Total Synthesis of Archazolid A and
 Studies Towards the Total Synthesis of Etnangien

Von der Naturwissenschaftlichen Fakultät
der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades

Doktor der Naturwissenschaften

- Dr. rer. nat. -
genehmigte Dissertation
von

Diplom-Chemiker Jun Li

geboren am 14. November 1972
in Nei Mongel

China

Referent: Prof. Dr. Markus Kalesse
Koreferent: Prof. Dr. Dirk Menche
Tag der Promotion: 17.12.2008

Erklärung zur Dissertation

Hierdurch erkläre ich, dass die Dissertation:

Total Synthesis of Archazolid A and

Studies Towards the Total Synthesis of Etnangien
selbstständig verfasst und alle benutzten Hilfsmittel sowie evtl. zur Hilfeleistung herangezogene Institutionen vollständig angegeben wurden.

Die Dissertation wurde nicht schon als Diplom- oder ähnliche Prüfungsarbeit verwendet.

Hannover, den 14.10.2008.

(Unterschrift)

Name: Jun Li

Publikationen

\author{

1. D. Menche, J. Hassfeld, J. Li, G. Menche, A. Ritter, S. Rudolph;
 Hydrogen Bond Catalyzed Direct Reductive Amination of Ketones.
 Org. Lett. 2006, 8, 741-744.
}
2. D. Menche, J. Hassfeld, J. Li, S. Rudolph;

Total Synthesis of Archazolid A.
J. Am. Chem. Soc. 2007, 129, 6100-6101.
3. D. Menche, S. Böhm, J. Li, S. Rudolph, W. Zander

Synthesis of hindered tertiary amines by a mild reductive amination procedure.
Tetrahedron Lett. 2007, 48, 365-369.
4. D. Menche, F. Arikan, J. Li, S. Rudolph

Directed Reductive Amination of β-Hydroxy-Ketones: Convergent Assembly of the Ritonavir/Lopinavir Core.
Org. Lett. 2007, 9, 267-270.
5. D. Menche, F. Arikan, J. Li, S. Rudolph, F. Sasse

Efficient one-pot synthesis of biologically active polysubstituted aromatic amines.
Bioorg. Med. Chem. 2007, 15, 7311-7317.
6. F. Arikan, J. Li, D. Menche

Diastereodivergent Aldol Reactions of Chiral Ethyl Ketones: Modular Access to (1,4)-syn and -anti Polypropionates.
Org. Lett. 2008, 10, 3521-3524.

Wissenschaftlichen Vorträgen

Beiträge zur Totalsynthese von Archazolid: Synthese des Nordwest-Fragmentes
27. Tübingen-Göttinger gespräche zur Chemie von Mikroorganismen, Retzbach-Zellingen, 2006.

Poster Presentation

Chemie und Biologie der Archazolide
Hochschule trifft Industrie 27.-29. September 2007 in Berlin Postsdam.

Kurzfassung
 Jun Li

Total Synthesis of Archazolid A and Studies Towards the Total Synthesis of Etnangien
Stichwörter: Archazolid A, Totalsynthese, Entschützung von Silylethern, Aminierung

Archazolid A ist ein potenter V-ATPase Inhibitor aus dem Myxobacerium Archangium gephyra. Im Rahmen dieser Dissertation wurde eine erste Totalsynthese von Archazolid A realisiert. Die erfolgreiche Synthesestrategie zu diesem komplexen Polyketid beruht auf der Verknüpfung von drei Bausteinen durch eine Aldolkondensation, eine Heck-Reaktion und eine HWE-Makrocyclisierung. Sie verlief in insgesamt 20 Stufen und 4\% Gesamtausbeute (längste lineare Sequenz) und etablierte eindeutig die relative und absolute Konfiguration dieses Naturstoffes. Eines der Hauptfragmente, die C14-C19 Untereinheit, wurde in einer direkten Route in 10 Stufen und 54\% Gesamtausbeute erhalten. Schlüsselmerkmale der Synthese beinhalten eine optimierte Prozedur, um ein E-Vinyliodid herzustellen und eine hochenantio- und diastereoselektive Abiko-Masamune anti Aldol Reaktion zum Aufbau der C16 und C17 Stereozentren. In diesem Zusammhang wurde eine neuartige Methode zum direkten Austausch des Abiko-Masamune Auxiliars durch verschiedene Nucleophile unter Verwendung von $i \mathrm{PrMgCl}$ zur Carbonyl-Aktivierung entwickelt.
Etnangien ist ein makrocylisches Polyketid aus dem Myxobakterium Sorangium cellulosum. Es zeigt antibiotische Aktivität gegen verschiedene Gram-positive Bakterien durch RNAPolymerase Inhibierung. Im Rahmen dieser Arbeit wurde der makrocylische Kern von Etnangien erfolgreich aus drei Schlüsselbausteinen synthetisiert, die durch eine Ipc-Borvermittelte Aldol-Reaktion, eine Yamaguchi Veresterung und eine hochgradig E-selektive Heck Makrocyclisierung verknüpft wurden. Die Synthese verläuft in 18 Stufen und 27\% Gesamtausbeute (längste lineare Sequenz). Die C15-C23 Untereinheit wurde in 11 Stufen mit 37\% Ausbeute erhalten. Bemerkenswerte Kennzeichen beinhalten eine Paterson anti-Aldol Reaktion zum Aufbau der Stereozentren an C20/C21, ein optimiertes Protokoll für eine Wittig Reaktion, eine innovative TBS Schützungsmethode, die Protonenschwamm ${ }^{\circledR}$ als Base verwendet und eine hocheffiziente oxidative Diol-Spaltung durch $\mathrm{Pb}(\mathrm{OAc})_{4}$.
Darüber hinaus wurde eine neue selektive Methode zur Entschützung von Silylethern entwickelt, die die Verwendung von NaIO_{4} beinhaltet. Die milden nichtsauren und basischen Bedingungen gestatten Anwendungen auch bei komplexen und säure- oder basenempfindlichen Substraten.
Schließlich wurde eine effiziente Prozedur zur Synthese strukturell verschiedenartiger diverser tertiärer Amine unter Verwendung eines Thioharnstoff-katalysierten direkten reduktiven Aminierungsprotokolls entwickelt. Diese tertiären Amine erwiesen sich als potente wachstumshemmende Verbindungen.

Abstract

Jun Li

Total Synthesis of Archazolid A and Studies Towards the Total Synthesis of Etnangien

Keywords: Archazolid A, total synthesis, sily ether deprotection, amination

Archazolid A is a potent V-ATPase inhibitor from the myxobacerium Archangium gephyra. During this thesis a first total synthesis of archazolid A was accomplished. The successful synthetic strategy for this complex polyketide involved coupling of three main building blocks, which was achieved by an aldol condensation, a Heck-reaction and a HWE macrocyclisation. In total, it proceeds in 20 steps and 4% overall yield (longest linear sequence) and unequivocally establishes the relative and absolute configuration of this natural product. One of the main fragments, the C14-C19 subunit was synthesized in 10 steps with 54% overall yield. Key features of the synthesis included an optimized procedure to prepare an E-vinyliodide and a highly enantio- and diastereoselective Abiko-Masamune anti aldol reaction for the construction of the C 16 and C 17 stereocentres. Within this context, a novel method for a direct displacement of the Abiko-Masamune auxiliary by various nucleophiles was established by using $i \mathrm{PrMgCl}$ for carbonyl activation.

Etnangien is a macrocyclic polyketide from the myxobacterium Sorangium cellulosum. It shows antibiotic activity against various gram-positive bacteria by inhibition of RNA polymerase. During this thesis the macrocyclic core of etnangien was successfully synthesized from three key building blocks using a Ipc-boron-mediated aldol reaction, a Yamaguchi esterification and highly E-selective Heck macrocyclization. It proceeds in 18 steps and 27% overall yield (longest linear sequence). The C15-C23 subunit was synthesized in 11 steps and 37% yield. Notable features include a Paterson anti-aldol reaction to install the stereocentres at C20/C21, an optimized Wittig reaction procedure, an innovative method of TBS protection by use of proton sponge ${ }^{\circledR}$ as base and a highly efficient oxidative diolcleavage with $\mathrm{Pb}(\mathrm{OAc})_{4}$.

Furthermore, a new selective method for deptrotection of silyl ethers was developed, which involves use of NaIO_{4}. The mild nonacidic and -basic conditions enable applications to complex and acid- or base-sensitive substrates.

Finally, an efficient procedure was developed to synthesize structurally diverse tertiary amines by employing a thiourea-catalyzed direct reductive amination protocol. These tertiary amines were shown to be potent antiproliferative agents.

Danksagung

Die vorliegende Arbeit wurde am Helmholtz-Zentrum für Infektionsforschung in Braunschweig in der Abteilung Medizinische Chemie unter Anleitung von Prof. Dr. Dirk Menche von Oktober 2005 bis Oktober 2008 angefertigt.

Mein besonderer Dank gilt meinem Betreuer, Prof. Dr. Dirk Menche, für diese interessante Themenstellung, die zahlreichen Anregungen, die stetige Bereitschaft zur Diskussion der Ergebnisse und Probleme. Die intensive Betreuung und materielle Unterstützung halfen sehr, die vorliegende Arbeit zu vollenden.

Mein Dank gilt Prof. Dr. Markus Kalesse für die Aufnahme in seine Abteilung am Helmholtz-Zentrum für Infektionsforschung in Braunschweig und für die Möglichkeit, am Institut für Organische Chemie der Gottfried Wilhelm Leibniz Universität promovieren zu können.

Mein Dank gilt außerdem allen weiteren Mitgliedern des Arbeitskreises Prof. Menche, die mir bei all meinen Problemen geholfen haben und immer ein offenes Ohr dafür hatten. Für die hervorragende und herzliche Zusammenarbeit danke ich vor allem Dr. Jorma Hassfeld, Dr. Nicole Horstmann, Wiebke Ahlbrecht, Fatih Arikan, Pengfei Li, Sven Rudolph, Tatjana Arnold, Antje Ritter, Wiebke Zander und Inga Degenhard.

Für die ständig vorhandene Diskussionsbereitschaft möchte ich bei Heinrich Steinmetz, Dr. Rolf Jansen und Dr. Jutta Niggemann bedanken. Für das Korrekturlesen danke ich speziell Dr. Jutta Niggemann.

Den Mitarbeitern am HZI in Braunschweig, danke ich für die gute Zusammenarbeit, vor allem Christel Kakoschke und Beate Jaschok-Kentner für die Aufnahme der NMR-Spektren, Undine Felgenträger für die MS Messungen, Antje Ritter und Susanne Engelkes für HPLCMS Messungen. Der MS Abteilung an der Universität Hannover danke ich für die HRMS Messungen.

Table of Contents

1 Introduction and Research Objectives 1
1.1 Myxobacteria 2
1.2 Archazolid A and B 3
1.3 Etnangien 6
1.4 Research Objectives 8
2 Polyketide Synthesis 9
2.1 Biosynthesis 10
2.2 Synthetic Approaches 12
2.2.1 Auxiliary-Controlled Diastereoselective Aldol Reactions 12
2.2.1.1 Evans syn Aldol Reaction 14
2.2.1.2 Evans anti Aldol Reaction 16
2.2.1.3 Abiko-Masamune Aldol Reaction 17
2.2.1.4 Paterson Aldol Reaction 18
2.2.2 Asymmetric Crotylation Reactions 20
2.2.2.1 B-Crotylation Reactions 22
2.2.2.2 Duthaler-Hafner Ti-Crotylation Reactions 24
2.2.2.3 Leighton Si-Crotylation Reactions 25
2.2.3 Addition of Chiral Allenylzinc and Indium Reagents to Aldehydes 25
2.2.4 Epoxide Opening 27
2.2.5 2,3-Wittig Sigmatropic Rearrangement 28
2.2.6 Diastereoselective anti- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ allylic Displacement Reactions 30
3 Total Synthesis of Archazolids 31
3.1 Retrosynthetic Analysis 31
3.2 Synthesis of the C3-C13 Subunit - Dr. Jorma Hassfeld 33
3.3 Synthesis of the C20-C1" Subunit - Sven Rudolph 35
3.4 Synthesis of the C14-C19 Subunit 37
3.4.1 Plan 1: Evans anti Aldol Reaction 37
3.4.2 Plan 2: Noyori's Asymmetric Transfer Hydrogenation 39
3.4.3 Plan 3: Abiko-Masamune anti Aldol Reaction 40
3.4.3.1 Synthesis of the Vinyliodide 41
3.4.3.2 Abiko-Masamune anti Aldol Reaction 43
3.4.3.3 $\quad O$-Methylation of the Aldol Adduct 44
3.4.3.4 The Phosphonate Fragment 45
3.4.3.5 The Methyl Ketone Fragment 48
3.4.3.6 Conclusion 49
3.5 Connection of the C3-C13 and the C14-C19 Subunits 50
3.5.1 $H W E$-Reactions between Phosphonate 118 and Aldehyde 143 50
3.5.2 Aldol Condensation between Methyl Ketone and Aldehyde 51
3.6 Connection of the C3-C19 and the C20-C1" Subunits 52
3.7 Completion of the First Total Synthesis 53
3.8 Heck-Macrocyclisation: Towards Archazolid B 56
3.9 Conclusion 57
4 Studies Towards the Total Synthesis of Etnangien 58
4.1 Retrosynthetic Analysis 58
4.2 Synthesis of the C34-C42 Subunit - Fatih Arikan 60
4.3 Synthesis of the C24-C31 Subunit - Pengfei Li 62
4.4 Synthesis of the C15-C23 Subunit 63
4.4.1 Synthesis of the Aldehyde Fragment - Wittig Reaction 63
4.4.2 Construction of the Stereocentre C20/C21 - anti Aldol Reactions 66
4.4.2.1 The Abiko-Masamune anti Aldol Strategy 66
4.4.2.2 The Paterson anti Aldol Strategy 68
4.4.3 Conclusion 72
4.5 Connection of the C15-C23 and the C24-C31 Subunits 73
4.5.1 The Model Ipc-Boron Aldol Reaction with Methyl Ketone 219 73
4.5.2 The Ipc-Boron Aldol Reaction 75
4.5.3 Reduction of the Ketone 225 and Selective Protection of the Diol 227 77
4.6 Connection of the C15-C31 and the C32-C42 Subunits 79
4.7 Completion of the Macrolide Moiety: Heck-Macrocyclization 80
4.8 Synthesis of Analogues of the Etnangien Macrolide Structure 83
4.8.1 Heck Macrocyclization 83
4.8.2 Sonogashira Macrocyclization 84
4.9 Conclusion 85
5 Selective Deprotection of Silyl Ethers with NaIO_{4} 86
5.1 Introduction 86
5.2 Result and Discussion 87
5.3 Conclusion 90
5.4 Preparation of Silyl Ethers 91
6 Direct Reductive Amination 93
6.1 Introduction 93
6.2 One-Pot Synthesis of Hindered Tertiary Amines 96
6.2.1 Dialkylation of Amines with Ketone and Aldehyde 96
6.2.2 Dialkylation of para-Anisidine with two Aldehydes 97
6.2.3 Dialkylation of Different Amines with Isobutyraldehyde and Benzaldehyde 99
6.3 Biological activity 101
6.4 Conclusion 103
7 Summary 104
7.1 Total Synthesis of Archazolid A 104
7.2 Studies Towards the Total Synthesis of Etnangien 106
7.3 Selective Deprotection of Silyl Ethers with NaIO_{4} 107
7.4 Direct Reductive Amination 108
8 Experimental Section 109
8.1 General Methods 109
8.2 Preparation of Reagents 110
8.3 Total Synthesis of Archazolids 116
8.3.1 Synthesis of alcohol 64a for the C3-C13 subunit 116
8.3.2 Synthesis of the C14-C19 Subunit 118
8.3.2.1 Plan 1: Evans anti Aldol Reaction 118
8.3.2.2 Plan 2: Noyori's asymmetric transfer hydrogenation 121
8.3.2.3 Plan 3: Abiko-Masamune anti Aldol Reaction 125
8.3.3 Connection of the C3-C13 and the C14-C19 Subunits 136
8.3.4 Connection of the C3-C19 and the C20-C1" Subunits 139
8.3.5 Heck-Macrocyclisation: Towards Archazolid B 142
8.4 Studies Towards the Total Synthesis of Etnangien 144
8.4.1 Synthesis of the C15-C23 Subunit 144
8.4.1.1 Synthesis of the Aldehyde Fragment - Wittig Reaction 144
8.4.1.2 Construction of the Stereocentres at C20 and C21 148
8.4.2 Connection of the C15-C23 and the C24-C31 Subunits 160
8.4.3 Connection of the C15-C31 and the C32-C42 Subunits 170
8.4.4 Completion of the Macrolide Moiety 172
8.4.5 Synthesis of Analogues of Etnangien Macrolide Structure 175
8.5 Selective Deprotection of Silyl ethers with NaIO_{4} 181
8.5.1 General procedure for deprotection of silyl ethers 181
8.5.2 Preparation of Silyl Ethers 186
8.6 Direct Reductive Amination 195
References and Notes 199
Curriculum Vitae NMR-Spectra

List of Abbreviations, Acronyms, and Symbols

$[\alpha]^{\mathrm{T}}{ }_{\mathrm{D}}$
\AA
Ac
aq.
Ar.
Bn
BOP

Bu
${ }^{t} \mathrm{Bu}$.
$n \mathrm{BuLi}$
Bz
c
${ }^{\circ} \mathrm{C}$
cat.
CDCl_{3}
CoA
COSY
Cp
18-c-6
CSA
$\mathrm{Cy} / \mathrm{cHex}$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathrm{CH}_{3} \mathrm{CN}$
δ
d
DABCO
DBU
DDQ
DIBAL-H
DIPCl
DMAP
specific rotation at temperature T at the sodium D line angstrom
acetyl
aqueous
aryl
benzyl
(benzotriazol-1-yloxy)tris-(dimethylamino)phosphonium hexafluorophosphat
butyl
tert-Butyl
n-Butyllithium
benzoyl
concentration
degree centigrade
catalytic
Deuterated Chloroform
coenzyme A
Correlation Spectroscopy
cyclopentadienyl
18-crown-6
10-camphorsulfonic acid
cyclohexyl
dichlormethane
acetonitrile
NMR chemical shift in ppm downfield from a standard day, doublet
1,4-diazabicyclo[2.2.2]octane
1,8-diazabicyclo[5.4.0]undec-7-ene
2,3-dichloro-5,6-dicyano-1,4-benzoquinone diisobutylaluminum hydride
B-chloro-diisopinocampheyl borane
4-N,N-dimethylamino pyridine

DMF	N, N-dimethyl formamide
DMP	Dess-Martin periodinane
DMPM	3,4-dimethoxybenzyl
DMSO	dimethyl sulfoxide
d.r.	diastereomeric ratio
$e e$	enantiomeric excess
EI	electron impact ionization
eq.	equivalent
Et	ethyl
$\mathrm{Et}_{2} \mathrm{O}$	diethyl ether
EtOAc	ethyl acetate
exc.	excess
GC	Gas chromatography
g	gram
h	hour
HMDS	1,1,1,3,3,3-hexamethyldisilazane
HPLC	high-pressure liquid chromatography
HRMS	High resolution mass spectroscopy
HWE	Horner-Wadsworth-Emmons
Hz	hertz
IC_{50}	concentration that is infective in 50% of test subjects
Ipc	isopinocampheyl
$i \operatorname{Pr}$	iso-Propyl
J	coupling constant
KHMDS	potassium 1,1,1,3,3,3-hexamethyldisilazide
LAH	lithium aluminum hydride
LDA	lithium diisopropyl amide
LHMDS	lithium 1,1,1,3,3,3-hexamethyldisilazide
m	multiplet
M	molarity (moles $\cdot 1-1$)
Me	methyl
mg	milligram
MHz	megahertz
min	minute

mL	milliliter
$\mu \mathrm{L}$	microliter
mmol	millimole
$\mu \mathrm{mol}$	micromole
mol\%	mole per cent
mp	melting point
M.S.	molecular sieves
MS	mass spectrometry
MTPA	2-methoxy-2-phenyl-2-(trifluoromethyl) acetic acid
NMM	N-methyl morpholine
NMO	N-methyl morpholine N -oxide
NMR	Nuclear Magnetic Resonance
NOE	Nuclear Overhauser Effect
NOESY	Nuclear Overhauser Enhancement Spectroscopy
Nu	nucleophile
Oxone	potassium peroxymonosulfate $2 \mathrm{KHSO}_{5} \cdot \mathrm{KHSO}_{4} \cdot \mathrm{~K}_{2} \mathrm{SO}_{4}$
p	para
Ph	phenyl
PKS	polyketide synthetase
PMB	4-methoxybenzyl
ppm	parts per million
PPTS	pyridinium 4-toluenesulfonate
Pr	propyl
proton sponge	N, N, N ', N '-tetramethyl-1,8-naphtalene-diamine
py.	pyridine
q	quartet
quant.	quantitative
rec.	recovered
R_{f}	retention factor
ROESY	Rotating Frame Overhauser Enhancement Spectroscopy
RT	room temperature
s	second, singlet
sat.	saturated
SM	starting material

t
T
TBAB
TBAF
TBDPS
TBS
TCBC
TEMPO
TES
Tf
TFA
THF
TLC
TMS
Ts
TPAP
vs
triplet
temperature
tetra- n-butylammonium bromide
tetra- n-butylammonium fluoride
tert-butyldiphenylsilyl
tert-butyldimethylsilyl
2,4,6-trichlorobenzoyl chloride
2,2,6,6-tetramethylpiperidine 1-oxyl radical triethylsilyl
trifluoromethanesulfonyl
trifluoroacetic acid
tetrahydrofuran
thin layer chromatography
trimethylsilyl
4-methylphenyl sulfonyl
tetra-n-propylammonium perruthenate
versus

1 Introduction and Research Objectives

Nature presents us countless numbers of natural products with complex, fascinating chemical structures and useful, important biological properties. For thousands of years, natural products have been closely linked through the use of traditional medicines, as for example traditional chinese medicine. Today, more than 60% of new chemical entities introduced as drug are, or were derived by natural products, ${ }^{1}$ that demonstrate that natural products play a highly significant role in the drug discovery and development process.

Figure 1 Relationship of the natural products, organic synthesis and bioactivity.

The synthesis of natural products commands an important role in organic and biological chemistry (Figure 1). ${ }^{2}$ The key challenge in total synthesis of natural products is to efficiently synthesize target compounds with unique, novel molecular skeletons by using short process pathways. The construction of novel molecular skeletons necessitates the development of new synthetic strategies and reactions, which lead to further progress in synthetic organic chemistry. Using synthetic approaches, it will also be possible to determine structures and the relative and absolute configuration of natural products. Furthermore, use of newly developed methods for the rapid assembly of molecular skeleton will allow the creation of a wide range of analogues, thereby leading to the production of compounds with properties that may
surpass those found in nature and heralding the promise of bioactivity. This also enables the study of structure-activity relationship with analogues of natural products.
Among those producers of natural products are bacteria, lichens, fungi, plants or animals. One of them is a group of bacteria, named myxobacteria, which have increasingly gained attention over the last two decades because they produce a large variety of natural products with medically potentially useful biological activities. ${ }^{3}$

1.1 Myxobacteria

Myxobacteria are gram-negative bacteria which predominantly live in the soil and are most noted for their ability to form fruiting bodies upon starvation (Figure 2). They are a particularly rich source of structurally novel and biosynthetically intriguing secondary metabolites which exhibit a wide range of biological activities based on diverse molecular mechanisms of action. ${ }^{4}$ These mechanisms of action are diverse and include electron transport inhibition, destruction of the cytoskeleton, inhibition of nucleic acid polymerases and inhibition of fungal acetyl-CoA carboxylase. It is particularly remarkable that myxobacterial metabolites exhibit modes of action that are rarely observed with other microbial compounds, which makes them a promising source for novel drug leads. ${ }^{5}$

Figure 2 Microscopic picture of spores and fruiting bodies from Myxococcus xanthus.

Prominent examples of these secondary metabolites from myxobacteria are epothilone A (1) and B (2, Figure 3) ${ }^{6}$ whose analogue, Ixabepilone (3, Figure 3) (also know as azaepothilone B) has recently been approved by the US FDA as a chemotherapy agent for the treatment of aggressive metastatic or locally advanced breast cancer and marketed under the trade name

Ixempra (Bristol-Meyers Squibb company). It binds to β-tubulin subunits on microtubules, blocking cells in the mitotic phase of the cell-division cycle, leading to cell death. ${ }^{7}$

1: Epothilone $A(R=H)$
2: Epothilone $B(R=M e)$

3: Ixabepilone

Figure 3 Structures of epothilone A, B (1, 2) and Ixabepilone (3).

Structurally, myxobacteria produce an architecturally and functionally diverse class of natural products. The compounds thus far elucidated are mostly macrocyclic lactone and lactam rings or linear and cyclic peptides. Moreover, substances that would be classified as aromatics, heterocycles, polyenes, or alkaloids have also been found. Structures with triple bonds, a boron-complexing compound and, rather often, chlorinated substances do also occur. Under biosynthetic aspects, myxobacterial metabolites mostly belong to polyketides. ${ }^{8}$

1.2 Archazolid A and B

Archazolid A and B (4, 5, Figure 5) ${ }^{9}$ have been isolated from the culture broths of strains of the myxobacerium Archangium gephyra (Figure 4) and Cystobacter sp. After purification of 300-liter fermentation of Archangium gephyra gave 249 mg archazolid A (4) and 54 mg archazolid B (5) have been obtained. ${ }^{10}$

Figure 4 The myxobacerium Archangium gephyra.

Archazolid A (4) and B (5) are cytotoxic polyketides. They are highly effective against a wide range of mammalian cell lines and were shown to inhibit V-ATPase in vitro ${ }^{11}$ and in vivo ${ }^{10}$ with IC_{50} values in low nanomolar range. Together with other polyketides such as chondropsin A (6),,12 FD-891 (7), ${ }^{13}$ palmerolide A (8) ${ }^{14}$ and iejimalide A (9) ${ }^{15}$, archazolid A (4) and B (5) belong to an elite class of potent V-ATPase inhibitors (Figure 5). Recently, Huss et al. demonstrated that archazolid $\mathrm{A}(4)$ binds selectively to the transmembrane bound V_{o} subunit c^{11} As shown in Figure 6 (left side), this subunit forms an oligomer, building up a ring structure of six or more copies which transports protons across the membrane.

Figure $5 \quad$ Potent V-ATPase inhibitors.

To visualize the impact of the inhibition, PtK2 (potooroo kidney) cells have been incubated with archazolid A (4) and stained for intact acidic lysosomes at our Institute by Florenz Sasse. Lysosomes (in red), which are labeled by pH -indicators, are shown in the fluorescent photographs in Figure 13 (right side). When this system is treated with archazolid A (4), the red staining disappears. This indicates that the proton pumps are stopped and suggests that archazolid A (4) is an inhibitor of the V-ATPases (Figure 6, right side). ${ }^{11}$

Figure $6 \quad$ X-ray derived model of subunit c of the V_{o} complex of V-ATPase, the binding site of the archazolids (left side) and inhibition of lysosomal acidification by archazolid A (right side).

A malfunction of these V-ATPases is correlated with various diseases, like osteoporosis and cancer. ${ }^{16}$ This renders the development and understanding of novel potent inhibitors such as these polyketide macrolides, important research goals.

The structure of the archazolids (4, 5, Figure 5) features a 24 -membered macrolactone ring with seven alkenes ($2 E, 5 E, 9 Z, 11 Z, 13 E, 18 E, 20 E$), a thiazole side chain and a characteristic sequence of eight methyl and hydroxyl-bearing stereocentres. The full stereostructure of the archazolids was determined by application of J-based configuration analysis in combination with extensive NOESY and ROESY experiments, molecular modeling and synthetic derivatization. ${ }^{17}$

1.3 Etnangien

The polyketide natural product etnangien (14, Figure 9) ${ }^{18}$ was isolated from culture broths of various strains of the myxobacterium Sorangium cellulosum (Figure 7) including strains So ce750 and So ce1045. The cultivation was performed in the presence of $1 \%(\mathrm{w} / \mathrm{v})$ of the neutral resin Amberlite XAD 16, which removed the metabolites from the broth during cultivation, resulting in an average production of $5 \mathrm{mg} / \mathrm{L}$. ${ }^{19}$

Figure 7 The myxobacterium Sorangium cellulosum.

Etnangien (14) shows pronounced antibiotic activity against various gram-positive bacteria (IC_{50} : $\sim 100 \mathrm{nM}$) by inhibition of RNA polymerase. Moreover, it shows no cross-resistance to rifampicin (10, Figure 9) a clinically valued RNA polymerase inhibiting antibiotic. ${ }^{19}$ RNA polymerase (RNAP or RNApol) is the enzyme that generates RNA from DNA. RNA polymerase enzymes are essential to life and are found in all organisms and many viruses (Figure 8). ${ }^{20}$

Figure $8 \quad$ Bacterial DNA-dependent RNA polymerase.

Bacterial DNA-dependent RNA polymerase is an attractive drug target because RNA chain elongation is essential for bacterial growth. ${ }^{21}$ There are several known, or suspected, inhibitors of bacterial DNA-dependent RNA polymerase of myxobacterial origin (Figure 9, 11-14) that are promising candidates for further development. These agents include the corallopyronins ${ }^{22}$, ripostatins, ${ }^{23}$ and sorangicins ${ }^{24}(\mathbf{1 1}, \mathbf{1 2}, \mathbf{1 3}$, Figure 9).

11: Corallopyronin A

10: Rifampicin

13: Sorangicin A

Figure 9 Inhibitors of bacterial DNA-dependent RNA polymerase.

Bacterial resistance has been increasingly developing to the rifamycins (10), the only class of RNA polymerase inhibitor that is in use clinically. Therefore, the development of novel types of RNA polymerase inhibitors is an important research goal. ${ }^{25}$
The constitution of etnangien (14) consists of a 22-membered macrolactone with two alkenes (30Z, 32E) and a polyunsaturated side chain with seven trans configured alkenes. In total, it comprises an array of 12 stereogenic centres. The full stereostructure of etnangien (14) was determined by a combination of high field NMR method, including Murata's method of J based configurational analysis, molecular modelling and genetic methods, relying on the development of a biosynthetic model based on a highly complex megasynthetase. ${ }^{26}$

1.4 Research Objectives

In summary, archazolid A, B $(\mathbf{4}, \mathbf{5})$ and etnangien $(\mathbf{1 4)}$ present highly promising and synthetically challenging macrolide antibiotics. For further development of these polyketides, synthetic approaches are of critical importance.

Specific research objectives of this project have been.
(i) development of a synthetic route to the northwestern fragment of archazolids $(4,5)$;
(ii) fragment union and completion of the total synthesis of archazolids (4, 5);
(iii) development of a synthetic strategy to the central C15-C23 segment of etnangien (14);
(iv) preparation of sufficient quantities of the macrocyclic core of etnangien (14); and
(v) development of novel methods along the lines of these research objectives (i)-(iv).

2 Polyketide Synthesis

Polyketides are a large family of structurally diverse natural products that possess a broad range of pharmacological properties and, together with their semi-synthetic analogues, play a vital role in human and veterinary medicine. ${ }^{27}$ Although diverse in structure and properties, polyketides can be grouped into two overall classes: the aromatic and the complex polyketides including marolides, polyethers, polyens and macrocyclic lactams. The complex polyketides are structurally more diverse than the aromatic ones. One example for an aromatic polyketide is the tetracycline ($\mathbf{1 5}$, Figure 10), an antibiotic. On the contrary, the archazolids (4, 5, Figure 10) and etnangien (14, Figure 10), secondary metabolites from myxobateria, may be classified as complex poliketides.

15: Tetracycline

14: Etnangien

Figure 10 Examples of polyketides.

2.1 Biosynthesis

Biosynthetically, polyketides are constructed by repetitive Claisen condensations of extender units derived from malonyl coenzyme A (CoA) with an activated carboxylic acid starter unit in a manner that closely parallels fatty acid biosynthesis. Polyketides derive their enormous diversity in structures through a number of programmed events that are dictated by the polyketide synthase (PKSs) and involve the selection of starter and extender units, carbon chain length, folding, degree of reduction, and termination. Post PKS tailoring events such as glycosylation, acylation, alkylation and oxidation further add to polyketides structural diversity. PKSs utilize a wide assortment of starter units, such as short-chain (branched) fatty acids, various alicyclic and aromatic acids, and amino acids in the assembly of their products. In many cases, the nature of the primer unit provides important structural and biological features to the molecule. ${ }^{28}$
As shown in Figure 11, ${ }^{29}$ PKSs catalyze the modular chain extension by repetitious Claisen condensations between acetyl-SACP and malonyl-SACP to afford β-keto esters. Each condensation is followed by oxidation-state adjustment before subsequent reiteration of the cycle: keto reduction, dehydration, and enoyl reduction. In contrast to the biosynthesis of fatty acids, the whole reductive cycle need not be passed, allowing for a highly selective and controlled assembly of polyketide intermediates with a sheer endless number of possible combinations along the growing chain (pathway A-D). Virtually every imaginable array of relative configuration may be produced by the action of polyketide synthetases. The elimination step can be entirely omitted, reducing the cycle to condensation followed by ketoreduction, giving rise to a regular array of 1,3-polyols (pathway B). The chain-extender unit is malonyl-SACP for the synthesis of fatty acids and aromatic polyketides, but varies for reduced polyketides: incorporation of propionate or butyrate residues (from methylmalonylCoA or ethylmalonyl-CoA chain extenders) produces methyl or ethyl side chains in the polyketide product.

Figure 11 The basic pathway of fatty acid and polyketide biosynthesis.

2.2 Synthetic Approaches

The inherent stereochemical complexity present in polyketides like archazolides (4, 5, Figure 10) and etnangien (14, Figure 10) has captured the imagination of organic chemists. Their stereocontrolled, asymmetric total synthesis has stimulated the development of a host of new reactions and methods for $\mathrm{C}-\mathrm{C}$ bond construction in the context of acyclic stereocontrol.
As can be seen from the red labels in Figure 10, assemblies of alternating methyl- and hydroxyl-bearing stereogenic centres are characteristic features in polyketide natural products. Those units mostly are installed with propionate as starter and methylmalonyl-CoA as chain extender (Figure 12) in the biosynthesis of polyketides ${ }^{30}$ and may be named propionate units.

Figure 12 Biosynthesis of propionate units.

Synthetically, many stereocontrolled reactions and methods are established to introduce such propionate units in a stereospecific manner. They include: (i) auxiliary-controlled aldol reactions; (ii) asymmetric crotylation reactions; (iii) addition of chiral allenylzinc and indium reagents to aldehydes; (iv) epoxide opening; (v) 2,3-Wittig sigmatropic rearrangement; (vi) diastereoselective anti- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ allylic displacement reactions. These various methods will be discussed in this section.

2.2.1 Auxiliary-Controlled Diastereoselective Aldol Reactions

The aldol addition reaction is one of the most versatile C-C bond forming processes available to synthetic chemists. The addition reaction involves readily accessible starting materials and can provide β-hydroxy carbonyl adducts possessing new stereocenters (Scheme 1).

Nowadays, many auxiliary-controlled diasetreoseletive aldol reactions are available for the stereoselective synthesis of a variety of possible stereogenic permutations of propionate aldol additions in various polyketides.

Scheme 1 Propionate aldol additions.

The relative configuration of the aldol adduct is determined by the geometry of the enolate component, (Z)-enolates giving syn products and (E)-enolates anti products. This may be rationalized via Zimmerman-Traxler transition states by minimizing 1,3-diaxial interactions between R_{1} and R_{2} in each chair-like transition state $\mathrm{TS}^{\ddagger}(\text { Scheme } 2)^{31}$. In practice, the stereochemistry can be highly metal dependent.

anti
(E)-enolate

disfavoured

syn

Scheme 2 Zimmerman-Traxler transition states for aldol reaction.

Thus, the enolization step is of prime importance in this type of additions, and reaction conditions were developed to generate either the Z - or the E-enolate. Auxiliary-controlled diasetereoseletive aldol reactions with various enolization concepts will first be discussed within this chapter.

2.2.1.1 Evans syn Aldol Reaction

One of the most successful and widely used methods for auxiliary-controlled diastereoseletive aldol addition reaction employs Evans' imides like 16 and the derived dialkyl borylenolates. ${ }^{32}$ The Evans' syn aldol adducts are typically isolated in high diastereoisomeric purity ($>250: 1$ dr) and useful yield.

favoured

(Z)-enolate

(E)-enolate

Scheme 3 Enolization of Evans' imide 16.

As show in scheme 3, enolization with dialkylboron triflates typically afford (Z)-enolates. One suspects that the transition state for deprotonation from the (Z)-enolate conformation (Scheme, 3) would be destabilized by 1,3-allylic strain interactions between the methyl group
and the substituents of the nitrogen atom. The carbonyl-carbonyl dipole interactions within the imide are minimized in the reactive conformation. Chiral controlled auxiliary biases enolate π-face such that one of the two diastereomeric syn transition states is greatly favoured (Scheme 4). ${ }^{33}$

Scheme 4 Evans syn aldol reaction.

For the modification to the Evans syn aldol reaction, Heathcock developed a bimetallic intermediate aldol reaction. With the $n \mathrm{Bu}_{2} \mathrm{BOTf} / \mathrm{TiCl}_{4}$ system, non-Evans' syn aldol adducts would be achieved. The $n \mathrm{Bu}_{2} \mathrm{BOTf} / \mathrm{Et}_{2} \mathrm{AlCl}$ system in turn provides non-Evans' anti aldol adducts. ${ }^{34}$ Crimmins has reported the use of acyloxazolidinethione auxiliaries and TiCl_{4} for the preparation of either syn aldol adducts as a function of the stoichiometry of the amine base and metal. ${ }^{35}$

2.2.1.2 Evans anti Aldol Reaction

As shown in Scheme 5, Evans has reported a highly diastereoselective direct anti-aldol reaction with chiral N-acyloxazolidinone $\mathbf{1 6}$ promoted by catalytic amounts of MgCl_{2} in the presence of triethylamine and chlorotrimethylsilane. ${ }^{36}$ Only aromatic and unsaturated aldehydes are suitable substrates for this reaction. This method, however, does not allow β branching on the acyl substituent. Later, the extension of this methodology to chiral N acylthiazolidinethione 17 was described also by Evans. ${ }^{37}$ Use of this method affords aldol products with the opposite anti-diastereoselectivity. The yield, diastereomeric ratio and substrate scope are comparable to the MgCl_{2} catalyzed anti-aldol reactions of chiral N acyloxazolidinones.

Scheme 5 Evans anti aldol reaction.

On the basis of the weight of circumstantial evidence, all enolization procedures to date to form boron, titanium, lithium, or sodium enolates with this family of imides implicate the intervention of (Z) metal enolates. Given the assumption that this is the geometry of the intervening enolate, the enolate face selectivity observed for the N-acyloxazolidinone-derived magnesium enolate is fully consistent with a chelate-controlled process. The intervention of a chair Zimmerman-Traxler transition state is precluded. ${ }^{31}$

2.2.1.3 Abiko-Masamune Aldol Reaction

The boron-mediated aldol reaction of carboxylic ester 18 is shown to be particularly interesting and it is useful that the stereochemistry of the intermediate enolate can be controlled by the judicious choice of the enolization conditions. As shown in Scheme 6, enolization of the propionate ester 18 with $(c \mathrm{Hex})_{2} \mathrm{BOTf}$ and $\mathrm{Et}_{3} \mathrm{~N}$ provide anti aldol adducts; ${ }^{38}$ on the contrary, with $(n \mathrm{Bu})_{2} \mathrm{BOTf}$ and $i \mathrm{Pr}_{2} \mathrm{NEt}$ syn aldol adducts are formed. ${ }^{39}$ This implies that the conformations of the transition states leading to anti-aldol from (E)-enolate and syn-aldol from (Z)-enolate are different.

Scheme 6 Abiko-Masamune aldol reaction.

Hulme has modified Abiko-Masamune aldol reaction with a thiol surrogate 19 for the conventional auxiliary (Scheme 7). ${ }^{40}$ This modified anti selective aldol reaction provide similar diastereoselectivities and yields. In comparison to Abiko-Masamune norephedrinederived auxiliary 18 , this new thiol auxiliary 19 promotes facile displacement with a range of nucleophiles.

19

Scheme 7 Modified Abiko-Masamune aldol reaction.

2.2.1.4 Paterson Aldol Reaction

The lactate-derived keton 20, as developed by the group of Paterson, displays high levels of stereocontrol in boron-mediated anti aldol reactions. ${ }^{41}$ The origin of the high levels of π-face selectivity in the reactions of keton 20 can be traced to the relative steric and electronic contributions of the substituents $(\mathrm{H}, \mathrm{Me}, \mathrm{OBz})$ at the enolate stereocentre in the chair transition state for the aldol addition (Scheme 8). For such (E)-enol borinates, there is a strong preference for the proton to eclipse the double bond to minimise $A^{(1,3)}$ allylic strain. In the competing transition structures, TS-I and TS-II, the benzoate group is directed either inwards or outwards of the chair arrangement. In TS-II (re-face attack on aldehyde), there is likely to be a destabilising lone-pair repulsion between the benzoate and enolate oxygens. TS-I (si-face attack on aldehyde) may be favoured due to a stabilising H-bond between the benzoate oxygen with the aldehyde proton. Taken together, this analysis accounts for the apparent contra-steric preference for the benzoate to occupy the inside position. ${ }^{42}$

Scheme $8 \quad$ Paterson anti-aldol reaction.

The related lactate-derived ketones, 21, ${ }^{43} \mathbf{2 2}{ }^{44}$ and $\mathbf{2 3}{ }^{45}$ are also useful auxiliaries for diasetreeoseletive aldol reactions.

21

22

23

Figure 13 Related lactate-derived ketones for diastereoselective aldol reactions.

Oppolzer has reported N-propionylsultam $\mathbf{2 4}$ which undergoes Lewis acid promoted addition of aromatic and aliphatic aldehydes to give diastereomerical aldols ${ }^{46}$ and used this method for the asymmetric synthesis of (-)-denticulatins A and B. ${ }^{47}$
The camphor-derived chiral auxiliary 25 was studied by Yan. ${ }^{48}$ Chiral boryl enolates of the camphor-derived auxiliary $\mathbf{2 5}$ are highly reactive and highly anti-stereoselective enolate synthon systems in aldol addition reactions promoted by a TiCl_{4} or SnCl_{4} co-catalyst. More significantly, this high-yield reaction exhibits remarkable generality with respect to the aldehyde nature, as illustrated by the rapid and anti-stereoselective aldolizations with the simple saturated and unsaturated aliphatic aldehydes, and aromatic aldehydes at temperatures as low as $-90^{\circ} \mathrm{C}$.

24 Oppolzer

26 Myers

25 Yan

27 Gosh

Figure 14 Further useful chiral auxiliaries for diastereoselective aldol reactions.

Myers has studied the chemistry of cyclic O-silyl ketene N, O-acetals 26 prepared from optically active (S)-prolinol propionamides and dichlorodimethylsilane. ${ }^{49} \mathrm{O}$-silyl ketene N, O acetals have been shown to undergo a facile and highly diastereoselective carbon-carbon bond-forming reaction with aldehydes.
Gosh has reported amino indanol derived chiral esters such as 27 which provide titanium enolate aldol reactions with various aldehydes. This represents a highly effective synthetic protocol which gives excess of anti-aldol products with high levels of diastereo- and enantioselectivity. ${ }^{50}$ Both enantiomers of cis-1-arylsulfonamido-2-indanol are readily prepared from commercially available optically active cis-1-amino-2-indanols.

2.2.2 Asymmetric Crotylation Reactions

Over the last decades, asymmetric allylation and crotylation reactions have been explosively developed and extensively used for the stereocontrolled assembly of polyketides. The allylmetal-aldehyde addition reaction has proven to be enormously successful for the construction of adjacent stereocentres. The reasons for the success of this method are (i) the high degree of enantio- and diastereoinduction; (ii) the extreme diversity of reagent reactivity based on metal; (iii) the ability to access different stereodyads and triads; (iv) the inherent versatility of the obtained products towards further functionalization. ${ }^{51}$
The asymmetric allylation and crotylation reactions can be classified into two groups: (i) stoichiomeric asymmetric allylation and crotylation reactions and (ii) catalytic asymmetric allylation and crotylation reactions. Besides, one of the most intriguing features of these reactions is the dramatic relationship between the configuration of the product and the geometry of the starting alkene, dividing them into three mechanistically distinct types: Type I syn/anti diastereoselectivity reflects the Z / E ratio of the starting allylic geometry; Type II predominantly syn diastereoselective independent of the starting double bond configuration; Type III predominantly anti diastereoselective independent of the starting double bond configuration. ${ }^{52}$
The catalytic asymmetric allylation and crotylation reactions can be grouped into three main categories (Scheme 9): (i) addition of allylic organometallic reagents ($\mathrm{Si}, \mathrm{Sn}, \mathrm{B}$) catalyzed by chiral Lewis acids (LA*) (type II); (ii) addition of allylic organometallic reagents ($\mathrm{Cr}, \mathrm{Zn}, \mathrm{In}$) generated in situ from the corresponding allylic halides catalyzed by chelating chiral ligands (L*) (type III), and (iii) addition of allylic trichlorosilanes catalyzed by chiral Lewis bases (LB*) (type I). ${ }^{53}$

Scheme 9 The asymmetric allylation and crotylation reactions.

The stoichiomeric asymmetric allylation and crotylation reactions belong to type I reactions. In this category excellent results have been obtained from the use of chirally modified allylic borane and allylic titanium reagents. Recently, the success of this approach has been extended to include allylic silanes and allylic stannanes ${ }^{54}$ as well (Scheme 10).

Scheme 10 Stoichiometric asymmetric allylation and crotylation reactions.

In the context of this dissertation, only stoichiometric asymmetric crotylation reactions will be discussed, as they are more generally used in natural product synthesis. For reviews on catalytic variants, ${ }^{55,}{ }^{56}$ see Ref. 51(c), 53, 54, 55, 56.

2.2.2.1 B-Crotylation Reactions

Chiral allylic borane reagents are important in synthetic organic chemistry as reagents for acyclic stereocontrol and stereoselective annulation processes. ${ }^{57}$ One effective and successfully used B-crotylation reaction is the Brown B-crotylation reaction. ${ }^{58}$

The high stereospecificity has been explained by a closed chair-like transition state, where the boron is coordinated to the carbonyl oxygen. The aldehyde is oriented in such a manner that the R group is placed in an equatorial position of the chair to minimize steric interactions between the Ipc-group on boron and the allyl unit. This model explains the high degree of stereoselection observed when isomerically pure (E) - or (Z)-crotylboronates react with aldehydes. Thus, the (E)-crotyl isomer leads to the anti homoallylic alcohol while the (Z) crotylboronate gives the syn product (scheme 11).

Scheme $11 \quad B$-crotylation reactions.

The transition state for the allyboration of carbonyl compounds have also been modelled with computer calculations. Ab initio calculations identified a strong preference for the chair-like arrangement of the two components in the addition of allylboranes to aldehydes, in close agreement with the experimental results. ${ }^{59}$
Solvents have a significant effect on the rates of allylboration reactions. ${ }^{60}$ Polar solvents, including chloroform, dichloromethane and diethylether, which are either poorly coordinating or non-coordinating, enhance the rate of allylboration, while solvents capable of stronger coordination with boron, such as tetrahydrofuran, retard the rate. Highly substituted aldehydes react significantly more slowly than less substituted aldehydes.
The high degree of organization that characterizes the putative transition state for the Type I reactions in that they proceed through closed transition states and do not require the use of an external Lewis acid, has stimulated the development of a myriad of modified chiral allylic boron reagents such as 28, ${ }^{61} \mathbf{2 9},{ }^{62} \mathbf{3 0},{ }^{63} \mathbf{3 1},{ }^{64} \mathbf{3 2},{ }^{65}$ and $33{ }^{66}$ (Figure 15) for asymmetric crotylation of carbonyl compounds, as shown in Scheme 10.

28 Hoffmann

31 Corey

29 Roush

32 Soderquist

30 Masamune

33 Hall

$$
Z: \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{Me} ; E: \mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{H}
$$

Figure 15 Modified chiral allylic boron reagents.

2.2.2.2 Duthaler-Hafner Ti-Crotylation Reactions

The chiral crotyltitanium complexes such as 34 (Scheme 12) ${ }^{67}$ are prepared from readily available nontoxic materials; the source of chirality, tartaric acid, is available in both enantiomeric forms. Contrary to crotylboron reagents, these crotyltitanium compounds can be prepared by transmetalation with a variety of crotyl Grignard, crotyllithium and crotylpotassium/-lithium compounds and isolation or purification is not necessary. In addition, their potential for large-scale conversions is better than that of any other stoichiometric chiral crotyl-transferring reagent known.

Scheme 12 Duthaler-Hafner Ti-crotylation reactions.

The reactions of the crotyltitanium compound 34 with benzaldehyde and decanal are highly enantio- and diastereoselective, affording the homoallylic alcohol in excellent yield (Scheme 12). The major product in all cases is the anti diastereomer, obtained by attack on the Si face of the substituted terminus of the crotyltitanium complex. On the other hand, NMR analysis of the crotyl reagents (crotyl Grignard, crotyllithium, and crotylpotassium/-lithium) revealed a fast 1,3 -migration of titanium, favoring the (E)-isomer with titanium η^{1} bound to the unsubstituted terminus of the crotyl group. This explains the almost exclusive formation of the anti diastereomers, a clear restriction of this method. ${ }^{68}$

2.2.2.3 Leighton Si-Crotylation Reactions

The cis- and trans-crotylsilane reagents 35 (Scheme 13) are easily prepared in bulk and are storable crystalline solids, even though their synthesis requires a few steps. A survey of the performance of crotylsilane reagents was carried out with a variety of aliphatic, aromatic, and α, β-unsaturated aldehydes. In every case, the cis- and trans-crotylsilane reagents demonstrated their use in highly enantioselective syn- and anti-selective aldehyde crotylation reactions, respectively. The crotylation reactions are experimentally trivial and the chiral diamine controller may be easily recovered in high yield. ${ }^{69}$

Scheme 13 Leighton Si-crotylation reactions.

2.2.3 Addition of Chiral Allenylzinc and Indium Reagents to Aldehydes

Marshall has reported a methodology for preparing nonracemic homopropargylic alcohols from enantioenriched propargylic mesylates such as $\mathbf{3 6}$ as precursors to chiral allenylzinc ${ }^{70}$ or indium reagents ${ }^{71}$ for the coupling to aldehydes. These reagents are generated in situ through "oxidative transmetalation" of transient allenylpalladium intermediates (Scheme 14). ${ }^{72}$ In fact, when the reaction is performed on allenylzinc reagent in the presence of various aliphatic aldehydes, homopropargylic alcohol adducts of $86-96 \%$ ee are isolated in high yield. The diastereoselectivity of the addition with allenylindium reagent is similar to that with allenylzinc reagent.

Scheme 14 Addition of chiral allenylzinc and indium reagents from $\mathbf{3 6}$ to aldehydes.

Later, Marshall published other addition reactions of aldehydes with allenylzinc or indium reagent which are generated in situ with 37 or 38 and $\mathrm{Et}_{2} \mathrm{Zn}$ or InI in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2} \mathrm{PPh}_{3}$ (Scheme 15). ${ }^{73}$ The additions of aldehydes with α-TMS-substituted allenylzinc reagents proceed with excellent diastereoselectivity and only slight loss of enantioselectivity. In contrast, the additions of aldehydes with α-TMS-substituted allenylindium reagents afford anti products with er values of 99:1 or higher and with virtually no trace of syn products.

Scheme 15 Addition of chiral allenylzinc and indium reagents from 37 and 38 to aldehydes.

2.2.4 Epoxide Opening

Allylic alcohols such as 39 may be easily converted into the optically active epoxy alcohols like 40 using the D-(-)-diisopropyl tartrate [D-(-)-DIPT] as the chiral catalyst following the Sharpless method. Treatment of the epoxy alcohol $\mathbf{4 0}$ with Lewis acid such as TBSOTf, TESOTf or BF_{3} provids the syn aldol product in high yield and excellent enantioselectivity. The proposed mechanism of this transformation involves activation of the epoxide oxygen with Lewis acid followed by intramolecular hydride transfer as shown in 42 to generate the new stereocenter at the methyl substituted carbon in 43. The Lewis acid may then decoordinate to give the product 44 (Scheme 16). ${ }^{74}$ The (E)-allylic alcohols give the syn products, while the (Z)-allylic alcohol afford the anti products.

Scheme 16 Stereoselective epoxide opening with Lewis acid.

