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ZUSAMMENFASSUNG 

 

Bakterielle Welke, verursacht durch Ralstonia solanacearum, ist eine der verheerendsten 

bakteriellen Erkrankungen an Kulturpflanzen in den Tropen und Subtropen. Der Anbau 

resistenter Sorten bleibt die praktikabelste Maßnahme, welche bei Eingliederung im Rahmen 

eines integrierten Pflanzenschutzkonzeptes, eine Bekämpfung in einigen Regionen 

ermöglicht. Dennoch, die Resistenz ist nicht stabil und der Mechanismus der Resistenz auf 

molekularer Ebene weitestgehend ungeklärt. Daher wurden zur Aufklärung von möglichen 

Resistenzmechanismen in diesen Arbeiten molekulare und biochemische Methoden. 

verwendet. Wir analysierten die Protein-Profile von anfälligen und resistenten Genotypen 

von Solanum lycopersicum bei Befall mit R. solanacearum. 

Zunächst wurde das Proteom des gesamten mittleren Stängelabschnitts untersucht, in dem in 

vorangehenden Arbeiten der Arbeitsgruppe Resistenzmechanismen gegen Bakterielle Welke 

lokalisiert worden sind Nur die anfälligen Pflanzen reagierten auf die Inokulation des 

Pathogens mit unterschiedlicher Regulation der detektierbaren Proteine, welchen Funktionen 

in an der Pathogenabwehr, Stressantwort und im Metabolismus zugeschrieben wurden. Die 

Sensitivität der Methode wurde durch Analyse einer Subfraktion des Gewebes, des Zellwand-

Proteoms des mittleren Stängelabschnitts, weiter erhöht. Ebenso konnten konstitutive, 

genotypische Unterschiede zwischen zwei S. lycopersicum Linien, die sich im Grad der 

Resistenz gegen R. solanacearum unterscheiden, erfolgreich identifiziert werden 

(Primärstoffwechsel- , Abwehr- und Stress-induzierte Proteine ). Unterschiede in der 

Proteinregulierung wurden in S. lycopersicum Genotypen auch nach Inokulation mit dem 

Pathogen festgestellt: In dem anfälligen Genotyp waren nach Induktion durch Infektion 

Pathogenese-assoziierte (PR)-Proteine stärker exprimiert, wohingegen bei der resistenten 

Linie Proteasen und Signalproteine auftraten. Weiterhin konnte eine verminderte Expression 

von Stress-induzierten- und antioxidativ wirksamen Proteinen  bei den resistenten Genotypen 

ermittelt werden,  während bei der anfälligen Linie Proteine des Zellwandstoffwechsels in der 

Interaktion mit dem Pathogen herunterreguliert waren. Proteine des Primär- und 

Energiestoffwechsels zeigten unterschiedliche Expressionsstärken in beiden Genotypen. 
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Schließlich wurde das Proteom des Xylemsaftes, eine weitere wichtige Schnittstelle der 

Pflanze-Pathogeninteraktion, erstmals in diesem Zusammenhang analysiert. Dieses beinhaltet 

ein umfangreiches Netz von 208 Proteinen und ermöglicht einen Überblick der Funktionen 

des Xylemsaftes in einer Gefäßpflanze. Der Vergleich der Xylem-Proteome von gesunden 

Pflanzen zweier unterschiedlich resistenter Genotypen zeigte einen höheren Prozentsatz an 

Proteasen, Peroxidasen und anderen an der Verteidigung beteiligten Proteinen in den 

resistenten Pflanzen auf, wohingegen bei anfälligen Pflanzen der Anteil von Proteinen höher 

war, welche in Signalwege und Transkriptionsfaktoren involviert sind.  

Zusammengefasst zeigt die vorliegende Arbeit konstitutive Unterschiede zwischen 

resistenten und anfälligen S. lycopersicum Genotypen auf Proteom-Ebene im Xylemsaft und 

in den Zellwänden des Stängels. Weiterhin wurden pathogen-induzierte Differenzen in der 

Proteinexpression sowohliam mittleren Stängelabschnitt als auch auf Zellwandebene 

festgestellt. Die Ergebnisse liefern  einen wichtigen Beitrag für das Verständnis der 

Resistenzmechanismen der Tomate gegen bakterielle Welke und können in 

Züchtungsprogrammen verwendet werden. 

Schlüsselwörter:  

Bakterielle Welke von Tomaten / Proteomics und die Massenspektrometrie / Ralstonia 

solanacearum / Sekretorisch Proteine / Stängels, Zellwand und Xylemsaftes proteome 
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SUMMARY 

 

Bacterial wilt caused by Ralstonia solanacearum is one of the most devastating bacterial 

diseases in the tropics and subtropics. Use of resistant cultivars remains the most useful 

individual control measure which, after incorporation in a framework of integrated disease 

management, provides good control in some regions. However, the resistance is rather 

unstable and the mechanism of resistance at the molecular level is largely unclear. Therefore, 

we initiated investigations on the molecular level of resistance mechanism by analyzing the 

protein profiles that are specific to susceptible and resistant tomato genotypes against 

bacterial wilt caused by R. solanacearum.  

The proteome was examined first from the whole mid-stem, where resistance mechanisms 

had previously been reported after root inoculation. Only the susceptible plants responded to 

pathogen challenge by differentially regulating their proteins, which were identified as 

pathogenesis as well as stress related and metabolic proteins. The sensitivity of the analysis 

was further increased by studying the cell wall proteome from mid-stems, and successfully 

revealed genotypic differences primarily metabolic, defence and stress related proteins 

between the two genotypes. Similarly, plants of both genotypes showed the differential 

regulation of proteins in response to pathogen inoculation. PR proteins in susceptible and 

protease as well as a signaling proteins in resistant plants were up regulated  where as stress 

related proteins as well as an antioxidant in resistant and cell wall metabolic proteins in 

susceptible genotypes showed down regulation during the interaction. Proteins of primary 

and energy metabolism also displayed differential regulation in both genotypes. Finally, 

xylem sap, another key site for plant-pathogen interaction, were analyzed which for the first 

time demonstrated as many as 208 proteins. They included large networks of proteins 

providing an overview of the xylem sap functions in a vascular plant. The comparison of the 

xylem proteome of healthy plants of two genotypes also disclosed the higher percentage of 

protease, peroxidase and other defense related proteins in resistant plants, while susceptible 

plants contained mainly signaling and transcription related proteins.  
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In conclusion, the present study provided constitutive differences in tomato genotypes of 

variable degrees of resistance on proteome level in the xylem sap and stem cell walls. 

Additionally, pathogen-induced differences in whole stem as well as in stem cell wall 

proteome present an important contribution to understanding of bacterial wilt resistance in 

tomato. The results give valuable information for future breeding programmes and genetic 

improvement of tomato bacterial wilt resistance. 

Key words:  

Bacterial wilt of tomato / Proteomics and mass spectrometry / Ralstonia solanacearum           

/ Secretory protein / Stem, cell wall and xylem sap proteome  
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GENERAL INTRODUCTION 

 

Bacterial wilt and its causative agent 

Tomato (Solanum lycopersicum) is one of the most consumed vegetables next to potato, 

grown in different cropping systems all over the world, and therefore, has a high economic 

importance. Production of tomato has been hampered severely by numerous biotic and 

abiotic stresses, albeit, the increasing use of cultivating land. Bacterial wilt is a collective 

term  used for diseases caused by at least 15 bacterial species, however, the wilt caused by 

Ralstonia solanacearum is the most devastating systemic vascular disease of crop plants 

worldwide (Denny 2006). The pathogen does not behave as a single bacterium with a 

uniform biology and was therefore referred to as a ‘species complex’ (Fegan and Prior 2005). 

R. solanacearum as a species complex invades over 200 plant species in more than 50 

families in the tropics, subtropics, and warm temperate regions. The host plant affected 

includes dicotyledones and monocotyledones, annual plants to trees and shrubs, and, more 

rigorously the Solanaceae plants such as tomato, potato, eggplant, and tobacco (Denny 2006). 

The high economic importance of the disease can be estimated from the destruction of 75% 

of potato and even up to 100% of the tomato harvest in some areas, and losses, are attributed 

to the fast lethality of the disease, and the persistence, extensive host range and broad 

geographical distribution of the pathogen (Elphinstone 2005).  

R. solanacearum is an aerobic, Gram-negative rod of 0.5-1.5 µm length and a polar 

flagellum. This bacterium belongs to the non-fluorescent rRNA homology group II of the β-

subdivision of Proteobacteria on the basis of 16S rRNA sequence analysis (Oepp/Eppo 

2004). For this bacterium which exhibits a great degree of phenotypic and genotypic diversity 

with strains differing in host range, geographical distribution, pathogenicity, epidemiological 

relationship, and physiological properties, different classification system exist (Denny 2006). 

However, the race system based on the selectiveness in host range of the bacterium and the 

biovar system based on the ability to utilize and/or oxidize several hexose alcohols and 

disaccharides, categorize the strains into five races and six biovars, respectively, and are still 

often used (Denny 2006). The only agreement between the two systems is that biovar 2 
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strains belong to race 3. Further two classification schemes, one based on the restriction 

fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP) 

and DNA sequence analysis of 16S rRNA, egl and pglA, and the other on genetic properties 

of the bacterial strains, grouped the pathogen into two major clusters (American and Asian) 

and other subdivisons including African strains due to its geographical origin and four 

phylotypes respectively (Villa et al. 2005, Prior and Fegan 2005). Phylotype I, II, III and IV 

correspond to cluster I (Asian), II (American), African and Indonesian strains respectively.  

R. solanacearum is a soilborn saprophytic organism, able to survive extended periods in 

surface water and soil without the need of host plants. Even though the soil contains several 

toxic compounds and presents an oligotrophic environment (Williams 1985), the bacterium 

copes with such adverse environments, probably due to its association with asymptomatic 

hosts and weeds (Hayward 1994), its conversion to the ‘viable but not culturable’ dormant-

like state (Grey and Steck 2001), or its shift between saprophytic type and the other 

virulent/wild type (Denny 2006). R. solanacearum spreads usually with surface water and 

within the soil system and enters the host plant through roots, and wounds produced 

mechanically by various agents such as nematodes, insects, and agricultural practices and/or 

naturally due to lateral root emergence (Denny 2006). The dissemination is further assisted 

by the flagella mediated swimming motility of the bacterium (Tans-Kersten et al.  2004). 

After entering the host plants, they colonize the intercellular spaces of the root cortex, and 

followed by the vascular parenchyma. They invade xylem vessels by disrupting the cell 

walls, and circulate rapidly through the vascular system of the plant (Grey and Steck 2001). 

In xylem vessels, the numbers as high as 1010 cells/cm was reached in tomato stems in later 

stages of infection (Dannon and Wydra 2004). When the pathogen attains such a high cell 

concentration, virulence genes are expressed and cells become non-motile and secrete acidic, 

high molecular mass (>106 Da) exopolysaccharides (EPS I) and pectin-degrading enzymes, 

leading to blockage of the vascular system (Clough et al. 1997, Saile et al. 1997). Such a 

vascular dysfunction is the major cause of typical wilting that appears within 4-6 days post 

inoculation (dpi) in susceptible plants, while they are still green, and mostly leads to fast 

death of the plants (Denny et al. 1990). The bacterial cells are then released into the soil from 
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the infected dead plant, build up an inoculum in the soil, and restart the infection cycle in 

other available host plants. 

In susceptible tomato plants, the pathogen initially causes the wilting of youngest leaves 

within 4-5 dpi, followed by extension of wilt to other plant parts, and eventually death of the 

plant within 10-12 dpi under favorable conditions. Onset of wilt was correlated with bacterial 

density exceeding 4 x 107 cfu/g tissues at mid-stem level probably causing the brown 

discoloration in the vascular tissues of the stem which upon horizontal cut shows whitish or 

yellowish bacterial ooze (Denny 2006). Higher temperature (24-35°C), soil moisture, and 

periods of wet weather or rainy seasons are considered to accelerate the disease severity 

which however would be slowed down under less favorable conditions resulting in the 

adventitious roots formation at lower as well as mid-stem level, and stunting of the plants 

may occur. 

Disease management and resistance mechanism 

Bacterial wilt is among the most difficult diseases to control due to the extensive host range, 

broad geographical occurrence, variability, and saprophytic nature of the pathogen among 

others (Denny 2006). Several single control strategies including chemical, cultural and 

biological have been employed, but none provided complete and sustainable protection in 

areas where strains of wide host ranges were endemic (Saddler 2005). Therefore, the 

integration of several different disease management measures such as rotation with tolerant 

crops, intercropping, use of phytosanitary practices such as eradicating asymptomatic weeds 

and hosts, soil amendments, controlling disease promoting nematodes and insects are 

commonly applied as conventional measure of disease control (Saddler 2005, Denny 2006). 

Among individual control measures, the use of resistant cultivars has proved the most 

promising, economical and environment friendly method (Boshou 2005). Unfortunately, host 

plant resistance was generally confined to geographical locations and its stability and/or 

durability were frequently broken due to high genetic diversity of the strain as well as 

variable, local environmental conditions (Carmeille et al. 2006). Moreover, the quantitative 

trait loci (QTLs) determining the wilt resistance in tomato are also often linked to undesirable 

traits hampering the commercial production of resistant tomatoes with good agricultural traits 
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(Wang et al. 1998). Therefore, the use of disease resistant cultivars in combination with other 

control measures in the framework of an integrated disease management system seems 

effective to combat the bacterial wilt disease.  

Considering the characteristics of the pathogen and the problems of its control, it becomes 

essential to understand the resistance mechanism at the biochemical and molecular level to 

develop cultivars of durable resistance with desirable agronomic traits. Two types of 

resistance are generally described in plants. The non-host resistance is the predominant form 

which is shown by all members of plant species against a specific pathogen, and is durable 

against the majority of potential microbes. A second form of resistance is the host resistance 

exhibited by a specific cultivar or accession which is often governed by single resistance (R) 

gene (Jones and Dangl 2006). Invading phytopathogens are obstructed first by the 

constitutive physical barriers provided from the cytoskeleton of the plant termed "passive or 

preformed" resistance. In addition to these physical barriers, there are two overlapping yet 

different forms of active plant defense. The first is known as the basal plant defense which 

includes pathogen associated molecular pattern-triggered immunity and is independent of R 

genes.  They are activated around the sites of infection in susceptible plants limiting the 

disease severity, but are relatively weaker to prevent the disease compared to R gene 

mediated defense (Jones and Dangl 2006). The second is the inducible plant defense 

mechanism that involves specific recognition of the invading pathogen by plant resistance (R) 

genes called “gene-for-gene” interaction. Upon recognition of the invading pathogen, the 

products of R genes directly or indirectly interact with the specific elicitors produced by the 

avirulence (avr) genes of pathogens. The initiated incompatible interaction leads to resistant 

plants while the compatible interaction results in diseased plant. Although all plants possess 

active resistance mechanisms against pathogen attack, these mechanisms do not succeed in a 

compatible interaction due to slow and/or inefficient response of the plant to the pathogen, or 

the avoidance of triggering of defense responses and the suppression of the resistance 

reactions by the pathogen (Ton and Mauch-Mani 2004). The disease resistance gene Pto in 

tomato and the avrPto gene in Pseudomonas syringae pv. tomato is one example of a 

classical "gene-for-gene" interaction (Ronald et al. 1992) and was required for the activation 
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of disease resistance (Scofield et al. 1996). This kind of active resistance responses often 

involve reprogramming of the cellular metabolism leading to rapid necrosis of the localized 

cells called the hypersensitive response (HR), synthesis of defense related proteins such as 

pathogenesis related (PR) proteins, secondary metabolites and reinforcement of cell wall 

(Jones and Dangl 2006). A more comprehensive and global monitoring of the physiological 

and molecular phenomena mediating the pathogen-host plant interactions is pivotal in 

controlling plant disease, where the ‘‘omics’’ experimental approaches, particularly 

proteomics, are expected to significantly contribute to an increased understanding of plants 

reactions to pathogen attack. 

Proteomics 

Proteomics study the post genomic events which particularly consist of analyzing the 

proteome, i.e. protein complement expressed by the whole genome, in a cell, tissue, or 

organism under defined conditions. In fact, the proteome of a particular cell represents a 

subset of all gene products. Genes are considered as the construction code of the cellular 

system and are static while proteins are the effector molecules that realize and regulate them 

and are dynamic in nature. The proteome therefore offers a more accurate representation of 

the cellular state compared to genes and transcriptomes.  Proteomes are physicochemically 

highly heterogeneous, structurally complex and are modified both spatially as well as 

temporally and during their biochemical interaction with the biotic and abiotic environments. 

Proteomics is used as an ideal tool for understanding how complex biological processes occur 

at a molecular level, how they differ in various cell types, and how they are altered during 

interactions with microbes. Benefited from the increasing genomic sequences, expressed 

sequence tag (ESTs) databases, and the advancement of the mass spectrometry for the protein 

analysis, comparative proteomics has become the common approach to study the complex 

molecular phenomena mediating the resistance reactions of the plant against pathogen 

invasion. Although, the gene microarrays provide the snapshot of all genes at one time point, 

the level of specific mRNAs does not necessarily predict the level of corresponding proteins. 

Also, the substantial regulation of cellular events occurring at the protein level with no 

apparent change in the transcriptome increases the importance of proteomics in deciphering 
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the molecular events undergoing in cells (Gygi et al. 1999). One of the common workflows 

of gel based comparative proteome analysis principally consists of the extraction of desired 

proteomes, separation by gel electrophoresis, comparison of their differential expression with 

respect to pathogen attack, and the identification of the desired protein with mass 

spectrometry (MS).  

Gel electrophoresis and mass spectrometry 

In proteomics, the protein separation should not only simplify the separation of the complex 

protein mixture into individual/small groups of proteins but also allow comparing the 

differences in the protein abundance level due to the disease state of the plant. Two-

dimensional (2-D) gel electrophoresis serves both purposes and presents a most common 

method to resolve the complex mixture of protein in one gel providing a snap shot of the 

particular (sub-) proteome. It involves the separation of the protein complex according to the 

isoelectric points (pI) in the first dimension followed by the individual molecular mass (MM) 

in the second dimension. This is correspondingly achieved by isoelectric focussing (IEF) 

which focuses proteins until zero net charges are achieved, and sodium dodecyl sulphate-

polyacrylamide gel electrophoresis (SDS-PAGE) that separates proteins by their molecular 

size. The 2-D separation of the protein complex encounters some limitations such as the 

small dynamic resolution of the resolved proteome, dominance of abundant and soluble 

proteins, and scarcity of the most basic and low abundant proteins (e.g. transcription factors, 

protein kinases etc) (Lopez et al. 2007). Other protein separation techniques such as various 

1-D SDS-PAGE and chromatography provide good options for the inclusion of such proteins 

in the analysis and can be coupled with MS for the analysis of proteins. MS principally 

consists of an ion source to produce ions from the protein samples in the gaseous phase, a 

mass analyzer which separates ionized analytes based on their mass-to-charge ratio (m/z), 

and a detector that registers the number of resolved ions at each m/z value. Due to the 

introduction of soft ionization methods such as matrix assisted laser desorption/ionization 

(MALDI) and electrospray ionization (ESI), MS has been widely used in the examination of 

large biomolecules such as proteins. These ion sources can be connected to one or several 

mass analyzers such as time of flight (TOF), ion trap as well as quadrupole (Q) depending 
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upon the sensitivity, resolution and mass accuracy of the instruments required for the protein 

analysis. Gel separated proteins are generally identified by two different but complementary 

methods: peptide-mass fingerprinting (PMF) by MALDI-TOF when the species’ whole 

genome sequences are available, and by peptide sequencing by ESI tandem MS for the 

partially sequenced genome. The expansion of genome, EST and protein sequence databases 

such as MSDB, SwissProt, NCBInr and browser based database search tools like MASCOT 

and Sequest, which can match MS data with specific protein sequences in databases, are the 

integral part of MS based proteomics in order to derive the identity of the MS-analyzed 

proteins. PMF is based on the exact measure of the masses of unique proteolytic peptides 

generated by digesting the desired protein and subsequent matching of the experimental mass 

with corresponding theoretical peptide masses obtained from protein or nucleotide sequence 

databases. Therefore, such MS require only one mass analyzer, and the successful protein 

identification depends on the quality of the MS data obtained, accuracy of the database and 

the power of the search algorithms and software. The ESI tandem mass spectrometer 

(MS/MS), on the other hand, requires two mass analyzers in tandem where the second 

analyzer creates systematic fragmentation of the peptides selected by the first analyzer in 

order to deduce the peptide sequences. The algorithms are then used to match these identified 

peptide sequences with the peptides sequences present in the databases or, more accurately, 

to correlate the experimental MS/MS spectral data with theoretical MS/MS spectra to reveal 

the identity of the proteins.  

Research framework  

The management of bacterial wilt disease of tomato can be substantially improved by the use 

of the resistant cultivars.  However, the aim is to achieve a durable resistance across the 

major tomato cultivating environments. Cultivars with stable resistance can then be grown 

within the framework of an integrated disease approach in order to obtain a sustainable 

disease management. Understanding of the resistance reactions at the molecular level should 

offer directives to develop long lasting disease resistant cultivars; but, only limited 

information is available on the molecular interactions in the tomato-R. solanacearum system. 

The ever expanding genetic and molecular tools as well as databases of the tomato and the 
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availability of the complete genomic sequences of some strains of the bacterium offer a 

promising model for investigations. The major purpose of this study is therefore to improve 

the resistance of the tomato cultivars by characterizing the molecular components involved in 

susceptibility as well as resistance of the plants against bacterial wilt, and effectively utilizing 

the genetic resources present within the species to create stable resistance against this disease. 

The study involves the understanding of biochemical and molecular characteristics of 

resistant and susceptible tomato genotypes that are activated in response to invasion by R. 

solanacearum. A comparative proteomics approach is used for this purpose to monitor the 

changes in the protein profiles that are directly influenced by the biochemical cellular 

pathways activated during host pathogen interactions and hence represents the more direct 

approach. Former studies located the presence of bacterial wilt resistance in the mid-stem of 

tomato revealing it as an important site for the proteome analysis of the proposed host 

pathogen interaction (Vasse et al. 2002, Wydra and Beri 2007, Dahal et al. 2009). Similarly, 

the 5 dpi correspond to the time needed by the bacterium which is applied to the soil, to reach 

and invade the root system and multiply heavily in the stem. The higher expression of mRNA 

of defence related genes observed in time-course analysis at three days after root inoculation 

of the pathogen and the begining of wilting symptoms at 5 dpi in susceptible plants led us to 

analyze the proteome at 5 dpi (H. Ghareeb 2007 master thesis, Dahal et al. 2009).  

Hence, in order to gain a deeper insight into the reactions against the pathogen in the 

proteome of the plant, the research work was divided into 3 major sections that comprise (1) 

the analysis of plant proteome of the whole mid stem in a first phase, followed by the 

examination of the plant subcellular proteome, (2) the cell wall of the stem and (3) the xylem 

sap, aiming to increase of the sensitivity of the analysis. The following three chapters present 

the comparative analysis of the tomato proteome from healthy susceptible and resistant 

genotypes and the regulation of the proteins in response to pathogen attack. Both the whole 

stem and its cell wall proteome were separated and displayed by two-dimensional isoelectric 

focussing/sodium dodecyl-sulphate polyacrylamide gel electrophoresis (2-D IEF/SDS-

PAGE), compared for their differential abundance in genotypes and treatments and finally 

analysed the desired spots with mass spectrometry to identify the proteins. In case of the 
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xylem sap, the whole protein profiling was performed from both susceptible and resistant 

plants in order to receive an overview of the proteins present in the sap and to achieve a 

comparative analysis of the two genotypes based on the differential abundance of the proteins 

in either of the genotypes. The screening of the xylem proteome also aimed to provide a 

platform for future comaparative proteome analyis of the sap proteins that are regulated in 

response to pathogen inoculation.  
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CHAPTER 1: Pathogenesis and stress related, as well as metabolic proteins 

are regulated in tomato stems infected with Ralstonia solanacearum.  

Adapted from the publication, Plant Physiology and Biochemistry 47:838-846. 

Abstract 

A comparative proteome analysis was initiated to systematically investigate the physiological 

response of tomato to infection with R. solanacearum, causal agent of bacterial wilt. Plants of 

the susceptible tomato recombinant inbred line NHG3 and the resistant NHG13 were either 

infected or not infected with R. solanacearum and subsequently used for proteome analysis. 

2-D IEF/SDS-PAGE allowed the separation of about 650–690 protein spots per analysis. 

Twelve proteins were of differential abundance in susceptible plants in response to bacterial 

infection, while no differences were observed in the resistant genotype. LC-MS/MS analysis 

of these spots revealed 12 proteins, six of which were annotated as plant and six as bacterial 

proteins. Among the plant proteins, two represent PR proteins, one stress response protein, 

one enzyme of carbohydrate and energy metabolism, and one hypothetical protein. A 

constitutive difference between resistant and susceptible lines was not found. 

Keywords: 2-D gel electrophoresis, bacterial wilt, LC-MS/MS, PR protein, Ralstonia 

solanacearum, Solanum lycopersicum 
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1. 1 Introduction 

Bacterial wilt caused by R. solanacearum is the most devastating, systemic vascular wilt 

disease of crop plants (Smith 1896, Denny 2006).  R. solanacearum as a species complex has 

a host range of more than 200 plant species representing over 50 botanical families (Denny 

2006). Among these, solanaceous plants including tomato are the most affected species which 

was damaged up to 75-100% in the lowland and highland tropics and subtropics (Smith 1896, 

Ram-Kishun and Kishun 1987).  

 

Figure 1. Tomato infected with R. solanacearum showing wilt symptoms. 

 

R. solanacearum is an aerobic, Gram-negative rod with a high degree of phenotypic and 

genotypic diversity (Denny 2006). The soilborne bacterium potentially requires only small 

wounds in the roots such as occur by lateral root emergence to establish a systemic infection 

(Vasse et al. 1995). Bacteria start multiplying in the intercellular spaces of the root cortex at 

the early phase of infection when the pathogen is still motile, and circulate throughout the 

vascular system of the plant (Vasse et al. 1995). Cell numbers as high as 1010 cells/cm of 

stem are reached in xylem vessels of tomato (Dannon and Wydra 2004), leading to blockage 

of the vascular system and thereby alteration of water fluxes (Saile et al. 1997). Such a 
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vascular dysfunction is the major cause of typical green-wilting and subsequent plant death 

(Denny et al. 1990). 

 

Figure 2. R. solanacearum seen on TTC medium after 48 h of incubation at 30°C. 

Colonies appear as large, elevated and fluidal mass with pink/red centers. 

 

Bacterial wilt resistance, a polygenic trait in tomato, with QTLs often linked to undesirable 

characteristics, was generally found to be specific to geographical sites, and frequently 

broken due to high genotype x environment interactions (Wang et al. 1998). Therefore, 

understanding the resistance mechanisms is essential in developing a cultivar with stable 

resistance, to effectively control the disease.  

