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Zusammenfassung

In der vorliegenden Arbeit wird die Dynamik ein- bzw. quasi-eindimensionaler, antiferro-
magnetischer S = ½ Quantenspinsysteme über einen großen Bereich von Frequenzen, ex-
ternenMagnetfeldern und insbesondere endlichen Temperaturen untersucht. Die dynamis-
chen Strukturfaktoren werden durch numerische Berechnung von Spinoperator-Matrixele-
menten basierend auf allen Eigenenergien und Eigenfunktionen, die durch vollständige,
exakte Diagonalisierung gewonnen werden, bestimmt.

Der erste Teil dieser Arbeit untersucht die Dynamik der alternierenden, antiferromag-
netischen Heisenberg-Kette anhand von spezifischer Wärme und dynamischen Struktur-
faktoren für Ketten mit bis zu  Spins. Die Auswertung der Ergebnisse erfolgt unter An-
lehnung an die analytischen Ergebnisse des Grenzfalls der nicht wechselwirkenden Dimer,
was bis zu einem Verhältnis λ . 0.3 der Kopplungsstärken qualitativ gültig ist. Den Be-
trachtungen der spezifischenWärme und des integrierten Strukturfaktors folgt die Analyse
des Verhalten des zentralen, des Ein- und des Zweimagnonen-Peaks des longitudinalen
und transversalen Strukturfaktors in Abhängigkeit von Impulsübertrag, Temperatur und
Magnetfeld.

Der zweite Teil untersucht die rautenförmige Kette (engl.: distorted diamond chain),
eineVariante der antiferromagnetischenHeiseberg-Kettemit übernächster-Nachbar-Wech-
selwirkungmit bis zu  Spins. Die Auswertung stützt sich dabei auf die elementaren Blöcke
Dimer und Tetramer und behandelt sowohl die spin-flüssigen Phase als auch die Tetramer-
Dimer Phase. Die spin-flüssige Phase wird durch eine niederenergetische, effektive anti-
ferromagnetische Heisenberg-Kette und hochenergetischen Dimeranregungen charakteri-
siert, die durch einMagnetisierungsplateau bei 1/3 charakterisiert wird. Die Tetramer-Dimer
Phase besitzt einen zweifach (3N gerade) bzw. N/3-fach (3N ungerade) entarteten Grundzu-
stand und weist Solitonen als elementare Anregungen auf. Das Verhalten wird auf zwei
Pfaden im Phasendiagramm, die den Kosterlitz-�ouless Phasenübergang überqueren, an-
hand der spezifischen Wärme untersucht.

Schlagworte: Dynamischer Strukturfaktor, Heisenberg-Modell, Quantenspinsysteme

PACS: ..Jm, ..Pq, ..Gb, ..Nx





Abstract

In this thesis I examine the dynamics of one-dimensional or quasi one-dimensional, anti-
ferromagnetic, S = ½ quantum spin systems over a broad range of frequencies, external
magnetic fields and in particular finite temperatures. Dynamic structure factors are cal-
culated numerically from spin operator matrix elements based on all eigenenergies and
eigenfunctions obtained by full exact diagonalization.

In the first part of this thesis, I investigate the dynamics of the bond alternating Heisen-
berg antiferromagnetic chain by means of specific heat and dynamic structure factors for
chains of up to  spins. �e interpretation of the results is based on the analytic results of
the non-interacting dimer limit, which is qualitatively valid up to a coupling ratio λ . 0.3.
Following the discussion of the specific heat and the integrated (exclusive) structure factors,
I analyse the behaviour of the central, one-magnon, and two-magnon peak of the longitu-
dinal and transverse structure factor with respect to transferred momentum, temperature,
and magnetic field.

In the second part, I examine the distorted diamond chain, a variant of the Heisenberg
antiferromagnetic chain with next-nearest neighbour interaction with up to  spins. �e
analysis is based on the fundamental building blocks dimer and tetramer and covers the
spin-fluid as well as the tetramer-dimerized phase. �e spin-fluid phase is characterized by
a low energetic, effective Heisenberg antiferromagnetic chain and high energetic dimer ex-
citations, which are separated by a 1/3magnetization plateau. �e tetramer-dimerized phase
features a twofold (3N even) or N/3-fold (3N odd) degenerate ground state and show soli-
tons as low energetic excitations. By means of the specific heat, I investigate the behaviour
of the distorted diamond chain on two paths in the phase diagram crossing the Kosterlitz-
�ouless phase transition.

Keywords: dynamic structure factor, Heisenberg model, quantum spin systems
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C 

Introduction

Low dimensional antiferromagnetic quantum spin systems have been of interest
over the past years and even decades. �ey offer an approach to some real world
materials which are of limited complexity, which allows to unravel the details of
quantum effects.
Until recently, theoretical and experimental analysis were difficult to unite, be-

cause the theoretical investigations mainly covered the quantum properties, ignor-
ing thermal fluctuations. �is restriction effectively reduces the spectrum to low-
lying, excited states and therefore decreases the complexity of the system allowing
for approximate analytical treatment or numerical computations, e. g., using the
Lanczos algorithm. Experimental results, on the other hand, were obtained at fi-
nite temperature where thermal fluctuations may cover quantum effects.
With the increase of computational power, it is possible to performnumerical cal-

culations at almost arbitrary temperatures, using either approximate methods like
 applied to quantum transfer matrices[] or full exact diagonalization. �e
former allows for larger system sizes and is therefore very attractive to be used and
has already been applied in various works but lacks the ability to compute dynamic
features of the underlying quantum model. �e latter, being an exact procedure, is
rather limited in the system size, but given an appropriate systemwith short correla-
tions, it produces good results. Since full exact diagonalization offers the possibility
to investigate dynamic features, I opted for the latter for this thesis.
�e first system I will analyse in this thesis is conceptually very simple. �e bond

alternating Heisenberg chain, or short , consists of a set of coupled dimers,
i. e., pairs of strongly coupled spins ½ whose interaction is sufficiently weak to not





I

close the dimer gap. Technically speaking, the Hamilton operator

HBAHC = J
X

n even

`

~Sn ·~Sn+1 + λ~Sn+1 ·~Sn+2
´

(.)

is a generalization of the Heisenberg antiferromagnetic chain with alternating cou-
pling strengths with a relative factor of λ. Without loss of generality, this coefficient
is 0 ≤ λ ≤ 1. �e upper limit λ = 1 is well known as the Heisenberg antiferromag-
netic chain, and the lower limit λ = 0 is a simple set of non-interacting dimers. In
order to ensure sufficiently short correlations, I will limit my analysis to λ ≤ 0.3,
which is large enough to find real world materials, e. g., Cu(NO₃)₂ with λ ≈ 0.23,
and the experimental results support the computations of this work.
�e other system I will investigate is the distorted diamond chain, which can

be interpreted as a variation of the Heisenberg antiferromagnetic chain with next-
nearest neighbour interaction:

HDDC =
X

n=0,3,...

J1
`

~Sn ·~Sn+1 +~Sn+2 ·~Sn+3
´

+ J2 ~Sn+1 ·~Sn+2

+ J3
`

~Sn ·~Sn+2 +~Sn+1 ·~Sn+3
´

(.)

where J1 and J2 correspond to the nearest neighbour and J3 and 0 (one next-nearest
neighbour interaction is not present) correspond to the next-nearest neighbour in-
teractions.
�e distorted diamond chain exhibits some interesting physical properties. For

small J1 and J3 compared to J2, the quantum phase diagram features a spin-fluid
phase with dimers along the J2 bonds and a Heisenberg antiferromagnetic chain on
the spins in between. For larger J1, J3 < J2 the system enters a tetramer-dimer phase
with tetramers formed from J2 bonds with the two surrounding spins alternating
with dimers on J2 bonds. In contrast to the spin-fluid phase, low-lying excitations
in this phase are found to be s.
Furthermore, the distorted diamond chain features a magnetization plateau at

⁄ magnetization in the spin-fluid phase, which originates from the low energetic
Heisenberg antiferromagnetic subsystem at its full magnetization.
Onematerial currently of interest which can be described by a distorted diamond

chain is azurite, and first experimental results support the calculations of this work.
�e dynamics of such quantum systems are best discussed in terms of the dy-

namic structure factor, i. e., the Fourier transform of the time dependent spin cor-
relation function. Experimentally, the dynamic structure factor is proportional to
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the spectral weight of the cross section of magnetic inelastic neutron scattering.

Sα(q, ω) ∝
X

n,i, f

e
−

βEi
kBT

˛

˛

˛
〈 f |eiqnSαn|i〉

˛

˛

˛

2

δ
`

ω− (E f − Ei )
´

(.)

Furthermore, given the full spectrum of these Hamiltonians the specific heat,
which gives among others clues with respect to the excitation gap and the level dis-
tribution, can be computed for arbitrary temperatures and magnetic fields.
In Chapter  I will investigate and discuss the properties of the bond alternat-

ing Heisenberg chain. �e distorted diamond chain will be discussed in Chapter .
Finally, Chapter A gives a short view on the numerical methods.
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C 

�eBond Alternating Heisenberg Chain

. Introduction

�ebond alternatingHeisenberg chain with periodic boundary conditions is a vari-
ant of the isotropic Heisenberg antiferromagnetic chain where every second bond
has got a coupling strength J′ = λJ. Additionally, these two alternating couplings
are characterized by two distances. First, the lattice constant b is the inter-dimer
distance, i. e., the distance between equivalent spins in neighbouring dimers, and
second, the intra-dimer distance d, which is the distance between the two spins of

the same dimer. In this work I will mostly consider d = b
2
, although in real world

materials generally independent and different d and b
2
occur.

b b b b b b b b
J J′

Figure . : Schematic diagram of the bond alternating Heisenberg chain

HBAHC =
X

j

`

J~S2 j ·~S2 j+1 + J′~S2 j+1 ·~S2 j+2
´

(.a)

=
X

j

J
`

~S2 j ·~S2 j+1 + λ~S2 j+1 ·~S2 j+2
´

(.b)
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In the special case λ = 1, this system is equal to the ordinary, isotropicHeisenberg
antiferromagnetic chain, but for other values of λ, it is obvious that the translational
symmetry is reduced from a one spin to a two spin elementary cell. �is feature
is eminently prominent for λ = 0 where the bond alternating Heisenberg chain
decomposes into a set of non-interacting dimers.
In contrast to the isotropic Heisenberg antiferromagnetic chain, which is gapless,

the bond alternating Heisenberg chain is gapped for λ 6= 1. �e lowest excited state
is an Stot = 1 magnon band. Higher excited states have been investigated in detail
in [].
�e Hamilton operator of the bond alternating Heisenberg chain shows several

conserved quantities. From rotational invariance follows immediately

ˆ

H , Stot
˜

= 0 (.a)
ˆ

H , Sztot
˜

= 0 (.b)

As result, the Hilbert space can be divided into subspaces of constant, total spin
projection Sztot.
Furthermore, the Hamilton operator is translationally invariant, implying com-

mutation of Hamilton and translation (by two spins, hence the subscript  on T2 )
operators

ˆ

H , T2

˜

= 0. (.)

As a consequence, it is possible to find a set of common eigenstates of both operators

H|i, q〉 = Ei|i, q〉 (.a)

T2|i, q〉 = e
iqb|i, q〉. (.b)

where the newly introduced variable q is the wave vector with respect to the lattice
of dimers with lattice constant b, where q can take the values

q =
1

b

`

0 . . . 2π
´

(.)

Awave vector definition adapted to homogeneously interacting (λ = 1) and equally
spaced (d = b/2) N spins would give q̃ = 1

b/2
(0 . . . 2π ) = 1

b
(0 . . . 4π ). �e transition

from the dimer lattice to become the homogeneous chain implies a shi
ing of the
second (degenerate) mode as second half of the larger Brillouin zone of the chain.
I will also use the larger wave vector range q = 1

b
(0 . . . 4π ) for dimers instead of

using two degenerate modes in the basic cell of the dimer lattice.


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For an N-spin chain with N
2
cells of size b, N

2
translations reproduce the original

state, thus T
N
2
2 ≡ 1. �is gives the following constraint on the wave vector q

q =
2π
N
2
b
m, m ∈ {0, . . . , N

2
}. (.)

However, some spin configurations, e. g., ↑↓↑↓↑↓ · · · ↑↓, show a higher transla-
tional symmetry as they are already reproduced a
er N

2Pa
, Pa ≥ 1 translations T2,

so not all values of q occur with the same number of eigenstates.
�e respective eigenstates are then found to be

|i, q〉 =
q

2Pai
N

N
2Pai

−1
X

j=0

e
iqj T

j
2|ai〉. (.)

Here, |ai〉 denotes a representing spin configuration, and the factor Pai accounts for
a possibly higher symmetry of the spin configuration ai.
�e spectrum of the bond alternating Heisenberg chain as well as the dynamic

structure factor at low temperatures (T ≪ J ) have been studied before by employ-
ing various techniques including random phase approximation [], perturbation
theory [], and linked cluster expansion [, , ]. �e following features of the
spectrum have been found:

() A gapped, propagating one-magnon excitation above the singlet ground state,

() a two-magnon continuum as well as very small intensity higher magnon con-
tinua, and

() one singlet and one triplet bound state below the two-magnon continuum.
�ese bound states are only distinguishable from the continuum for wave vec-
tors close to q = π.

Studies of the dynamic structure factor have shown that the transition from the
singlet ground state to the one-magnon triplet is the dominant excitation at low
temperatures and low magnetic fields. For the values of λ 6= 0 I will consider, only
the two-magnon continuum atω ≈ 2J quantitatively is of some importance, higher
contributions are negligible.
Numerical calculations employing full, exact diagonalization require— likemany

other methods as well— a finite size system with a fixed number of particles N.
For full, exact diagonalization the limit imposed on N by the available computing


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Figure .: Densitiy of states for N = 20, λ = 0.30, q = π

resources is rather low compared to , and so I need to ensure that the in-
vestigated system is dominated by short range interactions. In Figs. . to ., the
density of states of the bond alternating Heisenberg chain is depicted for q = π,
N = 20, λ = 0.30 and N = 16, λ = 0.30, λ = 0.45 and λ = 0.60. At λ = 0.30 the
band structure can be clearly seen for both N = 20 and N = 16, but at higher val-
ues of λ the band structure is blurred (λ = 0.45, Fig. .) or completely destroyed
(λ = 0.60, Fig. .). It is therefore valid to assume dominating short range interac-
tions for λ . 0.30. Experimental results with neutron scattering have confirmed
my results. []

. �e non-interacting dimer limit

As mentioned before, the bond alternating Heisenberg chain reduces to a set of
non-interacting dimers for λ = 0. �e Hamilton operator becomes block-diagonal,
decoupling into a sum of non-interacting two-spin systems. �e eigenstates of each


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Figure .: Density of states for N = 16, λ = 0.30, q = π

dimer are found to be a singlet ground state at energy ε0 = − 3
4
J and a triplet excited

state at energy ε0 + J = 1
4
J, and the partition function is z = 1 + 3e−βJ . �e overall

ground state is a product of dimer singlets, i. e., a singlet with energy

E0 = −N

2

3

4
J ; (.)

the overall partition function is

Z = (1 + 3e
−βJ

)
N
2 . (.)

