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Abstract 

Protected cultivation in the tropics is permanently challenged with both high heat and 

humidity on the one hand and the risk of arthropod pests’ infestation on the other 

hand. Cladding the sidewalls of greenhouses with porous nets can considerably 

improve ventilation and reduce heat and humidity overload; however, crops within 

these greenhouses are vulnerable for the immigration of herbivorous insect pests, 

especially such tiny and mobile insects as thrips. Hence, ventilation efficiency is 

conflicting with insect impermeability (“thrips tightness”) of greenhouse covering 

materials. Additional properties of the greenhouse constructions or supplementing 

measures are desired to compensate for the poorness of physical exclusion. One 

environmentally friendly promising solution is to hinder the immigration of insects 

through disturbing their visual abilities. Insects with optical orientation strongly rely 

upon solar ultraviolet radiation (UV) (ranging from 340 to 390 nm) for navigation, 

dispersal and host location. Hence, modifying the natural UV portion in the ambient 

solar spectrum, by either eliminating UV transmittance into netted greenhouses or by 

excessive reflection from mulched ground, can cause visual disorders and disturb 

pest orientation and host recognition behaviour. Therefore, in the herein study we 

investigated the effects of visual disturbance caused by modifying solar UV intensity 

inside netted greenhouses on the immigration, distribution and population growth of 

Ceratothripoides claratris, a destructive thrips pest species of tomato plants in 

Central Thailand. Moreover, the incidence and spread of thrips transmitted Capsicum 

chlorosis virus (CaCV) was considered. All experiments were realized in 

greenhouses at the Asian Institute of Technology (AIT) from 2005 to 2007, within the 

frame of the DFG research group FOR 431 “Protected cultivation – an approach to 

sustainable vegetable production in the humid tropics”. 

In the first series of experiments, the effect of UV free environments on thrips flight 

and dispersal behaviour was studied. The transmittance of UV into the greenhouses 

was drastically reduced by means of UV absorbing plastic films (roof cover) and nets 

(sidewall cladding). Consequently, greenhouses with different internal UV intensity 

regimes were constructed using both, either UV absorbing or transmitting plastic films 

and nets in different combinations. UVA measurements confirmed the almost 

complete exclusion of the solar UV in greenhouses, where UV absorbing plastics and
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nets were combined. This effect was slightly impaired when UV transmitting net was 

used at the sidewalls. When UV transmitting plastics were combined with the UV 

absorbing nets the UV transmission was not significantly reduced compared to the 

conventional UV transmitting greenhouses with neither UV absorbing plastic films nor 

nets. The results clearly demonstrate the superior UV exclusion effect by UV 

absorbing plastic roof cover than by sidewall nets. 

To evaluate the response of C. claratris to either higher or lower UV intensity 

regimes, every two greenhouses clad with either UV absorbing and/or transmitting 

plastic roofs and net sidewalls were connected by a black compartment, which 

served as artificially release unit for the thrips. The results demonstrated a clear 

preference of C. claratris to compartments with higher UV intensities. 

The preference and exclusion effects for thrips by UV manipulating greenhouses 

were further studied with four independent greenhouse constructions with same 

combinations of cladding materials as described above. With sticky cards exposed 

outside close to the sidewall nets, a fewer number of thrips were trapped at UV 

absorbing greenhouses, which suggests a lower attraction of the thrips to these 

greenhouse constructions, compared to those with UV transmitting covers. 

Subsequently, lower numbers of C. claratris were observed inside UV poor 

greenhouses on traps adjacent to the inner net walls as well as on exposed tomato 

plants, clearly showing a strong reduction of thrips penetration through the nets in 

relation to the decrease of inner UV intensity. The combined effect of the UV 

absorbing plastic and net materials resulted in a remarkable thrips free zone inside 

this greenhouse type compared to high thrips infestation and virus infection of plants 

in greenhouses clad with UV transmitting plastic covers. The opening of entrances for 

additional ventilation purposes impaired the excellent protection effect of UV 

absorbing greenhouse type, even though a significant protective effect was 

maintained in comparison to the UV transmitting covers. The thrips exclusion 

properties of conventional UV transmitting constructions could be improved simply by 

extending the UV absorbing plastic roof outside and upright to the sidewalls like a 

collar. The so established UV poor buffer zone around the greenhouses considerably 

reduced movement of thrips towards the sidewall nets and immigration through this 

barrier.
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In addition to the deterrent effect, the dispersal of C. claratris under different regimes 

was studied. Thrips were released on single plants (simulation of artificial introduced 

hot spots) under UV absorbing covers compared to UV permeable conditions. In 

general, the dispersion potential of C. claratris was low regardless of the UV light 

regimes. Most of the released thrips tended to remain on plants adjacent to the 

release plants. However, under the UV deficient conditions shorter dispersal 

distances could be recorded and different slopes in the regression analysis indicated 

higher clumping rates around the release points compared to ‘‘normal’’ UV 

conditions.  

In the second sequence of experiments, possible deterrent effects of a reflective 

mulch film on the immigration of thrips was investigated. Silver mulch film reflecting 

approximately 30% of the incoming solar UV was used to cover the ground inside 

and/or outside conventional UV transmitting greenhouses. Results showed a delayed 

infestation of thrips compared to greenhouses with black mulch inside, which 

reflected only about 5% of UV. However, the delayed thrips immigration did not result 

in long term control of thrips population growth in the greenhouses. 

Infection intensity and spread of CaCV with time were closely associated with the 

temporal and spatial dynamics of the thrips vector, hence, the reduction of thrips 

infestation under poor UV regimes or by reflective mulches resulted in a decrease in 

the number of virus infected plants and stabilized yield considerably.  

In conclusion, the herein presented results strongly suggest that the manipulation of 

the visual orientation of thrips offers a promising control strategy for that pest in 

protected cultivation systems in the tropics. 

Keywords: UV absorbing plastics and nets, reflective mulch, tropical greenhouse 

constructions, thrips Ceratothripoides claratris, immigration, dispersal, Capsicum 

Chlorosis-Virus (CaCV). 
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Zusammenfassung 

Geschützte Anbausysteme in den humiden Tropen sind mit zwei wesentlichen 

Herausforderungen konfrontiert: Kontrolle des internen Klimas mit hohen 

Wärmelasten und extremen Luftfeuchtigkeiten sowie Vermeidung der Einwanderung 

und/oder Einschleppung von Schadinsekten, die nach Etablierung im geschlossenen 

System aufgrund hoher Reproduktionsraten in einem quasi feindfreien Raum 

extremes Schadpotential aufbauen können. Die Abdeckung der Seitenwände 

tropischer Gewächshäuser erfolgt in der Regel mit Netzen. Diese bieten eine 

physikalische Barriere bei gleichzeitiger Möglichkeit intensiver Ventilation. Je 

durchgängiger die Netze sind, desto günstiger können die inneren klimatischen 

Bedingungen gesteuert werden. Auf der anderen Seite reduziert sich die 

Ausschlussleistung von Netzen gegenüber Schadinsekten mit steigender 

Maschenweite. Insbesondere für extreme kleine und mobile Schädlinge wie Thripse 

bilden Ausschluss (“thripsdicht”) und Ventilaton einen unvereinbaren Zielkonflikt. 

Gefragt sind zusätzliche Eigenschaften der Gewächshauskonstruktionen oder 

ergänzende Maßnahmen, um die Durchlässigkeit der für eine Klimasteuerung 

geeigneten Netze für Schädlinge zu kompensieren. 

Eine vielversprechende Möglichkeit die Einwanderung von Schädlingen zu 

beeinflussen ist die Störung ihrer optischen Orientierung. Viele Insektenarten, 

insbesondere Phytophage, nutzen für ihre optische Orientierung, für die Navigation 

bei Langstreckenflügen, bei kleinräumigen Wanderbewegungen (Dispersionen) oder 

bei der Erkennung von Wirtspflanzen nicht nur das Differenzieren von Formen und 

Kontrasten, sondern auch Farbsehen und hier auch den kurzwelligen ultravioletten 

(UV) Anteil (zwischen 340 – 390 nm) des Lichtspektrums. 

Eine gezielte Manipulation des UV Anteiles im Lichtspektrum, beispielsweise durch 

Ausschalten der UV Einstrahlung in die hier diskutierten Netzgewächshäuser oder 

durch überproportional hohe Reflektion von bodendeckenden Mulchfolien kann das 

Orientierungsverhalten von Schädlingen nachhaltig stören. Deshalb wurde in der hier 

vorgelegten Studie der Einfluss modifizierter UV Einstrahlung in tropische 

Gewächshäuser untersucht, wobei Einwanderung, Verteilung und 

Populationswachstum von Ceratothripoides claratris, einer unter den beschriebenen 
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Anbaubedingungen an Tomatenkulturen äußerst destruktiven Thripsart im 

Vordergrund standen. Des Weiteren wurde das Auftreten und die Verbreitung des 

Tospovirus Capsicum chlorosis virus (CaCV), das von dieser Thripsart übertragen 

wird, berücksichtigt. Alle Experimente fanden in Versuchsgewächshäusern auf dem 

Campus des Asian Institute of Technology (AIT) zwischen 2005 to 2007 statt. Das 

Forschungsprojekt gehörte zum Programm der DFG-Forschergruppe FOR 431 

“Protected cultivation – an approach to sustainable vegetable production in the humid 

tropics”. 

In der ersten Serie von Experimenten wurde der Einfluss UV armer “Flugräume” auf 

Flugaktivität und Verteilung (Wahlverhalten) von C. claratris untersucht. Die UV 

Einstrahlung in Gewächshauskonstruktionen wurde durch den Einsatz UV 

absorbierender Dachfolien und Netze an den Seitenwänden der Häuser reduziert. 

Durch unterschiedliche Kombinationen jeweils UV absorbierender und UV 

durchlässiger Folien und Netze konnten in Versuchsgewächshäusern abgestufte UV 

Strahlungsintensitäten erzeugt und deren Effekte verglichen werden. Die 

differenzierten UV Anteile wurden durch Messungen der UV Strahlung erfasst. Diese 

Messungen bestätigten, dass bei Kombination von UV absorbierenden Dachfolien 

mit UV absorbierenden Netzen an den Seitenwänden eine nahezu vollständige 

Ausschaltung der internen UV Strahlung möglich ist. Mit UV durchlässigen Netzen an 

den Seitenwänden bei absorbierenden Dachfolien war die Filterwirkung nur leicht 

vermindert, hingegen deutlich bei der Kombination von durchlässigen Folien mit 

absorbierenden Netzen. Keine Filterwirkung ergab die Kombination von UV 

durchlässigen Materialen für Dach und Seitenwände.  

Zur Überprüfung des Wahlverhaltens von C. claratris wurden unterschiedliche 

Kleingewächshäuser (Kombinationen der Eindeckungen wie oben beschrieben) 

jeweils in Paaren miteinander so verbunden, dass sich zwischen unterschiedlichen 

Häusern (Flugräumen) ein beidseitig zu öffnender, abgedunkelter Käfig (“release 

box’’) für die Freilassung der Thripse befand. Diese konnten nach Freisetzung im 

Startkäfig ihre Orientierung frei wählen. Die Ergebnisse zeigten eine eindeutige und 

gestufte Präferenz von C. claratris entsprechend der UV Intensität in den 

Flugräumen. Die Ausschlussleistung der unterschiedlichen Häuser wurde danach 

unter miniaturisierten aber realistischen Bedingungen mit nicht kombinierten, 
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individuellen Versuchseinheiten (Kleingewächshäuser) weiter verfolgt. Dazu wurden 

einseitig fängige Klebetafeln entweder außen auf den Netzen oder innen an der 

Seitenwand (Klebeflächen jeweils nach außen gerichtet) exponiert. Es zeigte sich, 

sowohl bei der Zuwanderung von außen auf die Seitennetze, als auch bei der 

Passage der Thripse durch die Netze anhand der geringen Fangzahlen auf den 

Fallen eine hohe Ausschlussleistung der UV absorbierenden Konstruktionen. 

Bestätigt wurden diese Befunde durch die geringe Flugaktivität von C. claratris 

innerhalb der UV armen Gewächshäuser, dokumentiert durch die Fangzahlen auf 

zentral exponierten Klebefallen und den Befall auf exponierten Tomatenpflanzen. Der 

kombinierte Effekt von UV absorbierenden Dachfolien mit absorbierenden Netzen 

ergab jeweils weitgehend thripsfreie Gewächshäuser im Vergleich zu hohen 

Befallsdichten und auch Virus-Infektionen von Pflanzen in Gewächshäusern mit UV 

durchlässigen Folien. Eine zusätzliche Öffnung der Gewächshäuser an den 

Stirnseiten (Türen) zur weiteren Verbesserung der Klimatisierung unter extremen 

Bedingungen verhinderte zwar den vollständigen Ausschluss von C. claratris durch 

die UV absorbierenden Gewächshaustypen, trotzdem konnte auch unter diesen 

Bedingungen eine signifikante Reduzierung der Befallszahlen im Zentrum der Häuser 

im Vergleich zu UV durchlässigen Bedeckungen erreicht werden. Die 

Barriereleistung konventioneller UV durchlässiger Gewächshäuser konnte zudem 

durch eine einfache Zusatzkonstruktion deutlich verbessert werden. Verlängerte 

Dachüberstände mit UV absorbierenden Folien können bei dem hohen Sonnenstand 

in den Tropen zu UV armen Zonen rund um die Gewächshäuser führen, welche 

wiederum die Dispersion der Thripse in Richtung der Netzseiten und damit auch die 

Immigration durch die Netze deutlich reduzieren. 

Zusätzlich zu dem abschreckenden Einfluss geringer UV Intensitäten wurde die 

Dispersion von C. claratris unter verschiedenen UV Bedingungen untersucht. Dazu 

wurden Thripse auf einzelnen Pflanzen freigelassen, um punktförmige 

Einschleppungen zu simulieren. Die Dispersionsneigung von C. claratris erwies sich 

generell als recht gering, viele der freigelassenen Individuen entfernten sich nur  

langsam von den Startpflanzen. Trotzdem konnten unter UV absorbierenden 

Bedingungen die kürzesten Verbreitungsdistanzen bestimmt werden und 
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Regressionsanalysen zeigten die intensivste Klumpung um die Freilassungspunkte 

bei dieser Gewächshausvariante.  

Eine zweite Versuchsreihe beschäftigte sich mit abschreckenden Effekten einer 

reflektierenden Mulchfolie. Diese silberimprägnierte Folie reflektierte ca. 30% der 

einfallenden UV Strahlung. Die Folien wurden als Bodenbedeckung entweder 

flächendeckend oder als Streifen um UV durchlässige Gewächshäuser ausgelegt 

und mit schwarzen Mulchfolien verglichen. Die Ergebnisse zeigten eine deutliche 

Verzögerung der Besiedlung der Häuser mit C. claratris in den Varianten mit den 

reflektierenden Folien. Trotz der verzögerten Immigration konnte jedoch keine 

signifikante Reduktion des Populationswachstums von C. claratris in diesen Häusern 

erreicht werden. 

Die Intensität initialer Infektionen von Tomatenpflanzen mit dem Capsicum Chlorosis 

Virus (CaCV) und dessen Verbreitung mit dem Verlauf der Vegetationsperiode 

korrelierte eng mit der räumlich/zeitlichen Dynamik des Vektors. Folgerichtig ergaben 

sich geringere Virusprobleme unter UV armen Bedingungen und bei dem Einsatz 

reflektierender Mulchfolien.  

Zusammenfassend betrachtet zeigen die hier präsentierten Ergebnisse, dass eine 

Manipulation der visuellen Orientierung von Thripsen, insbesondere die 

Ausschaltung der UV-Strahlung, vielversprechende Möglichkeiten eröffnet, diese 

extrem schwierig zu bekämpfenden Schädlinge auch in geschützten Anbausystem 

der Tropen effektiv und umweltschonend zu kontrollieren. 

Stichworte: UV absorbierende Folien und Netze, reflektierende Mulche, 

Tropengewächshäuser, der Thrips Ceratothripoides claratris, Immigration, 

Dispersion, Capsicum Chlorosis-Virus (CaCV). 
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1 General introduction 
 

Raising concerns about the sustainability of agricultural production, in particular the 

health risks of consumers and environmental pollutions demand the development 

and improvement of integrated pest management (IPM) systems aiming to use bio-

control measures as the first option and to reduce the use of synthetic pesticides as 

much as possible. The control of pests with an IPM toolbox also can help to reduce 

the risk of high selection pressure for pests’ tolerance or resistance to a few safe and 

effective insecticides and thus to prolong their efficient life-time. Prevention is usually 

more effective than remedial control of the pest. Recently, there have been 

increasing interests in growing high value crops like tomatoes under protected 

environments, i.e. various growing tunnel and greenhouse types adopted to different 

climatic conditions (Jensen and Malter 1995, Krizek et al. 2005, Jones 2008).  

Horticultural practices under protected systems such as well-designed greenhouses 

provide great flexibility to growers in planning the cropping season and production 

regardless of adverse ambient environmental conditions, i.e. heavy rainfalls, hails, 

hoarfrost, heavy wind and others (Jensen and Malter 1995, Antignus 2000, Antignus 

2007). Inputs (irrigation and fertilization) in such systems can be optimally controlled 

by growers and hence high crop quality can be achieved in a cost-effective manner. 

Moreover, screen-, and glasshouses provide opportunities to prevent the immigration 

of insect pests, and/or to establish bio-control strategies with natural enemies, which 

can help to waive or at least to considerably reduce the intensity of insecticide 

spraying. 

A main problem of protected cultivations in hot periods in the Mediterranean and in 

the humid tropics is the high energy (heat) load of such systems (Nielsen 2002, 

Tanny et al. 2003, Harmanto et al. 2006). High heat load inside the greenhouses can 

cause stress to plant growth and reproduction. At the same time, plants may be 

especially under risks from pest and pathogen damages once introduced because 

heat and humidity loads inside the greenhouses are known to favour the 

development of most well heat adapted pests such as thrips and whiteflies 

(Premachandra et al. 2004) and fungal diseases. Hence, proper regulation of 
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temperature and humidity inside greenhouse crop stands is necessary to avoid heat 

damage and to establish appropriate evapotranspiration conditions for optimal water 

and nutrition balances of crops (Tanny et al. 2003, Harmanto et al. 2006) and also to 

affect the environmental conditions for pests and diseases. Moreover, greenhouses 

are considered by themselves as areas free of natural enemies, hence without 

natural regulation. Therefore, it is also extremely necessary to reduce the immigration 

of or artificial infestation with detrimental pests, especially herbivorous arthropods.  

Netted greenhouses with plastic covers and net sidewalls can serve as an alternative 

solution for closed glass- or plastic-houses in the hot and humid tropics to improve 

the air circulation and prevent the immigration of pest insects. Different greenhouse 

structures and their covering materials can manipulate the transmission of solar 

radiation and ventilation (Giacomelli and Roberts 1993, Bailey et al. 2003), and 

therefore the microclimatic conditions, e.g. temperature, humidity and air flow inside 

the greenhouses and thus affecting crop performance (plant physiology) as well as 

the environmental conditions for pests and diseases. The selection of greenhouse 

cladding materials has to compromise among several aspects to achieve optimum 

conditions for plant growth as well as pest and pathogen exclusion, leading to optimal 

crop production systems in terms of crops quality, i.e. physical quality and acceptable 

pest and diseases infestations and permissible, low pesticide residues, high yields 

and strong market benefits. 

Nets as greenhouse sidewalls are physical barriers able to control the immigration of 

insects. The efficiency is defined by the relation of the size of the immigrating insects 

to the mesh size. Rather big pest insects such as lepidoteran pests, adult leafminers 

and even winged adult aphids can be successfully excluded by small mesh sizes, 

meaning porous material. However, in order to prevent the immigration of such small 

insects like thrips, extremely tight nets with fine mesh sizes are necessary. 

Unfortunately, reducing the mesh porosities will inhibit the proper air exchange 

between inside and outside the greenhouses, increasing the inner temperature and 

humidity within crop, which will not only affect plant growth but also favour, in 

particular, fungal pathogens. Reducing the mesh size, however, may open inlet ports 

for immigration of the small sized insects like thrips and whiteflies. These insect pests 

are usually especially destructive since they often not only damage by their feeding 
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activity but also vector virus diseases. To overcome the tightness – ventilation 

dilemma of cladding materials, it seems necessary to improve the ‘barrier’ efficiency 

of nets or roof films with additional features such as killing (e.g. net impregnated with 

insecticides) or insect behaviour manipulating properties (e.g. deterrent compounds, 

disturbing visual orientation). In particular, the latter is in accordance with IPM 

philosophy. A promising effort is to manipulate insects’ orientation by disturbing the 

visual based crop selection process. Changing the “normal” light properties especially 

in the short wavelength portion of the light spectrum can facilitate this approach. 

The ultraviolet radiation (UV) components of the solar radiation spectrum is said to 

play an important role for insect behaviour including orientation, navigation, feeding, 

and interaction between sexes (Raviv and Antignus 2004, Antignus 2007). Too low or 

no UV reflectance from host plants affects herbivorous insects’ orientation and 

recognition properties. However, too high reflection of UV from a ground surface also 

can repel the approach and landing of those insects to and onto their host plants. 

Changing of UV on and around the crop areas may interfere with insects’ ability to 

take off, to initiate orientation flight and to detect and locate the crop plants.  

The filtration (absorption) of UV around or within greenhouses will impede insects’ 

flight to navigate and locate the crop inside those greenhouses. Greenhouse 

materials, plastic films and nets, impregnated with UV absorbing additives into the 

raw materials, can filter out the UV from solar light. The principle of UV absorbing 

materials is to block the transmission of UV (200 - 400 nm), but not to interfere with 

the transmission of the visible light spectrum/or photosynthetically active radiation 

(PAR) (400 – 700 nm) (Antignus et al. 1996, Antignus 2000, Costa et al. 2002, 

Antignus 2007). Absorbing compounds to the short ultraviolet wavelengths were 

traditionally added into the polyethylene films to increase the stability of the films 

(Krizek et al. 2005) or to prevent the petal blackening of greenhouse roses (Antignus 

2007). The combination of UV absorbing plastic films on the roofs and nets on the 

sidewalls serves as physical and optical barriers to the immigration of insect into 

greenhouses. Therefore, cladding the greenhouses with UV absorbing plastic films 

and nets will allow increasing the size of net porosities, leading to the improvement of 

the air circulation and ventilation, while still achieving high efficacy of insect 

exclusion.  
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The use of polyethylene films and nets with UV absorbing properties has gained 

attention as a promising tool in IPM strategies to control of diseases and insect pests. 