An application of this nonaldol-aldol methodology in the total synthesis of polyketides has also been reported. ${ }^{75}$

2.2.5 2,3-Wittig Sigmatropic Rearrangement

[2,3]-sigmatropic rearrangements constitute an exceptionally versatile type of bond reorganization which have many applications in organic synthesis. Acyclic stereocontrol is particularly pronounced. The [2,3]-sigmatropic reaction, as generalized in Scheme 17, can be defined as a thermal isomerization that proceeds through a six-electron, five-membered cyclic transition state. ${ }^{76}$

Scheme 17 The [2,3]-sigmatropic rearrangement reaction.

Midland has reported that the [2,3]-Wittig rearrangement of optically active (Z)-allylic ether 45 provides allylic alcohol 46 with complete control of olefin geometry and chirality transfer and a high degree of diastereoselectivity. Probably, the relative stereochemistry is fixed with a high degree of control by way of a five-membered cyclic transition state. For the rearrangement of (Z)-allylic ethers, the isopropyl group is less hindered in the equatorial position and leads to the (E)-olefin with a high degree of stereoselectivity (Scheme 18). ${ }^{77}$

Scheme 18 The [2,3]-Wittig rearrangement of (Z)-allylic ethers.

Midland has also used this reaction for synthesis of the (+)-Prelog-Djerassi lactone 50 from (Z)-allylic ether 47 (Scheme 19). ${ }^{78}$

Scheme 19 Synthesis of (+)-Prelog-Djerassi lactone 50.

Recently, the application of the [2,3]-Wittig rearrangement reactions of (Z)-allylic ether 52 via the cyclohexanecarboxaldehyde-derived intermediate for synthesis of polypropionate building block 54 was described by Parker (Scheme 20). ${ }^{79}$

Scheme 20 Synthesis of polypropionate building block 54.

2.2.6 Diastereoselective anti- $\mathbf{S}_{\mathrm{N}} \mathbf{2}^{\prime}$ allylic Displacement Reactions

Hanson has reported a strategy employing phosphate tethers 57 in which a phosphate ester serves a dual role as both tether for coupling two allylic alcohols 56 via ring closing metathesis (RCM) and as a subsequent leaving group in selective anti- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ displacement reactions with organocuprate nucleophiles (Scheme 21). Syn-(E)-homoallylic alcohol 59 as product was achieved in high yield and diastereoselectivity. ${ }^{80}$

Scheme 21 Synthesis of syn-(E)-homoallylic alcohol 59.

The remarkable selectivity for this transformation can be rationalized using Corey's proposed concerted, asynchronous mechanism ${ }^{81}$ for cuprate additions as highlighted in Figure 16. In this mechanism, the reacting cuprate simultaneously coordinates both the π^{*} orbital of the olefin and σ^{*} orbital of the phosphate ester leaving group. The asynchronous nature of the transformation predicts a transition state in which substantial bond-lengthening occurs with respect to the σ^{*} bonding orbital.

Figure 16 Corey model for rationalizing stereoselectivity.

3 Total Synthesis of Archazolids

3.1 Retrosynthetic Analysis

As outlined retrosynthetically in Scheme 22, our synthetic approach relies on the assembly of three main building blocks of similar complexity, that is 118, 71, and 83. The $13 E$-alkene moiety was planned to arise from a Horner-Wadsworth-Emmons (HWE) reaction between the corresponding ketophosphonate 118 and a respective aldehyde derived from 71, while a Heck cross-coupling of $\mathbf{1 1 8}$ with alkene $\mathbf{8 3}$ was envisioned to deliver the $18 E, 20 E$-diene. In principle, this methodology could be employed to close the macrocycle as an alternative to a Horner-Wadsworth-Emmons macrocyclization or a more conventional Yamaguchi reaction for ring closure, thus offering considerable flexibility in the synthesis.
In turn, the C14-C19 subunit $\mathbf{1 1 8}$ should be accessible by an auxiliary-controlled diastereoseletive aldol reaction between ethyl ketone 18 and aldehyde 91 containing the required E vinyliodide. The C3-C13 fragment $\mathbf{7 1}$ was envisioned to be derived from $\mathbf{6 6}$ by two consecutive Still-Gennari olefinations. Intermediate $\mathbf{6 6}$ in turn should be accessible from aldehyde 64 by anti-aldol methodology. The enal $\mathbf{6 4}$ could be prepared by using Horner-Wadsworth-Emmons olefination. The C20-C1", subunit 83 was planned to be derived by asymmetric B-crotylation from aldehyde 81, which in turn should be accessible from L-Leucin derived α-hydroxy-acid 73.

Notably, the modular synthetic approach employed is flexible, highly convergent, and stereocontrolled, and thus offers the potential to provide useful quantities of archazolid A (4) as well as a range of structural derivatives for structure-activity relationship (SAR) studies. Key issues to be addressed include (i) two auxiliary-controlled diastereoseletive aldol reactions; (ii) an asymmetric B-crotylation reaction; (iii) two consecutive Still-Gennari olefinations reactions; (iv) HWE-olefination; (v) inter-molecular Heck-coupling reaction; (vi) $H W E$-macrocyclization or macrolactonation.

18
$+$

91

66
ת

64

Scheme 22 Retrosynthetic analysis for archazolid A (4), leading to three main key building blocks 118, 71, and 83.

3.2 Synthesis of the C3-C13 Subunit - Dr. Jorma Hassfeld

The synthesis of the C3-C13 subunit 71 was realised by Jorma Hassfeld in our group. As shown in Scheme 23, it began with PMB ether 61 of acetone-aldol 60, ${ }^{82}$ which was homologated to 63 with the corresponding β-keto-phosphonate $\mathbf{6 2}$ using a $H W E$ coupling employing KHMDS in toluene. ${ }^{83}$ The corresponding aldehyde $\mathbf{6 4}$ was readily available by a two step procedure using a reduction to the alcohol (DIBAL-H) and allylic oxidation $\left(\mathrm{MnO}_{2}\right)$ in 87% yield. A boron-mediated Paterson anti aldol reaction ${ }^{84}$ of lactate-derived ethyl-ketone 20^{42} with aldehyde 64 gave the secondary alcohol 65 with very high levels of diastereoselectivity and essentially quantitative yield. After TBS protection (TBSOTf, 2,6lutidine), the chiral auxiliary was then cleaved in a straightforward fashion using a two-step sequence $\left(\mathrm{LiBH}_{4}, \mathrm{NaIO}_{4}\right)^{85}$ to give directly aldehyde $\mathbf{6 6}$ in 85% yield over three steps, which was subsequently submitted to a Still-Gennari modification ${ }^{85}$ of the $H W E$-olefination with phosphonate 67. Coupling of aldehyde $\mathbf{6 6}$ with phosphonate $\mathbf{6 7}$, employing KHMDS as base in combination with 18 -crown- 6 gave Z-enone $\mathbf{6 8}$ in 87% yield as the only detectable isomer. The ester $\mathbf{6 8}$ was then converted into the enal $\mathbf{6 9}$ by DIBAL-H reduction and allylic oxidation using MnO_{2}. The required $11 E$-alkene was then installed by another Still-Gennari olefination, which proceeds again with very high levels of stereoselectivity (d.r. > 20:1). Finally, the synthesis of the C3-C13 subunit 71 was completed in two steps involving ester reduction (DIBAL-H) and oxidation of the resulting primary alcohol with Dess-Martin periodinane (DMP).
In summary, this route to the $\mathrm{C} 3-\mathrm{C} 13$ subunit 71 proved well-scalable and multigram quantities of required building block were obtained from $\mathbf{6 0}$ in 13 steps and 25% overall yield.

Scheme 23 Synthesis of the C3-C13 subunit 71.

3.3 Synthesis of the C20-C1' Subunit - Sven Rudolph

The preparation of the C11-C1" subunit 83, as realised by Sven Rudolph in our group is shown in Scheme 24. It starts with conversion of L-Leucin 72 to α-hydroxyacid 73^{86} which was then transformed into amide 74 in 63% yield by a three-step procedure involving formation of the acid chloride, introduction of the amide and TBS protection of the secondary alcohol. After treatment with the Lawesson reagent $75,{ }^{87}$ the resulting thioamide 76 was cyclized with a bromo-oxo acid ethyl ester 77 to give thiazol 78 in 79% over two steps. ${ }^{88}$ Cleavage of the TBS ether with TBAF liberated the secondary alcohol 79 in 96% yield. The carbamate was then introduced in a two step protocol by use of carbonylimidazol and trapping of the intermediate imide with methylamine. ${ }^{89}$ DIBAL-H reduction of the resulting ester $\mathbf{8 0}$ gave aldehyde 81, which was C3-homologated by using an asymmetric Brown's boron mediated crotylation ${ }^{90}$ delivering 83 with excellent diastereoselectivity (d.r. $>20: 1$) and useful yield (65\%).
In total, this fragment was available in 11 steps in 24% yield. Likewise, this route was wellscalable and allowed to obtain multi-gram quantities of the C11-C1" subunit 83.

Scheme 24 Synthesis of the C20-C1" subunit 83.

3.4 Synthesis of the C14-C19 Subunit

Synthesis of the C14-C19 subuint was realised within the research programme of this dissertation.

3.4.1 Plan 1: Evans anti Aldol Reaction

As the first plan, we wanted to establish the stereocentres at C16 and C17 by using a mild MgCl_{2}-catalyzed anti aldol reaction that had been disclosed by Evans ${ }^{36}$ and was first used in the total synthesis of $(+)$-migrastatin by Danishefsky. ${ }^{91}$

Scheme 25 (a) 84: $\mathrm{R}=\mathrm{TBS}, \mathrm{TBSCl}$, imidazol, DMAP, RT, $120 \mathrm{~min}, 82 \% ; 85: \mathrm{R}=$ TBDPS, TBDPSCl, imidazol, DCM, RT, $30 \mathrm{~min}, 100 \%$; (b) MeMgBr , $\mathrm{CuBr} \mathrm{SMe}_{2}, \mathrm{I}_{2}$, THF, $-45^{\circ} \mathrm{C}$; (c) $\mathrm{Cp}_{2} \mathrm{ZrCl}, \mathrm{Me}_{3} \mathrm{Al}, \mathrm{DCM}, 0^{\circ} \mathrm{C}$, then $\mathrm{I}_{2}, \mathrm{Et}_{2} \mathrm{O},-$ $30^{\circ} \mathrm{C}, 22 \%$, (d) $\mathrm{MnO}_{2}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{RT}, 96 \%$; (e) $\mathrm{MgCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{TMSCl}, \mathrm{EtOAc}, \mathrm{RT}$, 52 h ; (f) MeOH, TFA, RT, $10 \mathrm{~min}, 29 \%$ over 2 steps, $\mathrm{dr}>95: 5$.

The known aldehyde 91 was prepared by zirconation-methylation-iodination of propargyl alcohol $\mathbf{8 9}{ }^{92}$ followed by oxidation of the allylic alcohol $\mathbf{9 0}$ with manganese dioxide. To our disappointment, the zirconation-methylation-iodination provided the allylic alcohol $\mathbf{9 0}$ in very low yield (22%). The carbocupration-methylation-iodination of the protected propargyl alcohol 84/85 with $\mathrm{MeMgBr}, \mathrm{CuBr} \cdot \mathrm{SMe}_{2}$ and I_{2} gave no desired product $\mathbf{8 6} / \mathbf{8 7} .{ }^{93}$

Treatment of Evans-amide $\mathbf{8 8}$ with catalytic $\mathrm{MgCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$ as base, TMSCl and aldehyde $\mathbf{9 1}$ at RT for 52 h after cleavage of the TMS group with TFA in methanol gave the aldol product 92 with very good stereoselectivity, albeit in low yield (29\% over two steps, d.r. > 20:1).

Scheme 26 Proposed catalytic cycle of Evans anti aldol reaction.

A proposed catalytic cycle ${ }^{37}$ is outlined in Scheme 26. Presumably, N-acyloxazolidinonemagnesium complex I reacts with triethylamine, yielding magnesium enolate II, which then adds reversibly to the aldehyde, forming the magnesium aldolate III. Chlorotrimethylsilane then irreversibly trapped the aldolate III, which was subsequently displaced from the metal centre by another molecule of N -acyloxazolidinone and produced the aldol product 97 .

3.4.2 Plan 2: Noyori's Asymmetric Transfer Hydrogenation

After the dissatisfaction with the results of zirconation-methylation-iodination of propargyl alcohol and the Evans anti aldol reaction, we made a second plan to construct the stereocentres at C16 and C17. The stereocentre at C17 could be configured with Noyori's asymmetric transfer hydrogenation of α-chiral alkynones. ${ }^{94}$ The α-chiral alkynones could be prepared from (R)-methyl 3-hydroxy-2-methylpropanoate, which was wildly used as chiral starting material in the total synthesis of natural products and their analogues.

Scheme 27 (a) TBDMSCl, imidazol, DMAP, THF, RT, $1.5 \mathrm{~h}, 89 \%$; (b) TBDPSCl, imidazol, DCM, $0^{\circ} \mathrm{C}$ to RT, $30 \mathrm{~min}, 98 \%$; (c) MeONHMe $\cdot \mathrm{HCl}, ~ i \mathrm{PrMgCl}, \mathrm{THF}$, -20 to $-10{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 101=90 \%, 102=93 \%$; (d) lithium acetylide, ethylenediamine complex, THF, $0^{\circ} \mathrm{C}$ to RT, $1 \mathrm{~h}, \mathbf{1 0 5}=26 \%, \mathbf{1 0 4}=10 \%$; (e) trimethylsilylacetylene, $n \mathrm{BuLi}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$ to $\mathrm{RT}, 1 \mathrm{~h}, \mathbf{1 0 6}=39 \%, \mathbf{1 0 5}=$ 20%.

At first, (R)-methyl 3-hydroxy-2-methylpropanoate $\mathbf{9 8}$ was protected as its TBS^{95} or TBDPS ${ }^{96}$ ether 99/100 under standard conditions. Then, the ester 99/100 was converted to the Weinreb amide $\mathbf{1 0 1} / \mathbf{1 0 2}$ with MeONHMe $\cdot \mathrm{HCl}$ and $i \mathrm{PrMgCl}$ in THF in high yield. ${ }^{97}$ Treatment of the Weinreb amide 102 with lithium acetylide ethylenediamine complex, followed by hydrolysis
of the crude product with water, afforded ynones 105 and 104 in 26% and 10% yield, respectively. The same reaction with the Weinreb amide 101 gave no desired ynone 103. Addition of lithium trimethylsilylacetylide (freshly generated by using ethynyltrimethylsilane and $n \mathrm{BuLi}$ at $-78{ }^{\circ} \mathrm{C}$) to Weinreb amide $\mathbf{1 0 2}$ provided ynone $\mathbf{1 0 6}$ in 39% yield and ynone $\mathbf{1 0 5}$ in 20% yield. ${ }^{98}$
Due to these only moderate yields we turned our attention to an alternative strategy.

3.4.3 Plan 3: Abiko-Masamune anti Aldol Reaction

We then focused on an anti-selective asymmetric boron-mediated aldol reaction which was reported by Abiko and Masamune. ${ }^{38}$ The aldol product could be converted to the phosphonate 118, which would be then connected with the C3-C13 subunit 71 by a Horner-WadsworthEmmons (HWE) reaction. We considered three possibilities to prepare the phosphonate $\mathbf{1 1 8}$ from the aldol product 114: (i) methylation of the hydroxyl group, reductive cleavage of the auxiliary, followed by oxidation of the resulting primary alcohol should give the aldehyde 116, that could then be converted to the phosphonate $\mathbf{1 1 8}$ by using a modified Wittig reaction; (ii) alternatively, the methylated aldol product $\mathbf{1 1 5}$ could be directly converted to the phosphonate $\mathbf{1 1 8}$ or (iii) and the aldol product $\mathbf{1 1 4}$ would be directly transformed to the phosphonate $\mathbf{1 1 9}$.

Scheme 28 Synthetic plan for the preparation of phosphonate 118.

3.4.3.1 Synthesis of the Vinyliodide

The synthesis of the C14-C19 subunit commenced with the preparation of the known aldehyde $\mathbf{9 1}$ from diethyl 2-methylmalonate $\mathbf{1 1 1}$ by a four-step reaction sequence reported by Baker and Castro in the course of their total synthesis of $(+)$-macbecin I. ${ }^{99}$ In the course of this study, this original four-step reaction sequence was optimized. Treatment of diethyl 2methylmalonate $\mathbf{1 1 1}$ with iodoform and sodium hydride in $\mathrm{Et}_{2} \mathrm{O}$ at reflux gave the intermediate 112, which after acidic workup and without further purification, was directly converted into the acid under basic conditions. This optimized procedure gave better yield and was amenable to the production of multigrams of acid 113. Then, reduction of the acid 113 using lithium aluminum hydride, followed by oxidation of the resulting allylic alcohol 90 with manganese dioxide and $4 \AA$ molecular sieves (MS) at room temperature provided vinyliodide 91 in quantitative yield, which was ready for Abiko-Masamune anti aldol reaction.

Scheme 29 (a) $\mathrm{NaH}, \mathrm{CHI}_{3}, \mathrm{Et}_{2} \mathrm{O}, 50^{\circ} \mathrm{C}, 32 \mathrm{~h}$; (b) $\mathrm{KOH}, \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(3: 1), 100{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$, 77% over two steps; (c) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{RT}, 4 \mathrm{~h}, 90 \%$; (d) $\mathrm{MnO}_{2} / 4 \AA \mathrm{MS}$, DCM, RT, 1 h , quant.

To explain the very high E-selectivity of this transformation to acid 113, we propose a mechanism as shown in Scheme 30. Accordingly, the steps should be (i) dehydrogenation of diethyl 2-methylmalonate $\mathbf{1 1 1}$ with the strong base NaH ; (ii) addition of the resulting nucleophilic malonate ion $\mathbf{1 2 0}$ to iodoform; (iii) loss of CO_{2} by a retro-ene-reaction and; (iv) removal of the proton with base and loss of iodide ion as leaving group.

Scheme 30 Proposed mechanism of the preparation of the acid 113.

Following the E2-Elimination, a staggered conformation of the carboxyl and iodide should be favoured due to the electrostatic interaction of dipoles and stereochemical effects giving the desired product (Scheme 31).

Newman projection

favoured

disfavoured

Scheme 31 The electrostatic interaction of dipoles and the stereochemical effect.

A proposed radical mechanism for the oxidation of primary allylic alcohol by manganese dioxide was showed in scheme $32 .{ }^{100}$ The suggested steps are (i) adsorption of aldehyde 124 on manganese dioxide to give 125; (ii) formation of a coordinated complex 126; (iii) transfer of a hydrogen atom to give the stable radical 127, and (iv) intramolecular electron-transfer to give products 128-130. During the course of this study, it was realized that this oxidation reaction proceeds more effectively with molecular sieves (fewer equivalents of manganese dioxide and shorter reaction time). There are two possible causes: (i) molecular sieves should
remove water from the reaction as it proceeds (ii) the stirring should be more effectively with molecular sieves because manganese dioxide is heavy and can not be mixed with only one magnetic stir bar. Therefore, the contact between solid and liquid phase may be optimized. This is agreement with previous results on the beneficial use of ultrasonic baths on this reaction.

Scheme 32 A proposed radical mechanisms for the oxidation by manganese dioxide

3.4.3.2 Abiko-Masamune anti Aldol Reaction

Following the Abiko-Masamune protocol, enolization of propionate ester 18, which was readily prepared from commercial norephedrine 18a by selective sulfonylation, selective N benzylation and acylation reactions (Scheme 34), with $(c \mathrm{Hex})_{2} \mathrm{BOTf}$ and $\mathrm{Et}_{3} \mathrm{~N}$ at $-78{ }^{\circ} \mathrm{C}$ gave the intermediate E-enolate 131, that reacted with the aldehyde 91 to provide the anti aldol adduct $\mathbf{1 1 4}$ in high selectivity (d.r. > 20:1) and excellent yield (96\%) (Scheme 33). ${ }^{101}$

Scheme 33 (a) $(c \mathrm{Hex})_{2} \mathrm{BOTf}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM},-7{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (b) aldehyde 91, $-78{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 96 \%$, (d.r. $>20: 1$).

Scheme 34 (a) $\mathrm{MesSO}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 100 \%$; (b) $\mathrm{BnBr}, t \mathrm{BuOK}, \mathrm{DMF}, \mathrm{RT}, 3 \mathrm{~h}$, 95%; (c) EtCOCl , pyridine, $\mathrm{DCM}, 0^{\circ} \mathrm{C}$ to RT, $15 \mathrm{~h}, 100 \%$.

3.4.3.3 O-Methylation of the Aldol Adduct

Three methods were evaluated to convert the aldol product 114 into methyl ether 115, as shown in Table 1: methylation with Meerwein's salt and proton sponge ${ }^{\circledR}{ }^{102}$ provided the required methyl ether $\mathbf{1 1 5}$ in 71% yield; treatment with methyl triflate and 2,6-di-tertbutylpyridine ${ }^{103}$ as base afforded the product 115 in 78% yield. Best results were obtained by using methyl iodide, silver(I) oxide ${ }^{104}$ and molecular sieves. The product may be readily isolated without silica gel chromatography, only by filtration. The proposed intermediate 132 of this methylation using methyl iodide and silver(I) oxide is shown in scheme 35 . During the course of this study, it was realized that this methylation reaction proceeds more effectively with molecular sieves (fewer equivalents of silver(I) oxide and shorter reaction time). In analogy to $\mathrm{MnO}_{2} / \mathrm{MS}$ discussed above, there are two possible causes: (i) molecular sieves should remove water from the reaction as it proceeds; (ii) the stirring should be more effectively with molecular sieves because silver (I) oxide is heavy and can not be mixed with only one magnetic stir bar. Therefore, the contact between solid and liquid phase may be optimized.

Scheme $35 \quad O$-Methylation of the aldol adduct and proposed transition state.
Methylation
Reagent

Table $1 \quad O$-methylation of the aldol addact 114 by use of different methods.

3.4.3.4 The Phosphonate Fragment

Subsequently, the conversion of the methyl ether $\mathbf{1 1 5}$ to phosphonate $\mathbf{1 1 8}$ was studied. Initial attempts for a direct conversion, however, were not successful. The phosphonate $\mathbf{1 1 8}$ was isolated only in 9% yield, giving mainly the elimination product 135 in 38% yield. We then had to resort to a 4 steps sequence. LiAlH_{4} reduction of the ester, followed by Dess-Martin oxidation of the resulting primary alcohol 133 gave the aldehyde 116. Addition of lithiated dimethyl methylphosphonate to the resulting aldehyde 116, followed by Dess-Martin
oxidation of the resulting secondary alcohol 117 afforded phosphonate 118 in satisfactory yield.

To our surprise, if excess of Dess-Martin periodinane was used in the reaction, again substantial amounts of elimination were observed to give phosphonate 134. This may be due to the water and slightly acidic conditions, originating from the preparation of Dess-Martin periodinane 136 (Scheme 37), ${ }^{105}$ as acetic acid may not be completely removed from the reagent.

Scheme 36 (a) $n \mathrm{BuLi}$, dimethyl methylphosphonate, THF, $-20^{\circ} \mathrm{C}, \mathbf{1 1 8}=9 \%, \mathbf{1 3 5}=38 \%$; (b) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 97 \%$; (c) DMP, DCM, $0{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (d) $n \mathrm{BuLi}$, dimethyl methylphosphonate, THF, -78 to $0^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (e) DMP, DCM, RT, 118 $=46 \%$ over 3 steps, $134=45 \%$ over 3 steps.

Scheme 37 (a) Oxone ${ }^{\circledR}, \mathrm{H}_{2} \mathrm{O}, 70^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (b) $\mathrm{Ac}_{2} \mathrm{O}, p \mathrm{TsOH} . \mathrm{H}_{2} \mathrm{O}, 80^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

Directly, as shown in Scheme 36, the methyl ether $\mathbf{1 1 5}$ underwent elimination of MeOH to the phosphonate 135. At this point it seemed desirable to avoid this type of elimination and to study the direct conversion of Abiko-Masamune anti aldol products to other functionalities like β-ketone phosphonate 119, which may be used for Horner-Wadsworth-Emmons reaction. ${ }^{106}$ With this consideration, the reactions between the aldol adduct $\mathbf{1 1 4}$ and dimethyl methylphosphonate were carried out by employing $i \mathrm{PrMgCl}$ and $n \mathrm{BuLi}$ as base. The deiodinated product 137 was achieved instead of the desired product 119. This could be explained with the iodine/metal exchange mechanism. ${ }^{107}$ But using KHMDS as base to dehydrogenize dimethyl methylphosphonate, the desired phosphonat 119 was obtained in good yield.

Scheme 38 (a) $i \mathrm{PrMgCl}$ then $\mathrm{CH}_{3} \mathrm{P}(\mathrm{O})\left(\mathrm{OCH}_{3}\right)_{2}, n \mathrm{BuLi}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$ to RT, $15 \mathrm{~h}, 86 \%$. (b) $i \mathrm{PrMgCl}$ then $\mathrm{CH}_{3} \mathrm{P}(\mathrm{O})\left(\mathrm{OCH}_{3}\right)_{2}$, KHMDS, THF, $-78^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}, 2 \mathrm{~h}, 80 \%$;

This conversion could be understood with the transition state 138 (Figure 17). iPrMgCl coordinates the aldol adduct 114. The resulting Mg^{2+} then acts as protecting group for the hydroxyl ${ }^{108}$ and activates the carbonyl by chelation.

Figure 17 Proposed transition state of activation of β-hydroxy ester with $i \mathrm{PrMgCl}$.

3.4.3.5 The Methyl Ketone Fragment

Synthesis of methyl ketone 142 began with the O-methylation of the Abiko-Masamune anti aldol product 114 with MeI, $\mathrm{Ag}_{2} \mathrm{O}$ and $4 \AA$ molecular sieves in $\mathrm{Et}_{2} \mathrm{O}$ to give the methyl ether 115 in 91% yield, as discussed above. The conversion of the ester 115 with $O, N-$ dimethylhydroxylamine hydrochloride and $i \mathrm{PrMgCl}$ to give Weinreb amide $\mathbf{1 4 0}$ was not satisfactory. ${ }^{109}$ Two products 140 and 141 were obtained at the ratio of three to one. Then, we used again a 4 steps sequence, i.e. reductive cleavage of the auxiliary, Dess-Martin oxidation of the resulting primary alcohol, methylation of the aldehyde with MeMgBr , and Dess-Martin oxidation of the secondary alcohol to give the desired methyl ketone 142 in 88% yield over four steps.

Scheme 39 (a) MeI, $\mathrm{Ag}_{2} \mathrm{O}, 4 \AA$ Molecular Sieves, $\mathrm{Et}_{2} \mathrm{O}$, RT, $48 \mathrm{~h}, 91 \%$; (b) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}$, $0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 97 \%$; (c) DMP, NaHCO_{3}, DCM, RT, 4 h ; (d) $\mathrm{MeMgBr}, \mathrm{THF},-7{ }^{\circ} \mathrm{C}$, 30 min ; (e) DMP, $\mathrm{NaHCO}_{3}, \mathrm{DCM}, \mathrm{RT}, 1.5 \mathrm{~h}, 92 \%$ over 3 steps. (f) $O, N-$ dimethylhydroxylamine hydrochloride, $i \mathrm{PrMgCl}, \mathrm{THF},-20^{\circ} \mathrm{C}$ to $-10^{\circ} \mathrm{C}, 3 \mathrm{~h}$, 72%; (g) MeI, $\mathrm{Ag}_{2} \mathrm{O}, 4 \AA \mathrm{MS}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{RT}, 72 \mathrm{~h}, 85 \%$; (h) $\mathrm{MeMgBr}, \mathrm{THF},-2{ }^{\circ} \mathrm{C}$ to RT, $1 \mathrm{~h}, 93 \%$. (i) O, N-dimethylhydroxylamine hydrochloride, $i \mathrm{PrMgCl}$, THF, $-20^{\circ} \mathrm{C}$ to RT, $4 \mathrm{~h}, 22 \%, \mathbf{1 4 0}: \mathbf{1 4 1}=3: 1$.

Although this approach is effective (5 steps, 80%), we wanted to shorten the synthetic steps of the methyl ketone 142 and study the direct displacement of the auxiliary by Weinreb amide
nucleophile, which might then allow direct extension of the aldol adduct using a Grignard reaction. ${ }^{110}$ However, direct conversion of aldol product 114 with O, N-dimethyl hydroxylamine hydrochloride and $i \mathrm{PrMgCl}$ to the corresponding Weinreb amide 139 was again successful. In analogy to the mechanism discussed above, this reaction is expected to proceed via the intermediate 138 as shown in Figure 17. Again, chelation of Mg to the carbonyl oxygen might activate the ester functionality. Thereby, the carbonyl carbon becomes more electrophilic. If $\mathrm{Me}_{3} \mathrm{Al},{ }^{111} \mathrm{Me}_{2} \mathrm{AlCl},{ }^{112}$ DIBAL- $\mathrm{H},{ }^{113} n \mathrm{BuLi}^{114}$ were used instead of $i \mathrm{PrMgCl}$, no desired product was achieved. Then methylation of the free hydroxyl group, followed by transformation of Weinreb amide with MeMgBr gave the desired methyl ketone 142 in 80% over 2 steps.

3.4.3.6 Conclusion

During the synthesis of the C14-C19 subunit, three strategies, namely Evans anti aldol, Noyori's asymmetric transfer hydrogenation and Abiko-Masamune anti aldol were evaluated to install the stereocentres at C16 and C17. Most efficiently, the two stereocentres were constructed by employing Abiko-Masamune anti aldol reaction. The preparation procedure of the acid $\mathbf{1 1 3}$ was optimized and amenable to produce multigrams. Also a study of the direct displacement of the Abiko-Masamune auxiliary by phosphonate and Weinreb amide nucleophiles was successful using $i \mathrm{PrMgCl}$ for carbonyl activation. In total, subunit $\mathbf{1 4 2}$ was obtained in 10 steps with 54% overall yield in a well-scalable synthesis providing several grams of the required building block.

3.5 Connection of the C3-C13 and the C14-C19 Subunits

3.5.1 HWE-Reactions between Phosphonate 118 and Aldehyde 143

With phosphonate 118 in hand, $H W E$ reactions with aldehyde 143 were carried out. At first, we selected the mild condition according to the Masamune-Roush protocol ($\mathrm{LiCl}, \mathrm{DBU}$, $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{RT}$). In the presence of lithium chloride, the phosphonates $\mathbf{1 1 8}$ could be easily deprotonated with an amine, e.g. DBU or DIPEA, to generate reactive species under these simple, mild conditions. Here, Li^{+}most likely forms a tight complex 146 with the carbanion derived from phosphonate 118 as shown in Figure 18, thereby enhancing the acidity of phosphonate 118. ${ }^{115}$

However, even under these mild conditions, no desired product was observed, and the aldehyde was isomerized. Stronger bases, for instance $n \mathrm{BuLi}$, led to extensive decomposition. We therefore had to focus on an alternative strategy, an aldol disconnection.

144

145

Scheme 40 Unsuccessful $H W E$ reactions between phosphonate 118 and aldehyde 143.

Figure $18 \quad$ Li-activation of the β-ketone phosphonate.

3.5.2 Aldol Condensation between Methyl Ketone and Aldehyde

Scheme 41 (a) $(c \mathrm{Hex})_{2} \mathrm{BCl}, \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 95 \%$; (b) LiHMDS, THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}, 74 \%$; (c) $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, THF, $0{ }^{\circ} \mathrm{C}$ then RT; 40 min ; (d) DBU, THF, RT, $1 \mathrm{~h}, 93 \%$ over 2 steps.

Accordingly, lithium and boron mediated aldol reactions were tried to assemble methyl ketone 142 and aldehyde 143. The boron mediated aldol reaction gave the better results and the respective aldol products 147 were obtained in 95% yield. Acylation of the free OH -group with $\mathrm{Ac}_{2} \mathrm{O}$ and DMAP, followed by elimination with DBU provided the product 144 in 93% yield. Therefore, the two northern fragments were successfully connected by using an aldol condensation reaction.
The next step was the attachment of the thiazol fragment $\mathbf{8 3}$ to $\mathbf{1 4 4}$.

3.6 Connection of the C3-C19 and the C20-C1' Subunits

Deprotection of the PMB-group with DDQ and pH7-buffer in DCM, followed oxidation of the resulting primary alcohol under Swern conditions provided the aldehyde 149 in excellent yield. The intermolecular $H W E$ reaction between aldehyde 149 and phosphonate $150{ }^{116}$ with NaH as base led to the desired product 151, albeit in only poor yield (20\%). Under Masamune-Roush conditions ($\mathrm{LiCl}, \mathrm{DBU}, \mathrm{CH}_{3} \mathrm{CN}$, RT), the aldehyde 149 was isomerised and no desired product was isolated. With stronger base such as KHMDS, complete decomposition of the starting materials was observed. The Heck-Macrocyclisation reaction with $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}$ and $n \mathrm{BuNCl}$ at $80^{\circ} \mathrm{C}$ gave no desired cyclisation product 152 and led to decomposition.

144
a) b)

149
c)

Scheme 42 (a) DDQ, pH7-buffer, DCM, RT, 30 min , 148 in 94%; (b) oxalyl chloride, DMSO, $\mathrm{Et}_{3} \mathrm{~N}, 4 \AA \mathrm{MS},-7{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 94 \%$; (c) NaH, THF, RT, $5 \mathrm{~h}, 20 \%$; (d) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}, n \mathrm{Bu}_{4} \mathrm{NCl}, 80^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

3.7 Completion of the First Total Synthesis

trans-Selective Heck Reaction and the HWE-Macrocyclisation - Sven Rudolph

Therefore, the order of these reactions was changed. This sequence was pursured by Sven Rudolph in our group. Using more conventional protocols, ${ }^{117}$ the inter-molecular Heck reaction between the iodide $\mathbf{1 4 8}$ and the terminal alkene $\mathbf{8 3}$ provided poor E / Z-selectivity and yield. Therefore, conditions for this coupling reaction were optimized. Finally, ideal conditions include $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ as catalyst, DMF, acetonitrile and water as solvents to give the desired product in good yield and very good selectivity. After esterification of the Heckproduct, followed by PMB deprotection and Swern oxidation provided the aldehyde 155, which was ready for the $H W E$-macrocyclisation. This was successfully carried out by use of NaH as base. Asymmetric reduction of the ketone function to alcohol with (S) - CBS and BH_{3}, followed by desilylation with HF/pyridine provided archazolid A (4) (Scheme 43).

83

154

1. 154, DCM, BOP, DMAP (95\%)
2. DDQ, pH7-buffer (82\%)
3. Swern (67\%)

Scheme 43 Completion of the first total synthesis of archazolid A (4).

The spectroscopic data $\left({ }^{1} \mathrm{H}\right.$ NMR, ${ }^{13} \mathrm{C}$ NMR, MS $)$ and specific rotation $\left([\alpha]_{\mathrm{D}}=-47^{\circ}(c=1.2\right.$ $\mathrm{mg} / \mathrm{mL}, \mathrm{MeOH})$) of our synthetic material were in agreement with those of an authentic sample obtained from the Archangium gephyra myxobacterial source (Scheme 44).

Scheme $44 \quad{ }^{1}$ H NMR spectra comparing synthetic and natural Archazolid A (4).

3.8 Heck-Macrocyclisation: Towards Archazolid B

After the total synthesis of archazolid A (4), we tried to synthesize archazolid B (5) by use of Heck-macrocyclisation strategy. At first, the intermolecular HWE reaction between the aldehyde 149 and phosphonate $157{ }^{118}$ was carried out using NaH as base. The Heckmacrocyclisation with $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} / \mathrm{Et}_{3} \mathrm{~N} / \mathrm{HCOOH}$ as catalytic system ${ }^{119}$ provided the macrocycle 159 in good yield. ${ }^{120}$ Final steps would involve our previously established protocols by the total synthesis of archazolid A (4).

5: Archazolid B

Scheme 45 Towards the synthesis of archazolid B (5).

3.9 Conclusion

An expedient first total synthesis of archazolid A could be accomplished. It proceeds in 20 steps and 4% overall yield from 60 (longest linear sequence) and establishes unequivocally the relative and absolute configuration. ${ }^{121}$ Key transformations include highly enantio- and diastereoselective Abiko-Masamune and Paterson anti-aldol reactions and a crotylboration on an advanced intermediate to install the vicinal stereogenic centers at $\mathrm{C} 7 / \mathrm{C} 8, \mathrm{C} 15 / \mathrm{C} 16$ and C22/23 together with two highly Z-selective Still-Gennari-type HWE coupling to generate the $9 Z, 11 Z$ alkenes. Coupling of the three fragments was effectuated by an efficient aldol condensation reaction, a highly advantageous Heck-coupling and subsequent HWEmacrocyclisation to construct the macroclactone. Importantly, this modular, convergent synthesis should be amenable to designed analogues of this novel V-ATPase inhibitor, enabling extensive exploration of its biological potential.

4 Studies Towards the Total Synthesis of Etnangien

4.1 Retrosynthetic Analysis

As outlined retrosynthetically in Scheme 46, our synthetic approach relies on a late-stage coupling between marceocycle 160 and side chain 161 using a Wittig ($\mathrm{R}_{1}=\mathrm{Bu}_{3} \mathrm{PCH}, \mathrm{R}_{2}=$ $\mathrm{CHO})$, Stille $\left(\mathrm{R}_{1}=\mathrm{Bu}_{3} \mathrm{Sn}, \mathrm{R}_{2}=\mathrm{CHCHI}\right)$ or Heck reactions $\left(\mathrm{R}_{1}=\mathrm{I}, \mathrm{R}_{2}=\mathrm{CHCH}_{2}\right)$. This retrosynthetic strategy calls for a late-stage introduction of the labile side chain. Notably, it allows for diversification to access various side chains to provide a range of structural derivatives to initiate structure-activity relationship studies.
The core structure $\mathbf{1 6 0}$ would be constructed by using inter- or intra-molecular metal mediated coupling reactions like Stille $\left(\mathrm{R}_{3}=\mathrm{Bu}_{3} \mathrm{Sn}, \mathrm{R}_{4}=\mathrm{I}\right)$, Heck $\left(\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{4}=\mathrm{I}\right)$, Suzuki $\left(\mathrm{R}_{3}=\mathrm{BX}_{2}\right.$, $\left.\mathrm{R}_{4}=\mathrm{I}\right)$ reactions and esterification or macrolactonation such as Yamaguchi (2,4,6trichlorobenzoyl chloride, DMAP, $\mathrm{Et}_{3} \mathrm{~N}$), Keck-Boden (DCC, DMAP), Mitsunobu (DEAD, $\mathrm{Ph}_{3} \mathrm{P}^{2}, \mathrm{Et}_{3} \mathrm{~N}$) or Mukaiyama (2-chloro-1-methylpyridinium iodide) between two fragments 162 and 163. As alternative strategies, ring closing metathesis $\left(\mathrm{RCM}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{4}=\mathrm{CHCH}_{2}\right)$ or relay ring closing metathesis (RRCM) could be employed for closing the macrocycle $\mathbf{1 6 0}$. In turn, the C34-C42 subunit $\mathbf{1 6 2}$ was planed to be accessible by a tin-mediated (1,4)-syn aldol reaction between aldehyde 164 and ethyl ketone 165 , which should be prepared using an auxiliary-controlled diastereoseletive aldol reaction. The C15-C31 fragment 163 was envisioned to be derived by boron-mediated asymmetric aldol reaction between the C15-C23 subunit 167 and the C24-C31 subunit 166. The stereocentre in the C24-C31 subunit 166 should be constructed by employing asymmetric allylation reaction. Using an auxiliarycontrolled diastereoseletive aldol reaction, the two stereocentres in the C15-C23 subunit 167 should be installed.
In summary, the devised route would allow assembly of etnangien in a flexible, highly convergent and stereocontrolled manner. Key issues to be addressed include (i) two auxiliarycontrolled diastereoseletive aldol reactions; (ii) a boron-mediated asymmetric aldol reaction; (iii) a tin-mediated (1,4)-syn aldol reaction; (iv) a asymmetric allylation reaction; (v) inter- or intra-molecular metal mediated coupling reactions; and (vi) esterification or macrolactonation.

Still / Heck / Suzuki / RCM
$\mathrm{R}_{3}=\mathrm{SnBu}_{3} / \mathrm{H} / \mathrm{BX}_{2} / \mathrm{H}$

$\mathrm{R}_{4}=\mathrm{I} / \mathrm{I} / \mathrm{I} / \mathrm{CHCH}_{2}$

Scheme 46 Retrosynthetic analysis of etnangien.

4.2 Synthesis of the C34-C42 Subunit - Fatih Arikan

The synthesis of the C34-C42 subunit $\mathbf{1 7 6}$ was realised by Fatih Arikan in our group. As shown in Scheme 47, it began with the preparation of PMB-protected aldehyde 169 in three steps fashion, PMP-acetal formation, DIBAL-H reduction and DMP oxidation. A dicyclohexylboron mediated Paterson anti-aldol reaction of lactate-derived ethyl ketone 20 with the PMB-protected aldehyde $\mathbf{1 6 9}$ proceeded with excellent diasteroselectivity and yield (d.r. $>20: 1,88 \%$). Reductive removal of the α-benzoate substituent in $\mathbf{1 7 0}$ by SmI_{2} gave the corresponding ethyl ketone $\mathbf{1 7 1}$. Then, the tin-mediated (1,2)- and (1,4)-syn aldol reaction of ethyl ketone 171 with Roche-ester 177 derived aldehyde 178 (TBS protection, DIBAL-H reduction and DMP oxidation) proceeded with useful selectivity (d.r. $>7: 1$) and yield (74%). ${ }^{122}$ The resulting β-hydroxy ketone 172 then underwent a 1,3 -syn-selective reduction when treated with $(c \mathrm{Hex})_{2} \mathrm{BCl}$ and LiBH_{4} generating the respective diol (d.r. $>20: 1$), ${ }^{123}$ which was then protected as the cyclic acetal 173. After selective primary TBS cleavage with TBAF, tosylation with TosCl and DABCO^{124} and triple bond formation with Na-acetylide, the resulting compound $\mathbf{1 7 4}$ was converted to acid $\mathbf{1 7 5}$ in three steps, DDQ deprotection, DMP oxidation and Pinnick oxidation. ${ }^{125}$ The C34-C42 subunit 176 was obtained after reduction of the triple bond in $\mathbf{1 7 5}$ using Lidlar-catalyst. In total, the desired C34-C42 fragment was obtained in a highly convergent and stereoselective route. This fragment was available in 16 steps in 4\% yield. Likewise, this route was well-scalable and allowed to obtain multi-gram quantities of the C34-C42 subunit 176.

Scheme 47 The synthesis of the C34-C42 subunit 176.

4.3 Synthesis of the C24-C31 Subunit - Pengfei Li

The preparation of the C24-C31 subunit 184, as realised by Pengfei Li in our group is shown in Scheme 48. It starts with selective TBS protection of diol 179, followed by DMP oxidation of primary alcohol to provide aldehyde 180, which underwent a silicium-based asymmetric allylation reaction ${ }^{126}$ to allylic alcohol 181 in high selectivity and good yield. Methylation of the allylic alcohol 181 with MeI and NaH as base, followed by ozonolysis ${ }^{127}$ with O_{3} and PPh_{3} afforded aldehyde 182, which was converted to iodide 183 by use of a Stork-Zhao-Wittig olefination reaction. ${ }^{128}$ Finally, the synthesis of the C24-C31 subunit 184 was completed in two steps involving TBS cleavage with CSA and oxidation of the resulting primary alcohol with Parikh-Doering Oxidation. ${ }^{129}$ In summary, this route to the C24-C31 subunit 184 proved likewise well-scalable and multigram quantities of required building block were obtained from 179 in 8 steps and 30% overall yield.

Scheme 48 The synthesis of the C24-C31 subunit 184.

4.4 Synthesis of the C15-C23 Subunit

Synthesis of the C15-C23 subunit was the focus of this thesis.
The retrosynthetic analysis of the C15-C23 subunit 189 is outlined in Scheme 49. An auxiliary controlled anti aldol reaction would build the corresponding stereochemistry. The aldehyde 188 would be prepared from (Z)-ethyl 3-formylbut-2-enoate 187 by using Wittig olefination. The DMPM-protection group for the secondary alcohol was selected due to (i) PMB ethers and PMP acetals show high 1,5-anti induction by Boron mediated asymmetric aldol reactions ${ }^{130}$ which would be employed for connection of the C15-C23 subunit 189 and the C24-C31 subunit 184; (ii) the DMPM-protecting group is easier to cleave than the PMBgroup.

Scheme 49 Retrosynthetic analysis of the C5-C20 subunit.

4.4.1 Synthesis of the Aldehyde Fragment - Wittig Reaction

The Wittig reaction of 187 to give 191, as previously reported, ${ }^{131}$ was very slow in toluene and gave low yield. On the contrary, this reaction was faster in DCM and gave better yield. Optimum results were obtained in DCM with 1.5 eq. Wittig reagent and 1.0 eq. aldehyde 187 at room temperature (Table 2, Entry 4). The side product of the Wittig reaction in DCM was the aldehyde 192, the amount of which may be reduced under the condition with excess of the aldehyde 187 (Table 2, Entry 7). The excess of the aldehyde 187 was recycled after silica gel chromatography.

Scheme 50 Wittig reaction with aldehyde 187 and ylide 190.

Entry	Solvent	$\begin{aligned} & 187 \\ & \text { (eq.) } \end{aligned}$	$\begin{aligned} & 190 \\ & \text { (eq.) } \end{aligned}$	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Time (h)	Yield (\%)		
						192	191	187
1	PhMe	1.0	1.1	110	24		57	
2	PhMe	1.0	1.1	RT	24×7	20	57	15
3	DCM	1.0	1.1	RT	24	13	65	11
4	DCM	1.0	1.5	RT	24	9	70	16
5	DCM	1.0	2.0	RT	24	4	56	27
6	DCM	2.0	1.0	RT	28		79	3.7
7	DCM	3.0	1.0	RT	15		80	2.7

Table $2 \quad$ Results of the Wittig reaction with aldehyde 187 and ylide 190.

The Wittig reaction of the aldehyde 187 (excess) with more sterically hindered ylide 193 give the aldehyde 194 in 62% yield after 24 h at room temperature. Although this type of the Wittig reaction with aldehyde 187 proceeded very well in DCM, no conversion of the reaction with the corresponding ketone 195 could be obtained.

Scheme 51 Wittig reaction with aldehyde 187 and ylide 193 and unsuccessful Wittig reaction with ketone 195 and ylide 190.

Then, reduction of aldehyde 191 with NaBH_{4}, followed by TBS-protection of the primary alcohol afforded the TBS ether 198 in 89% yield over two steps. The primary alcohol 197 was used directly for the next step after work up. Reduction of the ester functionality with DIBAL-H at $0{ }^{\circ} \mathrm{C}$ to the primary alcohol, followed by oxidation of allylic alcohol with MnO_{2} and $4 \AA \mathrm{MS}$ in $\mathrm{Et}_{2} \mathrm{O}$ gave the aldehyde $\mathbf{1 8 8}^{132}$ in 95% yield over two steps, which was ready for the anti aldol reaction.

Scheme 52 (a) $\mathrm{NaBH}_{4}, \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ 1:1, $0^{\circ} \mathrm{C}$ to RT, 20 min ; (b) TBSCl, imidazole, DMF, RT, $30 \mathrm{~min}, 89 \%$ over 2 steps; (c) DIBAL-H, THF, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 97 \%$; (d) MnO_{2}, $\mathrm{Et}_{2} \mathrm{O}, 4 \AA \mathrm{MS}, \mathrm{RT}, 30 \mathrm{~min}, 95 \%$.

4.4.2 Construction of the Stereocentre C20/C21 - anti Aldol Reactions

4.4.2.1 The Abiko-Masamune anti Aldol Strategy

With the good experience of the Abiko-Masamune anti Aldol reaction in course of our total synthesis of archazolid A, we wanted to construct the stereocentres at C20 and C21 in a similar fashion. Accordingly, the aldol adduct 199 should be directly converted to the corresponding Weinreb amide $\mathbf{2 0 0}$ using $i \mathrm{PrMgCl}$ activation of carbonyl by chelation, which was described in total synthesis of archazolid A. Then, conversion of the Weinreb amide 200 to the methyl ketone $\mathbf{1 8 9}$ was planned to be carried out by standard conditions.

Scheme 53 Retrosynthetic analysis for Abiko-Masamune anti aldol stratgy.

However, the Abiko-Masamude anti aldol reaction between the propionate ester 18 and the aldehyde $\mathbf{1 8 8}$ provided low selectivity and moderate yield (76%, d.r. $>5: 1$). ${ }^{101}$ The direct conversion of the aldol aduct 199 with $i \mathrm{PrMgCl}$ and O, N-dimethylhydroxylamine hydrochloride to the Weinreb amide 201 was not as good as in the total synthesis of archazolid A. The problem was elimination of the hydroxyl group. This byproduct 202 was obtained in 29%. The basic conditions and the formation of the conjugated system were the cause of the hydroxyl elimination. The protection of the Weinreb amide 201 with 4-(bromomethyl)-1,2-dimethoxy benzene $\mathbf{2 0 4}$ and NaH in DMF also failed. ${ }^{133}$

Scheme 54 (a) $(c \mathrm{Hex})_{2} \mathrm{BOTf}^{2} \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM},-78^{\circ} \mathrm{C}, 2 \mathrm{~h}$, then 188, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}, 76 \%$, d.r. $>$ 5:1; (b) $i \mathrm{PrMgCl}, O, N$-dimethylhydroxylamine hydrochloride, $-20^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, $3.5 \mathrm{~h}, 52 \%$; (c) NaH, 4-(bromomethyl)-1,2-dimethoxybenzene 204, DMF, $0^{\circ} \mathrm{C}$.

Direct protection of the aldol aduct 199 with 3,4-dimethoxybenzyl 2,2,2-trichloroacetimidate 208 and PPTS as catalyst in DCM provided the DMPM ether ${ }^{134}$ only in 47% yield and the product 205 could not be separated from the starting material by silica gel chromatography. On the contrary, the TBS protection of 199 using TBSOTf and 2,6-lutidine in DCM provided the TBS ether 206 in 98% yield. However, the conversion of the TBS ether to corresponding Weinreb amide 207 was not successful.

Scheme 55 (a) 3,4-dimethoxybenzyl 2,2,2-trichloroacetimidate 208, PPTS, DCM, RT, 17 h, 47%; (b) TBSOTf, 2,6-lutidine, DCM, $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 98 \%$; (c) $i \mathrm{PrMgCl}, O, N-$ dimethylhydroxylamine hydrochloride, THF, $-20^{\circ} \mathrm{C}$ to RT.

In conclusion, the Abiko-Masamude anti aldol reaction afforded the aldol product 199 in low stereoslectivity and moderate yield. The direct conversion of the aldol product 199 to Weinreb amide 201 proceeded also not as smoothly as we had hoped. Due to theses unsatisfactory results, we turned our attention to a Paterson anti aldol reaction.

4.4.2.2 The Paterson anti Aldol Strategy

With Paterson anti aldol reaction, the stereocenters at C20 and C21 could be constructed. After DMPM protection of the aldol aduct 209, the ketone functionality could be removed by MeLi and the benzoyl could be cleaved concomitantly to provide the 1,2 -diol 211, ${ }^{135}$ that could be converted to methyl ketone $\mathbf{1 8 9}$ by oxidative cleavage (Scheme 56).

Scheme 56 Paterson anti aldol reaction followed by DMPM protection.

As shown in Scheme 57, the Paterson anti aldol reaction provided in this case high yield (97%) and selectivity (d.r. $>20: 1),{ }^{42}$ in contrast to the Abiko-Masamude anti aldol reaction. This reaction was also appropriate to large scale. But the problem was the DMPM protection of the secondary alcohol 209 after the aldol reaction. With various conditions, ${ }^{136}$ the protection gave unsatisfactory results (Table 3). The best result was performed by using PPTS as catalyst. However, the product 210 could not be separated from the starting material by silica gel chromatography, in a similar fashion as was previously observed for the AbikoMasamune anti aldol product.

Scheme 57 (a) $(\mathrm{cHex})_{2} \mathrm{BCl}, \mathrm{Me}_{2} \mathrm{NEt}, \mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}$ then $0{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$, then aldehyde 188, -78 ${ }^{\circ} \mathrm{C}$ then $-20^{\circ} \mathrm{C}, 14 \mathrm{~h}, 97 \%$, d.r. $>20: 1$; (b) Table 3.

Catalyst	Mol $(\%)$	T $\left({ }^{\circ} \mathrm{C}\right)$	Yield $(\%)$
PPTS	$\mathbf{5 0}$	$\mathbf{R T}$	$\mathbf{3 7}$
CSA	15	RT	23
$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$	4	-78 to RT	decomposition
$\mathrm{Sc}(\mathrm{OTf})_{3}$	10	RT	decomposition

Table 3 Results of DMPM protection of Paterson anti aldol adduct 209.