The mechanisms of downstream signalling and induced responses were studied both in 

pathogens and plants in various host-pathogen interactions. When a plant comes into contact 

with a pathogen, close communication occurs between the two organisms (McDowell and 

Woffenden 2003). If the initial resistance provided by preformed plant barriers is passed 

successfully, the defence responses are activated by an interacting set of both exogenous and 

endogenous signalling molecules. The induced defence responses include localized cell 

death, production of antimicrobial secondary metabolites, further reinforcement of the cell 
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walls and the synthesis and accumulation of PR proteins (Walters et al. 2005). These complex 

series of cellular responses may lead to enhanced disease resistance against a broad spectrum 

of phytopathogens when expressed in a synchronized manner (McDowell and Woffenden 

2003). 

However, only limited studies exist on the biochemical and molecular background of the R. 

solanacearum-tomato interaction. The resistance of tomato genotypes against bacterial wilt 

did not result from a limitation of bacterial penetration into the roots, but from the ability of 

the plant to restrict the pathogen spread in the stem (Grimault and Prior 1993, Nakaho et al. 

2004). The bacterial population was reduced significantly in mid-stems compared to the 

taproot and collar region after root inoculation (Vasse et al. 2002). Similarly, we also found 

comparably high numbers of bacteria in roots of both susceptible and resistant genotypes, 

while those in stems were significantly reduced in the resistant plants (Dannon and Wydra 

2004, Diogo and Wydra 2007). The capacity of the plant to restrict pathogen spread in the 

stem occurred either by inhibiting the growth of the pathogen or limiting the effects of 

bacterial virulence factors (Prior et al. 1996, Dannon and Wydra 2004). Therefore, tomato 

stem was considered an important site for further analysis of plant-pathogen interaction. In 

our former studies, the roles of both constitutive resistance mechanisms and pathogen-

induced changes on plant cell wall level were described, where modifications in the 

composition and structure of the galacturonan components of the pectic cell wall 

polysaccharides and the amount of arabinogalactan protein were related to the resistance of 

tomato genotypes (Wydra et al. 2005, Wydra and Beri 2006 and 2007, Diogo and Wydra 

2007). Nevertheless, the exact picture of the multiple resistance reactions of the plant acting 

singly or in combination is not well understood.  

The proteomic approach should reveal whether changes on protein level play a role in the 

pathogen-plant interactions, since it represents more directly the cellular status of the cell 

(Lopez 2007). The tomato-R. solanacearum system is a suitable model for investigating the 

molecular basis of plant disease reactions towards R. solanacearum, since extended genetic 

and molecular tools for both tomato and the pathogen are available (Salanoubat et al. 2002, 

Pedley and Martin 2003). For tomato, a dense molecular marker linkage map 
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(www.sgn.cornell.edu) and for the relatively small genome (950 Mb) extensive databases of 

expressed sequence tags (www.tigr.org) exist. When combined with information from other 

Solanaceae and related species, the databases provide useful information for the 

identification of proteins in tomato. Similarly, the availability of the complete genomic 

sequence of R. solanacearum strain GMI1000 (Salanoubat et al. 2002) and the in-depth study 

of the type III secretion system and related pathogenicity and effector proteins allowed the 

identification of in planta expressed proteins (Alfano and Collmer 2004).  

Since the reaction to R. solanacearum infection on tomato stem-proteome level has not been 

studied, susceptible and resistant tomato recombinant inbred lines, derived from the cross 

between the resistant Hawaii7996 (Solanum lycopersicum) and the susceptible Wva700 

(Solanum pimpinellifolium) parental lines, were chosen for identification of differential 

protein expression. 

1.2 Materials and methods 

1.2.1 Plant material and bacterial strain  

The tomato recombinant inbred lines NHG3 and NHG13, susceptible and resistant to 

bacterial wilt, respectively, were received from the Genetic Resources and Seeds Unit of the 

Asian Vegetable Research and Development Centre (AVRDC, Taiwan). The recombinant 

inbred lines (RILs) were developed by eight generations of single seed descents from the 

interspecific cross between two parental tomato lines: the highly resistant line Hawaii7996 

and the highly susceptible line WVa700.  

The highly virulent R. solanacearum strain ToUdk2 (race 1, biovar 3) obtained from 

Thailand (N. Thaveechai, Kasetsart University, Bangkok) was used for inoculation of the 

plants. A suspension of a fresh re-isolate of the strain was streaked on nutrient growth agar 

(NGA) medium (0.3% beef extract, 0.5% Bacto peptone, 0.25% D-glucose, and 1.5% agar) 

and incubated at 30°C for 48 h. Bacterial colonies were harvested with sterile distilled water 

and the inoculum was prepared by adjusting the concentration of bacterial cells to an optical 

density of 0.06 at 620 nm wavelength (Spectrotonic 20, Bausch and Lomb) corresponding to 

about 7.8 x 107 colony-forming units per millilitre (cfu/mL). 
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1.2.2 Plant growth conditions and inoculation  

Tomato seeds were sown in the greenhouse [20°C, 14 h photoperiod per day, 30K lux and 

70% relative humidity (RH)], transplanted after 4 weeks to individual pots with 

approximately 330 g of soil (Fruhstorfer Erde, type P: 150 mg/L N, 150 mg/L P2O5, and 250 

mg/L K2O) and transferred to a climate chamber (30/28°C day/night temperature, 14 h 

photoperiod, 30 K lux, and 85% RH). Soon after transplanting, plants were inoculated by 

pouring 25 mL of bacterial suspension per pot around the base of the plant to obtain a final 

inoculum concentration of approximately 107 cfu/g of soil, followed by watering the soil up 

to soil field capacity.  

1.2.3 Bacterial quantification 

The bacterial multiplication was determined at 5 dpi in the same tomato plants that were used 

for proteome analysis.  Approximately 0.5-0.7 g of the lower stem part was surface-

disinfected with 70% ethanol for 15 s, rinsed and macerated in 2 mL of sterile water. After 20 

min, the macerate was filtered through cotton to remove plant debris and pelleted by 

centrifugation (7000 x g, 10 °C for 10 min). The pellet was re-suspended in 1 mL sterile 

water and serially diluted 10 fold at least four times. Then 100 µL of each dilution were 

plated in two replicates on triphenyl tetrazolium chloride (TTC) medium: 20 g Bacto peptone, 

5 g glucose, 1 g casamino acids, 15 g Bacto agar and 1 L H2O; after autoclaving, 10 mL of 

filter-sterilized 0.5% (w/v) 2, 3, 5-TTC (SERVA, Germany) solution as an redox indicator 

was mixed with sterile medium before pouring into Petri plates. Bacterial colonies after 48 h 

of incubation at 30°C appeared as large, elevated, fluidal colonies with red centers due to 

consumption of TTC dye by the pathogen and were counted to calculate bacterial population 

as cfu per gram of fresh weight (cfu/g).  

1.2.4 Monitoring and evaluation of disease symptoms 

The typical symptoms of bacterial wilt were monitored daily in six disease severity scores 

from 0–5, where 0 = no symptoms, 1 = one leaf wilted, 2 = two leaves wilted, 3 = three 
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leaves wilted, 4 = all leaves wilted without tip, and 5 = whole plant wilted, plant death. The 

symptoms were evaluated for 4 weeks from the day of first symptom appearance. 

The wilt incidence (WI) was calculated as the percentage of dead plants (disease score 5) to 

the total number of plants in the treatment at the evaluation date. Additionally, disease 

severity (DS) was calculated as the mean of disease scores at the evaluation date. The area 

under disease progress curve (AUDPC) for each plant in each treatment and experiment was 

calculated on the basis of disease severity and of wilt incidence using the trapezoid 

integration of the disease progress curve over time using the following equation (Jeger and 

Viljanen-Rollinson 2001).  

∑ += )t-)/2](tx  [(x 1-ii1-iiAUDPC  

Where,  xi and xi-1 are disease severity or wilt incidence at time ti - ti-1, respectively, and ti and 

ti-1 are consecutive evaluation dates, with ti - ti-1 equal to 1. The total AUDPC represents the 

sum of AUDPC for all plants in each treatment. 

1.2.5 Stem proteome analysis 

The proteome was analysed in both healthy and infected stems of genotypes NHG3 and 

NHG13 at 5 dpi. The tomato mid-stem, approximately 8-10 cm above the root level was used 

for proteome analysis, with more than three individual plants per genotype and treatment to 

obtain at least three reproducible results. About 1 g of stem was cut, immediately frozen in 

liquid nitrogen, and stored at -80°C until further analysis. 

1.2.5.1 Protein extraction and sample preparation 

Total protein extraction from the tomato stem was carried out according to the protocol of 

Mihr and Braun (2003). The plant cells were disrupted by pulverizing the frozen stem to fine 

powder in a swing mill after chilling the required tools with liquid nitrogen. Approximately 

0.5 g of tissue powder was well mixed with 750 µL of extraction buffer pH 8.0 (700 mM 

saccharose, 500 mM Tris, 50 mM EDTA, 100 mM KCl, 2% v/v β-mercapto-ethanol, and 2 

mM PMSF). After incubating for 10 min on ice, an equal volume of water-saturated phenol 

(Amresco Biotech Chemicals, Germany) was added, vortexed and shaken at 300 rpm, at 
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room temperature (RT) for 30 min (Mixer 5432, Eppendorf). The mixture was centrifuged at 

1100 x g, 4°C for 10 min and the upper phenolic phase containing solubilized proteins was 

taken. The same centrifugation step was repeated after mixing the recovered phenolic phase 

with an equal volume of extraction buffer. The proteins extracted in the resulting phenolic 

phase were precipitated at -20°C by adding 100 mM ammonium acetate in methanol with 

five times the volume of the recovered phenol phase, for at least 4 h. The protein pellet was 

obtained by centrifuging (17000 x g, 4°C for 3 min) and washed by resuspending the pellet in 

1 mL of 100 mM ammonium acetate in methanol before re-centrifugation. The pellet was 

rinsed once more with 80% (v/v) ice-cold acetone as before and air-dried at RT for 5-10 min.  

An approximately 0.5 mg protein pellet was solubilized in 350 µL of “rehydration buffer” 

(8M urea, 2% w/v CHAPS, 0.5% v/v carrier ampholyte mixture (IPG buffer 3-11 non-linear, 

GE Healthcare, Germany), 30 mM dithiothreitol, DTT, and 2-4 mg Bromophenol Blue)). The 

suspension was well vortexed and centrifuged (17000 x g, 4°C for 5 min). The supernatant 

containing soluble protein mixtures was flash frozen in liquid nitrogen before isoelectric 

focusing (IEF). 

1.2.5.2 Two-dimensional gel electrophoresis 

The complex mixtures of protein were separated in one direction by their charges (IEF) and 

in the perpendicular direction by their relative molecular masses (SDS-PAGE) using the 2-D 

gel electrophoresis approach.  

IEF of protein mixtures was carried out using 18 cm immobiline dry gel strips (IPG strips, pH 

3-11 non-linear (NL), GE Healthcare, Munich, Germany). In-gel rehydration of the dry gel 

stripes was combined with loading of 0.5 mg protein resolved in “rehydration buffer”. IEF 

was carried out for 24 h using the IPGphor system (GE Healthcare, Germany) according to 

Werhahn and Braun (2002) as follows: (1) rehydration for 12 h at 30 V (step and hold);      

(2) initial focussing for 1 h at 500 V (step and hold); (3) further focussing for 1 h at 1000 

(gradient), 4 h at 8000 V (gradient), and 6 h at 8000 V (step and hold); T 67610Vh. 

Prior to SDS-PAGE, gel stripes of the IEF dimension were incubated for 15 min with 

“equilibration solution I” (50 mM Tris-HCl pH 8.8, 6 M urea, 30% (v/v) glycerol, 2% (w/v) 



Chapter 1  Tomato stem proteome 

 18 

SDS, 1% (w/v) DTT and 2-4 mg Bromophenol Blue) to denature proteins as well as to reduce 

their thiol groups and for 15 min with “equilibration solution II” (same as equilibration 

solution I except that DTT was substituted by 2.5% (w/v) iodoacetamide) to alkylate free 

thiol groups of the proteins. 

Second-dimension electrophoresis was performed on a vertical SDS gel according to 

Schägger and Von Jagow (1987) using the Protean II electrophoresis unit (BioRad, Hercules, 

USA). Equilibrated IPG stripes were placed horizontally onto the second gel dimension and 

fixed in place with 0.5% agarose solution tricine (0.5% agarose, and 2-4 mg Bromophenol 

Blue in 100 mL tricine gel buffer pH 8.45 (3M Tris, and 0.3% SDS)) at a temperature below 

60°C. The gel was run at constant current (35 mA per mm gel thickness) for 18-20 h. 

1.2.5.3 Protein staining, gel scanning and image analysis 

After completion of SDS-PAGE, gels were fixed by incubation with “fixing solution” (100 

mL/two gels; 40% (v/v) methanol, and 10% (v/v) acetic acid) for 2 h. Proteins were 

visualized by staining overnight with colloidal Coomassie staining (0.1% w/v CBB-G250, 

10% w/v ammonium sulphate, 2% ortho-phosphoric acid in 20% methanol) as described by 

Neuhoff et al. (1985, 1990). To remove background staining, gels were washed with bidest 

water and finally scanned using a UMAX Power Look III scanner (UMAX Technologies, 

Fremont, USA). Protein spots were compared for differential abundance between genotypes 

(NHG3 and NHG13) and treatments (pathogen infected and healthy plants) by visual 

inspection.  

1.2.5.4 Mass spectrometric analysis and data interpretation 

Protein in-gel digestion, peptide extraction, and mass spectrometry analysis were performed 

as described by Führs et al. (2008). 

Briefly, each SDS-PAGE gel spot was dried under vacuum. In-gel digestion was performed 

with an automated protein digestion system, MassPREP Station (Micromass, Manchester, 

UK). The gel slices were washed three times. The cysteine residues were reduced and 

alkylated. After dehydration, the proteins were cleaved inside the gel with 40 µL of          

12.5 ng/mL modified porcine trypsin (Promega, Madison, USA) in 25 mM NH4HCO3 at RT 
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for 14 h. After extraction, the resulting tryptic peptides were analysed by Nano-liquid 

chromatography (LC) MS/MS on a capillary LC (CapLC) system (Micromass) coupled to a 

hybrid quadrupole orthogonal acceleration TOF tandem mass spectrometer (Q-TOF II, 

Micromass). Protein identification was performed by classical protein database searches 

performed on a local Mascot (Matrix Science, London, UK) server. To be accepted for the 

identification, an error of less than 100 ppm on the parent ion mass was tolerated and the 

sequences of the peptides were manually checked. One missed cleavage per peptide was 

allowed and some modifications were taken into account: carbamidomethylation for cysteine 

and oxidation for methionine. In addition, the searches were performed without constraining 

proteins Mr and pI, and without any taxonomic specifications. These searches did not always 

lead to a positive identification since the tomato genome has not yet been sequenced. In such 

cases, the use of a de novo sequencing approach was necessary for a successful identification. 

For this purpose, the interpretation of the MS/MS spectra was performed with the PepSeq 

tool from the MassLynx 4 (Micromass) as well as the PEAKS studio softwares 

(Bioinformatics Solutions, Waterloo, Canada v.3). The resulting peptide sequences were 

submitted to the BLAST program provided at the EMBL site (http://dove.embl-

heidelberg.de/Blast2/msblast.html) in order to identify them by homology with proteins 

present in the databases as described by Führs et al. (2008). 

1.3 Results  

1.3.1 Symptom development and bacterial populations in stems 

Plants of the susceptible genotype NHG3 started wilting at 4-5 dpi, and progressed to plant 

death within 11 days. The mean WI and DS were calculated from three biological 

replications (Fig. 3). The AUDPC of WI and DS were 316.62±10.61 SE and 22.56±1.64 SE, 

respectively, indicating a highly susceptible reaction. However, no symptoms were observed 

in the resistant genotype NHG13 until 30 dpi. The bacterial populations in the stems used for 

proteome analysis were 2.58 x109, 3.06 x109, and 2.55 x109 cfu/g fresh weight of stem in 

genotype NHG3 compared to 2.99 x105, 4.91 x104, and 2.49 x105 cfu/g fresh weight of stem 

in genotype NHG13 at 5 dpi. 
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Figure 3. Development of wilt incidence (WI) and disease severity (DS) of tomato genotype 

NHG3 inoculated with R. solanacearum strain ToUdk2. 

The mean WI and DS with corresponding standard errors were calculated from three 

biological replications of NHG3 plants. Line NHG13 did not show symptoms.  

1.3.2 Analysis of the stem proteome  

The total soluble protein extract of the mid-stem from an individual plant of each genotype, 

NHG3 and NHG13, inoculated and non-inoculated with R. solanacearum at 5 dpi, was 

resolved on 2-D gels. The 2-D gels were prepared more than three times from each genotype 

and treatment so that each protein spot difference was identified on at least on three 

individual gels. Approximately 650-690 protein spots, separated in the molecular mass range 

of 10-100 kDa and a pH range of 3-11, were visible in all replicate gels. Some further spots 

representing proteins with extreme pI or size were not clearly resolved. One representative   

2-D gel is shown (Fig. 4), with proteins of differential abundance in genotype NHG3 after 

bacterial challenge being circled and numbered in two gel regions.  
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Figure 4. Overview of 2-D IEF/SDS-PAGE analyses of mid-stem proteomes isolated from 

tomato. 

Protein separations were based on IEF using non-linear gel stripes in the range of pH 3 to 11 

(horizontal separation) and on SDS-PAGE in the size range between 100 and 10 kDa (vertical 

separation). Protein spots differing in abundance in NHG3 genotype before and after 

pathogen inoculation were circled and numbered (for protein designation see Table 1). The 

two boxes indicate regions shown as “Zoom-in” in Fig. 5.  
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1.3.3 Characterization of tomato proteins induced after inoculation with R. 

solanacearum  

Analysis of the tomato stem proteome of genotype NHG3 revealed 12 protein spots of 

changed abundance in response to R. solanacearum inoculation (Fig. 5). Among them, 10 

proteins were newly induced after inoculation (spot numbers 1, 2, 3, 4, 7, 8, 9, 10, 11 and 12), 

one protein had higher abundance (spot 6), and another was of lower abundance (spot 5).  
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Figure 5. “Zoom-in” of the two regions selected in Fig. 4 showing the differential regulation 

of 12 protein spots in response to R. solanacearum inoculation in three biologically replicated 

samples (I, II and III). 
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Gel regions shown in “A” row are from the susceptible healthy genotype (NHG 3). Gel 

regions shown in “B” rows are susceptible infected genotype (NHG3). Proteins of different 

abundances are circled and numbered consecutively in correspondence with Fig. 4. Protein 

identity of all 12 gel spots are given in Table 1. The degree of infection in the inoculated 

plant samples was calculated as colony forming units per gram of stem (cfu/g). 

The analysis of the 12 gel spots by nano-LC MS/MS revealed the identity of proteins (Table 

1), where four spots included a single protein type (spots number 2, 8, 9 and 10). Analysis of 

seven further spots (1, 3, 4, 5, 7, 11 and 12) revealed one major type of protein but 

additionally traces of other proteins (with comparatively low MOWSE (molecular weight 

search) identification score and peptide sequence coverage, both of which are conventional 

validity measures of protein/peptide database identification). In the case of spot 6, two 

equally abundant proteins with high MOWSE scores and coverage were identified. Six 

proteins were identified as plant proteins including a hypothetical protein, while six others 

were annotated as R. solanacearum proteins. Since the tomato genome sequence is not yet 

fully sequenced we combined classical protein identification based on protein database 

interrogation using MS/MS spectra with the peptide de novo sequencing strategy as described 

by Winkelmann et al. (2006) . Using this approach, all plant proteins were found to represent 

known tomato proteins or to be highly similar to known proteins from other organisms (other 

Solanum species, Brassica, Boquila, and Citrus species).  

 

Table 1. Proteins identified by LC-MS/MS analysis and peptide de novo sequencing.  

The proteins of differential abundance in the susceptible tomato genotype NHG3 not infected 

and infected with R. solanacearum. Each peptide sequence is separated by a dash. 

Gel 
spot 

no
a
 

Peptides sequence
b
 Protein identity 

(organism)
c
 

Primary 
accession 

number
d
 

Calculated mol 
mass (kDa) / IEP 

MOWSE 
score

e
 

Percent 
coverage 

(peptides)
f
 

Reaction to 
pathogen 
inoculation 

1 YPSFEADHMGGLSK-FNRDE FGLDYGK-DAPT 
EAEGQLTLH -CMQHPMLK-DSLDFGFAK-SNG 
VVTLDR-EVCGADAEFK-GPDLFDVAK-LELDS 
FK 

Probable signal 
peptide protein 
(Ralstonia 
solanacearum) 

Q8XVW0 
 

21.84 /6.97 
 
 

633 
 
 

45 
 

Induced 

1 ASFVLNPEGVV-AAQYVA-GGVCPAK-SWNDG 
SD-YEELQ 

Peroxiredoxin 
(Vibrio vulnificus) 

    Q7MDI6 21.80 / 5.20 215 15  

1 SFVLNPEGVVK-AAQYVA-VCPAK-EVYNC Alkyl hydroperoxide 
reductase C 
(Porphyromonas 
gingivalis) 

Q7MWJ2 21.07 / 5.37 184 15.4  
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Table 1 continued 

2 VALVYGQMNEPPGAR-FVAEVFTGSPGRYVGL 
-FVQAGSEVSALLGR-PATTFAHLDATTVLSR-I 
VGEEHYETAQR-EGNDLYMEMK-VLGEPVDNL 
G-LGLDELSEEDR-PNIYNALVVKGR-VVDLLAP 
YR-APLSVPVGG-LSIFETGIK-LLFELLNNLAK-Q 
QLLGNNR-VGLTALTFAE-AVAFSATEGLTR-DS 
TSTML-FGGVGER-EVQQLLGN-VLNTGSPLTV 
-AMNLEFES-LVGNIDEA-PTTSGP-SAPAFI-VE 
GSTLGR-QLDTK-PLTVPTGAA-ESNLK 260 

ATP synthase beta 
subunit 
(Boquila trifoliolata) 
 

Q31931 
 

    n. d. 1704 50 Induced 

3 WHAVEHAVMTVEQR-HADVWGTFSQLR-PVLT 
LSLLVNTPAK-PPHQPVMPM-PFYAVSLQQAK- 
LDKLHTELAK-ASGDLGQMK-LADAPQLK-TGQ 
ASYR-ALASLAEK-VFHADV 

Hypothetical protein 
RSc1727  
(Ralstonia 
solanacearum) 

Q8XYN1 20.77 / 6.14 771 56 Induced 

3 VYFDLSLGNPVGK-GLYGDDV-DLQSK 
 

Similar to 
Arabidopsis thaliana  
peptidyl-prolyl cis-
trans isomerise 
(Arabidopsis 
thaliana)  

 At5g13120
*
 

 

28.30 / 9.81 176 14.5  

3 MAIGVLEAIQQAK-IRGLPIPIDQ-SDTDPLV 
 

ABC transporter 
substrate binding 
protein 
(Agrobacterium 
tumefaciens) 

Q8UB19 36.45 / 5.67 151 9  

4 YSFLEGDVLGDKLESLSYDLK-VTSYTHETTTP 
VAPTR-GDYVLKDEEHNEGK-NLEAEGDG SLK 
-MNFVEGSPLK-LHVVDRSNLVTK-GGGCVCK- 
EAPADGSLKK 

Pathogenesis 
related protein STH-
21 
(Solanum tubersom) 

P17641 
 

17.20 / 5.73 622 64 Induced 

4 VEYNPGVSAVALK-FPFLLVDR Putative 3-keto-acyl-
ACP dehydratase 
(Brassica napus) 

Q94F93 24.63 / 9.19 126 8.5  

5 GDHVVSEEEHNVGR-NTYTYESTTTLS-QMNF 
VEGGPLK-FEANDNGGSVYK-YSLLEGDVLG-L 
ESLTYDLK-VEGDGG AGSLK-ALVLDFDRAVPK 

TSI-1 protein        
(Solanum 
lycopersicum) 

O49881 20.22 / 5.61 594 50.5 Lower 
abundance 

5 VLQLSGER-NGVLEATVPK HSP 20.0 protein 
(Solanum 
peruvianum) 

O82012 
 

17.57 / 5.22 174 10  

6 YAQIAIGTDDVYK-DPDGYLFELLQR-FYTECFG 
MK-YDIGTGFG-TIAMMGYAPE-SAEVVKIVNQE 
L-VVKIVNQELGGK-SVIAFVK-TPEPLC-FLHAV 
YR-LTSFLDPD-PTPEPL-ALATPDV-QVMLR-SF 
LDPGGGSLPGLNTK-YGVTE  

Putative 
lactoylglutathione 
lyase  
(Brassica oleracea) 

Q39366 
 

31.64 / 5.19 886 48.5 Higher 
abundance 

6 DPDGYIFELIQR-YAQLALGTDDVYK-FYTECFG 
MK-PGSIPGLNTK-SAEVVNLALQEL-FALATPD 
VYK-VVNLALQELGGK-YDIGTGFG-FLHAVYR-
LTSFLDPD-TPEPLC-PTPEPL-TSFLDPGG-QV 
MLR-YGVTE-IAFVK-TVLVD 

Hypothetical protein  
(Citrus paradisi) 

O04428 
 

32.64 / 5.46 994 46  

7 NSQGAWSLTK-SAGGQGGNSQGA-MKDLYVK-
TTFGEVTV-FDSPAIK-DMVFSK-SLLQPR-AAE 
GIP-YLEVK-DGEGN-IEVNS 

Hypothetical protein 
RS01963  
(Ralstonia 
solanacearum) 

Q8XRT6 
 
 

18.45 / 5.80 535 45.5 Induced 

7 EDVVLQFVNPK 
 

BTF-3 like 
transcription factor 
(Nicotiana 
plumbaginifolia) 

O24121 
 

17.85 / 8.86 77 16.5  

7 VYFDEALGNPVGK 
 

Cyclophilin-like 
protein (Triticum 
aestivum) 

Q6XPZ4 
 
 

25.89 / 9.59 76 5 
 

 

8 AAVEEGLVAGGGVALLR-YVAAGMNPMDLK-M 
VEGVNLLAN AVK-AQLEEATSDYDR-ENTTIID 
GAGDAR-TTDCAVAELPK-LQNMGAQMVK-ED 
ELDVVEGM-DNPFVLLFDK-DLLPVLEQVAK-GA 
NADQDAGIK-AVA AAVEELKK-VGAATEVEMK-
LDNPFVLLFD-DVVEGMQFDR-GDNVEFGVLD 
PTK-DVV FGDAAR-EGVLTLQDGK-VANVIAGK-
EDALHA-ALISGLK-SFGGVVVTK-ARIAEA-EEP 
LR 

60 kDa Chaperone 
GroEL  
(Ralstonia 
solanacearum) 

Q8Y1P8 
 

57.40 / 5.09 1762 44.4 Induced 

9 AAVEEGLVAGGGVALLR-VQLDNPFVLLFDKK-
GDGTTTATVLAQSIVR-AQIEEATSDYDR-MLT 
TDCAVAELPK-LSPYFINNPEK-VEGVNILANAV 
K-YVAAGMNPFDLK-LQNMGAQMVK-DVVFGD 
AAR-ENTTLLDGAGD-LPVLEQVAK-ASVVVAN 
VLAGK-GANADQDAGLK-VEFGVLDPTK-VGAA 
TEVEFK-FGGPTVTK-LSANSDESLGAR-VITVE 
DGK-LAGGVAVIK-EEIGLTLEK-APGFGDR-AA 
VEELK-EDALHA-DELDVVGG-RAAVESG-VVL 
ER-LHATR-VEDAL 

Molecular 
chaperone 
(Ralstonia pickettii) 

Q75T66 57.32 / 5.07 1796 53 Induced 

10 TTTYYSAGGVLVR-DAGGGDNTIYAGR-YYQG 
IFGVLPG-DSNATGHAVVK-ESLMPVIASSWK-
ALVQTSLEFFR-FFADGSSIR-NVVTVGDG-QTA 
VQDR-ILGLGHDVVD-TQVLGFR-LRGPA 

Putative hemolysin-
type protein 
(Ralstonia 
solanacearum) 

Q8XT20 
 
 

70.18 / 4.37 752 16.6 Induced 
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Table 1 continued 

11 GNAYAQLALGTDDVYK-DPDGYIFELIQR-TPEP 
LCQVMLR-FYTECFGMK-ITSFLDPDGWK-PGSI 
PGLNTK-YTLAMMGYAPE-VVNLALQELGGK-Y 
DIGTGFG-ALATPDVYK-LHAVYR-PTPEPL-GG 
SSVIAFVK 

Hypothetical protein 
(Citrus paradasi) 
 

O04428 
 
 

32.64 / 5.46 854 43 Induced 

11 LGDDEFGHMLAGILK-APGGAPANVAIAVTR- 
FSCANSSLTTTK 

Fructokinase  
(Solanum 
lycopersicum) 

Q42896 
 

34.76 / 5.76 255 12.8  

12 TVDTTGAGDSFVGALLTK-LGDDEFGHMLAGIL 
K-VSDVELEFLTGSNK-IPALPTASEALTLLK-TN 
GVQAEGINFDK-FSCACGAITTTK-IVDDQTILED 
EAR-IDDESAMSL-TVGGFHVK-EFMFYR- WPS 
AEEA-DSADVIK-IVEPCR-LPLWPSAE-TALAFV-
PSADM 143 

Fructokinase -2 
(Solanum 
lycopersicum) 

Q42896 
 

34.76 / 5.76 1218 43.6 Induced 

12 VYPLDAVFDSPEDV-VLPDGSLMEIAK-NYSLE 
NAPLQK-ASSYSFISLL-SASSYSFIS-WTVSEV 
AEDAK-LAFEAGR-VNTISAG-ANGLLVSKHEP-
YGGGVGTAK-SLANGLLVSK 

Enoyl-ACP 
reductase precursor  
(Petunia x hybrida) 

O24258 
 

41.79 / 7.76 650 27.5  

12 TDEEVQELTVR-NAGTEVVEAK-LFNINANIVK-
ALDALKPELK-LYDIANVK 

NAD-malate 
dehydrogenase 
precursor  
(Nicotiana tabacum) 

Q9XQP4 
 

43.30 / 8.03 585 12.1  

 

a Gel spot numbers correspond to the numbers given in the gels shown in Fig. 4 and 5 

b Peptide sequences as revealed by de novo sequencing  

c Identified protein / most similar protein (species) 

d Corresponding protein accession number (SwissProt and TAIR accessions) 

e MOWSE (molecular weight search) score 

f Percent sequence coverage of the identified peptides 

n.d. Not determined (partial sequence) 

 

Functions were assigned to the identified proteins based on published studies. Among the six 

plant proteins, two belonged to PR proteins, and one was identified as an oxidative stress 

protein. One was an enzyme of carbohydrate metabolism and another was of energy 

metabolism. The remaining identified protein was hypothetical with unknown function. 