The efficiency is dependent on the UV exclusion property of the materials and the 

dependence of the target insects on UV for visual orientation. Several recent studies 

have reported about the use of UV absorbing plastic films and nets to prevent the 

immigration of economically important insect pests including whiteflies (Bemisia 

tabaci and Trialeurodes vaporariorum) (Antignus et al. 1996, Antignus et al. 1998, 

Costa and Robb 1999, Antignus 2000, Costa et al. 2002, Mutwiwa et al. 2005, 

Doukas and Payne 2007a), thrips (Frankliniella occidentalis) (Costa and Robb 1999, 

Kigathi 2005), aphids (Aphis gossypii), leaf miners (Liriomyza trifolli), red spider mite 

(Tetranychus telarius) (Antignus et al. 1998) and moths (Laphigma sp.) (Antignus 

2000).  

Not only the light spectrum around plant stands is important for insect orientation, the 

different reflection patterns from plants and ground also decide whether insects will 

recognize and alight on the host plants. Artificially increased UV reflectance around 

or inside crop stands using reflective mulches impregnated with aluminium can 

disturb the host selection behaviour of the pests. Such UV reflective mulches delayed 

the immigration of whiteflies (Bemisia sp.) (Brust 2000, Summers and Stapleton 

2002a, Summers et al. 2004), aphids (A. gossypii) (Summers et al. 2004), leave 

hopper (Dalbulus maidis) (Summers and Stapleton 2002b), thrips including Thrips 

spp. (McLaren and Fraser 2001, Van Toor et al. 2004) and Frankliniella spp. 

(Stavisky et al. 2002, Reitz et al. 2003, Riley and Pappu 2004).  

However, thus far in almost all studies reporting about UV effects of films and 

mulches, a detailed measurement of the actual amount of UV reduction or 

reflectance inside the greenhouses or/and in the field was missing. The spectral 

transmittance of greenhouse cladding materials and reflectance of mulches, if 

available, were mainly measured in the laboratory. Subsequently, the effects of UV 

absorbing plastics and nets and reflective mulches were only quantified by 

measurement of pest numbers or virus infections in case of vectors. Moreover, most 

of these studies were performed in the Middle East or temperate regions but not 

under the climatic conditions of the humid tropics.  
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Ceratothripoides claratris is the main insect pest among others heavily damaging 

tomato in central Thailand, especially in protected cultivation systems. This insect 

species is well adapted to the high heat/humidity conditions in tropical netted 

greenhouses (Premachandra et al. 2004). The short life cycle and fast development 

result in fast population built-up after infestation (immigration). C. claratris feeds on 

the leaves, and as typical for thrips, it opens single cell of the leaf parenchyma with 

the mandible and sucks out the cell content with a dine tube built by the maxilla. 

Feeding from cell to cell results in a typical destruction of leaf tissues (feeding scars) 

leading to a loss of photosynthetic active tissues and heavy infestations finally cause 

wilting of the whole plant. Furthermore, C. claratris is an efficient vector of a 

tospovirus, the Capsicum Chlorosis Virus (CaCV), leading to severe plant damages 

and fast losses of the whole crop (Premachandra et al. 2004, Premachandra et al. 

2005a). 

Management of thrips is usually difficult because of several reasons: (1) their tiny 

sizes and cryptic feeding behaviours in the crevices of flowers, bracts and leaf 

sheaths making them difficult to be detected at the beginning of the infestation (Lewis 

1997a, Jensen 2000, Morse and Hoddle 2006), and for insecticides to reach to the 

individuals, (2) their life cycle with soil passage stages of the prepupa and pupa 

giving a reservoir not being affected by foliar treatments, (3) their fast development 

and short life cycle especially in the warm environments inside the greenhouses 

(Lewis 1997a), and (4) their fast transmission of virus after short feeding periods. 

Hence, the selection of appropriate and in time control methods is very crucial for the 

success of the control. The demand for safe control measures with regards to 

farmers’ and consumers’ health and environmental damages complicates the 

situation. Presently, the management of C. claratris can be successful with some fast 

degrading bio-pesticides. Safe control on young tomato plants can be achieved with 

Neem treatments of the soil (systemic Neem effects) (Thoeming and Poehling 2006); 

on older plants, Spinosad and Aradizachtin are efficient (Premachandra et al. 2005b). 

However, under high infestation pressure more broad spectrum synthetic pesticides 

such as the Pyrethroid Cypermethrin are used by the farmers. Regarding IPM 

approaches, insecticides should only be applied if finally necessary. Such strategies 

have also the advantage to prolong the lifetime efficacy of insecticides and to prevent 
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resistant development in the pests. Biotechnical measures such as the use of UV 

absorbing cladding materials for greenhouse designs promise an alternative strategy 

in management the infestation of this thrips on tomato plants. If successful this 

approach will not only inhibit thrips immigration to the crop but also provide the 

possibility to increase the net’s hole sizes for the netted greenhouses leading to a 

great improvement of the microclimates inside the greenhouses under tropical 

conditions. First pilot trials about potential of that approach were demonstrated by 

Kumar and Poehling (2006).  

In the herein studies, effects of UV absorbing plastic films (roofs) and nets (sidewalls) 

were comprehensively investigated for their abilities in preventing thrips, C. claratris, 

infestation in tomato greenhouse in Central Thailand. Within this purpose, 1) Pair-

wise choice experiments were performed to test the preference of C. claratris to 

different UV intensities; 2) Greenhouses clad with different combinations of UV 

absorbing and transmitting plastics and nets were compared for their deterrent 

potentials to the landing of thrips on the outer greenhouses’ net sidewalls and its 

penetration into greenhouses; 3) The effects of additional extended UV absorbing 

roof structures influencing the UV intensities around the greenhouse constructions on 

flight and immigration behaviours of C. claratris were using artificial releases of 

C. claratris from outside; 4) The effects of different UV intensity conditions on the 

spatial dispersal of C. claratris from the first artificial infested points was studied. 

In addition, a suspected insect repelling effect of reflective mulch materials was also 

investigated in combination with the properties of netted greenhouses. Effects of 

mulches arranged as ground cover either inside the greenhouses and/or as an 

outside surrounding margin were compared.  

In conclusion, the objectives of the present study were:  

• To study the effects of manipulation of UV intensity on the orientation, immigration 

and dispersal of C. claratris using UV absorbing plastic films, nets and UV 

reflective mulches. 

• To study the population dynamics of C. claratris on tomato plants after its 

introduction into netted greenhouses with different UV intensities of internal light 

conditions and its ability to transmit CaCV tospovirus. 
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Ceratothripoides claratris 

Biology and ecology 

Ceratothripoides claratris (Shumsher) (Thysanoptera: Thripidae) has been reported 

in Thailand since 1992 (Okajima et al. 1992) and was declared as a thrips pest 

species in the tropical regions in 1998 (Mound and Kibby 1998). However, not until 

1999, this thrips species was for the first time reported damaging tomato. This is the 

only thrips species that causes severe damages to leaves and stems but not fruits of 

tomato in fields in Central Thailand; damage was also reported from Malaysia. So far, 

there has not been any other report on the presence and occurrence of this thrips 

species in any other country (Murai et al. 2000).  

Similar to other thrips species in the order Thysanoptera, C. claratris shares general 

biological characteristics of herbivorous thrips. Thrips is a minute and slender insect, 

usually a few millimetres long, and generally yellow, brown, or black in colour (Lewis 

1997b, Morse and Hoddle 2006). It is considered among the stealthiest insect 

invaders because of its small size and cryptic habits (Moritz 1997, Morse and Hoddle 

2006). C. claratris belongs to the family Thripidae, which gathers most of the 

relatively few serious crop pest thrips species out of a total of 8000 defined and 

undefined thrips species in the order Thysanoptera (Lewis 1997b, Mound 1997).  

Intensive studies to understand the biological characteristics, damage severity and 

management of C. claratris have been carried out in Thailand since 2002 

(Premachandra et al. 2004, Premachandra et al. 2005b, Premachandra et al. 2005c, 

Thoeming and Poehling 2006, Kumar and Poehling 2006). Most of adults and larvae 

of C. claratris were found to aggregate on the lower leaves of tomato plants. 

Subsequently, the infestation gradually moved upward to higher leaves. Adults were 

observed on flowers and fruits at a late stage of infestation only if leaves were 

hardened and deteriorated by heavy thrips infestation; however, no severe damage 

was noticed. Hardly ever this thrips species was found on buds (Premachandra et al. 

2005c). Severe infestation at the beginning of tomato planting in greenhouses can 

cause complete death of the plants after seven weeks planting (Premachandra et al. 

2004). C. claratris was also recorded damaging cucurbit crops, melon and tomato but 

not eggplant and chilli pepper (Murai et al. 2000). Other hosts including pumpkin, 
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cowpea, yard long bean and chilli were also reported as suitable hosts for C. claratris 

(Premachandra et al. 2004). Apart from C. claratris, Thrips palmi was also observed 

damaging tomato in Southeast Asia, Japan and Central America. However, this thrips 

species is not considered as the pest of tomato since it could not complete its 

lifecycle on tomato plants (Terry 1997, Murai et al. 2000). Thus, C. claratris is the 

most important thrips on tomato in Thailand and maybe in neighbouring countries as 

well (Murai et al. 2000). In awareness of the actual fast worldwide spreading of the 

Western Flower thrips F. occidentalis from its original distribution in western North 

America (Mound 1997, Kirk and Terry 2003), the further dispersion and distribution of 

C. clarathris should be carefully observed. 

C. claratris, likes other thrips species in the suborder Terebrantia, has six 

developmental stages, including egg, two larval instars, prepupa and pupa, and adult 

(Premachandra et al. 2004). Smooth shelled eggs are inserted into plant tissues with 

a saw-like opvipositor (Lewis 1997c, Moritz 1997). Larvae feed on leaves. The late 

second larval instars drop off plants and pupate in the soil. At the optimum 

temperature for their development (30oC), which was determined by Premachandra 

et al. (2004), it took about 9 days for eggs to develop to adults, consisting of 

approximately 3 days for eggs, 2 days for first instars, more than 1 day for second 

instars and more than 2 days for prepupa and pupa. This temperature was also the 

best temperature for female fecundity in terms of the total number of eggs deposited 

as well as the mean daily eggs laid by both virgin and inseminated females. At this 

temperature, a female can live around twelve days and lay on average 9 to 10 eggs 

per day, whereas they can live longer but produce much fewer eggs at 25oC. At 40oC 

the longevities of both males and females were affected and females failed to 

reproduce. The sex ratio of offspring was strongly temperature-dependent. Female 

offspring biased at 30 – 35oC, whereas more males were produced at 25oC 

(Premachandra et al. 2004). According to Kirk (1997), in warm climatic environments, 

thrips can continue breeding throughout the year without an inactive period.  

Virus association 

C. claratris was described as vector of a tospovirus of the serogroup IV, which 

serologically and genetically closely resembles a recently described Capsicum 
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Chlorosis Virus (CaCV) on tomatoes (Premachandra et al. 2005a). Hence, 

C. claratris is added into a group of scarcely 13 thrips species as plant virus vectors 

(Campbell et al. 2008) out of more than definite 5000 thrips species (Ullman et al. 

1997, Mound 2004, Mound 2005, Morse and Hoddle 2006). To be successful in 

transmitting virus, thrips must acquire virus during the feeding of first instars or early 

second instars (Nagata et al. 1999, Mound 2004, Mound 2005, Premachandra et al. 

2005a, Morse and Hoddle 2006). The virus acquisition and transmission potential of 

thrips is significantly reduced with larval aging. The second instars of C. claratris that 

acquires virus at early first instars are ready to transmit virus, however, the 

transmission is more efficient as these viruliferous thrips develop into adults. Both 

male and female adults, who have similar virus acquisition history, have equal 

possibilities to transmit virus (Premachandra et al. 2005a). The vector competence of 

tospovirus is thrips species-dependent (Wijkamp et al. 1995), and also varies 

between different populations of the same species (Chatzivassiliou et al. 1999, 

Mound 2005). Even in a same thrips population, the virus acquisition and 

transmission potentials can vary among individuals (Halaweh and Poehling, personal 

communication, 2008). These authors raised the question of genetic involvement in 

virus vector competence of C. claratris. Thus, not every individual is able to acquire 

and transmit the virus although having fed on heavily virus infected plants at early 

first larval stage if a specific genetic trait is not present. 

Management 

Presently, management of C. claratris is successful with so called “bio-insecticides”, 

e.g. Spinosad, Avermectins, compounds derived from soil microorganism, and 

botanical insecticides, especially Neem. Synthetic insecticides also effectively control 

this thrips species, e.g. Cypermethrin. However, aiming at a sustainable greenhouse 

production, bio- and botanical insecticides should be preferred to synthetic 

insecticides if possible. For instance, biweekly repeated application of a water soluble 

Neem product containing 17% Azadiractin A or Neem pellets containing 0.01 - 0.5% 

Azadiractin A to the soil at the transplanting time of the tomato plants caused more 

than 85% and 71% corrected mortalities, respectively, of all thrips developmental 

stages under the greenhouse conditions in Thailand, which can compared to the 

efficacy of the synthetic insecticides, Cypermethrin (Thoeming and Poehling 2006). 
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Foliar application of Spinosad caused 100% mortality of all developmental stages of 

C. claratris (Premachandra et al. 2005b). 

Several other none chemical control tactics have been proven to successfully control 

many thrips species. These alternatives include repellent plant volatiles (Koschier et 

al. 2007); trap plants (Buitenhuis et al. 2007); entomopathogenic fungi (Ekesi et al. 

1998, Jacobson et al. 2001, Maniania et al. 2001, Maniania et al. 2003, Ugine et al. 

2005a, Ugine et al. 2005b, Fiedler and Sosnowska 2007); entomopathogenic 

nematodes (Lim et al. 2001, Ebssa et al. 2001, Premachandra et al. 2003, Lim and 

Van Driesche 2004a, Lim and Van Driesche 2004b, Lim and Van Driesche 2004c, 

Ebssa et al. 2004a, Ebssa et al. 2004b); predatory bugs (Cocuzza et al. 1997, Scott 

Brown et al. 1999, Van Laerhoven et al. 2000, Sanchez and Lacasa 2002, 

Deligeorgidis 2002, Shipp and Wang 2003, Baez et al. 2004, Xu et al. 2006); 

predatory mites (Faraji et al. 2002, Shipp and Wang 2003, Walzer et al. 2004, Berndt 

et al. 2004); and UV absorbing plastic films and nets as greenhouse covering (Costa 

and Robb 1999, Kigathi 2005) and UV reflecting mulches (McLaren and Fraser 2001, 

Stavisky et al. 2002, Reitz et al. 2003, Van Toor et al. 2004, Riley and Pappu 2004). 

However, with C. claratris, only entomopathogenic fungi (Panyasiri et al. 2007) and 

the mentioned physical UV exclusion methods have been examined in first pilot 

experiments by Kumar and Poehling (2006). Since the herein study focuses on the 

effect of manipulated UV on the visual behaviour of C. claratris, some important basic 

aspects of insect vision and the mechanism that UV affects on insect’s visual ability 

are reviewed more in detail in the following section. 

Insect vision and host location 

Host location behaviour of herbivorous insects is a complex activity, which is closely 

related to their migration and dispersal behaviour. Many stimuli including colours, 

shapes, sizes (at the angles that the hosts relatively appear to insect vision) and 

volatiles associated with the hosts have been reported to be involved in host finding 

behaviour of insects (Terry 1997, Giurfa and Menzel 1997, Kimmerle and Egelhaaf 

2000). These visual and olfactory stimuli, either individuals or in mixture, are the 

primary cues used by insects to orientate to their host plants. Most of the studies on 

insect vision and host location have been performed with several species of the two 
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insect orders, Hymenoptera and Lepidoptera (Briscoe and Chittka 2001) in relation to 

flower recognition (Möller 2002). Hymenoptera are the best investigated group, of 

which several species from different habitats were examined (Briscoe and Chittka 

2001). Although insects possess relatively simple nervous systems, they have 

sophisticated visual abilities, which are in some features quite similar to those of 

vertebrates. Their compound eyes, which have a high temporal but rather low spatial 

resolution, are adapted to resolve fast motions (sophisticated flyers). They also allow 

differentiation of colours, polarised lights and geometric patterns (Giurfa and Menzel 

1997).  

The visual mechanisms that insects use to orientate and navigate to the host plants 

are complex; and many mechanisms have been suggested to explain host detection 

abilities. For the here described study, host detection ability of herbivorous insects is 

discussed from the viewpoint of colour differentiation and/or reaction to the 

brightness of ambient or reflected light. Regarding colour vision, not only the colours 

of the target itself but also the colour contrast of targets with background components 

(water, soil, rocks, and others) helps plant visiting insects to distinguish between the 

targets and the surrounding environments. The crucial factors enabling the insect to 

distinguish between hosts and non-hosts are hue of colours, the dominant 

wavelength remitted from host’s surface; the saturation and purity of the hue; the 

brightness, total energy, and percentage reflectance at peak wavelengths. The hue 

preference is species dependent; however, within a species males and females have 

similar responses to the same colours (Terry 1997). In thrips, colour appears to be a 

primarily important cue. Colour alone can navigate them to the hosts without 

receiving any volatiles emitted from the hosts (Terry 1997, Teulon et al. 1999, 

Davidson et al. 2006, Berry et al. 2006).  

Colour vision is only possible if more than one photoreceptor type with different 

spectral sensitivities is available. Up to six photoreceptor types are described for 

insects, which are species dependent and help the insects to adapt to their specific 

living environments and feeding habitats. Different parts of eyes are often equipped 

with receptors of different spectral sensitivities. Spectral range, which can be 

recognized by an insect, positively correlates with the number of photoreceptor types 

in the compound eyes. The more photoreceptor types are available, the broader is 
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the spectral wavelength range that the insect can recognize and vice versa. Despite 

of this variability, most arthropod species except ants, even those living in entirely 

different ecological niches, possess very similar sets of UV (λmax ~350 nm), blue (λmax 

~440 nm), and green (λmax ~530 nm) photoreceptors. Having only two types of 

photoreceptors is also common in insects (Briscoe and Chittka 2001). In all cases, 

the UV receptors are always present. For instance, F. occidentalis has only two 

photoreceptors, which are sensitive at UV (365 nm) and green-yellow (540 nm) 

wavelengths (Matteson et al. 1992) and so do the greenhouse whiteflies, 

T. vaporariorum (Mellor et al. 1997).  

The UV receptors in insect eyes are highly sensitive allowing them to recognize even 

a very small amount of UV reflecting from object surfaces (host plant) and to 

discriminate target objects by brightness ratio of UV reflecting from the target vs. the 

ambient radiation (Möller 2002). The UV reflectance from plant surfaces attracts 

visiting insects. Regarding flowers, the UV reflecting patterns attract flower visiting 

insects such as bees, which visit the flower to sample pollen, on the other hand 

plants are favoured from pollination. Many flowers have specific UV reflecting 

patterns, making important structures especially visible for insects, e.g. from the 

petals, which are invisible to humans but visible to insects (Bellingham et al. 1997, 

Gronquist et al. 2001, Möller 2002, Johnsen et al. 2006). Such important structures 

for nutrition flower visiting insects can then be clearly detected from distance. Another 

example is the discrimination of leaves and flowers or even leaf structures. Leaves, 

depend on their structures (wax and hair), reflect different certain amounts of UV 

under the polarized light (Holmes and Keiller 2002, Grant et al. 2003, Johnsen et al. 

2006).  

Although UV is crucial for discrimination of the objects, UV receptors alone do not 

assure for the success of object discrimination. A contrast mechanism with a second 

photoreceptor type is necessary to guarantee host recognition. Möller (2002) 

reported that the ideal host recognition involved the contrast mechanism of UV and 

green receptors in insect eyes. UV receptors alone or the contrast mechanism 

between UV and blue photoreceptors did not result in reliable host recognition. 

Hence, with the exclusion of UV wavelength from the light spectrum, only one 

important receptor involves in receiving the colour; or contrast discrimination process 
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is not stimulated. Consequently, many authors like Raviv and Antignus (2004) and 

Antignus (2007) reviewed the effect of UV on the behaviour of insects and suggested 

that the UV component of the solar spectrum, either individual or in mixture with other 

visible radiation, plays an important role in insect behaviours including orientation, 

navigation, feeding, and interaction between sexes. 

The relative reflectance of UV wavelengths (350 to 390 nm) from the ground around 

the plant canopy in relation to the crop itself is also important for determining whether 

anthophilous and polyphagous herbivorous thrips species will alight on a host 

(Matteson and Terry 1992, Terry 1997, Lewis 1997b). Very high UV reflectance from 

the ground can cause repellence of herbivorous insects during host selection 

(Greenough et al. 1990). On the one hand, the magnitude of such effects depends on 

the intensity of reflection, for instance low reflectance of UV (less than 35 per cent) 

does not inhibit the immigration of F. occidentalis to the crop stands (see Terry 1997). 

On the other hand, the specificity of the insects for distinct feeding sites is important. 

It was shown that anthophilous thrips are much more affected by UV reflectance from 

background than grass-feeding thrips (Terry 1997). This might be explained by the 

fact that different herbivorous insects have “developed” different responses to colours 

in relation to their preferred feeding sites. Since anthophilous thrips are attracted to 

colours and complex reflection pattern of light components that match to flowers, 

intensive UV reflection from backgrounds may much more severely affect their 

abilities to discriminate targets compared to grass- and foliage-feeding species with 

more restricted needs for colour differentiation (Matteson and Terry 1992, Antignus 

2000).  
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2 Effects of UV deficiency on the flight and immigration 
of thrips Ceratothripoides claratris into tomato 
greenhouses in the tropics 

 

2.1 Introduction 

In the previous section, the important role of UV portion in the solar spectrum for 

insect orientation, host finding and alighting has been discussed. Reducing the 

transmission of UV into protected cultivation constructions such as greenhouses or 

tunnels is expected to alter the immigration and flight behaviour of insect pests. 

