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”We are at the very beginning of time for the human race.

It is not unreasonable that we grapple with problems.

But there are tens of thousands of years in the future.

Our responsibility is to do what we can, learn what we can,

improve the solutions, and pass them on.”

Richard Feynman (1918-1988)





Kurzzusammenfassung

Das Thema der Dissertation ist die theoretische Analyse von Fluktuationen in hetero-

gen katalysierten Reaktionen; insbesondere die Rolle von Fluktuationen in der katalytis-

chen CO-Oxidation auf nanoskaligen Oberflächen sollten untersucht werden. Analytische

”mean-field-birth-death”-Master-Gleichungen und die entsprechenden, auf dem Gillespie-

Algorithmus beruhenden, kinetischen Monte-Carlo-Simulationen der kinetischen Bista-

bilität in der katalytischen CO-Oxidation wurden studiert. Wie auch in zwei kürzlich

publizierten Exprimenten -die CO-Oxidation an einer Platin-Feldemitterspitze und der-

selben Reaktion an Pd-Nanoteilchen - gezeigt wurde, können intrinsische Fluktuationen

Übergänge zwischen stabilen Zuständen im bistabilen Bereich induzieren. Hier wur-

den zunächst intrinsische Fluktuationen in Abhängigkeit von der Systemgrösse über eine

Master-Gleichung untersucht, die vom Langmuir-Hinshelwood-Mechanismus der CO-Oxidation

abgeleitet worden ist und als Variablen den CO- und O-Bedeckung umfasst. Nach adi-

abatischer Elimination der Sauerstoffbedeckung ist das Ein-Variablen-System einer an-

alytischen Lösung zugänglich. Es wurde gezeigt, dass mit abnehmender Systemgrösse

und Annäherung an den kritischen Punkt nicht mehr zwischen zwei makroskopisch sta-

bilen Zweigen unterschieden werden kann. Unter diesen Bedingungen nähern sich die

Zeitskalen der Übergänge zwischen den makroskopisch stabilen Zuständen und der Fluk-

tuationen einander an; bei grossen Systemen und weit entfernt vom kritischen Punkt

sind die Zeitskalen hingegen wohl separiert. Die entsprechenden stationären Lösungen

der Wahrscheinlichkeitsverteilung und die mittlere ”first passage time”, die mittels des re-

duzierten Modells berechnet wurden, gleichen den numerischen Lösungen, die für das Zwei-

Variablen-Modell erhalten wurden. In der katalytischen CO-Oxidation an Pt(110) wurden

bei relativ hohem Druck (10−2 mbar) stochastische Musterbildungen gefunden, deren Nuk-

leation Dichtefluktuationen der Adsorbate zugeschrieben wurde. Um die Fluktuationen in

der CO-Oxidation bei höheren Drücken zu modellieren, wurde eine Reaktions-Diffusions-

Master-Gleichung formuliert, die die Zunahme der Fluktuationen bei kleiner werdender

Diffusionslänge beschreiben sollte. Analytische Lösungen konnten in einer reduzierten

Ein-Variablen-Master-Gleichung erhalten werden, die sich ergibt, wenn die ”mean-field”-

Näherung angewendet und Sauerstoff adiabatisch eliminiert wird. Es wurde gezeigt,

dass als Folge einer symmetrie-brechenden Bifurkation ein Phasenübergang 1. Ordnung

auftritt. Die entsprechenden stationären Lösungen der nicht-linearen Master-Gleichung

wurden auch in raumzeitlichen Monte-Carlo-Simulationen mit dem Gillespie-Algorithmus

erhalten. Schlielich wurde ein stochastisches Hybridmodell formuliert, das repulsive CO-



O- und O-O-Wechselwirkungen der Adsorbate mit einschliet. Die Sauerstoffbedeckung als

schnelle Variable wurde adiabatisch eliminiert und das Phasendiagramm im Parameter-

raum konstruiert. Kritische Fluktuationen um die stabilen Zustände herum wurden auch

als Funktion der Systemgrösse untersucht.

Schlüsselwörter: Fluktuationen, Master-Gleichungen, Gillespie-Algorithmus.



Abstract

The topic of this Thesis is the theoretical analysis of fluctuations in heterogeneous catal-

ysis. In particularly, we study the role of fluctuations on the nonlinear dynamics in CO

oxidation on nanoscale surfaces. Analytical mean-field birth-death-type master equation

studies and corresponding Gillespie-type kinetic Monte Carlo simulations of the kinetic

bistability of CO oxidation were carried out in this work. As has been observed, e.g.

in recent experiments of CO oxidation on a Pt field emitter tip and on Pd nanoparticle

surfaces, internal fluctuations can induce transitions between the two stable states of the

bistable region. Here, at first the internal fluctuations due to finite size effects are stud-

ied by a master equation with a Langmuir-Hinshelwood mechanism for CO and oxygen.

Analytical solutions can be found in a reduced one-component model after adiabatic elim-

ination of the oxygen coverage. It is shown that near the critical point, with decreasing

surface area, one can not distinguish between two macroscopically stable stationary states.

Under these conditions, the transition times between the macroscopic states also are no

longer separated from the short time scale of the coverage fluctuations as is the case for

large surface areas and far away from the critical point. The corresponding stationary

solutions of the probability distribution and the mean first passage times calculated in

the reduced model are supported by numerics of the full two component model. It has

also been observed, e.g. in experiments of catalytic CO oxidation on Pt(110) at relatively

high pressure (10−2 mbar), that stochastic patterns can be initiated by stochastic density

fluctuations. In the next step, a reaction-diffusion master equation has been introduced in

order to model the bistable CO oxidation on single crystal metal surfaces at high pressure

where the diffusion length becomes small and local fluctuations are important. Analytical

solutions can be found in a reduced one-component nonlinear master equation after ap-

plying the mean-field approximation together with the adiabatic elimination of oxygen. It

is shown a symmetry-breaking bifurcation associated with a first-order phase transition.

The corresponding stationary solutions of the nonlinear master equation are supported

by spatial Gillespie-type Monte Carlo simulations. Finally, a stochastic hybrid mean-field

model for CO oxidation with CO − O and O − O adsorbed repulsive interactions is in-

troduced. The fast oxygen coverage is adiabatically eliminated and the phase diagram in

the parameter space is constructed and analysed. We also study critical fluctuations and

fluctuations as a function of system size as well as fluctuations around the stable states of

the bistable region.

Keywords: Fluctuations, Master equation, Gillespie algorithm.
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Chapter 1

Introduction

”Nonequilibrium systems come in many varieties, and a number of not-yet-

reconciled mathematical approaches can be applied to them.”

David Ruelle (1935)

The natural world is built by atoms and obeys physical laws [1]. Sometimes these

atoms can combine, forming new molecules. These processes are nowadays well described

by the laws of quantum mechanics. However, in any chemical situation a large number of

atoms or molecules are jiggling around in a very random and complicated way. Therefore,

statistical methods applied to situations where there are quantum mechanical laws have

been the principal tools to understand complex chemical processes. This field is called

statistical mechanics and attempts to explain the macroscopic properties of matter in terms

of the interactions of its microscopic constituents. Nowadays, we can distinguish between

equilibrium and nonequilibrium statistical mechanics. Equilibrium statistical mechanics is

concerned with certain states of matter that appear macroscopically at rest, in equilibrium

and that are microscopically a superposition of states. The time is eliminated and the

probability of observe a given microscopic state is given by the Boltzmann distribution.

Equilibrium statistical mechanics was developed at the end of the 19th century by, among

others, James Clerk Maxwell (1831-1879), Ludwig Boltzmann (1844-1906), and Josiah

Willard Gibbs (1839-1903). The successes of this theory during the 20th century were

tremendous. In nonequilibrium statistical mechanics1 the dynamics cannot be neglected

and the probability of observing a given microscopic state is not given by the already

mentioned Boltzmann distribution. Therefore, the understanding of deterministic and

1Also known as dissipative or irreversible statistical mechanics.
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stochastic dynamics of linear and nonlinear systems is a primordial step in order to explain

nonequilibrium processes in nature. When a system is outside of equilibrium, it dissipates

energy as heat, associated with an irreversible increase of entropy. One can observe in

such systems oscillations, spatiotemporal patterns, and a sensitive dependence on the

initial conditions (chaotic dynamics). Although, nonequilibrium statistical mechanics is

an area of rapid progress, an general understanding of situations far from equilibrium is

limited [2].

In nonequilibrium situations, the interplay between random fluctuations and nonlinear-

ities have nontrivial effects. Sometimes, many manifestations of nature are very complex

and nonlinear, with many degrees of freedom and many possibles locally stable states.

Fluctuations allow the system to explore any state. This makes the natural world so di-

verse. There are a number of natural systems, which fall into this class of nonequilibrium

systems [3, 4]. Examples are social and economical systems, many biological process like

the interior of a cell, and of most interest here, models for chemical reactions, particularly

for catalysis and heterogeneous catalysis.

One can distinguish between internal and external fluctuations. For internal fluctua-

tions (statistical fluctuations) one can think of two situations. Since the relative amplitude

of fluctuations away from critical points in general scale likes (N)−1/2 with N being the

number of interacting elements of the system, the first situation is clearly where the num-

ber of molecules, atoms or the size of the system involved, is small. On the other hand,

the second situation is observed near critical points of instability. Here, the square root

law describing the fluctuations is no longer applicable, and as in equilibrium systems the

fluctuations tend to grow to produce observable effects. In contrast external fluctuations

(environmental fluctuations) are parametric, or in general, environmental variability. That

is parameters like temperature or pressure are not exactly constant in time but exhibit

some random variations [3, 4].

Fluctuations and fluctuation-induced phenomena have been studied theoretically in

many nonequilibrium systems. The constructive role of noise in these systems is well

established. Phenomena like noise-induced patterns, stochastic resonances, and stochastic

ratchets or Brownian motors are a few of the many examples which have been analysed

[5, 6, 7, 8, 9]. In heterogeneous catalysis stochastic resonances have been reported in

models of catalytic CO oxidation and catalytic NO reduction on Pt surfaces [10, 11]. The

role of a ratchet potential in connection with an ac electrical field has been studied in

connection with electromigration on stepped surfaces [12]. With field electron microscopy

the behaviour of coverage fluctuations in CO oxidation on a Pt field emitter tip was
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investigated, and it was shown that fluctuations induce transitions between the two stable

kinetic stationary states that coexist in the bistable range [13, 14]. By varying the diameter

of Pd particles it was demonstrated by molecular beam experiments that bistability in

catalytic CO oxidation vanishes below a critical particle size [15]. The influence of external

noise has been studied experimentally and theoretically with catalytic CO oxidation on

an Ir(111) surface [16, 17].

This PhD Thesis uses methods of statistical mechanics, particularly the theory of stochas-

tic processes2, to study the role of fluctuations on the nonlinear dynamics of heterogeneous

catalysis. Let us state from the beginning that the term fluctuations, one of the central

concepts in this Thesis, is going to be considered as internal fluctuations and not fluc-

tuations induced by some external parameters3. In the next section an introduction to

catalysis is presented and the role of fluctuations in CO oxidation is briefly introduced.

1.1 The phenomenon Catalysis

Catalysis is a highly interdisciplinary field with tremendous challenges to scientists and

engineers [18, 19]. Most industrial syntheses and basically all biological reactions require

catalysts. Recognized as a phenomenon and utilized since 1816, catalysis obtained an

extensive empirical basis in the early 20th century. Studies of catalytic mechanisms started

when Langmuir-Hinshelwood kinetics became available in the mid 1920s. As it is stressed

by Ostwald (1853-1932): ”a catalyst accelerates a chemical reaction without affecting the

position of the equilibrium”. It does so by forming bonds with the reacting molecules, and

by allowing these to react to a product, which is then detached from the catalyst, and

leaves it unaltered such that it is available for the next reaction. Thus, catalysis is a cyclic

process that accelerates a chemical reaction. In simple terms, the catalytic cycle can be

described as shown in Fig. 1.1.

To see how the catalyst accelerates the reaction, we need to look at the potential

energy diagram in Fig. 1.2, which compares the non-catalytic and the catalytic reaction

path. Note that the uncatalyzed reaction has to overcome a substantial energy barrier,

whereas the barriers in the catalytic route are much lower.

Catalysis can also influence the selectivity of chemical reactions. This means that

completely different products can be obtained from a given starting material by using

different catalyst systems. The catalysts come in a multitude of forms, varying from atoms

2Chap. 3 presents an overview of the theory of stochastic processes and the theoretical tools used in

this thesis.
3The role of external fluctuations on heterogeneous catalysis is briefly mentioned in Chap. 2.
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productseparation

Figure 1.1: Schematic representation of a catalytical cycle. Blue and yellow circles repre-

sent molecules, the red circle is the product, and white circles are the catalyst

and molecules to large structures such as zeolite or enzymes. The numerous catalysts

know today can be classified according to various criteria: structure, composition, area of

application, or state of aggregation [18, 19]. From the state of aggregation, it is customary

to distinguish the following three subdisciplines in catalysis: (i) homogeneous catalysis,

where both the catalyst and the reactants are in the same phase; (ii) biocatalysis, where

enzymes4 play the role; and finally (iii) heterogeneous catalysis, where solids catalyze

reactions of molecules in gas or solution. By far one of the most important catalysts

are the heterogeneous catalysts. This Thesis focus on a certain aspect of heterogeneous

catalysis.

It is impossible to envision the present state of the chemical industry without cat-

alytic reactions. Most of the products of the chemical industry are made in catalytical

processes. Process involved in crude-oil and petrochemistry, require catalysts. Many en-

vironmental protections measures would be inconceivable without catalysis. However, a

clear understanding of this fascinating and important phenomenon is still far away, even

4Enzymes are proteins that catalyze (i.e. accelerate) chemical reactions.



INTRODUCTION 5

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
������� ���������

���������
���������
���������

po
te

nt
ia

l e
ne

rg
y =+

reaction coordinate

Figure 1.2: Potential energy diagram of a chemical reaction. Without a catalyst (solid

line) and introducing a catalyst (dashed line)

with availability of new experimental techniques. Figure 1.3 shows a schematic classifica-

tion of catalysis.

Homogeneous
catalysis catalysis

HeterogeneousBiocatalysis

Catalysis

Figure 1.3: Classification of catalysis.
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1.2 Heterogeneous catalysis

In heterogeneous catalysis, catalytic reactions occur at the surface. The chemical trans-

formations occur in a flow reactor through which the reacting species pass. Atoms on the

surface of the catalyst may form chemical bonds with impinging molecules, a phenomenon

known as chemisorption. If existing bonds in the impinging molecule break, the process

is known as dissociative chemisorption. The chemisorbed species are mobile on the sur-

face and may bond to other particles, thus leading to new molecules, which eventually

leave the surface as the desired reaction products. This subfield of catalysis is known as

heterogeneous catalysis and is an important part of chemical industry but it also finds

applications in environmental chemistry and energy conversion [18, 19].

Most heterogeneous catalysts consist in expensive transition metals as Pt and Pd. To

use this expensive materials in an economical way, catalysts are usually nanometer-sized

particles. However, this morphological change has several implications and produces the

so-called size effects. Typical size effects are confinement effects, coverage fluctuations,

geometric effects, electronic effects, and support effects [20]. The complexity of practical

catalysts also comes from their development by purely empirical methods, e.g. by adding

chemical substances and varying the composition of a catalyst. Therefore, the structural

complexity together with the complexity induced by the reaction itself represents a fun-

damental obstacle for understanding catalysis at the molecular level.

Mechanisms of heterogeneous catalysis: Kinetic

In heterogeneous catalysis, reactions usually occur through elementary steps. However,

due to the complexity of these reactions, the elementary steps are experimentally difficult

to determine. Kinetics provides the framework for describing the rate at which a chemical

reaction occurs. The elementary process of catalytic reactions are typical studied in surface

science type experiments with single crystals as model catalyst. This studies allow to

identify the elementary steps experimentally and to create microkinetic models of the

reaction. However, the workhorse of real catalysis is supported catalysts where small metal

particles of a few nanometer size are supported on an oxidic support material. Thus, the

catalytic behavior depends also of the complexity of catalysts such as the particle size or

shape. The final challenge is to transfer the knowledge acquired on simple surfaces to

these more realistic systems. The difference between single-crystal studies conduced in

UHV and real catalysis operating with composite materials is known as the pressure and

material gap problem [21].
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Heterogeneous catalysis is a natural scenery to study nonequilibrium or dissipative

structures. This theme has attracted much attention since the advent of spatially re-

solving techniques and many fundamental questions remain still open. Experiments with

simple crystal surfaces allow an experimental verification of mechanisms on the basis of

which mathematical models could be formulated. For this reason, a fascinating variety of

different patterns have been discovered [22, 23]. It is very common to observe in such sys-

tems rate oscillations, complex spatiotemporal patterns and chaos [24]. Experimentally,

one can essentially distinguish between two type of experimental studies: experiments con-

ducted under low pressures where the different mechanisms are mostly well established,

and the corresponding elementary steps can be studied in detail [25, 26], and experiments

carried out under high pressure conditions where temperature effects and strong adspecies

interactions are relevant [27]. Many experimental and theoretical studies of dissipative

structures in surface reactions, ranging from the simplest ones, like CO oxidation, to more

complex reactions, such as the NO+NH3 reaction and the oxidation of hydrocarbons have

been carried out during the past years [28, 29, 30].

Catalytic CO oxidation

The catalytic oxidation of CO by O2 on transition metal surfaces is an important process

in automotive exhaust catalysis. The reaction is relatively simple and represents probably

the most extensively studied reaction in the field of surface science. The catalytic cycle

begins with the adsorption of CO and O2 on the surface of a transition metal as platinum

(Pt), palladium (Pd) or iridium (Ir). The stable CO bonding on transition metal surfaces is

explained by the Blyholder model, original developed for metal carbonyl systems [31]. The

5σ and the 2π frontier molecular orbitals of the CO molecule are substantially modified

by the presence of the metal surfaces. A filled 5σ orbital interacts with the empty dσ

metal orbitals, leading to partial transfer of electron density to the metal. At the same

time filled metal dπ orbitals overlap with the 2π antibonding molecular orbital of the CO.

On the other hand, O2 molecules dissociate easily on the surface of these catalysts. This

adsorption process is shown in Fig. 1.4. Once oxygen atoms are available, the reaction

with CO to CO2 can proceed almost instantaneously.

Experimentally, it is found that O adsorbed does not desorb at temperatures lower

than 600 K, whereas CO adsorbed desorption starts at 400-500 K. Thus, CO molecules

are bound to the surface considerably less strongly than oxygen atoms and hence may

diffuse fast on the surface of close-packed metals. Finally, at temperature above 300 K,

CO2 produced interacts only weakly with the surface and desorbs immediately after its
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Figure 1.4: CO and oxygen adsorption on transition metals.
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Figure 1.5: Reaction cycle of CO oxidation.

formation. Figure 1.5 shows schematically this cycle.

It has been well established that the mechanism of this reaction follows a Langmuir-

Hinshelwood (LH) scheme, described by the following steps [32].

1) COgas + ∗ ⇔ COads (CO − Adsorption − Desorption)

2) O2,gas + 2 ∗ ⇒ 2Oads (O2 − Adsorption)

3) COads + Oads ⇒ 2∗ + CO2,gas (CO2,gas − Production)
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The first observation of rate oscillations in CO oxidation was made in the group of

Wicke in the early seventies, who used a supported Pt catalyst [33, 34]. These works

were followed by other reports of kinetic oscillations observed mostly in the atmospheric

pressure range with transition metals, either in the form of wires, foils, ribbons, or in the

form of small metals particles embedded in a zeolite matrix [35]. Since then, CO oxidation

on transition metals has been the most extensively studied systems in the field of nonlinear

dynamics in surface reactions [24].

To explain the origin of these kinetic oscillations, experiments with Pt and Pd single

crystal surfaces were started [25]. Of the three low-index planes shown in Fig. 1.6 only

the close-packed Pt(111) surface is stable in its bulklike 1× 1 termination, while the more

open Pt(100) and Pt(110) surfaces reconstruct in their adsorbed-free state into a quasi-

hexagonal and a 1× 2 geometry, respectively. However, it is found that clean Pd surfaces

do not reconstruct. Almost all single crystal experimental studies were carried out under

low pressure conditions (< 10−3 mbar), where the reaction proceeds in an isothermal way.

On single crystal surfaces, oscillatory kinetics was first observed in 1982 in CO oxidation

on Pt(100) by G. Ertl (Nobel Laureate in Chemistry 2007) [36]. Moreover, also bistability

was observed in this systems under conditions under which no oscillations occur5.

The bistability can be interpreted as a consequence of an asymmetric inhibition of the

reaction by the reactants. Under conditions of a high O2 flux, the surface of the crystal is

largely covered by oxygen. Because oxygen influences the sticking probability of CO only

moderately, the reaction rate is high and nearly proportional to the flux of CO. Once the

CO flux exceeds a critical value, however, a kinetic phase transition occurs to a steady

state with a predominately CO-covered surface. In contrast to adsorbed oxygen, adsorbed

CO efficiently inhibits O2 adsorption, therefore leading to a reduced reaction rate. This

asymmetry leads to multistability and hysterese, which have been observed both in high-,

as well as in low-, pressure experiments with Pt and Pd surfaces [37]. While the LH

scheme describes successfully this multistability, an additional step is required in order

to explain the rate oscillations. This step is provided by an adsorbate-driven structural

phase transition in the case of Pt surfaces and in the subsurface oxygen formation in the

case of Pd catalysts [38, 39].

The development of spatially resolving techniques such as photoemission electron mi-

croscopy (PEEM) opened the possibility to go from the purely temporal phenomena to

spatiotemporal pattern formation (see Sec. 2.2). Many patterns have been observed in-

5While Pt(111) exhibits only bistability, many different oscillations and patterns can be observed with

Pt(100) and Pt(110) surfaces.
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b)a)

c)

Figure 1.6: Three low index planes of Pt. a) fcc(100)-(1 × 1). b) fcc(110)-(1 × 1). c)

fcc(111)-(1 × 1)

cluding rotating spiral waves, target patterns, chemical turbulence, and solitary waves

[40, 41, 42, 43]. Two mechanisms provide the spatial coupling necessary to pattern forma-

tion along the catalytic surface; (i) the local coupling induced by surface diffusion of CO

molecules, and (ii) the global coupling through the gas phase [44].

1.3 Fluctuations in heterogeneous catalysis

One unsolved problem in heterogeneous catalysis are the role of the stochastic fluctua-

tions that arise as a direct consequence of the statistical nature of the elementary reaction

and diffusion processes [45, 46]. Although, the study of fluctuations in chemical reac-

tions started several years ago [3, 4], the theoretical and experimental challenge to un-

derstand the influence of internal (statistical) and external (environmental) fluctuations

on the kinetic of heterogeneously catalyzed reactions is intriguing. One of the reason for

this contradiction is that experimentally, it proves to be extremely difficult to identify

fluctuation-induced effects in heterogeneous catalysis. Only a few experimental reports

are available today. Most of these experiments have been carried out in the catalytic CO
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oxidation on transition metals.

At low pressure conditions (≤ 10−3 mbar) and high temperature (≥ 300 K) internal fluc-

tuations have been detected only in small systems, as demonstrated in experiments with

CO oxidation on a Pt field emitter tip and CO oxidation on Pd supported nanoparticles

[13, 15]. Under these conditions the role of external fluctuations has been also experi-

mentally studied with catalytic CO oxidation on Ir(111) single crystal surfaces [16]. The

situation changes at high pressure close to industrial conditions. In these cases internal

fluctuations can be detected even in large single crystal surfaces, as was claimed recently

for CO oxidation on Pt(110) surfaces [47]. In particular, internal fluctuations in these

two regimes has been analyzed by kinetic Monte Carlo (KMC) simulations [48, 49, 50].

Nevertheless, KMC simulations are essentially numerical experiments, and they do not

constitute an analytic theory.

This PhD Thesis presents an analytical mean-field birth-death-type master equation

study and corresponding Gillespie-type kinetic Monte Carlo simulations in order to under-

stand the role of internal fluctuations in the kinetic bistability of CO oxidation.

Whereas most experimental studies of fluctuations in heterogeneous catalysis have been

carried out with catalytic CO oxidation, the influence of fluctuation-induced effects is

expected to play a role in many reactions showing similar behavior. Therefore, with the

development of nanostructured systems fluctuations will become an issue for all scientists

involved in the construction and analysis of such systems.

1.4 Overview

The present Thesis is a result of the studies performed at the Institute for Physical Chem-

istry and Electrochemistry of the Gottfried-Wilhelm-Leibniz-Universität Hannover in Han-

nover (Germany) between October 2004 and October 2007 under the supervision of Prof.

Dr. Ronald Imbihl and Prof. Dr. Lutz Schimansky-Geier. It has been supported through

a DAAD (Germany)/FUNDAYACUCHO (Venezuela) cooperation. Part of the scientific

results contained in this Thesis are published or will be published in Refs. [51, 52, 53, 54],

which are cited in the corresponding section of the Thesis. The experimental motivation

and theoretical framework to this Thesis are provided in Part I, while in Part II and

III mainly original results are presented. The description of the contents of the chapters

follows.
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Part I

Chapter 2

An experimental motivation to study theoretically the role of fluctuations in CO oxidation

on transition metals is given. Several experimental techniques used recently to study

fluctuations in CO oxidation are briefly reviewed. Finally, a few experimental evidences

for fluctuation-induced effects in CO oxidation are described.

Chapter 3

The theoretical framework of the Thesis is introduced. The Markov mean-field birth-death

master equation description of chemical reactions is discussed. We introduce a global and

local description of fluctuations depending of the degree of the spatial inhomogeneities in

the chemical systems. Fluctuations of external and internal origen are discussed. Stochas-

tic simulation techniques are described. In particularly, a description of lattices gas hy-

brid kinetic Monte Carlo simulations and Gillespie-type kinetic Monte Carlo simulations

is given. A simple model is introduced in order to compare both simulation techniques.

Finally, the adiabatic elimination of fast variables in deterministic systems as well as the

bistable phenomena in nonequilibrium systems are briefly discussed.

Part II

Chapter 4

A hybrid model for CO oxidation with oxygen-oxygen repulsion introduced. Using the

so-called cluster approximation, the transition probabilities for each step of the catalytical

reaction are derived. The transition probabilities allow us to develop a deterministic and

a stochastic description of the reaction. The oxygen, which is considered the fast variable

of the system, is adiabatically eliminated from the stochastic description. The system

reduction allows us to introduced a simplified version of our model.

Chapter 5

In this chapter, it is shown theoretically and by Gillespie-type kinetic Monte Carlo sim-

ulations that internal fluctuations induce transition in CO oxidation. Probability distri-

butions, critical fluctuations, the dependence of fluctuations with the system size, and

transition times are discussed.
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Chapter 6

It is shown that the interplay between internal fluctuations and diffusion can induce a

first-order phase transition in CO oxidation under diffusion limited conditions. A reaction-

diffusion master equation is introduced to study CO oxidation under diffusion limited

conditions. After applying the the mean-field approximation and after adiabatic elimi-

nation, a order parameter is introduced to characterize the phase transition. Theoretical

predictions are verified by spatial Gillespie-type kinetic Monte Carlo simulations.

Part III

Chapter 7

In this chapter, we introduce a stochastic hybrid mean-field model for CO oxidation on

nanoscale surfaces with CO − O and O − O adsorbed repulsions. We derive it using the

so-called cluster approximation. The fast oxygen coverage is eliminated adiabatically and

the phase diagram in the parameter space is constructed and analysed. Finally, critical

and particle number fluctuations as well as fluctuations around the stable states of the

bistable behavior are analyzed.

Chapter 8

A summary of the major contributions of this dissertation and suggestion for future work

is provided.
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Chapter 2

Experimental motivation

”It’s an experience like no other experience I can describe, the best thing

that can happen to a scientist, realizing that something that’s happened in his

or her mind exactly corresponds to something that happens in nature.... A

great shock, and a great, great joy.”

Leo Kadanoff (1937)

2.1 Introduction

Heterogeneous catalysis has been known as a ”black magic” for a long time and the re-

search in this field was characterized by empiricism. Now, however, thanks to the rapid

development of methods in surface physics and the combination of first-principles cal-

culations with phenomenological simulations, the elementary steps can be identified at

the atomic level. One of the intriguing phenomena in heterogeneous catalysis are the so-

called nanoscale effects, which exclusively arise as a consequence of the limited dimension

where the reactions occur. One example are the communication effects that arise from the

coupling of the kinetics between different nanofacets or nanoregions, occurring via sur-

face diffusion. Another important nanoscale effect is the influence of coverage (internal)

fluctuations1 on the kinetics. As mentioned in the introduction, the interaction between

these nanoscale fluctuations with the nonlinearities induced by the reaction itself can in-

duced new and unexpected phenomena. In this chapter, several experimental techniques

used recently to study nanoscale fluctuations as well as a series of experimental evidence

1Fluctuations in the particle densities are known as coverage fluctuations
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for fluctuation-induced contributions to the reaction rate of catalytic reactions, are briefly

described.