The methyl addition to the ketone functionality with concomitant benzoyl cleavage provided the 1,2 -diol 211 only in 22% yield, ${ }^{135}$ which was then converted to the methyl ketone by oxidative cleavage with NaIO_{4} in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$. It was surprising that the oxidative cleavage with NaIO_{4} in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ gave different products. In the first case, NaIO_{4} (7.0 eq.) was added in three portions over a period of 3.5 h to give methyl ketone 212 with the TBS group. In the second case, NaIO_{4} (6.0 eq.) was added in one portion to give methyl ketone 213 without the TBS group. The second case showed that the TBS group was removed under this condition. This cleavage of the TBS group will be discussed below.

Scheme 58 (a) $\mathrm{MeLi}, \mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}, 4 \mathrm{~h}, 22 \%$; (b) NaIO_{4} (7.0 eq.), THF/ $\mathrm{H}_{2} \mathrm{O}(4$: 1), RT, $6.5 \mathrm{~h}, 86 \%$; (c) NaIO_{4} (6.0 eq.), THF/ $\mathrm{H}_{2} \mathrm{O}(4: 1$), RT, $2 \mathrm{~h}, 93 \%$.

After the failure of the DMPM protection, we had to choose an alternative protection group. If β-hydroxyl methyl ketones were protected with TBS group, high levels of 1,5-anti induction have been obtained with Ipc-boron controlled enolates. This type of Ipc-boron controlled 1,5anti aldol reaction with a TBS-protected methyl ketone was used in the total synthesis of dolabelide D by Leighton. ${ }^{137}$
The standard approach was envisioned following Paterson aldol reaction to prepare the methyl ketone 219: reduction of the ketone and ester functionalities, followed by oxidative cleavage of the resulting diol to give the aldehyde 217, which would then be converted to the methyl ketone 219.

Scheme 59 Paterson anti aldol reaction followed by TBS protection.

As shown in Table 4, the protection of the aldol product 210 with TBSOTf and several organic bases was carried out. The best result was achieved with proton sponge ${ }^{\circledR}$ as base. The
reaction with 2,6-lutidine and 2,6-di-tert-butylpyridine proceeded not smoothly and gave lower yields. With 2,4,6-trimethyl pyridine or 2,3,5-collidine as base, elimination of water was observed as side reaction and better yields were obtained. It is know that proton sponge ${ }^{\circledR}$ is more basic than 2,4,6-trimethyl pyridine or 2,3,5-collidin. But the elimination of water as side reaction in this case was not found. On the other hand, proton sponge ${ }^{\circledR}$ is sterically more hindered as compared to these other bases. This suggests that this steric effect may be the cause of the elimination. The conversion of the TBS-protected aldol product 214 to diol 215 by using methyl lithium led to decomposition. Perhaps, methyl lithium attacks the electron rich allylic TBS ethers moiety in ketone 214, which then leads to decomposition. ${ }^{138}$

Scheme 60 (a) Table 4; (b) MeLi, $\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$, decomposition.

Reagent Solvent \begin{tabular}{c}
T

$\left({ }^{\circ} \mathrm{C}\right)$

Side

Reaction

Yield

$(\%)$
\end{tabular}

Table $4 \quad$ Results of TBS protection of Paterson anti aldol adduct 210.

Then, we used the standard approach to prepare the methyl ketone. Using LiBH_{4} as reducing agent, the ketone and ester functionalities were reduced to the diol 216 in high yield. Oxidative cleavage of the diol 216 with NaIO_{4} however gave the aldehyde 217 in 68% yield only. This moderate yield was due to a side reaction, i.e. deprotection of the primary TBS ether under these conditions. This type of TBS-deprotection will be discussed below. The oxidative cleavage of the diol 216 with $\mathrm{Pb}(\mathrm{OAc})_{4}$ in toluene was very clean and fast, giving the aldehyde 217 in very high yield. The other benefit of this reaction was that the diol 216 was used without purification after workup for the next step. The aldehyde 217 may be converted to the methyl ketone 219 by using two a two step procedure in 75% yield.

Scheme 61 (a) $\mathrm{LiBH}_{4}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$ to RT, 24 h ; (b) $\mathrm{NaIO}_{4}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(2: 1)$, RT, 4 h , 62% over 2 steps; (c) $\mathrm{Pb}(\mathrm{OAc})_{4}, \mathrm{PhMe}, \mathrm{RT}, 25 \mathrm{~min}, 90 \%$ over 2 steps; (d) $\mathrm{MeLi}, \mathrm{Et}_{2} \mathrm{O},-7{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$, then $-30^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (e) $\mathrm{DMP}, \mathrm{NaHCO}_{3}, \mathrm{DCM}$, RT, $90 \mathrm{~min}, 75 \%$ over 2 steps.

4.4.3 Conclusion

During the synthesis of the C15-C23 subunit, two auxiliary-controlled anti selective aldol reactions involve Abiko-Masamune anti aldol and Paterson anti aldol were evaluated to construct the stereocentres at C20 and C21. Most efficiently, the two stereocentres were installed by using Paterson anti aldol reaction. The Wittig reaction of aldehyde 187 and ylide 190 was optimized and amenable to produce multigrams. Under optimized conditions, the Wittig reaction of the aldehyde 187 (excess) with more sterically hindered ylide 193 give the aldehyde 194 in good yield. In addition, the TBS protection of the Paterson anti aldol adduct 210 with different amine bases were studied. With proton sponge ${ }^{\circledR}$ as base, this type of protection give excellent yield. In total, subunit 219 was obtained in 11 steps with 37% yield from aldehyde 187 in a well-scalable providing several grams of the desired building block.

4.5 Connection of the C15-C23 and the C24-C31 Subunits

With the methyl ketone 219 and the aldehyde 184 subunits in hand, the connection of this two subunits could be carried out according to our synthesis plan. Before the two subunits would be connected by using Ipc-boron aldol reaction, a model reaction with the aldehyde 221 and the methyl ketone 219 was carried out to check the selectivity of this asymmetric aldol reaction.

4.5.1 The Model Ipc-Boron Aldol Reaction with Methyl Ketone 219

As show in Scheme 62, the alcohol 220 was oxidized with DMP to aldehyde 221. The Ipcboron aldol reaction between the aldehyde 221 and the methyl ketone 219 provided moderate yield (50%) and good selectivity (d.r. $>12: 1$). The absolute configuration of the new stereocentre was deduced by Mosher-ester analysis of the bis-Mosher ester 223/224 of the alcohol 222. ${ }^{139}$

Scheme 62
(a) DMP, DCM, RT, $1 \mathrm{~h}, 94 \%$; (b) (+)-DIPCl, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 90 \mathrm{~min}$; then aldehyde 221, $-78{ }^{\circ} \mathrm{C}$ to RT, $18 \mathrm{~h}, 50 \%$, d.r. > 12:1; (c) (R)-MTPA, DMAP, $\mathrm{Et}_{3} \mathrm{~N}, 2,4,6$-trichlorobenzoyl chloride, PhMe, RT, $20 \mathrm{~min}, 88 \%$; (d) (S)-MTPA, DMAP, $\mathrm{Et}_{3} \mathrm{~N}, ~ 2,4,6$-trichlorobenzoyl chloride, PhMe, RT, $20 \mathrm{~min}, 98 \%$.

H	$\delta[\mathrm{ppm}]$ S-Mosher ester	$\delta[\mathrm{ppm}]$ R-Mosher ester	$\Delta \delta=\delta_{\mathrm{S}}-\delta_{\mathrm{R}}$
7	2.61	2.54	+0.07
8,9	1.68	1.62	+0.06

11 a	2.88	2.93	-0.05
11 b	2.68	2.71	-0.03
13	2.53	2.59	-0.06
$\mathrm{Me}-13$	0.67	0.78	-0.11

Table 5 Mosher ester analysis of the model Ipc-boron aldol reaction.

4.5.2 The Ipc-Boron Aldol Reaction

The connection of the methyl ketone 219 and the aldehyde 184 subunits was performed successful by using Ipc-boron aldol reaction in good yield and selectivity (Scheme 63). Enolization of methyl ketone 219 with $(+)$ - DIPCl in conjunction with $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{Et}_{2} \mathrm{O}$ at $0{ }^{\circ} \mathrm{C}$ led to the formation of the boron enolate, which was allowed to react with aldehyde 184 at $-78{ }^{\circ} \mathrm{C}$ for 2 h and then at $-20^{\circ} \mathrm{C}$ for 14 h . The desired product 225 was obtained in 76% yield and good selectivity (d.r. > 14:1). The absolute configuration of C24 was deduced by Mosherester analysis of the bis-Mosher ester 225a/225b of the alcohol 225. ${ }^{139}$

a)

Scheme 63 (a) (+)-DIPCl, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then aldehyde 184, $-78{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$, then -20 ${ }^{\circ} \mathrm{C}, 14 \mathrm{~h}, 76 \%$, d.r. $>$ 14:1; (b) (R)-MTPA, DMAP, $\mathrm{Et}_{3} \mathrm{~N}, 2,4,6-$ trichlorobenzoyl chloride, PhMe, RT, $20 \mathrm{~min}, 89 \%$; (c) (S)-MTPA, DMAP, $\mathrm{Et}_{3} \mathrm{~N}$, 2,4,6-trichlorobenzoyl chloride, PhMe, RT, $20 \mathrm{~min}, 90 \%$.

$\Delta \delta<0$			$\Delta \delta>0$
H	$\delta[\mathrm{ppm}]$ S-Mosherester	$\begin{gathered} \delta[\mathrm{ppm}] \\ \text { R-Mosherester } \end{gathered}$	$\Delta \delta=\delta_{S}-\delta_{\mathrm{R}}$
25	1.676	1.612	+0.064
26,27	1.493	1.398	+0.095
28	3.255	3.187	+0.068
Me-28	3.319	3.295	+0.024
29	2.328	2.296	+0.032
23a	2.684	2.736	-0.052
23b	2.904	2.950	-0.046
21	2.555	2.607	-0.052
Me-21	0.674	0.779	-0.105
20	4.525	4.555	-0.030
19	5.210	5.226	-0.016
Me-18	1.763	1.779	-0.016

Table 6 Mosher ester analysis of the Ipc-boron aldol reaction.

As shown in Figure 19, it is postulated that the boron aldol reactions of β-hydroxy methyl ketone proceed via a boat transition state. ${ }^{140}$ For β-alkoxy methyl ketones, a stabilizing formyl hydrogen bond exists that leads to disfavouring of the $1,5-$ syn adduct by minimizing steric interactions between the β-alkyl group and one of the Ipc group on boron. Silyl protecting groups prevent formyl hydrogen bonding due to their large size and electron-deficient oxygen. So, the high levels of stereocontrol, which was achieved with TBS-protected β-hydroxy methyl ketones, may be realised through the reinforcing influence of an Ipc-boron enolate. ${ }^{141}$

Figure 19 Boat transition states of the Ipc-boron aldol reaction.

4.5.3 Reduction of the Ketone 225 and Selective Protection of the Diol 227

The reduction of the β-hydroxy ketone 225 to the diol with the desired new stereocenter could be carried out by using two asymmetric reduction methods, the Evans-Tishchenko reduction ${ }^{142}$ and the Saksena-Evans reduction. ${ }^{143}$ Using SmI_{2} and MeCHO in THF, the β hydroxy ketone 225 was reduced to the desired alcohol 226 in 93% yield, with complete diastereoselectivity and with concomitant protection of the hydroxyl group at C24 as acetate. However, cleavage of the acetyl group in competition to the macrolacton after the closing of the ring was envisioned to be problematic. Reduction of the β-hydroxy ketone 225 using tetramethylammoniumtriacetoxy-borohydride afforded the diol 227 in 92% yield and complete diastereoselectivity.

In these cases, the anti stereoselectivity can be rationalized by intramolecular hydride transfer via cyclic transition state as shown in Figure 20.
Using of TBSCl and imidazol in DCM at RT, the diol 227 could be selectively protected as TBS ether 228 at C24 in 63% (77%, based on rec. SM). As by-products, the TBS ether 229 at C 22 and the bis-TBS ether (C22 and C24) 230 were isolated and also the diol 227 was recycled in 18% yield. The selective protection of hydroxyl group at C24 was also carried out with TBSOTf and 2,6-lutidine or proton sponge ${ }^{\circledR}$, however giving lower selectivity.

Scheme 64 (a) $\mathrm{SmI}_{2}, \mathrm{MeCHO}$, THF, $-10{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then $-20{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}, 93 \%$; (b) $\mathrm{Me}_{4} \mathrm{NBH}(\mathrm{OAc})_{3}, \mathrm{MeCN} / \mathrm{AcOH}(1: 1),-40$ then $-22^{\circ} \mathrm{C}, 40 \mathrm{~h}, 92 \%$; (c) TBSCl, imidazole, DCM, RT, 30 min , 228: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{TBS}, 63 \%$; 229: $\mathrm{R}_{1}=\mathrm{TBS}, \mathrm{R}_{2}$ $=H, 9 \% ; 230: R_{1}=R_{2}=$ TBS, 4\%; 227: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}, 18 \%$.

Figure 20 Transition state of intra-molecular hydride transfer.

4.6 Connection of the C15-C31 and the C32-C42 Subunits

Under standard Yamaguchi conditions ${ }^{144}$ (formation of the mixed anhydride by treatment with $\mathrm{TCBC} / \mathrm{Et}_{3} \mathrm{~N}$, followed by DMAP promoted esterification) the esterification of the alcohol 226/228 with acid 176 led to the desired product 231/232 in high yield.

Scheme 65 (a) 231: $\mathrm{R}=\mathrm{Ac}, \mathrm{TCBC}, \mathrm{DMAP}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{PhMe}, 0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 87 \%$; (b) $232 \mathrm{R}=$ TBS, TCBC, DMAP, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{PhMe}, 0^{\circ} \mathrm{C}$ then RT, $30 \mathrm{~min}, 97 \%$.

The proposed catalytic cycle and the activated intermediates are shown in Scheme 66. ${ }^{145}$

Scheme 66 Proposed mechanism of the Yamaguchi esterification.

4.7 Completion of the Macrolide Moiety: Heck-Macrocyclization

The intra-molecular Heck reaction for medium size rings is widely used in synthetic organic chemistry ${ }^{146}$ and also examples have been described for macrocyclization in the total synthesis of natural products and their analogues. ${ }^{147}$

In order to close the ring of etnangien, various coupling reactions were considered, for example Stille, Heck and Suzuki reactions, which could be applied for the macrocyclization. But the Heck reaction is the most direct because it does not require an activation of functionalization of the second double bond. In this case, various catalytic systems were tested as shown in Table 7. The catalytic systems $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2} / \mathrm{Et}_{3} \mathrm{~N} / \mathrm{HOCO}$ in MeCN or in DMF and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} / \mathrm{Et}_{3} \mathrm{~N} / \mathrm{MeCN}$ led to decomposition. The system $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ $/ \mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{Bu}_{4} \mathrm{NCl}$ in DMF provided the desired product, but in very low yield. It was found that the system $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{Bu}_{4} \mathrm{NCl}$ in DMF^{148} was the best for the Heck macrocyclization to close the ring of etnangien (Scheme 67). It is possible to obtain high levels of stereocontrol through the nature of the ring conformation and the nature of E selectivity of the Heck reaction, as demonstrated in our archazolids synthesis.

Scheme 67 (a) 233: $\mathrm{R}=\mathrm{Ac}, \operatorname{Pd}(\mathrm{OAc})_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{Bu}_{4} \mathrm{NCl}, \mathrm{DMF}, 60^{\circ} \mathrm{C}, 1 \mathrm{~h}, 34 \%$; (b) 234: R $=\mathrm{TBS}, \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{Bu}_{4} \mathrm{NCl}, \mathrm{DMF}, 70^{\circ} \mathrm{C}, 1 \mathrm{~h}, 70 \%$.

Catalyst	Solvent	Base Additive	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Time (h)	$\begin{gathered} \text { Yield } \\ \mathrm{R}=\mathrm{TBS} \\ (\%) \end{gathered}$
$\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$	MeCN	$\begin{gathered} \mathrm{Et}_{3} \mathrm{~N} \\ \mathrm{HOCO} \end{gathered}$	RT	22	decomposition
$\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$	DMF	$\begin{gathered} \mathrm{Et}_{3} \mathrm{~N} \\ \mathrm{HOCO} \end{gathered}$	RT	3	decomposition
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	MeCN	$\mathrm{Et}_{3} \mathrm{~N}$	50	1	decomposition
$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	DMF	$\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ \mathrm{Bu}_{4} \mathrm{NCl} \end{gathered}$	80	0.5	found
$\mathbf{P d}(\mathrm{OAc})_{2}$	DMF	$\mathrm{K}_{2} \mathrm{CO}_{3}$ $\mathrm{Bu}_{4} \mathrm{NCl}$	70	1	70

Table $7 \quad$ Heck macrocyclization with various catalytic systems.

Following, deprotection of the primary allylic TBS ether with $\mathrm{NH}_{4} \mathrm{~F}$ in MeOH^{149} at room temperature provided the primary allylic alcohol 235 , which may then be oxidized with MnO_{2} to the aldehyde for Wittig reaction with the side chain $161\left(\mathrm{R}_{1}=\mathrm{Bu}_{3} \mathrm{PCH}\right)$ or extended by using Takai reaction for attachment of the side chain $161\left(\mathrm{R}_{1}=\mathrm{Bu}_{3} \mathrm{Sn}\right)$ by Stille coupling, or using a Wittig olefination for Heck coupling with side chain $161\left(\mathrm{R}_{1}=\mathrm{I}\right)$.

Scheme 68
(a) $\mathrm{NH}_{4} \mathrm{~F}, \mathrm{MeOH}, \mathrm{RT}, 18 \mathrm{~h}, 70 \%$.

Scheme 69 presents a simplified scheme of the putative major mechanistic steps of the Heck catalytic cycle. ${ }^{150}$ Several elementary steps are discussed. (i) Preactivation, the reduction of $\operatorname{Pd}(\mathrm{II})$ complexes to $\operatorname{Pd}(0)$ and the generation of an active species through multiple ligand exchange equilibria. (ii) Oxidative addition: the oxidative addition proceeds as a concerted process in which $\mathrm{C}-\mathrm{X}$ bond rupture is more or less synchronized with the formation of M-C and M-X bonds. (iii) Migratory insertion: the migratory insertion is the product-forming step of the Heck cycle, in which a new C-C bond is formed. It is this step which is most likely responsible for regio- and stereodiscrimination as well as substrate selectivity. (iv) Reductive elimination: after the migratory insertion comes the step in which palladium(0) is released and launches the next turn of the Heck cycle. (v) PdH elimination: after reductive elimination, PdH is coordinated to alkene and then scavenged fast by base,

Scheme 69 Proposed catalytic cycle of Heck reaction.

4.8 Synthesis of Analogues of the Etnangien Macrolide Structure

4.8.1 Heck Macrocyclization

In the same fashion, the esterification of the acid 176 with the alcohol 229 , which was a sideproduct by selective protection of diol 227, under standard Yamaguchi conditions led to the product 236, which underwent the Heck macrocyclization with $\operatorname{Pd}(\mathrm{OAc})_{2} / \mathrm{K}_{2} \mathrm{CO}_{3} /$ $\mathrm{Bu}_{4} \mathrm{NCl}$ as catalytic system to the macrocycle 237. After global deprotection, biologic activity of the macrocycle may be tested for structure-activity relationship (SAR) studies. The primary TBS group was selectively removed with NaIO_{4} in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ to give the primary alcohol 238 in high yield. This mild desilylation method will be discussed below.

b), c)

Scheme 70 (a) TCBC, DMAP, $E t_{3} \mathrm{~N}, \mathrm{PhMe}, 0^{\circ} \mathrm{C}$ then $\mathrm{RT}, 30 \mathrm{~min}, 92 \%$. (b) $237: \mathrm{R}=\mathrm{TBS}$, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{Bu}_{4} \mathrm{NCl}, \mathrm{DMF}, 7{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 32 \%$. (c) 238: $\mathrm{R}=\mathrm{H}, \mathrm{NaIO}_{4}(6.0$ eq.) $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(4: 1), \mathrm{RT}, 15 \mathrm{~h}, 84 \%$.

4.8.2 Sonogashira Macrocyclization

Under standard Yamaguchi conditions, the esterification of the acid $\mathbf{1 7 5}$ with the alcohol provided the product 239, which underwent Sonogashira macrocyclization with $\operatorname{Pd}(\mathrm{dba})_{3} /$ $\mathrm{CuI} / i \mathrm{Pr}_{2} \mathrm{Net}$ as catalytic system to the macrocycle 240. ${ }^{151}$ After global deprotection, biologic activity of the macrocycle may be tested for structure-activity relationship (SAR) studies.

Scheme 71 (a) TCBC, DMAP, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{PhMe}, 0^{\circ} \mathrm{C}$ then RT, $30 \mathrm{~min}, 82 \%$. (b) $\mathrm{Pd}(\mathrm{dba})_{3}, \mathrm{CuI}$, $i \mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{RT}, 70 \mathrm{~min}, 30 \%$.

4.9 Conclusion

The macrocycle 234 of etnangien (14) was successfully synthesized with three key building blocks $(176,184,219)$ by employing highly enantio- and diastereoselective Ipc-boronmediated (1,5)-anti aldol reaction, highly efficient Yamaguchi esterification and highly Eselective Heck macrocyclization. It proceeds in 18 steps and 27% overall yield from 168 (longest linear sequence). Key transformations include two highly enantio- and diastereoselective Paterson anti aldol reactions, a tin-mediated (1,4)-syn aldol reaction, a silicium-based asymmetric allylation, a (1,3)-anti reduction reaction and a (1,3)-syn reduction reaction on an advanced intermediate to install the corresponding stereogenic centres at C20/C21, C39/C40, C36/C37, C28, C22 and C38 together with a optimized Wittig reaction to generate the $16 E$ alkene. In addition, two analogues of the mcrocycle $(238,240)$ were synthesized using Heck macrocyclization and Sonogashira macrocyclization, respectively. The two analogues are envisioned for structure-activity relationship (SAR) studies.

5 Selective Deprotection of Silyl Ethers with NaIO_{4}

5.1 Introduction

As synthetic targets such as natural products and their analogues have grown more complex, protection/deprotection methods have assumed prominent roles in synthetic organic chemistry. ${ }^{152,153,154}$ The ability to efficiently protect and then deprotect hydroxyl groups has become increasingly important due to the abundance of these groups in natural products. The transformation of alcohols to the corresponding silyl ethers is a very common way to protect hydroxyl groups. Selective deprotection of one silyl ether without affecting another silyl ether in the same molecule plays important roles and can be a crucial step in total synthesis of natural products and their analogues. ${ }^{155}$ Generally, silyl ethers may be deprotected under (i) acidic conditions; (ii) basic/nucleophilic conditions; ${ }^{156}$ and (iii) oxidative conditions. ${ }^{157}$
Selective deprotection of primary TBS ethers in the presence of secondary TBS ethers is perhaps a most widely used strategy in total synthesis of natural products and their analogues. Reagents which are used in this strategy include HOAc/THF/H2O, ${ }^{158} \mathrm{CSA},{ }^{159}$ PPTS, ${ }^{160}$ $\mathrm{TsOH},{ }^{161} \mathrm{TFA},{ }^{162} \mathrm{HCl},{ }^{163} \mathrm{NH}_{4} \mathrm{~F} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O},{ }^{164} \mathrm{DDQ} / \mathrm{CH}_{2} \mathrm{Cl}_{2},{ }^{165}$ quinolinium fluorochromate, ${ }^{166}$ Vilsmeier-Haack reagent $\left(\mathrm{POCl}_{3} / \mathrm{DMF}\right),{ }^{167}$ ceric ammonium nitrate [CAN, $\left.\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right],{ }^{168} \mathrm{CBr}_{4}$ in alcohol solvents, ${ }^{169} \mathrm{LiBr}$ with 18 -crown-6 in acetone. ${ }^{170}$.
The well-established methods of deprotection of primary TES or TBS ethers in the presence of primary TBDPS ethers include $\mathrm{HOAc} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O},{ }^{171} \mathrm{HCl},{ }^{172} \mathrm{H}_{2} \mathrm{SO}_{4},{ }^{173}$ PPTS, ${ }^{174} \mathrm{CSA},{ }^{175}$ $\mathrm{TsOH},{ }^{176} \mathrm{TFA}^{177}$ and $\mathrm{AcCl} / \mathrm{MeOH}$ (generating dry HCl in situ). ${ }^{178}$ There are also many other methods to remove TBS groups from protected primary alcohols in the presence of primary TBDPS ethers such as LL-ALPS- $\mathrm{SO}_{3} \mathrm{H}$ (lowloading and alkylated polystyrene-supported sulfonic acid), ${ }^{179}$ HF-pyridine, ${ }^{180}$ Lewis acids $\left[\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O} / \mathrm{NaI} / \mathrm{MeCN},{ }^{181}\right.$ $\left.\mathrm{Ce}(\mathrm{OTf})_{4} / \mathrm{THF} / \mathrm{MeOH},{ }^{182} \mathrm{InCl}_{3} / \mathrm{MeCN},{ }^{183} \mathrm{ZnBr}_{2} / \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2},{ }^{184} \mathrm{Zn}^{2}\left(\mathrm{BF}_{4}\right)_{2},{ }^{185} \mathrm{CeCl}^{2} .7 \mathrm{H}_{2} \mathrm{O}^{186}\right]$, Verkade's non-ionic base $\left[\mathrm{P}\left(\mathrm{MeNHCH} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right],{ }^{187} \mathrm{Br}_{2},{ }^{188} \mathrm{I}_{2},{ }^{189} \mathrm{IBr} / \mathrm{CH}_{2} \mathrm{Cl}_{2},{ }^{190}$ TBAB/MeOH. ${ }^{191}$
A frequently used method to cleave secondary TES ethers in the presence of secondary TBS or TBDPS ethers is acid-mediated deprotection. The acid reagents involve PPTS, ${ }^{192} \mathrm{TsOH},{ }^{193}$ TFA, ${ }^{194} \mathrm{CSA},{ }^{195} \mathrm{AcOH},{ }^{196} \mathrm{HCl},{ }^{197} \mathrm{H}_{2} \mathrm{SO}_{4} .{ }^{198} \mathrm{~A}$ mumber of other examples of the deprotection of secondary TES ethers in the presence of secondary TBS ethers are reported like HF-pyridine in THF, ${ }^{199}$ aqueous HF in MeCN, ${ }^{200}$ HOAc-buffered TBAF in THF, ${ }^{201}$ TBAF in THF, ${ }^{202}$ aqueous NaOH in DMPU. ${ }^{203}$

In this chapter we describe a new, selective, mild and facile deprotection method for silyl ethers.

5.2 Result and Discussion

By the execution of oxidative cleavage of diol 211 with NaIO_{4} in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$, the deprotected product 213 was obtained in high yield (Scheme 72). ${ }^{204}$ This indicated that the TBS group was removed under the oxidative cleavage conditions.

Scheme 72 Oxidative cleavage of diol 211 with concomitant deprotection of TBS ether.

Are only the primary allylic TBS ethers deprotected? To answer this question we have studied the cleavage of TBS groups under NaIO_{4} in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ conditions. The results are shown in Table 8 and illustrate that primary TBS ethers including allylic were selectively deprotected with NaIO_{4} in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ in presence of secondary TBS ethers including allylic, giving products in high yield. This cleavage method is mild and should enable applications to sensitive, acid- or base-labile or polyfunctional substrates (Entry 2, 5, 6, 7).
Entry

Table 8 Selective deprotection of primary TBS ethers $(0.1 \mathrm{M})$ with NaIO_{4} (6.0 eq.) in THF/ $\mathrm{H}_{2} \mathrm{O}$ (4:1).

After successful removal of TBS group, we have further investigated. TBDPS and TES groups are also extensively used protecting groups for alcohols and orthogonal to TBS group. Under NaIO_{4} in THF/ $\mathrm{H}_{2} \mathrm{O}$ conditions the primary allylic TBDPS ether is stable and not deprotected (Scheme 73).

Scheme 73 Unsuccessful deprotection of TBDPS ether.

On the contrary, the TES ethers were deprotected under these conditions as shown in Table 9. However, this mild cleavage method should enable applications to sensitive, acid- or baselabile or polyfunctional TES protected substrates (Entry 3, 4, 5). Entry 5 indicated also that primary TBDPS ethers were not deprotected under NaIO_{4} in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ conditions.
Entry

Table 9 Deprotection of TES ethers (0.1 M) with NaIO_{4} (6.0 eq.) in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (4:1).

5.3 Conclusion

In summary, we have discovered a new, selective method to deprotect silyl ethers. These mild nonacidic and -basic conditions should enable applications to acid- or base-sensitive or complex substrates. Under these conditions, (1) primary TBS ethers were selectively deprotected in presence of secondary TBS ethers; (2) primary and secondary TES ethers were deprotected; (3) TBDPS ethers were stable; furthermore, (4) primary TBS ethers should be selectively deprotected in presence of primary TBDPS ethers; (5) secondary TES ethers should be selectively deprotected in presence of secondary TBS or TBDPS ethers.

5.4 Preparation of Silyl Ethers

As shown in Table 10, TBS (241, 243, 242), TBDPS (252) and TES (253, 254, 256, 257) ethers were prepared under standard conditions.
Entry

Table 10
(a) TBSOTf, 2,6-lutidine., DCM, $-78^{\circ} \mathrm{C}$ (b) TBDPSCl, imidazole, DCM, RT;
(c) TESOTf, 2,6-lutidine, DCM, $-78{ }^{\circ} \mathrm{C}$; (d) TESCl, pyridine, DCM, RT.

TBS ether 244 was synthesized by cleavage of PMB ether 260 followed by TBS protection using TBSOTf and 2,6-lutidine as base at $-78^{\circ} \mathrm{C}$ (Scheme 74).

Scheme 74 (a) DDQ, DCM/buffer pH7, (10:1), RT, 80\%; (b) TBSOTf, 2,6-lutidine, DCM, $-78^{\circ} \mathrm{C}, 90 \%$.

Treatment of aldol product 114 with $\mathrm{BH}_{3} \mathrm{SMe}_{2}$ in THF at $-20^{\circ} \mathrm{C}$ afforded diol 262 in 78% yield, followed by diprotection of the diol 262 with TBSOT fand 2,6-lutidine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give TBS ether 245 in high yield (Scheme 75).

Scheme 75 (a) $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}, \mathrm{THF},-20{ }^{\circ} \mathrm{C}, 78 \%$, (b) TBSOTf, 2,6-lutidine, DCM, $-78{ }^{\circ} \mathrm{C}$, 90\%.

The Grignard reaction of aldehyde 187 with vinyl MgBr provided secondary alcohol 258, ${ }^{205}$ which was converted to TES ether 255 by employing TESOTf and2,6-lutidine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Scheme 76 (a) vinylMgBr, THF, $-20^{\circ} \mathrm{C}, 87 \%$, (b) TESOTf, 2,6-lutidine, $\mathrm{DCM},-78{ }^{\circ} \mathrm{C}$, 92\%

6 Direct Reductive Amination

Efficient One-Pot Synthesis of Hindered Tertiary Amines with Biological Activity

6.1 Introduction

The direct reductive amination of carbonylgroups, in which a mixture of a carbonyl compound and an amine is treated with a reductant in a "one-pot" fashion, is one of the most useful methods for the preparation of secondary or teriary amines. ${ }^{206-207}$ But application of these protocols to sensitive, acid-labile or polyfunctional substrates is limited.

Living organisms employ organic NADH (nicotinamide adenine dinucleotide 264, Figure 21) in combination with enzyme catalysts for the direct reductive amination of ketones. ${ }^{208} \mathrm{~A}$ salient feature of this mediated amination is the activation of the imine 262 nitrogen by hydrogen bonds (Figure 21). To mimic key features of this biosynthetic pathway, assembly 265/266 was selected as a surrogate. Thus, in a similar fashion, The "Hantzsch ester" 265 would act as a reducing agent by hydride transfer and the imine 266 should be activated by intermolecular hydrogen bonding (Figure 21).

NADH

Hantsch Ester
\therefore : hydrogen bond

Figure 21 Activation of the imine nitrogen by hydrogen bonds.

Based on this innovative biomimetic approach, a direct reductive amination of ketones and aldehydes was recently developed in our group. ${ }^{209}$ This method uses the Hantzsch ester for transfer hydrogenation and proceeds in the presence of molecular sieves and catalytic amounts of thiourea for imine activation (Scheme 77). With this mild, acid- and metal-free procedure, various secondary amines were synthesized.

0.1 eq

Scheme 77 Direct reductive amination of ketones and aldehydes with thiourea as catalyst.

The proposed mechanism was showed in Figure 22. The first steps should involve an equilibrium of ketone 267 and amine 268 with ketimine 271 , which might be rate determining. Imine 271 is not reduced under the reaction conditions. It is only after hydrogen bond activation by thiourea (269) to give intermediate 272 that the $\mathrm{C}=\mathrm{N}$ moiety may be hydrogenated by the Hantzsch ester (265) to produce amine adduct 274. For the catalytic cycle to proceed, a transfer of thiourea from 274 to 271 is required to give again complex 262 with concomitant liberation of the product amine 270.

Figure 22 Proposed mechanism of the hydrogen bond catalyzed direct reductive amination.

Tertiary amines are key structural elements in synthetic reagents, for example, in metal mediated asymmetric cataylsis as ligand $275,{ }^{210}$ and numerous biologically active natural products like cocaine $\mathbf{2 7 6}^{\mathbf{2 1 1}}$ and pharmaceuticals like the clinically used antibiotic ciproflaxin (277) (Figure 23). ${ }^{212}$

275: Ligand

276: Cocaine

277: Ciproflaxin

Figure 23 Examples of tertiary amines with biologically activity.

Tertiary amines of type $\mathbf{2 7 8}$ in general (Figure 24) could be theoretical accessed in a one-pot process with three components by using the reductive amination of carbonyls. Herein, three types of direct reductive amination procedure for the synthesis of sterically demanding tertiary amines under mild and operationally simple conditions are discussed.

$\mathrm{R}_{3}-\mathrm{NH}_{2}+$
280
279

281

Figure 24 One pot synthesis of tertiary amines.

6.2 One-Pot Synthesis of Hindered Tertiary Amines ${ }^{213}$

6.2.1 Dialkylation of Amines with Ketone and Aldehyde

As a first target we studied the access to para-anisidine by the reaction with ketone and aldehyde. A reaction mixture of para-anisidine $279-\mathbf{a}(1.0 \mathrm{mmol})$, ketone (1.0 mmol) or aldehyde (1.0 mmol), Hantsch ester $265(1.5 \mathrm{mmol})$, catalytic amounts of thiourea 269 (0.1 mmol) and $5 \AA$ molecular sieves in toluene was stirred at $60{ }^{\circ} \mathrm{C}$. After 24 h , a second equivalent of ketone (1.0 mmol) or aldehyde (1.0 mmol), Hantsch ester $265(1.5 \mathrm{mmol})$ and thiourea $269(0.1 \mathrm{mmol})$ was added. The resulting mixture was stirred at the same temperature for 24-72 h.

Scheme 78 Dialkylation of amine with ketone and aldehyde.

The results (Table 11) showed that the reaction with two ketones (Entry 1) gave only the secondary amine (GCMS) and no desired tertiary amine 283-a. The reaction with acetophenone and isobutyraldehyde provided the desired tertiary amine 283-a in moderate yield (Entry 2). The best result was achieved with two aldehydes (Entry 3). Based on these results, the amination of two aldehydes with para-anisidine and the amination of two aldehydes with different amines were studied.
Entry Carbonyl Carbonyl

Table 11 Results of dialkylation of amine with ketone and aldehyde.

6.2.2 Dialkylation of para-Anisidine with two Aldehydes

Treatment of para-anisidine (1.0 mmol), a first aldehyde $284(1.0 \mathrm{mmol})$, Hantsch ester 265 (1.5 mmol) , and $5 \AA$ molecular sieves with catalytic amounts of thiourea $269(0.1 \mathrm{mmol})$ in toluene at $60^{\circ} \mathrm{C}$ for 24 h produced a secondary amines as intermediate which was then treated with a second aldehyde $286(1.0 \mathrm{mmol})$, Hantzsch ester $265(1.5 \mathrm{mmol})$ and thiourea 269 (0.1 $\mathrm{mmol})$ at the same temperature for 24 h .

Scheme 79 Dialkylation of para-anisidine with two aldehydes.

Indeed, this procedure was successful. Table 12 showed the results of this procedure. Mostly, the desired trisubstituted amines 287 were obtained in good yield (Entries 1-5). Both aliphatic and aromatic aldehydes were accepted as substrates and variations in the electronic and steric properties were tolerated.
Entres) Carbonyl

Table 12 Results of dialkylation of para-anisidine with two aldehydes.

The amination with 4-nitrobenzaldehyde and 2-methoxybenzaldehyde (Entry 6) provided the tertiary amine 287-f in poor yield. This could be explained by steric aspect because the product 287-f was more hindered.

6.2.3 Dialkylation of Different Amines with Isobutyraldehyde and Benzaldehyde

In order to study the dialkylation of different amines with isobutyraldehyde and benzaldehyde, a suspension of isobutyraldehyde (1.0 mmol), Hantzsch ester $265(1.5 \mathrm{mmol})$, catalytic amounts of thiourea $269(0.1 \mathrm{mmol})$ and $5 \AA$ molecular sieves in toluene were treated with amine 279 (b-f) at $60^{\circ} \mathrm{C}$ for 24 h . Benzaldehyde (1.0 mmol), Hantsch ester $265(1.5 \mathrm{mmol})$ and thiourea $269(0.1 \mathrm{mmol})$ were added. The mixture was stirred at the same temperature for another 24 h .

Scheme 80 Dialkylation of different amines with isobutyraldehyde and benzaldehyde.

As shown in Table 13, this procedure was not successful and no desired tertiary amines were obtained. GC-MS analysis showed that the reaction stops after the first step. A further aminiation with benzaldehyde did not occur.
Entry

Table 13 Unsuccessful dialkylation of different amines with isobutyraldehyde and benzaldehyde.

To our surprise, if the order of isobutyraldehyde and benzaldehyde (Table 13, Entry 1) was changed, the desired tertiatry amin 289-f was obtained (Scheme 81). This could be explained by following aspects:

1) para-anisidine is more electrophilic than para-toluidine;
2) isobutyraldehyde is more nucleophilic than benzaldehyde;
3) the second amination is more difficult than the first one (also due to steric aspect).

Scheme 81 Dialkylation of para-toluidine with isobutyraldehyde and benzaldehyde.

6.3 Biological activity

In view of the cytotoxic activity of simple aromatic amines, ${ }^{214}$ it appeared rewarding to likewise test these tertiatry amines in whole cell-based assays. Consequently, the inhibitory effect on the murine connective tissue cell line L-929 was analyzed. ${ }^{215}$ As shown in Table 14, various representatives showed potent cytotoxicity with IC_{50} values in the low micromolar range. These results demonstrate that the biological function of such tertiary amines is quite versatile.

To get further hints about the mode of action, the tertiary amine 289-f and the secondary amine 290 as exemplary representatives of this compound class were checked for effects on the morphology of PtK2 potoroo cells by Florenz Sasse at our Institute. The cultured cells were stained by labeling the nuclei and a marker protein of the endoplasmatic reticulum, and inspected by fluorescence microscopy. As shown in Figure 25, treated cells showed striking alterations of the inner membrane structure of the cytoplasm. They displayed big vacuoles near the nucleus or a cushion-like pattern, the first being more pronounced in the $\mathbf{2 9 0}$ treated cells. Compound 289-f seems to be less effective in vacuolization, rather leading to cell enlargement. The effect of $\mathbf{2 9 0}$ is very similar to the corallidicyals, sesquiterpene hydroquinones from the Caribbean Sponge Aka coralliphagum, ${ }^{216}$ which suggests that a similar mode of action might be involved. Possibly, redox processes might be associated. The notion that the tertiary amine 289-f is less effective in vacuolization as compared to $\mathbf{2 9 0}$, might be related to the fact that the central nitrogen is sterically much more hindered and thus less accessible to oxidation-reduction processes. Significantly, tertiary amines are more potent in the cell culture assays in comparison to primary or secondary amines, which might suggest that also other effects may be involved for these more encumbered nitrogencontaining structures.
(

Table 14 Inhibitory effects of tertiary aromatic amines on the growth of mammalian murine connective tissue cell line.

control

Figure 25 Changes in the morphology of cultivated PtK2 potoroo cells upon treatment with the tertiary amine 289-f (right side) and the secondary amine 290 (middle) in comparison to control cells (left side). Cells were incubated with $50 \mu \mathrm{~g} / \mathrm{mL}$ for 18 h and stained for nuclei (blue) and ER structure (green).

6.4 Conclusion

We have developed an efficient procedure for the synthesis of structurally diverse tertiary amines, including aromatic and sterically demanding amines. The operationally simple procedure uses the Hantzsch ester for transfer hydrogenation and proceeds in the presence of molecular sieves and thiourea. The mild conditions and chemoselectivity of this protocol should enable applications also to complex and/or acid-sensitive substrates. It is expected, that this method opens the venue for further exploring sterically hindered tertiary amines as synthons for preparative and medicinal chemistry.

Indeed, these tertiary amines exhibited pronounced inhibitory effects on the growth of the murine connective tissue cell line L-929 in the low micromolar range. Two exemplary was shown to cause alterations of the inner membrane structure of the cytoplasm by microscopybased studies.

7 Summary

7.1 Total Synthesis of Archazolid A

Archazolid A (4) is a potent V-ATPase inhibitor from the myxobacerium Archangium gephzra. An expedient first total synthesis of archazolid A could be accomplished by coupling of the three main building blocks $(\mathbf{1 4 3}, \mathbf{1 1 8}, \mathbf{8 3})$. The total synthesis of archazolid A proceeds in 20 steps and 4% overall yield from 60 (longest linear sequence) and establishes unequivocally the relative and absolute configuration.

Firstly, this thesis describes the synthesis of the C14-C19 subunit 118. This was accomplished in 10 steps with 54% overall yield in a well-scalable route providing several grams of the required building block. Key features of the synthesis include an optimized procedure to prepare the vinyliodide $\mathbf{1 1 3}$ and a highly enantio- and diastereoselective Abiko-Masamune anti aldol reaction to construction C16 and C17 stereocentres.

$\mathrm{LiAlH}_{4} \downarrow 97 \%$

1. DMP

Additionally, an efficient method for the direct displacement of the Abiko-Masamune auxiliary by using metallated phosphonates and Weinreb amides was developed which uses $i \mathrm{PrMgCl}$ for carbonyl activation. The resulting intermediates, such as β-ketone phosphonate 119 and Weinreb amide 139 are generally very useful in the total synthesis of natural products.

Finally, for completion of the total synthesis, fragment $\mathbf{1 1 8}$ was connected with $\mathbf{1 4 3}$ by using an aldol condensation reaction, followed by a highly advantageous Heck-coupling and subsequent HWE macrocyclisation to construct the macroclactone. Alternatively, the macrocyclic core of the archazolids was also constructed by an inter-molecular $H W E$ reaction between 143 and 154 and a subsequent Heck-macrocyclisation.

7.2 Studies Towards the Total Synthesis of Etnangien

Etnangien (14) is a macrolide isolated from culture broths of various strains of the myxobacterium Sorangium cellulosum and shows antibiotic activity against various grampositive bacteria ($\mathrm{IC}_{50}: \sim 100 \mathrm{nM}$) by inhibition of RNA-polymerase. Notably, it shows no cross-resistance to rifampicin, a clinically-valued RNA-polymerase inhibitor. This thesis describes the synthesis of the C15-C23 subunit and the preparation of the macrocyclic core of etnangien.

The macrocycle 160 of etnangien was successfully synthesized from three main building blocks (176, 184, 219). For their fusion, a highly asymmetric Ipc-boron-mediated aldol reaction, an efficient Yamaguchi esterification and an E-selective Heck macrocyclization $\left(\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{Bu}_{4} \mathrm{NCl}\right.$ in DMF$)$ were used. In total, this route proceeds in 18 steps and 27% overall yield from 168 (longest linear sequence).

The C15-C23 subunit 219 was synthesized in 11 steps with 37% yield from aldehyde 187 in a well-scalable process providing several grams of the desired building block. Key transformations include a highly enantio- and diastereoselective Paterson anti-aldol reaction to install the stereocentre $\mathrm{C} 20 / \mathrm{C} 21$, an optimized Wittig reaction procedure to prepare the aldehyde 191, a TBS protection reaction with proton sponge ${ }^{\circledR}$ as base and a highly efficient oxidative cleavage of diol 216 with $\mathrm{Pb}(\mathrm{OAc})_{4}$.

7.3 Selective Deprotection of Silyl Ethers with NaIO_{4}

During the course of this thesis, a new and selective method to cleave silyl ethers has been developed. The mild nonacidic and -basic conditions enable applications to acid- or basesensitive or complex substrates. Under the conditions, which involve the use of NaIO_{4} (1) primary TBS ethers were selectively deprotected in presence of secondary TBS ethers; (2) TES ethers were unstable; (3) TBDPS ethers were stable; furthermore, (4) primary TBS/TES ethers may be selectively deprotected in presence of primary TBDPS ethers; (5) secondary TES ethers may be selectively deprotected in presence of secondary TBS/TBDPS ethers.

Notably, this method was successfully used for deprotection of the primary TBS ether of the highly complex substrate 237 , giving 238 with excellent yield.

7.4 Direct Reductive Amination

We have developed an efficient procedure for the synthesis of structurally diverse tertiary amines, including aromatic and sterically demanding amines. The operationally simple procedure uses the Hantzsch ester for transfer hydrogenation and proceeds in the presence of molecular sieves and thiourea. The mild conditions and chemoselectivity of this protocol should enable applications also to complex and/or acid-sensitive substrates. It is expected, that this method opens the venue for further exploring sterically hindered tertiary amines as synthons for preparative and medicinal chemistry.

Indeed, these tertiary amines exhibited pronounced inhibitory effects on the growth of the murine connective tissue cell line L-929 in the low micromolar range. Two substances were analysed in more detail and were shown to cause alterations of the inner membrane structure of the cytoplasm.

8 Experimental Section

8.1 General Methods

All non-aqueous reactions were performed using oven-dried $\left(100^{\circ} \mathrm{C}\right)$ or flamedried glassware under a positive pressure of dry argon (Ar) unless otherwise noted.

Tetrahydrofuran and diethyl ether were freshly dried under reflux and an atmosphere of Ar over sodium (Na) and benzophenone as indicator and purified by disitillation. Methylene chloride was dried under reflux and an atmosphere of Ar over calciumhydride $\left(\mathrm{CaH}_{2}\right)$ and purified by distillation. Other dry solvents were obtained commercially. All reagents were obtained commercially as reagent grade and, unless otherwise noted, used without further purification. The organic extracts were dried over anhydrous magnesium sulfate $\left(\mathrm{MgSO}_{4}\right)$ or sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The column chromatographic purifications were performed on silica gel (230-400 mesh).

Analytical TLC: Thin-layer chromatography was performed on precoated silica gel $60 \mathrm{~F}_{254}$ (Merck) analytical plates and visualized by fluorescence quenching under UV light. In addition, TLC plates were stained using cerium(IV)sulfate- phosphomolybdic acid in sulfuric acid followed by charring.
Melting points: measured on a Büchi 510 apparatus. All melting points were measured in open capillaries and are uncorrected.

Optical rotations: Optical rotations were measured on a Perkin-Elmer 241 instrument operating at the sodium D line with a 100 mm path length cell, and are reported as follows: $[\alpha]^{\mathrm{T}}{ }_{\mathrm{D}}$, concentration ($\mathrm{g} / 100 \mathrm{ml}$), and solvent.
NMR spectra: NMR spectra were recorded in $\mathrm{CD}_{3} \mathrm{OD}$ and CDCl_{3} on a Bruker AM 300, AM 400 and DMX-600 spectrometer. Chemical shifts are reported in parts per million (ppm, δ) with the residual non-deuterated solvent as an internal standard. In reporting spectral data, the following abbreviations were used: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quin $=$ quintuplet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet doublet, $\mathrm{dt}=$ doublet triplet.

Mass spectra: EI and DCI mass spectra (reactant gas ammonia) were obtained on a Finnigan MAT 95 spectrometer, high resolution data were aquired using peak matching (M/DM = 10000).

Chemical names: generated with ChemOffice 2005 (CambridgeSoft ${ }^{\circledR}$).

8.2 Preparation of Reagents

A Stock Solution of Dicyclohexylboron Triflate $\left[\left(\mathrm{C}_{6} \mathbf{H}_{11}\right)_{2} \mathbf{B O T f}\right]$ in Hexane

An oven-dried $250-\mathrm{mL}$ round-bottom flask capped with a rubber septum was charged with cyclohexene ($14.2 \mathrm{~mL}, 140 \mathrm{mmol}$) and dry diethyl ether (50 mL), and kept at $0^{\circ} \mathrm{C}$ under argon Borane-dimethyl sulfide complex ($6.64 \mathrm{~mL}, 70.0 \mathrm{mmol}$) was added dropwise during 30 min with stirring, and then the whole reaction mixture was stirred for 3 h at $0^{\circ} \mathrm{C}$, when the solid was settled without stirring. The supernatant organic solution was removed as much as possible by syringe, and the residual solid was washed with dry diethyl ether $(2 \times 50 \mathrm{~mL})$ and dried in vacuo to give dicyclohexylborane ($11.3 \mathrm{~g}, 63.4 \mathrm{mmol}$), which was used for the preparation of the triflate without further purification. The solid was suspended in 50 mL of dry n-hexane and trifluoromethanesulfonic acid ($10.0 \mathrm{~g}, 66.6 \mathrm{mmol}$) was added dropwise via syringe during 30 min with constant stirring, during which time vigorous gas evolution occurred and the solid gradually disappeared. Stirring continued at room temperature for 1 h . The solvent was reduced to ca. 5 mL and removed by syringe. The residual solid was washed with dry diethyl ether $(3 \times 5 \mathrm{~mL})$ and dried in vacuo to give dicyclohexylboron triflate (16.6 g , 50.9 mmol), which was dissolved in 45 mL dry n-hexane (ca. 1M). ${ }^{1}$

Dicyclohexylboron Chloride [($\left.\left.\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{BCl}\right]$

To a solution of dried cyclohexene ($21.2 \mathrm{~mL}, 210 \mathrm{mmol}$) in anhydrous diethyl ether $(90 \mathrm{~mL})$ under an argon atmosphere at $0{ }^{\circ} \mathrm{C}$ was slowly added monochloroborane dimethyl sulphide (11.6, mL, 100 mmol). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and then the solvent was removed by distillation. The resulting crude product was distilled under reduced pressure $\left(104-105{ }^{\circ} \mathrm{C} / 0.5 \mathrm{mmHg}\right)$ to afford the dicyclohexylboron chloride as a colorless oil. ${ }^{2}$

[^0](1R,2S)-2-(N-benzyl-2,4,6-trimethylphenylsulfonamido)-1-phenylpropyl propionate 18

To a stirred solution of (-)-Norephedrin ($5.22 \mathrm{~g}, 34.5 \mathrm{mmol}, 1 \mathrm{eq}$) and $\mathrm{Et}_{3} \mathrm{~N}(5.77 \mathrm{ml}, 41.4$ $\mathrm{mmol}, 1.2 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was added mesitylenesulfonyl chloride ($7.55 \mathrm{~g}, 34.5 \mathrm{mmol}$, $1 \mathrm{eq})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and diluted with $\mathrm{Et}_{2} \mathrm{O}(120 \mathrm{~mL})$. The mixture was washed with 20 ml each of $\mathrm{H}_{2} \mathrm{O}, 1 \mathrm{M}$ aqueous $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and saturated aqueous NaCl and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic solution was concentrated to give an oily residue, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$. Hexane (16 mL) was added in the solution to give the crystalline ($11.5 \mathrm{~g}, 34.5 \mathrm{mmol}, 100 \%$).
mp $120{ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}=-15.5\left(\mathrm{c}=1.06, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.85(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 2.29 (s, 3 H), 2.64 (s, 6 H), 2.68 (s, 1 H), $3.44-3.55$ (m, 1 H), 4.76 (d, J=3.0 $\mathrm{Hz}, 1 \mathrm{H}$), 4.98 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.94 ($\mathrm{s}, 2 \mathrm{H}$), $7.20-7.32$ (m, 5 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}) $\delta \mathrm{ppm} 14.6,20.9,23.0,54.7,75.7,126.0,127.7,128.4,132.0,134.4,139.0,140.4$, 142.3.