Several publications have reported the remarkable effect of UV absorbing materials 

for excluding various economically important insects from UV poor environments, 

including whiteflies (B. tabaci), thrips (F. occidentalis), aphids (A. gossypii), leaf 

miners (L. trifoli) and moths (Laphigma sp.) (Antignus et al. 1998, Antignus 2000, 

Costa et al. 2002, Kigathi 2005, Kumar and Poehling 2006). These insects showed 

clear preference for UV rich environments in contrast to the areas with low UV 

intensites. Limitation of insect infestation and reduction of their population 

development and spreading were not only lower the direct feeding damage but also 

significantly decrease insect born virus infections. Therefore, it seems worth to study 

such an approach of manipulation the UV for “soft” control of C. claratris, one of the 

most devastating pests in tropical tomato greenhouses.  

Considering the particular situation of protected cultivation systems in the hot and 

temporary humid tropics, principally netted greenhouses are the construction of 

choice. Cooling systems for entirely closed greenhouses are expensive. Complete 

exclusion of thrips penetrating through the net sidewalls is difficult since thrips, 

C. claratris, is a very tiny insect; hence, very fine net size is required for preventing 

their penetration. Only nets with holes smaller than 78 mesh size are proposed as 

“thrips-safe” compared to 52 mesh nets efficiently excluding whiteflies and aphids 

and 40 mesh nets, which cannot be passed by even bigger insects such as 

butterflies and flies. However, 78 mesh nets cause enormous reduction (up to 50%) 

in air exchange between inner and outer greenhouse environments, accompanied by 
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an increase of internal temperature and humidity, that is detrimental for plant growth 

(problems with evaporation and water balance) and that favours fungal growth. 

Therefore, as a compromise for achieving a convenient internal microclimate and 

considerable insect exclusion ability, the 52 mesh net was recommended for cladding 

greenhouses in the tropics. However, a considerable number of thrips, C. claratris, 

was still found invading greenhouses covered with this mesh size net (Harmanto et 

al. 2006).  

The implementation of UV filtration concept for 52 mesh net may provide a promising 

improvement of exclusion ability of this net type to thrips while maintaining a 

reasonable air exchange and a convenient inner microclimate in the protected 

cultivation systems. A thorough understanding how the manipulation of the UV range 

in the solar spectrum by using UV absorbing cladding materials affects the population 

dynamics of C. claratris and the microclimatic conditions inside such greenhouse 

constructions is a prerequisite for improving and finally implementing innovative and 

sustainable pest control measures. 

Hence, in this study, several experiments have been carried out aiming (1) to test the 

principle UV preference of C. claratris in paired choice experiments; (2) to investigate 

the attraction and immigration of thrips into greenhouse constructions clad with 

different combinations of UV absorbing and transmitting plastic films and nets, taken 

into consideration for both closed and opened-door greenhouse types; (3) to study 

the effect of extended UV absorbing roof films (as a kind of projecting roof that 

creates a margin of UV deficiency around the greenhouses) on the immigration of 

C. claratris; (4) to examine the effect of different UV conditions to the spatial and 

temporal dispersal of C. claratris after being accidently introduced into the 

greenhouses. 

 

2.2 General materials and methods 

2.2.1 Study location 

All experiments were conducted in a greenhouse complex of the Leibniz University 

Hannover – AIT joint research project “Protected cultivation - An approach to 
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sustainable vegetable production in the humid tropics” in Asian Institute of 

Technology, Pathumthani, Thailand. 

2.2.2 Thrips rearing 

C. claratris was reared directly on tomato plants in plexi glass cages in a climate 

chamber at a temperature of 30 ± 1oC, a relative humidity of 60 ± 5% and a 

photoperiod of 12L:12D. The cages’ upper panels were replaced with thrips proof net 

(Sefar Petex 07-64/45, Sefar AG, Switzerland) to improve the air exchange inside 

cages. C. claratris adult females were first collected from an infested tomato field in 

the neighbourhood of the greenhouses. In the laboratory, thrips were allowed to lay 

eggs for about 4 hours on insect free fresh leaves. Thereafter, adult females were 

removed. The leaves with deposited eggs were incubated in Petri dishes (8.5 cm in 

diameter) with the bottom covered with 0.5 cm a mixture of Plaster of Paris and 

charcoal (ratio 9:1). This bottom layer was previously moistened with 2 mL of tap 

water to establish high moisture for keeping the leaves fresh. The Petri dishes were 

then kept in the climate chamber. The eclosion of eggs was checked from the third 

day after oviposition. Newly hatched first larval instars were collected using a fine 

painting brush No.1 and released on 3 week old potted tomato plants. These plants 

were then kept in cages for population development in the climate chamber. Intensive 

damaged plants were regularly replaced by fresh ones. 

2.2.3 Plants 

Tomato seeds, variety FMTT260 (AVRDC, Shanhua, Taiwan), were sown individually 

in multiply hole plastic trays using Pindstrup compressed peat moss (Pindstrup 

Mosebrug A/S, Ryomgaard, Denmark) and then kept in a nursery. Three week old 

seedlings were transplanted in small pots (15 cm in diameter) for insect rearing and 

bigger ones (30 cm in diameter) for greenhouse planting.  

Thirty 3 week old tomato seedlings were transplanted in black plastic pots (30 cm in 

diameter) in each greenhouse (7.5 x 2 m) using a locally commercial growing 

substrate (Dinwondeekankasat, Ayutthaya, Thailand), containing of 28% organic 

compounds and a mineral fraction consisting of 30% sand, 39% silt and 31% clay. 

Plants were arranged in three rows. The distance between two adjacent plants was 

40 cm. Plants were irrigated according to computer controlled dripping system. With 

the irrigation water plants were automatically fertigated with a mixed nutrient solution 
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containing of 2.5% concentration of a stock solution mixed from Kristallon™ 

(6:12:36:3% N:P:K:Mg + Micro) and Calcinit™ (15.5:19% N:Ca) (both Yara, Oslo, 

Norway) in a ratio of 70:30. 

2.2.4 Plastic films and nets 

Two types of plastic films and nets, which were similar to those studied by Kumar and 

Poehling (2006), were used in this study. The two plastic films used for covering 

greenhouse roof were an UV absorbing film (Sun Selector Diffused Antivirus®, 

Ginegar Plastic Product Ltd, Kibbutz, Israel) and an UV transmitting film (PE-1A, 

RKWAG, Worms, Germany). The two net products for covering the greenhouse 

sidewalls were Bionet® (UV absorbing net) and Anti Insect® (UV transmitting net) (50 

mesh) (both Klayman Meteor Ltd., Petah-Tikva, Israel). Spectral transmission 

characteristic of these materials were measured in the laboratory using a 

PerkinElmer Lambda 900 UV/VIS/NIR spectrophotometer (PerkinElmer Life and 

Analytical Science, Boston, MA) (Figure 1). 

2.2.5 Basic greenhouse setups 

The greenhouses were constructed using steel framework (7.5 m in length x 2 m in 

width x 2.5 m in height (in the centre)). The two plastic film and net types mentioned 

above were combined to construct the following four basic greenhouses with plastic 

roofs and vertical net sidewalls (up to 2 m height) for the whole studies: (i) UV 

transmitting plastic film and net (Ptr - Ntr), (ii) UV absorbing plastic film and net (Pab - 

Nab), (iii) UV absorbing plastic film and UV transmitting net (Pab - Ntr), and (iv) UV 

transmitting plastic film and UV absorbing net (Ptr - Nab) (Figure 2). Specific 

greenhouse arrangement and orientation were further described in experiment 

section. 

2.2.6 Measurement of climatic parameters 

Radiometer UV sensors (Indium Sensor, Neuenhagen, Germany) were installed at 

the height of 0.5 m above the ground inside greenhouses to measure the UV 

intensity. The greenhouses were also equipped with Pyranometers (solar meters) 

(Kipp & Zonen B.V., Delft, Netherland) at the same height (0.5 m above the ground) 

to measure the global solar radiation. Dry and wet thermocouples were also installed 



Effects of UV absorbing greenhouses 

 

18

 

at 2 m above the ground to measure the temperature and humidity inside 

greenhouses. Data from all sensors were automatically transferred to and recorded in 

a low-power consumption data logger for every 5 minutes (Institute of Horticulture 

and Biosystem Engineering, Leibniz University Hannover, Germany).  
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Figure 1. Spectral transmission of UV absorbing plastic (Sun Selector Diffused Anti 
Virus®, Ginegar Plastic Products Ltd., Israel), UV transmitting plastic (PE-1A, RKW 
AG, Germany), UV absorbing (Bionet) and UV transmitting (anti-insect) nets (50 
mesh, Klayman Meteor Ltd., Petah-Tikva, Israel) measured with a PerkinElmer 
Lambda 900 UV/VIS/NIR spectrophotometer (Kumar and Poehling 2006). 
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Figure 2. Greenhouse structure (upper) and four basic greenhouses clad with 
different combinations of UV transmitting and absorbing plastics and nets (under). 
Ptr: UV transmitting plastic, Pab: UV absorbing plastic, Ntr: UV transmitting net, Nab: 
UV absorbing net. 

 

2.2.7 Statistical analysis 

All data were tested for normal distribution using UNIVARIATE procedure in SAS. If 

the assumption of normal distribution was proved, TTEST option in SAS was applied 

to compare the means of every two samples in the paired choice comparison, and 

supplemental effect of projecting roof experiments. If the homogeneity of variances 

was achieved, the pooled test was selected; otherwise Satterthwaite test was used 

when the assumption was violated. When the normal distribution of the samples was 

not revealed, data were subjected to one-side exact WILCOXON two sample test 

option in SAS.  
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For more than two samples comparisons, after being subjected to UNIVARIATE test, 

data was checked for homogeneity of variance using the HOVTEST = LEVENE 

option of SAS version 8 and pooled only when variance homogeneity could be 

assumed. Subsequently, data was analyzed using the MIXED procedure option in 

SAS only when the normal distribution and variance homogeneity assumptions were 

satisfied. The mixed linear model is generalized from the standard linear model used 

in the GLM procedure. The mixed linear model fits a variety of mixed linear models to 

data, and thus provides more flexibility in data modelling than the GLM procedure 

does. In case of a significant difference between greenhouses, the means number of 

thrips on traps or tomato plants of different greenhouses were compared by the 

DIFF/Tukey option on the LSMEANS statement. When the normal distribution and/or 

variance homogeneity of the samples was violated, data were subjected to 

nonparametric test option in SAS. In all cases, the significant value was set at P < 

0.05. 

 

2.3 Light transmission and other climatic parameters inside the 

greenhouses clad with different combinations of UV 
transmitting and UV absorbing plastics and nets 

UVA intensities inside greenhouses were significantly dependent on the type of 

plastic film and net used, of which the plastic type gave more pronounced effect 

(Figure 3A). The greenhouse clad with UV absorbing plastic film and net (Pab – Nab) 

filtered almost all UV from the global radiation. The UV absorbent effect was 

significantly reduced when UV absorbing plastic was combined with UV transmitting 

net (Pab – Ntr). The highest UV intensities were measured in the greenhouses 

covered with UV transmitting plastic. 

On the other hand, the total global solar radiation was not affected under different 

plastic cover types (Figure 3B). Temperature inside the greenhouse covered with UV 

absorbing plastic and net (Pab - Nab) was slightly higher than that in other 

greenhouses (Figure 3C). Relative humidity values in different greenhouses 

fluctuated over the experimental periods, giving no clearly different trends (Figure 3D). 
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Figure 3. UVA intensity (W m-2) (A), global solar radiation (W m-2) (B), temperature 
(oC) (C), and relative humidity (%) (D) inside greenhouses clad with different UV 
transmitting and absorbing plastics and nets (one day data plotted as example). Ptr: 
UV transmitting plastic, Pab: UV absorbing plastic, Ntr: UV transmitting net, Nab: UV 
absorbing net.  
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2.4 Paired choice experiments with small experimental 
greenhouses 

2.4.1 Materials and methods 

The choice experiment was conducted in four paired choice comparisons to test the 

effect of different UV intensities on orientation behaviour of C. claratris. Choice 

chambers consisted of two greenhouse compartments (3 m in length x 2 m in width x 

2.5 m in height) clad with different combinations of UV transmitting and absorbing 

plastics and nets, which were connected through a middle black plastic cladding 

compartment (1.5 m in length x 2 m in width x 2.5 m in height) (Figure 4). Another 

layer of UV absorbing plastic film was covered outside the black film to protect it from 

UV degradation. This black plastic cladding compartment, which was opened (1 x 1 

m) to the two connected greenhouse compartments, formed a dark area for releasing 

of C. claratris. Released thrips were free to fly towards the greenhouse 

compartments of interest.  

Three paired comparisons were conducted between the greenhouse compartments 

made of UV transmitting plastic film and net (Ptr - Ntr) with (1) UV absorbing plastic 

film and net (Pab - Nab); (2) UV absorbing plastic film and UV transmitting net (Pab - 

Ntr); and (3) UV transmitting plastic film and UV absorbing net (Ptr - Nab). The fourth 

set was to compare between UV absorbing plastic film and net (Pab - Nab) and UV 

absorbing plastic film and UV transmitting net (Pab - Ntr) (Figure 4).  

Three hundred C. claratris adults of unknown age were collected from the rearing 

cages into plastic vials (2 cm in diameter x 4 cm in height) using an aspirator. The 

collected C. claratris were starved for 2 hours before releasing in experiment. The 

sex ratio of the thrips population was determined every experimental day by sampling 

of 100 thrips from stock culture resulting in a ratio of 2 to 3 females per male. 

Subsequently, these vials of C. claratris were placed on a stand (0.5 m in height) in 

the middle of the black compartments and opened for release of thrips. The releasing 

time was always around 11 am on the experimental dates.  



Effects of UV absorbing greenhouses 

 

23

 

 

 

Figure 4. Experimental design to study the effect of different UV intensities on 
orientation behaviour of C. claratris in choice experiments. R: Release chamber, Ptr: 
UV transmitting plastic, Pab: UV absorbing plastic, Ntr: UV transmitting net, Nab: UV 
absorbing net. 

 

The recapture of C. claratris in each greenhouse compartment was performed with 

(1) sticky blue traps (12 x 15 cm) positioned vertically at 0.5 m above the ground 

and/or (2) three week old tomato trap plants. Every three traps or plants were 

arranged in four rows at distances of 1, 1.5, 2 and 2.5 m from the black compartment, 

resulting in a total number of twelve traps or plants in each greenhouse compartment. 

Sticky traps were collected six hours after releasing of thrips and subsequently 

checked in the laboratory for thrips under binocular (Krüss. A. K., Krüss Optronic, 

Germany, magnification: 15 x 4). The numbers of thrips recaptured on trap plants 
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were counted directly on the plants in greenhouses at six hours following the release 

of thrips. The release and recapture trial using sticky blue traps as attractant was 

repeated six times, whereas that using plants was repeated four times over time. 

2.4.2 Results 

C. claratris showed consistently less preference for the greenhouse compartments 

receiving lower UV intensities irrespective of the trap types (blue traps or plants) 

(Figure 5). This trend was more obvious when blue traps were used as attractant. 

Consistently, in the experiment using blue traps for recapture, significantly fewer 

number of C. claratris dispersed into the greenhouse compartments receiving lower 

UV intensities of all tested combinations, i.e. Pab - Nab vs. Ptr – Ntr (t6.17 = -2.80, P = 

0.0302); Pab - Ntr vs. Ptr – Ntr (t10 = 2.72, P = 0.0216); Ptr - Nab vs. Ptr – Ntr (t10 = 

3.47, P = 0.006); and Pab - Nab vs. Pab – Ntr (t 5.74 = -3.38; P = 0.0159) (Figure 5A). 

When tomato plants were used as attractants inside the greenhouse compartments, 

the same trend was quite obvious in treatments with Ptr – Ntr type of recapture arena 

(Figure 5B). Consistently, higher number of thrips was recaptured in the Ptr – Ntr 

compared to its paired compartments with lower UV intensities (Pab – Nab, Pab – 

Ntr, Ptr – Nab), however, the only statistically significant difference was determined 

for the combination Ptr – Ntr vs. Pab - Ntr. (t6 = 2.64; P = 0.0386). In contrast to the 

trend and to the sticky trap experiments, higher number of thrips was found at the 

compartment Pab – Nab compared to its pair (Pab – Ntr) when tomato plants were 

used as trap. However, this reverse result in the comparison Pab - Nab vs. Pab – Ntr 

with plant recapture was not significant (t6 = 1.65; P = 0.1495) (Figure 5B).  

2.4.3 Discussion 

C. claratris apparently preferred the greenhouse compartments that received higher 

UV intensities (Figure 5A and B). A significant reduction in the recapture of 

C. claratris both on traps and tomato plants could always be observed in greenhouse 

compartments that block more UV. This result supported other studies that reported 

the preference to UV of insects such as western flower thrips, whiteflies, and aphids. 

Costa and Robb (1999) reported a clear flight preference of western flower thrips 

F. occidentalis to higher UV levels in choice experiments with plastic tunnels. Later, 

Kigathi (2005) further corroborated these findings for F. occidentalis by choice 
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experiment in laboratory and small greenhouse flight arenas. Caliothrips phaseoli 

also evidently favoured in choice situations areas with UVA compared to the areas 

blocking this spectrum (Mazza et al. 2002). Preference for richer UV environments 

was also reported for the whiteflies, Bemisia argentifolii (Costa and Robb 1999), and 

T. vaporarium (Costa et al. 2002, Mutwiwa et al. 2005, Doukas and Payne 2007a) 

when tested in choice situations.  
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Figure 5. Recapture of C. claratris in paired choice experiments with blue sticky traps 
(A) and tomato plants (B). Mean (± SD) in the same group in each graph followed by 
the same letter are not significantly different (T-test, P < 0.05, n = 6 for experiment 
with trap, and n = 4 for experiment with plant). Ptr: UV transmitting plastic, Pab: UV 
absorbing plastic, Ntr: UV transmitting net, Nab: UV absorbing net. 
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The underlying mechanism explained why thrips show such a strong bias to UV 

richer environments is still discussing and speculative. In the choice experiments, 

thrips must first be stimulated to take off from the release platform and select a 

specific direction for flight. It can be assumed that this first step is not completely 

controlled by the far distant targets (traps or plants). Therefore, it is liable that for this 

first orientating flight activity the stimulation of UV receptors in the compound eyes 

was mainly resulted from ambient light excitement. Mellor et al. (1997) provided 

evidence that UV receptors are especially numerous in the dorsal eye region of the 

whiteflies, T. vaporariorum, and other herbivorous insects, which also suggests an 

important role of incoming UV for the orientation mechanism of insects. Assuming a 

similar visual system of C. claratris like F. occidentalis with two photoreceptors, which 

are sensitive at a UV wavelength (365 nm) and a green yellow wavelength (540 nm) 

(Matteson et al. 1992), it seems that the UV receptors were not excited by ambient 

light conditions lacking the UV part, and thus did not trigger the dispersal flight of 

thrips to the UV excluding environments. Unfortunately, there are no detailed studies 

to further elucidate this mechanism. Concerning the attractiveness of the targets, it is 

generally accepted that UV reflection from plant surfaces plays an important role in 

making plants visible to herbivorous insects and thus direct their flight (Möller 2002). 

This can enhance the attraction of insects to traps and plants in the UV rich areas.  

However, still a certain proportion of C. claratris dispersed into the UV deficient 

constructions, even into the Pab – Nab, of the flight chambers in both experiments. 

Other choice studies also always found a small proportion of insects, e.g. whiteflies, 

T. vaporarium, dispersing into the areas with no UV (Costa et al. 2002, Mutwiwa et al. 

2005). Apart from a certain probability for random movements under such artificial 

conditions (Doukas and Payne 2007a), it can be concluded that thrips ability to locate 

blue traps and plants is unlikely a sole function of the UV in the ambient light or 

reflectance from objects. Flight triggered by other biotic (e.g. olfactory stimuli) and 

abiotic (e.g. air movement) factors should be considered as well.  

Apart from being excited by visual stimuli and abiotic factors especially, olfactory 

stimuli (volatile signal compounds) may be involved in navigation control of 

dispersing insects. Plant odour may play a role as attractant to insects. However, 

odour stimuli were found to have minor effects on the flight direction of thrips than 
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colour stimuli as observed in western flower thrips F. occidentalis (Teulon et al. 1999, 

Davidson et al. 2006) and New Zealand flower thrips Thrips obscuratus (Berry et al. 

2006).  

The only discrepancy in the otherwise regular trend in dispersal flight of thrips was 

recorded for the choice comparison between the strongly UV deficient Pab – Nab 

construction and the slightly UV richer Pab – Ntr treatment using plants as 

attractants. Fewer thrips was found in the latter construction (Pab – Ntr), although 

this difference was not significant. It is unlikely that plants under the weak UV 

condition were less attractive to C. claratris than those under the very poor UV 

condition. A possible explanation is that apart from immigration processes from the 

start compartment into the adjacent flight chambers, a possible loss of thrips across 

the nets to outside should also be considered. Especially during the first flight activity, 

some random landing on the sidewall nets are likely, and thrips migration through the 

non-‘barrier’ UV transmitting net should be comparatively high. The relatively low 

recapture of C. claratris in the similar greenhouse compartment (Pab – Ntr) 

compared to the Pab – Nab when the paired choice chambers were set up between 

these compartments and the Ptr – Ntr may corroborate this hypothesis.  

Higher rates of recapture using plants compared to blue traps can be attributed to a 

number of factors. First, the different light reflection from plants and traps may cause 

different attraction effects to released C. claratris. The peak reflectance for green 

leaves (at c.a. 550 nm) (Grant et al. 2003, Liu et al. 2006, Johnsen et al. 2006) 

seems to be closer to the peak sensitivity of the first receptor in thrips eyes compared 

to the wavelength reflected from the blue card (c.a. 440 nm, our measurement). 

Second, the motion of objects, e.g. movement of plants in wind, is also an important 

factor for visual detection (Giurfa and Menzel 1997, Kimmerle and Egelhaaf 2000). 

And third, plant odour may also play an important role in final selection and 

acceptance of the target. 

In conclusion, the results of this study suggest that C. claratris also expresses a 

distinct preference to high UV intensities for flight behaviour, and avoids areas where 

UV was excluded. This favours further researches to understand the potential control 

effect of UV absorbing materials to immigration and flight behaviour of the thrips, 
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C. claratris, in the netted greenhouses used in protected cultivation systems in the 

tropics. 