2.2 Experimental techniques implemented to study fluctu-

ations in CO oxidation

Fluctuations have received extensive theoretical and experimental treatment in different

physical contexts for a long time, but only recently a substantial influence on the catalytic

activity of chemical reactions was theoretically predicted and experimental studied. From

the experimental point of view, only a few reports for fluctuations-induced effects in het-

erogeneous catalysis are available in the literature. The reason is simple: Experimentally,

it proves to be extremely difficult to identify fluctuation-induced effects in the global re-

action kinetics of macroscopic systems. In the remainder of this chapter we will describe

very briefly the experimental evidence for fluctuation-induced effects in CO oxidation, but

first a serie of experimental techniques used in these studies will be reviewed.

2.2.1 Field-electron microscopy (FEM)

The field emission of electrons from a cold metallic cathode in the presence of a large

surface electrical field was first reported by Wood [55]. Later Schottky tried to explain the

phenomena by a complete reduction of the height of the potential barrier at the surface

down to the Fermi level. Finally, this emission was completely described by Fowler and

Nordheim in 1928 using the new quantum mechanics [56]. Basically, quantum mechanics

predicts the tunnelling of electrons due to the bending of the potential barrier because of

the external electric field applied.

The phenomenon of field emission was then used to develop a microscope on the basis

of the difference in work function (WF) of the various crystal planes on the surface.

The field electron microscopy (FEM) itself was invented by Müller in (1936) [57]. This

instrument approached, for the first time, the ideal of being able to view a surface on

a scale that approached the realm of atomic dimensions and simultaneously allowed one

to follow rapid changes at the surface. It gave for the first time a direct indication of

the cleanness of a surface. The emitter is made in the form of a sharp ”tip” producing

an intense electric field around it. The electric field at the apex of the tip is inversely

proportional to the radius of the tip. Electrons leave the tip with very low kinetic energy

and will therefore follow paths parallel to the lines of the electrical force. Since these enter

the metal tip perpendicularly, electron paths like those in Fig. 2.1 result. The image on
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Figure 2.1: Schematic diagram showing the field electron microscopy. r, radius of curvature

of the tip; x, tip to screen distance. A region of linear dimension θ will be magnified to

appear as D on the screen.

the fluorescent screen is thus an electron emission map of the tip, magnified by an amount

D/θ = x/r. Linear magnifications of the order of 105-106 are possible. The resolution

is limited to ≈ 20 Å by the tangential velocity of the electrons in the free-electron gas.

With this apparatus it is not possible to detect individual adsorbed atoms, but only larger

aggregates. The resolution is, however, sufficient to specify emission changes occurring

on regions of known crystal orientation. The brightness in FEM varies with the local

work function. Figure 2.2 shows a FEM image of the CO oxidation on a Pt tip [13]. The

CO-covered and bare surface (low WF) are therefore imaged as bright areas whereas the

oxygen-covered surface (high WF) appears dark [58]. In particularly, FEM has been used

to study oscillations in surfaces reactions [59, 60]

2.2.2 Field-ion microscopy (FIM)

Field ionisation of a H atom in a high electric field was predicted by Oppenheimer in 1928

[61]. This prediction remained untested for many years until the field ion microscopy (FIM)

was invented by Müller (1951) [62]. In this device, a sharp tip of the sample material is

held at a large positive potential so that field strengths at the surface approach 109 V/cm.
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Figure 2.2: FEM image of CO oxidation on a Pt tip (from [13]).

One then admit a gas of neutral atoms, typically He or a He/H mixture, into the specimen

chamber. These atoms are attracted to the solid and lose kinetic energy through multiple

collisions with the surface. Eventually, they remain in the neighbourhood of the surface

long enough for the electric field to ionize an electron. This process is shown in Fig. 2.3. An

image of the facetted tip surface forms when the resulting positive ions rapidly accelerate

away from the metal towards a fluorescent screen as is shown in Fig. 2.4.

Unfortunately, the FIM is limited to study of transition metals and their alloys since

the tip itself must be stable at the fields needed to ionize the imaging gas. At sufficiently

high fields, the metal atoms themselves are stripped from the surface [65].

2.2.3 Molecular beam (MB)

The MB is a spatially well defined, directed and collision-free flux of molecules. It en-

counters single scattering events at the sample surfaces. This implies that the flux of

molecules passing through an area during a given time, can be calculated. Internal and

kinetic energy of the molecules in the flux are also well defined.

The beam is prepared in a first differentially pumped chamber (source). It is generated
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Figure 2.3: Schematic view of image formation in FIM (from [63]).

by a gas expansion from a high-pressure reservoir (nozzle) into vacuum. The centreline of

the expansion is selected by a skimmer, whereas the remaining gas is efficiently pumped

by several differential pumping stages. After generation, the beam can be temporally

modulated by mechanical devices such as shutters or choppers. The pressure difference

between the reservoir and vacuum determines the beam energy and flux. The principle of

MB generation is schemed in Fig. 2.5. The methods available for the production of MBs

divide into two classes, effusive sources and supersonic expansions [58].

Historically, effusive sources were the first to be developed, starting with the apparatus

of Dunnoyer (1911) and followed by the comprehensive molecular beam programme of

Stern, which started in 1919 and included the famous Stern-Gerlach experiment [66].

Effusive beams are generated by a lower pressure difference between the reservoir and

ambient background. This results in broader velocity distributions. Supersonic beams are

generated from a high-pressure reservoir, typically in the bar range. The large pressure

difference between the reservoir and ambient pressure results in an effective equilibration

of the kinetic energies in the beam. Practically, the area exposed at the sample surface

remains smaller than the sample itself, so that the flux is well defined there [67].
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Figure 2.4: FIM of a very sharp tungsten needless. The small round features are individual

atoms. The lighter coloured elongated features are traces capturated as atoms moved

during the imaging process (from [64]).

2.2.4 Photoelectron emission microscopy (PEEM)

Photoelectrons are created by exposing the sample to UV light generated, for example

by a D2 discharge lamp (emission around 5-7 ev). Electron lenses to directly image the

photo emitted electrons from the surfaces region of the specimen onto a screen, converting

the electron image into visible light is the basis of the photoelectron microscopy. This

microscopy dates from the early 1930s, when electron lenses and so-called emission micro-

scopes were developed. The spatio-temporal dynamics information of the surface adlayer

variation in the catalytic surface reactions is usually detected by PEEM as different grey

scales of the work function patterns [68].

PEEM with a high enough lateral (≈ 0.1 µm) and temporal (≈ 20 ms) resolution is a

unique tool for the investigation of real time spatio-temporal dynamics on heterogeneous
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Figure 2.5: Molecular beam generation.

catalysis [68, 69].

2.2.5 Ellipsometry

Ellipsometry refers to a class of optical experiments which measure changes in the state

of light polarization upon reflection from a sample. It is powerful technique for the char-

acterization of thin films on surfaces, which allows the determination of optical constants

and thicknesses of a layer system. It provides the information no only from the surface

but also the subsurface region. Furthermore it is light in light out technique and there-

fore has no pressure limitations. A basic setup of an ellipsometry experiment is shown

in Fig. 2.6 [27]. The light source, commonly a laser, is linearly polarized by a polarizer

and reflected from the sample . In general, the reflected light is elliptically polarized, only

to be converted back into linearly polarized light by a compensator, which is aligned by

its fast and slow axes with the appropriate axes of the ellipse. The following analyzer,

identical with the polarizer just after the light source, can now be turned to extinguish

the light as it ist measured by a detector. The principal ellipsometric values, the phase

change and the ratio of incident to reflected amplitudes, can be derived from the settings

of the compensator and the analyzer [27]. Since ellipsometry is measuring the ratio of two

values, it is very robust, accurate, and reproducible. Ellipsometry has been used to image
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surface reactions with the so-called Ellipsomicroscopy for surface imaging (EMSI) [70].

light source

polarizer

surface normal

compensator

analyzer

detector

null

reflecting surface

Figure 2.6: Ellipsometry setup.

2.3 Fluctuation-induced transitions in CO oxidation

2.3.1 Bistability in CO oxidation

CO oxidation on structurally stable Pt surfaces exhibits two branches of the kinetics as

shown schematically in Fig. 2.7. On the active branch the surface is predominantly oxygen

covered so that CO can still adsorb and react and the reaction rate therefore increases

linearly with pCO. On the inactive branch the surface is large CO covered and this high

CO coverage inhibits the adsorption of O2 which requires two adjacent vacant sites. On

the inactive branch the rate drops with increasing pCO. The hysteresis is due to the

asymmetrical inhibition of the reactants O2 and CO. Experimentally, pure bistability is

observed on Pt surfaces which do not reconstruct, i.e. Pt(111) [24, 71]. The bistability

terminates in a so-called cusp point when the temperature is introduced as a second control

parameter. With increases the temperature the CO coverage becomes too small to allow

the inhibition of O2 adsorption. Bistability is known to give rise to front propagation

and nucleation of more stable state. Thus, starting from one state, a parameter variation

or local fluctuations may lead to nucleation of the other and front propagation until the

whole surface has switched to this state [24].
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Figure 2.7: A schematic diagram showing the stationary states of the reaction rate in the

bistable CO oxidation reaction. pO2
and pCO are the partial pressures of oxygen and CO,

respectively, and T is the surface temperature.

The experiments described in this section are focused onto the role of internal (nanoscale)

and external fluctuations in the kinetic bistability of CO oxidation on Pt, Pd and Ir sur-

faces. These experiments have shown that fluctuations of internal or external origin can

induce transitions between these two states.

2.3.2 Catalytic CO oxidation on a Pt field emitter tip

Y. Suchorski et. al showed, in a serie of experiments with CO oxidation on a Pt field emitter

tip (FET), that a reversible switching of the surface coverage from carbon monoxide rich

to oxygen rich occurs in the region of bistability [13, 14, 72, 73]. They employ FIM with its

high resolution of 3-4 Å to identify the surface crystallography of the area probed by FEM

under reaction conditions with much lower resolution of 20 Å. The influence of the electric

field was shown to be negligible in the FEM experiments. The surface of a field emitter tip

which was imaged in situ with FEM consist of small facets of similar extension as metal

particles of a supported catalyst. Therefore, the FET was considered as a model system
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for a supported catalyst. Here, I will summarize some of the most important results of

these experiments.

Figure 2.8: Fluctuations in catalytic CO oxidation on Pt(110) under different reaction

conditions (from [13]). (a) Time series of the local (20 × 20 Å2) FEM brightness in the

area of study. (b) Probability distributions corresponding to the time series shown in (a).

First, the bifurcation diagram for CO oxidation on a [100]-oriented Pt tip, exhibiting

oscillation, bistability, and momostable regions where the tip becomes CO covered and

oxygen covered, respectively was constructed [13, 14]. They found that although the vari-

ous orientations on the tip differ quite strongly in their reactivity, fast CO diffusion ties the

different facets together so that the tip behaves as one dynamical system. The fluctuation

experiments are focused entirely on reaction conditions under which the system is bistable.

Particle density fluctuations are detected as FEM brightness fluctuations. Over a facet

region the fluctuations always occurred spatially uniformly, i.e, no reaction fronts could

be detected within the time resolution of the experiments (= 20 ms). Local fluctuations

in an area of 20×20 Å2 were recorded. The times series shown in Fig. 2.8 were taken

from such small area in the vicinity of Pt(110) [13]. The different time series displayed in

Figure 2.8a correspond to a CO-covered (inactive) and as oxygen-covered (active) surface

in the momostable range (a,b) and to states in the bistable range (c,d). From the time

series, probability distribution functions of the intensity fluctuations were constructed as

shown in Figure 2.8b. In the momostable range relatively narrow distributions were found,

but in the bistable range the distributions become rather broad. On the active branch,
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the peak just broadens and become slightly asymmetric (c), but on the inactive branch

(d) the distribution actually becomes bimodal. The bimodal distribution is evidence for

fluctuation-induced transitions between the two stable states.

Secondly, they study the variation of the amplitude of fluctuations approaching the

critical point (critical fluctuations) where the bistability terminates. They found that

near this point the amplitude of fluctuations increases drastically like in an equilibrium

phase transitions. Finally they study spatial correlations and coupling effects between

different facets on the tip. They conclude that fluctuations are well correlated within one

single facet but typically no correlations exist between fluctuations on different facets ex-

cept for conditions very close to the critical point [72, 73]. These results also demonstrate

that FEM, which has almost completely been replaced by the scanning tunnelling micro-

scope (STM), is in fact a technique with which fluctuations in catalytic reactions can be

investigated.

2.3.3 Catalytic CO oxidation on Pd nanoparticles

Inspired in the experimental results for CO oxidation on a Pt tip described above, V.

Johánek et. al showed using molecular beam experiments that coverage fluctuations in

CO oxidation on catalyst Pd nanoparticles can drastically alter their macroscopic cat-

alytic behavior [15]. In particularly, it is demonstrated that macroscopically observable

bistabilities vanish completely with decreasing particle size2. The effect was attributed to

fluctuations-induced transitions between two kinetic reaction regimes, with transition rates

controlled by particle size.

In this experiments the properties of the reactants were controlled by two molecular

beams and the quantity of products was measured by mass spectroscopy. A combination

of two different preparation methods, physical vapor deposition (PVD) and electron beam

lithography (EBL) were used. PDV typically allows preparation of particles down to 1-10

nm diameter, whereas EBL allows preparation of particles above 10 nm. Small particles

in the range of a few nanometres in diameter were prepared by metal evaporation and

growth of Pd on a well-defined alumina film on a NiAl(110) single crystal surface. In

order to obtain larger particles sizes model catalysts were prepared by means of EBL [15].

Figure 2.9 shows the size-dependent behavior of the kinetic bistability for CO oxidation on

Pd nanoparticles. They investigated the transient behavior in the region where a transition

from the O-rich to the CO -rich regime occurs and where hysteresis is expected.

For large particles of the model catalyst I, the transient behavior is quite similar to the

2Normally, internal fluctuations are inverse proportional to the system size
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Figure 2.9: CO2 production rates at steady state as a function of the fraction of CO in the

total flux xCO (left) and during the transient as a function of time. Red: CO-precovered,

black: O-precovered. The bistability vanishes with smaller particle size (from [15]).

deterministic predictions. Preparing the surface either in an O or CO precovered state, two

different reactive states are obtained which are perfectly stables within the experimental

accuracy. When they proceed to smaller particles of the model system II, they observed

that, although different reaction rates are initially established by either starting from O- or

CO-rich conditions, these difference vanish slowly but completely on a typical time scale.
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Also, for smallest particles of model system III, a common steady-state rate, is reached.

They showed also that the width of the bistable region rapidly decreased with increasing

defect density3.

2.3.4 Catalytic CO oxidation on Ir(111) surfaces

Recently, also the role of external fluctuations in CO oxidation on large Ir(111) surfaces

was studied using Photoelectron Emission Microscopy (PEEM) [16]. S. Wehner et. al used

PEEM for this investigation, since CO and O covered areas on the Ir(111) surface turn out

to exhibit sufficient work function contrast and also because the rates of CO adsorption

and desorption, O adsorption, CO+O reaction, and CO and O diffusion are known rather

precisely. As in the previous cases, in the bistable range, at an one appropriate flux

of CO, two CO2 rates, high or low, can be measured. Oxygen covered fractions of the

surface appear black, CO covered fractions appear gray, and uncovered regions appear

light gray. They observe that with the application of noise to the CO flux, transitions from

upper (lower) to the lower (upper) branch of the hysteresis or bistability can be induced.

Depending on the noise strength the time required to complete the transition spans the

range from a few seconds (large noise) to several hours (small noise). Figure 2.10 displays

PEEM pictures recorded during experiments as function of the noise intensity denoted

by ∆Y [16]. As seen in Fig. 2.9(a), starting with a CO covered surface (low CO2 rate

branch) and small noise, oxygen islands appear and grow slowly, and finally the surface

is oxygen covered (high CO2 rate branch) and remains so for a long time. In Fig. 2.9(b),

the noise level was increased, consequently the transition from a CO covered surface to

an O covered one is significantly faster. In contrast to the previous case, several islands

are formed and growth. Finally in Fig. 2.9(c), the noise is strong enough to produce more

islands and reduce the transition times.

2.4 Fluctuation-induced pattern formation in CO oxidation

The previous experiments were carried out at low pressures i.e, below 10−4 mbar. Under

these conditions, each adsorbed CO molecule changes its site up to 106 times before the

next particle impinges, thus the surface is well mixed on a length scale of about 1 µm and

internal fluctuations have only important influence in small regions of a surface. However,

for large surfaces (≈ 1 cm2) under low pressure conditions, internal fluctuations due to the

3Structural defects like steps or impurities can be considered as small regions on the surface with

different kinetics parameters.
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Figure 2.10: PEEM images showing randomly nucleating oxygen islands recorded during

the ongoing reaction in the bistable range at a given external noise intensity ∆Y . The

horizontal black bar corresponds to 100 µm (from [16]).

discrete nature of the reaction processes are averaged out and not detected in experiments.

The experiment described in this section corresponds to a situation when CO oxidation is

carried out under high pressure conditions (≈ 10−2 mbar) . The diffusion length may, at
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these higher pressures, decrease due to (i) the low diffusivity which results from a densely

populated surface and (ii) due to a short residence time caused by repulsive particle

interactions and a high impingement rate. Finally, it reaches a scale on which fluctuations

become important inside small patches of the surface, which are, however large enough to

lead to macroscopically detectable consequences, i.e, nucleation of fronts.

Figure 2.11: (a) Pt(110) surface exhibiting raindrop patterns wit EMSI (Ellipsomicroscopy

for surface imaging) at pCO = 7 × 10−3 mbar and pO2
= 2.2 × 10−2 mbar. (b) Space-time

diagram of the raindrop (1.6 s ×100 µm) (from [47]).

2.4.1 Catalytic CO oxidation on Pt(110) at intermediate pressures

Recently, it was reported that at intermediate pressures (≈ 10−2 mbar) internal fluctua-

tions can induce spontaneously pattern formation in CO oxidation on Pt(110) at interme-

diate pressures [47]. The patterns were recorded at these high pressure with Ellipsomi-

croscopy for surface imaging (EMSI) [47, 70]. The experiemtal observation with Pt(110)

at intermediate pressures (called ”raindrop patterns”) is reproduced in Fig. 2.11. The

CO partial pressure was stepwise increased to a value just before the whole surface would

switch to the CO-covered state. CO nuclei could be seen to originate at various random

places forming a ring-shaped pattern that was subsequently destroyed. Thermokinetic

effects are consequence of the temperature increases caused by the reaction heat at 10−2

mbar: In combination with the asymmetric inhibition of adsorption and the strong tem-

perature dependence of CO desorption. An O-covered surface exhibits a high reaction

rate and therefore become hot, while a CO covered areas keeps the catalyst cool. This

effect constitutes the first example of mesoscopic pattern formation in a surface reaction
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that is initiated by internal fluctuations and cannot be fully capturated in a deterministic

description [47].

2.5 Summary and conclusions

In the present chapter, after introduce some techniques recently used to study fluctuations

in CO oxidation, a short description of the few experimental evidence for fluctuation-

induced transitions in CO oxidation on Pt, Pd, and Ir surface as reported by Y. Suchorski

et. al [13, 14, 72, 73], V. Johánek et. al [15], and S. Wehner et. al [16], has been presented.

With field electron microscopy the behavior of internal fluctuations in the CO oxidation

on a Pt field emitter tip was investigated by Y. Suchorski et. al and it was shown that

these fluctuations induce transitions between the two kinetically stable stationary states

that coexist in the bistable range shown in Fig. 2.7 [13, 14, 72, 73]. V. Johánek et. al

demonstrated by molecular beam experiments that varying the diameter of Pd particles

the bistability in CO oxidation vanishes below a critical particle size [15]. On the other

hand, S. Wehner et. al showed recently, using photoelectron emission microscopy, that

external fluctuations of sufficient strength imposed on the CO flux can induce transitions

between a fully CO covered state into a fully O covered state (or vice versa). Finally,

one experimental evidence for fluctuation-induced pattern formation in CO oxidation on

a Pt(110) surfaces was reported [27, 47, 70].

The experimental study of fluctuations in heterogeneous catalysis is still in its infancy.

Only few experimental studies in this field are available. New techniques with more spatio-

temporal resolution are needed in order to detect fluctuations, which usually are presented

in extreme condition as for example in small nanoparticles and high pressures. It can be

expected that these studies will also demonstrate the role of fluctuations in oscillatory

kinetics, spiral waves, and many other dissipative structures observed in CO oxidation on

transition metals.



Chapter 3

Theoretical and simulation

framework

”The sciences do not try to explain, they hardly even try to interpret, they

mainly make models. By a model is meant a mathematical construct which,

with the addition of certain verbal interpretations, describe observed phenom-

ena. The justification of such a mathematical construct is solely and precisely

that it is expected to work.”

John von Neumann (1903-1953)

3.1 Introduction

The present chapter is dedicated to summarise the theoretical framework of this Thesis. It

is constructed using the so-called theory of stochastic process applied to chemical reactions.

We start with the well known result from statistical mechanics which reads that if the

average number of molecules in a chemical reaction is of the order of N , the fluctuations

about this average will be of the order of N−1/2. Usually, in many chemical reactions N

is typically in the range 1020 − 1025 and the square root of the extent of fluctuations is

therefore essentially negligible. Thus, under these conditions, chemical reactions can be

described by deterministic process. By a process, we mean any function X of time t that

can be regarded as specifying the instantaneous density of molecules (the coverage) of some

chemical reaction. We say that a process is deterministic if a knowledge of its values up

to and including time t allows us to unambiguously predict its value at any infinitesimally

later time t + dt. An important subclass of deterministic process is comprised of those



34 CHAPTER 3

that are memoryless. Here, the value X(t) alone uniquely determines X(t + dt), so the

process can advance in time without having to recall its past values. An example of these

without memory deterministic processes is one for which the value X(t + dt) is obtained

from the value X(t) through a equation of the form

X(t + dt) = X(t) + f(X(t), t)dt, (3.1)

where f is some ordinary function. After some algebra we see that this process is simply

the solution of the ordinary differential equation

dX

dt
= f(X, t), (3.2)

subject to some prescribed initial condition X(t0) = x0. There are situations, however,

such as in diffusion controlled reacting systems, reactions in biological cells or the diffusion-

reaction in nanoscale solid catalysts, where the conventional deterministic description

would be inadequate. Other situation where the deterministic description breaks down is

near the points of instability. The square root law describing the fluctuations is no longer

applicable, and the fluctuations tend to grow to producing strong effects.

This type of situations frequently encountered in chemical reaction systems justifies

the application of mathematical tools developed from stochastic process theory. We say

that a process is stochastic if a knowledge of its values up to and including time t allows

us to probabilistically predict its value at any infinitesimally later time t + dt. More

precisely, the values X(t
′

) for t
′ ≤ t determinate the probability that X(t + dt) will be

equal any particular value for any given positive infinitesimal dt1. If that probability

happens always to be zero for all values but one, then we are dealing once again with a

deterministic process. Finally, we see that a knowledge of all the values of a stochastic

process prior to and including time t will only allow us to make probabilistic predictions

about the value of the process at time t + dt. As in the case of a deterministic process,

an important subclass of stochastic processes is comprised of those that are memoryless.

This memoryless stochastic process is called a Markov process and will be described in

next section [74].

1Clearly X(t
′

) represents a random or stochastic variable which is defined by a probability distribution.
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3.2 Markov process

For memoryless stochastic processes, the probabilities assigned to the possible values of

X(t + dt) on the basis of the value X(t) alone cannot be sharpened by taking cognizance

of any values X(t
′

) for t
′ ≤ t; so the process just forget those past values. Thus, a Markov

process X(t) is the state function of some system whose state value at time t + dt can

be probabilistically predicted from its state value at time t, but in a way that cannot be

improved upon by taking account of the state values prior to time t. The name given

to memoryless stochastic processes is that of the Russian mathematician A. A. Markov

(1856-1922). The Markov process can be further subclassified depending on the nature of

Continuous parameter
Markov process

Discrete parameter
Markov process

Discrete parameter

Birth−Death
Markov Process

Continuous parameter
Markov chainMarkov chain

Markov Process

Figure 3.1: Classification of Markov processes. In this Thesis we will concerned with

birth-death Markov processes.

the state-space X(t) and the parameter time t (see Fig. 3.1) [3, 4, 75]. Thus discrete state-

discrete time processes that satisfy the Markovian assumption are said to form a discrete

parameter Markov chain, while the discrete state-continuous time processes are said to

form a continuous parameter Markov chain. Similarly, continuous state-discrete time

and continuous state-continuous time process are correspondingly referred to as discrete

parameter Markov process and continuous parameter Markov processes. In this Thesis

we will concentrate basically on continuous parameter Markov chains or discrete-state-

continuous parameter Markov processes. In particularly, we shall be concerned with some

of the processes that belong to the category of this continuous parameter Markov chain,

the so-called birth-death Markov process.
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Figure 3.2: Field ion microscopy images of diffusion of rhenium atoms on W(211). Suc-

cessive images are separated by 60 second intervals (from [65])

3.2.1 Classical stochastic description of chemical reactions

Under some conditions, chemical systems can be described as classical stochastic many-

particle systems. In order to understand this notion, let us, consider the experimental

study of diffusion of atoms on metals surfaces using field ion microscopy as shown in

Fig. 3.2. On a fundamental level a freshly deposited diffusing atom is described by a

quantum-mechanical wave function that evolves under the influence of various interac-

tions with the substrate and the environment. However, monitoring the particle by field

ion microscopy, it seems to behave as a classical object that hops occasionally from one

lattice site to another. In fact, the deposited atom is exposed to a complex variety of

interactions and entanglement with the environment which lead to a continuous decoher-

ence of the quantum state [76, 77]. This process keeps the wave package pinned to a

certain lattice site as time proceeds. The opposing quantum effect of recoherence, how-

ever, leads to occasional tunnelling through the surrounding energy barriers. Immediately

after tunnelling, decoherence again localizes the wave function at the site, destroying all

information encoded in quantum-mechanical phases. This means that several subsequent

tunnelling events are effectively uncorrelated, provided that they are separated by time

intervals that are much larger than the typical decoherence time. It is this separation

of time scales that allows one to consider the particles as a classical object. Using this
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classical picture it is no longer necessary to consider the full wave function of the particle,

rather it is sufficient to characterize its state by the index of the lattice site to which it is

pinned at time t and the effective transition rates by which it hops to its nearest neighbors.

This interpretation can be extended to the chemical reactions used in this Thesis, because

in this case, we keeps count of the total numbers of reactant and product molecules and

use the macroscopic rate law to model the transition rates between the possible states in

a classical molecule number space.

3.2.2 Markov birth-death description

In some system of N species the occurrence of an event such as a reaction may lead to

both an increase and a decrease in total population N , this process is known as a birth and

death processes. Some simple birth-death process are: the Poisson process, the radioactive

decay process, the random telegraph process, and the payroll process [74]. A theory of

chemical fluctuations based on the notion of a birth and death process was first proposed

by Delbrück (1906-1981) [78]. This simple theory in essence keeps count of the total

numbers of reactant and product molecules and uses the macroscopic rate law to model

the transition rates between the possible states in a classical molecule number space.

More quantitatively, let consider a set of reactions ρ = 1, 2, ..., r of the form

b
∑

j=1

νj
<ρB

j +
s
∑

i=1

νi
<ρZ̃

i −→
s
∑

i=1

νi
>ρZ̃

i +
b
∑

j=1

νj
>ρB

j, (3.3)

involving the intermediate species Z̃ =
{

Z̃i
}s

i=1
and the species

{

Bj
}b

j=1 supplied at

constant concentration by reservoirs. An elementary event of the reaction ρ changes the

integer number Z̃i of molecules by an amount equal to the stoichiometric coefficients

νi
ρ = νi

>ρ − νi
<ρ, with i = 1, 2..., s, with transition rate Wρ(Z̃). This description assumes

that the molecules can diffuse infinitely fast and consequently the system is considered as

well mixed. In cases where the diffusion of molecules is local, new reaction steps considering

the exact position of the molecules have to be introduced.

This well mixed system can be represented as a Markov birth-death process in the

number of molecules, where the probability P (Z̃; t) of having a determinate number of

molecules in a volume A at time t is governed by the so-called stochastic master equation

[3, 4, 79].
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3.2.3 Global birth-death description of fluctuations

A global description of fluctuations try the system as a whole and discards aspect of

fluctuations associated with such properties as the size, range over which these fluctuations

extend, and correlation length over which two parts of the system can feel each other

[3, 4, 79]. In this case the system is treated as if it remained homogeneous, and thus,

described by a master equation of the form

d

dt
P (Z̃; t) =

r
∑

ρ=1

[Wρ(Z̃ − vρ/Z̃)P (Z̃− vρ; t) − Wρ(Z̃/Z̃− vρ)P (Z̃; t)], (3.4)

where Z̃ =
{

Z̃i
}s

i=1
is the population vector and vρ =

{

νi
ρ

}s

i=1
the stoichiometric vector.

