaginous preskeletons of E14.5 forelimbs of com-
pound mutant embryos. Limbs of Tbx18$/$ (B) and Pax3$/$ (D) single mutants were unaffected. However, in
4 of 19 Tbx18#/$,Pax3$/$ embryos (21%), a central hole in the scapula blade is present (E, arrow). In an allelic series
of Pax3 and Tbx15 mutant alleles, we noted a similar defect in Tbx15#/$,Pax3$/$ embryos (F) although with an
increased frequency (5 of 7 embryos; 71%). The scapula defect of Tbx15$/$ (G) embryos increases in severity with the
additional loss of one (H) or both alleles (I) of Pax3 (arrows). J–Q, comparative expression analysis of Tbx15 (J and N),
Tbx18 (K and O), Tbx22 (L and P), and Pax3 (M and Q) in the forelimb region. Shown is an overview of expression
patterns in E11.5 wild-type embryos (A–I) and a higher magnification of forelimb buds (N–Q). Tbx15 and Tbx18 are
co-expressed in the proximal region of the limb bud, whereas Tbx22 and Pax3 are not expressed. In N–Q, the
scapula-forming region (26) is surrounded with a red line.
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somite halves. Most notably, in double heterozygous embryos,
we observed expansions of proximal ribs, which we never
detected in single heterozygotes. On the molecular level, these
phenotypic changes were paralleled by a further expansion of
the expression domain of Uncx4.1, demonstrating a require-
ment of both Pax3 and Tbx18 in maintenance of the anterior
somite fate.
Tbx18 and Pax3 are coexpressed in the anterior PSM and

epithelial somites, but expression domains subsequently segre-
gate to the anterior lateral sclerotome in the case of Tbx18 and
the dermomyotome for Pax3, respectively. This and the finding
that Pax3 and Tbx18 interact on the protein level (see below)
suggest that Pax3 and Tbx18 cooperativity results frommolec-
ular interaction occurring in early somite development.
It is noteworthy that a functional requirement for Pax3 in

early somite development has previously also been suggested by
Schubert et al. (17), who studied defects of the axial skeleton in
the Pax3 mutant mice maintained on the C57/Bl6 inbred
genetic background. There, defects in AP-somite patterning
and disturbed somite boundaries were noted and also corre-
lated with Pax3 expression during early somite formation. The
skeletal phenotype of Tbx18/Pax3 double heterozygous
embryos exhibited a partial penetrance only, further indicating
that the function of Pax3 is subject to genetic modification.
Genetic modifiers might be represented by other members of
the T-box and paired box gene families that are co-expressed
with Pax3 and Tbx18 in early somitogenesis. We have shown
that Tbx22, a gene closely related to Tbx18, is co-expressed
with Tbx18 in anterior somite halves and exhibits similar bio-
chemical properties (13, 29). Similarly, Pax3 gene function
might be partially compensated by Pax1 and Pax9, which are
co-expressed with Pax3 in early somites (24). Since we have
shown that Pax3 can bind to other T-box family members,
including Tbx22, and that Tbx18 can also interact with Pax1
and Pax9 in vitro, a complex network of Pax andT-box proteins
may cooperate in early somite development.
The Tbx18/Pax3 double mutants displayed contiguous car-

tilagenous elements, similar to Mesp2 mutant embryos, which
have completely caudalized somites (30). Moreover, isolated
expansions of proximal ribs, as seen in the Tbx18/Pax3 double
heterozygotes, have also been reported for a hypomorphic
allele of Mesp2 (31). Although the expression of Mesp2 is
unchanged in Tbx18/Pax3 double mutants (data not shown),
the somitic expression of Tbx18 is absent, and the expression
of Pax3 is strongly reduced in Mesp2 null embryos (32, 33),
arguing that after the establishment of somite AP polarity,
Tbx18 and Pax3 act downstream of Mesp2 to maintain AP-
somite compartmentalization.
The cellular and genetic programs that are co-regulated by

Tbx18 and Pax3 are currently unclear. We have previously
hypothesized that Tbx18 controls maintenance of anterior
somite fates by direct repression of Delta-like 1 (Dll1) tran-
scription (13) and, thus, suppression of Notch signaling that
confers posterior somite fates (7). When testing the same Dll1
promoter fragment in transactivation assays using HeLa cells,
we failed to detect a cooperative effect of Pax3 and Tbx18 on
Dll1 repression (data not shown). However, elements mediat-
ing Pax3 binding may reside in promoter regions outside the

fragment tested. A role for Pax3 as a transcriptional repressor
that synergizes with Tbx18 is compatible with the described
interaction of Pax3 with the transcriptional co-repressors
HIRA and Daxx (34).
Pax3 and Tbx18 Interaction Is Mediated by Conserved DNA-

binding Regions—In this study, we identified Pax3 as a binding
partner of Tbx18 in a yeast two-hybrid screen and validated this
interaction in vitro and in mammalian cells. We mapped the
interaction domain to theT-box region ofTbx18 and the paired
domain of Pax3, demonstrating that these DNA-binding
domains have an additional role as protein-protein interaction
motifs. Although we and others have shown that the T-box
region mediates binding to the homeobox region in other
homeodomain transcription factors, includingNkx2-5 (13, 35),
the homeodomain of Pax3 was not efficiently bound by Tbx18,
suggesting that interaction ofDNA-binding regions is selective.
However, we found that the interaction between paired box

and T-box regions is promiscuous among divergent members
of both families, suggesting functional co-operativity of other
T-box and Pax proteins in tissues of co-expression. One exam-
ple has previously been presented by the pair of Tbx5 and Pax6
that may cooperate to regulate dorso-ventral patterning of the
optic cup (36).
Interaction among different classes of DNA-binding tran-

scription factors is likely to represent a commonmechanism to
increase specificity of target gene recognition. For T-box pro-
teins, the combinatorial function with other classes of DNA-
binding proteins in target promoter regulation is well estab-
lished. One example is the interaction of Tbx2, Tbx5, Tbx18,
and Tbx20 with the transcription factors Gata4 and Nkx2–
Nkx5 to regulate cardiac expression of Nppa (natriuretic pep-
tide precursor type a) (13, 35, 37–41). Likewise, Pax proteins
have been shown to interact with a number of different DNA-
binding proteins, including Pax3 interacting with Sox10 and
Mox2 and Pax6 binding to pRB (34). Future approaches for the
identification of target genes of Tbx18 could benefit from a
search of the combined presence of conserved T-sites and
paired binding sites (42).
Pax3 Cooperates with Tbx15 and Tbx18 in the Development

of the ScapulaBlade—Our analysis of the phenotypes ofTbx18/
Pax3 compoundmutants uncovered an additional requirement
for both genes in the formation of the scapula blade. In com-
pound mutant embryos, the scapula blade exhibited a central
hole. In addition, loss of Pax3 dose-dependently increased the
severity of the scapula defect in the mutants for Tbx15 (15, 25),
the T-box gene most highly related to Tbx18.
The formation of the scapula blade, the thin posterior exten-

sion of the shoulder girdle is unusual in the respect that it nei-
ther derives from the sclerotomal cells of the somite nor from
the lateral plate mesoderm like the limb skeleton but from a set
of eight dermomyotomes from somites 17 to 24 as revealed by
chick-quail chimeric analysis (43). Hence, a common Pax3 pos-
itive pool of precursor cells contributes to both limb muscles
and the scapula. Under the influence of signaling pathways
from the surroundings, including the surface ectoderm, the
subpool of scapula precursor cells switches expression from
Pax3 to Pax1 and enters chondrogenic differentiation (44). The
scapula blade is an extremely thin bone that is exquisitely sen-
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sitive to slight alterations in proliferation and thus reduction of
the pool of precursor cells. Since we did not detect co-expres-
sion of Pax3 with Tbx15 and Tbx18 in the scapula-forming
region (26), Pax3 and Tbx15/Tbx18 may act subsequently
rather than simultaneously. Loss of Pax3 function my lead to a
reduction of the dermomyotomal precursor pool that becomes
available for Tbx15/Tbx18 to act on. Further loss of Tbx15 and
Tbx18 function may then reduce the number of mesenchymal
precursor cells of the scapula under a critical threshold
required for the condensation and/or chondrification process.
Alternatively, Pax3 protein may persist in the precursor cells of
the scapula for some time, given an opportunity for molecular
interaction with these T-box transcription factors.
Interestingly, Tbx15 has been shown to synergize with a

number of other transcription factor genes, including Gli3 and
aristaless-type homeobox genes (Alx4 and Cart1) in scapula
development (25), arguing for a complex network of develop-
mental regulators involved in patterning/differentiation of this
bone.
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TBX15 Mutations Cause Craniofacial Dysmorphism,
Hypoplasia of Scapula and Pelvis,
and Short Stature in Cousin Syndrome

Ekkehart Lausch,1 Pia Hermanns,1 Henner F. Farin,2 Yasemin Alanay,3 Sheila Unger,1,4 Sarah Nikkel,1,5

Christoph Steinwender,1 Gerd Scherer,4 Jürgen Spranger,1 Bernhard Zabel,1,4 Andreas Kispert,2

and Andrea Superti-Furga1,*

Members of the evolutionarily conserved T-box family of transcription factors are important players in developmental processes that

include mesoderm formation and patterning and organogenesis both in vertebrates and invertebrates. The importance of T-box genes

for human development is illustrated by the association between mutations in several of the 17 human family members and congenital

errors of morphogenesis that include cardiac, craniofacial, and limbmalformations.We identified two unrelated individuals with a com-

plex cranial, cervical, auricular, and skeletal malformation syndrome with scapular and pelvic hypoplasia (Cousin syndrome) that

recapitulates the dysmorphic phenotype seen in the Tbx15-deficient mice, droopy ear. Both affected individuals were homozygous for

genomic TBX15 mutations that resulted in truncation of the protein and addition of a stretch of missense amino acids. Although the

mutant proteins had an intact T-box and were able to bind to their target DNA sequence in vitro, the missense amino acid sequence

directed them to early degradation, and cellular levels were markedly reduced. We conclude that Cousin syndrome is caused by

TBX15 insufficiency and is thus the human counterpart of the droopy ear mouse.

We studied two unrelated girls of German (patient 1) and
Turkish (patient 2) ancestry. The girls shared an identical
phenotype consisting of short stature and macrocephaly.
Patient 1 had a birth length of 43 cm (!2.4 standard devi-
ation [SD]) and head circumference of 38 cm (þ 0.83 SD)
and an adult height of 115 cm (!8.18 SD) and a head
circumference of 61.5 cm (þ4.12 SD). Patient 2 at her
most recent follow-up at 10 years of age had a height of
105 cm (!4.41 SD) and a head circumference of 53 cm
(50th percentile). Their dysmorphic features included fron-
tal bossing, narrow palpebral fissures with deep set globes
and hypertelorism, strabismus, low-set ears with posterior
rotation and dysplasia of the conchae, narrow auditory
canals and hypoacusis, a short neck with redundant skin-
folds, and a low hairline (Figure 1). The habitus of both
girls was characterized by macrocephaly, fixed flexion at
the elbow joints, a short neck, and leg shortening caused
by bilateral dislocation of the hips and hip flexion. The
main radiographic features were hypoplastic scapulae
and iliac bones, short femurs, humeroradial synostosis,
and moderate brachydactyly. In addition, the skull base
was abnormally shaped, resulting in markedly low attach-
ment of the ears and in caudal displacement of the occip-
ital bone (Figure 2). Both girls had normal intelligence and
attended normal school (at age 12 years; patient 2) or col-
lege (at age 19 years; patient 1). Both parent couples were
consanguineous (second and first cousins, respectively)
and showed none of the clinical and radiographic signs
seen in their daughters. Patient 1 had been given a diagno-

sis of campomelic dysplasia (MIM 114290) because of scap-
ular and iliac hypoplasia; patient 2 had been diagnosed
with Kosenow scapuloiliac dysostosis (MIM 169550). How-
ever, their phenotype did not fit either campomelic dyspla-
sia or Kosenow scapuloiliac dysostosis; sequence analysis
of the SOX9 gene (MIM 608160) was normal. We found
that the dysmorphic pattern in these girls corresponded
closely to a condition described by Cousin et al. in 19821

as ‘‘Dysplasie pelvi-scapulaire familiale avec anomalies épiphis-
aires, nanisme, et dysmorphies’’ (familial pelvis-scapular
dysplasia with epiphyseal anomalies, dwarfism, and
dysmorphisms; listed in OMIM as Cousin syndrome or
pelviscapular dysplasia; MIM 260660). Cousin syndrome
has not been reported again since the original description,
although some patients reported as having Kosenow
syndrome may in fact have had Cousin syndrome.2

Guided by the findings of scapular hypoplasia and abnor-
mal cranio-facio-cervical morphology, we identified the
Tbx15-deficient mouse phenotype as a possible homolog
to Cousin syndrome. Murine Tbx15 deficiency occurs as
the result of a deletion involving several exons of Tbx15
in the spontaneous mouse mutant, droopy ear (de)3, and
has been reproduced by targeted disruption of the gene.4,5

First described in1959,droopy ear exhibits a complexcranio-
facial malformation including small, widely spaced eyes
with short palpebral fissures, a broadnasal area, a shortened
skull held in an elevated position, misshapen and rotated
external ears, and an abnormal coat-color patterning.3,6

The skeletal phenotype of Tbx15-inactivated mice includes

1Centre for Pediatrics and Adolescent Medicine, Department of Pediatrics, University of Freiburg, 79106 Freiburg, Germany; 2Institute ofMolecular Biology,
Medizinische Hochschule Hannover, 30625 Hannover, Germany; 3Department of Pediatrics, Ihsan Dogramaci Children’s Hospital, Hacettepe University,
06100 Sihhiye, Ankara, Turkey; 4Institute of Human Genetics, University of Freiburg, 79106 Freiburg, Germany; 5Department of Genetics, Children’s
Hospital of Eastern Ontario, Ottawa, Ontario K1H 8L1, Canada
*Correspondence: asuperti@uniklinik-freiburg.de
DOI 10.1016/j.ajhg.2008.10.011. ª2008 by The American Society of Human Genetics. All rights reserved.
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small overall size, hypoplastic scapulae, moderate shorten-
ing of several long bones, and a dysmorphogenesis of
cranial bones and cervical vertebrae, including vertical dis-
placement of the supraoccipital bone, a small basiooccipital
bone, a small foramen magnum, and changes in the shape
of the squamosum and of the first and second vertebrae.4,5

These changes were reminiscent of those observed in the
two patients studied.
Peripheral bloodDNAwasobtainedwithappropriate fully

informed consent from the two individuals with Cousin
syndrome and from their parents. Human studies were ap-

Figure 1. Clinical Features of the Two
Girls with Cousin Syndrome and TBX15
Mutations
Patient 1 is age 5 yr in (A) and (B) and age 3
yr in (C); patient 2 is age 10 yr in (D), (E),
and (F). The main features are bossing, ma-
lar hypoplasia, and a small chin; narrow pal-
pebral fissures; a short neck with redundant
skinfolds; low-set, posteriorly rotated, and
dysplastic external ears; apparent femoral
shortening because of femoral head dislo-
cation; and short stature.

