Novel P-Stereogenic Bidentate Phosphorus Ligands for Asymmetric Catalysis

Von der Naturwissenschaftlichen Fakultät
der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des Grades eines

Doktors der Naturwissenschaften

Dr. rer. nat. -
genehmigte Dissertation
von
M. Sc.

Nikolai Vinokurov
geboren am 10.03.1980, in Krasnodar, Russland

Referent:
Korreferent:
Tag der Promotion

Prof. Dr. H. Butenschön
Prof. Dr. H. Duddeck
21. 11. 2007

ZUSAMMENFASSUNG

Neue \boldsymbol{P}-chirale zweizähnige Phosphanliganden für die Asymmetrische Katalyse

Heutzutage werden P-chirale Diphosphane für eine Vielzahl asymmetrischer Übergangsmetall-katalysierter Reaktionen wie Hydrierungen, Hydrosilylierungen, Alkylierungen, C-C-Kupplungsreaktionen und Isomerisierungen häufig angewandt. Die Synthesewege zu P-chiralen zweizähnigen Liganden beschränken sich jedoch auf nur wenige Beispiele, weil die Synthese P-chiraler Verbindungen oft als problematisch gilt.

Im Rahmen dieser Dissertation wurden neue Wege zu P-chiralen Diphosphanliganden beschrieben, um danach deren erste Anwendungen in der asymmetrischen Katalyse aufzuzeigen.

Die Ru-katalysierte Homo-Metathese von P-chiralem ($S p$)-Methylphenylvinylphosphanoxid wurde in Gegenwart moderner Alkenmetathese-Katalysatoren durchgeführt. Anschließend wurde das P-chirale trans-1,2-Diphosphanyldioxid als Dienophil in einer asymmetrischen Diels-Alder-Reaktion mit Cyclopentadien und als Dipolarophil in einer asymmetrischen Huisgen-Cycloaddition mit acyclischen Nitronen eingesetzt, um die ersten P-chiralen Diphosphandioxide mit zwei asymmetrischen Phosphoratomen und einem starren Rückgrat zu erhalten.

Die Reduktion dieser neuen P-chiralen Diphosphandioxide durch die Umsetzung mit $\mathrm{Ti}(\mathrm{OiPr})_{4} /$ Polymethylhydrosiloxan (PMHS) in THF verläuft unter Erhalt der Konfiguration in hohen Ausbeuten. Die Synthese eines Rhodiumkomplexes mit den neuen P-chiralen Diphosphanen als Liganden konnte auch realisiert werden. Die asymmetrische Pd-katalysierte allylische Alkylierung von 1,3-Diphenyl-2-propenylacetat mit Dimethylmalonat lieferte ein erstes noch nicht optimiertes Ergebnis, indem das gewünschte Produkt in 97% Ausbeute und in einem Enantiomerenüberschuss von 81% vorlag.

Darüber hinaus ist es gelungen, einen neuen bimetallischen Ruthenium Präkatalysator für die Alken-Metathese herzustellen. Der Katalysator weist eine elektronenziehende Tricarbonylchromgruppe auf, welche am Benzylidenliganden koordiniert ist. Die katalytischen Eigenschaften dieses neuen Präkatalysators wurden in Ringschluss-, Enin-, Kreuz-, und Homo-Metathesen getestet. Aus den vorliegenden Ergebnissen ist zu schließen, dass der neue Katalysator eine vergleichbare Aktivität wie andere AlkenMetathesekatalysatoren besitzt und diese in manchen Fällen sogar übersteigt.
P-Chirale Vinylphosphanoxide • Homodimerisierung • Alken-Metathese • Ruthenium • Asymmetrische Cycloaddition $\cdot P$-Chirale Diphosphane \cdot Asymmetrische Katalyse \cdot Rhodium

ABSTRACT
 Novel P-Stereogenic Bidentate Phosphorus Ligands for Asymmetric Catalysis

Nowadays, P-stereogenic diphosphines are frequently employed in a variety of asymmetric transition metal catalyzed reactions such as hydrogenation, hydrosilylation, alkylation, C-C coupling reactions and isomerization. However, P-chiral diphosphine ligands were less investigated since the synthesis of highly enantiomerically enriched P-stereogenic phosphines often proves to be difficult.

This work is devoted to the synthesis of novel P-stereogenic diphosphines for asymmetric catalysis. The target of this project consists of the synthesis of new P-stereogenic diphosphines from P-chiral diphosphine dioxides and their first applications in asymmetric catalysis.

The P-chiral ($S p$)-methylphenylvinylphosphine oxide was successfully homodimerized in the presence of modern olefin metathesis catalysts. After homo cross-coupling the P-chiral trans-1,2-diphosphinylethene dioxide was used as a dienophile for an asymmetric Diels-Alder cycloaddition with cyclopentadiene and as a dipolarophile for asymmetric Huisgen cycloaddition with acylic nitrones to access novel P-chiral diphosphine dioxides bearing two asymmetric phosphorus atoms located close to the rigid chiral backbone.
The novel P-stereogenic diphosphine dioxides were successfully reduced by the use of $\mathrm{Ti}\left(\mathrm{Oi} \mathrm{Pr}_{4} /\right.$ polymethylhydrosiloxane (PMHS) in THF with complete retention of configuration leading to diastereomerically pure P-chiral diphosphines in high yields. The rhodium complex of a new P-chiral diphosphine could also be synthesized.

The novel P-stereogenic diphosphine was employed in the enantioselective Pd-catalyzed allylic alkylation of 1,3-diphenyl-2-propenyl acetate with dimethylmalonate leading as a first unoptimized result to 97% yield and $81 \% e e$ of the desired product

In addition, a new highly efficient bimetallic ruthenium precatalyst for alkene metathesis was synthesized, in which the benzylidene ligand has been coordinated to a highly electron withdrawing tricarbonylchromium moiety. Screening of the catalytic properties shows that the activity of the new catalyst in ring closing, enyne, cross, and homo-metathesis of alkenes is comparable to and in some cases better than that of known catalysts.
P-Chiral Vinylphosphine Oxides • Homodimerization • Alkene Metathesis • Ruthenium • Asymmetric Cycloaddition $\cdot P$-Stereogenic Diphosphines \cdot Asymmetric Catalysis \cdot Rhodium

Die vorliegende Arbeit wurde unter der Leitung von Herrn Prof. Dr. Holger Butenschön in der Zeit von September 2003 bis Juli 2007 am Institut für Chemie der Leibniz Universität Hannover angefertigt.

Herrn Prof. Dr. Holger Butenschön danke ich für die Überlassung des interessanten Themas, die hervorragenden Arbeitsbedingungen, die stets freundliche Unterstützung, die Bereitschaft jederzeit für die aufschlussreichen wissenschaftlichen Disskussionen sowie die gute Betreuung herzlich.

Meinen herzlichen Dank möchte ich der Gottlieb Daimler- und Karl Benz Stiftung für die Verleihung des Promotionsstipendiums aussprechen.

Herrn Prof. Dr. Helmut Duddeck danke ich für die Übernahme des Koreferats.

Meinen ehemaligen und jetztigen Kollegen Herrn Dr. Jose Garabatos, Herrn Dr. Mazhar Hussain, Frau Dr. Zhirong Zhao, Frau Dipl.-Chem. Bianka Muschalek, Frau Dipl.-Chem. Karin Kirleis, Herrn Dipl.-Chem. Ingmar Baumgardt, Herrn Dipl.-Chem. Marc Vollmann, Frau Dipl.-Chem. Stephanie Kohser, Herrn Dipl.-Chem. Jingxiang Ma, Herrn M. Sc. Osama Habib, Herrn Dr. Tamer Ezzat, Herrn Dipl.-Chem. Björn Kühn gilt mein Dank für die gute Zusammenarbeit, die ständige Hilfsbereitschaft und die unvergesslichen interessanten Diskussionen.

Frau Annette Kandil danke ich für die Hilfe bei organisatorischen Problemen.

Mein großes Dankeschön gilt den Mitarbeitern der instrumentalanalytischen Abteilung Dr. D. Albert, Frau D. Körtje, Frau M. Rettstadt, Herrn R. Nöthel, Herrn Dipl.-Chem. M. Astratov, Herrn J. Küster für die schnelle Messungen der NMR- und Massenspektren empfindlicher Substanzen.

Herrn Dr. M. Wiebcke und Herrn Dr. R. Wartchow danke ich für die Anfertigung aller Kristallstrukturanalysen. Herrn Dipl.-Chem. Ingmar Baumgardt danke ich für sein ständiges Verständnis!

Nicht vergessen möchte ich, allen Mietgliedern der Arbeitskreise Duddeck, Boysen, Hoffmann, Winterfeldt, Dräger, Kirschning und Kalesse für ihre Unterstützung zu danken.

Bedanken möchte ich bei meinen ehemaligen Kollegen Herrn Dr. Andriy Stelmakh (AK Kalesse) und Herrn Dr. J. Garabatos, die mir während meiner Arbeit mit Rat und Tat bei Seite gestanden haben.

Der Deutschen Forschugsgemeinschaft (DFG) gilt mein besonderer Dank für die Vergabe einer Stelle als wissenschaftlicher Mitarbeiter in Rahmen eines DFG-Projektes.

Bei Herrn Vladimir Lusin bedanke ich mich für seine stetige moralische Unterstützung!

Svetlana danke ich für Ihre Liebe und moralische Unterstützung!

Bei meinen geliebten Eltern möchte ich mich für Ihre große Unterstützung bedanken!

Meinen lieben Eltern Valentina und Anatoliy Vinokurov gewidmet Посвящается Моим Дорогим Родителям - Валентине и Анатолию Винокуровым

ABBREVIATIONS

$[\alpha]^{\mathrm{D}}{ }_{20}{ }^{\circ} \mathrm{C}$	Specific Rotation
Å	Angstrom
aq.	Aqueous
Ar	Ar
ATR	Attenuated Total Reflection
Bn	Benzyl
br	broad (NMR)
B. p.	Boiling Point
Bu	Butyl
t-Bu	tert-Butyl
c	Concentration
${ }^{\circ} \mathrm{C}$	Degrees Celsius
calcd.	Calculated
cat.	Catalyst
CM	Cross-Metathesis
cm^{-1}	Wavenumber
${ }^{13} \mathrm{C}$ NMR	${ }^{13}$ C Nuclear Magnetic Resonance
δ	Chemical Shift
d	Doublet
DBTA	Dibenzoyltartaric acid
dd	Doublet of Doublets
$d r$	Diastereomeric Ratio
$d e$	Diastereomeric Excess
decomp.	Decomposition

$e e$	Enantiomeric Excess
EI	Electronic Impact (Mass Spectrometry)
equiv.	Equivalent(s)
Et	Ethyl
Fc	Ferrocene
g	gramm
GC	Gas Chromatography
h	hour (s)
${ }^{1} \mathrm{H}$ NMR	${ }^{1} \mathrm{H}$ Nuclear Magnetic Resonance
HRMS	High-resolution Mass Spectroscopy
Hz	Hertz
IR	Infrared
J	Coupling Costant (NMR Spectroscopy)
m	Multiplet
M	Molar
M^{+}	Parent Molecular Cation
Me	Methyl
Men	Menthyl
MHz	Megahertz
mL	Milliliter(s)
min	Minutes
mmol	Millimol
M. p.	Melting Point
MS	Mass Spectrometry
m / z	Mass-to-charge Ratio (Mass spectrometry)
NHC	N -heterocylic

NMR	Nuclear Magnetic Resonance
Nu	Nucleophile
PE	Petroleum Ether
Ph	Phenyl
Ppm	Part(s) per Million
i-Pr	Isopropyl
PMHS	Polymethylhexasiloxane
${ }^{31} \mathrm{P} \mathrm{NMR}$	${ }^{31} \mathrm{P}$ Nuclear Magnetic Resonance
rac	Racemic
RCM	Ring-Closing Metathesis
s	Singlet
TBME	tert-Butylmethyl Ether
THF	Tetrahydrofuran
t	Triplet
TLC	Thin-layer Chromatography

Table of Contents

1 Introduction 1
1.1 Optically Active Phosphorus Ligands: A Historical Overview 1
1.2 Synthesis of P-Chiral Diphosphine Ligands via Their Dioxides and Sulfides 4
1.3 Synthesis of P-Stereogenic Diphosphine Ligands From Phosphine-Boranes 8
1.4 Asymmetric Catalysis Involving P-Chiral Diphosphine Ligands 11
1.5 Novel P-Chiral Diphosphine Ligands for Asymmetric Synthesis 16
2 Results and Discussion 19
2.1 Synthetical Routes to P-Chiral ($S p$)-Metyl(phenyl)vinylphosphine oxide (97) 19
2.2 A New Approach to P-chiral ($\mathrm{S} p$)-metyl(phenyl)vinylphosphine oxide (97) 21
2.3 Olefin Metathesis 24
2.4 Mechanism of Alkene Metathesis 27
2.5 Olefin Cross-Metathesis 29
2.6 The Homo-Coupling of P-Chiral Vinylphosphine Oxide 97 via Catalytic Olefin Cross-Metathesis 32
2.7 The Homo-and Cross-Metathesis of Vinyl Phosphine Sulfides and Boranes 40
2.8 The Catalytic Olefin Cross-Metathesis between P-Chiral Vinylphosphine Oxide and Methyl Acrylate (188) 42
2.9 A New, Highly Active Hoveyda-Grubbs Precatalyst for Alkene Metathesis 44
3 Synthesis of Novel Rigid P-Stereogenic Diphosphine Dioxides as Ligand Precursors via Asymmetric Cycloaddition 57
3.1 The Diels-Alder Reaction in Organic Synthesis 57
3.2 Asymmetric Diels-Alder Reaction of ($S p, S p$) - $\mathbf{1 5 5}$ with Cyclopentadiene (243) 60
3.3 The Asymmetric Huisgen Cycloaddition of ($S p, S p$)-155 with Acyclic Nitrones 67
3.4. Reduction of P-Stereogenic Diphosphine Dioxides to P-Stereogenic Diphosphines 77
3.5. \quad Synthesis of P-Chiral Diphosphines from P-Chiral Diphosphine Diboranes 86
3.6. Synthesis of the Rhodium Complex $\mathbf{3 1 0}$ 88
3.7. Novel P-Stereogenic Diphosphine ($S p, R p$)-301a in Asymmetric Pd-Catalyzed Allylic Alkylation Reaction 90
4. Summary and Outlook 94
5. Experimental Part 104
5.1 General 104
5.2 Synthesis of Organophosphorus Compounds 105
5.2.1 rac-Butylchlorophenylphosphinite (107) 105
5.2.2 rac-Butylphenylvinylphosphinite (108) 106
5.2.3 (Sp)-(-)-(Ethenylphenylphosphinyl)acetic acid menthyl ester (109) 106
5.2.4 (Sp)-Methylphenylvinylphosphine oxide (97) 108
5.2.5 (Sp,Sp)-(-)-(E)-Ethene-1,2-diylbis[methyl(phenyl)phosphine] dioxide (155) 109
5.2.6 (Sp)-(-)-(E)-[2-(2-Isopropoxy-1,1'-biphenyl-3-yl)vinyl] (methyl)phenylphosphine oxide (161) 110
5.2.7 (Sp)-(-)-(E)-[2-(2-Isopropoxy-3-methoxyphenyl)vinyl] (methyl)phenylphosphine oxide (160) 111
5.2.8 (Sp)-(-)-(E)-[2-(2-Isopropoxy-5-nitrophenyl)vinyl](methyl) phenylphosphine oxide (159) 112
5.2.9 (Sp)-(-)-(E)-(2-methoxycarbonylvinyl)(methyl)phenylphosphine oxide (189) 112
5.2.10 (E)-[2-(4-Methoxyphenyl)vinyl]diphenylphosphine oxide (181) 113
5.2.11 Dimethylphenylphosphine 114
5.2.12 rac-Methylphenylvinylphosphine (183) 115
5.2.13 Dimethylphenylphosphine borane (124) 115
5.2.14 rac-Boranato[(methyl)phenylphosphino]acetic acid (125) 116
5.2.15 rac-2-[Boranato(methyl)phenylphosphino]ethanol 117
5.2.16 rac-Methanesulfonic acid (methyl)phenylboranatophosphino] ethyl ester (126) 117
5.2.17 rac-Methylphenylvinylphosphine borane (127) 118
5.2.18 Methanesulfonic acid (diphenylboranatophosphino] ethyl ester (122) 119
5.2.19 Diphenylvinylphosphine borane (123) 120
5.2.20 Diphenylvinylphosphine sulfide (179) 121
5.2.21 Dimethylphenylphosphonite 122
5.2.22 Methylphenyl phosphinic acid methyl ester 122
5.2.23 Methylphenyl phosphinic chloride 123
5.2.24 Dicyclohexylidene-D-glucose-($(S p)$-methylphenylphosphinate ester (111) 123
5.2.25 (Rp)-Methylphenylvinylphosphine oxide (97) 124
5.3 Synthesis of New P-chiral Diphosphine Dioxides 125
5.3.1 ($S p, S p$)-(-)-Bis-(2R,3R)-([methyl(phenyl)phosphinyl]-bicyclo[2.2.1]hept-2-ene dioxide (262a) 125
5.3.2 Diastereoisomers separation with (+)-(L)-DBTA 127
5.3.3 (4Sp,5Rp)-(-)-Bis-(4S,5R)-([methyl(phenyl)phosphinyl]-($N, 3 S$)- diphenylisoxazolidine dioxide (276a) 128
5.3.4 (4Sp,5Rp)-(-)-Bis-(4R,5S)-([methyl(phenyl)phosphinyl]-(N,3R)- diphenylisoxazolidine dioxide (276b) 129
5.4 Reduction of New P-chiral Diphosphine Dioxides 130
5.4.1 (4Sp,5Rp)-(-)-bis-(4S,5R)-([methyl(phenyl)thiophosphinyl]-(N,3S)- (diphenyl)isoxazolidine (302a) 130
5.4.2 (4Sp,5Rp)-(-)-bis-(4R,5S)-([methyl(phenyl)thiophosphinyl]-($N, 3 R$)- (diphenyl)isoxazolidine (302b) 131
5.4.3 (4Rp,5Sp)-(-)-bis-(4S,5R)-([methyl(phenyl)phosphinyl]-(N,3S)- (diphenyl)isoxazolidine (301a) 132
5.4.4 (4Rp,5Sp)-(-)-Bis-(4R,5S)-([methyl(phenyl)phosphinyl]-($N, 3 R$)- (diphenyl)isoxazolidine (301b) 133
5.4.5 (4Rp,5Sp)-(-)-Bis-(4S,5R)-boranato([methyl(phenyl)phosphino]- ($N, 3 S$)-(diphenyl) isoxazolidine (303a) 134
5.4.6 (4Rp,5Sp)-(-)-Bis-(4R,5S)-boranato([methyl(phenyl)phosphino]- ($N, 3 R$)-(diphenyl) isoxazolidine ($\mathbf{3 0 3 b}$) 135
5.4.7 (4Sp,5Rp)-(-)-Bis-(4R,5S)-(methyl(phenyl)phosphinyl)- N-methyl-(3R)-(phenyl) isoxazolidine dioxide (278a) 137
5.5 Synthesis of Rhodium Complex 310 138
5.5.1 \{(4Sp,5Rp)-(-)[(N,3S)-Diphenyl--bis-4,5-[methyl(phenyl)phosphinyl]isoxazolidine](bicyclo%5B2.2.1%5Dhepta-2,5-diene)\}rhodium (I) tetrafluroborate (310) 138
5.6 Palladium Catalyzed Asymmetric Allylic Substitution 139
5.6.1 (R)-Methyl-2-carbomethoxy-3,5-diphenylpent-4-enoate (92) 139
5.7 Alkene Metathesis: Synthesis of Ruthenium Precatalysts 140
5.7.1 N, N-Bis(2,4,6-trimethylphenyl)-1,2-ethanediimine 140
5.7.2 $\quad N, N$ - $\operatorname{Bis}(2,4,6-$ trimethylphenyl)-1,2-ethanediamine 140
5.7.3 1,3-Bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazolium tetrafluoroborate 141
5.7.4 [1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene) dichloro(phenylmethylene) (tricyclohexylphosphine)]ruthenium (134) 142
5.7.5 [1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolinylidene]dichloro [(2-isopropoxyphenyl)methylene]ruthenium (136) 143
5.7.6 [1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolinylidene]dichloro [(2-isopropoxy-3-methoxyphenyl)methylene]ruthenium (156) 143
5.7.7 [1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolinylidene]dichloro [(2-isopropoxy-5-nitrophenyl)methylene]ruthenium (138) 144
5.7.8 [1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolinylidene]dichloro [(2-isopropoxy-biphenyl)methylene]ruthenium (137) 145
5.8 Synthesis of New, Highly Active Bimetallic Precatalyst for Alkene Metathesis 145
5.8.1 rac-Tricarbonyl(2-isopropoxystyrene)chromium (0) (205) 145
5.8.2 rac-Tricarbonyl (2-isopropoxy-3-methoxystyrene)chromium (0) (238) 146
5.8.3 [1,3-bis(2,4,6-trimethylphenyl)-2-imidazolinylidene]dichloro 147
[(2-isopropoxyphenyl) methylene] tricarbonylchromium ruthenium (202) 147
5.8.4 [Tricyclohexylphosphine]dichloro[(2-isopropoxyphenyl)methylene] 149
tricarbonylchromium ruthenium (236) 149
5.8.5 [1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolinylidene]dichloro[(2-isopropoxy-3- methoxyphenyl)methylene]tricarbonylchromium ruthenium (239) 150
5.9 General procedures for alkene metathesis reactions catalyzed by $\mathbf{2 0 2}$ 151
5.9.1 General Procedure for RCM and enyne metathesis 151
5.9.2 Cyclopenten-3-ene-1,1-dicarboxylic acid diethyl ester (217) 152
5.9.3 2,2-Diphenyl-3-vinyl-2,5-dihydrofuran (222) 152
5.9.4 3-Methyl-cyclopent-3-en-1,1-dicarboxylic acid diethylester (219) 152
5.9.5 2,5-dihydro- 1 H -pyrrole-1-toluenesulfonate (215) 153
5.9.6 2,3,6,7--tetrahydro- 1 H -azepine-1-toluenesulfonate (216) 153
5.9.7 Cyclohex-3-ene-1,1-dicarboxylic acid diethylester (218) 154
5.9.8 3-(2-methyl-1-propenyl)-2,5-dihydro-1H-pyrrole-1-toluenesulfonate (223) 154
5.9.9 3,4-dimethyl-2,5-dihydro-1 H -pyrrole-1-toluenesulfonate (220) 155
5.9.10 Cross-metathesis and homo-metathesis 156
5.9.11 (E)-5-methoxycarbonyl-pent-4-enyl-benzoate (226) 156
5.9.12 Methyl-7-[1-(tert-butyl)-1,1-dimethyl-silyl]oxy-2-heptenoate (227) 156
5.9.13 8-[1-(tert-Butyl)-1,1-dimethylsilyl]oxy-3-E-octen-2-one (228) 157
5.9.14 (E)-6-[1-(tert-butyl)-1,1-dimethylsilyl]-oxy-1-hexenyl phenyl sulfone (229) 157
5.9.15 (E)-6-[1-(tert-butyl)-1,1-dimethylsilyl]-oxy-1-hexenyl(diphenyl) phosphine oxide (231) 158
5.9.16 7-tert-butyl-dimethylsiloxy-hept-2-enenitrile (230) 158
Bibliography 159

Chiral compounds play a key role in many areas of science including biologically active pharmaceuticals, agrochemicals, flavours and fragrances as well as advanced materials such as liquid crystals emphasize that life itself depends on chiral recognition. A pair of enantiomers will be differenced by biological systems as unlike substances, where one enantiomer may act as an effective therapeutic medicine whereas the other enantiomer is inactive or even causes adverse effects. Nowadays there are several methods to obtain substances in enantiomerically pure form, which include classical optical resolution via diastereomers, chemical kinetic resolution, enzymatic resolution, chromatographic separation and asymmetric catalysis. Among these type of asymmetric reaction, the most desirable and the most challenging is asymmetric catalysis, since one chiral molecule can create millions of chiral product molecules, just as enzymes do in biological systems. Asymmetric catalysis is defined as an enantioselective transformation effected by a small amount of a chiral catalyst with control over the absolute configuration of the desired product. A large number of asymmetric catalysts that have been developed are organometallic compounds, which are easily endowed with chemoselectivity, regioselectivity and both relative and absolute configuration. Consequently, the area of development of chiral catalysts for asymmetric synthesis has been extensively studied in many academic and industrial research laboratories and has become a mainstream chemical technology in the $20^{\text {th }}$ century. ${ }^{[1]}$

1.1 Optically Active Phosphorus Ligands: A Historical Overview

There is no doubt that hydrogen is one of the powerful reducing agents and hydrogenation is arguably the most important catalytic method in synthetic organic chemistry both on the laboratory and the production scale. Molecular hydrogen is stable (bond energy: 104 $\mathrm{kcal} / \mathrm{mol}$) and does not react with organic compounds in the absence of a catalyst. Transition metal complexes can activate H_{2} and hence hydrogen may be transferred from the metallic center to unsaturated organic molecules. Oxidative addition of hydrogen to metal complexes with optically active ligands affords chiral metal dihydride complexes, which are able to asymmetric hydrogenation. During the last three decades of the $20^{\text {th }}$ century, significant attention was devoted to the discovery of new asymmetric catalysts, in which transition
metals bound to chiral phosphorous ligands have emerged as preferential catalysts for asymmetric hydrogenation. ${ }^{[2]}$

The first homogeneous asymmetric hydrogenation using P-chiral phosphine ligands was found in 1968 and was independently reported by Horner and Knowles. ${ }^{[3]}$ The Wilkinson complex $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ was modified by replacing triphenylphosphine with optically active methylpropylphenyl phosphine (1) (69 \% ee) or by in situ generation of the catalyst precursor from chloro(1,5-hexadiene)rhodium(I) dimer complex by its reaction with (S)-(+)-1. These rhodium(I) complexes were used for asymmetric hydrogenation of α-substituted styrenes or α phenylacrylic acid derivates, albeit with poor enantioselectivity.

Further exploration by Knowles and Sabacky of monophosphines PAMP (6) and CAMP (7) provided noticeably improved $e e$'s in catalytic asymmetric hydrogenation of α acylaminoacrylic acids. ${ }^{[4]}$ A real breakthrough came when Kagan devised DIOP (8), a C_{2} symmetrical chiral diphosphine obtained from tartaric acid. With DIOP as ligand α acylaminoacrylic acids and esters can be hydrogenated to produce the corresponding amino acid derivatives in up to $80 \% e e .{ }^{[5]}$

In 1975, Knowles made his significant discovery - the first P-chiral bidentate phosphine DIPAMP (12), ${ }^{[6]}$ which simultaneously possesses C_{2} symmetry and bears two chelating asymmetric phosphorus atoms, allowed the rhodium catalyzed hydrogenation of dehydroamino acids with up to $90-97.5 \% e e$. This methodology has become the basis for a commercial process for the amino acid, L-DOPA (11) (3,4-dihydroxyphenylalanine), a drug used for treatment of Parkinson's disease. ${ }^{[7]}$

An intensive worldwide effort, in which literally hundreds of new optically active diphosphine ligands were synthesized, based on the Kagan model of backbone chirality in potentially chelating system (13-19. Scheme 1). ${ }^{[8]}$ Most of these performed hydrogenation of aromatic dehydroamino acids with typically $75-95 \%$ ee but it became obvious that rhodium asymmetric hydrogenation, despite its attractive specificity, is a reaction of limited scope. An extensive, systematic survey of the mechanism of this reaction revealed that double bond geometry and an α-amido function must be present for efficient enantioface differentiation. ${ }^{[9]}$

13
(S, S)-CHIRAPHOS

14
(R, R)-BDPP

15
(S)-PROPHOS

16
(S, S)-DPCP

Scheme 1. Optically active diphosphine ligands (Kagan model)

The focus changed from rhodium to ruthenium, and in the 1980s, Noyori and Takaya reported an atropisomeric C_{2}-symmetric bisphosphine ligand, BINAP (22). ${ }^{[10]}$ The discovery of the $\mathrm{Ru}(\mathrm{II})$-BINAP system, could efficiently and selectively effect the asymmetric hydrogenation of various functionalized olefins, functionalized ketones, and unsaturated carboxylic acids. ${ }^{[2]}$ An important application of Ru(II)-BINAP dicarboxylate complexes is the enantioselective synthesis of Naproxen ${ }^{\circledR}(\mathbf{2 1})$. This commercial antiinflammatory agent can be obtained in 97% ee under high hydrogen pressure.

For their significant achievements in field of asymmetric catalysis W. Knowles and R. Noyori with B. Sharpless were awarded the Nobel Prize in 2001. ${ }^{[11]}$

1.2 Synthesis of \boldsymbol{P}-Chiral Diphosphine Ligands via Their Dioxides and Sulfides

P-chiral phosphorus compounds were first introduced by Meisenheimer and Lichtenstadt in 1911 by partial resolution the ethylmethylphenylphosphine oxide into its enantiomers. ${ }^{[12]}$ In the late of the 1960s Horner and Mislow developed synthetic methods for the formation of optically active phosphorus compounds and studied their stereochemistry. These methods include the reaction of quaternary benzyl phosphonium salts with (D)-benzoyl tartrate followed by separation of the respective diastereoisomers, hydrolysis and a cathodic reduction (Horner) ${ }^{[13]}$ or the resolution of menthyl phosphinates into the diastereomeric forms followed by reaction with alkyl or aryl Grignard reagents leading to phosphine oxides in highly stereospecific manner (Mislow). ${ }^{[14]}$

First P-chiral diphosphine DIPAMP (12) was prepared by oxidative coupling of the (Rp)-(o methoxyphenyl)methylphenylphosphine oxide (23) in the presence of lithium diisopropylamide and $\mathrm{Cu}(\mathrm{II})$ chloride ${ }^{[15]}$ to bisphosphine dioxide 24 which was stereoselectively converted to $\mathbf{1 2}$ by $\mathrm{HSiCl}_{3} / \mathrm{Bu}_{3} \mathrm{~N}$ reduction with double inversion at the phoshorus centers. ${ }^{[6]}$

Imamoto used P-chiral vinylphosphine oxide (26) for the synthesis of bidentate phosphine ligands. ${ }^{[16]}$ The addition to $\mathbf{2 5}$ in the presence of NaH proceeded at room temperature to yield 27, which was converted to (S, S)-1,3-bis[(o-methoxyphenyl)phenylphosphinyl]propane dioxide (28), upon refluxing in xylene in the presence of p - TsOH . Bis(phosphine) oxide (28) was reduced to the phosphine by employing a combination of trichlorosilane and cyclohexyldiethylamine with inversion of configuration at the phosphorus atoms. ${ }^{[17]} \mathrm{A}$ rhodium complex of 29 was used for the asymmetric hydrogenation of several α (acetamino)acrylic acids to give optical yields of 76-96\%.

The enantiomerically pure P-chiral diphosphine ligand (S, S) - $\mathbf{3 2}$ was prepared by dilithiation of rac-30 with BuLi followed by slow addition of 2-bromopropane leading to rac-31 after
subsequent oxidation with hydrogen peroxide. Optical resolution of rac-31 with dibenzoyl-D-tartaric acid (DBTA) in boiling ethyl acetate providing dioxide (R, R) - $\mathbf{3 1}$ with $\mathbf{9 9 \%} e e$ in 35% yield. Reduction of (R, R) - $\mathbf{3 1}$ with phenylsilane afforded the chiral bidentate phosphine ligand (S, S)-32 with 97% ee along with a small amount of the meso compound. High enantioselectivities 89-97 \% ee were achieved in the asymmetric hydrogenation of dehydroamino acid methyl esters, using rhodium complex of $\mathbf{3 2}$ after recrystallization as the catalyst precursor. ${ }^{[18]}$

Commercially available dibromoxanthene derivate $\mathbf{3 3}$ was treated with BuLi and chloromethylphenylphosphine and subsequently with hydrogen peroxide. Resolution of the racemic intermediate was carried out by the diastereomeric salt formation with (-)-DBTA followed by hydrolysis with aqueous ammonia. The desired P-chiral diphosphine was obtained after reduction of the corresponding dioxide 34 with titanium tetra(isopropoxide) and polymethylhydrosiloxane (PMHS) with complete retention of configuration in high yield. ${ }^{[19]}$ The utility of $\mathbf{3 5}$ was examined in the palladium catalyzed asymmetric allylic substitution reaction between 1,3-diphenyl-2-propenyl acetate and dimethyl malonate, and the enantiomeric excess was found to be $85 \%{ }^{[19]}$

Imamoto and Crepy used the oxidative dimerization of rac-1-tert-butylbenzophosphete oxide rac-(36) to access enantiomerically pure diphosphine dioxides by treatment with the s $\mathrm{BuLi} / \mathrm{CuCl}_{2}$ system, and subsequent resolution with (+) or (-)-DBTA. The difficulties with the reduction of $\mathbf{3 7}$ were overcome by use of hexachlorosilane as the reducing agent, presumably with retention of configuration. The diphosphine $\mathbf{3 8}$ is highly air-sensitive and
was hence converted to its rhodium complex directly after reduction. A markedly high ee (96\%) was observed in hydrogenation of α-acetamidocinnamate. ${ }^{[20]}$

Zhang et. al. developed a convenient method for the preparation of the P-chiral ligand TangPhos (42) based on phosphine sulfides as intermediates starting from commercially available phosphorus trichloride (39). Racemic phosphine sulfide 40 undergoes enantioselective deprotonation by $\mathrm{BuLi} /(-)$ sparteine followed by homo-coupling to generate 41. After recrystallization disulfide 41 was obtained in only 20% yield. Desulfuration of $C_{2^{-}}$ symmetric diphosphine was found to proceed with inversion of configuration. TangPhos was used for highly efficient asymmetric hydrogenation of α-(acylamino)acrylic acids, β (acylamino)acrylic acids, itaconic acid and enol acetate derivatives. ${ }^{[21]}$

In addition, Zhang et. al. reported the highly efficient synthesis of the conformationally rigid chiral diphosphine DuanPhos (45) by copper mediated homo-coupling of rac-phosphine oxide 43 in the presence of LDA to diphosphine dioxide rac-44. A highly selective deprotonation directed by bulky tert-butyl group probably prevents the formation of the meso compound. Resolution was performed with inexpensive (+)-DBTA monohydrate affording desired enantiomer of 44 in $99 \% \mathrm{ee}$. Reduction of 44 with chlorosilane and triethylamine gave P chiral diphosphine 45 in high yield with inversion of the phosphorus atoms. The use of DuanPhos as a ligand in the rhodium catalyzed asymmetric hydrogenation of α-dehydroamino acids and α-arylenamides led to excellent enantiomeric excesses. ${ }^{[22]}$

1.3 Synthesis of \boldsymbol{P} - Stereogenic Diphosphine Ligands From Phosphine-Boranes

Phosphine-boranes, adducts of phosphines and boranes, constitute a unique class of organophosphorus compounds. After first reports about phosphine-borane chemistry by Schmidbaur ${ }^{[23]}$ at the end of 1970s, this field has attracted much attention and was extensively studied by Imamoto and others during last two decades. ${ }^{[24]}$

In 1995 D . Evans published an excellent method for asymmetric synthesis of C_{2}-symmetric P chiral diphosphines based on the enantioselective deprotonation/oxidative coupling approach. ${ }^{[25]}$ It was shown that prochiral dimethylarylphosphine boranes 46 may undergo enantiodifferentiating deprotonation of one methyl group using s-BuLi in the presence of (-)sparteine ${ }^{[26]}(\mathbf{4 8})$ as a chiral inductor. Addition of copper (II) pivalate to the lithiated species, which was generated after enantioselective metallation, led to formation of desired C_{2} symmetric products 47 in moderate yields and $96-99 \%$ ee accompanied only by minor amounts of the meso forms.

Imamoto extended this methodology to some alkyldimethylphosphine boranes 49. Enantiomerically pure C_{2}-symmetric bisphosphines BisP* 51 were obtained after direct recrystallization of the crude products followed by removal of the boranoto group by the Livinghouse method $\left(\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H} / \mathrm{KOH}\right){ }^{[27]}$ Cationic rhodium complexes of this novel family of bisphosphines were employed as catalyst precursors in asymmetric hydrogenation of α (acylamino)acrylic derivatives as well as β-disubstituted ones and exhibited excellent enantioselectivities up to $99.9 \% e e .^{[28]}$

R: $t-\mathrm{Bu}, \mathrm{Et}_{3} \mathrm{C}, \mathrm{Ad}, \mathrm{Cp}, \mathrm{Cy}$

Alkyldimethylboranes 49 are able to react with s - $\mathrm{BuLi} /(-)$-sparteine followed by addition of various substituted alkyldichlorophosphines, methylmagnesium bromide and $\mathrm{BH}_{3}-\mathrm{THF}$ to
furnish optically active 1,1-diphosphine-borane 52, albeit with contamination by its meso form, in ca. 1:1 ratio. After recrystallization from ethanol and deboronation with trifluromethanesulfonic acid, P-chiral diphosphines MiniPHOS 53 are accessible in almost quantitative yield. The C_{2}-symmetric environment of these ligands in combination with a bulky alkyl group and small methyl substituent is considered to be responsible for the high enantioselectivities in the hydrogenation of dehydroamino acids, hydrosilylation and copper catalyzed asymmetric Michael addition to α, β-unsaturated ketones. ${ }^{[29]}$

1. s-BuLi/ (-)-sparteine

R: $i-\mathrm{Pr}, \mathrm{Cy}, t-\mathrm{Bu}, \mathrm{Ph}$
Unsymmetrical BisP* 57 were synthesized by lithiation of P-chiral secondary phosphineboranes $\mathbf{5 4}$ followed by the nucleophilic substitution with P-chiral tosyl protected alcohols 55 derived from appropriate carboxylic acids. Removal of the boron moiety with trifluromethanesulfonic acid and in situ addition of bis(norbornadiene)rhodium(I) tetrafluoroborate afforded the desired catalyst precursors. ${ }^{[30]}$ These unsymmetrical diphosphines were successfully applied for the asymmetric hydrogenation of dehydroamino acids and enamides to give up to $99.9 \% \mathrm{ee}$.

Racemic phosphine BIPNOR (58) was resolved by coordination of the optically active palladacycle $\mathbf{5 9}^{[31]}$ to produce the corresponding diastereomeric complexes of 58, which were separated by column chromatography and treated with sodium cyanide to furnish efficient ligands for asymmetric hydrogenation of various functional alkenes and ketones. ${ }^{[32]}$ The phosphorus atoms are located at bridgehead positions of bicyclic systems, and therefore no racemization can occur.

rac-58

1.

2. NaCN

90\%

$(S, S)-58$
$+$

$(R, R)-58$
P-chiral secondary phosphine-borane $\mathbf{6 0}$ was treated with BuLi to form a lithiated phosphineborane species, which acts as a nucleophile towards 2,3-dichloroquinoxaline leading, after subsequent removal of borane by TMEDA, to the completely air-stable P-chiral ligand QuinoxP (61). This ligand showed excellent enantioselectivities in Rh-asymmetric hydrogenation, 1,4 -addition of arylboronic acids to α, β-unsaturated carbonyl compounds and also in Pd-catalyzed asymmetric alkylative ring-opening reactions. ${ }^{[33]}$

Quite recently, P-chiral sterically hindered ortho-phenylene-bridged diphosphine $\mathbf{6 5}$ was prepared in high optical yield (99% ee) by reaction of the P-chiral bis(phosphine)boronium salt 62 with tricarbonyl(difluorobenzene)chromium (63) and deboronation of 64 with TBAF in chlorobenzene. ${ }^{[34]}$

Enantiomerically enriched Mislow's menthyl phosphinate ester 66 was converted to methyl phospholane 67 with retention of configuration at phosphorus followed by Evans homocoupling to afford P-chiral diphosphino-borane, which after recrystallization/deprotection with fluroboric acid gave a new P-chirogenic 1,2-bisphospholanoethane (R, R) - $\mathbf{6 8}$ in good yield. 68 was successfully employed in asymmetric hydrogenation for synthesis of pharmaceutical used CI-1008 (Pregabalin ${ }^{\circledR}$). ${ }^{[35]}$

1.4 Asymmetric Catalysis Involving P-Chiral Diphosphine Ligands

Nowadays, asymmetric synthesis using optically active phosphine ligands is an important field of synthetic organic chemistry. Hundreds of applications have been published including natural product synthesis, where an introduction of chirality plays a crucial role. Historically P-chiral diphosphines are frequently employed in asymmetric hydrogenation reactions of unsaturated bonds. Therefore, asymmetric hydrogenation of dehydroamino acids derivatives 69 has been become a common reaction to evaluate the efficiency of new synthesized chiral phosphorus ligands. ${ }^{[36]}$

Asymmetric hydrogenation of 3-methoxy substituted enamide 71 was used as a key step to prepare acetylcholinesterase inhibitor SDZ-ENA-713 73 catalyzed by rhodium complexes of BisP** ${ }^{[36]}$

Zhang and Imamoto reported the palladium ${ }^{[37]} 76$ and iridium ${ }^{[38]} 77$ catalyzed asymmetric hydrogenations of acyclic imines, respectively, to give corresponding chiral amines in high yields and enantioselectivities up to $99 \% \mathrm{ee}$. Chiral amines are important intermediates in the synthesis of biologically active compounds. ${ }^{[39]}$

76
Zhang
99\% yield, 99% ee

77
Imamoto
91\% yield, 83-99\% ee

Zhang recently showed an application for asymmetric hydrogenation of vinylogous acyl amides 78 to give nipecotic acid derivatives 79 with moderate to high enantioselectivities. The enantiomeric excess was shown to be dependent on the nitrogen substituent. It is important to note that there is 100% chemoselectivity in hydrogenation of double bond while the carbonyl groups remained intact. ${ }^{[40]}$

The asymmetric hydrogenation of ketones to generate chiral nonracemic secondary alcohols is an important transformation which has been extensively studied over two last decades. ${ }^{[40]}$ Three chelating P-chiral diphosphines were tested for the highly enantioselective hydrogenation of various ketones $\mathbf{8 1}$ with α-naphtylphenylsilane as reducing agent. ${ }^{[42]}$ Aryl methyl ketones, like dialkyl ones were hydrogenated with high level of enantioselectivity
leading to R-configurated secondary alcohols $\mathbf{8 2}$. It is noteworthy that the chelating P chiral diphosphine $\mathbf{8 3}$ showed excellent $e e$, but led to S-stereoisomers of 82. ${ }^{[43]}$

81
R: Ph, 1-Np, 2-Np, p-ClC ${ }_{6} \mathrm{H}_{4}$

63-99\%

(R) $\mathbf{8 2}$

L*
(S, S) $-t$-Bu-BisP* $\quad 77-99 \%$ ee (R, R)- t-Bu-MiniPHOS 71-99\% ee (R,R)-QuinoxP* 70-99\% ee

Transition metal catalyzed enantioselective C-C bond formation is an important task in organic synthesis because of its impact on the synthesis of complicated natural products. ${ }^{[44]}$ Imamoto reported a highly enantioselective alkylative ring opening of oxabenzonorbornadienes $\mathbf{8 4}$ with various dialkyl zinc derivatives catalyzed by palladium complex of QuinoxP* (61) leading to tetrahydronaphtalenes $\mathbf{8 5}$ in high yields. ${ }^{[33]}$

QuinoxP* (61) was also successfully employed in the Rh-catalyzed asymmetric 1,4-addition of arylboronic acids $\mathbf{8 7}$ into α, β-unsaturated carbonyls $\mathbf{8 6}$ to produce arylatated products $\mathbf{8 8}$ in high yields and with excellent $e e$, comparable with the BINAP system. ${ }^{[33]}$

The copper-catalyzed asymmetric Michael addition of diethylzinc to α, β-unsaturated ketones 89 with MiniPHOS as ligand was performed by the Imamoto group. Corresponding addition products 90 were obtained in good yields and high enantioselectivities. No 1,2-addition was observed. ${ }^{[29]}$

89

90

$$
\mathrm{n}=1,85 \% \text { ee }
$$

$$
n=2,75 \% e e
$$

1,2-Bis(ferrocenylmethylphosphine)ethane $[(S, S)-93]$ was employed in the palladiumcatalyzed asymmetric alkylation of 1,3-diphenyl-2-propenyl acetate (91) and dimethyl malonate as nucleophile, which proceeded smoothly at room temperature in THF to give the substitution product $\mathbf{9 2}$ in quantitative yield with high enantioselectivity. ${ }^{[45]}$

91

$$
\xrightarrow[99 \% \text { yield }]{\substack{0.5 \mathrm{~mol} \%,\left[\mathrm{Pd}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2} \\ 1.2 \mathrm{~mol} \% \text { of }(\mathrm{S}, \mathrm{~S})-93 \\ 2 \text { eq. } \mathrm{CH}_{2}(\mathrm{COOMe})_{2}}}
$$

92
$\begin{array}{ll}\mathrm{CH}_{3} \mathrm{CN} & 29 \% \text { ee } \\ \mathrm{THF} & 95 \% \text { ee }\end{array}$

Asymmetric Diels-Alder cycloaddition of triene 94 and the hexahydroisoindole 95 in the presence of $2.5 \mathrm{~mol} \%$ of the $\mathrm{Rh}(\mathrm{I})$-complexes of P-chiral diphosphines 96 was reported by Livinghouse et. al. In all cases these cyclizations proceeded with excellent (>50:1) diastereoselectivities and respectable to very good $e e$,s. ${ }^{[46]}$

94
$\operatorname{Rh}(\mathrm{I}) /(S, S)-96$

$$
\xrightarrow{\text { DCE, } 70^{\circ} \mathrm{C}}
$$

95
$\mathrm{R}: i-\mathrm{Pr} ; 85 \%$ yield, 91% ee
$\mathrm{R}: \mathrm{Cy} ; 71 \%$, yield, 87% ee
$\mathrm{Ar}=2-\left(\mathrm{CF}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4}$

1.5 Novel P-Chiral Diphosphine Ligands for Asymmetric Synthesis

Enantiomerically pure vinylphosphine oxide $\mathbf{9 7}$ is a promising and versatile precursor to P stereogenic ligands and can be used as a source of chirality in the P to C chirality transfer in conjugate addition reactions, Diels-Alder cycloaddition, [3+2]-cycloadditions, and coupling reactions (Scheme 2). ${ }^{[47]}$

Scheme 2. Reactivity of P-stereognic vinyl phosphine oxide ($S p$)-97

The availability of enantiomerically pure P-stereogenic vinylphosphine oxides 104 raises the question, in how far they may serve as substrates for catalytic olefin homometathesis presumably leading to enantiometrically pure P-stereogenic 1,2-diphosphanylethene dioxides 105. (Scheme 3).

