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Zusammenfassung

In der vorliegenden Arbeit wird die Dynamik ein- bzw. quasi-eindimensionaler, antiferro-
magnetischer S = % Quantenspinsysteme {iber einen groflen Bereich von Frequenzen, ex-
ternen Magnetfeldern und insbesondere endlichen Temperaturen untersucht. Die dynamis-
chen Strukturfaktoren werden durch numerische Berechnung von Spinoperator-Matrixele-
menten basierend auf allen Eigenenergien und Eigenfunktionen, die durch vollstindige,
exakte Diagonalisierung gewonnen werden, bestimmt.

Der erste Teil dieser Arbeit untersucht die Dynamik der alternierenden, antiferromag-
netischen Heisenberg-Kette anhand von spezifischer Warme und dynamischen Struktur-
faktoren fiir Ketten mit bis zu 20 Spins. Die Auswertung der Ergebnisse erfolgt unter An-
lehnung an die analytischen Ergebnisse des Grenzfalls der nicht wechselwirkenden Dimer,
was bis zu einem Verhiltnis A < 0.3 der Kopplungsstirken qualitativ giiltig ist. Den Be-
trachtungen der spezifischen Warme und des integrierten Strukturfaktors folgt die Analyse
des Verhalten des zentralen, des Ein- und des Zweimagnonen-Peaks des longitudinalen
und transversalen Strukturfaktors in Abhingigkeit von Impulsiibertrag, Temperatur und
Magnetfeld.

Der zweite Teil untersucht die rautenférmige Kette (engl.: distorted diamond chain),
eine Variante der antiferromagnetischen Heiseberg-Kette mit iibernéchster-Nachbar-Wech-
selwirkung mit bis zu 18 Spins. Die Auswertung stiitzt sich dabei auf die elementaren Blocke
Dimer und Tetramer und behandelt sowohl die spin-fliissigen Phase als auch die Tetramer-
Dimer Phase. Die spin-fliissige Phase wird durch eine niederenergetische, effektive anti-
ferromagnetische Heisenberg-Kette und hochenergetischen Dimeranregungen charakteri-
siert, die durch ein Magnetisierungsplateau bei 13 charakterisiert wird. Die Tetramer-Dimer
Phase besitzt einen zweifach (3N gerade) bzw. ¥3-fach (3N ungerade) entarteten Grundzu-
stand und weist Solitonen als elementare Anregungen auf. Das Verhalten wird auf zwei
Pfaden im Phasendiagramm, die den Kosterlitz-Thouless Phaseniibergang iiberqueren, an-
hand der spezifischen Warme untersucht.

Schlagworte: Dynamischer Strukturfaktor, Heisenberg-Modell, Quantenspinsysteme

PACS: 75.10.Jm, 75.10.Pq, 75.40.Gb, 78.70.Nx






Abstract

In this thesis I examine the dynamics of one-dimensional or quasi one-dimensional, anti-
ferromagnetic, S = % quantum spin systems over a broad range of frequencies, external
magnetic fields and in particular finite temperatures. Dynamic structure factors are cal-
culated numerically from spin operator matrix elements based on all eigenenergies and
eigenfunctions obtained by full exact diagonalization.

In the first part of this thesis, I investigate the dynamics of the bond alternating Heisen-
berg antiferromagnetic chain by means of specific heat and dynamic structure factors for
chains of up to 20 spins. The interpretation of the results is based on the analytic results of
the non-interacting dimer limit, which is qualitatively valid up to a coupling ratio A < 0.3.
Following the discussion of the specific heat and the integrated (exclusive) structure factors,
I analyse the behaviour of the central, one-magnon, and two-magnon peak of the longitu-
dinal and transverse structure factor with respect to transferred momentum, temperature,
and magnetic field.

In the second part, I examine the distorted diamond chain, a variant of the Heisenberg
antiferromagnetic chain with next-nearest neighbour interaction with up to 18 spins. The
analysis is based on the fundamental building blocks dimer and tetramer and covers the
spin-fluid as well as the tetramer-dimerized phase. The spin-fluid phase is characterized by
a low energetic, effective Heisenberg antiferromagnetic chain and high energetic dimer ex-
citations, which are separated by a 15 magnetization plateau. The tetramer-dimerized phase
features a twofold (3N even) or Nj-fold (3N odd) degenerate ground state and show soli-
tons as low energetic excitations. By means of the specific heat, I investigate the behaviour
of the distorted diamond chain on two paths in the phase diagram crossing the Kosterlitz-
Thouless phase transition.

