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Abstract 

 

Iron is the forth-most abundant element in the Earth’s crust and is an ubiquitous 
constituent of magmas. In nature, iron almost exclusively exists in the two oxidation states 
of ferrous (Fe2+) and ferric (Fe3+) iron both of which can coexist in melts, minerals, and 
fluids. This, for example, makes iron speciation, expressed as the Fe2+/ΣFe ratio, a 
valuable tool to depict changes in the oxidation state of evolving magmatic systems. 
Furthermore, differences in the bonding environment of ferrous and ferric iron lead to 
mass-dependent fractionation of stable iron isotopes between different phases. However, 
to use such shifts in the relative abundances of iron isotopes between two species or 
materials as geochemical tracer for natural processes, the nature of these processes (i.e., 
equilibrium or kinetic) and the magnitude of isotope fractionation they cause need to be 
determined. To date, little is known about the nature and extent of iron isotope 
fractionation in magmatic systems. As a consequence, the objective of this thesis is to 
investigate the parameters controlling iron isotope fractionation in magmatic systems by 
laboratory experiments and analyses of natural samples.  

 
An improved analytical method for the determination of the Fe speciation in 

geological materials was applied to investigate the Fe redox state in hydrous ultrapotassic 
(phono-tephritic) melts, coexisting with mixed H2O-CO2 fluids, at 1200 and 1250°C and 
pressures from 50 to 500 MPa. The oxygen fugacity (fO2), relative to the Ni/NiO oxygen 
buffer (ΔNNO), was systematically varied from ΔNNO-2.9 to ΔNNO+2.6 in logfO2, with 
associated variations in water activity from 0.05 to 1. The Fe2+/ΣFe ratios of the 
experimental glasses range from 0.41 to 0.85 and are negatively correlated with oxygen 
fugacity, water activity, and – less pronounced – with the amount of dissolved water as a 
chemical component in the melt, i.e., leaving all other parameters such as pressure, 
temperature or fO2 constant. The results are consistent with commonly used empirical and 
thermodynamic models. 

 
A prerequisite for the interpretation of natural Fe isotope variations is knowledge of 

Fe isotope fractionation factors between different phases in magmatic systems. Therefore, a 
first experimental study was conducted to determine the equilibrium iron isotope 
fractionation between pyrrhotite (Fe1-xS) and peralkaline rhyolitic melt at magmatic 
conditions. Experiments were performed at 500 MPa and temperatures between 840 and 
1000°C. The results show that isotopically light iron is preferentially incorporated in 
pyrrhotite relative to the silicate melt. No temperature dependence of the fractionation factor 
was found, within experimental and analytical precision. An average fractionation factor of 
Δ56/54Fepyrrhotite-melt = 0.35±0.04‰ (2SE, n=13) was determined for the investigated 
temperature range. Kinetic experiments using a 57Fe-enriched tracer indicate that this value 
represents isotopic equilibrium. Predictions of Fe isotope fractionation between FeS and 
ferric iron-dominated silicate minerals are consistent with the experimental results, 
indicating that the marked contrast in both ligand and redox state of iron control the isotope 
fractionation between pyrrhotite and silicate melt. Consequently, the determined 
fractionation factor is representative for the specific Fe2+/ΣFe ratio of the peralkaline 
rhyolitic melt of 0.38±0.02. At higher Fe2+/ΣFe ratios a smaller fractionation factor is 
expected. Consistent with the experimental results, analyses of natural sulphide minerals, 
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mainly pyrrhotites, from various ore deposits indicate that magmatic sulphides tend to be 
less fractionated (relative to mafic rocks) than sulphides of hydrothermal and metamorphic 
origin. This first observation opens the possibility that Fe isotopes may serve to identify 
sulphide ore genesis.  

 
To study the behaviour of Fe isotopes during magma differentiation, the volcanic 

evolution of Hekla, Iceland, was traced by Fe isotopes. It was found that during 
differentiation of dacitic magma towards rhyolitic composition the δ56/54FeIRMM-014 values 
increase successively from 0.051‰ to 0.168‰ (±0.021‰, 2SD external reproducibility). 
No analytically resolvable Fe isotope fractionation was induced by crystal fractionation of 
basaltic to basaltic andesite magmas. Lithium concentrations and isotope compositions 
measured in Hekla’s rocks do not indicate extensive fluid exsolution during the volcanic 
evolution. Hence, the heavy Fe isotope composition of the dacites and rhyolites can be 
predominately attributed to fractional crystallisation. Iron isotope fractionation between 
magnetite and peralkaline rhyolitic melt was determined experimentally at 100 and 
200 MPa and 800°C fractionation (Δ56/54Femagnetite-melt ≈ -0.2‰). Hence, removal of 
isotopically light Fe from the evolving melt controlled by titanomagnetite crystallisation 
and subsequent crystal settling in the magma chamber is a possible mechanism to form the 
isotopically heavy dacites and rhyolites at Hekla. Iron isotope analyses on single samples 
from other Icelandic volcanoes (Torfajökull, Vestmannaeyjar) confirm heavy Fe isotope 
enrichment in evolving magmas. The results of this study suggest that the iron isotope 
composition of the crust can be slightly modified by magmatic processes.  

 
 
Keywords: stable iron isotopes, iron oxidation state, silicate melt, pyrrhotite, magma 
differentiation, Hekla volcano 
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Zusammenfassung 

 
Eisen ist das viert-häufigste Element in der Erdkruste und ein allgegenwärtiger 

Bestandteil von Magmen. In der Natur kommt Eisen fast ausschließlich in den beiden 
Oxidationstufen Fe2+ und Fe3+ vor, die gemeinsam in Schmelzen, Mineralen und Fluiden 
vorkommen. Dies macht die Fe-Speziation, ausgedrückt als Fe2+/ΣFe-Verhältnis, zu einem 
wertvollen Werkzeug um, zum Beispiel, Veränderungen des Oxidationszustands sich 
entwickelnder magmatischer Systeme zu bestimmen. Außerdem führen Unterschiede in 
der Bindungsumgebung zweiwertigen und dreiwertigen Eisens zwischen verschiedenen 
Phasen zu massenabhängiger Fraktionierung stabiler Eisenisotope. Um diese 
Verschiebungen in der relativen Häufigkeit der Eisenisotope als geochemischen Tracer 
nutzen zu können, müssen sowohl die Art  (kinetisch oder im Gleichgewicht) und die 
Größe der Isotopenfraktionierung bestimmt werden. Derzeit ist nur wenig über die Art und 
Größe der Eisenisotopenfraktionierung in magmatischen Systemen bekannt. Aus diesem 
Grund ist das Ziel dieser Arbeit die Erforschung der Parameter, welche die 
Eisenisotopenfraktionierung in magmatischen Systemen kontrollieren, insbesondere  
durch experimentelle Untersuchungen im Labor und Isotopenmessungen an natürlichen 
Proben. 

 
Eine verbesserte analytische Methode zur Bestimmung der Fe-Speziation in 

geologischen Materialien wurde angewendet, um den Fe-Oxidationszustand in wasser- 
und kaliumhaltigen (phono-tephritischen) Schmelzen, die mit H2O-CO2-Fluiden 
koexisitieren, bei 1200 und 1250°C und 50 bis 500 MPa zu untersuchen. Die 
Sauerstofffugazität (fO2), relativ zum Ni/NiO-Sauerstoff-Puffer (ΔNNO), wurde 
systematisch von ΔNNO-2.9 bis ΔNNO+2.6 (in log fO2) variiert, in Verbindung mit 
Variationen in der Wasseraktivität von 0.05 bis 1. Die Fe2+/ΣFe-Verhältnisse der 
experimentellen Gläser reichen von 0.41 bis 0.85 und zeigen eine negative Korrelation mit 
der Sauerstofffugazität, der Wasseraktivität und – weniger deutlich ausgeprägt – mit dem 
Gehalt an gelöstem Wasser, in Bezug auf Wasser als chemische Komponente in der 
Schmelze, d.h. wenn alle anderen Parameter wie Druck, Temperatur und fO2 konstant 
sind. Diese Ergebnisse sind konsistent mit den im Allgemeinen verwendeten empirischen 
und thermodynamischen Modellen. 

 
Eine Grundvorrausetzung für die Interpretation natürlicher Eisenisotopenvariationen 

ist die Kenntnis von Isotopenfraktionierungsfaktoren zwischen verschiedenen Phasen in 
magmatischen Systemen. Deshalb wurde eine erstmalige experimentelle Studie zur 
Bestimmung der Gleichgewichtsisotopenfraktionierung zwischen Pyrrhotin  (Fe1-xS) und 
Silikatschmelze bei magmatischen Bedingungen durchgeführt. Die Experimente erfolgten 
bei 500 MPa und Temperaturen zwischen 840 und 1000°C. Die Ergebnisse zeigen, dass 
relativ zur Silikatschmelze bevorzugt isotopisch leichteres Eisen in Pyrrhotin eingebaut 
wird. Im Rahmen der analytischen und experimentellen Präzision wurde keine 
Temperaturabhängigkeit des Fraktionierungsfaktors im untersuchten Temperaturbereich 
gefunden. Ein durchschnittlicher Fraktionierungsfaktor von Δ56/54Fepyrrhotite-melt = 
0.35±0.04‰ (2SE, n=13) wurde für diesen Temperaturbereich bestimmt. Kinetische 
Experimente welche mit einem 57Fe Tracer angereichert wurden zeigen, dass dieser Wert 
isotopischem Gleichgewicht entspricht. Vorhersagen zur Eisenisotopenfraktionierung 
zwischen FeS und Fe3+-dominierten Silikatmineralen sind konsistent mit den 
experimentellen Ergebnissen, was darauf hindeuted, dass der deutliche Unterschied in den 
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Liganden und dem Oxidationszustands des Eisens die Eisenisotopenfraktionierung 
zwischen Pyrrhotin und Silikatschmelze kontrollieren. Folglich, ist der bestimmte 
Fraktionierungsfaktor repräsentativ für das spezifische Fe2+/ΣFe-Verhältnis in der 
peralkalinen rhyolitischen Schmelze von 0.38±0.02. Bei höheren Fe2+/ΣFe-Verhältnissen, 
ist ein kleinerer Fraktionierungsfaktor zu erwarten. Konsistent mit den experimentellen 
Ergebnissen, ergaben Analysen natürlicher Sulfidminerale, hauptsächlich Pyrrhotine, aus 
verschiedenen Erzlagerstätten, dass magmatisch gebildete Sulfide tendenziell eine geringe 
eisenisotopische Fraktionierung (relativ zu mafischen Gesteinen) aufweisen als solche 
hydrothermalen oder metamorphen Ursprungs. Diese ersten Beobachtungen eröffnen die 
Möglichkeit, dass Eisenisotope unter Umständen zur Identifizierung der Genese von 
sulfidischen Erzlagerstätten dienen könnten. 

 
Um das Verhalten von Eisenisotopen während der Magmendifferentiation zu 

untersuchen, wurde die vulkanische Entwicklung des Hekla-Vulkans, Island, 
eisenisotopisch verfolgt. Die Ergebnisse zeigen, dass die δ56/54FeIRMM-014-Werte während 
der Differentiation dazitischer Magmen zu rhyolitischer Zusammensetzung sukzessive von 
0.051‰ auf 0.168‰ (±0.021‰, 2SD externe Reproduzierbarkeit) ansteigen. Durch 
fraktionierte Kristallisation von basaltischen zu basaltisch-andestischen Magmen wurde 
keine analytische auflösbare Eisenisotopenfraktionierung verursacht. Die in den Hekla-
Gesteinen gemessenen Lithium-Konzentrationen und -Isotopenzusammensetzungen 
deuten nicht auf extensive Fluid-Entmischung während der vulkanischen Entwicklung hin. 
Infolgedessen kann die schwere Eisenisotopenzusammensetzung der Dazite und Rhyolite 
überwiegend auf fraktionierte Kristallisation zurückgeführt werden. Die 
Eisenisotopenfraktionierung zwischen Magnetit und peralkaliner rhyolitischer Schmelze 
wurde experimentell bei 800°C und 100 bzw. 200 MPa bestimmt (Δ56/54Femagnetite-melt ≈ 
-0.2‰). Folglich ist die Entfernung von isotopsch leichtem Eisen aus der Schmelze, 
kontrolliert durch Kristallisation von Titanomagnetit und darauf folgendem Absinken der 
Kristalle in der Magmakammer, ein möglicher Mechanismus, um die isotopisch schweren 
Dazite und Rhyolite des Hekla-Vulkans zu bilden. Eisenisotopenanalysen einzelner 
Proben von anderen isländischen Vulkanen (Torfajökull, Vestmannaeyjar) bestätigen eine 
Anreicherung isotopisch schweren Eisens in differenzierten Magmen. Die Ergebnisse 
dieser Arbeit legen nahe, dass die Eisenisotopenzusammensetzung der Erdkruste durch 
magmatische Prozesse leicht modifiziert werden kann. 

 
Schlagworte: stabile Eisenisotope, Eisen-Oxidationszustand, Pyrrhotin, 
Magmendifferentiation, Vulkan Hekla 
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I. Introduction 

 

 

I.I. AIM OF THE STUDY AND STRUCTURE OF THE THESIS 

 

Iron is the the second-most abundant element (after oxygen) on Earth (Allegre et al., 

2001). In the Earth’s crust, iron is the fourth-most abundant element, after O, Si and Al 

(Wedepohl, 1995), and is an ubiquitous constituent of magmas in nature. Iron occurs in 

different oxidation states and has various bonding environments. This could lead to mass-

dependent fractionation of stable iron isotopes between different phases. To date, little is 

known on stable iron isotope fractionation in magmatic systems. The main objective of this 

study is to explore the mechanisms that govern iron isotope fractionation in crustal magmatic 

systems. Therefore, experiments at high temperature and pressure were performed to 

investigate the controlling parameters, such as bonding environment and oxidation state of 

iron, on iron isotope fractionation between minerals and silicate melts. Furthermore, the 

behaviour of iron isotopes during magma differentiation was studied by analyses of natural 

rock samples from the Hekla volcano, Iceland.   

This thesis is subdivided into three main chapters preceded by an introduction 

section. Each chapter contains separate introduction and conclusion sections and is aimed at 

being conclusive without the context of other chapters. Manuscripts that represent the three 

chapters of this thesis are either already published (chapter 2) or submitted for publication 

(chapters 1 and 3) in international journals. All experimental and analytical work as well as 

the interpretation of the results presented in this thesis was done by me unless stated 

otherwise.  
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The introduction section gives background information on the chemical behaviour 

and speciation of iron in magmas. Principles of stable isotope fractionation theory are briefly 

reviewed and the state of iron isotope research is presented based on a concise review of the 

recent literature. 

Chapter 1 gives a detailed description of the analytical method for the determination 

of the Fe redox state in geological materials. The improvements of this method were 

developed during this study and tested by an experimental investigation on the influence of 

water activity and oxygen fugacity on the redox state of iron in hydrous phono-tephritic 

melts. The Fe redox measurements were done on well characterised samples previously used 

for a water and CO2 solubility study (Misiti et al., 2007). The results are compared to the 

most widely used empirical and thermodynamic models. This work was accepted for 

publication in American Mineralogist (Schuessler J. A., Botcharnikov R. E., Behrens H., 

Misiti V., and Freda C., 2007, Oxidation state of iron in hydrous phonotephritic melts. 

American Mineralogist). 

Chapter 2 presents the experimental calibration of the iron isotope fractionation 

factor between pyrrhotite (Fe1-xS) and a hydrous peralkaline silicate melt at magmatic 

conditions. This first experimental iron isotope study in a mineral-melt system discusses the 

mechanisms controlling iron isotope fractionation during iron sulphide crystallisation. This 

work was published as an article in Geochimica et Cosmochimica Acta (Schuessler J. A., 

Schoenberg R., Behrens H., and von Blanckenburg F., 2007, The experimental calibration of 

the iron isotope fractionation factor between pyrrhotite and peralkaline rhyolitic melt. 

Geochimica et Cosmochimica Acta 71(2), 417-433). 

Chapter 3 presents a case study on well-characterised natural samples (previously 

investigated in other geochemical studies) from the Hekla volcano, Iceland. The aim was to 

investigate the behaviour of iron isotopes during magma evolution in combination with an 
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experimental approach on iron isotope fractionation between magnetite and silicate melt. 

Different mechanisms such as fractional crystallisation and magma/fluid interaction that may 

explain the Fe isotope variations observed in the volcanic eruption products are discussed. 

To unravel the influence of magma/fluid interaction of the Helka volcanic system on the Fe 

isotope composition of the evolving magmas, this study was complemented with analyses of 

Li concentrations and isotopes. This work was accepted for publication (pending minor 

revisions) in Chemical Geology (Schuessler J. A., Schoenberg R., and Sigmarsson O., 2007, 

Iron and lithium isotope systematics of the Hekla volcano, Iceland - Evidence for stable Fe 

isotope fractionation during magma differentiation. Chemical Geology - Special Issue: Non-

traditional stable isotope applications in high-temperature geochemistry. 

 

 

I.II. IRON IN MAGMAS 

 

Iron has a wide range of concentrations in natural magmas. Mafic volcanic rocks 

have generally higher total iron contents (total iron content comprising ferric and ferrous 

iron is expressed as ΣFeO) compared to silicic ones (Fig. I.I). This reflects the processes 

governing their genesis and evolution and the chemical composition of their sources. On 

Earth, iron occurs commonly in three oxidation states, 0 (metallic), +2, and +3. Whereas 

ferrous iron is the dominant species in the Earth’s mantle (Wood, 1991), the crust contains 

various proportions of ferric and ferrous iron (Frost, 1991). In particular, volcanic rocks 

show a wide range in Fe2+/ΣFe ratios (Fig. I.II), whereas basalts (mantle-derived melts) 

display a more narrow range towards ferrous Fe rich compositions compared to more 

evolved silicic rocks. These variations reflect the prevailing redox conditions during magma 

genesis and evolution.  



I. Introduction 
___________________________________________________________________________________________________________________________________________________________________________________ 

 

 4

0

5

10

15

20

25

30

35 45 55 65 75 85
SiO2 (wt%)

Σ
Fe

O
 (w

t%
)

picro-
basalt

basalt basaltic
andesite

andesite   dacite       rhyolite

 
Figure I.I. Total iron content of volcanic rocks as function of SiO2 contents. Compiled from the GEOROC 
database (http://georoc.mpch-mainz.gwdg.de/georoc/) representing a total of 9603 whole rock analyses of 
various volcanic rocks. Symbol colors refer to different rock types as identified in Figure I.II. 
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Figure I.II. Frequency distribution of the iron redox state in various volcanic rocks. Compilation of 9274 whole 
rock analyses from the GEOROC database (http://georoc.mpch-mainz.gwdg.de/georoc/). 

 

The redox state of iron in the melt is related to the oxygen fugacity (fO2) which is a 

thermodynamic expression of the partial pressure (pO2) of oxygen in the system (fO2 = γΟ2 · 

pO2, where γΟ2 is the activity coefficient of O2). The present terrestrial atmosphere has 
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fO2 ≈ pO2 ≈  0.2 bar. In the Earth’s interior at high pressures and temperatures fO2 values are 

much lower and the Fe redox state is controlled via the reaction Fe(II)Omelt + ¼ O2 gas = 

Fe(III)O1.5 melt . The equilibrium constant of the reaction can be expressed as K = aFe(III)O1.5 

/ ( aFe(II)O · (fO2)¼) ) where a denotes the activity of the respective components in the melt. 

K depends on temperature, pressure and melt composition. Oxygen fugacity is commonly 

expressed relative to a buffer, e.g. ΔNNO (Ni + O = NiO). Oxygen fugacities relevant for 

terrestrial magmas comprise a range of about eight log units, i.e. from about ΔNNO-3 to 

ΔNNO+5 (Carmichael, 1991). The valency of iron has strong influence on the physical and 

chemical properties of magmas, such as viscosity (e.g., Liebske et al., 2003; Vetere et al., 

2006) and the stability of Fe-bearing minerals, respectively. The structural incorporation of 

iron in silicate melts also depends on the speciation. Ferrous iron is predominantly 

tetrahedrally coordinated by oxygen. However, some Fe3+ may also be present in five-fold or 

six-fold coordination (Mysen and Richet, 2005). The coordination of Fe2+ in silicate melts is 

still debated. A continuous distribution of Fe2+ environments from four-fold to six-fold 

coordination in silicate melts has been suggested (e.g., Seifert et al., 1979; Virgo and Mysen, 

1985; Rossano et al., 2000; Farges et al., 2004; Wilke et al., 2006). The melt composition 

also plays an important role on the structural incorporation of iron. For example, in alkali-

rich melts a stabilistion of tetrahedrally coordinated ferric iron by charge-balancing K2O is 

suggested (Dickenson and Hess, 1986; Kilinc et al., 1983; Kress and Carmichael, 1988; Sack 

et al., 1980). This structural variability of iron in silicate melts and different minerals very 

likely influences the iron isotope distribution in magmas as well. This is because equilibrium 

stable isotope fractionation is sensitive to differences in the bonding environment that is 

linked to the redox state, the coordination and the bond character (ionic/covalent). 
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I.III. STABLE IRON ISOTOPES 

 

The investigation of stable isotope variations of H, C, O, N in nature has a long 

tradition (e.g., Valley and Cole, 2001, and references therein). Studies on these isotopic 

systems provided important constraints on various problems, such as the evolution of the 

solar system and the origin of life. On Earth stable isotopes were applied to thermometry, 

fingerprinting geochemical pathways and mass transfers for a better understanding of crust 

and mantle evolution, climate change and exploration of natural resources, for example.  

The magnitude of maximally possible stable isotope fractionation depends (amongst 

other factors) on the mass of an element and the mass difference between the two isotopes of 

consideration. Hence, relatively large isotopic variations of tens to hundreds of permil are 

observed in nature for isotope systems of light elements such as 2H/1H, 7Li/6Li, 18O/16O that 

have large relative mass differences of about 100%, 14%, and 11%, respectively). For 

heavier elements, such as iron with a mass difference of about 4% in 56Fe/54Fe, natural 

isotopic variations are much smaller (<4‰) and therefore analytically more challenging. 

With the advent of new analytical methods, large portions of the Periodic Table are now 

accessible to stable isotope studies. High precision analyses by double spike thermal 

ionisation mass spectrometry (TIMS) (e.g., Beard and Johnson, 1999; Bullen et al., 2001), 

and in particular by multi collector inductively coupled plasma mass spectrometry (MC-ICP-

MS) allow access to a new field of stable isotope geochemistry. In situ techniques, such as 

secondary ion mass spectrometry (SIMS) (e.g., Woodhead, 2006) and laser ablation coupled 

to MC-ICP-MS (e.g, Horn and von Blanckenburg, 2007) for these heavy stable isotope 

systems were also developed. This new field of non-traditional stable isotope geochemistry 
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has rapidly evolved during the past decade and isotopic variations of more than 20 elements, 

in particular of transition metals, can now be studied (Johnson et al., 2004). Variation in 

stable isotope compositions of Mg, Ca, Sr, Ti, Cr, Mo, Fe, Cu, Zn, Ag, Cd, Hg, Tl, B, Li, Si, 

Ge, Se, Sb, Te, Cl and Br have been reported (see Anbar and Rouxel, 2007, and references 

therein). Understanding the mechanisms that control the isotopic variations of these new 

systems is a prerequisite to enable application to problems in nature. Therefore, theoretical 

and experimental determination of fractionation factors are needed in addition to studies of 

isotope variations of natural samples.  

 

I.III.I. Stable isotope fractionation theory 

Mass dependent stable isotope fractionation during chemical reactions is a 

fundamental thermodynamic/quantum mechanical phenomenon. It is driven by differences in 

the vibrational energies of molecules and crystals upon isotopic substitution resulting in 

different zero point energies and strengths of chemical bonds (Bigeleisen and Mayer, 1947; 

Urey, 1947). The theory has been reviewed frequently in the geochemical literature (e.g., 

Criss, 1999; Chacko et al., 2001; Hoefs, 2004; Schauble, 2004). Based on these literature 

sources, the principles of isotope fractionation are described in the following, with particular 

emphasis to iron isotopes.  

We consider a simple isotope exchange reaction (xA + yB = xB + yA) of two isotopes 

x and y between the two phases A and B. In the case of iron, the relative abundances of the 

two isotopes 54Fe and 56Fe in the two phases can be expressed in terms of an isotope ratio, 

(56Fe/54Fe)A and (56Fe/54Fe)B, respectively. The equilibrium constant for this reaction is  

( )( )
( )( )

y x

eq y x

A B
K

B A
= ,                                                         (I.I) 
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defined as the quotient of the thermodynamic activities of the products and reactants. 

Assuming exchange of one atom of iron and ideal mixing of isotopes in both phases 

(Polyakov, 1993), Keq is equivalent to the equilibrium isotope fractionation factor α 

( )
( )

56
54

56
54

Fe
Fe

Fe
Fe

A
A B

B

α − = .                                                    (I.II) 

Analogous to any chemical reaction the equilibrium constant is related to the change in 

standard state Gibbs free energy, 

ΔG0
R (T,P) = ΔH0

R – T ΔS0
R + ΔV0

R = -RT lnKeq..                            (I.II) 

In principle, the free energy change and the equilibrium constant can be calculated for 

isotope exchange reactions from thermodynamic data of molar enthalpy (ΔH0
R), entropy 

(ΔS0
R) and volume (ΔV0

R) as a function of pressure (P) and absolute temperature (T). 

However, even if such data on isotopically pure end members would be widely available the 

changes in ΔG0
R on isotopic substitution would be too small (< a few tens of joules) for 

precise classical thermodynamic calculations. Therefore, a quantum mechanical approach is 

required. For most isotope exchange reactions the change in volume and bond structure is 

negligibly small (except for some light elements), particularly for condensed phases, such as 

minerals. Then, following G = F + PV, ΔG of the reaction is equivalent to the Helmholtz 

free energy (ΔF) and the equilibrium constant is  

R
F

T
eqK e

−Δ⎛ ⎞
⎜ ⎟
⎝ ⎠=                                                        (I.III) 

The temperature dependence of this relation also demonstrates the potential usefulness of 

isotope fractionation as a geothermometer that has found wide application in geosciences for 

light stable isotope variations, particulaily for those of oxygen (e.g., Valley and Cole, 2001). 

Specifically, lnKeq varies linearly with T -1 if the free energy change is independent of 
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temperature. In contrast to most cation exchange reactions, where ΔG is approximately 

constant over a specific range of temperatures, the free energy change of isotope exchange 

reactions varies significantly with T. Therefore, isotope fractionation often depends on 

higher orders of inverse temperature (T -2). 

The energy difference between two substances that differ only in their isotopic 

composition is a quantum mechanical effect caused by the influence of the mass on the 

atomic motions in a molecule (frequencies of translations, rotations and vibrations). In a 

simple diatomic molecule, the vibration of the bond can be approximated by a harmonic 

oscillator, Force = -kF·x, where the force exerted on the atoms is related to the force constant 

(kF) and the displacement of the atoms (x) from the optimal distance, i.e. the minimum 

potential energy (E) that is given by E = kF·x²/2. This function defines a parabola with a 

minimum potential energy at x = 0. Quantum theory predicts that at a temperature of 

absolute zero the potential energy is not equal to the minimum of the potential well. Thus, 

even when all molecules are in the ground state (T = 0 Kelvin) the vibrational energy (zero 

point energy = ZPE) has still a quantised level above the minimum of the potential well 

according to 

                             ( )vib
1E = n+ h Δν2 ⋅ ⋅ ,                                          (I.IV) 

where n (= 0, 1, 2, …) corresponds to the energy level (i.e., the quantum number), h is the 

Planck’s constant and v is the vibration frequency of the bond. The ZPE is equal to the half 

quantum of vibrational energy (Evib) when n = 0 and is related to the masses of the atoms 

forming the bond by 

1 2

1 2

1 k ,
2π

m mv with
m m

μ
μ

⋅
= =

+
                                       (I.V) 

 where µ is the reduced mass calculated from the masses (m1 and m2) of the atoms in the 

bond. Hence, when heavier isotopes are substituted for lighter ones ZPE decreases and bond 
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strength increases, while leaving the force constant (k) unchanged. Differences in ZPEs 

between different molecules are the driving force for equilibrium stable isotope 

fractionation. For more complex molecules (e.g., minerals), with more than one vibrational 

frequency, the magnitude of isotope fractionation between two substances (A and B) depends 

on the difference between the sums of vibrational frequencies of each substance that can be 

approximately described by  

ΔZPE ≈ ΔF ≈ Σ(½ h·v)A – Σ(½ h·v)B = ½ h·Δv.                           (I.VI) 

More accurately, the total vibrational energy of a substance, which depends on the masses of 

the involved isotopes, is determined by partition functions. The partition function (Q) is the 

sum over all energy states taking into account the probabilities of particular states and that 

molecules are not always in their ground state. This means that a partition function 

comprises the total energy of atomic motion (translation, rotation, vibration) and is closely 

related to the Helmholtz free energy of a substance 

F = -R·T ( ln(Qtrans) + ln(Qrot) + ln(Qvib) ) = -R·T ln( Qtrans · Qrot · Qvib ).        (I.VI) 

Therefore, the equilibrium constant (equation I.III) for an isotope exchange reaction between 

the phases A and B becomes  

∏
∏

⋅⋅

⋅⋅
=

⋅∑ ⋅−⋅∑ ⋅
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

BQQQ
AQQQ

BQQQAQQQ
eK

vibrottrans

vibrottrans

vibrottransvibrottrans

eq

)(

)(

)ln()ln(

                  (I.VII) 

The partition function of an unsubstituted molecule (Q) differs from an isotopically 

substituted one (*Q) and the quotient of both gives the partition function ratio *Q/Q. Then, 

the isotope fractionation factor αA-B (equation I.II) of an exchange reaction between phase A 

and B is equal to Keq (equation I.VII). Urey (1947) derived a relation to link vibrational 

frequencies, momentums of inertia and molecular masses of isotopically substituted 
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molecules to calculate equilibrium isotope fractionation factors. When vibrational 

frequencies are known (from spectroscopic measurements or force-field modelling) and 

momentums of inertia can be determined from the molecular structure, the equilibrium 

constant of the isotope exchange reaction (and hence α) can be calculated analogous to 

equation I.I, following 

( )
( )
*
*

A

B

Q Q
Q Q

α = ,                                                    (I.VIII) 

which illustrates (strongly simplified) the approach. Calculated partition function ratios are 

commonly expressed as β-factors. These are called reduced isotope partition function ratios 

because each Q represents the equilibrium constant between the substance of interest and its 

separated atoms and thus some mass terms in the calculations cancel out. From these β-

values isotope fractionation factors between two phases can be conveniently calculated via 

αA-B = βΑ / βΒ         or       1000·lnαA-B = 1000·lnβA  – 1000·lnβB .                        (I.IX) 

Besides stable isotope fractionation at equilibrium, kinetic isotope fractionation can 

occur due to differences in reaction rate constants (e.g., reaction A→B; kR(54Fe) ≠ kR(56Fe) ), 

i.e., when the rate of isotope exchange is slower than the reaction rate. Such processes can 

occur due to unequilibrated chemical reactions or unidirectional processes such as 

evaporation or condensation, rapid crystallisation or diffusion. Kinetic isotope fractionation 

is driven by higher velocities (v) of isotopically lighter molecules relative to heavier ones 

according to  

KE = ½ m·v² = 3/2 kR·T                                                     (I.IX) 

if their translational kinetic energy (KE) is the same (such as in an ideal gas). Thus, in many 

kinetic reactions, the light isotopes are concentrates in the reaction products. 
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Some qualitative predictions governing equilibrium fractionation have been summarised 

by Schauble (2004): 

• The magnitude of isotope fractionation decreases with increasing temperature, 

approximately with 1/T². 

• The magnitude of isotope fractionation decreases with increasing element mass and 

decreasing mass difference between the isotopes, roughly scaling with 

2m
m

mm
mm

lightheavy

lightheavy Δ
≈

⋅

−
. 

• At equilibrium, the heavy isotopes are enriched in the substance where the element of 

interest is more strongly bound. Bond strength is positively correlated with high 

oxidation state of the element of interest, presence of highly covalent bonds (small 

differences in electronegativity between involved elements), low coordination 

number, low-spin electronic configuration. 

 

To describe iron isotope fractionation quantitatively, the following nomenclature is used. 

Iron has four stable iron isotopes with the atomic masses 54, 56, 57, and 58, with relative 

abundances of ~5.845 at%, ~91.754 at%, ~2.1191 at% and ~0.2819 at%, respectively. Iron 

isotope data are reported in the δ-notation, which gives the permil deviation of the isotopic 

ratio (e.g., 56Fe/54Fe or 57Fe/54Fe) of the sample relative to that of the IRMM-014 standard 

(Taylor et al., 1992b), e.g.:  

56 56
56

sample IRMM 014sample 54 54

Fe Feδ Fe 1 1000
Fe Fe

−
⎡ ⎤⎛ ⎞

= − ⋅⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

  [‰ ]           (I.X) 

whereby conversion between 57Fe/54Fe and 56Fe/54Fe isotope ratios is according to  

57 56δ Fe = δ Fe 1.4881⋅  .                                            (I.XI) 

Such a conversion between different isotopic ratios is based on the mass fractionation law  
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( ) ( )

57

54 57 54β57/54 56/54
a b56

56 5454

ln Fe 1 1
ln Fe Fe Feα Fe = α Fe , with β = or β =

1 1ln Fe
Fe Feln Fe

M
M M M
M

M MM

⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞−⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

,   (I.XII) 

where the βa is valid for kinetic fractionation and βb is valid for equilibrium fractionation 

(e.g., Young et al., 2002). The conversion factor in equation I.XI is derived from the kinetic 

law. Such mass dependent fractionation laws have recently shown to be useful to distinguish 

between equilibrium and kinetic isotope fractionation in nature (e.g., Young et al., 2002). 

Isotope fractionation between two substances, regardless whether kinetic or 

equilibrium fractionation is quantified by the fractionation factor α (see equation I.I) which 

can be determined from measured δ-values following 

56

- 56

1000+δ Feα =
1000+δ Fe

A
A B

B

.                                                     (I.XIII) 

Since iron isotope fractionation is relatively small (α<1.004), the more convenient Δ-values 

can be used 

56 56/54 56/54 56/54
- -Δ Fe = δ Fe  -  δ Fe 1000 lnα FeA B A B A B≈ ⋅                     (I.XIV) 

 

I.III.II. Iron isotope variations in nature and experiment 

The field of iron isotope research was pioneered only a decade ago and thus 

knowledge on parameters controlling iron isotope fractionation in nature is still limited. 

Before 1999 studies on stable iron isotope fractionation where virtually absent, since no 

variation in stable iron isotope compositions in meterorites and terrestrial rocks were found 

at the level of precision achieved by the available analytical techniques (Valley and 

Anderson, 1947). After 1999 analytical advancements in mass spectrometry (e.g., see 

Dauphas and Rouxel, 2006 and references therein) have accelerated the research in this area 
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and more than 150 research papers comprising a wide range of disciplines where published 

until 2007. Therefore, only a brief overview of the state of iron isotope research will be 

given here, with emphasis on high temperature processes relevant for this thesis. Reviews on 

iron isotope research are presented by Anbar (2004), Beard and Johnson (2004a), Johnson 

and Beard (2004), Dauphas and Rouxel (2006) and Anbar and Rouxel (2007).  

The range in iron isotope composition observed in nature is about 4‰ in δ56Fe (Fig. 

I.III), excluding variations of several tens of permil found in cosmic spherules caused by 

fractional evaporative Fe loss during atmospheric entry (e.g., Engrand et al., 2005) and 

excluding mass independent Fe isotope anomalies that can be up to several hundreds of 

permil in presolar grains and calcium-aluminium rich inclusions in meteorites (e.g., Dauphas 

and Rouxel, 2006, and references therein).  
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Figure I.III. Natural iron isotope variations. Data from Anbar (2004), Beard and Johnson (2004a), Johnson and 
Beard (2004), Dauphas and Rouxel (2006), Anbar and Rouxel (2007, and references therein). 
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Iron isotope compositions of various types of meteorites that follow mass dependent isotope 

fractionation show a more limited variability (Fig. I.III). In particular, bulk chondrites, 

eucrites, HED (supposedly from 4Vesta) and SNC (maritan) meteorites suggest inner-solar 

system homogeneity in Fe isotopes, although small differences between some planetary 

bodies may exist (Poitrasson, 2007; Schoenberg and von Blanckenburg, 2005). Large 

variations have been reported in the biosphere (Fig. I.III), i.e., the food chain, in human 

blood and within plants, suggesting applications in biological and medical research (e.g., 

Walczyk and von Blanckenburg, 2002; Walczyk and von Blanckenburg, 2005; Guelke and 

von Blanckenburg, 2007). Modern aqueous systems show a considerable variability in iron 

isotope composition (Fig. I.III). River waters and groundwaters tend to have lower δ56Fe 

values relative to IRMM-014. Studies on hydrothermal activity at mid-ocean ridges and 

ridge flanks revealed that Fe isotopes are fractionated during basalt alteration and 

hydrothermal mineral precipitation (Fig. I.III). 

Marine environments comprise the largest natural range in Fe isotope composition 

(Fig. I.III). While modern marine sediments, such as clays, terrigenous sediments or 

turbidites have a more restricted range of about ±0.5‰ in δ56Fe, ferromanganese precipitates 

are characterised by almost exclusively negative δ56Fe values (Fig. I.III). Large iron isotope 

variability was found in ancient sedimentary rocks (Fig. I.III) and several Fe isotope 

investigations on such deposits, in particular banded iron formations (BIF), were aimed at 

reconstructing the cycling of Fe in archaean oceans and the rise of atmospheric oxygen in the 

early Proterozoic (Dauphas and Rouxel, 2006, and references therein). 

 Iron isotope studies on ore deposits revealed large fractionations (Fig. I.III) between 

sulphides from porphyry and associated skarn deposits (e.g., Graham et al., 2004) and 

between oxide, sulphide and carbonate minerals interpreted to results from partial oxidation 

and mineral-fluid fractionation during hydrothermal ore formation (e.g., Markl et al., 2006). 
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Equilibrium iron isotope fractionation decreases with increasing temperature, and 

thus, reactions in low temperature environments produce much larger isotopic variations 

than in high temperature environments. Pioneering measurements reported by Beard and 

Johnson (1999) suggested that bulk igneous rocks are homogeneous within ±0.3‰ (1SD) in 

δ56Fe, identical to the analytical precision available at that time using thermal ionisation 

mass spectrometry (TIMS). Therefore, most early studies focused on low temperature 

reactions, where larger effects are expected. The possibility that iron isotope signatures could 

be used to distinguish biologically processed iron from non-biological iron motivated initial 

research, particularly for investigating the possibility of life on Mars (e.g., Beard et al., 1999; 

Mandernack et al., 1999; Anbar et al., 2000). However, the application of iron isotopes as a 

biosignature turned out to be more complicated and subsequent laboratory studies identified 

various abiotic and biologically mediated reactions fractionating iron isotopes at equilibrium 

or through kinetic reactions (e.g., Bullen et al., 2001; Matthews et al., 2001; Johnson et al., 

2002; Skulan et al., 2002; Beard et al., 2003a; Welch et al., 2003; Brantley et al., 2004; 

Icopini et al., 2004; Kappler and Newman, 2004; Teutsch et al., 2004; Wiesli et al., 2004; 

Butler et al., 2005; Crosby et al., 2005; Johnson et al., 2005). The importance of the 

oxidation state of iron on isotopic fractionation was highlighted by a first experimental 

determination of the equilibrium Fe isotope fractionation factor between Fe(III) complexes 

and Fe(II) complexes in aqueous solutions where ferric Fe complexes are isotopically 

heavier than ferrous Fe complexes by ~3‰ in δ56Fe at temperatures between 0 and 22°C 

(Johnson et al., 2002; Welch et al., 2003). Subsequent laboratory studies determined Fe 

isotope fractionation factors (equilibrium and kinetic) at temperatures between 2 and 98°C 

caused by abiotic and biotic processes (e.g., Anbar, 2004, and references therein). These 

investigations comprised different aqueous Fe species, Fe reduction and oxidation reactions 

and mineral precipitations (e.g., magnetite, hematite, siderite) from aqueous Fe bearing 
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solutions (see Anbar, 2004; Beard and Johnson, 2004a; Johnson and Beard, 2004; Dauphas 

and Rouxel, 2006; and references therein) and found fractionation factors from close-to-

zero-values up to ~3‰ in δ56Fe.  