Comparison of protein profiles of healthy plants of genotypes NHG3 and NHG13 did not 

reveal visible differences at the proteome level. Similarly, analysis of the stem proteome of 

the resistant genotype NHG13 exhibited no proteins with differential regulation after 

pathogen inoculation. 

1.4 Discussion 

The mid-stem was considered for comparative proteome analysis on the basis of the 

hypothesis that resistance mechanisms against bacterial wilt are present in the mid-stem of 

tomato plants. In our experiment, the resistant plants showed latent infection in stems without 
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visible symptoms pointing to the existence of some degree of pathogen tolerance by the 

plants. More interestingly, the occurrence of a relatively lower bacterial population compared 

to the susceptible lines when plants were root inoculated with the same inoculum pressure 

would indicate the presence of resistance mechanisms limiting pathogen multiplication. Since 

the gene expression analysis at mRNA level at different time points after root inoculation 

showed high expression after 3 dpi (unpublished data), and the susceptible plants started 

wilting around 5 dpi, mid-stem proteome were analysed at 5 dpi. Additionally, our 

histochemical and biochemical analyses also revealed a stronger reaction of resistance 

mechanisms on stem and xylem cell wall levels only at 5 dpi or later (Diogo and Wydra 

2007, Wydra and Beri 2007). Among 12 differentially regulated proteins in genotype NHG3, 

six belonged to proteins of R. solanacearum, in contrast to other proteomic studies on plant-

pathogen interaction, where the identification of pathogen proteins was not described (Colditz 

et al. 2004, Kim et al. 2004). The identification of pathogen proteins in inoculated, 

susceptible plants signifies the presence of relatively higher bacterial density in mid-stems at 

5 dpi when R. solanacearum cells had already multiplied to about 109 cfu/g of stem.  Out of 

six bacterial proteins, two were molecular chaperones, one hemolysin-type protein, and a 

signal peptide protein, and a further two were proteins of unknown function. Even though 

protein identification by MS is facilitated by the availability of the complete genomic 

sequence information of R. solanacearum, the molecular basis of the pathogenicity of the 

bacterium remains obscure due to the lack of detailed information on the function of some of 

these bacterial proteins. 

Contrary to the general expectation, the comparison of the stem proteome resolved in 2-D 

SDS gels did not show clear visible differences in the protein patterns in any of the replicate 

gels from the resistant genotype before and after pathogen inoculation nor in the gels for 

genotypic comparison. This result probably indicates that there are no major changes in the 

expression of, at least, the abundant proteins in the resistant tomato line NHG13 due to 

pathogen challenge. Tao et al. (2003) reported much less biological variation in an 

incompatible interaction compared to the compatible interaction. It was discussed that the 

response reactions of resistant lines are more robust to input signals than susceptible lines and 



Chapter 1  Tomato stem proteome 

 28 

the differences are largely quantitative and kinetic. On the other hand, some major limitations 

of the classical 2-D SDS-PAGE approach in the separation and visualization of proteins can 

also not be underestimated (Lopez 2007). For example, proteins expressed in low copy 

number that include receptors, transcription factors, regulatory and other key proteins 

involved in plant-pathogen interactions would not be resolved and/or visualized. 

Additionally, the small dynamic range of Coomassie staining hinders the detection of all and 

weakly expressed proteins at the same time. Therefore, the use of an integrative approach by 

complementing gel free comparative and quantitative methods with differential labelling of 

proteins and peptides followed by MS analysis, at additional time points after inoculation, is 

suggested for elucidation of more subtle plant-pathogen interactions.  The analysis of sub-

cellular proteome including stem cell wall and xylem sap would further shed light on the 

projected plant-pathogen interactions. Moreover, the identification of physiological roles of 

each of the identified proteins in the context of given interactions would be recommended. 

1.4.1 Proteins involved in plant defence 

In genotype NHG3, two PR proteins of low molecular weight were identified, of which STH-

21 (Fig. 4 and 5; spot 4) was induced, while TSI-1 (Fig. 4 and 5; spot 5) was slightly down-

regulated upon infection. PR gene expression is activated by a number of biotic or abiotic 

stresses, including pathogen infection (Van Loon et al. 2006). The enzymatic functions of 

some of these PR proteins indicate their role in plant defence against pathogens. However, 

the accumulation of PRs is not a prerequisite for the induction of resistance, since they make 

only a small contribution to the protective state of the plant (Van Loon et al. 2006).   

STH-21 was initially identified as a member of a small multigene family accumulated in 

potato upon infection (Constabel and Brisson 1992). The up-regulation of PR proteins in the 

susceptible genotype compared to its resistant counterpart was also shown in Medicago 

truncatula (Colditz et al. 2005). TSI-1(tomato stress induced-1) protein is an intracellular PR 

protein (IPR) organized as a multigene family in the tomato genome (Sree Vidya et al. 1999). 

It is highly homologous to the potato STH-2 and STH-21 proteins. Like other IPR proteins, 

TSI-1 proteins are generally induced upon pathogen colonization and act as defence proteins 

by degrading the invading pathogenic RNA (Park et al. 2004). Surprisingly, the reduced 
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abundance of TSI-1 protein upon pathogen challenge was observed in the study. This could 

be due to the degradation of protein or inhibition of further protein synthesis in the plant as a 

result of increased activities of the pathogen, since the average number of bacterial colonies 

in the analysed stem was already to about 109 cfu/g of stem. The overlapping of gene 

expression, and the activation or suppression of the corresponding genes was also possible in 

response to biotic and abiotic stress (Zhu et al. 1995). A similar finding was reported by 

Constabel and Brisson (1992), where potato STH-2 protein disappeared completely at 4-5 dpi 

with a high concentration of compatible Phytophthora infestans spores.  

1.4.2 Proteins involved in plant stress   

An enzyme involved in oxidative stress, the putative lactoylglutathione lyase (spot 6 in (Fig. 

2 and 3), was increased in abundance upon infection. This is the enzyme which participates, 

together with glyoxalase I and II, in the glutathione-based detoxification of methylglyoxal 

and other detrimental compounds formed primarily as a by-product of carbohydrate and lipid 

metabolism (Singla-Pareek et al. 2003). Actually, the physiological significance of such a 

glyoxalase system is still unclear in plants, however, it is often considered as a ‘‘marker for 

cell growth and division’’ and also considered to maintain cellular homeostasis (Yadav et al. 

2008). The identification of a hypothetical protein in spot 6 with similar score and sequence 

coverage is not uncommon in the 2-D gel approach. A single spot may contain multiple 

proteins which could be due to co-migration of the proteins (Baltz et al. 2004). Since both the 

theoretical molecular weight (31.64 and 32.64) and isoelectric point (5.19 and 5.46) of both 

lactoylglutathione lyase and a hypothetical protein in spot 6 were close to equal, it could be a 

co-migration of both proteins during 2-D separation. However, there is also the possibility of 

diffusion of proteins present nearby on the 2-D gel before being excised for the analysis.  

1.4.3 Proteins involved in carbohydrate metabolism  

Spot 12 (Fig. 4 and 5), which was identified as fructokinase (FRK), was newly induced upon 

infection. FRK is a member of the hexose kinase family and catalyzes the phosphorylation of 

fructose to fructose-6-phosphate by utilizing primarily ATP in vivo. FRK occurs in cytosol or 

plastid and is one of the key enzymes in metabolization of sucrose, the major form of 
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transportable carbohydrate in vascular plants, through glycolysis, pentose-phosphate, or 

starch synthesis pathways (German et al. 2004). However, FRK2 seems to play a greater role 

in sugar sensing or signalling than as a metabolic enzyme (Pego and Smeekens 2000). Even 

though the biological role of FRK in plant defence is yet to be fully elucidated, it was 

observed that PR genes were expressed in photosynthetically active plant tissues with 

elevated sugar levels (Herbers et al. 1996). In potato, an increased level of sugar metabolism 

correlated to enhanced susceptibility to a root rot pathogen was reported (Otazu and Secor 

1981).  

1.4.4 Proteins involved in energy production 

The ATP synthase beta subunit (Fig. 4 and 5; spot 2), newly induced in the susceptible 

genotype upon pathogen challenge, is well known for its role in the energy production 

system. The accumulation of proteins associated with energy production in infected plants is 

required for cellular activities including the activation of defence responses (Seo et al. 2007). 

In plants, the terminal step in the energy production system i.e. the oxidative phosphorylation 

of ADP into ATP, is catalyzed by the ATP synthase complex (F0F1) located in mitochondrial 

or chloroplast membranes. Among five non-identical subunits, the ß subunit is one of the two 

largest subunits of the soluble part (F1) of the enzyme complex that plays a central role in 

ATP synthesis (Van Lis et al. 2007). 

The regulation of primary metabolic enzymes such as those of carbohydrate and energy 

metabolisms in the above plant-pathogen interaction shows an increasingly important role of 

primary metabolism in relation to the disease susceptibility or resistance of the plant as 

reported earlier (Castillejo et al. 2004). 

1.5 Conclusion 

In conclusion, this study provides information on differentially expressed proteins in tomato 

stems after pathogen challenge in the compatible interaction. The finding of PR proteins, 

stress and metabolic proteins in susceptible plants suggests their direct or indirect 

involvement in the reaction of the plant to pathogen infection. Plant susceptibility or 

tolerance to R. solanacearum is suggested to result from complex interactions in vascular 
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tissues, and timing and magnitude of several defence responses may be more important than 

the number and type of proteins. The static nature of the resolved proteome, at least the most 

abundant proteins, from the resistant genotype on 2-D gels after bacterial challenge indicates 

a higher constitutive resistance, making the plant more robust in reactions to the pathogen 

ingress. These mechanisms could be morphological and physical barriers of a polysaccharide 

nature or toxic metabolites contributing to resistance to bacterial wilt of tomato. For further 

studies, the use of more sensitive gel free methods such as differential labelling of proteins or 

peptides followed by MS analysis is suggested for the quantitation and comparison of less 

abundant, unsolubilizable and membrane proteins, which could be key elements in the plant-

pathogen interaction.  
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CHAPTER 2: Analysis of cell wall proteins regulated in stem of susceptible 

and resistant tomato genotypes after inoculation with Ralstonia 

solanacearum, a proteomic approach 

Adapted from the manuscript prepared for submission 

Abstract 

Proteomics approach was used to elucidate the molecular interactions taking place at the stem 

cell wall level when tomato genotypes were inoculated with R. solanacearum, the causative 

agent of bacterial wilt. Cell wall proteins from both resistant and susceptible plants before 

and after the bacterial inoculation were extracted from purified cell wall with salt buffers and 

separated with 2-D IEF/SDS-PAGE and with 3-D IEF/SDS/SDS-PAGE for basic proteins. 

The gels stained with colloidal Coomassie were analysed with Image master v6.0 revealed 

reproducible and statistically significant regulation of protein spots among genotypes and 

treatments comparisons. Combination of MALDI-TOF/TOF MS and LC-ESI-IonTrap 

MS/MS successfully lead to the identification of proteins differential in either genotypes 

(eight proteins in higher abundance to resistant and six other to susceptible genotypes) and 

those exclusively regulated in response to bacterial inoculation in resistant (seven proteins up 

regulated and eight other down regulated) as well as in susceptible plants (five proteins 

elevated and eight other suppressed). Plants responded to pathogen inoculation by increasing 

the expression of PR, other defense related and glycolytic proteins in both genotypes. 

However, cell wall metabolic proteins in susceptible, and   antioxidant, stress related as well 

as energy metabolism proteins in resistant lines were suppressed. Most of the proteins of the 

comparative analysis and other randomly picked spots were predicted to have secretion 

signals except some classical cytosolic proteins. 

Key words: 

Defense and metabolic proteins, R. solanacearum, Secretion signals, Stem cell wall 

proteome,  Tomato genotypes,  3-D PAGE 
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2.1 Introduction 

The cell wall of the plant is one of the most important distinguishing features and a dynamic 

structure that consists predominantly of polysaccharides but also proteins along with minor 

amounts of polyphenols in specialized cells. The primary cell wall is formed during cell 

growth and elongation which is accompanied by the inwardly deposition of the secondary 

cell wall after the cessation of cell growth. The secondary walls of xylem fibers, tracheids, 

and sclereids are further strengthened by the incorporation of lignin (Cassab and Varner 

1988). A common cell wall model for the structure and architecture of the primary cell wall 

describes the existence of interwoven networks of polysaccharides and proteins (Cosgrove 

2005). Relative to about 90% polysaccharides, the primary cell wall of dicotyledon plants 

possess less than 10% proteins however several hundreds in number, of the cell wall mass 

(Jamet et al. 2008a). 

Terrestrial plants are subjected to many biotic and abiotic stresses during their lifetime and 

therefore, evolved a wide range of defence mechanisms to protect themselves, consisting of 

the resistance mechanisms at the constitutive level and induced defence systems. The 

interactions between plants and microbes lead either to disease resistance or plant disease 

depending on the type of interactions, however, the latter case could results in a huge 

economic loss. Bacterial wilt caused by R. solanacearum is one of the most devastating, 

systemic vascular wilt diseases causing up to 100% tomato yield loss in the lowland and 

highland tropics and subtropics (Denny 2006). Due to the wide host range and the variability 

of the pathogen, control measures based on the use of resistant cultivars remain the most 

effective, economical and environment friendly method (Denny 2006). The bacterial wilt 

resistance in tomato is a polygenic trait and was reported to be present in the mid-stem when 

plants were root inoculated with R. solanacearum (Dahal et al. 2009). Our previous analysis 

of the tomato stem proteome revealed the regulation of pathogenesis, stress related and 

metabolic proteins in susceptible genotype but not in resistant plants (Dahal et al. 2009). To 

further elucidate the interactions, sub cellular fractions such as the stem cell wall were 

analysed to increase the sensitivity of the performed analysis. The cell wall acts as a site of 

both constitutive and induced resistance through structural changes and modification during 
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the interactions with pathogens (Carpita and McCann 2000, Jamet et al. 2008a). 

Histochemical analysis showed various differences on the constitutive level and changes after 

pathogen interaction on the level of pectic polysaccharide, though the differences could not 

conclusively explain the entire background of the resistance reactions (Wydra and Beri 

2006). Since proteins are the vital molecules which perform the enzymatic, regulatory, and 

structural functions in a biological system, the role of proteins secreted into the plant cell wall 

by the plants and pathogen during the host-pathogen interactions can be important in 

establishing and determining the outcome of plant-microbe interactions. The roles of plant 

cell wall proteins as structural, antimicrobial and enzyme molecules has been established, 

however, cell wall proteins associated both with susceptible and resistance tomato lines in the 

interaction with R. solanacearum were not characterized. Proteomics approach was therefore, 

undertaken to simultaneously analyze the broad spectrum of the cell wall protein (CWP) 

profiles that could be decisive for the susceptibility or resistance of the plants. The sub 

cellular proteome analysis should also increase the sensitivity of our earlier results from 

whole stem analysis. Extraction of wide range of cell wall proteins from mature tomato stems 

to a substantial purity is a challenging task due to the structural complexities of the cell wall 

and the nature of CWP (Jamet et al. 2008b). Therefore, disruptive and two steps salt 

extraction method was used to enrich cell wall proteins after purification of stem cell walls by 

rigorous washing with both aqueous and organic buffers to remove cytoplasmic contaminants 

(Watson et al. 2004). 

2.2 Materials and Methods 

2.2.1 Plant material and inoculum preparation 

Tomato plants were grown from parental lines, Hawaii7996 and WVa700 as highly resistant 

and susceptible genotypes against bacterial wilt respectively. The seeds from both genotypes 

were obtained from AVRDC, Taiwan. The inoculum from the highly virulent R. 

solanacearum strain ToUdk2, race 1, biovar 3 was prepared by adjusting the bacterial cell 

concentration to about 7.8 x 107 cfu/mL as described by Dahal et al. 2009. 
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2.2.2 Plant growth conditions and inoculation  

Tomato plants were grown in the greenhouse for 4-6 weeks (20°C, 14 h photoperiod per day, 

30K lux and 70% RH). Each plant was then transferred to an individual pot with 

approximately 330 g of soil (Fruhstorfer Erde, type P: 150 mg/L N, 150 mg/L P2O5, and    

250 mg/L K2O) and grown in climate chamber (30/28°C day/night temperature, 14 h 

photoperiod, 30 K lux, and 85% RH). Some plants were root inoculated after transplantation 

by pouring 25 mL of the prepared inoculum per pot, to reach a final concentration of 

approximately 107 cfu/g of soil and the soil was watered up to soil field capacity.  

2.2.3 Bacterial quantification 

The number of bacteria residing in the stem was determined at 5 dpi considering the time the 

bacteria need to reach and multiply in the stem. The pathogen quantification was done as 

explained by Dahal et al. 2009. The pathogen developed as an elevated fluidal colony with 

red centre after 48 h/30°C incubation on TTC medium were quantified as cfu/g.  

 2.2.4 Disease symptoms evaluation 

Ten pathogen inoculated plants from each susceptible and resistant genotype were observed 

for symptoms assessment. The symptoms were evaluated over the period of four weeks in six 

disease severity classes from 0-5 (Dahal et al. 2009). The WI and DS were calculated as the 

percentage of dead plants (class 5) to the total number of plants at the evaluation date and as 

the mean of disease scores at the evaluation date respectively.  

2.2.5 Protein extraction from cell walls of tomato stems 

The stem cell wall proteins from both Hawaii7996 and WVa700 genotypes were extracted 

before and after pathogen inoculation at 5 dpi. Individual samples were prepared by 

combining mid stems of three individual plants to approximately 8 g. The samples were 

stored at -80°C until the extraction was performed from purified cell walls with salt solutions 

(Watson et al. 2004).  

Approximately 8 g of mature tomato stem was powdered in liquid nitrogen followed by 

several washes and filtration through 47 µm2 nylon mesh membrane (SEFAR Nitex, 
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Germany) to purify cell wall material for the protein extraction. The washing started with 100 

mL of grinding buffer (50 mM Sodium acetate pH 5.5, 50 mM NaCl, and 30 mM Ascorbic 

acid) followed successively by 50 mL wash buffer 1 (100 mM NaCl), 100 mL bidest, 250 mL 

ice-cold acetone, and finally with 50 mL wash buffer 2 (10 mM Sodium acetate pH 5.5). 

Wash extract from each of the washings was preserved to asses the purity of the extracted cell 

wall protein. The extraction of protein from the purified cell wall was performed in two 

sequential steps and finally combined to 30 mL: first, by shaking the debris with 8 mL of 

extraction buffer 1 (200 mM CaCl2, and 50 mM sodium acetate pH 5.5) twice each for 1 h 

and then with 15 mL of extraction buffer 2 (3 M LiCl, and 50 mM sodium acetate pH 5.5) 

overnight. The protein extract was concentrated in a centrifugal concentrator with a 

molecular mass cut off at 5 kDa (Vivaspin 6, Vivascience, Germany) at 5000 rpm x 4°C x 2-

3 h until a final volume of 100 µL was obtained. The concentrate was washed with double 

volume of bidest water and precipitated with a commercial 2-D clean up kit (Bio-Rad, 

Germany).  

2.2.6 Protein separation with 2-D and 3-D SDS-PAGE 

The complexity of the proteome extracted from the stem cell wall was resolved by 2-D 

IEF/SDS-PAGE and for basic proteins by 3-D IEF/SDS/SDS-PAGE. In case of 2-D gels, 

three replicate gels were prepared for each genotype and treatment from separate biological 

samples where as only 2 replicates were prepared for 3-D gels. 

Approximately 700 µg of protein quantified by Bradford assay (Coomassie protein assay 

reagent, Fluka biochemical) was dissolved in 350 µL of “rehydration buffer” [8M urea, 2% 

w/v CHAPS, 0.5% v/v carrier ampholyte mixture (IPG buffer 3-11 NL, GE Healthcare, 

Munich, Germany), 30 mM DTT, and 2-4 mg Bromophenol Blue] with the addition of 4.2 µL 

of DeStreak reagent (GE healthcare, Munich, Germany) to facilitate the basic proteins 

separation. The protein complex was then separated in first dimension by using IEF and in 

second dimension by vertical SDS-PAGE using Protean II electrophoresis unit (Biorad, 

Hercules, CA, USA) as explained in Dahal et al. 2009.  
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In order to separate proteins with very basic pI, that were repetitively unresolved in 2-D 

IEF/SDS-PAGE, a three-dimensional PAGE system was established, which is based on the 

transfer of the most basic gel region of a 2-D PAGE gel horizontally onto another SDS-

PAGE. For this approach, new samples were required to be resolved by 2-D PAGE, because 

these non-fixed 2-D gels served as the starting-samples for the third gel dimension separation. 

2.2.7 Protein staining, gel scanning and image analysis 

After completion of SDS-PAGE, proteins were first fixed and stained with colloidal 

Commassie solution as described in Dahal et al 2009. The stained 2-D gels were washed with 

bidest water, and 3-D gels additionally with 20% methanol to clean background staining. The 

gels were scanned with a UMAX Power Look III Scanner (UMAX Technologies, Fremont, 

USA) and analysed by using the ImageMaster™ 2-D Platinum Software 6.0 (GE Healthcare, 

Germany) in order to accomplish the spots detection and calculate the quantitative values of 

all the differentially regulated spots. The comparison was performed in all three well 

reproducible replicate gels prepared for each genotypes and treatments. The abundance of 

each protein spot was estimated by the percentage volume (% vol). The Student’s t-test with 

≥ 0.05 probability (p-) value of differences in abundance was used to show statistical 

significance and reproducibility of each spot. In order to select the up/down regulated 

proteins, quantitative differences of ±30% variance in spot ratio (< 1.3 or > 0.7), were 

considered as biologically significant based on the previously determined threshold value of 

20% for the analytical variance in comparative proteomic studies (Asirvatham et al. 2002).  

2.2.8 Tryptic digestion  

All except few big and intense gel spots were hand picked from all three gel replicates to 

increase the protein amount for digestion. Proteins were destained by gently shaking in 20 

mM NH4HCO3, 50% acetonitrile (ACN) for 30 min at 37°C. This step was repeated until 

spots became clear. The gel was first dehydrated in 100% ACN for 5 min followed by drying 

in a speed vac system (Eppendorf, Germany). Trypsin (4 ng/µL) in 20 mM NH4HCO3/10% 

ACN was added, incubated on ice for 1 h and the remaining trypsin solution was removed. 

Digestion was carried out at 37°C over night after adding 20 mM NH4HCO3/10% ACN to 
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cover gel pieces. The supernatant containing peptides was collected and the gel pieces were 

re-extracted using 0.2% trifluoroacetic acid (TFA), containing increasing amounts of ACN 

(10-50%). All peptide containing solutions of each spots were combined, dried in a speed vac 

and stored at 4°C until further analysis. 

2.2.9 Matrix assisted laser desorption and ionization-time of flight tandem mass 

spectrometry (MALDI-TOF MS/MS) 

Peptides were dissolved in 10 µL of 5% ACN conatining 0.2% TFA. A saturated solution of 

alpha-cyano-4-hydroxycinnamic acid, CHCA (4 mg/mL) in 50% ACN and 0.2% TFA was 

diluted 1:10 with ethanol and 0.8 µL of the matrix was spotted on each spot of a MALDI 

Anchor Chip 800/384 target plate (Bruker Daltonik GmbH). After mixing 0.5 µL of each 

sample with the applied matrix, air-dried samples were recrystallized with 0.2 µL of ethanol 

containing 0.1% TFA. For MS calibration 0.5 µL of peptide calibration standard (Bruker 

Daltonik GmbH) were spotted on the target with 0.8 µL of CHCA matrix and recrystallized 

too. Samples were analyzed in an MALDI-TOF/TOF mass spectrometer (Ultraflex, Bruker 

Daltonics) in reflectron mode. Peptides with a signal to noise ratio above 100 were MS/MS 

analyzed by using the LIFT technology that is embedded in the Ultraflex MS. Data analysis 

was performed by using the FlexAnalysis 2.4 and BioTools 3.0 software. Databases search 

was carried out with the matrix science search tool (MASCOT) algorithm version 2.2 (Matrix 

Science, UK) and taking MS protein sequence database (MSDB). Searches were performed 

using the following parameters: trypsin as the proteolytic enzyme, allowing for one missed 

cleavage, carbamidomethylation of cysteine and oxidation of methionine.  