Figure 2. Radiographic Findings in Cousin Syndrome
(A, C, and E) Patient 1. (B, D and F) Patient 2. Skeletal features
seen in the two patients include aplasia of the blade of the scapula,
humeroradial synostosis, marked hypoplasia of the iliac bones, and
dislocation of the femoral heads. (G) A sagittal section of a cranial
MRI of a normal woman aged 19 years. (H) A corresponding section
from patient 2 at age 12 years. From the tip of the odontoid process
in the center of each panel, the arrows extend anteriorly to the
frontal bone and posteriorly to the posterior margin of the foramen
magnum. Caudal displacement of the occipital bone is evident in
the patient; note also the redundant skin fold over the posterior
aspect of the neck. The cranial and skeletal features are remarkably
similar to those seen in Tbx15-ablated mice.5

proved by the ethical review boards
of the two hospitals (Freiburg and An-
kara). The TBX15 genomic sequences
were determined with PCR amplifica-
tions of individual exons by standard

methods; primer sequences were designed with the TBX15
genomic sequences available at Ensembl (see Web Re-
sources; accessionnumber ENSG00000092607).We studied
the consequences of the mutatons by inserting the muta-
tions into TBX15 expression vectors. TBX15 was amplified
from normal human fibroblast cDNA, oligonucleotides
were based on transcript ENST00000207157 (TBX15S, 496
amino acids), and transcript ENST00000369429 (TBX15L,
602 amino acids). PCR products were inserted into pCRII-
TOPO (Invitrogen), the disease-associated mutations
TBX15-1042 delA, TBX15-1044 delA, and the deletion mu-
tant TBX15-DC (amino acids 1–344, stop codon at base
pair 1045) were introduced by site-directed mutagenesis.
Wild-type and mutated ORFs were fully sequence verified
and subcloned into pBABE-puro,7 pBABE-EGFP,8 and
pCDNA3 (Invitrogen). N-terminal tags for the FLAG
(pBABE), EGFP (pBABE), and the Myc epitope (pCDNA3,
pSP64) were fused in frame by PCR or subcloning. For
in vitro expression, TBX15 cDNAs were subcloned in the
vector pSP64 (Promega) that was modified to contain a 50

b-globin leader and a 30 b-globin trailer, suitable for the
TNT!SP6High-Yield Protein Expression System (Promega).
We performed the electrophoretic mobility shift assay
(EMSA) as described9 to test the DNA binding ability of
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mutant TBX15 protein. Oligonucleotides used to generate
binding sites were BS.dirF 50-GATCCGGAGGTGTGAAG
GTGTGAAAGGA-30 and BS.dirR 50-GATCTCCTTTCACACC
TTCACACCTCCG-30. Cell culture, gene transfer, and ex-
pression analysis were performed as described.8,9 High-titer
retroviral gene transfer via BING packaging cells10 was used
for transduction of human chondrosarcoma (HCS, ATCC)
andhumanfibrosarcoma cells (HT1080, ATCC).Viral super-
natants were titered prior to infection to give anMOI (mul-
tiplicity of infection) of 10 for each construct. Transduced
cell populations were analyzed either 48 hr after infection
or after selection with 5 mg/ml puromycin for 72 hr.
Whole-cell lysates and subcellular protein fractionswereob-
tained 48 hr after transfection by lysis in 13 SDS sample
buffer or by hypotonic lysis,8 followed by sonification and
immunoblot analysis. Patients’ fibroblasts derived from
skin biopsies were expanded to passage five; RIPA buffer
was used for extracting proteins for immunoblot analysis.
Antibodies included anti-FLAGM5 (Sigma), anti-GFP (Santa
Cruz), anti-b-actin (Sigma), and a polyclonal serum gener-
ated by immunization of rabbits with a GST fusion protein
containing the amino acids 1–300 of TBX15. For direct fluo-
rescent detection of EGFP fusion proteins, cells were cul-
tured on chamber slides, fixed in 4% paraformaldehyde for

10 min at room temperature, washed thrice with PBS, and
counterstained with DAPI antifade (Q Biogene). Images
were captured with a Leica (DMRXA) microscope with
a cooledCCD(Sensys Photometrics). Forproteasome inhibi-
tion, MG-132 (Sigma) was added to the culture medium at
25 mM prior to the collection of cell lysates.
To test the possible homology between Cousin syn-

drome and the mouse Tbx15 deficiency, we obtained
DNA from the two individuals with Cousin syndrome
and their parents after having obtained informed consent
and then searched directly for TBX15 genomic sequence
variations (primer information and PCR conditions are
available upon request). We identified two different
single-nucleotide deletions that segregated in each family
and were homozygous in the affected girls, heterozygous
in their parents, and absent in a panel of over 216 control
chromosomes. Both deletions occurred at codon 344; in
family 1, deletion of adenosine 1042 (c.1042 delA at the
first position within codon 344) led to a frame shift with
78 missense amino acids followed by a stop codon; in fam-
ily 2, the deletion occurred at the third position of the
same codon (c.1044 delA) an led to 77 missense amino
acids and the stop codon (Figure 3A); both missense
stretches include five cysteine residues. Both mutations

Figure 3. Genomic TBX15 Mutations
(A) The genomic TBX15 sequences in patient 1, patient 2, the mother of patient 2, and a control. Patient 1 is homozygous for c.1042 delA,
and patient 2 is homozygous for c.1044 delA in the same codon. (B) The TBX15 mRNA levels in an age-matched control and patients’
fibroblasts of the same passage by semiquantitative RT-PCR; expression of the mutant alleles was verified by cDNA sequencing. (C) A
schematic representation of the two physiological transcripts of the TBX15 protein (differing in the start codon) as well as of the two
predicted mutant ORFs; in the mutant proteins, the normal amino acid sequence is interrupted after amino acid 449 or 450 and is followed
by a stretch of 78 or 77 missense amino acids. The DNA-binding T-box is preserved in both mutant variants.
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predicted the abolition of the C-terminal 152 amino acids
of the principal short and long isoforms of the mature
TBX15 protein (Figure 3C; for the reference sequence of
TBX15 isoforms, see Web Resources). Semiquantitative
PCR and sequencing of cDNA isolated from patients’ and
controls’ fibroblasts showed that the mutant mRNA was
expressed at a level that was the same as or higher than
that of wild-type mRNA (Figure 3B).
We then investigatedwhether themutations affected the

ability ofmutantTBX15protein tobind their targetDNAse-
quences in anEMSAafter incubationof invitro-synthesized
wild-type and mutant TBX15 proteins (Figure 4B) with oli-
gonucleotides corresponding to the mouse Tbx15 target
DNA sequence that was identified previously9 (Figure 4A).
Target DNA binding of the mutant proteins was similar
to that of wild-type protein (Figure 4C), in keeping with
the notion that the DNA-binding region of the protein,
the T-box, was unaffected by the mutations.
Given that theDNA-bindingabilityof themutantproteins

was conserved, we then focused on the localization and sta-
bility ofmutant TBX15proteins. Immunoblot analysis of cy-
toplasmic and nuclear extracts of patients’ fibroblasts with
antiserum raised against the amino terminal part of the
long isoform of TBX15 (TBX15L) showed an almost com-
plete lossof theTBX15Lsignal in thepatients,whereasbands
of the expected size were detected in the nuclear fraction of
both age-matched controls (Figure 5A). For further studies,
the wild-type and mutant cDNA sequences were cloned

Figure 4. In Vitro DNA Binding Analysis
of Mutant TBX15 Proteins
(A) The previously identified7 binding site
of mouse Tbx15 (BSdir) that was tested in
EMSAs. Arrows indicate the orientation of
T-half sites. (B) Assays were performed
with equal amounts of in vitro-synthesized
Myc-tagged TBX15 proteins, as determined
by anti-Myc immunoblot. All proteins were
expressed with the expected molecular
weights. (C) No differences in DNA binding
to the site BSdir are observed between the
C-terminally truncated form TBX15-del
C-term protein and the wild-type form of
TBX15 or the c.1042 delA and c.1044 delA
mutants in a gel-shift assay. Equally strong
complexes were detected for all proteins (as-
terisks). Specificity of bindingwas confirmed
by addition of anti-Myc antibody, which
resulted in the formation of a prominent
supershifted complex (black arrowhead).

into expression vectors. Figure 5B
shows expression of FLAG-tagged
TBX15proteins inhuman chondrosar-
coma (HCS) cells. The wild-type pro-
teinwas readily detectable and showed
the expected predominantly nuclear
localization; no TBX15 protein was

detected after transduction with either of the two mutants,
in spite of adequate mRNA levels (data not shown). When
EGFP-tagged TBX15 protein isoforms were analyzed by
direct fluorescence microscopy, the wild-type protein gave
a strong signal in both the cytoplasm and the nucleus (short
isoform, Figure 6B) or exclusively in the nucleus (long iso-
form, Figure 6A); themutant constructs gave a barely detect-
able signal, indicating that protein stability was compro-
mised. Similar results were obtained when Myc-tagged
TBX15 proteins and anti-Myc immunofluorescence detec-
tion were used in HeLa and HEK293 cells (data not shown).
To elucidate themechanisms leading to instability of the

mutant proteins, we transfected HeLa cells with wild-type
human TBX15, the two mutants identified in the Cousin
syndrome patients, or a synthetic mutant harboring the
truncation of the protein after amino acid residue 344. Cel-
lular levels of theC-truncated proteinwere similar to that of
the wild-type, whereas levels of the two human mutants
were significantly reduced; these could be partially restored
by addition of the proteasome inhibitor, MG-132 (Fig-
ure 5D). Thus, simple truncation of 152 amino acids at
the C terminus did not affect stability, but the presence of
the 78 (versus 77) missense amino acids in the mutants
directed the TBX15 protein to proteasomal degradation.
To confirm this interpretation, we generated constructs in
whichEGFPwas fuseddirectlyonto either thewild-type car-
boxy-terminal portionof TBX15or the two stretches ofmis-
sense amino acids predicted by the human mutations.
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Immunoblot analysis showed a strong signal for the wild-
typeC terminus, but the twomutantC terminiwere not de-
tectable (Figure 5C). Upon direct fluorescence microscopy,
a signal was detected with the constructs containing the
wild-type but not the mutant isoforms of TBX15 (Figures
6A and 6B). When the constructs consisting of EGFP and
the C-terminal portions only were analyzed, fluorescence
was detected with the constructs containing the wild-type
C terminus but not with the constructs containing themu-
tant C termini, confirming that the stretches of missense

amino acids produced by the frameshift mutation con-
ferred instability to the EGFP protein (Figure 6C).

In summary, genomic sequencing indicated that two
similar mutations segregated in the two families; these
mutations predicted the synthesis of TBX15 protein that
had an intact T-box but lacked a significant portion of
the C-terminal region and had instead a stretch of 78 (or
77) missense amino acids that included five cysteine resi-
dues. The subsequent set of experiments indicated that al-
though TBX15 protein synthesized from the two mutant

Figure 5. Immunoblot Analysis of TBX15 Protein in Patients’ Fibroblasts and in Cell Transfection Experiments
(A) Analysis of TBX15 proteins in subcellular fractions (C ¼ cytoplasmic extract, N ¼ nuclear extract) of patients’ and control fibroblasts.
A polyclonal antiserum directed against the amino-terminus of the long isoform of TBX15 (TBX15L) was used for the immunoblots, which
show a strong reduction of the signal for the long isoform of TBX15 in both patients. The nature of the band that has an apparent
molecular weight of approximately 50 kDa and migrates below TBX15L is unclear but may be due to cross-reactivity of the antiserum
with the related protein TBX18. Membranes were reprobed with an antibody against b-actin so that equal loading could be ensured.
(B) Disease-associated mutations confer instability to transgenic TBX15. Analysis of TBX15 proteins in subcellular fractions (C ¼ cyto-
plasmic extract, N ¼ nuclear extract) of human chondrosarcoma (HCS) cells overexpressing either FLAG-tagged wild-type short variant
TBX15 or analogous constructs carrying the disease-associated mutations. An anti-FLAG immunoblot shows the presence of the wild-type
recombinant protein only.
(C) Disease-associated mutations confer instability to all isoforms of TBX15 and other proteins. Analysis of TBX15 proteins in human
chondrosarcoma (HCS) cells overexpressing either EGFP-tagged wild-type TBX15 or constructs carrying the disease-associated mutations
is shown. In addition, EGFP was fused directly to either the wild-type C-terminal portion of TBX15 (152 amino acids) or to the two
stretches of 78 or 77 missense amino acids predicted by the human mutations. Whole-cell lysates were analyzed by anti-GFP immunoblot.
Only lanes loaded with the wild-type fusion constructs gave a signal of the expected size.
(D) The C-terminal sequences resulting from disease-associated TBX15 mutations confer instability by directing proteins to proteosomal
degradation. Protein analysis of Myc-tagged wild-type TBX15, c.1042 delA, c.1044 delA, and DC proteins in HeLa cells probed in an anti-
Myc immunoblot. Expression of TBX15 mutants c.1042 delA and c.1044 delA is strongly reduced in comparison to that of the TBX15-wt and
Tbx15DC proteins (asterisks), indicating that the missense amino acids, and not the truncation, affect protein stability. Incubation with
the proteasome inhibitor MG-132 (25 mM) leads to a marked stabilization of TBX15-c.1042 delA, and c.1044 delA proteins. No more slowly
migrating bands that could represent poly-ubiquitinylated proteins were observed.
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alleles retained the ability to bind their DNA targets
in vitro, cellular levels of TBX15 were drastically reduced
or abolished because of proteasome-associated degradation
directed by the C-terminal missense stretch. A similar
mutation in the TNSALP gene (MIM 171760), causing
the addition of a stretch of 80missense amino acids includ-
ing four cysteine residues, has been shown to cause protea-
somal degradation of the mutant alkaline phosphatase
protein and to result in severe hypophosphatasia (MIM
241500)11. Thus, the two affected subjects were homozy-
gous for mutations that resulted in functional TBX15
deficiency, confirming the initial hypothesis of a shared
molecular basis for the changes seen in the craniocervical
bones, the scapula, and the pelvis in the subjects with
Cousin syndrome and in Tbx15-deficient mice.
T-box genes encode a family of transcription factors that

regulate a variety of developmental processes in metazoa
ranging from hydra to humans. Mammalian genomes are
known to harbor 17 family members involved in pattern-
ing and differentiation processes during gastrulation and
organogenesis. Notably, mutations in human TBX genes,
TBX1, TBX3, TBX4, TBX5, TBX19(TPIT), TBX20, and
TBX22, are known to cause congenital disorders with
craniofacial, endocrine, limb, and cardiac malforma-
tion.12–19 The identification of Cousin syndrome as
a TBX15-related disorder in humans further underscores
the importance of the T-box gene family for human devel-
opment and disease and adds an important piece to the
mosaic of our understanding of human genetic anomalies
of the skeleton.20 It also allows for molecular diagnosis and
genetic counseling; in fact, prior to our studies, the two
families reported here had been given other diagnoses
and had been counseled for dominant inheritance.
Tbx15 is known to be required for the condensation of

mesenchymal precursor cells in early development of the

skeleton.4,5,21 In themouse embryo,Tbx15 is expressed first
in mesenchyme of the limb buds and subsequently in the
developing zeugopodal elements. In the cranium, expres-
sion begins in the mesenchyme near the surface ectoderm
and then can be detected in various craniofacial elements
that include themandibular process of the first mandibular
arch and the dorsal edge of the hyomandibular cleft, which
will eventually become the external auditory meatus; the
surface of the second branchial arch as well as themaxillary
and themandibular portions of the first branchial arch sur-
rounding the developingmouth; and the area that is dorsal
to each optic prominence and that later extends to sur-
round most of the eye.4,5,21 No expression is seen in inter-
nal organs between embryonic days 8.5 and 12.5, whereas
data fromEST libraries suggest an expression in adult tissues
of bone, brain, intestine, liver, muscle, testis, and thymus.
Although no expression data in the human are available,
the mouse expression pattern fits reasonably well with
the phenotype observed in Cousin syndrome.
The target genes of TBX15 and of its closely related family

memberTBX18 (MIM604613)have remained elusive so far.
Scapular and pelvic hypoplasia are features of campomelic
dysplasia (MIM 114290) caused by SOX9 (MIM 608160)
mutations; scapular hypoplasia with humeroradial synos-
tosis is a feature of Antley-Bixler syndrome (MIM 207410,
201750) associated with mutations in either FGFR2 or
POR; the phenotypic relationship suggests that TBX15
may act within this contextual frame and/or share target
genes with SOX9, FGFR2 (MIM 176943), and POR (MIM
124015). Kosenow syndrome (scapuloiliac dysostosis,
MIM 169550) is a dominantly inherited condition with
hypoplasia of the scapula and pelvis but no craniocervical
malformation; its molecular basis is unknown. If Cousin
syndrome is caused by homozygosity for recessive TBX15
null mutations, there may be a phenotype associated with

Figure 6. Fluorescence Studies of EGFP-Tagged TBX15 Constructs
Intracellular localization of EGFP-tagged TBX15 proteins in HCS cells as detected by direct EGFP fluorescence microscopy. The TBX15 pro-
tein localizes exclusively (long variant [A]) or predominantly to the nucleus (short variant [B]; compare nuclear staining with DAPI),
whereas TBX15-c.1042 delA and c.1044 delA are barely detectable, both in the context of the long and of the short variant. A similar
loss of fluorescent signal was observed when the C terminus of the disease-associated protein variants was fused to EGFP (C). HCS cells
were transduced with titered recombinant virus at the same MOI for all constructs. Scale bars represent 15 (A and B) or 25 (C) mm.
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dominant mutations within the T-box region, and Kose-
now syndrome would be a possible candidate.
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sponds to transcript ENST00000207157, and the long isoform
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References

1. Cousin, J., Walbaum, R., Cegarra, P., Huguet, J., Louis, J., Pauli,

A., Fournier, A., and Fontaine,G. (1982).Dysplasie pelvis-scapu-

laire familiale avec anomalies epiphysaires, nanisme et dysmor-

phies: Un nouveau syndrome? Arch. Fr. Pediatr. 39, 173–175.