To a stirred solution of N-((1R,2S)-1-hydroxy-1-phenylpropan-2-yl)-2,4,6-trimethyl benzenesulfonamide ($4.20 \mathrm{~g}, 12.6 \mathrm{mmol}, 1 \mathrm{eq}$) in DMF (50 mL) was added t-BuOK (1.41 g , $12.6 \mathrm{mmol}, 1 \mathrm{eq})$ at room temperature. After 20 min , benzyl bromide ($1.50 \mathrm{~mL}, 12.6 \mathrm{mmol}, 1$ eq) was added. The reaction mixture was stirred at room temperature for 3 h and water (170 mL) was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 50 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by column chromatography on silica gel (hexanes $/ \mathrm{EtOAc}=4: 1$) to give the alcohol (5.07 g , $12.0 \mathrm{mmol}, 95 \%$) as a white solid.
$\mathrm{R}_{\mathrm{f}}=0.47$ (hexanes / EtOAc $=4: 1$); m.p. $125{ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}=-7.9\left(\mathrm{c}=0.81, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm $1.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.16(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{~s}$, $6 \mathrm{H}), 3.84(\mathrm{dq}, J=1.9 \mathrm{~Hz}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.55$ (A of $\mathrm{ABq}, J_{\mathrm{AB}}=16.0,1 \mathrm{H}$), 4.77 (B of ABq, $\left.J_{\mathrm{AB}}=16.2,1 \mathrm{H}\right), 4.99(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 2 \mathrm{H}), 7.03-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.36(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$
($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.0,20.9,23.0,49.2,59.8,76.7,125.6,127.3,127.4,127.8,128.2$, 128.6, 132.2, 133.6, 138.7, 140.2, 142.2, 142.6.

To a solution of N-benzyl- N-((1R,2S)-1-hydroxy-1-phenylpropan-2-yl)-2,4,6-trimethyl benzenesulfonamide ($4.56 \mathrm{~g}, 10.8 \mathrm{mmol}, 1 \mathrm{eq}$) and pyridine ($1.13 \mathrm{~mL}, 14.0 \mathrm{mmol}, 1.3 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was added propionyl chloride ($1.14 \mathrm{~mL}, 13.0 \mathrm{mmol}, 1.2 \mathrm{eq}$) at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred at room temperature for 15 h and diluted with diethyl ether $(100 \mathrm{~mL})$. The mixture was washed with 30 mL each of water, 1 M HCl , water, saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and saturated aqueous NaCl and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic solution was concentrated to give a crystalline, which was purified by column chromatography on silica gel (hexanes / $\mathrm{EtOAc}=10: 1)$ to give the ester $(5.16 \mathrm{~g}, 10.8 \mathrm{mmol}, \sim 100 \%)$ as a white solid.
$\mathrm{R}_{\mathrm{f}}=0.31$ (hexanes / EtOAc $=10: 1$); m.p. $143{ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}=+9.0\left(\mathrm{c}=1.10, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm $1.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}$, $3 \mathrm{H}), 2.52(\mathrm{~s}, 6 \mathrm{H}), 4.06(\mathrm{dq}, J=4.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.60\left(\mathrm{~A}\right.$ of $\left.\mathrm{ABq}, J_{\mathrm{AB}}=16.8,1 \mathrm{H}\right), 4.72(\mathrm{~B}$ of $\left.\mathrm{ABq}, J_{\mathrm{AB}}=16.6,1 \mathrm{H}\right), 5.85(\mathrm{~d},, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 2 \mathrm{H}), 6.90-6.94(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.34(\mathrm{~m}$, 8 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 8.8,12.8,20.9,23.0,27.5,48.2,56.8,78.0,126.0$, 127.1, 127.4, 127.8, 128.4, 132.2, 133.5, 138.7, 140.2, 142.5, 172.6; HRMS calculated for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{CH} 3 \mathrm{CN}+\mathrm{Na}]^{+}: 543.2293$, found: 543.2300. The spectroscopic data were in agreement to those previously reported. ${ }^{3}$

Dess-Martin periodinane 136

2-Iodobenzoic acid ($100 \mathrm{~g}, 0.403 \mathrm{~mol}, 1.0 \mathrm{eq}$.) was added to a suspesion of Oxone (362 g , $0.589 \mathrm{~mol}, 1.4 \mathrm{eq}$.) in water (1.3 L) in a 2 L flask. The reaction mixture was warmed to $70{ }^{\circ} \mathrm{C}$ and stirred at this temperature for 3 h . The suspension was then cooled to $5^{\circ} \mathrm{C}$ and left at this temperature for 2 h with slow stirring. The mixture was filtered through a medium porosity sintered-glass funnel, and the solid was repeatedly rinsed with water ($7 \times 150 \mathrm{~mL}$) and

[^1]acetone $(2 \times 150 \mathrm{~mL})$. The white, crystalline solid was left to dry at rt for 16 h and weighed $98.7 \mathrm{~g}(87 \%) .{ }^{4}$
1-Hydroxy-1,2-benziodoxol-3(1 H)-one ($98.7 \mathrm{~g}, 0.352 \mathrm{~mol}, 1.0$ eq.) was added to a 1 L flask containing $\mathrm{Ac}_{2} \mathrm{O}$ ($399 \mathrm{~mL}, 4.22 \mathrm{~mol}, 12$ eq.) and $\mathrm{TsOH} \mathrm{H}_{2} \mathrm{O}$ ($536 \mathrm{mg}, 2.82 \mathrm{mmol}, .008 \mathrm{eq}$.). The reaction mixture was warmed to $80^{\circ} \mathrm{C}$ and stirred at this temperature for 2 h and then cooled in an ice-water bath. The cold mixture was filtered through a fritted glass funnel followed by rinsing with anhydrous ether ($5 \times 50 \mathrm{~mL}$). The resulting white, crystalline solid ($127 \mathrm{~g}, 85 \%$) was dried in vacuo. ${ }^{5}$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.98(\mathrm{~s}, 6 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 7.89(\mathrm{~m}, 1 \mathrm{H}), 8.06(\mathrm{~m}, 1 \mathrm{H}), 8.28$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=20.3,20.4,126.0,126.5,131.8,133.8,135.7,142.3$, 166.1, 174.0, 175.7. The spectroscopic data were in agreement to those previously reported. ${ }^{6}$

3,4-dimethoxybenzyl 2,2,2-trichloroacetimidate 208

A solution of 3,4-dimethoxybenzyl alcohol ($5.00 \mathrm{~g}, 29.7 \mathrm{mmol}, 1.0$ eq.) in tetrahydrofuran $(6.0 \mathrm{~mL})$ was slowly added to a suspension of sodium hydride (60% dispersion in oil) (238 $\mathrm{mg}, 6.00 \mathrm{~mol}, 0.2$ eq.) in tetrahydrofuran (6.0 mL). The solution was then cooled to $0{ }^{\circ} \mathrm{C}$ and trichloroacetonitrile ($3.50 \mathrm{~mL}, 35.0 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added dropwise. The mixture was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$ and 2 h at room temperature. Pentane $(10 \mathrm{~mL})$ containing methanol $(0.2$ mL) was added followed by activated carbon. The mixture was stirred for 1 h before being filtered through celite. The celite was then washed with pentane. The organic phase was concentrated under reduced pressure affording the trichloroacetimidate, which was used without further purification $(6.57 \mathrm{~g}, 21.0 \mathrm{mmol}, 71 \%)$.

[^2]$\mathrm{R}_{\mathrm{f}}=0.48$ (hexanes / EtOAc $=6: 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=3.87(\mathrm{~s}, 6 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H})$, $6.85(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~m}, 2 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=55.9$, $70.8,111.0,111.3,120.7,127.9,194.0,194.1,162.5$. The spectroscopic data were in agreement to those previously reported. ${ }^{7}$

4-(bromomethyl)-1,2-dimethoxybenzene 204

$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{BrO}_{2}$
Exact Mass: 229,9942
Mol. Wt.: 231,0864

To a solution of 3,4-dimethoxybenzyl alcohol ($5.00 \mathrm{~g}, 29.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(125 \mathrm{~mL})$ was added $\mathrm{PPh}_{3}(9.40 \mathrm{~g}, 35.7 \mathrm{mmol})$ and N -bromosuccinimide ($5.80 \mathrm{~g}, 32.7 \mathrm{mmol}$), and the resulting mixture was stirred for 1 h at room temperature. The reaction volume was then reduced by evaporation and directly passed through a silica gel column (eluent, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford bromide ($5.30 \mathrm{~g}, 22.9 \mathrm{mmol}, 77 \%$) as white crystals.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=3.86(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.92(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=34.4,55.9,111.1,112.1,121.6,130.3$, 149.1, 149.3. The spectroscopic data were in agreement to those previously reported. ${ }^{8}$

[^3]
(S)-2-Benzoyloxypentan-3-one 20

To a cooled $\left(-20{ }^{\circ} \mathrm{C}\right)$ mixture of ethyl (S)-lactate ($20.0 \mathrm{~g}, 0.169 \mathrm{~mol}, 1.0$ eq.) and $\mathrm{MeON}(\mathrm{Me}) \mathrm{H} \cdot \mathrm{HCl}(41.0 \mathrm{~g}, 0.420 \mathrm{~mol}, 2.5 \mathrm{eq}$.$) in THF (150 \mathrm{~mL}$), was added a 2 M solution of $i-\mathrm{PrMgCl}$ in $\mathrm{Et}_{2} \mathrm{O}$ ($0.420 \mathrm{~L}, 0.84 \mathrm{~mol}, 4.9$ eq.) dropwise over 30 min . The reaction mixture was stirred at $-20{ }^{\circ} \mathrm{C}$ for 30 min and at $0{ }^{\circ} \mathrm{C}$ for a further 30 min before satd aq $\mathrm{NH}_{4} \mathrm{Cl}$ solution (300 mL) was added. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 50 \mathrm{~mL})$, followed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 50 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo, and the residue purified by by distillation to give the amide ($19.1 \mathrm{~g}, 0.144 \mathrm{~mol}, 85 \%$) as a colourless oil.

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of amide XX ($\left.10.0 \mathrm{~g}, 75.0 \mathrm{mmol}, 1.0 \mathrm{eq}.\right)$ in THF (100 mL) was added a 3 M solution of $\mathrm{EtMgBr}^{2} \mathrm{Et}_{2} \mathrm{O}(80 \mathrm{~mL}, 240 \mathrm{mmol}, 3.2 \mathrm{eq}$.) and the reaction mixture was allowed to warm to r.t. After 1 h , satd aq $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(100 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et} 2 \mathrm{O}(80 \mathrm{~mL})$ followed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to $c a .50 \mathrm{~mL}$. To this solution was added $\mathrm{Bz}_{2} \mathrm{O}$ ($25.5 \mathrm{~g}, 113 \mathrm{mmol}, 1.5 \mathrm{eq}$.), DMAP ($1.0 \mathrm{~g}, 8.2 \mathrm{mmol}, 0.1 \mathrm{eq}$.) and $i-\mathrm{Pr}_{2} \mathrm{NEt}(25$ $\mathrm{mL}, 143 \mathrm{mmol}, 144 \mathrm{mmol}, 1.9 \mathrm{eq}$.). After stirring for 14 h , excess $\mathrm{Bz}_{2} \mathrm{O}$ was removed by addition of ethylenediamine ($5.00 \mathrm{~g}, 83.0 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) . \mathrm{H}_{2} \mathrm{O}(120 \mathrm{~mL})$ was added, the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 30 \mathrm{~mL})$, then the organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to an oil. Column chromatography (hexanes $/ \mathrm{EtOAc}=4: 1$) afforded the ethyl ketone ($11.8 \mathrm{~g}, 76 \%$) as a colourless oil.
$[\alpha]^{20}{ }_{\mathrm{D}}=+25.1\left(c=4.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.08(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.52(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.58(\mathrm{~m}, 2 \mathrm{H}), 5.34(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~m}, 1 \mathrm{H})$, $8.07(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.2,16.5,31.5,75.1,128.5,129.5,129.8,133.4$, $165.9,208.5$. The spectroscopic data were in agreement to those previously reported. ${ }^{9}$

[^4]
8.3 Total Synthesis of Archazolids

8.3.1 Synthesis of alcohol 64a for the C3-C13 subunit

4-(4-methoxybenzyloxy)butan-2-one 61

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$
Exact Mass: 208,1099
Mol. Wt.: 208,2536

A solution of CSA ($5.53 \mathrm{~g}, 25.6 \mathrm{mmol}, 0.06 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(360 \mathrm{ml})$ was treated with acetone-aldol (4-hydroxybutan-2-on ($35.1 \mathrm{~g}, 398 \mathrm{mmol}$, 1.0 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 ml). At $0{ }^{\circ} \mathrm{C}$, a solution of 4-methoxybenzyl-2,2,2-trichloroacetimidat ($112 \mathrm{~g}, 397 \mathrm{mmol}$, $1 . \mathrm{o}$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(100 \mathrm{ml})$ was added and the resulting yellow solution was stirred over night. The solution was washed with sat. aqueous $\mathrm{NaHCO}_{3}(700 \mathrm{~mL})$ and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(2 \times 600 \mathrm{ml})$. The combined organic phases were washed with sat. aqueous $\mathrm{NaHCO}_{3}(350 \mathrm{~mL})$ and with brine $(350 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated in vacuo. The yellow residue was suspended in petroleum ether (50 mL) and the white precipitate was removed by filtration. Removal of the solvent in vacuo and silica gel chromatography ($\mathrm{PE} / \mathrm{EtOAc}=3: 1$) afforded the PMB-protected ketone ($63.9 \mathrm{~g}, 77 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.44$ (hexanes $/ \mathrm{EtOAc}=7: 3$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=2.18(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{t}, J=$ $6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.25$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=30.4,43.8,55.3,65.0,72.9,113.8$, 129.3, 130.1, 159.3, 207.2. The spectroscopic data were in agreement to those previously reported. ${ }^{10}$

[^5]
(E)-methyl 5-(4-methoxybenzyloxy)-3-methylpent-2-enoate 63

To a cooled $\left(0^{\circ} \mathrm{C}\right)$, stirred solution of the trimethyl phosphonoacetate $(9.11 \mathrm{~g}, 50.0 \mathrm{mmol}$, 1.25 eq.) in THF (100 mL) was added potassium bis(trimethylsilyl)amide solution ($\sim 0.5 \mathrm{M}$ in toluene, $100 \mathrm{~mL}, 50.0 \mathrm{mmol}, 1.25 \mathrm{eq}$) in a period of 15 min . The mixture was stirred for 20 min at $0^{\circ} \mathrm{C}, 30 \mathrm{~min}$ at ambient temperature and a solution of 4-(4-methoxybenzyloxy)-butan-2-one ($8.33 \mathrm{~g}, 40.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (25 mL) was added. After stirring for 19 h at ambient temperature, the reaction mixture was quenched with saturated aqueous NaCl (600 $\mathrm{mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ 100 mL). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=$ $7: 3)$ to give $6.52 \mathrm{~g}(24.7 \mathrm{mmol}, 62 \%)$ of the desired ester $(E / Z=2: 1)$ as a colourless oil.
$\mathrm{R}_{f}=0.57$ (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=7: 3$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=2.16(\mathrm{~s}, 3 \mathrm{H}), 2.42 \mathrm{~d}(\mathrm{t}, J=$ $6.6,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.43$ (s, 2H), 5.71 (m, $1 \mathrm{H}), 6.86(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=19.0,40.8,50.8,55.3,67.5$, 72.7, 113.9, 116.6, 129.3, 130.3, 157.0, 159.3, 167.0.

(E)-5-(4-methoxybenzyloxy)-3-methylpent-2-en-1-ol 64a

To a stirred solution $\left(-78{ }^{\circ} \mathrm{C}\right)$ of the respective ester (10.8 g , $40.9 \mathrm{mmol}, 1.0$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(160 \mathrm{~mL})$ was added DIBAL-H ($122.4 \mathrm{~mL}, 1 \mathrm{M}$ in n-hexane, $122.4 \mathrm{mmol}, 3.0 \mathrm{eq}$.$) . After 1 \mathrm{~h}$, $\mathrm{Et}_{2} \mathrm{O}(160 \mathrm{~mL})$ was added and the mixture was allowed to warm to room temperature. Dropwise addition of water (16 mL) led to the formation of a colourless gel. Upon addition of aqueous $2 \mathrm{~N} \mathrm{NaOH}(26 \mathrm{~mL})$ and additional water (16 mL), a white solid precipitates. The resulting suspension was dried with MgSO_{4}. The mixture was filtered and the solvent was
evaporated in vacuo to afford the alcohol as a E / Z mixture (2:1) ($8.85 \mathrm{~g}, 37.5 \mathrm{mmol}, 96 \%$). The mixture was separated by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=8: 3\right)$ to give the E configurated alcohol $(5.17 \mathrm{~g}, 21.9 \mathrm{mmol}, 54 \%)$ as a colourless oil.
$\mathrm{R}_{f}=0.45\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=8: 3\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.67(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 5.44$ $(\mathrm{m}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 16.5, 39.5, 55.3, 59.3, 68.3, 72.5, 113.8, 125.1, 129.3, 130.5, 136.7, 159.2; MS (EI) calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}$: 236.1, found: 236.2. The spectroscopic data were in agreement to those previously reported. ${ }^{11}$
(Z)-5-(4-methoxybenzyloxy)-3-methylpent-2-en-1-ol: $\mathrm{R}_{f}=0.58\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=8: 3\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.72(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 5.68(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=16.5,39.5,55.3$, $59.3,68.3,72.5,113.8,125.1,129.3,130.5,136.7,159.2$.

8.3.2 Synthesis of the C14-C19 Subunit

8.3.2.1 Plan 1: Evans anti Aldol Reaction

(E)-3-iodo-2-methylprop-2-en-1-ol 90

$\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}$
Exact Mass: 197,9542
Mol. Wt.: 198,0023

A suspension of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}(4.25 \mathrm{~g}, 14.5 \mathrm{mmol}, 1.0$ eq. $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was treated at $0^{\circ} \mathrm{C}$ with trimethylaluminum (2.0 M in toluene, $21.8 \mathrm{~mL}, 43.5 \mathrm{mmol}, 3.0 \mathrm{eq}$) followed by addition of a solution of prop-2-yn-1-ol ($815 \mathrm{mg}, 14.5 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 24 h and then cooled down to $-30^{\circ} \mathrm{C}$. A solution of $\mathrm{I}_{2}(4.77 \mathrm{~g}, 18.8 \mathrm{mmol}, 1.3 \mathrm{eq})$ in THF $(40 \mathrm{~mL})$ was added, and the mixture was stirred for 30 min at $-30^{\circ} \mathrm{C}$ and then allowed to warm to $-10^{\circ} \mathrm{C}$. the reaction mixture was quenched by

[^6]addition of saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined extract was dried over MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography on silica gel (pentane $/ \mathrm{Et}_{2} \mathrm{O}=4: 1$) to give the alcohol ($618 \mathrm{mg}, 3.12 \mathrm{mmol}, 22 \%$) as a light yellow oil. $\mathrm{R}_{f}=0.18$ (pentane / $\mathrm{Et}_{2} \mathrm{O} 4: 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.81(\mathrm{~s}, 1 \mathrm{H}), 1.83$ $(\mathrm{s}, 3 \mathrm{H}), 4.10(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.26(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=21.3,67.2$, 77.3, 147.2. The spectroscopic data were identical to those previously reported. ${ }^{12}$

tert-butyldimethyl(prop-2-ynyloxy)silane 84

отввмм
$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{OSi}$
Exact Mass: 170,1127
Mol. Wt.: 170,3241

To a solution of the alcohol ($1.43 \mathrm{~g}, 25.5 \mathrm{mmol}, 1.0$ eq.) in abs. THF (50 mL) was added TBSCl ($9.61 \mathrm{~g}, 63.8 \mathrm{mmol}, 2.5 \mathrm{eq}$.$) , imidazol (6.07 \mathrm{~g}, 89.3 \mathrm{mmol}, 3.5 \mathrm{eq}$.$) and DMAP (318$ $\mathrm{mg}, 2.60 \mathrm{mmol}, 0.1 \mathrm{eq})$. The reaction mixture was stirred at RT for 120 min . Sat. aq. NaHCO_{3} $(50 \mathrm{~mL})$ were added, the organic phase separated, and the aq. phase thoroughly extracted with DCM ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4} and concentrated in vacuo. After flash chromatography (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=30: 1$) the TBS-ether ($3.55 \mathrm{~g}, 20.8$ $\mathrm{mmol}, 82 \%$) was obtained as colourless oil.
$\mathrm{R}_{f}=0.71$ (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=30: 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.12(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$, $2.37(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-5.2,18.3$, 25.8, 51.5, 72.8, 82.5.

tert-butyldiphenyl(prop-2-ynyloxy)silane 85

отвdрs
$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{OSi}$
Exact Mass: 294,144
Mol. Wt.: 294,4629

[^7]To a solution of the alcohol ($561 \mathrm{mg}, 10.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and imidazol ($886 \mathrm{mg}, 13.0 \mathrm{mmol}$, 1.3 eq.) in abs. $\operatorname{DCM}(10 \mathrm{~mL})$ was added $\operatorname{TBDPSCl}\left(2.76 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0 \mathrm{eq}\right.$.) at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed to RT and stirred for 30 min . Sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ were added, the organic phase separated, and the aq. phase thoroughly extracted with DCM (3×15 $\mathrm{mL})$. The combined organic extracts were dried over MgSO_{4} and concentrated in vacuo. After flash chromatography (hexanes / $\mathrm{Et}_{2} \mathrm{O}=30: 1$) the TBS-ether ($2.95 \mathrm{~g}, 10.0 \mathrm{mmol}, 100 \%$) was obtained as colourless oil.
$\mathrm{R}_{f}=0.61$ (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=30: 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.07(\mathrm{~s}, 9 \mathrm{H}), 2.37$ ($\mathrm{t}, \mathrm{J}=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.41(\mathrm{~m}, 6 \mathrm{H}), 7.71(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=19.2,26.7,52.5,73.0,82.1,127.8,129.9,133.0,135.6$.

(R)-4-benzyl-3-((2S,3R,E)-3-hydroxy-5-iodo-2,4-dimethylpent-4-enoyl)oxazolidin-2-one

To a stirred solution of (E)-3-iodo-2-methylprop-2-en-1-ol ($216 \mathrm{mg}, 1.09 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added $\mathrm{MnO}_{2}(1.42 \mathrm{~g}, 16.3 \mathrm{mmol}, 15 \mathrm{eq}$.$) at room temperature. The resulting$ suspension was stirred for 3 h . Then the suspension was filtered and the solvent of the filtrate was removed at $40^{\circ} \mathrm{C}$, to give XX in quantitative yield ($214 \mathrm{mg}, 1.09 \mathrm{mmol}$), which was used without further purification, due to it's volatility.
The aldehyde ($98.0 \mathrm{mg}, 0.500 \mathrm{mmol}, 1.0$ eq.) was dissolved in EtOAc (2 mL) and added to neat propionyl oxazolidinone ($175 \mathrm{mg}, 7.50 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) . The reaction mixture was then$ treated at rt with anhydrous $\mathrm{MgCl} 2(48.0 \mathrm{mg}, 0.504 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , \mathrm{Et} 3 \mathrm{~N}(174 \mu \mathrm{~L}, 1.25 \mathrm{mmol}$, 2.5 eq.), and $\mathrm{TMSCl}(128 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 2.0$ eq.). After stirring for 52 h , the reaction mixture was filtered through a silica plug (Et2O) and the filtrate was concentrated under reduced pressure. The residual oil was dissolved in $\mathrm{MeOH}(3 \mathrm{~mL})$, treated with TFA (1 drop) and stirred for 10 min . Toluene (3 mL) was added and the reaction mixture was concentrated under reduced pressure. Purification of the crude product by column chromatography on silica
gel (hexanes / EtOAc, gradient elution, $9: 1$ to $4: 1$) afforded aldol product ($62.0 \mathrm{mg}, 0.144$ mmol, 29\%) as a white solid.
$\mathrm{R}_{f}=0.28$ (hexanes $/ \mathrm{EtOAc}=4: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=-37.0\left(\mathrm{c}=1.41, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=1.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{dd}, J=13.5,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=13.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 3 \mathrm{H}), 4.33(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~m}$, $1 \mathrm{H}), 6.39(\mathrm{~s}, 3 \mathrm{H}), 7.22(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 14.7, 19.4, $37.8,40.4,55.5,66.2,79.8,80.8,127.4,129.0,129.5,135.1,147.5,153.7,176.0$; HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{INO}_{4}[\mathrm{M}]{ }^{-}: 428.0359$, found: 428.0360 .

8.3.2.2 Plan 2: Noyori's asymmetric transfer hydrogenation

(R)-methyl 3-(tert-butyldimethylsilyloxy)-2-methylpropanoate 99

Exact Mass: 232,1495
Mol. Wt.: 232,392

To a solution of (R)-methyl 3-hydroxy-2-methylpropanoate ($510 \mathrm{mg}, 4.32 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (30 mL) was added TBS-Cl ($1.63 \mathrm{~g}, 10.8 \mathrm{mmol}, 2.5 \mathrm{eq}$.$) , imidazole (1.47 \mathrm{~g}, 21.6 \mathrm{mmol}$, 5.0 eq.) and DMAP ($50.0 \mathrm{mg}, 0.41 \mathrm{mmol}, 0.1 \mathrm{eq}$.). The reaction mixture was stirred at room temperature for 1.5 h . Sat. aq. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ were added, the organic phase separated, and the aq. phase thoroughly extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and concentrated in vacuo. Flash chromatography (hexanes / EtOAc $=10: 1$) gave the TBS-ether ($888 \mathrm{mg}, 3.82 \mathrm{mmol}, 88 \%$) as colourless oil.
$\mathrm{R}_{\mathrm{f}}=0.71$ (hexanes $/ \mathrm{EtOAc}=10: 1$); 1 H NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta=0.02(\mathrm{~s}, 6 \mathrm{H}), 0.86(\mathrm{~s}$, $9 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.63(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{dd}, \mathrm{J}=9.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, \mathrm{J}=9.6$, $6.0 \mathrm{~Hz}, 1 \mathrm{H})$; 13C NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta=-5.5,13.5,18.2,25.8,42.6,51.5,65.3,175.5$; The spectroscopic data were in agreement to those previously reported. ${ }^{13}$

[^8]
(R)-methyl 3-(tert-butyldiphenylsilyloxy)-2-methylpropanoate 100

To a solution of (R)-methyl 3-hydroxy-2-methylpropanoate ($1.75 \mathrm{~g}, 14.8 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and$ imidazole ($1.31 \mathrm{~g}, 19.2 \mathrm{mmol}, 1.3 \mathrm{eq}$.$) in \mathrm{DCM}(15 \mathrm{~mL})$ was added $\mathrm{TBSCl}(4.08 \mathrm{~g}, 14.8$ mmol, 1.0 eq.) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was warmed up to r.t. and stirred for 30 min . Sat. aq. $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ were added, the organic phase separated, and the aq. phase thoroughly extracted with $\mathrm{DCM}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and concentrated in vacuo. Flash chromatography (hexanes $/ \mathrm{EtOAc}=20: 1$) gave the TBS-ether $(5.16 \mathrm{~g}, 14.5 \mathrm{mmol}, 98 \%)$ as colourless oil.
$\mathrm{R}_{\mathrm{f}}=0.47$ (hexanes $/ \mathrm{EtOAc}=20: 1$); 1H NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta=1.03(\mathrm{~s}, 9 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.71(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{dd}, \mathrm{J}=9.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, \mathrm{J}=9.7$, 5.7 $\mathrm{Hz}, 1 \mathrm{H}), 7.40(\mathrm{~m}, 6 \mathrm{H}), 7.64(\mathrm{~m}, 4 \mathrm{H})$; 13C NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3) \delta=13.5,19.3,26.8,42.5$, 51.5, 66.0, 127.7, 129.7, 133.6, 133.7, 135.6, 175.3; MS (EI) calculated for C21H28O3Si: 356.2, found: 356.2. The spectroscopic data were in agreement to those previously reported. ${ }^{14}$
(R)-3-(tert-butyldimethylsilyloxy)- N-methoxy- N,2-dimethylpropanamide 101

Exact Mass: 261,176
Mol. Wt.: 261,4332

Ester ($620 \mathrm{mg}, 2.67 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and N, O-Dimethylhydroxylamine hydrochloride (390 mg , $4.00 \mathrm{mmol}, 1.5 \mathrm{eq}$.) were suspended in THF (10 mL), cooled to $-20^{\circ} \mathrm{C}$ and treated with $i \mathrm{PrMgCl}\left(\sim 2 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 4.0 \mathrm{~mL}, 8.0 \mathrm{mmol}, 3.0$ eq.) over 5 min to create a homogeneous

[^9]reaction mixture. After stirring at $-10^{\circ} \mathrm{C}$ for additional 15 min , the reaction was quenched by addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The poducte was extracted into $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$, and the combined organic layers were dried over MgSO_{4}, concentrated to afford amide ($627 \mathrm{mg}, 2.40$ mmol, 90%).
$\mathrm{R}_{\mathrm{f}}=0.23$ (hexanes $/ \mathrm{EtOAc}=10: 1$); 1H NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta=0.02(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}$, $3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.13(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{dd}, \mathrm{J}=9.7,6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{dd}, \mathrm{J}=9.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 13 \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta=-5.4$, 13.8, 18.3, 25.9, 32.2, 38.2, 61.5, 65.8, 175.2.
(R)-3-(tert-butyldiphenylsilyloxy)- N-methoxy- N,2-dimethylpropanamide 102

Ester ($3.65 \mathrm{~g}, 10.2 \mathrm{mmol}, 1.0$ eq.) and N, O-Dimethylhydroxylamine hydrochloride (1.47 g , $15.1 \mathrm{mmol}, 1.5$ eq.) were suspended in THF (40 mL), cooled to $-20^{\circ} \mathrm{C}$ and treated with $i \mathrm{PrMgCl}\left(\sim 2 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 15.0 \mathrm{~mL}, 30.0 \mathrm{mmol}, 3.0$ eq.) over 15 min to create a homogeneous reaction mixture. After stirring at $-10^{\circ} \mathrm{C}$ for additional 15 min , the reaction was quenched by addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$. The producte was extracted into $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$, and the combined organic layers were dried over MgSO_{4}, concentrated in vacuo. Flash chromatography (hexanes $/ \mathrm{EtOAc}=4: 1$) gave the amide ($3.66 \mathrm{~g}, 9.49 \mathrm{mmol}, 93 \%$) as white solid.
$\mathrm{R}_{f}=0.37$ (hexanes $/ \mathrm{EtOAc}=4: 1$); ; ; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.03(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~d}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.19(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{dd}, J=9.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.93$ (dd, $J=9.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~m}, 6 \mathrm{H}), 7.66(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=13.8$, $19.2,26.8,32.2,38.1,61.5,66.3,127.6,129.6,133.6,133.8,135.6,176.0$; HRMS calculated for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 408.1971$, found: 408.1973 .

$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}$
Exact Mass: 350,1702
Mol. Wt.: 350,5261

To a solution of amide ($426 \mathrm{mg}, 1.10 \mathrm{mmol}, 1.0$ eq.) in THF (10 mL) was added Lithium acetylide ethylenediamine complex ($254 \mathrm{mg}, 2.76 \mathrm{mmol}, 2.5 \mathrm{eq}$.) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 60 min at room temperature. $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ were added, the organic phase separated, and the aq. phase thoroughly extracted with DCM ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4} and concentrated in vacuo. Flash chromatography (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=30: 1$) gave ketone ($100 \mathrm{mg}, 0.285 \mathrm{mmol}, 26 \%$) as colourless oil.
$\mathrm{R}_{f}=0.29$ (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=20: 1$);); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.03(\mathrm{~s}, 9 \mathrm{H}), 1.18(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.83(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~m}, 6 \mathrm{H}), 7.65(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=12.7,19.7,27.1,51.4,65.5,79.5,81.1,128.1,130.1,133.6,136.0$, 189.9.
(6R,11R)-2,2,6,11,15,15-hexamethyl-3,3,14,14-tetraphenyl-4,13-dioxa-3,14-isilahexadec-8-yne-7,10-dione 104

Ketone 104 ($66.8 \mathrm{mg}, 0.113 \mathrm{mmol}, 10 \%$) was as colourless oil.
$\mathrm{R}_{f}=0.39$ (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=20: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.02(\mathrm{~s}, 9 \mathrm{H}), 1.11$ (s, 9H), $1.24(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.91(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 12 \mathrm{H}), 7.64(\mathrm{dd}, J$ $=7.9,1.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.74(\mathrm{dd}, J=7.8,16 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=12.8,18.7$, 19.3, 26.8, 27.0, 51.3, 65.4, 94.2, 104.6, 127.7, 128.0, 129.7, 130.0, 131.5, 133.3, 135.6, 189.5; HRMS calculated for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{NO}_{2} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 606.3224$, found: 606.3214.
(R)-5-(tert-butyldiphenylsilyloxy)-4-methyl-1-(trimethylsilyl)pent-1-yn-3-one 106

To a stirred solution of trimethylsilylacetylene ($0.17 \mathrm{~mL}, 1.2 \mathrm{mmol}, 1.2 \mathrm{eq}$) in anhydrous THF $(4 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, a solution of $n \mathrm{BuLi}$ in hexanes ($0.94 \mathrm{~mL}, 1.5 \mathrm{mmol}, 1.5 \mathrm{eq}$) were added dropwise. After stirring for 30 min , a solution of amide ($386 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0 \mathrm{eq}$) in anhydrous THF (5 mL) was dropwise added and the mixture was allowed to warm to room temperature. After $3 \mathrm{~h}, \mathrm{pH} 7$ phosphate buffer (10 mL) was slowly added via cannula and the mixture was partitioned with diethyl ether $(3 \times 10 \mathrm{~mL})$. The organic layer was dried over MgSO_{4}, filtered and carefully concentrated in vacuo. The crude which was purified by a short flash chromatography (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=20: 1$) to yield $165 \mathrm{mg}(0.390 \mathrm{mmol}, 39 \%)$ of $(R)-5-$ (tert-butyldiphenylsilyloxy)-4-methyl-1-(trimethylsilyl)pent-1-yn-3-one as a colourless oil. $\mathrm{R}_{f}=0.52$ (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=20: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.22(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H})$, $1.17(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.82(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~m}, 6 \mathrm{H}), 7.65(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-0.7,12.6,19.4,26.8,50.8,65.5,98.7,101.4,127.7,129.7,133.4$, 135.6, 190.1.

8.3.2.3 Plan 3: Abiko-Masamune anti Aldol Reaction

(E)-3-Iodo-2-methylacrylic acid 113

A solution of diethyl methylmalonate ($33.2 \mathrm{~g}, 0.190 \mathrm{~mol}, 1.0 \mathrm{eq}$) in $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$ was added to $\mathrm{NaH}(55-65 \%$ in mineral oil, $9.21 \mathrm{~g}, 0.230 \mathrm{~mol}, 1.2 \mathrm{eq})$ in $\mathrm{Et}_{2} \mathrm{O}(120 \mathrm{~mL})$ during 40 min with vigorous stirring and the resulting mixture was refluxed for 3 h . After being cooled to ambient temperature, $\mathrm{CHI}_{3}(75.0 \mathrm{~g}, 0.190 \mathrm{~mol}, 1 \mathrm{eq})$ was added during 30 min and the
mixture was refluxed for 32 h . At $0{ }^{\circ} \mathrm{C} 10 \%$ aqueous $\mathrm{HCl}(100 \mathrm{~mL})$ was added and the mixture stirred for 20 min . The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated in vacuum. The residue was dissolved in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(3: 1,520 \mathrm{~mL})$ and KOH $(28.1 \mathrm{~g}, 0.500 \mathrm{~mol})$ was added. The mixture was refluxed for 24 h . After being cooled to ambient temperature, the mixture was concentrated in vacuum. The residue was redissolved in 10% aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(300 \mathrm{~mL})$ and the precipitated CHI_{3} was removed by filtration. The filtrate was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$ and acidified with $12 \mathrm{M} \mathrm{HCl}(\mathrm{pH}<1,130 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \times 50 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated in vacuum. The residue was purified by column chromatography on silica gel (hexanes $/ \mathrm{EtOAc}=10: 1,0.5 \% \mathrm{AcOH})$ to give of the carboxylic acid $(31.1 \mathrm{~g}, 0.147 \mathrm{~mol}$, 77%, over two steps) as a white solid.
$\mathrm{R}_{f}=0.25$ (hexanes $\left./ \mathrm{EtOAc}=10: 1,0.5 \% \mathrm{AcOH}\right) ; \mathrm{mp} .58{ }^{\circ} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $2.05(\mathrm{~s}, 3 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 12.08(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=19.8,102.0,139.0$, 169.2. HRMS calculated for $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{IO}_{2}[\mathrm{M}-\mathrm{H}]: 210.9256$, found: 210.9254. The spectroscopic data were identical to those previously reported. ${ }^{15}$

(E)-3-iodo-2-methylprop-2-en-1-ol 90

$\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}$
Exact Mass: 197,9542
Mol. Wt.: 198,0023

To a cooled $\left(0^{\circ} \mathrm{C}\right)$, stirred solution of the carboxylic acid ($\left.5.30 \mathrm{~g}, 25.0 \mathrm{mmol}, 1.0 \mathrm{eq}\right)$ in $\mathrm{Et}_{2} \mathrm{O}$ $(50 \mathrm{~mL})$ was added $\mathrm{LiAiH}_{4}(0.950 \mathrm{~g}, 25.0 \mathrm{mmol}, 1.0 \mathrm{eq})$.in a period of 10 min . The mixture was stirred for 4 h at ambient temperature and additional $\mathrm{LiAH}_{4}(95.0 \mathrm{mg}, 2.50 \mathrm{mmol}, 0.1 \mathrm{eq})$ was added and the mixture was stirred for 30 min . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}(1.5 \mathrm{~mL}) . \mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and 2 M aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}(50 \mathrm{~mL})$ were added. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were concentrated in vacuum and the remaining oil dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and washed with 10% aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined

[^10]organic layers were dried over MgSO_{4} and concentrated in vacuum. The residue was purified by column chromatography on silica gel (pentane $/ \mathrm{Et}_{2} \mathrm{O}=4: 1$) to give the alcohol (4.45 g , $22.5 \mathrm{mmol}, 85 \%$) as a light yellow oil. $\mathrm{R}_{f}=0.18$ (pentane $/ \mathrm{Et}_{2} \mathrm{O} 4: 1$); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=1.81(\mathrm{~s}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.26(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=21.3,67.2,77.3,147.2$. spectroscopic data were identical to those previously reported. ${ }^{15}$
(2R,3S,E)-((1R,2S)-2-(N-benzyl-2,4,6-trimethylphenylsulfonamido)-1-phenylpropyl)-3-hydroxy-5-iodo-2,4-dimethylpent-4-enoate 114

Exact Mass: 675,1515
Mol. Wt.: 675,6173

To a stirred solution of (E)-3-iodo-2-methylprop-2-en-1-ol ($4.53 \mathrm{~g}, 22.9 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added $\mathrm{MnO}_{2}(5.92 \mathrm{~g}, 68.1 \mathrm{mmol}, 20$ eq.) at room temperature. The resulting suspension was stirred for 1 h . Then the suspension was filtered and the solvent of the filtrate was removed at $40^{\circ} \mathrm{C}$, to give the aldehyde in quantitative yield ($4.49 \mathrm{~g}, 22.9$ mmol), which was used without further purification, due to it's volatility.
In the next step a solution of ($1 R, 2 S$)-2-(N-benzyl-2,4,6-trimethylphenyl-sulfonamido)-1phenylpropyl propionate $\mathrm{XX}(5.00 \mathrm{~g}, 10.4 \mathrm{mmol}, 1.0$ eq. $)$ and $\mathrm{NEt}_{3}(3.60 \mathrm{~mL}, 26.0 \mathrm{mmol}, 2.5$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ under argon atmosphere was cooled down to $-78{ }^{\circ} \mathrm{C}$. Then dicyclohexyl-(trifluoromethylsulfonyloxy)borane (26.0 mL , 1M in n-Hexane, $26.0 \mathrm{mmol}, 2.5$ eq.) was added slowly. The resulting mixture was stirred for 5 h at $-78^{\circ} \mathrm{C}$, before a solution of the aldehyde ($4.49 \mathrm{~g}, 22.9 \mathrm{mmol}, 2.2$ eq.) in $15 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (dried with $3 \AA$ molecular siever) was added slowly. After further 60 min the reaction mixture was warmed up to room temperature (ca. 2h), quenched with pH 7 buffer (50 mL), diluted with $\mathrm{MeOH}(200 \mathrm{~mL})$ and charged with 26 mL of a $\mathrm{H}_{2} \mathrm{O}_{2}$-solution, before the mixture was stirred overnight. After that, the solvent was removed in vacuo and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, separated and the aqueous phase was reextracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the
solvent was removed in vacuo. The residue was purificated by column chromatography (hexanes $/ \mathrm{EtOAc}=8: 1$) to give the aldol product as white crystals ($6.74 \mathrm{~g}, 9.98 \mathrm{mmol}, 96 \%$). $\mathrm{R}_{f}=0.43$ (hexanes / EtOAc $=8: 1$); mp. $72{ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}=+38.9\left(\mathrm{c}=0.97, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.81(\mathrm{~d}, J=1.1 \mathrm{~Hz}$, $3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 6 \mathrm{H}), 2.54-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 4.10(\mathrm{dq}, J=$ $4.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.56\left(\mathrm{~A}\right.$ of $\left.\mathrm{ABq}, J_{\mathrm{AB}}=16.6,1 \mathrm{H}\right), 4.74(\mathrm{~B}$ of ABq, $\left.J_{\mathrm{AB}}=16.6,1 \mathrm{H}\right), 5.85(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 6.82-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~s}, 2 \mathrm{H}), 7.13-$ $7.35(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=13.4,14.1,18.9,20.9,23.0,43.3,48.3,56.8$, $78.6,78.7,81.2,125.9,127.2,127.6,128.0,128.4128 .5,132.2,133.4,138.1,138.6,140.3$, 142.6, 146.9, 174.1; HRMS calculated for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{INNaO}_{5} \mathrm{~S}: 698.1413$, found: 698.1409.
(2R,3S,E)-((1R,2S)-2-(N-benzyl-2,4,6-trimethylphenylsulfonamido)-1-phenylpropyl) 5-iodo-3-methoxy-2,4-dimethylpent-4-enoate 115

To a solution of the alcohol ($3.92 \mathrm{~g}, 5.80 \mathrm{mmol}, 1 \mathrm{eq}$.) in $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ under argon atmosphere were added molecular sieves $3 \AA(13 \mathrm{~g}), \mathrm{Ag}_{2} \mathrm{O}(5.37 \mathrm{mg}, 23.2 \mathrm{mmol}, 4 \mathrm{eq}$.$) and$ $\mathrm{CH}_{3} \mathrm{I}(4.34 \mathrm{~mL}, 70.0 \mathrm{mmol}, 12 \mathrm{eq}$.) subsequently. The resulting mixture was stirred for 48 h at ambient temperature and filtered through cotton afterwards. The solvent was evaporated and the crude product was purificated by column chromatography on silica gel (hexanes / EtOAc $=10: 1)$ to receive the desired methyl ether $(3.75 \mathrm{~g}, 5.44 \mathrm{mmol}, 94 \%)$ as white crystals.
$\mathrm{R}_{f}=0.36$ (hexanes / EtOAc $=15: 1$); m.p. $76{ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}=+44.8\left(\mathrm{c}=0.96, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{~d}, J=0.94 \mathrm{~Hz}$, $3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 6 \mathrm{H}), 2.69-2.80(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}$,$) ,$ $4.02(\mathrm{dq}, J=4.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.39\left(\mathrm{~A}\right.$ of $\left.\mathrm{ABq}, J_{\mathrm{AB}}=16.8,1 \mathrm{H}\right), 4.96\left(\mathrm{~B}\right.$ of $\left.\mathrm{ABq}, J_{\mathrm{AB}}=16.6,1 \mathrm{H}\right)$, $5.70(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 6.68-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 2 \mathrm{H}), 7.11-7.28(\mathrm{~m}, 6 \mathrm{H})$; 7.38-7.41 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=13.5,13.8,18.0,20.9,22.9,43.2,48.2$, $56.3,56.8,78.1,81.9,88.5,125.8,126.2,127.0,127.8,128.3,128.4,132.2,133.8,138.4$,
139.4, 140.4, 142.6, 144.9, 173.6; HRMS calculated for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{INNaO}_{5} \mathrm{~S}: 712.1570$, found: 712.1567 .

Dimethyl (3E,5E)-6-iodo-3,5-dimethyl-2-oxohexa-3,5-dienylphosphonate 135

$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{IO}_{4} \mathrm{P}$
Exact Mass: 357,9831
Mol. Wt.: 358,1099

Dimethyl methylphosphonate ($30.0 \mu \mathrm{~L}, 0.281 \mathrm{mmol}$, 2.0 eq.) in THF (3 mL) at $-78^{\circ} \mathrm{C}$ was treated with $n \mathrm{BuLi}\left(1.6 \mathrm{M}\right.$ in hexane, $130 \mu \mathrm{~L}, 0.208 \mathrm{mmol}, 1.5 \mathrm{eq}$.). After stirring at $-50^{\circ} \mathrm{C}$ for 1.5 h , the mixture was recooled to $-78^{\circ} \mathrm{C}$ and a solution of the ester $(100 \mathrm{mg}, 0.145 \mathrm{mmol}, 1.0$ eq.) in THF (3 mL) was added. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 60 min , and then treated with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The organic layer was separated and the aqueous layer was extracted with $\operatorname{EtOAc}(4 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Purification by flash chromatography (hexanes $/ \mathrm{EtOAc}=1: 1$) gave the respective phosphonate $(20.8 \mathrm{mg}, 55.6$ $\mu \mathrm{mol}, 38 \%)$.
$\mathrm{R}_{f}=0.19$ (hexanes $/ \mathrm{EtOAc}=1: 1$); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.90(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H})$, $3.36(\mathrm{~d}, J=22.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=13.1,17.9,42.2,43.9,48.5,53.0,56.4,81.7,89.3,145.1,205 . ;$ HRMS calculated for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{IO}_{4} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}: 380.9729$, found: 380.9727 .
(2S,3S,E)-5-iodo-3-methoxy-2,4-dimethylpent-4-en-1-ol 133

A solution of the prepared methyl ether ($3.70 \mathrm{~g}, 5.37 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ was cooled down to $0{ }^{\circ} \mathrm{C}$. Then the solution was treated with $\mathrm{LiAlH}_{4}(204 \mathrm{mg}, 5.37 \mathrm{mmol}, 1.0$ eq.)
and stirred for 2 h at this temperature, before it was warmed up to room temperature. Then the mixture was quenched by addition of a saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution (20 mL). After this the solution was acidified to $\mathrm{pH}=2$ by addition of $2 \mathrm{M}_{2} \mathrm{SO}_{4}(12 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$. The combined organic layer was washed with saturated, aqueous NaHCO_{3} solution and brine, dried over MgSO_{4}, filtered and the solvent was removes under reduced pressure. The residue was purificated by flash chromatography on silica gel (pentane / $\mathrm{Et}_{2} \mathrm{O}=3: 1$) to give $1.39 \mathrm{~g}(5.15 \mathrm{mmol}, 97 \%)$ of the desired alcohol as light yellow oil.
$\mathrm{R}_{f}=0.16$ (pentane $/ \mathrm{Et}_{2} \mathrm{O}=3: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=-28.7\left(\mathrm{c}=1.48, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR} \delta=(400 \mathrm{MHz}$, CDCl_{3}) ppm $0.70(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.97(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH})$, $3.19(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}),, 3.60(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=13.6,18.4,37.6,56.4,67.8,80.5,92.6,146.4$; HRMS calculated for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{IO}_{5}: 270.0117$, found: 270.0117 .

Dimethyl (3R,4S,E)-6-iodo-4-methoxy-3,5-dimethyl-2-oxohex-5-enylphosphonate 118

To a solution of primary alcohol ($55.0 \mathrm{mg}, 0.204 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added Dess-Martin periodinane ($94.0 \mathrm{mg}, 0.222 \mathrm{mmol}, 1.1 \mathrm{eq}$.). After stirring for 2 h , the reaction mixture was treated with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and saturated aqueous NaHCO_{3} solution. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure.
In a separate flask, dimethyl methylphosphonate ($218 \mu \mathrm{~L}, 2.04 \mathrm{mmol}, 10$ eq.) in THF ($250 \mu \mathrm{~L}$) at $-78{ }^{\circ} \mathrm{C}$ was treated with n-BuLi (2.5 M in hexane, $816 \mu \mathrm{~L}, 2.04 \mathrm{mmol}, 10$ eq.). After stirring for 1 h , the crude aldehyde obtained from the Dess-Martin oxidation was dissolved in THF ($200 \mu \mathrm{~L}$) and added to the mixture. The reaction mixture was warmed to $0{ }^{\circ} \mathrm{C}$, stirred for 15 min , and then treated with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The organic layer was
separated and the aqueous layer was extracted with EtOAc ($4 \times 5 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Purification by flash chromatography (hexanes / EtOAc $=1: 2$ to $0: 1$) gave the respective secondary alcohol (42.4 $\mathrm{mg}, 108 \mu \mathrm{~mol}, 53 \%$, two steps), which was used in the next step.
The secondary alcohol ($14.0 \mathrm{mg}, 36.0 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, and Dess-Martin periodinane ($17.0 \mathrm{mg}, 39.0 \mu \mathrm{~mol}, 1.1 \mathrm{eq}$.) was added at r.t. After stirring for 30 min , the reaction mixture was treated with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and saturated aqueous NaHCO_{3} solution. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \times 5 \mathrm{~mL})$ and $\mathrm{EtOAc}(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Purification of the crude product by flash chromatography (hexanes / EtOAc 1:2) afforded phosphonate ($12.0 \mathrm{mg}, 30.7 \mu \mathrm{~mol}, 86 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.43$ (hexanes / EtOAc $\left.=1: 2\right) ;[\alpha]^{22}{ }_{\mathrm{D}}=-24.5\left(c=0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=0.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.00-3.09(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~s}$, $3 \mathrm{H}), 3.08(\mathrm{dd}, J=22.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=22.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 6.27(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=13.1$, 17.9, 42.2, 43.9, 48.5, 53.0, 56.4, 81.7, 89.3, 145.1, 205.2; HRMS calculated for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{IO}_{5} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}: 412.9991$, found: 412.9991 .

Dimethyl (1E,3S,4S,5E)-6-iodo-4-methoxy-3,5-dimethylhexa-1,5-dienylphosphonate 134

To a solution of primary alcohol ($207 \mathrm{mg}, 0.766 \mathrm{mmol}, 1.0$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added Dess-Martin periodinane ($358 \mathrm{mg}, 0.843 \mathrm{mmol}, 1.1 \mathrm{eq}$.). After stirring for 90 min , additional Dess-Martin periodinane ($75.0 \mathrm{mg}, 0.177 \mathrm{mmol}, 0.2 \mathrm{eq}$.) was added. After stirring for further 30 min , the reaction mixture was treated with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution $(10 \mathrm{~mL})$ and saturated aqueous NaHCO_{3} solution $(10 \mathrm{~mL})$. The organic layer was separated
and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude aldehyde was used in the next step.

In a separate flask, dimethyl methylphosphonate ($0.82 \mathrm{~mL}, 7.66 \mathrm{mmol}, 10$ eq.) in THF (8 mL) at $-50{ }^{\circ} \mathrm{C}$ was treated with $n-\operatorname{BuLi}(2.5 \mathrm{M}$ in hexane, $2.75 \mathrm{~mL}, 6.89 \mathrm{mmol}, 9.0$ eq.). After stirring at $-20^{\circ} \mathrm{C}$ for 1 h , the mixture was recooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of the crude aldehyde obtained from the Dess-Martin oxidation in THF (1 mL) was added. The reaction mixture was warmed up to $0{ }^{\circ} \mathrm{C}$ (c.a. 3 h), and then treated with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc ($4 \times 10 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. The crude alcohol was used in the next step.
The crude alcohol was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}$), and Dess-Martin periodinane (358 mg , $0.843 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was added at r.t. After stirring for 1 h , the reaction mixture was treated with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (10 mL) and saturated aqueous NaHCO_{3} solution (10 $\mathrm{mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \times$ $10 \mathrm{~mL})$ and EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the crude product by FC (hexanes / EtOAc $=1: 1$) afforded the phosphonate ($128 \mathrm{mg}, 0.342 \mathrm{mmol}, 45 \%$, three steps) as a yellowish oil.
$\mathrm{R}_{f}=0.26$ (hexanes / EtOAc $=1: 2$); $[\alpha]^{22}{ }_{\mathrm{D}}=+2.48\left(c=1.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=0.89(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.72(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.49(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 3.39$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.71(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 5.61(\mathrm{~m}, 1 \mathrm{H}), 6.20(\mathrm{~s}$, $1 \mathrm{H}), 6.78(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=15.8,18.7,40.8,41.1,52.3,56.7,80.5$, 89.6, 114.3, 116.8, 146.0, 156.3; HRMS calculated for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{INO}_{4} \mathrm{PNa}\left[\mathrm{M}+\mathrm{CH}_{3} \mathrm{CN}+\mathrm{Na}\right]^{+}$: 438.0307, found: 438.0309 .

