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Zusammenfassung 
 

 

Die Pilzart Trichoderma harzianum ist bekannt als Antagonist gegenüber einem breiten 

Spektrum an phytopathogenen Pilzen. Einige Isolate von T. harzianum sind in Form von 

kommerziellen Präparaten erhältlich und lassen sich so in integrierten oder ökologischen 

Pflanzenproduktionssystemen einsetzen. Um die Entwicklung anderer Pilze zu 

kontrollieren bzw. zu hemmen, nutzt T. harzianum verschiedene antagonistische 

Mechanismen wie Konkurrenz, Parasitismus, Antibiose oder die Induktion von 

Resistenzen in Pflanzen. 

Ziel dieser Dissertation war es, Profile über das antagonistische Potential von sechs 

T. harzianum-Isolaten zu erstellen, von denen fünf aus kommerziellen Produkten 

stammten. Darüber hinaus sollten die von ihnen genutzten antagonistischen 

Mechanismen evaluiert werden. Hierbei lag das Hauptaugenmerk auf der Kontrolle des 

Bohnenrosterregers Uromyces appendiculatus. 

Die sechs T. harzianum-Isolate wurden hinsichtlich ihres Wachstumsverhaltens, 

ihrer Konkurrenzkraft und mykoparasitischen Aktivität, der Produktion extrazellulärer 

Enzyme mit lytischer Funktion und der Absonderung gasförmiger und nicht-gasförmiger 

Metabolite mit antifungaler Wirkung untersucht. Die daraus resultierenden Profile 

enthalten Informationen bezüglich der Wachstumsrate und des Sporulationspotentials der 

T. harzianum-Isolate sowie ihrer Kompetitivität und parasitischen Aktivität gegenüber 

Botrytis cinerea, Pythium ultimum und Rhizoctonia solani. Die lytische Aktivität der 

abgesonderten Zellulase, Glukanase, Chitinasen und Proteasen wurde auf festen 

Agarmedien und in Flüssigkultur festgestellt. Darüber hinaus wurde der antibiotische 

Einfluss von Metaboliten, die in flüssiges Kulturmedium abgegeben wurden, und der 

Einfluss von gasförmigen Metaboliten auf verschiedene Phytopathogene ermittelt. 

Diese experimentell in vitro gewonnenen Daten vermitteln einen interessanten 

Eindruck über die Eigenschaften und Möglichkeiten der T. harzianum-Isolate. Dabei wird 

die große Variabilität innerhalb der Art T. harzianum herausgestellt. Diese macht es 

notwendig, umfangreiche Untersuchungen durchzuführen, um einzelne Isolate zu finden, 

die den Anforderungen genügen, die von der Wissenschaft, aber auch durch die 

praktische Nutzung in Form kommerzieller Produkte an sie gestellt werden. 

Sporensuspensionen und Kulturfiltrate der sechs T. harzianum-Isolate wurden 

hinsichtlich ihrer Fähigkeit evaluiert, Infektionen von Bohnenblatt-Scheiben durch 

U. appendiculatus zu reduzieren sowie die Keimung und das Keimschlauchwachstum von 

Uredosporen des Bohnenrosterregers zu verhindern. Die Wirkung von protektiven 

Behandlungen mit T. harzianum reichte von keinem sichtbaren Effekt bis zu einer 
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Verringerung der Anzahl an Rostpusteln von über 50%. Zwischen dem Wirkungsgrad der 

Sporensuspensionen in den Blattscheiben-Experimenten und dem Wirkungsgrad von 

Kulturfiltraten der entsprechenden T. harzianum-Isolate in Keimtests ließen sich 

interessante Übereinstimmungen feststellen. Dies weist darauf hin, dass die antifungalen 

Effekte von Sporensuspension und Kulturfiltrat des jeweiligen T. harzianum-Isolats 

zumindest teilweise durch die gleichen sekundären, antibiotisch wirkenden Metabolite 

verursacht werden. 

Die Wirkung von Sporensuspensionen und Kulturfiltraten der effektivsten 

T. harzianum-Isolate T12 und TU gegenüber dem Bohnenrosterreger konnten in 

Gewächshausexperimenten bestätigt werden. Auch hier ließ sich die Wirkung einer 

protektiven Behandlung der Blattflächen von Bohnenpflanzen mit den Agenzien durch 

Antibiose erklären. Zusätzlich wurde die Induktion systemischer Resistenz in 

angrenzenden Fiederblättern festgestellt. Diese wurde insbesondere durch das Isolat TU 

ausgelöst.  

Durch das Benetzen von Bohnensaatgut mit Sporensuspensionen und die 

Applikation von T. harzianum-Sporen in das Substrat wurde keine Erhöhung der 

Widerstandsfähigkeit gegenüber dem Bohnenrost erreicht. Stattdessen kam es zu einem 

verringerten Wachstum der so behandelten Pflanzen. 

Abschließend wurden Profile der sekundären Metabolite, die von den sechs 

T. harzianum-Isolaten produziert worden waren, erstellt. Die Analyse dieser Profile hatte 

die Identifikation solcher Substanzen zum Ziel, die möglicherweise für die antibiotischen 

Effekte der Kulturfiltrate verantwortlich waren. Dabei wurden mehrere Substanzen 

gefunden, deren molekulare Massen mit denen von bekannten sekundären Metaboliten 

von T. harzianum übereinstimmten. Diese wurden im Hinblick auf ihren potentiellen 

Einfluss insbesondere auf die Interaktion zwischen dem produzierenden T. harzianum-

Isolat und dem Bohnenrosterreger U. appendiculatus evaluiert. 
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Abstract 
 

 

The fungal species Trichoderma harzianum is well-known for its antagonism towards a 

wide range of phytopathogenic fungi. Several strains of T. harzianum have been 

formulated into preparations, which are commercially available for use in integrated and 

ecological plant production systems. To exert its activity in terms of controlling or inhibiting 

the development of other fungi, T. harzianum employs several antagonistic mechanisms 

like competition, parasitism, antibiosis, or the induction of plant resistance. 

The aim of this thesis was to create profiles of the antagonistic potential of six 

T. harzianum strains, five of them being isolated from commercial products, and to 

evaluate the antagonistic mechanisms employed by them with emphasis on the control of 

the bean rust fungus Uromyces appendiculatus. 

The six T. harzianum strains were tested for their growth performance, their 

competitive and mycoparasitic activity, their production of extracellular enzymes with lytic 

function, and the release of volatile and non-volatile metabolites with antifungal activity. 

The resulting profiles contain information on mycelial growth rate and sporulation potential 

of the T. harzianum strains, on their competitiveness and their parasitic activity towards 

Botrytis cinerea, Pythium ultimum, and Rhizoctonia solani. The lytic activity of secreted 

cellulase, glucanase, chitinases, and proteases was determined on solid agar and in liquid 

culture medium. Furthermore, the antibiotic activity of non-volatile metabolites secreted 

into the liquid culture medium as well as the impact of volatile metabolites on various 

phytopathogens was assessed. 

These data give an interesting insight into the properties and in vitro capabilities of 

the T. harzianum strains and emphasize the high variability within the species 

T. harzianum, which makes it necessary to perform extensive screenings to find single 

strains that sufficiently meet the needs of scientists or users of commercially formulated 

products. 

Spore suspensions and culture filtrates of the six T. harzianum strains were 

evaluated regarding their ability to reduce infection of bean leaf discs by 

U. appendiculatus and to inhibit germination and germ tube growth of bean rust 

uredospores. Efficacy levels of protective T. harzianum treatments ranged from 

ineffectiveness to a reduction of the number of rust pustules of more than 50%. An 

interesting correlation between the efficacy levels of Trichoderma spore suspensions in 

leaf disc assays and that of the respective culture filtrates in germination tests was found. 

This points to the fact that the antifungal effects of spore suspension and culture filtrate of 
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the same T. harzianum strain are at least partly caused by the same secondary 

metabolites with antibiotic properties. 

The bean rust controlling efficacy of spore suspensions and culture filtrates of the 

most effective T. harzianum strains T12 and TU could be confirmed in greenhouse 

experiments, if the agents were applied as a protective treatment to the leaf surface of 

bean plants. This activity was consequently explained by antibiosis. Moreover, induction 

of systemic resistance in adjacent leaflets was observed especially for strain TU. 

Application of T. harzianum spores to the seed or into the substrate failed to increase 

bean plant resistance and yielded negative growth responses. 

Last but not least, secondary metabolite profiles of the six T. harzianum strains were 

generated and analysed aiming at the identification of compounds potentially responsible 

for the antifungal effects of T. harzianum culture filtrates. Several compounds with 

molecular masses that corresponded to those of known secondary metabolites of 

T. harzianum were found and evaluated with respect to their potential impact especially on 

the interaction between the producing T. harzianum strain and the bean rust fungus 

U. appendiculatus. 
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General Introduction (1) 

1 

1. General Introduction 
 

 

A wide range of microorganisms and naturally produced substances like plant-derived 

botanicals or antibiotic metabolites of microbial origin are classified as biopesticides. 

Despite the fact that the biopesticide share represents only little more than one percent of 

the total world pesticide market, organisms and compounds with biopesticidal activity are 

increasingly recognized as valuable components of plant protection systems (COPPING 

and MENN, 2000). Although biopesticides have several disadvantages compared to 

chemical pesticides, e.g. inconsistent field performance, limited shelf-life, and possibly 

higher economical costs, those critical aspects may be attenuated by a number of 

advantages which result from the usage of biological pesticides: (1) a strongly reduced 

activity or toxicity towards non-target organisms, (2) an optimised pesticide resistance 

management due to a broader range of applicable pesticidal agents, (3) the possibility of 

combining conventional and biological means of disease control, thereby reducing the 

output of synthetic chemicals, (4) greater acceptance by the consumer which is proven by 

increasing sales of organically produced food, and (5) an easier and less expensive 

registration process for biopesticides, at least in the US (COPPING and MENN, 2000). 

 

The genus Trichoderma is well-known for the biopesticidal activity of a large number 

of strains from several Trichoderma species (HARMAN and BJÖRKMAN, 1998) as well as of 

many secondary metabolites produced by these strains (SIVASITHAMPARAM and 

GHISALBERTI, 1998; SZEKERES et al., 2005). In fact, Trichoderma spp. are soil-borne, 

saprophytically living fungal organisms (KLEIN and EVELEIGH, 1998), but many strains of 

several Trichoderma species have developed mechanisms of antagonistic activity towards 

other microorganisms (HJELJORD and TRONSMO, 1998). The parasitism of Trichoderma 

spp. on other fungi and the secretion of a “lethal principle” with antibiotic properties are 

known since 75 years (WEINDLING, 1932, 1934). Today, the array of known mechanisms 

of Trichoderma antagonism comprises (1) competition for space and nutrients (ELAD, 

1996; SIVAN and CHET, 1989), (2) mycoparasitic activity (CHET et al., 1998) and 

(3) antibiosis (HOWELL, 1998), (4) the degradation of enzymes which enable 

phytopathogens to exploit plant tissue (ELAD and KAPAT, 1999; KAPAT et al., 1998) or 

(5) the degradation of substances of plant origin necessary for the elicitation of 

phytopathogenic activity (HOWELL, 2002), and (6) the induction of plant resistance against 

fungal, bacterial, or viral diseases (HARMAN et al., 2004). 

The diversity of these mechanisms is nicely demonstrated by several publications of 

HOWELL from the past 25 years. He found that the infection of cotton plants with 
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Pythium ultimum could be reduced by specific strains of T. virens and explained this 

activity with (1) parasitism, after observing parasitic interactions between antagonist and 

phytopathogen (HOWELL, 1982) and (2) antibiosis, after observing inhibition of Pythium 

pathogenic activity by mycoparasitic-deficient mutants of T. virens (HOWELL, 1991). The 

concept of P. ultimum biocontrol due to (3) systemic resistance induced by T. virens 

through elicitation of terpenoid synthesis in cotton roots was drawn into question, when 

T. virens strains that did not induce terpenoid synthesis were found to retain biocontrol 

efficacy (HOWELL, 2002). After mutants deficient for each of the above mentioned 

mechanisms still were able to control P. ultimum on cotton, it was demonstrated that the 

disease reducing effect was based on (4) the degradation of specific compounds from 

plant root exudates by T. virens, which otherwise would have induced germination of 

P. ultimum sporangia (HOWELL, 2002). 

In general, single mechanisms, but also each possible combination of the 

mechanisms mentioned above may confer disease-reducing activity to antagonistic 

Trichoderma strains (HARMAN, 2000). 

During the last 30 years, a vast number of Trichoderma isolates from diverse 

habitats were screened for their antagonistic potential yielding a great amount of scientific 

publications and few commercial products (HARMAN and BJÖRKMAN, 1998; MONTE, 2001). 

Extensive screenings were mostly done in vitro and promising candidates tested later on 

in vivo. Unfortunately, strains having an interesting profile of antagonistic activity in vitro 

may be much less effective in field experiments due to numerous environmental 

conditions that are not sufficiently simulated in the laboratory (HANNUSCH and BOLAND, 

1996; HARMAN, 2006). Nonetheless, screening of Trichoderma strains in vitro and profiling 

the features of those strains demonstrating activity against phytopathogenic target fungi 

still is a valuable way of getting accustomed to promising Trichoderma strains. 

 

Because Trichoderma spp. are soil-borne fungi, antagonistic strains were 

successfully applied as biopesticides or biological control agents (BCAs), as they are 

termed more often, mostly against soil-borne phytopathogens like Fusarium spp. (SIVAN 

and CHET, 1989), Pythium ultimum (HOWELL, 2002), Rhizoctonia solani (PAULA JÚNIOR 

et al., 2007), or nematodes (SHARON et al., 2001). Nevertheless, some strains have also 

been used as agents of foliar pathogen control e.g. against Botrytis cinerea (ELAD, 1996), 

Sphaerotheca fusca (ELAD et al., 1998), or Crinipellis perniciosa (SANOGO et al., 2002). 

Only few publications report the control of rust fungi by means of Trichoderma spp. 

(GOVINDASAMY and BALASUBRAMANIAN, 1989; KAPOORIA and SINHA, 1969; LEVINE et al., 

1936; SALLAM, 2001; SINHA and BAHADUR, 1974; TOSI and ZAZZERINI, 1994; ZADE et al., 

2005).  
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The life cycle of the biotrophic and partly heteroecious rust fungi consists of up to 

five different spore stages, which infect the host quickly after landing on it, develop an 

intercellular mycelium within the host plant’s tissue, and give rise to pustules containing 

populations of spores of the next life stage. In the life cycles of most rust fungi, one of the 

spore stages develops repeatedly, which leads to mass reproduction of the fungal 

organism through multiple generations. For Uromyces appendiculatus (Pers.) Unger, an 

autoecious, macrocyclic rust fungus causing serious rust epidemics on edible dry bean 

Phaseolus vulgaris L. in regions with extensive bean production in North, Middle, and 

South America and several African countries, mass reproduction takes place at the 

uredospore stage, which causes the typical disease symptoms of spot-like, brown rust 

pustules (DE JESUS JUNIOR et al., 2001; HABTU and ZADOKS, 1995; MCMILLAN et al., 2003; 

MMBAGA et al., 1996). 

As the majority of rust mycelial growth takes place endophytically below the 

epidermal cells (HEATH, 1997), the control of rust fungi with mycoparasites can only take 

place after appearance of the rust symptoms. When the rust pustules rupture through the 

epidermal cell layers, the rust fungus re-appears at the leaf surface and its spores can be 

attacked by parasites, thereby decreasing the number of viable propagules and controlling 

the subsequent spread of the disease (SAKSIRIRAT and HOPPE, 1990). 

If the initial infection of the host shall be controlled, microbial antagonists producing 

antifungal metabolites are more feasible (ANDREWS, 1992) due to inhibition of the 

germination of landed rust spores or by interfering with the growth of emerging germ tubes 

and with the formation of necessary infection structures (BAKER et al., 1983, 1985; YUEN 

et al., 2001).  

Successful control of rust diseases by Trichoderma spp. was mostly explained by 

the activity of secondary metabolites with antifungal properties produced by the used 

strains. Living Trichoderma propagules (GOVINDASAMY and BALASUBRAMANIAN, 1989; 

KAPOORIA and SINHA, 1969; SALLAM, 2001), sterile fluids of germinated Trichoderma spore 

suspensions  (GOVINDASAMY and BALASUBRAMANIAN, 1989; SINHA and BAHADUR, 1974), 

and filtrates of liquid Trichoderma cultures (ZADE et al., 2005) were shown to effectively 

reduce rust infection of plant tissue and thereby decrease disease severity. Parasitic 

activity of Trichoderma strains on rust pustules was observed less often (LEVINE et al., 

1936; TOSI and ZAZZERINI, 1994). 

To the author’s knowledge, nothing is known about Trichoderma-mediated control of 

U. appendiculatus. 
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Repeated evaluations of fungicides registered for use against bean rust 

continuously proved them to be reliable agents of disease control (GENT et al., 2001; 

STUMP et al., 2000). Since no fungicide resistance of U. appendiculatus was reported until 

now, the need to search for other means of bean rust control is not as urgent as in other 

pathosystems (FRAC, 2006). Nevertheless, resistance towards fungicides has been 

observed in other rust fungi (COOK, 2001; DIRKSE et al., 1982) and may therefore develop 

in bean rust as well. But even without the immediate necessity of broadening the 

spectrum of available bean rust controlling agents in terms of fungicide resistance 

management, the replacement of synthetic chemicals by BCAs bearing reduced risks of 

environmental pollution and for the consumer’s health has its very own ethic value 

(RICARD and RICARD, 1997). 

 

The overall objective of the thesis presented here was to evaluate the antagonistic 

potential of six strains of Trichoderma harzianum Rifai, five of them being isolated from 

commercial preparations, with emphasis on bean rust control by means of living 

propagules and of their secondary metabolites with antifungal activity. Four distinct sets of 

in vitro assays, greenhouse experiments, and chemical analyses were conducted to 

gather data on the following four objectives: 

(1) To create profiles on the general antagonistic properties of six T. harzianum strains by 

in vitro evaluation of their growth performance, their competitive and mycoparasitic 

activity, their production of extracellular enzymes with lytic activity, and the release of 

volatile and non-volatile metabolites with antifungal activity. 

(2) To evaluate the antagonistic activity of T. harzianum spore suspensions and the 

antifungal potential of sterile culture filtrates on the infectiousness of U. appendiculatus 

in leaf disc assays and on the process of germination of bean rust uredospores. 

(3) To confirm the observed activity of those T. harzianum strains with the greatest 

efficacy against U. appendiculatus including aspects of resistance inducing and plant 

growth affecting properties of the selected T. harzianum strains in greenhouse 

experiments. 

(4) To analyse the secondary metabolite profiles of the six T. harzianum strains with the 

aim of identifying those compounds responsible for the antibiotic effect of particular 

T. harzianum strains on U. appendiculatus.  

 

Concerning the limited knowledge on Trichoderma-mediated control of rust fungi in 

the scientific literature, the author hopes, that the work presented here may serve as a 

kind of basic reference for future approaches in the field of controlling rust diseases by 

means of the biopesticide aka biological control agent Trichoderma harzianum. 
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2. Antagonistic Profiles of Trichoderma harzianum 

Strains from Commercial Biocontrol Products 
 

 

2.1 Introduction 
 

2.1.1 Overview on Trichoderma antagonism 

The worldwide occurring fungal genus Trichoderma spp. comprises a group of about 

89 named species (SAMUELS, 2006), some of them with great economical importance. 

Examples include T. reesei as a producer of industrially used cellulases (JUHÁSZ et al., 

2004), T. aggressivum as a competitor of the commercial mushroom Agaricus bisporus 

(SAMUELS et al., 2002), Trichoderma species as toxin-producing indoor molds (KUHN and 

GHANNOUM, 2003), and some strains even acting as human pathogens (KREDICS et al., 

2003).  

A very prominent feature of several Trichoderma species is the antagonism exerted 

by these fungi on plant pathogens. T. virens, T. koningii, and mostly T. harzianum 

represent the group of species used as biological control agents (BCAs) in scientifical as 

well as practical approaches (BENITEZ et al., 2004; CHET, 1987; HARMAN, 2000) to control 

fungal diseases of plants on nearly every plant organ. As Trichoderma spp. are soil-borne 

microorganisms, the majority of diseases controlled by them infect the lower parts of the 

plant like roots, root crown, and stem base (HJELJORD and TRONSMO, 1998). Moreover, 

successful attempts have been made to control fungal diseases of upper parts of the plant 

like stem (O’NEILL et al., 1996), leaves (ELAD, 2000a), blossoms (ESCANDE et al., 2002; 

TRONSMO and YSTAAS, 1980), and fruits (HARMAN et al., 1996).  

First observations of the antagonistic properties of Trichoderma spp. were done by 

WEINDLING. He described parasitism (1932) and the production of a “lethal principle”, a 

substance with antifungal acitivity (1934) of T. lignorum against Rhizoctonia solani, two of 

the most important features of BCAs with regard to antagonism. In 1936, WEINDLING and 

EMERSON extracted the “lethal principle” responsible for the antibiotic interaction from a 

Trichoderma culture filtrate. 

Since then, especially from the beginning of the 80s of the 20th century, 

Trichoderma research increased (ELAD et al., 1980, 1983; HOWELL, 1982; TRONSMO and 

YSTAAS, 1980). Until today, an uncountable number of scientific papers concerning 

biology and ecology as well as biocontrol by means of Trichoderma species has been 

published worldwide (HARMAN and KUBICEK, 1998; KUBICEK and HARMAN, 1998). A 

massive amount of molecular biological studies has further increased the knowledge on 
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Trichoderma spp. (KUBICEK et al., 2001; SZEKERES et al., 2005; VITERBO et al., 2002), 

making it one of the most studied fungal BCAs (VINALE et al., 2006).  

The most abundant Trichoderma species, T. harzianum, is a species complex 

comprising a large group of worldwide occurring strains with very diverse properties 

(KUBICEK et al., 2003). Depending on the strains and characteristics studied, this complex 

can be split up in three to five subspecific groups (GRONDONA et al., 1997; HERMOSA et al., 

2004).   

Specific T. harzianum strains have competitive abilities against other fungi (HOWELL, 

2003), especially due to their rhizosphere competence (AHMAD and BAKER, 1987). They 

are known as fungal hyperparasites (BENHAMOU and CHET, 1993, 1997; CORTES et al., 

1998; ELAD et al., 1983) and producers of lytic enzymes (KREDICS et al., 2005; MARKOVICH 

and KONONOVA, 2003; VITERBO et al., 2002) as well as of secondary metabolites with 

antibiotic properties (GHISALBERTI and SIVASITHAMPARAM, 1991; SIVASITHAMPARAM and 

GHISALBERTI, 1998; SZEKERES et al., 2005). They can inhibit pathogenic action by 

degrading the pathogen’s pathogenicity enzymes (ELAD and KAPAT, 1999; KAPAT et al., 

1998) or by inducing systemic resistance in plants (BIGIRIMANA et al., 1997; HARMAN et al., 

2004). 

 

 

2.1.2 Competitive abilities 

The ability of Trichoderma spp. to quickly grow under diverse climatic conditions, to 

occupy free space and to use free nutrients is important to suppress the saprophytic 

growth of soil-borne plant pathogens (NAAR and KECSKES, 1998; SIMON and 

SIVASITHAMPARAM, 1989). Generally, Trichoderma strains have a quick growing mycelium 

(MANCZINGER et al., 2002a), which sporulates profusely, increasing its population and 

facilitating further spread. A broad range of lytic enzymes allows the degradation of 

diverse molecules to gain nutrients (MANCZINGER et al., 2002a). Moreover, the ability to 

grow alongside the developing root, known as rhizosphere competence, enhances the 

biocontrol abilities of Trichoderma strains against soil-borne plant pathogens (AHMAD and 

BAKER, 1987). 

Results from screenings on the climatic requirements for optimal growth of 

Trichoderma strains have been published (DANIELSON and DAVEY, 1973; EASTBURN and 

BUTLER, 1991; KREDICS et al., 2004; TRONSMO and DENNIS, 1978). It was shown that 

selection of Trichoderma strains for specific climatic conditions, e.g. cold-tolerant strains, 

is possible (ANTAL et al., 2000; KÖHL and SCHLÖSSER, 1988; TRONSMO and YSTAAS, 

1980). 
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Dual culture experiments conducted under defined conditions in Petri dishes provide 

information on the antagonistic potential of single Trichoderma strains against selected 

pathogens (ANTAL et al., 2000; ORTIZ and ORDUZ, 2000; SIVAKUMAR et al., 2000). It has to 

be noted that direct transfer of these results to the very diverse habitats outside of the 

laboratory is not possible, due to the partially low predictive value of such results 

(HANNUSCH and BOLAND, 1996; HARMAN, 2006).  

As competitive action is mostly accompanied by other antagonistic events, like 

parasitism, antibiosis, or resistance induction in the host plant, biocontrol was seldomly 

explained by competition alone (HOWELL, 2002; SIVAN and CHET, 1989; ZIMAND et al., 

1995). 

 

 

2.1.3 Parasitic interaction 

WEINDLING (1932) was the first to observe and describe parasitic Trichoderma spp. – 

pathogen interactions in dual culture experiments. He microscopically observed the typical 

coiling of Trichoderma hyphae around the attacked pathogen’s hyphae and the 

subsequent coagulation of the host’s protoplasm. Many parts of the processes during the 

parasitic interaction between Trichoderma strain and pathogen have now been observed 

in more detail (BENHAMOU and CHET, 1993, 1997; ELAD et al., 1983; GUPTA et al., 1999; 

INBAR et al., 1996).  

Confronted with a fungal target organism, a mycoparasitic Trichoderma strain grows 

towards it by chemotactic hyphal branching (LU et al., 2004). It attaches to the host’s 

mycelium via a lectin-mediated recognition mechanism (INBAR and CHET, 1992) and starts 

growing alongside the hyphae of the pathogen or coils around it (BENHAMOU and CHET, 

1993; ELAD et al., 1983; GUPTA et al., 1999; INBAR et al., 1996). Contact to the pathogen is 

further increased by the antagonist by appressoria- or hook-like structures (GUPTA et al., 

1999; INBAR et al., 1996). Penetration of Trichoderma hyphae into the pathogen’s hyphae 

may occur (ELAD et al., 1983; GUPTA et al., 1999; INBAR et al., 1996). The interaction of a 

hyperparasitic Trichoderma strain with the target organism leads to granulation and 

vacuolisation of the protoplasm of attacked cells (INBAR et al., 1996; WEINDLING, 1932), 

perforation of cell walls (ELAD et al., 1983; INBAR et al., 1996), loss of turgor, and collapse 

of cells (BENHAMOU and CHET, 1993; GUPTA et al., 1999).  

Trichoderma spp. – pathogen interactions do not necessarily involve all of these 

steps, as for example coiling around or penetration into the hyphae of the host is not 

always observed. Moreover, bursting and collapsing of mycelial structures can take place 

even without physical contact between Trichoderma spp. and pathogen by means of lytic 
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enzymes or secondary metabolites with antibiotic activity released by the Trichoderma 

strain (GUPTA et al., 1999). 

In dual culture experiments of mycoparasitic Trichoderma strains and target fungi, 

the Trichoderma strain often stops the growth of the pathogen and subsequently grows 

over the mycelium of the target fungus (HARAN et al., 1996; MUKHERJEE and RAGHU, 1997; 

REY et al., 2001). It was found that mycoparasitic activity of Trichoderma spp. on plant 

pathogenic fungi does not only depend on the antagonist strain, but on the host fungus, 

too, because Trichoderma spp. may react in very different ways to different host fungi. For 

example, the same T. harzianum strain produced different chitinolytic enzymes when 

confronted with Rhizoctonia solani or Sclerotium rolfsii, leading to parasitic overgrowth of 

the former pathogen while the latter one was hardly overgrown (HARAN et al., 1996). In a 

successful mycoparasitic interaction, only the Trichoderma strain should be able to grow 

out of such a zone of overgrowth, if samples are placed on fresh medium, indicating the 

killing of the target (MUKHERJEE and RAGHU, 1997; REY et al., 2001).  

Generally, parasitation of soil-borne (BENHAMOU and CHET, 1993; ELAD et al., 1983; 

INBAR et al., 1996; MUKHERJEE and RAGHU, 1997; REY et al., 2001) and foliar (BRADATSCH, 

2006; GUPTA et al., 1999) pathogens is possible. 

 

 

2.1.4 Production of lytic enzymes 

Together with antibiotic secondary metabolites, lytic enzymes produced by Trichoderma 

spp. are the biochemical backbone for the antagonism of these beneficial fungi against 

fungal pathogens (MANCZINGER et al., 2002a). Some Trichoderma enzymes, especially 

chitinases, show the strongest antifungal activity known in nature (LORITO et al., 1993, 

1998). By this, Trichoderma spp. seem specialized in not only attacking chitinous 

structures of hyphae, but also of conidia, chlamydospores, and sclerotia (LORITO et al., 

1998). 

The impact of Trichoderma spp. on the mycelium of the pathogen during the 

antagonistic and especially parasitic interaction is increased by the action of lytic enzymes 

as reviewed by KREDICS et al. (2005), MARKOVICH and KONONOVA (2003), and VITERBO 

et al. (2002). Chitinases (HARAN et al., 1996; HARMAN et al., 1993; KUBICEK et al., 2001; 

LORITO et al., 1993, 1994b), glucanases (LORITO et al., 1994a, 1994b; THRANE et al., 

1997), and proteases (ELAD and KAPAT, 1999; GEREMIA et al., 1993; MANCZINGER et al., 

2002b; SZEKERES et al., 2004), isolated over the last two decades, are important parts of 

the Trichoderma toolbox regarding antagonism against plant pathogenic fungi. These 

enzymes lyze fungal cell wall components (CHET et al., 1998) or degrade the pathogen’s 

pathogenicity enzymes (ELAD and KAPAT, 1999; KAPAT et al., 1998). Other enzymes may 
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degrade metabolites from plant exudates that stimulate the germination of spores of plant 

pathogenic fungi (HOWELL, 2002). Moreover, some enzymes have bacteriolytic properties 

(MANCZINGER, 2002b) and may thereby increase the competitive abilities of Trichoderma 

strains otherwise inhibited by bacteria (NAAR and KECSKES, 1998). 

The effectiveness of lytic enzymes is enhanced by synergism with other molecules 

of fungal origin, e.g. other lytic enzymes (LORITO et al., 1993, 1994a) or secondary 

metabolites with antibiotic activity (LORITO et al., 1996; SCHIRMBÖCK et al., 1994). This 

synergism may be the reason, why a Trichoderma strain can be a potent BCA, although 

the activities of its enzymes are not sufficient to control a fungal pathogen if tested 

seperately. Also, these enzymes may synergistically enhance the effect of fungitoxic 

compounds, thereby reducing the amount of fungicides needed for sufficient pathogen 

control (THRANE et al., 1997; LORITO et al., 1994b), or the effect of antibiotic metabolites of 

bacterial origin (WOO et al., 2002). 