2. Elliott, A.M., Roeder, E.R., Witt, D.R., Rimoin, D.L., and Lach-

man, R.S. (2000). Scapuloiliac dysostosis (Kosenow syndrome,

pelvis-shoulder dysplasia) spectrum: Three additional cases.

Am. J. Med. Genet. 95, 496–506.

3. Candille, S.I.,VanRaamsdonk,C.D.,Chen,C.,Kuijper, S.,Chen-

Tsai, Y., Russ, A., Meijlink, F., and Barsh, G.S. (2004). Dorsoven-

tral patterning of the mouse coat by Tbx15. PLoS Biol. 2, e3.

4. Kuijper, S., Beverdam, A., Kroon, C., Brouwer, A., Candille, S.,

Barsh, G., and Meijlink, F. (2005). Genetics of shoulder girdle

formation: Roles of Tbx15 and aristaless-like genes. Develop-

ment 132, 1601–1610.

5. Singh, M.K., Petry, M., Haenig, B., Lescher, B., Leitges, M., and

Kispert, A. (2005). The T-box transcription factor Tbx15 is

required for skeletal development. Mech. Dev. 122, 131–144.

6. Curry, G.A. (1959). Genetical and development studies on

droopy-eared mice. J. Embryol. Exp. Morphol. 7, 39–65.

7. Morgenstern, J.P., and Land, H. (1990). Advancedmammalian

gene transfer: High titre retroviral vectors with multiple drug

selection markers and a complementary helper-free packaging

cell line. Nucleic Acids Res. 18, 3587–3596.

8. Trost, T.M., Lausch, E.U., Fees, S.A., Schmitt, S., Enklaar, T.,

Reutzel, D., Brixel, L.R., Schmidtke, P., Maringer, M., Schiffer,

I.B., et al. (2005). Premature senescence is a primary fail-safe

mechanism of ERB2-driven tumorigenesis in breast carcinoma

cells. Cancer Res. 65, 840–849.

9. Farin, H.F., Bussen, M., Schmidt, M.K., Singh, M.K., Schuster-

Gossler, K., and Kispert, A. (2007). Transcriptional repression

by the T-box proteins Tbx18 and Tbx15 depends on Groucho

corepressors. J. Biol. Chem. 282, 25748–25759.

10. Pear, W.S., Nolan, G.P., Scott, M.L., and Baltimore, D. (1993).

Production of high-titer helper-free retroviruses by transient

transfection. Proc. Natl. Acad. Sci. USA 90, 8392–8396.

11. Komaru, K., Ishida, Y., Amaya, Y., Goseki-Sone, M., Orimo, H.,

andOda, K. (2005). Novel aggregate formation of a frame-shift

mutant protein of tissue-nonspecific alkaline phosphatase is

ascribed to three cysteine residues in the C-terminal exten-

sion. Retarded secretion and proteasomal degradation. FEBS

J. 272, 1704–1717.

12. Bamshad, M., Lin, R.C., Law, D.J., Watkins, W.C., Krakowiak,

P.A., Moore, M.E., Franceschini, P., Lala, R., Holmes, L.B., Ge-

buhr, T.C., et al. (1997). Mutations in human TBX3 alter limb,

apocrine and genital development in ulnar-mammary

syndrome. Nat. Genet. 16, 311–315.

13. Basson, C.T., Bachinsky, D.R., Lin, R.C., Levi, T., Elkins, J.A.,

Soults, J., Grayzel, D., Kroumpouzou, E., Traill, T.A., Leblanc-

Straceski, J., et al. (1997). Mutations in human TBX5 cause

limb and cardiac malformation in Holt-Oram syndrome.

Nat. Genet. 15, 30–35.

14. Merscher, S., Funke, B., Epstein, J.A., Heyer, J., Puech, A., Lu,

M.M., Xavier, R.J., Demay, M.B., Russell, R.G., Factor, S.,

et al. (2001). TBX1 is responsible for cardiovascular

defects in velo-cardio-facial/DiGeorge syndrome. Cell 104,

619–629.

15. Yagi, H., Furutani, Y., Hamada, H., Sasaki, T., Asakawa, S., Min-

oshima, S., Ichida, F., Joo, K., Kimura, M., Imamura, S., et al.

(2003). Role of TBX1 in human del22q11.2 syndrome. Lancet

362, 1342–1343.

16. Wilson, V., and Conlon, F.L. (2002). The T-box family.

Genome Biol. 3, 3008.1–3008.7.

17. Naiche, L.A., Harrelson, Z., Kelly, R.G., and Papaioannou, V.E.

(2005). T-box genes in vertebrate development. Annu. Rev.

Genet. 39, 219–239.

18. Vallette-Kasic, S., Brue, T., Pulichino, A.M., Gueydan, M., Bar-

lier, A., David, M., Nicolino, M., Malpuech, G., Déchelotte, P.,
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ABSTRACT 
 
The vertebrate limb bud is patterned by proximal and distal signaling centers, however 

it is currently unknown how cells interpret these signals to elaborate specific skeletal 

elements along this axis. Tbx18 and Tbx15 encode a closely related pair of vertebrate 

specific T-box transcription factors that are co-expressed in the proximal limb bud mes-

enchyme. Here, we show that proximal confinement is achieved by a combination of 

locally activating and repressing signals from adjacent tissues including the AER. Both 

genes are redundantly required for the formation of limb skeletal structures derived 

from this region, since the skeletal elements of the stylopod and zeugopod are absent in 

mouse embryos double mutant for Tbx15 and Tbx18. Our molecular and cellular analy-

sis revealed a reduction of chondrogenic precursors, as well as reduced proliferation and 

increased apoptosis in the proximal limb bud mesenchyme, whereas the global pattering 

of the proximal-distal limb axis is unaffected in double mutant embryos. Mislocalization 

of Tbx18-positive cells to distal limb regions, accompanied by de-regulated expression of 

Eph/Ephrin molecules, suggests that cell adhesion/repulsion properties are changed in 

the proximal mesenchyme of double mutant limb buds. This hypothesis is supported by 

misexpression experiments in vivo that demonstrate that Tbx18-positive cells are re-

cruited to whereas Tbx18-negative cells are excluded from the proximal limb bud mes-

enchyme. Together our results provide evidence for a Tbx15/18-regulated compartmen-

talization of the proximal limb domain as a prerequisite for specification of proximal 

limb skeletal elements.  

 

 

INTRODUCTION 

 

The vertebrate limb is characterized by an array of three distinct skeletal elements along its 

proximal-distal axis: the proximal stylopod (humerus/femur), the intermediate zeugopod (ra-

dius/tibia and ulna/fibula), and the distal autopod (carpals/tarsals and digits). Generation of 

this stereotyped array of elements follows a complex developmental program that is generally 

thought to involve the establishment of opposing signal centers in an initially homogenous 

developmental field of the early limb bud and the subsequent translation of positional infor-

mation generated by these centers into distinct cellular programs that specify the individual 

elements. However, the molecular and cellular mechanisms that underlie specification of 

these different proximal-distal (PD) cell fates are poorly understood. 
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The early limb bud consists of a core of lateral plate derived mesenchymal cells that are cov-

ered by surface ectoderm. At the distal dorso-ventral boundary of the limb bud the ectoderm 

thickens and forms a specialized structure, the apical ectodermal ridge (AER). The AER is 

source of Fibroblast growth factors (Fgf) signaling that induces proliferation in the underlying 

mesenchyme, directs proximal-distal outgrowth and distalizes cell fates (for a recent review 

refer Towers and Tickle, 2009). The AER interacts with another signaling center, the zone of 

polarizing activity (ZPA), which is established in the mesenchyme of the posterior limb bud 

margin. The ZPA secretes Sonic hedgehog (Shh) that induces posterior cell fates in the limb 

bud and is also required for late phase PD-outgrowth by mediating AER maintenance. At the 

proximal end the limb bud mesenchyme remains under the influence of signals from the trunk 

mesoderm, mainly retinoic acid (RA) whose distal diffusion generates a stable gradient that is 

thought to mediate positional information for the specification of the proximal most elements 

(Mercader et al., 2000).  

The limb skeleton is generated in a process known as endochondral bone formation. Initiated 

by a mesenchymal condensation, cells undergo chondrogenic differentiation, which is fol-

lowed by the longitudinal expansion of the cartilages and the subsequent replacement of this 

pre-skeleton by osteocytes that secrete the definitive bone matrix. Embryological studies have 

shown, that the skeletal elements of the limbs are generated in a proximal to distal sequence. 

Manipulation of chick embryos led to the formulation of the classical ‘Progress zone model’ 

for the specification of skeletal elements along the PD-limb axis, that is based on the observa-

tion that AER removal leads to progressively more distal limb skeletal truncations depending 

on the time of removal. In this model PD positional values are thought to be specified by the 

length of time that undifferentiated mesenchymal cells spend proliferating at the tip of the 

limb bud, the so called the progress zone. However there is currently no convincing evidence 

for a cell-autonomous clock capable of affecting limb patterning, which is at the heart of the 

Progress zone model. In contrast the more recently postulated ‘Early specification model’, 

proposes that the PD limb pattern is established at very early stages, followed by an expan-

sion of the individual elements. This concept is supported by several genetic models that dis-

play a selective failure in the generation of proximal structures while distal elements are still 

formed (Levandoski et al., 2000; Barna et al., 2005; Mariani et al. 2008). However, as a major 

caveat of this model, neither fate mapping studies in the early limb bud, nor gene expression 

patterns reflect the early specification of three distinct compartments along the PD axis of the 

limb.  
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T-box genes encode a family of DNA binding transcription factors that regulate a variety of 

patterning and differentiation processes during vertebrate organogenesis (Naiche et al., 2005). 

During limb development the closely related genes Tbx4 and Tbx5 have a conserved role as 

transcriptional activators in initiating outgrowth of hind- and forelimb buds, respectively 

(Naiche and Papaioannou, 2003; Agarwal et al., 2003). Tbx2 and Tbx3 encode a related pair 

of transcriptional repressors that are co-expressed in the anterior and posterior flanks of the 

limb bud and the interdigital mesenchyme. Inactivating mutations of either gene were re-

ported to cause limb defects and a role in specifying digit identity was proposed (Davenport et 

al., 2003; Harrelson et al., 2004; Suzuki et al., 2004). Mutations in TBX3, TBX4 and TBX5 

genes cause Ulnar-Mammary, Small-Patella and Holt-Oram syndromes, respectively, diseases 

that also manifest themselves with limb malformations (for a review refer Packham and 

Brook, 2003). 

Tbx18 and Tbx15 encode another phylogenetically closely related pair of vertebrate specific 

T-box proteins. Our biochemical analyses have revealed that Tbx15 and Tbx18 share identical 

DNA binding properties and protein interaction partners (Farin et al., 2007; Farin et al., 2008) 

suggesting functional redundancy in regions of co-expression. Mice carrying a null allele of 

Tbx18 die shortly after birth due to severe malformations of the axial skeleton, a phenotype 

that was traced back to the function of Tbx18 in maintaining the anterior somite compartment 

(Bussen et al., 2004). Additionally, Tbx18 regulates the condensation of mesenchymal cells 

around the distal ureter stalk, the formation and myocardialization of the sinus horns from the 

mesenchyme of the pericardial wall, and the differentiation of otic fibrocytes in the inner ear 

(Airik et al., 2006; Christoffels et al., 2006; Trowe et al., 2008). Mice homozygous for a tar-

geted null allele of Tbx15, or for the spontaneous mutation droopy ear, in which Tbx15 is 

deleted, exhibit defects in skin pigmentation, and in the axial and appendicular skeletons, 

phenotypic changes pointing to a role for Tbx15 in dorso-ventral patterning of the mouse coat 

and in mesenchymal aggregation that precedes endrochondral bone formation (Candille et al., 

2004; Singh et al., 2005). Based on phenotypic similarity with the murine phenotype, muta-

tions in the human orthologue TBX15 have recently been identified to underlie Cousin syn-

drome in man (Lausch et al., 2008). 

Despite this impressive accumulation of data on the phenotypic requirements of this transcrip-

tion factor pair during development, the molecular insight into Tbx15/18 function is scarce 

since neither the cellular programs nor the transcriptional targets for either factor have been 

identified. Here, we analyze the role of the Tbx15 and Tbx18 in mouse limb development. We 

show that both genes are co-expressed in the proximal limb bud mesenchyme, and that ex vivo 
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their expression domains are subject to regulation by proximal and distal signals. The inspec-

tion of Tbx15, Tbx18 double mutants showed that both factors are redundantly required for 

the formation of the proximal limb skeleton, the stylopod and zeugopod. We define the onset 

of the phenotypic changes and demonstrate that Tbx15/18 mediate a cellular migra-

tion/adhesion program that is both necessary and sufficient to recruit cells into a previously 

uncharacterized proximal mesenchymal compartment. Our data therefore shows how specific 

aspects of proximal-distal limb patterning can be achieved by the modulation of sizes of pre-

cursor populations and their cellular attributes to locally allow the formation of specific skele-

tal elements. 

 

 

EXPERIMENTAL PROCEDURES 

 

Limb explant culture – Limb buds from E10.5 wild type NMRI embryos were dissected in 

PBS and placed on Nucleopore filters (Whatman, pore size 1.0 µm) on top of a stainless steel 

mesh at the air-liquid interface in 3.5 cm cell culture dishes. The culture was performed at 

37°C and 5% CO2 in organ culture medium (DMEM, supplemented with 10% FCS and 1X 

solutions (Gibco) of Penicillin/Streptomycin, Glutamax, sodium pyruvate, and non-essential 

amino acids). For ablation experiments the AER or ZPA was cut-off using 26-gauge needles. 

The surgical removal of the ectoderm was performed with forceps in DMEM 10% FCS, after 

incubation of limb buds in 2% Trypsin/PBS (w/v) for 20 minutes at 4°C.  

For bead implantation experiments, Affi-Gel blue beads (100-200 µm diameter, Bio-Rad) 

were rinsed in PBS and incubated at room temperature for 1 h in either recombinant mouse 

Fgf-8b (500 µg/ml, R&D Systems) human Bmp4 (100 µg/ml, AbD Serotech) or in 1 mg/ml 

BSA (control). AG1-X2 ion exchange resin beads (100-200 µm diameter, Bio-Rad) were 

rinsed in DMSO and incubated under light exclusion for 1 h at room temperature, in either all 

trans retinoic acid (RA, 0.5 mg/ml or 1.66 mM in DMSO, Sigma) or vehicle alone. Beads 

were rinsed in PBS before implantation into the limb mesenchyme. Wnt3a and ß-

Galactosidase (control) expressing NIH3T3 cells (Kispert et al., 1998) were maintained in 

DMEM, 10% FCS, 1x Penicillin/Streptomycin, 1x Glutamax and 0.6 mg/ml G418. To induce 

the formation of cell pellets, cells from one confluent 10 cm cell culture dish were seeded on a 

10 cm bacterial plate. After 2 days of culture the cell pellets were tapped off the surface and 

implanted.  

Micromass cultures were established by dissociation of E10.5 fore- and hindlimb buds in 
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DMEM, 10% FCS, after incubation in 2% Trypsin/PBS (w/v) for 5 min at 37°C. A single cell 

suspension was obtained by gentle pipetting and clumps of ectoderm were removed after sedi-

mentation. Cells were adjusted to 1.5 X 107 cells/ml in organ culture medium (as above), 

before 10 µl spots were placed on 24 well plates. Cells were incubated for 1 h at 37°C to al-

low adherence, before the wells were filled with medium. RA, recombinant Bmp4 (both as 

above) or Dorsomorphin (10 mM stock solution in DMSO, Sigma) were added to the medium 

at time points and concentrations as indicated in the text.  

 

RT-PCR analysis – Total RNA was extracted from single micromass cultures with PeqGOLD 

reagent (Peqlab). RNA (500 ng) was reverse transcribed using oligodT primer and RevertAid 

M-MuLV Reverse Transcriptase (Fermentas) following the manufacturer’s recommendations. 

For semi-quantitative PCR the number of cycles was adjusted to the mid-logarithmic phase. 

Quantification was performed with Quantity One software (Bio-Rad) and expression levels 

were normalized to the endogenous Hprt-expression. The error bars represent the variation 

between duplicate PCR reactions and all experiments were repeated at least twice. Primer 

sequences and PCR conditions are available on request.  

 

In situ hybridization analysis – was performed with Digoxigenin-labeled antisense riboprobes 

following standard procedures on whole embryos (Wilkinson and Nieto, 1993) or on 10 µm 

sections of embryonic limb buds (Moorman et al., 2001). Details of probes used are available 

upon request. 

