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ABSTRACT 

Tomato yellow leaf curl virus (TYLCV), belonging to the Geminiviridae (Genus: 

Begomovirus), constitutes a serious constraint to tomato production worldwide and leads, 

especially in the tropics and subtropics, to large economical losses. Resistant tomato 

varieties are powerful tool to control TYLCV disease. However, nearly all commercially 

available tomato varieties are susceptible to TYLCV and resistance genes are mainly 

present in wild type tomato. Genetic engineering can provide a potential solution for the 

introduction of beneficial traits including virus resistance. This study was conducted to 

develop a transformation system for Solanum lycopersicum to create transgenic tomato 

plants resistant to TYLCV via a gene silencing (RNA interference, RNAi) approach. 

The study focused first on optimization of a transformation protocol using Agrobacterium 

tumefaciens EHA105 harbouring the helper plasmid pSoup and pGreenII as a vector for 

the delivery of genes into expanding leaves of different commercial tomato cultivars from 

Vietnam. As an efficient transformation system depends on both an efficient regeneration 

system as well as an efficient method for the introduction of foreign genes into the plant 

cells, optimization of media and conditions for shoot regeneration from expanding leaves 

of four tomato cultivars was performed using glucuronidase (gus) as a marker gene. The 

experiments showed phytohormones (trans-zeatin and indolacetic acid) have an effect to 

induce competent cells for transformation. Supplement of trans-zeatin in combination with 

indolacetic acid into pre-treatment, inoculation, as well as co-culture media resulted in a 

higher frequency of transformation and a stronger gus expression. As a wide variety of 

inoculation and co-culture conditions have been shown to be important for the 

transformation, the results of the study showed that the temperature during the inoculation 

and co-culture as well as the concentration of A. tumefaciens had the highest influence on 

the transformation efficiency. In addition, the experiments also showed that Agrobacterium 

inoculation was an additional stress to the explants, resulting in a more sophisticated 

glufosinate selection scheme, leading to an optimized protocol for tomato transformation 

using pSoup / pGreenII. 

Two inverted-repeat transgenes derived from different regions of  Tomato yellow leaf curl 

Thailand virus (TYLCTHV) DNA-A were used to transform and regenerate Solanum 
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lycopersicum var. FM372C plants that can trigger RNAi to induce TYLCV resistance. The 

first construct derived from the intergenic region included a part of the gene coding for the 

replication-associated protein (IR/Rep), while the second construct incorporated parts of 

the pre-coat protein and coat protein (Pre/Cp). The independent transgenic (To) plants 

were screened for the presence of the transgenes by PCR and Southern blot analyses. The 

T1 transgenic plants in the 5-7 leaf stage were verified by PCR for IR/Rep and Pre/Cp, 

respectively, before agroinoculation either with TYLCTHV DNA-A and DNA-B or 

Tomato yellow leaf curl Vietnam virus (TYLCVV). The disease development was recorded 

and presence of the viruses was determined by PCR and ELISA. Early symptoms, like 

yellowing and curling of leaves in non-transgenic and susceptible transformed plants 

occurred 3 weeks after inoculation and progressed into severe symptoms, characteristic of 

TYLCV disease, in the following weeks. Resistance to TYLCV was ranged form 

tolerance, typical in several Pre/CP transgenic lines to immunity of one IR/Rep transgenic 

line. In addition, IR/Rep transgenic plants were able to resist TYLCTHV as well as 

TYLCVV, while Pre/CP transgenic plants were only tolerant to the cognate virus, the 

TYLCTHV. The results of the study indicate that inverted repeat constructs are able to 

confer resistance to geminiviruses. 

 Keywords: Transformation, Solanum lycopersicum, TYLCV, RNAi, resistance. 
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Zusammenfassung 
 

 
Das Tomato yellow leaf curl virus (TYLCV), Familie Geminiviridae (Gattung: 

Begomovirus), stellt weltweit, vor allem aber in den Tropen und Subtropen, ein ernsthaftes 

Problem in der Tomatenproduktion dar, wobei es erhebliche wirtschaftliche Verluste 

verursachen kann. Eine Möglichkeit, um TYLCV wirkungsvoll zu bekämpfen, stellen 

resistente Tomatensorten dar. Fast alle im Handel erhältlichen Tomatensorten sind jedoch 

anfällig für TYLCV und Resistenzgene für Züchtungsprogramme finden sich 

hauptsächlich in Wildtyp-Tomaten. Gentechnische Ansätze könnten eine mögliche Lösung 

für die Etablierung von Resistenzen gegenüber Viren liefern. Diese Arbeit hatte zum Ziel 

ein Transformationssystem für Solanum lycopersicum zu optimieren, um damit transgene 

Tomatenpflanzen mit einer Resistenz gegen TYLCV über ein Gen-Silencing-Konzept 

(RNA-Interferenz, RNAi) zu entwickeln. 

 

Die Arbeiten konzentrierten sich zunächst auf die Optimierung des 

Transformationsprotokolls von Blattmaterial verschiedener kommerzieller Tomatensorten 

aus Vietnam unter Verwendung von Agrobacterium tumefaciens EHA105 mit dem 

Helferplasmid pSoup und pGreenII als Vektor für das zu transformierende Gen. Ein 

effizientes System zur Transformation hängt von der effektiven Regeneration und einer 

effektiven Methode für die Einführung fremder Gene in die Pflanzenzellen ab. Die 

Optimierung der Nährmedien und der Bedingungen für die Regeneration von vier 

Tomatensorten erfolgte mit Glucuronidase (gus) als Markergen. Die Versuche zeigten, 

dass Phytohormone (trans-Zeatin und Indolylessigsäure; IAA) einen Effekt auf die 

Kompetenz der Zellen für die Transformation ausübten. Die Zugabe von trans-Zeatin und 

IAA in die Vorkulturmedien, während der Inokulationsphase und in die Co-Kultur Medien 

führte zu einer höheren Transformationsfrequenz  und eine stärkeren GUS-Expression. Auf 

die Transformation hatten die Temperatur während der Inokulation und der Co-Kultur 

sowie die Konzentration von A. tumefaciens die stärksten Einflüsse. Darüber hinaus 

zeigten die Versuche auch, dass die Agrobacterium-Inokulation eine zusätzliche Belastung 

für die Regeneration der Explantate darstellte, so dass eine Verbesserung der Glufosinat-

Selektion nötig wurde, um zu einem optimierten Protokoll für die Tomatentransformation 

mittels pSoup / pGreenII zu gelangen. 
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Zwei als inverted-repeat angeordnete Regionen der DNA-A des Tomato yellow leaf curl 

Thailand virus  (TYLCTHV) wurden zur Transformation und Regeneration von Solanum 

lycopersicum var. FM372C verwendet, um RNAi gegen das TYLCV zu erzielen. Das erste 

Konstrukt umfasst die sogenannte „Intergenic region“ einschließlich eines Teils des Gens 

für das replikationassoziierte Protein (IR/Rep), während das zweite Konstrukt Teile des 

Pre-Hüllprotein- und Hüllproteingens (Pre/Cp) enthält. Die unabhängigen transgenen (To) 

Pflanzen wurden auf das Vorhandensein des jeweiligen Transgens mittels PCR und 

Southern-Blot-Analysen überprüft. Die T1-transgenen Pflanzen wurden im 5-7 Blatt-

Stadium erneut durch PCR auf die Präsenz von IR/ Rep bzw. auf Pre/Cp geprüft, bevor die 

Pflanzen entweder mit TYLCTHV DNA-A und DNA-B bzw. mit Tomato yellow leaf curl 

Vietnam virus (TYLCVV) agroinokuliert wurden. Die Symptome wurden bonitiert und das 

Auftreten der Viren durch PCR und ELISA bestimmt. Frühe Symptome, wie Gelbfärbung 

der Blätter und Blattrollen in nicht-transgenen und anfällig reagierenden transformierten 

Pflanzen traten 3 Wochen nach Inokulation auf. Mit Fortschreiten der Erkrankung kam es 

zu schweren Symptomen, die charakteristisch für die TYLCV Krankheit waren. In 

mehreren Pre/Cp transgenen Linien wurde eine Toleranz gegen das TYLCTHV, nicht aber 

gegen das TYLCVV gefunden. Eine Linie der IR/Rep transgenen Pflanzen reagierte mit 

Immunität auf die Inokulation mit TYLCTHV und TYLCVV. Die Ergebnisse zeigen, dass 

mit inverted-repeat Konstrukten Toleranz bzw. Resistenz auch gegen Geminiviren erzielt 

werden kann. 

  

Stichworte: Transformation, Solanum lycopersicum, TYLCV, RNAi, Resistenz 
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                                                        CHAPTER 1 

General information 

1.1 General introduction 

Vegetables cultivated in tropical and subtropical regions are commonly influenced by 

different diseases including virus diseases. Currently, viruses from three important genera, 

including Potyvirus, Begomovirus, and Tospovirus, cause a severe decrease in crop yields 

worldwide (Rybicky et al., 1999). One important affected vegetable is cultivated tomato 

(Solanum lycopersicum, formerly known as Lycopersicum esculentum) which belongs to 

the Solanaceae family (Rick, 1960). 

Among the geminiviruses, Tomato yellow leaf curl virus (TYLCV), which belongs to the 

genus Begomovirus, influences tomato production in many tropical and subtropical regions 

and causes yield reduction up to total loss of the crop (Pico et al., 1996; Czosnek and 

Laterrot, 1997). Tomato yellow leaf curl disease has long been known in the Middle East, 

North, and Central Africa, as well as in Southeast Asia. The disease has spread to Southern 

Europe, the Caribbean region and the United States resulting in a worldwide distribution 

(Figure 1). Therefore, the disease causes economically important problems for tomato 

production around the world (Pico et al., 1996; Czosnek and Laterrot, 1997; Moriones et 

al., 2000). 

The traditional management methods to prevent TYLCV diseases depend on controlling 

the vector transmitting the viruses (whiteflies). However, control is difficult due to the very 

wide host range and the complex interrelationships among virus, host, vector, virus source 

and environment. To date, insecticidal spraying is the most frequently used method to 

control the vectors. Nevertheless, chemical treatments are very often only partially 

effective and can cause adverse environmental effects. Thus, one of the best ways to 

eliminate the yield losses due to viruses is to develop tomato varieties that are resistant or 

tolerant to a given virus. 
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Figure 1: Distribution map of Tomato yellow leaf curl virus according to EPPO report,    

2006 (Source: www.eppo.org/QUARANTINE/virus/TYLC_virus/TYLCV_map.htm). 

In principle, resistance traits can be incorperated into commercial tomato varieties by 

crossing with a virus resistant variety. However, all commercial tomato cultivars have been 

found to be completely susceptible to TYLCV, urging breeders to screen wild tomato 

accessions for potential resistance traits (Pilowsky and Cohen, 1990; Pilowsky and Cohen, 

2000; Friedmann et al., 1998; Vidavsky et al., 1998a, Vidavsky et al., 1998b; Zamir et al., 

1994; Kasrawi et al., 1988; Pico et al., 1999). However, so far only a few resistance genes 

were mapped. The resistance gene TY-1 to TYLCV, on chromosome 6 of L. chilense, has 

been identified. Two more resistance modifier genes were mapped to chromosome 3 and 7 

of L. chilense (Zamir et al., 1994). Another TYLCV-resistance gene, originating from L. 

pimpinellifolium had been mapped using RAPD PCR-based markers to chromosome 6, but 

to a different locus from TY-1 (Chague et al., 1997). In addition, a resistance gene against 

the Tomato leaf curl Taiwan virus was mapped to chromosomes 8 and 11 of L. hirsutum 

(Hanson et al., 2000). The first TYLCV-resistant commercial cultivar resulting from 

breeding programmes is TY-20, which carries a resistance derived from L. peruvianum, 

http://www.eppo.org/QUARANTINE/virus/TYLC_virus/TYLCV_map.htm
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which shows a delay both in symptom development and viral accumulation (Pilowsky and 

Cohen, 1990; Rom et al., 1993). In most cases, the sources of TYLCV resistance appeared 

to be controlled by multiple genes (Zakay et al., 1991; Pico et al., 1996; Pico et al., 1999). 

Examples of the different resistant lines are given in the review by Lapidot and Friedmann 

(2002). Nevertheless, after 20 years of breeding only a few commercial genotypes with 

increased levels of TYLCV resistance are on the market. 

There are several problems to be overcome in breeding of resistant varieties by crossing 

between cultivated Solanum lycopersicum and wild type tomatoes. The first are breeding 

barriers between these species, which restrict breeders access to these gene pools. The use 

of in vitro embryo culture or embryo rescue for zygote survival is needed, but plantlet 

recovery through embryo culture from the cross between cultivated Solanum lycopersicum 

and wild types is usually very low. The second is that undesired traits are being transferred 

with the resistance traits. Furthermore, quite often the resistance trait is controlled by 

multiple genes. Consequently, it takes a very long time to obtain a commercial variety 

using a back crossing program. An example of this work was reported by Vidavsky et al. 

(1998b), which showed that after more than 20 years of work the best cultivars and 

breeding lines were only tolerant to the virus rather than immune. The third disadvantage is 

that resistant gene pools are limited and usually confer specific resistances. These 

resistances will soon be overcome by the virus due to genetic diversity and the high 

mutation rate. Therefore, it is necessary to find a durable solution to overcome the 

disadvantages of conventional breeding. 

Genetic engineering has the potential to provide an abundant source of beneficial plant 

traits, including virus resistance. Different approaches have been considered in the 

development of transgenic resistance to geminiviruses due to the expression of either 

pathogen derived resistance (PDR) or non pathogen derived resistance. Pathogen derived 

resistance is mediated either by protein or by gene silencing including DNA methylation or 

RNA interference (RNA-mediated). During the last two decades, different strategies have 

been applied in the development of transgenic resistance against viruses including 

antisense RNA, the use of coat protein genes, intact or truncated replication associated 

proteins, defective interfering DNA and viral activated antiviral proteins. In protein-

mediated resistance, proteins encoded by the transgenes interfere in some manner with the 

virus function or act as dominant negative inhibitors to block virus replication, 
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accumulation, and systemic infection (Beachy, 1997; Goldbach et al., 2003). For 

geminiviruses, expression of viral coat proteins, truncated or mutant viral replicase, and 

movement proteins have been investigated and succeeded to enhance virus resistance in 

different plants (Kunik et al., 1994; Hong and Stanley, 1996; Noris et al., 1996b; Brunetti 

et al., 1997; Hanson and Maxwell, 1999; Sangare et al., 1999; Hou et al., 2000; Chatterji et 

al., 2001; Lucioli et al., 2003; Antignus et al., 2004; Shivaprasad et al., 2006). Another 

approach is to express antisense transgenes that are complementary to a target mRNA to 

inhibit expression of homologous genes by preventing translation or promoting 

degradation. This technology has been successfully applied to engineer resistance to 

geminiviruses (Day et al., 1991; Bejarano and Lichtenstein, 1994; Aragão et al., 1998; 

Bendahmane and Gronenborn, 1997; Praveen et al., 2005). Recently, RNA silencing has 

been found to be a robust technology for silencing genes by either suppressing 

transcription (transcriptional gene silencing [TGS]) or by activating a sequence-specific 

RNA degradation process (Poogin et al., 2003). RNA silencing has been successfully used 

to develop resistance against RNA viruses (Bucher et al., 2006; Tougou et al., 2006; Di 

Nicola-Negri et al., 2005;  Missiou et al., 2004; Mitter et al., 2003; Pandolfini et al., 2003; 

Kalantidis et al., 2002; Smith et al., 2000). For DNA viruses, Pooggin et al. (2003) 

demonstrated that transient expression of both sense and antisense Vigna mungo yellow 

mosaic virus (VMYMV) promoter sequences in an inverted-repeat resulted in complete 

recovery of infected VMYMV plants. The recovery of the whole plant from VMYMV 

infection indicated that the interfering signal spread throughout the plant. They proposed 

that RNA interference, as has been described for RNA viruses, is also possible for a DNA 

virus. A RNA-based strategy to control geminiviruses was demonstrated when tobacco and 

tomato plants were transformed with constructs derived from the AC1 gene of African 

cassava mosaic virus (ACMV) or transgenes developed from the Rep gene of TYLCV. 

These plants were highly resistant to either Cotton leaf curl virus or TYLCV, respectively 

(Asad et al., 2003; Yang et al., 2004). It has been shown that PTGS in plants can be 

triggered at high efficiency by the presence of an inverted-repeat in the transcribed region 

of a transgene (Chuang and Meyerowitz, 2000; Hamilton et al., 1998; Levin et al., 2000). 

An intron-hairpin structure could enhance the stability and efficiency of duplex RNA 

formation inducing the PTGS response in such a way that the plant could become immune 

to a RNA virus infection (Smith et al., 2000). The present research followed this strategy, 

consisting in the design of a construct arranged in a way that, when transcribed, renders 
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intron-hpRNA directed against the TYLCV C1-gene and V1-gene to interfere with 

TYLCV replication and produces tomato plants resistant to two isolates of TYLCV such as 

Tomato yellow leaf curl Thailand virus (TYLCTHV) as well as Tomato yellow leaf curl 

Vietnam virus (TYLCVV).  

1.2 Literature review 

1.2.1 Tomato yellow leaf curl virus – Taxonomy 

Tomato yellow leaf curl virus (TYLCV) is a true ssDNA plant virus, a member of the 

family Geminiviridae, of the genus Begomovirus. Geminiviridae is a large plant-infecting 

virus family, divided into four genera: Curtovirus, Topocuvirus, Mastrevirus and 

Begomovirus (Fauquet et al., 2008). The division is based on host range, symptom 

phenotype, insect vector, coat protein characteristics and nucleotide sequence identity. The 

morphology of Geminiviridae is unique, two incomplete icosahedra, with a T=1 surface 

lattice, (approx. 20 nm diameter and 30 nm length) form a virion. TYLCV, like all 

members of Geminiviridae, has geminate (twinned) particles, 18-20 nm in diameter, 30 nm 

long, apparently consisting of two incomplete icosahedra joined together in a structure 

with 22 pentameric capsomers and 110 identical protein subunits (Figure 2).  

 

 

Figure 2: Particles of Tomato yellow leaf curl 
virus. Electron micrograph of purified, negatively 
stained TYLCV particles. Bar = 100 nm (picture 
taken from Gafni, 2003). 

 

 

All members of Geminiviridae possess single stranded DNA genomes consisting of one or 

two components and are therefore called monopartites or bipartites, respectively. The 

genomic components are transcribed, replicated and encapsidated in the nuclei of infected 

plant cells and are able to move within and between the cells. 
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Three species currently belong to the genus Curtovirus (type species: Beet curly top virus) 

along with one tentative species. The genus includes viruses with monopartite genomes, 

encoding six to seven proteins, which are transmitted by leafhoppers (Hemiptera: 

Cicadellidae) and prominently infect dicotyledonous plants (sugar beet, melon and 

tomato). 

The Mastrevirus genus include the type species Maize streak virus, 12 species and six 

tentative species, which have a monopartite genome encoding four proteins. The infection 

of this genus is found on monocotyledonous plants, transmitted through leafhoppers 

(Hemiptera: Cicadellidae) in a persistent, circulative and non-propagative manner. 

The genus Topocuvirus has only one representative (Tomato pseudo-curly top virus) and 

the differences of this virus to other Geminiviridae are based on the use of other host 

organisms, the treehoppers (Hemiptera: Micrutalis malleifera) and on the fact that this 

particular virus has evolved by recombination between unknown viruses belonging to 

different genera (Briddon et al., 1996). The Topocuvirus genus has a monopartite genome 

encoding six proteins. On the virion sense strand, two proteins are encoded: the movement 

and the coat protein (MP and CP, respectively). 

Begomovirus is the only genus in the Geminiviridae family, which is either monopartite or 

bipartite, composed of one ssDNA (DNA A-like) on which all of the six genes are residing 

or of two genomic components encoding five to six (DNA-A) and two proteins (DNA-B), 

respectively (Stanley et al., 2005). It is the most important genus, not only because it 

covers more than 80% (117 of 133) of all known geminiviruses ( Stanley et al., 2005), but 

also due to its heavy impact on agriculture, causing up to 100% yield losses in different 

important crops. These viruses are transmitted by whiteflies (Bemisia tabaci) and infect 

dicotyledonous plants; every year the number of species discoved belonging to this genus 

is increasing (Fauquet et al., 2008).  

1.2.2 Begomoviruses-genome structure 

Begomoviruses can be divided according to the number of mono- and bipartite virus 

genomic components. Monopartite viruses consist only of the DNA-A component, while 

bipartite begomoviruses consist of two different DNA molecules: the A and B component. 

The A component of begomoviruses typically consists of six genes, which are organized 

bidirectionally (Figure 3).  
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Figure 3: Genomic organisation of begomoviruses. (A) Bipartite begomoviruses; (B) 
Monopartite begomoviruses. ORFs are denoted as belonging to either the complementary 
strand (C), or the virion strand (V) (Stanley et al., 2005). 
 

Four genes (AC1/C1, AC2/C2, AC3/C3, and AC4/C4) are arranged in complementary 

direction. AC1 encodes a replication-associated protein (REP; Elmer et al., 1988) which is 

essential for viral DNA replication in association with host factors (Arguello-Astorga et al., 

2004). AC2 encodes a transcriptional activator protein (TrAP) that transactivates the 

expression of the coat protein gene and the BV1 movement gene of the B component 

(Sunter and Bisaro, 1991; Sunter and Bisaro, 1992). AC3 encodes the replication enhancer 

protein (REn) that regulates the virus replication rate, possibly via the activation of an 

early gene (AV1/V1) required for DNA synthesis (Azzam et al., 1994; Settlage et al., 

2005).  In sense direction, AV1/V1 and AV2/V2 encode coat and movement proteins 

respectively (Padidam et al., 1996). The B part, which can not replicate in the absence of 

the A component, consists of a BV1 gene encoding a nuclear-shuttle protein (NSP) and 

BC1 protein directly involved in movement, which contribute functions involved in virus 

movement and symptom development (Sanderfoot and Lazarowitz, 1995; Gafni and Epel, 

2002; Hehnle et al., 2004). 
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The A and B components in bipartite begomoviruses share a common region 

(CR)/intergenic region (IR), which consists of a block of approximately 200 bps (Sunter 

and Bisaro, 1991; Lazarowitz, 1992; Stanley et al., 2005). The CRs are virtually identical 

in sequence in a given bipartite begomovirus, but are completely different in sequence 

among the other geminiviruses. The CR contains a GC-rich inverted repeat sequence that 

has the potential to form a stem-loop structure. The inverted repeats flank an 11 to 16 base 

AT-rich sequence that is hypothesised to be the origin of the rolling circle replication 

(Lazarowitz et al., 1992; Heyraud-Nitschke et al., 1995; Stanley et al., 2005). 

Monopartite begomoviruses, such as isolates of Tomato yellow leaf curl virus from the Old 

World and Tomato golden mosaic virus (TGMV), only have a single genomic component 

of about 2.7 kb designated as DNA-A (Kheyr-pour et al., 1991; Navot et al., 1991; Yin et 

al., 2001). The ssDNA genome contains six open reading frames (ORFs). The arrangement 

of TYLCV ORFs is similar to that of the DNA-A component of bipartite begomoviruses. 

The ORFs encoding REP, TrAP, and REn partially overlap, and a small ORF (C4) is 

located within the Rep ORF, but in a different reading frame (Dry et al., 1993; Noris et al., 

1994; Ha et al., 2008). AC4 encodes an important symptom determinant (Rigden et al., 

1994; van Wezel et al., 2002; Selth et al., 2004). In addition, the satellite DNA-ß molecules 

associated with monopartite begomoviruses are involved in symptom enhancement 

(Mansoor et al., 2003; Cui et al., 2004; Saeed et al., 2007).  

1.2.2.1 The intergenic region - promoters and transcription 

The CR contains a hairpin structure with the characteristic geminiviral nonanucleotide 

sequence TAATATT/AC in the loop at the expected origin of virion strand DNA 

replication (Hanley-Bowdoin et al., 1999) and binding sequences, which are recognized by 

the AC1 (REP) protein (Arguello-Astorga et al., 1994) as well as regulatory regions for 

bidirectional promoters for transcription of the viral-sense genes (V2 and V1) and the 

complementary sense genes C1 and C4 (Hanley-Bowdoin et al., 1999). Most of the 

transcription data on begomoviruses came from analyses using Tomato golden mosaic virus 

(TGMV; Hanley-Bowdoin et al., 1988; Sunter et al., 1989), ACMV (Zhan et al., 1991) or 

Tomato leaf curl virus (ToLCV; Mullineaux et al., 1993). Mostly, but not exclusively, at 

the 5′-end of the inverted repeat/nonanucleotide sequence, short (8-12 nucleotides) direct 

repeat sequences, so called “iteron sequences”, are found (Argüello-Astorga et al., 1994). 
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These are recognised and bound by the REP, and are assumed to act specificity as 

determinants for interaction of a given REP with its coding DNA (Eagle et al., 1994; 

Fontes et al., 1994a; Fontes et al., 1994b). Additional evidence for such sequence-specific 

origin recognition was also derived by using the two species TYLCV and Tomato yellow 

leaf curl Sardinia virus (TYLCSV; Jupin et al., 1995). The results have led to a model for 

specificity of geminivirus REP-origin recognition in general (Argüello-Astorga and Ruiz-

Medrano, 2001). However, biochemical data on the direct binding of REP to such 

sequences remain limited (Behjatnia et al., 1998; Chatterji et al., 1999; Chatterji et al., 

2000). The potential importance of intergenic region sequences for virus-host interactions 

was increased by the finding of Poogin et al. (2003) that these sequences, in a so far 

unexplained fashion, may contribute to silencing of geminivirus gene expression. 

1.2.3 Viral proteins 

1.2.3.1 The coat protein  

The coat protein (CP) of TYLCV is encoded by the V1 gene on the viral sense strand. The 

main role of the CP is to form particles which encapsidate the DNA. It is the only known 

structural component of the viral capsid in TYLCV (Lazarowitz, 1992). Here, the coat 

protein is essential for the infection, (Boulton et al., 1989; Lazarowitz et al., 1989), 

systemic movement of the virus into the host cell nucleus (Wartig et al., 1997), and insect 

transmission (Briddon et al., 1990; Azzam et al., 1994; Höfer et al., 1997; Noris et al., 

1998; Morin et al., 1999). An intact CP is necessary for the spread of Tomato leaf curl 

virus (TLCV) from Australia (Rigden et al., 1993) and other related monopartite 

geminiviruses (Boulton et al., 1989; Briddon et al., 1989), and therefore suggests that 

within the plant, the monopartite virus moves in the form of complete encapsidated 

particles (Noris et al., 1998). Noris et al. (1998) studied two defective genomic DNAs of 

the TYLCV and in comparison with a wild type Tomato yellow leaf curl Sardinia virus 

(TYLCSV). They found that single amino acid variations in the CP at positions 129, 134 

and 152 can affect its transmissibility and infectivity.  

The CP is localised in the nucleus and functions as a nuclear shuttle protein (Rojas et al., 

2001). Latter research confirmed that the CP of bipartite and monopartite begomoviruses 

contains sequences which may be related to nuclear localisation and nuclear export signals 
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(NLS and NES; Unseld et al., 2001; Unseld et al., 2004). Recently, Zrachya et al. (2007b) 

showed that siRNA targeted against the CP of TYLCV can confer virus resistance in 

transgenic tomato plants. 

In bipartite geminiviruses the CP is not required for virus spread and symptom 

development (Gardiner et al., 1988; Padidam et al., 1996). However, mutations in the CP 

do influence the transmissibility by the vector. Höhnle et al. (2001) exchanged the CP in a 

Abutilon mosaic virus (AbMV) isolate, which is not whitefly transmissible, with the CP of 

Sida golden mosaic virus (SiGMV-[Hoyv]), a vector transmissible virus. Only the 

recombinants containing (SiGMV-[Hoyv]) CP were transmitted by the whitefly.  

Moreover, Höhnle et al. (2001) were able to re-establish the transmission of AbMV by the 

exchange of two amino acids at positions 124 and 149. 