Finally, lytic enzymes are subject to catabolite repression. Synthesis of chitinolytic 

enzymes, induced by carbon starvation, fungal cell walls, or pure chitin, is repressed by 

easy to digest carbon sources like glucose (VITERBO et al., 2002). Synthesis of 

glucanases can be inhibited if glucose is available (THRANE et al., 1997). Proteolytic 

enzyme expression is induced by the presence of fungal cell walls, but does only take 

place under de-repression conditions, meaning the absence of primary nitrogen sources 

like glutamine and ammonia (OLMEDO-MONFIL et al., 2002).  

 

 

2.1.5 Secondary metabolites with antibiotic activity 

More than 100 secondary metabolites with antibiotic activities, produced by different 

Trichoderma strains, are known today (SIVASITHAMPARAM and GHISALBERTI, 1998). Next to 

lytic enzymes, they are the second large group of molecules beneficial to the antagonistic 

action of Trichoderma strains against microorganisms (MANCZINGER et al., 2002a). Their 

production is dependent on the Trichoderma strain, environmental parameters as pH or 

temperature, and the colonized substrate (SIVASITHAMPARAM and GHISALBERTI, 1998; 

VIZCAÍNO et al., 2005). These anitibiotic metabolites can largely be divided into three 

groups: compounds having a significant vapour pressure, which means that they can 

become volatile, water soluble metabolites, and the large group of amphipathic peptaibols, 

being able to interact with plasma membranes (GHISALBERTI and SIVASITHAMPARAM, 

1991).  

The first two metabolite groups of volatile and non-volatile antibiotics are derived 

from diverse metabolic pathways. Their production within the vast amount of Trichoderma 

strains does not show any kind of chemotaxonomical relationship between species. 
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Because different antibiotic metabolites may be produced from otherwise closely related 

strains of the same species and quite similar antibiotic metabolite profiles may be 

produced by strains belonging to different species, taxonomic studies on the basis of 

these biochemical markers would not give conclusive results (GHISALBERTI and ROWLAND, 

1993). Such variability makes it necessary, to individually evaluate the antimicrobial 

spectrum of a given strain (VIZCAÍNO et al., 2005). 

In a broader sense, the simple reference to T. harzianum as “the BCA species” is 

imprecise, because T. harzianum strains without any effect against fungal target 

organisms are known, although most Trichoderma strains used as BCAs belong to this 

species (GHISALBERTI and SIVASITHAMPARAM, 1991).  

The volatile pyrone antibiotic 6-n-pentyl-2H-pyran-2-one, also termed 6-pentyl-�-

pyrone (6PAP), produced by several Trichoderma species (CLAYDON et al., 1987, CUTLER 

et al., 1986), which is responsible for the characteristic coconut aroma of many 

Trichoderma strains (COLLINS and HALIM, 1972; HOWELL, 1998), is rated as the best 

characterized and most important Trichoderma antibiotic (VINALE et al., 2006). For 

example, the antagonistic success of several Trichoderma strains against 

Gaeumannomyces graminis var. tritici was correlated with the production of 6PAP 

(GHISALBERTI et al., 1990). Nevertheless, the mechanism by which most antibiotic 

metabolites act is still insufficiently established (SONG et al., 2006) and remains to be 

elucidated (VINALE et al., 2006). Moreover, the production of antibiotic metabolites in liquid 

media in vitro does not inevitably mean that these metabolites are also produced in soil 

(GHISALBERTI and SIVASITHAMPARAM, 1991). Therefore, simple Petri dish experiments, 

undertaken to screen for hopeful BCA candidates with strong antibiotic activity, should be 

accompanied by plant – pathogen interaction assays (HARMAN, 2006). 

Peptaibols and related peptaibiotics are peptide antibiotics solely of fungal origin 

(DEGENKOLB et al., 2003). They are linear, amphipathic polypeptides composed of 5-20 

amino acids containing the non-proteinogenic amino acids �-aminoisobutyric (Aib) acid or 

isovaline (Iva) generally produced in microheterogenous mixtures (SZEKERES et al., 2005). 

Since the first peptaibol alamethicin was isolated from T. viride culture filtrates (REUSSER, 

1967), more than 300 molecules belonging to this class of peptides have been found and 

listed in the Peptaibol Database (WHITMORE et al., 2003). 190 of them were isolated from 

Trichoderma species, 54 being of T. harzianum origin (PEPTAIBOL DATABASE, 2007). A 

common feature of the amphipathic peptaibols, which result from non-ribosomal 

biosynthesis (WIEST et al., 2002), is the ability to form voltage-gated ion-channels through 

plasma membranes (SANSOM, 1993), thereby causing membrane leakage and metabolic 

disorders within the cell (EPAND and VOGEL, 1999; LORITO et al., 1996). The spectrum of 
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impact includes antibacterial, antiviral, antimycoplasmic, and antifungal activity as 

reviewed by KRAUSE et al. (2006) and SZEKERES et al. (2005).  

Synergistic effects between the action of lytic enzymes and antibiotic metabolites 

were shown (LORITO et al., 1996; SCHIRMBÖCK et al., 1994). By degrading cell wall 

components, lytic enzymes facilitate the contact of antibiotic metabolites with the plasma 

membrane, increasing membrane leakage. Moreover, peptaibols may inhibit the activity of 

enzymes with synthethase function, thus preventing re-synthesis of the degraded cell wall 

components (LORITO et al., 1996).  

The positive effect of antibiotic metabolites produced by Trichoderma spp. in terms 

of antagonism may be accompanied by an unwanted effect of plant growth reduction 

(OUSLEY et al., 1994). It was shown that the strongest producers of antibiotic metabolites, 

thereby being the strongest antagonists, may exert the most pronounced negative effect 

on plant growth (GHISALBERTI et al., 1990; HOWELL and STIPANOVIC, 1984). Especially the 

group of volatile pyrone antibiotics including 6PAP, produced by many Trichoderma 

strains, has this effect (GHISALBERTI et al., 1990; LUMSDEN et al., 1990; NASEBY et al., 

2000). 

In terms of biological control, little research was done concerning volatile secondary 

metabolites with antibiotic activity (DENNIS and WEBSTER, 1971b; BRUCE et al., 1984, 

2000). Generally, volatile organic compounds should give a competitive edge to the 

producing organism towards other microorganisms (GHISALBERTI and SIVASITHAMPARAM, 

1991), for example if the released volatile metabolites are able to affect mycelial growth 

and protein synthesis of target fungi (HUMPHRIS et al., 2002). Thereby, such volatile 

organic compounds including rather simple alkanes, alkoholes, aldehydes, and ketones 

(BRUCE et al., 2000) may be an important factor in the evolution of microorganisms with 

regard to community, population, and functional dynamics (HUMPHRIS et al., 2002).  

Gas chromatographic analyses revealed that the profile of produced volatile 

metabolites depended on the producing Trichoderma strain, culture age, and the nutrient 

content of the medium (BRUCE et al., 2000; WHEATLEY et al., 1997). Enhanced production 

of 6PAP as a response of the producing T. harzianum strain to the presence of Botrytis 

cinerea as well as the partial degradation of the antibiotic metabolite by the pathogen 

could be detected (COONEY and LAUREN, 1998).  
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2.1.6 Trichoderma harzianum strains 

The T. harzianum strains T-22 and T39, used in the study reported here together with four 

other T. harzianum strains, are among the most successful BCAs in terms of worldwide 

distribution of the respective commercial products (HARMAN, 2000; VINALE et al., 2006). 

T-22, one of the most studied Trichoderma strains (HARMAN et al., 2004), is distributed 

throughout the world under several brand names and mainly applied against Fusarium 

spp., Pythium spp., and Rhizoctonia spp. (HARMAN and BJÖRKMAN, 1998). The 

antagonistic mechanisms of this strain include competitive abilities by rhizosphere 

competence (HARMAN, 2000), parasitic action against plant pathogenic fungi (HARMAN and 

BJÖRKMAN, 1998), the production of few antibiotic metabolites (VINALE et al., 2006) as well 

as the induction of resistance (HARMAN, 2000; HARMAN et al., 2004). Positive growth 

responses occurred in many but not all of more than 500 recorded cases (HARMAN, 2006).  

In scientific research projects, the main targets for T39, which originally was isolated 

from a cucumber fruit (Elad et al., 1993), have been B. cinerea (ELAD, 2000a, 2000b; 

ELAD et al., 1993; ELAD and KAPAT, 1999; KAPAT et al., 1998; MOYANO et al., 2003; 

ZIMAND et al., 1995) and mildew pathogens (ELAD, 2000a, 2000b; ELAD et al., 1998). 

Mycoparasitism or antibiosis are thought not to be among the mechanisms of action of 

T39 (ELAD, 1996; ELAD and KAPAT, 1999). Contrasting these results, VINALE et al. (2006) 

isolated T39 metabolites with antifungal activity from culture filtrates and dual culture 

assays. Competition for nutrients (ZIMAND et al., 1995), induction of resistance (ELAD, 

2000a; ELAD et al., 1998), and the degradation of the pathogenicity enzymes of the 

necrotrophic B. cinerea by proteases (ELAD and KAPAT, 1999; KAPAT et al., 1998) 

undoubtedly contribute to the antagonistic activity of T39. Neither T39 nor T-22 produced 

the antibiotic metabolite 6PAP in the studies of VINALE et al. (2006). 

For the remaining four T. harzianum strains, three of them isolated from commercial 

preparations, not much information on their antagonistic characteristics could be found. 

According to the product descriptions, the three commercial strains shall be used as a 

preventative measure against soil-borne diseases like Fusarium spp., Pythium spp., 

Rhizoctonia spp., and Sclerotium spp. The non-commercial strain T12 was successfully 

used against R. solani (PAULA JÚNIOR and Hau, 2007; PAULA JÚNIOR et al., 2007). 

 

In this study, the antagonistic features of these six strains were tested against 

Botrytis cinerea, Fusarium oxysporum f. sp. lycoperisci, Fusarium oxysporum f. sp. 

phaseoli, Pythium ultimum, and Rhizoctonia solani. Mycelial growth and sporulation, 

competitive ability, parasitic interactions, and the production of lytic enzymes and 

secondary metabolites with antibiotic activity were assessed for all six T. harzianum 

strains to gain a profile of the antagonistic abilities of each strain. 
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2.2 Material and methods 
 

2.2.1 Fungal strains 

Six T. harzianum strains were used in this study, five of them isolated from commercial 

preparations: T-22 from TRIANUM-P (Koppert Biological Systems, Berkel en Rodenrijs, 

The Netherlands), T39 from TRICHODEX (Makhteshim-Agan Ltd., Tel Aviv, Israel), and 

the strains from TRI 003 (Plantsupport, Grootebroek, The Netherlands), TRICHOSAN 

(Vitalin Pflanzengesundheit GmbH, Ober-Ramstadt, Germany), and UNISAFE (Uniseeds 

Co. Ltd., Bangkok, Thailand). The abbreviations TR, TS, and TU will be used throughout 

this work for the latter three strains, respectively. The non-commercial strain T12 from the 

fungal collection of the Institute of Plant Diseases and Plant Protection (IPP; Leibniz 

Universität Hannover, Germany) was originally obtained as strain T000 from the Institute 

of Phytopathology and Applied Zoology (IPAZ; Justus-Liebig-University Gießen, 

Germany). 

The used pathogens were isolates of B. cinerea, F. oxysporum f. sp. lycopersici 

(FOL), F. oxysporum f. sp. phaseoli (FOP), P. ultimum, and R. solani AG-4 taken from the 

fungal collection of the IPP.  

 

 

2.2.2 General culture conditions 

All fungal strains were maintained on PDA (Merck KGaA, Darmstadt, Germany) at 24°C. 

All Petri dishes used in the experiments had a diameter of 90 mm, were filled with 10 ml 

PDA, and were singly sealed with Parafilm (Pechiney Plastic Packaging, Chicago, IL, 

USA), unless otherwise stated.  

 

 

2.2.3 Determination of mycelial growth and sporulation potential of Trichoderma 

harzianum strains 

Mycelial plugs with a 5-mm diameter were cut from the growing margin of three days old 

cultures of the T. harzianum strains and put overhead onto fresh PDA in the centre of the 

Petri dish. The mean radial growth per colony was calculated after 24, 48, 72, and 96 h by 

measuring the radius of the growing mycelium twice with an angle of 180 degrees 

between measurements. The experiment consisted of four replications per strain. 

Spore suspensions were produced by scraping off sporulating mycelium from PDA 

cultures and suspending it in sterile A. dest. To remove mycelial fragments from the 

suspensions, they were filtered through 595 Schleicher & Schuell filter paper (Whatman 

International Ltd., Kent, England). Spore suspensions were adjusted to 
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1 x 104 spores / ml. Ten µl of each Trichoderma spore suspension were pipetted onto 

PDA and cultured for 24 h at 24°C. Petri dishes were not sealed with Parafilm. After 24 h, 

the length of ten hyphae emerged from the spores was measured with a binocular. The 

experiment consisted of four replications per spore suspension.  

To determine sporulation potential of the T. harzianum strains, two media with 

differing amounts of nutrients were used. Mycelial plugs with a diameter of five mm were 

cut out of the growing margin of three days old cultures and put overhead onto PDA 

(39 g PDA / l) and 1/3-PDA (13 g PDA + 10 g Agar-Agar / l), because carbon starvation is 

known to increase sporulation (AGOSIN et al., 1997). Petri dishes were not sealed with 

Parafilm to avoid self-inhibition of sporulation by the production of volatile secondary 

metabolites. As light is a known inducer of Trichoderma sporulation (BETINA and FARKAŠ, 

1998), Petri dishes were taken out of the incubator every second day for five minutes. 

After 7 and 14 days of incubation, the mycelium of four replications per Trichoderma strain 

was scraped off from the agar plate and suspended in 50 ml A. dest. Dilutions were made 

and numbers of spores counted in a haemocytometer.  

 

 

2.2.4 Competitive interaction 

From the growing margin of three days old cultures of the six T. harzianum strains and of 

B. cinerea, P. ultimum, and R. solani, 5-mm plugs were transferred overhead to fresh 

PDA. Each Trichoderma – pathogen combination had four replications. A Trichoderma 

mycelial plug was placed at the border of the Petri dish, whereas the mycelial plug of the 

pathogen was put into the centre. The space between the pathogen and T. harzianum 

was 35 mm, whereas the free space to the other side of the Petri dish was 40 mm. 

After 24, 48, 72, and 96 h, three growth measurements of the mycelia were done: 

(1) growth of T. harzianum directed towards the pathogen, (2) growth of the pathogen 

directed towards T. harzianum, and (3) growth of the pathogen into the free space.  

The amount of mycelial growth inhibition of the pathogens by T. harzianum was 

calculated according to the mathmetical model I  = [(Mf – Mi) / Mf] * 100, where I = mycelial 

growth inhibition, Mi = influenced mycelial growth of the pathogen, and Mf = free mycelial 

growth of the pathogen (ORTIZ and ORDUZ, 2000).   

The experiment was conducted at 16°C and 24°C. 
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2.2.5 Parasitic interaction 

From the growing margin of three days old cultures of the six T. harzianum strains and of 

B. cinerea, P. ultimum, and R. solani, 5-mm plugs were transferred overhead to fresh 

PDA. Each Trichoderma – pathogen combination had four replications. Mycelial plugs 

were placed at opposite sides of the Petri dish with a space of 75 mm between them. 

Petri dishes were stored at 24°C. Five days after the mycelia got into contact with 

each other, quadrate plugs were cut from the zone of interaction that had developed. 

These plugs containing the mycelia of pathogen and antagonist were put onto PDA. The 

number of plugs that showed mycelial growth of the pathogens was recorded. 

 

 

2.2.6 Production of lytic enzymes on solid substrates 

The ability of the six T. harzianum strains to produce lytic enzymes was tested on water 

agar to which specific substrates were added. The tests for the production of endo-1,4-ß- 

glucanase (cellulase), endo-1,3-ß-glucanase, chitinases, and proteases were performed 

on 1% water agar amended with 0.1% ACZL-HE-cellulose, 0.1% ACZL-pachyman (both 

Megazyme, Bray, Ireland), 0.1% crab shell chitin (Sigma-Aldrich Laborchemikalien GmbH, 

Seelze, Germany), and 5% skimmed milk, respectively. 

Mycelial plugs with a 5-mm diameter were cut from the growing zone of three days 

old Trichoderma cultures and incubated on the four media for varying periods of time. 

Because the growth of T. harzianum on water agar containing the AZCL-substrates or 

crab shell chitin did not lead to the production of easy to assess radial zones of substrate 

degradation, cellulolytic, glucanolytic, and chitinolytic activity was measured after 14, 28, 

and 21 days, respectively, by giving marks ranging from “0” to “5” meaning substrate 

degradation of “0%” to “100%”.  

Activity of proteases was assessed after three days by recording the development of 

clearing zones. 

 

 

2.2.7 Antibiotic effects of secondary metabolites produced in liquid culture 

Culture filtrates were produced by cultivation of the six T. harzianum strains for ten days in 

PDB (Becton Dickinson GmbH, Heidelberg, Germany). For each strain, 250 ml PDB were 

initially inoculated with five mycelial plugs with a diameter of one centimetre. Incubation 

took place at room temperature (22°C) on a horizontal shaker at 85 rpm. To get rid of the 

major parts of the mycelium, liquid cultures were filtered through 595 Schleicher & Schuell 

filter paper. Afterwards cultures were sterile filtrated through Schleicher & Schuell filters 
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with pore sizes of 0.8 µm and 0.2 µm. Sterile culture filtrates were incorporated into PDA 

gaining culture filtrate agar with concentrations of 1, 3, 5, 10, 15, and 25%.  

Mycelial plugs with a 5-mm diameter were cut from the growing margin of all 

pathogens’ mycelia and put onto the culture filtrate agar media with four replications per 

combination of pathogen, culture filtrate, and culture filtrate concentration. The effect of 

the culture filtrates on mycelial growth was determined by calculation of the mean radial 

growth per colony. After 24, 48, 72, 96, and 120 h, radial growth of the growing mycelium 

was measured twice with an angle of 180 degrees between measurements. 

 

 

2.2.8 Lytic enzyme activity in culture filtrates 

The presence of lytic enzymes secreted into the PDB medium by the six T. harzianum 

strains was detected and estimated by adding five mg AZCL-HE-cellulose, 

AZCL-pachyman (both Megazyme, Bray, Ireland), chitin azure (Sigma-Aldrich 

Laborchemikalien GmbH, Seelze, Germany), or skimmed milk powder to one ml culture 

filtrate each. 

The activity of cellulase, endo-1,3-ß-glucanase, and chitinases was visually 

estimated by the amount of substrate lysis and release of the blue dye from the 

chromogenic substrates. Marks ranging from 0 (no lysis of substrate particles) to 5 

(complete lysis) were given. The presence of proteinases was detected by the lysis (yes 

or no) of the skimmed milk powder. 

 

 

2.2.9 Production of volatile metabolites with antibiotic activity 

The production of volatile secondary metabolites with antibiotic activity by the six 

T. harzianum strains was measured in a dual culture assay with the pathogens B. cinerea, 

P. ultimum, and R. solani. From the growing margin of three days old cultures of the six 

T. harzianum strains, 5-mm plugs were transferred overhead to fresh PDA, placed in the 

centre of 90-mm Petri dishes containing ten ml PDA, and cultured for specific periods of 

time. Repetitions of this procedure, always using three days old cultures of all 

Trichoderma strains, led to Trichoderma cultures with the age of 24 h, 7, 14, 21, and 28 

days, which were used in the experiments with R. solani. The experiments with B. cinerea 

and P. ultimum were done only with 24 h and 7 days old cultures of the T. harzianum 

strains.  

When the cultures of the Trichoderma strains reached these ages, 5-mm mycelial 

plugs were cut from the growing margin of three days old cultures of the pathogens and 

placed as well in 90-mm Petri dishes containing 10 ml PDA. While B. cinerea and 
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R. solani mycelial plugs were placed in the centre of the Petri dishes, the P. ultimum 

mycelial plugs were placed at the edge with respect to the greater speed of mycelial 

growth of P. ultimum. 

For each Trichoderma strain – culture age – pathogen combination, replicated four 

times, the lids of the four Petri dishes containing the antagonist and the lids of the four 

Petri dishes containing the pathogen were discarded and the remaining bottoms were put 

onto each other in such a way, that the antagonist grew overhead of the pathogen with a 

layer of air dividing the mycelia from each other.  

The antibiotic effect of volatile secondary metabolites was measured as the 

decrease in radial growth of the pathogens. Two kinds of controls were replicated four 

times: (1) pathogen – pathogen combinations by use of cultures of the pathogens having 

the respective age of 24 h, 7, 14, 21, or 28 days and (2) the pathogen combined with an 

empty second Petri dish. The second control was used to have a control in case of 

self-inhibition within the pathogen – pathogen combinations.  

 

 

2.2.10 Statistical analysis 

Hyphal and mycelial growth of the T. harzianum strains at different temperatures were 

statistically evaluated by contrast tests. Analyses of sporulation data, mycelial growth 

inhibition indices in competition studies, and areas under the inhibited growth curves 

(AUIGC), computed for the assay on the antibiotic effect of culture filtrates, were 

performed using Tukey’s all-pair comparisons, which were most suitable to get information 

on all pairwise comparisons of interest. Areas under the growth progress curves in the 

assay on volatile T. harzianum metabolites with antibiotic activity were compared with the 

control by Dunnett’s many-to-one comparisons. All analyses were performed with SAS 

version 8.02 (Statistical Analyses Systems Institute, Cary, NC, USA).  

In all figures and tables, the variability is given by the standard error. 
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2.3 Results 
 

2.3.1 Mycelial growth and sporulation potential of Trichoderma harzianum strains 

It took several hours for the excised mycelium to regain its normal speed of growth, but 

from 24 h on, the mycelial growth of all Trichoderma strains led to linearly developing 

growth radii (data not shown).  

The growth rate of all T. harzianum strain – temperature combinations was 

calculated. Increasing temperature from 16 to 24°C led to an increase of the Trichoderma 

growth rates, followed by a plateau of optimal temperature for mycelial growth between 

24 and 28°C. Increase of temperature above 28°C to 32°C reduced mycelial growth per 

hour of the strains T12, TR, and TS, while T-22, T39, and TU grew on with unchanged 

growth rate (Tab. 2.1).  

 

Pairwise contrast tests at each temperature level revealed significant differences 

between growth rates of Trichoderma strains at the given temperatures of 16 to 32°C. At 

all temperatures, T-22 had the highest growth rate, while TU showed the slowest mycelial 

growth. The European strains T12, TR, and TS as well as T39 from Israel showed rather 

similar growth responses to the different temperatures, with few differences according to 

their climatic requirements. Of these four strains, TR was most cold-tolerant with the 

highest growth rate at 16°C. T39 on the other hand, growing little less than the European 

strains at 16°C, was the only one of these four strains whose growth did not significantly 

decrease at temperatures over 28°C. 

 

 

 

        
 Tab. 2.1. Growth rates of Trichoderma harzianum strains at temperatures between 16 and 32°C 

 
 

  Mycelial growth [mm / h]  
 Strain 16°C 20°C 24°C 28°C 32°C  
 T12 0.38 ± 0.005 bca 0.52 ± 0.017 c 0.77 ± 0.012 bc 0.76 ± 0.043 bc 0.50 ± 0.008 c  
 T-22 0.51 ± 0.005 a 0.73 ± 0.012 a 0.98 ± 0.012 a 1.02 ± 0.009 a 1.03 ± 0.010 a  
 T39 0.32 ± 0.004 c 0.50 ± 0.009 c 0.78 ± 0.010 b 0.80 ± 0.010 b 0.80 ± 0.010 b  
 TR 0.43 ± 0.005 ab 0.59 ± 0.006 b 0.70 ± 0.020 c 0.72 ± 0.020 c 0.54 ± 0.012 c  
 TS 0.35 ± 0.006 c 0.56 ± 0.010 bc 0.76 ± 0.020 bc 0.83 ± 0.017 b 0.57 ± 0.010 c  
 TU 0.17 ± 0.003 d 0.41 ± 0.013 d 0.47 ± 0.006 d 0.49 ± 0.005 d 0.50 ± 0.008 c  
 

a
 Within each column, numbers followed by the same letter do not differ significantly according to pair-wise contrast 

tests. 
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Fig. 2.1. Length of Trichoderma harzianum germination hyphae 
after 24 h growth at 20, 24, and 28°C. 
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Contrast tests that corresponded to the increase in growth rate from 16 to 24°C, the 

plateau between 24 and 28°C, and the decrease in growth rate at temperatures higher 

than 28°C, had a better fit to the data of T12, TR, and TS than contrasts matching only the 

growth rate increase from 16 to 24°C and a plateau for temperatures higher than 24°C. 

For Trichoderma strains T-22, T39, and TU, this was exactly the other way round. 

Consequently, pairwise contrast tests between temperature levels of 28 and 32°C yielded 

significant p-values of p < 0.001 for strains T12, TR, and TS, but not for T-22, T39, and TU. 

These significant differences are not indicated in Tab. 2.1 for reasons of clearness. 

 

Of each Trichoderma spore suspension, 10-µl droplets were pipetted onto PDA 

medium and the length of the emerging hyphae was measured with a binocular after 24 h. 

Thereby, the two separate effects of germination speed and speed of hyphal growth both 

contributed to the overall length of the germination hyphae (Fig. 2.1). Because these two 

effects are not easily divided from one another, results have to be interpreted by using the 

information from the mycelial growth experiments. 

During the first 24 h, T-22 and TU produced longer hyphae at all three temperatures 

20, 24, and 28°C than the other strains. Based on contrast tests, these differences 

between T-22 and TU on one hand and T12, T39, TR, and TS on the other were statistically 

significant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Results (2) 

20 

At 20°C, TU produced the longest germination hyphae within 24 h. Compared to 

T-22, this difference was nullified at 24°C, where the germ tubes grown from T-22 spores 

were even slightly longer than that of TU. At 28°C, no difference could be observed 

between T-22 and TU, because growth became too branched for simple measurements of 

hyphal length, but it can be assumed that T-22 might have produced a longer germ tube 

than TU in regard to its very high mycelial growth rate at that temperature. 

No clear results could be obtained at 32°C for any of the strains, because of the 

strong growth and branching of all strains’ hyphae. In contrast, no germ tube growth was 

observed with the binocular after 24 h at 16°C with the exception of T-22 with a mean 

germ tube length of less than 20 µm (data not shown). 
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The data of sporulation (Tab. 2.2) of the Trichoderma strains showed that increasing 

time of cultivation led to an increase in the amount of harvested spores. This increase was 

statistically significant for T12, T39, TR, and TU on PDA and for T-22 and TS on 1/3-PDA. 

Because starvation acts as an inducer of sporulation for some strains, while others 

sporulate better on rich media, using 1/3-PDA medium increased as well as decreased 

the number of produced spores depending on the Trichoderma strain. Within the first 

week, using 1/3-PDA led to significant increases in sporulation for T12 and TS and 

significant decreases for T-22 and TU. After the second week of cultivation, an increase in 

sporulation was significant only for TS. On the other hand, T-22, T39, and TU showed 

significant reductions in spore numbers compared to normal PDA medium. 

     
 Tab. 2.2. Spore numbers produced by Trichoderma harzianum 

mycelia after cultivation for 7 and 14 days at 24°C in        
90-mm Petri dishes 

 

     
  Cultivation time  

  7 days 14 days  

 Strain PDA  

 T12  3.3 * 108 ± 3.2 * 107 ca 1.1 * 109 ± 1.7 * 108 b  
 T-22   1.1 * 109 ± 8.0 * 107 ab 1.5 * 109 ± 2.6 * 107 b  
 T39 1.5 * 109 ± 2.0 * 108 a 2.8 * 109 ± 1.7 * 108 a  
 TR 4.2 * 107 ± 1.3 * 107 c 5.5 * 108 ± 1.3 * 107 c  
 TS 7.5 * 107 ± 9.4 * 106 c 1.7 * 108 ± 2.2 * 107 c  
 TU 8.4 * 108 ± 7.1 * 107 b 1.4 * 109 ± 8.8 * 107 b  
     
  1/3-PDA  

 T12 1.1 * 109 ± 7.1 * 107 a 1.5 * 109 ± 1.5 * 108 a  
 T-22 1.1 * 108 ± 2.2 * 107 d 6.5 * 108 ± 4.2 * 107 b  
 T39   1.0 * 109 ± 7.0 * 107 ab 1.5 * 109 ± 7.3 * 107 a  
 TR   3.2 * 108 ± 3.4 * 107 cd 3.7 * 108 ± 5.0 * 107 b  
 TS   6.0 * 108 ± 6.1 * 107 bc 1.3 * 109 ± 1.8 * 108 a  
 TU   3.1 * 108 ± 2.2 * 107 cd 4.3 * 108 ± 4.2 * 107 b  

 
a
 Within each column and medium, numbers followed by the same letter do 

not differ significantly according to Tukey’s all-pair comparisons. 
 

 
 

 
 

Comparisons of the Trichoderma strains showed great differences with regard to 

sporulation potential. T12, T-22, TU, and especially T39 produced far more spores than TR 

and TS on PDA. On 1/3-PDA, T12, T39, and TS were sporulating the most. While T12 and 

TR produced rather equal numbers of spores on both media and TS spore numbers 

strongly increased on 1/3-PDA, T-22, T39, and TU sporulated much weaker on the 

nutrient-poor 1/3-PDA than on normal PDA. 
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2.3.2 Competitive interaction 

Dual culture experiments between the six T. harzianum strains and three pathogens were 

conducted at 2 different temperatures. Fig. 2.2 to 2.4 show the radial growth of the two 

competing mycelia in each pathogen – antagonist combination. The growth of the 

T. harzianum strains is displayed as increasing curves, while the growth of the pathogens 

is displayed as decreasing curves, with the corresponding scales for T. harzianum and 

pathogen growth on the left and right side of the graphs, respectively. No standard error 

bars are included in the graphs, because all standard errors had values below one mm. 

The bars of these small standard errors would have lain within the dots and triangles of 

the respective data points and spoiled their shape.  

 

2.3.2.1 Competitive interaction with Botrytis cinerea 

At 16°C, the Trichoderma strains and B. cinerea grew towards, but mostly did not grow 

into one another (Fig. 2.2). Further growth of both interacting fungi was inhibited. 