The experimental and analytical work was accompanied by theoretical studies. Iron 

isotope fractionation of several permil were predicted from vibrational force field modelling 

and from vibrational spectroscopic data, particularly, between Fe complexes in solution 

having different ligands and Fe oxidation states (Schauble et al., 2001; Jarzecki et al., 2004; 

Anbar et al., 2005). Predictions of equilibrium iron isotope fractionation between minerals 

based on Mössbauer spectroscopic data and nuclear inelastic resonant X-ray scattering 

revealed significant fractionation even at high temperatures (Polyakov, 1997; Polyakov and 

Mineev, 2000; Polyakov et al., 2007). For example, the calculations of these authors predict  
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Figure I.IV. Reduced isotope partition function ratios (β-factors) derived from Mössbauer spectroscopy data 
(MS) or nuclear inelastic resonant X-ray scattering (PDOS) for different minerals as a function of inverse 
temperature (Polyakov and Mineev, 2000; Mineev et al., 2007; Polyakov et al., 2007). Isotope fractionation 
between two phases equilibrated at a given temperature can be deduced by subtraction of their respective β-
factors. The inset magnifies the range relevant for iron isotope fractionation at magmatic conditions. 
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that at 800°C magnetite is ~0.2‰ heavier in δ56Fe than coexisting olivine (Fig. I.IV). In 

particular, systematic relations between the potential energy of the cation site in crystalline 

materials and differences in oxidation state, coordination, and nature of the ligand of iron on 

isotope fractionation were found (Polyakov et al., 2007) – consistent with the general 

theoretical rules described earlier in chapter I.II.I: Heavier iron isotopes are enriched in 

minerals containing ferric iron, having highly covalent bonds and low Fe coordination 

numbers (compare also Fig. I.IV). From the inset in Figure I.IV it becomes apparent that iron 

isotope fractionation at high temperatures is generally much smaller compared to low 

temperature processes and therefore analytically more challenging. First exploration of high 

temperature iron isotope fractionation was done by analyses of natural rocks and minerals 

(Beard and Johnson, 1999; Zhu et al., 2002; Beard et al., 2003a; Williams et al., 2004). Iron 

isotope analyses of various igneous rocks comprise a relatively narrow range (Fig. I.V).  
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Beard et al. (2003); Beard & Johnson (2004)
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Figure I.V. Iron isotope compositions of igneous rocks (whole rock analyses) as a function of SiO2 contents. 
The grey area represents the average iron isotope composition of igneous rocks as defined by Beard et al. 
(2003a), i.e. δ56FeIRMM-014 = 0.09±0.10‰ (2SD). The mean iron isotope composition of terrestrial basalts (data 
from different research groups) is also shown (error bars represent 2SE). 



I. Introduction 
___________________________________________________________________________________________________________________________________________________________________________________ 

 19 

Beard et al. (2003a) defined the average bulk igneous rock Fe isotope composition as 

δ56FeIRMM-014 = 0.09±0.10‰ (2SD) based on 46 bulk rock analyses of various types of 

igneous rocks. This homogeneous terrestrial Fe isotope baseline was proposed as a reference 

reservoir for the interpretation of biological Fe cycling or abiotic low temperature iron 

isotope fractionation (Beard et al., 2003a, b). Zhu et al. (2002) reported the first Fe isotope 

data for minerals from mantle xenoliths equilibrated at ~1000°C and found that pyroxenes 

(opx and cpx) were systematically heavier in δ56Fe than olivines by ~0.2‰ (Figure I.VI). 

Williams et al. (2004) found substantial (up to 1.1‰) systematic Fe isotope variations of 

spinels from mantle xenoliths and a correlation with oxygen fugacity and Fe2+/ΣFe of 

spinels. It was proposed that iron isotopes potentially provide a proxy of changes in mantle 

oxidation state, melting, and volatile recycling. Subsequent studies on mantle derived rocks 

suggested that these Fe isotope variations are the result of melt extraction in combination 

with changes in mantle redox conditions or metasomatism of the sub-arc mantle by iron-rich 
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0.0

-0.2

-0.4

-0.6

δ
IR

M
M

-0
14

56
Fe

 
Figure I.VI. Iron isotope compositions of mantle samples (modified from Beard and Johnson, 2007). Different 
symbols represent different minerals (or whole rock samples) and vertical lines connect phases from the same 
sample. Abbreviations: WR = whole rock, OL = olivine, OPX = orthopyroxene, CPX = clinopyroxene, GT = 
garnet, SP = spinel. The horizontal grey line represents the average of igneous rocks (±2SD) as defined by 
Beard et al. (2003a). 
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silicate melts from the subducting slab (Beard and Johnson, 2004b; Williams et al., 2005). 

Further on, several studies explored inter-mineral iron isotope fractionation (Figure I.VI). 

Consistent with the study of Zhu et al. (2002), Poitrasson et al. (2004) and Williams et al. 

(2005) reported significant differences in δ56Fe of -0.1 to -0.2‰ between coexisting olivine 

and pyroxene in mantle rocks, but an absence of differences between ortho- and 

clinopyroxene. These authors suggested that their findings reflect isotopic equilibrium at 

high tempertures. Beard and Johnson (2004b) confirmed differences in iron isotopes between 

coexisting olivine and clinopyroxene for some spinel peridotites, but found no isotopic 

differences between olivine and orthopyroxene. In contrast to other studies, these authors 

attributed the isotopic inter-mineral differences to metasomatic alteration. So far, the largest 

inter-mineral fractionation in mafic rocks interpreted as equilibrium fractionation was 

observed for clinopyroxene and garnet in eclogites and in garnet-bearing ultramafic rocks 

(Δ56Fecpx-grt ≈ +0.3‰ in 56Fe/54Fe; Beard and Johnson, 2004b). In contrast, andesitic volcanic 

rocks did not reveal any differences in Fe isotope composition between silicate minerals 

(olivine, biotite, amphibole) and magnetite (Beard and Johnson, 2004b). However, a recent 

study reported significant differences between silicate minerals and magnetite in volcanic 

rocks and plutonic rocks that were interpreted to reflect open-system Fe exchange (Heimann 

et al., 2007). In particular, these authors suggested that the Fe isotope shifts likely occurred 

during exsolution of late stage Fe fluids, and as such reflect sub-solidus isotopic 

equilibration upon cooling. 

Latest analytical improvements now allow resolving even smallest Fe isotope 

variations in plantary reservoirs, although their scientific significance is highly debated 

(Poitrasson and Freydier, 2005; Weyer et al., 2005; Beard and Johnson, 2006; Poitrasson, 

2006; Schoenberg and von Blanckenburg, 2006; Beard and Johnson, 2007; Poitrasson, 2007; 

Weyer et al., 2007; Weyer and Ionov, 2007). Moreover, differences as small as 0.1‰ in 
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δ56Fe were found between basaltic reservoirs of Earth, Moon, HED and SNC meteorites 

(Poitrasson et al, 2004; Weyer et al. 2005; Schoenberg and von Blanckenburg, 2006) and 

between terrestrial mantle peridotites and crustal basalts (Weyer et al. 2005; Schoenberg and 

von Blanckenburg, 2006). From these observations, it has been proposed that partial melting 

of mantle rocks induces Fe isotope fractionation, resulting in a heavier δ56Fe of basalts 

(+0.1‰) relative to residual mantle rocks (Weyer et al., 2005; Weyer et al., 2007; Weyer and 

Ionov, 2007). However, this interpretation has generated a vigorous debate (Beard and 

Johnson, 2007; Poitrasson, 2007; Weyer et al, 2007).  

The question whether magma differentiation processes fractionate Fe isotopes has 

been addressed as well. From the absence of any correlation between Fe isotope composition 

and bulk rock SiO2 Beard and Johnson (2004b) concluded that magma differentiation does 

not induce Fe isotope fractionation. However, new data revealed that the Fe isotope range of 

the crust is more scattered than previously thought (Fig. I.V). In particular, Poitrasson and 

Freydier (2005) found that silica-rich plutonic rocks show significantly heavier Fe isotope 

compositions than mafic rocks. These authors ruled out magma differentiation to be 

responsible for the heavy Fe isotope signatures of highly evolved rocks (Fig. I.V), arguing 

that Fe-rich minerals, which could potentially fractionate Fe isotopes, become rare in 

evolved granitic magmas. Rather, Poitrasson and Freydier (2005) explained the heavy Fe 

isotope compositions of highly evolved granites by removal of isotopically light Fe through 

late stage fluid exsolution, leaving behind an isotopically heavier residual magma 

(Poitrasson and Freydier, 2005). Schoenberg and von Blanckenburg (2006) found systematic 

variations in the Fe isotope compositions of a genetically related suite of igneous rocks from 

the Bergell intrusion, Swiss Alps, but could not unambiguously be attributed to fractional 

crystallisation, due to simultaneous assimilation of host rocks with ongoing fractional 

crystallisation.  
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To date, it is still difficult to clearly identify the underlying processes causing the 

discussed Fe isotope variations in igneous rocks, because knowledge of mechanisms that 

fractionate Fe isotopes at high temperatures is limited. One cornerstone for the interpretation 

of iron isotope variations is knowledge of equilibrium isotope fractionation factors between 

different minerals, melts and fluids, preferably obtained by direct laboratory experiments. In 

2005, when the project for this thesis started, no experimental studies on high temperature 

iron isotope fractionation existed. Apart from the experimental investigations described in 

this thesis, meanwhile published experimental studies of high temperature iron isotope 

fractionation are restricted to two research papers (Cohen et al., 2006; Roskosz et al., 2006) 

and two preliminary studies reported in conference abstracts (Huang and Lundstrom, 2006; 

Huang et al., 2007; Shahar et al., 2007). Cohen et al. (2006) reported a kinetic isotope effect 

during reduction of iron from a silicate melt with implications for chondrule formation. Their 

experiments were conducted at atmospheric pressure, at temperatures between 1450 and 

1540°C and runtimes from two minutes to six hours. A gas mixing furnace (CO/CO2) was 

used to apply low oxygen fugacities (about 5 log units below the iron-wüstite buffer: 2FeO = 

2Fe + O2). Under these reducing conditions, iron from the starting material (fayalite-rich 

silicate glass) was reduced to metallic iron at the melt/gas interface. The δ56Fe values of the 

residual Fe depleted melt ranged between -0.22 and +2.0‰ relative to the starting material, 

depending on experiment duration. This was explained by kinetic isotope fractionation 

accompanied by the faster diffusion of lighter iron isotopes to the melt/gas interface where 

reduction occurred. As the reduction neared completion, isotopic re-equilibration between 

metal and melt caused a gradual decrease in δ56Fe of the melt approaching that of the metal 

and the initial value of the starting material. The metal-melt isotope fractionation factor at 

equilibrium was not determined. The investigations of Roskosz et al. (2006) were also 

conducted in a silicate melt–metal system with implications to iron meteorites. Experiments 
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were done at 1500°C and atmospheric pressure, using a starting glass of anorthite–diopside 

eutectic composition to which Fe2O3 was added. The melt was in contact with Pt metal, 

resulting in the formation of Fe-Pt alloys during runs with 30 minutes to 24 hours duration. 

Different oxygen fugacities were applied using CO/CO2 gas mixtures. The results show an 

initial kinetic isotope effect with Δ56Fesilicate melt – metal alloy up to +4.7‰, consistent with the 

results from Cohen et al. (2006). After 24 hours the measured Δ56Fesilicate melt – metal alloy was 

0.4±0.3‰. The authors proposed that this values represents the equilibrium fractionation 

factor between silicate melt and the Fe-Pt alloy, although isotopic equilibrium was not 

proven (e.g., by reversal experiments or use of isotopically enriched tracers). The 

preliminary results of Huang and Lundstrom (2006) and Huang et al. (2007) reported Fe 

isotope fractionation of up to 9.9‰ in δ56Fe as a result of Soret diffusion, in which light 

isotopes preferentially migrate up a temperature gradient. In this thermal migration 

experiment at 0.5 GPa (66 days duration) hydrous andesite was used as starting material. 

Along a temperature gradient from 950 to 350°C over 2 cm the experimental products 

consisted of silicate melt (glass) and various proportions of minerals (apatite, magnetite, 

amphibole, biotite, plagioclase, quartz, and K-feldspar). From experiments at 800°C, 0.5 

GPa, they proposed an equilibrium Δ56Femagnetite – silicate melt smaller than -0.26‰. Shahar et al. 

(2007) presented iron isotope exchange experiments between fayalite and magnetite using an 

enriched isotope tracer approach to determine equilibrium isotope fractionation at 1 GPa and 

600, 700, and 800°C. The results show temperature dependent fractionation between fayalite 

and magnetite with Δ56Femagnetite–fayalite of 0.26‰, 0.21‰, and 0.18‰ ±0.017‰ at 

temperatures of 600°C, 700°C, and 800°C, respectively.  These results agree well with those 

calculated from Mössbauer spectroscopy-derived β-factors (Polyakov and Mineev, 2000; 

Polyakov et al., 2007). 



I. Introduction 
___________________________________________________________________________________________________________________________________________________________________________________ 

 

 24

The status quo of high temperature iron isotope research as reviewed in this chapter 

illustrates that many questions regarding the mechanisms that control Fe isotope 

fractionation in igneous environments are still open. Some of these issues will be addressed 

in the following chapters. 
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Chapter 1. Oxidation state of iron in hydrous phono-tephritic melts 

 

 

ABSTRACT 

 

The oxidation state of iron in hydrous ultrapotassic (phono-tephritic) melts coexisting 

with mixed H2O-CO2 fluids was experimentally studied at 1200 and 1250°C and pressures 

from 50 to 500 MPa. The oxygen fugacity (fO2) varied from NNO-2.9 to NNO+2.6, relative 

to the Ni/NiO oxygen buffer (NNO), as imposed by external redox conditions in 

experimental vessels and internal variations in water activity from 0.05 to 1 inside the 

capsules. The iron redox state of the quenched melts was determined by colorimetric wet-

chemical analysis. This analytical method was optimized to measure the Fe2+/ΣFe ratio of 

mg-sized samples within ±0.03 (2σ). The accuracy and precision was tested with 

international reference materials and with standards analysed by other methods. The 

Fe2+/ΣFe ratio of the glasses covers a range of 0.41 to 0.85. A small negative effect of 

dissolved water on Fe2+/ΣFe at given fO2 was found, consistent with the thermodynamic 

model of Moretti (2005). No effect of pressure and temperature on the redox state of iron 

was resolvable in the investigated P-T range. Compared to hydrous ferrobasaltic melts that 

were studied previously under similar conditions, systematically lower Fe2+/ΣFe ratios were 

found for the phono-tephritic melts, in particular at low oxygen fugacities. This effect is 

attributed to the much higher K2O contents of the phono-tephrite (7.5 compared to 0.3 wt%), 

but the difference in ΣFeO (7.8 wt% in the phono-tephrite and 12.9 wt% in the ferrobasalt) 

may have an influence as well. Comparison of the experimentally obtained relationship 
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between logfO2 and Fe3+/Fe2+ for the studied hydrous ultrapotassic melts with commonly 

used empirical and thermodynamic models suggest that these models can be successfully 

applied to phono-tephritc melts, although such compositions were not implemented in the 

model calibrations. Furthermore, the new data can be used to improve the models with 

respect to the effects of H2O, K2O and ΣFeO on the redox state of iron in silicate melts. 

 

 

1.1. INTRODUCTION 

 

The oxidation state of iron varies widely in natural magmas (e.g., Carmichael, 1991) 

and influences their physical and chemical properties as well as the phase equilibria for iron-

bearing minerals. The redox state of iron in the melt is related to the oxygen fugacity via the 

reaction Fe(II)Omelt + ¼ O2 gas = Fe(III)O1.5 melt  and the equilibrium constant of the reaction 

can be expressed as K = aFe(III)O1.5 / ( aFe(II)O · (aO2)¼) ) where a denotes the activity of 

the respective components in the melt. K depends on temperature, pressure and melt 

composition. Knowledge of the Fe redox state in magmas is a pre-requisite to understand the 

physical and chemical properties of magmas, to constrain source regions of magmas and 

their redox states, and the processes occurring during magma genesis and evolution. 

Specifically, the redox state of iron has influence on the stability of iron bearing minerals 

that may crystallize during magma evolution, and hence, control the iron content of the 

residual melt, and the stability and composition of major silicate phases (e.g., Pichavant et 

al., 2002). Furthermore, the structural incorporation of ferric and ferrous iron in silicate 

melts may affect the viscosity of a magma (e.g., Liebske et al.; 2003; Vetere et al., 2006), 

which has strong influence on the dynamics of volcanic eruptions. In particular, interaction 

between various species of different elements may influence the partitioning of volatile 
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elements between silicate melts and coexisting gas phases, which strongly affects the 

degassing behavior of ascending magmas (e.g., Moretti and Ottonello, 2003; Moretti and 

Papale, 2004; Burgisser and Scaillet, 2007).  

Several empirical relations have been proposed to quantify the effect of various 

parameters on the Fe redox state in silicate melts and to predict the prevailing oxygen 

fugacity in a magmatic system from Fe redox ratios of quenched melts (e.g., Sack et al., 

1980; Kilinc et al., 1983; Kress and Carmichael, 1988; Mysen, 1988; Borisov and Shapkin, 

1989; Kress and Carmichael, 1991; Nikolaev et al., 1996; Jayasuriya et al., 2004). The early 

empirical models were calibrated over a relatively wide range of melt compositions, 

temperatures and oxygen fugacities, but the data basis comprised dry silicate melts only. 

Subsequent experimental investigations on silicate melts of different chemical compositions 

and also on hydrous silicate melts revealed in part considerable discrepancies between 

predicted Fe2+/Fe3+ ratio of the melts and experimental findings Sisson and Grove, 1993; 

Moore et al., 1995; Baker and Rutherford, 1996; Gaillard et al., 2001; Wilke et al., 2002; 

Gaillard et al., 2003; Partzsch et al., 2004; Botcharnikov et al., 2005). The deviations might 

be either due to ignoring the component H2O in the empirical models or due to differences in 

anhydrous melt compositions studied in the experiments compared to the compositions used 

to calibrate the models. As an alternative, a thermodynamic model based on a polymeric 

approach was developed for the prediction of the Fe redox state in dry silicate melts at 

atmospheric pressures by Ottonello et al. (2001). Recently, this model was extended by 

Moretti (2005) to account for the effects of dissolved water and pressure.  

Here we use samples from a previous study on volatile solubility in phono-tephritic 

melts (Misiti et al., 2007) to test the predictive power of commonly used models for 

Fe2+/Fe3+ ratios in ultrapotassic silicate melts because hydrous phono-tephritic melts have 

not been used in the calibration of those models. A positive effect of increasing K2O on the 
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Fe2+/ΣFe ratios has been proposed by Tangemann et al. (2001) for dry iron-rich K2O-FeO-

Fe2O3-SiO2 liquids at atmospheric pressure, whereas other studies suggest a stabilization of 

tetrahedrally coordinated ferric iron by charge-balancing K2O (Sack et al., 1980; Kilinc et 

al., 1983; Dickenson and Hess, 1986; Kress and Carmichael, 1988). To date, no 

experimental data exists on hydrous K2O-rich melts at elevated pressures. The new data 

allow us to investigate the influence of water activity and oxygen fugacity on the redox state 

of iron in the melts as well as to evaluate the compositional effects of water, potassium and 

total iron content on the Fe2+/ΣFe ratio. The results are compared to the widely used 

empirical model of Kress and Carmichael (1991) and the thermodynamic model of Moretti 

(2005). 

 

1.2. EXPERIMENTAL METHODS 

 

The experimental strategies and procedures are described in detail in Misiti et al. 

(2007) and are summarized briefly here. The starting material for the experiments was a 

synthetic analogue of the phono-tephritic Mt. Mellone lava flow composition from the Alban 

Hills Volcanic District in Central Italy (Marra et al., 2003; Gaeta et al., 2006). For each 

experiment ~ 50 mg glass powder, 0 to 20 µL deionised water and 0 to 15 mg silver oxalate 

(Ag2C2O4) were sealed in Au80Pd20 capsules (~15 mm length, 2.6 mm inner diameter, 0.2 

mm wall thickness). To reduce Fe loss to the capsule walls, for experiments under reducing 

conditions the capsules were pre-saturated with Fe as described in Botcharnikov et al. 

(2005). The experiments were performed in internally heated gas pressure vessels (IHPV) at 

temperatures of 1200 and 1250°C and pressures between 50 to 500 MPa for 1.5 to 72 hours 

(Table 1.1). Uncertainties in temperature and pressure are ±10°C and ±5 MPa, respectively.  
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Samples were rapidly quenched at the end of the experiment with an initial cooling rate of 

about 150°C/s (Berndt et al., 2002). Most of the experiments were performed at intrinsic 

redox conditions of the IHPV pressurized with Ar. The intrinsic oxygen fugacity in capsules 

with pure H2O fluid (mole fraction of water in the fluid XfH2O = 1) in the IHPV used in this 

study was determined by NiPd-solid sensors (Taylor et al., 1992a) at 1200°C and 200 MPa. 

The obtained value of log fO2 = -7.5 corresponds to NNO+2.6 (±0.5; 1σ from microprobe 

analyses of the NiPd alloy) where NNO refers to the Ni-NiO buffer (Huebner and Sato, 

1970). This fO2 value is about 0.9 log units lower than reported by Berndt et al. (2002) for a 

similar IHPV. The difference reflects the uncertainty in fO2 due to unbuffered hydrogen 

fugacity. The prevailing fH2 depends on the specific components used in the individual IHPV 

(furnace, sample holder, etc.). Experiments at low fO2 were performed in another IHPV 

pressurized with an Ar-H2 mixture. The IHPV is equipped with a Shaw-membrane to 

monitor the fH2 at high pressure and temperature (Berndt et al., 2002). The fH2 controls the 

fO2 in the capsule through the equilibrium reaction H2 + ½ O2 ↔ H2O. The accuracy of 

logfO2 is estimated to be ±0.2 log units for experiments with pure H2O fluids. In experiments 

with mixed H2O-CO2 fluids the fugacity of H2O and hence the fO2 decreases with increasing 

fCO2. The prevailing fO2 in the capsule was calculated from the fluid composition 

determined after the experiment. Hence, differences in oxygen fugacity in capsules 

processed in the same run are determined only by the variations in XfH2O. The precision of 

the latter is limited by the uncertainties associated with the weight-loss determination of H2O 

and CO2 released from the capsules after the experiments. In this case the relative precision 

of log fO2 processed in the same run was estimated from error propagation of weighing 

uncertainties to be approximately ±0.1 log units. However, taking the uncertainty of the 

intrinsic redox condition in the IHPV into account, the error in absolute log fO2 values of 

experiments processed in different runs is higher (approximately ±0.5 log units). 
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1.3. ANALYTICAL METHODS 

 

The composition of the fluid phase in equilibrium with the silicate melt (expressed in 

mole fractions of H2O and CO2, XfH2O and XfCO2, respectively) was determined by a 

conventional weight-loss technique. H2O and CO2 concentrations in the glasses were 

measured by FT-IR spectroscopy. Bulk H2O contents of quenched melts were also measured 

by Karl-Fischer titration (KFT). Analytical details and results of these investigations are 

reported in Misiti et al. (2007) and results relevant to this study are given in appendix A1.2. 

Here, we focus on measurements relevant for the oxidation state of iron in the melt. The 

chemical composition of the post-experimental glasses was determined by electron 

microprobe analysis (EMPA). The redox state of iron (Fe2+/ΣFe) was analysed using a wet-

chemical technique, which is based on the colorimetric method of Wilson (1960). Both 

techniques are described below. 

 

1.3.1 Electron microprobe analysis 

Glass fragments from representative samples were mounted in epoxy and polished 

for electron microprobe analysis. Analytical conditions were 5 nA, 15 kV and a beam 

diameter of 20 µm, with counting times of 8 s for Si, Al, Fe, Mg, Ca, Mn and Ti on the peak 

and 4 s on the background and 4 s for K and Na on the peak and 2 s on the backgroundto 

minimize the lackof alkalis. Cameca supplied standards were used for calibration and PAP 

matrix correction according to Pouchou and Pichoir (1991) was applied. Between 8 and 20 

spot analyses were made on each sample. The results are listed in Table 1.2 
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1.3.2. Ferrous iron analyses 

Different wet-chemical techniques have been developed to determine the redox state 

of iron in geological materials, where most of them employ titration methods for 

quantification. Conventional techniques usually involve the acid dissolution of 100 to 

500 mg of powdered sample material and subsequent precise determination of the absolute 

ferrous iron concentration. To obtain the Fe2+/ΣFe ratio, the total iron concentration is 

commonly determined by a second method, i.e., electron microprobe analysis or optical 

emission spectroscopy (ICP-OES). In experimental studies the amounts of samples are often 

limited to <50 mg and this material is subjected to several different analytical methods. This 

limits the amount of sample available for the wet-chemical ferrous iron determination. Here, 

we follow the colorimetric method of Wilson (1960) to measure the Fe2+/ΣFe ratio in mg-

sized samples after acid dissolution. The original method was modified to minimize handling 

of toxic materials (i.e., beryllium sulfate was replaced by boric acid, see below) and to 

improve the reproducibility. To asses the accuracy and precision of this method, we have 

analysed international reference materials and in-house standards.  

The critical point in ferrous iron analysis is to avoid an oxidation of Fe2+ during the 

analytical procedure. Here, samples are decomposed in a HF-H2SO4 mixture in presence of 

excess pentavalent vanadium, which oxidizes ferrous iron as soon as it is released from the 

sample. According to the reaction 

5 4
2 2 3

2 22V O H Fe V O H O Fe
+ +

+ + + + +⎯⎯→+ + + +←⎯⎯                                 (1.1) 

the amount of generated tetravalent vanadium, which is highly resistant to oxidation 

compared to Fe2+, is equivalent to the amount of Fe2+ in the sample. The equilibrium of the 

reaction is shifted to the right hand side under the strongly acidic conditions during sample 

dissolution (pH < 1). After complete sample dissolution ferrous iron is regenerated from 



Chapter 1. Oxidation state of iron in hydrous phono-tephritic melts 
___________________________________________________________________________________________________________________________________________________________________________________ 

 

 34

 

sa
m

pl
e

n
ΣF

eO
 n

or
m

b

ph
on

ot
ep

hr
iti

c 
st

ar
tin

g 
gl

as
s

A
lb

-1
31

49
.8

9
± 

0.
42

15
.5

7
± 

0.
21

7.
82

± 
0.

32
5.

75
± 

0.
18

11
.4

0
± 

0.
21

0.
02

± 
0.

09
0.

89
± 

0.
03

1.
95

± 
0.

18
7.

52
± 

0.
16

10
0.

83
± 

0.
67

7.
75

fe
rr

ob
as

al
t f

ro
m

 B
ot

ch
ar

ni
ko

v 
et

. a
l (

20
05

)
SC

1
48

.3
4

± 
0.

29
14

.6
1

± 
0.

13
12

.9
1

± 
0.

28
6.

40
± 

0.
11

10
.8

7
± 

0.
15

-
2.

86
± 

0.
05

2.
60

± 
0.

11
0.

30
± 

0.
03

99
.8

9
± 

0.
67

12
.9

2

ex
pe

ri
m

en
ta

l p
ro

du
ct

s
A

lb
1-

1
8

48
.3

1
± 

0.
40

15
.6

5
± 

0.
26

6.
09

± 
0.

32
5.

22
± 

0.
17

10
.5

3
± 

0.
19

0.
04

± 
0.

08
0.

91
± 

0.
06

2.
14

± 
0.

12
7.

47
± 

0.
08

96
.3

6
± 

0.
83

6.
32

A
lb

1-
2

11
46

.2
0

± 
0.

27
14

.5
6

± 
0.

14
6.

92
± 

0.
22

5.
31

± 
0.

10
10

.4
4

± 
0.

24
0.

01
± 

0.
06

0.
83

± 
0.

06
1.

97
± 

0.
12

6.
90

± 
0.

14
93

.1
4

± 
0.

62
7.

43
A

lb
1-

5a
9

44
.4

2
± 

0.
68

13
.9

4
± 

0.
16

6.
58

± 
0.

73
4.

93
± 

0.
81

10
.2

8
± 

1.
56

0.
05

± 
0.

08
0.

80
± 

0.
04

1.
78

± 
0.

19
6.

56
± 

0.
53

89
.3

5
± 

0.
81

7.
37

A
lb

1-
8

11
46

.8
2

± 
0.

38
14

.6
1

± 
0.

18
7.

01
± 

0.
22

5.
26

± 
0.

11
10

.3
8

± 
0.

22
0.

08
± 

0.
08

0.
83

± 
0.

03
1.

94
± 

0.
12

7.
04

± 
0.

15
93

.9
6

± 
0.

67
7.

46
A

lb
1-

6a
11

48
.0

8
± 

0.
35

15
.0

8
± 

0.
16

6.
74

± 
0.

36
5.

40
± 

0.
10

10
.9

1
± 

0.
26

0.
01

± 
0.

08
0.

87
± 

0.
05

2.
02

± 
0.

09
7.

14
± 

0.
14

96
.2

7
± 

0.
63

7.
00

A
lb

1-
6b

is
11

48
.5

4
± 

0.
49

15
.2

9
± 

0.
18

5.
95

± 
0.

26
5.

50
± 

0.
15

10
.9

2
± 

0.
25

0.
03

± 
0.

10
0.

91
± 

0.
04

2.
06

± 
0.

24
7.

33
± 

0.
11

96
.5

5
± 

0.
95

6.
16

A
lb

1-
14

11
44

.5
6

± 
0.

39
13

.9
8

± 
0.

16
6.

77
± 

0.
30

4.
94

± 
0.

19
9.

96
± 

0.
20

0.
02

± 
0.

05
0.

79
± 

0.
04

1.
82

± 
0.

10
6.

74
± 

0.
12

89
.5

8
± 

0.
61

7.
56

A
lb

1-
20

12
47

.2
8

± 
0.

49
14

.8
3

± 
0.

24
6.

94
± 

0.
23

5.
44

± 
0.

20
10

.6
6

± 
0.

26
0.

01
± 

0.
07

0.
86

± 
0.

02
2.

01
± 

0.
11

7.
10

± 
0.

14
95

.1
4

± 
0.

86
7.

30
A

lb
1-

23
12

47
.0

6
± 

0.
38

14
.6

5
± 

0.
15

7.
04

± 
0.

29
5.

20
± 

0.
11

10
.4

9
± 

0.
25

0.
06

± 
0.

06
0.

84
± 

0.
04

1.
97

± 
0.

11
6.

93
± 

0.
13

94
.2

4
± 

0.
54

7.
47

A
lb

1-
25

12
45

.4
7

± 
0.

35
14

.0
6

± 
0.

13
6.

79
± 

0.
22

5.
00

± 
0.

08
9.

99
± 

0.
16

0.
06

± 
0.

08
0.

82
± 

0.
03

1.
81

± 
0.

16
6.

72
± 

0.
16

90
.7

3
± 

0.
38

7.
48

A
lb

1-
26

12
44

.7
7

± 
0.

27
14

.0
3

± 
0.

19
6.

69
± 

0.
29

5.
14

± 
0.

16
9.

89
± 

0.
27

0.
05

± 
0.

07
0.

79
± 

0.
03

1.
80

± 
0.

14
6.

62
± 

0.
12

89
.7

8
± 

0.
61

7.
45

A
lb

1-
41

12
46

.4
2

± 
0.

41
14

.5
6

± 
0.

25
7.

06
± 

0.
33

5.
27

± 
0.

16
10

.7
0

± 
0.

24
0.

01
± 

0.
08

0.
83

± 
0.

04
1.

81
± 

0.
08

7.
12

± 
0.

13
93

.7
8

± 
0.

69
7.

53
A

lb
1-

H
42

15
45

.5
7

± 
0.

35
14

.1
8

± 
0.

21
6.

85
± 

0.
25

5.
03

± 
0.

13
10

.3
2

± 
0.

28
0.

02
± 

0.
10

0.
83

± 
0.

03
1.

77
± 

0.
13

7.
06

± 
0.

11
91

.6
6

± 
0.

58
7.

47
A

lb
1-

H
43

18
45

.2
8

± 
0.

35
14

.2
2

± 
0.

18
7.

03
± 

0.
33

5.
21

± 
0.

15
10

.3
4

± 
0.

27
0.

06
± 

0.
06

0.
83

± 
0.

05
1.

87
± 

0.
12

7.
04

± 
0.

15
91

.8
6

± 
0.

75
7.

65
A

lb
1-

H
44

13
46

.6
9

± 
0.

41
14

.6
3

± 
0.

20
6.

91
± 

0.
39

5.
36

± 
0.

13
10

.7
5

± 
0.

21
0.

01
± 

0.
05

0.
87

± 
0.

06
1.

91
± 

0.
15

7.
18

± 
0.

17
94

.3
1

± 
0.

72
7.

33
A

lb
1-

H
45

16
47

.3
9

± 
0.

83
14

.9
8

± 
0.

23
6.

32
± 

0.
35

5.
29

± 
0.

28
10

.7
8

± 
0.

31
0.

03
± 

0.
06

0.
87

± 
0.

05
1.

87
± 

0.
14

7.
42

± 
0.

19
94

.9
5

± 
1.

39
6.

65
A

lb
1-

H
47

12
45

.6
0

± 
0.

27
14

.1
8

± 
0.

24
6.

17
± 

0.
24

5.
14

± 
0.

18
10

.4
6

± 
0.

24
-0

.0
3

± 
0.

08
0.

87
± 

0.
02

1.
79

± 
0.

14
7.

10
± 

0.
12

91
.3

2
± 

0.
65

6.
75

A
lb

1-
H

48
14

46
.2

4
± 

0.
45

14
.4

6
± 

0.
16

6.
40

± 
0.

16
5.

23
± 

0.
11

10
.3

7
± 

0.
19

0.
01

± 
0.

07
0.

84
± 

0.
03

1.
90

± 
0.

22
7.

13
± 

0.
15

92
.6

0
± 

0.
47

6.
91

A
lb

1-
H

49
16

46
.9

7
± 

0.
56

14
.8

0
± 

0.
24

5.
52

± 
0.

35
5.

32
± 

0.
16

10
.6

4
± 

0.
29

0.
03

± 
0.

07
0.

86
± 

0.
04

1.
87

± 
0.

15
7.

37
± 

0.
16

93
.4

0
± 

0.
71

5.
91

A
lb

1-
H

50
16

48
.0

1
± 

0.
39

15
.1

3
± 

0.
21

4.
72

± 
0.

32
5.

41
± 

0.
15

10
.8

3
± 

0.
18

0.
02

± 
0.

06
0.

85
± 

0.
04

1.
95

± 
0.

15
7.

56
± 

0.
17

94
.4

9
± 

0.
59

5.
00

A
lb

1-
H

51
20

47
.9

3
± 

0.
97

15
.2

2
± 

0.
23

4.
50

± 
0.

34
5.

57
± 

0.
15

10
.9

5
± 

0.
25

0.
01

± 
0.

08
0.

89
± 

0.
05

1.
91

± 
0.

18
7.

60
± 

0.
17

94
.6

1
± 

1.
29

4.
76

a)
 A

na
ly

si
s r

ep
re

se
nt

s g
la

ss
 a

nd
 q

ue
nc

h 
cr

ys
ta

ls
 (s

ee
 te

xt
).

b)
 Σ

Fe
O

 c
on

ce
nt

ra
tio

n 
in

 th
e 

gl
as

se
s r

ec
al

cu
la

te
d 

to
 a

 w
at

er
-fr

ee
 b

as
is

 (n
or

m
al

is
ed

 to
 a

 su
m

 o
f 1

00
).

Ta
bl

e 
1.

2.
 E

le
ct

ro
n 

m
ic

ro
pr

ob
e 

an
al

ys
es

 o
f t

he
 st

ar
tin

g 
ph

on
o-

te
ph

rit
ic

 g
la

ss
 a

nd
 th

e 
ex

pe
rim

en
ta

l g
la

ss
es

. A
na

ly
si

s o
f t

he
 fe

rr
ob

as
al

t S
C

1 
st

ud
ie

d 
by

 B
ot

ch
ar

ni
ko

v 
et

 a
l. 

(2
00

5)
 is

 
sh

ow
n 

fo
r c

om
pa

ris
on

, t
o 

hi
gh

lig
ht

 c
om

po
si

tio
na

l d
iff

er
en

ce
s. 

G
iv

en
 is

 th
e 

av
er

ag
e 

an
d 

th
e 

st
an

da
rd

 d
ev

ia
tio

n 
(1

σ)
 o

f n
 re

pl
ic

at
e 

an
al

ys
es

 re
po

rte
d 

in
 w

t%
.

Σ
Fe

O
C

aO
M

nO
Ti

O
2

M
gO

Si
O

2
A

l 2O
3

N
a 2

O
K

2O
To

ta
l



Chapter 1. Oxidation state of iron in hydrous phono-tephritic melts 
___________________________________________________________________________________________________________________________________________________________________________________ 

 35 

tetravalent vanadium by increasing the pH value to ~5, which shifts the equilibrium of 

reaction 1.1 to the left hand side. 

The analytical procedure is as follows (employed reagents are listed in 

appendix A1.1): The powdered sample (in case of references materials) or sub-millimeter-

sized glass fragments (from experimental products) were weighed into a 15-mL Savillex® 

Teflon beaker containing 1 mL of an ammonium vanadate solution dissolved in sulfuric acid 

(1M to 5M H2SO4). After addition of 1 mL HF (24 or 48%), the beakers were tightly sealed 

and placed in an ultrasonic bath for ca. 15 minutes. Thereafter, the beakers were left for 3 to 

24 hours at temperatures between 20 to 100°C until complete sample dissolution was 

attained. Acid concentrations, dissolution time and temperature were systematically varied to 

test for potential effects of these parameters on the analytical results (see discussion below). 

After sample dissolution, 5 mL saturated hot boric acid (at ~80°C) was added, instead of 

beryllium sulfate as proposed by Wilson (1960), to neutralize excess HF and to bring 

possibly formed fluorides back into solution. Upon cooling to room temperature the content 

of the beaker was quantitatively transferred into a 100-mL volumetric flask, containing 

10 mL ammonium acetate solution, 5 mL 2:2’bipyridyl solution, and the remaining volume 

was filled with distilled water. The ammonium acetate buffer adjusted the pH value to ~5. 

The regenerated Fe2+ forms a very stable complex with 2:2’bipyridyl in the solution which 

shows an intensive absorption band in the visible spectrum (Fig. 1.1).  

Measurements of ferrous Fe and total Fe were made on the same solution before and 

after adding 5 to 10 mg solid hydroxylamine hydrochloride to an aliquot of about 10 mL. 

This reducing agent converts all ferric Fe into the ferrous state. Since both Fe2+ and total Fe 

are measured in the same solution, the Fe2+/ΣFe ratio can be directly calculated by dividing 

the absorbances of the Fe2+ and total Fe aliquots. The advantage compared to an absolute 

concentration measurement of ferrous iron and an additional total Fe determination by  
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Figure 1.1.  UV/VIS spectra of Fe(II)-2:2’-bipyridyl solutions. Ferrous iron concentrations are indicated (in 
µg/mL Fe). Spectra recorded in 1 cm transmission cells.  

 

another method (e.g., EMPA or ICP-OES) is that uncertainties in the Fe2+/ΣFe ratios arise 

mainly from the spectroscopic measurements, whereas weighing and dilution errors cancel 

out. Absolute concentrations were obtained as well after calibration of the spectrometric 

technique using ferrous ammonium sulfate solutions with different known Fe2+ 

concentrations. For all measurements 1 cm transmission cells and an UV/VIS spectrometer 

(Zeiss Specord S10) was used. The sample solutions show a characteristic absorption band at 

about 523 nm of the Fe(II)-2:2’bipyridyl complex (Figure 1.1). The maximum peak height 

was determined relative to a baseline measured at 700 nm. No differences in the general 

appearance of the spectra and in the maximum peak position were observed between 

samples of different matrices, i.e. basaltic to rhyolitic rocks or pure Fe(II) solutions. 

The results of the wet-chemical colorimetric iron analyses on international reference 

materials and in-house standards are given in Table 1.3. To asses the accuracy of the method, 

our results are compared to the recommended values obtained by other studies (Govindaraju, 
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1994; Govindaraju, 1995; Liebske et al., 2003; Bertoldi et al., 2007). There is good 

agreement between the recommended Fe2+/ΣFe ratios and the values obtained by this study 

(Figure 1.2). Furthermore, the results of our in-house standard PU-3 are in good agreement 

with measurements reported by Liebske et al. (2003). They analysed a synthetic andesitic 

glass similar in composition and synthesis conditions (1600°C, air atmosphere) to our PU-3. 

