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I Abstract 

Surveys were conducted in several regions in Thailand in order to get an overview of the main 

tomato diseases. Pythium root rot (PRR), caused by Pythium aphanidermatum, was quickly 

identified as a major soil-borne disease. Symptoms of the foliar disease early blight, caused 

by Alternaria solani, were frequently found in tomato fields in different climatic regions of 

the country. 

Isolates of A. solani were obtained from tomato leaves collected in four regions in Thailand 

and evaluated for pathogenicity under controlled conditions using detached leaflets and whole 

plants. The morphological characteristics of colony growth and sporulation of all A. solani

isolates were determined and compared with those of representative isolates 

A. solani could successfully infect tomato plants under controlled conditions in the growth 

chamber, and could be easily re-isolated. In experiments under greenhouse conditions (closed 

net greenhouse, Econet M, pore size 0.18 mm, 40 x 37 mesh (40-mesh), base area 10 x 20 m), 

the temperature regime inside (mean temperature > 30°C) was not suitable for early blight 

development. Under these conditions, black leaf mold (BLM), caused by Pseudocercospora 

fuligena, turned out as the major leaf disease limiting greenhouse production of tomato. This 

is the first report of this disease on the research site of the Asian Institute of Technology in 

Thailand.  

The complex of two tomato (Solanum lycopersicon L.) diseases, composed of BLM and PRR, 

was investigated under the conditions of a closed net house. Four experiments were conducted 

in different seasons and with two different tomato varieties (´New King Kong´ and  

´King Kong 2´).  

The primary occurrence of PRR, inoculated in 2 different densities was monitored up to 14 

days after positioning plants in the greenhouse. Tests of substrate samples from experimental 

pots with the potato-baiting-method confirmed a successful inoculation of  

P. aphanidermatum in all experiments. No other soil-borne pathogen than P. aphanidermatum

occurred. Due to PRR, 30% to more than 40% of plants dropped out and were substituted, in 

the control treatment up to 64%. In order to observe BLM effects, Trichoderma harzianum

was used as a biological antagonist in two subsequent experiments. BLM naturally occurred 

inside the greenhouse throughout the year without great differences among seasons. To keep 

the disease level in one part of the greenhouse low, the fungicide Maneb was applied.  
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In pre-experiments with artificial inoculation, BLM showed first symptoms roughly after 14 

days. Under greenhouse conditions with natural infections, an incubation time of 7 to 28 days 

was found. The main experiments were conducted for 84 and 112 days. The disease progress 

curves of incidence of plants were S-shaped and the 100% infection level was reached 

approximately after 63 days. At the end of the experiments, a maximum disease severity of 

30% was reached. The spatial disease patterns within rows at the beginning of the epidemics 

were analysed with the join-count statistics. In two experiments, the disease occurred in a 

random pattern, while in the two others an aggregation of diseased plants was indicated. The 

3-D plots of the spatial disease distribution did not show a gradient. The data were also 

analysed for vertical disease distribution. The plants of the determinate variety  

´New King Kong´ had a maximum number of 26 (± 1.11) leaves, those of the indeterminate 

variety ´King Kong 2´ of 51 (± 1.21). The highest leaf insertion with symptoms was at 

position 45 from the bottom. The leaf position with the maximum severity of 41.42 ± 4.46% 

was around leaf number 11. 

Neither the different Pythium-levels nor the treatment with Trichoderma changed the overall 

trend of the disease severity progress curves of BLM. 

The results of tomato growth and yield parameters are in general very heterogeneous. The 

marketable yield harvested was insignificant. The overall tendency of interactions between 

the two diseases was negative. For example, the fresh weight of plants of the P0-BLM0 

treatment (i.e. without inoculation of P. aphanidermatum, but sprayed against BLM) in the 

first experiment was 1029.71 ± 69.56 g, while plants in the P2-BLM0 treatment (i.e. 

inoculated with high level of P. aphanidermatum, but fungicide sprayed against BLM) had 

roughly 340 g less weight. The plants of the P0-BLM1-treatment (i.e. without inoculation of 

P. aphanidermatum, and without fungicide use), in which only BLM developed symptoms, 

had a value of 660.00 ± 72.66 g, thus a difference of 365 g compared to the control plants 

Keywords: Pseudocercospora fuligena, Alternaria solani, Pythium aphanidermatum, primary 

occurrence, spatial distribution, temporal progress, vertical distribution, disease interaction. 
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II Zusammenfassung 

Zu Beginn der Studie wurden in Thailand Vorort-Informationen gesammelt, um einen 

Gesamtüberblick der hauptsächlich verbreiteten Krankheiten an der Tomate zu erhalten. Die 

Pythium-Wurzelfäule, verursacht durch den Erreger Pythium aphanidermatum, gehörte dabei 

zu den Hauptkrankheiten. Als Blattkrankheit wurden immer wieder Symptome der 

Dürrfleckenkrankheit, hervorgerufen durch Alternaria solani, gefunden. 

In vier verschiedenen Regionen von Thailand wurden Tomatenblätter, die mit A. solani

befallen waren, gesammelt, im Labor unter kontrollierten Bedingungen untersucht und die 

gewonnenen Isolate auf ihre Pathogenität getestet. Dabei wurden die morphologischen 

Charakteristika, wie z.B. die Form der Konidien, bestimmt und mit Hilfe von repräsentativen 

Isolaten verifiziert. Für diese Untersuchungen wurden sowohl einzelne Blätter als auch die 

gesamte Pflanze genutzt.  

Unter kontrollierten Bedingungen, u.a. im Klimaschrank, gelang es, den Erreger zu 

inokulieren und auch wieder zu re-isolieren. Mehrere Krankheitszyklen konnten beobachtet 

werden. Die Temperatur in den Experimenten im Gewächshaus (Seitenwände mit Netz 

verkleidet, Econet M, Maschengröße 0,18 mm, Grundfläche 10 x 20 m) war allerdings zu 

hoch (> 30°C), sodass kein Krankheitszyklus vollendet wurde und die Ausbildung von 

Dürrfleckenkrankheits-Symptomen ausblieb. 

Unter den klimatisch gegebenen Gewächshausbedingungen trat der schwarze Blattschimmel, 

verursacht durch den Erreger Pseudocercospora fuligena, erstmals in Erscheinung. Der 

schwarze Blattschimmel (black leaf mold = BLM) stellte sich als limitierender Faktor für die 

Tomatenproduktion in Gewächshäusern dar.  

Die weiteren Versuche zur Interaktion von Pflanzenkrankheiten unter Gewächshaus-

bedingungen wurden mit dem Krankheits-Komplex schwarzer Blattschimmel und Pythium-

Wurzelfäule durchgeführt.  

Dazu wurden vier Experimente zu verschiedenen Jahreszeiten mit zwei verschiedenen 

Tomatensorten (´New King Kong´ und ´King Kong 2´), durchgeführt. Das Auftreten der 

Pythium-Wurzelfäule, die in zwei Stärken appliziert wurde, wurde bis 14 Tage nach 

Inokulation beobachtet. Abgestorbene Pflanzen wurden in dieser Zeit mit überzähligen 

Pflanzen in der gleichen Pythium-Inokulum-Variante ersetzt. 
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Während des gesamten Versuchszeitraumes wurden Substratproben entnommen und mit Hilfe 

der Kartoffel-Köder-Methode der Erreger re-isoliert. Dabei bestätigte sich, dass P. 

aphanidermatum erfolgreich inokuliert wurde und keine weiteren Krankheiten auftraten. In 

dieser 14-tägigen Startphase des Experiments fielen 30 bis über 40% der Pflanzen aus, in den 

Kontrollvarianten sogar bis zu 64%. 

Um ganzheitlich gesehen die Interaktionen der Pflanzenkrankheiten zu beobachten, nicht zu 

viele Verluste durch die Pythium-Wurzelfäule zu haben und mögliche Eingriffe in die 

Dynamik des schwarzen Blattschimmels zu vermeiden, wurde in den folgenden Experimenten 

der Antagonist Trichoderma harzianum eingesetzt. 

Die Versuche waren für den Zeitraum von 84 – 112 Tage nach Positionierung der Pflanzen im 

Gewächshaus angelegt. BLM trat unabhängig von saisonalen Unterschieden auf. Während des 

ganzen Jahres wurden die Pflanzen im Gewächshaus auf natürliche Weise infiziert. Um in 

einem Teil des Gewächshauses das Befallsniveau möglichst niedrig zu halten, wurde eine 

Seite wöchentlich mit dem Fungizid Maneb behandelt.

In weiteren Experimenten mit künstlicher Inokulation zeigte BLM die ersten Symptome nach 

14 Tagen (Erstauftreten). Unter Gewächshausbedingungen mit natürlicher Infektion wurden 

Inkubationszeiten von 7 bis 28 Tagen beobachtet.  

Die Analyse der Befallskurven zeigte für das Erstauftreten einen S-förmigen Verlauf, wobei 

100% Befall nach 63 Tagen erreicht wurde. Am Ende der Experimente, nach 84 bzw. 112 

Tagen, betrug die Befallsstärke 30%. 

Die räumliche Ausbreitung innerhalb der Reihen wurde am Anfang der Epidemie mit einer 

“join count“ Statistik analysiert. In zwei Experimenten war die Verteilung zufällig; in den 

zwei anderen Experimenten konnte eine Anhäufung von kranken Pflanzen festgestellt werden. 

Die 3-D Darstellung der räumlichen Verteilung zeigte keinen deutlichen Trend innerhalb der 

Versuche auf. Neben der horizontalen wurde auch die vertikale Krankheitsverteilung 

untersucht. Die Pflanzen der Sorte ´New King Kong´ hatten eine maximale Blattanzahl von 

26 Blättern (±1,11), die der undeterminierten Sorte ´King Kong 2´ bis zu 51 Blätter (±1,21). 

Das höchste Blatt mit sichtbaren BLM Symptomen war das 45. Blatt (gezählt vom Boden zur 

Spitze). Das Blatt mit der größten Befallsstärke von 41,42 ± 4,46% wurde in Höhe des 11. 

Blattes gefunden.  

Weder die verschiedenen Pythium-Inokulationsstärken noch die Behandlung mit T. 

harzianum änderten den Verlauf der BLM - Befallskurven signifikant.  
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Sowohl die Wachstumsparameter als auch die Ertragsergebnisse waren generell sehr 

uneinheitlich. Die vermarktungsfähigen Erträge fielen sehr gering aus. 

Die genauere Analyse der Wachstumsparameter zeigte, dass sich die Krankheiten gegenseitig 

beeinflussten und es zu negativen Interaktionen kam. Zum Beispiel hatten die Pflanzen des 

ersten Experiments in der Variante P0-BLM0 (Kontrollpflanzen, ohne Pythium - Inokulation 

und mit Fungizid behandelt) ein Frischgewicht von 1029,71 ± 69,56 g, Pflanzen der P2-

BLM0-Variante (inokuliert mit hoher Pythium-Stufe, mit Fungizid Behandlung) waren ca. 

340 g leichter als die Kontrollpflanzen. Die Pflanzen der Varianten P0-BLM1 (ohne Pythium 

- Inokulation, ohne Fungizid Behandlung), in der nur Symptome von BLM auftraten, hatten 

ein Frischgewicht von 660,00 ± 72.66 g und waren somit im Verhältnis zu den 

Kontrollpflanzen 365 g leichter.  

Schlüsselworte: Pseudocercospora fuligena, Alternaria solani, Pythium aphanidermatum, 

Erstes Auftreten, Räumliche Verteilung, Zeitliche Dynamik, Vertikale Verteilung, Interaktion. 
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1 General Introduction 

“The primary objective of epidemiological research is to increase our understanding of how 

disease develops in host crop populations and how other factors influence their development 

in order to develop sustainable and effective strategies for managing disease.” (Xu, 2006). 

Epidemiology is the study of diseases in populations (Van der Plank, 1963). The temporal 

course of an epidemic can be displayed by the disease progress of a population, usually 

estimated from a sample of a few plants. The entire epidemic is therefore a summation of 

disease progress on each individual component (Berger and Luke, 1979). Little attention has 

been given to interactions among plant diseases in epidemiological research, even though the 

occurrence of more than one disease at the same time on one host is the rule in the field 

(Campbell and Madden, 1990; Kranz and Jörg, 1989), especially in tropical regions (Intanoo, 

pers. com.; Waller and Bridge, 1984). Most articles in literature are focused on “one to one” 

host – pathogen interactions, but research on pathogen – pathogen interactions or multiple 

attacks are rare. Examples of studies on disease complexes include those of Latch and Potter 

(1977), Pieczarka and Zitter (1981), Johnson et al. (1987), Kranz and Jörg (1989), Weber et 

al. (1994), Ngugi et al. (2001) and Paula Junior (2002).  

The definitions of Odum (1953) can be helpful to interpret interactions concerning the 

dynamics of pathogens. The author suggested the following classifications for associations 

between organisms: neutralism (neither population is affected by association), competition 

(each population adversely affects the other in the struggle for food, nutrients, living space, or 

other common need), mutualism (growth and survival of both populations is benefited and 

neither can survive under natural conditions without the other), protocooperation (both 

populations benefit by the association, but relations are not obligatory), commensalism (one 

population benefits, but the other is not affected), amensalism (one population is inhibited and 

the other not affected), parasitism (one population adversely affects the other by direct attack, 

but is dependent on the other) and predation (one population adversely affects the other by 

direct attack). Cook (1981) expanded the definitions of Odum and included terms like 

antibiosis, competition, hyperparasitism, and stimulation of active defence mechanisms in the 

host. 

Regarding the internal disposition of hosts, Powell (1971b) considered three theoretical 

mechanisms of bio-predisposition involving interacting pathogens: (1) the primary pathogen 

may make the host more susceptible to the secondary pathogen; (2) the primary pathogen may 
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enhance the activity of the secondary pathogen; and (3) the secondary pathogen may even 

enhance the activity of the primary pathogen.  

Zacheo (1993) differentiated between synergistic interaction in terms of combined effect of 

the pathogens and antagonistic interaction in terms of competitive exclusion. Antagonistic 

interactions are explained as direct effect of an organism on another or indirect effects 

through changes in the host physiology (Waller and Bridge, 1984).  

Usually interacting pathogens affect the same plant organ (Powell 1971a), but aerial and soil-

borne pathogens can simultaneously attack different parts of the plant. One pathogen may 

influence the resistance of a host to infection and colonization by another. Discerning the 

importance of effects of root and shoot diseases on the same plant, it is difficult to distinguish 

influences and effects even when one disease does not clearly affect the susceptibility of the 

plant to the other (Waller and Bridge, 1984). The aerial parts are more readily seen and 

damage is mostly attributed to them. However, root diseases can, for example, reduce the 

capacity of plants for compensatory growth (Waller and Bridge, 1984). 

The changes of the nutritional status and the composition of the host cell (Powell, 1971b; 

Evans and Haydock, 1993) can explain increments of the host susceptibility and the 

enhancement of the activity of the interacting pathogens, in the case of interactions between 

aerial and soil-borne pathogens (Waller and Bridge, 1984; Paula Junior, 2002) 

Foliar diseases caused by non-obligate pathogens seem to increase when the host is 

simultaneously infected with a destructive pathogen. Nicholson et al. (1985) found that corn 

plants infected by Pratylenchus hexincisus developed significantly more leaf blight, caused by 

Colletotrichum graminicola, and proposed that leaf senescence hastened by the nematode 

infection favoured anthracnose leaf blight. Bhowmik and Singh (1977) also observed that 

Alternaria leaf blight on sunflower was more severe on plants infected with Rhizoctonia 

solani. Similarly, Verticilium wilt reduced plant vigour and caused premature senescence on 

potato plants resulting in an increase of early blight severity, caused by Alternaria solani 

(Harrison, 1974). 

With respect to yield production, the interactions are termed synergistic if the yield reduction 

caused by the interacting pathogens is greater than the sum of the reduction caused by the 

pathogens attacking the host individually. On the other hand, if the yield reduction is less, 

than the sum, the interaction is termed antagonistic. According to the simultaneous damage, 

which pathogens can cause to the host, Bassanezi et al. (1998) suggested a classification of 
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the interactions between pathogens. If the damage caused by two concurrently infecting 

pathogens is similar to the sum of damages caused by the pathogens attacking the host 

separately, the effect is additive; if the damage is less, there is a negative interaction; if it is 

greater, a positive interaction. Synergistic interactions are important because the economic 

damage threshold for each disease can be significantly lowered by the presence of an 

interacting disease. Vice versa, antagonistic interactions can increase the economic damage 

threshold of a disease in the presence of another (Johnson, 1990).  

Interactions between diseases caused by aerial and soil-borne pathogens may have significant 

implications for assessing crop losses and selecting appropriate control strategies (Hau, 2001). 

The major objective of this work, that was part of a larger project, was to develop an optimal 

strategy to control fungal disease complexes on tomatoes grown under protected cultivation in 

greenhouses in Bangkok, Thailand. 

Tomato (Solanum lycopersicon L.) is after potato the most widely grown solanaceous 

vegetable (Rubatzky and Yamaguchi, 1999) and one of the most important crops in Thailand. 

After the turn of the millennium, the production in Thailand increased, mainly for processed 

tomatoes. In 2000, more than 224 thousand tons were produced. In 2004, the production 

reached almost 266 thousand tons. The latest number available estimated by FAOSTAT is a 

production of around 197 thousand tons for 2006 (www.fao.org, 2008). Probably the 

production decreased because of the Tsunami in 2005. For processed tomato, the major 

growing area is the north and northeast of Thailand, while for table tomato the planting area is 

distributed in various parts of the country (Intanoo, pers. com.; Pongam, pers. com.). In the 

central part of Thailand, tomatoes are exclusively grown in open fields so that no production 

is possible during the rainy season. Producing tomatoes in protected cultivation in 

greenhouses could overcome this problem and increase the income of the farmers. Compared 

to processed tomatoes for approximately 3 c lb-1, fresh market tomatoes have a current market 

value of 25-35 c lb-1. In production systems under protected cultivation, high ambient 

temperature, increased relative humidity and heavy dew in greenhouses are of paramount 

importance for plant growth, but also for pests and diseases causing damage to the crop and 

subsequently reducing the income of the grower.  

Out of the 51 pathogens, comprising bacteria, fungi, viruses and nematodes, which can attack 

tomatoes, twelve may be considered as major diseases under hot humid conditions (Villareal, 

1987). These are bacterial wilt (Ralstonia solanacearum), virus diseases (TMV, CMV, 
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ToMV, PVY), leaf mold (Cladiosporum fulvum), grey leaf spot (Stemphylium solani), early 

blight (Alternaria solani), late blight (Phytophthora infestans), Pythium root rot (Pythium 

aphanidermatum), southern blight (Sclerotium rolfsii), and root knot nematodes (Meloidogyne 

incognita) (Thi Bich Ha, 1992; Heine 2005). The “Pesticide Action Network UK” (Davis et 

al., 2002) proved late and early blight as the most important diseases, accompanied by 

bacterial leaf spots. Concerning diseases of soil-borne pathogens, bacterial wilt, southern 

blight, Fusarium wilt, and damping off caused by Rhizoctonia and Pythium ssp. were most 

significant.  

In the fields, foliar diseases such as early blight, late blight and powdery mildew caused by 

Alternaria solani, Phytophthora infestans and Leveillula taurica, respectively, are limiting 

factors of tomato production in Thailand (Pongam, research proposal). Early blight (EB), 

caused by Alternaria solani (Ellis & Martin) Jones & Grout, is one of the most common and 

destructive diseases of tomato in areas of heavy dew, rainfall, and high relative humidity 

(Barksdale, 1971; Nash and Gardner, 1988). EB is also important in semiarid areas when 

nightly dew is sufficiently frequent to allow disease development (Rotem and Reichert, 1964). 

It was expected that EB would also be a problem in greenhouses in the Bangkok area, as this 

disease can develop in a wide temperature range (Rotem, 1994) varying from 10 to 35°C and 

even above. The germination of A. solani conidia occurred at temperatures as high as 34°C or 

under relative humidity as low as 90% (MacNab and Sherf, 1986). As few as 3 h of 

continuous leaf wetness between 21 and 25°C are sufficient for lesion formation of EB 

(Madden et al., 1978). A. solani can cause disease symptoms on foliage (leaf blight), stem 

(collar rot), and fruit, and can result in severe damage during all stages of plant development 

(Barksdale, 1971; Barksdale, 1977; Nash and Gardner, 1988; Jones et al., 1991; Spletzer and 

Enyedi, 1999).  

Black leaf mold (BLM), also formerly known as Cercospora leaf mold, is caused by 

Pseudocercospora fuligena (Roldan) Deighton (= Cercospora fuligena (Roldan)) that belongs 

to the family of Mycosphaerella (Crous and Braun, 2003). The fungus is widespread in 

warmer regions or greenhouses around the world, especially in tropical and subtropical Asia 

(Hsieh and Goh, 1990; Crous and Braun, 2003). It was first reported on tomato in 1938 in the 

Philippines (Roldan, 1938), in 1951 in Japan, in 1955 in India, in 1974 in southern USA, in 

1990 in Taiwan, in 1995 in Malaysia (Wang et al., 1995) and recently in Brazil (Halfeld-

Vieira et al., 2006). In Thailand it was first detected in 1979 in the Nongkham District, 

Amphoe Pasrijarern, Bangkok (Saranark and Chandrasrikul, 1980). 
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The disease symptoms of BLM are irregularly shaped pale yellow to light green lesions on 

leaves, which are initially covered with white mycelium on the lower leaf surface that turns 

grey to black as the fungus starts to sporulate. The occurrence of infections or symptoms on 

fruits has never been reported (Hartman et al., 1991). In the field, initial symptoms were 

recorded on lower leaves from which the disease advanced up the canopy to newly developed 

leaves. Infected leaves wilt and sometimes drop prematurely, but also after heavy infection, 

leaves curl upwards and die but remain on the plant (Wang et al., 1995). The total number of 

leaves formed may not be affected by the disease. Without fungicide control, the disease can 

reach quite high disease levels of up to 81% disease severity (Mersha, 2008). 

In greenhouse experiments at the AIT Campus at Bangkok, Thailand, BLM naturally occurred 

on tomatoes and it turned out to be the most serious leaf disease of tomato. In addition, 

Pythium aphanidermatum was identified as the most important soil-borne pathogen causing 

damage in open fields in Thailand. 

Pythium aphanidermatum (Edson) is one of the worldwide 87 Pythium species recognized by 

Waterhouse (1968). It belongs to the species most frequently associated with root diseases, 

also named damping-off. As the species is a typical plant pathogen of warm regions (Van der 

Plaats-Niterink, 1981), the occurrence in temperate climates is confined to greenhouses 

(Raffin and Tirilly, 1995). For long time survival, P. aphanidermatum forms thick-walled 

oospores that remain slumbering in the soil until germination is triggered by external stimuli 

like moisture or root exudates (Hoppe, 1966; Kraft and Erwin, 1968). For short term survival, 

asexually formed sporangia germinate, either directly or indirectly by formation of zoospores. 

The zoospores, which are initially wall-less and mobile in water are responsible for the 

dispersion in moist environments (Jones et al., 1991). 

P. aphanidermatum, like other soil-borne pathogens, is difficult to control (Runia, 1995). 

Widely used management practices are soil sterilization by chemicals, solar radiation and 

fumigation (MacNab and Sherf, 1986; Jayaraj and Radhakrishnan, 2008). 

Fungal pathogens, which are highly favoured by confined warmth and humidity, are gaining 

more and more economic importance in the past years especially under greenhouse 

conditions, and the use of fungicides remains the sole option to maintain optimal productivity. 

This tendency of heavy fungicide reliance for the production of vegetables and fruits is 

documented mainly in Asian countries. Only the fungicide sales in Western Europe are higher 

because of the dominant position of the cereal crop production (Kuck and Gisi, 2007). 

Thailand has faced environmental problems caused by an increasing use of pesticides over the 

past decade. Large amounts of chemicals are imported to the country in order to improve the 
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effectiveness of agricultural production. Unfortunately, most of the farmers and agricultural 

workers use pesticides without considering their potentially adverse effects on human health 

and on the environment (Thapinta and Hudak, 1998). Thus, there are increasing societal 

concerns about the environmental and health effects of chemicals so that a pesticide-free 

vegetable or floral product may give greenhouse growers a market advantage (Paulitz and 

Belanger, 2001; Jacobsen, 1997). Biological control using Trichoderma species can be an 

option for pesticide-free vegetable production by reducing the activities of soil-borne 

pathogens like Rhizoctonia solani (Harman et al., 1980; Chet and Barker, 1981; Lewis et al., 

1995; Kok et al., 1996). Trichoderma species are particularly prevalent in humid 

environments and are relatively intolerant to low moisture levels; however, they can be 

isolated from all climatic zones including desert soils (Klein and Eveleigh, 1998). Especially 

T. harzianum Rifai is one of the more intensively investigated biological control agents 

(Henis et al., 1978; Hadar et al., 1979; Elad et al., 1980, 1981a, 1981b; Chet et al., 1982; 

Marshall, 1982; Wu, 1982; Dal Soglio et al., 1998).

T. harzianum has multiple mechanisms of actions, including mycoparasitism via production 

of chitinases, ß-1-3 glucanases and ß-1-4 glucanases (Lorito et al., 1996), antibiotics 

(Sivasithanparam and Ghisalberti, 1998), competition (Elad et al., 1999), solubilization of 

inorganic plant nutritions (Altomare et al., 1999), induced resistance (Bailey and Lumsden, 

1998) and inactivation of the pathogen’s enzymes involved in the infection process (Elad et 

al., 1999; Elad and Kapat, 1999). The control provided is equal to that by fungicides (Harman, 

2000), with which it is mostly compatible, but it must be applied as a preventative before 

disease occurs. The bio-control agent can be directly applied in the growing substrate 

(Chamswarng and Intanoo, 2002). The integration of biological agents with additional 

strategies is increasingly recommended to enhance disease control (Sweetingham, 1996).  

The first aim of the following studies was to identify the most important tomato diseases in 

Thailand, especially under greenhouse conditions. Then experiments with naturally occurring 

epidemics were conducted under protected cultivation and relevant disease complexes were 

investigated with special focus on disease dynamics. Spatial and temporal distributions of the 

diseases were monitored. Such information is needed to fully understand disease dynamics, to 

develop more accurate sampling plans, to make better assessments of crop loss in relation to 

disease intensity, and to design and analyse experiments more efficiently (Xu and Madden, 

2004). 
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The outcome of our studies may help to identify seasons of high and low epidemics and to 

choose the right control strategy based on forecasting disease developments. Several scientists 

(Kranz, 2003; Strange, 2003; Cooke, 2006; Madden et al., 2007) pointed out that the 

measurement of plant diseases and their effects on crop yield, quality and value are important 

for control mechanism and the right choice of action. 
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2 Is early blight and Pythium root rot an important disease complex on 

tomato in greenhouses in Thailand? 

2.1 Abstract 

Surveys were conducted in four regions in Thailand in order to get an overview of the main 

tomato diseases. Pythium aphanidermatum was identified as a major soil-borne pathogen. 

Symptoms of the aerial disease early blight, caused by Alternaria solani, were frequently 

found in tomato fields in different climatic regions of the country. 

During the survey, isolates of A. solani were obtained from tomato leaves and evaluated for 

pathogenicity under controlled conditions using detached leaflets and whole plants. The 

morphological characteristics of colony growth and sporulation of all A. solani isolates were 

determined and compared with those of representative isolates. All isolates could be grouped 

into the species of A. solani. (Ellis & Martin) Jones & Grout.  

The effects of early blight and Pythium root rot and their interactions on plant growth and 

yield were investigated in greenhouse experiments with two different tomato varieties (´New 

King Kong´ and ´King Kong 2´). The experimental unit was a closed net greenhouse (Econet 

M, pore size 0.18 mm, 40 x 37 mesh (40-mesh), with the base area of 10 x 20 m, Ludvig 

Swensson, Netherlands) on the campus of the Asian Institute of Technology (AIT) in 

Bangkok, Thailand. The experiments included the effect of artificial inoculation on host data 

(yield, biomass, and root weight) and defoliation. 

Plants inoculated with Pythium showed symptoms of browning leaves resulting in a 

significant reduction in growth parameters, e.g. shoot and root weights. However, the disease 

complex of early blight and Pythium root rot could hardly be established under the given 

greenhouse conditions. 

A. solani could successfully infect tomato plants under controlled conditions in the growth 

chamber but the temperature regime in the greenhouse (mean temperature > 30°C) was not 

suitable for disease development, most likely due to too low RH and high temperature. Under 

these conditions, black leaf mold caused by Pseudocercospora fuligena turned out as the 

major leaf disease limiting greenhouse production of tomato. This is the first report of BLM 

on the research site of the Asian Institute of Technology in Thailand. Since BLM is favoured 

by the prevailing environmental conditions in the greenhouses, more research on this disease 

is needed. 
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2.2 Introduction 

Tomato (Solanum lycopersicon L.) is one of the most important vegetable crops in Thailand. 

For processed tomato, the major growing areas are located in the north and the northeast of 

Thailand, while the production of table tomatoes is distributed over various parts of the 

country (Intanoo, pers. com.; Pongam, pers. com.). In the central part of Thailand, tomatoes 

are exclusively grown in open land so that the production during the rainy season is not 

possible due to heavy rain falls. This restriction can be overcome by the production of 

tomatoes under protected cultivation. However, high ambient temperature and relative 

humidity as well as heavy dew in greenhouses might not only stimulate plant growth but also 

favour pests and diseases causing damage to the crop. The major objective of this work within 

a larger project was to develop an optimal strategy to control fungal diseases on tomatoes 

grown under protected cultivation in greenhouses in central Thailand. 