Especially in the cases of TS and TU, even after five days, the distance between both 

interacting fungi still was two and five mm, respectively (Fig. 2.2e and 2.2f). With the 

exception of TR, the radial growth of B. cinerea was inhibited about 50%. Mycelial growth 

of TR was stronger than that of the other Trichoderma strains under the given temperature 

(Fig. 2.2d). Therefore, TR inhibited B. cinerea by 64%. Although TU grew rather slow at 

16°C, it was able to stop mycelial growth of B. cinerea over a distance of 7.5 mm 

(Fig. 2.2f). The involvement of antibiotic metabolites especially in this interaction may 

explain these observations. 

At 24°C, TR inhibited B. cinerea growth by nearly 76% (Fig. 2.2d) followed by T12, 

T-22, T39, and TS with inhibition values of about 70%. TU also grew slower at 24°C than 

the other strains and inhibited B. cinerea only by 58%. Within the five days of observation, 

T12 and TR were the only T. harzianum strains that invaded the B. cinerea mycelium by 

more than one mm (Fig. 2.2a and 2.2d). 
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Fig. 2.2. Radial growth of Botrytis cinerea ( ,  ), if confronted with strain T12 (a), T-22 (b), T39 (c), 
TR (d), TS (e), or TU (f) of Trichoderma harzianum ( ,  ) at 16°C ( ,  ) and 24°C ( ,  ). 
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2.3.2.2 Competitive interaction with Pythium ultimum 

At 16°C, the very quickly growing P. ultimum reached growth radii between 23 and 29 mm 

for TS and TU, respectively (Fig. 2.3e and 2.3f). The mycelia of pathogen and antagonist 

got in contact during the time period between 24 and 48 h. After 48 h, no further growth of 

P. ultimum was observed, while the T. harzianum strains invaded the mycelium of the 

pathogen and constantly grew within it, thereby devastating the mycelial structures of 

P. ultimum. The quickest growing strain, T-22, also showed the greatest parasitic activity 

(Fig. 2.3b). Within little more than 96 h, T-22 had completely overgrown the Pythium 

mycelium and reached the mycelial disk that started the growth of the pathogen. Even 

after 120 h, the slowest strain at 16°C, TU, still was 12 mm away from this inoculation point 

of P. ultimum (Fig. 2.3f). 

At 24°C, P. ultimum growth was stopped at little smaller growth radii compared to 

the 16°C level by three Trichoderma strains, T-22, TR, and TU (Fig. 2.3b, 2.3d, and 2.3f). 

With the exception of T39 and TR (Fig. 2.3c and 2.3d), P. ultimum growth stopped after 

only 24 h at growth radii of 23 to 25 mm. For T39 and TR, Pythium mycelia reached radii of 

27 to 28 mm. Trichoderma growth within the Pythium mycelium developed quicker than at 

16°C. 

Antibiotic interactions were not as pronounced as in the experiment with B. cinerea. 

For both temperatures it was just weakly visible, that TS and TU stopped the growth of 

P. ultimum just millimetres before the antagonist grew over the pathogen’s mycelium 

(Fig. 2.3e and 2.3f). 

At both temperatures, the growth rate of the T. harzianum strains was nearly the 

same before and after contact was made to the mycelium of P. ultimum. This is indicated 

by the linearity of the graphs in Fig. 2.3. In a few cases, a little lag period in T. harzianum 

growth could be seen directly after contact was made between antagonist and pathogen. 

But afterwards, T. harzianum strains regained their normal growth rate. 
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Fig. 2.3. Radial growth of Pythium ultimum ( ,  ), if confronted with strain T12 (a), T-22 (b), T39 (c), 
TR (d), TS (e), or TU (f) of Trichoderma harzianum ( ,  ) at 16°C ( ,  ) and 24°C ( ,  ). 
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2.3.2.3 Competitive interaction with Rhizoctonia solani 

As T. harzianum and R. solani have nearly the same speed of growth, they got into 

contact to one another after 15 to 20 mm of free growth with 17,5 mm as the half distance 

(Fig. 2.4). This is the case for both temperatures, but the time period until contact was 

made differed with ca. 72 h at 16°C and little less than 48 h at 24°C. Exceptions to this 

were TR at 16°C and TU at both temperature levels (Fig. 2.4d and 2.4f). 

At 16°C, TR stopped the growth of R. solani after 48 h at a radius of 12 mm, itself 

being 6 mm apart from the mycelium of the pathogen (Fig. 2.4d). TR closed this gap within 

the following 40 h at a much lower growth rate as observed during the first 48 h. TU also 

stopped the growth of the R. solani mycelium before contact between antagonist and 

pathogen was made (Fig. 2.4f). At 16°C, R. solani growth stopped after 72 h at a radius of 

18 mm, with a distance of 7 mm to the TU mycelium. After 120 h, this gap was still 4 mm in 

size. At 24°C, R. solani growth stopped after 48 h at a radius of 16 mm, while TU was still 

3 mm apart from it. Both observations may be interpreted by the production of secondary 

metabolites with antifungal activity against R. solani by TR and TU. 

In all cases in which the antagonist and the pathogen came in contact, only 

T. harzianum showed further growth. In contrast to the results for P. ultimum (Fig. 2.3), the 

speed of growth within and on top of the R. solani mycelium was slowed down compared 

to free growth of the T. harzianum mycelium. 
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Fig. 2.4. Radial growth of Rhizoctonia solani ( ,  ), if confronted with strain T12 (a), T-22 (b), T39 (c), 
TR (d), TS (e), or TU (f) of Trichoderma harzianum ( ,  ) at 16°C ( ,  ) and 24°C ( ,  ). 
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Fig. 2.5. Radial growth inhibition of Botrytis cinerea (a & b), Pythium ultimum (c & d), and Rhizoctonia 
solani (e & f) at 16 and 24°C, if confronted with Trichoderma harzianum T12 ( ), T-22 ( ), T39 ( ), 
TR ( ), TS ( ), or TU ( ).  

2.3.2.4 Inhibition index 

For all interactions, inhibition indices were calculated based on the following formula: 

I = [(Mf – Mi) / Mf] * 100. Fig. 2.5 shows the development of the inhibition indices of all 

pathogen – antagonist interactions at 16 and 24°C. If the radius of the pathogen’s mycelial 

growth was greater towards the Trichoderma mycelium than into the free space after 24 h, 

the inhibition index gave negative values, which can be seen for a few curves, starting at 

radial growth inhibition values below zero. Because mycelial growth of both fungi was 

un-inhibited in nearly all pathogen – antagonist combinations during the first 24 h, this 

observation can be explained by simple variation in the speed of mycelial growth of the 

pathogen to the free and the to-be-occupied-by-Trichoderma side of the Petri dish. 
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Generally, the inhibition index increased as long as the pathogens’ freely growing 

mycelium increased and was fixed when reaching a diameter of 35 mm, which was the 

maximum space between pathogen and antagonist. During the time of observation this 

did not happen for B. cinerea (Fig 2.5a and 2.5b), while P. ultimum filled the available 

space in the Petri dish within 48 h (Fig. 2.5c and 2.5d). R. solani did not reach the 

capacity of the Petri dish at the 16°C level (Fig. 2.5e), but at 24°C, the inhibition indices of 

the interaction between R. solani and the antagonist strains were fixed after 96 h 

(Fig. 2.5f).  

For the statistical analysis of these indices, the ‘fixed values’ were used if available. 

If not, the values reached after 120 h as the greatest observed inhibition indices were 

taken for analysing the inhibition potential of the six T. harzianum strains (Tab 2.3). 

 

         
 Tab. 2.3. Radial growth inhibition caused by Trichoderma harzianum against Botrytis cinerea 

after 120 h, Pythium ultimum after 48 h, and Rhizoctonia solani after 120 and 96 h of 
co-culture at the two temperature levels of 16 and 24°C, respectively 
 

 

  Inhibition index [%]  
  B. cinerea P. ultimum R. solani  
 Isolat 16°C 24°C 16°C 24°C 16°C 24°C  
 T12   52.9 ± 1.4 bca 68.6 ± 1.2 b 32.1 ± 0.7 a  29.3 ± 0.7 a 55.7 ± 1.4 b 55.7 ± 0.8 ab  
 T-22 52.9 ± 0.8 bc 70.7 ± 0.7 b 25.7 ± 1.2 b 30.7 ± 0.7 a 57.9 ± 0.7 b 59.3 ± 0.7 ab  
 T39 48.6 ± 0.7 cd 70.7 ± 1.4 b 18.6 ± 0.8 c 19.3 ± 0.7 b 47.9 ± 0.7 c 54.3 ± 1.2 ab  
 TR 63.6 ± 0.7 ab 76.4 ± 1.8 a 15.7 ± 0.8 c 19.3 ± 0.7 b 64.3 ± 0.8 a 57.1 ± 1.2 ab  
 TS 54.3 ± 1.5 bb   68.6 ± 1.2 b 35.7 ± 0.8 a 32.9 ± 0.8 a 46.5 ± 0.7 c 56.4 ± 0.7 ab  
 TU 46.4 ± 1.8 db 57.9 ± 1.4 c 16.4 ± 1.4 c 30.7 ± 0.7 a 45.7 ± 1.2 c 52.1 ± 0.7 bb  
 

a
 Within each column, numbers followed by the same letter do not differ significantly according to Tukey’s all-pair 

comparisons, performed for all treatments at once. 
 

         
 

2.3.2.5 Effects of antagonist and temperature 

The most effective strain in terms of inhibition of B. cinerea was TR. At both temperatures 

it slowed down and finally stopped the growth of the pathogen before any hyphal contact 

was established. Such an effect could also be observed for other strains, especially TS 

and TU. While the antibiotic effect of TS was a bit weaker than that of TR, TU was much less 

effective due to its slow mycelial growth, although this strain clearly produced metabolites 

with strong antifungal activity, acting over a distance of more than 10 mm as could be 

observed at the 16°C level.  

T39 and TR were least effective in inhibiting the growth of P. ultimum, because these 

two strains allowed further Pythium growth after initial hyphal contact. During the first 

hours after contact, the two mycelia merged into one another, until the antagonist finally 
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stopped further development of the pathogen’s mycelium. TU again was growing too 

slowly at 16°C, to effectively compete with P. ultimum. 

Strains T-22, TR, and TU were able to stop R. solani before their mycelia got in 

contact. This antibiotic interaction was more pronounced at 16°C than 24°C and made 

them the most effective competitors at the lower temperature, with the exception of TU. 

Antibiosis could not be attributed to the interaction of T12, T39, and TS with the pathogen. 

Despite its antibiotic effect, TU was the weakest competitor due to its slow growth.  

Results of the statistical analyses concerning the effect of temperature on the 

competitive interaction between the T. harzianum strains and the pathogens are not 

included in Tab. 2.3 for reasons of clearness. Increasing the temperature from 16 to 24°C 

led to significantly greater inhibition of B. cinerea by all Trichoderma strains, while the 

growth of P. ultimum was significantly stronger inhibited only by TU. T39, TS, and TU 

reduced the growth of R. solani to a greater extent at 24°C than at 16°C. There was only 

one case of a significantly decreased inhibition due to higher temperature: TR was less 

effective against R. solani at the higher temperature of 24°C.  

 

 

2.3.3 Parasitic interaction 

After five days of interaction, T12, TS, and TU had killed the mycelium of all three tested 

pathogens in each case. B. cinerea was able to grow out of the zone of interaction with 

T-22 and T39 in 5 out of 16 and 1 out of 16 cases, respectively. T39 did not kill R. solani 

in 3 out of 16 cases. TR showed the weakest performance in parasitizing and killing the 

mycelia of the pathogens. It was not successful in 7, 16, and 4 out of 16 cases for 

B. cinerea, P. ultimum, and R. solani, respectively. 
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2.3.4 Production of lytic enzymes on solid substrates 

The Trichoderma strains were grown on water agar amended with dyed enzyme-specific 

substrates, crab shell chitin, or skimmed milk to prove the production of extracellular lytic 

enzymes by degradation of the substrates. Strongest mean degradation of cellulose was 

100, 85, and 70% for T39, T-22, and T12, respectively. TR, TU, and TS degraded cellulose 

to a lesser extent of 55, 45, and 20%, respectively. Degradation of the ß-glucan 

AZCL-pachyman was not detected with any of the Trichoderma strains after four weeks of 

incubation. Within three weeks, crab shell chitin was only degraded by TU, T12, and TR by 

70, 50, and 15%, respectively. 

Measurement of degradation of the proteins of skimmed milk was done using the 

relation of clearing zone to radial mycelial growth. Strongest lytic activity was found for 

T39, TU, and T12, followed by TS, TR, and T-22 with 86, 81, 77, 59, 41, and 19%, 

respectively. 

 

 

2.3.5 Lytic enzyme activity in culture filtrates 

The dyed enzyme-specific substrates AZCL-HE-cellulose, AZCL-pachyman and chitin 

azure as well as skimmed milk powder were given into fresh Trichoderma culture filtrates, 

and the degree of substrate particle lysis was determined. 

The strongest producer of cellulases was T39 with 100% lysis of the substrate within 

three days followed by T12 and TR with 60% and 70% lysis after 3 days, respectively, and 

80% for both strains after seven days. TU and TS culture filtrates showed less activity in 

degrading the cellulose with 15 and 20%, respectively, after three days and 60 and 55%, 

respectively, after seven days. No cellulase activity was observed for the T-22 culture 

filtrate. 

AZCL-pachyman, the substrate for a endo-1,3-ß-glucanase, was degraded by all 

culture filtrates. The most effective culture filtrate was that of TR with 90% degradation 

after seven days, followed by TU, T-22, TS, T39, and T12 with degradation levels of 80, 70, 

65, 60, and 55%, respectively. 

Generally, no chitinase activity could be observed for the culture filtrates. 

T12, TS, and TU culture filtrates showed protease activity towards skimmed milk 

powder. Mixing it into the filtrates led to agglutination first and lysis afterwards. 
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2.3.6 Antibiotic effects of secondary metabolites produced in liquid culture 

B. cinerea, P. ultimum, R. solani, FOL, and FOP were grown on PDA amended with 

increasing concentrations of T. harzianum culture filtrates ranging from 1 to 25%. 

Generally, mycelial growth of the pathogens decreased with increasing culture filtrate 

concentration, but there were huge differences concerning the effect of different culture 

filtrates on a certain pathogen or concerning the effect of a certain culture filtrate on 

different pathogens (Fig. 2.6). 
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Fig. 2.6. Radial growth of Botrytis cinerea after 96 h (a), Pythium ultimum after 48 h (b), Rhizoctonia 
solani after 48 h (c), Fusarium oxysporum f. sp. lycopersici after 120 h (d), and Fusarium oxysporum
f. sp. phaseoli after 120 h (e) on PDA amended with increasing culture filtrate concentrations of 
Trichoderma harzianum T12 ( ), T-22 ( ), T39 ( ), TR ( ), TS ( ), or TU ( ).  
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The growth of P. ultimum was most strongly reduced by the Trichoderma culture 

filtrates, its growth completely inhibited if 10 or 15% of TR, T-22, and T12 or 25% of TS 

were incorporated into the medium (Fig. 2.6b). All culture filtrates with the exception of 

T39 had a rather strong effect against R. solani with growth reductions ranging from 50 to 

70% if 25% culture filtrate were used in the medium (Fig. 2.6c). Only TR, T-22, and T12 

showed a marked effect against B. cinerea (Fig. 2.6a). 

The Fusarium isolates showed a greater tolerance against the antibiotic effect of the 

secondary metabolites in the culture filtrates. FOL reached over 70% of its normal growth 

even if the PDA medium was amended with 25% culture filtrate (Fig. 2.6d). FOP was a 

little less tolerant, with the TR culture filtrate being the only one to show a marked effect of 

70% growth reduction at the highest culture filtrate concentration (Fig. 2.6e). 

In most cases of B. cinerea, P. ultimum, and R. solani, 50% of the maximum growth 

reduction was reached at low culture filtrate concentrations between 1 and 5% (Fig. 2.6a, 

2.7b, and 2.7c). Contrasting these results, the Fusarium species showed only little growth 

reduction before the culture filtrate concentration reached 10% (Fig 2.6d and 2.6e). 

 

The areas under the curves demonstrating inhibited growth (AUIGC) due to 

increasing culture filtrate concentrations, thereby indicating strong inhibition by low 

AUIGC-values, were calculated. Based on these AUIGC-values, an ANOVA including all 

antagonist – pathogen combinations was computed (Tab. 2.4).  

        
 Tab. 2.4. Areas under the inhibited growth curves of Botrytis cinerea, Pythium ultimum, 

Rhizoctonia solani, Fusarium oxysporum f. sp. lycopersici, and Fusarium oxysporum f. sp. 
phaseoli cultivated on PDA amended with Trichoderma harzianum culture filtrates for 96, 
48, 48, 120, and 120 h, respectively 
 

 

  AUIGC [%*%]   
 Strain B. cinerea P. ultimum R. solani FOL FOP  
 T12   1941 ± 17 ca   285 ±   7 b 1376 ± 32 b   2339 ± 19 bc 2184 ± 25 b  
 T-22 1557 ± 36 b   284 ±   8 b 1199 ± 14 a 2298 ± 17 b 2181 ± 22 b  
 T39 2336 ± 20 d 2447 ±   8 d  2427 ±   5 e 2439 ± 22 c   2426 ± 15 cd  
 TR 1246 ± 18 a   132 ±   5 a 1189 ± 25 a 2147 ± 34 a 1766 ± 21 a  
 TS 2385 ± 17 d   781 ± 16 c 1875 ± 33 d 2287 ± 29 b 2481 ± 36 d  
 TU 2294 ± 23 d 2336 ± 15 d  1711 ± 10 c   2359 ± 23 bc 2319 ± 25 c  
 a

 Within each column, numbers followed by the same letter do not differ significantly according to Tukey’s all-pair 
comparisons. 

 

        
Tukey’s all-pair comparisons showed that the TR culture filtrate was most effective 

against all pathogens, while T39 gave the least pronounced effects against them, with the 

exception of TS being less effective against FOP. Overall, T12 and T-22 were less 

effective than TR, but more effective than TS and TU. 
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Fig. 2.7. Radial growtha of Botrytis cinerea (a & b), Pythium ultimum (c & d), and Rhizoctonia solani
(e & f) confronted with 24 hours and 7 days old mycelia of Trichoderma harzianum T12 ( ), T-22 ( ), 
T39 ( ), TR ( ), TS ( ), TU ( ), or without confrontation ( ). a The position of the mycelial plugs of the 
pathogens in the Petri dishes allowed radial growth of 80 mm for P. ultimum and 40 mm for B. cinerea
and R. solani. 
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2.3.7 Production of volatile metabolites with antibiotic activity 

B. cinerea, P. ultimum, and R. solani were grown in the presence of T. harzianum mycelia 

of varying ages. If the Trichoderma mycelium was only 24 h old, it steadily grew on for the 

next two to three days until the available medium in the Petri dish was overgrown. After 

T. harzianum had been cultivated for one or more weeks, it did not produce further 

amounts of mycelium, though sporulation was visible. 
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Fig. 2.8. AUGPC of Botrytis cinerea (a), Pythium ultimum (b), and Rhizoctonia solani (c) confronted 
with its own mycelium (B.c., P.u., R.s.) or with Trichoderma harzianum mycelia (T12, T-22, T39, TR, 
TS, TU) of differing ages; a, b: 24 h ( ), 7 days ( ); c: 24 h ( ), 7 days ( ), 14 days ( ), 
21 days ( ), 28 days ( ). Significant differences to the control treatment without confrontation are 
indicated by *. 

If the pathogens were confronted with the T. harzianum strains grown 24 h in 

advance, the radial growth of mycelia of the pathogens was slowed down in most cases 

(Fig. 2.7a, 2.7c, and 2.7e). The growth of the pathogens was much less affected, if the 

Trichoderma mycelia were seven days old when confrontation took place (Fig. 2.7b, 2.7d, 

and 2.7f). 

 

To measure the amount of growth reduction due to the presence of the 

T. harzianum strains and their respective volatile metabolites, the areas under the growth 

progress curves (AUGPC) were calculated and statistically analysed. Strong growth 

inhibiting effects are indicated by low AUGPC-values (Fig. 2.8).  
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With the exception of TU, all 24 h old Trichoderma strains significantly reduced the 

AUGPC of B. cinerea (Fig. 2.8a). Additionally, T-22 and TS significantly affected the 

B. cinerea growth, if seven days old. P. ultimum radial growth was only slowed down

significantly by 24 h old T-22 and TR, as well as TS of both ages (Fig. 2.8b). Growth 

reduction of R. solani mycelium was significant for 24 h old strains T12, T-22, and TR 

(Fig. 2.8c). Again, TS mycelia with ages of 24 h and seven days at the beginning of the 

confrontation experiment led to a significant decrease of the R. solani AUGPC. No 

significant AUGPC reduction was observed, if T. harzianum mycelia were 14 to 28 days of 

age when the experiment started. 

The most effective producer of volatile metabolites with antibiotic properties in terms 

of reducing the radial growth of the tested plant pathogenic fungi was TS. 24 h as well as 

seven days old TS mycelia significantly inhibited the growth of all pathogens tested 

(Fig. 2.8). The great standard error observed in the confrontation assay of seven days old 

mycelium of TS and R. solani results from strong differences in the four replications 

(Fig. 2.8c). In three out of four replications, TS was less effective against R. solani, while 

the growth reduction of R. solani in the fourth replication was as strong as in the 

confrontation assay with 24 h old TS. Repeating the experiment led to the same result of a 

prolonged effect of seven days old TS mycelium on R. solani growth in two out of four 

cases (data not shown).  

TU was the only Trichoderma strain that showed no effect on any of the pathogens 

(Fig. 2.8). The most strongly influenced pathogen was B. cinerea with growth reductions in 

7 out of 12 confrontation assays: 5 out of 6 and 2 out of 6 confrontations for 24 h and 

seven days old Trichoderma mycelia, respectively, led to significant decreases in 

B. cinerea growth (Fig. 2.8a). 

Besides slowing down mycelial growth, the volatile antifungal metabolites had 

another effect, not measured in this assay: The mycelium of the pathogens did not only 

grow slower but it also was thinner. This was the case especially for the mycelial growth of 

P. ultimum, which kept up its radial growth but lost much of its cottony character. 
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2.4 Discussion 
 

The aim of this study was to gain profiles of the used six T. harzianum strains. The in vitro 

experiments were conducted to characterize their competitive, parasitic, and antibiotic 

properties. Although successful biological control in in vitro assays does not guarantee a 

successful in-field performance, it may help to divide interesting candidates from those 

with little or no antagonistic abilities. 

 

 

2.4.1 Mycelial growth and sporulation 

At each temperature level, the mycelial growth of the T. harzianum strains developed 

linearly with a constant growth rate. These growth rates differed up to more than 100% 

between Trichoderma strains. T-22, which was obtained by protoplast fusion with the 

intention to produce a superior strain in terms of rhizosphere competence (HARMAN, 

2000), grew by far the quickest, while the Thailand-strain TU had only half the growth rate 

of the former strain over the entire temperature range. Compared to one another, the 

strains originating from Europe T12, TR, and TS as well as T39 from Israel had rather 

equal growth rates over the temperature range of 16 to 28°C. But at 32°C, all European 

strains showed reduced growth, while T-22, T39, and TU, especially the latter two strains 

originating from warmer climatic zones, showed even little increase in mycelial growth 

speed. This gives emphasis to the importance of selecting Trichoderma strains not only 

with respect to their antagonistic performance, but also to their climatic demands (ANTAL 

et al., 2000, HANNUSCH and BOLAND, 1996).  

Looking at the germination of T. harzianum spores and the subsequent growth of 

the germination hyphae, again T-22 and TU stood out against T12, T39, TR, and TS. After 

24 h, these two strains had by far developed the longest hyphae. This could have been 

expected for the very quickly growing T-22, but the result of TU was surprising. The 

Thailand-strain TU, having only about 50% of the growth rate of T-22 and being rather 

sensitive to lower temperatures, produced germination hyphae with a 40% greater length 

within 24 h at 20°C. This suggests that the simple cracking of the spore shell and 

subsequent hyphal growth do not underly the same factors influencing these events. 

While growth processes depend on the speed of the fungal metabolism, the time 

necessary for the opening of the spore shell may be determined by physico-chemical 

aspects of the spore shell’s architecture. The longer the observed time period, the greater 

was the impact of hyphal growth, which means the impact of the fungal metabolism. 

Because the metabolism was strongly influenced by temperature, with increasing hyphal 
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growth as response to increasing temperature, the impact of germination speed on the 

result got weaker if temperature increased from 20 to 28°C. 

It can be hypothesized that T-22 produced the longest hyphae during 24 h at 28°C 

and that the difference between the length of the TU hyphae and that of the four other 

strains decreased, because all these strains have greater hyphal / mycelial growth rates 

than TU. 

While mycelial growth is elementary to increase the metabolically active population, 

sporulation is important for further increase of population density and survival of the 

fungus. Thereby, starvation may act as an inducer of sporulation (AGOSIN et al., 1997), but 

can also decrease the amount of produced spores, depending on the T. harzianum strain. 

This is of special concern for the industrial production of active Trichoderma propagules 

used for commercial Trichoderma preparations (AGOSIN and AGUILERA, 1998). 

 

 

2.4.2 Growth inhibition, parasitism, and antibiosis  

The competitive interactions between the six T. harzianum strains and a certain pathogen 

were rather similar with little variation in terms of additionally occurring antibiosis. In 

contrast, great differences could be observed between the reactions of T. harzianum in 

general to the different pathogens B. cinerea, P. ultimum, and R. solani. 

The growth of P. ultimum was not only stopped by the contact with the antagonist, 

but the Trichoderma strains grew into and exploited the pathogen’s mycelium nearly 

without reducing their growth rates. As the PDA medium as well as the Pythium cell wall 

consist partly of cellulose, the antagonist can use the same enzyme to degrade both 

molecular structures. Synthesis of 1,3-ß-glucanases, necessary to degrade the second 

important structural component of the Pythium cell wall (BENHAMOU and CHET, 1997), 

most likely took place and increased the mycoparasitic activity of T. harzianum. 

The mycelium of R. solani, consisting of cells with chitinous walls, makes it 

necessary for T. harzianum to synthesize other enzymes than glucanases (BENHAMOU 

and CHET, 1993). As the synthesis of chitinases and the lysis of the respective molecular 

bonds may be more time consuming than the degradation of cellulose, this may explain 

the reduction of the growth rate of T. harzianum. 

Most interestingly, all Trichoderma strains were able to stop the growth of 

B. cinerea, but had huge problems in growing into and parasitizing the pathogen’s 

mycelium. Although the B. cinerea mycelium consists of chitin like R. solani, it may induce 

different chitinases or it may fail to induce particular enzymes as observed by HARAN et al. 

(1996) for the interaction of T. harzianum with S. rolfsii. Generalization of such results is 
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not possible, considering that other Trichoderma strains successfully parasitzed S. rolfsii 

(MUKHERJEE and RAGHU, 1997). 

The observed inability of the T. harzianum strains, tested in this study, to parasitize 

B. cinerea may also be explained by an antibiotic interaction of B. cinerea with 

T. harzianum. The growth rates of all Trichoderma strains were reduced before contact to 

B. cinerea was established, indicating that B. cinerea produced a metabolite that inhibited 

the growth and parasitic activity of T. harzianum (RUBEZHNIAK et al., 1995). On the other 

hand, the growth of B. cinerea stopped as well, leaving a gap between the mycelia of both 

competing fungi. Especially the interaction with TR and TU led to broader gaps, which were 

slowly closed by mycelial growth of the antagonists. Therefore, it can be hypothesized that 

both interacting fungi produced antifungal metabolites, but that T. harzianum was able to 

detoxify the antibiotic produced by B. cinerea, while B. cinerea was not, although the 

ability of B. cinerea to degrade the T. harzianum metabolite 6PAP has been demonstrated 

(COONEY and LAUREN, 1998). 

The impact of antifungal metabolites of TR and TU was also visible in the interaction 

with R. solani. Confronted with P. ultimum, however, TR was unable to stop the growth of 

the pathogen until both fungi had merged several millimetres into one another. Wheter 

secondary metabolites of a certain Trichoderma strain act as antibiotics, is therefore 

depending on the target fungus (VIZCAÍNO et al., 2005). The development of greater 

inhibition zones at lower temperature levels is in accordance with TRONSMO and DENNIS 

(1978), possibly due to an increased production of the inhibitory metabolites or because 

diffusion of those metabolites was less affected by temperature than the mycelial growth 

rate.  

Summarizing the results, it can be said that all three antagonistic mechanisms were 

involved in the interactions: (1) competition for space and nutrients, in which the fast 

growing T. harzianum strains had the greatest impact, (2) parasitism, if mycelia of 

antagonist and pathogen got in contact to one another and if the antagonist was able to 

enzymatically degrade the pathogens’ hyphae, and (3) antibiosis, if the antogonist 

produced some diffusible metabolite(s) that stopped the growth of the pathogen prior to 

direct hyphal contact or enhanced the parasitic action of T. harzianum by additionally 

weakening the pathogen. 

Of these three types of interaction, competition combined with antibiosis resulted in 

an inhibition of the pathogens’ mycelial growth. The inhibition index, calculated by 

comparing the inhibited growth with the potential free and uncompeted growth of the 

pathogens, gave a measure to find out the most effective inhibitor. 

Due to its comparatively quick mycelial growth at 16°C and the antibiotic effect of its 

secondary metabolites against B. cinerea and R. solani, TR was most effective against 



Discussion (2) 

40 

these fungi, with only T-22 being even a little more effective against R. solani at 24°C 

because of its very quick growth. Although antibiosis is not that clear-cut in the interaction 

of TS and TU with P. ultimum, it is noteworthy that TS, most probably stopping the mycelial 

growth of P. ultimum even before hyphal contact was established, was the most effective 

strain against this pathogen. 

TU on the other hand, although producing some metabolite(s) that affected all three 

pathogens, had a too slow mycelial growth especially at 16°C to effectively compete with 

the pathogens. 

The results from the competition / inhibition study led to the following conclusion: 

Generally, the most effective competitors are those which occupy the available space and 

exploit the available nutrients the quickest and stop the growth of the competing pathogen 

in advance of hyphal contact by the production of antifungal metabolites. 

After hyphal contact was established, most Trichoderma strains killed the 

pathogens’ mycelia within five days since first hyphal contact. These results are consistent 

with the findings of MUKHERJEE and RAGHU (1997) and REY et al. (2001). The pathogen 

was able to survive for the given time span in a few cases, but it is very likely that a longer 

time period given for the antagonistic action of T. harzianum on the pathogens would have 

led to the death of the pathogens’ mycelia in even more cases.  