2.2.10 Electrospray inonization (ESI) ion trap MS 

Peptides were dissolved in 5% ACN with 0.1% formic acid and were applied to reversed 

phase chromatography-high performance liquid chromatography (HPLC) system (Agilent 

Technologies, Germany) that was directly mounted to the ion source of the ion trap MS. The 

HPLC system consists of an auto sampler and a gradient pump. The sample was dissolved in 

eluent A (5% ACN and 0.1% formic acid) and an aliquot was injected onto a C18 column 

(Zorbax SB-C18, particle size 5 µm, 300 A, 0.5 mm inner diameter, length 150 mm) at a flow 
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rate of 5 µL/min. After loading, the column was washed for 15 min with buffer A and the 

peptides were eluted using a gradient of eluent A and eluent B (70% ACN in 0.1% formic 

acid) from 0-53.9% eluent B in 60 min. Then buffer B was increased to 100% for 10 min and 

subsequently, the column was equilibrated with buffer A for 20 min. The HPLC outlet was 

directly connected to the agilent coaxial sheath-liquid sprayer (Agilent Technologies). The 

outlet capillary was hold by a surrounding steel needle and locked 0.1-0.2 mm out of it. The 

spray was stabilized by N2 as nebulizer gas (5 l/min). Ionization voltage was set to 4500 V 

and dry gas was applied at 5 psi and 250°C. Spectra were collected with an Esquire3000+ ion 

trap mass spectrometer (Bruker Daltonik) at a scan speed of 13000 m/z per second. Using 

ESI in positive mode, mass spectra were acquired from m/z 50 to 1600 in scanning mode and 

data dependent switching between MS and MS/MS analysis. To increase the quality of 

MS/MS spectra only two precursor ions from one spectrum were selected for MS/MS 

analysis and active exclusion was set to 2 min to exclude precursor ions that had already been 

measured. Data processing was performed with the Data Analysis (version 3.0) and BioTools 

(version 3.0) software packages (Bruker Daltonik GmbH). Protein identification was done 

using MACOT software (version 2.1) and MSDB data base (Matrix Science, UK). Search 

parameters for mass tolerance were set to 0.7 Da for precursor ions and 0.9 Da for fragment 

ions with 2 allowed missed trypsin cleavage, and 1+, 2+ and 3+ charged state. Data base hits 

were taken if the peptide ion score was above 25 and proteins were identified if at least two 

peptides could be identified. 

2.3 Results 

2.3.1 Symptom development and bacterial populations in stems 

Plants of the susceptible genotype WVa700 started showing symptoms at 4 dpi with both the 

WI and DS gradually increased until all plants had died at 10 dpi. The mean wilt incidence 

and disease severity were calculated from three biological replications (Fig. 6). The resistant 

genotype Hawaii7996, on the other hand, did not show any level of symptoms until 30 dpi.  

Since each biological protein sample was prepared by combining two to three individual 

plants, the number of bacteria present in the sample was calculated by taking the average of 
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the bacterial population quantified in each plant. The pathogen population in three replicate 

samples was calculated as 25.6 x 107, 16.6 x 107 and 26.1 x 107 cfu/g fresh weight of stem for 

susceptible genotypes and 45.8 x 106, 33.3 x 106 and 22.2 x 106 cfu/g fresh weight of stem for 

resistant genotypes. 
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Figure 6. Mean DS and WI in susceptible tomato plants (WVa700) on the days following R. 

solanacearum strain To-udk2 inoculation.  

The mean value was calculated from three independent biological replications. Both DS and 

WI increased continuously to maximum at 10 dpi. 

2.3.2 Cell wall protein analysis 

About 600-800 µg protein was obtained from 8 g of mid-stem sample. The resolution of 

approximately 700 µg protein loaded on each gel displayed an average of 370-470 protein 

spots in addition to several "poorly separated" spots on basic pI region of the gel (Fig. 7A).  

These unresolved spots upon further separation by 3-D SDS-PAGE revealed 25-35 spots 

detected with Image master (Fig 7: C and D). The comparison of the 2-D gels was performed 

in between genotypes as well as in treatments each with three replicated biological samples. 

The differentially expressed spots were first analysed by MALDI-TOF MS/MS, which gave 
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70% (29 out of 42 spots) successful identifications. The remaining 13 unidentified spots were 

successfully analyzed with liquid chromatography-electrospray inonization-ion trap tandem 

MS (LC-ESI-ion trap MS/MS). ESI MS/MS analyses of each spot allowed identifying more 

than one homology proteins originating from other plant species. In this case, only the 

proteins derived from the tomato were considered positive identification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Overview of the cell wall proteome analyzed from the mature tomato stem and 

separated in two as well as in three gel dimensions. 

A: The resolution of proteome with 2-D IEF/SDS-PAGE in pI 3-11 non-linear and           

100-10 kDa molecular mass. The proteins on the basic pI range are poorly resolved. 

B: The 2-D IEF/SDS gels resolved in the same pI 3-11 non-linear and 100-10 kDa molecular 

mass range but stained after cutting out the gel region with the poorly resolved vertical streak. 

Twenty spots were randomly picked out to check the extracellular nature of cell wall 
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proteome extracted with the method applied. The identity of the encircled spots is given in 

table 6 with the spot numbers used accordingly. 

C and D: Separation of the unresolved vertical streak by SDS in the 3rd gel dimension. The 

streaked gel piece was cut out and separated again by SDS-PAGE. The encircled spots were 

differentially expressed after pathogen inoculation and their identity was given in table 5 with 

the spot numbers corresponding in this figure and table 5. 

2.3.2.1 Protein regulation in resistant genotype 

The proteomic reactions of resistant plants to pathogen invasion were evaluated by 

comparing triplicate gels developed before and after pathogen inoculation which revealed 15 

spots of differential abundance (Fig. 8: A, B and C). Seven spots identified as subtilase, 

peroxidase, hypothetical protein, luminal binding protein (BIP), fructokinase-2, nucleoside 

diphosphate kinase (NDPK) and PII like protein (spots 3, 6-9, 14 and 15 respectively) were 

up regulated. Eight other spots annotated as BIP, stress induced protein, catalase, enolase, 

vacuolar H+ ATPase (V-ATPase), oxygen evolving enhancer protein (OEE) 2, eukaryotic 

translation initiation factor 5A (eTIF 5A) -3 and eTIF 5A-4 (spots 1, 2, 4, 5, and 10-13 

respectively) were down regulated (Table 2). 
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Figure 8. Overview of the cell wall proteome analysed from the mature tomato stem of 

Hawaii7996 (resistant genotype) and the differential regulation of the plant proteins in 

response to R. solanacearum inoculation. 

A: A representative 2-D gel from the tomato stem cell wall proteome of the resistant 

genotype. Protein separation took place between pH 3-11 (non-linear IPG stripes) and in the 

molecular mass range between 100-10 kDa. However, the basic pI side of the 2-D gel 

containing poorly separated proteins was removed before fixing and staining. The red 
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rectangle indicates the area which displayed the protein spots differentially expressed in three 

biological replications due to pathogen invasion (Student's t test, p ≥ 0.5).  

B and C: A comparison of the area in healthy and infected plant proteome is correspondingly 

shown in images B and C in "zoom-in" view. The spot number is in accordance with the 

number used in table 2. 

Table 2. List of stem cell walls proteins which are differentially regulated in tomato 

genotypes Hawaii7996 (resistant) after R. solanacearum challenge.  

The listed proteins are those consistently reproduced in three biological replications and are 

statistically significant (Student's t test, p ≥ 0.5). 

* Notation (a-j) are given in foot note at the end of Table 6 

Spota Identityb Accessionc Organismd Scoree Mr/pIf Peptidesg Coverageh Regul
ationi 

SiP-
SePj 

Resistant genotype (Hawaii7996) MS MS/
MS 

MS MS/
MS 

 

1 Luminal-binding 
protein 

P49118 Solanum 

lycopersicum 

260 73.23/
5.10 

14 3 21.6 6 0.30 Y 

2*  Stress induced 
protein 

Q6H660 Oryza sativa 185 64.19/
6.03 

 7  8.5 0.44 0.55 

3* Subtilase O82777 Solanum 

lycopersicum 

136 82.22/
8.22 

 5  3 1.67 Y 

4 Catalase   P30265 Solanum 

lycopersicum 

493 56.50/
6.57 

27 9 56.9 22 0.38 0.41 

5* Enolase P26300 Solanum 

lycopersicum 

92 47.79/
5.68 

 3  6 0.54 0.52 

6 Peroxidase Q9LWA2 Solanum 

lycopersicum 

144 34.94/
4.56 

9 2 34.5 5.5 1.88 Y 

7* Hypothetical protein  Q9C6U3 Arabidopsis 

thaliana  

88 34.70/
7.17 

 5  3 1.62 0.61 

8* Luminal-binding 
protein 

P49118 Solanum 

lycopersicum 

219 73.23/
5.10 

 7  9.9 1.72 Y 

9* Fructokinase-2 Q42896 Solanum 

lycopersicum 

510 34.76/
5.76 

 9  33 1.91 0.68 

10 Vacuolar proton 
ATPase subunit E 

Q9LKG0 Solanum 

lycopersicum 

46 27.13/
6.63 

7 1 22.4 4.2 0.51 0.27 

11 Oxygen-evolving 
complex protein 2 

P29795 Solanum 

lycopersicum 

362 27.79/
8. 27 

4 5 42.6 27 0.54 0.8 

12 Translation initiation 
factor 5A-3 

Q9AXQ4 Solanum 

lycopersicum 

93 17.37/
5.47 

6 1 45.9 6.3 0.65 0.24 

13 Translation initiation 
factor 5A-4 

Q9AXQ3 Solanum 

lycopersicum 

255 17.51/
5.6 

8 3 61.9 28 0.23 0.23 

14 Nucleoside 
diphosphate kinase 

P47921 Solanum 

lycopersicum 

165 15.67/
7.04 

3 2 33.8 12 1.75 0.40 

15 * PII like protein Q6T2D2 Solanum 

lycopersicum 

201 21.73/
9.33 

 5  22 1.75 0.88 
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2.3.2.2 Protein regulation in susceptible genotype 

The proteomic reactions of the susceptible plants were also investigated in response to 

pathogen inoculation where 13 spots turned out to be differential abundance (Fig. 9: A, B and 

C). Among them, five proteins (spot 3, 4 and 6-8) were up regulated while eight proteins 

(spot 1, 2, 5 and 9-13) were down regulated upon pathogen inoculation. The identity of the up 

regulated spots was correspondingly shown as peroxidase, peroxidase cevi16, basic 30 kDa 

endochitinase, triose phosphate isomerise (TPI) and PR-5 like protein and of down regulated 

as  α-galactosidase, disulphide isomerase like protein (PDIs), xyloglucan 

endotransglucosylase-hydrolase7 (XTH7), two eTIF 5A-4, one eTIF 5A-1 and two glycine 

rich proteins (GRP) (Table 3). 
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Figure 9. Overview of the cell wall proteome analyzed from the mature tomato stem of 

WVa700 (susceptible genotype) and the differential regulation of the plant proteins in 

response to R. solanacearum inoculation. 

A: A representative 2-D gel from the tomato stem cell wall proteome of the susceptible 

genotype. Protein separation took place between pH 3-11 (non-linear IPG stripes) and in the 

molecular mass range between 100-10 kDa. However, the basic pI side of the 2-D gel 

containing poorly separated proteins was removed before fixing and staining. The red 

rectangle indicates the area which displayed the protein spots differentially expressed in three 

biological replications due to pathogen invasion (Student's t test, p ≥ 0.5).  
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B and C: A comparison of the area in healthy and infected plant proteome is correspondingly 

shown in images B and C in "zoom-in" view. The spot number is in accordance with the 

number used in table 3. 

Table 3. List of stem cell walls proteins which are differentially regulated in tomato 

genotypes WVa700 (susceptible) after R. solanacearum challenge.  

The listed proteins are those consistently reproduced in three biological replications and are 

statistically significant (Student's t test, p ≥ 0.5). 

 

* Notation (a-j) are given in foot note at the end of Table 6 

Spota Identityb Accessionc Organismd Scoree Mr/pIf Peptidesg Coverageh Regul
ationi 

SiP-
SePj 

WVa700 (Susceptible genotype) MS MS/
MS 

MS MS/
MS 

 

1 α-galactosidase, 
putative 

Q9FWV8 Oryza sativa 137 44.66/
5.47 

2 2 9.4 5.6 0.58 Y 

2 Disulfide isomerase 
like protein 

Q38JJ2 Solanum 

tuberosum 

153 39.49/
5.62 

7 2 17.5 8.1 0.61 Y 

3* Peroxidase  Q07446 Solanum 

lycopersicum 

273 35.99/
7.52 

 5  17 2.99 Y 

4 Peroxidase cevi16 Q4A3Y6 Solanum 

lycopersicum 

170 31.74/
7.71 

11 3 46.1 15 1.86 0.44 

5 Xyloglucan 
endotransglucosylas
e-hydrolase XTH7 

Q6RHX8 Solanum 

lycopersicum 

184 33.46/
7.57 

13 2 35.6 11 0.59 Y 

6 Basic 30 kDa 
endochitinase 

Q05538 Solanum 

lycopersicum 

266 34.34/
6.19 

13 4 37.3 18 3.56 Y 

7 Triose phosphate 
isomerase 

Q6T379 Solanum 

chacoense 

411 27.04/
5.73 

10 8 37 36 1.3 0.67 

8 PR 5-like protein Q7Y1P9 Solanum 

lycopersicum 

144 27.52/
5.76 

7 2 45.6 14 2.88 Y 

9 Translation initiation 
factor 5A-4 

Q9AXQ3 Solanum 

lycopersicum 

255 17.51/
5.60 

8 3 61.9 28 0.3 0.23 

10 Translation initiation 
factor 5A-4 

Q9AXQ3 Solanum 

lycopersicum 

255 17.51/
5.60 

8 3 61.9 28 0.37 0.23 

11 Translation initiation 
factor 5A-1 

Q9AXQ6 Solanum 

lycopersicum 

139 17.30/
5.71 

3 2 40.3 18 0.66 0.23 

12 Glycine-rich protein Q04130 Solanum 

lycopersicum 

272 73.31/
9.98 

2 4 58.5 43 0.52 0.47 

13 Glycine-rich protein Q04130 Solanum 

lycopersicum 

210 73.31/
9.98 

2 4 78 61 0.63 0.47 
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2.3.2.3 Protein variation in genotypic comparison 

Fourteen genotypic differences were found comparing protein profiles between susceptible 

and resistant plants (Fig. 10: A, B and C). Eight spots which were identified as BIP, three 

enolase, a hypothetical protein, fructokinase-2, nascent polypeptide-associated complex 

(NAC)-α-like protein 3 and OEE2 (spots 1, 2, 9, 12, 7, 8, 11 and 13 respectively) were of 

higher abundance in resistant genotype. Similarly, six further spots namely α-galactosidase, 

peroxidase, a hypothetical protein, ferredoxin-NADP reductase (FNR), OEE1, and eIF-5A-1 

(spot 3, 4, 5, 6, 10 and 14 respectively) occurred in higher level in susceptible genotype 

(Table 4).  
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Figure 10. Overview of the cell wall proteome extracted from the healthy mature tomato 

stem of Hawaii7996 (resistant) and WVa700 (susceptible) and the proteome level differences 

between the two genotypes. 

A: A representative 2-D gel from the tomato stem cell wall proteome of the susceptible 

genotype. Protein separation took place between pH 3-11 (non-linear IPG stripes) and in the 

molecular mass range between 100-10 kDa. However, the basic pI side of the 2-D gel 

including poorly separated proteins was removed before fixing and staining. The red 

rectangle indicates the area which displayed the protein spots of varied abundance in between 
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the two genotypes differing on the resistance to bacterial wilt disease. The spots were 

consistently varied in three biological replications (Student's t test, p ≥ 0.5).  

B and C: A comparison of the area in healthy and infected plant proteome is correspondingly 

shown in images B and C in "zoom-in" view. The spot number is in accordance with the 

number used in table 4. 

Table 4. List of differential stem cell wall proteins in between healthy tomato plants of 

genotypes Hawaii7996 (resistant) and WVa700 (susceptible).  

The listed proteins were those consistently reproduced in three biological replications and are 

statistically significant (Student's t test, p ≥ 0.5). 

* Notation (a-j) are given in foot note at the end of Table 6 

Spota Identityb Accessionc Organismd Scoree Mr/pIf Peptidesg Coverageh Varia
tioni 

SiP-
SePj 

Hawaii7996 Vs WVa700 MS MS/
MS 

MS MS/
MS 

 

1 Luminal-binding 
protein 

P49118 Solanum 

lycopersicum 

260 73.23/
5.10 

14 3 21.6 6 0.53 Y 

2* Enolase P26300 Solanum 

lycopersicum 

92 47.79/
5.68 

 3  6 0.60 0.52 

3 α-galactosidase, 
putative 

Q9FWV8 Oryza sativa 137 44.66/
5.47 

2 2 9.4 5.6 1.79 Y 

4 Peroxidase Q9LWA2 Solanum 

lycopersicum 

144 34.94/
4.56 

9 2 34.5 5.5 2.92 Y 

5* Hypothetical protein 
T8G24.2 

Q9C6U3 Arabidopsis 

thaliana  

88 34.70/
7.17 

 5  3 1.69 0.61 

6 Ferredoxin-NADP 
reductase 

O04397 Nicotiana 

tabacum 

92 41.95/
8.67 

4 2 18.9 5.9 1.38 0.73 

7 Hypothetical protein O04428 Citrus 

paradisi 

92.8 32.64/
5.46 

4 1 13.7 4.1 0.38 0.50 

8 Fructokinase-2 Q42896 Solanum 

lycopersicum 

208 34.76/
5.76 

6 3 28 11 0.36 0.68 

9* Enolase P26300 Solanum 

lycopersicum 

291 47.79/
5.68 

 5  14 0.50 0.52 

10* Oxygen-evolving 
enhancer protein 1 

P23322 Solanum 

lycopersicum 

423 34.98/
5.91 

 12  34 2.00 0.45 

11 NAC-alpha-like 
protein 3 

Q6ICZ8 Arabidopsis 

thaliana 

151 22.10/
4.41 

4 2 22.5 16 0.44 0.6 

12*  Enolase P26300 Solanum 

lycopersicum 
181 47.79/

5.68 
 4  15 0.41 0.52 

13 Oxygen-evolving 
complex protein 2 

P29795 Solanum 

lycopersicum 

362 27.79/
8.27 

4 5 42.6 27 0.69 0.8 

14 Translation initiation 
factor 5A-1 

Q9AXQ6 Solanum 

lycopersicum 

139 17.30/
5.71 

3 2 40.3 18 4.12 0.23 
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2.3.3 Resolution of cell wall proteins at basic pI range 

2-D IEF/SDS-PAGE of cell wall proteins resulted in repetitive vertical streaking and poor 

focussing/resolution in the basic pI region even though the DeStreak reagent (GE Healthcare, 

Germany) was used to facilitate basic protein separation (Fig. 7: A). The problem of poor 

resolution was improved considerably by separating them further with SDS-PAGE in the 3rd 

dimension (Fig. 7: B, C and D). The 3-D gels were prepared for both genotypes and 

treatments in order to check the reproducibility. This simple method provided reproducible 

gels for comparative proteomic analysis. The visual comparison of the proteome of both 

resistant and susceptible genotypes in response to bacterial invasion revealed five and seven 

proteins of differential abundance (Fig. 7: C and D). They were identified by MS analysis as 

peroxidase (PR-9), β-1, 3-endoglucanase (PR-2) and osmotin like protein (PR-5) among 

others (Table 5). All of these PR proteins constitute important components of the disease 

resistance response. However, they were not considered for discussion due to lack of three 

biological replications. 

Table 5. List of major basic stem cell wall proteins that were poorly resolved in 2-D 

IEF/SDS-PAGE but well separated in 3rd dimension SDS-PAGE. 

*Notation (a-j) are given in foot note at the end of Table 6 

Spota Identityb Accessionc Organismd Scoree Mr/pIf Peptidesg Coverageh SiP-
SePj 

Hawaii7996 (resistant genotype) MS MS/
MS 

MS MS/
MS 

 

1 Peroxidase Q94IQ1 Nicotiana 

tabacum 

480 39.06/
5.99 

5 8 35.3 27 Y 

2 Peroxidase prx14   Q9M4Z3 Spinacia 

oleracea 

139 37.22/
9.29 

3 2 16 7.7 Y 

3* Peroxidase  Q07446 Solanum 

lycopersicum 

299 35.99/
7.52 

 5  17 Y 

3* Pectinesterase Q43143 Solanum 

lycopersicum 

280 64.10/
8.97 

 6  9 Y 

4 Glucan endo-1,3- β-
glucosidase B 

Q01413 Solanum 

lycopersicum 

244 39.71/
7.84 

14 5 53.9 17 y 

5 Osmotin-like protein 
precursor 

Q41350 Solanum 

lycopersicum 

404 27.26/
8.15 

8 6 55.2 29 Y 
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Table 5 continued 

WVa700 (susceptible genotype) MS MS/
MS 

MS MS/
MS 

 

1* Peroxidase Q94IQ1 Nicotiana 

tabacum 

391 39.06/
5.99 

 6  14 Y 

2 Glucan endo-1,3-β-
glucosidase B 

Q01413 Solanum 

lycopersicum 

172 39.71/
7.84 

13 2 35.3 6.7 Y 

3 Osmotin-like protein  Q41350 Solanum 

lycopersicum 

284 27.26/
8.15 

15 2 55.2 10 Y 

4 Photosystem I 
reaction center 
subunit IV B  

Q41229 Nicotiana 

sylvestris 

131 15.22/
9.74 

2 2 25.9 19 0.82 

5 Oxygen-evolving 
complex protein 3 

Q672Q6 Solanum 

lycopersicum 

201 24.57/
9.64 

7 3 25.7 11 0.65 

6 Oxygen-evolving 
complex protein 3  

Q672Q6 Solanum 

lycopersicum 

73 24.57/
9.64 

7 1 36.5 4.3 0.65 

7 Photosystem I 
reaction center 
subunit II 

P12372 Solanum 

lycopersicum 

125 22.91/
9.71 

5 3 24 12 0.80 

 

2.3.4 Prediction of secretion signals 

Since the secretory pathway is involved in the biosynthesis of cell wall proteins and their 

transport to the cell wall, the presence of secretion signals in the above identified proteins 

was evaluated with SignalP and SecretomeP programs. Most of the proteins were predicted to 

have secretion signals (Table 2, 3, 4 and 5). The extracellular nature of cell wall proteins 

were further tested by random picking of 20 spots (Fig. 7B), 90% of which showed signal 

peptides (Table 6). However, some glycolytic and other metabolic proteins that are 

conventionally not considered as extracellular proteins were also found in the cell wall. 

 

Table 6. Overview of stem cell wall proteins randomly picked from the 2-D gels. 
 
Spota Identityb Accessionc Organismd Scoree Mr/pIf Peptidesg Coverageh SiP-

SePj 
 MS MS/

MS 
MS MS/

MS 
 

1 Catalase isozyme  P30264 Solanum 

lycopersicum 

211 56.50/
6.60 

18 2 35.6 5.3 0.34 

2 Peroxidase  Q07446 Solanum 

lycopersicum 

149 35.99/
7.52 

6 5 29.6 16 Y 

3 NADH-glutamate 
dehydrogenase 

Q8W1X4 Solanum 

lycopersicum 

257 44.68/
6.28 

20 3 52.3 12 0.56 
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Table 6 continued 

4* Peroxidase  Q42964 Nicotiana 

tabacum 

124 34.52/
4.65 

 4  4 Y 

5 Glyceraldehyde 3-
phosphate 
dehydrogenase 

O04891 Solanum 

lycopersicum 

42 31.94/
5.93 

4 1 17 4.8 0.39 

6 Hypothetical protein O24329 Ricinus 

communis 

80 40.00/
7.56 

7 1 18.1 4.4 Y 

7 Calreticulin  Q40401 Nicotiana 
plumbaginifolia 

167 47.48/
4.45 

8 4 32.9 9.9 Y 

8 Ripening regulated 
protein  

Q9FR30 Solanum 

lycopersicum 

152 22.20/
4.72 

17 2 78 15 0.73 

9 Oxygen-evolving 
complex protein 1 

P23322 Solanum 

lycopersicum 

205 34.94/
5.91 

13 2 69.9 8.2 0.44 

10* Calmodulin  P84339 Agaricus 

bisporus 

277 16.78/
4.15 

 6   0.70 

11 ATP synthase D 
chain 

Q6L460 Solanum 

demissum 

191 19.80/
5.34 

18 2 81 8.9 0.61 

12 Oxygen-evolving 
complex protein 2 

P29795 Solanum 

lycopersicum 

292 27.79/
8.28 

6 4 52.7 19 0.80 

13 Soluble inorganic 
pyrophosphatase 

Q43187 Solanum 

tuberosum 

70 24.26/
5.59 

7 2 25.1 12 0.79 

14 Temperature-
induced lipocalin 

Q38JE1 Solanum 

lycopersicum 

171 21.25/
5.96 

8 3 38.4 17 0.51 

15 Superoxide 
dismutase (Cu-Zn) 1 

P14830 Solanum 

lycopersicum 

67 15.30/
5.83 

3 1 39.1 8.6 0.68 

16 Dehydroascorbate 
reductase 

Q4VDN8 Solanum 

lycopersicum 

200 23.53/
6.32 

12 2 45.2 13 0.36 

17 Hypothetical protein Q5XEP2 Arabidopsis 

thaliana 

67 64.52/
5.85 

4 3 8.8 7.5 0.58 

18 Tomato invertase 
inhibitor 

O82001 Solanum 

lycopersicum 

62 18.76/
8.30 

7 2 38.6 15 Y 

19 Translation initiation 
factor 5A-4  

Q9AXQ3  Solanum 

lycopersicum 

102 17.51/
5.60 

7 1 41.3 6.3 0.23 

20 Nucleoside 
diphosphate kinase 

Q2KK37 Thlaspi 

caerulescens 

121 25.79/
9.34 

6 1 23.1 5 0.89 

 

Notations given below are used in tables 2-6 
a Assigned spot number corresponding to the number used in the respective figures. 
b Identity of the proteins annotated by MALDI-TOF MS/MS 

*Identity of the proteins revealed by LC-ESI-Ion Trap MS/MS 
c Protein database accession number (UniProt) 
d Plant species from which the protein was annotated 
e Mowse (Molecular weight search) score  
f Theoretical molecular mass and isoelectric point computed from ExPASy Mr/pI calculation tool 
g Number of matched peptides with the corresponding protein in MSDB database 
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MS:  by peptide mass fingerprinting method 

MS/MS: by tandem mass spectrometer 
h Percentage of peptide sequences coverage for the identified protein 

MS:  in peptide mass fingerprinting method 

MS/MS: in tandem mass spectrometer 
i Regulation: The fold increase or decrease in % spot volume of each spot after the R. solanacearum inoculation.  