Dimethyl (3R,4S)-4-hydroxy-3,5-dimethyl-2-oxohex-5-enylphosphonate 137

Exact Mass: 250,097
Mol. Wt.: 250,2286

To a cold solution $\left(-78{ }^{\circ} \mathrm{C}\right)$ of dimethyl methylphosphonate ($80 \mu \mathrm{~L}, 740 \mu \mathrm{~mol}, 10 \mathrm{eq}$) in THF $(1 \mathrm{~mL})$ were added $n \mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, $300 \mu \mathrm{~L}, 10 \mathrm{eq})$ and the resulting suspension was stirred at $-20^{\circ} \mathrm{C}$ for 2 h . To a cold solution $\left(-78^{\circ} \mathrm{C}\right)$ of the ester ($\left.50.0 \mathrm{mg}, 74.0 \mu \mathrm{~mol}, 1.0 \mathrm{eq}\right)$ in THF (0.5 mL) was added $i \mathrm{PrMgCl}\left(2.0 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 80 \mu \mathrm{~L}, 150 \mu \mathrm{~mol}, 2.0 \mathrm{eq}\right)$. After 20 min the mixture from on high was added via cannula. The reaction mixture was warmed to room temperature and stirred 14 h . Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ were added, the organic phase separated, and the aq. phase thoroughly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 6 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. Silica gel chromatography (hexanes / EtOAc $=1: 2$) afforded the phosphonate $(16.0 \mathrm{mg}, 63.9$ $\mu \mathrm{mol}, 86 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.10$ (hexanes / EtOAc $=1: 2$); $[\alpha]^{20}{ }_{\mathrm{D}}=-34.9\left(\mathrm{c}=0.97, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=0.96(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~m}, 1 \mathrm{H}), 3.23$ $(\mathrm{m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.12(\mathrm{dd}, J=9.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=13.7,16.4,41.1,42.8,50.1,53.1,79.0,114.5,144.4,206.2$; HRMS calculated for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 273.0868$, found: 273.0868.

Dimethyl (3R,4S,E)-4-hydroxy-6-iodo-3,5-dimethyl-2-oxohex-5-enylphosphonate 119

$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{IO}_{5} \mathrm{P}$
Exact Mass: 375,9937
Mol. Wt.: 376,1252

To a cold solution $\left(-78{ }^{\circ} \mathrm{C}\right)$ of dimethyl methylphosphonate ($156 \mathrm{~mL}, 2.93 \mathrm{mmol}, 11 \mathrm{eq}$) in THF (1 mL) were added KHMDS (0.5 M in toloene, $2.66 \mathrm{~mL}, 1.33 \mathrm{mmol}, 10 \mathrm{eq}$) and the resulting suspension was stirred at $-20^{\circ} \mathrm{C}$ for 2 h . To a cold solution $\left(-78^{\circ} \mathrm{C}\right)$ of the ester ($92.1 \mathrm{mg}, 0.136 \mathrm{mmol}, 1.0 \mathrm{eq}$) in THF (1 mL) was added $i \operatorname{PrMgCl}\left(2.0 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 204 \mu \mathrm{~L}$, $0.409 \mathrm{mmol}, 3.0 \mathrm{eq})$. After 20 min the mixture from above was added via cannula. The reaction mixture was warmed to $-20^{\circ} \mathrm{C}$ for ca. 1.5 h and stirred at $-20^{\circ} \mathrm{C}$ for 0.5 h . Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(6 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$ were added, the organic phase separated, and the aq. phase thoroughly extracted with EtOAc ($4 \times 6 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. Silica gel chromatography (hexanes / $\mathrm{EtOAc}=1: 2)$ afforded the phosphonate ($40.9 \mathrm{mg}, 0.109 \mu \mathrm{~mol}, 80 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.15$ (hexanes $/ \mathrm{EtOAc}=1: 2$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.93(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.82(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 4.25(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=13.7,18.7$, 41.2, 42.9, 50.2, 53.2, 53.3, 79.2, 80.9, 147.4, 205.4, 205.5.

(E)-(3R,4S)-6-Iodo-4-methoxy-3,5-dimethyl-hex-5-en-2-one 142

$\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{IO}_{2}$
Exact Mass: 282,0117
Mol. Wt.: 282,1187

To a cold solution $\left(0^{\circ} \mathrm{C}\right)$ of (E)-($2 S, 3 S$)-5-Iodo-3-methoxy-2,4-dimethyl-pent-4-en-1-ol (1.39 g, 5.14 mmol , 1 eq) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ were added $\mathrm{NaHCO}_{3}(864 \mathrm{mg}, 2 \mathrm{eq})$ and Dess-Martin periodinan ($5.02 \mathrm{~g}, 11.8 \mathrm{mmol}, 2.3 \mathrm{eq}$) and the resulting solution was stirred 4 h at room temperature. Sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(55 \mathrm{~mL})$ and sat. aq. $\mathrm{NaHCO}_{3}(55 \mathrm{~mL})$ were added, the organic phase separated, and the aq. phase thoroughly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent under ambient pressure afforded crude aldehyde ($1.37 \mathrm{~g}, 5.11 \mathrm{mmol}$), which was used for the next steps without further purification.

To a cold $\left(-78{ }^{\circ} \mathrm{C}\right)$ stirred, solution of crude aldehyde $(1.37 \mathrm{~g}, 5.11 \mathrm{mmol}, 1 \mathrm{eq})$ was added $\mathrm{MeMgBr}\left(3.43 \mathrm{~mL}, 3 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 10.3 \mathrm{mmol}$, 2 eq). After 30 min , the reaction mixture was cannulated into cold $\left(0^{\circ} \mathrm{C}\right)$ sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(60 \mathrm{~mL})$. The organic phase was separated, and the aq. phase thoroughly extracted with $\mathrm{Et}_{2} \mathrm{O}$. Drying of the combined organic extracts $\left(\mathrm{MgSO}_{4}\right)$, evaporation of the solvent gave the respective secondary alcohol ($1.45 \mathrm{~g}, 5.11 \mathrm{mmol}$), which was directly used in the next step.

To a cold solution $\left(0^{\circ} \mathrm{C}\right)$ of the above prepared secondary alcohol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ were added $\mathrm{NaHCO}_{3}(1.08 \mathrm{~g}, 12.8 \mathrm{mmol}, 2.5 \mathrm{eq})$ and Dess-Martin periodinan ($3.27 \mathrm{~g}, 7.71 \mathrm{mmol}$, 1.5 eq) and the resulting solution was stirred 90 min at room temperature. Sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (50 $\mathrm{mL})$ and sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ were added, the organic phase separated, and the aq. phase thoroughly extracted with DCM ($3 \times 10 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}. Evaporation of the solvent in vacuo and flash chromatography (pentane $/ \mathrm{Et}_{2} \mathrm{O}=20: 1$ to $4: 1$) afforded the methyl ketone ($1.33 \mathrm{~g}, 4.71 \mathrm{mmol}, 92 \%$, over three steps) as a white solid.
$\mathrm{R}_{f}=0.17$ (pentane $/ \mathrm{Et}_{2} \mathrm{O}=4: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=+5.9\left(c=0.102, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=0.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.73(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{dq}, J=10.0$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=13.4,18.1,30.5,48.6,56.5,81.2,88.5,145.5,211.1$.

(2R,3S,E)-3-hydroxy-5-iodo- N-methoxy-N,2,4-trimethylpent-4-enamide 139

$\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{INO}_{3}$
Exact Mass: 313,0175
Mol. Wt.: 313,1327

To a solution of ester ($231 \mathrm{mg}, 0.342 \mathrm{mmol}, 1.0 \mathrm{eq}$) in THF (1 mL) was added $i \mathrm{PrMgCl}(\sim 2$ M in THF, $0.17 \mathrm{~mL}, 0.34 \mathrm{mmol}, 1.0 \mathrm{eq}$.), after 10 min , a suspension of magnesium chloride methoxy(methyl)amide complex, which was prepared by addition of $i \operatorname{PrMgCl}(\sim 2 \mathrm{M}$ in THF, $3.42 \mathrm{~mL}, 6.84 \mathrm{mmol}, 20 \mathrm{eq}$.) to a suspension of N, O-dimethylhydroxylamine hydrochloride ($334 \mathrm{mg}, 3.42 \mathrm{mmol}, 10$ eq.) in THF (3 mL) at $-20^{\circ} \mathrm{C}$ was added. The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 2 h and warmed up to $-10{ }^{\circ} \mathrm{C}(1 \mathrm{~h})$. The reaction was quenched by addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The product was extracted into EtOAc ($3 \times 20 \mathrm{~mL}$), and the combined organic layers were dried over MgSO_{4}, concentrated in vacuo. Purification by flash chromatography (hexanes $/ \mathrm{EtOAc}=2: 1$ to $1: 1$) gave the amide $(77.0 \mathrm{mg}, 0.246 \mathrm{mmol}$, 72%) as white solid.
$\mathrm{R}_{f}=0.15$ (hexanes $/ \mathrm{EtOAc}=2: 1$); $) ;[\alpha]^{20}{ }_{\mathrm{D}}=-13.2\left(\mathrm{c}=1.94, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=1.09(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.81(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 3.58$ $(\mathrm{d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 4.26(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=15.1,20.1,32.2,38.2,61.8,79.0,80.1,148.1,176.3$; HRMS calculated for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{IN}_{2} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{CH}_{3} \mathrm{CN}+\mathrm{Na}\right]^{+}: 377.0338$, found: 377.0356 .
(2R,3S,E)-5-iodo-N,3-dimethoxy-N,2,4-trimethylpent-4-enamide 140

To a solution of the alcohol ($41.0 \mathrm{mg}, 0.131 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in $\mathrm{Et}_{2} \mathrm{O}(0.50 \mathrm{~mL})$ under argon atmosphere were added molecular sieves $4 \AA(100 \mathrm{mg}), \mathrm{Ag}_{2} \mathrm{O}(150 \mathrm{mg}, 0.647 \mathrm{mmol}, 5.0 \mathrm{eq}$. and $\mathrm{CH}_{3} \mathrm{I}(0.20 \mathrm{~mL}, 3.14 \mathrm{mmol}, 24 \mathrm{eq}$.) subsequently. The resulting mixture was stirred for 72 h at ambient temperature and filtered through cotton afterwards. The solvent was evaporated and the crude product was purified by a short column chromatography on silica gel (hexanes / $\operatorname{EtOAc}=2: 1)$ to receive the desired methyl ether $(34.2 \mathrm{mg}, 0.105 \mathrm{mmol}, 80 \%)$ as a colorless oil.
$\mathrm{R}_{f}=0.37$ (hexanes / EtOAc $=2: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=-21.4\left(\mathrm{c}=0.08, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=0.88(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.12(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 3.20$ $(\mathrm{s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 14.1, 18.2, 32.1, $37.5,56.6,61.5,81.3,88.0,145.7,175.5$; HRMS calculated for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{IN}_{2} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{CH}_{3} \mathrm{CN}+\mathrm{Na}\right]^{+}: 391.0495$, found: 391.0490 .

8.3.3 Connection of the C3-C13 and the C14-C19 Subunits

(2Z,4Z,6S,7S,8E)-7-(tert-butyldimethylsilyloxy)-11-(4-methoxybenzyloxy)-2,4,6,9-
tetramethylundeca-2,4,8-trienal 143

A solution of the alcohol ($161 \mathrm{mg}, 0.329 \mathrm{mmol}, 1.0$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ under argon atmosphere was cooled down to $0^{\circ} \mathrm{C}$, before Dess-Martin Periodinane ($170 \mathrm{mg}, 0.400 \mathrm{mmol}$,
1.2 eq.) was added. The resulting solution was stirred for 60 min at this temperature and quenched by addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution (5 mL) and saturated aqueous NaHCO_{3} solution afterwards. The organic layer was separated and the aqueous phase reextracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent was evaporated. The residue was purified by column chromatography on silica gel (hexanes / EtOAc $=5: 1$) to give the aldehyde 3 ($152 \mathrm{mg}, 0.312 \mathrm{mmol}, 95 \%$) as colourless liquid.
$\mathrm{R}_{f}=0.81$ (hexanes $\left./ \mathrm{EtOAc}=5: 1\right) ;[\alpha]_{\mathrm{D}}{ }^{20}=+33.3\left(c=0.94, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta=-0.06(\mathrm{~s}, 3 \mathrm{H}),-0.03(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H})$, $1.81(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.79$ (s, 3H), 4.08 (dd, $J=8.9 \mathrm{~Hz}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 5.08(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J$ $=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 9.88(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13}{ }^{1}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.9,-4.2,15.9,16.3,17.2,18.1,25.0,25.8,39.6,40.8,55.3$, 68.8, 72.6, 73.1, 113.8, 129.1, 129.3, 130.6, 133.0, 136.0, 136.3, 147.0, 159.2, 193.4; HRMS calculated for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{NaO}_{4} \mathrm{NaSi}$: 509.3063, found: 509.3070.
(2E,4Z,8E)-(6S,7S)-7-(tert-Butyl-dimethyl-silanyloxy)-11-(4-methoxy-benzyloxy)-2,4,6,9-tetramethyl-undeca-2,4,8-trienal 145

To a solution of phosphonate ($10.0 \mathrm{mg}, 25.6 \mu \mathrm{~mol}$) in $\mathrm{MeCN}(1 \mathrm{~mL})$ at RT was added anhydrous $\mathrm{LiCl}(1.3 \mathrm{mg}, 31 \mu \mathrm{~mol})$ and $\mathrm{DBU}(4.3 \mu \mathrm{~L}, 29 \mu \mathrm{~mol})$. After stirring for 10 min , a solution of aldehyde ($15.0 \mathrm{mg}, 30.8 \mu \mathrm{~mol}$) in $\mathrm{MeCN}(1 \mathrm{~mL})$ was added. After stirring for 24 h , the reaction mixture was treated with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and diluted with EtOAc. The organic layer was separated and the aqueous layer was extracted with EtOAc ($3 \times$ $2 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Purification of the crude product by column chromatography (hexanes / $\mathrm{EtO}_{2} \mathrm{Ac} 9: 1$) afforded aldehyde as a colorless oil.
$\mathrm{R}_{f}=0.43$ (hexanes / EtOAc 6:1); $[\alpha]^{22}{ }_{\mathrm{D}}=+25\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta \mathrm{ppm}=-0.06(\mathrm{~s}, 3 \mathrm{H}),-0.03(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.62(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.86(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.98(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.27(\mathrm{td}, J=6.7,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.42-$ $2.53(\mathrm{dqd}, J=10.2,7.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.11(\mathrm{dd}, J=8.9$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 5.12(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 9.43(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm $=-4.9,-4.2,10.8,16.4,17.2,18.1,23.2,25.8,39.6,40.7,55.3,68.8,72.6,73.1,113.8$, 129.0, 129.2, 130.6, 131.1, 133.2, 137.6, 140.5, 149.6, 159.2, 196.1; HRMS calculated for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{NaSi}: 509.3063$, found: 509.3063.
(1E,6E,8Z,10Z,14E)-(3S,4R,12S,13S)-13-(tert-Butyl-dimethyl-silanyloxy)-1-iodo-3-methoxy-17-(4-methoxy-benzyloxy)-2,4,8,10,12,15-hexamethyl-heptadeca-1,6,8,10,14-pentaen-5-one 144

To a cold $\left(0^{\circ} \mathrm{C}\right)$, stirred solution of the methyl ketone ($137 \mathrm{mg}, 0.487 \mathrm{mmol}, 1.0$ eq. $)$ in $\mathrm{Et}_{2} \mathrm{O}$ $(2 \mathrm{~mL})$, that had stirred over powdered $4 \AA \mathrm{MS}$ for 30 min , was added $\mathrm{NEt}_{3}(167 \mu 1,1.19$ mmol, 2.4 eq.) followed by $(\mathrm{cHex})_{2} \mathrm{BCl}(213 \mu \mathrm{l}, 1,17 \mathrm{mmol}, 2.0 \mathrm{eq})$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was cooled to $-78^{\circ} \mathrm{C}$, treated with a solution of the aldehyde (396 $\mathrm{mg}, 0.814 \mathrm{mmol}, 1.7 \mathrm{eq}$) that had been pre-stirred over $4 \AA \mathrm{MS}$ for 1 h . After stirring for 1.5 h , the reaction mixture was warmed to $-30^{\circ} \mathrm{C}$, and stirred at this temperature for 15 min . Following this, the reaction mixture was warmed to $0^{\circ} \mathrm{C}$, and treated sequentially with pH 7 buffer (8 mL), $\mathrm{MeOH}(3 \mathrm{~mL})$, and aq. hydrogen peroxide (1.5 mL). After stirring for an additional 1 h , the reaction mixture was treated with brine $(20 \mathrm{~mL})$, the organic phase separated, and the aq. phase thoroughly extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. Purification by flash chromatography (pentane $/ \mathrm{Et}_{2} \mathrm{O}=100: 0$ to $40: 10$ to $10: 10$) gave the respective aldol adduct ($354 \mathrm{mg}, 0.460 \mathrm{mmol}, 95 \%$), which was used in the next step.

A solution of the aldol adduct ($100 \mathrm{mg}, 0.130 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in THF (2 \mathrm{~mL}$), that had prestirred over molecular sieves $4 \AA$ for 40 min , was treated at RT with $\mathrm{Ac}_{2} \mathrm{O}(120 \mu \mathrm{~L}, 1.30$ mmol, 10 eq.) and DMAP ($143 \mathrm{mg}, 1.17 \mathrm{mmol}, 9.0$ eq.) and stirred at room temperature for 60 min . DBU ($192 \mu \mathrm{~L}, 1.30 \mathrm{mmol}, 10 \mathrm{eq}$.$) was added. The mixture was stirred for an$ additional 2 h , then it was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and poured into brine. The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with 0.5 N HCl , brine, and dried over MgSO_{4}. Removal of the solvent in vacuo gave an oily residue, which was purified by flash chromatography (petroleum ether/ $\mathrm{Et}_{2} \mathrm{O}=100: 0$ to $40: 10$) to give trienone ($91.2 \mathrm{mg}, 0.121 \mu \mathrm{~mol}, 93 \%$, over 2 steps) as a colourless oil.
$\mathrm{R}_{f}=0.43$ (hexanes / EtOAc $\left.=6: 1\right) ;[\alpha]^{22}{ }_{\mathrm{D}}=+68\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=-0.08(\mathrm{~s}, 3 \mathrm{H}),-0.05(\mathrm{~s}, 3 \mathrm{H}) .0 .82(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.60(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.75(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.20-2.33(\mathrm{~m}, 3 \mathrm{H}), 3.00(\mathrm{dq}, J$ $=9.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.1(\mathrm{dd}, J=8.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 5.09(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.20(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-4.9,-4.3,14.1$, $15.7,17.2,18.2,18.2,19.9,24.6,25.9,29.7,39.7,40.7,46.1,55.3,56.6,69.0,72.6,73.0,81.0$, $88.5,113.8,126.4,128.9,129.2,130.7,131.6,131.8,132.7,134.9,139.3,141.5,145.8,159.2$, 202.4; HRMS calculated for $\mathrm{C}_{38} \mathrm{H}_{59} \mathrm{IO}_{5} \mathrm{NaSiI}$: 773.3074, found: 773.3074.

8.3.4 Connection of the C3-C19 and the C20-C1' Subunits

(1E,3S,4R,6E,8Z,10Z,12S,13S,14E)-13-(tert-butyldimethylsilyloxy)-17-hydroxy-1-iodo-3-methoxy-2,4,8,10,12,15-hexamethylheptadeca-1,6,8,10,14-pentaen-5-one 148

$\mathrm{C}_{30} \mathrm{H}_{51} \mathrm{IO}_{4} \mathrm{Si}$
Exact Mass: 630,2601
Mol. Wt.: 630,7135

The PMB ether ($83.0 \mathrm{mg}, 11.0 \mu \mathrm{~mol}$, 1.0 eq.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ aq. pH 7 buffer (10:1, 1.1 mL) under argon atmosphere. Then DDQ ($75.0 \mathrm{mg}, 33.0 \mu \mathrm{~mol}, 3.0 \mathrm{eq}$.) was added fast
and the resulting suspension was stirred for 30 min at ambient temperature. The reaction mixture was quenched by addition of 7 mL saturated, aqueous NaHCO_{3} solution. The organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. Then the combined organic layer was washed with brine (10 mL), dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure, before the crude product was purified by flash chromatography on silica gel (hexanes $/ \mathrm{EtOAc}=9: 1$ to $4: 1$) to give the desired primary alcohol ($65.0 \mathrm{mg}, 10.0 \mu \mathrm{~mol}, 95 \%$).
$\mathrm{R}_{f}=0.10$ (hexanes $\left./ \mathrm{EtOAc}=9: 1\right) ;[\alpha]_{\mathrm{D}}{ }^{20}=+54.3\left(c=1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta=-0.06(\mathrm{~s}, 3 \mathrm{H}),-0.03(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 1.61(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.76(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, $3 \mathrm{H}), 2.22(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.95-3.06(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{t}, J$ $=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=8.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.24(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-4.8,-4.3,14.1,15.9,16.7,18.1,18.2,19.8$, 24.6, 25.8, 40.6, 42.7, 46.2, 56.6, 60.5, 72.8, 81.1, 88.4, 126.4, 130.4, 131.7, 131.9, 132.0, 134.2, 139.1, 141.3, 145.8, 202.3; HRMS calculated for $\mathrm{C}_{30} \mathrm{H}_{51} \mathrm{IO}_{4} \mathrm{NaSi}$: 653.2499 , found: 653.2499 .

(3E,5S,6S,7Z,9Z,11E,14R,15S,16E)-5-(tert-butyldimethylsilyloxy)-17-iodo-15-methoxy-

 3,6,8,10,14,16-hexamethyl-13-oxoheptadeca-3,7,9,11,16-pentaenal 149

To a solution of oxalyl chloride ($19.0 \mu \mathrm{~L}, 219 \mu \mathrm{~mol}, 7.4$ eq.) in $\mathrm{DCM}(500 \mu \mathrm{~L})$ mit $4 \AA \mathrm{MS}$ was added DMSO ($30.0 \mu \mathrm{~L}, 438 \mu \mathrm{~mol}, 15 \mathrm{eq}$.$) at -78^{\circ} \mathrm{C}$. After 20 min stirring of the resulting mixture at the same temperature, a solution of the primary alcohol $(18.7 \mathrm{mg}, 29.6 \mu \mathrm{~mol}, 1.0$ eq., pre-stirred over $4 \AA \mathrm{MS}$ for 0.5 h at RT$)$ in $\operatorname{DCM}(500 \mu \mathrm{~L})$ was added slowly. The resulting mixture was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$ and $\mathrm{Et}_{3} \mathrm{~N}(39.0 \mu \mathrm{~L}, 292 \mu \mathrm{~mol}, 10$ eq.) was added. After 20 min stirring at $-78^{\circ} \mathrm{C}$, the reaction mixture was quenched by addition of 6 mL
saturated, aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution at $-10^{\circ} \mathrm{C}$. The organic layer was separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. Then the combined organic layer was washed with brine (5 mL), dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography on silica gel (hexanes $/ \mathrm{Et}_{2} \mathrm{OAc}=$ 4:1) to give the desired aldehyde ($17.5 \mathrm{mg}, 27.8 \mathrm{mmol}, 94 \%$).
$\mathrm{R}_{f}=0.36$ (hexanes $/ \mathrm{EtOAc}=9: 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.06(\mathrm{~s}, 3 \mathrm{H}),-0.03(\mathrm{~s}$, $3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.85,(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.65(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H})$, $1.75(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{~m}, 3 \mathrm{H})$, $3.08(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=8.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~m}, 2 \mathrm{H}), 6.21(\mathrm{~d}, J$ $=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.58(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-4.5,-4.0,14.4,16.1,18.1,18.6,20.2,24.9,26.1,40.9,46.7$, 54.6, 57.0, 73.1, 81.4, 88.8, 126.8, 127.1, 132.4, 133.8, 134.2, 139.4, 141.6, 146.1, 200.1, 202.6; HRMS calculated for $\mathrm{C}_{30} \mathrm{H}_{49} \mathrm{IO}_{4} \mathrm{NaSi}$: 651.2343, found: 651.2349 .
(2E,5E,7S,8S,9Z,11Z,13E,16R,17S,18E)-((1S,2S)-2-methyl-1-(2-((S)-3-methyl-1-(methylcarbamoyloxy)butyl)thiazol-4-yl)but-3-enyl) 7-(tert-butyldimethylsilyloxy)-19-iodo-17-methoxy-2,5,8,10,12,16,18-heptamethyl-15-oxononadeca-2,5,9,11,13,18hexaenoate 151

To NaH ($55-65 \%$ in mineral oil, $1.2 \mathrm{mg}, 30.0 \mu \mathrm{~mol}, 1.1 \mathrm{eq}$.$) was added a solution of the$ phosphonate ($18.4 \mathrm{mg}, 36.5 \mu \mathrm{~mol}, 1.3 \mathrm{eq}$.) in THF $(200 \mu \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$. After 30 min stirring at 0 ${ }^{\circ} \mathrm{C}$, the resulting suspension was cooled at $-20^{\circ} \mathrm{C}$ and a solution of the aldehyde $(17.5 \mathrm{mg}$, $27.8 \mu \mathrm{~mol}, 1.0$ eq.) in THF ($200 \mu \mathrm{~L}$) was added. The reaction mixture was warmed to room
temperature, stirred for 4 h and quenched by addition of 2 mL saturated, aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The organic layer was separated and the aqueous phase was extracted with EtOAc (4 $\times 5 \mathrm{~mL}$). Then the combined organic layer was dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The crude product was purificated by flash chromatography on silica gel (hexanes $/ \mathrm{Et}_{2} \mathrm{OAc}=4: 1$) to give the desired ester $(5.5 \mathrm{mg}, 5.6$ $\mu \mathrm{mol}, 20 \%)$.
$\mathrm{R}_{f}=0.22$ (hexanes $\left./ \mathrm{EtOAc}=6: 1\right) ;[\alpha]_{\mathrm{D}}{ }^{20}=+49.7\left(c=0.27, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=-0.05(\mathrm{~s}, 3 \mathrm{H}),-0.03(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.70(\mathrm{~s}$, $3 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~m}$, $1 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~d}, J$ $=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=8.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~m}, 2 \mathrm{H}), 5.16(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J$ $=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~m}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=$ $15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-4.5,-4.0,12.6,14.2,16.0,17.0,17.7,18.5,19.0,19.8,22.4$, $23.4,24.7,25.8,26.4,27.5,39.3,42.0,43.5,45.9,47.9,56.8,73.3,74.2,76.6,82.1,89.7$, $116.4,117.8,127.2,128.1,129.9,133.3,133.5,134.2,134.8,140.6,141.5,142.5,146.7$, 155.5, 158.2, 168.4, 173.8, 204.5; HRMS calculated for $\mathrm{C}_{48} \mathrm{H}_{76} \mathrm{IN}_{2} \mathrm{O}_{7} \mathrm{SSi}$: 979.4187, found: 979.4167.

8.3.5 Heck-Macrocyclisation: Towards Archazolid B

(2E,5E,7S, $8 S, 9 Z, 11 Z, 13 E, 16 R, 17 S, 18 E)-((1 S, 2 S)-2-m e t h y l-1-(2-((S)-3-m e t h y l-1-(m e t h y l$ carbamoyloxy)butyl)thiazol-4-yl)but-3-enyl) 7-(tert-butyldimethylsilyloxy)-19-iodo-17-methoxy-5,8,10,12,16,18-hexamethyl-15-oxononadeca-2,5,9,11,13,18-hexaenoate 158

To $\mathrm{NaH}(55-65 \%$ in mineral oil, $1.4 \mathrm{mg}, 35.5 \mu \mathrm{~mol}, 1.3 \mathrm{eq}$.) was added a solution of the phosphonate ($13.7 \mathrm{mg}, 27.9 \mu \mathrm{~mol}, 1.0$ eq.) in THF $(200 \mu \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$. After 30 min stirring at 0 ${ }^{\circ} \mathrm{C}$, the resulting suspension was cooled at $-20^{\circ} \mathrm{C}$ and a solution of the aldehyde $(26.7 \mathrm{mg}$, $42.5 \mu \mathrm{~mol}, 1.5$ eq.) in THF ($200 \mu \mathrm{~L}$) was added. The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 30 min and quenched by addition of 2 mL saturated, aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The organic layer was separated and the aqueous phase was extracted with EtOAc $(4 \times 5 \mathrm{~mL})$. Then the combined organic layer was dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography on silica gel (hexanes $/ \mathrm{Et}_{2} \mathrm{OAc}=4: 1$) to give the desired este $(17.8 \mathrm{mg}, 18.4 \mu \mathrm{~mol}, 66 \%$).
$\mathrm{R}_{f}=0.32$ (hexanes $/ \mathrm{EtOAc}=6: 1$); $[\alpha]_{\mathrm{D}}{ }^{20}=+22.3\left(c=0.35, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=0.008(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.68(\mathrm{~s}$, $3 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{~s}$, $3 \mathrm{H}), 2.92$ (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~d}, J=9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.22(\mathrm{dd}, J=9.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{dd}, J=8.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=$ $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~m}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.03(\mathrm{dd}, J=$ $9.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.32(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~s}$, $1 \mathrm{H}), 7.60(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-4.5,-4.0,14.2,16.0,16.8$, $17.4,18.5,19.0,19.7,22.4,23.4,24.7,25.8,26.4,27.5,41.9,43.0,43.4,45.9,47.9,56.8,73.3$, $74.2,76.2,82.1,89.7,116.4,118.0,123.1,127.2,131.1,133.4,133.5,133.6,134.6,140.6$, 142.5, 146.7, 149.0, 155.5, 158.3, 167.0, 173.9, 204.5; HRMS calculated for $\mathrm{C}_{47} \mathrm{H}_{73} \mathrm{IN}_{2} \mathrm{O}_{7} \mathrm{NaSSi}$ 987.3850, found: 987.3857.

8.4 Studies Towards the Total Synthesis of Etnangien

8.4.1 Synthesis of the C15-C23 Subunit

8.4.1.1 Synthesis of the Aldehyde Fragment - Wittig Reaction

(2E,4E)-ethyl 3-methyl-6-oxohexa-2,4-dienoate 191

$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{3}$
Exact Mass: 168,0786
Mol. Wt.: 168,1898

1. (E)-Ehyl 3-methyl-4-oxobut-2-enoate ($1.0 \mathrm{~g}, 7.03 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added to a suspension of $\mathrm{Ph}_{3} \mathrm{PCHCHO}\left(3.20 \mathrm{~g}, 10.5 \mathrm{mmol}, 1.5 \mathrm{eq}\right.$.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. The reaction mixture was stirred for 24 h at room temperature and purified direct by flash chromatography (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=6: 1$ to $2: 1$) to give the aldehyde ($831 \mathrm{mg}, 4.94 \mathrm{mmol}, 70 \%$) as white needle crystals.
2. A flask containing $\mathrm{Ph}_{3} \mathrm{PCHCHO}$ ($146 \mathrm{mg}, 0.481 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added a solution of (E)-Ehyl 3-methyl-4-oxobut-2-enoate ($207 \mu \mathrm{~L}, 1.52 \mathrm{mmol}, 3.0$ eq.) in abs. DCM ($100 \mu \mathrm{l}$). The reaction mixture was stirred for 15 h at room temperature and purified direct by flash chromatography (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=6: 1$ to $1: 1$) to give the aldehyde ($64.6 \mathrm{mg}, 0.384 \mathrm{mmol}$, 80%) as white needle crystals.
$\mathrm{R}_{f}=0.37$ (hexanes $/ \mathrm{EtOAc}=9: 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $2.29(\mathrm{~s}, 3 \mathrm{H}), 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{dd}, J=15.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J$ $=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.65(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=13.8,14.2,60.5$, 127.0, 132.7, 148.6, 154.2, 165.8, 193.3.

Byproduct: (2E,4E,6E)-ethyl 3-methyl-8-oxoocta-2,4,6-trienoate 192

$\mathrm{R}_{f}=0.37$ (hexanes $/ \mathrm{EtOAc}=9: 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $2.31(\mathrm{~s}, 3 \mathrm{H}), 4.18(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{dd}, J=15.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J$ $=15.4,1 \mathrm{H}), 6.74(\mathrm{dd}, J=15.3,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=15.3,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.60(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=13.6,14.3,60.2,123.9,131.1,133.5,144.8$, 150.0, 150.4, 166.4, 193.3.

(2E,4E)-ethyl 3,5-dimethyl-6-oxohexa-2,4-dienoate 194

A flask containing $\mathrm{Ph}_{3} \mathrm{PC}\left(\mathrm{CH}_{3}\right) \mathrm{CHO}(50.0 \mathrm{mg}, 0.157 \mathrm{mmol}, 1.0$ eq.) was added a solution of (E)-Ehyl 3-methyl-4-oxobut-2-enoate ($64.0 \mu \mathrm{~L}, 0.471 \mathrm{mmol}, 3.0 \mathrm{eq}$.) in abs. DCM ($40 \mu \mathrm{l}$). The reaction mixture was stirred for 28 h at room temperature and purified direct by flash chromatography (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=9: 1$ to $4: 1$) to give aldehyde ($17.8 \mathrm{mg}, 97.7 \mu \mathrm{~mol}, 62 \%$) as yellow crystals.
$\mathrm{R}_{f}=0.24$ (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=9: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.94(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 9.46$ ($\mathrm{s}, 1 \mathrm{H}$) ${ }^{13} \mathrm{C}^{\mathrm{C}} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=11.1,14.2,18.4,60.3,123.0,140.4,150.1,150.9$, 166.0, 195.1.

(2E,4E)-ethyl 6-hydroxy-3-methylhexa-2,4-dienoate 197

Cxact Mass: 170,0943
Mol. Wt.: 170,2057

A solution of sodium borohydride ($242 \mathrm{mg}, 6.4 \mathrm{mmol}, 0.5$ eq.) in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(1: 1,3 \mathrm{~mL}$) was added to a solution of $(2 E, 4 E)$-ethyl 3-methyl-6-oxohexa-2,4-dienoate ($2.15 \mathrm{~g}, 12.8 \mathrm{mmol}$) in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(1: 1,2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at RT for 20 min , saturated with NaCl and extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 20 \mathrm{~mL})$. The combined organic extracts were dried
over MgSO_{4}. Evaporation of the solvent in vacuo afforded crude alcohol (3.12 g), which was used for the next steps without further purification.
$\mathrm{R}_{f}=0.41$ (hexanes $/ \mathrm{EtOAc}=2: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $2.26(\mathrm{~s}, 3 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{t}, J=4.8,2 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{dt}, J=15.8,5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=13.4,14.3,59.8,63.1$, 119.7, 133.7, 134.5, 151.4, 167.1.
(2E,4E)-Ethyl 6-(tert-butyldimethylsilyloxy)-3-methylhexa-2,4-dienoate 198

To a solution of the crude alcohol (3.12 g) and imidazol ($1.13 \mathrm{~g}, 16.6 \mathrm{mmol}, 1.3 \mathrm{eq}$.$) in abs.$ DMF (2 mL) was added slowly a solution of $\operatorname{TBSCl}(2.51 \mathrm{~g}, 16.6 \mathrm{mmol}, 1.3 \mathrm{eq}$.) in abs. DMF (5 ml). The reaction mixture was stirred at RT for 30 min . Sat. aq. $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ were added, the organic phase separated, and the aq. phase thoroughly extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 40$ mL). The combined organic extracts were dried over MgSO_{4} and concentrated in vacuo. Purified by flash chromatography (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=9: 1$) gave TBS-ether ($3.25 \mathrm{~g}, 11.4 \mathrm{mmol}$, 89%, two steps) as colourless oil.
$\mathrm{R}_{f}=0.43$ (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=9: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.07(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$, $1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.27(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{dd}, J=4.6$, $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 6.14(\mathrm{dt}, J=15.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-5.2,13.9,14.3,18.4,25.9,59.7,63.3,119.0,132.4,135.2,151.8,167.1$; LC-MS (ESI) calculated for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}$: 284.1808, found: 284.0.
(2E,4E)-6-(tert-butyldimethylsilyloxy)-3-methylhexa-2,4-dien-1-ol

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of the ester $(3.44 \mathrm{~g}, 12.1 \mathrm{mmol}, 1.0$ eq.) in THF (50 mL) was added slowly DIBAL-H (1.0 M in hexane, $36.3 \mathrm{~mL}, 36.3 \mathrm{mmol}, 3.0 \mathrm{eq}$.$) in a period of 15 \mathrm{~min}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and $200 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ were added. The organic phase was separated, and the aq. phase extracted with $\mathrm{Et}_{2} \mathrm{O}(6 \times 40 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered and evaporated in vacuo. Silica gel chromatography (hexanes / $\mathrm{Et}_{2} \mathrm{O}$, gradient elution, 1:1 to $1: 2$) afforded alcohol ($2.85 \mathrm{~g}, 11.8 \mathrm{mmol}, 97 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.29$ (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=6: 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.06(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$, $1.78(\mathrm{~s}, 3 \mathrm{H}), 4.24(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}), 5.62(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{dt}, J=15.6,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.24(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.2,12.6,18.4,26.0,59.4,63.8$, 128.6, 129.6, 133.7, 135.8.
(2E,4E)-6-(tert-butyldimethylsilyloxy)-3-methylhexa-2,4-dienal 188

To a stirred solution of the alcohol ($2.80 \mathrm{~g}, 11.5 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added 4 \AA MS (7 g) and $\mathrm{MnO}_{2}\left(15.1 \mathrm{~g}, 173 \mathrm{mmol}, 15\right.$ eq.) in portions at $0{ }^{\circ} \mathrm{C}$. The resulting suspension was stirred at room temperature for 30 min . Then the suspension was filtered through Celite and Silica gel which were washed with $\mathrm{Et}_{2} \mathrm{O}(10 \times 50 \mathrm{~mL})$. The solvent of the filtrate was removed to give aldehyde in 95% yield $(2.63 \mathrm{~g}, 10.9 \mathrm{mmol})$ as yellow oil, which was used for the next step without further purification.
$\mathrm{R}_{f}=0.51$ (hexanes $/ \mathrm{EtOAc}=6: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.07(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$, $2.24(\mathrm{~s}, 3 \mathrm{H}), 4.32(\mathrm{dd}, J=4.0,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dt}, J=15.6,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.42(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 10.09(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-$ 5.3, 13.2, 18.4, 25.9, 63.2, 129.4, 131.9, 137.2, 154.0, 191.4.

8.4.1.2 Construction of the Stereocentres at C20 and C21

(2R,3R,4E,6E)-((1R,2S)-2-(N-benzyl-2,4,6-trimethylphenylsulfonamido)-1-phenylpropyl) 8-(tert-butyldimethylsilyloxy)-3-hydroxy-2,5-dimethylocta-4,6-dienoate 199

A solution of (1R,2S)-2-(N-benzyl-2,4,6-trimethylphenyl-sulfonamido)-1-phenylpropyl propionate ($356 \mathrm{mg}, 0.742 \mathrm{mmol}$, leq.) and $\mathrm{Et}_{3} \mathrm{~N}\left(0.260 \mathrm{~mL}, 1.86 \mathrm{mmol}, 2.5 \mathrm{eq}\right.$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.5 \mathrm{~mL})$ under argon atmosphere was cooled down to $-78{ }^{\circ} \mathrm{C}$. Then dicyclohexyl(trifluoromethylsulfonyloxy)borane ($1.63 \mathrm{~mL}, 1 \mathrm{M}$ in n -Hexane, $1.63 \mathrm{mmol}, 2.2 \mathrm{eq}$.) was added slowly. The resulting mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$, before a solution of aldehyde ($360 \mathrm{mg}, 1.48 \mathrm{mmol}, 2.0$ eq.) in $6 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (dried with $4 \AA$ molecular sieves) was added slowly. After further 1 h the reaction mixture was warmed up to $-40^{\circ} \mathrm{C}(1 \mathrm{~h})$, quenched with pH 7 buffer (3.5 mL), diluted with $\mathrm{MeOH}(14 \mathrm{~mL})$ and charged with 2 mL of a $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ solution, before the mixture was stirred at r.t. overnight. Afterwards, the solvent was removed in vacuo and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, separated and the aqueous phase was reextracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed in vacuo. The residue was purified by column chromatography (hexanes $/ \mathrm{EtOAc}=8: 1$) to give ester as white crystals ($408 \mathrm{mg}, 0.567 \mathrm{mmol}, 76 \%$, d.r. $>5: 1$).
$\mathrm{R}_{f}=0.31$ (hexanes $/ \mathrm{EtOAc}=6: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=+41.6\left(\mathrm{c}=0.88, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=0.07(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.78$ $(\mathrm{s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 6 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=5.1,0.9 \mathrm{~Hz}, 2 \mathrm{H})$, $4.57(\mathrm{dd}, J=8.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57\left(\mathrm{~A}\right.$ of $\left.\mathrm{ABq}, J_{\mathrm{AB}}=16.5,1 \mathrm{H}\right), 4.78\left(\mathrm{~B}\right.$ of $\left.\mathrm{ABq}, J_{\mathrm{AB}}=16.5,1 \mathrm{H}\right)$, $5.36(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{dt}, J=15.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=$ $15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{~m}, 6 \mathrm{H}), 7.30(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-5.2$, $13.3,13.8,18.4,20.9,22.9,26.0,46.3,48.3,56.9,63.7,70.2,78.3,125.9,126.1,127.1,127.5$, $127.6,127.9,128.3,128.4,129.3,130.4,132.1,133.4,133.5,137.0,138.3,138.7,140.3$, 142.5, 174.3; HRMS calculated for $\mathrm{C}_{41} \mathrm{H}_{57} \mathrm{NO}_{6} \mathrm{SSiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 742.3574$, found: 742.3574.
(2R,3R,4E,6E)-8-(tert-butyldimethylsilyloxy)-3-hydroxy- N-methoxy-N,2,5-trimethylocta -4,6-dienamide 201

To a stirred suspension $\left(-20^{\circ} \mathrm{C}\right)$ of O, N-dimethylhydroxylamine hydrochloride (55.8 mg , $572 \mu \mathrm{~mol}$, 20.0 eq.) in THF ($100 \mu \mathrm{~L}$) was added $i \operatorname{PrMgCl}(\sim 2 \mathrm{M}$ in THF, $587 \mu \mathrm{~L}, 1173 \mu \mathrm{~mol}$, $41.0 \mathrm{eq})$. The mixture was stirred at $-20^{\circ} \mathrm{C}$ for 20 min and then a solution of ester (20.6 mg , $28.6 \mu \mathrm{~mol}, 1.0$ eq.) in THF ($100 \mu \mathrm{~L}+2 \times 100 \mu \mathrm{~L}$ washings) was added. The reaction mixture was warmed to $-10^{\circ} \mathrm{C}$ for 2.5 h and stirred at $0^{\circ} \mathrm{C}$ for 2 h , quenching with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5$ $\mathrm{mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ 10 mL) and the combined organic extracts washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Silica gel chromatography (hexanes / EtOAc, gradient elution, 9:1 to $1: 1$) afforded amide ($5.30 \mathrm{mg}, 14.8 \mu \mathrm{~mol}, 52 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.12$ (hexanes $/ \mathrm{EtOAc}=1: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=-13.0\left(\mathrm{c}=0.83, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=0.06(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.11(\mathrm{~d}, J=7.1,3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{~d}$, $J=5.6,1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 4.24(\mathrm{~d}, J=5.1,2 \mathrm{H}), 4.60(\mathrm{dd}, J=7.6,7.2,1 \mathrm{H}), 5.43$ (d, $J=9.2,1 \mathrm{H}), 5.75(\mathrm{dt}, J=15.3,5.1,1 \mathrm{H}), 6.24(\mathrm{~d}, J=15.3,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=-5.1,13.2,14.4,18.5,26.0,41.5,61.5,63.8,70.7,128.7,131.8,133.7,136.0$, 189.2; HRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{3} \mathrm{NO}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 380.2233$, found: 380.2232 .
(2E,4E,6E)-8-(tert-butyldimethylsilyloxy)- N-methoxy- $N, 2,5$-trimethylocta-2,4,6trienamide 202

$\mathrm{R}_{f}=0.31$ (hexanes $/ \mathrm{EtOAc}=4: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.08(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$, $1.90(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 4.28$ (dd, $J=5.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87$ (dt, J $=15.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=15.5,1 \mathrm{H}), 6.83(\mathrm{dd}, J=11.8 \mathrm{~Hz}$, $1.4,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-5.1,13.0,14.4,18.5,26.0,33.7,61.0,64.0,125.1$, $128.9,130.0,131.0,134.1,138.9$, 173.0; HRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 340.2308 , found: 340.2306 .
(2R,3R,4E,6E)-((1R,2S)-2-(N-benzyl-2,4,6-trimethylphenylsulfonamido)-1-phenylpropyl) 8-(tert-butyldimethylsilyloxy)-3-(3,4-dimethoxybenzyloxy)-2,5-dimethylocta-4,6-dienoate 205

To a solution of the alcohol ($47.5 \mathrm{mg}, 66.0 \mu \mathrm{~mol}, 1.0$ eq.) and PPTS ($8.30 \mathrm{mg}, 33.0 \mu \mathrm{~mol}, 0.5$ eq.) in abs. DCM (0.50 mL) was added a solution of imidate ($41.3 \mathrm{mg}, 132 \mu \mathrm{~mol}, 2.0$ eq.) in abs. DCM $(0.50 \mathrm{ml})$. The reaction mixture was stirred at RT for 17 h . PPTS $(8.30 \mathrm{mg}, 33.0$ $\mu \mathrm{mol}, 0.5 \mathrm{eq}$.$) and a solution of imidate (41.3 \mathrm{mg}, 132 \mu \mathrm{~mol}, 2.0$ eq.) in abs. DCM (0.50 ml) was added. After 4 h stirring at room temperature, sat. aq. $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ were added, the organic phase separated, and the aq. phase extracted with DCM ($3 \times 4 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4} and concentrated in vacuo. LC-MC showed that the yield of the DMPM-ether was 47%. The DMPM-ether couldn't be purified by column chromatography on silica gel. LC-MS calculated for $\mathrm{C}_{50} \mathrm{H}_{67} \mathrm{NO}_{8} \mathrm{SSiNH}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 887.46, found: 887.50.
(2R,3R,4E,6E)-((1R,2S)-2-(N-benzyl-2,4,6-trimethylphenylsulfonamido)-1-phenylpropyl)
3,8-bis(tert-butyldimethylsilyloxy)-2,5-dimethylocta-4,6-dienoate 206

To a stirred solution $\left(-78{ }^{\circ} \mathrm{C}\right)$ of alcohol ($86.4 \mathrm{mg}, 0.120$, mmol, 1.0 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added 2,6-lutidine ($24 \mu \mathrm{~L}, 0.203 \mathrm{mmol}, 1.7 \mathrm{eq}$.$) and TBSOTf (36 \mu \mathrm{~L}, 0.203 \mathrm{mmol}, 1.7$ eq.). The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 60 min . The cooling bath was removed and the reaction quenched with sat. aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The mixture was warmed to room temperature. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organics were washed with sat. aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$, dried over MgSO_{4}, filtered and evaporated in vacuo. Silica gel chromatography (hexanes / EtOAc 9:1) afforded the desired TBS-ether ($97.2 \mathrm{mg}, 0.116 \mathrm{mmol}$, 98\%) as a white solid.
$\mathrm{R}_{f}=0.59$ (hexanes / EtOAc $=9: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=\left(c=, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-$ 0.06 (s, 3H), -0.03 (s, 3H), 0.07 (s, 6H), $0.80(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.91$ ($\mathrm{s}, 9 \mathrm{H}$), $1.14(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.64(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 1 \mathrm{H}), 2.49(\mathrm{~m}, 1 \mathrm{H})$, $4.02(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=5.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.45\left(\mathrm{~A}\right.$ of ABq, $\left.J_{\mathrm{AB}}=16.2,1 \mathrm{H}\right), 4.63(\mathrm{dd}, J=9.3$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.83\left(\mathrm{~B}\right.$ of $\left.\mathrm{ABq}, J_{\mathrm{AB}}=16.4,1 \mathrm{H}\right), 5.26(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.64-5.73(\mathrm{~m}, 2 \mathrm{H})$, $6.17(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~s}, 2 \mathrm{H}), 7.05-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.34(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.1,-4.7,-4.4,13.1,13.3,14.4,18.1,18.5,20.9,22.9,25.9,26.0$, $47.5,48.2,56.8,64.0,70.9,77.8,126.4,126.7,127.3,127.7,127.9,128.3,128.4,128.5,132.1$, $132.2,133.2,134.0,134.5,138.3,138.7,140.4,142.5,173.1$; HRMS calculated for $\mathrm{C}_{47} \mathrm{H}_{71} \mathrm{NO}_{6} \mathrm{SSi}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 856.4438$, found: 856.4448 .
(2S,4R,5R,6E,8E)-10-(tert-butyldimethylsilyloxy)-5-hydroxy-4,7-dimethyl-3-oxodeca-6,8-dien-2-yl benzoate 210

Exact Mass: 446,2489
Mol. Wt.: 446,6517

To a stirred solution ($-78{ }^{\circ} \mathrm{C}$) of (S)-3-oxopentan-2-yl benzoate ($\left.1.88 \mathrm{~g}, 9.12 \mathrm{mmol}, 1.0 \mathrm{eq}.\right)$ in $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$ was added chlorodicyclohexylborane ($3.05 \mathrm{~mL}, 13.7 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and $\mathrm{Me}_{2} \mathrm{NEt}$ $(1.9 \mathrm{~mL}, 18 \mathrm{mmol}, 2 \mathrm{eq}$.$) . The mixture was warmed to 0^{\circ} \mathrm{C}$, stirred for 2 h and then recooled to $-78{ }^{\circ} \mathrm{C}$. A solution of aldehyde ($2.63 \mathrm{~g}, 10.9 \mathrm{mmol}, 1.2 \mathrm{eq}$.) in $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$ was added dropwise over 2 min . After 3 h , the reaction was kept in the freezer $\left(-22^{\circ} \mathrm{C}\right)$ overnight $(14 \mathrm{~h})$. The mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and quenched by dropwise addition of $\mathrm{MeOH}(15 \mathrm{~mL}), \mathrm{pH} 7$ phosphate buffer (15 mL) and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(15 \mathrm{~mL})$ and stirred for 2 h . Water (60 mL) was added, the organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 50$ mL). The combined organics were dried over MgSO_{4}, filtered and evaporated in vacuo. Silica gel chromatography (hexanes / EtOAc, gradient elution, 9:1 to 6:1) afforded ketone (3.95 g , $8.85 \mathrm{mmol}, 97 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.61$ (hexanes $\left./ \mathrm{EtOAc}=4: 1\right) ;[\alpha]^{20}{ }_{\mathrm{D}}=+30.0\left(c=2.16, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=0.07(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.55(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.81$ $(\mathrm{s}, 3 \mathrm{H}), 2.17(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=5.0,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{~m}, 1 \mathrm{H})$, $5.36(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{dt}, J=15.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{tm}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{tm}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{dm}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-5.2,13.3,14.2,15.6,18.4,26.0,48.8,63.7,70.4,75.0,128.5$, 129.3, 129.8, 130.9, 133.4, 136.7, 165.9, 211.1; HRMS calculated for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 469.2386, found: 469.2390 .
(2S,4R,5R,6E,8E)-10-(tert-butyldimethylsilyloxy)-5-(3,4-dimethoxybenzyloxy)-4,7-dimethyl-3-oxodeca-6,8-dien-2-yl benzoate 210

To a solution of the alcohol ($180 \mathrm{mg}, 0.403 \mathrm{mmol}, 1.0$ eq.) and PPTS ($50.6 \mathrm{mg}, 0.201 \mathrm{mmol}$, 0.5 eq.) in abs. DCM (3 mL) was added a solution of imidate ($252 \mathrm{mg}, 0.806 \mathrm{mmol}, 2.0 \mathrm{eq}$.) in abs. DCM (2 ml). The reaction mixture was stirred at RT for 23 h. Sat. aq. $\mathrm{NaHCO}_{3}(6 \mathrm{~mL})$ were added, the organic phase separated, and the aq. phase extracted with DCM ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4} and concentrated in vacuo. Purification by flash chromatography (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=15: 1$) gave DMPM-ether (90.4 mg , $0.151 \mathrm{mmol}, 37 \%$, two steps) as a white solid.
$\mathrm{R}_{f}=0.41$ (hexanes / EtOAc $=6: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=-1.63\left(c=1.24, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=0.08(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.77$ (s, 3H), $3.00(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.16(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=5.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.36(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{dt}, J=15.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~m}, 3 \mathrm{H}), 7.44$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.56(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=-5.2,13.4,13.9,15.3,18.5,26.0,47.6,55.8,63.7,70.3,75.4,110.6,111.1,120.0$, 128.4, 128.9, 129.7, 130.9, 133.2, 133.4, 138.6, 148.3, 148.8, 165.8, 209.7; HRMS calculated for $\mathrm{C}_{34} \mathrm{H}_{48} \mathrm{O}_{7} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 619.3067$, found: 619.3067.
(4R,5R,6E,8E)-10-(tert-butyldimethylsilyloxy)-5-(3,4-dimethoxybenzyloxy)-3,4,7-trimethyldeca-6,8-diene-2,3-diol 211

To a solution of the ketone ($74.8 \mathrm{mg}, 0.125 \mathrm{mmol}, 1.0$ eq.) in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added MeLi $\left(\left(235 \mu \mathrm{~L}, 1.6 \mathrm{M}\right.\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.376 \mathrm{mmol}, 3.0 \mathrm{eq}\right)$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was warmed up to $-20{ }^{\circ} \mathrm{C}$ for 4 h and quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(6 \mathrm{~mL})$. After warming to room temperature, the organic layer was separated and the aqueous layer was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered and evaporated in vacuo. Silica gel chromatography (hexanes / EtOAc, 2:1) afforded the diol ($14.0 \mathrm{mg}, 27.5$ $\mu \mathrm{mol}, 22 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.21$ (hexanes $/ \mathrm{EtOAc}=2: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.09(\mathrm{~s}, 6 \mathrm{H}), 0.63(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 1.14(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H})$, $1.93(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.21(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.28(\mathrm{~m}, 3 \mathrm{H}), 4.47(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dt}, J=15.6,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.33(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-5.1,12.2,13.6$, $16.9,18.5,19.1,26.0,43.0,55.9,63.7,70.2,72.3,76.4,78.7,111.0,111.7,121.1,129.1$, $129.8,130.5,133.4,137.9,148.9,149.0$; HRMS calculated for $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 531.3118, found: 531.3110.
(3R,4R,5E,7E)-9-(tert-butyldimethylsilyloxy)-4-(3,4-dimethoxybenzyloxy)-3,6-dimethyl nona-5,7-dien-2-one 212

To a solution of the diol ($2.3 \mathrm{mg}, 4.5 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) in THF ($200 \mu \mathrm{~L}$) was added a sulotion of NaIO_{4} in $\mathrm{H}_{2} \mathrm{O}(50 \mu \mathrm{~L}, 12.0 \mathrm{mg} / 500 \mu \mathrm{~L}, 5.6 \mu \mathrm{~mol}, 1.2$ eq.) at room temperature. After 2.5 h , ($3.0 \mathrm{mg}, 14.0 \mu \mathrm{~mol}, 3.1 \mathrm{eq}$.) was added as solid. After 3.5 h , a sluotion of NaIO_{4} in $\mathrm{H}_{2} \mathrm{O}(100$ $\mu \mathrm{L}, 12.0 \mathrm{mg} / 500 \mu \mathrm{~L}, 11.2 \mu \mathrm{~mol}, 2.4 \mathrm{eq}$.) was added. After 6.5 h , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with DCM $(3 \times 3 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered and evaporated in vacuo. Silica gel chromatography (hexanes / EtOAc, 2:1) afforded the methyl ketone (1.8 mg , $3.9 \mu \mathrm{~mol}, 86 \%)$ as a colorless oil.
$\mathrm{R}_{f}=0.72$ (hexanes / EtOAc $=2: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=-36.0\left(c=0.13, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=0.09(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.75$ $(\mathrm{m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.19(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 4,32(\mathrm{t}$, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{dt}, J=15.8,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.31(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-5.1,13.1$, $13.5,18.5,26.0,30.8,51.5,55.8,55.9,63.8,70.1,110.8,111.2,120.2,128.9,129.8,130.9$, 133.6, 138.4, 148.5, 148.9, 211.9; HRMS calculated for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 485.2699$, found: 485.2695 .