This is a linear differential-difference equation for P (Z̃; t) with nonlinear coefficients. In

this form the meaning of this equation becomes clear: ”the master equation is a gain-loss

equation for the probability of the separate states”2. Several methods can be apply to solve

these equations, but in general, only for a handful of cases is a complete analytical solution

of these equations possible. For most other situations it is necessary to develop approxi-

mation schemes. Different approximations of the master equation have been introduced.

We will mention briefly only a few of these approximations, but a complete description of

them is not necessary to understand the main results of this Thesis [3, 4, 79].

Fokker-Planck approximation

In this approximation the so-called Fokker-Planck equation is introduced as special case

of master equation. This equation is a differential equation more easier to solve than the

master equation. But, it is an approximate description for any Markov process whose

individual jumps are small. This approximation is useful for linear processes, but its use

in nonlinear situations can sometimes lead to erroneous results [80].

Systematic expansion of the master equation

This approximation consists in the systematic expansion of the master equation in some

suitably chosen parameter. Here, it is necessary to select a parameter that appears in the

master equation(i.e. in the transition probability), for large values of which the fluctuations

are small. In many instances, this parameter could simply be the size of the system. This

method is usually applied to nonlinear situations [3, 4, 79].

2The name ”master equation” first appeared in A. Nordsieck, W. E. Lamb, and G. E. Uhlenbeck,

Physica 7, 344 (1940). Sometimes the more specific name ”Pauli master equation” is used.
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Hamilton-Jacobi formulation

This approximation was proposed by Kitahara and the idea is to covert the master equation

in a Hamilton-Jacobi equation [3, 4, 79].

The Langevin approach

This approximation is used to find the effects of fluctuations in macroscopically known

systems. The fluctuations are introduced by adding random terms to the deterministic

equations of motion. This approach is mathematically equivalent to the Fokker-Planck

equation, and thus, it relates to the master equation description [3, 4, 79].

3.2.4 Local birth-death description of fluctuations

The global birth-death formalism shown above is subject to a number of objections [3, 4,

79]: (1) the inadequacy of the approach to take account spatial variations, and (2) the

lack of a rigorous microscopic justification of the Markov master equation in the number

of particle space. The latter, while of considerable importance, will not be considered in

this Thesis.

The global homogeneous theory rest on the assumption that the processes which tend to

distribute the particles uniformly (diffusion) in a given volume of system are far too rapid

in relation to the processes that alter the particle number (chemical reactions). Clearly,

this situation may not always hold true and spatial inhomogeneities can develop. It is

desirable therefore to provide a simple means of taking account of these inhomogeneities.

Such a formalism can be easily developed if one discretise that space in terms of number

of cells. Each cell is presented as a L × L site square lattice. A important conditions of

this approximation is that the probability that a molecule diffuses out of a given cell must

exceed the probability that the molecule undergoes a reactive event within the cell. Thus,

within each cell it is assumed that the reaction is homogeneous so that the usual concept

of global description holds. It is assumed that the cells are interconnected by transport to

and from the cell to surrounding. Finally, the two mechanisms of reaction and transport

responsible for the generation and loss of species from a cell can thus be written in terms

of the birth-death formalism.

To illustrate the point we shall consider the set of reactions shown in Eq. 3.3 to represent

the dynamics inside each cell. In particularly and for simplicity we will consider the simple

case of a single specie Z̃ =
{

Z̃1
j

}M

j=1
, where Z̃j represents the number of molecules of this

specie in the cell j. The state of the system, subdivided into M cells, can then be described
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in terms of the evolution of the probability function P (Z̃; t). Thus, a reaction-diffusion

master equation can be constructed with the form

dP (Z̃; t)

dt
=

dP

dt

reac

+
dP

dt

diff

, (3.5)

where the reaction part obviously will has a form similar to the master equation of the

global description

dP (Z̃; t)

dt

reac

=
M
∑

j=1

r
∑

ρ=1

[W j
ρ (Z̃1

j −ν1
ρ,j/Z̃

1
j )P (Z̃1

j −ν1
ρ,j; t)−W j

ρ (Z̃1
j /Z̃1

j −ν1
ρ,j)P (Z̃1

j ; t)], (3.6)

but the new diffusion part must be written as

dP (Z̃; t)

dt

diff

= d
M
∑

j=1

2
∑

µ=1

[M j
µ(Z̃1

j − 1/Z̃1
j )P (Z̃1

j − 1, Z̃1
j+l + 1; t) − M j

µ(Z̃1
j )P (Z̃1

j ; t)]. (3.7)

l denotes the nearest neighbors of the cell j. Note that new transition probabilities M i
µ

are introduced. They correspond to the gain and loss of number of species in a cell

as consequence of diffusion between cells. Finally, d refers to the microscopic diffusive

constant that is related to the chemical diffusive coefficient D in the continuum limit by

[4, 79]:

D = L2d. (3.8)

In the general case shown Eq. 3.3 where the number of species is s, a general master

equation for Z̃ =
{

Z̃i
j

}s,M

i=1,j=1
must be analyzed. Finally, this equation can be solved by

the methods mentioned above [3, 4, 79].

3.3 Internal and external fluctuations

The treatment presented thus far only considered the presence of internal fluctuations. The

internal fluctuations are self-originated in the system and reflect the underlying statistical

nature of the processes. These fluctuations are described by a Markovian master equation

and in the thermodynamic limit vanish altogether.

In contrast to these internal fluctuations, the external ones are not self-originated and

owe their existence to the coupling of the system to a fluctuating environment. These

fluctuations reflect the statistical nature of the environment and they can thus become
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important even in the thermodynamic limit. Since these fluctuations occur at macroscopic

level, a logical way of incorporing them in the analysis would lead to a stochastic differential

equation [3]. In many practical applications it is possible to decide which of these types

of fluctuations are important in the analysis. There would, however, be situations, where

both types of fluctuations would contribute to the total evolution of the system. The

analysis of the simultaneous presence of internal and external fluctuations can be handled

in the following two ways [3, 75].

3.3.1 Internal and external fluctuations modelled via master equation

As before the internal fluctuations are modelled via the master equation formulation. The

external fluctuation is then incorporated through an appropriate variation in the external

parameter that enters the transition probabilities in the master equation (i.e, pressure or

temperature in the case of chemical reactions). The master equation can be written as

d

dt
P (Z̃; t) =

r
∑

ρ=1

[Wρ(Z̃ − vρ/Z̃)P (Z̃ − vρ; t) − Wρ(Z̃/Z̃− vρ)P (Z̃; t)]. (3.9)

In order to introduce the external fluctuations, we can identify the existence of fluctuating

parameters in the functions Wρ(Z̃ − vρ/Z̃) or Wρ(Z̃/Z̃ − vρ). Taken for example, the

simple case where Wρ(Z̃− vρ/Z̃) alone fluctuates we can write

Wρ(Z̃− vρ/Z̃) = W 0
ρ (Z̃ − vρ/Z̃) + W 1

ρ (Z̃− vρ/Z̃)ξ(t), (3.10)

where W 0
ρ (Z̃ − vρ/Z̃) represents the nonfluctuating part. It is often convenient to define

ξ(t) as a Gaussian white noise with zero mean and correlation 〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′) [3].

The parameter D signifying the intensity of the fluctuation and remains a finite quantity

in the thermodynamic limit. Thus, external fluctuations are known as multiplicative

fluctuations or noise.

3.3.2 Internal and external fluctuations modelled via Langevin equation

Consider the macroscopic equation

dθ

dt
= f(θ, p), (3.11)
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Thermal internal fluctuations are introduced by adding a fluctuation or noise term

dθ

dt
= f(θ, p) + A−1ξ1(t), (3.12)

where A is the size of the system and ξ1(t) is a Gaussian white noise with zero mean and

correlation 〈ξ1(t)ξ1(t
′)〉 = 2D1δ(t − t′). Finally, the equation taking into account at the

same time internal and external fluctuations is then

dθ

dt
= f0(θ, p) + f 1(θ, p)ξ2(t) + A−1ξ1(t), (3.13)

where ξ2(t) is a Gaussian white noise with zero mean and correlation 〈ξ2(t)ξ2(t
′)〉 =

2D2δ(t − t′) [3].

3.3.3 Colored fluctuations

So far we have assumed, that the fluctuation term were Gaussian and white. This is a very

reasonable assumption for internal fluctuations, which represents many irrelevant degrees

of freedom evolving in very short temporal and spatial scales. Nevertheless, in realistic

experiments in which fluctuations are introduced through some external device, one has to

take into account the spatiotemporal structure of the fluctuations. One can then prescribe

that the fluctuations are still Gaussian but with a finite time-correlation. The finite width

of the correlation-time makes the process non-Markovian [5].

3.4 Stochastic simulation

Most statistical mechanics systems like some complex chemical system cannot be solved

explicitly. One of the more important tools for extracting answers out of statistical me-

chanics of real systems are through simulations. If one is interested in the microscopic

structure of the system, molecular dynamics simulations, which consider atoms moving

according to the to Newton’s laws, are used [65]. But, if one is not interested in detailed

dynamics trajectories of the system, one can use the so-called Monte Carlo simulations.

The basis of the Monte Carlo methods is that the deterministic equations of molecular

dynamics simulations are replaced by ”stochastic” transition for the process in the system.

The name Monte Carlo was coined by John von Neumann (1903-1953) and refers to the

random sampling of numbers, in analogy to gambling in Monte Carlo, Monaco, a city well

known for its casinos. This Monte Carlo methods or stochastic algorithms have been used
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to explore equilibrium and nonequilibrium processes. Here, we will review some of them.

3.4.1 The Metropolis algorithm

This algorithm is the basis of applications to equilibrium systems. This method is an

algorithm developed by Nicholas Metropolis (1915-1999) that originates simply from the

Boltzmann distribution [81]. Consider the thermodynamic average y of a variable with

values yi in state i that has energy Ei,

y =

∑

i yiPi
∑

i Pi
, (3.14)

in which the probabilities Pi = e−Ei/kBT , where kB is the Boltzmann’s constant and T is

the absolute temperature. If the system is initially in a state i, detailed balance3 requires

that the rate of transitions Wij from state i to state j satisfies

PiWij = PjWji (3.15)

or
Wij

Wji
=

Pj

Pi
= e−(Ej−Ei)/kBT . (3.16)

The right-hand side of this equation is known, so to generate a set of states with the

distribution Pi, the Wij are chosen as

Wij =







1, if Pj > Pi;

e−(Ej−Ei)/kBT, if Pj ≤ Pi.
(3.17)

A random number r ∈ (0, 1) is then selected and the system is moved to state j only if

r < e−(Ej−Ei)/kBT .

3.4.2 Kinetic Monte Carlo (KMC) simulation of lattice models

In the Kinetic Monte Carlo (KMC) simulation of lattice models the systems are described

by finite lattice models with L2 sites and periodic boundary conditions. The sites are

designated as either occupied or vacant [82]. A specification of all possible transitions

3The detailed balance principle merely states that in equilibrium the sum of all transitions per unit

time into any state i must be balanced by the sum of all transitions from i into other states j.
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between different configurations of the lattice, together with the associated rates, com-

pletely prescribes the evolution of the model for the process of interest. Let nj denote the

occupancy of site j, n the configuration of the entire system, and P (n; t) the probability

for the system to be in this configuration at time t. Implicitly, these probabilities involve

ensemble averaging which, in the context of KMC simulation, may correspond to averag-

ing over a large number of simulation trials. Then, evolution is described exactly by the

master equation [3]

d

dt
P (n; t) =

∑

n′

W (n
′

, n)P (n
′

; t) −
∑

n′

W (n, n
′

)P (n; t), (3.18)

where W (n
′ → n) denotes the prescribed rate of transitions from configuration n

′

to

n. These two configurations will differ only in the occupancy of a site for adsorption or

desorption, but in the occupancy of a pair of sites for diffusion. On the right hand side of

this equation, the first (second) term reflects gain (loss) in the population of configuration

n. We note that for a Markov process, specifying a rate for each microscopic process

actually means there is an exponential waiting-time distribution between events associated

with this process, with the mean waiting-time between consecutive events given by the

inverse of the rate.

Basic algorithm

We assume that the model in study incorporates a variety of distinct atomistic process,

which we label by ρ (e.g., ρ = adsorption, desorption, diffusion, reaction, etc.). Further-

more, we suppose that each process, ρ, occur with only a finite number of microscopic

rates, Wρ(m), for m = 1, 2, ..., depending on the local environment. We let Wρ(max)

denote the maximum of the Wρ(m), for each ρ. We then set Wtot =
∑

ρ Wρ(max), and

define pρ = Wρ(max)/Wtot, so that
∑

ρ pρ = 1. Then, one first selects a site, and select a

process, ρ, with probability, pρ, reflecting the maximum rate for that process ρ. Finally,

one implements this process (if allowed) with a probability, qρ = Wρ/Wρ(max) ≤ 1, where

Wρ is the actual rate for the process ρ at site j. This means that Wρ is one of the W (m),

with m determined by the local environment of sites j. One can also connect the simula-

tion time (the number of times a site is chosen) with the physical time. On each occasion

a site is chosen, we increment the physical time by δt, where L2Wtotδt = 1. Thus, after

one attempt per site, the physical time has increased by 1/Wtot.
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3.4.3 Gillespie-like KMC simulation

The Gillespie algorithm is the Monte Carlo simulation technique implemented in this The-

sis. This algorithm was developed by D. T Gillespie in 1976. It generates a statistically

correct trajectory (possible solutions) of the stochastic master equation [83, 84, 85]. Here,

we assume that the system or volume is well mixed4 and one may represent the system

simply by the number of each species of molecules5. Under this approximation, the prob-

ability that a certain reaction ρ will take place in the next instant of time dt is given

by Wρdt, where Wρ are the transition rates and depend of the different system parame-

ters. We introduce the reaction probability density function P (τ, ρ/Z̃) defined such that

P (τ, ρ/Z̃) =probability that given the state Z̃ at time t, the next reaction in a volume will

occur in the infinitesimal time interval (t + τ, t + τ + dτ) and will be an ρ reaction.

To find an expression for P (τ, ρ/Z̃) we note that it is equal to the probability of no

reaction over time interval (t, t + τ), P0(τ/Z̃) multiplied by the probability that ρ will

occur over time interval (t + τ, t + τ + dτ), namely, Wρdτ . Thus,

P (τ, ρ/Z̃) = P0(τ/Z̃)Wρdτ. (3.19)

It turns out that P0(τ/Z̃) has the form [83]

P0(τ/Z̃) = e
−
∑r

ρ=1
Wρdτ

, (3.20)

from which we may conclude that

P (τ, ρ/Z̃) =







Wρe
−Woτ , if 0 ≤ τ < ∞;

0, otherwise.
(3.21)

where Wo =
∑r

ρ=1 Wρ and r the number of reactions. By noting that P (τ, ρ/Z̃) is sep-

arable, we see that at any point we can pick τ and ρ from the distribution P (τ, ρ/Z̃) by

choosing two random numbers r1 and r2 from the interval (0,1) and setting τ and ρ such

that

τ =
1

Wo
ln

1

r1
, (3.22)

4The nonreactive collisions occur far more often than the reactive collisions and, hence, that fast

dynamics of motion can be neglected.
5This approximation corresponds to a global description of fluctuations, where the probability of observe

a determinate number of molecules is given by Eq. 3.4
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µ=ρ−1
∑

µ=1

Wµ < r2Wo ≤
µ=ρ
∑

µ=1

Wµ. (3.23)

In summary, after setting the initial species population Z̃ and reaction constants the

algorithm is:

(1) Calculate Wρ (1 ≤ ρ ≤ r).

(2) Generate r1 and r2 and calculate τ and ρ according to Eqs. (3.22) and (3.23).

(3) Increase t by τ and adjust Z̃ to take account of an occurrence of a reaction ρ.

3.4.4 Hybrid algorithms

One of the main problems of KMC simulation are the simulation of diffusion. In many

physico-chemical systems the rate constant for diffusion is much longer than those for other

reactions. For example, experimentally studies show that diffusion of CO on a Pt(111)

surface at 300 K is greater than ten orders of magnitude faster than CO-O reaction event

[86]. As consequence of this separation of time scales, KMC simulations of diffusion events

are impractical. During such a simulation, the events chosen are mostly diffusion events

with rare reaction events. The hybrid treatment basically consider a full lattices model

description of the slow events and a standard mean-field treatment6 is used to describe

the highly mobile particles [87, 88, 89].

3.4.5 Comparison of simulation techniques

It is instructive to compare the different simulation technique using simple examples.

Here, it is used the monomer-dimer (A + B2) model without lateral interactions which

schematically can be written as

1) Agas + ∗ ⇔ Aads

2) B2,gas + 2 ∗ ⇒ 2Bads

3) Aads + Bads ⇒ 2∗ + ABgas,

with ∗ and (ads) denoting a vacant adsorption site and adsorbed molecules or atoms,

respectively. Note that the monomer-dimer model mimics CO oxidation on single-crystal

surfaces. In general, one can use other models like the dimer-dimer model and the triple-

dimer model [90].

6The mean-field treatments consider that the fast adspecies are distributed randomly on the lattices.
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Here, we show simulations results of this system by (i) hybrid kinetic Monte Carlo

simulations with a mean-field treatment of A and a lattice-gas treatment of B [91]; and

(ii) Gillespie-type Monte Carlo simulation of the numbers of reactant adspecies in a well-

mixed model [51].

Hybrid kinetic Monte Carlo simulations

Here, we assume that, due to rapid diffusion, Aads is distributed randomly on the non-Bads

sites at all times. Thus, one tracks the number, NB, and location of all Bads on the square

lattices of adsorption sites, but only tracks the muber, NA, of Aads. At each Monte Carlo

step, one randomly selects between adsorption, desorption, reaction, etc., with weights

determinated by the relative rates for these processes. When deciding whether to adsorb

or desorb A, or to react a Bads with an Aads, it is necessary to decide whether a chosen

non-Bads site is occupied by one randomly distributed Aads. We say that such a site is

occupied by Aads with probability p = NA/NZ , where NZ = N − NB denotes the total

number of non-Bads. Thus if it is decided to attempt Agas-adsorption (Aads-desorption)

at a selected non-Bads site, such adsorption (desorption) is implemented with probability

1 − p (p), measuring the probability that the site is empty (occupied by Aads), then NA

is incremented by +1(−1). Reaction and B-adsorption are treated similarly. Here the

impingement rate are normalize so that yA + yB = 1, which set the time scale, and also

set y = yA. We consider that reaction rate k = 1. Finally, the desorption rate is denoted

by d. Figure 3.3 shows the time variation of the coverage θA and θB , of Aads and Bads,

respectively. We use d = 0 and y = 0.45. Note that the system evolves to a stable state

of low Aads coverage and high Bads coverage.

Gillespie-like kinetic Monte Carlo simulation

To implement the Gillespie algorithm, basically what we need are the transition prob-

abilities for each reaction steps. This transition probabilities can be obtained from the

hierarchic rate equations for the model. This equations describe the evolution of coverage

as a function of time. We consider, as example, a simplified version of these equations

dθA

dt
= y(1 − θA − θB) − dθA − 4kθAθB, (3.24)

dθB

dt
= 2(1 − y)(1 − θA − θB)2 − 4kθAθB . (3.25)
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Figure 3.3: Hybrid kinetic Monte Carlo simulations of a lattice model. Time series of θA

(red line) and θB (blue line) for y = 0.45 and L2 = 10000

where, θA = NA/N and θB = NB/N . N = L2 is the size of the system. With d

and k denoting desorption and reaction constant rates, respectively. Finally, y is the

impingement constant rate of Agas.

From the rate equations transition probabilities can be derivate (Table 3.1). Now, we

can implement the algorithm. Note that we have four reaction steps (ρ = 1, .., 4) and

Wo = W1 +W2 +W3 +W4. Figure 3.4 shows the time variation of the coverage θA and θB,

of Aads and Bads, respectively. We use k = 1, d = 0, y = 0.45 and N = 10000. Note that

the system evolves to a stable state of low Aads coverage and high Bads coverage. The

time series shown in this figure are in qualitatively agreement with the results from hybrid

kinetic Monte Carlo simulations. The hybrid kinetic Monte Carlo simulations considered

here takes into account spatial correlations for Bads and it is expected to be more realistic

that the predictions from the Gillespie algorithm, which takes into account the transition

probabilities from the over-simplified rate equations 3.24 and 3.25.
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Reaction step Transition probability

Agas − Adsorption W1 = y(N − NA − NB)

Aads − Desorption W2 = dNA

B2,gas − Adsorption W3 = 2(1−y)(N−NA−NB)2

N

Aads − Bads − Reaction W4 = 4kNANB

N

Table 3.1: Transition probabilities for the reaction process.

Figure 3.4: (Color online) Gillespie-type kinetic Monte Carlo simulations. Time series of

θA (red line) and θB (blue line) for y = 0.45 and N = 10000
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3.5 Adiabatic reduction of fast variables from deterministic

systems

The adiabatic reduction approximation is a technique used to remove highly reactive

species from deterministic models of chemical reactions. Frequently, ordinary differential

equations (ODE’s) are used to model these chemical reactions in the deterministic limit,

where θA and θB are the coverage of the slow and fast variables, respectively. Let us

consider the following ODE’s

dθA

dt = f(θA, θB), εdθB

dt = g(θA, θB) (3.26)

The idea of adiabatic reduction on Eq. 3.26 is to set the production rates of the fast

variable to zero,

g(θA, θB) = 0, (3.27)

and solve the resulting set of differential algebraic equations (DAES) [92, 93]. If the

algebraic equation can be solved explicitly for θB in terms of θA, then θB(θA) can be

substituted into the differential equation as follow

dθA

dt
= f(θA, θB(θA)), (3.28)

then it eliminates the algebraic equation from the model. The solution of the adiabatic

elimination converge to the solution of the original model as ε goes to zero [94].

3.6 Bistability in nonequilibrium systems

Bistability is found with many natural systems and is generally characterized by the

symmetry breaking in the state space of a system due to the simultaneous existence of two

stable attractors, which can be reached alternatively dependent on the initial conditions.

These stable attractors are separated by an unstable one (see Fig. 3.5) [95].

If the system is characterized by a single state variable θ which depends only on time,

but not on space, its temporal evolution is given by

dθ

dt
= f(θ, p), (3.29)

where p represents the control parameters. The function f(θ, p) allows direct identification
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Figure 3.5: Bistability in state space with one and two degrees of freedom.

of the range of bistability within the parameter space p. Now, a potential V may be defined

as

V = −
∫ θ0

θ
f(θ̃, p)dθ̃. (3.30)

If the function f(θ, p) is bistable, the potential will exhibit a double-well shape. The stable

θ1 and θ3 are at the same level of V if

S = V (θ3) − V (θ1) =

∫ θ1

θ3

f(θ̃, p)dθ̃ = 0, (3.31)

where S is denoted as a supersaturation.

In a spatially extended system the state variable will also depend on the spatial co-

ordinate x, and local bistability of f(θ, p) will give rise to nucleation and propagation of

fronts. The system is described by a reaction-diffusion equation of the type

∂θ(x, t)

∂t
= f(θ, p) + D∇2θ, (3.32)
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where D is the diffusion coefficient. In general, if the solution θ(x, t) of the one-dimensional

reaction-diffusion equation is known, then its front propagation velocity cf is given by

cf =

∫ θ1

θ3
f(θ)dθ

∫∞
0 (∂θ/∂x)2dx

= S/X. (3.33)

This mean that the front velocity is dependent on the potential difference S and a term X,

which is analogous to a surface tension of the profile. This relation holds for propagation

of a wave front in a two-dimensional isotropic medium, in which the velocity of a wave

front with curvature χ is given by

c(χ) = cf − Dχ = D

(

1

Rc
− 1

R

)

, (3.34)

where R is the curvature radius. This equation reflect the fact that a nucleus will only

grow if its radius exceeds the critical value Rc, otherwise it will shrink. The critical radius

Rc for nucleation is easily derived as

Rc = D/cf . (3.35)

3.7 CO oxidation: Basic features

In previous sections, basic concepts of the Markov process description of chemical reac-

tions, stochastic simulations techniques, and bistability in nonequilibrium systems were

summarized. We now turn to the specific system, the catalytic oxidation of CO on transi-

tion metals, that will serve as a model system for the theoretical studies throughout this

work. This reaction is one of the most studied heterogeneous catalytical surface reaction

[18]. It shows a particularly rich dynamics including oscillations, bistability and a great

variety of spatiotemporal phenomena [24, 71].

3.7.1 Reaction scheme

It is well known that the catalytical oxidation of CO on transition metals like Pt or Ir

proceeds via a Langmuir-Hinshelwood mechanism [32]. The reaction can be summarized
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in the following scheme,

1) COgas + ∗ ⇔ COads (CO − Adsorption − Desorption)

2) O2,gas + 2 ∗ ⇒ 2Oads (O2 − Adsorption)

3) COads + Oads ⇒ 2∗ + CO2,gas (CO2,gas − Production)

where ∗ stands for a free adsorption site and the index ”ads” denotes adsorbed molecules

or atoms. Before the reaction can take place, both CO and oxygen have to adsorb from

the gas phase on the catalytic surface. At typical temperatures, desorption of CO has

to be taken into account, whereas oxygen desorption can be neglected. An adsorbed

CO molecule can react with an adsorbed oxygen atom from a neighboring lattice site

to form carbon dioxide which is immediately released into the gas phase, leaving two

vacant sites for adsorption of new particles. A weakly bound precursor state during CO

adsorption allow hopping of the CO molecule between different location so that binding to

an adequate adsorption site becomes more likely. For the typical temperature considered

here, no similar mobility for oxygen is observed.

3.7.2 Bistability

In catalytic CO oxidation the bistable behavior is induced by a asymmetric inhibition.

The oxygen adsorbate layer exhibits an open structure with empty sites in between, al-

ways allowing the adsorption of additional CO. On the other hand, CO forms a compact

adsorbate, completely covering and thus poising the catalyst surface against additional

adsorption of oxygen so that no reaction can take place. This behavior induces bistable

dynamics in a wide range of parameters, where a mainly oxygen covered reactive state

coexists with a CO covered non-reactive state [24].

Bistability in CO oxidation on Pt(111)

Multistability and hysteresis effects in catalytic CO oxidation have been observed with

a structural stable Pt(111) surface [24]. In order to study theoretically catalytical CO

oxidation on Pt(111) surfaces, one can denote the surface concentrations (coverage) by

θCO and θO, and assume the rate of CO2 formation is given by r = k3θOθCO then the
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state variables θO and θCO are determined by the following set of two coupled ODE’s

dθCO

dt
= k1pCO

[

1 −
(

θCO

θs
CO

)q]

− k2θCO − k3θCOθO, (3.36)

dθO

dt
= k4pO2

[

1 − θCO

θs
CO

− θO

θs
O

]2

− k3θCOθO. (3.37)

The rate k1 and k4 are proportional to the sticking coefficient for CO and O2, respectively.

θs
CO and θs

O are the saturation coverages of adsorbed CO and O, respectively. q > 1 models

the precursor-type kinetics of CO adsorption. The parameters k2 and k3 are temperature

dependent (because the activation energy). We consider values of all parameters realistic

for Pt(111), as extracted from experimental results. This values are listed in Table. 3.2

[96]. The partial pressures pCO and pO2
play the role of control parameters. Figure. 3.6

shows the calculated the variation of the reaction rate r with pCO at various temperature

for fixed pO2
. The cusp is in this case at T = 549 K. Below this temperature, the reaction

rate jumps suddenly from a high to a very low value upon increasing pCO. As pCO is

decreased again at fixed T, the jump occurs at a lower value of pCO. This hysteresis

marks the range of bistability.

3.7.3 Oscillations

Catalytic CO oxidation comprises also an internal negative feedback loop, which is an

essential prerequisite for oscillatory dynamics. This loop is established by the structural

transition of the Pt(110) and Pt(100) surfaces. For example, in a Pt(110) surface the

structural transition occur between the structural transition occur between the (1 × 2)

missing row phase and the (1 × 1) bulk terminated structure. The sticking coefficient

of oxygen is higher on the (1 × 1) structure as compared to the (1 × 2) surface. For an

appropriated choice of parameters, adsorption of CO will dominate on the (1× 2) surface,

eventually inducing a lifting of the reconstruction to the (1× 1) structure. On the (1× 1)

surface, however, the sticking probability of oxygen is increased leading now to a preferred

adsorption of oxygen and, consequently, to an enhanced consumption of adsorbed CO

due to reaction. If the CO coverage has dropped below 0.5 ML, the surface starts to

reconstruct until the (1× 2) missing row structure is reestablished at CO coverages below

0.2 ML. Now, the sticking probability for oxygen is reduced again and the process can

start all over (see Fig. 3.7) [24].