�en the dynamic structure factor turns out to be

Szzλ=0(q, ω) =
1
2
S+−λ=0(q, ω) =

1
2
S−+
λ=0(q, ω) =

B0(q, β)δ(ω) + B1(q, β)
ˆ

δ(ω− J ) + e
−βJδ(ω + J )

˜

(.a)


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Figure .: Density of states for N = 16, λ = 0.45, q = π

with

B0(q, β) =
1 + cos(qd)

3 + eβJ
1

2
(.b)

B1(q, β) =
1− cos(qd)

3 + eβJ
eβJ

4
(.c)

�e factors Bℓ denote the weight of transitions with ω = ±ℓJ. �us, B0 corresponds
to the central peak, which in this system can only occur for transitions within the
triplet excited state. B1 corresponds to the sum of the one-magnon peak, i. e., exci-
tations from the singlet ground state to the triplet excited states and the correspond-

ing inverse transitions, decorated with a factor e−βJ . Higher magnon peaks are not
present in the non-interacting dimer limit due to the missing coupling between the
dimers.
For q = 0, the central peak is maximal and the one-magnon peak vanishes, while

for q = 2π it is vice versa, the central peak vanishes and the one-magnon peak is
maximal. Concerning the temperature dependence, the central peak vanishes for


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Figure .: Density of states for N = 16, λ = 0.60, q = π

T = 0 and increases with higher T towards its maximum value at T → ∞. �e one-
magnon peak on the other hand has itsmaximumvalue atT = 0 and decreases with
higherT towards its limit atT → ∞. Limiting values for these weights of particular
interest are

B0(q = 0, β) =
1

3 + eβJ
B0(q =

2π

b
, β) = 0 (.a)

B1(q = 0, β) = 0 B1(q =
2π

b
, β) =

1

3 + eβJ
eβJ

2
(.b)

B0(q, T = 0) = 0 B0(q, T → ∞) =
1 + cos(qd)

8
(.c)

B1(q, T = 0) =
1− cos(qd)

4
B1(q, T → ∞) =

1− cos(qd)

16
(.d)

Central and one-magnon peak have equal weight for cos(qd) = 1−2e−βJ

1+2e−βJ or βJ =

ln
“

2
1+cos(qd)

1−cos(qd)

”

.
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Introducing an external magnetic field, isotropy is lost and these formulae be-
come field dependent. However, the extended formulae will be presented in con-
text with the discussion of the field dependence of the dynamic structure factor in
Section..
Although these formulae are only strictly valid for λ = 0, they set the frame for

the behaviour in the range 0 < λ < 1 as well. Due to the complete degeneracy
of states in the non-interacting dimer limit, the central and one-magnon peaks are
sharp for arbitrary temperature. With increasing inter-dimer coupling, the peaks
broaden, but however, the exclusive structure factor defined in the next section can
still be related to the results in the non-interacting dimer limit.

. �e dynamic structure factor in an isotropic set-up

In an isotropic set-up, the three dynamic structure factors Sx(q, ω), Sy(q, ω), and
Sz(q, ω) have equal values and it is therefore sufficient to calculate Sz(q, ω), which
alleviates the numerical problem in the sense that this structure factor only requires
a diagonal matrix operation, reducing the order of complexity.
On theway from the non-interacting dimer limit to the dynamic structure factors

for interacting dimers, I first want to discuss the exclusive structure factors, i. e., the
integrated structure factor over one peak.

In(q) =

(n+½)J
Z

(n−½)J

dω S(q, ω) (.)

For inter-dimer couplings λ . 0.5 the band gap is large enough to specify the
boundaries between the peaks unambiguously.
In Fig. ., the dependence of the exclusive structure factors In on themomentum

transfer q is shown for a system of  spins with λ = 0.3. For comparison, the solid
lines denote the analytic solution in the non-interacting dimer limit (non-zero for
n = 0 and n = 1 only). Since I0 vanishes for q = 2π, and I1 and I2 vanish for q = 0,
I shall focus on q = π in the following discussion. Other values of q are not easily
comparable for finite chains, because the allowed q-values change with the system
size, and thus the results for different system sizes cannot be compared directly.
For the same system, the dependence of the exclusive structure factors In on the

temperature for q = π is shown in Fig. .. Again, the solid lines denote the ana-
lytic result in the non-interacting dimer limit. As to the numerical data I could not
determine a difference for systems of  and  spins.
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Figure .: Exclusive structure factors vs. q for N = 16, λ = 0.3, and the two temperatures
T = 0.5 and T = 2. �e solid line corresponds to the analytic solution for λ = 0.
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Figure .: Exclusive structure factors In vs. T for N = 16, λ = 0.30, and q = π. �e solid
line corresponds to the analytic solution for λ = 0.

�e good conformance of the data points with the analytic results for λ = 0 con-
firms the correctness of the numerical approach and demonstrates that many body
quantum effects, i. e., dimer interactions, are not important for the static quantities
I0(q) and I1(q) up to λ . 0.3J.
An overall view of the dynamic structure factor Szz(q, ω) is shown in Fig. .. As

already clear from Figs. . and ., the weight of the central peak is maximal at q =
0 and vanishes at q = 2π, whereas the weights of the one- and two-magnon peaks
vanish at q = 0 and are maximal at q = 2π. Similarly, the central peak increases
with growing temperature whilst the one- and two-magnon peaks decrease.

�e most prominent feature of the dynamic structure factor is the one-magnon
peak, whose evolution with temperature is illustrated in Fig. . for λ = 0.3 and
N = 16. With increasing temperature, the peaks extend over a nearly constant
range in frequency, although the decrease of the maximum of intensity formally
implies an increase in the width at half maximum. For both q = π and 2π the posi-
tion of themaximum shi
s to lower frequencies, but the shape of the peak develops
an asymmetry with more intensity on the high frequency side. �is effect is most
pronounced for q = 2π, i. e., the wave vector of the energy gap, and may not be
noticeable at all for small values of q, cf. Fig. .. �us the detailed description of





T       -
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and (b) T = 2.0. �e two-magnon peak has been enlarged by a factor  for
visibility.
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Figure .: Szz(q, ω) one-magnon peak. �e resolution ∆ω is 0.02,

the line shape provides an understanding of the intriguing observation that the gap
energy seems to increase with temperature [] (comparable to an analogous obser-
vation in theHaldane chain [, , ]). It would certainly be interesting to compare
the line shape to the result of the theoretical approach of [], however, withN = 16
a continuous line shape results only for temperatures above the energy gap and is
thus in the non-universal approach of []. When looking at themicroscopic origin
of the peak broadening, one finds that, e. g., at T = J the basic transition from the
ground state to the one-magnon excitation at q = π is responsible for  of the
weight at that frequency and that for the neighbouring frequencies transitions start-
ing from the one-magnon band contribute about  of the total weight, whereas
the by far largest part of the intensity originates from transitions starting at states
with two ore more excited dimers.
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�e one-magnon peak represents transitions from one band to the next higher
band, the central peak represents transitions within one single band. Compared
to the central peak, the one-magnon peak is larger— especially at lower temper-
atures—because it includes transitions from the singlet ground state, which are
present without thermal excitation.

Figure .: Szz(q, ω) central peak. �e resolution ∆ω is 0.02.

Fig. . illustrates for λ = 0.3, N = 16, and q = π/4 and π the evolution of
the central peak with temperature. At zero temperature, the central peak vanishes
(cf. Fig. .). At low temperatures and λ ≪ 1, the shape of the central peak is
dominated by transitions within the weakly interacting one-magnon band with q-
independent matrix elements, seen as spikes in the T = 0.5J curve of Fig. .b.
With increasing temperature, transitions within higher bands become more and
more relevant, which can be seen in the increasing background in Fig. .b. �e
physical process may be thought of as an external probe accelerating a thermally
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populated excitation and is thus similar to well known processes in soliton bear-
ing one-dimensional magnets []. As in these models, the limiting form of the
structure factor is

Szz(0)(q, ω) ∝ e
−βJ 1

q

1− ω2

ω2
m(q)

θ
`

ω2
m(q)− ω2

´

(.)

with ωm(q) = λ sin( q

2
) just from phase space effects (a small variation with tem-

perature resulting from the dispersion has been neglected). Numerically the cut-off
frequency of the central peak is found to remain localized atω ≈ ωm(q) for all wave
vectors and temperatures (apart from corrections of O(λ2 )). �e line shape, how-
ever, cannot be expected to be reproduced because only a few discrete transitions
in the one-magnon band are available for N = 16 and dominate the spectrum at
the lowest temperatures. Nevertheless, for q = π, T = 0.5J the inverted line shape
of eq. (.) starts to become visible even with this restriction. Between medium
(T = 0.5J ) and high (T = 4J ) temperatures a crossover of the line shape from
square like to Gaussian is observed for small wave vectors.
At zero temperature the central peak vanishes (cf. Fig. .). At low temperatures,

transitions within the one-magnon band set in first, in Fig. .b clearly seen as
peaks of the T = 0.5 solid curve. With increasing temperature, transitions within
higher bands become more and more relevant, which can be seen in increasing
background in Fig. .b.
Fig. . shows the two-magnon peak at q = π (where the bound states are most

clearly visible) and q = 2π for λ = 0.3J and N = 16 in the temperature range T =
0.5 . . . 2J (note the enhancement in intensity scaling compared to the central and
one-magnon peak). For q = π the low temperature spectra are entirely governed by
the triplet bound state at ω ≈ 1.938 . . . J, whereas the continuum (whose intensity
at T = 0 is smaller by a factor of λ2 ) is of no significant role. �e bound state stays
clearly visible up to T ≈ J and then disappears in in parallel with a rapid decrease
in the integrated intensity of the two-magnon peak for temperatures above T ≈ J
(see also Fig. .). �is reflects the fact that the dimers become independent of each
other with increasing temperature such that the correlations between spins of two
different dimers required for a finite two-magnon peak vanish.
Fig. . illustrates a comparison between the results for N = 16 and N = 20.¹

In going from N = 16 to N = 20, some improvement is obtained: the continuum
becomes smoother and the bound state less dominant, but the main characteristics
remain unchanged. �erefore, the increase in particle number is not crucial. �e

. Available only for q = π and the limited frequency range 1.84J < ω < 2.02J.
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Figure .: Szz(q, ω) two-magnon peak. �e resolution ∆ω is 0.02.

spectra invoke the impression that at intermediate temperatures additional transi-
tions— in particular the singlet state at ω ≈ 1.868J, which could be reached by a
from a thermally excited triplet state—become visible. �is, however, is mislead-
ing as the comparison between the data for N = 16 and N = 20 shows: a change in
the number of spins leads to a different set of allowed wave vectors and therefore,
from the accompanying change the initial and final energies, to trivially different
excitation frequencies— although the energies at, e. g., q = π are remarkably inde-
pendent of N ). For q = 2π there is no bound state; the two discrete transitions at
T ≈ 0 in Fig. .b are the remainder of the continuum for the limited number of
 spins.
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Figure .: Szz(π, ω) two-magnon peak, comparison ofN = 16 andN = 20. �e resolution
∆ω is 0.02.

. �e dynamic structure factor in an external magnetic field

An external magnetic field breaks full rotational symmetry, and thus allows me to
further investigate the properties of the bond alternating Heisenberg chain, as the
dynamic structure factors Sxx(q, ω) and Syy(q, ω) are not linearly dependent on the
longitudinal structure factor Szz(q, ω) any more. Typically, one is interested in the
transverse dynamic structure factor

Sxx(q, ω) + Syy(q, ω) =
1

2

`

S+− + S−+
´

(.)

at a given frequency ω. Given the form of the Hamilton operator in terms of S±

and Sz, it is reasonable to evaluate S+−(q, ω) and S−+(q, ω) instead of Sxx(q, ω) and
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Syy(q, ω). However, S+−(q, ω) and S−+(q, ω) are still related by detailed balance

S−+
(q, ω) = e

−βω S+−(−q,−ω) (.)

and thus it is only necessary to calculate S+−(q, ω) and S−+(q, ω) for positive fre-
quencies ω > 0.
In this work, I shall restrict my interest on the influence of static, homogeneous

magnetic fields. An inhomogeneous field breaks translational symmetry, and a dy-
namic field adds time evolution, but both effects would go beyond the scope of this
work.

In the presence of an external, static, homogeneous magnetic field, a field depen-
dent term

HZeeman = −
X

i

H Szi (.a)

= −H Sztot (.b)

is added to the Hamilton operator (.).
Whereas this additional term does not change the wave functions of the eigen-

states (eq. (.)) with Sz as good quantum number, the energy levels are shi
ed
simply by the Zeeman term according to their total spin projection Sztot, −Stot ≤
Sztot ≤ Stot, leading to several effects. Eventually, the relative decrease of energy lev-
els with higher magnetization, i. e., total spin projection Sztot leads to a level crossing
of states with different magnetization Sztot.
It is particularly noteworthy that this effect also applies to the ground state, mean-

ing on the other hand, that the ground state changes with the strength of the exter-
nal magnetic field. �e first change of the ground state for a gapped system like
the bond alternating Heisenberg chain with λ 6= 1 occurs at finite field, namely the
lower critical field

Hcrit = Emin,1 − Emin,0, (.a)

where Emin,n denotes the minimal energy level in the subspace with total spin pro-
jection Sztot = n, minimizing over all wave vectors q. In standard models such as the
bond alternating Heisenberg chain, subsequent changes occur (in total N/2) at

Hstep,n = Emin,n − Emin,n−1. (.b)

Let me note that models exist where 1
2
(Emin,n+1 − Emin,n−1 ) < Emin,n − Emin,n−1

resulting in magnetization steps of  units.[] �e last change—and thus satura-
tion— is achieved when the ground state becomes fully polarized:

Hsat = Emin,N − Emin,N−1. (.c)
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Table .: Critical fields for λ = 0.3 and N = 12, 16, and 20.

Magnetization N = 12 N = 16 N = 20

1 0.81670 0.81685 0.81684
2 0.90250 0.86222 0.84431
3 1.04600 0.95459 0.90490
4 1.17713 1.06362 0.98724
5 1.26220 1.16169 1.07399
6 1.3 1.23446 1.15234
7 1.27964 1.21484
8 1.3 1.25956
9 1.28731
10 1.3

For the bond alternatingHeisenberg chain, the ground state for zero field is found
at q = 0. For the ground states with Emin,1 and Esat this can be shown easily as well.
�e first excited band is an S = 1 magnon with dispersion ∼

`

1 − cos(
q

2
)
´

, so
the lowest lying state (the next ground state, energy Emin,1 ) again is found at q = 0.
Finally, by symmetry of its spin configuration, the saturation ground state (energy
Esat ) is found at q = 0, too.
�e total spin projection Sztot of the ground state reflects themagnetizationM(H ).