Out of the 51 pathogens, comprising bacteria, fungi, viruses and nematodes, which can attack 

tomato, twelve are so far considered as major diseases under the climatic conditions of central 

Thailand (Villareal, 1987), namely bacterial wilt (Ralstonia solanacearum), virus diseases 

TMV, CMV, ToMV, PVY, the fungal diseases leaf mold (Cladiosporum fulvum), grey leaf 

spot (Stemphylium solani), early blight (Alternaria solani), late blight (Phytophthora 

infestans), Pythium root rot (Pythium aphanidermatum), southern blight (Sclerotium rolfsii) 

and the root knot nematodes Meloidogyne incognita (Thi Bich Ha, 1992). The “Pesticide 

Action Network UK” proved late and early blight as the most important diseases, 

accompanied by bacterial leaf spots in tropical und subtropical regions (Davis et al., 2002). 

With regard to soil-borne pathogens, bacterial wilt, southern blight, fusarium wilt and 

damping off diseases caused by Rhizoctonia and Pythium ssp. are most significant in Thailand 

(Heine, 2005; Intanoo, pers. com.; Pongam, pers. com). 

In open land production, foliar diseases such as early blight, late blight and powdery mildew 

caused by Alternaria solani, Phytophthora infestans and Leveillula taurica, respectively, are 

the most limiting fungal diseases of tomato production in Thailand (Pongam, pers. com.). 

Especially early blight (EB), caused by Alternaria solani (Ellis & Martin) Jones & Grout, is 

one of the most common and destructive diseases of tomato in areas of heavy dew, rainfall, 

and high relative humidity (Barksdale, 1971; Nash and Gardner, 1988). EB is also important 

in semiarid areas when nightly dew is sufficient to allow disease development and it can 

develop in a wide temperature range between 10 to 35°C and even above (Rotem & Reichert, 

1964; Rotem, 1994). Therefore, EB was expected to be a problem in greenhouse production 
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of tomato in central Thailand. A. solani causes disease symptoms on foliage (leaf blight), stem 

(collar rot), and fruit during all stages of plant development (Barksdale, 1971; Barksdale and 

Stoner, 1977; Nash and Gardner, 1988; Jones et al., 1991; Spletzer and Enyedi, 1999). The 

conidiophores of A. solani are arising singly or in small groups. Conidia are usually solitary, 

and consist of a simple or branched chain; the conidium is dark, olive coloured, brown or mid 

pale golden. It is 150-300 µm long and 15-19 µm thick with 7 to 11 transverse and no or a 

few longitudinal septa (von Arx, 1974; Streets, 1979; Ellis, 1971). 

In field surveys, P. aphanidermatum was identified as an important pathogen causing diseases 

like seed rot, damping-off, root rot, and soft rot (Agrios, 2005, Intanoo, pers. com).  

P. aphanidermatum occurs worldwide causing root and stem lesions as well as root rots. 

Although the pathogen seldom kills older plants, it can considerably retard plant growth and 

drastically reduce yield (Heine, 2005; Agrios, 2005).  

The purpose of this study was to determine possible effects of interactions between the aerial 

disease EB and the soil-borne disease Pythium root rot (PRR). As both fungi are adapted to 

the warm climate in Thailand and can cause severe damage on tomato (Intanoo, pers. com.), 

the effects of both pathogens and their interactions were investigated in greenhouse 

experiments conducted on the campus of the Asian Institute of Technology (AIT) in Bangkok, 

Thailand. In our studies, we investigated plant parameters, yield and dynamics of both 

diseases occurring simultaneously under greenhouse conditions in Thailand. 

.
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2.3 Materials and Methods 

2.3.1 Surveys

Surveys were conducted to get information about the most important tomato diseases in the 

main growing areas in Thailand. Tomatoes are mainly grown in the north (region Chiang 

Mai), in the northeast (district Ampher) and in the south (district Chan). Randomly selected 

fields were observed, 11 in the north, 9 in the northeast and 2 in the south. The average annual 

temperature in the north is 25.1°C, in the south 27.3°C and in the northeast 26°C. The mean 

annual temperature for the greater Bangkok area is 28.1°C (Loose et al., 2000; Baedecker, 

1993). Field plants were visually inspected and the main diseases and pests identified. 

Affected plant material was collected in order to isolate the relevant pathogens. In addition to 

the collection of fungal isolates, information on crop cultivation was obtained by conducting 

interviews with the tomato growers. 

2.3.2 Collecting isolates of Alternaria solani

Isolates of A. solani were collected from tomato leaves in fields in four regions in Thailand. 

These regions were the area around Chiang Mai in the north of Thailand, the area along the 

border to Laos in the northeast, the area around Cha Am in the south and the central region 

around Bangkok. The samples were taken from open land production areas since production 

under protected cultivation is still uncommon in Thailand. Plants were visually inspected and 

diseased plant material was taken, ten randomly selected leaves per field. To obtain isolates 

from active early blight lesions, leaves that had clearly delineated lesions were chosen. 

Sections of 5 mm2 were removed from the leading margin lesions, washed in pure 

sodiumhyperchloride for 10 s, shortly air dried and plated onto Petri dishes (100 x 15 mm) 

containing potato dextrose agar (PDA; Merck, Bangkok, Thailand). The Petri dishes were 

incubated at 25°C under cool white fluorescent lights for 12 h dark and 12 h light. Putative 

colonies of A. solani were randomly selected from the Petri dishes and single spores were 

transferred to new PDA plates to obtain pure cultures. 

2.3.3 Morphological characterization of Alternaria solani

Following the method of Pryor and Michailides (2002), the morphological characteristics of 

colony growth and sporulation apparatus of all samples were determined using single-spore 

colonies. To obtain these colonies, single-spores were transferred to Petri plates containing a 

special medium for the sporulation of Alternaria (SSA) consisting of 30 g of CaCO3, 20 g of 



Materials and Methods  Early blight (2)

12

sucrose and 20 g of agar per litre of distilled water. Subsequently, isolates were incubated for 

7 to 10 days at 25°C. To ensure consistent sporulation, dishes were kept below a cool white 

fluorescent bulb and illuminated with 12 h / 12 h periods of light / dark. After incubation, 

conidial suspensions were obtained by flooding dishes with 10 mL of sterile water. Conidia 

were extracted with a pipette tip and transferred on a microscope slide. The conidia were 

examined at 40 to 100 magnifications with a dissecting microscope (Nikon, Eclipse E 200) 

and transmitted light for morphological characteristics.  

2.3.4 Selection of isolates of Alternaria solani

The three most vigorous isolates of A. solani were chosen for the further experiments: As-1 

from the area around Chiang Mai, As-2 from the area near the borderline of Laos and As-3 

from the province of Cha Am. In addition, three reference isolates were used: An isolate (As-

4) from the area of Chiang Rai, Thailand was provided by Dr. Patchara Pongam, Kasetsart 

University, Thailand. Two isolates originating from the United States (As-5) and Greece (As-

6) were made available by Mrs. Maendy Fritz (Biometry and Population Genetics, University 

Giessen, Germany).  

2.3.5 Inoculum preparation

The cultures were grown on SSA in Petri dishes and incubated at 25°C under a cool-white 

fluorescent diurnal light with a 12 h photoperiod. After 10 to 14 days, conidia were collected 

by flooding the plates with 50 mL of sterile distilled water containing 0.01% Tween 20. The 

colonies were than gently brushed and the suspension was filtered through two layers of 

cheesecloth to remove mycelia fragments.  

The spore density in the suspension was counted using a haemocytometer and adjusted to a 

density of 5 x104 conidia mL-1. Spray inoculation was done with an atomizer. 

2.3.6 Pathogenicity tests 

All tests were carried out with detached leaves or plants of the tomato variety ´King Kong2´. 

2.3.6.1 Tests with detached leaflets

Five selected isolates of A. solani (As-1, As-2, As-3, As-5 and As-6) were tested for 

pathogenicity on detached leaves. For each isolate tested, ten randomly selected leaves from 2 

months old tomato plants grown in the greenhouse were chosen. Tests were conducted on 
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unwounded (n = 5) and wounded (n = 5) leaves. For wounded leaf assays, each leaf was 

slightly scratched on the surface with a sponge prior to inoculation. Petioles of tomato leaves 

were immersed into microcentrifuge tubes filled with water and the tops of the tubes were 

wrapped with parafilm to hold the leaves in upright and to prevent evaporation of water. After 

spraying the leaves with conidial suspension, the tubes with leaves were covered with clear 

plastic bags to maintain the relative humidity (RH) near 100%. The inoculated leaflets were 

placed in racks inside a plastic chamber (size 30 x 23 x 10 cm) and incubated at ~28°C with 

12 h day/night. Leaves were observed daily until first lesions appeared. The experiment was 

carried out twice. 

2.3.6.2 Tests with plants under laboratory conditions  

Plants were sown, cultivated and stored in a net greenhouse with a mean temperature of 30°C 

(for further greenhouse information see 2.3.6) and transplanted to 2-L-pots after four weeks.  

The experiment was conducted with 6 weeks (A1), 8 weeks (A2) and 10 weeks (A3) old 

plants having 6 to 8, 10 to 12, and 16 to 18 leaves, respectively. Inoculation was done by 

spraying the whole plant with 25 mL of inoculum solution of the isolates As-1 and As-5. 

Sterile water was used for control plants. All plants were individually covered in plastic bags 

for 24 h to increase the RH and to facilitate infection and were incubated with additional light 

at a constant temperature of 25°C in the laboratory. Plants were observed for 14 days after 

inoculation (dai) and diseased leaves were estimated daily by using a rating scale (see 

2.3.7.1). 

For each age class, 13 plants were used, 10 inoculated and 3 as control plants without 

inoculation. The experiment was repeated once. 

2.3.6.3 Tests with plants under greenhouse conditions

The experiment under greenhouse conditions was carried out in the same way as the 

experiment under laboratory conditions, except that the inoculated plants were placed in rows 

in the net greenhouse with an average temperature of 30°C (for detailed greenhouse 

description see 2.3.6). The plants were observed for 14 dai and disease severity was daily 

rated as described below.  
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2.3.7 Greenhouse experiments

The trials were conducted in a greenhouse, located at the campus of the Asian Institute of 

Technology (AIT) in Bangkok, Thailand. The greenhouse (size 200 m2) was a closed net-

house (Econet M, pore size 0.18 mm, Ludvig Swensson, Netherlands) equipped with two 

exhaust fans (550 m3 min-1, 1.5 HP, 960 rpm, Sriroz Company, India) at the front side of the 

net-house (Figure 2.1) 

Figure 2.1: Closed net-house located at the campus of the Asian Institute of Technology (AIT) in 

               Bangkok, Thailand. 

The fans were operated by a computerized control system that automatically switched on one 

fan when the temperature inside the net-house exceeded 25°C, and the second one at a 

temperature > 30°C. The climate in the greenhouse was monitored using a data logging 

system (ITG data logger, Leibniz Universität, Hannover, Germany). During the trials, mean 

temperature and relative humidity was 28-30ºC and 70-80%, respectively. The total planting 

area of the greenhouse was 160 m2 .The greenhouse was lengthways subdivided with a net 

(Econet M, pore size 0.18 mm, Ludvig Swensson, Netherlands) in two halves, each with a 

separate entrance door. In each half, plants were arranged in 3 rows with a distance of 160 cm 

between the rows and 55 cm from the outer rows to the sidewall. 

Tomato seedlings in the required age for the experiments were planted in plastic pots (30 x 25 

cm) filled with a commercial growing substrate composed of clay, sand, and silt in 

proportions of 31, 30 and 39%, respectively, and 29% of organic matter. The pots were placed 

on a black ground plastic cover (Chaisiri Nylon Canvas Factory Ltd., Bangkok, Thailand) and 

arranged in rows with no inter-pot distance within a row (Figure 2.2). 
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Figure 2.2: Inside view of one half of a closed net-house at the campus of the AIT in Bangkok, 

               Thailand. 

Plants were fertigated 7-9 times per day (2.5 L day-1) with a drip irrigation system controlled 

by solar light integral. The fertilizers [Hakaphos® (N-P-K) (2.5 kg 100 L-1), COMPO Austria, 

GmbH, and Bai-plus (calcium) (1.8 kg 100 L-1), Bayer Ltd., Thailand] were injected into the 

irrigation system with mechanical injectors (DI 16, Dosatron®, France). Tomato plants were 

supported by ropes, which were fixed to the ceiling of the greenhouse, and cultivated in a 

single-stem system. Pruning, layering and removing of side branches and up binding was 

done weekly.  

2.3.7.1 First Experiment 

Two fungal pathogens, A. solani and P. aphanidermatum, were investigated in this 

experiment, which was carried out with the tomato variety ´King Kong 2´. The plants were 

arranged in a split-block design (with 4 replications) and 3 time harvests. The total number of 

plants in the greenhouse was 360 arranged in 6 rows. For data collection, 216 plants were 

used, the boarder plants of each split-block were not taken into account. 

Tomato seeds were sown on 22 May 2002. After four weeks, tomato seedlings were planted 

in plastic pots as described above. The inoculation with A. solani and  

P. aphanidermatum was done one month later (on 23 July 2002) when the plants were in the 

10 to 12 leaves stage. 

Plants were inoculated with A. solani in one half of the greenhouse only, the other was 

sprayed with water for control. Inoculum suspension was prepared as a mix of the As-1, As-2, 

and As-3 isolates. Three leaves per plant (number 5, 6 and 7, counted from the bottom) were 

wounded by scratching the leaf surface and then sprayed with 100 mL of inoculum solution. 

Tomato plants were than individually packed in plastic bags for 24 h to increase the relative 

humidity and to favour infection. To avoid the spread of early blight into the control half, 
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Maneb (Dithane M-45, 1.6 kg a. i. ha-1) was sprayed once a week, starting one week after 

inoculation.  

In addition, in both parts, P. aphanidermatum was inoculated with agar pieces containing the 

pathogen in 3 different densities in the soil. 

The treatments were: 

1 plain Petri dish per pot P. aphanidermatum without A. solani   (P0–wA) 
1 Petri dish per pot  P. aphanidermatum without A. solani   (P1–wA) 
3 Petri dishes per pot P. aphanidermatum without A. solani   (P2–wA) 
1 plain Petri dish per pot P. aphanidermatum inoculated with A. solani (P0–iA) 
1 Petri dish per pot  P. aphanidermatum inoculated with A. solani  (P1–iA) 
3 Petri dishes per pot P. aphanidermatum inoculated with A. solani  (P2–iA) 

For the inoculation of P. aphanidermatum, the isolate kindly provided by Dr. Wanwilai 

Intanoo, Kasetsart University, Bangkok, Thailand, was grown for 4 days on PDA medium. 

Thereafter, Petri dishes containing the mycelium were cut in 1 cm2 pieces and 1 or 3 dishes 

per pot were mixed into the soil. For control treatments, one Petri dish containing plain PDA 

medium was cut in pieces and mixed into the soil. 

During the experiment, the plant height, number of leaves per plant and the number of ripe 

tomatoes were recorded on a weekly base. Disease severity on each leaf was estimated once a 

week. These observations were done for 3 months after inoculation. 

A destructive sampling (3 altogether) of 20 plants per treatment was done every 4th week and 

12 plants were used for data collection. The plants for data collection were the middle plants 

out of a group of five plants.  

The leaf area was measured with a leaf area meter (LI-COR; Model Li-3100 AREA meter, 

left-Cor. Inc. Lincoln, Nebraska, USA), roots were washed free of substrate, air dried and 

weighed. At each sampling date, one third of the plants, starting at one side of the greenhouse 

was removed. 

2.3.7.2 Second Experiment 

The second experiment was conducted similar to the first one (see above), except that the 

variety ´New King Kong´, a determinate, early flowering variety, was used and that the 

isolates As-3 and As-4 were used for inoculation of A. solani. Seeds were sown on 14 August 

2002 and transplanted 4 weeks later to 10-L-pots. Inoculation was done on 22 October 2002. 

Again three leaves (number 5, 6 and 7) were scratched, but in the second experiment, the agar 



Materials and Methods  Early blight (2)

17

plates with mycelium were directly pressed for 5 seconds smoothly onto the leaves. 

Thereafter, the leaves were moistened by spraying tap water and covered separately with 

plastic bags for 24 h in order to increase the relative humidity. Control plants were treated 

with sterile agar plates. 

The inoculation of P. aphanidermatum in the second experiment was identical to that in the 

first one (see above). The data collection was done weekly and three time harvests were made. 

2.3.8 Disease assessment. 

2.3.8.1 Early blight 

For disease assessment of early blight, the leaves of all plants were visually rated for percent 

diseased foliage using a modified Beaumont rating scheme (Beaumont, 1954) with 0% 

indicating no visible symptoms of A. solani infection and 100% indicating completely 

diseased foliage. To avoid errors in disease assessment, the same person did the assessment at 

all times. The rating scale was modified as followed: 

no recognizable lesions :             0% 

0.5 – 2.5%  diseased foliage :     1%  

2.5 – 7.5%  diseased foliage :     5%  

7.5 – 15%   diseased foliage :   10%  

15 – 25%    diseased foliage :   20%  

25 – 35%    diseased foliage :   30%  

35 – 45%    diseased foliage :   40%  

45 – 62%    diseased foliage :   50%  

63 – 82%    diseased foliage :   75%  

83 – 100%  diseased foliage : 100%  

2.3.8.2 Pythium aphanidermatum 

The root pathogen P. aphanidermatum rarely shows lesions on the upper part of plants. To 

prove the presence or absence of the fungus, a potato baiting method was used for detection 

and re-isolation (Stanghellini and Kronland, 1985). Every week, soil samples (about 50 mL) 

from 10 randomly selected pots were taken out of the rootstock section, placed in a Petri dish 

and saturated with deionised water. A slice of potato (0.25 cm2 and 3 mm thick) with a piece 

of water agar on top (same size as potato slice) was used as bait and placed onto the saturated 

soil surface (Figure 2.3). After incubating for 48 hours at 30°C, the water agar slice was 

removed and placed onto a selective medium for P. aphanidermatum, containing PDA with 
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100 ppm Pimaridin + 100 ppm Streptomycin. Petri dishes were evaluated after incubating for 

24 hours at 32°C in the dark. Cotton wool pad-like mycelium indicated a positive soil sample. 

0.25 cm² slice of potato (3 mm thick)    Piece of water agar 

      

         Infested, with distilled water saturated  

  Petri dish        soil sample  

          

Figure 2.3: Schematic description (cross-sectioned) of potato baiting method (after Stanghellini and  

                Kronland, 1985). 

2.3.9 Statistical analyses

The quantitative data of the plants, i.e. total leaf number, plant height, yield, root weight, dry 

weight, leaf area etc., were subjected to two-way analyses of variance (ANOVA) using the 

PROC GLM procedure of the SAS software package (SAS Users Guide, SAS Institute, Cary, 

NC). The two factors investigated were the influence of EB (marked with capital letters A and 

B) and PRR (characterized with small letters a and b) and their interaction (marked with ***). 

Mean comparisons were conducted using Tukey’s t-test (p � 0.05). 
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2.4 Results 

2.4.1 Surveys and collection of isolates 

From the surveys it became clear that tomatoes in Thailand are mainly cultivated for 2-3 

months in the so-called short cultures in open land. The main cultivation time for tomatoes in 

Thailand is the dry season from November to March. The average frequency of pesticide 

application is every 3rd day. Tomatoes are mainly used for industrial processing. 

During the survey, foliar diseases such as early blight (EB), late blight and powdery mildew 

caused by Alternaria solani, Phytophthora infestans and Leveillula taurica were found. The 

leaf diseases with the highest frequency were EB (found in 15 fields) and late blight (observed 

in 7 fields), the latter mainly in relatively cooler regions in the north. In the central area of 

Thailand, no symptoms of EB were detected. Major pests found were leaf miners, fruit borers 

and thrips. Bacterial wilt occurred as well frequently. 

Soil samples were taken to detect soil-borne pathogens and analysed using the potato-baiting 

method. In the soil samples showing positive infestation, Pythium spp. were identified.  

P. aphanidermatum was the most relevant soil-borne pathogen in warmer regions. 

In addition to the surveys in the central region, where the greenhouses for the experiments 

were located, young tomato plants were used as trap plants to collect wind-borne spores of 

tomato pathogens at the AIT ground. However, no disease symptoms on the trap plants 

appeared after incubation.  

2.4.2 Morphological characterization of Alternaria solani

About 150 Alternaria leaf samples were taken from fields and analysed based on the 

characteristics described by von Arx (1974), Streets (1979) and Ellis (1971). The 

conidiophores of A. solani are arising singly or in small groups. Conidia are usually solitary 

and consist of a simple or branched chain; the conidium is dark, olive coloured, brown or mid 

pale golden. It is 150-300 µm long and 15-19 µm thick with 7 to 11 transverses and no or a 

few longitudinal septa. All isolates could be grouped into the species of A. solani (Figure 2.4).  
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Figure 2.4: Conidia (x 40) of an A. solani isolate from the area around Chiang Mai, Thailand. 

2.4.3 Pathogenicity tests

For all experiments, the results in the repetitions were similar. Therefore, only the data from 

the first run of experiments are presented. 

2.4.3.1 Tests with detached leaflets

Symptoms of early blight appeared on all inoculated leaves 6 days after inoculation and  

A. solani could successfully be re-isolated from all diseased plants. The pathogenicity test 

conducted on wounded and unwounded leaves showed no significant difference and the 

isolates tested had no influence on disease severity.  

2.4.3.2 Tests with plants under laboratory conditions

In the laboratory with the mean temperature of 25 °C, first symptoms of EB were visible after 

3 days when plants in the age of 8 weeks (A2) and 10 weeks (A3) were inoculated (Fig. 2.5). 

Subsequently, the disease developed more rapidly in the A2 treatment than in the A3 

treatment and 20 % of the leaf area was covered with lesions at 14 days after inoculation (dai) 

in comparison to 15 % in the A2 treatment. In contrast, first symptoms were found in the A1 

treatment after 11 days and there was only a slight increase until 14 dai. 
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Figure 2.5: Disease progress curves of early blight on leaves of tomato plants inoculated at different 

               plant ages (6 (A1), 8 (A2) and 10 (A3) weeks) and incubated at 25°C, n = 10. 

2.4.3.3 Tests with plants under greenhouse conditions 

No characteristic symptoms of A. solani could be identified up to 14 dai in the greenhouse 

with an average temperature of 35°C, 

2.4.4 Greenhouse experiments

During the second experiment, a second foliar disease occurred, namely black leaf mold 

(BLM) caused by the fungus Pseudocercospora fuligena. As in experiment 1, BLM 

symptoms were not noticeable the data of this experiment were analysed according to the 

different early blight treatments. In the second experiment, BLM was influenced by chemical 

treatments, which were targeted against early blight. Thus the results were grouped according 

to the different chemical treatments (with fungicide and without fungicide). 

2.4.4.1 First Experiment 

Despite of the inoculation of A. solani, no symptoms were found on inoculated plants. In 

contrast, both Pythium treatments (P1 – with low level of P. aphanidermatum; P2 – with high 

level of P. aphanidermatum) showed symptoms of browning leaves starting from the bottom 

of the plants which were not found in the PRR free control treatments. Randomly chosen soil 

samples were analysed and P. aphanidermatum could be re-isolated from substrate of visibly 

damaged plants, proving P. aphanidermatum as the causal agent of the symptoms. No 

Pythium was re-isolated from non-inoculated control pots.  

In this experiment, plants of all treatments died rapidly. After three weeks, one third of the 

plants in the greenhouse was already dead. In addition, over 50% of the plants had lost more 
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than 50% of the healthy tissue. Because of these damages of the plants, the experiment was 

stopped two months after inoculation (on 17 September 2002) so that only two time harvests 

were done (28 dai and 56 dai). In both assessments, 18 plants per treatment were used. 

The shoot dry weight of tomato plants at harvest is shown in Fig. 2.6. At 28 dai, the shoot dry 

weight was significantly reduced in the A. solani inoculated plants, compared to the non-

inoculated and fungicide treated control plants. However, this effect could not be seen at 56 

dai. At 28 and 56 dai, the plants of both Pythium-treatments (P1 and P2) were significantly 

reduced in dry weight.  
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Figure 2.6: Means (± SE) of shoot dry weight per plant (g) in the six treatments (combined 

inoculations of P. aphanidermatum and A. solani; P0- without Pythium, P1- with low level 

of Pythium and P2- with high level of Pythium), n = 18. The treatments without A. solani

were weekly sprayed with fungicide to avoid undesired infection. 

Root fresh weight (Figure 2.7) and shoot dry weight showed a similar response to the 

treatments. All fungal treatments, A. solani and both Pythium levels, significantly reduced the 

root fresh weight at 28 dai. At 56 dai, there was no effect of the A. solani -treatment and of the 

low Pythium level (P1), but the high Pythium level significantly reduced the root dry weight. 

On average the difference between the Pythium-treatments was 10 g. 
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Figure 2.7: Means (± SE) of root fresh weight per plant (g) in the six treatments (combined 

inoculations of P. aphanidermatum and A. solani; P0- without Pythium, P1-with low level 

of Pythium and P2- with high level of Pythium), n = 18. The treatments without A. solani

were weekly sprayed with fungicide to avoid undesired infection. 
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Pythium, P1- with low level of Pythium and P2- with high level of Pythium), n = 18. The 

treatments without A. solani were weekly sprayed with fungicide to avoid undesired 

infection 
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Yield per plant, given as fruit fresh weight and number of fruits per plant are shown in  

Figure 2.8. There were no significant differences in the treatments, neither in the weight nor 

in the number of fruits. It should be considered that at 28 dai only 1 fruit could be harvested in 

the inoculated treatments P0-iA and P1-iA. In the other treatments, no fruits were yielded. 

The dynamics of plant height is shown in Figure 2.9. Plant growth did not significantly differ 

among the treatments. However, there was a tendency of tomato plants in the P0-treatment 

having a slightly faster growth as compared to Pythium-inoculated plants. 
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Figure 2.9: Dynamics of plant height (± SE) (cm) under the influence of both inoculations in the six 

treatments (combined inoculations of P. aphanidermatum and A. solani; P0- without 

Pythium, P1- with low level of Pythium and P2- with high level of Pythium), n = 18. The 

treatments without A. solani were weekly sprayed with fungicide to avoid undesired 

infection.

The number of leaves (Figure 2.10) was significantly reduced in the non-sprayed treatments 

(iA) compare to the sprayed ones, at 56 dai. In the P0-treatment at 56 dai, plants had a mean 

leaf number of 29 leaves whereas in the P1- and P2-treatments the leaves were significantly 

reduced to 27. The number of shed leaves, which are displayed with the second line in Figure 

2.10, did not show a significant difference between the sprayed and non-sprayed-treatments. 

The loss of leaves was significantly higher when plants were inoculated with Pythium. The 

high inoculation level of Pythium (P2) led to the highest number of dead leaves (approx. 9 

leaves) while in the P0-treatment only an average of 6 leaves were lost.  

The numbers of leaves were analysed by calculating the area under the progress curve 

(AUPC, Table 2.1.), e.g. the actual value of the AUPC in the treatment P0–wA was 810.83 

number of leaves * days, in P2-iA it was reduced by 267.93 to 542.91.  
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Figure 2.10: Means (± SE) of the total number of leaves formed and of leaves shed in the six 

treatments (combined inoculations of P. aphanidermatum and A. solani; P0- without 

Pythium, P1- with low level of Pythium and P2- with high level of Pythium), n = 18. The 

treatments without A. solani were weekly sprayed with fungicide to avoid undesired 

infection. 
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Table 2.1 Values of area under progress curve (AUPC), measured in leaf number * days, for total 
number of leaves and number of shed leaves in the six treatments (combined inoculations 
of P. aphanidermatum and A. solani; P0- without Pythium, P1- with low level of Pythium

and P2- with high level of Pythium), n = 18 The treatments without A. solani were weekly 
sprayed with fungicide to avoid undesired infection. 

Treatment Without 
A. solani  (wA) 

Inoculation of 
A. solani (iA) 

Statistic for  
PRR 

P0  948.11 910.35 a1

P1 877.09 885.61 b 
AUPC for total 

number of leaves 

P2  925.23 851.88 b 

Statistic for EB A B  

P0 137.28 182.58 a 

P1 205.53 280.20 ab 
AUPC for number 

of shed leaves 

P2 255.70 308.97 b 

Statistic for EB A A  
1 Data were subjected of a two-way analysis of variance (ANOVA) and means separated by LSD (p < 0.05). The two factors 
investigated are the influence of PRR within column (characterized with small letters) and EB within rows (marked with 
capital letters). Means followed by the same letter are not significantly different (P = 0.05).

2.4.4.2 Second Experiment

This experiment was carried out with the indeterminate tomato variety ´New King Kong´. 

Like in the first experiment, P. aphanidermatum was inoculated and could successfully be re-

isolated from the substrate of Pythium-inoculated plants. Leaves inoculated with A. solani

showed marginal necrosis or wilting, but no lesions of early blight could be observed. 