To inhibit the growth of a fungal pathogen does not necessarily mean to kill it 

instantly. This was demonstrated by the inability of TR to effectively parasitize the 

pathogens it was confronted with. Although this strain strongly inhibited B. cinerea and 

R. solani, these fungi were able to grow out of the zone of interaction in more cases than 

after interaction with the other Trichoderma strains. Moreover, if no inhibition takes place, 

successful control of a pathogen is very unlikely, as proven by TR in its interaction with 

P. ultimum, where the pathogen survived the interaction in all cases. 

 

 

2.4.3 Production of lytic enzymes on solid substrates and in culture filtrates 

Cellulases and proteases were produced by all T. harzianum strains, but results differed in 

terms of amount or activity of enzymes. T39, known to be an abundant producer of 

proteases (ELAD and KAPAT, 1999), showed the strongest degradation of skimmed milk. 

T39 also was the strongest producer of cellulases. T-22, which also showed cellulase 

activity, was weakest in degrading skimmed milk proteins. Interestingly, only three strains 

were able to degrade crab shell chitin, namely TU, T12, and TR. For T39, this is no 

surprise, as this strain is known to be a weak mycoparasite (ELAD, 1996). But for the 

mycoparasitic strain T-22 (HARMAN and BJÖRKMAN, 1998), this result was unexpected.  
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The highest overall enzymatic activity was shown by T12. This strain degraded 

cellulose, chitin, and proteins by 70, 50, and 77%, respectively. This is interesting in 

comparison to the results from the competitive and parasitic interaction studies. In the first 

ones, T12 never was the strongest competitor, but it performed far better than the 

weakest strains. Moreover, next to TS and TU it was the only strain to kill all pathogens’ 

mycelia within the given time span of five days. 

The inability of all Trichoderma strains to degrade the glucan AZCL-pachyman, was 

observed even a second time, when this part of the experiment was repeated. The 

azurine-dyed glucan seemed to be not sufficient to induce the synthesis of glucanolytic 

enzymes by the T. harzianum strains if cultivated on water agar amended with this 

chromogenic substrate.  

The culture filtrates, produced on the basis of a medium containing glucose and 

cellulose, mostly showed strong cellulolytic and glucanolytic activity. No explanation could 

be found, why the T-22 culture filtrate completely lacked cellulase activity. As the 

synthesis of chitinases is repressed by glucose (VITERBO et al., 2002), it is not surprising 

that no chitinase activity could be detected. Synthesis of proteases is repressed by 

primary nitrogen sources like ammonia and glutamine (OLMEDO-MONFIL et al., 2002). 

These compounds most probably are part of the PDA medium, which is produced of 

glucose and a ‘potato infusion’. The reason for protease activity in culture filtrates of T12, 

TS, and TU might be a decrease of the primary nitrogen level during the culture of these 

strains to a de-repression level that allowed protease synthesis (OLMEDO-MONFIL et al., 

2002). In contrast to results of THRANE (1997), glucanase synthesis was not repressed by 

glucose. 

 

 

2.4.4 Antibiotic effects of secondary metabolites produced in liquid culture 

All pathogens were inhibited by increasing concentrations of the culture filtrates of 

T. harzianum, but great differences could be observed between pathogens and the 

antagonist strains. The greater the growth rate of the pathogen, the stronger it was 

inhibited. Being able to detoxify antifungal substances, as for example B. cinerea can 

degrade 6PAP (COONEY and LAUREN, 1998), gives those fungal species an advantage 

towards other competing microorganisms that lack such capability. Additionally, having 

more time to degrade an antibiotic metabolite due to slower growth of the own mycelium, 

may help B. cinerea and F. oxysporum to keep up normal development of their mycelia, 

even if in contact with T. harzianum metabolites. Similar results were obtained by DENNIS 

and WEBSTER (1971a) and SCARSELLETTI and FAULL (1994), who showed that 
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F. oxysporum was less affected by T. harzianum metabolites than other target fungi like 

R. solani. 

With regard to the amount of more than 100 known secondary metabolites with 

antibiotic properties produced by Trichoderma spp. (SIVASITHAMPARAM and GHISALBERTI, 

1998), it is very unlikely that the six T. harzianum strains used in this study produced the 

same antifungal substance just in differing quantities. TS and TU culture filtrates for 

example only differed slightly with regard to their effect on all tested pathogens except 

P. ultimum. T12 and T-22 partly differed (B. cinerea, R. solani), but partly did not 

(P. ultimum, FOP).  

Most probably, Trichoderma strains produce mixtures of substances whereby the 

observed antifungal effects may be the result of the whole mixture as well as it may be 

primarily caused by only one substance in the mixture (SIVASITHAMPARAM and 

GHISALBERTI, 1998). Some metabolites may exert strong effects against single pathogens 

(TS vs. P. ultimum), while others may have general growth inhibiting properties (TR vs. all). 

T39 grew in the medium in the same way as the other strains did, but produced no 

or nearly no metabolites with antifungal activity, as it is known for this strain (ELAD, 1996). 

Significant antifungal activity of T39 metabolites as reported by VINALE et al. (2006) could 

not be confirmed. From the ineffectiveness of the T39 culture filtrate in these assays, it 

can be concluded that the antibiotic effect of the culture filtrates was not caused by 

degradation products from the nutrient solution.  

One more conclusion can be drawn from the ineffectiveness of strain T39. The 

antibiotic effect of the culture filtrates incorporated in the PDA medium was not caused by 

lytic enzymes. Despite the T39 culture filtrate showed the strongest cellulose activity, it 

was inactive against the mycelium of P. ultimum growing on and within this agar.  

As chitinases were not detected in any culture filtrate, the effect of the culture filtrate 

agars on the other four tested pathogenic fungi cannot be explained by the action of 

chitinases lysing the fungal cell walls. Concerning the endo-1,3-ß-glucanase, TR was the 

strongest producer, which fits to the result of the culture filtrate agar tests. On the other 

hand, the differences between the six T. harzianum strains were rather low regarding the 

glucanolytic activity of the culture filtrates, but large concerning their antibiotic activity. 

Finally, it is very unlikely that extracellular enzymes which are bound into an agar matrix, 

can easily exert their lytic activity. 

The result of TR vs. P. ultimum demonstrated that secondary metabolites with 

antibiotic activity are not produced under all culture conditions (SIVASITHAMPARAM and 

GHISALBERTI, 1998). Although the TR culture filtrate was extremely effective against 

P. ultimum, TR was ineffective to stop the growth of the same pathogen in the 

competition / inhibition study. 
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2.4.5 Production of volatile metabolites with antibiotic activity 

Volatile metabolites exhibiting antibiotic activity towards microorganisms are important if 

they provide the producing fungus with an advantage over his competitors (GHISALBERTI 

and SIVASITHAMPARAM, 1991; HUMPHRIS et al., 2002). The production of volatile 

metabolites with fungal growth inhibiting properties was strongest within the first days of 

growth of T. harzianum. The older the cultures of T. harzianum got, the weaker was their 

effect in terms of mycelial growth inhibition of the pathogens confronted with the 

Trichoderma cultures.  

It can be concluded that the mycelium produced the active metabolites within the 

first few days of its growth. The data do not suggest that sporulation was responsible for 

the production of volatile metabolites with antifungal properties, because sporulation took 

place mostly at the end of the first and the beginning of the second week. Only one week 

old mycelium of strain TS led to significant inhibition of the pathogens’ mycelial growth, 

although this effect was lower compared to TS mycelium with an age of only 24 h.  

Summarizing the above, it can be hypothesized that the production of volatile 

metabolites with antibiotic activity accounts for a part of the antagonistic power especially 

of strain TS. 

 

 

2.4.6 Concluding remarks 

The results of the various experiments conducted for this study revealed some 

tremendous differences in the profiles of ‘available’ antagonistic mechanisms of the used 

T. harzianum strains, although they are partly recommended for the control of the same 

diseases. Generally, biological control against plant pathogens can be gained by 

competition, parasitism, or antibiosis, including every possible combination of these 

antagonistic mechanisms. Moreover, parasitism-related hydrolytic enzymes and 

antibiosis-related metabolites may act synergistically, thus reducing the necessary amount 

of each component to a level without antagonistic property if applied alone. Last but not 

least, resistance induction or interactions that only take place in the presence of 

antagonist, pathogen, and plant add up to the wide spectrum of actions and events that 

may lead to what is called ‘biological control’ (HARMAN, 2006). 

Concerning this, it is impossible to finally evaluate a Trichoderma strain solely on the 

basis of the results from this study. But if a well characterized strain successfully controls 

a certain pathogen in the field or fails to control it, the profile resulting from such a 

characterizing study may answer the instantly appearing question: “Why?” 
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 Tab. 2.5. Profiles of antagonistic activity of Trichoderma harzianum strains: Mycelial growth rate, sporulation potential, competitive and parasitic activity  
                    
   Growth rate [mm / h] 

at optimal temp. [°C]a 
 Sporulation potential 

[spores / 90-mm Petri dish]b 
  

B.c. 
 

P.u. 
 

R.s. 
  

Parasitic activity [%]d 
 

 Strain  Rate Temp.  14 d on 1/3-PDA 14 d on PDA  16°C 24°C 16°C 24°C 16°C 24°C  B.c. P.u. R.s.  
 T12  0.77 24  1.5 * 109 1.1 * 109  53 69 32 29 56 56  100 100 100  
 T-22  1.03 32  6.5 * 108 1.5 * 109  53 71 26 31 58 59  69 100 100  
 T39  0.80 32  1.5 * 109 2.8 * 109  49 71 19 19 48 54  94 100 81  
 TR  0.72 28  3.7 * 108 5.5 * 108  64 76 16 19 64 57  56 0 75  
 TS  0.83 28  1.3 * 109 1.7 * 108  54 69 36 33 46 56  100 100 100  
 TU  0.50 32  4.3 * 108 1.4 * 109  46 58 16 31 46 52  100 100 100  
 a Mycelial growth rates of the T. harzianum strains at the strain-specific optimal growth temperature; data taken from Tab. 2.1. 

b Spore numbers produced by T. harzianum mycelia after cultivation for 14 days at 24°C in 90-mm Petri dishes on 1/3-PDA and PDA medium; data taken from Tab. 2.2. 
c Radial growth inhibition caused by the T. harzianum strains against Botrytis cinerea (B.c.) after 120 h, Pythium ultimum (P.u.) after 48 h, and Rhizoctonia solani (R.s.) after 120 and 96 h of 
co-culture at the two temperature levels of 16 and 24°C, respectively; data taken from Tab. 2.3. 
d Parasitism of the T. harzianum strains on B. cinerea (B.c.), P. ultimum (P.u.), and R. solani (R.s.). Parasitic activity values were calculated as the percentage of successful killings of the 
target pathogen by T. harzianum in 16 cases. 

 

                    

Inhibition index [%]c 
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 Tab. 2.6. Profiles of antagonistic activity of Trichoderma harzianum strains: Lytic enzyme activity and production of secondary metabolites with 

antibiotic activity 
 

                       
    

Lytic enzyme activity 
on solid medium [%]a 

  
Lytic enzyme activity 
in culture filtrates [%]b 

 Mycelial growth inhibition by 
antibiotic metabolites 

secreted into PDB medium [%]c 

 Mycelial growth 
inhibition by volatile 

metabolites [%]d 

 

 Strain  CE GL CH PR  CE GL CH PR  B.c. P.u. R.s. FOL FOP  B.c. P.u. R.s.  
 T12  70 0 50 77  80 55 0 yes  23 89 45 6 13  43 12 16  
 T-22  85 0 0 19  0 70 0 no  38 89 52 8 13  54 17 24  
 T39  100 0 0 86  100 60 0 no  7 2 3 2 3  40 2 7  
 TR  55 0 15 41  80 90 0 no  50 95 52 14 29  47 29 17  
 TS  20 0 0 59  55 65 0 yes  5 69 25 9 1  55 25 35  
 TU  45 0 70 81  60 80 0 yes  8 7 32 6 7  22 5 0  
 a Lytic activity of cellulase (CE), endo-1,3-ß-glucanase (GL), chitinases (CH), and proteases (PR) produced by T. harzianum strains on solid agar media measured by visual estimation of 

enzyme-specific substrate degredation.  
b Lytic activity of cellulase (CE), endo-1,3-ß-glucanase (GL), chitinases (CH), and proteases (PR) produced by T. harzianum strains in liquid culture measured by visual estimation of 
enzyme-specific substrate degredation. 
c Effect of antibiotic metabolites secreted by the T. harzianum strains into PDB medium on the mycelial growth of Botrytis cinerea (R.s.), Pythium ultimum (P.u.), Rhizoctonia solani (R.s.), 
Fusarium oxysporum f. sp. lycopersici (FOL), and Fusarium oxysporum f. sp. phaseoli (FOP) if cultivated on PDA amended with increasing concentrations of the T. harzianum culture 
filtrates. Values representing the reduction of the phytopathogens’ unaffected AUIGC of 2500%*% were calculated on the basis of AUIGC data from Tab. 2.4.   
d Effect of volatile metabolites of the T. harzianum strains produced on solid PDA on the mycelial growth of Botrytis cinerea (R.s.), Pythium ultimum (P.u.), and Rhizoctonia solani (R.s.), 
if cultivated in the presence of 24 h old mycelia of the T. harzianum strains. Values representing the reduction of the phytopathogens’ AUGPC were calculated on the basis of AUGPC data 
from Fig. 2.8.   
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3. In Vitro Assays on the Control of the Bean Rust 

Fungus Uromyces appendiculatus by Means of Spore 

Suspensions and Culture Filtrates of Trichoderma 

harzianum 
 

 

3.1 Introduction 
 

Several species of the fungal genus Trichoderma are well-known antagonists of other 

fungi (HJELJORD and TRONSMO, 1998). First observations of such interactions were done 

by WEINDLING (1932, 1934), who reported mycoparasitism and antibiosis, two major 

mechanisms involved in the antagonism of Trichoderma spp. Today, many of the events 

taking place during antagonistic relationships between Trichoderma strains and fungal 

target organisms are known: competition for space and nutrients (ELAD, 1996; SIVAN and 

CHET, 1989) or for plant exudates (HOWELL, 2002), chemotactic hyphal branching of the 

antagonist towards the target fungus (LU et al., 2004), attachment via a lectin-mediated 

recognition mechanism (INBAR and CHET, 1992), hyphal coiling around the target’s hyphae 

and mycoparasitic activity (BENHAMOU and CHET, 1993), production of lytic enzymes 

(KREDICS et al., 2005; MARKOVICH and KONONOVA, 2003; VITERBO et al., 2002) as well as 

secondary metabolites with antibiotic properties (SIVASITHAMPARAM and GHISALBERTI, 

1998; SZEKERES et al., 2005) and the synergism between these classes of molecules 

(LORITO et al., 1996; SCHIRMBÖCK et al., 1994). Moreover, Trichoderma strains may 

induce systemic resistance in plants by activating the plants own defense mechanisms 

against potential attacks from plant pathogens including fungi, bacteria and viruses 

(HARMAN et al., 2004). Hence, several Trichoderma strains are known as feasible 

biological control agents (BCAs) (HARMAN and BJÖRKMAN, 1998; MONTE, 2001). 

Because Trichoderma species are soil-borne organisms with a need of moisture to 

colonize any habitat, most part of scientific research done during the last 30 years in 

terms of biological plant disease control concerned their use as antagonists of soil-borne 

pathogens (HJELJORD and TRONSMO, 1998). Nonetheless it was shown, that 

Trichoderma spp. are able to act as BCAs against foliar pathogens as well. The diverse 

antagonistic mechanisms facilitate the control of pathogens attacking upper parts of the 

plant like stem (O’NEILL et al., 1996), leaves (ELAD, 2000a), blossoms (ESCANDE et al., 

2002; TRONSMO and YSTAAS, 1980), and fruits (HARMAN et al., 1996). Successful 
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utilization of a specific antagonistic mechanism is thereby strongly dependent of the 

biology and pathogenicity of the target fungus. 

Botrytis cinerea, for example, is a necrotrophic fungus that synthesizes enzymes 

with lytic activity on components of the plant cell wall and outer layers of the leaf like 

pectolytic enzymes and cutinase. Moreover, its spores need nutrients available on the leaf 

surface to germinate (ELAD, 1996). T. harzianum strain T39 was very effective in reducing 

the germination of B. cinerea spores by competition regarding the availability of nutrients 

and in reducing the pathogen’s infectiousness by producing proteases, that lyzed the 

pathogenicity enzymes produced by B. cinerea (ELAD and KAPAT, 1999; KAPAT et al., 

1998). B. cinerea spore germination was also inhibited by means of chitinolytic (LORITO 

et al., 1993) and glucanolytic (LORITO et al., 1994) enzymes isolated from T. harzianum 

strain P1. 

Fungi, that produce an abundant mycelium on the surface of plant organs like 

powdery mildews (BRADATSCH, 2006; ELAD et al., 1998), Botryodiplodia theobromae 

(GUPTA et al., 1999), or Crinipellis perniciosa (SANOGO et al., 2002), were antagonized by 

Trichoderma spp. through parasitism. Moreover, inhibition of the pathogen’s development 

was explained by Trichoderma-mediated induction of plant resistance (ELAD et al., 1998). 

Rust fungi only produce a single germination hypha on the leaf surface, which 

penetrates through a stoma and gives rise to an intercellular mycelium within the leaf. 

Therefore, rust infection is more easily controlled by antibiosis than by parasitism or 

competition (ANDREWS, 1992). According to this, the antagonism of Trichoderma spp. 

against rust fungi other than bean rust was explained by an antifungal effect of secondary 

metabolites produced by the Trichoderma strain resulting in inhibition of rust spore 

germination or germ tube elongation (GOVINDASAMY and BALASUBRAMANIAN, 1989). Such 

effects were reported for rust spores confronted with living Trichoderma propagules 

(GOVINDASAMY and BALASUBRAMANIAN, 1989; KAPOORIA and SINHA, 1969; SALLAM, 2001), 

the sterile supernatant of germinated spore suspensions (GOVINDASAMY and 

BALASUBRAMANIAN, 1989; SINHA and BAHADUR, 1974), and filtrates of 15-days-old liquid 

cultures (ZADE et al., 2005). 

Dispersal of rust spores could also be reduced by Trichoderma spp. growing over 

rust pustules or parasitizing rust spores. But this interaction was described less often 

(LEVINE et al., 1936; TOSI and ZAZZERINI, 1994) as well as the inability of rust hyphae to 

penetrate the leaf surface through stomata due to a competitive interaction with fungal 

structures of Trichoderma sp. present on the leaf surface (SALLAM, 2001). 

The bean rust fungus Uromyces appendiculatus is of worldwide importance as a 

yield-reducing disease of Phaseolus vulgaris L., potentially causing yield losses up to 50% 

(BERGER et al., 1995; DE JESUS JUNIOR et al., 2001; VENETTE and JONES, 1982). Heavy 
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epidemics occur especially in the tropics and subtropics, because of the climatic 

conditions favouring the spread and infectiousness of U. appendiculatus (STAVELY, 1991). 

Control of the bean rust fungus is achieved by application of several disease management 

measures like cultural practices, cultivation of rust-resistant varieties, and the use of 

protectant and systemic fungicides (MCMILLAN et al., 2003). Efficacy levels of fungicides in 

terms of reducing rust disease severity reach over 90% (GENT et al., 2001; STUMP et al., 

2000).   

In a few cases, the possibility of controlling the bean rust disease by fungal or 

bacterial antagonists was scientifically investigated throughout the last 25 years (BAKER 

et al., 1983, 1985; GRABSKI and MENDGEN, 1985, 1986; SAKSIRIRAT and HOPPE, 1990; 

YUEN et al., 2001). Bacterial antagonists were successful due to the production of 

antibiotic metabolites that negatively affected rust spore germination (BAKER et al., 1983, 

1985; YUEN et al., 2001), while the antagonistic fungus Verticillium lecanii grew 

parasitically on bean rust uredia and uredospores (GRABSKI and MENDGEN, 1985, 1986; 

SAKSIRIRAT and HOPPE, 1990). To the author’s knowledge, no information on the control of 

U. appendiculatus by means of Trichoderma spp. is available. 

In this study the ability of T. harzianum to control the bean rust fungus in leaf disc 

assays was investigated to answer the question by which antagonistic mechanism such 

control is achieved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Material and methods (3) 

49 

3.2 Material and methods 
 

3.2.1 Fungal strains 

Six T. harzianum strains were used in this study, five of them isolated from commercial 

preparations: T-22 from TRIANUM-P (Koppert Biological Systems, Berkel en Rodenrijs, 

The Netherlands), T39 from TRICHODEX (Makhteshim-Agan Ltd., Tel Aviv, Israel), and 

the strains from TRI 003 (Plantsupport, Grootebroek, The Netherlands), TRICHOSAN 

(Vitalin Pflanzengesundheit GmbH, Ober-Ramstadt, Germany), and UNISAFE (Uniseeds 

Co. Ltd., Bangkok, Thailand). The abbreviations TR, TS, and TU will be used throughout 

this work for the latter three strains, respectively. The non-commercial strain T12 from the 

fungal collection of the Institute of Plant Diseases and Plant Protection (IPP; Leibniz 

Universität Hannover, Germany) was originally obtained as strain T000 from the Institute 

of Phytopathology and Applied Zoology (IPAZ; Justus-Liebig-University Gießen, 

Germany). 

Uredospores of the bean rust fungus U. appendiculatus were taken from the fungal 

collection of the IPP. 

 

 

3.2.2 General culture conditions 

All Trichoderma strains were maintained on PDA (Merck KGaA, Darmstadt, Germany) at 

24°C in Petri dishes with a diameter of 90 mm, which were filled with 10 ml PDA and 

singly sealed with Parafilm (Pechiney Plastic Packaging, Chicago, IL, USA). 

U. appendiculatus was maintained by inoculating bean plants, harvesting freshly 

produced uredospores, and storing them at -20°C. Uredospores taken from the freezer 

and used in the experiments were usually not older than 4 to 8 weeks. 

 

 

3.2.3 Production of Trichoderma harzianum spore suspensions and culture filtrates 

Spore suspensions were produced by scraping off sporulating mycelium from PDA 

cultures and suspending it in sterile A. dest. To remove mycelial fragments from the 

suspensions, they were filtered through 595 Schleicher & Schuell filter paper (Whatman 

International Ltd., Kent, England). Spore suspensions were adjusted to the desired 

concentration.  

Culture filtrates were produced by cultivation of the six T. harzianum strains for ten 

days in PDB (Becton Dickinson GmbH, Heidelberg, Germany). For each strain, 250 ml 

PDB were initially inoculated with five mycelial plugs with a diameter of one cm. 

Incubation took place at room temperature (22°C) on a horizontal shaker at 85 rpm. To 
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get rid of the major parts of the mycelium, liquid cultures were filtered through 

595 Schleicher & Schuell filter paper. Afterwards, cultures were sterile filtrated through 

Schleicher & Schuell filters with pore sizes of 0.8 µm and 0.2 µm.  

 

3.2.4 Leaf disc assays 

Bean plants of cultivar ‘Maja’ (Hild Samen GmbH, Marbach, Germany) were sown in seed 

trays and cultivated for ten to twelve days in the greenhouse until primary leaves had fairly 

developed. At the time of harvest of primary leaves, trifoliate leaves had just started to 

grow. Leaf discs with a diameter of 20 mm were cut out of harvested primary leaves with a 

cork borer. Two leaf discs per 60-mm Petri dish were positioned upside down on 

1% water agar. 

In all leaf disc assays, each treatment consisted of ten Petri dishes and application 

of sterile A. dest. served as the control treatment. Leaf discs were inoculated with rust 

spore suspensions with concentrations of 1 x 104 spores / ml a defined period of time after 

they had been treated with T. harzianum spore suspensions or culture filtrates. Rust spore 

suspensions were amended with few droplets of Tween 20 for better distribution of the 

spores within the suspension. 

Six different kinds of assays were carried out. Generally, Trichoderma treatments 

were applied to leaf discs directly after they had been placed in Petri dishes. Before and 

after inoculation with bean rust spores, Petri dishes were cultivated at 24°C and 85% rH 

with a light period of 16 h in a climate cabinet. All spore suspensions, culture filtrates, and 

control treatments were applied to the leaf discs using 25-ml pump spray bottles. Spraying 

one time was sufficient to apply the spore suspensions to the whole surface of a leaf disc 

which had a size of 3.14 cm². By spraying one time, circa 100 µl liquid were applied.  

 Disease severity was assessed with a binocular by counting uredial rust pustules 

that had developed ten to twelve days after rust inoculation. Mean rust pustule numbers 

per Petri dish were calculated.  
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3.2.4.1 Assay on the effect of spore suspensions of six Trichoderma harzianum 

strains on bean rust severity 

Spore suspensions of all T. harzianum strains with a concentration of 5 x 106 spores / ml 

were applied to leaf discs. Inoculation with a bean rust spore suspension took place four 

days after inoculation with T. harzianum. This assays was repeated two times. Both 

results are shown. 

 

3.2.4.2 Assay on the effect of spore suspensions with increasing concentrations of 

two Trichoderma harzianum strains on bean rust severity 

Spore suspensions of T. harzianum strains T12 and TU with concentrations of 5 x 103, 

5 x 104, 5 x 105, 5 x 106, and 5 x 107 spores / ml were applied to leaf discs. Inoculation 

with a bean rust spore suspension took place four days after inoculation with 

T. harzianum. 

 

3.2.4.3 Assay on the effect of suspensions of alive or autoclaved spores with 

increasing concentrations on bean rust severity 

Suspensions of alive and autoclaved spores of T. harzianum strains T12 and TU with 

concentrations of 5 x 105, 5 x 106, and 5 x 107 spores / ml were applied to leaf discs. 

Inoculation with a bean rust spore suspension took place four days after inoculation with 

T. harzianum.  

 

3.2.4.4 Assay on the effect of co-inoculation of bean rust and Trichoderma 

harzianum spore suspensions or spore suspension supernatants on bean 

rust severity 

Spore suspensions of T. harzianum strains T12 and TU with a concentration of 

5 x 106 spores / ml were applied to leaf discs four days prior to rust inoculation. 

Additionally, a mixed suspension of T. harzianum and rust spores with concentrations of 

5 x 106 and 1 x 104 spores / ml, respectively, was applied at the same day (day zero). 

These procedures were carried out a second time with supernatants of T. harzianum 

spore suspensions after Trichoderma spores had been removed from the suspensions by 

centrifugation at 10,000 rpm for five minutes. 

 

3.2.4.5 Assay on the effect of culture filtrates with increasing concentrations of two 

Trichoderma harzianum strains on bean rust severity 

Culture filtrates of T12 and TU were diluted to 10, 25, and 50%. Filtrates with these 

concentrations, the undiluted culture filtrates (100%), and sterile A. dest. that served as 
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the control treatment were applied to leaf discs and allowed to dry for one to two hours. 

Inoculation with rust spores took place 24 h later. 

 

3.2.4.6 Assay on the effect of protective and curative treatment with culture filtrates 

of two Trichoderma harzianum strains on bean rust severity 

Undiluted culture filtrates of T12 and TU, and sterile A. dest. that served as the control 

treatment were applied to leaf discs 24 h before or 24 h after bean rust inoculation. In both 

cases, leaf disc surfaces were allowed to dry for one to two hours directly after treatment 

application. 

 

 

3.2.5 Re-isolation of Trichoderma harzianum colony forming units (cfu) from bean 

leaf discs  

Single leaf discs with a size of 3 x 3 cm were cut out of primary bean leaves and put onto 

water agar in 60-mm Petri dishes. Spore suspensions of all T. harzianum strains with a 

concentration of 5 x 106 spores / ml and sterile A. dest. as control treatment were applied 

directly after leaf discs had been prepared. Each treatment consisted of 40 leaf discs. Five 

leaf discs of each treatment were cultivated for 2, 4, 7, 10, 14, 17, and 21 days before 

re-isolation of T. harzianum was carried out. From five leaf discs per treatment, 

T. harzianum cfus were re-isolated directly after spore suspensions had been applied. 

Re-isolations were done by mechanically grinding the leaf material in 10 ml of sterile 

A. dest. This suspension was diluted 250-fold, and 100 µl of the resulting suspension were 

spread onto Trichoderma-selective medium (ELAD et al., 1981). Developing cfu were 

counted. 

 

 

3.2.6 Germination tests 

Sterile culture filtrates of all T. harzianum strains were incorporated into 1% water agar 

gaining culture filtrate agar with concentrations of 1, 3, 5, 10, 15, and 25%. Moreover, 

culture filtrates of T12 and TU were incorporated into 1% water agar with concentrations of 

5 and 1%, respectively, after filtrates had been heated up to 40, 60, 80, or 100°C for 

10 minutes, or had been autoclaved at 121°C. This agar was poured into 60-mm Petri 

dishes. Sterile A. dest., added to 1% water agar at the same concentrations like the 

culture filtrates served as the control.  

Per Petri dish, 50 µl of a bean rust spore suspension with a concentration of 

5 x 104 spores / ml were spread over the culture filtrate agar and allowed to germinate for 

24 h at 24°C. Afterwards, the percentage of germinated spores was visually determined 
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for 100 spores by use of a light microscope. Germ tube length was calculated as the 

mean length of ten measured germ tubes per Petri dish. Each treatment consisted of four 

replications. 

The inhibition of germination and subsequent germ tube growth by T. harzianum 

culture filtrates was observed microscopically by putting autoclaved cellophane foil 

(Alba Einmachhaut, Gehring & Neiweiser GmbH + Co. KG, Bielefeld, Germany) onto 

water agar amended with 3, 5, and 10% culture filtrate of strains T12 and TU and applying 

the bean rust spore suspension onto this cellophane membrane. After 24 h, pieces were 

cut out of the cellophane and transferred to object slides. Microscopical examination by 

interference microscopy and photographic documentation were done with an Axiophot 

photomicroscope (Carl Zeiss MicroImaging GmbH, Göttingen, Deutschland). 

 

3.2.7 Statistical analysis 

The variables measured in this study were (1) number of rust pustules per leaf disc, 

(2) the number of germinated rust spores, and (3) the length of the rust spore germ tubes. 

Percent reduction in the number of rust pustules and percent reduction in the number of 

germinated rust spores were computed. Moreover, the impact of increasing T. harzianum 

culture filtrate concentrations of the different T. harzianum strains on rust spore 

germination and germ tube elongation was assessed by computing areas under the 

germination curves (AUGC) and areas under the germ tube growth curves (AUGGC).   