(3R,4R,5E,7E)-4-(3,4-dimethoxybenzyloxy)-9-hydroxy-3,6-dimethylnona-5,7-dien-2-one

 213

To a solution of diol ($11.7 \mathrm{mg}, 23.0 \mu \mathrm{~mol}$, 1.0 eq.) in THF / $\mathrm{H}_{2} \mathrm{O}(200 \mu \mathrm{~L} / 50 \mu \mathrm{~L})$ was added $\mathrm{NaIO}_{4}(29.5 \mathrm{mg}, 138 \mu \mathrm{~mol}, 6.0$ eq.) at room temperature. After stirring for 6.5 h , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with DCM ($3 \times 6 \mathrm{~mL}$). The combined organics were dried over MgSO_{4}, filtered and evaporated in vacuo. Silica gel chromatography (hexanes / EtOAc, 2:1) afforded the methyl ketone ($7.5 \mathrm{mg}, 21.5 \mu \mathrm{~mol}, 93 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.09$ (hexanes $/ \mathrm{EtOAc}=2: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=-20.4\left(c=0.37, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=0.90(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.19(\mathrm{~s}$,
$3 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.19(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{t}, J=5.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4,33(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{dt}, J=$ $15.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $13.1,13.5,30.8,51.4,55.8,55.9,63.6,70.3,110.8,111.2,120.2,128.3,130.7,135.2,138.1$, 148.5, 148.9, 211.8; HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 371.1834$, found: 371.1838 .
(2S,4R,5R,6E,8E)-5,10-bis(tert-butyldimethylsilyloxy)-4,7-dimethyl-3-oxodeca-6,8-dien-2-yl benzoate 214

$\mathrm{C}_{31} \mathrm{H}_{52} \mathrm{O}_{5} \mathrm{Si}_{2}$
Exact Mass: 560,3353
Mol. Wt.: 560,9126

To a stirred solution $\left(-78{ }^{\circ} \mathrm{C}\right)$ of the alcohol ($2.70 \mathrm{~g}, 6.04 \mathrm{mmol}, 1.0$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was slowly added a solution of proton sponge ${ }^{\circledR}\left(1.81 \mathrm{~g}, 8.46 \mathrm{mmol}, 1.4 \mathrm{eq}\right.$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and TBSOTf ($1.52 \mathrm{~mL}, 6.64 \mathrm{mmol}, 1.1 \mathrm{eq}$.). The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 20 min . The cooling bath was removed and the reaction quenched with sat. aqueous $\mathrm{NaHCO}_{3}(22 \mathrm{~mL})$. The mixture was warmed to room temperature. $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{~mL})$ and sat. aqueous NaHCO_{3} (20 mL) were added. The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$. The combined organics were washed with sat. aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, dried over MgSO_{4}, filtered and evaporated in vacuo. Silica gel chromatography (hexanes / $\mathrm{Et}_{2} \mathrm{O}$, gradient elution, 9:1 to 6:1) afforded the desired TBS-ether ($2.95 \mathrm{~g}, 5.26 \mathrm{mmol}, 87 \%$) as a white solid.
$\mathrm{R}_{f}=0.63$ (hexanes / EtOAc $=9: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=+5.0\left(c=0.52, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=-0.06(\mathrm{~s}, 3 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.52(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.78(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.89(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=5.1$, $1.5,2 \mathrm{H}), 4.72(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dt}$, $J=15.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{tm}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{tm}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.07(\mathrm{dm}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-5.1,-4.9,-4.4,13.5$, $14.0,15.1,18.0,18.5,25.8,26.0,49.5,63.9,71.7,75.4,128.4$ (2C), 129.8, 132.8, 133.2,
133.9, 134.6, 165.8, 209.4; HRMS calculated for $\mathrm{C}_{31} \mathrm{H}_{52} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 583.3251$, found: 583.3253 .
(2S,3R,4S,5R,6E,8E)-5,10-bis(tert-butyldimethylsilyloxy)-4,7-dimethyldeca-6,8-diene-2,3-diol 216

To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of the protected aldol product ($\left.1.00 \mathrm{~g}, 1.78 \mathrm{mmol}, 1.0 \mathrm{eq}.\right)$ in THF (15 mL) was added a solution of $\mathrm{LiBH}_{4}(777 \mathrm{mg}, 35.6 \mathrm{mmol}, 20$ eq.) in THF (20 mL). The reaction mixture was warmed slowly to r.t. and stirring was continued for 24 h , before cooling to $0{ }^{\circ} \mathrm{C}$ and careful quenching with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 15 \mathrm{~mL})$ and the combined organic extracts washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The colorless residue $(1.06 \mathrm{~g})$ was used for the next step without further purification.
$\mathrm{R}_{f}=0.010$ (hexanes / EtOAc $=9: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=-9.3\left(c=0.67, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=0.005(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.74(\mathrm{~d}, J=7.1,3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}$, $9 \mathrm{H}), 1.15(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.52(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 359 (m, 1H), 3.78 (m, 1H), 3.81 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.25 (dd, $J=5.3,1.3,2 \mathrm{H}), 4.51$ (dd, $J=$ 9.2, $7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $5.36(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{dt}, J=15.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.1,-4.9,-3.9,12.0,13.5,16.3,18.0,18.5,25.8,26.0$, $42.3,63.9,68.4,75.0,77.6,128.6,133.1,133.8,133.9$; HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{50} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 481.3145$, found: 481.3148 .
(2R,3R,4E,6E)-3,8-bis(tert-butyldimethylsilyloxy)-2,5-dimethylocta-4,6-dienal 217

To a stirring solution of the crude diol $(1.06 \mathrm{~g})$ in toluene $(10 \mathrm{~mL})$ under an atmosphere of Ar , at r.t., was added $\mathrm{Pb}(\mathrm{OAc})_{4}(868 \mathrm{mg}, 1.96 \mathrm{mmol}, 1.1$ equiv $)$ in three portions over 5 min . After 25 min ., direct silica gel chromatography (hexanes / $\mathrm{Et}_{2} \mathrm{O}, 9: 1$) afforded aldehyde (662 $\mathrm{mg}, 1.60 \mathrm{mmol}, 90 \%$, two steps) as a colorless oil.
$\mathrm{R}_{f}=0.62$ (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=6: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=-15.2\left(c=1.29, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=-0.03(\mathrm{~s}, 3 \mathrm{H}), 0.008(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.78$ (s, 3H), 2.47 (m, 1H), 4.25 (dd, $J=5.3,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.63$ (dd, $J=9.1,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{dt}, J=15.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $9.77(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.1,-4.1,10.5,13.3,18.1,18.5$, 25,7, 26.0, 53.3, 63.9, 71.2, 128.8, 132.4, 133.7, 134.2, 204.7.
(3R,4R,5E,7E)-4,9-bis(tert-butyldimethylsilyloxy)-3,6-dimethylnona-5,7-dien-2-one 219

$\mathrm{C}_{23} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Si}_{2}$
Exact Mass: 426,2985
Mol. Wt.: 426,7805

To a cold $\left(-78{ }^{\circ} \mathrm{C}\right)$ stirred, solution of the aldehyde $(1.21 \mathrm{~g}, 2.93 \mathrm{mmol}, 1.0 \mathrm{eq})$ was added MeLi ($5.50 \mathrm{~mL}, 1.6 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}, 8.79 \mathrm{mmol}, 3.0 \mathrm{eq}$). After stirring for 30 min ., the reaction mixture was warmed to $-30^{\circ} \mathrm{C}$, and stirred at this temperature for 30 min . The reaction mixture was quenched by addition of pH 7 phosphate buffer (15 mL). The organic phase was separated, and the aq. phase thoroughly extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined
organics were dried over MgSO_{4}, filtered and evaporated in vacuo. Silica gel chromatography (hexanes / EtOAc, gradient elution, 9:1 to 2:1) afforded the respective secondary alcohol $(1.02 \mathrm{~g}, 2.39 \mathrm{mmol}, 82 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-0.01(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}$, $9 \mathrm{H}), 0.93(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.73(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(\mathrm{~m}, 1 \mathrm{H})$, $3.54(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=5.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{dd}, J=8.7,4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.56(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dt}, J=15.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.1,-4.2,10.9,13.1,18.0,18.5,25,8,26.0,44.2,64.0,67.7,75.1$, 128.1, 132.8, 134.0, 134.2.

To a solution of the above prepared alcohol ($1.02 \mathrm{~g}, 2.39 \mathrm{mmol}, 1.0$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL) were added $\mathrm{NaHCO}_{3}(462 \mathrm{mg}, 5.50 \mathrm{mmol}, 2.3 \mathrm{eq})$ and a solution of Dess-Martin-Periodinan $(1.22 \mathrm{~g}, 2.87 \mathrm{mmol}, 1.2 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL})$. The resulting solution was stirred 90 min at room temperature. Sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(15 \mathrm{~mL})$ and sat. aq. $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ were added, the organic phase separated, and the aq. phase thoroughly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 15 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}. Evaporation of the solvent in vacuo and flash chromatography (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=9: 1$) afforded the ketone ($932 \mathrm{mg}, 2.18 \mathrm{mmol}$, 92%) as a colorless oil.
$\mathrm{R}_{f}=0.50$ (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=9: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=-7.1\left(c=0.17, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=-0.07(\mathrm{~s}, 3 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}$, $9 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=5.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{t}, J=9.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dt}, J=15.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-5.1,-4.2,13.0,13.5,18.0,18.5,25,8,26.0,31.5,53.3,63.9$, $72.5,128.5,132.9,133.9,134.3,212.4$; HRMS calculated for $\mathrm{C}_{23} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 449.2883, found: 449.2881.

8.4.2 Connection of the C15-C23 and the C24-C31 Subunits

4-phenylbutanal 221

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}$
Exact Mass: 148,0888
Mol. Wt.: 148,2017

To a solution of the alcohol ($148 \mathrm{mg}, 0.985 \mathrm{mmol}, 1.0$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ were added Dess-Martin-Periodinan ($500 \mathrm{mg}, 1.18 \mathrm{mmol}, 1.2 \mathrm{eq}$). The resulting solution was stirred 60 min at room temperature. Sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(5 \mathrm{~mL})$ and sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ were added, the organic phase separated, and the aq. phase thoroughly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}. Evaporation of the solvent in vacuo and flash chromatography (pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 1$) afforded the aldehyde ($137 \mathrm{mg}, 0.924$ mmol, 94\%) as a colorless oil.
$\mathrm{R}_{f}=0.56$ (pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.96(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{dt}, J$ $=7.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~m}, 2 \mathrm{H}), 9.75(\mathrm{t}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=23.7,35.0,43.2,126.1,141.2,202.3$.
(4R,7R,8R,9E,11E)-8,13-bis(tert-butyldimethylsilyloxy)-4-hydroxy-7,10-dimethyl-1-phenyltrideca-9,11-dien-6-one 222

To a solution of $(+)-\mathrm{DIPCl}\left(23.4 \mathrm{mg}, 73.1 \mu \mathrm{~mol}\right.$, 2.6 eq.) in dry $\mathrm{Et}_{2} \mathrm{O}(50 \mu \mathrm{~L})$ was added dry $\mathrm{Et}_{3} \mathrm{~N}(16.0 \mu \mathrm{~L}, 113 \mathrm{mmol}, 4.0 \mathrm{eq}$.$) and a solution of ketone (12.0 \mathrm{mg}, 28.1 \mu \mathrm{~mol}, 1.0$ eq.) in dry $\mathrm{Et}_{2} \mathrm{O}(200 \mu \mathrm{~L}+50 \mu \mathrm{~L}$ washing $)$ at $0{ }^{\circ} \mathrm{C}$. The resulting white suspension was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 90 min and then cooled to $-78^{\circ} \mathrm{C}$. A solution of the aldehyde ($12.5 \mathrm{mg}, 84.3 \mu \mathrm{~mol}, 3.0$ eq.) in dry $\mathrm{Et}_{2} \mathrm{O}(100 \mu \mathrm{~L})$ was added via cannula, and the suspension was stirred at $-78^{\circ} \mathrm{C}$ for

3 h , and then at room temperature for 15 h . The reaction was quenched by the addition of pH 7 phosphate buffer ($60 \mu \mathrm{~L}$) and a 30% aqueous solution of $\mathrm{H}_{2} \mathrm{O}_{2}(100 \mu \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$. After warming to room temperature, the layers were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 3 \mathrm{~mL})$ and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude oil was flash chromatographed (hexanes / EtOAc, gradient elution, $15: 1$ to $9: 1$) to yield an aldol adduct ($8.0 \mathrm{mg}, 13.9 \mu \mathrm{~mol}, 50 \%$) as a yellow oil.
$\mathrm{R}_{f}=0.34$ (hexanes $/ \mathrm{EtOAc}=9: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=-39.4\left(c=0.04, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=-0.07(\mathrm{~s}, 3 \mathrm{H}),-0.05(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.91(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~d}, J=1.0,3 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H})$, $2.63(\mathrm{~m}, 3 \mathrm{H}), 2.73(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=5.1,1.5 \mathrm{~Hz}$, $2 \mathrm{H}), 4.56(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{dt}, J=15.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}$, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-5.1,-4.2$, $13.0,13.5,18.0,18.5,25.8,26.0,27.2,35.7,51.4,53.0,63.9,67.0,72.6,125.7,128.3,128.4$, 128.7, 132.6, 133.8, 134.6, 142.3, 215.9; HRMS calculated for $\mathrm{C}_{33} \mathrm{H}_{58} \mathrm{IO}_{4} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 597.3771, found: 597.3770.

(R)-((4R,7R,8R,9E,11E)-8,13-bis(tert-butyldimethylsilyloxy)-7,10-dimethyl-6-oxo-1-phenyltrideca-9,11-dien-4-yl) 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate 223

To a stirred solution of (2R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoic acid ($3.7 \mathrm{mg}, 15.6$ $\mu \mathrm{mol}, 3.0 \mathrm{eq}.), \mathrm{Et}_{3} \mathrm{~N}(2.0 \mu \mathrm{~L}, 17.2 \mu \mathrm{~mol}, 3.3 \mathrm{eq}$.$) and \operatorname{DMAP}(2.1 \mathrm{mg}, 17.2 \mu \mathrm{~mol}, 3.3 \mathrm{eq}$.) in toluene ($50 \mu \mathrm{~L}$) were added 2,4,6-trichlorobenzoyl chloride ($2.4 \mu \mathrm{~L}, 15.6 \mu \mathrm{~mol}, 3.0 \mathrm{eq}$.) and a solution of alcohol ($3.0 \mathrm{mg}, 5.2 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) in toluene ($100 \mu \mathrm{~L}$) at room temperature. The resulted white slurry was stirred at room temperature for 20 minutes before being quenched with pH 7 phosphate buffer $(0.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C} . \mathrm{DCM}(2 \mathrm{~mL})$ was added and the layers were separated. The aqueous layer was extracted with DCM $(3 \times 2 \mathrm{~mL})$. The
combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography (hexanes $/ \mathrm{EtOAc}=9: 1$) afforded the ester ($3.6 \mathrm{mg}, 4.6 \mathrm{mmol}, 88 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.67$ (hexanes $/ \mathrm{EtOAc}=9: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-0.08(\mathrm{~s}, 3 \mathrm{H}),-0.07(\mathrm{~s}$, $3 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.77(\mathrm{~s}, 9 \mathrm{H}), 0.78(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.62(\mathrm{~m}, 4 \mathrm{H}), 1.77(\mathrm{~d}, J$ $=1.0,3 \mathrm{H}), 2.58(\mathrm{~m}, 3 \mathrm{H}), 2.71(\mathrm{dd}, J=18.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=18.3,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.48$ (d, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.24(\mathrm{dd}, J=5.1,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=9.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.58(\mathrm{~m}, 1 \mathrm{H}), 5.73(\mathrm{dt}, J=15.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~m}, 2 \mathrm{H})$, $7.16(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~m}, 3 \mathrm{H}), 7.49(\mathrm{~m}, 2 \mathrm{H})$.

(S)-((4R,7R,8R,9E,11E)-8,13-bis(tert-butyldimethylsilyloxy)-7,10-dimethyl-6-oxo-1-

 phenyltrideca-9,11-dien-4-yl) 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate 224

To a stirred solution of (2S)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoic acid ($3.7 \mathrm{mg}, 15.6$ $\mu \mathrm{mol}, 3.0$ eq. $), \mathrm{Et}_{3} \mathrm{~N}(2.0 \mu \mathrm{~L}, 17.2 \mu \mathrm{~mol}, 3.3$ eq. $)$ and DMAP ($\left.2.1 \mathrm{mg}, 17.2 \mu \mathrm{~mol}, 3.3 \mathrm{eq}.\right)$ in toluene ($50 \mu \mathrm{~L}$) were added 2,4,6-trichlorobenzoyl chloride ($2.4 \mu \mathrm{~L}, 15.6 \mu \mathrm{~mol}, 3.0 \mathrm{eq}$.) and a solution of alcohol ($3.0 \mathrm{mg}, 5.2 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) in toluene ($100 \mu \mathrm{~L}$) at room temperature. The resulting white slurry was stirred at room temperature for 20 minutes before being quenched with pH 7 phosphate buffer $(0.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C} . \mathrm{DCM}(2 \mathrm{~mL})$ was added and the layers were separated. The aqueous layer was extracted with DCM ($3 \times 2 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography (hexanes $/ \mathrm{EtOAc}=9: 1$) afforded the ester ($3.6 \mathrm{mg}, 4.6 \mathrm{mmol}, 98 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.71$ (hexanes $/ \mathrm{EtOAc}=9: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-0.08(\mathrm{~s}, 6 \mathrm{H}), 0.07(\mathrm{~s}$, $6 \mathrm{H}), 0.67(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.68(\mathrm{~m}, 4 \mathrm{H}), 1.76(\mathrm{~d}, J=1.0,3 \mathrm{H})$, $2.53(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{dd}, J=18.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=18.1,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.49(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.24(\mathrm{dd}, J=5.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=$
$9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~m}, 1 \mathrm{H}), 5.72(\mathrm{dt}, J=15.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~m}$, 2H), 7.17 (m, 1H), $7.25(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{~m}, 2 \mathrm{H})$.

(2E,4Z,6R,7R,10R,14S,16Z)-1,6-bis(tert-butyldimethylsilyloxy)-10-hydroxy-17-iodo-14-methoxy-4,7-dimethylheptadeca-2,4,16-trien-8-one 225

To a solution of ketone ($230 \mathrm{mg}, 0.540 \mathrm{mmol}, 1.0$ eq.) in dry $\mathrm{Et}_{2} \mathrm{O}(0.7 \mathrm{~mL})$ was added dry $\mathrm{Et}_{3} \mathrm{~N}(227 \mu \mathrm{~L}, 1.62 \mathrm{mmol}, 3.0 \mathrm{eq}$.$) and a solution of (+)-DIPCl (449 \mathrm{mg}, 1.40 \mathrm{mmol}, 2.6$ eq. under high vacuum for 4 h to remove any traces of HCl$)$ in dry $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The resultant white suspension was stirred at $0{ }^{\circ} \mathrm{C}$ for 60 min and then cooled to $-78{ }^{\circ} \mathrm{C}$. A solution of the aldehyde ($198 \mathrm{mg}, 0.702 \mathrm{mmol}, 1.3$ eq. $)$ in dry $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL}+2 \times 0.5 \mathrm{~mL}$ for washings) was added via cannula, and the suspension was stirred at $-78^{\circ} \mathrm{C}$ for $2 \mathrm{~h},-60^{\circ} \mathrm{C}$ for 1 h and then at $-20^{\circ} \mathrm{C}$ for 18 h . The reaction was quenched by the addition of pH 7 phosphate buffer (6 mL) and after warming to room temperature, the layers were separated. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 6 \mathrm{~mL})$ and the combined organic extracts were concentrated in vacuo. The resultant residue was taken up in $\mathrm{MeOH}(6 \mathrm{~mL})$ and pH 7 phosphate buffer (3 mL) and cooled to $0{ }^{\circ} \mathrm{C}$. A 30% aqueous solution of $\mathrm{H}_{2} \mathrm{O}_{2}(1 \mathrm{~mL})$ was added and the mixture was warmed to RT and stirred for $2.5 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{CCl}_{2}(6 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ (6 mL) were added and the layers were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{CCl}_{2}(4 \times 8 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude oil was flash chromatographed (hexanes / EtOAc, gradient elution, 9:1 to 4:1) to yield an aldol adduct ($289 \mathrm{mg}, 0.408 \mathrm{mmol}, 76 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.11$ (hexanes / EtOAc $=9: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=-34.1\left(c=0.73, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=-0.06(\mathrm{~s}, 3 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, 0.91 (s, 9H), 1.44 (m, 6H), 1.79 (s, 3H), 2.35 (m, 2H), 2.56 (dd, $J=18.3,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.65$ (m, 3H), 2.75 (dd, $J=18.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.18 ($\mathrm{s}, 1 \mathrm{H}$), 3.30 (m, 1H), 3.34 (s, 3H), 4.05 (m, $1 \mathrm{H}), 4.25(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{dt}, J=$
$15.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-5.1,-4.2,13.0,13.5,18.0,18.5,21.4,25.8,26.0,33.6,36.2$, $38.5,51.4,53.0,56.7,63.9,67.0,72.6,79.5,84.2,128.7,132.6,133.7,134.6,137.6,215.9$; HRMS calculated for $\mathrm{C}_{32} \mathrm{H}_{61} \mathrm{IO}_{5} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 731.3000$, found: 731.3000.

(R)-((1Z,4S,8R,11R,12R,13E,15E)-12,17-bis(tert-butyldimethylsilyloxy)-1-iodo-4-methoxy-11,14-dimethyl-10-oxoheptadeca-1,13,15-trien-8-yl) 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate 225a

To a stirred solution of (2R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoic acid ($3.5 \mathrm{mg}, 14.8$ $\mu \mathrm{mol}$, 2.1 eq.$), \mathrm{Et}_{3} \mathrm{~N}(2.0 \mu \mathrm{~L}, 16.2 \mu \mathrm{~mol}, 2.3$ eq. $)$ and DMAP ($\left.2.0 \mathrm{mg}, 16.4 \mu \mathrm{~mol}, 2.3 \mathrm{eq}.\right)$ in toluene ($50 \mu \mathrm{~L}$) were added 2,4,6-trichlorobenzoyl chloride ($2.3 \mu \mathrm{~L}, 14.8 \mu \mathrm{~mol}, 2.1$ eq.) and a solution of alcohol ($5.0 \mathrm{mg}, 7.0 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) in toluene ($100 \mu \mathrm{~L}$) at room temperature. The resulting white slurry was stirred at room temperature for 20 minutes before being quenched with pH 7 phosphate buffer $(0.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C} . \mathrm{DCM}(2 \mathrm{~mL})$ was added and the layers were separated. The aqueous layer was extracted with DCM ($3 \times 2 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography (hexanes $/ \mathrm{EtOAc}=6: 1$) afforded the ester ($5.7 \mathrm{mg}, 6.2 \mathrm{mmol}, 89 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.46$ (hexanes $/ \mathrm{EtOAc}=9: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-0.07(\mathrm{~s}, 3 \mathrm{H}),-0.05(\mathrm{~s}$, $3 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.79(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{~m}, 4 \mathrm{H}), 1.61(\mathrm{~m}$, $2 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=18.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.95$ (dd, $J=18.3,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 4.25(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.55(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~m}, 1 \mathrm{H}), 5.73(\mathrm{dt}, J=15.8,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.21(\mathrm{~m}, 2 \mathrm{H}), 6.29(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{~m}, 2 \mathrm{H})$.
(S)-((1Z,4S,8R,11R,12R,13E,15E)-12,17-bis(tert-butyldimethylsilyloxy)-1-iodo-4-methoxy-11,14-dimethyl-10-oxoheptadeca-1,13,15-trien-8-yl) 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate 225b

To a stirred solution of (2S)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoic acid ($3.5 \mathrm{mg}, 14.8$ $\mu \mathrm{mol}, 5.1 \mathrm{eq}.), \mathrm{Et}_{3} \mathrm{~N}(2.0 \mu \mathrm{~L}, 16.2 \mu \mathrm{~mol}, 5.6$ eq. $)$ and DMAP ($2.0 \mathrm{mg}, 16.4 \mu \mathrm{~mol}, 5.6$ eq.) in toluene ($50 \mu \mathrm{~L}$) were added 2,4,6-trichlorobenzoyl chloride ($2.3 \mu \mathrm{~L}, 14.8 \mu \mathrm{~mol}, 5.1 \mathrm{eq}$.) and a solution of alcohol ($2.0 \mathrm{mg}, 2.9 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) in toluene ($100 \mu \mathrm{~L}$) at room temperature. The resulting white slurry was stirred at room temperature for 20 minutes before being quenched with pH 7 phosphate buffer $(0.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C} . \mathrm{DCM}(2 \mathrm{~mL})$ was added and the layers were separated. The aqueous layer was extracted with DCM $(3 \times 2 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography (hexanes $/ \mathrm{EtOAc}=6: 1$) afforded the ester ($2.4 \mathrm{mg}, 2.6 \mathrm{mmol}, 90 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.50$ (hexanes $/ \mathrm{EtOAc}=9: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-0.07(\mathrm{~s}, 3 \mathrm{H}),-0.06(\mathrm{~s}$, $3 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.68(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.49(\mathrm{~m}, 4 \mathrm{H}), 1.68(\mathrm{~m}$, $2 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=18.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.90$ (dd, $J=18.3,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 4.25(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.52(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~m}, 1 \mathrm{H}), 5.73(\mathrm{dt}, J=15.6,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.22(\mathrm{~m}, 2 \mathrm{H}), 6.30(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{~m}, 2 \mathrm{H})$.
(1Z,4S,8R,10S,11S,12R,13E,15E)-12,17-bis(tert-butyldimethylsilyloxy)-10-hydroxy-1-iodo-4-methoxy-11,14-dimethylheptadeca-1,13,15-trien-8-yl acetate 226

To a solution of acetaldehyde ($320 \mu \mathrm{~L}$) in THF ($400 \mu \mathrm{~L}$) was added $\operatorname{SmI}_{2}(0.1 \mathrm{M}$ in THF, 352 $\mu \mathrm{L}, 35.2 \mu \mathrm{~mol}, 1.25 \mathrm{eq}$.) at $-10{ }^{\circ} \mathrm{C}$. After stirring for 10 min at the same temperature, a solution of the ketone ($20.0 \mathrm{mg}, 28.2 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) in THF ($50 \mu \mathrm{~L}, 2 \times 50$ washings) was added at $-10^{\circ} \mathrm{C}$. The mixture was stirred 1 h at $-10^{\circ} \mathrm{C}$ and then placed in a $-20^{\circ} \mathrm{C}$ freezer for 16 h (without stirring). The reaction was quenched at $-20^{\circ} \mathrm{C}$ with sat. aq. $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ and was stirred for 30 min while warming to room temperature. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ and the layers were separated. The aqueous phases were extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 $\times 3 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography (hexanes / EtOAc, 4:1) afforded alcohol (19.7 $\mathrm{mg}, 26.2 \mu \mathrm{~mol}, 93 \%$) as colorless oil.
$\mathrm{R}_{f}=0.30$ (hexanes / EtOAc $=4: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=-11.4\left(c=0.19, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=-0.03(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.75(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H})$, $0.90(\mathrm{~s}, 9 \mathrm{H}), 1.29-1.77(\mathrm{~m}, 9 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~s}$, $3 \mathrm{H}), 3.41(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=5.2,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{dd}, J=9.2$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dt}, J=15.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J$ $=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=-5.1,-4.9,-4.0,10.9,13.3,18.1,18.5,21.2,21.4,25,9,26.0,33.4,35.2,38.4,39.0,45.6$, 56.7, 64.0, 68.6, 71.6, 72.2, 79.4, 84.2, 127.8, 133.4, 133.6, 134.4, 137.5, 172.1; HRMS calculated for $\mathrm{C}_{34} \mathrm{H}_{65} \mathrm{IO}_{6} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 775.3262$, found: 775.3257.
(1Z,4S,8R,10S,11S,12R,13Z,15E)-12,17-bis(tert-butyldimethylsilyloxy)-1-iodo-4-methoxy-11,14-dimethylheptadeca-1,13,15-triene-8,10-diol 227

To a solution of acetic acid (1.6 mL) in acetonitrile (1.6 mL) was added tetramethylammonium triacetoxyborohydride ($274 \mathrm{mg}, 1.04 \mathrm{mmol}, 4.7$ eq.). After stirring for 15 min at room temperature, the mixture was added to a cold $\left(-40^{\circ} \mathrm{C}\right)$ stirred, solution of the β-hydroxy ketone ($157 \mathrm{mg}, 0.221 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in 5:2 acetonitrile/THF (3.2 mL) via cannula. The mixture was then placed in a $-20^{\circ} \mathrm{C}$ freezer for 40 h (without stirring). The reaction was quenched at $-20{ }^{\circ} \mathrm{C}$ with a saturated aqueous solution of potassium sodium tartrate tetrahydrate (20 mL) and was stirred for 30 min while warming to room temperature. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and the layers were separated. The aqueous phases were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 15 \mathrm{~mL})$. The combined organic phasees were washed with saturated aqueous $\mathrm{NaHCO}_{3}(1 \times 20 \mathrm{~mL})$, and dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give a yellow oil. Purification by flash chromatography (hexanes / EtOAc, gradient elution, 6:1 to 4:1) afforded the diol ($144 \mathrm{mg}, 0.203 \mathrm{mmol}, 92 \%$) as a clear, colorless oil.
$\mathrm{R}_{f}=0.33$ (hexanes / EtOAc $=4: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=-19.0\left(c=0.76, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=0.003(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.67(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H})$, $0.91(\mathrm{~s}, 9 \mathrm{H}), 1.41(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~m}, 4 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~m}$, $2 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{dd}, J=5.3,1.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.42(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{dt}, J=15.5,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.22(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-5.1,-3.7,12.8,13.6$, $18.0,18.5,21.7,25,8,26.0,33.8,37.6,38.5,39.4,44.1,56.7,63.9,68.7,74.2,76.5,79.5,84.1$, 128.8, 133.5, 133.8, 133.9, 137.7; HRMS calculated for $\mathrm{C}_{32} \mathrm{H}_{63} \mathrm{IO}_{5} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 733.3157, found: 733.3156.
(5R,7S,8S,9R,10Z,12E)-9-(tert-butyldimethylsilyloxy)-5-((S,Z)-7-iodo-4-methoxyhept-6-enyl)-2,2,3,3,8,11,16,16,17,17-decamethyl-4,15-dioxa-3,16-disilaoctadeca-10,12-dien-7-ol 229

A flask containing the diole ($235 \mathrm{mg}, 0.330 \mathrm{mmol}, 1.0 \mathrm{eq}$) , imidazol ($112 \mathrm{mg}, 1.65 \mathrm{mmol}, 5.0$ eq.) and $\operatorname{TBSCl}(124 \mathrm{mg}, 0.826 \mathrm{mmol}, 2.5 \mathrm{eq}$.$) was charged with argon and abs. DCM (1.1 \mathrm{ml}$) was added. The reaction mixture was stirred at RT for 30 min . Sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ were added, the organic phase separated, and the aq. phase thoroughly extracted with $\mathrm{DCM}(3 \times 10$ mL). The combined organic extracts were dried over MgSO_{4} and concentrated in vacuo. Purification by flash chromatography (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=9: 1$) gave TBS-ether ($172 \mathrm{mg}, 0.208$ $\mathrm{mmol}, 63 \%, 77 \%$) as colourless oil.
$\mathrm{R}_{f}=0.60$ (hexanes / EtOAc $=9: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=-14.4\left(c=1.18, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=-0.025(\mathrm{~s}, 3 \mathrm{H}), 0.029(\mathrm{~s}, 3 \mathrm{H}), 0.066(\mathrm{~s}, 3 \mathrm{H}), 0.072(\mathrm{~s}, 6 \mathrm{H}), 0.083(\mathrm{~s}, 3 \mathrm{H}), 0.75(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1,32(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~m}$, $4 \mathrm{H}), 1.63(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.34(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~m}$, $1 \mathrm{H}), 3.85(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=5.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{dd}, J=9.2$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dt}, J=15.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=15.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.24(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-5.1,-$ $4.8,-4.5,-4.2,-3.9,11.8,13.4,18.1,18.5,21.3,25.9,26.0,34.0,37.5,38.5,40.0,46.0,56.7$, $64.1,70.2,70.5,73.5,79.5,84.2,127.9,133.3,133.9,134.4,137.6$; HRMS calculated for $\mathrm{C}_{38} \mathrm{H}_{77} \mathrm{IO}_{5} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 847.4021$, found: 847.4019.
(1Z,4S,8R,10S,11S,12R,13E,15E)-10,12,17-tris(tert-butyldimethylsilyloxy)-1-iodo-4-methoxy-11,14-dimethylheptadeca-1,13,15-trien-8-ol 228

$\mathrm{C}_{38} \mathrm{H}_{77} \mathrm{IO}_{5} \mathrm{Si}_{3}$
Exact Mass: 824,4123
Mol. Wt.: 825,1759
$\mathrm{R}_{f}=0.51$ (hexanes / EtOAc $=9: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=-23.3\left(c=1.80, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=-0.061(\mathrm{~s}, 3 \mathrm{H}), 0.006(\mathrm{~s}, 3 \mathrm{H}), 0.055(\mathrm{~s}, 3 \mathrm{H}), 0.072(\mathrm{~s}, 9 \mathrm{H}), 0.73(\mathrm{~d}, J=7.0,3 \mathrm{H})$, $0.86(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.46(\mathrm{~m}, 8 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~d}, J=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.24(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dt}, J=15.5,5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.21(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-5.0,-4.8,-4.6,-4.2,-3.8,9.8,13.4,18.1,18.5,21.8,25.9,26.0,33.7$, $38.1,38.3,38.5,46.1,56.7,64.1,68.9,69.3,71.4,79.6,84.1,121.9,133.0,133.3,134.8$, 137.6; HRMS calculated for $\mathrm{C}_{38} \mathrm{H}_{77} \mathrm{IO}_{5} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 847.4021$, found: 847.4025 .
($6 E, 8 E, 10 R, 11 S, 12 S, 14 R$)-10,12-bis(tert-butyldimethylsilyloxy)-14-((S,Z)-7-iodo-4-methoxyhept-6-enyl)-2,2,3,3,8,11,16,16,17,17-decamethyl-4,15-dioxa-3,16-disilaoctadeca-6,8-diene 230

$\mathrm{R}_{f}=0.87$ (hexanes / EtOAc $=9: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=-16.3\left(c=0.97, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=-0.06(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}),-0.005(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H})$, $0.07(\mathrm{~s}, 6 \mathrm{H}), 0.80(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$,
$1.42(\mathrm{~m}, 7 \mathrm{H}), 1.73(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H})$, $3.77(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=5.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{dd}, J=8.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.41$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{dt}, J=15.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~m}, 1 \mathrm{H})$, $6.28(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-5.0,-4.8,-4.2,-3.9,-3.7,10.3,13.1,18.1$, 18.2, 18.5, 20.9, 26.0, 26.1, 34.0, 38.5, 38.8, 40.4, 46.7, 56.7, 64.2, 70.2, 70.9, 71.7, 79.7, 84.0, 127.5, 132.1, 134.4, 135.2, 137.7; HRMS calculated for $\mathrm{C}_{44} \mathrm{H}_{91} \mathrm{IO}_{5} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 961.4886$, found: 961.4870.

8.4.3 Connection of the C15-C31 and the C32-C42 Subunits

(3R,4S)-((2E,4E,6R,7S,8S,10R,14S,16Z)-10-acetoxy-1,6-bis(tert-butyldimethylsilyloxy)-17-iodo-14-methoxy-4,7-dimethylheptadeca-2,4,16-trien-8-yl) 3-(tert-butyldimethylsilyl oxy)-4-((4R,5S,6R)-2,2,5-trimethyl-6-((S)-pent-4-en-2-yl)-1,3-dioxan-4-yl)pentanoate 231

$\mathrm{Et}_{3} \mathrm{~N}(4.4 \mu \mathrm{~L}, 31.2 \mu \mathrm{~mol}, 2.5$ eq.) and 2,4,6-trichlorobenzoyl chloride ($5.0 \mu \mathrm{~L}, 31.2 \mu \mathrm{~mol}, 2.5$ eq.) were added to a stirred solution of alcohol ($9.4 \mathrm{mg}, 12.5 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) , the acid (6.8 \mathrm{mg}$, $15.9 \mu \mathrm{~mol}, 1.3 \mathrm{eq}$.$) , DMAP (7.6 \mathrm{mg}, 62.5 \mu \mathrm{~mol}, 5.0$ eq.) in toluene $(300 \mu \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$. The resulted white slurry was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes before being quenched with pH 7 phosphate buffer $(0.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL}) . \mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ was added and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 3 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=20: 1$) afforded the ester ($12.7 \mathrm{mg}, 10.9 \mu \mathrm{~mol}, 87 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.36$ (hexanes $\left./ \mathrm{Et}_{2} \mathrm{O}=9: 1\right) ;[\alpha]^{20}{ }_{\mathrm{D}}=-3.0\left(c=0.11, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=-0.04(\mathrm{~s}, 3 \mathrm{H}),-0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H}), 0.74(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~s}$,

9H), $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.90-0.93(\mathrm{~m}, 9 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~m}, 3 \mathrm{H})$, $1.52(\mathrm{~m}, 3 \mathrm{H}), 1.63(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.97$ $(\mathrm{m}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 3 \mathrm{H}), 3.27(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~m}, 2 \mathrm{H})$, $4.23(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.94(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.34(\mathrm{~m}, 1 \mathrm{H}), 5.71(\mathrm{dt}, J=15.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~m}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{q}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-5.0,-4.8,-4.7,-$ $4.4,-3.6,5.5,10.1,10.4,13.4,16.2,18.0,18.1,18.5,19.7,21.1,21.2,25.9,26.0,26.1,30.1$, $30.9,32.4,33.8,33.9,35.4,35.8,37.4,38.5,40.3,42.9,56.8,64.1,68.2,69.6,69.9,71.3,76.2$, $77.9,79.4,84.3,99.0,116.4,128.2,133.5,134.1,134.3,136.7,137.5,170.7,171.4$; HRMS calculated for $\mathrm{C}_{57} \mathrm{H}_{107} \mathrm{IO}_{10} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1185.6115$, found: 1185.6115.
(3R,4S)-((5R,7S,8S,9R,10E,12E)-9-(tert-butyldimethylsilyloxy)-5-((S,Z)-7-iodo-4-methoxyhept-6-enyl)-2,2,3,3,8,11,16,16,17,17-decamethyl-4,15-dioxa-3,16-disilaoctadeca-10,12-dien-7-yl) 3-(tert-butyldimethylsilyloxy)-4-((4R,5S,6R)-2,2,5-trimethyl-6-((S)-pent-4-en-2-yl)-1,3-dioxan-4-yl)pentanoate 232

$\mathrm{Et}_{3} \mathrm{~N}(67.0 \mu \mathrm{~L}, 0.482 \mathrm{mmol}, 2.5$ eq.) and 2,4,6-trichlorobenzoyl chloride ($76.0 \mu \mathrm{~L}, 0.482$ $\mathrm{mmol}, 2.5 \mathrm{eq}$.) were added to a stirred solution of alcohol ($159 \mathrm{mg}, 0.193 \mathrm{mmol}, 1.0$ eq.) , the acid ($140 \mathrm{mg}, 0.326 \mathrm{mmol}, 1.7 \mathrm{eq}$.), DMAP ($118 \mathrm{mg}, 0.965 \mathrm{mmol}, 5.0 \mathrm{eq}$.) in toluene (7.0 mL) at $0{ }^{\circ} \mathrm{C}$. The resulted white slurry was stirred at room temperature for 30 minutes before being quenched with pH 7 phosphate buffer $(7.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(7.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 15 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=9: 1$) afforded the ester ($232 \mathrm{mg}, 0.188 \mathrm{mmol}, 97 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.71$ (hexanes $\left./ \mathrm{Et}_{2} \mathrm{O}=9: 1\right) ;[\alpha]^{20}{ }_{\mathrm{D}}=-1.9\left(c=0.56, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=-0.05(\mathrm{~s}, 3 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H}),-0.006(\mathrm{~s}, 3 \mathrm{H}),-0.001(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H}), 0.82$ (d, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~d}, J=5.9 \mathrm{~Hz}$, $3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.37-1.50$ (m, 6H), $1.73(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.86(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{dd}, J=16.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 2.15$ (dd, $J=10.6,5.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.30-2.40(\mathrm{~m}, 3 \mathrm{H}), 3.27(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=9.2,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.34(\mathrm{~s}, 3 \mathrm{H}), 3.32-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.23-4.27(\mathrm{~m}, 1 \mathrm{H})$, $4.34(\mathrm{dd}, J=8.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{dt}, J$ $=15.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-5.0,-4.8,-4.7,-4.5,-4.4,-4.2,-4.0,5.5$, $10.4,10.7,13.2,14.1,16.2,17.9,18.1,18.5,19.5,20.3,22.7,25.8,26.0,26.1,30.1,31.2,31.6$, $33.8,34.2,35.9,36.2,37.6,38.2,38.5,40.3,42.7,56.8,64.2,68.1,68.8,71.7,72.6,76.1,77.9$, $79.6,84.2,99.0,116.4,127.6,132.8,134.0,134.5,136.3,137.5,171.1$; HRMS calculated for $\mathrm{C}_{61} \mathrm{H}_{119} \mathrm{IO}_{9} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1257.6874$, found: 1257.6882.

8.4.4 Completion of the Macrolide Moiety

(1R,2S,3R,7S,9R,13S,15Z,17E,20S,21R,25S)-7-((2S,3R,4E,6E)-3,8-bis(tert-butyldimethyl silyloxy)-5-methylocta-4,6-dien-2-yl)-3-(tert-butyldimethylsilyloxy)-13-methoxy-2,20,23, 23,25-pentamethyl-5-oxo-6,22,24-trioxabicyclo[19.3.1]pentacosa-15,17-dien-9-yl acetate 233

To a solution of iodide ($11.6 \mathrm{mg}, 9.97 \mu \mathrm{~mol}, 1.0$ eq.) in DMF (3.3 mL) was added $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($2.71 \mathrm{mg}, 12.0 \mu \mathrm{~mol}, 1.2$ eq.), $\mathrm{Bu}{ }_{4} \mathrm{NCl}\left(3.30 \mathrm{mg}, 12.0 \mu \mathrm{~mol}, 1.2\right.$ eq.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(3.42 \mathrm{mg}$, $24.9 \mu \mathrm{~mol}, 2.5 \mathrm{eq}$.) at room temperature. The resulting yellow suspension was stirred at $60^{\circ} \mathrm{C}$
for 1 h . After removal of the solvent, the residue was purified by column chromatography (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=20: 1$) to give dien ($3.50 \mathrm{mg}, 3.38 \mu \mathrm{~mol}, 34 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.61$ (hexanes $\left./ \mathrm{EtOAc}=9: 1\right) ;[\alpha]^{20}{ }_{\mathrm{D}}=+11.6\left(c=0.30, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=-0.04(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.46(\mathrm{~m}, 3 \mathrm{H})$, $1.56(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.83(\mathrm{~m}, 6 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 2.22$ $(\mathrm{m}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{dd}, J=9.2,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.42(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=5.1,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~m}$, $1 \mathrm{H}), 5.30(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~m}, 2 \mathrm{H}), 5.66(\mathrm{~m}, 1 \mathrm{H}), 5.70(\mathrm{dt}, J=15.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.06$ $(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}, J=14.7,11.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-5.1,-4.8,-4.6,-4.5,-3.8,5.6,10.5,13.4,16.0,18.1,18.5,19.5,20.6$, $21.4,25.9,26.0,29.7,30.1,30.4,30.8,31.8,33.6,35.2,35.5,40.3,43.4,56.6,64.1,69.4,70.0$, $71.0,76.1,77.9,80.9,99.0,125.8,127.3,128.1,130.3,132.2,133.4,134.2,170.4,171.9$; HRMS calculated for $\mathrm{C}_{57} \mathrm{H}_{106} \mathrm{O}_{10} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1057.6992$, found: 1057.6980.
(1R,2S,3R,7S,9R,13S,15Z,17E,20S,21R,25S)-7-((2S,3R,4E,6E)-3,8-bis(tert-butyldimethyl silyloxy)-5-methylocta-4,6-dien-2-yl)-3,9-bis(tert-butyldimethylsilyloxy)-13-methoxy-2,20,23,23,25-pentamethyl-6,22,24-trioxabicyclo[19.3.1]pentacosa-15,17-dien-5-one 234

To iodide ($88.0 \mathrm{mg}, 71.2 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.), $\mathrm{Pd}(\mathrm{OAc})_{2}(16.0 \mathrm{mg}, 71.2 \mu \mathrm{~mol}, 1.0 \mathrm{eq}),. \mathrm{Bu} 4 \mathrm{NCl}$ ($49.5 \mathrm{mg}, 178 \mu \mathrm{~mol}, 2.5$ eq.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(78.5 \mathrm{mg}, 569 \mu \mathrm{~mol}, 8.0 \mathrm{eq}$.$) was added DMF (18.0$ mL) at room temperature. The resulting yellow suspension was stirred at $70{ }^{\circ} \mathrm{C}$ for 50 min . The mixture was cooled to room temperature, diluted with $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ and filtered through
a celite plug ($3 \times 10 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$). After removal of the solvent, the residue was purified by column chromatography (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=20: 1$) to give dien ($55.1 \mathrm{mg}, 49.7 \mu \mathrm{~mol}, 70 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.55$ (hexanes $\left./ \mathrm{Et}_{2} \mathrm{O}=9: 1\right) ;[\alpha]^{20}{ }_{\mathrm{D}}=+6.3\left(c=0.57, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=-0.04(\mathrm{~s}, 3 \mathrm{H}), 0.005(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$, 0.91 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.93$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.39-1.53$ (m, $6 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.93(\mathrm{~m}, 2 \mathrm{H})$, 2.11 (m, 1H), $2.20(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{dd}, J=16.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 3.31$ $(\mathrm{s}, 3 \mathrm{H}), 3.31-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.26(\mathrm{~m}, 3 \mathrm{H}), 4.40(\mathrm{dd}, J=9.2,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.17(\mathrm{~m}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~m}, 1 \mathrm{H}), 5.64(\mathrm{~m}, 1 \mathrm{H}), 5.69(\mathrm{dt}, J=15.8,5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.04(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=14.7,11.0 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.1,-4.7,-4.5,-4.4,-4.3,-4.1,-3.8,5.8,11.3,13.3,16.3,18.0$, 18.1, 18.5, 19.6, 25.9, 26.0, 26.1, 30.1, 31.1, 31.8, 35.0, 37.2, 38.3, 40.1, 44.1, 56.5, 64.1, 70.7, $71.0,72.9,80.3,99.1,126.0,127.1,127.9,130.2,132.2,133.1,133.6,134.4,171.0$; HRMS calculated for $\mathrm{C}_{61} \mathrm{H}_{118} \mathrm{O}_{9} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 1129.7751, found: 1129.7743.
(1R,2S,3R,7S,9R,13S,15Z,17E,20S,21R,25S)-3,9-bis(tert-butyldimethylsilyloxy)-7-((2S,3R,4E,6E)-3-(tert-butyldimethylsilyloxy)-8-hydroxy-5-methylocta-4,6-dien-2-yl)-13-methoxy-2,20,23,23,25-pentamethyl-6,22,24-trioxabicyclo[19.3.1]pentacosa-15,17-dien-5one 235

To a solution of the TBS-ether ($26.0 \mathrm{mg}, 23.5 \mu \mathrm{~mol}, 1.0$ eq.) was added $\mathrm{NH}_{4} \mathrm{~F}(26.1 \mathrm{mg} .704$ $\mu \mathrm{mol}, 30$ eq.). The yellow reaction mixture was stirred at room temperature for 18 h . After
removing of the solvent, the residue was purified by column chromatography (hexanes / $\operatorname{EtOAc}=4: 1)$ to give the alcohol $(16.3 \mathrm{mg}, 16.4 \mu \mathrm{~mol}, 70 \%)$ as colorless oil.
$\mathrm{R}_{f}=0.20$ (hexanes / EtOAc $=9: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=+9.3\left(c=0.10, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=-0.04(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H})$, $0.84(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.93$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.43(\mathrm{~m}, 7 \mathrm{H}), 1.48-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.59(\mathrm{~m}$, $1 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.94(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~m}$, $2 \mathrm{H}), 2.34(\mathrm{dd}, J=15.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.31-3.36(\mathrm{~m}$, $2 \mathrm{H}), 3.77(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{~m}, 3 \mathrm{H}), 4.42(\mathrm{dd}, J=9.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{~m}, 1 \mathrm{H})$, $5.43(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~m}, 1 \mathrm{H}), 5.78(\mathrm{dt}, J=15.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{t}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.23(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-4.7,-4.5,-4.4,-4.3,-4.1,-3.9,5.7,11.2$, $13.3,16.3,18.0,18.1,19.6,25.9,26.1,30.1,31.1,31.4,35.0,37.4,38.2,40.2,44.1,56.4,64.0$, $70.4,70.9,72.9,80.3,99.1,126.0,127.1,127.4,130.3,132.4,132.8,134.3,135.9,171.1$; HRMS calculated for $\mathrm{C}_{55} \mathrm{H}_{104} \mathrm{O}_{9} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1015.6886$, found: 1015.6887.