For a finite system size N, the range between the first critical field Hcrit,1 —which
is obtained as a power series in λ from []— and the saturation field Hsat consists
of discrete steps, whereas for an infinite chain, the change of the magnetization is
continuous. Outside the interval from Hcrit,1 to Hsat, the magnetization is constant.
In this system, the first critical field Hcrit,1 is a quantum critical point, analogous

to what has been discussed in other gapped one- or quasi one dimensional systems
[the Haldane chain, the spin½ ladder and two-dimensional dimers] in an external
magnetic field, where this is known as ‘Bose-Einstein-condensation of magnons’.
In this sense, the bond alternating Heisenberg chain is very interesting, because it
offers a simpler model for the complex behaviour of the aforementioned systems.
Of course, these formulae only hold true as long as the energy levels are finitely

spaced such that the change in the ground state always fulfils ∆Sztot = 1. �is con-
straint is satisfied for the bond alternating Heisenberg chain as long as λ 6= 0 (and,
of course λ 6= 1). For λ = 0, the chain breaks down to a set of non-interacting
dimers, which all change from a singlet to a triplet ground state at the same field. In
other words, all critical fields of eq. (.) coincide in one single point, where the
magnetization jumps from zero to its maximal value.
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Figure .: Magnetization curve of the bond alternating Heisenberg chain

For fields larger than the saturation field, the system behaves like a ferromagnet.
Again, the energy spectrum is gapped, but this time the lowest excitation is a ferro-
magnon with

Sztot = NS− 1. (.)

�is ferromagnon has the spectrum

ω(q) = H − J
`

1 + λ
´

cos(q) (.)

From the condition ω > 0 we obtain the saturation field

Hsat =
`

1 + λ
´

J. (.)

.. Specific Heat

�e level spectrum in Fig. . features an interesting gap in the area betweenH = J
and Hsat and E − E0 < J. �is gap is an image of the gaps of the energy bands and
occurs repeatedly with∆E = J. �is is easy to understand, if one considers the non-
interacting dimer limit, where atH = 0 the energy bands are highly degenerate with
energy values E

J
= − 3

4
N
2
+ n, n = 0, . . . , N

2
. For higher values of H, they Zeeman
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Figure .: Dependence of the energy spectrum on the magnetic field in the vicinity of
critical and saturation field for N = 16 and λ = 0.3.

split, but atH = 1, they cross at E
J
= − 3

4
N
2
+ n, n = 0, . . . , N, and it is of no surprise

that there are gaps in between. For λ > 0, the bands broaden, and the gaps get
smaller but still remain clearly visible for λ = 0.3.
For the specific heat, only the lowest gap, depicted in Fig. . is of major interest,

as it divides the low lying thermal excitations into two different regimes: low ener-
getic excitations within the lower band, and high energetic excitations of the order
of J, separated by the gap in the spectrum. �is feature leads me to expect a double
maximum of the specific heat.
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�e thermodynamic expressions determining the specific heat are (with kB ≡ 1)

F = − 1

β
ln(Z ), S = β2

∂F

∂β
(.a)

C = −β
∂S

∂β
= β2

∂2 ln(Z )

∂β2
(.b)

Using this formula and the partition function of a set of N/2 non-interacting di-
mers (.), the specific heat of a set of non-interacting dimer turns out as

C =
N

2

β2e−βJ

ˆ

1 + e−β( J−H ) + e−β( J+H ) + e−βJ
˜2

h

J2 + 2
`

J2 + H2
´

cosh(βH ) + 2H2
e
−βJ

`

2 + cosh(βH )
´

− 4JH(sinh(βH )
i

(.)

which can be used for comparison.
Fig. . shows the specific heat of aN = 20 bond alternating Heisenberg chain at

λ = 0.3 and three differentmagnetic fields. Figs. . to . present the specific heat
at different values of the parameter λ, grouped by magnetic field. For comparison,
the analytically calculated specific heat of a set of non-interacting dimers is drawn
as lines in all of these plots.
�ese figures show two temperature scales, one at T ≈ 0.5J and the other one

order of magnitude smaller. �e second, low temperature peak is clearly visible at
H ≈ J (only as shoulder for the largest λ value λ = 0.5) but vanishes for T ≪ Hcrit

and T ≫ Hsat.
With increasing λ the double peak vanishes and becomes a broadened single

peak, which can be explained by the dissolution of the band structure.
At very low temperatures, the specific heat is rather proportional to the temper-

ature, which can be seen in cf. Fig. .. �e deviations, especially at T → 0 are
only caused by the discreteness of the finite system. �is linearly increasing spe-
cific heat showing gapless excitations suggests that this one-dimensional system is
a L liquid []. Other investigations confirm that the bond alternating
Heisenberg chain indeed is a L liquid [, , ].

.. Qualitative Properties of the Dynamic Structure Factor

Before presenting and discussing the quantitative results of my calculations, I will
give an overview of the qualitative properties of the dynamic structure factor in an


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Figure .: Specific heat of non-interacting dimers (lines) and for N = 20, λ = 0.3J (data
points) vs. T.

external field. �is purely qualitative discussion is mainly based on the analytical
results of the non-interacting dimers in Section. and the field dependent energy
spectrum of a single dimer depicted in Fig. ..
As already mentioned in the introduction of this section, the external magnetic

field breaks the rotational symmetry, thus splitting the longitudinal structure factor
Szz(q, ω) and the transverse structure factors S+−(q, ω) and S−+(q, ω) into inde-
pendent quantities.
From the experimental point of view, the first step is to observe the sumof both—

longitudinal and transverse— structure factors. However, each of them is a separate
contribution with its own characteristic and needs to be discussed separately. At a
later stage, they will be distinguishable in experiments, too, e. g., using polarized
neutrons.
In the introduction I already pointed out that computational resources impose

restrictions on the system size. In this specific context this means that N = 12 can
be done for all choices of parameters and for a large number of parameters. N = 16
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Figure .: Specific heat vs. T for N = 20, H = 0.8J and λ = 0.1, 0.3, and 0.5.
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Figure .: Specific heat vs. T for N = 20, H = 0.9J and λ = 0.1, 0.3, and 0.5.
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Figure .: Specific heat vs. T for N = 20, H = 1.0J and λ = 0.1, 0.3, and 0.5.
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Figure .: Specific heat vs. T for N = 20, H = 1.1J and λ = 0.1, 0.3, and 0.5.
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Figure .: Specific heat vs. T in the low temperature regime for λ = 0.3, N = 20, and
H = 1.1J.

can be done for the longitudinal structure factor for all choices of parameters, but
only for low temperatures (T . 0.1) for the transverse structure factor. Finally, for
large temperatures N = 20 can only be done for the longitudinal structure factor,
whereas the transverse structure factor is limited to low temperatures (T . 0.1J )
and a limited frequency range.
�e next parameter to be discussed is the wave vector of a transition, i. e., the

difference of the wave vectors of the initial and final states. Due to the dimerized
structure of the alternating Heisenberg chain the periodicity of the wave vector is
4π instead of 2π, which means that structure factors for q = 0 and q = 2π are differ-
ent. �is is largely due to the ‘dimer structure factor’ which maps the geometrical
structure of the array. �is factor, however, varies with the excitation energy : the
standard expression 1−cos(qd) is true only for the one-magnon excitation, whereas
1 + cos(qd) holds for the central excitation, which can also be seen in the analytic
solution of the non-interacting dimers in Section.. �erefore, q = 0 emphasizes
the central and suppresses the one-magnon peak, and q = 2π suppresses the cen-
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Figure .: Magnetic field dependence of single dimer transitions contributing to
(a) Szz(q, ω) and (b) S+−(q, ω). Solid lines denote dipole transitions between
singlet and triplet states (called one-magnon peak in this work), dashed lines
denote weak intra-band transitions within the triplet (central peak). Szz is dom-
inated by contributions in the frequency range ω ≈ J, S+− in the frequency
range ω ≈ J ± H.

tral peak and emphasizes the one-magnon excitations. �e intermediate case q = π
shows both contributions.
�e central peak results for vanishingmagnetic field from transitions connecting

excited states of a dimer. For H 6= 0 it is therefore found at ω ≈ 0 for Szz and at
ω = +H for S+− (ω = −H for S−+ ). �e one (two) quantum transition at zero field
results from exciting one (two) dimers, correspondingly, the one (two) quantum
transitions relate to ω ≈ J (ω ≈ 2J ) or ω ≈ J ± H (ω ≈ 2J ± H ) respectively.
For the longitudinal structure factor, this gives the simple relations between ω ≈ 0
and the central peak, ω ≈ J and the one-magnon peak, as well as ω ≈ 2J and the
two-magnon peak.
�e transverse structure factor on the other hand has transitions with ∆Sztot =

±1 and thus experiences a magnetic field dependence of the frequency originating
from the Zeeman split. Albeit this frequency dependence is continuous, one can
say as a rule of thumb that for small fields, ω ≈ 0 is related to the central peak,
ω ≈ J to the one-magnon, and ω ≈ 2J to the two-magnon peak. Between the
critical and saturation field, S+− and S−+ must be accounted differently. For S+−,
ω ≈ J is related to the central peak, ω ≈ 2J to the one-magnon, and ω ≈ 3J to
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the two-magnon peak. For S−+ on the other hand, ω ≈ −J is related to the central
peak, ω ≈ 0 to the one-magnon, and ω ≈ J to the two-magnon peak.
Although this frequency shi
 might propose to plot the transverse structure fac-

tors vs. ω ∓ H in order to follow the transition strength for any given level, this
misses one important point which can only be guessed with difficulty from these
plots: Increasing field changes the Boltzmann factors of the states, and new states
arise while previous ones become suppressed, resulting in an essentially unchanged
excitation energy. �erefore it makes more sense to look at the structure factor vs.
ω behaviour.
�e transverse structure factor is the relevant quantity for the intensity of low

energetic transitions in the ground state band, whereas the longitudinal structure
factor is the important quantity for one quantum excitations, cf. Section...
I will discuss the temperature dependence of the dynamic structure factor in

detail in Section.. for zero temperature and Section.. for finite temperature.
With the aim to discuss how temperature broadens the quantum singularities or,
the other way round, how low temperatures make the quantum broadening visible.
Now I again discuss the decoupled dimer limit. Particularly, a new, long range

order term is added to the central peak contribution of the longitudinal structure
factor :

Szzλ=0(q, ω) = Bzz
0 (q, β, H )δ(ω)

+ Bzz
1 (q, β, H )

ˆ

δ(ω− J ) + e
−βJδ(ω + J )

˜

(.a)

S+−λ=0(q, ω) = 2
h

B+−
0 (q, β, H )δ(ω− H )

+ B+−
1 (q, β, H )

ˆ

δ(ω− H − J ) + e
−β( J−H )δ(ω− H + J )

˜

i

(.b)

S−+
λ=0(q, ω) = S+−λ=0(−q,−ω) (.c)

with

Bzz
0 (q, β, H ) =

1 + cos(qd)

2

»

cosh(βH )

1 + eβJ + 2 cosh(βH )

+

`

N
2
δq,0 − 1

´`

cosh(2βH )− 1
´

`

1 + eβJ + 2 cosh(βH )
´2

–

(.a)

Bzz
1 (q, β, H ) =

1− cos(qd)

4

eβJ

1 + eβJ + 2 cosh(βH )
(.b)
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B+−
0 (q, β, H ) =

1 + cos(qd)

4

1 + eβH

1 + eβJ + 2 cosh(βH )
(.c)

B+−
1 (q, β, H ) =

1− cos(qd)

4

eβJ

1 + eβJ + 2 cosh(βH )
(.d)

(.e)

and the limits

Bzz
0 (q, T = 0, H ) = B+−

0 (q, T = 0, H ) =
1 + cos(qd)

2

8

>

<

>

:

0, H < J
1
2
, H = J

1, H > J

(.a)

Bzz
1 (q, T = 0, H ) = B+−

1 (q, T = 0, H ) =
1− cos(qd)

4

8

>

<

>

:

1, H < J
1
2
, H = J

0, H > J

(.b)

Bzz
0 (q, T → ∞, H ) = B+−

0 (q, T → ∞, H ) =
1 + cos(qd)

8
(.c)

Bzz
1 (q, T → ∞, H ) = B+−

1 (q, T → ∞, H ) =
1− cos(qd)

16
(.d)

Bzz
0 (q, β, H → ∞) = B+−

0 (q, β, H → ∞) =
N

4
δq,0 (.e)

Bzz
1 (q, β, H → ∞) = B+−

1 (q, β, H → ∞) = 0 (.f )

�e magnetic field dependence of the structure factors of the non-interacting
dimers for temperatures T = 0.1J, 0.5J, and 2J (solid lines), along with the nu-
merically computed exclusive structure factors of the bond alternating Heisenberg
chain for λ = 0.3 (data points) is presented in Figs. . (also T = 0.02J ) and
.. For higher temperatures (T & 0.5J ), the analytic solution for the dimers!non-
interacting non-interacting dimers conforms to the actual data for λ = 0.3 quite
well, reinforcing the validity of the expansion of the above discussion to the bond
alternating Heisenberg chain. For lower temperatures however, the thermal smear-
ing decreases and the quantum effects of the finitely coupled spins become visible
as the difference between the analytic and the numeric solution in Fig. . (a). In
the limit T = 0 and λ = 0, both thermal and quantum smearing vanish, and the
shape of the structure factor is a perfect step.
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.. �e Dynamic Structure Factor at Zero Temperature

Following the qualitative presentation of the previous section, I will now now dis-
cuss the properties of the dynamic structure factor at zero temperature. In this limit
thermal effects vanish leaving room for quantum effects.
At zero temperature thermal excitations simply do not exist, whichmeans on the

other hand that all transitions contributing to the dynamic structure factor must
involve the ground state, which in this model has got momentum q = 0. From the
discussion in the previous section, it is known that transitions in the ground state
band are visible in the transverse structure factor and lie in the central peak, and
that the central peak is most prominent when ∆q = 0. Hence, the regime of major
interest involves q = 0 and ∆q = 0. Furthermore, the absence of thermally excited
states restricts the transition frequency to positive values ω > 0.
As long as the magnetic field stays below the critical field, no qualitative change

in the structure factors can be observed. For S+− and S−+ the structure factors are
shi
ed in energy by +H resp. −H (corresponding to the Zeeman levels), but they
keep their shape, because the states involved remain the same.
At the critical magnetic field Hcrit a drastic change of the dynamic structure fac-

tors sets in, which is caused by a change of the ground state from a singlet (|0, 0〉) to
the Sz = 1 branch of a triplet (|1,+1〉). With increasing magnetic field the ground
state changes through all magnetizations |S,+S〉 until saturation is reached where
|Smax,+Smax〉 for H ≥ Hsat.
Since the magnetization is conserved under the investigated Hamilton operator,

only transitions of the form |S,+S〉 → |S′,+S〉 with S′ ≥ S contribute to Szz . �e
dominant contribution however comes from the transitions with the lowest S′ =
S + 1 state, i. e., the state whose sibling state with Sz = S + 1 is bound to be the next
ground state as the magnetic field increases.
�e frequency of this dominant transition depends on the magnetic field. For

small values of the magnetic fieldH < Hcrit it is frozen, but above the critical field it
increases withω ≈ J+H (or moreover in steps of themagnetic field corresponding
to the different magnetization values) until it reaches saturation, where it remains
constant again. For an infinite system, the curve ω(H ) is indeed smooth because
M(H ) is smooth, but in the finite systems investigated here it features clearly visible
steps originating from the discrete steps of the magnetization.
�edominant transition however is not the only one contributing to the dynamic

structure factor. Additional strength is gained from one-magnon transitions with
ω ≈ J whose number depends on the number of states in the S′ band. Further
small corrections are supplied from two-magnon transitions (ω ≈ 2J ).
�e discussion for S+−(S−+ ) follows the same scheme. Conservation of magne-

tization restricts the transitions to |S,+S〉 → |S′, S− 1〉with S′ ≥ S− 1 (|S,+S〉 →
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|S′, S + 1〉 with S′ ≥ S + 1). �e dominant contribution comes from the transition
to the lowest state with S′ = S′min, i. e., S