 

Targeting constructs, ES cell culture, transgenic mice – For the production of conditional 

misexpression alleles we designed a ‘knock-in’ strategy into the X-chromosomal Hypoxan-

thine guanine phosphoribosyl transferase (Hprt) gene locus. The targeting vectors for ho-

mologous recombination were generated to replace mayor parts of the Hprt exon 1 (including 

the ATG) by a cassette suited for cre-mediated (mis-) expression of genes as described previ-

ously by Luche et al. (2007). Homologous recombination of this targeting vector results in a 

functional Hprt null allele, allowing direct selection of successfully targeted ES cells by 6-

Thioguanine (refer PhD thesis of Aravind Sekar). The targeting vectors contained a 2.2 kb 5’-

homology region, followed by the ubiquitously expressed CMV early enhancer/chicken β 

actin (CAG) promoter, the conditional expression cassette (Luche et al., 2007), and a 5.1 kb 

3’-homology region (Fig. S1, A). To generate the HprtCAG::Tbx18 and HprtCAG::Tbx18-VP16 target-

ing constructs, the open reading frames (ORFs) of mouse Tbx18 (cDNA AF306666) and 
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Tbx18-VP16 activator fusion construct (Farin et al., 2007) were first subcloned in the vector 

pSL1180 (GE-healthcare), 5’ of an IRES-EGFP sequence, and then shuttled as 5’ NheI-ORF-

IRES-EGFP-MluI-3’ fragments into the MluI and NheI-sites of the targeting vector. This 

results in a reverse orientation of the ORF, relative to the CAG promoter, avoiding ‘leaky’ 

expression. After cre-mediated ‘flipping’- and excision events between pairs of loxP and 

loxM sequences, the ORF locates in sense direction, directly downstream of the CAG pro-

moter (Fig. S1, A). Induction of Tbx18 protein expression was assessed after transient trans-

fection of the circular targeting constructs in HeLa cells either alone (control), or together 

with a cre expression plasmid (pCAG::turbo-cre, kind gift from Achim Gossler), using the 

calcium phosphate method. Four days after transfection cell lysates were harvested and sub-

jected to Western blot analysis (Fig. S1, B) using a rabbit polyclonal serum raised against the 

C-terminus of the murine Tbx18-protein (unpublished). Targeting vectors were additionally 

verified by sequencing before electroporation of the linearized vector in Hprt-positive SV129 

ES cells (maintained beforehand in HAT medium). A two-step selection protocol was em-

ployed, starting 24 h after electroporation with the addition of 100 µg/ml G418, followed by 

the addition of 1.67 µg/ml 6-Thioguanine (Sigma) after additional 5 days. Surviving colonies 

were expanded and genotyped by PCR (conditions are available upon request). To test the 

functionality of the expression cassette in candidate ES clones, the GFP-epifluorescence was 

analyzed (Fig. S1, C) 6 days after electroporation with a cre-expression plasmid (see above). 

Verified ES clones were microinjected into CD1 mouse blastocysts. Chimeric males were 

obtained and mated to NMRI females, to produce heterozygous F1 females. 

 

Mice and Genotyping – Transgenic mouse lines used in this study were maintained on an 

outbred (NMRI) background. Generation of null alleles for Tbx18 (Tbx18tm2Akis, synonym: 

Tbx18GFP) and Tbx15 (Tbx15tm1Akis, abbreviated: Tbx15-), of the Pax3::cre transgenic line 

(synonymes: Pax3-Pro-Cre, Tg(Pax3-cre)1Joe,) and the reporter line R26R (synonymes: 

R26lacZ) were described before (Singh et al., 2005; Li et al., 2000; Soriano et al., 1999). For 

the generation of compound mutants, double heterozygous mice were intercrossed. For condi-

tional misexpression experiments, females heterozygous for the HprtCAG::Tbx18 or the 

HprtCAG::Tbx18-VP16 alleles were crossed with males heterozygous for the Pax3::cre transgene. 

Genomic DNA prepared from yolk sacs or tail biopsies was used for genotyping by PCR (de-

tails on PCR strategies are available upon request). For timed pregnancies, vaginal plugs were 

checked in the morning after mating, noon was taken as embryonic day (E) 0.5.   
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Skeletal Preparations – Skeletal preparations of embryos were prepared essentially as previ-

ously described (Bussen et al., 2004). E14.5 embryos were fixed in 95% ethanol overnight, 

cartilaginous elements were then stained for 2 d in Alcian blue solution (150 mg/L Alcian 

blue 8GX in 80% ethanol/20% acetic acid). Embryos were transferred in methanol and 

cleared in benzylbenzoate/benzylalcohol (2:1) for documentation. E18.5 embryos were incu-

bated for 2 min in water heated to 65°C to facilitate the removal of skin before Alcian blue 

staining was performed as above. Bony elements were stained in 100 mg/L Alizarin Red in 

0.5% KOH (w/v) for 2 h, followed by several washes in ddH20 before soft tissues were re-

moved by digestion in 0.5% KOH and later 0.1% KOH. Skeletons were cleared in a 30% 

Glycerol/ 70% H2O solution for documentation. 

 

Histological analysis and immunohistochemistry – For Alcian blue staining on 10 µm limb 

sections, slides were deparaffinized and incubated for 30 minutes in a solution of 1% (w/v) 

Alcian blue 8GX in 3% (v/v) acetic acid for 30 minutes at RT, followed by washes and coun-

terstaining with Nuclear Fast Red solution (Sigma), dehydration and mounting in Permount. 

ß-galactosidase staining on sections and whole embryos was done as described (Echelard et 

al., 1994). 

Recombinant fusion proteins of the extracellular domain of Eph/Ephrin molecules linked to 

the constant chain of human IgG (Eph/Efn-Fcs, R&D systems) were used to determine the 

binding patterns of different Eph receptors and Ephrin ligands on 10 µm forelimb cryo-

sections as described previously (Gale et al., 1996). Working concentrations were 2.5 µg/ml 

Efna4-Fc (human), 5 µg/ml Epha4-Fc (mouse), 10 µg/ml Efnb1-Fc (mouse) and 5 µg/ml 

Ephb2-Fc (mouse). As secondary antibody anti-human IgG (H+L), AP-conjugate (Promega) 

was used at a dilution of 1:1000 and the detection was performed using INT/BCIP substrate 

(Roche) following the manufacturer’s instructions. 

 

Proliferation and apoptosis assays – Cell proliferation in tissues of E10.5 embryos was inves-

tigated by detection of incorporated BrdU similar to published protocols (Bussen et al., 2004). 

A total of nine sections from three individual embryos per genotype was used for quantifica-

tion. The relative number of proliferating cells (the labeling index) was defined as the number 

of BrdU-positive nuclei to the number of total nuclei, as detected by DAPI counterstaining. 

Statistical analysis was performed using Student’s t-test. Data were expressed as mean ± 

SEM.  
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Detection of apoptotic cells in 5 µm paraffin sections of E10.5 and E11.5 embryos was based 

on modification of genomic DNA utilizing terminal deoxynucleotidyl transferase (TUNEL 

assay) and indirect detection of positive cells by fluorescein-conjugated anti-digoxigenin an-

tibody. The procedure followed exactly the recommendation of the manufacturer (Serologi-

cals Corp.) of the ApopTag kit used. 

 

Documentation – Whole-mount specimens were photographed on Leica M420 with Fujix 

digital camera HC-300Z. Whole-mount GFP-epifluorescence was documented on a Leica 

MZFLIII macroscope equipped with a Leica DFC300 camera. Sections of in situ hybridiza-

tions and immunostainings were photographed using a Leica DM5000 microscope with a 

Leica DFC300FX digital camera. All images were processed in Adobe Photoshop CS. 

 

 

RESULTS 

 

Co-expression of Tbx15 and Tbx18 during mouse limb development.  

We compared the spatial and temporal dynamics of Tbx15 and Tbx18 expression during limb 

development to characterize the processes that might be regulated by the genes in a redundant 

fashion. In situ hybridization of E9.5 and E10.5 forelimbs showed expression of Tbx15 along 

the proximal-distal extent of the limb bud including a very proximal crescent shaped domain 

containing the precursors of the future scapula at E10.5 (Fig. 1, A, B). Expression was con-

fined to the mesenchyme and absent from the ectoderm as revealed by expression analysis on 

sections (Fig. 1, I, J, asterisks). Anterior and posterior flanks of the limb bud mesenchyme 

were negative for Tbx15 expression (Fig. 1, A, B, black arrowheads). At these stages, Tbx18 

expression was found in a spatially more restricted manner in the proximal and central limb 

bud mesenchyme with a clear border to very proximal, and exclusion from the distal limb 

mesenchyme (white arrows) and anterior and posterior flank regions (black arrowheads) (Fig. 

1, E, F, M, N). Similar expression patterns were recapitulated in the developing hindlimb with 

a temporal delay (data not shown). In fore- and hindlimbs (not shown) of E11.5 and E12.5 

embryos a broad mesenchymal expression of Tbx15 and Tbx18 was found. Tbx15 expression 

remained absent from the anterior and posterior flanks of the hand/foot plate (Fig. 1, C, D, 

black arrowheads), whereas an additional expression of Tbx18 was now found at the very 

distal end of the limb (Fig. 1, G, O, grey arrows). Concomitantly with chondrogenic aggrega-

tion, expression of both Tbx15 and Tbx18 was down regulated in developing cartilages (Fig. 

4) Tbx15 and Tbx18 in limb development

52

4) Tbx15 and Tbx18 in limb development



1, G, H, K, L, O, P, black arrows) but maintained in the perichondrium at later stages (data 

not shown). 

Taken together, Tbx15 and Tbx18 co-expression occurs in two spatio-temporal phases: in a 

proximal-central region of the limb bud mesenchyme at early bud stages, and after initiation 

of mesenchymal condensations in the perichondrium of developing cartilages. Hence, Tbx15 

and Tbx18 could be redundantly involved in early proximal-distal patterning of the limb, or in 

endochondral bone formation.  

  

 

Fig. 1. Comparative study of Tbx15 and Tbx18 expression during mouse limb develop-
ment.  
Whole forelimbs (A-H) and transverse forelimb sections (I-P) of E9.5, E10.5, E11.5, and E12.5 wild 
type embryos were used for the analysis of Tbx15 (A-D, I-L) and Tbx18 mRNA expression (E-H, N-
P). Co-expression of Tbx15 and Tbx18 is observed in the central mesenchyme of the limb bud (A, B, 
E, F), no expression is detected in the limb ectoderm (I and M, asterisks). Expression of Tbx15 in 
precursor cells of the scapula (B, white arrowhead). The expression of both genes is excluded from the 
anterior and posterior flanks of the limb bud (A, B, E, F, black arrowheads), in case of Tbx15 this 
exclusion is maintained in the developing hand plate (C, D). In E9.5 and E10.5 limb buds, Tbx18 ex-
pression is absent from the distal limb bud mesenchyme (E, F, white arrows). At later stages the mes-
enchymal expression of Tbx15 and Tbx18 is maintained, and Tbx18 expression is induced in the distal 
region of limb bud (G, O, grey arrows). The expression of both genes is down-regulated in chondro-
genic aggregates and developing cartilages (G, H, K, L, O, P, black arrows). 
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Regulation of Tbx18 and Tbx15 expression during limb development. 

We next wanted to explore the cellular and molecular mechanisms that restrict Tbx15 and 

particularly Tbx18 expression to the proximal limb bud mesenchyme. For that we scored ex-

pression of both genes after manipulating E10.5 fore limb buds and subsequent culturing of 

the rudiments for 18 h. In a series of ablation experiments we first studied the effect of known 

signaling centers on the expression of Tbx18 (Fig. 2, A-D) and Tbx15 (data not shown). As an 

anatomical landmark we visualized the AER by Fgf8 expression. In non-manipulated control 

cultures the Tbx18 and Tbx15 expression recapitulated the expression in vivo (Fig. 2, A, com-

pare Fig. 1, F) demonstrating the suitability of the culture system used. Removal of the distal 

tip of the limb bud including the AER resulted in an expansion of Tbx18 expression into the 

distal mesenchyme (Fig. 2, B, black arrows), suggesting the existence of repressing signals 

secreted by the AER. The removal of the ZPA caused a weaker but similar distal expansion of 

Tbx18 expression (Fig. 2, C, black arrow) but this may actually reflect the local removal of 

the AER rather than an effect of an endogenous ZPA derived signal (i.e. Shh). In case of 

Tbx15, which normally is expressed in the distal limb mesenchyme (compare Fig. 1, B), abla-

tion of AER and ZPA had no effect (data not shown). Removal of the limb bud ectoderm 

caused a robust expansion of Tbx18 expression into distal limb and the anterior flank mesen-

chyme (Fig. 2, D, black arrows and asterisk, respectively). A similarly broad expression pat-

tern was also observed for Tbx15 expression after ectoderm removal (data not shown). To-

gether, these results demonstrate that at E10.5 expression of Tbx15 and Tbx18 is intrinsic to 

the limb bud mesenchyme, but that ectodermal and/or AER derived signals mediate local 

repression of Tbx18 distally and in the flank region. 

In subsequent experiments we analyzed which factors mediate the local repression of Tbx18 

by implantation of beads soaked with candidate signaling molecules. Beads were implanted 

into the Tbx18-positive central domain of the limb bud in presence and absence of ectoderm. 

Bone morphogenetic proteins (Bmp) 2, 4, 5 and 7 are secreted from the AER and the mar-

ginal/distal limb bud mesenchyme, i.e. exactly in those regions devoid of Tbx18 expression 

(Capdevilla et al., 1999). In close proximity of beads soaked with Bmp4, but not with BSA 

(control), Tbx18 expression was lost (Fig. 2, E-H, white arrows), demonstrating that Bmp4 

causes repression of Tbx18 at high concentrations. Interestingly, Tbx2, a known target of 

BMP-signaling (Ma et al., 2005; Yang et al., 2006), was induced in this domain (Fig. 2, I-L, 

black arrows). We next tested the effect of Wnt3a, which is secreted from the ectoderm (Bar-

row et al., 2003) by implantation of Wnt3a-expressing NIH3T3 cells (Kispert et al., 1998). 

Axin2, a target of the canonical Wnt-signaling pathway (ten Berge et al., 2008) was 
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Fig. 2. Culture experiments to study the regulation of Tbx18 expression. 
A-V, whole mount in situ hybridization analysis of gene expression in E10.5 wild type forelimbs after 
18 hours of explant culture. A-D, effects of surrounding tissues on the Tbx18 expression domain. Rep-
resentative examples of cultures of non-manipulated limb buds (A), and after removal of the AER (B), 
the ZPA (C), or ectoderm (D). Black arrows indicate an expansion of Tbx18 expression domain. The 
AER was visualized by addition of a riboprobe specific for Fgf8 (A-C). Asterisk (D) highlights the 
ectopic expression in the mesenchyme of the anterior flank. E-R, effect of local application of signal-
ing molecules on Tbx18 (E-H, M-R) and Tbx2 (I-L) expression. Representative examples of cultured 
limb buds after bead implantation. Headings indicate presence (+) and absence (-) of ectoderm. Ar-
rows mark induction (black) or repression (white) of gene expression. Compared to BSA controls, the 
implantation of Bmp4-soaked beads caused repression of Tbx18 expression (compare E and F, G and 
H) and induction of Tbx2 expression (compare I and J, K and L). Retinoic acid (RA) but not vehicle 
alone (DMSO) caused a massive repression of Tbx18 expression (compare M and N, O and P) in close 
proximity while ectopic expression of Tbx18 was observed at a further distance from the bead (N). 
Intermediate doses of Fgf8 caused induction of Tbx18 expression in limb bud mesenchyme weakly in 
presence, but more strongly in absence of ectoderm (compare Q and R). Pea3, a known Fgf target, 
was analyzed as positive control (S-V). 
W-Y, dose-dependant regulation of Tbx18 expression by Bmp-signaling and RA. Micromass cultures 
of E10.5 wild type limb mesenchymes were cultered for 18 h. During the last 2 hours of culture re-
combinant Bmp4 (W), the Bmp-inhibitor Dorsomorphin (X), or RA (Y) were added at the concentra-
tions indicated. Relative expression levels of Tbx18 (blue bars) and Tbx2 as a control (red bars) were 
determined by RT-PCR. For further details see experimental procedures. 