 

2.5 Natural immigration of Ceratothripoides claratris to 

greenhouses clad with different combinations of UV 
transmitting and absorbing plastics and nets  

2.5.1 Materials and methods 

Natural immigration of C. claratris into different clad closed-door greenhouses 

The four basic greenhouses constructed from different combinations of UV 

transmitting and absorbing plastics and nets (for detail see sections 2.2.4 and 2.2.5) 

were used in this study. These greenhouses were orientated East-West along their 

length and arranged 4 m apart from each other to avoid shading effects from 

adjacent greenhouses (Figure 6). Each greenhouse contained thirty potted plants (for 

detail see 2.2.3). Greenhouse doors were closed during the entire experimental 

period. 

Transparent plexiglass traps (12 x 15 cm) glued one side with clear glue (Insect glue, 

My success, Bangkok, Thailand) were arranged at 2 cm distance from both outer and 

inner surfaces of the net sidewalls to catch thrips migrating towards the outer net 

surface and those passing inside the greenhouses (Figure 7). Traps were arranged 

at three different heights at 0.5, 1 and 1.5 m above the ground in a distance of 1 m 

between adjacent traps, compiling 18 traps at one height and a total of 54 traps at 

the outer net surface of each greenhouse. Similarly, 48 traps were installed at the 

same height and distance on the inner net walls with the sticky surfaces facing 

outward to the net to catch immigrating thrips crossing through the net sidewalls. The 

first traps were mounted one week after tomatoes were planted in the greenhouses. 

They were collected and replaced with new traps weekly for 6 weeks. Numbers of 

C. claratris trapped were counted on every trap individually under the binocular 

(Krüss. A. K Krüss Optronic, Germany; magnification: 15 x 3) in the laboratory.  
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Population dynamics of C. claratris on tomato plants inside greenhouses were 

investigated weekly for 7 weeks after planting of tomatoes. The numbers of adults, 

first and second larval instars of C. claratris were directly counted on ten randomly 

selected plants in each greenhouse. The counting was repeated for the same 

selected plants over the whole investigation period. In the last week of the 

investigation, week 7 after planting, young leaves of sampled plants were collected 

and analysed with DAS-ELISA test in the laboratory to detect virus infections.  

The experiment was repeated three times over time throughout the year 2006, i.e. 

from February to April, from May to July, and from September to November. 

Greenhouses were sanitised and sprayed with Spinosad™ (1.5 ml L-1) after each 

experimental replication. Greenhouses’ nets and plastic covers were washed with 

high pressure water to remove dust prior to the next replication of the experiment.  

 

 

Figure 6. Experimental setups used to study natural immigration of C. claratris to 
closed-door greenhouses clad with different UV transmitting and absorbing plastics 
and nets. Ptr: UV transmitting plastic, Pab: absorbing plastic, Ntr: UV transmitting net, 
Nab: UV absorbing net. 
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Figure 7. Greenhouse structure and experimental set up viewed from outside (left) 
and inside (right).  

Natural immigration of C. claratris to different clad opened-door greenhouses  

The same experiment was set up as described above, except that the two front doors 

(1 m in width x 2 m in height) of each greenhouse were opened daily from 8 am to 4 

pm throughout the experimental period (Figure 8). Greenhouses were oriented North 

– South. Within the framework of this experiment, only the population dynamics of 

C. claratris on tomatoes and the plant virus incidence were investigated for 5 weeks 

after planting. Experiment was repeated twice over time, i.e. from September to 

October and from November to December, 2006.  

 

Figure 8. Experimental setups used to study natural immigration of C. claratris to the 
opened-door greenhouses clad with different combinations of UV transmitting and 
absorbing plastics and nets. Ptr: UV transmitting plastic, Pab: absorbing plastic, Ntr: 
UV transmitting net, Nab: UV absorbing net.  
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Virus detection by double-antibody enzyme-linked immunosorbent assay 

(DAS-ELISA) 

Infection of tomato plants with CaCV-AIT tospovirus was verified using double-

antibody sandwich enzyme-linked immunosorbent assay (DAS - ELISA) according to 

the procedure described by Premachandra et al. (2005a). A mixture of poly- and 

monoclonal antibodies (AGDIA® Inc., Elkhart, IN, USA. Cat. No. SRA 61500) 

originally developed to detect Watermelon silver mottle virus (WSMoV) and 

Groundnut bud necrosis virus (GBNV) was used for the detection of CaCV following 

the supplier’s protocols. 

2.5.2 Results  

Attractiveness of greenhouses clad with different combinations of UV 

transmitting and absorbing plastics and nets to C. claratris 

Replication 1 (from February to April, 2006). The captures of thrips on the outer net 

sidewalls were significantly different at greenhouses clad with different plastic and net 

types across the experimental period (F3 = 9.27, P < 0.0001) (Figure 9A). Until 4 

weeks after planting, significantly fewer thrips were caught at the outer net walls of 

the two greenhouses covered with UV absorbing plastic (Pab) compared to those 

covered with UV transmitting plastic (Ptr) regardless the net types, although not many 

C. claratris were trapped at all greenhouses during this time period. Subsequently, 

the capture of C. claratris gradually increased towards the end of the experiment at 

all greenhouse types (GH * time: F15 = 8.67, P < 0.0001). While the capture of 

C. claratris at the greenhouse type Pab – Nab remained at a least level, there was a 

shift in thrips capture at the greenhouse type Pab – Ntr. Highest thrips numbers were 

captured at this greenhouse type compared to others on the last investigation time, 

week 7 after planting. 

The penetration of C. claratris into greenhouses was strongly affected by both 

greenhouse covering plastic and net types (Figure 9B). The combination of Pab – 

Nab proved to be the best protective greenhouse structure against thrips immigration. 

Until six weeks after planting only a very few C. claratris was caught on the traps 

inside this greenhouse. This number was far lower than those captured inside other 
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greenhouses, although the captures on the outer net walls were more or less similar 

between different treatments (Figure 9A). On the other hand, the penetration intensity 

of thrips into the greenhouse type Pab – Ntr was not impaired. The penetration rate 

of thrips C. claratris into this greenhouse can be compared to the greenhouse type 

Ptr – Nab. The highest number of C. claratris was found on traps at the inner net 

walls of the greenhouse type Ptr – Ntr across the experimental period (F3 = 137.42, P 

< 0.0001). Data from the last monitoring date in this greenhouse was not plotted in 

the graph because the excessive capture inside compared to that outside was 

supposed resulting from the dispersal of thrips from inside owing to the high density 

on plants inside. The average penetration efficiency (%) of thrips, calculated as the 

ratio (percentage) of thrips caught on traps inside compared to outside traps, was 

20.7, 0.9, 18.2 and 14.2 at the greenhouse type Ptr – Ntr, Pab – Nab, Pab – Ntr, and 

Ptr – Nab, respectively. Accordingly to the significant increase in the capture of 

C. claratris at the outer net walls across the experimental period the number of thrips 

caught inside also significantly increased over time (GH * time: F15 = 100.42, P < 

0.0001). 

Replication 2 (from May to July, 2006). Similar to the first experiment, significantly 

fewer C. claratris were found on traps at the outer net walls of the greenhouses 

covered with UV absorbing plastic (Pab) compared to the captures at the greenhouse 

type Ptr – Ntr (GH: F3 = 88.19, P < 0.0001) (Figure 10A). In this experiment, the UV 

absorbing net also expressed its superior effect against thrips shown by the low 

number of thrips captured at the greenhouse type Ptr – Nab. Although the capture of 

thrips at all greenhouses decreased after week 4 post-planting and did not recover 

until the last investigation in week 7 after planting (GH * time: F15 = 22.96, P < 

0.0001), the traps exposed on greenhouse type Ptr – Ntr always contained the 

highest numbers of thrips compared to other treatments during the first 6 weeks 

period.  

Accordingly, a very low number of C. claratris was found on the traps inside the three 

greenhouses covered with either UV absorbing plastic and/or net (Figure 10B). 

Significantly lower numbers of thrips penetrating into these greenhouses compared to 

that immigrating into the greenhouse type Ptr – Ntr (GH: F3 = 47.69, P < 0.0001). 

From week 5 after planting, no thrips was trapped inside the greenhouses covered 
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with UV absorbing plastic. In addition, a poor capture of thrips inside the greenhouse 

type Ptr – Nab was recorded. This situation did not change until week 7 after 

planting. The average penetration efficiency of thrips was again highest in the 

greenhouse Ptr – Ntr (17.4%), followed by the greenhouse Ptr – Nab (7.1%). 

Penetration rate did not exceed 2% in the greenhouses clad with UV absorbing 

plastic (Pab– Nab, Pab – Ntr). 

Replication 3 (from September to November, 2006). Replication 3 corroborated 

results from other two previous replications. First, statistically significant differences 

were recorded in the capture of thrips at all greenhouses (GH: F3 = 19.21, P < 0.0001 

for traps outside; GH: F3 = 27.46, P < 0.0001 for traps inside) and over time (GH * 

time: F15 = 16.14, P < 0.0001 for traps outside; GH * time: F15 = 12.87, P < 0.0001 for 

traps inside). Second, the UV absorbing plastic showed again the highest potential in 

reducing the exposure of the greenhouses and plants to thrips immigration. Although 

lower total numbers of thrips were captured both at the outer and inner net walls in 

this replication, the data trend matched that from the first replication (Figure 11A and 

B). Until week 4 after planting, significantly fewer thrips were trapped at the outer net 

walls of the greenhouses covered with UV absorbing plastic. A dramatic increase in 

the captures on the greenhouse Pab – Ntr was recorded in the last 2 weeks of the 

investigation, week 6 and 7 after planting. No C. claratris was found penetrating 

inside the greenhouse Pab – Nab although a few individuals were trapped at the 

outer net walls. The highest penetration rate was recorded at the greenhouse Ptr – 

Ntr (111.6%), followed by the Pab – Ntr (59.1%) and Ptr – Nab (39%). 
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Figure 9. Trapping of thrips C. claratris on traps outside (A) and inside (B) 
greenhouses clad with different UV transmitting and absorbing plastics and nets in 
replication 1 (from February to April, 2006). Mean numbers of C. claratris per trap (± 
SD) in each observation week followed by the same letter are not significantly 
different (LS-mean, Tukey’s test, P < 0.05). Ptr: UV transmitting plastic, Pab: UV 
absorbing plastic, Ntr: UV transmitting net, Nab: UV absorbing net.  
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Figure 10. Trapping of thrips C. claratris on traps outside (A) and inside (B) 
greenhouses clad with different UV transmitting and absorbing plastics and nets in 
replication 2 (from May to July, 2006). Mean numbers of C. claratris per trap (± SD) in 
each observation week followed by the same letter are not significantly different (LS-
mean, Tukey’s test, P < 0.05). Ptr: UV transmitting plastic, Pab: UV absorbing plastic, 
Ntr: UV transmitting net, Nab: UV absorbing net. 
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Figure 11. Trapping of C. claratris on traps outside (A) and inside (B) greenhouses 
clad with different UV transmitting and absorbing plastics and nets in replication 3 
(from September to November, 2006). Mean numbers of C. claratris per trap (± SD) 
in each observation week followed by the same letter are not significantly different 
(LS-mean, Tukey’s test, P < 0.05). Ptr: UV transmitting plastic, Pab: UV absorbing 
plastic, Ntr: UV transmitting net, Nab: UV absorbing net. 
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Immigration and population development of C. claratris on tomato plants inside 

closed–door greenhouses  

Replication 1 (from February to April, 2006). The greenhouse type Pab – Nab 

proved to be the best protective structure against C. claratris. In accordance to the 

low number of thrips trapped both outside and inside net walls, none of the tomato 

plants was found to be infested in this greenhouse type (Figure 12). On the contrary, 

plants in the greenhouse Ptr – Ntr were severely infested and damaged. The 

greenhouses covered with either the UV absorbing plastic (Pab – Ntr) or net (Ptr – 

Nab) also did not provide efficient protection. The earliest infestation was recorded in 

the greenhouses covered with UV transmitting plastic. At week 2 after planting 40% 

of the plants investigated were already infested in the greenhouse Ptr – Ntr. The 

infestation quickly spread over this greenhouse within 2 weeks. The plants in the 

greenhouse Pab – Ntr were infested a week later compared to plants under UV 

transmitting covers, however, the infestation level quickly reached the same damage 

level as in the greenhouse Ptr – Nab. Six weeks after planting, 100% of plants 

controlled were infested in both greenhouses (Figure 12A). 

Accordingly, the highest thrips population was recorded in the greenhouse type Ptr – 

Ntr over the whole experimental period (GH: F3 = 34.09, P < 0.0001 for adult; F3 = 

43.71, P < 0.0001 for L1; F3 = 41.63, P < 0.0001 for L2) (Figure 12B, C, and D). The 

thrips population in this greenhouse steadily built up until week 4 after planting, and 

reached a density of about 20 adults, 50 L1, and 100 L2 per plant. Subsequently, 

these numbers dramatically increased and caused total plants dry death 3 weeks 

later, i.e. week 7 after planting. The infestations in the greenhouses types Pab – Ntr 

and Ptr – Nab were less severe. No significant difference was recorded in thrips 

populations in these two greenhouses. Thrips populations dramatically increased 

over time in all infested greenhouses (GH * time: F15 = 32.25, P < 0.0001 for adult; 

F15 = 21.31, P < 0.0001 for L1; F15 = 38.95, P < 0.0001 for L2).  

Replication 2 (from May to July, 2006). Likewise, the greenhouse type Pab – Nab 

was totally protected from thrips immigration (Figure 13). Interestingly, none of the 

plants in the greenhouse type Pab – Ntr was infested, too. The infestation in the 

other two greenhouses Ptr – Ntr and Ptr – Nab was also less severe than in the 
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previous replication. Not before the last week of the observation period, week 7 after 

planting, 100% of the plants were infested with C. claratris. The damage was 

equivalent in these two greenhouse types (Figure 13A).  

The thrips populations inside greenhouses with UV transmitting plastic cover 

increased exponentially over time (GH * time: F15 = 7.57, P < 0.0001 for adult; F15 = 

5.34, P < 0.0001 for L1; and F15 = 9.49, P < 0.0001 for L2) (Figure 13B, C, and D). 

Significant differences were determined among the thrips populations in the 

greenhouses covered with different plastic types, but not between the two with the 

same plastic roof material. 

Replication 3 (from September to November, 2006). Consistent to the other two 

replications, the plants inside the greenhouse Pab – Nab were again free of thrips 

and any sign of thrips damage (Figure 14). Heavy infestations were observed in the 

greenhouses made from UV transmitting plastic. These greenhouse types were 

entirely infested two weeks after planting. Infestation in the Pab – Ntr remained at 

40% of plants until week 5 after planting before dramatically increasing a week later 

(Figure 14A). 

Although the population dynamics of C. claratris in all greenhouses fluctuated over 

the experimental period, a general trend of a significant lower thrips population in 

greenhouse Pab – Ntr could be observed compared to those in the greenhouses clad 

with UV transmitting plastic (GH: F3 = 21.83, P < 0.0001 for adult, F3 = 21.70, P < 

0.0001 for L1, and F3 = 21.38, P < 0.0001 for L2) (Figure 14B, C, and D). No 

significant difference was determined among the thrips population in the two 

greenhouses covered with the same UV transmitting plastic. 
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Figure 12. Plant infestation (A) and population development of C. claratris adults (B) 
first larvae (C) and second larvae (D) on tomato plants inside closed-door 
greenhouses clad with different UV transmitting and absorbing plastics and nets in 
replication 1 (from February to April, 2006). Mean individual numbers of each 
developmental stage of C. claratris per plant in each observation week followed by 
the same letter are not significantly different (LS-mean, Tukey’s test, P < 0.05). Ptr: 
UV transmitting plastic, Pab: UV absorbing plastic, Ntr: UV transmitting net, Nab: UV 
absorbing net. 
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Figure 13. Plant infestation (A) and population development of C. claratris adults (B), 
first larvae (C) and second larvae (D) on tomato plants inside closed-door 
greenhouses clad with different UV transmitting and absorbing plastics and nets in 
replication 2 (from May to July, 2006). Mean individual numbers of each 
developmental stage of C. claratris per plant in each observation week followed by 
the same letter are not significantly different (LS-mean, Tukey’s test, P < 0.05). Ptr: 
UV transmitting plastic, Pab: UV absorbing plastic, Ntr: UV transmitting net, Nab: UV 
absorbing net.  
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Figure 14. Plant infestation (A) and population development of C. claratris adults (B), 
first larvae (C) and second larvae (D) on tomato plants inside closed-door 
greenhouses clad with different UV transmitting and absorbing plastics and nets in 
replication 3 (from September to November, 2006). Mean individual numbers of each 
developmental stage of C. claratris per plant in each observation week followed by 
the same letter are not significantly different (LS-mean, Tukey’s test, P < 0.05). Ptr: 
UV transmitting plastic, Pab: UV absorbing plastic, Ntr: UV transmitting net, Nab: UV 
absorbing net. 
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Virus infection. Virus infection pattern clearly resembles thrips infestation. Plants in 

the greenhouse type Ptr – Ntr were most severely infected with CaCV, whereas 

plants in the Pab - Nab never showed any virus infection. The second heavy infection 

could be observed in the greenhouse Ptr – Nab (Table 1). The Pab - Ntr treatment 

was only heavily infected in the first replication. Concerning the time periods, the 

most severe infection was recorded in the first replication, from February to April, 

when 100% of thrips infested plants in all greenhouses were virus infected. The 

lowest infestation levels of plants were measured in the second replication, from May 

to July with a maximum of 20% virus incidence. In the third replication, from 

September to November, a virus incidence of 40% was detected in the greenhouse 

Ptr – Nab and 80% in that house completely covered with UV transmitting materials 

(Ptr – Ntr). No virus infected plants were found in the greenhouse Pab – Ntr. 

Table 1. Virus incidence of tomato plants in different closed-door greenhouses clad 
with different UV transmitting and absorbing plastics and nets throughout the year 
2006 at week 7 after planting.   
 

Virus incidence (%) 
Greenhouse Replication 1 

(February – April) 
Replication 2 
(May – July) 

Replication 3 
(September – November)

Ptr - Ntr 100 20 80 

Pab - Nab 0 0 0 

Pab - Nab 100 0 0 

Ptr - Nab 100 20 40 

Note: Ptr: UV transmitting plastic, Pab: UV absorbing plastic, Ntr: UV transmitting net, 
Nab: UV absorbing net. 

 

Immigration and population development of C. claratris on tomato plants inside 

opened-door greenhouses  

Replication 1 (from September to October, 2006). With doors opened, the 

remarkable anti-thrips effect of the greenhouse type Pab – Nab was slightly impaired 

but still pronounced (Figure 15). Two weeks after planting, 20% of the investigated 

plants were infested with thrips (Figure 15A). However, at the same time thrips had 
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already spread completely over the greenhouses covered with UV transmitting plastic 

(Ptr – Ntr and Ptr – Nab). In the Pab – Nab treatment, thrips spread slowly and 

reached a 50% infestation rate not before week 5 after planting. A distinct delay in 

thrips infestation was also observed in the greenhouse type Pab – Ntr compared to 

the greenhouses covered with UV transmitting plastic.  

As a consequence, thrips densities in greenhouses covered with UV absorbing 

plastic were significantly lower than in those covered with UV transmitting plastic 

(GH: F3 = 53.30, P < 0.0001 for adult; F3 = 25.73, P < 0.0001 for L1; and F3 = 38.39, 

P < 0.0001 L2) (Figure 15B, C, and D). Although smaller thrips densities were 

obviously recorded in the greenhouse type Pab – Nab compared to that with UV 

transmitting net (Pab – Ntr), no significant difference was found. Thrips populations in 

both greenhouses covered with UV transmitting plastic increased significantly during 

the investigation period (GH * time: F9 = 11.34, P < 0.0001 for adult; F9 = 5.52, P < 

0.0001 for L1, and F9 = 5.74, P < 0.0001 for L2). However, a significantly lower thrips 

density was recorded in the greenhouse with UV absorbing net (Ptr – Nab). 

Replication 2 (from November to December, 2006). Very similar thrips population 

and plant infestation trends could be observed among the greenhouses like in 

replication 1 (Figure 16). In this replication, a complete protection of tomato plants 

from thrips infestation in the greenhouse type Pab – Nab could be achieved until 4 

weeks after planting.  

Virus infection. Although a certain proportion of investigated plants was infested by 

C. claratris, almost no virus incidence was detected in the greenhouses covered with 

UV absorbing plastics up to 5 weeks after planting, except that about 10% of the 

plants were infected in the greenhouse Pab - Ntr (Table 2). On the other hand virus 

infections in greenhouses with UV-transmitting roofs were rather high, ranging from 

90% to 100% in greenhouse Ptr - Ntr and 70% - 50% in Ptr - Nab in the first and 

second replication, respectively.  
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Figure 15. Plant infestation (A) and population development of C. claratris adults (B), 
first (C) and second larval instars (D) on tomato plants inside opened-door 
greenhouses clad with different UV transmitting and absorbing plastics and nets in 
replication 1 (from September to October, 2006). Mean individual cnumber of each 
developmental stage of C. claratris per plant in each observation week followed by 
the same letter are not significantly different (LS-mean, Tukey’s test, P < 0.05). Ptr: 
UV transmitting plastic, Pab: UV absorbing plastic, Ntr: UV transmitting net, Nab: UV 
absorbing net. 
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Figure 16. Plant infestation (A) and population development of C. claratris adults (B), 
first (C) and second larval instars (D) on tomato plants inside opened–door 
greenhouses clad with different UV transmitting and absorbing plastics and nets in 
replication 2 (from November to December, 2006). Mean individual number of each 
developmental stage of C. claratris per plant in each observation week followed by 
the same letter is not significantly different (LS-mean, Tukey’s test, P < 0.05). Ptr: UV 
transmitting plastic, Pab: UV absorbing plastic, Ntr: UV transmitting net, Nab: UV 
absorbing net. 
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Table 2. Virus infection of tomato plants in opened–door greenhouses clad with 
different UV transmitting and absorbing plastics and nets at 5 weeks after planting. 
 