Noteworthy, the Fe2+/ΣFe ratios obtained for the granites GS-N and GA are significantly 

higher than the recommended values. Furthermore, the ΣFeO values (ΣFeO refers to total 

iron expressed as wt% FeO) of those samples are also systematically lower than the 

recommended values. Undissolved refractory minerals containing significant amounts of 

ferric iron may explain the discrepancy for these particular samples. The experimental 

products analysed in this study consist primarily of glass, which is readily dissolved within a 

few hours at room temperature. Thus, no attempts were made to optimise the method for 

analyses of highly resistant minerals, although this would be principally possible given some 

minor modifications and tests. 

For the two reference materials, natural olivine and commercial ammonium iron(II) 

sulfate hexahydrate, the expected Fe2+/ΣFe ratios are close to unity (Table 1.3). The 

measured values of 0.93±0.08 and 0.95±0.05 (2σ), respectively, are systematically lower, 

while for chlorite CA the reported value of 0.90±0.02 from Bertoldi et al. (2007) is still well 

reproduced by our measurements (0.89±0.04). To test whether exclusion of atmospheric 

oxygen improves the recovery yield, some samples were dissolved under Ar atmosphere, but 

no difference in the Fe2+/ΣFe ratios was found. Whipple (1974) and later Yokoyama and 

Nakamura (2002) noted that variable concentrations of sulphuric acid and hydrofluoric acid 

may affect the accuracy of the measured Fe2+/ΣFe ratio as well. We have varied acid 

concentrations in the range from 1M to 5M H2SO4 and 24% to 48% HF, respectively, but did 
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Figure 1.2.  Comparison of measured Fe2+/ΣFe ratios from this study with other studies (recommended values). 
Open symbols refer to incomplete sample dissolution (see text). Solid line represents a 1:1 correlation. Dashed 
lines indicate the interval ±0.03. 

  

not observe any systematic bias on the results. The potential effect of sample decomposition 

temperature on the Fe2+/ΣFe ratio was also studied (Table 1.3), since the dissolution kinetics 

at room temperature could be more sluggish for some rock samples. Results obtained from 

samples dissolved at 25°C are indistinguishable from those at 100°C, except for the granitic 

sample GS-N, as discussed above.  

The precision of the method can be evaluated from replicate measurements (Table 

1.3). Reproducibility was between ±0.01 and ±0.05 (2σ) in the Fe2+/ΣFe ratio for different 

rocks and minerals containing between 8 and 1 wt% ferrous FeO. The long term 

reproducibility (over a time period of about one year) was assessed from n = 33 replicate 

analyses of the synthetic andesitic glass PU-3. Based on these measurements the uncertainty 

assigned to the Fe2+/ΣFe ratios is ±0.03 (2σ, external precision). 
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 Despite the low sample mass used for wet-chemical analyses, the obtained ΣFeO agree well 

with electron microprobe analyses for experimental products and recommended values for 

the reference materials, most of them within <5% relative (Tables 1.1, 1.2 and 1.3). Thus, we 

conclude that the Fe2+/ΣFe ratio can be reliably determined in the range from 0.4 to 0.9 by 

our method. All Fe2+/ΣFe ratios of our experimental run products fall within this range. 

Procedural blanks were always below the detection limit of the method, i.e. <0.012 

absorbance units (3σ of the background), which corresponds to less than 1 µg Fe. This can 

be considered negligible relative to the processed amount of iron (100 to 500 µg Fe), since 

the maximum bias in the measured Fe2+/ΣFe would be <0.01. 

 

 

1.4. RESULTS 

 

Except for one sample (Alb1-1) with very low water content, which was probably at 

the liquidusm and thus partially cristallized, all experiments with less than 6 wt% of 

dissolved water in the melt yield only glass and a fluid phase as experimental products (Fig. 

1.3a, b). All melts with higher water contents contain crystals after quench. These crystals 

show typical features of non-equilibrium growth and were probably formed during 

quenching (Fig. 1.3c, d). The crystals were too small for a reliable quantitative microprobe 

analysis but semi-quantitative results, obtained by energy dispersive x-ray analyses (EDX),  

indicate a K-rich, Fe-bearing composition (Fig. 1.3d). X-ray powder diffraction on sample 

Alb1-5 gives evidence that the quench phases are mica. In experimental studies using 

basaltic melts under similar conditions no quench crystals were observed (e.g., Berndt et al., 

2002; Botcharnikov et al., 2005). This discrepancy may be explained by the high potassium 
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content of the phono-tephrite facilitating K-rich mica crystallization from a H2O-rich melt of 

relatively low viscosity during cooling.  

The results of electron microprobe analyses of representative post experimental 

glasses are given in Table 1.2. Sample Alb1-5 consists of glass and numerous quench 

crystals (Fig. 1.3d). Thus, the analyses were performed using a defocused electron beam 

(20 µm) and represent the bulk composition. After normalizing to a sum of 100 wt% (i.e., 

anhydrous composition) most of the glass compositions are identical to the starting glass 

(Alb-1) and electron microprobe analyses show homogeneous ΣFeO concentrations in the 

glasses. Furthermore, from these data no indication for extensive dissolution of cations from 

the melt into the fluid phase is given. However, some samples (Alb1-1, Alb1-6a, Alb1-6bis, 

Alb1-H45, Alb1-H47 to Alb1-H51, Alb1-H56) have significantly lower ΣFeO (compare 

ΣFeOnorm in Table 1.2 for samples with different water contents). These experiments were 

carried out under the most reducing conditions and at the lowest aH2O. At these conditions 

iron from the samples was partly dissolved as metallic Fe alloy in the capsule walls. As a 

consequence of the reduction of ferric and ferrous iron from the melt a small amount of 

oxygen is produced which reacts with hydrogen permeating from the pressure medium into 

the capsule forming some additional H2O. The generated H2O might have continuously 

increased the water activity and hence the oxygen fugacity within the capsule. The largest 

iron loss was observed for sample Alb1-H51 with a final ΣFeO of ~4.2 wt%. The 

corresponding increase in water content of the system was 0.5 mg. Considering the masses 

of glass, fluid and the partitioning of H2O between fluid and melt, fO2 increased by about 

half a log unit during the experiment. The rate of iron reduction is controlled most likely by 
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Figure 1.3. Representative backscattered electron images of experimental run products. (a) Glasses with water 
contents of less than about 6 wt% were crystal-free (Table 1.1), except of experiment Alb1-1 (b), where 
clinopyroxene crystallized during the experiment. (c, d) Experiments with water contents of more than about 6 
wt% contained mica quench-crystals (Table 1.1) that were formed during cooling at the end of the experiments. 
An EDX spectrum of a needle-like mica is shown as inset in (d). 

 

the sluggish diffusion of Fe in the silicate melt. Fe diffusion is much slower than water and 

hydrogen diffusion in the melt (Behrens et al., 2004; Gaillard et al., 2002; Watson and 

Baxter, 2007) and, therefore, we suggest that Fe2+/ΣFe is in near-equilibrium with the 

oxygen fugacity imposed by the fluid via the reaction 2 Fe(II)O + H2O  = Fe(III)2O3 + H2.  

 

1.4.1. Redox state of iron 

The results of Fe redox analyses of the experimental run products are given in 

Table 1.l. The measured Fe2+/ΣFe ratios range from 0.41 at 1250°C, 200 MPa, NNO+2.6 

(Alb1-15) to 0.85 at 1200°C, 200 MPa, NNO-2.9. A comparison of run P and run Q at 

1200°C, 200 MPa with durations of 5 and 1.5 hours, respectively, reveals consistent results 
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in terms of the redox state of iron. This finding and the homogeneous Fe concentration in the 

run products (Table 1.3) suggest that the system is close to equilibrium, in terms of both 

chemical and redox equilibrium, after 1.5 hours at 1200°C. This is also consistent with a 

study on Fe redox kinetics in peralkaline hydrous rhyolitic melts (Gaillard et al., 2002), 

revealing that redox kinetics are fast enough to equilibrate the melt within 3 hours at 800°C, 

but slow enough to readily quench the Fe2+/ΣFe ratio of the melt in the experiments. 

As mentioned above some samples are partially crystallized. Since the Fe2+/ΣFe 

analyses were done upon complete dissolution of fragments of the experimental products 

(including quench crystals) they represent bulk values for the quenched melts, assuming that 

the bulk Fe2+/ΣFe of the system is not significantly altered due to crystallization of Fe 

bearing mica during cooling. Despite an almost instantaneous permeation of H2 from the 

pressure medium through the capsule walls and a transfer of Fe from the melt to the crystals 

during cooling, at an initial quench rate of about 150 °C/s only a few seconds remain for a 

potential re-equilibration of the melt until the kinetics of the systems can be considered as 

virtually frozen, i.e., at T <500°C. During this time interval no significant change in the bulk 

Fe2+/ΣFe ratio is expected from redox kinetics (Gaillard et al., 2002) and thus the measured 

Fe redox ratios are considered to represent close-to-equilibrium values. 

As shown in Figure 1.4, the Fe2+/ΣFe ratio decreases nonlinearly with increasing 

mole fraction of water in the coexisting fluid phase (XfH2O). The change in Fe2+/ΣFe with 

XfH2O is more marked at oxygen fugacities >NNO-0.2 compared to the series at <NNO-0.2. 

At constant temperature, pressure, XfH2O and water content, the Fe2+/ΣFe ratio increases 

with decreasing fO2 (Fig. 1.5).  
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Figure 1.4. Oxidation state of iron as a function of H2O mole fraction in the fluid. Lines represent second order 
polynomials for selected data sets to illustrate the non-linear relationships. Oxygen fugacity is expressed 
relative to the Ni-NiO buffer (NNO) and the given values represent the maximum logfO2 values in the runs 
(XfH2O = 1), i.e., fO2 in the capsule is lower at XfH2O < 1. 
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Figure 1.5. Oxidation state of iron as a function of logfO2 for experiments at 1200°C, 200 MPa and pure H2O 
fluid. Symbols as in Fig. 1.4. 
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1.5. DISCUSSION 

 

1.5.1. Influence of oxygen fugacity and dissolved water on the speciation of iron 

 The main factors controlling the oxygen fugacity in the system are the water activity 

in the capsule and the hydrogen fugacity (fH2) in the IHPV at given P, T and melt 

composition. Permeability of hydrogen through the capsule walls is high at our experimental 

conditions facilitating fH2 equilibration between the capsule interior and the vessel 

atmosphere. The time needed to permeate the amount of H2 required for reduction of all 

ferric iron in the starting glass (Alb1 Fe2+/ΣFe = 0.29) is less than two minutes based on 

permeation data for Au tubes (Chou, 1986). Assuming a negligible effect of reactions 

between carbon-bearing species on redox conditions at T and P of this study, the prevailing 

oxygen fugacity within the capsule is mainly determined by the dissociation reaction of 

water (H2O = H2 + ½ O2) for which the equilibrium constant can be expressed as 

Kw = fH2O / fH2 · fO2
0.5                                                     (1.2) 

and the logarithm of oxygen fugacity is given as 

    log fO2 = 2 log fH2O - 2 log fH2 – 2 log Kw .        (1.3) 

Kw was derived from thermodynamic data of Robie et al. (1978). The water fugacity in the 

capsule is the product of water activity (aH2O) and standard state water fugacity (f0H2O). If 

the experimental pressure is chosen as standard state, f0H2O equals the fugacity of the pure 

H2O fluid and the water activity is calculated as aH2O = γfH2O·XfH2O where γfH2O is the 

activity coefficient of H2O in the fluid. Activity coefficients of H2O for mixed H2O-CO2 

fluids were computed for given P, T, XfH2O after Aranovich and Newton (1999) using molar 
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volumes of pure H2O and CO2 from Pitzer and Sterner (1994). These calculations are only 

valid assuming that H2O and CO2 are the dominant species in the fluid, which is a reasonable 

assumption for most of our experimental conditions (Botcharnikov et al., 2006, and 

references therein). However, especially at very reducing conditions, other species (e.g., CO, 

H2, CH4) can become more abundant. Except for sample Alb1-H56, no indication of an 

abrupt drop in CO2 solubility in the melts with decreasing fO2 was observed (see appendix 

A1.2: Fig. A1.1) that would indicate a change of the dominant carbon species in the fluid. 

The anomalously low CO2 concentration in the melt of sample Alb1-H56 indicates a lower 

prevailing fCO2 in the capsule than calculated by mass balance. A value of ~0.38 is 

estimated for XfCO2 from the relation between CO2 concentration in the melt and XfCO2 

(Fig. A1.1). Assuming that the additional fluid component is mainly CO (Holloway and 

Blank, 1994) the fluid composition was recalculated to XfH2O ~ 0.04 and XfCO ~ 0.58. 

Based on the recalculated XfH2O the oxygen fugacity is ΔNNO-2.9.  For sample Alb1-1 the 

fluid composition could not be determined and XfH2O was estimated to be 0.11, using the 

measured H2O and CO2 contents (0.94 and 0.90 wt%, respectively) and the CO2 and H2O 

saturation curves at 500 MPa and 1200°C (Figures A1.1a and A1.2a). 

The calculated oxygen fugacities are listed in Table 1.1. Additionally, the difference 

relative to the Ni-NiO (ΔNNO) buffer is given (Huebner and Sato, 1970). This allows a 

direct comparison of the experiments equilibrated at different temperatures and pressures to 

evaluate the effect of fO2 on the redox state of iron in the silicate melts. In Figure 1.6 the iron 

redox state (expressed as Fe3+/Fe2+ ratio) is plotted as a function of oxygen fugacity 

(ΔNNO).  

The data show a monotonous increase in Fe3+/Fe2+ with ΔNNO. The scatter of the 

data is due to superimposed variations in water content and experimental pressure as 

discussed below. 
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Figure 1.6. The dependence of the Fe3+/Fe2+ ratio on oxygen fugacity expressed relative to the NNO buffer. 
Note the logarithmic scaling. Alb1-1 (in parentheses) is the only sample containing clinopyroxene crystals (see 
text). Symbols as in Fig. 1.4. 

 

The experiment Alb1-1 deviates noticeably from the trend (Fig. 1.6). This sample 

with very low water content (0.94 wt% H2O) contains clinopyroxene crystals that may bias 

the measured iron redox ratio. Therefore, this sample is not considered further on in the 

systematics of the redox state of the melt. As shown in Fig. 1.7 the Fe2+/ΣFe ratios 

determined for the phono-tephritic melts are in general agreement with the predictions of the 

models of Kress and Carmichael (1991) and Moretti (2005). The dependence of the 

Fe3+/Fe2+ ratio on logfO2 at pressures of 200 MPa and 500 MPa and temperatures of 1200°C 

and 1250°C is shown in Figures 1.8. In such a plot, a slope of 0.25 is expected according to 

the reaction Fe(II)Omelt + ¼ O2 gas = Fe(III)O1.5 melt. This slope is also implemented in the 

thermodynamic model of Moretti (2005), whereas Kress and Carmichael obtained a slope 

close to 0.2 for their empirical modelling.  

Considering the experiments done at relatively oxidizing conditions (IHPV intrinsic; 

fH2 ~ 0.6; Fig. 1.8a, b, d), the slope defined by the data points at given P, T and fH2 is 0.31 

(1200°C, 500 MPa), 0.28 (1250°C, 500 MPa) and 0.37 (1200°C, 500 MPa), respectively, 
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which is much larger than expected. This finding is consistent with a positive dependence of 

the Fe3+/Fe2+ ratio on the H2O concentration (Fig. 1.8d) in the melt as suggested by Moretti 

(2005). The data obtained at 1200°C, 200 MPa (Fig. 1.8c) define a much smaller slope of 

0.16. Here, due to different fH2 the oxygen fugacity is not directly correlated with the water 

fugacity over the entire experimental fO2 range.  

Comparison of our data for phono-tephrite with the results of Botcharnikov et al. 

(2005) for ferrobasalt studied at similar conditions can be used to evaluate the effect of the 

chemical composition on the redox state of iron in mafic melts. The phono-tephrite has much 

higher K2O content (0.3 vs. 7.5 wt%) and lower ΣFeO content (12.9 vs. 7.8 wt%) than the 

ferrobasalt (Table 1.2). The comparison between our experimental dataset at 1200°C and 

200 MPa and the data from Botcharnikov et al. (2005) for hydrous ferrobasaltic melts 

obtained at the same P-T conditions (Fig. 1.7c) reveal slightly higher Fe3+/Fe2+ ratios of the 

ultrapotassic hydrous melts relative to the ferrobasaltic melts. 
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Figure 1.7. Comparison between measured and calculated Fe2+/ΣFe ratios from the experiments and models of 
(a) Moretti (2005) and (b) Kress and Carmichael (1991), respectively. The solid line is a 1:1 correlation and the 
dashed lines represent an envelope of ±0.05. Symbols as in Fig. 1.4. 
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Figure 8. Fe3+/Fe2+ ratio as a function of logfO2 in comparison with the predictions of the empirical model of 
Kress and Carmichael (1991) (dashed lines) and the thermodynamic model of Moretti (2005) (grey areas) for 
the phono-tephritic melt at 200 and 500 MPa. All data in (a), (b) and (d) are all for constant hydrogen fugacity 
(fH2 ~0.6 bar) while for data shown in (c) the hydrogen fugacity varied from 0.6 to 16.7 bar (measured values). 
The model of Moretti (2005) takes the effect of water contents into account and the lower and upper limits of 
the grey areas comprise the range from 0 to 10 wt% H2O at 500 MPa (a, b) and from 0 to 5 wt% H2O at 
200 MPa (c, d). This range covers the measured water concentrations in the experimental glasses. For 
comparison the experimental data of Botcharnikov et al. (2005) for hydrous ferrobasaltic melts are shown (c).  

 

This effect is more pronounced at lower fO2. From linear regressions through each of 

the two datasets the differences in Fe2+/ΣFe ratios can be quantified. At a logfO2 of -9 the 

Fe2+/ΣFe ratio of the phono-tephrite is 0.08 lower than that of the ferrobasalt. At more 

oxidizing conditions of logfO2 of -5 this difference decreases to a value of 0.01. This trend is 

consistent with the model of Kress and Carmichael (1991) which predicts a decrease of the 

Fe2+/ΣFe ratio with increasing K2O. For an increase from 0.3 to 8 wt% K2O (ferrobasalt vs. 
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phono-tephrite) at 1200°C, 200 MPa and logfO2 = -5 a decrease in Fe2+/ΣFe by 0.05 is 

calculated. The corresponding increase at logfO2 = -9 is only 0.03. Within this logfO2 range 

and at water contents between 0 to 5 wt% in the melt, the model of Moretti (2005) predicts 

no significant variation in Fe2+/ΣFe with changing K2O (i.e., <0.003). If the ΣFeO content is 

reduced from 13 wt% to 8 wt% (ferrobasalt vs. phono-tephrite), the decrease in the Fe2+/ΣFe 

ratio calculated by the model of Kress and Carmichael (1991) is 0.02 and 0.01 at logfO2 of -9 

and -5, respectively. Again, no significant variation (<0.005) is predicted by the model of 

Moretti (2005). In conclusion, both an increase of K2O and a decrease of ΣFeO are predicted 

by Kress and Carmichael (1991) to shift the Fe3+/Fe2+ ratio in the same direction, whereas 

Moretti (2005) suggests an insignificant change. It is difficult to clearly attribute the 

observed shift in Fe3+/Fe2+ to either K2O or ΣFeO. A stabilization of tetrahedrally 

coordinated ferric iron by charge-balancing K2O has been suggested by various authors 

(Dickenson and Hess, 1986; Kilinc et al., 1983; Kress and Carmichael, 1988; Sack et al., 

1980) supporting that K2O has a positive impact on the ferric-ferrous ratio.  

Noteworthy, in contrast to the model predictions and our findings, Tangemann et al. 

(2001) proposed a negative effect of increasing K2O and a positive effect of increasing ΣFeO 

on the Fe3+/Fe2+ ratio. However, these discrepancies may be due to significant compositional 

differences, since these authors investigated dry K2O-FeO-Fe2O3-SiO2 liquids and their 

experiments were performed at atmospheric pressure. 

 

1.5.2. Effect of temperature and pressure on the redox state of iron 

The models of Kress and Carmichael (1991) and Moretti (2005) both predict a small 

positive dependence of the Fe2+/ΣFe ratio on temperature (Fig. 1.9). At a given fO2, both 

models calculate an increase of the Fe2+/ΣFe ratio by 0.01 - 0.08 when the temperature is 
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raised from 1200 to 1250°C. This effect is more pronounced at lower pressure and higher 

oxygen fugacity. The comparison of the experimental datasets obtained at 1200°C and 

1250°C reveals no clearly resolvable systematic trend regarding experimental and analytical 

uncertainties. However, predicted effects on the iron redox state caused by this moderate 

temperature change are small and therefore difficult to resolve.  

To evaluate the effect of pressure on the redox state of iron we performed 

experiments at pressures from 50 to 500 MPa (Table 1.1) at intrinsic redox conditions in the 

IHPV (NNO+2.6). All experiments were done with a pure H2O fluid to obtain a water 

saturated silicate melt. In Figure 1.9a, the Fe2+/ΣFe ratio of the silicate glasses is shown as a 

function of pressure.  

The data suggest a slight negative trend with increasing pressure. However, this trend 

is basically defined by the 50 MPa experiments, whereas most of the other experimentally 

obtained Fe2+/ΣFe ratios agree within uncertainties. Furthermore, it is important to note that 

the water solubility in the melt increases with increasing pressure (Figure 1.9b) and hence 

for a comparison of the experiments a superimposed effect of water content – as suggested 

by Moretti (2005) – has to be considered as well. Both models (Kress and Carmichael, 1991; 

Moretti, 2005) predict a nonlinear positive dependence of the Fe2+/ΣFe ratio on increasing 

pressure (Fig. 1.9a). According to the model of Moretti (2005) the pressure effect is more 

prominent for water-rich than for dry melts. Our experiments at aH2O = 1 cover a range 

from about 2.4 to 12 wt% H2O and the measured Fe2+/ΣFe ratios are consistent with the 

range of Fe2+/ΣFe calculated by the model of Moretti (2005) for corresponding water 

contents. Thus, the dependence of the Fe redox state on water contents (linked to the specific 

pressures) that is superimposed on the pressure effect could explain the seeming negative 

trend mentioned above. No analytically resolvable change in the Fe redox ratio is found 

within the pressure range investigated in this study. An extension of the experimental data 
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set to higher pressures is needed to better constrain the effect of pressure on Fe2+/ΣFe in 

hydrous silicate melts and to allow a comparison to anhydrous silicate melts, e.g. O'Neill et 

al. (2006), where a pressure effect was observed. 
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Figure 1.9. (a) Redox state of iron in the phono-tephritic melt as a function of pressure for experiments with 
pure H2O fluid and at intrinsic redox conditions in the IHPV (NNO+2.6). For comparison the pressure 
dependence of the Fe2+/ΣFe ratio calculated after Moretti (2005) and Kress and Carmichael (1991) at 1250°C 
are shown. The corresponding water contents of the experimental samples are shown in (b). 
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1.6. CONCLUDING REMARKS 

 

An experimental study was performed to investigate the dependence of the Fe2+/ΣFe 

ratio in phono-tephritic melts on oxygen fugacity. The redox conditions were adjusted at 

prevailing fH2 using mixed H2O-CO2 fluids which control the water activity in the system. 

The experimentally obtained relationship between fO2 and Fe3+/Fe2+ for hydrous 

ultrapotassic melts is in general agreement with predictions from the models of Kress and 

Carmichael (1991) and Moretti (2005). This suggests that these models can be applied to 

phono-tephritic melts as well, although such compositions were not implemented in the 

model calibrations.  

A small negative effect of dissolved water on Fe2+/ΣFe at given fO2 was found that 

confirms the predictions of the thermodynamic model of Moretti (2005). On the other hand, 

no effect of pressure and temperature on the redox state of iron was resolvable in the 

investigated P-T range. Compared to hydrous ferrobasaltic melts systematically higher 

Fe2+/ΣFe ratios were found for the phono-tephrite in particular at low oxygen fugacity. This 

effect is most likely due to the much higher K2O contents of the phono-tephrite (7.5 

compared to 0.3 wt). However, the difference in ΣFeO (7.8 wt% in the phono-tephrite and 

12.9 wt% in the basalt) may additionally contribute to the observed differences in Fe2+/ΣFe. 

The new data may be used to improve the computation models, i.e., to calibrate the effects of 

H2O, K2O and FeO on the redox state or iron in silicate melts.  
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Chapter 2. The experimental calibration of the iron isotope fractionation 

factor between pyrrhotite and peralkaline rhyolitic melt 

 

 

ABSTRACT 

 

A first experimental study was conducted to determine the equilibrium iron isotope 

fractionation between pyrrhotite and silicate melt at magmatic conditions. Experiments were 

performed in internally heated gas pressure vessels at 500 MPa and temperatures between 

840°C and 1000°C for 120 to 168 hours. Three different types of experiments were 

conducted and after phase separation the iron isotope composition of the run products was 

measured by MC-ICP-MS. (i) Kinetic experiments using 57Fe-enriched glass and natural 

pyrrhotite revealed that a close approach to equilibrium is attained already after 48 h. (ii) 

Isotope exchange experiments - using mixtures of hydrous peralkaline rhyolitic glass powder 

(~4 wt% H2O) and natural pyrrhotites (Fe1-xS) as starting materials - and (iii) crystallisation 

experiments, in which pyrrhotite was formed by reaction between elemental sulphur and 

rhyolitic melt, consistently showed that pyrrhotite preferentially incorporates light iron. 

No temperature dependence of the fractionation factor was found between 840°C and 

1000°C, within experimental and analytical precision. An average fractionation factor of 

Δ56Fe/54Fepyrrhotite-melt = -0.35±0.04‰ (2SE, n=13) was determined for this temperature range. 

Predictions of Fe isotope fractionation between FeS and ferric iron-dominated silicate 

minerals are consistent with our experimental results, indicating that the marked contrast in 

both ligand and redox state of iron control the isotope fractionation between pyrrhotite and 
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silicate melt. Consequently, the fractionation factor determined in this study is representative 

for the specific Fe2+/ΣFe ratio of our peralkaline rhyolitic melt of 0.38±0.02. At higher 

Fe2+/ΣFe ratios a smaller fractionation factor is expected. 

Further investigation on Fe isotope fractionation between other mineral phases and 

silicate melts is needed, but the presented experimental results already suggest that even at 

high temperatures resolvable variations in the Fe isotope composition can be generated by 

equilibrium isotope fractionation in natural magmatic systems.  

 

 

2.1. INTRODUCTION 

 

The range in iron isotope composition observed in nature cover about 4‰ in 

56Fe/54Fe. In particular low-temperature processes (< 100°C)  show a high variability in Fe 

isotope composition, whereas bulk igneous rocks comprise a more narrow range of about 

±0.1‰ (2σ) (Beard et al., 2003a). However, recent studies observed small but significant 

differences in Fe isotope compositions between mantle rocks and basalts (Weyer et al., 

2005) and some silica-rich granitoids show heavier Fe isotope compositions than mafic rocks 

(Poitrasson and Freydier, 2005; Dauphas and Rouxel, 2006). At present, the experimental 

database on low-T Fe isotope fractionation processes is steadily growing, whereas 

experimental studies on high temperature Fe isotope fractionation in magmatic systems are 

still lacking.  

Calculations based on Mössbauer spectroscopy data allow predictions of inter-

mineral Fe isotope fractionation factors at high temperatures. For example, predicted 

equilibrium Fe isotope fractionation between clinopyroxene and olivine at 800°C is +0.15‰ 

for the 56Fe/54Fe ratio (Polyakov and Mineev, 2000). However, iron isotope results of 
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igneous rocks and their interpretations are often controversial. Zhu et al. (2002) and 

Williams et al. (2005) reported significant differences in the 56Fe/54Fe ratio of -0.1 to -0.2‰ 

for coexisting olivine and pyroxene in mantle rocks, but an absence of differences between 

ortho- and clinopyroxene. The authors suggest that these findings reflect isotopic equilibrium 

at ~1000°C. Beard and Johnson (2004b) confirmed differences in iron isotopes between 

coexisting olivine and clinopyroxene for some spinel peridotites, but attributed these to 

metasomatic alteration. On the other hand, these authors did not find any significant iron 

isotope fractionation between olivine and orthopyroxene in the investigated spinel 

peridotites. So far, the largest inter-mineral fractionation in mafic rocks interpreted as 

equilibrium fractionation was observed for clinopyroxene and garnet in eclogites and in 

garnet-bearing ultramafic rocks (~ +0.3‰ in 56Fe/54Fe; Beard and Johnson, 2004b).  

A given mineral phase can show a considerable range in Fe isotope composition 

depending on the origin of its host rock (Beard and Johnson, 2004b; Williams et al. 2004; 

2005). The largest variations in 56Fe/54Fe, up to 1.1‰, were observed for mantle-derived 

spinels (Williams et al., 2004; 2005). Possible explanations for these variations are melt 

extraction in combination with changes in mantle redox conditions or metasomatism of the 

sub-arc mantle by iron-rich silicate melts from the subducting slab (Williams et al., 2004, 

2005). The latter interpretation has already been proposed by Beard and Johnson (2004b). In 

contrast, andesitic volcanic rocks did not reveal any differences in Fe isotope composition 

between silicate minerals (olivine, biotite, amphibole) and magnetite (Beard and Johnson, 

2004b). 

 

To date, the mechanisms that cause Fe isotope fractionation in igneous rocks are still 

poorly understood and experimental calibrations of fractionation factors are missing. The 

motivation for our study is to clarify whether measurable high temperature equilibrium Fe 
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isotope fractionation does exist or not. Here we report a first experimental study on high 

temperature iron isotope fractionation under magmatic conditions. We present a detailed 

study on Fe isotope partitioning between pyrrhotite (Fe1-xS) and a hydrous peralkaline 

rhyolitic melt at temperatures between 840°C and 1000°C and at a pressure of 500 MPa. The 

pyrrhotite-melt system was chosen mainly because of the experimental simplicity of the 

system compared to, for example, olivine-melt or pyroxene-melt systems. We have chosen 

the peralkaline rhyolitic composition for two main reasons. (i) The high FeO content and the 

relatively low liquidus temperature facilitate experimental and analytical procedures, 

because pyrrhotite is the only iron-bearing mineral that is stable over a wide temperature 

range. (ii) The high alkalinity combined with a relatively low Al2O3 concentration stabilises 

ferric over ferrous iron (Fe2+/Fetotal ~ 0.4) under our experimental conditions (e.g., Dickenson 

and Hess, 1986; Mysen, 1988; Gaillard et al., 2001). A pronounced contrast in the oxidation 

state of iron between the silicate melt and pyrrhotite (Fe1-xS contains almost exclusively 

ferrous iron), is expected to support iron isotope fractionation (Polyakov and Mineev, 2000; 

Schauble, 2004). Studies on Fe isotope fractionation between aqueous ferric and ferrous 

species at low temperatures have shown that the heavier isotope is associated with the higher 

oxidation state of Fe (e.g., Johnson et al., 2002; Welch et al., 2003). Hence, for a first high 

temperature experimental study the chosen mineral-melt system provides the appropriate 

boundary conditions, where such predictions can be tested. 

 

 

2.2. EXPERIMENTAL METHODS 

 

Our experimental strategy involves three different experimental designs to 

distinguish between kinetic and thermodynamic isotope fractionation: (i) The timescale 
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required to attain isotopic equilibrium was determined with experiments using a glass that 

was artificially enriched in 57Fe and natural pyrrhotite. The large differences in 57Fe/54Fe 

between the starting materials allow precise monitoring of isotope exchange towards 

equilibrium. (ii) The equilibrium fractionation factors between pyrrhotite and silicate melt 

were determined by the partial exchange method of Northrop and Clayton (1966). Synthetic 

glasses and natural pyrrhotites of known Fe isotope compositions were used as starting 

materials for these experiments. The large variation in Fe isotope composition of the 

pyrrhotites used allows the determination of fractionation factors even at incomplete 

equilibration. (iii)  In addition, the equilibrium fractionation factor between pyrrhotite and 

silicate melt was determined by crystallisation experiments in which pyrrhotite was formed 

by reaction between sulphur and silicate melt.  

 

2.2.1. Starting materials 

2.2.1.1. Natural pyrrhotite samples 
 

Four different natural pyrrhotites were used for the experiments in our study. All 

samples were checked for purity by powder x-ray diffraction (XRD) and electron 

microprobe analysis (EMPA) (see Table A2.1.; all tables and figures with the prefix “A2” 

refer to appendix A2). No phases other than pyrrhotite were detected. In addition no 

elements other than Fe and S were detected by EMPA. Samples B and K show a single sharp 

d102 peak in the powder x-ray diffraction pattern that indicates hexagonal pyrrhotite. Splitting 

of this peak as observed for the samples MV and R is characteristic for monoclinic pyrrhotite 

(Vaughan and Craig, 1978). The 56Fe/54Fe ratio of the pyrrhotite samples used in the 

experiments vary by 0.67‰ (Table 2.1). Additionally, another 12 natural sulphide samples – 

mainly pyrrhotites – from various geological setting were analysed for their Fe isotope 

composition (see appendix A2.4).  
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sample analysis no.$ δ56Fe δ57Fe δ56Fe   2σ § δ57Fe   2σ §

synthetic glasses

NSLsyn (dry) NSL1 -0.234 -0.334 -0.247 0.043 -0.346 0.074
NSL2 -0.276 -0.396
NSL3a -0.252 -0.336
NSL3b -0.282 -0.354
NSL4 -0.223 -0.299
NSL5a -0.243 -0.341
NSL5b -0.245 -0.315
NSL5c -0.284 -0.420

NSLsyn01 * NSL6 -0.265 -0.382
NSLsyn07 * NSL7a -0.225 -0.361

NSL7b -0.225 -0.317
NSL7c -0.231 -0.373

NSLsyn05 * NSL8a -0.247 -0.330
NSL8b -0.228 -0.289

NSLsyn04spike NSL9a 0.720 1623.494 0.723 0.043 1623.487 0.364
NSL9b 0.746 1623.666
NSL10 0.704 1623.302

NSLsyn06spike NSL11a -0.024 438.092 -0.009 0.025 438.138 0.121
NSL11b -0.002 438.206
NSL12 -0.002 438.115

natural pyrrhotites
MV MV1a -0.733 -1.106 -0.727 0.069 -1.063 0.107

MV1b -0.758 -1.079
MV2 -0.690 -1.003

B B1a -1.065 -1.554 -1.035 0.084 -1.517 0.134
B1b -1.076 -1.589
B2a -1.007 -1.440
B2b -0.991 -1.485

K K1a -0.345 -0.498 -0.369 0.037 -0.526 0.047
K1b -0.391 -0.530
K2a -0.366 -0.507
K2b -0.385 -0.558
K2c -0.360 -0.535

R R1a -0.725 -1.077 -0.720 0.022 -1.064 0.030
R1b -0.727 -1.057
R2a -0.724 -1.045
R2b -0.704 -1.075

$ Each number refers to an analytical sequence involving dissolution of glass or pyrrhotite and chromatographic separation of iron. 
Characters a, b, c denote multiple Fe isotope analyses of the same solution.
* Some of the hydrous glass batches were analysed to ensure that Fe isotope composition remained unchanged after the hydration 
§ Uncertainty given as the two standard deviation of replicate analyses. The long-term external reproducibility (2σ) for "unspiked" 
samples on the Neptune mass spectrometer is ± 0.049 ‰ on δ56Fe and ± 0.071 ‰ on δ57Fe.

Table 2.1. Iron isotope compositions of the starting materials.

averages

 

 

2.2.1.2. Synthetic peralkaline, rhyolitic glass 
 

As starting glass, we chose a synthetic analogue of a peralkaline rhyolitic obsidian 

from New Zealand (composition in wt%: 75.5 SiO2, 10.4 Al2O3, 4.1 FeO, 5.3 Na2O, 4.7 

K2O). The NSLsyn glass was prepared by fusing a mixture of oxides and carbonates at 

1600°C (Table A2.2, NSLsyn dry). In the experiments we used prehydrated glasses as 
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starting materials to assure homogeneous H2O distribution and to avoid any possible 

complications due to a fluid phase which may initiate metastable reactions in the beginning 

of the experiment. Details on the preparation of the synthetic glasses are given in appendix 

A2.1. A H2O content of ~ 4 wt% was chosen to obtain a fluid-undersatured melt (Behrens 

and Jantos, 2001) under the experimental conditions applied here, even in the presence of 

sulphur. The hydrous glass was ground to grain sizes of < 20 µm and used as starting 

material for the isotope exchange and crystallisation experiments. For this study eight 

batches of “isotopically normal” hydrous glass were synthesised, each analysed by electron 

microprobe (Table A2.2.). The difference to 100 % in the electron microprobe analysis was 

interpreted as the amount of H2O dissolved in the glasses (e.g., Devine et al., 1995; Morgan 

and London, 1996; Berndt et al., 2005). In addition, the H2O concentrations of selected 

glasses were determined by Karl-Fischer titration (KFT) (Behrens and Stuke, 2003; Leschik 

et al., 2004). Although, the “by-difference-method” for water determination using the EMPA 

has a relatively high uncertainty of at least ±0.5 wt%, the results of both methods are in very 

good agreement (Table A2.2.), with exception of NSLsyn01. The EMPA measurements 

show homogeneous distribution of water in the glasses. 

 

2.2.1.3. 57Fe enriched glasses 
 

For the kinetic tracer experiments we doped the NSLsyn glass with a 57Fe isotope 

tracer. For this study two batches of hydrous 57Fe-enriched NSLsyn glass were synthesised 

(Table A2.2., NSLsyn04spike and NSLsyn06spike). Electron microprobe transects were 

measured on three glass pieces of each charge to ensure compositional homogeneity. Fe 

isotope analyses were performed on two different glass pieces of each batch (Table 2.1). 

FeOtotal concentration of the 57Fe-enriched glasses are slightly lower (~ 0.3 - 0.7 wt% FeOtotal 

less) than those of “unspiked” hydrous glasses (Table A2.2.). Probably small amounts of iron 
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were lost to the capsule during the initial melting under dry conditions in the internally 

heated pressure vessel (IHPV) (Berndt et al., 2005). No iron loss was observed after 

synthesis of water-bearing glasses.  

 

2.2.2. Experimental design 

2.2.2.1. Kinetic tracer experiments 

The kinetics of iron isotope exchange between pyrrhotite and silicate melt were 

determined using the 57Fe enriched glass and natural pyrrhotite with “natural” 57Fe 

abundance. The use of enriched isotope tracers to evaluate the kinetics of isotope exchange 

has a long history (Mills and Urey, 1940) and was already successfully applied to the iron 

isotopic system by Johnson et al. (2002). The initial difference in 57Fe/54Fe between 

pyrrhotite (57Fe/54Fe ~ 0.363) and melt (NSLsyn04spike: 57Fe/54Fe ~ 0.951) is much larger 

than any kinetic or equilibrium isotope fractionation in nature. The high analytical precision 

allows an accurate assessment of the kinetics of iron isotope exchange and the timescale 

required to attain isotopic equilibrium at the given P-T-conditions. For each experiment 

approximately 80 mg of 57Fe enriched hydrous glass powder (NSLsyn04spike, Table 2.1) was 

mixed with ~ 5 mg of natural pyrrhotite powder (sample K, Table 2.1) and sealed in a gold 

capsule. Experiments were performed in the IHPV at 900°C and 500 MPa for 2 h, 24 h, 48 h 

and 120 h, respectively, to obtain a time-resolved approach to isotopic equilibrium.   

 
2.2.2.2. Isotope exchange experiments 
 

For each of the investigated temperatures four or five capsules were prepared 

containing ~ 80 mg of hydrous NSLsyn glass powder (~ 4 wt% H2O) mixed with ~ 5 mg of 

natural pyrrhotite powder. Four different natural pyrrhotites (Table 2.1) were used to vary 

the initial differences in iron isotope composition between pyrrhotite and glass. All capsules 
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of each set were processed simultaneously in the IHPV at 500 MPa and either 840°C, 900°C 

or 1000°C, to ensure identical experimental conditions. Each experimental set also included 

at least one capsule with 57Fe enriched glass powder mixed with pyrrhotite to assess the 

extent of equilibration for the given experimental conditions. 