Variation: The ratio in the abundance of spot % spot volume between the genotypes 
j The results of SignalP (SiP) and SecretomP (SeP) analysis.  

 Y: presence of signal peptide evaluated from SignalP  

Secretom NN score calculated from SecretomP, in case no signal peptides were identified, and the NN 

score > 0.5 was considered as secretory protein as suggested by the author  

2.4 Discussion 

Various roles of CWPs, particularly their involvement in the regulation of growth and 

development, defence against biotic or abiotic stresses, and contribution to wall architecture 

are increasingly studied (Jamet et al. 2008a). Regulation of plant cell wall proteins following 

pathogen invasion have sparingly been reported (Bradley et al. 1992; Brisson et al. 1994). 

However, the comprehensive analysis of a broad range of CWPs expressed in response to 

bacterial inoculation is lacking (Chivasa et al. 2005). Therefore, the current study was 

initiated firstly to find out the differences at the proteome level between susceptible and 

resistant genotypes and followed by the simultaneous characterization of mid-stem cell wall 

protein profiles that are regulated in susceptible and resistant tomato plants due to R. 

solanacearum ingress. Due to the reported expression of bacterial wilt resistance in the mid-

stem of tomato and the time needed by R. solanacearum to reach and grow extensively in the 

stem after soil inoculation, the cell wall proteome was analyzed from the mid-stem and at 5 

dpi (Dahal et al. 2009). The specificity of proteins to one of the genotypes and subsequent up 

or down regulation of the identified protein profiles after pathogen inoculation further 

elucidates the resistant and susceptible reactions of the genotypes. 

2.4.1 Expression of plant defense mechanisms 

We observed the up regulation of several defense related proteins both in susceptible and 

resistant genotypes at 5 dpi after pathogen inoculation. The susceptible plants responded by 
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increasing the expression of endochitinase (PR-3) and PR-5 family proteins whereas the 

resistant plants showed the up regulation of NDPK and subtilase. The abundance of 

peroxidase (PR-9) was elevated in both genotypes. When plants are challenged with 

pathogens, the general defense responses are generally inducted by the synthesis of PR 

proteins and fortification of plant cell walls among others responses.  

PR proteins can be constitutively presents in different plant species at low level, however, 

they are increased dramatically upon challenge with pathogens and abiotic stresses.  Plant 

chitinase, the majority of which are of the endo type, are believed to mediate defence 

responses because of their potential to degrade fungal cell walls. Many endochitinase also 

displayed a lysozyme activity enabling the hydrolysis of bacterial cell walls (Brunner et al. 

1998). Acidic endochitinase was also implicated in the modulation of mechanical properties 

of the cell wall in addition to their defense roles (Yokoyama and Nishitani 2004).  PR-5 

family proteins contain several unique proteins with diverse functions. Some of them were 

reported to have antifungal capacity (Ibeas et al. 2000) as well as β-glucanase activity 

(Grenier et al. 1999), and were involved in the signal transduction pathway (Yun et al. 1998). 

Many PR-5 protein isoforms (PR-5a to PR-5d) were accumulated in the extracellular space of 

tobacco plant cells (Koiwa et al. 1994). PR proteins are considered as the general markers for 

basal defense response induction and hence increased in susceptible reactions too. Therefore, 

the timing and kinetics of their expression may be decisive for the outcome of host-pathogen 

interactions. 

NDPK not only performs a house keeping functions of regulating nucleotide pools but also 

involved in signal transduction in plants. NDPK1 expression, induced by a variety of stresses 

including bacterial infection, reported to enhance multiple stress tolerance in transgenic 

plants by activating the MAPK cascade (Tang et al. 2008). The NDPK1 gene has also been 

associated with cell growth and division in potato (Dorion et al. 2006). Subtilisin-like serine 

proteases or subtilases are endoproteases secreted into the extracellular space of the plant. 

Plants subtilases have been associated with cellular defense and stress responses by mediating 

a restructuring and reinforcement of plant cell walls in order to arrest pathogen spread (Dixon 
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and Lamb 1990). They are also proposed to be involved in the maturation of CWPs, 

generation of active peptides in the cell wall and signaling cascades (Boudart el al. 2005).  

Plant peroxidases are class III secretory peroxidases with a large number of isoforms 

performing a wide range of functions. In many plant species, increase in peroxidases 

expression was correlated with resistance due to their involvement in the production of 

reactive oxygen species (ROS), the fortification of the cell wall structure, and synthesis of 

secondary metabolites, and consequently controlling the penetration and cellular spread of the 

pathogen (Passardi et al. 2005). Cationic peroxidises are involved in cell wall biosynthesis 

except monolignols polymerization (Hiraga et al. 2001).  

The up regulation of these PR and other defense related proteins in plant stem cell wall in 

response to bacterial invasion could support their so far known physiological roles in plant 

defense. Both the tolerant and susceptible plants showed the uprising of the defense related 

proteins however with different functional roles suggesting their involvement in a generalized 

resistance response to R. solanacearum.  

Interestingly, three other defense and/or stress related proteins, namely BIP, stress induced 

protein1 and catalase, were down regulated in resistant plants after pathogen invasion. In fact, 

BIP was observed in two spots (Fig. 8: spot 1 and 8) and regulated in opposite ways. BIP is a 

member of the hsp70 family protein which contains signal peptides for their translocation 

through the endoplasmic reticulum (ER) membrane. In addition to their roles as molecular 

chaperones in protein processing, import and subsequent maturation in ER, they have been 

implicated in disease resistance. The up regulation of this protein after interaction with a 

pathogen is in support of this hypothesis. However, Shen et al. (2003) observed the down 

regulation of calreticulin, which has molecular chaperone function, in the rice leaf sheath 

after wounding. Therefore, it is still unclear how the BIP can be related to the defense 

response. Stress induced protein STI1 may play a role in mediating the heat shock response of 

some hsp70 genes (Nicolet and Craig 1989). Catalase has been demonstrated to be present in 

the plant cell wall and probably detoxifies H2O2 produced therein (Olson and Varner 1993). 

The down regulation of catalase, the primary antioxidant, in the plants can be expected 

following pathogen inoculation if the elevation of H2O2 and ROS level serves as second 
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messengers to further trigger the downstream defense responses (Foyer and Noctor 2005). 

Furthermore, increased level of ROS, but not excessive, can act directly to suppress the 

pathogens. An increase in H2O2 with consequent reduction of catalase and superoxide 

dismutase activities was observed in jute under water stress (Roy Chowdhuri and Choudhuri 

1985).  

Both up and down regulation of these defense related proteins indicate the reactions of the 

plants to pathogen infection by regulating the expression of their resistance proteins. 

Nonetheless, the temporal and spatial regulation of resistance responses and hence the 

efficacy are the most decisive factors determining the susceptibility or resistance to the given 

pathogen. 

2.4.2 Change in cell wall metabolism 

The analysis of the cell wall proteome revealed cell wall metabolism proteins such as XTH7, 

α-galactosidase, and GRP in susceptible plants, all of which were down regulated in response 

to pathogen invasion. Both XTH and α-galactosidase are carbohydrate modifying proteins 

and belong to the glycoside hydrolases (GHs) family which are generally involved in 

reorganization/reconstruction of cell wall polysaccharides during active development, 

defense, signaling, and mobilization of storage reserves (Minic 2008). XTHs can exhibit both 

endo-glycanase and endo-transglycosylase activities and have a potential to modify 

architecturally complex plant cell wall, by allowing cell expansion and incorporating 

xyloglucans into the wall, both during wall synthesis and disease responsive fortification 

processes (Fry 2004). The enzyme α-galactosidase, generally acidic forms, is common in 

plants and is also suggested to have transglycosylase actions (Soh et al. 2006). Down-

regulating α-galactosidase was shown to enhance freezing tolerance in transgenic Petunia at 

the whole plant level (Pennycooke et al. 2003). GRPs are plant cell wall structural proteins 

characterized with high content of glycine (20-70%) and are localized in lignified cell walls. 

Members of a group of GRPs have a signal peptide and were suggested to play a role in cell 

wall reinforcement or in signal transduction of pathogen-induced defense responses in 

addition to their roles in the development of vascular tissues, wound healing, and dead xylem 

wall repairing (Ryser et al. 1997, Park et al. 2001, Lin et al. 2005). It has been suggested that 
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the GRP is possibly involved in enhancement of wall flexibility and mechanical strength in 

specific physiological processes (Chen et al. 2007). Down regulation of GRP due to water 

stress was reported earlier where it has been argued that remodeling of the cell wall as part of 

the plant defense response not only requires accumulation of pathogen restricting proteins, but 

also the reduction of some proteins that are more suitable for cell wall function during normal 

conditions (Harrak et al. 1999). Additionally, oxidative cross linking of GRP occurring 

during pathogen invasion can lead to their suppression (Bradley et al. 1992). The observance 

of GRP in two different spots and reduction of both isoforms indicates the significance of a 

possible post translation modification (PTM) which could be crucial in the outcome of 

reactions.  The lowered abundance of both cell wall hydrolases and GRP due to bacterial 

inoculation in our study may reflect the decline of cell wall polysaccharide metabolism and 

mechanical stability in susceptible plants during disease expression. 

2.4.3 Metabolic activities alteration 

2.4.3.1 Variation in primary metabolism  

Proteins associated with glycolysis such as fructokinase, TPI and enolase were differentially 

regulated in the two genotypes. Fructokinase and TPI were correspondingly up regulated in 

resistant and susceptible lines while enolase was down regulated in resistant plants. The 

glycolytic pathway not only supplies carbohydrates for respiratory and biosynthetic pathways 

during plant growth (Dorion et al. 2005) but also replenishes the increased demands of 

carbohydrate fuels arisen as a result of stress conditions such as pathogen invasion. The 

activated defense responses caused by pathogen attack require extra energy, reducing powers, 

and metabolites and the increased abundance of fructokinase and TPI during bacterial 

infection can be the consequences of increased metabolism to compensate for the cost of 

resistance reactions (Curto et al. 2006). Additionally, soluble carbohydrates are known to 

control the expression of various metabolic and defense-related genes via sugar sensing 

(Rolland et al. 2006). The abundance of PII like protein which is considered to participate in 

metabolic regulatory mechanism and in signaling the status of carbon and nitrogen was also 

increased in resistant varieties (Hsieh et al. 1998). On the other hand, the expression of 

enolase was suppressed in resistant plants in response to bacterial challenge. Enolase 
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catalyzes the penultimate reversible reaction of glycolysis, however, their exact function in 

the cell wall is still unclear. It was identified as a major glucan-associated cell wall protein in 

Candida albicans, as well as in Arabidopsis, and Medicago cell walls (Angiolella et al. 2002, 

Lee et al 2004, Watson et al. 2004) even though it lacks signal peptides. The reduction of 

glycolytic enzymes in response to pathogen attack could be to suppress the growth of the 

pathogen by limiting the supply of sugars. In fact, the multiplication of bacteria was repressed 

in the resistant plant compared to susceptible one. Glycolysis inhibition would also be a 

mechanism for accumulating sugars as an energy source for recovery during or after 

pathogen attack. In overall, regulation of these metabolic proteins in both genotypes after 

pathogen challenge supports the observation that the plant defense responses are associated 

with active metabolic changes in host plants. 

2.4.3.2 Suppression of energy metabolism 

Both OEE 2 and V-ATPases sub unit E were down regulated in resistant reactions. OEE is 

associated with the photosystem II complex, (PSII) and is composed of three proteins namely 

OEE1 (PsbO), OEE2 (PsbP) and OEE3 (PsbQ) (Raymond and Blankenship 2004). They are 

believed to be important for efficient water splitting required for photosynthesis and overall 

PSII stability. Any fluctuation in the activity of PSII will affect photosynthesis (Ruban et al. 

2003), photodamage (Ohnishi et al. 2005), and photoinhibition (Silva et al. 2003) 

and therefore, any damage or inhibition of PSII due to stresses could lead to suppression of 

OEE proteins. Down regulation of OEC proteins was reported earlier due to water stress and 

tobacco mosaic virus infections (Lehto et al. 2003, Echevarría-Zomeño et al. 2009). It has 

been proposed that a reduction in photosynthetic activity could modulate defense responses 

by dissipating excessive ROS and mitigating photooxidative damage (Zeier et al. 2004, 

Moreno et al. 2005). Nevertheless, their precise mechanism of regulation is unknown. OEE2 

has been implicated in photosynthetic oxygen evolution required in plant respiration. It was 

demonstrated that OEE2 interacts with and acts as a substrate for WAK1, cell wall-associated 

kinases in the AtGRP-3/WAK1 signalling pathway (Yang et al. 2003).  

V-ATPases are multimeric enzymes composed of peripheral V1 and integral V0 domain 

containing at least eight (A-H) and five (a-d) different subunits respectively. They can be 
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associated with various membranes of the secretory system and functions in the acidification 

of endomembrane compartments and energization of many solute transport processes 

including reactions required for osmoregulation, homeostasis, storage, and plant defense. 

They also promote cell growth or expansion and secretion of cell wall components at the 

plasma membrane (Cipriano et al. 2008).  

Reduction of energy metabolism proteins in our analysis is in line with previous reports 

(Castillejo et al. 2004). It is assumed that root inoculation of tomato plant with R. 

solanacearum could inhibit the root carbohydrate oxidation pathways leading to the decrease 

in the overall energy production. 

2.4.4 Variation in other proteins  

The abundance of PDIs was also reduced after pathogen invasion in susceptible plants.  PDIs 

are oxidoreductases are involved in the folding, assembling and sorting of plant secretory or 

plasma membrane proteins via ER which is essential for the stability and activity of 

extracellular proteins (Wilkinson and Gilbert 2004). PDIs were secreted to the cell surface of 

animal cells, by an unknown mechanism (Turano et al. 2002). The induction of PDI against 

fungal infection was reported in resistant lines of wheat (Ray et al. 2003). Therefore, the 

down regulation of PDI may contribute to the colonization of bacteria and establishment of 

disease in the susceptible plants rather than to the defensive state. 

Four spots identified as eukaryotic translation initiation factor 5A (eIF-5A) were repressed in 

both susceptible (eIF-5A-1 and eIF-5A-4) and resistant (eIF-5A-3 and eIF-5A-4) interactions. 

Eukaryotic translation initiation factor is a multigene family protein and functions not only as 

a conventional translation initiation factor but also as a nucleo-cytoplasmic shuttle protein 

(Jao and Chen 2005). It is known to be activated posttranslationally and involved in RNA 

metabolism and trafficking, thereby regulating cell division, cell wall expansion and cell 

death (Thompson et al. 2004). In Arabidopsis, plant eIF5A was involved in the development 

of disease symptoms induced by bacterial phytopathogen and the down-regulation 

of AteIF5A-2 suppressed bacterial growth and disease symptoms in susceptible interactions 
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(Marianne et al. 2008). Both isoforms of eIF-5A were repressed in both genotypes suggesting 

the possible importance of their PTMs during host-pathogen interaction.  

2.4.5 Constitutive differences in tomato genotypes 

Proteomic variations between the two genotypes differing in the degree of bacterial wilt 

tolerance followed by their expression to bacterial inoculation could provide important 

information regarding the resistance mechanisms. Interestingly, many of the proteins were 

constitutively more specific to either genotype. BIP, enolase, fructokinase-2, OEE2, and 

NAC-α-like protein 3 occurred in higher abundance in resistant plants while α-galactosidase, 

peroxidase, FNR, OEE1, and eIF-5A-1 in susceptible plants.   

The resistant genotype displayed the higher abundance of glycolytic proteins such as enolase 

observed in three different spots (Fig. 8: spot 2, 9 and 12) and fructokinase-2 than the 

susceptible one. It was suggested that the maintenance of metabolic proteins such as 

glycolytic enzymes is important to fulfill the increased carbohydrate "fuel" demand required 

during pathogen invasion, and for the recovery, too. Moreover, resistant plant showed the 

elevation of NAC-α-like protein 3 which could assist in the prevention of disordered 

metabolism because the decreased NAC-α-like protein leads to mistargeting, mistranslation, 

and proteolysis of proteins by affecting overall NAC function (Yan et al. 2005). Defense and 

stress related proteins also showed constitutive differences among the genotypes. BiP that 

functions as molecular chaperones was in higher abundance in resistant varieties where as 

multifunctional peroxidase and α-galactosidase in susceptible plants. The peroxidase has been 

associated with the reinforcement of cell wall, while α-galactosidase in the modifications of 

cell wall both during development and defense. It should also be noted that an increase or 

decrease in the abundance of protein spots can also occur by selective decay of either protein 

in addition to synthesis or suppression of the protein. The susceptible genotypes also differed 

from the resistant one in the expression of FNR, which is considered as detoxifying agents 

due to its free radical scavenging ability and also participates in the NADP+ photoreduction 

and nitrate assimilation pathways. Both genotypes showed the abundance of OEE but were 

differed in the variation only in their isoforms. The increased abundance of OEE proteins is 

considered to improve the photosynthetic efficiency which could contribute to fight off the 
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pathogen infection upon challenge. Several proteins were identified in multiple spots such as 

enolase, OEE, BIP, GRP, and eIF-5A and their isoforms were regulated in the same way (Fig. 

8, 9 and 10; Table 2, 3 and 4). However, the differences in the protein isoforms may indicate 

that the protein modifications could be a crucial phenomenon in determining the genetic 

status of the plants. The correlation between the elevation of eIF-5A to the development of 

disease symptoms leads to the assumption that susceptible plant   are more prone to bacterial 

attack due to the higher expression of eIF-5A-1 (Marianne et al. 2008). Based on the above 

finding, it can be argued that the metabolic proteins in addition to defense and stress related 

proteins, play crucial roles in determining the resistance or susceptibility of the plants. They 

are abundant and soluble proteins too and hence often appeared in 2-D gels.  

2.4.6 Nature of cell wall proteins 

The presence of secretion signals that are characteristic to all extracellular proteins were 

predicted with SignalP and SecretomP. Among 42 differentially expressed proteins, 29 were 

identified to have signal peptides and ten more were predicted to posseses non-classical 

secretion signals (Fig. 8, 9 and 10; Table 2, 3 and 4). Further 20 proteins from 2-D gel (Fig. 

7B) and 12 proteins from the comparative 3-D gels (Fig. 7: C and D) were tested for their 

secretory nature and 30 of them contain secretion signals (Table 5 and 6). The overall results 

showed that most of the extracted cell wall proteins contain signals for extracellular 

localization. However, some proteins generally predicted to have other than extracellular 

locations, such as glycolytic proteins, V-ATPase, OEE, eIF-5A, BIP, enolase, catalase and 

others were detected in the cell wall fraction. Growing evidences suggest the possibility of 

them being “moonlighting” proteins due to the evidence of their localization in the 

extracellular space. These so called “moonlighting” proteins perform more than one function 

in the cell as a consequence of changing their cellular localization, oligomeric state, or ligand 

concentration (Copley 2003). For example, enolase is also supposed to have additional non-

glycolytic functions such as mitochondrial targeting of tRNA (Entelis et al. 2006). Therefore, 

further validations with immunolocalization or other methods would be suggested.  
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2.4.7 Resolution of basic proteins 

We showed the use of simple 3rd dimension SDS-PAGE to separate the basic pI range 

proteins, that are often components of cell wall proteins, in a resolution enough for the 

comparative gel based proteomic analysis. The 3-D gels from both genotypes and treatments 

consistently resolved the basic range of cell wall proteins (Fig. 7: C and D). The 

identification of 12 major spots from 3-D gels showed the presence of proteins with 

theoretical pI higher than 7 (Table 5).  

2.5 Conclusion 

To conclude, the current study provides for the first time the broad spectrum analysis of the 

stem cell wall proteome of tomato genotypes followed by their specific regulation after 

bacterial challenge. It unveiled constitutive proteomic differences between tomato genotypes 

differing in resistance to bacterial wilt, and the differential regulation of their respective 

protein profiles in response to R. solanacearum invasion which further extends the 

understanding of the molecular basis of the host-pathogen interactions. The selective 

differential expression of defense/stress related and metabolic proteins in both resistant and 

susceptible genotypes triggered by the pathogen support their pivotal roles in the make up of 

generalized defense mechanism. Though, clear statements on the role of the proteins can only 

be made after their functional analysis and the demonstration of their role in susceptible and 

resistant genotypes. The work further supports the hypothesis that the resistance mechanism 

is a complex interplay of several proteins where their activation kinetics might play more 

pivotal role than their number and type in the outcome of the host-pathogen interaction. 

Further experiments determining the physiological roles of each of the regulated proteins will 

help elucidating the resistance or susceptibility mechanisms.   
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CHAPTER 3: High-throughput expression profiling of xylem sap proteome 

of susceptible and resistant tomato genotypes revealed networks of 

metabolic, defense as well as cell wall related and signalling proteins 

Adapted from the manuscript prepared for submission 

Abstract 

Xylem sap has been considered as the primary conduit for water and minerals translocation 

from roots to aerial parts of the plant. Though, evidences of presence of proteins are already 

established, the comprehensive proteome profile of xylem sap is still at infancy. Herein, we 

described xylem protein profiles of healthy adult tomato plants collected under root pressure 

exudate. The complete gel lane obtained after protein separation in 1-D polyacrylamide 

gradient gel was divided into small gel pieces. The peptides were separated with nano-HPLC 

before identifying the corresponding proteins with MALDI-TOF/TOF MS. Large number of 

proteins were identified which comprises several physiologically important groups such as 

cell wall metabolism proteins; proteases; groups of defense related proteins including 

peroxidase, PR and resistance proteins; detoxifying proteins; signalling and transport 

proteins; transcription factors; and various metabolic enzymes.  The presence of peroxidase, 

cell wall associated proteins, proteases, and defense related proteins, that were reportedly 

conserved in many plants, indicates their involvement in xylem growth, development, and 

differentiation essential for the functional xylem conduit formation. The occurrence of many 

signalling and transport proteins is expected for root to shoot communication. Numerous 

proteins of unknown functions may provide candidates with novel physiological functions. 

The xylem sap not only contained secretory proteins but also proteins without secretion 

signal. The comparison of xylem proteins between the susceptible and resistant plants 

demonstrated a relatively high number of proteins in susceptible genotype including 

signalling and transcription related proteins but lower percentage of defense related proteins, 

peroxidase, proteins degradation/modification enzymes and metabolic proteins. 

Key words: Tomato/ Xylem sap proteome/ LC MS/MS/ Secretory proteins/ Defense related 

proteins/Cell wall metabolic proteins. 
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3.1 Introduction 

Terrestrial plants grow in diverse environmental conditions, and the growth and development 

of functionally specialized plant organs is dependant on internal communications and the 

balanced allocation of water and nutrients throughout the plant (Kolek and Kozinka 1991). In 

vascular plants, the function of translocation is principally mediated by two specialized long-

distance transport systems, the xylem and phloem which interconnect all organs. The phloem 

transports predominantly the photosynthates from the site of synthesis to the consumption 

site, whereas the xylem sap carries mainly water and dissolved minerals from the soil system 

to aboveground plant parts (De Boer and Volkov 2003). The ability of the aerial plant parts to 

photosynthesize and function is primarily influenced by the supply of dissolved materials 

through the soil system (Gibson 2004, Alabadí et al. 2008). Therefore, the conduction and 

composition of xylem sap is considered the key determinant of the physiological states and 

activities of aerial organs.  

Xylem and phloem are heterogeneous tissues comprising the vascular bundles but are grown 

on opposite sides of the cambium layer. Among four different tracheary elements of xylem 

tissue, only xylem tracheid and tracheae (also called vessel element) are primarily involved in 

water-nutrient translocation (Carlsbecker and Helariutta 2005). The tracheids are relatively 

more primitive and are elongated dead cells with pointed end-plates that connect cell to cell, 

whereas vessels are comparatively shorter and wider, and lack end plates. During functional 

specialization, both tracheids and vessels become hollow, non-living, water-conducting 

pipelines due to the disintegration of cells and their contents (Fukuda 2000). The 

unidirectional xylem transport in terrestrial plants is driven by the pressure gradient where a 

transpiration pull contributes to the bulk flow but also by root pressure during high water 

potentials and low transpiration conditions (Tyree and Zimmermann 2002). The mineral-

containing water in soil enters the plant through the apical part of the roots, moves via the 

apoplast, transmembrane and symplast pathways until the endodermis, and then through the 

xylem vessels to aerial organs.  

Xylem sap was initially considered to carry only inorganic ions, however growing evidences 

showed that it also contains and transports organic compounds such as amino acids, sugars, 
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and organic acids (Satoh 2006). Moreover, the identification of information molecules that 

possibly play an important role in root to shoot communication such as proteins, and mRNAs 

together with secondary metabolites and hormones increased the interest (Alvarez et al. 

2008). The occurrence of proteins in xylem sap has been reported in many plants such as 

watermelon, apple, peach, pear, cucumber, squash, rice and tomato (Alvarez et al. 2006). 

Xylem sap composition was modified during its transport from the roots and throughout the 

plant (Djordjevic et al. 2007). Since xylem conducting elements loose nuclei, functioning 

ribosomes, and cytoplasmic contents during functional maturation, they are not equipped for 

transcription and translation necessary to synthesize proteins by themselves (Fukuda 2000). 

The identification of proteins in the sap, therefore, draws the attention regarding their origin, 

function, and fate. Apart from few reports, most of the studies demonstrated only few major 

proteins such as peroxidases, chitinases, a glycine-rich protein, a cysteine-rich protein, and a 

30 kDa lectin in the sap (Kehr et al. 2005).  Therefore, the aim of the present study was to 

provide a comprehensive overview of the proteins that are present in the xylem sap of healthy 

tomato plants differing in resistance to bacterial wilt in order to understand the underlying 

cellular processes taking place within the xylem conduit system. The study also provides a 

basis for the comparative analysis of the xylem proteome regulated in tomato genotypes in 

response to invasion with xylem colonizing bacteria, R. solanacearum which in turn offer a 

broader overview of our proteome level knowledge of the tomato-R. solanacearum 

interaction that had been studied earlier at whole mid-stem as well as its cell wall level 

(Dahal et al. 2009). The proteome profiling was performed by separating total soluble sap 

proteins in 1-D SDS polyacrylamide gradient gel followed by in-gel tryptic digestion of 

whole protein, separation of the peptides through nano-HPLC and protein identification by 

MALDI-TOF/TOF MS.  
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3.2 Materials and Methods 

3.2.1 Plant materials and growth conditions 

Tomato plants were grown from the two parental lines Hawaii7996 and WVa700, highly 

disease resistant and susceptible genotypes against bacterial wilt, respectively. Seeds were 

obtained from AVRDC, Taiwan. 

Tomato plants were grown in the greenhouse for 4 weeks (20°C, 14 h photoperiod per day, 

30K lux and 70% RH). Each plant was then transferred to an individual pot with 

approximately 330 g of soil (Fruhstorfer Erde, type P: 150 mg/L N, 150 mg/L P2O5, and 250 

mg/L K2O) and grown in the climate chamber (30/28°C day/night temperature, 14 h 

photoperiod, 30 K lux, and 85% RH).  