Keywords: dynamic structure factor, Heisenberg model, quantum spin systems
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CHAPTER 1

Introduction

Low dimensional antiferromagnetic quantum spin systems have been of interest
over the past years and even decades. They offer an approach to some real world
materials which are of limited complexity, which allows to unravel the details of
quantum effects.

Until recently, theoretical and experimental analysis were difficult to unite, be-
cause the theoretical investigations mainly covered the quantum properties, ignor-
ing thermal fluctuations. This restriction effectively reduces the spectrum to low-
lying, excited states and therefore decreases the complexity of the system allowing
for approximate analytical treatment or numerical computations, e. g., using the
Lanczos algorithm. Experimental results, on the other hand, were obtained at fi-
nite temperature where thermal fluctuations may cover quantum effects.

With the increase of computational power, it is possible to perform numerical cal-
culations at almost arbitrary temperatures, using either approximate methods like
DMRG applied to quantum transfer matrices[1] or full exact diagonalization. The
former allows for larger system sizes and is therefore very attractive to be used and
has already been applied in various works but lacks the ability to compute dynamic
features of the underlying quantum model. The latter, being an exact procedure, is
rather limited in the system size, but given an appropriate system with short correla-
tions, it produces good results. Since full exact diagonalization offers the possibility
to investigate dynamic features, I opted for the latter for this thesis.

The first system I will analyse in this thesis is conceptually very simple. The bond
alternating Heisenberg chain, or short BAHC, consists of a set of coupled dimers,
i. e., pairs of strongly coupled spins % whose interaction is sufficiently weak to not

15



INTRODUCTION

close the dimer gap. Technically speaking, the Hamilton operator

Heanc =T Z (gn St + A S '§n+2) (11)

neven

is a generalization of the Heisenberg antiferromagnetic chain with alternating cou-
pling strengths with a relative factor of A. Without loss of generality, this coefficient
is0 < A < 1. The upper limit A = 1 is well known as the Heisenberg antiferromag-
netic chain, and the lower limit A = 0 is a simple set of non-interacting dimers. In
order to ensure sufficiently short correlations, I will limit my analysis to A < 0.3,
which is large enough to find real world materials, e. g., Cu(NO;), with A ~ 0.23,
and the experimental results support the computations of this work.

The other system I will investigate is the distorted diamond chain, which can
be interpreted as a variation of the Heisenberg antiferromagnetic chain with next-
nearest neighbour interaction:

Hppc = Z i (gn Sper + §n+2'§n+3) (1.2)
i +)2 §n+l ‘§n+2

+ ]3 (gn ° §n+2 + §n+1 . Sn+3)

where J; and ], correspond to the nearest neighbour and J3 and 0 (one next-nearest
neighbour interaction is not present) correspond to the next-nearest neighbour in-
teractions.

The distorted diamond chain exhibits some interesting physical properties. For
small J; and /3 compared to J>, the quantum phase diagram features a spin-fluid
phase with dimers along the J, bonds and a Heisenberg antiferromagnetic chain on
the spins in between. For larger J1, J5 < ], the system enters a tetramer-dimer phase
with tetramers formed from J, bonds with the two surrounding spins alternating
with dimers on ], bonds. In contrast to the spin-fluid phase, low-lying excitations
in this phase are found to be s.

Furthermore, the distorted diamond chain features a magnetization plateau at
Y5 magnetization in the spin-fluid phase, which originates from the low energetic
Heisenberg antiferromagnetic subsystem at its full magnetization.

One material currently of interest which can be described by a distorted diamond
chain is azurite, and first experimental results support the calculations of this work.

The dynamics of such quantum systems are best discussed in terms of the dy-
namic structure factor, i. e., the Fourier transform of the time dependent spin cor-
relation function. Experimentally, the dynamic structure factor is proportional to

16



INTRODUCTION

the spectral weight of the cross section of magnetic inelastic neutron scattering.

_ B
(g, w) Ze kpT
nif

sl s -5) )

Furthermore, given the full spectrum of these Hamiltonians the specific heat,
which gives among others clues with respect to the excitation gap and the level dis-
tribution, can be computed for arbitrary temperatures and magnetic fields.

In Chapter 2 I will investigate and discuss the properties of the bond alternat-
ing Heisenberg chain. The distorted diamond chain will be discussed in Chapter|3.
Finally, Chapter[A gives a short view on the numerical methods.