1.2.3.2 The precoat protein 

The tomato infecting viruses differ in their number of open reading frames (ORFs). In the 

Old World viruses, either bipartite or monopartite, two overlapping ORFs (CP and AV2) 

on the A component can be found. In the New World viruses, like TGMV and Tomato leaf 

crumple virus (TLCrV), only the ORF for the coat protein is present.  The AV2/V2 or MP 

genes are named according to the particular begomovirus, and encode the “precoat” protein 

(Padidam et al., 1996). This protein may be involved in the particle movement of 

monopartite viruses. In bipartite begomoviruses the precoat protein may improve the 

fitness of the virus and may be dispensable for movement (Rothenstein et al., 2007).  

Recently, Zrachya et al. (2007a) identified a functional V2 protein of Tomato yellow leaf 

curl Israel virus (TYLCV-[IL]).  In silencing assays, V2 inhibited the RNA silencing of a 

reporter gene (GFP) construct. In contrast with the increasing of transcript and protein 

levels, the accumulation of GFP-specific short interfering RNAs were not found. This 

suggests that V2 is involved in suppression of the RNA silencing pathway, probably 

subsequent to the Dicer-mediated cleavage of dsRNA.  

1.2.3.3 The replication associated protein (REP)  

The replication associated protein is encoded by the AC1/AL1 (C1/L1) gene on the 

complementary viral strand of the A component. The N-terminal domain of the REP is 

involved in initiation of the DNA replication (Koonin and Ilyina, 1992; Laufs et al., 
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1995a). It binds to highly specific viral DNA sequences (referred to as iterons) which are 

located at the conserved common region (Fontes et al., 1994b), represses its own promoter 

(Eagle et al., 1994; Sunter et al., 1993) and cleaves and ligates DNA (Laufs et al., 1995a). 

This is identified by in vitro and in vivo analysis that the tyrosine T103 initiated the 

cleavage and is the physical link between the REP and its origin DNA (Laufs et al., 

1995b). It also plays a role as a DNA helicase (Clerot and Bernardi, 2006). Another 

biochemical activity of REP is its capacity to hydrolyse nucleoside triphosphates. Mutants 

of TYLCSV REP impaired in this function were found to be replication deficient (Desbiez 

et al., 1995). REP protein can interact with a number of host proteins (Ach et al., 1997; 

Castillo et al., 2003; Castillo et al., 2004; Kong and Hanley-Bowdoin, 2002; Luque et al., 

2002) and with a plant retinoblastoma homologue, which regulates the cell cycle and 

differentiation (Arguello-Astorga et al., 2004; Kong et al., 2000). This interaction provides 

the necessary requirements by reprogramming mature plant cells to replicate viral DNA, 

thus promoting infection (Kong et al., 2000). TYLCSV REP has been shown to directly 

interact with the proliferating cell nuclear antigen [PCNA], possibly to recruit this “sliding 

clamp” to the viral origin and the replisome (Castillo et al., 2003).  

1.2.3.4 The replication enhancer protein (REn) 

AC3 is an auxiliary replication enhancing protein that increases viral DNA accumulation 

(Gutierrez, 1999; Settlage et al., 2005; Sunter et al., 1990). AC3 forms homo-oligomers 

and interacts with AC1 and host factors (Castillo et al., 2003; Selth et al., 2005; Settlage et 

al., 1996; Settlage et al., 2001; Settlage et al., 2005). TYLCSV REn has been shown to 

interact with both Rep and PCNA (Castillo et al., 2003), the sliding clamp of the 

replisome. Thus, it can be predicted that when REP, REn, and PCNA of the replisome act 

in a balanced and concerted way will result in efficient geminivirus DNA replication. 

1.2.3.5 The transcriptional activator protein (TrAP) 

 The TrAP is encoded by the AC2/C2 gene. It is a multifunctional regulatory protein. TrAP 

N-terminus includes a nuclear localisation sequence (van Wezel et al., 2001), a central core 

with a zinc finger-like region (Noris et al., 1996a) and a distinct acidic C-terminal 

activation domain (Hartitz et al., 1999). TrAP enhances transcription of the virion-sense 
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promoter of DNA-A as well as the BV1 and BC1 promoters of DNA-B in bipartite 

begomoviruses (Haley et al., 1992; Sunter and Bisaro, 1992). It also has been implicated as  

a suppressor of RNA silencing (Selth et al., 2004; Trinks et al., 2005; van Wezel et al., 

2001; Vanitharani et al., 2004; Voinnet et al., 1999; Wang et al., 2005).  

1.2.3.6 The AC4/C4 protein 

The AC4 gene is located within the AC1 coding region but in a different reading frame. 

Experiments with TGMV showed that C4 protein is not essential for infectivity (Elmer et 

al., 1988). However, for TLCV it was reported as a virulence factor (Krake et al., 1998; 

Selth et al., 2004) and a TYLCV C4 mutant was unable to move systemically in tomato 

plants (Jupin et al., 1994). Recently, ACMV-[CM]-C4 and Sri Lankan cassava mosaic 

virus (SLCMV)-C4 were reported to have the capacity for suppression of gene silencing 

(Vanitharani et al., 2004; Vanitharani et al., 2005).  

1.2.3.7 The movement proteins (BC1 and BV1) 

The genes encoded by the B component of bipartite begomoviruses, BV1 and BC1, 

provide functions required for virus movement. BV1, the nuclear shuttle protein (NSP) and 

BC1, the cell-to cell movement protein (MP), coordinate the movement of the viral DNA 

from the nucleus and across the cell wall to a contiguous cell (Noueiry et al., 1994; 

Sanderfoot and Lazarowitz, 1995; Sanderfoot and Lazarowitz, 1996; Gafni and Epel, 

2002).  However, it is not precisely known if a single stranded or double stranded DNA 

form is transported. BV1 packages the viral DNA and interacts with BC1 in the cytoplasm 

to be transported through the plasmodesmata into the neighbouring cell (Lazarowitz and 

Beachy, 1999; Hehnle et al., 2004). Both BC1 and BV1 movement proteins of different 

bipartite begomoviruses are reported as virulence determinants in different host plants (von 

Arnim and Stanley, 1992; Pascal et al., 1993; Ingham et al., 1995; Duan et al., 1997a; Hou 

et al., 2000; Carvalho and Lazarowitz, 2004; Hussain et al., 2005).  

1.2.3.8 Beta satellites and the βC1 protein 

A strange class of DNA molecules has been found associated with certain Old World 

begomoviruses (for a review see Briddon and Stanley, 2006). The search for potentially 

missing DNA components in monopartite viruses led to the discovery of an additional 

circular ssDNA molecule of about 1,350 bases, named DNA-β. DNA-β encodes a single 
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protein (βC1) which has a nuclear localization and functions as a suppressor of RNA 

silencing (Mansoor et al., 2003; Briddon et al., 2003; Stanley, 2004; Cui et al., 2005). 

DNA-β molecules are required for infection of hosts Ageratum conyzoides or cotton. 

Expression of the βC1 protein results in an increase in symptom severity of the respective 

begomovirus (Saeed et al., 2005; Saunders et al., 2004). This is also true for the TYLCVs, 

where βDNAs accompany Tomato leaf curl China virus (ToLCCNV) (Zhou et al., 2003) 

and TYLCTHV (Cui et al., 2004). So-called DNA-1 molecules were found closely 

connected to the discovery of the DNA-β satellite-like molecules, yet they are another class 

of small DNAs associated with certain Old World monopartite begomoviruses (Mansoor et 

al., 1999). They share an A-rich sequence with DNA-β and encode a nanovirus Rep-related 

protein. Nothing at all is currently known about their function for begomovirus biology 

(Briddon et al., 2004). 

1.2.4 Infection cycle of begomovirus  

1.2.4.1 Begomovirus transmission 

Begomoviruses are transmitted by whitefly (Bemisia tabaci [B.tabaci], Homoptera: 

Aleyrodidae) and have a circulative mode of transmission (Cohen et al., 1989), requiring 

an average of 6-12 h prior to a transmission event (Fargette et al., 1996). The transmission 

experiments conducted by Zeidan and Czosnek (1991) of TYLCV showed that whitefly 

feeding periods of 4 h or longer were necessary to achieve TYLCV transmission rates near 

to 90%. The whiteflies were able to pass the virus 8 h after the start of the acquisition 

access period (AAP) in the research of Ghanim et al. (2001a).  It has been reported that the 

efficiency of transmission is gender-dependent and females were proved as a more 

efficient vector of TYLCV and ToLCBV than males (Muniyappa et al., 2000; Ghanim et 

al., 2001a). Although for long time TYLCV was not supposed to be transmissible to the 

progeny, since it was though only adults or larvae could acquire the virus. However, 

Ghanim et al. (1998) noted that TYLCV-Mld could be transmitted through the egg for at 

least two generations. It was also reported that TYLCV could be sexually transmitted 

among whiteflies in the same biotype (from viruliferous males to non viruliferous females) 

and the recipient insects were able to efficiently inoculate tomato test plants (Ghanim and 

Czosnek, 2000; Ghanim et al., 2007).  
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Hunter et al. (1998) proposed a model for the movement of begomoviruses in the whitefly 

vector carrying Tomato mottle begomovirus (ToMoV) and Cabbage leaf curl begomovirus 

(CaLCV) in various tissues of B. tabaci B biotype by immunfluorescent labelling of viral 

coat protein in freshly dissected whiteflies. According to his model, in the vector B. tabaci 

virus particles are ingested along with plant fluids into the whitefly oesophagus and 

foregut, after which nutrients and begomoviruses are concentrated in the filter-chamber of 

the whitefly. Begomovirus particles are absorbed to specific sites on the alimentary 

membrane or to sites along the anterior region of the midgut, and then move out of these 

tissues into the hemolymph, eventually invading the salivary glands. A microscopic 

analysis of the morphology and ultrastructure of the digestive, salivary, and reproductive 

systems of adult B. tabaci B type from Ghanim et al. (2001b) confirmed the prior findings. 

While feeding on a plant, the virus particles are introduced into a plant cell by the vector. 

Whiteflies feed on the phloem by inserting their stylets into plant tissue and locating the 

vascular tissue. The phloem tissue transports carbohydrates produced as a result of 

photosynthesis and other substances throughout the plant, which increases rapidly the virus 

infection in all the plant parts. 

1.2.4.2 Infection cycle in plants 

After being delivered by the insect vector into the phloem of susceptible host plants, the 

virus particles find their way into permissive cells and subsequently into the nucleus of 

these cells. To infect the plant, the virus begins to replicate and spreads from cell-to-cell. In 

most plant cell nuclei, begomovirus DNA replication is accomplished through a rolling 

circle mechanism with a dsDNA intermediate. This process can be divided into two steps 

(Figure 4):  

a) Conversion of single-stranded virion DNA into a double-stranded form that serves as the 

template for transcription of the viral genes;  

b) Production of single-stranded virion DNA from the double-stranded intermediate. 
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Figure 4: A model of Geminivirus replication and cell-to-cell movement in plants. 

(Modified from Vanitharani et al., 2005). 

 

Begomoviruses have a small genome and do not encode their own DNA polymerases. 

Therefore, the viruses depend on host cell factors for replication in order to amplify their 

genome, as well as transcription factors. The replication takes place in nuclei of mature 

cells, which are not competent for DNA replication, so an early step in geminivirus 

infection may be the induction of host DNA replication enzymes (Nagar et al., 1995; Nagar 

et al., 2002; Egelkrout et al., 2001). At the early step, the single-stranded circular DNA is 

converted to a double-stranded circular intermediate. This step is still not fully understood 

in molecular terms, but the use of host factors must be involved as well as using the viral 

plus-sense DNA strand as a template to produce a complementary negative-sense strand. 

The following step is the creation of an intermediate single-stranded virion DNA from the 

double-strand. First REP, TrAP and other proteins are synthesized in the cytoplasm, then 

the double-stranded DNA intermediates serve as a template for rolling circle replication. A 

new ssDNA is syntheszied from the dsDNA template by a rolling circle mechanism 
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involving REP and REn of virus in association with host factors (Hanley-Bowdoin et al., 

2004; Castillo et al., 2004; Settlage et al., 2005; Selth et al., 2005; Morilla et al., 2006).   

 

Geminiviruses manage the transport of their DNA within plants with the help of three 

proteins, the coat protein (CP), the nuclear shuttle protein (NSP), and the movement 

protein (MP). CP and NSP revealed a sequence-independent affinity for both double-

stranded and single-stranded DNA (Hehnle et al., 2004). In the current model for bipartite 

begomovirus cell-to-cell movement, BV1 coordinates the movement of viral DNA from 

the nucleus to the cytoplasm through the nuclear pore complex (NPC) and BC1 mediates 

cell-to-cell movement across the cell wall via plasmodesmata (PD) (Gafni and Epel, 2002; 

Lazarowitz and Beachy, 1999; Noueiry et al., 1994; Rojas et al., 2005; Sanderfoot and 

Lazarowitz, 1995). In case of the monopartite viruses, CP mediates nuclear export of ds-

DNA RF for cell-to-cell and long distance movement within the plant (Rojas et al., 2001). 

They proposed a model that at the nuclear periphery, V1 serves to enhance nuclear export 

of viral DNA and then mediates the delivery of viral DNA to the cell periphery, possibly 

through an interaction with the endoplasmic reticulum (ER). The C4, through a putative N-

terminal myristoylation domain, acts in the delivery of the viral DNA to the PD and 

mediates cell-to-cell transport. Upon entry into an adjacent uninfected phloem cell, the 

viral DNA moves across the nuclear pore complex to repeat the infection cycle. To initiate 

a systemic infection, the viral DNA or virions must cross the specialized PD of the 

companion cell-sieve element (CC-SE) to enter the SE for delivery to sink tissues (Rojas et 

al., 2001). 

1.2.5 Resistance breeding through transgenic approaches 

Multiple approaches to the engineering of resistance to geminiviruses are currently being 

evaluated for the development of crops resistant to geminiviruses. Most of these have 

involved pathogen-derived resistance strategies. The pathogen derived resistance (PDR) 

was at first proposed by Sanford and Johnson (1985) and reported by Abel et al. (1986), 

suggesting the resistance by transforming a susceptible plant with DNA sequences derived 

from the pathogen itself. The authors proposed that the expression of certain gene products 

during infection could interfere with the pathogene. Many advances have been made 

during the last years covering several virus-plant combinations. Even for geminiviruses, 
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there also have been some successful approaches reported although it seems more difficult 

to cope with DNA-, than with RNA-viruses. 

 In general, the transgenic resistance strategies (including PDR and non-PDR) can be 

classified into three categories; (1) protein mediated-resistance, (2) gene silencing known 

as RNA/DNA-mediated resistance, and (3) resistance due to the expression of non-

pathogen derived antiviral agents. 

1.2.5.1 Pathogen-derived resistance through the expression of viral 

proteins 

While begomoviruses have six open reading frames, most of the attention on the 

development of resistance has been focused on the replication-associated protein (REP), 

movement proteins (MPs), and coat protein (CP) genes.  

1.2.5.1.1 REP-mediated resistance  

The multifunctionality of REP and the central role this protein plays in geminivirus 

replication have made it a favoured target of pathogen derived resistance strategies. A wide 

variety of Rep constructs have been used to produce virus resistance with a vast array of 

results. A number of reports indicate that full-length Rep constructs result in few or no 

transformants or produce transgenic plants with altered phenotypes due to phytotoxic 

effects (Bendahmane and Gronenborn, 1997; Hanley-Bowdoin et al., 1990; Nagar et al., 

1995). Thus, researchers have used various truncated or mutated Rep constructs to 

overcome the phytotoxic effects of expressed REP in transgenic plants.  

The repression of virus replication was observed in N.benthamiana protoplasts expressing 

N-terminally truncated REP (T-Rep) (Hong and Stanley, 1995; Brunetti et al., 2001) and T-

Rep transgenic plants showed a certain level of resistance (Noris et al., 1996b). Expression 

of the N-terminal region of Tomato leaf curl New Delhi virus is sufficient to interfere with 

binding and oligomerisation of ToLCV REP as well as REPs of different geminivirus 

origin. This led to a decrease of more than 70% in DNA accumulation of the homologous 

virus and also decreases a 20-50% in DNA accumulation of heterologous ACMV, 

Huasteco yellow vein virus and Potato yellow mosaic virus (Chatterji et al., 2001). 

Similarily, studies by Lucioli et al. (2003) showed that over-expression of T-Rep of a 

Tomato yellow leaf curl Sardinia virus also conferred resistance to the homologous and 
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heterologous viruses. However, in this case the resistance is due to different mechanisms. 

Homologous virus resistance was shown to occur as a result of truncated REP binding to 

the intergenic region (IR) and tightly repressing the viral Rep promoter, whereas it affected 

a heterologous geminivirus by the formation of dysfunctional complexes with the REP of 

the heterologous virus. In both cases, however, resistance was eventually overcome by 

virus-mediated post-transcriptional homology-dependent gene silencing. 

In addition to truncated REPs, over-expression of REP containing function-abolishing 

mutations in conserved motifs with key roles in viral replication has also shown potential 

to confer resistance to geminiviruses. Hanson and Maxwell (1999) over-expressed REP 

containing a mutation in the tyrosine kinase phosphorylation site, which is believed to play 

a role in nicking (Laufs et al., 1995a; Laufs et al., 1995b), and resulted in interfering with 

BGMV replication in a tobacco cell suspension system. Similar mutants of REP from 

ACMV were used in research of Sangare et al. (1999). The N. benthamiana transgenic 

plants exhibited tolerance to infection consisting in a delay of symptom appearance and/or 

the presence of mild symptoms.  

1.2.5.1.2 Coat protein-mediated resistance 

Coat protein-mediated resistance (CP-MR) refers to the resistance of transgenic plants that 

produce CP to the virus from which the CP gene is derived (Abel et al., 1986). CP is 

required for systemic infection by monopartite geminiviruses (Briddon et al., 1989; Rojas 

et al., 2001). The tomato plants expressing the CP of the monopartite begomovirus Tomato 

yellow leaf curl virus exhibited delayed symptom development, which was dependent on 

the expression levels of transgenic CP (Kunik et al., 1994). In contrast, the CP of bipartite 

geminiviruses is not absolutely necessary for the systemic spread of the virus, as NSP can 

substitute for the function of CP in transport (Ingham et al., 1995; Pooma et al., 1996). 

Therefore, it has been assumed that a CP-mediated strategy against bipartite geminiviruses 

will not produce a high level of resistance. Nevertheless, geminivirus CPs may have the 

potential for transgenic interference as they control specific interactions with the virus 

vector (Briddon et al., 1990; Azzam et al., 1994; Höfer et al., 1997; Noris et al., 1998; 

Morin et al., 1999).  
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1.2.5.1.3 Movement protein-mediated resistance 
Geminivirus movement proteins (MPs) are required for their cell-to-cell and long distance 

systemic spread and they have been used to engineer resistance to various begomoviruses. 

It was first found that the expression of TGMV movement protein had a deleterious effect 

on systemic infection of ACMV DNA-A in N. benthamiana plants (von Arnim and 

Stanley, 1992). Tobacco plants expressing a mutated version of Tomato mottle geminivirus 

(TMoV) MP were also resistant to TMoV and CaLCuV, whose movement proteins share 

80% amino acid sequence identity (Duan et al., 1997b). Tomato plants transformed with a 

mutated Bean dwarf mosaic virus (BDMV) movement protein gene showed resistance to 

ToMoV, which has a movement protein sharing 93% amino acid sequence identity with 

that of BDMV (Hou et al., 2000). 

 While it is promising that the resistance in these examples appears quite broad, the 

transgenic plants expressing the geminivirus NSP and MP genes were reported to be 

phenotypically abnormal (von Arnim and Stanley, 1992; Hou et al., 2000). The use of MP 

transgene is constrained by the fact that they are often toxic when over-expressed in plant 

cells, and in the case of begomoviruses, these genes are known as pathogenicity 

determinants. Their uncontrolled expression can therefore have many undesirable effects 

on various aspects of plant development (Hou et al., 2000). Similar with the use of Rep 

transgenes, regeneration of phenotypically normal plants may necessitate the expression of 

defective mutant or truncated movement proteins. 

1.2.5.2 RNA/DNA-mediated resistance  

1.2.5.2.1 Post-transcriptional gene silencing (PTGS) 

More recently, it was discovered that in most cases where PDR was being aimed, the 

observed transgenic resistance was caused by transcriptional rather than translational 

expression of the viral transgene sequences (Sinisterra et al., 1999; Lucioli et al., 2003; 

Vanitharani et al., 2004). The mechanism behind these cases turned out to be RNA 

silencing or RNA interference (RNAi), a sequence-specific breakdown mechanism in 

plants which represents a natural antiviral defense mechanism (Voinnet, 2001; Vanitharani 

et al., 2003; Chellappan et al., 2004a). RNA interference can occur either through 

repression of transcription (transcriptional gene silencing), which is usually induced by 

DNA methylation (Rountree and Selker, 1997; Mette et al., 1999; Mette et al., 2000) or by 
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mRNA degradation based on dsRNAs homologous to viral coding sequences (Baulcombe 

and English, 1996; van Blokland et al., 1994) (for more detailed description of mechanism 

see section 1.2.6). The PTGS pathway is initiated by the generation of dsRNAs that are 

then digested into small, 21-26 nts RNA fragments. The small RNA causes the suppression 

of gene expression by complementary base pairing and destruction of targeted mRNA 

molecules in cytoplasm (Elbashir et al., 2001a).  Geminiviruses are able to both induce 

PTGS as well as serve as a target for PTGS. This is unusual because geminiviruses do not 

contain a dsRNA intermediate during their replication cycle. However, recently it has been 

shown that transcripts initiated from the bidirectional promoter within the intergenic region 

may overlap to generate dsRNA, which serve as a target for PTGS (Vanitharani et al., 

2005). In addition, any dsRNAs homologous to viral coding sequences may enter both 

known RNAi pathways (Baulcombe, 2004). On the one hand, they may act in TGS 

complexes as sequence-specific mediators for the methylation of homologous viral DNA 

sequences in the nucleus. On the other hand, they may serve as mediators for sequence-

specific PTGS, i.e. degradation of viral transcripts and/or inhibition of translation. As 

described for the intergenic region, siRNA directed methylation may also affect coding 

regions and thereby cause reduced transcription. 

As the Rep gene is strictly required for replication (Hanley-Bowdoin et al., 1999), it has 

been considered the most promising RNAi target. Vanitharani et al. (2003) observed a 

strong decrease in Rep mRNA accumulation and reduced viral replication in tobacco BY2 

protoplasts transiently expressing the siRNAs homologous to Rep of ACMV. An siRNA 

construct designed to target the mRNA encoding the replication associated protein (AC1) 

of the ACMV from Cameroon blocked AC1 mRNA accumulation by 90-92% and 

inhibited accumulation of the ACMV genomic DNA by 65-68% at 36 and 48 h after 

transfection. The accumulated siRNAs in cassava plants recovering from infection by 

ACMV-CM were derived from the Rep genomic region (Chellappan et al., 2004a).  

Methylation of a TLCV-derived transgene promoter resulting in transgene silencing has 

been observed on TLCV infection (Seemanpillai et al., 2003). This group observed that all 

gus transgenes expression driven by all six TLCV promoters was silenced. GUS plants 

(V2:GUS_C) were characterized in more detail and bisulphite sequencing showed that 

silencing was associated with cytosine hypermethylation of the TLCV-derived promoter 

sequences of the V2:GUS_C transgene. Recovery from Vigna mungo yellow mosaic virus-
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infected plants has been reported after bombardment with DNA constructs expressing 

dsRNAs homologous to the bidirectional viral promoter (Pooggin et al., 2003). 

Akbergenov et al., (2006) detected 21, 22 and 24 nts siRNAs of both polarities, derived 

from both the coding and the intergenic regions of Cabbage leaf curl virus in Arabidopsis 

and ACMV in N. benthamiana and cassava. Genetic evidence showed that all the 24 nts 

and a substantial fraction of the 22 nts viral siRNAs are generated by the dicer-like 

proteins DCL3 and DCL2, respectively. The viral siRNAs were 5´-end phosphorylated, as 

shown by phosphatase treatments, and methylated at the 3´-nucleotide. These results 

indicated that the double strand small RNA-directed methylation of geminivirus 

bidirectional promoters may down-regulate the transcription of viral genes, resulting in 

inefficient virus replication. Triggering TGS of geminivius promoters by pre-expression or 

induced expression of specific dsRNAs may therefore constitute a promising strategy for 

interfering with virus replication. 

So far, PTGS has been put to use, in the development of resistance against the 

geminiviruses: TYLCV (Fuentes et al., 2006; Zrachya et al., 2007b), ToLCV (Ramesh et 

al., 2007), Bean golden mosaic virus (BGMV; Bonfim et al., 2007), ACMV (Chellappan et 

al., 2004; Vanderschuren et al., 2007). Although only in its early stages, research utilizing 

this process to achieve geminivirus resistance is very promising in that any viral coding or 

non-coding sequences can be targeted.  

1.2.5.2.2 Antisense RNA 

An ‘‘antisense’’ RNA molecule that is complementary to a particular mRNA will base-pair 

with it and prevent the mRNA from being translated if both molecules are transcribed in 

the same cell. Antisense RNA strategies have been successfully exploited since 1991 to 

target and selectively suppress the expression of geminivirus genes. Day et al. (1991) 

successfully used asRNA technology to engineer geminivirus resistance in tobacco plants. 

TGMV replication was reduced in transgenic plants expressing a Rep asRNA sequence, 

and one transgenic line showed more than 90% symptomless plants after infection. Mubin 

et al., (2007) reported transgenic resistance against a bipartite begomovirus obtained by 

targeting a virion-sense of AV2 gene Tomato leaf curl New Delhi virus. Rep asRNA-

mediated resistance was also engineered against the monopartite TYLCV in 

N.benthamiana (Bendahmane and Gronenborn, 1997) and tomato (Yang et al., 2004). 
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Zhang et al. (2005) demonstrated that resistance to ACMV infection of cassava can be 

achieved with high efficacy by expressing asRNAs against viral mRNAs encoding 

essential non-structural proteins. Asad et al. (2003) achieved CLCuV resistance in tobacco 

with a similar anti-sense approach against Rep, REn and Trap. 

It is still unclear whether or how asRNA molecules enter the RNAi pathway to contribute 

to geminivirus resistance in transgenic plants. The suppression of gene expression by anti-

sense RNA (asRNA) sequences was used before the discovery of gene silencing 

mechanisms. Later on, Asad et al. (2003) found small RNA with 21-23 nts long that 

suggested a mechanism might more or less be linked to PTGS. The duplex RNA resulting 

when the mRNA and its complement pair might also induce PTGS by the formation of 

siRNAs. However, Zhang et al. (2005) found no siRNAs in asRNA transgenic cassava 

plants prior to infection, suggesting that resistance is achieved by sense-antisense 

interactions after infection and not by the constitutive production of siRNAs from the 

transgene. 

While many of these studies have achieved varying degrees of geminivirus resistance, 

there are also some reports of failure with this approach. For example, truncated antisense 

Reps totally failed to inhibit Maize streak virus (MSV) replication in cultured maize cells 

(Shepherd et al., 2007), and Mungbean yellow mosaic virus (MYMV) (Shivaprasad et al., 

2006)  antisense Reps (respectively in N.benthamiana and N. tabacum) failed to provide 

resistance against these viruses. 

1.2.5.2.3 Defective interfering DNA (DI) 

Defective circular single-stranded DNA molecules about half size of virus genomic DNA 

have been detected with some begomovirus infections (Stanley and Townsend, 1985; 

Stanley et al., 1997; Liu et al., 1998). Effectivity of defective DNA in delaying of 

symptoms have been shown in different studies: N. benthamiana plants transformed with a 

tandem repeat of subgenomic defective ACMV DNA B showed reduced symptoms 

compared with untransformed plants on ACMV infection (Stanley et al., 1990). Biolistic 

inoculation of N. benthamiana with infectious defective DNA-A-15 clone and East African 

cassava mosaic Cameroon virus (EACMCV) resulted in symptom amelioration as 

compared with EACMCV singly inoculated plants and there was an accumulation of 

defective DNA-A-15 in systemically infected leaves (Ndunguru et al., 2006). The 
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transformed N. benthamiana plants with a tandem repeat of subgenomic defective Beet 

curly top virus (BCTV) DNA-B showed symptom amelioration when challenged with the 

virus (Stenger, 1994). However, the mechanism has not been reported. Whether the 

integration of several DI sequences isolated from different cassava geminiviruses in 

cassava could protect against the infection by these viruses is still unknown. 