Kinetic oscillations in catalytic CO oxidation have been investigated on Pd(110) and

Pd(111) [24]. Since clean Pd surfaces do not reconstruct, the operation of a reconstruction
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CO : k1 = kCOsCO

kCO = 1.919 × 105 MLs−1mbar−1, sCO = 0.84

θs
CO = 0.5 ML, q = 2

O2 : k4 = kOsO

kO = 3.589 × 105 MLs−1mbar−1, sO = 0.06

θs
CO = 0.25 ML

Rates : ki = ko
i exp ∗ (−Ei/RT )

k2 : CO desorption

ko
2 = 1.25 × 1015 s−1, E2 = 34.9 kcalmol−1

k3:reaction

ko
3 = 1.645 × 1014 s−1ML−1, E2 = 24.1 kcalmol−1

DCO : CO diffusion

Do
CO = 10−8 m2s−1, Ed = 7 kcalmol−1

Table 3.2: Parameters of the model for Pt(111) (from [96]).

mechanism similar to Pt surfaces at first seemed to be excluded. In contrast to oxygen

adsorption on Pt surface, oxygen adsorption on Pd surfaces is not structurate sensitive

and therefore a reconstruction mechanism cannot work in the same way as on Pt surfaces.

Foe example, the oscillation mechanism for Pd(110) is in fact based on the ability of Pd

catalysts to incorporate oxygen, such that a subsurface oxygen species is formed. The role

of subsurface oxygen in the oscillation mechanism, is the reversal of the usual clockwise

hysteresis in the CO2 production rate upon variation of pCO, into a counterclockwise

hysteresis under conditions where rate oscillations occur [97].
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Figure 3.6: CO2 production rate r increasing CO pressures and at different temperatures

(pO2
= 2.66 × 10−4 mbar) (from [96].

3.8 Summary and conclusions

This chapter introduced the theoretical framework used in this Thesis. Here, it is shown

that if the size of the system in consideration is small or the control parameters are near

points of instabilities, the deterministic description of chemical reactions breaks down.

This invalidity of the deterministic predictions is produced by the strong random vari-

able fluctuations present in these regimes. Thus, in order to include these fluctuation

in chemical reactions, several tools from the theory of stochastic process, in particularly

a special class of these processes that are known as Markov Process, have to be imple-

mented. A convenient mathematical description of these Markov processes is the so-called

master equation. Nevertheless, we must appreciate that the Markov assumption is more

of a mathematical convenience and real systems may be described only approximately as

Markov processes. This necessitates the choice of a proper variable to denote the state

space. For example, we can think of a simple decomposition type of reaction where the
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Figure 3.7: Schematic illustration of the adsorbate induced structural transition of the

Pt(110) surface.

reactant breaks up due to collisions. Thus, if we were to monitor the concentration of the

reactant, the change of concentration between times t and t + dt has certain probability

distribution that would depend only on the concentration at time t. The mode by which

this concentration was reached, or the previous concentration history, is immaterial. Thus

a process described with concentration as a random variable can be treated as a Markov

process. Let us now suppose that such a reaction occurs in presence of a catalyst that

loses its activity in proportion to the concentration of reactant it processes. Clearly, the

change in concentration now depends no only on the concentration at that instant, but also

on the activity of the catalyst, which requires a knowledge of the concentration history.

Concentration cannot any more then be used as a random variable to describe the system

as a Markov process. It is possible, however, to treat the system as a two-component

(concentration-activity) Markov process.

Several stochastic simulation techniques were introduced. The nonequilibrium nature of

the catalytic CO oxidation permits to use both kinetic Monte Carlo simulation of nonequi-
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librium lattice models and Gillespie-like Monte Carlo simulation. If one is interested in

an atomistic or more realistic description of the system, kinetic Monte Carlo simulations

of lattice models is more useful. But, if the idea is to obtain a more qualitatively de-

scription, Gillespie-like kinetic Monte Carlo simulation may be used. The construction

of a model for a KMC simulation can often benefit from a related classical of quantum

molecular dynamics simulation to identify the important physical process and estimate

the prefactors and kinetic barriers. The transition rates are particular to the process of

interest and must be determinated either by direct calculations, from a first-principles

calculation or by molecular dynamics simulations, or inferred from experiment. These ki-

netics simulations together with multiscale modelling using hybrid algorithms play a key

role in heterogeneous catalysis. The adiabatic elimination technique is introduced as a

good approximation to eliminate fast variables from systems with time scales that span

many orders of magnitude. We also discussed the bistability phenomena in nonequilib-

rium system. Finally, basic concepts of catalytic CO oxidation on transition metals are

summarized.

In this Thesis, we shall use the Gillespie algorithm as simulation technique. To obtain

realistic results for CO oxidation, the so-called cluster approximation (see Appendix B) is

implemented in order to derive realistic transition probabilities.
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Chapter 4

Reduced stochastic kinetic model

”A great many quantities have been proposed as measures of something like

complexity. In fact, a variety of different measures would be required to capture

all our intuitive ideas about what is meant by complexity and its opposite,

simplicity.”

Murray Gell-Mann (1929)

4.1 Introduction

This chapter introduces a stochastic kinetic model for CO oxidation. Here, we focus on

the catalytic CO oxidation on crystal surfaces without reconstruction1. The nonequilib-

rium nature of this surface reaction system supports the occurrence of many interesting

dissipative structures. One of the more studied features is pattern formations with a

characteristic length scale of microns which can be observed using in-situ surface-sensitive

microscopy techniques. In particularly, we are interested in a model for CO oxidation able

to produce bistability (a stable reactive steady state with high CO2 production rate coexists

with a stable inactive state with a low CO2 production rate) [24].

As mentioned in the introduction, CO oxidation is one of the most simple pattern-

formation chemical reactions in surface science, and the key underlying atomistic processes

are described by the so-called Langmuir-Hinshelwood (LH) mechanism.

For CO oxidation under typical conditions, COads is highly mobile, and its diffusion

rate controls the length scale of spatial patterns observed during the reaction. In contrast,

1For example CO oxidation on Pt(111) [98, 99] or Pd(100) [100] surfaces.



62 CHAPTER 4

Oads is relatively immobile. Thus, COads is in a locally equilibrated state. This results in

nonequilibrium conditions. We note that Oads mobility can be significant in CO oxidation

at higher temperatures although its is always far less than COads mobility [24, 25]. Thus,

we will not include Oads mobility (rate of oxygen diffusion hO = 0) in our model. There

are a number of different levels of modelling, depending in part on the extent to which

adspecies interactions are incorporated2 [101]. Here, we use a ”minimally interacting

model incorporating only Oads −Oads repulsive interactions” [102]. In this case, Oads can

exhibit ordered phases. Now COads is randomly distributed on all available sites. Further

simplification is achieved if there exists a fast mobility of Oads and if the interactions are

totally eliminated. In this case, randomly distributed adspecies can be analysed by classic

mean-field rate equations, and the equations become exact. In our minimal interacting

model, a more sophisticated approximation has to be used in order to describe Oads−Oads

interaction.

Our intention is to perform a mean-field birth-death description of CO oxidation using

the above mentioned reaction steps. In the mean-field approximation one only tracks

the total numbers (or equivalently coverage) of different species and their increment and

decrement using macroscopic rate laws to model the respective transition rates. It means

that the total number of adspecies (or total coverage) is the random variable used in our

model. Consequently, a Markov birth-death description is applied [51].

4.2 Hybrid model for CO oxidation with O − O adsorbed

repulsion

To take into account correctly fast COads diffusion and oxygen ordering at the level of

the mean-field description, a hybrid description has been used together with the so-called

cluster approximation. The application of cluster approximation to CO oxidation has a

long history [103, 104, 105, 106, 107, 108, 109]. This section starts deriving the transition

probabilities of our model step by step.

4.2.1 CO adsorption and desorption

In real CO oxidation experiments, COgas adsorbs associatively on different sites of the

surface with different binding energies. In a mean-field birth-death description, the ad-

sorption site properties are irrelevant because in this case we are only interested in the

2In Chap. 7 we analyze a model with CO − O and O − O adspecies interactions
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total number of adsorbed species and not in detailed atomic configurations3. Thus, COgas

adsorbs on the surfaces at rate proportional to pCO. Considering that oxygen atoms

are also adsorbed on the surface, the transition probability for COgas adsorption can be

written as

W1(NCO/NCO + 1) = pCO(A − NCO − NO), (4.1)

where NCO and NO are the total number of adsorbed CO and oxygen molecules, respec-

tively. We require, 0 < NCO,i + NO,i ≤ A, where A represents the area of the surface. On

the other hand, COads molecules can desorb from the surface into the gas phase at rate d.

The parameter d correspond to the temperature in experiments, because COads desorption

is the strongest activated step in the LH sequence. Finally, the transition probability for

the desorption step is

W2(NCO/NCO − 1) = dNCO. (4.2)

4.2.2 CO surface diffusion

As mentioned above, for CO oxidation under typical conditions, the surface hop rate or

diffusion of COads is many orders of magnitude higher than the rates for other processes

like adsorption, desorption, reaction, and diffusion of Oads. In this case, due to the rapid

diffusion, COads is distributed randomly on the non-Oads sites at all times (rate of CO

diffusion hCO −→ ∞). Basically, we assume a uniform distribution of COads on all non-

Oads sites. Then we say that the local number of COads molecules on non-Oads sites

is

N loc
CO =

NCO

NZ
, (4.3)

where NZ = A − NO denotes the total number of non-Oads sites or the total surface area

not occupied by Oads [91].

4.2.3 Dissociative adsorption of O2

In real experimental situations, oxygen has preferred absorption sites which inside our

mean-field description are irrelevant. O2,gas adsorbs dissociatively at diagonal nearest-

neighbor (NN) empty sites at rate pO2
, provided that all six additional NN sites to these

are unoccupied by Oads. Oads does not desorb at T ≤ 600 K and as mentioned above is

practically immobile at low T (T ≤ 500 K) [102]. This prescription of oxygen adsorption

was introduced by Evans et al. [102], and is termed the ”eight-site rule” since an ensemble

of eight sites not occupied by Oads are required for adsorption (see Fig. 4.1). This rule

3We do not take into account the differences between bridge, fourfold or on-top sites [65].
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Figure 4.1: Schematic of O2,gas adsorption on a lattice. The two black circles represent O

atoms. Crosses denote the six additional sites not occupied by O.

was originally applied to describe dissociative adsorption of oxygen on Ni(111) [110] and

Pd(100) [111, 112]. Together with the immobility of Oads, this adsorption rule ensures

that no adjacent pairs of Oads − Oads are created during the reaction. As a consequence,

the oxygen adlayer tends to display (2× 2) superlattice ordering. Such ordering in oxygen

adlayer has been observed experimentally for metal(100) surfaces with the exception of

Pt(100) where Oads displays more complicated superlattice ordering [113]. Note that the

eight-site rule prevents any unphysical poisoning by O adsorbed as contained in the classic

Ziff-Gulari-Barshad model for a monomer-dimer reaction [114].

Figure 4.1 shows a schematic lattice model description of O2,gas adsorption which can

be correctly described by kinetic Monte Carlo simulations of lattice models [100, 101, 102].

However, in our case we are interested in derivate mean-field transition probabilities which

at the same time should be able to reflect this NN Oads −Oads repulsion. Let us denote E

empty sites, and Z, sites not occupied by Oads. We let {J} denote the fraction of sites in

state J = CO, O, E,or Z. Thus, the fraction of eight-site configurations may be written
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as
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. (4.4)

Simplification is possible since that COads molecules are randomly distributed on Z sites

to obtain
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. (4.5)

There is no simple exact expression for the configuration of Z sites. Thus, one needs

a reasonable approximation. Here one can invoke the standard cluster approximation

(see Appendix B) [103, 104, 105, 106, 107, 108, 109]. In a simplified version of this

approximation we let {J ′

J} denote the probability that the left site in a specific NN pair

is in state J
′

, and the right one is in state J , etc. Then, from conservation of probability,

one has that, e.g.,

{ZZ} + {OZ} + {ZO} + {OO} = 1, (4.6)

where {OO} = 0 and {OZ} = {ZO} = {O}, so {ZZ} = 1 − 2{O}. Similar notation is

adopted for probabilities of configurations of various larger sets of sites.

One finally obtains
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≈ {ZZ}8/{Z}8 = (1 − 2{O})8/(1 − {O})8. (4.7)

Inserting Eq. 4.7 in Eq. 4.5 and using

{E} = 1 − {O} − {CO}, (4.8)

and

{Z} = 1 − {CO}, (4.9)
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one obtain
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≈ (1 − {O} − {CO})2(1 − 2{O})8
(1 − {O})10 . (4.10)

Note that {J} is equal to the so-called coverage (θJ = NJ/A). Using coverage notation

in Eq. 4.10, it is easy to show that the fraction of eight-site configurations as a function

of the number of adspecies can be written as
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(A − NO)10
. (4.11)

In the same way, the number of eight-site configurations is

N
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≈ A
(A − NO − NCO)2(A − 2NO)8

(A − NO)10
. (4.12)

Finally, one can verify that the transition probability for the dissociative adsorption of

oxygen is given by

W3(NCO/NCO − 1) = 2pO2
N
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, (4.13)

or using Eq. 4.12

W3(NCO/NCO − 1) = 2pO2
A

(A − NO − NCO)2(A − 2NO)8

(A − NO)10
. (4.14)

It is important to note that for NO = A/2, we obtain W3 = 0. It means that the surface

can not be completely covered by oxygen, and thus, the unphysical oxygen poisoning state

is eliminated. However, the cluster approximation predictions are not precise at high
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coverage. This failure derives in part from the feature that the cluster approximation does

not account for an observed dramatic symmetry-breaking of the reaction model for high

Oads [102].

4.2.4 CO2 production

Obviously, in the cluster approximation the transition probability for the reaction rate

must be written as

W4(NCO, NO/NCO − 1, NO − 1) = 4k{COO}. (4.15)

where the factor 4 corresponds to the coordination number of the square lattice and k is the

probability for COads and Oads reaction. Further simplification of this pair configuration

is possible exploiting the feature that COads molecules are randomly distributed on Z

sites. In particular, one has

{COO} = ({ZO}{CO})/{Z} = {CO}{O}/(1 − {O}). (4.16)

Thus, the corresponding transition probability as a function of the number of adspecies is

W4(NCO, NO/NCO − 1, NO − 1) = 4kNCONO/(A − NO) = 4kNON local
CO . (4.17)

4.3 Deterministic limit: Bistability

Note that if the surface area A → ∞, then the number of adsorbed molecules NJ also

increases, and thus, θJ = limA→∞ NJ/A = const. In this limit the stochastic processes

approximate the solution of the initial value problem given by ODE’s. In this section, we

start with the mean field dynamics

d 〈θCO〉
dt

=
〈W1 − W2 − W4〉

A
, (4.18)

d 〈θO〉
dt

=
〈W3 − W4〉

A
. (4.19)
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In the limit A → ∞ and using the well known fact that fluctuations of the concentrations

vanish like (A)−1/2, it is easy to show that the ODE’s can be written as

dθCO

dt
= pCO(1 − θCO − θO) − dθCO − 4kθCOθO

(1 − θO)
, (4.20)

dθO

dt
= 2pO2

(1 − θCO − θO)2(1 − 2θO)8

(1 − θO)10
− 4kθCOθO

(1 − θO)
, (4.21)

where we used the fact that for small fluctuations 〈θOθCO〉 ≈ 〈θO〉 〈θCO〉. Unfortunately,

Eqs. 4.20 and 4.21 cannot be solved analytically. Therefore, the states of the deterministic

system are found numerically. For sufficiently low desorption d, the reaction exhibits

bistability in a pCO pressure range. In the bistable region the stable stationary states

are connected by an unstable saddle state. For appropriate initial conditions, the system

resides on one of two stationary states for an indefinite period of time. This bistability

region vanishes as d −→ dc, where d = dc correspond to a cusp bifurcation. At this point

the two stable stationary states and the unstable one are equals. Figure 4.2(a) shows the

phase diagram of the stationary states θCOst and θOst in the (pCO, d) plane. The cusp is

located at dc ≈ 0.048 and pCO ≈ 0.40, which corresponds to James et al. [102, 115, 116].

For high pCO we obtain an inactive state and for low pCO a reactive state with high and

low COads coverage respectively. We choose pCO + pO2
= 1, which sets the time scale in

the model, and also set pO2
= 1 − pCO. We also choose k = 1, but other values produce

qualitatively similar results.

Solutions of ODE’s have limited domain of attraction, such that only solutions in

this domain tend to the corresponding stable solution. Figure 4.2(b) shows an schematic

example of deterministic predictions for bistability. Here, θst(1, 2) represent stable states

with its respective domain of attraction limited by the position of the unstable state

which is denoted by θunst. Basically, the macroscopic rate laws without fluctuations effects

predict, that the system resides on one of two stationary stable states for an indefinite

period of time.

4.4 Stochastic limit: Master equation for CO oxidation

In order to go to the stochastic limit, we have to return to the Markovian transition

probabilities derived in the previous section and to concentrate on finite values of A. Ta-

ble 4.1 sumarizes these transition probabilities. Let us denote the populations by a vector

Z̃ =
{

Z̃i
}2

i=1
= {NCO, NO}, and its change for each of the four processes denoted by ρ
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Figure 4.2: a) Steady- state diagram in the (pCO, d) plane showing the bistable region

as well as the reactive and inactive state [from the deterministic approach, Eqs. 4.20

and 4.21]. b) Schematic deterministic prediction for bistability. All solutions other than

θunst itself tend to either θst(1) or θst(2).
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Reaction step Transition probability

COgas − Adsorption W1 = pCO(A − NCO − NO)

COads − Desorption W2 = dNCO

O2,gas − Adsorption W3 = 2pO2
A (A−NO−NCO)2(A−2NO)8

(A−NO)10

COads − Oads − Reaction W4 = 4kNCONO/(A − NO)

Table 4.1: Transition probabilities for CO oxidation on unreconstructed noble metal sur-

faces.

with a vector vρ =
{

vi
ρ

}2

i=1
. Hence, the temporal dynamics of the time-dependent prob-

ability for the occupation of NO sites with oxygen and NCO sites with carbon monoxide

P (NCO, NO; t) is governed by the homogeneous master equation

d

dt
P (Z̃; t) =

4
∑

ρ=1

[Wρ(Z̃ − vρ/Z̃)P (Z̃ − vρ; t) − Wρ(Z̃/Z̃− vρ)P (Z̃; t)]. (4.22)

Obviously, this master equation represents a global birth-death description of fluctuations.

Now, it is possible to apply the Gillespie algorithm to this equation [51]. Nevertheless, to

derivate analytical solutions of this nonlinear equations is in general quite difficult. Thus,

we have to turn to approximations [51].

4.5 Adiabatic reduction of oxygen from the master equation

Theoretical methods for the adiabatic elimination of fast-relaxing variables from master

equations have received a great deal of interest in the last years [117, 118, 119, 120, 121,

122, 123, 124]. This is motivated partially by the fact that in most cases it is difficult

or impossible to solve this equation. It is also known that for large complicated chemi-

cal networks, model reduction often provides a way to efficient computational methods.

These techniques assume that fast variables are in a quasi-steady state with respect to the
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remaining slow variables. If the quasi-steady state distributions conditioned on the slow

variables can be determined, then they can be used to eliminate the fast variables. Under

some conditions one can approximate the corresponding fast variable using Langevin or

deterministic equations [125].

The adiabatic elimination can be justified for our model by direct integration of Eqs. 4.20

and 4.21, which reveals that a slowly varying trajectory in phase space with almost con-

stant oxygen coverage is rapidly reached from any initial condition, which nearly coincides

with the nullcline dθO/dt = 0. Hence θO is a fast variable. One early application of the

fast variable elimination method to a deterministic model of CO oxidation was developed

by Bär et al. [96]. In principle, one can use the previous result of time scale separation

in order to justify the application of the fast variable elimination method to stochastic

systems. Nevertheless, the trajectories of our model in phase space are random, and a

clear time scale separation between θO and θCO is not evident. Figure 4.3(a) shows sev-

eral stochastic trajectories from the two dimensional master equation, for relative large A,

together with the nullcline dθO/dt = 0 and dθCO/dt = 0. In this limit, it is evident that

the nullcline dθO/dt = 0 (solid line) is rapidly reached from any initial conditions.

4.5.1 Reduced master equation for the slow CO variable

We consider Z̃ = {NCO, NO}, with the stoichiometric coefficients v1 = {1, 0}, v2 =

{−1, 0}, v3 = {0, 2}, and v4 = {−1,−1}. If we take from the time scale separation that

P (NCO, NO; t) = G(NCO; t)H(NO : NCO; t), (4.23)

then oxygen can be adiabatically reduced from Eq. (4.22). Note that H(NO : NCO; t) is

the conditional probability distribution for NCO being kept constant. We also require

∑

NCO

G(NCO) = 1, (4.24)

∑

NO

H(NO : NCO) = 1. (4.25)

Inserting Eq. 4.23 into Eq. 4.22 and summing up over NO, we obtain

d

dt
G(NCO; t) = W̃1(NCO − 1)G(NCO − 1; t) + W̃2(NCO + 1)G(NCO − 1; t)

−(W̃1(NCO) + W̃2(NCO))G(NCO; t)
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+
∑

NO

(W3(NO − 2)H(NO − 2 : NCO; t)

−W3(NO)H(NO : NCO; t))G(NCO ; t). (4.26)

The last term of this equation must be zero because it does not contribute to the variation

of NCO. Thus, one may write

d

dt
G(NCO; t) = W̃1(NCO − 1)G(NCO − 1; t) + W̃2(NCO + 1)G(NCO − 1; t)

−(W̃1(NCO) + W̃2(NCO))G(NCO; t), (4.27)

where

W̃1(NCO) =
∑

NO

W1(NCO, NO)H(NO : NCO), (4.28)

and

W̃2(NCO) =
∑

NO

(W2(NCO) + W4(NCO, NO))H(NO : NCO), (4.29)

are the conditional expectations of W1(NCO, NO) and W2(NCO) + W4(NCO, NO), respec-

tively. The conclusion of this analysis is that the evolution of G(NCO; t) depends on the

conditional probability distribution H(NO : NCO).

4.5.2 Reduced master equation for fast oxygen variable

Note that the vector Z̃ = {NCO, NO} is a Markov process that obeys the Markovian

master equation 4.22 and can be simulated by the Gillespie algorithm. Note also that if

we consider that NO evolves only through W3(NO : NCO) and W4(NO : NCO), where NCO

is a constant parameter that does not evolve, then NO alone is also a Markov variable

which satisfies the following master equation [126, 127, 128]

d

dt
H(NO : NCO; t) = W3(NO − 2)H(NO − 2 : NCO; t) − W3(NO)H(NO : NCO; t)

+W4(NO + 1)H(NO + 1 : NCO; t) − W4(NO)H(NO : NCO; t), (4.30)

with NCO being kept constant.
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4.5.3 The combined system

Due to the time scale separation H(NO : NCO; t) will quickly relax to a stationary

distribution4. This equilibration implies that we should approximate Eq. 4.30, as

d

dt
H(NO : NCO; t) ≈ 0. (4.31)

Thus, the resulting coupled master equations of our model are

d

dt
G(NCO; t) = W̃1(NCO − 1)G(NCO − 1; t) + W̃2(NCO + 1)G(NCO − 1; t)

−(W̃1(NCO) + W̃2(NCO))G(NCO; t), (4.32)

0 ≈ W3(NO − 2)H(NO − 2 : NCO; t) − W3(NO)H(NO : NCO; t)

+W4(NO + 1)H(NO + 1 : NCO; t) − W4(NO)H(NO : NCO; t), (4.33)

where the conditional transition probabilities are given by Eqs. 4.28 and 4.29. Note that

Eq. 4.32 is an one-step master equation with a well-know solution [3]. Now the more

difficult part will be computing H(NO : NCO; t) which is no more an one-step master

equation; indeed, this will usually have to be done approximately [126].

4.5.4 Deterministic approximation for the fast oxygen variable

Figure 4.3(b) shows a solution of Eq. 4.33 for θCO = NCO/A = const. It is clear that

Hst(NO : NCO = const) is a sharply peaked monomodal function around NO. Thus

NO = AθO is solution of

dθO

dt
= 2pO2

(1 − θCO − θO)2(1 − 2θO)8

(1 − θO)10
− 4kθCOθO

(1 − θO)
= 0, (4.34)

for each NCO = AθCO [51]. Note that we approximate the stochastic fast variable by

using the deterministic equation corresponding to this variable. It is just an approxima-

tion, which holds true for sharply single peaked function Hst(NO : NCO = const). A

generalisation obviously must include higher moments, too [129].

4A more precise way of stating this requirement is to say that the fast variable equilibrate (relax) before

the expected time to the first slow reaction.
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Figure 4.3: Phase space plane of the deterministic approach as well as the conditional

stationary probability distribution Hst(θO : θCOst) from the Gillespie algorithm. a) Several

stochastic trajectories for different initial conditions and relative large A, together with

the nullcline dθO/dt = 0 (solid lines) and dθCO/dt = 0 (dashed line). The nullcline

dθO/dt = 0 is rapidly reached from any initial condition. b) Hst(θO : θCOst = 0.525) in

the coverage space with A = 1000. This conditional probability distribution is sharply

peaked and unimodal around the mean value 〈θO〉 = θO = 0.065. The CO pressure and

the desorption are constant at pCO = 0.38645, and d = 0.04.
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4.6 Summary and conclusions

In this chapter, we have analyzed a model for CO oxidation which incorporates super-

lattice ordering of Oads as well as a rapid mobility of COads. It is shown that in the

deterministic limit the model exhibits bistability, which is lost at a cusp bifurcation or

”critical point” when the desorption rate d for COads exceeds a critical value. Then, the

internal fluctuations were taken into account by a stochastic Markov birth-death process

by using the so-called master equation. This equation describes the evolution of the prob-

ability distribution for the number of molecules in a chemical system that is well mixed.

One disadvantage of this master equation is that an analytical solution is not available in

general. Nevertheless, this problem was solved by introducing the technique of adiabatic

elimination of fast variables (In Appendix B, a general method for the elimination of fast

variables from the master equation is derived).

These techniques assume that fast variables are in a quasi-steady state with respect to

the remaining slow variables. If the quasi-steady state distributions conditioned on the

slow variables can be determined, then they can be used to eliminate the fast variables.

We showed that NCO is the slow variable and NO the fast one. Therefore, we used the

adiabatic approximation to eliminate NO, together with the hybrid model idea for fast

CO diffusion to show that the dynamic of the slow NCO variable may be describe by the

following master equation

d

dt
G(NCO; t) = W̃1(NCO − 1)G(NCO − 1; t) + W̃2(NCO + 1)G(NCO − 1; t)

−(W̃1(NCO) + W̃2(NCO))G(NCO; t), (4.35)

where W̃1 and W̃1 are the conditional expectations of W1(NCO, NO) and W2(NCO) +

W4(NCO, NO). The relaxation to equilibrium of the fast oxygen variable is modelled using

the following deterministic equation

0 = 2pO2

(1 − θCO − θO)2(1 − 2θO)8

(1 − θO)10
− 4kθCOθO

(1 − θO)
, (4.36)

where NCO = AθCO = const.

Obviously, the deterministic approximation for the fast oxygen variable takes into ac-

count that the fluctuations are small. For instance, this approximation considers that

〈θOθO〉 ≈ 〈θO〉2. This implies that the variance is equal zero, and hence the NO = AθO

is a variable with no fluctuations. Thus, it is a crude approximation and a generalisation
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obviously must include higher moments.

It is important to emphasize that our model is still rather simplistic. To precisely

describe behavior in real systems, more realistic and complicated reaction models must

be utilized. These should incorporate COads − Oads and COads − COads interactions in

addition to the repulsive Oads − Oads considered here. Also, it is possible to incorporate

in a more realistic model Oads diffusion.



Chapter 5

Fluctuation-induced transitions

”In other words, the impossibility of an uncompensated decrease of entropy

seems to be reduced to an improbability.”

Josiah Willard Gibbs (1839-1903)

5.1 Introduction

Catalytical reactions have been studied extensively on extended single crystal surfaces.

However, as mentioned in Chap. 2, recent interest has turned to reactions on nanoscale

systems, e.g., on supported nanoparticles [15] or on metal field emitter tips (FET’s) with

facet dimensions of ≈ 10 nm [13]. In these systems, fluctuation effects are very pro-

nounced due to their small size. CO oxidation on extended surfaces typically exhibits

robust bistability. In previous chapters it was shown that this bistability derives from

the nonlinear Langmuir-Hinshelwood kinetics together with long-range spatial interaction

due to fast CO surface diffusion. However, experimental studies for nanoscale systems

suggest a loss of bistability due to internal fluctuation-induced transitions between stable

branches [15, 13]. It was also shown that the amplitude of fluctuations diverges upon

approaching the bifurcation point terminating the bistable range of the reaction [13]. If

these experiments are carried out at low pressure or high temperature, CO molecules can

diffuse very fast on the surface and a well-stirred system is formed which exhibits homo-

geneous fluctuations. Thus spatially homogeneous transitions from a stable state to the

other stable state and vice versa can be observed. In this chapter we show that this behav-

ior is capturated qualitatively by a master equation analysis based on mean-field kinetics

and by corresponding Gillespie-type kinetic Monte Carlo simulations [51].
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5.2 Deterministic versus stochastic approach

Normally, the stochastic description of a phenomenon differs of macroscopic deterministic

predictions. Deterministic macroscopic rate laws describe chemical reactions by concentra-

tion averages. On the other hand, it is well known that chemical reactions are affected by

internal fluctuations because of the stochastic nature of elementary processes. Therefore,

a stochastic analysis is fundamental. For a catalytic reaction, which should take place on

small metal particles of typically a few nanometer diameter, a clear distinction between

deterministic and stochastic predictions is important. Of particular interest for us is the

bistable behavior in CO oxidation on nanoscale surfaces because a clear characterisation

of bistability in those small systems is still far from complete.