17






CHAPTER 2

The Bond Alternating Heisenberg Chain

2.1 Introduction

The bond alternating Heisenberg chain with periodic boundary conditions is a vari-
ant of the isotropic Heisenberg antiferromagnetic chain where every second bond
has got a coupling strength /' = 1J. Additionally, these two alternating couplings
are characterized by two distances. First, the lattice constant b is the inter-dimer
distance, i. e., the distance between equivalent spins in neighbouring dimers, and
second, the intra-dimer distance d, which is the distance between the two spins of
the same dimer. In this work I will mostly consider d = 2, although in real world

materials generally independent and different d and £ occur.

J J
-—-e—e--o—0--9 *--o * - -

Figure 2.1: Schematic diagram of the bond alternating Heisenberg chain

Heauc = Z(] §2j ‘§2j+1 +] §2j+1 '§2j+2) (2.1a)

]

= ZI(§2]' '§2j+1 + A§2j+l '§21+2) (2.1b)
j

19



THE BOND ALTERNATING HEISENBERG CHAIN

In the special case A = 1, this system is equal to the ordinary, isotropic Heisenberg
antiferromagnetic chain, but for other values of A, it is obvious that the translational
symmetry is reduced from a one spin to a two spin elementary cell. This feature
is eminently prominent for A = 0 where the bond alternating Heisenberg chain
decomposes into a set of non-interacting dimers.

In contrast to the isotropic Heisenberg antiferromagnetic chain, which is gapless,
the bond alternating Heisenberg chain is gapped for A # 1. The lowest excited state
isan " = 1 magnon band. Higher excited states have been investigated in detail
in [2].

The Hamilton operator of the bond alternating Heisenberg chain shows several
conserved quantities. From rotational invariance follows immediately

[.‘7'[, Stot} =0 (2.22)
[#,85:] =0 (2.2b)

As result, the Hilbert space can be divided into subspaces of constant, total spin
projection Sgy.

Furthermore, the Hamilton operator is translationally invariant, implying com-
mutation of Hamilton and translation (by two spins, hence the subscript 2 on T5)
operators

[7'[, Tz} =0. (23)

Asaconsequence, it is possible to find a set of common eigenstates of both operators
Hli, q) = Eili, q) (2.4a)

Toli q) = €?|i, q). (2.4b)

where the newly introduced variable g is the wave vector with respect to the lattice
of dimers with lattice constant b, where g can take the values

q:f(O...er) (2.5)

A wave vector definition adapted to homogeneously interacting (A = 1) and equally
spaced (d = %) N spins would give § = %(0. ..2m) = $(0...4m). The transition
from the dimer lattice to become the homogeneous chain implies a shifting of the
second (degenerate) mode as second half of the larger Brillouin zone of the chain.
I will also use the larger wave vector range g = ;(0...47) for dimers instead of
using two degenerate modes in the basic cell of the dimer lattice.

20



INTRODUCTION

N

For an N-spin chain with % cells of size b, 53 translations reproduce the original

N
state, thus T, = 1. This gives the following constraint on the wave vector g

bl
b

2

q=5-m me{0,..., 5} (2.6)

However, some spin configurations, e.g, T|T[T| --- 1|, show a higher transla-

tional symmetry as they are already reproduced after %, P, > 1 translations T,

so not all values of g occur with the same number of eigenstates.
The respective eigenstates are then found to be

i,q>=\/ziz

Here, |a;) denotes a representing spin configuration, and the factor P,; accounts for
a possibly higher symmetry of the spin configuration a;.

The spectrum of the bond alternating Heisenberg chain as well as the dynamic
structure factor at low temperatures (T < J) have been studied before by employ-
ing various techniques including random phase approximation [2], perturbation
theory [3], and linked cluster expansion [4,/5, 6]. The following features of the
spectrum have been found:

2Pg; -

N
Z ¢V Tl |a). (2.7)
=0

(1) A gapped, propagating one-magnon excitation above the singlet ground state,

(2) atwo-magnon continuum as well as very small intensity higher magnon con-
tinua, and

(3) one singlet and one triplet bound state below the two-magnon continuum.
These bound states are only distinguishable from the continuum for wave vec-
tors close to g = .

Studies of the dynamic structure factor have shown that the transition from the
singlet ground state to the one-magnon triplet is the dominant excitation at low
temperatures and low magnetic fields. For the values of A # 0 I will consider, only
the two-magnon continuum at w ~ 2] quantitatively is of some importance, higher
contributions are negligible.