Because of the high variation of germination and germ tube growth data (as well as 

AUGC and AUGGC data) between culture filtrate treatments and control, which occurred 

in the germination tests, those data were subjected to natural logarithm transformation 

before they were analysed statistically.   

All analyses were performed using procedures in SAS version 8.02 (Statistical 

Analysis Systems Institute, Cary, NC, USA). Analyses of variance were performed for 

most experimental data with two exceptions: (1) Analysis of covariance was applied to the 

data from the assay on the effect of increasing culture filtrate concentrations on bean rust 

severity and (2) T. harzianum cfu re-isolation data were analysed using weighted linear 

regressions. 

Mean separations were done by Bonferroni-adjusted t-tests or by statistical methods 

for multiple comparisons like Duncan’s multiple range tests or contrast tests. Testing 

methods are specified where results are shown. 

In all figures and tables, the variability is given by the standard error. 
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3.3 Results 
 

3.3.1 Leaf disc assays 

Six different assays were performed on leaf discs which had been cut out of primary bean 

leafs and transferred into Petri dishes filled with water agar. The aim of these assays was 

to assess the effect of spore suspensions and culture filtrates of all six T. harzianum 

strains or of strains selected because of their superior efficacy. 

 

3.3.1.1 Effect of spore suspensions of six Trichoderma harzianum strains on bean 

rust severity 

Application of T. harzianum spore suspensions to leaf discs prior to inoculation with bean 

rust spores led to significant decreases in the number of developing uredial rust pustules 

depending on the T. harzianum isolates (Tab. 3.1).  

       
 Tab. 3.1. Effect of Trichoderma harzianum spore suspensions applied four days in 

advance of bean rust inoculation on the number of developing uredial rust pustules 
on leaf discs 

 

       
  Uredial pustules per leaf  
  Experiment 1 Experiment 2  
 Treatment Number [mean] Control [%]a Number [mean] Control [%]  
 T12    30.8 ± 2.0 abb 48.3   35.1 ± 3.8 ab 41.9  
 T-22 58.6 ± 5.3 d   1.5 62.0 ± 3.6 d   0.0  
 T39 44.5 ± 4.8 c 25.2   43.1 ± 4.8 bc 28.7  
 TR 58.9 ± 5.9 d   1.0 56.5 ± 5.0 d   6.5  
 TS   43.1 ± 4.7 bc 27.6 44.8 ± 4.0 c 25.9  
 TU 29.3 ± 3.3 a 50.8 25.3 ± 2.8 a 58.2  
 A. dest. 59.5 ± 4.5 d --- 60.4 ± 3.1 d ---  
 

a
 Percent reduction in number of uredial pustules as compared to the number on A. dest. treated leaf 

discs.  
b
 Figures within one column followed by the same letter do not differ significantly according to Duncan’s 

multiple range test, p=0.05.  

 

       
 

Especially isolate TU reduced the mean number of pustules per leaf disc about 

51 and 58%, followed by T12 with 48 and 42% rust pustule reduction achieved in two 

independent experiments. Efficacy of T39 and TS reached control values between 25 to 

29%, while T-22 and TR had no effect on bean rust infection. 
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3.3.1.2 Effect of spore suspensions with increasing concentrations of two 

Trichoderma harzianum strains on bean rust severity 

Increasing the concentration of the most effective isolates T12 and TU from 5 x 103 to 

5 x 107 spores / ml led to decreasing rust pustule numbers per leaf disc (Fig. 3.1). The 

falling functions y = A – exp (r * x) with A = 51.2 and r = 0.45 for T12 and                           

y = A * exp(–r * x) with A = 50.0 and r = 0.13 for TU were fitted to the mean pustule 

numbers at each Trichoderma concentration. In these functions, x = logarithmic spore 

concentration (+1) and y = mean number of uredial rust pustules per leaf disc. Resulting 

R2-values for the models of the effect of increasing T12 and TU spore concentrations on 

bean rust infection were R2 = 98.8% and R2 = 98.7%, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The functions reflect the greater effect of TU on rust infection over the complete 

range of applied Trichoderma spore concentrations. While the mean pustule number is 

reduced only by higher T12 concentrations, the curve displaying the effect of increasing 

TU concentrations is exponentially falling. This demonstrates that TU showed higher 

efficacy than T12 especially at the lower concentrations of 5 x 103 and 5 x 104 spores / ml.  

Contrast tests statistically proved that TU did reduce the number of rust pustules 

significantly even at the lowest concentration of 5 x 103 spores / ml, while 5 x 105 spores 

of T12 had to be applied to significantly reduce bean rust infection on leaf discs. These 

results were consistent, when experiments were repeated (data not shown). 

 

Fig. 3.1. Effect of increasing concentrations of applied 
Trichoderma harzianum spore suspensions of T12 ( ) and 
TU ( ) on the number of developing uredial rust pustules per 
leaf disc after inoculation with bean rust. 
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Fig. 3.2. Effect of increasing concentrations of autoclaved ( ) and living ( ) Trichoderma 
harzianum spores of T12 and TU applied to leaf discs on the number of developing uredial rust 
pustules per leaf disc after inoculation with bean rust. a The paired bars, marked by the same letter 
do not differ significantly according to pairwise Bonferroni-adjusted t-tests. 
 

3.3.1.3 Effect of suspensions of alive or autoclaved spores with increasing 

concentrations on bean rust severity 

Autoclaving Trichoderma spores of T12 did not eliminate their effect on rust infection 

(Fig. 3.2). Although slightly higher, the percent reduction of uredial pustules by living T12 

spores was not significantly different from autoclaved spores. Autoclaving spores of TU 

eliminated their ability to reduce rust spore infections. Only application of the highest 

concentration of 5 x 107 spores per millilitre autoclaved Trichoderma spore suspension 

was sufficient to control the infection with U. appendiculatus by 19%. 
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3.3.1.4 Effect of co-inoculation of bean rust and Trichoderma harzianum spore 

suspensions or spore suspension supernatants on bean rust severity 

If Trichoderma spores were co-inoculated in a combined treatment with bean rust spores, 

a marked decrease in bean rust control could be observed for both isolates T12 and TU in 

comparison to the standard Trichoderma treatment four days prior to rust inoculation 

(Tab. 3.2). Nevertheless, spores of T12 and TU applied in combination with 

U. appendiculatus inoculation were capable of controlling bean rust infection by 17.7 and 

14.8%, respectively. Application of supernatants of the spore suspensions after removal of 

the Trichoderma spores by centrifugation led to a significant loss of efficacy of the 

Trichoderma treatments. Only the TU supernatant showed a minor reducing effect on bean 

rust infection. 

       
 Tab. 3.2. Effect of Trichoderma harzianum spore suspensions and spore suspension 

supernatants of strains T12 and TU applied in combination with bean rust spores or four 
days in advance of bean rust inoculation on the number of developing uredial rust pustules 
on leaf discs 

 

       
  Uredial pustules per leaf  

  Co-Inoculation d0a Inoculation d4  

 Treatment Number [mean] Control [%]b Number [mean] Control [%]  

 T12 suspension   49.7 ± 2.1 ac 17.7 33.4 ± 2.7 a 39.5  
 T12 supernatant 60.2 ± 2.0 b   0.3 51.8 ± 3.3 b   6.3  
 TU suspension 51.5 ± 3.5 a 14.8 26.7 ± 2.4 a 51.8  
 TU supernatant   54.9 ± 3.7 ab   9.1 50.5 ± 3.6 b   8.9  
 A. dest. 60.4 ± 1.9 b --- 55.3 ± 2.5 b ---  

 
a
 Leaf discs were inoculated with bean rust by co-inoculation on the same day ‘d0’ or 4 days after treatment ‘d4’. 

b Percent reduction in number of pustules as compared to the number on A. dest. treated leaf discs.  
c
 Figures within one column followed by the same letter do not differ significantly according to Duncan’s multiple 

range test, p=0.05. 
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3.3.1.5 Effect of culture filtrates with increasing concentrations of two Trichoderma 

harzianum strains on bean rust severity 

Application of T12 and TU culture filtrates prior to bean rust inoculation reduced the 

number of rust pustules that developed per leaf disc after bean rust inoculation. This 

inhibition of infection increased with increasing culture filtrate concentration (Fig. 3.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An analysis of covariance was performed and revealed that there was no significant 

difference between T12 and TU, if the whole range of applied culture filtrate concentrations 

of 10 to 100% was taken into account. By contrast tests, it was statistically demonstrated 

that a concentration of 50% of the T12 culture filtrate was needed to significantly reduce 

the number of bean rust pustules, while 25% of the TU culture filtrate were enough in terms 

of significantly reducing the number of rust pustules per leaf disc. 
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Fig. 3.3. Effect of increasing Trichoderma harzianum culture filtrates 
concentrations of strains T12 ( ) and TU ( ) on the number of 
developing uredial rust pustules on leaf discs when applied one day 
before inoculation with bean rust. 
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3.3.1.6 Effect of protective and curative treatment with culture filtrates of two 

Trichoderma harzianum strains on bean rust severity 

The protective application of undiluted culture filtrates of T. harzianum strains T12 and TU 

24 h before inoculation with U. appendiculatus reduced the number of rust pustules that 

developed per leaf disc to the same extent as in the previous experiment on increasing 

T. harzianum culture filtrate concentrations with control values of 55 to 60%. The numbers 

of rust pustules were significantly lower compared to the numbers that developed after 

curative culture filtrate treatment and compared with both control treatments (Tab. 3.3). 

      
 Tab. 3.3. Effect of Trichoderma harzianum culture filtrates applied 

as protective or curative treatment 24 h before or after bean rust 
inoculation on the number of developing uredial rust pustules on 
leaf discs 

 

      
 Treatment Number [mean] Control [%]a  
  T12   28.7 ± 2.9 ab 60.3  
 protective TU 32.2 ± 3.0 a 55.4  
  A. dest. 72.2 ± 3.2 b ---  
      
  T12 69.0 ± 2.9 b 12.1  
 curative TU 73.5 ± 2.6 b   6.3  
  A. dest. 78.4 ± 2.0 b ---  
 

a Percent reduction in number of uredial pustules as compared to the number on 
leaf discs from the corresponding ‘protective’ or ‘curative’ control treatment.

 

b
 Numbers followed by the same letter do not differ significantly according to Tukey’s 

all-pair comparisons. 

 

      
 

Curative treatment of bean leaf discs with T12 and TU culture filtrates did not have 

any effect on the numbers of rust pustules compared to the ’protective’ control treatment. 

A minor, but insignificant reduction of rust pustules compared to the ‘curative’ control 

treatment, which resulted in the highest rust pustule numbers, could be noticed. 
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3.3.2 Re-isolation of Trichoderma harzianum from leaf disc surfaces 

At the dilution level used in this experiment, no colony forming units (cfu) of Trichoderma 

spp. were isolated from control leaf discs. Re-isolation of T. harzianum strains revealed 

rather similar population dynamics on the surface of bean leaf discs of strains T12, TR, 

and TS (Fig. 3.4a, 3.4d, and 3.4e). Following a lag period of four days with minor 

decreases or increases in cfu numbers, population density increased between days four 

and seven, reaching a first peak after one week at 3 x 105 to 3.5 x 105 cfu per leaf disc. 

Thereafter, population density declined within the second week, but increased again to a 

maximum of 4 x 105 to 4.5 x 105 cfu per leaf disc within the third week.  

The population of strain T-22 developed in a different manner, increasing steadily 

with an initial peak in population density two to three days earlier than T12, TR, and TS 

(Fig. 3.4b).  

Population dynamics of T39 and TU showed a slower development (Fig. 3.4c 

and 3.4f). During the first 10 to 14 days after Trichoderma spore application, population 

densities of both strains declined. Thereafter, a small increase in the number of cfu 

re-isolated from leaf disc surfaces was observed, but cfu numbers stayed even lower than 

the number of spores initially applied. Finally, population density decreased again. No 

second peak was observed within the third week.  

Linear regressions weighted with the reciprocal variance highlight the overall trends 

in population dynamics. Increases or decreases in population densities of T12, TR, and TS 

were not statistically significant, while the decreases of T39 and TU, and the distinct 

increase in population density of T-22 were significant with p-values of p < 0.001 for all 

three strains.  
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Fig. 3.4. Population dynamics of Trichoderma harzianum strains T12 (a), T-22 (b), T39 (c), TR (d), 
TS (e), and TU (f) during the first three weeks after inoculation of bean leaf discs with Trichoderma 
harzianum spore suspensions. Line plots (

 
) and weighted linear regression curves (

 
) are 

shown. 
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3.3.3 Germination tests 

If bean rust spores were spread on water agar, 80 to 90% had germinated 24 h later and 

had developed germ tubes with a mean length of about 850 µm. If rust spore germination 

took place on water agar amended with low concentrations of culture filtrates of 

T. harzianum strains T12 and TU, pronounced reductions in the numbers of germinated 

rust spores as well as a very strong decrease in germ tube growth were observed 

microscopically (Fig. 3.5).  

 

 

 

 

 

 

 

Fig. 3.5. Effect of Trichoderma harzianum culture filtrates on bean rust spore germination and germ 
tube growth after 24 h. Uredospores germinated on water agar (a), on water agar amended with 
3% (b), 5% (c), and 10% (d) of T12 culture filtrate, or with 3% (e) and 5% (f) of TU culture filtrate. 
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Fig. 3.5a shows the growth of a bean rust germ tube on water agar after 24 h, 

whereas Fig. 3.5b to 3.5d as well as Fig. 3.5e and 3.5f exemplify the effects of adding 

culture filtrates of T. harzianum strains T12 and TU, respectively, to the water agar. Germ 

tubes were shortened and the protoplasm was granulated (Fig. 3.5b). The bursting of 

germ tubes could be observed (Fig. 3.5f) as well as the leakage of protoplasm directly 

from the germinating spore (Fig. 3.5d).  

Next to these general antibiotic effects, the culture filtrates of T12 and TU influenced 

the process of germination in individual ways: Spores partly produced double germ tubes 

if confronted with the T12 culture filtrate (Fig. 3.5c) and some germ tubes developing on 

water agar amended with the TU culture filtrate differentiated into appressoria-like 

structures (Fig. 3.5e) (HEATH, 2007; WYNN, 1976). Both observations were never made 

with uredospores germinating on pure water agar. 

 

The numbers of germinating uredospores (Fig. 3.6a) and the length of germ tubes 

(Fig. 3.6b) decreased with increasing concentrations of T. harzianum culture filtrates. The 

TU culture filtrate was most effective, allowing only 22% germination of uredospores if 1% 

culture filtrate was added to the water agar. The culture filtrates of T12, T-22, T39, and TS 

differed only slightly from each other, but the TR filtrate showed a marked lower efficacy in 

inhibiting germination. Overall, germ tube growth was stronger affected by Trichoderma 

culture filtrates than rust spore germination. TU and T12 showed the strongest germ tube 

growth inhibition, while the effect of TR and TS was least pronounced. 

Increasing concentrations of A. dest. added to 1% water agar showed no effect on 

germination, but lead to slightly increasing germ tube length. This most probably was due 

to the agar consistency becoming softer and easier to penetrate for the germ tubes. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6. Effect of increasing concentrations of A. dest. ( ) or culture filtrates of 
Trichoderma harzianum strains T12 ( ), T-22 ( ), T39 ( ), TR ( ), TS ( ), and TU ( ) incorporated into 
water agar on germination (a) and germ tube growth (b) of bean rust spores.  
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The areas under the curves, that show the inhibiting effects on germination (AUGC) 

and on germ tube growth (AUGGC) over the range of the culture filtrate concentrations, 

were computed and provided measures for comparing the effects of the different 

T. harzianum culture filtrates (Tab. 3.4). 

       
 Tab. 3.4. Effects of increasing culture filtrate concentrations of Trichoderma harzianum 

incorporated into water agar on the area under the germination curve (AUGC) and the 
area under the germ tube growth curve (AUGGC) of bean rust spores 

 

       
  Germination Germ tube growth  
 Treatment AUGC [%*%] Reduction [%]a   AUGGC [%*%] Reduction [%]b  
 T12     416 ± 10.7 bc 83.4     86 ±   0.7 b 96.7  
 T-22    604 ± 17.7 c 75.8   195 ±   6.3 c 92.5  
 T39    623 ± 21.2 c 75.1   244 ±   7.5 d 90.6  
 TR   1517 ± 18.8 e 39.3   379 ±   5.5 e 85.4  
 TS    714 ± 20.3 d 71.4  412 ±   9.2 f 84.1  
 TU      90 ±   4.3 a 96.4     56 ±   0.5 a 97.8  
 A.dest. 2499 ± 16.2 f --- 2598 ± 60.6 g ---  
 

a
 Percent reduction in area under the germination curve as compared with the A. dest.

 

b Percent reduction in area under the germ tube growth curve as compared with the A. dest.  
c
 Figures within one column followed by the same letter do not differ significantly according to Duncan’s 

multiple range test, p=0.05.  

 

       
 

Over the complete range of culture filtrate concentrations, the TU culture filtrate 

reduced germination and germ tube growth the strongest by 96.4 and 97.8%, respectively, 

followed by the T12 culture filtrate with reduction of germination by 83.4% and of germ 

tube growth by 96.7%. The effects of both culture filtrates differed significantly from the 

control, from each other, and from the other four strains’ culture filtrates.  

Except for the TR culture filtrate, which reduced uredospore germination markedly 

less than the other ones, no dramatic differences in germination and germ tube growth 

affected by the remaining culture filtrates were observed. Nonetheless, most differences 

between effects of culture filtrates were statistically significant. 

 

 

 

 

 

 

 

 



Results (3) 

65 

Heat treatment of the culture filtrates from strains TU and T12 only slightly influenced 

their efficacy in terms of inhibiting bean rust spore germination and germ tube growth 

(Tab. 3.5).  

       
 Tab. 3.5. Effect of heated Trichoderma harzianum culture filtrates (CF) of 

strains T12 and TU incorporated into water agar on germination and germ 
tube growth of bean rust spores 

 

       
  Effect of 5% T12 culture filtrate  

 Heat 
treatment 

Germinated 
spores [%] 

 
Control [%]a 

Germ tube 
length [µm] 

 
Control [%]b 

 

   40°C CF  25.3 ± 2.7 ac 67.3     28.0 ±   0.9 a 96.7  
   60°C CF 22.3 ± 1.3 a 71.2     28.8 ±   2.5 a 96.6  
   80°C CF 22.8 ± 3.1 a 70.6     27.8 ±   0.5 a 96.7  
 100°C CF 22.8 ± 1.8 a 70.6     28.8 ±   2.0 a 96.6  
 121°C CF 62.0 ± 1.6 b 19.7     41.0 ±   2.5 b 95.2  
 40°C A. dest. 77.3 ± 1.9 c ---   852.5 ± 52.0 c ---  
       
  Effect of 1% TU culture filtrate  

 Heat 
treatment 

Germinated 
spores [%] 

 
Control [%] 

Germ tube 
length [µm] 

 
Control [%] 

 

   40°C CF 31.8 ± 0.5 a 65.9     36.3 ±   1.3 a 95.5  
   60°C CF 32.8 ± 1.0 a 64.8     39.0 ±   1.9 a 95.1  
   80°C CF 31.0 ± 1.1 a 66.7     33.0 ±   3.7 a 95.9  
 100°C CF 31.8 ± 1.0 a 65.9     38.5 ±   1.3 a 95.2  
 121°C CF 34.0 ± 0.7 a 63.4     38.3 ±   4.4 a 95.2  
 40°C A. dest. 93.0 ± 0.7 b ---   797.0 ± 46.0 b ---  
 a Percent reduction in number of germinated rust spores.  

b Percent reduction in germ tube length.  
c
 Figures within one column followed by the same letter are not significantly different according to 

multiple contrast tests; p=0.05. 

 

       
 

Addition of 5% T12 culture filtrate or 1% TU culture filtrate to water agar reduced 

germination about 70 and 66%, respectively, while germ tube elongation was reduced 

about 96.6 and 95.5%, respectively. Heating the culture filtrates to temperatures up to 

100°C did not change their effects on germination and germ tube growth. 

Autoclaved (at 121°C) T12 culture filtrate, added to water agar, showed a marked 

decrease in the inhibition of bean rust spore germination and a slight decrease in the 

inhibition of germ tube elongation, both efficacy changes statistically significant based on 

multiple contrast tests. Autoclaving the TU culture filtrate did not change its ability to 

control rust spore germination and germ tube elongation. 
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3.4 Discussion 
 

Rust fungi produce no epiphytic mycelium during their uredial stage with the exception of 

a germ tube, which emerges from the uredospore and grows on the leaf surface towards a 

stoma. Formation of an appressorium over this opening is followed by hyphal penetration 

through the stoma (HEATH, 1997). For the bean rust fungus U. appendiculatus, the 

process from germination to infection takes less than 24 h, so that the epiphytic hyphal 

part of the pathogen becomes irrelevant.  

During the following ten to fourteen days, U. appendiculatus develops within the 

leaf. It produces intercellular mycelium, forms haustoria for gaining nutrients, and 

eventually builds a uredium below the epidermal cell layers of the abaxial leaf surface. By 

breaking through the epidermis, the bean rust fungus returns to the leaf surface with an 

opened uredium, presenting thousands of spores ready to be taken to a new host by wind 

or rain (STAVELY, 1991). 

From the landing of the uredospore to the take-off of a new generation of uredial 

rust spores, there are only two stages that can be attacked by microbial beneficials. First, 

microorganisms producing antifungal substances may inhibit the germination of the rust 

spore, germ tube elongation, and appressorium formation. Second, microbial beneficials 

may parasitize on the newly developed rust pustule. While parasitism on rust uredia was 

mainly attributed to fungal hyperparasites like V. lecanii (GRABSKI and MENDGEN, 1985, 

1986; SAKSIRIRAT and HOPPE, 1990), antibiotic metabolites inhibiting bean rust spore 

germination were produced by bacteria of diverse genera (BAKER et al., 1983, 1985; YUEN 

et al., 2001). Generally, to prevent the initial infection is of greater interest than solely to 

reduce the subsequent spread of the disease. 

Some strains of the fungal BCA T. harzianum are known to produce antifungal 

metabolites (SIVASITHAMPARAM and GHISALBERTI, 1998; SZEKERES et al., 2005). Therefore, 

this study investigated the ability of T. harzianum to inhibit the infection of bean leaves by 

U. appendiculatus.  

The main result is that selected T. harzianum strains are able to reduce infection of 

leaf discs under laboratory conditions. Thereby, great differences between the six 

T. harzianum strains were observed, ranging from ineffectiveness of T-22 and TR to strong 

effects of T12 and TU with 40 to 50% and 50 to 60% reduction of the number of rust 

pustules, respectively. If compared to results obtained in dual culture assays against plant 

pathogens like Botrytis cinerea, Pythium ultimum, or Rhizoctonia solani, in which T-22 and 

TR very effectively controlled the target fungi (Chapter 2), the findings for the activity 

against bean rust emphasize that selection of the most effective strain for each individual 

pathosystem is a prerequisite for successful application of Trichoderma strains in 
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biological control (GRONDONA et al., 1997). In the present study, promising bean rust 

control above 50% disease reduction was only achieved with one out of five commercial 

T. harzianum strains, none of them recommended as BCA against rust fungi.  

The results of the leaf disc assays implicate that simply applying fungal cells to the 

surface of the leaf has no effect on the bean rust fungus in terms of competition for space 

or nutrients, as can be seen in the cases of T-22 and TR. U. appendiculatus, which feeds 

on nutrients from its own uredospore during the infection period, was still able to reach the 

stomata of the bean leaf. Parasitism on the rust spore directly after it landed on the leaf or 

parasitism on the germ tube by T. harzianum is very unlikely due to the very short period 

of time during which the rust fungus can be attacked at these structures. Hence, the 

reduction of rust pustules, developing after bean rust inoculation on bean leaf discs 

treated with T. harzianum spore suspensions, is most probably due to antibiosis.  

Although a great number of metabolites with antifungal properties synthesized by 

Trichoderma spp. is known (SIVASITHAMPARAM and GHISALBERTI, 1998; SZEKERES et al., 

2005), no information is available concerning the effect of any of these metabolites 

against rust fungi. Therefore, only few conclusions on the nature of the antifungal 

metabolites of the T. harzianum strains, applied during this study, showing activity against 

U. appendiculatus can be drawn from the results of the experiments. 

Although the spore suspensions were produced by washing-off the T. harzianum 

spores from the mycelium, the antifungal metabolites are not of mycelial origin. Otherwise, 

the supernatants used in the assay on the effect of co-inoculation of bean rust and 

T. harzianum preparation on disease severity should have been effective, too. A little 

effect was observed for the supernatant of TU, a strain known to produce antifungal 

metabolites during culture on PDA (Chapter 2). But the effect was much lower than if TU 

spores were applied to the leaf discs. 

The T12 spore suspension is negatively affecting infectiousness of the uredospore 

even after autoclaving. This result suggests that the secondary metabolites of T12 

responsible for the major part of the effect on U. appendiculatus are heat stable antibiotics 

contained in the T12 spore and released when the spore is destroyed while autoclaved or 

when the living spore germinates. Other metabolites, which probably are not heat stable 

may account for the minor, statistically insignificant reduction of bean rust control in 

comparison to the non-autoclaved T12 spore suspension. 

The TU spore suspension lost its efficacy when autoclaved. A reason for this may be 

that TU metabolites are not heat stable, or that they are not released from the spore itself 

but produced during the process of germination. As autoclaving killed the spores and 

prevented germination, antifungal metabolites could not be produced. 
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Compared with the results of the spore suspension assays, germination tests done 

with T. harzianum culture filtrates incorporated into water agar showed very similar 

results. While spore suspensions of TU were more effective than T12, followed by T39 and 

TS, T-22 and TR, reduction of germination and germ tube growth was highest for culture 

filtrates of TU and T12 followed by T-22, T39, TS, and TR. With the exception of T-22, 

results from spore suspension and culture filtrate experiments seem to be correlated with 

each other, if spore suspension effects in terms of rust control are compared with AUGC 

and AUGGC values resulting from germination tests. Therefore, it is proposed that the 

active antifungal metabolites released by germinating T. harzianum spores onto the 

surface of leaf discs are also produced by T. harzianum strains if grown in liquid culture. 

The reason for the T-22 spore suspension being completely ineffective in repeated 

leaf disc assays is unknown. Because re-isolation of T-22 from the leaf disc surface 

resulted in cfu numbers similar or even higher than for the other T. harzianum strains, it 

can be hypothesized that T-22 spores do not contain the same antifungal metabolites, 

which are produced by T-22 in liquid culture (VINALE et al., 2006). 

Population development on leaf discs showed an initial lag period after application of 

Trichoderma spore suspensions with minor decreases or increases in population density 

within the first four days. This was influenced by germination and the beginning of mycelial 

development on one side and by the death of Trichoderma spores on the other. Following 

this period, the influence of mycelial growth got stronger until the scarce amount of 

nutrients available on the leaf surface was mostly used up after the first week, which 

caused the following decrease in population density. After the second week, leaf quality 

declined. This led to an increase of available nutrients and subsequently to a new 

increase in the amount of living propagules of T. harzianum on the surface of the leaf 

discs. 

T-22 mycelium developed a little quicker and especially TU mycelium slower than 

T12, TR, and TS, which is in correspondence with their growth properties on PDA. The 

decrease in population density of T39 shows some similarity to results obtained by 

FREEMAN et al., 2004. Despite these findings, a better performance compared to the other 

strains on the leaf surface could have been expected with regard to the fact that this strain 

was isolated from TRICHODEX, a commercial preparation used for the biological control 

of plant pathogens attacking the phylloplane (ELAD, 1996, 2000; ELAD et al., 1998).  

Experiments with the culture filtrates gave some more insight into the nature of the 

active antibiotic metabolites. Results from previous experiments showed enzymatic 

activities of cellulase and glucanase, but not of chitinases in the culture filtrates 

(Chapter 2). This is in accordance with published results about culture filtrates from 

glucose-based media (VITERBO et al., 2002). Enzyme activity in the culture filtrates did not 
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match with the results from bean rust uredospore germination tests. T. harzianum culture 

filtrates that proved to be rather ineffective in terms of inhibition of rust spore germination, 

showed strong cellulolytic and glucanolytic activity. Moreover, heat treatment including 

autoclaving could only reduce efficacy of culture filtrates to a minor extent. 

For the T12 culture filtrate as for the T12 spore suspension, efficacy in terms of rust 

inhibition was somewhat reduced by autoclaving. Again, this strengthens the hypothesis 

of T12 producing a mixture of antifungal metabolites with a heat stable main component 

and others that degrade if autoclaved. Production of a mixture of secondary metabolites 

with antibiotic activity is in common with other findings for strain T12 (Chapter 2) as well 

as it is known for T. harzianum strains T-22 and T39 (VINALE et al., 2006) and also for 

other Trichoderma spp. (DENNIS and WEBSTER, 1971b).  

Whatever metabolites are responsible for the rust inhibiting effect of T. harzianum 

strain TU, these compounds seem to be heat stable if produced in culture filtrate, but 

instable if TU spores act as source. An explanation mentioned above could be, that the 

antibiotic metabolite is not contained and passively released by TU spores, but actively 

produced while germination takes place. 

Possibly, several of the questions appearing above could have been answered 

through experiments performed with supernatants of pre-germinated T. harzianum spore 

suspensions. For example, testing such supernatants after autoclaving would have given 

additional insight to whether the antifungal metabolites active on the leaf discs are heat 

stable or not. Unfortunately, several attempts to germinate T. harzianum spores in watery 

suspensions failed. This is in contrast to results of GOVINDASAMY and BALASUBRAMANIAN 

(1989), who showed an antibiotic effect of the supernatant of pre-germinated 

T. harzianum spore suspensions.  

Last but not least, undiluted culture filtrates of T12 and TU showed strong disease 

reducing effects of 55 to 60% if applied to leaf discs prior to inoculation with bean rust. On 

the other hand, applying those culture filtrates as a curative treatment 24 h after bean rust 

inoculation had no effect on bean rust germlings, which had already successfully 

penetrated through the stomata and infected the leaf tissue. The number of rust pustules 

that developed after curative culture filtrate treatment was as high as after the ‘protective’ 

control treatment, but a little lower than after the ‘curative’ control treatment. Regarding 

the latter treatment, few additional rust infections could take place after ‘curative’ 

application of A. dest. Applying the culture filtrates of T. harzianum strains T12 and TU 

after bean rust inoculation could only protect the bean leaf disc against those additional 

infections, but had no curative effect. This demonstrates that the antifungal metabolites 

present in the culture filtrates of these two Trichoderma strains did not enter the bean leaf 

tissue. 
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Trichoderma spp. are successful BCAs, their efficacy as disease controlling, 

resistance inducing, and plant growth promoting beneficial microorganisms well-known 

(HARMAN, 2006). They have been widely used as antagonists of soil-borne diseases, but 

single strains could also be established for several years as commercial BCAs of foliar 

pathogens (ELAD, 2000a).  