 

2.2.2.3. Crystallisation experiments 
 

Hydrous NSLsyn glass powder (~ 4 wt% H2O, Table A2.2.) was mixed with various 

amounts of elemental sulphur (ChemPur®, 99.99 % purity) and sealed in Au capsules to 

crystallise pyrrhotite. Preliminary tests with relatively large amounts of sulphur (up to 

~ 14 wt% S in the capsule) resulted in the formation of large Fe-S-rich fluid bubbles and an 

inhomogeneous Fe distribution in the melt (Fig. 2.1A). By reducing the concentration of 

elemental sulphur to < 0.53 wt%, pyrrhotite was crystallised with a coexisting homogeneous 

melt free of large Fe-S-rich fluid bubbles. Small bubbles (<1 µm) were occasionally present, 

probably due to trapped nitrogen during capsule preparation.  

Three or four capsules with different initial Fe:S ratios (ranging from about 6:1 to 

12:1) were processed simultaneously in the IHPV at 500 MPa and at a temperature of 840°C, 

900°C or 1000°C. Pyrrhotite crystallised preferentially along the former grain boundaries of 

the glass powder (Fig. 2.1B) and was often accumulated in a few, large clusters probably due 

to initial inhomogeneous distribution of S in the loaded charge. To improve homogenous 

distribution of pyrrhotite in the samples, the experiments were interrupted after 24 h. 

Samples were reground, sealed again in new Au capsules and processed in the IHPV for 

another five to six days at identical experimental conditions. One capsule was added to each 

run that only contained hydrous glass powder. The redox state of iron in those samples was 

determined by wet chemistry using the colorimetric method described in chapter 1.3.2. 
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2.2.2.4. Run conditions 

During the experiments in the IHPV temperature was measured next to the capsules 

(typically capsules had an inner diameter of 4 mm, a wall thickness of 0.2 mm, and a length 

of ~ 15 mm) using three K-type thermocouples with an accuracy of better than ±7°C (A. 

Meisen, pers. comm.). The temperature variation across the capsule assemblage was < 5°C 

and temperature stability was always better than ±2°C. Pressure was measured with an 

uncertainty of about 1 MPa and the stability was within 5 MPa. Heating to the desired run 

temperature was done isobarically at 500 MPa at a rate of 30°C/min. Oxygen fugacity is 

imposed by the intrinsic hydrogen fugacity of the IHPV. At water-saturated conditions in the 

capsule the oxygen fugacity is close to that of the MnO-Mn3O4 buffer (log fO2 ~ NNO+3.5; 

see Berndt et al. (2002)). In all experiments the melts were H2O undersaturated and, hence, 

the prevailing oxygen fugacity in the capsule was lower than NNO+3.5. For peralkaline 

rhyolite the relationship between water solubility in the melt and water activity is not known. 

To estimate the oxygen fugacity we assumed for simplicity that the water activity aH2O is 

proportional to the water concentration in the melt. At 4 wt% H2O dissolved in the melt and 

500 MPa, this approach probably slightly overestimates the water activity (see Fig. 4 of 

Tamic et al. (2001) for the variation of water solubility in rhyolitic melts as a function of the 

mole fraction of water in the fluid), but aH2O is estimated to be accurate within a factor of 

two. Using a water solubility of 10.93 wt% determined for peralkaline rhyolite (NSL) at 

800°C and 500 MPa (Behrens and Jantos, 2001), the estimated log fO2 is NNO+2.6. 

According to Gaillard et al. (2002) redox equilibrium is attained after ~ 3 hours under our 

experimental conditions. 

After the run the samples were isobarically quenched to room temperature at an 

initial cooling rate of ~ 200 °C/min by turning off the power of the furnace. The capsules 
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were weighed before and after the IHPV runs to ensure that they remained closed during the 

experiments.  

 

2.2.2.5. Characterisation of run products 
 

Thin sections of all run products, except for samples E-840-5S and C-840-3, were 

prepared for electron microprobe analysis. The remaining sample was ground in an agate 

mortar to grain sizes of < 5µm for Fe isotope analysis. Selected samples were examined by 

XRD for phase identification. All microprobe analyses of pyrrhotites and glasses were done 

on a Cameca SX-100 (see appendix A2.2 for details on analytical conditions). Water 

concentrations in the glasses were estimated from electron microprobe analysis using the 

“by-difference-method”.  

 

2.2.3. Isotope analysis 

2.2.3.1. Phase separation 

The run products of all experiments, pyrrhotite and silicate glass, needed to be 

separated before chemical Fe purification and subsequent isotope analysis using solution 

multi collector inductively coupled plasma mass spectrometry (MC-ICP-MS). In most 

experiments, in particular in the crystallisation experiments, grain sizes of pyrrhotite were 

too small for physical separation by para-magnetism or heavy liquids. Therefore pyrrhotite 

was selectively removed from the glass by dissolution in hydrochloric acid. However, no 

complete phase separation could be attained with this method. This leads to a systematic 

underestimate of the measured fractionation factors. Therefore, a correction for this cross-

contamination during phase separation was applied to the measured Fe isotope data of 

pyrrhotite and glass (see appendix A2.3 for details on the phase separation and the 

corrections). The extent of the corrections can be seen in Tables 2.2 and 2.3.  



Chapter 2. Fe isotope fractionation between pyrrhotite and rhyolitic melt 
___________________________________________________________________________________________________________________________________________________________________________________ 

 65 

Iron was separated from other elements by anion-exchange chromatography as 

described in Schoenberg and von Blanckenburg (2005). Before and after column chemistry, 

Fe concentration was measured by ICP-OES to ensure quantitative elution of Fe from the 

anion exchange resin (DOWEX AG © 1x8 100-200 mesh) and to verify that matrix elements 

were removed efficiently. Total procedural Fe blanks were always below 60 ng. This is more 

than four orders of magnitude less than Fe processed and is considered negligible.  

 

2.2.3.2. Mass spectrometry and data presentation 
 

All iron isotope measurements were carried out on a ThermoFinnigan Neptune MC-

ICP-MS using the analytical protocol described by Schoenberg and von Blanckenburg 

(2005). The standard-sample bracketing technique was used to correct for instrumental mass 

bias and the commercially available iron standard IRMM-014 was used as bracketing 

reference standard. Iron isotope data are reported in the δ-notation, which gives the per mil 

deviation of the 56Fe/54Fe or 57Fe/54Fe ratio of the sample relative to that of the IRMM-014 

standard, e.g.: 

56 56
56

sample IRMM 014sample 54 54

Fe Feδ Fe 1 1000
Fe Fe

−
⎡ ⎤⎛ ⎞

= − ⋅⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 [‰ ]             (2.1) 

The long-term external reproducibility for single Fe isotope measurements, determined by 

replicate analysis of standards and samples of different matrices, is ±0.049‰ and ±0.071‰ 

(2 standard deviation, 2σ) for δ56Fe and δ57Fe, respectively (Schoenberg and von 

Blanckenburg, 2005). We routinely analysed our internal laboratory standard JM 

(commercially available pure Fe wire) within each analytical session to assess the accuracy 

of the measurements. During the course of this study the measured Fe isotope composition 

of the JM standard was δ56Fe = 0.422±0.043‰ and δ57Fe = 0.631±0.072‰ (2σ, n = 64), 

which is in excellent agreement with previous measurements (δ56Fe = 0.423±0.046‰ and 
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δ57Fe = 0.624±0.073‰) given by Schoenberg and von Blanckenburg (2005). Measured Fe 

isotope differences between pyrrhotite (p) and glass (g) are expressed by the fractionation 

factor α 

56
p

p-g 56
g

1000+δ Fe
α =

1000+δ Fe
                                                    (2.2) 

or by the approximation  

    56 56 56 3
p-g p g p-gΔ Fe = δ Fe -δ Fe 10 lnα≈ .   (2.3) 

 

 

2.3. RESULTS 

 

All experiments contained pyrrhotite and glass as the only reaction products (Fig. 2.1), 

except for samples E-900-1, E-840-2 and E840-5S, where small amounts of additional quartz 

with crystal sizes < 10 µm were present. However, quartz is not expected to affect Fe isotope 

partitioning between pyrrhotite and silicate melt. In the crystallisation experiments small 

pyrrhotite crystals (< 1µm) were homogeneously distributed in the run products. Pyrrhotite 

crystal contents in these experiments, estimated by mass balance of iron, were below 1.5 

wt%. EMPA transects through the samples revealed homogeneous melt compositions and 

H2O concentrations identical with those of the starting materials within analytical 

uncertainty (Table A2.5). The redox state of Fe, expressed as Fe2+/ΣFe ratio, in the pure 

hydrous rhyolitic melt (measured by wet-chemistry) does not vary significantly with 

temperature (0.37±0.01 (1σ, n=3) at 840°C, 0.39±0.01 (1σ, n=5) at 900°C, and 0.37±0.02 

(1σ, n=7) at 1000°C). The constancy of the Fe2+/ΣFe ratio (average: 0.38±0.02, 1σ, n=15) 

within a relatively limited temperature range is consistent with experimental findings 

presented in chapter 1.5.2 and results reported by Gaillard et al. (2001). In the crystallisation 
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experiments pyrrhotite crystallisation lowered the FeOtotal in the glasses by 0.02 to 0.79 wt% 

compared to the starting material. On the other hand, in exchange experiments FeOtotal 

slightly increased, because the added pyrrhotite was partially dissolved to saturate the melt 

with sulphur (Fig. 2.2, Table A2.5). The differences in the sulphur contents of the post-

experimental glasses can be explained by variations in iron content of the melt and in 

temperature (Botcharnikov et al., 2004).  
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Figure 2.2.  Sulphur contents in the post-experimental glasses of crystallisation and isotope exchange 
experiments as a function of FeOtotal.  
 

Only hexagonal pyrrhotite was found by XRD in run products of crystallisation and 

exchange experiments. The monoclinic pyrrhotites MV and R, used as starting material in 

several experiments (Table 2.2) changed to hexagonal crystal structure, as expected for high 

temperature pyrrhotites (Vaughan and Craig, 1978). Compositions of pyrrhotites after the 

exchange experiments are given in Table A2.5. Since the crystal size of pyrrhotites from the 

crystallisation experiments were < 1µm it was not possible to analyse them by EMPA.
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Figure 2.1. Back scattered electron images of representative experimental run products. (A) Preliminary 
crystallisation experiments (1000 °C, 500 MPa, 24 hours) with high amounts of sulphur (14.16 wt% S) resulted 
in formation of large Fe-S-rich fluid bubbles. (B) Short term crystallisation experiments (900 °C, 500 MPa, 24 
hours, 0.29 wt% S added) show preferential pyrrhotite (light colour) formation along the former grain 
boundaries of the glass powder. (C and D) Typical images of run products from re-homogenised crystallisation 
experiments with initial S contents < 0.54 wt%. (E) Representative image of run products from exchange 
experiments. A pyrrhotite crystal is shown in detail in (F). The crystal shows a dissolution texture, but a 
subhedral crystal shape is still preserved. 
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2.3.1. Isotope exchange kinetics 

 
The kinetics of Fe isotope exchange and the time scale to attain isotopic equilibrium 

in the system was investigated in detail at 900°C and 500 MPa using 57Fe enriched glass. 

Figure 2.3 shows that the δ57Fe of the melt decreased rapidly with experimental runtime 

through isotope exchange with the coexisting pyrrhotite, which correspondingly increased in 

δ57Fe. A close approach to Fe isotope equilibrium (> 90 %) between these two phases is 

already attained after 24 hours.  

The extent of isotope equilibration F(δ) at a given runtime can be described for each 

phase by  

57 57
final initial

57 57
equilibrium initial

Fe FeF( )
Fe Fe

δ − δ
δ =

δ − δ
          (2.4) 

where δ57Feinitial and δ57Fefinal denote the Fe isotope composition of this phase before and 

after the experiment (e.g., Criss et al., 1987; Johnson et al., 2004). δ57Feequilibrium is the 

equilibrium isotope composition of this phase, which is identical to the bulk Fe isotope 

composition of the mixture in the capsule if full equilibration is reached. This presumption is 

valid because any equilibrium Fe isotope fractionation between melt and pyrrhotite is 

insignificant compared to the difference in δ57Fe between the two phases even at F = 0.99. 

The bulk Fe isotope composition can be calculated from the respective amounts of iron and 

corresponding δ57Feinitial values of the starting materials. Alternatively, F can also be 

expressed in terms of ∆57Fe: 

57 57
final initial

57 57
equilibrium initial

Δ Fe -Δ FeF(Δ)=
Δ Fe -Δ Fe

                 (2.5) 

Both expressions (Eqn. 2.4 and 2.5) were used to evaluate the fractional approach to 

equilibrium. 
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The atomic processes which control the isotope exchange kinetics in our experiments 

are not fully clear. However, isotope exchange kinetics observed in other experimental 

systems (e.g., Cole and Chakraborty, 2001) often follow the general form shown in Figure 

2.3, i.e. rapid initial exchange is followed by slower exchange. Since small amounts of 

pyrrhotite are dissolved in the initial stages of the experiments, it is possible that the isotope 

exchange reaction is dominated by dissolution and recrystallisation in the early stages, as 

indicated by more than 50% exchange after the 2 hour experiment. Recrystallisation of 

pyrrhotite is also supported by XRD measurements on the run products, demonstrating a 

change from initially monoclinic to hexagonal symmetry. After 24 hours the approach to the 

equilibrium value slows (Fig. 2.3). This might be due to a diffusion-controlled exchange 

mechanism, governed by the diffusivity of Fe in pyrrhotite and in the melt. However, the 

experiments demonstrate that a very close approach to equilibrium is already reached after 

48 hours. 

glass
pyrrhotite

0

200
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800

1000

1200

1400

1600

0 20 40 60 80 100 120
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δ5
7 F
e

2σ of mean bulk Fe isotope composition 
of all experimental charges

 
Figure 2.3. Kinetics of iron isotope exchange between pyrrhotite and 57Fe enriched silicate melt at 900°C and 
500 MPa. A close approach to isotopic equilibrium (grey shaded band) is already attained after 24 hours. The 
solid trend line was fitted to the pyrrhotite data. This in turn was used to compute the corresponding dashed line 
for the glass fraction to satisfy mass balance. The grey area represents the variation in the bulk Fe isotope 
composition of all experimental charges (average = 682±29‰, 2σ). Each capsule was filled with an 
individually prepared mixture of pyrrhotite and glass powder.  
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2.3.2. Isotope exchange experiments  
 

The method of Northrop and Clayton (1966), originally developed to determine 

oxygen and carbon isotope equilibrium fractionation factors, was applied to determine Fe 

equilibrium isotope fractionation factors between pyrrhotite and silicate melt at high 

temperatures. This method allows the determination of an equilibrium fractionation factor 

between two phases at given conditions from a set of partial exchange experiments.  Partial 

isotope exchange reactions can be described mathematically by the following equation 

(Northrop and Clayton, 1966): 

( )lnα = lnα 1 F lnα lnαinitial equilibrium final initial− ⋅ −                         (2.6) 

where αinitial and αfinal represent the differences in isotope composition between the two 

phases of interest at the beginning and at the end of the experiment, respectively, expressed 

as fractionation factor (see equation 2.2). αequilibrium is the difference in isotope composition 

between the two phases when equilibrium is reached, and F is the degree of equilibration of 

the system (see equations 2.4 and 2.5) after a certain experimental runtime.  

The equilibrium fractionation factor can be derived from the y-intercept of a plot of 

lnαinitial versus lnαfinal - lnαinitial data. Alternatively, if α values are close to unity, as in our 

study, plots of ∆56Feinital vs. (∆56Fefinal - ∆56Feinitial) are equivalent (see Fig. 2.4).  

 

The equilibrium fractionation factor between pyrrhotite and silicate melt at each 

experimental temperature was determined by a least squares fit accounting for individual 

errors using the method of York (1969) as implemented in Isoplot (Ludwig, 2001). The 

linearity of the data (Fig. 2.4) indicates that boundary conditions for application of the partial 

exchange method are satisfied. Criss (1999) proposed an iterative approach for solving 

equation 2.6. We applied both methods to our data and obtained identical results. For 

simplicity, we implemented the conventional method of Northrop and Clayton (1966).  
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Figure. 2.4. Iron isotope exchange between pyrrhotite and silicate melt at temperatures of (A) 840°C, (B) 
900°C and (C) 1000°C presented according to Northrop and Clayton (1966). Δ56Feinitial and Δ56Fefinal represent 
the differences in Fe isotope composition between pyrrhotite and glass at the start and at the end of each 
experiment (Table 2.5). The y-intercept of the liner regression corresponds to the equilibrium isotope 
fractionation factor and F (= -1/slope) to the extent of equilibration. 
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The fractional approach to equilibrium, determined from the slopes in Fig. 2.4 (F = -1/slope) 

was 0.72 at 840°C (6 days), 0.86 at 900°C (5 days) and 0.93 at 1000°C (5 days) (denoted as 

F(N&C) in Table 2.2). These values are generally lower than F(δ)p values calculated by 

equation 2.4 from the 57Fe enriched samples included in each experimental series. However, 

these discrepancies lie within the uncertainties of the slopes derived by linear regression. It 

must be noted that the slopes in Figure 2.4 are associated with relatively high uncertainties, 

but the y-intercepts, which are the quantitatively relevant values here, are more precise. The 

derived fractionation factors expressed as ∆56Fepyrrhotite-melt are -0.37±0.24‰ at 840 °C, 

-0.35±0.10‰ at 900°C and -0.44±0.10‰ at 1000°C (Table 2.2). The negative sign of the 

fractionation factor indicates that pyrrhotite incorporates preferentially lighter Fe isotopes 

relative to the coexisting silicate melt.  

 

2.3.3. Crystallisation experiments 
 

The crystallisation experiments corroborate the result of the exchange experiments in 

that pyrrhotite is isotopically lighter than the silicate melt. The measured ∆56Fepyrrhotite-melt 

values of different samples, run at the same temperature, show good internal consistency, 

independent from the initial sulphur content (Table 2.3). Average Δ56Fepyrrhotite-melt values are 

-0.35±0.10‰ at 840°C, -0.38±0.10‰ at 900°C and -0.30±0.23‰ at 1000°C (Table 2.3). 

Pyrrhotite crystal content varied in the experimental products and was quantified by 

comparing the iron concentration of the starting glass and the post-experimental glass. Since 

pyrrhotite is the only Fe bearing crystalline phase, the fraction of Fe transferred from the 

melt to pyrrhotite, f Fetransfer can be calculated as (cFeOstart glass – cFeOglass after exp) / 

cFeOstart glass. In the calculation we used H2O-free normative FeO concentrations derived 

from the analyses listed in Tables A2.2 and A2.5. The obtained values of f Fetransfer range 

from 0.004 to 0.189 (Table 2.3). However, it must be noted that these calculations have high 
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uncertainties due to the low pyrrhotite contents and hence small changes in the Fe 

concentration in the melt, which are hardly detectable within analytical precision. This is 

also reflected in the large errors assigned to the corrected δ56Fe values of pyrrhotite of two of 

the 1000°C experiments, which have very low pyrrhotite contents (Table 2.3). Figure 2.5 

shows the measured Fe isotope compositions of corresponding pyrrhotite-glass pairs in 

comparison with the theoretical mass balance lines for equilibrium Fe isotope fractionation 

in a closed system. Except for one 1000°C experiment (C-1000-2), there is good agreement 

between measured and predicted Fe isotope distributions.  
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Figure 2.5. δ56Fe values of corresponding pyrrhotite (corrected for incomplete phase separation) and glass pairs 
from crystallisation experiments in comparison with calculated mass balance lines for equilibrium isotope 
fractionation in a closed system. Mass balance lines are constructed using the error weighted average of 
Δ56Fepyrrhotite-melt of -0.35‰ obtained from crystallisation and isotope exchange experiments. The grey areas 
correspond to the analytical uncertainty (±0.049‰) of δ56Fe measurements. The pyrrhotite datum marked with 
an * represents the uncorrected measured δ56Fe value (see Table 2.3). 
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2.4. DISCUSSION 

 

2.4.1. Stability of pyrrhotite 

The stability field of pyrrhotite is a complex function of thermodynamic parameters, 

such as temperature, pressure, and the fugacity of sulphur and oxygen. From observations in 

natural samples and from experimental studies it is known that silicate melts can coexist with 

immiscible sulphide liquids from which sulphide minerals crystallise rapidly during cooling 

(Whitney, 1984; Luhr, 1990; Vaughan and Lennie, 1991; Clemente et al., 2004). Hence, to 

interpret the measured Fe isotope partitioning we have to consider whether pyrrhotite found 

in the run products was a stable phase at the experimental conditions or represents a quench 

phase.  

As already described in section 2.3 formation of a sulphur-rich liquid phase was 

observed for initial experiments with relatively high amounts of sulphur (up to 14.16 wt% S; 

Fig. 2.1A). This phase disappeared when the amount of sulphur was reduced (< 0.53 wt% S) 

and pyrrhotite became the only sulphur-rich phase in the system (Fig. 2.1B-D). In 

crystallisation experiments pyrrhotite crystals are preferentially located at the former grain 

boundaries of the glass powder used as starting material (Fig. 2.1B) indicating heterogeneous 

nucleation of pyrrhotite under experimental conditions. If an immiscible sulphide liquid was 

present during the experiment, formation of a few larger pools is expected (to minimise 

surface energy), rather than numerous small droplets and even aggregates of droplets. 

Additional evidence that pyrrhotite is a stable phase at experimental conditions is given by 

the exchange experiments which show that the initially added pyrrhotite crystals were partly 

dissolved in the silicate melt until sulphur and iron saturation was reached. These crystals 
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show a typical dissolution texture (Fig. 2.1F). Their subhedral crystal shapes, however, are 

still preserved and no signs for formation of an immiscible sulphide liquid can be found.  

 

2.4.2. Iron isotope fractionation 

Both experimental approaches show that resolvable iron isotope fractionation exists 

at magmatic conditions. Pyrrhotite incorporates preferentially lighter Fe isotopes relative to 

the coexisting silicate melt. The fractionation factors determined from the crystallisation 

experiments are in good agreement with the values obtained from the isotope exchange 

experiments (Tables 2.2 and 2.3, Fig. 2.6).  
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Figure 2.6. Summary of the Fe isotope dataset obtained from the partial exchange experiments and the 
crystallisation experiments. The results of the crystallisation experiment agree well with those of the exchange 
experiment. Uncertainties associated with crystallisation experiments at 1000°C are larger, due to higher 
uncertainties on the small changes in FeOtotal (compare fFetransfer in Table 2.3), which was used to correct the 
measured δ56Fe of pyrrhotite for contamination with Fe from the glass during phase separation. The dashed line 
represents the error-weighted average of all Δ56Fepyrrhotite-melt values from both the crystallisation experiments 
and the partial isotope exchange method. 
 

Understanding the mechanisms of isotope fractionation is necessary to interpret 

natural Fe isotope variations in igneous systems. In doing so, it is important to distinguish 

between kinetic and equilibrium fractionation. This issue will be discussed in the following 
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section. Then we focus on the interpretation of the fractionation data in terms of structural 

and compositional parameters controlling the sign and magnitude of the Fe isotope 

fractionation factor by comparing the experimental data with predicted fractionations. 

 

2.4.2.1. Kinetic or equilibrium isotope fractionation? 
 

The two different experimental approaches (crystallisation and exchange 

experiments) follow two different reaction pathways. In the crystallisation experiments, Fe 

from the melt is transferred into pyrrhotite. Possible mechanisms controlling these 

experiments are diffusion of iron in the melt, reaction kinetics at the interfaces between 

sulphur/melt, pyrrhotite/sulphur and pyrrhotite/melt and diffusion of iron in the newly 

formed pyrrhotite. In the exchange experiments pyrrhotite is partly dissolved and controlling 

steps for the reaction may be diffusion of iron in the melt and in pyrrhotite, diffusion of 

sulphur into the melt and the interface reaction between pyrrhotite and melt.  

There is no indication that interface reactions are important for the timescale required 

to achieve chemical and isotopic equilibrium in the system. Furthermore, diffusion of iron in 

pyrrhotite is very fast compared to the crystal sizes of pyrrhotite. According to Condit et al. 

(1974) the self diffusion coefficient DFe in Fe0.9S at 840°C is 1.08·10-11 m²/s. Hence, the 

timescale to equilibrate pyrrhotite crystals of 20 µm diameter is about 37 seconds, much 

lower than the experimental duration. In the crystallisation experiments the size of pyrrhotite 

crystals is much smaller and, hence, Fe isotopic equilibration of pyrrhotite is even faster. 

Thus, the mechanism which controls the equilibration of the samples is probably diffusion of 

iron in the melt. Experimental data for iron diffusion in the rhyolitic melts are not available, 

but data for lanthanum diffusion may serve as a lower limit for iron diffusion (La is in 

trivalent state whereas Fe is in a mixed divalent/trivalent state). At 800°C and 500 MPa in 

rhyolitic melt containing 5 wt% water La-diffusivity is 6·10-15 m2/s (Tegge-Schüring, 2003), 
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resulting after 144 h run duration in a diffusion length (√(D·t)) of 57 µm. This is similar to 

the average distance between pyrrhotite crystals. Diffusion in the more depolymerised and 

thus less viscous peralkaline melt at 840°C can be expected to be significantly faster 

(Mungall, 2002). Hence, we conclude that iron diffusion in the melt should be always fast 

enough to equilibrate iron isotopes in the sample during the applied run durations, consistent 

with the findings of the kinetic 57Fe tracer experiments.   

 

2.4.2.2. Effect of temperature on iron isotope fractionation 
 

Equilibrium isotope fractionation typically shows a decrease in magnitude with 

increasing temperature with 1/T or 1/T² (Urey, 1947). However, predicted changes of the 

fractionation factors for any mineral combination in the investigated temperature range 

between 840°C and 1000°C (Polyakov and Mineev, 2000) are below analytical resolution. 

Indeed, our experiments did not reveal any temperature dependence of the fractionation 

factor within experimental and analytical precision (Fig. 2.6). However, an alternative 

explanation for the lack of temperature dependence is that the fractionation measured in the 

quenched phases is overprinted by retrograde exchange processes. Thus, it has to be 

discussed whether the data reflect equilibrium at high temperature or the isotopic closure 

temperature of the system (Dodson, 1973). As discussed above Fe diffusion in the silicate 

melt is probably the limiting factor controlling equilibration. Thus, although Fe re-

equilibration by diffusion within a pyrrhotite crystal might be possible during quenching, an 

isotope exchange between pyrrhotite and silicate melt would be limited by the Fe diffusivity 

in the silicate melt. The typical time to cool the experimental charges from the run 

temperature to 400°C (at this temperature cation diffusion in the melt can be considered as 

essentially frozen-in) was less than three minutes. As shown in Figure 2.3 this time interval 

is very short compared to the characteristic equilibration time of >24 h at 900°C. At lower 
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temperature the equilibration time is even longer. Thus, we conclude that only a minor 

fraction of iron isotopes can exchange during cooling and the measured fractionation factors 

reflect the near-equilibrium fractionation under the given experimental conditions. 

 

We propose an average fractionation factor between pyrrhotite and silicate melt of 

∆56Fepyrrhotite-melt = -0.35±0.04‰ (2SE, n=13) at 500 MPa and temperatures between 840°C to 

1000°C. This value represents the error-weighted average of all fractionation data from the 

exchange experiments using the method of Northrop and Clayton (1966) and the 

crystallisation experiments (Tables 2.2 and 2.3) and was calculated using the Isoplot 

program (Ludwig, 2001). The given uncertainty ( 2SE t
n

σ
= ⋅ ) describes the 95% 

confidence level for the mean value of the population, with n=13 and a students-t factor t = 

2.18 for 12 degrees of freedom at 95% confidence level. 

 

2.4.3. Mechanisms of isotope fractionation 
 

In order to develop insights into the mechanisms of Fe isotope fractionation between 

pyrrhotite and silicate melt, we compare our results to predictions based on Mössbauer 

spectroscopy data (Polyakov and Mineev, 2000; Polyakov et al., 2007) (Fig. 2.7). Currently, 

no predictions of Fe isotope fractionation between minerals and silicate melts are available. 

Therefore, we assume that the reduced isotopic partition function ratios (β-factors) of ferrous 

and ferric iron bearing silicate minerals can be used as reasonable approximations of β-

factors for silicate melts. For ferric iron-dominated silicates we used the β-factor of aegirine 

(Polyakov and Mineev, 2000). The ferrous iron silicate “fields” shown in Figure 2.7 were 

calculated on the basis of the entire range of β-factors available for olivine, diopside, 

enstatite and hedenbergite from Polyakov and Mineev (2000). The β-factors of FeS2 and 
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Ni0.95Fe0.05S2 are also from Polyakov and Mineev (2000). The β-factor of FeS (troilite) was 

calculated by Polyakov et al. (2007) on the basis of the partial phonon density of state 

(PDOS), obtained by inelastic nuclear resonant x-ray scattering (INRXS) at 1.5 GPa by 

Kobayashi et al. (2004). The stoichiometric polymorph of FeS, troilite that is stable only up 

to about 140°C at 1 atm (Craig and Scott, 1974), differs from high-temperature hexagonal 

pyrrhotite only by a slight distortion from the ideal NiAs structure. The NiAs structure type 

exhibits considerable chemical flexibility due to accommodation of metal vacancies, 

common for pyrrhotites. Thus, we conclude that the β-factor of FeS (troilite) can be 

considered as representative for pyrrhotite in our experimental temperature range. 
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Figure 2.7. Experimentally determined Fe isotope fractionation between pyrrhotite (Fe1-xS) and rhyolitic melt. 
Also plotted are the predicted equilibrium isotope fractionations between sulphide minerals and ferric or 
ferrous Fe dominated silicate minerals, calculated on the basis of Mössbauer and INRXS data by Polyakov and 
Mineev (2000) and Polyakov et al. (2007). Thermal stability limits valid for 1 atm (Craig and Scott, 1974). 
 

Our experimental findings are consistent with the predicted Fe isotope fractionation 

between FeS and a ferric iron dominated silicate (Fig. 2.7), suggesting that the Fe redox state 

in the silicate melt plays an important role for Fe isotope fractionation. Our experimentally 
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determined fractionation factor is representative for a specific Fe2+/ΣFe ratio (0.38±0.02).  

From Figure 2.7 it is evident that if the silicate melt becomes more reduced, a decrease in the 

fractionation factor between pyrrhotite and silicate melt is predicted, perhaps approaching 

zero.  

Differences in coordination of Fe exist between pyrrhotite and the silicate melt 

present in our experiments that may affect Fe isotope fractionation as well (Schauble, 2004). 

Contrary to pyrrhotite, the peralkaline melt contains both ferric and ferrous iron. Ferric iron 

is predominantly tetrahedrally coordinated by oxygen. However, some Fe3+ may also be 

present in five-fold or six-fold coordination (Mysen and Richet, 2005). The coordination of 

Fe2+ in silicate melts is still debated. A continuous distribution of Fe2+ environments from 

four-fold to six-fold coordination in silicate melts has been suggested (e.g., Seifert et al., 

1979; Virgo and Mysen, 1985; Rossano et al., 2000; Farges et al., 2004; Wilke et al., 2005). 

However, for silica-rich melts it can be expected that most Fe2+ is octahedrally coordinated 

(e.g., Mysen et al., 1982; Virgo and Mysen, 1985). Given that all other parameters are 

identical one might expect an enrichment of the heavier isotopes in the phase where Fe has a 

lower coordination number (Schauble, 2004). In our experiments octahedrally coordinated 

Fe in pyrrhotite is isotopically lighter than the silicate melt with primarily tetrahedrally 

coordinated Fe (possibly along with minor Fe in 5- and 6-fold coordination), which is 

consistent with theory.  

Moreover, it can be seen from Figure 2.7, that considerable differences in isotope 

fractionation exist between the different Fe sulphides. For example, a change of the sign of 

the fractionation factor occurs comparing FeS with FeS2 and Ni0.95Fe0.05S2, although all the 

three sulphides contain octahedrally coordinated ferrous Fe. Hence, there must be other 

factors governing Fe isotope fractionation besides the valency and the coordination of Fe. A 

possible explanation may lie in the nature of bonding in the sulphides and the related 
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electron configuration. In pyrrhotite iron is in the high-spin state (Prewitt and Rajamani, 

1974), i.e. four of the six 3d electrons occupy the three t2g orbitals, forming only one π bond. 

Additionally, a metallic Fe-Fe bond along the c-axis of the NiAs cell is present in the 

pyrrhotite structure, although it is subsidiary to the main Fe-S bond (e,g., Tokonami et al., 

1972; Farrell and Fleet, 2001). On the other hand in the pyrite-type sulphides iron is in the 

low spin-state (Prewitt and Rajamani, 1974), i.e. all six 3d electrons fill the three t2g orbitals, 

forming three π bonds. This π bond formation increases the covalency of the Fe-S bond in 

the sequence FeS<Ni1-xFexS2<FeS2 (Prewitt and Rajamani, 1974), consistent with the 

sequence of the respective β-factors (Fig. 2.7). This highlights the importance of the bond 

character as an influencing factor on inter-mineral Fe isotope fractionation, as already 

emphasised by Polyakov and Mineev (2000) and Schauble (2004). 

For our experiments, we suggest that differences in ligands and Fe redox state (to 

which Fe coordination is linked) between pyrrhotite and silicate melt most likely control the 

sign and magnitude of isotope fractionation.  

 

2.4.4. Applications to natural systems – perspectives 

Pyrrhotite (Fe1-xS) is a common iron sulphide and an important constituent of mafic 

ore deposits. It is also found in pegmatites, in contact metamorphic deposits, in high 

temperature metamorphic veins and in sediments. Pyrrhotite has repeatedly been observed in 

felsic magmatic environments as an accessory mineral phase and as inclusions within 

phenocrysts (e.g., Ueda and Itaya, 1981; Whitney and Stormer, 1983). Natural pyrrhotites, 

like other sulphides such as pyrite and chalcopyrite (Graham et al., 2004; Rouxel et al, 

2004), show a considerable range in Fe isotope compositions. For example the pyrrhotite 

samples analysed in this study cover a range from -1.09 to 0‰ in δ56Fe (see appendix A2.4), 

while the mean mafic Earth has a δ56Fe value of +0.069‰ (recalculated from the δ57Fe 
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values reported by Poitrasson et al., 2004). If we consider the fractionation factor between 

pyrrhotite and ferric iron-rich peralkaline rhyolitic melt of Δ56Fepyrrhotite-melt = -0.35‰ as a 

maximum value at magmatic temperatures, then primary pyrrhotites of igneous origin are 

expected to have δ56Fe values that are only slightly lower than or even equal to that of the 

mean mafic Earth (Fig. A2.3). Consequently, the very negative δ56Fe values of some 

pyrrhotites (Fig. A2.2, A2.3) cannot be explained solely by primary magmatic mineral-melt 

fractionation. Other processes, such as hydrothermal activity and metamorphism or other 

isotopically fractionated Fe-sources need to be involved in pyrrhotite formation to explain 

these values. Assuming crystallisation from a mafic melt having a δ56Fe value of +0.069‰ 

(Fig. A2.3) a primary magmatic Fe isotope signature of pyrrhotites is expected to lie between 

+0.069‰ and -0.281‰ in δ56Fe, whereas sulphides of low-temperature origins are expected 

to be display more negative δ56Fe values. However, since a considerable overlap exists 

between the δ56Fe values of “high-T sulphides” and “low-T sulphides” analysed in this study 

the Fe isotope composition of pyrrhotites alone does not allow a simple genetic 

classification.  Hence, more work is needed to test whether Fe isotope systematics may be a 

useful tool to determine the processes of sulphide formation and evolution of sulphide ore 

deposits. 

 

Another interesting aspect arises from the conclusion that the redox state of iron 

plays an important role on the Fe isotope fractionation in magmatic systems. In natural 

silicate melts a high variability of the redox state of Fe exists depending on the magma 

composition. On average the Fe2+/ΣFe decreases as magmatic liquids become more felsic 

(e.g., Fig. 8.19 in Mysen, 1988, and Fig. I.II). Our experimentally determined fractionation 

factor probably represents an upper limit for iron isotope fractionation during pyrrhotite 

crystallisation from magmas in nature. A much smaller fractionation (probably approaching 
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zero) than in our experiments can be expected for a MORB system, with Fe2+/ΣFe ratios of 

silicate melts typically > 0.8 (e.g., Bezos and Humler, 2005, and Fig. I.II). Considering the 

variations in oxygen fugacity found in natural magmatic systems with different chemical 

compositions, and the related diversity in the redox state of Fe in silicate melts, a variation of 

mineral-melt Fe isotope fractionation in general is likely, assuming a sensitivity of the 

fractionation factor to the Fe redox state. If true, Fe isotopes may serve as a tracer for 

changing redox conditions in magmatic systems. However, a prerequisite to this application 

would be that the change in mineral-melt fractionation as a function of the Fe2+/ΣFe ratio of 

the melt is analytically resolvable. Up to date no such studies have been done and further 

investigation is needed. 

 

 

2.5. CONCLUSIONS 

 

The experimentally studied Fe isotope partitioning between coexisting iron sulphide 

(pyrrhotite) and a hydrous rhyolitic melt at magmatic conditions (840°C to 1000°C, 

500 MPa) show that pyrrhotite preferentially incorporates lighter Fe isotopes relative to 

silicate melt. For the investigated temperature range from 840°C to 1000°C we determined 

an average equilibrium Fe isotope fractionation factor of Δ56Fepyrrhotite-melt = -0.35±0.04‰ 

(2SE, n=13). In comparison to the relatively ferric iron-rich peralkaline rhyolitic 

composition used in our experiments a smaller Fe isotope fractionation factor is expected 

between pyrrhotite and a basaltic melt with a higher Fe2+/ΣFe ratio. 

Ferrous iron bonded to sulphur in pyrrhotite forms a marked contrast in comparison 

to oxygen-coordinated Fe in a mixed divalent/trivalent state in the silicate melt (i.e. 

[Fe(II)-S] in pyrrhotite vs. [Fe(II)/Fe(III)-O] in the silicate melt). Thus, in view of the high 
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temperatures the relatively large isotope fractionation determined in this study is most likely 

a consequence of significant differences in the redox state and in the ligand of Fe between 

the phases. This might explain why Fe isotope fractionation observed between silicate 

minerals in igneous rocks (e.g., Beard and Johnson, 2004b), where Fe is solely coordinated 

by oxygen, is smaller or not resolvable at all. 
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Chapter 3. Iron and lithium isotope systematics of the Hekla volcano, 

Iceland – Evidence for stable Fe isotope fractionation during magma 

differentiation 

 

 

ABSTRACT 

 

In this study potential iron isotope fractionation in the Earth’s crust by magmatic 

processes was systematically investigated. High precision iron isotope analyses by MC-ICP-

MS were performed on a suite of rock samples representative for the volcanic evolution of 

the Hekla volcano, Iceland. The whole series of Hekla’s rocks results from several processes. 

(i) Basaltic magmas rise and induce partial melting of meta-basalts in the lower part of the 

Icelandic crust. The resulting dacitic magma evolves to rhyolitic composition through crystal 

fractionation. During this differentiation the δ56/54FeIRMM-014 values increase successively 

from 0.051 for the primitive dacites to 0.168 (±0.021‰ external reproducibility) for the 

rhyolites. This increase can be described by a Rayleigh fractionation model using a constant 

bulk fractionation factor between all mineral phases (M) and the silicate liquid (L) of 

Δ56/54FeM-L = -0.1‰. (ii) The basaltic magma itself differentiates by crystal fractionation to 

basaltic andesite composition. No Fe isotope fractionation was found in this series. All 

basalts and basaltic andesites have an average δ56/54FeIRMM-014 value of 0.062±0.042‰ (2SD, 

n=9), identical to mean terrestrial basaltic values reported in previous studies. This 

observation is consistent with the limited decrease in iron concentration of the remaining 

silicate melt during crystal fractionation and small mineral-melt Fe isotope fractionation 
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factors expected at temperatures > 1050°C. (iii) Andesites are produced by mixing of 

basaltic andesite with dacitic melts. The iron isotope composition of the andesites is 

matching that of the basaltic andesites and the less evolved dacites, in agreement with a 

mixing process. In the Hekla volcanic suite Li concentrations are positively correlated with 

indicators of magma differentiation. All Hekla rocks have δ7Li values typical for the upper 

mantle and demonstrate the absence of resolvable Li isotope fractionation during crystal 

fractionation. As a fluid-mobile trace element, Li concentrations and isotopes are a potential 

tracer of magma/fluid interaction. At Hekla, Li concentrations and isotope compositions do 

not indicate extensive fluid/melt interaction. Hence, the heavy Fe isotope composition of the 

dacites and rhyolites can be predominately attributed to fractional crystallisation. Iron 

isotope analyses on single samples from other Icelandic volcanoes (Torfajökull, 

Vestmannaeyjar) confirm heavy Fe isotope enrichment in evolving magmas. Our results 

suggest that the iron isotope composition of the crust can be slightly modified by magmatic 

processes.  