One week after the inoculation (28 October 2002) of A. solani and P. aphanidermatum, 

symptoms of another leaf disease were detected (Fig. 2.11). The disease was identified as 

black leaf mold (BLM) by Dr. Grunewaldt-Stöcker, (Institute of Plant Diseases and Plant 

Protection, Leibniz Universität, Hannover, Germany, pers. com.) and Prof Dr. Braun (Martin-

Luther-University, Halle-Wittenberg, Germany, pers. com.). The fungal pathogen was 

subsequently identified as Pseudocercospora fuligena (Centraalbureau voor 

Schimmelkultures, Utrecht, Netherlands, ‘det 321-2003’). In Thailand, this disease was first 

detected in 1979 in the Nongkham District, Amphoe Pasrijarern, Bangkok (Saranark and 

Chandrasrikul, 1980).  
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Figure 2.11:  Tomato leaves with natural infestation of black leaf mold, caused by Pseudocercospora    
                  fuligena (front, backside and at the crop). 

The disease severity of BLM was estimated in the same way as described above for A. solani. 

The progress of BLM incidence of plants of the two greenhouse sides (inoculated with  

A. solani and without A. solani) followed an S-shaped curve (Figure 2.12). The disease 

incidence nearly doubled between 35 and 42 dai and reached 100% at 63 dai. 
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Figure 2.12:  Disease progress curve of black leaf mold, expressed as disease incidence of plants, 
                 in two A. solani treatments, n= 36.

As the disease incidence was recorded on individual plants, the spread of the disease from 

plant to plant could be followed. Maps of the diseased plants were generated showing the 

positions of these plants. As diseased plant, plants with at least one visible spot of BLM were 

counted. The spatial patterns of BLM distribution at three observation dates (7, 14 and 21 dai) 

are shown in Figure 2.13.  
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Figure 2.13:  Spatial pattern of Pseudocercospora fuligena infected plants in the greenhouse at three 
                disease assessment dates (7, 14, and 21 dai). 
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Figure 2.14: Disease severity (± SE) of Pseudocercospora fuligena, in the six treatments (combined 
inoculations of P. aphanidermatum and A. solani; P0- without Pythium, P1- with low level 
of Pythium and P2- with high level of Pythium). Vertical lines show the times when part of 
the plants were removed, resulting in a reduced sample size 

During the primary investigations, related to A. solani, we observed that BLM responded to 

the weekly fungicide application with Maneb (Dithane M-45, 1.6 kg a. i. ha-1). Therefore, data 

were separating the sprayed and non-sprayed treatments.  
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First symptoms of BLM were detected at 7 dai. These leaf spots were counted, and the disease 

severity was estimated in the same way as described before for A. solani (Figure 2.14). On the 

plants inoculated with Alternaria the disease progressed slowly until 28 dai but a strong 

increase in disease severity was recorded subsequently. Disease severity in the non-sprayed 

treatments reached 30%. On plants treated with fungicides, the disease severity at 84 dai was 

18% (in P1-wA and P2-wA) and 12% in P0-wA. 

As plant development was normal, the second experiment was monitored for 84 days. At 

three times (28, 56 and 84 dai), 20 plants per treatment were harvested and 12 plants were 

used for data collection. 

For the second experiment, only shoot dry weight is shown (Fig. 2.15). However, due to the 

positive correlation between shoot dry weight and other parameters of above ground plant 

growth, e.g. shoot fresh weight to shoot dry weight were correlated with r > 0.96 (P < 0.01), it 

can be assumed that the results are similar. 
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Figure 2.15: Means (± SE) of shoot dry weight (g) per plant in the six treatments (combined 
                  inoculations of P. aphanidermatum and A. solani; P0- without Pythium, P1- with 

                           low level of Pythium and P2- with high level of Pythium), n = 12. 

At 0 dai, plants were 6 weeks old and had an average shoot dry weight of 27 g per plant. At 

28 dai, the dry weight was significantly reduced by 20 g in the fungicide-treatment compared 

to the non-fungicide-treatment. At 56 dai, no statistical significance were detectable. At 84 
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dai, both treatments (P. aphanidermatum-inoculations and without fungicide) had a 

significant negative effect on shoot dry weight. 

There was a strong tendency that plants in the Pythium inoculated treatments (P1 and P2) had 

lower root fresh weight at different sampling times compared to the P0-treatment (Fig. 2.16). 

At 84 dai, root fresh weight was significantly reduced in the plants non-sprayed. At the other 

dates, no significant differences were noticed. 
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Figure 2.16: Means (± SE) of root fresh weight per plant (g) in the six treatments (combined 
                 inoculations of P. aphanidermatum and A. solani; P0- without Pythium, P1- 
                 with low level of Pythium and P2- with high level of Pythium), n = 12. 

The leaf area of tomato plants is shown in Figure 2.17. The leaf area was about 2200 cm2 per 

plant at the beginning of the experiment. In the treatment with fungicide spraying, the leaf 

area reached up to 3400 cm2, at 28 dai. In the non-sprayed treatments, the leaf area was 

significantly reduced at 28 to 84 dai. In the Pythium variants, no significant differences were 

found.  
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Figure 2.17: Means (± SE) of leaf area per plant (cm2) in the six treatments (combined inoculations of 
                 P. aphanidermatum and A. solani; P0- without Pythium, P1- with low level of Pythium

                 and P2- with high level of Pythium), n = 12. 

Fresh fruit weight and number of fruits per plant at the three assessment dates is displayed in 

Figure 2.18. The ripening of fruits started 28 dai. At this time, the fruit weight and the fruit 

number were significantly increased in the fungicide sprayed treatments. For instance, the 

fruit number per plant was 14 in the sprayed treatment compared to 8 fruits per plant in the 

non-sprayed treatments. The mean fruit weight per plant was 440 g per plant and 180 g for 

sprayed and non-sprayed plants, respectively.  

At 56 dai, a significant disease interaction within the treatments was found. The P0–iA-

treatment (non-sprayed) had a higher yield and fruit number than for example the P0-wA-

treatment (sprayed). For both fungicide treatments, at 84 dai, the fruit fresh weight per plant 

in P0 was significantly higher than in P1 and P2. The spraying of fungicide also significantly 

increased the fruit fresh weight at 84 dai. 
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Figure 2.18: Fruit weight (± SE) (g) and number of fruits per plant in the six treatments (combined 
                 inoculations of P. aphanidermatum and A. solani; P0- without Pythium, P1- with low level 
                 of Pythium and P2- with high level of Pythium), n = 12. 
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2.5 Discussion 

Sustainable crop production systems are readily available, but not widely disseminated in 

developing countries (Davis et al., 2002). For tomato production, the high temperature 

throughout the year and heavy rainfalls in the rainy season, which typify the lowland tropics, 

exert their most striking loss by reducing fruit set and therefore yield (Tunggim and Ruch, 

1979). To avoid these negative effects, tomatoes could be produced under protected 

cultivation. Even though outside and inside temperatures of greenhouses are only slightly 

different (Ajwang, 2004), little is known about greenhouse crops, sustainable production, and 

upcoming diseases, although diseases are the major limiting factors in vegetable production in 

the tropics (Villareal, 1980). Thus, before investigations in greenhouses could be carried out, 

surveys about the important diseases on tomatoes in Thailand were conducted.  

2.5.1 Disease surveys

The climatic conditions in Thailand are very favourable for many pathogens, especially fungal 

diseases (Villareal, 1987; Thi Bich Ha, 1992; Davis et al., 2002). The observations made in 

the surveys in Thailand confirmed this statement. The most important leaf diseases found 

under field production were early and late blight, the latter was mainly found in the relatively 

cooler regions in the north of Thailand. No symptoms of early or late blight were detected in 

the central area of Thailand. This might be related to the fact that tomato productions as well 

as other solanaceous host plants are rare in the central region. Main growing areas for tomato 

are the northeast and northwest of Thailand. 

Late blight, caused by Phytophthora infestans, spreads very fast under cool and humid 

conditions (Davis et al., 2002; Campell and Madden, 1990; Jones et al., 1991). For some 

Phytophthora spp., for example P. meadii, which occurs in Sri Lanka and India on Hevea-

rubber trees, only one day of bright sunlight and warm weather inhibits fungal spread (Kranz 

et al., 1979). These facts exclude late blight as relevant disease in the central region, and 

especially under greenhouse conditions. 

Kranz et al. (1979) emphasized that EB is distributed world-wide and specially in warm 

climates. Jones et al. (1991) mentioned that primary infections of EB occurred during periods 

of mild (24-29°C) and rainy weather. In addition, Rotem (1994) confirmed that Alternaria

species developed best in warm and moist environment, but they are also very tolerant to both 

low and extremely high temperatures, including 35°C. According to Rotem (1994), wetting 

periods, inoculation density and temperature determine the level of infection. Even at 35°C, 

with a wetting period of 24 h, he received a disease severity of 80% with an inoculum 
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concentration of 1*104 spores cm-2, and of 62% with a concentration of 1*103 spores cm-2. 

Therefore, EB seemed a model disease to be investigated under protected cultivation in the 

humid tropics. 

Soil samples proved the occurrence of Pythium spp. in tomato fields and supported the finding 

that P. aphanidermatum is the most relevant soil-borne pathogen in warmer regions of 

Thailand (Heine, 2005; Wanwilai, pers. com.). 

2.5.2 Pathogenicity tests

Strains of A. solani from leaf samples of the surveys and the reference strains were analysed 

microscopically. Although it is recognized, for example for A. alternata, that conidia formed 

in natural habitats are usually larger, have longer beaks, and are more uniform in size than 

those produced in vitro on common agar media (Misaghi et al., 1977), no differences in 

morphology existed between samples originating from the field and from in-vitro cultures. To 

exclude difficulties in the maintenance of A. solani, the temperature was chosen as 25°C 

under laboratory conditions. Misaghi et al. (1977) reported that A. alternata isolates grew at 

temperatures of 6-33°C but did not grow at 36°C or above. 27°C was the most favourable 

temperature of this fungus. 

Bhatia et al. (2002) discovered in experiments with Alternaria spp. that a significant 

proportion of isolates were not pathogenic. In the current experiments, pathogenicity tests 

conducted on detached leaflets proved the pathogenicity of all collected isolates. 

After inoculation of A. solani, no differences were found between wounded and unwounded 

leaves under laboratory conditions. This finding contradicts reports of Pryor and Michailides 

(2002) and Rotem (1994) that wounded leaves are more susceptible to infection. The 

temperature chosen for the pathogenicity tests was 25°C. According to Canhios et al. (1999), 

the highest levels of infection occurred at a temperature of 23 to 27°C and 24 h of leaf 

wetness. Other authors reported a wider temperature range for infection. For instance, the 

optimum for sporulation of A. solani was 26-28°C in experiments of Rands (1917) and 20°C 

according to McCallan and Chan (1944). Douglas (1972) found an optimum temperature of 

25°C for sporulation of A. solani in light and 20°C in a light-dark photoperiod. In more recent 

studies in Israel, the optimum temperature for lesion expansion was determined to be 20 to 

25°C (Solel and Kimchi, 1998). Rotem (1994) assumed that the optimum temperature of most 

species of Alternaria is 25°C or above at a wetting period of 24 h. The packing of leaves (like 

done in the experiments) in clear plastic bags had the aim to prolong the period of wetness 

and to increase relative humidity. However, wetting periods necessary for infection in nature 
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are usually shorter than those in the laboratory (Rotem, 1994). In the field, infections can 

occur during short wetting periods in night time interrupted by dry days. In such an 

interrupted wetting period regime, germination of spores starts during the first wet night, stops 

on the following dry day, and resumes during the next wet night. This process is repeated 

until the germ tubes penetrate the host (Bashi and Rotem, 1975). Based on results of a recent 

study (Vloutoglou and Kalogerakis, 2000), it appears that for a single disease cycle a wetness 

period of 24 h and 25°C would allow almost maximum infection. 

A. solani is able to attack tomato in different growth stages, e.g. seeds, seedlings or mature 

plants (Agrios, 2005). In the current experiment, investigations were mainly done at the 

seedling stage where A. solani causes collar rot. It was reported that after the susceptible 

seedling stage, tomato plants became increasingly resistant to EB. However, susceptibility 

increased again when plants entered the senescent stage (Moore, 1942; Moore and Thomas, 

1943; Rotem, 1994). In contrast, Jones et al. (1991) reported that tomato plants were 

susceptible to A. solani infection in all growth stages. We focussed on the infection of plants 

in the vegetative (6-week old) and reproductive (8-week old) growth stages, because this is a 

crucial time when plants were transplanted, e.g. in the greenhouse. Vloutoglou and 

Kalogerakis (2000) reported that the susceptibility of tomato to EB was greatest in plants at 

the reproductive stage. These results could not be confirmed in our experiment in which 

plants in the age of 10 weeks were 15% less susceptible to EB than plants in the age of 6 

weeks and 8 weeks. Rotem (1994) showed similar results as Vloutoglou and Kalogerakis 

(2000) in their experiments with 12 h wetting period: disease severity increased with 

enhanced plant age. Increased susceptibility to infection with increasing host age has been 

reported in many Alternaria-host systems, such as A. porri on onions (Gupta and Pathak, 

1986), A. macrospora on cotton (Rotem et. al., 1990), and A. brassicae and A. brassicola on 

brassica crops (Babadoost and Gabrielson, 1979). 

Under laboratory conditions, infections of tomato with A. solani occurred. Within the 

repetition, under greenhouse conditions, no visual disease symptoms of EB appeared, possibly 

due to the fact that the disease needs a longer development time under field conditions as 

compared to controlled conditions. Rotem (1978) obtained similar results when he reported 

that young potato plants were successfully infected by A. solani in the laboratory whereas 

young plants in the field remained disease-free for a relatively long period, He accounted this 

phenomenon to an immune reaction of the plants in the field. Such an “immune” response 

may result from a scarcity of inoculum, an unfavourable microclimate in the young crop, or 
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from the effectiveness of a fungicide treatment, which in the nearly open stand covers the 

foliage more easily. Another important factor could be the climatic conditions. Temperatures 

up to 35°C in the early summer season (April - May) were measured inside the greenhouse. 

As mentioned above, EB is suitable for temperatures around 35°C, but Rotem (1994) didn’t 

point out how long EB was able to withstand these conditions. According to Canhios et al. 

(1999), 32°C was the upper limit for infection with A. solani and significantly higher infection 

was observed at 27°C, especially when the leaves were constantly wet. At temperatures 

higher than the optimum, infection decreased rapidly resulting in a low disease severity at 

32°C, even with extended wetness periods (Canhios et al., 1999). It seems that EB can sustain 

high temperatures for a short time period only, so that experiments should be conducted in 

lower-temperature seasons. 

2.5.3 Greenhouse experiments

The purpose of these experiments was to study the effects of co-inoculation of the soil-borne 

pathogen P. aphanidermatum and the foliar pathogen A. solani. Since information about the 

combined effects of two pathogens and their interactions on plant health is rare (Waller and 

Bridge, 1984), an experimental approach with co-inoculation of P. aphanidermatum and A. 

solani was chosen. This combination of a foliar and a soil-borne pathogen could be of 

particular importance for the assessment of crop losses and the selection of appropriate 

management strategies. In addition, it can be expected that infection rates, maximum disease 

levels and the shapes of the disease progress curves are changed when two diseases are 

interacting as compared to a single disease (Hau, 2001). For example, Bhowmik and Singh 

(1977) found that Alternaria leaf blight of sunflower was more severe on plants infected with 

Macrophomina phaseolina root rot. Verticilium wilt reduced plant vitality and caused 

premature senescence on potato plants, which increased EB severity, caused by A. solani

(Harrison, 1974). In order to answer the question if there were differences in the disease 

dynamics and in the growth of tomato plants under greenhouse conditions, two different 

inoculum levels were used, one with low density (P1) and one with higher density (P2) of P. 

aphanidermatum. 

Even though both experiments were carried out with different varieties, the results of both 

experiments are comparable. Recent results of Vloutoglou and Kalogerakis (2000) showed 

that there were no significant differences between host cultivars with respect to disease 

severity of A. solani and it was proven that both cultivars used are susceptible to A. solani and 

P. aphanidermatum (Kandziora, unpublished). 
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In both experiments, it seems that even without visible disease symptoms of EB, the fungus 

had a significant negative influence on the plant growth (shoot dry weight, leaf area) at the 

first sampling time (28 dai), in the second experiment also on yield. In the first experiment, a 

significant negative influence of P. aphanidermatum on growth parameters was also found. 

However, neither the dominance of one of the pathogens nor the interaction between both 

pathogens was noticeable. This finding was also confirmed for the parameters root fresh 

weight and plant height. Due to the low yield in the first experiment, no reliable information 

about yield can be given. The low number of tomatoes harvested in some treatments excluded 

a statistical analysis. 

In both experiments, at the second sampling date (56 dai) the main effects was related to the 

different inoculum levels of Pythium (P0, P1 and P2). The shoot dry weight was significantly 

reduced by both Pythium inoculation levels. The same observations were made for the root 

fresh weight in the first experiment. In the second experiment, the leaf area of the non-sprayed 

treatments was significantly reduced at 56 dai. To subsume a trend, in the first experiment, 

Pythium root rot had mainly a significant negative influence on plant growth parameters and 

in the second experiment it seems possibly related to the different fungicide treatments. This 

trend could be observed for all parameters in the third sampling date (84 dai) of the second 

experiment. 

The significant influence was mainly related to EB, the foliar disease. However, as indicated 

above, the observed effects were more likely linked either to the fungicide treatment or to 

black leaf mold (BLM), caused by Pseudocercospora fuligena. This observation suggested 

that in both greenhouse experiments, a primary disease cycle of EB occurred, initiated 

through inoculation. However, no secondary cycle followed as no symptoms of EB were 

visible. Hillocks and Bridge (unpublished results cited in: Waller and Bridge, 1984) observed 

in a nematode-fungus complex (Meloidogyne incognita and Fusarium oxysporum f. sp. 

vasinfectum) that even without showing symptoms, F. oxysporum diseases were able to 

develop.  

Recent experiments from Mersha (2008), carried out under nearly similar greenhouse 

conditions like in the current experiment, supported the assumption that EB can establish in 

the greenhouses with different net systems. Mersha (2008) conducted experiments in four 

different greenhouses types and at three different seasons at the AIT research facility. In his 

experiments, EB naturally appeared in greenhouses on plants transplanted in May. Plants in 

the greenhouse with pad cooling system were frequently affected by A. solani and had the 

highest disease severity of EB compared to plants of the other experimental greenhouses. In 
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the 40-mesh greenhouse BioNet TM, plants showed only a marginal EB severity. Thus it can 

be concluded that EB can occur in greenhouses, but only in the dry season and at a low level 

under the given greenhouse conditions. In addition, EB seemed to be important only during 

the early phase of plant growth (3 to 6 weeks after transplanting), while in the later stages, 

BLM was the more important leaf disease (Mersha, 2008). 

The soil-borne pathogen P. aphanidermatum is known mainly as the causal agent of damping-

off diseases (Agrios, 2005). On matured plants, disease symptoms like wilting or browning of 

lower leaves (or finally dying of the entire plant) are expressed. Even though the shedding of 

senescent leaves (Figure 2.10) is a normal process, a significantly increased number of shed 

leaves was observed that could be assigned to P. aphanidermatum. This assumption is 

supported by the results of the re-isolation.  

In general, it is difficult to identify the cause of plant damage separating between root and 

shoot diseases on the same plant, especially if one pathogen does not obviously affect the 

susceptibility of the plant to the other. Usually more damage is credited to the more obvious 

disease (i.e. that on the aerial plant parts). On the other hand, Waller and Bridge (1984) 

mentioned that a root disease can reduce the plant’s capacity for compensatory growth. This 

should be investigated further in general because this aspect seems to have received very little 

attention so far. 

While the second experiment was running, symptoms of another foliar disease appeared 

identified as BLM caused by Pseudocercospora fuligena (Roldan). This fungus belongs to the 

family of Mycosphaerella (Crous and Braun, 2003) and is widely distributed in tropical 

regions all over the world. BLM develops small lesions on young leaflets as indistinct 

discolorations without definite margins (Jones et al., 1991). Disease development is favoured 

by warm (27°C), wet weather. The presence of moisture on the foliage from dew, rainfall and 

fog provides good conditions for infection (AVRDC, 2004). Increasing periods of leaf 

wetness are associated with increasing disease severity. Consequently, the disease may 

become more serious during the rainy season when high temperatures prevail.  

Based on the results of the current study, the need for more detailed studies on 

Pseudocercospora fuligena can be emphasised. The fungus has the potential to be a serious 

problem for tomato production under protected cultivation in the humid tropics. Investigations 

under greenhouse conditions on BLM development and yield loss followed by studies on 

adequate management strategies should be done. Therefore, P. fuligena will be explored more 

thoroughly in subsequent papers. 
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3 Temporal progress and spatial distribution of black leaf mold in 

greenhouses in Thailand 

3.1 Abstract 

Investigations of black leaf mold (BLM) on tomato, caused by Pseudocercospora fuligena, 

were conducted under greenhouse conditions in Thailand (closed net house, Econet M, base 

area 10 x 20 m). Four experiments in different weather seasons and with two different tomato 

varieties (´New King Kong´ and ´King Kong 2´) were carried out to determine the spatial 

distribution and temporal progress of BLM. In addition, two treatments with Pythium 

aphanidermatum inoculation were included in the study in order to observe interactions of a 

disease complex and its influence on the disease dynamics of BLM. However, no influence of 

P. aphanidermatum on the dynamics of BLM was found. In some experiments, Trichoderma 

harzianum was used as a biological antagonist of Pythium. 

BLM occurred naturally under greenhouse conditions. In pre-experiments with artificial 

inoculation, BLM showed first symptoms roughly after 14 days. Under greenhouse conditions 

with natural infestation, an incubation time was 7 to 28 days long. The main experiments 

were conducted for 84 and 112 days. The disease progress curves of incidence of plants were 

S-shaped and the 100% infection level was reached approximately after 63 days. At the end of 

the experiments, the maximum disease severity was 30%. The spatial disease patterns within 

rows at the beginning of the epidemics were analysed with the join-count statistics. In two 

experiments, the disease occurred in a random pattern, while in the two others an aggregation 

of diseased plants was indicated. The 3-D plots of spatial distribution did not show a gradient. 

The data were also analysed for vertical distribution. The maximum number of leaves per 

plant was 26 (± 1.11) for the determined variety ´New King Kong´ and around  

50.54 (± 1.21) for the indeterminate variety ´King Kong 2´. The highest leaf insertion with 

BLM symptoms was at position 45 from the bottom. The leaf position with the maximum 

severity of 41.42 ± 4.46% was around leaf number 11. 
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3.2 Introduction 

Black leaf mold (BLM), also formerly known as Cercospora leaf mold, is caused by 

Pseudocercospora fuligena (Roldan) Deighton (= Cercospora fuligena (Roldan)) that belongs 

to the family of Mycosphaerella (Crous and Braun, 2003). The fungus is widespread in 

warmer regions and greenhouses around the world, especially in tropical and subtropical Asia 

(Hsieh and Goh, 1990; Crous and Braun, 2003). It was first reported on tomato (Solanum 

lycopersicon L.) in 1938 in the Philippines (Roldan, 1938) and in 1951 also found in Japan, in 

1955 in India, in 1974 in southern USA, in 1990 in Taiwan, in 1995 in Malaysia (Wang et al., 

1995) and recently in Brazil (Halfeld-Vieira et al., 2006). In Thailand, it was first detected in 

1979 in the Nongkham District, Amphoe Pasrijarern, Bangkok (Saranark and Chandrasrikul, 

1980). 

Observations of the disease in sub-tropical regions suggest that this disease has become a 

major problem in tomato production areas in recent years (Hartman et. al., 1991; Hartman and 

Wang, 1992; Hartman and Wang, 1993; Wang et al., 1995; Wang et al., 1996; AVRDC, 2004; 

Braun, pers. com.). In Japan, the disease is widely distributed and causes severe reductions in 

yield (Hartman et al., 1991). In Taiwan, BLM caused extensive damage on naturally infected 

hybrid tomatoes, reaching disease severities of 60% (Hartman and Wang, 1992). In 

experimental plots with four commercial cultivars, yield losses of 32 to 40% were recorded, 

caused by a reduction in fruit number and fruit weight (Hartman and Wang, 1992; Wang et 

al., 1995). Wang et al. (1994) reported that the yield of tomato grown in inoculated field plots 

without fungicidal protection amounted to 63% compared to yields from non-inoculated plots 

receiving fungicidal protection.  

Several reports noted that most tomato cultivars are highly susceptible to BLM (AVRDC, 

2004; Blazquez and Alfieri, 1973; Hartman and Wang, 1992). However, resistant and tolerant 

cultivars were identified in Florida, USA. Investigations regarding the reduction of yield 

losses with resistant cultivars were conducted in Taiwan (Blazquez and Alfieri, 1973; Jones et 

al., 1991; Hartman and Wang, 1993).  

Disease development of BLM is favoured by warm (27°C), wet weather and occurs 

throughout the year. Conditions that favour disease development include high humidity (more 

than 85%) and moisture caused by dew or rainfall (Jones et al., 1991; AVRDC, 2004). In 

Taiwan, BLM severity was high when moderate to warm day and cool night temperatures 

resulted in extended periods of leaf wetness (Wang et al., 1996). 

The lesions caused by P. fuligena develop slowly. Small lesions on young leaflets show 

indistinct discolorations without definite margins (Jones et al., 1991). As the size of lesions 
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increases, a faint halo appears at the lesion margin. The tissue inside that margin turns brown 

and collapses on both, the upper and lower side of the leaflet. Under humid conditions, heavy 

conidial production can be observed on the lower leaf surface. Nearly senescent leaves roll 

upward, but generally remain hanging on the plant with a soot-covered appearance. Spores are 

disseminated by wind-driven rain, water, or human transmission over shorter distances and by 

wind over long distances (Hsieh and Goh, 1990; Wang et al., 1995; AVRDC, 2004). No 

petiole, stem, or fruit symptoms have been observed. 

Tomato (Solanum lycopersicon L.) is one of the most important crops in Thailand. For 

processed tomato, the major growing areas are the north and northeast of Thailand, while for 

table tomato the planting areas are distributed in various parts of the country (Intanoo, pers. 

com; Pongam, pers. com.). In the central part of Thailand, tomato is exclusively grown in 

open fields so that no production during the rainy season is possible, because of the heavy 

driving rain. Producing tomatoes in protected cultivation in greenhouses could overcome this 

problem. Therefore, sustainable tomato production systems in Bangkok area were 

investigated under protected cultivation where temperature, relative humidity and heavy dew 

in greenhouses are of paramount importance for plant growth as well as for pests and diseases 

causing damages to the crop. The major objective of this work within a larger project was to 

develop an optimal strategy to control fungal diseases on tomatoes grown under protected 

cultivation in greenhouses in Bangkok, Thailand. 

The purpose of this study was specifically to investigate the spatial distribution and the 

temporal progress of BLM in greenhouses. In addition, the interaction of BLM with the soil-

borne pathogen P. aphanidermatum was studied.  
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3.3 Materials and Methods 

3.3.1 Collection and selection of isolates of Pseudocercospora fuligena

The tomato plants were not artificially inoculated but plants were exposed to natural infection 

by P. fuligena in the greenhouses on the campus of the Asian Institute of Technology (AIT) in 

Bangkok, Thailand. 

To obtain active isolates from P. fuligena, leaves were collected that had clearly delineated 

lesions of BLM. Ten leaves were randomly selected from each greenhouse sampled. Sections 

of 5 mm2 were removed from the edge of lesions, washed in pure sodiumhyperchloride for 10 

s, air dried for 4 s and then plated onto Petri dishes (100 x 15 mm) containing potato dextrose 

agar (PDA; Merck). The Petri dishes were incubated under cool white fluorescent lights at 

25°C for 12 h dark and 12 h light. Putative P. fuligena colonies were randomly selected from 

these Petri dishes and subcultured on tomato oatmeal agar (TOA) produced according to 

Hartmann et al. (1992) until pure cultures were obtained. For TOA, 50 g of shredded tomato 

leaves and 15 g of oatmeal agar were boiled separately. The tomato-leaves suspension was 

sieved through two layers of cheesecloth, mixed, and 25 g agar per litre of water was added. 

The suspension was autoclaved at 121°C for 15 min with 2 bar (Hartman and Wang, 1992). 

After positive verification as P. fuligena by the Centraalbureau voor Schimmelcultures 

(reference det 321-2003), Utrecht, Netherlands, and by Prof. Dr. Uwe Braun, Martin-Luther-

University, Halle-Wittenberg, Germany, the most vigorous isolates were chosen for further 

experiments. To maintain isolates, the fungus was transferred monthly to new Petri dishes 

containing TOA via mycelia discs. The infested Petri dishes were incubated at 25°C under 

cool white fluorescent lights for 12 h dark and 12 h light. 

3.3.2 Inoculum preparation of Pseudocercospora fuligena

TOA plates containing isolates of P. fuligena were incubated for 10 to 14 days and conidia 

were collected by flooding the plates with 50 mL of sterile distilled water (containing 0.01% 

Tween 20). Colonies were gently brushed and the suspension was filtered through two layers 

of cheesecloth to remove mycelia fragments. 

The spore density in the suspension was counted using a haemocytometer and adjusted to a 

density of 104 conidia mL-1. An atomizer was used for spray inoculation. 
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3.3.3 Effects of temperature and plant age on disease development

The following experiments were conducted under greenhouse condition. For further 

greenhouse information, see 3.3.4. 