Despite the successful application against a broad spectrum of important diseases, 

only very few attempts have been made to control rust fungi by means of Trichoderma 

spp. (GOVINDASAMY and BALASUBRAMANIAN, 1989; ZADE et al., 2005). The present study is 

one of the first to show the disease reducing effect of spore suspensions as well as 

culture filtrates against a rust fungus and the only one presenting results of T. harzianum 

being antagonistic against the bean rust fungus U. appendiculatus. Although not all 

T. harzianum strains showed bean rust inhibiting activity, the efficacy of the selected 

strains T12 and TU in terms of disease reduction due to inhibition of germination and germ 

tube growth is very promising. The antibiotic effect of T. harzianum strains T12 and TU has 

been proven in greenhouse experiments, too (Chapter 4). Therefore, specific isolates of 

T. harzianum may be useful to improve disease management systems as well as 

Trichoderma metabolites with antifungal activity may provide an additional tool for 

managing fungicide resistance. 

Although numerous publications document the good performance of fungicidal 

compounds from diverse chemical classes against rust fungi (GENT et al., 2001; MUELLER 

et al., 2005; STUMP et al., 2000), few reports state that fungicide resistant isolates of rust 

species may develop (COOK, 2001; DIRKSE et al., 1982). 

To avoid loosing fungicides that are effectively controlling rust fungi today, all 

options to reduce the possible development of fungicide resistance should be included 

into disease management systems. T. harzianum strains producing antifungal compounds 

provide such an option. 
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4. Mechanisms of Trichoderma-mediated Bean Rust 

Control: Antibiosis and Induced Resistance 
 

 

4.1 Introduction 
 

The bean rust fungus Uromyces appendiculatus is of worldwide importance as a 

yield-reducing disease of Phaseolus vulgaris L., potentially causing yield losses up to 50% 

(BERGER et al., 1995; DE JESUS JUNIOR et al., 2001; VENETTE and JONES, 1982). Heavy 

epidemics occur especially in the tropics and subtropics, because of the climatic 

conditions favouring the spread and infectiousness of U. appendiculatus (STAVELY, 1991). 

Control of the bean rust fungus is achieved by application of several disease management 

measures like cultural practices, cultivation of rust-resistant varieties, and the use of 

fungicides (MCMILLAN et al., 2003). Significantly reduced disease incidence was reported 

for repeated evaluations of fungicides from different chemical groups (GENT et al., 2001; 

STUMP et al., 2000). Nevertheless, publications document that fungicide resistant races of 

rust species may develop against varying fungicidal compounds (COOK, 2001; DIRKSE 

et al., 1982; FRAC, 2006). Therefore it is necessary to utilize all components available 

within an integrated bean production system to gain optimal disease and resistance 

management (MCMILLAN et al., 2003), like alternating fungicides with different modes of 

action (MUELLER et al., 2004). 

Researchers were able to elucidate several means of bean rust control other than 

chemical fungicides, especially the application of microbial antagonists or substances with 

resistance inducing properties. The possibility of controlling bean rust by fungal or 

bacterial antagonists was investigated throughout the last 25 years (BAKER et al., 1983, 

1985; GRABSKI and MENDGEN, 1985, 1986; SAKSIRIRAT and HOPPE, 1990; YUEN et al., 

2001). Bacterial antagonists negatively affected rust spore germination by secretion of 

antibiotic metabolites (BAKER et al., 1983, 1985; YUEN et al., 2001), while the antagonistic 

fungus Verticillium lecanii grew parasitically on bean rust uredia and uredospores 

(GRABSKI and MENDGEN, 1985, 1986; SAKSIRIRAT and HOPPE, 1990). 

Resistance against U. appendiculatus was successfully induced in bean plants by 

chemical agents like BTH (benzo-[1,2,3]-thiadiazole-7-carbothioic acid S-methyl ester) or 

others (DANN and DEVERALL, 1995; SIEGRIST et al., 1997; TYIHÁK et al., 1989), elicitors of 

fungal origin (HÜMME et al., 1978), or due to pre-inoculation with fungal organisms (DANN 

and DEVERALL, 1995; TAKAHASHI et al., 1985; YARWOOD, 1956).  
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To the author’s knowledge, no information regarding the control of 

U. appendiculatus by means of Trichoderma spp. is available although this fungal genus 

is widely recognized for its antagonistic behaviour against fungal pathogens (HARMAN, 

2006). While interacting with foliar pathogens, Trichoderma spp. employ various 

antagonistic mechanisms. Competition for nutrients (ZIMAND et al., 1995), mycoparasitic 

activity (BRADATSCH, 2006; GUPTA et al., 1999; SANOGO et al., 2002), inhibition of the 

pathogen due to degradation of its lytic enzymes (KAPAT et al., 1998), or antibiosis 

(GOVINDASAMY and BALASUBRAMANIAN, 1989) may take place on the leaf surface, 

depending on the physiological characteristics of both pathogen and antagonist strain.  

Moreover, Trichoderma strains may induce systemic resistance in plants by 

activating the plants own defence mechanisms against potential attacks of plant 

pathogens including fungi, bacteria, and viruses (HARMAN et al., 2004). Botrytis cinerea 

and Colletotrichum lindemuthianum disease symptoms were significantly reduced through 

Trichoderma-mediated resistance induction in bean plants when grown in soil amended 

with T. harzianum (BIGIRIMANA et al., 1997, DE MEYER et al., 1998). As a side effect of root 

application of T. harzianum, plant growth promotion is reported quite often in the scientific 

literature (HARMAN, 2000).  

Rust fungi that only produce a single germination hypha on the leaf surface, which 

penetrates through a stoma and gives rise to an intercellular mycelium within the leaf, are 

more easily controlled by antibiosis than by parasitism or competition (ANDREWS, 1992). 

According to this, the antagonism of Trichoderma spp. against rust fungi other than bean 

rust was explained by an antifungal effect of secondary metabolites produced by the 

Trichoderma strain resulting in inhibition of rust spore germination or of germ tube 

elongation (GOVINDASAMY and BALASUBRAMANIAN, 1989). Such effects were reported for 

bean rust spores confronted with living Trichoderma propagules (GOVINDASAMY and 

BALASUBRAMANIAN, 1989; KAPOORIA and SINHA, 1969; SALLAM, 2001), the sterile fluid from 

germinated spore suspensions (GOVINDASAMY and BALASUBRAMANIAN, 1989; SINHA and 

BAHADUR, 1974), and filtrates of 15-days-old liquid cultures (ZADE et al., 2005). No case of 

increased plant resistance elicited by these Trichoderma treatments was reported. 

In prior experiments, the antibiotic effects exerted by T. harzianum spore 

suspensions and culture filtrates on the bean rust fungus U. apppendiculatus in leaf disc 

assays and germination tests were shown (Chapter 3). In the subsequent study reported 

here, the ability of two T. harzianum strains to control bean rust in greenhouse trials was 

investigated. Emphasize was given to the question, whether reduction of disease severity 

could be explained solely by an antibiotic effect of spore suspension or culture filtrate 

treatments, or if induction of systemic resistance added up to the observed level of 

disease control. 
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4.2 Material and methods 
 

4.2.1 Fungal strains 

Two T. harzianum strains were used in this study: The non-commercial strain T12 from 

the fungal collection of the Institute of Plant Diseases and Plant Protection (IPP; Leibniz 

Universität Hannover, Germany), originally obtained as strain T000 from the Institute of 

Phytopathology and Applied Zoology (IPAZ; Justus-Liebig-University Gießen, Germany), 

and the isolated strain from the commercial preparation UNISAFE (Uniseeds Co. Ltd., 

Bangkok, Thailand). The abbreviations T12 and TU will be used throughout this work for 

the two strains, respectively.  

Uredospores of the bean rust fungus U. appendiculatus were taken from the fungal 

collection of the IPP. 

 

 

4.2.2 General culture conditions 

All Trichoderma strains were maintained on PDA (Merck KGaA, Darmstadt, Germany) at 

24°C in Petri dishes with a diameter of 90 mm, which were filled with 10 ml PDA and 

singly sealed with Parafilm (Pechiney Plastic Packaging, Chicago, IL, USA). 

U. appendiculatus was maintained by inoculating bean plants, harvesting freshly 

produced uredospores, and storing them at -20°C. Uredospores taken from the freezer 

and used in the experiments usually were not older than 4 to 8 weeks. 

 

 

4.2.3 Production of Trichoderma harzianum spore suspensions and culture filtrates 

Spore suspensions were produced by scraping off sporulating mycelium from PDA 

cultures and suspending it in sterile A. dest. To remove mycelial fragments from the 

suspensions, they were filtered through 595 Schleicher & Schuell filter paper (Whatman 

International Ltd., Kent, England). Spore suspensions were adjusted to the desired 

concentration.  

Culture filtrates were produced by cultivation of the two T. harzianum strains for ten 

days in PDB (Becton Dickinson GmbH, Heidelberg, Germany). For each strain, 250 ml 

PDB were initially inoculated with five mycelial plugs with a diameter of one cm. 

Incubation took place at room temperature (22°C) on a horizontal shaker at 85 rpm. To 

get rid of the major parts of the mycelium, liquid cultures were filtered through 

595 Schleicher & Schuell filter paper. Afterwards, cultures were sterile filtrated through 

Schleicher & Schuell filters with pore sizes of 0.8 µm and 0.2 µm.  
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A. dest. Spore suspension, 
culture filtrate, 

or A. dest.

4.2.4 Trials with spore suspension or culture filtrate treatment of leaves 

Single bean seeds of cultivar ‘Speedy’ (Hild Samen GmbH, Marbach, Germany) were 

directly sown into 0.88-litre pots containing 300 g substrate (Archut Fruhstorfer Erde, 

P-Typ; Hawita Gruppe GmbH, Vechta, Germany). Bean plants were reared for 21 to 

25 days in the greenhouse until the first trifoliate leaf had largely developed. Before 

treatments with T. harzianum spore suspensions or culture filtrates started, plants were 

transferred to climate chambers, where the experiments took place under defined climatic 

conditions. Trials with culture filtrates were carried out at 24°C and relative humidity 

values of 55 to 60%, while spore suspension experiments were conducted at 24°C and 

85 to 90% rH to allow T. harzianum spores to germinate or at least to keep spores alive 

on the leaf surface.  

Spore suspensions and 

culture filtrates were applied 1, 3, 

5, and 7 day(s) prior to bean rust 

inoculation to the right leaflet of 

the first trifoliate leaf with a 25-ml 

pump spray bottle. The left leaflet 

was treated with sterile A. dest. 

(Fig. 4.1). The control plants were 

treated with sterile A. dest. on 

both lateral leaflets four days 

before rust inoculation. 

 

 

 

 

 

4.2.5 Trials with spore suspension treatment of seeds or substrate 

The seed treatment part of this trial was done by bathing bean seeds of cultivar ‘Speedy’ 

(Hild Samen GmbH, Marbach, Germany) in spore suspensions of T. harzianum strains 

T12 and TU with concentrations of 5 x 107 spores / ml for three minutes. Afterwards, they 

were singly sown into 0.88-litre pots containing 300 g substrate (Archut Fruhstorfer Erde, 

P-Typ; Hawita Gruppe GmbH, Vechta, Germany). The substrate had been moistened 

prior to sowing with 100 ml of sterile A. dest.  

For the substrate treatment part, bean seeds were bathed in sterile A. dest. for three 

minutes and singly sown into 0.88-litre pots containing 300 g substrate, that had been 

pre-treated with 100 ml of T. harzianum spore suspensions of strains T12 and TU with 

Fig. 4.1. Scheme of spore 
suspension, culture filtrate, and 
A. dest. application (by T. Karrasch). 
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concentrations of 3 x 105 spores / ml. These treatments led to T. harzianum spore 

numbers of either 1 x 105 spores attached to the seed or 3 x 107 spores distributed within 

the substrate, meaning a concentration of 1 x 105 spores / g substrate. The control 

treatment consisted of bean seeds bathed in sterile A. dest. sown into substrate 

moistened with 100 ml of sterile A. dest.  

Fifteen bean seeds were used for each treatment. Due to negative effects of the 

T. harzianum treatments, bean seeds partly did not germinate or growth of bean plants 

was negatively influenced. Therefore, ten of fifteen plants, which had developed well, 

were selected for bean rust inoculation. Rearing of bean plants took place in a climate 

chamber at 24°C and 55 to 60% rH. At the end of the trial, mean leaf size of the lateral 

leaflets of the first trifoliate leaf and the dry matter of the plants were determined. 

 

 

4.2.6 Inoculation 

Rust spore suspensions with a concentration of 1 x 105 spores / ml were produced in 

sterile A. dest. amended with few droplets of Tween 20 for better distribution of the spores 

within the suspension. Before inoculation, all plants were transferred into a foliage tunnel 

in the greenhouse. Inoculation was performed with a 25-ml pump spray bottle. The bean 

rust spore suspension was applied to right and left leaflet of the first trifoliate leaf of each 

plant until run-off. After inoculation, the greenhouse table was flooded with water and the 

foliage tunnel closed to assure very high relative humidity for 24 h, necessary for rust 

germination and infection of bean plants.  

Thereafter, bean plants were taken out of the foliage tunnel and cultured for 12 to 

14 days until disease symptoms had fully developed. Disease severity was measured with 

a LemnaTec Scanalyzer (LemnaTec GmbH, Würselen, Germany). 

 

 

4.2.7 Statistical analysis 

The variables measured in this study were (1) percentage of diseased leaf area, (2) leaf 

size, and (3) plant dry weight. Procedures in SAS version 8.02 (Statistical Analysis 

Systems Institute, Cary, NC, USA) were used to perform analyses of variance and mean 

separations by (1) Dunnett’s many-to-one comparisons for diseased leaf area data of 

foliar spore suspension and culture filtrate treatments 1 day before bean rust inoculation, 

(2) contrast tests for all data from foliar treatment experiments, and (3) Tukey’s all-pair 

comparisons for data from the seed and substrate treatment experiment.  

Diseased leaf area values relative to the control were calculated for graphic 

presentation of data in Fig 4.2 and 4.3. The variability is given by the standard error. 
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4.3 Results 
 

4.3.1 Spore suspension experiment 

No statistically significant difference was detected in the T. harzianum spore suspension 

experiment regarding mean disease levels on right and left lateral leaflets of leaves 

treated with sterile A. dest., according to t-test comparisons. Hence, data from right and 

left leaflet of control plants were pooled. Control of bean rust by the T. harzianum spore 

suspension treatment was calculated in relation to these mean disease severities.  

The mean disease severity on control plants of the spore suspension experiment 

was 8.7%. When T. harzianum spore application took place one day prior to rust 

inoculation, TU was more effective than T12 with diseased leaf areas relative to the control 

of 41 and 60%, respectively, on the treated right leaflets (Fig. 4.2). These differences to 

the control treatment were statistically significant according to Dunnett’s many-to-one 

comparisons, which (for statistical reasons) were conducted only for the treatments one 

day before rust inoculation. With extending time interval between spore application and 

rust inoculation, the diseased leaf area increased. Statistically, this trend was not 

significant based on linear contrast tests. 

 

 

 

 

On the non-Trichoderma-treated left leaflet, the diseased area decreased with 

extending time interval between spore application and rust inoculation, indicating 

resistance induction. Minimum diseased leaf area of 42 and 69 % of the control for TU and 

T12, respectively, resulted from the longest resistance induction interval of seven days 

between T. harzianum spore application and bean rust inoculation. For TU, but not for T12, 

this effect superimposed the direct antibiotic effect of the spore suspension on the right 

Fig. 4.2. Effect of time between application of Trichoderma harzianum T12 (a) or TU (b) spore 
suspension and rust inoculation on disease severity on untreated  (         ) and treated (        ) 
leaflets. 
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lateral leaflet. In this case, resistance induction, also taking place in the Trichoderma-

treated right leaflet, compensated for the declining efficacy of the direct antibiotic effect of 

the spore suspension. Contrast test-derived p-values for these trends were p = 0.052 for 

T12 and p < 0.001 for TU, indicating that reduction in disease severity due to induced 

resistance was statistically significant for TU and nearly so for T12. 

 

 

4.3.2 Culture filtrate experiment 

Again, data from right and left lateral leaflet of control plants were pooled, and bean rust 

control through application of culture filtrates of T. harzianum strains T12 and TU was 

calculated in relation to these mean disease severities.  

The mean disease severity on the control plants in the culture filtrate experiment 

was 10.7%. When culture filtrate application took place one day prior to inoculation of 

bean leaves, T12 was more effective than TU with diseased leaf areas relative to the 

control of 42 and 75%, respectively, on the treated right leaflets (Fig. 4.3). Only the effects 

of application of T12 and TU culture filtrates one day before rust inoculation were (for 

statistical reasons) compared with the control by Dunnett’s many-to-one comparisons and 

proved to be statistically significant. 

 

 

 
 

With longer time intervals between T12 culture filtrate application and rust 

inoculation, the effect of the culture filtrate did not change significantly according to linear 

contrast tests. The level of resistance induced on the left leaflet was rather low with a 

minimum diseased leaf area of 79%. The trend of induced resistance getting stronger with 

increasing time interval between treatment with T12 culture filtrate and rust inoculation 

was apparent, but failed to be statistically significant with a p-value of p = 0.079. 

Fig. 4.3. Effect of time between application of Trichoderma harzianum T12 (a) or TU (b) culture 
filtrate and rust inoculation on disease severity on untreated  (         ) and treated (        ) leaflets. 
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Treatment with TU culture filtrate resulted in a strong resistance induction. With 

extending time interval, the diseased leaf area decreased, reaching a minimum diseased 

leaf area of 64% of the control treatment when rust inoculation took place seven days 

after culture filtrate treatment. As resistance induction took place in the right leaflet as 

well, the diseased leaf area relative to the control decreased from 75 to 46% with 

extending time interval. Again, such an effect was not visible for T12. Linear contrast tests 

proved decreases in disease severity over time to be significant on both leaflets with 

p-values of p < 0.001. 

 

 

4.3.3 Substrate and seed treatment experiment 

In general, no positive effect of substrate or seed treatment with T. harzianum strains T12 

and TU in terms of disease reduction or growth promotion was observed (Tab. 4.1). 

Neither did the treatments affect disease severity due to induced resistance against 

U. appendiculatus, nor did they lead to increased plant growth. While the treatment of the 

substrate with TU had no significant effect on the growth of bean plants, T12 substrate and 

seed treatments, and especially the bathing of seeds in the TU spore suspension 

negatively influenced the growth of the bean cultivar ‘Speedy’. Although not significant for 

all parameters, reduction of plant growth as a consequence of T. harzianum treatment 

was clearly observable, even after ten normally developed plants out fifteen bean plants 

had been selected for inoculation with bean rust and all further analyses.  

 
      
 Tab. 4.1. Effect of substrate or seed treatment with Trichoderma harzianum 

spore suspensions on bean rust disease severity, leaf size of the first trifoliate 
leaf, and dry weight of the shoot 

 

      
 Treatment Disease severity [%] Leaf size [cm²] Dry weight [g]  

 T12 substrate  10.66 ± 1.03 aa   39.77 ± 2.44 bc   1.37 ± 0.07 ab  
 T12 seed 11.50 ± 0.93 a 38.95 ± 1,42 c 1.39 ± 0.05 a  
 TU substrate 10.29 ± 0.95 a   47.08 ± 2.40 ab 1.54 ± 0.08 a  
 TU seed 10.05 ± 0.67 a 33.16 ± 1.80 c 1.09 ± 0.08 b  
 Control 10.89 ± 0.65 a 49.19 ± 0.98 a 1.61 ± 0.07 a  

 
a
 Within each column, numbers followed by the same letter do not differ significantly according to 

Dunnett’s many-to-one comparisons. 
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4.4 Discussion 
 

4.4.1 Antibiosis 

In the scientific literature, only few reports on Trichoderma-mediated control of rust fungi 

are available. The majority of them explain reduction in rust disease severity with an 

antibiotic effect of living propagules of Trichoderma spp. (GOVINDASAMY and 

BALASUBRAMANIAN, 1989; KAPOORIA and SINHA, 1969; SALLAM, 2001; Chapter 3) or with 

antibiotic metabolites present in the supernatant of germinated spore suspensions 

(GOVINDASAMY and BALASUBRAMANIAN, 1989; SINHA and BAHADUR, 1974) or culture 

filtrates (ZADE et al., 2005; Chapter 3). These findings are in common with the knowledge 

about Trichoderma spp. producing secondary metabolites with antibiotic properties 

(SIVASITHAMPARAM and GHISALBERTI, 1998; SZEKERES et al., 2005) as well as with the 

general statement that the short epiphytic phase of rust fungi makes an antibiotic 

interaction more likely than disease control by competition or parasitism (ANDREWS, 1992). 

Therefore, inhibition of germination and hyphal growth of the bean rust fungus by 

antibiotic metabolites is far more likely to take place during the 24 h infection period of 

U. appendiculatus if challenged with T. harzianum.  

The observation of antibiosis being one out of two forces responsible for the control 

of U. appendiculatus by T. harzianum in the greenhouse is in common with results derived 

from leaf disc assays performed with six different T. harzianum strains (Chapter 3). 

Strains T12 and TU proved to be the most effective strains in terms of inhibition of 

uredospore germination and disease reduction and, therefore, were selected for the 

greenhouse trials. In the greenhouse studies reported here, many results from the 

previous laboratory trials were confirmed.  

It seems unlikely that the mycelial production of antibiotic metabolites reduced the 

bean rust severity. If mycelial production of antibiotic metabolites had taken place during 

the growth of the mycelium on the leaf surface, the level of disease should have 

decreased with increasing time interval between Trichoderma spore application and bean 

rust inoculation. As spore suspensions were most effective one day after application, it 

seems that spores release antibiotic metabolites during their germination. Another 

possibility could be a strong production of extracellular metabolites by the hypha while 

emerging from the spore. Leaf disc assays proved that both explanations may be correct. 

While T12 spores release heat stable metabolites with antifungal properties against 

U. appendiculatus, the metabolites, which confer antibiotic activity to TU, seem to be 

produced during the process of the germination hypha emerging from the spore 

(Chapter 3). 
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The results for the culture filtrates support the hypothesis of an antibiotic interaction. 

In contrast to the spore suspensions, the TU culture filtrate was much less effective than 

the T12 culture filtrate. This may be due to metabolites in the T12 culture filtrate acting as 

surfactants. This property of the T12 culture filtrate could be observed during its 

application. The leaf surface was not only wetted by droplets, but covered with a film of 

the filtrate. Additionally, these surfactant-like compounds may have increased the 

adhesion of the culture filtrate to the leaf surface. Likewise, appropriate adjuvants used 

with commercial foliar fungicides improve coverage and retention of fungicides on treated 

plant parts (GENT et al., 2003). 

Lacking such properties, the TU culture filtrate was less evenly distributed over the 

leaf surface and partly washed off during rust inoculation. This also explains the reduced 

efficacy of the TU culture filtrate in the greenhouse experiments compared to the results of 

leaf disc assays conducted with culture filtrates of TU and T12. In these, TU was as 

effective as T12 with reduced numbers of rust pustules on leaf discs of about 55% 

(Chapter 3). In contrast to the greenhouse experiments, run-off and loss of the efficacy of 

the TU culture filtrates did not occur in the leaf disc assays. Adding a spreader / sticker – 

component to the TU culture filtrate should therefore enhance its efficacy. 

 

 

4.4.2 Induced resistance 

With increasing time period between application of the Trichoderma treatments and bean 

rust inoculation, the disease severity on the non-Trichoderma-treated left lateral leaftlet 

decreased slightly for spore suspension and culture filtrate treamtents of T. harzianum 

strain T12 and strongly for strain TU. The translocation of the antibiotic metabolites from 

the inoculated right lateral leaflet to the non-inoculated left lateral leaflet can most likely be 

excluded as an explanation for this effect, because a curative effect of the application of at 

least T. harzianum culture filtrates was not observed in leaf disc assays (Chapter 3). This 

indicates that the responsible antifungal metabolites are not taken up into the bean leaf 

tissue. Hence, the Trichoderma treatments seem to induce systemic resistance. 

For each Trichoderma strain, the curves showing disease severity on the untreated 

left leaflet are very similar in shape, depending on the time period between application of 

spore suspension or culture filtrate to the right leaflet of the first trifoliate leaf and 

inoculation of bean plants.  

T12 spore suspensions and culture filtrates induced only low levels of systemic 

resistance as seen in the low decrease of disease severity on the left leaflet. In both 

cases, the direct antibiotic effect of the treatments was not notably changed over time by 

locally induced resistance in the right leaflet. Contrasting these results, TU spore 
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suspensions and culture filtrates induced a stronger systemic resistance in the left leaflet. 

Moreover, locally induced resistance in the right leaflet superimposed and enhanced the 

antibiotic effect on the right leaflet.  

Finally, the very similar abilities of spore suspensions and culture filtrates to induce 

resistance suggest that resistance had been elicited by some secondary metabolites 

released from the spores or growing Trichoderma hyphae and present in the culture 

filtrates of T12 and especially TU. 

Within this scenario, enzymes with cellulolytic activity are likely candidates for the 

role of elicitor molecules inducing resistance to U. appendiculatus in bean plants. This 

hypothesis is based on a row of evidences. First, mycelia of T12 and TU were shown to 

produce cellulase (endo-1,4-ß-glucanase) on water agar media in which chromogenic 

cellulose (AZCL-HE-cellulose; Megazyme, Bray, Ireland) was the only substrate 

(Chapter 3). It is very likely that a spore suspension gained by washing off Trichoderma 

spores from a mycelium grown on a glucose/cellulose-based medium contains active 

cellulase. Second, germinating T. reesei spores released enzymes with cellulolytic activity 

(CHAUDHARY and TAURO, 1982). Third, culture filtrates of T12 and TU showed cellulolytic 

activity (Chapter 3). And fourth, a cellulase from T. longibrachiatum activated plant 

defence mechanisms and induced resistance in the cotyledons of melon (Cucumis melo) 

against the powdery mildew pathogen Sphaeroteca fuliginea (MARTINEZ et al., 2001) as 

well as a crude cellulase of T. viride was capable of activating a defence-related signalling 

cascade (PIEL et al., 1997). Thus, an involvment of this class of enzymes seems to be 

reasonable.  

On the other hand, T12 was less effective in inducing resistance than TU, but 

produced more cellulase in liquid potato dextrose broth (PDB) and on solid agar medium 

(Chapter 2). Therefore, other metabolites with resistance eliciting capability may be 

important as well. Even autoclaved Trichoderma mycelial extracts from PDB culture were 

shown to increase plant resistance (CHANG et al., 1997). Therefore, further experimental 

work is needed to prove the hypothesis of T. harzianum cellulase being an elicitor 

molecule able to induce systemic resistance within the pathosystem of U. appendiculatus 

and P. vulgaris. 

No induction of systemic resistance against U. appendiculatus could be observed 

after applying Trichoderma spore suspensions of strains T12 and TU to substrate or bean 

seed. Although diverse strains of Trichoderma spp. are able to elicit resistance in plants 

against fungal, bacterial, or even viral diseases (HARMAN et al., 2004), to the author’s 

knowledge, there is no publication available reporting Trichoderma-induced resistance to 

rust diseases. The present study provides evidence that resistance induction against the 

bean rust fungus is possible if T. harzianum agents are applied to the leaf surface. 
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Application of strains T12 and TU to seed or substrate was, however, not effective in this 

respect.  

In nearly all cases, in which systemic resistance was induced to U. appendiculatus, 

elicitors were applied to the leaf surface and not to the root system (DANN and DEVERALL, 

1995; HÜMME et al., 1978; TAKAHASHI et al., 1985; TYIHÁK et al., 1989; YARWOOD, 1956). 

Only SIEGRIST et al. (1997) demonstrated that seed treatment with chemical elicitors 

induced resistance to foliar pathogens like U. appendiculatus. It remains to be elucidated 

if T. harzianum strains, known to have resistance inducing abilities like T39 (ELAD, 2000a) 

or T-22 (HARMAN, 2000; HARMAN et al., 2004), would activate defence mechanisms 

against U. appendiculatus when applied to the root system of bean plants. 

 

 

4.4.3 Effect of leaf age on bean rust infection and induced resistance 

The numbers of rust pustules developing after inoculation as well as the sporulation 

potential of those pustules tend to decrease with increasing leaf age (IMHOFF et al., 1982; 

JENNINGS et al., 1990; MELCHING et al., 1988). Because all plants used in the presented 

experiments had the same age at the time of inoculation regardless of the preceding 

Trichoderma treatment, an effect of plant age as the reason for reduced bean rust severity 

compared to the control can be excluded. 

Literature states that older leaves react more sensible to resistance eliciting signals 

and express stronger resistance reactions than young leaves (HEIL, 1999; HERBERS et al., 

1996; HERMS and MATTSON, 1992; VAN LOON, 1997). Moreover, it takes a period of 

several days for the induced resistance to become systemic. The time period that elapsed 

in the experiments between first Trichoderma treatments and inoculation was sufficient to 

observe the induction of systemic resistance especially in the non-treated left leaflets of 

bean plants. This means that the strongest resistance induction was observed in those 

leaves, which were youngest when treated with spore suspensions or culture filtrates of 

T. harzianum. No inhibition of this induced resistance due to a younger leaf age, which 

resulted from the increasing time period before bean rust inoculation, could be observed. 
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4.4.4 Effect of Trichoderma harzianum on plant growth 

After the plant growth-promoting effect of T. harzianum had been reported for the first time 

(BAKER et al., 1984), numerous reports followed, presenting further evidence for the 

positive effect of Trichoderma spp. on plant growth (CHANG et al., 1986, HARMAN, 2000; 

KLEIFELD and CHET, 1992; WINDHAM et al., 1986). On the other hand, few publications 

document that it is not possible to generalize the observed plant growth-promoting effect 

for every plant species – Trichoderma strain combination (GERLAGH et al., 1999; LUMSDEN 

et al., 1990). OUSLEY et al. (1993, 1994) demonstrated that plant growth may decrease if 

Trichoderma spp. are applied to the substrate. In their interpretation of the results, they 

followed GHISALBERTI et al. (1990) who showed that the particular T. harzianum strain, 

which produced the greatest amount of antifungal pyrone compounds making it the most 

potent antagonist of Gaeumannomyces graminis var. tritici, had also the most detrimental 

effect on plant growth.  