Virus incidence (%) 
Greenhouse Replication 1 

(September to October) 
Replication 2 

(November to December) 

Ptr - Ntr 90 100 

Pab - Nab 0 0 

Pab - Ntr 10 0 

Ptr - Nab 70 50 

Note: Ptr: UV transmitting plastic, Pab: UV absorbing plastic, Ntr: UV transmitting net, 
Nab: UV absorbing net. 

 

2.5.3 Discussion 

Attractiveness and prevention of greenhouses clad with different UV 

transmitting and absorbing plastics and nets to C. claratris 

The results clearly showed that the absorption of UV radiation from the ambient light 

spectrum significantly affected the orientation and host location abilities of 

C. claratris. This effect extended a short distance outside the manipulated 

environment, since even the migration of thrips to external parts of net walls was 

impaired. A fewer number of thrips was trapped at the outer net walls of the 

greenhouses covered with UV absorbing plastic compared to that of the greenhouses 

covered with UV transmitting plastic. In addition, fewer numbers of thrips passed 

through the nets to immigrate into the former to infest the plants. These results 

corroborate previous findings from Antignus et al. (2001) and Kumar and Poehling 

(2006) about the immigration response of the whiteflies, B. argentifolii, B. tabaci, the 

aphids, A. gossypii, and the thrips, C. claratris, towards and into greenhouses 

different in UV light transmittance. The less attraction of the greenhouses with low UV 

intensities to whiteflies (Antignus et al. 2001, Kumar and Poehling 2006), aphids and 

thrips (Kumar and Poehling 2006) compared to the rich UV areas was reported 

throughout the experimental period.  
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The combination of UV absorbing plastic and net (Pab – Nab) resulted in the most 

remarkable anti-thrips effect of the greenhouse. These two UV absorbing material 

types mutually supplemented each other to protect the greenhouses from 

immigration of the thrips. This combination not only obstructed thrips to find plants 

from a distance, but also impeded them to penetrate via the net walls. Almost no 

thrips individuals were trapped at the inner net walls, despite a certain number of 

thrips was found on the outer traps at this greenhouse type. The distinct gradient of 

thrips distribution across this border is obvious between outside and inside traps.  

On the other hand, it was remarkable that C. claratris dramatically changed its 

preference towards the greenhouse type Pab – Ntr after five weeks of experiment in 

the present study. High numbers of thrips were caught on the sidewalls of this 

greenhouse. This phenomenon was observed in two out of three experimental 

replications. An explanation for that change could be related to the nutritional status 

of the host plants. Heavily infested plants within the UV transmitting greenhouses 

were overcrowded and damaged in that phase, leading to high numbers of thrips 

searching outside greenhouses for host plants. Whereas the plants in greenhouse 

covered with UV absorbing plastic and transmitting net (Pab – Ntr) were in a much 

better condition and located visually and by stimulating olfactory signals. The higher 

attraction of more healthy and only moderate infested plants could overweight the 

inhibitory effect of the UV deficient environment. A similar argument can be given for 

the increase in thrips capture around the greenhouse made from UV absorbing 

plastic and net (Pab – Nab) at the same time. However, the increase in capture of 

thrips at this greenhouse’s net walls was not as pronounced as at the Pab-Ntr, 

presumably because of the additionally visual barrier function of the UV absorbing 

net. On the other hand, this reduced protective property of these greenhouses was 

not observed with low surrounding thrips pressure as recorded in the second 

replication. 

Reduced efficiency in preventing thrips immigration has been reported in the 

greenhouse solely covered with UV absorbing nets (Antignus et al. 1998). While 50 

mesh UV absorbing net (Bionet) effectively prevented the penetration of several 

insects including the whiteflies, B. argentifolii, the aphids, A. gossypii, the leafminers, 

L. trifolii, and the red mites, T. telarius, this net type failed to restrict the immigration 
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of western flower thrips, F. occidentalis, and the rust mites, V. lycopersici. The mesh-

size of the net in relation to the size of the target insect and the UV incomplete 

filtration properties of the net were attributed for this failure (Antignus et al. 1998). 

Immigration and population development of C. claratris on tomato plants inside 

greenhouses with different UV intensities  

The efficiency of the greenhouse constructions in insect exclusion is strongly 

dependent on the filtration properties of plastic roof and net sidewall materials to UV 

intensity. In the present study, the greenhouses covered with UV absorbing plastic 

and net most successfully protected tomatoes against thrips immigration. None of the 

tomato plants in this greenhouse type was infested with C. claratris. However, the 

anti-thrips effect of this construction was significantly impaired if either the UV 

absorbing plastic roof or net was replaced by an UV transmitting one, or when the 

entrances were opened during the cultivated period, resulting from higher amount of 

UV radiation penetrated to the inner parts of the enclosed rooms. The combination of 

UV absorbing and transmitting materials in the greenhouse’s designs did especially 

retard the initial thrips infestation and population build up to some extents with a more 

pronounced effect if absorbing plastics were used. However, the combination of Pab 

– Ntr also can protect plants as well as the combination Pab – Nab only if the outer 

thrips population pressure was not too high. These results agree with the recently 

published studies of Doukas and Payne (2007a). These authors reported that the 

anti-whitefly (T. vaporariorum) effect of the UV absorbing plastic tunnel was 

significantly impaired if the complete UV protection area was reduced by cladding 

only part (more than 20%) of the sidewalls with UV transmitting plastic. The low 

filtration effect of the 50 mesh net covering greenhouse to the UV radiation also failed 

to prevent the immigration of F. occidentalis although this greenhouse type 

successfully excluded several other insects including the whiteflies, B. argentifolii, 

and the aphids, A. gossypii (Antignus et al. 1998). 

Greenhouse constructions in the tropics need plastic roofs to protect the crops from 

heavy rainfalls but cannot completely be closed by plastics, which would be most 

effective against insect immigration. They require intensive air ventilation to achieve 

sufficient heat exchange. One possible solution is to use fans in combining with the 
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plastic film construction but such constructions are expensive. Houses with plastic 

roofs and netted sidewalls are cheap, however, during hot seasons additional 

ventilation is necessary, which can be achieved by partial opening of the sidewalls or 

by opening larger entrances on two opposite sides of the houses. In our study, we 

choose this second option. Even with the opened entrances, the constructions with 

UV absorbing covering plastics on roof and nets on the sidewalls (Pab – Nab) exhibit 

excellent anti-thrips effects. Similar to the finding of Antignus et al. (2001), the 

infestation started from the plants at the entrance. Similarly, a partial decrease of 

efficacy could be observed in relation to material combinations. In the here study, 

higher preventive effect was also found at the opened-door greenhouse made from 

UV absorbing plastic and transmitting net (Pab – Ntr) compared to those with UV 

transmitting plastic roofs. Thrips population in the latter built up very fast. The results 

agree with the findings of Kumar and Poehling (2006), which reported profound 

exclusion effects of the netted greenhouses covered with UV absorbing plastic on 

roof to C. claratris, B. tabaci and A. gossypii irrespective of the opening period of the 

doors. Similar findings are reported from other studies. Antignus et al (2001) showed 

that opened-door greenhouses covered with UV absorbing plastic and UV 

transmitting nets were still superior to houses with UV transmitting plastics against 

whiteflies, B. argentifolii, but could not achieve a complete and durable protection. 

Costa et al. (2002) reported that densities of aphids, A. gossypii, and thrips, 

F. occidentalis, were restricted under the side-opened greenhouses covered with 

plastics blocking the transmission of UV light up to 380 nm, however, the effect was 

inconsistent, and the same greenhouse design failed in protection against the 

whiteflies, T. vaporariorum. 

Virus infection in greenhouse constructions clad with different combinations of 

UV transmitting and absorbing plastics and nets 

The spreading of virus disease is closely associated with the distribution of its insect 

vector. In accordance with the infestation levels of thrips in different greenhouse 

constructions tested, plants in the greenhouse covered with UV absorbing plastic and 

net (Pab – Nab) were successfully protected from thrips and virus infection. On the 

contrary, plants within greenhouses covered with UV transmitting plastic and net (Ptr 

– Ntr) suffered from fast and intensive virus spread all over the greenhouse area, 
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resulting in 100% virus infection rates. The heavy virus infection in this greenhouse 

type caused a total loss of the harvest in both closed- and opened-door greenhouse 

designs one month after planting. More limited virus infection was recorded in the 

greenhouse types that partially filtered UV light either via the plastic roof (Pab – Ntr) 

or netted sidewalls (Ptr – Nab) with a more pronounced efficiency in the former. 

Lower infections of tomato plants in these greenhouses compared to the UV 

transmissive constructions could slow down the development of detrimental virus 

effects until the first harvest. The delay in thrips infestation and the consequent 

restriction in thrips population development may be the reasons for the limitation in 

virus infection in these greenhouse types although thrips was also found spreading 

all over the greenhouses but slower compared to the UV transmitting cladding 

greenhouses. The older plants inside greenhouse Pab – Ntr at the time of infestation 

with thrips and virus may be more resistant to virus infection than those in 

greenhouse Ptr – Ntr, which was infested few weeks earlier. This hypothesis was 

supported by several other studies on the relation between plant age and virus 

infection (e.g. Moriones et al. 1998, Wang et al. 1999, Hernan and John 2001, 

Mandal et al. 2007). 

The number of virus particles inoculated to the plants by the vectors among others is 

the most important factor influencing the success of inoculation and systemic 

spreading of the virus. Hence, the proportion of viruliferous thrips individuals in the 

infesting population represents the potential of that population to transmit the virus. 

For instance, six viruliferous adults of F. occidentalis per plant were determined as 

the minimum number required for the successful transmission and symptom 

development of tomato spotted wilt virus (TSWV) in several chrysanthemum cultivars 

(van de Wetering et al. 1999). In the here study, we did not control the percentage of 

viruliferous immigrants in the different treatments, however, we hypothesised that the 

UV manipulation will not influence the ratio of viruliferous vs. non-viruliferous thrips, 

and that simply the higher thrips population in the greenhouse covered with UV 

transmitting plastic and net (Ptr – Ntr) may be responsible for higher numbers of 

viruliferous individuals and the higher virus load of the crop. Antignus et al. (2001) 

also argued in their experiments that mainly the UV deficient area limited vector 

immigration but did not alter the ability of viruliferous insects to transmit the virus. 
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The complex interaction among plants, virus-borne insects and virus determines the 

success or failure of insect infestation, virus infection and virus spreading. Apart from 

the direct interaction between each of the partners involved, i.e. plant vs. virus, plant 

vs. insect, insect vs. virus, insect and virus may indirectly affect each other 

infection/infestation to plants via shared host plant defence reaction, because they 

both excite the defence reaction in plants once infested/infected. Presumably, the 

induced defence reaction of plants to one infested/infected factor (insect or virus) will 

restrain the infection/infestation of the followers (virus or insect). On the other hand, 

to successfully establish on that plant, virus and insect must overcome the defence 

mechanism in plants. Since virus needs its insect vectors to spread, several 

evidences showed that while encountering with the defence mechanism induced 

plants, virus may also interfere the defence response of plants to its insect vectors so 

that promoting the development of the vectors, eventually for spreading of virus itself 

(Belliure et al. 2005). Many insects were found preferring the virus infected plant over 

the healthy one and/or developing and reproducing faster with higher survival rate of 

the offspring on the former compared to the latter, e.g. thrips, F. occidentalis 

(Bautista et al. 1995, Maris et al. 2004, Belliure et al. 2005, Stumpf and Kennedy 

2007), F. fusca (Stumpf and Kennedy 2005), aphids, Aphis fabae (Kennedy 1951), 

silver whiteflies, B. agentifolii (Mayer et al. 2002), meadow spittlebugs, Philaenus 

spumarius (Eubanks et al. 2005). These all findings hypothesised that virus infection 

has improved plant/food quality for its insect vector. However, in most of the cases, 

this hypothesis was qualitatively rendered based on the attraction and performance 

of the insects on plants but the actual change in the plant tissues was not quantified. 

Among a very few detailed studies, Eigenbrode et al. (2002) described the 

enrichment of plant kairomone volatiles in the virus infected plants, which thus attract 

more insects. Moreover, the yellow colour of the virus infected plants was also 

argued to attract more thrips (Yudin et al. 1987). The attractiveness, high 

development rate and fast spreading of thrips in the greenhouse type Ptr – Ntr in the 

present study may not only be the function of UV light regime but also result from the 

increased plant attraction caused by virus infection. The presence of high numbers of 

virus infected plants may also be another explanation for the observed late increase 

in attractiveness of thrips towards the greenhouse Pab – Ntr. 
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The strong preventive effect of UV filtration on the spreading of the virus was also 

well documented from other studies. The spread of tomato yellow leaf curl virus in 

tomato crops was sharply limited by restriction in the abundance of its vector, the 

whiteflies, B. argentifolii, in culture tunnels clad with UV absorbing material (Antignus 

et al. 1998, Antignus et al. 2001). Similarly, a strong reduction in tospovirus infection 

(CaCV) was recorded from poor UV intensity greenhouses in relation to the reduction 

of abundance of the vector C. claratris (Kumar and Poehling 2006).  

 

2.6 Effect of projecting roofs covered with UV absorbing plastic 
film to greenhouses clad with different combinations of UV 
transmitting and absorbing plastics and nets on the 
immigration of Ceratothripoides claratris  

2.6.1 Materials and methods 

‘Forced’ immigration of C. claratris. The four greenhouses clad with different 

plastic films and nets previously used to examine natural immigration of C. claratris 

(for more detail see Figure 6) were modified for this study. While the north-oriented 

side of the greenhouses remained unmodified, the southern roof sides were 

protruded 0.5 m longitudinally and upright to the sidewalls of the greenhouses using 

a steel frame and covered with UV absorbing plastic film (Figure 17 and Figure 18). 

This additional roof structure aimed to increase the “room” with reduced UV intensity 

over the greenhouse area like an additional buffer zone. These greenhouse 

structures were used to study the supportive effect of an external UV absorbing roof 

to greenhouses clad with different types of roof plastics and sidewall nets against the 

immigration of C. claratris.  

For this purpose, thrips were artificially released from the two sides with different roof 

projecting designs of each greenhouse and their subsequent immigrations into that 

greenhouse were compared. Cages (1 m x 0.5 m x 0.5 m) with an opened side (1 m 

x 0.5 m), and UV transmitting plastic cover (upper side), while other sides clad with 

black plastic film served as release station (Figure 19). Cages were placed in the 

middle of the longitudinal greenhouse’s sidewalls, 0.5 m above the ground and with 
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the opened side attached to the sidewalls (Figure 17 and figure 18). 250 laboratory-

reared adults of C. claratris of unknown age were released into each cage from a 

plastic vial (3 cm in diameter and 5 cm in height), resulting in a total number of 500 

thrips released at each greenhouse. The sex ratio of thrips was estimated for 100 

thrips from the same rearing culture for every release given an average ratio of 

approximately 2 to 3 females to 1 male. 

Prior to the release, thrips were marked with either green or orange fluorescent dusts 

(Radiant Colour N.V., Belgium) to discriminate between thrips released from the 

cages at the northern and southern sidewalls of each greenhouse. For marking of the 

thrips, the fluorescent dust was at first sucked to coat the inner wall of a suction tube 

(5 mm in diameter and 15 mm in length) of an aspirator with a thin layer. 

Subsequently, this aspirator was used to collect thrips from the rearing cages. The 

collected thrips was marked while being sucked through the dust coated tube. This 

technique allowed uniformly marking high number of thrips with a sufficient amount of 

dust to detect later, and avoiding too much marked dust on thrips, which may results 

in interfering thrips physical strength and consequently alter the flight ability of thrips. 

The releases of thrips were usually carried out at around 11 am. Inside every 

greenhouse, 30 blue sticky traps (12 x 15 cm) were arranged in a grid form and at 50 

cm above the ground in order to capture the thrips entering the greenhouses. The 

sticky traps were collected six hours after releasing the thrips. Subsequently, the 

number of thrips on the traps was counted under a binocular (Krüss. A. K., Krüss 

Optronic, Germany, magnification: 15 x 4) in the dark laboratory. A handheld UV 

lamp (UVP, Inc. 20066 W. Upland, CA) was used to verify the fluorescent dye colour 

on thrips (Figure 19). Experiments were repeated three times. 

Free flight/Short-distance immigration of C. claratris. Similar greenhouse 

structures with projecting roof as described above were used. However, the release 

cages were posited 1 m away from the greenhouses' sidewalls. The UV transmitting 

covered upper side of the cages was replaced with black plastic film in order to direct 

thrips vision towards the only light source from the opening side directed towards the 

greenhouse. 
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Inside and outside the greenhouses, under the projecting and normal roof areas, the 

UV intensities were measured using radiometer UVA sensors (Indium Sensor, 

Neuenhagen, Germany). The UVA sensors were placed on stands (50 cm height) in 

the middle of the greenhouses or at a distance of 20 cm from the outer net wall. 

Since only two UVA sensors were available, the measurements were conducted on 

three (consecutive) days with similar weather conditions. 

 

 
 

 
Figure 17. Experimental setup used to study the supplemental effect of projecting 
roofs to greenhouses clad with different UV transmitting and absorbing plastics and 
nets on the immigration of C. claratris, Ptr: UV transmitting plastic, Pab: absorbing 
plastic, Ntr: UV transmitting net, Nab: UV absorbing net. 
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Figure 18. Experimental greenhouse design viewed from outside (left) and inside 
(right). 
 

 
 

Figure 19. The cage used to release the thrips (left) and thrips marked with 
fluorescent dust under the microscope (400 x) illuminated with an UV lamp. 
 

2.6.2 Results  

Light transmission 

The UV absorbing projecting roofs strongly reduced the ambient UV intensity (Figure 

20). The UVA value measured under the projecting roof was approximately 3 W m-2 

compared to about 10 W m-2 at the corresponding area which was not equipped with 

a projecting roof. However, the reduction in UV intensity caused by the projecting roof 

was less pronounced than that resulting from the cladding of UV absorbing plastic to 

the greenhouses. The UVA intensities were about 0.2, 1.8, and 7 W m-2, inside the 
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release of thrips  
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without cover 

Release 
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greenhouses Pab - Nab and the Pab – Ntr and those covered with UV transmitting 

plastic (Ptr - Ntr and Ptr - Nab) respectively.  
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Figure 20. UVA intensities (W m-2) measured for one hour at different parts of 
greenhouses (outside under the projecting roof and inside the greenhouses). Ptr: UV 
transmitting plastic, Pab: absorbing plastic, Ntr: UV transmitting net, Nab: UV 
absorbing net. (Values are measured at noon during three consecutive days). 

 

Supplemental effect of UV absorbing projecting roofs to greenhouses clad with 

different combinations of UV transmitting and absorbing materials on the 

immigration of C. claratris  

In all experiments with thrips release from cages closely contacted to the greenhouse 

sidewalls, consistent fewer thrips emigrated from cages under the projecting roof 

were captured inside all greenhouse types compared to the releases under the 

corresponding side with no UV absorbing roof extension (Figure 21A). With an 

exception of the Pab – Nab treatment this difference was highly significant in other 

cases (P = 0.0024, 0.0079; 0.0035 at the greenhouse Pab – Ntr, Ptr – Nab and Ptr – 

Ntr, respectively). 

When the release cages were arranged in a distance of 1 m from the greenhouse 

sidewalls the supplemental anti-thrips effect of the projecting roof was only 

pronounced at the greenhouse clad with UV transmitting plastic and net (Figure 21B). 
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In this greenhouse, the number of thrips emigrated from release cages under the 

projecting roof (3.7) was significantly lower than from cages on the other side of the 

greenhouse (16.3) (P = 0.0017). In all other greenhouses no significant additional 

effect of the projecting roof was recorded but the immigration from both sides was 

significantly different to the Ptr - Ntr greenhouse.  
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Figure 21. The immigration of thrips, C. claratris, into greenhouses clad with different 
combinations of UV transmitting and absorbing plastics and nets with an additional 
effect of extended UV absorbing roof. Thrips were released from cages either 
attached directly to (graph A) or positioned in a distance of 1 m (graph B) from the 
sidewalls. Within each pair of external roof design for a given greenhouse (lower 
case letters) or among the same external roof design of different greenhouses (upper 
case letters), different letters above or inside the bars indicate significant differences 
in immigration of thrips (T-test, P < 0.05, n = 3) and (Tukey’s test, P < 0.05, n = 3), 
respectively. (The number of undefined colour thrips was not included in the 
statistical test). 
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In both experimental setups, the highest immigration of thrips was recorded inside 

the greenhouse clad with UV transmitting plastic and net (Ptr – Ntr). On the contrary, 

the lowest thrips number was consistently found inside the greenhouse covered with 

UV absorbing plastic and net (Pab – Nab), while intermediate immigration rates were 

recorded in the combinations of UV transmitting and UV absorbing cladding materials 

(Pab – Ntr and Ptr - Nab).  

Unmarked thrips were also trapped inside all greenhouse types together with marked 

thrips. Their number was counted and indicated in the graphs as undefined source of 

thrips since they can be from either marked thrips populations who lost the marked 

dust or from natural sources outside the greenhouses. In all experiments the major 

proportion of the released thrips (more than 85% in most cases) has left the release 

plastic vials.  

2.6.3 Discussion 

The additional installation of projecting roofs clad with UV absorbing plastic resulted 

in a reduction of the UV intensity in the area underneath these structures 

approximately 70% of the ambient UV intensity. When the release cages were 

directly placed within this “room”, thrips were released into an environment with low 

UV intensity. They were expected to be attracted by the blue traps inside the 

greenhouses, separated by the net walls from release areas with either higher UV 

intensity (under UV transmitting covers) or lower UV intensity (under UV absorbing 

covers). Consistently, in all greenhouse types the immigration of thrips from the UV-

reduced areas under the projecting roofs was significantly lower than from the sides 

without projecting roofs regardless of the UV properties inside the greenhouses. This 

effect was even pronounced in the conventional greenhouse types clad with UV 

transmitting plastic and net, which has “normal” high UV intensity. It is obvious that 

the orientation and colour recognition abilities of the thrips were strongly affected by 

the low UV intensity within the release environment even though the otherwise 

attractive traps were exposed in a short distance and on the same level to the 

release area. Additionally, the capability of thrips to orientate and to recognise the 

traps behind the net barrier of UV absorbing type decreased with overall UV intensity 

inside the greenhouses regardless of the both release conditions, i.e. under the 
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areas of poor UV intensity of the projecting roof and rich UV intensity of the non-

projecting roof. 

