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Für meine Eltern 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(…) „Jawohl mit Wasser“, sagte Cyrus Smith, „mit Wasser, das durch elektrischen  
Strom zerlegt worden ist. In jener Zeit wird die Elektroenergie ungeahnte 
Möglichkeiten eröffnet haben, es ist überhaupt einzigartig, wie sich die 
verschiedensten Erfindungen durch geheimnisvolle Übereinstimmung immer wieder 
ergänzen. Die so zerlegten Elemente des Wassers, Wasserstoff und Sauerstoff, 
werden auf unabsehbare Zeit hinaus die Energieversorgung der Erde sichern. 
Eines Tages werden Dampfer und Lokomotiven keine Kohlebunker mehr führen, 
sondern Gastanks, aus denen komprimierte Gase durch Rohre in die Heizkessel 
strömen. Das Wasser ist die Kohle der Zukunft.“(…) 
 

Jules Verne, Die geheimnisvolle Insel (1874). 
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Zusammenfassung 
 
Für die Erhöhung der Betriebstemperatur von Polymer-Elektrolyt-Membran (PEM) 
Brennstoffzellen werden alternative Membransysteme gesucht, die bei einer Temperatur 
von 140 bis 180 °C arbeiten, dabei eine hohe Protonenleitfähigkeit zeigen und 
außerdem bei möglichst geringer Befeuchtung arbeiten. Vorteile der Erhöhung der 
Betriebstemperatur von diesen PEM Brennstoffzellen sind ein Wegfall von 
Befeuchtungssystemen, eine verbesserte Elektrodenkinetik und eine erhöhte Toleranz 
des für den Betrieb notwendigen Elektrokatalysators gegenüber Kohlenstoffmonoxid-
Vergiftung. Ein Forschungszweig in der Untersuchung neuer PEMs ist die Herstellung 
von Kompositmembranen. Kompositmembranen bestehen meist aus einem 
protonenleitfähigen Polymer, dessen Eigenschaften (Protonleitfähigkeit, mechanische 
Stabilität, thermische Stabilität, Wasseraufnahme und -rückhalt) durch den Einbau 
anorganischer Additive verbessert werden. Durch die gezielte Synthese dieser Additive 
können die Eigenschaften der Kompositmembranen eingestellt werden. 
In dieser Arbeit wird über die Synthese neuartiger Festkörper-Protonenleiter auf Basis 
von mesoporösen SiO2 - Materialien berichtet, welche anschließend in verschieden-
artige Polymere eingebettet werden, um neue Kompositmembransysteme herzustellen. 
Der Fokus dieser Arbeit liegt dabei deutlich auf der Synthese der Additive. Mesoporöse 
SiO2 - Materialien werden mit unterschiedlichen Porensystemen, Porendurchmessern 
und Partikelgrößen synthetisiert. Damit diese Materialien protonenleitfähig werden, 
wird die extrem hohe innere Oberfläche dieser Materialien mit Alkoxysilanen 
funktionalisiert, deren funktionelle Endgruppen anschließend in hydrophile, 
protonenleitende Gruppen umgewandelt werden. Beispiele derartiger Gruppen sind u. a. 
Sulfonsäure (SO3H), Phosphonsäure (PO3H2) und Imidazol. 
Neben der ausführlichen strukturellen Charakterisierung dieser neuartigen Systeme wird 
die Protonenleitfähigkeit der synthetisierten organisch-anorganischen Hybride mittels 
Impedanzspektroskopie ermittelt. Die kleinen Porendurchmesser des Si-MCM-41-
Wirtsmaterials (ca. 3 nm) erwiesen sich als vorteilhaft für hohe Protonenleitung. Bei 
den unterschiedlichen funktionellen Gruppen zeigten SO3H funktionalisierte 
Materialien die höchsten Protonenleitfähigkeiten. Die relative Feuchtigkeit (RH) und 
die Dichte der funktionellen Gruppen, d.h. die Beladung mit protonenleitfähigen 
organischen Resten, haben ebenso einen entscheidenden Einfluss auf die 
Protonenleitung wie die Partikelgrößen. In Einklang mit theoretisch-chemischen 
Berechnungen wurden die besten Ergebnisse dabei für SO3H funktionalisiertes Si-
MCM-41 gefunden, welches bei hoher Beladung und 100 % RH eine extrem hohe 
Protonenleitfähigkeit für einen Festkörper-Protonenleiter von 0.2 S/cm erzielte. 
Die synthetisierten Festkörper-Protonenleiter wurden in unterschiedliche Polymere 
(Nafion®, Polysiloxan und Polyoxadiazol) eingebettet. Die hergestellten Additive haben 
einen entscheidenden positiven Einfluss auf die Eigenschaften der resultierenden 
Kompositmembranen. Durch eine sehr gute Verteilung der Additive in den jeweiligen 
Polymeren ohne jegliche Segregation konnten eine erhöhte Protonenleitfähigkeit, auch 
bei Temperaturen weit oberhalb 100 °C und bei geringer Feuchtigkeit bis zu 5 % RH, 
verbesserter Wasserrückhalt und eine Steigerung in mechanischer und thermischer 
Stabilität erzielt werden. 
 
SCHLAGWORTE: Brennstoffzellen, mesoporöse Materialien, Protonenleitfähigkeit 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Abstract 
 
For increasing the working temperature of polymer electrolyte membrane (PEM) fuel 
cells, alternative membrane systems are under investigation, working at temperatures 
from 140 to 180 °C, under low relative humidity (RH) conditions and, nevertheless, 
showing high proton conductivities. Advantages of higher working temperatures of 
PEM fuel cells are the abolition of humidification systems, improved electrode kinetics 
and higher tolerance of the for operation required electro catalyst against carbon 
monoxide poisoning. One area of research in the investigation of PEMs is the 
development of composite membranes. Composite membranes mostly consist of a 
proton conductive polymer, whose properties (proton conductivity, mechanical stability, 
thermal stability, water uptake and water retention) are improved by the incorporation 
of inorganic additives. Via specific synthesis of these additives, the properties of the 
composite membranes can be tailored. 
In this work, the synthesis of new solid proton conductors based on mesoporous SiO2 
materials is reported, which are subsequently incorporated into different polymers to 
fabricate new composite membranes. 
The focus of this work clearly lies on the synthesis of the additives. Mesoporous SiO2 
materials are synthesized with different pore systems, different pore sizes and different 
particle sizes. For enabling proton conductivity in these materials, the very high internal 
surface of these materials is functionalized with alkoxysilanes, whose functional end 
groups are subsequently converted into hydrophilic, proton conductive groups. 
Examples for such groups are sulfonic acid (SO3H), phosphonic acid (PO3H2) and 
imidazole. 
Besides the detailed structural characterization of these novel systems, the proton 
conductivities of the synthesized organic-inorganic hybrids are determined via 
impedance spectroscopy. The small pore diameter of Si-MCM-41 host material (approx. 
3 nm) is proved to be advantageous for high proton conductivity. In the different 
functional groups, SO3H functionalized materials showed the highest proton 
conductivities. The RH and the density of functional groups, meaning the loading with 
proton conductive organic rests, have as well a crucial influence on the proton 
conductivity as the particle sizes. In accordance to theoretical-chemical calculations, the 
best results thereby were found for SO3H functionalized Si-MCM-41, which achieved at 
high loading and 100 % RH an extreme high proton conductivity for a solid proton 
conductor of 0.2 S/cm. 
The synthesized solid proton conductors were imbedded into different polymers 
(Nafion®, polysiloxane and polyoxadiazole). The synthesized additives have an 
essential positive influence on the properties of the resulting composite membranes. Via 
a very good distribution of the additives in the respective polymers without any 
segregation, increased proton conductivities, even at temperatures highly above 100 °C 
and under low humidification down to 5 % RH, improved water retention and enhanced 
mechanical and thermal stability could be achieved. 
 
KEYWORDS: fuel cells, mesoporous materials, proton conductivity 
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1 Introduction 

 
The world population is increasing with dramatic velocity. With the actual tendency, the 

world population will reach 9 billion people in 2050. But with an increasing number of 

people, the demand for energy simultaneously increases. In contrast, our supplies of 

non-renewable fossil fuels are running out. Human kind is therefore searching for new 

ways of energy generation, to fulfill its need for comfort and mobility, and to overcome 

this kind of energy crisis. Along with that, this new way of energy generation must be 

an environmental friendly technique, due to the fact that our environment is already 

highly polluted. The growing ozone hole, rising sea levels and other climate change 

phenomena show us in an unfriendly way that nature can not tolerate more careless 

treatment from human beings. Therefore, the production of coke, nitrogen oxides and 

carbon dioxides must be reduced. This must happen not only forced by political 

restrictions, but voluntarily in every country. 

Solar and wind energy technologies are two alternative and promising technologies to 

use natural energy for transforming it into electrical energy for our households in an 

environmentally friendly way. These techniques can also be used to produce clean 

hydrogen for another interesting application. A very clean possibility exists to convert 

chemical energy into electrical energy, namely via the reaction of hydrogen with 

oxygen to water, in a special reaction assembly. This assembly is called a fuel cell.  

In general, a fuel cell consists of two electrodes, which are separated via an electrolyte 

(solid/liquid). This electrolyte has to be gas-tight, and electrons generated at the anode 
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can be used to generate electrical work. One area of fuel cell research is focused on the 

improvement of proton exchange membrane (PEM, also: polymer electrolyte 

membrane) fuel cells. Actual PEM fuel cells are working at temperatures around 80 °C, 

and are mostly designed for small electrical devices and mobile applications, e.g. for 

service equipments in cars as auxiliary power units (APU). The working principle is 

simple: hydrogen is oxidized at the electrode surface to protons, which diffuse through 

the electrolyte membrane from the anode to the cathode, while the generated electrons 

reach via an electrical outer circuit the cathode side, where they react with oxygen and 

the protons to water. So, the electrode-separating electrolyte membrane must be a 

proton conductor, but should not conduct electrons, and has to separate the gases. 

The most often used membrane material for PEM fuel cells is Nafion®. It consists of a 

hydrophobic fluorocarbon polymer backbone with grafted hydrophilic side chains with 

very acidic sulfonic acid (SO3H) end groups. The SO3H groups are required for the 

proton conductivity as well as for the attachment of water molecules. Nafion® 

membranes in fuel cells can reach proton conductivities of 0.2 S/cm at 80 °C in water-

rich environments of 100% relative humidity (RH).1 Unfortunately, 80 °C is the highest 

working temperature for Nafion®, because it cannot keep water inside the pores at 

higher temperatures, and the structure is destroyed.2 But water is needed for the proton 

conduction mechanisms occurring in this material.3,4 

The goal of this work is to develop new solid proton conductors as additives for 

polymer membranes for PEM fuel cells working at elevated temperatures, namely 140 

to 180 °C. The increased working temperature brings several advantages: higher CO 

tolerance towards catalyst poisoning5, facilitated cooling devices for the fuel cell, better 

electrode kinetics for higher efficiencies, and higher efficiency due to gaseous and non-

                                                 
1 M. Hogarth, X. Glipa, ETSU Technical Report F/02/00189/REP, 2001. 
2 M. EIkerling, A. A. Kornyshev, U. Stimming, J. Phys. Chem. B 101 (1997) 10807. 
3 C.J.T. de Grotthuss, Ann. Chim. 58 (1806) 54. 
4 K. D. Kreuer, W. Weppner, A. Rabenau, Angew. Chem. Int. Ed. 21 (1982) 208. 
5 Q. Li, R. He, J.O. Jensen, N. J. Bjerrum, Chem. Mater. 15 (2003) 4896. 
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liquid water.6 Especially the automotive industry is becoming more and more interested 

in high-temperature PEM fuel cells (HT-PEMFC). 

For this reason, the synthesis of new solid proton conductors as additives for proton 

conductive polymers comes to the fore. For achieving a better water uptake, higher 

water retention, higher mechanical stability and throughout higher proton conductivity, 

organic polymers are often modified by incorporation of hydrophilic inorganic fillers 

and/or inorganic proton conductors, like heteropolyacids7,8,9, solid boron 

phosphates10,11, zirconium oxides and phosphates12,13, SiO2 particles14,15,16,17,18, TiO2
19,20 

or zeolite mordenite21, to prepare composite membranes for proton conduction. 

This work presents new solid proton conductors basing on highly ordered mesoporous 

SiO2 materials. These kind of materials were synthesized for the first time in 1992 from 

scientists of the Mobil Research and Development Corporation22,23, called the M41S-

materials. Depending on the synthesis conditions (e.g. the template), they showed huge 

surface areas of more than 1000 m2/g. Beck et al. used for their synthesis the self-

                                                 
6 K. Ledjeff-Hey, F. Mahlendirf, J. Roes, Brennstoffzellen – Entwicklung, Technologie, Anwendung, 2nd  
  Edition, C. F. Müller Verlag, Heidelberg, 2001. 
7 Y.S. Kim, F. Wang, M. Hickner, T.A. Zawodzinski, J.E. McGrath, J. Membr. Sci. 212 (2003) 263. 
8 S.M.J. Zaidi, S.D. Mikhailenko, G.P. Robertson, M.D. Guiver, S. Kaliaguine, J. Membr. Sci. 173 (2000)  
  17. 
9 S. M. J. Zaidi, M. I. Ahmad, J. Membr. Sci. 279 (2006) 548. 
10 S.D. Mikhailenko, S.M.J. Zaidi, S. Kaliaguine, J. Chem. Soc., Faraday Trans. 94 (1998) 1613. 
11 S.D. Mikhailenko, S.M.J. Zaidi and S. Kaliaguine, Catal. Today 67 (2001) 225. 
12 V.S. Silva, B. Ruffmann, H. Silva, V.B. Silva, A. Mendes, L.M. Madeira, S. Nunes, J. Membr. Sci. 284  
    (2006) 137. 
13 G. Alberti, M. Casciola, A. Donnadio, R. Narducci, M. Pica, M. Sganappa, Desalination, 199 (2006)  
    280. 
14 M. Watanabe, H. Uchida, Y. Seki, M. Emori, P. Stonehart, J. Electrochem. Soc. 143 (1996) 3847. 
15 H. Y. Chang, C. W. Lin, J. Membr. Sci. 218 (2003) 295. 
16 J. D. Halla, M. Mamak, D. E. Williams, G. A. Ozin, Adv. Funct. Mater. 13 (2003) 133. 
17 Y.-H. Su, Y.-L. Liu, Y.-M. Sun, J.-Y. Lai, D.-M. Wang, Y. Gao, B. Liu, M. D. Guiver, J. Membr. Sci.   
    296 (2007) 21. 
18 B. P. Ladewig, R. B. Knott, A. J. Hill, J. D. Riches, J. W. White, D. J. Martin, J. C. Diniz da Costa,  
    G. Q. (Max) Lu, Chem. Mater. 19 (2007) 2372. 
19 E. Chalkova M.V. Fedkin, D.J. Weselowski, S.N. Lvov, J. Electrochem. Soc. 152 (2005) 1. 
20 P. Kalappa, J.-H- Lee, Polym. Int. 56 (2007) 371. 
21 S.-H. Kwak, T.-H. Yang, C.-S. Kim, S.-B. Park, S.-K. Min, H.-W. Rhee, Electrochim. Acta, 50 (2004)  
    653. 
22 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 359 (1992) 710. 
23 J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmidt, C. T. W. Chu,  
   D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc. 114  
   (1992) 10843. 
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organization of surfactant molecules and their affinity to inorganic components, 

resulting in mesostructured composites of surfactant and inorganic material. Since their 

discovery, a lot of knowledge in this field of materials has been developed due to 

immense research (a good overview gives Ref. 24). 

This kind of materials was chosen because of the high potential in functionalization 

possibilities of these materials. By functionalizing with e.g. SO3H as protogenic groups, 

these materials can become proton conductive. In addition, their long range ordered 

mesopores can help to guide proton through their pore channels, and should be 

advantage for water storage, facilitating the water management in a fuel cell membrane. 

Different synthesis strategies are used in this work to enable high loadings of protogenic 

groups in the inorganic mesoporous powders, called either grafting or co-condensation 

method. Via co-condensation, usually higher loadings can be achieved.24 

Finally, these new solid proton conductors are incorporated into different polymer 

materials, to investigate the influence of the powders on the conductivities and 

stabilities of the polymers. A good connection between the polymer and the inorganic 

particles is here of high importance25, a covalent anchorage of advantage. The so 

formed composite membranes are investigated concerning proton conductivity, and 

used to build membrane electrode assemblies (MEAs) for single cell fuel cell 

performance testing. 

                                                 
24 F. Hoffmann, M. Cornelius, J. Morell, M. Fröba, Angew. Chem. Int. Ed 45 (2006) 3216. 
25 S. J. Miller, W. J. Koros, D. Q.Vu, Stud. Surf. Sci. Catal. 170, Part B (2007) 1540. 
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2 Fundamentals 

 
This section introduces the fundamentals of fuel cells and mesoporous silica materials. 

A defined knowledge of the processes occurring in fuel cells, especially in the fuel cell 

membranes, is necessary for understanding this complicate system with all its 

components, and is of course needed to tailor the properties of the aimed solid proton 

conductors synthesized in this work. As these materials are functionalized ordered 

mesoporous SiO2 materials, their properties and formation mechanisms must be 

understood to tailor the desired materials for the aspired application. The 

functionalization of the resulting powders for being proton conductive is possible via 

several methods, and the principles of these reactions must be known for the optimum 

reaction conditions and successful anchorage of proton conductive groups. 

 

 

2.1 The Fuel Cell 

 
In the following chapters general principles of fuel cells are presented. Beginning with a 

historical overview, from the first fuel cell-like discovery from Sir William Grove, the 

working conditions and principles of different fuel cell types are introduced and 

explained in detail. Typical examples for fuel cells are shown, coming from low 
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temperature fuel cells like PEM or direct methanol fuel cells (DMFC) to high 

temperature fuel cells like solid oxide fuel cells (SOFC). After a part concerning fuel 

cell thermodynamics and kinetics and fuel cell efficiency, compared to typical Carnot 

heat engines, the focus lies on the different kinds of fuel cell membranes for PEM and 

DMFC application. Examples of proton conductive polymers for PEMFC or DMFC 

membranes are presented, including the polymers used in the present work, and their 

properties and mechanisms of proton conductivity under fuel cell operation. Possible 

modifications and additives, including their influence on membranes properties like 

stability, water retention or fuel cross-over, are introduced. Finally, the chosen additives 

of this work are introduced, explaining the proposed mechanisms of water storage and 

proton conductivities of the target composite membranes. 

 

2.1.1 History 

 
The principle of a fuel cell was first described by the German scientist Christian 

Friedrich Schönbein, who published his work in January 1839. He found in his 

experiments a measurable voltage between two platinum wires, if they are dipped into 

an electrolyte solution (sulfuric acid) and flushed with hydrogen and oxygen gas, 

respectively. 

At the same time, the Welsh lawyer and physicist Sir William Grove made experiments 

with the electrolysis of water to hydrogen and oxygen. He found this experiment to be 

reversible under certain conditions. Together with the work of Schönbein, he developed 

the first fuel cell in 1843, which he called “galvanic gas battery”26, and which produced 

electrical voltage via the so-called “cold combustion” of hydrogen and oxygen gas 

(Figure 1). In two glass tubes, platinum wires have been incorporated and flushed with 

hydrogen or oxygen. Hydrogen was oxidized at the electrode surface, which could 

migrate through the electrolyte (diluted sulfuric acid) to the other glass tube, reacting 

                                                 
26 www.diebrennstoffzelle.de, January 2008. 
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with oxygen to water. In his experiment, Grove connected 4 single cells together to the 

first kind of fuel cell stack.27 

 

 

 

 

 

 

 

 

 

Figure 1. Scheme of the first fuel cell developed by Sir William Grove.26 

 

Unfortunately, the research on this system was not further followed up for several 

reasons. The electrochemical processes in the fuel cell have not been understood 

completely, and several years later, 1866, Werner von Siemens constructed the first 

dynamo machine. This invention was quite better understood, and together with the 

steam engines at this time, less complicated concerning fuels and construction materials 

for power generation. The fuel cell could not become accepted against this trend and the 

later invented combustion engines, although already at 1887 the German Scientist 

Wilhelm Ostwald proposed the big potential of fuel cells and an efficiency of 83 %.26,27 

Although this proposal lead to several construction ideas during the beginning of the 

20th century, the still existing material corrosion problems for construction could not be 

overcome. With the beginning understanding of corrosion processes, the fuel cell 

principle was rediscovered.  

Francis Thomas Bacon reconstructed the original concept fundamentally. Instead of the 

very expensive platinum, he used cheaper nickel gauzes, and as electrolyte he used the 

less corrosive alkali potassium hydroxide. He named the cell “Bacon cell” in 1932, the 

                                                 
27 www.initiative-brennstoffzelle.de, January 2008. 
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first alkaline fuel cell (AFC). 27 years later, he constructed a truly working fuel cell 

providing 5 kW of power.  

Spaceflight research brought several inventions to the fuel cell system, also caused due 

to the reason that money was not the most important driving force for the development 

of new fuel cell constructions, but the footrace into space. In 1955, the chemist Willard 

Thomas Grubb used for the first time an ion-exchange membrane as electrolyte, based 

on sulfonated polystyrene. Together with the chemist Leonard Niedrach, who 

discovered the deposition of platinum on this membrane as catalyst for the oxidation of 

hydrogen and the reduction of oxygen, he constructed the Grubb-Niedrach fuel cell, the 

first PEMFC.28 As these two scientist worked for General Electric, who provided 

technique to the National Aeronautics and Space Administration (NASA) of the United 

States (US), this development found its way into the space crafts of the Gemini space 

project, the first commercial use of a fuel cell. For the Apollo space program, the 

company Pratt & Whitney licensed the patents of the Bacon cell, and with new light-

weight construction properties, they supplied the NASA spacecrafts of that time with 

AFCs. AFCs are the up to now most used fuel cells in space crafts, having more than 

65.000 working hours on more than 87 crewed space shuttle flights, showing the big 

reliability of this system.29  

With new developments in efficient hydrogen fuel generation (hydrogen production 

from natural gas, hydrogen produced with solar and wind energy), fuel cells are still of 

increasing interest, not only in mobile applications, but also for stationary use, as power 

supplies for home heating and emergency power generators, e.g. in hospitals. However, 

the mobile application is still one of the most forcing factors in fuel cell development. 

Especially the automotive companies are increasing their research for an environmental 

friendly way of car engines basing on fuel cells, like Daimler-Chrysler (since 2007: 

Daimler) with the NECAR-series from 1994 to 2000. The Volkswagen AG just 

                                                 
28 www.fctec.com, January 2008. 
29 J. H. Hirschenhofer, Fuel Cell Handbook, 1st edition, Morgantown, West Virginia, 1998. 
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proposed “…the first Volkswagen with a fuel cell drive that is affordable and suitable 

for everyday use…” for 2020.30  

 

 

2.1.2 Fuel Cell Principles 

 
Every fuel cell consists of two electrodes, an anode and a cathode. On the anode side, 

the oxidizing fuel is continuously fed (hydrogen for example), while on the cathode side 

oxygen or air stream is applied. The gases are applied via bipolar plates with an 

embedded flow field, being responsible for a homogeneous gas supply to the electrodes. 

Both reaction rooms are separated via an electrolyte blocking layer, which can be a 

solid (e.g. a membrane) or a liquid (e.g. phosphoric acid H3PO4) electrolyte. At the 

anode, fuel is oxidized, and the generated electrons are merging through an electrical 

circuit to the cathode, generating electrical work for an electrical consumer. For charge 

equalization, ionic charge carriers diffuse through the electrolyte. Figure 2 shows the 

most important fuel cell principles in comparison. They can be divided in low-

temperature (up to 200 °C) and high temperature application. In the following, the 

different types are described, beginning with the low-temperature devices. 

 

                                                 
30 Press release Volkswagen AG, October 2006. 
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Figure 2. Different fuel cell types for comparison.31 

 

AFCs are presently used in cars, space crafts and submarines. The electrode separating 

electrolyte is 30-50 % potassium hydroxide (KOH) solution, and the fuels are pure 

hydrogen and oxygen gas. The ionic charge carriers are hydroxide ions (OH-), which are 

diffusing from the cathode to the anode side, in the opposite direction to the electrons. 

The appropriate working temperatures are between 60 and 100 °C. This type of fuel cell 

needs no warm-up time, is immediately operational, and the average efficiencies are 

between 50 and 60 %. Their advantage is the very fast cathode reaction at the given 

working temperature, but in contrast, the removal of carbon dioxide (CO2) out of the 

fuel cell and air restrict their application possibilities.32 

                                                 
31 ezb-dresden.de/de/fuelcells, January 2008. 
32 www.pemfc.de, January 2008. 
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PEMFCs and DMFCs are very similar and described in detail in chapter 2.1.3. 

Phosphoric acid fuel cells (PAFC) are mostly used for power generation, in combined 

heat and power plants (CHPs) and in automotive applications. The liquid electrolyte of 

this fuel cell type is a concentrated H3PO4 at working temperatures from 160 °C to 

200 °C, as for fuel either hydrogen or methane can be used at the anode. The charge 

carriers are protons, and the efficiencies lie around 55 %, but PAFCs need a warm-up 

time of around 30 minutes from a stand-by mode. In addition, they need expensive 

platinum catalysts, show low current and power densities, and are mostly very big and 

heavy. But however, coupled to CHPs, they show overall efficiencies of around 85 %. 

In the high-temperature sector, two important fuel cell technologies are of importance. 

Molten carbonate fuel cells (MCFC) are working at temperatures of around 650 °C. The 

electrolyte is a molten mixture of lithium carbonate and potassium carbonate 

(Li2CO3/K2CO3) with carbonate-ions (CO3
2-) as charge carriers. Possible fuels are 

methane, bio gas or natural gas, because due to the high working temperatures, the 

gases can be reformed internally to hydrogen. MCFC are mostly used for power 

generation, their flexible fuel gas household is a big advantage, and their efficiencies are 

between 60 and 65 %. In contrast, MCFCs need several hours warm-up time, and the 

very aggressive molten salts can cause severe corrosion problems, which lead to an 

increase altering time of the components. 

Solid oxide fuel cells (SOFC) are the fuel cells with the highest working temperatures 

of 800 to 1000 °C. As electrolyte, a solid ion conductor is used, e.g. yttrium stabilized 

zirconium dioxide (Y:ZrO2). This material is a pure oxygen ion conductor, due to the 

oxygen vacancies produced via yttrium-doping, so the charge carriers are O2--anions 

merging via oxygen vacancies from the cathode to the anode side. Like in MCFCs, 

natural gases can be used for fuels due to the high working conditions internal 

reforming. They are used in stationary power generators, their efficiencies lie between 

55 and 65 %, and their solid electrolyte makes them easy to handle. But also like 

MCFCs, SOFCs have a long warm-up time of several hours, and their components have 

an accelerated altering process due to the high temperatures. Actual research on SOFCs 

concentrates on thinner and alternative electrolyte layers for lower working 
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temperatures.33 Table 1 summarizes the ongoing reactions in the different fuel cell types 

presented. 

 

     Table 1. Anode and cathode reactions in different fuel cell types. 

 PEMFC DMFC 

Anode H2 → 2H+ + 2e- CH3OH + H2O → CO2 + 6H+ + 6e- 

Cathode ½O2 + 2H+ + 2e- → H2O 3/2 O2 + 6H+ + 6e- → 3 H2O 
 

 AFC PAFC 

Anode H2 + 2OH- → 2H2O + 2e- H2 → 2H++2e- 

Cathode ½O2 + H2O + 2e- → 2OH- ½O2 + 2H+ + 2e- → H2O 

 

 

 

2.1.3 PEMFC and DMFC 

 

PEMFC and DMFC are very similar. As the focus of the present work lies on additives 

for membranes used in PEMFCs or DMFC, these fuel cell types are presented in more 

detail. 

Figure 3 presents the working principle of a PEMFC, only showing schematically the 

basic module of a PEMFC, the membrane electrode assembly (MEA), consisting of the 

PEM pressed together with electrodes on both sides. At one electrode (anode), hydrogen 

molecules are split at a Pt catalyst surface into hydrogen atoms adsorbed on the catalyst. 

These atoms are then oxidized to protons, which can diffuse through the PEM, while the 

                                                 
33 P. Holtappels, U. Vogt, T. Graule, Adv. Eng. Mater. 7 (2005) 292. 

 MCFC SOFC 

Anode H2 + CO3
2- → H2O + CO2 + 2e- H2 + O2- → H2O + 2e- 

Cathode ½O2 + CO2 + 2e- → CO3
2- ½O2 + 2e- → O2- 
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water catalyst layers 

membrane 

porous layers for mass transport and conductivity 

2H2 → 4H+ + 4e-

4H+ + 4e- + O2 → 2H2O

H2 O2 

generated electrons can be used via an outer electrical circuit to produce electrical work. 

At the cathode side, oxygen is reduced to O2--anions, reacting with electrons and the 

protons to the only chemical byproduct of this system, water. 

 
Figure 3. Working principle of a PEMFC single cell.28 

 

The electrodes themselves are porous and highly conductive carbon sheets, so that the 

gases can reach the membrane and the catalyst homogenously. Therefore, they are also 

called gas diffusion layers (GDL). Figure 4 shows a MEA with these layers and the 

occurring reactions in detail. 

 

 

 

 
 

 

 

 

             Figure 4. Detailed cross section of a MEA.34 

                                                 
34 C. H. Hamann, W. Vielstich, Elektrochemie, Wiley-VCH, Weinheim, 3rd Edition, 1998. 
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Mostly, the GDLs are hydrophobized, so that the product water occurring on the 

cathode side can be transported away from the membrane. And, as already mentioned, 

the GDLs are covered with highly disperse platinum nanoparticles. The Pt catalyst is 

needed due to the high activation energy of hydrogen and oxygen dissociation, which is 

lowered at a Pt surface. Normally, the following reactions occur at the Pt surface at the 

anode side, where in a fist step a platinum-hydrogen intermediate is formed, which the 

dissociates with hydrogen oxidation. 

 

2 H2 + 4 Pt → 4 Pt-H                                               (Eq. 2.1) 

4 Pt-H → 4 Pt + 4 H+ + 4 e-                  (Eq. 2.2) 

 

At the anode side, the recombination of protons, electrons and oxygen takes place. 

 

O2 + 4 H+ + 4 e- → 2 H2O                                        (Eq. 2.3) 

 

The overall reaction is then 

 

O2 + 2 H2 → 2 H2O                                             (Eq. 2.4) 

 

If the used fuel gases are polluted with CO, the reaction in Eq. 2.1 cannot take place, 

because the CO irreversibly blocks all adsorption sited on the catalyst surface. By 

increasing the working temperature to higher than 100 °C, the catalyst poisoning 

tendency is reduced due to the formation of non-blocking CO2, 

 

CO + H2O → CO2 + 2 H+ + 2e-                                 (Eq. 2.5) 

 

and the fuel cell is still able to work. At 80 °C, the maximum acceptable CO 

concentration in fuel gas is around 20 ppm (parts per million), but at 130 °C 1000 ppm.5 
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The slowest of all reactions is the cathodic oxygen reduction, which is 100 times slower 

than the hydrogen reaction.35 But this reaction is also proposed to be improved with 

higher working temperatures. 

To build a single cell PEMFC, additional bipolar plates are used around the MEA. The 

bipolar plates are responsible for the sufficient gas transport and water back-transport 

from the MEA, for which purpose they have a channel-like distribution system (flow 

field). In addition, the bipolar plates are also responsible for heat evacuation to cooling 

circles and the electrical contacting.  

However, a single fuel cell does not produce enough voltage, only 1.229 V at 25 °C and 

1 bar. To overcome this problem, a number of single cells are connected in a row, to a 

fuel cell stack. Figure 5 shows schematically a fuel cell stack, introducing also the 

bipolar plates.   

 

 

 

 

 

 

 

 

 

 

 

Figure 5. PEMFC stack with construction elements.28 

 

DMFCs work in the same principle, but methanol is used as fuel at the anode. In a first 

reaction, methanol is oxidized to CO2. The generated electrons and protons merge in the 

same way like in the PEMFC to the cathode reacting with oxygen to water. 

                                                 
35 J. F. Shackelford, Werkstofftechnologie für Ingenieure, Pearson, 6th Edition, 2005. 
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Anode:   CH3OH + H2O → CO2 + 6 H+ + 6 e-                                                 (Eq. 2.6) 

Cathode:    3/2 O2 + 6H+ + 6e- → 3 H2O                                              (Eq. 2.7) 

Overall:   CH3OH + H2O + 3/2 O2 → CO2 + 3 H2O                    (Eq. 2.8) 

 

Various reaction intermediates may be formed during methanol oxidation.36 Some of 

these CO-like species are irreversibly adsorbed on the surface of the electrocatalyst and 

severely poison Pt for the occurrence of the overall reaction, which has the effect of 

significantly reducing the fuel consumption efficiency and the power density of the fuel 

cell in the same way like in the PEMFC case. But in the same way, this problem can be 

solved with a working temperature higher than 100 °C. However, DMFCs show lower 

power densities than PEMFC, which might correlate with the slow methanol oxidation 

reaction kinetics, involving the transfer of six electrons. The methanol oxidation at a 

Ru-Pt catalyst is three times slower than the oxidation of hydrogen on Pt.37 Another 

drawback compared to the PEMFC is the tendency of methanol cross-over through the 

membrane to the cathode side, resulting in fuel leakage and efficiency loss.15 

 

 

2.1.4 Thermodynamics and kinetics of H2/O2 fuel cells 

 

One of the most important facts making fuel cell systems so interesting is their 

thermodynamic efficiency. A theoretical maximum efficiency of about 95 % for an 

ideal hydrogen-oxygen fuel cell, which is significantly higher than the efficiency of a 

Carnot heat engine, is responsible for the immense research efforts in this field. In 

contrast to Carnot machines, fuel cells directly produce electrical energy out of 

chemical energy, while the Carnot principle works via two intermediate conversion 

steps, including heat and mechanical energy. Figure 6 illustrates this circumstance. 
                                                 
36 R. Parsons, T. Van der Noot, J. Electroanal. Chem. 257 (1988) 9. 
37 A. S. Aricò, S. Srinivasan, V. Antonicci, Fuel Cells 1 (2001) 133. 
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Figure 6. Energy conversions in a Carnot or fuel cell process. 

 

Comparing the ideal efficiencies of both machines, the advantage of the fuel cell 

becomes clear. The ideal efficiency of a hydrogen-oxygen fuel cell is calculated from 

the free reaction enthalpy ∆RG0 and the standard formation enthalpy ∆fH0 of water for 

the reaction between hydrogen and oxygen forming gaseous water.  
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Depending on the standard reaction entropy ∆RS0 of the applied reaction used for the 

fuel cell, theoretically, efficiencies higher than 100 % are possible. 

In contrast, the efficiency of a Carnot heat engine is calculated from the temperature 

dependence between the inlet temperature T1 and the outlet temperature T2, where T1 > 

T2. 
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Figure 7 compares the efficiencies of the ideal H2/O2 fuel cell with the Carnot machine 

efficiency.38 T2 is set to 300 K for this rough calculation (higher T2 might be more 

realistic), and T1 is increasing on the x axis. For the fuel cell efficiency, the temperature 

corresponds to the working temperature. 

As the efficiencies are in both cases temperature dependent, the thermodynamic 

efficiency for a heat engine increases with increasing temperature difference between 

the inlet and the outlet, while for a fuel cell with increasing working temperature, the 

ideal efficiency deteriorates. At a temperature around 1450 °C, both systems have the 

same ideal efficiency and change the efficiency lead. But until this temperature, a fuel 

cell is still the better energy converter, due to thermodynamics. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Ideal efficiencies of a hydrogen-oxygen fuel cell against the Carnot efficiency.38 

 

Besides the thermodynamics, fuel cell electrode kinetics is a critical point restricting the 

ideal thermodynamical efficiency down to about 60 %. Figure 8 points out the several 

voltage losses in a fuel cell polarization curve due to electrode kinetics. The output 

voltage will be less than the open circuit voltage when current is drawn by a load. The 

resulting voltage U is determined by subtracting all voltage losses, summarized as ∆U, 

                                                 
38 www.asue.de, January 2008. 
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from the ideal open circuit voltage. ∆Urev is the reversible voltage loss caused by 

reversible overvoltages. ∆UA is the voltage loss due to activation process for the slow 

electrochemical reactions occurring at the electrodes as current is drawn, also caused by 

cathode and anode polarizations. 