104

Scheme 3. Synthesis of P-stereogenic dienophiles 105

Subsequently, the asymmetric cycloaddition reaction of P-chiral dienophiles $\mathbf{1 0 5}$ might lead to rigid carbocyclic systems bearing four centers of chirality simultaneously. A stereoselective reduction would afford a novel family of P-stereogenic diphosphines with two asymmetric phosphorus atoms standing trans one to another, which are close to chiral centers present in backbone of the ligand (Scheme 4).

105

The rigid carbocyclic skeleton with chirality in backbone

Scheme 4. Synthetic approach to to a novel family of P-stereogenic bidentate ligands

The transfer of both types of chirality should provide a more effective chiral environment at the site where enantioselectivity takes place. The aim of this project is the synthesis of new P-chiral bidentate phosphorus ligands and their first application in asymmetric catalysis.

2 Results and Discussion

2.1 Synthetical Routes to P-Chiral ($S p$)-Metyl(phenyl)vinylphosphine oxide (97)

The synthesis of P-chiral methyl(phenyl)vinylphosphine oxide (97) was accomplished in four steps starting from commercially available dichlorophenylphosphine (106). Firstly, selective nucleophilic displacement of one chlorine atom takes place by reaction of $\mathbf{1 0 6}$ with butanol in the presence of N, N-diethylaniline as HCl acceptor at $-30^{\circ} \mathrm{C}$ in dry petroleum ether to give rac-107 in 65% yield. ${ }^{[48]}$

The rac-butylchlorophenylphosphonite (107) must be used for the next step without purification (distillation), where it undergoes addition of Normant's reagent at $-65^{\circ} \mathrm{C}$ to give the rac-butylphenylvinylphosphinite (108) in 45% yield. The reaction is highly dependent on the temperature and the rate of the addition of Grignard reagent. ${ }^{[49]}$ Lower yields in this reaction can presumably be explained as the conjugate addition of organometallic reagent to double bond of desired rac-108.

The Michaelis-Arbuzov reaction ${ }^{[50]}$ of rac-butylphenylvinylphosphinite (108) with (-) menthyl bromoacetate affords an equimolar mixture of the two diastreoisomeric menthyl (phenylvinylphosphinyl) acetates ($S p$)-109 and ($R p$)-109 in $\mathbf{8 5 \%}$ yield. After washing the reaction mixture with cold benzene and several recristallizations until constant optical rotation value, $(S p)-\mathbf{1 0 9}$ can be obtained in 100% diastereomeric and thus enantiomeric purity. ${ }^{[51]}$

The P-chiral 109 was submitted to the Krapcho decarboxylation with LiCl in wet DMSO to produce the desired enantiomerically pure ($S p$)-methylphenylvinylphosphine oxide (97) in 68% yield. ${ }^{[52]}$ The reaction proceeds smoothly in DMSO at $180{ }^{\circ} \mathrm{C}$ over 4 hours. Vacuum distillation of (Sp)-97 is advised, since column chromatography proved to be insufficient.

Recently, Hii et. al. reported the synthesis of P-chiral vinyl phosphine oxides by reaction of 1,2:5,6-di- O-cyclohexylidene-D-glucofuranose (DCG) (110) with substituted phosphinic acid chlorides followed by diastereomeric separation and reaction with vinyl magnesium bromide. ${ }^{[53]}$ In the case of methylphenylphosphinic acid chloride and DCG two diastereomers were obtained as viscous crystalline material. Unfortunately, the separation of stereoisomers by column chromatography in relative large scale (up 2 g) provides difficulties. The reaction of (Sp)-(111) with vinyl magnesium bromide was conducted at $-78^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$ to give ($R p$)-97. This reaction is accomplished by diluted conditions preventing a Michael addition of the Normant reagent to the double bond of formed vinyl phosphine oxide.

Both steps of this synthetic sequence provided several experimental difficulties. Therefore ($S p$)-97 was always obtained by Krapcho decarboxylation of the ($S p$)-109.

2.2 A New Approach to P-chiral (Sp)-metyl(phenyl)vinylphosphine oxide (97)

A very limited access to P-chiral vinylphosphine oxides in enantiomerically pure form led to development of a novel methodology using stable phosphine-boranes as intermediates.
The introduction of a vinyl group in organophosphorus compounds was recently applied by the Imamoto group. The P-chiral anisylphenylvinylphosphine oxide (S) - $\mathbf{1 1 4}$ was prepared by oxidative cross-coupling of ($S p$)-(o-methoxyphenyl)methylphenylphosphine oxide (S)-23 with racemic N, S-dimethyl- S-phenylsulfoximine (112) conducted by a modification of a Mislow procedure for the dimerization of phosphine oxides. ${ }^{[16]} \mathbf{1 1 3}$ was obtained as an inseparable mixture of diastereomers, which after heating to reflux furnished optically pure vinylphosphine oxide (S)-114 as a stable crystalline solid.

(S)-114

During the last decade, Imamoto et. al. also developed a versatile method for the preparation of a diverse set of achiral and chiral organophosphorus compounds starting from alkyl or aryl substituted dimethylphosphine boranes with the overall formula $\mathrm{RP}\left(\mathrm{BH}_{3}\right) \mathrm{Me}_{2} \cdot{ }^{[36]}$ These can be easily synthesized from commercially available alkyl or arylphosphorus dichlorides $\left(\mathrm{RPCl}_{2}\right)$ by the reaction with MeMgI in diethyl ether or THF. Under mild conditions $\left(-78{ }^{\circ} \mathrm{C}\right)$ by action of an appropriate lithium base, one of the methyl group in $\mathrm{RP}\left(\mathrm{BH}_{3}\right) \mathrm{Me}_{2}$ is
deprotonated and the C-anionic nucleophile formed, reacts with alkylhalogenides, carbonyl compounds, phosphorus and sulfur electrophiles leading to a wide range of interesting phosphorus compounds. In the presence of $(-)$-sparteine as a chiral inductor an enantioselective deprotonation is possible, which allows formation of enantiomerically enriched or enantiomerically pure organophosphorus compounds by using the same deprotonation-alkylation sequence (Scheme 5). ${ }^{[24]}$

Previously, Imamoto reported that mesylated or tosylated alcohols derived from carboxylic acids $\mathbf{1 2 0}$ undergo nucleophilic displacement by reaction with lithiated secondary phosphineboranes. ${ }^{[30]}$ Presumably, a mesylate, which can be obtained from $\mathbf{1 2 0}$ undergoes elimination by action of a base under mild conditions leading to a vinylphosphine borane. Vinylphosphine boranes are not studied so far.* ${ }^{[55]}$

Scheme 5. Synthetic utility of prochiral phosphine-boranes $49^{[36]}$

[^0]To test this suggestion, achiral diphenylphosphinoethanol borane (121) as a model substrate was reacted with mesyl chloride leading to appropriate mesylate in good yield. Surprisingly, mesylate $\mathbf{1 2 2}$ undergoes elimination within 2 hours at $25^{\circ} \mathrm{C}$ to give diphenylvinylphosphine borane (123) in 90% yield. $\mathbf{1 2 3}$ was found to be unstable at $25^{\circ} \mathrm{C}$. Obtained as a viscous liquid, it becomes a white solid on the standing. However, in a refrigerator at $-25^{\circ} \mathrm{C}$, it can be stored as a solution in dichloromethane for several months without decomposition.

To assess the previously unknown rac-methylphenylvinylphosphine borane, dimethylphenylphosphine borane (124) was deprotonated with s-BuLi following by reaction with carbon dioxide to give P-chiral carboxylic acid rac-125 in 57% yield. ${ }^{[30]}$ Reduction of carbonyl function in rac- $\mathbf{1 2 5}$ can be achieved by use of lithium aluminium hydride or borane THF complex at $25^{\circ} \mathrm{C}$. The desired alcohol was obtained in 97% yield and treated with mesyl chloride/pyridine leading to appropriate mesylate rac-126 in 82% yield.

rac-126 undergoes elimination within 1 hour at $25^{\circ} \mathrm{C}$ by use of potassium tert-butoxide as the base to give rac-methylphenylvinyl phosphine borane (127) in 86% yield. This compound was found obviously more stable at $25^{\circ} \mathrm{C}$ than $\mathbf{1 2 3}$, but must still be stored as a solution in dichloromethane at $-25^{\circ} \mathrm{C}$.

rac-126

86\%

rac-127

Recently, Imamoto et. al. published an excellent method for the synthesis of phosphine oxides by reaction of phosphine-boranes by the use of m-CPBA. ${ }^{[55]}$ Some of P-chiral phosphineboranes were oxidized with complete retention of configuration at phosphorus. Remarkably,
the rac-127 reacts under these conditions leading to the desired racemic vinylphosphine oxide 97 in 63% yield. No oxidation of the double bond was detected.

Since the combination of tert-butyl and methyl substituents at the asymmetric phosphorus atom plays a crucial role in the ligand design, this synthetic sequence can certainly be used for the synthesis of P-chiral vinyl phosphine oxide 130, which would be an interesting precursor to new P-stereogenic diphosphines.

(S)-128

1. BH_{3}, THF
2. $\mathrm{MsCl}, \mathrm{Py}$

(S)-129

(S)-130

2.3 Olefin Metathesis

Although double-bond scrambling reactions were initially reported in the mid-1950s, it was not until several years later that Calderon and co-workers recognized that both ring-opening polymerization and the disproportionation of acyclic olefins constituted the same type of reaction. The term "olefin-metathesis" was coined in 1967, which is currently understood as the metal-catalyzed redistribution of carbon-carbon double bonds. ${ }^{[56]}$

From the mid-1950 to the early 1980s, olefin metathesis was accomplished with poorly defined, multicomponent homogeneous and heterogeneous catalyst systems. Some of the classic combinations include $\mathrm{WCl}_{6} / \mathrm{Bu}_{4} \mathrm{Sn}, \mathrm{WOCl}_{4} / \mathrm{EtAlCl}_{2}, \mathrm{MoO}_{3} / \mathrm{SiO}_{2}$ and $\mathrm{Re}_{2} \mathrm{O}_{7} / \mathrm{Al}_{2} \mathrm{O}_{3}$, among many others. The utility of these catalysts, however, was limited by the harsch reaction conditions and strong Lewis acids that they required making them incompatible with most functional groups. Ultimately, in 1971 Y. Chauvin postulated a mechanism of metathesis which was consistent with the experimental evidence at that time. According to
this mechanism metathesis proceeds by [2+2] cycloaddition between carbon-carbon double bond and metal carbene complex followed by cycloreversion remaining the generally accepted mechanism today (Scheme 6). ${ }^{[57]}$

Scheme 6. The mechanism of metathesis (Chauvin 1971)

This work on the mechanism initiated subsequent efforts to synthesize alkylidene and metallacylobutane complexes and led to the discovery of the first single component homogeneous catalysts for olefin metathesis until early 1980s. These new species included (CO) $)_{5} \mathrm{~W}=\mathrm{CPh}_{2}$, bis(cyclopentadienyl)titanacyclobutanes, tris(aryloxide)tantalacyclobutanes, various dihaloalkoxide -alkylidene complexes of tungsten ${ }^{[58]}$ and titanocene derivates. ${ }^{[59]}$

In the 1990 R. Schrock et. al. reported the synthesis of novel molybdenum imido alkylidene complexes and their reactivity towards acyclic olefins. ${ }^{[60]}$ The alkylidene $\mathbf{1 3 1}$ was shown to be extremely active for synthesis oxygen and nitrogen heterocycles by ring-closing metathesis. ${ }^{[61]}$ However, this catalyst and others based on the early transition metals are limited by the high oxophilicity of the metal centres, which renders them extremely sensitive to oxygen and moisture.

Schrock 1990
In 1992 R. Grubbs et. al. published the first ruthenium based olefin metathesis catalyst 132, which was used for the polymerization of norbornene. ${ }^{[62]}$ The discovery of $\mathbf{1 3 2}$ initiated a very fast progress in the development of new ruthenium alkylidene catalysts for alkene metathesis, which can tolerate many of common functionalities. ${ }^{[64]}$

132
Grubbs 1992

In 1995 Grubbs et.al. reported the first highly active ruthenium catalyst $\mathbf{1 3 3}$, the synthesis of which involved the reaction of $\left(\mathrm{Ph}_{3} \mathrm{P}_{3} \mathrm{RuCl}_{2}\right.$ in an alkylidene transfer from phenyldiazomethane. ${ }^{[62]}$ In 1999, Herrmann ${ }^{[63]}$ and others ${ }^{[64]}$ published the synthesis of a range of N-heterocyclic ruthenium complexes 134, 135 by substitution reactions of the phosphine ruthenium benzylidene complex with imidazolin-2-ylidene groups. These nonlabile, sterically demanding ligands, which possess strong σ-donor and weak π-acceptor properties, stabilize both the 16 -electron complexes and the highly electron deficient metathesis intermediates, resulting in pre-catalysts with increased metathesis activity as compared to the parent phosphine complexes.

133
Grubbs 1995

134
Grubbs 1999

135
Herrmann, Nolan, Fürstner, Grubbs 1999

More recently, Hoveyda and Blechert introduced ruthenium complexes, $\mathbf{1 3 6}^{[65]}$ and $\mathbf{1 3 7}^{[66]}$, with chelating isopropoxybenzylidene ligands, which augment the catalyst stability and reactivity, and can be conveniently applied in a broad spectrum of metathesis reactions. In addition, Grela reported the nitro Hoveyda-Grubbs complex 138. ${ }^{[67]}$ These novel chelates are especially efficient in the cross-metathesis of olefins with electron-poor double bonds.

136
Hoveyda and Blechert 1999

137
Blechert 2002

138
Grela 2002

For this significant developments in the field of homogeneous metathesis R.H. Grubbs, R. R. Schrock and Y. Chauvin were awarded Nobel Prize in 2005. ${ }^{[68]}$

Nowadays there are many kinds of alkene metathesis processes such as ring-closing metathesis (RCM), ${ }^{[69]}$ enyne metathesis, ${ }^{[70]}$ cross metathesis, ${ }^{[71]}$ all of which are subject of current research and are frequently applied in the target-oriented synthesis of complicated organic compounds important for natural products synthesis, ${ }^{[72]}$ materials science and other fields. Through these reactions, olefin metathesis provides a route to unsaturated organic molecules that are often challenging or impossible to prepare by other means.

2.4 Mechanism of Alkene Metathesis

During last two decades the Grubbs group ${ }^{[73]}$ and some others ${ }^{[74]}$ extensively studied the mechanism of alkene metathesis involving metal alkylidenes. Based on extensive kinetic studies and observed activity trends, it was proposed that the first step includes the coordination of the olefin to the metal center, presumably cis to the alkylidene. In one possible path (A), phosphine dissociation along with carbene rotation in order to generate 16electron intermediate 140, in which the olefin remains cis to the alkylidene. This intermediate has required geometry for metallacycle formation, then undergoes metallocyclobutane formation cis to the bound phosphine, followed by cycloreversion to release the metathesis products. An alternative path (B) involves phosphine dissociation and rearrangement of the olefin trans to the remaining phosphine. This intermediate $\mathbf{1 4 2}$ then undergoes metallocyclobutane formation trans to the phosphine. Although pathway (B) was initially disfavoured because of reversibility considerations, it is currently being reconsidered in more detail. ${ }^{[75]}$

Scheme 7. Mechanism of alkene metathesis proposed by R.H. Grubbs

The activity of catalysts with overall formula $\mathrm{L}_{2} \mathrm{X}_{2} \mathrm{Ru}=\mathrm{CHR}$ is highly dependent on the identity of the X ligands. Whereas catalyst activity increases with larger and more electrondonating phosphines, it decreases with larger and more electron-donating halides. These trends can be rationalized with the proposed mechanism. One of the contributions of the phosphine ligands is σ-donation to the metal center, which promotes formation of the mono(phosphine) olefin complex by facilitating phosphine dissociation and stabilizing the vacant trans site in 133. Perhaps even more importantly, σ-donation helps stabilize the 14 -electron metallacyclobutane intermediate. In these ways, catalyst activity is directly related to the electron-donating ability of the phosphine ligands. The steric bulk of the ligands may also contribute to phosphine dissociation by destabilizing the crowded bis(phosphine) olefin complex. In retrospect, the choice of PCy_{3} was fortunate, because those phosphines that are more basic or bulkier than PCy_{3} result in unstable complexes. In contrast to the trend for phosphines, the halide ligands correlate with decreasing activity as they become larger and more strongly electron donating, in the order $\mathrm{Cl}>\mathrm{Br} \gg \mathrm{I}$. Since the incoming olefin may initially bind trans to a halide, a more electron-donating halide should weaken the ruthenium-
olefin bond and disfavor olefin coordination. These small changes in the steric and electronic character of the X - and L-type ligands combine to influence olefin binding, phosphine dissociation, and the stability of intermediates, which results in large variations of catalyst activity.
It is well known that, compared to phosphines, N-heterocyclic carbene ligands ${ }^{[76]}$ are stronger σ donors and much less labile. After the Herrmann report of the bis(substituted) complex 142 ${ }^{[77]}$ it was found that the monosubstitution of one of PCy_{3} ligand in $\mathbf{1 3 3}$ by unsaturated or saturated mesityl-substituted N -heterocyclic carbene provides more active catalysts. ${ }^{[63,64]}$

142
In the mixed-ligand complexes $\mathbf{1 3 4}$ and $\mathbf{1 3 5}$, the more strongly electron-donating carbene ligand might enhance the dissociation of the more labile trans phosphine from the metal center. Then, by virtue of its steric bulk and electron-donating properties, the same ligand should more effectively stabilize the electron-deficient intermediates and promote olefin metathesis.

2.5 Olefin Cross-Metathesis

Olefin cross-metathesis (CM) is a convenient route to functionalized and higher olefins from simple alkene precursors. Recently, Grubbs published general classification of the reactivity terminal olefins in alkene cross-metathesis. ${ }^{[78]}$

134

133
terminal olefins 1^{0} allylic alcohols
allyl boronates, allyl chlorides, ethers
terminal olefins,
1^{0} allylic alcohols, esters, allyl halides, allyl silanes, protected allyl amines, allyl boronotes
styrenes (large o-substit.), acrylates, acrylamides, vinyl ketones, unprotected allylic alcohols

1,1-disubstituted olefins, non-bulky trisub. olefins, vinyl phosphonates, phenylvinyl sulfone, 3° allylic alcohols

Type II
(slow homodimerization)

Type III
(no homodimerization)

Type IV
(spectators CM)
Type I
(fast homodimerization)
vinyl nitro olefins, trisubstituted allyl alcohols disub.unsatureted carbonyls, (protected) 3-allyl amines(protected)

131
terminal olefins, allyl silanes
styrene,
1,1-disubstituted olefins
allyl stannanes
acrylonitrile, 3° allyl amines
2^{0} allylic alcohols, vinyl boronates
vinyl siloxanes

Scheme 8. Classification of olefins by R.H. Grubbs, 2003. ${ }^{[78]}$

Although the second-generation Grubbs ruthenium complex $\mathbf{1 3 4}$ in general possesses a very good application profile the phosphine-free catalyst 136, recently introduced by Hoveyda et al. ${ }^{[65]}$ displays even higher reactivity toward electron-deficient substrates such as acrylonitrile, fluorinated olefins, and vinyl sulfones. ${ }^{[79]}$ Recently, also some examples of metathesis of some phosphine oxides and phosphine boranes have been appeared in the literature. ${ }^{[80]}$ The ring-closing metathesis of achiral bis-(alkenyl)phosphine boranes in the presence Ru-and Mobased catalysts were applied for synthesis of unprotected and borane-protected cyclic phosphines 145 as possible precursors for the preparation of chiral phosphine ligands. ${ }^{[81]}$ It is important to note that the cylization of unprotected diallylphenylphosphine (146) proceeded in 95% yield only with Schrock molybdenum catalyst 131, whereas ruthenium catalysts were not suitable to achieve any conversion. This observation confirms the hypothesis by Grubbs that the presence of the free phosphine disfavours the equilibrium for olefin binding to the catalyst in the first step of the dissociative mechanism.

144

131, $12.5 \mathrm{~mol} \%$
84 h , toluene, $60^{\circ} \mathrm{C}$

95\%

146

Grubbs reported that substituted styrenes can be coupled with diethylvinylphosphonate (148) to generate α, β-unsaturated phosphonates in excellent yield using catalyst 134. ${ }^{[82]}$ Importantly, no dimerization of the vinylphosphonate was detected by ${ }^{1}$ HNMR allowing for selective CM.

Grela and Pietrusiewicz reported that P-chiral vinylphosphine oxides ($S p$)-97 and ($R p$)-153 undergo olefin metathesis with terminal alkenes in high yields in presence of nitro-HoveydaBlechert precatalyst 138 exclusively leading to (E)-isomers without racemization at phosphorus. ${ }^{[83]}$

In addition, this paper mentioned that the P-chiral vinylphosphine oxide ($S p$)-97 undergoes homo-coupling without racemization at phosphorus in the presence of $5 \mathrm{~mol} \%$ the nitro-catalyst 138 leading to homochiral 1,2-diphosphanylethylene dioxide ($S p, S p$)-155 in 95 $\%$ yield. ${ }^{[83]}$, which was curiously not reproducible.

2.6 The Homo-Coupling of \boldsymbol{P}-Chiral Vinylphosphine Oxide 97 via Catalytic Olefin Cross-Metathesis

To investigate homo-coupling of (Sp)-97 in more detail with an emphasis on the choice of precatalyst and reaction conditions, some of the modern olefin precatalysts were synthesized by reported the literature procedures. Grubbs-II catalyst 134 was synthesized from commercially available Grubbs-I carbene 133, by the use an improved method with tertpotassium amylate in hexane as base. ${ }^{[84]}$ This reaction proceeds smoothly at $25^{\circ} \mathrm{C}$ giving a high yield of 134.

133

75-80\%

134

The catalysts $\mathbf{1 3 6 - 1 3 8}{ }^{[65-67]}$ and $\mathbf{1 5 6}^{[85]}$ were obtained by mixing Grubbs-II catalyst with an appropriate substituted styrene derivative in dichloromethane in good yields.

134

$\begin{array}{lll}136 R_{1}=H & R_{2}=H & 77 \% \\ 137 R_{1}=H & R_{2}=\mathrm{Ph} & 59 \% \\ 138 R_{1}=\mathrm{NO}_{2} & R_{2}=H & 83 \% \\ 156 R_{1}=H & R_{2}=O M e & 72 \%\end{array}$

$$
138 \mathrm{R}_{1}=\mathrm{NO}_{2} \mathrm{R}_{2}=\mathrm{H} \quad 83 \%
$$

The Grubbs catalyst 158 was obtained by reaction of 134 with an excess of 3-bromopyridine (157) as a green solid in 73% yield after precipitation from hexane. ${ }^{[86]}$

134

73%

158

Homo-coupling of P-chiral vinyl phosphine oxide ($S p$)-97 was performed in dichloromethane at $40{ }^{\circ} \mathrm{C}$ under argon in the presence $5 \mathrm{~mol} \%$ of the respective precatalyst. The results in Table 1 show, that, the homometathesis reactions are visibly dependent on the chosen ruthenium precatalyst. Electronically 138 and sterically 137, 156 activated Hoveyda-Blechert carbenes showed increased catalytic activity, whereas second generation of Grubbs carbenes led only to moderate conversions.

134

137

158

136

138

It is evident from the data compiled in Table 1, that the yield of ($S p, S p$) $\mathbf{- 1 5 5}$ is highly responsive to the concentration of $(S p)$-155. ${ }^{[87]}$ For example, the reaction catalyzed by $\mathbf{1 3 8}$ at 0.020 M gave only 30% yield (entry 7), and decreasing the concentration further decreases the yield (entry 6). However, increasing the concentration increases the yield, and highest yields were obtained at $0.125-0.200 \mathrm{M}$ (entries 8 , 9). Because of the limited solubility of $(S p)-97$ in DCM, homo-dimerization was repeated at 0.4 M in chlorobenzene, however, without improving the conversion. The reaction of ($S p$)-97 catalyzed by 138 was then further refined using other solvents, including 1,2-dichloroethane and benzene, showing that the choice of dichloromethane was optimal. In striking contrast to previously reported CM reactions of vinylphosphine oxides with olefins, ${ }^{[80]}$ the homo-metathesis of $(S p)-97$ has been found to be very dependent not only on the concentration but also on the scale and subtle experimental set-up. For example, homo-coupling reactions conducted under optimized conditions ($0.100-$ 0.125 M in dichloromethane, reflux) gave in the scale of 0.5 mmol the expected product in the $88-95 \%$ range of yield (two runs) while in $1.0-1.5 \mathrm{mmol}$ scale reproducibly lower yields of ($S p, S p$)-155 were obtained (63-80\%, three runs).

Table 1. Optimization results of homo-metathesis of (Sp)-97

Entry	Precatalyst	Concentration of (Sp)-97 [M]	Yield of (Sp,Sp)-155 [\%] ${ }^{\text {[a] }}$
1	134	0.020	(18)
2	134	0.125	(35)
3	134	0.200	(25)
4	136	0.125	(46)
5	136	0.200	(42)
6	138	0.005	(~ 5
7	138	0.020	(30)
8	138	0.125	76
9	138	0.200	80
10	156	0.020	(30)
11	156	0.125	75
12	156	0.200	78
13	137	0.020	44
14	137	0.125	71
15	137	0.200	67
16	158	0.200	(10)

${ }^{[a]}$ Isolated yields of analytically pure products. In parentheses are conversions determined by ${ }^{31} \mathrm{P}$ NMR.

In line with the previous observation, the CM of ($S p$)-97 was in all cases highly stereoselective, as the ($S p, S p$)-155 was the only isomer detected by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR. Careful spectroscopic inspection of the reaction mixture reveals that no racemization takes place during CM step and that the $e e$ of the substrate $(e e=98 \%)$ and that of the product ($e e=98 \%$) are identical. ${ }^{[88]}$

In some homo-dimerization reactions catalyzed by Hoveyda-Blechert complexes 137, 138 and 156 phosphane oxides $159-161$ products of CM between and the corresponding precatalyst were isolated. These by-products, formed in theoretical yields ($\sim 5 \%$), can be easily separated by flash chromatography because of their different polarity. The remainder of the mass balance was unreacted ($S p$)-97, which can be easily isolated by flash chromatography and recycled.

(S)-159

(S)-160: $\mathrm{R}=\mathrm{OCH}_{3}$
(S)-161: R = Ph

The mechanistical considerations suggest that the chelate Ru-O bond of the catalyst precursor decoordinates as a first step of the mechanism. ${ }^{[89]}$ Vinyl phosphine oxide reacts with decoordinated catalyst to produce by-product (S) $\mathbf{- 1 5 9}$ to liberate the active methylidene species $\mathbf{1 6 3}{ }^{[73,74]}$ The methylidene $\mathbf{1 6 3}$ undergoes $[2+2]$ cycloaddition with vinyl phosphine oxide $(S p)-97$ leading to enoic carbene complex 165, through the formation of metallacyclobutane 164.

(S)-159

$(S p)-97$

164

 165

Scheme 9. Plausible mechanism for the formation of (Sp,Sp)-155.

The formation of ruthenium carbene complexes $\mathbf{1 6 7}$ as intermediates in cross-metathesis has been recently postulated by Grubbs and Blechert. ${ }^{[90]}$

The carbene complex 164 reacts with a next molecule of vinyl phosphine oxide with formation of two diastereoisomeric metallacyclobutanes $\mathbf{1 6 6 a}$ and 166b, which are presumably in equilibrium. Formation of the product ($S p, S p$)- $\mathbf{1 5 5}$ liberates the methylidene 163, which again enters the catalytic cycle.

In addition, homo-metathesis reaction of diphenylvinylphosphine oxide (168) was investigated. The reaction was performed in benzene in the presence 5 or $10 \mathrm{~mol} \%$ of catalyst 138.

168

138, 5 or $10 \mathrm{~mol} \%, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 24 \mathrm{~h}, 40^{\circ} \mathrm{C}$
0\%

169

Unfortunately, no homodimer 169 and no by-product were observed. It is well established that the cross-metathesis of α, β-unsaturated substrates is very sensitive both to steric hindrance and electron density of the reacting C-C double bonds. One explanation is that double bond in 168 is more electron-deficient and therefore less reactive. From mechanistical point of view it is reasonable to conclude that diarylvinylphosphine oxides do not react with the catalyst precursor at all, because no by-products were observed during this metathesis experiments. Previously, R. Schrock et. al. reported that neopentylidene complexes of tungsten and molybdenum react with equimolar amounts of methyl acrylate to give metallacyclobutane complex 170. ${ }^{[91]}$

131

In the case of diphenylvinylphosphine oxide similarly treatment of the nitro Hoveyda catalyst 138 with equimolar amount of 168 would lead to metallacyclobutane complex 171, which presumably should be stable:

138

171

More interestingly, the attempted homometathesis of 172, which possesses a more electronrich double bond, led only to the formation of $\mathbf{1 7 3} .{ }^{[92]}$

172

173

This observation clearly supports the formation of carbene complex 177 (Scheme 10), in which the phosphine oxide oxygen atom coordinates to ruthenium in an intramolecular fashion stabilizing the 14 -electron enoic carbene $\mathbf{1 7 7}$ by the formation of the more favoured 16-electron chelate complex $\mathbf{1 7 8}$ or by the possibility of an intramolecular coordination in the metallacyclobutane $\mathbf{1 7 6}$ associated with same stabilization effect.

Scheme 10. Proposed formation of enoic-carbene complexes

Blechert et. al. reported the efficient selective cross-metathesis of acrylonitrile using Grubbs II catalyst and copper(I) chloride as an additive to bind the liberated $\mathrm{PCy}_{3} .{ }^{[93]}$ This aspect was also established by Grubbs and Fürstner by using HCl or $\mathrm{Ti}(\mathrm{O} i-\mathrm{Pr})_{4}$ to remove dissociated tricyclohexylphosphine or to prevent the chelation of a carbonyl group to ruthenium. ${ }^{[94]}$ It would be interesting to use a Lewis acid as a phosphine scavenger in the homo-coupling of (S)-97, expecting an increased yield of desired homodimer ($S p, S p$)-155.

$(S p)$ - 97

134, 5 mol\%, Lewis acid
$\ldots-\ldots$

$(S p, S p)-155$

2.7 The Homo-and Cross-Metathesis of Vinyl Phosphine Sulfides and Boranes

In order to investigate the influence of electronic effects on the homometathesis reaction, diphenylvinylphosphine sulfide (179) and diphenylvinylphosphine borane (123) were prepared. Disappointingly, no homo-metathesis or even no formation of by-product was observed with these substrates. Presumably, sulphur (soft-donor ligand) in $\mathbf{1 7 9}$ coordinates to ruthenium in order to prevent coordination of the double bond to the metal centre. However, it should be noted that cross-metathesis of vinyl sulfones, sulfides, disulfides and dithianes and even in the self-cross metathesis reaction of thiols has been previously reported. ${ }^{[95]}$ Diphenylvinylphosphine borane (123) also did not react with catalyst.

123
To confirm that sulfur interrupts the CM of $\mathbf{1 7 9}$, the cross-metathesis between diphenylvinylphosphine sulfide and 4-methoxystyrene (180) has been performed. Under standard reaction conditions no reaction was observed. Instead, diphenylvinylphosphine oxide (168) smoothly reacts with $\mathbf{1 8 0}$ to give the expected product in 83% yield. It led to the
conclusion that only homometathesis of vinyl phosphine oxides can be used to achieve the desired homodimers.

rac-methylphenylvinylphosphine borane (127) was prepared by reaction of racmethylphenylvinylphosphine (183) with $\mathrm{BH}_{3} \cdot$ THF, indicating that formation of phosphorus boron bond is energetically favoured over a hydroboration of the double bond.

Attempted homo-metathesis of rac-127 did not result in the formation of its homodimer $\mathbf{1 8 4}$ or reaction with the catalyst.

During our work Gouverneur et. al. published a paper describing the homometathesis and cross-metathesis of phosphine-borane tempelates with various alkenes. It was shown, that homometathesis of dialkylvinyl and diarylvinylphosphine boranes in presence of second generation Grubbs precatalyst is not possible. ${ }^{[96]}$

2.8 The Catalytic Olefin Cross-Metathesis between \boldsymbol{P}-Chiral Vinylphosphine Oxide and Methyl Acrylate (188)

Previously, Pietrusiewicz et. al. reported that enantiomeric trans-benzylphenyl[P (carbomethoxy)vinyl]phosphine oxide ($S p$) $\mathbf{- 1 8 6}$ undergoes regio- and stereoselective cycloaddition to 1 -vinylnaphthalene (185), providing two diastereomeric adducts 187 , which are further transformed into optically pure 17-phosphasteroid systems by intramolecular Dieckmann-type condensation. ${ }^{[97]}$

To access other synthetically useful achiral and P-stereogenic phosphorus building blocks of such type, we attempted cross-coupling reactions of vinylphosphane oxide ($S p$)-97 with methyl acrylate (188). Initial experiments of cross-metathesis between ($S p$)-97 and $\mathbf{1 8 8}$ revealed that under standard conditions (2 equiv. of 188, $5 \mathrm{~mol} \% \mathbf{1 3 8}$, DCM, reflux) selectivity was low and homometathesis product ($S p, S p$) - $\mathbf{1 5 5}$ was formed in large amounts (12%). It was found that increasing the amount of methyl acrylate to 30 equiv. almost completely suppressed the undesired homometathesis of $(S)-97$ and allowed for the formation of the desired cross metathesis product (Sp)-189 in $47 \%\left({ }^{31} \mathrm{P}\right.$ NMR). Utilizing $10 \mathrm{~mol} \%$ of 138 the yield was to increase the yield to 62%.

Varying amounts of dimethyl fumarate were detected in the crude reaction mixture by ${ }^{1} \mathrm{H}$ NMR. This by-product, formed in a homometathesis reaction of $\mathbf{1 8 8}$ could be easily separated by flash chromatography. In contrast to the above described homometathesis of vinylphosphane oxide ($S p$)-97, changing the concentration of ($S p$)-97 from 0.02 M to 0.200 M did not result in a further improvement of the conversion.

Scheme 11. Proposed mechanism fort he formation of (S)-189.

Interestingly, in the cross metathesis reaction of (S)-97 with 188, no by-product (S)-159 was isolated after the reaction, or even detected by ${ }^{31} \mathrm{P}$ NMR. This observation suggests that $\mathbf{1 8 8}$ first reacts with Ru-carbene complex $\mathbf{1 6 2}$ to form $\mathrm{Ru}=\mathrm{CH}-\mathrm{CO}_{2} \mathrm{Me}$ species, and that the vinylphosphane oxide (S)-97 then enters the catalytic cycle (Scheme 11). Recently, Grubbs reported that electron-rich styrenes exchange faster with Grubbs I catalyst as electron-poor ones, forming stronger Ru-alkylidene, which are less reactive in metathesis. ${ }^{[98]}$

2.9 A New, Highly Active Hoveyda-Grubbs Precatalyst for Alkene Metathesis

The first observation by Hoveyda et. al. that certain styrenyl ethers could form stable carbene complexes with Grubbs-type systems in a bidentate fashion ${ }^{[99]}$ followed with the subsequent report of the first isopropoxychelate complex 194, ${ }^{[100]}$ which showed good metathesis activity together with air- and moisture tolerance.

Since, in 2000, the groups of Hoveyda and Blechert simultaneously reported the phosphine free catalyst $\mathbf{1 3 6}^{[65]}$ with enhanced catalytic activities especially towards electron-deficient alkenes, the development of catalysts with improved chelate isopropoxy ligands continues to be an important challenge. ${ }^{[101]}$

194

136

195

137

156

138

196

Scheme 12. Modern precatalysts for alkene metathesis

The Blechert group has made several important contributions to this field, reporting that the activation of the catalyst $\mathbf{1 3 6}$ by increasing the steric bulk in the position ortho to the ligating Oi-Pr group by a binaphthyl ring 195, phenyl ring 137, methoxy group 156 or others ${ }^{[66,85]}$ can significantly increase the catalytic activity of respective complexes. Presumably, steric
interactions between a substituent in the ortho position and $\mathrm{O} i-\mathrm{Pr}$ group, which is coordinated to the ruthenium atom, facilitate decoordination and thus allow enhanced reaction rates. Recently, Grela et. al. developed the catalyst $\mathbf{1 3 8}$ showing that introduction of an electronwithdrawing nitro group in the position para to the isopropoxy substituent increased stability and activity of corresponding catalyst. ${ }^{[67]}$ The effect of an electro-withdrawing (EWG) substituent on catalyst activity was then expanded by the same group and based on assumption that a decrease of electron density of the chelating oxygen atom allows to destabilize the adjacent five-membred ruthenacycle in the precatalyst to encourage initiation. ${ }^{[102]}$ The mechanism of metathesis including this type of precatalysts was postulated by Hoveyda ${ }^{[89,103]}$ and appears to be still among debates (Scheme 13). ${ }^{[89]}$

Sheme 13. Mechanism of metathesis including Hoveyda-Grubbs catalysts

In contrast to Grubbs second-generation precatalysts, which are likely to be activated by the loss of phosphine, bidentate carbene complexes such as 138, are converted to the catalytically active 14 -electron complex 197 through the dissociation of the $\mathrm{Ru}-\mathrm{O}$ chelation. This is followed by olefin metathesis involving the substrate 198 and leading to the formation of isopropoxystyrene (199) (or a related derivative). The absence of released phosphine, which can intercept and deactivate certain ruthenium carbene complex is one of the key reasons for the unique reactivity profiles observed for this type of precatalysts. After initiating several catalytic olefin metathesis cycles (propagation), and upon complete consumption of the olefin, the active methylidene complex 63 encounters the initially released isopropoxystyrene (199) to regenerate the starting catalyst $\mathbf{1 3 8}$ (termination of the catalytic cycle). Obviously,
slight modifications of this ligating part in the precatalyst have a dramatic influence on the catalytic activity and stability of Ru-based metathesis precatalysts. ${ }^{[104]}$

In order to reduce the electron density not only at the chelating oxygen atom but also at the benzylidene moiety, the novel bimetallic precatalyst 202 with a π-coordinated tricarbonylchromium group ${ }^{[105]}$ at the benzylidene ligand has been envisaged (Scheme 14).

Scheme 14. Design of novel ruthenium precatlyst 202 for alkene metathesis

Recently, Herrmann and Grubbs reported some heterobimetallic olefin metathesis ruthenium complexes 203 ${ }^{[106]}$ and 204. ${ }^{[107]}$ These complexes show a very high catalytic activity in ROMP of 1,5 -cyclooctadiene and RCM of tetrasubstituted cycloalkenes ${ }^{[108]}$. The chloride bridged cymene and cyclopentadienyl ruthenium templates are prone to decoordination and thereby open the required vacant sites on the active species in solution.

203
$\mathrm{M}=\mathrm{Ir}, \mathrm{Rh}$

204
$M=R u, O s$

In contrast to the nitro groups in $\mathbf{1 3 8}$ and $\mathbf{1 9 6}$ the sterically bulky, electron withdrawing tricarbonylchromium group in $\mathbf{2 0 2}$ is positioned comparatively near to the ruthenium atom and to the coordinated oxygen atom and might thus allow for some intramolecular interactions with Ru-O chelate bond possibly leading to a fast initiating and active precatalyst. To access the bimetallic complex 202, ortho-isopropoxystyrene (199) was treated with hexacarbonylchromium in dibutyl ether / THF (10:1) ${ }^{[105]}$ affording the tricarbonyl(2isopropoxystyrene)chromium (0)(205) in 58% yield as an amorphous, moderately air stable yellow solid.

The presence of the tricarbonylchromium fragment at the aromatic ring of 205 can be confirmed from the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-NMR and IR-spectra. In ${ }^{1} \mathrm{H}$ NMR the signals of aromatic protons are shielded and appear between $\delta=4.14-5.27 \mathrm{ppm}$. The methyl groups of $\mathrm{O} i-\mathrm{Pr}$ substituent show the expected two doublets, in view of the fact that they are diastereotopic. ${ }^{13} \mathrm{C}$ NMR and IR allowed the assignment of the presence of $\mathrm{Cr}(\mathrm{CO})_{3}$ moiety: $\delta=230 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right)$ and $\tilde{v}=$ $1970 \mathrm{~cm}^{-1}$ (IR).

The ligand exchange, which was performed by treatment of $\mathbf{2 0 5}$ with $\mathbf{1 3 4}$ in the presence of CuCl as a PCy_{3} scavenger, gave the desired bimetallic complex 202 in 74% yield as a dark red powder. In the solution $\mathbf{2 0 2}$ proved to be highly sensitive to air, but surprisingly as a solid showed high stability during 2 months without a decomposition (${ }^{1} \mathrm{H}$ NMR).

134

was characterized spectroscopically. The ${ }^{1} \mathrm{H}$ NMR absorption of the benzylidene hydrogen atom is observed at $\delta=15.49 \mathrm{ppm}$. This value compares to $\delta=16.56 \mathrm{ppm}$ for $\mathbf{1 3 6}$ and to $\delta=16.42 \mathrm{ppm}$ in $\mathbf{1 3 8}$. ${ }^{[109]}$ The signal assigned to the methine proton of the isopropoxy group is observed at $\delta=4.62 \mathrm{ppm}$ (138: $4.98 \mathrm{ppm}, \mathbf{1 3 6}: 4.89 \mathrm{ppm}$). Signals of protons at the aromatic ring, which bears tricarbonylchromium group, are shielded and resonate at $\delta=4.14$ -5.27 ppm . These data clearly show that the coordination at a $\mathrm{Cr}(\mathrm{CO})_{3}$ group has a much stronger electronic effect on the benzylidene moiety than the nitro substituent in 138. In addition, it is remarkable that the mesityl CH protons give rise to two singlets at $\delta=6.88 \mathrm{ppm}$ and at $\delta=7.00 \mathrm{ppm}$ when measured in $\mathrm{C}_{6} \mathrm{D}_{6}$, whereas measurement in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ results in one broadened signal at $\delta=7.03 \mathrm{ppm}$ even at 500 MHz . The broadness of the signals in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, which belong to the methyl groups of the mesityl substituents, has also been detected.

Fig. 1. ${ }^{1} \mathrm{H}$ NMR of 202 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Fig. 2. ${ }^{1} \mathrm{H}$ NMR of $2{ }^{(p p m)} \mathbf{2 0 2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$
It reveals that the rotation of mesityl substituents around the $\mathrm{C}-\mathrm{N}$ bond is hindered in $\mathrm{C}_{6} \mathrm{D}_{6}$. Such an observation has neither been reported for $\mathbf{1 3 6}^{[65]}$ nor for $\mathbf{1 3 8}^{[67]}$ and suggests that the
molecular dynamics is reduced in $\mathrm{C}_{6} \mathrm{D}_{6}$ as compared to $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, a trend opposing reported by Fürstner ${ }^{[110]}$ and Grela. ${ }^{[110 b]}$
The effect of the tricarbonylchromium group on the ${ }^{13} \mathrm{C}$ NMR chemical shift of the benzylidene carbon atom is also interesting: While catalyst $\mathbf{1 3 6}$ shows the signal at $\delta=297.3$ ppm, the signal for the nitro substituted complex 138 appears at $\delta=289.1$ ppm. ${ }^{[109]}$ For 202 the signal is observed at even higher field and appears at $\delta=285.4 \mathrm{ppm}$ (Table 2).