5.2.1 Deterministic predictions: Extended single crystal surfaces

In CO oxidation on well-defined extended single crystal surfaces at low pressure (≤ 10−4

mbar) and typical temperatures (≈ 500 K) there are about 106 site changes due to diffusion

of an adsorbed CO molecule per adsorption event. Therefore the surface can be regarded as

being locally well-mixed (on the order of the diffusion length which amounts to ≤ 1µm).

In this case internal fluctuations due to the discrete nature of the reaction process are

averaged out. Simple deterministic rate equations should thus be applicable and have

indeed been very successful in reproducing a large number of experimental finding, such

as bistability, oscillations, spirals, pulses, fronts, turbulence, and solitary waves [24, 130] .

Our interest is study the kinetic bistability of CO oxidation. We use the deterministic

model, incorporating Oads − Oads repulsive interactions and fast CO diffusion, which was

introduced in Chap. 4. We will show that the reduced version of this model still is able

to exhibit bistability. Let us consider the reduce model

dθCO

dt
= pCO(1 − θCO − θO) − dθCO − 4kθCOθO

(1 − θO)
, (5.1)

0 = 2pO2

(1 − θCO − θO)2(1 − 2θO)8

(1 − θO)10
− 4kθCOθO

(1 − θO)
. (5.2)

Solving for θO one obtains

θO = g(θCO, pO2
, k), (5.3)

and finally
dθCO

dt
= pCO(1 − θCO − g(θCO)) − dθCO − 4kθCOg(θCO)

(1 − g(θCO))
. (5.4)
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Figure 5.1 shows dθCO

dt versus θCO. Note that the bistability is still reproduced by the

one-dimensional model. The macroscopic rate laws without fluctuations effects predict,

that the system resides on one of two stationary stable states for an indefinite period of

time. As in Chap. 4, we choose pCO + pO2
= 1 = k and consider system behavior as a

function of pCO.

5.2.2 Stochastic predictions: Nanoscale surfaces

In order to compare the deterministic predictions with the stochastic approach, Gillespie-

type KMC simulations of the whole master equation 4.22 are shown Fig. 5.2. Figure 5.2(a)

demonstrates that, with increasing particle number, the width of the joint probability max-

ima, obtained from the whole system by Gillespie algorithm, becomes more narrow, simul-

taneously the population approach becomes more similar to the deterministic description

(non-transitions between the two stable states occur). In fact, for A −→ ∞, the maxima
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Figure 5.1: Stable and unstable solutions of Eq. 5.4 for pCO = 0.36715 and d = 0.030

(dashed line). The intersection of the dashed line with dθCO

dt = 0 (solid line) are the

respective solutions.
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Figure 5.2: Influence of the surface area A on the dynamics of the reaction. Joint proba-

bility distribution in the coverage space for three different values of A with pCO = 0.38645

and d = 0.040. The initial conditions are θCO = 0.525 and θO = 0.065. (a) A = 1000; (b)

A = 500; (c) A = 20.
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of the probability distribution coincide with the stable stationary states (θCO = 0.525,

θO = 0.065) or (θCO = 0.825, θO = 0.00951), depending on the initial condition and

parameter values [95].

On the other hand, we expect that for small systems the deterministic predictions be-

come incorrect. Because the number of particles decreases, the amplitude of fluctuations

of the coverage increases. Consequently, the width of the probability distributions in cov-

erage space increases and spontaneous transitions between both reaction regimes become

more frequent (Fig. 5.2(b)). Figure 5.2(c) shows that for a small number of particles, the

transitions are accelerated and the macroscopic bistability tends to dissappear [131, 132].

5.3 Reduced master equation for CO

Several Markovian stochastic models of the birth-death-type have been introduced to study

oscillations [133, 134, 135] and bistability [48] in CO oxidation on nanoscale system, but

until now analytical solutions of the master equation for these systems were unavailable. In

this section we derive an analytical expression for the stationary probability distribution.

It is easy to show that

W̃1(NCO) = pCO(A − NCO − 〈NO〉), (5.5)

and

W̃2(NCO) = dNCO +

〈

4NONCO

(A − NO)

〉

, (5.6)

where 〈NO〉 and 〈4NONCO/(A − NO)〉 are the conditional expectation values of NCO and

4NONCO/(A − NO) respectively.

From Sec. 4.5 we known that Hst(NO : NCOst) is a sharply peaked function around

〈NO〉. Thus, the average of the nonlinear Eq. 5.6 can be replaced by the nonlinear equation

of the average

W̃2(NCO) = dNCO +
4NCO 〈NO〉
(A − 〈NO〉)

. (5.7)

Using 〈θO〉=θO = NO/A, which is obtained from the nullcline dθO/dt = 0 by utilizing the

well known Newton-Raphson method, it is now possible to calculate for every value of

θCO = NCO/A the conditional expectation values from Eqs. 5.5 and 5.7. This allows us to

obtain Gst(θCO) after solve the reduced master Eq. 4.27. Table 5.1 summaries the previous

analysis. Note that the dynamic represented by these new transition probabilities is similar

to the dynamic of Schlögl-type models [136, 137, 138]. These transition probabilities
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Event Transition probability

NCO → NCO + 1 W̃1 = pCO(A − NCO − 〈NO〉)
NCO → NCO − 1 W̃2 = dNCO + 4NCO〈NO〉

(A−〈NO〉) .

Table 5.1: Transition probabilities for the reduced master equation.

generate the following master equation

d

dt
G(NCO; t) = W̃1(NCO − 1)G(NCO − 1; t) + W̃2(NCO + 1)G(NCO − 1; t)

−(W̃1(NCO) + W̃2(NCO))G(NCO; t). (5.8)

This master equation represents a one-step birth-death Markov process for which only

jumps of size +1 or -1 are allowed. In order to solve this master equation let us now sup-

pose that the probability distribution G(NCO; t) approaches a stationary shape including

macroscopic transitions between the stable states of the deterministic approach. The final

shape of G(NCO; t) is in agreement with the solution dGst(NCO)/dt = 0, with boundary

condition Gst(NCO −→ ∞) = 0. In this case detailed balance holds and one finds

W̃1(NCO − 1)Gst(NCO − 1; t) = W̃2(NCO)Gst(NCO; t), (5.9)

and subsequently

Gst(NCO) =
NCO
∏

N=1

W̃1(N − 1)

W̃2(N)

(

1 +
A
∑

n=1

n
∏

N=1

W̃1(N − 1)

W̃2(N)

)−1

. (5.10)

This equation is the normalised stationary probability distribution for the occupation of

sites with NCO molecules [51, 74, 95].
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5.3.1 Probability distributions

It is instructive to compare probability distributions from Eq. 5.10 and Gillespie-type KMC

simulations of the whole master equation. Figure 5.3 shows the stationary probability dis-

tribution Gst(θCO) in the bistable and monostable regions. Red solid lines correspond

to Eq. 5.10 and blue dashed lines correspond to simulations of the whole system by us-

ing the Gillespie stochastic algorithm. Figures 5.3(a) and 5.3(c) show the probability

distribution function in the monostable reactive and inactive regions with low and high

θCO, respectively. On the other hand, Fig. 5.3(b) shows the same probability distribution

in the bistable region where the two regimes coexist. The agreement between both, the

analytical theory and the simulation is reasonably good.

5.3.2 Critical fluctuations

At this point, let us return to the deterministic phase diagram (pCO, d) in Fig. 4.2, close to

the critical point dc. It is known from the theory of fluctuations in nonequilibrium systems

that long-range correlations between macroscopic fluctuations emerge in the vicinity of and

below the critical point of a nonequilibrium instability. As a consequence, the amplitude

of fluctuations rises near this point [79].

In Fig. 5.4(a), the stationary probability distribution obtained from the theoretical

adiabatic elimination is shown for a set of parameters where the two stable stationary states

possess the same probability. For parameters well apart from the cusp bifurcation, both

extrema are well separated by a minimum. This reflects the deterministic behavior. Close

to the critical point, where the two stable stationary points and the unstable one merge,

the fluctuations increase. Consequently, transitions between the reactive and inactive

stable state take place.

This theoretical result of what happens near the critical point can be compared with

simulations of the whole system by using the Gillespie algorithm. For this purpose, Fig. 5.4

also shows a sequence of time series for θCO. These data were taken, choosing pCO near the

midpoint of the bistable region, for various d approaching the critical point dc ≈ 0.0048.

Starting with initial conditions near the stable stationary state at low θCO and small

d, the amplitude of fluctuations is insufficient for inducing transitions from the reactive

to the inactive state and the low θCO persists in time, see Fig. 5.4(b). For d ≈ 0.04,

as shown in Fig. 5.4(c), transitions between the two states occur. The transition time

between two states is rather long compared to the relaxation time τrel necessary to reach

one stable state given an initial condition in the domain of attraction of this state. Closer

to the critical point, transitions between the stable states become more frequent and one
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Figure 5.3: Theoretical stationary probability distribution versus probability distribution

from the whole system by Gillespie-type simulations. The solid lines are theoretical results.

The dashed lines are the stochastic simulations. In all Figures d = 0.040, and A = 1000.

(a) pCO = 0.3840; (b) pCO = 0.38645; (c) pCO = 0.3890.
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is unable to distinguish between two states, see Fig. 5.4(d).
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Figure 5.4: (Color online) Influence of the distance to the critical point on the fluctu-

ations. (a) Stationary probability distribution from the theory, with (d, pCO) equals to

(0.0050, 0.296) [red solid line]; (0.030, 0.367) [dashed line]; (0.04, 0.38645) [dotted line];

(0.045, 0.0395) [dashed-dotted line]; (0.048, 0.040) [black solid line]. (b) Time series from

simulations of the whole system, corresponding to (0.0050, 0.296) where no transition oc-

curs within the simulation time. (c) The same than (b) but with (0.04, 0.38645) and

transitions between the two states occur at time scales larger than the relaxation time.

(d) Finally, (0.048, 0.040) close to the critical point, where one cannot distinguish between

two stable states. The only fixed parameter is A=1000.
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5.3.3 The dependence of fluctuations on the system size

Fluctuations in a finite volume depend on the size of this volume (internal fluctuations).

Figure 5.5(a) shows the stationary probability distribution for NCO molecules in the cov-

erage space, which is calculated from the theory as a function of the system size. One is

able to see the tendency of bistability to vanish depending on the number of adsorption

sites A. The stationary distribution for A = 20 is nearly monomodal with two new small

peaks induced by noise, which means noise-induced shifts of the stable stationary states,

whereas bimodality with two well separated maxima starts to develop if A ≥ 200.

Figures 5.5(b) - 5.5(d) show the corresponding time series. Decreasing the surface area

and, correspondingly, the number of reactants, the transitions between the stable states

are becoming more frequent and all possible coverages are populated with nonvanishing

probability. For a small surface are the trajectories fluctuate around a common coverage.

5.4 Transition between stable states

From the previous sections we know that catalytic CO oxidation on a nanoscale surface

undergoes transitions between the reactive and the inactive stationary states if the system

is near a critical point, and if the number of adsorption sites is small. A question arises:

how long does it take for a system to go from the reactive to the inactive state and

vice-versa?

We will consider two intrinsic time scales. The macroscopic scale, where one observes

macroscopic transitions between the two stable stationary states, and the short time scale

or the relaxation time τrel, necessary to reach a stable stationary state given an initial

condition inside the domain of attraction of this stable state. These scales are clearly

distinct provided that the stationary distribution around the stationary state is narrow

compared to the distance to the unstable state.

Declaring Na
CO, N b

CO, and N c
CO as the particle numbers of the reactive, unstable saddle

point and inactive states, respectively, the macroscopic transition times can be calculated

according to [74, 95, 139, 140, 141, 142]

T ac(NCO) =

Nc
CO

−1
∑

NCO=Na
CO

∑NCO
m=o Gst(m)

W̃1(NCO)Gst(NCO)
, (5.11)
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Figure 5.5: (Color online) Influence of the surface area on the fluctuations. (a) Theoretical

stationary probability distribution inside the deterministically bistable region adjusted to

have the same height of maxima with A = 20 (red solid line), 200 (dashed line), 400

(dotted line), and 800 (black solid line). For A = 20 one observes noise-induced shifts

of the stable stationary states and a nearly monomodal distribution. The bistability is

reflected by two separated maxima. This is observed if approximately A ≥ 200. (b)The

time series of the simulations of the whole system, corresponding to A = 20 shows large

fluctuations. (c) Same as in (b) but with A = 400. Here, for this situation one is able to

distinguish between two preferred coverage and two time scale. (d) Finally, this behaviour

becomes more pronounced if A = 800. The CO pressure and the desorption are constant

at pCO = 0.38645 and d = 0.04.
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the corresponding time back with

T ca(NCO) =

Na
CO
∑

NCO=NCOc+1

∑∞
m=NCO

Gst(m)

W̃2(NCO)Gst(NCO)
. (5.12)

Figure 5.6 shows the mean transition times from Eq. (5.11) and from the simulations

of the whole system. Figure 5.6(a) shows the time required to go from N a
CO to N c

CO as

function of pCO through the bistable region. Parameters give N a
CO = 525 and N c

CO = 825

for the stable attractors in the bistable region with A = 1000.

Lets first choose pCO to be in the monostable reactive region of low CO coverage. For an

initial state N a
CO = 525 the mean time T ac

1 to do a fluctuation which ends in N c
CO = 825

is very long. In other words, the probability of a jump is very low corresponding to

Fig. 5.4(a). In the second case, where pCO is in the monostable inactive region, N a
CO = 525

is a state with low probability (see Fig. 5.4(c)), and the mean time T ac
2 in Fig. 5.6(a) is

short because the high persistence of this inactive behavior with a large number of N c
CO

molecules. The calculated time in this inactive region gives a good approximation of the

relaxation time necessary to reach this inactive stationary state. In the bistable region,

we have transition times in between the two times above mentioned.

We introduce a potential as

Gst(θCO) = Nexp
(

− Aφ(θCO)
)

, (5.13)

with intensive rates m(θCO) = W̃2/A and w(θCO) = W̃1/A, and with coverage θCO =

NCO/A inserted yielding

φ(θCO) =

∫ θCO

dθ′COln
(m(θ′CO)

w(θ′CO)

)

, (5.14)

we cross to an intensive description.

The time for a transition can be discussed by means of the effective potential barrier

∆φ = φ(θb
CO) − φ(θa

CO). (5.15)

This stochastic potential is the difference in values of φ(θCO) between the unstable saddle

point θb
CO and the two local minima θa,b

CO corresponding to the reactive and inactive state.

The higher the potential barrier which has to be overcome for an escape between the
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stable stationary states, the longer is the transition time. Note, that the mean time

T (Na
CO −→ N c

CO) can be different to the reverse mean time T (N c
CO −→ Na

CO). It is

also possible to calculate the mean transition times for a set of parameters pCO and d

along the line where the two stable states possess the same probability. Figure 5.6(b)

shows the transition times for parameters in this line. In this situation the back- and

forward transition times are the same. Approaching the critical point, the macroscopic
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Figure 5.6: (a) Transition time T (N a
CO = 525 −→ N c

CO = 825) for varying pCO through

the bistable region with d = 0.04 and A = 1000. (b) Transition time in function of the

desorption d and pressure pCO for adsorption sites A = 1000. (c) Transition time in

function of A for pCO = 0.38645, and d = 0.040. Solid line corresponds to Eq. (5.11), and

dashed line to stochastic simulations of the whole system.



90 CHAPTER 5

transitions increase, and the transition times become smaller. Note, that this figure shows

also simulations of mean transition times from the whole system.

The system size has also an impact on the transition times. For small internal noise,

i.e. larger reaction surfaces, both peaks are well separated, and the transition time may

be estimated by a saddle approximation with two Gaussians [3, 95].

T ac(NCO) ∝ 4πe
A

(

φ(θb
CO

)−φ(θa
CO

)

)

(

m(θb
CO) + w(θb

CO)
)

A
× 1
(∣

∣

∣d2φ(θb
CO)/dθ2

CO

∣

∣

∣ d2φ(θa
CO)/dθ2

CO

)1/2
. (5.16)

Obviously, we find in the case of a large system size

T ac(NCO) ∝ e
A

(

φ(θb
CO

)−φ(θa
CO

)

)

A→∞−→ ∞, (5.17)

since the Arrhenius factor increases unlimited with larger surface area (number of adsorp-

tion sites). Hence, the transition time diverges yielding bistability.

In the case of a small number of adsorption sites, the amplitude of fluctuations increases,

and the stationary probability distribution becomes more and more uniform. We might

neglect their impact on the transition times in the sum Eq. (5.11). It results in the scaling

T ac(NCO) ∝ A

W̃1(NCO)

A→0−→ τrel. (5.18)

This means that the time becomes short due to the rapid increase of diffusion over the drift.

Consequently, the internal noise enhances the transitions and the transition time becomes

comparable to the relaxation time [143]. Corresponding analytic results from the adiabatic

elimination by using Eq. (5.11) is compared with simulations using the Gillespie algorithm

in Fig. 5.6(c). For sufficiently small A the time scale separation between transition and

relaxation times is tenuous.

Figure. 5.7 shows the transition time T (N a
CO = 525 −→ N c

CO = 825) and the relaxation

time T (N o
CO = 0 −→ Na

CO = 525) = τrel as function of the number of adsorption sites

by using Eq. (5.11) [95, 143]. The transition time is approaching the relaxation time. We

can estimate the relaxation time by reasoning as follows. The evolution equation for the

mean of the birth-death Markov process NCO(t) reads

d 〈NCO(t)〉
dt

=
〈

W̃1(NCO(t)) − W̃2(NCO(t))
〉

≈ 〈γ(NCO(t))〉 . (5.19)
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Expanding γ(NCO) in a Taylor series about the stable state N st
CO, and assuming that we

can confine our attention to a region around N st
CO that is small enough that

d 〈NCO〉
dt

≈
〈

γ(N st
CO) + γ

′

(N st
CO)[NCO(t) − N st

CO]
〉

= γ
′

(N st
CO)[〈NCO(t)〉 − N st

CO]. (5.20)

Setting u(t) = 〈NCO(t)〉 − N st
CO, we see that

du(t)

dt
≈ γ

′

(N st
CO)u(t). (5.21)

The solution of this differential equation is u(t) ≈ u(0)exp[γ
′

(N st
CO)t]; therefore,

〈NCO〉 ≈ N st
CO + [NCO(0) − N st

CO]exp[γ
′

(N st
CO)t]. (5.22)
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Figure 5.7: Transition time and relaxation time as a function of the size A of the catalytic

area. (a) Transition time T ac(NCO) (solid line), and relaxation time τrel (dashed line) for

small reacting surfaces with pCO = 0.38645 and d = 0.04. Both lines were obtained using

Eq. (5.11). The two time scales tend to merge for small values of A.
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Recalling that γ
′

(N st
CO) < 0, we conclude that 〈NCO(t)〉 relaxes to 〈NCO(∞)〉 ≈ N st

CO in

a time of order

τrel ≈
1

−γ
′

(N st
CO)

, (5.23)

where

γ(NCO) = pCO(A − NCO − 〈NO〉) − dNCO − 4NCO 〈NO〉
(A − 〈NO〉)

. (5.24)

Using the following approximation (see Fig. 4.3)

d 〈NO〉
dNCO

≈ 0, (5.25)

one obtains

γ
′

(N st
CO) ≈ −pCO − d − 4 〈NO〉st

(A − 〈NO〉st)
. (5.26)

If the fluctuations are small and transitions between stable states are not allowed, this

time can be taken as a reasonable estimate of the relaxation time. For example, if the

stable state for A = 1000 is (N st
CO = 525, N st

O = 65) and the parameters of Fig. 5.7 are

used, we obtain for the relaxation time τrel ≈ 1.42. Note that the relaxation time does

not depend on A.

5.5 Summary and conclusions

Here, we have presented a theoretical framework for the stochastic bistable behavior ob-

served in catalytic CO oxidation over a Pt field emitter tip and Pd nanoparticles. We

consider low pressure conditions, therefore internal fluctuations are taken into account by

a mean-field birth-death type master equation. This master equation is reduced after adi-

abatic elimination of one variable (namely oxygen). The reduction allows the estimation

of transition times and probability distributions of adsorbed CO as a function of external

parameters and system size.

We found that the fluctuations of the coverage become significant for reaction param-

eters approaching the critical point and for surface areas of nanoscale dimensions. As a

consequence of large fluctuations, the probability distribution becomes monomodal and

transitions between the stable stationary states occur on a small time scale. Finally, the

macroscopic transition times are no longer separated well from the relaxation times as

they do for larger surface areas and far away from the critical point. These theoretical

predictions derived from the one component model have been found to be in reasonable

agreement with a stochastic simulation of the whole system by the Gillespie algorithm.
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At high pressure we expect also to observe fluctuation-induced transitions in CO ox-

idation. In order to adapt the model to such situation, we need to take into account a

local description of fluctuations. This different treatment of fluctuations will be discussed

in next chapter.
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Chapter 6

Fluctuations and first-order phase

transitions

”Science, viewed as a search for understanding the grand universe in which

we find ourselves, forms a basic on which scientists can and should develop a

moral vision.”

Joel L. Lebowitz (1930)

6.1 Introduction

The area, in which the reactants in catalytic CO oxidation can be considered as well mixed

and which therefore can be represented by a single ordinary differential equation (ODE),

is given by the diffusion length of CO. On an extended single crystal surface this area is

macroscopic at low pressure, but with increasing pressure the area may become smaller.

The number of gas particles impinging per second on the surfaces grows proportional to

the pressure and therefore the surface residence time τ of the adsorbate decreases with

increasing pressure. Simultaneously the total adsorbate coverage will approach saturation

limit, and since surface diffusion requires vacant sites, the diffusion rate will become very

low. Since the diffusion length is given roughly by
√

τDCO the combined effect will lead

to a smaller and smaller diffusion length with increasing pressure (DCO is the diffusivity).

Stochastic patterns (’raindrop patterns’) observed in catalytic CO oxidation on Pt(110) at

10−2 mbar were interpreted in this way and simulations incorporating stochastic elements

were able to reproduce this finding [47].
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Here we propose the following approach to model the stochacity of catalytic CO oxida-

tion at high pressure on an extended surface. We envision the surface as being composed

of an array of small compartments with identical properties inside which the adsorbates

are well mixed [52, 53]. These compartments are coupled via CO diffusion. Inside each cell

the diffusion is assumed to be infinitely fast and therefore each cell is represented by an

ODE, which describes the bistability of the reactive system but also allows for fluctuations.

The whole array of cells is represented by a reaction-diffusion master equation (RDME)

which permits local fluctuations. This equation describes the evolution of the probability

distribution function (PDF) for the number of adsorbed molecules. One disadvantage of

this RDME is that an analytical solution is not available in general [144]. Nevertheless,

this problem can be solved in part by introducing appropriate approximations. Here, we

use the mean-field approach and the adiabatic elimination of fast variables.

With these two approximations, we are able to solve the RDME. These methods allow

us to obtain a reduced RDME and to get theoretical expressions for the PDF of the CO

coverage. In this way we can construct the phase diagram of the model as predicted

by the mean-field approximation. This allows us to study the dynamic behaviour of the

system depending on the cell size and on the coupling parameter between cells. We show

a first-order phase transition which is characterised by an ordered symmetry-breaking

state [145]. It is reflected by an abrupt change in the order parameter depending on the

strength of internal fluctuations and the coupling parameter. This transition is induced

by the interplay of internal fluctuations and diffusion.

6.2 Stochastic reaction-diffusion model

We use the Langmuir-Hinshelwood mechanism of previous chapters. On a macroscopically

large Pt surface the reaction sequence shown above produces bistability. Two stable kinetic

stationary states coexist on the parameter region of bistability. Without fluctuations the

macroscopic rate laws predict that the system resides on one of two stationary stable

states for an infinite period of time. Decreasing the surface size to nanoscale dimensions,

fluctuations in the particle number increase and transitions between the two stable states

are now possible.

However, in order to study stochastic effects under conditions of relative high pressure,

a surface is divided into a square lattice of cells, which are at the same time regarded as

well mixed and therefore are chosen to be smaller than the diffusion length. Each small cell

is represented as a L×L = A square grid of adsorption sites and the reaction is described
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using the traditional eight site model which was first introduced by James et al. [102].

Because we are working on a perfect single crystal surface, the cells exhibit equal catalytic

activity (e.g, identical sticking coefficients). The model incorporates the following steps:

i) CO(gas) adsorbs onto single empty sites at rate pCO. CO(ads) hops very rapidly to

other empty sites on the cell. We consider below the case of infinitely mobile CO(ads)

inside each cell [91, 102], and neglect energetic interactions between CO(ads) and other

CO(ads) and O(ads) adparticles. This feature is important in order to produce the bistabil-

ity observed in experiments. The distribution of CO(ads) on sites not occupied by O(ads)

is random. CO(ads) desorbs from the surface at a rate d. The parameter d corresponds

to the temperature in experiments, because CO desorption is the strongest activated step

in the Langmuir-Hinshelwood (LH) sequence.

ii) O2(gas) adsorbs dissociatively at diagonal nearest-neighbour (NN) empty sites at a

rate proportional to pO2
, provided that the additional six sites adjacent to these sites are

not occupied by O(ads). This ”eight-site rule” reflects the very strong NN O(ads)-O(ads)

repulsion of the (2 × 2) superlattice ordering [111]. O(ads) is immobile in the T-range

considered here due its large bonding energy, and it also cannot desorb.

iii) Each adjacent pair of CO(ads) and O(ads) can react at rate k to form CO2, which

is immediately released into the gas phase.

Here we are interested in high pressure conditions. The cells have to be well-mixed

and their size at high pressure has to be chosen therefore to be of nanoscale dimensions.

Consequently the deterministic description breaks down and stochastic effects become

relevant. A major change concerns the treatment of CO diffusion between cells. To study

this type of diffusion we adopted a similar model developed by Pavlenko et al. in the

context of CO oxidation on nanoscale Pt facets [146]. In contrast to our case the facets

there exhibited different orientations and hence a different reactivity.

iv) CO(ads) can diffuse at a finite rate from each cell to empty sites on the adjacent

cells. CO(ads) would hop across a common imaginary edge of length L =
√

A to adjacent

empty sites at rate h (microscopic hop rate or coupling parameter). The diffusion is

mimicked by the transition of CO(ads) from one cell to another at rate (in molecules per

unit time) h′NCO,i times the probability that a site is empty in the other cells, where

h′ = h/L.

We choose pCO+pO2
= k = 1, which sets the time scale. Finally, the system is controlled

by the partial pressure pCO, the desorption rate d, the coupling parameter h, and the

number of adsorption sites A. The model is still simplistic. It does not support oscillatory

kinetics, but it describes the bistability observed in experiment [134, 135, 147, 148].
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When h = 0, previous studies using KMC and ODE reveal bistability in this model for

d < dC , where dC corresponds to a cusp bifurcation point. Two stable kinetic stationary

states coexist in parameter space for a range of p−
CO < pCO < p+

CO. On the active

stationary state the surface is predominantly oxygen covered. On the inactive stationary

state a high CO coverage inhibits O2 adsorption and hence poisons the reaction. These

stable states are connected by an unstable state producing an S-shaped plot of steady

state coverage versus pCO. For this model the critical parameters are dC = 0.048 and

pC
CO = 0.40 [115]. Here, we use the multistable behaviour described above as prototype of

bistability inside each cell.

6.3 Reaction-diffusion master equation

The master equation describes the PDF of populations in a chemical reaction [3, 4]. Nor-

mally, these master equations consider a global description of fluctuations in the sense that

the system is treated as if it remained homogeneous. Of course, this description breaks

down if we consider high pressure conditions. To obtain an adequate master equation for-

mulation of the reaction diffusion system for CO oxidation, the cells of side length L are

considered as well mixed and smaller than the diffusion length. We assume infinite diffu-

sion of CO molecules inside a cell, and diffusion events between cells are considered to be

much more frequent than chemical reactions. The state of the system is described by the

probability distribution P (NCO,i, NO,i; t) of finding a set of populations Z̃ = {NCO,i, NO,i},
with i = 1, ..,M denoted the number of cells. Finally the PDF is governed by the following

RDME [149, 150, 151, 152, 153]:

dP (Z̃; t)

dt
=

dP

dt

reac

+
dP

dt

diff

. (6.1)

The reaction and diffusion terms of this equation will be derived in next subsections.