8.4.5 Synthesis of Analogues of Etnangien Macrolide Structure

(3R,4S)-((1Z,4S,8R,10S,11S,12R,13E,15E)-10,12,17-tris(tert-butyldimethylsilyloxy)-1-iodo-4-methoxy-11,14-dimethylheptadeca-1,13,15-trien-8-yl) 3-(tert-butyldimethylsilyl oxy) -4-((4R,5S,6R)-2,2,5-trimethyl-6-((S)-pent-4-en-2-yl)-1,3-dioxan-4-yl)pentanoate 236

$\mathrm{Et}_{3} \mathrm{~N}(7.6 \mu \mathrm{~L}, 54 \mu \mathrm{~mol}, 2.5 \mathrm{eq}$.) and 2,4,6-trichlorobenzoyl chloride ($8.6 \mu \mathrm{~L}, 54 \mu \mathrm{~mol}, 2.5 \mathrm{eq}$.) were added to a stirred solution of alcohol $(18.0 \mathrm{mg}, 21.8 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) , the acid (15.9 \mathrm{mg}$, $37.1 \mu \mathrm{~mol}, 1.7$ eq.), DMAP ($13.3 \mathrm{mg}, 109 \mu \mathrm{~mol}, 5.0$ eq.) in toluene $(0.8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The resulting white slurry was stirred at room temperature for 30 minutes before being quenched
with pH 7 phosphate buffer $(1.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. $\mathrm{DCM}(2 \mathrm{~mL})$ was added and the layers were separated. The aqueous layer was extracted with DCM $(3 \times 5 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=20: 1$) afforded the ester ($24.7 \mathrm{mg}, 20.0 \mu \mathrm{ol}, 92 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.62$ (hexanes $\left./ \mathrm{Et}_{2} \mathrm{O}=9: 1\right) ;[\alpha]^{20}{ }_{\mathrm{D}}=-7.1\left(c=0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=-0.06(\mathrm{~s}, 3 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.67(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.45(\mathrm{~m}$, $3 \mathrm{H}), 1.49-1.69(\mathrm{~m}, 8 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{dd}, J=16.3,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.39(\mathrm{~m}, 3 \mathrm{H}), 3.29(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 4.15(\mathrm{t}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=5.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{~m}$, $2 \mathrm{H}), 5.27(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~m}, 1 \mathrm{H}), 5.71(\mathrm{dt}, J=15.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=15.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.23(\mathrm{~m}, 1 \mathrm{H}), 6.29(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.0,-4.8,-4.7,-4.5,-$ $4.4,-4.0,-3.6,5.5,9.2,10.2,13.5,16.2,18.0,18.1,18.5,19.4,20.7,25.9,26.0,26.1,30.1$, $31.1,33.6,33.8,34.3,34.8,35.9,37.7,38.4,46.4,56.7,64.1,67.6,67.7,71.2,72.2,76.2,78.0$, $79.4,84.2,99.0,116.4,128.0,133.0,134.3,134.9,136.4,137.5,171.7$; HRMS calculated for $\mathrm{C}_{61} \mathrm{H}_{119} \mathrm{IO}_{9} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1257.6874$, found: 1257.6892.
(1R,2S,3R,7R,11S,13Z,15E,18S,19R,23S)-3-(tert-butyldimethylsilyloxy)-11-methoxy-2,18,21,21,23-pentamethyl-7-((2S,3S,4R,5E,7E)-2,4,9-tris(tert-butyldimethylsilyloxy)-3,6-dimethylnona-5,7-dienyl)-6,20,22-trioxabicyclo[17.3.1]tricosa-13,15-dien-5-one 237

$\mathrm{C}_{61} \mathrm{H}_{118} \mathrm{O}_{9} \mathrm{Si}_{4}$
Exact Mass: 1106,7853
Mol. Wt.: 1107,9262

To iodide ($53.0 \mathrm{mg}, 42.9 \mu \mathrm{~mol}, 1.0 \mathrm{eq}.), \mathrm{Pd}(\mathrm{OAc})_{2}(9.63 \mathrm{mg}, 42.9 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) , \mathrm{Bu} 4 \mathrm{NCl}$ ($29.8 \mathrm{mg}, 107 \mu \mathrm{~mol}, 2.5$ eq.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(47.3 \mathrm{mg}, 343 \mu \mathrm{~mol}, 8.0 \mathrm{eq}$.$) was added DMF (11.0$
mL) at room temperature. The resulted yellow suspension was stirred at $70^{\circ} \mathrm{C}$ for 60 min . The mixture was cooled to room temperature, diluted with $\mathrm{Et}_{2} \mathrm{O}(24 \mathrm{~mL})$ and filtered through a celite plug $\left(3 \times 10 \mathrm{mLEt}_{2} \mathrm{O}\right)$. After removing of the solvent, the residue was purified by HPLC (Nucleosil-100-7, VP 250×21, hexane $/ \mathrm{EtOAc}=60: 1$) to give dien $(15.3 \mathrm{mg}, 13.8$ $\mu \mathrm{mol}, 32 \%)$ as a colorless oil.
$\mathrm{R}_{f}=0.50$ (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=9: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=+12.9\left(c=1.30, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=-0.05(\mathrm{~s}, 3 \mathrm{H}),-0.02(\mathrm{~s}, 6 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}), 0.69(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 18 \mathrm{H}), 0.90(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 0.91 (s, 9H), 0.99 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.45-1.57(\mathrm{~m}, 6 \mathrm{H}), 1.63(\mathrm{~m}$, $1 \mathrm{H}), 1.74-1.83(\mathrm{~m}, 5 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 3 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H})$, $3.31-3.46(\mathrm{~m}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 4.17(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~d}$, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.80(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~m}, 1 \mathrm{H}), 5.66(\mathrm{~m}, 1 \mathrm{H}), 5.70(\mathrm{dt}$, $J=15.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{dd}, J=14.3$, $11.7 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.1,-4.9,-4.8,-4.4,-4.3,-4.0,-3.7,6.0,9.2$, 13.4, , 18.0, 18.1, 18.5, 18.8, 19.6, 21.0, 25.9, 26.0, 30.1, 30.4, 30.9, 32.0, 32.3, 33.4, 33.8, $35.0,40.6,46.3,57.1,64.1,67.7,69.0,71.3,72.2,78.8,80.0,99.0,126.0,126.4,127.9,129.9$, 132.6, 132.9, 134.3, 135.0, 172.5; HRMS calculated for $\mathrm{C}_{61} \mathrm{H}_{118} \mathrm{O}_{9} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 1129.7751, found: 1129.7721.
(1R,2S,3R,7R,11S,13Z,15E,18S,19R,23S)-7-((2S,3S,4R,5E,7E)-2,4-bis(tert-butyldimethyl silyloxy)-9-hydroxy-3,6-dimethylnona-5,7-dienyl)-3-(tert-butyldimethylsilyloxy)-11-methoxy-2,18,21,21,23-pentamethyl-6,20,22-trioxabicyclo[17.3.1]tricosa-13,15-dien-5one 238

To a solution of the TBS ether ($12.0 \mathrm{mg}, 10.8 \mu \mathrm{~mol}, 1.0$ eq.) in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(4: 1,100 \mu \mathrm{~L})$ was added NaIO_{4} ($13.9 \mathrm{mg}, 65.0 \mu \mathrm{~mol}, 6.0$ eq.) as solid at room temperature. The reaction mixture was stirred at RT for 15 h and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and $\mathrm{DCM}(2 \mathrm{~mL})$ were added. The organic layer was separated and the aqueous layer was extracted with DCM $(3 \times 2 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered and evaporated in vacuo. Silica gel chromatography (hexanes / EtOAc, gradient elution, 9:1 to 2:1) afforded the alcohol ($9.0 \mathrm{mg}, 9.1 \mu \mathrm{~mol}, 84 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.15$ (hexanes / EtOAc $=9: 1$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-0.05(\mathrm{~s}, 3 \mathrm{H}),-0.02(\mathrm{~s}$, $6 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.69(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~d}, J$ $=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $1.35(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.45-1.57(\mathrm{~m}, 6 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.83(\mathrm{~m}, 5 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H})$, $2.09(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 3 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.46(\mathrm{~m}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 4.17-$ $4.23(\mathrm{~m}, 3 \mathrm{H}), 4.21(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.80(\mathrm{~m}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~m}, 1 \mathrm{H})$, $5.66(\mathrm{~m}, 1 \mathrm{H}), 5.79(\mathrm{dt}, J=15.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=15.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.43(\mathrm{dd}, J=14.3,11.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-4.9,-4.8,-4.4,-4.3,-$ $4.0,-3.7,6.0,9.2,13.4,18.0,18.8,19.6,21.0,25.9,26.0,30.1,31.0,32.0,32.3,33.4,33.8$, $35.0,40.6,46.3,57.1,63.7,63.8,67.7,71.3,72.2,78.8,80.0,99.0,126.0,126.4,127.3,129.9$, 132.6, 135.8, 135.9, 172.5; HRMS calculated for $\mathrm{C}_{55} \mathrm{H}_{104} \mathrm{O}_{9} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1015.6886$, found: 1015.6880 .
(3R,4S)-((1Z,4S,8R,10S,11S,12R,13E,15E)-10,12,17-tris(tert-butyldimethylsilyloxy)-1-iodo-4-methoxy-11,14-dimethylheptadeca-1,13,15-trien-8-yl) 3-(tert-butyldimethylsilyl oxy)-4-((4R,5S,6R)-2,2,5-trimethyl-6-((S)-pent-4-yn-2-yl)-1,3-dioxan-4-yl)pentanoate 239

$\mathrm{C}_{61} \mathrm{H}_{117} \mathrm{IO}_{9} \mathrm{Si}_{4}$
Exact Mass: 1232,6819
Mol. Wt.: 1233,8228
$\mathrm{Et}_{3} \mathrm{~N}(10.0 \mu \mathrm{~L}, 69.0 \mu \mathrm{~mol}, 2.5$ eq.) and 2,4,6-trichlorobenzoyl chloride ($11.0 \mu \mathrm{~L}, 69.0 \mu \mathrm{~mol}$, 2.5 eq.) were added to a stirred solution of alcohol ($22.8 \mathrm{mg}, 27.6 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) , the acid$ ($22.0 \mathrm{mg}, 51.6 \mu \mathrm{~mol}, 1.9 \mathrm{eq}$.), DMAP ($16.8 \mathrm{mg}, 138 \mu \mathrm{~mol}, 5.0$ eq.) in toluene (1.0 mL) at 0 ${ }^{\circ} \mathrm{C}$. The resulting white slurry was stirred at room temperature for 20 minutes before being quenched with pH 7 phosphate buffer $(1.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C} . \mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=9: 1$) afforded the ester ($28.0 \mathrm{mg}, 22.7 \mu \mathrm{~mol}, 82 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.50$ (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=9: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=-9.3\left(c=1.09, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=-0.05(\mathrm{~s}, 3 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H}), 0.008(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s} .3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.09(\mathrm{~s}$, $3 \mathrm{H}), 0.66(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.86$ (s, 9H), 0.88 ($\mathrm{s}, 9 \mathrm{H}), 0.91$ (s, 9H), 0.92 (d, J $=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$, $1.42(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~m}, 6 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{t}, J$ $=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~m}, 3 \mathrm{H}), 3.29(\mathrm{~m}$, $1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{dd}, J=9.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=9.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dt}, J=10.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~m}$, $1 \mathrm{H}), 5.27$ (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.70 (dt, $J=15.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.24$ (dd, $J=14.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.1$, 5.0, -4.8, -4.7, -4.5, -4.3, -4.0, -3.6, 5.6, 9.2, 10.2, 13.5, 16.4, 18.0, 18.1, 18.5, 19.4, 20.8, 20.2, $25.9,26.0,26.1,30.0,31.3,33.0,33.5,34.4,34.9,37.7,38.4,40.4,46.4,56.7,64.1,67.6,68.0$, 69.9, 71.2, 72.3, 75.9, 79.4, 81.9, 84.2, 99.1, 128.0, 133.0, 134.3, 134.9, 137.5, 171.7; HRMS calculated for $\mathrm{C}_{61} \mathrm{H}_{117} \mathrm{IO}_{9} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1255.6717$, found: 1255.6777.
(1R,2S,3R,7R,11S,18S,19R,23S,Z)-3-(tert-butyldimethylsilyloxy)-11-methoxy-
2,18,21,21,23-pentamethyl-7-((2S,3S,4R,5E,7E)-2,4,9-tris(tert-butyldimethylsilyloxy)-3,6-dimethylnona-5,7-dienyl)-6,20,22-trioxabicyclo[17.3.1]tricos-13-en-15-yn-5-one 240

A solution of the iodide ($26.7 \mathrm{mg}, 21.6 \mu \mathrm{~mol}, 1.0$ eq.) and $i \operatorname{Pr}_{2} \operatorname{NEt}(113 \mu \mathrm{l}, 648 \mu \mathrm{~mol}, 30 \mathrm{eq}$. in DMF (11 ml) was degassed by freeze-pump-thaw cycle (three times). After addition of CuI ($8.26 \mathrm{mg}, 43.2 \mu \mathrm{~mol}, 2.0 \mathrm{eq}$.), the mixture was vigorously stirred at room temperature in the dark for 30 min , producing a yellow solution. $\mathrm{Pd}(\mathrm{dba})_{3}(9.89 \mathrm{mg}, 10.8 \mu \mathrm{~mol}, 0.5 \mathrm{eq}$.$) was$ added to the resulting solution. The reaction mixture was stirred at room temperature for 70 min in the dark, diluted with $\mathrm{Et}_{2} \mathrm{O}(12 \mathrm{~mL})$ and quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(6 \mathrm{~mL})$ and water (6 mL) at $0{ }^{\circ} \mathrm{C}$. The mixture was vigorously stirred at room temperature for 1 h . The layers were separated, and the aqueous layers were extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine (6 mL), dried over MgSO_{4} and concentrated. The residue was purified by flash column chromatography on silica gel (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=20: 1$) to give the desired product ($7.20 \mathrm{mg}, 6.50 \mu \mathrm{~mol}, 30 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.48$ (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=9: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-0.05(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H})$, $0.02(\mathrm{~s} .3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.69(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, 0.87 (s, 27H), 0.91 ($\mathrm{s}, 9 \mathrm{H}$), 0.93 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.94$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.04$ (d, $J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 1.31(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H})$, $1.74(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.86(\mathrm{~m}, 3 \mathrm{H}), 2.29-2.40(\mathrm{~m}, 3 \mathrm{H}), 2.43-2.49(\mathrm{~m}, 3 \mathrm{H})$, $3.33(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{~m}, 3 \mathrm{H}), 4.24(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.81(\mathrm{~m}, 1 \mathrm{H})$, $5.28(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dt}, J=15.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~m}$, $1 \mathrm{H}), 6.20(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-5.1,-4.8,-4.5,-4.4,-4.2,-4.0$, $-3.7,6.0,9.4,13.4,16.9,18.1,18.5,19.7,20.3,22.3,25.9,26.0,26.1,29.7,30.1,31.5,32.3$, $32.8,33.4,34.0,35.7,39.7,40.9,46.6,56.5,64.1,69.0,71.2,73.5,78.9,80.0,91.9,99.1$, $111.2,127.9,132.9,134.3,134.9,138.0,171.5$; HRMS calculated for $\mathrm{C}_{61} \mathrm{H}_{116} \mathrm{O}_{9} \mathrm{Si}_{4} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 1127.7594$, found: 1127.7599 .

8.5 Selective Deprotection of Silyl ethers with NaIO_{4}

8.5.1 General procedure for deprotection of silyl ethers

To a solution of the silyl ether $(0.1 \mathrm{M})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(4: 1)$ was added $\mathrm{NaIO}_{4}(6.0 \mathrm{eq}$.) as solid at room temperature. After the completion of the reaction (TLC control), workup 1; $\mathrm{H}_{2} \mathrm{O}$ and DCM were added. The organic layer was separated and the aqueous layer was extracted with DCM. The combined organic phases were dried over MgSO_{4}, filtered and evaporated in vacuo; workup 2: ether and MgSO_{4} were added. The mixture was stirred for 5 min. After filtration, the organic phases were evaporated in vacuo. Silica gel chromatography (hexanes / EtOAc, gradient elution, 9:1 to 2:1) afforded the alcohol.
(E)-3-iodo-2-methylprop-2-en-1-ol 90

$\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}$
Exact Mass: 197,9542
Mol. Wt.: 198,0023
$\mathrm{R}_{f}=0.20$ (hexanes / EtOAc 9:1); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.58(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H})$, $4.12(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=21.4,67.2,77.3$, 147.2. Spectroscopic data were identical to those previously reported.
(2S,4R,5R,6E,8E)-5-(tert-butyldimethylsilyloxy)-10-hydroxy-4,7-dimethyl-3-oxodeca-6,8-dien-2-yl benzoate 246

$\mathrm{R}_{f}=0.18$ (hexanes / EtOAc $=4: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=+12.2\left(c=0.32, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=-0.06(\mathrm{~s}, 3 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{t}, J=4.8$
$\mathrm{Hz}, 1 \mathrm{H}) 1.52(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=5.12 \mathrm{H}), 4.73(\mathrm{t}, J=$ $9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{dt}, J=15.8,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.24(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{tm}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{tm}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{dm}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-4.9,-4.4,13.5,13.9,15.2,18.0,25.8,49.5$, 63.7, 71.5, 75.4, 127.9, 128.4 (2C), 129.8, 133.2, 133.6, 134.4, 135.4, 165.8, 209.2; HRMS calculated for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 469.2386$, found: 469.2386.

4-hydroxybutan-2-one 247

$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
Exact Mass: 88,0524
Mol. Wt.: 88,1051
$\mathrm{R}_{f}=0.12$ (hexanes $/ \mathrm{EtOAc}=1: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=2.18(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{t}, J=$ $5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=30.5,45.3,57.8$, 209.5. Spectroscopic data were identical to those previously reported.

4-phenylbutan-1-ol 248

$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}$
Exact Mass: 150,1045
Mol. Wt.: 150,2176
$\mathrm{R}_{f}=0.13$ (hexanes / EtOAc $=9: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.33(\mathrm{~s}, 1 \mathrm{H}), 1.60(\mathrm{~m}$, 2H), $1.69(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~m}$, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=27.5,32.3,35.6,62.8,125.8,128.3,128.4,142.3$. Spectroscopic data were identical to those previously reported.
(E)-methyl 5-hydroxy-3-methylpent-2-enoate 249

$\mathrm{R}_{f}=0.35$ (hexanes $/ \mathrm{EtOAc}=2: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=2.19(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H})$, $2.40(\mathrm{dt}, J=6.4,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.78$, (t, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.74(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=18.8,43.7,50.9,60.2,117.3,156.3,166.9$. Spectroscopic data were identical to those previously reported.
(2S,3S,E)-3-(tert-butyldimethylsilyloxy)-5-iodo-2,4-dimethylpent-4-en-1-ol 250

Exact Mass: 370,0825
Mol. Wt.: 370,3423
$\mathrm{R}_{f}=0.25$ (hexanes $/ \mathrm{EtOAc}=9: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-0.01(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}$, $3 \mathrm{H}), 0.79(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.61(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=-5.3,-4.7,14.0,18.1,19.5,25.8,38.8,66.2,79.3,82.8,148.9$; HRMS calculated for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{IO}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 393.0723$, found: 393.0728.
(S)-2-((4R,5S,6R)-6-((2S,3R)-3-(tert-butyldimethylsilyloxy)-5-(4-methoxybenzyloxy) pentan-2-yl)-2,2,5-trimethyl-1,3-dioxan-4-yl)propan-1-ol 251

$\mathrm{R}_{f}=0.47$ (hexanes / EtOAc $\left.=4: 1\right) ;[\alpha]^{20}{ }_{\mathrm{D}}=+9.8\left(c=1.40, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=0.04(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}) ; 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.67(\mathrm{~m}, 4 \mathrm{H})$, $1.80(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{dd}, J=9.71 .8 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~m}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~m}$, $1 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 6.88(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-4.7,-4.0,5.8$, $9.9,14.1,18.1,19.6,25.9,30.1,30.6,32.0,36.5,40.1,55.4,63.9,67.3,67.4,72.8,75.9,99.2$, 113.8, 129.4, 130.8, 159.3. HRMS calculated for $\mathrm{C}_{29} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 547.3431$, found: 547.3433 .

(E)-ethyl 4-hydroxy-3-methylhexa-2,5-dienoate 258

$\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{3}$
Exact Mass: 170,0943
Mol. Wt.: 170,2057
$\mathrm{R}_{f}=0.33$ (hexanes $/ \mathrm{EtOAc}=6: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.99(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{dm}, J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dm}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~m}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=14.3,15.1,59.9,77.6,115.4,117.4,137.6,157.8,166.9$.
(2R,3S,E)-((1R,2S)-2-(N-benzyl-2,4,6-trimethylphenylsulfonamido)-1-phenylpropyl)-3-hydroxy-5-iodo-2,4-dimethylpent-4-enoate 114

$\mathrm{R}_{f}=0.43$ (hexanes $/ \mathrm{EtOAc}=8: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=+38.9\left(\mathrm{c}=0.97, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=0.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.81(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.27(\mathrm{~s}$,
$3 \mathrm{H}), 2.50(\mathrm{~s}, 6 \mathrm{H}), 2.54-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 4.10(\mathrm{dq}, J=4.1,7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.24(\mathrm{dd}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.56\left(\mathrm{~A}\right.$ of $\left.\mathrm{ABq}, J_{\mathrm{AB}}=16.6,1 \mathrm{H}\right), 4.74\left(\mathrm{~B}\right.$ of $\mathrm{ABq}, J_{\mathrm{AB}}=16.6$, $1 \mathrm{H}), 5.85(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 6.82-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~s}, 2 \mathrm{H}), 7.13-7.35(\mathrm{~m}, 8 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=13.4,14.1,18.9,20.9,23.0,43.3,48.3,56.8,78.6,78.7,81.2$, $125.9,127.2,127.6,128.0,128.4128 .5,132.2,133.4,138.1,138.6,140.3,142.6,146.9,174.1$; HRMS calculated for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{INO}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 698.1413$, found: 698.1409.
(5R,6R,8S,9S,10S)-9-hydroxy-5-(2-(4-methoxybenzyloxy)ethyl)-2,2,3,3,6,8,10,14,14-nona methyl-13,13-diphenyl-4,12-dioxa-3,13-disilapentadecan-7-one 259

$\mathrm{R}_{f}=0.32$ (hexanes $\left./ \mathrm{EtOAc}=9: 1\right) ;[\alpha]^{20}{ }_{\mathrm{D}}=+2.9\left(\mathrm{c}=0.43, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=0.08(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 1.04$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.84,(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{~m}, 2 \mathrm{H}), 3.31$ $(\mathrm{d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.50(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.17(\mathrm{~m}, 1 \mathrm{H})$, $4.39(\mathrm{~s}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~m}, 6 \mathrm{H}), 7.67(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-4.8,-4.5,10.9,14.2,15.2,18.0,19.2,25.9,26.9,32.7,37.2$, 48.9, 51.9, 55.3, 65.7, 66.3, 69.9, 72.6, 113.8, 127.7, 129.3, 129.7, 130.7, 133.4, 135.6, 135.7, 159.1, 217.5; HRMS calculated for $\mathrm{C}_{42} \mathrm{H}_{64} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 743.4139$, found: 743.4143.

8.5.2 Preparation of Silyl Ethers

(E)-tert-butyl(3-iodo-2-methylallyloxy)dimethylsilane 241

Exact Mass: 312,0406
Molr. Wt.: 312,2631

To a stirred solution ($-78{ }^{\circ} \mathrm{C}$) of alcohol ($130 \mathrm{mg}, 0.656 \mathrm{mmol}, 1.0$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added 2,6-lutidine ($132 \mu \mathrm{~L}, 1.12 \mathrm{mmol}, 1.7$ eq.) and TBSOTf ($198 \mu \mathrm{~L}, 0.853 \mathrm{mmol}, 1.3$ eq.). The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . The cooling bath was removed and the reaction quenched with sat. aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The mixture was warmed to room temperature. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered and evaporated in vacuo. Silica gel chromatography (hexanes / $\mathrm{Et}_{2} \mathrm{O} 9: 1$) afforded the desired TBS-ether ($194 \mathrm{mg}, 0.621 \mathrm{mmol}, 91 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.91$ (hexanes $/ \mathrm{EtOAc}=9: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.06(\mathrm{~s}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$, $1.77(\mathrm{~s}, 3 \mathrm{H}), 4.09(\mathrm{~s}, 2 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-5.4,18.4,21.2,25.9$, 67.1, 75.9, 146.9.

4-(tert-butyldimethylsilyloxy)butan-2-one 242

To a stirred solution $\left(-78^{\circ} \mathrm{C}\right)$ of alcohol ($86.0 \mathrm{mg}, 0.976 \mathrm{mmol}, 1.0$ eq. $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added 2,6-lutidine ($197 \mu \mathrm{~L}, 1.66 \mathrm{mmol}, 1.7 \mathrm{eq}$.) and TBSOTf ($295 \mu \mathrm{~L}, 1.27 \mathrm{mmol}, 1.3 \mathrm{eq}$.). The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . The cooling bath was removed and the reaction quenched with sat. aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The mixture was warmed to room temperature. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered
and evaporated in vacuo. Silica gel chromatography (hexanes $/ \mathrm{Et}_{2} \mathrm{O} 9: 1$) afforded the desired TBS-ether ($184 \mathrm{mg}, 0.909 \mathrm{mmol}, 93 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.57$ (hexanes $/ \mathrm{EtOAc}=9: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.04(\mathrm{~s}, 6 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H})$, $2.16(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=-5.4,18.2,25.9,30.8,46.6,58.9,208.1$.

tert-Butyldimethyl(4-phenylbutoxy)silane 243

$\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{OSi}$
Exact Mass: 264,1909
Mol. Wt.: 264,4784

To a stirred solution ($-78{ }^{\circ} \mathrm{C}$) of alcohol ($114 \mathrm{mg}, 0.759 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added 2,6-lutidine ($153 \mu \mathrm{~L}, 1.29 \mathrm{mmol}, 1.7$ eq.) and TBSOTf ($229 \mu \mathrm{~L}, 0.987 \mathrm{mmol}, 1.3 \mathrm{eq}$.). The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . The cooling bath was removed and the reaction quenched with sat. aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The mixture was warmed to room temperature. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered and evaporated in vacuo. Silica gel chromatography (hexanes / $\mathrm{Et}_{2} \mathrm{O} 9: 1$) afforded the desired TBS-ether ($198 \mathrm{mg}, 0.749 \mathrm{mmol}, 99 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.57$ (hexanes / EtOAc $=9: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.04(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$, $1.56(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~m}, 3 \mathrm{H})$, 7.27 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.2,18.4,26.0,27.7,32.5,35.7,63.0,125.7$, 128.3, 128.4, 142.7.

(E)-Methyl 5-(tert-butyldimethylsilyloxy)-3-methylpent-2-enoate 244

The PMB ether ($136 \mathrm{mg}, 0.514 \mu \mathrm{~mol}, 1.0$ eq.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ aq. pH 7 buffer (10:1, 3.3 mL) under argon atmosphere. Then DDQ ($350 \mathrm{mg}, 1.54 \mu \mathrm{~mol}, 3.0 \mathrm{eq}$.$) was added fast and$ the resulting suspension was stirred for 60 min at ambient temperature. The reaction mixture was quenched by addition of 7 mL saturated, aqueous NaHCO_{3} solution. The organic layer was seperated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. Then the combined organic layer was dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure, before the crude product was purificated by flash chromatography on silica gel (hexanes / EtOAc $=9: 1$ to $1: 1$) to give the desired free alcohol ($59.3 \mathrm{mg}, 0.411 \mathrm{mmol}$, 80\%, E/Z: 3:1).
$\mathrm{R}_{f}=0.35$ (hexanes $/ \mathrm{EtOAc}=2: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=2.19(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H})$, $2.40(\mathrm{dt}, J=6.4,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.78$, (t, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.74(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=18.8,43.7,50.9,60.2,117.3,156.3,166.9$.

To a stirred solution $\left(-78{ }^{\circ} \mathrm{C}\right)$ of alcohol ($22.8 \mathrm{mg}, 0.158 \mathrm{mmol}, 1.0$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mu \mathrm{~L})$ was added 2,6-lutidine ($32.0 \mu \mathrm{~L}, 0.269 \mathrm{mmol}, 1.7 \mathrm{eq}$.) and TBSOTf ($47.6 \mu \mathrm{~L}, 0.987 \mathrm{mmol}$, 1.3 eq.). The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . The cooling bath was removed and the reaction quenched with sat. aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The mixture was warmed to room temperature. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ were added. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 3 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered and evaporated in vacuo. Silica gel chromatography (hexanes / $\mathrm{Et}_{2} \mathrm{O}$ 20:1) afforded the desired TBS-ether ($36.7 \mathrm{mg}, 0.142 \mathrm{mmol}, 90 \% ; 16.0 \mathrm{mg}$ for E double bond) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.03(\mathrm{~s}, 6 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.73$, (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-$ $5.4,18.3,19.2,25.9,44.0,50.8,61.3,116.8,157.3,167.1$.
(5S,6S)-5-((E)-1-Iodoprop-1-en-2-yl)-2,2,3,3,6,9,9,10,10-nonamethyl-4,8-dioxa-3,9-

disilaundecane 245

Mol. Wt.: 675,6173

To a solution of the ester (124 mg . $0.184 \mathrm{mmol}, 1.0$ eq.) in THF (2 mL) was added $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ ($19.4 \mu \mathrm{~L}, 0.184 \mathrm{mmol}, 1.0 \mathrm{eq}$.) at $-20^{\circ} \mathrm{C}$. The reaction mixture was warmed to room tempratue and stirred for 1 h and quenched with $\mathrm{MeOH}(0.2 \mathrm{~mL}), \mathrm{pH} 7$ buffer $(1 \mathrm{~mL})$ and 30% $\mathrm{H}_{2} \mathrm{O}_{2}(0.1 \mathrm{~mL})$ and stirred for 1 h at RT. The organic layer was seperated and the aqueous phase was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). Then the combined organic layer was dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure, before the crude product was purificated by flash chromatography on silica gel (hexanes $/ \mathrm{EtOAc}=2: 1$ to $1: 1$) to give the desired free alcohol ($36.0 \mathrm{mg}, 0.141 \mathrm{mmol}, 78 \%$).
$\mathrm{R}_{f}=0.24$ (hexanes $\left./ \mathrm{EtOAc}=2: 1\right) ;[\alpha]^{20}{ }_{\mathrm{D}}=+18.3\left(c=0.58, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=0.74(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~m}, 1 \mathrm{H})$, $3.72(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=13.6$, 19.1, 37.5, 67.6, 80.1, 83.0, 148.8.

To a stirred solution $\left(-78{ }^{\circ} \mathrm{C}\right)$ of the diol ($21.0 \mathrm{mg}, 82.0 \mu \mathrm{~mol}, 1.0$ eq. $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mu \mathrm{~L})$ was added 2,6 -lutidine ($33.0 \mu \mathrm{~L}, 279 \mu \mathrm{~mol}, 3.4$ eq.) and $\operatorname{TBSOTf}(50.0 \mu \mathrm{~L}, 213 \mu \mathrm{~mol}, 2.6$ eq.). The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . The cooling bath was removed and the reaction quenched with sat. aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The mixture was warmed to room temperature. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ were added. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 3 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered and evaporated in vacuo. Silica gel chromatography (hexanes $/ \mathrm{Et}_{2} \mathrm{O} 9: 1$) afforded the desired TBS-ether ($33.1 \mathrm{mg}, 68.3 \mu \mathrm{~mol}, 90 \%$) as colorless oil.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-0.05(\mathrm{~s}, 3 \mathrm{H}),-0.02(\mathrm{~s}, 9 \mathrm{H}), 0.72(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.86$ (9H), $0.88(\mathrm{~s}, 9 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.4,-5.3,-4.9,13.6,18.2,18.4,19.0,25.8,26.0,40.0$, 64.3, 78.5, 78.8, 149.6.

(E)-tert-butyl(3-iodo-2-methylallyloxy)diphenylsilane 252

$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{IOSi}$
Exact Mass: 436,0719
Mol. Wt.: 436,4019

A flask containing the alcohol ($200 \mathrm{mg}, 1.01 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , imidazol (89.0 \mathrm{mg}, 1.31 \mathrm{mmol}$, 1.3 eq.) and TBDPSCl ($270 \mu \mathrm{~L}, 1.04 \mathrm{mmol}, 1.0$ eq.) was charged with argon and abs. DCM $(10 \mathrm{ml})$ was added. The reaction mixture was stirred at RT for 60 min . Sat. aq. NaHCO_{3} (5 mL) were added, the organic phase separated, and the aq. phase thoroughly extracted with DCM ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4} and concentrated in vacuo. After flash chromatography (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=9: 1$) gave the TBDPS-ether (416 mg , $0.953 \mathrm{mmol}, 94 \%$) as yellow oil.
$\mathrm{R}_{f}=0.91$ (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=30: 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.06(\mathrm{~s}, 9 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H})$, $4.12(\mathrm{~s}, 2 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~m}, 6 \mathrm{H}), 7.65(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=19.3$, $21.3,26.8,67.7,76.1,127.8,129.9,133.3,135.5,146.4$.

(E)-triethyl(3-iodo-2-methylallyloxy)silane 253

Exact Mass: 312,0406
Molr. Wt.: 312,2631

To a stirred solution $\left(-78{ }^{\circ} \mathrm{C}\right)$ of the alcohol ($130 \mathrm{mg}, 0.656 \mathrm{mmol}, 1.0$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added 2,6-lutidine ($132 \mu \mathrm{~L}, 1.12 \mathrm{mmol}, 1.7 \mathrm{eq}$.) and TESOTf ($193 \mu \mathrm{~L}, 0.853 \mathrm{mmol}, 1.3$ eq.). The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min . The cooling bath was removed and the reaction quenched with sat. aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The mixture was warmed to room temperature. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered and evaporated in vacuo. Silica gel chromatography (hexanes / $\mathrm{Et}_{2} \mathrm{O} 9: 1$) afforded the desired TES-ether ($205 \mathrm{mg}, 0.655 \mu \mathrm{~mol}, 100 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.84$ (hexanes $/ \operatorname{EtOAc}=9: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.60(\mathrm{q}, J=8.1 \mathrm{~Hz}, 6 \mathrm{H})$, $0.95(\mathrm{t}, J=8.1 \mathrm{~Hz}, 9 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{~s}, 2 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=4.4,6.7,21.2,66.8,76.1,146.8$.

Triethyl(4-phenylbutoxy)silane 254

$\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{OSi}$
Exact Mass: 264,1909
Mol. Wt.: 264,4784

To a stirred solution $\left(-78^{\circ} \mathrm{C}\right)$ of alcohol ($132 \mathrm{mg}, 0.656 \mathrm{mmol}, 1.0$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added 2,6-lutidine ($177 \mu \mathrm{~L}, 1.49 \mathrm{mmol}, 1.7 \mathrm{eq}$.) and TESOTf ($258 \mu \mathrm{~L}, 1.14 \mathrm{mmol}, 1.3$ eq.). The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . The cooling bath was removed and the reaction quenched with sat. aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The mixture was warmed to room temperature. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered and evaporated in vacuo. Silica gel chromatography (hexanes / $\mathrm{Et}_{2} \mathrm{O} 9: 1$) afforded the desired TES-ether ($228 \mathrm{mg}, 0.861 \mu \mathrm{~mol}, 98 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.53$ (hexanes $/ \mathrm{EtOAc}=9: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.59(\mathrm{q}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H})$, $0.95(\mathrm{t}, J=8.1 \mathrm{~Hz}, 9 \mathrm{H}), 1.57(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{t}, J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.16(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=4.5,6.8,27.7,32.5$, 35.7, 62.7, 125.7, 128.3, 128.4, 142.6.
(E)-Ethyl 3-methyl-4-(triethylsilyloxy)hexa-2,5-dienoate 255

To a rapidly stirring solution of (E)-ethyl 3 -methyl-4-oxobut-2-enoate ($1.30 \mathrm{~g}, 9.15 \mathrm{~mol}, 1.0$ eq.) in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ under an argon atmosphere at $-20{ }^{\circ} \mathrm{C}$ was added a solution of vinylmagnesium bromide in THF ($1.0 \mathrm{M}, 9.6 \mathrm{~mL}, 9.60 \mathrm{mmmol}, 1.05$ eq.) over a period of 1 h .

After the addition was complete, the mixture was stirred for 10 min and was then diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and poured over 20 g of crushed ice. The pH of the solution is adjusted to $5-6$, and the ether layer is separated and washed with water $(15 \mathrm{~mL})$ and brine $(15 \mathrm{~mL})$ and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent under reduced pressure affords alcohol as a pale yellow liquid ($1.36 \mathrm{~g}, 7.99 \mathrm{mmol}, 87 \%$), which is sufficiently pure to use in the next step.
$\mathrm{R}_{f}=0.33$ (hexanes $/ \mathrm{EtOAc}=6: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.99(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{dm}, J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dm}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~m}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=14.3,15.1,59.9,77.6,115.4,117.4,137.6,157.8,166.9$. Spectroscopic data were identical to those previously reported. ${ }^{16}$
To a stirred solution $\left(-78{ }^{\circ} \mathrm{C}\right)$ of alcohol ($95.0 \mathrm{mg}, 0.558 \mathrm{mmol}$, 1.0 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added 2,6-lutidine ($112 \mu \mathrm{~L}, 0.949 \mathrm{mmol}, 1.7 \mathrm{eq}$.) and TESOTf ($164 \mu \mathrm{~L}, 0.725 \mathrm{mmol}, 1.3 \mathrm{eq}$.). The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . The cooling bath was removed and the reaction quenched with sat. aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The mixture was warmed to room temperature. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered and evaporated in vacuo. Silica gel chromatography (hexanes / $\mathrm{Et}_{2} \mathrm{O} 9: 1$) afforded the desired TES-ether ($146 \mathrm{mg}, 0.513 \mu \mathrm{~mol}, 92 \%$) as a colorless oil.
$\mathrm{R}_{f}=0.45$ (hexanes $/ \mathrm{Et}_{2} \mathrm{O}=20: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.51(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H})$, $0.92(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 4.15(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.47$ (d, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dt}, J=10.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dt}, J=16.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~m}$, $1 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=4.8,6.5,6.8,14.3,14.8,59.7,78.1,114.9$, 115.8, 138.6, 159.0, 167.1.

[^11](2R,3S,E)-((1R,2S)-2-(N-benzyl-2,4,6-trimethylphenylsulfonamido)-1-phenylpropyl) 5-iodo-2,4-dimethyl-3-(triethylsilyloxy)pent-4-enoate 256

Exact Mass: 789,238
Mol. Wt.: 789,8782

To a solution of alcohol ($92.0 \mathrm{mg}, 136 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) in DCM (2.5 mL) was added pyridine ($30 \mu \mathrm{~L}, 350 \mu \mathrm{~mol}, 2.5$ eq.) and $\mathrm{TESCl}\left(40 \mu \mathrm{~L}, 210 \mu \mathrm{~mol}, 1.5 \mathrm{eq}\right.$.) at $0{ }^{\circ} \mathrm{C}$. After stirring at room temperature for 18 h , the reaction mixture was quenched with sat. aqueous NaHCO_{3} (3 $\mathrm{mL})$. The organic layer was seperated and the aqueous phase was extracted with $\operatorname{DCM}(3 \times 10$ $\mathrm{mL})$. Then the combined organic layer was dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure, before the crude product was purificated by flash chromatography on silica gel (hexanes / $\mathrm{EtOAc}=9: 1$) to give the desired TES-ether (105 mg , $133 \mu \mathrm{~mol}, 95 \%)$.
$\mathrm{R}_{f}=0.57$ (hexanes / EtOAc $=9: 1$); $[\alpha]^{20}{ }_{\mathrm{D}}=+27.6\left(\mathrm{c}=0.88, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=0.50(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.77(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 1.11(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 6 \mathrm{H}), 2.64(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{~m}$, $2 \mathrm{H}), 4.91(\mathrm{~d}, J=16.0,1 \mathrm{H}), 5.70(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.88(\mathrm{~s}, 2 \mathrm{H}), 7.07(\mathrm{~m}, 2 \mathrm{H}), 7.16,(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=4.6,6.8,14.0,14.6,18.6,20.9,22.9,44.9,48.3,56.8,77.8,79.4,80.7,126.2$, 127.4, 127.8, 128.2, 128.3 128.4, 132.2, 133.1, 138.1, 138.8, 140.4, 142.4, 147.7, 173.1.
(5R,6R,8S,9S,10S)-5-(2-(4-methoxybenzyloxy)ethyl)-2,2,3,3,6,8,10,14,14-nonamethyl-13,13-diphenyl-9-(triethylsilyloxy)-4,12-dioxa-3,13-disilapentadecan-7-one 257

To a stirred solution $\left(-78{ }^{\circ} \mathrm{C}\right)$ of alcohol (24.2 mg , $33.5 \mu \mathrm{~mol}, 1.0$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added 2,6-lutidine ($6.7 \mu \mathrm{~L}, 57 \mu \mathrm{~mol}, 1.7 \mathrm{eq}$.) and TESOTf ($9.8 \mu \mathrm{~L}, 44 \mu \mathrm{~mol}, 1.3 \mathrm{eq}$.). The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . The cooling bath was removed and the reaction quenched with sat. aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$. The mixture was warmed to room temperature. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ were added. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 3 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered and evaporated in vacuo. Silica gel chromatography (hexanes / $\mathrm{Et}_{2} \mathrm{O} 9: 1$) afforded the desired TES-ether ($26.0 \mathrm{mg}, 31.1 \mu \mathrm{~mol}, 93 \%$) as a colorless oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.006(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.51(\mathrm{q}, J=7.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.84(\mathrm{~s}$, $9 \mathrm{H}), 0.86(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.93(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$, $1.09(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}), 1.92,(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~m}$, $3 \mathrm{H}), 3.78(\mathrm{dd}, J=10.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{dd}, J=7.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H})$, $4.40(\mathrm{~s}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~m}, 6 \mathrm{H}), 7.66(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-4.8,-4.5,5.2,6.5,6.8,7.0,10.8,13.6,14.6,18.1,19.2,25.9$, $26.9,33.0,39.7,48.2,51.7,55.3,65.7,67.0,69.9,72.4,113.7,127.6,129.2,129.6,130.8$, 133.9, 135.7, 159.1, 215.2.

8.6 Direct Reductive Amination

General procedure:

The amine (1.0 mmol), a first carbonyl (1.0 mmol), Hantsch ester $(1.5 \mathrm{mmol})$, and $5 \AA$ molecular sieves were treated with catalytic amounts of thiourea (0.1 mmol) in toluene under argon atmosphere at $60^{\circ} \mathrm{C}$. After 24 h , a second carbonyl (1.0 mmol), Hantzsch ester (1.5 mmol) and thiourea (0.1 mmol) was added. The reaction mixture was stirred under argon atmosphere at $60^{\circ} \mathrm{C}$ until complete conversion (24-72 h). After filtration over Celite, the solvent is evaporated and the residue purified by flash chromatography on silica gel using mixtures of petroleum ether and ethyl acetate as eluants to give the product amines in a pure form.

N-benzyl-4-methoxy- N-(4-nitrobenzyl)aniline 287-a

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.13(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24$ $(\mathrm{m}, 5 \mathrm{H}), 6.71(\mathrm{~m}, 4 \mathrm{H}), 4.55(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $152.29,147.17,143.19,138.34,128.68,127.19,123.84,115.47,114.91,56.08,55.70,54.98$.
N-isobutyl-4-methoxy- N-(4-nitrobenzyl)aniline 287-b

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.11(\mathrm{~d}, J=12,2 \mathrm{H}), 7.25(\mathrm{~d}, J=56,2 \mathrm{H}) 6.64(\mathrm{dd}, J=12$ $\mathrm{Hz}, 52 \mathrm{~Hz}, 4 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J$ $=8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=152.16,147.55,147.06,142.97,127.70,123.76$, $115.42,114.85,61.17,56.42,55.72,27.45,20.57$.

N-benzyl-4-methoxy- N-(2-methoxybenzyl)aniline 287-c

$\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{2}$
Exact Mass: 333,1729
Mol. Wt.: 333,4235
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta=6.62(\mathrm{~m}, 13 \mathrm{H}), 4.58(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 3.71(\mathrm{~d}, J=40 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.38,151.38,143.86,139.40,128.57,126.74,126.59$, $120.47,114.85,113.62,110.07,55.81,55.17,50.35$.
N-isobutyl-4-methoxy- N-(2-methoxybenzyl)aniline 287-d

$\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{2}$
Exact Mass: 299,1885
Mol. Wt.: 299,4073
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.57(\mathrm{~m}, 8 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~d}, J=4 \mathrm{~Hz}$, $3 \mathrm{H}), 3.15(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 0.85(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=157.28$, $150.89,143.77,127.58,127.39,126.72,120.34,114.81,113.52,109.93,60.35,55.84,55.20$, 50.86, 27.60, 20.59.
N-benzyl- N-isobutyl-4-methoxyaniline 287-e

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.25(\mathrm{~m}, 5 \mathrm{H}), 6.67(\mathrm{dd}, J=6 \mathrm{~Hz}, 9 \mathrm{~Hz}, 33 \mathrm{~Hz}, 4 \mathrm{H}), 4.49(\mathrm{~s}$, $2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=6 \mathrm{~Hz}, 6 \mathrm{H}),{ }^{13} \mathrm{C}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.35,143.72,139.32,128.42,126.59,114.71,60.43,56.40,55.75,27.38$, 20.59.
N-benzyl- N-isobutyl-4-methylaniline 289-f

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.21(\mathrm{~m}, 5 \mathrm{H}), 6.98(\mathrm{~d}, J=12 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 3.20(\mathrm{~d}$, $J=4 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 146.84, 139.22, 129.65, 128.50, 126.71, 126.60, 125.17, 112.83, 59.86, 55.61, 29.75, 27.43, 20.58, 20.18 .