4) Tbx15 and Tbx18 in limb development

55

4) Tbx15 and Tbx18 in limb development



consistently induced. Expression of Tbx18 was unchanged (data not shown) arguing against a 

role of canonical Wnt-signaling in the regulation of Tbx18 expression. Implantation of RA-

soaked beads caused a strong repression of Tbx18 in limb bud mesenchyme with and without 

ectoderm, whereas vehicle alone (DMSO) had no effect (Fig. 2, M-P, white arrows). How-

ever, regions of increased Tbx18 expression were observed at some distance from the bead 

(Fig. 2, N, black arrows). Members of the Fibroblast growth factor family (Fgf) are secreted 

from the AER and the distal mesenchyme and regulate outgrowth and proximal-distal pattern-

ing of the limb bud (Mariani et al., 2008). The implantation of beads loaded with Fgf8 caused 

an induction of the known Fgf-target gene Pea3 in limb buds with intact ectoderm (Roehl and 

Nüsslein-Volhard, 2001, Fig. 2, T, black arrow) but had little effect on the expression of 

Tbx18 (Fig. 2, Q). However, after the removal of the limb ectoderm, Fgf8 caused a strong 

induction of both Pea3 and Tbx18 (Fig. 2, R, V, black arrows). Compared to the induction of 

Pea3, which was homogenous, strong induction of Tbx18 was observed at some distance from 

the Fgf8 bead, only (Fig. 2, R, white arrow). 

To quantify the effects of Bmp-signaling and RA, Tbx18 expression in limb micromass cul-

tures was studied by RT-PCR (see experimental procedures). Growth factors or inhibitors 

were added to the culture medium at increasing concentrations during the last two hours of a 

total culture period of 18 hours (Fig. 2, W-Y). Bmp4 caused a dose-dependant repression of 

Tbx18 expression, whereas Tbx2 expression that was analyzed in parallel was consistently 

induced (Fig. 2, W), confirming our bead implantation experiments. The application of the 

BMP-signaling inhibitor Dorsomorphin (Yu et al., 2008) resulted in a reduction of both, Tbx2 

and Tbx18 expression (Fig. 2, X), suggesting that moderate endogenous levels of Bmp-

signaling might also be required for activation of Tbx18 expression. RA caused the induction 

Tbx2 at low concentrations, but inhibited Tbx18 expression in a dose-dependent manner (Fig. 

2, Y). In summary, our results suggest a model in which moderate/low concentrations of Fgf 

induce Tbx18 expression, whereas high concentrations of RA (secreted from the trunk) and 

Bmp (from the anterior/posterior margins of the limb bud) mediate local repression of Tbx18 

in the limb bud mesenchyme (Fig. 2, Z).  
xxxxxxxx 

 

Z, model for the regulation of Tbx15 and Tbx18 expression in the developing limb bud. Expression 
domains of Tbx18 and Tbx15 in E10.5 forelimb buds are represented by dark and light blue regions, 
respectively (compare Figure 1, B and F). We propose that RA, synthesized in the trunk region, defines 
the proximal limit of Tbx15/18 expression by a repression mechanism. Notably, Tbx15 expression 
extends further proximally and also labels precursors of the developing scapula blade (*). At the ante-
rior and posterior margins of the limb bud Bmp molecules could mediate repression of Tbx15/18 expres-
sion, either directly or by induction of Tbx2/3 expression (their expression is marked by grey hatched 
regions). In the distal limb bud Tbx18 expression is repressed in a currently unknown mechanism by 
signals from the AER (red line). Fgf8 that is secreted from the AER could be implicated in activation of 
Tbx15/18 expression in more proximal regions (green arrow). For further details see discussion.  
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Requirement of Tbx18 and Tbx15 in the development of the proximal limb skeleton. 

In order to investigate a redundant role of Tbx15 and Tbx18 during limb development, we 

generated embryos double mutant for Tbx15 and Tbx18 and analyzed the phenotypic conse-

quences. Since Tbx18-deficient embryos die shortly after birth (Bussen et al., 2004), we col-

lected offspring at E18.5. At this time point embryonic lethality was not observed and all alle-

lic combinations were found at the expected Mendelian ratio (data not shown). Morphological 

inspection of Tbx15-/-, Tbx18GFP/GFP double mutants (subsequently abbreviated as ‘DM’) re-

vealed a dramatic reduction of the length of upper and lower limbs (Fig. 3, A, B). Skeletal 

preparations revealed that stylopod and zeugopod were rudimentarily formed and fused 
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Fig. 3. Requirement of Tbx15 and Tbx18 in the development of the proximal limb skele-
ton.  
Morphology (A and B) and skeletal preparations (C-L) of E18.5 wild type and Tbx15,Tbx18 double 
mutant (DM) embryos (C-D) and limbs (E-L). Whole mount images reveal a dramatic shortening of 
upper and lower limbs. The axial skeleton of DM embryos displays defects caused by the loss of 
Tbx18 alone (D, fusions of proximal ribs, and vertebral pedicles, white arrow and black arrowhead, 
respectively, Bussen et al., 2004). Higher magnification of the forelimb (E, F) and hindlimb skeleton 
(G, H) reveals a selective reduction and fusion (brackets) of stylopod and zeugopod elements in DM 
embryos. The scapula blade is reduced in size and shows a central hole (black arrow). Asterisks in G 
and H highlight the ilium of the pelvic bone, which is reduced in hindlimbs of DMs. I-L, dorsal views 
of the upper (I, J) and lower (K, L) autopod, which are only weakly affected DM embryos. Abbrevia-
tions are a, autopod; pg, pelvic girdle; s, stylopod; sc, scapula; z, zeugopod. 
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together both in fore- and hindlimbs (Fig. 3, E-H). The pectoral and the pelvic girdle were 

strongly reduced, showing an increase in phenotypic severity in comparison with scapula 

defects of Tbx15 single mutants (Singh et al., 2005 and Supplemental Fig. 2). Remarkably, 

however, the distal autopod (phalanges and metacarpals/-tarsals) was essentially normal in 

DM embryos (Fig. 3, I-L) with only mild changes of the tarsal and carpal bones, demonstrat-

ing that the observed phenotype is not caused by a general outgrowth defect of the limb. 

Analysis of compound mutants embryos showed that reduction of the Tbx18 gene dosage on a 

Tbx15 mutant background, or vice versa, produced no major defects of stylopod and 

zeugopod elements (Supplemental Fig. 2). A mild reduction in the relative length of the 

humerus and a thickening of radius and ulna were observed in Tbx15+/-, Tbx18GFP/GFP fore-

limbs (Supplemental Fig. 2, E). These data indicate that Tbx15 and Tbx18 have a redundant 

function in the development of the proximal and intermediate limb skeleton. A single wild 

type allele of either Tbx15 or Tbx18 is sufficient to allow normal limb development. 

 

Early defects in chondrogenic aggregation of Tbx18/Tbx15 double mutant limbs. 

To determine the temporal requirement of Tbx15/Tbx18 function, we analyzed phenotypic 

changes of the limb skeleton at earlier developmental time points. At E14.5, the cartilagenous 

pre-skeleton of DM limbs prefigured the defects observed at E18.5 (Supplemental Fig. 3), 

excluding defective osteogenesis as a cause of the phenotype. At E12.5, the length of the ex-

tremities was strongly decreased, selectively affecting the proximal parts (Fig. 4, A, B, brack-

ets). Cartilagenous anlagen of stylo- and zeugopod elements were absent and the scapula ap-

peared severely reduced (Fig. 4, B, black arrow). The autopod, in contrast, was completely 

unaffected. Analysis of forelimb sections for the deposition of chondrocyte extracellular ma-

trix (Alcian blue staining) as well as the distribution of chondrogenic precursors and develop-

ing joints (by in situ hybridization for Sox9 and Gdf5, respectively; Lefebvre et al., 1996; 

Storm and Kingsley, 1999) revealed a single roundish element most probably representing the 

remnants of both stylo- and zeugopod anlagen in the DM (Fig. 4, F-H, black arrows). The 

developing humerus of wild type embryos exhibited growth plates at the proximal and distal 

ends, flanked by developing joints as marked expression of Gdf5 (Fig. 4, C-E). The corre-

sponding cartilage rudiment of DM embryos did not proceed to long bone development, and 

was additionally positive for Gdf5 expression  (Fig. 4, F-H, black arrows). This mis-

segregation of cartilage and joints may explain the observed fusion of stylo- and zeugopodial 

elements at later stages. Absence of Alcian blue staining and Sox9 expression in E11.5 DM 

fore limb sections indicated that mesenchymal condensations of stylopod and zeugopod failed 
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to form (Fig. 4, I-L, circles). At E10.5, the expression of Sox9 was unaffected as determined 

by whole mount in situ hybridization (Fig. 4, M, N), suggesting that Tbx15 and Tbx18 act 

downstream or in a parallel pathway to Sox9 to regulate cartilage formation. Together, our 

results indicate that Tbx15 and Tbx18 are required for mesenchymal precursors to condense to 

the anlagen of stylo- and zeugopod. 
 

 
  
Fig. 4. Early defect in chondrogenic aggregation of Tbx18/Tbx15 double mutants.  
A-B, whole mount Alcian blue staining of E12.5 wild type and DM forelimbs, black arrow marks the 
reduction of stylo- and zeugopod elements. The reduction in length of DM limbs mainly affects the 
proximal part (brackets). C-H, analysis of chondrogenesis and joint formation on transverse sections 
of E12.5 wild type and DM forelimbs. Alcian blue-positive precartilagenous mesenchymal condensa-
tions of stylo- and zeugopod (C, F), and Sox9-positive chondrogenic precursors (D, G) are reduced 
(black arrows). In DMs the remaining cartilage is additionally positive for the joint marker Gdf5 (H, 
black arrow). I-L, Alcian blue staining and Sox9 in situ hybridization on E11.5 wild type and DM 
transverse limb sections. Black circles indicate the loss of the central chondrogenic aggregate (K), and 
a reduction of Sox9-positive precursors cells in this region (L). M-N, whole mount in situ hybridiza-
tion shows normal Sox9 expression in E10.5 DM forelimb buds. Abbreviations as in Figure 3. 
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Proximal-distal patterning of the limb bud is not affected in Tbx15/Tbx18 DM embryos  

The selective failure of mesenchymal cells to condense to the anlagen of stylopod and 

zeugopod in DM limb buds prompted us to analyze whether defects in proximal-distal pat-

terning may underlie this phenotype (Supplemental Fig. 4). Markers for the proximal domain 

(Meis1, Meis2, Mercader et al., 1999, Rarb, Mendelsohn et al., 1991, and Ror1, Matsuda et 

al., 2001) were normally expressed in DM limb buds, as were markers of the distal region 

(Fgf8 and the Fgf8-target genes Fgf10, Ohuchi et al., 1997, Pea3, Roehl and Nüsslein-

Volhard, 2001 and Cyp26b1, Yashiro et al., 2004; Supplemental Fig. 4, E-L). Likewise the 

expression of Hoxd-family members (Hoxd11, Hoxd12 and Hoxd13, Dollé et al., 1989; Sup-

plemental Fig. 4, M-O) was unchanged, reflecting that the PD-positional identities are cor-

rectly established in DM limb buds. During the specification of the anterior-posterior axis of 

the limb, the expression of transcription factor Hand2 at the posterior limb margin is required 

to induce the expression of Shh, which itself is the mediator of ZPA activity (Charité et al., 

2000). In DM limbs the expression of Hand2 and Shh was unchanged, as was the Shh target 

gene Ptch1 (Marigo et al., 1996; Supplemental Fig. 4, A-C). Likewise, the dorsally restricted 

expression of Wnt7a was unaltered (Parr et al., 1993; Supplemental Fig. 4, D), demonstrating 

that the anterior-posterior and dorsal-ventral axes are as expected unaffected in DM limb 

buds. We therefore conclude Tbx15/Tbx18 act downstream of the proximal-distal patterning 

system to regulate the local aggregation of mesenchymal precursor cells. 

 

Cellular defects caused by the loss of Tbx15 and Tbx18. 

The absence of major patterning defects prompted us to analyze the cellular consequences of 

the combined loss of Tbx15 and Tbx18. We first tested if decreased proliferation precedes the 

reduction of chondrogenic precursors by using BrdU incorporation assay at E10.5. We deter-

mined the BrdU labeling index in the proximal region and as a control in the distal mesen-

chyme (Fig. 5, A, B, blue boxes). The quantification of S-phase nuclei on transverse forelimb 

sections (Fig. 5, C) showed a weak, but significant reduction of proliferation in the proximal 

(20.2 ± 1.1% in the wild type and 16.6 ± 0.7% in the DM; p = 2.6 x 10-8) but not in the distal 

region of DM limb buds (52.9 ± 5.7% in the wild type and 50.3 ± 2.9% in the DM; p = 0.22). 

To judge the contribution of programmed cell death to the phenotypic changes, we analyzed 

the distribution of apoptotic cells on limb sections by the TUNEL assay. A strong increase of 

cell death was detected in the proximal region of the limb bud at E10.5 (Fig. 5, D, E) and 

E11.5 (Fig. 5, F, G, white circles). Hence, both reduced proliferation as well as augmented 

cell death may contribute to the reduction of proximal skeletal structures. 
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To characterize the fate of Tbx18-expressing cells in the DM limbs, we took advantage of the 

GFP reporter in the Tbx18-mutant allele. GFP-epifluorescence of freshly isolated E10.5 fore-

limbs of Tbx15+/+, Tbx18GFP/GFP embryos recapitulated the endogenous expression of Tbx18 

and was therefore considered as ‘wild type’ control (Fig. 5, H-J, compare Fig. 1, F). GFP-

positive cells were confined to the proximal/central regions of the limb bud, showing an ex-

clusion from the distal mesenchyme (Fig. 5, J, white dotted line). In contrast, a massive 
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Fig. 5. Cellular defects accompanied with the loss of Tbx18 and Tbx15.  
A-B, anti-BrdU immunohistochemistry on E10.5 wild type and DM transverse forelimb sections; the 
BrdU labeling index was determined in central (c) and peripheral (p) regions as indicated by blue 
boxes. C, quantification of S-phase nuclei. The BrdU labeling index (refer experimental procedures) 
was reduced in the center of DM forelimbs (*: p = 2.6 x 10-8), but not in the periphery. D-G, detection 
of apoptotic cells on E10.5 (D, E) and E11.5 (F, G) wild type and DM transverse forelimb sections by 
TUNEL staining. White circles highlight an increased number of apoptotic cells in the proximal region 
of mutant forelimbs. H-M, Detection of GFP-positive cells in E10.5 Tbx18GFP/GFP,Tbx15+/+ (‘wild 
type’) and Tbx18GFP/GFP,Tbx15-/- (DM) forelimbs. Shown are darkfield (H, K), GFP-epifluorescence (I, 
L) and merged images (J, M). In control limb buds GFP-positive cells are excluded from the distal 
mesenchyme (white dotted line), in contrast GFP-positive cells extend to the distal tip of the limb bud 
in the DM (white arrowhead). Exclusion of GFP-positive cells from anterior and posterior flanks is 
similar in wild type and DM limb buds (white arrows). 
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expansion of GFP-positive cells was observed into the distal mesenchyme of DM limbs 

(Tbx15-/-, Tbx18GFP/GFP) (Fig. 5, M, white arrowhead), while exclusion of fluorescent signal 

from the flank mesenchyme was maintained (Fig. 5, J, M, white arrows). Section in situ hy-

bridization using a riboprobe specific for GFP confirmed the distal expansion of Tbx18-

expressing cells in DM forelimbs. Notably, we did not observe an expansion of Tbx18 expres-

sion in Tbx15-/- single mutants, arguing against a role for Tbx15 as a transcriptional repressor 

of Tbx18 in the distal mesenchyme (data not shown). We therefore favor the possibility that 

the expansion of Tbx18GFP-positive cells results from aberrant migration of proximal mesen-

chymal cells into the distal region. 

 

Deregulated expression of Eph/Ephrin molecules prefigures the skeletal defects of 

Tbx15/Tbx18 mutant limbs. 

Eph receptor tyrosine kinases and their membrane-bound Ephrin (Efn) ligands mediate cellu-

lar adhesion and repulsion by bidirectional signaling in various developmental contexts (for a 

review refer Klein, 2004). Notably, in vitro studies have shown that Eph/Ephrin molecules 

regulate differential cell adhesion properties of cells isolated from the proximal or distal limb 

bud mesenchyme (Wada et al., 1998). Eph receptors and ligands can be divided in two sub-

classes, class A and B. In general, class A receptors (Epha) bind to GPI-anchored Ephrin 

ligands (Efna), while class B receptors (Ephb) bind to Ephrin ligands containing a transmen-

brane domain (Efnb) (Gale et al., 1996). 