Numerical calculations employing full, exact diagonalization require — like many
other methods as well —a finite size system with a fixed number of particles N.
For full, exact diagonalization the limit imposed on N by the available computing

21



THE BOND ALTERNATING HEISENBERG CHAIN

200

150 |-
5 B
i -
= 100 |-
2 i
g i
o I

50 (-

0 i || L J L

0 2

Figure 2.2: Densitiy of states for N = 20,1 = 0.30,g = 7

resources is rather low compared to DMRG, and so I need to ensure that the in-
vestigated system is dominated by short range interactions. In Figs. [2.2]to [2.5] the
density of states of the bond alternating Heisenberg chain is depicted for g = =,
N =20,1=030and N = 16, A = 0.30, A = 0.45 and A = 0.60. At A = 0.30 the
band structure can be clearly seen for both N = 20 and N = 16, but at higher val-
ues of A the band structure is blurred (A = 0.45, Fig.[2.4) or completely destroyed
(A = 0.60, Fig. 2.5). It is therefore valid to assume dominating short range interac-
tions for A < 0.30. Experimental results with neutron scattering have confirmed
my results. [7]

2.2 The non-interacting dimer limit
As mentioned before, the bond alternating Heisenberg chain reduces to a set of

non-interacting dimers for A = 0. The Hamilton operator becomes block-diagonal,
decoupling into a sum of non-interacting two-spin systems. The eigenstates of each

22



THE NON-INTERACTING DIMER LIMIT

14

12 —

10 —

density [a. u.]
T

Figure 2.3: Density of states for N = 16,1 = 0.30,g = 7

dimer are found to be a singlet ground state at energy & = —3J and a triplet excited
state at energy & + J = i ], and the partition functionisz = 1 + 3e ¥ The overall

ground state is a product of dimer singlets, i. e., a singlet with energy
N3
EO:_zZI; (28)
the overall partition function is
Z=(1+3e )2, (2.9)

Then the dynamic structure factor turns out to be

Sizo(g w) = 18,5(g, @) = 38,50(q @) =
Bo(g, B)0(w) + Bl(q,p’)[é(w -+ e_ﬁlé(w + ])] (2.10a)

23



THE BOND ALTERNATING HEISENBERG CHAIN

14

12 —

10 —

density [a. u.]
T

Figure 2.4: Density of states for N = 16,1 = 0.45,g =7

with
1+ d) 1
Bulg ) = - o%ad) ] (2.10b)
1— d) e’
Bi(g,B) = 731022? ) % (2.10¢)

The factors B, denote the weight of transitions with w = £¢J. Thus, By corresponds
to the central peak, which in this system can only occur for transitions within the
triplet excited state. B; corresponds to the sum of the one-magnon peak, i. e., exci-
tations from the singlet ground state to the triplet excited states and the correspond-
ing inverse transitions, decorated with a factor e #/. Higher magnon peaks are not
present in the non-interacting dimer limit due to the missing coupling between the
dimers.

For q = 0, the central peak is maximal and the one-magnon peak vanishes, while
for g = 27 it is vice versa, the central peak vanishes and the one-magnon peak is
maximal. Concerning the temperature dependence, the central peak vanishes for

24



THE NON-INTERACTING DIMER LIMIT

14 —

12 —
10
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Z B
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47
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Figure 2.5: Density of states for N = 16,1 = 0.60,q = 7

T = 0 and increases with higher T towards its maximum value at T — oco. The one-
magnon peak on the other hand has its maximum value at T = 0 and decreases with
higher T towards its limitat T — oo. Limiting values for these weights of particular
interest are

2m
Bo(g=0,8) = 34 b Bo(gq = ?,ﬁ) =0 (2.11a)
2 1!
Bl(q_o’ﬁ)_o Bl(q—?;ﬂ)—w 7 (2.11b)
Bo(¢ T=0)=0 Bo(g T — o0) = H%s(qd) (2.11¢)
Bi(q,T=0)= 1= coslqd) Bi(¢ T — o0) = 1= cos(gd) (2.11d)
4 16
Central and one-magnon peak have equal weight for cos(gd) = 1;;::5; or ] =
1+cos(gqd)
lIl (2 l—cos(qqd) ) :

25



THE BOND ALTERNATING HEISENBERG CHAIN

Introducing an external magnetic field, isotropy is lost and these formulae be-
come field dependent. However, the extended formulae will be presented in con-
text with the discussion of the field dependence of the dynamic structure factor in
Section2.4]

Although these formulae are only strictly valid for A = 0, they set the frame for
the behaviour in the range 0 < A < 1 as well. Due to the complete degeneracy
of states in the non-interacting dimer limit, the central and one-magnon peaks are
sharp for arbitrary temperature. With increasing inter-dimer coupling, the peaks
broaden, but however, the exclusive structure factor defined in the next section can
still be related to the results in the non-interacting dimer limit.