In the present study, the negative effect on plant growth, that would have been even 

more pronounced if no selection of rather well developed bean plants had been carried 

out, is in common with the aforementioned observations and interpretations. Strains 

producing high amounts of secondary metabolites, which may be desirable in terms of 

disease control, may exert negative effects on plant growth. Especially the antifungal 

metabolite 6-pentyl-�-pyrone (6PAP), which is responsible for the typical coconut-aroma 

of many Trichoderma cultures (COLLINS and HALIM, 1972), is known to inhibit plant growth 

(CLAYDON et al., 1987; CUTLER et al., 1986; LUMSDEN et al., 1990). For TU, especially for 

its culture filtrate, such coconut-odour was clearly noticeable. Therefore, the inhibition of 

plant growth by TU may arise from the production of this secondary metabolite. No 

coconut-smell could be detected for solid or liquid T12 cultures. 

In more general terms it can be stated that each single Trichoderma strain – 

pathogen – plant species or even plant genotype combination (HARMAN, 2006) has to be 

evaluated carefully, if application of living propagules of a certain Trichoderma strain is 

considered, because generalization concerning the type of interaction between 

Trichoderma and plant species is not possible.  
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5. Compounds with Potential Antifungal Activity against 

Uromyces appendiculatus Isolated from Six Trichoderma 

harzianum Strains 
 

 

5.1 Introduction 
 

Trichoderma spp. are ubiquitous soil-borne fungal organisms with strains adapted to the 

diverse habitats of all climatic zones (KLEIN and EVELEIGH, 1998). Next to being important 

saprophytes (KUBICEK-PRANZ, 1998), they are known as antagonists of soil-borne 

phytopathogens like Fusarium spp. (SIVAN and CHET, 1989), Pythium ultimum (BENHAMOU 

and CHET, 1997), Rhizoctonia solani (PAULA JÚNIOR et al., 2007), or nematodes (SHARON 

et al., 2001), and fungal pathogens attacking upper plant parts like Botrytis cinerea 

(ELAD, 1996), Sphaerotheca fusca (ELAD et al., 1998), or Crinipellis perniciosa (SANOGO 

et al., 2002). 

Antagonistic activities of Trichoderma spp. comprise competition (SIVAN and CHET, 

1989), parasitism (BENHAMOU and CHET, 1997), and antibiosis (GHISALBERTI et al., 1990). 

Quick mycelial growth and rhizosphere competition (AHMAD and BAKER, 1987) 

accompanied by the secretion of lytic enzymes (VITERBO et al., 2002) and secondary 

metabolites with antibiotic activity (SIVASITHAMPARAM and GHISALBERTI, 1998) are the 

physiological backbone to the antagonistic strength of Trichoderma spp.  

Scientists evaluate and try to utilize the antagonistic features of Trichoderma spp. 

since the early 1930s, when WEINDLING (1932) described “Trichoderma lignorum as a 

parasite of other soil fungi” and earned his degree of Doctor of Philosophy in Plant 

Pathology for his work on “The lethal principle of Trichoderma lignorum in its action on 

Rhizoctonia solani” (1933). The “lethal principle” was characterized as a “deadly 

substance […] excreted into the surrounding medium by the young hyphae” of T. lignorum 

(1934). 

Almost fourty years later, the first extensive studies on the antagonistic activity of 

Trichoderma spp. caused by the production of non-volatile and volatile metabolites with 

antibiotic activity (DENNIS and WEBSTER, 1971a, 1971b) as well as a study on the parasitic 

interaction between fungal pathogens and strains of Trichoderma spp. producing or 

non-producing secondary metabolites with antibiotic activity (DENNIS and WEBSTER, 

1971c) were published. 

Another twenty years later, GHISALBERTI and his colleagues were the first to provide 

reviews on the secondary metabolites of Trichoderma spp. (1991, 1993), followed by the 
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most comprehensive review until today (SIVASITHAMPARAM and GHISALBERTI, 1998), in 

which more than 120 structures of secondary metabolites are displayed and their 

biological activities are described.  

Recently, the major secondary metabolites of the two commercial T. harzianum 

strains T-22 and T39 were described (VINALE et al., 2006). 

A large review on peptaibols and related peptaibiotics, being a specific class of 

Trichoderma metabolites, is available (SZEKERES et al., 2005). Moreover, the web-based, 

freely accessible Peptaibol Database (WHITMORE et al., 2003), allows searches for 

peptaibol sequences and structures. Today, the database contains sequences of 317 

peptaibols, 190 of them being produced by Trichoderma spp. including 54 peptaibols of T. 

harzianum (PEPTAIBOL DATABASE, 2007). 

Secondary metabolites of Trichoderma spp. were shown to have antibacterial 

(BRÜCKNER and KOZA, 2003; SONG et al., 2006), antiviral (YUN et al., 2000), 

antimycoplasmic (LECLERC et al., 2001), and antifungal (DENNIS and WEBSTER, 1971a, 

1971b; GHISALBERTI et al., 1990; LORITO et al., 1996; SCHIRMBÖCK et al., 1994; SONG 

et al., 2006) activity. In some cases, e. g. for the peptaibols, the mechanisms by which the 

antibiotic compound interferes with cellular structures or metabolic pathways have been 

elucidated, but for many other molecules only the general activity against some target 

organism(s) is known (SIVASITHAMPARAM and GHISALBERTI, 1998). 

Antibiotic activities against target fungi by single metabolites (ANEJA et al., 2005), 

metabolite mixtures (VINALE et al., 2006), or synergistic action of secondary metabolites 

and lytic enzymes (LORITO et al., 1996; SCHIRMBÖCK et al., 1994) include reduction in 

fungal spore germination and germ tube elongation (SCHIRMBÖCK et al., 1994) and 

inhibition of mycelial growth (DENNIS and WEBSTER, 1971a, 1971b, 1971c; Chapter 2). The 

infection of plants with varying species of rust fungi could be reduced by treatment with 

conidial spores (GOVINDASAMY and BALASUBRAMANIAN, 1989; Chapters 3 and 4), the fluid 

of pre-germinated spore suspensions (GOVINDASAMY and BALASUBRAMANIAN, 1989; SINHA 

and BAHADUR, 1974), and culture filtrates (ZADE et al., 2005; Chapters 3 and 4) of diverse 

Trichoderma strains. 

Until now, no secondary metabolites of Trichoderma spp. that reduce infectiousness 

of rust fungi by inhibiting rust spore germination or germ tube growth are known. The 

experimental work reported here comprises basic research in the field of isolation and 

identification of secondary metabolites of T. harzianum with antifungal activity towards the 

bean rust fungus Uromyces appendiculatus. Because this study has just been started, 

only preliminary results are shown. Possible future approaches are discussed. 
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5.2 Material and methods 
 

5.2.1 Fungal strains 

Six T. harzianum strains were used in this study, five of them isolated from commercial 

preparations: T-22 from TRIANUM-P (Koppert Biological Systems, Berkel en Rodenrijs, 

The Netherlands), T39 from TRICHODEX (Makhteshim-Agan Ltd., Tel Aviv, Israel), and 

the strains from TRI 003 (Plantsupport, Grootebroek, The Netherlands), TRICHOSAN 

(Vitalin Pflanzengesundheit GmbH, Ober-Ramstadt, Germany), and UNISAFE (Uniseeds 

Co. Ltd., Bangkok, Thailand). The abbreviations TR, TS, and TU will be used throughout 

this work for the latter three strains, respectively. The non-commercial strain T12 from the 

fungal collection of the Institute of Plant Diseases and Plant Protection (IPP; Leibniz 

Universität Hannover, Germany) was originally obtained as strain T000 from the Institute 

of Phytopathology and Applied Zoology (IPAZ; Justus-Liebig-University Gießen, 

Germany). 

Uredospores of the bean rust fungus U. appendiculatus were taken from the fungal 

collection of the IPP. 

 

 

5.2.2 General culture conditions 

All Trichoderma strains were maintained on PDA (Merck KGaA, Darmstadt, Germany) at 

24°C in Petri dishes with a diameter of 90 mm, which were filled with 10 ml PDA and 

singly sealed with Parafilm (Pechiney Plastic Packaging, Chicago, IL, USA). 

U. appendiculatus was maintained by inoculating bean plants, harvesting freshly 

produced uredospores, and storing them at -20°C. Uredospores taken from the freezer 

and used in the experiments were usually not older than 4 to 8 weeks. 

 

 

5.2.3 Production of Trichoderma harzianum culture filtrates 

Culture filtrates (CF) were produced by cultivation of the six T. harzianum strains for ten 

days in PDB (Becton Dickinson GmbH, Heidelberg, Germany). For each strain, 250 ml 

PDB were initially inoculated with five mycelial plugs with a diameter of one cm. 

Incubation took place at room temperature (22°C) on a horizontal shaker at 85 rpm. To 

get rid of the major parts of the mycelium, liquid cultures were filtered through 

595 Schleicher & Schuell filter paper (Whatman International Ltd., Kent, England). 

Afterwards, cultures were sterile filtrated through Schleicher & Schuell filters with pore 

sizes of 0.8 µm and 0.2 µm. 
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5.2.4 Assay on antibiotic activity of culture filtrate extracts 

Ten ml of the culture filtrates of T. harzianum strains T12 and TU were extracted with 

equal amounts of either ethyl acetate (EA; Diagonal GmbH & Co KG, Münster, Germany) 

or hexane (HX; Diagonal GmbH & Co KG, Münster, Germany) at 24°C using a horizontal 

shaker at 250 rpm for 20 min. After separation of the organic and the watery fraction, the 

solvents were evaporated using the rotary evaporator RV05 (Janke & Kunkel GmbH & Co 

KG, IKA-Werk, 79219 Stauffen). The dried organic fraction was dissolved in 10 ml sterile 

A. dest. and the watery fraction was adjusted to the original volume of 10 ml. 

Each fraction of the four culture filtrate – solvent combinations was incorporated into 

1% water agar gaining solid media amended either with the EA- or HX-soluble or with the 

EA and HX-insoluble metabolites of T. harzianum strains T12 and TU with a concentration 

of 15%. This agar was poured into 60-mm Petri dishes. 

Per Petri dish, 50 µl of a bean rust spore suspension with a concentration of 

5 x 104 spores / ml were applied and allowed to germinate for 24 h at 24°C. Afterwards, 

the percentage of germinated spores was visually determined for 100 spores by use of a 

light microscope. Germ tube growth was assessed qualitatively. Each combination of 

T. harzianum strain and solvent fraction consisted of four replications. 

 

 

5.2.5 Analysis of potential secondary metabolites of Trichoderma harzianum with 

antifungal activity against Uromyces appendiculatus 

 

5.2.5.1 Chemicals 

For the extraction of culture filtrates, ethyl acetate (Diagonal GmbH & Co KG, Münster, 

Germany) was used. A. bidest., methanol (HPLC grade; Fisher Scientific GmbH, 

Schwerte, Germany), and acetonitrile (HPLC grade; VWR International GmbH, Darmstadt, 

Germany) were used in the HPLC-MS. 

 

5.2.5.2 Analytical equipment 

EA-extracts were evaporated to dryness with the rotational vacuum concentrator 

RVC 2-25 (Martin Christ GmbH, Osterode, Germany).  

The HPLC system consisted of the ProStar 410 HPLC AutoSampler, two 

ProStar 210 solvent delivery modules providing a binary system (both Varian Deutschland 

GmbH, Darmstadt, Germany), and the column oven Jetstream II Plus (TECHLAB GmbH, 

Erkerode, Germany). A Polaris C18-Ether column (100 x 2 mm i.d.; 3 µm particle size) 

and a guard column MetaGuard of the same material (both Varian Deutschland GmbH, 

Darmstadt, Germany) were used for analytical HPLC. 
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Mass spectrometry was performed with the 500-MS LC ion trap coupled to an 

electrospray ionization chamber (Varian Deutschland GmbH, Darmstadt, Germany). 

 

5.2.5.3 Extraction of organic compounds from culture filtrates followed by HPLC-MS 

Fourty ml of the culture filtrates of all six T. harzianum strains and 40 ml of the PDB 

medium, which served as the control, were extracted two times with equal volumes of EA 

at 24°C using a horizontal shaker at 250 rpm for 20 min. The organic fractions of both 

extractions were combined, evaporated to dryness at 40°C, taken up in one ml of 

50:50 (v/v) methanol/water, and filtered through a 0.2-µm Opti-Flow TF filter with a 

diameter of 13 mm (Wicom Germany GmbH, Heppenheim, Germany). Per T. harzianum 

strain, four samples were produced by the described method and stored at -18°C. 

 Before HPLC-MS analysis was performed, all 7 x 4 extracts were brought to room 

temperature. 10-µl samples were subjected to chromatography by the automated 

sampling device ProStar 410 HPLC AutoSampler. Samples were eluted with a linear 

gradient of 95% A. bidest. and 5% acetonitrile (A) / methanol (B) as follows: 0 to 2.20 min: 

10% B; 2.20 to 25.0 min: from 10% B to 98% B; 25.0 to 30.0 min: 98% B. Separation took 

place at 40°C at a flow rate of 0.2 ml / min.  

The eluate was nebulized in an electrospray ionization (ESI) chamber with drying 

gas pressure of 20 psi and nebulizer gas pressure of 50 psi. Gas temperature was 

reduced from 350 to 250°C with increasing proportion of methanol in the eluate. For the 

detection of positive [MH]+ ions, needle and shield voltage were 5000 and 600 V, 

respectively. The capillary voltage was 50 V. Mass spectral data in the range of 100 to 

1000 m/z were collected in positive ionization mode. Per second, 5000 Da were scanned 

and three consecutive scans were averaged. 

MS data were transformed into chromatograms using MS Data Review version 6.9 

(Varian Deutschland GmbH, Darmstadt, Germany) and later on converted into 

netCDF data format. 

 

5.2.5.4 Data analysis 

Data from positive ionization mode were processed as follows: Minor differences in 

retention times of different chromatograms were corrected by peak alignment performed 

with the freely available software XCMS version 1.5.2 (SMITH et al., 2006), which was run 

under R package version 2.4.0. The resulting data were normalized (using a PERL-script 

written by P. Karlovsky), to compensate for differences in the concentrations of the 

extracts and/or loading volumes. 

The final outputs of the analysis of positive ionization data were tables representing 

peaks defined by mass-to-charge ratio, retention time, and assigned normalized signal 
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intensity calculated by the integration of peaks in extracted ion chromatograms for each 

sample. All peaks were evaluated and excluded from further analysis if at least one of the 

following criteria was met: (1) peaks were present in the PDB medium, (2) peaks had 

integrated values smaller than 50,000 TIC, or (3) peaks were present in less than three 

(of four) T. harzianum strain extracts. 

Finally, medians were calculated for the four samples of each T. harzianum culture 

filtrate. 

 

5.2.5.5 Comparison of compounds detected by HPLC-MS with known secondary 

metabolites of Trichoderma harzianum 

By use of ChemSketch version 10.0 (Advanced Chemistry Development Inc., Toronto, 

Canada), the molecular masses of 135 secondary metabolites of Trichoderma spp. and 

the closely related Gliocladium spp. were calculated based on their structure formulae 

displayed in several publications (ANEJA et al., 2005; CORLEY et al., 1994; GHISALBERTI 

and ROWLAND, 1993; GHISALBERTI and SIVASITHAMPARAM, 1991; GHISALBERTI et al., 1990; 

SIVASITHAMPARAM and GHISALBERTI, 1998; VINALE et al., 2006). 

These mass data of known secondary metabolites of Trichoderma and Gliocladium 

strains were compared with the masses of compounds detected by HPLC-MS in the 

EA-extracts of culture filtrates of the six T. harzianum strains used in this study. The term 

“potential secondary metabolites” is used in this study for compounds which masses 

resemble those of known secondary metabolites of T. harzianum. 

 

 

5.2.6 Statistical analysis 

Analysis of variance and mean separation by Dunnett’s many-to-one comparisons for 

bean rust spore germination data from the assay on antibiotic activity of culture filtrate 

extracts was performed using procedures in SAS version 8.02 (Statistical Analysis 

Systems Institute, Cary, NC, USA). The variability is given by the standard error. 
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5.3 Results 
 

5.3.1 Antibiotic activity of culture filtrate extracts 

Culture filtrates of T. harzianum strain T12 and TU were extracted with ethyl acetate (EA) 

and hexane (HX). The antibiotic activity of the organic EA- or HX-soluble metabolites and 

the activity of the remaining watery fraction were tested in a bean rust uredospore 

germination assay (Tab. 5.1). 

Germination was influenced neither by the HX-fraction of T12 nor of TU, indicating 

that HX was not adequate to extract the secondary metabolites responsible for the 

antibiotic activity against bean rust from the culture filtrates. 

Germination was significantly reduced by the EA-fraction of T12 as well as by the 

remaining watery fraction. This indicates that at least two metabolites are responsible for 

the antibiotic effect of T12 against the bean rust fungus, one of which is soluble in EA, 

while the other is not. 

A little effect of the EA-extract of TU was observed, too, indicating that the 

EA-soluble metabolites from the TU culture filtrate had only minor effects on the 

germination of the bean rust uredospores. 

 

        
 Tab. 5.1. Effect of ethyl acetate and hexane extracts of Trichoderma harzianum culture 

filtrates on germination and germ tube growth of bean rust uredospores 
 

        
   Ethyl acetate Hexane  

  
Strain 

 
Fraction 

Germination  
[%]a 

Germ tube 
length 

Germination 
[%] 

Germ tube 
length 

 

 organic   61.8 ± 3.9 *  very short   75.3 ± 1.9 * long  
 

 
T12 

watery   59.5 ± 2.7 * very short     1.0 ± 0.7 * nearly zero  
 

organic   70.0 ± 1.7 * 
slightly 

shortened 
82.0 ± 1.2 long 

 

 

 
TU 

watery      0.0 ± 0.0 * zero     1.5 ± 1.2 * nearly zero  
 Control --- 82.8 ± 1.2 long 82.8 ± 1.2 long  

 
a Percent germination of bean rust spores. Figures within one column followed by * are significantly different from 
the control according to Dunnett’s many-to-one comparisons; p=0,05. 
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5.3.2 Potential secondary metabolites of Trichoderma harzianum with antifungal 

activity against Uromyces appendiculatus 

Since signals from positive ionization mode are usually higher and MS literature is mostly 

based on positive ESI data, this study is also focussed on positive ionization data, which 

are presented as results and discussed later on.  

When culture filtrates of all six T. harzianum strains were extracted with EA and the 

organic EA-fractions were analysed by HPLC-MS, a total number of 221 signals specific 

for the T. harzianum culture filtrates were detected (Tab. 5.2). Molecular mass-to-charge 

ratios ranged from 73 to 1000 m/z and retention times from 92 to 2010 scan numbers with 

ca. one scan per second. 

    
 Tab. 5.2. Basic data derived from the analysis of HPLC-MS results   
  Basic data  

 Number of metabolites isolated from EA extracts of culture filtrates 221  
 Number of metabolites found in the culture filtrate of six strains 2  
 Number of metabolites found in the culture filtrate of five strains 4  
 Number of metabolites found in the culture filtrate of four strains 2  
 Number of metabolites found in the culture filtrate of three strains 2  
 Number of metabolites found in the culture filtrate of two strains 19  
 Number of metabolites found in the culture filtrate of single strains 192  
    
 Lowest metabolite mass [in m/z] 73  
 Highest metabolite mass [in m/z] 1000  
 Lowest retention time [in scan numbers] 92  
 Highest retention time [in scan numbers] 2010  
 Lowest total ion current [TIC] 1.16 x 106  
 Highest total ion current [TIC] 8.86 x 108  
    

 

Of these 221 signals, 192, 19, 2, 2, 4, and 2 were present in the filtrates of single, 

two, three, four, five, or all six T. harzianum strain cultures, respectively. Of the 

192 putative compounds produced by single strains, 29, 45, 21, 33, 34, and 30 were only 

found in the culture filtrates of T12, T-22, T39, TR, TS, and TU, respectively (Tab. 5.3). 

Overall, rather equal numbers of EA-soluble compounds between 39 and 50 were found 

in the culture filtrates of T12, T-22, T39, TR, TS, and TU. 

Medians of detectable metabolite concentrations measured as total ion current (TIC) 

ranged from 1.16 x 106 to 8.86 x 108 (Tab. 5.2).  For the 29 compounds present in the 

culture filtrates of more than one strain, highest amounts were found in the culture filtrate 

of T12, T-22, T39, TR, TS, and TU, in 5, 2, 6, 10, 3, and 3 cases, respectively. Overall, the 

1 to 2-fold and 2 to 5-fold differences in signal intensities were observed in the culture 

filtrate of one strain compared to the intensities originating from the filtrates of the other 

strain cultures in 20 and 9 cases, respectively (Tab. 5.3).  
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 Tab. 5.3. Numbers of signals (putative compounds) detected in the culture filtrates of one or 
more Trichoderma harzianum strains 

 

         
  T12 T-22 T39 TR TS TU  

 Putative compounds in the CF of a particular strain 50 50 44 46 47 39  
 Putative compounds in the CF of a single strain 29 45 21 33 34 30  
         
 Signals in the CF of a particular strain with  

highest intensity compared to other strains 
5 2 6 10 3 3 

 

 Signals in the CF of a particular strain with 1 to 2-fold 
higher intensity compared to other strains  

4 2 2 8 1 3 
 

 Signals in the CF of a particular strain with 2 to 5-fold 
higher intensity compared to other strains  

1 0 4 2 2 0 
 

         
 Putative compounds in the CF of a particular strain, 

which masses resemble those of known secondary 
metabolites of Trichoderma spp. 

16 9 11 8 9 7 
 

 Putative compounds in the CF of a particular strain, 
which masses resemble those of known secondary 

metabolites of T. harzianum 
6 3 3 4 4 2 

 

 Putative compounds in the CF of more than one strain, 
which masses resemble those of known secondary 

metabolites of T. harzianuma 
3 1 3 2 2 0 

 

 Putative compounds in the CF of a single strain,    
which masses resemble those of known secondary 

metabolites of T. harzianum 
3 2 0 2 2 2 

 

 
a Four compounds were found in the CF of more than one strain: three of them in the CF of two strains and one 
compound in the CF of five strains. 

 

         
 

In the culture filtrates of T12, T-22, T39, TR, TS, and TU, 16, 9, 11, 8, 9, 

and 7 putative compounds were found, respectively (Tab. 5.3), the masses of which 

resemble those of known secondary metabolites of Trichoderma spp., according to ANEJA 

et al. (2005), CORLEY et al. (1994), GHISALBERTI and ROWLAND (1993), GHISALBERTI and 

SIVASITHAMPARAM (1991), GHISALBERTI et al. (1990), SIVASITHAMPARAM and GHISALBERTI 

(1998), and VINALE et al. (2006). In these publications, a total of 135 secondary 

metabolites of Trichoderma spp. and Gliocladium spp. are listed. Of these, 12 and 18 are 

known to be produced by several Trichoderma species including T. harzianum or solely by 

T. harzianum strains, respectively, whereas 65 were isolated from cultures of Trichoderma 

species other than T. harzianum (Tab. 5.4). Six metabolites were produced by 

Trichoderma spp. and Gliocladium spp., while 34 metabolites were only detected in 

Gliocladium spp. cultures. These results are based on the species names mentioned in 

the primary literature (SIVASITHAMPARAM and GHISALBERTI, 1998). 
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 Tab. 5.4. Number of known secondary metabolites of Trichoderma spp. and Gliocladium spp. 
found in the literature and potentially found in the culture filtrates in this work 

 

        
  Producing organisma  
   

T.h. 
T.h. 

& T.spp. 
T.spp. 
- T.h. 

T.spp. 
& G.spp. 

G.spp. 
- T.spp. 

 

 Number of known secondary metabolites 
described in the literature 

18 12 65 6 34 
 

 Number of known secondary metabolites 
with masses corresponding to those 

found in the culture filtrates 

 
8 

 
5 

 
21 

 
3 

 
8 

 

 Number of putative compounds found in 
the culture filtrates with masses 

corresponding to those from the literature 

 
10 

 
5 

 
28 

 
3 

 
7 

 

 
a Metabolites produced only by T. harzianum (T.h.),  T. harzianum and other Trichoderma spp. (T.h. & T.spp.), other 
Trichoderma spp. than T. harzianum (T.spp. – T.h.), Trichoderma spp. and Gliocladium spp. (T.spp. & G.spp.), and 
only by Gliocladium spp. (G.spp – T.spp.). 

 

        
 

Of the 30 secondary metabolites known from cultures of T. harzianum, 13 had 

molecular masses, which corresponded to the masses of molecules found in the culture 

filtrates of the six T. harzianum strains. Overall, 15 different putative substances were 

detected in the culture filtrates, the masses of which corresponded to the 13 T. harzianum 

metabolites listed in the literature (Tab. 5.4).  Four of these 15 compounds were found in 

the culture filtrates of more than one T. harzianum strains. Of the remaining nine 

compounds, which masses resembled those of known secondary metabolites of 

T. harzianum, 3, 2, 0, 2, 2, and 2 were solely found in the culture filtrates of strain T12, 

T-22, T39, TR, TS, and TU, respectively (Tab. 5.3). 

Tab. 5.5 lists all 15 molecules, their masses and retention times, the amounts found 

in the culture filtrates of the respective T. harzianum strain, and the name of the potential 

secondary metabolites which have the same masses as that of the detected molecules. 

Fig. 5.1 to 5.4 show all structures of those cited secondary metabolites of T. harzianum. 
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Tab. 5.5. Mass spectrometry signals detected in the culture filtrates of the six Trichoderma 
harzianum strains, which masses resemble those of known secondary metabolites. 
         

 
No. 

Mass 
[Da] 

Retention 
[sec]a 

 
T12b 

 
T-22 

 
T39 

 
TR 

 
TS 

 
TU 

Potential secondary 
metabolitec 

1 112 142 --- --- --- 2.1 4.6 --- Uracil 
2 164 1240 --- --- --- --- --- 7.1 6-pent-1-enyl-�-pyrone 
3 164 174 --- --- --- 1.9 --- --- 6-pent-1-enyl-�-pyrone 
4 166 1269 --- --- --- --- --- 126.5 6-pentyl-�-pyrone 
5 204 100 11.6 4.1 7.2 13.9 6.9 --- Dehydroxy harzianolide 
6 204 1198 16.9 --- --- --- --- --- Dehydroxy harzianolide 
7 220 1129 40.7 --- --- --- --- --- T39butenolide 
8 222 1206 19.1 --- --- --- --- --- Harzianolide 
9 240 1093 11.0 --- 23.0 --- --- --- Cyclonerodiol 
10 281 1524 --- --- --- --- 116.7 --- Harzianopyridone 
11 281 171 11.8 --- 11.0 --- --- --- Harzianopyridone 
12 281 213 --- 32.8 --- --- --- --- Harzianopyridone 

13 282 1525 --- --- --- --- 15.2 --- 
Koninginin E, koninginin B, 

or seco-koninginin 
14 300 953 --- 12.3 --- --- --- --- Harziandione 
15 400 1063 --- --- --- 85.9 --- --- Harzianum A 

a Retention time of the [MH]+-ion.
 

b Detected intensities of metabolic signals in the respective culture filtrate in millions counts [TIC]. 
c Potential secondary metabolites according to the mass-to-charge ratios of detected signals and the masses of known 
secondary metabolites of T. harzianum.  
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4: 6-pentyl-�-pyrone 
166 Da 

2 / 3: 6-pent-1-enyl-�-pyrone 
164 Da 

Pyrones 
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13: Koninginin E 
282 Da 
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OH
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13: Seco-koninginin 
282 Da 
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13: Koninginin B 
282 Da 

Fig. 5.1. Pyrone compounds potentially present in the culture filtrates of examined 
Trichoderma harzianum strains. Structur formulae drawn with ChemSketch version 10.0 
(Advanced Chemistry Development Inc., Toronto, Canada). 
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Butenolides 
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8: Harzianolide 
222 Da 

6: Dehydroxy harzianolide  
204 Da 

7: T39butenolide 
220 Da 

CH3

O

CH3

O

CH3

O

CH3

OO

Fig. 5.2. Butenolide compounds potentially present in the culture filtrates of examined 
Trichoderma harzianum strains. Structur formulae drawn with ChemSketch version 10.0 
(Advanced Chemistry Development Inc., Toronto, Canada). 
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Terpenoids 

 

 

 

 

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

9: Cyclonerodiol 
240 Da 

14: Harziandione 
300 Da 

OCH3

O

CH3

H
H

CH3

O O

O OH

15: Harzianum A 
400 Da 

CH3

CH3

OH CH3 CH3

CH3

OH

CH3

CH3

CH3O

O

CH3

CH3

Fig. 5.3. Terpenoid compounds potentially present in the culture filtrates of examined 
Trichoderma harzianum strains. Structur formulae drawn with ChemSketch version 10.0 
(Advanced Chemistry Development Inc., Toronto, Canada). 
 



Results (5) 

98 

Others 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1: Uracil 
112 Da 

10 / 11 / 12: Harzianopyridone  
281 Da 
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Fig. 5.4. Other compounds potentially present in the culture filtrates of examined 
Trichoderma harzianum strains. Structur formulae drawn with ChemSketch version 10.0 
(Advanced Chemistry Development Inc., Toronto, Canada). 
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5.4 Discussion 
 

Like many other fungal species, Trichoderma spp. produce secondary metabolites with 

antibiotic activity (SIVASITHAMPARAM and GHISALBERTI, 1998). The inhibition of mycelial 

growth of target fungi confronted with developing mycelium of the antagonist or with sterile 

filtrated fluids from liquid cultures of T. harzianum strains is a clear indication for an 

antibiotic interaction due to the presence of antibiotic metabolites (Chapters 2 and 3). 

Several aspects have to be considered with regard to production and activity of such 

metabolites. Although many Trichoderma strains are known to produce secondary 

metabolites with antifungal activity, this is not observed for all strains (DENNIS and 

WEBSTER, 1971a; GHISALBERTI et al., 1990).  

For example, the well-known antagonist of Botrytis cinerea, T. harzianum T39, is 

most often cited to have no antibiotic activity towards its target B. cinerea (ELAD, 1996; 

ELAD and KAPAT, 1999). In contrast to this statement, VINALE et al. (2006) reported the 

production of three metabolites, harzianolide, T39butenolide, and harzianopyridone, when 

T39 was cultivated in liquid culture for 31 days at 25°C. These compounds displayed 

antifungal activity towards Gaeumannomyces graminis var. tritici, Pythium ultimum, and 

Rhizoctonia solani. On the other hand, T39 produced only T39butenolide and 

harzianopyridone, but no harzianolide during an interaction study with R. solani on solid 

agar medium at 25°C (VINALE et al., 2006). 