3.3.3.1 Effects of temperature and plant age 

The experiments were conducted with the tomato variety ´King Kong 2´. They were set up as 

two-factor experiments with plants of four ages (2, 3, 4 and 6 weeks) and 3 temperature 

regimes (25, 30 and 35°C). Seeds were sequentially sown at required dates and plants were 

raised in pots in a greenhouse with an average temperature of 30°C. At the start of the 

experiment, six plants per age group were inoculated by spraying 20 mL of inoculum solution 

on the leaves inside the experimental greenhouse. Additionally, as control plants, three plants 

per age group were sprayed with sterile water. All plants were individually covered in plastic 

bags for 24 h to increase the relative humidity (nearly until saturated) in order to facilitate 

infection. Disease severity of leaves was estimated every second day for a period of 30 days 

by using a rating scale (see 3.3.5). The experiment was repeated three times. 

3.3.3.2 Effects of plant age and inoculation method   

The experiments were conducted with the tomato variety ´King Kong 2´ under greenhouse 

conditions. Plants were raised and cultivated as described above. The experiments were set up 

as two-factor experiments with plants of three ages (6, 8 and 10 weeks) and with two 

inoculation methods. Plants were inoculated either by spray inoculation as mentioned above 

or by blowing the spores from diseased plants with a pocket ventilator (commercially 

available, with 15 cm diameter, circulation time 1 min) onto the leaves. In both cases, plants 

were then individually covered in plastic bags for 24 h to facilitate infection. Each variant 

contained 10 plants. The plants were observed for 12 days after inoculation (dai); first 

occurrence and disease severity were rated every second day as described below. Disease 

severity of leaves was estimated every second day by using a rating scale (see 3.3.5) for a 

period of 12 days.  

3.3.4 Disease dynamics under greenhouse conditions

3.3.4.1 Experimental set up 

The experiments were conducted in a greenhouse, located at the campus of the Asian Institute 

of Technology (AIT) in Bangkok, Thailand. The greenhouse with the base area of 10 x 20 m 

was a closed net-house (Econet M, pore size 0.18 mm, 40 x 37 mesh (40-mesh), Ludvig 
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Swensson, Netherlands) equipped with two exhaust fans (550 m3 min-1, 1.5 hp, 960 rpm, 

Sriroz Company, India) at the front side of the net-house (Figure 3.1). 

Figure 3.1: Main entrance side of the net-house located at the campus of the Asian Institute of 
Technology (AIT) in Bangkok, Thailand.  

The fans were operated by a computerized control system that automatically switched on one 

fan when temperature inside the net-house exceeded 25°C, and the second one at a 

temperature above 30°C. The climate in the greenhouse was monitored using a data logging 

system (ITG data logger, Leibniz Universität, Hannover, Germany). During the experiments, 

the mean temperature was between 25-30ºC and relative humidity between 70-80%. The total 

planting area of the greenhouse was 160 m2. The greenhouse was lengthwise subdivided with 

a net (Econet M, pore size 0.18 mm, Ludvig Swensson, Netherlands) in two halves, each with 

3 rows and a separate entrance door. The main entrance was equipped with a sanitation sluice 

and a disinfectant tray. The second entrance was a normal single door exit at the opposite side 

of the main entrance.  

Tomato seedlings were raised in a nursery under the same conditions as in the experimental 

greenhouse. In the age required for the experiments, they were planted in plastic pots (30 x 25 

cm) filled with a commercial growing substrate composed of clay (31%), sand (30%) and silt 

(39%) and 29% of organic matter. The pots were placed on a black ground plastic cover 

(Chaisiri Nylon Canvas Factory Ltd., Bangkok, Thailand) and arranged in 6 rows with 60 pots 

each. There was no inter-pot distance in the rows. The distance between rows was 160 cm and 

from the sidewall to the outer row 55 cm (Figure 3.2). 
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Figure 3.2: Inside view of one part of the closed net-house at the AIT campus in Bangkok, Thailand. 

Plants were fertigated 7 to 9 times per day (2.5 L day-1) with a drip irrigation system 

controlled by solar light integral. The fertilizers [Hakaphos® (2.5 kg 100 L-1), COMPO 

GmbH, Austria, and Bai-plus (1.8 kg 100 L-1), Bayer Ltd., Thailand] were injected into the 

irrigation system with mechanical injectors (DI 16, Dosatron®, France). Tomato plants were 

supported by ropes, which were fixed to the ceiling structure of the greenhouse. The plants 

were cultivated in a single-stem system. Pruning and layering of plants was done weekly.  

To control leaf diseases, one part of the greenhouse was weekly sprayed with Maneb (Dithane 

M-45, 1.6 kg a. i. ha-1), beginning at the day after positioning (dap) plants in the greenhouse. 

The sprayed part will be referred to as “with control of”. 

Altogether four experiments were conducted between October 2002 and March 2004. The 

dates of each experiment and the prevailing environmental conditions are summarized in  

Table 3.1. Prior to each experiment, the greenhouse was cleaned and disinfected. 

Table 3.1: Duration of experiments under greenhouse conditions and the climatic conditions 

Exp 

No. 

Start End Duration 

(dap) 

Mean Temp 

(°C) 

Min Temp 

(°C) 

Max Temp 

(°C) 

Mean RH 

(%) 

1 21 Oct`02 13 Jan`03 84  28.3 ± 0.3*    20.9 ± 0.9 *   35.2 ± 0.1 * ** 
2 19 May`03 11 Aug`03 84 29.1 ± 0.1 25.4 ± 0.1 35.2 ± 0.3 77.28 ± 0.78
3 21 Oct`03 10 Feb`04 112 26.6 ± 0.2 21.9 ± 0.2 33.4 ± 0.2 73.54 ± 0.53
4 26 Nov`03 17 March`04 112 25.9 ± 0.2 21.0 ± 0.2 33.0 ± 0.2 72.98 ± 0.65

* values from the Deutsche Wetterdienst databank of the measuring point Bangkok, Data logger were not yet 
already in function at that time;  
** no values available 

3.3.4.2 First Experiment

This experiment was carried out with the tomato variety ´New King Kong´, an early 

flowering determinate variety. The seeds were sown on the 26th August 2002 and the 

seedlings transplanted eight weeks later. At 21 October 2002, in the 10- to 12- leaf stage, 
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plants were placed in the greenhouse. At the same day, the substrate was inoculated with the 

pathogenic isolate of P. aphanidermatum (confirmed by the Centraalbureau voor 

Schimmelcultures, Netherlands; reference det 273-2002) at 3 different densities (P0, P1 and 

P2). Inoculation was carried out by mixing 1-cm2 pieces of potato dextrose agar containing 

actively growing mycelium into the planting substrate. For the lower (P1) and higher (P2) 

inoculum level, 1 and 3 Petri dishes per pot were used, respectively. Plain agar medium was 

applied for control plants. 

Plants were arranged in a split-block design with 3 replications. Every split-block was 

subdivided by 3 levels of P. aphanidermatum (P0/P1/P2) as sub-plot factor. The sub-plot 

factor was repeated 4 times and one sub-plot factor contained 5 plants in a row. The total 

number of plants in the greenhouse was 360 (270 were used for data collection), arranged in 6 

rows (Figure 3.3).  

In one-half of the greenhouse, plants were inoculated with A. solani. Three leaves (number 5, 

6 and 7 counted from bottom to top) were scratched, the agar plates with mycelium of A. 

solani were smoothly pressed for 5 seconds onto the leaves. Thereafter, the leaves were 

moistened by spraying tap water and covered separately with plastic bags for 24 h in order to 

increase the relative humidity. Control plants were treated with sterile agar plates.  

Because the inoculation with early blight was not successful (see chapter 2), the main focus 

was on the observation of the interaction of Pythium root rot (PRR) and BLM. 

No artificial inoculation with P. fuligena was necessary due to natural infection pressure. To 

avoid the spread of black leaf mold and early blight, the side of the greenhouse without A. 

solani inoculation was weekly treated with Maneb (Dithane M-45, 1.6 kg a. i. ha-1), beginning 

with the day after positioning (dap). 

The treatments in the first experiment were: 

P0–BLM0: 1 plain Petri dish per pot, with control of P. fuligena  

P1–BLM0: 1 Petri dish with P. aphanidermatum per pot, with control of P. fuligena

P2–BLM0: 3 Petri dishes with P. aphanidermatum per pot, with control of P. fuligena

P0–BLM1: 1 plain Petri dish per pot, naturally infected with P. fuligena

P1–BLM1: 1 Petri dish with P. aphanidermatum per pot, naturally infected with  

                       P. fuligena 

P2–BLM1: 3 Petri dishes with P. aphanidermatum per pot, naturally infected with 

                       P. fuligena 
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Figure 3.3: Greenhouse plan for experiment 1 laid out in a split-block design (with 3 replications).
Control of BLM as main factor and 3 levels of P. aphanidermatum (P0/P1/P2) as sub-plot 
factor. Each rectangle represents 5 plants. 

                 Colour Code: White:  P0 = 1 plain Petri dish with agar per pot 
    Red:  P1 = 1 Petri dish with P. aphanidermatum per pot 
    Green:  P2 = 3 Petri dishes with P. aphanidermatum per pot 
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For a period of 3 months after inoculation, growing parameters of individual plants were 

recorded. The disease incidences of plants and leaves were determined and the disease 

severity was visually estimated for each individual leaf on a weekly base (see 3.3.5). Three 

destructive harvests were done in order to specify biomass production of plants, starting one 

month after beginning of the experiment on the opposite side of the ventilation.  

3.3.4.3 Second Experiment

The experimental setup of the second experiment was similar to the first one (see above), 

except that the indeterminate variety ´King Kong 2´ was used. This variety was considered to 

be more susceptible than ´New King Kong´. Seeds were sown on the 21 April 2002. After one 

month (on 19 May 2002) when plants had reached the 10- to 12- leaf stage, tomato seedlings 

were transferred to plastic pots as described above. 

The inoculation of P. aphanidermatum was carried out using a modified technique of 

Chaengchaiyasakulthai and Chamswarng (1986). A stock culture containing sand, soil, and 

maize flour (3/1/1) was infested with mycelium plugs from four days old cultures of  

P. aphanidermatum grown on PDA and incubated in darkness at 35°C. After two weeks, the 

potting substrate was mixed with 5% of the stock culture and 1.5% maize flower. This 

mixture was incubated overnight at 25°C and then used as inoculum (P1* = 0.2 g and  

P2* = 1 g of inoculum per pot). The experimental control plants received 0.2 g per pot of 

sterilized inoculum. 

Additional plants with the same treatments were designated as reserve in order to replace 

dying plants and were kept at the edge of the greenhouse 

The treatments in the second experiment were: 

P0*–BLM0: 0.2 g sterile inoculum of P. aphanidermatum per pot, with control of P. fuligena

P1*–BLM0: 0.2 g inoculum of P. aphanidermatum per pot, with control of P. fuligena  

P2*–BLM0: 1 g inoculum of P. aphanidermatum per pot, with control of P. fuligena  

P0*–BLM1: 0.2 g sterile inoculum of P. aphanidermatum per pot, naturally infected with  

P. fuligena  

P1*–BLM1: 0.2 g inoculum of P. aphanidermatum per pot, naturally infected with P. fuligena

P2*–BLM1: 1 g inoculum of P. aphanidermatum per pot, naturally infected with P. fuligena 
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At 6 dap, all plants were monitored for disease symptoms related to  

P. aphanidermatum. To enable an undisturbed monitoring of leaf disease development, dead 

plants were replaced by healthy plants of the same inoculation density. If more plants dropped 

out than pots were available for replacement, new plants from the nursery of the same age 

were transplanted to the same pots. In the control treatment, the substrate was also changed. 

This procedure was repeated at 13 dap. An overview over the replacement strategy is shown 

in Tab. 3.2. More details are given in the appendix (Figure 6.1). 

Table 3.2: Replaced plants in the different Pythium – treatments of experiment 2 at 6 and 13 dap 

Treatments 
Total number of 

plants 

Replaced plants at  

6 dap 

Replaced plants at  

13 dap 

P0*-BLM0 60 40 29 

P1*-BLM0 60 13 14 

P2*-BLM0 60 13 17 

P0*-BLM1 60 37 24 

P1*-BLM1 60 28 23 

P2*-BLM1 60 28 18 

For the treatment with P. fuligena, no artificial inoculation was done but plants were 

subjected to natural infestation with the pathogen. The control treatment was kept free of the 

disease by spraying the respective half of the greenhouse with Maneb (see above). However, 

by mistake the wrong half of the greenhouse was sprayed from 28 to 49 dap. 

Data collection including three destructive harvests were done as described for experiment 1 

(see 3.3.4.2). 

3.3.4.4 Third Experiment  

The experimental setup of the third experiment was similar to the second experiment. Again, 

the tomato variety ´King Kong 2´ was used. Seeds were sown on 20 September 2003. One 

month later (on 21 October 2003), seedlings were transplanted to the greenhouse and 

inoculated with P. aphanidermatum as described for the first experiment (3.3.4.2). In 

addition, the pots of the treatment without Pythium inoculation (P0) were supplemented with 

the biological control organism Trichoderma harzianum in order to control possible 

contamination with soil-borne pathogens. According to the method of Chamswarng (1995), 

0.2 % inoculum of T. harzianum was added to the substrate prior to transplanting.
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Again, all plants were exposed to natural infection by P. fuligena, but the half of the 

greenhouse designated for the control treatments of P. fuligena was sprayed with Maneb. 

The treatments in the third experiment were: 

P0T–BLM0: 1 plain Petri dish per pot, with control of P. fuligena,  

with T. harzianum

P1–BLM0: 1 Petri dish with P. aphanidermatum per pot, with control of P. fuligena

P2–BLM0: 3 Petri dishes with P. aphanidermatum per pot, with control of P. fuligena

P0T–BLM1: 1 plain Petri dish per pot, naturally infected with P. fuligena, 

with T. harzianum

P1–BLM1: 1 Petri dish with P. aphanidermatum per pot, naturally infected with 

   P. fuligena

P2–BLM1: 3 Petri dishes with P. aphanidermatum per pot, naturally infected with  

P. fuligena

At 2, 3, 5, 10, 13, and 15 dap, all plants were monitored for disease symptoms related to  

P. aphanidermatum. At 5 dap, pots with dead plants were replaced by spare pots with healthy 

plants of the same inoculation density. If more plants died than spare plants were available for 

replacement, no further replacement was done. A detailed plan of the replacement strategy is 

given in the appendix (Figure 6.1). 

The experiment was planned for 4 months with 4 destructive samplings. Disease observations 

were done weekly as described above. A destructive sampling of 15 plants per treatment was 

done every month, 9 plants were used for data collection. At each sampling, one fourth of the 

greenhouse plants was removed.  

At 84 dap, all leaves from the bottom up to leaf number 10 were removed.  
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3.3.4.5 Fourth Experiment  

The experiment was carried out with the tomato variety ´King Kong 2´. Seeds were sown on 

25 October 2003 and emerging plants transplanted to the greenhouse on 26 November 2003. 

Half of the pots were inoculated with T. harzianum as described for the third experiment (see 

3.3.4.4). In contrast to the other experiments, no P. aphanidermatum treatment was included. 

Infection by P. fuligena occurred naturally. The P. fuligena control was weekly sprayed with 

Maneb (Dithane M-45, 1.6 kg a. i. ha-1), beginning with the day after positioning. 

The treatments in the fourth experiment were: 

P0–BLM0:  with control of P. fuligena

P0T–BLM0:  with control of P. fuligena, inoculated with T. harzianum

P0–BLM1:  naturally infected with P. fuligena

P0T–BLM1:  naturally infected with P. fuligena, inoculated with T. harzianum

Disease incidences and disease severity of plants and leaves were recorded on a weekly base. 

At 77 dap, all leaves from the bottom up to leaf number 10 were removed. 

In the fourth experiment, no intermediate harvests were done. After 4 months of observation, 

all plants were harvested. 

3.3.5 Disease assessment 

The 3 middle plants from the 5 plants of each sub-plot were sampled for disease assessment. 

Results of the 3 plants analysed were pooled. All plants were visually rated for percent 

diseased foliage using a modified Beaumont rating scheme (Beaumont, 1954) with 0% 

indicating no visible symptoms of P. fuligena infection and 100% indicating completely 

diseased foliage. The rating scale was modified as followed: 
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no recognizable lesions :      0% 

0.5 – 2.5% diseased foliage :     1%  

2.5 – 7.5% diseased foliage :      5%  

7.5 – 15%  diseased foliage :    10%  

15 – 25%   diseased foliage :    20%  

25 – 35%   diseased foliage :    30%  

35 – 45%   diseased foliage :    40%  

45 – 62%   diseased foliage :    50%  

63 – 82%   diseased foliage :    75%  

83 – 100% diseased foliage :  100%  

3.3.6 Spatial pattern analyses

The spatial disease patterns within rows at the beginning of the epidemics were analysed 

using the join-count statistics (Madden et al., 2007) considering joins only along rows. The 

joins analysed were pairs of diseased plants as well as pairs of diseased and healthy plants. In 

both cases, the tests were carried out using a standard normal distribution test statistics. For 

instance, with a z-value greater than 1.64 for the pairs of diseased plants, the null hypothesis 

of randomness was rejected (P ≤ 0.05) and the hypothesis of clustering accepted (Madden et 

al., 2007). In the analyses, the missing data of plants due to virus infection, thrips attack or 

wilting were taken into consideration, especially in experiment 3.  

For further spatial analyses, the 3 middle plants from groups of 5 plants (sub-plot factor, 

Figure 3.3) were pooled. 

3.3.7 Temporal analyses

Comparisons of the disease progress curves were done using the Area Under Disease Progress 

Curve (AUDPC), calculated as described by Campbell and Madden (1990). The output values 

are presented as %-days.  

Data were subjected of two-way analyses of variance (ANOVA) using the PROC GLM 

procedure of the SAS software package (SAS 9.1., Users Guide, SAS Institute, Cary, NC) and 

means separated by LSD (p < 0.05). The two factors investigated were the influence of P. 

fuligena (marked with capital letters A and B) and of P. aphanidermatum (characterized with 

small letters a and b). Interactions between these factors are marked with ***. Mean 

comparisons were conducted using the Tukey’s t-test (p � 0.05). 
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3.4 Results 

3.4.1 Effects of temperature and plant age on disease development

Under laboratory condition, inoculated plants of all age groups expressed symptoms of BLM 

at 25 and 30, but not at 35°C. The disease symptoms developed faster on older than on 

younger plants, except for the 6-week-old plants at 25°C (Table 3.3). At 25°C, first lesions of 

6-week-old plants were observed at 12 dai as compared to an incubation time of 18 days for 

2-week-old plants. At 30 dai, the disease severity was highest for 4-week- (16.1 %) and  

3-week- (15.3 %) old plants. Plants with an age of 2 weeks and 6 weeks showed a disease 

severity of 9.4 %, respectively.  

Table 3.3: Effects of temperature (25 and 30°C) and plant age on disease severity (%) and first 
occurrence (dai) of BLM 

*Maximum values at the end of the experiment, 30 days after inoculation (dai).  
** Data were subjected to a two-way analysis of variance (ANOVA) and means separated by LSD (p < 0.05). Means 
followed by the same capital letters within a row refer to non-significant differences (P=0.05) between the different 
inoculation methods and the day of first occurrence. Same small letters within a column refer to non-significant differences 
(P=0.05) between the different plant ages within a temperature. 

Also at 30°C, symptoms of BLM were expressed earlier on older plants. The first symptoms 

appeared 7 days after inoculation on 6-week-old plants as compared to 17 days on plants 2 

weeks old. The 2- and 3-week-old plants showed interactions in terms of disease severity and 

increasing temperature. 

Under greenhouse conditions, both inoculation methods (spraying and blowing of conidia) 

resulted in the formation of BLM symptoms on the inoculated plants. After spray inoculation 

with a conidia suspension, first symptoms appeared 4 dai on older plants (8- and 10-week- 

old) and 6 dai on younger plants (6-week-old) (Table 3.4).  

25°C 30°C 

Plant age 
First 

occurrence 
Disease 

severity* 
Statistics 

for  
First 

occurrence 
Disease 
severity1

Statistics 
 for 

 (dai) (%) temp age (dai) (%) temp age 
2 weeks 18   9.4 ± 4.3  B** b 17   34.1 ± 11.9 A a 
3 weeks 17 15.3 ± 2.0  A a 16 23.4 ±  5.5 A ab 
4 weeks 15 16.1 ± 2.0  A a 13 21.2 ±  9.5 A ab 
6 weeks 12    9.4 ± 5.1  A b 7 12.5 ±  3.3 A b 
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Table 3.4: Effects of different inoculation methods (spraying and blowing) and plant age on disease     
                  onset (days) and disease severity (%) under greenhouse conditions 

* Maximum values at the end of the experiment, 12 days after inoculation (dai). 
** Data were subjected to a two-way analysis of variance (ANOVA) and means separated by LSD (p < 0.05). Means 
followed by the same capital letters within a row refer to non-significant differences (P=0.05) between the different 
inoculation methods and the day of first occurrence. Same small letters within a column refer to non-significant differences 
(P=0.05) between the different plant ages within a temperature. 

Following spray inoculation, the disease severity at 12 dai was 18%, 11% and 0.10% for 8-, 

10-, and 6-week-old plants, respectively. Blow inoculation resulted in a disease severity of 

13% for 8-week-old plants, 8% for the 10-week-old plants, and 6% for the 6-week-old plants. 

There were different trends depending on plant age and the inoculation method for the 6- and 

8-week-old plants, which led to significant differences. 

3.4.2 Disease dynamics under greenhouse conditions

3.4.2.1 Temporal progress 

Inside the greenhouse, BLM naturally occurred throughout the year without great differences 

between seasons. Both tested cultivars, ´New King Kong´ and ´King Kong 2´, were 

susceptible. No other foliar diseases occurred at damaging levels during the study.  

In the P0*-treatment of experiment 2, symptoms of a soil-borne disease occurred. By re-

isolation it could be proved that the only soil-borne disease occurring in all experiments was 

P. aphanidermatum.

3.4.2.1.1 Disease incidence of plants 

The observation period of the four experiments differed from 84 days in the first and second 

experiment to 112 days in the third and fourth experiment (Figure 3.4). 

spray inoculation  blow inoculation 

Plant age 
First 

occurrence 
Disease 

severity* 
Statistics  

for 
First 

occurrence 
Disease 
severity1

Statistics  
for 

 (dai) (%) method age (dai) (%) method age 
6 weeks 6   0.1 ± 0.0  A** c 6  5.6 ± 1.9 B b 
8 weeks 4 18.6 ± 2.1  A a 8 13.1 ± 1.4 B a 

10 weeks 4 11.1 ± 1.3  A b 4  7.6 ± 0.9 A b 
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Experiment 1: October 2002 – January 2003  
with control of black leaf mold
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Experiment 4: November 2003 – March 2004

with control of black leaf mold
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Figure 3.4: BLM progress curves given as incidence of plants (%) in four experiments with              

different P. aphanidermatum treatments: P0 – non-inoculated, P0T  - no Pythium with               
T. harzianum, P1 - low level and P2 - high level of Pythium. P0*, P1*- and P2*-
treatments refer to another inoculation method (see 3.3.4.3). Vertical lines show the 
times when part of the plants were removed, resulting in a reduced sample size. 
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The progress curves in all experiments were S-shaped, except in experiment 2 where the 

progress curves had a plateau between 35 and 49 dap in the sprayed part of the greenhouse.  

The first diseased plants in experiment 2 were observed already 7 dap; this might be due to a 

pre-infection problem in the nursery. In experiment 1 and 3, symptoms appeared 14 days after 

positioning. In experiment 4, it took 28 days to detect BLM symptoms. The 50% level of the 

progress curves was reached between 28 and 42 days in the first and fourth experiment, 

respectively. After 63 days nearly all plants in all treatments showed at least one lesion except 

in the third experiment, in which it took 91 days for the Pythium inoculated treatment P1 

(sprayed and non-sprayed version) to reach the 100% level.  

Neither the different Pythium-levels nor the treatment with Trichoderma changed the overall 

trend of the progress curves.  

3.4.2.1.2 Disease incidence of leaves 

Although the disease incidence of plants reached 100% after approximately 63 days, not all 

leaves of the tomato plants were diseased (Figure 3.5).  

After symptom appearance, the curves in all experiments progressed very similar up to  

56 days with an ascending trend. At 56 dap, the incidence of leaves was less than 10%, with 

exception of the first experiment, where it reached already 20%. After day 56, the progress 

curves differed because the first experiment was conducted with a determinate tomato variety. 

As no removal of lower leaves was necessary, disease incidence continued to increase 

reaching on average 60%. The other three experiments were conducted with an indeterminate 

variety. The incidence increased to a maximum level, especially in the non-controlled 

treatments, for example to 70% in experiment 4.  

The fungicide controlled plants in experiments 1 and 2 showed on average 10% less BLM 

incidence of leaves than the non-controlled plants. In the experiments 3 and 4, the differences 

were 40% compared to the non-sprayed version.  

The AUDPC values within the different Pythium-levels, even with or without Trichoderma, 

showed no general deviating trend (Table 3.5). For example, in experiment 1 the average 

AUDPC (in %-days) was roughly 1700 for the BLM0-treatments and around 1600 for the 

BLM1-treatments. The only exception was experiment 3 in the P0T-BLM0-treatment: this 

value was about 300%-days higher than in the other BLM0-treatments.
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Experiment 1: October 2002 – January 2003

with control of black leaf mold
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Experiment 4: November 2003 – March 2004
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Figure 3.5: BLM progress curves given as incidence of leaves (%) in four experiments with              

different P. aphanidermatum treatments: P0 – non-inoculated, P0T  - no Pythium with               
T. harzianum, P1 - low level and P2 - high level of Pythium. P0*, P1*- and P2*-
treatments refer to another inoculation method (see 3.3.4.3). Vertical lines show the 
times when part of the plants were removed, resulting in a reduced sample size. In 
experiments 1 to 3 the continuously monitored plants were displayed. Because of cultural 
practice, lower leaves (up to leaf no. 10) were removed in experiments 3 (at 84 dap) and 
4 (after 77 dap). 
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Table 3.5: AUPDC values of incidence of leaves in %-days of BLM in four different greenhouse    
experiments: P0– non-inoculated, P0T - no Pythium with T. harzianum, P1- low level and             
P2- high level of Pythium, BLM0 – with control of BLM and BLM1 – without control of                  
BLM. P0*, P1*- and P2* -treatments refer to another inoculation method (see 3.3.4.3)  

Experiment 1: BLM0 BLM1 

P0  1556 ± 101  a 1  1645 ± 179 a  
P1 1868 ± 145  a 1715 ± 208 a 
P2 2052 ± 151  a 1993 ± 183 a 

Statistic for BLM A A 

Experiment 2: BLM0* BLM1* 

P0*   698 ±   60 a 722 ± 117 a
P1*   720 ± 117 a           910 ±   85 a 
P2*   797 ±   68 a           766 ±   76 a 

Statistic for BLM A A 
  

Experiment 3: BLM0 BLM1 

P0T 1149 ± 100 a 1764 ± 147 a 
P1   693 ± 139 b 1182 ± 203 a 
P2     772 ±   86 ab 1396 ± 155 a 

Statistic for BLM B A 
  

Experiment 4: BLM0 BLM1 

P0 936 ± 62 a 3034 ± 49 a 
P0T 972 ± 58 a 2923 ± 77 a 

Statistic for BLM B A 

1 Data were subjected to a two-way analysis of variance (ANOVA) and means separated by LSD (p < 0.05). Means followed 
by the same letter are not significantly different (P = 0.05). The two factors investigated were the influence of  
PRR within column (characterized with small letters) and of BLM within rows (marked with capital letters).  

3.4.2.1.3 Disease severity  

Disease severity (Figure 3.6) showed the same tendency as disease incidence of leaves 
(Figure 3.5). 
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Experiment 1: October 2002 – January 2003

with control of black leaf mold
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Figure 3.6: BLM progress curves given as disease severity (%) in four experiments with different P. 
aphanidermatum treatments: P0 – non-inoculated, P0T - no Pythium with T. harzianum,
P1 - low level and P2 - high level of Pythium. P0*, P1*- and P2*-treatments refer to 
another inoculation method (see 3.3.4.3). Vertical lines show the times when part of the 
plants were removed, resulting in a reduced sample size. Because of cultural practice, 
lower leaves (up to leaf no. 10) were removed in experiments 3 (at 84 dap) and 4 (after 77 
dap). 
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The progress curves in all experiments inclined gently. In experiment 3, a descent occurred 

after 84 days due to the stripping-off of leaves. The highest severity was reached in 

experiment 1. Plants in the non-controlled part of the greenhouse reached approximately 30% 

disease severity. Plants in experiments 2 and 3 had a disease severity level below 10% in the 

non-sprayed parts of the greenhouse, while in the P0-treatment in experiment 4, BLM severity 

reached 15%. 

A significant reduction in diseased severity, displayed in AUDPC values, in the sprayed 

compared to the non-sprayed treatments was recognizable (Table 3.6), for example in 

experiment 1 in which the BLM0-treatments had an average of 300%-days and the  

BLM1-treatments showed an average of 700%-days.  

Within the different Pythium-levels of all experiments no general deviating trend was 

detected. Neither the different Pythium-levels nor the treatment with Trichoderma changed 

the overall trend of the disease severity progress curves.  