For ∆UR resistive and capacitive voltage losses are responsible, also called impedance 

losses. They are associated with the flow of electrons and ions in the electrodes and the 

electrolyte. Finally, voltage losses due to inadequate concentration of reactants and 

lacking diffusion to the reaction sites can occur, abbreviated with ∆Udiff. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Voltage losses in fuel cell operation due to electrode kinetics. Resulting polarization curve in 
red.39 

 

 

 

The overall voltage losses are summarized and calculated to 

 

∆U = ∆Urev + ∆UA + ∆UR + ∆Udiff                                 (Eq. 2.12) 

                                                 
39 M. Ciurenau, S. D. Mikhailenko, S.Kaliaguine, Catal. Today 82 (2003) 195. 
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while the resulting accessible voltage corresponds to  

 

U = Uth - ∆U         (Eq. 2.13) 

 

It can also be seen in Figure 8 from the current-voltage curve that increasing currents 

result in a lower potential, being controlled by the region of activation, impedance and 

diffusion losses. A nearly linear potential drop for the ohmic and capacitive voltage 

losses can be seen throughout a long current region, while at high currents the 

concentration losses are significantly coming into fore. A compromise between current 

and voltage losses must be found resulting in an efficient fuel cell operation. With 

increasing working temperatures the voltage losses can be reduced and the electrode 

kinetics improved. Although the thermodynamical efficiency goes down with increasing 

temperature, the kinetics determines the overall efficiency, resulting in about 60 %. For 

example, in SOFCs the resulting efficiencies lie around 65 %, in general slightly higher 

than for PEMFC due to the better kinetics, as for the thermodynamical efficiency the 

situation is opposite. 

Increasing the working temperatures of PEMFCs to more than 100 °C should result in 

higher efficiencies, where one factor would be the enhanced kinetics, e.g. reduced ∆UA. 
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2.1.4 Proton conductive polymer membranes for PEMFCs 

 

An electrolyte membrane for PEMFC application must fulfill several requirements: 

 

● High proton conductivity 

● Low gas and/or fuel permeability 

● Electrical insulator 

● Good water uptake with low swelling 

● Mechanically and thermally stable 

● Chemically and electrochemically stable 

● Long lifetime 

● Easy to recycle 

 

Two types of polymers dominate research efforts: sulfonated aromatic polymers (e.g. 

sulfonated polyetheretherketone SPEEK or sulfonated polysulfone SPSU) and 

perfluorinated sulfonic acid (SO3H) membranes like Nafion®. These membranes both 

exhibit phase separated domains consisting of an extremely hydrophobic backbone, 

which gives morphological stability, and extremely hydrophilic functional groups. 

These functional groups aggregate to form hydrophilic nanodomains which act as water 

reservoirs.40 The key features of these membranes are shown in Figure 9.  

Nafion® has very wide channels compared to SPEEK and very good connectivity 

between the channels. In contrast, the channels of SPEEK are more branched, but also 

dead-end channels exist.  

 

 

 

 

 

                                                 
40 K.D. Kreuer, Solid State Ionics 136 (2000) 149. 
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      Nafion®             SPEEK 

 
Figure 9. Nafion and SPEEK membranes with their nanodomains.41 

 

As perfluorinated polymers are strong and stable in both oxidative and reductive 

environments, sulfonated aromatic polymers show better mechanical strength and are 

chemically and thermally stable even at elevated temperatures.42 The biggest problem of 

SPEEK-type membranes is a dependence of the proton conductivity on the sulfonation 

degree. At reduced levels of sulfonation the aromatic polymers have lower water 

contents and reduced conductivity <10−2 S/cm.8 However, if the degree of sulfonation is 

increased to improve conductivity, the mechanical properties of the membrane 

deteriorate.11 A degree of sulfonation of about 60 % (related to a maximum sulfonation 

of all aromatic rings) seemed to be a good compromise.43 Another proposed solution is 

to produce composite membranes with controlled mechanical, physical and chemical 

                                                 
41 K. D. Kreuer, J. Membr. Sci. 185 (2001) 29. 
42 B. Smitha, S. Sridhar, A. A. Khan, J. Membr. Sci. 259 (2005) 10. 
43 M. Horgarth, X. Glipta, High Temperature Membranes for Solid Polymer Fuel Cells, 2001. 
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properties. The proton conductivity of SPEEK and Nafion® strongly depends on the 

water content. Proton conductivity mechanisms in water-rich membranes are introduced 

in chapter 2.1.5. 

Polysulfone is another example out of the sulfonated aromatic polymer family; the 

structure is shown in Figure 10. The SPSUs are also highly mechanically stable and 

show good properties for use in fuel cells.44,45,46 
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Figure 10. Structural unit of sulfonated polysulfone (SPSU).47 

 

Another, but structural completely different type of proton conductive membranes are 

functionalized polysiloxanes. These types of materials were used for proton 

conductivity for the first time in 1992.48 The actual trend is to use mixed functionalized 

polysiloxanes with sulfonic acid and benzimidazole moieties,49 as Kreuer et al. already 

proposed in 1998 nitrogen-based heterocyclic systems for use as proton conductive 

groups.50 The mixed system should provide water-free proton conductivity due to the 

polymer structure of the polysiloxanes, where the sulfonic acid groups provide excess 

protons needed for the proton conductivity, which is then fulfilled via the benzimidazole 

groups (see Figure 11). 

 

 

 

                                                 
44 J. Kerres, A. Ullrich, F. Meier, T. Häring, Solid State Ionics 125 (1999) 243. 
45 P. G. Dimitrova, B. Baradie, D. Foscallo, C. Poisignon, J. Y. Sanchez, J. Membr. Sci. 185 (2001) 59. 
46 C. Manea, M. Mulder, J. Membr. Sci. 206 (2002) 417. 
47 F. Lufrano, I. Gatto, P. Staiti, V. Antonucci, E. Passalacqua, Solid State Ionics 145 (2001) 47. 
48 I. Gautier-Luneau, A. Denoyelle, J. Y. Sanchez, C. Ponsignon, Electrochim. Acta 37 (1992) 1615. 
49 M. Jeske, C. Soltmann, C. Ellenberg, M. Wilhelm, D. Koch, G. Grathwohl, Fuel Cells 1 (2007) 40. 
50 K. D. Kreuer, A. Fuchs, M. Ise, M. Spaeth, J. Maier, Electrochim. Acta 43 (1998) 1281. 
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Figure 11. Ideal structure of functionalized polysiloxane.49 

 

Finally, another aromatic system with basic character has become recent interest in fuel 

cell research, namely polyoxadiazole polymers (Figure 12). The conjugated heterocyclic 

ring containing (C=N) pyridine-like nitrogen with the electron lone pair which does not 

participate of the aromatic sextet makes polyoxadiazoles and their derivatives potential 

candidates for application in fuel cells when doped and/or sulfonated.  

 

 

 

 

Figure 12. Structural unit of sulfonated polyoxadiazole.51 

 

 

Recently, sulfonated polyoxadiazole membranes with high thermal stability, high 

degradation stability and good mechanical properties have been reported. High proton 
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conductivity values within the order of magnitude of 10−2 S/cm at 80 °C and RH = 20 % 

are due to the high ionic exchange capacities of these polymers, up to 2.7 mmol/g.51 

Figure 13 depicts the structure and the water uptake mechanism into the polymer 

between the chains.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Polymer chains of sulfonated polyoxadiazoles including incorporated water. White: hydrogen, 
red: oxygen, dark blue: nitrogen, light blue: carbon, yellow: sulfur.51 

 

 

In this work, Nafion® as well as polysiloxanes and polyoxadiazoles were used to build 

composite membranes. 

 

 

 

 

 

                                                 
51 D. Gomes, J. Roeder, M. L. Ponce, S. P. Nunes, J. Power Sources 175 (2008) 49. 
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2.1.5 Proton conductivity mechanisms 

 

In literature, three different proton conductivity mechanisms are discussed. These are: 

 

• Surface diffusion along functional groups 

• Grotthuss mechanism3, structure diffusion with proton trajectories 

• Vehicle mechanism, diffusion of mobile species present in the Grotthuss 

mechanism 

 

Mostly, these mechanisms cannot be separated from each other, and they occur 

simultaneously, or together. 

One example for surface diffusion is the cluster-model for Nafion®.52 The protons are 

transported from one SO3H groups to another via the side chains, which count into the 

clusters formed after swelling. Figure 14 illustrates the modified cluster model, which is 

an improvement of the old model.42 Following new results, the formed clusters are non-

ordered and have different diameters, connected via channels. 

 

 

 

 

 

 

 

 

 

 

Figure 14. Random-cluster-network model.42 

                                                 
52 T. D. Gierke, W. Y. Hsu, in Perfluorinated Ionomer Membranes, Eds. A. Eisenberg, H. L. Yeager,   
    ACS Symposium Series No. 180, American Chemical Society, Washington, DC, 1982. 
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Surface conductivity can also take place in surface functionalized acid membranes, like 

zirconium phosphate.53,54 In addition, some remaining water molecules help to transfer 

protons (Figure 15). 

 

 

 

 

 

 
Figure 15. Surface conductivity mechanism in solid acid membranes.55 Water molecules are colored 

(oxygen: blue, hydrogen: red). 

 

As Nafion® takes up a lot of water, the Grotthuss mechanism, with protons provided by 

the hydrophilic side chains and SO3H groups, overlies this mechanism. The Grotthuss 

mechanism is in principle a hopping of a proton from one water molecule with 

hydrogen bond breaking and formation. Figure 16 shows schematically this mechanism. 

Activation energies for this mechanism lie between 13.5 and 38.5 kJ/mol.56 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16. Grotthuss mechanism. 

                                                 
53 G. Alberti, M. Casciola, U. Costantino, A. Peraio, T. Rega, J. Mater. Chem. 5 (1995) 1809. 
54 G. Alberti, M. Casciola, Solid State Ionics 97 (1997) 177. 
55 W.H.J. Hogarth, J.C. Diniz da Costa, G.Q.(Max) Lu, J. Power Sources 142 (2005) 223. 
56 P. Colomban, A. Novak in P. Comlomba (ed.) Proton conductors, Cambridge University press,   
   Cambridge, 1992. 
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Eigen-ion Zündel-ion Eigen-ionEigen-ion Zündel-ion Eigen-ion

In detail, two intermediate ions are formed in the proton transfer process of the 

Grotthuss mechanism to solvate the excess proton, namely the Eigen-ion (H9O4
+) and 

the Zündel-ion (H5O2
+), shown in Figure 17. Theoretical calculations have been 

performed to prove the presence of these ions in the Grotthuss mechanism.57,58,59  

 

 

 

 

 

 

Figure 17. Zündel- and Eigen-ion.57 

 

In 2002, the “presolvation” concept of Tuckerman was proposed and proven, saying 

that the “Proton-receiving species must be “pre-solvated” like the species into which it 

will be transformed in the proton-transfer reaction”.60 The estimated transfer time of a 

proton from the Zündel-ion to the Eigen-ion was calculated to be 1.5 ps, whereas NMR 

measurements found 1.3 ps. Then, the proton is transferred from the Zündel-ion 

complex again to an Eigen-ion. Figure 18 illustrates this mechanism and also depicts the 

presolvation shell. 

 

 

 

 

 

 

Figure 18. Proton transfer from Eigen-ion over Zündel-ion to Eigen-ion. Charged oxygen atoms are 
yellow.60 

                                                 
57 M. E. Tuckerman,, K. Laasonen, M. Sprik, M. Parrinello, J. Phys. Chem. 99 (1995) 5749. 
58 M.E. Tuckerman, K. Laasonen, M. Sprik, M. Parrinello, J. Chem. Phys. 103 (1995) 150. 
59 D. Marx, M. E. Tuckerman, M.  Parrinello, Nature 397 (1999) 601. 
60 M. E. Tuckerman, D. Marx, M. Parrinello, Nature  417 (2002) 925. 
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In the Eigen-ion, the central hydronium-ion (H3O+) is solvated by three water molecules 

via hydrogen bonds. The proton receiving water molecule is four-times coordinated via 

hydrogen bonds. To form the Zündel-ion, the proton-receiving oxygen breaks one 

hydrogen bond to be only three-times coordinated, as in an Eigen-ion, and forms the 

Zündel-complex. The free molecule coordinates then to the former charged oxygen, 

being then four-times coordinated, and the hopping proton is completely transferred to 

the other oxygen. The now charged oxygen has only three hydrogen bonds; a new 

Eigen-ion is formed. 

A kind of Zündel-like behavior is also possible and proposed for water-free systems 

based on pure imidazole. Ab-initio calculations from Münch et al. showed that 

imidazole can act in a same way like water, as proton receiving and delivering species,61 

and therefore a Grotthuss-like mechanism in pure imidazole is assumed.50 These 

computatinal data used Schuster et al. to investigate different protogenic groups 

anchored to heptyl spacers (SO3H, imidazole, phosphonic acid groups PO3H2) in water-

free environment with focus on water-free proton conductivity, which all can act in a 

Grotthuss-like conduction mechanism.62 Imidazole shows for example resonance 

stabilization in protonated constitution, acting analogue to a single water molecule 

forming a positively charged molecule by binding an additional proton (Figure 19). Two 

imidazole groups are needed of course for the proton transport. If the imidazole is 

immobilized or anchored to a spacer, the type of anchorage is important for the 

conductivity mechanism. This will be shown and discussed in chapters 4.2.3, 4.2.4 and 

4.2.5. 

 

 
 
 

 
Figure 19. Imidazole resonance-stabilization.63 

                                                 
61 W. Münch, K. D. Kreuer, W. Silvestri, J. Maier, G. Seifert, Solid State Ionics 145 (2001) 437. 
62 M. Schuster, T. Rager, A. Noda, K. D. Kreuer, J. Maier, Fuel Cells 5 (2005) 355. 
63 K. P. C. Vollhardt, N. E. Schore, Organische Chemie, 3rd Edition, Wiley-VCH, Weinheim, 2000. 
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2.1.6 Membrane improvements with additives 

 

As already mentioned before, inorganic additives incorporated into the polymer matrix 

are often used to improve the water uptake, the water retention and the mechanical 

stability of polymer membranes, and throughout to achieve higher proton conductivity. 

The proton conductivity mechanism is then facilitated via surface transport occurring 

along the exposed acid/hydrophilic sites on the surface (inter-layers or pores) which are 

either involved in the interactions between particles and polymer themselves, or 

responsible for water domains within the structure which promote the transport similar 

to polymer membranes. It is this latter water assisted transport which is likely to be the 

most dominant. Figure 20 illustrates this behavior, the green circle represent 

incorporated inorganic particles as additives. 

 

 

 

 

 

 

Figure 20. Proton transport in composite membranes.55 Additives are shown as green balls, water 
molecules colored in blue (oxygen) and red (hydrogen). 

 

For example, many composite membranes have been produced using Nafion® to 

improve its properties. Among the already given examples, the influence of addition of 

silica to Nafion®, as studied by Antonucci et al.64, was to improve the retention of water 

in the membrane and to enable the operation of the fuel cell above 130 °C. A similar 

method for retaining water in Nafion® at higher temperatures by incorporating silica as 

well as titanium dioxide into a Nafion® composite to enable its use in DMFC was 

                                                 
64 P.L. Antonucci, A.S. Arico, P. Creti, E. Ramunni, V. Antonucci, Solid State Ionics 125 (1999) 431. 
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studied by Baradie et al.65 This membrane exhibited a significant improvement in 

proton conductivity but did not retard methanol crossover. A significant improvement in 

the conductivity of Nafion®, at elevated temperatures, by incorporating perfluorinated 

ionomers in Nafion® matrix and by doping it with heteropolyacids (HPA) such as 

phosphotungstic acid and phosphomolybdenic acid in Nafion® was targeted and 

achieved by Bahar et al.66 A similar attempt to attain improved ionic conductivity and 

high power density with the incorporation of HPAs in Nafion® 117 membrane was 

made by Tazi and Savadogo.67 Water uptake in the Nafion® with incorporated HPA was 

60 %, while the pure Nafion® membrane only exhibited 27 %. Thus a substantial 

improvement in ionic conductivity was observed. Zirconium phosphate nanoparticles 

are for example also used to improve the properties of Nafion® membranes.13 With the 

dispersed inorganic phase, synthesized by in situ formation, the stability of the proton 

conductivity can strongly increased of about 20 °C at 85 % RH. Titanium dioxide, 

protonated zeolites and other silica materials are additional possibilities to fabricate 

composite membranes with Nafion®. Watanabe et al. improved the water uptake of 

Nafion® with incorporated silica particles (7 nm) from 17 to 43 wt.-%.14 Chalkova et al. 

showed with Nafion®-TiO2 composite membranes that a high surface area of the 

inorganic filler plays a key role in the improvement of the power density of the 

composite membrane.19 The proton conductivity of Nafion® at 80 °C can also be 

increased by addition of the protonated zeolite mordenite in the Nafion membrane.21 

Of course, these concepts can also be applied on other polymer membranes, like the 

aromatic SPEEK membranes8,11,12,20,, or also polysiloxanes and the new 

polyoxadiazoles.68 

As new kind of inorganic additives for PEMFC membranes, this work presents the use 

of new solid proton conductors based on mesoporous SiO2. The only report on using 

mesoporous silica materials as additives, but anyway functionalized with a HPA, was 

                                                 
65 B. Baradie, J.P. Dodelet, P. Guay, J. Electroanal. Chem. 489 (1998) 209. 
66 B. Bahar, A.R. Hobson, J.A. Kolde, D. Zuckerbrod, US Patent, 5,547,551 (1996). 
67 B. Tazi, O. Savadago ,Electrochimica Acta 45 (2000) 4329. 
68 D. Gomes, I. Buder, S.P. Nunes, J. Polym. Sci., Part B: Polym. Phys. 44 (2006) 2278. 
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presented by Zaidi et al. incorporating them into SPEEK, leading to promising proton 

conductivities.69  

New examples using functionalized mesoporous silica materials as additives are shown 

in section 4. Our concept is to immobilize several proton conductive species on the 

large internal surface of the mesoporous SiO2 materials, investigating the proton 

conductivity properties as solid proton conductors, and then incorporating them in 

different proton conductive polymers to improve their properties. The high water uptake 

capability and water retention of the mesoporous SiO2, also of the produced product 

water on the cathode side, will be of advantage for the solid proton conductors itself as 

for the composite membranes. The mesoporous SiO2 systems used in this work are 

presented in the following chapters. 

 

 

2.2 Mesoporous SiO2 materials 

 
The following chapters introduce the class of mesoporous silica70 materials, whose 

synthesis depicts one of the most important parts of this work. First, the general 

synthesis of mesoporous silica materials will be presented; introducing the use of 

amphiphilic structure-directing templates and their self-organization process for 

enabling highly ordered porous structures in silica during a sol-gel process, including 

also several detemplating possibilities. The different used surfactants and block-

copolymers will be presented for enabling different porous structures in silica materials. 

In addition, possibilities for size control of the synthesized porous materials will be 

shown, enabling a pathway to mesoporous nanoparticles. Afterwards, the surface 

functionalization procedures will be introduced, namely post-synthetically grafting and 

                                                 
69 S.M.J. Zaidi, M.I. Ahmad, J. Membr. Sci., 279 (2006) 548. 
70 Silica describes better the amorphous non-stochiometric phase of the materials of the formula  
    SiO2-x(OH)2x 
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in-situ co-condensation process, to enable organic moieties on the surface of the host 

silica materials. The advantages and problems will be discussed, giving an insight in the 

complicate chemical processes during functionalization.  

 

 

2.2.1 Amphiphilic molecules 

 

Amphiphilic molecules consist of a hydrophilic part, the so called head group, and a 

hydrophobic part. Hydrophobic or hydrophilic parts can be present several times in one 

molecule.71,72,73  

Since these two complete physically different parts exist in one molecule, amphiphilic 

molecules have a high affinity to interfaces. Their accumulation at surfaces reduces 

surface and interfacial tensions drastically. This property makes amphiphilic molecules 

able to build supramolecular aggregates called micelles, to protect their hydrophobic 

parts against a polar external solvent. Also possible are inverse micelles, where the head 

groups stick together and the hydrophobic parts protect against a non-polar solvent.74 In 

the following, the focus lies on the most prominent groups of amphiphilic molecule, 

surfactants. 

Figure 21 shows micellar and inverse micellar formation of a typical surfactant, 

consisting of charged hydrophilic head group and a long hydrophobic carbon chain rest. 

To protect against the external solution (blue = water, green = oil), the surfactant 

molecules stick together to disc like or spherical supramolecular aggregates. 

 

 

 

 
                                                 
71 F. M. Menger, J. S: Kneiper, Angew. Chem. 112 (2000) 1980. 
72 J. Haldar, V. K. Aswal, P. S. Goyal, S. Bhattacharya, Angew. Chem. Int. Ed 30 (2001) 1228. 
73 M.S. Bakshi, A. Kaura, R. K. Mahajan, Colloids Surf. A 262 (2005) 168. 
74 H. Rehage, Chemie in unserer Zeit 39 (2005) 36. 
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         Figure 21. Micelle formation in different media.74 

 

Surfactants are classified concerning their molecular structure. One differentiates 

between anionic, cationic, non-ionic and amphoteric surfactants, which all have a long 

alkyl rest (Cn) as hydrophobic part and only differ in the chemical nature of their head 

group. Most of the surfactants have abbreviation resulting from their chemical structure, 

which are often used in literature. One example is hexadecyltrimethylammonium 

bromide (C16TMABr), which is also called Cethyltrimethylammonium bromide. Its 

abbreviation is therefore CTAB. CTAB is the most famous example of a cationic 

surfactant. 

One example for an anionic surfactant is sodium dodecylsulfate (C12OSO3Na), which is 

often abbreviated as SDS. It has also an alkyl chain, but connected to a sulfate group. 

Normally, sodium is used as counter ion. Figure 22 shows some examples for the four 

kinds of surfactant types, including CTAB and SDS. 
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Figure 22. Surfactants with different chemical head groups.74 

 

Tetraethyleneglycol monododecylether is an example for a non-ionic surfactant. The 

C12 chain ends in a hydrophilic head consisting of four ethylene oxide (EO) blocks. As 

the number x of EO blocks is indicated as EOx, tetraethyleneglycol monododecylether 

has the abbreviation C12EO4. To complete the row, an example of an amphoteric 

surfactant, where the head group includes a cationic and an anionic group, is shown. 

Another class of amphiphilic molecules is block-copolymers. These macromolecules are 

also able to form micellar structures, but are, in contrast to most surfactants, 

uncharged.75 To build supramolecular structures, hydrophilic A-blocks (e.g. poly-

ethylene oxide EO) and hydrophobic B-block (e.g. poly-propylene oxide PO) must be 

connected in one molecule. Diblock-copolymers AB or Triblock-copolymers ABA are 

                                                 
75 S. Bagshaw, E. Prouzet, T. Pinnavaia, Science 269 (1995) 1242. 
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possible. The two most prominent and most often used Triblock-copolymers are shown 

in Figure 23. 
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(EO)20(PO)70(EO)20, Pluronic P123

(EO)106(PO)70(EO)106, Pluronic F127  

Figure 23. Triblock-copolymers P123 und F127.76 

 

 

2.2.2 Micellar structures and self-assembly 

 

Surfactants and block-copolymers form micelles in aqueous systems, which can have 

several structures. The micellar structure hereby depends on the concentration of the 

amphiphilic molecule in water. At low concentrations, no micelles are formed, most of 

the amphiphilic molecule organize themselves at the interface air-liquid or are 

homogenously dispersed.  Above a certain surfactant concentration in water, the critical 

micelle concentration (cmc), micellar structures are formed, and the amphiphilic 

molecules begin to aggregate to spherical micelles. In addition, micelle formation 

                                                 
76 G. Wanka, H. Hoffmann, W. Ulbricht, Macromolecules 27 (1994) 4145. 
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depends also on temperature. The solubility of an amphiphilic molecule escalates at a 

certain, molecule characteristic temperature. This point is called Krafft-point.77,78 

From the thermodynamically point of view, micellar structures are formed due to the 

gain in entropy caused by the lowering of contact area between water and the 

hydrophobic chains. The hydrophobic chains inside the micelle are connected via van-

der-Waals interactions. The hydrophilic head groups instead form contorted surfaces 

due to electrostatic repulsion. But a micelle is not a static system; equilibrium exists 

between the micellar system and the ambient solution. A fast (with a C16-chain about 

1 ms) exchange of amphiphilic molecules between the micelle and the solution takes 

place, as already indicated in Figure 21. 

After reaching the cmc, spherical micelles are formed. When the concentration of 

surfactants is further increased, the second cmc (cmc2) is reached where the spherical 

micelles are transformed into cylindrical or rod-like micelles. The structure 

transformation is caused by the increase of the solutions ion strength due to more added 

surfactants, the spherical micelles become elongated. With further increasing surfactant 

concentration, mesophases or lyotropic phase are formed. 

Systems are called mesophases when their degree of ordering of the system is similar to 

a crystal, but not endless expanded. The molecules exhibit a preferred orientation, but 

the ordering is still lower than in a solid crystal. Examples for mesophases are the 

lyotropic crystals formed by amphiphilic molecule in water, depending on temperature 

and concentration. Figure 24 shows this behavior exemplarily with the phase diagram 

for CTAB/water.  

After crossing the cmc2 by increasing the surfactant concentration, the cylindrical 

micelles are formed. These micelles are still separated from each other dispersed in the 

solution. With further increasing the amount of surfactant, these cylindrical micelles 

assemble themselves in a hexagonal liquid crystal phase H1. The reasons for that are not 

clear, but one reason might be the minimization of repulsive interaction via this regular 

                                                 
77 M. Almgren, W. Brown, S. Hvidt, Colloid Polym. Sci 273 (1995) 2. 
78 K. Bryskhe, S. Bulut, U. Olsson, J. Phys. Chem. B 109 (2005) 9265. 
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ordering. Also a gain in entropy is possible while water molecules are set free around 

the area of the micelle, favoring the formation of a lyotropic phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Phase diagram for the binary system CTAB in water.79 

 

Other lyotropic phases are formed when the surfactant concentration is again further 

increased, resulting in a cubic phase V1 or a lamellar phase Lα, where the surface 

tension of the micelles continuously deteriorates. However, the shape of the micelles in 

solution can be changed by additives.80 Counter ions near to the micelle surface have for 

example a strong influence elongating the micelles.81 And the addition of alcohols like 

methanol results in growth of the micelles.82 Recent research also showed that even 

                                                 
79 C. J. Brinker, Y. Lu, A. Sellinger, H. Fan, Adv. Mater. 11 (1999) 579. 
80 H. Wellmann, Dissertation: Synthese und Charakterisierung von Halbleiter-Nanokristallen in   
    keramischen Matrizes, University Bremen, 2000. 
81 S. Ikeda, Colloid Polym. Sci. 269 (1991) 49. 
82 M. T. Anderson, J. E. Martin, J. Odinek, P. Newcomer, Chem. Mater. 10 (1998) 311. 
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below the cmc, small amounts of micelles already exist, being helpful in the 

electrochemical deposition on ZnO.83 

The existence of lyotropic phases is essential for the formation of the different 

structures of mesoporous materials. These structures are introduced in the following 

chapter. 

 

 

2.2.3 Nanoporous silica materials, M41S and SBA 

 

Porous materials can be clearly distinguished to the usual dense solids synthesized in 

solid state chemistry. Instead of high temperatures (~1000 °C) or pressures for the 

synthesis of crystalline and dense solids, less dense or porous materials are mostly 

produced at lower temperatures under kinetically control, meaning that the produced 

solids are not obtained in their thermodynamically stable phase, but in a metastable 

phase. A good example for this kind of synthesis procedure is hydrothermal synthesis.84 

In a closed reaction vessel with an aqueous medium, at temperature slightly above 

100 °C and pressures therefore higher than 1 bar, special reaction conditions are taking 

place, with which metastable solid phases can be synthesized. The principle behind is 

the Ostwald step rule, saying that crystallization from solution occurs via several 

thermodynamically unstable (metastable) phases. When the reaction is stopped at a 

given time, it is possible via hydrothermal synthesis to synthesize one exact metastable 

phase out of these crystallization steps. This is not possible via classical solid state 

chemistry, where mostly all the small activation energies for metastable phase 

transitions are completely skipped due to the high reaction temperatures. The synthesis 

of quartz is an example for a hydrothermal synthesis.  

                                                 
83 C. Boeckler, T. Oekermann, A. Feldhoff, M. Wark, Langmuir 22 (2006) 9427. 
84 A. Rabenau, Angew. Chem. 97 (1985) 1017 
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The synthesis of nanoporous85 materials is also possible via kinetic reaction control, at 

temperatures between 25 and 200 °C. The pores in these materials are obtained via 

incorporation molecules or molecule aggregates while crystallizing matter around these 

templates. The templates incorporated are called “guest” molecules, if the condensed 

matter formed is called the host. If the molecules (aggregates) influence the formed 

crystal or porous structure, the templates are called structure directing agents (SDA).  

Nanoporous materials are classified via IUPAC86 concerning their pore diameters in 

three different groups, shown in the following  Table 2 with some examples. 

 

 Table 2.  Nanoporous materials following IUPAC.87 

pore diameter material example 

< 2 nm microporous zeolites, zeosiles 

2 – 50 nm mesoporous Si-MCM-n, Si-SBA-n 

> 50 nm macroporous inverse opal, porous glass 

 

But although the diameters are classified, the pore size distributions of the materials can 

differ. Zeolites, microporous alumosilicates, and zeosiles, microporous silicates, show a 

very narrow pore size distribution, as sketched in Figure 25. 

Mesoporous materials have first been synthesized in 1992 from Beck et al.22,23 when 

these Mobil scientists synthesized the M41S mesoporous silica materials. They used the 

lyotropic phases of amphiphilic molecules described in chapter 2.2.2 for structuring and 

preparing inorganic-organic composites which exhibit, after calcinations, highly ordered 

porous structures made from amorphous inorganic material. Their pores have been 

significantly larger than the so far known zeolites, whose micropores are not accessible 

for larger molecules in catalysis. 

 

                                                 
85 accepted notation for pores < 200 nm, G. P. Androutsopoulos, C. E. Salmas, Ind. Eng. Chem. 39 (2000)  
    3747. 
86 International Union of Pure and Applied Chemistry, www.iupac.org, April 2008. 
87 K. S. W. Sing, D. H. Everett, R. A. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska,   
   Pure Apll. Chem. 57 (1985) 603. 
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Figure 25. Pore widths and pore size distribution of nanoporous materials.88 

 

The most famous example of the M41S family is Si-MCM-41 (MCM = Mobil 

Composition of Matter) exhibiting a hexagonally ordered pore structure of one-

dimensional channels, belonging to the space group P6mm. Figure 26 shows 

schematically the composite of silica and surfactant CTAB of Si-MCM-41. 

 

Figure 26. Si-MCM-41 structure model with incorporated surfactants (taken from Ref. 89). 

                                                 
88 P. Behrens, Adv. Mater. 5 (1993) 127. 
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The pore size of Si-MCM-41 can be tuned from 2 nm to 10 nm, with walls between 0.7 

and 1 nm for a typical synthesis, which are only two to three layers of silica. 22,90,91 And 

because its pores are comparable large, they can be directly seen in transmission 

electron microscopy (TEM, Figure 27). 

 

 

Figure 27. TEM-micrograph of Si-MCM-41.23 

 

The pores of Si-MCM-41 are not round, they are formed nearly hexagonally. Only 

when the wall thickness is increased to 1 nm, the pores are nearly perfect round 

shaped.92 Figure 28 depicts this circumstance additionally. 

 

 

 

 

 

 

 

 

Figure 28. Scheme of hexagonally shaped pore in Si-MCM-41 with structural indices. 

                                                                                                                                               
89 B. Ufer, Dissertation, Leibniz Universität Hannover, 2007. 
90 A. Sayari. M. Kruk, M. Jaroniec, I. Moudrakovski, Adv. Mater. 10 (1998) 1376. 
91 C.-Y. Chen, H.-X. Li, M. Davis. Microporous Mater. 2 (1993) 17. 
92 A. Corma, Chem. Rev. 97 (1997) 2373. 
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The walls of Si-MCM-41 are made of amorphous silica, so no crystalline reflections can 

be observed in X-ray powder diffraction measurements along the channel direction. In 

the direction of the pore opening, the hexagonal periodicity of the materials produces X-

ray reflections due to the short range ordering of the materials, but only hk0-reflections. 

From 2θ-angles between 0.5 and 10, lattice constants a0 can be calculated, giving an 

insight in the pore sizes and wall thicknesses (together with sorption measurement 

results). More details are described in the experimental section 3. But due to their large 

pores and thin walls, mesoporous materials of M41S-type feature low external surface 

areas (< 10 m2/g) and a large internal surface (around 1000 m2/g). 

The Mobil scientist synthesized the M41S materials because they were searching for a 

catalytic active material having large pores for large molecules, applicable in 

heterogeneous catalysis. Si-MCM-41 itself nevertheless shows no catalytic activity. 

Only substituting framework silicon via metal atoms, e.g. aluminum23,93,94, boron95,96, 

iron97, manganese98, titanium99,100,101, vanadium102,103 or zirconium104 generates catalytic 

centers in mesoporous materials. 

Si-MCM-41 is usually synthesized in a hydrothermal process, using CTAB as surfactant 

and tetraethyl orthosilicate (TEOS) as silicon source. Rathousky et al. presented in 1998 

a new method called “homogeneous precipitation” for the synthesis of Si-MCM-41, 

which is used in this work exclusively (chapter 3.2.1).105 In this method, CTAB and 

sodium metasilicate are diluted in water, and by adding ethyl acetate, its hydrolysis to 

acetic acid ensures a highly homogeneous acidification of the reaction mixture and 

                                                 
93 G. A. Eimer. P. L.B, G. A. Monti, O. A. Anunziata, Catalysis Letters 78 (2002) 65. 
94 R. Ryoo, J. M. Kim, C. H. Ko, Stud. Surf. Sci. Catal. 117 (1998) 151. 
95 A. Sayari, C. Danumah, I. L.Moudrakovski, Chem. Mater. 7 (1995) 813. 
96 A. Sayari, I. L.Moudrakovski, C. Danumah, C. I. Ratcliffe, J. A. Ripmeester, K. F. Preston, J. Phys.  
   Chem. 99 (1995) 16373. 
97 Z. Y. Yuan, S. Q. Liu, T. H. Chen, J. Z. Wang, H. X. Li, Chem. Commun. (1995) 973. 
98 D. Zhao, D. Goldfarb, Chem. Commun. (1995) 875. 
99 A. Corma, M. T. Navarro, P. J. Pariente, Chem. Commun. (1994) 147. 
100 A. Corma, Q. Kann, F. Rey, Chem. Commun. (1998) 579. 
101 M. S. Morey, S. O’Brien, S. Schwarz, G. D. Stucky, Chem. Mater. 12 (2000) 898. 
102 K. M. Reddy, I. L.Moudrakovski, A. Sayari, Chem. Commun. (1994) 1059. 
103 M. S. Morey, A. Davidson, H. Eckert, G. D. Stucky, Chem. Mater. 8 (1996) 486. 
104 M. S. Morey, G. D. Stucky, S. Schwarz, M. Fröba, J. Phys, Chem. B 103 (1999) 2037. 
105 J. Rathousky, M. Zukalova, A. Zukal, J. Had, Collect. Czech. Chem. Comm. 63 (1998) 1893. 
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consequently a uniform hydrolysis-condensation reaction of metasilicate. After a few 

minutes, a homogeneous precipitate can be observed. The result after calcination (to 

clear the pores of surfactant molecules) is Si-MCM-41 with narrower particle size 

distribution and uniform morphology. 

Si-MCM-41 can be synthesized in several morphologies, not only µm-sized particles, 

but also as mesoporous nanoparticles. The first attempts to produce mesoporous 

nanoparticles go back to Park et al. who used ethylene glycol and microwave irradiation 

to produce particles of around 200 nm.106 Also the use of mixtures of triblock-

copolymer F127 and surfactant CTAB led to a drastically size reduction in the 

synthesis.107 Working in high dilution results in mesoporous nanoparticles due to the 

reduction of the condensation velocity of the silicon source.108,109 Also a temperature 

influence108,109 and a pH control110 could be observed. By complexing TEOS with 

triethanolamine, the number of reactive seed crystal could be recently reduced and 

controlled, but the mesoporous pore structure is more star like.111 In this work, we use a 

modified synthesis after Cai et al.108 to produce mesoporous nanoparticles of Si-MCM-

41 (chapter 3.2.1). 

Besides the hexagonally ordered structures of Si-MCM-41, also cubic and lamellar 

mesoporous silica structure of the M41S family can be synthesized with the same 

procedure. Figure 29 shows two other silica composites of the M41S family. 

Si-MCM-48 has a cubic structure, belongs to the space group dIa
_
3 and is comparable to 

the lyotropic cubic phase. Si-MCM-48 consists of two independent but interpenetrative 

channel systems, acting like image and mirror image. The thickness of the walls and the 

pore diameters are comparable to Si-MCM-41. Si-MCM-50 is a lamellar composite 

material. The layered structure is only stable with incorporated surfactant molecules, 

after calcination the mesoporous structure collapses. 

                                                 
106 S.E. Park, D.S. Kim, J.S. Chang, W.Y. Kim, Catal. Today 44 (1998) 301. 
107 K. Suzuki, K. Ikari, H. Imai, J. Am. Chem. Soc. 126 (2004) 462. 
108 Q. Cai, Z.-S. Luo, W.-Q. Pang, Y.-W. Fan, X.-H. Chen, F.-Z. Cui, Chem. Mater. 13 (2001) 258. 
109 J. Rathousky, M. Zukalova, P.J. Kooyman, A. Zukal, Colloids Surf. A 241 (2004) 81. 
110 R. I. Nooney, D. Thirunavukkarasu, Y. Chen, R. Josephs, A. E. Ostafin, Chem. Mater. 14 (2002) 4721. 
111 K. Möller, J. Kobler, T. Bein, Adv, Funct. Mater. 17 (2007) 605. 
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Figure 29. Si-MCM-48 and Si-MCM-50 structures as host-guest-composites with incorporated surfactant 
(taken from Ref. 89) 

 

With the aim to synthesize mesoporous materials with larger pores and thicker pore 

walls, in 1998 Zhao et al. used triblock-copolymers as structure directing agents to 

synthesize ordered mesoporous silica materials of the SBA (University of Santa 

Barbara) family112,113 with pore diameters of up to 30 nm and wall thicknesses of 3 to 

6 nm. One famous example is the Si-SBA-15, which has like Si-MCM-41 hexagonally 

ordered mesopores (space group P6mm), but with larger diameters than in Si-MCM-41. 