To analyze if changes in Eph/Ephrin distribution underlie the loss of lineage restriction in the 

DM limb bud, we performed in situ binding assays using recombinant Eph/Ephrin-Fc fusion 

proteins, which consist of the extracellular domain of Eph/Ephrin molecules fused to the Fc-

region of human IgG. We studied the binding pattern of one representative of each subclass of 

receptors and ligands to cover the entity of receptors and ligands present in the limb bud. As 

shown previously, class A receptors and ligands are present in complementary proximal and 

distal regions of the limb mesenchyme (Gale et al., 1996). Using Efna4-Fc and Epha4-Fc we 

found that at E10.5 this boundary is correctly established in wild type and DM limbs (Fig. 6, 

A, B and E, F). However, at E11.5 the region positive for Efna4-Fc and negative for Epha4-

Fc was clearly expanded into more proximal regions of the DM limb bud (Fig. 6, C, D, black 

arrow and G, H, white arrow). Efnb1-Fc displayed a broad binding pattern (data not shown), 

suggesting that Ephb-receptors are not limiting factors to generate differential adhesion. In 

contrast, the binding patterns of Ephb2-Fc exhibited a stronger signal in distal than in central 

regions of wild type limb buds at E10.5, compatible with the idea that EfnB ligands are differ-
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entially expressed along the proximal-distal axis (Fig. 6, I). In DM limbs, staining in proximal 

regions was augmented (Fig. 6, J, black arrow). The Ephb2-Fc-negative domain covered the 

central region of wild type E11.5 limb buds, whereas a broad staining was observed in the 

corresponding region of DM embryos (Fig. 6, K, L, red circles). Similar changes were also 
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Fig. 6. Deregulated expression of Eph/Ephrin cell surface molecules in Tbx18/Tbx15 
double mutants.  
A-L, Eph/Ephrin-Fc stainings to detect the distribution of Eph/Ephrin molecules. Shown are the bind-
ing patterns of Efna4-Fc (A-D), Epha4-Fc (E-H) and Ephb2-Fc (I-L) on E10.5 and E11.5 wild type 
and DM transverse forelimb sections. White and black arrows show reduced and increased signals, 
respectively. Red circles illustrate up-regulation of ligands detected by Epha4-Fc and Ephb2-Fc in the 
proximal region of E11.5 DM limb buds. The changes are reflected by the mRNA expression patterns 
of Epha3 (M-P), Efna5 (Q-T), Efnb1 (U-X), as determined by in situ hybridization. The asterisks in 
M-P indicate that the expression of Epha3 is unchanged in adjacent reverence domains. 
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observed using Epha4-Fc (Fig. 6, G and H) demonstrating a collective failure to down-

regulate Ephrin A and B class ligands in the central region of the limb bud. To explore which 

members of the Eph/Ephrin gene families are responsible for the observed changes, we ana-

lyzed the expression of the majority of the family members by in situ expression analysis on 

wild type and DM forelimb sections (Fig. 6, M-X and Supplemental Fig. 5). Up-regulation of 

Epha3 was observed in the distal mesenchyme of DM limb buds at E10.5 and at E11.5,     

ectopic expression was found in more proximal regions (Fig. 6, N and P, black arrows), in 

agreement with the expanded binding patterns of Efna4-Fc at this stage (compare Fig. 6, D). 

In situ hybridization analysis failed to detect expression of a class A ligand that reflected the 

binding patterns of Epha4-Fc at E10.5. This could indicate a posttranscriptional regulation, or 

alternatively, binding of Epha4-Fc to Ephrin B class members. Interestingly, we detected in-

creased expression of Efna5 and EfnB1 − possible ligands for Ephb2-Fc − in the proximal 

region DM limb buds at E10.5 (compare Fig. 6, Q, R and U, V, black arrows). Likewise, ex-

pression of both genes was up-regulated in the central domain of E11.5 DM limb buds reca-

pitulating the ectopic binding patterns of Epha4 and Ephb2-Fc (Fig. 6, S, T and W, X, red 

circles). Collectively, our results show that the proximal domain of DM limb buds becomes 

distalized with respect to the expression profile of Eph/Ephrin molecules. This may result in 

mis-segregation of mesenchymal cells along the proximo-distal axis. 

 

Tbx18 expression mediates homing of mesenchymal cells to the Tbx18-positive proximal limb 

compartment. 

Since combined loss of Tbx15 and Tbx18 leads to changed cellular parameters of mesenchy-

mal cells of the proximal limb region including proliferation, apoptosis and lineage restric-

tion, we wished to explore the primary function of Tbx18 in misexpression experiments in 

vivo. We used a transgenic approach based on an inactive bicistronic expression cassette con-

taining the Tbx18 ORF followed by IRES-GFP that was integrated in the ubiquitously ex-

pressed Hypoxanthine guanine phosphoribosyl transferase (Hprt) locus (see experimental 

procedures and Supplemental Fig. 1, A). Upon cre-mediated recombination the expression 

cassette is rearranged to localize Tbx18-IRES-EGFP downstream of the strong CAG promoter 

allowing robust activation of Tbx18 in cells and simultaneous expression of EGFP (Supple-

mental Fig. 1, A-C). Importantly, expression from the X-chromosomal Hprt-locus results in a 

chimeric transgene expression in heterozygous females due to random X-chromosome inacti-

vation at early stages of embryogenesis. Thus, this genetic system provides the opportunity to 

analyze the behaviour of transgene expressing cells in a wild type environment similar to 
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Drosophila-type mosaic experiments, while in hemizygous males the transgene is homoge-

nously expressed in all cre-positive cells. 

To activate transgene expression, we employed the Pax3::cre mouse line, which drives ex-

pression of cre-recombinase under the control of the 1.6 kb upstream promoter of Pax3 

broadly in the posterior trunk region including the hindlimbs (Li et al., 2000). Using the 

Rosa26 lacZ-reporter line (R26R) we confirmed the recombination in the hindlimbs by β-

galactosidase staining in whole mount embryos and on sections of E10.5 and E12.0 embryos 

(Supplemental Fig. 6, A-L). At both stages, we detected broad albeit partly variable mesen-

chymal cre activity. β-galactosidase staining appeared weaker in anterior and ventral regions 

of the limb bud (Supplemental Fig. 6, F, G, black arrows). Functionality of the system was 

proven in Pax3::cre/+, Sox9fl/fl mice that showed a nearly complete reduction of the skeleton 

of the vertebral column and the hindlimbs compatible with the role of Sox9 as a regulator of 

chondrogenesis (Supplemental Fig. 6, M-P, Bi et al., 1999).  

Mosaic misexpression of Tbx18 in E18.5 female embryos (Pax3::cre/+, HprtCAG::Tbx18/+ ab-

breviated as P3::cre, Tbx18GOF/+) resulted in no obvious morphological or skeletal limb de-

fects (Fig. 7, E-H). In hemizyous male embryos (Pax3::cre/+, HprtCAG::Tbx18/Y, abbreviated as 
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Fig. 7. Misexpression of Tbx18 in the limb mesenchyme causes only mild skeletal defects.  
Morphology and skeletal preparations of wild type embryos (A-D), and Tbx18 misexpressing embryos 
at E18.5. The hindlimb skeleton of Pax3::cre, HprtCAG::Tbx18/+ females (abbreviated as P3::cre, 
Tbx18GOF/+, E-H) appears unchanged. Pax3::cre, HprtCAG::Tbx18/Y males (abbreviated as P3::cre, 
Tbx18GOF/Y, I-L) show axial defects in the posterior part of the body including a strong reduction of 
pedicles and proximal ribs (J, black arrowhead and white arrow, respectively). The hindlimbs of 
P3::cre, Tbx18GOF/Y embryos are weakly affected, displaying a small ectopic finger (blue arrow), 
reduced fibula (asterisk) and the thickend tibia (black arrow). During preparation of the hindlimb 
skeleton the ectopic finger was removed.  
xxxxxxxxxxxxxxxx 
 
 

P3::cre, Tbx18GOF/Y) a reduction of the fibula, and an increased thickness of the tibia was 

observed (Fig. 7, L). The majority of embryos additionally showed a small ectopic finger 

postaxially (Fig. 7, K). However, surprisingly, patterning of limb skeletal elements of stylo-

pod, zeugo- and autopod was normal. These results demonstrate that broad misexpression of 

Tbx18 is compatible with limb development, and furthermore that the down-regulation of the 

endogenous Tbx18 expression in prechondrogenic aggregates (compare Fig. 1, G, H, O, P) is 

not a prerequisite for subsequent cartilage differentiation. In contrast to the situation in the 

limb, the axial skeleton of P3::cre, Tbx18GOF/Y embryos showed a strong reduction of pedi-

cles and proximal ribs, whereas P3::cre, Tbx18GOF/+ females were normal (Fig. 7, B, F, J). 

Since Pax3::cre mediates recombination in the presomitic mesoderm (Li et al., 2000), we 

conclude that these defects recapitulate the known phenotype resulting from misexpression of 

Tbx18 in the somitic mesoderm (Bussen et al., 2004), thus, confirming that the HprtCAG::Tbx18-

allele allows misexpression of functional Tbx18 protein. 

The absence of strong limb defects prompted us to analyze the distribution of transgene ex-

pressing cells at earlier stages by GFP-epifluorescence. Notably, we found that the mosaic 

expression in heterozygous females was not random but that GFP-positive cells were exclu-

sively present in the proximal part of E10.5 limb buds (Fig. 8, J). In a similar manner trans-

gene expessing cells were largely excluded from the distal mesenchyme in hindlimbs of 

Tbx18GOF/Y male embryos (Fig. 8, P). Most obviously, the autopod domain was GFP-negative 

except a variable staining in the developing cartilages of the digits at E12.5 (Fig. 8, L, R). The 

selective localization of Tbx18-expressing cells to the domain of endogenous Tbx18 expres-

sion (the proximal limb bud) can therefore explain the mild limb defects in these embryos. 

More importantly however, these data reveal a previously unrecognized compartment bound-

ary between cells of the presumptive stylopod/zeugopod and autopod in the E10.5 limb bud. 
xxxxxxxx  xx 
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Fig. 8. Misexpression of Tbx18- and Tbx18-VP16 results in differential localization of 
transgene expressing cells.  
Darkfield images and GFP-epifluorescence of wild type (A-F), Tbx18 (G-R) and Tbx18-VP16 (S-B’) 
misexpressing embryos. Shown are whole mount images of E10.5 embryos, and hindlimbs at E10.5 
and E12.5. Adjacent images represent darkfield illumination (left) or GFP-epifluorescence (right) of 
the same specimen. Dotted lines in J, L, P, R, V, X, B’ highlight the outlines the limb bud. In P3::cre, 
Tbx18GOF/+ and Tbx18GOF/Y  hindlimbs, GFP-positive cells preferentially locate to the proximal limb 
mesenchyme, as indicated by white brackets. White arrowheads in L and R mark an additional GFP-
signal in the developing digit cartilages at E12.5. In P3::cre, Tbx18-VP16GOF/+ hindlimbs, GFP-
positive cells preferentially locate to the distal mesenchyme (V, X, white brackets). At E10.5 P3::cre, 
Tbx18-VP16GOF/Y male embryos show a severe segmentation defect and spina bifida in the posterior 
part of the body (Y, white arrow), and GFP-positive cells are distributed along the entire PD-axis of 
the hindlimb (B’, white bracket). At E12.5 no viable P3::cre, Tbx18-VP16GOF/Y embryos were found. 
 

 

Since both Tbx15 and Tbx18 protein function as transcriptional repressors in vitro (Farin et 

al., 2007), we hypothesized that a Tbx18-VP16 activator construct would generate a dominant 

negative protein. To analyze the consequences of Tbx18-VP16 expression on cellular behav-
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ior in vivo, we generated a HprtCAG::Tbx18-VP16 allele analogous to the HprtCAG::Tbx18 allele de-

scribed above (Supplemental Fig. 1, A). Pax3::cre-mediated misexpression of Tbx18-VP16 

led to severe neural tube closure defects, a lack of segmentation in the posterior body and 

embryonic lethality before E12.5 in male embryos (abbreviated as P3::cre, Tbx18GOF-VP16/Y, 

Fig. 8, Y and data not shown). At E10.5 the hindlimbs of these P3::cre, Tbx18GOF-VP16/Y em-

bryos were reduced in size (Fig. 8, A’). Mosaic expression in female embryos (P3::cre, 

Tbx18GOF-VP16/+) resulted in normal development of the limb skeleton but caused defects in 

the axial skeleton (Supplemental Fig. 7, G, H). Strikingly, the pattern of GFP-expression in 

E10.5 and E12.5 P3::cre, Tbx18GOF-VP16/+ females showed a preferential localization of 

Tbx18-VP16-expressing cells to the distal regions of the limb bud mesenchyme (Fig. 8, V, 

X), i.e. in a complimentary pattern compared to the misexpression of wild type Tbx18 protein 

(compare Fig. 8, J, L, P ,R). In P3::cre, Tbx18GOF-VP16/Y male embryos the GFP-signal was 

broader, but again extended to the very distal tip of the limb bud (Fig. 8, B’). GFP-negative 

regions were present in the anterior half of the limb bud, most likely reflecting the reduced 

cre-activity in these regions (compare Supplemental Fig. 6, F). Since this situation mimics the 

distal expansion of Tbx18GFP-positive cells in DM limbs buds (compare Fig. 5, M), we con-

clude that the Tbx18-VP16 protein indeed acts as in a dominant negative fashion in this de-

velopmental context. 

To further explore the causes of the disparate cellular behavior mediated by Tbx18 and 

Tbx18-VP16 misexpression in the limb, we performed culture experiments to follow the fate 

of transgene expressing cells over time. Hindlimb cultures of E10.5 P3::cre, Tbx18GOF/+ and 

Tbx18GOF-VP16/+ embryos were established and brightfield- and GFP-images were taken at 

different time points during a total culture period 72 hours (Fig. 9). In P3::cre, Tbx18GOF/+ 

cultures the GFP-expressing cells showed an exclusively proximal distribution at all time 

points studied (Fig. 9, A-E). The border towards the GFP-negative domain of distal mesen-

chyme was initially diffuse but refined progressively during subsequent culture. At 48 and 72 

hours, Tbx18-expressing cells were sharply excluded from the footplate (Fig. 9, D, E, black 

arrows). In contrast, Tbx18-VP16-expressing cells gradually disappeared form the proximal 

and accumulated in the distal region of the limb bud (Fig. 9, F-J, white arrows). Given the 

progressive nature of these differential distributions we conclude that Tbx18 regulates cellular 

migration and/or adhesion properties to establish a proximal compartment in the limb bud 

mesenchyme, most likely by a transcriptional repression program. 
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Fig. 9. Organ culture experiments visualize opposite cellular behaviors of cells express-
ing Tbx18 and Tbx18-VP16. 
Time course experiment to follow the distribution of GFP-expressing cells in chimeric P3::cre, 
Tbx18GOF/+ (A-E) and Tbx18-VP16GOF/+ (F-J) limb buds. Hindlimbs of E10.5 embryos were isolated 
and cultured for a total period of 72 hours. Brightfield images (left) and GFP-epifluorescence (right) 
were documented at different time points after the establishment of the cultures, as indicated on the 
left side. White dotted lines highlight the outlines of the limb bud. In P3::cre, Tbx18GOF/+ limb buds 
the distal mesenchyme is negative for GFP-expressing cells; the increasing size of the black arrows 
indicates a progressive elaboration of a sharp boundary between proximal (GFP-positive) and distal 
(GFP-negative) cells. In contrast, in P3::cre, Tbx18-VP16GOF/+ hindlimbs, GFP-expressing cells 
gradually accumulate in the distal limb bud (white arrows). Increase in fluorescence observed in 
proximal limb bud at later stages (asterisks) is likely to represent background auto-fluorescence possi-
bly caused by local cell death in this thickened tissue. 
 

 

DISCUSSION 

 

In the developing limb bud the generation of region specific cell identity is required to allow 

the stereotypic formation the PD array of cartilagous elements. Here, we have shown that the 

loss Tbx15 and Tbx18 causes the dispersal of proximal cells, followed by a reduction of carti-

lage precursors and subsequently a failure to establish proximal condensations, whereas 

4) Tbx15 and Tbx18 in limb development

69

4) Tbx15 and Tbx18 in limb development



misexpression of Tbx18 resulted in proximalization of limb cell affinity. We demonstrate that 

Tbx15/18 function involves a cellular migration/adhesion program, possibly by regulation of 

Eph/Ephrin molecules, to specify a stylopod/zeugopod domain. Thus, our results provide 

evidence for the existence a previously unknown proximal mesenchymal compartment, a 

finding that sheds new light on classical and more recent models for PD patterning. Further-

more, results on the regulation of Tbx15/18 expression in the limb mesenchyme allows inte-

gration of their function in the context of proximal and distal signals. The function of 

Tbx15/18 in establishing compartment boundaries may have evolved to achieve tissue com-

plexity in a variety of embryological contexts. 

 

The expression of Tbx15 and Tbx18 regulates cellular attributes of the proximal limb mes-

enchyme. 