Table 3.6: AUPDC values of disease severity in %-days of BLM in four different greenhouse 
experiments: P0– non-inoculated, P0T – no Pythium with T. harzianum, P1– low level and 
P2– high level of Pythium, BLM0 – with control of BLM and BLM1 – without control of 
BLM. P0*, P1*- and P2*-treatments refer to another inoculation method (see 3.3.4.3) 

Experiment 1: BLM0 BLM1 

P0  268 ± 28 a1 776 ± 103 a 
P1 362 ± 86 a       613 ±   58 a 
P2 294 ± 51 a       747 ±   62 a 

Statistic for BLM B A 

Experiment 2: BLM0 BLM1 

P0* 42 ± 5 a 109 ± 24 a 
P1* 34 ± 5 a 108 ± 17 a 
P2* 39 ± 5 a 130 ± 16 a 

Statistic for BLM B A 

Experiment 3: BLM0 BLM1 

P0T 59 ± 6 a 106 ± 17 a 
P1 32 ± 7 b   56 ± 13 a 
P2 31 ± 7 b   82 ± 15 a 

Statistic for BLM B A 

Experiment 4 BLM0 BLM1 

P0 24 ± 2 a 293 ± 25 a 
P0T 30 ± 3 a      215 ± 23 b** 

Statistic for BLM B A 

1 Data were subjected to a two-way analysis of variance (ANOVA) and means separated by LSD (p < 0.05). Means followed 
by the same letter are not significantly different (P = 0.05). The two factors investigated were the influence of  
PRR within column (characterized with small letters) and BLM within rows (marked with capital letters).  
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3.4.2.2 Spatial distribution of BLM 

For experiments 1, 2 and 3, the greenhouse was subdivided in two parts. Rows 1 to 3 were 

treated with fungicide and rows 4 to 6 remained untreated. In experiment 4, rows 1 and 2 

were untreated and rows  3 and 4 treated with fungicides. 

In experiments 1 and 2, one third of the plants was removed and harvested for quantitative 

analyses at 28 dap, another third at 56 dap and the final third at 84 dap. In experiment 3, one 

fourth of the greenhouse was harvested at 28, 56, 84 and finally at 112 dap. The fourth 

experiment was conducted without early harvests.  

3.4.2.2.1 Primary appearance 

Plants were weekly monitored and spatial maps were diagrammed. In experiment 1, single 

diseased plants were already detected at 7 dap. In experiments 2 and 3, the disease started at 

14 dap, in experiment 4 at 28 dap. The spatial disease patterns in the experiments were 

similar, so that only the results of experiment 4 are presented. In Figure 3.7, the disease 

patterns, given by the binary status of the disease per plant (healthy or diseased), at 28, 35, 42, 

49, 56 and 63 dap were depicted. The progress of BLM is reflected by the increasing number 

of dark points representing diseased plants. Spatial disease maps of experiments 1, 2 and 3 are 

given in the appendix (Figures 6.2 - 6.4). 

The spatial disease patterns within rows at the beginning of the epidemics were analysed with 

the join-count statistics (Madden et al., 2007). In experiment 1, the standard normal test 

statistics for joins of diseased plants at the first 3 dates indicated an aggregated pattern of 

diseased plants, while the joins of healthy and diseased plants still indicated randomness. At 

28 dap, the statistics for the latter joins also supported the aggregation of the disease. In 

experiment 2, all tests showed that the diseased plants were randomly distributed within the 

rows. The results of the tests calculated for the disease patterns in experiment 3 were similar 

to those of experiment 1 indicating an aggregation. However, as the disease incidences of 

plants at the first two dates in experiments 1 and 3 were rather low (2 and 7 % and 2 and 8 %, 

respectively), the test results based on the normal statistics should be interpreted with care. In 

experiment 4, like in experiment 2, all tests supported the hypothesis of a random distribution 

of diseased plants. Thus in two experiments the disease occurred in a random pattern, while in 

the two others an aggregation of diseased plants was indicated. 
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Figure 3.7: Spatial maps of BLM diseased plants in the greenhouse at 6 assessment dates (28, 35, 42,
49, 56 and 63 dap) in experiment 4 conducted from November 2003 till March 2004 (P0T

– inoculated with T. harzianum, P0– non-inoculated, BLM0 – with control of BLM and 
BLM1 – without control of BLM). Black coloured dots refer to diseased and white dots to 
symptomless plants. 
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3.4.2.2.2 Spatial analysis of disease incidence of leaves 

The temporal change of the spatial pattern will be analysed starting with the disease incidence 

of leaves, calculated for groups of three plants. 

The second experiment is an example for a continuous progression of disease incidence of 

leaves measured in %, (Figure 3.8). Further experimental results are presented in the appendix 

(Figures 6.5 and 6.6). 

7 dap    14 dap    21 dap 

28 dap    35 dap    42 dap 
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49 dap    56 dap    63 dap 

70 dap    77 dap    84 dap 

Figure 3.8: BLM incidence of leaves in the greenhouse at 12 assessment dates (7 till 84 dap) in
experiment 2. Incidence was determined for pools of three plants. Notice the change of 
the disease scale at 49 dap (from 40 to 100%). 

The epidemic started randomly at 7 dap. In the course of the experiment from 14 up to 28 dap, 

a potential aggregation of diseased leaves close to the wall of the main entrance door (row 

no.1, pool no. 1) and the wall of the side-door (row no. 6, pool no. 12) was detectable.  

At the end of the experiment, a significant difference between rows 1 to 3 (sprayed) and 4 to 6 

(non-sprayed) existed. The disease incidence of leaves in the non-sprayed treatments was  

64 ± 2.81%, and in the sprayed treatments 55 ± 2.97%, but no clear spatial trend was 

detectable. 

To compare experiments, the disease situations at 28 dap are displayed in Figure 3.9, for 

experiments 1, 2 and 3. In experiment 4, the epidemic started later (Figure 3.10). 
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              Experiment 1   Experiment 2   Experiment 3 

Figure 3.9: BLM incidence of leaves in the greenhouse at 28 dap in experiments 1, 2 and 3. Incidence
is calculated as the average of three plants. 

The disease levels in the three experiments differed: the first experiment showed a maximum 

percentage of diseased leaves of 22% (mean value 3.94 ± 0.58%), the second of 11% (mean 

value 3.79 ± 0.36%) and the third of 6.25% (mean value 1.12 ± 0.21%). The spatial 

distribution of the disease in experiment 1 was random with a non-significant difference 

between the sprayed (row 1 to 3) and the non-sprayed (row 4 to 6) treatments. The 

distribution of experiment 2 was also random. In contrast, the pattern of the third experiment 

revealed a tendency of a higher number of diseased leaves at the edge rows close to the 

sidewalls, but no differences with respect to the sprayed and non-sprayed treatments in the 

greenhouse existed at 28 dap. 

In experiment 4 (Figure 3.10) at 42 dap, the edge rows seemed to have more disease than the 

inner ones. At 56 dap, the distribution was more regular. Within experiment 4, there was a 

clear difference between the sprayed and non-sprayed part of the greenhouse. Rows 3 and 4, 

naturally infected without protection, showed a maximum incidence of diseased leaves of 

nearly 81.63% (mean value 74.44 ± 1.05%), while the sprayed rows no. 1 and 2 reached only 

37.67% (mean value 29.99 ± 1.44%). 
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42 dap    56 dap    70 dap 

84 dap    98 dap    112 dap 

Figure 3.10: BLM incidence of leaves in the greenhouse at 6 assessment dates (42, 56, 70, 84, 98, and
112 dap), in experiment 4 conducted from November 2003 until March 2004. Incidence 
is calculated as the average of three plants. 
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3.4.2.2.3 Spatial analysis of disease severity 

In Figure 3.11, the disease distribution over time is displayed for experiment 1. At 14 dap, the 

first disease symptoms appeared with a mean disease severity of less than 0.03 ± 0.01% 

(maximum value 0.58%). This first appearance of diseased leaves started around pool no. 1 to 

5 in rows 5 and 6. At 28 dap, the disease severity increased to a maximum of 3.4% (mean 

value 0.61 ± 0.09%). Again, a slight gradient to the side-door was observable. At 42 dap, a 

clear difference between sprayed and non-sprayed treatments was noticeable. At 56 dap, there 

was a peak with 56.54% (mean value 6.06 ± 1.27%) at row no. 6, pool no. 10. 

       14 dap            28 dap      42 dap       56 dap 

Figure 3.11: BLM severity of plants in the greenhouse at four assessment dates (14, 28, 42 and 56
dap), in experiment 1. Severity is calculated as the average of three plants. Notice the 
change of the disease scale at 42 dap from 5 to 60%. 

For comparison, the disease severities at 28 dap are displayed for experiments 1, 2 and 3 in 

Figure 3.12. The first experiment had an average disease severity of 0.61 ± 0.09%, the second 

of 0.35 ± 0.06% and the third of 0.015 ± 0.003%. 

             Experiment 1     Experiment 2    Experiment 3  

Figure 3.12:  BLM severity of plants in the greenhouse at 28 dap, in experiments 1, 2 and 3. Severity 
is calculated as the average of three plants. 
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No differences between the sprayed and the non-sprayed parts were found at 28 dap and no 

disease gradient was observed. The spatial distribution of the first experiment showed a trend 

of a higher incidence of diseased plants towards the side door (area around row no. 6, pool no. 

12). The second experiment had two peaks in the non-sprayed side of the greenhouse, one at 

row no.5, pool no. 6 and the other at row no. 6, pool no. 12. In the third experiment, BLM 

severity was extremely low at 28 dap. The spatial distribution of the BLM epidemic of 

experiment 4 is shown in Figure 3.13. Rows 1 and 2 were sprayed and rows 3 and 4 remained 

unsprayed. The epidemic started later than in the other experiments, therefore the first graph 

depicts the spatial distribution at 42 dap. The disease pattern is random. 

42 dap    56 dap    70 dap 

84 dap    98 dap    112 dap 

Figure 3.13:  BLM severity of plants in the greenhouse at 6 assessment dates (42, 56, 70, 84, 98 and
112 dap), in experiment 4, conducted from November 2003 until March 2004. Incidence 
is calculated as the average of three plants. Notice the change of the disease scale at 84 
dap from 5 to 25%. 
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A clear difference in disease severity was found between the rows no. 3 and 4 (no fungicide 

application) and rows 1 and 2 (fungicide application). The fungicide treatment reduced the 

maximum disease severity from 20.80% (mean value 14.07 ± 1.32%) to 3.47% (mean value 

1.67 ± 0.25%). 

3.4.2.3 Vertical distribution of BLM severity

Whereas the previous investigations of BLM dealt with the horizontal distribution from plant 

to plant, the following analyses focus on the vertical distribution within the plants as given by 

the disease severity of leaves.  

As representatives of the four experiments, the results of experiments 1 and 4 are shown 

(Figures 3.14 and 3.15). Experiments 2 and 3 revealed the same tendency as experiment 4 and 

therefore their vertical disease distributions are displayed in the appendix (Figures 6.7 and 

6.8). 

In experiment 1 (Figure 3.14), we used a determinate variety with an average maximum of  

26 (± 1.11) leaves. In all treatments, the height occurrence of BLM ended in a rapid decline 

around leaf no. 16. On the top leaves (the last third, no. 18 to 26), no visual symptoms of 

BLM were detectable. At the symptomatic part of the plants, the disease continuously raised 

over time with roughly 5% per week (Figure 3.14).  

The maximum values of disease severity in the sprayed treatments were: 

40.00 ±   4.39% at leaf no. 11 for P0-BLM0;  

36.60 ±   6.04% at leaf no. 7 for P1-BLM0; 

35.00 ±   6.88% at leaf no. 12 for P2-BLM0. 

The maximum values in the non-sprayed treatments were:  

90.62 ±   4.57% at leaf no. 13 for P0-BLM1; 

85.00 ± 10.00% at leaf no. 15 for P1-BLM1; 

75.90 ± 11.13% at leaf no. 15 for P2-BLM1. 

An important observation of the experiments was that the disease severity was significantly 

lower on the older leaves (leaf no. 1 to 5) as compared to the middle leaves (no. 10 to 15). For 

example, in the treatment P1-BLM1, the disease severity was around 40% for the lower as 

compared to 60% for the upper leaves. Therefore, all single curves of experiment 1 showed a 

negative skewed trend, meaning that the upper leaves of the plant had a higher disease 

severity than the lower ones at the same time. 
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Figure 3.14: Vertical distribution of BLM severity (%) on leaves of tomato plants of the variety ‘New 
King Kong’ at different dap in experiment 1. Treatments: BLM0 – with control of BLM, 
and BLM1 – without control of BLM; P0 - non-inoculated, P1 - low level and P2 - high 
level of P. aphanidermatum.  
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While the vertical distribution for BLM in experiment 1 was more concentrated on leaves in 

the middle part of the plants, the distribution in experiment 4 showed a positive skewness 

(Figure 3.15). There was a higher disease level on the base than on the top of the plants, but 

because of the necessary pruning work of the indeterminate variety, the lower leaves were 

removed right before 84 dap. At 77 dap, the highest percentage was 11.4 ± 3.55% at leaf no. 5 

for the P0-BLM1-treatment. For the P0T-BLM1 the highest severity was by 5.55 ± 2.27% at  

leaf no. 4. 

The vertical distribution was limited in height because young leaves on the top of the plants 

remained free of disease symptoms. Roughly one third of the leaves stayed disease free. On 

average, leaf no. 43 was the highest leaf insertion showing symptoms at 112 dap (Table 3.7). 

The total number of leaves per plant was 50.55 (± 0.7) in experiment 4. The maximum values 

of BLM severity assessed per leaf were less than 10% in the BLM0-treatments and less than 

45% in the BLM1-treatments.  

Taking a closer look on the leaf positions at a specific percentage of disease severity, for 

instance 5%, the vertical spread of the disease can be characterised. For example in 

experiment 4, the 5% mark was reached in the P0-BLM1-treatment at 70 dap at leaf no. 5. 

One week later, at 77 dap, the 5% level was at leaf no. 9. Another week later, at 84 dap, it 

climbed up to leaf no. 20. At 91 dap, 5% reached leaf no. 26; and again 7 days later (at 98 

dap), leaf no. 30 showed 5% disease severity. Finally, at 112 dap, the 5% level reached leaf 

no. 34. For the P0T-BLM1-treatment we got the following results: the 5% mark was observed 

for the first time at 77 dap at leaf no. 7. One week later, at 84 dap, the mark jumped to leaf no. 

17. At 91 dap, the mark reached leaf no. 23, at 98 dap leaf no. 27. In the next week, at 105 

dap, the mark arrived at leaf no. 31 and finally, at 112 dap, at leaf no. 35. 

As mentioned before, the vertical trends in the BLM1-treatments of experiments 2 and 3 were 

similar to experiment 4. In experiment 2, the average total number of leaves was 42 (± 0.32) 

with a maximum disease severity of 24.5 (± 11.72%) at leaf no. 11 in the  

P2–BLM1-treatment. In experiment 3, the average total no. of leaves was 47 (± 0.6) with a 

disease severity maximum of 26.66 (± 4.4%) at leaf no. 11 in the P2–BLM1-treatment. 

Further details are given in the appendix (Tables 6.1 and 6.2). 
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Figure 3.15: Vertical distribution of BLM severity (%) on leaves of tomato plants of the tomato 
variety ‘King Kong 2’ at different dap in experiment 4. Treatments: BLM0 – with 
control of BLM, BLM1 – without control of BLM, and different Trichoderma treatments 
(P0 - non-inoculated, P0T - inoculated with T. harzianum). Because of cultural practice, 
lower leaves (up to leaf no. 10) were removed after 77 dap. 

Table 3.7: Characteristics of leaves in the four treatments of experiment 4 

Treatment Total no. of leaves  Highest leaf insertion 

with symptoms 

(position bottom to top)

max disease 

severity per leaf 

(%, at 112 dap)

Leaf position of max. 

severity 

P0–BLM0 51.20 (± 0.48) 40  6.26 (± 1.40) 30 

P0T–BLM0 48.33 (± 2.37) 43  4.93 (± 1.74) 26 

P0–BLM1 51.46 (± 0.88) 44 41.42 (± 4.64) 11 

P0T–BLM1 51.20 (± 1.11) 45 35.41 (± 4.82) 11 
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3.5 Discussion

3.5.1 Inoculum source of BLM

Black leaf mold of tomato, first reported in Asia more than 50 years ago, has become a 

serious threat for tomato production in recent years (Wang et al., 1994; Halfeld-Vieira et al., 

2006), not only under field conditions but also in greenhouses. 

In the newly established greenhouses at the AIT campus (in 2001), we observed a natural 

appearance of BLM in the experiments, starting in 2002. The spatial and temporal 

distributions of diseased plants were studied.  

Our expectation was that spatial pattern analyses should give hints about possible ways used 

by the pathogen to enter the greenhouse, for instance expressed in a higher disease 

concentration close to the door or at the sidewalls. Join-count analyses, a more general 

method than the ordinary runs test (Madden et al., 2007), was applied to determine the pattern 

of diseased plants within the rows. However, under the conditions in the greenhouses of our 

study, the patterns for primary appearance of symptomatic plants differed among the 

experiments. In experiments 1 and 3, the spatial distribution of diseased plants within rows 

was aggregated, while in experiments 2 and 4 a random pattern was observed. In experiment 

2, initially many experimental plants were removed and replaced because of infection by  

P. aphanidermatum due to the contaminated substrate. These replacements may have 

interfered with the natural primary occurrence of BLM. On the other hand, no intervention 

took place in experiment 4, but the analysis also showed a random disease occurrence. 

Concerning the disease distribution across rows, the analyses of all experiments did not show 

a gradient from the side rows towards the middle rows of the greenhouse. 

Regarding the potential contamination of the substrate with P. aphanidermatum, it was 

observed that in experiment 2, a high amount of control plants (over 50% in P0*) died shortly 

after transplanting. The P. aphanidermatum inoculated treatments P1* and P2* were less 

affected. Compared to the other experiments, which were conducted under the same hygienic 

conditions, this was an exception. By investigating the possible way of contamination, we 

found out that a charge of the planting substrate was not sterilised in a proper way (Achilles, 

pers. com.). To avoid the risk with contaminated substrate, Trichoderma harzianum was 

mixed under the substrate in the following experiments 3 and 4. Consequently, only 2 control 

plants dropped out due to P. aphanidermatum in experiment 3. 

After the spatial analysis, the source of the primary inoculum of P. fuligena was still not clear. 

Seeds as possible means for BLM transmission have not been mentioned in literature 

(AVRDC 2004; Hartman et al., 1991; Hartman and Wang, 1993). As possible sources of the 
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primary infection, spores drifted in the wind were feasible. From literature it is known that P. 

fuligena spores are disseminated over long distances by wind and over shorter distances by 

wind-driven rain or water (Hsieh and Goh, 1990; Wang et al., 1995; AVRDC, 2004). The 

research greenhouse had sidewalls made out of net (Econet M, pore size 0.18 mm, 40 x 37 

mesh (40-mesh), Ludvig Swensson, Netherlands). This mesh size was big enough to allow 

conidia of size 15-60 x 3-5 µm (Hsieh and Goh, 1990) entering from outside to inside. The 

spatial pattern analyses of disease incidence of leaves or disease severity gave a hint that a 

possible entrance for the pathogen was the backside of the greenhouse, to which the fans of 

another greenhouse were directed. Another option for entrance might be the second entrance 

door at the back of the greenhouse. Compared to the main entrance door, which was a double 

sliding gate with a shoe disinfection device, the second door, at the opposite site of the 

greenhouse geared to the other greenhouses of the research site, was a single door but also 

equipped with a disinfection device. Therefore, it might be possible that the pathogen could 

penetrate easier at the second door, but as mentioned before, the spatial patterns in the 

experiments didn’t show a gradient from the side rows towards the middle rows or from the 

back side to the front side and from the second door towards the middle. 

As it is well known that wind transmission of BLM even over long distances is possible, the 

missing point in literature is a clear definition of long and short distances. If 1 km is already a 

long distance, then the Thalad Thai market could be a possible source for inoculum. This 

largest fruits and vegetables wholesale market in Thailand was one kilometre away from the 

greenhouse. At this place, fruits and vegetables were traded indoors as well as outdoors, so 

wind might be a possible carrier. A closer source might be a compost heap at the AIT campus 

around 200 m away from the research facilities. Plant debris was stored there from an 

experimental farm. Even if no visible symptoms of BLM were found, it is known that BLM is 

able to survive for a long time on debris (Wang et al., 1996). 

Another explanation for the random distribution of primary appearance could be the 

introduction by people entering the greenhouse, e.g. workers, research assistants or visitors. 

Hsieh & Goh (1990), Wang et al. (1995) and AVRDC (2004) already confirmed this 

possibility. People visiting the market or their home gardens and afterwards joining the AIT, 

especially the greenhouse area, were possible carriers for BLM. Fruits and vegetables, which 

were purchased at the market, were possible carriers as well. Additionally, a short thought 

should be given to insects as possible carriers. It is known from literature that thrips are 

involved in the spread of fungal diseases (Fermaud et al., 1994; Ávila-Quezada et al., 2002; 

Dodd et al., 2004): Even if nothing like this has been described for BLM, it may be a 

possibility.  
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Another possible source of inoculum could be alternative host plants. Wang et al. (1995) 

identified the following alternative hosts: Black nightshade (Solanum nigrum), different 

species of eggplants (Solanum indicum, S. melongena, S. macrocarpon), different pepper 

species (Capsicum annuum, C. chinense, C. baccatum, C. frutescens) and different tomato 

species (for example: L. chilense, L. hirsutum, L. pannellii, L. pimpinellifolium). However, 

none of these plants occurred in the close (100 m) neighbourhood of the greenhouses. 

3.5.2 Disease progression

In experiment 1, the determinate variety ´New King Kong´ was used, in experiments 2 to 4 

the indeterminate variety ´King Kong 2´. Experiment 1, with a disease severity of nearly 30%, 

showed a higher level of BLM than the three following experiments. It is not yet figured out 

what kind of predisposition is necessary for a higher susceptibility of BLM. Wang et al. 

(1995) screened different accessions trying to find possible resistant cultivars. In their 

experiments, L. hirsutum was the most resistant one. A possible alternative to the current 

BLM management practice of intensive chemical treatment might be rearing resistant lines of 

breeding into commercial varieties (Wang et al., 1994).  

The disease progress curves were typically S-shaped in all experiments. The only exception 

was experiment 2, in which we observed a plateau for a period of 23 days in the  

BLM0-treatment. In the BLM1-treatment, the plateau was also visible but not as much 

pronounced as in the BLM0-treatment. Investigating this delay it turned out that at the 

beginning of experiment 2, the greenhouse partitions were mixed up, so that the wrong side 

was treated with fungicide once a week over a period for 4 weeks. 

The disease symptoms of BLM were observable latest 14 dap in our greenhouse experiments 

and increased steeply. Within 4 weeks, nearly 100% of the plants showed symptoms. In 

experiments 1 and 2, the first symptoms appeared 7 dap. In fact, this was quite too early for 

symptoms caused by naturally infection in the greenhouse. The incubation period observed in 

pre-experiments was longer and it was confirmed by literature that symptoms do not develop 

before 12 to 18 days after inoculation. Hartman and Wang (1992) mentioned 10 to 14 days 

after inoculation. Prior to them, Magda and Quebral (1970) also reported these results with 

experiments in moist chambers. The earliest time to observe visible lesions was six days after 

inoculation (Wang et al., 1996). Another exception was the 30°C pre-experiment, where it 

took 7 days to observe symptoms. The reason for the early appearance of BLM in the 

greenhouse after transplanting might be a hygienic problem in the nursery, where the 

seedlings already got pre-infected. The disease progressed slowly on young inoculated (or 

naturally infested) plants but increased rapidly as plants aged. 
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The technique of analysing plant diseases first by evaluation of simple disease progress 

curves is the first step for studying plant disease progression (Pennypacker et al., 1980). Our 

primary investigations led us to the following outcome: Even though a clear source for BLM 

was not detectable, the BLM incidence of plants increased very fast. After two months (> 56 

dap) all plants inside the greenhouse were diseased. In contrast to disease incidence of plants, 

incidence of leaves never reached 100%. The vertical distribution showed that nearly one 

third of the leaves (from the top) stayed symptom free. This might be because new leaves 

continuously developed which stayed symptomless until they got old. In experiment 1, the 

disease incidence of leaves reached nearly 75%, in experiments 2 to 4 approximately 60%. By 

observation of the leaf position of the vertical distribution, it turned out, that single leaves 

were highly diseased. In experiment 4 in the BLM1-treatment, leaves reached approximately 

40% disease severity, in experiment 2 almost 90%. The disease severities of single leaves 

were high, but the progress curves, given as disease severity of plants, stayed low. Disease 

severities were highest in experiment 1 with 30% in the BLM1-treatment and lowest in 

experiment 3. Hartman and Wang (1992) reported that diseased leaf area ranged from 10 up 

to 60% in natural field conditions.  

In their first report, Hartman et al. (1991) observed that without fungicide control 54 to 86% 

of leaf area was diseased on several varieties and advanced breeding lines in replicated yield 

trials at AVRDC. Compared to our results with disease severities below 20% or even less than 

10% of the variety ´King Kong´, the results of Hartman and Wang seem to be very high. This 

might be because Hartman and Wang used mycelium parts for inoculation (Hartman and 

Wang, 1993; Wang et al. 1995), whereas we used naturally infestation. Unfortunately, little 

information is available on the range of virulence among different isolates of P. fuligena. It is 

not known whether different races of the pathogen or pathotypes exist.  

3.5.3 Laboratory experiments

The inoculum material needed was taken from tomato plants inside the greenhouses of the 

AIT. For lab experiments, we used naturally diseased leaves. Conidia can survive up to 6 

months on infected tomato leaves stored in dry condition (Yamada, 1951). Studies showed 

that conidia can survive from one crop to the next without an intermediate host, and that crop 

debris can serve as an important source of primary inoculum (Wang et al., 1996). Unlike 

many other fungal spores, conidia of P. fuligena do not need free water for germination. P. 

fuligena conidia can germinate at 91% RH, and at 96.5 to 100% RH they germinate as well or 

even better than in free water (Hartman et al., 1991), but do not survive for 40 days on leaves 

maintained in moist conditions (Yamada, 1951). It might be free moisture that actually limits 
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black leaf mold. In earlier studies (Hartman and Wang, 1992), conidia survived and 

germinated well below 100% RH.  

Our laboratory- and pre-experiments showed a similar trend compared to Hartman and Wang 

(1992) who indicated a high susceptibility of different tomato lines, an incubation time of 

approximately 14 days, a required high relative humidity, a temperature of approximately 

30°C and the possibility of disease occurrence in the greenhouse. Wang et al. (1996) 

described that in in-vitro studies with the pathogen, 26 - 28°C was the optimum temperature 

for growth. No growth occurred at 34°C or above (Hartman et al., 1991). The optimum 

temperature for conidial germination was at 26°C and the maximum was 36°C (Yamada, 

1951). In our laboratory experiments, we had chosen 25, 30 and 35°C, but at the highest 

temperature, no symptoms were expressed. 

3.5.4 Disease management

Two different ways are possible to control BLM, either to choose a resistant variety or to 

apply fungicides. Hartman and Wang (1993) focussed their work on finding resistant cultivars 

to be used as commercial varieties, and noted that it may be feasible to incorporate resistance 

into commercial varieties. This way might be especially important to growers in developing 

countries, who cannot afford the cost of fungicide applications. Until now, the way of 

chemical treatment totally relies on protective fungicide applications (Hartman and Wang, 

1993; Wanwilei, pers. com.). In our studies, we tried to keep one side of the greenhouse 

disease free by spraying. Although all greenhouses at the research site were treated with 

Maneb, the pressure of infection was high.  

However, the disease incidence of treated and non-treated plants was very similar. For disease 

incidence of leaves, a significant difference between BLM0 as sprayed and BLM1 as non-

sprayed treatment was detectable at the end of the experiments, in general between 10 and 

20%. The difference between the treatments in disease severity was also significantly 

reduced.  

Diseased severity, displayed in AUDPC values, in the sprayed compared to the non-sprayed 

treatments was recognizable, for example in experiment 1 in which the BLM0-treatments had 

an average of 300%-days and the BLM1-treatments showed an average of 700%-days. 

Mersha (2008) found in his work an average disease severity range from 4 to 41% at the end 

of his experiments, after 106 days, with the variety FMTT260. In August to September, he 

found a disease severity up to 81%. However, plantings from November to January did not 

lead to severe epidemics. 
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3.5.5 Environment

Wang et al. (1996) mentioned a severe disease appearance during the hot, rainy season on 

tomato plants grown under rain shelter at AVRDC in Taiwan. They showed that BLM was 

most prevalent during the fall-winter dry season (September to March) in southern Taiwan 

when prolonged periods of high relative humidity were common that result in dew formation 

at night. 