References and Notes

${ }^{1}$ (a) Newman, D. J. Cragg, G. M. J. Nat. Prod. 2007, 70, 461-477. (b) Newman, D. J.; Cragg, G. M.; Snader, K. M. Nat. Prod. Rep. 2000, 17, 215-234.
${ }^{2}$ Ōmura, S.; Sunazuka, T. Chem. Rev. 2005, 105, 4559-4580.
${ }^{3}$ Gerth, K.; Pradella, S.; Perlova, O.; Beyer, S.; Müller, R. J. Biotechnol. 2003, 106, 233.
${ }^{4}$ (a) Reichenbach, H. J. Industr. Microbiol. Biotechn. 2001, 27, 149-156. (b) Reichenbach H.; Höfle, G., Myxobacteria as Producers of Secondary Metabolites, Springer, Berlin, 1999, pp. 149-179. (c) Höfle, G.; Reichenbach, H., in: Sekundärmetabolismus bei Mikroorganismen (Eds. W. Kuhn, H. P. Fiedler) Attempto Verlag, Tübingen, 1995, pp. 61-78. (d) Reichenbach, H.; Höfle, G. Biotech. Adv. 1993, 11, 219-277. (d) Menche, D. Nat. Prod. Rep. 2008, in press.
${ }^{5}$ Wenzel, S. C.; Müller, R. Nat. Prod. Rep. 2007, 24, 1211-1224.
${ }^{6}$ Höfle, G.; Bedorf, N.; Steinmetz, H.; Schomburg, D.; Gerth, K.; Reichenbach, H. Angew. Chem. Int. Ed. 1996, 35, 1567.
${ }^{7}$ (a) Cortes, J.; Baselga, J. Oncologist 2007, 12, 271-280. (b) Lee, F. Y. Clin. Cancer Res. 2001, 7, 1429-1437.
${ }^{8}$ Reichenbach, H.; Höfle, G., in: Drug Discovery from Nature (Eds. S. Grabley, R. Thierecke) Springer Verlag, Berlin, 1999, pp. 149-179.
${ }^{9}$ Höfle, G.; Reichenbach, H.; Sasse, F.; Steinmetz, H., German Patent DE 4142951 C1, 1993.
${ }^{10}$ Sasse, F.; Steinmetz, H.; Höfle, G.; Reichenbach, H. J. Antibiot. 2003, 56, 520.
${ }^{11}$ Huss, M.; Sasse, F.; Kunze, B.; Jansen, R.; Steinmetz, H.; Ingenhorst, G.; Zeeck, A.; Wieczorek, H. BMC Biochem 2005, 6, 13.
${ }^{12}$ Bowman, E. J.; Gustafson, K. R.; Bowman, B. J.; Boyd, M. R. J. Biol. Chem. 2003, 278, 44147-44152.
${ }^{13}$ (a) Muroi, M.; Shiragami, N.; Nagao, K.; Yamasaki, M.; Takatsuki, A. Cell Struct. Funct. 1993, 18, 139. (b) Drose, S.; Bindseil, K. U.; Bowman, E. J.; Siebers, A.; Zeeck, A.; Altendork, K. Biochemistry 1993, 32, 3902.
${ }^{14}$ Diyabalanage, T.; Amsler, C. D.; McClintock, J. B.; Baker, B. J. J. Am. Chem. Soc. 2006, 128, 5630-5631.
${ }^{15}$ Kazami, S.; Muroi, M.; Kawatani, M.; Kubota, T.; Usui, T.; Kobayashi, J.; Osada, H. Biosci. Biotechnol. Biochem. 2006, 70, 1364-1370.
${ }^{16}$ Beyenbach, K. W.; Wieczorek, H. J. Exp. Biol. 2006, 209, 577.
${ }^{17}$ Hassfeld, J.; Fare`s, C.; Steinmetz, H.; Carlomagno, T.; Menche, D. Org. Lett. 2006, 8, 4751-4754.
${ }^{18}$ Höfle, G.; Reichenbach, H.; Irschik, H.; Schummer, D., German Patent DE 19630980 A1: 1-7, 1998.
${ }^{19}$ Irschik, H.; Schummer, D.; Höfle, G.; Reichenbach, H.; Steinmetz, H.; Jansen, R. J. Nat. Prod. 2007, 70, 1060-1063.
${ }^{20}$ Alberts, B., et al. (2002). Molecular biology of the cell. 4th edition. Garland Science, New York. 302-335. "From DNA to RNA"
${ }^{21}$ Jin, D. J.; Zhou, Y. N. Methods Enzymol. 1996, 273, 300-319.
${ }^{22}$ Irschik, H.; Jansen, R.; Höfle, G.; Gerth, K.; Reichenbach, H. J. Antibiot. 1985, 38, 145-152.
${ }^{23}$ Irschik, H., Augustiniak, H.; Gerth, K.; Höfle, G.; Reichenbach, H. J. Antibiot. 1995, 48, 787-792.
${ }^{24}$ Irschik, H.; Jansen, R.; Gerth, K.; Höfle, G.; Reichenbach, H. J. Antibiot. 1987, 40, 7-13.
${ }^{25}$ Parenti, F.; Lancini, G. in Antibiotic and Chemotherapy; O'Grady, F.; Lambert, H. P.; Finch, R. G.; Greenwood, D., Eds.; Churchill Livingstone: New York, 1997; pp. 453-459.
${ }^{26}$ Menche, D.; Arikan, F.; Perlova, O.; Horstmann, N.; Ahlbrecht, W.; Wenzel, S. C.; Jansen, R.; Irschik, H.; Müller, R. J. Am. Chem. Soc. 2008, 130, 14234-14243.
${ }^{27}$ O'Hagan, D. The Polyketide Metabolites, Ellis Horwood, Chichester, U.K. 1991.
${ }^{28}$ Moore, B. S.; Hertweck, C. Nat. Prod. Rep. 2002, 19, 70-99.
${ }^{29}$ Hopwood, D. A. Chem. Rev. 1997, 97, 2465-2497.
${ }^{30}$ Katz, L. Chem. Rev. 1997, 97, 2557-2575.
${ }^{31}$ Zimmerman, H.E.; Traxler, M. D. J. Am. Chem. Soc. 1957, 79, 1920-1923.
${ }^{32}$ (a) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127-2129. (b) Evans, D. A. Aldrichimica Acta 1982, 15, 23.
${ }^{33}$ Evans, D. A., Takacs, J. M.; McGee, L. R.; Ennis, M. D.; Bartroli, D. J. J. Pure \& Appl. Chem. 1981, 53, 1109-1127.
${ }^{34}$ Walker, M. A.; Heathcock, C. H. J. Org. Chem. 1991, 56, 5747-5750.
${ }^{35}$ Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K. J. Org. Chem. 2001; 66, 894.
${ }^{36}$ Evans, D. A.; Tedrow, J. S.; Shaw, J. T.; Downey, C. W. J. Am. Chem. Soc. 2002, 124, 392.
${ }^{37}$ Evans, D. A.; Downey, C. W.; Shaw, J. T.; Tedrow, J. S. Org. Lett. 2002, 4, 1127-1130.
${ }^{38}$ Abiko, A.; Liu, J.-F.; Masamune, S. J. Am. Chem. Soc. 1997, 119, 2586-2587.
${ }^{39}$ Liu, J.-F.; Abiko, A.; Pei, Z.; Buske, D. C.; Masamune, S. Tetrahedron Lett. 1998, 39, 1873.
${ }^{40}$ Fanjul, A.; Hulme, A. N.; White, J. W. Org. Lett. 2006, 8, 4219-4222.
${ }^{41}$ (a) Paterson, I.; Wallace, D. J.; Velázquez, S. M. Tetrahedron Lett. 1994, 35, 9083-9086. (b) Paterson, I.; Wallace, D. J. Tetrahedron Lett. 1994, 35, 9477-9487.
${ }^{42}$ Paterson, I.; Wallace, D. J.; Cowden, C. J. Synthesis 1998, 639-652.
${ }^{43}$ (a) Paterson, I.; Wallace, D. J. Tetrahedron Lett. 1994, 35, 9087-9090. (b) Paterson, I.; Wallace, D. J.; Velázquez, S. M. Tetrahedron Lett. 1994, 35, 9083-9086.
${ }^{44}$ (a) Paterson, I.; Norcross, R. D.; Ward, R. A.; Romea, P.; Lister, M. A. J. Am. Chem. Soc. 1994, 116, 11287-11314. (b) Paterson, I.; Tillyer, R. D. Tetrahedron Lett. 1992, 33, 42334236. (c) Paterson, I.; Perkins, Tetrahedron Lett. 1992, 33, 801-804. (d) Paterson, I.; Goodman, J. M.; Isaka, M. Tetrahedron Lett. 1989, 30, 7121-7124.
${ }^{45}$ (a) Paterson, I.; Arnott, E. A. Tetrahedron Lett. 1998, 39, 7185-7188. (b) Paterson, I.; Florence, G. J.; Gerlach, K.; Scott, J. P.; Sereinig, N. J. Am. Chem. Soc. 2001, 123, 9535-9544.
${ }^{46}$ (a) Oppolzer, W.; Blagg, J.; Rodriguez, I.; Walther, E. J. Am. Chem. Soc. 1990, 112, 27672772. (b) Oppolzer, W.; Starkemann, C.; Rodriguez, I.; Bernardinelli, G. Tetrahedron Lett. 1991, 32, 61-64. (c) Oppolzer, W.; Lienard, P. Tetrahedron Lett. 1993, 34, 4321-4324.
${ }^{47}$ Oppolzer, W.; Brabander, J. D.; Walther, E.; Bernardinelli, G. Tetrahedron Let. 1995, 36, 4413-4416.
${ }^{48}$ Wang, Y-Ch.; Hung, A-W.; Chang, Ch-Sh.; Yan, T-H. J. Org. Chem. 1996, 61, 2038-2043.
${ }^{49}$ (a) Myers, A. G.; Widdowson, K. L. J. Am. Chem. Soc. 1990, 112, 9672-9674. (b) Myers, A. G.; Widdowson, K. L.; Kukkola, P. J. J. Am. Chem. Soc. 1992, 114, 2765-2767.
${ }^{50}$ (a) Ghosh, A. K.; Onishi, M. J. Am. Chem. Soc. 1996, 118, 2527-2528. (b) Ghosh, A. K.; Fidanze, S.; Onishi, M.; Hussain, K. H. Tetrahedron Lett. 1997, 38, 7171-7174. (c) Ghosh, A. K.; Liu, C. J. Am. Chem. Soc. 2003, 125, 2374-2375.
${ }^{51}$ (a) Helmchen, G., Hoffmann, R., Mulzer, J., Schaumann, E., Eds. In Stereoselective Synthesis, Methods of Organic Chemistry (Houben-Weyl), 21st ed.; Thieme Stuttgart: New York, 1996; Vol.3, pp 1357-1602. (b) Chemler, S. R.; Roush, W. R. In Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, 2000; Chapter 11. (c) Denmark, S. E.; Almstead, N. G. In Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, 2000; Chapter 10.
${ }^{52}$ Denmark, S. E.; Weber, E. J. Helv. Chim. Acta. 1983, 66, 1655-1660.
${ }^{53}$ Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763-2793
${ }^{54}$ (a) Nishida, M.; Tozawa, T.; Yamada, K.; Mukaiyama, T. Chem. Lett. 1996, 1125. (b) Yamada, K.; Tozawa, T.; Nishida, M.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1997, 70, 2301.
${ }^{55}$ Masse, C. E.; Panek, J. C. Chem. Rev. 1995, 95, 1293-1316.
${ }^{56}$ (a) Jacobsen, E. N. et al. Ed.; Comprehensive Asymmetric Catalysis; Springer: Berlin, 1999; p. 965-82. (b) Lin, Guo-Qiang et al. Ed.; Principles and Applications of Asymmetric Synthesis; John Wiley \& Sons, Inc., 2001; p. 167-178.
${ }^{57}$ (a) Hoffmann, R. W. In Stereocontrolled Organic Synthesis; Trost, B. M., Ed.; Blackwell Scientific Publications: Cambridge; 1994; pp 259-274. (b) Roush, W. R. In Stereoselective Synthesis, Methods of Organic Chemistry (Houben-Weyl), 21st ed.; Helmchen, G., Hoffmann, R. W., Mulzer, J., Schaumann, E., Eds.; Thieme Stuttgart: New York, 1996; Vol. 3, pp 14101486.
${ }^{58}$ (a) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 293-294. (b) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 5919-5923. (c) Roush, W. R. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I., Eds., Pergamon Press: New York, 1991, Vol. 2, pp. 1-53.
${ }^{59}$ Li, Y.; Houk, K. N. J. Am. Chem. Soc. 1989, 111, 1236-1240.
${ }^{60}$ Brown, H. C.; Racherla, U. S.; Pellechia, P. J. J. Org. Chem.; 1990; 55(6); 1868-1874.
${ }^{61}$ (a) Herold, T.; Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1978, 17, 768-769. (b) Hoffmann, R. W.; Helbig, W. Chem. Ber. 1981, 114, 2802-2807. (c) Lachance, H.; Lu, X.; Gravel, M.; Hall, D. G. J. Am. Chem. Soc. 2003, 125, 10160-10161.
${ }^{62}$ (a)Roush, W. R. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I., Eds., Pergamon Press: New York, 1991, Vol. 2, pp. 1-53. (b) Roush, W. R.; Ando, K.; Powers, D. B.; Palkowitz, A. D.; Halterman, R. L. J. Am. Chem. Soc. 1990, 112, 6339-6348. (c) Roush, W. R.; Palkowitz, A. D.; Ando, K. J. Am. Chem. Soc. 1990, 112, 6348-6359. (d) Roush, W. R.; Palkowitz, A. D.; Palmer, M. A. J. J. Org. Chem. 1987, 52, 316-318. (e) Roush, W. R.; Halterman, R. L. J. Am. Chem. Soc. 1986, 108, 294-296. (f) Roush, W. R.; Walts, A. E.; Hoong, L. K. J. Am. Chem. Soc. 1985, 107, 8186-8190.
${ }^{63}$ Garcia, J.; Kim, B.; Masamune, S. J.Org. Chem, 1987, 52, 4831.
${ }^{64}$ Corey, E. J.; Yu, C.-M.; Kim, S. S. J. Am. Chem. Soc. 1989, 111, 5495.
${ }^{65}$ Burgos, C. H.; Canales, E.; Matos, K.; Soderquist, J. A. J. Am. Chem. Soc. 2005, 127, 8044.
${ }^{66}$ Peng, F.; Hall, D. G. J. Am. Chem. Soc. 2007, 129, 3070-3071.
${ }^{67}$ Duthaler, R. O.; Hafner, A.; Riediker, M. Pure \& Appl. Chem. 1990, 62, 631-642.
${ }^{68}$ (a) Hafner, A.; Duthaler, R. O.; Marti, R.; Rihs, G.; Rothe-Streit, P.; Schwarzenbach, F. J. Am. Chem. Soc. 1992, 114, 2321-2336. (b) Duthaler, R. O; Hafner, A.; Chem. Rev. 1992, 92, 807832.
${ }^{69}$ Hackman, B. M.; Lombardi, P. J.; Leighton, J. L. Org. Lett. 2004, 6, 4375-4377.
${ }^{70}$ Marshall, J. A.; Adams, N. D. J. Org. Chem. 1999, 64, 5201.
${ }^{71}$ Marshall, J. A.; Grant, C. M. J. Org. Chem. 1999, 64, 8214.
${ }^{72}$ (a) Marshall, J. A. Chem. Rev. 1996, 96, 31. (b) Marshall, J. A. Chem. Rev. 2000, 100, 3163.
${ }^{73}$ Marshall, J. A.; Chobanian, H. R.; Yanik, M. M. Org. Lett. 2001, 3, 3369.
${ }^{74}$ (a) Jung, M. E.; D'Amico, D. C. J. Am. Chem. Soc. 1993, 115, 12208 and references therein. (b) Jung, M. E.; D’Amico, D. C. J. Am. Chem. Soc. 1995, 117, 7379. (c) Jung, M. E.; D’Amico, D. C. J. Am. Chem. Soc. 1997, 119, 12150. (d) Jung, M. E.; Lee, W. S.; Sun, D. Org. Lett. 1999, 1, 307. (e) Jung, M. E.; Sun, D. Tetrahedron Lett. 1999, 40, 8343.
${ }^{75}$ Jung, M. E.; Marquez, R. Org. Lett. 2000, 2, 1669-1672.
${ }^{76}$ (a) Nakai, T.; Mikami, K. Chem. Rev. 1986, 86, 885-902. (b) Marshall, J. A. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I., Eds., Pergamon Press: London, 1991, Vol. 3. (c) Mikami, K.; Nakai, T. Synthesis 1991, 594-604.
${ }^{77}$ Tsai, D. J.-S.; Midland, M. M. J. Org. Chem. 1984, 49, 1842-1843.
${ }^{78}$ Tsai, D. J.-S.; Midland, M. M. J. Am. Chem. Soc. 1985, 107, 3915-3918.
${ }^{79}$ Parker, K. A.; Cao, H. Org. Lett. 2006, 8, 3541-3544.
${ }^{80}$ Whitehead, A.; McParland, J. P.; Hanson, P. R. Org. Lett. 2006, 8, 5025-5028.
${ }^{81}$ Corey, E. J.; Boaz, N. W. Tetrahedron Lett. 1984, 25, 3063-3066.
${ }^{82}$ N. A. Rai, A. Basu, Tetrahedron Lett. 2003, 44, 2267.
${ }^{83}$ Compound 64 was prepared by Jun Li.
${ }^{84}$ C. J. Cowden, I. Paterson, Org. React. 1997, 51, 1.
${ }^{85}$ W. C. Still, C. Gennari, Tetrahedron Lett. 1983, 24, 4405.
${ }^{86}$ P. Nigel, G. David, Tetrahedron Lett. 1999, 40, 3811.
${ }^{87}$ (a) I. Thomson, K. Clausen, S. Schelbye, S. O. Lawesson, Org. Synth. 1984, 62, 158. (b) B. Yde, N. M. Yousif, U. Pedersen, I. Thomsen, S. O. Lawesson, Tetrahedron 1984, 40, 11, 2047.
${ }^{88}$ For previous examples on related cyclisations, see: (a) M. W. Bredenkamp, C. W. Holzapfel, W. J. van Zyl, Synthetic Commun. 1990, 20, 2235. (b) M. A. Ciufolini, Y. C. Shen, J. Org. Chem. 1997, 62, 3804. (c) J.-C. Jung, R. Kache, K. K. Vines, Y.-S. Zheng, P. Bijoy, M. Valluri, M. A. Avery, J. Org. Chem. 2004, 26, 9269.
${ }^{89}$ von Geldern, T. W.; Hoffman, D. J.; Kester, J. A.; Nellans, H. N.; Dayton, B. D.: Calzadilla, S. V.; Marsh, K. C.; Hernandez, L.; Chiou, W.; Dixon, D. B.; Wu-Wong, J. R.: Opgenorth, T. J. J. Med. Chem. 1996, 39, 4, 982.
${ }^{90}$ (a) H. C. Brown, K. S. Bath, J. Am. Chem. Soc. 1986, 108, 5919. (b) H. C. Brown, K. S. Bhat, R. S. Randad, J. Org. Chem. 1989, 54, 1570.
${ }^{91}$ Gaul, C.; Njardarson, J. T.; Danishefsky, S. J. J. Am. Chem. Soc. 2003, 125, 6042-6043.
${ }^{92}$ (a) Negishi, E.; van Horn, D. E.; King, A. O.; Okukado, N. Synthesis 1979, 501-502; (b) Rand, C. L.; van Horn, D. E.; Moore, M. W.; Negishi, E. J .Org. Chem, 1981, 46, 4093-4096.
(c) Baker, R.; Cummings, W. J.; Hayes, J. F.; Kumar, A. J. Chem. Soc., Chem.Commun. 1986, 1237-1239.
${ }^{93}$ Layton, M. E.; Morales, C. A.; Shair, M. D. J. Am. Chem. Soc. 2002, 124, 773-775.
${ }^{94}$ (a) Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1997, 119, 8738; (b) Marshall, J. A.; Bourbeau, M. P. Org. Lett. 2003, 5, 3197-3199.
${ }^{95}$ Mori, K.; Koseki, K. Tetrahedron 1988, 44, 6013-6020.
${ }^{96}$ SmithIII, A. B.; Condon, S. M.; McCauley, J. A.; Leahy, J. W.; Leazer, Jr.,J. L.; Maleczka, Jr., R. E. Tetrahedron Lett. 1994, 35, 4907-4910.
${ }^{97}$ (a) Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815-3818. (b) Trost, B. M.; Gunzner, J. L. J. Am. Chem. Soc. 2001, 123, 9449-9450.
${ }^{98}$ Alemany, C.; Bach, J.; Garcia, J.; López, M.; Rodríguez, A. B. Tetrahedron 2000, 56, 9305-9312.
${ }^{99}$ Baker, R.; Castro, J. L. J. Chem. Soc. Perkin Trans. 1 1990, 47-65.
${ }^{100}$ Fatiadi, A. J. Synthesis 1976, 65-104.
${ }^{101}$ Inoue, T.; Liu, J.-F.; Buske, D. C.; Abiko, A. J. Org. Chem. 2002, 67, 5250-5256.
${ }^{102}$ Evans, D. A.; Ratz, A. M.; Huff, B. E.; Sheppard, G. S. J. Am. Chem. Soc. 1995, 117, 3448-3467.
${ }^{103}$ Walba, D. M.; Thurmes, W. N.; Haltiwanger, R. C. J. Org. Chem. 1988, 53, 1046-1056.
${ }^{104}$ Trost, B. M.; Gunzner, J. L.; Dirat, O.; Rhee, Y. H. J. Am. Chem. Soc. 2002, 124, 1039610415.
${ }^{105}$ (a) Frigerio, M.; Santagostino, M.; Sputore, S. J. Org. Chem. 1999, 64, 4537-4538. (b) Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899-2899.
${ }^{106}$ Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863-927.
${ }^{107}$ (a) Ren, H.; Krasovskiy, A.; Knochel, P. Org. Lett. 2004, 5, 4215-4217. (b) Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F. F.; Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V. A. Angew. Chem. 2003, 115, 4438-4456
${ }^{108}$ (a) Stürmer, R.; Ritter, K.; Hoffmann, R. W. Angew. Chem. 1993, 105, 112-114. (b) Marshall, J. A.; Andrews, R. C. J. Org. Chem. 1985, 50, 1602-1606.
${ }^{109}$ (a) Williams, J. M.; Jobson, R. B.; Yasuda, N.; Marchesini, G.; Dolling, U-H.; Grabowski, E. J.J. Tetrahedron Lett. 1995, 36, 5461-5464. (b) Evano, G.; Schaus, J. V.; Panek, J. S. Org. Lett.; 2004, 6, 525-528.
${ }^{110}$ K. N"utzel, H. Gilman, G. F. Wright, Methoden Org. Chem. (Houben-Weyl) 1973, Vol. 13/2a, p. 49-527.
${ }^{111}$ Basha, A.; Lipton, M.; Weinreb, S. M. Tetrahedron Lett. 1977, 18, 4171-4174.
${ }^{112}$ Shimizu, T.; Osako, K.; Nakata, T. Tetrahedron Lett. 1997, 38, 2685-2688.
${ }^{113}$ Huang, P-Q.; Zheng, X.; Deng, X-M. Tetrahedron Lett. 2001, 42, 9039-9041.
${ }^{114}$ Calter, M. A.; Bi, F. C. Org. Lett. 2000, 2, 1529-1531.
${ }^{115}$ Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183-2186.
${ }^{116}$ Prepared by Sven Rudolph: Sven Rudolph, Dissertation, Universität Hannover, 2008.
${ }^{117}$ (a) R. F. Heck, J. P. Nolley, J. Org. Chem. 1972, 37, 14, 2320. (b) R. F. Heck, H. A. Dieck, J. Am. Chem. Soc. 1974, 96, 1133. (c) R. F. Heck, Org React. 1982, 27, 345-390. (d) T. Jeffrey, Chem Comm. 1984, 1287-1289. (e) T. Jeffrey, Tetrahedron Lett. 1985, 26, 2667-2670. (g) T. Jeffrey, Synthesis 1987, 70.
${ }^{118}$ Prepared by Sven Rudolph: Sven Rudolph, Dissertation, Universität Hannover, 2008.
${ }^{119}$ Ziegler, F. E.; Chakraborty, U. R.; Weisenfeld, R. B. Tetrahedron 1981, 37, 4035-4040.
${ }^{120}$ LC-MS analysis and calculated for $\mathrm{C}_{47} \mathrm{H}_{73} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+}, 837.5$, found: 837.3.
${ }^{121}$ Menche, D.; Hassfeld, J.; Li, J.; Rudolph, S. J. Am. Chem. Soc. 2007, 129, 6100-6101.
${ }^{122}$ (a) Arikan, F.; Li, J.; Menche, D. Org. Lett. 2008, 10, 3521-3524. (b) Oishi, Nakata, T. Acc. Chem. Res. 1984, 17, 338.
${ }^{123}$ (a) Paterson, I.; Wallace, D. J.; Tetrahedron 1996, 52, 1811. (b) Paterson, I.; Wallace, D. J.; Tetrahedron Lett. 1992, 33, 801.
${ }^{124}$ (a) Hartung, J.; Honig, S.; Kneuer, R.; Schwarz, M.; Wenner, H. Synthesis 1997, 14331438. (b) Yoshida, Y.; Sakakura, Y.; Aso, N.; Okada, S.; Tanabe, Y. Tetrahedron 1999, 55, 2183-2192.
${ }^{125}$ (a) Bal, B. S.; Childers, W. E.; Pinnick, H. W. Tetrahedron 1981, 37, 2091. (b) Kraus, G. A.; Roth, B. J. Org. Chem. 1980, 45, 4825-4830. (c) Corey, E. J.; Myers, A. G. J. Am. Chem. Soc. 1985, 107, 5574-5576.
${ }^{126}$ Kubota, K.; Leighton, J. L. Angew. Chem., Int. Ed. 2003, 42, 946-948.
${ }^{127}$ (a) Kuczkowski, R. L. Chem. Soc. Rev. 1992, 21, 79-83. (b) Sander, W. Angew. Chem. Int. Ed. 1990, 29, 344. (c) Horie, O.; Moorgat, G. K. Acc. Chem. Res. 1998, 31, 387-396.
${ }^{128}$ Stork, G.; Zhao, K. Tetrahedron Lett. 1989, 30, 2173-2174.
${ }^{129}$ (a) Parihk, J. R.; Doering, W. von E. J. Am. Chem. Soc. 1967, 89, 5505-5507. (b) Evans, D. A.; Ripin, D. H.; Halstead, D. P.; Campos, K. R. J. Am. Chem. Soc. 1999, 121, 6816-6826.
${ }^{130}$ (a) Paterson, I.; Gibson, K. R.; Oballa, R. M. Tetrahedron Lett. 1996, 37, 8585-8588. (b) Paterson, I.; Collett, L. A. Tetrahedron Lett. 2001, 42, 1187-1191. (c) Evans, D. A.; Côté, B.; Coleman, P. J.; Connell, B. T. J. Am. Chem. Soc. 2003, 125, 10893-10898.
${ }^{131}$ Famer, L. J.; Marron, K. S.; Koch, S. S. C.; Hwang, C.K.; Kallel, E. A.; Zhi, L.; Nadzan, A. M.; Robertson, D. W.; Bennani, Y. L. Bioorg. Med. Chem. Lett. 2006, 16, 2352-2356.
${ }^{132}$ de Lera, A. R.; Iglesias, B.; Rodriguez, J.; Alvarez, R.; Lopez, S.; Villanueva, X.; Padros, E. J. Am. Chem. Soc. 1995, 117, 8220-8231.
${ }^{133}$ (a) Mohr, P. J.; Halcomb, R. L. Org. Lett. 2002, 4, 2413-2416. (b) Kim, H.; Choi, W. J.; Jung, J.; Kim, S.; Kim, D. J. Am. Chem. Soc. 2003, 125, 10238-10240.
${ }^{134}$ N. Nakajima, M. Saito, M. Ubukata, Tetrahedron Lett. 1988, 29, 5565-5568.
${ }^{135}$ Paterson, I.; Ashton, K.; Britton, R.; Cecere, G.; Chouraqui, G.; Florence, G. J.; Stafford, J. Angew. Chem. 2007, 119, 6279-6283.
${ }^{136}$ (a) PPTS: Roush, W. R.; Marron, T. G.; Pfeifer, L. A. J. Org. Chem. 1997, 62, 474-478. (b) CSA: Dahan, A.; Portnoy, M. J. Org. Chem. 2001, 66, 6480-6482. (c) $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}$: Wang, C.; Forsyth, C. J. Org. Lett. 2006, 8, 2997-3000. (d) $\mathrm{Sc}(\mathrm{OTF})_{3}$: Paterson, I.; Anderson, E. A.; Dalby, A., S. M. Synthesis 2005, 3225-3228.
${ }^{137}$ Park, P. K.; O‘Malley, S. J.; Schmidt, D. R.; Leighton, J. L. J. Am. Chem. Soc. 2006, 128, 2796-2797.
${ }^{138}$ Ahmed, M.; Atkinson, C. E.; Barrett, A. G. M.; Malagu, K.; Procopiou, P. A. Org. Lett. 2003, 5, 669-672.
${ }^{139}$ Seco, J. M.; Quinoa, E.; Riguera, R. Chem. Rev. 2004, 104, 17-118.
${ }^{140}$ Paton, R. S.; Goodman, J. M. Org. Lett. 2006, 8, 4299-4302.
${ }^{141}$ Paterson, I.; Wallace, D. J.; Cowden, C. J. Synthesis 1998, 639-652.
${ }^{142}$ Evans, D. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1990, 112, 6447-6449.
${ }^{143}$ Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110, 3560-3578.
${ }^{144}$ Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull.Chem. Soc. Jpn. 1979, 52, 1989.
${ }^{145}$ Mundy, B. P.; Ellerd, M. G.; Favaloro, F. G. Name Reactions and Reagents in Organic Synthesis; 2nd ed. John Wiley \& Sons, 2005.
${ }^{146}$ (a) Dounay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945. (b) Shibasaki, M.; Boden, C. D. J.; Kojima, A. Tetrahedron 1997, 53, 7371.
${ }^{147}$ (a) Nicolaou, K. C.; Nold, A. L.; Milburn, R. R.; Schindler, C. S. Cole, K. P.; Yamaguchi J. J. Am. Chem. Soc. 2007, 129, 1760-1768. (b) Yokoyama, H.; Satoh, T.; Furuhata, T.; Miyazawa, M.; Hirai, Y. Synlett 2006, 2649-2651. (c) Gibson, S. E.; Lecci, C.; Whiteb, A. J. P, Synlett 2006, 2929-2934. (d) Leonard, M. S.; Carroll, P. J.; Joullie, M. M. J. Org. Chem. 2004, 69, 2526-2531. (e) Geng, X.; Miller, M. L.; Lin, S.; Ojima, I. Org. Lett. 2003, 5, 37333736. (f) Harrowven, D. C.; Woodcocka, T.; Howesb, P. D. Tetrahedron Lett. 2002, 43, 93279329. (g) Câline, C.; Pattenden, G. Synlett 2000, 1661-1663. (h) Jeong, S.; Chen, X.; Harran, P. G. J. Org. Chem. 1998, 63, 8640-8641. (i) Ma, S.; Negishi, E-C. J. Am. Chem. Soc. 1995, 117, 6345-6357. (j) Stocks, M. J.; Harrison R. P.; Teague, S. J. Tetrahedron Lett. 1995, 36, 6555-6558.
${ }^{148}$ Jeffery, T. Termhedron 1996, 52, 10113-10130.
${ }^{149}$ (a) Schinzer, D.; Bohm, O. M.; Altmann, K.-H.; Wartmann, M. Synlett 2004, 1375. (b) Crimmins, M. T.; Caussanel, F. J. Am. Chem. Soc. 2006, 128, 3128-3129.
${ }^{150}$ Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009-3066.
${ }^{151}$ Chinchilla, R.; Na'jera, C. Chem. Rev. 2007, 107, 874-922.
${ }^{152}$ Green, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis; 4rd ed. Wiley: New York, 2007.
${ }^{153}$ Kocienski, P. Protecting Groups; 1st ed. Georg Thieme: Stuttgart, 1994.
${ }^{154}$ Jarowicki, K.; Kocienski, P. J. Chem. Soc., Perkin Trans. 1 2000, 2495-2527.
${ }^{155}$ Nelson, T. D.; Crouch, R. D. Synthesis 1996, 1031-1069.
${ }^{156}$ Crouch, R. D Tetrahedron 2004, 60, 5833-5871.
${ }^{157}$ Muzart, J. Synthesis 1993, 11-27.
${ }^{158}$ (a) Ali, S. M.; Georg, G. I. Tetrahedron Lett. 1997, 38, 1703-1706. (b) Eggen, M.; Mossman, C. J.; Buck, S. B.; Nair, S. K.; Bhat, L.; Ali, S. M.; Reiff, E. A.; Boge, T. C.; Georg, G. I. J. Org. Chem. 2000, 65, 7792-7799. (c) Hart, B. P.; Verma, S. K.; Rapoport, H. J. Org. Chem. 2003, 68, 187-190.
${ }^{159}$ (a) Mori, Y.; Yaegashi, K.; Furukawa, H. J. Am. Chem. Soc. 1997, 119, 4557-4558. (b) Mori, Y.; Yaegashi, K.; Furukawa, H. J. Org. Chem. 1998, 63, 6200-6209. (c) Paterson, I.; Tudge, M. Tetrahedron 2003, 59, 6833-6849. (d) Nicolaou, K. C.; Sarabia, F.; Ninkovic, S.; Finlay, M. R. V.; Boddy, C. N. C. Angew. Chem., Int. Ed. 1998, 37, 81-84. (e) Storer, R. I.;

Takemoto, T.; Jackson, P. S.; Ley, S. V. Angew. Chem., Int. Ed. 2003, 42, 2521-2525. (f) Yakura, T.; Kitano, T.; Ikeda, M.; Uenishi, J. Heterocycles 2003, 59, 347-358.
${ }^{160}$ (a) Marshall, J. A.; Adams, N. D. J. Org. Chem. 2002, 67, 733-740. (b) Trost, B. M.; Corte, J. R.; Gudiksen, M. S. Angew. Chem., Int Ed. 1999, 38, 3662-3664. (c) Williams, D. R.; Meyer, K. G. J. Am. Chem. Soc. 2001, 123, 765-766. (d) Marshall, J. A.; Ellis, K. C. Org. Lett. 2003, 5, 1729-1732. (e) Shimano, K.; Ge, Y.; Sakaguchi, K.; Isoe, S. Tetrahedron Lett. 1996, 37, 2253-2256. (f) Crimmins, M. T.; Stanton, M. G.; Allwein, S. P. J. Am. Chem. Soc. 2002, 124, 5958-5959. (g) Ito, M.; Yamanaka, M.; Kutsumura, N.; Nishiyama, S. Tetrahedron Lett. 2003, 44, 7949-7952.
${ }^{161}$ (a) Kiyooka, S.; Shahid, K. A.; Goto, F.; Okazaki, M.; Shuto, Y. J. Org. Chem. 2003, 68, 7967-7978. (b) Shahid, K. A.; Mursheda, J.; Okazaki, M.; Shuto, Y.; Goto, F.; Kiyooka, S. Tetrahedron Lett. 2002, 43, 6377-6381.
${ }^{162}$ (a) Ichikawa, S.; Shuto, S.; Minakawa, N.; Matsuda, A. J. Org. Chem. 1997, 62, 13681375. (b) Ogawa, A.; Tanaka, M.; Sasaki, T.; Matsuda, A. J. Med. Chem. 1998, 41, 50945107. (c) McCormick, J.; Li, Y.; McCormick, K.; Duynstee, H. J.; van Engen, A. K.; van der Marel, G. A.; Ganem, B.; van Boom, J. H.; Meinwald, J. J. Am. Chem. Soc. 1999, 121, $5661-$ 5665. (d) Zhu, X.-F.; Williams, H. J.; Scott, A. I. J. Chem. Soc., Perkin Trans. 1 2000, 23052306. (e) Chen, X.; Wiemer, A. J.; Hohl, R. J.; Wiemer, D. F. J. Org. Chem. 2002, 67, 93319339. (f) Dixon, D. J.; Ley, S. V.; Gracza, T.; Szolcsanyi, P. J. Chem. Soc., Perkin Trans. I 1999, 839-841.
${ }^{163}$ (a) Smith, A. B., III; Freeze, B. S.; Brouard, I.; Hirose, T. Org. Lett. 2003, 5, 4405-4408. (b) Pilli, R. A.; Victor, M. M. Tetrahedron Lett. 1998, 39, 4421-4424.
${ }^{164}$ (a) Trauner, D.; Schwarz, J. B.; Danishefsky, S. J. Angew. Chem., Intl Ed. Engl. 1999, 38, 3542-3545. (b) Schinzer, D.; Bohm, O. M.; Altmann, K.-H.; Wartmann, M. Synlett 2004, 1375. (c) Crimmins, M. T.; Caussanel, F. J. Am. Chem. Soc. 2006, 128, 3128-3129.
${ }^{165}$ (a) Tanemura, K.; Suzuki, T.; Horaguchi, T. J. Chem. Soc., Perkin Trans. 1 1992, 29972998. (b) Paterson, I.; Cowden, C. J.; Rahn, V. S.; Woodrow, M. D. Synlett 1998, 915-917. ${ }^{166}$ Chandrasekhar, S.; Mohanty, P. K.; Takhi, M. J. Org. Chem. 1997, 62, 2628-2629. ${ }^{167}$ (a) Koeller, S.; Lellouche, J.-P. Tetrahedron Lett. 1999, 40, 7043-7046. (b) Lellouche, J.P.; Koeller, S. J. Org. Chem. 2001, 66, 693-696. (c) Lellouche, J.-P.; Kotlyar, V. Synlett 2004, 564-571.
${ }^{168}$ (a)Wender, P. A.; Hegde, S. G.; Hubbard, R. D.; Zhang, L. J. Am. Chem. Soc. 2002, 124, 4956-4957. (b) Hwu, J. R.; Jain, M. L.; Tsai, F.-Y.; Tsay, S.-C.; Balakumar, A.; Hakimelahi, G. H. J. Org. Chem. 2000, 65, 5077-5088.
${ }^{169}$ Chen, M.-Y.; Lu, K.-C.; Lee, A. S.-Y.; Lin, C.-C. Tetrahedron Lett. 2002, 43, 2777-2780. ${ }^{170}$ Tandon, N.; Begley, T. P. Synth. Commun. 1997, 27, 2953-2959.
${ }^{171}$ (a) Stork, G.; Manabe, K.; Liu, L. J. Am. Chem. Soc. 1998, 120, 1337-1338. (b) Matsushima, Y.; Itoh, H.; Nakayama, T.; Horiuchi, S.; Eguichi, T.; Kakinuma, K. J. Chem. Soc., Perkin Trans. 1 2002, 949-958.
${ }^{172}$ Fukuda, Y.; Shindo, M.; Shishido, K. Org. Lett. 2003, 5, 749-751.
${ }^{173}$ Nakamura, T.; Shiozaki, M. Tetrahedron Lett. 2001, 42, 2701-2704.
${ }^{174}$ Corey, E. J.; Roberts, B. E. J. Am. Chem. Soc. 1997, 119, 12425-12431.
${ }^{175}$ (a) Kurosawa, W.; Kan, T.; Fukuyama, T. J. Am. Chem. Soc. 2003, 125, 8112-8113. (b) Ohyabu, N.; Nishikawa, T.; Isobe, M. J. Am. Chem. Soc. 2003, 125, 8798-8805. (c) 30. Fuwa, H.; Sasaki, M.; Satake, M.; Tachibana, K. Org. Lett. 2002, 4, 2981-2984. (d) Carter, R. G.; Graves, D. E.; Gronemeyer, M. A.; Tschumper, G. S. Org. Lett. 2002, 4, 2181-2184.
${ }^{176}$ Shahid, K. A.; Mursheda, J.; Okazaki, M.; Shuto, Y.; Goto, F.; Kiyooka, S. Tetrahedron Lett. 2002, 43, 6377-6381.
${ }^{177}$ Fürstner, A.; Albert, M.; Mlynarski, J.; Metheu, M.; DeClerq, E. J. Am. Chem. Soc. 2003, 125, 13132-13142.
${ }^{178}$ Khan, A. T.; Mondal, E. Synlett 2003, 694-698.
${ }^{179}$ Iimura, S.; Manabe, K.; Kobayashi, S. J. Org. Chem. 2003, 68, 8723-8725.
${ }^{180}$ Aiguade, J.; Hao, J.; Forsyth, C. J. Org. Lett. 2001, 3, 979-982.
${ }^{181}$ (a) Bartoli, G.; Bosco, M.; Marcantoni, E.; Sambri, L.; Torregiani, E. Synlett 1998, 209211. (b) Bartoli, G.; Marcantoni, E.; Sambri, L. Synlett 2003, 2101-2116.
${ }^{182}$ Bartoli, G.; Cupone, G.; Dalpozzo, R.; De Nino, A.; Maiuolo, L.; Procopio, A.; Sambri, L.; Tagarelli, A. Tetrahedron Lett. 2002, 43, 5945-5947.
${ }^{183}$ Yadav, J. S.; Reddy, R. V. S.; Madan, C. New J. Chem. 2000, 24, 853-854.
${ }^{184}$ Crouch, R. D.; Polizzi, J. M.; Cleiman, R. C.; Yi, J.; Romany, C. A. Tetrahedron Lett. 2002, 43, 7151-7153.
${ }^{185}$ Ranu, B. C.; Jana, U.; Majee, A. Tetrahedron Lett. 1999, 40, 1985-1988.
${ }^{186}$ Sabitha, G.; Babu, R. S.; Rajkumar, M.; Srividya, R.; Yadav, J. S. Org. Lett. 2001, 3, 1149-1151.
${ }^{187}$ Yu, Z.; Verkade, J. G. J. Org. Chem. 2000, 65, 2065-2068.
${ }^{188}$ (a) Barros, M. T.; Maycock, C. D.; Sineriz, F.; Thomassigny, C. Tetrahedron 2000, 56, 6511-6516. (b) Barros, M. T.; Maycock, C. D.; Thomassigny, C. Synlett 2001, 1146-1148.
${ }^{189}$ Vaino, A. R.; Szarek, W. A. Chem. Commun. 1996, 2351-2352.
${ }^{190}$ Kartha, K. P. R.; Field, R. A. Synlett 1999, 311-312.
${ }^{191}$ Gopinath, R.; Patel, B. K. Org. Lett. 2000, 2, 4177-4180.
${ }^{192}$ (a) Micalizio, G. G.; Roush, W. R. Tetrahedron Lett. 1999, 40, 3351-3354. (b) Paterson, I.; Oballa, R. M.; Norcross, R. D. Tetrahedron Lett. 1996, 37, 8581-8584. (c) Williams, D. R.; Ihle, D. C.; Plummer, S. V. Org. Lett. 2001, 3, 1383-1386. (d) Crimmins, M. T.; Katz, J. D.; McAlee, L. C.; Tabet, E. A.; Kirincich, S. J. Org. Lett. 2001, 3, 949-952. (e) Nicolaou, K. C.; Li, Y.; Sugita, K.; Monenschein, H.; Guntupalli, P.; Mitchell, H. J.; Fylaktakidou, K. C.; Vourloumis, D.; Giannakakou, P.; O’Brate, A. J. Am. Chem. Soc. 2003, 125, 15443-15454. (f) Crimmins, M. T.; King, B. W. J. Am. Chem. Soc. 1998, 120, 9084-9085. (g) Paterson, I.; Davies, R. D. M.; Marquez, R. Angew. Chem., Int. Ed. 2001, 40, 603-607.
${ }^{193}$ (a) Marshall, J. A.; Johns, B. A. J. Org. Chem. 1998, 63, 7885-7892. (b) Dounay, A. B.; Forsyth, C. J. Org. Lett. 1999, 1, 451-453.
${ }^{194}$ (a) Scheidt, K. A.; Tasaka, A.; Bannister, T. D.; Wendt, M. D.; Roush, W. R. Angew. Chem., Intl Ed. Engl. 1999, 38, 1652-1655. (b) Scheidt, K. A.; Bannister, T. D.; Tasaka, A.; Wendt, M. D.; Savall, B. M.; Fegley, G. J.; Roush, W. R. J. Am. Chem. Soc. 2002, 124, 69816990. (c) Carretero, J. C.; Arrayas, R. G. Synlett 1999, 49-52.
${ }^{195}$ Anderson, J. C.; McDermott, B. P. Tetrahedron Lett. 1999, 40, 7135-7138.
${ }^{196}$ (a) Smith, A. B., III; Minbiole, K. P.; Verhoest, P. R.; Schelhaas, M. J. Am. Chem. Soc. 2001, 123, 10942-10953. (b) Smith, A. B., III; Verhoest, P. R.; Minbiole, K. P.; Lim, J. Org. Lett. 1999, 1, 909-912. (c) Gaul, C.; Njardarson, J. T.; Danishefsky, S. J. J. Am. Chem. Soc. 2003, 125, 6042-6043. (d) Paquette, L. A.; Braun, A. Tetrahedron Lett. 1997, 38, 5119-5122. (e) Paquette, L. A.; Gao, Z.; Ni, Z.; Smith, G. F. Tetrahedron Lett. 1997, 38, 1271-1274.
${ }^{197}$ (a) Lambert, W. T.; Burke, S. D. Org. Lett. 2003, 5, 515-518. (b) Miyashita, K.; Ikejiri, M.; Kawasaki, H.; Maemura, S.; Imanishi, T. Chem. Commun. 2002, 742-743. (c) Miyashita, K.; Ikejiri, M.; Kawasaki, H.; Maemura, S.; Imanishi, T. J. Am. Chem. Soc. 2003, 125, 82388243.
${ }^{198}$ Wallace, G. A.; Scott, R. W.; Heathcock, C. H. J. Org. Chem. 2000, 65, 4145-4152.
${ }^{199}$ (a) Boge, T. C.; Wu, Z.-J.; Himes, R. H.; Vander Velde, D. G.; Georg, G. I.; Himes, R. H. Bioorg. Med. Chem. Lett. 1999, 9, 3047-3052. (b) Bode, J. W.; Carreira, E. M. J. Org. Chem. 2001, 66, 6410-6424. (c) Roush, W. R.; Dilley, G. J. Tetrahedron Lett. 1999, 40, 4955-4959.
(d) Kusama, H.; Hara, R.; Kawahara, S.; Nishimori, T.; Kashima, H.; Nakamura, N.; Morihira, K.; Kuwajima, I. J. Am. Chem. Soc. 2000, 122, 3811-3820. (e) Martin, H. J.; Drescher, M.; Mulzer, J. Angew. Chem., Intl Ed. Engl. 2000, 39, 581-583. (f) Walker, M. A.; Johnson, T. D.; Huang, S.; Vyas, D. M.; Kadow, J. F. Bioorg. Med. Chem. Lett. 2001, 11, 1683-1685.
${ }^{200}$ Wang, Y.-G.; Kobayashi, Y. Org. Lett. 2002, 4, 4615-4618.
${ }^{201}$ Ohmori, K.; Ogawa, Y.; Obitsu, T.; Ishikawa, Y.; Nishiyama, S.; Yamamura, S. Angew. Chem., Intl Ed. Engl. 2000, 39, 2290-2294.
${ }^{202}$ (a) Saitoh, T.; Suzuki, T.; Sugimoto, M.; Hagiwara, H.; Hoshi, T. Tetrahedron Lett. 2003, 44, 3175-3178. (b) White, J. D.; Sundermann, K. F.; Wartmann, M. Org. Lett. 2002, 4, 995997. (c) Andrus, M. B.; Meredith, E. L.; Simmons, B. L.; Soma Sekhar, B. B. V.; Hicken, E. J. Org. Lett. 2002, 4, 3549-3552. (d) Andrus, M. B.; Meredith, E. L.; Hicken, E. J.; Simmons, B. L.; Glancey, R. R.; Ma, W. J. Org. Chem. 2003, 68, 8162-8169.
${ }^{203}$ Smith, A. B., III; Lin, Q.; Doughty, V. A.; Zhuang, L.; McBriar, M. D.; Kerns, J. K.; Brook, C. S.; Murase, N.; Nakayama, K. Angew. Chem., Int. Ed. 2001, 40, 196-199. ${ }^{204}$ Chapter 4.
${ }^{205}$ Davalian, D.; Heathcock, C. H. J. Org. Chem. 1979, 44, 4458-4461.
${ }^{206}$ For reviews, see: (a) Martens, J. Methods of Organic Chemistry (Houben-Weyl); G. Thieme: New York, 1995; Vol. E21d, p 4199. (b) Baxter, E. W.; Reitz, A. B. Organic Reactions; Wiley: New York, 2002; Vol. 59, p 1. (c) Gomez, S.; Peters, J. A.; Maschmeyer, T. Adv. Synth. Catal. 2002, 344, 1037. (d) Tararov, V. I. Kadyrov, R.; Riermeier, T. H.; Fischer, C.; Bo"rner, A. Adv. Synth. Catal. 2004, 346, 561.
${ }^{207}$ More recent examples are described in the following: (a) Apodaca, R.; Xiao, W. Org. Lett. 2001, 3, 1745. (b) Allegretti, M.; Berdini, V.; Candida Cesra, M.; Curti, R.; Nicolini, L.; Topai, A. Tetrahedron Lett. 2001, 42, 4257. (c) Gross, T.; Seayad, A. M.; Ahmad, M.; Beller, M. Org. Lett. 2002, 4, 2055. (d) Miriyala, B.; Bhattacharyya, S.; Williamson, J. S. Tetrahedron 2004, 60, 1463. (e) Itoh, T.; Nagata, K.; Miyazaki, M.; Ishikawa, H.; Kurihara, A.; Ohsawa, A. Tetrahedron 2004, 60, 6649.
${ }^{208}$ (a) John, R. O. In Comprehensive Biological Catalysis; Sinnot, M., Ed.; Academic Press: London, UK, 1998; Vol. 2, p 173. (b) Silverman, R. B. The Organic Chemistry of EnzymeCatalyzed Reactions; Academic Press: London, UK, 2002; p 428.
${ }^{209}$ (a) Menche, D.; Hassfeld, J.; Li, J.; Menche, G.; Ritter, A.; Rudolph, S. Org. Lett. 2006, 8, 741; (b) Menche, D.; Arikan, F. Synlett 2006, 6, 841.
${ }^{210}$ (a) Kubota, H.; Koga, K. Tetrahedron Lett. 1994, 35, 6689; For reviews, see (b) Fache, F.; Schulz, E.; Tommasino, M. L.; Lemaire, M. Chem. Rev. 2000, 100, 2159.
${ }^{211}$ Singh, S. Chem. Rev. 2000, 100, 925-1024.
${ }^{212}$ (a) Wolfson, J. S.; Hooper, D. C. Clin. Microbiol. Rev. 1989, 2, 378; For some further examples, see: (b) Kappe, C. O. Eur. J. Med. Chem. 2000, 35, 1043; (c) de Vries, J. G. Can. J. Chem. 2001, 79, 1086; (d) Newman, D. J.; Cragg, G. M.; Snader, K. M. J. Nat. Prod. 2003, 66, 1022.
${ }^{213}$ Menche, D.; Böhm, S.; Li, J.; Rudolph, S.; Zander, W. Tetrahedron Lett. 2007, 48, 365. ${ }^{214}$ The cytotoxicity of simple aromatic amines is suggested to be initiated by nitrogen oxidation to the N-oxides: (a) Rjosk, H.-K.; Neumann, H.-G. Zschr. Krebsforsch 1971, 75, 209; (b) Hillesheim, W.; Jaeschke, H.; Neumann, H.-G. Chem. Biol. Interact. 1995, 98, 85.
${ }^{215}$ Menche, D.; Arikan, F.; Li, J.; Rudolph, S.; Sasse, F. Bioorg. Med. Chem. 2007, 15, 7311.
${ }^{216}$ Grube, A.; Assmann, M.; Lichte, E.; Sasse, F.; Pawlik, J. R.; Kock, M. J. Nat. Prod. 2007, 70, 504.

Curriculum Vitae

Jun Li

Birth: 14.11.1972, in Inner Mongolia, China
Nationality: Chinese

Education:

10/2005 - 10/2008 Ph.D. thesis with Dr. Dirk Menche (Medial Chemistry, Helmholtz Centre for Infection Research, Germany) and Professor Dr. Markus Kalesse (Department of Chemistry, University of Hannover, Germay.): "Total Synthesis of Archazolid A and Studies Towards the Total Synthesis of Etnangien"

01/2005-10/2005 Diploma thesis with Prof. Dr. Jürgen Liebscher (Humboldt University, Germany): "Synthesis of lipophilic nucleosidphosphates".

10/2001 - 01/2005 Studies of chemistry and biochemistry at Humboldt University, Germany.

10/1999-10/2001 Studies of German at University of Paderborn, Germany.

07/1991 - 07/1995 Bachelor of Science (B. Sc.) in Chemistry at Teachers University of Inner Mongolia, China.

Experience:

07/1995-10/1999 Research assistant at Agricultural University of Inner Mongolia, China.

Publications:

1. D. Menche, J. Hassfeld, J. Li, G. Menche, A. Ritter, S. Rudolph Hydrogen Bond Catalyzed Direct Reductive Amination of Ketones.
Org. Lett. 2006; 8, 741-744.
2. D. Menche, J. Hassfeld, J. Li, S. Rudolph

Total Synthesis of Archazolid A.
J. Am. Chem. Soc. 2007, 129, 6100-6101.
3. D. Menche, S. Böhm, J. Li, S. Rudolph, W. Zander

Synthesis of hindered tertiary amines by a mild reductive amination procedure. Tetrahedron Lett. 2007, 48, 365-369.
4. D. Menche, F. Arikan, J. Li, S. Rudolph

Directed Reductive Amination of β-Hydroxy-Ketones: Convergent Assembly of the Ritonavir/Lopinavir Core.
Org. Lett. 2007, 9, 267-270.
5. D. Menche, F. Arikan, J. Li, S. Rudolph, F. Sasse

Efficient one-pot synthesis of biologically active polysubstituted aromatic amines.
Bio. Med. Chem. 2007, 15, 7311-7317.
6. F. Arikan, J. Li, D. Menche

Diastereodivergent Aldol Reactions of Chiral Ethyl Ketones: Modular Access to (1,4)-syn and -anti Polypropionates.
Org. Lett. 2008, 10, 3521-3524.
7. N. Brodersen, J. Li, O. Kaczmarek, A. Bunge, L. Löser, D. Huster, A. Herrmann, J. Liebscher

Nucleosides with 5'-Fixed Lipid Groups - Synthesis and Anchoring in Lipid Membranes.
Eur. J. Org. Chem. 2007, 6060-6069.

Braunschweig, 14.10.2008
Name: Jun Li

NMR-Spectra

wisw

TMay

160	152	144	136	128	120	112	104	96	88	80	72	64	56	48	40	32	24

中（

(ISTBS

MeOCOTBS

Maw

м.

中（

мw:

what

4. x^{2}

7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0

1. mpd

(120

chady.

CoCles

OTBS

(mw

мw:

TBDPS TBS

$\sim_{\text {OTBS }}^{\text {O- }}$

w.

wh:

OTBS
 TBSO

8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0

MW

1 人оте

1. otes

Whamw whemaw

168	160	152	144	136	128	120	112	104	96	88	80	72	64	56	48	40	32	24	16	- 8	0

[^0]: ${ }^{1}$ Inoue, T.; Liu, J.-F.; Buske, D. C.; Abiko, A. J. Org. Chem. 2002, 67, 5250-5256.
 ${ }^{2}$ Cowden, C, J.; Paterson, I. Org. React. 1997, 51, 1.

[^1]: ${ }^{3}$ Inoue, T.; Liu, J.-F.; Buske, D. C.; Abiko, A. J. Org. Chem. 2002, 67, 5250-5256.

[^2]: ${ }^{4}$ Frigerio, M.; Santagostino, M.; Sputore, S. J. Org. Chem. 1999, 64, 4537-4538.
 ${ }^{5}$ Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899-2899.
 ${ }^{6}$ Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277.

[^3]: ${ }^{7}$ Gea, A.; Farcy, N.; Roqué i Rossell, N.; Martins, J. C.; De Clercq, P. J.; Madder, A. Eur. J. Org. Chem. 2006, 4135-4146.
 ${ }^{8}$ (a) Charlton, J. L.; Alauddin, M. M. J. Org. Chem. 1986, 51, 3490-3493. (b) Torrado, A.; Imperiali, B. J. Org. Chem. 1996, 61, 8940-8948.

[^4]: ${ }^{9}$ Paterson, I.; Wallace, D. J.; Cowden, C. J. Synthesis 1998, 639-652.

[^5]: ${ }^{10}$ Rai, N. A.; Basu, A. Tetrahedron Lett. 2003, 44, 2267-2270.

[^6]: ${ }^{11}$ Nagano, H.; Nakanishi, E.; Takajo, S.; Sakuma, M.; Kudo, K. Tetrahedron. 1999, 55, 25912608.

[^7]: ${ }^{12}$ White,J. D.; Blakemore, P. R.; Green, N. J.; Hauser, E. B.; Holoboski, M. A.; Keown, L. E.; Nylund Kolz, C. S.; Phillips, B. W. J. Org. Chem. 2002, 67, 7750-7760.

[^8]: ${ }^{13}$ Mori, K.; Koseki, K. Tetrahedron 1988, 44, 6013-6020.

[^9]: ${ }^{14}$ Smith III, A. B.; Condon, S. M.; McCauley, J. A.; Leahy, J. W.; Leazer, Jr.,J. L.; Maleczka, Jr., R. E. Tetrahedron Lett. 1994, 35, 4907-4910.

[^10]: ${ }^{15}$ Baker, R.; Castro, J. L. J.Chem. Soc., Perkin Trans. 1 1990, 47.

[^11]: ${ }^{16}$ Davalian, D.; Heathcock, C. H. J. Org. Chem. 1979, 44, 4458-4461.