Table 2. Selected ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR chemical shifts $\delta[\mathrm{ppm}]$ of Ru-precatalysts ${ }^{[65,67,113]}$

Precatalyst $^{\text {[a] }}$	$\mathrm{Ru}=\mathrm{C} \boldsymbol{H}$	$\mathrm{Ru}=\boldsymbol{C H}$	$\mathrm{Ru}=\boldsymbol{C N N}$	i-PrO-CH	i-PrO- $\boldsymbol{C H}$
$\mathbf{1 3 6}^{[\mathrm{bb]}}$	16.56	297.3	211.1	4.89	74.9
$\mathbf{1 3 8}$	16.42	289.1	208.2	4.98	78.2
$\mathbf{2 0 2}$	15.49	285.4	208.8	4.62	77.7
$\mathbf{2 0 2}^{\text {[c] }}$	15.57	283.5	210.7	4.01	77.3

${ }^{[a]}$ All spectra were recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2} .{ }^{[b]}$ In $\mathrm{CDCl}_{3} .{ }^{[\mathrm{c}]}$ In $\mathrm{C}_{6} \mathrm{D}_{6}$.
Crystallization by slow evaporation from a solvent mixture of hexane and TBME (2:1) afforded crystals suitable for a single-crystal X-ray structure analysis (Fig. 3). 202 has a strongly distorted trigonal bipyramidal coordination geometry at ruthenium with the isopropoxy ligand in an axial position and both chlorine atoms trans to one another and the equatorial position occupied by the $\mathrm{Ru}=\mathrm{C}$ bond. One face of the benzylidene ligand moiety is efficiently blocked by the tricarbonylchromium group, which, for obvious steric reasons, adopts a staggered conformation with one carbonyl ligand pointing away from the chlororuthenium part of the complex. Compared to the Hoveyda-Grubbs catalyst 136, a decreased Ru-C2 bond length in $\mathbf{2 0 2}$ is observed. As the heterocyclic carbene ligand is identical in both compounds its σ donor or π acceptor properties are unlikely to be the reason for the observed difference. Instead, the electron withdrawal of the tricarbonylchromium group seems to reduce the electron density at ruthenium by making the benzylidene ligand a much better π acceptorr thereby making the ruthenium atom a better σ acceptor with respect to the coordination of the heterocyclic carbene ligand. The Ru-O4 bond, which is decoordinated in metathesis catalysis, is slightly longer than in $\mathbf{1 3 6}$ [229.9(3) vs. 226.1(3) pm , possibly indicating a somewhat weaker bond in 202. The distances between the chloro ligands and the ortho-methyl carbon atoms of the mesityl substituent at N 2 are short (ca. 330
$\mathrm{pm})$ and compare well with the sum of the van der Waals radii. ${ }^{[111]}$ Another interesting observation is the short distance between the benzylidene proton and the center of the mesityl ring attached at $\mathrm{N} 1(253 \mathrm{pm}$) possibly indicating an interaction with the π system, which is in line with the differentiation of the mesityl groups by ${ }^{1} \mathrm{H}$ NMR. Interestingly to note, that the location of benzylidene proton directly below the mesityl ring in Hoveyda-Grubbs type precatalysts has previously been observed ${ }^{[112]}$, but for $\mathbf{2 0 2}$ this distance is shorter, presumably because of the strong electron-withdrawing $\mathrm{Cr}(\mathrm{CO})_{3}$ group attached to the ligating part. Recently, the precedent of a $\pi-\pi$ stacking of the two perpendicularly arranged aromatic rings in Grubbs-type complexes has been documented. ${ }^{[110 a]}$

Fig.3. Structure of 202 in the crystal. ${ }^{[113]}$ Selected bond lengths [pm], angles [${ }^{\circ}$], and dihedral angles [${ }^{\circ}$]: Ru-C1 180.6(5), Ru-C14 196.3(5), Ru-O4 229.9(3), Ru-Cl1 231.9(2), Ru-Cl2 233.8(2), C14-N1 135.7(5), C14-N2 136.6(5), Cr-C2 225.2(5), Cr-C3 219.0(6), Cr-C4 219.4(6), Cr-C5 218.5(6), Cr-C6 222.4(5), Cr-C7 226.2(5); C1-Ru-O4 79.38(15), C1-Ru1-C14 102.0(2), C14-Ru-O4 178.39(16), Cl1-Ru-C12 160.07(6); N1-C14-Ru-C1 2.9(6), N2-C14-Ru-C1 -177.8(4), C14-Ru-C1-C2 -179.1(4).

Precatalyst	Ru-O(1)	Ru-C(1)	$\mathrm{Ru}-\mathrm{C}(2)$	$\mathrm{Cl}(1)-\mathrm{Ru}-\mathrm{Cl}(2)$
$\mathbf{1 3 6}$	$226.1(3)$	$182.8(5)$	$198.1(5)$	$156.5(5)$
$\mathbf{2 0 2}^{\mathbf{a}}$	$229.9(3)$	$181.0(5)$	$195.6(5)$	$160.1(7)$

Scheme 15. Comparison of selected corresponding bond lengths [pm], angles [${ }^{\circ}$] of $\mathbf{2 0 2}$ and $\mathbf{1 3 6}^{[65]}$
${ }^{\mathrm{a}}$ In precatalyst 202 the bond lenghts $\mathrm{Ru}-\mathrm{O}(1), \mathrm{Ru}-\mathrm{C}(2)$ correspond to $\mathrm{Ru}-\mathrm{O}(4)$ and $\mathrm{Ru}-\mathrm{C}(14)$, respectively depicted in Fig. 3
For the first time the catalytic activity of $\mathbf{2 0 2}$ was screened in ring closing metathesis (RCM), and enyne metathesis reactions (Table 3). Obtained results are compared with those using catalysts $\mathbf{1 3 7}, 138$ and 196, which are among the most advanced catalysts known to date. RCM (entries 1-4) was performed starting from dialkenes 206-209 with monosubstituted double bonds at $25^{\circ} \mathrm{C}$ and at $0^{\circ} \mathrm{C}$ with $1 \mathrm{~mol} \%$ of catalyst 202 giving cyclic products $\mathbf{2 1 5}$ $\mathbf{2 1 8}$ in very good yields. In addition, the $\mathbf{2 0 2}$ is stable in air at $25^{\circ} \mathrm{C}$ for two months without significant loss of catalytic activity. Experiments with a tenfold reduced catalyst loading of $0.1 \mathrm{~mol} \%$ of $\mathbf{2 0 2}$ showed that RCM works even at this low catalyst concentration, albeit with somewhat reduced yields as indicated by GC. RCM with more highly substituted alkenes (entries 5-6) was possible with substrates 210 and $\mathbf{2 1 1}$ giving 219 and $\mathbf{2 2 0}$ in 99% and 49% yield, respectively, which is again comparable to the efficiency of the best catalysts known today. ${ }^{[109]}$ However, the experiment with 212 failed, and the known catalysts also gave very poor yields of RCM product 221. 202 performed very well in enyne metatheses (entries 8-9), the reaction of enyne $\mathbf{2 1 3}$ afforded $\mathbf{2 2 2}$ in almost quantitative yield, and even with $0.1 \mathrm{~mol} \%$ of catalyst 86% yield were achieved. The reaction of enyne $\mathbf{2 1 4}$ to diene $\mathbf{2 2 3}$ showed a significantly higher activity of $\mathbf{2 0 2}$ as compared to the other catalysts ${ }^{[109,110]}$ as indicated by a much higher yield, lower catalyst loading and lower reaction temperature. When performed in benzene instead of dichloromethane as the solvent, the yield dramatically decreased to 8%. Fürstner et. al. found that interactions of aromatic solvent molecules reduced the stabilizing effect of $\pi-\pi$ stacking with benzylidene substituent in $\mathbf{1 3 5}$ making catalysis in toluene more effective than in dichloromethane. In the case of 202, this effect is totally opposite. As a
possible explanation we consider the reduced molecular dynamics in benzene as compared to dichloromethane, which has been indicated by NMR (vide supra). This might render conformations favorable for the metathesis catalysis less accessible.

Table 3. Ring-closing and enyne metathesis catalyzed by $\mathbf{2 0 2}^{a}$.
Entry
${ }^{a}$ Solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. ${ }^{b}$ yield determined by gas chromatography without product isolation. ${ }^{c}$ Solvent $\mathrm{C}_{6} \mathrm{H}_{6}$
Table 4. CM catalyzed by $202^{a, b}$.

Entry	Substrate	Product	mol \% 202	Temp (${ }^{\circ} \mathrm{C}$)	Reaction time	Yield (\%) $(E / Z)^{c}$
1	$\underset{\substack{224}}{ }$		1	25	30 min	$\begin{gathered} 99 \\ (9.7 / 1) \end{gathered}$
2	$\begin{gathered} \mathrm{TBSO}_{Y} \mathrm{~T}_{4} \mathbb{Z} \\ 225 \end{gathered}$	$\underset{\substack{227}}{\mathrm{TBSO}}$	1	25	25 min	$\begin{gathered} 99 \\ (3.7 / 1) \end{gathered}$
3	$\begin{gathered} \mathrm{TBSO}_{4} \\ 225 \end{gathered}$		1	20	3h	$\begin{gathered} 93 \\ (99 / 1) \end{gathered}$
		228				
4	$\begin{gathered} \mathrm{TBSO}_{4} \\ 225 \end{gathered}$		1	20	16h	89
		229				
5			5	20	3h	$\begin{gathered} 76.5 \\ (1 / 2.6) \end{gathered}$
6	 225	TBSO_{4}	5	40	16 h	87
		231				
7			5	40	24h	83
		181				
8	$(S p)-97$		5	40	24h	91

${ }^{a}$ Solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot{ }^{b} 2$ equiv. of an electron poor-alkene were used in $\mathrm{CM} .{ }^{c}$ The E / Z ratio was determined by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR.

CM catalyses (entries 1-6) were performed with $\mathbf{2 0 2}$ using 224, 225 as coupling partners for synthesis of α, β-unsaturated esters 226, 227, ketone 228, sulfone 229, nitrile 230, and phosphane oxide 231. The yields are very high and compare very well to those of the other advanced catalysts. ${ }^{[66,109]}$ The selectivity of cross-metathesis reactions with vinyl phosphane oxide and sulfone led exclusively to E-isomers, only experiments including methyl acrylate showed a tendency to an increased amount of the Z-isomer. 202 is active even over extended heating in dichloromethane as indicated by the reaction of $\mathbf{1 8 0}$ giving $\mathbf{1 8 1}$ in 83% yield. The
($S p$)-97 was homodimerized to give an improved yield of ($S p, S p$)-155 in $\mathbf{9 1 \%}$ yield, as compared to 80% with $\mathbf{1 3 8} .{ }^{[92]}$ Over all the experiments show that not only a nitro group as in catalyst $\mathbf{1 3 8}$ but also coordination at a tricarbonylchromium group gives a metathesis catalyst of good stability and extremely high catalytic activity.
Unfortunately, the enyne metathesis of $\mathbf{2 3 1}$ catalyzed by $\mathbf{2 0 2}$ using reported reaction conditions provided $\mathbf{2 3 3}$ only in 14% yield. For example, the use of the nitro-precatalyst $\mathbf{1 3 8}$ for this reaction resulted $\mathbf{2 3 3}$ in $\mathbf{7 1 \%}$ yield. ${ }^{[109]}$ Presumably, the bulky tricarbonylchromium fragment hindered the formation of the intermediate $\mathbf{2 3 4}$ making coordination to metal centre less accessible in view of a return of the decoordinated ligating part of precatalyst competing with a olefin coordination.

Recently, Grela et.al. showed that enyne metathesis of $\mathbf{2 3 2}$ is highly dependent on choice of precatalyst. ${ }^{[114]}$ It was found, that use of first generation of Hoveyda-Grubbs precatalyst 235 referred to more active and allow a highly selective formation of $\mathbf{2 3 3}$.

232

$$
\xrightarrow[100 \%]{235,2.5 \mathrm{mo} \mathrm{I} \%, 25^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 24 \mathrm{~h}}
$$

233

The precatalyst $\mathbf{2 3 6}$ was synthesized by the ligand exchange with $\mathbf{1 3 3}$ in dichloromethane in 48% yield. In contrast to $\mathbf{2 0 2}$, this catalyst is much more sensitive to air in solution and therefore care must be taken to exclude oxygen during purification.

236 was characterized spectroscopically. The presence of coordinated PCy_{3} was proved by the ${ }^{31} \mathrm{P}$ NMR where the respective signal is observed at $\delta=+64.1 \mathrm{ppm}$, which is in good agreement of previously reported data for such type of complexes. ${ }^{[100]}$ Incontestable evidence for Ru-O chelation is the signal of the alkylidene proton, which results in an upfield shift of $\sim 1 \mathrm{ppm}$ from the parent complex $\mathbf{1 3 6}$ and appears at $\delta=16.58 \mathrm{ppm}$ as a doublet with $J_{\mathrm{PH}}=$ 4.22 Hz , indicating the formation of the five-membered chelate and coincident with a 90° rotation about the carbon-metal double bond. ${ }^{[100]}$ Recently, Grubbs et. al. have suggested that a version of the vicinal Karplus correlation may be applicable in these Ru-based systems for the P-Ru-C α-H α dihedral angle. ${ }^{[115]}$ In the ${ }^{13} \mathrm{C}$ NMR spectrum, the carbene carbon atom also resonates upfield at $\delta=274.5 \mathrm{ppm}$ in comparison to that $\delta=297.3 \mathrm{ppm}$ of $\mathbf{1 3 6}$. The respective presence of $\mathrm{Cr}(\mathrm{CO})_{3}$ was confirmed by shielding of the aromatic protons $\delta=4.90$ -6.00 ppm and the corresponding CO signal in the ${ }^{13} \mathrm{C}$ NMR at $\delta=232.6 \mathrm{ppm}$. The catalytic profile of $\mathbf{2 3 6}$ should be studied in the future, concerning of it potential higher activity in enyne metathesis of $\mathbf{2 3 2}$ and other related substrates. ${ }^{[114]}$
Next we became interested to prepare a bimetallic precatalyst, which would contain the methoxy substituent ortho to the ligating isopropoxy group and should be more reactive than 202. The appropriate chromium(0) complex 238 was prepared in 51% yield as a light yellow solid by the treatment of hexacarbonylchromium in dibutyl ether / THF (10:1) and 2-isopropoxy-3-methoxystyrene (237).

237

The new bimetallic carbene complex $\mathbf{2 3 9}$ was isolated in $\mathbf{4 3} \%$ yield after tedious purification step and unfortunately decomposed very rapidly in dichloromethane during minutes, when it was submitted for a catalytic reaction.

$\xrightarrow[43 \%]{\text { 238, } \mathrm{CuCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}, 1 \mathrm{~h}}$

134
239

However, in the ${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 3 9}$, the signals of the decoordinated complex, which refer to 156, are present. The corresponding benzylidene proton in 239 resonates upfield at $\delta=15.72$ ppm, whereas decoordinated 156 appears at $\delta=16.74 \mathrm{ppm}^{[85]}$. Presumably, the instability of 239 is the result of combination of both types of activation in one precatalyst: steric and electronic. Related findings were recently reported by Grela et. al. in the attempted double activation of $\mathbf{1 3 8}$ by introduction in ortho position to the chelating $i-\mathrm{PrO}$ the methoxy or phenyl substituent leading to very unstable complexes 240. ${ }^{\text {[109] }}$

239

240
$\mathrm{R}=\mathrm{Ph}, \mathrm{OMe}$ or NO_{2}

Scheme 16. Attempted double activation of prectalysts $\mathbf{2 0 2}{ }^{[113]}$ and $\mathbf{1 3 8} .{ }^{[109]}$

Since Blechert et. al. reported that the benzylidene electrophilicity is a crucial factor for precatalyst activity, ${ }^{[104]}$ the synthesis of $\mathbf{2 4 2}$ via $\mathbf{2 4 1}$ is potentially of great interest, since this bimetallic complex would presumably have a more electrophilic benzylidene carbon and will thus be activated electronically by both substituents by fluorine and the tricarbonylchromium group.

134, $\mathrm{CuCl}, 40^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$

241

242

3 Synthesis of Novel Rigid P-Stereogenic Diphosphine Dioxides as Ligand Precursors via Asymmetric Cycloaddition

3.1 The Diels-Alder Reaction in Organic Synthesis

The Diels-Alder reaction is the best known organic reaction that is widely used to construct a six-membered ring with up to four stereogenic centers in a regio and stereo-controlled way. ${ }^{[116]}$ Since its discovery in 1928 by O. Diels and K. Alder, where cyclopentadiene (243) was reacted with quinone (244) to give products $\mathbf{2 4 5}$ and $\mathbf{2 4 6}{ }^{[117]}$, more than 30.000 papers have been published concerning synthetic, mechanistic and theoretical aspects of the reaction and about half of these are appeared in the last decade. ${ }^{[118]}$ In 1950 O. Diels and K. Alder
were awarded the Nobel Prize in chemistry for the discovery and development of this significant reaction.

The classical Diels-Alder reaction is a cycloaddition between a conjugated diene 247 and a second component, called dienophile, which has at least a π-bond can give rise to two different cycoadditions leading to $\mathbf{2 4 8}$ or $\mathbf{2 4 9}$ respectively. ${ }^{[119]}$ When one or more heteroatoms are present in the diene or dienophile framework, the cycloaddition is called hetero-DielsAlder reaction. ${ }^{[120]}$

Scheme 17. The classical Diels-Alder reaction

The reaction is classified as a $\left[\pi 4_{\mathrm{s}}+{ }_{\pi} 2_{\mathrm{s}}\right]$ cycloaddition, whreas 4 and 2 identify both the number of π electrons involved in the electronic rearrangement and the number of atoms originating the unsaturated six-membered ring. ${ }^{[121]}$ According to frontier molecular orbital theory (FMO), ${ }^{[122]}$ the reactivity, regioselectivity and stereochemistry of the Diels-Alder reaction are controlled by the suprafacial interaction of the highest occupied molecular orbital (HOMO) of one component and the lowest unoccupied molecular orbital (LUMO) of the other. The reactivity in a Diels-Alder depends on the HOMO-LUMO energy separation of components: the lower the energy difference, the lower is the transition state energy of the reaction. Electron-withdrawing substituents lower the energy of both HOMO and LUMO, while electron-donating groups increase their energies. HOMO diene-controlled Diels-Alder reactions are accelerated by electron-donating substituents in the diene and by electronwithdrawing substituents in the dienophile (normal electron-demand Diels-Alder reaction). LUMO diene-controlled Diels-Alder reactions are influenced by electronic effects of the substituents in the opposite way (inverse electron-demand). ${ }^{[123]}$

Scheme 18. Normal and inverse demands in the Diels-Alder reaction

Not only is a cyclohexene ring generated through the formation of two new σ-bonds, but up to four stereocenters are also simultaneously formed in the process. Fortunately, as a result of the regio and stereospecific nature of the Diels-Alder reaction and the diastereoselectivity of the union based on the Alder endo rule. ${ }^{[118]}$

The early total syntheses by Woodward illustrate the ability of the Diels-Alder reaction to create molecular complexity. A quinone-based Diels-Alder reaction was applied as the key step in synthesis of in the total synthesis of the steroid hormones cortisone (252) and cholesterol (253). ${ }^{[124]}$

252

253

This work of Woodward initiated the employment of the Diels-Alder reaction in the total synthesis of naturally occurring substances. ${ }^{[125]}$

3.2 Asymmetric Diels-Alder Reaction of ($S p, S p$)-155 with Cyclopentadiene (243)

Organophosphorus compounds bearing a vinyl group are an interesting class of simple conjugated olefins, which has been used for as dienophiles in the Diels-Alder reaction. ${ }^{[47]}$ Although in the conjugated system of vinylphosphine oxides, the phosphoryl group is analogous to the carbonyl group of α, β-unsaturated carbonyl compounds, the phosphorus atom of the phosphoryl group has a tetrahedral coordination, as opposed to the carbon atom of the carbonyl group with its flat configuration. Also, the multiple bond of the phosphoryl group is a $d_{\pi}-p_{\pi}-\pi$-bond, which is formed by 3 d electrons of phosphorus and 2 p electrons of oxygen, while the double bond of the carbonyl group produced by 2 p electrons of both atoms. ${ }^{[126]}$

During last two decade organophosphorus dienophiles were less investigated and only several examples appeared in the literature. ${ }^{[52,97, ~ 127]}$
For example, Kabachnik ${ }^{[128]}$ and some that later Brunner ${ }^{[129]}$ showed that trans-1,2bis(diphenylphosphoryl)ethylene (169) reacts with cyclopentadiene (243) at elevated temperature to give diphosphine dioxide NorphosO (254) in 48% yield.

Buono et. al. reported that racemic chiral anisyl(phenyl)vinylphosphine oxide (26) undergoes the Diels-Alder reaction with $\mathbf{2 4 3}$ to produce all diastereomeric cycloadducts, which are inseparable. Also, it was shown, that the endo / exo ratio of products $\mathbf{2 5 5}$ or $\mathbf{2 5 6}$ can be influenced by addition of various Lewis acids. ${ }^{[130]}$

243

(rac)-26

256b

Kagan et. al. used easily the available monoterpene α-phellandrene (257) as a chiral diene and trans-1,2-bis(diphenylthiophosphoryl)ethylene (258) for the synthesis of the disulfide $\mathbf{2 5 9}$, which is a precursor to chiral diphosphine Phellanphos. ${ }^{[131]}$

($S p$)-chiral vinylphosphine oxide (97) was used for the thermal Diels-Alder reaction with cyclopentadiene (243) to give four products 260-261. The stereochemistry of the major endo adduct 260b was analyzed by a single-crystal X-ray diffraction showing S configuration at C2. Presumably, $(S p)-97$ prefers to react in the s-trans conformation. ${ }^{[132]}$

toluene, $80^{\circ} \mathrm{C}$

260a
26\%

260b
27\%

261a
27\%

261b
(20\%)

Thus, to access the rigid carbocyclic skeleton of a precursor for the novel P-chiral ligand system, the enantiomerically pure dienophile ($S p, S p$)- $\mathbf{1 5 5}$ was submitted to a Diels-Alder reaction with cyclopentadiene (243). Surprisingly, the reaction proceeds smoothly at $25^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give two diastereomeric products ($S p, S p$)-262a and ($S p, S p$)-262b in a ratio (1.3: 1${ }^{31} \mathrm{P}$ NMR, ${ }^{1} \mathrm{H}$ NMR) in 92%.

$(S p, S p)-155$

(Sp,Sp)-262a

$(S p, S p)$-262b

Unfortunately, these two diastereoisomers were inseparable by column chromatography. To separate ($S p, S p$)-262a and ($S p, S p$)-262b a method developed by Brunner was applied. ${ }^{[133]}$ By using (-)-di-O-benzoyltartaric acid monohydrate (DBTA) in boiling methanol cycloadducts were resolved affording after hydrolysis with $2 \mathrm{~N} \mathrm{NaOH}(S p, S p)$-262a in 96% de and ($S p, S p$)262b in $90 \% \mathrm{de}$. This resolution based on the different solubilty of diastereomeric adducts 262a / (-) DBTA, which co-crystallization could be explained by the formation of a hydrogen bridge between a carboxy group of (- DBTA and the $\mathrm{P}=\mathrm{O}$ groups of 262a. ${ }^{[133]}$

(Sp,Sp)-262a
$1.3: 1$

1. (-) DBTA, MeOH, 5h, reflux
2. $2 \mathrm{~N} . \mathrm{NaOH}$

(Sp,Sp)-262a
96\% de
31\%

(Sp,Sp)-262b
90\% de
41\%

It should be mentioned that differentiation between ($S p, S p$)-262a and ($S p, S p$)-262b by ${ }^{1} \mathrm{H}$ NMR is not possible, because they differ only in the configuration at C-2 and C-3. Fortunately, the major diastreoisomer ($S p, S p$)-262a crystallized from the solvent mixture $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 9: 1\right)$ to give crystals suitable for the X-ray diffraction (Fig. 4). The absolute configuration of phosphorus atoms of the major diastreoisomer ($S p, S p$)-262a was found to be S. Both methyl(phenyl)phosphoryl groups are in exo and endo position standing trans one to another with absolute configuration R at $\mathrm{C}-2$ and $\mathrm{C}-3$ atoms. The phosphorus tetrahedron is deformed in the usual way showing increased O-P-C angles and decreased C-P-C angles with the corresponding values ranging from 114.1(5) to 109.6(4).

Fig. 4. Structure of (Sp,Sp)-262a in the crystal. Selected bond lengths [pm], angles [${ }^{\circ}$], and dihedral angles [${ }^{\circ}$]: P1-O1 153.9(6), P1-C9 180.0(10), P1-C8 180.5(7), P1-C2 181.6(9), P2-O2 149.5(7), P2C15 181.6(8), P2-C16 182.0(9), P2-C3 182.9(9), C1-C6 139.0(2), C1-C7 157.8(13), C1-C2 162.7(13), C2-C3 154.2(9), C3-C4 161.1(12), C4-C5 145.5(13), C4-C7 158.8(12), C5-C6 126.4(14), C9-C14 137.1(11), C9-C10 142.9(11), O1-P1-C9 109.6(4), O1-P1-C8 113.1(4), C9-P1-C8 105.7(5), O1-P1-C2 114.3(4), C9-P1-C2 105.9(4), C8-P1-C2 107.7(4), O2-P2-C15 113.7(4), O2-P2-C16 110.6(5), C15-P2-C16 104.7(5), O2-P2-C3 114.1(5), C15-P2-C3 106.5(4), C6-P2-C3 106.5(4), P1-C2-C3-P2 116.9(1), C15-P2-C3-C2 72.9(1), C8-P1-C2-C3 71.4(1).

In addition, ($S p, S p$)-262a (96% de) was analyzed by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$ NMR spectroscopy and correlated to its structure. In the ${ }^{1} \mathrm{H}$ NMR spectra the methyl groups at phosphorus resonate as two doublets, with a ${ }^{2} J_{\mathrm{PH}}=12.7 \mathrm{~Hz}$. The olefinic protons give two multiplets at 5.59 and 6.02 ppm. In addition, the ${ }^{13} \mathrm{C}$ NMR spectrum shows detailed information about coupling constants, for example, the methyl groups give again doublets at 9.2 and 13.2 ppm with ${ }^{1} J_{\mathrm{PC}}=$ 64.2 Hz and $65.3 \mathrm{~Hz} . \mathrm{C}-2$ and C-3 give doublets at 41.9 and 42.1 ppm with large coupling constants: ${ }^{1} J_{\mathrm{PC}}=73.9$ and 65.2 Hz . The bridgehead carbon atom C 4 gives a quartet, whereas C1 provides a doublet with ${ }^{2} J_{\mathrm{PC}}=4.4 \mathrm{~Hz}$. Since both asymmetric phosphorus atoms are trans and therefore chemically not equivalent, there are two doublets appearing in ${ }^{31} \mathrm{P}$ NMR at $\delta=+38.6$ and +39.8 ppm , respectively, with a coupling constant $J_{\mathrm{PP}}=8.9 \mathrm{~Hz}$.

A classical method to enhance diastereoselectivity is based on the use of Lewis acid catalysts. ${ }^{[134]}$ Upon complexation of such species to the dienophile, the normal demand DielsAlder reaction is accelerated since the energy gap between the lowest unoccupied molecular orbital (LUMO) of the dienophile and the highest occupied molecular orbital (HOMO) of the diene is reduced, thus decreasing the activation energy required to achieve the cycloaddition. ${ }^{[134]}$
Recently, a Diels-Alder reaction of trimethylsilylcyclopentadiene (263) and trans-1,2bis(diphenylphosphoryl)ethene (169) catalyzed by $\mathrm{Et}_{2} \mathrm{AlCl}$ at $-40{ }^{\circ} \mathrm{C}$ led to 7-antitrimethylsilylnorbornene (264) in 91%. ${ }^{[135]}$

To increase diastereoselectivity of the Diels-Alder reaction between ($S p, S p$)-155 and cyclopentadiene (243), several Lewis acids were tested. After some screening reactions it was found that titanium(IV) chloride can be successfully used to improve the diastereomeric ratio of desired cycloadducts ($S p, S p$)-262a and ($S p, S p$)-262b. (Table 5).

$(S p, S p)-155$

80% de

(Sp,Sp)-262a

Addition of only 0.5 equiv. of TiCl_{4} significantly increased the ratio of diastereoisomers as by addition of 1.0 and 1.5 equiv., which decreased the diastereoselectivity. (Table 5)

Table 5. The asymmetric Diels-Alder cycloaddition of ($S p, S p$)-155 with cyclopentadiene (243)

$\begin{array}{r} \mathrm{TiCl}_{4} \\ \text { (equiv.) } \end{array}$	solvent/ $\mathrm{T}^{\circ} \mathrm{C}$	t, h	262a : 262b ${ }^{\text {a }}$	yield, \%
-	Toluene /110	18	1,3:1	95
-	$\mathrm{CH}_{2} \mathrm{Cl}_{2} / 20$	21	1,3:1	90
0.5	$\mathrm{CH}_{2} \mathrm{Cl}_{2} / 20$	17	9:1	87
1.0	$\mathrm{CH}_{2} \mathrm{Cl}_{2} / 20$	19	7:1	85
1.5	$\mathrm{CH}_{2} \mathrm{Cl}_{2} / 20$	24	5:1	82
2.0	$\mathrm{CH}_{2} \mathrm{Cl}_{2} / 20$	48	3:1	70

Formation of the two diastereomeric adducts ($S p, S p$)-262a and ($S p, S p$)-262b in unequal amounts indicates on an asymmetric induction. Recent stereochemical studies concerning asymmetric cycloaddition reactions involving conjugated olefins with strongly activating groups revealed that under thermal reaction conditions the reactive conformations of the conjugated systems reflect the conformation in the corresponding ground states, and that for majority of the systems studied they are s-cis. ${ }^{[136]}$ However, for the Diels-Alder reaction the reactive s-trans conformation of the organophosphorus dienophiles ($S p$)-97 and ($S p$)-187 was proposed. ${ }^{[97,132]}$ Taking into the account, that ($S p, S p$)-155 reacts in the s-trans conformation, two transition states for the uncatalyzed Diels-Alder reaction might be reasonable to discuss (Scheme 19):

Scheme 19. Diastereoselection in the asymmetric Diels-Alder reaction
If in the reactive conformation of the dienophile ($S p, S p$) $\mathbf{- 1 5 5}$, the conjugated $\mathrm{C}=\mathrm{C}$ and $\mathrm{P}=\mathrm{O}$ groups are assumed to be s-trans coplanar, the configurations of the two newly created
centers of asymmetry, C-2 and C-3, should be controlled mainly by steric interactions between the phosphorus substituents and the diene coming in endo with respect to the methyl group (model \mathbf{A}). In the (model \mathbf{B}) the formation of $(S p, S p)$-262b will disfavour the diene approach by steric repulsions with the phenyl substituent of the phosphoryl group.
The results obtained for the asymmetric [4+2] cycloaddition catalyzed by titanium chloride can be explained through the complexation of TiCl_{4} presumably at both oxygen atoms of $(S p, S p)-155$ and thus by decreasing of the activation energy by the lowering the energy of the LUMO, which is required to facilitate the diastereoselective cycloaddition. Recently, the coordination of GaCl_{3} to the oxygen atom of $\mathrm{P}=\mathrm{O}$ group of O, O-diethyl β methoxycarbonylvinylphosphonate in a Diels-Alder reaction with 9,10-dimethylantracene was documented. ${ }^{[137]}$

3.3 The Asymmetric Huisgen Cycloaddition of ($S p, S p$)-155 with Acyclic Nitrones

The addition of a 1,3-dipole to an alkene for the construction of a variety of five-membred heterocycles is a powerful reaction in organic chemistry. ${ }^{[138]}$ The general application of 1,3dipoles in organic chemistry was first established by the systematic studies of Huisgen in the 1960s. ${ }^{[139]}$ At the same time, the new concept of conservation of orbital symmetry, developed by Woodward and Hoffmann, appeared. ${ }^{[140]}$ Their work was a milestone for the understanding of the mechanism of concerted cycloaddition reactions. On the basis of the concept by Woodward and Hoffmann, Houk et al. have further contributed to our present understanding and ability to predict relative reactivity and regioselectivity, of 1,3-dipolar cycloaddition reactions. ${ }^{[141]}$

Isoxazolidines, the products of 1,3-dipolar cycloaddition reaction between nitrones and alkenes, are saturated, five membered heterocycles containing adjacent nitrogen and oxygen atoms. ${ }^{[142]}$ Best regarded as a concerted but asynchronous $\left[\pi 4_{\mathrm{s}}+{ }_{\pi} 2 \mathrm{~s}\right]$ suprafacial process, the reaction allows up to three contiguous carbon stereocentres to be created in a single step. In a manner analogous to the famous $\left[{ }_{\pi} 4_{\mathrm{s}}+{ }_{\pi} 2_{\mathrm{s}}\right.$] cycloaddition reactions, the nitrone-alkene cycloadditions can occur with the nitrone and alkene approaching each other in either of two possible regiochemical senses and in either an endo- or exo- fashion, the four possible
transition states giving rise to two pairs of regioisomeric and diastereoisomeric products (Scheme 20). ${ }^{[143]}$

$\underset{\sim}{>}$

Scheme 20. Regioselectivity in the Huisgen cycloaddition of a nitrone with an alkene

Most studies concerned with the reactions between achiral nitrones and chiral unsaturated carbonyl compounds have concentrated mainly upon the product distribution in terms of regio-, stereo- and facial selectivity in the 1,3-dipolar cycloaddition step. The synthetic utilities of chiral allylic amines, ${ }^{[144]}$ vinylic and allylic ethers, ${ }^{[145]}$ vinylic sulphoxides ${ }^{[146]}$ as precursors to optically active isoxazolidines have also been demonstrated.
The use of organophosphorus compounds as dipolarophiles for 1,3-dipolar cycloaddition reaction is still limited to few examples and remains to be an important subject in organic chemistry due to the further utility of the phosphorus isoxazolidines as ligands for asymmetric catalysis. ${ }^{[147]}$

The first 1,3-cycloaddition of organophosphorus dienophiles appeared in 1975, where C,Ndiphenylnitrone (265) was reacted with β-substituted vinylphosphonate (266) to give isoxazolidine 267 in a moderate yield. ${ }^{[148]}$

In 1989, Pietrusiewicz et. al. reported the 1,3-dipolar cycloaddition of chiral racemic vinylphosphine oxide 97 to various acyclic and cyclic nitrones with ca. 40% de diastereofacial selectivity. ${ }^{[149]}$ For example, C, N-diphenylnitrone (265) reacted with rac-97 to form two regioisomeric products 268a and 268b, whereas 5-substituted regioisomer 268a either prevailed in the product mixtures.

In a related study, the enantiomerically pure vinylphosphine oxide ($S p$)-97 reacted with 2,2-dimethyl-3,4-pyrroline N-oxide (DMPO) (269) to give two diastreoisomers 270a and 270b in high yield. The unique sense of induction is consistent with the assumption that vinylphosphorus dipolarophile prefer an s-cisoid array of $\mathrm{C}=\mathrm{C}-\mathrm{P}=\mathrm{O}$ fragments in their reactive conformations. ${ }^{[150]}$

Pietrusiewicz reported that the facial selectivity in 1,3-dipolar cycloaddition of vinyl phosphine chalcogenides can be effectively controlled by the phosphorus stereocenter. For example, a replacement of oxygen with sulphur, and methyl substituent with hydrogen resulted in the improvement of the diastereoselectivity in the 1,3-dipolar cycloaddition of 267. ${ }^{[151]}$

In addition, Pietrusiewicz et. al. studied single and double asymmetric induction in the 1,3dipolar cycloaddition of chiral nitrones 272 and 273 and the enantiomerically pure ($S p$)-(97).

In fact, this reaction led to four possible 5-substituted regioisomeric adducts with the selectivity in favour of the erythro 274a or 275a isomer. The presence of the methyl substituent in $\mathbf{2 7 2}$ proved advantageous in terms of endo vs. exo selectivity which was raised from 3:1 to 30:1 in the cyloaddition with $(S p)-(\mathbf{9 7}) .{ }^{[152]}$

Taking into account that $(S p, S p)$ - $\mathbf{1 5 5}$ underwent the asymmetric Diels-Alder with cyclopentadiene (243) the related approach might be possible to use ($S p, S p$) $\mathbf{- 1 5 5}$ as chiral dipolarophile in an asymmetric Huisgen cycloaddition.

In a sequence to develop a novel approach to unprecetend P-chiral bidentate ligands, the P chiral diphosphine dioxide ($S p, S p$)-155 was treated with C, N-diphenylnitrone (265) in boiling benzene. After two days, the crude reaction mixture showing two doublets of the desired product between $\delta=+36$ and 40 ppm in the ${ }^{31} \mathrm{P}$ NMR indicating that the reaction was completed. The two products formed in the ratio 1.5:1 are diastreoisomers ($R p, S p$)-276a and $(R p, S p) \mathbf{- 2 7 6 b}$, which were easily separated by column chromatography and characterized by their ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$ NMR and IR spectra. In the ${ }^{1} \mathrm{H}$ NMR the methyl groups at phosphorus resonate as doublets, with the coupling constant ${ }^{2} J_{\mathrm{PH}}=13.2 \mathrm{~Hz} .{ }^{[153]}$

(Rp,Sp)-276a
Scheme 21. Isoxozalidine ring numbering in ($R p, S p$)-276a
The signals of the protons at the isoxazolidine ring in $(R p, S p)$-276a and ($R p, S p$)-276b are readily assigned by a combination of HMQC, HMBC and HH-COSY spectra. The signal assigned to $3-\mathrm{H}$ appeared always as a double doublet, whereas $4-\mathrm{H}$ and $5-\mathrm{H}$ give rise to more complicated signals, due of their direct coupling with chiral phosphorus atoms. The signals referred to C-4 and C-5 were assigned on the basis of ${ }^{1} J_{\mathrm{PC}}$, which is larger in the case of C5. ${ }^{[149]}$ This correct assigment was later confirmed by HH-COSY and HMBC spectra. In the ${ }^{13} \mathrm{C}$ NMR spectra all carbon atoms belonging to phenyl groups attached to the phosphorus atom show doublets with appropriate coupling constants to phosphorus, which is in agreement with the literature. ${ }^{[153]}$ The coupling constant of the signals obtained from the ${ }^{31} \mathrm{P}$ NMR spectra for each diastereoisomer are $J_{\mathrm{PP}}=20.3 \mathrm{~Hz}$ and $J_{\mathrm{PP}}=19.8 \mathrm{~Hz}$ for the major diastereoisomer, and $J_{\mathrm{PP}}=16.4 \mathrm{~Hz}$ and $J_{\mathrm{PP}}=15.9 \mathrm{~Hz}$ for the minor one, indicating the magnetic non-equivalence of the asymmetric phosphorus atoms.

Since, the cycloaddition reactions are known to proceed with complete stereospecifity, it was rational to conclude the trans arrangement of the phosphorus substituents in the five-membred ring. The NOE spectra allow assigning of the relative configuration in the isoxazolidine ring. These experiments clearly showed that all the substituents in the isoxazolidine ring are positioned trans one to another.

($R p, S p$)-276a

Fig. 5 Irradiation (NOE) of CH_{3} at $\delta=1.62 \mathrm{ppm}$

($R p, S p$)-276a

($R p, S p$)-276a

Fig. 7 Irradiation (NOE) of H_{4} at $\delta=4.01 \mathrm{ppm}$

Fig. 8 Irradiation (NOE) of H_{5} at 4.47

Fig. 9 Irradiation (NOE) of H_{3} at 4.96 ppm

(Rp,Sp)-276b

Fig. 10 Irradiation (NOE)of CH_{3} at 1.92 ppm

Fig. 11 Irradiation (NOE) of CH_{3} at 2.06 ppm

Fig. 12 Irradiation of H_{4} at 3.19 ppm

Fig. 13 Irradiation (NOE) of H_{3} at 4.26 ppm

($R p, S p$)-276b

($R p, S p$)-276b

($R p, S p$)-276b

Fig. 14 Irradiation (NOE) of H_{5} at 5.23 ppm

This 1,3-dipolar cycloaddition can also be performed under microwave irradiation. By using toluene as the solvent it was possible to reduce the reaction time from 2 days to 40 minutes without decrease of the yield. No alternation of diastereoselectivity was observed.

In order to investigate this reaction, $(S p, S p)-\mathbf{1 5 5}$ was treated with C-phenyl- N-methylnitrone (274). The reaction proceeds with higher diastereoselectivity leading to two diastereosiomers in the ratio 6:1 $\left({ }^{31} \mathrm{P}\right.$ MNR) in high yield.

$(S p, S p)-155$

(Rp,Sp)-278a

(Rp,Sp)-278b

These results are comparable to those obtained by Pietrusiewicz et. al. for the 1,3-dipolar cycloaddition of the ($S p$)-97, which led to diastereoisomeric ratios $60: 40$ and $87: 13$ by the use acyclic nitrones 261 and 274, respectively. ${ }^{[149,154]}$

To discuss possible models of diastereoselectivity, firstly it should be mentioned that only two diasteroisomeric isoxazolidines were formed, whereas four possible diastereoisomers could be formed. In order to explain the observed diastereoselectivity trends, two transition states can be taken into account (Scheme 22).

MAJOR

(Rp,Sp)-276a

MINOR
\downarrow

(Sp,Sp)-276b

Scheme 22. Proposed models of diastereoselectivity for the formation ($R p, S p$)-276a and ($R p, S p$)-276b Charges are omitted for clarity.

Based on the proposed above transition states, it has been concluded that the reactive conformation of the dipolarophile ($S p, S p$)-155, must be also s-trans coplanar. The transition state of major ($R p, S p$)-276a is more preffered as compare to minor ($R p, S p$)-276a, because steric repulsions between the methyl group and the hydrogen are minimized, whereas the formation of ($R p, S p$) -276b disfavoured by the steric interactions between two phenyl groups (minor).

(Rp,Sp)-276c
not formed

(Sp,Sp)-276d
not formed

Scheme 23. Unfavourable (not formed) diastereoisomers ($R p, S p$)-276a and ($R p, S p$)-276b

The formation of other two diastereoisomers ($R p, S p$)-276c and ($R p, S p$)-276d is disfavoured presumably because of additional steric interactions between the phosphorus substituent and the phenyl ring, due the cis-arrangement of the substituents undesired.

3.4. Reduction of \boldsymbol{P}-Stereogenic Diphosphine Dioxides to \boldsymbol{P}-Stereogenic Diphosphines

Optically active phosphines possessing their chiral centers at phosphorus atoms have become increasingly important not only in stereochemical studies of organophosphorus compounds but also as chiral ligands in transition metal catalyzed asymmetric reactions. ${ }^{[2,8]}$ The stereospecific reduction of P-chiral monophosphine oxides to P-chiral monophosphines with retention or inversion of configuration has been developed, ${ }^{[47]}$ albeit is still limited concerning its applications in the P-chiral ligand synthesis. A necessary condition for such a reduction is that it must proceed under mild reaction conditions, because the produced phosphine can racemize by thermally induced pyramidal inversion. ${ }^{[156]} \mathrm{LiAlH}_{4}$ is a powerful reducing reagent and it is often used for the reduction of achiral phosphine oxides. However, the reduction of optically active phosphine oxides by LiAlH_{4} leads predominantly to the racemized P-chiral phosphines owing to pseudorotation of the pentacoordinate intermediates. ${ }^{[157]}$

Historically, in 1965 Horner developed the first method for reduction of optically active methylphenylbenzylphosphine oxide (Sp)-279 to appropriate phosphines. ${ }^{[17 a]}$ In presence of trichlorosilane the reduction proceeded with retention of configuration, whereas the combination of trichlorosilane with $\mathrm{Et}_{3} \mathrm{~N}$ led to a inversion at phosphorus. Interestingly,

Horner and Balzer observed that in the presence of pyridine and N, N-diethylaniline the stereochemical course of this reaction is retention. ${ }^{[17 \mathrm{a}]}$

To rationalize the retention of configuration in the absence of base, Horner and Balzer suggested complexation to 281, followed by intramolecular hydride transfer to 282, which after a release von HOSiCl_{3} allowed the formation of the (Rp) - $\mathbf{2 8 0}$ with retention of configuration. ${ }^{[17 \mathrm{a}]}$

(Rp)-280
To establish the inversion of configuration in the presence of triethylamine it was suggested that complexation to 281 followed by intermolecular hydride transfer from a 1:1 triethylamine-trichlorosilane complex 283 in an $S_{N} 2$ reaction through formation of the the intermediate 282 followed by an elimination of HCl from 284 and the formation of $(S p)$ 280. ${ }^{[17 \mathrm{a}]}$

In addition Mislow et. al reported the use of hexachlorodisilane (285) as reducing agent for the reduction of optically active phosphine oxide ($S p$)-279 and sulphide ($S p$)-286 with inversion of configuration. ${ }^{[17 b]}$

In 1974 the use of phenylsilane (287) to reduce ($R p$)-1,3-dimethylphospholane 1-oxide (288) with complete retention of configuration to yield (Sp)-289 was published by Marsi et. al. ${ }^{[158]}$ Acyclic optically active phosphine oxides were also reduced with complete retention of configuration using the same protocol.