2.3 'The dynamic structure factor in an isotropic set-up

In an isotropic set-up, the three dynamic structure factors $(g, w), (¢, w), and
§?(g, w) have equal values and it is therefore sufficient to calculate §°(g, ), which
alleviates the numerical problem in the sense that this structure factor only requires
a diagonal matrix operation, reducing the order of complexity.

On the way from the non-interacting dimer limit to the dynamic structure factors
for interacting dimers, I first want to discuss the exclusive structure factors, i. e., the
integrated structure factor over one peak.

(n+%)]
I,(q) = / dw S(g, w) (2.12)
(n—")]

For inter-dimer couplings A < 0.5 the band gap is large enough to specify the
boundaries between the peaks unambiguously.

In Fig.)2.6, the dependence of the exclusive structure factors I, on the momentum
transfer q is shown for a system of 16 spins with A = 0.3. For comparison, the solid
lines denote the analytic solution in the non-interacting dimer limit (non-zero for
n = 0and n = 1 only). Since I, vanishes for g = 27, and I; and I, vanish for g = 0,
I shall focus on g = m in the following discussion. Other values of g are not easily
comparable for finite chains, because the allowed g-values change with the system
size, and thus the results for different system sizes cannot be compared directly.

For the same system, the dependence of the exclusive structure factors I, on the
temperature for g = 7 is shown in Fig.[2.7. Again, the solid lines denote the ana-
Iytic result in the non-interacting dimer limit. As to the numerical data I could not
determine a difference for systems of 12 and 16 spins.
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Figure 2.6: Exclusive structure factors vs. g for N = 16, A = 0.3, and the two temperatures
T =0.5and T = 2. The solid line corresponds to the analytic solution for A = 0.
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0.010

0.005

Figure 2.7: Exclusive structure factors I, vs. T for N = 16, A = 0.30, and g = 7. The solid
line corresponds to the analytic solution for A = 0.

The good conformance of the data points with the analytic results for A = 0 con-
firms the correctness of the numerical approach and demonstrates that many body
quantum effects, i. e., dimer interactions, are not important for the static quantities
Io(g) and I,(g) up to A < 0.3].

An overall view of the dynamic structure factor $¥(g, w) is shown in Fig.[2.8] As
already clear from Figs. 2.6land[2.7] the weight of the central peak is maximal at g =
0 and vanishes at g = 27, whereas the weights of the one- and two-magnon peaks
vanish at ¢ = 0 and are maximal at g = 27. Similarly, the central peak increases
with growing temperature whilst the one- and two-magnon peaks decrease.

The most prominent feature of the dynamic structure factor is the one-magnon
peak, whose evolution with temperature is illustrated in Fig. 2.9 for A = 0.3 and
N = 16. With increasing temperature, the peaks extend over a nearly constant
range in frequency, although the decrease of the maximum of intensity formally
implies an increase in the width at half maximum. For both g = 7 and 27 the posi-
tion of the maximum shifts to lower frequencies, but the shape of the peak develops
an asymmetry with more intensity on the high frequency side. This effect is most
pronounced for g = 27, i. e., the wave vector of the energy gap, and may not be
noticeable at all for small values of g, ¢f. Fig.|2.8. Thus the detailed description of

28



THE DYNAMIC STRUCTURE FACTOR IN AN ISOTROPIC SET-UP

S#(q,w) for N =16, A =0.3, T =0.5

2.5

S**(q,w) for N =16, A=0.3, T =2.0

5% (q,w)
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0.008
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0.004
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-0.5

Figure 2.8: $%*(q, w) overall picture for N = 16, A = 0.3, and temperatures (a) T = 0.5
and (b) T = 2.0. The two-magnon peak has been enlarged by a factor 20 for
visibility.
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S#(q, w) for N=16, A=0.30, g=m and g=2m
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Figure 2.9: §(q, w) one-magnon peak. The resolution Aw is 0.02,

the line shape provides an understanding of the intriguing observation that the gap
energy seems to increase with temperature [8] (comparable to an analogous obser-
vation in the Haldane chain [9,10,11]). It would certainly be interesting to compare
the line shape to the result of the theoretical approach of [12], however, with N = 16
a continuous line shape results only for temperatures above the energy gap and is
thus in the non-universal approach of [12]. When looking at the microscopic origin
of the peak broadening, one finds that, e. g, at T = J the basic transition from the
ground state to the one-magnon excitation at g = 7 is responsible for 30 % of the
weight at that frequency and that for the neighbouring frequencies transitions start-
ing from the one-magnon band contribute about 10 % of the total weight, whereas
the by far largest part of the intensity originates from transitions starting at states
with two ore more excited dimers.
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The one-magnon peak represents transitions from one band to the next higher
band, the central peak represents transitions within one single band. Compared
to the central peak, the one-magnon peak is larger — especially at lower temper-
atures — because it includes transitions from the singlet ground state, which are
present without thermal excitation.