As porous structure is enabled via using P123 as structure directing agent, also the pore 

size of Si-SBA-15 can be tuned in a wide range changing the reaction conditions.114  

 

 

Figure 30. Hexagonal pore structure scheme of Si-SBA-15 with interconnecting micropores.115 

                                                 
112 D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 279  
    (1998) 548. 
113 D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc. 120 (1998) 6024. 
114 F. Zhang, Y. Yan, H. Yang, Y. Meng, C. Yu, B. Tu, D. Zhao, J. Phys. Chem. B 109 (2005) 8723. 
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One important structural difference between Si-MCM-41 and Si-SBA-15 is the 

existence of additional micropores in Si-SBA-15 connecting the mesopores, depicted in 

Figure 30. This structural property used Ryoo et al. in 1990 to synthesize a stable 

carbon replica by filling the pores with a carbon precursor followed by pyrolysis. This 

procedure is called “nano-casting”, a good overview gives Ref. 115.  

Finally, another famous example of the SBA family is Si-SBA-16, synthesized with 

F127 as structure directing agent. Si-SBA-16 has a cubic pore structure, belonging to 

the space group Im
_
3 m. Figure 31 shows a cut-out of its structure. The Si-SBA-16 pore 

system consists of small cages of around 8 nm in diameter, connected via narrow 

channels with each other forming a cubic structure. 

Si-MCM-41 as well as Si-SBA-15 and Si-SBA-16 are synthesized in this work as host 

for organic moieties, preparing new solid proton conductors (chapter 3.2.1). 

 

 

Figure 31. Structure model of cavities and their interconnection in Si-SBA-16.116 

 

 

 

                                                 
115 A.-H.Lu, F. Schüth, Adv. Mater. 18 (2006) 1793. 
116 Y. Sakamoto, M. Kaneda, O. Terasaki, D. Zhao, J. M. Kim, G. D. Stucky, H. J. Shin, R. Ryoo, Nature 
408 (2000) 449. 
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2.2.4 Formation processes of mesoporous materials 

 

The true mechanism for the formation of mesoporous silica materials is unknown until 

now. Several mechanisms have been proposed since the discovery of the M41S family, 

and all of them depend on the interactions between the surfactants (and its lyotropic 

phases, see chapter 2.2.2) and the silica precursors. The most prominent and accepted 

mechanisms will be presented here, the true liquid crystal template mechanism (TLCT) 

and the mechanism of cooperative self-organization. 

Already from the discovery, Beck et al. postulated the TLCT mechanism.23 They 

proposed that, after the formation of the hexagonal lyotropic phase H1 with CTAB, the 

spaces in between this arrangement are filled with the silica precursor forming the 

mesophase, shown in Figure 32. 

 
Figure 32. Formation of a mesoporous silica structure via TLCT mechanism.24 

 

However, this mechanism could not have been possible under the original reaction 

conditions under hydrothermal synthesis. The used surfactant concentration was far too 

low under the cmc of CTAB, and Davies et al. also found no evidence for this 

mechanism using 14N-MAS-NMR, no hexagonally ordered cylindrical micelles could 

be observed.117 Anyway, under given circumstances the TLCT mechanisms is found 

and not completely withdrawn, e.g. when Attard et al. synthesized a hexagonal 

mesophase from polyethylene oxide solution.118 So, Davies proposed a cooperative 

                                                 
117 C.-Y. Chen, S. L. Burkett, H.-X. Li, M. E. Davies, Microporous Mater. 2 (1993) 27. 
118 G. S. Attard, J. C. Glyde, C. G. Göltner, Nature 378 (1995) 366. 
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mechanism where the rod-shaped micelles were coated with few layers of silica, and the 

coated rods aggregate then to the hexagonal mesophase (Figure 33, way 2). This 

mechanism is called the cooperative self-organization process. Besides Davies’ 

approach, Steel et al. postulated, instead of silica-coated rod-shaped micelles, the 

formation of silica layers with incorporated cylindrical micelles, which are then folded 

during the reaction forming the hexagonal Si-MCM-41 (Figure 33, way 1).119 If the 

surfactant concentration is too low, the folding can be hindered and the lamellar 

structures could be obtained. This mechanism was confirmed also by TEM 

observations, especially the transformation from lamellar to hexagonal structure.120 

 

 

 

 

 

 

 

 

 

 

 

Figure 33. Two model for the cooperative self-organization process.121 

 

As a modification of these mechanisms, taking into account the complicate ionic 

interactions between surfactant and silica-precursor, Firouzi et al. approved 1995, via 

in-situ 1H-NMR and 29Si-NMR and neutron scattering, the existence of a true 

cooperative self-organization process under silica condensation prohibiting 

                                                 
119 A. Steel, S. W. Carr, S. W. Anderson, Chem. Commun. (1994) 1571. 
120 V. Alfedsson, M. Keung, A. Monnier, G. D: Stucky, F. Schüth, Chem. Commun. (1994) 921. 
121 J. Vartuli, W. Roth, J. Beck, S. McCullen, C. Kresge (Ed.), The synthesis and properties of M41S and  
    related mesoporous materials, Springer, Heidelberg, 1st edition, 1998.  
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conditions.122 After adding a silica precursor to the solution of unordered CTAB 

micelles (Figure 34A), they observed the transformation into a hexagonal phase without 

condensation of the silica precursors forming an inorganic, non-condensed salt-like 

mesophases. The silica anions interact with the surfactant counter ions in an ion 

exchange mechanism forming a silicatropic liquid crystal (SLC) (Figure 34B). These 

SLCs aggregate then to SLC phases (Figure 34C) similar to the lyotropic phases (see 

chapter 2.2.2), but in contrast the surfactant concentrations are much lower, and the 

silica counter ions are reactive. By heating, the condensation took place forming Si-

MCM-41. 

 

Figure 34. Formation of a silicatropic liquid crystal (SLC) phase.122 

 

                                                 
122 A. Firouzi, D. Kumar, L. M. Bull, T. Besier, P. Sieger, Q. Huo, S. A. Walker, J. A. Zasadzinski,  
    C. Glinka, J. Nicol, D. Margolese, G. D. Stucky, B. F. Chmelka, Science 267 (1995) 1138. 
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Firouzi et al. also showed later that the ion exchange between the surfactant counter 

ions and the silica anions is favorable with the existence of D4R (double-4-ring 

[Si8O20]8-) under the reaction conditions,123 due to the similarity in the calculated areas 

of D4R anions (0.098 nm2) and the ammonium head group of CTAB (0.094 nm2) 

resulting in an optimum charge distribution on the surface of the SLCs. 

The interactions between the surfactant and the precursor play, as already seen, a 

fundamental role in the formation of the silica mesophases, so that a composite structure 

and no phase separation occur. Figure 35 illustrates the different interactions that can 

take place between the inorganic components and the head groups of the surfactants. 

According to the suggestion of Huo et al.124,125 these interactions are classified as 

follows: If the reaction takes place under basic conditions (when the silica species are 

present as anions) and cationic quaternary ammonium surfactants are used as the SDA, 

the synthetic pathway is termed S+I- (Figure 35a; S: surfactant; I: inorganic species). 

The preparation can also take place under acidic conditions (below the isoelectrical 

point of the Si-OH bearing inorganic species; pH~2), whereby the silica species are 

positively charged. To produce an interaction with the cationic surfactant, it is necessary 

to add a mediator ion X- (usually a halide) (S+X-I+; Figure 35b) to attenuate repulsion 

forces via weak hydrogen bonds. In contrast, when negatively charged surfactants (e.g., 

long-chain alkyl sulfates) are used as the SDA, it is possible to work in basic media, 

whereby again a mediator ion M+ must be added to ensure interaction between the 

equally negatively charged silica species (S-M+I-; Figure 35c); a mediator ion is not 

required in acidic media (S-I+; Figure 35d). Thus, the dominating interactions in 

pathways (a–d) are of electrostatic nature. Moreover, it is still possible to form attractive 

interactions via hydrogen bonds. This is the case when non-ionic surfactants are used 

(e.g., S0: a long chain amine, N0: polyethylene oxide), whereby uncharged silica species 

(S0I0 ; Figure 35e) or ion pairs (S0(XI)0 ; Figure 35f) can be present. 

                                                 
123 A. Firouzi, F. Atef, A. G. Oertli, G. D. Stucky, B. F. Chmelka, J. Am. Chem. Soc. 119 (1997) 3596. 
124 Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schüth,   
     G. D. Stucky, Nature 368 (1994) 317. 
125 Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi,  
     B. F. Chmelka, F. Schüth, G. D. Stucky, Chem. Mater. 6 (1994) 1176. 
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Figure 35. Possible synthetic routes with surfactant and inorganic species.24 

 

 

2.2.5 Detemplation and surface properties of amorphous silica 

 

The detemplation of a template-silica composite is necessary to obtain the desired 

mesoporous silica material. To remove the template, different strategies are present in 

literature. The most prominent way is calcination, which is already used since the 

discovery of these materials.23 All organic guests are hereby completely combusted in 

air at temperatures around 550 to 600 °C. One disadvantage of calcinations is the 

ongoing lattice change; in the calcination at too high temperatures, the pore diameter 

deteriorates and, due to condensation, the number of silanol-groups on the surface (see 

S+I- S+X-I+

S-M+I- S-I+

S0I0 / N0I0 S0 (XI)0
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below) decreases. Thus, scientists found new methods to extract the template SDA out 

of the silica host. Alternatives to calcinations are supercritical extraction126 or treatment 

with ozone.127,128 In both cases, the pore radius remains constant, and all organic guests 

are removed. 

But the mentioned methods have one big disadvantage: Intentionally incorporated 

organics, which should remain inside the pores (see chapter 2.2.6), are destroyed as well 

during these procedures. So, mild detemplation methods had to be found. One very 

selective method is the extraction with solvents, mostly with ethanol. Especially 

materials formed via S+X-I+ or S0I0 mechanism can be completely extracted with pure 

ethanol under reflux for one day.125,129 In contrast, this method cannot be applied to e.g. 

Si-MCM-41 materials prepared in acidic media, in which strong electrostatic 

interactions (S+I-) between surfactant and the inorganic network exist. Thus, an 

additional cationic donor-ion is added to the solvent. Acidified ethanol (with low 

amounts of hydrochloric acid) is used extract the template then.91  

To reduce the extraction time, Lang et al. used a simple ion exchange method for the 

template removal, using NH4NO3 in ethanol.130 The detemplation time could thereby be 

reduced to 45 minutes stirring the mixture at 60 °C due to the higher efficiency in 

exchange with NH4NO3 compared to HCl. In addition, the used template could be 

recovered. Finally, microwave treatment can be applied for template removal. Tian et 

al. presented this method for the extraction of either Si-MCM-41 or Si-SBA-15/16.131 

The digestion times were only 2 - 5 minutes due to the efficient and fast heating via 

microwave radiation, using a mixture of HNO3/H2O2 at 200 °C. The so extracted 

materials showed higher surface area, higher pore volumes and higher pore sizes than 

calcined materials, and additionally a higher number of surface silanol groups. Several 

detemplation results are presented in chapter 4.1.1. 

                                                 
126 S. Kawi, M.W. Lai, Chem. Commun. (1998) 1407. 
127 M. T. J. Keene, R. Denoyel, P. L. Llewellyn, Chem. Commun. (1998) 2203. 
128 G. Büchel, R. Denoyel, P. L. Llewellyn, J. Rouquerol, J. Mater. Chem. 11 (2001) 589. 
129 P. T. Tanev, T. J. Pinnavaia, Science 271 (1996) 1267. 
130 N. Lang, A. Tuel, Chem. Mater. 16 (2004) 1961. 
131 B. Tian, X. Liu, C. Yu, F. Gao, Q. Luo, S. Xie, B. Tu, D. Zhao, Chem. Commun. (2002) 1186. 
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The chemical reactivity of surfaces of amorphous silica depends strongly on the 

existence of these hydrophilic silanol groups. The pore walls of mesoporous materials 

locally show properties as amorphous silica132, and the existing surface silanol groups 

can be defined in groups (Figure 36): 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36. Types of silanol groups on a silica particle surface.133 

 

In isolated free silanol groups, geminal free silanol groups and vicinal (connected via 

hydrogen bonds) silanol groups. Geminal silanol group can not form hydrogen bonds in 

between.134 Also siloxane groups exist on the silica surface, and internal silanol groups 

exist which are formed during the condensation processes. At a temperature of 25 °C 

under vacuum (all assumptions of the here presented Zhuravlev model are made for 

samples under vacuum), the silica surface is maximum hydrolyzed, means all type of 

silanol groups are existent, and the silanol groups are connected to adsorbed water via 

                                                 
132 M. Kruk, M. Jaroniec, A. Sayari, Chem. Mater.11 (1999) 492. 
133 L. T. Zhuravlev, Colloids Surf., A 61 (2000) 1. 
134 P. L. Llewellyn, F. Schüth, Y. Grillet, F. Rouquerol, J. Rouquerol, K. K. Unger, Langmuir 11(1995)   
    574. 
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hydrogen bonds.133 Above 25 °C, desorption of water begins, only a monolayer of water 

remains which is continuously desorbed with increasing temperature. At 190 °C, the 

density of silanol groups is maximized, resulting in a constant value of αOH = 4.9 nm-2, 

the Kiselev-Zhuravlev-constant.133 However, at room temperature, an average number 

of around 3 silanol groups per nm2 internal surface of Si-MCM-41 can be 

determined.135,136 

The degree and the profile of the surface curvature have also influence on the described 

surface silanol characteristics. In the pores of mesoporous materials, the distance 

between silanol groups depends on the pore diameter. With higher pore diameter, the 

surface curvature is lower, and the distance between the silanol groups is larger. 

 

Figure 37.  Two different pore diameters leading to different surface curvatures.137 

 

Figure 37 depicts this circumstance. This leads also to the assumption that silanol group 

condensation in smaller pores might start at lower temperatures than for larger pores. 
                                                 
135 T. Ishikawa, M. Matsuda, A. Yasukawa, K. Kandori, S. Inagaki, T. Fukushima, S. Kondo, J. Chem.  
    Soc., Faraday Trans. 92 (1996) 1985. 
136 X. Zhao, G. Lu, A. Whittaker, G. Millar, H. Zhu, J. Phys. Chem. B 101 (1997) 6525. 
137 Diplomarbeit Reimar Münnekhoff, Leibniz Universität Hannover, (2006). 
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Widenmeyer et al. reported, with an increase in pore diameter of Si-MCM-48 (and 

thereby a decrease in surface curvature), an increase of surface silanol groups from 1.4 

to 1.9 groups per nm2.138 This result leads to the assumption that in the sample with 

smaller pore diameters already more silanol groups have been condensed, resulting in a 

lower number of silanol groups than in the sample with the larger pore diameter. 

Finally, the surface curvature depends also on the structure of pores. The spherical 

cages in Si-SBA-16 (see Figure 31) have a higher curvature than the cylindrical pores in 

Si-MCM-41 or Si-SBA-15, so more silanol groups might be already condensed. 

 

 

2.2.6 Surface functionalization of mesoporous silica: grafting and 

co-condensation 

 

The combination of the properties of organic and inorganic materials within one single 

material is very attractive for materials scientists because of the possibility to combine 

the enormous functional variation of organic chemistry with the advantages of a 

thermally stable and robust inorganic substrate. The symbiosis of organic and inorganic 

components can lead to materials whose properties can differ extremely from those of 

their individual, isolated components. Interesting modifications are for example organic 

functionalities such as C-C multiple bonds, alcohols, thiols, sulfonic and phosphonic 

acids, amines etc. 

Four pathways are available for the synthesis of porous composite materials based on 

organosilica units24:  

 

• The post-synthetically modification of the pore surface of a purely inorganic 

silica material, called grafting. 
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• The simultaneous condensation of corresponding silica and organosilica 

precursors, called co-condensation. 

• The incorporation of organic groups as bridging components directly and 

specifically into the pore walls by the use of bisilylated single-source 

organosilica precursors producing periodic mesoporous organosilicas (PMOs). 

• The incorporation of functional groups via functionalized SDA89 used for the 

synthesis of a mesoporous materials. 

 

In this work, only the first two methods were used to synthesize organic-inorganic 

composites. 

Grafting refers to the subsequent functionalization of the inner surfaces of mesoporous 

silica with organic groups. This process is carried out primarily by reaction of 

alkoxysilanes of the type (R’O)3SiR, or sometimes chlorosilanes ClSiR3 or silazanes 

HN(SiR3)2, with the free silanol groups of the internal pore walls of powders or films 

(Figure 38). 

 

Figure 38. Possible surface silylation reactions.139 

 

In principle, functionalization with a high variety of organic moieties can be realized in 

this way by variation of the organic residue R, e.g. 1-allyl140, 

aminopropyl141,142,143,144,145,146,147 groups, chloropropyl148, diamino149,150, triamino150, 

                                                 
139 N. Hüsing, G. Kickelbick (Ed.), Hybrid Materials, Wiley-VCH, Weinheim, 2007. 
140 V. Antochshuk, M. Jaroniec, Chem. Commun. (2002) 258. 
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143 K. Y. Ho, G. McKay, K. L. Yeung, Langmuir 19 (2003) 3019. 
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ethylenediamine151, malonamide152, carboxy143,146, thiol141,145,153 (and after oxidation 

sulfonic acid154,155,156,157,158), imidazole159,160,161, perfluorosulfonic acid groups162 or 

even saccharides163, for all kinds of application ranging from adsorption to 

heterogeneous catalysis. Surface silylation with alkoxysilanes (R’O)3SiR are normally 

anchored in a reaction under toluene reflux. In this work, dichloromethane is used as 

solvent at 0 °C due to already earned knowledge.164,165 

Grafting has the advantage that the mesostructure of the starting silica phase is 

preformed and usually retained, whereas the functionalization of the walls is 

accompanied by a reduction in the pore diameter of the hybrid material (depending 

upon the size of the organic functionalization agent and the degree of occupation). If the 

organosilanes react preferentially at the pore openings during the initial stages of the 

synthetic process, the diffusion of further molecules into the center of the pores can be 

hindered, which can lead to a non-homogeneous distribution of the organic groups 
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148 G. S. Armatas, C. E. Salmas, M. Louloudi, G. P. Androutsopoulos, P. J. Pomonis, Langmuir 19 (2003)  
     3128. 
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within the pores, and a thereby lower degree of functionalization. In some cases, with 

very bulky compounds like coumarin166, this can lead to complete closure of the pores 

(pore blocking). 

An alternative method to synthesize functionalized mesoporous silica phases is the co-

condensation method (in-situ synthesis). In this synthesis for mesostructured silica 

phases, tetraalkoxysilanes (e.g. TEOS) react with terminal alkoxysilanes of the type 

(R’O)3SiR in the presence of SDAs leading to materials with organic moieties 

covalently anchored to the pore walls. The SDAs are hereby the same as for the 

synthesis of pristine mesoporous silica. A number of successful syntheses via co-

condensation are reported until now, including functionalization with alkyl167,168, 

alkoxy169, amino150,169,170,171,172,173,174,175,176,, aromatic167,169,177,178,179, 

cyano/isocyano170,172,177,180, diamino181, phosphonic esters182, organophosphine177,183, 

thiol168,169,184,185,186 or vinyl/allyl groups168,169,172,187,188,189,190,191. As further reactions, 

                                                 
166 N. K. Mal, M. Fujiwara, Y. Tanaka, Nature 421 (2003) 350. 
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171 A. S. M. Chong, X. S. Zhao, J. Phys. Chem. B 107 (2003) 12 650. 
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thiol groups are oxidized to SO3H groups192,193,194,195,196,197, phosphonate esters to 

phosphonic acid groups182, and cyano groups to carboxylic acid groups180.  

Besides the typical application for SO3H functionalized materials in heterogeneous 

catalysis198, Kaliaguine et al. investigated SO3H functionalized mesoporous non-

ordered silica materials concerning their proton conductivity properties199, being the 

most closely related study to the here presented work.  

In comparison to grafting, the distribution of functionalized group in the silica 

mesostructure is much better, due to the fact that the organic units are already 

homogeneously dispersed in the starting mixtures. Therefore, a pore blocking is 

obviously no problem. But co-condensation procedure has also some disadvantages: 

The addition of extra molecules can influence the micelle formation and the network 

formation mechanisms, leading to a decreasing order with increasing concentration of 

(R’O)3SiR. In general, the quality of the mesoporous structure is worse. Furthermore, 

the degree of loading does normally not exceed 40 %. It can also observed that lower 

loadings are achieved than (R’O)3SiR units are offered in the synthesis mixture, 

indicating the reaction mixtures favor homocondensation reactions, at the cost of cross-

linking co-condensation reactions with the silica precursors. This is also caused by the 

different hydrolysis and condensation rates of the structurally different precursors.  

Of course, by incorporating organic moieties, the surface areas, pore volumes and pore 

diameters of the ordered mesoporous composite materials are decreased. And for the 

template removal, only mild procedures like extraction methods can be used to avoid 

the destruction of the organic functionalities on the pore walls. 
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In this work, highly ordered silica materials containing proton conductive groups like 

e.g. SO3H , phosphonic acid (PO3H2) and imidazole groups are prepared, either by 

grafting or co-condensation synthesis. 
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3 Experimental 

 
In this section, either the applied syntheses of mesoporous silica materials 

functionalized with organic moieties for proton conductivity are explained as well as the 

used measurement techniques for characterization of the synthesized materials.  

 

 

3.1 Analytical methods 
 

In the following chapters, the analytical methods for sample characterization used in 

this work are presented, including the measurement assemblies. The central analytical 

method is here the impedance spectroscopy, which is used to determine proton 

conductivity of the solid proton conductors and composite membranes. Besides standard 

methods like X-ray powder diffractometry or nitrogen adsorption techniques, also 

theoretical calculations are introduced, which were performed in collaboration with the 

University of Bremen to confirm experimental measured results of proton conductivity. 
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3.1.1 Impedance spectroscopy 

 

From the requirements for membrane materials in fuel cells (see chapter 2.1.4), a total 

electronic insulator behavior for membrane materials with simultaneous maximum 

proton conductivity is demanded. Direct current measurements are therefore not 

applicable for measuring the resistance and accordingly the proton conductivity of 

membranes. A protonic current is not measurable, typical instruments only measure the 

electric current, but the membrane materials are blocking the electrons. So, the principle 

of charge separation must be used, as the detecting charge carriers, here protons, have to 

be brought in direct relation to measurable electric variables. In our case, hydrogen 

atoms are oxidized at the positive electrode (H→H+ + e-), and for charge neutrality, 

back reaction at the negative electrode occurs (H+ + e-→ H), enabling a coupling 

between the charge carriers inside the membrane materials and measurable electrical 

current. In direct current, the charge carriers would aggregate at the interfaces between 

electrodes and membrane causing polarization. This leads to an exponential decrease in 

current over time, so that no time independent value for the conductivity can be 

obtained. Thus, the resistance of membranes or conductivity is determined under 

alternating current conditions, where no interface polarizations are occurring, due to 

time-periodical change of the electric field vector. No charge carrier accumulation is 

produced, and no time-dependent decrease in current observed. 

In direct current circuits, the ohmic resistance is defined by the ohmic law, where R is 

the resistance, and U and I are the applied voltage or current, respectively.200 

 

I
UR =                                                         (Eq. 3.1) 

In contrast, the voltage and current in alternating current circuits pass a time dependent 

change of the actual values of voltage and current, described in a sine function, while an 

angular frequency ω = 2πf (f = frequency) introduces the periodicity.200 

                                                 
200 J. Grehn, J. Krause (Eds.), Metzler Physik, 3rd Edition, Schroedel Verlag, Hannover, 1998. 
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u(t) = u  sin (ωt)     (Eq. 3.2) 

 i(t) = i  sin (ωt)     (Eq. 3.3) 

 

Similar to direct current circuits, the alternating current resistance Z, called impedance, 

is defined over the quotient of the actual voltage and current at a given time t, resulting 

in the given equation: 

ϕϕ ii eZe
i
u

i(t)
u(t)Z ===          (Eq. 3.4) 

 

The impedance is frequency dependent, and defined by its absolute value Z  and the 

phase shift ϕ . 

In alternating current circuits, three kinds of resistance are possible, namely ohmic, 

inductive and capacitive resistances. Z is thereby the sum of the ohmic resistance R, the 

inductive resistance XL, and the capacitive resistance XC.200 

Every component, a resistor, an inductor or a capacitor, causes additionally a typical 

phase shift. 

Pure ideal ohmic components in an alternating current circuit are similar as in direct 

current circuits. The impedance of an ideal ohmic component is therefore the same as 

the direct current resistance, the phase shift is zero:  

Z = Z  = R           (Eq. 3.5) 

 

A pure ideal inductive component acts direct proportional to the frequency of the 

excitation signal, the phase shift is +90°, the current follows the voltage. 

 

Z = XL = iωL             (Eq. 3.6) 
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φφ

For pure capacitive components, an inverse proportional relation between the excitation 

frequency and the capacitive resistance exist. The phase shift is -90 °, the voltage 

follows the current. 

Z = XC = -
ωC
1i         (Eq. 3.7) 

 

By using the Euler equation201  

 

)sin(i)cos(ei ϕϕϕ +=              (Eq. 3.8), 

 

Eq 3.4 can be transformed into the rectangular form 

 

Z(ω) = )(sinZi)(cosZ ϕϕ + = Z’+Z’’                          (Eq. 3.9) 

 

The first summand is called “real part” Re(Z) of the impedance Z, while the second 

summand is called the “imaginary part” Im(Z). Figure 39 shows the impedance Z 

plotted in the complex plane as a vector. 

 

 

 

 

 

 

 

 

 

Figure 39. The impedance plotted as a planar vector, with polar or rectangular coordinates.201 

                                                 
201 E. Barsoukov, J. R. MacDonald (Edt.), Impedance spectroscopy, 2nd edition, Wiley&Sons,  
     Hoboken, New Jersey, 2005. 
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In impedance spectroscopy (IS), all these relations are used to investigate the electric 

properties of a given component. In general, a sinusoidal excitation voltage signal with 

low amplitude is applied on a sample to be measured, measuring the answering signal 

and calculating the complex impedance. As the impedance is frequency dependent, the 

measurement is repeated over a wide frequency range, typical from 1 Hz to 1 MHz. The 

results can be plotted in several types of diagrams to analyze the data. One example is 

the Nyquist plot, Figure 40 depicts an ideal Nyquist plot for the shown equivalent 

circuit, and the arrows indicate the increasing frequency. 

 

 

 

 

 

 

 

 

 

 

Figure 40. Ideal Nyquist plot with corresponding equivalent circuit.201 

 

At high frequencies, the intersection of the semicircle with the x-axis corresponds to the 

electrolyte (or membrane) resistance RE to be measured. The semicircle ends in another 

intersection with the x-axis. This resistance corresponds to the electrolyte resistance 

plus the transfer resistance RD due to the charged barrier layer at the interface electrode-

membrane, which the charge carriers have to overcome. Both resistances are also shown 

in the equivalent circuit. The drawn capacity C describes the electrical properties of the 

charged barrier layer, because charge carriers can be stored in this layer, which is a 

similar behavior like a capacitor. 
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If diffusion processes are taking place in the measured membrane, the appearance of a 

Warburg-straight can be observed, corresponding to an additional element ZW in the 

equivalent circuit (Figure 41). 

 

 

 

 

 

 

 

 

 

 

 

Figure 41. Ideal Nyquist plot with Warburg-straight.201 

 

 

A deeper analysis of the Warburg behavior was not done, the focus was on 

determination of the electrolyte resistance. Most of the time, the diagrams are not as 

ideal, e.g. the Warburg-straight directly passes into the semicircle, or nearly no 

semicircle is visible.  

A second and easier way to analyze impedance spectra are Bode diagrams. In a Bode 

diagram, the overall impedance is plotted against the frequency. Additionally, the phase 

shift between applied voltage and answering current signal is also plotted against the 

frequency. When the phase angle is zero (or close to zero), the impedance is, following 

equation 3.5, fully ohmic. In fact, the resistance of the membrane can at this point be 

directly observed, and used to calculate the proton conductivity σ of the membrane 

following  
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AR
1σ l

⋅=       (Eq. 3.10) 

 

where R is the resistance corresponding to the phase angle closest to zero in the Bode 

diagram, l is the height of the sample between the electrodes, and A the cross-sectional 

contact area of the measured sample with the electrodes.200 

Figure 42 shows a typical measured Bode diagram. This type of diagram was always 

used for the impedance analysis. 
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Figure 42. Typical measured Bode diagram, impedance (□) and phase shift (●). 

 

IS measurements on functionalized mesoporous powders were performed with a Zahner 

electrochemical workstation IM6e in a frequency range from 1 - 106 Hz with an 

oscillating voltage of 100 mV, using the software THALES 2.48 LPTLINK for 

controlling and analysis. For sample preparation, the functionalized powders were 

pressed with 40 kN to small pellets of 8 mm in diameter (A = 0.503 cm2) and 0.5 to 

1 mm in thickness, which is hardly influencing the mesoporous structure. Only a slight 

decrease in intensity is observed in the XRD after pressing (Figure 43). This is caused 

by the hardened particle agglomerates after pressing, which could not be efficiently 
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mortared to very fine powders for sample preparation for XRD like the calcined Si-

MCM-41 powders. However, the porous structure of the samples is still given. 
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Figure 43. XRD patterns of Si-MCM-41 (compare chapter 4.1.1) before (black) and after (red) pressing 
to pellets. 

 

The pellets were placed between two thin graphite slices (8 mm ∅) as GDLs and then 

put into a Teflon specimen holder where the pellet is clamped between two sintered 

metal electrodes (stainless steel, 8 mm ∅). The PTFE holder is then put into a gas-tight 

stainless steel body with thermocouple access to the holder. This body is connected via 

a stainless steel tube to a stainless steel water reservoir.  

This type of cell is called water vapor conductivity cell, and was invented by Alberti et 

al. in 2001.202 This cell is ideal for measuring samples under different RH. The RH 

depends generally on the ratio between the actual pressure and the saturation vapor 

pressure of water. With increasing temperature, the necessary amount of water vapor for 

saturation increases, resulting in a deteriorating RH of a given volume with heating. 

Moreover, every RH has a belonging temperature. The error of RH is around 5 %. 

 

                                                 
202 G. Alberti, M. Casciola, L. Massinelli, B. Bauer, J. Membr. Sci. 185 (2001) 73. 
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Figure 44.  Scheme of the water vapor conductivity cell.202 

 

The degree of RH in the cell and at the sample can be controlled by adjusting the 

temperature at the sample and of the water tank. For example, for 50 % RH at 120 °C, 

the water tank must have a temperature of 99 °C; for 100% RH, the water tank is heated 

to a temperature of 120 °C, respectively. Reliable data can be determined between 

60 °C and 140 °C with equilibrium times of maximum 30 minutes. Temperatures are 

controlled inside the cell at the water tank and at the sample with thermocouples. 

The proton conductivity values of these measurements are very accurate concerning the 

order of magnitude, but no further decimal places are interpreted in the following, as the 

accuracy decreases strongly, and literature also only compares values up to the first 

decimal place in scientific notation. 

Composite membranes made of polysiloxanes and inorganic particles were measured 

using also a Zahner electrochemical workstation IM6 eX in combination with the 

measuring cell HTZ 200 in the group of Prof. Grathwohl at University of Bremen, as 

the membrane casting was performed in the same group. The principle of the HTZ 200 
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1 water reservoir
2 heating
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4 sample membrane
5 porous metal electrodes
6 temperature sensor
7 electrodes

is similar to the water vapor cell in Figure 44, but higher temperatures and lower 

relative humidities can be set, reaching aimed fuel cell membrane conditions like 

180 °C with 5 % RH. The assembly can be seen in Figure 45. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 45. HTZ200 conductivity cell from University of Bremen.203 

 

For the measurement of the MEAs, the samples were fixed between two GDL 24 BC of 

a 25/125-HT fuel cell test bench (HIAT GmbH, Germany) and pressurized to 1 bar. 

Both sides of these membranes were coated with a mixture of carbon black containing 

40 wt% Pt (Elyst A 40) and pre-polymerized sulfonated diphenyldimethoxysilane 

(sDPDMS) in ethanol. The use of functionalized polysiloxane as the proton conducting 

component within the electro catalyst system suits the concept to reach a better 

transition phase between the electrocatalyst and the membrane, caused by a covalent 

bonding between the polysiloxane components. Cross-linking of MEAs was 

accomplished at a temperature of 150 °C. The feed was 8 mL/min H2 and 4 mL/min O2. 

The single cell fuel cell measurements were performed at temperatures of 22, 30, 40 and 

50 °C applying a RH of 95 % in each case.  
                                                 
203 M. Jeske, Entwicklung bifunktionaler Membranen für HT-PEMFCs, Dissertation, Universität Bremen,  
      2007. 
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Composite membranes made with polyoxadiazole were measured in the frequency 

range 1-106 Hz at signal amplitude 100 mV and obtained from the impedance modulus 

at zero phase shift (high frequency side) with 20-100% RH. Measurements were 

performed with a flow cell purged with wet nitrogen; relative humidity was controlled 

by bubbling nitrogen gas in water heated at a suitable temperature between 30 and 

80 °C. The impedance measurements were carried out on stacks containing up to five 

membranes (cumulative thickness around 500 µm). The spectrometer used was a 

Zahner IM6 electrochemical workstation. 

 

 

3.1.2 X-ray diffractometry 

 

X-ray diffractometry is an important tool for the structural characterization of 

crystalline solids. In general, X-rays have the same diffraction properties like all 

electromagnetic waves. As the wavelength of X-rays exhibits around 100 pm, it is in the 

same order of magnitude like bond distances between atoms in crystals. Thus, the 

diffraction of X-rays on periodically changing electron density contrasts is used for 

structural investigations of solids. 

Due to their three-dimensional periodic structure, crystals can act like a three-

dimensional diffraction grating. In case of a crystalline sample, the electron density 

contrast is caused by the position of atoms, and thereby position of electrons. When X-

rays hit a crystal, the diffraction is understood as reflection at the lattice planes of the 

crystalline structure, which has a constant distance d. A reflection can only be obtained, 

if the crystal has a specific orientation towards the X-ray source and the detector, and 

can only be detected if constructive interference between several reflected X-ray beams 

from different lattice layers occurs. For constructive inference, the path difference 
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between two X-ray beams must be an integer multiple of the wavelength. These 

requirements are concluded in the Bragg-equation.204 

 

λnsinθ2d ⋅=⋅                              (Eq. 3.11) 

 

θ is here the diffraction angle, λ is the wavelength of the incident X-ray beam, n is the 

order of interference (an integer number). So, θ depends only on the distance between 

the lattice layers d. In X-ray powder diffractometry, finely ground powders were 

measured with a high number of statistically oriented crystals. 

Mesostructured materials exhibit, in contrast to crystals, no long range ordering, but the 

ordered porous structures also lead to periodical electron density contrasts, at which X-

ray diffraction is caused. If the porous structure is somehow filled, the electron density 

contrast changes, resulting in changed intensities of the diffraction reflections (see 

chapter 4.2.1). As this ordering has much larger “lattice” distances d caused by the 

porous structure, the reflection signals occur at very low angles, between 0.5 and 10 ° 

2θ depending on the pore structure. 

For a hexagonal pore structure, the lattice constant a0 (see Figure 28) can then be 

calculated via 

3
d2

a 100
0

⋅
=                                             (Eq. 3.12) 

 

where d100 is the first reflection in such a diffractogram and can be calculated with the 

Bragg equation, with n = 1.205 For cubic pore structures, the lattice constant a can be 

determined via  

 

222
hkl lkhda ++=         (Eq. 3.13) 

 
                                                 
204 P. W. Atkins, Physikalische Chemie, 2nd Edition, Wiley-VCH, Weinheim, 1999. 
205 W. Kleber, H.-J. Bautsch, J. Bohm, Einführung in die Kristallographie, 18th Edition, Verlag  
      Technik, Berlin, 1998. 
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if (hkl) are the Miller-Indices, which describe the set of lattice layers, and dhkl is the 

lattice layer distance corresponding one X-ray reflection.205 

In this work, the synthesized powders were characterized with a Philips X'pert MPD 

diffractometer, working in a Bragg-Brentano-geometry with copper Kα radiation 

(λ = 1.5406 Å) at 40 kV and 40 mA. A curved graphite crystal as monochromator is 

used to eliminate undesired radiation (fluorescence, Kβ radiation). The powders are 

prepared in a powder sample holder after fine mortaring, and measured between 0.5 and 

10 ° 2θ with a step size of 0.02 ° and 5 s measuring time at every step. 