Phenylsilane offers advantages over trichlorosilane as a reducing agent since the later method employs the use of an amine which may be somewhat difficult to separate from the phosphine when the two have similar boiling points. Hexachlorodisilane offers the advantage of reduction with inversion, if that stereochemical operation is required. However, if a configurationally pure phosphine is desired, hexachlorodisilane may not be satisfactory since its use is accomplished by some stereomutation, attributed to the generation of silicon tetrachloride produced in situ. Additionally, hexachlorodisilane is currently an expensive reagent.

Recently, Imamoto et. al reported a convenient method for the stereospecific reduction of optically active phosphine oxides. P-chiral monophosphine oxides were reduced with inversion of configuration in high chemical yield. However, the reduction of P-chiral diphosphine dioxide ($R p, R p$)-290 gave low yield of the borane complex $(S p, S p)-\mathbf{2 9 1} .{ }^{[159]}$

(Rp,Rp)-290
1.MeOTf, DME
$\xrightarrow[\substack{24 \% \\ 99 \% \text { ee }}]{\substack{\text { 2. } \mathrm{LiAlH}_{4},-60^{\circ} \mathrm{C} \\ \text { 3. } \mathrm{BH}_{3} \text { in } \mathrm{THF}}}$

(Sp,Sp)-291

Although the detailed reaction mechanism has not yet been studied, it was supposed that the phosphine oxide 292 is methylated by methyl triflate, and the resulting phosphonium salt 293 is subjected to hydride attack 294 from the backside of the methoxy group to give the reduction product 292 (Scheme 24).

Scheme 24. Proposed formation of $\mathbf{2 9 5}$ by reduction with MeOTf / $\mathrm{LiAlH}_{4}{ }^{[159]}$

However, very low stereospecificity was observed when methyl iodide, methyl methanesulfonate, and methyl p-toluenesulfonate were used. In these cases, the methylation of the phosphine oxide was not observed. The reduction probably proceeds in this case through the initial generation of alane by the reaction of methylation reagents with LiAlH_{4} and subsequent reaction of phosphine oxides with alane. ${ }^{[160]}$

Lately, a new protocol for deoxygenation of the P-chiral monophosphine oxide ($R p$)-23 with complete retention of configuration appeared. The use of trichlorsilane and triphenylphosphine as an oxygen acceptor furnished accomplimentary protocol to the $\mathrm{HSiCl}_{3} / \mathrm{Et}_{3} \mathrm{~N}$ system that normally leads to an inversion. The enantiomerically pure phosphine $(S p)-296$ was isolated in high yield and excellent $e e .^{[161]}$

(Rp)-23

(Sp)-296

According our synthetic plan, the novel P-chiral diphosphine dioxides 262a and ($R p, S p$)-276a and $(R p, S p)$-276b were submitted for the stereospecific reduction. Unfortunately, the use of
the common silane reagents PhSiH_{3} or $\mathrm{HSiCl}_{3} / \mathrm{Et}_{3} \mathrm{~N}$ resulted in partial or complete racemization at phosphorus. Since, the N-O bond in 276a might be cleaved in the presence LiAlH_{4} as a hydride donor, the Imamoto method was applied only to 262a however without any success. After many attempts to achieve the desired P-chiral diphosphines in diastereomerically pure form by variation of reaction conditions (solvent, temperature, reagents addition, reaction time, concentration) no positive results were obtained.
However, recently an interesting method based on the titanium(IV) catalysed reduction of phosphine oxides by triethoxysilane or polymethylhydrosiloxane (PMHS) was reported. The silane/titanium method is evidently proceeding predominantly with retention of configuration of phosphorus, providing an alternative to the phenylsilane and trichlorosilane (in the absence of an amine) methods both of which proceeded with retention. ${ }^{[162,19]}$ The optically active $(R p)-23$ was reduced in the presence of $(\mathrm{EtO})_{3} \mathrm{SiH}$ or PMHS followed by reaction with benzylbromide leading to the phosphonium salt ($R p$)-297, which showed opposite rotation value as compared to the (Sp)-297. ${ }^{[162]}$

(Rp)-23

(Rp)-297

$$
[\mathrm{a}]_{\mathrm{D}}=+40\left(\mathrm{c}, 1.2 \text { in } \mathrm{CHCl}_{3}\right)
$$

(Sp)-297
$[a]_{D}=-43\left(c, 1.2\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

If the reaction occurs by way of a titanium hydride species 298, the stereochemistry can be explained by a syn-hydrotitanation type process 299 as the key step to give the protonated phosphine $\mathbf{3 0 0}$ with retention ofconfiguration. ${ }^{[162]}$

The application of this method to the reduction of ($R p, S p$)-276a and ($R p, S p$)-276b showed gratifiyingly that the P-stereogenic diphosphine dioxide ($R p, S p$)-276a was reduced stereospecifically in the presence of $\mathrm{Ti}(\mathrm{OiPr})_{4}$ and polymethylhydrosiloxane (PMHS) to give only one diastereoisomeric diphosphine ($S p, R p$)-301a as a product in good yield:

(Rp,Sp)-276a

5

(Sp,Rp)-301a

The other P-chiral diastereoisomeric diphosphine dioxide ($R p, S p$) -276b also underwent this stereospecific reduction to give ($S p, R p$)-301b without any racemization in 82% yield.

To prove that the formation of the new P-stereogenic diphosphines was stereospecific, each of them was oxidized with elementar sulfur to give desired P-stereogenic diphosphine disulfides $(R p, S p)$-302a and $(R p, S p)$-302b in high yields and especially as only one diastereoisomer, indicating a highly stereospecific reduction-oxidation sequence.

(Rp,Sp)-276a

(Rp,Sp)-276b

$$
\xrightarrow[96 \%]{\begin{array}{l}
\text { 1. } \mathrm{Ti}(\mathrm{OiPr})_{4}, \mathrm{PMHS}, 16 \mathrm{~h}, \mathrm{THF}, 66^{\circ} \mathrm{C} \\
\text { 2. } \mathrm{S}_{8}, \text { benzene, } 80^{\circ} \mathrm{C}, 2 \mathrm{~h}
\end{array}}
$$

($R p, S p$)-302a

(Rp,Sp)-302b

After column chromatography, diastereomerically pure diphosphine disulfides were obtained as pure white solids and characterized by their ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$ NMR and IR spectra. Replacing phosphinyl oxygen with sulfur resulted in considerable decreases in ${ }^{1} J_{\mathrm{PC}}$ coupling constants by ca. $30 \mathrm{~Hz} .{ }^{[153]}$ In the ${ }^{1} \mathrm{H}$ NMR spectra the methyl groups at phosphorus resonate as doublets, $\left({ }^{2} J_{\mathrm{PH}}=12.9 \mathrm{~Hz}\right)$. The ${ }^{31} \mathrm{P}$ NMR spectra of each P-chiral diphosphine disulfide shows two doublets which are shielded +45 to 50 ppm as compared to the diphosphine dioxides ($R p, S p$)-273 (+ 35 and 40 ppm). The coupling constants of the major diastreoisomer $(R p, S p)$-302a are $J_{\mathrm{PP}}=29.7 \mathrm{~Hz}$ and $J_{\mathrm{PP}}=28.7 \mathrm{~Hz}$, and $J_{\mathrm{PP}}=27.2 \mathrm{~Hz}$ and $J_{\mathrm{PP}}=27.2 \mathrm{~Hz}$ for the minor ($R p, S p$)-302b one, indicating the magnetic non-equivalence of the asymmetric phosphorus atoms.

However, it should be mentioned that after reduction of P-chiral diphosphine dioxides ($R p, S p$)-276a and ($R p, S p$)-276b it was quite difficult to separate completely traces of PMHS from the sample of each diphosphine in order to obtain pure diphosphine directly after reduction. It is well known, that P-chiral phosphine-boranes are stable precursors to P-chiral phosphines, which can be easily handled in air and purified without decomposition by column chromatography. Usually, the synthesis of phosphine boranes is accomplished in one pot by treating a crude reaction mixture, which contains P-chiral phosphine, with BH_{3} in THF. ${ }^{[24]}$ After column chromatography or distillation pure diphosphine-boranes are usually obtained. This synthetic procedure was successfully applied to our P-stereogenic diphosphines to give diastereomerically pure diphosphine diboranes in high yield. It should be mentioned here that obtained ($S p, R p$)-303a and ($S p, R p$)-303b are stable at $25^{\circ} \mathrm{C}$ during 2-3 weeks as solids, but
then they slowly decomposed (${ }^{31} \mathrm{P}$ NMR). Therefore the samples were stored at $-25^{\circ} \mathrm{C}$ in the refrigerator for the period more as 2 months without decomposition (${ }^{31} \mathrm{P} N M R$).

(Rp,Sp)-276a

(Rp,Sp)-276b

(Sp,Rp)-303a

(Sp,Rp)-303b

Diastereomerically pure P-stereogenic diphosphine diborane complexes were assayed by their ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$ NMR spectra. Replacing phosphinyl oxygen by a borane moiety causes decreases in ${ }^{1} J_{\mathrm{PC}}$ coupling constants by ca. $20-30 \mathrm{~Hz}$. In the ${ }^{1} \mathrm{H}$ NMR the methyl groups at phosphorus resonate as doublets, with the slightly smaller coupling constant $\left({ }^{2} J_{\mathrm{PH}}=10.2 \mathrm{~Hz}\right) .{ }^{[24]}$ The ${ }^{31} \mathrm{P}$ NMR spectra of each P-chiral diphosphine diborane show four doublets which are shielded + 17 to 24 ppm as to ${ }^{31} \mathrm{P}$ NMR of diphosphine dioxides (+35 to 40 ppm), with the coupling constants for major diastreoisomer $(S p, R p)-\mathbf{3 0 3 a}$ are $J_{\mathrm{PP}}=41.6 \mathrm{~Hz}$ and $J_{\mathrm{PP}}=45.5 \mathrm{~Hz}$, and J_{PP} $=45.7 \mathrm{~Hz}$ and $J_{\mathrm{PP}}=44.6 \mathrm{~Hz}$ for the minor $(S p, R p)$-303b one, indicating the magnetic nonequivalence of asymmetric phosphorus atoms.

The P-stereogenic diphosphine diborane ($(S p, R p)$-303b crystallized by slow evaporation from a solvent mixture of hexane and $\mathrm{EtOAc}(3: 1)$ at $25^{\circ} \mathrm{C}$ afforded crystals suitable for a singlecrystal X-ray structure analysis (Fig.15).

Fig. 15 Structure of (Sp,Rp)-303b in the crystal. Selected bond lengths [pm], angles [${ }^{\circ}$]:
P1-B1 189.2(9), P1-C5 185.1(6), P1-C6 178.9(7), P2-B2 188.2(10), P2-C4 184.2(6), O1-C5 142.3(7), O1-N1 146.8(5), N1-C3 149.0(7), C3-C4 155.8(7), C4-C5 155.1(7), C6-P1-C5 103.5(4), C6-P1-B1 113.6(4), C5-P1-B1 110.7(4), C13-P2-C4 105.5(3), C13-P2-B2 111.4(4), C4-P2-B2 115.0(4), C5-O1N1 102.2(4), O1-N1-C3 100.8 (4), N1-C3-C4 101.7(5), C5-C4-P2 112.3(4), C3-C4-P2 109.9(4), O1-C5-C4 106.7(5), C4-C5-P1 115.3(4), O1-C5-C4 113.7(4).

On the basis of the X-ray analysis, it was possible to assign absolute configuration of both asymmetric phosphorus atoms and carbon atoms of the isoxazolidine ring in ($S p, R p$)-303b. The absolute configurations of phosphorus atoms are S (phosphorus substituent at C-5) and R (at $\mathrm{C}-4$). The absolute configurations of carbon atoms in the isoxazolidine ring are $\mathrm{C}-3-R, \mathrm{C}$ -$4-R$, C-5 - S. This assignment is in very good correlation with NOE experiments done for the assignment of the relative configuration in diastereoisomeric diphosphine dioxides $(R p, S p)$-276a and $(R p, S p)-\mathbf{2 7 6 b}$. The main question concerning the stereospecifity of the reduction with the $\mathrm{Ti}(\mathrm{OiPr})_{4}$ / PMHS system also could be answered. Regarding the absolute configuration of the starting diphosphine dioxide ($R p, S p$)-276b it can be concluded that the reduction proceeds with retention of configuration at both phosphorus atoms leading to P chiral diphosphine with absolute configuration $S p, R p$. Since, reaction of a enantiomerically pure phosphine with BH_{3} in THF is well known to proceed with retention of
configuration ${ }^{[24,159]}$, the obtained $(S p, R p)$-303b clearly confirms that retention took place by reduction of P-chiral ($R p, S p$)-276b.
The attempts to oxidize the P-chiral diphosphine back to the starting P-chiral diphosphine dioxide with $\mathrm{H}_{2} \mathrm{O}_{2}{ }^{[47]}$, in order to check if the reduction proceeded with retention or inversion of configuration, failed. The treatment of P-chiral diphosphine diborane ($S p, R p$)-303a with m-CPBA in dichloromethane ${ }^{[55]}$ did not result in the stereospecific formation of ($R p, S p$)-276a, but no traces of diphosphine borane ($S p, R p$)-303a were detected by ${ }^{31} \mathrm{P}$ MNR.

(Sp,Rp)-303a

Presumably, this reaction accomplished by partial racemization at phosphorus leading to a mixture of diastereomeric diphosphine dioxides (${ }^{31} \mathrm{P}$ NMR).

3.5. Synthesis of \boldsymbol{P}-Chiral Diphosphines from \boldsymbol{P}-Chiral Diphosphine Diboranes

P-chiral phosphine-borane is usually treated with a an excess of amine which has strong nucleophilicity to give after filtration pure phosphine with complete retention of configuration at phosphorus ${ }^{[24]}$ Generally, this deboronation is followed by reaction of an enantiomerically pure phosphine with a transition metal in order to achieve a formation of a chiral complex of the appropriate phosphine.
To apply this procedure to the P-stereogenic diphosphine diboranes ($S p, R p$)-303a and $(S p, R p)$-303b, they were reacted with 1,4-diazabicyclo[2.2.2]octane (DABCO) in toluene at $70^{\circ} \mathrm{C}$ for 3 h .

(Sp,Rp)-303a
(Sp,Rp)-301a

DABCO is a crystalline compound, which can be easily handled, since other amines diethylamine, pyrrollidine or morpholine usually required distillation under argon prior its use. After reaction, DABCO can be easily removed by filtration by using toluene as a solvent. P-stereogenic diphosphines $(S p, R p)$-301a and $(S p, R p)$-301b formed after deboronation in high yield and are virtually pure according to their ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$ NMR spectra. In the ${ }^{31} \mathrm{P}$ NMR spectra the signals appear as two doublets in the upfield between -27 and -31 ppm . The coupling constants J_{PP} are different and found to be larger for the diphosphine ($S p, R p$)-301a $\left(J_{\mathrm{PP}}=10.9 \mathrm{~Hz}\right)$, whereas for the $(S p, R p)$-301b diphosphine the coupling constant is $J_{\mathrm{PP}}=7.6$ Hz . The methyl groups at phosphorus resonate as doublets in the ${ }^{1} \mathrm{H}$ NMR spectra, with the coupling constant ${ }^{2} J_{\mathrm{PH}}=4.3 \mathrm{~Hz}$. In the ${ }^{13} \mathrm{C}$ NMR spectra signals of the carbon atoms of the isoxazolidine ring appear as double doublets indicating a strong coupling with the phosphorus atoms: $\left({ }^{1} J_{\mathrm{PC}}=32.9 \mathrm{~Hz},{ }^{1} J_{\mathrm{PC}}=8.1 \mathrm{~Hz}, \mathrm{C}-4\right),\left({ }^{1} J_{\mathrm{PC}}=30.5,{ }^{1} J_{\mathrm{PC}}=5.2 \mathrm{~Hz}, \mathrm{C}-5\right),\left({ }^{2} J_{\mathrm{PC}}=8.2 \mathrm{~Hz}\right.$, $\mathrm{C}-3$). The obtained new P-chiral diphosphines must be carefully handled under argon and stored in the refrigerator at $-25^{\circ} \mathrm{C}$.

3.6. Synthesis of the Rhodium Complex 310 of the Novel \boldsymbol{P}-chiral Diphosphine (Sp,Rp)-301a

Highly selective catalysts are revolutionizing asymmetric synthesis. The invention of enantiospecific, Rh-based catalysts for the homogeneous hydrogenation of prochiral enamides in the early 1970s initiated intense efforts towards the discovery of new, more effective catalysts and the elucidation of the reaction mechanism. ${ }^{[2,7,9]}$

Originally the synthesis of a rhodium complex of P-chiral diphosphine is accomplished by a treatment of a rhodium complex with a solution of phosphine at $25^{\circ} \mathrm{C}$. For example, the Rhcomplex of DIPAMP (12) was synthesized with rhodium(1,5-cyclooctadiene) chloride dimer (304) and sodium tetrafluoroborate to give the catalyst precursor 305. ${ }^{[6]}$

$(S, S)-12$

90%

Imamoto reported the synthesis of the Rh-complex 308, by treatment of $\mathrm{Rh}(\mathrm{nbd})_{2} \mathrm{BF}_{4}(\mathbf{3 0 7})$ in THF with the solution of the P-chiral diphosphine 306. The Rh-complex 308 was obtained after recrystallization from THF in 60% yield as red-yellow plates. ${ }^{[163]}$

306

308

Recently, Nagel et. al. reported the synthesis of a series of P-chiral diphosphines and the synthesis of their Rh-and Pd-complexes. ${ }^{[164]}$ The synthesis of the Rh-complex 310 was
achieved in high yield by mixing P-chiral diphosphine $\mathbf{3 0 9}$ with rhodium precursor $\mathrm{Rh}(\mathrm{nbd})_{2} \mathrm{BF}_{4}(\mathbf{3 0 7})$ in methanol at $-30^{\circ} \mathrm{C} .{ }^{[164]}$

The P-stereogenic diphosphine ($S p, R p$)-301a was failed to react with $\mathrm{Rh}(\mathrm{nbd})_{2} \mathrm{BF}_{4}$ in THF at $25^{\circ} \mathrm{C}$, only decomposition was detected by ${ }^{31} \mathrm{P}$ NMR. Due to this fact that the Nagel ligands possess a heterocyclic five-membered ring, it was proposed to use low temperature for the synthesis of the desired Rh-complex. Treatment of P-stereogenic diphosphine ($S p, R p$)-301a in THF at $-30^{\circ} \mathrm{C}$ produced the desired Rh-complex in 78% yield as an orange powder after carefully washing with hexane.

(Sp,Rp)-301a
 78%

310

The constitution of novel chiral Rh-complex 310 was by ${ }^{31} \mathrm{P}$ NMR and ${ }^{1} \mathrm{H}$ NMR spectroscopy. In the ${ }^{31} \mathrm{P}$ NMR of $\mathbf{3 1 0}$ appear four doublets, which is in agreement with the proposed structure. (Fig. 16) Since two asymmetric phosphorus atoms are chemically not equivalent, the appearance of four doublets can be easily explained.

Fig. $16{ }^{31} \mathrm{P}$ NMR of the novel rhodium complex 310

The coupling constant are in very good agreement with literature data ${ }^{[165]} \delta=-3.8\left(\mathrm{dd},{ }^{1} J_{\mathrm{RhP}}\right.$ $\left.=151.5 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=38.1 \mathrm{~Hz}\right),+12.3\left(\mathrm{dd},{ }^{1} J_{\mathrm{RhP}}=155.8 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=38.1 \mathrm{~Hz}\right)$. In the ${ }^{1} \mathrm{H}$ NMR spectra the methyl groups resonate as two doublets with the very diagnostic coupling constant ${ }^{2} J_{\mathrm{PH}}=8.4 \mathrm{~Hz}^{[165]}$ showing that both asymmetric phosphorus atoms coordinate to the rhodium atom. The Rh-complex $\mathbf{3 1 0}$ was found to be moderately sensitive to air. It is well soluble in $\mathrm{CDCl}_{3}, \mathrm{THF}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{2} \mathrm{O}$ and showed low solubility in hexane.

3.7. Novel P-Stereogenic Diphosphine ($\operatorname{Sp}, \mathrm{Rp}$)-301a in Asymmetric Pd-Catalyzed Allylic Alkylation Reaction

Palladium-catalyzed allylic substitution is a useful synthetic method for the formation of carbon-carbon and carbon-heteroatom bonds. ${ }^{[166]}$ The synthetic utility of transition metalcatalyzed allylic alkylations has soundly been demonstrated since its introduction nearly three decades ago. In contrast to most metal-catalyzed enantioselective processes, asymmetric allylic akylations involve net reaction at sp^{3} instead of sp^{2} centers. The ability to transform achiral, prochiral, or chiral racemic material to enantiopure material under similar conditions is unique to the asymmetric allylic alkylation reaction. The significant contributions on this field provided the research groups of Trost, Pfaltz, Helmchen and Togni, who developed
highly efficient chiral phosphorus ligands PHOX 311 ${ }^{[167]}$, Josiphos 312 $^{[168]}$, DACH-Phenyl 313 ${ }^{[169]}$ (Scheme 25).

91

311

92

313

Scheme 25. Highly efficient ligands 311-313 for asymmetric Pd-catalyzed allylic alkylation of $\mathbf{9 1}$

The enantioselective palladium allylic substitution was well recognized in the field of total synthesis. ${ }^{[170]}$ Methodology to efficiently synthesize tetrasubstituted carbon centers asymmetrically can play a key role in total synthesis of complex molecules. In this regard, dynamic kinetic asymmetric transformations in asymmetric allylic alkylation has created numerous possibilities for total synthesis, such as that utilized in the synthesis of (-)malyngolide 97. ${ }^{[171]}$ This compound is a naturally occurring antibiotic possessing significant activity against Mycobacterium smegmatis and Streptococcus pyogenes.

314

313, $3 \mathrm{~mol} \%$
$1.0 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{dba})_{3}-\mathrm{CHCl}_{3}$
$\xrightarrow{\mathrm{PMBOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}}$
$74 \%, 99 \%$ ee

315
$+$

The widely accepted mechanism by which Pd oversees the asymmetric allylic substitution reaction is depicted in Scheme 26.

Scheme 26. Generally accepted mechanism for the enantioselective Pd-catalyzed allylic alkylation

The cycle begins by formation of an $\eta^{2} \pi$-alkene- Pd^{0} complex. Oxidative addition of Pd^{0} to form the π-allyl species then occurs with inversion at the leaving group center, providing the key $\eta^{3} \pi$-allyl- Pd^{2+} complex. This intermediate has been observed spectroscopically and was crystallographically charcterized ${ }^{[172]}$. Nucleophillic attack usually occurs from the face opposite the metal and an overall retention of stereochemistry is achieved. Attack generally occurs at the least substituted position for unsymmetrical allyl complexes. Nucleophilic attack results in a formal two electron reduction of the metal producing a $\operatorname{Pd}(0)$-olefin complex. Ligand exchange then occurs resulting in the original $\operatorname{Pd}(0)$ catalyst re-entering the cycle and the product of the nucleophilic displacement.

Recently, P-chiral diphosphines were used by the Imamoto group in asymmetric allylic substitution reaction. ${ }^{[45, ~ 173]}$

The novel P-stereogenic diphosphine ($S p, R p$)-301a was employed in enantioselective Pdcatalyzed allylic alkylation of 1,3-diphenyl-2-propenyl acetate (91) with dimethylmalonate (320).

The reaction proceeded smoothly at $25^{\circ} \mathrm{C}$ in THF over 24 h and gave the desired product 92 in nearly quantitative yield after column chromatography. For the determination of enantiomeric excess of the obtained $\mathbf{9 2}$ the chiral dirhodium method developed recently by Duddeck et. al. was applied. ${ }^{[174]}$ This method has been proved as an effective practical way for determination of enantiomeric excess of organophosphorus chalcogenides, ${ }^{[175]}$ phosphineborane complexes ${ }^{[176]}$, aliphatic ethers, ${ }^{[177]}$ alanine esters, ${ }^{[178]}$ oxa- and thiatriazoles, ${ }^{[179]}$ and atropoisomeric diiodobiphenyls. ${ }^{[180]}$ By the use of $\left[\mathrm{Rh}_{2}(\mathrm{MTPA})_{4}\right]$ the $e e$ was found to be 81 \%, which is a very promising result for the further exploration on the enantioselective asymmetric alkylation employing new P-chiral ligands ($S p, R p$)-301. The assignment of the absolute configuration was established based on the reported optical rotation value for R and S enantiomer of $\mathbf{9 2}$, respectively.

4. Summary and Outlook

The development of new P-stereogenic phosphine ligands has become very important due to expanded utility of transition metal catalyzed asymmetric synthesis such as hydrogenation, hydrosilylation, hydrocarbonylation, C-C coupling reactions and isomerization. ${ }^{[2]}$ Among the large number of optically active phosphine ligands which present in common the 1,2diphosphanylethane substructure with chiral information located in the carbon backbone connecting the two phosphane fragments, only very few possess a stereogenic center at the phosphorus atom, because of the difficulties in ligand synthesis. ${ }^{[8,47]}$

This work is devoted to the synthesis of novel P-stereogenic diphosphines for asymmetric catalysis. Previously regarded as not known, the P-chiral bidentate phosphorus ligands which possess two asymmetric phosphorus atoms located close to the rigid chiral backbone, were successfully synthesized via Ru-catalyzed olefin cross-metathesis followed by asymmetric Huisgen cycloaddition reaction.
The homo-coupling of P-chiral vinylphosphine oxide ($S p$)-97 was investigated with an emphasis on the choice of the Ru-precatalyst and the reaction conditions. It was found that homo-coupling of ($S p$) -97 proceeded well in the presence of $5 \mathrm{~mol} \%$ of an appropriate second generation Hoveyda-Grubbs precatalyst and to be more efficient by the use of nitro precatalyst 138.

$(S p)$-97

$(S p, S p)-155$

In search for a more active precatalyst for homo-coupling of (Sp)-97 a new Hoveyda-Grubbs alkene metathesis catalyst, in which the benzylidene ligand has been coordinated to a highly electron withdrawing tricarbonylchromium moiety, was synthesized. The synthesis of a new precatalyst was performed by treatment of $\mathbf{2 0 5}$ with $\mathbf{1 3 4}$ in the presence of CuCl as a PCy_{3} scavenger, gave the desired bimetallic complex 202 in 74% yield as an air-stable dark red powder.

The structure of the complex 202 provides evidence for a so far unreported interaction between the benzylidene hydrogen atom and one of the mesityl substituents at the Arduengo carbene ligand.

Fig. 3. Structure of 202 in the crystal

Screening of the catalytic properties in ring-closing, enyne, cross, and homo metathesis shows an activity comparable to that of the most highly active catalysts with a chelating isopropoxy moiety. In addition, the ($S p$)-97 was homodimerized to give a significantly improved yield of ($S p, S p$)-155 in 91% yield, as compared to 80% with 138.

The synthesis of other bimetallic olefin metathesis precatalysts 236 and 239 has been accomplished.

236

239

An important aspect is the potential employment of bimetallic catalysts $\mathbf{2 0 2}$ and $\mathbf{2 3 6}$ in alkene metathesis of electron-deficient olefins, which should be pursued in the near future.

To construct the new P-chiral diphosphine ligands, the P-stereogenic diphosphine dioxide $(S p, S p)-\mathbf{1 5 5}$ as a chiral dienophile underwent an asymmetric Diels-Alder reaction with cyclopentadiene (239) to produce two diastereoisomeric diphosphine dioxides ($S p, S p$)-262a and $(S p, S p)-\mathbf{2 6 2 b}$ in the ratio 1.3:1

$(S p, S p)-155$

243, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 21 \mathrm{~h}$ 92 \%

(Sp,Sp)-262a
$+$

$(S p, S p)-\mathbf{2 6 2 b}$

The use of titanium(IV) chloride as a Lewis acid for asymmetric Diels-Alder reaction was found to affect the ratio of the desired diastereoisomers leading to ($S p, S p$)-262a in $80 \% \mathrm{de}$. The absolute configuration of the main diastereoisomer was confirmed by the X-ray diffraction. From developed transition states for this reaction it has been concluded that ($S p, S p$)-155 preferred the s-trans conformation during the cycloaddition.

$(S p, S p)-155$

80\% de

(Sp,Sp)-262a

Fig. 4 Structure of ($S p, S p$)-262a in the crystal

The microwave assisted asymmetric Huisgen cycloaddition of the P-stereogenic 1,2diphosphanylethene dioxide with acyclic nitrones 261 and 274 afforded the desired diastreomerically pure isoxazolidines ($R p, S p$)-276a and ($R p, S p$)-276b and ($R p, S p$)-278a and $(R p, S p)$-278b in high yields.

$(S p, S p)-155$

40min, toluene, $125^{\circ} \mathrm{C}$

(Rp,Sp)-278a

(Rp,Sp)-278b

The novel P-stereogenic diphosphine dioxides ($R p, S p$)-276a and ($R p, S p$)-276b were successfully reduced to the respective P-chiral diphosphines ($S p, R p$)-301a and ($S p, R p$)-301b by the use of $\mathrm{Ti}(\mathrm{OiPr})_{4} /$ polymethylhydrosiloxane (PMHS) in THF with complete retention of configuration at the phosphorus in high yields. This was proven by assignment of the absolute configuration by the X-ray analysis of the ($S p, R p$)-303b.

($R p, S p$)-276a

($R p, S p$)-276b

(Sp,Rp)-301a

(Sp,Rp)-303b

Fig. 15 Structure of $(S p, R p)$-303b in the crystal

The obtained P-stereogenic diphosphine ($S p, R p$)-301a was oxidized by treatment in situ of a crude reaction mixture with sulphur allowing the formation of diastereomerically pure P chiral diphosphine disulfide ($R p, S p$)-302a in high yield.

P-stereogenic diphosphine diboranes ($S p, R p$)-303a and ($S p, R p$)-303b were reacted with 1,4 diazabicyclo[2.2.2]octane (DABCO) in toluene at $70{ }^{\circ} \mathrm{C}$ for 3 h to form ($S p, R p$)-301a and $(S p, R p)$-301b, respectively.

$(S p, R p)-303 a$

The treatment of novel P-stereogenic diphosphine ($S p, R p$)-301a in THF at $-30^{\circ} \mathrm{C}$ produced the novel chiral Rh-complex 310 in 78%.

To test the ability of the novel P-chiral diphosphines in asymmetric catalysis, the novel P stereogenic diphosphine ($S p, R p$)-301a was employed in the enantioselective Pd-catalyzed allylic alkylation of 1,3-diphenyl-2-propenyl acetate (91) with dimethylmalonate (320). In unoptimized conditions the desired product was formed in nearly quantitative yield and 81% $e e$.

It is of great interest to employ the novel P-stereogenic bidentate ligands in Rh-catalyzed asymmetric hydrogenation of prochiral olefins. It could be interesting to study the mechanism of asymmetric hydrogenation with regard to the structure of these novel ligands. Recently, Imamoto proposed an alternative mechanism for Rh-catalyzed asymmetric hydrogenation with BisP* ligands. ${ }^{[180]}$

69

$$
\begin{aligned}
& R^{1}=\mathrm{Ph}, \mathrm{Ar} \\
& \mathrm{R}^{2}=\mathrm{Me}, \mathrm{H} \\
& \mathrm{R}^{3}=\mathrm{Me}, \mathrm{Ph}
\end{aligned}
$$

70
COCH_{3}

$$
\begin{gathered}
307 /(S p, R p)-301 \mathrm{a} \\
\mathrm{H}_{2}(1-2 \mathrm{~atm}) \\
\end{gathered}
$$

The utility of these new P-stereogenic bidentate ligand systems in the enantioselective alkylative ring opening of oxabenzonorbornadienes to $\mathbf{8 5}$, Pd-catalyzed asymmetric alyllic alkylation to 326, Ir-catalyzed asymmetric hydrogenation of imines to 75, Rh-catalyzed asymmetric hydrosilylation reactions to $\mathbf{8 2}$ and asymmetric hydrogenation of enamides, dehydroamino acids, itaconic acid derivatives and α - acylaminoacrylic acids and esters will be explored. (Scheme 27).

Scheme 27. The proposed utility of new P-chiral diphosphine ($S p, R p$)-301a in asymmetric catalysis

To summarize this work devoted to the synthesis of novel P-stereogenic diphosphine ligands, it should be mentioned that the concept based on olefin metathesis-asymmetric cycloadditionstereoselective reduction sequence, was successfully realized and should find applications in the future.

For example, a displacement of the phenyl group by a tert-butyl one is one of the possible improvements in this field. The respective approach would be based on the homo-coupling of $(S p)-\mathbf{1 3 0}$ to ($S p, S p$)-327 followed by an asymmetric Huisgen cycloaddition to the appropriate $(R p, S p)$-328, which after stereoselective reduction would give the desired P-stereogenic diphosphine ($S p, R p$)-329.

The cleavage of the isoxazolidine ring in $(R p, S p)$-276a or $(R p, S p)$ - $\mathbf{3 2 9}$ might be accomplished by hydrogenation on $10 \% \mathrm{Pd} / \mathrm{C}^{[138]}$ or by the use of $\mathrm{Mo}(\mathrm{CO})_{6}{ }^{[181]}$ in acetonitrile to give the desired 1,3-aminoalcohols ($R p, S p$)-276a or ($R p, S p$)-329, which could also be used as precursors to P-stereogenic diphosphine ligands.

(Rp,Sp)-276a

(Rp,Sp)-328
$\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$ or $\mathrm{Mo}(\mathrm{CO})_{6}$
$\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$ or $\mathrm{Mo}(\mathrm{CO})_{6}$

($R p, S p$)-330a
$(R p, S p)-331$

5. Experimental Part

5.1 General

All operations involving air-sensitive organometallic and organophosphorus compounds were carried out in an argon or nitrogen atmosphere, using standard vacline and Schlenk techniques. All glassware was flame-dried at reduced pressure and filled with a protective gas (repeated 3 times). The following solvents were distilled before use under a slight positive pressure of nitrogen or argon. Diethyl ether (DEE), toluene, benzene, dimethoxyethane (DME), hexane and tetrahydrofuran (THF) were distilled from sodium benzophenone ketyl. Methylene chloride (DCM) and triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ were distilled from calcium hydride. Petroleum ether (PE) and tert-butyl methyl ether (TBME) were distilled from calcium chloride.
${ }^{1} \mathbf{H}$ NMR, ${ }^{13} \mathbf{C}$ NMR and ${ }^{31} \mathbf{P}$ NMR spectra were measured at $25{ }^{\circ} \mathrm{C}$ with Bruker AM 400 (${ }^{1} \mathrm{H}: 400.1,{ }^{13} \mathrm{C}: 100.1,{ }^{31} \mathrm{P}$ NMR: 162 MHz$), 500\left({ }^{1} \mathrm{H}: 500,{ }^{13} \mathrm{C}: 125 \mathrm{MHz}\right)$ or WP 200 SY $\left({ }^{1} \mathrm{H}: 200.1,{ }^{13} \mathrm{C}: 50.3 \mathrm{MHz}\right)$ spectrometers. The chemical shifts refer to $\delta_{\mathrm{TMS}}=0 \mathrm{ppm}$ or to residual solvent signals as internal standard. For ${ }^{31} \mathrm{P}$ NMR a solution of $\mathrm{H}_{3} \mathrm{PO}_{4} 30 \%$ in water is used as external reference. The multiplicity of the peaks are abbreviated as $\mathrm{s}=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. The deuterated solvents [D_{6}]benzene, CDCl_{3} and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ were distilled under argon and used immediately. Atom numbering is arbitrary and does not correspond to the IUPAC.

Infrared spectra (IR) were recorded on a Perkin-Elmer FT-IR 580 and 1710 spectrometers. Signal intensities are abbreviated s (strong), m (medium) or w (weak).

Mass spectra (MS) were measured on a Micromass LCT with Lock-Spray-unit (ESI). The injection was made in Loop-Modes in a HPLC-Alliance 2695 (Waters). All values are given in atomic units of mass per elemental charge (m / z). The intensity is given as a percentage of the base peak.

High resolution mass spectra (HRMS) were recorded with the peak-matching method in Micromass LCT with Lock-Spray-unit (ESI). All values are given in atomic units of mass per elemental charge (m / z).

Optical rotations were determined with a Perkin Elmer PE-241 instrument at $20^{\circ} \mathrm{C}$ with the light frequency of 589 nm (D-line of a sodium vapour lamp) in a cuvette (length $d=1 \mathrm{dm}$ or d $=0.1 \mathrm{dm}$; concentration (c) is given in $\mathrm{g} / 100 \mathrm{~mL}$).

Melting points were determined with the Electrothermal IA 9200.

Elemental analysis (EA) Microanalyses were conducted with a Elementar Vario EL instrument with acetamide as standard. All values are given as mass percentages.

Microwave Oven ($\mu \mathbf{W}$) Microwave heating was carried out with a CEM Corporation Discover ${ }^{\circledR}$ LabMate ${ }^{\mathrm{TM}}$ single-mode microwave cavity operating at 300 W .

5.2 Synthesis of Organophosphorus Compounds

5.2.1 rac-Butylchlorophenylphosphinite (107) ${ }^{[48]}$

A mixture of 1-butanol ($22.30 \mathrm{~g}, 0.3 \mathrm{~mol}$) and N, N-diethylaniline ($44.80 \mathrm{~g}, 0.3 \mathrm{~mol}$) in petroleum ether (50 mL) was added dropwise over 1 hour at $-30^{\circ} \mathrm{C}$ to mechanically stirred dichlorophenylphosphine ($54.00 \mathrm{~g}, 0.3 \mathrm{~mol}$) in degassed petroleum ether (300 mL). After completed addition, the reaction mixture was stirred for one additional hour at $-30{ }^{\circ} \mathrm{C}$. Thereafter the white precipitate was filtered off, washed with degassed petroleum ether $(3 \times 100 \mathrm{~mL})$, and solvents were removed at reduced pressure to give $42.2 \mathrm{~g}(0.2 \mathrm{~mol}, 65 \%)$ of 107. The colourless residue was used for next step without distillation avoiding decomposition of $\mathbf{1 0 7}$.
rac-(107): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4-\mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H})$, $1.68(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}), 3.93(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 7.45-7.48\left(\mathrm{~m}, 3 \mathrm{H}_{A r}\right), 7.80-7.84\left(\mathrm{~m}, 2 \mathrm{H}_{A r}\right) \mathrm{ppm} .-{ }^{31} \mathrm{P}$ NMR ($\left.\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right): \delta=+175.95 \mathrm{ppm}$.

5.2.2 rac-Butylphenylvinylphosphinite (108) ${ }^{[49]}$

A solution of vinyl magnesium bromide prepared from of magnesium $18.60 \mathrm{~g}(0.78 \mathrm{~mol})$ and vinyl bromide $90.00 \mathrm{~g}(60 \mathrm{~mL}, 0.85 \mathrm{~mol})$ in THF (100 mL), was added dropwise at $-65^{\circ} \mathrm{C}$ in THF (150 mL) over 1-2 h to mechanically stirred of rac-butylchlorophenylphosphinite (107) $145.00 \mathrm{~g}(0.671 \mathrm{~mol})$ in THF (300 mL). After complete addition, the reaction mixture was allowed to stir at $25^{\circ} \mathrm{C}$ for 1 h . THF was removed from the reaction flask in high vacuum and to yellow pasty residue was added petroleum ether (250 mL) and freshly distilled pyridine (50 mL) with vigorous mechanically stirring. The white-yellow precipitate was grinded with a spoon, filtered off and effectively washed with petroleum ether (500 mL). Solvents were evaporated under high vacuum (2 Torr) and the residue distilled under vacuum to give pure phosphinite 108 in $65.6 \mathrm{~g}(0.32 \mathrm{~mol}, 47 \%)$.
rac-(108): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4-\mathrm{H}), 1.46(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 1.69$ $(\mathrm{m}, 2 \mathrm{H}, 2-\mathrm{H}), 3.81(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H}), 5.82-6.07(\mathrm{~m}, 2 \mathrm{H}, 10-\mathrm{H}), 6.47-6.70(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}), 7.41-7.66$ $\left(\mathrm{m}, 5 \mathrm{H}_{A r}\right) \mathrm{ppm} .-{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right): \delta=-14.96 \mathrm{ppm}$.

5.2.3 (Sp)-(-)-(Ethenylphenylphosphinyl)acetic acid menthyl ester (109) ${ }^{[51]}$

In a 250 mL 3-necked flask charged with a cooling condenser, thermometer, dropping funnel and magnetic stirrer was placed $(-)$ menthyl bromoacetate $(36.00 \mathrm{~g}, 0.129 \mathrm{~mol})$ and preheated to $100-105^{\circ} \mathrm{C}$. rac-108 (distilled twice, $27.00 \mathrm{~g}, 0.129 \mathrm{~mol}$), was added dropwise (without external heating of the oil bath) at a rate as to keep the reaction temperature around $100-110^{\circ}$ C only by the exothermic process. After completed addition, the reaction mixture was kept at this temperature by stirring for one additional hour. After cooling to $25^{\circ} \mathrm{C}$ toluene (8 mL) was added and vacuum was applied to remove it with most of the butylbromide. The final residue after evaporation had consistency of mead (crystallization). The white precipitate was washed with cold benzene (300 mL) in a Büchner funnel and recrystallized from benzene until constant optical rotation value. White powder $14.80 \mathrm{~g}(0.0425 \mathrm{~mol}, 32.9 \%) . \mathrm{M} . \mathrm{p} .=152{ }^{\circ} \mathrm{C}$. (Sp)-(109): $[\alpha]^{\mathrm{D}}{ }_{20}=-93\left(c=4.8, \mathrm{CHCl}_{3}\right)^{[51]}$. $-\mathrm{IR}(\mathrm{ATR}): \tilde{v}=2960(\mathrm{w}) \mathrm{cm}^{-1}, 2922(\mathrm{w}), 2863$ (w), 1717 (s, C=O), 1442 (w), 1279 (s, P=O), 1190 (s), 1115 (s), 1001 (w), 972 (w), 856 (w), 836 (w), 800 (w), 732 (s), 716 (w), 696 (w), 682 (w). - ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.59$ (d, $J=6.8 \mathrm{~Hz}, 17-\mathrm{H}), 0.78(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 17 ’-\mathrm{H}), 0.85(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, 12-\mathrm{H}), 0.92(\mathrm{~m}$, $2 \mathrm{H}, 10$ '-H, 11-H), 1.24 (m, 1H, 15-H), 1.36 (m, 1H, 13-H), $1.60(\mathrm{~m}, 3 \mathrm{H}, 14-\mathrm{H}, 13-\mathrm{H}), 1.84$ (m, 1H, 10'-H) 3.18 (d, $\left.J=15.1 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}, 2^{\prime}-\mathrm{H}\right), 4.54-4.61(\mathrm{dt}, 1 \mathrm{H}, 9-\mathrm{H}), 6.21-6.32$ (ddd, $\left.{ }^{3} J_{\mathrm{PH}}=27.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=12.3 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=1.37 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 6.34-6.44\left(\mathrm{ddd},{ }^{3} J_{\mathrm{PH}}=28.0 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{HH}}=18.4 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 6.58\left(\mathrm{dddd},{ }^{3} J_{\mathrm{PH}}=27.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=18.4 \mathrm{~Hz}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}\right.$ $\left.=12.3 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=1.37 \mathrm{~Hz}, 3-\mathrm{H}\right), 7.43-7.53\left(\mathrm{~m}, 3 \mathrm{H}_{A r}\right), 7.71-7.76\left(\mathrm{~m}, 2 \mathrm{H}_{A r}\right) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR (100.6 MHz, BB, DEPT, HMQC, HMBC, H,H-COSY, CDCl_{3}): $\delta=16.6$ (C-17), 21.3 (C-18), 22.5 (C-12), 23.8 (C-13), 26.4 (C-14), 32.0 (C-16), 34.7 (C-11), 39.1 (d, ${ }^{2} J=68.6 \mathrm{~Hz}, \mathrm{C}-2$), 41.2 (C-10), 46.5 (C-15), 76.4 (C-9), 129.2 (d, ${ }^{3} J=12.4 \mathrm{~Hz}, \mathrm{C}-7$), 130.9 (d, ${ }^{1} J=97.6 \mathrm{~Hz}, \mathrm{C}-$ 3), $131.2\left(\mathrm{~d},{ }^{2} J=9.8 \mathrm{~Hz}, \mathrm{C}-6\right), 132.8\left(\mathrm{~d},{ }^{4} J=2.9 \mathrm{~Hz}, \mathrm{C}-8\right), 135,7(\mathrm{C}-4), 166.4\left(\mathrm{~d},{ }^{2} J=4.4 \mathrm{~Hz}\right.$, $\mathrm{C}-1) \mathrm{ppm} .-{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162.0 \mathrm{MHz}\right): \delta=+20.47 \mathrm{ppm} .-\mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%): 349$ $\left[\mathrm{M}^{+}+\mathrm{H}\right], 211$ (96), 193 (68), 166 (21), 151 (100). - HR-MS (ESI) calcd. for $[\mathrm{M}+\mathrm{Na}]^{+}$ $\left(\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{PNa}\right)$: 371.1752, found. 371.1857. - Anal $\left(\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{P}\right)$: Calcd. C 68.94, H 8.39; found C 68.49, H 8.19.