N=16, A=0.30, g=7/4 and g=m

0.015 e e 0.003
L | L — T=0.50 T
4 -- T=2.00
L | L T=4.00 ]
i
0.01 — — - I — 0.002
i
8 L | L “'L"V |
- ‘H i
n il [
L ] L y ]
! [
;
0.005 — — = — 0.001
‘
L 4 L | 1 4
|
L | L -
l
L 4 Lo ]
A
i g
Y . S 9% I I N S
-04-02 0 02 04 -04-022 0 0.2 04
w W

Figure 2.10: §%*(g, w) central peak. The resolution Aw is 0.02.

Fig. illustrates for A = 0.3, N = 16, and q = % and 7 the evolution of
the central peak with temperature. At zero temperature, the central peak vanishes
(cf Fig.[2.7). At low temperatures and A < 1, the shape of the central peak is
dominated by transitions within the weakly interacting one-magnon band with g-
independent matrix elements, seen as spikes in the T = 0.5] curve of Fig.2.10b.
With increasing temperature, transitions within higher bands become more and
more relevant, which can be seen in the increasing background in Fig.[2.10b. The
physical process may be thought of as an external probe accelerating a thermally
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populated excitation and is thus similar to well known processes in soliton bear-
ing one-dimensional magnets [13]. As in these models, the limiting form of the
structure factor is

ZZ — 1
Si2) (9 @) o ¢ P ————0(wf,(q) — @) (213)
1— 7
w5 (q)

with wm(g) = A sin( %) just from phase space effects (a small variation with tem-
perature resulting from the dispersion has been neglected ). Numerically the cut-off
frequency of the central peak is found to remain localized at w ~ wm(q) for all wave
vectors and temperatures (apart from corrections of O(A*)). The line shape, how-
ever, cannot be expected to be reproduced because only a few discrete transitions
in the one-magnon band are available for N = 16 and dominate the spectrum at
the lowest temperatures. Nevertheless, for g = 7, T = 0.5] the inverted line shape
of eq. (2.13) starts to become visible even with this restriction. Between medium
(T = 0.5]) and high (T = 4J) temperatures a crossover of the line shape from
square like to Gaussian is observed for small wave vectors.

At zero temperature the central peak vanishes (¢f. Fig.[2.7). At low temperatures,
transitions within the one-magnon band set in first, in Fig. clearly seen as
peaks of the T = 0.5 solid curve. With increasing temperature, transitions within
higher bands become more and more relevant, which can be seen in increasing
background in Fig.[2.10b.

Fig.[2.11 shows the two-magnon peak at g = 7 (where the bound states are most
clearly visible) and g = 27 for A = 0.3 and N = 16 in the temperature range T =
0.5...2] (note the enhancement in intensity scaling compared to the central and
one-magnon peak). For g = 7 the low temperature spectra are entirely governed by
the triplet bound state at w ~ 1.938. .. J, whereas the continuum (whose intensity
at T = 0 is smaller by a factor of A?) is of no significant role. The bound state stays
clearly visible up to T ~ J and then disappears in in parallel with a rapid decrease
in the integrated intensity of the two-magnon peak for temperatures above T' ~ |
(see also Fig.[2.7). This reflects the fact that the dimers become independent of each
other with increasing temperature such that the correlations between spins of two
different dimers required for a finite two-magnon peak vanish.

Fig.[2.12]illustrates a comparison between the results for N = 16 and N = 20.!
In going from N = 16 to N = 20, some improvement is obtained: the continuum
becomes smoother and the bound state less dominant, but the main characteristics
remain unchanged. Therefore, the increase in particle number is not crucial. The

1. Available only for g = 7 and the limited frequency range 1.84] < w < 2.02].

32



THE DYNAMIC STRUCTURE FACTOR IN AN ISOTROPIC SET-UP
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Figure 2.11: §(q, w) two-magnon peak. The resolution Aw is 0.02.

spectra invoke the impression that at intermediate temperatures additional transi-
tions — in particular the singlet state at w ~ 1.868], which could be reached by a
from a thermally excited triplet state — become visible. This, however, is mislead-
ing as the comparison between the data for N = 16 and N = 20 shows: a change in
the number of spins leads to a different set of allowed wave vectors and therefore,
from the accompanying change the initial and final energies, to trivially different
excitation frequencies — although the energies at, e. g., g = 7 are remarkably inde-
pendent of N). For g = 27 there is no bound state; the two discrete transitions at
T =~ 0 in Fig.[2.11b are the remainder of the continuum for the limited number of
16 spins.
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N=16 and N=20, A=0.30, g=m
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Figure 2.12: $%( 7, w) two-magnon peak, comparison of N = 16 and N = 20. The resolution
Aw is 0.02.