 

 

3.1.3 Infrared spectroscopy 

 

If infrared (IR) radiation is absorbed by a molecule or crystal, discrete vibrations states 

between atoms or groups in molecules or crystals are stimulated. The excitation from a 

lower vibration state into a higher vibration state occurs with the absorption of energy 

of a wavelength characteristic for the bond energy between two atoms or atom groups. 

The stronger the bond and the higher the force constant k of the bond, the higher is the 

vibration frequency, which is proportional to the energy of the vibration state. 

Moreover, the IR spectrometer detects the amount of absorbed energy at this 

wavelength.204 

Vibration states are only IR-active if, during the corresponding vibration, the dipole 

moment changes. Due to this rule, the number of observed vibrations is usually smaller 

than the number of possible normal vibrations. The number of possible normal vibration 

is 3N-6 (3N-5 for linear molecules), when N is the number of atoms in a molecule.  

The absorption bands used for structural investigations in the IR spectrum, whose 

wavelengths are at the high end of the visible light spectrum, are between 2.5 and 

25 µm. Usually, the position of absorption bands in the IR spectra are denoted in 
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wavenumber
_

ν , which is the reciprocal value of the wavelength. IR spectra are therefore 

in between 4000 and 400 cm-1. 204 

Fourier-Transform-IR (FTIR) spectroscopy measures simultaneously all frequencies of 

the IR spectrum. Multi-frequent IR radiation, which has the same intensity at all time, is 

transformed via an interferometer into an interferogram, being now a function of time 

and not of the frequency. After passing through the sample, the interferogram is 

Fourier-transformed back into to frequency domain. Thereby, the measuring time is 

much shorter compared to single frequency measurements. 

The IR measurements in this work are performed on a FTIR spectrometer Bruker 

Tensor 27 (resolution: 2 cm-1, 200 scans) in the range of 400-4000 cm-1 in ATR 

(attenuated total reflectance) mode in the Institute for Inorganic Chemistry at the 

Leibniz University of Hannover. The powders are densely fixed on a diamond crystal, 

and IR radiation is passed through this crystal reflecting at the internal surface in contact 

to the sample. This total reflection produces an evanescent wave which extends into the 

sample. Although this technique needs slightly more sample for measurement, it can be 

performed faster without additional chemicals like KBr for pellet preparation for IR 

transmission measurements. As the to detecting organic moieties are already only 

hardly detectable due to very low loading compared to the silica framework of the 

measured samples, influences of impurities on the spectra can be therefore avoided.  

For the analysis, the software OPUS 5.0 was used. For comparison, the spectra of silica 

materials are normalized on the silica network band at ~1060 cm-1. However, 

quantitative information of functionalization are hardly meaningful via IR, due to the 

fact that the loading with organic groups is very low, resulting in only very weak signals 

compared to the intense Si-O-Si signals. 
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3.1.4 Sorption measurements 

 

Via adsorption measurements, information about the internal/external surface, pore size 

distribution and pore volumes of porous materials can be determined. Using nitrogen as 

adsorbate, the adsorption isotherms are measured at a constant temperature of 77 K. The 

adsorbed amount of gas on a sample is hereby detected depending on the equilibrium 

pressure p. Drawing the adsorbed amount of gas against the relative pressure p/p0, 

where p0 is the saturation vapor pressure of the measurement gas, one gets the 

adsorption isotherm. 

Via the method after Brunauer, Emmett und Teller (BET)206, the specific BET surface 

can be calculated from the estimated nitrogen adsorption isotherms. This theory 

describes multilayer adsorption, where one layer of adsorbed gas can act as adsorbent 

for additional adsorption layers.  The observed adsorption isotherms can be classified in 

different types of isotherms. Figure 46 shows the six after IUPAC classified isotherm 

types.  

 

 

 

 

 

 

 

 

 
  

Figure 46. Classes of adsorption isotherms.207 

                                                 
206 S. Brunauer, P. Emmett, E. Teller, J. Am. Chem. Soc. 60 (1938) 306. 
207 B. Lindlar, Synthese und Modifizierung großporiger M41S-Materialien; Eidgenössische Technische  
     Hochschule Zürich, 2001. 
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type I isotherm:  microporous substances with small external surface, e.g. activated 

carbon or zeolites 

type II isotherm:  non-porous materials or macropores, at X a complete monolayer 

is reached 

type III isotherm:  rare, no monolayer is formed, e.g. adsorption of water on 

hydrophobic non-porous substances 

type IV isotherm:  mesoporous adsorbents with hysteresis loop caused by capillary 

condensation in the mesopores, at X a complete monolayer is 

reached 

type V isotherm:  like type III isotherm, here for porous materials, adsorption of 

polar components on hydrophobic substances 

type VI isotherm:  stepwise multilayer adsorption on a non-porous surface.207 

 

Mesoporous materials of the M41S or SBA family are characterized by a small external 

surface (< 10 m2/g) and large internal surface (~1000 m2/g), resulting normally in type 

IV isotherms. Until the point X (see Figure 46) the monolayer adsorption in the pores 

takes place at small relative pressures. The following steep increase with increasing 

relative pressures belongs to the multilayer adsorption, ending in adsorption at the 

external particle surface. In the desorption branch, the occurring sorption hysteresis loop 

is typical for mesoporous materials, caused by capillary condensation of the adsorbate 

inside the mesoporous material. 

With the method of Barrett, Joyner und Halenda (BJH) the pore size distribution and 

pore volumes can be calculated.208 Here, the pore radius is estimated via the Kelvin 

radius which is proportional to p/p0. From their ratio, the pore diameter can be 

calculated. Although this method shows pore size dependent errors when used on 

mesoporous materials with pores smaller than 3 nm, the method is anyway used for pore 

diameter estimation, because, as reported, the method is still very good for relative 

                                                 
208 E. P. Barrett, L. G. Joyner, P. P. Halenda, J. Am. Chem. Soc. 73 (1951) 373. 
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comparison of pore sizes, and applicable on the structure types used in this work. 138,209 

Alternative methods are developed recently for the interpretation of sorption data, 

namely nonlocal density functional theory (NLDFT)210, which were verified by suitable 

silica materials with well-defined pore hierarchy and connectivity.211 This method is 

quite new and not evaluated on the here presented materials, therefore it was not used, 

but might be applicable in the future, especially for materials showing pore blocking 

effects. 

Nitrogen adsorption measurements in this work were performed on a Quantachrome 

Autosorb 3B analyzer. Prior to each adsorption measurement, approx. 0.1 g sample 

were outgassed at 200 °C for 24 hours. The Autosorb1 software was used for analysis. 

Some additional adsorption measurements were also performed on a Micromeritics 

ASAP 2010 machine by Dr. Jiří Rathouský from the J. Heyrovský Institute of Physical 

Chemistry of AS CR in Prague. 

Water adsorption measurements have also been performed to investigate the 

hydrophilicity of samples. The isotherms were obtained by volumetric vapor adsorption 

using a BELSORP 18-3 (Bel Japan Inc.) at 22 °C with an equilibration time of 500 s. 

Water adsorption measurement need, due to the larger water molecule and the stronger 

interactions to interfaces due to its dipolar behavior, longer measurements time, 

especially for desorption. The isotherms are classified as for nitrogen adsorption, and 

pore diameters can be derived via Kelvin-equation.212 These measurements were 

performed by Dr. Michaela Wilhelm at the University of Bremen. 

 

 

 

 

 

 
                                                 
209 M. Thommes, R. Köhn, M. Fröba, J. Phys. Chem. B 104 (2000) 7932. 
210 A. V. Neimark, P. I. Ravikovitch, Microporous Mesoporous Mater. 44 (2001) 697. 
211 M. Thommes, B. Smarsly, M. Groenewolt, P. I. Ravikovitch, A. V. Neimark, Langmuir 22 (2006) 756. 
212 S. Komarneni, R. Pidugu, V. C. Menon, J. Porous Mater. 2 (1996) 99. 
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3.1.5 Electron microscopy 

 

In an optical light microscope, the maximum resolution of the microscope is restricted 

by the wavelength of incident light. Good optical light microscopes can therefore reach 

resolution of down to micrometers. 

In electron microscopy, instead of photons electrons are used for creating images of 

samples with high magnification. As the wavelength of an incident electron is normally 

much smaller than that of photons, accelerated electron beams give maximum 

resolutions in the nanometer range. 

For accelerating an electron, it has to be brought into an electric field. The potential 

energy Epot of an electron depends on its charge e and the applied voltage U.200 

 

eUEpot =                                                    (Eq. 3.14) 

2
kin mv

2
1E =                                               (Eq. 3.15) 

All the potential energy is transformed into kinetic energy Ekin , and energy conservation 

gives the following relation. 

kinpot EE =  

2mv
2
1eU =  

 U
m
e2v

e

=                                            (Eq. 3.16) 

 

So, the velocity v of an electron in an electric field can be calculated from its charge e 

(e = 1.60x10-19 C), its mass me (me = 9.11x10-31 kg) and the voltage of the applied 

field.200 For example, with U = 1 V, an electron gets the velocity of 590 km/s. 

Using the relation of de Broglie, the wavelength λ of an electron can be calculated, 

together with the Planck’s constant h (h = 6.626x10-34 Js).204 
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mv
h

p
hλ ==                              (Eq. 3.17) 

 

As can be seen, the higher the velocity of the electron, the smaller is the wavelength of 

the electron.  

The maximum resolution d can then be calculated following the equation after Ernst 

Abbe.213 

sinαn
λ0.61d

⋅
=                   (Eq. 3.18) 

 

In this equation, n.sin α is called numeric aperture, a device dependent constant. With 

smaller wavelengths, the point resolution of the electron microscope decreases. In 

conclusion, the applied acceleration voltage in an electron microscope strongly defines 

its point resolution. 

For creating an image, the accelerated electrons have to be focused on the sample in the 

electron microscope. Compared to lenses in optical light microscopes, here magnetic 

coils focus the accelerated electrons, like lenses focus a light beam. If the electron 

beam, also called the primary beam, hits the sample surface, different interactions 

between the primary beam and the sample can take place, shown in Figure 47. 

Secondary electrons arise from inelastic scattering of the primary beam via interactions 

with the shell electrons or the atomic nuclei of the sample. 

Back scattering electrons arise from elastic scattering of the primary beam with the 

positively charged atomic nuclei. The electrons are deflected changing their movement 

direction, but not their energy. Via single or multiple scattering, these electrons can 

leave the sample. 

 

 

 

                                                 
213 D. B. Williams, C. B. Carter, Transmission Electron Microscopy, Spectrometry, Springer Science   
     and Business Media, New York, 1996. 
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Figure 47. Possible interactions between the incident beam and the sample.213 

 

Characteristic X-ray radiation arises from inelastic scattering of the primary beam with 

core-near electrons, which can result in the release of an electron leaving a core-near 

electron hole. Electrons from higher energy levels can now fall into these holes emitting 

element characteristic X-ray radiation for the energy difference of these levels leaving 

the sample, also called X-ray fluorescence. 

Auger electrons arise when the inelastic scattering of the primary beam with the core-

near electrons results in the emission of radiation after recombination of higher-shell 

electrons with the hole, but this radiation excites a surface-near electron to leave the 

sample, called the Auger-electron. 

Cathodolumiscence is the emission of light in the region of visible or infrared 

wavelengths from the sample caused by the primary beam. 

The sample current occurring from absorbed electrons can also be used for imaging like 

the secondary or back-scattered electrons in the scanning electron microscope (SEM). 

The transmitted electrons are used in transmission electron microscopy (TEM) for 

imaging. 
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SEM and TEM have several differences explained in the following and depicted in 

Figure 48.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48. Course of beam in SEM and TEM.213 

 

SEMs only create indirect images. Between sample and image, no course of beam 

exists; the signal producing and the signal processing units are separated. The incident 

electrons are focused via lens systems, consisting of a condenser and an objective lens, 

on the sample. A deflecting unit controls via magnetic coils the electron beam scanning 

line-by-line over a certain area. The resulting signals are detected and sent to the digital 

signal processing unit, which forms an image from the detected secondary or back-

scattered electron signals. Magnification can be realized by reducing the area of 

scanning of the electron beam via setting the coil current. The whole system, including 

sample and detector, is under vacuum, that no interactions between the primary beam 

and air/gas molecules can disturb the imaging process. 

In contrast, TEM creates real images like an optical light microscope. The primary 

beam is focused on the sample. After passing through the sample, the electrons form the 
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first image behind the objective lens. Via an intermediate lens (not shown in Figure 48) 

a second image is formed in front of the projector lens. The resulting image is acquired 

via imaging the second image via the projector lens. 

In this work, the morphologies of the silica materials were determined with a JEOL 

JSM-6700 field emission SEM. The electron source is a field emission canon, a thin 

tungsten tip, from which electrons can tunnel in an electric field. The JEOL JSM-6700 

has four detectors, one for secondary electrons, one for back-scattered electrons, a semi-

in-lens detector for small working distances, and a detector for energy-dispersive X-ray 

spectroscopy (EDXS, see chapter 3.1.6). Acceleration voltages from 0.5 to 30 kV are 

possible, resulting in a maximum point resolution of ~1 nm. Powder samples for SEM 

were prepared on a graphite slice, which was gluing on a brass sample holder. 

For higher resolutions and analysis of the pore structure of the synthesis mesoporous 

materials, in this work a JEOL JEM-2100F UHR field emission TEM was used. The 

primary beam was produced using a Schottky-field emitter made of zirconium 

oxide/tungsten, where moderate heating already generates electrons at low electric field 

strengths. High-resolution TEM (HRTEM) and scanning TEM (STEM, the electron 

beam scans through the sample like in a SEM) is also possible with the used TEM, as 

well as EDXS with better accuracy than in the SEM. Sample preparation was performed 

via powder dispersion in ethanol in ultrasonic bath, giving afterward a small drop of 

dispersion on a copper grid. After drying, the samples can be analyzed. 
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3.1.6 Electron-dispersive X-ray spectroscopy and electron 

energy-loss spectroscopy 

 

Energy-dispersive X-ray spectroscopy (EDXS) is used in combination with SEM or 

TEM for the surface analysis of solids. EDXS analyzes the characteristic X-ray 

radiation emitted from a sample after interaction with a primary electron beam of high 

energy. So, EDXS is a qualitative and quantitative, non-destroying method for the 

determination of the local element composition of a sample. 

A high energy electron beam can, via inelastic scattering, strike out a core-near electron 

out of an atom. Electrons from higher shells can now recombine with the resulting 

electron hole by falling into the lower energy shell. Meanwhile, a characteristic 

radiation is emitted, characteristic for the energy difference between both shells and 

therefore element specific. Several recombination paths are possible, while electrons 

from different energy levels can fall into the electron hole.213 

The detected result is a spectrum containing several spectral lines for every detected 

element. The spectral lines are denoted as Kα, Kβ, .., Lα, Lβ,... The big letters name the 

electron shell in which an electron felt down, and the index indicates from which shell 

this electron felt down (α = one level higher, β = two level higher).  

 
Figure 49. Principle of EDXS. 213 



3 Experimental 
 

84 

The X-ray photon produced in Figure 49 should for example be denoted as Kβ, as the 

stroke-out electron came from the K shell, and the recombined electron felt down from 

the M shell, which is two levels higher than the K shell. 213 

The used SEM in this work is equipped with an Oxford Instruments INCA 300 energy-

dispersive X-ray spectrometer, and the used TEM with an Oxford Instruments INCA 

200 TEM spectrometer. In both cases, an UTW detector (ultra thin window) is used for 

the detection of elements with atomic numbers larger than 4 (=Beryllium). 

Regular detectors with Beryllium windows allow the detection only beginning with 

atomic number 11, due to the strong absorption of radiation of the beryllium window for 

radiation of low energy (< 1 eV), which means also the main Kα radiation of all 

elements with atomic number < 11 would be absorbed. Carbon has an exceptional 

position, because surface contaminations and carbonization caused by the electron beam 

always result in a carbon EDXS signal, especially in SEM. 

For quantitative analysis, the area under the estimated signals is analyzed with INCA 

software. However, the quantitative analysis has, especially at smaller signals, a relative 

big error, which can be up to 20 % due to surface roughness or varying penetration 

depths. In contrast, the qualitative analysis is nearly error-free.  

With the INCA software, also the determination of EDX spectra of selected points (spot 

analysis), lines (line scans) or areas (mapping) for the elemental distribution in the 

sample are possible. 

Electron energy-loss spectroscopy (EELS) is another analysis method combined with 

TEM. In general, the inelastic scattering of an incident electron beam with a thin sample 

is observed. The interactions between the high energy electrons of the primary beam 

and the inner shell or “core” electrons of the specimen lead to an energy loss of the 

transmitted high energy electrons, the resulting energy difference is due to the 

ionization of the sample atoms. A large number of electrons shows no energy loss and 

cross the sample without any interaction (zero loss), but as the ionization energies are 

characteristic for elements and their oxidation state, the energy loss of inelastic scattered 

electrons can be used to receive qualitative information about elemental composition in 
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a probed specimen, their oxidation states, bonding and nearest neighbor distribution. 

Differences in the energy onsets of the ionization signals (called edges) distinguish 

between the different elements, whereas the fine structure of the edges themselves give 

the information about the element bonding and neighboring information. In contrast to 

EDXS, any solid bond element can be detected, but the specimen has to be very thin.213 

 

 

3.1.7 Thermal analysis 

 

Thermogravimetric analysis (TGA) and differential thermoanalysis (DTA) are thermal 

analysis procedures to investigate the thermal stability and composition of solids, 

including the determination of melting or boiling points. By applying a temperature 

program on a heating device containing a sample, the thermal dependent changes of the 

sample in a sweep gas stream can be detected, including phase transitions and structural 

breakdowns.214 

 

 

 

 

 

 

 

 

 

 

 

Figure 50. Principle of thermogravimetric analysis TGA.214 

                                                 
214 D. A. Skoog, J. J. Leary, Instrumentelle Analytik, Springer-Verlag, Berlin, 1996. 
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Figure 50 shows schematically the working principle of a TGA. A small amount of 

sample (some mg) is put on a sensitive balance into an oven under gas stream (usually 

air). A temperature program increases the temperature of the oven with a constant 

heating rate (usually 5 °C/min), and the change in weight is detected by the balance and 

analyzed in a measuring curve, plotting the mass loss against the temperature. 

For the exact determination of transition temperatures, a DTA is performed 

simultaneously. In this technique, the temperature difference between the sample and a 

reference material is measured, while both undergo the same temperature program. At 

specific temperatures, a temperature difference between sample and reference material 

can be detected, and the exact temperature determined. Also the value of temperature 

difference gives information about endo- or exothermic processes. These techniques are 

very suitable for getting an idea about the composition of a material. Functional groups, 

e.g. organic moieties, have specific combustion temperatures in TGA. 

In this work, thermal analyses have been performed by Birgit Beiße and Falk Heinroth 

in the Institute of Inorganic Chemistry at the Leibniz University of Hannover. In a 

corundum crucible, the samples were analyzed with a Netzsch Simultaneous Thermal 

Analyzer 429 with a heating rate of 5 °C/min in air between 20 and 1000 °C. 

 

 

3.1.8 Computational modeling 

 

Simulations of proton transport in immobilized imidazole and immobilized sulfonic 

acid systems were performed in collaboration with the University of Bremen at the 

Bremen Center for Computational Materials Science (BCCMS). The simulations study 

was developed using classical molecular dynamics (MD) simulations, and the density-

functional based tight-binding method (DFTB) to calculate the energy barriers for the 

transition of an excess proton between donor-acceptor groups. 
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Classical MD simulation is a computational method where the intermolecular and 

intramolecular interactions between molecules are provided via force-fields and then by 

solving equations of motion the trajectories of the atoms are known. The dynamical 

properties of the system can be calculated, for instance, transport coefficients, and also 

static properties. One advantage over the ab-initial methods is that a larger number of 

atoms can be handled. In the systems presented in this work, after system equilibration, 

production runs of several nanoseconds were performed analyzing the trajectories of 

atoms every picosecond. The simulations were run in a canonical ensemble (NVT), 

where the number of particles (N), volume (V) and temperature (T) are kept constant.  

In this work, for the classical MD simulations the GROMACS program215 and its OPLS 

force field are employed, the charges are obtained via Gaussian 03 (B3LYP/6-

31G(d)).216 In total the simulation box contains 144 molecules arranged in a two-

dimensional grid equally spaced by the restraining of the terminal carbon atoms of the 

carbon spacer chain: 1 charged molecule (donor) and 143 neutral molecules (acceptors). 

From the trajectories, radial distribution functions were calculated, giving an insight 

into the dynamics between proton donor and acceptor molecules. The radial distribution 

function (RDF) analysis is important in order to describe the arrangement of atoms or 

molecules in the volume available to the system. The RDFs provide an insight of how 

close a donor can be to an acceptor and one can estimate at which closest distances they 

approach. The dynamics of the systems is studied via the MD simulations; however, this 

method does not allow chemical reactions, what avoids obtaining the proton jump event 

between the donor-acceptor molecules. To study the proton jump event a quantum 
                                                 
215 E. Lindahl, B. Hess, D. van der Spoel, J. Mol Model. 7 (2001) 306. 
216 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A.   
     Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V.  
     Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M.  
     Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M.  
     Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.  
     Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y.  
     Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A.  
     D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J.  
     V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko,  
     P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A.  
     Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A.   
     Pople, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT  (2004). 
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method was applied, in this work the DFTB quantum mechanical modeling method was 

used. 

The DFTB method is applied in order to calculate the energy barriers for the transition 

of an excess proton between two groups. During an energy minimization the positions 

of the atoms that participate in the transport, i.e. proton donor and acceptor, are fixed 

keeping them within a defined distance from each other. In order to avoid rotations of 

the molecule also two other heavy atoms of each molecule are kept fixed. The position 

of the proton is chosen via an additional potential and it is defined by the reaction 

coordinate mCEC217 implemented in the RXNCOR module of CHARMM.218 The 

proton is moved in several steps from one group to the other to obtain an approximated 

minimal energy path for the proton transfer. To validate the DFTB parameters used in 

this context, single point energy density functional theory (DFT) calculations for the 

identical configurations are done using Gaussian 03 program via B3LYP/6-31G(d).216 

This calculation provides the values for the proton transfer energy barrier as a function 

of the distance between donor and acceptor groups. Via the energy barrier calculations 

one can estimate at which distance the donor-acceptor atoms would have a low energy 

barrier for a proton jump to occur.  

The calculations are performed by Dr. Welchy L. Cavalcanti and Dipl.-Phys. Pia Tölle 

at the BCCMS. 

 

 

3.1.9 Ion exchange capacities 

 

Ion exchange capacities (IEC) are measured by titration to determine the number of 

protogenic groups anchored on the synthesized host materials. For SO3H group 

                                                 
217 P. H. König, N. Ghosh, M. Hoffmann, M. Elstner, E. Tajkhorshid, Th. Frauenheim, Q. Cui, J. Phys.  
     Chem. A 110 (2006) 548. 
218 B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, M. Karplus, J. Comp.  
     Chem. 4 (1983) 187. 
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determinations, approx. 0.1 g of functionalized powder was suspended in a 0.01 M 

sodium hydroxide solution for 48 hours. Hereby, the protons of the SO3H groups are 

exchanged against sodium cations, and the exchanged protons form water with the 

hydroxide ions. The non-reacted sodium hydroxide is titrated after centrifuging with 

0.01 M hydrochloric acid under use of Tashiro pH indicator, changing its color at the 

pH of distilled water. The IECs are then calculated via 

 

m1000mL
1000V0.01molx

⋅
⋅⋅

=     in mmol/g              (Eq. 3.19) 

 

where V is the reacted volume of sodium hydroxide solution (V = 50 mL - Vtitr) and m 

is the weighted amount of powder.  

For basic groups like imidazole, the solutions are the opposite; the powder was 

suspended in hydrochloric acid and titrated with sodium hydroxide solution. 

This method is very sensitive with an error of max. 5 %, but the result depends strongly 

on accurate weighing and analysis preparation. 

 

 

3.2 Syntheses 
 

In the following chapters, the different syntheses performed in this work are presented, 

beginning with the syntheses of the pristine mesoporous silica hosts. The used grafting 

and co-condensation reactions are presented in principle, where alkoxysilanes 

(R’O)3SiR are used for functionalization. Subsequent reactions like oxidations, peptide 

bond formations or others are presented separately. 
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3.2.1 Synthesis of pristine mesoporous silica hosts 

 

Si-MCM-41 powders were prepared following the procedure called “homogeneous 

precipitation” proposed by Rathousky et al.105 2.61 g of cetyltrimethylammonium 

bromide (CTAB) were dissolved in 400 mL water at 30 °C. Then 2.67 g sodium 

metasilicate (NaSiO3) were added. The molar ratio of the individual components of the 

reaction mixture was 1 CTAB : 3103 H2O : 3.05 Na-silicate. After complete dilution, 

4 mL of ethyl acetate were added under vigorous stirring, whose hydrolysis to acetic 

acid ensures highly homogeneous acidification of the reaction mixture and consequently 

a uniform hydrolysis-condensation reaction of the NaSiO3. After 15 s, the stirring was 

stopped and the solution was kept still for 24 hours at room temperature in a closed 

polyethylene (PE) bottle. The final pH was around 10 for a typical synthesis. 

Hydrothermal treatment was carried out for additional 48 hours at 100 ˚C. The white 

precipitate was recovered by hot filtration and washed with ethanol and water. The 

resulting white powder was dried at 80 °C over night. The product was usually calcined 

at 600 °C for 20 hours (heating rate: 1 °C/min), resulting in a complete removal of the 

surfactant. 

In a typical synthesis for pure Si-MCM-41 nanoparticles inspired by Cai et al.108, 

0.7 mL NaOH solution (2M) and 96 mL water were mixed and heated upon 80 °C 

following the addition of 0.2 g of CTAB. After dissolving, 1 mL TEOS was added to 

the solution. The final molar composition of the solution was 1200 H2O : 0.31 NaOH : 

0.125 CTAB : 1 TEOS. Stirring was continued for 2 hours followed by filtration and 

subsequent washing with water and ethanol. The template was extracted via 

ethanol/HCl extraction. 

Si-SBA-15 powders were prepared following the procedure applied by Zhang et al.114 

using the triblock-copolymer P123 (EO20PO70EO20) and TEOS as silicon source. 

Typically, 1 g of P123 was dissolved in 30 g of 2M HCl solution and 7.5 g of water at 

40 °C. Then 2.08 g of TEOS were added and the mixture was stirred for 16 hours. The 

resulting slurry was then hydrothermally treated at 100 °C for 48 hours. The product 
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was filtered, washed with water and dried at 80 °C over night. Calcination was realized 

at 550 °C for 6 hours (heating rate: 1 °C/min). 

Si-SBA-16 powders were prepared following the procedure of Kim et al.219 using a 

mixture of the triblock co-polymers P123 and F127. 1 g of P123 and 5 g of F127 were 

dissolved in 46 g concentrated HCl solution (37 %) and 247 g water at 35 °C under 

stirring. After complete dissolving 23.91 mL TEOS were added and stirring was 

continued for another 15 minutes. The molar composition of the final mixture was 

1 P123 : 2.3 F127 : 621 TEOS : 2727 HCl : 89182 H2O. Then the mixture was kept at 

35 °C for additional 24 hours without stirring in a closed PE bottle following a 

hydrothermal treatment at 100 °C for additional 24 hours. The product was filtered and 

the resulting white solid suspended in ethanol and filtered another time, following 

washing with ethanol and water. The product was dried at 100 °C and calcined at 

550 °C for 5 hours (heating rate: 1 °C/min). 

 

 

3.2.2 Functionalization of mesoporous silica hosts via grafting 

 

  

 

 

 

Figure 51. Grafting reaction with surface silanol groups.24 

 

For a typical grafting reaction164 (Figure 51), 0.5 g mesoporous silica powder was put 

into a Schlenk flask and dried under vacuum for several hours. Then, the flask was 

filled with Argon, and the dried powder was suspended in 20 mL of dry 

dichloromethane (DCM). The water free conditions were needed to avoid the hydrolysis 
                                                 
219 T.-W. Kim, R. Ryoo, K.P. Gierszal, M. Jaroniec, L.A. Solovyov, Y. Sakamoto, O. Terasaki, J. Mater.   
     Chem. 15 (2005) 1560. 
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of alkoxysilanes. Anyway, only two hours of drying the powder left some water inside 

the pores of the silica hosts, which helps to provide a high number of surface silanol 

groups. The suspension was cooled down to a value between -10 and 0 °C with an 

ice/NaCl mixture, followed by the addition of a pre-cooled alkoxysilane to the 

suspension. The low reactions temperatures were used to ensure a slow reaction 

velocity, so that the alkoxysilanes have enough time to diffuse into the pores. The 

reaction mixture was stirred under Argon for 22 hours, and the cooling bath was not 

renewed after addition of the alkoxysilane. Afterwards, the mixture was filtered and the 

resulting white powder was washed with DCM and ethanol, and dried at 80 °C over 

night. 

For different functionalizations, the following alkoxysilanes have been used (Table 3). 

All the grafting reactions were performed using different amounts of functionalization 

agent, namely 5 mmol, 10 mmol and 20 mmol alkoxysilane per gram mesoporous silica. 

 

    Table 3. Functionalization chemicals used for grafting. 

alkoxysilane abbreviation resulting functionalization 

(3-mercaptopropyl) trimethoxysilane MPMS propyl-SH (thiol) 

Triethoxysilyl butyraldehyde TESBA propyl-CHO (aldehyde) 

3-Aminopropyl triethoxysilane APTES propyl-NH2 (amine) 

3-Chloropropyl trimethoxysilane ClTMS propyl-Cl (chlorine) 

 

The given silanes are used to anchor precursor groups for the subsequent forming of 

proton conductive groups on the silica surface, explained in the chapters 3.2.4 to 3.2.6. 
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3.2.3 Functionalization via co-condensation 

 

 

 

 

 

 

Figure 52. Principle of co-condensation, exemplarily with MPMS.  

 

In this work, only Si-MCM-41 was functionalized via in-situ co-condensation method.24 

Functionalized Si-MCM-41 was synthesized following the homogeneous precipitation 

procedure already used for the synthesis of pristine Si-MCM-41, however, a certain 

percentage (10, 20, 30 and 40 mol. %) of the silica source NaSiO3 was replaced by an 

alkoxysilane (Figure 52). In a typical synthesis, 2.61 g of CTAB was dissolved in 

400 mL of deionized water at 30 ˚C. After the complete dissolution of the surfactant, 

NaSiO3 and the alkoxysilane were added under stirring. The molar ratio of the 

individual components of the reaction mixture was 1 CTAB : 3103 H2O : 3.05-x 

NaSiO3 : x (R’O)3SiR, with x equaling either 0.30, 0.61, 0.92 or 1.22, respectively. 

Finally, 4 mL of ethyl acetate were added under vigorous stirring, whose hydrolysis to 

acetic acid ensures highly homogeneous acidification of the reaction mixture and 

consequently a uniform hydrolysis-condensation reaction of the metasilicate and the 

alkoxysilane. After 15 s, the stirring was stopped and the solution was kept still for 

24 hours at room temperature in a closed PE bottle. Hydrothermal treatment was carried 

out for additional 48 hours at 100 ˚C. The white precipitate was recovered by filtration 

and washed with ethanol and water. Samples were dried at 80 °C over night. For 

template removal, 0.5 g of the as-synthesized powder was suspended in 100 mL 

ethanol, including 2 mL of concentrated HCl (37%), and boiled under reflux for 

24 hours. The resulting extracted powder was filtrated and washed with water and 

MPMS + Si source + CTAB

X %       100-X %

MPMS + Si source + CTAB

X %       100-X %
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ethanol, and dried at 80 °C over night. The following alkoxysilanes have been used to 

produce functionalized Si-MCM-41 via co-condensation (Table 4). 

 

Table 4. Functionalization chemicals used for co-condensation. 

alkoxysilane abbreviation resulting functionalization 

(3-mercaptopropyl) trimethoxysilane MPMS propyl-SH (thiol) 

Triethoxysilyl butyraldehyde TESBA propyl-CHO (aldehyde) 

Diethylphosphatopropyl triethxoysilane DPTES propyl-PO(OEt)2 

 

 

For the co-condensation of the mesoporous silica nanoparticles of Si-MCM-41 to SH-

MCM-41, the reaction mixture in chapter 3.2.1 was modified as, compared to the 

standard reaction mixture 1200 H2O : 0.31 NaOH : 0.125 CTAB : 1 TEOS, the molar 

amount of TEOS was set to 0.9 or 0.8, respectively, and after addition of TEOS stirring 

was performed for 15 minutes. Then, MPMS was added to the mixture, and stirring was 

continued for 105 minutes. The resulting reaction mixture was 1200 H2O : 0.31 NaOH : 

0.125 CTAB : 1-x TEOS : x MPMS, where x was 0.1 or 0.2 for 10 % or 20 % 

functionalization, respectively. 
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3.2.4 Thiol-oxidation to SO3H 

 

 

 

 

Figure 53. Oxidation of surface SH groups to SO3H groups.197 

 

Oxidation of attached SH groups with hydrogen peroxide (H2O2) leads to SO3H 

functionalized powders (Figure 53). In a typical reaction 0.3 g of SH functionalized 

powder are suspended in 10 mL of H2O2 solution (30 wt.-%) and stirred for 48 hours at 

room temperature. The product was filtered and washed with ethanol and water. The 

still wet solid is then suspended in 30 mL 2M H2SO4 and stirred for two hours at oom 

temperature. Filtration and washing with ethanol and water were the final steps with 

subsequent drying at 80 °C over night.197 

As a second approach, microwave treatment was additionally used for powders 

synthesized via co-condensation for simultaneous template removal and SH oxidation. 

0.1 g of non-extracted powder was suspended in a mixture of concentrated nitric acid 

(HNO3, 65 %) and H2O2 solution (30 wt.-%) in a Teflon reaction vessel, which is 

transparent for microwave radiation. The mixture was treated by continuous microwave 

irradiation (max. 600 W) for up to 5 minutes at 200 °C, the maximum internal pressure 

being 18 bars, in an MLS Ethos 1 microwave system.131  
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3.2.5 Imidazole anchorage/formation processes 

 

Imidazole anchorage on different functionalized hybrid materials was performed in 

three different ways, to investigate experimentally the influence of the type of imidazole 

anchorage on the proton conductivity. 

In one approach, with amino functionalized mesoporous silica, a peptide bonding 

between the functionalized powder and imidazole-2-carboxylic acid was formed.  

 

 

 

 

 

Figure 54.  Peptide bond formation for imidazole anchorage.164 

 

In a typical synthesis (Figure 54), 0.2 g NH2-MCM-41 was dried under vacuum for 

2 hours. 5 mL DCM were added under Argon. Then, 1 mmol 2-imidazole-carboxylic 

acid (0.1 g) was added under stirring. As 10 mmol dicyclohexyl carbdiamide (DCC) 

were dissolved in 10 mL DCM, this solution is then added to the reaction mixture. The 

suspension is stirred for 24 hours.164 

DCC is used for the activation of the carboxylic acid function under mild conditions; it 

shows electrophilic reactivity like a ketene63 and is often used in the synthesis of 

polypeptides using protection groups on amino acids.  

In the reaction shown in Figure 55, DCC activates the carboxyl group of the imidazole 

carboxylic acid forming an intermediate O-acylisourea, which shows reactivity like an 

anhydride and reacts with the surface-bond amine to a peptide bond. As byproduct, 

N,N’-Dicyclohexylurea is formed.220 

                                                 
220 Organikum, 21st Edition, Wiley-VCH, Weinheim, 2001. 
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Figure 55. Mechanism forming a peptide bond between imidazole-2-carboxylic acid and surface-bond 
amine using DCC.220 

 
The resulting powder is filtrated and washed with ethanol and DCM, and dried at 80 °C 

over night. Samples prepared via this way are denoted in section 4 as peptide-imidazole-

MCM-41. 

 

In a second approach for imidazole anchorage with aldehyde functionalized powders, an 

in-situ formation of imidazole was performed, following a procedure from Schuster et 

al.62  
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Figure 56. In-situ imidazole formation reaction.62 

 

In a typical synthesis (Figure 56), 0.3 g of aldehyde functionalized powder were 

suspended in 6 mL methanol at 0 °C, and 0.69 mL of glyoxal were added. Then, 

2.58 mL of ammonia solution (7M in methanol) were added to the suspension, kept 

stirring for 6 hours at 0 °C and kept still without stirring 3 days at approx. 4 °C. 

The reaction takes place in two steps; the first is shown in Figure 57 when ammonia as a 

nucleophile can attack the carbonyl group of an aldehyde. Under release of an OH-, an 

immonium-ion is formed as intermediate, which is stabilized as the resulting N,N-

acetale.221 
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Figure 57. Formation of an N,N-acetale of a surface-bond aldehyde with ammonia.221 

                                                 
221 R. Brückner, Reaktionsmechanismen, 2nd Edition, Spektrum Verlag Heidelberg Berlin, 2003. 
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This N,N-acetale (or diamine in this case) can than react in a condensation reaction as a 

nitrogen-nucleophile two times with the carbonyl groups of the glyoxal via the 

following mechanism (Figure 58).221 
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Figure 58. Condensation reaction of a nitrogen-nucleophile with a carbonyl resulting in an aldimine.221 

 

Following this reaction mechanism two times and in the second time as intramolecular 

condensation forming a stabilized aromatic ring compound, the imidazole heterocycle is 

formed (with several intermediate step including enamine formation and ring 

stabilization).221 
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Figure 59. Imidazole ring formation.221 

 

Finally, 12 mL of water and 18 mL of ethyl acetate were added to the cold solution, 

stirring the mixture for 30 minutes. The resulting yellow powder was recovered with 
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centrifuging, washed several times with ethanol, and dried at 80 °C over night. Samples 

prepared via this approach are denoted in section 4 as imidazole-MCM-41. 