 

 

3.1. INTRODUCTION 

 

The rapidly evolving field of “non-traditional” stable isotope studies have improved 

our understanding of the behaviour of iron and lithium isotopes during a variety of 

geological processes (e.g., Johnson et al., 2004). During the last decade, pioneering work 

was done to characterise the isotopic inventory of planetary reservoirs and to explore 

fundamental principles governing isotopic fractionation. It has been shown that processes 

occurring in low temperature environments at Earth’s surface induce large isotope 

fractionation. With increasing temperature, the magnitude of stable isotope fractionation 
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decreases, limiting studies on high temperature geological processes to currently achievable 

analytical precision. Relatively large isotopic variations of up to 1.1‰ in 56Fe/54Fe are 

observed in the Earth’s mantle (e.g., Williams et al., 2005), while igneous crust is 

isotopically much more homogenous (e.g., Beard et al., 2003a). However, latest analytical 

improvements now allow resolving smallest Fe isotope variations. For example, differences 

as small as 0.1‰ in 56Fe/54Fe were found between various igneous rocks and reservoirs, 

although their geological significance is highly debated (Poitrasson and Freydier, 2005; 

Weyer et al., 2005; Beard and Johnson, 2006; Poitrasson, 2006; Schoenberg and von 

Blanckenburg, 2006; Beard and Johnson, 2007; Poitrasson, 2007; Weyer et al., 2007; Weyer 

and Ionov, 2007). Several processes have been proposed to explain these systematic Fe 

isotope variations in igneous rocks – for instance, the role of partial melting (Williams et al., 

2005; Schoenberg and von Blanckenburg, 2006; Weyer and Ionov, 2007), magma 

differentiation (Beard and Johnson, 2004b; Poitrasson and Freydier, 2005; Schoenberg and 

von Blanckenburg, 2006), late-stage magmatic fluids or post-magmatic alteration (Beard and 

Johnson, 2004b; Poitrasson and Freydier, 2005). However, it is difficult to clearly identify 

the underlying processes, because knowledge about mechanisms that fractionate Fe isotopes 

at high temperatures is limited. Calculations based on Mössbauer spectroscopy data indicate 

resolvable inter-mineral Fe isotope fractionation at high temperatures (Polyakov and 

Mineev, 2000). However, mineral-melt fractionation factors relevant for common magmatic 

systems (e.g., silicates and oxides vs. silicate melts) haven’t been determined yet. 

Nevertheless, recent experimental work has given evidence for resolvable equilibrium Fe 

isotope fractionation between magnetite and fayalite at temperatures of 600 to 800°C 

(Shahar et al., 2007). Moreover, the experiments described in chapter 2 showed relatively 

large equilibrium Fe isotope fractionation between pyrrhotite and silicate melt at 

temperatures of 840 to 1000°C (Δ56Fepyrrhotite-melt = -0.35‰), due to the marked contrast in Fe 



Chapter 3. Fe and Li isotope systematics of the Hekla volcano 
___________________________________________________________________________________________________________________________________________________________________________________ 

 93 

redox state and bonding environments (i.e. [[6]Fe(II)-S] in pyrrhotite vs. [[6]Fe(II)/[4]Fe(III)-

O] in the silicate melt). 

The question whether magma differentiation processes fractionate Fe isotopes has 

been addressed by Beard and Johnson (2004b), Poitrasson and Freydier (2005) and by 

Schoenberg and von Blanckenburg (2006). Beard et al. (2003a) and Beard and Johnson 

(2004b) analysed a global selection of igneous rock samples representative for various 

geological settings and covering a wide range of chemical compositions. They found this 

global igneous rock dataset to be homogeneous in 56Fe/54Fe within ±0.1‰ (2SD), and 

concluded from the absence of any correlation between Fe isotope composition and bulk 

rock SiO2 that magma differentiation does not induce Fe isotope fractionation. In contrast, 

Poitrasson and Freydier (2005) found SiO2-rich granitoids to be significantly heavier in Fe 

isotope composition than basalts. However, these authors ruled out magma differentiation to 

be responsible for the heavy Fe isotope signatures of highly evolved rocks, arguing that Fe-

rich minerals, which could potentially fractionate Fe isotopes, are absent in evolved granitic 

magmas. Rather, Poitrasson and Freydier (2005) suggested that exsolving aqueous fluids 

were preferentially enriched in light Fe isotopes leaving behind an isotopically heavy melt. 

Schoenberg and von Blanckenburg (2006) found systematic variations in the Fe isotope 

compositions of a genetically related suite of igneous rocks from the Bergell intrusion, Swiss 

Alps. However, the observed positive correlation between SiO2 and 56Fe/54Fe could not 

unambiguously be attributed to fractional crystallisation, due to simultaneous assimilation of 

host rocks with ongoing fractional crystallisation (AFC), as is often the case in continental 

settings.  

The primary goal of this study is to explore the ability of stable Fe isotope 

systematics as a tracer of magmatic processes. Therefore, a systematic investigation of the 

Hekla volcano, Iceland, with genetically related series of eruption products was performed. 
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The Hekla volcanic system is especially well-suited for such a study, since magma genesis at 

such young divergent settings is not influenced by assimilation of host rocks of possibly 

different Fe isotope composition. Furthermore, the geological setting of Iceland and 

particularly that of the Hekla volcanic system is ideal for studying the effect of magmatic 

differentiation processes on isotopic fractionation, since a wide range in magma 

compositions is produced contemporaneously and the volcanic history has been thoroughly 

studied. In this study, Fe isotope systematics were complemented with Li isotopes, providing 

isotopic information from a major and a trace element with different chemical behaviour 

during magmatic processes. Despite the large isotopic variability of lithium in the mantle 

(e.g., Seitz et al., 2004; Magna et al., 2006; Jeffcoate et al., 2007; Rudnick and Ionov, 2007), 

no resolvable Li isotope fractionation was found during basalt (Tomascak et al., 1999b) or 

granite differentiation (Teng et al., 2006). Analyses of olivine and matrix pairs from 

Hawaiian basalts showed also no significant differences in 7Li/6Li ratios (Chan and Frey, 

2003; Jeffcoate et al., 2007). Moreover, fresh basaltic rocks have a relatively homogenous Li 

isotope composition, i.e., within ±2‰ in 7Li/6Li (Elliott et al., 2004; Tomascak, 2004). 

However, since lithium is a fluid-mobile element, and thus a potential tracer of fluid/magma 

interaction (Brenan et al., 1998; Wunder et al., 2006; Wunder et al., 2007), Li concentration 

and isotope systematics bear the potential to evaluate the role of fluids on Fe isotope 

fractionation in the Hekla volcanic system. 

 

 

3.2. GEOLOGICAL BACKGROUND AND SAMPLE SELECTION 

 

Iceland is located at the intersection of the Mid-Atlantic ridge with the Iceland mantle 

plume leading to high magma productivity. The Hekla volcano is located in the South  
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Figure 3.1. Map of Iceland showing the locations of the volcanic systems of Hekla (H), Torfajökull (T) and the 
Vestmannaeyjar (Ve). The Eldfell volcano is located on the island of Heimaey which is north east of Surtsey – 
both belonging to the Vestmannaeyjar. Main fault structures and volcanic zones are also shown. NIRZ (North 
Iceland Rift Zone), MIVZ (Mid Iceland Volcanic Zone), SIVZ (South Iceland Volcanic Zone), Snæfellsnes 
Volcanic Zone (SNVZ), Reykjanes Rift Zone (RRZ), South Iceland Fracture Zone (SIFZ). The inferred mantle 
plume centre is indicated by the dashed ellipse (Wolfe et al., 1997).  

 

Iceland Volcanic Zone, at the western margin of a propagating rift (the Eastern Rift Zone) 

that intersects with the South Iceland Fracture Zone (Fig. 3.1). This area represents the most 

active volcanic area on Iceland. The present plumbing system beneath Hekla most likely 

established in the Holocene and a magma chamber has been inferred at a depth of >8 km 

(Kjartansson and Gronvold, 1983; Sigmarsson et al., 1992a). Eighteen historic eruptions 

from the Hekla central volcano were documented since 1104 A.D., the most recent one in the 

year 2000 (see Thordarson and Larsen, 2007, and references therein). The eruptions at the 

Hekla volcano are compositionally zoned, each usually beginning with an explosive Plinian 

or sub-Plinian phase followed by effusive activity and lava outpouring. During eruptive 

events, the composition commonly changes successively from andesite to basaltic andesite, 

occasionally from rhyolite/dacite to basaltic andesite. The initial SiO2 content is related to 

the repose time between eruptions, where the longest inactive periods are followed by 
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eruptions of the most SiO2-rich tephras produced in the initial phases (Thorarinsson and 

Sigvaldason, 1972).  

Major and trace element data of Hekla’s rocks illustrate the volcanic evolution of the 

transitional alkaline series (Fig. 3.2), where incompatible elements like Th and Rb are 

enriched in the melt during differentiation.  
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Figure 3.2. (a) Total alkali versus SiO2 diagram (TAS) after Le Bas et al. (1986), illustrating the compositional 
range of samples analysed in this study. (b, c, d, e) Major and trace element variations for samples from the 
Hekla volcano as discussed in detail by Sigmarsson et al. (1992a).  
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The magmatic system of Hekla has been intensively studied, but particularly the 

combined Th, Sr and O isotope study by Sigmarsson et al (1992a) revealed detailed insights 

into its differentiation processes. A three-stage-model was developed for the Hekla 

magmatic system to explain the compositional variability of the eruption products (see 

Sigmarsson et al., 1992a, and discussion therein): (i) Partial melting of the mantle produces 

basaltic melts that probably interact with the lower Icelandic crust while ascending and then 

evolve by crystal fractionation to basaltic andesites. (ii) The rise of the hot basaltic melts 

induces partial melting of the Icelandic crust that leads to the formation of dacitic magmas. 

The latter then mix with the basaltic andesite melts to form andesitic magma. (iii) The dacitic 

magma itself evolves to rhyolitic composition through crystal fractionation. In combination, 

these processes lead to a stratified magma chamber and chemically zoned eruptions. Based 

on these differentiation mechanisms, we can study the behaviour of Fe and Li isotopes 

during different magmatic processes, such as crystal fractionation, magma mixing, partial 

crustal melting, and fluid exsolution.  

A suite of samples representative for the volcanic evolution of Hekla and some 

samples from the surrounding area were selected for a detailed Fe and Li isotope study. Bulk 

rock sample powders analysed in this work have been used in earlier geochemical studies 

(Jakobsson, 1979; Sigmarsson et al., 1991; Sigmarsson et al., 1992a; Sigmarsson et al., 

1992b; Sigmarsson, 1996; Moune et al., 2007; Sigmarsson et al., 2007). The investigated 

eruption products from the Hekla central volcano comprise a total of seventeen tephra and 

lava samples, ranging in composition from basaltic andesite to rhyolite (Table 3.1, Figure 

3.2). Four basaltic rocks from the vicinity of Hekla were studied that most likely represent 

the parental magma of the basaltic andesites. We also included one xenolith sample erupted 

by Hekla belonging to the Torfajökull volcano, located about 20 km east from the Hekla 
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volcano. Two samples are from the Vestmannaeyjar (Westman islands), i.e., from Eldfell 

volcano at Heimaey and from the Surtsey volcano, respectively.  

 

 

3.3. ANALYTICAL METHODS 

 

3.3.1. Sample preparation and purification 

All reagents used during digestion and element separation were singly distilled, 

unless states otherwise. Between 50 and 200 mg of rock powder was dissolved in a 3:1 

mixture of concentrated HF/HNO3 in Savillex screw-top beakers on a hotplate at ~100°C. In 

addition, some samples were digested in HF/HNO3 mixtures using microwave agitation 

(CEM Mars) at a temperature of 200°C and a pressure of ~11 bars. After HF/HNO3 

dissolution the samples were taken to dryness and subsequently taken up and dried again in 

concentrated HCl, aqua regia and HNO3 until complete dissolution was achieved. The dried 

residues were finally taken up in 6M HCl for chromatographic separation of iron by anion 

exchange chromatography (DOWEX AG© 1X8 100-200 mesh), following the procedure 

described in Schoenberg and von Blanckenburg (2005). For each sample two separate 

dissolutions of rock powder were prepared. Each of the dissolutions was split into two 

aliquots from which iron was separately purified by anion exchange chromatography. This 

procedure resulted in four individually prepared iron separates for each sample, each of 

which was analysed at least twice by MC-ICP-MS yielding a minimum of eight analyses per 

rock sample. Total procedural Fe blanks were always below 30 ng, which is less than 0.01% 

of Fe processed from the samples and therefore considered negligible. 

Sample preparation for Li isotope analysis was done following a procedure similar to 

the one described by Magna et al. (2004), but using a two column procedure. After 
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dissolution, aliquots equivalent to 15 - 20 mg of rock powder were used for subsequent 

separation of Li by cation exchange chromatography. For both column procedures DOWEX 

AG© 50W X8 (200-400 mesh) cation exchange resin was used. The first column (PP 

Spectrum®) had an inner diameter of 8 mm and a resin volume of 2.3 mL. Upon cleaning of 

the resin with 10 mL 2.5M HNO3, 2 mL 6M HCl and 8 mL 3M HCl, the resin was 

conditioned with 3 mL 0.67M HNO3/methanol(30%). In between each acid cleaning step the 

resin was rinsed with two column volumes of 18.2 MΩ Η2Ο (Μilli-Q® water). Then, samples 

were loaded onto the columns in 0.6 mL 0.67M HNO3/methanol(30%) and Li was 

subsequently eluted with 21 mL of 1M HNO3/methanol(80%). Reagents were prepared from 

concentrated HNO3 diluted to the required acid concentrations with 

18.2 MΩ Η2Ο and methanol(100%), resulting in final methanol concentrations (v/v) of about 

30% and 80%, respectively. Analytical grade methanol (Merck, p.a.) was found to be 

essentially Li-free and was used without further purification. The second set of columns was 

shaped to an inner diameter of 4 mm and a resin volume of 0.5 mL using shrink-fit Teflon. 

The resin was cleaned with 6 mL 2.5M HNO3 and 3 mL 3M HCl and then conditioned with 

1 mL 0.67M HNO3/methanol(30%). After drying down the Li fractions from the first 

column step, samples were loaded onto the second column in 0.5 mL 0.67M 

HNO3/methanol(30%) and Li was subsequently eluted with 8 mL of 1M 

HNO3/methanol(80%). After collection of the Li fractions from each column the sample 

matrix was eluted from the resin with > 10 times the column volume of 5M HNO3, H2O and 

6M HCl and cleaned as described above for next usage. Since quantitative recovery of Li 

from the column chemistry is essential, the Li elution curves were determined using both 

mixtures of ICP standard solutions and dissolved rocks of basaltic and rhyolitic composition 

(see appendix A3, Fig. A3.1). To ensure quantitative recovery of Li, column cuts before and 

after the Li fractions were collected for each sample processed through the chemistry and 
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analysed for Li concentration. Only when the Li concentrations in these column cuts were 

below the normal blank levels, Li isotope measurements were done on the corresponding Li 

elutions. To test for any potential isotope fractionation induced by the Li separation 

procedure, four aliquots of the L-SVEC standard (δ7Li = 0‰) were individually processed 

through the column chemistry and yielded an average δ7Li value of -0.04±0.28‰ (2SD). 

Total procedure blanks were always below 130 pg Li, which is less than 0.1% of Li 

processed from the samples (>70 ng Li) and is considered negligible.  

 

3.3.2. Mass spectrometry 

3.3.2.1. Fe isotope analyses 

All measurements were done in high mass resolution mode on a ThermoFinnigan 

Neptune multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS) at the 

Leibniz University of Hannover. We followed the protocol of Schoenberg and von 

Blanckenburg (2005) using standard-sample-standard bracketing to correct for instrumental 

mass bias. Iron isotope data are reported in the δ-notation, which gives the per mil deviation 

of the 56Fe/54Fe or 57Fe/54Fe ratio of the sample relative to that of the IRMM-014 standard, 

e.g.: 

56 56
56

sample IRMM 014sample 54 54

Fe Feδ Fe 1 1000
Fe Fe

−
⎡ ⎤⎛ ⎞

= − ⋅⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

  [‰ ] .                     (3.1) 

 

As mass dependent isotope fractionation decreases with increasing temperature, Fe 

isotope studies of magmatic processes are usually at the limit of the currently achievable 

analytical resolution. Comprehensive tests on sample processing and mass spectrometry 

revealed that our procedure allows precise and accurate Fe isotope determination. Identical 

results can be achieved on high purity Fe standard solutions and natural samples (of various 
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chemical compositions) given that the Fe separates are pure, which is routinely tested by 

ICP-OES measurements on the analyte solutions (Schoenberg and von Blanckenburg, 2005; 

Schoenberg and von Blanckenburg, 2006). Our results on the international reference 

materials BIR-1 (δ56Fe = 0.053±0.047‰, 2SD) and BHVO-1 (δ56Fe = 0.109±0.049‰, 2SD) 

are in good agreement with previously published results (see appendix A3.1, Table A3.1). 

During the course of this study, we tested the limits of precision and accuracy associated 

with our analytical approach that includes eight or more replicate measurements of each 

sample, precise concentration matching (within 5%) between samples and bracketing 

standard and high signal intensities for good counting statistics. We prepared mixtures of 

two well characterised pure Fe solutions of different isotopic compositions (n > 1000) to 

obtain a set of six Fe solutions, whose δ56Fe values increase in steps of 0.04‰. (Fig. 3.3).  
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Figure 3.3. Results of measurements to test the limits of precision and accuracy associated with our analytical 
approach. Shown is the calculated versus measured Fe isotope composition. Each sample was made by 
precisely mixing two pure Fe isotope standard solutions. Each solution was analysed eight times. Deviations 
between calculated and measured δ56Fe are < 0.012‰. 
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Each solution was analysed eight times distributed over different analytical sessions. The 

small differences in Fe isotope composition were accurately resolved, with deviations 

between calculated and measured δ56Fe < 0.012‰ (Fig. 3.3), demonstrating that with our 

approach the accuracy and precision can be drastically improved compared to single or 

duplicate analyses (i.e., ±0.046‰, 2SD, on δ56Fe for a single measurement; Schoenberg and 

von Blanckenburg, 2005).  

The long-term external reproducibility on δ56Fe and δ57Fe obtained from such pooled data 

with n ≥ 8 is ±0.021‰ and ±0.031‰ (2SD), respectively (Schoenberg and von 

Blanckenburg, 2006), comparable to the precision obtained by other groups on the 

ThermoFinnigan Neptune using a similar approach (e.g., Poitrasson and Freydier, 2005; 

Weyer et al., 2005). For samples analysed in this study, uncertainties for Fe isotope data is 

given as two standard deviations (2SD), representing the reproducibility of the replicate 

measurements and as 95% confidence intervals ( 2SE
n

t σ
= ⋅ , with t = students-t correction 

factor, Table 3.2), the latter reflecting the accuracy and precision of the average of n ≥ 8 

analyses that compare well with the long-term external reproducibility for pooled data of 

±0.021‰ on δ56Fe. () describes the 95% confidence level for the mean value of the 

population, with n=13 and  

  

3.3.2.2. Li isotope analyses 

Lithium isotope measurements were done in low mass resolution mode (m/Δm ~ 

2000, using 5 and 95% peak intensity limits) on the ThermoFinnigan Neptune in Hannover. 

We used a tandem quartz glass spray chamber (Finnigan SIS) combined with a self-

aspirating Teflon microflow nebuliser (~50 μL/min) and high-sensitivity X-cones. Samples 

were dissolved in 0.3M HNO3 for mass spectrometric measurements and Li concentrations 
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between samples and the bracketing standard were closely matched and typically had 

concentrations of 100 ppb Li. However, no significant bias is caused due to even large 

deviations between the concentrations of samples and bracketing standards (see appendix 

A3.1, Fig. A3.2). Both, 6Li and 7Li were measured simultaneously on the two outermost 

Faraday cups. Each measurement consisted of 20 cycles with 4 seconds integration time, 

bracketed by the L-SVEC standard and blank measurements (for blanks 10 cycles of 4 

seconds were measured). Li isotope data are reported in the δ-notation, relative to the L-

SVEC standard (Flesch et al., 1973): 

7 7
7

sample L SVECsample 6 6

Li Liδ Li 1 1000
Li Li

−
⎡ ⎤⎛ ⎞

= − ⋅⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

  [‰ ]                           (3.2) 

Between each analysis the sample inlet system was rinsed with 0.3M HNO3 for 80 seconds. 

Differences between blank-corrected and uncorrected δ7Li values were always <0.05‰. The 

in-run precision was generally better than ±0.1‰ (2SE).  

Rosner et al. (2007) found that a sample introduction system similar to ours is less 

prone to matrix effects than desolvating systems that are used by other groups (e.g., 

Tomascak et al., 1999a; Magna et al., 2004; Jeffcoate et al., 2004). To test for potential 

matrix effects, L-SVEC solutions doped with different matrix elements having 

ΣElement(s)/Li ratios up to 25 where analysed. No systematic bias was found in this range of 

matrix impurities and all measurements gave δ7Li identical to pure L-SVEC within ±0.4‰ 

(see appendix A3.1, Fig. A3.2). All sample solutions were analysed for Na, Mg, Al, Ca and 

Fe concentrations by MC-ICP-MS prior to Li isotope measurements to check for potential 

impurities. For the data reported here, separation of Li from matrix elements was found to be 

effective and the weight ratio of the sum of all matrix elements to Li (ΣElements/Li) was 

always below 1 for basalts to andesites and below 0.2 for dacites and rhyolites. This 

difference in the ΣElements/Li ratio between basalt/andesite and dacite/rhyolite is solely due 
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to the differences in Li concentrations of the rocks, which is lower in mafic than in silicic 

samples. To evaluate the accuracy and precision of a new isotope measurement procedure, a 

large number of standards measurements over an extended time period is usually needed. In 

contrast to Fe isotope measurements, where a large dataset acquired over a time period of 

more than four years is available, no such long-term dataset exists for our Li isotope 

analytical protocol, yet. Therefore, we estimate our external reproducibility on δ7Li to 

±0.5‰ (2SD), based on multiple measurements of the natural samples over the course of this 

study (Table 3), comprising replicate sample dissolutions and passes through column 

chemistry, respectively. A somewhat inferior reproducibility in δ7Li is observed for some 

mafic rocks compared to that of silicic ones, although test of various 7Lisample/7LiL-SVEC 

intensity ratios and ΣElements/Li ratios did not reveal an influence on the accuracy of Li 

isotope measurements (see appendix A3.1). Accuracy of the measurements was evaluated by 

analyses of the two international basalt reference materials BHVO-1 (δ7Li = 5.60±0.55‰, 

n=5) and BIR-1 (δ7Li = 3.39±0.77‰, n=9). Our results for these standard materials are 

identical within uncertainty to previously published results (see appendix A3.1: Table A3.2 

and Fig. A3.4). To our best knowledge, we publish the first data for RGM-1 (δ7Li = 

2.59±0.15‰, n=6). 

Lithium concentrations of the samples were measured on the ThermoFinnigan 

Neptune in free sample aspiration mode using an analogue detector and linear calibration of 

the 7Li intensities of a set of 5 standards of known Li concentrations. Based on replicate 

measurements, the uncertainty in the reported Li concentrations is estimated to be ±10% 

(2SD). 
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3.4. RESULTS 

 

3.4.1. Iron isotope compositions 

Iron isotope results are reported together with eruption dates (Thorarinsson, 1967; 

Jakobsson, 1979; Thorarinsson, 1971; Dugmore et al., 1991; Larsen et al., 2001) and rock 

types in Table 3.2. The δ56Fe values of rocks from the Hekla volcanic system, ranging in 

composition from basalt to rhyolite, vary from 0.021 to 0.168‰ (with an uncertainty of 

±0.021‰, 2SD). The xenolith sample (H1970-8) from Torfajökull represents the most 

evolved rhyolite analysed in this study and has the highest δ56Fe value of 0.187‰. The two 

samples from the Vestmannaeyjar have distinct Fe isotope compositions. The Fe isotope 

composition of the basalt from Surtsey is indistinguishable to that of the Holocene Hekla 

basalts, whereas the more evolved mugearite (Na2O-rich basaltic trachyandesite) from 

Heimaey is remarkably heavier (δ56Fe = 0.177‰).  

The Fe isotope results of the Hekla volcanic rocks are described following the three-

stage-model for magma evolution proposed by Sigmarsson et al., (1992a): (i) No systematic 

variation in δ56Fe was found during the evolution from basalt to basaltic andesite through 

closed-system crystal fractionation (Fig. 3.4 and 3.5).  

The δ56Fe values of these basalts are in the range of previously reported Fe isotope 

compositions for terrestrial basalts (Beard et al., 2003a; Poitrasson et al., 2004; Weyer et al., 

2005; Schoenberg and von Blanckenburg, 2006).They are also indistinguishable in δ56Fe 

from the basaltic andesites, andesites and the less evolved dacites with SiO2 < 66 wt% of 

Hekla (Fig. 3.4a). The average δ56Fe value of all basalts and basaltic andesites from Hekla is 

0.062±0.042‰ (2SD, n=9). (ii) In the silicic series of Hekla the δ56Fe values continuously 
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increase with ongoing magma differentiation from 0.021±0.021‰ for the dacite sample 

H4-3 (SiO2 = 66.3 wt%) to 0.168±0.021‰ for the rhyolite H4-5 (SiO2 = 72.0 wt%). 

Analogous correlations exist between δ56Fe and other major and trace element indicators of 

magma differentiation, such as FeO (Fig. 3.4b), CaO, MgO, K2O, Th (Fig. 3.5), Rb (compare 

Tables 3.1 and 3.2). (iii) The Fe isotope compositions of the andesites are in agreement with 

a mixing process between the basaltic andesites and the less evolved dacites (Fig. 3.5). 
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Figure 3.4. Iron isotope composition of Hekla volcanic rocks as a function of (a) SiO2 and (b) FeO 
(total iron content). Error bars represent ±0.021‰ (2SD external reproducibility). δ56Fe values of mean 
terrestrial basalts as defined by other studies are shown for comparison (Beard et al., 2003a; Poitrasson et al., 
2004; Weyer et al., 2005; Schoenberg and von Blanckenburg, 2006). Symbols as in Figure 3.2. 
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sample eruption datea rock type nb δ56Fe 2SDc 2SEc δ57Fe 2SDc 2SEc

Hekla volcano
H5-A 7100 B.P. Rhyolitic tephra 13 0.157 0.052 0.014 0.229 0.099 0.027
H4-5 4200 B.P. Rhyolitic tephra 9 0.168 0.031 0.010 0.259 0.078 0.025
H4-7 4200 B.P. Rhyolitic tephra 8 0.138 0.031 0.011 0.213 0.088 0.031
H4-3 4200 B.P. Dacitic tephra 8 0.021 0.037 0.013 0.034 0.059 0.021
H2 3800 B.P. Dacitic tephra 9 0.106 0.061 0.020 0.152 0.092 0.030
H3-Haf 3000 B.P. Dacitic tephra 10 0.109 0.048 0.015 0.153 0.079 0.025
H1104-A 1104 A.D. Dacitic tephra 8 0.101 0.067 0.023 0.155 0.083 0.029
HZ-A <2800 B.P. Dacitic tephra 8 0.073 0.035 0.012 0.090 0.070 0.024
Hek-8 1158 A.D.? Dacitic lava 10 0.051 0.041 0.013 0.079 0.062 0.019
H4-T 4000 B.P. Andesitic tephra 8 0.063 0.054 0.019 0.100 0.068 0.023
H1300-M 1300 A.D. Andesitic tephra 8 0.070 0.048 0.017 0.088 0.070 0.024
H1947-A 1947 A.D. Andesitic tephra 10 0.040 0.038 0.012 0.055 0.077 0.025
HZ-B <2800 B.P. Basaltic andesite tephra 9 0.066 0.051 0.017 0.096 0.096 0.031
HK2000T 2000 A.D. Basaltic andesite tephra 9 0.025 0.057 0.019 0.038 0.079 0.026
H1300-L 1300 A.D. Basaltic andesite lava 8 0.061 0.047 0.016 0.094 0.085 0.030
H1846-L 1846 A.D. Basaltic andesite lava 10 0.045 0.056 0.017 0.065 0.103 0.032
Hek-11 <1500 B.P. Basaltic andesite lava 8 0.065 0.024 0.008 0.097 0.041 0.014
Vicinity of Hekla
Hek-16T 1913 A.D. Basaltic tephra 10 0.096 0.045 0.014 0.145 0.089 0.028
Hek-28 6500 B.P. Basaltic lava 8 0.076 0.038 0.013 0.104 0.055 0.019
Hek-18 1878 A.D. Basaltic lava 9 0.078 0.072 0.024 0.112 0.096 0.031
Hek-4 Pleistocene Basaltic lava 13 0.047 0.062 0.017 0.075 0.084 0.023
other volcanoes
Torfajökull
H1970-8 1970 A.D. Rhyolitic xenolith erupted 9 0.187 0.049 0.016 0.277 0.070 0.023
Heimaey (Eldfell); Vestmannaeyjar (Westman Islands)
4694 1973 A.D. Mugearite 9 0.177 0.032 0.010 0.266 0.061 0.020
Surtsey; Vestmannaeyjar (Westman Islands)
8758H 1965 A.D. Basaltic lava 8 0.105 0.041 0.014 0.140 0.083 0.029
a Eruption dates from Thorarinsson (1967), Jakobsson (1979), Thorarinsson (1971), Dugmore et al. (1991), Larsen et al. ( 2001)
b Number of replicate measurements from two independent sample dissolutions and four chromatographic Fe separations.
c Uncertainties are given as two times the standard deviation (2SD) and 95% confidence intervals (2SE) of n replicate 
measurements, respectively. The 2SE uncertainties give a reliable estimate of the precision and accuracy, since for n ≥ 8 
replicate measurements, the external long term reproducibility (2SD) of δ56Fe and δ57Fe is ±0.021‰ and ±0.031‰, 

Table 3.2. Iron isotope compositions of volcanic rocks from Hekla and other Icelandic volcanoes. 
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Figure 3.5. Iron isotope composition of volcanic rocks from Hekla and other Icelandic volcanoes as a function 
of Th concentration, used as differentiation index. Error bars represent ±0.021‰ (2SD external 
reproducibility). Magmatic processes, i.e. crystal fractionation (CF) and magma mixing (M) are indicated by 
arrows. Sample H4-3 shows zircon accumulation, demonstrating crystallisation and subsequent crystal settling 
in the zoned magma chamber of Hekla (Sigmarsson et al. 1992a). 
 

3.4.2. Lithium concentrations and isotope compositions 

Lithium concentrations in the analysed bulk rock samples range from 2.9 to 42 ppm 

(Table 3.3) and systematically increase with increasing degree of magma differentiation as 

inferred from SiO2, K2O, and Th contents (Fig. 3.6). The analysed samples have a limited 

range in Li isotope composition (Table 3.3, Fig. 3.6d, e), most of them identical within the 

limits of our analytical precision. The δ7Li of basalts, basaltic andesites and andesites range 

from 4.37 to 5.08‰ (average 4.89±0.69‰, 2SD), excluding sample Hek-11, which has a 

slightly higher δ7Li of 6.22‰. This sample originates from a phreatomagmatic eruption 

(Jakobsson, 1979) and the elevated δ7Li is likely to reflect interaction with groundwater, 

which is enriched in heavy Li isotopes (Elliott et al., 2004). The δ7Li values of all Hekla 

dacites and rhyolites range from 3.83 to 4.60‰ (average 4.27±0.57‰, 2SD). 
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Figure 3.6. (a) Li concentrations in volcanic rocks from Hekla versus SiO2 content. The results for a basalt and 
a basaltic andesite from the Hekla volcanic system reported by Ryan and Kyle (2004) and Ryan and Langmuir 
(1987), respectively, are also shown. (b, c) Li concentrations as a function of incompatible element contents, 
K2O and Th. Solid lines represent the expected evolution trends of the silicic series (dacites to rhyolites) 
produced by fractional crystallisation, assuming a similar (incompatible) behaviour for Li, Th, and K during 
crystal fractionation, hence, a straight line passing through the less evolved dacitic sample (Hek-8) was 
extrapolated to the origin (dashed line). (d) Li isotope compositions as a function of Li contents for volcanic 
rocks from Hekla (this study; Ryan and Langmuir, 1987; Ryan and Kyle, 2004) and for basalts from other 
Icelandic volcanoes (Jeffcoate et al., 2007; Pistiner and Henderson, 2003; Ryan and Kyle, 2004). The grey area 
represents the δ7Li value (4±2‰) of the upper mantle as inferred from oceanic basalts and mantle xenoliths 
(Tomascak, 2004; Magna et al., 2006; Jeffcoate et al., 2007; Tomascak et al., 2007). Error bars for data from 
this study represent ±0.5‰ (2SD, external reproducibility). (e) Li isotope compositions as a function of Th, 
used as differentiation index. Magmatic processes, i.e. crystal fractionation (CF) and magma mixing (M), are 
indicated by arrows. Sample Hek-11 is of phreatomagmatic origin. 
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sample rock type na db sc δ7Li 2SDd Li (ppm)e

Hekla volcano
H5-A Rhyolitic tephra 15 1 2 4.60 0.43 37.2
H4-5 Rhyolitic tephra 19 4 4 4.42 0.36 35.4
H4-7 Rhyolitic tephra 15 1 2 4.36 0.52 41.8
H4-3 Dacitic tephra 13 2 2 4.00 0.15 26.5
H2 Dacitic tephra 15 2 3 4.54 0.23 31.1
H1104-A Dacitic tephra 14 1 2 4.16 0.31 32.5
Hek-8 Dacitic lava 16 1 2 3.83 0.47 25.0
H4-T Andesitic tephra 4 2 2 5.06 0.70 16.5
HK2000T Basaltic andesite tephra 3 1 1 5.05 0.27 6.6
Hek-11 Basaltic andesite lava 3 1 1 6.22 0.62 9.6
Vicinity of Hekla
Hek-16T Basaltic tephra 1 1 1 5.08 - 2.9
Hek-28 Basaltic lava 3 1 1 4.37 0.23 6.5
a Number of replicate Li isotope measurements. b Number of individual sample dissolutions. 
c Number of chromatographic Li separations. 
d Uncertainties are two times the standard deviation (2SD) of n replicate measurements. External 
reproducibility of δ7Li is ±0.50‰ (2SD). e Uncertainties in Li concentrations are ±10%.

Table 3.3. Li concentrations and  isotope compositions for representative samples from the 
Hekla volcanic system.

 
 

 

3.5. DISCUSSION 

 

3.5.1. Behavior of Li and Li isotopes during fractional crystallisation 

Lithium behaves as a moderately incompatible element during fractional 

crystallisation and the concentration of Li in the evolving melt is controlled by the partition 

coefficients between minerals and melt (e.g., Ryan and Langmuir, 1987). As illustrated in 

Figure 3.6 Li contents in the Hekla volcanic rocks are correlated with indicators for magma 

differentiation, demonstrating magmaphile behaviour of Li.  

Absence of Li isotope fractionation during basalt differentiation at temperatures in excess of 

1050°C was reported by Tomascak et al. (1999b). This agrees with our observations from 

the mafic Hekla series (Fig. 3.6e) that differentiated at similar temperatures (>1050°C, 

Baldridge et al., 1973), excluding the phreatomagmatic sample Hek-11. The compositional 

range of differentiated rocks covered in this study is extended from basalts up to rhyolites. 
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The temperatures during magma differentiation of the silicic series at Hekla of less than 

950°C (Sigmarsson et al., 1992a) were lower than in the mafic magmas. Although this, in 

principal, would enlarge mineral-melt Li isotope fractionation factors, no resolvable isotopic 

difference was found between dacites and rhyolites (Fig. 3.6e). This is consistent with the 

absence of Li isotope fractionation during granite differentiation (Teng et al., 2006). 

Although not clearly resolvable within analytical uncertainties, the mafic series (average 

δ7Li = 4.89±0.69‰, 2SD) tends to be slightly heavier in Li isotopes than the silicic series 

(average δ7Li = 4.27±0.57‰, 2SD) (Fig. 3.6e). This could reflect a source effect, caused by 

minor compositional variability in δ7Li of the Icelandic crust, similar to observations made 

for oxygen isotopes (e.g., Hattori and Muehlenbachs, 1982). Moreover, the Li isotope 

compositions of all Hekla rocks analysed in this study are close to δ7Li values reported by 

other studies for Icelandic basalts (Pistiner and Henderson, 2003; Ryan and Kyle, 2004; 

Jeffcoate et al., 2007) and match the δ7Li inferred for the upper mantle (δ7Li of 4±2‰, 

Tomascak, 2004; Magna et al., 2006; Jeffcoate et al., 2007; Tomascak et al., 2007) (Fig. 

3.6d). These observations suggest that the Li isotope signature of a magma source is 

preserved during melt differentiation through crystal fractionation.  

 

3.5.2. Behaviour of Li and Fe and their isotopes during fluid exsolution 

  Given the fluid-mobile behaviour of Li and the absence of Li isotope fractionation 

during crystal fractionation, Li and its isotopes are potentially useful to trace magma/fluid 

interaction. 



Chapter 3. Fe and Li isotope systematics of the Hekla volcano 
___________________________________________________________________________________________________________________________________________________________________________________ 

 113 

3.5.2.1. Constraints from Li and Fe concentrations 

The influence of fluids that could potentially fractionate Fe isotopes in a magmatic 

system has to be considered for the observed systematic increase in δ56Fe values with 

ongoing magma differentiation (Fig. 3.5). Although, no hydrothermal system is associated 

with the volcanic activity at Hekla, the role of deuteric fluids exsolving from the magma 

itself will be discussed. Poitrasson and Freydier (2005) suggested that isotopically light Fe 

preferentially partitions in such a late-stage deuteric aqueous fluid exsolved from a highly 

evolved silicate melt. However, it remains to be tested experimentally whether this process 

indeed fractionates Fe isotopes. Nevertheless, the presence of such a fluid in the evolved 

series of Hekla should be traceable by a fluid mobile element, such as Li. During exsolution 

of a chlorite-bearing fluid Li strongly partitions into the fluid (DLi
fluid/melt up to 2.5, Webster 

et al., 1989), resulting in a decrease in the coexisting silicate melt’s Li concentration. The Li 

concentrations measured in Hekla’s rocks increase with increasing degree of magma 

evolution (Fig. 3.6), demonstrating incompatible element behaviour during fractional 

crystallisation. Correlations between two incompatible elements (refractory vs. volatile) can 

be used to estimate the expected concentration of the volatile element in the magma prior to 

degassing (Moune et al., 2007). Here, we apply this approach to Li concentrations in the 

silicic series of Hekla (Fig. 3.6b, c). If both Li and Th (or Li and K) behave as incompatible 

elements then the fractional crystallisation vector in Li vs. Th (or Li vs. K2O) space has to 

pass through the origin. When a straight line is extrapolated from the primitive dacite sample 

Hek-8 to the origin, it appears as if the rhyolites tend to be slightly over-enriched in Li 

relative to the expected fractional crystallisation trend (solid line in Fig. 3.6b, c). This 

observation could be explained by fluid accumulation in the magma chamber during 

fractional crystallisation of the highly evolved Hekla series. In such a case, degassing would 

eventually cause a drop in fluid-mobile element contents in the residual magma of the 
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eruption products. Such a fluid accumulation most likely caused the highly explosive Plinian 

eruptions at Hekla. However, considering the size of the error bars in Figure 3.6, the trend 

towards slight enrichment in lithium for the rhyolites can not be unambiguously attributed to 

fluid accumulation. Moreover, it has to be noted that the approach taken to estimate the 

fractional crystallisation vector (Fig. 3.6b, c) is based on the assumption that partition 

coefficients are constant over the entire range of magma evolution from dacite to rhyolite, 

which is not necessarily true. Hence, more data on volatile element concentrations in melt 

inclusions (e.g., Cl, F, S), describing the evolution of the silicic series at Hekla, is needed to 

better constrain the role of exsolving fluids. Nevertheless, the discussed trends indicate, that 

exsolution and/or degassing of large amounts of fluid during crystal fractionation of the 

Hekla dacites to rhyolites is unlikely, since extensive partitioning of Li into a fluid would 

cause more pronounced deviations from the expected evolution trends (Fig. 3.6b, c). Thus, 

fluid exsolution alone must be considered an unlikely explanation for the observed Fe 

isotope fractionation in the evolved rocks. This conclusion arises from the fact that 

DFe
fluid/melt is much smaller than DLi

fluid/melt and a large fraction of Fe would have to be 

extracted from the magma (which contains > 2wt% FeO) into the fluid to cause a resolvable 

shift in δ56Fe of the residual melt. Moreover, the fluid/melt ratio is probably very low, since 

the amount of exsolved fluid is limited by the initital volatile contents of the silcate melt 

(< 3 wt%, compare H2O in Table 3.1). 