High proportions of released thrips (> 85%) left the release vials indicates that 

marking of thrips with fluorescent dust did not affect their physical properties and 

takeoff ability. Rhainds and Shipp (2004) also recognized no impact of fluorescent 

dust on the dispersal ability of F. occidentalis when comparing marked and unmarked 

thrips. Most of the immigrated thrips were captured on traps close to the net walls 

adjacent to the release cages, only a few individuals flew across the greenhouses. 

The source of the small numbers of unmarked thrips captured on traps in all 

greenhouse types could not be identified and it remained open whether they 

originated from external sources or were released individuals having lost the marking 

dust. Presumably, they belong to released thrips, which lost the marking dust during 

flight activity. 

Many insect species dispersing by flight activity have distinct preference for 

environments with higher UV intensities compared to poorer UV intensity areas when 

given a choice (Costa and Robb 1999, Costa et al. 2002, Kigathy 2005, Mutwiwa et 

al. 2005, Doukas and Payne 2007a). This has also been validated recently for the 

thrips species, C. claratris, investigated in this study (for detail see section 2.4). 

However, in these choice experiments, the insects were released from a central dark 

release device allowing a free and no net limited dispersal to environments with 

different UV light intensities. To the best of our knowledge, there is no information 

available yet on the movement behaviour of insects from a relatively weak UV 

intensity area (e.g. under the UV absorbing projecting roof) to an area of higher UV 

intensity (e.g. to the greenhouses clad with UV transmitting plastic) or to an area of 

lower UV intensity (e.g. to the greenhouses clad with UV absorbing plastic) like in the 

here study. Nevertheless, there is some evidences that the dispersal of insects is 

limited under the conditions of low UV intensities (Antignus et al. 2001, Chyzik et al. 

2003, Mutwiwa et al. 2005). In experiments conducted by Costa and Robb (1999), 

the attempt to recapture released F. occidentalis under UV deficient conditions 

entirely failed, supporting the result of the experiment discussed here, that under the 

conditions of reduced UV intensities the orientation ability of the thrips species 

C. claratris is impaired. The discussion on the effects of UV deficient conditions on 
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dispersal of thrips will be resumed and continued more detailed in the following 

section (section 2.7). 

The projecting roof also significantly reduced the immigration potential of the thrips 

into the greenhouse type covered with UV transmitting materials (Ptr - Ntr) when 

thrips was released in a distance of 1 m from the sidewalls. A much lower number of 

thrips released from the side with the projecting UV absorbing roof immigrated into 

this greenhouse compared to the individuals released from the other corresponding 

non-projecting roof side. Overall, the magnitude of the thrips repelling effect of the 

additional UV absorbing projecting roof of this greenhouse type can be compared to 

that of the greenhouses clad with UV absorbing plastic and/or net. It is likely that the 

reduction of the UV intensity under the projecting roof acts as a visual ‘barrier’ to 

C. claratris. C. claratris is obviously not able to cross this UV deficient barrier to the 

otherwise attractive blue colour traps even over that short distance. On the other 

hand, this ‘barrier’ did not considerably improve the effect of the greenhouses clad 

with either UV absorbing plastic or net in preventing the immigration of C. claratris. 

The total numbers of thrips recaptured inside these greenhouses were very low, 

regardless the source of release from the projecting roof or from the non-extended 

roof side of greenhouses, which indicates that the high repellent potential in these 

constructions mainly resulted from the UV absorbing properties of the greenhouses 

rather than from the additional effect of the projecting roofs. However, these results 

corroborated findings from earlier trials conducted in the framework (for detail see 

section 2.5). 

Installation of the projecting roof provides another possibility in using UV absorbing 

plastics for control of thrips immigration besides cladding the entire greenhouses with 

this material. 
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2.7 Spatial and temporal distribution of Ceratothripoides claratris 
under the greenhouses clad with different combinations of UV 
transmitting and UV absorbing materials 

2.7.1 Materials and methods 

The effect of UV on the dispersal ability of thrips was studied inside the four 

greenhouse types clad with different UV transmitting and absorbing materials 

previously used to examine the natural immigration of C. claratris (for detail see 

Figure 6). The spatial dispersal of thrips over time was assessed from an initial 

infested point by artificially releasing thrips individuals on a plant at the one-end or in 

the middle of these greenhouses (Figure 22A, and B).  

Thirty three-week-old potted tomato plants were arranged in a grid form in three rows 

with a distance of 0.7 m between pots and rows, measured from the centre of 

adjacent pots. One week after transplanting, one hundred C. claratris adults of 

unknown age from the laboratory stock culture were released on the last plant in the 

middle row at the western end of the greenhouses (one-end release) (Figure 22A). In 

a second experiment, a same number of thrips was released on a plant in the middle 

of the greenhouses (Figure 22B). The sex ratio of thrips was estimated for 100 thrips 

from the same rearing culture for every release giving an average ratio of 

approximately 2 to 3 females to 1 male. Thrips were usually released in the morning 

around 8 am of the release day. The dispersal of thrips to other plants was 

investigated on day 1, 3 and 7 after release by direct counting the number of adult 

thrips on all plants in the greenhouses. Each experiment was repeated three times 

over time.  

Prior and after an experimental repetition, greenhouses were sanitized and sprayed 

with SpinosadM (1.5 mL L-1). The surrounding area of experimental site was also 

cleaned and sprayed with Spinosad to limit the immigration of thrips from outside.  
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Figure 22. Experimental designs studying the dispersal of a thrips population from an 
initial infestation point. The gray points in diagram A (one end release) and B (middle 
release) represent for the release points of 100 thrips. The numbers in the circle 
show the relative distance (m) from the recapture plants to the initial infested plant (0 
m). 
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Mean distance travelled by thrips  

Assuming that released thrips dispersed randomly and independently from each 

other, with no drift effects influencing the direction of dispersal, and that the dispersal 

coefficient of thrips was constant over a period of observation, the distance moved by 

thrips was calculated by fitting to a formula given by Southwood and Henderson 

(2000). 

 

Where D is the mean distance travelled by thrips over a period until the investigated 
day, N

i
 is the mean number of thrips per plant recaptured at the same distance from 

the released plant, x
i
 is the distance from the released plant of the ith distance, x

i+1
 is 

the outer distance to x
i
, and y is the outer most distance.  

Diffusion model predicting the dispersing density of C. claratris at different 

distances from the release point 

Among several diffusion equations used to estimate the decline of insects’ densities 

with distance from a release point, the exponential models provide the best fits to 

most field diffusion of insects (Taylor 1980, Southwood and Henderson 2000). The 

exponential model is a general form of most other diffusion equations (Taylor 1980, 

Turchin and Thoeny 1993). This model describes well the rapid decline of the density 

near the release point but extend infestation with small density (‘long tail’) to farther 

distance, which is usually observed in weak flying insects like thrips. In this study, the 

spatial dispersion of the thrips population between plants inside greenhouses was 

fitted to the well-known Taylor’s decay exponential model (1978) (Taylor 1980, 

Southwood and Henderson 2000). The Taylor’s decay exponential model is defined 

as:              N(x) = a exp(-bx) 

Where N is the thrips density at a distance x from the release plant; a is the initial 

density and b is the decay rate. 

D = ∑ (x    + x  )  
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2.7.2 Results 

Mean distance travelled. It is likely that the UV poor conditions did not support the 

dispersal of the thrips, C. claratris. Until day 7 after releasing (DAR), thrips individuals 

released under this condition (under the UV absorbing plastic covers) moved a 

shorter distance than those released under the richer UV light regimes (under UV 

transmitting plastic covers) during the same time period. In both experiments, where 

thrips were released either at the one-end or in the middle of the greenhouses, the 

lowest dispersing distances were recorded in the greenhouses clad with UV 

absorbing plastic and net (Pab - Nab). For instance, on day 7 after release the 

average distance travelled by thrips in this greenhouse was 0.79 and 0.56 m from the 

release point compared to more than 1 and 0.8 m in other greenhouses in one-end 

(Table 3) and middle release treatments (Table 4), respectively.  

Table 3. Mean (± SD) distance travelled by thrips released at the one-end of the 

greenhouses clad with different UV transmitting and absorbing plastics and nets. 

Mean distance moved (m) during time intervals after release 
(day after release - DAR) Greenhouse 

1DAR 3DAR 7DAR 

Ptr – Ntr 0.67 ± 0.13a 1.06 ± 0.29a 1.48 ± 0.29a 

Pab – Nab 0.43 ± 0.05a 0.68 ± 0.15a 0.79 ± 0.05b 

Pab – Ntr 0.50 ± 0.11a 0.71 ± 0.09a 1.10 ± 0.11ab 

Ptr – Nab 0.47 ± 0.01a 0.94 ± 0.20a 1.11 ± 0.11ab 

Mean distance travelled inside different greenhouses for a given investigated day 
(columns) followed by the same letter are not significantly different (LS-mean, 
Tukey’s test, P < 0.05, n = 3). Ptr: UV transmitting plastic, Pab: absorbing plastic, Ntr: 
UV transmitting net, Nab: UV absorbing net. 

However, in the one-end release experiment, a significant difference could only be 

detected between the dispersing distances of thrips populations in the greenhouse 

types Pab – Nab and Ptr - Ntr on day 7 after release (F3 = 8.78, P = 0.0065) (Table 

3). Whereas after release of thrips in the middle of the greenhouses, the distances 

thrips dispersed in these greenhouses were significantly different throughout the 
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investigation period (F3 = 5.14, P = 0.0285 for 1 DAR; F3 = 6.39, P = 0.0162 for 3 

DAR) (Table 4). Due to external infestation of thrips from natural sources outside, 

dispersal data from that treatment on 7 DAR in the greenhouse Ptr - Ntr was not 

included. At this time point, the dispersal distance of thrips in the greenhouse Pab-

Nab was significantly shorter than in other greenhouses (Pab - Ntr and Ptr - Nab) (F3 

= 10.33, P = 0.0114). Although thrips in the greenhouse type Pab - Ntr dispersed with 

slightly shorter distance than under the UV transmitting covers, no significant 

difference could be determined among the distances dispersed by thrips in these 

greenhouses.  

Table 4. Mean (± SD) distance travelled by thrips released in the middle of the 

greenhouses clad with different UV transmitting and absorbing plastics and nets. 

Mean distance moved (m) during time intervals after release 
(day after release - DAR) Greenhouse 

1DAR 3DAR 7DAR 

Ptr – Ntr 0.59 ± 0.10a 0.86 ± 0.16a - 

Pab – Nab 0.39 ± 0.03b 0.47 ± 0.08b 0.56 ± 0.13b 

Pab – Ntr 0.44 ± 0.06ab 0.61 ± 0.12ab 0.80 ± 0.03a 

Ptr – Ntr 0.52 ± 0.07ab 0.69 ± 0.04ab 0.87 ± 0.07a 

Mean distance inside different greenhouses for a given investigated day (columns) 
followed by the same letter are not significantly different (LS-mean, Tukey’s test, P < 
0.05, n = 3). Ptr: UV transmitting plastic, Pab: absorbing plastic, Ntr: UV transmitting 
net, Nab: UV absorbing net. 
 

Total dispersed distances. While the released thrips under the UV transmitting 

plastic covers (Ptr) could be recaptured as far as 3.57 m from the release point (one-

end release) on the last observation day (7 DAR), they only reached a distance of 

2.21 m when the UV inside greenhouse was filtered by both plastic and net (Pab - 

Nab) (Figure 23). In this experiment design, the farthest distance that thrips in the 

greenhouse type Pab - Ntr could move was 2.89 m. When thrips was released in the 

middle of the greenhouses, it could reach the plants far at the ends (2.8 and 2.89 m) 

of greenhouses with UV transmitting plastic covers, Ptr – Ntr and Ptr – Nab, on 3 and 
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7 DAR, respectively (Figure 24). Under the UV absorbing covers the longest distance 

thrips dispersed was up to 2.21 m from the central release point.  

Due to the low number of thrips that dispersed and the strong variance in recapture 

rates of thrips on trap plants at the same distance, almost no significant difference in 

thrips recapture was calculated at a given recapture distance across the 

greenhouses. In all greenhouses, the distribution of thrips decreased in relation to the 

increase in the distance from the released plant. 

Diffusion model. Significant negative relationships were detected between the 

densities of dispersing thrips and the dispersing distances (Table 5 and 6). The 

distribution of thrips decreased as increasing the distance from release plants. After 

the first day post-release, higher decay rates (the slopes of the regressions) were 

consistently calculated in the diffusion regressions of thrips in the greenhouse type 

Pab – Nab compared to other greenhouse types clad with UV transmitting plastics 

and/or nets. However, this difference was not statistically significant when thrips were 

released from one-end of the greenhouse. On the other hand, significant higher 

decay rates were always detected in dispersal of released thrips from middle of 

greenhouse the type Pab – Nab compared to Ptr – Ntr (F3,8 = 12.11; P = 0.0024 for 1 

DAR; F3,8 = 9; P = 0.0061 for 3 DAR), and to others clad with either UV absorbing 

plastic or net but only on day 7 after releasing (F2,6 = 8.75; P = 0.0166). High values 

of the regression coefficient (R2 ~ 0.99) and significant probability level (P value) of 

the model indicate that the exponential decay model described well the dispersal 

behaviour of thrips in this study. 
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Figure 23. Dispersal of thrips C. claratris in the greenhouses clad with different UV 
transmitting and absorbing plastics and nets on 1, 3 and 7 day after release of thrips 
(DAR) on a plant at the one end of greenhouses. Data show the means of three 
replications. Ptr: UV transmitting plastic, Pab: absorbing plastic, Ntr: UV transmitting 
net, Nab: UV absorbing net.  
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Figure 24. Dispersal of thrips C. claratris in the greenhouses clad with different UV 
transmitting and absorbing plastics and nets on 1, 3 and 7 day after release of thrips 
(DAR) on a plant in the middle of greenhouses. Data show the means of three 
replications. Ptr: UV transmitting plastic, Pab: absorbing plastic, Ntr: UV transmitting 
net, Nab: UV absorbing net. 
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Table 5. Parameters (± SE) of the diffusion regression model N(x) = aexp(-bx) 
describing the relationship between the density of C. claratris and the dispersing 
distance at various time points after release of 100 thrips on a plant at the one-end of 
greenhouses.  
 

Greenhouses DAR a b R2 F P > F 

Ptr - Ntr  52.00 ± 0.79 5.47 ± 0.95 0.998 3,883 <0.0001 

Pab – Nab 45.67 ± 0.26 5.22 ± 0.29 0.999 27,904 <0.0001 

Pab- Ntr 50.67 ± 0.29 5.15 ± 0.29 0.999 25,924 <0.0001 

Ptr - Nab 

1 

44.33 ± 0.23 4.36 ± 0.15 0.999 31,948 <0.0001 

Ptr - Ntr 41.66 ± 0.74 3.97 ± 0.37 0.997 2,770 <0.0001 

Pab – Nab 38.33 ± 0.32 4.26 ± 0.22 0.999 12,809 <0.0001 

Pab- Ntr 38.66 ± 0.44 4.00 ± 0.25 0.999 6,713 <0.0001 

Ptr - Nab 

 
 
3 
 
 33.99 ± 0.52 3.51 ± 0.22 0.997 3,724 <0.0001 

Ptr - Ntr 26.88 ± 1.28 2.61 ± 0.34 0.986 360 <0.0001 

Pab – Nab 25.66 ± 0.32 2.92 ± 0.11 0.998 5,642 <0.0001 

Pab- Ntr 24.25 ± 0.84 2.54 ± 0.23 0.987 698 <0.0001 

Ptr - Nab 

7 

24.27 ± 0.75 2.65 ± 0.23 0.989 880 <0.0001 

P and R2 are the probability level and regression coefficient for the model, 
respectively 
Ptr: UV transmitting plastic, Pab: UV absorbing plastic, Ntr: UV transmitting net, Nab: 
UV absorbing net. 
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Table 6. Parameters (± SE) of the diffusion regression model N(x) = aexp(-bx) 
describing the relationship between the density of C. claratris and the dispersing 
distance at various time points after release of 100 thrips on a plant in the middle of 
greenhouses. 
 

Greenhouses DAR a b R2 F P > F 

Ptr - Ntr  30.32 ± 0.52 3.14 ± 0.19b 0.997 2,916 <0.0001 

Pab – Nab 43.67 ± 0.07 5.61 ± 0.11a 0.999 335,637 <0.0001 

Pab - Ntr 39.67 ± 0.15 4.79 ± 0.14a 0.999 65,387 <0.0001 

Ptr – Nab 

 
 

1 
 

 39.66 ± 0.34 4.44 ± 0.25ab 0.999 12,094 <0.0001 

Ptr - Ntr 21.64 ± 0.42 2.41 ± 0.12b 0.997 2,182 <0.0001 

Pab – Nab 35.33 ± 0.26 4.55  ± 0.24a 0.999 15,792 <0.0001 

Pab - Ntr 27.33 ± 0.29 3.19 ± 0.12ab 0.999 7,469 <0.0001 

Ptr – Nab 

 
 

3 
 

 28.98 ± 0.55 3.32 ± 0.24ab 0.997 2,377 <0.0001 

Ptr - Ntr - - - - - 

Pab – Nab 27.66 ± 0.38 3.84 ± 0.26a 0.998 4,648 <0.0001 

Pab - Ntr 20.97 ± 0.40 2.70 ± 0.15b 0.997 2,283 <0.0001 

Ptr – Nab 

 
 

7 
 

 21.97 ± 0.59 2.79 ± 0.22b 0.994 1,108 <0.0001 

P and R2 are the probability level and regression coefficient for the model, 
respectively. 
The decay rates of diffusion regression of thrips in different greenhouse types at the 
same investigated time periods followed the same letter are not significant different 
(LS-mean, Tukey’s test, P < 0.5). Ptr: UV transmitting plastic, Pab: UV absorbing 
plastic, Ntr: UV transmitting net, Nab: UV absorbing net. 
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2.7.3 Discussion 

The distribution of thrips decreased in relation to the increase in distance from the 

released plant. As a typical function of exponential decay model, the distribution of 

released thrips rapidly declined near the release point (Taylor 1980); most of the 

released thrips focused around the release plants. This dispersal pattern was 

recorded for thrips released in all greenhouse types regardless of different UV light 

regimes. However, the higher decay rates of the diffusion regression of thrips and the 

shorter mean and total distances moved by thrips under UV deficient conditions 

compared to higher UV intensity areas suggest that the dispersal of thrips is hindered 

by the poor UV light conditions. This effect was more pronounced under the 

extremely low UV conditions, i.e. in the greenhouse type Pab - Nab.  

These results corroborated findings of Antignus et al. (2001) about the effect of UV 

deficient conditions on the dispersal pattern of whiteflies, B. argentifolii. The dispersal 

activity of this insect was significantly reduced under the UV absorbing covers (Pab) 

compared to that under the UV transmitting covers (Ptr). While more whiteflies were 

recaptured near to the release point under UV absorbing plastics they dispersed 

more randomly to further distance under transmitting roof material. Similarly, 

Mutwiwa et al. (2005) reported the negative impacts of UV deficient conditions on the 

dispersal ability of whiteflies, T. vaporariorum, in small growing tunnels fully covered 

with UV absorbing plastic. The spread of the aphids, M. persicae, in a sweet pepper 

crop stand was also limited inside a greenhouse covered with UV absorbing plastic 

(Chyzik et al. 2003). Winged aphids in this greenhouse were less active than those 

under the rich UV intensity. Additionally, the population growth of aphids was 

significantly impaired under the UV absorbing plastics. The mean flight duration of 

aphids was also decreased in the areas without UV (Kring 1972). 

On the contrary, Costa and Robb (1999) reported no negative impacts of the UV 

deficient conditions on the flight ability and dispersal of whiteflies, B. tabaci, although 

this insect obviously showed no preference to the area with poor UV light of 380 nm 

and below in a choice experiment. Higher numbers of B. tabaci were found on traps 

at the farther distance (1.5 m) from the released point than at the closer distance (0.6 

m) in a plastic tunnel made of this plastic film. Unfortunately, their attempt to study 

the dispersal ability of thrips, F. occidentalis, failed due to the low rate of recapture 
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under the UV poor conditions. Antignus et al. (2001) criticized the experimental 

design used by Costa and Robb (1999). According to Antignus et al. (2001), the 

narrow structure of plastic tunnels tested in this experiment (0.5 x 0.5 x 1.8 m) most 

likely disturbs the natural flight behaviour of whiteflies. The tendency of the whiteflies 

to fly upwards to contact the low tunnel ceiling may alter their distribution behaviour 

inside the tunnel. Another possible explanation for the discrepancy in the dispersal 

behaviour of B. tabaci in Costa and Robb’s experiment compared to others was the 

inadequate filtration of the UV light between 300 to 350 nm (Antignus et al. 2001). 

While the UV absorbing plastic used by Antignus et al. (2001) filtered almost 100% of 

UV light in this range, film used by Costa and Robb (1999) allowed about 15% of that 

UV range passing through.  

The UV may also drive the takeoff behaviour of flying insects. Aphids took off more 

readily in the presence of UV (Kring 1972). Similar effect was also recorded for the 

whiteflies, T. vaporariorum (Coombe 1982). They took off and/or walked faster under 

the short wavelengths (< 400 nm) than at the wavelengths above 400 nm (Coombe 

1982). On the other hand, the takeoff of F. occidentalis did not exhibit spectral 

specificity (O'Leary and Kirk 2004). No significant difference was recorded in the 

takeoff of this thrips under light regimes with pure UVA, visible light without UVA, and 

a mixture of both UVA and visible light.  

Recently, the dispersal pattern of western flower thrips, F. occidentalis, was 

comprehensively studied in a uniform array of chrysanthemum and cucumber plants 

in the greenhouses (Rhainds and Shipp 2003, Rhainds and Shipp 2004, Rhainds et 

al. 2005). The released F. occidentalis also most likely aggregated close to the 

central release points like C. claratris in the present study. The density of dispersing 

thrips was significantly decreased with increasing dispersal distances. However, 

females of F. occidentalis dispersed more actively than males in response to high 

densities of thrips and the increase of senescent inflorescences (Rhainds and Shipp 

2003, Rhainds et al. 2005). Nevertherless, the only and relatively low density of 

released thrips in the here study did not allow to see such density - dispersal 

dependent effect in C. claratris. 