1.2.5.3 Expression of non-pathogen derived antiviral agents  
Recently, non pathogen-derived resistance has been investigated. The investigation 

includes the use of geminivirus-inducible toxic proteins to kill infected cells, and the 

expression of DNA binding proteins, peptide aptamers, or molecular Chaperonin (GroEL) 

homologues that either disrupt geminivirus infections or lessen their harmful effects. 

1.2.5.3.1 Trans-activation of a toxic protein 

Infected plants often have an innate defensive hypersensitive reaction that limits virus 

movement to the site of infection by inducing death in infected cells and their neighbours. 

An approach to engineer resistance to ACMV in transgenic cassava using Dianthin, the 

ribosome-inactivating protein (RIP), was described by Hong et al. (1996). Expression of 

Dianthin under this promoter in transgenic N. benthamiana plants reduced the 

susceptibility to infection by ACMV isolates originating from widely separated locations 

(Hong et al., 1996). However, this approach would only be of agronomic usefulness if 

residual transgene expression in the absence of infection did not cause any detrimental 

effects on plant performance. Such a reaction can be artificially induced (Zhang et al., 

2003; Trink et al., 2005) to provide geminivirus resistance in transgenic plants, therefore a 

virus-induced cell death strategy may be particularly useful for engineering geminivirus 

resistance.  

1.2.5.3.2 Expression of DNA binding proteins 

The use of transgenically expressed DNA binding proteins to provide virus resistance 

relies on the identification of virus sequence-specific binding proteins that will not bind 

host DNA sequences. The sequence-specific dsDNA binding activities of geminivirus REP 

have a role in origin recognition and transcriptional repression, whereas the ssDNA 

binding activity of REP is involved in DNA cleavage (Hanley-Bowdoin et al., 1999). This 

sequence specific activity has been exploited by designing artificial zinc-finger proteins 
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with high affinity for the REP-specific direct repeats in the v-ori of different geminiviruses 

(Sera and Uranga, 2002), based on the idea that the artificial zinc-finger proteins (AZPs) 

will competitively block the binding of REP due to the higher affinity of the artificial zinc-

finger protein-dsDNA interaction, thereby inhibiting viral replication. The utility of this 

approach was successfully demonstrated in A. thaliana against Beet severe curly top virus 

(BSCTV). Expression of AZPs with a nuclear localization signal (NLS) under the control 

of a Cestrum yellow leaf curling virus promoter in A. thaliana produced transgenic lines 

with reduced or no replication of BSCTV (Sera, 2005).  

Antibodies against geminivirus viral proteins may be efficient factors for the impairment of 

key functions of these proteins when they target their active sites. Safarnejad et al. (2009) 

reported the expression of a single-chain variable fragment (scFv) antibody that protected 

N. benthamiana plants from a prevalent Iranian isolate of the virus (TYLCV-Ir). They 

expressed two recombinant antibodies (scFv-ScRep1 and scFv-ScRep2) that interact with 

the multifunctional replication initiator protein in N. benthamiana. Transgenic plants 

challenged with TYLCV-Ir showed that the scFv-ScRep1 were able to suppress TYLCV-Ir 

replication.  

1.2.5.3.3 A Chaperonin (GroEL) 

Morin et al. (1999) observed that a homologue of GroEL, which is produced by 

endosymbiotic bacteria from the whitefly vector B. tabaci, was able to bind with high 

affinity to the coat protein of TYLCV. Therefore, it may protect the virus from destruction 

during its passage through the insect’s haemolymph. This idea was proven by Akad et al. 

(2007). The B. tabaci GroEL gene, which is expressed in transgenic tomatoes under the 

control of a phloem-specific promoter, protected the plants from infection with TYLCV 

(which is phloem limited in tomatoes). Plants infected with TYLCV were either 

asymptomatic or only mildly symptomatic and the GroEL formed complexes with the virus 

as expected (Akad et al., 2007).  

1.2.5.3.4 Peptide aptamers 

Peptide aptamers are proteinaceous agents which are selected for specific binding to a 

given target protein under intracellular conditions. Typically, peptide aptamers consist of a 

short variable peptide domain presented in the context of a supporting protein scaffold 

(Colas et al., 1996). Thus, in principle peptide aptamers act as recombinant proteins that 
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bind to inactivate a protein of interest (Colas et al., 1996; Hoppe-Seyler and Butz, 2000; 

Hoppe-Seyler et al., 2004). Peptide aptamers were first applied to engineering virus 

resistance in transgenic N. benthamiana, targeting the nucleoprotein (N) of the tospovirus-

Tomato spotted wilt virus (Rudolph et al., 2003). To engineer geminivirus resistance using 

a similar strategy, Rep specific aptamers of geminiviruses have been identified by Lopez-

Ochoa et al. (2006). 

Due to the heavy impact of geminivirus infection in agriculture and the difficulty of 

controlling viral diseases, a variety of strategies have been studied to develop geminivirus 

resistance. The present study focusses on a RNA interference strategy. 

1.2.6 Gene silencing via RNAi 

Gene silencing via RNAi (namely post transcriptional gene silencing-PTGS) has been 

discovered in plants as their response to viral infections and other exogenous RNAs. While 

further examples of PTGS in plants continued to accumulate (Baulcombe, 1996; Metzlaff 

et al., 1997; Waterhouse et al., 1998), the RNA silencing phenomenon was independently 

observed in other eukaryotic organisms such as fungi (here termed “quelling”). It is a 

highly conserved phenomenon closely related to RNA interference (RNAi), occurring in 

different species such as protozoa, fungi, and mammals (Elbashir et al., 2001a; Fire et al., 

1998; Hamilton and Baulcombe, 1999; Hammond et al., 2000; Tuschl et al., 1999). RNAi 

is mediated by small interfring RNAs (siRNAs; 21-26 nucleotides), double-stranded RNA 

molecules with two to three nucleotide overhangs (Hamilton and Baulcombe, 1999; 

Hammond et al., 2000; Elbashir et al., 2001b). Recently, new kinds of small RNAs have 

been revealed to be associated with RNA silencing in plants: tasiRNAs (trans-acting 

siRNAs) and nat-siRNAs (natural antisense transcript-derived siRNAs) (Vazquez et al., 

2004; Allen et al., 2005; Adenot et al., 2006).  

The silencing machinery consists of two protein complexes, Dicers and RNA-induced 

silencing complexes (RISC) are leading to sequence-specific RNA degradation and thus to 

a knockdown of the corresponding gene (reviewed in Aronin, 2006; Collins and Cheng, 

2005; Dykxhoorn et al., 2003; Hammond, 2005; Hannon, 2002). The Dicer complex 

consists of RNAseIII-type enzymes responsible for processing small RNA duplices from 

double-stranded RNA molecules. Human, mice, nematode and yeast each possess only one 
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Dicer gene, insects and fungi have two Dicer like proteins (DCLs), (Tomari and Zamore, 

2005; Catalanotto et al., 2004), while plants have even more DCL genes: A. thaliana four, 

poplar five and rice six (Gasciolli et al., 2005; Margisa et al., 2006). In Arabidopsis, one of 

the DCL genes (DCL1) was identified by sequence homology as AtDCL1. The other 

members of the gene family were identified by the same means (Schauer et al., 2002; Xie 

et al., 2004; Gasciolli et al., 2005). However, there are six non-DCL RNAseIII enzymes in 

the Arabidopsis genome (Bouche et al., 2006). RISC, after joining one of the sRNA 

strands, leads to sequence-specific cleavage of the target mRNA. To the RISC complex 

belong members of the Argonaute (Ago) protein family, which have a sRNA-binding 

PAZ-domain and also a PIWI-domain. They possess an endonuclease activity, known as 

the “slicer” activity, directed against complementary mRNA strands bound to the siRNA 

fragment. Silencing can be triggered in plants by replicating viruses, double-stranded RNA 

molecules, and foreign genes (transgenes) that allow the production of high levels of 

normal or “aberrant” messenger RNAs.  

The majority of plant-infecting viruses have RNA genomes, except caulimoviruses, 

nanoviruses and geminiviruses. Caulimoviruses posses a double-stranded DNA (dsDNA) 

genome, which replicates through a RNA-intermediate using reverse transcription (Hull 

and Covey, 1986), therefore, this RNA strand can be a target for PTGS. The Geminiviridae 

are true DNA viruses that replicate their genomes in the nucleus by a rolling-circle (RC) 

mechanism that employs host replication machinery (Jeske et al., 2001; Preiss and Jeske, 

2003). The double-stranded DNA (dsDNA) intermediates that mediate both viral 

replication and transcription associate with cellular histone proteins to form 

“minichromosomes” (Pilartz and Jeske, 1992; Pilartz and Jeske, 2003). Transcripts 

produced from these “minichromosomes” are subject to PTGS. In addition, given the role 

of RNA-directed methylation in silencing endogenous invasive DNAs, it is possible that 

plants might also use methylation as a means to repress transcription and/or replication 

from a viral “minichromosome” (Bisaro, 2006; Ding and Voinnet, 2007). 

The key of RNA-based gene silencing is the long dsRNA that will be cleaved by DCL 

enzymes into small RNA, 21-26 nts in size. Based on this feature, Smith et al. (2000) 

designed gene constructs encoding intron-spliced RNA with a hairpin structure that can 

induce PTGS with almost 100% efficiency when directed against viruses or endogenous 

genes. Similarily, the present study used inverted repeat transgene constructs arranged in a 
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way that, when transcribed, render intron-hpRNA directed against invading TYLCV gene 

translation as well as TYLCV replication. The hypothesis of the study is summarized in 

Figure 5. 

 

 

Figure 5:  Inverted-repeat transgenes induced gene silencing (information ref. from Smith 

et al., 2000; Poogin et al., 2003; Dogar, 2006 and Biraso, 2006). 

Legend:  - RdDM: RNA-directed DNA methylation. 

- RISC: RNA-induced silencing complexes. 

- RdRp: RNA dependent RNA polymerase. 
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After the inverted transgene has been transcribed, the mRNA will automatically form a 

double strand by complementarity between sense and antisense. Then they are cleaved into 

small RNAs (21 to 26 nts in length) by dsRNA-specific Drosha-like nucleases or Dicer. On 

the one hand, these small RNAs are perfectly complementarity to the target mRNA of 

viruses. They guide RISC (RNA-induced silencing complex) to cleave target mRNA of 

viruses (Hammond et al., 2000), or these small RNAs are probably used as primers for 

RdRP to synthesize the secondary dsRNA, then the secondary dsRNA molecules are 

recognized and cleaved by Dicer into small RNAs. On the other hand, the dsRNA (24-26 

bps in length) trigger transcription or replication of virus through RdDM (Dogar, 2006). 

The virus proteins can not be synthesised and virus can not replicate or move from cell-to-

cell. The disease can be delayed or stopped.  

1.2.7 Tomato transformation 

Agrobacterium-mediated genetic transformation has been widely used as a low-cost, 

effective transformation method for both dicotyledonous and monocotyledonous plants. A. 

tumefaciens is used for genetic transformation of plants due to its natural ability to transfer 

foreign DNA into the host plant genome. The transfer of DNA from the soil bacterium A. 

tumefaciens into plant cells is an efficient process utilizing both bacterial and host 

machineries. First of all, phenolic compounds, which are released from wounded plant 

tissues, lead to recognition and induction of the bacterial virulence (vir) machinery. Vir 

proteins are responsible for the excision of the single-stranded transfer DNA (TDNA). TDNA 

delivery to the host cell cytoplasm occurs in complex with a single molecule of VirD2 at 

the 5’-end. The T-strand is encased by numerous VirE2 proteins to form a transfer 

complex (T-complex), which is then imported into the nucleus of host cells. During the 

transformation process, other bacterial proteins and host factors are involved in genomic 

integration and expression of the encoded genes (for details see Eckardt, 2004; Gelvin, 

2003; McCullen and Binns, 2006).  
Since both bacterial and host machineries are required for the DNA transfer from 

Agrobacterium into plant cells, a wide range of factors, such as pH, cocultivation media, 

temperature and period , Agrobacterium density,  as well as genotype, explant types, can 

influence the gene transfer efficiency. In tomato, various factors that affect the efficiency 

of Agrobacterium-mediated transformation have been investigated so far. These factors 
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include co-cultivation temperature (Dillen et al., 1997), explant types (Frary and Earle, 

1996; Ellul et al., 2003; Park et al., 2003) addition of phenolic compounds (Cortina and 

Culianez-Macia,  2004; Sun et al., 2006), vector constructs (van Roekel et al., 1993; Qiu et 

al., 2007), Agrobacterium concentration (Ellul et al., 2003; Qiu et al., 2007) and 

composition of the medium (Hamza and Chupeau, 1993; Frary and Earle, 1996; Ling et al., 

1998; Krasnyanski et al., 2001; Pozueta-Romero et al., 2001; Park et al., 2003; Cortina and 

Culianez-Macia, 2004). Nevertheless, different aspects in tomato transformation that need 

to be considered are:  

(1) Type of explants is correlated to ploidy level 

In vitro plant regeneration from cell or tissue explants frequently results in chromosome 

variation (Karp et al., 1982; Karp et al., 1984; Pramanik and Datta, 1986; Sree Ramulu et 

al., 1986). In tomato, Koornneef et al. (1989) showed that diploid materials used in 

regeneration predominantly resulted in diploid plants. Tomato plant tissues are reported to 

be mixed populations of cells at different ploidy levels (van den Bulk et al., 1990; 

Smulders et al., 1995). Among the three types of tomato tissues, hypocotyls have proved to 

possess the highest, while the leaf tissues have the lowest polyploidy. Van den Bulk et al. 

(1990) and Smulders et al. (1995) observed that in the leaf tissue of tomato the content of 

diploid cells was about 70-93 %, whereas in cotyledons it was 39-60 %. In hypocotyls, 

only 19-40 % of the cells were diploid. A similar correlation was observed by Sigareva et 

al. (2004) who both transformed and regenerated three different genotypes of S. 

lycopersicum. Regenerants from hypocotyl explants of three different genotypes 

(“SG048”, “00-5223-1” and “00-0498-B”) were 25%, 36%, and 27% diploid, while 

regenerants from leaves were 85%, 82%, and 100% diploid. 

(2) Roles of genotypes 

The genotype response to tissue culture conditions is believed to drive the frequency of 

regeneration of transgenic plants. From an experiment using ten tomato cultivars, El-Bakry 

(2002) reported that shoot induction from aseptically grown cotyledons showed significant 

effects of both genotype and growth regulator with a non significant interaction between 

the two factors. The effect of genotype on the regeneration of tomato tissues was also 

reported in other studies (McComick et al., 1986; Tan et al., 1987; Moghaieb et al., 1999 

etc.). For tomato transformation, only some cultivars have been intensively used thus far. 

The cultivar “UC 82b”, well known for its regenerating capacity, has been transformed by 
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McCormick et al. (1986), Fillatti et al. (1987), Hamza and Chupeau (1993), Pozueta-

Romero et al. (2001), Gubis at el. (2003),  Cortina and Culianez-Macia (2004). The cv. 

“Moneymaker” has been used in the researches of Tan et al. (1987), van Roekel et al. 

(1993), Smulders et al. (1995), Frary et al. (1996) and Ling et al. (1998). Another cv. 

“Aisla Craig” has been transformed by Bird et al. (1988), Lipp-Joao and Brown (1993) and 

cv.  “PusaRuby” has been used by Patil et al. (2002), Roy et al. (2006), Sharma et al. 

(2009), and Afroz et al. (2009). The transformation protocols have been developed for 

several model varieties such as miniature cultivar “Micro-Tom” and “Micro-MsK” (Sun et 

al., 2006; Qiu et al., 2007; Mamidala and Nanna, 2009).  

In transformation, genotype-dependence has been reported (McCormick et al., 1986; 

Agharbaoui et al., 1995; Gubis et al., 2003; Ellul et al., 2003; Shahriari et al., 2006; etc). 

Davis et al. (1991) reported that the effect of bacterial concentration on transformation 

efficiency may be due to different genotypes. McCormick et al., (1986) showed that the 

different genotypes had varying ability to form shoots from transformed leaf pieces as well 

as the length of time required for culture before shoots could be established in soil. They 

expected that most commercial cultivars are amenable to transformation. However, 

modifications of hormone levels or other culture conditions might be required. Agharbaoui 

et al. (1995) reported that the two genotypes “LA2747” and “LA1930”, showed a distinct 

difference in their aptitude to transformation. Shahriari et al. (2006) archived the 

transformation frequency 17% for cv. “Kal-early” and 35% for cv. “KalG”.   

(3) Research in improvement of transformation frequency 

Agrobaterium-mediated transformation requires S phase of cells for TDNA integration 

(Villemont et al., 1997). Phytohormones have effects in cell division, thus they could affect 

Agrobacterium transformation. There are evidences about the effect of phytohormones 

inducing the competence of cells for transformation. For transformation of A. thaliana, 

Sangwan et al. (1992) found that competent cells in cotyledon, leaf, and root explants were 

induced only after phytohormone pre-treatment. De Kathen and Jacobsen (1995) proved 

that the induction of competence by auxins was concentration-dependent. Preculture of 

explants with phytohormone enhanced competence of cells has been reported in 

transformation of different plants such as in A.thaliana (Chateau et al., 2000), hybrid 

cottonwoods (Han et al., 2000), carnation (Nontaswatsri et al., 2004), cucumber 
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(Vasudevan et al., 2007), tomato leaf discs transformation (Patil et al., 2002) and in leaf 

segment transformation of Saintpaulia ionantha (Kushika, 2002). 

The use of tobacco feeder-layer cell suspensions in tomato transformation experiments as 

reported by Fillati et al. (1987). Van Roekel et al. (1993) showed that the use of feeder 

layers combined with overnight pre-incubation appears to be an essential step in the 

transformation. Latter on, the use of a feeder layer of cell suspensions during pre-culture 

and Agrobacterium co-cultivation was reported in tomato transformations of different 

groups (Hamza and Chupeau, 1993; Frary and Earle, 1996; Ling et al., 1998; Zhang and 

Blumwald, 2001; Frary and van Eck, 2005; Hussain et al., 2008, etc). However, the use of 

a feeder layer makes the transformation procedure more complicated to carry out as well as 

the requiring of a tobacco suspension culture system.  

(4) Selection of transformed cells 

 Most all tomato transformation protocols have been developed using an antibiotic 

resistance as selectable marker gene that is probably not accepted in commercially grown 

crops due to the law of European Union. Thus non-antibiotic selection marker should be 

taken into account in plant transformation. 

1.3 Aims and significance of the study 

The study aims to applying RNAi technology using inverted-repeat transgenes to produce 

tomato plants, which resist to TYLCV.  
An efficient protocol for tomato transformation and its subsequent regeneration is a 

prerequisite for the production of transgenic plants. Due to the lack of a tomato 

transformation system in the Plant Biotechnology Laboratory (Hannover University) and 

the genotype dependence of tomato transformation via A. tumefaciens, the first aim of this 

study is the development of an efficient protocol of Agrobacterium-mediated 

transformation for different tomato varieties. Subsequently, the transformation with 

different intron-hairpin RNA constructs will be carried out. The transformed plants will be 

inoculated with TYLCTHV as well as TYLCVV for virus resistance evaluation. 

Since no efficient methods to control TYLCV disease have been developed thus far, 

transgenic approaches are highly promising for achieving resistant varieties. Currently, 

many different strategies are being studied for produce resistant plants.  The results of this 
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research might reveal evidence for controlling TYLCV towards the RNA silencing 

strategy. 
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CHAPTER 2 
Development of a simple and effective protocol 

for leaf disc transformation of commercial 
tomato cultivars via Agrobacterium 

tumefaciens 
   
2.1 Introduction 

The transformation by Agrobacterium tumefaciens (A.tumefaciens) includes different 

steps: attachment of the bacterium to the plant cell wall, activation of the vir-operon, 

excision of single strand TDNA and formation of the TDNA-protein complex, targeting of the 

TDNA-protein complex into the plant cell nucleus and finally, TDNA integration into the 

plant genome. Thus the efficiency of genetic transformation could be affected by many 

factors. In summary, successful plant transformation demands (1) a target plant tissue 

competent both for transformation and regeneration, (2) an efficient DNA delivery method, 

(3) procedures to select for transgenic tissues, (4) the ability to recover fertile plants while 

avoiding somaclonal variation in transgenic plants, and (5) a simple, efficient, 

reproducible, genotype-independent and cost-effective regeneration protocol (Hansen and 

Wright, 1999). Depending on the regeneration capacity of tissue in different plant species, 

different explant types are being selected for transformation. For tomato, three types of 

tissues including hypocotyls, cotyledons and leaves have been used as explant material for 

Agrobacterium-mediated transformation. Among those, hypocotyls had the highest 

regeneration capacity and leaves had the lowest (Plastira and Perdikaris, 1997; Gubis et al., 

2003; Park et al., 2003; Sigareva et al., 2004). However, in vitro plant regeneration from cell 

or tissue explants frequently results in chromosome variation (Karp et al., 1982; Karp and 

Maddock, 1984; Pramanik and Datta, 1986; Sree Ramulu et al., 1986). Moreover, tomato 

plant tissue has been reported to be a mixed population of cells at different ploidy levels 

(Van den Bulk et al., 1990; Smulders et al., 1995). Among the three types of tomato tissues 

mentioned, hypocotyls had the highest polyploidy levels and the leaf tissues had the lowest 

(Van den Bulk et al., 1990; Smulders et al., 1995; Sigareva et al., 2004). Interestingly, the 

research of Koorneef et al. (1989) showed that the plants, which were regenerated from 
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leaf explants of diploids, were predominantly diploid. This result indicated that ploidy 

levels of transformants depend preferably on the original ploidy levels of the tissues, which 

were used as material for transformation. 

Beside the polyploidy effect, the integration of TDNA into the plant genome occurs 

randomly, and frequently in two or more copies. Negative effects follow, such as low or no 

expression of the introduced transgene due to silencing (Matzke and Matzke, 1998; Assaad 

et al., 1993; Chalfun-Junior et al., 2003). Hence, the ratio of transformed plants with stable 

desired traits might be low. For those reasons, an effective transformation protocol based 

on a merely diploid explant source like expanding leaves can increase the number of 

transformed plants with stable and inherited transgene expression. 

On the other hand, tomato regeneration and transformation quite often was found to be  

genotype dependent (McCormick et al., 1986; Tan et al., 1987; Agharbaoui et al., 1995; El-

Bakry, 2002; Gubis et al., 2003; Ellul et al., 2003). Further more, most tomato 

transformation protocols have been developed using antibiotic resistance as a selectable 

marker which is not accepted in the Europian Union. Thus a non-antibiotic resistance 

system should incoporated in plant transformation. The present study analyses a number of 

parameters and propose a simple protocol for leaf disc transformation using glufosinate 

selection for three commercial tomato varieties, which have not been used for 

transformation experiments before. The protocol needs only one step of pre-treatment of 

explants with phytohormone without using pre-culture media. 

2.2 Materials and methods 
2.2.1 Materials 

Expanding leaves of 4 different tomato varieties (MTS, DM8 and FM 372C and PT18) 

were used as explant source for experiments.  

A. tumefaciens strain EHA105 harbouring the helper plasmid pSoup and a plasmid vector 

pGII0229 containing the gus-gene with the selection marker bar gene was used for 

transformation. 

Basic culture medium (BCM), which contained MS inorganic basal salts (Murashige and 

Skoog, 1962)  plus Gamborg B5 vitamins (Gamborg et al., 1968) supplemented with 30 g/l 
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sucrose and 0.5 g/l MES  [2-(N-morpholino) ethanesulfonic acid], was used throughout the 

research. 

YEP liquid medium (5 g/L yeast extract, 10 g/L peptone, 5 g/L NaCl, pH 7.0) was used for 

culture of A.tumefaciens. 

 2.2.2 Method of optimising for shoot regeneration  

The expanding leaves from 4 weeks in vitro seedling plants were cut into small pieces with 

sizes of about 0.5x0.7cm. For each treatment, 4 Petri dishes were used.  A total of 15 leaf 

explants were cultured in each plastic 90-mm Petri dish. The treatment differed from each 

other with regard to the addition of 11 different concentrations of trans-zeatin (0.4; 0.9; 

1.3; 1.8; 2.3; 2.7; 3.2; 4.5; 7.0; 9.0; 13.5 µM) to an auxin concentration of 1 µM indolacetic 

acid (IAA). The explants were transferred to fresh medium every 2 weeks. Results 

(percentage of organogenic explants) were recorded after 6 weeks of culture. 

2.2.3 Methods of optimising conditions for transformation 

Four experiments were carried out including (1) the effect of A.tumefaciens  concentration 

which was accomplished by comparing three optical densities (at 600 nm) of 

A.tumefaciens suspension, 0.3, 0.5 and 0.9 respectively; (2) the effect of temperature 

during inoculation and co-culture was carried by comparing four temperatures at 21, 24, 

26, and 28˚C;  (3) the effect of phytohormone supplemented into pre-treatment, inoculation 

and co-culture media was evaluated with four different combinations of zeatin and IAA, 4 

µM zeatin/2 µM IAA, 4 µM zeatin/4 µM IAA, 8 µM zeatin/5 µM IAA and 8 µM zeatin/8 

µM IAA ; and (4) the evaluation of glufosinate concentration for selection. 

Procedure of experiment No. 1, 2 and 3: Agrobacteria were grown overnight in liquid 

YEP medium (with content 5 g/L yeast extract, 10 g/L peptone, 10 g/L NaCl, pH 7.0) 

containing 50 mg/l of kanamycin and 5 mg/l tetracycline. For the bacterial concentration 

and temperature experiments, Agrobacteria from overnight cultures was collected by 

centrifugation at 4.000 rpm for 10 min at 18°C and re-suspended in liquid BCM-media, pH 

5.5, plus 4 µM zeatin /2 µM IAA and 100 µM acetosyringone. While in the phytohormone 

experiment, the bacteria was re-suspended in the media with four different combinations of 

zeatin and IAA as description above. The Agrobacterium suspension was prepared at least 

3 hours before inoculation. Leaves of tomato were cut in Petri dishes containing the same 
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used for re-suspending Agrobacteria. After the cutting was completed, the liquid media 

were discarded and the Petri dishes were kept in darkness for at least 20 hours before 

inoculation. In the temperature and phytohormone experiments, Agrobacterium 

concentration at an OD600=0.5 was inoculated for explants. While the temperatureused 

used for A.tumefaciens concentration and phytohormone experiments was 24±1oC. After 

60 min of inoculation, the explants were transferred into co-culture medium (the solid 

inoculation medium without acetosyringone). After 4 days of co-culture in darkness the 

same temperature as inoculation, the explants were transferred into elimination medium 

(co-culture medium containing ticarcilin 100 mg/l and sulbactam 100 mg/l, pH 5.8). They 

were then maintained in growth culture-room with 16h light/8h dark photoperiod, at 

24˚C±1˚C. GUS-assays were carried out at day 7 after co-culture. 

Optimising of glufosinate concentration for selection: In order to identify the most 

suitable glufosinate concentration  for selecting transformants during callus induction and 

shoot regeneration, leaf tissues were directly cultured in solid BCM media containing 4 

μM zeatin/4 μM IAA supplemented with either 1.5 ppm or 3.0 ppm of glufosinate. To 

determine an appropriate glufosinate concentration for rooting, two types of shoots were 

used: (1) shoots (1-2 cm) derived from calluses, and (2) shoot tips with 3 leaves of one 

month seedling plants. Five different concentrations of glufosinate, 1.5, 2.5, 3.5, 4.5, and 

5.5 ppm, were supplemented into BCM medium plus 0.2 µM IAA for growing of type (2) 

shoots, while the shoots derived from calluses (type 1) were tested at 1.5 ppm and 3.0 ppm 

glufosinate, respectively. Three varieties were included in this experiment. The subculture 

was carried out for every two weeks. Morphogenesis was rated after 4 weeks of culture. 

2.2.4 Development of the transformation procedure 

Based on the results of all above experiments, the best conditions were selected for 

carrying out the final transformation experiment using 3 varieties including DM8, MTS 

and FM372C. 