5.2.4 (Sp)-Methylphenylvinylphosphine oxide (97) ${ }^{[52]}$

In a 1 L three necked round bottom flask were placed $\left(S_{p}\right) \mathbf{- 1 0 9}(20.4 \mathrm{~g}, 0.059 \mathrm{~mol})$, water (1.1 $\mathrm{mL})$, lithium chloride ($4.98 \mathrm{~g}, 0.117 \mathrm{~mol}$) and dimethylsulfoxide (400 mL) and heated at reflux for 4 h . Dimethylsulfoxide was completely distilled off and chloroform (200 mL) was added in order to precipitate LiCl , which was filtered off, and the residue was distilled 137 $140{ }^{\circ} \mathrm{C} / 3$ Torr to give $(S p)-976.014 \mathrm{~g}(0.036 \mathrm{~mol}, 61 \%)$ as a colourless liquid, which on standing crystallizes in white crystals. M. p. $=79-80^{\circ} \mathrm{C}$.
$(S p)-97:[\alpha]^{\mathrm{D}}{ }_{20}=-80\left(c=2.6, \mathrm{CHCl}_{3}\right)^{[52]} .-\mathrm{IR}(\mathrm{ATR}): \tilde{v}=1590(\mathrm{w}) \mathrm{cm}^{-1}, 1486(\mathrm{w}), 1439$ (w), 1415 (w), 1392 (w), 1293 (w), 1169 (s, P=O), 1113 (s), 1072 (w), 1002 (w), 965 (s), 889 (s), 765 (w), 746 (s), 697 (s), 672 (w). $-{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.75-1.79$, (d, ${ }^{2} J_{\mathrm{PH}}$ $=13.3 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{H}), 6.35-6.49\left(\mathrm{ddd},{ }^{3} J_{\mathrm{PH}}=28.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=12.3 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}\right)$, $\left(\mathrm{ddd},{ }^{3} J_{\mathrm{PH}}=23.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=18.4 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}\right),\left(\mathrm{dddd},{ }^{3} J_{\mathrm{PH}}=24.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=\right.$ $\left.12.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=18.4 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 7.46-7.52\left(\mathrm{~m}, 3 \mathrm{H}_{\mathrm{Ar}}\right), 7.68-7.73(\mathrm{~m}$, $2 \mathrm{H}_{A r}$) ppm. - ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{BB}$, DEPT, HMQC, CDCl_{3}): $\delta=15.9\left(\mathrm{~d},{ }^{1} J=74.4 \mathrm{~Hz}\right.$, C-3), 128.6 (d, $\left.{ }^{3} J=11.8 \mathrm{~Hz}, \mathrm{C}-6\right), 130.0\left(\mathrm{~d},{ }^{2} J=9.7 \mathrm{~Hz}, \mathrm{C}-5\right), 131.7\left(\mathrm{~d},{ }^{4} J=2.7 \mathrm{~Hz}, \mathrm{C}-7\right)$, 132.8 (C-1), 132.9 (d, ${ }^{1} J=95.3 \mathrm{~Hz}, \mathrm{C}-2$), 133.7 (d, $\left.{ }^{1} J=102.2 \mathrm{~Hz}, \mathrm{C}-4\right) \mathrm{ppm} .-{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162.0 \mathrm{MHz}\right): \delta=+28.2 \mathrm{ppm} .-\mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%): 166\left[\mathrm{M}^{+}\right], 151$ (75), 139 (56), 133 (15), 125 (23), 109 (14), 104 (73), 91 (24), 77 (90), 63 (11). - HR-MS (ESI) calcd. for [M + $\mathrm{H}]^{+}\left(\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{OPNa}\right): 167.0626$, found. 167.0630.

5.2.5 ($S p, S p$)-(-)-(E)-Ethene-1,2-diylbis[methyl(phenyl)phosphine] dioxide (155)

In a $100-\mathrm{mL}$ Schlenk flask were placed $(S p)-97(500 \mathrm{mg}, 3.01 \mathrm{mmol})$ in dichloromethane (12 $\mathrm{mL})$. Thereafter, Ru-precatalyst $\mathbf{1 3 8}(115 \mathrm{mg}, 0.15 \mathrm{mmol})$ in dichloromethane (3 mL) was added via syringe. The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 24 h . Solvents were removed at reduced pressure and brown residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, 25 \times 4\right.$ $\mathrm{cm}, \mathrm{CHCl}_{3} / \mathrm{MeOH} 9: 1$) to give $80 \%(368 \mathrm{mg}, 1.2 \mathrm{mmol})$ of $(S p, S p)-\mathbf{1 5 5}$ as a white powder. M. p. $=238^{\circ} \mathrm{C}$.
$(S p, S p)-155:[\alpha]^{\mathrm{D}}{ }_{20}=-255.0\left(c=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .-\mathrm{IR}(\mathrm{ATR}): \tilde{v}=3056(\mathrm{w}) \mathrm{cm}^{-1}, 2989(\mathrm{w})$, 1590 (w), 1483 (w), 1437 (w), 1174 (s, P=O), 1112 (s), 1071 (w), 1032 (w), 1024 (s), 890 (s), 881 (s), 820 (w), 737 (s), $692(\mathrm{~s}) .-{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.83\left(\mathrm{t},{ }^{2} J_{\mathrm{PH}}=13.1 \mathrm{~Hz}\right.$, $6 \mathrm{H}, 3-\mathrm{H}), 7.33\left(\mathrm{t}, J_{\mathrm{AX}}+J_{\mathrm{BX}}=50.0 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}\right), 7.53-742\left(\mathrm{~m}, 6 \mathrm{H}_{A r}\right), 7.68-7.62\left(\mathrm{~m}, 4 \mathrm{H}_{A r}\right)$ ppm. - ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{BB}$, DEPT, HMQC CDCl 3): $\delta=16.7\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PC}}=74.5 \mathrm{~Hz}, \mathrm{C}-6\right)$, $128.8\left(\mathrm{t},{ }^{3} J=12.1 \mathrm{~Hz}, \mathrm{C}-4\right), 129.9,\left(\mathrm{t},{ }^{2} J=9.9 \mathrm{~Hz}, \mathrm{C}-3\right), 131,3\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=103.3 \mathrm{~Hz}, \mathrm{C}-2\right)$, $132.1\left(\mathrm{~d},{ }^{4} J=2.7 \mathrm{~Hz}, \mathrm{C}-5\right), 140.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=23.6 \mathrm{~Hz}, \mathrm{C}-1\right) \mathrm{ppm} .-{ }^{31} \mathrm{P} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 162.0\right.$ MHz): $\delta=+26.4 \mathrm{ppm} .-\mathrm{MS}(\mathrm{EI}) m / z(\%): 304\left[\mathrm{M}^{+}\right] .-\mathrm{HR}-\mathrm{MS}(\mathrm{ESI})$ calcd. for $[\mathrm{M}+\mathrm{Na}]^{+}$ $\left(\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Na}\right)$: 327.0674, found 327.0690. - $\left(\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{P}_{2}\right)$: Calcd. C 63.16, H 5.96; found C 62.34, H 6.18.

The by-products $159-161$ were isolated after homo-coupling of ($S p$)-97 with ruthenium precatalysts 138, 156, 137, respectively.

5.2.6 (Sp)-(-)-(E)-[2-(2-Isopropoxy-1,1'-biphenyl-3-yl)vinyl](methyl)phenylphosphine oxide (161) ${ }^{[22]}$

(Sp)-(161): Brown-green pasty oil, $47.2 \mathrm{mg}(0.12 \mathrm{mmol}, 5 \%) .-[\alpha]^{\mathrm{D}}{ }_{20}=+11.4(c=1.7$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). - IR (ATR): $\widetilde{v}=2927$ (w) $\mathrm{cm}^{-1}, 1602$ (w), 1421 (s), 1381 (w), 1258 (w), 1220 (s), 1173 (s, P=O), 1104 (s), 1008 (w), 931 (w), 906 (w), 787 (s), 759 (s), 696 (s). - ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=0.89$ (dd, $\left.J=6.2,10.9 \mathrm{~Hz}, 6 \mathrm{H}, 14-\mathrm{H}\right) ; 1.91\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=13.3 \mathrm{~Hz}, 3 \mathrm{H}, 3-\right.$ H), 3.72 ($\mathrm{spt}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{H}$), $6.75(\mathrm{dd}, J=18.0 \mathrm{~Hz}, 20.5 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 7.17(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}, 12-\mathrm{H}), 7.34-7.30\left(\mathrm{~m}, 2 \mathrm{H}_{A r}\right), 7.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{H}), 7.53-7.48\left(\mathrm{~m}, 6 \mathrm{H}_{A r}\right), 7.74$ (dd, $J=17.8,20.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), \mathrm{d}=7.82-7.77\left(\mathrm{~m}, 2 \mathrm{H}_{A r}\right) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{BB}$, DEPT, HMQC CDCl ${ }_{3}$): $\delta=17.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=75.0 \mathrm{~Hz}, \mathrm{C}-3\right), 21.9(\mathrm{~d}, J=7.7 \mathrm{~Hz}, \mathrm{C}-15), 76.2(\mathrm{C}-$ 14), 121.4 (C-13), 132.4 (C-12), $123.9(\mathrm{C}-11), 126.0\left(\mathrm{~d},{ }^{5} \mathrm{~J}_{\mathrm{PC}}=1.3 \mathrm{~Hz}, \mathrm{C}-10\right), 128.2$ (C-18), $128.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=11.8 \mathrm{~Hz}, \mathrm{C}-6\right), 129.0(\mathrm{C}-17), 130.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=17.6, \mathrm{C}-2\right), 130.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=9.6\right.$ $\mathrm{Hz}, \mathrm{C}-5), 131.6\left(\mathrm{~d},{ }^{4} J_{\mathrm{PC}}=2.7 \mathrm{~Hz}, \mathrm{C}-7\right), 132.8(\mathrm{C}-20), 134.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=102.4 \mathrm{~Hz}, \mathrm{C}-4\right), 136.3$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}}=1.1 \mathrm{~Hz}, \mathrm{C}-8\right), 138.7(\mathrm{C}-16), 141.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=5.7 \mathrm{~Hz}, \mathrm{C}-1\right), 153.9(\mathrm{C}-9) \mathrm{ppm} .-{ }^{31} \mathrm{P}$ NMR ($\mathrm{CDCl}_{3}, 162 \mathrm{MHz}$): $\delta=+29.8 \mathrm{ppm} .-\mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%) 376\left[\mathrm{M}^{+}\right], 334$ (95), 317 (29), 252 (10), 236 (29), 221 (32), 194 (97), 182 (31), 165 (81), 152 (42), 140 (100), 125 (78), 115 (32), 109 (16). - HR-MS (ESI) for [M+H] ${ }^{+}\left(\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{P}\right)$: calcd. 377.1670, found: 377.1685.

5.2.7 (Sp)-(-)-(E)-[2-(2-Isopropoxy-3-methoxyphenyl)vinyl](methyl)phenylphosphine oxide (160) ${ }^{[92]}$

(Sp)-(160): Brown solid, $45.2 \mathrm{mg}(0.13 \mathrm{mmol}, 5 \%) .-$ M. p. $=131-131.5^{\circ} \mathrm{C} .-[\alpha]^{\mathrm{D}}{ }_{20}=+37.6$ ($c=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). - IR (ATR): $\tilde{v}=2973(\mathrm{w}) \mathrm{cm}^{-1}, 1573$ (s), 1475 (w), 1453 (w), 1438 (w), 1372 (w), 1297 (w), 1261 (s), 1255 (w), 1172 (s, P=O), 1105 (s), 1066 (s), 995 (w), 932 (w), 896 (s), 772 (s), 695 (s). - ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}$): $\delta=1.20$ (dd, $J=9.8,6.14 \mathrm{~Hz}, 6 \mathrm{H}$, $15-\mathrm{H}), 1.88\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=13.2 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{H}\right), 3.82(\mathrm{~s}, 3 \mathrm{H}, 16-\mathrm{H}), 4.44(\mathrm{sept}, J=6.1,1 \mathrm{H}, 14-\mathrm{H})$, $6.70(\mathrm{dd}, J=20.6,17.7 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 6.90(\mathrm{dd}, J=1.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{H}), 7.03(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}, 12-\mathrm{H}), 7.13(\mathrm{dd}, J=1.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}), 7.55-7.46\left(\mathrm{~m}, 3 \mathrm{H}_{A r}\right), 7.67(\mathrm{dd}, J=20.6,17.8$ $\mathrm{Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 7.80-7.75\left(\mathrm{~m}, 2 \mathrm{H}_{A r}\right) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{BB}$, DEPT, HMQC $\left.\mathrm{CDCl}_{3}\right): \delta=17.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=74.9 \mathrm{~Hz}, \mathrm{C}-3\right) ; 22.4(\mathrm{~d}, J=6.1 \mathrm{~Hz}, \mathrm{C}-15), 55.8(\mathrm{C}-16), 75.8(\mathrm{C}-$ 14), $113.6(\mathrm{C}-9), 118.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=1.15 \mathrm{~Hz}, \mathrm{C}-8\right), 121.5(\mathrm{C}-13), 122.5(\mathrm{C}-14), 123.6$ (C-11), $128.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=11.9 \mathrm{~Hz}, \mathrm{C}-6\right), 130.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=17.6, \mathrm{C}-2\right), 130.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=9.8 \mathrm{~Hz}, \mathrm{C}-5\right)$, $131.6\left(\mathrm{~d},{ }^{4} J_{\mathrm{PC}}=2.9 \mathrm{~Hz}, \mathrm{C}-7\right), 134.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=102.5 \mathrm{~Hz}, \mathrm{C}-4\right), 141.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=5.6 \mathrm{~Hz}, \mathrm{C}-1\right)$, 145.9 (C-10), $153.4\left(\mathrm{~d},{ }^{4} J_{\mathrm{PC}}=1.40 \mathrm{~Hz}, \mathrm{C}-9\right) \mathrm{ppm} .-{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right): \delta=+29.7$ ppm. - MS (EI) m / z (\%) $330\left[\mathrm{M}^{+}\right], 322$ (22), 288 (98), 279 (12), 272 (48), 257 (10), 245 (23), 226 (17), 214 (15), 194 (12), 177 (20), 165 (44), 149 (89), 140 (100), 125 (81), 110 (24). -HR-MS (ESI) for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{P}\right)$: calcd. 331.1463, found 331.1472.

5.2.8 (Sp)-(-)-(E)-[2-(2-Isopropoxy-5-nitrophenyl)vinyl](methyl)phenylphosphine oxide (159) ${ }^{[83,92]}$

(Sp)-(159): Brown-green solid, $51.9 \mathrm{mg}(0.15 \mathrm{mmol}, 5 \%) .-$ M. p. $=103-104{ }^{\circ} \mathrm{C} .-[\alpha]^{\mathrm{D}}{ }_{20}=-$ $29.2\left(c=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .-{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=1.41(\mathrm{dd}, J=6.0,2.3 \mathrm{~Hz}, 6 \mathrm{H}, 15-$ $\mathrm{H}) ; 1.89\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=13.2 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{H}\right), 4.73(\mathrm{sept}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{H}), 6.78(\mathrm{dd}, J=23.5$, $17.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 6.95(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}), 7.58-7.48\left(\mathrm{~m}, 3 \mathrm{H}_{A r}\right), 7.74(\mathrm{dd}, J=20.0$, $17.6 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 7.82-7.76\left(\mathrm{~m}, 2 \mathrm{H}_{A r}\right), 8.20(\mathrm{dd}, J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{H}), 8.39(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}, 11-\mathrm{H}) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right): \delta=16.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=75.2 \mathrm{~Hz}, \mathrm{C}-3\right), 21.8$ (C-15), 72.1 (C-14), 112.6 (C-11), 123.6 (C-10), $124.7(\mathrm{C}-8), 125.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=18.0 \mathrm{~Hz}, \mathrm{C}-2\right)$, $126.4(\mathrm{C}-13), 128.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=11.8 \mathrm{~Hz}, \mathrm{C}-6\right), 130.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=9.7 \mathrm{~Hz}, \mathrm{C}-5\right), 132.9\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=\right.$ $2.7 \mathrm{~Hz}, \mathrm{C}-7) 133.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=102.9 \mathrm{~Hz}, \mathrm{C}-4\right), 139.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=4.5 \mathrm{~Hz}, \mathrm{C}-1\right), 140.9(\mathrm{C}-12)$, 160.8 (C-9) ppm. $-{ }^{31} \mathrm{P}$ NMR ($\left.\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right): \delta=+28.1 \mathrm{ppm}$.

5.2.9 (Sp)-(-)-(E)-(2-methoxycarbonylvinyl)(methyl)phenylphosphine oxide (189) ${ }^{[92]}$

To a mixture of vinylphosphine oxide ($S p$)-97 ($41.5 \mathrm{mg}, 0.25 \mathrm{mmol}$) and precatalyst 138 $(16.80 \mathrm{mg}, 0.3 \mathrm{mmol})$ in dichloromethane (13 mL) via syringe was added methyl acrylate
(188) ($645.7 \mathrm{mg}, 7.5 \mathrm{mmol})$. The resulting mixture was stirred at $40^{\circ} \mathrm{C}$ for 24 h . The solvent was removed under reduced pressure. The crude product $(S p)-\mathbf{1 8 9}$ was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 25 \times 4 \mathrm{~cm}, \mathrm{EtOAc} / \mathrm{MeOH} 20: 1\right)$ to afford pure product as a brownish powder $34.8 \mathrm{mg}(0.16 \mathrm{mmol}, 62 \%) .-\mathrm{M} . \mathrm{p} .=88-89^{\circ} \mathrm{C}$.
$(S p)-(\mathbf{1 8 9}):[\alpha]^{\mathrm{D}}{ }_{20}=+38.3\left(c=0.74, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .-\mathrm{IR}(\mathrm{ATR}): \widetilde{v}=2980(\mathrm{w}) \mathrm{cm}^{-1}, 1716(\mathrm{~s}$, $\mathrm{C}=\mathrm{O}$), 1619 (w), 1437 (s), 1324 (w), 1275 (w), 1234 (s), 1158 ($\mathrm{s}, \mathrm{P}=\mathrm{O}$), 1112 (s$), 996$ (s$), 890$ (s), 858 (w), 825 (s), 769 (w), 738 (s), 691 (s). $-{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta=1.80$ (d, $\left.{ }^{2} J_{\mathrm{PH}}=26.8 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{H}\right), 3.37(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{H}), 6.80\left(\mathrm{t},{ }^{3} J_{\mathrm{PH}}=17.4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}\right), 7.37\left(\mathrm{dd},{ }^{2} J_{\mathrm{PH}}=\right.$ $\left.17.1 \mathrm{~Hz}, J_{\mathrm{PH}}=22.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 7.52-7.49\left(\mathrm{~m}, 3 \mathrm{H}_{A r}\right), 7.72-7.65\left(\mathrm{~m}, 2 \mathrm{H}_{A r}\right) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR (100.6 MHz, BB, DEPT, HMQC CDCl ${ }_{3}$): $\delta=16.7\left(\mathrm{~d},{ }^{1} J=75.3 \mathrm{~Hz}, \mathrm{C}-3\right), 52.3(\mathrm{C}-9), 128.9$ (d, $\left.{ }^{3} J=12.0 \mathrm{~Hz}, \mathrm{C}-6\right), 130.1\left(\mathrm{~d},{ }^{2} J=10.0 \mathrm{~Hz}, \mathrm{C}-5\right), 131.3\left(\mathrm{~d},{ }^{4} J=2.7 \mathrm{~Hz}, \mathrm{C}-7\right), 132.4\left(\mathrm{~d},{ }^{1} J=\right.$ $104.5 \mathrm{~Hz}, \mathrm{C}-4), 134.1\left(\mathrm{~d},{ }^{2} J=4.0 \mathrm{~Hz}, \mathrm{C}-1\right), 138.5$, (d, $\left.{ }^{1} J=90.3 \mathrm{~Hz}, \mathrm{C}-2\right), 165.1\left(\mathrm{~d},{ }^{3} J=19.0\right.$ $\mathrm{Hz}, \mathrm{C}-8) \mathrm{ppm} .-{ }^{31} \mathrm{P}$ NMR ($\left.\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right): \delta=+26.3 \mathrm{ppm}$. - MS (EI) m/z (\%): $224\left[\mathrm{M}^{+}\right]$, 209 (52), 193 (16), 181 (12), 165 (24), 149 (59), 139 (55), 131 (100), 123 (38), 103 (65), 91 (50), 77 (83), 63 (35). - HR-MS (ESI): calcd for $\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{P}\right)$ 225.0681, found 225.0689.

5.2.10 (E)-[2-(4-Methoxyphenyl)vinyl]diphenylphosphine oxide (181)

To a mixture of diphenylvinylphosphine oxide $168(62 \mathrm{mg}, 0.27 \mathrm{mmol})$ and precatalyst $\mathbf{1 3 8}$ ($9.1 \mathrm{mg}, 0.02 \mathrm{mmol}$) in dichloromethane (13 mL) via syringe was added 4-methoxystyrene $180(0.11 \mathrm{ml}, 0.81 \mathrm{mmol})$. The resulting mixture was stirred at $40^{\circ} \mathrm{C}$ for 24 h . The solvent was removed under reduced pressure. The crude product 181 was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 25 \times 4 \mathrm{~cm}, \mathrm{EtOAc} / \mathrm{MeOH} 20: 1\right)$ to afford pure product as a colorless solid $75.2 \mathrm{mg}(0.225 \mathrm{mmol}, 83 \%)$. M. p. $=108-109^{\circ} \mathrm{C}$.
(181): IR (ATR): $\tilde{v}=2924$ (w) cm ${ }^{-1}, 1604$ (s), 1571 (w), 1513 (s), 1439 (w), 1422 (w), 1300 (w), 1263 (s), 1239 (w), 1176 (s, P=O), 1103 (s), 1028 (s), 955 (s), 852 (w), 817 (s), 799 (s), 745 (s), 722 (s), $691(\mathrm{~s}) .-{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.84(\mathrm{~s}, 3 \mathrm{H}, 11-\mathrm{H}), 6.67(\mathrm{dd}$, $J=17.3,22.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 6.94-6.86\left(\mathrm{~m}, 2 \mathrm{H}_{A r}\right), 7.45-7.38(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 7.51-7.45(\mathrm{~m}$, $6 \mathrm{H}_{A r}$), 7.57-7.51 (m, $2 \mathrm{H}_{A r}$), 7.79-7.72 (m, $\left.4 \mathrm{H}_{A r}\right) ~ p p m . ~-~{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{BB}$, DEPT, $\left.\mathrm{HMQC}, \mathrm{CDCl}_{3}\right): \delta=55.4(\mathrm{C}-11), 114.2(\mathrm{C}-8), 116.0(\mathrm{C}-9), 127.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=17.7 \mathrm{~Hz}, \mathrm{C}-2\right)$, $128.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=12.1 \mathrm{~Hz}, \mathrm{C}-5\right), 129.4(\mathrm{C}-7), 131.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=10.3 \mathrm{~Hz}, \mathrm{C}-4\right), 131.8\left(\mathrm{~d},{ }^{4} J_{\mathrm{PC}}=\right.$ $2.6 \mathrm{~Hz}, \mathrm{C}-6), 133.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=106.0 \mathrm{~Hz}, \mathrm{C}-3\right), 147.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=4.2 \mathrm{~Hz}, \mathrm{C}-1\right), 161.2(\mathrm{C}-10)$ ppm. - ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=+24.9 \mathrm{ppm} .-\mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%): 334\left[\mathrm{M}^{+}\right], 319$ (11), 257 (9), 202 (50), 198 (13), 183 (11), 155 (20), 77 (10), 47 (11). - HR-MS (ESI) calcd for $[\mathrm{M}]+\left(\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{P}\right)$: 334.1122; found: 334.1116.

5.2.11 Dimethylphenylphosphine ${ }^{[25]}$

To mechanically stirred and cooled with an ice-bath methylmagnesium iodide prepared from magnesium ($8.00 \mathrm{~g}, 0.33 \mathrm{~mol}$) and methyl iodide ($45.00 \mathrm{~g}, 0.28 \mathrm{~mol}$) in diethyl ether (100 mL) was slowly during 2 hours added dichlorophenylphosphine ($20.00 \mathrm{~g}, 0.11 \mathrm{~mol}$) in diethyl ether (50 mL). The reaction mixture was stirred over night at $25^{\circ} \mathrm{C}$ and well degassed ammonium chloride saturated solution (250 mL) was added with ice-bath cooling. After extraction with ether (3×70), the residue was dried over sodium sulphate. After filtration and vacuum distillation, dimethylphenylphosphine were obtained in $10.8 \mathrm{~g}(0.08 \mathrm{~mol}, 71 \%)$.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=1.39\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=2.8 \mathrm{~Hz}, 6 \mathrm{H}, 1-\mathrm{H}\right), 7.36\left(\mathrm{~m}, 3 \mathrm{H}_{A r}\right), 7.56(\mathrm{~m}$, $2 \mathrm{H}_{A r}$) ppm. $-{ }^{31} \mathrm{P}$ NMR ($\left.\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right): \delta=-44.4 \mathrm{ppm}$.

5.2.12 rac-Methylphenylvinylphosphine (183) ${ }^{[49]}$

To a stirred solution of rac-97 ($1.00 \mathrm{~g}, 0.006 \mathrm{~mol}$) in benzene (2 mL) at $20^{\circ} \mathrm{C}$ was added phenylsilane (1.5 equiv., $1.00 \mathrm{~mL}, 0.009 \mathrm{~mol}$) and the reaction mixture was stirred at reflux for 15 h . After reaction was completed, the residue was distilled from reaction flask leading to rac-methylphenylvinylphosphine (183) $545 \mathrm{mg}(3.63 \mathrm{mmol}, 61 \%)$. B.p. $=90^{\circ} \mathrm{C} / 13$ Torr rac-(183): ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=1.46\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=2.8 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{H}\right), 5.66(\mathrm{dd}, J=$ $13.05 \mathrm{~Hz}, J=18.32,1-\mathrm{H}), 5.79(\mathrm{dd}, J=11.8 \mathrm{~Hz}, J=28.5 \mathrm{~Hz}, 1-\mathrm{H}), 6.45(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 7.36$ $\left(\mathrm{m}, 3 \mathrm{H}_{A r}\right), 7.52\left(\mathrm{~m}, 2 \mathrm{H}_{A r}\right) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.6(\mathrm{~d}, J=12.9 \mathrm{~Hz}, \mathrm{C}-$ 3), $125.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=18.28 \mathrm{~Hz}, \mathrm{C}-4\right), 128.2\left(\mathrm{t},{ }^{1} J_{\mathrm{PC}}=6.7 \mathrm{~Hz}, \mathrm{C}-5\right), 131.4(\mathrm{C}-6), 131.6(\mathrm{C}-7)$, $132.9\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PC}}=18.42 \mathrm{~Hz}, \mathrm{C}-2\right), 149.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=14.9 \mathrm{~Hz}, \mathrm{C}-1\right) .-{ }^{31} \mathrm{P} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 162\right.$ MHz): $\delta=-30.1 \mathrm{ppm}$.

5.2.13 Dimethylphenylphosphine borane (124) ${ }^{[25]}$

In a Schlenk flask were placed dimethylphenylphosphine ($5.0 \mathrm{~g}, 0.036 \mathrm{~mol}$) in freshly distilled tetrahydrofurane (15 mL). Borane-THF complex ($6.18 \mathrm{~mL}, 0.07 \mathrm{~mol}$) was added over 0.5 h at $0^{\circ} \mathrm{C}$ and stirred over night at $20^{\circ} \mathrm{C}$. After the reaction was completed according TLC (hexane / EtOAc 9:1), to the reaction mixture 2 N hydrochloric acid (10 mL) was added. Extraction with ethylacetate ($3 \times 20 \mathrm{~mL}$), drying over MgSO_{4} evaporation of the solvent gave an oil as residue, which was distilled in vacuum to afford $1245.25 \mathrm{~g}(0.034 \mathrm{~mol}, 96 \%)$.
(124): ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.51\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=10.4 \mathrm{~Hz}, 6 \mathrm{H}, 1-\mathrm{H}\right), 7.42\left(\mathrm{~m}, 3 \mathrm{H}_{A r}\right)$, $7.66\left(\mathrm{~m}, 2 \mathrm{H}_{A r}\right) \mathrm{ppm} .-{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right): \delta=3.5-4.9(\mathrm{~m}) \mathrm{ppm}$.

5.2.14 rac-Boranato[(methyl)phenylphosphino]acetic acid (125) ${ }^{[182]}$

At $-78{ }^{\circ} \mathrm{C}$ to dimethylphenylphosphine-borane ($820.8 \mathrm{mg}, 5.4 \mathrm{mmol}$) (124) in $\mathrm{Et}_{2} \mathrm{O}(43 \mathrm{~mL})$ was added sec-BuLi ($5 \mathrm{~mL}, 1.4 \mathrm{M}$ in cyclohexane) and reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 5 h . Dry ice (500 mg) was added as a solid and the reaction mixture allowed to reach 25 ${ }^{\circ} \mathrm{C}$ with stirring 14 h . The reaction mixture was carefully poured into ice-water containing HCl and the organic layer was separated, and the aqueous layer was extracted with CHCl_{3}. The combined organic extracts were washed with 0.5 M aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and to the aqueous layer was added $4 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ and $\mathrm{CHCl}_{3}(100 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CHCl}_{3}(4 \times 50 \mathrm{~mL})$. The combined organic extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the filtrate was concentrated under reduced pressure, to give the desired rac-boranatophosphinoacetic acid rac-125 $603 \mathbf{~ m g}$ ($3.1 \mathrm{mmol}, 57 \%$) as viscous colourless oil.
rac-(125): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.49-0.95\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH} H_{3}\right), 1.77\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=10.2 \mathrm{~Hz}\right.$, $3-\mathrm{H}), 2.89(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}), 7.46\left(\mathrm{~m}, 3 \mathrm{H}_{A r}\right), 7.72\left(\mathrm{~m}, 2 \mathrm{H}_{A r}\right), 10.26($ brs, $1 \mathrm{H}, 8-\mathrm{H}) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{BB}$, DEPT, HMQC, CDCl_{3}): $\delta=9.8(\mathrm{~d}, J=38.2 \mathrm{~Hz}, \mathrm{C}-3), 34.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PC}}=\right.$ $26.3 \mathrm{~Hz}, \mathrm{C}-2), 127.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=54.3 \mathrm{~Hz}, \mathrm{C}-4\right), 128.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=10.2 \mathrm{~Hz}, \mathrm{C}-6\right), 131.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=\right.$
$9.9 \mathrm{~Hz}, \mathrm{C}-5), 132.1\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{PC}}=2.5 \mathrm{~Hz}, \mathrm{C}-7\right), 173.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=5.9 \mathrm{~Hz}, \mathrm{C}-1\right) \mathrm{ppm} .-{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.4(\mathrm{~d}, J=67.0 \mathrm{~Hz}) \mathrm{ppm}$.

5.2.15 rac-2-[Boranato(methyl)phenylphosphino]ethanol ${ }^{[30]}$

$\mathrm{BH}_{3} \cdot \mathrm{THF}\left(7.5 \mathrm{~mL}\right.$ of a 1.0 M THF solution, 7.5 mmol) was added at $0{ }^{\circ} \mathrm{C}$, under argon, to a stirred solution of $\mathbf{1 2 5}(300 \mathrm{mg}, 1.5 \mathrm{mmol})$ in THF (6 mL). The mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched by addition of ice/water and organic layers were separated, and the aqueous layer was extracted with EtOAc ($3 \times 40 \mathrm{~mL}$). The combined extracts were washed with brine and dried with MgSO_{4}, and the solvents were removed under reduced pressure. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 25 \times 4 \mathrm{~cm}\right.$, EtOAc) to afford pure product as a white powder $270 \mathrm{mg}(1.5 \mathrm{mmol}, 97 \%)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.44\left(\mathrm{~m}, 3 \mathrm{H}, B H_{3}\right), 1.60\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=10.5 \mathrm{~Hz}, 3-\mathrm{H}\right), 2.14(\mathrm{~m}$, $2 \mathrm{H}, 1-\mathrm{H}), 2.23(\mathrm{br}, 1 \mathrm{H}, 8-\mathrm{H}), 3.74(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}), 7.46\left(\mathrm{~m}, 3 \mathrm{H}_{A r}\right), 7.75\left(\mathrm{~m}, 2 \mathrm{H}_{A r}\right) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{BB}$, DEPT, HMQC, CDCl_{3}): $\delta=11.3\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PC}}=39.3 \mathrm{~Hz}, \mathrm{C}-3\right), 30.5\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PC}}\right.$ $=35.5 \mathrm{~Hz}, \mathrm{C}-2), 57.5(\mathrm{C}-1), 128.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=9.9 \mathrm{~Hz}, \mathrm{C}-6\right), 129.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=55.1 \mathrm{~Hz}, \mathrm{C}-4\right)$, $131.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=9.4 \mathrm{~Hz}, \mathrm{C}-5\right), 131.5\left(\mathrm{~d},{ }^{4} J_{\mathrm{PC}}=2.5 \mathrm{~Hz}, \mathrm{C}-7\right) \mathrm{ppm} .-{ }^{31} \mathrm{P} \mathrm{NMR}(162 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=6.4-7.2(\mathrm{~m}) \mathrm{ppm}$.

5.2.16 rac-Methanesulfonic acid (methyl)phenylboranatophosphino] ethyl ester (126) ${ }^{[30]}$

Methanesulfonyl chloride ($0.3 \mathrm{~mL}, 0.002 \mathrm{~mol}$) was added at $25^{\circ} \mathrm{C}$, to a stirred solution of rac -boranato(methyl)phenylphosphino]ethanol ($200 \mathrm{mg}, 1.1 \mathrm{mmol}$) in pyridine (2 mL). The mixture was stirred for 12 h at the same temperature. The reaction was quenched by addition of 1 M HCl . The organic layers were separated, and the aqueous layer was extracted three times with ethylacetate (20 mL). The combined extracts were washed with aqueous NaHCO_{3} $(50 \mathrm{~mL})$ and brine (75 mL) and dried with MgSO_{4}, and the solvents were removed under reduced pressure. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 25 \times 4 \mathrm{~cm}\right.$, EtOAc / hexane 1:9) to afford pure product as colourless viscous oil 82% ($234.1 \mathrm{mg}, 0.90$ mmol).
rac-(126): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.61-0.95\left(\mathrm{~m}, 3 \mathrm{H}, B H_{3}\right), 1.65\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=10.24 \mathrm{~Hz}\right.$, $3-\mathrm{H}), 2.33(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{H}), 4.29(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}), 4.44(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}), 7.48(\mathrm{~m}$, $3 \mathrm{H}_{A r}$), $7.69\left(\mathrm{~m}, 2 \mathrm{H}_{A r}\right) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{BB}, \mathrm{DEPT}, \mathrm{HMQC}, \mathrm{CDCl}_{3}\right): \delta=11.4(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{PC}}=39.1 \mathrm{~Hz}, \mathrm{C}-3\right), 27.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=34.5 \mathrm{~Hz}, \mathrm{C}-2\right), 37.5(\mathrm{C}-8), 64.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=3.3 \mathrm{~Hz}, \mathrm{C}-1\right)$, $128.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=54.6 \mathrm{~Hz}, \mathrm{C}-4\right), 129.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=10.2 \mathrm{~Hz}, \mathrm{C}-6\right), 131.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=9.8 \mathrm{~Hz}, \mathrm{C}-5\right)$, $131.9\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{PC}}=2.5 \mathrm{~Hz}, \mathrm{C}-7\right) \mathrm{ppm} .-{ }^{31} \mathrm{P} \operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=+7.7(\mathrm{~d}, J=64.5 \mathrm{~Hz})$.

5.2.17 rac-Methylphenylvinylphosphine borane (127)

To a stirred solution of rac-126 ($60 \mathrm{mg}, 0.23 \mathrm{mmol}$) in toluene (2 mL) was added as a powder potassium tert-butoxide ($30 \mathrm{mg}, 0.3 \mathrm{mmol}$). The mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched by addition of water. The organic layers were separated, and the aqueous layer was extracted with ethylacetate $(3 \times 10 \mathrm{~mL})$. The combined extracts were
washed with aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine (30 mL) and dried with MgSO_{4}, and the solvents were removed under reduced pressure. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 25 \times 4 \mathrm{~cm}, \mathrm{EtOAc}\right)$ to afford pure product as an oil $37.9 \mathrm{mg}(0.203$ $\mathrm{mmol}, 86 \%$). To prevent decomposition rac- $\mathbf{1 2 7}$ was stored as a solution in dichloromethane at $-25^{\circ} \mathrm{C}$.
rac-(127): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.48\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH}_{3}\right), 1.61\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=10.3 \mathrm{~Hz}, 3-\mathrm{H}\right)$, $6.04(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H}), 6.29(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 7.43\left(\mathrm{~m}, 3 \mathrm{H}_{A r}\right), 7.66\left(\mathrm{~m}, 2 \mathrm{H}_{A r}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100.6 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=11.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=40.8 \mathrm{~Hz}, \mathrm{C}-3\right), 128.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=9.9 \mathrm{~Hz}, \mathrm{C}-6\right), 129.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}\right.$ $=57.3 \mathrm{~Hz}, \mathrm{C}-4), 129.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=52.2 \mathrm{~Hz}, \mathrm{C}-2\right), 131.1\left(\mathrm{~d},{ }^{4} J_{\mathrm{PC}}=2.3 \mathrm{~Hz}, \mathrm{C}-7\right), 131.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=\right.$ $9.4 \mathrm{~Hz}, \mathrm{C}-5), 133.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{PC}}=3.8 \mathrm{~Hz}, \mathrm{C}-1\right) \mathrm{ppm} .-{ }^{31} \mathrm{P} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):=7.1-8.2(\mathrm{~m})$ ppm.

Synthesis of rac-methylphenylvinylphosphine borane from racmethylphenylvinylphosphine

To a stirred solution of rac-methylphenylvinylphosphine ($200 \mathrm{mg}, 1.33 \mathrm{mmol}$) in THF (2 mL) was added $\mathrm{BH}_{3}\left(115 \mathrm{mg}, 1.4 \mathrm{~mL}, 1.4 \mathrm{mmol}, 1.0 \mathrm{M}\right.$ in THF) at $0^{\circ} \mathrm{C}$. The mixture was allowed to reach $20^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched by addition of $2 \mathrm{~N} \mathrm{HCl}(3 \mathrm{~mL})$. The organic layers were separated, and the aqueous layer was extracted with ethylacetate ($3 \times 20 \mathrm{~mL}$). The combined extracts were washed with aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine (30 mL) and dried with MgSO_{4}, and the solvents were removed under reduced pressure. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 25 \times 4 \mathrm{~cm}, \mathrm{EtOAc} /\right.$ cyclohexane $\left.2: 5\right)$ to afford pure product as an colourless viscous oil $101 \mathrm{mg}(0.62 \mathrm{mmol}, 46 \%)$. To prevent decomposition 127 was stored as a solution in dichloromethane at $-25^{\circ} \mathrm{C}$.

5.2.18 Methanesulfonic acid (diphenylboranatophosphino] ethyl ester (122) ${ }^{[30]}$

Methanesulfonyl chloride ($0.5 \mathrm{~mL}, 4.9 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$, to a stirred solution of $\mathbf{1 2 1}$ $(1.0 \mathrm{~g}, 4.1 \mathrm{mmol})$ in pyridine $(1.5 \mathrm{~mL})$. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched by addition of $1 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$. The organic layers were separated, and the aqueous layer was extracted with ethylacetate $(3 \times 20 \mathrm{~mL})$. The combined extracts were washed with aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$ and dried with MgSO_{4}, and the solvents were removed under reduced pressure. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 25 \times 4 \mathrm{~cm}, \mathrm{EtOAc} /\right.$ hexane $\left.1: 1\right)$ to afford $\mathbf{1 2 2}$ as a white low melting solid $1.1 \mathrm{~g}(0.34 \mathrm{~mol}, 84 \%)$.
(122): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.87\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH} H_{3}\right), 2.72(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}), 2.86(\mathrm{~s}, 1 \mathrm{H}, 7-$ $\mathrm{H}), 4.42(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H}), 7.45\left(\mathrm{~m}, 6 \mathrm{H}_{A r}\right), 7.66\left(\mathrm{~m}, 4 \mathrm{H}_{A r}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{BB}$, $\left.\mathrm{HMQC}, \mathrm{CDCl}_{3}\right): \delta=26.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=35.3 \mathrm{~Hz}, \mathrm{C}-2\right), 37.4(\mathrm{C}-7), 64.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=7.1 \mathrm{~Hz}, \mathrm{C}-1\right)$, $127.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=56.2 \mathrm{~Hz}, \mathrm{C}-3\right), 129.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=10.2 \mathrm{~Hz}, \mathrm{C}-5\right), 131.7\left(\mathrm{~d},{ }^{4} J_{\mathrm{PC}}=2.5 \mathrm{~Hz}, \mathrm{C}-6\right)$, $131.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=9.8 \mathrm{~Hz}, \mathrm{C}-4\right) \mathrm{ppm} .-{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $=+12.9(\mathrm{~d}, J=63.7 \mathrm{~Hz})$ ppm.

5.2.19 Diphenylvinylphosphine borane (123)

To a stirred solution of $\mathbf{1 2 2}(100 \mathrm{mg}, 0.31 \mathrm{mmol})$ in toluene (5 mL) was added as a powder potassium tert-butoxide ($70 \mathrm{mg}, 0.63 \mathrm{mmol}$). The mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched by addition of water. The organic layers were separated, and the aqueous layer was extracted with ethylacetate $(3 \times 15 \mathrm{~mL})$. The combined extracts were washed with aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$ and dried with MgSO_{4}, and the
solvents were removed under reduced pressure. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 25 \times 4 \mathrm{~cm}, \mathrm{EtOAc} /\right.$ hexane $\left.3: 7\right)$ to afford pure product as an colourless viscous oil 63.1 mg ($0.28 \mathrm{mmol}, 90 \%$). To prevent decomposition 123 was stored as a solution in dichloromethane at $-25^{\circ} \mathrm{C}$.
(123): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.85\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{BH} H_{3}\right), 6.04(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H}), 6.01$ (ddd, $J=$ $1.4 \mathrm{~Hz}, J=18.3 \mathrm{~Hz}, J=19.9 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}_{c i}$), $6.22(\mathrm{ddd}, J=1.4 \mathrm{~Hz}, J=12.0 \mathrm{~Hz}, J=39.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 1-\mathrm{H}_{\text {trans }}\right), 6.64(\mathrm{ddd}, J=12.0 \mathrm{~Hz}, J=14.3 \mathrm{~Hz}, J=26.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 7.43-7.51\left(\mathrm{~m}, 6 \mathrm{H}_{A r}\right)$, 7.62-7.68 (m, 4H A_{A}) ppm. ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=127.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=54.3 \mathrm{~Hz}, \mathrm{C}-2\right)$, $128.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=58.7 \mathrm{~Hz}, \mathrm{C}-1\right), 128.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=10.0 \mathrm{~Hz}, \mathrm{C}-4\right), 131.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=2.6 \mathrm{~Hz}, \mathrm{C}-6\right)$, $132.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=9.6 \mathrm{~Hz}, \mathrm{C}-5\right), 134.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=4.8 \mathrm{~Hz}, \mathrm{C}-1\right) \mathrm{ppm} .-{ }^{31} \mathrm{P}$ NMR $(162 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right):=+16.3\left(\mathrm{~d}, J_{\mathrm{PB}}=70.5 \mathrm{~Hz}\right) \mathrm{ppm}$.