In practical management terms, the weak dispersal ability of the thrips C. claratris, 

particularly under the UV deficient conditions, opens a ‘window’ period for applying 
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insecticides only to the early infested niches (hot spots), e.g. first infested plants 

along the sidewalls after thrips cross the net or any specific plant within the 

greenhouses presumably infested by workers, before they disperse to other plants. 

This targeted treatment method was also proposed by Rhainds and Shipp (2004) for 

control of thrips in the greenhouses. Moreover, for bio-control purposes such as the 

release of natural enemies, the limited pest dispersion from hot spots is also 

favourable and allows target orientated local releases. However, efficient monitoring 

system is necessary to detect even the first small pest colonies. Also for the very 

detrimental virus transmission, slowing down the dispersal of the vector can 

substantially limit the spread of the pathogen.  

In conclusion, the present study significantly contributes to understand the dispersal 

behaviour of thrips within a protected greenhouse system after accidental 

immigration and/or infestation. Particularly, understanding the dispersal behaviour of 

thrips under the UV deficient conditions will forward the development of proper 

additional control methods for such greenhouses.   
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3 Effect of UV reflecting mulch film on the immigration of 
Ceratothripoides claratris 

 

3.1 Introduction  

Coloured plastic mulches with different optical characteristics (transmittance and 

reflectance of light) have been widely used in agricultural and horticultural practices 

for specific purposes, e.g. to improve the micro-environmental conditions (soil 

temperature) around the crop stand promoting for plant growth and productivity, to 

control weeds, and to prevent pathogen propagation and insect immigration (see 

Reitz et al. 2003, Heissner et al. 2005).  

The effect of mulches is based on their properties to influence transmittance and 

reflectance of the incoming incident light. Black and transparent mulches absorb 

most of the incoming light, consequently heated up the soil underneath; whereas an 

opposite effect was recorded with white mulches, which strongly reflect most of the 

long wavelength light (e.g. Diaz-Perez and Batal 2002, Heissner et al. 2005, Johnson 

and Fennimore 2005). Regulation soil temperature provided optimum conditions for 

root system development and consequently promoted plant growth (Diaz-Perez and 

Batal 2002). Reflectance of selected wavelengths, e.g. increasing far-red/red ratios 

and blue light, can lead to an increase in the quantity of photosynthetic light, resulting 

in increasing plant growth and yield/total weight of the product (Antonious and 

Kasperbauer 2002, Kasperbauer and Loughrin 2004, Glenn and Puterka 2007). The 

heat built up under the black mulch and the absorbance of this mulch type to incident 

light were also well known in suppressing the growth of weeds (Ngouajio and Ernest 

2004, Johnson and Fennimore 2005, Radics et al. 2006). Last but not least, the 

equalisation of the colour and brightness contrast between plants and the ground 

caused by mulches (Döring et al. 2004) confused herbivorous insects during the host 

plant selection and recognition process; and excessive reflection of incident light from 

mulches, especially the UV light portion repelled them from visiting and alighting on 

plants (Kring 1972, Terry 1997, Summers et al. 2004).  
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Thus far repellent effects to insects were most widely reported for metalized 

(aluminium) or silver mulches, which were attributed to the increased reflection of the 

short wavelengths in the range 350 to 390 nm (Terry 1997). In few other papers, 

repellent effects of mulches to insects were also reported for white and other colour 

mulches (green and yellow), which were said to reduce the contrast between crop 

and background (Döring et al. 2004). Several insect herbivores were repelled from 

immigration into crop stands by metalized and silver mulches, including thrips such 

as F. occidentalis, F. fusca, F. tritici and T. tabaci (Greenough et al. 1990, Stavisky et 

al. 2002, Riley and Pappu 2004); aphids such as A. gossypii, M. persicae, 

Brevicoryne brassicae and other aphids species (Wilson 1999, Brust 2000, Döring et 

al. 2004, Summers et al. 2004); and whiteflies such as B. argentifolii (Summers and 

Stapleton 2002a, Summers et al. 2004). Consequently, insect-borne virus infections 

were also reduced in accordance to the restriction of insect vectors. On the other 

hand, in many studies reflective mulches failed to protect crops (e.g. Csinszky et al. 

1995, Van Toor et al. 2004). Apart from the light reflective properties of the mulch 

materials, the efficacy is dependent on many factors such as insect behaviour, 

weather as well as the crop morphology and its growing characteristics. 

So far, most of the studies dealing with repelling effects of reflective mulches to 

invasive insects have been carried out in the open fields. In this study, reflective 

silver mulch was tested to reduce the immigration pressure and crop infestation of 

C. claratris in netted greenhouses, aiming to enhance the anti-thrips effect of netted 

greenhouses. Improving the repellent properties of the greenhouse environment may 

allow increasing the net’s porosity for proper ventilation during hot periods.  

3.2 Materials and method  

The silver/black mulch (Ginegar Plastic Product Ltd, Kibbutz, Israel) was designed to 

cover the floor inside and/or outside the greenhouses. The greenhouses was clad 

with UV transmitting plastic film (PE-1A, RKWAG, Worms, Germany) and net (40 

mesh, Econet M, Ludvig Svensson, Sweden). Greenhouses’ inner floor was entirely 

covered with either mulch colour surface, e.g. silver or black. The floor outside the 

greenhouses was either covered with silver mulch in a width of 1 m from the net walls 

or left with bare ground. The combination of the inside and outside greenhouse floor 
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mulching resulted in four arrangements tested in this study, i.e. (i) a greenhouse with 

black mulch inside, (ii) a greenhouse with silver mulch inside, (iii) a greenhouse with 

black mulch inside and silver mulch around, and (iv) a greenhouse with silver mulch 

both inside and outside around the greenhouse (Figure 25, and figure 26). 

The spectral reflectance properties of the plastic mulches were measured in the 

laboratory using a PerkinElmer lambda 900 UV/VIS/NIR spectrophotometer 

(PerkinElmer Life and Analytical Science, Boston, MA) (Figure 27). At the 

greenhouse site, the amount of incident UV from solar radiation was recorded using 

UVA and UVB sensors (Indium sensor, Neuenhagen, Germany) installed 50 cm 

upwards towards the sky; whereas these sensors were turned around at the same 

position facing downwards to measure the UV reflectance from the mulches both 

inside and outside greenhouses (Figure 26). Data from sensors were automatically 

transferred to and recorded in a low-power consumption data-logger for every 5 

minutes (Institute of Horticulture and Biosystem Engineering, Leibniz University 

Hannover). Amount of reflected UV light was calculated as a proportion of the 

incident UV light. 

Each greenhouse contained thirty three week old tomato plants. Thrips infestation 

and population growth was recorded weekly after planting for one month on ten 

randomly selected plants. The number of adults and larvae were counted separately 

and directly on plants.  

Experiment was repeated three times, i.e. from February to March, from April to May, 

and from June to July, 2007.  

Statistical analysis  

Data were first subjected to UNIVARIATE test and HOVTEST = LEVENE option of 

SAS version 8 to check distribution of the population and homogeneity of the 

variance. Since the normal distribution assumption was violated, data were subjected 

to nonparametric test option in SAS. In case of a significant difference between 

greenhouses, the means of number of thrips on tomato plants in different 

greenhouses were compared using Tukey option in ANOVA test. The significant 

value was set at P < 0.05. 
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Figure 25. Experimental design to study the effect reflective silver plastic mulch on 
the immigration of C. claratris into greenhouses. 

 

 

Figure 26. Experimental setup: Position of UV sensors (left), greenhouse and mulch 
arrangement from outside (middle), and inside (right).  
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3.3 Results 

3.3.1 Light reflectance of the mulches 

The silver mulch used in this experiment reflected up to 30% of the UV (from 250 to 

400 nm) whereas only about 6% of the UV was reflected from the black mulch when 

reflectance was measured in the laboratory (PerkinElmer Lambda 900 UV/VIS/NIR 

spectrophotometer) (Figure 27). However, the percentage of UV reflectance was 

lower when measured with UV sensors facing downwards at 50 cm above the mulch 

at the greenhouse site. The highest reflectance proportion of UV was measured 

above the silver mulch inside the greenhouse, accounting for about 11% UVA (Figure 

28) and 13% UVB (Figure 29). An almost consistent amount of UV light was reflected 

from the same silver mulch type arranged either inside or outside greenhouse 

regardless of a much higher incident UV intensity measured outside than inside 

greenhouses (Figure 30 and Figure 31). Consequently, the relative percentage of UV 

reflection from this mulch type outside greenhouse was accounted for only about 5%, 

which was as low as that from the black mulch arranged inside greenhouse. 
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Figure 27. Spectral reflectance of reflective silver mulch from the silver and black 
sides (Ginegar Plastic Products Ltd., Israel) measured with a PerkinElmer Lambda 
900 UV/VIS/NIR spectrophotometer. 
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Figure 28. Percentage reflectance of UVA intensity in relation to the incident UV 
intensity at the same measuring sites from different mulch types outside and inside 
greenhouse (GH) (data from inside and outside greenhouses were taken on two 
different days and plotted as example). Si: silver mulch, Bl: black mulch.  
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Figure 29. Percentage reflectance of UVB intensity in relation to the incident UV 
intensity at the same measuring sites from different mulch types outside and inside 
greenhouse (GH) (data from inside and outside greenhouses were taken on two 
different days and plotted as example). Si: silver mulch, Bl: black mulch. 
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Figure 30. UVA intensity from the incoming light and the reflection (R) from different 
mulch types outside and inside greenhouse (data from inside and outside 
greenhouses were taken on two different days and plotted as example). Si: silver 
mulch, Bl: black mulch.  
 

 
 
Figure 31. UVB intensity from the incoming light and the reflection (R) from different 
mulch types outside and inside greenhouse (data from inside and outside 
greenhouses were taken on two different days and plotted as example). Si: silver 
mulch, Bl: black mulch.  
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3.3.2 Immigration and population development of Ceratothripoides claratris 
inside greenhouses with different mulching designs 

Replication 1 (from February to March, 2007). All greenhouses equipped with silver 

mulch delayed the immigration and limited the population abundance of C. claratris 

(Figure 32). In the conventional greenhouse with only black mulch inside, all plants 

were already infested 3 weeks after planting, whereas infestation rates reached 50% 

not before 4 weeks after planting in greenhouses mulched with silver mulch either 

inside or outside. In the greenhouses with silver mulch, thrips infestation rate was at 

most retarded when this mulch type covered either the greenhouse floor inside or 

was arranged as floor surrounding outside, however the difference to the greenhouse 

covered both inside and outside with this silver mulch was not significant. Regarding 

the thrips densities per plant, abundances of all determined developmental stages 

were significantly lower in silver mulch equipped greenhouses than in the 

greenhouse with black mulch inside (e.g. χ2 = 13.57, P = 0.0036 for adult; χ2 = 18.38, 

P = 0.0004 for L1; and χ2 = 19.82, P = 0.0002 for L2; df = 3, at 5 weeks after 

planting) (Figure 32B, C, and D).  

Replication 2 (from April to May, 2007). Again, the infestation rate of the plants in 

the greenhouse with silver mulch outside was slowest among the greenhouses 

tested. 50% of the sampled plants were infested with thrips in this greenhouse 3 

weeks after planting compared to about 80% infested plants in other greenhouses 

(Figure 33A). Although a higher infestation rate was found in the greenhouse 

mulched with silver plastic inside than the outside mulch, the differences in thrips 

densities in these two greenhouses were not significant. Thrips abundance in these 

two greenhouses was significantly lower than that in the greenhouse with black 

mulch inside (e.g. χ2 = 16.8, P = 0.0008 for adult; χ2 = 12.61, P = 0.0056 for L1; and 

χ2 = 15.66, P = 0.0013 for L2; df = 3, at 4 weeks after planting) (Figure 33B, C, and 

D). Although the greenhouse with silver mulch both inside and outside also 

moderately limited the immigration of thrips, no significant difference was found 

between thrips population inside this greenhouse and that in the normal greenhouse 

with only black mulch inside.  
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Replication 3 (from June to July, 2007). Infestation rate was lowest in the 

greenhouse with silver mulch inside, however not significantly different to the other 

treatments. Concerning thrips number per plant, the first difference between 

treatments became obvious not before 4 weeks after transplanting (Figure 34B, C, 

and D). Significant difference were only found with L2 larvae between the 

greenhouse mulched with silver plastic inside and that with black mulch inside (χ2 = 

11.21, P = 0.01; χ2 = 12.28, P = 0.0065, df = 3, for 3 and 4 weeks after planting, 

respectively) (Figure 34D). 

3.3.3 Virus infection 

Until 5 weeks after planting, almost no plant in the treatments with silver mulch inside 

or outside of the greenhouses was infected with virus except 10% of the plants in the 

greenhouse with this mulch type outside in the second replication (Table 7). The 

most severe virus infection was consistently recorded on the plants in the 

greenhouse with only black mulch inside, accounting for 20 – 30% infected plants. 

The infection in treatment with silver mulch both inside and outside varied from 0 to 

20%.  

Table 7. Incidence of virus infection (CaCV) (%) in tomato plants in greenhouses with 
different mulch arrangements in 2007 at 5 weeks after planting  
 

Virus incidence (%) 
Greenhouse Replication 1 

(Feb. - March) 
Replication 2 
(April - May) 

Replication 3 
(June - July) 

Bl inside 30 30 20 

Si inside  0 0 0 

Si outside & Bl inside 0 10 0 

Si inside & outside 0 10 20 

 
(Note: Bl: Black mulch, Si: Silver mulch) 
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Figure 32. Plant infestation (A), population development of C. claratris adults (B), first 
larval stage (C) and second larval stage (D) on tomato inside different mulching 
greenhouses in replication 1. Mean number of each developmental stage of 
C. claratris per plant in each observation week followed by the same letter is not 
significantly different (Tukey’s test, P < 0.05). (Si: Silver mulch, Bl: black mulch). 
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Figure 33. Plant infestation (A), population development of C. claratris adults (B), first 
larval stage (C) and second larval stage (D) on tomato inside different mulching 
greenhouses in replication 2. Mean number of each developmental stage of 
C. claratris per plant in each observation week followed by the same letter is not 
significantly different (Tukey’s test, P < 0.05). (Si: Silver mulch, Bl: black mulch). 
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Figure 34. Plant infestation (A), population development of C. claratris adults (B), first 
larval stage (C) and second larval stage (D) on tomato inside different mulching 
greenhouses in replication 3. Mean number of each developmental stage of 
C. claratris per plant in each observation week followed by the same letter is not 
significantly different (Tukey’s test, P < 0.05) (Si: Silver mulch, Bl: Black mulch).   
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3.4 Discussion  

Coating of the ground inside or around greenhouses with reflective silver mulch 

delayed the infestation with the thrips, C. claratris, and significantly limited its 

population development on tomato plants inside the greenhouses compared to 

conventional greenhouses equipped with black mulch inside. Subsequently, the 

infection with thrips vectored CaCV virus was also postponed in relation to thrips 

infestation pattern. However in absolute terms, substantially high thrips infestation 

rates were still recorded in these greenhouses, especially towards the later period in 

the experiments. Hence, the reduction in thrips immigration caused by the silver 

mulch is not sufficient to protect the tomato crop for a whole production period; 

however, the considerable delay in infestation opens capabilities to reduce pesticide 

treatments or to improve efficiency of biological control agents.  

It is widely acceptance that the excessive reflectance of UV radiation from metalized, 

silver and other reflective mulches confuses the incoming insects and reduces the 

incident of their alighting on plants (e.g. see Kring 1972 and therein citations, Terry 

1997, see Summers et al. 2004, Döring et al. 2004). Kring (1972) reviewed the flight 

behaviour of aphids in response to the enhanced light reflectance areas by reflective 

mulches and summarized that aphids may fly approaching these areas but fly along 

the edge border or over the areas, refuse to alight on plants and finally fly away. 

According to Terry (1997) and Van Toor et al. (2004), the reflectance of 30% of the 

UV spectrum, which we measured at the surface of the silver mulch used in this 

study in the lab, or only 11 and 13% for UVA and UVB, respectively, as measured at 

50 cm above the greenhouse exposed mulch will not strongly deter insects from crop 

immigration. The comparatively low but distinct repellent effects of the silver mulches 

to C. claratris in this study may not only have resulted from the reflection of UV but 

also the visible light portion (range from 400 to 700 nm) of the incoming incident light 

(see Kring 1972, Terry 1997, Döring et al. 2004). The increased brightness (or 

increased reflectance of the long wavelengths in the incoming incident light) may 

affect the contrast in the brightness of reflected light between the target (plant) and 

the background (mulch) (Kring 1972, Döring et al. 2004). This effect was also 

assumed to trigger the reduction of the immigration of insects as recorded on white 

(Kring 1972, Döring et al. 2004), green and yellow mulches (Döring et al. 2004) and 
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straw mulches (Döring et al. 2004, Summers et al. 2004). More than 25% of visible 

light was also reflected from the silver mulch used in this study. A similar consistent 

reflection of the visible light portion to the UV portion of the incident light was also 

measured on other metalized mulches (Summers et al. 2004, Kigathi 2005) and silver 

mulches (Döring et al. 2004). However, in most of the cases the repellent effect of 

these mulch types to insects was only discussed in the aspect of reflection of UV 

portion. Hence, the effect of enhancement brightness from the ground against insect 

immigration still needs to be validated by further research. 

The unequal light reflectance from different mulch arrangement areas (Terry 1997) 

also explained the decrease in thrips infestation when reflective silver mulch was 

used either inside or around the greenhouses compared to black mulch inside. 

However, the reason for the less efficient treatments with reflective silver mulch 

placed both inside and outside of the greenhouse compared to other arrangements 

(though not significantly different) remained unexplained. 

Regardless of the low repellent effects of reflective silver mulch to thrips in this study, 

the results corroborate previous findings on deterrent effects of reflective mulches to 

various insect species on different crops. The effects varied from high to moderate 

depending on the reflectance properties of the mulches and plant morphology. Most 

of the studies reported high repellent effects of reflective mulches early in the crop 

season, which diminished with progressing crop growth. The full expansion of the 

leaves and plant canopy late in the cropping season limited the ratio of the exposed 

reflective mulch area to the attractive plant surface, thus limiting the repellent effect of 

the mulch to insect immigration. In most of the cases, like in our study, reflective 

mulches only delayed the colonization and limited the population growth of 

herbivorous insects, but did not completely prevent crop infestation. Significant less 

number of thrips, F. occidentalis, chose to fly to a tunnel with ground covered by 

metallic mulch compared to that covered with black mulch when given a choice 

(Kigathi 2005). The use of silver and metallic reflective mulches has also significantly 

reduced thrips populations of F. occidentalis, F. fusca, F. tritici and T. tabaci tomato 

fields compared to un-mulched fields with bare soil (Greenough et al. 1990, Stavisky 

et al. 2002, Riley and Pappu 2004). Similarly, population built up of several species 

of the genus Frankliniella spp. on sweet pepper was delayed in the early season 
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when using reflective mulch, but not later when the plants were full-grown (Reitz et al. 

2003). Significantly less aphids and thrips were also found on vegetables grown on 

silver and metallic reflective mulches compared to bare soil (Greer and Dole 2003). 

Reflective plastic mulches have also significantly delayed the colonization of the 

whitefly B. argentifolii and the aphid A. gossypii in zucchini compared with white 

mulch treatments (Summers and Stapleton 2002a, Frank and Liburd 2005). The 

repellence to these two insect species caused by metalized mulch was as effective 

as synthetic insecticide treatment (Summers et al. 2004). Likewise, the leafhopper, 

Dalbulus maidis, on sweet corn was controlled better by reflective mulch than with an 

insecticide treatment (Summers and Stapleton 2002b). The colonization and landing 

of alate aphids on pumpkin, cantaloupe and lupin was significantly inhibited by UV 

reflective mulching compared to black mulch or bare soil field (Jones 1991, Brust 

2000, Summers et al. 2004). Several aphid species including B. brassicae, 

M. persicae were strongly deterred from traps exposed on white and silver 

backgrounds compared to uncovered and other colour backgrounds (Wilson 1999, 

Döring et al. 2004). These authors described a significant negative correlation 

between UV reflectance and aphid abundance. Andino and Motsenbocker (2004) 

also reported a stronger repellent effect of silver reflective mulch to cucumber beetle 

in watermelon than bare soil cultivation. The only attempt to incorporate UV reflective 

mulch to a greenhouse, i.e. at the near entrances and vents of the greenhouse, also 

resulted in the reduction of thrips immigration into that greenhouse (McIntyre et al. 

1996). 

However in other studies, the slight repellent effects of reflective mulches observed 

early in the crop season, which disappeared with progressing crop development, 

were stated to be insufficient as the only pest control method. The early suppression 

effect of UV reflective mulch to the colonization of onion thrips, T. tabaci, up to 8 

weeks after sowing, did not result in a successful control of thrips population later 

compared to bare soil field (Van Toor et al. 2004). Populations of aphids, thrips and 

whiteflies on tomato were also only significantly reduced on aluminium mulch in the 

early crop season compared to other colour mulches but not later (Csinszky et al. 

1995). Similarly, New Zealand flower thrips on nectarine was insufficiently controlled 

using reflective mulch (McLaren and Fraser 2001). The high density of crops and 

plant morphology were attributed to the failure of the protective effect of the reflective 
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mulches, especially at the late crop season when leave were fully developed and 

covered the mulches and thus shaded the reflective area of the mulches (Kring 1972, 

Van Toor et al. 2004).  

Regarding insect vectored plant virus, most studies showed that reflective mulches 

did not completely prevent the colonization of insects to field crops; however, it was 

argued that the delay of insect immigration and the suppression of population 

abundance at the beginning of the crop season can be quite important to reduce the 

damage of insect borne virus infection and thus increase the crop yield significantly 

(Jones 1991, Csinszky et al. 1995, Brust 2000, Stavisky et al. 2002, Stapleton and 

Summers 2002, Summers and Stapleton 2002a,b, Summers et al. 2004, Riley and 

Pappu 2004). Silver and white mulches were also reported to prohibit the incidence 

of the development of tomato spotted wilt virus (TSWR) in tomato independently from 

vector infestation compared to black mulch. This effect was attributed to the reduction 

of root area temperature under the silver and white mulches, which resulted in a 

stronger development of the plant and thus more resistant to development of virus 

diseases (Diaz-Perez et al. 2007).  