 

In the third approach using chlorine functionalized powders, N-imidazole anchorage 

was enabled in refluxing toluene, following a procedure of Armatas et al.148 

 

 

 

 

Figure 60. N-imidazole anchorage reaction.148 

 

In a typical synthesis (Figure 60), 0.5 g of functionalized powder was suspended in 

20 mL of toluene and 0.3 g of solid imidazole were added to the suspension. The 

mixture was boiled under reflux at 125 °C for 24 hours. After reaction time, the 

resulting powder was filtrated and washed with toluene and ethanol, followed by drying 

at 80 °C over night. Sample prepared via this reaction are denoted in section 4 as N-

imidazole-MCM-41. 
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3.2.6 Phosphonic acid formation 

 

For the formation of phosphonic acid functionalized mesoporous samples (Figure 61), 

0.5 g of PO(OEt)2 functionalized powder was suspended in 50 mL concentrated HCl 

solution (37 %) and boiled under reflux at 100 °C for 6 hours.222 

 

 

 

 

 

 

Figure 61. Phosphonic acid formation.222 

 

The resulting sample was recovered by filtration and washed with high amounts of 

water. The solid was dried at 80 °C over night. 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                 
222 Q. Yang, J. Yang, J. Liu, Y. Li, C. Li, Chem. Mater. 17 (2005) 3019. 
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4 Results 

 

4.1 Pristine mesoporous silica 
 

This chapter shows the results concerning the synthesized mesoporous silica materials, 

namely Si-MCM-41, Si-SBA-15 and Si-SBA-16. 

Si-MCM-41 has also been synthesized in a modified synthesis procedure as mesoporous 

nanoparticles. 

 

 

4.1.1 Si-MCM-41 via homogeneous precipitation 

 

Powder XRD pattern of the calcined Si-MCM-41 material shows well resolved 

reflections in the small angle range. In the XRD pattern, the reflections can be indicated 

as (100), (110), (200) and (210) concerning d spacings of 3.92, 2.62, 1.96 and 1.48 nm, 

respectively (Figure 62). The high intensities of the peaks document the existence of a 

highly ordered hexagonal mesoporous structure. The hexagonal lattice constant 

a0 = 4.53 nm was calculated.  
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Figure 62. X-ray powder pattern of calcined Si-MCM-41. 

 

The adsorption-desorption isotherm of the synthesized Si-MCM-41 is comparable to the 

literature data.223 At low relative pressure, monolayer adsorption occurs followed by 

multilayer adsorption and a strong increase in the adsorption at p/p0 = 0.32 indicating 

the filling of the mesopores by capillary condensation (Figure 63).  
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Figure 63. N2 sorption isotherm for synthesized Si-MCM-41. 

                                                 
223 M. Kruk, M. Jaroniec, Chem. Mater. 15 (2003) 2942. 



4 Results 
 

105 

As typical for nitrogen adsorption measurements of CTAB-synthesized Si-MCM-41, 

the hysteresis behavior at a relative pressure of 0.32 caused by capillary condensation 

can only hardly be observed. The small hysteresis loop appearing at relative pressures 

> 0.5, which is also an often observed phenomenon for Si-MCM-41, is caused by 

interparticular macropores present due to the small size of the Si-MCM-41 particles and 

by pore blocking or cavitation effects,223,224, where the capillary evaporation from a 

given pore is delayed when the pore has no access to the surrounding gas atmosphere. 

Si-MCM-41 exhibits the highest BET surface of the silica hosts and, estimated via the 

BJH method, a very narrow distribution of the pore diameters. The channel width lies in 

the range 2.7 ± 0.2 nm, with a very narrow pore size distribution (Figure 64), showing 

no additional larger pore size at higher values. Table 5 lists the obtained and calculated 

data compared to literature. From the pore diameter and lattice constant, an 

approximately wall thickness of around 1.8 nm can be calculated, a quite high value for 

Si-MCM-41 compared to literature. 

 

1 2 3 4 5

  

diameter / nm
 

Figure 64. Pore size distribution of synthesized Si-MCM-41. 

                                                 
224 M. Thommes, B. Smarsly, M. Groenewolt, P. I. Ravikovitch, A. V. Neimark, Langmuir 22 (2006) 756. 
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Table 5. Structural data of Si-MCM-41. 

 

Si-MCM-41 consists of small particles of 1–2 µm in size with a rough surface (Figure 

65). The rough surface is a generated during in the precipitation process, and has 

nothing to do with the porous structure of the material.  

 

 

 

 

 

 

 

 

 

 

Figure 65. SEM image of synthesized Si-MCM-41. 

 

The data for the pore diameter and lattice constants are confirmed by additional TEM 

measurements for the host material (Figure 66). In this figure, several particles are lying 

above each other. The dark lines are the amorphous silica walls of Si-MCM-41, the 

bright lines are the pores, due to different thicknesses for the electron beam. The picture 

shows in a cross-section only a thin region at the surface of a Si-MCM-41 particle, 

where the sample is thin enough for the electron beam. The rough surface of the 

 SBET 

(m2/g) 

Pore 

volume 

(cm3/g) 

Pore 

diameter 

(nm) 

Lattice 

constant a0 

(nm) 

Wall 

thickness 

(approx. nm) 

Si-MCM41 1181 1.128 2.7 4.53 1.8 

literature105 1086 0.866 3.3 4.38 1.1 
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particle, already observed in SEM, is also denoted by the fluctuating contrast in the 

image at the surface region (lower part). 

 

 

 

 

 

 

 

 

 
 

Figure 66. TEM micrograph showing the pores of synthesized Si-MCM-41. 

 

Very interesting is the influence of the detemplation of the silica host via different 

methods. As synthesized Si-MCM-41 shows already the hexagonal pore structure, 

although the template is still inside (Figure 67, black line). 
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Figure 67. XRDs showing the effect of the detemplation method on Si-MCM-41. Template containing 

Si-MCM-41 (black), after calcination (red), after ethanol/HCl extraction (green), after ion 
exchange with NH4NO3 (bright blue), after microwave extraction (dark blue). 
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After calcination, the intensity of the reflections increases (Figure 67, red line). This is 

caused by the contrast matching between the incorporated organic groups (here: 

surfactant molecules) in the pores and the silica walls, resulting in lowered reflection 

intensities due to pore filling.225 After calcination, the reflections are shifted to higher 

2θ values corresponding to a decrease in the pore size. During calcination, the template 

surfactant is removed, but the amorphous structure condensates further to a 

thermodynamically more stable state, more suitable to SiO2, leading to a decrease in 

pore size. If the template surfactant CTAB is extracted via ethanol/HCl extraction 

(green line), ion exchange with NH4NO3 (bright blue line) or microwave treatment 

(dark blue line) (compare chapter 2.2.5), nearly no shift in the reflection maxima is 

observed. Table 6 shows the change in lattice constants for the different detemplation 

methods, indicating the shrinking of the lattice by calcination. Nitrogen adsorption 

measurements showed however no difference in surface area between a calcined sample 

and an extracted sample. As via calcination a higher amount of powder can be 

detemplated, this method was still used to prepare mesoporous Si-MCM-41. 

 

Table 6. Lattice values of Si-MCM-41 after detemplation. 

 a0 

MCM as-syn 4.65 

MCM calcined 4.53 

MCM ethanol/HCl extracted 4.69 

MCM microwave extracted 4.67 

MCM NH4NO3 ion exchange 4.70 

 

But especially for organically modified Si-MCM-41, the ethanol/HCl extraction method 

is one method of choice, as, due to the mild conditions at around 80 °C, no covalently 

bonded functionalities are destroyed, and only the template is removed out of the porous 

structure. However, if extracted sample are further calcined, the functionalities are again 

removed, and the porous host materials remain. 

                                                 
225 B. Marler, U. Oberhagemann, S. Vortmann, H. Gies, Microporous Mater. 6 (1996) 375. 
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During microwave template extraction, anchored surface functionalities also remain 

stable, and this method has another interesting effect presented later in chapter 4.3.1. 

The ion exchange method is not applied during this work, but is also a fast alternative 

for template removal. However, it can only be applied for template-containing silica 

structures synthesized via ionic interaction procedures (compare Figure 35). 

 

 

4.1.2 Si-SBA-15 

 

In agreement with literature data112, the here synthesized Si-SBA-15 consists of 1–2 µm 

long worm-like particles aggregating to bigger structures, which can be seen in SEM 

images (Figure 68). 

Its XRD pattern also indicates a highly ordered hexagonal mesoporous structure (Figure 

69); the three most prominent (100), (110) and (200) peaks have d spacings of 9.92, 

5.77 and 4.99 nm, respectively. As expected, the calculated hexagonal lattice constant is 

with a0 = 11.45 nm much higher than for Si-MCM-41 with typical values around 

4.5 nm.  

 

 

 

 

 

 

 

 

 
 

Figure 68. SEM image of Si-SBA-15. 
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Figure 69. X-ray powder pattern of calcined Si-SBA-15. 

 

The pores of Si-SBA-15 are much bigger with the 7.0 ± 0.2 nm than those of Si-MCM-

41, and Si-SBA-15 shows the highest nitrogen uptake of the mesoporous silica hosts 

corresponding to the highest pore volume of 1.157 cm3/g.  
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Figure 70. N2 sorption isotherm for synthesized Si-SBA-15. 
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The shape of its hysteresis loop in nitrogen adsorption (Figure 70) also indicates a larger 

pore size than for the other silica materials, it occurs at much higher relative pressures 

around 0.7. At low relative pressures, an increase for a small amount of micropores is 

observable, due to a micropore volume of 0.151 cm3/g. From literature, only a 

micropore volume of 0.03 cm3/g is reported. Table 7 summarizes the structural data of 

the synthesized Si-SBA-15 compared to literature, showing that a smaller pore diameter 

and thereby larger wall thickness could be achieved. Especially the pore diameter of 

7 nm is of big interest for the later observed proton conductivity in the functionalized 

pores (chapter 4.2.1). 

The pore size distribution (Figure 71) shows, as for Si-MCM-41, a narrow peak. The 

observed and calculated data for Si-SBA-15 are summarized in Table 7, showing a 

much higher wall thickness of Si-SBA-15 than for Si-MCM-41. 
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Figure 71. Pore size distribution of synthesized Si-SBA-15. 
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Table 7. Structural data of Si-SBA-15. 

 

The porous structure is of course additionally confirmed via TEM images, which make 

visible the highly hexagonally ordered pore structure (Figure 72). Three particles can be 

seen in this figure overlapping, the dark lines are again the pore walls, while the bright 

lines are the pores themselves. 

 

 
Figure 72. TEM micrograph of synthesized Si-SBA-15. 

 

 

 

 

 

 SBET 

(m2/g) 

Pore 

volume 

(cm3/g) 

Pore 

diameter 

(nm) 

Lattice 

constant a0 

(nm) 

Wall 

thickness 

(approx. nm) 

Si-SBA15 769 1.157 7.0 11.45 4.5 

literature114 690 1.170 9.0 11.30 2.3 
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4.1.3 Si-SBA-16 

 

Si-SBA-16 exhibits particles of different sizes in a regime of 1-3 µm with 

rhombdodecahedron shape, which is typically found for this material (Figure 73).219 

 

 

 

 

 

 

 

 

 
Figure 73. SEM image of synthesized Si-SBA-16. 

 
Because of the cubic pore structure, the XRD pattern (Figure 74) differs slightly from 

those of Si-MCM-41 and Si-SBA-15 with hexagonal pore structure. Four peaks could 

be indicated as (200), (220), (310) and (222) with d spacings of 7.88, 6.56, 5.58 and 

5.11 nm, proving a highly ordered cubic pore arrangement. The signals are quite weak, 

but this is typical for this material.219 A lattice constant a was calculated to 15.76 nm. 

Due to the large lattice constant the peaks with lower (hkl) indices could not be resolved 

with the used instrument. 
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Figure 74. XRD pattern of Si-SBA-16. 

 

Si-SBA-16 with its cage-like structure shows a cavitation effect224 in the desorption 

branch at around p/p0 ~ 0.5, because the adsorbed gas in the cages of Si-SBA-16 has to 

be released via channels whose diameter are smaller than the cages diameter. The cage 

diameter is therefore estimated via pore size distribution from the adsorption branch to 

approx. 6.2 nm, while from the desorption branch only the pore channel widths could be 

calculated due to the cavitation effect. The adsorption branch shows the increase for the 

multilayer adsorption at similar relative pressures like Si-SBA-15 (Figure 75). 
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Figure 75. N2 sorption isotherm of synthesized Si-SBA-16. 

 

Si-SBA-16 pore structure has the smallest pore volume 0.642 cm3/g of all silica 

materials, but the walls thickness is the highest of all host silica materials with about 

11 nm. And also the BET surface is the smallest with 792 m2/g, but comparable to the 

typical literature data. Table 8 summarized the data for Si-SBA-16, indicating that, 

unlike the pore volume, the synthesized materials are similar to literature example. 

Figure 76 shows the cage diameter of Si-SBA-16 estimated from the adsorption branch 

of the measured nitrogen isotherm. 
 

Table 8. Structural data of Si-SBA-16. 

                                                 
226 T.-W. Kim, R. Ryoo, M. Kruk, K. P. Gierszal, M. Jaroniec, S. Kamiya, O. Terasaki, J. Phys. Chem. B  
       108 (2004) 11480. 

 SBET 

(m2/g) 

Pore 

volume 

(cm3/g) 

cage 

diameter 

(nm) 

Lattice 

constant a 

(nm) 

Wall 

thickness 

(approx. nm) 

Si-SBA16 792 0.642 6.2 15.76 9 

literature226 790 0.470 7.6 14.00 7 
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Figure 76.  Cage diameter of Si-SBA-16 estimated from nitrogen adsorption. 

 

 

4.1.4 Si-MCM-41 nanoparticles 

 

The applied synthesis of nanosized Si-MCM-41 with highly ordered hexagonal pore 

structure was successfully performed and confirmed via four well resolved reflections in 

the small angle range in the XRD pattern. The reflections can be indicated as (100), 

(110), (200) and (210) concerning d spacings of 4.07, 2.35, 2.04 and 1.54 nm, 

respectively (Figure 77), and show thereby the same high order as the µm-sized Si-

MCM-41 materials synthesized by “homogeneous precipitation”. 
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Figure 77. XRD pattern of synthesized nano-Si-MCM-41. 

 

Nano-Si-MCM-41 has a BET surface area of about 1459 m2/g, a pore volume of 

1.344 cm3/g and a pore diameter of approx. 2.8 nm (Table 9). Compared to the µm-sized 

Si-MCM-41 data in Table 5, pore diameter, lattice constant and wall thickness are very 

alike, although the synthesis method is very different. The values for surface area and 

pore volume of the nanomaterials are much higher per gram. However, compared to the 

literature, the here synthesized materials have strongly improved texture properties like 

drastically increased surface area and pore volume, including much thicker and more 

stable pore walls. Important for a successful synthesis is a strict control of the reaction 

temperature of 80 °C. Also a template removal via ethanol/HCl extraction conserves the 

high ordering of the nanoparticles better than the calcination applied in literature.108 

Table 9. Structural data of nano-Si-MCM-41. 

 

BET surface 

area 

Pore 

volume

Pore 

diameter 

Lattice 

constant a0 

Wall 

thickness 

 (m2/g) (cm3/g) (nm) (nm) (approx. nm)

nano-Si-MCM-41 1459 1.344 2.8 4.70 1.7 

literature108 965 0.840 3.0 3.46 0.5 
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The nitrogen sorption isotherm for nano-Si-MCM-41 in Figure 78 looks very similar to 

the one of µm-Si-MCM-41 seen in Figure 63, with the steep increase in adsorption at 

relative pressure 0.32 caused by capillary condensation. At relative pressures > 0.98, a 

strong increase in the adsorption is observed due to interparticular porosity. From a 

slight increase in the isotherm at very low relative pressures < 0.1, a small amount of 

micropores could be assumed, but these were not detectable via simple nitrogen 

adsorption. Small angle neutron scattering (SANS) coupled with in-situ nitrogen 

adsorption could give insight into a possible pore connectivity between the mesopores 

of the nanoparticles via micropores, as this method was applied and evaluated already 

for other hierarchical porous silica materials with 14 nm spherical mesopores connected 

via 3 nm worm-line pores.227 This is part of further investigations. 
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Figure 78. N2 sorption isotherm for synthesized nano-Si-MCM-41. 

 

The pore size distribution (Figure 79) is also very narrow, like for µm-Si-MCM-41, 

showing a pore diameter of 2.8 nm, and no larger pores at higher values. In the SEM 

and (HR)TEM images, the particles sizes of around 100 nm and the highly ordered pore 

structures can be seen (Figure 80), confirming the XRD and sorption results.  

                                                 
227 O. Sel, A. Brandt, D. Wallacher, M. Thommes, B. Smarsly, Langmuir 23 (2007) 4724. 
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Figure 79. Pore size distribution of synthesized nano-Si-MCM-41. 

 

 

Figure 80. SEM and (HR)TEM images of synthesized nano-Si-MCM-41. 
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Especially in the lower right TEM image, the hexagonal honeycomb structure is visible 

in the 100 nm particle. The black lines are in the TEM images the pore walls and the 

white dots/lines are the pores. 

The high dilution technique in high amounts of water, together with the high reaction 

temperature of 80 °C and the short reaction time (two hours) are responsible for the 

small particle size. Especially the high temperature slows down the particle growth. 

Increasing the reaction temperature further leads to a slightly decrease of the particle 

size, but with low reasonable extend.228 

 

 

4.1.5 Silica host summary 

 

Different silica host materials have been successfully synthesized according to the 

introduced reactions in section 3, namely Si-MCM-41, Si-SBA-15, and Si-SBA-16. 

They all show highly ordered porous structures with high surface areas for binding 

organic groups in nitrogen adsorption measurements, while the pore size has a narrow 

distribution for all materials. XRD and TEM proof the high ordering of the materials, 

while SEM showed particles of several micrometers. 

The successful synthesis of mesoporous nanoparticles, nano-Si-MCM-41, with very 

good hexagonally pore order and particles size of 100 nm is a highlight of this work, 

showing that the properties of µm-Si-MCM-41 could also be transferred into the 

nanometer range, and even improved e.g. with higher surface area for bonding of 

functional groups. The different types of pore systems and particles sizes will play a 

role in proton conductivity measurements of functionalized hosts presented later, when 

either smaller pore diameters (chapter 4.2.1) or small particles (chapter 4.3.5) will show 

the best proton conductivity properties. 

 

                                                 
228 Y. G. Jin, R. Marschall, unpublished results. 
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4.2 Functionalization via grafting 
 

The surfaces of the synthesized mesoporous materials presented in chapter 4.1 are 

functionalized with different organic groups to enable proton conductivity in the 

materials. The focus lies here on the functionalization with SO3H groups, being the 

most promising groups for proton conductivity in solid proton conductors. But also 

other functionalities via grafting are established and compared to the SO3H materials in 

the following chapters. As host material, the Si-MCM-41 is mostly used due to the 

results presented in chapter 4.2.1. 

 

 

4.2.1 Functionalization of mesoporous silica with SO3H groups 

via grafting 

 

Si-MCM-41, Si-SBA-15 and Si-SBA-16 are functionalized first with SH groups 

following the procedure presented in chapter 3.2.2. As the alkoxysilane MPMS reacts 

with the surface silanol groups, the only by-product is methanol from the silane rests.  

The successful functionalization can be seen in IR spectroscopy. After silylation of the 

mesoporous materials with MPMS, the FT-IR spectra of all the composites show 

absorption bands in two regions. Between 2850 and 3000 cm-1 the typical bands for C-H 

stretching vibrations of aliphatic CH2 groups appear229, indicating the successful 

functionalization of the host material with the silane compound. At 2580 cm-1, the band 

for the S–H stretching vibration should become visible; this band, however, is typically 

rather weak and hardly observable, especially due to the low amount of sulfur 

incorporated into the silica materials (maximum 1.16 mmol/g calculated from TG 

                                                 
229 M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 6th Ed.,   
      Thieme, Stuttgart (2002). 
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weight loss, Figure 85). As typical, not all the offered silanes react with the silica 

surface. But with increasing the amount offered, the bonding amount can be increased. 
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Figure 81. IR spectra of mesoporous silica (black line) and SH functionalized silica (dotted line). 

 

In Figure 81, the aliphatic signals for the successful silylation are shown, compared to 

non-functionalized silica showing no peaks. Both spectra show a strong increase in 

absorption to higher wavenumbers, which corresponds to a broad signal of adsorbed 

water in the pores at higher wavenumber around 3300 cm-1. 

IR spectroscopy gives qualitative information about the silylation, but quantitative 

results are normally not reliable. To observe a trend in ongoing and increasing 

functionalization, XRD can be used making visible the ongoing pore filling. As 

mentioned in chapter 3.2.2, the silica functionalizations have been performed with 

different amount of MPMS offered in the reaction. In XRD, the reflection intensities 

decrease with an increasing loading of the silica with propyl-SH groups due to contrast 

matching in XRD of the silica walls with the carbon chains (compare chapter 3.1.2). 

Figure 82 shows this effect exemplarily for SH functionalized Si-MCM-41. 
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Figure 82. XRDs for SH-MCM-41 with decreasing intensities for pristine Si-MCM-41 (black) and SH 

functionalized Si-MCM-41 after 5 mmol (dotted), 10 mmol (red) and 20 mmol (blue) 
grafting. 

 

The black line indicates the XRD of pristine Si-MCM-41 already introduced in chapter 

4.1.1, the dotted line corresponds to 5 mmol/g MPMS in the grafting reaction, the red 

line to 10 mmol/g, and the blue line to 20 mmol/g. The XRD patterns are normalized on 

the (100) reflection for better comparison. Especially in the inset, it can clearly be seen 

that, with increasing offer of MPMS in the functionalization reaction, the intensity of 

the reflections is decreasing indicating the trend of higher surface functionalization with 

organic moieties by higher alkoxysilane offer, due to the mentioned contrast matching 

between silica host and the carbon chains in the pores.225 With increasing pore filling, 

the electron density contrast becomes more similar between walls and pores, and the 

reflection intensity decreases. 

Nitrogen adsorption measurements confirm these observations. Pure Si-MCM-41 has a 

large BET surface area and pore volume (compare Table 5). After functionalization, the 

surface areas and especially pore volumes decrease due to the incorporation of organic 

moieties onto the pore surface. The measurements presented in Figure 83 are 

exceptionally performed on a Micromeritics Gemini 2375 apparatus, but nevertheless 

showing clearly the influence of functionalization. 
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Figure 83. N2 adsorption isotherms for pristine Si-MCM-41 (■) and SH functionalized Si-MCM-41 after 
5 mmol (□), 10 mmol (■) and 20 mmol (■) grafting. 

 

Like in the XRDs the reflection intensities decreased with pore filling, here the adsorbed 

volume deteriorates with increasing amount of MPMS in the grafting reaction. The 

estimated pore volumes decrease continuously down from 1.128 cm3/g for the pristine 

host to 0.615 cm3/g, and the surface areas down from 1181 to 817 m2/g.  

To enable SO3H functionalities on the silica surface, the different SH functionalized 

silica were treated in H2O2 (chapter 3.2.4). The best way to confirm the successful 

oxidation is again IR spectroscopy.  

After successful oxidation of the anchored SH groups with H2O2, two bands for 

sulfonate groups appear in the range from 1100 cm-1 to 1300 cm-1.229 Figure 84 shows 

exemplarily a cut-out of the FT-IR spectrum of SO3H functionalized Si-MCM-41 

(dashed line). In this cut-out the strong asymmetric Si-O-Si stretching vibration at 

approx. 1058 cm-1 dominates all the three shown curves; in order to better visualize the 

S-O bands, all the spectra are normalized to this vibration. The spectrum shown with a 

solid black line represents the host material Si-MCM-41. An additional small band at 

1240 cm-1 results from a second asymmetric Si-O-Si stretching vibration. After thiol-

grafting, no change in the spectrum is observed, as no bands for C-H of S-H vibrations 
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lie in the shown region. In contrast to the hardly visible S-H vibration, the C-H 

stretching vibrations between 2850 and 3000 cm-1 are observable either after SH 

grafting or after SH oxidation. 
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Figure 84. IR spectra of pure Si-MCM-41 (black line), SH-MCM-41 (dotted line) and SO3H-MCM-41 
(dashed line). 

 

As the S-H vibration is hardly visible in the IR spectrum, IR gives no information about 

a complete oxidation of all SH groups to SO3H groups. This information can be 

provided via thermal analysis. 

Important steps to achieve a high degree of functionalization with SO3H groups are an 

efficient grafting step as well as a complete oxidation of the thiol groups. TGA and 

DTA analyses of a SO3H functionalized Si-MCM-41 sample after 20 mmol/g grafting 

reaction and subsequent oxidation reaction clearly show an incomplete oxidation under 

the conditions used (Figure 85). Following the desorption of water at around 100 °C, the 

peak at 343 °C in the DTA indicates the decomposition of non-reacted alkylthiol 

groups, the following second peak at 430 °C corresponds to the decomposition of 

alkylsulfonic acid groups197. The slight differences in the temperatures of the peak 

minima with respect to the study of Margolese et al.197 (343 °C instead of 350 °C and 

430 °C instead of 460 °C) are probably caused by the different measurement assembly 
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and different heating rates (10 °C/min instead of 5 °C/min). Concerning the mass loss 

from the TGA, a functionalization with SH of 1.16 mmol/g is calculated. The extent of 

oxidation is about 86 % due to ionic exchange capacity (IEC) of 1.0 mmol/g, being in 

the range of reported post-synthesis oxidation methods197 (77 % for 48 hours reaction 

time). Theoretically, a maximum IECs of 1.67 mmol/g might be possible, but blocking 

effects and hindrance of MPMS diffusion into the pores restrict the loading. IECs are 

further discussed in chapter 4.2.2 in comparison to proton conductivity values. Other 

oxidation methods are reported158 giving no values about oxidation extend, but another 

new approach will be presented in this work later (chapter 4.3.1). 
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Figure 85. TGA (black line) and DTA (dashed line) of SO3H-MCM-41 after 20 mmol/g grafting with 
MPMS and subsequent oxidation. 

 

With the oxidation of SH groups to SO3H groups, another property of the functionalized 

powders changes extremely, namely the water adsorption. The water uptake of 

inorganic particles was examined by volumetric vapor sorption at 22 °C in the relative 

pressure range of p/p0 0.0–0.98. The resulting isotherms are presented in Figure 86. The 

isotherms on the pristine Si-MCM-41 and grafted SO3H-MCM-41 are of type V,87,207 

the pore filling and emptying occurring within a narrow range of relative pressure at 

approx. 0.4 and 0.5, respectively. This values of relative pressure correspond to the pore 
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diameters of about 2-3 nm as calculated from the Kelvin’s equation.212 The shift in the 

location of the sharp step in both adsorption and desorption isotherms towards lower 

relative pressures is due to a slight narrowing of the average pore width caused by the 

grafting (Figure 83).230 
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Figure 86.  Water uptake of pristine Si-MCM-41 (■), SH-MCM-41 (○) and SO3H-MCM-41 (■) after 20 
mmol/g grafting and oxidation. 

 

Pure Si-MCM-41 shows a very high water uptake up to 50 wt.-% at p/p0 = 0.95. This 

can be explained by the very hydrophilic surface of the material, bearing many silanol 

groups, 2.8 to 3.2 per nm2.135,136 When these silanol groups are used to bind organic 

moieties, the functionalization silanes need at least 1-2 silanol groups to attach to the Si-

MCM-41 surface, decreasing drastically the pore wall hydrophilicity. In addition, 

functionalization with MPMS implicates the addition of the hydrophobic propyl chain 

ending in a low hydrophilic thiol group. These facts result in a drastic decrease of water 

uptake for SH functionalized Si-MCM-41 indicating the increasing hydrophobicity of 

the sample. When the SH groups are subsequently oxidized, the low hydrophilic thiol-

group is converted into the very acidic and hydrophilic SO3H group. The high 

hydrophilicity of this end group overcompensates even the hydrophobicity of the spacer 
                                                 
230 S. J. Gregg, K. S. W. Sing, Adsorption, Surface Area, and Porosity, Academic Press Inc., London,  
     (1982). 
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propyl chain and the decreased number of surface silanol groups, resulting in a water 

uptake even higher than the pure material of 60 wt.-%. Especially at low relative 

pressures up to 0.2, which area is more interesting for application (low RH), the SO3H 

functionalized sample already shows a steeper increase in water uptake, and the SH-

MCM-41 a weaker increase compared to the pristine Si-MCM-41. 

However, the adsorption of water is at low relative pressure somehow irreversible, as 

the desorption branch does not close to the adsorption branch of the isotherms of SH 

and SO3H functionalized Si-MCM-41, indicating irreversible water adsorption in the 

pores. In fact, the observed high water storage capability and hydrophilicity makes 

SO3H functionalized MCM-41 suitable as efficient solid proton conductors. 

 

 

4.2.2 Proton conductivity of grafted SO3H functionalized silica 

materials 

 

For determining the proton conductivity of the synthesized samples, pellets of the 

samples were tested in impedance spectroscopy (IS). The measured samples were 

referred with different abbreviations like x mmol y, where x mmol gives is the amount 

of MPMS used in the functionalization reaction per gram solid materials, and y 

represents the degree of RH in the cell and at the sample during the impedance 

measurement. For example, 5 mmol 100 refers to a sample where 5 mmol MPMS per 

gram host material were added in the grafting reaction and impedance spectroscopy of 

the sample was performed at 100 % RH. 

Figure 87 compares the results of impedance measurements for the three host materials 

functionalized with SO3H groups, after grafting with 5 mmol/g of MPMS and oxidation, 

at 100 % RH. The proton conductivity clearly increases with temperature for all the 

samples because of the higher diffusivity of water and the higher flexibility in the 

chains of the organic moieties. Proton conductivity with water currently occurs via the 
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so-called Grotthuss mechanism.3 In this mechanism the proton transport is mainly based 

on hopping of the protons from one water molecule to the next (chapter 2.1.5). To a 

smaller extent, also the diffusion of H9O4
+ complex-ions (Eigen-ion) enhances the 

proton transport. 
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Figure 87. Proton conductivities at 100 % RH of SO3H-MCM-41 (□), SO3H-SBA-15 (○) and SO3H-
SBA-16 (∆) after 5 mmol/g grafting and oxidation. The lines are only to guide the eyes and 
have no physical meaning. 

 

A temperature increase strongly affects both mechanisms. The diffusion in water is 

faster, and since the movement of the anchored SO3H modified propyl chains is affected 

also the proton hopping between the groups is enhanced, because the spacer propyl 

chains rotate and vibrate more easily, and the SO3H groups at the end of the chains can 

easier encounter each other, and thus the direct proton transport is facilitated. This is 

confirmed in MD simulations, when direct counting of the total amount of donor-

acceptor pairs (protonated and deprotonated SO3H groups) available at 0.28 nm (a 

preferred distance for proton transfer58, see also chapter 4.3.1, Figure 123) was 

performed during simulation. For a group density of 1 group/nm2 (the maximum value 

for grafted materials, see below), this value exhibits 9 pairs. For each possible donor-

acceptor pair the total time that this pair is within the 0.28 nm is a variable called 
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collision number, and it is counted every 1 ps. In order to estimate a probability of 

having the collision of an specific donor-acceptor pair in the total time, for each pair the 

collision number is divided by the total time (total number of frames) obtaining a 

quantity called collision ratio of the specified donor-acceptor pair. For the density of 

1 group/nm2 the pair that has the highest number of collisions has a collision ratio of 

0.42 at 177 °C, this value decreases to only 0.32 at 127 °C. This means that, at higher 

temperatures, the protogenic groups encounter each other more easily and more often. 

The channel geometry of the pores in which the sulfonic acid groups are fixed helps to 

attach and keep water and supports the guidance of the protons through the tested 

pellets. The three materials show different increase of their conductivity with 

temperature indicating a water storage effect. At elevated temperatures above 100 °C 

the functionalized Si-MCM-41 with its narrower 3 nm pores keeps the water molecules 

better than the wider (~7 nm pore diameter) Si-SBA-15 and Si-SBA-16 materials. In all 

measurements Si-SBA-16 shows the lowest proton conductivities; the cubic pore 

arrangement cannot guide the protons and water molecules as good as the hexagonal 1D 

channel pore arrangement in the other materials. At higher loadings (20 mmol/g, Figure 

88) functionalized Si-MCM-41 shows conductivities almost one order of magnitude 

higher than for the Si-SBA-15 and Si-SBA-16 composites. 
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Figure 88. Proton conductivities at 100 % RH of SO3H-MCM-41 (■), SO3H-SBA-15 (●) and SO3H-
SBA-16 (▲) after 20 mmol/g grafting. The lines are only to guide the eyes and have no 
physical meaning. 

 

The reason is given by the much higher surface area of Si-MCM-41 providing more 

silanol groups at which the MPMS can bind. Thus, more SO3H groups on the surface 

can attach water for guiding the protons through the pores. In addition, in the narrower 

pores of Si-MCM-41, the SO3H groups stand closer to each other than in Si-SBA-15 or 

Si-SBA-16 facilitating the proton hopping between the SO3H groups. Si-MCM-41 

materials possess around 2.8-3.2 silanol groups per nm2 inner surface.135,136 For 

estimating the average distance between the SO3H groups in Si-MCM-41 and Si-SBA-

15, the degree of functionalization is related to the pore volumes and pore diameters. 

Assuming that mostly the silane reagents attach to one or two silanol groups, minimum 

distances between the grafted moieties of 0.33 nm for Si-MCM-41 and 0.5 nm for Si-

SBA-15 result, and a maximum density of 1 group per nm2 can be achieved. By rotating 

around the C-bonds, the SO3H moieties have to reach the 0.28 nm distance for proton 

transfer, which is much easier at higher loadings. This rough calculation supports the 

assumption that in smaller pores the proton transfer proceeds easier because of the 

shorter distance between SO3H groups supporting the proton hopping. 
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Figure 89 shows schematically the situation inside a pore of Si-MCM-41 after 

functionalization with SO3H groups via grafting and oxidation, indicating the movement 

of the grafted moieties for surface proton transfer. 

 

2.7 nm 1.3 nm2.7 nm 1.3 nm

 
Figure 89. Model of the situation inside a pore of Si-MCM-41 after graftng and oxidation. carbon (blue), 

oxygen (red), hydrogen (white), sulfur (yellow). Pore diameter and chains sizes are in the 
correct relation. 

 

The hexagonal pore arrangement seems to be advantage for good proton conductivity in 

mesoporous silica based solid proton conductors, but grafting still leads to an 

inhomogeneous distribution of SO3H groups in the pores, with only 1.0 mmol/g. Water 

is still needed for the proton transport to overcome the remaining gaps between the 

SO3H moieties, which can not be closed via chain movement. Besides of providing 

more internal surface, the narrower channels of the Si-MCM-41 host have the additional 

advantage that the SO3H groups point more into the centre of the channels enabling 

easier proton hopping between groups anchored on opposite sides of the channels. 

However, it gives only a trend since 100 % oxidation (see chapter 4.2.1) as well as 

uniform distribution of the anchored species in the pores due to the grafting process is 

not very likely. 
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As mentioned before, theoretically, IECs of 1.67 mmol/g might be possible, but 

blocking effects and hindrance of MPMS diffusion into the pores in the grafting 

reaction restrict the loading. A 5 mmol SO3H-MCM-41 sample exhibits an IEC of 

0.8 mmol/g, this value continuously increase to 0.9 and 1.0 mmol/g for 10 mmol and 

20 mmol (compare chapter 4.2.1). Figure 90 presents the conductivities of Si-MCM-41 

functionalized with different amounts of MPMS in the grafting reaction at 100% RH.  
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Figure 90. Proton conductivities for SO3H-MCM-41 0mmol100 (■), 5mmol100 (□), 10mmol100 (■) and 
20mmol100 (■). The lines are only to guide the eyes and have no physical meaning. 

 

The conductivity increases continuously, demonstrating that the degree of 

functionalization of the samples increases with the offer of grafting reagent. 

Additionally, the already presented IECs confirm this trend. But it shows that via 

grafting no linear increase in conductivity and IEC can be reached due to the very 

strong pore blocking effects in the grafting process. 