′ = S− 1 (S′ = S + 1), which is the state set
to be the next ground state with decreasing (increasing) field.
In order to determine the characteristics of the dynamic structure factor in the

zero temperature limit I have used the following procedure. First, I numerically
calculate the transition strengths for the very low temperature T = 0.01J—which
is possible even for N = 20—ignoring contributions less than 10−8. From these
results, I extract all transitions involving the respective ground state with ω ≥ 0.
�e calculated values still need correction for the deviation of the partition function
from 1 at the finite temperature T = 0.01J. �is results in a relatively short list of
transitions with the following characteristics (for a given wave vector transfer and
magnetic field):
Typically, one strong transition attracts attention, which alsomarks the threshold

energy, and is accompanied by many transitions with notably smaller intensities at
higher energies. Qualitatively, this corresponds to the picture developed in the field
theoretic approach resulting in an infra-red divergence [], i. e.,

S(q, ω) =
1

`

ω− ω0

´α (.)

with a characteristic exponentα, which of course depends on the underlying system,
i. e., the value of λ. �e principal aim of this type of analysis is the verification of
this result and, if possible, the determination of this exponent α. Unfortunately,
the uncertainty in the frequency ω0 and, for the transverse part, the variation of ω
with the magnetic field render the usual log/log plot useless, so in order to avoid
specification ofω0 but include large and small scattering strengths at the same time,
Fig. . shows ln S vs. ω for N = 20 spins and H = 0.94J. �e decrease with
frequency as well as the scattering of the data are clearly visible, but a determination
of the exponent α does not appear possible.
However, two aspects of the zero temperature data, which only involve the dom-

inant transition, lead to an interesting analysis.

. �e dependence of the strength of the dominant peak on the magnetization
is shown in Figs. . and ..

. �e variation of the strength of the dominant transition with the number
of sites, corresponding to the analysis for the Haldane chain in []. �e
motivation of this analysis is the idea that the particle number dependence
on the lowest, i. e., dominant frequency

ω ∝ 1

N
(.)
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translates into a particle number variation of the leading peak

S(q, ω) ∝ Nα−1 (.)

cf. eq. (.). Following this procedure I have analysed the T = 0 data by
plotting ln(S) vs. ln(N ). �e results are presented in Fig. . for Szz with α ≈
0.6 and in Fig. . for S+− with α ≈ 1.33 and clearly show manifestations
of the proposed infra-red singularity despite the low values of the particle
number N.

.. �e dynamic structure factor at finite temperature

�e various important aspects of the temperature, magnetic field, and wave vector
dependence of both longitudinal and structure factor!transversetransverse dynam-
ical structure factors are shown in Figs. . to .. In order to better compare the
diagrams, all of them have been made with λ = 0.3.
For the longitudinal structure factor, Figs. . and . present a temperature

scan at fixed magnetization M = 1
2
Msat − 1 = N/4 − 1 for both wave vectors q = π

and 2π. Figs. . and . compare the particle numbers N = 20 and N = 16 in a
magnetic field scan at T = 0.01J for q = π, and Figs. . and . do likewise for
q = 2π. Figs. . to . show magnetic field scans at three different temperatures
for q = π, and Figs. . to . for q = 2π. Finally, Figs. . to . depict the
two-magnon peak at different temperatures and magnetic fields.
�e relevant variable is actually not the magnetic field H, but the magnetization

M. In a discrete system, however, there is no one-to-one correspondence between
magnetic field and magnetization. Rather the magnetization changes in discrete
steps, on which the magnetic field can be varied without changing the magnetiza-
tion. �is however changes the Boltzmann factors which enter S(q, ω) and, due to
Zeeman splitting, the frequency ω of S+−(q, ω) and S−+(q, ω). �erefore, I state
the magnetic field at which I performed the calculations.
For the transverse structure factor, Figs. . and . present a temperature scan

at fixed magnetization M = N/4 − 1 for both wave vectors q = π and 2π. Figs. .
and . compare the particle numbersN = 20 andN = 16 in a magnetic field scan
at T = 0.01J for q = π, and Figs. . and . do likewise for q = 2π. Similarly,
Figs. . and . as well as Figs. . and . compare N = 16 and N = 12 at
T = 0.10J and demonstrate that at T ≥ 0.10J, it is sufficient to take N = 12 into
account. Figs. . to . showmagnetic field scans at three different temperatures
for q = π, and Figs. . to . for q = 2π. Finally, Figs. . to . depict the
two-magnon peak at different temperatures and magnetic fields.
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ω = 0 contributions can only be found in the longitudinal structure factor Szz ,
but not in the transverse structure factor S+−.
Larger particle numbers like N = 20 exhibit a richer spectrum, but all essential

features are present and clear forN = 16 or evenN = 12. �e latter is necessary for
the transverse structure factor at higher temperatures T > 0.1J.
T = 0.03J still shows quantum effects, but at higher temperatures quantum ef-

fects cannot be identified any more.

�e longitudinal structure factor

Being diagonal, the longitudinal dynamic structure factor Szz(q, ω) only depends
on transitions within the subspace of constant magnetization Sztot. For each of these
transitions, the momentum and energy transfer (q, ω) are independent of the ap-
plied magnetic field, but the magnitude of the transition strength changes in an
external magnetic field due to the dependence of the Boltzmann factor

1

Z
exp

“

−β
`

E(H, Sztot )− E0(H )
´

”

(.)

on the magnetic field H and the total spin projection Sztot.
Figs. . (q = π ) and . (q = 2π ) show temperature scans of the longitudinal

structure factor Szz(q, ω) of a N = 16 bond alternating Heisenberg chain at magne-
tization M = N/4 − 1. For the very low temperature T = 0.01J, it was also possible
to calculate the structure factors for N = 20, which are also displayed. �e longi-
tudinal structure factor has a strong one-magnon peak, which can be observed at
all temperatures and all momenta. One-magnon peak means transition between
Sztot = 0 states of the singlet and triplet of one dimer where the other dimers are
thermally excited according to the temperature T and a number of dimers corre-
sponding to the magnetization excited to the triplet state. For q 6= 2π there is also
a central peak close to ω = 0 (the exact value depends on the dispersion), which
gains intensity with increasing temperature.
�e quantum features of this system can be easily identified only for tempera-

tures T . 0.03J, whereas for T & 0.07J thermal excitations cover the underlying
quantum structure. For T & J, single discrete excitations have vanished in favour
of a smooth curve.
Figs. . (N = 20,q = π ) and . (N = 16,q = π ) as well as . (N = 20,q = 2π )

and . (N = 16,q = 2π ) compare the longitudinal structure factors Szz(q, ω) of
a bond alternating chain of N = 20 and N = 16 spins at temperature T = 0.01J
and various magnetizations. While the different system sizes cause a change in the
details of the structure factors, the overall line shape as well as all important features
do not depend on the system size.
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Figs. . (T = 0.03J ), . (T = 0.10J ), and . (T = 1.00J ) show magnetiza-
tion (magnetic field) scans of the longitudinal structure factor Szz(q = π, ω) of a
N = 16 bond alternating chain. Below T ≤ 0.10J, non-zero magnetization causes
the central peak to appear, which can be understood with the help of the discus-
sion of the non-interacting dimers (Section..). At zero magnetization and low
temperatures, all transitions must involve the singlet ground state, but any one of
these transitions has got a frequency ω & J. At higher magnetizations, on the other
hand, the ground state is the lowest state of a band of triplets, quintets, etc., hence
low frequency transitions within these multiplets are possible.
Apart from this, the intensity of the central peak is rather insensitive to changes

of the magnetization, while the one-magnon peak loses intensity with increasing
magnetization. �e temperature T = 1.00J is already so large that thermal excita-
tions cover all underlying level changes, resulting in a rather constant (with respect
to magnetization) dynamic structure factor.
Analogously, Figs. . (T = 0.03J ), . (T = 0.10J ), and . (T = 1.00J ) show

magnetization (magnetic field) scans of the longitudinal structure factor Szz(q =
2π, ω) of a N = 16 bond alternating chain. As already seen in the temperature
scans (Fig. .), the longitudinal structure factor at q = 2π does not exhibit a cen-
tral peak. At T = 0.03J and T = 0.10J, the one-magnon peak changes its shape
with changing magnetization, from a peak maximum at the low energetic end at
low magnetizations to a peak maximum at the high energetic end at high magneti-
zations.
As in the q = π case, the temperature T = 1.00J is already so large that thermal

excitation cover all underlying level changes, resulting in a more or less constant
(with respect to magnetization) dynamic structure factor with a maximum peak at
the low energetic end, although this peak is slightly emphasized at low magnetiza-
tions.
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Figure .: Exclusive structure factors Izz(q = π, ω) vs.H for N = 12, λ = 0.3, and temper-
atures T = 0.02, T = 0.1, T = 0.5, and T = 2. �e solid lines correspond to the
analytic solution for λ = 0. (continued)
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Figure .: (continued) Exclusive structure factors Izz(q = π, ω) vs.H for N = 12, λ = 0.3,
and temperatures T = 0.02, T = 0.1, T = 0.5, and T = 2. �e solid lines
correspond to the analytic solution for λ = 0.
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Figure .: Exclusive structure factors I+−(q = π, ω) vs. H for N = 12, λ = 0.3, and
temperatures T = 0.1, T = 0.5, and T = 2. �e solid lines correspond to the
analytic solution for λ = 0.
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Figure .: All one-magnon contributions to ln Szz(q, ω) vs. ω for N = 20 at H = 0.94J.
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Figure .: Longitudinal dynamic structure factor Szz(q = π, ω) atM = N/4− 1 forN = 20,
H = 1.03, T = 0.01 and N = 16, H = 1.01J, and T = 0.01, 0.03, 0.07, 0.10, 0.20,
and 0.30J as well as …(continued)
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Figure .: (continued) …T = 0.50, 1.00, 2.00, and 4.00J. �e resolution ∆ω is 0.002.
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Figure .: Longitudinal dynamic structure factor Szz(q = 2π, ω) atM = N/4−1 forN = 20,
H = 1.03J, T = 0.01 and N = 16, H = 1.01J, and T = 0.01, 0.03, 0.07, 0.10,
0.20, and 0.30J as well as …(continued)
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Figure .: (continued) …T = 0.50, 1.00, 2.00, and 4.00J. �e resolution ∆ω is 0.002.
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Figure .: Longitudinal dynamic structure factor Szz(q = π, ω) for N = 20, T = 0.01J,
and H = 0.83, 1.03, 1.11, and 1.27J. �e first critical field is at H ≈ 0.81684J,
the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Longitudinal dynamic structure factor Szz(q = π, ω) for N = 16, T = 0.01J,
and H = 0.84, 1.01, 1.11, and 1.25J. �e first critical field is at H ≈ 0.81685J,
the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Longitudinal dynamic structure factor Szz(q = π, ω) for N = 16, T = 0.03J,
and H = 0.00, 0.84, 0.91, 1.01, 1.11, and 1.25J. �e first critical field is at
H ≈ 0.81685J, the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Longitudinal dynamic structure factor Szz(q = π, ω) for N = 16, T = 0.10J,
and H = 0.00, 0.84, 0.91, 1.01, 1.11, and 1.25J. �e first critical field is at
H ≈ 0.81685J, the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Longitudinal dynamic structure factor Szz(q = π, ω) for N = 16, T = 1.00J,
and H = 0.00, 0.84, 0.91, 1.01, 1.11, and 1.25J. �e first critical field is at
H ≈ 0.81685J, the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Longitudinal dynamic structure factor Szz(q = 2π, ω) for N = 20, T = 0.01J,
and H = 0.83, 1.03, 1.11, and 1.27J. �e first critical field is at H ≈ 0.81684J,
the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Longitudinal dynamic structure factor Szz(q = 2π, ω) for N = 16, T = 0.01J,
and H = 0.84, 1.01, 1.11, and 1.25J. �e first critical field is at H ≈ 0.81685J,
the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Longitudinal dynamic structure factor Szz(q = 2π, ω) for N = 16, T = 0.03J,
and H = 0.00, 0.84, 0.91, 1.01, 1.11, and 1.25J. �e first critical field is at
H ≈ 0.81685J, the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Longitudinal dynamic structure factor Szz(q = 2π, ω) for N = 16, T = 0.10J,
and H = 0.00, 0.84, 0.91, 1.01, 1.11, and 1.25J. �e first critical field is at
H ≈ 0.81685J, the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Longitudinal dynamic structure factor Szz(q = 2π, ω) for N = 16, T = 1.00J,
and H = 0.00, 0.84, 0.91, 1.01, 1.11, and 1.25J. �e first critical field is at
H ≈ 0.81685J, the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Two-magnon peak of the longitudinal dynamic structure factor Szz(q, ω) for
N = 20, T = 0.01J, and H = 0.83, 1.11, and 1.27J. �e first critical field is at
H ≈ 0.81684J, the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Two-magnon peak of the longitudinal dynamic structure factor Szz(q, ω) for
N = 16, T = 0.01J, and H = 0.84, 1.11, and 1.25J. �e first critical field is at
H ≈ 0.81685J, the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Two-magnon peak of the longitudinal dynamic structure factor Szz(q, ω) for
N = 16, T = 0.03J, and H = 0.84, 1.11, and 1.25J. �e first critical field is at
H ≈ 0.81685J, the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Two-magnon peak of the longitudinal dynamic structure factor Szz(q, ω) for
N = 16, T = 0.10J, and H = 0.84, 1.11, and 1.25J. �e first critical field is at
H ≈ 0.81685J, the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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�e transverse structure factor

�e transverse dynamic structure factor S+−(q, ω) resp. S−+(q, ω) involves transi-
tions with ∆Sztot = ±1, and therefore the Zeeman splitting causes a change in the
energy transfer ω

∆ω = −H∆Sztot =

(

H for S+−(q, ω)

−H for S−+(q, ω).
(.)