Histology and histochemical analysis of GUS-expression 

The X-Gluc (5-bromo-4-chloro-3-indoly-glucoronide) was completely dissolved by 

DMSO (1 µl DMSO/0.1 mg X-Gluc), then mixed well with the staining buffer (100 mM 

phosphate buffer pH 7.0) at a concentration of 0.5 mg X-Gluc/1 ml of buffer. Explants 
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were washed with distilled water, submerged in X-Gluc solution, and kept in an incubator 

at 37˚C for 20 hours in darkness, and then the solution was discarded. The explants were 

then stored in 70% ethanol until blue spots appeared clearly. 

2.2.5 Experimental design and data analysis 

The regeneration as well as glufosinate concentration experiments were carried out with 60 

explants per treatment without replication. Three other experiments were Completely 

Randomised Design (CRD). Each treatment was repeated three times. The transformation 

frequency was calculated as the total number of explants with at least one zone of GUS- 

expression (blue spot) produced relative to the total number of explants infected by 

A.tumefaciens. 

                                                        Σ explants with blue spot                                                 

Transformation frequency (%) = -----------------------------------  x  100 

                                                        Σ inoculated explants 

The GLM procedure of Statistical Analysis System version 9.2 (SAS Institute, Cary, NC) 

was used for statistical analysis. One-way analysis of variance (ANOVA) was used to 

determine mean separation between treatments. Two-way ANOVA was used to evaluate 

the interaction between treatments and genotypes. P values <0.05 were considered 

significant. 

 

2.3 Results  

2.3.1 Optimising shoot induction from leaf explants 

Preliminary experiments conducted in our laboratory (data not shown) clearly showed that 

IAA and trans-zeatin were the most promising auxins and cytokinins for tomato 

regeneration. Therefore IAA was used in combination with 11 concentrations of trans-

zeatin (Table 1).  
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Table 1:  Effects of different zeatin concentrations for shoot induction in tomato varieties 
with a standard IAA concentration of 1 µM 
 

                        Capacity of shoot regeneration Phytohormone 

concentration 

(µM) 
MTS DM8 FM372C PT18 

0.4 Zeatin+1IAA - - +- - 

0.9 Zeatin+1IAA - - + - 

1.3 Zeatin+1IAA - - + +- 

1.8 Zeatin+1IAA +- +- ++ + 

2.3 Zeatin+1IAA +- +- ++ + 

2.7 Zeatin+1IAA +- +- ++ ++ 

3.2 Zeatin+1IAA + + ++ ++ 

4.5 Zeatin+1IAA + + ++ ++ 

7.0 Zeatin+1IAA ++ ++ ++ ++ 

9.0 Zeatin+1IAA ++ ++ ++ ++ 

13.5 Zeatin+1IAA + + + +- 

 

Legend: (-): shoot regeneration 0 %; (+-): shoot regeneration <40 %; (+): shoot 
regeneration from 40-60%; (++): shoot regeneration >60 %.  
 

Although the 4 varieties tested exhibited quantitative response differences, zeatin showed 

its effects on shoot regeneration in all 4 varieties. Sufficient shoot induction occurred with 

cv. FM372C and PT18 in a very wide range of zeatin concentrations (1.8 to 9.0 µM and 

from 2.7 to 9.0, respectively), while cv. MTS and DM8 formed shoots in a narrower range 

(from 7.0 to 9.0 µM) (Table 1). In general, the optimal concentration range for zeatin was 

from 7.0 to 9.0 µM in all varieties. 

2.3.2 Effect of Agrobacterium cell density on transformation 

frequencies 

The effect of the Agrobacterium cell density on transient transformation of tomato leaf 

tissue was determined using three different densities as shown in Table 2. 
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Table 2: Effect of Agrobacterium density on the transient expression of four tomato 
varieties  
 

 

Variety 

 

OD600 
Number 

of 

inoculated 

explants 

Number 

of 

necrotic 

explants 

Number 

of GUS-

expressing  

explants  

 

Frequency 

(%) 

Ratio 

highest/lowest 

frequency 

0.2 318  3 0.94c 

0.5 312  6 1.92a 
2.04 

 

FM372C 

0.9 320 5 5 1.56b  

0.2 304  3 0.98c 

0.5 306  7 2.28a 
2.32 

 

DM8 

 0.9 298 8 5 1.67b  

0.2 345  3 0.87c 

0.5 346  7 2.02a 
2.32 

 

MTS 

 0.9 337 20 4 1.18b  

0.2 378  3 0.79c 

0.5 372  7 1.88a 
2.37 

 

PT18 

 0.9 366 5 6 1.78a  

Legend: Means in each variety followed by the same letter were not significant different at 
P<0.05  
 

The results showed that the low bacterial density of 0.2 resulted in lower percentage of 

transient expression in all varieties (from 0.79 in PT18 to 0.98% in DM8 variety). It 

showed a trend towards an increase to the maximum frequency of transiently transformed 

explants at an OD600=0.5 (1.88, 1.92%, 2.02%, 2.28% in PT18, FM372C, MTS and DM8, 

respectively) and there was a tendency towards a decrease at higher concentrations at 

OD600=0.9 (1.18%, 1.56%, 1.67%, 1.78 in MTS, FM372C, DM8 and PT18, respectively) 

(Table 2). The effect of bacterial densities on transformation was significantly different 

(P<0.05) between an OD600=0.2 and an OD600=0.5. An increase in the density from 

OD600=0.2 to OD600=0.5, resulted in a twofold higher transformation frequency and the 

transformation frequency was significantly decreased at OD600=0.9 except in the PT18 

variety. Interestingly, no apparent interaction between the tomato genotypes and the 

respective concentrations of Agrobacteria was found. However, at OD600=0.9 apparently 
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caused bacterial overgrowth resulting in a number of necrotic tissues after only 4 days of 

inoculation, as 20 of 337 (5.93%) inoculated cv MTS explants were necrotic. With the 

other varieties (PT18, FM372C and DM8), the rates were lower.  

2.3.3 Effect of temperature during inoculation and co-culture on 

transformation frequencies 
In order to optimize the temperature for transformation, four different temperatures were 

examined during inoculation and co-cultivation cultivation with the optimal density of 

A.tumefaciens as found in the previous part (OD600= 0.5).  

 
Table 3: Effects of temperature during inoculation and co-cultivation of tomato explants 
with Agrobacterium tumefaciens  
 

Variety Temperature 

(˚C) 

Number of 

inoculated 

explants 

Number of GUS-

expression explants  

Frequency 

(%) 

21 121 1 0.90a 

24 128 4 3.12b 

26 125 4 3.20b 

 

FM372C 

28 123 0 0a 

21 140 2 1.42a 

24 126 8 6.34b 

26 128 9 7.03b 

 

DM8 

28 145 0 0a 

21 120 1 0.83a 

24 126 2 1.58b 

26 121 3 2.47b 

 

MTS 

28 121 0 0a 

21 143 0 0a 

24 123 4 3.25b 

26 128 4 3.12b 

 

PT18 

28 129 0 0a 

Legend:  Means in each variety followed by the same letter were not significantly different 
(P <0.05). 
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The results (Table 3) indicate that transformation efficiency was influenced by 

temperature. In all of the 4 varieties, the percentage of transformation frequency at 24°C 

and 26°C are higher than those at 21°C (P<0.05). The frequency at 26°C was a little higher 

than at 24°C, except with PT18.  At 21°C the transformation frequency was very low, even 

no blue spot could be observed in variety PT18. No explants with blue spots in all four 

varieties were recorded when inoculation and co-cultivation were carried out at 28°C. 

Between 24°C and 26°C, there was a slightly higher level of transformation frequency at 

26°C in three varieties (FM372C, DM8, and MTS) with insignificant decrease in variety 

PT18. 

                                                                  

2.3.4 Effect of plant phytohormones during inoculation and co-

cultivation on transformation frequencies 

 
Based on previously published data on the enhancement of transformation frequencies 

through auxin in pea (de Kathen and Jacobsen, 1995), four different combinations of the 

phytohormones zeatin and IAA at different concentrations were used for investigating the 

affect of zeatin and IAA on transformation frequencies in tomato. The results are presented 

in Table 4. 

Generally, transformation efficiencies increased with an increase in phytohormone 

concentrations. In all varieties, the transformation frequencies were higher if media were 

supplemented with 8 µM of zeatin in combination with 5 µM of IAA or 8 µM zeatin/8 µM 

IAA. The highest ratio reached 7.07 for cv. DM8 and the lowest was 2.41 for cv. PT18. 

The percentage of transformation between high concentrations and to low concentrations 

of phytohormone was significant (P<0.001). 
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Table 4: Effect of IAA- and zeatin during pre-treatment, inoculation and co-culture on 
transformation efficiency 
 

 
Variety Concentration 

of plant 

phytohormone 

(µM) 

Number 

of 

inoculated 

explants 

Number 

of GUS-

expressing 

explants 

 

Frequency 

(%) 

Ratio 

highest/lowest 

frequency 

4 zeatin/2 IAA 317 15 4.73a  

4 zeatin/4 IAA 323 11 3.40a  

8 zeatin/5 IAA 334 37   11.07b 3.44 

 
 

FM 
372C 

 

8 zeatin/8 IAA 330 26 7.87 b  

4 zeatin/2 IAA 268 14 5.22a  

4 zeatin/4 IAA 258 11 4.26a  

8 zeatin/5 IAA 282 85   30.14b 7.07 

 

DM8 
 

8 zeatin/8 IAA 289 73   25.25b  

4 zeatin/2 IAA 201 8 3.98a  

4 zeatin/4 IAA 226 7 3.09a  

8 zeatin/5 IAA 211 30   14.21b 4.59 

 

MTS 
 

8 zeatin/8 IAA 227 25   11.01b  

4 zeatin/2 IAA 305 10 3.27a  

4 zeatin/4 IAA 311 10 3.21a  

8 zeatin/5 IAA 311 24 7.71b  

 

PT18 
 

8 zeatin/8 IAA 310 24 7.74b 2.41 

Legend: Means in each variety followed by the same letter were not significantly different 
(P <0.001). 
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a b c

There was effective interaction between genotype and the concentration of phytohormon 

(P<0.001). The four varieties with three levels based on the transformation efficiency. 

DM8 had highest transformation frequency (25.25% and 30.14% in media containing 8 

µM zeatin/8 µM IAA and 8 µM zeatin/5µM IAA, respectively), while two varieties, 

FM372C and PT18, had the lowest transformation frequency, and MTS had a 

transformation frequency between two first groups. The results also showed the 

dependence of transgene-expression on the concentration of phytohormones. An increase 

in phytohormone concentrations also resulted in stronger GUS-expression. At high 

concentrations of phytohormones (8 µM zeatin/5µM IAA), the explants with strong GUS-

expression presented more GUS stained blue areas than those with lower phytohormone 

concentrations (Figure 6b and 6c). 

 

 

 
Figure 6: Effect of phytohormones on GUS-expression (cv.372C). a) No pre-culture, 
inoculation and co-cultivation at 4 µM zeatin/2 µM IAA; b) Pre-treated  24 hours, 
inoculation and co-cultivation in 4 µM zeatin/2 µM IAA; c)  Pre-treated  24 hours, 
inoculation and co-cultivation in 8 µM zeatin/5 µM IAA. 
 

2.3.5 Determining the critical concentration of glufosinate for 

callus and root induction  

The purpose of this experiment was to identify the minimal glufosinate concentration that 

eliminates untransformed cells without resulting in severe growth inhibition of surviving 

transgenic cells, and minimizes the risk of the escape of non-transformed plants prior to 

rooting. 
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Table 5: Effect of glufosinate concentration on inducing of calluses and rooting of shoots 
 
 

Root formation from two types of shoots at 

glufosinate concentrations 

Rate (%) of leaf 

explants forming 

callus at 

glufosinate 

concentrations 

 

Type 1 

 

Type 2 

 

 

 

Variety 

1.5 

ppm 

3.0 

ppm 

1.5 

ppm 

3.0 

ppm 

1.5 

ppm 

2.5 

ppm 

3.5 

ppm 

4.5 

ppm 

5.5 

ppm 

FM372C 60 0 31.81 0.00  100.00 41.66 0.00 0.00 0.00 

DM8 40 0 40.00 0.00  90.00 50.00 10.00 10.00 0.00 

MTS 40 0 26.92 0.00  87.50 75.00 10.00 0.00 0.00 

 

Legend: - Callus induction of leaf tissue was observed after 4 weeks cultured in glufosinate 
media. 
              - Root formations were observed from two types of shoots. Type 1: shoots derived 
from calluses with size 1.0-2.0 cm; type 2: shoot tips derived from 1 month old seedling 
plants with 3 expanding leaves in glufosinate media. 
 

After four weeks in culture on media with 3.0 ppm glufosinate, non-transformed leaf 

explants did not form any callus. They became chlorotic after four weeks of culture (Figure 

7a). With 1.5 ppm of glufosinate in the media, 40-60 % of the explants slightly induced 

callus. From this result it can be concluded that a glufosinate concentration of 3.0 ppm 

could be applied for selection during callus induction and shoot regeneration.  However, 

when this concentration was applied for the first inoculation with Agrobacteria at 

OD600=0.5 (cv. MTS), after four weeks all leaf explants turned brown and died before the 

emergence of calli (Figure 7b). At a reduced concentration of glufosinate (2.0 ppm), 

several explants slightly formed calli after four weeks of incubation but all of them were 

also brown with out any recovery of transformed cells. Therefore, the concentration of 

glufosinate for selection at these stages must be < 2.0 ppm. When the concentration of 1.5 

ppm was used, dead areas and freshly formed callus were scattered on the explants (Figure 

7c). 
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Figure 7: Effect of glufosinate inducing callus on leaf tissues. a) leaf tissue without 
Agrobacterium inoculation in medium at 3 ppm of glufosinate; b) leaf tissue with 
Agrobacterium inoculation in medium at 3 ppm of glufosinate; c) leaf tissue with 
Agrobacterium inoculation in medium at 1.5 ppm of glufosinate. 
 
 
                                                                

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 8: Effect of glufosinate in rooting of shoots: a) shoots derived from callus at 
3.0 ppm glufosinate; b) shoots derived from callus at 1.5 ppm glufosinate; c) shoots 
derived from seedlings at 1.5 ppm glufosinate; d) shoots derived from seedlings at 3.5 ppm 
glufosinate; e) shoots derived from seedling plants at 5.5 ppm glufosinate. 
 

During rooting, the shoots derived from callus appeared to be very sensitive to glufosinate 

and at a concentration of 3 ppm all shoots were dead after 2 weeks (Figure 8a). At 1.5 

ppm, yellow leaves were observed in most of the shoots (Figure 8b). When the surviving 

plants were transferred to medium with 3.0 ppm of glufosinate, all shoots died.  
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The shoots derived from seedling plants were found to be more tolerant to glufosinate. At 

1.5 ppm of glufosinate, most of plants survived (Figure 8c). With increasing glufosinate up 

to 3.5 ppm, only some shoots of DM8 and PT18 were viable but they did not show any 

rooting and at 5.5 ppm glufosinate all of tested plants were dead (Figure 8d). In this 

experiment, it was not possible to compare the effects of glufosinate between two shoot 

types because the shoots derived from calluses were smaller than seedling derived shoots. 

However, the result obtained from seedling-derived shoots may be a good reference for a 

further selection step to minimize the escape of non-transformed plants in the rooting 

media. 

2.3.6 Establishment of a full transformation process  

From the results of the experiments carried out, the best conditions were combined to 

transform for 3 varieties (DM8, MTS and FM372C) with a GUS construct. GUS staining 

was carried out in monthly. The results are shown in Table 6. 

 

Table 6:  Compilation of results using optimal conditions in transformation 

Legend: GUS-expression as parameter 

Variety  

Parameter 

 

 

Time after 

inoculation 

 

 

MTS 

 

DM8 

 

FM372C 

26 days 1 2 3 

2 months 2 4 4 

3 months 3 3 3 

4 months 3 3 3 

5 months 5 4 3 

 

Number of 

explants with 

GUS expression

6 months 3 5 6 

∑explants showing GUS-expression. 17 21 26 

∑ inoculated explants 200 200 200 

Frequency (%) 8.50 10.50 13.00 
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The maximum percentage of transient expression was observed in the variety DM8 (see 

Table 4), but here, the transformation rate of DM8 is only 10.5 %. A similar trend was 

found for variety MTS (8.5 %- Table 6 compared to 14.21 %- Table 4). Interestingly, 

FM372C exhibited the highest frequency of transformation in all four studied varieties. 

The stable transformation of this variety was even a little higher than the maximum 

frequency of transient transformation (13.00 % compared to 11.07 % transient 

transformants-Table 4). According to the results, it was possible to conclude that all tested 

varieties were able to be transformed by Agrobacterium using the protocol developed.  

2.4 Discussion 

An efficient transformation system depends on both an efficient regeneration system as 

well as an efficient method for the introduction of foreign genes into the plant cells. A 

superior regenerating potential is important for successful leaf disc transformation 

mediated by A. tumefaciens (Koornneef et al., 1986).  McCormick et al. (1986) also 

noticed variation in the regeneration response of leaf discs in different commercial tomato 

lines, with the best regenerable lines producing the highest number of transgenics. Chyi 

and Phillips (1987) developed a highly efficient Agrobacterium-mediated transformation 

for S. lycopersicum based on conditions favourable for regeneration. The information 

about genotype effects on tomato regeneration has been reported by various authors (Tan 

et al., 1987; El-Bakry, 2002; Gubis et al., 2003; Ellul et al., 2003). As a main outcome of 

transformation, it can be noted that an almost genotype-neutral regeneration system can be 

applied for the 4 varieties, using zeatin at 8 µM in combination with IAA at 1 µM for shoot 

induction.  

 The bacterial cell density used for transformation was found to be a very important factor 

influencing the efficiency of the process. In some species, it was found that increasing the 

bacterial cell density during inoculation improved transformation frequency (De Bondt et 

al., 1994; Cheng et al., 1997; De Clercq et al., 2002) and a too low concentration of 

Agrobacteria resulted in no transformation (Davis et al., 1991). However, higher bacterial 

cell densities or longer co-cultivation periods frequently lead to Agrobacteria overgrowth 

followed by explant necrosis, and/or failure to control Agrobacteria growth in subsequent 

cultures (Humara et al., 1999). In general, an increase in explant survival frequencies at 

optimum bacterial cell densities could be attributed to recognition of specific signal 
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molecules from the invading pathogen which facilitated the process of TDNA transfer in 

explants whereas too high densities of Agrobacterial suspension resulted in rapid tissue 

necrosis and cell death around the infection site. The consequence is lower recovery that 

ultimately reduces growth; also the intensive growth of bacteria causes an inhibition of 

callus production and organogenesis (Fedorowicz et al., 2000). Since basically the 

interaction of Agrobacteria and the host plant is a pathogenic one, a defense response i.e. 

the hypersensitive reaction (Ciccarelli et al., 2005), can be expected and may explain the 

results obtained at different densities of Agrobacterial suspension. In tomato 

transformation, various Agrobacterium cell densities for inoculation with plant tissue have 

been reported: while Park et al. (2003), Ahsan et al. (2007) and Cortina et al. (2004) used 

high densities of Agrobacteria (up to OD600=1.0), very low densities (OD600 from 0.1 to 

0.3) were applied by Ling et al. (1998), van Roekel et al. (1993), Krasnyanski et al.(2001), 

Ellul et al. (2003) and Qiu et al. (2007). The present study results showed that the optical 

density of Agrobacteria optimal for transformation is OD600=0.5. This concentration is 

similar to previous recommendations made by different authors (Frary and Earle, 1996; 

Agharbaoui et al., 1995, etc.). In agreement with another report (Davis et al., 1991), the 

present study found that high concentrations of Agrobacteria (OD600=0.9) resulted in some 

of necrotic tissue development due to rapid bacterial overgrowth and the plants defense 

reactions. After 4 days of inoculation, twenty explants (5.93%) out of 337 inoculated 

explants for cv. MTS were necrosis with 5/366 (1.36%), 5/320 (1.56%), 8/298(2.68%) for 

PT18, FM372C and DM8, respectively.  

The success of Agrobacterium-mediated transformation depends on TDNA delivery and its 

transfer from the bacterium to the plant cell and finally on TDNA integration into the host 

genome. The efficiency of TDNA transfer depends largely on how efficiently vir genes are 

induced by wound factors secreted by plant cells. These factors include specific classes of 

plant phenolic compounds that are released by wounding, such as acetosyringone and 

monosaccharides such as sugars (Cangelosi et al., 1990; Peng et al., 1998) and an acidic 

pH (Turk et al., 1991; Holford et al., 1992). Further more, temperature has been found to 

influence the transformation process. Early studies on A. tumefaciens mediated 

tumorigenesis showed that high temperatures were detrimental to tumor development 

(Braun, 1947; Braun, 1958). Currently, scientists can explain the effect of temperature in 

Agrobacterium-mediated transformation at the molecular level. The activities of vir 

proteins of Agrobacterium, which are essential for excision and transport of TDNA from the 
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bacterial cell to the nucleus of a plant cell, are sensitive to temperature (Alt-Mörbe et al., 

1989; Jin et al., 1993). Fuller et al. (1996), Fuller and Nester (1996) and Baron et al. (2001) 

also found that temperature effects the TDNA transfer machinery. It has an effect on the 

ability to assemble a functional T-pillus, required for the TDNA and protein transfer to 

recipient cells. 

In the present research, the optimal temperature for inoculation and co-culture as found to 

range from 24 to 26oC. In contrast, Dillen et al. (1997) reported an optimal temperature of 

22oC for TDNA delivery to Phaseolus acutifolius callus and tobacco leaves. The number of 

delivery events decreased at ≥25oC. In a report of Uranbey et al. (2005) on tobacco 

transformation, the highest transformation frequency of tobacco leaf discs was achieved 

between 22oC and 24oC and the frequency of transformation was significantly decreased at 

26oC. Nevertheless, our result is at least partially consistent with several previous studies. 

For example, co-culture at 25oC led to the highest number of transformed plants in tobacco 

(Salas et al., 2001). In a recent report of Ahsan et al. (2007), the highest frequency of 

transformation in 3 tomato cultivars (“Koma”, “Seokwang” and “Green Grape”) was 

achieved at 24oC. These results indicate that the optimal temperature for TDNA delivery and 

transformation depends on species and type of explants. Therefore, the optimal 

temperature for stable transformation should be evaluated with each specific explant and 

the respective Agrobacterium strain involved. 

Also, the cell cycle plays an important role in transformation efficiency. De Kathen and 

Jacobsen (1995) applied cell cycle inhibitors leading to a reduction of the number of 

transformation competent cells in pea. Research of Villemont et al. (1997) demonstrated 

the absolute requirement of S-phase cells for transfer and/or integration of the TDNA. 

Auxins and cytokinins act synergistically to stimulate cell division in cultured cells through 

regulation subsets of cell-cycle genes such as cyclins, and cyclin dependent kinases 

(CDKs) (for review see Horvath et al., 2003). In addition, the exogenous cytokinin 

supplement in the media presumably minimized changes in plant cell cycle control even 

when the photoperiod changed. This is involved in cyclin homeostasis to prevent rapid 

changes in cyclin gene expression in plants undergoing rapid changes of photoperiod. 

Exogenous cytokinins replaced the role of light in the induction of de-etiolation (Golan et 

al., 1996). In the dark, cytokinins induce the expression of genes that are usually induced 

by light and are partially involved in chloroplast development (Chory et al., 1991). Once 
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kinetin was added to the media, the transcript levels of the cyclin genes did not change 

when the 15-day-old seedlings were transferred to continuous dark or light for 24 hours 

(Lee et al., 2006). It is important that transformation by Agrobacteria as co-culture is best 

during darkness (Mendes et al., 2002). In transformation, an explant becomes more 

susceptible to Agrobacterium when it is pre-cultured on medium containing 

phytohormones. Several studies showed that phytohormone induced competent cell for 

transformation. In the transformation of A. thaliana, Sangwan et al. (1992) found that 

competent cells in cotyledon, leaf and root explants were induced only after phytohormone 

pre-treatment. In transformation of pea, De Kathen and Jacobsen (1995) proved that the 

induction of competence by auxins was concentration-dependent. Currently, preculture of 

explants with phytohormone-enhanced competence of cells has been reported in 

transformation of different plants: A. thaliana (Chateau et al., 2000), hybrid cottonwoods 

(Han et al., 2000), carnation (Nontaswatsri et al., 2004), cucumber (Vasudevan et al., 

2007), tomato leaf discs (Patil et al., 2002), leaf segment transformation of Saintpaulia 

ionantha (Kushika, 2002); etc. The period of preculture has ranged from 2 days to a week 

(Patil et al., 2002; Han et al., 2000, etc), or even 2 weeks (Kushika, 2002). However, 

preculture had no effect on transformation in other report (Ahsan et al., 2007), and the 

explants had also been used directly for inoculation without pre-incubation in a medium 

containing phytohormones (Wang-Pruski and Szalay, 2002; Sigareva et al., 2004; Banerjee 

et al., 2006). These results are not surprising, considering of genotype factor. 

In the present study, the effects of preculture was investigated (with 4 µM zeatin/2 µM 

IAA) for 48 and 72 hours in the varieties FM372C and PT18 (data not showed). The 

frequency of transient GUS-expression with precultured explants for 48 hours was less 

than that of non-precultured explants, even though there were no blue spot in precultured 

explants for 72 hours. A very short period of pre-treatment (24h) resulted in no changes in 

transformation frequency but increased levels of GUS-expression were found (Figure 6a 

and 6b). It can be assumed that tomato explants pre-treated with 4 µM zeatin/2 µM IAA 

for 24 hours before inoculation with A.tumafaciens enhance their respective transformation 

competence. Therefore, in all following experiments the pre-treatment of explants for 24 

hours with phytohormone was used (see: Method). The role of phytohormones on tomato 

transformation was more appearent when higher concentrations phytohormones were 

applied. The transformation not only resulted in an increased number of explants with blue 
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spots (see: Table 4), but also exhibited more blue spots per explant (Figure 6b, 6c).  It is 

likely that high concentrations of exogenously applied phytohormones induced more cells 

to enter into the cell cycle. On the other hand, exogenous cytokinins and auxins were found 

to induce stomata opening in darkness (She and Song, 2006) that might enable better entry 

of Agrobacterium into deeper tissue layers in the leaf explants. The results also showed 

that a high frequency of shoot regeneration was achieved in cv. FM372C in a very wide 

range of zeatin concentrations (1.8 to 9 µM zeatin in comparison with 7-9 µM in cv. MTS 

and DM8, Table 1), which might relate to the higher rate of stable transformants in that 

variety. 

As only a few cells of an explant are usually transformed after inoculation/co-culture with 

Agrobacteria, leading to a chimeric tissue consisting of transformed/untransformed cells, 

the selection procedure that favours the growth of transformed cells over untransformed 

cells is a critical step. However, selection agents significantly decrease the relative density 

of viable cells by killing untransformed cells, usualy resulting in severe growth inhibition 

of the surviving transgenic cells. The appropriete dose of selection agent was found to be 

dependent on the plant species. In each species the concentration of selection agent also 

depends on the stage of plant development and its viability. The present transformation 

system with tomato used glufosinate and the bar-gene for selection. The respective 

threshold concentrations had to be determined and should be appropriate to maintain the 

recovery capacity of transformed cells and minimize the development of non-transformed 

cells. In addition, the level of glufosinate that eliminates non-transformed regenerants 

should be chosen for selection at the critical rooting stage. Currently, there are only a few 

references for tomato, where the bar-gene has been used as a selection marker. Most 

authors identified the concentration of glufosinate from 4 to 6 ppm as suitable for 

inhibiting the tomato shoot regeneration (Saker and Rady, 1999; Fuentes et al., 2008; 

Hussain et al., 2008). In contrast, Chen et al. (2006) reported that glufosinate at 20mg/l 

inhibited shoot regeneration of hypocotyls and cotyledon of cv. “Money-Maker”. However 

in all of those studies, cotyledons or hypocotyls were used as the source material for 

transformation. In the present study it can be shown that tomato leaf tissues were very 

sensitive to glufosinate. Here, even 3 ppm glufosinate prevented callus induction from 

expanding leaf tissues. It can be surmised that the toxicity of glufosinate depends on 

genotype and specific tissues. As glufosinate is toxic to all plants tissues, it is considered 
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fundamental for selection of A.tumefaciens transformed plants. Here, the data also showed 

that inoculation with Agrobacteria induces as an additional stress, a hypersensitive 

response, suggesting that different harmful factors affect the plant tissue at the same time, 

which should be considered for assessing success of transformation. Without 

Agrobacterium-stress, a concentration of glufosinate at 1.5 ppm did not totally inhibit 

callus proliferation of tomato leaf tissue, but under Agrobacterium-stress, the same 

concentration was definitely suitable for the selection of transgenic shoots from leaf discs 

for all three varieties. Although at this concentration a number of non-transformed cells 

still survived, the recovery capacity of transformed cells could be maintained. Also, shoot 

regeneration could be induced (see Figure 7c, 9a, 9b, 9c). Therefore, this concentration was 

used throughout the study. For the rooting stage, single shoots (without any callus) were 

cultured for 2 weeks on medium with 1.5 ppm glufosinate. The transgenic shoots 

developed into green rooted plantlets, whereas the non-transformed shoots almost turned 

yellow-white without any rooting (Figure 9d, 9e).     