 

3.5.2.2. Constraints from Li isotopes on the significance of fluids during magma 

differentiation 

Li isotope systematics may reveal further information about the significance of fluids 

during the differentiation of the Hekla volcanic series. There exist several experimental 

studies that determined equilibrium Li isotope fractionation between silicate minerals and 
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aqueous fluids at high temperatures. Thereby, Δ7Lifluid-spodumene is about +2‰ at 2 GPa and 

900°C (Wunder et al., 2006), while Δ7Lifluid-staurolite is about -1.5‰ at 3.5 GPa and 900°C 

(Wunder et al., 2007). A fluid inclusion study of Teng et al. (2006) suggested a +4‰ Li 

isotope fractionation during fluid exsolution from a pegmatite melt at >600°C. In addition to 

these results, experiments in a fluid-melt system were performed during this study, using 

H2O and rhyolite (USGS RGM-1, similar in composition to the evolved Hekla rocks) as 

starting materials. At 850°C, 200 MPa, and an experimental runtime of 72 hours it was 

found that preferentially light Li entered the fluid yielding a Δ7Lifluid-melt = -1.6±0.7‰. 

Therefore, at temperatures relevant for the silicic Hekla magmas (<950°C), the presence of a 

fluid that continuously removed large fractions of Li from the magma should lead to heavy 

Li isotope signatures for the evolved eruption products. Assuming a Δ7Lifluid-melt of -1.6‰, a 

Rayleigh distillation model for fluid exsolution predicts the residual magma to be 1.1‰ and 

2.5‰ heavier in δ7Li than its source, after removal of 50% and 80% of Li, respectively. 

However, for such high fractions of Li removal (>50%) an external fluid source would be 

needed, since the amount of fluid that can exsolve from the magma itself is limited by the 

initial volatile content in the melt (about 3 wt%, compare H2O in Table 3.1). After exsolution 

of about 3 wt% H2O and transfer of about 10% Li from the magma into the fluid (DLi
fluid/melt 

= 2.5; Webster et al., 1989), the δ7Li of the residual magma is expected to change by about 

+0.2‰ only, which is not resolvable within analytical precision. Although the dacites and 

rhyolites with Th contents > 8 ppm (Fig. 3.6e) tend to be slightly heavier in δ7Li than their 

less evolved parental magmas (Hek-8, H4-3), they can not be distinguished at our analytical 

resolution and certainly show no isotope fractionation as large as those expected from 

extensive magma/fluid interaction (with Li transfer > 50%, see above). Hence, the virtually 

constant δ7Li of the dacites and rhyolites from Hekla (Fig. 3.6e) corroborate the conclusions 
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drawn from Li concentrations that fluid exsolution only played a subordinate role in the 

Hekla volcanic system. 

 

3.5.3. Fe isotope fractionation through crystal fractionation 

One mechanism to modify the Fe isotope composition of a melt is removal of 

isotopically lighter or heavier iron through crystallisation of minerals. Unfortunately, Fe 

isotope fractionation factors between silicate minerals and silicate melts are unknown to 

date, but preliminary results on magnetite-melt fractionation exist (Huang and Lundstrom, 

2006; this study: appendix A3.3). Therefore, it is difficult to clearly assign the observed 

trend in the silicic series of Hekla (Fig. 3.5) to the removal of isotopically light Fe by 

crystallisation of a specific mineral. However, the integrated Fe isotope fractionation factor 

between the silicate melt and all liquidus phases (plagioclase, olivine, pyroxene and 

titanomagnetite) can be estimated by Rayleigh fractionation modelling using different 

mineral-melt fractionation factors 1000·lnα56/54Femineral/melt ≈ Δ56Femineral-melt =  δ56Femineral – 

δ56Femelt (Figure 3.7). These calculations demonstrate that the rhyolites can be produced by 

fractional crystallisation of a dacitic melt with a bulk mineral-melt fractionation factor 

Δ56Femineral-melt of about -0.1‰. In this model sample Hek-8 was taken as representative for 

the less evolved dacites (Th < 8 ppm), i.e. the source of the silicic series. As mentioned 

above, dacitic melts are produced by dehydration melting of meta-basalts in the local crust 

under amphibolite facies conditions (Sigmarsson et al., 1992a). Weyer and Ionov (2007) 

proposed that partial melting of mantle rocks induces Fe isotope fractionation, resulting in a 

heavier δ56Fe of basalts (+0.1‰) relative to residual mantle rocks. However, at Hekla, the 

primitive dacites are identical in δ56Fe to terrestrial basalts in general and also to the basalts 

erupted in the vicinity of Hekla (Fig. 3.4a). Although the Fe isotope composition of the 

meta-basaltic Icelandic crust is not known, it is most likely well represented by that of Hekla 
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basalts. Thus our results suggest that no Fe isotope fractionation occurs during partial 

melting beneath the Hekla volcanic system – at least at the prevailing degree of melting that 

produces the most primitive dacites (~10%, Sigmarsson et al., 1992a). If fractional 

crystallisation is responsible for the heavy Fe isotope composition of the Hekla rhyolites, 

then the accumulated crystals must contain the corresponding light Fe. Indeed, crystal 

settling in the zoned magma chambers at Hekla is demonstrated by the H4 eruption, where 

zircon accumulation took place as recorded in sample H4-3 (Sigmarsson et al., 1992a). In 

accord with this observation, sample H4-3 (δ56Fe = 0.021‰) tends to be lighter than dacites 

that have a similar (Hek-8) or even less evolved (HZ-A) character, as inferred from SiO2 or 

Th contents (Fig. 3.5).  
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Figure 3.7. Comparison of Fe isotope composition of samples from the silicic and mafic series of the Hekla 
volcano with a Rayleigh fractionation model (δ56Femelt = δ56Fesource + 1000)f  (α-1), using different bulk isotope 
fractionation factors (1000·lnαmineral-melt) between all crystallising minerals and the silicate melt. During magma 
differentiation, the FeO content of the melt decreases (see Fig. 3.2d), due to crystallisation of Fe bearing 
minerals and subsequent crystal settling. The Fe isotope composition is modelled relative to the source 
composition as a function of the fraction of iron remaining in the evolving melt ( f ). For the silicic series that 
evolve by crystal fractionation from dacite to rhyolite, sample Hek-8 (formed by partial melting of Icelandic 
crust) is taken as representative for the source (δ56Fesource). Sample Hek-28 is representative for the less 
differentiated Holocene basalts and is used as δ56Fesource for the mafic series model calculations. The grey area 
represents the analytical uncertainty (δ56Fe = 0±0.021‰, 2SD external long-term reproducibility). 
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Since extensive titanomagnetite crystallisation is recorded (Fig. 3.2d, e), partitioning 

of light Fe isotopes into titanomagnetite and subsequent crystal settling is a possible 

mechanisms driving the evolving melt towards heavier δ56Fe. Experimental results from Fe 

isotope partitioning at 800°C between magnetite and andesitic melt at 0.5GPa (Huang and 

Lundstrom, 2006) or rhyolitic melt at 0.1 and 0.2 GPa (this study, appendix A3.3) indicate 

that magnetite is isotopically lighter than the coexisting melt (Δ56Femagnetite-melt = -0.2 to 

-0.26‰). No experimental results for titanomagnetite-melt fractionation are available. 

Unfortunately, there is also only an iron β-factor (reduced isotope partition function ratio) – 

derived from Mössbauer spectroscopy data – available for magnetite (Polyakov et al., 2007), 

but not for titanomagnetite. However, a crystal chemical control on the β-factor due to Ti 

incorporation into the magnetite crystal structure is not unrealistic, as such an effect is 

observed for the iron oxide minerals hematite (Fe2O3) and ilmenite (FeTiO3) (Polyakov and 

Mineev, 2000; Polyakov et al., 2007). As a consequence of Ti4+-incorporation, 

titanomagnetite has a much higher ferrous iron content compared to pure magnetite. At a 

given temperature, following sequence of β-factor is observed: β(Fe2O3) > β((Mg,Fe)2SiO4) 

> β(FeTiO3). This means that at equilibrium hematite is isotopically heavier than coexisting 

olivine, whereas ilmenite is lighter. Thus, ferrous iron rich titanomagnetite is expected to 

incorporate isotopically lighter Fe relative to a highly evolved silicic silicate melt which are 

known to be enriched in ferric iron (compare Fig. II.II). Hence, crystal fractionation of 

titanomagnetite could potentially explain the heavy Fe isotope enrichment in the evolving 

melts at Hekla. 

In contrast to the silicic series, the mafic series does not reveal resolvable changes in 

Fe isotope composition during crystal fractionation (Fig. 3.5). There are different 

mechanisms that may explain this discrepancy: 
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 1) Following the discussion above, a lower proportion of titanomagnetite crystallisation 

in the mafic magmas compared to the silicic magma could explain the lack of 

measurable Fe isotope fractionation in the mafic series.  

2) An obvious difference between the mafic series and the silicic series is illustrated in 

Figure 3.7. The fraction of iron remaining in the residual melt of the basaltic series 

(>0.5) is much larger than that of the silicic one (down to 0.3). Indeed, a Rayleigh 

fractionation process with a mineral-melt fractionation factor Δ56Femineral-melt of -0.1‰ 

or smaller does not produce an analytically resolvable shift in δ56Fe for the amount of 

iron removed during differentiation of the mafic series. 

3) The magnitude of mineral-melt fractionation factors is expected to decrease with 

increasing temperature. Therefore, the high temperature prevailing during basalt to 

basaltic andesite differentiation (>1050°C, Baldridge et al., 1973) could result in very 

small mineral-melt fractionation factors, whereas crystallisation of the silicic magmas 

at lower temperatures (<950°C), could be associated with larger fractionation factors. 

4) Despite the relative abundance of the minerals, there is no drastic difference in the 

mineral assemblages between all Hekla rocks. Nevertheless, a compositional effect 

with respect to the evolving silicate melt could potentially influence Fe isotope 

fractionation. The less polymerised basaltic melts are expected to be more ferrous 

iron enriched (Fe2+/ΣFe > 0.9, Bezos and Humler, 2005) than the dacitic and rhyolitic 

melts, which have high alkali contents and therefore structurally stabilise more ferric 

iron (e.g., Dickenson and Hess, 1986; Mysen, 1988; Gaillard et al., 2001). The 

importance of marked differences in the Fe redox state for Fe isotope fractionation in 

mineral-melt systems has been already highlighted in chapter 2. Hence, a pronounced 

contrast in the redox state of Fe between the minerals and the melt in the evolved 



Chapter 3. Fe and Li isotope systematics of the Hekla volcano 
___________________________________________________________________________________________________________________________________________________________________________________ 

 120

Hekla magmas would be consistent with an enrichment of heavy Fe isotopes in the 

ferric Fe rich silicate melt. 

 

The effect of magma differentiation processes on Fe isotope composition identified at 

the Hekla volcanic system can be compared to other Icelandic volcanoes. The Torfajökull 

volcano produced the largest volumes of silicic rocks in Iceland. The most likely process to 

generate the rhyolites of the Torfajökull volcano is similar to that of the neighbouring Hekla 

volcanic system, following a two-stage process that involves partial melting of hydrated 

metabasaltic crust and subsequent fractional crystallisation of the generated silicic magma 

with a minor role of magma mixing (see Martin and Sigmarsson, 2007, and references 

therein). The Fe isotope trend defined by the silicic series from Hekla is directly extended by 

the Torfajökull rhyolite (Fig. 3.5).  

The eruption products from Heimaey and Surtsey most likely originate from a 

common parent magma, but represent different degrees of fractional crystallisation of 

predominantly plagioclase, clinopyroxene, olivine and iron oxides (Furman et al., 1991; 

Mattsson and Oskarsson, 2005; Higgins and Roberge, 2007). As such, the Heimaey sample 

represents a magma that resided in the crust and fractionated for about 10 years longer than 

the Surtsey magma (Sigmarsson, 1996). The δ56Fe of the evolved Heimaey mugearite is 

higher by 0.072‰ compared to that of the primitive Surtsey basalt (Table 3.2, Fig. 3.5). On a 

first view, this large increase in δ56Fe from the Surtsey basalt to the Heimaey mugearite is in 

contrast to the absence of a resolvable Fe isotope fractionation in the mafic series of Hekla 

(Fig. 3.5). However, compositional differences exist between the two systems (Table 3.1), 

particularly in terms of the more alkali-rich character of the evolved Vestmannaeyjar rocks 

compared to those of Hekla. This difference could have an effect on mineral-melt Fe isotope 

fractionation factors (as discussed above). Another possible explanation could be that the 
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Surtsey basalt is not exactly comparable to the parental magma of the Heimaey mugearite. 

Furthermore, at the Vestmannaeyjar volcanic system fluids could have played a more 

important role compared to the less volative enriched magmas at Hekla. It is interesting to 

note that the sub-Plinian eruptive column of a typical 20th century Hekla eruption only lasts a 

few hours when the repose time between eruptions is only a decade, whereas during the 1973 

eruption of Eldfell volcano at Heimaey lasted for a few days (Thordarson and Larsen, 2007). 

These durations and the column heights are probably the best proxies for the amount of gas 

release and accumulated fluids in the magma chambers. However, based on the available 

data, the process that resulted in the elevated δ56Fe value of the mugearite can not be 

unambiguously identified. 

 

In summary, the enrichment of heavy Fe isotopes in evolving magmas is not 

restricted to the silicic series of Hekla, but seems to be a feature occurring in other magmatic 

systems too. Whether this systematic trend is valid for other geological settings and chemical 

compositions can not be constrained based on the currently available data. However, it has to 

be noted that a heavy iron isotope composition of granitoids was particularly found in highly 

evolved rocks with SiO2 from about 71 to 78 wt% (Poitrasson and Freydier, 2005). The 

samples analysed in this study have SiO2 contents up to about 73 wt% (Fig. 3.4a). Hence, if 

the positive correlation between the degree of magma differentiation and δ56Fe observed for 

the Icelandic volcanoes is extended towards higher SiO2, heavy δ56Fe values at SiO2 contents 

as high as about 77 wt% could be explained. 
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3.6. CONCLUSIONS 

 

The behaviour of Fe isotopes during magma differentiation was investigated on 

eruption products from the Hekla volcano. In the mafic series that differentiate from basalt to 

basaltic andesite through fractional crystallisation no systematic change in δ56Fe was found. 

Rayleigh fractionation modelling reveals that even a fractionation factor Δ56Feminerals-melt of 

up to -0.1‰ does not result in resolvable changes in Fe isotope composition of the evolving 

melt for the amount of Fe removed during crystal fractionation of this series. The silicic 

rocks at Hekla comprise rhyolites produced by high degrees of fractional crystallisation of a 

dacitic parent magma. Here, the Fe isotope composition of the eruption products is positively 

correlated with indicators of magma differentiation. In the Hekla volcanic system no Li 

isotope fractionation was found during crystal fractionation and thus the eruption products 

most likely represent the isotopic signature of the source. Furthermore, Li concentrations and 

isotopes in the Hekla rocks suggest that fluid exsolution and degassing did not play a 

dominating role regarding Fe isotope fractionation. Hence, the systematic change in δ56Fe in 

the silicic series of Hekla can be predominately attributed to crystal fractionation. A possible 

mechanism is removal of isotopically light Fe controlled by titanomagnetite crystallisation 

and subsequent crystal settling. 

Our results demonstrate that the Fe isotope composition of the Earth’s crust can be 

slightly modified by magmatic processes. Nevertheless, such relatively small variations in 

δ56Fe of highly evolved crustal rocks do not change the Earth’s bulk igneous rock 

composition, as defined previously (Beard et al., 2003a; Poitrasson et al., 2004). 

 



References 
___________________________________________________________________________________________________________________________________________________________________________________ 

 123 

 

References 

 
Allegre C., Manhes G., and Lewin E. (2001) Chemical composition of the Earth and the volatility 

control on planetary genetics. Earth and Planetary Science Letters 185(1-2), 49-69. 

Amonette J. E. and Scott A. D. (1991) Determination of ferrous iron in nonrefractory silicate 
minerals .1. An improved semi-micro oxidimetric method. Chemical Geology 92(4), 329-
338. 

Amonette J. E. and Templeton J. C. (1998) Improvements to the quantitative assay of nonrefractory 
minerals for Fe(II) and total Fe using 1,10-phenanthroline. Clays and Clay Minerals 46(1), 
51-62. 

Anbar A. D. (2004) Iron stable isotopes: beyond biosignatures. Earth and Planetary Science Letters 
217(3-4), 223-236. 

Anbar A. D., Jarzecki A. A., and Spiro T. G. (2005) Theoretical investigation of iron isotope 
fractionation between Fe(H2O)(3+)(6) and Fe(H2O)(2+)(6) : Implications for iron stable 
isotope geochemistry. Geochimica et Cosmochimica Acta 69(4), 825-837. 

Anbar A. D., Roe J. E., Barling J., and Nealson K. H. (2000) Nonbiological fractionation of iron 
isotopes. Science 288(5463), 126-128. 

Anbar A. D. and Rouxel O. (2007) Metal stable isotopes in paleoceanography. Annual Review of 
Earth and Planetary Sciences 35, 717-746. 

Andrade S., Hypolito R., Ulbrich H., and Silva M. L. (2002) Iron(II) oxide determination in rocks 
and minerals. Chemical Geology 182(1), 85-89. 

Aranovich L. Y. and Newton R. C. (1999) Experimental determination of CO2-H2O activity-
composition relations at 600-1000 degrees C and 6-14 kbar by reversed decarbonation and 
dehydration reactions. American Mineralogist 84(9), 1319-1332. 

Aulbach S., Rudnick R. L., and McDonough W. F. (2007) Li-Sr-Nd isotope signatures of the plume 
and cratonic lithospheric mantle beneath the margin of the rifted Tanzanian craton (Labait). 
Contributions to Mineralogy and Petrology. 

Baker L. L. and Rutherford M. J. (1996) The effect of dissolved water on the oxidation state of silicic 
melts. Geochimica et Cosmochimica Acta 60(12), 2179-2187. 

Baldridge W. S., McGetchin T. R., and Frey F. A. (1973) Magmatic evolution of Hekla, Iceland. 
Contributions to Mineralogy and Petrology 42(3), 245-258. 



References 
___________________________________________________________________________________________________________________________________________________________________________________ 

 124

Beard B. L. and Johnson C. M. (1999) High precision iron isotope measurements of terrestrial and 
lunar materials. Geochimica et Cosmochimica Acta 63(11-12), 1653-1660. 

Beard B. L. and Johnson C. M. (2004a) Fe isotope variations in the modern and ancient earth and 
other planetary bodies. In Geochemistry of Non-Traditional Stable Isotopes - Reviews in 
Mineralogy & Geochemistry, Vol. 55, pp. 319-357. 

Beard B. L. and Johnson C. M. (2004b) Inter-mineral Fe isotope variations in mantle-derived rocks 
and implications for the Fe geochemical cycle. Geochimica et Cosmochimica Acta 68(22), 
4727-4743. 

Beard B. L. and Johnson C. M. (2006) Comment on "Heavy iron isotope composition of granites 
determined by high resolution MC-ICP-MS", by F. Poitrasson and R. Freydier [Chem. Geol. 
222 132-147]. Chemical Geology 235(1-2), 201-204. 

Beard B. L. and Johnson C. M. (2007) Comment on "Iron isotope fractionation during planetary 
differentiation" by S. Weyer et al., Earth Planet. Sci. Lett. V240, pages 251-264. Earth and 
Planetary Science Letters 256(3-4), 633-637. 

Beard B. L., Johnson C. M., Cox L., Sun H., Nealson K. H., and Aguilar C. (1999) Iron isotope 
biosignatures. Science 285(5435), 1889-1892. 

Beard B. L., Johnson C. M., Skulan J. L., Nealson K. H., Cox L., and Sun H. (2003a) Application of 
Fe isotopes to tracing the geochemical and biological cycling of Fe. Chemical Geology 
195(1-4), 87-117. 

Beard B. L., Johnson C. M., Von Damm K. L., and Poulson R. L. (2003b) Iron isotope constraints on 
Fe cycling and mass balance in oxygenated Earth oceans. Geology 31(7), 629-632. 

Behrens H. and Jantos N. (2001) The effect of anhydrous composition on water solubility in granitic 
melts. American Mineralogist 86(1-2), 14-20. 

Behrens H. and Stuke A. (2003) Quantification of H2O contents in silicate glasses using IR 
spectroscopy - a calibration based on hydrous glasses analyzed by Karl-Fischer titration. 
Glass Science and Technology 76(4), 176-189. 

Behrens H., Zhang Y. X., and Xu Z. G. (2004) H2O diffusion in dacitic and andesitic melts. 
Geochimica et Cosmochimica Acta 68(24), 5139-5150. 

Berndt J., Liebske C., Holtz F., Freise M., Nowak M., Ziegenbein D., Hurkuck W., and Koepke J. 
(2002) A combined rapid-quench and H2-membrane setup for internally heated pressure 
vessels: Description and application for water solubility in basaltic melts. American 
Mineralogist 87, 1717-1726. 

Bertoldi C., Dachs E., and Appel P. (2007) Heat-pulse calorimetry measurements on natural chlorite-
group minerals. American Mineralogist 92(4), 553-559. 



References 
___________________________________________________________________________________________________________________________________________________________________________________ 

 125 

Bezos A. and Humler E. (2005) The Fe3+/Sigma Fe ratios of MORB glasses and their implications 

for mantle melting. Geochimica et Cosmochimica Acta 69(3), 711-725. 

Bigeleisen J. and Mayer M. G. (1947) Calculation of Equilibrium Constants for Isotopic Exchange 

Reactions. Journal of Chemical Physics 15(5), 261-267. 

Blumel P. and Schreyer W. (1977) Phase relations in pelitic and psammitic gneisses of sillimanite-

potash feldspar and cordierite-potash feldspar zones in Moldanubicum of Lam-Bodenmais 

area, Bavaria. Journal of Petrology 18(3), 431-459. 

Boctor N. Z. (1980) Sphalerite geobarometry in Bodenmais ore, Bavaria. American Mineralogist 
65(9-10), 1031-1037. 

Borisov A. A. and Shapkin A. I. (1989) New empiric equation of dependence of Fe-3+/Fe-2+ ratio in 
natural melts on their composition, oxygen fugacity and temperature. Geokhimiya 6, 892-
897. 

Botcharnikov R. E., Behrens H., and Holtz F. (2006) Solubility and speciation of C-O-H fluids in 
andesitic melt at T = 1100-1300 °C and P = 200 and 500 MPa. Chemical Geology 229(1-3), 
125-143. 

Botcharnikov R. E., Behrens H., Holtz F., Koepke J., and Sato H. (2004) Sulfur and chlorine 
solubility in Mt. Unzen rhyodacitic melt at 850 °C and 200 MPa. Chemical Geology 213(1-
3), 207-225. 

Botcharnikov R. E., Koepke J., Holtz F., McCammon C., and Wilke M. (2005) The effect of water 
activity on the oxidation and structural state of Fe in a ferro-basaltic melt. Geochimica et 
Cosmochimica Acta 69(21), 5071-5085. 

Bouman C., Elliott T., and Vroon P. Z. (2004) Lithium inputs to subduction zones. Chemical 
Geology 212(1-2), 59-79. 

Brantley S. L., Liermann L. J., Guynn R. L., Anbar A., Icopini G. A., and Barling J. (2004) Fe 
isotopic fractionation during mineral dissolution with and without bacteria. Geochimica et 
Cosmochimica Acta 68(15), 3189-3204. 

Brenan J. M., Neroda E., Lundstrom C. C., Shaw H. F., Rverson F. J., and Phinney D. L. (1998) 
Behaviour of boron, beryllium, and lithium during melting and crystallization: constraints 
from mineral-melt partitioning experiments. Geochimica et Cosmochimica Acta 62(12), 
2129-2141. 

Bryant C. J., Chappell B. W., Bennett V. C., and McCulloch M. T. (2004) Lithium isotopic 
compositions of the New England Batholith: correlations with inferred source rock 
compositions. Transactions of the Royal Society of Edinburgh-Earth Sciences 95, 199-214. 



References 
___________________________________________________________________________________________________________________________________________________________________________________ 

 126

Bullen T. D., White A. F., Childs C. W., Vivit D. V., and Schulz M. S. (2001) Demonstration of 
significant abiotic iron isotope fractionation in nature. Geology 29(8), 699-702. 

Burgisser, A., and Scaillet, B. (2007) Redox evolution of a degassing magma rising to the surface. 
Nature, 445(7124), 194-197. 

 
Butler I. B., Archer C., Vance D., Oldroyd A., and Rickard D. (2005) Fe isotope fractionation on FeS 

formation in ambient aqueous solution. Earth and Planetary Science Letters 236(1-2), 430-
442. 

Carmichael I. S. E. (1991) The redox states of basic and silicic magmas - a reflection of their source 
regions. Contributions to Mineralogy and Petrology 106(2), 129-141. 

Carroll M. R. and Rutherford M. J. (1988) Sulfur speciation in hydrous experimental glasses of 
varying oxidation-state - results from measured wavelength shifts of sulfur X-rays. American 
Mineralogist 73(7-8), 845-849. 

Chacko T., Cole D. R., and Horita J. (2001) Equilibrium oxygen, hydrogen and carbon Isotope 
fractionation factors applicable to geologic systems. In Stable Isotope Geochemistry, Reviews 
in Mineralogy and Geochemistry, Vol. 43, pp. 1-83. 

Chan L. H. and Frey F. A. (2003) Lithium isotope geochemistry of the Hawaiian plume: Results from 
the Hawaii Scientific Drilling Project and Koolau volcano. Geochemistry Geophysics 
Geosystems 4(3), 8707. 

Chou I. M. (1986) Permeability of precious metals to hydrogen at 2 kbar total pressure and elevated 
temperatures. American Journal of Science 286, 638-658. 

Clemente B. (1998) Etude expérimentale et modélisation de la solubilité du soufre dans les liquides 
magmatiques. Ph.D. thesis, Universite d'Orleans. 

Clemente B., Scaillet B., and Pichavant M. (2004) The solubility of sulphur in hydrous rhyolitic 
melts. Journal of Petrology 45(11), 2171-2196. 

Cohen B. A., Levasseur S., Zanda B., Hewins R. H., and Halliday A. N. (2006) Kinetic isotope effect 
during reduction of iron from a silicate melt. Geochimica et Cosmochimica Acta 70(12), 
3139-3148. 

Cole D. R. and Chakraborty S. (2001) Rates and mechanisms of isotopic exchange. In Stable Isotope 
Geochemistry  - Reviews in Mineralogy & Geochemistry, Vol. 43, pp. 83-223. 

Condit R. H., Hobbins R. R., and Birchenall C. E. (1974) Self-diffusion of iron and sulfur in ferrous 
sulfide. Oxidation of Metals 8(6), 409-455. 

Cook N. J. and Damian G. S. (1997) New data on "plumosite" and other sulphosalt minerals from the 
Herja hydrothermal vein deposit, Baia Mare district, Rumania. Geologica Carpathica 48(6), 
387-399. 



References 
___________________________________________________________________________________________________________________________________________________________________________________ 

 127 

Craig J. R. and Scott S. D. (1974) Sulfide phase equlibria. In Sulfide Mineralogy - Reviews in 
Mineralogy, Vol. 1, pp. CS1-104. 

Criss R. E. (1999) Principles of stable isotope distribution. Oxford University Press, 254 p. 

Criss R. E., Gregory R. T., and Taylor H. P. (1987) Kinetic theory of oxygen isotopic exchange 
between minerals and water. Geochimica et Cosmochimica Acta 51(5), 1099-1108. 

Crosby H. A., Johnson C. M., Roden E. E., and Beard B. L. (2005) Coupled Fe(II)-Fe(III) electron 
and atom exchange as a mechanism for Fe isotope fractionation during dissimilatory iron 
oxide reduction. Environmental Science & Technology 39(17), 6698-6704. 

Dauphas N. and Rouxel O. (2006) Mass spectrometry and natural variations of iron isotopes. Mass 
Spectrometry Reviews 25(4), 515-550. 

Devine J. D., Gardner J. E., Brack H. P., Layne G. D., and Rutherford M. J. (1995) Comparison of 
microanalytical methods for estimating H2O contents of silicic volcanic glasses. American 
Mineralogist 80(3-4), 319-328. 

Dickenson M. P. and Hess P. C. (1986) The structural role and homogeneous redox equilibria of iron 
in peraluminous, metaluminous and peralkaline silicate melts. Contributions to Mineralogy 
and Petrology 92(2), 207-217. 

Dodson M. H. (1973) Closure temperature in cooling geochronological and petrological systems. 
Contributions to Mineralogy and Petrology 40(3), 259-274. 

Dugmore, A.J., Cook, G.T., Shore, J.S., Newton, A.J., Edwards, K.J., and Larsen, G. (1995) 
Radiocarbon dating tephra layers in Britain and Iceland. Radiocarbon, 37(2), 379-388. 

Elliott T., Jeffcoate A., and Bouman C. (2004) The terrestrial Li isotope cycle: light-weight 
constraints on mantle convection. Earth and Planetary Science Letters 220(3-4), 231-245. 

Engrand C., McKeegan K. D., Leshin L. A., Herzog G. F., Schnabel C., Nyquist L. E., and Brownlee 
D. E. (2005) Isotopic compositions of oxygen, iron, chromium, and nickel in cosmic 
spherules: Toward a better comprehension of atmospheric entry heating effects. Geochimica 
et Cosmochimica Acta 69(22), 5365-5385. 

Farges F., Lefrere Y., Rossano S., Berthereau A., Calas G., and Brown G. E. (2004) The effect of 
redox state on the local structural environment of iron in silicate glasses: a molecular 
dynamics, combined XAFS spectroscopy, and bond valence study. Journal of Non-
Crystalline Solids 344(3), 176-188. 

Farrell S. P. and Fleet M. E. (2001) Sulfur K-edge XANES study of local electronic structure in 
ternary monosulfide solid solution (Fe, Co, Ni)(0.923)S. Physics and Chemistry of Minerals 
28(1), 17-27. 

Flesch G., Anderson A. R., and Svec H. J. (1973) A secondary isotopic standard for 6Li/7Li 
determinations. International Journal of Mass Spectrometry and Ion Physics 12, 265-272. 



References 
___________________________________________________________________________________________________________________________________________________________________________________ 

 128

Frost B. R. (1991) Introduction to oxygen fugacity and its petrologic importance. In Reviews in 
Mineralogy, Vol. 25, pp. 1-9. 

Furman T., Frey F. A., and Park K. H. (1991) Chemical constraints on the petrogenesis of mildly 
alkaline lavas from Vestmannaeyjar, Iceland - the Eldfell (1973) and Surtsey (1963-1967) 
eruptions. Contributions to Mineralogy and Petrology 109(1), 19-37. 

Gaeta M., Freda C., Christensen J. N., Dallai L., Marra F., Karner D. B., and Scarlato P. (2006) 
Time-dependent geochemistry of clinopyroxene from the Alban Hills (Central Italy): Clues 
to the source and evolution of ultrapotassic magmas. Lithos 86(3-4), 330-346. 

Gaillard F., Pichavant M., and Scaillet B. (2003) Experimental determination of activities of FeO and 
Fe2O3 components in hydrous silicic melts under oxidizing conditions. Geochimica et 
Cosmochimica Acta 67(22), 4389-4409. 

Gaillard F., Scaillet B., and Pichavant M. (2002) Kinetics of iron oxidation-reduction in hydrous 
silicic melts. American Mineralogist 87(7), 829-837. 

Gaillard F., Scaillet B., Pichavant M., and Beny J.-M. (2001) The effect of water and fO2 on the 
ferric-ferrous ratio of silicic melts. Chemical Geology 174(1-3), 255-273. 

Govindaraju K. (1994) 1994 compilation of working values and sample description for 383 
geostandards. Geostandards Newsletter 18, 1-158. 

Govindaraju K. (1995) 1995 working values with confidence-limits for 26 CRPG, ANRT and IWG-
GIT geostandards. Geostandards Newsletter 19, 1-33. 

Graham S., Pearson N., Jackson S., Griffin W., and O'Reilly S. Y. (2004) Tracing Cu and Fe from 
source to porphyry: in situ determination of Cu and Fe isotope ratios in sulfides from the 
Grasberg Cu-Au deposit. Chemical Geology 207(3-4), 147-169. 

Guelke M. and von Blanckenburg F. (2007) Fractionation of stable iron isotopes in higher plants. 
Environmental Science & Technology 41(6), 1896-1901. 

Gunnarsson B., Marsh B. D., and Taylor H. P. (1998) Generation of Icelandic rhyolites: silicic lavas 
from the Torfajokull central volcano. Journal of Volcanology and Geothermal Research 
83(1-2), 1-45. 

Halama R., McDonough W. F., Rudnick R. L., Keller J., and Klaudius J. (2007) The Li isotopic 
composition of Oldoinyo Lengai: Nature of the mantle sources and lack of isotopic 
fractionation during carbonatite petrogenesis. Earth and Planetary Science Letters 254(1-2), 
77-89. 

Hattori K. and Muehlenbachs K. (1982) Oxygen isotope ratios of the Icelandic crust. Journal of 
Geophysical Research 87(NB8), 6559-6565. 



References 
___________________________________________________________________________________________________________________________________________________________________________________ 

 129 

Heimann A., Beard B., and Johnson C. (2007) Fe isotopes in siliceous igneous rocks: Evidence for 
fluid-rock interaction in plutons. Geochimica et Cosmochimica Acta 71(15), (Goldschmidt 
conference abstract) A390-A390. 

Higgins M. D. and Roberge J. (2007) Three magmatic components in the 1973 eruption of Eldfell 
volcano, Iceland: Evidence from plagioclase crystal size distribution (CSD) and 
geochemistry. Journal of Volcanology and Geothermal Research 161(3), 247-260. 

Hoefs J. (2004) Stable Isotope Geochemistry. Springer, 244 p. 

Holloway J. R. and Blank J. G. (1994) Application of experimental results to C-O-H species in 
natural melts. In Volatiles in Magmas - Reviews in Mineralogy, Vol. 30, pp. 187-230. 

Horn I. and von Blanckenburg F. (2007) Investigation on elemental and isotopic fractionation during 
196 nm femtosecond laser ablation multiple collector inductively coupled plasma mass 
spectrometry. Spectrochimica Acta Part B-Atomic Spectroscopy 62(4), 410-422. 

Horn I., von Blanckenburg F., Schoenberg R., Steinhoefel G., and Markl G. (2006) In situ iron 
isotope ratio determination using UV-femtosecond laser ablation with application to 
hydrothermal ore formation processes. Geochimica et Cosmochimica Acta 70(14), 3677-
3688. 

Huang F. and Lundstrom C. C. (2006) Iron isotopic fractionation factor between magnetite and 
hydrous silicic melt. American Geophysical Union (AGU) Fall Meeting abstract, V21B-
0575. 

Huang F., Lundstrom C. C., and Ianno A. J. (2007) Mg and Fe isotopes as tracers of temperature 
gradient driven diffusive differentiation. Geochimica et Cosmochimica Acta 71(15) 
(Goldschmidt conference abstract), A422-A422. 

Huber P. and Muresan I. (1996) Eisen-, Blei- und Antimonminerale aus der Erzlagerstätte Herja 
(Herzabánya). Lapis 27(7/8), 20-27. 

Huebner J. S. and Sato M. (1970) The oxygen fugacity-temperature relationships of manganese and 
nickel oxide buffers. In American Mineralogist, Vol. 55, pp. 934-952. 

Icopini G. A., Anbar A. D., Ruebush S. S., Tien M., and Brantley S. L. (2004) Iron isotope 
fractionation during microbial reduction of iron: The importance of adsorption. Geology 
32(3), 205-208. 

Jakobsson S. P. (1979) Petrology of recent basalts of the eastern volcanic zone, Iceland. Acta 
Naturalia Islandica II 26, 1-103. 

James R. H. and Palmer M. R. (2000) The lithium isotope composition of international rock 
standards. Chemical Geology 166(3-4), 319-326. 

Jayasuriya K. D., O'Neill H. S., Berry A. J., and Campbell S. J. (2004) A Mossbauer study of the 
oxidation state of Fe in silicate melts. American Mineralogist 89(11-12), 1597-1609. 



References 
___________________________________________________________________________________________________________________________________________________________________________________ 

 130

Jeffcoate A. B., Elliott T., Kasemann S. A., Ionov D., Cooper K., and Brooker R. (2007) Li isotope 
fractionation in peridotites and mafic melts. Geochimica et Cosmochimica Acta 71(1), 202-
218. 

Jeffcoate A. B., Elliott T., Thomas A., and Bouman C. (2004) Precise, small sample size 
determinations of lithium isotopic compositions of geological reference materials and 
modern seawater by MC-ICP-MS. Geostandards and Geoanalytical Research 28(1), 161-
172. 

Johnson C. M. and Beard B. L. (2004) Isotopic constraints on Biogeochemical Cycling of Fe. In 
Geochemistry of Non-Traditional Stable Isotopes - Reviews in Mineralogy & Geochemistry, 
Vol. 55, pp. 359-408. 

Johnson C. M., Beard B. L., and Albarede F. (2004) Geochemistry of Non-Traditional Stable 
Isotopes - Reviews in Mineralogy & Geochemistry. Vol. 55, 454 p. 

Johnson C. M., Roden E. E., Welch S. A., and Beard B. L. (2005) Experimental constraints on Fe 
isotope fractionation during magnetite and Fe carbonate formation coupled to dissimilatory 
hydrous ferric oxide reduction. Geochimica et Cosmochimica Acta 69(4), 963-993. 

Johnson C. M., Skulan J. L., Beard B. L., Sun H., Nealson K. H., and Braterman P. S. (2002) Isotopic 
fractionation between Fe(III) and Fe(II) in aqueous solutions. Earth and Planetary Science 
Letters 195(1-2), 141-153. 

Kappler A. and Newman D. K. (2004) Formation of Fe(III)-minerals by Fe(II)-oxidizing 
photoautotrophic bacteria. Geochimica et Cosmochimica Acta 68(6), 1217-1226. 

Kehm K., Hauri E. H., Alexander C. M. O., and Carlson R. W. (2003) High precision iron isotope 
measurements of meteoritic material by cold plasma ICP-MS. Geochimica et Cosmochimica 
Acta 67(15), 2879-2891. 

Kilinc A., Carmichael I. S. E., Rivers M. L., and Sack R. O. (1983) The ferric-ferrous ratio of natural 
silicate liquids equilibrated in air. Contributions to Mineralogy and Petrology 83(1-2), 136-
140. 

Kjartansson E. and Gronvold K. (1983) Location of a magma reservoir beneath Hekla volcano, 
Iceland. Nature 301(5896), 139-141. 

Kobayashi H., Kamimura T., Alfe D., Sturhahn W., Zhao J. Y., and Alp E. E. (2004) Phonon density 
of states and compression behavior in iron sulfide under pressure. Physical Review Letters 
93(19), 1955031-1955034. 

Kress V. C. and Carmichael I. S. E. (1988) Stoichiometry of the iron oxidation reaction in silicate 
melts. American Mineralogist 73(11-12), 1267-1274. 

Kress V. C. and Carmichael S. E. (1991) The compressibility of silicate liquidus containing Fe2O3 
and the effect of composition, temperature, oxygen fugacity and pressure on their redox 
states. Contributions to Mineralogy and Petrology 108, 82-92. 



References 
___________________________________________________________________________________________________________________________________________________________________________________ 

 131 

Lalonde A. E., Rancourt D. G., and Ping J. Y. (1998) Accuracy of ferric/ferrous determinations in 
micas: A comparison of Mossbauer spectroscopy and the Pratt and Wilson wet-chemical 
methods. Hyperfine Interactions 117(1-4), 175-204. 

Larsen, C., Newton, A.J., Dugmore, A.J., and Vilmundardottir, E.G. (2001) Geochemistry, dispersal, 
volumes and chronology of Holocene from the Katla volcanic silicic tephra layers system, 
Iceland. Journal of Quaternary Science, 16(2), 119-132. 