Synthesis of diphenylvinylphosphine borane (123) from diphenylvinylphosphine

To a stirred solution of diphenylvinylphosphine ($500 \mathrm{mg}, 2.4 \mathrm{mmol}$) in THF (5 mL) was added $\mathrm{BH}_{3}\left(203 \mathrm{mg}, 2.4 \mathrm{mmol}, 1.0 \mathrm{M}\right.$ in THF) at $0{ }^{\circ} \mathrm{C}$. The mixture was allowed to reach 20 ${ }^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched by addition of water. The organic layers were separated, and the aqueous layer was extracted with ethylacetate $(3 \times 20 \mathrm{~mL})$. The combined extracts were washed with aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$ and dried with MgSO_{4}, and the solvents were removed under reduced pressure. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 25 \times 4 \mathrm{~cm}, \mathrm{EtOAc} /\right.$ cyclohexane $\left.2: 5\right)$ to afford pure product as an colourless viscous oil $135 \mathrm{mg}(0.64 \mathrm{mmol}, 27 \%)$. To prevent decomposition $\mathbf{1 2 3}$ was stored as a solution in dichloromethane at $-25^{\circ} \mathrm{C}$.

5.2.20 Diphenylvinylphosphine sulfide (179) ${ }^{[183]}$

To a stirred solution of diphenylvinylphosphine ($1.59 \mathrm{~g}, 0.008 \mathrm{~mol}$) in benzene (5 mL) was added as a powder sulfur ($240 \mathrm{mg}, 7.5 \mathrm{mmol}$). The mixture was refluxed for 2 h . After evaporation of benzene, the black residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, $25 \times 4 \mathrm{~cm}, \mathrm{EtOAc} / \mathrm{MeOH} 10: 1$) to afford pure product $\mathbf{1 7 9}$ as an colourless crystals 1.38 g ($0.006 \mathrm{~mol}, 71 \%$).
(179): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.15(\mathrm{~m}, 3 \mathrm{H}, 1-\mathrm{H}, 2-\mathrm{H}), 7.42-7.57\left(\mathrm{~m}, 6 \mathrm{H}_{A r}\right), 7.72-$ $7.84\left(\mathrm{~m}, 4 \mathrm{H}_{A r}\right) \mathrm{ppm} .-{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):=+38.2 \mathrm{ppm}$.

5.2.21 Dimethylphenylphosphonite ${ }^{[53]}$

Freshly distilled pyridine ($18 \mathrm{~g}, 0.22 \mathrm{~mol}$) was carefully added dropwise to a solution of dichlorophenylphosphine ($20 \mathrm{~g}, 0.11 \mathrm{~mol}$) in 200 mL of hexane (degassed) under argon at 25 ${ }^{\circ} \mathrm{C}$. After stirring for 30 min . the mixture was cooled to $0^{\circ} \mathrm{C}$. Whilst vigorous stirring was maintained, methanol ($12 \mathrm{~mL}, 0.22 \mathrm{~mol}$) was added dropwise. The reaction was stirred for 3-4 h , and the pyridine hydrochloride salt was removed by filtration. The solvent was then removed and the residue was distilled at reduced pressure to yield the product as a colorless liquid $17.8 \mathrm{~g}(0.11 \mathrm{~mol}, 95 \%)$. B. p. $53-54^{\circ} \mathrm{C} / 1$ Torr.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.57\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{PH}}=10.7 \mathrm{~Hz}, 6 \mathrm{H}, 1-\mathrm{H}\right), 7.41-7.45\left(\mathrm{~m}, 3 \mathrm{H}_{A r}\right)$, 7.58-7.64 (m, $2 \mathrm{H}_{A r}$) ppm. - ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $=+161.7 \mathrm{ppm}$.

5.2.22 Methylphenyl phosphinic acid methyl ester ${ }^{[53]}$

Methyl iodide ($14 \mathrm{~g}, 0.1 \mathrm{~mol}$) was placed in a two-necked round bottom flask equipped with magnetic stirring and condenser, which was flushed with argon. Dimethylphenylphosphonite $(17 \mathrm{~g}, 0.1 \mathrm{~mol})$ was added carefully dropwise at $25^{\circ} \mathrm{C}$ until an exothermic reaction was initiated. The addition was then controlled at a rate sufficient to maintain a steady reflux. When the addition was complete, the mixture was stirred for a further 3 h , and then it was distilled under reduced pressure. The product was obtained as a colorless liquid, $15.0 \mathrm{~g}(0.09$ $\mathrm{mol}, 88 \%$). B. p. $95-96^{\circ} \mathrm{C} / 1$ Torr.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.45\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=14.5 \mathrm{~Hz}, 3 \mathrm{H}, 2-\mathrm{H}\right), 1.45\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=11.3 \mathrm{~Hz}\right.$, $3 \mathrm{H}, 1-\mathrm{H}), 7.31-7.39\left(\mathrm{~m}, 3 \mathrm{H}_{A r}\right), 7.58-7.67\left(\mathrm{~m}, 2 \mathrm{H}_{A r}\right) \mathrm{ppm} .-{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):=+$ 45.2 ppm .

5.2.23 Methylphenyl phosphinic chloride ${ }^{[53]}$

Methylphenyl phosphinic acid methyl ester ($16 \mathrm{~g}, 0.1 \mathrm{~mol}$) and $\mathrm{CCl}_{4}(60 \mathrm{~mL})$ were placed in a two-necked round bottom flask, equipped with magnetic stirrer bar and condenser. Phosphorus pentachloride ($26 \mathrm{~g}, 0.13 \mathrm{~mol}$) was added slowly in $c a .3 \mathrm{~g}$ portions at $25^{\circ} \mathrm{C}$. When addition was complete, the mixture was refluxed for 3 h . After the removal of the solvent, the residue was distilled under reduced pressure to give $15.7 \mathrm{~g}(0.09 \mathrm{~mol}, 90 \%)$ of colourless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.10\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=14.1 \mathrm{~Hz}, 3 \mathrm{H}, 1-\mathrm{H}\right), 7.44-7.54\left(\mathrm{~m}, 3 \mathrm{H}_{A r}\right)$, 7.73-7.85 $\left(\mathrm{m}, 2 \mathrm{H}_{A r}\right) \mathrm{ppm} .-{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):=+53.1 \mathrm{ppm}$.

5.2.24 Dicyclohexylidene-D-glucose-(Sp)-methylphenylphosphinate ester (111) ${ }^{[53]}$

(Sp)-111

Triethylamine ($1.0 \mathrm{~g}, 1.4 \mathrm{~mL}, 10 \mathrm{mmol}$) was added to an ice-cold solution of methylphenyl phosphinic chloride ($1.8 \mathrm{~g}, 10 \mathrm{mmol}$) in toluene (25 mL) and stirred for 10 min . A solution of di-o-cyclohexylidene-R-D-glucofuranose ($4.1 \mathrm{~g}, 12 \mathrm{mmol}$) in toluene (30 mL) was then added slowly over 15 min . The reaction mixture was allowed to warm to $25^{\circ} \mathrm{C}$, and stirring was continued 15 h . The reaction mixture was filtered, and the solvent was removed under reduced pressure. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, 50 \times 6\right.$ $\mathrm{cm}, \mathrm{PE} /$ acetone 9:1) to give ($S p$)-111 as a white powder $3.55 \mathrm{~g}(7.4 \mathrm{mmol}, 62 \%)$. M. p. $=52^{\circ} \mathrm{C}$.
$(S p)-(111):[\alpha]^{\mathrm{D}}{ }_{20}=-59\left(c=1.0, \mathrm{CHCl}_{3}\right) .-{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.33(\mathrm{~m}, 20 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.66\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=14.7 \mathrm{~Hz}, 3 \mathrm{H}, 1-\mathrm{H}\right), 3.92-3.98(\mathrm{~m}, 2 \mathrm{H}, 9-\mathrm{H}, 8-\mathrm{H}), 4.08(\mathrm{dd}, J=8.6 \mathrm{~Hz}, J$ $=5.9 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 4.23(\mathrm{ddd}, J=8.6 \mathrm{~Hz}, J=5.4 \mathrm{~Hz}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 4.40\left(\mathrm{dd},{ }^{2} J_{\mathrm{PH}}=\right.$ $\left.6.8 \mathrm{~Hz}, J_{\mathrm{HH}}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right), 5.08(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, 15-\mathrm{H}), 5.94(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{H})$, 7.46-7.55 (m, $3 \mathrm{H}_{A r}$), 7.87-7.97 (m, $2 \mathrm{H}_{A r}$) ppm. - ${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):=+46.3 \mathrm{ppm}$.

5.2.25 (Rp)-Methylphenylvinylphosphine oxide (97) ${ }^{[53]}$

Vinylmagnesium bromide ($6 \mathrm{~mL}, 1 \mathrm{M}$ solution in THF, 2 equiv.) was added dropwise, via syringe, to a solution of $(S p)-\mathbf{1 1 1}(1.44 \mathrm{~g}, 3 \mathrm{mmol})$ in THF $(40 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was heated gradually to $-40^{\circ} \mathrm{C}$ and stirred for 10 h . The reaction mixture was quenched by transfer via cannula into a solution of 1 M aqueous $\mathrm{NH}_{4} \mathrm{Cl}(70 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. Following
separation, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine (50 mL), and dried over MgSO_{4}, filtered, and evaporated to furnish the crude product as an oil, which was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, $\left.50 \times 2.5 \mathrm{~cm}, \mathrm{CHCl}_{3} / \mathrm{MeOH} 9: 1\right)$ to give (Rp) -97 as a white solid $403 \mathrm{mg},(2.4 \mathrm{mmol}, 80 \%)$. M. p. $=81-82{ }^{\circ} \mathrm{C}$.
$(R p)-(\mathbf{9 7}):[\alpha]^{\mathrm{D}}{ }_{20}=+81.9\left(c=2.0, \mathrm{CHCl}_{3}\right)^{[53]} .-{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.75-1.79$, $\left(\mathrm{d},{ }^{2} J_{\mathrm{PH}}=13.3 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{H}\right), 6.35-6.49\left(\mathrm{ddd},{ }^{3} J_{\mathrm{PH}}=28.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=12.3 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=1.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}, 1-\mathrm{H}),\left(\mathrm{ddd},{ }^{3} J_{\mathrm{PH}}=23.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=18.4 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}\right),\left(\mathrm{dddd},{ }^{3} J_{\mathrm{PH}}=24.9\right.$ $\left.\mathrm{Hz},{ }^{3} J_{\mathrm{HH}}=12.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=18.4 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 7.46-7.52\left(\mathrm{~m}, 3 \mathrm{H}_{A r}\right), 7.68-$ $7.73\left(\mathrm{~m}, 2 \mathrm{H}_{A r}\right) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{BB}$, DEPT, $\mathrm{HMQC} \mathrm{CDCl}_{3}$): $\delta=15.9\left(\mathrm{~d},{ }^{1} J=\right.$ $74.4 \mathrm{~Hz}, \mathrm{C}-3$), 128.6 (d, $\left.{ }^{3} J=11.8 \mathrm{~Hz}, \mathrm{C}-6\right), 130.0\left(\mathrm{~d},{ }^{2} J=9.7 \mathrm{~Hz}, \mathrm{C}-5\right), 131.7\left(\mathrm{~d},{ }^{4} J=2.7 \mathrm{~Hz}\right.$, $\mathrm{C}-7), 132.8(\mathrm{C}-1), 132.9\left(\mathrm{~d},{ }^{1} J=95.3 \mathrm{~Hz}, \mathrm{C}-2\right), 133.7\left(\mathrm{~d},{ }^{1} J=102.2 \mathrm{~Hz}, \mathrm{C}-4\right) \mathrm{ppm} .-{ }^{31} \mathrm{P}$ NMR ($\left.\mathrm{CDCl}_{3}, 162.0 \mathrm{MHz}\right): \delta=+28.2 \mathrm{ppm}$.

5.3 Synthesis of New \boldsymbol{P}-chiral Diphosphine Dioxides

5.3.1 ($\operatorname{Sp}, S p$)-(-)-Bis-($2 R, 3 R$)-([methyl(phenyl)phosphinyl]-bicyclo[2.2.1]hept-2-ene dioxide (262a)

To a stirred solution of $(S p, S p)-155(50 \mathrm{mg}, 0.2 \mathrm{mmol})$ in dichloromethane $(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was carefully added $\mathrm{TiCl}_{4}\left(1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)(0.5$ equiv. $15.6 \mathrm{mg}, 0.1 \mathrm{mmol}$) dropwise over 3 min . The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 10 min . and freshly distilled cyclopentadiene (10 equiv., $108.3 \mathrm{mg}, 1.6 \mathrm{mmol}$) was added as a cold solution in dichlromethane (5 mL) during 15 min . After completed addition reaction mixture was allowed to reach $20^{\circ} \mathrm{C}$ and stirred for 17 h under TLC control (benzene / EtOH 4:1). The reaction was quenched by addition of water (5 mL). The organic layers were separated, and the aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The combined extracts were washed with brine (30 mL) and dried with MgSO_{4}, and the solvents were removed under
reduced pressure. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 25 \times 2\right.$, $\left.\mathrm{CHCl}_{3} / \mathrm{MeOH} 9: 1\right)$ to afford pure product as a white powder $55.6 \mathrm{mg}(0.15 \mathrm{mmol}, 91 \%)$. (80% de). M. p. $=191-192{ }^{\circ} \mathrm{C}$.
$(S p, S p)$-262a: $[\alpha]^{\mathrm{D}}{ }_{20}=-119\left(c=0.5, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}(\mathrm{ATR}): \widetilde{v}=2973(\mathrm{w}) \mathrm{cm}^{-1}, 1483(\mathrm{w})$, 1335 (w), 1299 (w), 1173 (s, P=O), 1112 (s), 1070 (w), 891 (s), 857 (w), 792 (w), 729 (s), 685 (s), 643 (w). $-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=1.06(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{Hs}), 1.46\left(\mathrm{~d}, J_{\mathrm{HH}}=8.7 \mathrm{~Hz}\right.$, $7 \mathrm{a}-\mathrm{H}), 1.86\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=12.7 \mathrm{~Hz}, 8-\mathrm{H}\right), 1.87\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=12.7 \mathrm{~Hz}, 8-\mathrm{H}^{\prime}\right), 2.34(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 2.76$ (m, 1H, 4-H), 2.80 (brs, 1H, 1-H), 2.93 (m, 1H, 2-H), 5.59 (m, 1H, 6-H), $6.02(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H})$, $7.48\left(\mathrm{~m}, 6 \mathrm{H}_{A r}\right), 7.70\left(\mathrm{~m}, 4 \mathrm{H}_{A r}\right) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR (100.6 MHz BB , DEPT, HMQC, HMBC, HH-COSY, NOE, CDCl_{3}): $\delta=9.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=64.2 \mathrm{~Hz}, \mathrm{C}-8\right), 13.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=65.3 \mathrm{~Hz}, \mathrm{C}-8{ }^{\prime}\right)$, $41.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=73.9 \mathrm{~Hz}, \mathrm{C}-3\right), 42.1\left(\mathrm{dd},{ }^{1} J_{\mathrm{PC}}=65.2 \mathrm{~Hz},{ }^{1} J_{\mathrm{PC}}=1.2 \mathrm{~Hz}, \mathrm{C}-2\right), 45.8(\mathrm{q}, \mathrm{C}-4), 45.9$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{PC}}=4.4 \mathrm{~Hz}, \mathrm{C}-1\right), 48.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=11.3 \mathrm{~Hz}, \mathrm{C}-7\right), 128.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=11.3 \mathrm{~Hz}, \mathrm{C}-11\right), 128.6$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}}=11.3 \mathrm{~Hz}, \mathrm{C}-11^{\prime}\right), 130.4\left(\mathrm{~d},{ }^{4} J_{\mathrm{PC}}=1.3 \mathrm{~Hz}, \mathrm{C}-12\right), 130.5\left(\mathrm{~d},{ }^{4} J_{\mathrm{PC}}=1.3 \mathrm{~Hz}, \mathrm{C}-12^{\prime}\right)$, $131.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=2.7 \mathrm{~Hz}, \mathrm{C}-10\right), 131.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=2.7 \mathrm{~Hz}, \mathrm{C}-10\right.$ '), $132.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=90.1 \mathrm{~Hz}, \mathrm{C}-9\right)$, $133.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=90.1 \mathrm{~Hz}, \mathrm{C}-9{ }^{9}\right), 135.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=4.0 \mathrm{~Hz}, \mathrm{C}-6\right), 137.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=11.9 \mathrm{~Hz}, \mathrm{C}-5\right)$ ppm. $-{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right): \delta=+38.6,(\mathrm{~d}, J=8.9 \mathrm{~Hz}),+39.8,(\mathrm{~d}, J=8.9 \mathrm{~Hz}) \mathrm{ppm}$. MS (EI) m / z (\%): $370\left[\mathrm{M}^{+}\right], 305$ (17), 231 (100), 165 (28), 139 (37), 91 (18), 77 (20). - HRMS (ESI) calcd for: $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Na}\right)$: calcd. 393.1149, found 393.1152. - Anal $\left(\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{P}_{2}\right)$: Calcd C 68.10, H 6.53; found: C 67.46, H 6.61.

Crystal Structure Analysis of ($S p, S p$)-262a: Crystals were obtained by slow evaporation from chloroform : $\mathrm{MeOH}(9: 1)$ at $20{ }^{\circ} \mathrm{C}$. Empirical formula $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{P}_{2}$, formula weight 370.34 $\mathrm{g} / \mathrm{mol}$, crystal system orthorombic, space group $\mathrm{P} 2_{1} 2_{1} 2_{1}$, unit cell dimensions $a=11.857$ (3), $b=16.383(13), c=20.093(8) \AA, \alpha=90^{\circ}, \beta=90^{\circ}, \gamma=90^{\circ}, V=3903(4) \AA^{3}, Z=8, d_{\text {Calc. }}=$ $1.260 \mathrm{~g} / \mathrm{cm}^{3}, \quad \mu=0.234 \mathrm{~mm}^{-1}$, crystal size $0.15 \times 0.15 \times 0.18 \mathrm{~mm}, \mathrm{~F}(000)=1568$, refinement method full-matrix least-squares on F^{\wedge} 2, STOE IPDS one-axis diffractometer with imaging plate detector, $T=300(2) \mathrm{K}, \mathrm{Mo}_{\mathrm{K} \alpha}$ radiation $\left(\lambda=0.71073 \AA\right.$), θ-range 1.99 to 24.32°, reflections collected / unique $12481 / 6266[R($ int $)=0.1301]$, completeness of data $\theta=24.3$ (99.7\%), index ranges $-13 \leq h \leq 13,0 \leq k \leq 18,0 \leq l \leq 23$, direct methods, full-matrix leastsquares refinement on F^{2}, goodness-of-fit on $F^{2}=0.729, R_{1}=0.0623\left(I>2 \sigma_{I}\right)$, $\mathrm{w} R_{2}=0.0879$, R-indices [all data] $R_{1}=0.2372, \mathrm{w} R_{2}=0.1144$, final difference electron density map 0.347 and $-0.229 \mathrm{e}^{\circ}{ }^{-3}$.

To ($S p, S p$)-155 ($50 \mathrm{mg}, 0.2 \mathrm{mmol}$) in dichloromethane (3 mL) was added freshly distilled cyclopentadiene (10 equiv., $108.3 \mathrm{mg}, 1.6 \mathrm{mmol}$) and the reaction mixture was stirred at 20 ${ }^{\circ} \mathrm{C}$ for 24 h under TLC control (benzene / EtOH 4:1). Thereafter the solvent was removed at reduced pressure, and yellow residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 20 \times 2\right.$, $\left.\mathrm{CHCl}_{3} / \mathrm{MeOH} 9: 1\right)$ to afford pure product as a white powder $58.0 \mathrm{mg}(0.19 \mathrm{mmol}, 95 \%)$. Ratio of diastereoisomers (1.3:1). $[\alpha]^{\mathrm{D}}{ }_{20}=-62.4\left(c=0.5, \mathrm{CHCl}_{3}\right)$. M. p. $=187.5-188.5^{\circ} \mathrm{C}$.

5.3.2 Diastereoisomers separation with dibenzoyl- (+)-(L)-tartaric acid monohydrate

To a solution of $(S p, S p)$-262a and $(S p, S p)$-262b (1.3:1) ($100 \mathrm{mg}, 0.270 \mathrm{mmol}$) in methanol (4 mL) was added as pulver dibenzoyl-(+)-(L)-tartaric acid monohydrate (L)-DBT• $\mathrm{H}_{2} \mathrm{O}$ (101.6 $\mathrm{mg}, 0.270 \mathrm{mmol}$) and resulted suspension was stirred at reflux for 5 h . Than after cooling to 25 ${ }^{\circ} \mathrm{C}$, ethyl acetate (2 mL) was added and again the solution refluxed for 2 h . After being cooled to $25^{\circ} \mathrm{C}$, the white precipitate was filtered off, and washed with EtOAc (10 mL). The precipitate was then treated with 2 N NaOH solution (3 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3×10), dried with MgSO_{4} and evaporated to afford ($S p, S p$)-262a ($96 \% \mathrm{de}$) as white solid 31 $\mathrm{mg}(0.101 \mathrm{mmol}, 31 \%) .[\alpha]^{\mathrm{D}} 20=-83.5\left(c=0.69, \mathrm{CHCl}_{3}\right) . \mathrm{M} . \mathrm{p} .=207-208{ }^{\circ} \mathrm{C}$.

The filtrate was also treated with $2 \mathrm{~N} \mathrm{NaOH}\left(5 \mathrm{~mL}\right.$), and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried to give $(S p, S p)$-262b $(90 \% d e)$ as white solid. ($41 \mathrm{mg}, 0.1134 \mathrm{mmol}, 41 \%$). $[\alpha]^{\mathrm{D}}{ }_{20}=+15.4(c=$ $0.72, \mathrm{CHCl}_{3}$). M. p. $=211.5-212{ }^{\circ} \mathrm{C}$.
$(S p, S p)-(\mathbf{2 6 2 b})$-minor $(90 \% d e):{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right): \delta=+38.3,(\mathrm{~d}, J=9.5 \mathrm{~Hz}),+$ 39.5 , (d, $J=9.5 \mathrm{~Hz}$) ppm.

5.3.3 (4Sp,5Rp)-(-)-Bis-(4S,5R)-([methyl(phenyl)phosphinyl]-(N,3S)-

 diphenylisoxazolidine dioxide (276a)

In a $80-\mathrm{mL}$ microwave tube were placed ($S p, S p$) $\mathbf{- 1 5 5}(500 \mathrm{mg}, 1.64 \mathrm{mmol})$ and $C, N-$ diphenylnitrone 265 ($730 \mathrm{mg}, 3.7 \mathrm{mmol}$) in toluene (5 mL). Reaction mixture was heated for 40 min at $125^{\circ} \mathrm{C}(130 \mathrm{~W})$. After reaction, toluene was removed at reduced pressure, and black-brownish residue was separated at the column $\left(\mathrm{SiO}_{2}, \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(20: 1)\right.$ to give 501 $\mathrm{mg}(1 \mathrm{mmol}, 62 \%)$ of the $(R p, S p)-\mathbf{2 7 6 a}$ and $310 \mathrm{mg}(0.6 \mathrm{mmol}, 36 \%)$ of $(R p, S p)-\mathbf{2 7 6 b}$ as white viscous liquids, which after addition of petroleum ether crystallized in white solids. Ratio of diastereoisomers 1.5:1 (${ }^{31} \mathrm{P}$ NMR)
$(R p, S p)-(\mathbf{2 7 6 a})$-major: M. p. $=172{ }^{\circ} \mathrm{C} .-[\alpha]^{\mathrm{D}}{ }_{20}=+100.8\left(c=0.5, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}(\mathrm{ATR}): \tilde{v}=$ 3049 (w) cm ${ }^{-1}$, 1593 (w), 1488 (w), 1437 (w), 1286 (w), 1190 (s, P=O), 1116 (s, C-N), 1045 (w), 874 (s), 784 (w), 757 (w), 735 (s), 689 (s). $-{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}$): $\delta=1.66$ (d, $\left.{ }^{2} J_{\mathrm{PH}}=13.1 \mathrm{~Hz}, 3 \mathrm{H}, 6-\mathrm{H}\right), 1.79\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=13.4 \mathrm{~Hz}, 3 \mathrm{H}, 6{ }^{\prime}-\mathrm{H}\right), 4.04(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 4.54(\mathrm{dt}, J=$ $\left.5.8 \mathrm{~Hz},{ }^{2} J_{\mathrm{PH}}=12.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}\right), 4.98\left(\mathrm{dd}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz},{ }^{2} J_{\mathrm{PH}}=14.3 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}\right), 7.2-7.8$ $\left(\mathrm{m}, 20 \mathrm{H}_{A r}\right) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{BB}$, DEPT, HMQC, HH-COSY, NOE, CDCl_{3}): $\delta=$ $13.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=70.9 \mathrm{~Hz}, \mathrm{C}-6\right), 16.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=70.6 \mathrm{~Hz}, \mathrm{C}-6\right.$) $), 54.8\left(\mathrm{dd},{ }^{1} J_{\mathrm{PC}}=68.5 \mathrm{~Hz}, J=2.8\right.$ $\mathrm{Hz}, \mathrm{C}-4), 72.1(\mathrm{C}-3), 77.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PC}}=76.3 \mathrm{~Hz}, \mathrm{C}-5\right), 118.8\left(\mathrm{C}-12, \mathrm{C}-12{ }^{\prime}\right), 124.9(\mathrm{C}-14), 129.0$ (C-18), 128.3 (C-10’), 128.42 (C-10), 128.45 (C-16), 128.5 (C-17), 128.6 (C-13), 129.9 (d, $\left.\left.{ }^{3} J_{\mathrm{PC}}=9.4 \mathrm{~Hz}, \mathrm{C}-9{ }^{\prime}\right), 130.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=9.2 \mathrm{~Hz}, \mathrm{C}-9\right), 131.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=97.9 \mathrm{~Hz}, \mathrm{C}-7\right)^{\prime}\right), 131.7(\mathrm{~d}$, ${ }^{2} J_{\mathrm{PC}}=2.9 \mathrm{~Hz}, \mathrm{C}-8$) $, 131.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=2.7 \mathrm{~Hz}, \mathrm{C}-8\right), 132.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=93.2 \mathrm{~Hz}, \mathrm{C}-7\right), 138.6\left(\mathrm{~d},{ }^{3} J\right.$ PC $=2.3 \mathrm{~Hz}, \mathrm{C}-15), 147.9(\mathrm{C}-11) \mathrm{ppm} .-{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162.0 \mathrm{MHz}\right): \delta=+38.0(\mathrm{~d}, J=$ $20.3 \mathrm{~Hz}),+39.8(\mathrm{~d}, J=19.8 \mathrm{~Hz}) \mathrm{ppm} .-\mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%): 502\left[\mathrm{M}^{+}+\mathrm{H}\right], 362(19), 334$ (23), 180 (57), 165 (74), 139 (66), 91 (62), 77 (100). - HR-MS (ESI) calcd for: $[\mathrm{M}+\mathrm{H}]^{+}$ $\left(\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{P}_{2}\right)$: calcd. 502.1701, found 502.1708. - Anal $\left(\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{P}_{2}\right)$: Calcd: C 69.45, H 5.83, N 2.79; found: C 68.93, H 6.05, N 2.87.

5.3.4 (4Sp,5Rp)-(-)-Bis-(4R,5S)-([methyl(phenyl)phosphinyl]-(N,3R)-

 diphenylisoxazolidine dioxide (276b)
$(R p, S p)-(\mathbf{2 7 6 b})$-minor: M. p. $=69^{\circ} \mathrm{C} .-[\alpha]^{\mathrm{D}}{ }_{20}=-183.2\left(c=0.5, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}(\mathrm{ATR}): \tilde{v}=$ 3047 (w) cm ${ }^{-1}, 1597$ (w), 1489 (w), 1438 (w), 1297 (w), 1178 (s, P=O), 1115 (s, C-N), 1027 (w), 889 (s), 742 (s), 693 (s). $-{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}$): $\delta=1.93\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=13.1 \mathrm{~Hz}\right.$, $3 \mathrm{H}, 6-\mathrm{H}), 2.07\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=13.2 \mathrm{~Hz}, 3 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 3.2(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 4.3\left(\mathrm{dd}, J=8.8 \mathrm{~Hz},{ }^{2} J_{\mathrm{PH}}=\right.$ $13.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 5.3$ (dddd, ${ }^{2} J_{\mathrm{PH}}=16.4 \mathrm{~Hz}, J=9.2 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), $5.94(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 16-\mathrm{H}), 6.64-7.66\left(\mathrm{~m}, 14 \mathrm{H}_{A r}\right), 7.95\left(\mathrm{~m}, 4 \mathrm{H}, 8-\mathrm{H}+8 \mathrm{H}^{\prime}\right) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR (100.6 MHz, BB, DEPT, HMQC, HH-COSY, NOE, CDCl_{3}): $\delta=14.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=69.9\right.$
$\mathrm{Hz}, \mathrm{C}-6$) $) 16.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=71.5 \mathrm{~Hz}, \mathrm{C}-6\right), 53.8\left(\mathrm{dd},{ }^{1} J_{\mathrm{PC}}=70.0 \mathrm{~Hz},{ }^{1} J_{\mathrm{PC}}=2.9 \mathrm{~Hz}, \mathrm{C}-4\right)$, 71.8 (C-3), $75.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=81.3 \mathrm{~Hz}, \mathrm{C}-5\right), 118.8(\mathrm{C}-12, \mathrm{C}-12$ '), 124.9 (C-14), 129.0 (C-18), 128.3 (C-10'), 128.42 (C-10), 128.45 (C-16), 128.5 (C-17), $128.6(\mathrm{C}-13), 129.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=9.4\right.$ $\left.\left.\mathrm{Hz}, \mathrm{C}-9{ }^{\prime}\right), 130.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=9.2 \mathrm{~Hz}, \mathrm{C}-9\right), 131.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=97.9 \mathrm{~Hz}, \mathrm{C}-7\right)^{\prime}\right), 131.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=2.9\right.$ $\left.\mathrm{Hz}, \mathrm{C}-8{ }^{\prime}\right), 131.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=2.7 \mathrm{~Hz}, \mathrm{C}-8\right), 132.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=93.2 \mathrm{~Hz}, \mathrm{C}-7\right), 138.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=2.3\right.$ $\mathrm{Hz}, \mathrm{C}-15), 147.9$ (C-11) ppm. - ${ }^{31} \mathrm{P}$ NMR ($\left.\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right): \delta=+37.8(\mathrm{~d}, J=16.4 \mathrm{~Hz}) ;+$ 36.1 (d, $\quad J=15.9 \mathrm{~Hz}) \mathrm{ppm} . ~-~ M S ~(E I) ~ m / z ~(\%): ~ 502\left[\mathrm{M}^{+}+\mathrm{H}\right], 362$ (19), 334 (23), 180 (57), 165 (74), 139 (66), 91 (62), 77 (100). - HR-MS (ESI) calcd for: $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{P}_{2}\right)$: calcd. 502.1701, found 502.1708. - Anal $\left(\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{P}_{2}\right)$: Calcd. C 69.45, H 5.83, N 2.79; found: C 68.96, H 5.91, N 2.80 .

5.4 Reduction of New \boldsymbol{P}-chiral Diphosphine Dioxides

5.4.1 (4Sp,5Rp)-(-)-bis-(4S,5R)-([methyl(phenyl)thiophosphinyl]-(N,3S)-

 (diphenyl)isoxazolidine (302a)

To a stirred diphosphine dioxide ($R p, S p$)-276a ($100 \mathrm{mg}, 0.2 \mathrm{mmol}$) in THF (4 mL) was added polymethylhydrosiloxane (PMHS) (0.4 ml) and degassed 2 times. $\mathrm{Ti}(i-\mathrm{OPr})_{4}(0.2 \mathrm{~mL}, 0.5988$ mmol) was added via syringe and reaction mixture was heated at $66^{\circ} \mathrm{C}$ for 17 h . After cooling to $25^{\circ} \mathrm{C}$, THF was removed in vacuum. To the residue was added freshly distilled benzene (3 mL) and sulfur ($150 \mathrm{mg}, 4.7 \mathrm{mmol}$) was added as a powder and reaction mixture was stirred
at $70^{\circ} \mathrm{C}$ for 2 h . After completed reaction and solvent removal, black residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, 100 \times 4 \mathrm{~cm}\right.$, toluene) to give diphosphine disulfide ($R p, S p$)302a 102.2 mg ($0.1916 \mathrm{mmol}, 96 \%$) as white viscous oil, which crystallized on a standing in a white solid. M. p. $=71^{\circ} \mathrm{C}$.
(302a): $[\alpha]^{\mathrm{D}}{ }_{20}=+91.0\left(c=0.5, \mathrm{CHCl}_{3}\right) .-\operatorname{IR}(\mathrm{ATR}): \tilde{v}=3055(\mathrm{w}) \mathrm{cm}^{-1}, 1596(\mathrm{~s}), 1487(\mathrm{~s})$, 1454 (w), 1435 (w), 1408 (w), 1310 (w), 1287 (w), 1158 (w), 1105 (s, C-N), 1044 (w), 999 (w), 886 (s), 742 (s), $690(\mathrm{~s}, \mathrm{P}=\mathrm{S}) .-{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=1.70\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{PH}}=12.9\right.$ $\mathrm{Hz}, 3 \mathrm{H}, 6-\mathrm{H}), 2.08\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=13.7 \mathrm{~Hz}, 3 \mathrm{H}, 6-\mathrm{H}^{\prime}\right), 4.61\left(\mathrm{dddd},{ }^{2} J_{\mathrm{PH}}=20.1 \mathrm{~Hz}, J=14.0 \mathrm{~Hz}, J=\right.$ $9.5 \mathrm{~Hz}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 4.90(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}, 4-\mathrm{H}), 7.03-7.76\left(\mathrm{~m}, 20 \mathrm{H}_{\mathrm{Ar}}\right) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{BB}, \mathrm{DEPT}, \mathrm{HMQC}, \mathrm{HMBC}, \mathrm{HH}-\mathrm{COSY}, 100.6 \mathrm{MHz}\right): \delta=17.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=57.1 \mathrm{~Hz}\right.$, C-6), $20.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=56.9 \mathrm{~Hz}, \mathrm{C}-6\right), 54.3\left(\mathrm{dd},{ }^{1} J_{\mathrm{PC}}=51.6 \mathrm{~Hz},{ }^{1} J_{\mathrm{PC}}=7.7 \mathrm{~Hz}, \mathrm{C}-4\right), 74.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}\right.$ $=4.4 \mathrm{~Hz}, \mathrm{C}-3), 79.9\left(\mathrm{dd},{ }^{1} J_{\mathrm{PC}}=54.8, J=1.9 \mathrm{~Hz}, \mathrm{C}-5\right), 121.1(\mathrm{C}-12), 126.1(\mathrm{C}-13), 128.3(\mathrm{~d}$, ${ }^{2} J_{\mathrm{PC}}=2.5 \mathrm{~Hz}, \mathrm{C}-8$) , $128.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=3.1 \mathrm{~Hz}, \mathrm{C}-8\right), 128.6(\mathrm{C}-14), 128.9(\mathrm{C}-18), 129.0(\mathrm{C}-17)$, $129.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=79.7 \mathrm{~Hz}, \mathrm{C}-7\right.$ '), $129.6(\mathrm{C}-16), 130.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=10.4 \mathrm{~Hz}, \mathrm{C}-9{ }^{\prime}\right),\left(\mathrm{d},{ }^{4} J_{\mathrm{PC}}=2.9\right.$ $\mathrm{Hz}, \mathrm{C}-10$ '), $131.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=10.4 \mathrm{~Hz}, \mathrm{C}-9\right), 131.8\left(\mathrm{~d},{ }^{4} J_{\mathrm{PC}}=2.9 \mathrm{~Hz}, \mathrm{C}-10\right), 131.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=\right.$ $73.9 \mathrm{~Hz}, \mathrm{C}-7), 136.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=1.9 \mathrm{~Hz}, \mathrm{C}-15\right), 147.3(\mathrm{C}-11) \mathrm{ppm} .-{ }^{31} \mathrm{P}$ NMR ($\mathrm{CDCl}_{3}, 162.0$ $\mathrm{MHz}): \delta=+46.7(\mathrm{~d}, J=29.7 \mathrm{~Hz}) ;+50.93(\mathrm{~d}, J=28.7 \mathrm{~Hz}) \mathrm{ppm} .-\mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%): 534$ [$\left.{ }^{+}+\mathrm{H}\right], 378$ (22), 336 (15), 238 (31), 206 (35), 181 (45), 155 (100), 91 (32), 77 (66). - HRMS (ESI) calcd for: $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{NOP}_{2} \mathrm{~S}_{2}\right)$: calcd. 534.1246, found 534.1244. - Anal $\left(\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NOS}_{2} \mathrm{P}_{2}\right)$: Calcd: C 65.27, H 5.48, N 2.62; found: C 65.35, H 5.78, N 2.53.

5.4.2 (4Sp,5Rp)-(-)-bis-(4R,5S)-([methyl(phenyl)thiophosphinyl]-(N,3R)(diphenyl)isoxazolidine (302b)

$(R p, S p)$-302b was obtained by the procedure described above for $(R p, S p)$-302a as a white powder $98.9 \mathrm{mg}(0.185 \mathrm{mmol}, 93 \%)$. M. p. $=142{ }^{\circ} \mathrm{C}$. Column chromatography $\left(\mathrm{SiO}_{2}, 100 \times 4\right.$ cm, hexane / EtOAc 7:3).
$(R p, S p)$-302b: $[\alpha]^{\mathrm{D}}{ }_{20}=-205.0\left(c=0.5, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}(\mathrm{ATR}): \tilde{v}=3055(\mathrm{w}) \mathrm{cm}^{-1}, 1596(\mathrm{~s})$, 1488 (s), 1454 (w), 1436 (s), 1406 (w), 1310 (w), 1289 (w), 1175 (w), 1157 (w), 1103 (s, CN), 1072 (w), 1026 (w), 1000 (w), 884 (s), 741 (s), 689 (s, P=S). - ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400.1$ $\mathrm{MHz}): \delta=2.25\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=13.3 \mathrm{~Hz}, 3 \mathrm{H}, 6-\mathrm{H}\right), 2.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=12.9 \mathrm{~Hz}, 3 \mathrm{H}, 6-\mathrm{H}{ }^{\prime}\right), 3.73(\mathrm{~m}, 1 \mathrm{H}$, $4-\mathrm{H}), 4.15\left(\mathrm{dd}, J=8.5 \mathrm{~Hz},{ }^{2} J_{\mathrm{PH}}=17.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}\right), 5.31\left(\mathrm{dddd},{ }^{2} J_{\mathrm{PH}}=20.4 \mathrm{~Hz}, J=12.3 \mathrm{~Hz}\right.$, $J=7.9 \mathrm{~Hz}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 5.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, 16-\mathrm{H}), 6.58-7.64\left(\mathrm{~m}, 16 \mathrm{H}_{A r}\right), 8.19$ (m, 2H, 9'-H) ppm. - ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{BB}$, DEPT, HMQC, HMBC, HH-COSY, $\left.\mathrm{CDCl}_{3}\right): \delta=18.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=58.6 \mathrm{~Hz}, \mathrm{C}-6\right), 22.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=58.1 \mathrm{~Hz}, \mathrm{C}-6\right), 53.2\left(\mathrm{dd},{ }^{1} J_{\mathrm{PC}}=51.7\right.$ $\left.\mathrm{Hz},{ }^{1} J_{\mathrm{PC}}=7.3 \mathrm{~Hz}, \mathrm{C}-4\right), 73.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=4.9 \mathrm{~Hz}, \mathrm{C}-3\right), 80.5\left(\mathrm{dd},{ }^{1} J_{\mathrm{PC}}=59.2 \mathrm{~Hz},{ }^{1} J_{\mathrm{PC}}=1.0 \mathrm{~Hz}\right.$, $\mathrm{C}-5), 121.4$ (C-12), 125.9 (C-14), 127.2 (C-13), 127.6 (C-17), 127.9 (C-10), 128.0 (C-18), $128.1\left(\mathrm{~d},{ }^{4} J_{\mathrm{PC}}=0.8 \mathrm{~Hz}, \mathrm{C}-10^{\prime}\right), 128.2(\mathrm{C}-16), 129.0\left(\mathrm{dd},{ }^{1} J_{\mathrm{PC}}=78.4 \mathrm{~Hz}, J=0.7 \mathrm{~Hz}, \mathrm{C}-7\right)$, $129.2\left(\mathrm{~d}^{1}{ }^{1} J_{\mathrm{PC}}=72.5 \mathrm{~Hz}, \mathrm{C}-7{ }^{\prime}\right), 131.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=10.4 \mathrm{~Hz}, \mathrm{C}-9^{\prime}\right) 131.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=2.9 \mathrm{~Hz}, \mathrm{C}-8{ }^{\prime}\right)$, $132.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=3.1 \mathrm{~Hz}, \mathrm{C}-8\right), 133.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=10.2 \mathrm{~Hz}, \mathrm{C}-9\right), 136.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=1.5 \mathrm{~Hz}, \mathrm{C}-15\right)$, 147.1 (C-11) ppm. $-{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162.0 \mathrm{MHz}\right): \delta=+43.3(\mathrm{~d}, J=27.2 \mathrm{~Hz}),+46.8(\mathrm{~d}, J$ $=27.2 \mathrm{~Hz}) \mathrm{ppm} .-\mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%): 534\left[\mathrm{M}^{+}+\mathrm{H}\right], 378$ (22), 336 (15), 238 (31), 206 (35), 181 (45), 155 (100), 91 (32), 77 (66). - HR-MS (ESI) calcd for: $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{NOP}_{2} \mathrm{~S}_{2}\right)$: calcd. 534.1246, found 534.1244. - Anal $\left(\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NOS}_{2} \mathrm{P}_{2}\right)$: Calcd. C 65.27, H 5.48, N 2.62; found: C 65.38, H 5.84, N 2.58.

5.4.3 (4Rp,5Sp)-(-)-bis-(4S,5R)-([methyl(phenyl)phosphinyl]-(N,3S)-

 (diphenyl)isoxazolidine (301a)

In a Schlenk flask diphosphine borane $(S p, R p)-\mathbf{3 0 3 a}(50.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ and DABCO (38.6 $\mathrm{mg}, 0.3 \mathrm{mmol})$ in toluene (2 mL) were placed. The reaction mixture was stirred at $70^{\circ} \mathrm{C}$ over 3 h . After filtration trough silica gel with toluene (50 mL) as eluent and evaporation in high vacuum, pure diphosphine ($S p, R p$)-301a was obtained as air-sensitive viscous white solid $43.2 \mathrm{mg}(0.1 \mathrm{mmol}, 87 \%)$. To avoid oxidation, $(S p, R p)-301$ was stored in a Schlenk flask under argon at $-25^{\circ} \mathrm{C}$.
$(S p, R p)$-301a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=1.20\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=4.3 \mathrm{~Hz}, 3 \mathrm{H}, 6-\mathrm{H}\right), 1.44(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{PH}}=4.3 \mathrm{~Hz}, 3 \mathrm{H}, 6{ }^{\prime}-\mathrm{H}\right), 2.71(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 4.13\left(\mathrm{dd}, J=9.3 \mathrm{~Hz},{ }^{2} J_{\mathrm{PH}}=18.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}\right)$, $4.5\left(\mathrm{dd}, J=5.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=10.7 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}\right), 6.66-7.54\left(\mathrm{~m}, 20 \mathrm{H}_{\mathrm{Ar}}\right) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR (100.6 MHz BB, DEPT, $\left.\mathrm{CDCl}_{3}\right): \delta=7.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=15.0 \mathrm{~Hz}, \mathrm{C}-6{ }^{\prime}\right), 10.2\left(\mathrm{dd},{ }^{1} J_{\mathrm{PC}}=15.9 \mathrm{~Hz},{ }^{1} J_{\mathrm{PC}}=\right.$ $3.5 \mathrm{~Hz}, \mathrm{C}-6), 49.7\left(\mathrm{dd},{ }^{1} J_{\mathrm{PC}}=32.9 \mathrm{~Hz},{ }^{1} J_{\mathrm{PC}}=8.1 \mathrm{~Hz}, \mathrm{C}-4\right), 74.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=8.2 \mathrm{~Hz}, \mathrm{C}-3\right), 77.08$ $\left(\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{PC}}=30.5,{ }^{1} J_{\mathrm{PC}}=5.2 \mathrm{~Hz}, \mathrm{C}-5\right), 114.6(\mathrm{C}-12), 121.7(\mathrm{C}-14), 126.8(\mathrm{C}-13), 127.2(\mathrm{C}-17)$, $128.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=7.1 \mathrm{~Hz}, \mathrm{C}-9\right), 128.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=6.7 \mathrm{~Hz}, \mathrm{C}-9{ }^{\prime}\right)$, $128.6(\mathrm{C}-16), 128.8(\mathrm{C}-18)$, $129.0(\mathrm{C}-10), 129.1\left(\mathrm{C}-10^{\prime}\right), 132.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=18.6 \mathrm{~Hz}, \mathrm{C}-7{ }^{\prime}\right), 132.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=19.2 \mathrm{~Hz}, \mathrm{C}-7\right)$, $135.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=15.0 \mathrm{~Hz}, \mathrm{C}-8\right)$, $136.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=11.9 \mathrm{~Hz}, \mathrm{C}-8\right), 142.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=2.5 \mathrm{~Hz}, \mathrm{C}-15\right)$, 150.6 (C-11) ppm. $-{ }^{31} \mathrm{P}$ NMR ($\mathrm{CDCl}_{3}, 162 \mathrm{MHz}$): $\delta=-28.8(\mathrm{~d}, J=10.9 \mathrm{~Hz}),-30.6(\mathrm{~d}, J=$ $10.9 \mathrm{~Hz}) \mathrm{ppm}$.