Anyway, the sample 20 mmol 100 has the highest conductivity of the samples with 

proton conductivity up to 10-3 S/cm. For that reason, Si-MCM-41 was chosen as main 

host material for further proton conductivity research as solid proton conductor, due to 

its promising properties in conductivity and group density.  
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Surprisingly, a non-sulfonated sample (0 mmol 100) also shows a negligible proton 

conductivity of about 10-6 S/cm and also an increase in the conductivity with increasing 

temperature. The values, however, are at least two orders of magnitude lower than for 

the acid-functionalized sample 5 mmol 100. The weak proton conductivity of pristine 

Si-MCM-41 is related to a partial dissociation of water molecules in the presence of 

silanol groups, leading to an increased charge carrier concentration close to the inner 

surface.199  

The Arrhenius plots for the temperature dependence of the proton conductivity for three 

different grafted SO3H-MCM-41 samples are given in Figure 91, and the activation 

energies have been calculated from the slopes of the fitting lines. 
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Figure 91. Arrhenius plots for SO3H-MCM-41 0mmol100 (■), 5mmol100 (□), 10mmol100 (■) and 
20mmol100 (■) with additional fitting line for calculation of the given activation energies. 

 

The activation energies decrease from 107.45 kJ/mol to 69.48 kJ/mol with increasing 

loading, assuming that with more proton conductive SO3H groups, the proton transport 

through the solid proton conductors is facilitated. Especially the high value for the 

5 mmol sample indicates the low loading with SO3H groups. It is even higher than for 

pristine Si-MCM-41. 
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Via grafting, 1-2 surface silanol groups of the Si-MCM-41 were used to anchor MPMS, 

and a third one is hindered by the anchored MPMS and can not take part in a proton 

transfer mechanism anymore. Since these surface silanol groups have however been 

responsible for proton conductivity in the pristine system, the connection between the 

surface silanol groups for proton conductivity is disturbed after grafting with MPMS 

and subsequent oxidation to SO3H groups.  

In the SO3H functionalized Si-MCM-41, the proton transport occurs via hopping 

between the SO3H, and the activation energy for this hopping is much higher than for 

the pure Grotthuss mechanism56 (13.5 and 38.5 kJ/mol). If the distance between the 

SO3H groups is too large for fast proton transfer (especially in lowly loaded materials), 

the activation energies increase. 

An important finding of this study is the strong influence of RH and the water storage 

capability of SO3H functionalized Si-MCM-41. In order to prove this, the measurement 

progression of the sample SO3H-Si-MCM-41 20 mmol under different RH is shown in 

Figure 92.  
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Figure 92. Proton conductivities for 20mmol0 SO3H-MCM-41 (□), 20mmol50 (■), 20mmol100 (○) and 
20mmol100 2nd (●).The lines are only to guide the eyes and have no physical meaning. 

 



4 Results 
 

136 

First, IS was performed without gaseous water atmosphere. The proton conductivity 

was found lower than in non-modified samples at 100 % RH (~10-9 S/cm), due to less 

surface silanol groups for water dissociation. By increasing the humidity continuously 

in the measurement cell to 100 % RH, the proton conductivity of the powder also 

increases continuously by five orders of magnitude. This indicates again that the density 

of SO3H groups after post synthetically grafting is not high enough to enable a water-

free proton transport through the material, proving the presence of a water-assisted 

proton transport between the SO3H groups in the sample. Finally, the sample was tested 

twice at 100 % RH successively (20 mmol 100 and 20 mmol 100 2nd). In the second 

100 % RH run, the conductivity shows higher values in the low temperature regime; at 

140 °C both curves fall together to an almost identical value. After the first 

measurement period the sample had stored the water inside the pores, as gaseous water 

condensed during cooling down of the specimen holder, and the enrichment of water 

supports the proton conductivity in the second measurement.  

The high dependence of the proton conductivity on water is confirmed and underlined 

by energy barrier calculations for proton transfer between two SO3H groups. The proton 

jump is limited by the energy barrier the proton has to overcome on one hand, and the 

availability of SO3H groups in the vicinity on the other. Only next neighbor groups are 

assumed to be involved in the transfer leading to a pair interaction model. In a simple 

model description, neglecting the dynamic effects determined via collision counting 

earlier, the proton transfer depends on the distance the proton has to bridge during 

hopping. The energy barrier for a proton jump as a function of the O-O distance is 

shown in Figure 93.  

This DFTB data for the barrier have been validated against more accurate ab-initio 

density functional theory (DFT) calculations. The results calculated via DFTB and DFT 

are in very good agreement for small distances up to 3.0 Å, and the deviation for larger 

distances is on average smaller than 2 kcal/mol. At an oxygen-oxygen distance of 2.5 Å 

the barrier is vanished corresponding to the region where the proton can be delocalized 

between the oxygen atoms as in a Zündel complex.58 If one single water molecule is 

included in between a donor-acceptor pair, the energy barrier is strongly lowered. For 
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instance, for the interval from 5.0 Å to 7.0 Å the barrier raises to an order of 

20 kcal/mol; while under dry conditions, from 2.5 Å to 4.5 Å the barrier goes up to 80 

kcal/mol. 

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
0

20

40

60

80

100

system with 1 water molecule

 

 
en

er
gy

 b
ar

rie
r /

 k
ca

l/m
ol

O-O distance / Å  

Figure 93. Energy barrier plot for the proton transfer between oxygen atoms belonging to two methyl 
SO3H molecules (inset). ▼ (DFTB), ∆ (DFT), □ represent the curve for the case with 1 water 
molecule in between the two methyl SO3H molecules calculated via DFTB.  

 

In the Figure 90, it was observed that proton conductivities always continuously 

increase with temperature. This is a complete contrast to the behavior of Nafion®, where 

at temperatures above 80 °C the proton conductivity decreases drastically due to 

desorption of water from the polymer pores (Figure 94). In the case of Si-MCM-41 the 

strong adsorption of water at the large number of remaining non-functionalized silanol 

groups and on the SO3H groups formed enhances the conductivity.  

As recently found for composites consisting of Nafion® and SO3H functionalized zeolite 

mordenite231, the proton conductivity at elevated temperatures (140 °C) of a Nafion®-

SO3H-zeolite composite membrane is improved. 

An addition of SO3H functionalized Si-MCM-41 to Nafion® membranes should 

therefore also improve the proton conductivity of Nafion®, and the high-temperature 

                                                 
231 R. Scheffler, A. Huth, G. Hübner, R. Marschall, J. Caro, M. Wark, Chem. Ing. Tech. 79 (2007) 2035. 
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water management of PEM fuel cells, when the presented water storage capability of the 

mesoporous additives can adsorb the cathode product water and store for an enhanced 

proton conductivity of the composite membranes. Results on fabricated composite 

membranes with SO3H functionalized Si-MCM-41 are presented in chapter 4.4. 
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Figure 94. Proton conductivities for SO3H-MCM-41 0mmol100 (■), 5mmol100 (□), 10mmol100 (■) and 
20mmol100 (■) compared to Nafion (□) running dry. The lines are only to guide the eyes and 
have no physical meaning. 

 
The disadvantages of the grafting process have already been described. Mainly caused 

by pore blocking in the grafting reaction, a non-linear increase in the loading of 

mesoporous silica with SO3H groups compared to the amount of offered MPMS in the 

grafting reaction is observed. By further increasing the amount of MPMS offered up to 

40 mmol/g, the loading of Si-MCM-41 can still be slightly increased.  

After grafting Si-MCM-41 with 30 mmol/g or 40 mmol/g MPMS and following 

oxidation, the IEC increased to 1.1 and 1.2 mmol/g. Also the proton conductivities 

increased from 10-3 to 10-2 S/cm (Figure 95). In general, in SO3H functionalized Si-

MCM-41 materials, the proton conductivities depend on the IEC and increase with 

increasing IECs. 



4 Results 
 

139 

0 10 20 30 40

10-3

10-2

 

grafting / mmol/g

m
ax

. p
ro

to
n 

co
nd

uc
tiv

ity
 / 

S/
cm

0.8

0.9

1.0

1.1

1.2
IEC

 / m
m

ol/g

 

Figure 95. Enhancement of proton conductivity of SO3H-MCM-41 by more offered MPMS (□). 
Increasing IECs are shown additionally (●). The lines are only to guide the eyes and have no 
physical meaning. 

 

However, this procedure is still quite inefficient. For increasing the proton conductivity 

one order of magnitude, 80 times more MPMS has to be used in the grafting process, 

while still only one thirtieth (from IEC) anchors to the silica surface as SO3H groups. 

For comparison with other protogenic groups, a typical grafting reaction with 

20 mmol/g is applied in further investigations. 

 

 

4.2.3 N-Imidazole functionalization of Si-MCM-41 via grafting 

 

As presented in chapter 3.2.5, imidazole functionalities can be enabled on mesoporous 

silica via three different methods. The surface functionalization with imidazole via 

nitrogen atom (N-imidazole anchorage) is reached via grafting with ClTMS and 

following reaction with liquid imidazole to N-imidazole functionalized Si-MCM-41. 
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The successful anchorage of propyl-chlorine groups can be investigated via IR 

spectroscopy and the ongoing functionalization in XRD and nitrogen adsorption. 

Figure 96 shows a cut-out of IR spectra measured after grafting with ClTMS. The best 

way to confirm the successful grafting in the IR spectra is here also the observation of 

C-H stretching vibrations between 2800 and 3000 cm-1 of aliphatic CH2-groups clearly 

visible in the IR shown. The Cl-C vibration around 900 cm-1 is too weak and 

additionally covered by the Si-O-Si lattice vibration. 
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Figure 96. IR spectra of pure Si-MCM-41 (black line) and Cl functionalized Si-MCM-41 (dotted line). 

 

Figure 97 shows the same effects in the XRD patterns of Cl-MCM-41 as shown for SH-

functionalized Si-MCM-41 in chapter 4.2.1. The black line indicates the XRD of 

pristine Si-MCM-41 already introduced in chapter 4.1.1, the dotted line corresponds to 

5 mmol/g ClTMS in the grafting reaction, the red line to 10 mmol/g, and the blue line to 

20 mmol/g. Like for the other grafting samples already shown, the reflection intensities 

decrease with increasing loading, that even the (110) and (200) reflections nearly 

disappear. Also nearly no big difference between a 10 mmol and a 20 mmol sample can 

be seen. 
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Figure 97. XRDs for Cl-MCM-41 with decreasing intensities. Pure Si-MCM-41 (black), 5 mmol 
(dotted), 10 mmol (red), 20 mmol (blue). 

 

This is also the case in the nitrogen adsorption measurements shown in Figure 98. After 

5 mmol grafting reaction, just a slight difference in the adsorption isotherm compared to 

pristine Si-MCM-41 can be seen. The capillary condensation step occurs at lower 

pressures around 0.25 indicating a pore size reduction after grafting. The pore size was 

roughly calculated to 2.2 nm. But with increasing loading, the pore volumes and surface 

area decrease more drastic. As the 5 mmol sample has still a BET surface of 1300 m2/g 

(which is larger than for pure Si-MCM-41, possibly due to stronger interactions 

between N2 and the chlorine function), the 10 and 20 mmol sample have only around 

1100 m2/g surface area. The same trend is determined for the pore volumes decreasing 

from 0.966 to 0.795 and 0.754 cm3/g, respectively. The 10 and 20 mmol samples have 

even a smaller pore diameter of 2.1, the increase for capillary condensation is hardly 

visible in the same region as for the 5 mmol sample. The strong pore blocking during 

grafting reaction seems to be even more drastic here, because nearly no difference 

between 10 mmol and 20 mmol grafting reaction can be seen. 
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Figure 98. N2 adsorption isotherms for pristine Si-MCM-41 (■) and Cl functionalized Si-MCM-41 with 

5 mmol (□), 10 mmol (■) and 20 mmol (■) ClTMS. 

 

The N-imidazole anchorage then can only be seen in IR spectroscopy, the structural 

changes are too weak to observe in nitrogen adsorption and XRD. 

Two C-N vibrations between 1500 and 1600 cm-1 become visible after N-imidazole 

anchorage. An N-H stretching vibration around 3400 cm-1 could not be observed, as the 

imidazole anchorage is enabled via the only free nitrogen atom. Of course the C-H 

vibrations remain visible. The shown peak at 1638 cm-1 belongs to the O-H deformation 

vibration of adsorbed water.232 

 

                                                 
232 IR reference spectra H2O, www.nist.gov, April 2008. 
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Figure 99 IR spectra of pure Si-MCM-41 (black line), Cl-MCM-41 (dotted) and N-imidazole-MCM-41 

(dashed). 

 

The proton conductivities at 100 % RH of the N-imidazole functionalized Si-MCM-41 

are shown in Figure 100.  
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Figure 100. Proton conductivities for different N-imidazole-MCM-41 at 100 % RH. 5 mmol (□), 
10 mmol (■), 20 mmol (■) compared to pristine Si-MCM-41 (■) 0 mmol. The lines are only 
to guide the eyes and have no physical meaning. 

 



4 Results 
 

144 

For all degrees of functionalization, the proton conductivities are in the same region, but 

all very low compared to SO3H-MCM-41 (Figure 90). N-imidazole-MCM-41 shows 

maximum conductivities of up to 10-6 S/cm, which are three orders of magnitude lower 

than for the best and comparable SO3H-MCM-41, and even lower than the pristine 

silica material Si-MCM-41. There are several reasons for this behavior: One problem of 

imidazole as protogenic group is that imidazole brings no mobile charge carrier into the 

system, whereas SO3H groups easily give their protons away for proton conductivity. In 

imidazole systems, excess protons must be provided externally, e.g. via additional acid 

functionalization in the pores, or via much more water content (bringing more protons 

via self-dissociation). The second reason is the imidazole-anchorage via nitrogen atom. 

For a proton transport, the free nitrogen in the imidazole ring has to pick a proton, the 

group has to rotate and collide with free nitrogen from another imidazole group (Figure 

101). 
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Figure 101. Proton hopping in N-imidazole systems. 

 

An imidazole anchorage via the carbon atom in between the nitrogen atoms (C1) should 

be of advantage for proton conductivity233, due to the imidazole resonance presented in 

Figure 19. Two more types of imidazole functionalized Si-MCM-41 for proton 

conductivity are presented in the following chapters. 

 

 

 

 

                                                 
233 S. J. Paddison, K.-D. Kreuer, J. Maier, Phys. Chem. Chem. Phys. 8 (2006) 4530.  
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4.2.4 Imidazole functionalization of Si-MCM-41 via grafting and 

peptide bonding 

 

As a second way to enable imidazole functionalities on the mesoporous silica pore 

surface, grafting can be performed with APTES to functionalize the surface of Si-

MCM-41 with amine groups (see chapter 3.2.2). In a second step, a peptide bond with 

imidazole-2-carboxylic acid can be formed (see chapter 3.2.5). 

The successful functionalization with amine groups and the successful peptide-bond 

formation can be seen by IR spectroscopy. 
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Figure 102. IR spectra of pristine Si-MCM-41 (black line) compared to NH2-MCM-41 (grey) and 
peptide-imidazole-MCM-41 (dotted line) after 20 mmol grafting and peptide bond 
formation. The imidazole-spectrum is enlarged for better signal observation. 

 

Besides the H-O deformation vibration around 1630 cm-1 (varies slightly in the three 

spectra), a weak signal for amine-groups can be seen in the cut-out of the three IR 

spectra (Figure 102) after functionalization with APTES at 1540 and 1555 cm-1. Also 

detectable are the bands for the C-H stretching vibrations around 2900 cm-1 for the 

successful functionalization. After peptide bond formation, the number of bands 
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increases, indicating the carbonyl-band of a solid peptide at 1575 cm-1 and the two 

bands for C=N valence vibration for conjugated cyclic systems (imidazole) between 

1400 cm-1 and 1550 cm-1, proving the successful imidazole anchorage.229 

The increasing functionalization is again visible in the XRD patterns of the peptide-

imidazole functionalized mesoporous Si-MCM-41 materials. 

Figure 103 shows the same effects in the XRD patterns of peptide-imidazole-MCM-41 

as already observed for SH-functionalized Si-MCM-41 in chapter 4.2.1. The black line 

indicates the XRD of pristine Si-MCM-41 already introduced in chapter 4.1.1, the 

dotted line corresponds to 5 mmol/g APTES in the grafting reaction, the red line for 

10 mmol/g, and the blue line to 20 mmol/g with subsequent peptide bond formation. 

Like for the other grafting samples already shown, the reflection intensities decrease 

with increasing loading, that even the (110) and (200) reflections nearly disappear. 
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Figure 103. XRDs for peptide-imidazole-MCM-41 with decreasing intensities. Pure Si-MCM-41 (black), 
5 mmol (dotted), 10 mmol (red), 20 mmol (blue). 

 

In the nitrogen adsorption isotherms, this trend is obviously confirmed. Figure 104 

shows clearly the decreasing volume of nitrogen adsorbed in the adsorption 

measurement. Also the adsorption step for capillary condensation in the isotherms of 

functionalized materials is strongly shifted to lower relative pressures compared to 
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pristine Si-MCM-41, indicating a smaller pore diameter. Table 10 depicts the 

deteriorating structural data with increasing pore filling with more imidazole groups. 

For example, the surface areas decrease from 704 to 349 m2/g with increasing loading, 

and the pore volumes decrease strongly down to 0.260 cm3/g. 

 

Table 10. Structural data of peptide-imidazole functionalized Si-MCM-41 determined from nitrogen 
adsorption measurements. 

 SBET m2/g pore volume / cm3/g pore size / nm 

Pristine Si-MCM-41 1181 1.128 2.7 

Pep-imidazole-MCM-41 5 mmol 704 0.624 2.1 

Pep-imidazole-MCM-41 10 mmol 464 0.354 2.0 

Pep-imidazole-MCM-41 20 mmol 349 0.260 2.0 
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Figure 104. N2 adsorption isotherms for pristine Si-MCM-41 (■) compared to peptide-imidazole 
functionalized Si-MCM-41 after 5 mmol (□), 10 mmol (■) and 20 mmol (■) grafting with 
APTES followed by peptide bond formation. 

 

The proton conductivities at 100 % RH are for the peptide-imidazole anchored Si-

MCM-41 materials (Figure 105) at least two orders of magnitude higher than for N-

imidazole Si-MCM-41 (Figure 100), reaching 4x10-4 S/cm, and is therefore clearly 
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improved compared to the unfunctionalized Si-MCM-41. In addition, an increase in 

proton conductivity with loading is also observed for these materials as for the already 

described systems.  

The reason for a better proton transport is the existence of both a donor and an acceptor 

function in the immobilized imidazole group. The hydrogen bond network formed 

between imidazole and water is very similar to pure water, and the mechanism of proton 

transport is similar to that in water.234 So, the proton transport of immobilized imidazole 

anchored via peptide bond is facilitated by the amphoteric behavior of such anchored 

imidazole. However, an asymmetric anchorage of the imidazole heterocycle is 

disadvantageous, as Paddison et al. showed that an asymmetric immobilization of 

imidazole, e.g. in the C4 position, has a higher energy difference between the protonated 

and the non-protonated imidazole system, which results in a higher energy barrier for a 

proton transfer for proton conductivity.233 
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Figure 105. Proton conductivities for different peptide-imidazole-MCM-41 at 100 % RH. 5 mmol (□), 
10 mmol (■), 20 mmol (■) compared to pristine Si-MCM-41 (■) 0 mmol. The lines are only 
to guide the eyes and have no physical meaning. 

 

                                                 
234 W. Münch, K. D. Kreuer, W. Silverstri, J. Maier, G. Seifert, Solid State Ionics 145 (2001) 295. 
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The anchorage of imidazole via nitrogen atom is an asymmetric anchorage and has an 

unfavorable conductivity mechanism, and is therefore much worse than the C1-

anchorage. Anyway the comparison is not very meaningful, as the spacer length 

between the N-imidazole and the peptide-imidazole differs by two atoms, and a peptide 

bond introducing a partially double bond character is introduced, which can decrease 

the mobility of the whole spacer chain. For comparison with SO3H systems, the next 

chapter presents the results for symmetric anchored imidazole via 3C-chain spacer, 

established via in-situ imidazole formation. 

 

 

4.2.5 Imidazole functionalization of Si-MCM-41 via grafting and 

in-situ formation 

 

The third possibility to synthesize imidazole-functionalized Si-MCM-41 can be reached 

via functionalizing Si-MCM-41 with TESBA and following in-situ imidazole formation 

using glyoxal and ammonia (chapter 3.2.5). 

The successful functionalization with aldehyde-groups and the successful formation of 

imidazole can be seen in IR spectroscopy. 
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Figure 106. IR spectra of pristine Si-MCM-41 (black line) compared to CHO-MCM-41 (grey) and 

imidazole-MCM-41 (dotted line) after 20 mmol TESBA grafting and in-situ imidazole 
formation. 

 

Again the H-O deformation vibration around 1630 cm-1 can be seen in the three cut-out 

of the IR spectra (Figure 106). The intensity of this signal is very weak and differs 

slightly, but is still detectable. A strong signal for the aldehyde C=O vibration appears 

after grafting with TESBA above 1700 cm-1, and still remains after imidazole 

formation, indicating a non-quantitatively reaction of all aldehyde groups to imidazole. 

A reason for that can be the hindered diffusion of all the reagents into the pores of the 

aldehyde functionalized Si-MCM-41. After imidazole formation reaction, the number of 

bands increases, indicating the two bands for C=N valence vibration for conjugated 

cyclic systems (imidazole) between 1400 cm-1 and 1550 cm-1, proving the successful 

imidazole anchorage.229 

Once again, the successful and continuous grafting can be observed in XRD 

measurements and nitrogen adsorption. 
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Figure 107. XRDs for imidazole-MCM-41 with decreasing intensities. Pure Si-MCM-41 (black), 
10 mmol (red), 20 mmol (blue). 

 

Figure 107 shows the XRD patterns of imidazole-MCM-41 compared to pristine Si-

MCM-41. The black line indicates the XRD of pristine Si-MCM-41 already introduced 

in chapter 4.1.1, the red line depicts the XRD of 10 mmol/g imidazole grafted Si-MCM-

41, and the blue line belongs to the 20 mmol/g sample with subsequent imidazole 

formation. Like for the other grafting samples already shown, the reflection intensities 

decrease with increasing loading, that even the (110) and (200) reflections nearly 

disappear.  

In the nitrogen adsorption isotherms, this observation is again confirmed. Figure 108 

shows clearly the decreasing volume of nitrogen adsorbed in the adsorption 

measurement. The adsorption step for capillary condensation in the isotherms of 

functionalized materials is again shifted to lower relative pressures compared to pristine 

Si-MCM-41, indicating a smaller pore diameter of the grafted samples due to attached 

organic moieties. Table 11 shows the deteriorating structural data with increasing pore 

filling with more imidazole groups. For example, the pore volumes decrease from 1.128 

to 0.825 cm3/g with increasing loading. Surprisingly, the surface areas are higher than 

for pristine Si-MCM-41, due to stronger interactions between N2 and the aldehyde 
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functions on the walls compared to non functionalized Si-MCM-41, but the 20 mmol 

sample has as a trend the lowest surface area. 
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Figure 108. N2 adsorption isotherms for pristine Si-MCM-41 (■) compared to aldehyde functionalized 
Si-MCM-41 after 10 mmol (■) and 20 mmol (■) grafting with TESBA. 

 

Table 11. Structural data of imidazole functionalized Si-MCM-41 determined from nitrogen adsorption 
measurements. 

 SBET m2/g pore volume / cm3/g pore size / nm 

pristine Si-MCM-41 1181 1.128 2.7 

CHO-MCM-41 10 mmol 1460 0.948 2.1 

CHO-MCM-41 20 mmol 1259 0.825 2.1 

 

Figure 109 shows the proton conductivities for the imidazole functionalized Si-MCM-

41 powders, reaching values for the 20 mmol sample of 10-4 S/cm. The values are 

slightly lower than for the peptide-imidazole functionalized Si-MCM-41 samples 

(chapter 4.2.4). This is caused by the shorter 3C spacer length of the imidazole Si-

MCM-41 powders, whereas the peptide-imidazole samples have a 5 atom spacer 

between the silica host and the protogenic groups. Although the peptide bond is, 
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compared to a single bond, quite constrained, the longer spacers allow the imidazole 

groups to reach each others more easily. 
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Figure 109. Proton conductivities for different imidazole-MCM-41 at 100 % RH, 10 mmol (■), 
20 mmol (■) compared to pristine Si-MCM-41 (■) 0 mmol. The lines are only to guide the 
eyes and have no physical meaning. 

 

Compared to the SO3H functionalized Si-MCM-41 materials (chapter 4.2.2), the proton 

conductivities are at least one order of magnitude lower. This is caused by the lower 

loading with imidazole groups determined by measuring the IEC, being 0.48 mmol/g 

for the 20 mmol sample compared to 1.0 mmol/g for SO3H. As already mentioned at the 

IR (Figure 106), no complete transformation from all aldehyde groups into imidazole 

groups could be achieved. Also by increasing the amount of TESBA offered in the 

grafting step up to 40 mmol/g and equivalent imidazole reaction, no significant increase 

in the IEC (0.56 mmol/g) and proton conductivities could be achieved (Figure 110). The 

reason for that is a stronger pronounced pore blocking effect than for SH functionalized 

MCM-41 samples, due to a size effect: The molecules for the formation of the 

imidazole, glyoxal and ammonia, exhibit a hindered diffusion into the pores of the 

aldehyde functionalized Si-MCM-41 due to their molecule size. Like in a pore blocking 

during grafting reaction, the anchored aldehyde functionalities hinder the glyoxal to 

diffuse into the porous structure for imidazole formation. The molecules for thiol 
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oxidation (compare chapter 3.2.4) are much smaller and can easily reach their reaction 

centers. 
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Figure 110. Maximum proton conductivities (□) and IECs (●) of imidazole functionalized Si-MCM-41 

depending on the amount of TESBA offered in the grafting step. 

 

On the other hand, the slope of the increasing proton conductivities with temperature of 

the imidazole functionalized materials (Figure 109) is much higher than for the SO3H 

functionalized materials, indicating a higher temperature dependence of the proton 

conductivity in the imidazole functionalized samples. Calculating the activation 

energies proved this assumption, imidazole-MCM-41 sample showed activation 

energies at least 20 kJ/mol higher than SO3H-MCM-41.  

The stronger dependence of the imidazole functionalized Si-MCM-41 sample on the 

water content can be seen in the proton conductivities at 50 % RH of these samples 

presented in Figure 111. Compared to the SO3H functionalized Si-MCM-41 at 50 % 

RH, the proton conductivities are three orders of magnitude lower at 140 °C, reaching 

only 10-7 S/cm. The lower conductivity values are due to the fact that oxo-acids better 

retain water and water molecules are better constrained around oxo-acids than around 

imidazole.233 It was also shown by minimum energy calculations that the binding 

between imidazoles during proton transfer is worse than in sulfonic acids, underlining 
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the worse proton conductivities for imidazole groups.233 The results underlined also the 

worse amphoteric character of imidazole groups compared to sulfonic acids, making 

them less suitable for an efficient proton transfer mechanism. In contrast to SO3H 

groups on Si-MCM-41, the imidazole functionalized samples have also no charge 

carriers inside the system. These materials always need excess charge carriers (excess 

protons) for a reasonable proton conductivity, and are therefore more dependent on 

temperature and RH in the system, resulting in higher charge carrier concentration 

(water dissociation).  
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Figure 111. Proton conductivities for different imidazole-MCM-41 at 50 % RH, 10 mmol (■), 
20 mmol (■). The lines are only to guide the eyes and have no physical meaning. 

 

 

4.2.6 Summary of grafting results 

 

From proton conductivity measurements of different SO3H functionalized mesoporous 

silica hosts, the Si-MCM-41 as host material turned out to be the best mesoporous 

material for functionalization with protogenic moieties, due to its narrow pores 

(2.7 nm), its hexagonal ordered, proton guiding pore system, and its water storage 
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capability. Proton conductivity in the pores of functionalized Si-MCM-41 takes place 

via proton transfer between functional groups, supported by water molecules resulting 

in a Grotthuss-like mechanism (Figure 112).  
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Figure 112. Proton conductivities of functionalized Si-MCM-41 at 100 % RH and 20 mmol grafting with 
(∆) N-imidazole, (▼) peptide-imidazole, (*) imidazole and (○) SO3H groups, compared to 
pristine Si-MCM-41 (■).The lines are only to guide the eyes and have no physical meaning. 

 

In contrast to Nafion®, the proton conductivities of all grafted materials increase with 

temperature up to 140 °C. Although the same reaction conditions are used for the entire 

prepared samples, different degrees of loading with protogenic groups were achieved 

due to the mentioned problems of the grafting process itself (chapter 2.2.6) and related 

diffusion problems of reagents into the pores of the functionalized materials for the 

subsequent reactions.  

The gaseous water atmosphere has different influences on the proton conductivities of 

the protogenic systems, while the SO3H functionalized Si-MCM-41 systems turned out 

to be the best solid proton conductors synthesized via grafting. The second best is the 

peptide-imidazole function, but it has to be mentioned that the peptide-imidazole Si-

MCM-41 has a longer spacer chain between the silica host wall and the protogenic 

group than all the other grafted materials. However, the IECs are comparable to SO3H, 
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reaching 0.7, 0.8 and 1.1 mmol/g for 5, 10 and 20 mmol grafting, respectively. But also 

these values are not good enough to reach the proton conductivities of SO3H, due to the 

absence of efficient amounts of intrinsic charge carriers. The imidazole-grafted samples 

only take the third place, due to the inefficient in-situ imidazole formation inside the 

pores of Si-MCM-41, confirmed by very low IECs compared to the presented SO3H 

functionalized materials. This leads to the assumption that the spacer length is more 

important for proton conductivity than the type of anchorage, if the imidazole is 

anchored via C1. N-imidazole grafted samples even show lower proton conductivities 

than the host materials itself, due to the inefficient proton transport mechanism between 

the N-imidazole anchored moieties. Additionally, the number of surface silanol groups, 

which enabled small proton conductivity in the pristine Si-MCM-41, decreased due to 

grafting with ClTMS on the surface of Si-MCM-41. Together with the unfavorable 

proton conduction mechanism, this explains the low proton conductivity values for N-

imidazole-MCM-41 samples. 

 

 

4.3 Functionalization via co-condensation 
 

In contrast to chapter 4.2, the now presented functionalized mesoporous silica materials 

are synthesized in a one-pot synthesis, called in-situ co-condensation, where the 

functionalizing alkoxysilane is already added to the mixture forming the silica materials 

(chapter 3.2.3). Due to the observed pore size dependence of proton conductivity results 

presented in chapter 4.2, only Si-MCM-41 is functionalized in co-condensation method, 

using the same protogenic groups presented in the grafting results. The influence of the 

higher and more homogeneous loading of the silica material after co-condensation 

exhibits a strong influence on the proton conductivities of the presented solid proton 

conductors. 
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4.3.1 Functionalization of mesoporous silica with SO3H groups 

via co-condensation 

 

Si-MCM-41 is functionalized with SH groups following the co-condensation procedure 

presented in chapter 3.2.3, using different amounts of MPMS substituting the silicon 

source (20 %, 30 %, 40 %). As the alkylrests condensate together with TEOS, a 

homogeneous and statistical distribution of SH groups is expected. Different methods 

were used to extract the used surfactant CTAB, namely ethanol/HCl extraction and 

microwave digestion with HNO3/H2O2. The samples are designated as x % SO3H-

MCM-41-y, where x represents the amount of MPMS-substitution in the co-

condensation reaction, and y gives the abbreviation for the extraction process; extr for 

ethanol/HCl extraction, mw for microwave digestion, and calc for additional 

calcination. 

FT-IR spectroscopy evidences the template removal in the microwave oven 

simultaneously with the oxidation of the SH groups to SO3H ones. After microwave 

treatment two peaks corresponding to sulfonate stretching vibrations appear in the 

region from 1100 cm-1 to 1300 cm-1, as already shown for the grafted samples (Figure 

84). 

Thermogravimetric measurements of the oxidized samples also confirm these results. 

The extent of SH group oxidation was estimated from the change in the decomposition 

temperatures. SH group decomposition starts at about 330 °C, whereas side chains with 

SO3H groups start to decompose at temperature as high as about 375 °C, as determined 

for samples containing exclusively SH or SO3H groups (Figure 113).  
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Figure 113. DTA curves, normalized by the largest signal. 20% SH-MCM-41-extr (black); 20% SO3H-
MCM-41-mw (red); 30% SO3H-MCM-41-mw (green); 40% SO3H-MCM-41-mw (blue). 

 

As both groups are present in a sample due to incomplete oxidation, the decomposition 

temperatures were found shifted towards higher values, as already shown in chapter 

4.2.1 (Figure 85). While for 20 % SO3H-MCM-41-mw full oxidation is achieved by the 

given procedure, the 30 and 40 % SO3H-MCM-41-mw still contain very small amounts 

of thiol groups. Compared to the extracted 20 % SH-MCM-41-extr, the microwave 

treated 20 % SO3H-MCM-41-mw shows no more template signal indicating a complete 

template removal by microwave irradiation unlike the ethanol extraction. 

The texture properties of the prepared samples were determined by the analysis of the 

adsorption isotherms of N2 at the boiling point of liquid nitrogen compared to the pure 

Si-MCM-41. 
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Figure 114. Nitrogen adsorption isotherms on the pristine Si-MCM-41 (■) and on functionalized samples 

20 (■), 30 (■) and 40 % (■) SO3H-MCM-41-mw. 

 

The addition of MPMS to the reaction mixture for the preparation of the functionalized 

Si-MCM-41 had a profound effect on the texture properties (Figure 114). The isotherms 

for the 20 % and 30 % SO3H-MCM-41-mw exhibit variously shaped hysteresis loops 

corresponding to differently sized mesopores. On the contrary, the isotherm for the 

40 % SO3H-MCM-41-mw shows more or less horizontal plateau after a steep increase 

in adsorption at very low relative pressures. The BET surface areas for 20 and 30 % 

SO3H-MCM-41-mw samples equal 645 and 625 m2/g, respectively. For the 40 % 

SO3H-MCM-41-mw sample the BET equation does not hold, which indicates the 

microporous nature of this sample without capillary condensation in mesopores. 

Using the comparative plot method, it could be shown that all the samples contain some 

proportion of micropores, that for the 40 % SO3H-MCM-41-mw being the largest, 

practically exclusive presence of micropores, and the presence of pores larger than 

micropores, such as small mesopores, for the 20 and 30 % SO3H-MCM-41-mw 

samples.235 The clear reason for that is narrowing of the mesopores corresponding to the 

Si-MCM-41 structure and their transformation to micropores or small mesopores 

                                                 
235 R. Marschall, J. Rathouský, M. Wark, Chem. Mater. 19 (2007) 6401. 
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approx. 2 nm in diameter. This phenomenon is especially prominent for the 40 % 

SO3H-MCM-41-mw. The pore size calculated from the pore volume and the Langmuir 

surface area is about 1.5 nm. Assuming a chain length of around 0.7 nm for the (CH2)3-

SO3H chain, then by subtracting twice the chain length from the diameter of the pores 

of the pure MCM-41 (2.7 nm ± 0.2), the size of the micropores should be roughly 1.3 to 

1.5 nm, which is illustrated in Figure 115, confirming the nitrogen adsorption data.  

This conclusion is also in agreement with Lim et al. who established a high pore filling 

of the Si-MCM-41 with MPMS which results in a pore diameter of about 1.4 nm.236  

 

 

Figure 115. Schematic picture of a pore of 40 % SO3H-MCM-41-mw, atoms: carbon (blue), oxygen 
(red), hydrogen (white), sulfur (yellow). Pore diameter and chain sizes are shown in the 
correct relation. 

 

Figure 116 shows the XRD patterns for functionalized 20 % and 40 % SO3H-MCM-41-

mw samples. The diffractogram for 20 % SO3H-MCM-41-mw exhibits a drastically 

diminished (100) reflection and a complete absence of the (110) and (200) reflections.  

 

                                                 
236 H. Lim, C. F. Blanford, A. Stein, Chem. Mater. 10 (1998) 467. 

2.7 nm 1.3 nm
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Figure 116. XRDs for 20 % (red) and (blue) 40 % SO3H-MCM-41-mw samples, and for calcined 20 % 
(red dotted) and 40 % (blue dotted) SO3H-MCM-41-calc samples. 

 

Finally, no reflections for the 40 % SO3H-MCM-41-mw have been observed at all. This 

confirms the substantial (for 20 % SO3H-MCM-41-mw) or practically complete (for 

40 % SO3H-MCM-41-mw) filling of the Si-MCM-41 pores in the functionalized and 

microwave treated mesoporous materials. As the presence of organic groups in the 

pores matches in electron density to the silica walls, the reflection intensity is decreased, 

as observed for the grafting materials.225 The XRD patterns measured after the complete 

removal of the organic matter by additional calcination show the expected three well-

resolved reflections for the Si-MCM-41, but shifted to higher values compared to pure 

Si-MCM-41, indicating a slightly lower pore diameter caused by the influence of 

MPMS on the formation of the SLC phase. 

The high regularity of the pore ordering for the functionalized SO3H-MCM-41-mw 

samples is also confirmed by TEM. The TEM micrographs in Figure 117 clearly show 

the pore arrangement characteristic for the Si-MCM-41 structure obtained for the 40 % 

SO3H-MCM-41-mw sample. 
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Figure 117. TEM images of 40 % SO3H-MCM-41-mw. 