2.4 The dynamic structure factor in an external magnetic field

An external magnetic field breaks full rotational symmetry, and thus allows me to
further investigate the properties of the bond alternating Heisenberg chain, as the
dynamic structure factors $*(¢, ) and §7 (g, w) are not linearly dependent on the
longitudinal structure factor $**(g, w) any more. Typically, one is interested in the
transverse dynamic structure factor

$(q w) + 87 (q w) = (S+7 +Sf+) (2.14)

N =

at a given frequency w. Given the form of the Hamilton operator in terms of &
and S, it is reasonable to evaluate '~ (g, w) and S~ (g, w) instead of $*(g, w) and
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§7(q, w). However, S (g, w) and S~ (g, w) are still related by detailed balance
S (gw)=e S (—g —w) (2.5)

and thus it is only necessary to calculate "~ (¢, w) and S™"(g, w) for positive fre-
quencies w > 0.

In this work, I shall restrict my interest on the influence of static, homogeneous
magnetic fields. An inhomogeneous field breaks translational symmetry, and a dy-
namic field adds time evolution, but both effects would go beyond the scope of this
work.

In the presence of an external, static, homogeneous magnetic field, a field depen-
dent term

.r]'[Zeeman == Z HSIZ (2.1621)

= —H Sgy (2.16b)

is added to the Hamilton operator (2.1)).

Whereas this additional term does not change the wave functions of the eigen-
states (eq. (2.2)) with §* as good quantum number, the energy levels are shifted
simply by the Zeeman term according to their total spin projection i, —Swot <
Stot < Stot» leading to several effects. Eventually, the relative decrease of energy lev-
els with higher magnetization, i. e., total spin projection Sf,, leads to a level crossing
of states with different magnetization S,.

It is particularly noteworthy that this effect also applies to the ground state, mean-
ing on the other hand, that the ground state changes with the strength of the exter-
nal magnetic field. The first change of the ground state for a gapped system like
the bond alternating Heisenberg chain with A # 1 occurs at finite field, namely the
lower critical field

Heie = Emin,l - Emin,O: (2.178.)

where Enin,» denotes the minimal energy level in the subspace with total spin pro-
jection St = n, minimizing over all wave vectors g. In standard models such as the
bond alternating Heisenberg chain, subsequent changes occur (in total ¥4) at

Hstep,rl = Emin,n - Emin,nfl- (2.17b)

Let me note that models exist where %(Emin,nﬂ — Eminn—1) < Eminn — Eminn—1
resulting in magnetization steps of 2 units.[14] The last change — and thus satura-
tion — is achieved when the ground state becomes fully polarized:

Hgt = Emin,N — Emin,N—1. (2.17¢)
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Table 2.1: Critical fields for A = 0.3 and N = 12, 16, and 20.

Magnetization N=12 N=16 N=20

1 0.81670  0.81685 0.81684
2 0.90250 0.86222  0.84431
3 1.04600  0.95459  0.90490
4 1.17713  1.06362  0.98724
5 1.26220 1.16169 1.07399
6 1.3 1.23446  1.15234
7 1.27964 1.21484
8 1.3 1.25956
9 1.28731
10 1.3

For the bond alternating Heisenberg chain, the ground state for zero field is found
at g = 0. For the ground states with Emin1 and Es, this can be shown easily as well.
The first excited band is an § = 1 magnon with dispersion ~ (1 — cos()), so
the lowest lying state (the next ground state, energy Emin,1) again is found at g = 0.
Finally, by symmetry of its spin configuration, the saturation ground state (energy
Eqat) is found at g = 0, too.

The total spin projection S, of the ground state reflects the magnetization M(H).
For a finite system size N, the range between the first critical field Heri,; — which
is obtained as a power series in A from [3] — and the saturation field Hy, consists
of discrete steps, whereas for an infinite chain, the change of the magnetization is
continuous. Outside the interval from Hcri,1 to Ha, the magnetization is constant.