Region specific cell affinities cause cell sorting in mixed cultures derived from proximal and 

distal regions of the limb mesenchyme and it has been proposed that this differential adhesion 

is required for the patterning of cartilaginous elements along the PD limb axis. (Wada and 

Ide, 1994; Barna et al., 2007). Our present study provides genetic evidence for this interrela-

tion, as we show that Tbx15/18 mediate proximal restriction within the limb mesenchyme that 

is subsequently required for the formation of stylopod and zeugopod elements. As potential 

downstream mediators we have identified cell surface molecules of the Eph/Ephrin families 

that are involved in both, cellular adhesion and repulsion processes (for a review, Klein, 

2004). We have found that Tbx15/18 are required for a proximal expression profile of 

Eph/Ephrin molecules as members that are normally expressed distally were expanded in DM 

limbs both at the mRNA and the protein level. The failure to down-regulate the expression of 

Efna5 and Efnb1 in the central/proximal domain of E10.5 DM limb buds coincides with the 

region of initial condensation of stylo- and zeugopod elements in the wild type, and later at 

E11.5 this domain demarcates the proximal pool of Sox9-positive chondrogenic precursors 

(compare Fig. 4, J and Fig. 6, G, K). Therefore, down-regulation of Efna- and Efnb-ligands 

could be a prerequisite for subsequent recruitment of cells into developing cartilages. In this 

scenario the dispersal of DM proximal cells would reflect a reduced affinity between mesen-

chymal cells. Another explanation for the expansion of Tbx18GFP-expressing cells is a defec-

tive repulsion-mechanism between the prospective zeugopod and autopod regions. At E10.5 

the distal limit of Tbx18 expression could constitute such a compartment boundary, as it over-

laps with the mutually exclusive expression domains of Epha-receptors and Efna-ligands 

(compare Fig. 1, N and Fig. 6 A, E). Regarding the Eph/Ephrin expression patterns in DM 
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embryos, the initial establishment of this boundary seems unaffected. However, the progres-

sive expansion of the Epha3 expression into the proximal regions of DM limb buds suggests 

that Tbx15/18 may function in maintaining a repulsive boundary of bidirectional Eph/Ephrin-

signaling. At present, it remains unresolved whether Tbx15/18 primarily mediate cellular 

adhesion or repulsion, but cell-aggregation experiments of labeled wild type or Tbx15/18 DM 

proximal cells with unlabeled proximal or distal cells from wild type limb buds may provide 

an answer to this problem. 

Although cell culture experiments have suggested that Efna-ligands and Epha4 are implicated 

in PD-specific cell sorting (Wada et al., 1998), loss-of-function studies in the mouse have not 

yet shown a requirement in this process in vivo, suggesting that extensive co-expression re-

sults in functional redundancy (Supplemental Fig. 5). In contrast, gain-of-function studies 

have provided evidence that Eph/Ephrin molecules can influence limb patterning, as Efna2-

overexpression in chick embryos induces digit malformations, likely by alterations in cell 

adhesion properties (Wada et al., 2003). A very similar phenotype was observed in mouse 

embryos, heterozygous for a null allele of the X-chromosomal Efnb1 gene (Compagni et al., 

2003). In this study the complete loss of Efnb1 in male embryos caused no phenotype but 

chimeric expression in female embryos resulted in cell sorting between Efnb1-positive and 

negative cells. Defects in digit formation were explained by the presence of ectopic 

Eph/Ephrin-signaling interfaces between wild type and mutant clones. To clarify the role of 

individual and combinations of Eph/Ephrin-members in position specific cell adhesion, fur-

ther loss-of-function studies are required. Also the question if Tbx15/18 mediate direct or 

indirect transcriptional regulation of Eph/Ephrin-genes should be addressed. 

 

The function of Tbx15/18 is upstream of the genetic hierarchy that regulates limb skeletal 

development. 

Our results argue against a direct role of Tbx15/18 during chondrogenic differentiation, as the 

expression of Sox9, which is an obligate factor for mesenchyme-to-cartilage transition (Bi et 

al., 1999, Barna et al., 2007), is unchanged in E10.5 DM limb buds. We conclude that 

Tbx15/18 regulate initial steps in the mesenchyme that precede a requirement for Sox9. Pos-

sibly, Tbx15/18 are involved in mesenchymal aggregation or in the subsequent establishment 

of tight mesenchymal cell associations, a process termed as ‘compaction’, Interestingly a re-

cent study has shown that in vitro both processes are Sox9-independent (Barna et al., 2007). 

The observed loss of Sox9 expression after E11.5, in contrast, argues that mesenchymal con-

densations are required for maintenance of Sox9 expression, which is possibly regulated by 
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para/autocrine signaling within the condensates. Another finding that argues against a role of 

Tbx15/18 in chondrogenic differentiation is that sustained expression of Tbx18 did not per-

turb this stepwise and highly regulated differentiation program. Contrarily, the persistent ex-

pression of Sox9 causes defective cartilage differentiation and results in shortened bones (Ai-

kima et al., 2004; Aikima et al., 2007).  

Tbx15/18 clearly act downstream of signals that establish proximal and distal identities in a 

cellular program not yet described. Expression of Shox2, Hoxd11 and Ror1, known regulators 

of stylopod and/or zeugopod formation (Cobb et al., 2006; Yu et al., 2007; Boulet et al., 2003; 

Nomi et al., 2001), was unchanged in E10.5 DM limb buds (Supplemental Fig. 4, H, M, R). 

Yet, a role of Tbx15/18 downstream of these molecules is unlikely because the phenotypic 

onset of limb defects in Tbx15/18 DMs precedes the defects of Hoxa11/Hoxd11, Shox2 or 

Ror1/2 mutants, which were collectively shown to result from a relatively late failure of 

chondrocyte maturation. Gli3/Plzf double mutant embryos display reduced stylopod and 

zeugopod elements, with an early reduction of chondrogenic precursors, a mis-segregation of 

cartilage and joints and increased apoptosis in the proximal limb bud (Barna et al., 2005), 

phenotypic changes similar to the ones found in Tbx15/18 DM limbs. However, the expres-

sion of both, Gli3 and Plzf was unchanged in Tbx15/18 DM embryos (Supplemental Fig. 4, P, 

Q). And as characteristic features that distinguish both phenotypes Gli3/Plzf mutants display a 

loss of Sox9 expression already at E10.5 and an unaffected length of the limb bud at E12.5, 

compared to the dramatic reduction in the limb length that was found in Tbx15/18 DMs (Fig. 

4, B), collectively arguing that Gli3/Plzf are more directly involved in the initiation of the 

chondrogenic program. 

A recent study has shown that the mesenchymal loss of Bmp2 and Bmp4 expression causes a 

strong reduction of stylo- and zeugopod elements, while the autopod skeleton is less severely 

affected (Bandyopadhyay et al., 2006). As in case of Tbx15/18, the function of Bmp2/4 is not 

required for initial Sox9 expression. Furthermore, the BMP antagonist Noggin was found to 

inhibit the early ‘compaction’ process in mesenchymal cultures before the onset of chondro-

genic differentiation (Barna et al., 2007), indicating a common genetic pathway. The analysis 

of Bmp-signaling in Tbx15/18 DM limbs and expression of Tbx15 and Tbx18 in Bmp2/4 mu-

tants should clarify the epistatic relationships.  

 

Function of Tbx15 and Tbx18 in the context of models for proximal distal limb patterning. 

Our loss- and gain-of-function experiments suggest that Tbx15/18-mediated formation of a 

proximal mesenchymal compartment is prerequisite to formation of stylopod and zeugopod 
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elements. Distal expansion of Tbx18GFP-expressing cells in DM limb buds indicates a failure 

to maintain a lineage boundary towards another more distal compartment that is likely to rep-

resent the prospective autopod. Our results are thus consistent with the ‘Early specification 

model’ that relies on the presence of distinct PD-compartments within the limb bud mesen-

chyme. Notably, the Tbx18 expression domain is already restricted to the proximal region in 

limb buds of E9.5 embryos (Fig. 1, E). The manifestation of differential PD cell adhesion in 

chick limb buds of a corresponding age (stage 19) (Barna et al., 2007) is compatible with an 

early function of Tbx15/18 in the regulation of this process. However, previous fate-mapping 

experiments at this early stage of limb development have not confirmed a definite compart-

mentalization along the PD-axis (Pearse et al., 2007; Sato et al., 2007, Arques et al. 2007). 

Rather it has been proposed that the mesenchyme comprises a temporal and spatial gradient of 

cell fate specification, as cell movements become progressively restricted to more distal areas 

of the limb bud (Sato et al., 2007). Future lineage tracing experiments of Tbx18-expressing 

cells are required to determine if Tbx18 expression indeed marks an early autopod-zeugopod 

boundary. Further insights into the temporal requirement of Tbx15/18 during this specifica-

tion process could substantially improve our understanding about PD-patterning of the limb. 

Our observations argue against the classical ‘Progress zone model’, which predicts that 

positional information is acquired autonomously depending on the time that cells in the ‘pro-

gress zone’ remain undifferentiated under the influence of permissive AER signals. In 

Tbx15/18 DMs the expansion of Tbx18GFP-expressing cells into the ‘progress zone’ is fol-

lowed by normal development of the autopod, which shows that proximal cells can adapt to 

the local signals and subsequently participate in autopod formation. Likewise, the expression 

of proximal markers was not expanded distally in Tbx15/18 DM limbs, demonstrating a re-

specification of cells in their new environment. In contrast to the ‘Progress zone model’ these 

findings argue that the AER signals play an instructive, distalizing role, a conclusion that was 

also drawn in a recent study by the analysis of phenotypic consequences following the genetic 

removal of AER derived Fgf signals (Mariani et al., 2008). Interestingly, Tbx18 misexpres-

sion in distal cells causes insensitivity to these instructive signals as GFP-positive cells were 

progressively recruited into the proximal compartment, which shows that Tbx18 can antago-

nize the distal specification cues in a dominant manner. It would therefore be interesting to 

study if Tbx18 misexpression in the complete mesenchyme causes stronger autopod defects. 

At E12.5 our mosaic misexpression experiments have shown that the autopod consisted 

mainly of GFP-negative wild type cells, demonstrating that normal limb development toler-
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ates a large amount of cell movements. Together, this considerable plasticity can hardly be 

explained by either of the two classical models for PD-specification. 

As a model that integrates both, the early regionalization, but also the progressivity of PD-

specification our results favor the recently postulated ‘Two-signal model’ of dynamic specifi-

cation (Mariani et al., 2008; Tabin and Wolpert 2007). It suggests that after the initiation of 

bud outgrowth the limb mesenchyme is exposed to a proximal signal, most likely retinoic acid 

(RA) from flank mesoderm and to an opposing distal signal from the AER (Fgfs), which es-

tablish proximal and distal domains, the stylopod and autopod, respectively. Intermediate 

positional values (the zeugopod) would then be intercalated as a result of further outgrowth 

and interactions between proximal and distal domains. The molecular evidence for this model 

is based on the finding that RA can antagonize distal Fgf-signaling, and induces the expres-

sion of the TALE homeobox transcription factors Meis1/2 initially in the proximal half and 

later in the stylopod domain of the limb bud (Mercader et al., 2000). Although genetic evi-

dence in the mouse is lacking, over-expression of Meis1 in chick limb buds abolishes distal 

limb structures and produces a proximal shift of limb identities (Mercader et al., 1999). In 

contrast, FGF signals are required to restrict Meis1/2 expression from the distal region and to 

specify distal identity (Mercader et al., 2000; Yashiro et al., 2004; Mariani et al., 2008).  

Our data show that Tbx15/18 are required for the formation of both stylopod and zeugopod 

elements, and they could thus act in a common pathway with Meis1/2 during stylopod devel-

opment. Interestingly, both Meis1/2 and Tbx15/18 seem to specify proximal identity in a 

similar manner by regulating proximal specific cell adhesion, as Meis1-expressing cells that 

are placed beneath the AER relocate to more proximal compartments (Mercader et al., 2000; 

Mercader et al., 2005). However, our data provides evidence how the intermediate zeugopod 

domain is specified during subsequent limb outgrowth. As AER signals repress Tbx18 expres-

sion (see below), cells that leave the distal ‘undifferentiated zone’ may acquire Tbx18 expres-

sion. This de novo induction of Tbx18 expression could specify a domain distally to the 

Meis1/2-positive stylopod region and the subsequent restriction of cell movements could then 

define a boundary between prospective zeugopod and autopod regions. As mentioned above, 

the cell fate mapping of Tbx18-expressing cells will be crucial for the understanding at which 

stage this boundary is fixed. The observation of Sato et al. (2007) that in chick forelimbs the 

cell mixing of prospective autopod and zeugopod regions ceases between stage 19 and stage 

23 (corresponding to E9.5 and E10.5 in the mouse), indicates that this time frame is critical 

for the function of Tbx15 and Tbx18.  
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The expression of Tbx15/Tbx18 in the limb bud is controlled by proximal and distal signals. 

Our culture experiments have shown that the expression of Tbx15/18 in the early limb bud 

(E10.5) is intrinsic to the mesenchyme, indicating that activating signals are either present in 

the mesenchyme and/or must operate at earlier stages. Notably, Tbx15 expression extends 

distally, whereas Tbx18 expression is excluded from the sub-AER mesenchyme. We have 

argued that this proximal restriction is involved in the formation of an autopod-zeugopod 

boundary, which would imply at least some functional divergence between the Tbx15 and 

Tbx18 proteins (discussed below). Repressive AER signals mediate this proximal restriction, 

as the Tbx18 expression extends distally following AER ablation. With regard to the classical 

AER removal experiments (Saunders 1948), we suggest that the resulting distal skeletal trun-

cations could at least be caused to some extent by ectopic Tbx18 expression, which subse-

quently proximalizes the limb bud mesenchyme. 

It is unlikely that AER derived Fgf signals are involved in distal Tbx18 repression, since 

Fgf8-loaded beads did not cause a repression but activated Tbx18 expression at moderate con-

centrations in E10.5 forelimb buds. However, repression by Fgfs could be restricted to earlier 

stages. Interestingly, the hindlimbs of Fgf8 mutants display a selective reduction of the femur 

accompanied with apoptosis in the proximal mesenchyme (Lewandoski et al., 2000; Sun et 

al., 2002). These phenotypic similarities argue that Fgf8 is an upstream activator of Tbx15/18 

mediating long-range effects. It therefore would be interesting to analyze if the proximal limit 

of the Tbx15/Tbx18 expression domain is shifted distally in Fgf8 mutant hindlimbs.  

As another class of signaling molecules, Bmps are secreted from the AER as well as the limb 

mesenchyme (Capdevilla et al., 1999). However, distal Bmp-signaling is subject to antago-

nism by Gremlin1 (Khokha et al., 2003), which confines Bmp-activity to the mesenchyme of 

the anterior and posterior margins of the limb bud. We therefore conclude that the observed 

repression of Tbx15/18 in close proximity of Bmp4-soaked beads rather reflects the exclusion 

of endogenous expression from the AP flank mesenchyme. Consistent with this hypothesis 

Tbx2 and Tbx3, which are known Bmp-targets (Tümpel et al., 2002; Selever et al., 2004; sup-

plemental information in Karaulanov et al., 2004; Ma et al., 2005; Yang et al., 2006), show an 

endogenous expression in flank mesenchymes and were induced by high doses of Bmp4 (Fig. 

2, I-L, W). The reciprocal expression patterns of Tbx2/3 and Tbx15/18 along the AP axis 

could thus represent a differential response to high levels of Bmp/Smad-signaling. Alterna-

tively, Tbx2/3 may directly repress Tbx15 and Tbx18 (Habets et al., 2002; Lingbeek et al., 

2002; Vance et al., 2005). We exclude a role of Tbx15/18 in the regulation of Tbx2/3, as both 

genes as well as the T-box activators Tbx4 and Tbx5, were unchanged in DM limb buds (Sup-
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plemental Fig. 4, S-V). The strong similarity between the phenotypes caused by mesenchymal 

loss of Bmp2/4 (Bandyopadhyay et al., 2006; see above) and Tbx15/18, suggests that Bmps, 

probably at moderate doses, could also be involved in activation of Tbx15/18 expression. This 

is in agreement with the experimental finding that Dorsomorphin, a small molecule inhibitor 

of Bmp/Smad-signaling (Yu et al., 2008), caused a down-regulation of Tbx18 in micromass 

cultures of limb mesenchymal cells (Fig. 2, X). 

With respect to the regulation by proximal signals, we found that RA, unlike its requirement 

for the induction of Meis1/2 expression (Mercader et al., 2000), caused a strong down-

regulation of Tbx15/18 expression. In fact, we observed a clear reduction of Tbx15/18 expres-

sion in micromass cultures of E10.5 limb mesenchymal cells already 2 hours after application 

of 0.01 µM RA (Fig. 2, Y). We deem it unlikely that a RA gradient specifies different PD-

positional values by setting different distal limits of Meis1/2 and Tbx18 expression, but rather 

favor the possibility that RA is required to establish the sharp proximal boundaries of the 

Tbx15/18 expression domains. 