Figs. . (q = π ) and . (q = 2π ) show temperature scans of the transverse
structure factor S+−(q, ω) of a N = 16 and N = 12 bond alternating Heisenberg
chain at magnetization M = N/4 − 1. For the very low temperature T = 0.01J,
it was also possible to calculate the structure factors for N = 20, which are also
displayed. �e quantum features of this system can be easily identified only for
temperatures T . 0.03J, whereas for T & 0.07J thermal excitations cover the
underlying quantum structure.
�e transverse structure factor has a strong one-magnon peak (at ω ≈ 2J due to

Zeeman splitting), which can be observed at all temperatures and all momenta. At
higher temperatures, an asymmetry with emphasis on the high frequency side for
q = π and emphasis on the low frequency side for q = 2π develops.
q 6= 2π features also a strong central peak at ω ≈ J. For q = 2π, however, it is

heavily suppressed, which can be understood with the help of the non-interacting
dimer limit, cf. eqs. (.) and (.), which already show a vanishing central peak
for S+−(q = 2π, ω) (with d = ½ for equally spaced spins).
In addition, the figures show the inverse transitions of the one-magnon transi-

tions close to ω = 0. For the longitudinal structure factor, these transition have not
been of interest, because they were proportional to the one-magnon peak with a
proportionality factor corresponding to the Boltzmann factor. Here on the other
hand, they are of interest, because they are truly independent of the one-magnon
peak (for H 6= 0). In fact, they are the one-magnon peak of S−+(−q,−ω) deco-
rated with a Boltzmann-like factor, which is— a
er distributing the single transi-
tions into the frequency bins—no longer reproducible.
For q = 2π, this inverse one-magnon transition remains strong even at low tem-

peratures, which can be seen as a very strong peak at ω ≈ 0 in Figs. ., whereas
for q = π, it only sets in with thermal excitation of higher states or at high mag-
netizations. �e corresponding transition is a strong dipole transition between the
ground states of magnetizationM andM− 1, which both have momentum q = 0,²
hence the transition with q = 2π.

. Depending on the number of spins N, the ground states may all be at q = π instead of q = 0.
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Figs. . (N = 20,q = π ) and . (N = 16,q = π ) as well as . (N = 20,q =
2π ) and . (N = 16,q = 2π ) compare the transverse structure factors S+−(q, ω)
of a bond alternating chain of N = 20 and N = 16 spins at temperature T = 0.01J
and various magnetizations. Like for the longitudinal structure factor, the overall
line shape as well as all important features do not depend on the system size, only
the details change.
Figs. . (T = 0.03J, N = 16), . (T = 0.10J, N = 16), . (T = 0.10J,

N = 12), and . (T = 1.00J, N = 12) show magnetization (magnetic field) scans
of the transverse structure factor S+−(q = π, ω) of a bond alternating chain. Results
forN = 16 sites andT ≥ 0.1J are not available due to the computational complexity
of the transverse structure factor, but the comparison plots between N = 16 and
N = 12 spins at T = 0.1J show that they only differ in the details, whereas the
essential features are nearly quantitatively identical.
First of all, the frequency of the transverse structure factor involves a magnetic

field dependent Zeeman term. �erefore, a shi
 of the frequency (upwards for
S+−, downwards for S−+ ) occurs with varying magnetic field and can indeed be
observed at higher temperaturesT & J (Fig. .) and, to a lesser extent, also atT &
0.1J (Figs. . and .). At the quantum level (Fig. .), however, it cannot be
observed at all : the observed shi
 is caused by the discreteness of the finite system
and by the remaining thermal occupation. In the thermodynamic limit on the other
hand, the main contribution is always at the threshold.
�e ω = J transitions play an essential role at any magnetization. �e ω = 0 tran-

sitions grow considerably with increasing magnetization, while the ω = 2J transi-
tions decrease with increasing magnetization.
Analogously, Figs. . (T = 0.03J, N = 16), . (T = 0.10J, N = 16), . (T =

0.10J, N = 12), and . (T = 1.00J, N = 12) show magnetization (magnetic field)
scans of the transverse structure factor S+−(q = 2π, ω) of a bond alternating chain.
Again, results for N = 16 are only available for T ≤ 0.1J due to computational
limits, but the comparison between N = 16 (Fig. .) and N = 12 (Fig. .)
shows that the essential features are the identical.
As with q = π, the frequency of the transverse structure factor varies with the

magnetic field due to Zeeman splitting, but in contrast to q = π, this is barely no-
ticeable for non-zero magnetization and q = 2π even at higher temperatures, and
mostly for the ω ≈ 2J peak (cf.Figs. . and .).
As already seen in the temperature scan (Fig. .), the transverse structure fac-

tor at q = 2π does not feature a peak structure from intra band transitions, which
would be roughly located at ω = H.

�e ω ≈ 2J peak decreases considerably with increasing field.
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Figure .: Transverse dynamic structure factor S+−(q = π, ω) atmagnetizationM = N/4−
1 (H = 1.03J for N = 20, H = 1.01J for N = 16, H = 0.97J for N = 12), and
T = 0.01, 0.03, 0.07, 0.10, 0.50, 1.00, 2.00, and 4.00J. For comparison T = 0.01J
is presented for N = 20 and N = 16, and T = 0.10J for N = 16 and N = 12.
�e first critical field is at H ≈ 0.81684 (N = 16), H ≈ 0.81685J (N = 16)
resp. H ≈ 0.81670J (N = 12), the saturation field at H = 1.3J. (continued)
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Figure .: (continued) Transverse dynamic structure factor S+−(q = π, ω) formagnetiza-
tionM = N/4− 1 (H = 0.97J ), N = 12, and T = 0.20, 0.30, 0.50, 1.00, 2.00, and
4.00J. �e first critical field is atH ≈ 0.81670J, the saturation field atH = 1.3J.
�e resolution ∆ω is 0.002.
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Figure .: Transverse dynamic structure factor S+−(q = 2π, ω) at magnetization M =
N/4 − 1 (H = 1.03J for N = 20, H = 1.01J for N = 16, H = 0.97J for N = 12),
and T = 0.01, 0.03, 0.07, 0.10. For comparison, T = 0.01J is presented for
N = 20 and N = 16, and T = 0.10J for N = 16 and N = 12. �e first critical
field is at H ≈ 0.81684 (N = 20), H ≈ 0.81685J (N = 16) resp. H ≈ 0.81670J
(N = 12), the saturation field at H = 1.3J. (continued)
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Figure .: (continued) Transverse dynamic structure factor S+−(q = 2π, ω) for magne-
tization M = N/4 − 1 (H = 0.97J ), N = 12, and T = 0.20, 0.30, 0.50, 1.00,
2.00, and 4.00J. �e first critical field is at H ≈ 0.81670J, the saturation field
at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Transverse dynamic structure factor S+−(q = 2π, ω) for N = 20, T = 0.01J,
and H = 0.83, 1.03, 1.11, and 1.27J. �e first critical field is at H ≈ 0.81684J,
the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Transverse dynamic structure factor S+−(q = π, ω) for N = 16, T = 0.01J, and
H = 0.84, 1.01, 1.11, and 1.25J. �e first critical field is at H ≈ 0.81685J, the
saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Transverse dynamic structure factor S+−(q = π, ω) for N = 16, T = 0.03J,
and H = 0.00, 0.84, 1.01, 1.11, 1.25, and 1.31J. �e first critical field is at
H ≈ 0.81685J, the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Transverse dynamic structure factor S+−(q = π, ω) for N = 16, T = 0.1J,
and H = 0.00, 0.84, 1.01, 1.11, 1.25, and 1.31J. �e first critical field is at
H ≈ 0.81685J, the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Transverse dynamic structure factor S+−(q = 2π, ω) for N = 12, T = 0.1J,
and H = 0.00, 0.86, 0.97, 1.11, 1.22, and 1.31J. �e first critical field is at H ≈

0.81670J, the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Transverse dynamic structure factor S+−(q = π, ω) for N = 12, T = 1.0J,
and H = 0.00, 0.86, 0.97, 1.11, 1.22, and 1.31J. �e first critical field is at
H ≈ 0.81670J, the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Transverse dynamic structure factor S+−(q = 2π, ω) for N = 20, T = 0.01J,
and H = 0.83, 1.03, 1.11, and 1.27J. �e first critical field is at H ≈ 0.81684J,
the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Transverse dynamic structure factor S+−(q = 2π, ω) for N = 16, T = 0.01J,
and H = 0.84, 1.01, 1.11, and 1.25J. �e first critical field is at H ≈ 0.81685J,
the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Transverse dynamic structure factor S+−(q = 2π, ω) for N = 16, T = 0.03J,
and H = 0.00, 0.84, 1.01, 1.11, 1.25, and 1.31J. �e first critical field is at
H ≈ 0.81685J, the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.





T        

Figure .: Transverse dynamic structure factor S+−(q = 2π, ω) for N = 16, T = 0.1J,
and H = 0.00, 0.84, 1.01, 1.11, 1.25, and 1.31J. �e first critical field is at
H ≈ 0.81685J, the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Transverse dynamic structure factor S+−(q = 2π, ω) for N = 12, T = 0.1J,
and H = 0.00, 0.86, 0.97, 1.11, 1.22, and 1.31J. �e first critical field is at
H ≈ 0.81670J, the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Transverse dynamic structure factor S+−(q = 2π, ω) for N = 12, T = 1.0J,
and H = 0.00, 0.86, 0.97, 1.11, 1.22, and 1.31J. �e first critical field is at
H ≈ 0.81670J, the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Two-magnon peak of the transverse dynamic structure factor S+−(q, ω) for
N = 16, T = 0.01J, and H = 0.84, 1.11, and 1.29J. �e first critical field is at
H ≈ 0.81685J, the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Two-magnon peak of the transverse dynamic structure factor S+−(q, ω) for
N = 16, T = 0.03J, and H = 0.84, 1.11, and 1.29J. �e first critical field is at
H ≈ 0.81685J, the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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Figure .: Two-magnon peak of the transverse dynamic structure factor S+−(q, ω) for
N = 16, T = 0.10J, and H = 0.84, 1.11, and 1.29J. �e first critical field is at
H ≈ 0.81685J, the saturation field at H = 1.3J. �e resolution ∆ω is 0.002.
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C 

�eDiamond Type Chain

. Introduction

�e diamond type chain can be considered as a variant of the Heisenberg chain
with next nearest neighbour interaction. Its structure and interactions are shown
in two alternative but equivalent ways in Fig. .. Compared to the former, the ele-
mentary cell is increased to three lattice sites, allowing for spatial variation of both
nearest and next nearest neighbour interactions. Due to the triangular structure,
the diamond chain is an example for frustrated systems.

.. Hamiltonian of the diamond chain

�e Hamilton operator of the diamond chain is

H =

N
3

X

j=1

h

J1
`

~S3 j ·~S3 j+1 +~S3 j+2 ·~S3 j+3
´

+ J2
`

~S3 j+1 ·~S3 j+2
´

+ J3
`

~S3 j ·~S3 j+2 +~S3 j+1 ·~S3 j+3
´

i

(.)

Detailed work on the diamond type chain has been performed about a decade
ago [], the first brief studywas even earlier by S  S [].





T D T C

b

b

b

bb

b

b

bb

b

b

b

J1

J3

J2 = J

b b b bb b b bb b b b

J1

J3

J2 = J

Figure .: Schematic diagram of the diamond type chain. Both representations are equiv-
alent. (a) illustrates the name ‘diamond chain’, (b) shows the diamond chain
as generalization of the Heisenberg antiferromagnetic chain with next nearest
neighbour interaction.

Since then, a number of detailed theoretical and numerical studies have been pub-
lished [, , ]. On the material side, it appears that Cu₃(CO₃)₂(OH)₂ (azurite)
is an approximate realization of the diamond type chain with coupling constants
J1 =  K, J2 =  K, and J3 = . K [].
Of particular interest is the symmetric diamond chain with J1 = J3 =

γ

2
J2 with

the Hamilton operator

H = Hsym =

N
3

X

j=1

h

J1
`

~S3 j +~S3 j+3
´

·
`

~S3 j+1 +~S3 j+2
´

+ J2
`

~S3 j+1 ·~S3 j+2
´

i

(.a)

=

N
3

X

j=1

J2
h

`

~S3 j+1 ·~S3 j+2
´

+
γ

2

`

~S3 j +~S3 j+3
´

·
`

~S3 j+1 +~S3 j+2
´

i

(.b)

=

N
3

X

j=1

J2
2

h

`

~S3 j+1 +~S3 j+2
´2 − 3

2

+ γ
`

~S3 j +~S3 j+3
´

·
`

~S3 j+1 +~S3 j+2
´

i

(.c)

�is special case has the property that the total spin on each J2 bond ~S2,tot =
~S3 j+1 + ~S3 j+2 is conserved, and S2,tot takes the values 0 (singlet) or 1 (triplet). �e
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Figure .: �e symmetric tetramer

general state of the symmetric diamond chain can thus be classified by specifying

the spins~S j,tot and the remaining N/3 spins at positions 3 j ( j = 1, 2, . . . , N/3).
In this work I have set the units by J2 = J = 1, the number of spins is N, which

in combination with three spin unit cells gives N/3 unit cells and N/6 + 1 wave vectors
in the range from 0 < k < π. Computational resources limited the available system
sizes to N = 12 and N = 18 spins for full diagonalization and N = 24 for the
Lanczosmethod, when only the four lowest states are available for each wave vector
and magnetization.
One also has got to take finite size effects into account: For N = 12 and 24 the

ground state is at q = 0 whereas it is at q = π for N = 18. Hence the order of wave
vectors must be inverted for N = 18, as I am interested in wave vectors relative to
the ground state: q = 0 for N = 18 should be compared to q = π for N = 12 and 24
and vice versa. �e remaining wave vectors do not match with the only exception
of q = π/2 for N = 12 and 24.
For the discussion of the properties of the diamond chain, it is instructive to con-

sider first a single tetramer, which is the fundamental building block of the diamond
chain. �e simpler symmetric tetramer ( J1 = J3 ) will be discussed in Section..,
the distorted tetramer ( J1 6= J3 ) in Section...

.. �e symmetric tetramer

�e structure of the symmetric tetramer is shown in Fig. ., and the Hamilton
operator for this system is

H = Hsym = J1
ˆ

~S0 ·~S1 +~S0 ·~S2 +~S3 ·~S1 +~S3 ·~S2
˜

+ J2~S1 ·~S2 (.a)

= J1
`

~S0 +~S3
´

·
`

~S1 +~S2
´

+ J2
2

`

(~S1 +~S2 )
2 − 3

2

´

(.b)

= J2
h

γ

2

`

~S0 +~S3
´

·
`

~S1 +~S2
´

+ 1
2

`

(~S1 +~S2 )
2 − 3

2

´

i

(.c)
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where γ = 2J1
J2

is introduced.