5.4.4 (4Rp,5Sp)-(-)-Bis-(4R,5S)-([methyl(phenyl)phosphinyl]-(N,3R)(diphenyl)isoxazolidine (301b)

$(S p, R p)$-302b was obtained by the procedure described above for $(S p, R p)$-302a as airsensitive viscous white solid $43.7 \mathrm{mg}(0.1 \mathrm{mmol}, 88 \%)$. To avoid oxidation, $(S p, R p)$-302b was stored in a Schlenk flask under argon at $-25^{\circ} \mathrm{C}$.
$(S p, R p)$-302b: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=1.44\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=4.3 \mathrm{~Hz}, 3 \mathrm{H}, 6-\mathrm{H}\right), 1.62(\mathrm{~d}$, ${ }^{2} J_{\mathrm{PH}}=4.3 \mathrm{~Hz}, 3 \mathrm{H}, 6^{\prime}-\mathrm{H}$), 2.52 (dddd, $J=5.2 \mathrm{~Hz}, J=9.3 \mathrm{~Hz}, J=12.6 \mathrm{~Hz},{ }^{2} J_{\mathrm{PH}}=27.3 \mathrm{~Hz}, 1 \mathrm{H}$, $4-\mathrm{H}), 4.31\left(\mathrm{dd}, J=5.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=12.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}\right), 4.42\left(\mathrm{ddd}, J=9.4 \mathrm{~Hz}, J=14.2 \mathrm{~Hz},{ }^{2} J_{\mathrm{PH}}\right.$ $=23.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 6.53-7.74\left(\mathrm{~m}, 20 \mathrm{H}_{\mathrm{A}}\right) \mathrm{ppm} .-{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right): \delta=7.1$ $\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}}=11.1 \mathrm{~Hz}, \mathrm{C}-6\right.$ '), $10.2\left(\mathrm{dd},{ }^{1} J_{\mathrm{PC}}=7.7 \mathrm{~Hz},{ }^{1} J_{\mathrm{PC}}=14.3 \mathrm{~Hz}, \mathrm{C}-6\right), 56.5\left(\mathrm{dd},{ }^{1} J_{\mathrm{PC}}=27.6\right.$ $\left.\mathrm{Hz},{ }^{1} J_{\mathrm{PC}}=9.8 \mathrm{~Hz}, \mathrm{C}-4\right), 74.9\left(\mathrm{dd},{ }^{2} J_{\mathrm{PC}}=19.4 \mathrm{~Hz},{ }^{2} J_{\mathrm{PC}}=4.2 \mathrm{~Hz}, \mathrm{C}-3\right), 77.08\left(\mathrm{dd},{ }^{1} J_{\mathrm{PC}}=49.3\right.$ $\left.\mathrm{Hz},{ }^{1} J_{\mathrm{PC}}=23.2 \mathrm{~Hz}, \mathrm{C}-5\right), 114.3(\mathrm{C}-12), 121.5(\mathrm{C}-14), 126.5(\mathrm{C}-13), 126.6(\mathrm{C}-17), 128.0(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{PC}}=7.7 \mathrm{~Hz}, \mathrm{C}-9\right), 128.2(\mathrm{C}-10), 128.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=7.5 \mathrm{~Hz}, \mathrm{C}-9\right.$ '), $128.8(\mathrm{C}-16), 129.0\left(\mathrm{C}-10^{\prime}\right)$, 129.5 (C-18), $129.6(\mathrm{C}-18), 132.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=20.0 \mathrm{~Hz}, \mathrm{C}-7{ }^{\prime}\right), 134.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=20.1 \mathrm{~Hz}, \mathrm{C}-7\right)$, $136.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=13.6 \mathrm{~Hz}, \mathrm{C}-8\right.$) $), 142.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=3.3 \mathrm{~Hz}, \mathrm{C}-15\right), 150.8(\mathrm{C}-11) \mathrm{ppm} .-{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right): \delta=-27.5(\mathrm{~d}, J=7.6 \mathrm{~Hz}),-30.2(\mathrm{~d}, J=7.6 \mathrm{~Hz}) \mathrm{ppm}$.

5.4.5 (4Rp,5Sp)-(-)-Bis-(4S,5R)-boranato([methyl(phenyl)phosphino]-(N,3S)-(diphenyl)

 isoxazolidine (303a)

To a stirred diphosphine dioxide ($R p, S p$)-276a ($200 \mathrm{mg}, 0.3992 \mathrm{mmol}$) in THF (7 mL) was added polymethylhydrosiloxane (PMHS) 0.8 ml (excess) and degassed 2 times. Ti(i-OPr) 4_{4} equiv., $0.35 \mathrm{~mL}, 1.2 \mathrm{mmol}$) was added via syringe and reaction mixture was heated at $66^{\circ} \mathrm{C}$ for 17 h . After cooling to $25^{\circ} \mathrm{C}$, reaction mixture was filtered trough silica gel under argon with THF (60 mL), which thereafter was evaporated. To the residue was again added THF (10 mL) and cooled to $0{ }^{\circ} \mathrm{C}$. Borane-THF complex (1.0 M in THF) ($0.172 \mathrm{~g}, 2 \mathrm{~mL}, 0.002 \mathrm{~mol}$) was dropped during 3 min . and reaction mixture was allowed to reach $25^{\circ} \mathrm{C}$. After 0.5 h water was carefully added and well extracted with $\mathrm{EtOAc}(4 \times 20)$. Extracts were dried over MgSO_{4}. The chromatography $\left(\mathrm{SiO}_{2}, 4 \times 50\right.$, hexane / EtOAc 9:1) as eluent leads to desired diphosphine borane ($S p, R p$)-303a as white solid $160.7 \mathrm{mg}(0.32 \mathrm{mmol}, 81 \%)$. M.p. $=74^{\circ} \mathrm{C}$.
$(S p, R p)-303 a:[\alpha]^{\mathrm{D}}{ }_{20}=+125.8\left(c=0.5, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}(\mathrm{ATR}): \tilde{v}=2991(\mathrm{w}) \mathrm{cm}^{-1}, 2375(\mathrm{br}$, B-H), 2169 (w), 1596 (w), 1488 (s), 1454 (w), 1436 (w), 1412 (w), 1260 (w), 1180 (w), 1111 (w), 1060 (s, C-N), 888 (s), 742 (s), $690(\mathrm{~s}) . ~-{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}$): $\delta=0.5-1.2$ (br, $\left.6 \mathrm{H}, \mathrm{B} H_{3}\right), 1.42\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=10.2 \mathrm{~Hz}, 3 \mathrm{H}, 6-\mathrm{H}^{\prime}\right), 1.67\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=10.2 \mathrm{~Hz}, 3 \mathrm{H}, 6-\mathrm{H}\right), 3.95-4.03(\mathrm{~m}$, $1 \mathrm{H}, 5-\mathrm{H}), 4.64\left(\mathrm{dddd},{ }^{2} J_{\mathrm{PH}}=16.6 \mathrm{~Hz}, J=8.3 \mathrm{~Hz}, J=4.8 \mathrm{~Hz}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 4.72(\mathrm{dd}$, $\left.{ }^{3} J_{\mathrm{PH}}=14.7 \mathrm{~Hz}, J=7.8 \mathrm{~Hz} ; 1 \mathrm{H}, 3-\mathrm{H}\right), 6.95-7.57\left(\mathrm{~m}, 20 \mathrm{H}_{\mathrm{Ar}}\right) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR (100.6 MHz , BB, DEPT, CDCl_{3}) : $\delta=7.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=39.1 \mathrm{~Hz}, \mathrm{C}-6\right.$ '), $10.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=38.7 \mathrm{~Hz}, \mathrm{C}-6\right), 51.5$ $\left(\mathrm{dd},{ }^{1} J_{\mathrm{PC}}=31.3 \mathrm{~Hz},{ }^{1} J_{\mathrm{PC}}=10.2 \mathrm{~Hz}, \mathrm{C}-4\right), 74.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=7.3 \mathrm{~Hz}, \mathrm{C}-3\right), 76.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=32.8\right.$, $\left.{ }^{1} J_{\mathrm{PC}}=3.3 \mathrm{~Hz}, \mathrm{C}-5\right), 120.2(\mathrm{C}-12), 125.3(\mathrm{C}-14), 125.7(\mathrm{C}-13), 126.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=54.3 \mathrm{~Hz}, \mathrm{C}-7\right)$, 128.2 (C-16), 128.7 (C-17), $128.75\left(\mathrm{C}-10\right.$ '), $128.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=53.1 \mathrm{~Hz}, \mathrm{C}-7{ }^{\prime}\right), 128.9(\mathrm{C}-10)$, $131.3\left(\mathrm{~d},{ }^{4} J_{\mathrm{PC}}=2.5 \mathrm{~Hz}, \mathrm{C}-10^{\prime}\right), 131.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=8.8 \mathrm{~Hz}, \mathrm{C}-8{ }^{\prime}\right), 131.9\left(\mathrm{~d},{ }^{4} J_{\mathrm{PC}}=2.5 \mathrm{~Hz}, \mathrm{C}-10\right)$, $132.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=9.0 \mathrm{~Hz}, \mathrm{C}-8\right), 137.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=2.3 \mathrm{~Hz}, \mathrm{C}-15\right), 147.3(\mathrm{C}-11) \mathrm{ppm} .-{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right): \delta=+17.7(\mathrm{~d}, J=41.6 \mathrm{~Hz}),+24.6(\mathrm{~d}, J=45.5 \mathrm{~Hz}) .-\mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}$ (rel. intensity): 77 (100), 91 (80), 123 (97), 180 (46), 206 (25), 246 (41), 346 (43), 358 (23), 494 $\left[\mathrm{M}^{+}-3 \mathrm{H}\right]$. - Anal $\left(\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{NOB}_{2} \mathrm{P}_{2}\right)$: Calcd. C 70.06, H 7.10, N 2.82; found: C 69.57, H 7.16, N 2.76 .

5.4.6 (4Rp,5Sp)-(-)-Bis-(4R,5S)-boranato([methyl(phenyl)phosphino]-($N, 3 R$)-(diphenyl) isoxazolidine (303b)

($S p, R p$)-303b was obtained by the procedure described above for $(S p, R p)$-303a as a white powder $166.7 \mathrm{mg}(0.33 \mathrm{mmol}, 84 \%)$. M. p. $=115-116^{\circ} \mathrm{C}$. Column chromatography $\left(\mathrm{SiO}_{2}\right.$, 4×50, toluene).
$(S p, R p)-303 b:[\alpha]^{\mathrm{D}}{ }_{20}=-269.0\left(c=0.5, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}(\mathrm{ATR}): \tilde{v}=2924(\mathrm{w}) \mathrm{cm}^{-1}, 2363$ (br, BH), 1593 (w), 1485 (s), 1454 (w), 1436 (w), 1412 (w), 1293 (w), 1260 (s), 1224 (w), 1188 (w), 1063 (s, C-N), 1023 (s), 891 (s), 794 (s), 743 (s), 691 (s). - ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400.1$ $\mathrm{MHz}): \delta=0.5-1.2\left(\mathrm{br}, 6 \mathrm{H}, \mathrm{B} H_{3}\right), 1.81\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=9.9 \mathrm{~Hz}, 3 \mathrm{H}, 6-\mathrm{H}\right), 1.92\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=9.9 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\left.6^{\prime}-\mathrm{H}\right), 3.41-3.51(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 4.07\left(\mathrm{dd},{ }^{3} J_{\mathrm{PH}}=15.4 \mathrm{~Hz}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}\right), 5.02$ (dddd, $\left.{ }^{2} J_{\mathrm{PH}}=16.1 \mathrm{~Hz}, J=10.9 \mathrm{~Hz}, J=6.5 \mathrm{~Hz}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 5.76(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, 16-\mathrm{H})$, 6.95-7.57 (m, $18 \mathrm{H}_{A r}$) ppm. - ${ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz} \mathrm{BB}, ~ D E P T, ~ H M Q C, ~ \mathrm{CDCl}_{3}\right): \delta=9.2(\mathrm{~d}$, ${ }^{1} J_{\mathrm{PC}}=42.9 \mathrm{~Hz}, \mathrm{C}-6$) , $13.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=38.7 \mathrm{~Hz}, \mathrm{C}-6\right), 49.7\left(\mathrm{dd},{ }^{1} J_{\mathrm{PC}}=32.9 \mathrm{~Hz},{ }^{1} J_{\mathrm{PC}}=8.05 \mathrm{~Hz}\right.$, C-4), $74.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=8.24 \mathrm{~Hz}, \mathrm{C}-3\right), 77.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=30.48,{ }^{1} J_{\mathrm{PC}}=5.18 \mathrm{~Hz}, \mathrm{C}-5\right), 121.0(\mathrm{C}-12)$, $125.2(\mathrm{C}-14), 125.8(\mathrm{C}-13), 126.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=51.4 \mathrm{~Hz}, \mathrm{C}-7{ }^{\prime}\right), 126.4\left(\mathrm{dd},{ }^{1} J_{\mathrm{PC}}=53.7 \mathrm{~Hz},{ }^{1} J_{\mathrm{PC}}=\right.$ $\left.0.8 \mathrm{~Hz}, \mathrm{C}-7{ }^{\prime}\right), 127.7(\mathrm{C}-17), 128.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=10.16 \mathrm{~Hz}, \mathrm{C}-9{ }^{\prime}\right), 128.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=10.16 \mathrm{~Hz}, \mathrm{C}-9\right)$, $128.4(\mathrm{C}-18), 128.9(\mathrm{C}-16), 131.6\left(\mathrm{~d},{ }^{4} J_{\mathrm{PC}}=2.49 \mathrm{~Hz}, \mathrm{C}-10^{\prime}\right), 132.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=9.39 \mathrm{~Hz}, \mathrm{C}-8{ }^{\prime}\right)$, $132.2\left(\mathrm{~d},{ }^{4} J_{\mathrm{PC}}=2.5 \mathrm{~Hz}, \mathrm{C}-10\right), 134.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=9.4 \mathrm{~Hz}, \mathrm{C}-8\right), 135.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=1.34 \mathrm{~Hz}, \mathrm{C}-15\right)$, 147.1 (C-11) ppm. - ${ }^{31} \mathrm{P}$ NMR ($\left.\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right): \delta=+17.1(\mathrm{~d}, J=45.7 \mathrm{~Hz}),+19.7(\mathrm{~d}, J=$ $44.6 \mathrm{~Hz}) \mathrm{ppm} .-\mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%): 494\left[\mathrm{M}^{+}-3 \mathrm{H}\right], 358$ (23), 346 (43), 246 (41), 206 (25), 180 (46), 123 (97), 91 (80), 77 (100). - Anal ($\left.\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{NOB}_{2} \mathrm{P}_{2}\right)$: Calcd: C 70.06, H 7.10, N 2.82; found: C 69.49, H 7.37, N 2.70 .

Crystal Structure Analysis of ($S p, R p$)-303b: Crystals were obtained by slow evaporation from toluene at $20{ }^{\circ} \mathrm{C}$. Empirical formula $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~B}_{2} \mathrm{NOP}_{2}$, formula weight $497.16 \mathrm{~g} / \mathrm{mol}$, crystal system monoclinic, space group P 1211, unit cell dimensions $a=16.449$ (4), $b=11.291$ (14), c
$=17.171(4) \AA, \alpha=90^{\circ}, \beta=112.64(2)^{\circ}, \gamma=90^{\circ}, V=2943.3(13)(4) \AA^{3}, Z=1, d_{\text {Calc. }}=1.126$ $\mathrm{g} / \mathrm{cm}^{3}, \quad \mu=0.169 \mathrm{~mm}^{-1}$, crystal size $0.09 \times 0.20 \times 0.25 \mathrm{~mm}, \mathrm{~F}(000)=1040$, refinement method full-matrix least-squares on $\mathrm{F}^{\wedge} 2$, STOE IPDS one-axis diffractometer with imaging plate detector, $T=293(2) \mathrm{K}, \mathrm{Mo}_{\mathrm{K} \alpha}$ radiation ($\lambda=0.71073 \AA$), θ-range 2.19 to 26.30°, reflections collected / unique 11421/2917 [$R(\mathrm{int})=0.1711]$, completeness of data $\theta=26.30$ (95.2%), index ranges $-20 \leq h \leq 20,-14 \leq k \leq 14,-21 \leq l \leq 21$, direct methods, full-matrix least-squares refinement on F^{2}, goodness-of-fit on $F^{2}=0.618, R_{1}=0.0626\left(I>2 \sigma_{I}\right)$, $\mathrm{w} R_{2}=$ $0.1365, R$-indices [all data] $R_{1}=0.2163, \mathrm{w} R_{2}=0.1922$, final difference electron density map 0.350 and $-0.270 \mathrm{e}^{-3}$.

5.4.7 (4Sp,5Rp)-(-)-Bis-(4R,5S)-(methyl(phenyl)phosphinyl)- N-methyl-(3R)-(phenyl)

 isoxazolidine dioxide (278a)

In a $80-\mathrm{mL}$ microwave tube were placed $(S p, S p)-\mathbf{1 5 5}(40 \mathrm{mg}, 0.13 \mathrm{mmol})$ and C-phenyl $-N$ -methyl-nitrone 277 ($25.5 \mathrm{mg}, 0.26 \mathrm{mmol}$) in toluene (2 mL). Reaction mixture was heated for 40 min at $130{ }^{\circ} \mathrm{C}(130 \mu \mathrm{~W})$. After reaction, toluene was removed at reduced pressure, and black-brownish residue was separated at the column $\left(\mathrm{SiO}_{2}, \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ (30:1) to give $47.2 \mathrm{mg}(0.107 \mathrm{mmol}, 81 \%)$ of the ($R p, S p$)-278a as white viscous liquid, which after addition of petroleum ether crystallized in white solid. Ratio of diastereoisomers 6:1 (${ }^{31} \mathrm{P}$ NMR). Second (minor) diastereomer was not isolated.
($R p, S p$)-278a-major: $[\alpha]^{\mathrm{D}}{ }_{20}=+60.9\left(c=1.05, \mathrm{CHCl}_{3}\right)$. $-\mathrm{IR}(\mathrm{ATR}): \tilde{v}=2221(\mathrm{w}) \mathrm{cm}^{-1}, 1496$ (w), 1456 (w), 1438 (w), 1295 (w), 1176 (s, P=O), 1115 (s), 1042 (w), 882 (s), 739 (s), 696 (s). $-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=1.40\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=12.9 \mathrm{~Hz}, 3 \mathrm{H}, 6-\mathrm{H}\right), 1.80\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=\right.$ $13.3 \mathrm{~Hz}, 3 \mathrm{H}, 6$ '-H), 2.62 ($\mathrm{s}, 3 \mathrm{H}, 11-\mathrm{H}$), 3.98 (m, 2H, 4-H, 3-H), 4.42 (m, 1H, 5-H), 7.15-7.44 $\left(\mathrm{m}, 15 \mathrm{H}_{A r}\right) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{BB}$, DEPT, HMQC, HH-COSY, CDCl_{3}): $\delta=12.7$
$\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}}=71.1 \mathrm{~Hz}, \mathrm{C}-6\right), 15.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=69.8 \mathrm{~Hz}, \mathrm{C}-6{ }^{\prime}\right), 41.9(\mathrm{C}-11), 52.1\left(\mathrm{dd},{ }^{1} J_{\mathrm{PC}}=68.6\right.$ $\mathrm{Hz}, J=3.3 \mathrm{~Hz}, \mathrm{C}-4), 73.2(\mathrm{C}-3), 76.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=76.3 \mathrm{~Hz}, \mathrm{C}-5\right), 128.3(\mathrm{C}-10$ '), $128.4(\mathrm{C}-10)$, $128.5(\mathrm{C}-15), 128.9(\mathrm{C}-14), 129.1(\mathrm{C}-13), 129.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=9.2 \mathrm{~Hz}, \mathrm{C}-9{ }^{\prime}\right), 130.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=9.4\right.$ $\mathrm{Hz}, \mathrm{C}-9), 130.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=98.7 \mathrm{~Hz}, \mathrm{C}-7{ }^{\prime}\right), 131.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=2.7 \mathrm{~Hz}, \mathrm{C}-8{ }^{\prime}\right), 131.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=2.7\right.$ $\mathrm{Hz}, \mathrm{C}-8), 132.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PC}}=90.7 \mathrm{~Hz}, \mathrm{C}-7\right), 136.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=1.0 \mathrm{~Hz}, \mathrm{C}-12\right) \mathrm{ppm} .-{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162.0 \mathrm{MHz}\right): \delta=+37.6(\mathrm{~d}, J=23.8 \mathrm{~Hz}),+40.6(\mathrm{~d}, J=23.8 \mathrm{~Hz}) \mathrm{ppm} .-\mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}$ (rel. intensity): 300 (25), 289 (17), 272 (36), 166 (11), 165 (100), 139 (56), 118 (34), 91 (20), 77 (53) 51 (20). - HR-MS (ESI) calcd for: $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{P}_{2}\right)$: calcd. 440.1544, found 440.1546.

5.5 Synthesis of Rhodium Complex 310

5.5.1 \{(4Sp,5Rp)-(-)[(N,3S)-Diphenyl--bis-4,5-[methyl(phenyl)phosphinyl] isoxazolidine](bicyclo%5B2.2.1%5Dhepta-2,5-diene)\}rhodium (I) tetrafluroborate (310)

To a stirred at $-30^{\circ} \mathrm{C}$ solution of diphosphine ($S p, R p$)-301a ($65 \mathrm{mg}, 0.1 \mathrm{mmol}$) in THF (5 mL) was added $\mathrm{Rh}(\mathrm{nbd})_{2} \mathrm{BF}_{4}(39.5 \mathrm{mg}, 0.106 \mathrm{mmol})$ as a solid under argon. After stirring for 30 min at $-20^{\circ} \mathrm{C}$, the orange clear solution was filtered trough silicagel with THF as eluent. After evaporation, the orange powder was washed 3 times with hexane ($3 \times 2 \mathrm{~mL}$) to give after solvent removal rhodium complex $\mathbf{3 0 1}$ as an air-sensitive orange powder $64.6 \mathrm{mg}(0.08$ mmol, 78%).
(310): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=1.61$ (br.s $\left.2 \mathrm{H}, 23-\mathrm{H}\right), 1.99\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=8.4 \mathrm{~Hz}, 3 \mathrm{H}, 6-\right.$ $\left.\mathrm{H}^{\prime}\right), 2.06\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=8.3 \mathrm{~Hz}, 3 \mathrm{H}, 6-\mathrm{H}\right), 3.77(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 4.13(\mathrm{br}, 2 \mathrm{H}, 19,20-\mathrm{H}), 4.42(\mathrm{dd}$, $\left.{ }^{3} J_{\mathrm{PH}}=16.1 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}\right), 4.88($ br.s, $2 \mathrm{H}, 21,22-\mathrm{H}), 5.15(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 5.48$
(br.s, 2H, 19', 20'-H), 6.71-7.72 (m, 20H ${ }_{A r}$) ppm. $-{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right): \delta=-3.8$ $\left(\mathrm{dd},{ }^{1} J_{\mathrm{RhP}}=151.5 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=38.1 \mathrm{~Hz}\right),+12.3\left(\mathrm{dd},{ }^{1} J_{\mathrm{RhP}}=155.8 \mathrm{~Hz},{ }^{2} J_{\mathrm{PP}}=38.1 \mathrm{~Hz}\right) \mathrm{ppm}$.

5.6 Palladium Catalyzed Asymmetric Allylic Substitution

5.6.1 (R)-Methyl-2-carbomethoxy-3,5-diphenylpent-4-enoate (92) ${ }^{[174]}$

(R)-92

To a 10 mL flask containing a magnetic stirrer bar was added rac-1,3-diphenyl-2-propenyl acetate ($252 \mathrm{mg}, 1 \mathrm{mmol}$), THF (1 mL), dimethyl malonate ($264.23 \mathrm{mg}, 2 \mathrm{mmol}$), $\mathrm{N}, \mathrm{O}-$ bis(trimethylsilyl)acetamide ($470 \mu \mathrm{~L}, 2 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(14 \mathrm{mg}, 0.1 \mathrm{mmol})$ in this order under argon. To this solution was added $\left[\mathrm{Pd}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}(1.8 \mathrm{mg}, 0.005 \mathrm{mmol})$, and P-chiral diphosphine ligand ($S p, R p$)-301a ($5.63 \mathrm{mg}, 0.012 \mathrm{mmol}$) in THF ($450 \mu \mathrm{~L}$). The mixture was stirred at $25^{\circ} \mathrm{C}$ with occasional monitoring by TLC (EtOAc / hexane 1:7) for 18 h . Thereafter the reaction mixture was diluted with the minimum amount of ethyl acetate and purified by flash chromatography on silica gel $\left(\mathrm{SiO}_{2}, 25 \times 2, \mathrm{EtOAc} /\right.$ hexane $\left.1: 7\right)$ to give the pure product $308 \mathrm{mg}(0.95 \mathrm{mmol}, 97 \%)$ as white crystals. $[\alpha]^{\mathrm{D}}{ }_{20}=+8.55(c=1.8$, EtOH). According the literature the absolute configuration of the product is $R .^{[167]}$ The enantiomeric excess was determined by chiral dirhodium method ${ }^{[174]}$, and found to be $81 \% e e$.
R-(92): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=3.53(\mathrm{~s}, 3 \mathrm{H}, 3-\mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{~B}-\mathrm{H}), 3.96(\mathrm{~d}, J=$ $11.0 \mathrm{~Hz}, 2-\mathrm{H}), 4.28(\mathrm{dd}, J=8.8 \mathrm{~Hz}, J=11.0 \mathrm{~Hz}, 1-\mathrm{H}), 6.33(\mathrm{dd}, J=8.5 \mathrm{~Hz}, J=15.7,6-\mathrm{H})$, $6.48(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 5-\mathrm{H}), 7.15-7.42\left(\mathrm{~m}, 10 \mathrm{H}_{A r}\right) \mathrm{ppm}$.

5.7 Alkene Metathesis: Synthesis of Ruthenium Precatalysts

5.7.1 N, N-Bis(2,4,6-trimethylphenyl)-1,2-ethanediimine ${ }^{[65]}$

To a stirred solution of glyoxal (18.7 mL of a 40% in water) in methanol (1500 mL) was added dropwise $2,4,6$-trimethylaniline ($39.6 \mathrm{~g}, 0.3 \mathrm{~mol}$) over 15 min . The mixture was stirred for 12 h at $22{ }^{\circ} \mathrm{C}$ as a bright yellow precipitate slowly formed. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dissolving the solid. The resulting yellow solution was dried over MgSO_{4}, filtered, and concentrated to a yellow-orange solid residue. The unpurified product was recrystallized from methanol. After slow cooling to $22^{\circ} \mathrm{C}$ followed by subsequent storage of the sample at $20^{\circ} \mathrm{C}$ for 12 h , long canary yellow crystals formed. The product was recovered by vacuum filtration, washed with pentane, and dried under high vacuum $27.0 \mathrm{~g}(0.1 \mathrm{~mol}, 63 \%)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=2.23(\mathrm{~s}, 12 \mathrm{H}, 2-\mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}, 6-\mathrm{H}), 6.95(\mathrm{~s}, 4 \mathrm{H}, 4-\mathrm{H})$, 8.12 (s, 2H, 7-H) ppm.

5.7.2 $N, N-B i s(2,4,6-t r i m e t h y l p h e n y l)-1,2-e t h a n e d i a m i n e ~ e ~[65] ~$

The bis(imine) ($27.0 \mathrm{~g}, 0.1 \mathrm{~mol}$) was suspended in $\mathrm{MeOH}(700 \mathrm{~mL})$ and several crystals of bromocresol green were added as a pH indicator, and the mixture was cooled to $0{ }^{\circ} \mathrm{C}$. $\mathrm{NaCNBH}_{3}(37.3 \mathrm{~g}, 0.6 \mathrm{~mol})$ was added to the reaction mixture in one portion as a solid. Vigorous bubbling was observed, and the reaction mixture turned a deep blue-green color (alkaline pH). After 10 min , concentrated HCl was added dropwise to the mixture, restoring its original yellow colour. Additional reduction slowly occurred, causing the mixture to again become basic. The acidification process was repeated (typically two more times) until the yellow color persisted. The reaction mixture was warmed to $22{ }^{\circ} \mathrm{C}$ and stirred for 1 h . A solution of $2 \mathrm{M} . \mathrm{KOH}$ was added dropwise until the mixture was weakly alkaline ($\mathrm{pH}=8-9$). The mixture was then diluted with water (600 mL), transferred to a separatory funnel, and washed three times with TBME $(3 \times 300 \mathrm{~mL})$. The combined organic layers were washed with brine (700 mL), dried over MgSO , filtered, and concentrated to an yellow oil. Silica gel chromatography $\left(\mathrm{SiO}_{2}, 50 \times 4\right.$, cyclohexane / EtOAc 9:1) afforded the product as a colourless oil $14.1 \mathrm{~g}(0.05 \mathrm{~mol}, 54 \%)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=2.31(\mathrm{~s}, 6 \mathrm{H}, 6-\mathrm{H}), 2.37$ (s, 12H, 2-H), 3.24 (s, 4H, 7-H), 6.94 (s, 4H, 4-H) ppm.

5.7.3 1,3-Bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazolium tetrafluoroborate ${ }^{[65]}$

A 50 mL roundbottom flask was charged with ($14.0 \mathrm{~g}, 0.05 \mathrm{~mol}$) and ammonium tetrafluoroborate ($5.0 \mathrm{~g}, 0.05 \mathrm{~mol}$). Triethylorthoformate ($6.9 \mathrm{~g}, 0.05 \mathrm{~mol}$) was added by syringe. The flask was equipped with a reflux condenser and submerged into a preheated oil bath at $120{ }^{\circ} \mathrm{C}$. The mixture was refluxed for 3 h and cooled to $22^{\circ} \mathrm{C}$. A tan-colored solid precipitated, leaving a cloudy suspension. This mixture was recrystallized from hot ethanol. The resulting bright white crystals of product were recovered by vacuum filtration, washed with cold hexane, and dried under high vacuum $9.5 \mathrm{~g}(0.03 \mathrm{~mol}, 54 \%)$. Additional product could be obtained by further recrystallization of the mother liquor.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=2.33(\mathrm{~s}, 6 \mathrm{H}, 6-\mathrm{H}), 2.38(\mathrm{~s}, 12 \mathrm{H}, 2-\mathrm{H}), 4.44(\mathrm{~s}, 4 \mathrm{H}, 7-\mathrm{H})$, 7.10 (s, 4H, 4-H), 8.15 (s, 1H, 8-H) ppm.

5.7.4 [1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene) (tricyclohexylphosphine)]ruthenium (134) ${ }^{[64]}$

A solution potassium tert-amylate ($2 \mathrm{~mL}, 3 \mathrm{mmol}, 1.7 \mathrm{M}$ in toluene) was added under argon to a suspension of 1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazolium tetrafluoroborate $(1.2 \mathrm{~g}, 0.003 \mathrm{~mol})$ in n-hexane $(50 \mathrm{~mL})$ and the resultant slightly turbid, yellow solution was stirred at room temperature for 1 h . Grubbs catalyst $\mathbf{1 3 3}(2.06 \mathrm{~g}, 2.4 \mathrm{mmol})$ was then added to the flask as a solid and the reaction mixture was heated to reflux for 1 h . followed by TLC (hexane / EtOAc 7:3). The brown-pink reaction mixture was cooled to $25^{\circ} \mathrm{C}$ and the solvent was removed in vacuum. The brown residue was purified by column chromatography (SiO_{2}, 50×4, hexane / EtOAc 7:3) to give 134 as brown-pink powder 1.75 g ($0.002 \mathrm{~mol}, 69 \%$).
(134): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=0.20-2.65\left(\mathrm{~m}, 51 \mathrm{H}, \mathrm{PCy} y_{3}, 13-\mathrm{H}, 16-\mathrm{H}\right), 3.91(\mathrm{~s}, 4 \mathrm{H}$, $10-\mathrm{H}), 4.44(\mathrm{~s}, 4 \mathrm{H}, 7-\mathrm{H}), 7.02-7.41(\mathrm{~m}, 9 \mathrm{H}, 10-\mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H}, 4-\mathrm{H}), 19.17$ (s, 1H, 1-H) ppm. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right): \delta=+32.1 \mathrm{ppm}$.

General procedure for the synthesis Hoveyda-Grubbs precatalysts

In a Schlenk flask were placed Grubbs catalyst $134(500 \mathrm{mg}, 0.59 \mathrm{mmol})$ and $\mathrm{CuCl}(58 \mathrm{mg}$, 0.59 mmol) and degassed 3 times and dichloromethane (30 mL) was added. After stirring for 5 min . appropriate isopropoxystyrene $(0.59 \mathrm{mmol})$ was added and the reaction mixture was stirred at reflux for 1 h . After completed reaction, the solvent was removed at reduced pressure and the residue was purified by column chromatography on silica gel.

5.7.5 [1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolinylidene]dichloro[(2-

 isopropoxyphenyl)methylene]ruthenium (136) ${ }^{[65]}$

136 was obtained in 77% yield as a green solid after purification $\left(\mathrm{SiO}_{2}, 25 \times 2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ / hexane $1: 1$).
(136): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=1.26(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 6 \mathrm{H}, 9-\mathrm{H}), 2.42(\mathrm{~s}, 6 \mathrm{H}, 17-\mathrm{H})$, 2.49 (s, 12H, 14-H), 4.19 (s, 4H, 11-H), 4.91 (sept, $J=6.3 \mathrm{~Hz}, 8-\mathrm{H}), 6.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}_{A r}\right), 6.87\left(\mathrm{dd}, J=7.4 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{A r}\right), 6.95\left(\mathrm{dd}, J=7.4 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{A r}\right)$, $7.08(\mathrm{~s}, 4 \mathrm{H}, 15-\mathrm{H}), 7.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{A r}\right), 16.56(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H})$.
5.7.6 [1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolinylidene]dichloro[(2-isopropoxy-3methoxyphenyl)methylene]ruthenium (156) ${ }^{[85]}$

$\mathbf{1 5 6}$ was obtained in 72% yield as a green solid after purification $\left(\mathrm{SiO}_{2}, 25 \times 2\right.$, TBME / hexane 1:2).
(156): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=1.21$ (d, $\left.J=6.2 \mathrm{~Hz}, 6 \mathrm{H}, 10-\mathrm{H}\right), 2.46$ (br.s, $18 \mathrm{H}, 15-$ $\mathrm{H}+18-\mathrm{H}), 3.82$ (s, 3H, 7-H), 4.15 (s, 4H, 12-H), 5.69 (sept, $J=6.2 \mathrm{~Hz}, 9-\mathrm{H}), 6.58$ (d, $J=7.5$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{A r}\right), 6.91\left(\mathrm{dd}, J=8.0 \mathrm{~Hz}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{A r}\right), 7.09(\mathrm{~s}, 4 \mathrm{H}, 16-\mathrm{H}), 7.49(\mathrm{~d}, J=8.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{A r}\right) 16.51(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H}) \mathrm{ppm}$.

5.7.7 [1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolinylidene]dichloro[(2-isopropoxy-5nitrophenyl)methylene]ruthenium (138) ${ }^{[67,109]}$

138 was obtained in 83% yield as a green solid after purification $\left(\mathrm{SiO}_{2}, 25 \times 2, \mathrm{EtOAc} /\right.$ cyclohexane 2:5).
(138): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=1.31(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}, 9-\mathrm{H}), 2.46$ (br.s, 18H, 14-$\mathrm{H}+17-\mathrm{H}), 4.20(\mathrm{~s}, 4 \mathrm{H}, 11-\mathrm{H}), 4.98$ (sept, $J=6.1 \mathrm{~Hz}, 8-\mathrm{H}), 6.88\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{A r}\right), 7.09$ $(\mathrm{s}, 4 \mathrm{H}, 15-\mathrm{H}), 7.80\left(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{A r}\right), 6.91\left(\mathrm{dd}, J=9.1 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{A r}\right), 16.47$ (s, 1H, 1-H) ppm.

5.7.8 [1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolinylidene]dichloro[(2-isopropoxy-

 biphenyl)methylene]ruthenium (137) ${ }^{[66]}$

137 was obtained in 59% yield as a green solid after purification $\left(\mathrm{SiO}_{2}, 25 \times 2\right.$, EtOAc / cyclohexane 1:9).
(137): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400.1 \mathrm{MHz}\right): \delta=0.87$ (d, $J=6.3 \mathrm{~Hz}, 6 \mathrm{H}, 13-\mathrm{H}$), 2.15-2.58 (br.s, $18 \mathrm{H}, 18-\mathrm{H}+21-\mathrm{H}), 4.19(\mathrm{~s}, 4 \mathrm{H}, 15-\mathrm{H}), 4.38$ (sept, $J=6.2 \mathrm{~Hz}, 12-\mathrm{H}), 6.87-6.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{A r}\right)$, 7.06 (s, 4H, 15-H), 7.28-7.37 (m, 6H, H $\mathrm{H}_{\text {r }}$), $16.62(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H}) \mathrm{ppm}$.

5.8 Synthesis of New, Highly Active Bimetallic Precatalyst for Alkene Metathesis

5.8.1 rac-Tricarbonyl(2-isopropoxystyrene)chromium (0) (205)

2-Isopropoxystyrene ${ }^{[65]}(\mathbf{1 9 9}),(1.000 \mathrm{~g}, 6.2 \mathrm{mmol})$ in $3 \mathrm{THF}(3 \mathrm{~mL})$ was added to $\mathrm{Cr}(\mathrm{CO})_{6}$ $(1.76 \mathrm{~g}, 8.0 \mathrm{mmol})$ in $\mathrm{Bu}_{2} \mathrm{O} / \mathrm{THF}(10: 1)(440 \mathrm{~mL})$ and heated at reflux. In the first 2 hours the color of the reaction mixture turned to orange. After 42 h in all, the reaction mixture was cooled to $25^{\circ} \mathrm{C}$ and filtered under argon through the silica gel. Solvent evaporation at reduced pressure gave an orange residue, which was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{PE} /\right.$ TBME 2:1), $\mathrm{R}_{\mathrm{f}}=0.42$ to give $1.050 \mathrm{~g}(3.5 \mathrm{mmol}, 59 \%)$ of 205 as a yellow powder. M. p. = 63.5-64.0 ${ }^{\circ} \mathrm{C}$.
(205): IR (ATR): $\tilde{v}=2981$ (w) $\mathrm{cm}^{-1}, 1941\left(\mathrm{~s}, \operatorname{Cr}(\mathrm{CO})_{3}\right), 1837$ (s$), 1626$ (w), 1532 (w), 1461 (s), 1424 (s), 1375 (w), 1335 (w), 1280 (w), 1249 (s), 1157 (w), 1107 (s), 993 (w), 949 (w), 918 (s), 816 (w), 667(s), 625 (s). - ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{HH}-\mathrm{COSY}, \mathrm{NOE}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=0.77$ (d, $J=6.02 \mathrm{~Hz}, 3 \mathrm{H}, 1-\mathrm{H}), 1.09(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, 2-\mathrm{H}), 3.71(\mathrm{sept}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 4.14(\mathrm{t}$, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 4.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 4.75-4.78(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.92$ (d, $\left.J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, 11^{\prime}-\mathrm{H}\right), 5.27(\mathrm{dd}, J=6.6 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 5.32(\mathrm{~d}, J=17.6 \mathrm{~Hz}$, $1 \mathrm{H}, 11-\mathrm{H}$), $6.64-6.71$ (dd, $J=17.6 \mathrm{~Hz}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR (100.6 MHz , BB, DEPT, HMQC, HMBC, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=21.5$ (C-2), 22.1 (C-1), $72.0(\mathrm{C}-3), 75.8(\mathrm{C}-5), 84.8$ (C-7), 92.7 (C-8), 93.8 (C-6), 94.7 (C-9), 114.9 (C-11), 129.7 (C-10), 139.9 (C-4), 233.8 (C12) ppm. - MS (EI) $\left.m / z(\%): 298(42)\left[\mathrm{M}^{+}\right], 242(19)\left[\mathrm{M}^{+}-2 \mathrm{CO}\right)\right], 215(28), 214$ (89) [$\mathrm{M}^{+}-$ 3CO)], 173 (8), 172 (29), 171 (98), 162 (6), 145 (7), 143 (22), 120 (20), 91 (14), 52 (100) [Cr^{+}]. - HR-MS (IE) calcd. for $\left(\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{4}{ }^{52} \mathrm{Cr}\right)$ 298.0297; found: 298.0297. - Anal $\left(\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Cr}\right)$: Calcd. C 56.38, H 4.73; found: 56.43, 4.61.
5.8.2 rac-Tricarbonyl (2-isopropoxy-3-methoxystyrene)chromium (0) (238)

2-Isopropoxy-3-methoxystyrene ${ }^{[104]}(0.470 \mathrm{~g}, 2.446 \mathrm{mmol})$ in THF (3 mL) was added to $\mathrm{Cr}(\mathrm{CO})_{6}\left(0.59 \mathrm{~g}, 2.7 \mathrm{mmol}\right.$, 1.1 equiv.) in $\mathrm{Bu}_{2} \mathrm{O} / \mathrm{THF}(10: 1)(175 \mathrm{~mL})$ and heated at reflux for 42 h . In the first 2 hours the color of the reaction mixture turned to orange. The reaction mixture was cooled to $25{ }^{\circ} \mathrm{C}$ and filtered under argon through the silica gel. Solvent evaporation at reduced pressure gave a yellow residue, which was purified by column chromatography (SiO_{2}, $\mathrm{PE} / \mathrm{TBME} 2: 1$) to give $0.46 \mathrm{~g}(1.25 \mathrm{mmol}, 51 \%)$ of 238 as a light yellow powder. M. p. $=99^{\circ} \mathrm{C}$.
(238): IR (ATR): $\widetilde{v}=2978(\mathrm{w}) \mathrm{cm}^{-1}, 1950\left(\mathrm{~s}, \operatorname{Cr}(\mathrm{CO})_{3}\right), 1869$ (s), 1844 (s$), 1518$ (w), 1411 (w), 1376 (w), 1276 (w), 1205 (w), 1097 (w), 1047 (w), 996 (w), 916 (w), 855 (w), 797 (w), 735 (w), 708 (w), 665 (w), 628 (s). - ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=1.09(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}$, $1-\mathrm{H}), 1.23(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}, 2-\mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}, 13-\mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 4.28(\mathrm{sept}, J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 4.51(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{H} ; 8-\mathrm{H}), 5.08(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, 11$ '-H), $5.29(\mathrm{~d}, J=17.8 \mathrm{~Hz}$, $1 \mathrm{H}, 11-\mathrm{H}), 6.52-6.78(\mathrm{dd}, J=17.8 \mathrm{~Hz}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR (100.6 MHz , BB, DEPT, HMQC, HMBC, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=22.5(\mathrm{C}-2), 22.3(\mathrm{C}-1), 55.9(\mathrm{C}-13), 74.2(\mathrm{C}-6), 79.6$ (C-3), 81.9 (C-8), 90.2 (C-7), 104.5 (C-9), 117.4 (C-11), 127.1 (C-5), 130.4 (C-10), 136.8 (C4), 234.3 (C-12) ppm. - MS (EI) m/z (\%): 328 (31) [M $\left.{ }^{+}\right], 272$ (12), 244 (92), 216 (26), 202 (82), 186 (82), 150 (11). - Anal ($\left.\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Cr}\right)$ Calcd. C 54.88, H 4.91; found: C: 54.81, H: 5.21.