In this system, the first critical field Heri,1 is a quantum critical point, analogous
to what has been discussed in other gapped one- or quasi one dimensional systems
[the Haldane chain, the spin ¥ ladder and two-dimensional dimers] in an external
magnetic field, where this is known as ‘Bose-Einstein-condensation of magnons.
In this sense, the bond alternating Heisenberg chain is very interesting, because it
offers a simpler model for the complex behaviour of the aforementioned systems.

Of course, these formulae only hold true as long as the energy levels are finitely
spaced such that the change in the ground state always fulfils ASf,, = 1. This con-
straint is satisfied for the bond alternating Heisenberg chain as long as A # 0 (and,
of course A # 1). For A = 0, the chain breaks down to a set of non-interacting
dimers, which all change from a singlet to a triplet ground state at the same field. In
other words, all critical fields of eq. (2.17) coincide in one single point, where the
magnetization jumps from zero to its maximal value.
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Figure 2.13: Magnetization curve of the bond alternating Heisenberg chain

For fields larger than the saturation field, the system behaves like a ferromagnet.
Again, the energy spectrum is gapped, but this time the lowest excitation is a ferro-
magnon with

Sie = NS — 1. (2.18)

This ferromagnon has the spectrum
w(q)zH—](1+A) cos(q) (2.19)
From the condition w > 0 we obtain the saturation field

He = (1+ )] (2.20)

2.41 Specific Heat

The level spectrum in Fig.[2.14/features an interesting gap in the area between H = |
and Hg and E — Ep < J. This gap is an image of the gaps of the energy bands and
occurs repeatedly with AE = J. This is easy to understand, if one considers the non-
interacting dimer limit, where at H = 0 the energy bands are highly degenerate with

energy values ; = —33 +n,n = 0,..., 5. For higher values of H, they Zeeman
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Figure 2.14: Dependence of the energy spectrum on the magnetic field in the vicinity of
critical and saturation field for N = 16 and A = 0.3.

split, butat H = 1, they crossat § = —35 +n,n=0,..., N, and it is of no surprise

that there are gaps in between. For A > 0, the bands broaden, and the gaps get
smaller but still remain clearly visible for A = 0.3.

For the specific heat, only the lowest gap, depicted in Fig.[2.14 is of major interest,
as it divides the low lying thermal excitations into two different regimes: low ener-
getic excitations within the lower band, and high energetic excitations of the order
of ], separated by the gap in the spectrum. This feature leads me to expect a double
maximum of the specific heat.
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The thermodynamic expressions determining the specific heat are (with kg = 1)

zaF

9B

F= —%ln(Z), S=p (2.21a)
Ce_ as :ﬁszln(Z)
9B op?
Using this formula and the partition function of a set of ¥, non-interacting di-
mers (2.9), the specific heat of a set of non-interacting dimer turns out as

(2.21b)

_ N p’ze_ﬁ’

2 [1+ e BU—H) 4 e=BU+H) 4 e—ﬁ]]z

[ +2(7 + H*) cosh(BH) + 2H’e ™ (2 + cosh(BH)) — 4JH(sinh(BH) |
(2.22)

which can be used for comparison.

Fig.[2.15 shows the specific heat of a N = 20 bond alternating Heisenberg chain at
A = 0.3 and three different magnetic fields. Figs.2.16 to[z.19]present the specific heat
at different values of the parameter A, grouped by magnetic field. For comparison,
the analytically calculated specific heat of a set of non-interacting dimers is drawn
as lines in all of these plots.

These figures show two temperature scales, one at T = 0.5] and the other one
order of magnitude smaller. The second, low temperature peak is clearly visible at
H =~ ] (only as shoulder for the largest A value A = 0.5) but vanishes for T < Herit
and T > Hg,.

With increasing A the double peak vanishes and becomes a broadened single
peak, which can be explained by the dissolution of the band structure.

At very low temperatures, the specific heat is rather proportional to the temper-
ature, which can be seen in ¢f. Fig. The deviations, especially at T — 0 are
only caused by the discreteness of the finite system. This linearly increasing spe-
cific heat showing gapless excitations suggests that this one-dimensional system is
a LuTTINGER liquid [15]. Other investigations confirm that the bond alternating
Heisenberg chain indeed is a LuTTINGER liquid [16, 17,118].

2.4.2 Qualitative Properties of the Dynamic Structure Factor

Before presenting and discussing the quantitative results of my calculations, I will
give an overview of the qualitative properties of the dynamic structure factor in an
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Figure 2.15: Specific heat of non-interacting dimers (lines) and for N = 20, A = 0.3] (data
points) vs. T.

external field. This purely qualitative discussion is mainly based on the analytical
results of the non-interacting dimers in Section2.2and the field de