3.2.2 Xylem sap collection, concentration and precipitation 

Xylem sap was collected from stems of 6 week-old tomato plants under root pressure 

exudates system. Tomato stems of both susceptible and resistant genotypes were cut 

perpendicular to the stem axis at about 5 cm above the root. The decapitated stumps on the 

root side were washed with distilled water and blotted dry with filter paper. The first drop of 

xylem sap was discarded to remove possible contaminations from wounded cells and its 

contents (Buhtz et al. 2004). The detopped stems were fitted with silicon tubes and sap 

continuously oozing out from the cut surface inside tubes was regularly pipetted out. Xylem 

sap was collected for the period of 4 h over ice and stored at -20°C until further analysis.  

Due to negligible amount of protein, the xylem sap was concentrated in a centrifugal 

concentrator with a molecular mass cut off at 5 kDa at 5000 rpm x 4°C x 2-3 h (Vivaspin 6, 

Vivascience, Germany). The amount of protein in the concentrated sap was measured with 

Bradford assay by mixing 5 µL of sample with 795 µL of H2O and 200 µL of Bradford 

reagent (Coomassie protein assay reagent, Fluka biochemical) and measured after 5 min at 

595 nm. A standard calibration curve was prepared with bovine serum albumin from 0 to 20 

µg protein. The concentrate was precipitated using the chloroform-methanol-water method 

(Wessel and Flügge 1984). The volume of sample was mixed with 4:1:3 volumes of 

methanol, chloroform, and water respectively, and the solution was vortexed and centrifuged 
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at 13000 x g for 2 min at 4°C. Three volume of methanol was added after discarding the 

upper water phase and centrifuged at 13000 x g for 3 min at 4°C. The supernatant was 

removed and the pellet was air-dried.  

3.2.3 Polyacrylamide gradient gel electrophoresis 

A discontinuous mini gel of 10 cm x 8 cm x 1 mm was prepared by  first pouring a 8.5–18% 

linear gradient resolving gel (pH 8.8) with help of a gradient maker overlaid by a 5% stacking 

gel (pH 6.8). Approximately 80-100 µg of protein was denatured and solubilised in 40 µL of 

1X SDS sample buffer at 95°C for 5 min, followed by incubation with 5 µL of 40 % 

acrylamide at RT for 30 min. The sample was then loaded into the gel along with the protein 

size standard and run at 65 V, 0.01 A/10 min; 100V/20 min and at 200 V until the tracking 

dye reaches the bottom of the gel. The protein bands were visualized by Coomassie staining 

(0.1% CoomassieR-250, 40% methanol, and 10% acetic acid) at 47°C for 15 min. De-

staining of the gel was done at 47°C with 30% methanol containing 10% acetic acid until a 

clear background appeared. 

3.2.4 In-gel digestion with trypsin 

The whole protein lane was divided into 8-10 pieces along the axis of the band containing 

approximately an equal amount of protein. Protein destaining was done with 250 µL of 50% 

v/v ACN in 50 mM NH4HCO3, pH 7.8 (1:1 v/v) at 37°C and shaking at 400 rpm for 30 min. 

The gel slices were then dehydrated in 250 µL of 100% ACN and dried in a speed vac system 

(Eppendorf, Germany). Trypsin was added to the dry gel pieces in a concentration of 4 ng/µL 

in 25 mM NH4HCO3, pH 7.8 containing 10% ACN and samples were incubated on ice for   

60 min. Excess trypsin solution was removed and 15 µL of 25 mM NH4HCO3, pH 7.8 

containing 10% ACN was added. The protein was digested overnight at 37°C. The 

proteolytic reaction was stopped by adding 100 µL of 0.2% TFA in 10% ACN at RT for      

10 min and corresponding peptides were extracted. Peptides were re-extracted two more 

times, combined and dried in speed vac.  
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3.2.5 LC-MS/MS analysis 

Peptide samples were separated in a nano-HPLC system by reversed phase chromatography 

using a C18 trap column (PepMap 300 µm x 5 mm, 3 µm, 100 Å, Dionex) with a flow rate of 

30 µL/min and a C18 separation column (PepMap, C18 reversed phase material, 75 µm x 150 

mm, 3 µm, 100 Å, Dionex) with a flow rate of 250 nL/min. Peptides were separated using 

eluent A (5% ACN in 0.1% TFA) and eluent B (80% ACN in 0.1% TFA) with a gradient 

from 16-18% eluent B in 27 minutes, 18-24% in 40 min, 24-40% in 64 min and 40-80% in   

10 min. Fractions of 90 nL were spotted using a microfraction collector (Probot) directly onto 

a pre-spotted MALDI target plate with a collinear sheath flow of 2.5 µL/min 5% ACN, 0.1% 

TFA aqueous solution. To prepare the MALDI target plate 0.6 µL of a matrix solution          

(4 mg/mL CHCA in 50% ACN, 0.1% TFA and 10 mM NH4H2PO4, diluted 1:4 with ethanol) 

had been spotted on each spot of an Anchor target plate (600/384 Bruker Daltonik). 0.3 µL of 

peptide calibration standard (Bruker Daltonik) was used for external calibration. Re-

crystallization was done with 0.2 µL of 0.1% TFA in ethanol. MS and MS/MS spectra were 

generated in an Ultraflex TOF/TOF I (Bruker Daltonik) mass spectrometer. 

3.2.6 Data analysis 

For protein identification a MACOT search (version 2.1) was performed. Experimental 

MS/MS-spectra were matched with the MSDB database (Matrix Science, London, UK) 

released in April 27th, 2007. Search parameters for mass tolerance were set to 100 ppm for 

precursor ions and 0.7 Da for fragment ions with one allowed missed trypsin cleavage. Data 

base hits were taken, if the peptide ion score was above 25 and proteins were identified if at 

least two peptides could be identified. 

Due to the incomplete genome sequence of Solanum lycopersicum, a lot of excellent MS/MS 

data generated could not be related to tomato proteins and were not included. However, 

several MS/MS spectra fit exactly to proteins from other Solanacaeae or plants. Probably 

those database hits are due to sequence similarities between the identified (foreign) proteins 

and the so far unsequenced tomato proteins and are also listed.  
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3.2.7 Prediction of secretory proteins 

The presence of N-terminal signal peptides that anchor the protein for extracellular location 

was determined with SignalP 3.0 (Bendtsen et al. 2004b), whereas, non-classical secretory 

signal sequences were evaluated with SecretomP 2.0 (Bendtsen et al. 2004a). 

3.3 Results and Discussion 

For the first time, a comprehensive proteome screening analysis has been carried out for 

tomato xylem sap revealing as many as 208 proteins (Table 7). Owing to the several 

limitations of 2-D SDS-PAGE (López 2007), the xylem sap proteins were analyzed by a 

combined approach consisting of protein separation by 1-D gradient SDS-PAGE followed by 

reversed phase separation on peptide level and protein identification using tandem mass 

spectrometry (Figure 11: A and B).  
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Figure 11. Overview of the xylem sap protein extracted from healthy tomato plants and 

separated in 1-D polyacrylamide gradient gels with 8.5-18% resolving gel over laid by       

5% stacking gel.  

About 80-100 µg of protein was loaded in each gel and were visualized with Coomassie-R 

staining. The molecular mass was represented by numbers in kDa besides the gel lane. The 

complete gel lane of each genotype were divided into 8-10 sections and sequentially analyzed 

with LC-MS/MS 

A Xylem sap proteins in WVa700 (susceptible genotype) healthy plants and identified protein 

lists is presented in table 7. 

B Xylem sap proteins in Hawaii7996 (resistant genotype) healthy plants and identified 

protein lists is presented in table 8. 
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Due to the low sequence coverage of the tomato genome, only few tomato proteins could be 

identified with the classical data base dependent protein identification tools like mascot and 

sequest. Several high quality spectra could not be related to tomato proteins. However, many 

MS/MS spectra were related to peptides and proteins from other plant species of the 

Solanaceae family or of plants like Oryza sativa or Arabidopsis thaliana which genomes 

have already been completely sequenced. Thus, it is tempting to assume that the 

identification of foreign proteins identified by tomato MS/MS data sets is due to the presence 

of orthologues in both organisms that share sequence identity. The majority of the identified 

proteins were correlated with Oryza sativa (32%) and Arabidopsis thaliana (16%), and 9% 

with tomato (list of proteins in Table 7 and 8). Based on the physiological role of the 

identified proteins, they were categorized into several putative functional groups (Fig 12; 

Table 7 and 8). The major groups appeared correspondingly in susceptible and resistant 

genotypes were peroxidase (20% and 27%), cell wall related proteins (9% and 9%), 

metabolic enzymes (8% and 9%), proteases (5% and 13%), defense related proteins (7% and 

21%), transcription (8% and 7%), signalling proteins (6% and 4%), transport proteins (2% 

and 0%), transposable element proteins (4% and 0%), and hypothetical proteins (26% and 

4%). The comparison of the xylem proteins between the resistant and susceptible genotypes 

disclosed fairly high number of proteins in susceptible plants. Even though, 80-100 µg 

protein was analysed in each genotype, the susceptible plants showed the presence of 208 

proteins compared to 84 in resistant lines. The further look on both protein lists revealed 

higher percentage of defense related proteins that includes several PR proteins, peroxidase, 

detoxifying enzymes and resistance proteins in resistant plants. Enzymes belong to protein 

degradation and modifications were also in higher proportion. On the other hand, the 

susceptible plants clearly showed the higher occurrence of proteins involved in signal 

transduction and cellular communication as well as transcription related proteins. Even 

though metabolic proteins were in higher proportion in resistant plants, transport proteins, 

photosynthetic, secondary metabolic and retroelements proteins were not identified in these 

plants. 
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Figure 12. Comparative pie diagrams showing 11 putative functional classes of the xylem 

sap proteins identified in tomato genotypes.  

The actual number of proteins identified is shown inside whereas their respective percentage 

value outside of the pie chart. The transport protein and retroelement protein groups were not 

identified in resistant plants. The comparative percentage value of the remaining protein 

groups showed higher occurrence of peroxidase, protein degradation and modification 

protein, PR and defense related protein and metabolic proteins in resistant genotype while 

proteins of signal transduction and cellular communication as well as transcription related 

proteins were in susceptible genotype 

A: Xylem sap proteins in WVa700 (susceptible genotype) and the list of proteins are given in 

table 7. 

B: Xylem sap proteins in Hawaii7996 (resistant genotype) and the list of proteins are given in 

table 8. 
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Table 7. List of proteins identified in the xylem sap of Wva700 (susceptible genotype) 

healthy plants (Fig. 11A). 

They were separated by 1-D SDS-PAGE and analyzed with LC-MS/MS as described in 

materials-methods part. Proteins are categorized based on their putative functions. 

Protein name
a
  Accession

b
 Organism

c
 Mr/pI

d
 Score

e
 Peptide

f
 SiP

g
 SeP

h
 

Peroxidase 

Peroxidase precursor Q6T1C8 Quercus suber 35.78/9.55 46 1 Yes  
Anionic peroxidase swpb3 Q5JBR1 Ipomoea batatas 34.27/9.50 102 1 Yes  
Peroxidase 68  Q9LVL1 Arabidopsis 

thaliana 

35.62/9.49 93 4 Yes  

Peroxidase Q5W5I3 Picea abies 37.31/9.47 40 1 Yes  
Peroxidase  Q9XIV9 Nicotiana 

tabacum 

34.34/9.40 116 1 Yes  

Class III peroxidase Q7XYR7 Gossypium 

hirsutum 

35.42/9.33 43 1 Yes  

Peroxidase 3 Q9XFL4 Phaseolus 

vulgaris 

35.01/9.32 94 1 Yes  

Anionic peroxidase swpb2 Q5JBR2 Ipomoea batatas 36.84/9.31 172 2 Yes  
Peroxidase prx14 Q9M4Z3 Spinacia oleracea 37.22/9.29 46 1 Yes  
Peroxidase Q84ZT6 Asparagus 

officinalis 

32.07/9.23 43 1 No 0.658 

Peroxidase Q9ZRG5 Glycine max 35.23/9.19 43 1 Yes  
Peroxidase Q27U89 Eucalyptus 

globulus 

28.89/9.18 129 2 No 0.864 

Peroxidase prx15 Q9M4Z2 Spinacia oleracea 36.94/9.14 79 1 Yes  
Peroxidase P7  P00434 Brassica rapa 31.08/9.10 49 1 No 0.713 
Class III peroxidase 49  Q5U1P4 Oryza sativa 37.95/9.04 44 1 Yes  
Peroxidase  Q4W2V2 Picea abies 34.06/9.00 41 1 Yes  
Peroxidase Q58GF4 Populus alba 33.38/8.89 42 1 Yes  
Peroxidase  Q84ZT7 Asparagus 

officinalis 

33.93/8.80 43 1 Yes  

Putative peroxidase  Q2LGJ7 Musa accuminata 19.41/8.67 43 1 No 0.762 
Cationic peroxidase Q41324 Stylosanthes 

humilis 

33.84/8.65 43 1 Yes  

Peroxidase PX3 Q52QY2 Manihot 

esculenta 

39.35/8.53 48 1 Yes  

Peroxidase POA1  Q4A3Y5 Capsicum 

annuum 

31.87/8.43 51 1 No 0.418 

Class III peroxidase 3 Q9LI45 Oryza sativa 36.36/8.28 43 1 Yes  
Peroxidase 2 Q9SSZ8 Scutellaria 

baicalensis 

34.58/8.09 42 1 Yes  

Peroxidase Q43782 Linum 

usitatissimum 

38.19/8.07 51 1 Yes  

Peroxidase P93548 Spinacia oleracea  35.28/7.57 44 1 Yes  
Cationic peroxidase Q2WEC9 Solanum 

lycopersicum  

35.85/7.55 163 5 Yes  
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Table 7 continued 
Peroxidase 25 O80822 Arabidopsis 

thaliana 

35.88/7.52 43 1 Yes  

Peroxidase Q07446 Solanum 

lycopersicum 

35.99/7.52 317 6 Yes  

Peroxidase  P93551 Spinacea 

oleracea 

33.18/7.13 45 1 No 0.735 

Peroxidase Q96512 Arabidopsis 

thaliana 

37.74/6.94 40 1 Yes  

Peroxidase Q50LG4 Nicotiana 

tabacum 

38.52/6.10 42 1 Yes  

Putative peroxidase Q8LMR6 Oryza sativa 33.47/5.71 46 2 Yes  
Putative peroxidase Q6YZD5 Oryza sativa 35.73/5.60 43 1 Yes  
Putative peroxidase Q5QQS8 Zinnia elegans 14.22/5.41 44 1 No 0.399 
Anionic peroxidase Q5GMM6 Capsicum 

chinense 

30.97/5.37 171 3 Yes  

Putative peroxidase  Q8GVP1 Oryza sativa 35.90/5.18 40 1 Yes  
Peroxidase Q6V2C9 Orobanche 

cernua 

26.09/5.14 44 1 No 0.625 

Suberization-associated 
anionic peroxidase 1 

P15003 Solanum 

lycopersicum  

38.74/4.91 353 6 Yes  

P17  Q40878 Petunia hybrida 21.97/4.90 42 1 No 0.8 
Peroxidase Q9LWA2 Solanum 

lycopersicum  

34.94/4.56 42 1 Yes  

Peroxidase Q43055 Populus 

Kitakamiensis 

34.17/4.44 67 3 Yes  

Protein degradation and modification 

Carboxypeptidase type III Q8L6A7 Theobroma cacao  56.52/5.10 57 1 Yes  
Serine carboxypeptidase-
like 

P52712 Oriza sativa  47.78/5.12 77 1 No 0.711 

Serine carboxypeptidase 
II-2 chain B 

P55748 Hordeum vulgare 48.95/6.01 46 1 No 0.64 

Subtilisin-like protease O82777 Solanum 

lycopersicum  

82.22/8.22 114 4 Yes  

Subtilisin-like protease1 P93204 Solanum 

lycopersicum 

81.35/6.17 69 2 Yes  

Ulp1 protease Q5Z7R1 Oryza sativa 30.18/5.47 45 1 No 0.923 
Ulp1 protease Q5ZCW2 Oryza sativa 21.28/5.07 45 1 Yes  
Chloroplast nucleoid 
DNA-binding protein  

Q94K53 
*At1g09750 

Arabidopsis 

thaliana  

39.77/8.44 62 1 No 0.725 

Lipid transfer family 
protein  

Q8LBY9 
*At5g05960 

Arabidopsis 

thaliana 

12.44/9.30 106 2 Yes  

Early responsive to 
dehydration 1  

Q94C10 
*At5g51070 

Arabidopsis 

thaliana 

69.61/6.21 50 1 No 0.488 

Lipid transfer family 
protein  

Q7XTF6 Oryza sativa 11.68/9.00 53 1 Yes  

PR and defense related protein 

Putative basal resistance 
related chitinase  

Q4ZFU8 Nicotiana 

tabacum 

10.66/4.82 77 1 No 0.715 

Putative RGH1A Q6Z021 Oryza sativa 111.62/6.10 41 1 No 0.283 
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Table 7 continued 
Putative endochitinase B  Q5W1I6 Nicotiana glauca  15.50/8.70 61 1 No 0.754 
Class I chitinase  O81144 Solanum 

tuberosum  

35.41/6.57 72 1 Yes  

Class I chitinase O81145 Solanum 

tuberosum  

35.33/5.66 54 2 Yes  

β-1,3-glucanase-like 
protein 

Q8H0I0 Nicotiana 

tabacum 

38.50/5.38 47 1 Yes  

Germin-like protein Q5VJG4 Nicotiana 

attenuata 

23.29/9.08 158 2 Yes  

Germin-like protein O65358 Solanum 

tuberosum 

23.23/8.79 161 2 Yes  

Germin-like protein 2 Q0MYQ7 Vitis vinifera 22.73/8.53 118 1 Yes  
Germin-like protein Q5DT23 Capsicum 

annuum 

23.19/8.54 154 3 Yes  

Superoxide dismutase (Cu-
Zn)  

P27082 Nicotiana 

plumbaginifolia 

15.23/5.47 70 1 Yes  

Superoxide dismutase (Cu-
Zn) 

Q58ZE5 Manihot 

esculenta 

15.11/5.42 50 1 No 0.647 

Putative tocopherol 
polyprenyltransferase 

Q6ZLA8 Oryza sativa 41.45/9.99 48 1 Yes 0.554 

Gamma-
glutamyltransferase 
 

Q8VYW6 
*At4g39640 

Arabidopsis 

thaliana 

61.18/9.53 41 1 Yes  

Selenium-binding protein Q8GSH3 Oryza sativa 77.82/6.21 40 1 No 0.543 
Putative CDR1 Q5VRD5 Oryza sativa  45.90/4.88 47 1 Yes  

Cell wall metabolic protein 

Polygalacturonase-like 
protein 

Q84LI7 Fragaria 

ananassa 

51.53/7.52 74 1 Yes  

Polygalacturonase Q153G1 Eucalyptus 

globulus  

26.54/5.40 74 1 No 0.444 

Putative hydroxyproline-
rich glycoprotein 

Q69S58 Oryza sativa 65.92/9.33 40 1 No 0.233 

Cellulose synthase 2 Q7XB33 Gossypium 

barbadense 

64.76/9.11 46 1 No 0.155 

Expansin-like protein Q7XHJ2 Quercus robur 28.80/7.62 42 1 Yes  
Erwinia induced protein 1 Q84XG7 Solanum 

tuberosum 

38.29/5.61 55 1 Yes  

Pectinesterase O04870 Solanum 

lycopersicum  

56.24/8.59 131 2 No 0.551 

Putative β-galactosidase  Q9LLT0 Solanum 

lycopersicum  

93.24/6.80 107 3 Yes  

β-galactosidase 14 Q7XFK2 Oriza sativa  90.07/5.90 45 1 Yes  
β-galactosidase  Q4QYX3 Mangifera indica  92.13/5.07 44 1 Yes  
Lipase-like protein  Q8GS76 Oriza sativa  42.01/8.68 51 1 Yes  
UDP-glucuronic acid 
decarboxylase 

Q6I683 Oryza sativa 48.70/9.23 41 1 SA  

Glycosyltransferase 
protein 2-like 

Q6K8F2 Oryza sativa 104.29/9.35 44 1 SA  

Galacturonosyltransferase 
11  

Q949Q1 
*At1g18580 

Arabidopsis 

thaliana 

61.87/8.10 46 1 SA  

 



Chapter 3  Tomato xylem sap proteome 

 77 

Table 7 continued 
Putative phragmoplast-
associated kinesin-related 
protein 1 

Q6K765 Oryza sativa 122.89/5.45 42 1 No 0.249 

Microtubule-binding 
protein TANGLED1  

Q9FUH9 Zea mays 40.94/12.03 49 2 SP  

MAP kinase kinase Q94EV7 Zea mays 44.66/10.60 41 1 No 0.322 
Putative inosine-uridine 
preferring nucleoside 
hydrolase 

Q6L553 Oryza sativa 100.13/6.40 42 1 No 0.507 

Rcd1-like cell 
differentiation family 
protein  

Q8L8C5 
*At2g32550 

Arabidopsis 

thaliana 

32.33/6.20 41 1 No 0.626 

Metabolic protein 

      Carbohydrate metabolism 

Ribose-phosphate 
pyrophosphokinase 2 

Q69XQ6 Oryza sativa 43.08/8.77 46 1 SP  

Soluble starch synthase II-
2 

Q6Z2T8 Oryza sativa 75.62/6.04 45 1 SP  

      Energy and nitrogen metabolism 

ATP synthase subunit 
alpha  

Q3ZML0 Cantua buxifolia  42.57/7.09 42 1 No 0.485 

FMO family protein  Q9FWW6 
*At1g12160 

Arabidopsis 

thaliana  

53.27/6.23 45 1 SA  

Arginine decarboxylase O24549 Vitis vinifera 68.31/5.31 41 1 No 0.626 
3-phosphoshikimate 1-
carboxyvinyltransferase 

Q30CZ8 Fagus sylvatica 55.49/7.52 50 1 No 0.443 

Methionine synthase  Q4H1G2 Beta vulgaris 87.80/6.05 46 2 No 0.455 
Methionine synthase  Q9LM03 Solanum 

tubersom 

84.66/5.93 127 3 No 0.45 

Copper amine oxidase  Q8H1H9 
*At1g62810 

Arabidopsis 

thaliana  

80.13/5.98 42 1 Yes  

Delta 1-pyrroline-5-
carboxylate synthetase B 

Q9AXN3 Brassica napus 78.73/6.85 46 1 No 0.328 

      Photosynthesis 

Oxygen-evolving enhancer 
protein 2 

P29795 Solanum 

lycopersicum 

27.79/8.27 56 1 No 0.802 

Geranylgeranyl 
hydrogenase 

O81335 Mesembryanthem

um crystallinum  

51.41/8.95 42 1 No 0.693 

Photosystem II subunit T  Q67HZ1 Iris missouriensis 4.04/10.00 40 1 SA  
PAC3 protein Q39175 Arabidopsis 

thaliana  

36.14/4.88 42 1 SP  

      Secondary metabolism 

Flavanone-3-hydroxylase  Q6R3N2 Gypsophila 

paniculata 

40.94/5.30 41 1 No 0.326 

Chalcone synthase Q9FW79 Oryza sativa 49.90/8.99 42 1 No 0.222 
Putative cinnamoyl CoA 
reductase 

Q6L5E8 Oryza sativa 41.25/7.56 42 1 SA  

Putative cytochrome p450  Q6Z9D5 Oryza sativa 59.79/9.21 42 1 SA  
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Table 7 continued 
Signal transduction and cellular communication 

Putative β- transducin-like 
protein 

Q7XA22 Solanum 

bulbocastanum 

68.33/6.48 42 1 No 0.434 

Calmodulin P93087 Capsicum 

annuum 

16.83/4.10 41 1 No 0.636 

Phototropin Q401Q4 Mougeotia 

scalaris 

90.83/5.72 41 1 No 0.338 

Leucine rich repeat family 
protein 

Q53PD8 Oryza sativa 111.67/7.56 41 1 No 0.306 

Leucine-rich repeat protein  Q96477 Solanum 

lycopersicum  

24.18/5.71 78 2 Yes  

Receptor protein kinase 
like protein 
 

O49445 
*At4g28350 

Arabidopsis 

thaliana 

72.06/5.90 48 1 Yes  

Putative receptor protein 
kinsase PERK1 

Q6K6B7 Oryza sativa 75.07/6.95 43 1 No 0.802 

S-locus receptor kinase  Q5QH07 Raphanus sativus 32.64/5.46 43 1 No 0.354 
Putative lipid transfer 
protein 

Q8H9B7 Solanum 

tuberosum 

9.87/9.44 61 1 Yes  

Armadillo repeat-
containing protein-like 

Q8GSZ9 Oryza sativa 72.69/6.57 45 1 No 0.329 

ACC oxidase  O65378 
*At1g12010 

Arabidopsis 

thaliana  

36.53/5.09 44 1 No 0.275 

Transducin family protein  Q3E9H4 
*At5g15550.2 

Arabidopsis 

thaliana  

44.16/5.83 44 1 No 0.553 

Phosphatidylinositol-
glycan class N  

Q9SGH9 
*At3g01380 

Arabidopsis 

thaliana 

103.95/6.93 44 1 SA  

GPI-anchored protein  Q9SUC9 
*At4g28100 

Arabidopsis 

thaliana 

33.09/8.93 42 1 Yes  

Transcription 

DNAJ heat shock N-
terminal domain-
containing protein  

Q84TH2 
*At4g19570 

Arabidopsis 

thaliana  

62.94/9.09 43 1 No 0.231 

DNA-directed RNA 
polymerase  

Q1L6V7 Sphagnum spec. 73.25/8.53 44 1 No 0.358 

DNA-directed RNA 
polymerase subunit alpha 

P60315 Physcomitrella 

patens 

49.46/5.47 48 1 No 0.43 

Transcription factor-like Q6EPG4 Oryza sativa 86.75/5.11 41 1 SP  
Putative transcriptional 
regulator 

Q9SFG5 Arabidopsis 

thaliana 

129.93/6.11 41 1 No 0.316 

Heat shock factor 1b Q4L0F7 Medicago sativa 55.35/4.73 41 1 No 0.335 
Methyl-CPG-binding 
domain 9 

Q9SGH2 
*At3g01460 

Arabidopsis 

thaliana 

240.43/5.34 51 1 No 0.222 

Pentatricopeptide repeat 
containing protein  

Q9SAK0 
*At1g79490 

Arabidopsis 

thaliana 

94.17/9.18 41 1 No 0.35 

Probable integrase Q1S5K2 Medicago 

truncatula 

34.17/9.29 41 1 No 0.433 

Zinc finger family protein Q10RY0 Oryza sativa 75.80/6.41 48 1 No 0.361 
Zinc finger-like  Q69TX4 Oryza sativa  35.23/4.73 41 1 No 0.393 
Putative F-box protein  Q9LRZ2 

*At3g16820 
Arabidopsis 

thaliana 

34.21/7.09 49 3 No 0.264 
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Table 7 continued 
Auxin-responsive protein 
IAA5 

P33078 Arabidopsis 

thaliana 

18.35/6.37 40 1 No 0.58 

Phytochrome B A2XFW2 Oryza sativa 128.45/5.97 41 1 No 0.471 
OSJNBa0043L24.18 
protein 