Le Bas M. J., Le Maitre R. W., Streckeisen A., and Zanettin B. (1986) A chemical classification of 
volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27, 745-750. 

Leschik M., Heide G., Frischat G. H., Behrens H., Wiedenbeck M., Wagner N., Heide K., Geissler 
H., and Reinholz U. (2004) Determination of H2O and D2O contents in rhyolitic glasses. 
Physics and Chemistry of Glasses 45(4), 238-251. 

Liebske C., Behrens H., Holtz F., and Lange R. A. (2003) The influence of pressure and composition 
on the viscosity of andesitic melts. Geochimica et Cosmochimica Acta 67(3), 473-485. 

Lobato L. M., Ribeiro-Rodrigues L. C., and Vieira F. W. R. (2001) Brazil's premier gold province. 
Part II: Geology and genesis of gold deposits in the Archean Rio das Velhas greenstone belt, 
Quadrilatero Ferrifero. Mineralium Deposita 36(3-4), 249-277. 

Ludwig K. R. (2001) Isoplot -  A geochronological toolkit for Microsoft Excel, Version 2.49. 
Berkeley Geochronology Center Special Publication No. 1a, 55 p. 

Luhr J. F. (1990) Experimental phase-relations of water-saturated and sulfur-saturated arc magmas 
and the 1982 eruptions of El-Chichon volcano. Journal of Petrology 31(5), 1071-1114. 

Macdonald R., McGarvie D. W., Pinkerton H., Smith R. L., and Palacz Z. A. (1990) Petrogenetic 
evolution of the Torfajokull Volcanic Complex, Iceland .1. Relationship between the magma 
types. Journal of Petrology 31(2), 429-459. 

Magna T., Wiechert U., and Halliday A. N. (2006) New constraints on the lithium isotope 
compositions of the Moon and terrestrial planets. Earth and Planetary Science Letters 243(3-
4), 336-353. 

Magna T., Wiechert U. H., and Halliday A. N. (2004) Low-blank isotope ratio measurement of small 
samples of lithium using multiple-collector ICPMS. International Journal of Mass 
Spectrometry 239(1), 67-76. 

Mandernack K. W., Bazylinski D. A., Shanks W. C., and Bullen T. D. (1999) Oxygen and iron 
isotope studies of magnetite produced by magnetotactic bacteria. Science 285(5435), 1892-
1896. 

Markl G., von Blanckenburg F., and Wagner T. (2006) Iron isotope fractionation during 
hydrothermal ore deposition and alteration. Geochimica et Cosmochimica Acta 70(12), 3011-
3030. 



References 
___________________________________________________________________________________________________________________________________________________________________________________ 

 132

Marra F., Freda C., Scarlato P., Taddeucci J., Karner D. B., Renne P. R., Gaeta M., Palladino D. M., 
Trigila R., and Cavarretta G. (2003) Post-caldera activity in the Alban Hills volcanic district 
(Italy): Ar-40/Ar-39 geochronology and insights into magma evolution. Bulletin of 
Volcanology 65(4), 227-247. 

Martin E. and Sigmarsson O. (2007) Crustal thermal state and origin of silicic magma in Iceland: the 
case of Torfajokull, Ljosufjoll and Snaefellsjokull volcanoes. Contributions to Mineralogy 
and Petrology 153(5), 593-605. 

Matthews A., Zhu X. K., and O'Nions K. (2001) Kinetic iron stable isotope fractionation between 
iron (-II) and (-III) complexes in solution. Earth and Planetary Science Letters 192(1), 81-
92. 

Mattsson H. B. and Oskarsson N. (2005) Petrogenesis of alkaline basalts at the tip of a propagating 
rift: Evidence from the Heimaey volcanic centre, south Iceland. Journal of Volcanology and 
Geothermal Research 147(3-4), 245-267. 

Mills G. A. and Urey H. C. (1940) The kinetics of isotopic exchange between carbon dioxide, 
bicarbonate ion, carbonate ion and water. Journal of the American Chemical Society 62, 
1019-1026. 

Mineev S. D., Polyakov V. B., and Permyakov Y. V. (2007) Equilibrium iron isotope fractionation 
factors for magnetite from Mössbauer spectroscopy and inelastic nuclear resonant X-ray 
scattering data. Geochimica et Cosmochimica Acta 71(15) (Goldschmidt conference 
abstract), A669. 

Misiti V., Behrens H., Freda C., Vetere F., Botcharnikov R. E., and Scarlato P. (2007) Solubility of 
H2O and CO2 in potassic melts at 1200 and 1250 °C and pressure from 50 to 500 MPa. 
American Mineralogist (in review). 

Moore G., Righter K., and Carmichael I. S. E. (1995) The effect of dissolved water on the oxidation-
state of iron in natural silicate liquids. Contributions to Mineralogy and Petrology 120(2), 
170-179. 

Moretti R. (2005) Polymerisation, basicity, oxidation state and their role in ionic modelling of silicate 
melts. Annals of Geophysics 48(4-5), 583-608. 

Moretti, R., and Ottonello, G. (2003) Polymerization and disproportionation of iron and sulfur in 
silicate melts: insights from an optical basicity-based approach. Journal of Non-Crystalline 
Solids, 323(1-3), 111-119. 

 
Moretti, R., and Papale, P. (2004) On the oxidation state and volatile behavior in multicomponent 

gas-melt equilibria. Chemical Geology, 213(1-3), 265-280. 

Morgan G. B. and London D. (1996) Optimizing the electron microprobe analysis of hydrous alkali 
aluminosilicate glasses. American Mineralogist 81(9-10), 1176-1185. 



References 
___________________________________________________________________________________________________________________________________________________________________________________ 

 133 

Moune S., Gauthier P. J., Gislason S. R., and Sigmarsson G. (2006) Trace element degassing and 
enrichment in the eruptive plume of the 2000 eruption of Hekla volcano, Iceland. 
Geochimica et Cosmochimica Acta 70(2), 461-479. 

Moune S., Sigmarsson O., Thordarson T., and Gauthier P. J. (2007) Recent volatile evolution in the 
magmatic system of Hekla volcano, Iceland. Earth and Planetary Science Letters 255(3-4), 
373-389. 

Mullane E., Russell S. S., and Gounelle M. (2005) Nebular and asteroidal modification of the iron 
isotope composition of chondritic components. Earth and Planetary Science Letters 239(3-
4), 203-218. 

Mungall J. E. (2002) Empirical models relating viscosity and tracer diffusion in magmatic silicate 
melts. Geochimica et Cosmochimica Acta 66(1), 125-143. 

Mysen B. O. (1988) Structure and properties of silicate melts. Elsevier, 354 p. 

Mysen B. O. and Richet P. (2005) Silicate glasses and melts - properties and structure. Developments 
in Geochemistry 10, 544 p. 

Mysen B. O., Virgo D., and Seifert F. A. (1982) The Structure of Silicate Melts - Implications for 
Chemical and Physical-Properties of Natural Magma. Reviews of Geophysics 20(3), 353-383. 

Nikolaev G. S., Borisov A. A., and Ariskin A. A. (1996) Calculation of the ferric-ferrous ratio in 
magmatic melts: Testing and additional calibration of empirical equations for various 
magmatic series. Geokhimiya 8, 713-722. 

Northrop D. A. and Clayton R. N. (1966) Oxygen isotope fractionations in systems containing 
dolomite. Journal of Geology 74(2), 174-196. 

Oberthur T., Weiser T. W., Gast L., and Kojonen K. (2003) Geochemistry and mineralogy of 
platinum-group elements at Hartley Platinum Mine, Zimbabwe - Part 1. Primary distribution 
patterns in pristine ores of the Main Suffide Zone of the Great Dyke. Mineralium Deposita 
38(3), 327-343. 

O'Neill H. S. C., Berry A. J., McCammon C. C., Jayasuriya K. D., Campbell S. J., and Foran G. 
(2006) An experimental determination of the effect of pressure on the Fe3+/Sigma Fe ratio of 
an anhydrous silicate melt to 3.0 GPa. American Mineralogist 91(2-3), 404-412. 

Ottonello G., Moretti R., Marini L., and Zuccolini M. V. (2001) Oxidation state of iron in silicate 
glasses and melts: a thermochemical model. Chemical Geology 174(1-3), 157-179. 

Partzsch G. M., Lattard D., and McCammon C. (2004) Mossbauer spectroscopic determination of 
Fe3+/Fe2+ in synthetic basaltic glass: a test of empirical fO(2) equations under superliquidus 
and subliquidus conditions. Contributions to Mineralogy and Petrology 147(5), 565-580. 

Pistiner J. S. and Henderson G. M. (2003) Lithium-isotope fractionation during continental 
weathering processes. Earth and Planetary Science Letters 214(1-2), 327-339. 



References 
___________________________________________________________________________________________________________________________________________________________________________________ 

 134

Pitzer K. S. and Sterner S. M. (1994) Equation of state valid continuously from zero to extreme 
pressures for H2O and CO2. Journal of Chemical Physics 102, 3111-3116. 

Poitrasson F. (2006) On the iron isotope homogeneity level of the continental crust. Chemical 
Geology 235(1-2), 195-200. 

Poitrasson F. (2007) Does planetary differentiation really fractionate iron isotopes? Earth and 
Planetary Science Letters 256(3-4), 484-492. 

Poitrasson F. and Freydier R. (2005) Heavy iron isotope composition of granites determined by high 
resolution MC-ICP-MS. Chemical Geology 222(1-2), 132-147. 

Poitrasson F., Halliday A. N., Lee D. C., Levasseur S., and Teutsch N. (2004) Iron isotope 
differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion 
mechanisms. Earth and Planetary Science Letters 223(3-4), 253-266. 

Polyakov V. B. (1993) On ideality of isotope mixture in solids. Russian Journal of Physical 
Chemistry 67, 422-425. 

Polyakov V. B. (1997) Equilibrium fractionation of the iron isotopes: Estimation from Mossbauer 
spectroscopy data. Geochimica et Cosmochimica Acta 61(19), 4213-4217. 

Polyakov V. B., Clayton R. N., Horita J., and Mineev S. D. (2007) Equilibrium iron isotope 
fractionation factors of minerals: Reevaluation from the data of nuclear inelastic resonant X-
ray scattering and Mossbauer spectroscopy. Geochimica et Cosmochimica Acta 71(15), 
3833-3846. 

Polyakov V. B. and Mineev S. D. (2000) The use of Mössbauer spectroscopy in stable isotope 
geochemistry. Geochimica et Cosmochimica Acta 64(5), 849-865. 

Pouchou J. L. and Pichoir F. (1991) Quantitative analysis of homogeneous or stratified microvolumes 
applying the model ‘‘PAP’’. In Electron probe quantitation (ed. K. F. J. Heinrich and D. E. 
Newbury), pp. 31-75. Plenum Press. 

Prewitt C. T. and Rajamani V. (1974) Electron interactions and chemical bonding in sulfides. In 
Sulfide Mineralogy - Reviews in Mineralogy, Vol. 1, pp. PR1-41. 

Robie R. A., Hemingway B. S., and Fischer J. R. (1978) Thermodynamic properties of minerals and 
related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperature. 
Geological Survey Bulletin 1452, 456. 

Roskosz M., Luais B., Watson H. C., Toplis M. J., Alexander C. M. O., and Mysen B. O. (2006) 
Experimental quantification of the fractionation of Fe isotopes during metal segregation from 
a silicate melt. Earth and Planetary Science Letters 248(3-4), 851-867. 

Rosner M., Ball L., Peucker-Ehrenbrink B., Blusztajn J., Bach W., and Erzinger J. (2007) A 
simplified, accurate and fast method for lithium isotope analysis of rocks and fluids, and 



References 
___________________________________________________________________________________________________________________________________________________________________________________ 

 135 

delta Li-7 values of seawater and rock reference materials. Geostandards and Geoanalytical 
Research 31(2), 77-88. 

Rossano S., Ramos A., Delaye J. M., Creux S., Filipponi A., Brouder C., and Calas G. (2000) 
EXAFS and Molecular Dynamics combined study of CaO-FeO-2SiO(2) glass. New insight 
into site significance in silicate glasses. Europhysics Letters 49(5), 597-602. 

Rouxel O., Fouquet Y., and Ludden J. N. (2004) Subsurface processes at the Lucky Strike 
hydrothermal field, Mid-Atlantic Ridge: Evidence from sulfur, selenium, and iron isotopes. 
Geochimica et Cosmochimica Acta 68(10), 2295-2311. 

Rudnick R. L. and Ionov D. A. (2007) Lithium elemental and isotopic disequilibrium in minerals 
from peridotite xenoliths from far-east Russia: Product of recent melt/fluid-rock reaction. 
Earth and Planetary Science Letters 256(1-2), 278-293. 

Rudnick R. L., Tomascak P. B., Njo H. B., and Gardner L. R. (2004) Extreme lithium isotopic 
fractionation during continental weathering revealed in saprolites from South Carolina. 
Chemical Geology 212(1-2), 45-57. 

Ryan J. G. and Kyle P. R. (2004) Lithium abundance and lithium isotope variations in mantle 
sources: insights from intraplate volcanic rocks from Ross Island and Marie Byrd Land 
(Antarctica) and other oceanic islands. Chemical Geology 212(1-2), 125-142. 

Ryan J. G. and Langmuir C. H. (1987) The systematics of lithium abundances in young volcanic 
rocks. Geochimica et Cosmochimica Acta 51(6), 1727-1741. 

Sack R. O., Carmichael I. S. E., Rivers M., and Ghiorso M. S. (1980) Ferric-ferrous equilibria in 
natural silicate liquids at 1bar. Contributions to Mineralogy and Petrology 75(4), 369-376. 

Schauble E. A. (2004) Stable isotope fractionation theory applied to new systems. In Geochemistry of 
Non-Traditional Stable Isotopes - Reviews in Mineralogy & Geochemistry, Vol. 55, pp. 65-
101. 

Schauble E. A., Rossman G. R., and Taylor H. P. (2001) Theoretical estimates of equilibrium Fe-
isotope fractionations from vibrational spectroscopy. Geochimica Et Cosmochimica Acta 
65(15), 2487-2497. 

 

Schoenberg R. and von Blanckenburg F. (2005) An assessment of the accuracy of stable Fe isotope 
ratio measurements on samples with organic and inorganic matrices by high-resolution 
multicollector ICP-MS. International Journal of Mass Spectrometry 242(2-3), 257-272. 

Schoenberg R. and von Blanckenburg F. (2006) Modes of planetary-scale Fe isotope fractionation. 
Earth and Planetary Science Letters 252(3-4), 342-359. 

Seifert F., Virgo D., and Mysen B. O. (1979) Melt Structures and Redox Equilibria in the System 
Na2O-FeO-Fe2O3-Al2O3-SiO2. Carnegie Institution Washington Yearbook 78, 511-519. 



References 
___________________________________________________________________________________________________________________________________________________________________________________ 

 136

Seitz H. M., Brey G. P., Lahaye Y., Durali S., and Weyer S. (2004) Lithium isotopic signatures of 
peridotite xenoliths and isotopic fractionation at high temperature between olivine and 
pyroxenes. Chemical Geology 212(1-2), 163-177. 

Shahar A., Manning C. E., and Young E. D. (2007) An experimental approach to high-temperature 
iron isotope fractionation. Geochimica et Cosmochimica Acta 71(15) (Goldschmidt 
conference abstract), A920-A920. 

Sigmarsson O. (1996) Short magma chamber residence time at an Icelandic volcano inferred from U-
series disequilibria. Nature 382(6590), 440-442. 

Sigmarsson O., Condomines M., and Fourcade S. (1992a) A Detailed Th, Sr and O Isotope Study of 
Hekla - Differentiation Processes in an Icelandic Volcano. Contributions to Mineralogy and 
Petrology 112(1), 20-34. 

Sigmarsson O., Condomines M., and Fourcade S. (1992b) Mantle and crustal contribution in the 
genesis of recent basalts from off-rift zones in Iceland - Constraints from Th-isotopes, Sr-
isotopes and O-isotopes. Earth and Planetary Science Letters 110(1-4), 149-162. 

Sigmarsson O., Hemond C., Condomines M., Fourcade S., and Oskarsson N. (1991) Origin of silicic 
magma in Iceland revealed by Th isotopes. Geology 19(6), 621-624. 

Sigmarsson O., Jakobsson S. P., and Thordarson T. (2007) Segregations in Surtsey lavas, Iceland, 
reveal extreme magma differentiation during lava emplacement. In A Joint Special IAVCEI 
and GSL Publication: Studies in Volcanology: The Legacy of George Walker (accepted 
manuscript) (ed. T. Thordarson, G. Larsen, S. Self, S. Rowland, and A. Höskuldssson). 

Sisson T. W. and Grove T. L. (1993) Experimental investigations of the role of H2O in calc-alkaline 
differentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology 
113(2), 143-166. 

Skulan J. L., Beard B. L., and Johnson C. M. (2002) Kinetic and equilibrium Fe isotope fractionation 
between aqueous Fe(III) and hematite. Geochimica et Cosmochimica Acta 66(17), 2995-
3015. 

Tamic N., Behrens H., and Holtz F. (2001) The solubility of H2O and CO2 in rhyolitic melts in 
equilibrium with a mixed CO2-H2O fluid phase. Chemical Geology 174(1-3), 333-347. 

Tangeman J. A., Lange R., and Forman L. (2001) Ferric-ferrous equilibria in K2O-FeO-Fe2O3-SiO2 
melts. Geochimica et Cosmochimica Acta 65(11), 1809-1819. 

Taylor J. R., Wall V. J., and Pownceby M. I. (1992a) The calibration and application of accurate 
redox sensors. In American Mineralogist, Vol. 77, pp. 284-295. 

Taylor P. D. P., Maeck R., and Debievre P. (1992b) Determination of the absolute isotopic 
composition and atomic-weight of a reference sample of natural iron. International Journal 
of Mass Spectrometry and Ion Processes 121(1-2), 111-125. 



References 
___________________________________________________________________________________________________________________________________________________________________________________ 

 137 

Tegge-Schüring A. S. (2003) Cation diffusion in silicate melts. Ph.D. thesis, University of Hannover. 

Teng F. Z., McDonough W. F., Rudnick R. L., Walker R. J., and Sirbescu M. L. C. (2006) Lithium 
isotopic systematics of granites and pegmatites from the Black Hills, South Dakota. 
American Mineralogist 91(10), 1488-1498. 

Teutsch N., von Gunten U., Hofstetter T. B., and Halliday A. N. (2004) Iron isotope fractionation 
during adsorption of Fe(II) on Fe(III) oxides. Geochimica et Cosmochimica Acta 68(11), 
A361-A361. 

Thorarinsson S. (1967) The eruption of Hekla in historical times, eruption of Hekla 1947-1948. Soc. 
Sci. Islandica 1, 1-170. 

Thorarinsson, S. (1971) The age of the light Hekla tephra layers according to corrected 14C datings 
(in Icelandic). Náttúrufrædingurinn, 41, 99-105. 

Thorarinsson S. and Sigvaldason G. E. (1972) The Hekla eruption of 1970. Bulletin of Volcanology 
26, 1-20. 

Thordarson T. and Larsen G. (2007) Volcanism in Iceland in historical time: Volcano types, eruption 
styles and eruptive history. Journal of Geodynamics 43(1), 118-152. 

Tokonami M., Nishiguc.K, and Morimoto N. (1972) Crystal-structure of a monoclinic pyrrhotite 
(Fe7S8). American Mineralogist 57(7-8), 1066-1080. 

Tomascak P. B. (2004) Developments in the understanding and application of lithium isotopes in the 
earth and planetary sciences. In Geochemistry of Non-Traditional Stable Isotopes - Reviews 
in Mineralogy & Geochemistry, Vol. 55, pp. 153-195. 

Tomascak P. B., Carlson R. W., and Shirey S. B. (1999a) Accurate and precise determination of Li 
isotopic compositions by multi-collector sector ICP-MS. Chemical Geology 158(1-2), 145-
154. 

Tomascak P. B., Langmuir C. H., Le Roux P. J., and Shirey S. B. (2007) Lithium isotopes in global 
mid-ocean ridge basalts. Geochimica et Cosmochimica Acta, (in press). 

Tomascak P. B., Tera F., Helz R. T., and Walker R. J. (1999b) The absence of lithium isotope 
fractionation during basalt differentiation: New measurements by multicollector sector ICP-
MS. Geochimica et Cosmochimica Acta 63(6), 907-910. 

Ueda A. and Itaya T. (1981) Microphenocrystic Pyrrhotite from Dacite Rocks of Satsuma-Iwojima, 
Southwest Kyushu, Japan and the Solubility of Sulfur in Dacite Magma. Contributions to 
Mineralogy and Petrology 78(1), 21-26. 

Urey H. C. (1947) The thermodynamic properties of isotopic substances. Journal of the Chemical 
Society, 562-581. 



References 
___________________________________________________________________________________________________________________________________________________________________________________ 

 138

Valley G. E. and Anderson H. H. (1947) A Comparison of the Abundance Ratios of the Isotopes of 
Terrestrial and of Meteoritic Iron. Journal of the American Chemical Society 69(8), 1871-
1875. 

 

Valley J. W. and Cole D. R. (2001) Stable isotope geochemistry  - Reviews in Mineralogy & 
Geochemistry, Vol. 43, 662 p. 

Vaughan D. J. and Craig J. R. (1978) Mineral chemistry of metal sulfides. University Press, 
Cambridge, 493 p. 

Vaughan D. J. and Lennie A. R. (1991) The iron sulfide minerals - Their chemistry and role in 
nature. Science Progress 75(298), 371-388. 

Vetere F., Behrens H., Schuessler J. A., Holtz F., Misiti V., and Borchers L. (2006) Viscosity of 
andesite melts – implication for magma mixing prior to Unzen 1991-1995 eruption. Journal 
of Volcanology and Geothermal Research, (in press). 

Virgo D. and Mysen B. O. (1985) The structural state of iron in oxidized vs reduced glasses at 1 atm 
- a Fe-57 Mossbauer study. Physics and Chemistry of Minerals 12(2), 65-76. 

Volkening J. and Papanastassiou D. A. (1989) Fe isotope anomalies. Meteoritics 24(4), 335-335. 

Walczyk T. and von Blanckenburg F. (2002) Natural iron isotope variations in human blood. Science 
295(5562), 2065-2066. 

Walczyk T. and von Blanckenburg F. (2005) Deciphering the iron isotope message of the human 
body. International Journal of Mass Spectrometry 242(2-3), 117-134. 

Watson E. B. and Baxter E. F. (2007) Diffusion in solid-Earth systems. Earth and Planetary Science 
Letters 253(3-4), 307-327. 

Webster J. D., Holloway J. R., and Hervig R. L. (1989) Partitioning of lithophile trace-elements 
between H2O and H2O + CO2 fluids and topaz rhyolite melt. Economic Geology 84(1), 116-
134. 

Wedepohl H. K. (1995) The composition of the continental crust. Geochimica et Cosmochimica Acta 
59(7), 1217-1232. 

Welch S. A., Beard B. L., Johnson C. M., and Braterman P. S. (2003) Kinetic and equilibrium Fe 
isotope fractionation between aqueous Fe(II) and Fe(III). Geochimica et Cosmochimica Acta 
67(22), 4231-4250. 

Weyer S., Anbar A. D., Brey G. P., Munker C., Mezger K., and Woodland A. B. (2005) Iron isotope 
fractionation during planetary differentiation. Earth and Planetary Science Letters 240(2), 
251-264. 

Weyer S., Anbar A. D., Brey G. P., Munker C., Mezger K., and Woodland A. B. (2007) Fe-isotope 
fractionation during partial melting on Earth and the current view on the Fe-isotope budgets 



References 
___________________________________________________________________________________________________________________________________________________________________________________ 

 139 

of the planets (reply to the comment of F. Poitrasson and to the comment of B.L. Beard and 
C.M. Johnson on "Iron isotope fractionation during planetary differentiation" by S. Weyer, 
A.D. Anbar, G.P. Brey, C. Munker, K. Mezger and A.B. Woodland). Earth and Planetary 
Science Letters 256(3-4), 638-646. 

Weyer S. and Ionov D. A. (2007) Partial melting and melt percolation in the mantle: The message 
from Fe isotopes. Earth and Planetary Science Letters 259(1-2), 119-133. 

Whipple E. R. (1974) Study of Wilsons determination of ferrous iron in silicates. Chemical Geology 
14(3), 223-238. 

Whitney J. A. (1984) Fugacities of sulfurous gases in pyrrhotite-bearing silicic magmas. American 
Mineralogist 69(1-2), 69-78. 

Whitney J. A. and Stormer J. C. (1983) Igneous sulfides in the Fish Canyon Tuff and the role of 
sulfur in calc-alkaline magmas. Geology 11(2), 99-102. 

Wiesli R. A., Beard B. L., and Johnson C. M. (2004) Experimental determination of Fe isotope 
fractionation between aqueous Fe(II), siderite and "green rust" in abiotic systems. Chemical 
Geology 211(3-4), 343-362. 

Wilke M., Behrens H., Burkhard D. J. M., and Rossano S. (2002) The oxidation state of iron in silicic 
melt at 500 MPa water pressure. Chemical Geology 189(1-2), 55-67. 

Wilke M., Schmidt C., Farges F., Malavergne V., Gautron L., Simionovici A., Hahn M., and Petit P.-
E. (2006) Structural environment of iron in hydrous aluminosilicate glass and melt-evidence 
from X-ray absorption spectroscopy. Chemical Geology 229(1-3), 144-161. 

Williams H. M., McCammon C. A., Peslier A. H., Halliday A. N., Teutsch N., Levasseur S., and 
Burg J. P. (2004) Iron isotope fractionation and the oxygen fugacity of the mantle. Science 
304(5677), 1656-1659. 

Williams H. M., Peslier A. H., McCammon C., Halliday A. N., Levasseur S., Teutsch N., and Burg J. 
P. (2005) Systematic iron isotope variations in mantle rocks and minerals: The effects of 
partial melting and oxygen fugacity. Earth and Planetary Science Letters 235(1-2), 435-452. 

Wilson A. D. (1960) The micro-determination of ferrous iron in silicate minerals by a volumetric and 
colorimetric method. Analyst 85, 823-827. 

Wolfe C. J., Bjarnason I. T., VanDecar J. C., and Solomon S. C. (1997) Seismic structure of the 
Iceland mantle plume. Nature 385(6613), 245-247. 

Wood B. J. (1991) Oxygen barometry of spinel peridotites. Reviews in Mineralogy, Vol. 25, pp. 417-
431. 

Woodhead J. D. (2006) Isotope ratio determination in the earth and environmental sciences: 
Developments and applications in 2004/2005. Geostandards and Geoanalytical Research 
30(3), 187-196. 



References 
___________________________________________________________________________________________________________________________________________________________________________________ 

 140

Wunder B., Meixner A., Romer R. L., Feenstra A., Schettler G., and Heinrich W. (2007) Lithium 
isotope fractionation between Li-bearing staurolite, Li-mica and aqueous fluids: An 
experimental study. Chemical Geology 238(3-4), 277-290. 

Wunder B., Meixner A., Romer R. L., and Heinrich W. (2006) Temperature-dependent isotopic 
fractionation of lithium between clinopyroxene and high-pressure hydrous fluids. 
Contributions to Mineralogy and Petrology 151(1), 112-120. 

Yokoyama T. and Nakamura E. (2002) Precise determination of ferrous iron in silicate rocks. 
Geochimica et Cosmochimica Acta 66(6), 1085-1093. 

York D. (1969) Least squares fitting of a straight line with correlated errors. Earth and Planetary 
Science Letters 5, 320-324. 

Young E. D., Galy A., and Nagahara H. (2002) Kinetic and equilibrium mass-dependent isotope 
fractionation laws in nature and their geochemical and cosmochemical significance. 
Geochimica et Cosmochimica Acta 66(6), 1095-1104. 

Yund R. A. and Hall H. T. (1969) Hexagonal and monoclinic pyrrhotites. Economic Geology 64(4), 
420-&. 

Zhu X. K., Guo Y., Williams R. J. P., O'Nions R. K., Matthews A., Belshaw N. S., Canters G. W., de 
Waal E. C., Weser U., Burgess B. K., and Salvato B. (2002) Mass fractionation processes of 
transition metal isotopes. Earth and Planetary Science Letters 200(1-2), 47-62. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix A1 
___________________________________________________________________________________________________________________________________________________________________________________ 

 141 

 
Appendix A1 to chapter 1 

 

A1.1. REAGENTS USED FOR WET-CHEMICAL COLORIMETRIC IRON 

DETERMINATION 

 

All reagents were freshly prepared before each analytical session: 

Ammonium vanadate solution. 0.165 g NH4VO3 (Alfa Aesar, 99.93% metals basis) 

was diluted in 100 mL distilled water and H2SO4 (Merck, p.a.). The final concentration of 

H2SO4 was generally 1M, or in some cases up to 5M to test whether the sulphuric acid 

concentration has an influence on the ferrous iron determination (see text). 1 mL of this 

solution was added to each sample (corresponds to ~ 14.1 µmol NH4VO3), capable to 

oxidize about 800 µg ferrous Fe. We always processed <500 µg Fe to ensure V5+ excess. 

Boric acid solution. Approximately 20 g H3BO3 (Merck, p.a.) were dissolved in ~ 

100 mL distilled water at ~80°C to obtain a saturated solution. After sample dissolution 5 

mL of the hot solution was added to each sample. 

2:2’bipyridyl solution. 0.15g C10H8N2 (Alfa Aesar, p.a.) was dissolved in 100 mL 

distilled water. 5 mL of this solution (corresponds to ~ 9.6 µmol C10H8N2) was added to each 

sample. This amount can complex about 900 µg ferrous Fe to form the colored 

chromophore. Less than <500 µg Fe was processed to ensure bipyridyl excess. 

Ammonium acetate solution: Approximately 20 g CH3COONH4 was dissolved in 200 mL 

distilled water.  

Hydroxylamine hydrochloride. Between 5 and 10 mg NH2OH·HCl (Merck, p.a.) 

were added to each 10-mL-sample-aliquot containing <50 µg ferric Fe, to ensure quantitative 

reduction. At least 8 mg ferric Fe can be reduced by this amount (>72 µmol NH2OH·HCl). 

Hydrofluoric acid was 24% or 48% (Merck, p.a.) (see text).  
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A1.2. WATER SOLUBILITY IN PHONO-TEPHRITIC MELTS  

 

sample P T experimental productsb

(MPa) (°C)

Ar-IHPV (fH2 intrinsic)
H2O fluid, aH2O = 1
Alb1-20 50 1250 2.43 ± 0.12 IR gl, fl
Alb1-21 50 1250 2.49 ± 0.12 IR gl, fl
Alb1-22 100 1250 3.44 ± 0.18 IR gl, fl
Alb1-23 100 1250 3.41 ± 0.18 IR gl, fl
Alb1-36 200 1200 5.07 ± 0.25 IR gl, fl
Alb1-37 200 1200 4.31 ± 0.21 IR gl, fl
Alb1-10 200 1250 4.87 ± 0.26 IR gl, fl
Alb1-24 300 1250 5.90 ± 0.08 KFT gl, fl, xx(quench)
Alb1-25 300 1250 6.20 ± 0.08 KFT gl, fl, xx(quench)
Alb1-35 400 1200 8.36 ± 0.10 KFT gl, fl, xx(quench)
Alb1-26 400 1250 7.61 ± 0.08 KFT gl, fl, xx(quench)
Alb1-27 400 1250 8.16 ± 0.08 KFT gl, fl, xx(quench)
Alb1-5 500 1200 11.95 ± 0.08 KFT gl, fl, xx(quench)
Alb1-15 500 1250 8.08 ± 0.08 KFT gl, fl, xx(quench)
Alb1-28 500 1250 9.78 ± 0.18 KFT gl, fl, xx(quench)
Alb1-41 200 1200 3.76 ± 0.19 KFT gl, fl
Ar-IHPV (fH2 intrinsic)
H2O-CO2 fluid
Alb1-7 200 1250 2.43 ± 0.10 KFT

Alb1-8 200 1250 3.10 ± 0.10 KFT gl, fl
Alb1-6bis 200 1250 0.89 ± 0.14 IR gl, fl
Alb1-6a 200 1250 1.41 ± 0.15 IR gl, fl
Alb1-1 500 1200 0.94 ± 0.07 KFT gl, fl, cpx
Alb1-2 500 1200 2.82 ± 0.07 KFT gl, fl
Alb1-3 500 1200 5.54 ± 0.08 KFT gl, fl
Alb1-4 500 1200 9.27 ± 0.08 KFT gl, fl, xx(quench)
Alb1-12 500 1250 3.80 ± 0.20 IR gl, fl
Alb1-13 500 1250 6.91 ± 0.09 KFT gl, fl, xx(quench)
Alb1-14 500 1250 6.97 ± 0.07 KFT gl, fl, xx(quench)
Ar-H2-IHPV (fH2 varied)
H2O fluid and H2O-CO2 fluid
AbH-42 200 1200 5.32 ± 0.09 KFT gl, fl
AbH-43 200 1200 4.73 ± 0.14 KFT gl, fl
AbH-44 200 1200 2.67 ± 0.09 KFT gl, fl
AbH-45 200 1200 1.41 ± 0.05 KFT gl, fl
AbH-47 200 1200 5.32 ± 0.06 KFT gl, fl
AbH-48 200 1200 4.64 ± 0.06 KFT gl, fl
AbH-49 200 1200 2.78 ± 0.18 KFT gl, fl
AbH-50 200 1200 1.97 ± 0.18 KFT gl, fl
AbH-51 200 1200 1.57 ± 0.17 KFT gl, fl
AbH-52 200 1200 4.81 ± 0.07 KFT gl, fl
AbH-54 200 1200 2.84 ± 0.07 KFT gl, fl
AbH-56 200 1200 1.08 ± 0.06 KFT gl, fl

b gl=glass, fl=fluid phase, cpx= clinopyroxene crystals formed in equilibrium with silicate melt 
at experimental conditions, xx(quench)= crystals formed during cooling at the end of the 
experiment

Table A1.1. Water concentrations and experimental run products (from Misiti et al., 2007).

H2O
a

(wt%)

a Water concentration in the glasses measured by IR spectroscopy (IR) or Karl Fischer titration 
(KFT).
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Figure A1.1. Relationship between the mole fraction 
of CO2 in the fluid phase and the concentration of CO2 
dissolved in the melt (from Misiti et al., 2007). (a) 
intrinsic fH2 of the IHPV. (b) Various fH2 at a pressure 
of 200 MPa. Open circles: T = 1250°C, 
fH2~0.02 MPa; grey triangle down:  T = 1200°C, fH2 
nominal = 0.25 MPa; black triangles up: T = 1200°C, 
fH2 nominal = 2.44 MPa. Lines illustrate the trends at 
intrinsic fH2 (solid) and elevated fH2 (dashed). Only 
sample Alb1H-56 (on the lower right in (b)) deviates 
from the general trends. 

 
Figure A1.2. Relationship between the mole fraction 
of H2O in the fluid phase and the concentration of 
total water dissolved in the melt at intrinsic fH2  (from 
Misiti et al., 2007). Open symbols: 1250°C, 200 MPa; 
grey symbols: 1250°C, 500 MPa; black symbols: 
1200°C, 500 MPa. The dashed line displays the trend 
at 1200 °C, 500 MPa. Solid lines show trends at 
1250°C. Circles represent KFT data, triangle down 
represent MIR data and triangle up represent NIR 
data. (b) Effect of hydrogen fugacity on the 
relationship between XfH2O and H2Otot in the melt at 
200 MPa and temperatures of 1200 – 1250°C. Open 
symbols: T = 1250°C, fH2  ~0.02 MPa; grey symbols:  
T = 1200°C, fH2 nominal = 0.25 MPa; black symbols: 
T = 1200°C, fH2 nominal = 2.44 MPa. 
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Appendix A2 to chapter 2 

 

A2.1. DETAILS ON THE STARTING MATERIALS 

 

Natural pyrrhotites used in experiments 

Sample B originates from a sulphide ore deposit near Bodenmais, Bavaria, Germany. 

Sample MV is from the massive sulphide deposit Morro Velho (Minas Gerais), Brazil. 

Sample R is a pyrrhotite from the ore deposit Kisbanya (Herja Mine), Romania. The origin 

of sample K is unknown. It was obtained from the mineralogical museum of the University 

of Köln, Germany. Specimens MV and R were kindly provided by the German Geological 

Survey (BGR, collection numbers: MV: 4289WE; R: 318WE). Handpicked mm-sized 

crystal pieces were cleaned with dilute HCl to remove surface alteration products, and then 

ground in an agate mortar to grain sizes of < 20 µm. The chemical compositions (Table 

A2.1.) of the hexagonal pyrrhotites (K and B) were also determined by XRD using the 

calibration of Yund and Hall (1969). These analyses gave slightly higher Fe concentrations 

compared to the EMPA results, similar to findings reported by Clemente (1998).  

 
Table A2.1. Chemical compositions of natural pyrrhotites used as starting materials. 

sample MV B K R 
EMPA                         
n  9 9 9 9 
(wt%)                  
Fe 59.10 ± 0.30 59.50 ± 0.15 59.50 ± 0.21 59.42 ± 0.17 
S 40.90 ± 0.78 40.50 ± 0.05 40.18 ± 0.06 40.58 ± 0.86 
                      
(at%)                     
Fe 45.34 ± 0.54 45.75 ± 0.06 46.09 ± 0.08 45.67 ± 0.52 
S 54.64 ± 0.55 54.24 ± 0.08 53.93 ± 0.08 54.32 ± 0.52 
Fe:S 0.830 ± 0.013 0.843 ± 0.002 0.855 ± 0.002 0.841 ± 0.012 
                      
XRD                     
Fe $ n.d. 47.48 ± 0.13 47.54 ± 0.13 n.d. 
Fe:S n.d. 0.904 ± 0.009 0.906 ± 0.009 n.d. 
n  Number of electron microprobe analyses.  n.d. Not determined.   Given uncertainties of microprobe analyses are
standard errors (95% confidence level) of the average of n replicate analyses. 
$ Atomic proportion of Fe (at%) of hexagonal pyrrhotites calculated after Yund and Hall (1969) from the d102 peak 
position determined by XRD.  
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Synthetic glasses 

The NSLsyn glass was prepared from a mixture of oxides (SiO2, Al2O3, Fe2O3) and 

carbonates (Na2CO3, K2CO3), ground in an agate rotary mill and melted at 1 atm in an open 

Pt90Rh10 crucible at 1600°C over a time period of about 8 hours. The melt was quenched to 

glass by rapid cooling of the crucible in a water bath. The glass was then ground, re-melted 

and quenched to improve its homogeneity. The major element composition of the synthetic 

glass was analysed by a Cameca SX-100 electron microprobe, with 15 keV accelerating 

voltage, 6 nA beam current, and a 20 µm electron beam diameter (Table A2.2., NSLsyn dry).  

 

Table A2.2. Chemical compositions of synthetic glasses used as starting materials (EMPA). 
(wt%) NSLsyn (dry) NSLsyn01 NSLsyn04spike NSLsyn05 NSLsyn06spike NSLsyn07 
n 8 20 20 30 30 30 
SiO2 75.74± 0.28 70.49 ± 0.25 73.97±0.24 73.25±0.16 73.05±0.15 73.00± 0.11 
Al2O3 10.38± 0.08 9.34 ± 0.09 9.56±0.09 9.59±0.06 9.60±0.06 9.68± 0.05 
FeOtotal 4.13± 0.19 3.94 ± 0.14 3.36±0.13 3.99±0.11 3.72±0.08 4.16± 0.10 
Na2O 5.28± 0.18 4.98 ± 0.15 4.98±0.12 5.06±0.06 4.98±0.05 5.04± 0.06 
K2O 4.65± 0.03 4.55 ± 0.10 4.33±0.06 4.39±0.03 4.38±0.03 4.39± 0.03 
Total 100.19± 0.40 93.30 ± 0.39 96.20±0.33 96.27±0.23 95.73±0.20 96.28± 0.20 
H2O * n.d. 3.91 ± 0.07 n.d. n.d. n.d. n.d. 
Fe2+/ΣFe $ 0.25± 0.02 0.40 ± 0.02 n.d. 0.38±0.02 n.d. n.d. 
                                   