        

   

  

 

 

 

 

 

 

 

 

 

 

 
Figure 9: Leaf disc transformation with gus gene using 1.5 ppm glufosinate for selection. 
a) 2 months after inoculation; b) 3 months after inoculation; c) 6 months after inoculation; 
d) single shoots in rooting medium on medium containing 1.5 ppm glufosinate; e) the 
shoots of rooting-plants from (d) in rooting medium with 3 ppm of glufosinate.   
 
From the results of GUS transformation with 3 varieties, the transformation procedure is 

summarized in the flow chart shown in Figure 10. 
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Figure 10: Flow diagram for tomato leaf disc transformation   

 

The transformation prototcol for tomato leaf tissue developed presently is easy to be 

carried out and less time-consuming. Only a single step of pre-treatment with 

phytohormones is used with neither culture on solid media nor feeder layer. It resulted in a 

high transformation frequency (up to 19%, chapter 3), when used for transformation of 

variety FMT372C with other genes of interest. 

Leaves from in vitro plants 
(4 expanding leaves) 

Cut into size 5x5mm in liquid BCM 
media+8 µM Zea/5 µM IAA then 
discard liquid and keep overnight for at 
least 20hrs before inoculation. 

Inoculation with 
Agrobacterium: 60min 

OD 600=0.5 in BCM media pH 5.5 
+8 µM Zea/5 µM IAA and 100 mg/l 
of Acetosyringone, 24oC±1. 

Coculture: 4days 
Solid BCM media pH 5.5, darkness 
+8 µM Zea/5 µM IAA, 24oC±1. 

Initiation of callus 
induction: 10 days 

Solid BCM media pH 5.8 +8 
µM Zea/8 µM IAA, 24oC±1, 
16hrs light/8hrs darkness. 

Agr. limitation, callus induction 
and selecion: 2 subcultures 
(14days/subculture) 

Callus induction media, antibiotic 
+1.5 ppm glufosinate, 24oC±1. 

Selection, limitation, 
and shoot induction 

-Solid BCM media+8 µM Zea/5 µM IAA, 
antibiotic +1.5 ppm glufosinate, 24oC±1 
(3 subcultures) 
-Reduce to 8µM Zea/3µM IAA (2 subcultures) 
-Reduce to 6 µM Zea/1µM IAA until the end. 

Single shoots selection 
and rooting 

Single shoot without callus base in BCM 
media plus 0.2 µM IAA, antibiotic +1.5 
ppm glufosinate (1 subculture)→ Then 
the same media with 3.0ppm of 
glufosinate (1 subculture). 
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CHAPTER 3 

The inverted-repeat hairpinRNA derived from 
intergenic region and Rep gene of TYLCTHV 

confers resistance to homologous and 
heterologous viruses 

 
3.1 Introduction 

Post transcriptional gene silencing (PTGS) is a process in which double stranded RNA 

(dsRNA) triggers degradation of homologous RNAs in the cell. The dsRNA is diced into 

21-25 nts long small interfering RNAs (siRNAs). The siRNAs then approach 

complementary RNAs and trigger their degradation. RNA silencing is a eukaryotic 

mechanism, which evolved in plants as a defence against viruses (Voinnet, 2001; 

Waterhouse et al., 2001). However, many viruses have evolved a strategy to overcome the 

defence of the host; they encode suppressors of RNA silencing (Moissiard et al., 2004; 

Roth et al., 2004). Transgenic expression of pathogen-derived sequences encoding hairpin 

RNAs has been considered as a sustainable strategy to obtain virus-resistant plants 

(Tenllado et al., 2004). This strategy has been successfully reported for plant RNA viruses 

(Tougou et al., 2006; Missiou  et al., 2004;  Mitter et  al., 2003; Pandolfini et al., 2003; 

Kalantidis et al., 2002; Wang et al., 2000; Smith et al., 2000). For begomoviruses, the 

DNA viruses, there are only few reports, which describe the occurrence of PTGS after  

transforming  plants with inverted-repeat constructs (Fuentes  et al.,  2006;  Pooggin et al., 

2003; Bonfim et al., 2007). 

The present study shows that expression of self-complementary hairpin RNAs containing 

397 bps of the 5´-terminus encoding the replication associated protein (Rep) and a 174 bps 

of the intergenic region (IR) of TYLCTHV is able to confer resistance to the cognate virus 

and a heterologous virus, TYLCVV. The regenerated T1 transgenic plants are immune 

against TYLCTHV as well as TYLCVV under greenhouse conditions. 
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3.2 Materials and methods 
3.2.1 Transformation of plants 
3.2.1.1 Bacterial system and vectors 

The transformation system EHA105/pSoup/PGII00229 developed with the gus gene 

(chapter 2) was used for transformation of Solanum lycopersicum var. FM372C. The only 

difference was the pGreenII0229 plasmid, which harboured the TDNA containing the RNAi 

construct (see below). 

3.2.1.2 RNAi constructs (self-complementary hairpin RNA constructs) 

The transformation cassette was designed as an inverted repeat construct separated by an 

ST-LS1 intron (ST-LS1 intron IV2 from potato, Eckes et al., 1986) under control of an 

enhanced 35S promoter by Blawid (2008). Next to the left border the TDNA contains a 

selection marker (bar gene) that is controlled by a nos-promoter and a nos-terminator. 

Inverted-repeat DNA fragments derived from the viral genome sequence are regulated by a 

35S CaMV promoter and a CaMV terminator. A physical map of the construct is shown in 

Figure 11. The IR/Rep intron-hairpinRNA construct (IR/Rep-hpRNA) cassette contained 

174 nts of the intergenic region (IR) plus 395 nts of the Rep gene (nucleotides 2.209 to 30 

of GenBank accession no DQ871222). This region does not include only the 5´-terminal 

part of the Rep sequence but also a part of the 5’-terminus of the AC4 gene. 

 
 
Figure 11: Physical map of IR/Rep-hpRNA constructs: inverted-repeat construct derived 
from the intergenic region (IR) combined with T-Rep of TYLCTHV. LB-left border, nos-
terminator, bar gene, nos-promotor; 2x35S CaMV promoter (enhanced 35S promotor), 
IR/Repp_sense, STLS1 intron derived from potato, IR/Rep_antisense, CaMV-terminator; 
RB-Right border; nptI is located in the backbone sequence. 
 

 

AflII HindIII 

LB RB 

TYLCTHV-IR/Repas 

TYLCTHV-IR/Reps 

nptI 35S-Term STLS1-intron

e35S-CaMV
Nos 

bar
Nos-Term 

4.000 bps 
3.820bps 
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Table 7: Sequences of primers for detection of TDNA integration and virus (TYLCTHV and 
TYLCVV) detection 
 

Name Sequence of the primer 
Length of 

fragment (bp)

IR/Reps 5´- AAG GCG CGC CAC GCG TAT GCG TCG TTG GCA GAT TGG -3´ 

IR/Repas 5´- AAG GAT CCT CTA GAA AAA AAA ATC GCG GCC ATC C -3´ 
571 

bar-forward 5´- CGT CAA CCA CTA CAT CGA GAC -3´ 

bar-reversed 5´- TGC CAG AAA CCC ACG TCA TGC- 3´ 
423 

Reps 5´- ACT CTC CGT CGT CTG GTT GTC-3´ 

Repas 5´-TCCATCCGAACATTCAGGGAG-3´ 
925 

B-Ths 5´-GAGTTCCTACTAGACGACCTTTTGGC-3´ 

B-Thas 5´-GGGTCGAAAGGGAGCTGTTAACAA-3´ 
713 

Reps-VN 5´-TGGCCCACATTGTTTTACCCG-3´ 

Repas-VN 5´-ATTCTTCGACCTCACATCCCC-3´ 
593 

3.2.1.3 Plant transformation procedure and anlayses of transgenic plants 

The transformation procedure developed with the gus gene (chapter 2) was used to 

transform Solanum lycopersicum var. FM372C. The surviving plantlets from rooting 

selection media containing 1.5 ppm glufosinate were considered as putative transformed 

plants. The presence of the transgene was confirmed by PCR before plants were transferred 

to the greenhouse to produce To seeds.  

 

3.2.1.4 Plant DNA isolation 

Plant genomic DNA for subsequent PCR and Southern blot analysis was isolated by a 

protocol modified from Dorokhov and Klocke (1998). Tissue from newly emerged leaves 

(0.1 g) was ground in liquid nitrogen.  The homogenized leaf tissues were mixed with 400 

µl of pre-heated (65oC) DNA extraction solution (200 mM Tris-HCl [pH 7.5], 250 mM 

Na2 EDTA, 0.5% SDS) and incubated at 65oC for 15 min in a water bath, and mixed (by 

inverting) every 5 min during incubation. Next 200 µl of 5 M potassium acetate was added, 

mixed by inverting, and immediately placed on ice. After 10 min incubation, the samples 

were centrifuged at 13000 rpm and RT for 20 min. 
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The supernatant (500 µl) was transferred to new 15 ml microcentrifuge tubes. An equal 

volume of isopropanol (-20oC) was added to the supernatant and mixed gently. The 

samples were kept at -20oC for 10 min. The DNA was precipitated by centrifugation at 

13000 rpm at RT for 10 min. The liquid phase was discarded and the pellet DNA was 

washed twice with 70% ethanol and dried by vacuum for 5 min or at 37˚C for 30 min. 

DNA samples were dissolved in RNase and DNase-free water and stored at -20oC. The 

concentration and puritiy of DNA samples were calculated by measuring the absorption 

(Abs260/280nm) with an Ultrospec3000 spectrophotometer (Pharmacia Biotech). 

3.2.1.5 Polymerase chain reaction (PCR) 

Genomic DNA from plant tissue was extracted using the protocol above. Two primers 

were used to confirm the TDNA integration (IR/Reps and IR/Repas). The amplified fragment 

(571 bps) confers to a part of the inverted-repeat intron hairpin region. Two other primers 

(bar-forward and bar-reverse) were designed to amplify a 423 bp fragment of the selectable 

marker gene (bar-gene). 

The PCR reaction mix contained (25µl): 

5.0 μl of GoTaq polymerase buffer (5x) 

2 mM MgCl2 

250 μM dNTP’s 

1 μl of each primer (10pM) 

2.5 U of Taq polymerase 

and 100 ng of genomic DNA, then added ddH2O up to 25 µl 

The PCR reactions were carried out as follows: 

     1 initial denaturation               4 min 94°C 

      2 denaturation    1min 94°C 

      3 annealing   30 s at 58°C (IR/Reps, IR/Repas) and 60°C (bar primers),  

      4 extension               1 min at 72°C 

      5 final extension  10 min at 72°C 

All PCR reactions were carried out in a T3 thermocycler machine from Biometra. PCR 

products were separated on 1% agarose gels by electrophoresis (40 min at 120 volts) in 

TAE buffer (40 mM Tris-base, 20 mM acetic acid, 2 mM EDTA, pH 8.0). Gels were 

30x 
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stained with ethidium bromide (0.0015 mg/mL), and viewed with a UV transilluminator 

(Compact Imager). 

3.2.1.6 Southern hybridization 

The Southern hybridization was used for determining the number of TDNA insertions into 

the plant genome. The methods used were based on the protocols described in the DIG 

Application Manual from Roche Applied Science. 

Probe labelling: Plasmid DNA containing the inverted repeat construct was used as DNA 

template in PCR with Dig- labelling dUTP at a ratio of 1:6 or 1:3 and specific primer pairs 

for each fragment. The size of PCR products is shown in table 7. 

A total of 30 µg genomic DNA was incubated with the restriction enzyme HindIII 

(Fermentas) for at least 16 hours. The restricted DNA was precipitated by absolute ethanol 

and dissolved by ddH2O, then separated on 1.2 % agarose gel in 1X TAE buffer by 

electrophoresis at 80 V for 4 hours. The DIG-labeled Marker III was used as a standard 

ladder. All further procedures were carried out by shaking at RT. The depurination of DNA 

took place in 0.2 M HCl for 7 min. Then the gel was denaturated by incubation in 1.5 M 

NaCl + 0.1 M NaOH for 30 min. The neutralisation took 30 min in 0.5 M Tris-HCl + 3 M 

NaCl (pH =7.5). DNA was then transferred to a positively charged nylon membrane (cat 

number 11417240001-Roche-Applied-Sicence) and fixed by incubation to the membrane 

at 120ºC for 20 min. 

DNA pre-hybridization was performed by incubating the membrane with 15 ml of 

hybridization buffer (2% blocking reagent; 5x SSC; 0.1% N-laurylsarcosine; 0.02% SDS 

and 50% formamide) at 42oC for 6 hours. Hybridisation followed with 5 ml hybridization 

buffer containing the DIG-labelled probe at the same temperature overnight. Unspecific 

fragments were removed by washing the membrane with low stringency buffer (2x 

SSC+0.1% SDS) at 42oC for 30 min, followed by high stringency buffer (0.1x SSC 

[1xSSC contains 0.15M NaCl, 0.15M Na-citrate] + 0.1% SDS) at 68oC for the same 

period. The membrane was blocked by 1 % blocking reagent in maleic buffer (0.1 M 

maleic acid + 0.15 M NaCl, pH 7.5). Furthermore, the membrane was incubated with Anti-

DIG solution (12.5 µl Anti-DIG in 50 ml blocking solution). Washing the membrane for 

30min with washing buffer (maleic buffer containing 0.3% Tween 20) at RT removed 
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unbound Anti-DIG. The membrane was incubated with detection buffer (0.1 M Tris-HCl + 

0.1 M NaCl, pH 9.5) for 5 min at RT and subsequently supplemented with 1ml of CDP-

Star solution (10 µl CDP-Star + 990 µl of detection buffer) and incubated for another 5 

min at RT. The membrane was then transferred to a new nylon bag, CDP-Star solution was 

removed completely and the bag was sealed tightly. The nylon bag was placed in direct 

contact with an X-ray film (Kodak; cat.8761520) for at least 2 hours before the film was 

developed. The hybridized bands were visualized in developer (Tetenal, REF 103655) and 

fixed by fix stop solution (Tetenal, FX 103482). 

3.2.2 Evaluation of virus resistance in transgenic plants 

3.2.2.1 Plant material 

Resistance studies were carried out with self-pollinated T1 transgenic plants carrying the 

IR/Rep-hpRNA cassette. The T1 plants were screened first by PCR to confirm the insertion 

of the gene. Fifteen independent transgenic lines with the IR/Rep-hpRNA construct were 

inoculated with tomato yellow leaf curl virus (TYLCV) by agroinoculation, when 

achieving the 5-7 leaf stage (Figure 12a).   

3.2.2.2 Virus agroinoculation 

Tomato yellow leaf curl Thailand virus (TYLCTHV-AIT; Knierim and Maiss, 2007) and 

Tomato yellow leaf curl Vietnam virus (TYLCVV; Blawid, 2008) were used for 

inoculation.  

From TYLCTHV both viral DNA components (A and B) were agroinoculated. The 

bacteria carrying the A and B viral component, respectively, were grown separately for at 

least 16 hours at 28ºC in 300 ml of liquid YEP media supplemented with 50 mg/l of 

kanamycin up to an optical density OD600=1.2. The bacteria were then centrifuged at 3.500 

rpm for 10 min at 18oC. The pellet was carefully resuspended in 150 ml of agroinfiltration 

solution (10 mM MgSO4; 10 mM MES and 100 μM acetosyringone). The bacteria 

suspension was then kept at room temperature for at least 3 hours. Before agroinfiltration, 

the bacterial suspension of A was mixed with an equal volume of the B component 

suspension. From TYLCVV only the A component was used for inoculation using the 

same procedure as for TYLCTHV. Each tomato plant was infiltrated with 1.5 ml of 
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bacteria suspension into 3 leaves (3 single leaves per stem with 4-8 infiltration points per 

leaf; see Figure 12b).  

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12: Agroinoculation of tomato plants. (a) Plant before agroinoculation; (b) 
Distribution of agroilfiltration points of TYLCV into tomato leaves 4 weeks after 
agroinoculation.  
 

To confirm the infectivity of agroinoculated viruses and to check the morphological 

changes and symptoms occurring in Nicotiana benthamiana plants at 5-7 expanding leaf 

stage were inoculated. The agrobacteria containing full-length clones of the viruses were 

prepared as described above.  

 

3.2.2.3 Evaluation of virus symptoms 

The first step of resistance screening was carried out by observation of emerging disease 

symptoms. Tobacco plants first showed symptoms at 10 days past inoculation (dpi). The T1 

tomato plants were screened for symptoms, which started to emerge 3 weeks after 

inoculation. The observation and screening continued until plants were discarded after seed 

collection. The incidence of viral disease is given in percentage of the plants presenting 

disease symptoms. The transgenic lines with high disease incidence were discarded. 

Focusing on the symptomless lines, PCR tests were carried out to detect the virus. The 

a 
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lines with positive PCR results were considered to be tolerant. Lines with negative PCR 

results were considered to be immune against the virus.  

 

Phenotype of virus infected plants:  

 

  

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13:  Symptom morphology at different times after inoculation. 

Upper left: Shoot stunting in infected plants after 4 weeks past inoculation. 

Upper right: Mosaic yellow leaves in infected plants after 4 weeks past inoculation. 

Lower left: Infected plants after 120 days past inoculation in winter season. 

Lower right: Infected plants after 70 days past inoculation in spring-summer season. 
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 Infected plants were stunted or dwarfed. Newly developed leaves, produced after 

infection, were reduced in size. Leaflets rolled upwards and inwards. Young leaves were 

yellowish. Flowers dropped down and the plants showed prolonged flower abortion. Fruits, 

if produced at all, were small and dry.  

       

3.2.2.4 Confirmation of virus presence by PCR 

Genomic DNA was extracted from each sample using the protocol described. Two sets of 

primers were used for each component of the viral genome of TYLCTHV. With the set of 

primers Reps and Repas (for sequence see Table 7) we could amplify a 925 bp fragment 

belonging to the viral Rep gene, but it is located outside of the region used for the IR/Rep-

hpRNA construct. With the primer pair Reps-VN and Repas-VN we could amplify a 593 

bp fragment of TYLCVV-Rep. The amplified fragment is not identical with any part of the 

IR/Rep-hp RNA construct. The primer pair B-Ths/B-Thas was used to amplify an 813 bp 

fragment of B component of TYLCTHV. 

The PCR reactions were carried out as follows: 

            1. initial denaturation        4 min 94°C 

            2. denaturation               1min 94°C 

            3. annealing                 30 s at 61°C(Reps/Repas; Reps-VN/Repas-VN; 

                                                     62oC for B-Ths/B-Thas) 

              4. extension                1 min at 72°C 

             5. final extension               10 min at 72°C. 

 

All the PCR reactions were carried out using a SENSOQUEST LabCycler. After 

performing the PCR reaction, the fragments were separated by electrophoresis (40 min, 

120 volts) in 1% agarose gels in TAE buffer, pH 8. Gels were stained with ethidium 

bromide (0.0015 mg/mL) and DNA bands were viewed by a UV transilluminator 

(Compact Imager). 

 

30x 
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3.3 Results 

Transformation success was determined by a polymerase chain reaction (PCR) using 

specific primers for the IR/Rep transgene region and for the selectable bar gene. 

Successfully transformed plants, confirmed by PCR, were transferred to the greenhouse for 

To seed production. The plants which were able to produce seeds were further tested for 

the copy number of the inserted transgene by Southern hybridization. 

3.3.1 Confirmation of successful transformation via PCR 

The plasmid containing the inverted repeat TDNA was used as a positive control and the 

DNA samples of non-transformed plants as a negative control (wt). Electrophoresis results 

showed the predicted specific fragments for each primer pair. The amplified fragment 

using bar primers could be seen between 400 and 500 bps (Figure 14b), the fragments of 

IR/Rep-hpRNA were in the range of 600 bps (Figure 14a). There was no visible band from 

wt plants as well as in the water control. The size of the amplified fragments corresponded 

to the size of the positive controls. 

 
 
 
Figure 14a: PCR fragment amplified by IR/Reps and IR/Repas primers.  Lane 1 and 21: 
DNA marker ladder 100bp (Fermentas). Lane2: IR/Rep 37-7; Line 3: IR/Rep 37-8; Lane 4:  
IR/Rep37-9; Lane 5: IR/Rep38-1; Lane 6: IR/Rep38-2; Lane 7: IR/Rep38-3; Lane 8:  
IR/Rep38-4; Lane 9: IR/Rep39-1; Lane 10: IR/Rep39-2; Lane11: IR/Rep39-3; Lane 12: 
IR/Rep 39-4; Lane13: IR/Rep40-1; Lane 14: IR/Rep40-2; Lane 15:  IR/Rep 40-3; Lane16: 
IR/Rep 40-4; Lane 17: IR/Rep 41-1; Lane18: Possitive control (Plasmid DNA); Lane 19: 
Negative control; Lane 20: Water control . 
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Figure 14b: Results of PCR by bar primers. The samples were placed as the same as 
Figure 14a. 
 

From 210 leaf pieces which were inoculated with Agrobacterium containing IR/Rep 

region, 255 single plants originated and all of them showed positive results in PCR. These 

plants were derived from 40 calluses which originated from 40 inoculated leaf pieces, thus 

the transformation frequency using this construct is 19%. 

3.3.2 Seed production from To plants 

37 IR/Rep-hpRNA To plants were transferred to the greenhouse (one plant was randomly 

selected from each inoculated explant). Two plants died in nursery stage. Another 10 

plants showed deviant leaf growth (thick and dark-green leaves); they had fruits but 

produced onlya few seeds. The remaining 25 plants exhibited the same habitus like non-

transformed plants, produced many seeds. Five of them died in the stage of young fruits 

due to a fungal disease. However, these plants produced seeds and they were counted as 

seed producing plants. Therefore, the frequency of plants producing seeds was 67.6%. 

3.3.3 Identification of transgene copy number in transformed 

plants 

To identify the number of insertions in the remaining plants, Southern hybridization was 

performed. The recognition site for the restriction enzyme HindIII is located in the RB of 

TDNA. This enzyme was used to digest genomic DNA of transformed plants. The results of 

hybridization with a DIG-labeled probe of IR/Rep and bar region are shown in Table 8. 
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Table 8: Southern hybridization with a DIG-labeled probe of the Rep and bar to DNA 
prepared from transgenic tomato lines 
 

Number of fragments hybridising 
with the Rep probe 

Number of fragments hybridising 
with the bar probe 

Plant line 
No. 

>5kb 3.5-4.9kb <3.5kb >5kb 3.5-4.9kb <3.5kb 
IR/Rep2-1 2 0 1 3 0 0 

IR/Rep2-2 2 0 1 3 0 0 

IR/Rep4-1 2 0 1 2 1 0 

IR/Rep10-1 2 0 1 3 0 0 

IR/Rep15-1 0 2 2 1 1 0 

IR/Rep16-1 0 0 0 0 0 0 

IR/Rep22-4 2 1 1 2 (weak) 0 0 

IR/Rep23-5 2 2 2 2 0 0 

IR/Rep26-2 1 1 0 1 0 0 

IR/Rep29-1 0 2 (weak) 3 2 (weak) 0 0 

IR/Rep30-4 2 1 1 1 1 0 

IR/Rep31-1 1 (weak) 3 3 1 (weak) 3 0 

IR/Rep32-2 1 0 1 1 0 0 

IR/Rep33-2 0 2 2 1 1 0 

IR/Rep34-2 0 1 0 1 0 0 

IR/Rep35-1 1 1 0 1 0 0 

IR/Rep38-1 0 2 3 1 1 0 

IR/Rep43-1 0 2 2 1 (weak) 0 0 

IR/Rep45-1 1 1 3 1 1 0 

IR/Rep47-5 1 1 3 1 1 0 

wt 0 0 0 0 0 0 
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 There was no hybridization signal detected in DNA samples of the non-trans-formed plant 

(Figure 15), indicating that all other hybridisation signals derived from DNA samples of 

transgenic plants represent TDNA insertions. The number of insertions in the IR/Rep-

hpRNA transformants ranges from 1 to 7. Most of the plants showed 2-4 insertions (7 

plants had 3; 5 plants had 4; and 5 plants had 2 insertions), while only 1 plant (5%) had a 

single TDNA insertion. The line number 16-1 had neither a hybridization signal with the 

IR/Rep-hpRNA probe nor with the bar-probe, thus, DNA from this plant failed in the 

former PCR or was a chimeric type. 

The size of the full-length TDNA is 4299 bps. A HindIII restriction site is located near the 

RB, which leads after HindIII restriction digest to the appearance of a fragment with an 

expected minimum size of 3800 bps.  

Based on the results of the hybridisation, both with the Rep probe and the bar probe, 

truncated and/or intact TDNA insertions were indentified. If the hybridizing signal with Rep 

and bar probes of a plant are visualised at one position in the X-tray film that band will be 

an intact TDNA. The results (Table 8) showed all transgenic lines contained a least one 

truncated insertion of the IR/Rep-hpRNA. Five out of 20 plants (25%) contained a 

truncated insertion of the bar gene (Table 8). The seven lines (IR/Rep47-5; IR/Rep45-1; 

IR/Rep33-2; IR/Rep30-4; IR/Rep10-1; IR/Rep4-1 and IR/Rep2-1) had 2 intact insertions. 

The eight lines IR/Rep43-1; IR/Rep38-1; IR/Rep35-1; IR/Rep32-2; IR/Rep26-2; 

IR/Rep23-5; IR/Rep22-4 and IR/Rep15-1 had 1 intact TDNA insertion. The line IR/Rep31-1 

contains 4 intact insertions and IR/Rep34-2; IR/Rep29-1 contained only truncated TDNA 

insertions. 
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Figure 15: Hybridization of DNA from IR/Rep transgenic plants: (A) with Rep probe and 
(B) with bar probe. Lane 1: Marker III; Lane 2: Negative control (non-transformed plant); 
Lane 3: IR/Rep2-1; Lane 4: IR/Rep2-2; Lane 5: IR/Rep10-1; Lane 6: IR/Rep22-4; Lane 7: 
IR/Rep23-5; Lane 8: IR/Rep29-1; Lane 9: IR/Rep31-1; Lane 10: IR/Rep47-5; Lane 11: 
Marker III; Lane 12: Neg. control; Lane 13: IR/Rep4-1; Lane 14: IR/Rep15-1; Lane 15: 
IR/Rep26-2; Lane 16: IR/Rep30-4;  Lane 17: IR/Rep33-2; Lane 18: IR/Rep38-1. 
 
 

12 18 17 16 15 14 13 

3530 

2072 
1584 

1 2 3 4 5 6 7 8 10 9 

A 

947 

 11 12 13 14 15 17 18 16 

3530 

2072 
1584 

1 2 3 4 5 6 7 8 9 10 

 B 

947 



CHAPTER 3                                                                                                                            68 

3.3.4 TYLCTHV resistance tests in T1 plants transformed with 

the IR/Rep-hpRNA construct 

3.3.4.1 Agroinoculation of Nicotiana benthamiana with TYLCTHV and 

TYLCVV 

To confirm the infectivity of the plasmids carrying full-length TYLCTHV as well as 

TYLCVV before using agroinfiltration of transformed tomato plants, six N. benthamiana 

plants were agroinoculated. The results are shown in Table 9. 