Q7XM99 Oryza sativa  38.54/8.54 41 2 No 0.36 

OSJNBa0042L16.12 
protein 

Q7XUT8 Oryza sativa 37.29/8.46 41 1 No 0.26 

OSJNBa0058K23.9 
protein 

Q7XTU3 Oryza sativa 35.76/8.74 42 1 No 0.263 

Transport protein 

Major intrinsic protein 
PIPc  

O23772 Craterostigma 

plantagineum 

20.95/9.84 44 1 SP  

Putative cyclic nucleotide 
binding transporter 1 

Q6ZHE3 Oryza sativa 88.35/9.08 43 1 No 0.806 

Putative P-type II calcium 
ATPase 

Q70TF1 Physcomitrella 

patens 

121.62/6.24 40 1 No 0.606 

MtN20 protein O24098 Medicago 

truncatula 

26.30/5.75 48 1 No 0.346 

Putative vesicle transfer 
ATPase  

O81459 
*At4g04180 

Arabidopsis 

thaliana 

58.96/4.98 45 1 Yes  

Retroelement protein 

Transposon 
protein,CACTA, En/Spm 
sub-class 

Q2QVP6 Oryza sativa 17.98/9.27 43 1 No 0.809 

Transposon protein, 
unclassified 

Q2QZM0 Oryza sativa 99.20/8.62 42 1 No 0.43 

Retrotransposon protein, 
Ty3-gypsy subclass  

Q53KK1 Oriza sativa  25.23/11.51 42 1 No 0.673 

Retrotransposon 
protein,Ty3-gypsy 
subclass 

Q2QPA0 Oryza sativa 32.54/8.27 44 1 No 0.532 

Putative retroelement pol 
polyprotein  

Q9SKF9 
*At2g12920 

Arabidopsis 

thaliana 

98.67/9.84 62 2 No 0.168 

Retrotransposon protein, 
Ty1-copia sub-class 

Q7XBV6 Oryza sativa 39.75/7.19 40 1 No 0.673 

Retrotransposon protein, 
unclassified 

Q53N41 Oryza sativa 102.10/5.36 42 1 No 0.368 

Expressed protein  Q2QT26 Oryza sativa 59.24/11.16 46 1 No 0.266 
Transposable element  Q9T0D8 

*At4g11710 
Arabidopsis 

thaliana 

55.50/9.48 42 1 No 0.406 

Transposable element Q6NMD3 
*At2g06190 

Arabidopsis 

thaliana 

16.69/9.64 40 1 No 0.806 

Other protein 

Phaseolin P80463 Phaseolus 

lunatus 

47.95/5.40 44 1 Yes  

Hypothetical protein 

Hypothetical protein Q10P78 Oryza sativa 38.75/6.37 41 1 No 0.744 
Hypothetical protein Q53L56 Oryza sativa 14.08/10.52 42 1 No 0.67 
Hypothetical protein Q2R1Y3 Oryza sativa  86.31/8.14 46 1 No 0.41 
Hypothetical protein Q8LIW2 Oryza sativa 32.00/11.10 41 1 No 0.436 
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Table 7 continued 
Hypothetical protein Q69T50 Oryza sativa 47.90/11.57 46 1 No 0.84 
Hypothetical protein Q7XM53 Oryza sativa 19.44/10.61 42 1 No 0.401 
Hypothetical protein Q7XPT6 Oryza sativa 25.26/6.00 44 1 SP  
Hypothetical protein Q53MH3 Oryza sativa 16.06/10.28 41 1 No 0.635 
Hypothetical protein  Q5JLY6 Oryza sativa 19.35/5.93 45 1 No 0.32 
Hypothetical protein  Q5N769 Oryza sativa 58.50/8.85 40 1 No 0.582 
Hypothetical protein  Q5N7R0 Oryza sativa 12.43/12.27 45 1 No 0.592 
Hypothetical protein  Q5Z648 Oryza sativa 34.61/12.16 49 1 No 0.404 
Hypothetical protein  Q5Z6H9 Oryza sativa 15.69/11.71 42 1 No 0.476 
Hypothetical protein  Q5Z6V0 Oryza sativa 11.11/11.36 40 1 No 0.871 
Hypothetical protein  Q5Z8T0 Oryza sativa 8.49/10.74 45 1 No 0.737 
Hypothetical protein  Q65X91 Oriza sativa 29.86/9.31 55 2 SA  
Hypothetical protein  Q65XH3 Oryza sativa 14.51/11.61 41 1 No 0.359 
Hypothetical protein  Q69KG8 Oriza sativa  36.29/9.24 48 2 No 0.432 
Hypothetical protein  Q6EPK5 Oryza sativa 16.74/12.36 46 1 No 0.492 
Hypothetical protein  Q6H6P6 Oryza sativa 24.40/5.15 42 1 No 0.144 
Hypothetical protein Q6K242 Oryza sativa 24.50/11.67 42 1 No 0.451 
Hypothetical protein  Q6K607 Oryza sativa 12.77/11.44 51 1 No 0.706 
Hypothetical protein  Q6K8C9 Oryza sativa 19.95/11.47 44 1 No 0.592 
Hypothetical protein  Q6YY27 Oryza sativa 34.35/12.11 41 1 No 0.502 
Hypothetical protein  Q6ZKP4 Oryza sativa 37.26/11.69 41 1 SP  
Hypothetical protein  Q6ZKS8 Oryza sativa 10.19/12.18 48 1 No 0.711 
Hypothetical protein  Q7XQE1 Oriza sativa  41.57/11.35 48 1 No 0.379 
Hypothetical protein  Q8RZX3 Oryza sativa 28.34/8.75 45 1 No 0.265 
Hypothetical protein  Q8W5H3 Oryza sativa 17.31/9.58 50 1 No 0.392 
Hypothetical protein Q9SNL4 Oryza sativa 17.12/11.65 48 1 No 0.74 
Hypothetical protein  Q5N7C1 Oryza sativa 38.27/11.65 42 1 No 0.328 
Hypothetical protein  Q5SNE3 Oryza sativa 35.72/11.54 41 1 No 0.422 
Hypothetical protein  Q5VP73 Oryza sativa  28.35/10.53 40 1 No 0.306 
Hypothetical protein  Q6K2X5 Oriza sativa  12.23/4.72 42 1 No 0.64 
Hypothetical protein  Q6YXI2 Oryza sativa 27.63/4.67 66 2 No 0.661 
Hypothetical protein  Q8SAV2 Oryza sativa 19.27/10.22 46 1 No 0.232 
Hypothetical protein  Q9AV28 Oryza sativa 14.21/9.50 42 1 No 0.702 
Hypothetical protein  Q6ZLH1 Oryza sativa 25.53/10.76 41 1 SP  
Hypothetical protein Q7XKB8 Oryza sativa 52.24/9.58 40 1 Yes  
Hypothetical protein Q7XPX5 Oryza sativa 43.99/5.03 41 1 No 0.585 
Hypothetical protein Q7XSW0 Oryza sativa 97.37/5.48 63 2 No 0.288 
Hypothetical protein Q5NA76 Oryza sativa 54.03/11.43 43 1 Yes  
Hypothetical protein  Q7XPF0 Oryza sativa  97.34/5.74 41 1 No 0.336 
Unknown protein  Q9C9V2 

*At1g67860 
Arabidopsis 

thaliana 

8.30/9.50 41 1 No 0.397 

Unknown protein  Q3EC39 
*At2g09388 

Arabidopsis 

thaliana 

17.06/6.29 42 1 No 0.493 

F6D8.1 protein Q9SSS8 Arabidopsis 

thaliana 

4.51/10.01 42 1 No 0.82 

Hypothetical protein Q1EPB8 Musa accuminata 14.87/9.55 40 1 No 0.476 
Hypothetical protein Q2HSH5 Medicago 

truncatula 

11.37/10.30 52 1 No 0.865 
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Table 7 continued 
Hypothetical protein  Q9XEP3 Sorghum bicolor 157.21/8.48 42 1 No 0.137 
Hypothetical protein  Q657J8 Oryza sativa 22.58/4.47 41 1 No 0.877 
Hypothetical protein  Q9LYC4 Arabidopsis 

thaliana 

30.86/6.22 42 1 No 0.517 

Dentin sialophospho 
protein 

Q9FGR1 
*At5g52530 

Arabidopsis 

thaliana  

92.41/6.5 42 1 No 0.651 

Similar to F-box family 
protein 

Q58G02 
*At2g30615 

Arabidopsis 

thaliana 

22.63/9.05 45 1 No 0.572 

F-box domain containing 
protein 

Q10KX1 Oryza sativa 48.04/9.45 45 1 No 0.629 

Hypothetical protein  Q8S5G4 Oryza sativa 19.44/11.65 61 2 Yes  

 
 

Table 8. List of proteins identified in the xylem sap of Hawaii7996 (resistant genotype) 

healthy plants (Fig. 12B). 

They were separated by 1-D SDS-PAGE and analyzed with LC-MS/MS as described in 

materials and methods part. Proteins are categorized based on their putative functions. 

 
Protein name

a
  Accession

b
 Organism

c
 Mr/pI

d
 Score

e
 Peptide

f
 SiP

g
 SeP

h
 

Peroxidase 

Peroxidase 68 Q9LVL1 Arabidopsis 

thaliana 

35.62/9.49 114.12 2 Yes  

Peroxidase Q5W5I3 Picea abies 37.31/9.47 44.13 1 Yes  
Peroxidase 73 Q43873 Arabidopsis 

thaliana 

35.92/9.44 55.04 2 Yes  

Peroxidase  Q9XIV9 Nicotiana 

tabacum  

34.37/9.40 135.86 4 Yes  

Peroxidase 3 Q9XFL4 Phaseolus 

vulgaris 

35.01/9.32 72.72 2 Yes  

Anionic peroxidase swpb2 Q5JBR2 Ipomoea batatas 36.84/9.31 62.60 2 Yes  
Peroxidase  Q27U89 Eucalyptus 

globulus 

28.89/9.18 51.67 2 No 0.864 

Peroxidase  Q4W2V2 Picea abies 34.06/9.00 62.03 1 Yes  
Peroxidase 3 Q9SSZ7 Scutellaria 

baicalensis 

33.90/8.87 40.58 2 Yes  

Putative peroxidase Q948Z3 Solanum 

tuberosum 

35.84/8.53 365.16 6 Yes  

Peroxidase Q4KXC3 Helianthus 

annuus 

10.34/8.06 40.58 2 No 0.723 

Peroxidase cevi16 Q4A3Y6 Solanum 

lycopersicum 

31.74/7.71 372.41 7 No 0.439 

Bacterial-induced class III 
peroxidase 

Q8RVP4 Gossypium 

hirsutum 

35.14/7.55 49.20 2 Yes  

Cationic peroxidase Q2WEC9 Solanum 

lycopersicum 

35.85/7.55 397.94 8 SA  
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Table 8 continued 
Peroxidase Q07446 Solanum 

lycopersicum 

35.99/7.52 638.13 13 Yes  

Peroxidase P93551 Spinacia 

oleracea 

33.18/7.13 56.81 1 No 0.735 

Peroxidase Q94IQ1 Nicotiana 

tabacum 

39.06/5.99 93.18 3 Yes  

Peroxidase1C Q43791 Medicago sativa 38.27/5.80 49.61 3 Yes  
Anionic peroxidase Q5GMM6 Capsicum 

chinense 

30.97/5.37 107.16 3 Yes  

Suberization-associated 
anionic peroxidase 1 

P15003 Solanum 

lycopersicum 

38.75/4.91 363.11 6 Yes  

Peroxidase Cevi-1 Q9LWA2 Solanum 

lycopersicum 

34.94/4.56 77.08 1 Yes  

Peroxidase Q43055 Populus 

kitakamiensis 

34.17/4.44 41.84 3 Yes  

Peroxidase ATP29a Q53YQ3 Arabidopsis 

thaliana 

37.23/4.41 61.20 1 Yes  

Protein degradation and modification 

Serine carboxypeptidase P52712 Oryza sativa 47.79/5.12 48.63 1 No 0.711 
Serine carboxypeptidase 3 P21529 Hordeum 

vulgare 

56.36/5.85 42.39 1 Yes  

Serine carboxypeptidase-
like 47 

Q9FFB0 Arabidopsis 

thaliana 

56.54/7.06 41.05 1 Yes  

Ubiquitin I2 Q3E7K8 
*At1g55060.1 

Arabidopsis 

thaliana 

25.84/6.24 110.92 3 No 0.496 

Ubiquitin monomer 
protein 

Q2VJ43 Morus 

mongolica 

17.03/6.75 76.42 2 No 0.526 

Putative polyubiquitin Q6KFR8 Arabidopsis 

thaliana 

28.17/9.10 74.19 2 No 0.433 

Polyubiquitin P93135 Fragaria 

ananassa 

42.68/7.00 69.92 2 No 0.398 

Chloroplast nucleotide 
DNA binding protein  

Q94K53 
*At1g09750 

Arabidopsis 

thaliana 

39.77/8.44 60.86 1 No 0.725 

Lipid Transfer family 
protein  

Q8LBY9 
*At5g05960 

Arabidopsis 

thaliana  

12.44/9.30 141.39 3 Yes  

Lipid transfer family 
protein 

Q8LBY9 
*At5g05960 

Arabidopsis 

thaliana 

12.44/9.30 110.69 5 Yes  

PR and defense related protein 

PR2 protein P32045 Solanum 

lycopersicum 

16.02/8.53 275.34 3 Yes  

Resistance protein RPP5 O49470 Arabidopsis 

thaliana 

193.48/8.63 43.50 1 No 0.358 

Calmodulin  P93087 Capsicum 

annuum 

16.83/4.10 130.45 1 No 0.636 

Polygalacturonase 
inhibitor protein 

Q2P9N7 Capsicum 

annuum 

28.81/7.10 61.09 2 No 0.676 

β-1,3-glucanase-like 
protein 

Q9FUN5 Capsicum 

annuum 

24.48/8.61 52.06 1 No 0.488 

Glucan endo-1,3-β-D-
glucosidase 

Q42890 Solanum 

lycopersicum 

37.86/9.68 98.62 2 Yes  
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Table 8 continued 
Putative basal resistance 
related chitinase 

Q4ZFU8 Nicotina 

tabacum 

10.64/4.82 105.51 1 No 0.715 

Chitinase Q7Y0S1 Solanum 

lycopersicum 

27.66/5.93 62.31 1 Yes  

Class I chitinase O81145 Solanum 

tuberosum 

35.42/6.57 98.19 2 Yes  

Endochitinase protein  CAA02125 Solanum 

lycopersicum 

32.56/8.95 97.93 2 Yes  

Basic endochitinase Q05537 Solanum 

lycopersicum 

26.68/8.46 71.35 1 No 0.72 

Germin-like protein Q5DT23 Capsicum 

annuum 

23.19/8.54 51.93 1 Yes  

Nectarin-1  Q9SPV5 Nicotiana 

plumbaginifolia 

24.76/7.71 114.67 1 Yes  

Superoxide dismutase (Cu-
Zn) 1 

P14830 Solanum 

lycopersicum  

15.30/5.83 169.72 3 No 0.686 

Superoxide dismutase (Cu-
Zn) 

Q58ZE5 Manihot 

esculenta 

15.11/5.42 82.22 2 No 0.647 

Superoxide dismutase (Cu-
Zn) 

P27082 Nicotiana 

plumbaginifolia 

15.23/5.47 72.64 1 Yes  

Syringolide-induced 
protein 14-1-1 

Q8S901 Glycine max 28.73/9.92 42.40 1 No 0.337 

NBS-LRR-like protein 
cD7 

Q9ZSN3 Phaseolus 

vulgaris 

93.40/5.94 40.94 1 No 0.459 

Cell wall metabolic protein 

Acid invertase Q1KL65 Solanum 

tuberosum  

70.68/5.69 82.17 1 SA  

6G-fructosyltransferase Q5FC15 Asparagus 

officinalis 

68.31/5.48 82.17 1 Yes  

Putative beta-galactosidase Q9LLT0 Solanum 

lycopersicum 

93.24/6.80 81.73 1 SA  

Glucan endo-1,3-β-D-
glucosidase 

Q42890 Solanum 

lycopersicum 

37.86/9.68 372.48 6 Yes  

α-L-arabinofuranosidase Q76LU4 Solanum 

lycopersicum 

74.15/5.30 54.66 2 Yes  

Expansin-like protein Q7XHJ2 Quercus robur 28.8/7.62 44.59 1 Yes  
Kinesin-like protein 
NACK2 

Q8S949 Nicotiana 

tabacum 

107.22/8.46 41.44 2 No 0.315 

Metabolic protein 

      Carbohydrate metabolism 

Fructose-bisphosphate 
aldolase 

Q38HV4 Solanum 

tuberosum 

38.43/8.52 172.57 3 No 0.421 

Fructose-bisphosphate 
aldolase 

Q2PYX3 Solanum 

tuberosum 

38.61/7.51 160.65 3 No 0.383 

Enolase P26300 Solanum 

lycopersicum 

47.79/5.68 93.72 2 No 0.515 

      Energy and nitrogen metabolism 

Malate dehydrogenase Q645N1 Solanum 

lycopersicum 

36.15/8.87 96.08 1 No 0.664 

Methionine synthase Q42662 Solenostemon 

scutellarioides  

84.59/6.09 43.68 1 No 0.487 



Chapter 3  Tomato xylem sap proteome 

 84 

Table 8 continued 
Methionine synthase Q9LM03 Solanum 

tuberosum 

84.66/5.93 239.11 5 No 0.45 

Oxygen-evolving complex 
protein 2  

P29795 Solanum 

lycopersicum 

27.79/8.27 80.76 2 No 0.802 

Cytochrome c P00059 Abutilon 

theophrasti 

12.03/9.70 55.1 1 No 0.737 

Cytochrome b5 P49098 Nicotiana 

tabacum 

14.97/4.89 74.24 1 No 0.654 

Signal transduction 

Putative MEK kinase Q6ZI89 Oryza sativa 80.03/9.23 45.59 1 No 0.643 
MAP kinase WNK2 Q8S8Y9 Arabidopsis 

thaliana 

65.32/5.16 40.37 2 No 0.241 

Putative GTP-binding 
protein 

Q56YJ4 Arabidopsis 

thaliana 

72.63/6.29 50.71 1 Yes  

Calmodulin binding 
protein 

Q8L7V5 
*At3g52870 

Arabidopsis 

thaliana 

51.28/8.69 43.94 1 No 0.347 

Trnscription 

DNA topoisomerase II Q2L363 Malus domestica 164.87/7.56 41.71 1 No 0.132 
DNA topoisomerase II Q8GSC4 Nicotiana 

tabacum 

166.42/6.36 41.71 1 No 0.111 

DNA-directed RNA 
polymerase subunit beta 

Q7YJY0 Calycanthus 

fertilis 

156.09/9.36 43.10 2 No 0.335 

Maturase K Q7YIX9 Panax 

stipuleanatus 

59.35/9.58 41.35 1 No 0.358 

Modifier of rudimentary 
protein 

Q10QR4 Oryza sativa 26.65/8.54 48.28 1 No 0.703 

Pentatricopeptide Q10N26 Oryza sativa 91.51/9.43 40.29 1 No 0.372 

Other protein 

Patatin-like protein 3 Q9FZ08 Nicotiana 

tabacum 

45.12/7.70 106.15 3 Yes  

Patatin-like protein 2 Q9FZ07 Nicotiana 

tabacum 

22.41/9.36 71.60 2 No 0.682 

Hypothetical protein 

Hypothetical protein Q55BS4 Dictyostelium 

discoideum 

106.90/9.31 44.68 1 No 0.088 

F2J6.12 protein Q9MA69 Arabidopsis 

thaliana 

70.20/5.82 44.63 1 No 0.448 

T26F17.7 Q9SFF1 Arabidopsis 

thaliana 

60.37/60.37 60.37 2 Yes  

Hypothetical protein Q7XTF5 Oryza sativa 12.61/9.78 43.84 1 Yes  
Hypothetical protein Q8L7V5 

*At3g52870 
Arabidopsis 

thaliana  

51.28/8.69 61.85 2 No 0.347 

 
a Name of the protein derived from SwissProt and TAIR database (marked with an asterisk in 
accession number).  
b SwissProt protein accession number except the accession number with an asterisk was taken 
from TAIR database. 
c Plant species from which the protein was annotated 
d Theoretical molecular mass (Mr) and isoelcctric point (pI) calculated from ExPaSy server 
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e Mowse score derived from Mascot database  
f Number of matched peptides 
g Prediction of signal peptides: Yes - predicted, No - not predicted and SA- signal anchor 
predicted 
h Value of SecretomP_NN score, where score ≥ 0.5 was considered as secretary (Bendtsen et 
al. 2004a) 
 

Several groups of proteins such as cell wall related proteins, proteases and defense related 

proteins were found similar to those previously identified in the xylem sap of different plants 

supporting that xylem protein composition tends to be conserved in higher plants (Buhtz et al. 

2004).  The conservation could be due to a high degree of structural similarity of functionally 

matured tracheary elements and suggesting the role of these proteins in maintaining xylem 

development, differentiation, and function (Buhtz et al. 2004).  

3.3.1 Origin of xylem sap protein 

Since xylem elements lack protein synthesis machinery, the protein should be synthesized in 

other tissues before being imported to xylem sap. Almost 40% in WVa700 and 37% in 

Hawaii7996 xylem sap proteins were predicted to contain N-terminal signal peptides with 

SignalP (Table 7 and 8), which are considered to mediate the secretion of these proteins into 

the xylem sap (Rep et al. 2003). Remaining proteins did not show the possession of signal 

peptides. Evidences of several proteins lacking signal peptides but localized in the 

extracellular matrix and cell wall were reported previously (Slabas et al. 2004). Thus, the 

existence of unconventional and unknown non-classical secretory signal sequences and 

pathways are widely believed and already reported in yeast, bacteria, and mammals 

(Bendtsen et al. 2004a). The remaining proteins were, therefore, analyzed with SecretomeP 

yielding 27% in WVa700 and 19% in Hawaii7996 more non-classical secretory proteins 

(Table 7 and 8). The presence of secretion signals proteins, either N-terminal signal peptide 

or non-classical secretion signals, suggested that these proteins could be targeted to the xylem 

sap after their synthesis in several living cells; the xylem parenchyma cells and contact cells 

that are in close contact with dead xylem conduits (Tyree and Zimmermann 2002). However, 

32% proteins in WVa700 and 44% in Hawaii7996 (Table 7 and 8) lacked both signal 

peptides and non classical secretion signals were also present in the sap. It is noteworthy in 
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case of xylem sap proteins that the formation of the functional xylem conduit occurs as a 

result of developmental programmed cell death (PCD) during the terminal tracheary 

differentiation, and many of the xylem proteins could be those released after the degradation 

and lysis of xylem tracheary elements or other contact cells (Alvarez et al. 2006). Several 

other arguments are available for the extracellular localization of proteins that lack secretion 

signals. Same proteins could be present in more than one cellular compartment for different 

biological functions (Slabas et al. 2004, Millar et al. 2006) or web based prediction software 

may incorrectly assign location (Lee et al. 2004).  

Several important groups of proteins that are reportedly involved in biochemical and cellular 

processes occurring in the xylem sap are discussed in the following sections.  

3.3.2 Xylem development and differentiation 

The majority of xylem sap proteins such as cell wall metabolic proteins, peroxidase, and 

proteases (Table 7 and 8) consist of those involved in growth, development, and 

differentiation of xylem elements that lead to formation of functional conducting tubes. 

Development of xylem involves several fundamental processes of plant growth and 

development such as cell division, cell expansion, secondary cell wall formation, 

lignification, and PCD (Mellerowicz et al. 2001). 

3.3.2.1 Cell wall metabolism, modifications, and remodelling 

The identification of cell wall related proteins (Table 7 and 8) in xylem sap is reasonable 

because the xylem elements are continually accompanied by cell walls throughout their 

growth and development, however, with different composition and concentration. In fact, 

mature tracheids and vessel elements are dead cell wall skeletons surrounded by living xylem 

parenchyma cells.  

The cell wall related proteins identified in the sap comprise proteins involved in synthesis and 

remodelling/restructuring of plant cell walls such as cellulose synthase, TANGLED1, 

kinesin, glycosyltransferase, galacturonosyltransferase, UDP-D-glucuronic acid 

decarboxylase, expansin, glcosyl hydrolase, and chitinase. The plant cell wall is a dynamic 

structure and is developed by the biosynthesis of cell wall components by the actions of 
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membrane-bound enzymes followed by the assembly and rearrangement of cell wall 

structures by the actions of extracellular proteins (Cosgrove 2005). The synthesis of major 

cell wall polysaccharides are carried out primarily by two enzymes; catalysing the 

biosynthesis of cellulose microfibrils by cellulose synthase-complex (Doblin et al. 2002), and 

of hemicellulose, pectic polysachharides, and various glycoproteins by glycosyltransferases 

(GTs) (Egelund et al. 2004). The identification of both of these enzymes shows the 

importance of these polysachharides for the xylogenesis. Other identified proteins that 

contribute to the orientation of cellulose microfibrils were microtubule binding protein 

(TANLED1) and kinesin. Galacturonosyltransferase is a glycosyltransferase involved in the 

formation of homogalacturonan (HGA), the backbone of the plant cell wall pectin. UDP-D-

glucuronic acid decarboxylase catalyzes the biosynthesis of UDP-xylose, which is an 

important sugar donor for the synthesis of hemicellulose xyloglucan, glycoproteins, and other 

glycoconjugates in cell (Harper and Bar-Peled 2002).  

The identified enzymes responsible for cell wall remodelling and restructuring were expansin 

and hydrolase. Expansin is proposed to play a key role to control the cell wall extension 

required for cell and tissue growth by causing expansion of the cellulose/xyloglucan 

framework (Cosgrove et al. 2002) and in vascular cell differentiation (Cho and Kende 1998). 

Several members of hydrolases namely ß-galactosidases, ß-1, 3-glucanase, chitinase, lipases, 

pectin esterase, acid invertase, 6, G-fructosyltransferase, α-L-arabinofuranosidase and 

polygalacturonase were identified. ß-galactosidases, ß-1, 3-glucanase, chitinase, and lipases 

could be involved in the degradation of the primary cell wall which is coupled with the 

secondary cell wall formation, and is necessary for the development of functional xylem 

elements (Fukuda 2004). Cell wall hydrolase may also play a role in cell wall perforations 

largely present in the functional tracheary elements. Pectin methylesterases are implicated in 

cell wall extension, rigidification, xylem cell differentiation, and cell growth and was 

essential for pectin modification during secondary cell wall deposition in xylem cells 

(Pelloux et al. 2007). A polygalacturonase hydrolyses α-1, 4-linkage in homogalacturonan 

backbone of pectic polysaccharides and act co-ordinately with other cell wall-modifying 

enzymes to increase cell wall extensibility (Hadfield and Bennet 1998). Lipase in xylem sap 
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could be involved in the early stages of cell content degradation during PCD (Fukuda 2000).  

Hydroxyproline rich glycoproteins including extension which are the most abundant 

structural protein in the plant cell wall were also identified in xylem sap. They are involved in 

strengthening of the plant cell wall as well as repairing of differentiated xylem walls 

especially in growing organs or after injury (Sakuta and Satoh 2000). Nucleoside hydrolases 

(NH) are well known nucleoside-modifying enzymes that play key roles in the purine salvage 

pathway of many pathogenic organisms which are unable to synthesize purines de novo but 

their roles in plants are unclear (Porcelli et al.2008). 