In our studies, we explored that the disease is prevalent throughout the year, not depending on 

rainfall or seasonal temperature; Hartman et al. (1991) and Mersha (2008) did the same 

observations. Periods of prolonged leaf wetness play a key role in BLM development. Long 

periods of high RH have been shown to be instrumental to the rapid disease build-up of two 

related diseases – Cercospora leaf spot of peanuts and Cercospora blight of celery (Hsieh and 

Goh, 1990; Berger, 1977; Wang et al., 1996). Except from the studies of Mersha (2008), no 

comparable research on Pseudocercospora spp. in the tropics has been carried out under 

similar environmental conditions. One exception is Pseudocercospora musae, which is a 

serious disease, able to cause 100% yield loss on susceptible banana varieties (Cordeiro and 

Matos, 2003). 
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4 Investigations of the joint effects of black leaf mold and Pythium root rot    

    on tomato growth and yield parameters 

4.1 Abstract 

The complex of two tomato (Solanum lycopersicon L.) diseases composed of the aerial 

disease black leaf mold (BLM), caused by Pseudocercospora fuligena, and the soil-borne 

disease Pythium root rot (PRR), caused by Pythium aphanidermatum, was investigated under 

greenhouse conditions in Thailand in a closed net greenhouse (Econet M, pore size 0.18 mm, 

40 x 37 mesh (40-mesh), Ludvig Swensson, Netherlands) with the base area of 10 x 20 m. 

Four experiments were conducted in different seasons and with two different tomato varieties 

(´New King Kong´ and ´King Kong 2´). In addition, Trichoderma harzianum was used as a 

biological antagonist in two experiments. P. aphanidermatum was inoculated in 2 different 

densities and the primary occurrence of PRR was monitored up to 14 days after positioning 

plants in the greenhouse. To keep the disease level in one part of the greenhouse low, Maneb 

(Dithane M-45, 1.6 kg a. i. ha-1) was applied weekly. 

Tests of substrate samples with the potato-baiting-method confirmed successful inoculations 

of in all experiments. No other pathogen than P. aphanidermatum was detected. Due to PRR, 

30% to up to 64% of plants dropped out and were substituted in order to allow the progression 

of BLM that naturally occurred inside the greenhouse throughout the year without great 

differences among seasons. Neither the different Pythium-levels nor the treatment with 

Trichoderma changed the overall trend of the disease severity progress curves. 

The results of tomato growth and yield parameters are in general very heterogeneous although 

there was an overall tendency of a negative interaction between the two diseases. In 3 of 4 

plant growth parameters analysed, the joint losses due to the two diseases were smaller than 

the sum of losses of the individual diseases. For example in the first experiment, plants in 

treatment P0-BLM0 (i.e. without inoculation of P. aphanidermatum, but sprayed against 

BLM) had a fresh weight of 1030 ± 70 g, PRR in the P2-BLM0-treatment (i.e. inoculated 

with high level of P. aphanidermatum, but fungicide sprayed against BLM) reduced the 

weight by roughly 340 g compared to the control plants. The plants of the P0-BLM1-

treatment (i.e. without inoculation of P. aphanidermatum, and without fungicide use) in 

which only BLM developed symptoms, had a value of 660 ± 73 g, thus a difference of 370 g 

compared to the control plants. Thus the plants of the P2-BLM1 treatment should have a 

value of approximately 320 g, but the measured value was 545 ± 73 g. 
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4.2 Introduction 

The occurrence of two or more pathogens in simultaneous action on the same host is frequent, 

especially on tropical crops (Waller and Bridge, 1984; Savary and Zadoks, 1991). Most 

articles in literature, however, were focused on “one to one” host – pathogen interaction, but 

pathogen – pathogen interactions or multiple attacks were rarely investigated. Examples of 

disease complex studies include those of Powell (1971a), Latch and Potter (1977), Pieczarka 

and Zitter (1981), Johnson et al. (1987), Madden et al. (1987), Kranz and Jörg (1989), Weber 

et al. (1994), and Ngugi et al. (2001). In general, the interaction of pathogens complicates the 

control of diseases and the partitioning of the primary causes of losses. Usually the effects of 

a disease complex on yield are estimated by assuming that each disease acts independently. 

However, the simultaneous occurrence of diseases can lead to combined effects on crop yield 

and on the population dynamics of the pathogens. Depending on the simultaneous damage 

that pathogens cause to the host, the interaction between pathogens can be classified. If the 

damage caused by two concurrently infecting pathogens is similar to the sum of damages 

caused by the pathogens attacking the host separately, the effect is additive; if the damage is 

less, there is a negative interaction; if it is greater, a positive interaction (Waller and Bridge, 

1984; Bassanezi et al., 1998).  

The interaction may be a synergistic interaction in terms of combined effects of the 

pathogens, or an antagonistic interaction in terms of competitive exclusion (Zacheo, 1993). 

Synergistic interaction is important because the economic damage threshold for each disease 

can be significantly lowered by the presence of the interacting disease. Conversely, 

antagonistic interaction can increase the economic damage threshold of a disease in the 

presence of another (Johnson, 1990). Further on, the definitions of Odum (1953) can be 

helpful to interpret interaction concerning dynamics of pathogens. He suggested the following 

classifications for associations between organisms: neutralism, competition, mutualism, 

protocooperation, commensalism, amensalism, parasitism and predation. Powell (1971b) 

considered three theoretical mechanisms of bio-predisposition involving interacting 

pathogens: (1) the primary pathogen may make the host more susceptible to the secondary 

pathogen; (2) the primary pathogen may enhance the activity of the secondary pathogen; and 

(3) the secondary pathogen may even enhance the activity of the primary pathogen. Infection 

rates, maximum disease levels, and the shape of the progress curves may be changed by 

interacting diseases (Hau, 2001). 

All these theories are important for both, the epidemiological perspective and for the 

standpoint of designing appropriate control strategies. Based on this, practicable, sustainable, 



Introduction  Joint effects (4)

81

integrated disease and crop management strategies could be developed. Several scientists 

(Kranz, 2003; Strange, 2003; Cooke, 2006; Madden et al., 2007) pointed out that the 

measurement of plant disease and its effects on crop yield, quality and value are crucial for 

control priorities. Interactions between diseases caused by aerial and soil-borne pathogens 

may have significant implications for assessing crop losses and selecting appropriate control 

strategies (Paula Junior, 2002). 

The subject of the following investigations was the complex of two tomato (Solanum 

lycopersicon L.) diseases composed of the aerial disease black leaf mold (BLM), caused by 

Pseudocercospora fuligena, and the soil-borne disease Pythium root rot (PRR), caused by 

Pythium aphanidermatum.

Tomato is after potato the most widely grown solanaceous vegetable (Rubatzky and 

Yamaguchi, 1997) and one of the most important crops in Thailand. For processed tomato, 

the major growing area is the north and northeast of Thailand. For table tomato, the planting 

area is distributed in various parts of the country (Intanoo, pers. com.; Pongam, pers. com.).  

In 2001, first investigations on a sustainable tomato production under greenhouse conditions 

were done at the Asian Institute of Technology (AIT), Bangkok, Thailand. Several pests of 

tomatoes on fields outside the Bangkok area were observed, for example bacterial wilt, virus 

diseases, leaf mold. For soil-borne pathogens, wilts caused by bacterial wilt, Southern blight, 

Fusarium wilt and damping off including Rhizoctonia and Pythium ssp. were most significant. 

In the fields, foliar diseases such as early blight, late blight and powdery mildew were 

limiting factors of tomato production in Thailand (Pongam, pers. com.). As main leaf disease 

inside the greenhouse, black leaf mold (BLM), also formerly known as Cercospora leaf mold, 

was detected. BLM is caused by Pseudocercospora fuligena (Roldan) Deighton (= 

Cercospora fuligena (Roldan)) that belongs to the family of Mycosphaerella (Crous and 

Braun, 2003). The fungus is widespread in warmer regions or greenhouses around the world, 

especially in tropical and subtropical Asia (Hsieh and Goh, 1990; Crous and Braun, 2003). It 

was first reported on tomato in 1938 in the Philippines (Roldan, 1938), in 1951 in Japan, in 

1955 in India, in 1974 in southern USA, in 1990 in Taiwan, in 1995 in Malaysia (Wang et al., 

1995) and recently in Brazil (Halfeld-Vieira et al., 2006). In Thailand, it was first detected in 

1979 in the Nongkham District, Amphoe Pasrijarern, Bangkok (Saranark and Chandrasrikul, 

1980). 

Pythium aphanidermatum was identified as the most important soil-borne pathogen causing 

damage in open fields in Thailand. P. aphanidermatum belongs to the species most frequently 
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associated with damping off. On matured plants, the pathogen is mainly affecting the roots, 

therefore the disease is named Pythium root rot (Moorman, 2001). As this species is a typical 

plant pathogen of warm regions (Van der Plaats-Niterink, 1981; Al-Sa’di et al., 2007), its 

occurrence in temperate climate is confined to greenhouses (Rafin and Tirilly, 1995). For long 

time survival, P. aphanidermatum forms thick walled oospores that remain slumbering in the 

soil until germination is triggered by external stimuli like moisture or root exudates (Hoppe, 

1966; Kraft and Erwin, 1967). For short-term survival, asexually formed sporangia germinate, 

either directly or indirectly by formation of zoospores. The zoospores, which are initially 

wall-less and mobile in water are responsible for dispersion in moist environments (Jones et 

al., 1991). Grosch et al. (1999) reported yield reduction between 18 and 35% following heavy 

inoculation with P. aphanidermatum.  

Possible control options for P. aphanidermatum are chemical treatment or genotypic plant 

resistance (Higginbotham et al., 2004). Widely used practices are soil sterilization by 

chemicals and fumigation (MacNab and Sherf, 1986). More environmentally friendly 

methods are treatments with antagonistic fungi and bacteria (Chen et al., 1998; Punja and Yip, 

2003). One antagonistic fungus is Trichoderma harzianum that was explored as biological 

control agent in some of our experiments. T. harzianum has multiple mechanisms of actions, 

including mycoparasitism via production of chitinases, ß-1-3 glucanases and ß-1-4 glucanases 

(Lorito et al., 1996), antibiotics (Sivasithanparam and Ghisalberti, 1998), competition (Elad et 

al., 1999), solubilization of inorganic plant nutritions (Altomare et al., 1999), induced 

resistance (Bailey and Lumsden, 1998) and inactivation of the pathogen’s enzymes involved 

in the infection process (Elad  et al., 1999; Elad and Kapat, 1999). In Germany, it is listed as 

“plant strengthener” (www.bba.de, 2008). The bio-control agent can be directly applied to the 

substrate (Chamswarng and Intanoo, 2002). The control provided is equal to that by 

fungicides (Harman, 2000), with which it is mostly compatible, but it must be applied as a 

preventative before the disease occurs. 

The purpose of this study was to determine possible effects of interaction between the aerial 

disease BLM and the soil-borne disease PRR. In the experiments, the plants were raised 

disease free in the nursery. After transplanting at an age of 4-6 weeks (depending on 

experiment), the plants were exposed to P. aphanidermatum in the infected substrate and to  

P. fuligena naturally occurring in the greenhouse. In our investigation, we studied plant 

growth parameters, yield and dynamics of both diseases occurring simultaneously under 

greenhouse conditions in Thailand. 
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4.3 Materials and Methods 

The following experiments were carried out in laboratories and greenhouses of the Asian 

Institute of Technology (AIT) in Bangkok, Thailand during 2001 - 2004. They were part of a 

larger study, aiming to establish a sustainable and environmentally friendly vegetable 

production system under protected cultivation in the humid tropics. 

4.3.1 Collection and selection of isolates of Pseudocercospora fuligena

Tomato plants in the greenhouses were naturally infected with P. fuligena. For maintenance, 

identification and storing as reference, isolates of P. fuligena were collected.  

Naturally infected tomato plants with P. fuligena from the greenhouses on the campus of the 

AIT were used as source of inoculum. To obtain isolates from active BLM lesions, leaves 

were collected that had clearly delineated lesions. For each sampled greenhouse at least 10 

leaves were randomly taken. In the laboratory, sections of 5 mm2 were removed from the 

leading edge of lesions, washed in pure sodiumhyperchloride for 10 s, air dried for 4 s and 

then plated onto Petri dishes (100 x 15 mm) containing potato dextrose agar (PDA; Merck). 

The Petri dishes were incubated at 25°C under cool white fluorescent lights for 12 h and 12 h 

darkness. Putative P. fuligena colonies were randomly selected from these Petri dishes and 

sub-cultured onto dishes containing tomato oatmeal agar (TOA) until pure cultures were 

obtained. TOA was made by boiling 50 g of shredded tomato leaves and 15 g of oatmeal 

separately and then mixed. The tomato leaves suspensions were sieved through two layers of 

cheesecloth, mixed before adding 25 g of agar per litre of water, and autoclaved at 121°C for 

15 min (Hartman and Wang, 1992). The pathogen was verified as P. fuligena by the 

Centraalbureau voor Schimmelcultures (reference det 321-2003), Utrecht, Netherlands and by 

Prof. Dr. Uwe Braun, Martin-Luther-University, Halle-Wittenberg, Germany. The most 

vigorous isolates were chosen for further experiments.  

4.3.2 Isolate of Pythium aphanidermatum

For the inoculation of P. aphanidermatum in the greenhouse experiments, an isolate was used, 

which was kindly provided by Dr. Wanwilei Intanoo, Department of Plant Pathology, 

Kasetsart University, Thailand. This was confirmed as P. aphanidermatum by the 

Centraalbureau voor Schimmelcultures, Utrecht, Netherlands (reference det 273-2002). 
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4.3.3 Greenhouse experiments

4.3.3.1 Experimental set-up

The greenhouse (size 200 m2), in which all experiments were conducted, was located at the 

AIT in Bangkok, Thailand. It was a closed net-house (Econet M, pore size 0.18 mm, Ludvig 

Swensson, Netherlands) equipped with two exhaust fans (550 m3 min-1, 1.5 HP, 960 rpm, 

Sriroz Company, India) at the front side of the net-house (Figure 4.1) 

Figure 4.1: Closed net-house located at the campus of the Asian Institute of Technology (AIT) in 
Bangkok, Thailand. 

The fans were operated by a computerized control system that automatically switched on one 

fan when temperature inside the net-house exceeded 25°C, and the second one at temperatures 

> 30°C. The climate in the greenhouse was monitored using a data logging system (ITG data 

logger, Leibniz Universität, Hannover, Germany). During the experiments, mean temperature 

and relative humidity was 28-30ºC and 70-80%. The total planting area of the greenhouse was 

160 m2. The greenhouse was lengthwise subdivided with a net (Econet M, pore size 0.18 mm, 

Ludvig Swensson, Netherlands) in two parts, each part with 3 rows and a separate entrance 

door.  

Tomato seedlings were raised in the nursery under disease free conditions. At the required age 

for the experiments (4 to 6 weeks), they were planted in plastic pots (30 x 25 cm) filled with a 

commercial growing substrate. This was composed of clay, sand, and silt in proportions of 31, 

30 and 39, respectively, and 29% of organic matter. The pots were placed on a black ground 

plastic cover (Chaisiri Nylon Canvas Factory Ltd., Bangkok, Thailand) and arranged in  

6 rows with no inter-pot distance within a row, altogether 60 pots per row (Figure 4.2). The 

distance between rows was 160 cm and from sidewall and the middle partition to the row  

55 cm. 
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Figure 4.2: Arrangement of pots in one part of a closed net-house at the campus of the AIT in    
                Bangkok, Thailand. 

Plants were irrigated and fertilized 7-9 times per day (2.5 L day-1) with a drip irrigation 

system controlled by solar light integral. The fertilizers [Hakaphos® (N-P-K) (2.5 kg 100 L-1), 

COMPO GmbH, Austria, and Bai-plus (calcium) (1.8 kg 100 L-1), Bayer Ltd., Thailand] were 

injected into the irrigation system with mechanical injectors (DI 16, Dosatron®, France). 

Tomato plants were supported by ropes, which were fixed to the structure of the ceiling of the 

greenhouse. The plants were cultivated in a single-stem system. Necessary pruning work, for 

instance to remove side branches and to bind the plants, was done weekly.  

In all experiments, P. fuligena occurred naturally in the greenhouse. To keep the disease level 

in one part of the greenhouse low, Maneb (Dithane M-45, 1.6 kg a. i. ha-1) was applied 

weekly, beginning with the day after positioning (dap) plants in the greenhouse. 

Between October 2002 and March 2004 altogether four experiments were conducted  

(Table 4.1).  

Table 4.1: Characteristics of the experiments in the greenhouse  

Exp 

No. 

Start End Duration 

(dap) 

Mean Temp 

(°C) 

Min Temp 

(°C) 

Max Temp 

(°C) 

Mean RH 

(%) 

1 21 Oct´02 13 Jan´03 84   28.3 ± 0.3*   20.9 ± 0.9 * 35.2 ± 0.1 * ** 
2 19 May´03 11 Aug´03 84 29.1 ± 0.1   25.4 ± 0.1   35.2 ± 0.3 77.28 ± 0.78
3 21 Oct´03 10 Feb´04 112 26.6 ± 0.2   21.9 ± 0.2   33.4 ± 0.2 73.54 ± 0.53
4 26 Nov´03 17 March´04 112 25.9 ± 0.2   21.0 ± 0.2   33.0 ± 0.2 72.98 ± 0.65

* values from the Deutsche Wetterdienst databank measuring point Bangkok, Data logger were not yet already in 
function at that time; ** no values available. 
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4.3.3.2 First Experiment 

This experiment was carried out with the determinate tomato variety ´New King Kong´. The 

seeds were sown on 26 August 2002 and transplanted eight weeks later. At 21 October 2002 

with the day of transplanting and positioning plants in the greenhouse (plants had already 10 

to 12 leaves), the substrate was inoculated with P. aphanidermatum in 3 different densities 

(P0, P1 and P2). The previously mentioned isolate was inoculated using roughly 1-cm2 pieces 

of mycelium, grown for 4 days in darkness at 25°C on agar in Petri dishes. For the different 

levels of inoculum, different numbers of Petri dishes containing P. aphanidermatum

mycelium were mixed in the substrate before transplanting the tomato plants, e.g. for P1 one 

Petri dish per pot, for the high level, P2, three Petri dishes were used. In the pots of control 

plants P0, plain PDA of 1 Petri dish was mixed. 

Plants of both halves of the greenhouse were naturally infected with P. fuligena.  

Additionally, plants were inoculated with A. solani in one-half of the greenhouse. Three 

leaves (number 5, 6 and 7 counted from bottom to top) were scratched, the agar plates with 

mycelium were directly pressed for 5 seconds smoothly onto the leaves. Thereafter, the leaves 

were moistened by spraying tap water and covered separately with plastic bags for 24 h in 

order to increase the relative humidity. Control plants were treated with sterile agar plates.  

To avoid the spread of black leaf mold and early blight, the side without A. solani inoculation 

was weekly treated with Maneb (Dithane M-45, 1.6 kg a. i. ha-1), beginning with the day after 

positioning (dap). 

Due to the fact that the inoculation with early blight was not successful (see chapter 2), the 

main focus was on the observation of the interaction of PRR and BLM. 

The plants were arranged in a split-block design (with 4 replications). Every split-block was 

subdivided by 3 levels of P. aphanidermatum (P0/P1/P2) as sub-plot factor. The sub-plots 

were repeated 4 times; each sub-plot contained 5 plants in a row. Border plants of each sub-

plot were not used as data plants. The total number of plants in the greenhouse was 360 (270 

were used for data collection), arranged in 6 rows (Figure 4.3).  

The treatments were: 

P0–BLM0: 1 plain Petri dish per pot, with control of P. fuligena  

P1–BLM0: 1 Petri dish with P. aphanidermatum per pot, with control of P. fuligena

P2–BLM0: 3 Petri dishes with P. aphanidermatum per pot, with control of P. fuligena

P0–BLM1: 1 plain Petri dish per pot, without control of P. fuligena

P1–BLM1: 1 Petri dish with P. aphanidermatum per pot, without control of P. fuligena

P2–BLM1: 3 Petri dishes with P. aphanidermatum per pot, without control of P. fuligena
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Figure 4.3: Greenhouse plan for experiment 1 laid out in a split-block design (with 3 replications). 
                Control of BLM as main factor and 3 levels of P. aphanidermatum (P0/P1/P2) as sub-plot 
                factor. Each rectangle represents 5 plants. 
                Colour Code: White:  P0 = 1 plain Petri dish per pot 
                                       Red   :  P1 = 1 Petri dish with P. aphanidermatum per pot 
                                       Green:  P2 = 3 Petri dishes with P. aphanidermatum per pot 



Materials and Methods  Joint effects (4)

88

A destructive sampling of 20 plants per treatment was done every month. Thus one third of 

the greenhouse plants, starting on the opposite side of the ventilation, was removed at each 

sampling. The leaf area was measured, roots were washed, air dried and weighed, fruits were 

harvested (for a detailed method description see 4.3.4.3). Additionally, disease incidences of 

plants and leaves were determined and disease severity was visually estimated leaf by leaf 

once a week (see 4.3.4). These observations were done for 3 months after inoculation.  

4.3.3.3 Second Experiment 

The second experiment was carried out with the variety ´King Kong 2´, an indeterminate 

variety. The experiment was conducted in the same way as the first one (see above). Seeds 

were sown on 21 April 2002. One month later (on 19 May 2002) the inoculation of P. 

aphanidermatum was carried out using a modified technique of Chaengchaiyasakulthai and 

Chamswarng (1986). As stock culture, a mixture of sand, soil, and maize flour (3/1/1) was 

infested with mycelium plugs from four days old cultures of P. aphanidermatum (grown on 

PDA, and incubated in darkness). After two weeks at 35°C, the commercial substrate was 

mixed with 5% of the stock culture and 1.5% maize flower. This mixture was incubated 

overnight at 25°C and then used as inoculum (P0* = 0.2 g sterilized inoculum per pot, P1* = 

0.2 g and P2* = 1 g of inoculum per pot). The experimental control plants received 0.2 g 

sterilized inoculum material per pot.  

Immediately after inoculation of the substrate, the plastic pots, as previously described, were 

placed in the greenhouse and plants, which had already 10 to 12 leaves, were planted.  

The treatments in this experiment were: 

P0*–BLM0:   0.2 g sterile inoculum of P. aphanidermatum per pot, with control of 

                       P. fuligena

P1*–BLM0:   0.2 g inoculum of P. aphanidermatum per pot, with control of P. fuligena  

P2*–BLM0:   1 g inoculum of P. aphanidermatum per pot, with control of P. fuligena  

P0*–BLM1:   0.2 g sterile inoculum of P. aphanidermatum per pot, without control of 

                       P. fuligena  

P1*–BLM1:   0.2 g inoculum of P. aphanidermatum per pot, without control of P. fuligena

P2*–BLM1:   1 g inoculum of P. aphanidermatum per pot, without control of P. fuligena 



Materials and Methods  Joint effects (4)

89

The experiment was planned for three months including three destructive samplings, as 

described above. The data collection was done weekly (see first experiment, 4.3.3.2).

4.3.3.4 Third Experiment  

The third experiment was carried out similar to the previous one. Inoculation densities of  

P. aphanidermatum were chosen as in the first experiment (see 4.3.3.2). As a special 

treatment, T. harzianum, a biological antagonist of P. aphanidermatum, was added to the 

substrate of the P0-treatments. According to the method of Chamswarng and Intanoo (2002), 

the antagonist was mixed into the substrate in 0.2% proportion prior to the transplanting of 

tomato plants. The T. harzianum isolates were kindly provided by Dr. Wanwilei Intanoo, 

Department of Plant Pathology, Kasetsart University, Thailand. 

Seeds of the variety ´King Kong 2´ were sown on 20 September 2003. One month later (on 21 

October 2003), the plants were transplanted in pots filled with substrate and inoculated with

P. aphanidermatum, placed in the greenhouse and were naturally infected by P. fuligena.

The treatments were: 

P0T–BLM0: 1 plain Petri dish per pot, with control of P. fuligena, with T. harzianum

P1–BLM0: 1 Petri dish with P. aphanidermatum per pot, with control of P. fuligena

P2–BLM0: 3 Petri dishes with P. aphanidermatum per pot, with control of P. fuligena

P0T–BLM1: 1 plan Petri dish per pot, without control of P. fuligena, with T. harzianum

P1–BLM1: 1 Petri dish with P. aphanidermatum per pot, without control of P. fuligena

P2–BLM1: 3 Petri dishes with P. aphanidermatum per pot, without control of P. fuligena

All experimental plants were placed at the determined position in the greenhouse (Figure 4.3), 

the surplus potted plants were placed at the edge of the greenhouse. At 2, 3, 5, 10, 13 and  

15 dap, all plants were monitored for disease symptoms mainly caused by P. 

aphanidermatum, e.g. wilting. Our research focused on the interaction within the disease 

complex PRR and BLM. As interaction is relevant only on living plants, the plants dropped 

out until 14 dap were replaced,. At 5 dap, pots with dead plants were replaced by spare pots 

with healthy plants of the same inoculation density which were stored at the edge of the 

greenhouse. If more plants dropped out than were replaceable, the positions stayed empty 

within the row. A detailed sketch of the replaced plants can be found in the appendix (Figure 

6.1). 

The experiment was designed for 4 months with 4 destructive samplings. Disease 

observations were done weekly as previously described. A destructive sampling of 15 plants 
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per treatment was done every month, 9 plants were used for data collection. At each sampling, 

one fourth of the greenhouse plants was removed.  

4.3.3.5 Fourth Experiment

In this experiment the variety ´King Kong 2´ was used. The design of this experiment differed 

from the previous ones. In addition, T. harzianum was inoculated but not P. aphanidermatum. 

The inoculation method of T. harzianum was identical to the third experiment (see 4.3.3.4). 

The seeds were sown on 25 October 2003. The tomato seedlings were planted in trays and 

stored in the nursery. One month later (on 26 November 2003) they were transplanted in pots 

pre-inoculated with T. harzianum, placed in the greenhouse and naturally infected with  

P. fuligena. 

The total number of plants in the greenhouse was 60, so that 15 plants for each treatment were 

available. Plants were arranged in four rows, two rows on each side of the subdivided 

greenhouse. Plants of both halves of the greenhouse were naturally infected with P. fuligena, 

but one side was weekly treated with Maneb (Dithane M-45, 1.6 kg a. i. ha-1), beginning with 

the day after positioning.  

The treatments were: 

P0–BLM0:  with control of P. fuligena

P0T–BLM0:  with control of P. fuligena, inoculated with T. harzianum

P0-BLM1:  without control of P. fuligena

P0T–BLM1:  without control of P. fuligena, inoculated with T. harzianum

Disease incidences of plants and leaves were determined by counting and disease severity was 

visually estimated leaf by leaf once a week. After 4 months of observation, the experiment 

was completed with a final destructive sampling of the plants. 

4.3.4 Disease assessment 

4.3.4.1 Assessment of BLM

For disease assessment of BLM, the leaves of all plants were visually rated for percent 

diseased foliage using a modified Beaumont rating scheme (Beaumont, 1954) with 0% 

indicating no visible symptoms of P. fuligena infection and 100% indicating completely 

diseased foliage. The rating scale was modified as followed: 
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no recognizable lesions :      0% 

0.5 – 2.5% diseased foliage :      1%  

2.5 – 7.5% diseased foliage :      5%  

7.5 – 15%  diseased foliage :    10%  

15 – 25%   diseased foliage :    20%  

25 – 35%   diseased foliage :    30%  

35 – 45%   diseased foliage :    40%  

45 – 62%   diseased foliage :    50%  

63 – 82%   diseased foliage :    75%  

83 – 100% diseased foliage : 100%  

The disease assessment started in experiment 1 at the day after positioning the potted 

tomatoes in the greenhouse. In experiments 2, 3 and 4 it began at the day of transplanting, 

which was similar to the day after positioning potted tomatoes in the greenhouse.  

4.3.4.2 Assessment of Pythium aphanidermatum 

Besides the visual monitoring of BLM, additional attention was given to any symptoms 

related to the soil-borne fungus, e.g. wilting of leaves, indefinable leaf spots, dwarfing or 

dying off which could give information about infection.  

As the root pathogen P. aphanidermatum rarely shows lesions on the upper part of the plant, a 

potato baiting method was used for detection and re-isolation (Stanghellini and Kronland, 

1985). Soil samples were taken weekly from 10 randomly selected pots (about 50 mL), placed 

in a Petri dish and saturated with distilled water. A slice of potato (0.25 cm2 and 3 mm thick) 

with a piece of water agar on top (same size as potato slice) was used as bait and placed on 

the saturated soil surface (Figure 4.4). After incubating for 48 hours in darkness at 30°C, the 

water agar slice was removed and placed onto a special detection medium for  

P. aphanidermatum, containing PDA with 100 ppm Pimaridin + 100 ppm Streptomycin (Hine

and Luna, 1963). After 24 hours at 32°C in darkness, the Petri dishes were evaluated under 

the binocular (Leica MZ75, Fa. Leica, Germany) with a cold light source (KL 1500 LCD,  

Fa. Schott, Germany). If the soil sample was infested, cotton wool pad-like mycelium could 

be identified using the book of Domsch et al. (1993). 
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0.25 cm² slice of potato (3 mm high)   Piece of water agar 

      

Infested soil sample, 

saturated with A. dest  

         Petri dish 

Figure 4.4: Schematic diagram (lateral cut) of the potato baiting method (after Stanghellini and 
Kronland, 1985). 

4.3.4.3 Assessment of plant growth parameters

The shoot and root fresh weight was determined at each destructive sampling date (once in a 

month) until the end of the experiment. The roots were cut of the shoot at substrate level, 

washed under running water to remove the substrate, dried with household paper and 

weighed.  

The shoot fresh weight including the leaves was taken by using an overhead panel balance  

(Fa. Scaltec Instruments, Heiligenstadt, Germany, max. 3000 g, d = 0.1 g).  