Table 9: Agroinoculation of N.benthamiana 

Number of plants with virus symptoms (dpi) Type of virus 

10 15 20 25 

TYLCTHV-A + B 6 6 6 6 

TYLCTHV-A 0 1 5 6 

TYLCVV-A 0 2 6 6 

 

The suspension containing both A and B components was much more virulent than the A 

component alone. The plants exhibited symptoms in a very short time after inoculation. 10 

days past inoculation 100% of the plants agroinoculated with the combination of A and B 

component of TYLCTHV showed yellowish colouring of young leaves- a specific 

symptom of TYLCVD. After 15 days, all young leaves in those plants were curled, yellow, 

and the shoots were stunted. After agroinoculation of the A component, only 1 out of 6 

plants showed symptoms at 15 days past inoculation. The percentages reached up to 100% 

25 days after inoculation. Similar results could be seen after inoculation with component A 

of TYLCVV. The symptoms started on the 15th day after inoculation and the infection rate 

reached 100% after 25 days (Table 9). However, a difference in the symptomatology could 

be observed: In comparison to the strong symptoms induced by inoculation with both viral 

components, plants agroinoculated only with the A component of TYLCTHV or TYLCVV 
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showed significantly more moderate symptoms. The plants displayed dark green crinkly 

leaves, were stunted, but show no yellowing (Figure 16). 

 

 

Figure 16: Agroinoculation of TYLCTHV and TYLCVV in N. benthamiana plants. (a) 
Non-inoculated plants without symptoms; (b) Symptoms of TYLCTHV A+B component 
infected plants: curly leaves, yellow mosaic of the leaves and reduction of leaf; (c) curly 
leaves but no yellowing in plants infected with A component of TYLCTHV; (d) curly 
leaves but no yellowing in plants infected with A component of TYLCVV. 
 

3.3.4.2 Agroinoculation of transgenic tomato plants with TYLCTHV 

The first experiment for resistance evaluation through the IR/Re-hpRNA construct was 

carried out in the winter season. The temperatures in the greenhouse ranged from 23-28oC 

with 16 h light/8 h dark photoperiod. Six to ten plants of fifteen transgenic lines carrying 

the IR/Rep-hpRNA construct were agroinoculated with an infectious full-length clone of 
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the TYLCTHV (A and B component). In addition, non-transgenic tomato plants were 

agroinoculated as a control. Virus resistance was monitored by checking for morphological 

changes and appearance of viral symptoms (Table 10).  

Table 10: Symptom development of transgenic IR/Rep-hpRNA tomato plants after 
agroinoculation with TYLCTHV 
 

Percentages of symptomatic plants (dpi)   

Line No 
Number of 

inoculated plants 21 30 40 70 

1 IR/Rep2-1 10 0 0 0 0 

2 IR/Rep4-1 10 0 0 60 60 

3 IR/Rep10-1 9 0 0 33.3 33.3 

4 IR/Rep15-1 8 0 37.5 37.5 37.5 

5 IR/Rep16-1 8 50 62.5 75 75 

6 IR/Rep23-5 10 0 20 40 40 

7 IR/Rep26-2 10 10 20 50 60 

8 IR/Rep29-1 10 20 30 50 60 

9 IR/Rep30-4 10 20 30 50 50 

10 IR/Rep31-1 10 10 30 50 50 

11 IR/Rep33-2 5 20 40 40 60 

12 IR/Rep34-2 8 0 12.5 50 50 

13 IR/Rep38-1 6 0 16.7 37.5 37.5 

14 IR/Rep43-1 9 11.1 22.2 55.6 55.6 

15 IR/Rep47-5 10 70 80 90 90 

 wt 10 70 90 90 90 

 

Nearly all non-transgenic control plants became infected and showed typical yellow leaf 

curl symptoms and stunting. Based on the time symptoms appearance of and the number of 

symptomless plants, the TYLCTHV resistance level of transgenic plants was classified into 

four major categories. 

The four lines IR/Rep 10-1, IR/Rep 15-1, IR/Rep 23-5 and IR/Rep 38-1 showed delayed 

symptoms as well as a lower percentage of symptomatic plants, the virus symptoms were 
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visible at 30-40 days after inoculation in comparison with 21 days past inoculation in the 

non-transgenic control plants. Seventy days past inoculation, these four lines revealed 33.3 

– 37.5% plants with symptoms.  

The eight lines numbered IR/Rep4-1, IR/Rep26-2, IR/Rep29-1, IR/Rep30-4, IR/Rep31-1, 

IR/Rep33-2, IR/Rep34-2, and IR/Rep43-1 were more susceptible to the virus as the 

symptoms appeared earlier. Symptoms become visible at the same time as in non-

transgenic control plants (21 days after inoculation) and with a higher percentage of 

symptomatic plants at 70 days past inoculation, ranging from 50 to 60%.  

The two lines IR/Rep16-1 and IR/Rep47-5 were nearly as susceptible to the virus as non-

transgenic control plants.  

One line - line IR/Rep2-1 displayed high level resistance to the virus. None of the ten 

inoculated plants of this line showed disease symptoms (Figure 17). This line was 

maintained until all fruits had ripened.  

 
Figure 17: Resistance test of IR/Rep transgenic plants inoculated with TYLCTHV A+B 
component. Arrow (A) depicts plants of line IR/Rep 2-1 showing no symptoms; arrow (B) 
depticts non-transformed control plants with severe yellow leaf curl symptoms and 
stunting. 
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3.3.4.3 TYLCTHV detection by PCR 
 

PCR was carried out only with plants of line IR/Rep2-1 and 6 asymptomous plants of line 

IR/Rep10-1 at 70 and 130 days past inoculation. Interestingly, no amplification product 

was obtained by using Reps and Repas primers (for A component), nor by using primers 

B-Ths and B-Thas (B-component), indicating that these plants were free of virus. Focusing 

on the line IR/Rep2-1, the experiment was repeated for 15 transgenic plants from the T1-

generation in the following spring season. The plants were grown in the same greenhouse 

but without control of temperature and photoperiod. Forty days past inoculation, mild 

symptoms of leaf curling was observed in one IR/Rep2-1 plant. The presence of viral DNA 

in this plant was shown by PCR. All other IR/Rep2-1 plants were free of disease symptoms 

and no viral DNA could be detected in these plants by PCR (see Table 11, Figure 18a and 

18b). One symptomless plant out of the 16 non-transformed plants tested was found. In this 

non-symptom plant, the viral DNA was detected by PCR in the nearby inoculation place 

but not in the young leaves. All others plants displayed the specific symptoms of TYLCV 

and viral DNA were detected (Figure 18c). 

 
Table 11: Symptom development of transgenic IR/Rep2-1 tomato plants after 
agroinoculation with TYLCTHV (second test). 
 
 

Number of plants with virus 

symptom after inoculation (dpi) PCR at dpi Virus type Plant 

type 

Number of 

inoculated 

plants 
21  30 40 70  90 30 70 90 

IR/Rep 

2-1 15 0 0 1 1 1 1 1 1 
TYLCTHV 

A+B 

component 
wt 16 10 14 15 15 15 15 15 15 
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Figure 18a: PCR products amplified by Reps and Repas primers with DNA of transgenic 
plants of line IR/Rep2-1 (second test). Lane 1 and 20: DNA marker ladder 100bp 
(Fermentas); Lane 2 to 16:  Plants of line IR/Rep2-1; Lane 17-18: Non-transformed non-
infected plants; Lane 19: Water control.  
 
 

 

 

 

 

 
 
 

 
 
 
Figure 18b: PCR products amplified by B-Ths and B-Thas primers with genomic DNA of 
transgenic plants (second test). Lane 1 and 20: DNA marker ladder 100bp (Fermentas); 
Lane 2 to 16: plants of line IR/Rep2-1; Lane 17: non-transformation infected plant; Lane 
18: non-transformed non-infected plant; Lane 19: Water control.   
 
 

 
 
 
 
 
 
 

 
 
Figure 18c: PCR products amplified by Reps and Repas primers with DNA of non-
transformed plants (second test). Lane 1 and 21:  DNA marker ladder 100bp (Fermentas); 
Lane 2 to17:  non-transformation infected plants; Lane 18: agrobacterium carried virus 
DNA; Lane 19: non-transformation non-infected plant; Lane 20: Water control. 
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3.3.4.3 Molecular characterization of transgenes in immunity plants by 

Southern hybridization 

 

 

 

 
 

 
 

 
 
 
 
Figure 19: Hybridization of DNA from immunity IR/Rep2-1plants: (A) with Rep probe 
and (B) with bar probe. Lane 1: Marker III.      
- HindIII cutter: Lane 2: Non-transformed plant; Lane 3: 2-1-3; Lane 4: 2-1-4; Lane 5: 2-1-
5; Lane 6: 2-1-6; Lane 7: 2-1-7; Lane 8: 2-1-8; Lane 9: 2-1-10; Lane 10: 2-1-11; Lane 11: 
2-1-13; Lane 12: 2-1-14 
- AflII cutter: Lane 13: 2-1-3; Lane 14: 2-1-4; Lane 15: 2-1-5. 
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Figure 19A shows a Southern hybridisation of DNA digested with Hind III. Hybridization 

with the rep-probe indicated 3 T-DNA insertions. Digestion with AflII revelead only 2 

hybridizing bands. These results indicated that three IR/Rep insertions were located in 2 

different positions of the plant genome. In combination with the hybridization result of the 

bar-probe (19B), all transgenic plants contain one truncated IR/Rep region and one 

truncated bar-region. These results are in agreement with the results of the Southern 

hybridization experiment of the T0 plant (19A1, 19B1).  

3.3.4.5 Agroinoculation of transgenic tomato plants with TYLCVV 

Ten plants of the line IR/Rep2-1 as well as ten non-transformed plants were infected with 

TYLCVV by agroinfiltration. Symptom development was recorded up to 90 days after 

inoculation and PCR was performed to confirm viral accumulation 30, 70 and 90 days post-

inoculation. The results are shown in Table 12. 

 

Table 12: TYLCVV resistance assays in transgenic IR/Rep2-1 tomato plants  

 

Number of symptomatic plants after 

inoculation (dpi) PCR at dpi 
 

Virus type 

 

Plant 

type 

Number of 

inoculated 

plants 

21 30 40 70 90 30 70 90 

IR/Rep 

2-1 
10 0 0 0 0 0 0 0 0 TYLCVV 

A 

component wt 10 1 1 6 1 1 6 10 10 

 

Only one of the non-transformed plants presented typical symptoms of TYLCV infection 

at 21 days after inoculation. These symptoms remained until the end of the experiment. 

Five other plants showed very slight yellow colouring 35 days after of inoculation, but 

only for a very short time and then symptoms disappeared. Four other plants were totally 

symptomless. However, the viral DNA was detected in all ten plants (Figure 20b), while in 
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all 10 plants of the IR/Rep2-1 line symptoms were not observed nor viral DNA detected 

(Figure 20a).  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 20a:  PCR fragments amplified by Reps-VN/Repas-VN with DNA of transgenic 
plants. Lane 1 and 14: DNA marker ladder 100bp (Fermentas); Lane 2 to 11: Plants of line 
IR/Rep2-1; Lane 12: Non-transformed infected plant; Lane 13: Water control.   
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20b: PCR fragments amplified by Reps-VN/Repas-VN with DNA from non-
transformed plants. From left to right: Lane 1 and 14: DNA Marker ladder 100bp 
(Fermentas); Lane 2 to 11: Non-transformed infected plant; Lane 12: Non-transformed 
non-infected plant; Lane 13: Water control.  
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3.4 Discussion 

After delivery into plant cells, geminiviruses enter the replication cycle followed by DNA 

accumulation, assembly of particles, and spreading in the host. In most plant cell nuclei, 

geminiviruses replicate through the rolling circle replication (RCR) mechanism. Recently, 

geminiviruses have been shown to utilize two strategies, the RCR, as well as a 

recombination-dependent replication (RDR) (Jeske et al., 2001; Preiss and Jeske, 2003). 

For viral DNA replication, the “Replication-associated protein” is necessary. The N-

terminus of the protein harbours activities for specific DNA binding, nicking, and joining, 

whereas the C-terminus is responsible for ATPase and helicase activity (Desbiez et al., 

1995; Orozco et al., 1997; Orozco and Hanley-Bowdoin, 1998; Pant et al., 2001; 

Choudhury et al., 2006; Clerot and Bernardi, 2006). REP is a multifunctional protein 

fulfilling tasks of specific nicking and joining of DNA, autorepression of its own 

transcription, reprogramming the cell cycle to induce DNA-dependent DNA polymerase 

expression in differentiated cells, as well as ATP hydrolysis. All of these functions are an 

inevitable prerequisite for geminivirus replication. REP recognizes the origin by binding to 

a specific DNA sequence and catalyzes DNA cleavage and ligation and so begins and ends 

the rolling circle replication (Fontes et al., 1994b; Laufs et al., 1995b; Orozco and Hanley-

Bowdoin, 1996; Orozco and Hanley-Bowdoin, 1998; Orozco et al., 1997). It also actively 

represses its own transcription in a virus-specific manner (Eagle et al., 1994; Gladfelter et 

al., 1997; Sunter et al., 1993; Eagle and Hanley-Bowdoin, 1997) and is reprogramming the 

cell cycle by interaction with a host derived protein to induce the expression of a host DNA 

synthesis protein, the PCNA, in non-dividing plant cells (see review Hanley-Bowdoin et 

al., 2004). REP binds to the viral replication enhancer protein, which in turn binds to 

PCNA, the processivity factor for DNA polymerase δ. It also interacts with components of 

the host replication apparatus, like PCNA and the replication factor C complex, the clamp 

loader that transfers PCNA to the replication fork. These interactions are likely to represent 

early steps in the assembly of a DNA replication complex of the geminivirus origin (Luque 

et al., 2002; Castillo et al., 2003; Settlage et al., 2005; Selth et al., 2005; Morilla et al., 

2006). 

Because the REP is involved in many different pathways, it has been mostly employed in 

different strategies to confer geminivirus resistance. A number of reports achieved virus 
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resistance by expressing either the truncated REP ACMV (Hong and Stanley, 1996; 

Sangare et al., 1999); TYLCVs (Noris et al., 1996b; Brunetti et al., 1997; Lucioli et al., 

2003; Antignus et al., 2004; Chatterji et al., 2001) and BGMV (Hanson and Maxwel, 

1999). Alternatively, full-length of Rep was used for transformation (Hong and Stanley, 

1996; Shivaprasad et al., 2006). However, in all of the publications the typical effect seems 

to be tolerance rather than immunity. Expression of REP (full-length, truncated or mutant) 

resulted in only reducing viral accumulation in infected tissue and in symptom attenuation. 

Only Antignus et al. (2004) reported three lines that seemed to be immune to the virus. 

When using whitefly inoculation, the plants did not show disease symptoms and viral DNA 

was detected by dot-hybridization. However, those lines became susceptible to virus by 

agroinoculation. 

Different results were obtained when the Rep gene was used to engineer resistance against 

begomovirus based on a RNA-mediated resistance pathway. So far there are only few 

reports of successful begomoviruses resistance development using the Rep sequence  

(Asad et al., 2003; Yang et al., 2004; Ramesh et al., 2007; Fuentes et al., 2006; Bonfim et 

al., 2007). In most cases, the plants could be immunized against the viruses.  Asad et al. 

(2003) showed that the resistant tobacco plants neither developed symptoms nor contained 

detectable amounts of DNA of CLCuV. Yang et al. (2004) tested eight different Rep 

constructs of an isolate of TYLCV from Florida (TYLCV-[FL]). No symptoms were 

observed and no TYLCV-DNA was detected by PCR or hybridization in resistant plants. 

Fuentes et al. (2006) demonstrated immunity to TYLCV in tomato plants transformed with 

a cassette consisting of 726 nts of the 3´-end of the Rep gene (sense and anti-sense 

orientation) functioning as arms of the hairpin. Young plants (four-leaf stage), were 

exposed to hundreds of viruliferous whiteflies for 60 days. Afterwards, no TYLCV DNA 

could be detected in these plants. Bonfim et al. (2007) achieved one line which seemed to 

be immune. In this line, a semiquantitative polymerase chain reaction analysis revealed the 

presence of viral DNA in transgenic plants exposed to viruliferous whiteflies for a period 

of 6 days, and when insects were removed, no viral DNA could be detected after an 

additional 6 days. 

The results of the present study are consistent with the previous research. Out of 15 

independent transgenic lines transformed with an IR/Rep-hpRNA construct, at least two 

lines were observed to be resistant to TYLCTHV. All plants from the line IR/Rep2-1, and 
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6 of 9 plants from IR/Rep10-1 showed no disease symptoms 10 weeks after groinoculation 

and viral DNA was not detected by PCR. IR/Rep2-1 plants were maintained until fruits 

ripened (130 days). Even after this long time, no indication of disease could be found. 

Focussing on this particular line, virus inoculation was repeated. Only one plant out of 15 

showed symptoms 3 weeks after inoculation. All other plants were healthy, showing no 

symptoms as well as no viral DNA detected by PCR. 

Interestingly, the line IR/Rep2-1 also showed resistance to a heterologous virus, TYLCVV. 

Although the non-transformed plants did not present high incidence of the disease, the 

PCR results showed the presence of viral DNA in all of them. However, neither the 

presence of symptoms nor of viral DNA in all IR/Rep2-1 plants was detectable through the 

whole growth period until fruits were ripened. 

Different studies show that transgenic plants expressing the viral REP are able to resist 

only a specific virus. For example, none of transgenic plants of Hong and Stanley (1996) 

were resistant to the distantly related viruses TGMV and Beet curly top virus (BCTV). 

Similarly, the expression of a truncated TYLCSV REP interfered with cognate viral 

infection in transgenic plants (Noris et al., 1996b; Brunetti et al., 1997), but it did not 

protect against the closely related virus strain, TYLCSV-ES, and the closely related 

species, Tomato leaf curl virus (ToLCV-Au), (Brunetti et al., 1997). Similarly, a truncated 

Rep gene from the Tomato yellow leaf curl virus-Israel (TYLCV-Is) mild strain conferred 

resistance in transgenic tomato to the cognate strain but not to the TYLCV-Is severe strain 

(Antignus et al., 2004). However, the broad-spectrum resistance to begomoviruses viruses 

associated with transgene-induced gene silencing has been also reported by different 

authors. Abhary et al. (2006) designed a chimera intron-hairpin to generate resistance to 

TYLCV as well as other strains and monopartite begomoviruses. They achieved 

transformed plants resistant to TYLCV, TYLCV-Mld and TYLCSV-ES by whitefly 

inoculation and TYLCSV-(Sar) by agroinfiltration. In research of Chellappan et al. 

(2004a), the transgenic plants resistant to ACMV were also challenged with isolates of 

East African cassava mosaic Cameroon virus (EACMCV) and Sri Lankan cassava mosaic 

virus (SLCMV). Those results, as well as our results, are interesting because in principle 

RNA-mediated resistance is homology-dependent thus it usually results in narrow-

resistance.
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CHAPTER 4 

Inverted-repeat hairpinRNA derived from 
a truncated pre-coat/coat-protein gene of 

TYLCTHV confers resistance in 
transgenic tomato plants 

 

4.1 Introduction 

Since the first demonstration that a virus coat protein expressed in plants provides some 

level of resistance (Abel et al., 1986), pathogen-derived resistance has been applied to 

RNA viruses (Beachy, 1990; Lomonossoff, 1995). Various transgenic plants that 

accumulate a viral coat protein acquire resistance against cognate viruses, for instance, 

tobacco plant resistance to Tobacco mosaic virus (TMV; Abel et al., 1986), Cucumber 

mosaic virus (CMV; Cuozzo et al., 1988) and Potato virus Y (PVY; Hemenway et al., 

1988). The sense CP gene had mainly been used as a transgene conferring resistance until 

the mechanism of viral resistance via RNA silencing in transgenic plants was 

demonstrated. The resistance mechanism is through initiation of RNA silencing via an 

accidental formation of dsRNA or over-expression of aberrant RNA. The introduction of 

inverted-repeat viral genomic sequences expressed as hairpin dsRNA in host plants is an 

efficient method for inducing RNA silencing and conferring viral resistance (Waterhouse 

et al., 1998). The strategy of expressing a gene encoding intron-spliced RNA can induce 

PTGS with almost 100% efficiency (Smith et al., 2000). Previous studies have shown that 

resistance can be acquired in many plants, for instance, tobacco resistant to PVY (Smith et 

al., 2000) and CMV (Kalantidis et al., 2002), barley resistant to Barley yellow dwarf virus 

(BYDV; Wang et al., 2000), potato resistant to PVY (Missiou et al., 2004) and soybean 

resistant to Soybean dwarf virus (SbDV; Tongou et al., 2006) and to Soybean mosaic virus 

(SMV, Furutani et al., 2007). Zrachya et al. (2007b) designed intron-hairpin RNA 

constructs in order to analyze their effects on the accumulation of the only known part of 

the TYLCV virus capsid, the coat protein (CP). The siRNAs derived from them targeted 

the V1 gene product. A co-agroinfiltration with a GFP-CP fusion construct showed a 
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down-regulation of GFP in tobacco. In one of the tomato varieties (cv. “Micro-Tom”), an 

inhibiting affect of the ihpRNA construct on CP production and subsequently on the 

disease symptoms could be observed. Whereas non-transgenic control plants were 

symptomatic 2 weeks post inoculation, the transgenic tomato plants needed 7 weeks to 

exhibit symptoms.  

In this study, plants were transformed with an intron-hairpin RNA construct derived from 

the precoat/coat protein region of TYLCTHV. The transformed plants confer tolerance to 

the homologous virus up to 120 days past inoculation by agroinfiltration under greenhouse 

conditions. 

4.2 Materials and methods 

 All methods for transformation as well as the detection of transgenic plants and 

TYLCTHV were carried out essentially as described in chapter 3, except for the hairpin 

RNAi construct, which was derived from the pre-coat/coat protein region of TYLCTHV 

(see description below). Therefore, the primers used for detection of the transgene were 

different (Table 13). 

   Table 13: Primers used for detection of TYLCTHV TDNA integration 

Name Primer sequence 

Length of 

fragment 

(bp) 

Pre/Cps 
5´- AAG GCG CGC CAC GCG TTA ACT AAC TAA GAG AAG ACG  

TAT TCC CCT GA- 3´ 

Pre/Cpas 5´-AAG GAT CCT CTA GAA CCT GCT GAA AAT CAT AAG G-3´ 

595 

 

4.2.1 RNAi construct  

A physical map of the RNAi construct designed by Blawid (2008) is shown in figure 21. 

The precoat/coat protein intron-hairpin RNA construct (Pre/Cp-hpRNA) contains 540 nts 
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(225 to 765 of GenBank accession no. DQ871222). The region includes a 3´-part of the 

AV2 gene and a 5’-part of the AV1 gene.  

 

 

Figure 21: Physical map of hairpin-RNAi constructs. Inverted-repeat transgene derived 
from precoat and coat protein region of TYLCTHV. LB-left border, nos-terminator, bar 
gene, nos-promotor; 2x35S CaMV promoter (enhanced 35S promotor), Pre/Cp_sense, 
STLS1 intron derived from potato, Pre/Cp_antisense, CaMV-terminator; RB-Right border; 
nptI is located in the backbone sequence. 

 

4.2.2 Evaluation of virus resistance in transgenic tomato 

Agroinoculation was carried out according to the protocols described in chapter 3. The first 

step of virus resistance screening was done by observating of disease symptoms. Plants 

were screened for the presence or absence of TYLCD symptoms.  

The T1 tomato plants were screened for disease symptoms beginning 3 weeks after 

inoculation and continually until seed collection. The incidence of disease was evaluated as 

the percentage of plants exhibiting symptoms. Lines showing no symptoms were subjected 

to PCR and ELISA tests to detect TYLCTHV infection. Based on the results of PCR 

screening, virus positive transgenic lines without symptoms were considered tolerant. 

Transgenic lines free of symptoms and with negative PCR results were considered 

immune.  

 

 

3800 bps HindIII 
AflII 

RB LB 
nptI 

TYLCTHV-Pre/Cpas 

35S-Term STLS1-intron

TYLCTHV-Pre/Cps 

e35S-CaMV
Nos 

bar
Nos-Term 

3980 bps 
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4.2.3 Triple antibody sandwich (TAS) ELISA for detection of 

TYLCV 

Buffers: 

Extraction buffer: 0.05 M Tris-HCl, 0.06 M Na2SO3, pH was adjusted by HCl to 8,5. 

Carbonate coating buffer (pH 9.6): 15 mM Na2CO3, 35 mM NaHCO3, and 3 mM NaN3, 
the solution was autoclaved and stored at 4°C. 

10×phosphate buffered saline (PBS, pH 7.4): 1,4 M NaCl, 15 mM KH2PO4, 80 mM 
Na2HPO4, 27 mM KCl , 30 mM NaN3 (pH was adjusted by NaOH or HCl, the solution was 
autoclaved and stored at room temperature. 

Phosphate buffered saline-Tween (PBS-T) pH 7.4: 100 ml 10 × PBS, 0.5 ml Tween 20, 
900 ml water; pH was adjusted once more and the solution was stored at room temperature. 

Antibody buffer (PBS-TPO): 5 g PVP was dissolved in 250 ml PBS-T buffer, pH was 
controlled at 7.4 and the solution stored at 4oC. 

Blocking solution: 2 g skim milk in 100 ml of PBS-T buffer.  

Substrate buffer (diethanolamine buffer): 1 M Diethanolamine, adjust pH 9.8 with 
concentrated HCl; 5 mM MgCl2. The solution was stored at 4°C.  

Sample preparation 

Newly expanded young leaves present in the uppermost parts of the plants were collected, 

carefully avoiding cross-contamination by punching a piece of leaf directly into a 

microcentrifuge tube, using the lid as a cutting instrument. Five leaf discs were stamped 

out using one microcentrifuge tube for each sample. The samples were immediately 

incubated on ice. Protein extraction and preparation was carried out. ELISA (enzyme-

linked immunosorbent assay) was used for the determination of TYLCV-capsid protein 

according to the protocol below: 

The crude IgG (DSMZ AS-0588) antibody was diluted 1:1000 in the coating buffer. The 

microtitre plates were coated by pipetting 100 µl of the solution into each well. The 

microtitre plate was covered by a plastic bag and incubated for 2-4 hours at 37°C. 

Afterwards the solution was discarded and the wells were washed three times with PBS-

Tween, with 3 minute soaks between washes. The wells were dried before blocking them 

with 100 µl 2% skim milk per well and incubating the plates at 37oC for 30 min. The 

microtitre plates were washed three more times with PBS-Tween, as described above. The 
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samples were centrifuged for 90 sec at 13.000 rpm at room temperature. Each well was 

loaded with 100 µl of the supernatant. The plates were covered by a plastic bag and 

incubated at 4°C overnight. Another washing step with PBS-Tween followed. Then 100 µl 

of the monoclonal antibody (AS-0546/2 at 1:1000) was loaded into each well. The plates 

were covered by a plastic bag and incubated at 37oC for 2-4 hours. Again, a washing step 

was done. 100 µl of the rat-anti-mouse antibody coupled with alkaline phosphatase (RaM-

ap at 1:1000) was loaded into each well. The plates were covered and incubated at 37oC for 

2 hours. The substrate buffer was prepared; 1 mg of p-nitrophenyl phosphate (LOEWE-

Biochemical) was added to 1 ml of substrate buffer. The microtitre plates were washed 

with PBS-Tween as before. 100µl of substrate solution was added into each well and 

incubated at room temperature. 1.5 h after the addition of the substrate p- nitrophenyl 

phosphate in 9.5% diethanolamine (Roth) buffer (pH 9.8), the absorbance at OD415nm was 

measured on automated microplate reader BiO-RAD 550.  

Plants were considered as TYLCV infected when the corresponding OD415nm values were 

at least the double the control values obtained from material of healthy non-inoculated 

plants. 

4.3 Results 
4.3.1 Results of transformation 

The transformed Solanum lycopersicum var. FM372C plants were identified by PCR using 

a specific primer pair, amplifying a fragment of TDNA, containing the RNAi construct 

(Figure 21, Table 7 and 13). Successfully transformed plants, confirmed by PCR were 

transferred to the greenhouse to produce To seeds. The plants which were able to produce 

seeds were further tested for the copy number of transgene insertions by Southern 

hybridization (see chapter 3). 