3.3.2.2 Protease and PCD 

Both exo and endo-peptidases belonging to serine protease (subtilisin like serine protease and 

serine carboxypeptidase), aspartic protease (CDR1), cysteine proteases (Ulp1) family, lipase, 

and ubiquitine were identified in tomato xylem sap (Table 7 and 8).  The presence of serine 

proteases, cysteine proteases, and lipases in the xylem sap could be related to the regulation 

of various processes of plant development such as xylem differentiation and PCD (Beers et 

al. 2000).  Xylem proteases may be involved in PCD process as mediators of signal 

transduction or as effectors of PCD (Beers et al. 2000). The terminal stage of xylem elements 

differentiation involves the developmental PCD, leading to the complete degradation of the 

primary cell wall and protoplast along with vacuole (Fukuda 2000). The cell’s digestion 

releases several proteases and nucleases into a hollow tracheary element. Xylem protease 

could be involved in endogenous signalling, maturation and turnover of cell wall proteins and 

in the generation of active peptides in the cell wall (Jamet et al. 2006). Ubiquitine is involved 

in ubiquitination and thus targeting of proteins for intracellular proteolysis by ubiquitin 

proteosome pathway. The ubiquitination contributes significantly to plant development by 

affecting a wide range of processes, including embryogenesis, hormone signalling, and 

senescence.  

3.3.3 Defence protein 

Xylem sap analysis revealed networks of defense related proteins including peroxidase, 

antioxidants, detoxification proteins, resistance and PR proteins (Table 7 and 8).  The 
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presence of constitutive defense proteins had previously been identified in xylem sap from 

different plant species (Buhtz et al. 2004).  

3.3.3.1 Peroxidase 

The xylem sap protein was characterised by the presence of high number of different 

peroxidases. Plant peroxidases are PR-9 class, large multigene family proteins (e.g. 138 genes 

in Oriza sativa) and one of the major compounds detected in xylem sap of a various plants 

(Buhtz et al. 2004).  The functional contribution of xylem sap peroxidase could be the 

enforcement of the cell wall structure by cross-linking and polymerization of cell wall 

structural proteins and polysaccharides or by catalyzing polymerization and deposition of 

lignin, and suberin in the xylem tissues (Passardi et al. 2005). Since xylem transport takes 

place under negative pressure in all vascular plants, the walls of the tracheary elements must 

be reinforced to withstand compression and collapse. Peroxidase catalysed lignin 

impregnation provides protection to cellulose and hemicellulose from enzymatic attack and 

makes the xylem elements waterproof to facilitate water transport. Xylem peroxidases can 

also regulate and participate in reactive oxygen intermediates (ROI) production during PCD 

and pathogen defense, and also in operation of antioxidant defense mechanisms (Dat et al. 

2000, Grant and Loake 2000). Plant peroxidase can be anionic, neutral, and cationic 

according to their isoelectric point. The xylem sap revealed 31 peroxidases of basic pI and 11 

of acidic pI in susceptible plants.  The presence of such a high number of peroxidase 

isozymes/isoforms indicates their involvement in multitudes of physiological and 

developmental processes. Anionic peroxidases were reported in ligninification (Rodriguez-

Lopez et al. 2000), vascular plugging (Biles and Abeles 1991) and after wounding or 

pathogen invasion (Robb et al. 1991), whereas, cationic peroxidises were involved in cell 

wall biosynthesis except monolignols polymerization (Hiraga et al. 2001).  

3.3.3.2 Antioxidant and detoxification 

Several enzymes with antioxidative and detoxification properties were found in xylem sap 

which includes superoxide dismutases (SOD), tocopherol polyprenyltransferase, germin like 

proteins  (GLP), nectarin-1, selenium binding protein (SBP) and γ-glutamyl 
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transferase/transpeptidase (GGT). Reduced O2 species (ROS) including ROI are produced in 

all cellular compartments of plants as a by-product of aerobic metabolisms such as 

photosynthesis and respiration  and are compounded during a reactions to various aboitic and 

biotic stress (Matamoros et al. 2003). Excess ROS are toxic and can lead to the oxidative 

stress damage of various cellular components (Moller et al. 2007). Antioxidant and 

detoxifying proteins are essential to avoid such damage to maintain cellular functions 

especially for the long living xylem tracheary elements which specifically can generate H2O2 

during lignification (Olson and Varner 1993). The occurrence of such detoxifying enzymes 

may also contribute to the delay of PCD and thereby promote the duration of cell wall 

thickening imparting longer life to xylem cells. 

Cu/Zn-SOD and tocopherol polyprenyltransferase are primary ROS scavenger. Tocopherol 

polyprenyltransferase has also been suggested to participate in intracellular signalling and in 

cyclic electron transport around photosystem II affecting the plant development and stress 

responses (Krieger-Liszkay and Trebst 2006). GLP functions primarily as SODs and 

associated with cell wall formation, expansion, extension, and re-enforcement (Christensen et 

al. 2004). Nectarin-1 is a soluble GLP that could acts as defense proteins (Carter and 

Thornburg 2000). SBP was involved in detoxification of and/or tolerance to excess selenium 

which has deleterious effects on normal cell development and enhances tolerance to different 

pathogens (Sawada et al. 2004). GGT are assumed to be involved in the utilization and 

maintenance of glutathione homeostasis and thereby keeping the cell redox balance (Noctor 

et al. 2002).  

3.3.3.3 PR proteins 

Chitinase, β-1, 3-glucanase-like protein, and pathogenesis-related protein P2 are PR proteins 

identified in healthy xylem sap. Chitinases (PR3) and β-1, 3-glucanases (PR2) are multigene 

family proteins which are constitutively expressed in plants, however induced significantly 

after pathogen invasion (Ferreira et al. 2007). Chitinase and β-1, 3-glucanases in xylem sap is 

considered to protect plants from many xylem invading fungi by degrading fungal cell walls 

that consists of chitin and β-1, 3-glucan and can act synergistically (Theis and Stahl 2004).  

Xylem sap showed the presence of multiple chitinase isozymes including class I chitinase 
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having both acidic and basic pI which could be to allow plants to respond in a tissue specific 

and stimulus specific manner or each providing different functions. Acidic endochitinase are 

usually extracellular and was implicated in the modulation of mechanical properties of the 

cell wall, and signal generation and transfer during infection where as basic vacuolar 

chitinases take part in repressing pathogen growth (Collinge et al. 1993, Yokoyama and 

Nishitani 2004). Similarly, both acidic and basic glucanase were identified in the sap. In 

plants, extracellular β-1, 3-glucanases are generally acidic and involved in cell division 

besides in defense mechanism, while those of vacuolar organs are basic (Van Den Bulcke 

1989).  

3.3.3.4 Resistance protein 

Several disease resistance proteins namely NBS-LRR cD7, RPP5, RGH1, polygalacturonase 

like protein (PGIP), and syringolide induced protein were identified in the sap. Most of plant 

disease resistance (R) proteins that function in gene-for-gene manner are characterized by the 

presence of a series of leucine-rich repeats (LRRs), a nucleotide-binding site (NBS), and a 

putative amino-terminal signalling domain and thus termed as NBS-LRR proteins. Disease 

resistance proteins are known for their role in the recognition of invading pathogens and the 

activation of defense responses that confine pathogen growth and spread (De Young 

and Innes 2006).  Both RPP5 and RGH1 belong to the NBS-LRR family proteins. PGIP is a 

LRR-family glycoprotein that binds to the plant cell wall and is induced by pathogen 

infection and stress related signals (Di et al. 2006). Syringolides induced protein is 

considered to induce syringolides which are water-soluble, low-molecular-weight glycolipid 

elicitors that trigger defense responses in plants (Ji et al. 1998).  

3.3.4 Signalling proteins/signal transduction 

Several proteins involved in cellular communications or signalling pathways were identified 

in xylem sap such as MAP kinase, MEK, receptor protein kinase, LRR proteins, lipid transfer 

protein (LTP), G-protein, β-transducin, phosphatidylinositol glycan, calmodulin, phototropin, 

phytochrome B, armadillo repeat containing protein, and 1-aminocyclopropane-1-carboxylic 

acid (ACC) oxidase. The identification of these proteins support the hypothesis that xylem 
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sap consists of proteins involved in both signal production and transduction, which ensures 

root to shoot communication (Sakuta and Satoh 2000, Maldonado et al. 2002, Rep et al. 

2003).  

The mitogen-activated protein kinases (MAPKs) including MEKs are evolutionary conserved 

enzymes involved in the signal transduction cascade regulating a variety of physiological 

processes including cell proliferation, differentiation, movement and death (Mishra et al. 

2006). Plant MAPK cascades are activated in response to abiotic and biotic challenges, and 

during developmental processes and the initiation of the cascades often involves membrane-

located receptors proteins and G-proteins. Several members of several receptor protein 

kinases (RLKs) family such as S-domain class, LRR class, and PERK class were identified in 

the sap. The presence of several RLKs and G-proteins in the xylem sap suggests that they are 

capable of responding to a wide array of signals. RLKs have regulatory or signalling 

functions and play roles in regulating plant developments and defense. Guanine nucleotide-

binding protein (GTP-binding/G-proteins) mediate signalling is another widespread pathway 

existing in plants. G-proteins including β-transducin (Gβ) participate in signal transduction, 

development regulation, ion channel regulation, vesicular traffic, and cytoskeleton assembly 

including cell wall formation (Temple and Jones 2007). Phosphatidylinositol glycan is an 

enzyme that participates in reactions to produce a glycosylphosphatidylinositol (GPI) anchor 

molecule. GPI anchoring is used to target a specific subset of proteins to the cell surface 

where most of them take part in cell wall synthesis and remodelling (Gillmor et al. 2005). 

Plant calmodulins are primary intracellular receptor for Ca2+ signals which activates wide 

ranges of downstream signalling pathways and thus regulating many plant growth and 

developmental processes including PCD (Bouche et al. 2005). Xylem LTP could be a 

candidate for long distance signal carrier and are known to interact with cell surface receptors 

(Buhot et al. 2001, Maldonado et al. 2002) besides having antimicrobial activity (Wang et al. 

2004). ACC oxidase present in xylem sap is involved in the synthesis of ethylene that was 

reported to control xylem differentiation (Pesquet and Tuominen 2007).  Ethylene was also 

reported to induce β-1, 3-glucanase as well as chitinase in plants, and both of these PR 

proteins were detected in xylem sap (Wu and Bradford 2003). Plant Arm (armadillo)-repeat 
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proteins have known roles in several signalling pathways such as light, abscisic acid and 

receptor-kinase signalling, regulating plant developmental process, cytoskeleton regulation 

and  protein degradation pathways (Samuel et al. 2006). Two classes of photoreceptors 

namely phototropin and phytochrome B were identified. These photoreceptors absorb light to 

regulate a wide range of developmental and physiological responses. Phototropin is a plasma 

membrane blue light receptor kinase that optimises photosynthesis and minimizes 

photodamage in plants where as phytochromes are red and far-red light photoreceptor 

proteins that control photomorphogenesis in plants (Chen et al. 2004).  

3.3.5 Transcription and transcription factors 

Several proteins associated with DNA replication, transcription and translation such as DNA 

topoisomerase, RNA polymerase, maturase, pentatricopeptide, methyl CpG-binding proteins, 

and integrase were identified in xylem sap which might be related to a high rate of cell 

divisions taking place in growing and dividing cells during xylogenesis. Various transcription 

factors like zinc finger protein, F-box protein, Rcd1, and IAA5 were identified in the sap. 

Plant growth and developments are regulated by the action of transcription factors which 

activate or repress transcription in response to endogenous and exogenous stimuli 

(Yanagisawa 2006). IAA5 plays a significant role in auxin signalling influencing the vascular 

development and an ubiquitin-dependent protein degradation process (Mockaitis and Estelle 

2008). IAA is a well-known promoter of tracheid production (Little and Pharis 1995). 

3.3.6 Nutrient transport 

Several groups of ion and water carriers such as cyclic-nucleotide-gated channel (CNGC), 

several plasma membrane ATPase, and plasma membrane intrinsic proteins (PIPs) were 

identified in the sap. Since xylem sap is the primary means of transporting mineral nutrients 

and water throughout the plant, the presence of cations transport pathway such as ion 

channels and ion carriers are reasonable. Such processes contribute to plant nutrition, but also 

to cell signalling and toxic ions homeostatis. CNGC is one of the non-selective ion channels 

that participate in the uptake and/or translocation of several ions such as sodium, potassium, 

or calcium (Kaplan et al. 2007). Plant plasma membrane ATPase such as Ca2+ ATPases and 
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vesicle transfer ATPase plays key roles in the transport of ions and solutes through plasma 

membrane or vesicle intermediate. It was reported that AAA-ATPase that includes vesicle 

transfer ATPase are involved in sorting and translocation of ubiquitinated endosomal 

membrane proteins (Babst et al. 2002). The identification of ubiquitin in the present study 

also supports this hypothesis. PIP is a type of major intrinsic proteins (MIPs) in plants that 

are known to regulate plant cell turgor and/or transcellular water transport in growing tissues 

in addition to membrane permeability (Forrest and Bhave 2007). 

3.3.7 Enzymes of primary and secondary metabolism 

Several enzymes of central metabolic processes involved in the housekeeping of the cell such 

as those participating in glycolysis, tricarboxylic acid (TCA) cycle, respiration/energy 

production, photosynthetic reactions and nitrogen metabolism were identified in xylem sap 

(Table 7 and 8). Growth and development of plants are principally affected by highly 

interconnected primary metabolic processes. The identification of these basic metabolic 

enzymes may indicate an increased level of the primary metabolism during the xylem 

formation process. Cell division and expansion during the xylem formation are more energy 

and metabolic-needs demanding process.  

Starch synthase, fructose-bisphosphate aldolase, and enolase were the glycolytic enzymes 

identified in xylem sap. Glycolysis is the main pathway for carbohydrate catabolism and is a 

key metabolic component of the respiratory process in non-photosynthetic cells of mature 

plants such as xylem elements. The glycolytic pathway also supplies several unoxidised 

carbon sources used in the biosynthesis of secondary metabolites, isoprenoids, amino acids, 

nucleic acids and fatty acids. Also identified ribose-phosphate pyrophosphokinase is the 

enzyme of the oxidative pentose phosphate pathway and is necessary for the biosynthesis of 

purine and pyrimidine nucleotides and nucleic acids. Proteins involved in amino acid 

synthesis such as methionine synthase, arginine decarboxylase, 3-phosphoshikimate 1-

carboxyvinyltransferase, copper amine oxidase, and delta 1-pyrroline-5-carboxylate 

synthetase were also detected. Amino acids serve as precursors for proteins, vitamins, 

phytohormones, and nucleotides. The abundance of methionine synthase in xylem sap may 

reflect the higher demand for methyl transfer reactions required for the monolignols and 
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pectin synthesis (Moffatt and Weretilnyk 2001). Arginine decarboxylase appears to be the 

primary enzyme for cell extension, secondary metabolic processes, and stress responses. 

Copper amine oxidase in developing tracheary elements assists lignifications and occurs in 

cells destined to undergo PCD (Moller and McPherson 1998).  

Identification of proteins involved in energy metabolism such as photosynthesis, TCA cycle 

and electron transport in the xylem sap could be related to the high energy demand for 

tracheids elongation and growth. In fact, the proteins participating in glycolysis, the pentose 

phosphate pathway, and respiration can also be grouped into energy metabolism proteins. 

Several proteins associated with photosynthesis such as subunit T of photosystem II, OEE 

protein 2, cytochrome complex (c and b5), PAC protein, plant geranylgeranyl hydrogenase, 

ATPase/synthase complex and malate dehydrogenase were present in xylem. The net result 

of photosynthesis is the generation of a proton gradient which leads to ATP synthesis in 

addition to the production of molecular oxygen. The four complexes namely the photosystem 

I, photosystem II, ATP synthase and cytochrome complex are involved in the photosynthetic 

electron transfer chain and ATP synthesis. PAC protein and plant geranylgeranyl 

hydrogenase are regarded as photosynthesis regulating proteins where PAC protein functions 

in plastid mRNA maturation and accumulation (Meurer et al. 1998) and plant geranylgeranyl 

hydrogenase provides the side chain to chlorophylls, tocopherols, and plastoquinones to assist 

their synthesis (Keller et al. 1998). The mitochondrial ATPase/synthase complexes and 

malate dehydrogenase are essential enzymes for energy production. Chalcone synthase (CS), 

flavanone-3–hydroxylase (F3H), cinnamoyl CoA reductase (CCR) and cytochrome P450, 

which are involved in the production of secondary metabolites, were identified in xylem sap. 

Flavonoids and lignin are important secondary phenolic compounds present in the cell wall. 

Both CS and F3H participate in flavonoids biosynthesis whereas CCR is involved in 

monolignol biosynthesis. CCR plays a key regulatory role in lignin biosynthesis, by their 

involvement in monolignols biosynthesis from phenylpropanoid metabolites (Boerjan et al. 

2003). Cytochrome P-450 is involved in later hydroxylation reactions of the flavonoid and 

isoflavonoid metabolism leading to the production of several secondary metabolites including 

phytoalexin and lignin (Ayabe and Akashi 2006). Some well known storage proteins such as 
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patatin, starch synthase, and phaseolin were also present in the xylem sap. Vegetative storage 

proteins generally act as a temporary storage for nutrients buffering. 

3.3.8 Transposable element proteins 

Several transposable element proteins (TEPs) especially retroelements such as Ty1/copia, 

Ty3/gypsy, and CACTA transposon derived proteins were identified in xylem sap. TEPs play 

important roles in the plant genome structure, variation, and evolution in response to diverse 

environmental stress including microbial invasion (Deragon et al. 2008). They can alter gene 

expression by preventing expression, producing splicing products, or providing new 

regulatory signals. Class I retrotransposon (retroelement) transpose through reverse 

transcription of RNA intermediate where as class II transposon moves via a DNA 

intermediate. Ty1/copia and Ty3/gypsy are long terminal repeats (LTR) containing 

retrotransposon where as CACTA transposon (also called En/Spm family) is a class II 

transposon.   

3.3.9 Hypothetical proteins 

Due to incomplete genomic sequence information, the protein identification and functional 

categorization still remains difficult in tomato. This becomes evident in the presence of 

almost 20% hypothetical proteins that do not have any similarity to known proteins in other 

organisms. The identification of large number of functionally unknown proteins might 

indicate the presence of yet unidentified cellular process that are specific for the functional 

xylem as well as for the whole plant physiology. Therefore, elucidation of their biological 

and physiological role is a suggested future task.  

3.4 Conclusion 

Analysis of healthy xylem sap from tomato revealed large groups of proteins from cell wall 

metabolisms to networks of defense related proteins and several signaling and transport 

proteins which are crucial to the development and function of xylem sap in the plant. The 

xylem proteins from resistance plants showed the presence of higher percent of defense 

related proteins including peroxidase, and protein modifying enzymes compared to 

susceptible genotypes. The present study will definitely severs as a platform for a future 
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comparative analysis of the xylem proteome which are differentially regulated in response to 

pathogen inoculation especially for the xylem colonizing R. solanacearum. In addition to 

secretory proteins, several non-secretion signal proteins were also identified, the location of 

which can be confirmed with genetic experiments complemented with immunological 

detection. Similarly, further experiments using knockout lines and genetic, biochemical and 

cell biological data could elucidate the cellular functions of large number of hypothetical 

proteins present in the sap.  
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GENERAL DISCUSSION AND CONCLUSION 

Use of resistant tomato cultivars provides a valuable individual control measure for bacterial 

wilt. Nevertheless, the instability of resistance mechanisms in some geographic areas as a 

result of variable environmental conditions provides a major problem in tomato cultivation 

and makes investigations necessary leading to a more thorough understanding of resistance 

mechanisms at the molecular level.  The time point of analysis of the mid-stem tissue at 5 dpi 

was selected, based on the previous observations of the time needed by the bacteria to reach 

the stem and multiply heavily in the vascular system. The stem tissue was chosen for analyis 

due to the described presence of resistance mechanism at mid stem level, with a suggested 

role of cell wall components in the resistance reaction. The tomato-R. solanacearum system 

offers a useful model to investigate the interactions between bacteria and tomato stem 

components on a molecular level. To date, these resistance responses were reported only on 

histochemical background, but the broad spectrum proteome level responses at mid stem and 

in detail on its cell wall have not been analyzed before. The study systematically evaluated 

the physiological responses of the tomato plant at proteome level that are activated after the 

inoculation with R. solanacearum by a proteomic approach. 2-D gel based proteomics was 

primarily used for the comparative analysis of protein profiles of two genotypes followed by 

the comparison of the protein regulation with respect to pathogen inoculation for whole stem 

extracts and the stem cell wall proteome.  

In the first experiment, the proteome of the whole mid stem was extracted from two RIL 

genotypes differing in resistance to bacterial wilt, and compared for the differential 

abundance of the resolved proteins on 2-D gels which did not disclose differences. The 2-D 

analyses were continued by evaluating the differences in the abundance of proteins of 

susceptible and resistant genotypes regulated in response to pathogen inoculation. The 

compatible reaction showed a stronger response to the pathogen by displaying consistently 

reproducible 12 proteins of differential abundance, of which six were mainly annotated from 

plant origin and related to metabolism, pathogenesis, and stress. Pathogenesis as well as 

stress related proteins and metabolic proteins are among the key proteins involved in the 
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resistance or susceptibility of the host plant. The identification of further six proteins from 

bacterial origin could be due the presence of a heavy bacterial colonization of the stem (109 

cfu/g of stem). No visible differences were detected in 2-D gels of the resistant plant after 

pathogen inoculation, which may indicate the static nature of at least the most abundant and 

soluble proteins in the resistant reaction.  It was discussed that the defense reactions are more 

robust to input signals and express less biological variation compared to susceptible ones. 

The resistance could be influenced decisively by the kinetics of the reaction and their 

quantitative differences rather than the number and type of proteins (Tao et al. 2003). 

However, the technical limitations of the 2-D technique could also be the reason for non-

visibility of reactions on protein level in the resistant plant, since e.g. transcription factors, 

receptors and regulatory proteins are hardly identifiable on 2-D gels, but are vital in 

mediating defense responses in plants.  

The results from the first experiment encouraged us to increase the sensitivity of the analysis 

and investigation by studying the sub cellular proteome, which offers a good option by 

decreasing the complexities of the proteome and thereby enhancing the possibility to detect 

more subtle interaction. The cell wall of the stem was considered for this purpose in the 

subsequent experiment owing also to several other potential roles of cell wall in host 

pathogen interactions. Cell walls provide the first line of barrier to a pathogen and their 

reinforcement is a well known defense response of the plant towards pathogen ingress. This 

was suggested by our earlier report on the roles of the cell wall in strengthening the resistance 

(Wydra and Beri 2006, 2007). Supporting our assumption, 2-D SDS-PAGE analysis of the 

cell wall proteome from the stem of healthy susceptible and resistant parental inbred lines 

showed 14 proteins of differential abundance due to genotype differences that had not been 

identified in the whole stem proteome. The two genotypes that differ in the degree of 

resistance to bacterial wilt exhibited metabolic as well as defense and stress related proteins 

as the major difference between them. Again, these proteins are well known for their active 

roles in influencing the selection of the susceptibility and resistance of the plant. The 

investigation of the cell wall proteome was extended further by analyzing the proteome of 

susceptible and resistant plants regulated differentially in response to pathogen attack. The 
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result clearly demonstrated the differences not only in the susceptible genotype but also in the 

resistant genotype which did not show any visible differences in the whole stem analysis. PR 

and other defense related proteins were differentially displayed in both plant varieties 

supporting the proposition that each genotype regulates the expression of its resistance 

proteins when attacked by the pathogen. The efficiency and kinetics of the regulation may be 

decisive for the outcome of the interaction. The cell wall proteome analysis also led us to 

develop a simple 3-D SDS-PAGE that reproducibly resolved the basic range proteins in the 

3rd dimension SDS-PAGE, which are otherwise poorly resolved on 2-D gels. Additionally, 

most of the cell wall proteins were found secretory supporting to their extracellular location. 

The third and last experiment deals with analysis of the proteome of another sub cellular 

fraction i.e. the xylem sap which acts as an important site for host pathogen interaction 

especially for the xylem colonizing R. solanacearum. The high throughput expression 

profiling of the xylem proteome was performed to present the basic understanding of the 

physiological process carried out by the xylem sap and to build the platform which will be 

useful for the comparative analysis of the xylem proteome that are regulated in response to 

pathogen invasion. With the purpose of overcoming the limitations of 2-D SDS-PAGE, the 

xylem sap proteome was separated with 1-D gradient SDS-PAGE and the whole protein 

bands were analyzed with LC MS/MS. The complete protein screening revealed more than 

200 proteins in the xylem sap with diverse functional roles. Peroxidase, cell wall metabolic 

protein, proteases, and other defense related proteins were reportedly conserved in many 

plant species indicating their potential roles in the functional xylem conduit development. 

Identification of several signaling and transport proteins supports the important physiological 

roles of the xylem sap as carrier of signals and nutrients providing the needed root to shoot 

communication. The detection of several receptor kinases, transcription factors, and other 

signaling proteins clearly showed the advantages of this technique over 2-D gel approach in 

capturing the low abundance proteins. Coverage of a higher number of proteins in relatively 

less amount of protein sample is another plus point compared to 2-D gels. Several 

hypothetical proteins were found in the xylem sap signifying the possible novel functions 

which are yet to be determined. Xylem sap proteome possessed a high number of secretory 
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proteins that guides them to the extracellular location however, a large number of proteins 

with no secretion signals were also found in the xylem sap.  The unorthodox presence of non-

secretory protein in xylem sap supports the existence of moonlighting proteins which are 

being increasingly discovered in other extracellular locations. The comparison of healthy 

plant xylem sap between susceptible and resistant plants disclosed the occurrence of a higher 

percentage of defense related, and metabolic proteins as well as proteases in resistant plants, 

where as susceptible plants had a higher percentage of signaling and transcription related 

proteins. The susceptible plants showed the presence of a higher number of proteins than the 

resistant genotype which could indicate that the susceptible plants are more reactive and 

sensitive.  

In overall, the present study revolves around understanding of the resistance mechanism of 

the tomato plant towards R. solanacearum inoculation. The study highlighted the major 

proteome which was selective to either genotypes differing in the degree of bacterial wilt 

resistance, and, consequently, their regulation in both susceptible and resistant reactions in 

response to pathogen attack. The sensitivity of the whole stem analysis was increased by 

integrating the cell wall and xylem sap proteome examination in order to provide a deeper 

insight into the molecular interactions. The differential expression of PR, defense and stress 

related as well as metabolic proteins in both compatible and incompatible interactions 

strongly supports the hypothesis that both types of plants regulate their proteins during the 

interaction as a part of general defense mechanism however, the kinetic and magnitudes of 

the interactions would be more influential for the outcome. Measurement of reactions at 

different time points and the integration of gel based and gel free chromatographic methods 

would provide complementary information and, therefore, shed more light on the proposed 

resistance responses. Further experiments determining the physiological roles of each of the 

regulated proteins would provide more accurate information. The screening of the xylem 

proteome provided an overview of the xylem functions in whole plant physiology, and also a 

good platform for the further investigations of xylem protein regulated after pathogen 

invasion. 
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