In conclusion, although the reflective silver mulch deposited inside or around netted 

greenhouses did not strongly prevent immigration of thrips in our study, the reduced 

infestation and abundance of thrips on tomato grown on this mulch type opens a 

promising potential for thrips management tactics in IPM aiming at reducing the use 

of insecticides. The efficiency of reflective mulches may be improved when mulches 

with higher reflectance properties of the UV range are used. In addition, white mulch 

was also many times reported with a similar repellent effect to insects as UV 

reflective mulches, hence testing this mulch type with netted greenhouse may 

provide other promising alternative control method for C. claratris. 
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4 General discussion 
 

Protected cultivation systems gain more and more interest of the growers for growing 

high quality crops because of their promising perspectives in protecting plants from 

adverse environmental conditions, and optimising the use of resources such as 

inputs like water and nutrients, and land. Protected systems allow the highest 

possible production intensity of convenient and high value crops. Greenhouses also 

provide barriers to prevent the immigration of herbivorous insects, thus opening 

venues to reduce pesticide treatments and offering much better opportunities for 

Integrated Pest Management (IPM) based mainly on Biological or Biotechnical 

Control options. However, from a technical point of view in tropical regions protected 

cultivation systems encounter the risks of heat overload combined with high humidity 

as a main and permanent problem. Hence, efficient ventilation is a prerequisite, and 

in contrast to temperate regions with dominance of closed greenhouse construction 

made of glass or plastics, in the hot regions of the world greenhouses are 

preferentially constructed with sidewalls clad with porous net material or as partially 

opened tunnels. However, such netted greenhouses are vulnerable for the 

immigration of herbivorous insects, particularly small sized mobile insects such as 

thrips, which can penetrate large net holes. Thus, the physical barrier function of 

such constructions is often inefficient to protect the crop from pest damage and other 

control methods are still indispensable to manage such insects. For a sustainably 

horticultural practice, however, pest control tactics that are environmentally friendly 

such as biological agents, pest behaviour manipulation or bio-rational insecticides 

should be set as priority. A physical method that manipulates the optical orientation of 

insects can affect their flight and dispersal behaviour. Such attempts recently 

attended more and more interest of researchers and seem to have a promising 

potential as alternative pest control method in protected cultivation systems. This 

latter approach was the main objective of this study aiming to promote the IPM in 

protected cultivation systems in the tropics.  

Insects with optical orientation, in particular those related to plants as food source, 

are known to have sensitive photoreceptors in their compound eyes for a few limited 

intercepts (“colours”) of the wavelength spectrum of incident solar radiation, including 

UV, blue and green; among these, the UV irradiation ranging from 350 to 390 nm is 
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most important for insect orientation and host location. The alteration of the UV 

portion of the incident light was presumed to optically confuse herbivorous insects 

during recognition of the host and repel them from visiting and alighting on plants. 

Modification of the UV was attempted in greenhouses and tunnels using UV 

absorbing cladding materials for control of insect immigration. Plastic film and net 

materials impregnated with UV absorbing additives can filter the transmittance of UV. 

On the other hand, reflective metalized and silver mulches covering the field ground 

can intensively reflect ambient light with a disproportional high proportion of UV in the 

spectrum. Both filtration and excessive reflection of the UV were proved to affect the 

visual orientation of several herbivorous insects. Integration of these materials to 

conventional greenhouse covering materials may supplement the mere physical 

barrier function against insects and thus may allow using large porous net materials 

or partial opening vents for a better ventilation efficiency in the hot regions.  

Based on these backgrounds, UV absorbing plastics and nets were compared with 

conventional UV transmitting materials covering greenhouses to study the impacts on 

immigration and flight behaviour of insects under the tropic conditions in central 

Thailand. A thrips species, C. claratris, recently described as a most devastating pest 

to greenhouse tomato in central Thailand because of its intensive propagation in hot 

microclimate and intensive plant damage both by direct destruction of leaf area 

(“feeding scars”) and by transmission of the very detrimental tospovirus CaCV, was 

selected as a kind of indicator organism for all experiments. Impacts of UV light 

filtration on the immigration, population dynamics, dispersal as well as virus 

association and transmission of this thrips species were comprehensively 

investigated. These investigations were conducted following the initial promising 

results of using UV absorbing greenhouse covering materials to prevent the 

immigration of the same thrips species in the region presented by Kumar and 

Poehling (2006). In addition, possible repellent effects of a reflective metalized film 

(mulch), which had already been demonstrated in field crops, were studied by 

equipping small experimental greenhouses with different arrangement of a ground 

covering reflective mulch either inside and/or outside the greenhouse constructions in 

comparison to a conventional greenhouse ground cover (black mulch). 

Several preceding studies have proven a distinct avoidance behaviour of insects, 

including thrips, whiteflies, and aphids, to areas (“rooms”) where UV was fully or 
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partially excluded. This was mainly confirmed by choice experiments where the 

tested organism could select between environments (flight chambers) with different 

amounts of UV intensity (e.g. Kigathi 2005, Costa and Robb 1999, Costa et al. 2002, 

Mutwiwa et al. 2005, Doukas and Payne 2007a). A similar behaviour was obviously 

observed in thrips, C. claratris, in the here presented study (for detail see section 

2.4).  

The deterrent effect of UV exclusion was further proved in commercial growing 

tunnels even though the entrances or sidewalls were opened occasionally or during 

the whole cultivation period to enhance the ventilation (Antignus et al. 2001, Costa et 

al. 2002, Kumar and Poehling 2006). The initial infestation of the crop by the pest 

was significantly delayed; consequently the insect abundance was also reduced 

relatively to the conventional greenhouses, which received ‘normal’ high amount of 

UV intensity. As a consequent, virus infection rate also markedly decreased. Overall, 

in relation to a much slower and lower total infestation intensity with reduced feeding 

damage and limited virus infection, a much better long-term performance of the 

plants and thus higher production efficacy could be expected with very limited or 

even no additional use of insecticides.  

The combination of UV absorbing net at the sidewalls and UV absorbing plastic 

covers like that of the here studied greenhouse designs can be a reasonable 

compromise for the conflicting issues: ventilation and pest control. Even 50 mesh 

nets can ensure a strong prevention of thrips immigration in greenhouses if clad with 

UV absorbing materials (for detail see section 2.5). Plants in this greenhouse type 

could be efficiently protected over the whole cultivated period if the doors were 

carefully kept close and all appropriate sanitation procedures were followed to avoid 

the artificial introduction of thrips, e.g. by workers, plant materials or infested labour 

tools. The integration of UV absorbing properties to both plastic covers and net 

sidewalls made the 50 mesh netted greenhouses as effective in control of thrips as 

78 mesh or even tighter nets, which could exclude thrips by their physical properties. 

Such extremely tight nets, however, are incapable under the tropic conditions as 

extreme heat and humidity accumulation is generated inside the greenhouses, which 

strongly affects the plant performance (Harmanto et al. 2006, Mutwiwa 2007).  
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The insect repellent potential of greenhouses is related to the intensity of UV 

exclusion. This was obvious from the comparison of different net/roof plastic 

combinations, which highly recommends for the combination of roof film and sidewall 

net types with UV absorbing properties. However, the greenhouse with only UV 

absorbing additive in the plastic roof may also sufficiently protect the crop from thrips 

but only if the immigration pressure (population density) from outside is low and the 

proportion of viruliferous thrips is small.  

Opening the front and rear end doors (1 x 2 m) of the greenhouses has significantly 

impaired the preventative effect to thrips in this study (for detail see section 2.5). 

Same experience was already described by Kumar and Poehling (2006). However, 

under these favourable barrier-free immigration conditions, the construction still 

exhibited a distinct protective effect if clad with both UV absorbing plastic and net. 

The infestation was then limited to plants at the opening entrances and thrips only 

slowly spread towards the centre of the greenhouse (for detail see section 2.5). 

Obviously, the dispersal of thrips under the UV blocking conditions was restrained 

compared to UV rich conditions. The spread limiting effect of UV poor conditions 

could be clearly proved with artificial selective releases of thrips at distinct release 

points (for detail see section 2.7). The results supported previous findings by 

Antignus et al. (2001), Mutwiwa et al. (2005), and Chyzik et al. (2003). Therefore, if 

the opening of greenhouses’ entrances and vents are necessary to improve the 

ventilation, population built up will be very limited inside the greenhouse area and 

spraying of insecticides could focus on a few plants at those hot spots to prevent the 

slow dissemination of the pest.  

The conventional greenhouses clad with UV transmitting plastic and 50 mesh net 

failed to protect tomato from thrips infestation. However, with a small and simple 

outer modification of this greenhouse design, by supplementing with an UV 

absorbing projecting roof construction upright to the sidewalls (out “collar”), the 

protective effect of this greenhouse type against the immigration of thrips could be 

significantly improved (for detail see section 2.6). The addition of such a projecting 

roof can repel the immigration of thrips nearly as effective as the UV absorbing roof 

covers or sidewalls of the greenhouses. Consequently, the thrips proof properties of 

the existing constructions can be upgraded with a small investment. 
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The repellent effect of reflective mulches, e.g. metalized and silver mulches, against 

the immigration of several insect species documented in opened field crops (e.g. 

Stavisky et al. 2002, Greer and Dole 2003, Reitz et al. 2003, Riley and Pappu 2004) 

inspired to test such measures to supplement barrier effects of netted greenhouses. 

However, none of the arrangements with the reflective mulch tested in this study, i.e. 

inside and/or outside of the greenhouses, showed a desired high efficiency in 

preventing thrips immigration in the long term, nevertheless a distinct delay and 

limitation in thrips abundance was recorded (for detail see section 3). The low 

reflectance of the UV portion from the mulch used could be attributed to such limited 

repellent effects. However, the considerable reduction in thrips infestation recorded in 

this study suggests that a combination of netted greenhouses as physical barriers 

with reflective mulches as optical repellents could be a promising attempt for thrips 

control. Yet, further studies with reflective mulch products that have higher 

reflectance properties and being more selective for the UV range are necessary to 

verify and improve the pest repelling properties. 

In the here presented study, the manipulation of the UV radiation was studied 

exclusively for prevention of pest immigration into tropical greenhouses. However, 

possible impacts on beneficial arthropods, especially for parasitoids and predators, 

pollinators and antagonistic microorganisms such as entomopathogenic fungi, all with 

possible distribution in the same environment should not be neglected. In addition, 

the growth and performance of the crop itself and the product quality such as 

important internal compounds also need to be validated if UV manipulating systems 

will be implemented.  

The observed UV effects on herbivorous insects are based on their specific visual di- 

or trichromatic system with sensitive receptors in the UV range of the light spectrum. 

However, this optical system is not unique to phytophagous insects but widely 

distributed in the insect kingdom. Hence, similar negative impacts seem to be likely 

for beneficial insects foraging in the same habitats as their host/prey. Like 

herbivorous insects, for instance many hymenopteran parasitoids also possess a di- 

or trichromatic colour vision system with sensitivity peaks for UV, blue and/or yellow 

green wavelengths (Peitsch et al. 1992). For instance, the parasitoid wasps such as 

Encarsia formosa and Trybliographa rapae have two visual sensitivity peaks for UV 

and yellow green wavelengths similar to their host insects, the whitefly, 
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T. vaporariorum and the cabbage root fly, Delia radicum, respectively (Mellor et al. 

1997, Brown et al. 1998). Therefore, it seems likely that parasitoids are also affected 

by the modification of the light spectrum that alters pests’ behaviour. Indeed, many 

parasitoid species were proved to prefer areas with higher UV intensities when given 

a choice to UV deficient environments, e.g. Eretmocerus mundus (a parasitoid of 

B. tabaci), Aphidius colemani (a parasitoid of M. persicae), Diglyphus isaea (a 

parasitoid of Liriomyza bryoniae) (Chiel et al. 2006), and E. formosa (a parasitoid of 

T. vaporariorum) (Doukas and Payne 2007b). Furthermore, some parasitoids lost 

their ability to locate and parasitize the host insects under the UV exclusion 

conditions, e.g. E. mundus (Chyzik et al. 2003), whereas many others were not 

affected for this specific behavioral traits, e.g. A. colemani and D. isaea (Chiel et al. 

2006) and A. matricariae (Chyzik et al. 2003). Most researchers argued that the UV 

reduced conditions do more severely affect the orientation of pest insects compared 

to the host finding and parasitism efficiency of parasitoids. Chiel et al. (2006) 

discussed that parasitoids rely more on olfactory than optical cues in host finding, 

thus they can overcome the constraint of UV poor conditions. Doukas and Payne 

(2007b) proved that the light intensity (brightness) is more important for spatial 

orientation of E. formosa than the relative amount of UV radiation. However, the 

relative impact of UV manipulation for pest vs. parasitoids should be carefully 

considered if parasitoids are intended as biocontrol agents. On the other hand, many 

predators that are not airborne and forage more or less by random search in host 

patches are not reacting to UV as shown for Chrysoperla carnea or Macrolophus 

pygmaeus (Wulf 2007, Horscht 2007).  

Studies dealing with possible side effects of reflective mulches on non-target 

organism are scarce. Reitz et al. (2003) showed that the enhancement of UV 

reflection by UV reflective mulches affected the natural abundance of the predatory 

bug Orius insidiosus, an important antagonist of Frankliniella spp. However, the UV 

enhancement did not impair the prey ability of the bugs, which were artificially 

released at the mulched areas. On the other hand, the total abundance and species 

diversity of natural enemies in field zucchini mulched with reflective plastic film did 

not differ from the bare ground field (Frank and Liburd 2005). However, effects of 

reflective mulches on the host finding and parasitisation/predatory abilities of 
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parasitoids and predators need much more investigations before more universal 

conclusion can be drawn. 

Bumblebees, important pollinators of commercial crops, e.g. tomato in the 

greenhouses, also possess a trichromatic colour vision system. The colour vision and 

specific UV reflecting pattern from flowers are a prerequisite for the bees to detect 

flowers and consequently for pollination (Bellingham et al. 1997, Gronquist et al. 

2001, Möller 2002). The elimination of UV radiation, therefore, will considerably 

change the characteristics of UV reflecting pattern of the flowers. However, these 

authors also proved that released bumblebee can quickly adapt to the poor UV 

conditions and further search for flowers successfully. Under UV poor conditions only 

the initial searching time was extended and the initial landing of bees on the flowers 

was interfered.  

In conclusion, UV poor greenhouses will not benefit from natural immigration of 

pollinators or natural enemies such as parasitoids (Morandin et al. 2002). In terms of 

released pollinators or natural enemies, however, the greater risk in using UV 

absorbing cladding materials is probably not a loss of efficiency of introduced 

beneficials inside the greenhouse but the emigration of released organisms via 

opening vents. According to the UV gradient, the outside area should be more 

attractive especially if flowers (for pollinators) or hosts (for parasitoids) are frequent 

adjacent to the greenhouses.  

The reason why availability of UV light plays such an important role in different 

insects in terms of flight initiation, flight direction, orientation in space, selection of 

host plants and specific flowers and even parts of flowers is still speculative in many 

aspects. It can be assumed that a missing stimulus for the UV receptors in the 

compound eyes under UV deficient conditions severely influences the ability of 

insects for differentiation (impression) of colours. In di- or trichromatic visual systems, 

like that of insects and vertebrates, colours are “mixed impressions”, composed by 

the nervous system from interpolation of stimuli ratios of the different receptors. Non-

stimulation of one receptor type results in a loss of the ability to differentiate colours, 

a kind of colour blindness, and brightness impressions alone merge the objects with 

surroundings. If this is the case, the long range navigation and colour based short 

distance orientation are supposed to strongly be affected. However, the restricted 
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dispersal of insects under these conditions suggests also an involvement of changing 

flight activity in general. Probably, the insects were not motivated to take off to start 

the dispersion flight under the UV deficient conditions and/or the flight duration after 

takeoff is reduced. But more investigations are needed to validate such speculations 

with trustful evidence. 

Apart from arthropods (insect pests or beneficials) the development and efficiency of 

several microorganisms and nematodes can also be affected by UV manipulation, 

which can be an important aspect in biocontrol if beneficial are considered. UV 

radiation, with more pronounced effect of UVB compared to UVA, can influence 

microorganism and nematodes in many ways: Sporulation of fungal conidia and 

conidial viability as well as germination of entomopathogenic and antagonistic fungi 

can be affected (Fargues et al. 1997, Inglis et al. 2001, Costa et al. 2001, Paul et al. 

2005); the stability of Bacillus thuringiensis (Falcol 1971, Sanchis et al. 1999, Tamez-

Guerra et al. 2000, Ruan et al. 2004) and Baculovirus (Ignoffo et al. 1997, Shapiro 

and Domek 2002, Petrik et al. 2003) and the efficacy of entomoparthogenic 

nematodes (Fujiie and Yokoyama 1998, Shapiro-Ilan et al. 2006) are reported to be 

diminished. Thus, the elimination of UV may promote these biocontrol agents and 

support and stabilize such beneficials after release.  

The importance of ambient solar UV for plants is not comprehensively understood 

(Gitz and Liu-Gitz 2003) and still remains several open questions. Most of the so far 

studies were carried out to understand the effect of enhanced levels of UV, 

particularly UVB, on plants’ performance and the change of internal metabolic 

compounds. Only a few studies made the effect of lowered UV to a subject of 

discussion. The exclusion of UV was stated to cause no or very little effect on the 

growth, yield, maturing time, and fresh or dry weights of plants, e.g. tomato, 

cucumber, pepper (Antignus 2007) and some dwarf shrub species (Phoenix et al. 

2002). Even in some cases, the exclusion of UV improved both quantity and quality 

of production (eggplant) (Kittas et al. 2006), increased dry weight (lettuce) 

(Tsormpatsidis et al. 2008), promoted root length (southern beech tree) and plant 

height (the sedges) (Zaller et al. 2002) or number of tillers (subarctic grass species) 

(Zaller et al. 2002).  
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On the other hand, it was reported that elimination of UV, particularly UVB (290 - 320 

nm), decreased the synthesis of UV absorbing pigments and compounds, i.e. 

anthocyanins, flavonoids and phenolic compounds (Gwynn-Jones and Johanson 

1996, Santos et al. 2004, Tsormpatsidis et al. 2008). The reduction in biosynthesis of 

anthocyanins and pigmentation is supposed to diminish the coloration of flowers and 

fruits. Hence, the application of UV exclusion may not be recommended for those 

crops that quality is determined by pigmentation (Antignus 2007). However, it was 

also reported that the chlorophyll and carotenoid contents were not impaired under 

the UV eliminated conditions (Gwynn-Jones and Johanson 1996, Tsormpatsidis et al. 

2008). 

The production of flavonoids compounds was also assumed as a defence reaction of 

plants against UVB damage (Wilson et al. 2001, Gitz and Liu-Gitz 2003, Flint et al. 

2004, Ulm and Nagy 2005) or against insects and diseases attacks (Flint et al. 2004, 

Ulm and Nagy 2005). The UVB induced flavonoids compounds were also sometimes 

mentioned as a signal for plants to regulate transpiration rates and water use 

efficiency in reaction to drought stress (Alexieva et al. 2001, Gitz and Liu-Gitz 2003). 

A synthesis of systemic proteinase inhibitor triggered by exposure to UVA and UVB 

was also reported as a defence of tomato in response to wounding (Stratmann et al. 

2000, Ulm and Nagy 2005). Loss of defence properties and plant performance would 

be a severe drawback of artificial UV poor environments. However, other authors 

argued that under a trade off viewpoint the repellent effect of UV deficient areas to 

insects’ immigration outweighed losses in induced plant resistance caused by a lack 

of flavonoid and other defence related metabolic compounds (Mazza et al. 2002, 

Rousseaux et al. 2004). It must be considered that most of the above mentioned UV 

effects on plants were achieved under laboratory conditions and artificially increased 

UV treatment of plants. There is still a big gap of knowledge about the importance of 

such effects, especially under production (field) conditions with relatively moderate 

manipulation in plant UV exposure.  

In summary, the use of UV absorbing plastics and nets as well as reflective mulches 

appeared promising as cladding materials or outer ground cover around 

greenhouses, respectively, especially for netted greenhouses in the tropics. Such 

constructions can very efficiently prevention thrips immigration and internal spread 

and on the other hand allow good ventilation properties by using net material of 
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sufficient porosity or even by opening of vents. The results of this study strongly 

improve IPM measures for protected cultivation systems in the tropics. Presumably, 

the accidental introduction of pests into such a protected systems via vents or by 

labourers or by already infested plant material in the nursery can not completely 

avoid; the infestation of thrips and possible subsequent virus infection will be 

restricted to limited areas and/or plants (hot spots) and can then be easily controlled 

by a frequent monitoring and target orientated spraying of insecticides to infested 

niches only. Possible negative effects of UV deficient conditions on the behaviour of 

beneficial arthropods or the plant quality or defence potential of plants have to be 

considered. However, regarding the recent state of the art, it can be concluded that 

the high control potential of the optical barriers outweighs such adverse effects. 

Hence, the implementation of these UV absorbing material types for covering tropic 

greenhouses could be recommended although yet many aspects need to be 

understood in detail. Future studies should evaluate more in detail the performance 

of the insects under UV reduced conditions, e.g. complete life tables, behaviour of 

males and females, fecundity of the females, the ability of males to search for 

females, fertilization rates as well as host finding ability of newly emerging adults. 

Studies should also focus more on the multi-trophic relationships and interactions of 

plant, pests and natural enemies. The performance and efficacy of beneficial 

microorganisms and entomopathogenic nematode under the UV eliminated 

conditions also need to be verified. Understanding the effect of UV exclusion on the 

growth, yield and quality of the crop and production is also necessary.  

Although the applications of tested reflective mulch did not yield really convincing 

results in repelling insects in this study, which is far less effective than greenhouse 

cladding UV absorbing materials, the delay and reduction in thrips abundance by the 

mulch treatments suggest a further promising tool for an IPM strategy, especially 

when combinations of UV absorbing cladding materials and reflective mulches are 

used for new greenhouse arrangements. Further experiments are necessary to 

examine more mulch materials with higher and more selective UV reflectance 

properties.  

The effect of UV manipulation on the behaviour of thrips, C. claratris, in this study 

opens promising control method for others economically invasive insect species 
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damaging greenhouse crops in the tropics, e.g. whiteflies and aphids. Studies with 

multiple mixed pest systems may complement the here presented studies.  
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