6.3.1 Reaction jump Markov process

The transition rates W i
ρ(NCO,i, NO,i) and population changes of the particle number of

carbon monoxide (NCO,i) and oxygen (NO,i) inside each cell are shown in Table. (6.1):

We require, 0 < NCO,i+NO,i ≤ A, where a small number of adsorption sites A produces

high coverage fluctuations. The term NCO,i/(A − NO,i) in W i
4(NCO,i, NO,i) assumes that

inside a cell each site adjacent to an O(ads) is occupied randomly by CO(ads).
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Reaction step Transition probability

COgas − Adsorption W i
1(NCO,i/NCO,i − 1) = pCO(A − NCO,i − NO,i)

COads − Desorption W i
2(NCO,i/NCO,i − 1) = dNCO,i

O2,gas − Adsorption W i
3(NO,i/NO,i + 2) = 2pO2

Si
A(NCO,i, NO,i, A)

COads − Oads − Reaction W i
4(NCO,i, NO,i/NCO,i − 1, NO,i − 1) =

4kNO,iNCO,i

(A−NO,i)

Table 6.1: Transition probabilities for CO oxidation on unreconstructed noble metal sur-

faces.

Si
A(NCO,i, NO,i, A) is the normalized sticking probability for oxygen, i.e., the probabil-

ity of finding two next NN empty sites with all six NN not occupied by oxygen (eight

site rule). This term can be written as

Si
A(NCO,i, NO,i, A) = A

(A − NCO,i − NO,i)
2(A − 2NO,i)

8

(A − NO,i)10
. (6.2)

Like in previous works, the reaction part of the more general RDME is expressed in the

following way

d

dt
P (Z̃; t) =

4
∑

ρ=1

[Wρ(Z̃ − vρ/Z̃)P (Z̃ − vρ; t) − Wρ(Z̃/Z̃− vρ)P (Z̃; t)]. (6.3)

where the vectors vρ =
{

vn
ρ

}2

n=1
are the stoichiometric vectors. It can be shown that in

the macroscopic limit of large reacting surfaces and at low pressures, this master equation

reproduces the deterministic predictions [51].

6.3.2 Diffusion random walk

In order to model diffusion we assume that each absorbed CO molecule can do a random

walk between adjacent cells. Like the reaction part, one can construct the transition

probabilities for diffusion[150]. Table. (6.2) shows these transition probabilities.
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Reaction step Transition probability

COads(loss) − diffusion W i
5(NCO,i/NCO,i − 1) = h′

2sNCO,i
∑

l(1 − θCO,i+l − θO,i+l)

COads(gain) − diffusion W i
6(NCO,i/NCO,i + 1) = h′

2s(1 − θCO,i − θO,i)
∑

l NCO,i+l

Table 6.2: Transition probabilities for CO diffusion from cell i to nearest-neighbor cells.

The sum l runs over the nearest neighbours of the cell i, and s represents the space

dimension. In our case s = 2. θCO,i and θO,i are NCO,i/A and NO,i/A, respectively. The

factors in W i
5(NCO,i/NCO,i − 1) simply represent the transition of CO(ads) from one cell

to another at a rate h′NCO,i times the probability that a site is empty in the first nearest

neighbour cells, where h′ = h/L. W i
6(NCO,i/NCO,i + 1) is interpreted in the same way.

Now one can write the diffusion term of the RDME as:

dP

dt

diff

=
M
∑

i=1

6
∑

ρ=5

[W i
ρ(NCO,i−1/NCO,i)P (NCO,i−1, NCO,i+l+1; t)−W i

ρ(NCO,i)P (NCO,i; t)].

(6.4)

Notice that, as cell area is increased, we have less and less effect from diffusion. In

the same way the diffusion dominates over the reaction part for small areas. This inter-

play between diffusion and reaction is a direct consequence of the reaction and diffusion

transition probabilities which depend on L in different ways.

The coarse-grained description of our RDME is valid when CO molecules inside each

cell are considered to be candidates for a reactive collision, and if the diffusion between

cells occurs much more frequently than chemical reactions. This description provides a

simple generalisation of deterministic reaction diffusion equations. If one is interested in

stochastic effects, it is also possible to consider a reaction-diffusion Langevin equation

(a deterministic reaction-diffusion equation plus a random term) which can be derived

directly from the stochastic discrete model [150]. However, contrary to the Langevin

approach, the RDME used here provides a mechanistic view of the dynamics at molecular

level [3].
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6.4 Mean-field approximation (MFA)

We begin with considering the traditional mean-field approach from the theory of equilib-

rium critical phenomena [149, 154, 155, 156]. In analogy with many-body theory one

can expect that each cell in this approximation would interact with an averaged en-

vironment. It is well known that mean field theory gives a rough qualitative picture

of the phase transition in systems of lower dimensionality, but it is not quantitatively

correct. Nevertheless, we expect from the wealth of experience in equilibrium phase

transitions that mean field theories will be essentially exact in four or more dimensions

[157]. In this approximation, one neglects the correlation between neighbouring cells.

Basically, the nearest-neighbour interaction is replaced by a global interaction through

an average field. Here, 1
2s

∑

l(1 − θCO,i+l − θO,i+l) and 1
2s

∑

l NCO,i+l are replaced with
1

M−1

∑M
j=1,j 6=i(1 − θCO,j − θO,j) and 1

M−1

∑M
j=1,j 6=i NCO,j, respectively. The cells are sup-

posed to interact all to all throughout the global coupling.

If one considers the case that the number of cells, M , goes to infinity, one can postulate:

lim
M→∞

1

M − 1

M
∑

j=1,j 6=i

(1 − θCO,j − θO,j) = (1 − θm
CO − θO), (6.5)

lim
M→∞

1

M − 1

M
∑

j=1,j 6=i

NCO,j = Nm
CO. (6.6)

In this limit fluctuations disappear in the averages and the cells have identical evolution

with transition probabilities given in Table. (6.3).

Because oxygen does not diffuse and the sticking probability is identical in all cells, we

eliminate the index i from NO,i. We also introduce the order parameter Nm
CO = Aθm

CO,

which is defined by the self-consistent equation

β(Nm
CO) = Nm

CO =
∑

NCO ,NO

NCOP st(NCO, NO, Nm
CO). (6.7)

Note that Nm
CO = Aθm

CO is the average value of CO molecules inside each cell. This first

moment or mean value is an order parameter that determines the occurrence of a phase

transition. The multiple solutions of this complicated equation reflect the possibility

of bifurcations that break the ergodicity associated with the presence of a true phase

transition [154]. Finally, we have a mean field coupling master equation (MFCME) without
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Reaction step Transition probability

COgas − Adsorption W1(NCO/NCO + 1) = pCO(A − NCO − NO)

COads − Desorption W2(NCO/NCO − 1) = dNCO

O2,gas − Adsorption W3(NO/NO + 2) = 2pO2
SA(NCO, NO, A)

COads − Oads − Reaction W4(NCO, NO/NCO − 1, NO − 1) = 4kNONCO

(A−NO)

COads(loss) − diffusion W5(NCO/NCO − 1) = h′NCO(1 − θm
CO − θO)

COads(gain) − diffusion W6(NCO/NCO + 1) = h′(1 − θCO − θO)Nm
CO

Table 6.3: Transition probabilities for CO oxidation after apply mean-field approximation.

spatial correlations,

dP (Z̃, Nm
CO; t)

dt
=

dP

dt

reac

+
dP

dt

MF

, (6.8)

where Z̃ = {NCO, NO}.
The challenge now is to solve this MFCME in order to obtain the stationary probability

distribution P st(Z̃, Nm
CO), and then to solve Eq. (6.7) in order to investigate the possibility

of a phase transition in our model. Like other nonequilibrium problems related to a noise-

induced phase transition, P st(Z̃, Nm
CO) is not available in general [129]. At this point, we

are forced to introduce a new approximation, the so-called adiabatic elimination of fast

variables.

6.5 Adiabatic elimination of oxygen

One can partition the system into two, the fast NCO, and the slow NO variables. Then we

consider Z̃ = {NCO, NO}, with the stoichiometric coefficients v1 = {1, 0}, v2 = {−1, 0},
v3 = {0, 2}, v4 = {−1,−1}, v5 = {−1, 0}, and v6 = {1, 0}. From the time scale

separation we have taken that P (NCO, NO; t) = G(NCO, Nm
CO; t)F (NO : NCO; t), where

F (NO : NCO; t) is the conditional probability for NCO kept constant. Note also that we
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changed the notation from NO to NO. We also require

∑

NCO

G(NCO, Nm
CO) = 1, (6.9)

∑

ÑO

F (NO : NCO) = 1. (6.10)

Inserting P (NCO, NO; t) = G(NCO, Nm
CO; t)F (NO : NCO; t) into Eq. (6.8) and summing

up over NO, we obtain

dG(NCO, Nm
CO; t)

dt
= H1(NCO − 1)G(NCO − 1, Nm

CO; t) + H2(NCO + 1)G(NCO + 1, Nm
CO; t)

−(H1(NCO) + H2(NCO))G(NCO, Nm
CO; t), (6.11)

where the new transition probabilities of Table. (6.4) are used.

Event Transition probability

NCO → NCO + 1 H1 = pCO(A − NCO − NO) +
h(1−θCO−θO)Nm

CO

L

NCO → NCO − 1 H2 = dNCO + 4kNONCO

(A−NO) +
hNCO(1−θm

CO
−θm

O
)

L

Table 6.4: Transition probabilities after applying mean-field approximation and adiabatic

elimination of oxygen.

On the other hand, the chemical master equation of the conditional probability distri-

bution F (NO : NCO; t) with NCO kept constant is given by

dF (NO : NCO; t)

dt
= W3(NO − 2)F (NO − 2 : NCO; t) + W4(NO + 1)F (NO + 1 : NCO; t)

−(W3(NO) − W4(NO))F (NO : NCO; t). (6.12)

This master equation depends only on W3 and W4 (see Table. (6.3)). Due to the time

scale separation, F (NO : NCO; t) will quickly relax to a stationary distribution. Hence,

moments in the conditional transition rates become stationary as well as independent of
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the initial condition value NO. Because F st(NO : NCO) is sharply peaked and monomodal,

the conditional first and higher moments are given by the stationary attractive coverage

of the fast deterministic dynamic with θCO kept constant [51]. In our case, the oxygen is

the fast variable, and the deterministic equation of it is given by

dθO

dt
= 2(1 − pCO)

(1 − θCO − θO)2(1 − 2θO)8

(1 − θO)10
− 4θOθO

(1 − θO)
. (6.13)

This last equation can be obtained from standard cluster approximation (see Chap. 3 and

Appendix B).

6.6 Evidence for a first-order phase transition

Inside each cell bistable behaviour is possible, and the number of adsorption sites A is of

nanoscale dimension. Thus fluctuation-induced transitions from the active to the inactive

state and vice versa may occur. This property opens up the possibility to study the

interplay of coverage fluctuations induced by a small number of adsorption sites, and the

coupling between cells.

6.6.1 Probability distribution function and effective potential

This approximations allows us to construct a new one component nonlinear MFCME for

NCO alone. Considering that now Z̃ = {NCO}, this new master equation describes the

behaviour of the new probability distribution G(NCO, Nm
CO; t).

The new one-component MFCME can be written as

dG(Z̃, Nm
CO; t)

dt
=

dG

dt

reac

+
dG

dt

MF

. (6.14)

The probability distribution G(NCO, Nm
CO; t) approaches a stationary shape, which in-

cludes macroscopic transitions between the stable states of the deterministic approach.

The final shape of G(NCO, Nm
CO; t) is in agreement with the solution dGst(NCO, Nm

CO)/dt =

0, and vanishing probability flux. In this case detailed balance holds, and one finds

H1(NCO − 1)Gst(NCO − 1, Nm
CO) = H2(NCO)Gst(NCO, Nm

CO), (6.15)
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and subsequently

Gst(NCO, Nm
CO) =

NCO
∏

N=1

H1(N − 1)

H2(N)

(

1 +
A
∑

n=1

n
∏

N=1

H1(N − 1)

H2(N)

)−1

. (6.16)

This equation is the normalised stationary PDF for the occupation of sites with NCO

molecules.

Firstly, we consider the case that the coupling between cells is zero and the cells are

independent systems described by simple master equations which allow only global fluc-

tuations. Inside of each cell CO molecules can diffuse infinitely fast, and this naturally

produces bistability. As an example, Figure 6.1 shows a typical bimodal stationary PDF

for the case when h = 0 with A = 100, 400, and 1000. Note that, if A decreases, the

transitions between the two stable states will increase. This result is in accordance with

experiments of fluctuation-induced transitions in CO oxidation on a Pt field emitter tip,

and with CO oxidation on Pd nanoparticles [13, 15]. Finally, we assume that the PDF
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Figure 6.1: Stationary probability distribution Gst(NCO) obtained from Eq. (6.16) con-

sidering only the bistable behaviour inside one single cell (h = 0), with pCO = 0.36715,

d = 0.030 and the number of adsorption sites A = 100 (solid line), 400 (dashed line), 1000

(dotted line).
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can be written as

Gst(NCO, Nm
CO) ∝ e−A φ(NCO ,Nm

CO
), (6.17)

and that an effective potential (EP)

φ(NCO, Nm
CO) =

−lnGst(NCO, Nm
CO)

A
, (6.18)

exists.

6.6.2 Order parameter

After adiabatic elimination Eq. (6.7) can be written as

β(Nm
CO) = Nm

CO =
∑

NCO ,ÑO

NCOGst(NCO, Nm
CO)F st(ÑO : NCO), (6.19)

and considering
∑

NO

F st(NO : NCO) = 1, (6.20)

the new self-consistent equation or order parameter of the system can be written as

β(Nm
CO) = Nm

CO =
∑

NCO

NCOGst(NCO, Nm
CO). (6.21)

Note that this order parameter is the mean value of the CO coverage obtained from

the PDF. In our problem two cases are possible. i) The PDF is unique, and the order

parameter has only one value. ii) We have several monomodal PDFs, and the order

parameter has several solutions, one for each PDF.

When the coupling parameter h increases, the CO molecules can jump from cell to cell

and an RDME approach is necessary. Then it is clear that the order parameter, defined

by Eq. (6.21), becomes the most important variable of the model in order to study the

possibility of phase transitions. A true phase transition is detected when an abrupt change

in this order parameter is observed as a function of control parameters.

If the order parameter has only one solution, it is expected that the system evolves to

a collective highly symmetric state. In this state of high symmetry, the cells relax to an

unique mean value with only one stationary PDF. For other parameter values, multiple

mean value solutions are possible and the system relaxes to a collective low symmetry

state, where the cells randomly approach one or another solution depending on the initial
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conditions. In this case one concludes that there are several corresponding stationary

PDFs, and the mean field theory predicts a phase transition. The latter case can be

understood like the breaking of the symmetry.

Figure 6.2 shows a graphical representation of Eq. (6.21). All the self-consistently

determined solutions are given by the intersection of the diagonal line with the curve

β(Nm
CO). In Fig. 6.2(a) two typical cases are shown for two values of h and with the

number of adsorption sites A = 400. For h = 0.1 only one solution is observed (solid

line). In this case a homogeneous highly symmetric state dominates. As the coupling is

increased, for h = 2 three solutions appear which represent a low symmetric state (dashed

line). We remark that β
′

(Nm
CO) < 1 is sufficient for the stability of the solutions [158].

Fig. 6.2(b) shows that for A = 100 only one solution is observed for the whole range of h.

Note, that we plot the self-consistent equation as a function of the CO coverage.

In order to clarify these latter observations, we perform an analysis of bifurcation di-

agrams of Nm
CO as function of h and the corresponding stationary PDFs. Figure. 6.3(a)

shows one of these bifurcation diagrams with A = 400. Here, one solution remains stable

[the lower branch], while a new stable solution and unstable solution appear above some

critical value of h. For small coupling Nm
CO is unique (case I) and one bimodal stationary

PDF like in Fig. 6.3(b) is observed. If the coupling increases, the system behaviour departs

from that of the small coupling until a bifurcation takes place to a region where two new

solutions appear (cases II and III). Here, a subset of cells may have a tiny preference to

the upper solution, while the rest may have a certain preference to the lower solution, with

the result that the overall behaviour is not fully symmetric. In this case, the intermediate

solution is unstable. These solutions, of course, correspond to three different monomodal

PDFs. Figure. 6.3(c) shows these PDFs. The PDF represented by the dotted line corre-

sponds to the unstable solution, and it is not observed in simulations. Here one observes

cells with high θCO coexisting with cells of low θCO. In Fig. 6.4(a), we plot the same like

Fig. 6.3, but now with A = 100. From this figure it is clear that only the lower solution of

Fig. 6.3(a) is observed and corresponds to one stable stationary PDF. Nevertheless, this

PDF can change as a function of h from a bimodal shape (small h) to a monomodal shape

(high h) as shown in Figs. 6.4(b) and 6.4(c).

Obviously, when one decreases the cell size and increases the parameter h, the whole

system behaves in a different way. This different behaviour arises from the different scaling

of the diffusion and reaction part of the RDME, as mentioned earlier. On a small surface

the diffusion dominates, since fluctuations arising from diffusion come about because the

molecules are jumping back and forth across the boundary of length L. Conversely, for
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Figure 6.2: Solutions of the self-consistent equation (6.21). The solutions are given by

the intersection of β(Nm
CO) with the diagonal solid line. a) Here A = 400, and the solid

line, which corresponds to h = 0.1, shows only one stable solution of this equation (highly

symmetric state). On the other hand, the dashed line, which now corresponds to h =

2, shows three solutions (low symmetry state). b) In this case A = 100, and for the

whole range of h one observes only one solution (highly symmetric state). The reaction

parameters are pCO = 0.36715 and d = 0.030.
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larger surfaces, we find the diffusion between cells is negligible and only reaction dominates

[4].
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Figure 6.3: Solution of equation (6.21) as a function of the coupling parameter h and

the corresponding stationary probability distribution functions. a) Here, we show the

bifurcation diagram of Nm
CO. b) Bimodal stationary probability distribution for the case I.

c) Three monomodal stationary probability distributions for the cases II, III and IV. The

CO pressure and desorption rate are constant with pCO = 0.36715 and d = 0.030. Each

cell also has a number of sites A = 400.
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In Fig. 6.5(a), we plotted for two values of (d, pCO) the phase transition line in the

parameter space (h,A) as predicted by the mean-field approximation. The curves separate

regions with one unstable state and two stable ones (above each line) and a region where
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Figure 6.4: The same like Fig. 6.3, but now with A = 100. a) Bifurcation diagram of

Nm
CO as a function of h. It is clear that only the lower solution of Fig. 3(a) is physical

and corresponds to one stationary probability distribution function. b) and c) show that

this probability distribution function can change as a function of h from a bimodal shape

(small h) to a monomodal shape (high h).
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only one stable solution is observed (below each line). Note that the region with two stable

solutions is longer when pCO and d are farther from the critical point (dashed line).

6.7 Numerical verification of MFA predictions

In order to verify the analytical results, simulations have been carried out with the Gillespie

algorithm. This algorithm has received much attention in the last years [126, 127, 128, 159].

For instance, some efficient generalisations to extended systems have been introduced [160,

161]. Here, in contrast to the normal algorithm, we have taken into account the adiabatic

0

100

200

300

0 1 2 3 4 5

A

h

2 stable solutions

1 stable solution

Figure 6.5: Phase diagram in the (h,A) plane as predicted by the mean-field approximation

with (d, pCO) equal to (0.36715, 0.030) (solid line) and (0.296, 0.0050) (dashed line). In the

region above the curves one unstable solution of Eq. (6.21) and two stable ones appear.

In the region below the curves only one stable solution of this equation is observed.
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elimination of oxygen and random local and nonlocal as well as only local (diffusive)

interactions between cells.

6.7.1 Random local and nonlocal (RLnL) interaction versus MFA

Here, we consider random connections between cells. It means that a given cell can change

COads molecules with any cell of the lattice at random. Thus, this kind of coupling

introduces long range interactions. In this sense, simulations with our RLnL interaction

system should be quite similar to the MFA predictions in the limit when the number of

cells is high. Figure 6.6 shows a schematic representation of this interaction

The computer simulations have been carried out with M , the number of cells being

equal to 2000. We chose appropriate initial conditions, a long simulation time and the

same parameters as in the previous theoretical part. Figure 6.7(a) shows the two PDFs

inside the region where two stable solutions of Eq. (6.21) exist. Note that although for

finite systems there is no perfect separation into different ergodic components, the trajec-

tories remain very long in the corresponding basin of attraction. In this case, A = 400,

d = 0.030, and pCO = 0.36715. In Fig. 6.7b the stationary PDF, but now with A = 100, is

shown. This results are in accordance with analytical predictions. Note that the interac-

tion form used in this case does not describe very well our reaction diffusion description of

CO oxidation. For CO oxidation under the conditions considered here, COads molecules

are expected to diffuse only to nearest-neighbor cells (normal diffusion). On the other

hand, the RLnL interaction is a combination of local and long range interactions. The de-

tailed stochastic algorithm, which incorporates random local and nonlocal interactions in

the Gillespie algorithm, is described in Appendix. E. It is interesting to study the relation

between this kind of coupling and the so-called anomalous diffusion and Lévi flights [162].

An interesting extention could also be to use stochastic models, like the master equation

used in this chapter, in order to study an array of nanoparticles with local and nonlocal

coupling through the gas phase [133].

6.7.2 Local (Diffusive) interaction versus MFA

In this case, we consider that COads molecules can only jump to nearest-neighbor cells.

Obviously, this kind of transport is the correct representation of our reaction-diffusion

master equation, and thus, it is expected to produce correct predictions for CO oxidation

under diffusion limited conditions [53].
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The idea is to compare stochastic simulations using this local interaction with MFA

predictions. Here, it is expected only qualitative concordance. In our case, local interac-

tions are confined to a 2-d lattice which represents the catalytical surface. This catalytical

surface consists of different regions coupled by COads diffusion. On the oder hand, MFA

considers all to all interaction between cells. This situation is more similar to a long-range

or global interaction. Figure 6.8 shows a schematic representation of the local transport.

In Fig. 6.9, the comparison of the bifurcation diagram of N m
CO as function of A between

theory and stochastic simulation, for fixed h, is shown. For the stochastic simulation (SS)

we have implemented the Gillespie algorithm taken into account the adiabatic elimination

of oxygen and the diffusive or local coupling. In Fig. 6.9(a), one solution remains stable

(lower branch), while a new stable solution (solid line) and unstable solution (dashed line)

appear above some critical value, AMFA
c . Thus, the MFA predicts a first-order phase

Figure 6.6: Schematic representation of the random local and nonlocal transport mech-

anism. Solid arrows represent local interaction. Dashed arrows represent long range

interactions. COads molecules can move from the cell in consideration to a random chosen

cell on the lattices.
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Figure 6.7: Stationary probability distribution functions of one cell, obtained from the

Gillespie algorithm adopted to have random local and nonlocal interactions. a) Here,

typical stationary probability distribution functions inside the region of low symmetry for

A = 400 are shown. b) For A = 100, the diffusion dominates over the reaction, and a

monomodal probability distribution around the mean value is obtained. This distribution

is independent of the initial conditions. The computer simulations have been carried out

with 2000 cells.
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transition. Note that 2-d SS (circles) qualitatively confirm the existence of this first-order

phase transition, but they yield a higher critical value, ASS
c . Although the chemical re-

actions described here occur on the surface of a metal, it is interesting to note that the

critical point predicted by the MFA can be reproduced by stochastic simulation using

global or high dimensional coupling. Fig. 6.9(b) shows simulation (circles) and theoretical

results (solid line) for relatively small h. Here, it is clear that only the lower solution

of Fig. 6.9(a) is observed for small values of A. For high enough values of A, the phase

transition is also expected to occur.

Figure 6.10 shows the PDF for one cell from both theory and stochastic simulations.

The parameters (h,A) are chosen in the region where only one stable solution is ob-

served. In Fig. 6.10(a), the diffusion parameter h is small, consequently the cells exhibit

strong fluctuations induced basically only by reaction events. The PDF is bimodal with

transitions between stable states induced by strong fluctuations. The analytical PDF is

represented by the solid line and the PDF from stochastic simulations is represented by

Figure 6.8: Schematic representation of the local transport mechanism. COads molecules

can move from the cell in consideration to a chosen nearest-neighbor cell on the lattice.
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Figure 6.9: Solution of the order parameter N m
CO as function of the system size A.(a)

Comparison of the stable solutions of the self-consistency equation for N m
CO as a function of

A (solid lines) with 2-d Gillespie-like Monte Carlo simulations (circles). Here, pCO = 0.296,

d = 0.0050, h = 2 and the number of cells M = 32 × 32. We use periodic boundary

conditions. The unstable solution (dashed line) is not observed in simulations. AMFA
c and

ASS
c are critical points predicted by mean-field approximation and stochastic simulations,

respectively. (c) The same as (b), but now with h = 0.1. Here, it becomes clear that the

lower solution is the only possible stable state of the system.
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Figure 6.10: Comparison of the probability distribution functions obtained by 2-d

Gillespie-like Monte Carlo simulations for 32×32 cells (dashed line) and periodic boundary

conditions with the probability distribution (solid line) and the effective potential (dot-

ted line) predicted by the mean-field approximation.(a) Here, parameters are A = 100,

h = 0.001, pCO = 0.36715, and d = 0.030. For these h and A, the order parameter has

only one stable solution and the cells exhibit bistability as well as strong fluctuations. (b)

This figure shows monomodal probability distributions from theory and simulations for

A = 50, h = 2.0, pCO = 0.296, and d = 0.005.
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Figure 6.11: The same as Fig. 6.10, but now for parameters (h,A) inside the region of two

stable solutions. (a) In this figure h = 2.0 and A = 400, and as predicted by the mean-field

approximation two stable monomodal probability distributions are observed. Probability

distribution functions obtained from simulations are denoted by solid lines, and probability

distribution functions obtained from theory are denoted by dashed lines. The probability

distribution function denoted by the dotted line is unstable. (b) This figure shows the

corresponding stable effective potentials (solid lines). The effective potential denoted by

the dotted line is unstable.
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a dashed line. An interesting way to visualise this is through the EP (Eq. (6.18)). When

the probability distribution acquires a bimodal shape the corresponding potential develops

two minima (dotted line). Figure 6.10(b) shows the PDF and the EP for large h and small

A. Under this conditions the PDF as well as the EP are monomodal. In this case the

fluctuations are mostly consequences of the diffusive events.

Figure 6.11 now shows the PDF and EP in regions of the parameter space (h,A)

where two stable solutions are observed. In these regions, three monomodal PDF’s are

observed corresponding to one unstable solution and two stable ones. This breaking of the

system in several ergodic components is a signature of a true first-order phase transition.

Figure 6.11(a) shows these PDF’s from theory (solid lines) and stochastic simulations

(dashed lines). The PDF represented by the dotted line is an unstable solutions of the

MFME and is not observed in simulations. Figure 6.11(b) shows the corresponding effective

potentials (solid line). Here again, the EP represented by the dotted line is unstable and

not observed in simulations.

6.7.3 Nucleation and growth of islands

Figure 6.12 demonstrates the phenomenon of nucleation and growth usually associated

with a first order-phase transition for A = 400, h = 2.0, pCO = 0.36715 and d = 0.030.

From Fig. 6.9(a), it is clear that the two stable states have different degrees of stability

under fluctuations, which are determined by the distance of each stable state from the

separatrix representing the unstable state [52]. For the parameter values used in this

figure, the more stable state corresponds to the lower number of CO molecules or an

active state inside a cell. Starting with a small fraction of cells with low numbers of CO

molecules or reactive state and the rest of the cells with high numbers of CO molecules

or an inactive state (Fig. 6.12(a)), we observe the following: First one island with a

composition corresponding to active state is formed and then this island starts to grow

with increasing time. This growth stops when the surface is completely covered by the

active stable state. Figures 6.12(a − c) show the case when the surface is represented by

a square lattice of 32 × 32 cells with periodic boundary conditions.

6.8 Summary and conclusions

We have analysed theoretically the interplay between internal fluctuations and diffusion

in a model of the bistable CO oxidation reaction which applies to the case of a catalytic

surface at high enough pressure. At higher pressure the adsorption rates grow propor-
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tionally to the pressure, the diffusion length decreases, and smaller and smaller patches

of the surface can be regarded as well mixed. Consequently, stochastic fluctuations be-

come important. In this publication stochastic effects are taken into account by dividing

the surface into a square lattice of nanoscale cells, each containing A adsorption sites. A

reaction-diffusion master equation for the probability of finding CO and oxygen coverage

at a time t, that allows local fluctuations, is introduced. We are able to solve this compli-

cated reaction-diffusion master equation after invoking the mean-field approach together

with the adiabatic elimination of oxygen. This allows an estimation of the probability

distribution of adsorbed CO molecules as a function of the coupling parameter h and the

number of adsorption sites A. Subsequently, the phase diagram in the parameter space

(h,A) is constructed. Assuming that the bistable behaviour is possible inside each cell, we

show that the phase diagram, as predicted by the mean-field approximation, is split into

two regions. An analysis of the probability distribution shows evidence for the existence

of a first-order phase transition associated with the bifurcation of the first moment of the

CO coverage. The first moment plays the role of the order parameter which characterizes

this phase transition. These analytical results have been found to be in reasonable agree-

ment with spatially extended Gillespie-type kinetic Monte Carlo simulations, taking into

account the adiabatic elimination of oxygen.