 

Sometimes, co-condensation reactions have a trend to perform homocondensation, that 

the alkoxysilanes and the silicon source condensate apart from each other. This is in the 

presented synthesis totally not the case.  

An EDXS mapping was performed in SEM at several areas of the synthesized samples, 

showing the incorporation of sulfur in all the particles. Figure 118 summarized 

exemplarily the EDXS analysis performed on the co-condensed materials functionalized 

with SO3H groups for the 20 % SO3H-MCM-41-mw. It can be clearly seen from the 

mapping pictures that the sulfur is incorporated homogeneously in all the silica 

particles, and the EDX spectra also confirms the incorporation of sulfur into the 

mesoporous silica to a ration of 1:4, which is slightly lower as expected for the 20 % co-

condensation reaction. This error is small and due to the calculation software, since for 

determination of the atomic percentages it assumes a dense and even sample, which is 

not the case in the observed samples.  
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Figure 118. SEM picture of  20 % SO3H-MCM-41-mw (upper left) and EDX mapping for oxygen (upper 
right), silicon (middle right) and sulfur (lower right). The EDX spectrum (lower left) was 
performed over the whole sample, the carbon signal results from the graphite slice from 
sample preparation. 

 

Figure 119 shows that the proton conductivity of all the microwave treated samples 

increases continuously with temperature and also increases with the extent of 

substitution of metasilicate by MPMS in the co-condensation synthesis.  
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Figure 119. Proton conductivity measured at 100 % RH for 0 % (■), 20 % (■), 30 % (■) and 40 % (■) 
SO3H-MCM-41-mw compared to 20 mmol grafted SO3H-MCM-41(□). The lines are only to 
guide the eyes and have no physical meaning. 

 

The highest proton conductivity of 0.2 S/cm is achieved with the 40 % SO3H-MCM-41-

mw sample due to the very high pore filling with SO3H groups. The channel geometry 

of the pores observed in TEM (Figure 117), in which the sulfonic acid groups are fixed, 

does not only help to keep water but also supports the guidance of the protons through 

the tested pellets.  

Compared to materials functionalized by grafting with MPMS, the loading of samples 

prepared by co-condensation is much higher and therefore the proton conductivity is 

increased by two orders of magnitude. While the IEC does not exceed 1 mmol/g for the 

SO3H-MCM-41 hybrid materials prepared by grafting with 20 mmol MPMS, for those 

synthesized by co-condensation it exhibits up to 2.30 mmol/g of SO3H groups 

accessible for ion exchange in 40 % SO3H-MCM-41-mw (2.10 mmol/g for 30 % and 

1.61 mmol/g for 20 %). This value is much higher than that found by Lim et al.236 with 

1.76 mmol/g, although these authors report a sulfur content of 4.7 mmol/g. In contrast 

to our material, in their work most of the sulfur seems to be buried in the walls due to 

thicker pore walls. 
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Assuming that Si-MCM-41 exhibits a surface area of approx. 1000 m2/g, the average 

density of OH groups on its surface is about 3 per square nanometer. In a grafting 

process, every MPMS is attached by reacting with one to two OH groups, and roughly a 

maximal loading of SO3H groups of 1.67 mmol/g results. The fact that the loading, 

which has been really achieved by grafting, is lower indicates that blocking effects and 

hindrance of MPMS diffusion in the pores impede the grafting process. As in a co-

condensation process the limitations of a grafting process are removed, loadings of up 

to 1.6 SO3H groups per nm2 can be realized documenting that the MPMS in average 

binds with less than 3 groups. It is noteworthy that the IEC does not follow linearly the 

amount of MPMS offered in the co-condensation synthesis. This indicates that with a 

higher offer of MPMS increasing amounts of SH groups are buried inaccessibly within 

the pore walls and explains why in the 30 % and 40 % samples also SH groups were 

detected by DTA measurements (Figure 113). Figure 120 illustrates the situation inside 

the pores of functionalized MCM-41; the higher pore filling in samples synthesized by 

co-condensation being helpful for a better guidance of protons through the narrowed 

pore channels.  

 
Figure 120. Illustration of the environment inside the pores of Si-MCM-41 after functionalization with 

SO3H groups. A: after co-condensation, B: after grafting. Atoms: carbon (blue), oxygen 
(red), hydrogen (white), sulfur (yellow). Pore diameters and chain sizes are shown in the 
correct relation. 
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The activation energies for the overall proton transport mechanism have been calculated 

from the Arrhenius plots of the different SO3H-MCM-41-mw samples and the slopes of 

the fitting lines (Figure 121). 
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Figure 121. Arrhenius plots for 20 % (■), 30 % (■) and 40 % (■) SO3H-MCM-41-mw with additional 
fitting line for calculation of the given activation energies. 

 

The values of activation energy are again decreasing with increasing loading like in the 

grafted samples since the SO3H groups can reach each other easily for proton transfer. 

The values are all in between an interval of 10 kJ/mol and much higher than for a pure 

Grotthuss mechanism56 (13.5 and 38.5 kJ/mol), and also higher than in the grafted 

samples (compare chapter 4.2.2, Figure 91).  

Since in the co-condensed samples the SO3H groups are much closer together and can 

reach each other for proton transfer more easily, less additional water molecules are 

needed for proton transfer than in the grafted samples. Proton transfer only via SO3H 

groups has a higher activation energy than water assisted proton transfer (Grotthuss 

mechanism), and this is the reason that the co-condensed samples have higher activation 

energies than the grafted samples, where more water molecule have been incorporated 

in the proton transfer mechanism, making the overall proton transfer mechanism of the 
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grafted samples more Grotthuss-like than in the co-condensed samples, resulting in 

lower activation energies for grafted samples. 

As already mentioned, less water is sufficient to achieve a similar extent of proton 

transport like in grafted samples, because the SO3H groups are closer together (compare 

Figure 115). If the materials are synthesized by in-situ co-condensation, the water-free 

proton conductivity is much higher than for the grafted samples. This can be seen in 

Figure 122. 
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Figure 122. Dependence of proton conductivity for 40% SO3H-MCM-41 on the relative humidity (0% 
(□), 50% (■), 100% (■) ) in the measurement cell. The lines are only to guide the eyes and 
have no physical meaning. 

 

Compared to the grafted sample (Figure 92), the water-free proton conductivity of the 

40 % co-condensed sample is three orders of magnitude higher, and reaches 10-4 S/cm 

at 140 °C. The reason for that is the increase of SO3H-group density inside the pore 

system, and less water is needed/used for the proton transport mechanism through the 

solid proton conductors. 

Computational results clearly confirm the trend of the experimentally found proton 

conductivities and activation energies for increasingly loaded SO3H-MCM-41 materials. 

From MD trajectories collected each 1 ps the RDFs are calculated and their dependence 

on increasing the conducting groups per area is shown in Figure 123 (compare chapter 
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3.1.8). As presented the first RDF peak is found at 2.8 Å, at this point the energy barrier 

for a proton jump is 8.5 kcal/mol, which is an ideal value for proton transfer. The area 

under the first peak is related to the total amount of pairs that can be found at this 

distance and grows with increasing of the density of conducting groups per area.  
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Figure 123. Radial distribution functions for the distances between oxygen donor atom and oxygen 

acceptor atoms for different densities of conducting groups per area at T = 400 K. Red line 
(1 group/nm2), green line (2.04 groups/nm2) and blue line (4 group/nm2). 

 

Again like in chapter 4.2.2, a direct counting of the total amount of donor-acceptor pairs 

available at 2.8 Å was performed for the total number of frames. For 4 groups/nm2 a 

total of 21 donor-acceptor available pairs can be found, while for 2.04 groups/nm2 this 

amount goes down to 18 pairs, and at 1 group/nm2 this value strongly decreases to only 

9 pairs as shown earlier. For each possible donor-acceptor pair the total time that this 

pair is within the maximum 2.8 Å (first RDF peak) is a variable called collision number, 

and it is counted every 1 ps. In order to estimate a probability of having the collision of 

an specific donor-acceptor pair in the total time, for each pair the collision number is 

divided by the total time (total number of frames) obtaining a quantity called collision 

ratio of the specified donor-acceptor pair. 

For instance, for 4 groups/nm2 and 2 groups/nm2 the donor-acceptor pairs that lead to 

the highest collision number have a collision ratio in order of 0.54 at 450 K, which 

acceptor donoracceptor donor
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means that this specific pair is present within these 2.8 Å for at least 50 % of the total 

frames. While for the density of 1 group/nm2 the pair that has the highest number of 

collisions has an order of 0.42 collision ratio at 450 K. These results indicate that 

densities of 4 groups/nm2 and 2 groups/nm2 have a considerable higher probability of 

proton transfers compared to the 1 group/nm2 case. Due to these RDF and collision ratio 

determinations, a high density of SO3H groups turned out to be very important for 

proton transfer, in agreement to the increasing proton conductivities measured for the 

continuously enhanced SO3H loadings in these hybrid materials.  

 

 

4.3.2 Functionalization of mesoporous silica with PO3H2 groups 

via co-condensation 

 

Another acidic group for enabling proton conductivity in mesoporous silica materials is 

the phosphonic acid group PO3H2. As an alkoxysilane with an acidic end group would 

react with itself forming esters, PO3H2 moieties have to be synthesized using precursors 

with protected acid function, e.g. phosphonic acid alkylester alkoxysilanes. The 

alkylester groups can after co-condensation be transformed into PO3H2 groups via 

reaction with concentrated HCl (chapter 3.2.6).  

Figure 124 shows the successful functionalization of Si-MCM-41 with phosphonic acid 

diethyl ester and successful transformation to PO3H2 groups. The P-O-alkyl vibrations 

of the esters are too weak and hidden (1030-1050 cm-1)229 under the very strong Si-O-Si 

lattice vibrations to be determined. The best observable peaks are again the aliphatic 

C-H stretching vibrations of the spacer chain and the ester groups containing CH3 

groups. After transformation into PO3H2 moieties, the signals for the C-H vibrations of 

CH3 groups disappear, and only the C-H vibrations for CH2 groups remain. 
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Figure 124. IR spectra of phosphonic acid diethyl ester (black line) and phosphonic acid functionalized 

Si-MCM-41 (dotted) prepared via co-condensation, extraction and HCl transformation. 

 

In the XRD patterns after template extraction, a strong decrease in the (100) reflection 

for the 20 % PO3H2-MCM-41 and 30 % PO3H2-MCM-41 can be detected, due to 

increasing incorporation of organic moieties (Figure 125).  
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Figure 125. XRD patterns of 20 % (red) and 30 % (green) PO3H2-MCM-41 compared to pure Si-MCM-

41. 
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A complete absence of the (110) and (200) reflections is determined like already shown 

for the grafted materials, indicating an increased pore filling with the functionalizing 

agents via co-condensation leading to contrast matching between filled pore and silica 

wall.225 Additionally, a shift in the (100) reflections is observed for the co-condensation 

samples compared to pure Si-MCM-41 to higher angles 2θ, indicating a lattice constant 

decrease. When alkoxysilanes are introduced in the synthesis of the silica framework, 

these additional reagents can influence the formation of the SLCs and the cooperative 

self-assembly mechanism for the silica condensation, leading to a decreased lattice 

constant. Some alkoxysilanes even hinder the formation of a mesoscopic phase in the 

homogeneous precipitation method, e.g. aminopropyl triethoxysilane (APTES), so no 

mesoporous silica material is formed.237 

The proton conductivities for the PO3H2 functionalized Si-MCM-41 powders are 

presented in Figure 126.  
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Figure 126. Proton conductivity measured at 100 % RH for 20 % (■) and 30 % (■) PO3H2-MCM-41 
compared to pure Si-MCM-41 (■). The lines are only to guide the eyes and have no physical 
meaning. 

 

                                                 
237 R. Marschall, unpublished results. 
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The 20 % PO3H2-MCM-41 sample exhibits proton conductivities under 100 % RH, 

continuously increasing with temperature, of up to 6x10-5 S/cm,. The 30 % PO3H2-

MCM-41 sample shows slightly higher proton conductivities due to an increased 

loading with PO3H2 groups, exhibiting values up to 10-4 S/cm. Both samples have better 

proton conductivity properties than the pure Si-MCM-41. 

Compared to the SO3H functionalized Si-MCM-41 samples prepared via co-

condensation, the values for proton conductivities of the similar prepared PO3H2-MCM-

41 samples are around two orders of magnitude lower. In contrast to SO3H groups, 

which have a lower pKS value (~ -3.0) and deprotonate more easily for proton 

conductivity, the PO3H2 group is less acidic (pKS ~ 2.1) and gives less mobile charge 

carriers. Another reason are the lower IEC values: 20 % PO3H2-MCM-41 has only an 

IEC of 1 mmol/g, increasing to 1.55 mmol/g for the 30 % sample. Additionally, if less 

PO3H2 are deprotonated, also less oxygen atoms are free for accepting protons in the 

group-supported Grotthuss-like mechanism. In conclusion, less protogenic groups 

support the Grotthuss-like mechanism in PO3H2-MCM-41 samples than in SO3H-

MCM-41 samples. 

 

 

4.3.3 Functionalization of mesoporous silica with imidazole 

groups via co-condensation 

 

Co-condensation of TESBA with sodium metasilicate leads to aldehyde functionalized 

mesoporous silica. As presented in chapter 3.2.5, subsequent in-situ imidazole 

formation leads to imidazole functionalized mesoporous silica. 

The successful formation of imidazole in the pores can be detected in IR spectroscopy. 

The IR spectrum looks like the one from the grafting process (Figure 106), with some 

remaining aldehyde signals. A strong signal for the aldehyde C=O vibration appears 

after co-condensation with TESBA above 1700 cm-1, and still remains after imidazole 
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formation, indicating again a non-quantitatively reaction of all aldehyde groups to 

imidazole. After imidazole formation reaction, the number of bands increases, 

indicating the two bands for C=N valence vibration for conjugated cyclic systems 

(imidazole) between 1400 cm-1 and 1550 cm-1, proving the successful imidazole 

anchorage.229 

XRD measurement presented in Figure 127 show the increasing functionalization with 

imidazole groups by reflection intensity decrease225 compared to pure Si-MCM-41. 
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Figure 127. XRD patterns of 20 % (red), 30 % (green) and 40 % (blue) imidazole-MCM-41 compared to 

pristine Si-MCM-41. 

 

No higher reflections than the (100) reflection can be detected in the functionalized 

materials, and the (100) reflection is shifted to higher 2θ values as expected for the co-

condensation materials. 

The addition of TESBA to the reaction mixture for the preparation of the functionalized 

Si-MCM-41 has again a profound effect on the texture properties (Figure 128). The 

isotherms for the 20 % to 40 % CHO-MCM-41 exhibit variously shaped hysteresis 

loops corresponding to differently sized mesopores, and look quite similar to those of 

SO3H-MCM-41 (Figure 114). The BET surface areas for 20, 30 and 40 % CHO-MCM-

41 samples equal 1251, 953 and 854 m2/g, respectively. The formation of small 
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mesopores is therefore measured, reaching 2.1 nm pores for the 40 % sample The shape 

of the isotherms exhibit also an increasing pore blocking effect with loading, especially 

visible in the desorption branch of the isotherm of the 40 % CHO-MCM-41. 
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Figure 128. Nitrogen adsorption isotherms of functionalized samples 20 (■), 30 (■) and 40 % (■) CHO-
MCM-41. 

 

The resulting proton conductivities of the imidazole functionalized Si-MCM-41 are 

shown in Figure 129 for the 20, 30 and 40 % samples. Due to the observed pore 

blocking effect by the introduced aldehyde moieties, the in-situ reaction to imidazole is 

even more hindered than in the grafted materials (see chapter 4.2.5). The measured IEC 

values for the 20 to 40 % sample are only 0.27, 0.31, 0.36 mmol/g, compared to SO3H 

materials with up to 2.3 mmol/g. These values explain the relative low conductivity 

values after co-condensation, exhibiting up to 5x10-5 S/cm. The conductivity values also 

do not differ very much due to the very similar IECs. 

Although the high loading with organic groups via co-condensation is mostly of 

advantage, this example shows the disadvantage of the applied synthesis. If the 

following reaction to form the protogenic group involves too many or bulky molecules, 

a prior co-condensation with alkoxysilanes might be even of disadvantage due to the 

pore diameter reduction by the incorporated moieties. In the here presented imidazole 
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case, this led to even worse conductivity results than for the grafted materials (compare 

chapter 4.2.5). The IEC values of the imidazole functionalized Si-MCM-41 after 

grafting are higher up to 0.56 mmol/g, leading to higher proton conductivities (up to 

10-4 S/cm) than for the co-condensation materials. 

60 80 100 120 140
10-9

10-8

10-7

10-6

1x10-5

1x10-4

 

 

pr
ot

on
 c

on
du

ct
iv

ity
 / 

S/
cm

temperature / S/cm
 

Figure 129. Proton conductivity measured at 100 % RH for 20 % (■), 30 (■) and 40 % (■) imidazole-
MCM-41 compared to pure Si-MCM-41 (■). The lines are only to guide the eyes and have 
no physical meaning. 

 

 

4.3.4 Summary on proton conductivities of functionalized Si-

MCM-41 materials synthesized via co-condensation  

 

Functionalization of Si-MCM-41 via co-condensation leads to an increased loading with 

functional groups compared to grafting reactions. As in a co-condensation only near 

pH-neutral alkoxysilane can be used, only precursors of the needed protogenic groups 

are incorporated into the silica framework. After template removal via ethanol/HCl 

extraction, the precursor groups are transformed into the protogenic groups. An 

exception is the transformation of SH into SO3H groups, where the transformation can 
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be performed simultaneously with the template removal in a microwave oven (see 

chapter 4.3.1). If the group transformation reaction contains too many or too bulky 

reactants, the transformation can be hindered due to an inhibited diffusion into the pores 

(see chapter 4.3.3., in-situ imidazole formation).  
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Figure 130. Proton conductivity measured at 100 % RH for pure Si-MCM-41 (■), 40 % Imi-MCM-41 
(■), 30 % PO3H2-MCM-41 (■) and 40 % SO3H-MCM-41 (■) compared to Nafion measured 
under the same conditions (●) running dry. The lines are only to guide the eyes and have no 
physical meaning. 

 

Figure 130 shows the summary of the best proton conductivities of all prepared samples 

via co-condensation under 100 % RH compared to Nafion®. Resulting in a hindered 

imidazole formation, the imidazole-MCM-41 shows only slightly higher proton 

conductivities than the pure Si-MCM-41. PO3H2 functionalized Si-MCM-41 shows 

even higher proton conductivities, but still not reaching the very high values for SO3H-

MCM-41 prepared via 40 % co-condensation. This material exhibits the highest IECs 

(2.3 mmol/g) and the highest proton conductivities up to 0.2 S/cm. The values of the 

pressed powders of these materials even exceed the values for Nafion® membranes 

under the same condition, showing the typical conductivity drop above 100 °C due to 

water loss and structural degradation. 
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In general, the acidic head groups seem to be more suitable for proton conductivity in 

solid proton conductors, due to their intrinsic charge carriers. Imidazole-functionalized 

solid proton conductors need excess charge carriers for high proton conductivities. By 

solving the problem of pore blocking for the imidazole formation reaction, the 

conductivity values of these systems should be enhanced drastically. Also the synthesis 

of mixed systems like SO3H-imidazole-MCM-41 (with different SO3H/imidazole ratios) 

could lead to enhanced proton conductivity; however, the use of two alkoxysilanes in 

the co-condensation reaction can influence the formation of the silica framework in the 

homogeneous precipitation process even more than single alkoxysilanes already do. 

 

 

4.3.5 Mesoporous Si-MCM-41 nanoparticles functionalized with 

SO3H groups via co-condensation 

 

In chapter 4.1.4, the results on synthesized mesoporous Si-MCM-41 nanoparticles have 

been described. As these materials exhibit outstanding texture properties, and 

concerning the very good results for SO3H functionalized Si-MCM-41 via co-

condensation (chapter 4.3.1 and chapter 4.3.4), the co-condensation approach was used 

to functionalize also the pure Si-MCM-41 nanoparticles with SO3H moieties. 

In the first approaches, the SH functionalizing alkoxysilane MPMS (in 10 and 20 % 

amount) was added directly to the synthesis mixture described in chapter 3.2.1, resulting 

in a synthesis mixture molar composition of 1200 H2O : 0.31 NaOH : 0.125 CTAB : 

1-x TEOS : x MPMS (x = 0.1, 0.2). Unfortunately, this approach did not lead to a 

desired result, as the particle morphologies and pore structures changed drastically due 

to a strong influence of MPMS on the SLC formation. 

As for a TEOS substitution of 10 % some ordered porosity is still observable in the 

TEM, the shape of the particles changed drastically to more worm-like particles (Figure 

131 a and b). By adding even more MPMS, the ordered porosity breaks down 
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completely, while the particle shape changed again to small spheres (Figure 131 c and 

d). 

 
Figure 131. SEM and HRTEM images of Si-MCM-41 nanoparticles after 10 % (a and b) and 20 % (c and 

d) co-condensation. 

 

For establishing a uniform particles shape and an ordered hexagonal pore structure, pre-

hydrolysis experiments were performed, where the synthesis mixture 1200 H2O : 0.31 

NaOH : 0.125 CTAB : 1-x TEOS was stirred, adding the MPMS (x = 01. or 0.2) after a 

certain reaction time. 15 minutes pre-hydrolysis turned out to be the best time for 

reaching a uniform sphere-like particle shape with additional hexagonally ordered pore 

structure, including propyl-SH groups. During pre-hydrolysis time, the first seed 

crystals were formed with an already preformed hexagonal porous structure, acting as 

template for further particle growth. During the particle growth, the MPMS is added and 

incorporated into the already preformed structure, which is only growing further. Figure 
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HRSEM HRSEM

132 shows two SEM images of 10 % SH functionalized nano-Si-MCM-41, using the 

pre-hydrolysis strategy. 

Figure 132. High-resolution SEM (HRSEM) images of SH functionalized mesoporous Si-MCM-41 
nanoparticles by pre-hydrolysis strategy after template extraction. 

 

It can be clearly seen that the particle size exhibits around 100 nm like for the pure 

nano-Si-MCM-41, and also the morphology is similar. The particles show a rough 

surface (right), and tend to form aggregates of large amounts of particles in dry 

powders. 

XRD patterns and nitrogen adsorption measurements of the SO3H functionalized 

mesoporous nanoparticles (after template extraction and oxidation via fast microwave 

treatment, see chapters 3.2.4 and 4.2.1) show the ordered hexagonal pore structure of 

the nanoparticles after pre-hydrolysis synthesis. 

XRD data in Figure 133 compare the reflections of the pure material with the co-

condensed samples. Pure nano-Si-MCM-41 shows four well resolved reflections typical 

for Si-MCM-41, as shown in chapter 4.1.4. With high pore filling occurring from the 

co-condensation, like for the grafting samples already shown, the reflection intensities 

decrease with increasing loading due to contrast matching between the filled pores and 

the silica walls, that even the (110) and (200) reflections nearly disappear225 for the 
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10 % nano-SO3H-MCM-41 sample, while complete absence of more than the (100) 

reflection is observed for 20 % nano-SO3H-MCM-41. 
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Figure 133. XRD patterns for pure nano-Si-MCM-41 (black) compared to 10 % (brown) and 20 % (red) 

nano-SO3H-MCM-41. 

 

Also the lattice changes slightly with adding of MPMS in the synthesis: The (100) 

reflections move to higher 2θ values, indicating decreasing lattice constants a0 

(calculated via 3/2da 1000 = )205 with increasing amount of MPMS in the synthesis 

from 4.70 over 4.55 down to 3.72 nm. These trends were already reported for µm-sized 

SO3H-functionalized Si-MCM-41, in the same behavior reflections shifted and 

intensities deteriorated (chapter 4.3.1).  

Figure 134 shows the nitrogen adsorption isotherms of the two functionalized 

nanomaterials after microwave treatment compared to the pure nano-Si-MCM-41 

material. As already shown, nano-Si-MCM-41 exhibits no hysteresis loop, but a steep 

increase for capillary condensation in mesopores at relative pressure around 0.3. 10 % 

nano-SO3H-MCM-41 shows surface areas, pore volumes and average pore diameters of 

1418 m2 g-1, 1.31 cm3 g-1 and 2.5 nm, respectively, as the increase for capillary 

condensation occurs at slightly lower relative pressures. With higher extent of silicon 

source substitution, the influence of MPMS becomes stronger, and the values decrease 
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more drastically to 1135 m2/g, 0.74 cm3/g and 2.1 nm (Table 12), and nearly no 

capillary condensation for mesoporosity can be observed. 
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Figure 134. Nitrogen adsorption isotherms for pure nano-Si-MCM-41 (black) compared to 10 % (brown) 
and 20 % (red) nano-SO3H-MCM-41. 

 

Table 12. Structural properties of nanosized functionalized silica materials. 

 

BET surface 

area 

pore 

volume 

measurable pore 

diameter 

lattice 

constant 

 m2/g cm3/g nm nm 

nano-Si-MCM-41 1459 1.344 2.8 4.7 

10 % MPMS 1418 1.31 2.5 4.55 

20 % MPMS 1135 0.74 2.1 3.72 

 

 

The existing pore geometry of the microwave treated materials can be confirmed by 

transmission electron microscopy. The TEM micrographs in Figure 135 clearly show 

the pore channels of the Si-MCM-41 host material besides the filled pores with a 

remaining distance between the pore walls of 2.9 ± 0.1 nm in FFT calculation. 
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  Figure 135. TEM images and FFT calculation for 20 % nano-SO3H-MCM-41. 

 

EDXS and EELS performed in the TEM confirm also the incorporation of the MPMS in 

the silica matrix. The successful incorporation of the sulfur-containing side chains can 

be controlled by EDXS. From calculation the atomic percentage of silicon and sulfur, a 

sulfur-silicon ratio of 1:5 was estimated, confirming the co-condensation reaction and 

substitution of 20 % of silicon source by MPMS forming the mesoporous matrix. Figure 

136 shows the result of the EDXS measurement with well resolved signals for silicon, 

oxygen and sulfur. The carbon signal results from the sample preparation for TEM 

analysis and the carbon spacer chains. 

Figure 137 shows the EELS analysis of the same sample. The presented cut-out shows 

the signal for amorphous carbon, belonging to the spacer-chain of the MPMS, and is not 

a result of the TEM preparation. For EELS, the pure powder was measured on a special 

Mg grid, containing no carbon, which could not be used for EDXS, as it would be 

destroyed during EDXS. 

HRTEM HRTEM FFT FFT 
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Figure 136. EDX spectrum of 20 % nano-SO3H-MCM-41. 

 

250 300 350 400

 

 

in
te

ns
ity

 / 
a.

u.

energy loss / eV

C-K edge

 

Figure 137. EEL spectrum of 20 % nano-SO3H-MCM-41. 

 

Figure 138 shows the results for the proton conductivities for the nanoparticular 

samples under 100 % RH. Similar to the already presented results of variously 

functionalized µm-sized Si-MCM-41 samples, the proton conductivities increase with 

temperature and loading, here up to 5x10-2 S/cm. 
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Figure 138. Proton conductivities under 100 % RH for 10 % (●) and 20 % (●) nano-SO3H-MCM-41. The 
lines are only to guide the eyes and have no physical meaning. 

 

Much more interesting is the comparison between the nanoparticular and the µm-sized 

Si-MCM-41 particles functionalized with SO3H groups. 

In every case, at low loadings (Figure 139a, 10 %) or at higher loadings (Figure 139b), 

the nanoparticular samples show higher proton conductivities than the comparable co-

condensed µm-sized particles.  

The proton conductivity of the hybrid nanoparticles increase with SO3H loading. The 

loadings increase from 0.84 mmol/g for 10 % nano-SO3H-MCM-41 to 1.78 mmol/g for 

20 % nano-SO3H-MCM-41, resulting in proton conductivities up to 5x10-2 S/cm. The 

particle size seems to have a very strong influence on the proton conductivity; a 

nanoparticular 20 % sample shows even higher proton conductivities than a µm-sized 

sample of higher loading (30 %, IEC = 2.1 mmol/g). This might be caused by the higher 

external surface of small nanoparticles compared to larger µm-sized particles, 

facilitating the pore access and the surface proton conductivity. The higher external 

surface, and after sample preparation to pellets, the higher number of grain boundaries 

seem to be responsible for the strong increase in proton conductivity in mesoporous 

SO3H functionalized nanoparticles of Si-MCM-41. 
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Figure 139. Comparison of the proton conductivities under 100 % RH after (a) 10 % co-condensation for 
10 % nano-SO3H-MCM-41 (●) and µm-SO3H-MCM-41 (■); and after (b) 20 % co-
condensation for 20 % nano-SO3H-MCM-41 (●) and µm-SO3H-MCM-41 (■) also compared 
to 30 % µm-SO3H-MCM-41 (■). The lines are only to guide the eyes and have no physical 
meaning. 

 

Only the 40 % SO3H-MCM-41 materials exhibit higher proton conductivities (not 

shown in this picture, see chapter 4.3.1, Figure 119) with loading of 2.3 mmol/g. But 

also using the pre-hydrolysis strategy, an ordered hexagonal mesoporosity of higher 

loaded SO3H functionalized nanoparticles could not be achieved up to now. 

Mesoporous SO3H functionalized Si-MCM-41 nanoparticles with higher loadings might 
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even exceed the already very high proton conductivities of the µm-sized SO3H-Si-

MCM-41 material (0.2 S/cm). 

Compared to SO3H functionalized non-porous silica nanoparticles (we used Aerosil® 

380 with average primary particle sizes of 7 nm, aggregating to at least 25 nm 

agglomerates) with comparable IEC (1.45 mmol/g), the mesoporous structure turned out 

to be crucial for high proton conductivity (Figure 140), especially at low temperatures. 
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Figure 140. Comparison of the proton conductivities under 100 % RH of 20 % nano-SO3H-MCM-41 (■, 
IEC 1.78 mmol/g)) to SO3H functionalized Aerosil® (■, IEC 1.45 mmol/g) and 20 % µm-
SO3H-MCM-41 (■, IEC 1.6 mmol/g). The lines are only to guide the eyes and have no 
physical meaning. 

 

Between 60 and 100 °C, the mesoporous structure incorporates and stores the applied 

water for a good proton transfer. In this region, even the µm-sized SO3H-MCM-41 

particles have higher proton conductivities than the dense sample. At higher 

temperatures above 100 °C, the proton conductivity via the higher external surface of 

the nanoparticles comes into fore, and the dense silica nanoparticles show higher 

conductivity values than the µm-sized SO3H-MCM-41 particles. Nevertheless, the 

functionalized mesoporous nanoparticles still show higher proton conductivities due to 

the guidance of protons through the well accessible mesoporous structure of the 

nanoparticles and the water storage capability. 
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The calculated activation energies also confirm the observation that the mesoporous 

samples are much favorable for good proton transport than the dense silica. Figure 141 

shows the Arrhenius plots for the sulfonated Aerosil® nanoparticles compare to the co-

condensed SO3H-MCM-41 sample and the nanoparticular SO3H-MCM-41 sample.  
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Figure 141. Comparison of activation energies of 20 % nano-SO3H-MCM-41 (■, IEC 1.78 mmol/g)) to 
SO3H functionalized Aerosil® (■, IEC 1.45 mmol/g) and 20 % µm-SO3H-MCM-41 (■, IEC 
1.6 mmol/g). 

 

The sulfonated Aerosil® nanoparticles exhibit much higher activation energy than the 

mesoporous samples, finally indicating that the mesoporous structure of the silica 

samples is crucial for good proton conductivity. The proton transport in the Aerosil® 

only occurs via surface conductivity on the external surface of the particles.  

The SO3H functionalized mesoporous silica nanoparticles have also much lower 

activation energy than their µm-sized counterparts, due to the well accessible pore 

entrances of the particles caused by the higher external surface, leading to a better and 

easier proton transfer via grain boundaries between the single particles. 
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4.4 Composite membranes containing SO3H 

functionalized Si-MCM-41 particles 
 

In the last chapters, the success in preparing new solid proton conductors with very high 

proton conductivities was reported. For a use in a high temperature PEMFC, these 

materials are not directly useful, as the pressed powders are too brittle and not thin 

enough to fabricate efficient stacks. Therefore, these new solid proton conductors were 

used in combination with different kinds of polymers, namely polysiloxanes, 

polyoxadiazoles and Nafion®, to synthesize composite membranes. The results are 

presented in the following chapters. While the polymers are changed, the solid proton 

conductor is in all the composite membranes the same, the SO3H functionalized Si-

MCM-41 prepared via 20 mmol grafting, although it is not the optimum solid proton 

conductor presented in this work. 

 

 

4.4.1 Composite membranes and MEAs with polysiloxanes 

 

The approach described in the following is based on the development of bifunctional 

membranes consisting of siloxanes which are modified with different groups for the 

improvement of intrinsic proton conductivity (see chapter 2.1.4). Further, composite 

membranes with incorporated SO3H functionalized Si-MCM-41 particles were 

prepared. The water uptake, the proton conductivity and other properties which are 

relevant for their use as membrane in a HT-PEMFC are measured and evaluated. The 

resulting microstructure is also described in detail, and for the first time it was possible 

to manufacture and characterize membrane electrode assemblies (MEAs) of these 

composites. 
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Composite membranes made of a proton conducting polysiloxane and embedded 

inorganic particles were prepared from a precursor solution of different acidic silanes 

with proton conducting SO3H groups (sulfonated diphenyl-dimethoxysilane, sDPDMS, 

and sulfonated 2-phenylethyl trimethoxysilane sPETMS) and a basic silane containing 

the N-heterocycle benzimidazole (triethoxysilylpropylbenzimidazole-5-amide,  

TEOSPBA), which were additionally mixed with sulfonated polysiloxanes like vinyl-

terminated diphenylsiloxane-dimethylsiloxane block-copolymer (sDPS-DMS-V(t)). 

While the ionic interaction of acid and basic groups densifies the polymer structure due 

to additional ionic cross-linking, the use of block-copolymers with linear chains 

expands the polysiloxane network and enhances the elasticity of the resulting 

membranes. 9.6 wt.-% or 17.1 wt.-% of the unmodified or SO3H functionalized Si-

MCM-41 particles were given to this solution and the suspension was homogenized by 

intense mechanical stirring. For membrane preparation, the suspension was cast on 

Teflon foils. During previous drying at room temperature and increasing the 

temperature up to 150 °C, respectively, cross-linking took place resulting in self-

supporting composite membranes. In the same way the particle-free polysiloxane 

membranes were synthesized for comparison. The SEM images taken from the cross-

section of a particle-free membrane and a composite membrane are shown in Figure 

142. The thickness of crack-free membranes is about 500-600 µm. The particle free 

membrane displays a uniform microstructure with a smooth surface of the cross-section 

of the fractured membrane (Figure 142a). From the polished cross-section of the 

17.1 wt.-% composite membrane (Figure 142b), a homogenous distribution of SO3H 

functionalized Si-MCM-41 particles (1-2 µm) throughout the dense polysiloxane matrix 

can be seen. The rough surface structure results from a pull-out of particles during 

preparation of SEM samples and does not represent continuous pores. In spite of the 

high particle content, the composite membrane possesses a sufficient elasticity, but it 

should be mentioned that somewhat higher particle contents (more than about 20 wt.-%) 

lead to membranes showing unfavorable brittleness.  
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Figure 142. SEM micrographs of particle free polysiloxane membrane (a) and 17.1 wt.-% SO3H-MCM-
41 particle containing polysiloxane composite membrane (b). 

 

Embedded particle increased the water uptake of the membranes significantly. The 

water adsorption behavior of composite membranes with 17.1 wt.-% particle content is 

shown in Figure 143 compared to pure polysiloxane membranes, and refers to an 

expanded network with enhanced water diffusion. Consequently, the isotherms of 

17.1 wt.-% Si-MCM-41 and 17.1 wt.-% SO3H-MCM-41 composite membranes exhibit 

some hysteresis, which can be attributed to capillary condensation of water vapor in the 

mesopores of embedded particles. Due to the improved water adsorption in 

functionalized pores (see chapter 4.2.1, Figure 86), the final water uptake of the SO3H- 

MCM-41 composite is higher (14.1 wt.-%) than that of the Si-MCM-41 composite 

membrane (12.5 wt.-%). The non-closure of the water adsorption/desorption isotherms 

is an additional indication of small diffusion rates and irreversible water desorption. 
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Figure 143. Water adsorption isotherms of polysiloxane composite membranes containing 17.1 wt.-% Si-

MCM-41 (■) or SO3H-MCM-41 (■), compared to pure polysiloxane membrane (■). 

 

The thermal stability of the composite membranes was investigated by TGA up to 

600 °C in an air flow (Figure 144). Beside membranes containing Si-MCM-41 particles, 

the particle-free polysiloxane and a Nafion® 117 membrane were examined. All 

membranes retain at least 95 % of their weight up to 260 °C; the lost weight can be 

attributed to residual water. The thermal degradation of the Nafion® membrane already 

starts at temperature of 300 °C due to the decomposition of SO3H groups followed by 

pyrolysis of the CF2 backbone of the polymer at temperatures around 500 °C.238 The 

onset of the decomposition temperature of polysiloxane-based membranes is 

comparable to that of Nafion®, but the extent of weight loss with increasing temperature 

is much smaller. This enhanced thermal stability of the polysiloxane, and especially of 

the composite membranes, can be attributed to the temperature tolerance of the cross-

linked polysiloxane network that protects the organic matrix to some extent. The 

composite membranes thereby have a slightly higher stability at 200 °C and above, and 

show less weight loss up to 500 °C than the pure polysiloxane membrane. 