Questions arise from these findings concerning the effect of the environmental 

conditions under which the growth of a particular Trichoderma strain takes place, e.g. type 

of substrate or temperature, on the production of certain metabolites. Additionally, the 

spectrum or amount of antifungal metabolites produced within a Trichoderma strain – 

phytopathogen – interaction depends on the target fungus, while reactions of the target 

towards particular compounds also vary (COONEY and LAUREN, 1998; VINALE et al., 2006). 

Hence, observing no antibiotic interaction between T39 and B. cinerea may be due 

to environmental parameters, due to B. cinerea not inducing the production of antibiotic 

metabolites by T39, or due to B. cinerea being tolerant or resistant towards these 

metabolites, as well as being able to degrade them (COONEY and LAUREN, 1998). 

The profile of secondary metabolites produced by a single Trichoderma strain may 

differ strongly from metabolic profiles of other strains. Not only do different Trichoderma 

species produce different metabolites (GHISALBERTI and SIVASITHAMPARAM, 1991; 

SIVASITHAMPARAM and GHISALBERTI, 1998), but even the profiles of strains from the same 

species can be very different (GHISALBERTI et al., 1990; VINALE et al., 2006). Some 

metabolites like 6PAP are produced by a greater number of T. harzianum isolates 

(CLAYDON et al., 1987; COONEY and LAUREN, 1998; GHISALBERTI et al., 1990; 



Discussion (5) 

100 

SCARSELLETTI and FAULL, 1994), while others produce metabolites solely reported for 

single strains, like T22azaphilone and T39butenolide produced by T-22 and T39, 

respectively (VINALE et al., 2006). 

Moreover, some metabolites are reportedly being produced by spores (MERLIER 

et al., 1984) or during sporulation (BODO et al., 1985), or on the contrary during phases of 

growth decline (LUMSDEN et al., 1990). Trichoderma strains may loose their ability to 

produce a certain secondary metabolite (BREWER et al., 1987) or gain the ability to 

produce new secondary metabolites after mutagenesis (GRAEME-COOK and FAULL, 1991). 

Last but not least, single spore cultures of the same field isolate of T. koningii were 

reported to display varying production of the antibiotic 6PAP (WORASATIT et al., 1994). 

Summarizing the above, it can be concluded that the observation of antibiosis 

between Trichoderma spp. and a target fungus, resulting from the activity of particular 

secondary metabolites, is a common interaction, but it may be reproducible only for a 

defined pair of fungal strains under defined physiological and environmental parameters. 

 

When the contract of this PhD work ended, the analysis of secondary metabolites of 

T. harzianum, that confer the antibiotic activity against the bean rust fungus to the 

antagonistic strains, had just started. Thus, there was no time left to carry out 

fragmentation studies with the most interesting HPLC peaks, to perform preparative 

chromatographic separation of the extracted metabolites from the T. harzianum culture 

filtrates, to evaluate the biological activity of separated fractions against the bean rust 

fungus, and subsequently to elucidate the structures of relevant metabolites by NMR and 

other techniques. Therefore, it was only possible to speculate on the effect of the 

compounds in the culture filtrates, which masses resemble those of known secondary 

metabolites of T. harzianum (Tab. 5.5), termed “potential secondary metabolites” in this 

work. 

In the culture filtrates of the six T. harzianum strains, 221 metabolites were detected 

that definitely were of fungal origin. Two were found in all six culture filtrates, while 192 

could only be detected in the culture filtrates of single strains. In each of the six culture 

filtrates, 39 to 50 compounds were found, 21 to 45 originating from the filtrates of 

individual strains.  

While each of these individual metabolites may confer antibiotic activity to the 

particular strain producing it, it cannot be excluded that metabolites detected in the culture 

filtrates of more than one strain are responsible for part of the observed antifungal effects. 

To limit the number of metabolites potentially responsible for the observed antibiotic 

activitiy especially against the bean rust fungus, only those compounds with molecular 

masses which resemble the masses of known secondary metabolites of T. harzianum 
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referenced in ANEJA et al. (2005), CORLEY et al. (1994), GHISALBERTI and ROWLAND 

(1993), GHISALBERTI and SIVASITHAMPARAM (1991), GHISALBERTI et al. (1990), 

SIVASITHAMPARAM and GHISALBERTI (1998), and VINALE et al. (2006) were used to 

evaluate the profiles of compounds found in the culture filtrates of the six examined 

T. harzianum strains. 

 

When interpreting the findings of potential secondary metabolites with a focus on 

their biological activity against the bean rust fungus U. appendiculatus, direct conclusions 

can only be drawn from the effect of the culture filtrates on germination and germ tube 

growth of bean rust uredospores (Chapter 3). It remains to be determined whether the 

metabolites detected in the culture filtrates are also present in the fluid of germinated 

spore suspensions. 

As seen for T. harzianum strain T-22, results from assays performed with spore 

suspensions or culture filtrates may differ considerably, indicating that metabolites 

produced by mycelia in liquid culture are not necessarily released from Trichoderma 

spores or produced during the process of germ tube development (Chapter 3). 

Similar results from leaf disc assays with spore suspensions and culture filtrates of 

strains T12 and TU in terms of antifungal activity against U. appendiculatus suggest that 

the same metabolites were responsible for the effects of the two treatments by each 

strain. Comparison of the chemical composition of culture filtrates and the fluid of 

germinated T. harzianum spores, will be needed to test this hypothesis. 

Nonetheless, with the exception of T-22, the efficacy of spore suspensions in leaf 

disc assays was reflected by results from germination experiments conducted on water 

agar amended with culture filtrates of the remaining five T. harzianum strains (Chapter 3). 

Therefore it is hypothesized that the compounds found in the T12 culture filtrate potentially 

have a greater antifungal effect on U. appendiculatus than metabolites from culture 

filtrates of T-22, T39, TR, and TS. Moreover, compounds found in the culture filtrate of T12 

and of other T. harzianum strains as well, seem to be less important, as long as T12 did 

not produce them in much higher concentrations. 

Because the EA-extract of the TU culture filtrate showed only little antifungal activity 

against bean rust, the compounds found in the culture filtrate of TU are of minor 

significance, too. 

Harzianolide (8) and two related compounds, dehydroxy harzianolide (5, 6) and 

T39butenolide (7) were potentially found in the T12 culture filtrate. Moreover, compounds 

having the same masses as cyclonerodiol (9) and harzianopyridone (11) were detected. 

With the exception of cyclonerodiol, which has plant growth regulating properties 

(GHISALBERTI and ROWLAND, 1993), these secondary metabolites all have antifungal 
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activity. Regarding their potential activity against U. appendiculatus, compound 5 can be 

neglected because it was present in the culture filtrate of the ineffective strain TR in even 

greater amounts. Considering that the production of dehydroxy harzianolide was neither 

reported for T-22 nor T39, it can be doubted that compound 5 really is dehydroxy 

harzianolide. 

Compounds 9 and 11 were only found in the culture filtrates of T12 and T39. T39 is 

known to produce harzianopyridone (VINALE et al., 2006). Hence, compound 11 probably 

is harzianopyridone and is produced by both T12 and T39. The potential harzianopyridone 

can only be responsible for part of the effect of T12 on bean rust, because rather equal 

amounts of compound 11 were found in the culture filtrates of both strains. On the other 

hand, the presence of harzianopyridone might explain the effect of T39 in leaf disc as well 

as germination assays (Chapter 3). 

If compound 11 really is harzianopyridone, then compounds 10 and 12 present in 

the culture filtrates of TS and T-22, respectively, cannot be the same compound. This is 

further supported by the fact, that harzianopyridone was not reported for T-22 (VINALE 

et al., 2006). For TS, no information on its secondary metabolite profile is available in the 

literature, which is also the case for TR and TU. 

In case it is not cyclonerodiol, compound 9 may also be responsible for part of the 

efficacy of T39. Considering that it was detected in the T39 culture filtrate at a more than 

2-fold higher concentration than in the culture filtrate of T12, its contribution to the effect of 

the T12 culture filtrate against the bean rust fungus seems to be rather small. 

Three compounds (6, 7, 8) were found solely in the culture filtrate of T12 and may 

therefore have the greatest effect on U. appendiculatus. These compounds potentially are 

harzianolide (8) and the related compounds dehydroxy harzianolide (6) and T39butenolide 

(7). If compounds 7 and 8 are T39butenolide and harzianolide, respectively, questions 

arise why these compounds were not found in the culture filtrate of T39, because this 

strain produced both of them if cultivated for 31 days in PDB (VINALE et al., 2006). Maybe 

the short cultivation period of ten days during the experiments reported here was not 

sufficient for T39 to produce these compounds. 

Interestingly, three compounds (5, 12, 14) were found for T-22 not reported by 

VINALE et al. (2006), but three metabolites reported by them, two anthraquinones and 

T22azaphilone, were not found in the experiments of this study. Both experiments differed 

strongly with regard to the cultivation period allowed for growth of T-22: ten days in the 

study reported here compared to 31 days in their experiments. Nonetheless, compounds 

12 and 14, which are solely found in the culture filtrate of T-22, may be responsible for the 

effect of the T-22 culture filtrate on germination and germ tube growth of 

U. appendiculatus. 
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The four compounds found in the culture filtrate of TR (1, 3, 5, 15) are of no interest 

with regard to bean rust control, because TR was almost ineffective against the bean rust 

fungus. However, with respect to the very strong antibiotic effect of the TR culture filtrate 

against Botrytis cinerea, Pythium ultimum, Rhizoctonia solani, and also against two 

Fusarium species (Chapter 2), the potential pyrone compound (3) and the potential 

trichothecene harzianum A (15), both being T. harzianum metabolites with known 

antifungal activity (CLAYDON et al., 1987; CORLEY et al., 1994), are very interesting. Of all 

six T. harzianum strains, TR was the only strain with considerable activity against the 

Fusarium species (Chapter 2). Compounds 3 and 15, which were only found in the culture 

filtrate of TR, may be responsible for this effect. 

Compared to the TR culture filtrate, the 2-fold amount of compound 1, which has the 

same mass as uracil, was detected in the culture filtrate of TS. Because no antibiotic 

activity of this pyrimidine was reported (SIVASITHAMPARAM and GHISALBERTI, 1998), it 

seems to be unlikely that this compound confers antifungal activity against 

U. appendiculatus or other target fungi to the producing T. harzianum strain. 

Three more compounds were found in the culture filtrate of TS (5, 10, 13), with the 

same masses as dehydroxy harzianolide (5), harzianopyridone (10), and as a group of 

three similar antifungal metabolites (GHISALBERTI and ROWLAND, 1993): koninginin B, 

koninginin E, and seco-koninginin (13). As already discussed, compound 5 certainly 

confers no activity against the bean rust to the producing organism, and compound 10 

most likely is not harzianopyridone, but still may be active in terms of antibiosis. Also the 

potential koninginin-compound (13) may be responsible at least for part of the effect of TS 

on the bean rust fungus. 

The TU culture filtrate showed strong rust controlling activity (Chapter 3), but the 

resulting EA-extract did not. Therefore, compounds 2 and 4 cannot be responsible for the 

observed effect. Only in the TU culture filtrate a compound with a mass corresponding to 

the mass of the best-known antifungal secondary metabolite of T. harzianum 

6-pentyl-�-pyrone (6PAP) could be found. 6PAP is well-known for its coconut-aroma 

(COLLINS and HALIM, 1972) and its volatile character (CLAYDON et al., 1987; COONEY and 

LAUREN, 1998; GHISALBERTI et al., 1990). TU culture filtrates had a distinct coconut-smell. 

Therefore it seems very likely that compound 4 is 6PAP. Confusingly, PDA cultures of TU 

were the only ones that showed absolutely no antifungal activity due to any kind of volatile 

metabolite against B. cinerea, P. ultimum, or R. solani (Chapter 2). Maybe the amount of 

6PAP produced by strain TU when cultured on solid PDA medium was too low to exert any 

growth inhibiting effect towards the challenged phytopathogenic fungi.  

The fact that no compounds with the same mass as 6PAP were found in the culture 

filtrates of T12, TR, and TS makes it apparent that the antifungal activity demonstrated by 
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these strains in vitro (Chapters 2 and 3) is based on other antifungal metabolites with 

volatile and non-volatile character. Strains T39 and T-22 are already known not to 

produce 6PAP (VINALE et al., 2006). 

Concerning all the above, the potential harzianolide compounds (6, 7, 8) and the 

potential harzianopyridone (11) may be of special interest with regard to the antifungal 

activity of the T12 culture filtrate against the bean rust fungus. The same applies to 

compounds 12 and 14, compounds 9 and 11, as well as compounds 10 and 13 found in 

the culture filtrate of strains T-22, T39 and TS, respectively. A test on the effect of the 

EA-extracts of the culture filtrates of these T. harzianum strains on the germination of 

U. appendiculatus would provide some additional information on the impact of their 

respective metabolites.  

The ineffectiveness of the organic EA-extract of TU on uredospore germination 

compared to the highly effective watery fraction demonstrates that the secondary 

metabolites which contribute the major part to the antifungal activity of this strain, can only 

be analysed following extraction with other solvents than HX or EA. Especially the highly 

antibiotic peptaibols (SZEKERES et al., 2005) have to be extracted with polar solvents like 

n-butanol. It is possible that peptaibols are responsible for the antibiotic activities of the TU 

strain and its culture filtrate observed in Chapters 2, 3, and 4. Furthermore, also the T12 

culture filtrate may contain peptaibols, because organic as well as watery fraction 

remaining after EA-extraction showed very similar antifungal activity against bean rust, 

indicating that only part of the responsible metabolites are described here. 

In general, the results from most experiments in the previous chapters support the 

hypothesis that mixtures of secondary metabolites are the key element to the varying 

antifungal effects observed for the broad range of T. harzianum strain – target fungus – 

combinations presented in this thesis. Therefore it is necessary to repeat the present 

study with other solvents and to perfom preparative purification and identification of the 

potential metabolites conferring the antibiotic activity to the T. harzianum strains. 

Moreover a comparison of the secondary metabolite profiles of culture filtrates with the 

profiles of germinated spore suspension fluids would be helpful. These analyses can 

answer the question whether the effects of T. harzianum spore suspension and culture 

filtrate treatments on the bean rust fungus U. appendiculatus are caused by the same 

secondary metabolites. 
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6. Final Discussion 
 

 

6.1 The diversity of antagonistic mechanisms and their impact on 

Trichoderma-mediated biological control 
 

Scientific research on the antagonism of Trichoderma spp. towards other fungal 

organisms has revealed a range of very different antagonistic mechanisms responsible for 

Trichoderma-mediated plant disease control: (1) competition for space and nutrients 

(ELAD, 1996; SIVAN and CHET, 1989), (2) mycoparasitic activity (CHET et al., 1998) and 

(3) antibiosis (HOWELL, 1998), (4) the degradation of enzymes which enable 

phytopathogens to exploit plant tissue (ELAD and KAPAT, 1999; KAPAT et al., 1998) or 

(5) the degradation of substances of plant origin necessary for the elicitation of 

phytopathogenic activity (HOWELL, 2002), and (6) the induction of plant resistance against 

fungal, bacterial, or viral diseases (HARMAN et al., 2004). 

It is possible to evaluate single mechanisms by in vitro interaction studies of specific 

combinations of antagonist and phytopathogen (Chapter 2), but generalization of these 

results for other Trichoderma strains, other pathogens, or other environmental conditions 

is nearly impossible (GHISALBERTI and ROWLAND, 1993; HANNUSCH and BOLAND, 1996; 

HARAN et al., 1996; Chapter 2). 

The major part of this work focussed on the experimental evaluation of the 

antagonistic mechanisms employed by six Trichoderma harzianum strains. Within this 

broad conception, emphasis was given to the elucidation of the mechanisms responsible 

for the successful antagonism of T. harzianum strains T12 and TU towards the bean rust 

fungus Uromyces appendiculatus.  

This final chapter intends to give a conclusive discussion of the antagonistic 

mechanisms that were observed during the numerous experiments by which 

T. harzianum – pathogen – interactions were investigated. 

 

 

6.1.1 Competition 

In vivo, rhizosphere competence is a very important property of Trichoderma strains 

(AHMAD and BAKER, 1987; HARMAN, 2000). Attachment of developing Trichoderma 

mycelium to the root serves a double purpose: The Trichoderma strain grows in the 

vicinity of a source of nutrients and thereby is directly attached to the plant organ to be 

protected against infection by soil-borne phytopathogens. If a Trichoderma strain is able to 
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compete for this space and the secreted root-exudates, it may be a useful competitive 

BCA (SIVAN and CHET, 1989). The same is true for the application of Trichoderma spp. 

onto the leaf surface, where nutrients are scarce. If a Trichoderma strain can use those 

trace amounts of nutrients better or quicker than other fungal organisms, it may have the 

potential to outcompete foliar pathogens (ELAD, 1996). 

In vitro experiments performed on nutrient agar can demonstrate the competitive 

ability of Trichoderma strains under rather artificial conditions, which in most cases can 

only imprecisely simulate the nutrient supply and the environmental conditions occurring 

in vivo.  

In spite of these constraints, some interesting differences between the six 

T. harzianum strains used in this study and tremendous variations in the reactions of each 

respective T. harzianum strain towards the different pathogens were observed. This did 

not only demonstrate the varying potential of individual strains to compete with a particular 

pathogen, but also the great impact of the pathogen itself on the development of the 

interaction (Chapter 2). 

In terms of bean rust control, no competition for space was noticed. Because bean 

rust spores do not need external nutrient supply to germinate and infect the bean leaf, 

competition for nutrients was also not responsible for the observed bean rust control 

(Chapters 3 and 4). 

 

 

6.1.2 Parasitism 

Parasitic interactions between Trichoderma strains and phytopathogenic fungi have often 

been observed microscopically (BENHAMOU and CHET, 1993, 1997, ELAD et al., 1983; 

GUPTA et al., 1999; INBAR et al., 1996; WEINDLING, 1932). A common event during such 

interactions is the coiling of the Trichoderma hyphae around the hyphae of the pathogen, 

thereby increasing the contact between its own hyphae and the pathogen’s ones. The 

secretion of lytic enzymes and antibiotic metabolites leads to degradation of cell wall 

components and de-regulation of the metabolism of the affected pathogen’s cells (LORITO 

et al., 1996).  

Again, the reactions of varying Trichoderma strains towards a particular pathogen 

may differ and the reaction of a particular Trichoderma strain towards different pathogens 

may range from strong parasitism to failure in activity. In the in vitro experiments, most of 

the six T. harzianum strains were able to grow over and exploit the mycelia of 

Pythium ultimum and Rhizoctonia solani, but showed nearly no parasitic activity against 

Botrytis cinerea, possibly due to the antibiotic activity of the pathogen (Chapter 2). 
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Some variations were observable concerning the parasitic efficacy of the 

Trichoderma strains against the former two pathogens. The general mycelial growth rate 

of the T. harzianum strains also largely determined the speed of parasitism of the 

pathogenic mycelia. This led to differences in the speed of killing of the pathogens within 

the zones of mycelial interaction and overgrowth. In one case (TR vs. P. ultimum), 

complete ineffectiveness was observed, highlighting the dependence of effective 

parasitism on the specific combination of antagonist strain and pathogen (Chapter 2). 

Due to the very short period of bean rust germ tube growth before entering the 

intercellular spaces of the bean leaf, any parasitic interaction between Trichoderma 

strains and U. appendiculatus prior to infection, is absolutely unlikely. Because 

T. harzianum does not enter the intercellular spaces below the epidermal cell layer, a 

parasitic interaction within the leaf can be excluded (Chapter 3). 

 

 

6.1.3 Antibiosis 

Several hundred secondary metabolites produced by Trichoderma spp. are known 

(SIVASITHAMPARAM and GHISALBERTI, 1998; SZEKERES et al., 2005). These metabolites are 

most likely produced with the purpose of increasing the competitiveness of the producing 

Trichoderma strain towards other microorganisms (GHISALBERTI and SIVASITHAMPARAM, 

1991; SZEKERES et al., 2005). Although not associated with positive effects in all cases 

(LUMSDEN et al., 1990; OUSLEY et al., 1993, 1994) or from every perspective (RICARD and 

RICARD, 1997), antibiotic metabolites may confer an increase in biopesticidal activity to the 

producing BCA strain. 

In correspondence to the two antagonistic mechanisms discussed above, the 

occurrence of antibiotic activity of Trichoderma strains largely depends on the strain itself, 

the growth conditions, and on the target fungus the Trichoderma strain is interacting with 

(SIVASITHAMPARAM and GHISALBERTI, 1998; VINALE, 2006). The ability to produce specific 

antibiotic metabolites may get lost (BREWER et al., 1987) or may be gained by 

mutagenesis (GRAEME-COOK and FAULL, 1991), and the level of antibiotic production may 

vary between propagules of the same strain (WORASATIT et al., 1994). 

The culture filtrates of all six T. harzianum strains showed antifungal activity against 

a variety of phytopathogens, but great differences between combinations of different 

strains with the same phytopathogen were found. The antibiotic activity of a particular 

strain depended on the varying pathogens, but the variations between the T. harzianum 

strains were relatively clear-cut, allowing to rank the strains from the least effective T39 to 

the most effective TR, nearly independent of the target fungi (Chapter 2). 
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Nonetheless, the antibiotic activity of a specific strain may be dramatically 

dependent on the pathogen. This was demonstrated by the TR culture filtrate being by far 

the least effective in terms of inhibiting germination of bean rust uredospores (Chapter 3). 

This was a surprise considering the great efficacy of the TR culture filtrate against all other 

target fungi (Chapter 2). On the other hand, these results perfectly fit to the results 

obtained in the assays on bean rust control by TR spore suspensions. Both, spore 

suspension and culture filtrate of TR were more or less ineffective against 

U. appendiculatus (Chapter 3). 

Protective treatments with spore suspensions or culture filtrates of strains T12 and 

TU before bean rust inoculation showed strong activity against U. appendiculatus in leaf 

disc assays, but no curative effect was observed when culture filtrates were applied after 

inoculation with bean rust uredospores (Chapter 3). This indicates that uptake of the rust 

inhibiting metabolites into the leaf tissue did not occur or that uptake was too low to 

negatively affect rust pustule development. 

The efficacy of T. harzianum spore suspensions and culture filtrates was confirmed 

in greenhouse experiments. The antifungal effect of the applied T. harzianum agents was 

only slightly weakened when the time period between leaf treatment with T12 and TU 

spore suspensions or culture filtrates and bean rust inoculation increased from one day to 

one week (Chapter 4). Resistance of the compounds, which are responsible for the 

antifungal activity of the T. harzianum agents against bean rust, towards heat, drought, 

and UV-irradiation is a critical factor regarding their long-term disease control efficacy and 

reliability. Therefore, the obtained results are promising. 

Some evidence on the identity of the antibiotic compounds found in the culture 

filtrate where gained by the analysis of the profiles of ethyl acetate soluble secondary 

metabolites of the six T. harzianum strains. Some conclusions could be drawn in terms of 

including or excluding potential metabolites from the list of those compounds that might be 

involved in the control of the bean rust fungus by antibiosis. Based on the presented 

results, the best-known T. harzianum antibiotic 6PAP did not essentially contribute to the 

antifungal activity of T. harzianum against U. appendiculatus, while harzianolide and the 

two related compounds dehydroxy harzianolide and T39butenolide potentially produced 

by T12 are likely candidates for the antibiotic interaction (Chapter 5). Definite identification 

of the responsible metabolites in future approaches may gain powerful means of bean rust 

control derived from T. harzianum cultures. 
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6.1.4 Induced resistance 

The induction of plant resistance towards fungal, bacterial, and viral diseases was 

observed for several Trichoderma strains (HARMAN et al., 2004). Because the 

experimental work in the greenhouse was focussed on only two T. harzianum strains 

(Chapter 4) which had been selected as being the most effective ones with regard to 

reducing bean rust infection in leaf disc assays and inhibiting germination and germ tube 

growth (Chapter 3), statements concerning the potential of T. harzianum to induce 

resistance in bean plants against U. appendiculatus can only be made based on the two 

selected strains displaying the strongest antifungal activity against bean rust. 

The spatial separation of the site of resistance elicitation on the plant from the site of 

pathogen inoculation is a prerequisite to demonstrate systemic resistance induction. This 

was ensured (1) by Trichoderma treatment and rust inoculation on separate leaflets of the 

same trifoliate leaf or (2) by T. harzianum spore application to seed or substrate and leaf 

inoculation with bean rust uredospores. 

Induced resistance was apparent if rust inoculation took place several days after 

treatment of adjacent leaflets with spore suspensions as well as culture filtrates especially 

of T. harzianum strain TU. The compounds responsible for this activity as well as the 

nature of the resistance reaction remain to be elucidated in future research. 

The treatment of seed or substrate with spore suspensions of the T. harzianum 

strains having the most pronounced antibiotic activity against bean rust gained no 

systemic resistance against U. appendiculatus, but negatively affected the development of 

bean plants (Chapter 4). Such growth inhibition of bean plants has already been 

described (GERLAGH et al., 1999), illustrating the potential phytotoxicity of some antibiotic 

Trichoderma metabolites (CUTLER et al., 1986). 
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6.2 On the usefulness of Trichoderma-derived biopesticides with 

antiobiotic activity 
 

In general, not every antagonistic mechanism that can be observed and which effects can 

be measured in laboratory experiments contributes to the biocontrol ability of an 

investigated Trichoderma strain against a specific pathogen under less controlled 

environmental conditions in field experiments (HANNUSCH and BOLAND, 1996; HARMAN, 

2006). In this respect, the production of secondary metabolites with antibiotic activity 

depends on the Trichoderma strain, environmental parameters as pH or temperature, and 

the colonized substrate (SIVASITHAMPARAM and GHISALBERTI, 1998; VIZCAÍNO et al., 2005). 

Thus it is very likely that antibiosis did not contribute to the control of B. cinerea by 

T. harzianum strain T39 (ELAD, 1996; ELAD and KAPAT, 1999), although this strain 

possesses the ability to produce antifungal secondary metabolites in vitro (VINALE et al., 

2006; Chapter 2). 

Additionally, the synergism between lytic enzymes and antibiotics (LORITO et al., 

1996; SCHIRMBÖCK et al., 1994), which enhances the antagonistic activity of Trichoderma 

strains, is crucial with regard to the rather low concentrations of the involved metabolites 

naturally synthesized by Trichoderma strains. If individual metabolites are applied 

artificially, the concentrations needed for any antibiotic activity are significantly higher than 

if a mixture of metabolites acting synergistically is used for the purpose of inhibiting the 

growth of target fungi (LORITO et al., 1996). In vivo, Trichoderma strains employ such 

mixtures. Even very low concentrations of particular metabolites may have great 

importance for particular activities within this concept of synergism. 

Concerning the vast amount of known secondary metabolites with antibiotic activity 

(SIVASITHAMPARAM and GHISALBERTI, 1998; SZEKERES et al., 2005), the high number of 

Trichoderma strains that are known to produce antibiotics, and the purpose, these 

compounds serve in nature (GHISALBERTI and SIVASITHAMPARAM, 1991; SZEKERES et al., 

2005), it is unlikely that Trichoderma strains not producing antibiotics are the ones which 

are adapted best to their habitats, where they have to compete with a multitude of other 

microorganisms (NAAR and KECSKES, 1998). 

Looked upon in the light of these facts, the general classification of Trichoderma 

strains as “plant strengtheners” is put into question. Regarding the restrictive regulations 

for disease control in ecological plant production systems, the use of Trichoderma strains 

producing antibiotics may raise objections. 

In summary it can be said that from not observing antibiotic activity within a specific 

interaction between Trichoderma spp. and another microorganism under specific 
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environmental conditions, no conclusion can be drawn about the general inability of the 

Trichoderma strain to produce secondary metabolites with antibiotic activity.  

With respect to the ethics of biopesticide application, it might be desirable to achieve 

successful control of plant pathogens by other antagonistic mechanisms than antibiosis 

(RICARD and RICARD, 1997). But from the scientific as well as from the practical point of 

view, control of rust fungi by means of Trichoderma spp. can be realized best by 

antibiosis.  

In those terms, the application of living propagules in form of spore suspensions 

does not differ from the application of the culture filtrates of Trichoderma strains. If the rust 

controlling capability of both agents relies on the presence of the same antibiotic 

metabolites, applying the living BCA does only have a higher psychological value, making 

it easier to accept the inconvenient truth that the application of compounds with antibiotic 

activity to control rust fungi is more or less inevitable. 
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6.3 Closing remarks 
 

Apart from the necessity of screening for an appropriate Trichoderma strain, that satisfies 

the demands in terms of disease reduction, resistance induction, or plant growth 

promotion, its application as a biological control agent or biopesticide has to fit into the 

economical and ecological concept of an integrated disease management system. First of 

all, costs of formulation, production, and utilization have to be within economically feasible 

parameters. Furthermore, Trichoderma preparations must be able to replace at least 

single chemical fungicide applications by an acceptable efficacy.  

Especially for the application of Trichoderma spore suspensions to the foliage of 

plants, this is very doubtful. In the experiments it was necessary to keep relative humidity 

artificially high for several days after Trichoderma spore application. At relative humidity 

values normally occurring in the greenhouse of 50 to 60% rH, germination of T. harzianum 

spores and release of their antifungal metabolites did not take place (data not shown).  

Therefore, application of culture filtrates, which act independently of relative 

humidity, are much more reliable. Another advantage of solely using the metabolite 

responsible for the inhibition of bean rust infectiousness, is the possibility to purify the 

molecule and to formulate a preparation which has all the beneficial physico-chemical 

properties of a conventional fungicide and contains the naturally bio-synthesized 

secondary metabolite of the respective Trichoderma strain at a concentration that gives 

disease control levels comparable to commercial chemical fungicides. In the case of 

U. appendiculatus, this means control levels higher than 90% reduction of disease 

severity (GENT et al., 2001; STUMP et al., 2000). 

More concerns are aroused with respect to the antibiotic effect of beneficial 

microorganisms than if the biological activity was due to competition or parasitism. With 

respect to these concerns, biopesticides based on microorganism-derived compounds 

have to be evaluated carefully for possible unwelcome side-effects, which may pose a 

threat to the user, the environment, or the consumer (COPPING and MENN, 2000).  

This study does not give any answers to the questions arising from these 

considerations. But what definitely can be pointed out is this: Some strains of 

T. harzianum are able to control the bean rust fungus by means of their secondary 

metabolites. Chemical analysis of these metabolites will broaden the spectrum of 

substances known to control the bean rust fungus and possibly other rust fungi, too. Such 

metabolites derived from selected T. harzianum strains may be useful future tools for both 

disease and fungicide resistance management. 
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