  NSLsyn08 NSLsyn09 NSLsyn10 NSLsyn11 NSLsyn12       
n 20 20 20 20 20       
SiO2 72.89± 0.59 73.15 ± 0.19 72.69±0.45 72.91±0.26 72.81±0.22       
Al2O3 9.64± 0.20 9.64 ± 0.08 9.61±0.09 9.59±0.08 9.74±0.05       
FeOtotal 4.04± 0.32 3.99 ± 0.11 3.97±0.10 4.23±0.15 4.14±0.13       
Na2O 5.10± 0.14 5.06 ± 0.08 5.10±0.09 5.02±0.08 5.09±0.05       
K2O 4.40± 0.07 4.40 ± 0.03 4.42±0.04 4.42±0.03 4.43±0.03       
Total 96.06± 0.55 96.24 ± 0.24 95.78±0.60 96.18±0.34 96.21±0.21       
H2O * 4.07± 0.29 4.11 ± 0.05 3.90±0.05 n.d. n.d.       
Fe2+/ΣFe $ n.d. n.d. n.d. n.d. n.d.       
n  Number of electron microprobe analyses. Given uncertainties are standard errors (95% confidence level) of 
the average of n replicate analysis. 
* H2O determined by Karl Fischer titration (KFT). Given values were corrected for unextracted water during 
KFT analysis (+0.10 wt% H2O) according to Leschik et al. (2004). 
$ Determined by wet chemical analysis (see text). Given value is the average of three replicate analyses and 
the uncertainty is 1σ of the average.    n.d.  Not determined.  

 
 

To produce hydrous glasses the nominally dry glass was ground in an agate mortar. 

Between 800 and 900 mg of the mixed powder were sealed together with ~ 4 wt% H2O in 

Au80Pd20 capsules (6.4 mm outer diameter, ~ 30 mm in length, 0.2 mm wall thickness). 
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Water loss during welding was avoided by cooling the capsules with liquid nitrogen. The 

capsules were then placed in a vertically oriented internally heated pressure vessel (IHPV) at 

1250°C and 500 MPa for 24 hours to produce a homogeneous melt. The glass obtained after 

quench was ground to grain sizes of < 20 µm and used as starting material for the isotope 

exchange and crystallisation experiments.  

 

 

A2.2. CHARACTERISATION OF THE RUN PRODUCTS 

 

Analytical conditions of electron microprobe analysis 

All microprobe analyses were done on a Cameca SX-100 using 15 keV accelerating 

voltage. For pyrrhotite analyses we used a focussed electron beam (~1 µm diameter), a beam 

current of 15 nA and a counting time of 10 s on peak and background for Fe and S. Silicate 

glasses were analysed with a beam current of 4 nA, an electron beam diameter of 10 µm and 

a counting time of 5 s for Fe, Al, Si and 2 s for K, Na on peak and background. S was always 

analysed as the last element of each point analysis and beam current and counting time were 

increased to 30 nA and 30 s, respectively. It must be noted that routine analyses of sulphur in 

the glasses were performed consistently at the peak position of sulphate (e.g., Carroll and 

Rutherford, 1988), because the peak position of the of S Kα x-rays slightly varied non-

systematically with glass composition and run condition. Additionally, the peak was often 

not well resolved due to generally low S contents of the glasses. This approach may result in 

slight underestimation (up to 15 %) of the sulphur content for glasses with a relatively high 

sulphide/sulphate ratio. Nevertheless, comparison of pyrrhotite crystal contents calculated by 

mass balance of sulphur on one hand, and by mass balance of iron on the other hand, gives 

no indication of a major underestimation of sulphur concentrations in the glasses. 
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A2.3. PHASE SEPARATION AND CORRECTIONS APPLIED TO THE MEASURED 

ISOTOPIC COMPOSITIONS 

 

Phase separation for isotopic analysis was done by selective dissolution of pyrrhotite 

with 5M HCl. The ground run products were placed in 7 mL Savillex® vials and leached 

with distilled 5M HCl at room temperature for 48 to 60 hours. After centrifugation for 10 

minutes the supernate HCl containing the dissolved pyrrhotite was transferred to a second 

7 mL Savillex® vial. The residual glass in the first vial was thoroughly washed with ultra 

pure H2O (resistance 18 MΩ) and then completely dissolved in a 3:1 mixture of distilled 

concentrated HF and HNO3. However, together with pyrrhotite small amounts of glass were 

dissolved by the HCl as well. Leaching experiments of pure glass powder with 5M HCl 

revealed that 1.90±0.10 % of Fe from the glass is released into the pyrrhotite fraction (Table 

A2.3). This contamination was found to be insignificant for Fe isotope analysis of the 

pyrrhotite fraction from the kinetic tracer and the exchange experiments, having a weight-

ratio of Fe in pyrrhotite to Fe in glass of about 1:1. The crystallisation experiments, however, 

are characterised by very low pyrrhotite contents of < 1.5 wt%, corresponding to a weight-

ratio of Fe in pyrrhotite to Fe in glass of 1:3, or less. In this case, Fe contamination of the 

pyrrhotite fraction by the Fe from glass significantly changes the measured 56Fe/54Fe and 

57Fe/54Fe ratios of the pyrrhotite fraction. 

We performed phase separation experiments to quantify the cross-contamination 

during the HCl leaching. Mixtures of glass and pyrrhotite - in proportions resembling the 

exchange experiments and the crystallisation experiments - of known isotopic compositions 

where leached with 5M HCl (Table A2.4).  
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Table A2.3.  HCl-leaching experiments on pure glasses. 
HCl leachate   experiment HCl leaching  

time (hours) δ56Fe δ57Fe   Fe dissolved (%)*

starting material       
NSLsyn     -0.247 ± 0.049 -0.346 ± 0.071      
           
leaching experiments        
NSL1 44 -0.305 ± 0.049 -0.372 ± 0.071   1.91 ± 0.10
NSL2 44 -0.270 ± 0.049 -0.437 ± 0.071   1.89 ± 0.10
NSL3 44 -0.256 ± 0.049 -0.403 ± 0.071   1.89 ± 0.10
Average   -0.277   -0.404     1.90   
        
        
NSLsyn01 in Au capsule, 500 MPa, 900°C, 24h     
Fe-0 64 -0.255 ± 0.049 -0.365 ± 0.071     
* Calculated from ICP-OES measurements of Fe concentration in untreated bulk NSLsyn and in the HCl leachate: Fedissolved = 
(cFeleached/cFetotal in glass)x100. 

 

Those leaching tests representative for the kinetic tracer and the exchange experiments, with 

relatively high pyrrhotite contents, show that the separated pyrrhotite is isotopically identical 

to the starting material, within analytical uncertainty (Fig. A3.2.1a), and therefore we did not 

correct the measured isotopic composition of pyrrhotite. The separated glass fraction, 

however, shows a significant isotopic contamination with Fe from undissolved pyrrhotite. 

From the leaching tests we estimate a contamination of Fe from pyrrhotite in the analysed 

glass fraction of our experimental products of 28±13% (Table A2.4). Based on these 

estimate we corrected the measured δ56Feglass and δ57Feglass for contamination with residual 

pyrrhotite (see Table 2.2 for results), e.g. for δ56Feglass:  

 

56 measured 56 measured contaminant
glass pyrrhotite Fefrompyrrhotite56 corrected

glass contaminant
Fefrompyrrhotite

δ Fe δ Fe
δ Fe =

1
f

f
− ⋅

−
                     (A2.1) 

 

The uncertainties given in Table 2.2 were calculated incorporating upper and lower 

error bounds of fcontaminant (Fe from pyrrhotite) (0.28±0.13) and error propagation of uncertainties 

assigned to the electron microprobe analyses of the glasses (Tables A2.2 and A2.5) and from 

analytical uncertainties of Fe isotope measurements. 
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Figure A3.2.1.   Results of the phase 
separation experiments representative for (a) 
exchange experiments and (b) crystallisation 
experiments (see Table A2.4) to quantify the 
cross-contamination during HCl-leaching. (c) 
HCl-leaching tests of pure NSLsyn glass 
powder and of the run product of an 
experiments containing solely hydrous glass 
powder (Fe-0) give evidence that no isotope 
fractionation occurs either during HCl-
leaching or during any other experimental 
procedure, e.g. interaction with the capsule 
material.  

 
For the crystallisation experiments, with low pyrrhotite contents, the results of the 

separation experiments show a significant isotopic contamination of the pyrrhotite fraction 

with Fe from the glass (Fig. A3.2.1b). On the other hand, the separated glass is isotopically 

identical to the starting composition, within analytical uncertainty and therefore, no 

correction to the measured δ56Feglass and δ57Feglass values was applied.  

The extent of Fe contamination with Fe leached from the glass into the pyrrhotite fraction 

depends on the pyrrhotite content, which varies in the run products of the crystallisation 

experiments, and therefore, has to be considered for the corrections. Based on the amount of 

iron leached from the glass into the pyrrhotite fraction (1.90±0.10 %, Table A2.3), the Fe 

concentration in the post-experimental glasses (see Table A2.5) and the pyrrhotite content in 

the sample, which can be calculated by mass balance compared to the starting glass (Table 

A2.2, see also expressed as fFe transfer in Table 2.3), we can correct the measured δ56Fe and 

δ57Fe values of pyrrhotite individually for each experiment, analogue to equation A2.1. 
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(results see Table 2.3). For experiment C-840-3 (Table 2.3), no thin section for EMPA was 

prepared. Therefore we estimated the FeOtotal contents of the post-experimental glass from 

the other two crystallisation experiments run under similar conditions at 840°C. The 

uncertainties given in Table 2.3 result from error propagation of uncertainties assigned to the 

electron microprobe analyses of the glasses before and after the experiments, from analytical 

uncertainties in Fe isotope measurements by MC-ICP-MS and from the uncertainty in the 

fraction of Fe leached from the glasses (1.90±0.10 %).  

 

Table A2.4..  Phase separation experiments on pyrrhotite-glass mixtures 
HCl leachate  

 
(pyrrhotite fraction)

 
residue after HCl 

leaching  
(glass fraction) 

 cross contamination* 
experiment HCl leaching  

time (hours) 
δ56Fe δ57Fe  δ56Fe δ57Fe  f Fe from  

glass in pyrr 
f Fe from  

pyrr in glass 
starting materials (from Table 1)             
pyrrhotite B -1.035 -1.528           
NSLsyn      -0.247 -0.346      
                  
phase separation experiments with glass + 6% pyrrhotite        
P1 44 -1.033 -1.545  -0.560 -0.877  0.2% 39.7% 
P2 44 -1.034 -1.523  -0.317 -0.423  0.1% 8.9% 
P3 44 -1.066 -1.564  -0.574 -0.837  -4.0% 41.5% 
L27 64 -0.995 -1.452  -0.446 -0.666  5.0% 25.3% 
L28 64 -1.001 -1.461  -0.439 -0.598  4.3% 24.3% 
average             1.1% 28.0% 
1-SD             3.7% 13.3% 
                  
phase separation experiments with glass + 0.5% pyrrhotite      
P4 44 -0.793 -1.195  -0.303 -0.447  30.7% 7.1% 
P5 44 -0.715 -1.057  -0.305 -0.407  40.6% 7.3% 
P6 44 -0.714 -1.045  -0.255 -0.347  40.7% 1.1% 
average             37.3% 5.2% 
1-SD             5.8% 3.6% 
* Calculated from a simple isotope mixing equation, using the starting pyrrhotite and glass as end-members. 

 
 

For the crystallisation experiments, the corrected δ56Fe values of pyrrhotite differ 

between -0.02 to -0.07‰ from the uncorrected values (Table 2.3), except for experiments C-

1000-1 and C-1000-3, where the correction was -0.27 and -0.28‰, respectively, due to the 

very low crystal contents in these two samples and therefore a more pronounced 
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contamination of the pyrrhotite fraction with Fe from the glass. For the kinetic and exchange 

experiments the differences between corrected and uncorrected δ56Fe values of the glass 

fraction range from +0.07 to +0.17 (Table 2.2).  

 

To test whether the experimental and analytical procedure causes any iron isotope 

fractionation that is not due to pyrrhotite-melt interaction we performed a run with pure 

hydrous glass at 500 MPa and 900°C (Fe-0 in Table A2.3) without any addition of sulphur 

(as in crystallisation experiments) or natural pyrrhotite (as in exchange experiments). The 

measured Fe isotope composition of the processed glass of sample Fe-0 is isotopically 

identical to the starting material within analytical uncertainty (Fig. A3.2.1c). Moreover, the 

results from HCl leaching experiments of pure glass (Table A2.3) and pyrrhotite-glass 

mixtures (Table A2.4) indicate no change in Fe isotope composition during phase separation. 

 



Appendix A2 
___________________________________________________________________________________________________________________________________________________________________________________ 

 152

 

n
n 

E-
84

0-
1

7
73

.1
2

±
0.

27
9.

66
±

0.
13

4.
23

±
0.

17
4.

90
±

0.
20

4.
29

±
0.

09
0.

05
0

±
0.

01
2

96
.2

4
±

0.
12

6
48

.0
2

±
0.

06
51

.8
6

±
0.

02
0.

92
6

±
0.

00
1

E-
84

0-
2

9
72

.9
2

±
0.

37
9.

73
±

0.
08

4.
15

±
0.

21
4.

78
±

0.
19

4.
42

±
0.

09
0.

04
9

±
0.

00
5

96
.0

5
±

0.
46

5
48

.3
3

±
0.

25
51

.5
5

±
0.

29
0.

93
8

±
0.

00
7

E-
84

0-
3

9
73

.0
5

±
0.

32
9.

73
±

0.
11

4.
13

±
0.

18
4.

68
±

0.
06

4.
41

±
0.

10
0.

07
0

±
0.

04
5

96
.0

6
±

0.
23

6
48

.0
3

±
0.

59
51

.8
6

±
0.

57
0.

92
6

±
0.

01
5

E-
84

0-
4S

9
72

.5
0

±
0.

25
9.

67
±

0.
10

3.
99

±
0.

15
4.

75
±

0.
16

4.
37

±
0.

09
0.

05
8

±
0.

00
7

95
.3

4
±

0.
46

2
47

.9
1

±
0.

20
52

.0
0

±
0.

25
0.

92
1

±
0.

00
6

E-
90

0-
1S

10
72

.6
0

±
0.

32
9.

79
±

0.
09

3.
54

±
0.

10
4.

38
±

0.
15

4.
29

±
0.

06
0.

04
6

±
0.

00
7

94
.6

6
±

0.
40

8
47

.1
1

±
0.

13
52

.7
8

±
0.

11
0.

89
3

±
0.

00
3

E-
90

0-
2S

9
74

.2
1

±
0.

39
9.

73
±

0.
09

3.
76

±
0.

16
5.

00
±

0.
09

4.
37

±
0.

07
0.

03
4

±
0.

00
6

97
.1

2
±

0.
37

13
45

.4
4

±
0.

28
54

.4
8

±
0.

30
0.

83
4

±
0.

00
7

E-
90

0-
3S

12
74

.2
8

±
0.

25
9.

94
±

0.
10

3.
66

±
0.

13
4.

89
±

0.
12

4.
35

±
0.

07
0.

03
2

±
0.

00
6

97
.1

4
±

0.
25

10
45

.7
1

±
0.

55
54

.2
0

±
0.

56
0.

84
3

±
0.

01
3

E-
90

0-
4S

6
72

.0
8

±
0.

29
9.

72
±

0.
13

3.
96

±
0.

06
4.

63
±

0.
26

4.
39

±
0.

11
0.

07
7

±
0.

00
6

94
.8

5
±

0.
57

8
47

.1
6

±
0.

32
52

.7
5

±
0.

31
0.

89
4

±
0.

00
8

E-
90

0-
1

6
72

.2
1

±
0.

56
10

.3
0

±
0.

15
4.

82
±

0.
18

5.
37

±
0.

10
4.

75
±

0.
08

0.
02

2
±

0.
00

6
97

.4
7

±
0.

72
7

48
.2

5
±

0.
30

51
.6

8
±

0.
30

0.
93

3
±

0.
00

8
E-

90
0-

2
12

72
.1

2
±

0.
29

9.
67

±
0.

10
4.

09
±

0.
09

4.
75

±
0.

20
4.

38
±

0.
06

0.
05

4
±

0.
00

6
95

.0
7

±
0.

41
8

47
.1

4
±

0.
20

52
.7

9
±

0.
17

0.
89

3
±

0.
00

5
E-

90
0-

3
10

72
.3

3
±

0.
26

9.
73

±
0.

12
4.

21
±

0.
11

4.
76

±
0.

15
4.

37
±

0.
08

0.
06

4
±

0.
00

6
95

.4
6

±
0.

36
6

46
.6

9
±

0.
44

53
.2

2
±

0.
39

0.
87

7
±

0.
01

0
E-

10
00

-1
8

71
.7

9
±

0.
18

9.
75

±
0.

09
5.

37
±

0.
25

4.
81

±
0.

25
4.

40
±

0.
10

0.
14

6
±

0.
00

6
96

.2
8

±
0.

38
5

48
.1

4
±

0.
43

51
.8

0
±

0.
47

0.
92

9
±

0.
01

2
E-

10
00

-2
8

73
.4

4
±

0.
52

9.
82

±
0.

08
5.

12
±

0.
33

5.
15

±
0.

25
4.

44
±

0.
05

0.
03

8
±

0.
00

6
97

.9
9

±
0.

47
5

49
.0

5
±

0.
03

50
.8

7
±

0.
10

0.
96

4
±

0.
00

2
E-

10
00

-3
S

16
71

.4
6

±
0.

30
9.

58
±

0.
06

5.
67

±
0.

17
4.

81
±

0.
10

4.
27

±
0.

07
0.

17
7

±
0.

00
6

95
.9

6
±

0.
29

5
48

.8
9

±
0.

24
51

.1
1

±
0.

25
0.

95
7

±
0.

00
7

E-
10

00
-4

S
8

71
.5

8
±

0.
90

9.
61

±
0.

09
5.

25
±

0.
29

4.
94

±
0.

25
4.

32
±

0.
10

0.
12

9
±

0.
00

6
95

.8
3

±
0.

79
3

48
.7

8
±

0.
23

51
.1

5
±

0.
29

0.
95

4
±

0.
00

7
C

-8
40

-1
9

74
.1

0
±

0.
41

9.
88

±
0.

06
3.

29
±

0.
26

4.
67

±
0.

11
4.

41
±

0.
08

0.
05

9
±

0.
00

6
96

.4
1

±
0.

30
C

-8
40

-2
5

73
.5

3
±

0.
20

9.
78

±
0.

19
3.

64
±

0.
28

4.
84

±
0.

06
4.

40
±

0.
04

0.
06

5
±

0.
00

6
96

.2
6

±
0.

57
C

-9
00

-1
10

71
.7

6
±

0.
48

9.
93

±
0.

11
3.

54
±

0.
30

4.
49

±
0.

14
4.

37
±

0.
05

0.
06

9
±

0.
00

6
94

.1
6

±
0.

48
C

-9
00

-2
8

73
.1

7
±

0.
43

9.
84

±
0.

10
3.

43
±

0.
19

4.
62

±
0.

07
4.

34
±

0.
04

0.
07

2
±

0.
00

6
95

.4
7

±
0.

43
C

-9
00

-3
10

73
.4

0
±

0.
19

9.
95

±
0.

10
3.

75
±

0.
14

4.
61

±
0.

13
4.

40
±

0.
06

0.
04

9
±

0.
00

6
96

.1
5

±
0.

29
C

-9
00

-4
10

71
.7

3
±

0.
41

9.
80

±
0.

12
3.

79
±

0.
15

4.
55

±
0.

14
4.

42
±

0.
04

0.
07

0
±

0.
00

6
94

.3
7

±
0.

44
C

-1
00

0-
1

10
72

.6
2

±
0.

20
9.

74
±

0.
10

3.
94

±
0.

19
4.

86
±

0.
18

4.
42

±
0.

06
0.

06
1

±
0.

00
6

95
.6

4
±

0.
36

C
-1

00
0-

2
4

75
.0

1
±

0.
97

9.
95

±
0.

05
4.

09
±

0.
13

5.
19

±
0.

10
4.

47
±

0.
10

0.
03

2
±

0.
00

6
98

.7
4

±
0.

89
C

-1
00

0-
3

10
72

.4
7

±
0.

27
9.

76
±

0.
11

4.
12

±
0.

18
4.

87
±

0.
15

4.
41

±
0.

05
0.

07
3

±
0.

00
6

95
.7

1
±

0.
38

* 
Se

e 
Ta

bl
es

 2
.1

 a
nd

 2
.2

 fo
r s

ta
rti

ng
 c

om
po

si
tio

ns
, r

un
tim

es
 a

nd
 te

m
pe

ra
tu

re
s o

f t
he

 e
xp

er
im

en
ts

. T
he

 c
he

m
ic

al
 c

om
po

si
tio

ns
 o

f t
he

 st
ar

tin
g 

gl
as

se
s a

re
 g

iv
en

 in
 T

ab
le

 A
2.

2.

K
2O

n 
 N

um
be

r o
f e

le
ct

ro
n 

m
ic

ro
pr

ob
e 

an
al

ys
es

.  
n.

d.
  N

ot
 d

et
er

m
in

ed
.  

G
iv

en
 u

nc
er

ta
in

tie
s a

re
 st

an
da

rd
 e

rr
or

s (
95

%
 c

on
fid

en
ce

 le
ve

l) 
of

 th
e 

av
er

ag
e 

of
 n

 re
pl

ic
at

e 
an

al
ys

es
.

n.
d.

n.
d.

n.
d.

n.
d.

n.
d.

n.
d.

n.
d.

n.
d.

Fe
S

Fe
:S

n.
d.

si
lic

at
e 

gl
as

se
s (

w
t%

)
Ta

bl
e 

A
2.

5.
 C

he
m

ic
al

 c
om

po
si

tio
ns

 o
f s

ili
ca

te
 g

la
ss

es
 a

nd
 p

yr
rh

ot
ite

s a
fte

r e
xp

er
im

en
ts

.
py

rr
ho

tit
es

 (a
t%

)
ex

pe
rim

en
t *

S
To

ta
l

Fe
O

to
ta

l
Si

O
2

A
l 2O

3
N

a 2
O



Appendix A2 
___________________________________________________________________________________________________________________________________________________________________________________ 

 153 

A2.4. IRON ISOTOPE COMPOSITIONS OF NATURAL SULPHIDES 

 

Sulphide mineral separates (mainly pyrrhotites) from various locations (Table A2.6.) 

were analysed for their iron isotope composition following the analytical protocol described 

in chapter 2.2.3. Mineral separates were produced by handpicking under a binocular 

microscope. Some sulphide fractions were further purified by density liquid separation using 

methylene iodide (density = 3.3 g/cm³). Each mineral separate was analysed by powder x-ray 

diffraction for mineral identification. The results are given in Table A2.7 and Figures A2.2 

and A2.3.  

 

Table A2.6. Background information on natural sulphide samples. 

sample 
abbreviation

locality sample sourcea and number sulphide genesis ref.

K unknown Institut für Mineralogie, Uni Köln unknown -

R Kisbanya (Romania), Herja Mine BGR: WE 318 Schr. 389 L10 hydrothermal, pyrrhotite mineralisation at ~300°C (1)

A-1 St. Andreasberg (Germany, Harz Mountains) BGR: 265 WE hydrothermal (2)

MQ Okehampton (GB), Meldon Quarry BGR: 323 WE hydrothermal (280-380°C) (2)

WBE Erzberg (Austria, Steiermark) BGR: WBE hydrothermal, sediment related (2)

BW New Brunswick (Canada), Base Metal Zone BGR: Brunswick 13 volcanogenic-hydrothermal (black smoker), ~300°C (2)

MV-1 Morro Velho, Nova Lima (Brazil), Minas Gerais BGR: 4289 WE (2,3)

MV-2 Morro Velho, Nova Lima (Brazil), Minas Gerais BGR: Putzer Nr.: 9

MV-3 Morro Velho, Nova Lima (Brazil), Minas Gerais BGR: Putzer Nr.: 10

MV-4 Morro Velho, Nova Lima (Brazil), Minas Gerais BGR: (collection U. Vetter)

B Bodenmais (Germany, Bayern) Institut für Mineralogie, Uni Hannover metamorphic: 650-750°C, 200-500 MPa (4)

T Trojan mine (Zimbabwe) BGR: TN magmatic, mafic, later metamorphosed (2)

SP Selebi-Phikwe (Botswana) BGR: SP-14 magmatic, mafic layered intrusion, later metamorphosed (2)

CM Sudbury (Canada, Ontario), Craig Mine BGR: SUD-CR-01 magmatic, mafic layered intrusion, later metamorphosed (2)

GD Great Dike (Zimbabwe), Hartley Mine (MSZ) BGR: GD-4-CC magmatic, mafic layered intrusion, later metamorphosed (5)

HG Bad Harzburg (Germany), Bärenstein quarry BGR: HG02 magmatic, mafic (2)

S Sohland (Germany, Sachsen) BGR: Putzer Nr.: 99 magmatic, mafic (2)

BU Bühl / Weimar (Germany) BGR: 315 WE magmatic, basalt intrusion in coal bed (2)

hydrothermal; several mineralisation generations exist, 
represented by MV-1 (first hydrothermal generation), MV-
2 (main lode, first hydrothermal generation), MV-3 
(Passagem, first hydrothermal generation) and M-4 
(second hydrothermal generation); later ov

a BGR: Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, Germany
References: (1) Cook and Damian (1997), Huber and Muresan (1996); (2) Melcher, F. and Vetter, U. (BGR, pers. comm.); (3) Lobato et al. (2001); (4) Boctor (1980), Blumel and 
Schreyer (1977); (5) Oberthür (2003)  
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sample mineral separatea δ56Fe δ57Fe δ56Fe 2SD δ57Fe 2SD

CM pyrrhotite (m) -0.383 -0.548 -0.379 0.046 -0.571 0.051
-0.401 -0.598
-0.355 -0.568

BU pyrrhotite (h) -0.332 -0.491 -0.397 0.102 -0.593 0.148
-0.455 -0.666
-0.387 -0.594
-0.413 -0.620

GD -0.307 -0.454 -0.258 0.087 -0.390 0.111
-0.245 -0.360
-0.223 -0.356

HG -0.003 0.027 -0.001 0.026 0.011 0.053
-0.009 -0.026
0.004 0.030
-0.014 -0.008
0.019 0.032

S -0.052 -0.040 -0.088 0.069 -0.118 0.149
-0.066 -0.071
-0.122 -0.161
-0.113 -0.198

K pyrrhotite (h) -0.345 -0.498 -0.369 0.037 -0.526 0.047
-0.391 -0.530
-0.366 -0.507
-0.385 -0.558
-0.360 -0.535

B pyrrhotite (h) -1.065 -1.554 -1.035 0.084 -1.517 0.134
-1.076 -1.589
-1.007 -1.440
-0.991 -1.485

R pyrrhotite (m) -0.725 -1.077 -0.720 0.022 -1.064 0.030
-0.727 -1.057
-0.724 -1.045
-0.704 -1.075

continued on next page

Table A2.6. Fe isotope compositions of natural iron sulphide samples.

60% pyrrhotite (m), 30% 
pentlandite, 10% chalcopyrite

individual analysesb averages

97% pyrrhotite (h), 3% 
clinopyroxene

30% pyrrhotite (m), 70% 
plagioclase, <1% chalcopyrite 
+ magnetite
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sample mineral separatea δ56Fe δ57Fe δ56Fe 2SD δ57Fe 2SD

MV-1 pyrrhotite (m) -0.733 -1.106 -0.727 0.069 -1.063 0.107
-0.758 -1.079
-0.690 -1.003

MV-2 pyrrhotite (h) -0.486 -0.754 -0.484 0.014 -0.733 0.429
-0.477 -0.709
-0.490 -0.736

MV-3 pyrrhotite (m) -0.232 -0.327 -0.239 0.021 -0.343 0.046
-0.247 -0.359

MV-4 pyrrhotite (m) -0.469 -0.651 -0.472 0.010 -0.650 0.003
-0.476 -0.649

MQ pyrrhotite (m) -0.411 -0.616 -0.422 0.019 -0.610 0.028
-0.428 -0.594
-0.426 -0.619

A-1 pyrrhotite (m) -0.222 -0.391 -0.244 0.064 -0.397 0.018
-0.267 -0.403

BW -1.028 -1.545 -1.025 0.017 -1.525 0.050
-1.015 -1.497
-1.031 -1.534

WBE -1.112 -1.658 -1.087 0.049 -1.605 0.088
-1.101 -1.621
-1.074 -1.558
-1.059 -1.585

Table A2.6. - continued.
individual analysesb averages

a Modal composition of each mineral separate estimated from x-ray powder diffraction pattern. 
Monoclinic (m) or hexagonal (h) pyrrhotite crystal structure indicated in parentheses.
b Individual analyses of at least two independent sample dissolutions and chromatographic Fe 
separations.

70% pyrrhotite (m), 25% pyrite, 
<5% sphalerite

90% pyrrhotite (m), 10% 
chalcopyrite
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Figure A2.2. Summary of individual Fe isotope analyses of natural sulphide mineral separates (Table A2.6). 
The vertical dashed line represents the average igneous rock Fe isotope composition as defined by Beard et al. 
(2003a). 
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Figure A2.3. Three isotope plot comparing the Fe isotope composition of sulphides of different origin. Solid 
line is the mass dependent isotope fractionation line. Mean mafic Earth Fe isotope composition from Poitrasson 
et al. (2005). The arrow represents the experimentally determined Fe fractionation factor 
Δ56Fepyrrhotite-melt = -0.35‰. 
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Appendix A3 to chapter 3 

 
A3.1. IRON ISOTOPE ANALYSES OF REFERENCE MATERIALS 

 

Table A3.1. Comparison of published Fe isotope data of reference materials. 
Reference material δ56Fe 2SD δ57Fe 2SD Reference
BHVO-1 0.110 0.110 0.150 0.130 Volkening and Papanastassiou (1989) 

0.117 0.030 0.174 Beard et al. (2003a)
0.148 0.220 0.130 Beard et al. (2003b)
0.110 0.164 0.032 Kehm et al. (2003)
0.110 0.164 0.032* Poitrasson et al. (2004)
0.117 0.028* 0.174 Weyer et al. (2005)
0.085 0.050 0.111 0.086 Schoenberg and von Blanckenburg (2006)
0.109 0.020* 0.169 0.023* this study (n=8)

BIR-1 0.054 0.040 0.080 Beard et al. (2003a)
0.040 0.060 0.200 Beard et al. (2003b)
0.069 0.102 0.015 Kehm et al. (2003)
0.054 0.080 0.090 Mullane et al. (2005)
0.055 0.025* 0.082 Weyer et al. (2005)
0.060 0.090 0.015* Poitrasson et al. (2004)
0.051 0.046 0.063 0.073 Schoenberg and von Blanckenburg (2006)
0.056 0.019* 0.083 Weyer and Ionov (2007)
0.053 0.019* 0.085 0.033* this study (n=8)

* These values represent 2SE uncertainties (95% confidence). All iron isotope compositions expressed relative to the IRMM-014 standard. 
Values without errors were recalculated from δ56Fe or δ57Fe, respectively, assuming mass dependent isotope fractionation.  

 
 

A3.2. LITHIUM ISOTOPE ANALYTICS 

Li purification chemistry 

Prior to isotopic analyses, we used cation exchange chromatography to purify Li 

from other matrix elements. A two-step column procedure using different volumes of cation 

exchange resin (DOWEX AG50W®  X8, 200-400 mesh) was applied (Fig. A3.1). 
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Figure A3.1. Elution curves of Lithium during chromatographic separation. (a) The first column was calibrated 
using basaltic (BIR-1) and rhyolitic (RGM-1) rock reference materials, and mixtures of ICP standard solutions 
(containing Li, Al, B, Ba, Ba, Ca, Cd, Co, Cr, Cr, Cu, Fe, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sr, Tl, Zn). (b) The 
second column was calibrated using RGM-1. 
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Effect of Li concentration matching between samples and bracketing standard 

We analysed pure L-SVEC solutions having Li concentrations from about 20 to 

240 ppb Li relative to a bracketing standard with 120 ppb Li. The signal intensities of 7Li 

(Volts) measured in the respective Faraday cup were used to calculate the intensity ratio of 

each solution relative to the L-SVEC bracketing standard (7Lisample/7LiL-SVEC). A range from 

about 0.2 to 2 was covered (Fig. A3.2). Although, a slight negative correlation may exist, all 

solutions gave δ7Li values identical to the L-SVEC standard, within our analytical 

uncertainty of ±0.5‰, and even within ±0.25‰. 

 

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0
intensity ratio 7Lisample / 7LiL-SVEC 

δ7 Li

0 ±0.25‰

 
 
Figure A3.2. Li isotope composition of pure Li L-SVEC solutions (sample) with different Li concentrations 
relative to the L-SVEC bracketing standard (δ7Li = 0). 
 
 

Matrix effects on Li isotope measurements 

The influence of matrix elements present in the Li sample solutions on the accuracy 

of Li isotope measurements by MC-ICP-MS was tested. Pure Li L-SVEC solutions, having 

Li concentrations of 100 ppb (in 0.3M HNO3), were doped with different amounts of single 

elements or element mixtures, that are major constituents of the volcanic rocks analysed in 

this study (Fig. A3.3). The reported ΣElement(s)/Li ratios (Fig. A3.3) of multi-element 
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solutions were calculated using the sum of all matrix element concentrations (having all 

equal concentrations from 5 to 165 ppb). In total, a range in ΣElement(s)/Li concentration 

ratios from 0.1 to 25 was covered. All solutions gave δ7Li values identical to the pure L-

SVEC standard, within our analytical uncertainty (±0.5‰). 
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Figure A3.3. Measured Li isotope compositions of matrix-element-doped Li L-SVEC solutions. The dashed 
lines represent ±0.4‰ relative to the pure Li L-SVEC solution (δ7Li = 0). 
 

Table A3.2. Comparison of Li isotope data of international  
reference materials 

 

Reference material δ7Li 2SD Reference
BHVO-1 5.31 0.20 Magna et al. (2004)

5.00 1.60 Bouman et al. (2004)
5.80 1.60 James and Palmer (2000)
5.20 0.50 Chan and Frey  (2003)
5.10 1.00 Pistiner and Henderson (2003)
6.10 1.00 Bryant et al. (2004)
4.30 1.00 Rudnick et al. (2004)
4.68 0.16 Rosner et al. (2007)
4.54 1.02 Aulbach et al. (2007)
4.40 0.70 Halama et al. (2007)
5.65 0.55 this study (n=5)

BIR-1 3.90 1.00 Rudnick et al. (2004)
3.39 0.77 this study (n=9)

RGM-1 2.59 0.15 this study (n=6)
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Figure A3.4. Comparison of Li isotope 
results from different studies for the 
reference material BHVO-1. 
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A3.3. IRON ISOTOPE FRACTIONATION BETWEEN MAGNETITE AND RHYOLITIC 

MELT 

 

Iron isotope exchange experiments between magnetite and hydrous peralkaline 

rhyolitic melt were carried out, using a similar approach as described in chapter 2.2. As 

starting materials mixtures of hydrous glass powder (Table A2.2) and various amounts of 

magnetite (Fe3O4) or hematite (Fe2O3) were sealed in Au capsules (Fig. A3.5).  

 

5 mm  
 

Figure A3.5. Photograph of an Au capsule used for isotope exchange experiments. 
 

To monitor the extent of isotopic exchange towards equilibrium some experiments 

were carried out with 57Fe-enriched glass and isotopically “normal” magnetite (see chapter 

2.2.1.3 for details of this approach). Experiments were carried out in a hydrothermal 

autoclave (cold seal pressure vessel: H2O-CSPV) at a pressure of 100 or 200 MPa and a 

temperature of 800°C for 164 to 406 hours. The oxygen fugacity in the autoclave was 

buffered at NNO (Ni-NiO buffer assemblage). The prevailing oxygen fugacity inside the 

capsules was slightly below NNO, since the melt was water-undersatured, i.e., the melt 

contained about 4 wt% H2O, whereas the the maximum solubility is 7.2 wt% H2O at 800°C, 

200 MPa (Behrens ans Jantos, 2001). At these conditions magnetite was a stable phase and 
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hematite (that was used as starting materials in some charges) recrystallised to magnetite 

during the runs. Experimental products were glass and magnetite crystals (Fig. A3.6).  

 

 
Figure A3.6. (a) Back scattered electron image of a typical experimental run product (sample M8; bright 
magnetite crystals and vesiculated silicate glass matrix).  (b) Reflected light image shows laser ablation Fe 
isotope analyses spots on magnetite (sample M6). 

 

The Fe isotope composition of the two phases was measured by solution MC-ICP-

MS upon selective acid dissolution. Additionally, the Fe isotope composition of magnetite in 

two samples (M1, M8) was analysed using UV-femtosecond laser ablation coupled to MC-

ICP-MS, following the analytical protocol described in Horn et al. (2006). For Fe isotope 

analyses in solution a similar approach as described in chapter 2.2.3.1 was used: First, 

magnetite was dissolved in HCl and the virtually magnetite-free glass fraction was then 

dissolved in HF/HNO3. The δ56Fe values of magnetite determined by the two methods are in 

agreement, although the solution results tend to systematically underestimate the magnetite-

glass fractionation factor compared to laser ablation resultsor mass balance calculations (Fig. 

A3.7). This can be explained by a slight contamination of the magnetite Fe fraction with Fe 

from the glass, due to dissolution of very fine grained glass particles by HCl. Therefore, the 

solution magnetite analyses have to be treated with caution, since their δ56Fe values are 

problably to high.  
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Figure A3.7. Fe isotope compositions 
of starting materials and run products 
from isotope exchange experiments as 
a function of experiment duration. 
Note the change in sign of Δ56Femag–

melt values from starting mixtures (t = 
0) to experimental products. 

 
 
Figure A3.8. Experiments with 57Fe-
enriched silicate glass were used to 
monitor the extent of Fe isotope 
exchange. A close approach to 
equilibrium (grey line) was attained. 
Fequilibrium values calculated according 
to equation 2.5. 
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Therefore, more experiments are needed with an improved HCl-dissolution technique 

(i.e., removal of the finest glass fraction before selective dissolution of magnetite with HCl) 

in combination with in-situ laser ablation analyses. 

  Nevertheless, based on these first experiments important systematics can be reliably 

obtained. The results consistently show that magnetite preferentially incorporates 

isotopically light Fe relative to the coexisting rhyolite melt (Fig. A3.7). The isotope 

exchange experiments done at different run times (Fig. A3.7) and the experiments with 57Fe 

enriched glass (Fig. A3.8) indicate that the system is close to isotopic equilibrium. Thus, 

from the most reliable analytical results (solution values for glass and laser values for 

magnetite) an equilibrium iron isotope fractionation factor of Δ56/54Femagnetite–rhyolite melt ~ 

-0.2‰ is proposed (Figure A3.9). This is in good agreement with results reported by Huang 

and Lundstrom (2006) (Δ56/54Femagnetite–andesite melt < -0.26‰; see chapter 3.5.3). 
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Figure A3.9. Summary of Fe isotope exchange experiments between magnetite and rhyolite melt at 800°C as a 
function of experiment runtime. Magnetite preferentially incorporates isotopically light Fe relative to the 
coexisting rhyolite melt. 

 

The specific mechanisms causing the observed fractionation cannot be clearly 

clarified. However, some important observations can be made from comparison of the results 
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in the magneite-melt system to the pyrrhotite-melt system (chapter 2). In the latter, marked 

contrasts in the ligand and the redox state of Fe between pyrrhotite and the ferric iron-rich 

silicate melt cause a significant isotope fractionation ([Fe(II)-S] vs. [Fe(II)/Fe(III)-O]). In the 

magnetite-silicate melt system more similar bonding environments and redox states of Fe in 

both phases (Fe2+/ΣFerhyolite melt = 0.55 vs. Fe2+/ΣFemagnetite ~ 0.33) possibly lead to a smaller 

isotope fractionation. Moreover, in the pyrrhotite-silicate melt system the heavier isotopes 

are associated with Fe3+ and the lower Fe coordination (as expected from theory). However, 

this simple rule does not seem to be applicable in the magnetite-silicate melt system (Fig. 

A3.10). Hence, mechanisms governing isotope fractionation in mineral-melt systems are 

probably more complex than expected from simple redox state and coordination 

considerations.  

 

 

Figure A3.10. Comparison between the results from Fe isotope fractionation experiments and the predicted 
equilibrium isotope fractionations between magnetite and ferric or ferrous Fe dominated silicate minerals, 
calculated from Mössbauer (MS) and INRXS (PDOS) data (Polyakov and Mineev, 2000; Polyakov et al., 
2007). No fractionation was found between magnetite and silicate minerals in natural volcanic rocks, within 
analytical uncertainties (Beard and Johnson, 2004b) 
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