It is obvious from this representation of the Hamilton operator that the total spin
of both spin pairs (03) and (12) is a good quantum number, hence the eigenstates
can be classified accordingly and the energies are obtained as given in Table .. �e
states  and  are straightforward with singlets on the strong J2 coupling (12) and
single spins on sites 0 and 3. In this case, the single spins on 0 and 3 are even free
spins, because the states  and  are (fourfold) degenerate.
From Table . I also find the ground states of the symmetric tetramer. For γ < 1

( J1 <
J
2
), states  and  form a fourfold degenerate ground state, whereas for γ > 1

( J1 > J
2
) state a is the only ground state. At γ = 1 ( J1 = J

2
) they meet in energy,

resulting in a fivefold degenerate ground state.
Since these building blocks also appear in the low lying excited states of the dia-

mond chain, I shall introduce a shorthand notation used in the following discussion
of the diamond chain: ×S× denotes the singlet along J2 with one free spin on each
side, T denotes the four spin (tetramer) singlet of state a.

.. �e distorted tetramer

�e structure of the distorted tetramer is shown in Fig. ., and the Hamilton oper-
ator for this system is

H = J1
`

~S0 ·~S1 +~S3 ·~S2
´

+ J3
`

~S0 ·~S2 +~S3 ·~S1
´

+ J2~S1 ·~S2 (.a)

= J1+J3
2

`

~S0 +~S3
´

·
`

~S1 +~S2
´

+ J1−J3
2

`

~S0 −~S3
´

·
`

~S1 −~S2
´

+ J2
2

`

(~S1 +~S2 )
2 − 3

2

´

(.b)

= Hsym + J1−J3
2

`

~S0 −~S3
´

·
`

~S1 −~S2
´

. (.c)

In contrast to the symmetric tetramer, there are no simple combinations of spins
which are conserved. �e total spin however is still conserved.

It is straightforward to calculate the spectrum of the distorted tetramer by diag-
onalizing the term proportional to J1 − J3 in eq. (.) in the basis of the symmetric
tetramer states Table .. �e resulting eigenstates of the distorted tetramer are dis-
played in Table ..

.. �e quantum phase diagram of the diamond chain

�equantumphase diagram of the diamond type chain has been discussed in detail
in [] and is shown in Fig. . in the variables J3 over J1, choosing the coupling J2
as energy unit with J2 = J = 1. �e symmetry upon interchange of J1 and J3 is
evident from the Hamilton operator eq. (.).
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Table .: Eigenstates of the symmetric tetramer

N S12 S03 Stot ε degeneracy

 0 0 0 − 3
4
J2 = − 3

4
J2 

 0 1 1 − 3
4
J2 = − 3

4
J2 

 1 0 1 1
4
J2 = 1

4
J2 

a 1 1 0 −2J1 +
1
4
J2 =

`

−γ + 1
4

´

J2 
b 1 1 1 −J1 +

1
4
J2 =

`

− γ

2
+ 1

4

´

J2 
c 1 1 2 J1 +

1
4
J2 =

`

γ

2
+ 1

4

´

J2 



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Figure .: �e distorted tetramer

Qualitatively, three regimes can be distinguished:

Spin fluid regime

�e typical ground state in this regime consists of singlet dimers along the J2 bonds.
On the symmetry line J1 = J3, the spins in between are free spins½ and account for

a 2
N
3 -fold degeneracy. It is proven below that this is the exact ground state for γ < 1.

Deviating from the symmetry ( J1 6= J3 ), the formerly free spins at positions 3 j
become weakly coupled and form a low energetic subsystem close to a Heisenberg
antiferromagnetic chain, which will be investigated in detail in Section... �is
low energetic subsystem is responsible for the plateau at 1/3 magnetization, where
the weakly coupled spins are already fully polarized but the dimers are still in their
respective ground state.
In order to find the exact ground state of the symmetric diamond chain, it is

useful to rewrite the Hamilton operator eq. (.) once more

Hsym =

N
3

X

j=1

J

4

h

`

γ~S3 j +~S3 j+1 +~S3 j+2
´2

+
`

~S3 j+1 +~S3 j+2 + γ~S3 j+3
´2

i

− 2 + γ2

8
NJ

(.)

Due to the quadratic form it is possible to give a lower bound of the energy, and
if it is possible to find eigenstates with exactly this energy they have to be ground
states.
Obviously, the minimal energy is obtained when both

`

γ~S3 j +~S3 j+1 +~S3 j+2
´2

and (.a)
`

~S3 j+1 +~S3 j+2 + γ~S3 j+3
´2

(.b)
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Table .: Eigenstates of the distorted tetramer

N Stot ε degeneracy

 0 − 1
4
J2 − 1

2

`

J1 + J3
´

−
q

`

J1 − J3
´2

+
`

J1 − 1
2

´`

J3 − 1
2

´



 1 − 1
4
J2 − 1

2

q

`

J1 − J3
´2

+ 1 

 1 − 1
4
J2 + 1

2

q

`

J1 − J3
´2

+ 1 

a 0 − 1
4
J2 − 1

2

`

J1 + J3
´

+

q

`

J1 − J3
´2

+
`

J1 − 1
2

´`

J3 − 1
2

´



b 1 1
4
J2 − 1

2

`

J1 + J3
´


c 2 1

4
J2 + 1

2

`

J1 + J3
´





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Figure .: (from []) Phase diagram of the diamond chain in J3 over J1 with J2 = J = 1.
�e symmetry upon interchange of J1 and J3 is evident from the Hamiltonian
eq. (.).

are minimal for all j. �is gives a lower boundary of

`

γ~S3 j +~S3 j+1 +~S3 j+2
´2

=
`

γ~S3 j
´2

+
`

~S3 j+1 +~S3 j+2
´2

+ γ
h

`

~S3 j +~S3 j+1 +~S3 j+2
´2 −~S23 j −

`

~S3 j+1 +~S3 j+2
´2

i

(.a)

≥ 3
4
γ2 −

`

γ− 1
´`

~S3 j+1 +~S3 j+2
´2

(.b)

≥ 3
4
γ2 −

(

0 , γ < 1

2
`

γ− 1
´

, γ > 1
(.c)
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Figure .: Ground states of the symmetric diamond chain for γ < 1

and an energy constraint of

E ≥ Emin ≥ min
j

−
“

3
4
+

γ−1

2

`

~S3 j+1 +~S3 j+2
´2

”

N
3
J (.a)

= N
3
J

(

− 3
4

, γ < 1

−γ + 1
4

, γ > 1
(.b)

Apparently, the conditions necessary tominimize these terms are different for γ < 1
and γ > 1. �e discussion of γ < 1 follows below whereas γ > 1 is postponed to the
following section.

For γ < 1, the spin operators~S3 j+1 and~S3 j+2 have a higher weight than γ~S3 j (and

γ~S3 j+3 ), leading to the ansatz of minimizing their sum~S3 j+1+~S3 j+2 as singlet. �e en-
ergy of this system can be easily calculated by using the results from the symmetric
tetramer (Table .) as

Esinglets = −3

4
J
N

3
= Emin. (.)

�us, the configuration with singlets on the strongly coupled bonds and free spins

in between (Fig. .) has minimal energy andmust be a 2
N
3 -fold degenerate ground

state.

Tetramer-dimerized regime

�e dimerized phase of the diamond chain, which sometimes is called tetramer-
dimerized phase, has fundamentally different properties than the spin fluid regime,
which— for the symmetric chain with arbitrary J1 = J3 > J/2—can be already seen
from the different ground states. From eq. (.) the lower bound of energy for γ > 1
is obtained as

E ≥ Emin = −N

3
J
`

γ− 1

4

´

(.)
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Figure .: Ground states of the symmetric diamond chain in the tetramer-dimerized phase
(γ > 1) and N

3
even

implying triplets on J2 bonds.
�e results for the symmetric tetramer (Table .) show that this minimum en-

ergy corresponds to a configuration with triplets on both ~S3 j+1 + ~S3 j+2 and ~S3 j+0 +
~S3 j+3 and a total spin of 0 per tetramer. However, a diamond chain state consist-
ing solely of such triplet/triplet tetramers does not exist because a triplet/triplet
tetramer must be neighboured by a singlet dimer, because otherwise the two neigh-
bouring triplet/triplet tetramers would have to share one common spin whichmust
not happen. �erefore, it is necessary that a singlet tetramer— the second lowest
configuration in terms of energy for 1 < γ < 2—lies between two triplet/triplet
tetramers. If N

3
is even, this leads to a ground state energy of

E0 = −N

3
J
“γ

2
+
1

4

”

(.)

and two degenerate ground states depicted in Fig. .. �ese two degenerate ground
states are exact for arbitrary γ within the range 1 < γ < 2, i. e., J/2 < J1 = J3 < J and
any finite N with N/3 even. �ey were shown to be the exact ground states in []
using the classification of states in terms of the conserved spin of J2 bonds.


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Ferrimagnetic regime

For completeness, I mention the existence of a ferrimagnetic phase at higher values
of J1, J3. However, I will not delve into more detail here, because I will not consider
this phase in the following discussion. A thorough description of this phase can be
found in [].

. Excitations in the spin fluid regime

In this section I want to discuss the properties of the diamond type chain in the spin
fluid regime (cf. Fig. .). Since the Hamilton operator eq. (.) is symmetric in J1
and J3 it is possible to restrict the discussion to J1 ≥ J3 without loss of generality.
�e general structure for J1, J3 ≪ J2 = J = 1 is a sequence of dimers (intra-

dimer coupling J2 ) with weakly interacting spins in between. �e limiting cases on
the J3 = 0 axis are already known as

(a) J1 = 0 : free dimers

(b) 0 < J1 < 1 : trimer chain

(c) J1 = 1 : Heisenberg antiferromagnetic chain

For J1, J3 ≪ J this system has two different energy scales: excitations of the
nearly free spins can be obtained with much less energy cost than excitations of the
singlet dimers to triplets. Hence, the diamond type chain features a low energetic
subsystem, which is very similar to a Heisenberg antiferromagnetic chain with N/3
spins and an effective coupling Jeff ∼ O( J1, J3 ).
�e highest state of the Heisenberg antiferromagnetic subsystem has got a total

spin of Stot =
1
2
N
3
=: Mplateau and corresponds to full magnetization of the Heisen-

berg antiferromagnetic subsystem. �is state also forms a magnetization plateau
because the next higher energy level involves the excitation of a dimer which is
very costly (of the order O( J2 )) in the spin-fluid phase.

.. Effective Heisenberg model

As long as the Hamilton operator is exactly symmetric, i. e., J1 = J3, the spins be-
tween the singlet dimers are absolutely free. For small deviations from the symme-
try line, these single spins are weakly coupled and one can expect that these spins,
and thus the low lying excitations, can effectively be described by aHeisenberg anti-
ferromagnetic chain. �e effective coupling of the corresponding Heisenberg chain


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Table .: Comparison between an  spin diamond chain with J1 = 0.46J and J3 = 0.44J
and a six spin Heisenberg antiferromagnetic chain with J = J2

q Stot E6 E18
E18
E6

1 0.684742 0.001885 2.753 · 10−3

0 1.302776 0.003502 2.688 · 10−3
0

1 2.920810 0.007980 2.732 · 10−3

3 4.302776 0.011875 2.760 · 10−3

1 1.802776 0.004933 2.736 · 10−3

π
3

0 2.302776 0.006264 2.720 · 10−3

2 3.802776 0.010447 2.747 · 10−3

1 1.521999 0.004144 2.723 · 10−3

2π
3

2 2.802776 0.007692 2.744 · 10−3

1 3.583552 0.009807 2.737 · 10−3

0 0.000000 0.000000 —
2 2.302776 0.006360 2.762 · 10−3π
1 3.302776 0.009018 2.731 · 10−3

0 3.605551 0.009860 2.735 · 10−3

can be calculated in perturbation theory. Singlet-triplet splitting in the spin-fluid
phase yields []

2Jeff =

q

`

J1 + J3 − 1
´2

+ 3
`

J1 − J3
´2 −

“

1−
`

J1 + J3
´

”

+ 1−
q

1 +
`

J1 − J3
´2
.

(.)
�e comparison between an eighteen spin diamond chain with J1 = 0.46J and

J3 = 0.44J and a six spinHeisenberg antiferromagnetic chain in Table . shows that
the coupling of the single spins is very weak, about ⁄ of the ordinary Heisenberg
chain, but the spectrum fits a Heisenberg antiferromagnet. �is behaviour can also
be seen for J1 = 0.60J, J3 = 0.05J (Table .) as well as J1 = 0.60J, J3 = 0.32J (Ta-
ble .), although the latter is a far less perfect Heisenberg antiferromagnet, which
is manifest in other states (coming from excitation of the dimers) intermixing with
the states corresponding to the Heisenberg antiferromagnet. �e beginning of the
plateau is Hc1 = 2Jeff, and with increasing J1, Jeff approaches (γ − 1)J1 = 2J1 − J2,


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Table .: Comparison between an  spin diamond chain with J1 = 0.60J and J3 = 0.05J
and a six spin Heisenberg antiferromagnetic chain with J = J2

q Stot E6 E18
E18
E6

1 0.684742 0.136688 0.199620
0 1.302776 0.225476 0.1730740
1 2.920810 0.615239 0.210640
3 4.302776 0.952216 0.221303

1 1.802776 0.379594 0.210561
π
3

0 2.302776 0.465613 0.202196
2 3.802776 0.818614 0.215267

1 1.521999 0.300416 0.197382
2π
3

2 2.802776 0.599532 0.213906
1 3.583552 0.742337 0.207151

0 0.000000 0.000000 —
2 2.302776 0.492288 0.213870π
1 3.302776 0.667391 0.202070
0 3.605551 0.734454 0.203701

the plateau field on the line J1 = J3.
For the quality of the approximation and the effective coupling strength of the

Heisenberg model, two rules of thumb can be put up:

() Approaching the phase boundary reduces the quality of the approximation;
and

() approaching the diagonal J1 = J3 increases the quality of the approximation
and reduces the effective coupling strength.

On the other side of the phase transition, a connection between diamond chain
and Heisenberg chain cannot be drawn, neither by energy levels nor by quantum
numbers.


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Table .: Comparison between an  spin diamond chain with J1 = 0.60J and J3 = 0.32J
and a six spin Heisenberg antiferromagnetic chain with J = J2. Other low lying
excitations are mixed with the listed ones.

q Stot E6 E18
E18
E6

1 0.684742 0.097656 0.142617
0 1.302776 0.115000 0.0882730
1 2.920810 0.399308 0.136712
3 4.302776 0.668133 0.155280

1 1.802776 0.250341 0.138864
π
3

0 2.302776 0.285469 0.123967
2 3.802776 0.546597 0.143736

1 1.521999 0.192341 0.126374
2π
3

2 2.802776 0.408072 0.145596
1 3.583552 0.457526 0.127674

0 0.000000 0.000000 —
2 2.302776 0.351742 0.152747π
1 3.302776 0.401453 0.121550
0 3.605551 0.424617 0.117768
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Table .: EffectiveHeisenberg coupling: comparison of the numerical results of theN = 18
diamond chain and the analytical result of non-interacting tetramers. �e effec-
tive coupling has been obtained by averaging over the individual states. Daggers
† denote cases where the effective Heisenberg model is not the lowest subset but
intermixed with other states.