4.3.1.1 Confirmation of successful transformation via PCR  

The plasmid containing inverted repeat TDNA was taken as a positive control; the DNA 

samples of non-transformed plants (wt) were used as a negative control. The fragments 

amplified using bar primers were visible between 400-500 bps; the size of fragments 

amplified using cp primers (Pre/Cps and Pre/Cpas) was between 500-600 bps. There were 
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 1615141312111096 7 854321

b

 2120191817161514131211109876 5432
 

1

a

no bands visible in wild type (non transformed plants; negative control) and in the water 

control. All fragments amplified from a DNA template of putative transgenic plants had 

the same size as the positive control (Figure 22a, 22b). 

 

Figure 22a: PCR results amplified by Pre/Cps and Pre/Cpas from plants transformed with 
Pre/Cp-hpRNA construct. Lane 1 and 21: DNA marker ladder 100bp (Fermentas). Lane 2: 
Pre/Cp2-1; Lane 3: Pre/Cp2-2; Lane 4: Pre/Cp3-1; Lane 5: Pre/Cp3-2; Lane 6: Pre/Cp4-1; 
Lane 7: Pre/Cp4-2; Lane 8: Pre/Cp6-1; Lane 9: Pre/Cp6-2; Lane 10: Pre/Cp8-1; Lane 11: 
Pre/Cp8-2; Lane 12: Pre/Cp8-3; Lane 13: Pre/Cp8-4; Lane 14: Pre/Cp11-1; Lane 15: 
Pre/Cp11-2; Lane 16: Pre/Cp11-3; Lane 17: Pre/Cp14-1; Lane 18: Possitive control 
(Plasmid DNA); Lane 19: Negative control (non-transformed plant); Lane 20: Water 
control.  
 

 
 

 
 
 
 
 
 
 
 

 
 
Figure 22b: PCR produce amplified by bar-primers of plants transformed with Pre/CP-
hpRNA construct. Lane 1 and 16: DNA marker ladder 100bp (Fermentas). Lane 2: Pre/Cp 
3-1; Lane 3: Pre/Cp 3-2; Lane 4:Pre/Cp 4-1; Lane 5: Pre/Cp 4-2; Lane 6: Pre/Cp 6-1; Lane 
7: Pre/Cp 6-2; Lane 8: Pre/Cp 8-1; Lane 9: Pre/Cp 8-2; Lane 10: Pre/Cp 8-3; Lane 11: 
Pre/Cp 8-4; Lane 12: Pre/Cp 11-1; Lane 13: Positive control ( Plasmid DNA); Lane 14: 
Negative control (Non-transformed plant); Lane 15: Water control. 
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Ninety one plants obtained from 410 leaf pieces were transformed with Agrobacterium and 

showed positive PCR. These plants were originally derived from 37 calluses (original from 

37 inoculated leaf pieces), thus the transformation frequency of this construct is 9.8%.     

4.3.1.2 To seed production 

T0 plants containing cp-TYLCV hairpin-transgene were transferred to the greenhouse. 

Fifteen plants showed abnormal form, they did not produce fruit or fruited with low seed 

production. Seventy six plants grew like the non-transformed plants. Among of these 

plants, fifteen plants died in a latter development stage because of a fungal disease. 

However, young fruits grown on some of these plants produced a sufficient amount of 

seeds. Finally, 61 plants (derived from 33 calluses) were able to produce fruits, and 

subsequently, also seeds. The frequency of plants that produced seeds was 83.5%.  

 

4.3.1.3 Detection of transgene copy number by Southern Blot analyses 

 

DNA samples of To plants which produced seeds, were hybridised with a DIG-labelled 

probe of TYLCTHV cp as well as with a probe of the bar gene for identification of the 

copy number of TDNA insertions. The results are shown in Table 14a and Figure 23. 

 

The results of Southern hybridisation (Table 14a) showed that 5 of 58 plants failed to 

hybridize with the cp probe as well as with the bar probe. Selection in the rooting stage 

was only done once using 1.5 ppm of glufosinate. Thus, it is possible that those plants were 

either chimeras or escapes of the non-transformed form. There was one plant (31-2) which 

only showed a hybridization band with the bar probe, and accordingly it contained a 

truncated TDNA insertion. 

Identification of independent transformed lines was based on the copy number and the size 

of hybridization signals, as well as the original explants that transformed plants derived 

from. If the plants that were regenerated from the same inoculated explant event showed 

the same size and number of insertions, therefore they should be adopted in the one 

transformed line. 
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Table 14a: Results of Southern hybridization with cp-TYLCTH and bar probe 

 

Number  of signals 
hybridising  with 

Number of signals 
hybridising  with Plant 

No. cp probe bar probe 

Independent 

line 

Plant 
No. cp probe bar probe 

Independent 

line 

2-1 1 1 1 25-1 1 nd* 

3-1 1 1 1 25-2 1 nd* 1 

4-1 1 1 29-1 2 1 1 

4-2 1 1 1 29-2 2 1 1 

5-5 1 1 1 32-1 2 1 

6-1 1 1 32-4 2 1 1 

6-2 1 1 1 33-1 2 1 

7-2 1 1 1 33-2 2 1 

8-1 1 1 33-3 2 1 

8-2 1 1 1 33-4 2 1 

 

1 

10-2 1 1 34-1 2 1 1 

10-4 1 1 1 34-2 3 1 1 

11-1 1 1 38-1 2 1 1 

11-2 1 1 38-2 3 1 1 

11-3 1 1 

1 

40-1 3 1 

14-1 2 1 40-2 3 1 1 

14-2 2 1 44-1 2 1 1 

14-3 2 1 

1 

45-1 2 1 

15-2 2 1 45-3 2 1 
1 

15-3 2 1 48-1 1 1 

15-4 2 1 

1 

48-2 1 1 

17-1 1 nd* 1 48-3 1 1 

18 2 1 1 48-4 1 1 

 

1 

19 2 1 1 50-3 2 1 

20 0 0  50-4 2 1 1 

21-1 0 0  26-1 0 0  

21-2 1 1 1 26-2 0 0  

23-1 1 nd* 1 31-2 0 1 1 

30 2 1 1 31-3 0 0 0 

wt 0 0 0     

nd*: Not determinded 
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A 

Most of the inoculated explants led to only 1 transformed line. However, there were three 

inoculated explants that produced 2 different transformed lines. Explant 29 produced 2 

surviving shoots and both of them had 2 copies of insertion but the size of insertion was 

different. Explant 34 and 38 produced transformed shoots with different copy numbers of 

insertion (34-1 carried 2 copies, 34-2 carried 3 copies; 38-1 had 2 and 38-2 had 3 copies) 

thus they are different independent lines. In summary, there were 32 independent lines 

regenerated from transformation with the Pre/Cp-hpRNA construct.  

The number of insertions ranged from 1 to 3. Single insertions were observed in 34.4 % of 

the plants (11 of 32 independent lines, of them one line, 31-2, contained single insertion of 

only bar gene), 2 bands could be observed in 15 of 32 plants (46.9%), and three insertions 

were found in 3 plants (9.34%). The results for three lines (17, 23 and 25; equal 9.4%) 

were not conclusive, because there was one very weak band hybridising with the Pre/Cp 

probe and the hybridisation with bar probe was not performed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23A: Southern hybidization of cp probe. Lane 1- Marker III; Lane 2: Pre/Cp34-2; 
Lane 3: Pre/Cp38-1; Lane 4: Pre/Cp38-2; Lane 5: Pre/Cp40-1; Lane 6: Pre/Cp40-2; Lane 
7: Pre/Cp44-1;  Lane 8: Pre/Cp45-1; Lane 9: Pre/Cp45-2; Lane 10: Pre/Cp45-3; Lane 11: 
Pre/Cp48-1; Lane 11: Pre/Cp48-2;  Lane 11: Pre/Cp48-3; Lane 14: Pre/Cp48-4; Lane 15: 
Pre/Cp50-3; Lane 16: Pre/Cp50-4. 
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Figure 23B: Southern hybidization of bar probe. Lane 1- Marker III; Lane 2: Pre/Cp34-2; 
Lane 3: Pre/Cp38-1; Lane 4: Pre/Cp38-2; Lane 5: Pre/Cp40-1; Lane 6: Pre/Cp40-2; Lane 
7: Pre/Cp44-1;  Lane 8: Pre/Cp45-1; Lane 9: Pre/Cp45-2; Lane 10: Pre/Cp45-3; Lane 11: 
Pre/Cp48-1; Lane 11: Pre/Cp48-2;  Lane 11: Pre/Cp48-3; Lane 14: Pre/Cp48-4; Lane 15: 
Pre/Cp50-3; Lane 16: Pre/Cp50-4.  

The results showed that all of the transformed plants presented only one hybidisation 

signal with the bar probe. While in hybidisation with the cp probe, many plants contained 

more than one band. These results indicated that there were also truncated forms of TDNA 

which do not contain the bar gene. Furthermore, table 14b shows that the line Pre/Cp48- 

and Pre/Cp21-2 has one hybridizing band with the cp probe as well as one hybridizing 

band with the bar probe but they were in different size. In these plants, the cp-hybridizing 

band was around 2000 bps, while the hybridization with the bar probe was presented in a 

band larger than 5000 bps. It is likely that 2 different truncated TDNAs were inserted into the 

plant. The first one is probably a piece of TDNA containing only the Pre/Cp fragment; the 

second is a truncated insertion with only the left part of the TDNA, which contains only the 

  16 15 14 1312111098765 4 32 1 

B 



CHAPTER 4                                                                                                                               90 

bar-fragment. Both TDNAs were integrated into the plant genome at different loci. One other 

case, the line Pre/Cp31-2, had only ome hybridising signal with the bar probe. Thus this 

insertion contains only the left region of the TDNA. Generally, there were 20 out of 32 

(62.5%) independent lines containing truncated insertions. 19 of them had truncated 

insertions of the Pre/Cp region, and 3 lines had a truncated bar gene (Table 14b).  

Table 14b: Size of hybridising signals with cp-TYLCTH and bar probe 

 

Hybridising with cp probe Hybridising with bar  probe Line No. 

>5kb >3.5-4.9kb <3.5kb >5kb >3.5-4.9kb <3.5kb 

Pre/Cp-14-2 1 0 1 1 0 0 

Pre/Cp 15-4 1 0 1 1 0 0 

Pre/Cp 18 1 0 1 1 0 0 

Pre/Cp 19 1 0 1 1 0 0 

Pre/Cp 21-2 0 0 1 1 0 0 

Pre/Cp 30 0 1 1 0 1 0 

Pre/Cp 29-1 1 1 0 1 0 0 

Pre/Cp 29-2 1 0 1 1 0 0 

Pre/Cp 31-2 0 0 0 1 0 0 

Pre/Cp 32-1 1 0 1 1 0 0 

Pre/Cp 33-3 1 0 1 1 0 0 

Pre/Cp 34-1 1 0 1 1 0 0 

Pre/Cp 34-2 1 0 2 1 0 0 

Pre/Cp 38-1 1 0 1 1 0 0 

Pre/Cp 38-2 1 0 2 1 0 0 

Pre/Cp 40-2 1 0 2 1 0 0 

Pre/Cp 44-1 1 0 1 1 0 0 

Pre/Cp 45-1 1 0 1 1 0 0 

Pre/Cp 48-1 0 0 1 1 0 0 

Pre/Cp 50-3 1 1 0 1 0 0 
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4.3.2 Evaluation of TYLCTHV and TYLCVV resistance 

4.3.2.1 Resistance tests for Tomato yellow leaf curl Thailand virus 

Transgenic (18 lines) and non-transgenic tomato plants were agroinoculated with an 

infective full-length clone of TYLCTHV including both the A and B components (Figure 

24a). All non-transformed plants exhibited severe symptoms of TYLCD. Typical 

yellowing and curling of young leaves appeared about 3-4 weeks after agroinoculation 

(Figure 24b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24a: Overview of agroinfiltration experiment with transformed plants from Pre/Cp-
hpRNA construct. 
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Figure 24b: 4 weeks after agroinoculation of TYLCTHV in transformed plants of Pre/Cp-
hpRNA construct. 
 

Virus resistance evaluation result obtained by observing morphological changes and 

appearance of symptoms are given in Table 15.  
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Table 15: Symptoms of TYLCTHV in T1 plants transformed with the Pre/Cp-hpRNA 
construct. 

Percentages of symptomatic plants after inoculation (dpi) Line No. Number of 

inoculated plants 20 26 34 42 55 120 

Pre/Cp2-1 7 28.6 71.4 100 100 100  

Pre/Cp3-1 10 70 90 100 100 100  

Pre/Cp4-1 8 50 87.5 100 100 100  

Pre/Cp5-1 8 37.5 100 100 100 100  

Pre/Cp6-1 5 40 60 60 100 100  

Pre/Cp7-2 7 28.6 57.1 71.4 71.4 100  

Pre/Cp8-1 10 10 40 50 60 70  

Pre/Cp10-2 10 10 10 10 10 10 10 

Pre/Cp14-2 10 20 40 60 80 100  

Pre/Cp15-4 10 10 40 40 60 80  

Pre/Cp17-1 10 50 70 90 90 100  

Pre/Cp23-1 6 0 0 0 0 0 0 

Pre/Cp29-1 8 37.5 50 87.5 100 100  

Pre/Cp45-3 3 66.7 100 100 100 100  

Pre/Cp30 4 0 0 0 0 0 50 
Pre/Cp32-1 4 0 0 0 0 0 0 

Pre/Cp38-1 10 10 70 70 70 70  

Pre/Cp40-2 4 25 25 50 100 100  

wt 10 70 100 100 100 100  

Disease symptoms appeared in almost all plants 3 to 5 weeks after inoculation. 66% of the 

non-transformed plants were showed symptoms of yellowing in the young leaves followed 

by curling. Apical shoots of plants were stunted. In non-transformed plants, the virus 

incidence reached 100% at 26 days after inoculation. Some transgenic lines, Pre/Cp3-1, 

Pre/Cp4-1, Pre/Cp5-1, and Pre/Cp45-3, were as susceptible to the virus as non-transgenic 

plants. The disease symptoms were observed with frequencies from 87 to 100% 26 days 

past inoculation. Fourteen other lines showed delayed symptoms. Seven lines, Pre/Cp2-1, 

Pre/Cp6-1, Pre/Cp7-2, Pre/Cp14-2, Pre/Cp17-1, Pre/Cp29-1, and Pre/Cp40-2 had 100% 

virus incidence in the sixth or the seventh week after inoculation. The lines Pre/Cp38-1, 
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Pre/Cp15-4 and Pre/Cp8-1 showed disease symptoms in 70-80% of plants in the 8th week 

after inoculation. Finally, there were 4 lines which showed resistance including 90% of 

plants in line Pre/Cp10-2 and 100% in lines: Pre/Cp23-1, Pre/Cp30, and Pre/Cp32-1. 

Plants showing no symptoms were maintained until fruits were harvested. 120 days past 

inoculation, two plants of line IR/Cp30 presented mild symptoms. After fruits were 

harvested, 9 plants of the line Pre/Cp10-2 were decapitated and further maintained up to 

160 days in order to observe symptom occurrence in the newly developing shoots, 

symptoms appeared in one plant. 

Table 16: Symptom development in plants expressing Pre/Cp-hpRNA construct 

 

Number of symptomatic plants after inoculation (dpi)Virus 

types 
Line No. 

Number of 

inoculated 

plants. 
21 28 35 42 70 

Pre/Cp 

10-2 
9 0 0 0 0 0 

Pre/Cp 

23-1 
4 0 0 0 0 0 

Pre/Cp 

30 
6 0 1 1 1 1 

Pre/Cp 

32-1 
8 0 1 1 1 1 

TYLCTH 

A+B 

component 

wt 12 8 10 10 10 10 

 

The resistance test was repeated with 4 lines showing no symptoms (Table 16). Based on 

the results of the first test, where disease symptoms occurred, at lates, 60-70 days after 

inoculation, the plants were maintained only until 70 days past inoculation during the 

second test. Only 1 out of 6 plants from line Pre/Cp30 and 1 of 8 plants from line 

Pre/Cp32-1 showed symptoms. All plants from the other two lines (Pre/Cp10-2 and 

Pre/Cp23-1) did not show symptoms at all. In the second test, 83% of non-transformed 

plants showed symptoms. 
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4.3.2.2 TYLCTHV detection by PCR  

To confirm the resistance, PCR was carried out 70 days and 120 days past inoculation. 

Samples from different parts of the plant were collected for DNA isolation. All DNA 

samples were mixed together, thus only 1 PCR reaction was performed for each plant.  

 

      

                                                                                    

Figure 25a: Electrophoresis of PCR 
products amplified by Reps/Repas primers 
Lane 1-6: Asymptomatic plants line 
Pre/Cp10-2; Land 7: DNA marker ladder 
100bp (Fermentas).  
 
 

 
 
 
 

Figure 25b: Electrophoresis of PCR 
products amplified by Reps/Repas primers 
from non-transformed plants. Lane 1-3: 
Non-transformed infected plants; Lane 4: 
Non-transformed non-infected plant; 
Lane5: Water control; Lane 6: Marker 
100bp ladder. 

 

 

The TYLCTHV DNA A and B were found in both groups of plants (Figure 25a and 25b). 

PCR results showed bands of the predicted size for plants showing no symptoms and for 

the non-transgenic control. No bands could be observed in non-transgenic plants, which 

were not inoculated or in the water control. Primers Reps and Repas (see table 13) amplify 

a 925 bps fragment, a part of the Rep gene not included in the Pre/Cp-hpRNA. Even 

though the disease symptoms were not observed, the results of PCR indicated the presence 

of the virus in all transformed plants from lines Pre/Cp 10-2, Pre/Cp23-1, Pre/Cp30, and 

Pre/Cp32-1. The properties of transgenic plants listed above are characteristic of tolerance 

against the virus, but not immunity.  

 
653 2 1 4 
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4.3.2.3 TYLCTHV coat protein detection by ELISA 

Most of the detectable virus is present in young leaves in the uppermost regions of the 

plant; therefore these leaves were used for coat protein isolation. Non-transformed infected 

plants (showing symptoms) were used as positive controls in ELISA tests. Healthy leaf 

material of non-transformed, non-infected plants was used as negative control. Leaves 

were collected carefully, avoiding cross-contamination. A piece of leaf was transferred 

directly into a microcentrifuge tube using the lid as a cutting instrument. Five leaf discs 

were stamped out using one microcentrifuge tube for each sample. The protein extraction 

was carried out by the protocol of Triple-antibody-sandwich ELISA. The results are 

depicted in Figure 26.  

     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 26A: Results of ELISA test with different tomato lines. B: Results of ELISA test 
with the tomato line Pre/Cp10-2. The error bars represent standard deviations or are within 
the column size.  
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The absorbance values of transformed plants showing no symptoms were not different 

from those of healthy plants (non-transformed as well as non-inoculated with virus), while 

the absorbance value in the non-transformed but infected plant were more than 2-fold 

higher (Figure 26). These results indicate that no viral coat protein was detectable by this 

ELISA in the asymptomatic plants. 

4.3.3 Resistance test for Tomato yellow leaf curl Vietnam virus 

Due to unsuccessful seed germination of line Pre/Cp23-1, only three lines (Pre/Cp10-2; 

Pre/Cp30; Pre/Cp32-1) were inoculated with TYLCVV, 8 non-transformed plants were 

used as controls. Symptoms appeared in three from eight non-transformed tomato plants 5 

weeks past inoculation. However, the results of PCR were positive throughout, i.e. all 

plants possessed viral DNA. In the transformed plants, symptoms were observed in two 

plants from the line Pre/Cp10-2 and PCR also showed positive results in all symptomatic 

and non-symptomatic plants (Figure 27 and Table 17).  

Table 17:  Symptom development in plants expressing the Pre/Cp-hpRNA construct 

Number of symptomatic plants after 

inoculation (dpi) 
Virus 

types 

Line 

No. 

Number of 

inoculated 

plants. 21 28 35 42 70 

PCR 

IR/Cp 

10-2 
8 0 0 2 2 2 8 

IR/Cp 

30 
7 0 0 0 0 0 7 

IR/Cp 

32-1 
6 0 0 0 0 0 6 

TYLCVV 

A 

component 

wt 8 0 0 3 3 3 8 
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76 54321 8 9 10  

B

54321
     

                                    

 

 

 

 

 

 

 

Figure 27: Electrophoresis of PCR products amplified by Reps-VN/Repas-VN primer at 
120 days past inoculation with TYLCVV: 
(A) Lane 1: DNA marker ladder 100bp (Fermentas); lane 2 to 9: From plants of the line 
Pre/Cp10-2; Lane 10: non-transformed infected plants. 
(B): Lane 1-2:  non-transformed infected plants; Lane 3: non-transformed non-infected 
plants; Lane 4: Water control; Lane 5: DNA marker ladder 100bp (Fermentas). 
 

 
4.4 Discussion 

To establish systemic infection in a plant, a geminivirus must move from the infection site 

into the plant cell nuclei to replicate its genome as well as translocate the replicated DNA 

to uninfected cells. The process of viral movement includes import, export of viral DNA 

into/or out of the plant nucleus and long-distance movement of viral DNA. Previous 

studies have shown that geminiviral coat protein (CP) plays an important role in directing 

viral nucleic acids into and out of the nucleus (Kunik et al., 1998; Kotlitzky et al., 2000; 

Rhee et al., 2000). However, the role of CP in virus infection is different between 

monopartite and bipartite geminiviruses. In a monopartite TYLCV, the CP carries 

functional nuclear localization signals (NLS) (Kunik et al., 1998) which were shown to be 

essential for translocation of the viral CP into plant nuclei. Furthermore, Palanichevam et 

al. (1998) found that the CP binds cooperatively to single-stranded DNA in a non 

sequence-specific manner. It has been suggested that TYLCV CP interacts with tomato 

karyopherin-α1, mediating its nuclear import, thus it was proposed that TYLCV CP 

functions as a transporter of the viral genome into the host cell nucleus. (Kunik et al., 1998, 

1999; Palanichelvam et al., 1998). Results of Noris et al. (1998) indicated that capsid 
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protein of two isolates, TYLCVSic (from Sicily) and TYLCV-Sar (from Sardinia) is 

crucial for systemic infection, particle formation, and insect transmission. In their studies 

they have found that the CP region between amino acids 129-134 is essential for both the 

correct assembly of virions and transmission by the insect vector. Rojas et al. (2001) found 

that the TYLCV CP is localized to the nucleus and nucleolus and acts as a nuclear shuttle, 

mediating the import and export of DNA. At least two distinct functions were unravelled, 

nuclear export of the infectious form of the virus, and encapsidation of ss-DNA into 

virions. CP mediates nuclear export of ds-DNA, cell-to-cell and long distance movement 

within the plant and encapsidates ss-DNA within the nucleus to form virions that are 

required for plant-to-plant spread via the whitefly vector. Therefore, for monopartite 

geminiviruses, the CP is absolutely neccessary for systemic infection as well as for particle 

formation and insect transmission. In contrast, bipartite geminiviruses have genomes 

composed of two circular 2.5- to 2.8-kb ss-DNA molecules (designated DNA-A and DNA-

B). DNA B component encodes two MPs (BV1 and BC1), which are required for virus 

movement (Lazarowitz, 1992; Jeffrey et al., 1996; Sudarshana et al., 1998). The BV1 

protein has been shown to increase the size exclusion limit of plasmodesmata (Noueiry et 

al., 1994) whereas the BC1 protein traffics ssDNA (Pascal et al., 1994) or dsDNA 

(Noueiry et al., 1994) into and out of the nucleus. Thus BC1 and BV1 have distinct but 

essential roles in cell-to-cell movement. Therefore, for bipartite begomoviruses, a CP is not 

required for either local or systemic viral spread (Gardiner et al., 1988; Pooma et al., 1996; 

Padidam et al., 1995; Sudarshana et al., 1998). Nevertheless, the coat protein plays an 

essential role in the transmission process of B. tabaci (Höfer et al., 1997; Briddon et al., 

1990; Azzam et al., 1994).  

The begomovirus coat protein was initially thought to offer the best target for engineering 

resistance to different tomato-infecting begomoviruses. Disruption of the TYLCSV cp 

gene performed symptom development and accumulation of viral DNA in tobacco and 

tomato plants (Wartig et al., 1997). In the tomato V1 mutants, symptoms did not occur 

(Rigden et al., 1993). However, very few reports have shown successful CP-mediated 

resistance (Kunik et al., 1994; Raj et al., 2005) or RNA-mediated resistance (Sinisterra et 

al., 1999; Zrachya et al., 2007b). Kunik et al. (1994) showed that tomato plants expressing 

the V1 (cp) gene were resistant to TYLCV infection. The resistance was associated with 

high levels of expressed CP. The resistance presented itself as a delay in symptoms 
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development and a recovery phenotype. Raj et al. (2005) expressed TYLCV coat protein in 

tomato. T1-generation transgenic plants were challenged by TLCV through whiteflies, 

which showed variable degrees of disease resistance/tolerance compared to the 

untransformed control. Sinisterra et al. (1999) transformed tobacco with a modified coat 

protein of ToMoV, but they could not detect the protein product of the transgene in any of 

the resistant lines. Thus, they assumed that the resistance may be due to a RNA-mediated 

mechanism. Only one report exists (Zrachya et al., 2007b), where the use of inverted repeat 

constructs to confer resistance against TYLCV is described. They produced transgenic 

tomato plants harbouring an inverted-repeat construct targeting the CP. The transgenic 

plants first showed symptoms seven weeks past inoculation, with less accumulation of the 

virus than in non-transformed infected plants.  

Interestingly, when comparing these results with the results obtained in the present work, 

the resistant lines preservered much longer. No symptoms were present even at 120 days 

past inoculation in all of plant lines Pre/Cp10-2, Pre/Cp23-1, and Pre/Cp32-1. The mild 

symptoms were only present in 2 plants of line IR/Cp 30. Although the viral DNA was 

detectable (Figure 24, 25) in all asymptomatic plants, the coat protein was not (Figure 26). 

Thus, the absence of symptoms in lines Pre/Cp10-2, Pre/Cp23-1 and Pre/Cp32-1 could 

result from the absence of the coat protein. This is an interesting result, because 

TYLCTHV is a bipartite begomovirus. Normally, the CP of bipartite viruses is not 

essential for systemic infection because viral movement and transport are performed by 

proteins encoded by the B component. The Pre/Cp-hpRNA transgene can only induce 

dsRNA that is complementary to cognate mRNA of coat protein but not other proteins. 

Thus, viral DNA can be replicated as usual while the movement and spread to whole plant 

is still provided by MPs (MP and NSP), which are encoded on the B component. It seems 

that the TYLCTHV coat protein has some influence on the presence of symptoms. This 

effect can be explained due to the characteristics of the TYLCTHV A component, the A 

component can infect its natural host alone, has been showed by Rochester et al. (1990) as 

well as in the present research (see Figure 16c chapter 3).  

In the test involving Tomato yellow leaf curl Vietnam virus, the plants were inoculated 

with only the A component of the monopartite TYLCVV. Here, we were not able to 

produce high levels of infected control plants. Although the A component of TYLCVV 
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should replicate as well as be transported to whole plant, the symptoms were present only 

in 30% of inoculated plants.  

TYLCVV is a monopartite begomovirus, thus the coat protein is absolutely required for 

virus systemic infection. The viral DNA was detectable in each transformed plant. This 

fact indicated that dsRNA from Pre/Cp-hpRNA did not affect cleavage/degradation mRNA 

of the TYLCVV coat protein; the coat protein of TYLCVV was still synthesized and 

supported the systemic infection. Even though the symptoms were not present, it is 

assumed that the plants resistant to TYLCTHV are not resistant to TYLCVV infection due 

to the negative results of infection of some control plants, as well as the presence of viral 

DNA in transformed plants. 
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GENERAL DISCUSSION 
Plant transformation is an important research tool for producing genetically modified 

commercial crops. A. tumefaciens has been used for genetic transformation of plants by its 

natural ability to transfer foreign DNA into the host plant genome. This process is carried 

out by utilizing both bacterial and host machineries. Therefore, transformation frequency is 

influenced by many factors.  Those factors have been investigated and elucidated in 

previous researches (Gelvin, 2003; Opabode, 2006) and a wide variety of inoculation and 

co-culture conditions have been shown to be important for the transformation. Temperature 

is a factor that affects activation of vir genes of A. tumefaciens as well as regeneration of 

plant tissues; hence, it influences the efficiency of transformation (Alt-Mörbe et al., 1989; 

Jin et al., 1993; Salas et al., 2001; Uranbey et al., 2005). The influence of Agrobacterium 

concentration on transformation has been shown (Davis et al., 1991; De Bondt et al., 1994; 

Cheng et al., 1997; Humara et al., 1999; De Clercq et al., 2002). In addition, the data from 

the present study shows that A. tumefaciens is an additional harmful factor affecting the 

plant tissues, besides the selection chemical (glufosinate) during transformation. Thus, the 

effective concentration of glufosinate must be identified under pressure of A. tumefaciens.  