The plant height was measured and the leaves of each experimental plant were counted on a 

weekly basis until the end of the experiment. 

To determine the leaf area in cm2, each leaf was removed from the shoot and individually 

measured with a leaf area meter (LI-COR; Model Li-3100 AREA meter, left-Cor. Inc. 

Lincoln, Nebraska, USA).  

Fruits were harvested on a regular basis (in 7 days interval) after the first ripe fruits were 

found. In addition, the unripe tomatoes were harvested at the final destructive sampling. 

To determine dry weight, fresh shoots were singly packed in paper bags, stored in the drying 

oven (ventilated oven; 80°C) and weighed after 1 week. 
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4.3.5 Statistical analyses

The quantitative data of the plants, i.e. total leaf number, plant height, yield, root weight, dry 

weight, leaf area etc. were subjected to two-way analyses of variance (ANOVA) using the 

PROC GLM procedure of the SAS software package (SAS 9.1, Users Guide, SAS Institute, 

Cary, NC) and means separated by last significant difference (LSD p < 0.05). The two factors 

investigated were the influence of BLM (marked with capital letters A and B) and PRR 

(characterized with small letters a and b) and their interaction (marked with ***). Mean 

comparisons were conducted using Tukey’s t-test (p � 0.05). 

The computed standard errors (SE) are displayed in the figures while within the text, the 

standard error of the statistical analysis of the PROC GLM are mentioned. 
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4.4 Results 

After inoculation of P. aphanidermatum and natural infection by P. fuligena, all tomato plants 

showed symptoms of both diseases, PRR more in the early, BLM in the later stage of the 

experiments. It should be noted that the experiments were carried out at different times of the 

year so that plant growth parameters cannot be compared easily among the experiments. 

4.4.1 Observation of Pythium root rot

Tests of substrate samples from experimental pots with the potato-baiting-method confirmed 

a successful inoculation of P. aphanidermatum in all experiments. In addition, in experiment 

2, sample tests also detected a contamination of the P0*-treatments which were not 

inoculated. Therefore, samples of the general planting substrate were taken showing that the 

whole lot of substrate was contaminated. No other pathogens than P. aphanidermatum could 

be re-isolated.  

In experiment 1, tomato plants didn’t show any specific symptoms related to PRR, e.g. 

wilting.  

In experiment 2, at 6 dap, 64% of the plants in the P0*-treatments (BLM0 and BLM1), and 

34% of the P1*- and P2*-treatments were replaced (Table 4.2). For further details of replaced 

plants see appendix (Figure 6.1). One week later (at 13 dap), 44% of the P0*-treatments and 

31% of P1* and 29% of P2* were replaced again with surplus seedlings. Without inoculation, 

the P0*-treatment was heavily attacked by PRR. 

Table 4.2: Replaced plants in the different Pythium – treatments of experiment 2, at 6 dap and 13 dap 

Treatments Total number of plants 
Number of plants 

replaced at 6 dap 

Number of plants 

replaced at 13 dap 

P0*-BLM0 60 40 29 

P1*-BLM0 60 13 14 

P2*-BLM0 60 13 17 

P0*-BLM1 60 37 24 

P1*-BLM1 60 28 23 

P2*-BLM1 60 28 18 

In experiment 3, the plants were checked for PRR beginning at 2 dap. Altogether 150 plants 

were stored in the greenhouse (120 experimental plants and 30 additional ones). Plants which 

dropped out at 5 dap were replaced with the 30 surplus plants. No further exchange was done 
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later. In the P0T-treatments (combined BLM0 and BLM1) with T. harzianum, only 2 plants 

wilted after 15 dap. In the P1-treatments 33% and in the P2-treatments 27% dropped out 

(Figure 4.5). 
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Figure 4.5: Dead plants (%) in experiment 3 due to P. aphanidermatum in 3 treatments:  
                P0 T - no Pythium with T. harzianum, P1- low level and P2- high level of Pythium. 

BLM symptoms appeared at 14 dap. Later, lower leaves started wilting and dropped off. P1- 

and P2-treatments showed significantly less mortality than the P0T–treatment (Figure 4.6). 

These unexpected results are probably caused by replacing dead plants in the P1 and P2 

treatments shortly after transplanting. 
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Figure 4.6: Number of dead leaves per plant in experiment 3 with different Pythium-treatments:  
                P0T - no Pythium inoculation with T. harzianum, P1 - low level and P2 - high level of 
                Pythium. Vertical lines show the times when part of the plants were removed, resulting in 

   a reduced sample size. After 84 dap no further dead leaves were observed because the    
   10 lowest leaves were removed on that day, following the normal cultural practice. 
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In experiment 4, no plants were replaced. Here wilting symptoms of the lower leaves 

appeared at 56 dap. The differences between the P0- and P0T–treatments were small. The 

BLM0-treatment showed significant less leaf mortality compared to the BLM1-treatment 

(Figure 4.7). 
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Figure 4.7: Number of dead leaves accumulated per plant in experiment 4 with: P0 – non-inoculated, 
P0T - with T. harzianum. Vertical lines show the times when part of the plants were   

  removed resulting in a reduced sample size. After 77 dap no further dead leaves were  
  observed because the 10 lowest leaves were removed on that day, following the normal  
  cultural practice. 

  
4.4.2 Observation of BLM

BLM naturally occurred on tomato plants inside the greenhouse throughout the year without 

great differences among seasons. Both tested cultivars, ´New King Kong´ and  

´King Kong 2´, were susceptible.  

The highest disease severity was reached in experiment 1. Plants in the non-controlled part of 

the greenhouse reached approximately 30% disease severity. Plants in experiments 2 and 3 

remained below a disease severity level of 10% in the non-sprayed parts of the greenhouse, 

while in the P0-treatment in experiment 4, BLM severity reached 15%. 

Neither the different Pythium-levels nor the treatment with Trichoderma changed the overall 

trend of the disease severity progress curves. 

Results on BLM epidemics were displayed and discussed in detail in chapter 2. Here the 

effects of the epidemics of the plant growth parameters will be presented. 
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4.4.3 Plant growth parameters

The following results were based on monthly destructive samplings. In experiments 1 and 2, 

conducted over 3 months, 12 plants were harvested and analysed at every sampling day. In 

experiments 3 and 4, conducted for 4 months, 9 plants were monthly harvested.  

Generally, the results were very heterogeneous without showing overall tendencies. Data are 

displayed in figures and statistical analyses are given in the appendix. Results of experiment 2 

should be interpreted with care, because the plants showed an unplanned infestation with  

P. aphanidermatum even in the P0*-treatments, in which no inoculation was carried out.  

4.4.3.1 Fresh biomass 

After abscising the tomato plants and removing all fruits, the plants were balanced (Figure 

4.8). Details can be found in the appendix (Table 6.3-6.6).  

At the beginning of experiment 1, the plants started with an initial plant fresh weight of 200 g 

per plant. At 28, 56 and 84 dap, the plant fresh weight in the BLM1-treatments were 

significantly reduced compared to BLM0. PRR lessened the weight at 56 and 84 dap. The 

plants of the P0–BLM0 treatment had a final weight of 1029.71 ± 69.56 g at 84 dap, while 

plants in the P2–BLM0-treatments had only 686.94 ± 69.56 g. 

In experiment 2, a significant interaction appeared at 28 dap, because plant weights of the 

P1*-and P2*-treatments in BLM0 and BLM1 showed an opposed tendency. At 28 dap, mean 

plant weight of the BLM0-treatments was lower than of the BLM1-treatments, but at 84 dap 

higher. At 84 dap, the weight of plants in the P0*-treatments was lighter compared to the 

plants in the P1*- and P2*-treatments (P0*-BLM1: 1097.18 ± 76.67 g and P2*-BLM1: 

1398.25 ± 73.41 g).  

In experiment 3, T. harzianum was inoculated as an antagonist for P. aphanidermatum in the 

P0T-treatments. The plants in the P. aphanidermatum inoculated treatments (P1 and P2) were 

reduced in fresh weight at 28, 56 and 84 dap. At these days also the fresh weights in the 

BLM0-treatments were lower than in the BLM1-treatments. A significant interaction was 

found at the beginning of the experiment (28 dap) with a fresh weight of around 72 g per plant 

in P1-BLM0 and P2-BLM0, nearly three times smaller than in the P0T-treatments with and 

without spraying. At 112 dap, no significant influences of BLM and PRR were detectable. 

In experiment 4, only one sample was taken at the end of the experiment (112 dap). The fresh 

weight of plants was higher in the BLM1- than in the BLM0-treatments. T. harzianum did not 

show a significant influence (P0-BLM0: 987.89 ± 48.43 g; P0T-BLM0: 1010.11 ± 48.43 g). 
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Experiment 1: October 2002 – January 2003  
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Experiment 4: November 2003 – March 2004
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Figure 4.8: Fresh weight of plants ± SE (g) in four experiments with different Pythium-treatments:  
               P0– non-inoculated, P0T - no Pythium with T. harzianum, P1- low level and P2- high level 
               of Pythium. P0*-, P1*- and P2*-treatments refer to another inoculation method (see 4.3.3.3).  
               Sample sizes: experiments 1 and 2 n=12, experiment 3 n=9 and experiment 4 n=15. Because
               of cultural practice, the 10 lowest leaves were removed in experiments 3  
               (at 84 dap) and 4 (after 77 dap). 
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4.4.3.2 Dry weight 

After taking the fresh weight, the plants were dried in a drying oven and then again weighed  

(Figure 4.9). Details of the measurements can be found in the appendix (Table 6.7 – 6.9). The 

results showed a strong correlation between dry and fresh weight with high coefficients of 

determination, e.g. in experiment 1 r2 > 0.91, in experiment 2 and 3 r2 > 0.98.  

In experiment 1, at 28 dap and 84 dap the dry weight was significantly reduced in the BLM1-

treatments, e.g. at 84 dap P0-BLM0 had a dry weight of 163.33 ± 11.66 g and P0–BLM1 of 

123.3 ± 11.66 g. Also at 84 dap, plants inoculated with P. aphanidermatum (P1 and P2) were 

reduced in weight compared to plants in the P0-treatment. 

The second experiment did not show significant effects at 28 and 56 dap, neither for BLM nor 

for PRR. At 84 dap, the dry weight of plants in the control-treatments (BLM0) was higher 

compared to the plants of the BLM1-treatment. The dry weight was significantly reduced in 

the P0*-treatments compared to the P1*- and P2*-treatments. 

Experiment 3 showed a different trend. Only at 28 dap, the non-sprayed plants (BLM1) had a 

noticeable higher weight than the sprayed ones. Within the Pythium-treatments, P0T had the 

highest values at 28, 56 and 84 dap. At 112 dap, no significant effects of BLM and PRR were 

detectable. 

Dry weight was not measured in experiment 4. 
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Figure 4.9: Dry weight of plants ± SE (g) in three experiments with different Pythium-treatments: 
               P0 – non-inoculated, P0T - no Pythium with T. harzianum, P1 - low level and P2 - high level 
               of Pythium. P0*-, P1*- and P2*-treatments refer to another inoculation method (see 4.3.3.3). 
               Sample sizes: experiments 1 and 2 n=12, experiment 3 n=9. Because 
               of cultural practice, the 10 lowest leaves were removed in experiment 3 
               (at 84 dap) . 
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4.4.3.3 Leaf area 

From the abscised tomato plants the leaves were chopped off and measured with a leaf area 

meter. The results were displayed in Figure 4.10, further details can be found in the appendix 

(Tables 6.10 – 6.13).  

In experiment 1, the plants of the determinate variety ´New King Kong´ already started with 

an average of 2200 cm2 leaf area. The leaf area of the non-sprayed treatments (BLM1) were 

significantly reduced in all samplings, e.g. at 84 dap from 3447.64 ± 323.17 cm2 for  

P0-BLM0 to 1101.56 ± 323.17 cm2 for P0-BLM1. Here, PRR did not have a significant 

influence at all sampling dates. 

In experiment 2, conducted with an indeterminate variety, leaf area had a different range. At 

28 and 56 dap, a significant interaction between the different Pythium-levels and the BLM-

treatments was detectable. At 28 dap, the plants of the P0*-BLM0-treatments had the biggest 

size and the P1*- and P2*-BLM0-treatments were smaller. Within the BLM1-treatments, 

P1*-BLM1 had the largest leaf area (2791.58 ± 22.14 cm2). At 56 dap, again the plants of the 

P0*-BLM0-treatments had the biggest area, while the areas of P1*- and P2*-BLM0-

treatments were lower. At this time, the trend in the BLM1-treatments was vice versa. At 84 

dap, no significant differences were observable. 

In experiment 3, at 28 dap, a significant interaction occurred. Within the different Pythium-

treatments, plants of the P0T-treatments had the biggest area while plants of the P1- and  

P2-BLM1-treatments were smaller but with reverse trends within the P1- and  

P2-treatments. At 28, 56 and 84 dap, the leaf area of plants in the sprayed treatments (BLM0) 

was significantly reduced compared to the BLM1-treatments. Plants in the inoculated  

P. aphanidermatum-treatments (P1 and P2) were as well reduced in size, at 56 dap. At 112 

the treatments didn’t show significant differences.

In experiment 4, the leaf area of the plants was higher in the non-sprayed treatments 

compared to the sprayed ones. Plants inoculated with T. harzianum had a significantly 

increased area (P0-BLM0: 4940.88 ± 363.67 cm2 versus P0T-BLM0: 5186.59 ± 363.67 cm2).
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Figure 4.10: Leaf area of plants ± SE (cm2) in four experiments with different Pythium-treatments: 
                 P0– non-inoculated, P0T - no Pythium with T. harzianum, P1- low level and P2- high level 
                 of Pythium. P0*-, P1*- and P2*-treatments refer to another inoculation method 
                 (see 4.3.3.3). Sample sizes: experiments 1 and 2 n=12, experiment 3 n=9 and experiment 4 
                 n=15. Because of cultural practice, the 10 lowest leaves were removed in 
                 experiments 3 (at 84 dap) and 4 (after 77 dap). 
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4.4.3.4 Root weight  

After washing, the roots showed a light creamy colour (Figure 4.11) without discoloration. 

The roots in the treatments inoculated with P. aphanidermatum (P1 and P2) were in general 

shorter and reduced in size compared to the non-inoculated (P0) ones, no matter if BLM was 

controlled or not. 

a)   b)   c) 

Figure 4.11: Washed out roots of experiment 1 in three treatments:  
     a) P0–BLM0: 1 plain Petri dish per pot, with control of P. fuligena   
     b) P1–BLM1: 1 Petri dish with P. aphanidermatum per pot, without control of 
                                       P. fuligena  
     c) P2–BLM1: 3 Petri dishes with P. aphanidermatum per pot, naturally infected  
                                       with P. fuligena

After the visual rating, the clammy roots were weighed (Figure 4.12), the details can be found 

in the appendix (Tables 6.14 – 6.17). 

In experiment 1, at 28 and 56 dap no significant differences occurred. At the end of the 

experiment (at 84 dap), the roots of the plants in the treatments without control (BLM1) 

showed a significant reduction of weight, e.g. 148.42 ± 14.47 g in P0-BLM0 compared to 

78.47 ± 14.47 g in P0-BLM1. 

In experiment 2, at 56 dap a significant interaction appeared. In the fungicide treatments, the 

P0*-treatments had the highest weight with 57.23 ± 4.69 g, while in the non-sprayed 

treatments, the highest root weight was measured in the P2*-treatments with 59.30 ± 5.35 g. 

Later (at 84 dap), the root weight was significantly reduced in the non-sprayed treatments 

(BLM1). The P. aphanidermatum inoculated treatments did not show any significant 

influence on the root weight. 

In experiment 3, the root weight was reduced in the BLM non-sprayed treatments at 56 dap. 

At 84 dap, a significant interaction appeared. The plants of the P0T-treatments had always 

significantly higher weights than the ones in the P1- and P2-treatments. 
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Figure 4.12: Root fresh weight of plants (± SE) (g) in four experiments with different Pythium- 
                 treatments: P0– non-inoculated, P0T - no Pythium with T. harzianum, P1 - low level and 
                 P2 - high level of Pythium. P0*-, P1*- and P2*-treatments refer to another inoculation 
                 method (see 4.3.3.3). Sample sizes: experiments 1 and 2 n=12, experiment 3 n=9 and 
                 experiment 4 n=15. Because of cultural practice, the 10 lowest leaves were 
                 removed in experiments 3 (at 84 dap) and 4 (after 77 dap).
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At the end of experiment 4 (112 dap), no significant difference was detectable, but again a 

significant interaction appeared. The maximum root weight reached up to 107.31 ± 6.95 g in 

the P0T-BLM0-treatment. In P0-BLM0, root weight was 92.79 ± 6.95 g. In the P0-BLM1-

treatment, the weight was 102.19 ± 6.95 g and the P0T-BLM1-treatment 77.80 ± 6.95 g. 

4.4.3.5 Fruit weight 

For the results of yield, it should be mentioned that expected marketable yield of 100 g per 

fruit was rare.  

The fruit weights were taken continuously while the fruits were yielding on the tomato plants. 

In experiment 1, the ripening of fruits started at 49 dap (Figure 4.13).  
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Figure 4.13: a) Accumulated yield of ripe tomatoes per treatment (g) and b) accumulated number of 
                 ripe fruits per plant in experiment 1 with different Pythium-treatments: P0– non-inoculated, 
                 P1 - low level and P2 - high level of Pythium. Variety: ´New King Kong´. Vertical lines 
                 show the times when part of the plants were removed, resulting in a reduced sample size. 
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The plants of the BLM0-treatment had a significant higher amount of ripe tomatoes compared 

to the BLM1-treamtent at 84 dap. 

The P0-BLM0-treatment had the highest accumulated yield of ripe tomatoes (altogether 

19834 g) as well as the highest average total fruit weight per plant (262.58 ± 48.62 g), with an 

average fruit weight of 41.48 g, at 84 dap. The lowest weight per plant was found in the  

P2-BLM1-treatment (101.04 ± 26.27 g) with an average fruit weight of 22.21 g. The number 

of fruits harvested from plants in the BLM0-treatments was significantly higher (around 500) 

compared to the number of ripe tomatoes in the BLM1-treatments (around 400). 

In experiment 2, conducted with the tomato variety ´King Kong 2´, the plants started yielding 

at 56 dap. The harvested unripe fruits at 56 dap and 84 dap are shown in Figure 4.14a. At 56 

dap, the yields in the P1*- and P2*-treatments were significantly reduced compared to the 

P0*-treatments. At 84 dap a significant interaction appeared. 
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Figure 4.14: a) Average yield of unripe tomatoes per plant (± SE) (g) and b) accumulated yield of ripe 
                 tomatoes per treatment in experiment 2 with different Pythium treatments: P0- non- 
                 inoculated, P0T – no Pythium with T. harzianum, P1 - low level and P2 - high level of 
                Pythium. P0*-, P1*- and P2*-treatments refer to another inoculation method (see 4.3.3.3), 
                 n=12.  
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The accumulated values are given in Figure 4.14b. The plants in the P0*-treatments had the 

highest yield, e.g. in P0*-BLM0 altogether 9763.85 g were harvested, leading to an average 

of 813.65 g yield per plant. Yields in the P1*- and P2*-treatments were lower and did not 

show a homogenous trend.  

In experiment 3, the yield of green tomatoes started at 28 dap (Figure 4.15a). At 28, 56 and  

84 dap the plants inoculated with P. aphanidermatum produced less yield than the plants of 

the P0T-treatment. The accumulated yield of ripe tomatoes started again at 56 dap (Figure 

4.15b). The yield of the plants in the P0T-BLM0-treatment reached 25 kg, in P2-BLM0 only 

19.6 kg. No significant differences were observable
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Figure 4.15: a) Yield of tomato plants, average yield of unripe tomatoes per plant (± SE) (g) and b) 
                 accumulated yield of ripe tomatoes per treatment (kg) of experiment 3, with different
                 Pythium-treatments: P0- non-inoculated, P0T - no Pythium with T. harzianum, P1- low level 
                 and P2- high level of Pythium. Vertical line shows the times, when the sample size was 
                 reduced from 27 to 18 and to 9 plants.  

In experiment 4, no data of unripe tomatoes were taken. The average fruit weight of ripe 

tomatoes per treatment increased up to 30 kg per treatment (Figure 4.16a), that corresponded 
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to approximately 2 kg per plant. The average fruit weight per plant (Figure 4.16b) was up to 

400 g in the treatment without T. harzianum.  
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Figure 4.16: a) Accumulated yield of ripe tomatoes per treatment and b) Yield (± SE) of ripe tomatoes 
                 per plant (g) of experiment 4, with different Pythium treatments: P0- non-inoculated, 
                 P0T- no Pythium with T. harzianum (n=15). 



Discussion  Joint effects (4)

109 

4.5 Discussion 

In our investigations, we studied plant growth parameters and yield affected by the two 

diseases, BLM and PRR, occurring simultaneously on tomato under greenhouse conditions in 

Thailand. As the experiments were carried out at different times of the year, the plant growth 

parameters cannot be compared easily among the experiments. 

4.5.1 Observation of Pythium root rot

The aim of our study was to observe interactions of both pathogens infecting the same tomato 

plant. However, when the plants were already heavily damaged or even killed by PRR, it was 

not possible to look at the additional effects caused by BLM. The most critical point in the 

experiments was therefore to choose an inoculum level of P. aphanidermatum that affected 

the plants but also allowed to observe symptoms of BLM. In an additional experiment not 

reported here, all plants inoculated with P. aphanidermatum died within 14 dap, because the 

inoculum levels chosen were too high. To avoid this problem of dropping out of plants due to 

PRR, we inoculated much more plants than necessary and used them to replace heavily 

affected plants by those plants treated in the same way but expressing the disease only 

weakly. In experiment 2, these plants remained in the disease free nursery, in experiment 3 

the plants were stored inside the experimental greenhouse close to the sidewalls. From there, 

the additionally stored plants were placed in the positions of the plants to be substituted. As  

P. aphanidermatum was already inoculated in the substrate in the quantity needed, the 

progress of PRR was not disturbed. Regarding BLM, it was possible that tomato plants which 

were replaced had already been infected and that due to the replacement or new positioning in 

experiment 3, the spatial distribution of the primary occurrence of BLM may be affected. On 

the other hand, the substitution of plants was restricted to a narrow time frame of 14 days 

only. Later the epidemics could progress without further disturbance. 

An additional problem occurred in experiment 2, when a high number of plants of the P0-

treatments dropped out. As the plants of these control treatments, such as P0-BLM0, were 

raised under special hygienic provisions, any kind of contamination during the experiment 

could be excluded. However, in the pots with dead plants P. aphanidermatum could be re-

isolated although no inoculation of this pathogen had taken place. In other samples of the 

substrate lot, a contamination with P. aphanidermatum was observed, too. Although this 

substrate was ordered from a company that disinfected soil by steaming, the substrate was 

contaminated with P. aphanidermatum.  
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As other subprojects within the main project were also affected by this contamination and 

because of the fact that there was no guarantee for a pathogen-free substrate in the future, it 

was decided to apply the biological antagonist Trichoderma harzianum to the substrate of the 

control treatments. The results in experiments 3 and 4 clearly showed a reduction of dropped 

out plants. 

During the course of the experiments, leaves shed, especially in experiment 3, but also in 

experiment 2. However, it is difficult to relate the loss of lower leaves to PRR or BLM, 

because plants of the control treatments also lost leaves. Therefore, the loss could be due to 

the normal process of aging, i.e. the senescence of the plants. 

4.5.2 Plant growth parameters

The parameters investigated were fresh weight, dry weight, leaf area and root weight. 

Additionally, ripe tomatoes were harvested on a weekly basis. The results of the plant growth 

parameters were very heterogeneous. If two diseases were affecting the same host plant, it 

was expected that the host parameters in general were reduced and the sum of losses was 

higher than the single loss. However, a clear trend was not detectable, for instance for the 

fresh weight: In the first experiment, BLM and PRR had a significant negative influence at all 

three sampling dates, resulting in lower weights in the inoculated treatments. In the second 

experiment at the first sampling date, the occurrence of BLM increased the fresh weight, PRR 

had no influence, and additionally an interaction appeared. At the second sampling date, no 

significant differences were detectable, and at the third sampling date, plants of BLM0 had 

the highest fresh weight, those of P0-treatments the smallest. In the third experiment with four 

sampling dates, the unsprayed plants, allowing the progress of BLM, had the highest weight, 

while the inoculation of Pythium reduced the fresh weight of the plants in the P1- and P2-

treatments. At the first sampling date, a significant interaction appeared and at the end of the 

experiment no significant differences were detectable. 

The dry weight, which was highly correlated with fresh weight, was expected to show the 

same statistical tendencies found for the fresh weight, but less differences appeared.  

The leaf area was mainly influenced by the foliar disease BLM. The indeterminate variety 

´New King Kong´ seemed to react to BLM with a reduction of leaf area, the indeterminate 

variety ´King Kong 2´, on the other hand, reacted with an increasing area. The influence of 

the Pythium-treatments was marginal and only in the beginning of the experiments. The same 

tendencies were recognisable for the plants of the indeterminate variety which revealed 

significant interactions in the beginning of the experiment.  
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The analyses of root weight showed significant reductions only in experiment 3 in the P1-and 

P2-treatments. The influence of BLM was significant at the end of the experiments. An 

analysis of plants based on visual monitoring would lead to another impression, because roots 

from plants of the P2-treatments, for example, had no light cream colour and less fine roots 

than those of the P0-treatments. 

Fruit weight was taken continuously during the yielding of the tomato plants or discretely at 

the sampling days. The yields in our experiments were lower than the expected values known 

from literature, maximum yield losses of 25% were measured in the non-sprayed-BLM1-

treatments compared to the BLM0-treatments. Our results were in accordance with those of 

Kleinhenz et al. (2006), who confirmed that most fruits produced were non-marketable with a 

fruit fresh weight averaging 32 g fruit-1.  

The experiments showed mainly negative interactions (in 65 %) in relation to yield, less

positive interactions (in 7.5 %), and additive (in 10%). To re-capitulate, if the damage caused 

by two concurrently occurring diseases is similar to the sum of damages caused by the 

diseases attacking the host separately, the effect is additive; if the damage is less, there is a 

negative interaction; if it is greater, a positive interaction exists (Waller and Bridge, 1984; 

Bassanezi et al., 1998).  

BLM and PRR showed a negative interaction with respect to the fresh weight, besides the 

normal significant influences. For example, in the first experiment at 84 dap, plants in 

treatment P0-BLM0 had a fresh weight of 1030 ± 70 g, in the P2-BLM0 treatment (i.e. 

inoculated with high level of P. aphanidermatum, but fungicide sprayed against BLM) the 

weight was reduced by roughly 340 g compared to the control plants. The plants of the P0-

BLM1 treatment in which only BLM developed symptoms, had a value of 660 ± 73 g, thus a 

difference of 370 g compared to the control plants. If the interaction would be additive, the 

plants of P2-BLM1 treatment should have a value of approximately 320 g. As the actual value 

was 545 ± 73 g, the outcome showed a negative interaction of the two diseases with respect to 

the combined loss. 

Additionally we found in our results some unexpected interactions. In 17.5 % of all the 

analyzed results across the experiments, the effects caused by two concurrently occurring 

diseases canceled out each other and the interaction was conducive to the host growth, a kind 

of supplementary interaction. For example, at 112 dap in the third experiment, plants in the 

P0T-BLM0-treatment had a leaf area of 6282 ± 810 cm2.while the leaf area was reduced by 

roughly 1370 cm2 in the P2-BLM0 treatment. The plants of the P0T-BLM1-treatments had a 
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value of 5671 ± 810 cm2, thus a difference of 610 cm2 compared to the control plants. The 

plants in the P2-BLM1-treatments, however, had a final leaf area of 6810 ± 810 cm2, a plus of 

roughly 530 cm2. 

As mentioned before, many plants dropped out in the beginning of the second experiment, so 

that in the third experiment T. harzianum was inoculated as prevention. Due to the lack of 

comparable results for T. harzianum under greenhouse conditions in Thailand, the fourth 

experiment was conducted, to compare plants without any treatment with those plants 

inoculated with T. harzianum. The trials on tomato plants in greenhouses at the AIT were the 

first in the central region in Thailand. T. harzianum had a very positive influence on the plants 

in the third and fourth experiment leading to only 1 and none dead plant, respectively. 

However, no conclusion could be drawn if there was an effect of Trichoderma on the plant 

even if no Pythium was inoculated. 

In the fourth experiment, the inoculated P0T-BLM1-treatment had the highest fresh weight, 

the biggest leaf area, and the smallest root weight. As biological control agent against PRR,  

T. harzianum showed positive effects.  

Heine (2005) also conducted experiments under greenhouse conditions in Thailand on 

tomatoes with the pathogen P. aphanidermatum. He showed that the root fresh weights of 

plants, inoculated with P. aphanidermatum and non-inoculated, did not differ. In our results, 

we found significant differences between the root weights of the P0- and P1/P2-treatments; 

BLM had a significant negative influence on root growth.  

In general, the reduction of plant vitality in our four experiments could be explained by a 

decreased ability of the plants to absorb nutrients and water due to partial destruction of the 

root system by PRR and decreased root activity in the early stage of plant growth (van 

Noordwijk and de Willingen, 1997). As a general rule Calvert (1957) mentioned that stress 

during the early stage of tomato development was correlated with the subsequent growth of 

the plant.  