J1 J3 diamond chain non-interacting tetramers

0.46 0.44 2.736 · 10−3 2.815 · 10−3

0.48 0.46 4.230 · 10−3 4.541 · 10−3

0.50 0.48 7.713 · 10−3 9.900 · 10−3

0.60 0.05 0.205 0.262
0.60 0.25 0.154 0.208
0.60 0.32 †0.132 0.187

0.10 0.05 1.573 · 10−3 1.576 · 10−3
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. Excitations in the tetramer-dimerized regime

In order to access the low lying excitations of the diamond chain in the tetramer-
dimerized phase, it is instructive to review the results of the single, symmetric
tetramer (Table .). �e excitation of a singlet tetramer to a singlet dimer and
two nearly free spins requires an energy of ∆E = 2J1 − J2 = (γ− 1)J2, whereas all
other excitations cost at least ∆E =

γ

2
J2 and therefore are less favourable.

Transferring this result to the diamond chain, this lowest excitation can occur at
any of the N/3 cells and produces a pair of neighbouring domain walls, which can
propagate freely (apart from interactions between themselves) as solitons along the
chain and lead to a band of two soliton excitations. However, they are not the only
low lying excitations. Since the energy of the state does not depend on the position
of any of the two domain walls, they may well be separated and are still degenerate
with the paired domain walls excitations. �is degeneracy can be li
ed by breaking
the symmetry and going to the distorted diamond chain.
Since these two solitons cannot move freely along a diamond chain of  spins,

i. e., six cells, because they constantly interact with one another, and computational
resources prevent me from exact diagonalization of larger diamond chains, I will
investigate the soliton propagation in a  spin diamond chain. On the first glance
it might seem contradictory to choose a smaller system when the larger system is
not large enough, but the ground states of a diamond chain with an odd number of
cells involve exactly one soliton, and thus, it is possible to examine free propagation
of a single soliton.
In the vicinity of the symmetry line J1 = J3, the interaction along the chain axis,

i. e., between the tetramer and dimer cells, is small (of the order J1 − J3 ). Since this
is the responsible coupling for domain wall hopping, it is possible to employ a tight
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Figure .: Ground states of the symmetric diamond chain in the tetramer-dimerized phase
(γ > 1) and N

3
odd
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Figure .: Domain wall movement in the diamond chain. �e domain wall always moves
by two cells. For N = 15 spins, the depicted states are three out of five states.

binding calculation with the tight binding Hamiltonian

H =

N
3
−1

X

j=0

E0| j〉〈 j| + t
`

| j〉〈 j + 2| + | j〉〈 j− 2|
´

(.)

�e energy E0 is the energy of a localized soliton, i. e., the energy difference be-
tween S×S× and ST, and is constant for all degenerate states | j〉, t is the amplitude
for a ×ST ↔ TS× transition, i. e., for domain wall hopping, and the state | j〉 de-
notes the state where the domain wall (two neighbouring dimers) sits around the
free spin at 3 j, i. e., the dimers are at spins (3 j − 2, 3 j − 1) and (3 j + 1, 3 j + 2).
As can be seen from Fig. . the domain walls always move by two cells, which is
accounted for in this Hamiltonian.
In order to implement the translational symmetry of the diamond chain, it is


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meaningful to use the Fourier transform of | j〉

|k〉 =
N
3
−1

X

ℓ=0

e
ikℓ|ℓ〉 (.)

A standard calculation then leads to the momentum dependent energy eigenvalues

H|k〉 =
`

E0 + 2t cos(2k)
´

|k〉 (.)

Up to here, it is only a projection of the expected behaviour of the low lying
excitations, so now it is time to compare the numerical results to this projection. In
order to find the values of E0 and t for a given set of data, it is necessary to fit the
data against the above cosine by minimizing the sum of the error squares

χ2(E0, t ) =
X

j

`

E0 + 2t cos(2k j )− E j

´2
(.)

where the summation runs over the supporting points, i. e., the numerical data
points. �is minimum can be found analytically by solving the condition

0 =

„

∂
∂E0
∂
∂t

«

χ2(E0, t ) (.a)

=
X

j

„

1
2 cos(2k j )

«

`

E0 + 2t cos(2k j )− E j

´

(.b)

and yields the parameters

E0 =

P

j E j − 2t
P

j cos(2k j )
P

j 1
(.a)

t =

P

j 1
P

j E j cos(2k j )−
P

j E j

P

j cos(2k j )
P

j 1
P

j cos
2(2k j )−

`
P

j cos(2k j )
´2 (.b)

Table . shows the fit parameters E0 and t for various values of J1 and J3. �e

last column
p

χ2, cf.. eq. (.), gives a rough idea of the accuracy of the soliton
description.
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Table .: Fit of the numerical results of anN = 15 distorted diamond chain in the tetramer-
dimer phase to the tight binding model. All data are measured in units of J2 = J.

J1 J3 E0 t
p

χ2

0.52 0.50 0.016507 3.88319 · 10−3 0.002671
0.54 0.52 0.032211 2.45365 · 10−3 0.000322

0.60 0.38 0.151488 51.01065 · 10−3 0.111193
0.60 0.44 0.114076 38.03195 · 10−3 0.062962
0.60 0.55 0.078095 7.55368 · 10−3 0.000905

�e next meaningful step would be to look at the addition of two independent
solitons with momenta k1 and k2

E(k1, k2 ) =
`

E0 + 2t cos(2k1 )
´

+
`

E0 + 2t cos(2k2 )
´

(.a)

= 2E0 + 4t cos
`

k1 + k2
´

cos
`

k1 − k2
´

(.b)

In a diamond chain of  spins, however, the domain walls are bound and cannot
move freely. �erefore, the discussion of two solitonmovement has to be postponed
to later computations with diamond chains of length .





T D T C

. Specific heat

In this section Iwill consider a regime covering both spin-fluid and tetramer-dimer-
ized phases, including the phase transition between them, but ignoring the ferri-
magnetic phase at larger J1, J3. Currently, I will examine the phase transition only
by means of the specific heat, detailed dynamics involving the dynamic structure
factors have to be postponed to a later work.
�is phase transition is conveniently considered along a line with constant J1 and

varying J3 and is of K-T/sine-G type, because what
occurs is of the same symmetry as in the Heisenberg antiferromagnetic chain with
next nearest neighbour interaction JNNN , which changes from the spin fluid to the
dimerized phase at JNNN = 0.2411JNN . O and N have presented
an approach to determine the transition strength when only finite systems are avail-
able.[] In the spin fluid phase, the triplet state has got a lower energy, whereas
in the tetramer-dimerized phase, the singlet has got a lower energy. At the phase
transition, the ground states of both phases unite to a ground state with higher de-
generacy. With this behaviour inmind,O andN plot the energies
of both the lowest excited triplet and the lowest excited singlet vs. J3 and localize
the intersection point, which marks the phase transition.
In fact the lowest excited singlet state is the singlet which becomes the other de-

generate ground state in the tetramer-dimerized phase, i. e., in an infinite system it
should reach zero energy immediately at the phase transition. For finite systems,
however, this transition to zero energy is gradual, but the intersection with the
triplet energy can localize the phase transition.
Employing this algorithm, the phase transition forN = 24 and J1 = 0.6J is found

at J3 = 0.364J []. In this place I will discuss how the phase transition is reflected
in the specific heat. Figs. . to ?? demonstrate the following behaviour.
Fig. . depicts the dependence of the specific heat on the variation of J3 through

the phase transition at J1 = 0.60J and zeromagnetic field. In the vicinity of the phase
transition (≈ ±0.10J ) the curves look very similar to each other with a “plateau-
like” structure around T ≈ 0.07J. Far away from the phase transition, the specific
heat curves look distinct, with a slower slope in the spin-fluid phase and a second
peak at T ≈ 0.05J in the tetramer-dimerized phase.
�e low temperature behaviour can be better observed from Fig. ., which

clearly shows a gap in the excitation spectrum far away from the phase transition
( J3 = 0.05 and J3 = 0.55). Closer to the phase transition, it becomes more diffi-
cult to tell apart whether the gap is an intrinsic property of the system or simply
attributed to the discreteness of a finite system, but it is likely that at least the two
sets in the tetramer-dimerized phase ( J3 = 0.38 and J3 = 0.44) are gapless as is
known from the effective Heisenberg antiferromagnet.
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Figs. . to . show the variation of the specific heat with the magnetic field at
J1 = 0.60J for several J3 in both phases. �e most striking feature is a double peak
or almost double peak structure at magnetic field below or above the magnetiza-
tion plateau whereas only a single peak can be observed within the magnetization
plateau. With respect to temperature, this single peak is located between the double
peaks.
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Figure .: Specific heat of the N = 18 diamond chain with J1 = 0.60J and H = 0 vs. T
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Figure .: Specific heat of the N = 18 diamond chain with J1 = 0.60J and J3 = 0.05J vs. T.
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Figure .: Specific heat of the N = 18 diamond chain with J1 = 0.60J and J3 = 0.25J vs. T
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Figure .: Specific heat of the N = 18 diamond chain with J1 = 0.60J and J3 = 0.32J vs. T.
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Figure .: Specific heat of the N = 18 diamond chain with J1 = 0.60J and J3 = 0.38J vs. T.
�e magnetization plateau ranges from Hc,1 = 0.276J to Hc,2 = 1.448J.
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Figure .: Specific heat of the N = 18 diamond chain with J1 = 0.60J and J3 = 0.44J vs. T
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Figure .: Specific heat of the N = 18 diamond chain with J1 = 0.60J and J3 = 0.55J vs. T
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Figure .: Specific heat of the N = 18 diamond chain with J1 = 0.46 and J3 = 0.44 vs. T
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Figure .: Specific heat of the N = 18 diamond chain with J1 = 0.48 and J3 = 0.46 vs. T
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Figure .: Specific heat of the N = 18 diamond chain with J1 = 0.50 and J3 = 0.48 vs. T
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Figure .: Specific heat of the N = 18 diamond chain with J1 = 0.52 and J3 = 0.50 vs. T
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Figure .: Specific heat of the N = 18 diamond chain with J1 = 0.54 and J3 = 0.52 vs. T
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Conclusion

In this work I have presented finite temperature dynamics of two different quantum
spin systems based on full exact diagonalization. With this approach I was able to
obtain results for the complete temperature range from T → 0 up to T ≫ J.
�e first system I discussed was the bond alternating Heisenberg chain (Chap-

ter ) where I presented finite temperature results of the dynamic structure fac-
tor for up to  spins ½. �is small system size, however, limited the strength of
the inter-dimer coupling λ . 0.3. At such small values of the inter-dimer cou-
pling, the characteristics of the bond alternating chain is qualitatively similar to
non-interacting dimers, and becomes evident in the existence of the central (zero
frequency) peak and in the temperature and wave vector dependence of the exclu-
sive structure factor, i. e., the integrated intensities, for both the central and the one-
magnon peak. In addition to the dynamic structure factor, I discussed the specific
heat for several values of the coupling constant and magnetic fields.
Experimental and theoretical interest in the dynamics of the bond alternating

Heisenberg chain results from the possibility that this theoretical model and its re-
alizations in a number of materials, e. g., Copper nitrate Cu(NO₃)₂, might serve as
a simple model system to discuss the interplay between temperature and quantum
fluctuations. �e results reveal that this interplay becomes apparent in a number
of points which are accessible to experimental, in particular neutron scattering, ob-
servations:

(i) �e shape of the central peak of the longitudinal structure factor, which is a
prominent feature of the bond alternating chain, displays the crossover with
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temperature from the non-interacting particle like behaviour at low temper-
atures to the shape at high temperatures which appears similar to diffusive
behaviour. Changes of the magnetization have only little influence on the
shape of the central peak.

(ii) �e one magnon peak develops an asymmetric line width (with appreciable
strength on the high frequency side) with temperature. �is is particularly ev-
ident for wave vector q = 2π at temperatures T ≥ J and appears to describe
in more detail the upward shi
 in gap energy with temperature noted in ap-
proximate theoretical approaches. �is asymmetry as well as the strength of
the one-magnon peak depends on the magnetization of the system.

(iii) �e twomagnon peak (around q = π ) is dominated by the bound triplet state
on top of a small continuum which is smooth at all temperatures and wave
vectors.

�e introduction of an external magnetic field breaks isotropy and offers another
quantity to be examined: at finite field, the transverse structure factor is subject to
Zeeman splitting and involves different transitions than the longitudinal structure
factor.

(i) �e transverse structure factor shows a strong one-magnon peak at all mo-
menta, all temperatures, and all magnetizations. At higher temperatures, an
asymmetry with emphasis on the high frequency side for q = π and emphasis
on the low frequency side for q = 2π develops.

(ii) �e central peak of the transverse structure factor is heavily suppressed for
q = 2π, which can be understood with the momentum dependence in the
non-interacting dimer limit.

(iii) At q = 2π the transverse structure factor features a very strong peak at ω ≈ 0,
which can be regarded as inverse one-magnon transitions. It sets in close
to the critical field and is present even at low temperatures, where its main
contribution comes from a strong dipole transition between the ground states
of magnetizationM andM − 1.

�e other system I investigated was the distorted diamond chain (Chapter ).
Here I was able to give results for the specific heat for up to  spins ½. I was able
to qualitatively understand the behaviour of the diamond chain with the help of
the fundamental building block, the generic and the distorted tetramer. Detailed
quantitative behaviour, however, had to be postponed to a later work.
In the spin-fluid phase, I compared the low energetic spectrum of the diamond

chain with the spectrum of a Heisenberg antiferromagnetic chain of N/3 spins. In
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the same manner, I compared the low energetic spectrum in the tetramer-dimer-
ized phase with the spin ½ magnon of the Heisenberg antiferromagnetic chain of
N/3 (N odd, N = 15) spins.
Since the behaviour at the phase transition between the spin-fluid and the tetra-

mer-dimerized phases is of most interest, I concentrated on two paths in the phase
diagram, the first having constant J1 = 0.6J (more or less close to azurite), and the
other one parallel to the diagonal with J1 − J3 = 0.2J.
In the spin-fluid phase, the distorted diamond chain shows two energy scales:

(a) Excitations of the single spins at a low energy scale behave like an effective
Heisenberg model with Jeff ≪ J. Especially at low values of J1 and J3, i. e.far
away from the phase boundary, and close to the symmetry line J1 = J3, the qual-
ity of the effective Heisenberg was very good. �e effective coupling constant
grows with increasing distance from the symmetry line.

(b) Excitations of the dimers are at a much larger energy scale (E & J ). How-
ever, approaching the phase boundary reduces the difference between the two
energy scales until they intermix.