The factors stimulating plant cell division and TDNA integration may have increased 

transformation efficiency in different reports (Sangwan et al., 1992; de Kathen and 

Jacobsen, 1995). In the current research, pre-treament of explants with phytormones 

(cytokinin and auxin) and complement phytohormones in the inoculation medium resulted 

in significantly increasing the frequency of transformation. In agreement with Park et al. 

(2003), by comparing shoot regeneration media and optimising different parameters which 

influenced the transformation process, the present study has developed an efficient 

protocol for leaf disc transformation of three commercial varieties (DM8, MTS, FM372C). 

The developed protocol, when applied for transformation with RNAi constructs of cv. 

FM372C, achived frequencies of transformation ranging from 9 to 19%, while it was 13% 

in the transformation with gus gene. It seems that plant tissues are mixed populations of 

cells with competence for many different responses including competence for TDNA 

transformation and shoot regeneration. Tissues containing the most cells with competence 

for both TDNA transformation and shoot regeneration will be able to afford the higher 

frequency of transformation. 
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Genetic engineering has the potential to provide an abundant source of beneficial plant 

traits including virus-resistance. Different approaches have been considered for the 

development of transgenic resistance to geminiviruses by the expression of either pathogen 

derived resistance (PDR) or non pathogen derived resistance, as described in the first 

chapter. Silencing pathways are complex and partially overlapping, but at least three basic 

classes can be distinguished: cytoplasmic RNA silencing (or post-transcriptional gene 

silencing; PTGS) mediated by small interfering RNAs (siRNAs), silencing mediated by 

microRNAs (miRNAs), and transcriptional gene silencing (TGS) mediated by siRNA-

directed methylation of DNA and histone proteins (Bisaro, 2006). The Geminiviridae are 

true DNA viruses that replicate circular, single-stranded DNA genomes in the nucleus by a 

rolling-circle mechanism that employs host replication machinery (Jeske et al., 2001; 

Preiss and Jeske, 2003). The double-stranded DNA (dsDNA) intermediates that mediate 

both viral replication and transcription associate with cellular histone proteins to form 

“minichromosomes” (Pilartz and Jeske, 1992; Pilartz and Jeske, 2003). Transcripts 

produced from these “minichromosomes” are subject to PTGS. In addition, given the role 

of RNA-directed methylation in silencing endogenous invasive DNAs, it is possible that 

plants might also use methylation as a mean to repress transcription and/or replication of a 

viral “minichromosome” (Bisaro, 2006; Ding and Voinnet, 2007). 

Different regions of the begomovirus genome have been successfully used to trigger 

silencing. The AC2/C2 protein has been associated with the suppression of gene silencing 

in Mungbean yellow mosaic virus -Vigna (MYMV; Trinks et al., 2005), in ACMV-[CM] 

and SLCMV (Vanitharani et al., 2004). The AC2/C3 protein of Cotton leaf curl virus was 

successfully used by Asad et al. (2003). Ribeiro et al. (2007) used a fragment consisting of 

300 nts of the 5´-end of the AV1 gene (including the end of the overlapping AC5 gene) the 

entire common region and 300 nts of the 5´-end of the AC1 gene (including a part of AC4 

gene) of Tomato chlorotic mottle virus (ToCMoV). Forty five days post inoculation they 

achieved two best-resistant lines: “RC-24.2” with 50% of plants resistant to virus infection 

(no symptoms and no virus present), and “RC-19.3”, with 50% of the plants symptomless, 

including 30% entirely virus free plants. Research of Gopal et al. (2007) showed strong 

suppression of gene silencing activities for C4 and ßC1 of Bhendi yellow vein mosaic virus 

in N. benthamiana. Even though, the Rep  gene has been mostly employed in different 

strategies  to  confer geminivirus  resistance, at present, there are only a few reports of 
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successful begomovirus resistance development through Rep sequence expression to 

triggering PTGS (Asad et al., 2003; Yang et al., 2004; Ramesh et al., 2007; Fuentes et al., 

2006; Bonfim et al., 2007). The resistance could be triggered by using a truncated Rep 

gene either from the 3´-end (Bonfim, 2007; Asad et al., 2003; Fuentes et al., 2006) or from 

the 5´-end (Asad et al., 2003; Yang et al., 2004). The short (81 nts) intergenic region in the 

transgenic construct of Yang et al. (2004) increased the frequency and quality of the 

resistance obtained with a partial TYLCV Rep gene and could act as a trigger for PTGS. 

This result could be due to following the RNA-directed DNA methylation (RdDM) 

pathway. Methylation of a TLCV-derived transgene promoter and consequent transgene 

silencing has been observed on TLCV infection (Seemanpillai et al., 2003). RNA-directed 

methylation of geminivirus bidirectional promoters may down-regulate the transcription of 

viral genes, resulting in inefficient virus replication (Pooggin et al., 2003; Dogar, 2006). 

Alternatively, the dsRNAs derived from a bidirectional promoter region might interfere 

with the rolling cycle replication of the virus or target viral single strand-DNA (Pooggin et 

al., 2003).  

Regarding the use of a non-coding region triggering PTGS, Abhary et al. (2006) used three 

non-coding fragments of the virus genome denoted C1C2, C2C3, and V1V2 of TYLCV in 

transformation. They achieved transformed plants resistant to TYLCV, TYLCV-Mld and 

TYLCSV-ES after whitefly inoculation and tomato yellow leaf curl virus-Sardinia 

TYLCSV-(Sar) after agroinfiltration. Although largely unexplored, intergenic regions may 

prove useful in the development of resistance. Recovery of Vigna mungo yellow mosaic 

virus-infected plants has been reported after bombardment with DNA constructs 

expressing dsRNAs homologous to the bidirectional viral promoter (Pooggin et al., 2003). 

Dogar (2006) used the 360 nucleotide fragment corresponding to the intergenic region of 

ACMV DNA-A to construct the intron-hpRNA for triggering PTGS. The author proposed 

that during DNA virus infection the mRNAs transcribed from the geminivirus genome are 

subjected to degradation by 21-22 nts small RNAs. On the other hand, the geminiviral 

genomic DNA seems to be subject to RdDM by 24-25 nts small RNAs. Corresponding to 

the results published by Dogar (2006), in the same virus (ACMV-KE), Vanderschunren et 

al. (2007) used an intron-hairpin construct from 256 bps of the common region for 

transformation. In their construct, the 256 bps from the common region contained a 

bidirectional promoter of ACMV-KE. In two of three independent transgenic lines, 
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accelerated plant recovery from ACMV-NOg infection was observed, which correlates 

with the presence of transgene-derived siRNAs 21-24 nts in length. Their result suggested 

that a natural RNA silencing mechanism targeting DNA viruses through production of 

virus derived siRNAs is turned on earlier and more efficiently in transgenic plants 

expressing dsRNA cognate to the viral promoter and common region. Research on 

methylation levels of the CaLCuV intergenic region from Raja et al. (2008) showed a 

greater proportion of non-CG methylation than CG methylation in the CaLCuV IR. 

Furthermore, cytosine residues in the vicinity of the conserved hairpin and AL1 binding 

sites were the most frequently methylated. Very recently, results of Rodriguez-Negrete et 

al. (2009) suggested that Pepper golden mosaic virus (PepGMV) was targeted by both 

posttranscriptional and transcriptional gene silencing mechanisms. In their research, two 

types of virus-related small interfering RNAs (siRNAs) were detected: siRNAs of 21 to 22 

nts in size that are related to the coding regions (Rep, Trap, REn, and MPs gene) and a 24-

nts population primarily associated to the intergenic regions. They observed an inverse 

correlation between the methylation status of the intergenic region and the concentration of 

viral DNA and symptom severity. The intergenic regions also showed a methylation profile 

which was conserved in all analysis. Conversely, the cp region did not show a defined 

profile and its methylation density was significantly lower than the one found on the 

intergenic region. The double small RNA-directed methylation of geminivirus bidirectional 

promoters may down-regulate the transcription of viral genes, resulting in inefficient virus 

replication. The viral promoter and CR may undergo siRNA-directed DNA methylation 

and histone modifications that reduce both the transcriptional activity of the promoter 

and/or impair the recruitment of DNA polymerase necessary for replication, via altered 

Rep-binding site properties. Therefore, triggering TGS of geminivirus promoters by pre-

expression or induced expression of specific dsRNAs may constitute a promising strategy 

for interfere with virus replication.  

In the present research, the intron-hairpin IR/Rep construct that led to TYLCV resistance 

contained 397 nts from the 5´-end of the Rep gene (included truncated AC4 from the 5´-

end) and 174 nts of the IR. The IR harboured the sequence upstream of the expected 

transcription start of the Rep gene as well as the nonameric motif 5´-TAATATT/AC-3´. 

The upstream sequence contains sequence specific elements (iterons) for REP binding 

during the rolling circle replication of begomoviruses (Argüello-Astorga and Ruiz-
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Medrano, 2001) and  the nonameric motif 5´-TAATATT/AC-3´ invariably located at the 

loop of a conserved “hairpin” element, where REP introduces a site-specific nicks to 

initiate virus replication via a RC mechanism (Laufs et al., 1995a). In the present study, we 

did not detect siRNAs that were possibly derived from an intron-hpRNA transgene as well 

as the mRNA of Rep from the viruses; therefore the mechanism of resistance in line 

IR/Rep2-1 is not clear. However, from different previous experiments as described above, 

it can be concluded that the 397 bps from the 5´-end of Rep also included truncated AC4 

from the 5´-end that can produce siRNAs, which is able to trigger PTGS of both AC1 as 

well as AC4. The 174 bps sequence of IR, after transcription, could produce siRNAs, 

which can trigger the methylation of viral DNA by RdDM.  

The use of the coat protein gene under the intron-hairpin construct in order to trigger PTGS 

has been successful in RNA viruses of different plants, for instance, in tobacco plants 

resistant to PVY (Smith et al., 2000) and CMV (Kalantidis et al., 2002), barley resistant to 

BYDV (Wang et al., 2000), potato resistant to PVY (Missiou et al., 2004; Vargas et al., 

2008), soybean resistant to SbDV (Tongou et al., 2006) and Soybean mosaic virus (SMV; 

Furutani et al., 2007). However, with tomato yellow leaf curl virus, there has only been one 

report  used an  inverted  repeat  construct of the coat protein gene to  confer  resistance  

against  TYLCV from Zrachya  et  al. (2007b). They produced transgenic tomato plants 

harbouring an inverted-repeat construct targeting the cp.  The transgenic plants did not 

show symptoms until seven weeks past-inoculation and the virus accumulation was less 

than that of non-transformed infected plants. However, those plants then showed disease 

symptoms 7 weeks after inoculation. In constrast to their results, in this research there was 

no symptom even at 120 days after inoculation in 9/10 plants of the line Pre/Cp10-2 as 

well as no symptom in all plants from line Pre/Cp23-1 and Pre/Cp32-1. Even though the 

viral DNA was detectable in all plants, no coat protein was detectable. It seems that the 

Pre/Cp-hpRNA transgene triggers silencing of the coat protein gene. However, the 

construct contained 540 nts in length that included truncated 464 nts from the 5´-end of the 

cp and 255 nts from the 3´-end of the pre-coat. Thus, this construct can only trigger the 

silencing of translation of the mRNA-coat protein and pre-coat, but not of other genes. 

Both components of the virus still can replicate. Then MPs (BV1, BC1) can support viral 

DNAs (both single and double stranded movement, In this case, it is still a question why 
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plants did not show symptoms while viral DNA was present in whole plants event until 

130 days past inoculation.  

At present, there is a lack of clear understanding on the mechanisms that determine the 

gene silencing efficiency of a given siRNA in begomoviruses. However, the previous and 

presented results as well as recent studies show that the gene-silencing efficiency of siRNA 

is strongly dependent on the local structure of mRNA at the targeted region. To further test 

the relationship between silencing efficiency and targeted region of mRNA, work needs to 

be done on these aspects. For example, in the present study the IR/Rep-hpRNA construct 

confers immunity, while the plants of the Pre/Cp-hpRNA were tolerant to the virus. 

However, it is not clear whether the immunity was achieved by degradation of mRNA of 

transcriptional silencing of the Rep gene by RdDM, which could prevent the Rep 

transcription and/or direct rolling circle replication of the virus.  

Further more, TYLCV disease is a complex infection, which can be caused by different 

viruses. There are many tomato-infecting begomoviruses and some of these occur in mixed 

infections with TYLCV (Abhary et al., 2007). Broad spectrum resistance against TYLCV 

and other tomato-infecting begomoviruses would be very useful and economically 

desirable (Freitas-Astua et al., 2002). Broad-spectrum resistance based on RNA-mediated 

virus resistance has been described in Abhary et al. (2006). By using the silencing 

construct from the conserved region of V1V2, C1C2 and C2C3, Abhary et al. (2006) 

successfully developed tomato and N. benthamiana plants resistant to TYLCV-[EG], 

TYLCV, TYLCV-Mld and TYLCSV-ES[2]. Chellappan et al. (2004) achieved transgenic 

plant lines resistant to ACMV that were challenged with isolates of EACMCV and Sri 

Lankan cassava mosaic virus (SLCMV). However, it was not clear wherther the resistance 

by the AC1 transgene caused by protein-based or RNA-based mechanisms, or a 

combination of both within the different transgenic plant lines.  

The IR/Rep2-1 line developed in the present research confers resistance to TYLCTHV and 

TYLCVV. Here again, the Pre/Cp-hpRNA construct does not confer resistant to the 

TYLCVV. Assuming that in case of the Pre/Cp-hpRNA transgenic plants, the resistance 

mechanism is based on RNAi, the susceptibility of the lines to TYLCVV infection could 

be due to the relatively low sequence similarity level of the Cp region between the two 

viruses. Whereas the sequence similarity between the construct derived from the IR/Rep 
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region and that of TYLCVV is 92%, while it is 75% in the Pre/Cp region (see appendix in 

page 137-138).  

The intron-hairpinRNA construct has been considered as being highly effective for 

inducing PTGS. In principle, the inverted-repeat intron hairpin transgene can induce 

dsRNA, the key trigger for the process that leads to degradation of homologous RNAs 

(Voinnet et al., 1999; Bass, 2000; Vaucheret and Fagard, 2001). This strategy of 

expressing a gene encoding intron-spliced RNA can induce PTGS with almost 100% 

efficiency, when directed against viruses, leading to plants which are immune to the virus 

(Smith et al., 2000). Begomoviruses have  been  successfully  shown  as a target  for  

PTGS  by  transforming  plants with inverted-repeat  constructs (Fuentes  et al.,  2006;  

Pooggin et al., 2003; Bonfim et al., 2007; Zrachya et al., 2007b). However, the transformed 

plants which carried the same intron-hpRNA induced variation resistance levels. Some 

plants were still fully susceptible to infection and only a few of them were resistant/tolerant 

or immune. Bonfim at al. (2007) achieved 1 immune line from 18 independent transgenic 

lines. Completed immune transgenic lines were not obtained using intron-hpRNA 

constructs for ToCMoV (Ribeiro et al., 2007) or plants only delayed symptoms of Tomato 

yellow leaf curl virus infection for 7 weeks past inoculation (Zrachya et al., 2007b). 

Silencing escape has also been shown for TLCV (Bian et al., 2006).  

In the present research, the transformation with an IR/Rep-hpRNA construct resulted in 

very different levels of resistance. The levels of resistance were ranging from immunity 

(line IR/Rep2-1), or delay (IR/Rep10-1, IR/Rep15-1, IR/Rep23-5 and IR/Rep38-1) to as 

susceptibe as non-transformed plants (IR/Rep16-1 and IR/Rep47-5). Nevertheless, the 

frequency of immune lines in this research was very low; only one line out of 17 IR/Rep-

hpRNA transgenic lines was found to be immune. Similarily, only 4 tolerant lines were 

obtained out of 18 lines tested with the Pre/Cp-hpRNA construct. Those results indicate 

that resistant responses depend not only on the presence of the transgene but also on the 

interactions between the transgene and the plant genome. Although many different factors 

might combined to activate silencing inducing transgenes, the variability of transgene 

expression can be attributed to several factors. The insertion of TDNA is random within the 

plant genome and the activity of the introduced genes may be affected by adjacent plant 

DNA. For example, if an endogenous gene and the transgene are orientated in opposite 

directions, reduced expression could result from production of antisense RNA, potentially 
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forming double stranded (ds) RNA with sense mRNA, leading to RNAi  (position, 

orientation effect; Matzke and Matzke, 1998; Kooter et al., 1999). Tandemly repeated 

transgenes at the same locus are often silenced in plants, a phenomenon named repeat-

induced gene silencing (Assaad et al., 1993). For example, the research of Chalfun-Junior 

et al. (2003) showed that all plants containing more than a single TDNA insertion showed 

methylation of the 35S enhancer and revealed a dramatic decrease in 35S enhancer 

activity. The effect of copy number on transgene expression is described as being a 

consequence of DNA methylation (Kooter et al., 1999; Selker, 1999; Mette et al., 2000; 

Wassenegger, 2000; Sijen et al., 2001). 

In the present transformation work, all most all transformed plants with the IR/Rep-

hpRNA construct contained multible-insertions (1 line had 7 TDNA insertions, 7 lines had 3; 

5 lines had 4; and 5 lines had 2 insertions). However, not all insertions were intact TDNA. 

Finally, there were eight lines containing a single intact TDNA, seven lines contain 2 intact 

insertions, one line (IR/Rep31-1) contains 4 intact insertions and two lines (IR/Rep34-1; 

IR/Rep29-1) contain only truncated TDNA insertions. 

Linked to results of the resistance test, the IR/Rep2-1 line, which was immune line, 

contained 2 intact and 1 truncated TDNA insertions. The IR/Rep10-1 line, with a delay of 

symptom development, also contained 2 intact and 1 truncated insertions. In this line, the 

symptoms were observed in 33% of plants at 40 dpi remaining until 70 dpi to the end of 

the experiment. The line IR/Rep47-5 containing 2 intact and 3 truncated insertions was as 

susceptible as non-transgenic control plants. Several lines with single intact insertions also 

slightly delayed virus disease. In the lines IR/Rep38-1 (1 intact and 4 truncated insertions) 

and IR/Rep15-1 (1 intact and 3 truncated insertions) symptoms were observed at 30 dpi 

and at 70 dpi the symptom were present in 37.5% of the plants. The IR/Rep34-2 line 

contained only 1 truncated insertion showed a delayed symptom expression at 30 dpi; 

however the incidence of diseaese was 50% of the tested plants at 40 dpi.  
In the transformation with the Pre/Cp-hpRNA construct, all 32 transformed lines contained 

a single intact TDNA insertion. In addition, truncated insertions were observed in 20 out of 

32 (62.5%) independent lines. Only the Pre/Cp10-1 line without a truncated insertion 

showed no symptoms. Two other lines, Pre/Cp 30 and Pre/Cp32-1, also carried one intact 

and one truncated TDNA insertion and showed no symptoms. 
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Generally, it is not clear why the frequency of resistant lines is very low. It seems that 

several factors have an influence on silencing. In both transformations, either with the 

IR/Rep or with the Pre/Cp-hpRNA construct, it looks like that transgenes were 

transcriptionally silenced, probably due to their position in the plant genome, resulting in 

virus susceptibility of the plants. Anyway, the resistance tests were carried out with T1 

transformed plants. Thus, the inheritance of resistance has to be evaluated in subsequent 

progenies. Most of the resistant lines were observed carrying the transgene in multiple 

copies so it can be expected that segregation of TDNA insertions will take place in later 

propagations.  

Several attempts have been made to engineer tomato plants resistant to TYLCV via a gene 

silencing strategy. In some cases the resistance has been overcome when silenced plants 

were challenged with other strains of the virus that can silence the homologous transgene. 

The result of the present work showed that the IR/Rep2-1 line was able to trigger a high 

level of resistance in tomato plants against two viruses belonging to the TYLCV complex 

(TYLCTHV and TYLCVV) by agroinoculation. Although the three lines, Pre/Cp10-2, 

Pre/Cp30-1, and Pre/Cp32-1 were not able to resist one isolate of TYLCVV, however, we 

were successful in detecting 3 different isolates that cause the type of TYLCV symptoms 

in the disease samples of Vietnam tomato (unpublished data). Therefore, to shed more light 

on the efficiency and stability of the resistance developed in this study, transgenic tomato 

plants expressing the IR/Rep2-1, Pre/Cp10-2, Pre/Cp23-1, Pre/Cp32-1 and Pre/Cp30-1  

need to be evaluated under field conditions where high virus pressure occurs (e.g. 

Vietnam). 
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   APPENDIX I: Similarity between IR/Rep sequence and TYLCVV sequence. 
 

 
CLUSTAL W (1.81) multiple sequence alignment 
 
Sequences (1:2) Aligned. Score:  92 
 
 
IR/Reps         TGCGTCGTTGGCAGATTGGCAACCTCCTCTAGCCGATCTTCCATCGATCTGGAAAATTCC 
TYLCVV          TGCGTCGTTGGCAGATTGGCAACCTCCTCTAGCCGATCTTCCATCGACCTGGAAAACTCC 
                *********************************************** ******** *** 
 
IR/Reps         ATTATCAAGCACGTCTCCGTCTTTTTCCATGTATGCTTTAACATCTGTTGAGCTTTTAGC 
TYLCVV          ATGATCAAGCACGTCTCCGTCTTTTTCCATGTATGTTTTAACATCTGTTGAGCTTTTAGC 
                ** ******************************** ************************ 
 
IR/Reps         TCCCTGAATGTTCGGATGGAAATGTGCTGACCTGGTTGGGGATGTGAGATCGAAGAATCT 
TYLCVV          TCCCTGAATGTTCGGATGGAAATGTGCTGACCTGGTTGGGGATGTGAGGTCGAAGAATCT 
                ************************************************ *********** 
 
IR/Reps         TTGATTTTTACACTGGAATTTTCCTTCGAATTGGATGAGGACATGCAGGTGAGGAGACCC 
TYLCVV          TTGATTTTTGCATTGGAATTTTCCTTCGAATTGGATGAGGACATGCAAGTGAGGAGTCCC 
                ********* ** ********************************** ******** *** 
 
IR/Reps         ATCTTCATGGAGTTCTCTGCAGATTCGGATGAATAATTTTTTAGTTGGTGTTTCTAGGGC 
TYLCVV          ATCTTCGTGTAATTCCCTGCAGATTCGAATGAATAATTTATTAGTTGGGGTTTCTAAGGC 
                ****** ** * *** *********** *********** ******** ******* *** 
 
IR/Reps         TTGAATTTGTGAAAGTGCATCCTCTTTAGTTAGAGAGCAGTGTGGGTATGTGAGGAAATA 
TYLCVV          TTTAATTTGGGAAAGTGCTTCTTCTTTGGTGAGAGAACAGTGTGGGTATGTGAGGAAATA 
                ** ****** ******** ** ***** ** ***** *********************** 
 
IR/Reps         GTTTTTGGCATTTATTCTGAATTTATTAGGAGGAGCCATTTTGACTTGGTCAATTGGTGT 
TYLCVV          GTTTTTGGCATTTATTCTGAATTTATTTGGAGGAGCCAT--TGACT-GGTCAATCGGTGT 
                *************************** ***********  ***** ******* ***** 
 
IR/Reps         CTCTCAAACTTGGCTATGCAATCGGTGTCTGGTGTCTTATTTATACCTGGACACCAAATG 
TYLCVV          CTCTCAAACTTGGCTATGCAATTGGTGTCTGGGGTCTTATTTATATGTGGACACCAAATG 
                ********************** ********* ************  ************* 
 
IR/Reps         GCATAATTGTAATTTATTAAATGTAATTCAAAATTCAAAATGCAATCGTGGCCATCCGTA 
TYLCVV          GCATTATTGTAAATAATCATATGAAATTCAAAATTGAAATTGGTAAAGCGGCCATCCGTA 
                **** ******* * ** * *** *********** *** **  *  * *********** 
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  APPENDIX II: Similarity between IR/Rep sequence and TYLCVV sequence. 
 
 
CLUSTAL W (1.81) multiple sequence alignment 
 
Sequences (1:2) Aligned. Score:  75 
 
 
Pre/Cp-hpRNA      TAAGAGACGACGTATTCCCCTGATACCTTGGGATTTGATCTCATCCGTGATCTTATCAGT 
TYLCVV            GTAGAAAATACGTACTCTCCAGATACATTAGGGCACGATTTAATTCGCGATTTAATTTTA 
                    *** *  ***** ** ** ***** ** **    *** * ** ** *** * **     
 
Pre/Cp-hpRNA      GTAATTCGTGCGAAGAATTATGTCGAAGCGTCCAGCAGATATTCTCATTTCCACTCCCGT 
TYLCVV            GTTATTCGTGCTAAAGATTATGTCGAAGCGTCCCGCCGATATAGTCATTTCCACTCCCGC 
                  ** ******** **  ***************** ** *****  ***************  
 
Pre/Cp-hpRNA      CTCGAAAGTACGTCGCCGTCTGAACTTCGACAGCCCATACAACAGCCGTGCTGCTGTCCC 
TYLCVV            ATCCAAGGTGCGTCGCCGGCTGAATTTCGACAGCCCGTATGTCAGCCGTGCTGCTGCCCC 
                   ** ** ** ******** ***** *********** **   ************** *** 
 
Pre/Cp-hpRNA      CACTGTCCGCGCCACAAA---AGGGCAGATATGGAAGAACCGACCTGCATACAGAAAGCC 
TYLCVV            CACTGTCCTCGTCACAAACAAAAGGAGGTCATGGGTGAATCGGCCCATGTACCGAAAGCC 
                  ******** ** ******   * **  *  ****  *** ** **    *** ******* 
 
Pre/Cp-hpRNA      CAGGATCTACAGAATGTATAGAAGCCCTGATGTCCCTAAGGGATGTGAGGGTCCATGTAA 
TYLCVV            CAGGATGTACAGAATGTACAGAAGCCCTGATGTCCCTCGTGGGTGTGAAGGCCCATGTAA 
                  ****** *********** ******************   ** ***** ** ******** 
 
Pre/Cp-hpRNA      GGTCCAATCTTTCGATGCGAAGAACGATATTGGACATATGGGCAAGGTAATCTGTTTGTC 
TYLCVV            GGTCCAGTCTTTTGAACAGCGTCATGATATAGCCCATGTAGGTAAGGTCATTTGTGTCTC 
                  ****** ***** **   *    * ***** *  *** * ** ***** ** *** * ** 
 
Pre/Cp-hpRNA      TGACGTTACCCGTGGTATTGGGCTTACCCATCGAGTTGGCAAGCGTTTCTGTGTGAAGTC 
TYLCVV            TGATGTAACACGTGGTAATGGGCTTACCCATCGTGTTGGTAAGAGGTTCTGTGTGAAGTC 
                  *** ** ** ******* *************** ***** *** * ************** 
 
Pre/Cp-hpRNA      ACTTTATTTTGTCGGGAAGATCTGGATGGATGAAAATATTAAGGTTAAGAATCACACTAA 
TYLCVV            TGTTTATGTGTTGGGTAAGGTGTGGATGGATGAGAACATCAAGACGAAGAATCACACAAA 
                    ***** *  * ** *** * *********** ** ** ***   *********** ** 
 
Pre/Cp-hpRNA      CACCGTTTTATTCTGGATAGTTAGGGATCGGCGTCCTACTGGAACGCCTTATGATTTTCA 
TYLCVV            TACAGTTATGTTTTTTTTAGTTCGTGATAGGAGGCCCTTTGGCACTCCCCAGGATTTTGG 
                   ** *** * ** *   ***** * *** ** * **   *** ** **  * ******   
 
Pre/Cp-hpRNA      GCAGGTT 
TYLCVV            GCAGGTG 
                  ******               
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