                                                 
238 Q. Deng, C.-A. Wilkie, R.-B. Moore, K.-A. Mauritz, Polymer 39 (1998) 5961. 
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Figure 144. TG analysis of composite membranes of polysiloxanes containing unfunctionalized Si-
MCM-41 (green), SO3H functionalized Si-MCM-41 (blue) compared to pure polysiloxane 
membranes (black) and Nafion® 117 (red). 

 

At 600 °C the decomposition of the entire polysiloxane and its conversion to SiO2 is 

almost completed, what can be deduced from the obtained residual mass of 35 wt.-% for 

unmodified polysiloxane membrane and about 50 wt.-% for particle containing 

composite membranes, respectively. These values are in good agreement with the 

calculated amount of SiO2 after complete oxidation.  

The proton conductivity of polysiloxane-based membranes was measured in comparison 

to Nafion® 117 in the temperature range from RT to 190 °C simulating the working 

conditions of HT-PEMFCs (Figure 145). During the measurement cycles, the RH (curve 

with blue circles) decreases from 95 % RH in the low temperature range (20 - 80 °C) to 

below 10 % RH in the high temperature range (150 - 180 °C). The standard membrane 

material Nafion® 117 shows the typical continuous decrease of the proton conductivity 

with increasing temperature caused by the loss of water. At around 30 °C (95 % RH) the 

proton conductivity of Nafion® 117 is in the range of 2x10-3 S/cm and decreases to 

2x10-5 S/cm at 180 °C (7 % RH). The pure polysiloxane membrane exhibits a slightly 

lower proton conductivity of 10-3 S/cm, which drops to the value of 10-8 S/cm at 110 °C 
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indicating a massive loss of water at higher temperatures. A further increase of the 

temperature results in a slight increase of conductivity up to 10-6 S/cm at 180 °C (7 % 

RH), which is the typical behavior of the bifunctional polysiloxane membranes.49  
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Figure 145. Proton conductivities measured under decreasing RH (●) of composite membranes of 

polysiloxanes with 9.6 wt.-% Si-MCM-41 (■), 9.6 wt.-% SO3H-MCM-41 (■) and 17.1 wt.-
% SO3H-MCM-41 (■) compared to pure polysiloxane membrane (■) and Nafion® (■).The 
lines are only to guide the eyes and have no physical meaning. 

 

This increase in conductivity is probably induced by a water-free proton transport via 

heterocyclic proton conductors activated at higher temperatures. The composite 

membrane with 9.6 wt.-% SO3H-MCM-41 shows a proton conductivity of 

1.4x10-4 S/cm at 30 °C and 95 % RH, decreasing further with the continuous loss of 

water and posses a very low conductivity (10-11 to 10-10 S/cm) in the temperature range 

from 110 °C to 130 °C and 17 % RH. Interestingly, the conductivity of this membrane 

shows a remarkable increase at temperatures higher than 170 °C, reaching a value of 

1.6x10-4 S/cm at 190 °C (7 % RH), being stable for several hours without any decrease. 

This high temperature conductivity exceeds the conductivity of particle-free 

polysiloxane membrane and is comparable to that of Nafion®. In contrast, the composite 

membranes containing 9.6 wt.-% Si-MCM-41 shows clearly lower proton conductivity 

particularly in this high temperature region. The results reveal two important findings: 
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(i) the water reservoir in the Si-MCM-41 pores can only be activated to facilitate proton 

transport if proton conducting SO3H groups are additionally present, (ii) only at high 

temperatures the proton transfer from the functionalized Si-MCM-41 to the surrounding 

polysiloxane matrix leading to an increased overall proton conductivity is possible to a 

sufficient extent.  

Surprisingly, the proton conductivity of a 17.1 wt.-% composite membrane is lower 

than that of particle-free polysiloxane membrane. Therefore, it can be suggested that the 

particles interrupt the proton conducting domains of the polysiloxane matrix to such an 

extent that the proton transfer through this membrane is hindered by a high energy 

barrier caused by the higher distance between the functional groups. Obviously the 

proton transfer through the functionalized channel pores can not compensate this barrier 

at low temperatures. However, at high temperatures, and thus under nearly dry 

conditions, two effects seem to support the proton transport: on one hand some few 

water molecules adsorbed in the SO3H functionalized Si-MCM-41 particles seem to 

keep water-assisted proton transport working, and on the other hand, lower energy 

barriers for the proton movement in the Si-MCM-41 channels. The reason is the 

enhanced motion of the propyl chains in the anchored moieties in and at the pore 

entrances of the functionalized Si-MCM-41 particle as well as of the functional groups 

of the surrounding polysiloxane matrix. In general, the inorganic particles improved the 

thermal stability of the polysiloxane membranes, and the samples show a very high 

durability during the long measurement cycles under real conditions of an HT-PEMFC 

system. 

In addition, it was for the first time possible to prepare and measure MEAs based on the 

composite membrane system polysiloxane with Si-MCM-41 particles. For the MEA 

preparation, supported membranes were used, which were prepared by casting the 

polymer precursor solution containing 9.6 wt.-% Si-MCM-41 and SO3H-MCM-41, 

respectively, on a polyetheretherketone fleece and cross-linking the precursors at room 

temperature. Both sides of these membranes were coated with a mixture of carbon black 

containing 40 wt.-% Pt (Elyst A 40) and pre-polymerized sDPDMS in ethanol. Cross-

linking of MEAs was accomplished at a temperature of 150 °C. A scheme of the 
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resulting MEA is shown in Figure 146, and the results of MEA measurements, which 

were performed using H2 and O2 as feed at 95 % RH at different temperatures, are 

presented in Figure 147. 

 

 

 

 

 

 

 

 

 

Figure 146. Scheme of a MEA prepared with polysiloxane-MCM-41 composite membrane. The black 
layers represent the electrocatalyst, and the thin beige layer depicts the polyetheretherketone 
fleece. In between, the composite membrane is shown. 

 

In accordance with the values of the proton conductivity measurement, the current 

density of the new MEA system containing SO3H functionalized Si-MCM-41 particles 

gain a higher current density in comparison with the MEA containing unmodified 

inorganic particles. Both systems show the expected increase of the current density with 

increasing temperature up to 40 or 50 °C, respectively. 

The MEA of polysiloxane containing 9.6 wt.-% Si-MCM-41 posses an increase of 

current density from 0.4 mA/cm2 (22 °C) to 0.9 mA/cm2 (50 °C), while the current 

densities of MEA of polysiloxane containing 9.6 wt.-% SO3H-MCM-41 increase from 

3.5 mA/cm2 (23 °C) to 4.4 mA/cm2 (40 °C). The cell voltage of the MEA containing 

9.6 wt.-% Si-MCM-41 was in the range of 870 mV to 900 mV, and in case of the MEA 

containing 9.6 wt.-% SO3H-MCM-41 in the range of 670 mV to 800 mV, in dependence 

of the operation temperature. 
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Figure 147. Polarization curves of prepared MEAs of Si-MCM-41 containing polysiloxane composite 

membranes. 

 

These results clearly indicate the influence of the sulfonated Si-MCM-41 particles, 

which enhance the MEA performance due to an advanced proton transport in 

functionalized pore channels. Although MEAs based on particle-free polysiloxane 

membranes described elsewhere239 show a higher current density and a higher runtime, 

the embedding of smaller inorganic particles (like functionalized nanoparticles of Si-

MCM-41, chapter 4.3.5) or particles with higher degree of conducting groups (made by 

co-condensation method, chapter 4.3.1) with an improved covalently attachment to the 

polysiloxane matrix will probably enhance the efficiency of new MEAs based on 

composite membranes further. 

 

 

 

                                                 
239 M. Jeske, C. Ellenberg, C. Soltmann, M. Wilhelm, D. Koch, G. Grathwohl, J. New Mater. 
     Electrochem. Syst., special issue (2008) in press. 



4 Results 
 

198 

4.4.2 Composite membranes with polyoxadiazole 

 

In a second approach for fabricating composite membranes with SO3H functionalized 

Si-MCM-41, sulfonated polyoxadiazole was selected based on its excellent thermal and 

mechanical stability as well as good proton conductivity values.51,240  

The typical polymerization of the polyoxadiazole polymer had the following steps: 

initially poly(phosphoric acid) PPA was added to a flask and heated up to 100 °C under 

dry argon atmosphere. Then, hydrazine sulfate (HS) was added to the PPA and 

homogenized through stirring and heating of the reaction medium. After reaching the 

reaction temperature (160 °C), dicarboxylic acid 4,4’-diphenylether (DPE) was added to 

the flask. The molar dilution rate (PPA/HS) and the molar monomer rate (HS/DPE) 

were kept constant and equal to 10 and 1.2, respectively. After reaction time of 5 hours, 

the reaction medium was poured into tepid water (containing 5 % of sodium hydroxide), 

for precipitation of the polymer. The pH of this precipitation bath was controlled by 

addition of extra amounts of 5 %  NaOH aqueous solutions. 

Homogeneous membranes were cast from solutions with a polymer concentration of 

4 wt.-% in Dimethyl sulfoxide (DMSO). After casting, the DMSO was evaporated in a 

vacuum oven at 60 °C for 24 hours. For further residual solvent removal, the 

membranes were immersed in water bath at 60 °C for 48 hours and dried in a vacuum 

oven at 60°C for 24h. The final thickness of the membranes was about 50 µm. 

Composite membranes were prepared by adding 2.5-10 wt.-% of functionalized Si-

MCM-41 (based on polymer content) into the 4 wt.-% polymeric solution. The solution 

was stirred for 6 hours and cast on a glass plate at 60 °C for solvent evaporation and 

dried following the same protocol described for the membranes prepared only with the 

polymer.51 The final thickness of the membranes was in the range 30 µm. The particle 

distribution in the polymer can be seen in the SEM images in Figure 148. A well 

dispersed particle phase and no segregation were observed. 

 
                                                 
240 D. Gomes, J. Roeder, M. L. Ponce, S. P. Nunes, J. Membr. Sci. 295 (2007) 121. 
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Figure 148. SEM images of polyoxadiazole-SO3H-MCM-41 composite membrane with cross-section 

(right). 

   

The ionic conductivity data at 120 °C and under 5-25 % RH of the composite 

membranes containing 5 wt.-% of filler are shown in Figure 149. To analyze the effect 

of the filler without the influence of eventual residual phosphoric acid used for 

converting the sulfonated membrane into its acid form, the conductivity of the 

membranes in sodium salt form was measured.  
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Figure 149. Ionic conductivity of pristine polyoxadiazole membrane (■) and composite membrane with 
SO3H-MCM-41 (■) as a function of relative humidity measured at 120°C. The lines are only 
to guide the eyes and have no physical meaning. 
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The composite membrane clearly has higher proton conductivity than the pristine 

polymer membrane in all range of RH. The significant difference between conductivity 

data of composite membranes and the pristine polymer membrane at low RH (e.g. 15 % 

RH) is a consequence of the better water retention capacity of the composite membranes 

due to the sulfonated mesoporous silica incorporated. 

Although porous particles were incorporated into the polymer, only negligible gas 

permeation through the silica-polyoxadiazole composite membrane could be measured, 

indicating a gas tight membrane for fuel cell application also at 140 °C. This is depicted 

in Figure 150 in hydrogen permeation measurements. The results show that the silica 

particles are very good incorporated into the dense polymer matrix since the permeation 

values would be much higher through mesoporous particles. Thus, they support proton 

conductivity, but do not disturb the gas tight behavior. 
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Figure 150. H2 permeation through a functionalized silica polyoxadiazole composite membrane       
(5 wt.-%). 

 

Dynamic mechanical thermal analysis (DMTA) was used for determination of glass 

transition temperature (Tg) and loss tangent (tan δ). Tan δ, as the ratio of the dynamic 

loss modulus to the dynamic storage modulus, is related to the molecular motions and 

phase transitions. It is therefore sensitive to all molecular movement occurring in 
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polymers. For composites, the molecular movements at the interface contribute to the 

value of tan δ that enables to determine the bonding between the interface of the matrix 

and the particles.241 

The Tg values of the composite membranes slightly increase with addition of sulfonated 

silica (Table 13), which might be caused by the hydrogen bonding between the SO3H 

groups of the silica and the polyoxadiazole. 

 

Table 13. Results of dynamic mechanical thermal analysis of polyoxadiazole-nanocomposite containing 
SO3H-MCM-41. 

polymer sample 

+ filler 

  

Tg (°C)     temp. maximum of tan δ (°C) 

polymer 416 430 

+2.5 wt.-% 430 450 

+5 wt.-% 435 450 

+10 wt.-% 420 440 

 

Interaction between the sulfonated silica and the polyoxadiazole results in constrained 

polymer chains in the vicinity of the inorganic particles. The depression in tan δ 

indicates the reduction of mobile chains during the glass transition,242,243 where the 

relative peak height is proportional to the volume of the constrained chains. 

                                                 
241 S. Hamdan, D. M. A. Hashim, M. Yusop, A. J. Sci. Tech. Develop. 21 (2004) 69. 
242 S.-W. Chuang, S. L.-C. Hsu, Y.-H. Liu, J. Membr. Sci. 305 (2007) 353. 
243 Y. Rao, J. M. Pochan, Macromolecules 40 (2007) 290. 
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Figure 151. Trace of tan δ vs. temperature as measured by DMTA at 1 Hz for the nanocomposite 
containing 2.5 wt.-% (■) or 5 wt.-% (■) sulfonated mesoporous silica, compared to the pure 
polymer (■). 

 

Figure 151 clearly shows the reduction of the relative peak height of tan δ and the 

increase of the Tg values with increasing amount of sulfonated Si-MCM-41. This result 

supports once more the very well dispersed silica particles within the polymeric matrix. 

On the other hand, for 10 wt.-% SO3H-MCM-41 aggregation of the large µm-size 

particles leads to a decrease of mechanical properties as well as insignificant change in 

the Tg value. 

Thermal stability of composite membranes prepared with 2.5-10 wt.-% of SO3H-MCM-

41 particles was analyzed by TGA. As shown in Figure 152, the pristine polyoxadiazole 

membrane shows two distinct regions of weight loss. The first loss occurs between 250 

and 370 °C with an approximate weight loss of 4 % due to decomposition of SO3H 

groups. The second region starting at 469 °C is associated with the loss of volatiles 

caused by the degradation of the polyoxadiazole.  
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Figure 152. TGA curve for the polyoxadiazole nanocomposite membranes containing 2.5 wt.-% (red), 

5 wt.-% (green) and 10 wt.-% (blue) SO3H-MCM-41 compared to the pure polyoxadiazole 
(black). 

 

The addition of 2.5 wt.-% of SO3H-MCM-41 did not alter the degradation pattern of the 

pure polyoxadiazole membrane. On the other hand, from a 5 wt.-% loading of SO3H-

MCM-41 the first region of weight loss shifted toward lower temperature probably 

because of the weaker interaction between the sulfonic acid groups of the large 

mesoporous silica particles and of the polyoxadiazole chains. In conclusion, the 

inorganic particles improved the thermal and mechanical stability of the polyoxadiazole 

membranes up to 5 wt.-% incorporation, and improved the proton conductivities of 

pristine polymer membranes by one order of magnitude, especially at very low RHs. 

 

 

4.4.3 Composite membranes with Nafion® 

 

In a third approach for fabricating composite membranes with SO3H functionalized Si-

MCM-41, first experiments have been performed with Nafion® as proton conducting 
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polymer. Pure polymer membranes and homogeneous composite membranes were cast 

on a glass plate having 125 °C, using a stainless steel pulling frame with defined casting 

slit (0.4 mm height). For composite membranes, 0.1 g of powder (pure Si-MCM-41 or 

SO3H-MCM-41) were suspended in 20 mL of Nafion® polymer solution (DE 520, 

5 wt.-% in water (~45 wt.-%)/1-propanol (~50 wt.-%)), and after 10 minutes stirring the 

suspension is transferred in a ZrO2 grinding beaker. The suspension is 10 minutes 

treated in a ball mill for ideal particle distribution, and the resulting suspension is 

concentrated in a rotary evaporator to half volume before cast in the described way. 

After casting, the membranes were dried on the chilling glass plate, and remaining 

solvent was evaporated at 100 °C. For acidification of Nafion®, the membranes were 

boiled one hour in H2O2 and H2SO4, respectively, followed by multiple washing with 

distilled water. 

Figure 153 shows two SEM images of the fabricated composite membranes, using 

SO3H-MCM-41 as additives. The well distributed particles in the Nafion® polymer can 

be seen in the left image (compare Si-MCM-41 particles in Figure 65). The right image 

clearly shows the absence of any particle segregation, which would result in an 

inhomogeneous proton transfer mechanism through the composite membrane, resulting 

in worse proton conductivity. 

 

   
Figure 153. SEM images of composite membranes of Nafion® with SO3H-MCM-41, right: cross-section 

of the approx. 20 µm thin composite membrane. 
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First proton conductivity measurements show the influence of incorporated silica 

particles into the Nafion® polymer (Figure 154). Surprisingly, a very thin (approx. 

20 µm) pure Nafion® membrane shows a delayed conductivity drop under the given 

conditions of 100 % RH, due to an efficient gaseous humidification of the membrane 

sample in the sample holder (compare Figure 44). 
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Figure 154. Proton conductivities of pure Nafion® (■) compared to composite membranes containing 
pristine Si-MCM-41 (■) and SO3H-MCM-41 (■). The lines are only to guide the eyes and 
have no physical meaning. 

 

After incorporation of pure Si-MCM-41 in the polymer matrix, the proton conductivity 

decreases. This leads to the assumption that the incorporation of “impurities” into 

Nafion® interrupts the polymer structure and the proton conductive domains, so the 

proton conductivity mechanism through the membrane is disturbed since the pure Si-

MCM-41 particles are not strongly proton conductive. The unfunctionalized particles 

might also exhibit a worse contact between polymer and particles due to the absence of 

any functional moieties. This was also observed for the incorporation of the pure 

particles into polysiloxanes (chapter 4.4.1), and for the incorporation of TiO2 and zeolite 

mordenite into Nafion®.231 The use of SO3H functionalized Si-MCM-41 for fabrication 

of a composite membrane has surprisingly good influences on the proton conductivities. 

At low temperatures, the proton conductivity of the Nafion®-SO3H-MCM-41 composite 
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membrane is significantly higher than for the pure Nafion® membrane. This is different 

to the effects observed with polysiloxanes (compare Figure 145), where the 

incorporation of the particles disturbed the intrinsic proton conductivity mechanism of 

the bifunctional membrane. The improved values here are possibly caused by the 

hydrophilic porous structure of the incorporated additives, taking up high amounts of 

water in their highly ordered pore structure which is necessary for good proton 

conductivity in Nafion®. Between 80 and 120 °C, the proton conductivities are quiet 

similar, and differing again at 140 °C. For Nafion®, the typical conductivity drop takes 

place, but to less extent than shown in Figure 94. The Nafion® membrane used here is 

much thinner (20 µm compared to 1 mm), and therefore the good humidification in the 

measurement cell ensures a lower water loss at elevated temperatures (120 °C). For the 

Nafion®-SO3H-MCM-41 composite membrane the proton conductivity continuously 

increases, similar to the pure powders (compare chapter 4.2.2). The incorporated 

powder samples help to keep the water inside the composite membranes, so that the 

water loss of the Nafion® matrix has less effect on the overall proton conductivity. The 

retained water helps to ensure the proton transport through the fabricated composite 

membrane. 

Changing the membrane thickness and particle content will giver further insight into 

this composite system together with thermal analysis, H2 permeation and water uptake 

measurements. 
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4.4.4 Summary of composite membranes containing SO3H 

functionalized Si-MCM-41 particles 

 

Incorporation of SO3H-functionalized Si-MCM-41 particles into proton conductive 

polymers led in all three cases (polysiloxane, polyoxadiazole and Nafion®) to improved 

properties in the fabricated resulting composite membranes. A well dispersed particle 

phase is therefore very important for high conductivity and gas tightness, and the porous 

structure of the incorporated solid proton conductors turned out to be advantageous for 

water retention, facilitating the proton transport in the cast composite membranes. 

Together with bifunctional polysiloxane polymer, efficient composite membranes could 

be achieved working at temperatures of 180 °C and only 5 % RH. For the first time, 

MEAs with these new inorganic solid proton conductors as additives in polymers could 

be fabricated and tested.  

Composite membranes with polyoxadiazoles also turned out to be improved in 

conductivity by incorporation of SO3H functionalized Si-MCM-41 into the polymer. It 

was also shown that especially the mechanical stabilities of the composite membranes 

increased with incorporation of the additives, and no significant gas permeation could 

be observed. 

First experiments on composite membranes with Nafion® also show improved 

properties if SO3H-MCM-41 is incorporated into the polymer matrix. 

However, incorporation of too many or unfunctionalized inorganic additives turned out 

to be disadvantageous for proton conductivity of the composite membranes, as the 

additives disturb the proton transport in the proton conductive polymer matrix. The 

imperfect proton transfer between particle and polymer matrix is an occurring problem 

which can only be prevented by homogeneous distribution of strongly interacting 

particles. Especially the use of functionalized solid proton conductors is therefore of 

significant advantage compared to unfunctionalized particles. But still there is always a 

need to find the perfect ratio between polymer and inorganic additive for every 

composite system. 
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5 Conclusion 

 
In the present work, the synthesis of new solid proton conductors based on mesoporous 

silica materials and their use in composite membranes for HT-PEMFC membranes was 

discussed. To enable proton conductivity in the silica host systems, the powders were 

functionalized with proton conductive organic functionalities, namely SO3H, PO2H3 and 

imidazole. This was fulfilled by two different synthesis methods, the post-synthetical 

grafting procedure or in-situ co-condensation procedure, to achieve different degrees of 

loading with the protogenic groups. The resulting solid proton conductors were tested 

concerning their solid proton conductivity properties, and subsequently incorporated 

into different proton conductive polymers (polysiloxane, polyoxadiazole and Nafion®) 

to fabricate composite membranes and, for the first time, MEAs with these novel solid 

proton conductors. 

The focus of this work clearly lay on the synthesis of the mesoporous silica based 

proton conductors. Three types of mesoporous silica host materials have been used to 

synthesize the solid proton conductors. By using different amphiphilic molecules and 

their self-organization to supramolecular aggregates (micelles and liquid crystal phases) 

in aqueous media, different pore systems could be achieved in the mesoporous silica 

hosts. Mesoporous Si-MCM-41 was prepared using CTAB and sodium metasilicate, 

exhibiting hexagonally ordered mesopores in the range of 3 nm and particle sizes of 

1-2 µm (chapter 4.1.1). Si-MCM-41 could also be synthesized in nanoparticles of 

100 nm size (chapter 4.1.4). 
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Si-SBA-15 and Si-SBA-16 are mesoporous silica prepared using triblock-copolymers as 

amphiphilic molecule. Both exhibit larger pores than Si-MCM-41, Si-SBA-15 was 

synthesized with ~7 nm hexagonally ordered mesopores, and Si-SBA-16 had a cubic 

pore arrangement with ~6 nm cages connected via 4 nm pore channels. Both materials 

were synthesized in 1-2 µm particles sizes (chapter 4.1.2 and 4.1.3). 

The different pore systems of the silica hosts turned out to be important for the proton 

conductivity properties of the solid proton conductors. When mesoporous silica hosts 

were functionalized with SO3H groups via grafting reaction, it could be shown that the 

hexagonal pore arrangement of Si-MCM-41 and Si-SBA-15 showed higher proton 

conductivities, due to the better guidance of protons through the pore system compared 

to the cubic and non-directing pore system of Si-SBA-16. Additionally, the small pore 

diameter of Si-MCM-41 (~ 3 nm) turned out to be crucial for high proton conductivity, 

since the grafted SO3H groups are closer to each other than in the 7 nm pores of Si-

SBA-15, exhibiting higher proton conductivities. The proton transport occurs via the 

grafted SO3H groups supported by additional water molecules in a Grotthuss-like 

mechanism, which is taking place in the pore system (chapter 4.2.2). Si-MCM-41 was 

then exclusively used for further investigations due to these results. 

SO3H groups have many properties making them very suitable for proton conductivity, 

especially their high capability for water storage (chapter 4.2.1). As these acidic systems 

provide a lot of intrinsic charge carriers, they showed much higher proton conductivities 

than the grafted imidazole systems (chapter 4.2.6), having no intrinsic charge carriers. 

Imidazole anchorage via grafting was performed in this work via three methods to 

compare the type of anchorage and the spacer length. It turned out than an imidazole 

binding via nitrogen atom is far too inefficient for proton conductivity as anchorage via 

C1 atom (C-atom between the nitrogen atoms, chapter 4.2.3). Imidazole anchorage via 

peptide bond between imidazole-2-carboxylic acid and amine-grafted Si-MCM-41 was 

therefore more efficient, only being one order of magnitude lower in proton 

conductivity than SO3H grafted Si-MCM-41. However, the spacer length between silica 

host and the imidazole groups was here 5 atoms (compared to propyl-chain for SO3H 

grafting), having a strong influence on the proton conductivity due to better mobility in 
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the spacer chain. This could also clearly be seen when imidazole was in-situ formed 

with aldehyde grafted Si-MCM-41 using ammonia and glyoxal (chapter 4.2.5). Here, 

the chain length was identical with the SO3H functionalized material, but the proton 

conductivity values for the imidazole grafted samples were much lower. This was also 

caused by lower loading due to a hindered diffusion of the reactants necessary for the 

imidazole formation into the pore system. 

As Si-MCM-41 showed the best results of the silica hosts, co-condensation reactions 

were applied to synthesize Si-MCM-41 with higher loadings of e.g. SO3H groups. This 

aim could be reached by co-condensation with MPMS, and subsequent treatment in a 

microwave oven, where template removal and SH oxidation to SO3H groups could be 

performed simultaneously. The resulting materials still showed the porous structure 

with improved higher group loading (up to 2.3 mmol/g) and outstanding proton 

conductivity values up to 0.2 S/cm for 40 % co-condensed SO3H-MCM-41 material 

(chapter 4.3.1). This is in accordance to performed theoretical simulations, showing that 

higher group density leads to higher proton conductivity values caused by more 

homogeneous distribution of the SO3H groups via co-condensation. Co-condensation 

reactions performed to enable PO3H2 showed that these groups, due to the lower acidity 

of the system, exhibit much lower proton conductivity values than the SO3H 

functionalized silica (chapter 4.3.2). Imidazole functionalization (via co-condensation 

with aldehyde functions and subsequent in-situ formation) exhibited even lower proton 

conductivities that the grafted imidazole-MCM-41 samples, due to pore blocking after 

co-condensation for the imidazole-forming reactants (chapter 4.3.3). 

An outstanding result of this work is the synthesis of SO3H functionalized Si-MCM-41 

nanoparticles via co-condensation approach. Applying a pre-hydrolysis step in the 

synthesis, the highly ordered hexagonal pore strucutre could be retained during 

synthesis, incorporating the SO3H groups during particle growth. Due to this ordering 

and better accessible pore structure due to higher external surface, the proton 

conductivities of these SO3H-MCM-41 nanoparticles even exceeded their µm-sized 

counterparts. 
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It has to be mentioned that the proton conductivities of the synthesized powders were 

measured between 60 and 140 °C, and under 0, 50 and 100 % RH, and the proton 

conductivities increased for all prepared samples continuously with temperature, which 

in complete contrast to Nafion® membranes, which show a reported conductivity drop 

above 100 °C. 

SO3H functionalized Si-MCM-41 particles, since they showed the most promising 

values, were finally incorporated and well dispersed into three different polymers, 

where they improved clearly the properties of the pure proton conductive polymers. 

Together with polysiloxanes, composite membranes could be fabricated working at 

180 °C and 5 % RH, showing proton conductivity values much higher than Nafion® at 

these industrial interesting working conditions. Also an increased water uptake and 

mechanical stability of the membranes was observed after particle incorporation. Non-

functionalized Si-MCM-41 particles therefore showed worse properties. It was also 

possible to prepare for the first time MEAs with these systems (chapter 4.4.1), where 

the SO3H functionalized composite again showed better results than composite 

membranes with unfunctionalized Si-MCM-41. 

With polyoxadiazoles, composite membranes with SO3H-MCM-41 could also be 

prepared and characterized. It was shown that the composite membranes have higher 

conductivity values than the pure polymers, and H2 permeation tests proved the gas 

tightness of the composite membranes, although porous particles have been 

incorporated (chapter 4.4.2). 

Finally, Nafion®-SO3H-MCM-41 composite were prepared, indicating that thin Nafion® 

membranes shows smaller conductivity drop above 100 °C than pure Nafion®, and that 

this material can also be improved by incorporation of solid proton conductor particles 

(chapter 4.4.3). 

As up to now only grafted SO3H-MCM-41 particles were used for composite membrane 

casting, the next steps would be the use of the co-condensed SO3H-MCM-41 particles 

or nanoparticles, as these solid proton conductors showed even higher proton 

conductivity values. The detailed study of influences on the composite membrane 

properties (water uptake, thermal stability, gas permeation, proton conductivity) by 
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membrane thickness and particle content is of high importance for understanding these 

hybrid systems. Especially the water uptake is very relevant during fabrication of new 

MEAs with other polymers than polysiloxanes, since during MEA working conditions, 

the produced product water can be retained by the incorporated mesoporous solid proton 

conductors, using it for proton transport even at elevated temperatures. 

Also the synthesis of silica (nano-) particles with imidazole functionalities is in the 

focus of research, as the incorporation of small amount of SO3H groups to prepare 

mixed systems might overcome the problem of low charge carrier concentration in pure 

imidazole systems.  

Finally, a variation of the host lattice to aluminum-incorporated Si-MCM-41 is 

interesting, as this incorporation of Al introduces acid sites and thereby even higher 

hydrophilicity of the host as pure Si-MCM-41, which might be favorable for higher 

proton conductivities after functionalization. First results showed an even higher water 

uptake of Al-MCM-41 than Si-MCM-41, up to 90 wt.-%, and higher proton 

conductivities than the pure Si-MCM-41. Functionalization of this material with proton 

conductive groups will be interesting and part of further investigations. 
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Appendix 

 

A Abbreviations and Symbols 
 

°   degree 
µm   micrometer 
A   Ampere 
Å   Ångström (10-10 m) 
a.u.   arbitrary units 
a0   lattice constant 
AC   alternate current 
AFC   Alkaline Fuel Cell 
approx.  approximately 
APTES  3-Aminopropyl triethoxysilane 
APU   Auxiliary Power Unit 
as-syn   as synthesized 
BET   Brunauer-Emmet-Teller adsorption isotherm 
BJH   Barret-Joyner-Halenda adsorption isotherm 
C   capacity 
C   Celsius 
calc   calcined 
CHO   aldehyde 
CHP   Combined heat and power plant 
ClTMS  3-Chloropropyl triethoxysilane 
c   centi (10-2) 
cmc   critical micelle concentration 
conc.   concentrated 
cos   cosinus 
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CTAB   cetyltrimethylammonium bromide 
d   distance between lattice layers 
DCC   dicyclohexyl carbdiamide 
DCM   dichloromethane 
DFT   density-functional theory 
DFTB   density-functional tight-binding 
DMFC   Direct Methanol Fuel Cell 
DMSO   dimethyl sulfoxide 
DMTA   dynamic mechanical thermal analysis 
DPE   dicarboxylic acid 4,4’-diphenylether 
DPTES  Diethylphosphatopropyl triethoxysilane 
DTA   differential thermoanalysis 
e-   electron 
Ea   activation energy 
EDXS   energy-dispersive X-ray spectroscopy 
EELS   electron energy-loss spectroscopy 
Ekin   kinetic energy 
EO   ethylene oxide 
Epot   potential energy 
Eq   equation 
et al.   et altera, lat: and others 
eV   electron volt 
extr   extracted 
f   frequency 
F127   a triblock copolymer 
FFT   fast Fourier transformation 
FT   Fourier-transform 
g   gram 
GDL   Gas Diffusion Layer 
h   hour 
h   Planck constant 
hkl   Miller indices 
HPA   heteropolyacid 
HRTEM  high resolution TEM 
HS   hydrazine sulfate 
HT-PEMFC  High Temperature Polymer Electrolyte Membrane Fuel Cell 
Hz   Hertz 
I   current 
IEC   ion exchange capacity 
in-situ   lat.: local, in place 
IR   infrared 
IS   impedance spectroscopy 
IUPAC  International Union of Pure and Applied Chemistry 
J   Joule 



Appendix 
 

217 

K   kilo (103) 
K   Kelvin 
kcal   kilocalories 
km   kilometer 
L   induction 
l   length 
m   meter 
m   milli (10-3) 
M   molar, mol/L 
M41S   class of mesoporous materials 
MAS   magic angle spinning 
MCFC   Molten Carbonate Fuel Cell 
MCM   Mobile Composition of Matter 
MD   molecular dynamics 
me   mass of an electron 
MEA   Membrane Electrode Assembly 
MHz   megahertz 
min   minute 
mL   milliliter 
mm   millimeter 
mol   mole 
MPMS   3-mercaptoproyl trimethoxysilane 
mw   microwave 
N   Newton 
NASA   National Aeronautics and Space Administration 
nm   nanometer 
NMR   Nuclear Magnetic Resonance 
p   momentum 
P   power 
p   saturation pressure 
P123   a triblock copolymer 
PAFC   Phosphoric Acid Fuel Cell 
PEM   Polymer Electrolyte Membrane 
PEMFC  Polymer Electrolyte Membrane Fuel Cell 
Pep   peptide 
pm   picometer 
PMO   periodic mesoporous organosilica 
PO   propylene oxide 
PO3H2    phosphonic acid 
PPA   polyphosphoric acid 
ppm   parts per million 
ps   picosecond 
Pt   platinum 
PTFE   polytetrafluorethylen (Teflon) 
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R   resistance 
RDF   radial distribution function 
RH   relative humidity 
RT   room temperature 
s   second 
S   Siemens 
SBA   University of Santa Barbara 
SBET   surface area calculated via BET 
SDA   structure directing agent 
sDPDMS  sulfonated diphenyldimethoxysilane 
sDPS-DMS  sulfonated diphenylsiloxane-dimethylsiloxane 
SDS   sodium dodecylsulfate 
SEM   scanning electron microscope 
SH   thiol 
sin   sinus 
SLC   silicatropic liquid crystal 
SO3H   sulfonic acid 
SOFC   Solid Oxide Fuel Cell 
SPEEK  sulfonated polyetheretherketone 
sPETMS  sulfonated 2-phenylethyl trimethoxysilane 
SPSU   sulfonated polysulfone 
T   temperature 
t   time 
tan δ   loss tangent 
TEM   transmission electron microscope 
TEOS   tetraethyl orthosilicate 
TEOSPBA  triethoxysilylpropylbenzimidazole-5-amide 
TESBA  triethoxysilyl butyraldehyde 
Tg   glass transition temperature 
TGA   thermogravimetric analysis 
TLCT   True Liquid Crystal Template mechanism 
U   voltage, potential 
US   United States 
v   velocity 
V   volt 
V   volume 
W   Watt 
wt.   weight 
XC   capacitive resistance 
XL   inductive resistance 
XRD   X-ray diffraction 
Y:ZrO2  yttrium-stabilized zirconium oxide 
Z   impedance 
∆fH0   standard formation enthalpy 
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∆RG0   free standard reaction enthalpy 
∆RS0   standard reaction entropy 
η   efficiency 
ϕ   phase shift 
λ   wavelength 
ω   angular frequency 
θ   diffraction angle 
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D Chemicals 
         

Name Producer Purity CAS-No. 
    
APTES Merck > 99 % [919-30-2] 
ammonia Sigma-Aldrich 7N in methanol [7664-41-7] 
ClTMS Merck > 98 % [2530-87-2] 
CTAB Sigma-Aldrich 99 % [57-09-0] 
DCC Merck ≥ 99 % [538-75-0] 
DCM, water free Sigma-Aldrich 99.8 % [75-09-2] 
DPTES ABCR 95 % [757-44-8] 
ethanol Roth 99.8 % [64-17-5] 
ethyl acetate Fluka > 99.5 % [141-78-6] 
glyoxal Sigma-Aldrich 40 % in water [107-22-2] 
hydrogen peroxide Merck 30 % [7722-84-1] 
imidazole Acros Organics 99 % [288-32-4] 
imidazole-2-
carboxylic acid 

Maybridge 97 % [16042-25-4] 

methanol Roth ≥ 99.8 % [67-56-1] 
MPMS Merck ≥ 95 % [4420-74-0] 
nitric acid Roth 65 % [7697-37-2] 
Pluronic F127 Sigma-Aldrich - [9003-11-6] 
Pluronic P123 BASF - - 
sodium metasilicate Sigma-Aldrich - [6834-92-0] 
sulfuric acid Acros Organics 96 % [7664-93-9] 
TEOS Merck > 98 % [78-10-4] 
TESBA ABCR 90 % [88276-92-0] 
toluene Riedel-de-Haën 99.7 % [108-88-3] 
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