In the tetramer-dimerized phase, the soliton propagation of domain walls is the
most interesting feature. Unfortunately, the limited system size confined my inves-
tigation to single solitons; two freely moving solitons will only be observed with
larger system sizes than I could investigate within the scope of this work.
�e examination of the two-soliton excitations surely is an interesting but not

the only task for a future work. Of great importance is also the determination of
the detailed dynamics of the distorted diamond chain by investigating the dynamic
structure factor.
On behalf of the bond alternating Heisenberg chain, the future expansion to

larger system sizes will allow for larger values of the coupling ratio λ like they are
expected in (VO)₂P₂O₇.
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A A

�eNumerical Approach

�ere are a vast number of different numerical methods available to investigate
the properties of spin systems, ranging from purely statistical approximations for
largest systems and  for considerably large systems down to exact diagonal-
ization being the most accurate method. Nevertheless, it is also most demanding
and heavily restricts the system size. In a run for new physics in more and more
complex systems modelled a
er real-life complex compounds, people tend to pre-
fer inexact over exact methods.
In this work, I will restrict myself to full exact diagonalization of spin-½ sys-

tems—and thus limiting the system size to  spins at most. In order to be able to
handle systems of such size ¹, I took several symmetries into account.
First, I limit myself to systems with fixed total spin projection Stotz , reducing the

matrix dimension from 2N to
`

N
N
2
+Stotz

´

for anN-spin system, but increasing the num-

ber of diagonalizations by a factor N. While this saving in memory is mandatory
to calculate reasonable system sizes, I will not be able to describe all physical pro-
cesses with this model, e. g., single-spin-umklapp processes change the total spin
projection.
Second, the investigated Hamilton operators are translationally invariant—with

respect to the intrinsic periodicity P, Ja,i = Ja,i+P. Technically speaking, the Hamil-
ton and translation operator commute [H , T ] = 0, which enables me to find a set

. Remember that 220 ≈ 106 , i. e., the matrix size of the Hamiltonian is 106 · 106 = 1012 . Using double
precision complex numbers, this yields  Bytes permatrix element or about  PB for the wholematrix
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of simultaneous eigenstates

|i, q〉 =
q

P
N

N
P
−1

X

n=0

e
iqnTn|a〉 (A.)

where i labels the set of translationally invariant spin configurations, a is one repre-
senting spin configuration of that class, and q = n 2π N

P
, n = 0, . . . , N

P
−1 is the wave

‘ vector ’. Incorporating the wave vector as conserved quantity or ‘ quantum num-
ber ’, I can reduce the matrix size by a factor of N

P
. Strictly speaking, the reduction

is slightly less because certain spin configurations already show a higher symmetry.
Generally speaking, I could increase the size of the elementary cell to an arbi-

trary value in order to model a system with arbitrary, or even no symmetry, but I
will consider only systems with an elementary cell of size three or smaller, because
otherwise the matrix grows too large for reasonable system sizes.
An external magnetic field only enters the Hamiltonian by means of a Zeeman

shi
. Since I require themagnetic field to be constant in time and space, the Zeeman
term is constant and diagonal and, thus, does not influence the wave functions but
only the energies of the eigenstates. �is is important to note, because it reduces
the diagonalization computations to zero field diagonalization and heavily reduces
the amount of computations for the dynamical structure factors.
A
er evaluating all symmetries for a given system, and taking all spin interac-

tions into account, I arrive at a matrix corresponding to the Hamiltonian, whose
reduction to eigenvalues and -states is the topic of the next section A.. SectionA.
covers the computation of the dynamic structure factors, and SectionA. gives a
very short overview of the calculation of the specific heat.

A. Diagonalization

A
er having made the decision of employing full exact diagonalization, the algo-
rithm to be used had to be chosen. One particularly efficient algorithm for full
exact diagonalization is the concatenation of theH and theQR algo-
rithms, which I will present here in a short overview.[]
�e H algorithm reduces a hermitean matrix H = Hi to a her-

mitean tridiagonal matrix Hn−1 by n − 2 orthogonal transformations, where n is
the dimension of the matrix. �ese transformations follow

Hi+1 = MiHiMi, i = 1, 2, . . . , n− 2 (A.)
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where

Mi = 1− aia
†
i

ti
(A.a)

ti =
1
2
a†i ai (A.b)

ai =
`

h(i)ℓ,1, . . . , h
(i)
ℓ,ℓ−2, h

(i)
ℓ,ℓ−1 ± σ

1
2
i , 0, . . . , 0

´†
(A.c)

ℓ = n− i + 1 (A.d)

σi =
`

h(i)ℓ,1

´2
+ · · · +

`

h(i)ℓ,ℓ−1

´2
(A.e)

pi =
Hiai
ti

(A.f )

ki =
a†i pi

2ti
(A.g)

qi = pi − kiai (A.h)

resulting in

Hi+1 =

„

1− aia
†
i

ti

«

Ai

„

1− aia
†
i

Hi

«

(A.a)

= Hi − aiq
†
i − qia

†
i (A.b)

�e matrix Hi is tridiagonal in its last i − 1 rows and columns, hence Hn−1 is
a tridiagonal matrix. Furthermore, if ~v is an eigenvector of the tridiagonal matrix
Hn−1 thenM1 . . . Mn−2 is an eigenvector of H.
Finally, the obtained tridiagonal matrix can be transformed to upper triangular

form by a standardQR decomposition, which is particularly efficient on tridiagonal
matrices. Albeit the resulting matrix is not strictly speaking diagonal, the eigenval-
ues can be read off and the eigenstates can be obtained by a small calculation.
On the  supercomputer (an  Regatta), however, it turned out that ’s

highly optimized, threaded  library was more efficient so that I opted for it for
the production runs on that computer.

A. Dynamic structure factor

A
er having completed the diagonalization, the obtained eigenstates are used to
compute the dynamic structure factor S(q, ω) from the single matrix elements of
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the spin operators.

Sσ̄σ(q, ω) = 1
N

X

i, f

e
−

βEi
kBT

˛

˛

˛
〈 f |Sσ(q)|i〉

˛

˛

˛

2

δ(E f − Ei − ω) (A.a)

Sσ(q) =
X

n

e
iqnSσn (A.b)

where i, f loop over all eigenstates, n over all spins, and σ = z,±. Remembering
translational invariance

|i〉 =
X

a

ca

„

q

Pa
N

N
Pa

−1
X

j=0

e
ikjT j|a〉

«

, (A.)

I find

〈 f |Sσn|i〉 =
X

a,b

c⋆b ca

√
PaPb

N

N
Pa

−1
X

j=0

N
Pb

−1
X

j′=0

e
i(kj−k′ j′ )〈b|T− j′SσnT

j|a〉 (A.a)

=
X

a,b

c⋆b ca

√
PaPb

N

N
Pa

−1
X

j=0

N
Pb

−1
X

j′=0

e
i(kj−k′ j′ )〈b|T j− j′Sσn− j|a〉 (A.b)

It is noteworthy, that this matrix element does not depend on the energies of the
participating states but only on their wave functions and is therefore independent
of an applied magnetic field and temperature.
As Sz ( opposed to S± ) is diagonal, this can be further simplified for Sz :

〈 f |Szn|i〉 =
X

a

c f⋆a cia

N
Pa

−1
X

j=0

e
i(k−k′ ) j〈a|Szn− j|a〉 (A.a)

= e
i(k−k′ )n

X

a

|cia|2
N
Pa

−1
X

j=0

e
−i(k−k′ ) j〈a|Szj |a〉 (A.b)
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leading to

〈 f |Sz(q)|i〉 =
N−1
X

n=0

e
i(q−k+k′ )n

X

a

|cia|2
N
Pa

−1
X

j=0

e
−i(k−k′ ) j〈a|Szj |a〉 (A.a)

= δ(q− k + k′ )
X

a

|cia|2
N
Pa

−1
X

j=0

e
−iqj〈a|Szj |a〉 (A.b)

As expected, thematrix element of Sz is diagonal, which saves a lot of computational
effort. Unfortunately, S± are not diagonal, meaning that S+− and S−+ cannot be
simplified in this way. �is leads to the general, but more complex form

〈 f |S+(q)|i〉 =
X

a,b

c
f⋆

b cia

N−1
X

n=0

N
Pa−1
X

j=0

N
Pb−1
X

j′=0

e
i(qn+kj+k′ j′ )〈b|T j− j′S−n− j|a〉 (A.a)

= δ(k + q− k′ )
X

a,b

c
f⋆

b cia

q

Pb
Pa

N−1
X

n=0

δane
i(qn−k′m(n,a))

Pb−1
X

r=0

e
i r
Pb

(2π−k′N )

(A.b)

However, it is sufficient to calculate the values for Szz and S+−, because S−+ can
be obtained from S+− by means of detailed balance. �e structure factor is

S+−(q, ω) =

Z

dt e−iωt〈S+(q, t )S−(−q, 0)〉 (A.a)

=
X

m,n

e
−βEmδ(−ω + Em − En )〈m|S+(q, 0)|n〉〈n|S−(−q, 0)|m〉

(A.b)

with

〈S+(q, t )S−(−q, 0)〉 =
X

n

〈S+(q, t )|n〉〈n|S−(−q, 0)〉 (A.a)

=
X

n

〈eiHtS+(q, 0)e−iHt|n〉〈n|S−(−q, 0)〉 (A.b)

=
X

m,n

e
−βEme

i(Em−En )t〈m|S+(q, 0)|n〉〈n|S−(−q, 0)|m〉

(A.c)
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Analogous

〈S−(q, t )S+(q, 0)〉 =
X

m,n

e
−βEme

i(Em−En )t〈m|S−(q, 0)|n〉〈n|S+(−q, 0)|m〉

(A.a)

=
X

m,n

e
−βEne

−i(Em−En )t〈m|S+(−q, 0)|n〉〈n|S−(q, 0)|m〉

(A.b)

=
X

m,n

e
−βEme

−β(En−Em )
e
−i(Em−En )t

〈m|S+(−q, 0)|n〉〈n|S−(q, 0)|m〉
(A.c)

Combining these equations yields the correspondence between S+− and S−+

S−+
(q, ω) =

X

m,n

e
−βEme

−β(En−Em )δ(ω + Em − En )〈m|S+(−q, 0)|n〉〈n|S−(q, 0)|m〉

(A.a)

= e
−βω

X

m,n

e
−βEmδ(ω + Em − En )〈m|S+(−q, 0)|n〉〈n|S−(q, 0)|m〉

(A.b)

= e
−βωS+−(−q,−ω) (A.c)

In the end, the computation of the transverse dynamic structure factor involves
a large number of vector-matrix-vector multiplications, which still allow for some
optimization.
First, a very small Boltzmann factor will yield a very small matrix element. In

this case the matrix multiplication of this matrix element may safely be skipped
completely. However, this only helps at low temperatures (T . 0.1J ).
Second, the matrix elements share a common subexpression, namely the sum

over j and j′ in eq. (A.), which is independent of the wave functions and energies
and can be evaluated before thematrixmultiplications, reducing the computational
effort.

A. Specific heat

In contrast to the previous computations, which required both the energy spectrum
and the wave functions, the calculation of the specific heat is much less demanding
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as it only depends on the energy spectrum. Starting from the thermodynamic ex-
pressions (with kB ≡ 1)

F = − 1

β
ln(Z ), S = β2

∂F

∂β
(A.a)

C = −β
∂S

∂β
= β2

∂2 ln(Z )

∂β2
(A.b)

I obtain the formula

C = β2 d
dβ

“

1
Z

X

n

e
−βEnEn

”

(A.a)

=
1

β2

»

1
Z

X

n

E2
ne

−βEn − 1
Z2

“

X

n

Ene
−βEn

”2
–

(A.b)

=
1

β2

D

`

E− 〈E〉
´2

E

(A.c)

which allows for a fast computation of the specific heat for a larger number of tem-
peratures and magnetic fields.
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�e subsequent list provides a brief abstract of the publications [, ] presenting
the scientific work underlying this thesis.

H.-J. M  C. L

Finite Temperature Dynamics of the Spin½ Bond Alternating
Heisenberg Antiferromagnetic Chain
Physical Review B ,  ()

We present results for the dynamic structure factor of the S = ½ bond
alternating Heisenberg chain over a large range of frequencies and
temperatures. Data are obtained from a numerical evaluation of ther-
mal averages based on the calculation of all eigenvalues and eigenfunc-
tions for chains of up to  spins. Interpretation is guided by the exact
temperature dependence in the non-interacting dimer limit, which re-
mains qualitatively valid up to an inter-dimer exchange λ ≈ 0.5. �e
temperature induced central peak around zero frequency is clearly
identified and aspects of the crossover to spin diffusion in its varia-
tion from low to high temperatures are discussed. �e one-magnon
peak acquires an asymmetric shape with increasing temperature. �e
two-magnon peak is dominated by the S = 1 bound state, which re-
mains well defined up to temperatures of the order of J. �e varia-
tion with temperature and wave vector of the integrated intensity for
one-magnon and two-magnon scattering and of the central peak are
discussed.
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Temperature effects on multi-particle scattering in a gapped quantum magnet,
Journal of Magnetism and Magnetic Materials ,  ()

We report measurements of the temperature effects on the dimerized
antiferromagnetic chain material, copper nitrate Cu(NO₃)₂ · 2.5D₂O.
Using inelastic neutron scattering we have measured the temperature
dependence of the one- and two-magnon excitation spectra as well as
the temperature induced one-magnon intra-band scattering in a single
crystal. Comparison is made with numerical evaluations of thermal
averages based on the calculation for a chain of  spins.
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structure factor

dynamic, , , , see also struc-
ture factor, longitudinal, see
also structure factor, transverse,
ff, 

exclusive, , , 
integrated, see structure factor, ex-

clusive
longitudinal, , , ff, ff, 
transverse, , , ff, , f, ff,


symmetric tetramer, see tetramer, sym-

metric
symmetry

rotational, , 
translational, f

T
tetramer, 

distorted, 
symmetric, f

tight binding, 
transverse structure factor, see structure

factor, transverse
two-magnon peak, see excitation, two-

magnon

W
wave function, 
wave vector, f, , , , , 

Z
Zeeman, , , , 
zero temperature, ff




	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 The Bond Alternating Heisenberg Chain
	2.1 Introduction
	2.2 The non-interacting dimer limit
	2.3 The dynamic structure factor in an isotropic set-up
	2.4 The dynamic structure factor in an external magnetic field
	2.4.1 Specific Heat
	2.4.2 Qualitative Properties of the Dynamic Structure Factor
	2.4.3 The Dynamic Structure Factor at Zero Temperature
	2.4.4 The dynamic structure factor at finite temperature


	3 The Diamond Type Chain
	3.1 Introduction
	3.1.1 Hamiltonian of the diamond chain
	3.1.2 The symmetric tetramer
	3.1.3 The distorted tetramer
	3.1.4 The quantum phase diagram of the diamond chain

	3.2 Excitations in the spin fluid regime
	3.2.1 Effective Heisenberg model

	3.3 Excitations in the tetramer-dimerized regime
	3.4 Specific heat

	4 Conclusion
	Appendix
	A The Numerical Approach
	A.1 Diagonalization
	A.2 Dynamic structure factor
	A.3 Specific heat

	Bibliography
	Publications
	Acknowledgements
	Index