It is important to emphasize that, at high pressure, temperature effects are relevant

and should also be taken into account for an improved model [163]. In this high pressure

regime, due to the high coverage, energetic interactions between the adspecies will play

an important role which needs to be adequately described in a realistic model. Our model

can in principle be used to study fluctuations on inhomogeneous metal surfaces, where

structural defects such steps or impurities are present. The structural defects can be

considered as small regions on the surface with different kinetic parameters coupled by

CO diffusion. An interesting extention could also be to use stochastic models, like the

master equation used in this paper, in order to study an array of nanoparticles coupled

globally through the gas phase. The results shown in this chapter demonstrate that noise

can play an important role in catalytic systems. This opens up new perspectives for

the study of noise-induced effects because conditions with a small enough mixing area

will be realized in many catalytic reactions at high pressure. Our model can be used to

study CO oxidation on a field-emitter tip. In this case, the different facets with different

orientations are coupled by CO diffusion. Finally, our model can be extended to other

catalytical systems where the mobility of adparticles is affected by high pressures as well

as high coverages [86].
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Figure 6.12: 2-d SS in grayscale of a M = 32 × 32 square lattice of cells with periodic

boundary conditions. Parameters are A = 400, h = 2.0, pCO = 0.36715, and d = 0.030.

Time increases from a to c. (a) Small fraction of cells with low numbers of CO molecules

(reactive state) and the rest of the cells with high numbers of CO molecules (inactive

state). (b)-(c) A reactive island is formed and starts to grow with increasing time.
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Chapter 7

A reduced stochastic hybrid model

with adspecies repulsion

”O inventamos o Erramos.”

Simón Rodriguez (1769-1854)

7.1 Introduction

The ultimate goal in the study of heterogeneous catalysis on nanoscale surfaces is to

elucidate behavior at higher pressure (p) closer to industrial conditions [164]. In such

regimes of higher p, the effect of adspecies interactions will play an important role [165,

166, 167, 168, 169]. Ordering of adsorbed atoms or molecules due to such interactions is

a common phenomenon observed in many low-energy electron diffraction (LEED) studies

[113].

In particular, atomistic lattice-gas modelling of CO oxidation on unreconstructed metal

surfaces reveals the existence of phase separation of reactants into oxygen-rich and inter-

mixed reactive states as a consequence of adspecies repulsions [49, 170]. It is shown that

the system can display well-defined fluctuation-induced transitions between the two phase-

separated reactive states which appear similar to those observed in studies on Pt metal

field emitter tips (FET’s) [13].

Apart of the implementation of realistic lattice-gas models, it is instructive and nec-

essary to introduce toy stochastic mean-field models incorporating adspecies interactions,

because kinetic Monte Carlo (KMC) simulations of lattices-gas models are only numer-

ical experiments. In some cases theoretical analysis are needed, thus one motivation to
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introduce stochastic mean-field models is to present analytical approximations. For in-

stance, the fluctuation behavior of the bistable CO oxidation on nanoscale surfaces has

been theoretically analyzed by a mean-field birth-death-type master equation, and it has

been shown that near the critical point, with decreasing surface area, one cannot distin-

guish between two macroscopically stable stationary states [51]. These studies captured

at least qualitatively the fluctuation-induced transitions experimentally observed in CO

oxidation of Pt FET’s and Pd nanoparticles [13, 15].

In this chapter, a stochastic hybrid mean-field model for CO oxidation on nanoscale

surfaces with CO −O and O −O adspecies repulsive interactions is introduced. It is con-

structed used the so-called cluster approximation. After adiabatic elimination of the fast

oxygen coverage the phase diagram in the parameter space is constructed and analysed.

Finally, critical and fluctuations depending of system size as well as fluctuations around

the stable states of the bistable region are analyzed.

7.2 Deterministic approach

We assume that the reaction takes place according to LH mechanism. The surface of the

catalyst is a square two-dimensional lattice of active sites. The oxygen and carbon monox-

ide impinge randomly onto the surface and when vacant site are available (E) they adsorb.

Two adjacent vacant sites are required for oxygen molecule to adsorb dissociatively; the

O2 dissociates into O atoms, each residing on a separate surface site. As an example, first

we consider the case when an atom adsorbed on the surface becomes immobile and when

O-O, CO-CO and CO-O adspecies lateral repulsions between adspecies are ignored.

Hierarchical kinetic rate equations can be obtained by applying the cluster approxima-

tion (see Appendix B). It should be noted that the essence of spatial correlations implies

that in general {OO} 6= {O}2, etc. However, conservation of probabilities always guaran-

tees that {CO} + {O} + {E} = 1. {COCO} + {OO} + {EE} + 2{OCO} + 2{COE} +

2{OE} = 1, etc [103, 106]. For finite reaction rate k = 1, one has

d{CO}
dt

= pCO{E} − 4{COO},

d{O}
dt

= 2pO2
{EE} − 4{COO},
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7.2.1 Hybrid and pair approximations

In this chapter, we are interested in behavior of the above model for CO oxidation in the

regime of very large diffusion of COads molecules. This is motivated by the observation

that the hop rate for COads is many orders of magnitude larger than the other rates in

typical CO oxidation reactions. We assume that, due to very rapid diffusion, COads is

distributed randomly on the non-Oads sites at all times.

Here we discuss the exact hierarchic rate equations for hybrid models with adspecies

repulsions derived from the pair or (2,1) cluster approximation (see Appendix B). These

hierarchic equations describe the evolution of probabilities (or coverage) for various sub-

configurations of sites. Using the hybrid approximations, some simplifications arise due

to feature that COads are strictly randomly distributed. For convenience, below we ex-

press the probabilities of various configurations by the configurations themselves. Thus

one has {CO} = θCO, {O} = θO, and {E=1-CO-O}, {COO}, {OOCO}, etc. represent

the probabilities of an empty site, and COadsOads pair, linear OadsOadsCOads triples, etc.

In the pair or (2,1) cluster approximation, there are three single site configurations

probabilities, {CO}, {O}, and {E}, and six distinct pair configurations probabilities,

{COCO}, {OO}, {EE}, {COO}, {COE}, {OE} (Note that by inversion symmetry

{COE} = {ECO}). However, there are also conservation of probability conditions,

{CO}+{O}+{E} = 1 and {COCO}+{OO}+{EE}+2{COO}+2{COE}+2{OE} = 1.

Also the single site probabilities can be determined from the pair probabilities via the re-

lations {COO} + {COE} + {COCO} = {CO}, {COO} + {EO} + {OO} = {O}, and

{COE} + {OE} + {EE} = {E}. Nevertheless, in the hybrid model with adspecies repul-

sions, further relationships exist.

We introduce a state {Z} = 1 − {O} = {Z−} + {Z+}, where {Z+} has nearest-

neighbor oxygen atoms and {Z−} has no nearest-neighbor oxygen atoms. Then, one has

{Z} + {O} = 1, {ZZ} + 2{ZO} + {OO} = 1, etc. If we consider COads − Oads and
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Oads − Oads infinite repulsion, COads is randomly distributed only on Z− sites. Because

local repulsion one also has {OO} = θOO = 0 and {COO} = θCOO = 0.

If {E} = {E+} + {E−} depending on whether the site is Z− or Z+, then

{E+} = {Z+}, (7.1)

since COads cannot site Z+ site, and

{E−} = {Z−}
[

1 − {CO}
{Z−}

]

= {Z−} − {CO} =



















Z

Z Z Z

Z



















− {CO}. (7.2)

The probability to find a COads atom in a site is {CO}
{Z−} , then the probability to find a site

non occupied by COads is 1 − {CO}
{Z−} .

In the cluster approximation one can write

d{CO}
dt

= pCO{E−} − d{CO} − 4k







O

CO







, (7.3)

and

d{O}
dt

= 2pO2
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. (7.4)

Then, after applying the (2,1) cluster or pair approximation and noting that θCO = CO

and θO = O, we have (see Appendix F)

dθCO

dt
= pCO

[

(1 − 2θO)4

(1 − θO)3
− θCO

]

− dθCO − 4kθCOθO, (7.5)

dθO

dt
= 2pO2

[

(1 − 2θO − θCO)8

(1 − θO)6(1 − θO − θCO)2

] [

1 − (1 − θO)3θCO

(1 − 2θO)4

]2

− 4kθCOθO. (7.6)

7.3 Stochastic approach and adiabatic reduction

A square lattice of A sites with periodic boundary conditions is considered. For the

stochastic description we consider the number of molecules or atoms adsorbed as variables.
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Using θI = NI/A, we may proceed to assign rates Wρ to the various adsorption/reaction

events (ρ = 1, ..., r) in the model. Finally one can construct a master equation which in

general is written as

d

dt
P (Z̃; t) =

r
∑

ρ=1

[Wρ(Z̃ − vρ/Z̃)P (Z̃ − vρ; t) − Wρ(Z̃/Z̃− vρ)P (Z̃; t)]. (7.7)

Obviously, this master equation represents a global birth-death description of fluctuations

for P (Z̃; t). Note that in this case, Z̃ and vρ are vectors with dimension given by the

number of species. Table 7.1 shows rates or transition probabilities for the respective

events. These ρ = 1, ..., 4 transition probabilities can be used in the Gillespie algorithm

to create trajectories which represent solutions of the general master equation 7.7.

Event Transition probability

NCO → NCO + 1 W1 = pCO

[

(A−2NO)4

(A−NO)3 − NCO

]

NCO → NCO − 1 W2 = dNCO

NCO, NO → NCO − 1, NO − 1 W3 = 4kNCONO

A

NO → NO + 2 W4 = 2pO2
A
[

(A−2NO−NCO)8

(A−NO)6(A−NO−NCO)2

] [

1 − (A−NO)3NCO

(A−2NO)4

]2

Table 7.1: Transition probabilities for CO oxidation with COads −Oads and COads −Oads

infinite repulsion on unreconstructed noble metal surfaces.

7.3.1 Adiabatic reduction

In this subsection the adiabatic elimination of fast variables is apply to to our model [171].

We consider like in previous chapters that the oxygen is the fast variables
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Master equation for the slow CO variable

We consider Z̃ = {NCO, NO}, with the stoichiometric coefficients v1 = {1, 0}, v2 =

{−1, 0}, v3 = {0, 2}, and v4 = {−1,−1}. If we take from the time scale separation that

P (NCO, NO; t) = G(NCO; t)H(NO : NCO; t), (7.8)

then oxygen can be adiabatically reduced from the general master equation. Note that

H(NO : NCO; t) is the conditional probability distribution for NCO being kept constant.

We also require
∑

NCO

G(NCO) = 1, (7.9)

∑

NO

H(NO : NCO) = 1. (7.10)

Inserting Eq. 7.8 into the general master equation and summing up over NO, we obtain

d

dt
G(NCO; t) = W̃1(NCO − 1)G(NCO − 1; t) + W̃2(NCO + 1)G(NCO − 1; t)

−(W̃1(NCO) + W̃2(NCO))G(NCO; t)

+
∑

NO

(W4(NO − 2)H(NO − 2 : NCO; t)

−W4(NO)H(NO : NCO; t))G(NCO ; t). (7.11)

The last term of this equation must be zero because it does not contribute to the variation

of NCO. Thus, one may write

d

dt
G(NCO; t) = W̃1(NCO − 1)G(NCO − 1; t) + W̃2(NCO + 1)G(NCO − 1; t)

−(W̃1(NCO) + W̃2(NCO))G(NCO; t), (7.12)

where

W̃1(NCO) =
∑

NO

W1(NCO, NO)H(NO : NCO), (7.13)

and

W̃2(NCO) =
∑

NO

(W2(NCO) + W3(NCO, NO))H(NO : NCO), (7.14)

are the conditional expectations of W1(NCO, NO) and W2(NCO) + W3(NCO, NO), respec-

tively. The conclusion of this analysis is that the evolution of G(NCO; t) depends on the

conditional probability distribution H(NO : NCO).
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Master equation for the fast oxygen variable

The vector Z̃ = {NCO, NO} is obtained in a process that obeys the Markovian master

equation 7.7 and that can be simulated by the Gillespie algorithm. Note also that if we

consider that NO evolves only through W3(NO : NCO) and W4(NO : NCO), where NCO is

a constant parameter that does not evolve, then NO alone is also a Markov variable which

satisfies the following master equation

d

dt
H(NO : NCO; t) = W4(NO − 2)H(NO − 2 : NCO; t) − W4(NO)H(NO : NCO; t)

+W3(NO + 1)H(NO + 1 : NCO; t) − W3(NO)H(NO : NCO; t), (7.15)

with NCO being kept constant.

The combined reduced system

H(NO : NCO; t) will quickly relax to a stationary distribution. This equilibration implies

that we should approximate Eq. 7.15, as

d

dt
H(NO : NCO; t) ≈ 0. (7.16)

Thus, the resulting coupled master equations of our model are

d

dt
G(NCO; t) = W̃1(NCO − 1)G(NCO − 1; t) + W̃2(NCO + 1)G(NCO − 1; t)

−(W̃1(NCO) + W̃2(NCO))G(NCO; t), (7.17)

0 ≈ W4(NO − 2)H(NO − 2 : NCO; t) − W4(NO)H(NO : NCO; t)

+W3(NO + 1)H(NO + 1 : NCO; t) − W3(NO)H(NO : NCO; t). (7.18)

Equation 7.17 is an one-step master equation with a well-know solution. The difficult part

will be computing H(NO : NCO; t) which is not more an one-step master equation.

Figure 7.1 shows a solution of Eq. 7.18 for θCO = NCO/A = const. It is clear that

Hst(NO : NCO = const) is a sharply peaked monomodal function around a mean value.

To simulate the fast oxygen variable we use the mean value of NO obtained from Eq. 7.18

with keeping NCO constant. In this chapter we will consider like in previous chapters that

pCO + pO = k = 1.
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7.3.2 Bistability

Table 7.2 shows the new transition probabilities derived after the adiabatic elimination of

the oxygen coverage and considering the sharply peaked function Hst(NO : NCO = const).

Note that in this case we use the approximation 〈θOθO〉 ≈ 〈θO〉2.

NO is a mean value obtained from Eq. 7.18. In this case we will simulate directly

the master equation for the fast variable using the Gillespie algorithm and then use the

mean value from simulations to approximate the fast oxygen variable. Note that this

procedure is different to previous chapters where the fast variable was approximated by

the deterministic approximation [51, 52, 53, 54].
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Figure 7.1: Conditional stationary probability distribution Hst(θO : θCOst) from the Gille-

spie algorithm. In this case, Hst(θO : θCOst = 0.2) is shown in the coverage space with

A = 1000, pCO = 0.15 and d = 0.030. This conditional probability distribution is sharply

peaked and unimodal around the mean value 〈θO〉 ≈ 0.105.
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Event Transition probability

NCO → NCO + 1 W̃1 = pCO

[

(A−2NO)4

(A−NO)3 − NCO

]

NCO → NCO − 1 W̃2 = dNCO + 4kNCONO

A

Table 7.2: Transition probabilities for CO oxidation with CO −O and CO −O adspecies

repulsion on unreconstructed noble metal surfaces after adiabatic elimination of NO.

Stable states

In the rest of the chapter we will use, instant of Eq. 7.17, an alternative method to analyse

the system. If a relative maximum of Gst(NCO) is called a stable state of NCO [74, 95],

one notes that such point would have to satisfy

Gst(NCO) > Gst(NCO − 1), (7.19)

and

Gst(NCO) > Gst(NCO + 1). (7.20)

But from Eq. 7.17 and after invoking the detailed balance conditions

Gst(NCO) = Gst(NCO − 1)
W̃1(NCO − 1)

W̃2(NCO)
, (7.21)

and

Gst(NCO + 1) = Gst(NCO)
W̃1(NCO)

W̃2(NCO + 1)
. (7.22)

This implies that, for any relative maximum of Gst(NCO)

W̃1(NCO − 1)

W̃2(NCO)
> 1, (7.23)
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and
W̃1(NCO)

W̃2(NCO + 1)
< 1, (7.24)

or equivalently

W̃1(NCO − 1) − W̃2(NCO) > 0, (7.25)

and

W̃1(NCO) − W̃2(NCO + 1) < 0. (7.26)

Now we define a new function α(NCO) by

α(NCO) = W̃1(NCO − 1) − W̃2(NCO). (7.27)

We see that the preceding two inequalities can be written more simply as

α(NCO) > 0, (7.28)

and

α(NCO + 1) < 0. (7.29)

Finally, a N st
CO integer is a relative maximum of Gst(NCO) if:

α(N st
CO) = 0, (7.30)

and

α
′

(N st
CO) < 0. (7.31)

In our reduced model for CO oxidation with adspecies repulsions we have:

α(N st
CO) = pCO

[

(A − 2N st
O )4

(A − N st
O )3

− (N st
CO − 1)

]

− dN st
CO − 4kN st

CON st
O

A
= 0, (7.32)

and

α
′

(N st
CO) = −pCO − d − 4kN st

O

A
< 0, (7.33)

where N st
O is obtained from

0 ≈ W4(NO − 2)H(NO − 2 : N st
CO; t) − W4(NO)H(NO : N st

CO; t)

+W3(NO + 1)H(NO + 1 : N st
CO; t) − W3(NO)H(NO : N st

CO; t). (7.34)



HYBRID MODELS WITH LATERAL REPULSIONS 135

Figure 7.2(a) shows α(NCO) as a function of NCO. Note that the intersections of

α(NCO) with 0 are the stable and unstable states of our reduced model with adspecies

repulsions. In Fig.7.2(b), the bifurcation diagram is shown for A = 1000. Note that this

bifurcation diagram can change as a function of A [95, 143, 146].

7.3.3 Critical Fluctuations and the dependence of fluctuations on the

system size

In this section, we study the fluctuations near the critical point of a phase diagram shown

in Fig. 7.2(a), and the fluctuations as a function of the system size A. It is a well known

that the fluctuations increase near a critical point and that far away from a critical point

the fluctuations are inversely proportional to the system size [79].

Critical fluctuations

In order to estimate the magnitude of fluctuations near the critical pint of a phase diagram,

we plot in Fig. 7.3 the amplitude of fluctuations versus d for fixed pCO near the critical

point. We consider for simulations the original system without adiabatic elimination of

oxygen coverage. The magnitude of fluctuations is

FF =

∑T
t=0[NCO(t) − µ]2

Tµ2
, (7.35)

where

µ =

∑T
t=0 NCO(t)

T
. (7.36)

As d approaches dC , FF increases drastically.

Fluctuations as a function of system size

An appropriate measure of the relative size of the fluctuations is the coefficient of variance,

which is defined as the ratio of the variance to the mean square [172]. The stationary

coefficient of the variance can be written as

CV =
V ar

µ2
, (7.37)

where

V ar =
〈

N2
CO

〉

− 〈NCO〉2 , (7.38)
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and again

µ = 〈NCO〉 . (7.39)

In order to derivate analytical expressions for the variance, we calculate the stationary
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Figure 7.2: (a) α(NCO) as a function of NCO for A = 100000, pCO = 0.4, and d = 0.4. (b)

Bifurcation diagram from the reduced model in the parameter space (d, pCO) for A = 1000.
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moments in the following way:

The general stationary master equation reads

0 = W̃1(NCO − 1)Gst(NCO − 1) + W̃2(NCO + 1)Gst(NCO − 1)

−(W̃1(NCO) + W̃2(NCO))Gst(NCO), (7.40)

where the stationary moments we need are

〈NCO〉 =
∑

NCO

NCOGst(NCO; t), (7.41)

and
〈

N2
CO

〉

=
∑

NCO

N2
COGst(NCO; t). (7.42)
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Figure 7.3: Amplitude of fluctuations versus d from the original system without adiabatic

elimination of oxygen with pCO = 0.552 and A = 1000.
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After some algebra, it is easy to show that the ”first moment” is derived from [4]

0 =
2
∑

ρ=1

vρ

〈

W̃ρ(NCO)
〉

. (7.43)

Thus, in our case

0 = pCO

[

(A − 2NO)4

(A − NO)3
− 〈NCO〉

]

− d 〈NCO〉 −
4k 〈NCO〉NO

A
, (7.44)

or

〈NCO〉 =
pCO(A − 2NO)4/(A − NO)3

pCO + d + 4NO/A
. (7.45)
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Figure 7.4: CV versus A with d = 0.4 and pCO = 0.5. Dashed line correspond to simula-

tions of the whole system, and solid line to Eq. 7.48.
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On the other hand, to obtain the ”second moment” we have to solve

0 = 2
2
∑

ρ=1

vρ

〈

NCOW̃ρ(NCO)
〉

+
2
∑

ρ=1

v2
ρ

〈

W̃ρ(NCO)
〉

. (7.46)

Then, after some algebra

〈

N2
CO

〉

− 〈NCO〉2 =
d + 4NO/A

pCO + d + 4NO/A
〈NCO〉 . (7.47)

Finally, for the reduced model the coefficient of the variance is

CV =
1

〈NCO〉
d + 4NO/A

pCO + d + 4NO/A
∝ 1

A
. (7.48)

Figure 7.4 shows CV versus A. Dashed line corresponds to simulations of the original

system, and solid line to Eq. 7.48.

7.3.4 Fluctuations about a stable state

We shall be concerned here with fluctuations about a stable state N st
CO which is located

in the highest point of a well resolved peak in the function Gst(NCO). We start assigning

to each stable state a nominal width χ(N st
CO). We shall define χ(N st

CO) to be the effective

width of the Gaussian shaped curve that best fits Gst(NCO; t) in the immediate neighbor-

hood of the peak point N st
CO. To obtain an expression for χ(N st

CO), we begin by estimating

the first derivative of Gst(NCO) as

Gst′(NCO) ≈ Gst(NCO) − Gst(NCO − 1)

1
= Gst(NCO − 1)

W̃1(NCO − 1)

W̃2(NCO)
− Gst(NCO − 1).

(7.49)

A final approximation yields

Gst′(NCO) ≈ Gst(NCO)

W̃2(NCO)
α(NCO). (7.50)

Using the properties of α(NCO), we find that the second derivative of Gst(NCO) eval-

uated in N st
CO is given by

dGst′(NCO)

dt
≈ −Gst(N st

CO)

∣

∣

∣

∣

∣

α′(N st
CO)

W̃2(N
st
CO)

∣

∣

∣

∣

∣

. (7.51)
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Figure 7.5: (Color online) Time series of NCO(t) with pCO = 0.4, and d = 0.4. Dotted lines

correspond to N st
CO ± χ(N st

CO)/2. Simulations represented by the solid lines are obtained

from the original system. (a) A = 100000. (b) A = 1000.
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Finally, if we identity the previous calculations with the problem of estimating the width

and area of a function peak, it is possible to show that [74]

χ(N st
CO) =

∣

∣

∣

∣

∣

2πW̃2(N
st
CO)

α′(N st
CO)

∣

∣

∣

∣

∣

. (7.52)

If the peak in the function Gst(NCO) at N st
CO is roughly symmetric and does not

significantly overlap any adjacent peak, we shall say that

NCO(t) ∈ [N st
CO − χ(N st

CO)/2, N st
CO + χ(N st

CO)/2]. (7.53)

To illustrate this results, consider our reduced model inside the bistable range with

pCO = 0.4, and d = 0.4. For the case when A = 100000, the two stable states are

(N st
CO = 2667, N st

O = 25710) and (N st
CO = 46675, N st

O = 683). Thus, one obtain from

Eq. 7.52

N st
CO ± χ(N st

CO)/2 ≈ 2667 ± 57.2, (7.54)

and

N st
CO ± χ(N st

CO)/2 ≈ 46675 ± 194.5. (7.55)

On the other hand, for A = 1000 the two stable states are (N st
CO = 27, N st

O = 263) and

(N st
CO = 464, N st

O = 7) and we obtain

N st
CO ± χ(N st

CO)/2 ≈ 27 ± 5.8, (7.56)

and

N st
CO ± χ(N st

CO)/2 ≈ 464 ± 19.5. (7.57)

Figure 7.5 summaries this results. Dotted lines correspond to χ(N st
CO)/2. Simulations

represented by the solid lines are obtained from the original system (without adiabatic

elimination of oxygen coverage).

7.4 Summary and conclusions

A stochastic hybrid model for CO oxidation on metal surfaces with CO−CO and CO−O

adspecies repulsions was introduced. After adiabatic elimination of the fast oxygen vari-

able, an 1-d reduced version of this model is obtained. The fast NO variable is simulated
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using the Gillespie algorithm which produces numerical solutions of the master equa-

tion 7.18 for NCO fixed. As in previous chapters we derived a master equation for NCO

which in our case is soluble. However, in some cases this type of master equations not sol-

uble and other approximations are required. Motivated by this, we use a different method

to study our reduced model. This method allows us to obtain the bistable phase diagram

in the parameter space (d, pCO) without having to solve solve Eq. 7.17. We derived expres-

sions for the first two moments of NCO in order to study the fluctuation behavior. These

moments allow us to obtain analytical expression for the coefficient of the variance, and

thus to study critical and system size fluctuations as well as the fluctuations around stable

states. The results showed in this chapter correspond a starting point to more detailed

studies of fluctuations in CO oxidation with adspecies repulsions.
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Chapter 8

Conclusions

8.1 Summary and outlook

The study of chemical processes on nanometer scale surfaces where the internal fluctu-

ations are potentially large are not only of academical importance but provide also a

challenge for the practical design of catalysts. This has been the motivation in recent

years to study experimentally and theoretically these nanosystems. In this Thesis the

role of internal fluctuations in the kinetic bistability of CO oxidation on unreconstructed

metal surfaces of nanoscale dimensions was studied through a mean-field birth-death-type

master equation framework and Gillespie-type kinetic Monte Carlo simulations. From this

perspective, one only tracks the total numbers of different species and their increment and

decrement using macroscopic rate laws to model the respective transition rates (see Chap.

3). The models used in this Thesis for CO oxidation on nanoscale surfaces incorporate

both rapid diffusion of adsorbed CO, and adspecies repulsions. Three minimal interacting

models are introduced, the first one is appropriate for homogeneous systems with a large

diffusion length of CO, the second one is appropriate for limited diffusion conditions or

inhomogeneous systems, and the last one can be used to analyse both, homogeneous and

inhomogeneous systems.

It is well known that CO oxidation on structurally stable catalytical surfaces exhibits ro-

bust bistability (two stable kinetic stationary states coexist in the same parameter range).

In particular, experimental studies of CO oxidation on a Pt field emitter tip and on Pd

nanoparticle surfaces suggest that internal fluctuations can induce transitions between two

stable states (see Chap. 2 and Refs. [13, 15]). At low enough pressure, CO molecules can

diffuse very fast on a nanoscale surface and a well-stirred nanosystem is produced which

exhibits only homogeneous coverage or internal fluctuations. Thus spatially homogeneous
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transitions from one stable state to the other stable state and vice versa can be observed.

In Chap. 4, we analyzed a hybrid model for CO oxidation on nanoscale surfaces which

incorporates both rapid diffusion of adsorbed CO, and superlattice ordering of adsorbed

immobile oxygen on a square lattice of adsorbed sites (eight-site adsorption rule). Transi-

tion probabilities for each reaction step are derived allowing us to construct a stochastic

formalism through a mean-field birth-death-type master equation. This equation is re-

duced after adiabatic elimination of the oxygen variable. Finally, a reduced stochastic

hybrid model was obtained which was used to study the role of fluctuations in CO oxi-

dation under large diffusion length (Chap. 5 and 6). In Chap. 5, we analyzed the role

of internal fluctuations in the kinetic bistability of CO oxidation on surfaces well mixed

on a nanoscale. It was shown analytically that internal (coverage) fluctuations induce

transitions between the two stable kinetic stationary states of the bistable region. These

theoretical predictions derived from the reduced model have been found to be in reason-

able agreement with stochastic simulation of the original system by the Gillespie-type

kinetic Monte Carlo algorithm. In this way, our results are able to capture and to verify

experimental observation for fluctuation-induced transitions in CO oxidation on a Pt field

emitter tip and on Pd nanoparticle surfaces.

At high pressure, the diffusion length of CO molecules on surfaces is reduced and

the effects of adspecies interactions become important. Stochastic patterns (’raindrop

patterns’), experimentally observed in catalytic CO oxidation on Pt(110) at relatively high

pressure, were recently interpreted as being initiated by stochastic density fluctuations (see

Chap. 2 and Ref. [47]). In Chap. 6, stochastic effects are taken into account by dividing

the surface into a square lattice of nanoscale cells, each containing A adsorption sites. A

reaction-diffusion master equation for the probability of finding CO and oxygen coverage at

a time t, that allows local fluctuations, is introduced. We are able to solve this complicated

reaction-diffusion master equation after invoking the mean-field approach together with

the adiabatic elimination of oxygen. We showed, using mean-field theory and adiabatic

elimination techniques together with 2-d Gillespie-type kinetic Monte Carlo simulations,

that a first-order phase transition exists in a stochastic model for catalytic CO oxidation

under diffusion limited conditions. We were able to reproduce two-phase coexistence as

well as nucleation and growth of active islands embedded in an inactive phase. Finally, in

order to study the role of adspecies interactions in CO oxidation on nanoscale surfaces at

high pressure, a stochastic hybrid model for CO oxidation on metal surfaces with CO−O

and O−O adspecies repulsions was introduced in Chap. 7. In contrast to previous models,

CO molecules can be randomly distributed on sites not occupied by oxygen if this sites
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have not nearest-neighbor oxygen atoms. The eight-site adsorption rule for oxygen is also

implemented together with the restriction imposed by the CO − O adspecies repulsion.