Together, our data show that the expression of Tbx15 and in particular Tbx18 underlies a 

complex and concentration dependent regulation by activating Fgf, and repressing Bmp and 

RA signals (see model in Fig. 2, Z). However, further experiments are required to elucidate 

which pathway(s) restrict Tbx18 expression from the distal mesenchyme. Non-canonical Wnt-

signaling could be another candidate as Wnt5a is expressed in AER and the underling mesen-

chyme (Parr et al., 1993). A final goal would be to identify the genomic regulatory regions 

and trans-acting factors that mediate limb expression of Tbx15/18. Although limb expression 

of the closely related Tbx15 and Tbx18 genes is conserved in the zebrafish embryo (Bege-

mann et al., 2002), an alignment of proximal genomic regions did not reveal any sequence 

conservation (data not shown), indicating that a shared ancestral limb enhancer may have 

diverged and is conserved at the functional level only. Future approaches could benefit from 

genome-wide data of tissue specific enhancers. Notably, a recent study has identified candi-

date limb enhancers in the upstream and intronic regions of the Tbx15 and Tbx18 loci, respec-

tively (supplementary data in Visel et al., 2009), elements that could be tested for limb spe-

cific reporter-gene activity. 

 

Molecular function of Tbx15 and Tbx18 during limb development.  

Our finding that one allele of either Tbx15 or Tbx18 is sufficient to rescue the development of 

the proximal limb skeleton clearly demonstrates functional redundancy of both proteins and 

confirms our previous results that Tbx15/18 share similar molecular functions in vitro (Farin 
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et al., 2007; Farin et al., 2008). A puzzling question, however, is why Tbx18 misexpression in 

the distal mesenchyme resulted in a proximal recruitment of cells, whereas Tbx15, which is 

endogenously expressed in the distal region, does apparently not cause a similar effect? Pos-

sibly, expression of Tbx15 protein is insufficient to initiate this cellular migration program. 

This hypothesis is supported by the fact that a dose reduction of Tbx15 on a Tbx18 mutant 

background caused a mild reduction in the humeral length and a thickening of radius and ulna 

(Supplemental Fig. 2, E). Similar changes were not observed in Tbx15-/-, Tbx18+/GFP fore-

limbs, assigning Tbx18 a more critical role in the compartmentalization of the limb mesen-

chyme. Alternatively, functional differences between both proteins could result in a selective 

inhibition of the Tbx15 transcriptional activity in the distal region, e.g. by posttranslational 

regulation or by association with distinct co-factors. Misexpression experiments could reveal 

if Tbx15, similar to the Tbx18 protein, is also sufficient to specify the proximal limb identity. 

We have previously suggested that Tbx15/18 act as transcriptional repressors in vitro (Farin et 

al., 2007). In our present study we demonstrate that Tbx18 and Tbx18-VP16 mediate opposite 

cellular phenotypes in vivo. Indeed, the distal localization of Tbx18-VP16-expressing cells 

mimics the Tbx18GFP-expansion that was observed in Tbx15/18 DM limbs, and shows that the 

activator fusion-protein acts in a dominant negative fashion. A repressor function for Tbx18 

(and Tbx15) is compatible with direct repression of proximal Efna5 and Efnb1 expression. 

One way of testing this hypothesis is to study Efna5/Efnb1 expression in Tbx18-VP16 mosaic 

limb buds. As direct transcriptional targets, expression of both genes should be up-regulated 

in clones expressing the transgene.  

Phenotypic characterization of Tbx18 mutant mice has revealed functions of Tbx18 in the 

development of the inner ear and the ureter. In the inner ear, Tbx18 is required to maintain the 

separation of the otic mesenchyme in an inner compartment destined to differentiate into otic 

fibrocytes and an outer compartment from which the otic capsule will develop (Trowe et al., 

2008). Ureter defects were traced back to the mis-separation of ureteric and metanephric mes-

enchyme in the early metanephric cell field and the subsequent failure of the ureteric mesen-

chyme to coherently condense (Airik et al., 2006). Considering the fact that the 

Tbx15/Tbx18/Tbx22 subgroup of T-box genes is specific to chordates, this gene function may 

have been employed to subdivide homogenous mesenchymal cell fields into distinct com-

partments that subsequently can acquire new fates supporting an increase in evolutionary 

complexity.  
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ABBREVIATIONS 

 

The abbreviations used are: AER, apical ectodermal ridge; AP, anterior-posterior; BrdU, bro-
modeoxyuridine; BSA, bovine serum albumin; CAG, CMV early enhancer/chicken β actin 
promoter; E, embryonic day; Hprt, hypoxanthine guanine phosphoribosyl transferase; IRES, 
internal ribosomal entry site; RA, retinoic acid; PD, proximal-distal; TUNEL, TdT-mediated 
dUTP-biotin nick end labeling; ZPA; zone of polarizing activity. 
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SUPPLEMENTAL FIGURES 

 

 

 
 

Supplemental Fig. 1. Generation of HprtCAG::Tbx18 and HprtCAG::Tbx18-VP16 ‘knock-in’ alleles.  
A, targeting strategy depicting the Hypoxanthine guanine phosphoribosyl transferase (Hprt) genomic 
locus in the wild type (top), after homologous recombination in ES cells (middle) and after cre-
mediated recombination (bottom), respectively The scale bar shows distances (in base pairs) relative 
to the HPRT transcription start site; homology regions included in the targeting vectors are labeled 
with thick lines; asterisks mark a SV40 polyadenylation signal. B, Test of protein expression from 
targeting vectors after cre-mediated recombination in HeLa cells. The circular targeting vectors were 
transfected either alone or in combination with a cre expression plasmid. Cell lysates were analyzed 
by Western blot using anti-Tbx18 antibody. Specific bands for Tbx18 (black arrowhead) and Tbx18-
VP16 (white arrowhead) were detected only after co-transfection with cre-recombinase. Left, molecu-
lar weight standard in kilodaltons. C, inducibility of transgene expression was tested in the ES clones 
used for blastocyst injection. As an example the GFP-epifluorescence of a HprtCAG::Tbx18 ES clone is 
shown 6 days after electroporation of cre-recombinase expression plasmid. Image was merged to a 
brightfield image. Abbreviations are: 3xStop, tree successive polyadenylation sequences from the 
bovine growth hormone gene; CAG, CMV early enhancer/chicken β actin promoter; IRES, internal 
ribosomal entry site; neoR, neomycin resistance. 
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Supplemental Fig. 2. One functional copy of Tbx15 or Tbx18 is sufficient to allow the de-
velopment of the proximal limb skeleton.  
Skeletal preparations of E18.5 fore- (A-E) and hindlimbs (F-J) in an allelic series of Tbx15 and Tbx18 
compound mutant embryos. Genotypes are as indicated. A major reduction of the proximal limb skele-
ton (stylopod and zeugopod) is only observed after removal of all functional alleles of Tbx15 and 
Tbx18 (D and I). A mild reduction in the relative length of the stylopod and a thickening of the 
zeugopod is observed in Tbx15+/-, Tbx18GFP/GFP forelimbs (E, blue and black arrow, respectively), 
whereas Tbx15+/+, Tbx18GFP/GFP limbs appear phenotypically normal (not shown). Mice homozygous 
mutant for Tbx15 feature a reduced scapula with a central hole in its blade (B, C, D, white arrows). 
Hypoplasia of the ilium is exclusively found in the DM (I, asterisk).  
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Supplemental Fig. 3. Skeletal phenotype of Tbx18/Tbx15 double mutants at E14.5.  
Morphology (A, B) and skeletal preparations of E14.5 wild type and Tbx15/Tbx18 double mutant em-
bryos (C, D) and of forelimb (E, F) and hindlimb skeletons (G, H). Severe reduction of stylopod and 
zeugopod elements in the DM embryos; fusions between stylopod and zeugopod are indicated by 
brackets. Reduced size of pectoral and pelvic girdles of DM embryos; the central hole in the scapula 
(F, black arrow) and the hypoplastic ilium (H, asterisk) are marked. Abbreviations as in Figure 3. 
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Supplemental Fig. 4. Patterning of Tbx18/Tbx15 double mutant limb buds is unaffected at 
E10.5.  
Whole mount in situ hybridization of E10.5 wild type and DM limb buds. All images show dorsal 
views of the forelimb, except D (lateral view) and U (hindlimbs). A-C, expression analysis of marker 
genes of anterior-posterior patterning using probes specific for Shh (A), Ptch1 (B) and Hand2 (C). 
Study of dorso-ventral patterning by expression analysis of Wnt7a (D). E-L, expression of marker 
genes of proximal-distal patterning using probes specific for Meis1 (E), Meis2 (F), Rarb (G), Ror1 
(H), and the distal marker genes Fgf8 (I), Fgf10 (J), Pea3 (K), Cyp26b1 (L). M-R, expression analysis 
of candidate transcription factors with a known function in proximal-distal limb patterning, Hoxd11 
(M), Hoxd12 (N), Hoxd13 (O), Gli3 (P), Plzf (Q) and Shox2 (R). S-V, the expression of other T-box 
genes involved in limb development is unchanged. Images show the expression of Tbx2 (S), Tbx3 (T), 
Tbx4 (U) and Tbx5 (V), respectively. 
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Supplemental Fig. 5. Expression of Eph/Ephrin genes in Tbx18/Tbx15 DM limb buds.  
Section in situ hybridization on transverse forelimb sections of E10.5 (A) and E11.5 (B) embryos. The 
analysis includes all described Eph/Ephrin genes, except Epha8 and Epha1, for which no probes could 
be generated. Images were grouped according to the family nomenclature; adjacent images compare 
the expression in the wild type and DM limb buds. White arrows were used to label domains where a 
lower expression was observed in the wild type compared to the DM limb sections. Black arrows indi-
cate ectopic expression in the DM. The distal mesenchyme of E11.5 DM forelimbs additionally 
showed a small region of up-regulated Efna1, Efna3 and Epha1 expression (black arrowheads). 
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Supplemental Fig. 6. Analysis of Pax3::cre mediated recombination in hindlimbs. 
β-galactosidase staining of Pax3::cre/+, R26R/+ embryos at E10.5 (A and C-G) and E12.0 (B and H-
L) demonstrates an efficient recombination in the posterior trunk region including the hindlimbs. 
Shown are whole embryos (A, B) and hindlimbs in dorsal (C, H), ventral (D, I) and anterior (E, J) 
views. β-galactosidase staining on tangential (F, K) and transverse (G, L) cryosections shows a broad 
recombination pattern in the posterior (p) and dorsal (d) regions of the mesenchyme, while the signal 
is weaker in anterior (a) and ventral (v) regions (black arrows). The ectoderm is negative for β-
galactosidase activity at E10.5 (white arrows, sporadic recombination is labeled by asterisks), but 
patches of ectodermal expression are evident at E12.0 (black arrowheads). M-P, skeletal preparations 
of E18.5 wild type (M, N) and Pax3::cre/+, Sox9fl/fl (O, P) embryos. The Pax3::cre mediated deletion 
of Sox9 causes severe skeletal defects in the posterior body (O) and a strong reduction of all hindlimb 
elements (P). Abbreviations: au, autopod; s, stylopod; z, zeugopod. 
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Supplemental Fig. 7. Skeletal analysis of Tbx18 and Tbx18-VP16 misexpressing embryos 
at E14.5.  
Skeletal preparations of E14.5 wild type (A, B) and transgene expressing embryos (C-H); lower panels 
show details of the hindlimb skeleton. P3::cre, Tbx18GOF/+ females have a normal axial and appen-
dicular skeleton (C, D). In P3::cre, Tbx18GOF/Y male embryos (E, F) a shortened tail (white arrow) and 
reduced pedicles (black arrowhead) are observed. Except slight reductions of fibula (asterisk) the 
hindlimb skeleton is relatively normal at this stage. The black arrow highlights an ectopic postaxial 
digit that lacks skeletal structures. Female P3::cre, Tbx18-VP16GOF/+ embryos (G, H) have a normal 
hindlimb skeleton, but show irregular pedicles that are partly fused (grey arrowhead). 
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Concluding remarks

 

As a significant contribution to the functional understanding of Tbx15 and Tbx18, the present 

study demonstrates that both proteins have a role as transcriptional repressors (part 1 & 4 of 

this thesis) that may achieve target specificity by interaction with other classes of transcrip-

tion factors (part 1 & 2). A cellular adhesion/migration mechanism was proposed that ex-

plains Tbx15/18 function during limb development (part 4). In a more general manner these 

findings may help to understand the role of T-box proteins in other developmental contexts 

but also their involvement in human pathologies (part 3). 

Recruitment of groucho corepressors represents a novel mechanism how T-box proteins me-

diate transcriptional repression. The classical T-box repressors Tbx2 and Tbx3 were shown to 

directly associate with histone deacetylases (4), causing chromatin condensation and tran-

scriptional silencing of target genes. In comparison, repression by Tbx15 and Tbx18 involves 

an additional step as the recruitment of histone deacetylases occurs indirectly via groucho 

proteins. This could explain the weaker repression activity of Tbx18 compared to Tbx2 (page 

21, Fig. 7, F), but also implies that repression by Tbx15/18 could be subject to an additional 

level of regulation, by signaling pathways that control the activity of groucho proteins (34). In 

this context it is interesting to note that Ripply proteins have recently been identified as spe-

cific interaction partners of Tbx1 and Tbx6 that mediate an activator-to-repressor conversion 

(35 and Takada research communication). Ripply proteins themselves recruit groucho corep-

ressors, demonstrating a third and even more indirect mode of transcriptional repression. Re-

pression by T-box proteins thus appears to be graded and highly context dependent, which 

argues that the two proteins may exert additional molecular functions.  

Future research avenues will require genome- and proteome-wide approaches to identify tran-

scriptional targets and physiological binding partners of Tbx15 and Tbx18, respectively. 

ChIP-Chip and ChIP-Seq represent powerful techniques for genome-wide identification of 

transcriptional targets (36). However, their successful application strongly relies on the pres-

ence of suitable antibodies that are currently not available for Tbx18. To circumvent this 

problem another Hprt-Tbx18 allele was generated that allows the conditional expression of 

epitope-tagged Tbx18 protein (unpublished). I employed the TAP (tandem affinity purifica-

tion)-tag, which is a state of the art tool suited for the isolation of protein complexes under 

physiological conditions (37). Conditional expression of this construct, using a recently gen-

erated Tbx18cre mouse line (38), should be highly suitable for the identification of target 

DNA-binding sites but also of protein interaction partners of Tbx18 in vivo.  
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Importantly, this study demonstrated that Tbx18 regulates cell-affinity properties in the 

proximal limb mesenchyme. Since analyses of other Tbx18 phenotypes have pinpointed to a 

role in tissue compartmentalization (19-21; see introduction), regulation of cell adhesion/cell 

repulsion may represent a general theme of the cellular function of Tbx18. Future experiments 

shall, e.g. address if misexpression of Tbx18 in the entire metanephric field or the entire otic 

mesenchyme is sufficient to impose compartment-specific adhesion properties. Preliminary 

results indicate that the role of Tbx18 during somitogenesis indeed involves the regulation of 

cell adhesion. Homogenous misexpression of Tbx18 in entire somites (P3::cre, 

Hprt::Tbx18GOF/Y) caused massive defects of the axial skeleton, whereas chimeric expression 

in female embryos did not interfere with normal development of the vertebral column (page 

65, Fig. 7, F, J). In this mosaic condition, Tbx18-expressing cells preferentially localized to 

the anterior somite halves (unpublished data), indicative of a cellular sorting process. Similar 

to the situation during limb development, transgene expressing cells are thus recruited into the 

compartment of endogenous Tbx18 expression, either by active migration or by a passive 

adhesion mechanism. 

Regulation of cell adhesion and migration may represent a common developmental function 

of T-box proteins in mesenchymal tissues. Chimeric analyses have shown a role of Brachyury 

for migration of mesodermal cells through the primitive streak during gastrulation (39) and of 

Tbx6 for cell migration in the paraxial mesoderm (40). Loss-of-function studies in zebrafish 

embryos revealed a role for Tbx5 in the coherent movement of lateral plate mesenchymal 

cells into the prospective limb field, as a prerequisite for the initiation of forelimb bud forma-

tion (41). Finally, the sharp expression borders of many T-box genes (e.g. Tbx2 and Tbx3; 42) 

are suggestive for functions in maintenance of compartment boundaries. Collectively, T-box 

genes may exert important roles in migration and/or adhesion of mesenchymal cells to 

achieve tissue complexity. 
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