Even though Mersha (2008) showed that the occurrence of BLM could be reduced by 

changing the greenhouse net or by using special cooling systems, the disease always occurred.  

In the future, BLM will become a more and more relevant disease in- and outside the 

greenhouse. The favourable climatic conditions will be widespread, not only inside 
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greenhouses but also outside, due to climatic change. Recently, Halfeld-Vieira et al. (2006) 

reported already that BLM, usually uncommon in Brazil, caused a severe foliar blight 

epidemic under protected cultivation. Thus it can be expected that BLM will become more 

important and that it will interact with other diseases. Therefore these investigations on 

disease interactions were only the onset demanding for further research on this aspect. 
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5 General Discussion 

As many details of this study are already discussed in the individual chapters, we will give 

only a final short and comprehensive discussion and valuation of the achieved results and of 

their further application.  

It should be taken into account that this study included the first investigations of disease 

interactions of tomatoes under greenhouse conditions in Thailand. In the beginning of our 

investigations, we tried to answer the following four main questions: 

- What are the most important diseases for a tomato crop under greenhouse conditions in the 

   humid-tropics?  

- What kind of disease complex will appear?  

- Are there seasonal variations throughout the year? 

- What type of interactions between diseases will occur?

A literature review identified two tomato diseases of probably high importance in Thailand: 

early blight (Alternaria solani), a disease favoured by warm, humid conditions, as the main 

foliar disease, and P. aphanidermatum as pathogen for the major soil-borne disease. In 

subsequent field surveys conducted throughout the country, early blight (EB) was confirmed 

as one of the main diseases on tomatoes in the field. The surveys also showed that the winter 

(cool / dry) season is the favoured period for tomato production in Thailand. Therefore the 

first experiments in the greenhouse were conducted in the time when the local farmers were 

growing tomatoes in the field, November to March. Later the experiments were expanded 

throughout the year. 

Subsequently, experiments in the greenhouse and under laboratory conditions were started, 

but after artificial inoculation no further disease cycle of EB was observable, because the 

temperature was too high (above 35°C) in the greenhouse. Even by scratching the leaf surface 

to facilitate the penetration of the pathogen, no further symptoms appeared. On the other 

hand, Mersha (2008) reported in his work that EB occurred in the greenhouse at the same site 

during the cool season plantings in October and November, but that it was only sporadic for 

the first 3 to 6 weeks after transplanting. 

In the second experiment, a leaf disease not expected occurred naturally, namely black leaf 

mold (BLM), caused by Pseudocercospora fuligena. As this disease was frequently observed 

in all other greenhouses of the AIT research site, BLM was considered as the most important 

foliar disease under the greenhouse conditions in this part of Thailand. 

Soil-borne diseases should be of minor importance in production systems using soil substrates 

because of the usually practised disinfection or solarisation. In the fields, P. aphanidermatum
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was identified as a pathogen frequently affecting tomato production. Our tests under 

controlled laboratory conditions showed that this pathogen could be successfully inoculated 

and re-isolated under the conditions in our greenhouses. In fact, the conditions for  

P. aphanidermatum were so favourable that it was a problem to choose the right inoculum 

level, needed to affect the plants but not to kill them quickly. For instance, the plants of the 

first experiment started wilting so early, that this experiment was aborted already after 56 dai, 

although it was planned for 84 dai. The choice of P. aphanidermatum as relevant pathogen 

was confirmed in experiment 2 which by chance was carried out with a commercial substrate 

heavily contaminated by this pathogen.  

Thus the first conclusion was that BLM but not EB was the most relevant foliar disease under 

the given conditions and that P. aphanidermatum, causing Pythium root rot (PRR) on 

transplanted plants, could be an important soil-borne pathogen, especially when plants are 

grown in contaminated substrate not completely disinfected. Thus also an answer to the 

second question can be given: BLM and PRR can form a relevant disease complex to be 

investigated in more details.  

Prior to the study of the disease complex, intensive investigations of the temporal progress 

and the spatial distribution of BLM were accomplished at the AIT research site. BLM 

occurred for the first time in 2001 in the greenhouses of the AIT campus, but the origin of the 

inoculum could not be identified. Later, BLM was prevalent in the greenhouses throughout 

the year without any artificial inoculation. This was in contrast to the results of Mersha 

(2008), who figured out that there was a seasonal variation of BLM. The natural infection 

pressure of P. fuligena was so high that one side of the greenhouse has to be sprayed on a 

regular basis to keep BLM under a certain limit. It was not possible to eliminate BLM totally, 

but with fungicide sprays the disease severity could be held below 15% in the first experiment 

and below 3% in the three other experiments. Plants in the non-controlled part of the 

greenhouse reached approximately 30% disease severity in experiment 1, 10% in experiments 

2 and 3 and 15% in experiment 4. Mersha (2008) reported a maximum disease severity of 

individual plants in a range from 4% to 41% during periods with lower infection pressure, but 

from 68% to 81% during the peak seasons. These results support those of Wang et al. (1995) 

who showed that BLM severity ranged from 10 to 40% for individual plants of resistant 

parents and 50 to 90% for plants of susceptible parents in their screening trials. Hartman et al. 

(1991) similarly reported a disease severity of 87% on a plant basis after artificial inoculations 

and exposing the plants for two days to high RH. 
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To compare disease progress curves, the area under disease progress curves was chosen 

(AUDPC) as an alternative method to fitting growth models. This procedure usually applied 

when observed disease progression cannot be described by simple growth functions (Shaner 

and Finney, 1977; Campbell and Madden 1990, Xu, 2006).  

The AUDPC values of disease severity in our experiments showed a significant reduction in 

the sprayed compared to the non-sprayed treatments. For example in experiment 1 in which 

the BLM0-treatments had an average AUDPC of 300%-days and the BLM1-treatments 

showed an average of 700%-days.  

With respect to the spatial distribution, joint-count analyses, a more general method than the 

ordinary runs test (Madden et al., 2007), were applied to determine the pattern of diseased 

plants within the rows. In experiments 1 and 3, the spatial distribution of diseased plants 

within rows was aggregated, while in experiments 2 and 4 a random pattern was observed. In 

experiment 2, initially many experimental plants were removed and replaced because they 

were infected by P. aphanidermatum from the contaminated substrate. This may have 

influenced the disease pattern of BLM. On the other hand, at some dates the number of 

diseased plants was rather small compared to the total number, a fact that should be taken into 

account when the results showing aggregation were interpreted. In some of our cases, for 

instance, aggregation was detected, because of the relatively unlike situation that out of a few 

plants, two neighbouring plants were diseased. The further analyses showed that no gradients 

appeared which would allow concluding about the way used by the pathogen to invade the 

greenhouses. So far the inoculum source of P. fuligena in- and outside the greenhouses could 

not be identified. It could be plant debris from the campus, infected tomatoes sold at the 

nearby vegetable market or alternative host plants.

In addition to the horizontal BLM distribution within rows, the vertical distribution of BLM 

on tomato plants was analysed showing that nearly one third of the leaves (from the top) 

stayed symptom free. This might be due to the fact that new leaves continuously develop, 

which stayed symptomless. Mersha (2008) showed the same tendencies in his work.  

P. fuligena preferred fully expanded younger leaves for infection as compared to the older 

leaves, considering the real age of leaves across plant strata. On plants artificially inoculated, 

the lower leaves close to the pot and the leaves on the top stayed relatively disease free. In 

spite of the cumulative trend towards the middle part of the canopy, spore landing and 

infection started randomly from about the 5th to 10th leaf (counted from bottom to top). 
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The other disease of the complex, Pythium root rot, could be a severe soil-borne disease under 

the given conditions. PRR, in literature also named damping off, was more relevant in the 

beginning of the experiments (up to 14 dap), when a huge amount (up to 60%) of plants 

dropped out. These plants were replaced because interactions between both diseases could be 

monitored only on living plants. After replacing the highly affected plants, the drop out 

became less. Thus with this kind of manipulation, the hazardous disease is getting moderate 

allowing the progress of the foliar disease. Heine (2005) pointed out that the damage 

remained at a low level when the host plant had survived the initial stage, and that the further 

impact on plant growth parameters is low. 

P. aphanidermatum was inoculated in two different levels. In addition, two different 

inoculum methods were applied, one using directly the mycelium and the other based on a 

maize mix stock culture, but the overall trend did not significantly differ. To determine the 

concentration needed was difficult in both methods. The inoculation density should give us a 

hint about the existing inoculum amount in the substrate and should reveal mistakes of too 

strong inoculation before the experiment started.  

Possible ways to determine the inoculum concentration could be to weigh the mycelium used 

or to enumerate the oospores of the inoculum solution under the microscope. The problem of 

the first method is that mycelium includes not only hyphae and spores but also propagation 

material which then is also weighed. With the second method, the inoculum density can be 

determined more accurately than with the mycelium weighing. However, the equation “1 

oospore = 1 colony” is not valid because the oospores are only the “collecting box” for the 

spores (Grosch and Schwarz, 1998). Nevertheless, it is possible to count the single spores 

after dissolving them from the oospores with chemotactical impulses and isolation from other 

particles of the sample (Martin, 1992). For future research we recommend an additional 

counting of the oospores (Grosch and Schwarz, 1998) and re-isolation and enumeration of the 

pure spores (Moorman, 1996). 

To detect the type of interaction between both diseases, plant growth parameters and yield 

were analysed, but the experimental results were very heterogeneous, showing no clear trend. 

Both diseases together did not reduce the parameters, e.g. shoot dry weight, root weight, fresh 

weight, as much as the sum of both diseases acting individually. In 65% of the experiments, 

the combined loss was smaller than the sum of the single losses. Thus, in most cases the 

diseases were negatively interacting, but also exceptions occurred. 

Fruit weight was taken continuously during the yielding of the tomato plants or discretely at 

the sampling days. The yields in our experiments were lower than the expected values from 
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the seed supplier. Maximum yield losses of 25% were measured. Mersha (2008) showed that 

there was a clear tendency of higher yield during the cool-dry seasons as compared to the hot-

wet seasons. He reported yield losses of 31.10% due to BLM, but pointed out that yield loss 

attributed to BLM might not be as high as those due to other tomato foliar diseases, such as 

bacterial spot, early and late blight or Septoria leaf spot (Hartman and Wang, 1992). This 

might be mainly because of the late beginning of epidemics as well as the restriction of BLM 

to the lower stratum of the canopy. 

Our results showed the same tendencies as those of Kleinhenz et al. (2006), who confirmed 

that most of the fruits produced were non-marketable, with a fruit fresh weight averaging of 

32 g fruit-1.  

In the second experiment, heavy losses occurred caused by substrate contamination. As the 

plants of the control treatments were raised under special hygienic provisions, any kind of 

contamination during the experiment could be excluded. Nevertheless, in the pots with dead 

plants P. aphanidermatum could be re-isolated although no inoculation of this pathogen has 

taken place. In other samples of the substrate lot, a contamination with P. aphanidermatum

was observed, too. Although this substrate was ordered from a company that disinfected soil 

by steaming, the substrate was contaminated with P. aphanidermatum. Therefore, it was 

decided to use the antagonist T. harzianum that had positive side effects by increasing several 

plant growth parameters, like fresh weight and leaf area. Therefore it could be considered as 

plant strengtheners. In addition, it could be investigated if T. harzianum had as well 

antagonistic effects against BLM and if a disease reduction would be possible by foliar 

applications. 

As there are still a lot of questions open, we strongly emphasize the need for more studies 

dealing with disease complexes of tomatoes and interactions in- and outside the greenhouses, 

in order to develop adequate management strategies to control simultaneously occurring 

diseases. 
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Figure 6.2: Spatial patterns of Pseudocercospora fuligena diseased plants in the greenhouse at four disease 
                assessment dates (7, 14, 21 and 28 dap) of the 1st experiment, n=360, variety: ´New King Kong´. 
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Figure 6.3: Spatial patterns of Pseudocercospora fuligena diseased plants in the greenhouse at four disease 
                assessment dates (7, 14, 21 and 28 dap) of the 2nd experiment, n=360, variety: ´King Kong 2´. 
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Figure 6.4: Spatial patterns of Pseudocercospora fuligena diseased plants in the greenhouse at four disease 
                assessment dates (7, 14, 21 and 28 dap) of the 3rd experiment, n=360, variety: ´King Kong 2´. 
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Figure 6.5: BLM incidence of leaves in the greenhouse at 12 assessment days (7 till 84 dap) in experiment 1. 
                Incidence is calculated as the average of three plants.  
                Notice the change of the disease scale at 49 dap (from 40 to 100%).
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98 dap       112 dap 

Figure 6.6: BLM incidence of leaves in the greenhouse at 12 assessment days (7 till 84 dap) in experiment 3. 
                Incidence is calculated as the average of three plants.  
                Notice the change of the disease scale at 42 dap (from 40 to 100%).
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Figure 6.7: Vertical distribution of BLM severity (%) on leaves of tomato plants of the tomato variety ‘King Kong 
2’ at different dap in experiment 2. Treatments: BLM0 – with control of BLM, and BLM1 – without 
control of BLM; P0- non-inoculated, P1- low level and P2- high level of P. aphanidermatum.
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Figure 6.8: Vertical distribution of BLM severity (%) on leaves of tomato plants of the tomato variety ‘King Kong 
2’at different dap in experiment 3. Treatments: BLM0 – with control of BLM, and BLM1 – without 
control of BLM; P0- non-inoculated, P1- low level and P2- high level of  
P. aphanidermatum. 
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Table 6.1: Maximum %-disease severity, per plant, leaf position with the maximum disease severity, highest leaf 
               position insertion with disease symptoms and total number of leaves, for experiment 2 

Treatment Total no. of leaves  Highest leaf insertion 

with symptoms 

(position bottom to top)

max disease 

severity (%, at 112 

dap)

Leaf position of max. 

severity 

P0*–BLM0 42.50 (± 0.65) 32   5.53 (±   1.96) 13 

P1*–BLM0 42.50 (± 0.77) 31   8.50 (±   3.16) 12 

P2*–BLM0 42.91 (± 0.48) 32   5.00 (±   2.65)  9 

P0*–BLM1 39.36 (± 0.88) 32 15.50 (±   2.94) 21 

P1*–BLM1 40.25 (± 0.53) 32 17.50 (±   8.29) 11 

P2*–BLM1 42.66 (± 0.55) 31 24.50 (± 11.72) 11 

Table 6.2: Maximum %-disease severity, per plant, leaf position with the maximum disease severity, highest leaf 
               position insertion with disease symptoms and total number of leaves, for experiment 3 

Treatment Total no. of leaves  Highest leaf insertion 

with symptoms 

(position bottom to top)

max disease 

severity (%, at 112 

dap)

Leaf position of max. 

severity 

P0T–BLM0 45.77 (± 2.39) 33 13.11 (± 4.04) 11 

P1–BLM0 47.88 (± 1.48) 41   7.88 (± 3.20) 11 

P2–BLM0 47.33 (± 1.33) 35   6.88 (± 2.12) 12 

P0T–BLM1 47.55 (± 1.09) 43 18.88 (± 6.27) 13 

P1–BLM1 46.88 (± 0.85) 39 16.22 (± 5.07) 11 

P2–BLM1 48.11 (± 0.35) 38 26.66 (± 4.40) 11 
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Table 6.3 – 6.17 

The Data of each experiment were subjected of a two-way analysis of variance (ANOVA) and 
means separated by LSD (p < 0.05). The two factors, investigated, are the influence of PRR
within column (characterized with small letters), BLM within rows (marked with capital letters), 
and Interactions (characterized with *** at the value). Means followed by the same letter are not 
significantly different (P = 0.05). 

Table 6.3 Fresh weight, Experiment 1

Experiment 1; 28 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0 594.67 ± 43.63 344.88 ± 43.63 a 
P1 443.27 ± 43.63 372.51 ± 43.63 a 
P2 518.09 ± 43.63 267.68 ± 45.57 a 

Statistic for BLM A B  

Experiment 1; 56 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0 762.24 ± 64.33 755.98 ± 67.19 a 
P1 596.95 ± 64.33 490.37 ± 67.19 b 
P2 703.18 ± 64.33 470.94 ± 64.33 b 

Statistic for BLM A B  

Experiment 1; 84 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0 1029.71 ± 69.56 660.37 ± 72.66 a 
P1   790.30 ± 69.55 509.71 ± 69.56 b 
P2   686.94 ± 69.56 545.16 ± 72.66 b 

Statistic for BLM A B  

Table 6.4 Fresh weight, Experiment 2 

Experiment 2; 28 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0* 185.25 ± 22.87 130.83 ± 22.87 a 
P1*      140.33 ± 22.87***      252.00 ± 22.87*** a 
P2*      127.25 ± 22.87***      254.67 ± 22.87*** a 

Statistic for BLM B A  

Experiment 2; 56 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0* 843.08 ± 65.65 655.92 ± 65.64 a 
P1* 856.83 ± 65.64 823.50 ± 65.65 a 
P2* 809.09 ± 68.57 890.30 ± 71.93 a 

Statistic for BLM A A  
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Experiment 2; 84 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0* 1409.50 ± 73.41 1097.18 ± 76.67 b 
P1* 1515.83 ± 73.41 1339.83 ± 73.41 a 
P2* 1406.25 ± 73.41 1398.25 ± 73.41 a 

Statistic for BLM A B  

Table 6.5 Fresh weight, Experiment 3 

Experiment 3; 28 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0T 204.01 ± 7.85*** 212.99 ± 7.85*** a 
P1   71.20 ± 7.85*** 127.01 ± 7.85*** b 
P2   72.69 ± 7.85*** 108.10 ± 7.85*** b 

Statistic for BLM B A  

Experiment 3; 56 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0T 579.46 ± 34.79 629.17 ± 34.79 a 
P1 427.72 ± 39.45 458.47 ± 34.79 b 
P2 471.80 ± 34.79 460.08 ± 34.79 b 

Statistic for BLM B A  

Experiment 3; 84 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0T 870.37 ± 27.31 903.15 ± 27.31 a 
P1 677.40 ± 27.31 783.73 ± 27.31 b 
P2 662.18 ± 27.31 766.07 ± 27.31 b 

Statistic for BLM B A  

Experiment 3; 112 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0T 1112.95 ± 62.18 907.99 ± 82.18 a 
P1   871.18 ± 82.18 893.66 ± 82.18 a 
P2   739.23 ± 82.18 926.53 ± 82.18 a 

Statistic for BLM A A  

Table 6.6 Fresh weight, Experiment 4

Experiment 4; 112 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for  

T. harzianum

P0   987.89 ± 48.43 1061.38 ± 48.43 a 
P0T 1010.11 ± 48.43 1159.88 ± 48.43 a 

Statistic for BLM B A  
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Table 6.7 Dry weight, Experiment 1 

Experiment 1; 28 dap 
  BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) Statistic for PRR 

P0 82.84 ± 6.63 54.51 ± 6.63 a 
P1 63.31 ± 6.63 56.15 ± 6.63 a 
P2 73.68 ± 6.63 40.99 ± 6.92 a 

Statistic for BLM A B  

Experiment 1; 56 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0 97.52 ± 9.39 111.65 ± 9.39 a 
P1 80.59 ± 9.39   87.20 ± 9.39 a 
P2 98.60 ± 9.39   77.07 ± 9.39 a 

Statistic for BLM A A  

Experiment 1; 84 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0 163.33 ± 11.66 123.20 ± 11.66 a 
P1 135.17 ± 11.66   93.76 ± 11.66 b 
P2 112.13 ± 11.66 101.20 ± 12.18 b 

Statistic for BLM A B  

Table 6.8 Dry weight, Experiment 2 

Experiment 2; 28 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0* 21.16 ± 2.54 16.33 ± 2.54 a 
P1* 16.91 ± 2.54 27.33 ± 2.54 a 
P2* 14.33 ± 2.54 17.25 ± 2.54 a 

Statistic for BLM A A  

Experiment 2; 56 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0* 122.75 ± 9.00         80.75 ± 9.00*** a 
P1* 113.25 ± 9.00 114.09 ± 9.40 a 
P2* 106.64 ± 9.04 119.60 ± 9.80 a 

Statistic for BLM A A  

Experiment 2; 84 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0* 213.17 ± 8.67 184.45 ± 9.00 b 
P1* 231.83 ± 8.67 212.75 ± 8.67 a 
P2* 234.17 ± 8.67 210.25 ± 8.67 a 

Statistic for BLM A B  
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Table 6.9 Dry weight, Experiment 3 

Experiment 3; 28 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0T 26.57 ± 0.85 25.01 ± 0.85 a 
P1 10.21 ± 0.85 15.88 ± 0.85 b 
P2   9.86 ± 0.85 13.53 ± 0.85 b 

Statistic for BLM B A  

Experiment 3; 56 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0T 101.11 ± 5.75 97.50 ± 5.75 a 
P1   73.95 ± 6.52 72.98 ± 5.75 b 
P2   78.73 ± 5.75 73.20 ± 5.75 b 

Statistic for BLM A A  

Experiment 3; 84 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0T 157.65 ± 5.77 145.70 ± 5.77 a 
P1 123.75 ± 5.77 129.22 ± 5.77 ab 
P2 115.09 ± 5.77 124.19 ± 5.77 b 

Statistic for BLM A A  

Experiment 3; 112 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0T 186.52 ± 12.64 148.02 ± 12.64 a 
P1 156.88 ± 12.64 147.51 ± 12.64 a 
P2 135.28 ± 12.64 152.64 ± 12.64 a 

Statistic for BLM A A  

Table 6.10 Leaf area, Experiment 1

Experiment 1; 28 dap 
 BLM0 

Mean value ± SE, (cm2) 
BLM1 

Mean value ± SE, (cm2) 
Statistic for PRR 

P0 3751.53 ± 288.77 2137.75 ± 288.77 a 
P1 3126.84 ± 288.77 2493.08 ± 288.77 a 
P2 3325.27 ± 288.77 1771.96 ± 301.61 a 

Statistic for BLM A B  

Experiment 1; 56 dap 
 BLM0 

Mean value ± SE, (cm2) 
BLM1 

Mean value ± SE, (cm2) 
Statistic for PRR 

P0 3370.73 ± 287.73 2195.65 ± 287.73 a 
P1 3217.21 ± 287.73 1951.42 ± 287.73 a 
P2 3790.09 ± 287.73 2307.59 ± 300.53 a 

Statistic for BLM A B  
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Experiment 1; 84 dap 
 BLM0 

Mean value ± SE, (cm2) 
BLM1 

Mean value ± SE, (cm2) 
Statistic for PRR 

P0 3447.64 ± 323.17 1101.56 ± 323.17 a 
P1 3121.81 ± 323.17 1562.05 ± 323.17 a 
P2 3053.62 ± 323.17 1187.25 ± 337.54 a 

Statistic for BLM A B  

Table 6.11 Leaf area, Experiment 2  

Experiment 2; 28 dap 
 BLM0 

Mean value ± SE, (cm2) 
BLM1 

Mean value ± SE, (cm2) 
Statistic for PRR 

P0*    2163.00 ± 22.14 1655.50 ± 22.14*** ab 
P1*    1738.50 ± 22.14*** 2791.58 ± 22.14*** a 
P2*    1561.58 ± 22.14***     1680.25 ± 22.14 b 

Statistic for BLM A A  

Experiment 2; 56 dap 
 BLM0 

Mean value ± SE, (cm2) 
BLM1 

Mean value ± SE, (cm2) 
Statistic for PRR 

P0* 8330.92 ± 449.99 6281.75 ± 449.99*** a 
P1*       8234.00 ± 449.99***    7372.58 ± 449.99 a 
P2* 7443.27 ± 470.00    7831.80 ± 492.94 a 

Statistic for BLM A B  

Experiment 2; 84 dap 
 BLM0 

Mean value ± SE, (cm2) 
BLM1 

Mean value ± SE, (cm2) 
Statistic for PRR 

P0*   9974.58 ± 676.36   8679.18 ± 706.44 a 
P1*   9339.58 ± 676.36 10380.00 ± 676.36 a 
P2* 10335.00 ± 676.36   9855.00 ± 676.36 a 

Statistic for BLM A A  

Table 6.12 Leaf area, Experiment 3

Experiment 3; 28 dap 
 BLM0 

Mean value ± SE, (cm2) 
BLM1 

Mean value ± SE, (cm2) 
Statistic for PRR 

P0T    2357.66 ± 112.97 2567.26 ± 112.97 a 
P1   982.36 ± 112.97*** 1860.12 ± 112.97 b 
P2 1095.20 ± 112.97*** 1640.02 ± 112.97 b 

Statistic for BLM B A  
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Experiment 3; 56 dap 
 BLM0 

Mean value ± SE, (cm2) 
BLM1 

Mean value ± SE, (cm2) 
Statistic for PRR 

P0T 4763.96 ± 361.47 6138.89 ± 361.47 a 
P1 3992.84 ± 409.87 4781.29 ± 361.47 b 
P2 4243.74 ± 361.47 5038.82 ± 361.47 b 

Statistic for BLM B A  

Experiment 3; 84 dap 
 BLM0 

Mean value ± SE, (cm2) 
BLM1 

Mean value ± SE, (cm2) 
Statistic for PRR 

P0T 6021.38 ± 331.29 7718.90 ± 331.29 a 
P1 5113.38 ± 331.29 7276.25 ± 331.29 a 
P2 5072.88 ± 331.29 7139.61 ± 331.29 a 

Statistic for BLM B A  

Experiment 3; 112 dap 
 BLM0 

Mean value ± SE, (cm2) 
BLM1 

Mean value ± SE, (cm2) 
Statistic for PRR 

P0T 6281.78 ± 810.48 5671.40 ± 810.48 a 
P1 5714.58 ± 810.48 6488.94 ± 810.48 a 
P2 4913.52 ± 810.48 6809.98 ± 810.48 a 

Statistic for BLM A A  

Table 6.13 Leaf area, Experiment 4 

Experiment 4; 112 dap 

 BLM0 
Mean value ± SE, (cm2) 

BLM1 
Mean value ± SE, (cm2) 

Statistic for  
T. harzianum

P0 4940.88 ± 363.67 6332.72 ± 363.67 b 
P0T 5186.59 ± 363.67 7607.08 ± 363.67 a 

Statistic for BLM B A  

Table 6.14 Root weight, Experiment 1

Experiment 1; 28 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0 97.67 ± 9.97         69.99 ±   9.97 a 
P1 67.06 ± 9.97         74.10 ±   9.97 a 
P2 60.40 ± 9.97 67.95 ± 10.42 a 

Statistic for BLM A A  

Experiment 1; 56 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0 95.77 ± 13.75 110.18 ± 13.75 a 
P1 89.07 ± 13.75 100.72 ± 13.75 a 
P2 90.03 ± 13.75   83.49 ± 13.75 a 

Statistic for BLM A A  
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Experiment 1; 84 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0 148.42 ± 14.47 78.47 ± 14.47 a 
P1 124.30 ± 14.47 92.90 ± 14.47 a 
P2   97.68 ± 14.47 87.18 ± 15.12 a 

Statistic for BLM A B  

Table 6.15 Root weight, Experiment 2 

Experiment 2; 28 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0* 20.50 ± 2.39 18.00 ± 2.39 a 
P1* 16.00 ± 2.39 23.50 ± 2.39 a 
P2* 13.00 ± 2.39 19.66 ± 2.39 a 

Statistic for BLM A A  

Experiment 2; 56 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0* 57.23 ± 4.69*** 40.18 ± 5.10*** a 
P1* 52.75 ± 4.88*** 48.00 ± 4.88*** a 
P2* 49.00 ± 5.10*** 59.30 ± 5.35*** a 

Statistic for BLM A A  

Experiment 2; 84 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0* 64.41 ± 3.16 54.66 ± 3.16 a 
P1* 65.58 ± 3.16 56.75 ± 3.16 a 
P2* 66.16 ± 3.16 54.08 ± 3.16 a 

Statistic for BLM A B  

Table 6.16 Root weight, Experiment 3 

Experiment 3; 28 dap 
 BLM 0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0T 30.61 ± 1.83 27.90 ± 1.83 a 
P1   7.85 ± 1.83 12.70 ± 1.83 b 
P2   6.70 ± 1.83 10.62 ± 1.83 b 

Statistic for BLM A A  

Experiment 3; 56 dap 
 BLM 0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0T 81.83 ± 4.43 66.29 ± 4.43 a 
P1 57.37 ± 5.03 39.98 ± 4.43 b 
P2 53.55 ± 4.43 43.87 ± 4.43 b 

Statistic for BLM A B  
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Experiment 3; 84 dap 
 BLM 0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0T 99.23 ± 5.42 107.94 ± 5.42 a 
P1       55.32 ± 5.43***         69.06 ± 5.42*** b 
P2       69.43 ± 5.42***         47.85 ± 5.42*** b 

Statistic for BLM A A  

Experiment 3; 112 dap 
 BLM 0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for PRR 

P0T 107.78 ± 6.00 88.67 ± 6.00 a 
P1   57.21 ± 6.00 53.05 ± 6.00 b 
P2   58.69 ± 6.00 54.78 ± 6.00 b 

Statistic for BLM A A  

Table 6.17 Root weight, Experiment 4  

Experiment 4; 112 dap 
 BLM0 

Mean value ± SE, (g) 
BLM1 

Mean value ± SE, (g) 
Statistic for  

T. harzianum

P0 92.79 ± 6.95 102.19 ± 6.95 a 
P0T     107.31 ± 6.95***         77.80 ± 6.95*** a 

Statistic for BLM A A  
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