After adiabatic elimination of the fast oxygen variable, an 1-d reduced version of this

model is obtained. We used a method that allows us to obtain the bistable phase diagram

in the parameter space (d, pCO) without having to solve any master equation. We derived

also expressions for the first two moments of the number of CO molecules. These moments

allowed us to study critical and system size fluctuations as well as the fluctuations around

stable states.

This Thesis provides a first attempt to the development of a general theoretical frame-

work in order to understand the role of internal fluctuations in the reaction kinetics of

heterogenous catalysis, in particular for catalytic CO oxidation on metal surfaces. Never-

theless, we expect to observe fluctuation-induced effects, like those presented in this work,

in many real catalytical reactions at high-, as well as in low-, pressure experiments, if these

reactions exhibit multistability.

8.2 List of specific results

We will now summaries our main novel results divided by chapters. The results of this

Thesis open many possible extensions, and some of the possible prospectives that could

be studied in the future are discussed in the last section of this chapter.

Chapter 4: Reduced stochastic kinetic model (Ref. [51]).

• Using transition probabilities for each reaction step a hybrid master equation de-

scription of our model for CO oxidation which incorporates both rapid diffusion

of adsorbed CO, and O − O adsorbed repulsions was derived (Sec. 4.4). It was

shown that this model in the deterministic limit exhibits bistability in the parame-

ter space (d, pCO) (Sec. 4.3). In the hybrid approximation CO adsorbed molecules

are randomly distributed on sites not occupied by oxygen adsorbed atoms.

• After showing in Fig. 4.3(a) that the nullcline dθO/dt (solid line) is rapidly reached

from any initial conditions, the oxygen variable is adiabatically eliminated from the

master equation, and a reduced one-component model is obtained (Sec. 4.5).

• Based on the previous adiabatic elimination of the fast oxygen, the slow variable

represented by the number of the CO adsorbed molecules is represented by a soluble

one-step master equation. On the other hand, the fast oxygen variable is represented
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by a more complicated master equation for Hst(NO : NCO = const). In Fig. 4.3(b),

it was shown that Hst(NO : NCO = const) is a sharply peaked monomodal func-

tion around NO. Using this results, the fast oxygen variable is modelled by the

deterministic equation derived from the transition probabilities that only affect this

fast variable (Sec. 4.5). The adiabatic elimination of fast oxygen signifies a great

advance because it allows us to obtain analytical solutions in our model which can

be compared with stochastic simulations and real experiments (Sec. 4.5).

Chapter 5: Fluctuation-induced transitions (Ref. [51]).

• It was shown that the reduced deterministic hybrid model still is able to produce

bistability in the parameter space (d, pCO) (Sec. 5.2.1).

• Using the Gillespie algorithm it was show that the stochastic version of the original

model introduced in Chap. 4 is able to produce fluctuation-induced transitions which

are similar to experiments with CO oxidation on a Pt field emitter tip and on Pd

nanoparticle surfaces (Sec. 5.2.1).

• From previous results, it is clear that the deterministic description is not enough

to describe kinetic processes at the nanoscale. Therefore, a stochastic description is

fundamental. Using the reduced one-step master equation for the slow variable rep-

resented by the number of CO adsorbed molecules, probability distribution functions

where obtained and verified by Gillespie stochastic simulations (Sec. 5.3.1).

• These analyses reveal an enhancement of fluctuations near the critical point for small

surfaces (Sec. 5.3.3 and Sec. 5.3.3)

• Analytical equations for the transition time between stable state are derived and

compered with stochastic simulations. Such analyses reveal that the rate of transi-

tions between stable states decreases exponentially with surface area (Sec. 5.3.3).

• It is shown that the transition times approach the relaxation time for small surface

areas. The relaxation time is theoretically derived.

Chapter 6: Fluctuation-induced first-order phase transitions (Ref. [52, 53]).

• In order to study stochastic effects under weak enough diffusion, a surface was di-

vided into a square lattice of M cells denoted by i, which are smaller than the

diffusion length. Each small cell was represented as a L × L = A square grid of
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adsorption sites. A reaction-diffusion master equation of this system was introduced

(Sec. 6.3).

• A mean-field approximation is applied to our reaction-diffusion master equation.

This allows us to construct a reduced one-step mean-field coupling master equation

which is analytically soluble after adiabatic elimination of the fast oxygen variable

(Sec. 6.4 and Sec. 6.5). The fast oxygen variable is again simulated by a determin-

istic approach.

• An effective potential is introduced from the probability distribution function ob-

tained above which was used to study the fluctuations (Sec. 6.6.1).

• An order parameter equation was derived from this analysis. The multiple solutions

of this complicated equation reflected the possibility of bifurcations that break the

ergodicity associated with the presence of a true first-order phase transition and

two-phase coexistence between a low coverage active steady state and a high cov-

erage inactive steady state. Bifurcation diagrams of the number of adsorbed CO

molecules verified this finding. Finally, a phase diagram in the parameter space

was constructed. This phase diagram is split in two regions. One region consists of

two stable solutions and one unstable solution of the order parameter corresponding

to three probability distribution functions. The second region is characterized by

only one probability distribution function corresponding to one stable solution of the

order parameter (Sec. 6.6.2).

• In order to verify the analytical predictions, simulations were carried out using two

different extentions of the Gillespie algorithm: i) First, a version of the Gillespie algo-

rithm with random local and nonlocal coupling was introduced. In this case, we have

random connections between cell through CO adsorbed diffusion (Sec. 6.7.1). ii) In

the second case, a different version of the Gillespie algorithm incorporing local cou-

pling or normal diffusion, which describes correctly a 2-d surface, was constructed.

Here, CO adsorbed molecules can jump only to nearest-neighbor cells (Sec. 6.7.2).

The simulation results were in accordance with theoretical predictions.

• It was demonstrated that the phenomenon of nucleation and growth giving rise to

transitions between the stable states of the phase diagram previously obtained from

the theory. We observed that first one island with a composition corresponding to

active state is formed and then this island starts to growth as a function of time.
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This growth stops when the surface is completely covered by the active stable state

(Sec. 6.7.3).

Chapter 7: A reduced stochastic hybrid model with adspecies repulsions (Ref.

[54]).

• The so-called cluster approximation was used to construct a stochastic hybrid mean-

field model for CO oxidation on nanoscale surfaces with CO−O and O−O adspecies

repulsive interactions. In this case, CO molecules can be randomly distributed on

sites not occupied by oxygen if this sites have not nearest-neighbor oxygen atoms

(Sec. 7.2.1).

• An alternative method, where master equations have not to be solved, allows us to

demonstrate that the reduced version of the original model presents bistability in

the parameters space (Sec. 7.3).

• In order to study critical fluctuations and fluctuations depending on the system size,

the first two moments of the number of CO molecules where analytically derived.

They allow us to obtain an analytical expression for the coefficient of the variance

which showed that the fluctuations increase near the critical point and that also

increase decreasing surface area (Sec. 7.3.3).

• Finally, the fluctuations around the stable states are analytically estimated by us-

ing the effective width of the Gaussian shaped curve that best fits the probability

distribution function of the number of CO adsorbed molecules in the immediate

neighborhood of the peak point of stability (Sec. 7.3.4).

8.3 Open issues

A short list of possible extentions, open questions, an applications of the previous results

is provided below:

• It could be interesting to compare the theoretical predictions and Gillespie-type

kinetic Monte Carlo simulations of this thesis with lattice-gas atomistic Monte Carlo

simulations. Typically, master equation descriptions of stochastic systems do not

take into account spatial correlations induced by adspecies interactions [49].

• The simulation of the fast oxygen variable by a deterministic equation should be

generalised to include the fluctuations that this variable produces.
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• Due to limited diffusion length at high pressure we expect to observe strong fluctua-

tion effects in a real catalytical reactions, if these reactions exhibit multistability. In

order to adapt the model to such situations, we need to take into account the ener-

getic interactions between the adparticles and non-isothermal conditions generated

by the reaction heat.

• Our reaction-diffusion model can in principle be used to study fluctuations on in-

homogeneous metal surfaces, where structural defects such steps or impurities are

present. The structural defects can be considered as small regions on the surface

with different kinetic parameters coupled by CO diffusion. An interesting extension

could also be to use stochastic models, like the master equation used in this Thesis,

in order to study an array of nanoparticles coupled globally through the gas phase

[173, 174, 175, 176, 177, 178]. An extention of our model to study CO oxidation on

a field-emitter tip is desirable.

• New experimental studies of the role of internal and external fluctuations in hetero-

geneous catalysis are desirable.

• The phase transition and the nucleation phenomena, described in this work, has to

be study in more detail both by numerical and real experiments. At the same time

new and more efficient spatial stochastic algorithmc must be development.

• The models used in this work are still simplistic. To precisely describe fluctuations

in actual systems, some other ingredients must be considered [18, 19, 20, 21]. Some

of these ingredients are:

1) Energetic interactions between adparticles.

Island formation on the surface.

Kinetic parameters as a function of coverage.

Non-Fickian diffusion.

2) Precursor kinetics for adsorption of CO molecules.

3) Surface defects (locally different kinetic parameters).

4) Substrate modification.

Adsorbate-induced structural phase transition.

Oxidation/reduction.

Catalytic activity.
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5) Non-isothermal effects at high pressure.



Appendix A

Notation and Symbols

N Total population in a chemical reaction

Z̃ Population vector

vρ Stoichiometric vector

P (Z̃; t) Probability of having a determinate number of molecules

Wρ(Z̃) Reaction transition probability

P reac Reaction probability distribution function

P diff Diffusion probability distribution function

M i
µ Diffusion transition probability

L2 Cell area

nj Occupancy of site j

n Configuration of the entire system

P (n; t) Probability for the system to be in a n configuration

ρ Reaction steps

τ Time for the next reaction in the Gillespie algorithm

NZ Number of sites not occupied by oxygen

NA Number of A

NB Number of B

θA A coverage

θB B coverage

k CO2 production rate

pCO CO adsorption rate

pO2
O adsorption rate

hCO CO diffusion rate



154 APPENDIX A. NOTATION AND SYMBOLS

hO O diffusion rate

d CO desorption rate

A Surface Area

E Empty sites

Z Sites not occupied by oxygen adatoms

{J} Fraction of sites in state J

{KJ} Probability of a specific KJ pair

NN Nearest-neighbor empty sites

NCO Number of CO molecules

NO Number of O atoms

θCO CO coverage

θO O coverage

N local
CO Local number of CO molecules in the hybrid approximation

G(NCO) Probability distribution for the number of NCO molecules

H(NO : NCO) Conditional probability distribution of oxygen

W̃1,2(NCO) Conditional expectation of W1,2(NCO)

FET’s Field emitter tips

KMC Kinetic Monte Carlo

T ac(NCO) Transition time from N a
CO to N c

CO

T ca(NCO) Transition time from N c
CO to Na

CO

φ(θCO) Effective potential

τrel Relaxation time

RDME Reaction-diffusion master equation

PDF Probability distribution functions

h Microscopic hop rate

Si
A Normalized sticking probability for oxygen

M Number of cells

Nm
CO Average value of CO molecules inside each cell

β(Nm
CO) Order parameter

MFCME Mean-field coupling master equation

PMF Mean-field probability distribution function

F (NO : NCO) Conditional probability distribution of oxygen

H1,2(NCO) Transition probabilities of the MFCME

Z+ Z site with nearest-neighbor oxygen atoms

Z− Z site with not nearest-neighbor oxygen atoms
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E+ Empty site with nearest-neighbor oxygen atoms

E− Empty site with not nearest-neighbor oxygen atoms

FF Amplitude fluctuations

µ Mean value

CV Coefficient of the variance

V ar Variance

χ(N st
CO) Nominal width

ξ1,2(t) Gaussian white noise
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Appendix B

Cluster approximation for

lattice models

The cluster approximation start with the probabilities {X1X2 · · ·Xj} that any j

consecutive sites be in the states X1X2 · · ·Xj . Any lattice model can be defined in

terms of j-cluster processes, X1X2 · · ·Xj → Y1Y2 · · · Yj, occurring at some specified

rate. For example, a system where each site can be in only one of two states, A or

B, with the process AA → BB taking place at rate k. Whenever the AA → BB

process occurs the number of BB pairs is increased a least by one. If the site to the

right (left) of the AA pair is in state B an additional BB pair is created. Thus

d{BB}
dt

= k{AA} + k{AAB} + k{BAA}. (B.1)

Similarly, a rate equation for {BAA} would involve four-site clusters; a BAA state

is destroyed if the two rightmost sites in BAAA undergo a conversion to BB. This

results an infinite hierarchy of rat equations for increasing cluster sizes. The cluster

method consists in approximating large cluster probabilities in terms of the probabil-

ities of no larger than n-site clusters (n is then called the size of the approximation).

Implicit in the cluster method is the assumption that the system is translationally

symmetric; cluster probabilities are independent of the position of the cluster on the

lattice. Consider a system where each site can either empty (state E) or occupied

by an A particle (state A). Then, for example,

{AA∗} = {AAA} + {AAE} = {AAA} + {EAA} = {AA}, (B.2)
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where ∗ indicates an unspecified state. The resultanting relation {AAE} = {EAA}
follows solely from translation invariance. Finally, we can also consider the normal-

ization condition:
∑

X1X2···Xj

{X1X2 · · ·Xj} = 1. (B.3)

B.1 The (n, m) approximation

Consider the following approximation

{X1X2 · · ·XnXn+1 · · ·} = {X1X2 · · ·Xn}{Xn+1 · · ·}. (B.4)

Because it assumes zero overlap between adjacent n-clusters, we term it the (n, 0)

approximation. In the next level of complexity, we allow for an overlap of one site

between adjacent clusters and account for correlations resulting from this overlap.

In the (n, 1) approximation, we have then

{X1X2 · · ·XnXn+1 · · ·} = {X1X2 · · ·Xn}
{XnXn+1 · · ·}

{Xn}
. (B.5)

As an example, consider a six-cluster in the state ABCDEF. In the (3,m) class its

probability would be given by:

1) (3, 0) approximation

{ABCDEF} = {ABC}{DEF}. (B.6)

2) (3, 1) approximation

{ABCDEF} = {ABC}{CDE}
{C}

{EF∗}
{E} . (B.7)

3) (3, 2) approximation

{ABCDEF} = {ABC}{BCD}
{BC}

{CDE}
{CD}

{DEF}
{DE} . (B.8)

Notice that only the expression for the (3, 2) approximation satisfy translational
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invariance. Care should be taken to properly account for all possibilities and to

preserve thereby the fundamental property of translational invariance. The (n, n−1)

approximation is the most elegant, in that it takes care of translational symmetry

automatically. In particularly, the (2, 1) approximation is the approximation used

in this thesis. It is know a the ”pair approximation” in the literature. We have

considered in this analysis only an one-dimensional lattice, but an extention to two-

dimensional lattices is easy.
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Appendix C

Adiabatic reduction of fast

variables

We consider the general chemical master equation of the reactive stochastic process

with the number of reaction channels ρ = 1, 2, ..., r. One can partition the systems

in two subsets: the fast and the slow variables.

By splitting state vector Z̃ into the slow variables vector X and the fast variables

vector Y

Z̃ = {X,Y} , (C.1)

and

vρ =
{

vx
ρ ,vy

ρ

}

. (C.2)

We decompose the joint probability as

P (X,Y; t) = G(X; t)H(Y : X; t), (C.3)

where H(Y : X; t) is the conditional probability for X kept constant. We also require

∑

X

G(X) = 1, (C.4)

∑

Y

H(Y : X) = 1. (C.5)

Inserting Eqs. (C.3) into the master equation and summing up over Y, we obtain



162 APPENDIX C. ADIABATIC REDUCTION OF FAST VARIABLES

d

dt
G(X; t) =

r
∑

ρ=1

[W̃ρ(X− vx
ρ/X)G(X − vx

ρ ; t) − W̃ρ(X/X − vx
ρ )G(X; t)], (C.6)

where

W̃ρ(X) =
∑

Y

Wρ(X,Y)H(Y : X), (C.7)

is the conditional expectation of Wρ(X,Y).

Furthermore, we suppose that H(Y : X) approximately satisfies the one-dimensional

chemical master equation obtained when X is kept constant.

d

dt
H(Y : X; t) =

rn
∑

ρ=1

[Wρ(Y−vy
ρ /Y)H(Y−vy

ρ : X; t)−Wρ(Y/Y−vy
ρ )H(Y : X; t)],

(C.8)

where rn represents the number of reaction channels affecting the fast species.

To avoid time dependencies and dependence on the initial condition of the fast vari-

able Y in the conditional expectation W̃ρ(X) we assume time separation between

Y and X. H(Y : X; t) as the distribution of the fast variable will quickly relax to

a conditional stationary distribution Hst(Y : X) with a vanishing left hand side in

Eq. (C.8). Hst(Y : X) can be used to define the conditional moments in the transi-

tion population Eq. (C.7) and it is now possible to obtain G(X;t) from Eq. (C.6).

If Hst(Y : X) is a sharply peaked unimodal function one can replace the conditional

moments by products of the first conditional moments, neglecting higher correla-

tions. The latter can be obtained from finding the attracting stationary set of the

corresponding deterministic equations, which are obtained from the chemical master

equation when A−→∞.
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Mean-field approximation

Mean-field approximation (MFA) constitutes the first approach to the analysis of

spatially extended systems. It is very useful to predict phase transitions, both in

equilibrium[179] and away from equilibrium [5, 7]. It is more powerful than simple

stability analysis. Nevertheless, it does not give accurate quantitative information,

for example, it does not predict correctly either the position of transition points or

the true values of the critical exponents. The MFA can be applied to stochastic

partial differential equation (SPDE), to Fokker-Planck equation or to the master

equation. Here for simplicity, we consider the use of this approximation as applied

to a SPDE’s, but a generalization to master equations is possible.

Consider a generic reaction-diffusion model with additive white noise1,

dθ

dt
= f(θ) + D∇2θ + ξ(r, t), (D.1)

where ξ(r, t) is the white noise. Multiplicative noise can be considered as well [5, 7].

Eq. D.1 can be written in a lattice if the Laplacian operator is discretized as

∇2θ(x, t) =
∑

j

∇2
ijθj(t) =

1

∆x2

∑

j∈nn(i)

(θj − θi), (D.2)

where nn(i) denotes the set of 2d nearest neighbors of cell i.

1White noise is a random signal (or process) with a flat power spectral density. In other words, the

signal’s power spectral density has equal power in any band, at any centre frequency, having a given

bandwidth. White noise is considered analogous to white light which contains all frequencies.
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The MFA is implemented via the following assumption:

∑

j

∇2
ijθj(t) =

2d

∆x2
(〈θ〉 − θi). (D.3)

In that way, the MFA looks for uniform solutions of the field, θ = 〈θ〉, by neglecting

its local fluctuations,
∑

j∈nn(i)(θj − 〈θ〉) ≈ 0.

The MFA equation become exact or situations in which the field at each site interacts

with all other sites in the thermodynamic limit. The next step is evaluation of the

quantity 〈θ〉, which is interpreted as the first statistical moment of the field, and

accordingly it is defined as

〈θ〉 = β(〈θ〉) =

∫

dθθP (θ, 〈θ〉 , t), (D.4)

where P (θ, 〈θ〉 , t) is the probability distribution, which obeys a Fokker-Planck equa-

tion [7].

Equation D.4 is a self-consistently equation, since the probability distribution de-

pends itself on the unknown average 〈θ〉. Hence, solving the MFA is reduced to

finding the set of solutions of this self-consistency equation. 〈θ〉 is the order param-

eter which can make predictions on the possible existence of a phase transition. A

phase transition occurs, for instance, when the system leaves the state 〈θ〉 = 0, cor-

responding to a disordered phase, to reach a state 〈θ〉 6= 0, representing an ordered

phase.

Figures D.1(a) and D.1(b) show how to find these solutions graphically. Figure D.1(a)

corresponds to a continuous phase transition, while Fig. D.1(b) depicts a discontin-

uous one, in which the empty circle is the unstable solution and the black circles are

the stables states.

The MFA is very useful for predicting the existence of phase transitions, but the

location of the transitions points is notoriously inaccurate. Several attempts have

been made to improve the quantitative accuracy of the method [180, 181].
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(b)

Figure D.1: Schematic figure describing the solution of the self-consistency equation D.4.



166 APPENDIX D. MEAN-FIELD APPROXIMATION



Appendix E

Spatial stochastic algorithm

The algorithm described below generates an exact realization of the Markov process

described by the corresponding master equations. A surface is divided into a square

lattice of i = 1, ...., N cells with periodic boundary conditions, which are at the same

time regarded as well mixed and therefore are chosen to be smaller than the diffusion

length. Each small cell is represented as a L×L = A square grid of adsorption sites.

The idea is to determine in which subcell an event occurs first. A single event can

change the state of only two subcells. If the event was a chemical reaction, the next

event time has to up-dated only for the subcell where it occurred. If the event was a

jump out, next event times have to be up-dated for the subcell from which the jump

occurred and for the subcell to which the molecule or atom jumped. Note that we

consider in the following algorithms the abiabatic elimination of oxygen.

E.1 Random local and nonlocal interaction

Initialization

1. Distribute the initial numbers of molecules between the subcells.

2. Calculate the sum of the reaction rates for each subcell mi =
∑r

ρ=1 Wρ, where r

is the number of reaction channels.

3. Calculate the sum of the random local and non local diffusion rates si =
∑2

ρ=1 Wρ,

where 2 represents the jump out and the jump in channels.

4. For each subcell i:
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a) Sum the reaction and the random local and non local diffusion rates mi +si (total

rate).

b) Generate a random number rand(1) uniformly distributed between 0 an 1.

c) Calculate the first event time for each subcell as

τ =
1

mi + si
ln

[

1

rand(1)

]

. (E.1)

5. Choose the subcell where the next event occurs first.

Iterations

6. Assume that iα is the subcell in which the next event occurs. Generate a random

number rand(2) between 0 and 1, choose a channel according to

µ=ρ−1
∑

µ=1

Wµ < rand(2)(mi + si) ≤
µ=ρ
∑

µ=1

Wµ, (E.2)

note that ρ = 1, ..., r + 2.

7. Reaction event:

a) Update the state of the subcell iα according to the state changes by reaction

b) Recalculate miα + siα for the subcell iα, generate a new random number rand(3)

and calculate the time of the next event as

τiα =
1

miα + siα

ln

[

1

rand(3)

]

+ t. (E.3)

c) Recalculate the total rate for the other cells as well as the times of the next

reaction.

8. Diffusion event:

a) The direction of the diffusion event is chosen by ”randomly selecting any subcell”.

b)Update the state of both subcells iα and the other cell iβ.

c)Recalculate the sum miα + siα and miβ + siβ , sample the time to the next event

in the subcells as in 7b.

9. Return to 6 for the next iteration.
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E.2 Local (diffusive) interaction

Initialization

1. Distribute the initial numbers of molecules between the subcells.

2. Calculate the sum of the reaction rates for each subcell mi =
∑r

ρ=1 Wρ, where r

is the number of reaction channels.

3. Calculate the sum of the random local and non local diffusion rates si =
∑2

ρ=1 Wρ,

where 2 represents the jump out and the jump in channels.

4. For each subcell i:

a) Sum the reaction and the random local and non local diffusion rates mi + si.

b) Generate a random number rand(1) uniformly distributed between 0 an 1.

c) calculate the first event time for each subcell as

τ =
1

mi + si
ln

[

1

rand(1)

]

. (E.4)

5. Choose the subcell where the next event occurs first.

Iterations

6. Assume that iα is the subcell in which the next event occurs. Generate a random

number rand(2) between 0 and 1, choose a channel according to

µ=ρ−1
∑

µ=1

Wµ < rand(2)(mi + si) ≤
µ=ρ
∑

µ=1

Wµ, (E.5)

note that ρ = 1, ..., r + 2.

7. Reaction event:

a) Update the state of the subcell iα according to the state changes by reaction

b) Recalculate miα + siα for the subcell iα, generate a new random number rand(3)

and calculate the time of the next event as

τiα =
1

miα + siα

ln

[

1

rand(3)

]

+ t. (E.6)
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c) Recalculate the total rate for the nearest-neighbor cells as well as the times of the

next reaction.

8. Diffusion event:

a) The direction of the diffusion event is chosen by ”randomly selecting a nearest-

neighbor subcell”.

b) Update the state of both subcells iα and the ”neighbor” cell iβ .

c) Recalculate the sum miα + siα and miβ + siβ , sample the time to the next event

in the subcells as in 7b.

d) Recalculate the total rate for the nearest-neighbor cells of iα and iβ as well as the

times of the next reaction.

9. Return to 7 for the next iteration.



Appendix F

Rate equations from the (2,1)

approximation

F.1 Rate equation for θCO

Consider the following equation

d{CO}
dt

= pCO{E−} − d{CO} − 4k







O

CO







. (F.1)

Using the (2,1) or pair approximation, it is possible to write

{E−} =



















Z

Z Z Z

Z



















− {CO} =
{ZZ}4

{Z}3
− {CO}, (F.2)

and






O

CO







≈ {CO}{O}. (F.3)

Then using

{ZZ} = 1 − {OO} − 2{O}, (F.4)

with

{Z} = 1 − {O}, (F.5)
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where {OO} = 0, it is easy to show that

{ZZ}4

{Z}3
=

(1 − 2{O})4
(1 − {O})3 . (F.6)

Finally considering that {O} = θO and {CO} = θCO, we obtain

dθCO

dt
= pCO

[

(1 − 2θO)4

(1 − θO)3
− θCO

]

− dθCO − 4kθCOθO, (F.7)

F.2 Rate equation for θO

Consider the following equation

d{O}
dt

= 2pO2



























E

E E− E

E E− E

E



























− 4k







O

CO







. (F.8)

Using the hybrid approximation, it is possible to write
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[

1 − {CO}
{Z−}

]2

. (F.9)

Then, after apply the pair or (2,1) approximation
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E Z− E

E Z− E
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=
{EZ−}8

{E}2{Z−}6
, (F.10)

where

{EZ−} = {E−Z−} + {E+Z−} = {Z−Z−}
[

1 − {CO}
{Z−}

]

+ {Z+Z−}, (F.11)
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and

{Z+Z−} + {Z−Z−} = {Z−}, (F.12)

or

{Z+Z−} = {Z−} − {Z−Z−}, (F.13)

Finally, it is easy to shown that

{EZ−} = {Z−} − {Z−Z−}{CO}
{Z−} , (F.14)

where

{Z−Z−} =



















Z Z

Z Z Z Z

Z Z



















=
{ZZ}7

{Z}6
. (F.15)

Using previous equations and after some algebra

{EZ−} =
(1 − 2{O})3
(1 − {O})3 (1 − 2{O} − {CO}), (F.16)

{EZ−}8

{E}2{Z−}6
=

(1 − 2{O} − {CO})8
(1 − {O})6(1 − {O} − {CO})2 , (F.17)

and
[

1 − {CO}
{Z−}

]2

=

[

1 − (1 − {O})3{CO}
(1 − 2{O})4

]2

. (F.18)

Finally considering that {O} = θO and {CO} = θCO, we obtain

dθO

dt
= 2pO2

[

(1 − 2θO − θCO)8

(1 − θO)6(1 − θO − θCO)2

] [

1 − (1 − θO)3θCO

(1 − 2θO)4

]2

− 4kθCOθO. (F.19)
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[96] M. Bär, Ch. Zülicke, M. Eiswirth, and G. Ertl, J. Chem. Phys. 96, 8595 (1992).

[97] S. Ladas, R. Imbihl, and G. Erlt, Surf. Sci. 219, 88 (1989).

[98] S. Völkening and J. Wintterlin, J. Chem. Phys. 114, 6382 (2001).

[99] J. Wintterlin, S. Völkening, T. V. W. Janssens, T. Zambelli, and G. Erlt,

Science 278, 1931 (1997).

[100] D.-J Liu and J. W. Evans, Phys. Rev. B. 70, 193408 (2004).

[101] D.-J Liu and J. W. Evans, Multiscale Modelling Simul. 4, 424 (2005).

[102] E. W. James, C. Song, and J. W. Evans, J. Chem. Phys. 111, 6579 (1999).

[103] J. W. Evans and M. S. Miesch, Surf. Sci. 245, 401 (1991).

[104] R. D. Vigil and F. T. Willmore, Phys. Rev. E. 54, 1225 (1996).

[105] J. J. Luque, Phys. Rev. A. 42, 3319 (1990).



180 BIBLIOGRAPHY
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