5.8.3 [1,3-bis(2,4,6-trimethylphenyl)-2-imidazolinylidene]dichloro [(2-isopropoxyphenyl) methylene] tricarbonylchromium ruthenium (202)

205 ($88 \mathrm{mg}, 0.3 \mathrm{mmol}$) in dichloromethane (3 mL) was added dropwise via syringe to benzylidene complex 134 ($250 \mathrm{mg}, 0.3 \mathrm{mmol}$) and $\mathrm{CuCl}(30 \mathrm{mg}, 0.3 \mathrm{mmol})$ in dichloromethane $(5 \mathrm{~mL})$. The mixture was heated at reflux for 1 h the reaction progress being monitored by TLC ($R_{\mathrm{f}}=0.13$, hexane/EtOAc 5:2). After solvent removal at reduced pressure the residue was dissolved in benzene (35 mL) and carefully filtered under argon through silica gel to remove residual 205. Subsequent elution with hexane / TBME (2:1) gave $168 \mathrm{mg}(0.2$ $\mathrm{mmol}, \mathbf{7 4} \%$) of $\mathbf{2 0 2}$ as an air stable dark red solid. M. p. $>176^{\circ} \mathrm{C}$ (dec).
(202): IR (ATR): $\tilde{v}=2925$ (w) $\mathrm{cm}^{-1} 2847$ (w), 2052 (w), 1963 (s, $\left.\operatorname{Cr}(\mathrm{CO})_{3}\right), 1903$ (s), 1867 (s), 1739 (w), 1605 (w), 1484 (w), 1448 (w), 1382 (w), 1296 (w), 1260 (s), 1208 (w), 1098 (w), 1016 (b), 928 (w), 854 (w), 822 (w), 674 (w), 661 (w), 620 (w). - ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=1.08(\mathrm{~d}, J=6.04 \mathrm{~Hz}, 3 \mathrm{H}, 11-\mathrm{H}), 1.21(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, 10-\mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}, 19-\mathrm{H})$, 2.54 (bs, 12H, 16-H), 3.36 (s, 4H, 13, 13’-H), $3.74(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$); 4.01 (sept, $J=6.2$ $\mathrm{Hz}, 1 \mathrm{H}, 9-\mathrm{H}) ; 4.10(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}) ; 4.68(\mathrm{dt}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}, 5-\mathrm{H}) ; 4.97$ (dd, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}, 3-\mathrm{H}) ; 6.88$ ($\mathrm{s}, 2 \mathrm{H}, 17$ '-H); $7.00(\mathrm{~s}, 2 \mathrm{H}, 17-\mathrm{H}), 15.57$ ($\mathrm{s}, 1 \mathrm{H}, 1-$ H) ppm. - ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{BB}$, DEPT, HMQC, HMBC, HH-COSY, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=17.9$ (C-19), 21.1 (C-16), 21.4 (C-11), 21.6 (C-10), 51.2 (br, C-13; C-13'), 76.1 (C-7), 77.3 (C-9), 83.8 (C-4), 91.5 (C-3), 91.6 (C-5), 107.3 (C-2), 129.5 (C-18), 129.9 (C-17; C-17’), 135.5 (C18), 137.2 (C-15), 138.4 (C-14), 138.6 (C-8), 210.7 (C-12), 233.0 (C-6), 283.5 (C-1) ppm. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=1.14(\mathrm{~d}, J=6.04 \mathrm{~Hz}, 3 \mathrm{H}, 11-\mathrm{H}), 1.26(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}$, $10-\mathrm{H}$), 2.37 (br, 18H, 16-H+19-H), 4.15 (s, 4H, 13-H, 13 '-H), 4.62 (sept, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, 9-$ H), 4.79 (t, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 5.18(\mathrm{dd}, J=6.45 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 5.23$ (d, $J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 5.65(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.03(\mathrm{br}, 4 \mathrm{H}, 17-\mathrm{H}+17$ '-H), 15.49 (s, 1H, 1-H). -
${ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=21.0(\mathrm{br}, \mathrm{C}-16+\mathrm{C}-19), 21.4(\mathrm{C}-11), 21.4(\mathrm{C}-10), 51.5(\mathrm{br}$, C-13, C-13'), 77.05 (C-7), 77.7 (C-9), 85.2 (C-4), 92.2 (C-3), 92.3 (C-5), 107.2 (C-2), 128.5 (C-18), 129.3 (br, C-17; C-17’), 136.8 (C-15), 138.6 (C-14), 138.7 (C-8), 208.8 (C-12), 232.7 (C-6), 285.4 (C-1). - HRMS (in $\mathrm{CH}_{3} \mathrm{CN}$) $\mathrm{C}_{36} \mathrm{H}_{41} \mathrm{ClCrN}_{3} \mathrm{O}_{4} \mathrm{Ru} \quad\left[\mathrm{M}-\mathrm{Cl}+\mathrm{CH}_{3} \mathrm{CN}\right]^{+}$Calcd. 768.1234. found: 768.1250.

Crystal Structure Analysis of 202: Crystals were obtained by slow evaporation from hexane: TBME (2:1) at $25{ }^{\circ} \mathrm{C}$ under argon. Empirical formula $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{CrN}_{2} \mathrm{O}_{4} \mathrm{Ru}$, formula weight $762.63 \mathrm{~g} / \mathrm{mol}$, crystal system monoclinic, space group P $22_{1} / \mathrm{c}$ (14), unit cell dimensions $a=$ $9.996(4), b=23.873(8), c=15.218(6) \AA, \beta=99.64(5)^{\circ}, V=3580(2) \AA^{3}, Z=4, d_{\text {Calc. }}=1.415$ $\mathrm{g} / \mathrm{cm}^{3}, \mu=0.912 \mathrm{~mm}^{-1}$, crystal size $0.33 \times 0.07 \times 0.07 \mathrm{~m}^{3}$, STOE IPDS one-axis diffractometer with imaging plate detector, $T=298 \mathrm{~K}, \mathrm{Mo}_{\mathrm{K} \alpha}$ radiation $(\lambda=0.71073 \AA)$, $\theta_{\max }$ $=26.19^{\circ}, 51478$ (6823) measured (unique) reflections, $R($ int $)=0.076$, direct methods, fullmatrix least-squares refinement on F^{2} including all data (SHELXL-97), H atoms geometrically placed and allowed to ride on the respective C atoms, the trimethylphenyl group attached to N 2 treated as two-fold positionally disordered rigid group, the methyl groups of all trimethylphenyl groups treated two-fold rotationally disordered, anisotropic displacement parameters for all non-H atoms with the exception of the C atoms of the disordered mesityl group for which isotropic displacement parameters were used, 348 (8) parameters (restraints) in final refinement, $R 1=0.040$ ($I>2 \sigma_{I}, 2595$ reflections), $\mathrm{w} R 2=$ 0.064 (all reflections), largest peak (hole) in final difference electron density map $0.36(-0.50)$ e^{-3}.

One-Pot Synthesis of 202 from Grubbs I (133): At $25{ }^{\circ} \mathrm{C} 0.23 \mathrm{ml}(0.39 \mathrm{mmol}, 1.7 \mathrm{M}$ in toluene) of potassium tert-amylate was added to $158 \mathrm{mg}(0.4 \mathrm{mmol})$ of $1,3-$ dimesitylimidazolinium tetrafluoroborate in 7 ml of hexane and stirred for $1 \mathrm{~h} .300 \mathrm{mg}(0.36$ mmol) of Grubbs first $\mathbf{1 3 3}$ generation catalyst was added as a solid, and the reaction mixture was heated at reflux for 40 min being monitored by TLC (hexane/EtOAc 9:1). Thereafter the reaction mixture was cooled to $25^{\circ} \mathrm{C}$, and $37 \mathrm{mg}(0.38 \mathrm{mmol})$ of CuCl and $113.3 \mathrm{mg}(0.37$ mmol) of $\mathbf{2 0 5}$ in 7 ml of dichloromethane were added. After stirring the reaction mixture at reflux for 1 h , solvents were removed at reduced pressure and the residue purified as described previously. Yield 161 mg ($0.21 \mathrm{mmol}, 59 \%$) of 202.

5.8.4 [Tricyclohexylphosphine]dichloro[(2-isopropoxyphenyl)methylene] tricarbonylchromium ruthenium (236)

Tricarbonyl(2-isopropoxystyrene)chromium(0) (205) ($145.0 \quad \mathrm{mg}, \quad 0.49 \mathrm{mmol}$) in dichloromethane (6 mL) was added via syringe to benzylidene complex $\mathbf{1 3 3}$ ($200 \mathrm{mg}, 0.25$ $\mathrm{mmol})$ and $\mathrm{CuCl}(24.1 \mathrm{mg}, 0.24 \mathrm{mmol})$ in dichloromethane (12 mL). The reaction mixture was heated at $40^{\circ} \mathrm{C}$ for 1 h the reaction progress being monitored by TLC $\left(R_{\mathrm{f}}=0.13\right.$, hexane / TBME 15:1). After solvent removal at reduced pressure the residue was purified by column chromatography under argon leading to $\mathbf{2 3 6}$ as brown-red powder 85.6 mg , ($0.112 \mathrm{mmol}, 48$ \%).
(236): IR (ATR): $\tilde{v}=2922(\mathrm{w}) \mathrm{cm}^{-1}, 2849(\mathrm{w}), 1957\left(\mathrm{~s},\left(\mathrm{Cr}(\mathrm{CO})_{3}\right), 1882(\mathrm{~s}), 1518\right.$ (w), 1444 (w), 1261 (w), 1102 (w), 949 (w), 801 (w), 725 (w), 658 (w), 622 (w). - ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta=1.7-2.24\left(\mathrm{~m}, 33 \mathrm{H}, \mathrm{PCy}_{3} ; \mathrm{d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, 10-\mathrm{H} ; \mathrm{d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, 11-\mathrm{H}\right), 4.90$ (t, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 5.02(\mathrm{sept}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 5.47(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 5.74$ (dt, $J=6.9 \mathrm{~Hz}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 5.97(\mathrm{dd}, J=6.5 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 16.58(\mathrm{~d}, J=$ $4.2 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{BB}, \operatorname{DEPT}, \mathrm{CDCl}_{3}$): $\delta=21.9(\mathrm{C}-10), 22.7$ $(\mathrm{C}-11), 26.2(\mathrm{C}-15), 27.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=12.3 \mathrm{~Hz}, \mathrm{C}-13\right), 29.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=31.1 \mathrm{~Hz}, \mathrm{C}-12\right), 35.6(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{PC}}=25.6 \mathrm{~Hz}, \mathrm{C}-14\right), 77.2(\mathrm{C}-7), 77.8(\mathrm{C}-9), 84.3(\mathrm{C}-4), 91.8(\mathrm{C}-3), 91.9(\mathrm{C}-5), 105.7(\mathrm{C}-2)$, 137.5 (C-8), $232.2(\mathrm{C}-6), 274.01(\mathrm{C}-1) \mathrm{ppm} .-{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 161 \mathrm{MHz}\right): \delta=+64.1 \mathrm{ppm}$
5.8.5 [1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolinylidene]dichloro[(2-isopropoxy-3methoxyphenyl)methylene]tricarbonylchromium ruthenium (239)

Tricarbonyl(2-isopropoxy-3-metoxystyrene)chromium(0) (238) (38.6 mg, 0.12 mmol) in in dichloromethane (2 mL) was added via syringe to benzylidene complex 134 ($100 \mathrm{mg}, 0.1177$ $\mathrm{mmol})$ and $\mathrm{CuCl}(11.6 \mathrm{mg}, 0.1177 \mathrm{mmol})$ in dichloromethane (5 mL). The reaction mixture was heated at $40^{\circ} \mathrm{C}$ for 1 h . After solvent removal at reduced pressure the residue was dissolved in benzene (10 mL) and carefully filtered under argon through silica gel to remove residual 238. Subsequent elution with diethyl ether afforded $40.1 \mathrm{mg}(0.05 \mathrm{mmol}, 43 \%)$ of 239 as purple solid. M. p. $=109-110^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2924$ (w) $\mathrm{cm}^{-1}, 2845$ (w), 2363 (w), 2052 (w), 1955 (s, $\left.\operatorname{Cr}(\mathrm{CO})_{3}\right), 1874$ (s), 1479 (w), 1443 (w), 1262 (s), 1173 (w), 1099 (w), 887 (w), 851 (w), 806 (w), 674 (w), 657 (w). $-{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): 1.35 (d, J = $6.0 \mathrm{~Hz}, 6 \mathrm{H}, 11-\mathrm{H}, 10-\mathrm{H}$), 2.71 (br, 18H, 16-H, $19-\mathrm{H}), 3.42$ (sept, 1H, $9-\mathrm{H}$), 2.79 ($\mathrm{s}, 3 \mathrm{H}, 20-\mathrm{H}$), 3.68 (s, 4H, 13-H), 3.88 (t, 1H), 4.25 (d, 1H), 4.69 (d, 1H), 7.05 (s, 4H, 17-H), 15.72 (s, 1H, 1-H) ppm.

5.9 General procedures for alkene metathesis reactions catalyzed by 202

5.9.1 General Procedure for RCM and enyne metathesis (Entries 1-9, Table 3)

The solution of 202 in dichloromethane [$0.00050 \mathrm{mmol}(0.1 \%), 0.00500 \mathrm{mmol}(1 \%)$ or $0.02500 \mathrm{mmol}(5 \%)$] is added to a solution of the substrate $(0.5 \mathrm{mmol})(0.02 \mathrm{M})$ in dichloromethane at $0{ }^{\circ} \mathrm{C}$ or at $25^{\circ} \mathrm{C}$. The mixture is stirred at this temperature, and the reaction is monitored by TLC (hexane / ethyl acetate). After completed reaction cold vinyl ethyl ether ($0.5 \mathrm{~mL}, 2 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added to the reaction mixture. The solvent is
removed at reduced pressure, and the product is isolated by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane / ethyl acetate).

5.9.2 Cyclopenten-3-ene-1,1-dicarboxylic acid diethyl ester (217) ${ }^{[109]}$

(217): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}, 1-\mathrm{H}), 2.98(\mathrm{~s}, 4 \mathrm{H}, 5-\mathrm{H}), 4.16$ $(\mathrm{q}, 4 \mathrm{H}, J=7.1 \mathrm{~Hz}, 2-\mathrm{H}), 5.60(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{H}) \mathrm{ppm} .-{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta=13.9(\mathrm{C}-$ 1), 40.8 (C-5), 58.8 (C-4), 61.6 (C-2), 127.8 (C-6), 172.1 (C-3) ppm.

5.9.3 2,2-Diphenyl-3-vinyl-2,5-dihydrofuran (222) ${ }^{[109, ~ 110 a]}$

(222): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=4.77(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{H}), 5.09\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{c i s}\right)$, $5.31\left(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\text {trans }}\right), 6.16(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 6.23(\mathrm{dd}, J=17.8, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-$ H), 7.35-7.22 (m, $\left.10 \mathrm{H}_{A r}\right) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta=73.2(\mathrm{C}-6), 94.5(\mathrm{C}-1)$, 117.5 (C-4), 124.9 (C-5), 127.4 (C-10), 127.9 (C-8), 129.8 (C-9), 142.2 (C-2), 143.3 (C-3), 143.7 (C-7) ppm.

5.9.4 3-Methyl-cyclopent-3-en-1,1-dicarboxylic acid diethylester (219) ${ }^{[109]}$

(219): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}, 1-\mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{H}), 2.87$ (m, 2H, 5-H), $2.93(\mathrm{~m}, 2 \mathrm{H}, 9-\mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}, 2-\mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta=14.1(\mathrm{C}-1), 16.2(\mathrm{C}-7), 40.8(\mathrm{C}-9), 44.5(\mathrm{C}-5), 59.4(\mathrm{C}-4), 61.4$ (C-2), 121.2 (C-8), 137.4 (C-6), 172.4 (C-3) ppm.

5.9.5 2,5-dihydro-1H-pyrrole-1-toluenesulfonate (215) ${ }^{[109]}$

(215): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=2.41(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{H}), 4.10(\mathrm{~s}, 4 \mathrm{H}, 1-\mathrm{H}), 5.63(\mathrm{~s}, 2 \mathrm{H}, 2-$ H), $7.29(\mathrm{~d}, 2 \mathrm{H}, 5-\mathrm{H}), 7.70(\mathrm{~d}, 2 \mathrm{H}, 4-\mathrm{H}) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta=21.9(\mathrm{C}-7)$, 55.2 (C-1), 125.8 (C-4), 127.8 (C-2), 130.1 (C-5), 134.7 (C-3), 143.8 (C-6) ppm.

(216): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=2.28(\mathrm{~m}, 4 \mathrm{H}, 2-\mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{H}), 3.25(\mathrm{~m}, 4 \mathrm{H}, 1-$ H), $5.72(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 7.25(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, 6-\mathrm{H}), 7.64(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, 5-\mathrm{H}) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta=21.5(\mathrm{C}-8), 29.9(\mathrm{C}-2), 48.2(\mathrm{C}-1), 126.9(\mathrm{C}-5), 129.5(\mathrm{C}-3)$, 130.1 (C-6), 136.2 (C-4), 142.9 (C-7) ppm.

5.9.7 Cyclohex-3-ene-1,1-dicarboxylic acid diethylester (218) ${ }^{[66]}$

(218): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}, 1-\mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}), 2.15$ (m, 2H, 5-H), $2.45(\mathrm{~m}, 2 \mathrm{H}, 9-\mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}, 2-\mathrm{H}), 5.65(\mathrm{~s}, 2 \mathrm{H}, 7-\mathrm{H}, 8-\mathrm{H}) \mathrm{ppm} .-$ ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta=13.9(\mathrm{C}-1), 22.4(\mathrm{C}-6), 27.4(\mathrm{C}-9), 30.4(\mathrm{C}-5), 52.9(\mathrm{C}-4)$, 61.3 (C-2), 124.1 (C-7), 126.1 (C-8), 171.5 (C-3) ppm.
5.9.8 3-(2-methyl-1-propenyl)-2,5-dihydro-1H-pyrrole-1-toluenesulfonate (223) ${ }^{[110 \mathrm{a}, 84]}$

(223): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=1.74(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}, 6-\mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}, 12-\mathrm{H})$, 4.12 (bs, 2H, 1-H), 4.22 (d, $J=3.3 \mathrm{~Hz}, 2 \mathrm{H}, 7-\mathrm{H}), 5.37$ (bs, $1 \mathrm{H}, 2-\mathrm{H}$), 5.60 (bs, 1H, 4-H), 7.31 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 10-\mathrm{H}), 7.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, 9-\mathrm{H}) \mathrm{ppm} .-{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta$ $=19.9$ (C-6'), 21.6 (C-12), 27.3 (C-6), 54.5 (C-1), 56.3 (C-7), 117.2 (C-2), 120.8 (C-4), 127.4 (C-9), 129.7 (C-10), 136.2 (C-5), 137.8 (C-8), 143.3, (C-11) ppm.

5.9.9 3,4-dimethyl-2,5-dihydro-1H-pyrrole-1-toluenesulfonate (220) ${ }^{[109]}$

(220): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=1.53$ (s, $\left.6 \mathrm{H}, 3-\mathrm{H}\right), 2.42(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{H}), 3.96(\mathrm{~s}, 4 \mathrm{H}, 1-$ H), $7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 6-\mathrm{H}), 7.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{H}) \mathrm{ppm} .-{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 50\right.$ $\mathrm{MHz}): \delta=11.1(\mathrm{C}-3), 21.5(\mathrm{C}-8), 58.8(\mathrm{C}-1), 126.2(\mathrm{C}-2), 127.5(\mathrm{C}-5), 129.7(\mathrm{C}-6), 134.3$ (C4), 143.2 (C-7) ppm.

5.9.10 Cross-metathesis and homo-metathesis

General Procedure for CM (Entries 1-8, Table 4)

202 in dichloromethane [($0.00500 \mathrm{mmol}(1 \%), 0.0125 \mathrm{mmol}(2.5 \%)$ or $0.02500 \mathrm{mmol}(5 \%)$] is added to the substrate $(0.5 \mathrm{mmol})(0.125 \mathrm{M}$ or 0.2 M$)$ at $25^{\circ} \mathrm{C}$. The mixture is stirred at this temperature or at $40^{\circ} \mathrm{C}$, and the reaction is monitored by TLC (hexane / ethyl acetate). After completed reaction cold vinyl ethyl ether $\left(0.5 \mathrm{~mL}, 1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is added. The solvent is removed at reduced pressure, and the product is isolated by column chromatography (SiO_{2}, hexane / ethyl acetate).

5.9.11 (\boldsymbol{E})-5-methoxycarbonyl-pent-4-enyl-benzoate (226) ${ }^{[66]}$

(226): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.94(\mathrm{dt}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, 6-\mathrm{H}), 2.38(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}, 5-\mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{H}), 4.94(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, 7-\mathrm{H}), 5.88(\mathrm{dt}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H})$, 7.00 (dt, $J=16.7 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 7.43(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, 11-\mathrm{H}), 8.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, 10-\mathrm{H})$, $7.55(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{~Hz}\right): \delta=27.2(\mathrm{C}-5), 28.9(\mathrm{C}-$ 6), 51.5 (C-2), 64.0 (C-7), 121.7 (C-3), 128.4 (C-11), 129.6 (C-10), 130.2 (C-9), 133.1 (C-12), 147.8 (C-4), 166.5 (C-1), 166.9 (C-8) ppm.

5.9.12 Methyl-7-[1-(tert-butyl)-1,1-dimethyl-silyl]oxy-2-heptenoate (227) ${ }^{[109]}$

(227): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=0.03(\mathrm{~s}, 6 \mathrm{H}, 9-\mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}, 11-\mathrm{H}), 1.46-1.57(\mathrm{~m}$, $4 \mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}), 2.17-2.25(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}), 3.61(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}, 8-\mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{H}), 5.81$
(dt, $J=15.7 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 6.96(\mathrm{dt}, J=15.7 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{~Hz}\right): \delta=-5.3(\mathrm{C}-9), 18.3(\mathrm{C}-10), 24.4(\mathrm{C}-11), 25.9(\mathrm{C}-6), 31.9(\mathrm{C}-5), 32.2$ (C7), 51.3 (C-2), 62.7 (C-8), 121.1 (C-3), 149.6 (C-4), 167.2 (C-1) ppm.
5.9.13 8-[1-(tert-Butyl)-1,1-dimethylsilyl]oxy-3-E-octen-2-one (228) ${ }^{[109]}$

228
(228): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=0.04(\mathrm{~s}, 6 \mathrm{H}, 9-\mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}, 11-\mathrm{H}), 1.50(\mathrm{~m}, 4 \mathrm{H}, 6-$ $\mathrm{H}, 7-\mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{H}), 2.21(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}), 3.58(\mathrm{~m}, 2 \mathrm{H}, 8-\mathrm{H}), 6.07(\mathrm{dt}, J=15.9 \mathrm{~Hz}, 1.4$ $\mathrm{Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 6.79(\mathrm{dt}, J=15.9 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}) \mathrm{ppm} .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{~Hz}\right): \delta$ $=-5.3(\mathrm{C}-9), 18.3(\mathrm{C}-10), 24.6(\mathrm{C}-11), 25.9(\mathrm{C}-6), 26.8(\mathrm{C}-2), 32.1(\mathrm{C}-5), 32.3(\mathrm{C}-7), 62.9$ (C-8), 131.4 (C-3), 148.2 (C-4), 198.6 (C-1) ppm.

5.9.14 (E)-6-[1-(tert-butyl)-1,1-dimethylsilyl]-oxy-1-hexenyl phenyl sulfone (229) ${ }^{[109]}$

229
(229): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=0.03(\mathrm{~s}, 6 \mathrm{H}, 11-\mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}, 13-\mathrm{H}), 1.40-1.60(\mathrm{~m}$, $4 \mathrm{H}, 8-\mathrm{H}, 9-\mathrm{H}), 2.20(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{H}), 3.53(\mathrm{~m}, 2 \mathrm{H}, 10-\mathrm{H}), 6.32(\mathrm{dt}, J=15.1 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-$ $\mathrm{H}), 7.00(\mathrm{dt}, J=15.1 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.47-7.93\left(\mathrm{~m}, 5 \mathrm{H}_{A r}\right) \mathrm{ppm} .-{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100.6 \mathrm{~Hz}): \delta=-5.4(\mathrm{C}-11), 18.3(\mathrm{C}-12), 24.1(\mathrm{C}-13), 25.9(\mathrm{C}-8), 31.2(\mathrm{C}-7), 32.0(\mathrm{C}-9), 62.5$ (C-10), 127.5 (C-2), 127.7 (C-3), 129.2 (C-4), 130.4 (C-1), 133.2 (C-5), 140.7 (C-6) ppm.
5.9.15 (E)-6-[1-(tert-butyl)-1,1-dimethylsilyl]-oxy-1-hexenyl(diphenyl)phosphine oxide (231) ${ }^{[83]}$

(231): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=0.01(\mathrm{~s}, 6 \mathrm{H}, 11-\mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}, 13-\mathrm{H}), 1.51(\mathrm{~m}, 4 \mathrm{H}$, $8-\mathrm{H}, 9-\mathrm{H}), 2.34$ (m, 2H, 7-H), 3.59 (m, 2H, 10-H), 6.22 (ddt, $J=24.5 \mathrm{~Hz}, 17.0 \mathrm{~Hz}, 1.5 \mathrm{~Hz}$, $1 \mathrm{H}, 5-\mathrm{H}), 6.71(\mathrm{ddt}, J=19.5 \mathrm{~Hz}, 17.0 \mathrm{~Hz}, 6.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.40-7.61\left(\mathrm{~m}, 6 \mathrm{H}_{A r}\right), 7.64-7.71$ $\left(\mathrm{m}, 4 \mathrm{H}_{A r}\right) \mathrm{ppm}-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right): \delta=-5.4(\mathrm{C}-11), 18.3(\mathrm{C}-12), 24.3(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, \mathrm{C}-8$), 25.9 (C-13), 32.1 (C-9), 34.1 (d, $J=16.9 \mathrm{~Hz}, \mathrm{C}-7$), 62.7 (C-10), 122.3 (d, $J=$ $103.3 \mathrm{~Hz}, \mathrm{C}-1$), 128.4 (d, $J=12.1 \mathrm{~Hz}, \mathrm{C}-3$), 131.2 (d, $J=9.8 \mathrm{~Hz}, \mathrm{C}-2$), $131.5(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, C-4), 133.0 (d, $J=105.0 \mathrm{~Hz}, \mathrm{C}-5), 152.5(\mathrm{~d}, J=1.9 \mathrm{~Hz}, \mathrm{C}-6) \mathrm{ppm} .-{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162\right.$ $\mathrm{MHz}): \delta=+24.9 \mathrm{ppm}$.

5.9.16 7-tert-butyl-dimethylsiloxy-hept-2-enenitrile (230) ${ }^{[109]}$

(230): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=0.04(\mathrm{~s}, 6 \mathrm{H}, 8-\mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}, 10-\mathrm{H}), 1.54(\mathrm{~m}, 4 \mathrm{H}, 5-$ $\mathrm{H}, 6-\mathrm{H}), 2.43(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}), 3.60(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, 7-\mathrm{H}), 5.32(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}$, $2-\mathrm{H}), 6.46(\mathrm{dt}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}) \mathrm{ppm} .-{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right): \delta=-5.4(\mathrm{C}-8)$, 18.3 (C-9), 24.7 (C-5), 25.9 (C-10), 31.6 (C-4), 32.1 (C-6), 62.5 (C-7), 99.6 (C-2), 116.0 (C1), 155.0 (C-3) ppm.

Bibliography

[1] J. D. Morrison, Ed. Asymmetric Catalysis, Vol. 5 Academic Press, New York, 1985; H. Brunner, Top. Stereochem., 1988, 18, 129-247; H. Brunner, W. Zettlmeier, Handbook of Enantioselective Catalysis, VCH, Weinheim, 1993.
[2] I. Ojima, ed., Catalytic Asymmetric Synthesis, VCH, Weinheim, 1993. R. Noyori, Asymmetric Catalysis In Organic Synthesis, Wiley, 1994; H. Brunner, Synthesis, 1988, 645-654; B. Bosnish, Asymmetric Catalysis, Dordrecht, 1986; B. Cornils, W. A. Herrmann, Applied Homogeneous Catalysis with Organometallic Compounds, VCH, Weinheim, 1996; M. Beller, C. Bolm, Transition Metals for Organic Synthesis, Vols. 1-2, Wiley-VCH, Weinheim, 1998. E. N. Jacobsen, A. Pfaltz, H. Yamamoto, Vols. 13, Comprehensive Asymmetric Catalysis, Springer, Berlin, 1999.
[3] L. Horner, H. Siegel, H. Büthe, Angew. Chem. 1968, 80, 1034-1035; Angew.Chem. Int. Ed. Engl. 1968, 7, 942; W. S. Knowles, M. J. Sabacky, Chem. Commun. 1968, 1445-1446.
[4] W. S. Knowles, M. J. Sabacky, B. D. Vineyard, Chem. Commun. 1972, 10-11.
[5] T. P. Tang, H. B. Kagan, Chem. Commun. 1971, 481-482; H. B. Kagan, T. P. Dang, J. Am. Chem. Soc. 1972, 94, 6429-6433; H. B. Kagan, N. Langlois, T. P. Dang, J. Organomet. Chem. 1975, 90, 353-365.
[6] W. S. Knowles, M. J. Sabacky, B. D. Vineyard, D. J. Weinkauff, J. Am. Chem. Soc. 1975, 97, 2567-2568; B. D. Vineyard, W. S. Knowles, M. J. Sabacky, G. L. Bachman, J. Am. Chem. Soc. 1977, 99, 5946-5952.
[7] W. S. Knowles, Acc. Chem. Res. 1983, 16, 106-12.
[8] W.Tang, X. Zhang, Chem. Rev. 2003, 103, 3029-3069.
[9] J. Halpern, Pure Appl. Chem. 1983, 55, 99-106. J. M. Brown, Vol. 1, 122-176 Comprehensive Asymmetric Catalysis, Springer 1999.
[10] A. Miyashita, A. Yasuda, H. Takaya, K. Toriumi, T. Ito, T. Souchi, R. Noyori, J. Am. Chem. Soc. 1980, 102, 7932-7934. H. Takaya, S. Akutagawa, R. Noyori, Org. Synth. 1989, 67, 20-32.
[11] W. S. Knowles, Angew.Chem. 2002, 114, 2096-2107; Angew.Chem. Int. Ed. Engl. 2002, 41, 1998-2007. R. Noyori, Angew.Chem. 2002, 114, 2108-2123; Angew.Chem. Int. Ed. Engl. 2002, 41, 2008-2022. K. B. Sharpless, Angew.Chem. 2002, 114, 21262135; Angew.Chem. Int. Ed. Engl. 2002, 41, 2024-2032.
[12] J. Meisenheimer, L. Lichtenstadt, Chem. Ber. 1911, 44, 356-359; J. Meisenheimer, J. Casper, M. Horing, W. Lauter, L. Lichtenstadt, W. Samuel, Ann. 1926, 449, 213-48.
[13] L. Horner, H. Winkler, A. Rapp, A. Mentrup, H. Hoffman, P. Beck, Tetrahedron Lett. 1961, 5, 161-166; L. Horner, H. Fuchs, H. Winkler, A. Rapp, Tetrahedron Lett. 1963, 15, 965-967; L. Horner, H. Winkler, Tetrahedron Lett. 1964, 3-4, 175-179;
[14] O. Korpiun, K. Mislow, J. Am. Chem. Soc. 1967, 89, 4784-4786; O. Korpiun, R. A. Lewis, J. Chickos, K. Mislow, J. Am. Chem. Soc. 1968, 90, 4842-4846.
[15] C. A. Maryanoff, B. E. Maryanoff, R. Tang, K. Mislow, J. Am. Chem. Soc. 1973, 95, 5839-5840.
[16] C.R. Johnson, T. Imamoto, J. Org. Chem. 1987, 52, 2170-2174.
[17] L. Horner, W. D. Balzer, Tetrahedron Lett. 1965, 6, 1157-1162; K. Naumann, G. Zon, K. Mislow, J. Am. Chem. Soc. 1969, 91, 7012-7023.
[18] T. Miura, T. Imamoto, Tetrahedron Lett. 1999, 40, 4833-4836.
[19] Y. Hamada, F. Matsuura, M. Oku, K. Hatano, T. Shiori, Tetrahedron Lett. 1997, 38, 8961-8964.
[20] T. Imamoto, K. V. L. Crepy, K. Katagiri, Tetrahedron: Asymmetry. 2004, 15, 22132218.
[21] W. Tang, X. Zhang, Angew. Chem. 2002, 114, 1682-1684; Angew. Chem. Int. Ed. Engl. 2002, 41, 1612-1614; W. Tang, D. Liu, X. Zhang, Org. Lett. 2003, 5, 205-207; W. Tang, X. Zhang, Org. Lett. 2002, 4, 4159-4161.
[22] D. Liu, X. Zhang, Eur. J. Org. Chem. 2005, 646-649.
[23] H. Schmidbaur, J. Organomet. Chem. 1980, 200, 287-306.
[24] T. Imamoto, T. Oshiki, T. Onozawa, T. Kusumoto, K. Sato, J. Am. Chem. Soc. 1990, 112, 5244-5252; T. Imamoto, Pure Appl. Chem. 1993, 65, 655-660; T. Imamoto, K. Hirose, H. Amano, H. Seki, Main Group Chem. 1996, 1, 331-338; C. Darcel, E. B.Kaloun, R. Merde`s, D. Moulin, N. Riegel, S. Thorimbert, J. P. Genet, S. Juge, J. Organomet. Chem., 2001, 624, 333-343; D. Moulin, S. Bago, C. Bauduin, C. Darcel, S. Juge, Tetrahedron: Asymmetry. 2000, 11, 3939-3956. For an excellent review, see: M. Ohff, J. Holz, M. Quirmbach, A. Börner, Synthesis 1998, 1391-1415;
[25] A. R. Muci, K. R. Campos, D. A. Evans, J. Am. Chem. Soc. 1995, 117, 9075-9076.
[26] D. Hoppe, F. Hintze, P. Tebben, M. Paetow, H. Ahrens, J. Schwerdtfeger, P. Sommerfeld, J. Haller, W. Guamieri, S. Kolczewski, T. Hense, I. Hoppe, Pure Appl. Chem. 1994, 66, 1479-1486.
[27] L. McKinstry, T. Livinghouse, Tetrahedron Lett. 1994, 35, 9319-9322; L. McKinstry, T. Livinghouse, Tetrahedron 1995, 51, 7655-7666.
[28] T. Imamoto, J. Watanabe, Y. Wada, H. Masuda, H. Yamada, H. Tsuruta, S. Matsukawa, K. Yamaguchi, J. Am. Chem. Soc. 1998, 120, 1635-1636.
[29] Y. Yamanoi, T. Imamoto, J. Org. Chem. 1999, 64, 2988-2989.
[30] A. Ohashi, T. Imamoto, Org. Lett. 2001, 3, 373-375; A. Ohashi, S. Kikuchi, M. Yasutake, T. Imamoto, Eur. J. Org. Chem. 2002, 2535-2546.
[31] For resolution of racemic phosphines with optically active amino-palladium complexes, see: N. K. Roberts, S. B. Wild, J. Am. Chem. Soc. 1979, 101, 6254-6260; P.-K. Leung, Acc. Chem. Res. 2004, 37,169-177.
[32] F. Robin, F. Mercier, L. Ricard, F. Mathey, M. Spagnol, Chem. Eur. J. 1997, 3, 13651369; F. Mathey, F. Mercier, F. Robin, L. Ricard, J. Organomet. Chem. 1998, 577, 117-120.
[33] T. Imamoto, K. Sugita, K. Yoshida, J. Am. Chem. Soc. 2005, 127, 11934-11935.
[34] K. Katagiri, H. Danjo, K. Yamaguchi, T. Imamoto, Tetrahedron 2005, 61, 4701-4707; Y. Yamamoto, T. Koizumi, K. Katagiri, Y. Furuya, H. Danjo, T. Imamoto, K. Yamaguchi, Org. Lett. 2006, 8, 6103-6106.
[35] H. Hoge, J. Am. Chem. Soc. 2003, 125, 10219-10227.
[36] K. V. L. Crepy, T. Imamoto, Top. Curr. Chem. 2003, 229, 1-40; K. V. L. Crepy, T. Imamoto, Adv. Synth. Cat. 2003, 345, 79-101; H.-U. Blaser, C. Malan, B. Pugin, F. Spindler, H. Steiner, M. Studer, Adv. Synth. Cat. 2003, 345, 103-151.
[37] Q. Yang, G. Shang, W. Gao, J. Deng, X. Zhang, Angew. Chem. 2006, 118, 3916-3919; Angew. Chem. Int. Ed. Engl. 2006, 45, 3832-3835.
[38] N. Turner, I. Fotheringham, R. Speight, Chem. Techn. 2004, 114-122.
[39] T. Imamoto, N. Iwadate K. Yoshida, Org. Lett. 2006 8, 2289-2292.
[40] A. Lei, M. Chen, M. He, X. Zhang, Eur. J. Org. Chem. 2006, 4343-4347.
[41] H. Brunner, H. Nishiyama, K. Itoh, in Catalytic Asymmetric Synthesis; Ojima, I., Ed.; Asymmetric Hydrosilylation, Wiley-VCH: Weinheim, 1993, 303-322; Ohkuma, T.; Noyori, R. in Comprehensive Asymmetric Catalysis; Hydrosilylation of Carbonyl and Imino Groups, Springer: Berlin, 2004, 1, 55-71.
[42] T. Imamoto, T. Itoh, Y. Yamanoi, R. Narui, K. Yoshida, Tetrahedron: Asymmetry. 2006, 17, 560-565.
[43] H. Tsuruta, T. Imamoto, Tetrahedron: Asymmetry. 1999, 10, 877-882.
[44] L. F. Tietze, H. Iia, H. P. Bell, Chem. Rev. 2004, 104, 3453-3516; K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem. 2005, 117, 4516-4563; Angew. Chem. Int. Ed. Engl. 2005, 44, 4442-4489.
[45] N. Oohara, K. Katagiri, T. Imamoto, Tetrahedron: Asymmetry. 2003, 14, 2171-2175.
[46] H. Heath, B. Wolf, T. Livinghouse, S. K. Bae, Synthesis, 2001, 2341-2347.
[47] K. M. Pietrusiewicz, M. Zablocka, Chem. Rev. 1994, 94, 1375-1411; K. M. Pietrusiewicz, Phosphorus, Sulfur, and Silicon, 1996, 109-110, 573-576.
[48] M. I. Kabachnik, E. N. Tsvetkov, C.Y. Chang, Dokl. Akad. Nauk USSR, 1960, 131, 1334-1337.
[49] M.I. Kabachnik, C.Y. Chang, E.N. Tsvetkov, Dokl. Ak. Nauk USSR, 1960, 135, 603605. M. I. Kabachnik, C. Y. Chang, E. N. Tsvetkov, Zhur. Obzh. Chim., 1962, 32, 3351-3360.
[50] A. K. Bhattacharya, G. Thyagarajan, Chem. Rev. 1981, 81, 415-430.
[51] R. Bodalski, E. Rutkowska-Olma, K. M. Pietrusiewicz, Tetrahedron, 1980, 36, 23532355.
[52] K. M. Pietrusiewicz, M. Zabloka, J. Monkiewicz, J. Org. Chem. 1984, 49, 1522-1526.
[53] M. Oliana, F. King, P. N. Horton, M. B. Hursthouse, K. K. Hii, J. Org. Chem. 2006, 71, 2472-2479.
[54] H. Schmidbaur, M. Sigl, A. Schier, J. Organomet.Chem. 1997, 529, 323-327.
[55] T. Imamoto, K. Hirose, H. Amano, H. Seki, Main Group Chem. 1996, 1, 331-338.
[56] N. Calderon, H. Y. Chen, K. W. Scott, Tetrahedron Lett. 1967, 34, 3327-3329; N. Calderon, Acc. Chem. Res. 1972, 5, 127-132.
[57] J.-L. Herisson, Y. Chauvin, Makromol. Chem. 1971, 141, 161-167.
[58] T. J. Katz, S. J. Lee, N. Acton, Tetrahedron Lett. 1976, 47, 4247-4250; T. J. Katz, T. M. Sivavec, J. Am. Chem. Soc. 1985, 107, 737-738; K. C. Wallace, A. H. Liu, J. C. Dewan, R. R. Schrock, J. Am. Chem. Soc. 1988, 110, 4964-4977; J. Kress, J. A. Osborn, R. M. Greene, K. J. Ivin, J. J. Rooney, J. Am. Chem. Soc. 1987, 109, 899-901.
[59] K. A. Brownwensley S. L. Buchwald, L. Cannizzo, L. Clawson, S. Ho, D. Meinhardt J. R. Stille D. Straus, R. H. Grubbs Pure Appl. Chem. 1983, 55, 1733-1744; E. V. Anslyn, R. H. Grubbs, J. Am. Chem. Soc. 1987, 109, 4880-4890; S. H. Pine, R. Zahler, D. A. Evans, R. H. Grubbs, J. Am. Chem. Soc. 1980, 102, 3270-3272.
[60] R. R. Schrock, J. S. Murdzek, G. C. Bazan, J. Robbins, M. DiMare, M. O’Regan, J. Am. Chem. Soc. 1990, 112,3875-3886; R.R. Schrock, Acc. Chem. Res. 1990, 23, 158165; R. R. Schrock, R. R. Tetrahedron 1999, 55, 8141-8153.
[60] G. C. Fu, R. H. Grubbs, J. Am. Chem. Soc. 1992, 114, 5426-5427; G. C. Fu, R. H. Grubbs, J. Am. Chem. Soc. 1992, 114, 7324-7325.
[61] S. T. Nguyen, L. K. Johnson, R. H. Grubbs, J. Ziller, J. Am. Chem. Soc. 1992, 114, 974-3975; G. C. Fu, S. T. Nguyen, R. H. Grubbs, J. Am. Chem. Soc. 1993, 115, 98569857.
[62] P. Schwab, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc. 1996, 118, 100-110; P. Schwab, M. B. France, J. W. Ziller, R. H. Grubbs, Angew. Chem., 1995, 107, 21962198; Angew. Chem., Int. Ed. Engl. 1995, 34, 2039-2041.
[63] T. S. Weskamp, F. J. Kohl, W. A. Herrmann, J. Organomet.Chem. 1999, 582, 362365; T. S. Weskamp, F. J. Kohl, W. Hieringer, D. Gleich, W. A. Herrmann, Angew. Chem., 1999, 111, 2573-2576; Angew. Chem., Int. Ed. 1999, 38, 2416-2419.
[64] M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs, Org. Lett. 1999, 1, 953-956; L. Ackermann, A. Fürstner, T. Weskamp, F. J. Kohl, W. A. Herrmann, Tetrahedron Lett. 1999, 40, 4787-4790; J. Huang, E. D. Stevens, S. P. Nolan, J. L. Petersen, J. Am. Chem. Soc. 1999, 121, 2674-2678.
[65] S. B. Garber, J. S. Kingsbury, B. L. Gray, A. H. Hoveyda, J. Am. Chem. Soc. 2000, 122, 8168-8179; S. Gessler, S. Randl, S. Blechert, Tetrahedron Lett. 2000, 41, 99739976.
[66] H. Wakamatsu, S. Blechert, Angew. Chem. 2002, 114, 832-834; Angew. Chem. Int. Ed. 2002, 41, 794-796; H. Wakamatsu, S. Blechert, Angew. Chem. 2002, 114, 2509-2511; Angew. Chem. Int. Ed. 2002, 41, 2403-2405;
[67] K. Grela, S. Harutyunyan, A. Michrowska, Angew. Chem. 2002, 114, 4210-4212; Angew. Chem. Int. Ed. 2002, 41, 4038-4040.
[68] Y. Chauvin, Angew. Chem. 2006, 118, 3824-3831; Angew. Chem. Int. Ed. 2006, 45, 3741-3747.R. R. Schrock, Angew. Chem. 2006, 118, 3832-3844; Angew. Chem. Int. Ed. 2006, 45, 3748-3759; R. H. Grubbs, Angew. Chem. 2006, 118, 3845-3850; Angew. Chem. Int. Ed. 2006, 45, 3760-3765.
[69] S. K. Armstrong, J. Chem. Soc.,Perkin Trans. 1 1998, 371-388; A. Fürstner, Top. Catal. 1997, 4, 285-299.
[70] M. Mori, Top. Orgmet. Chem. 1998, 1, 133-154; C. S. Poulsen, R. Madsen, Synthesis 2003, 1-18; S. T. Diver, A. J. Giessert, Chem. Rev. 2004, 104, 1317-1382; A. Fürstner, P. W. Davies, Chem. Commun. 2005, 2307-2320.
[71] A. Fürstner, Angew. Chem. 2000, 112, 3140-3172; Angew. Chem., Int. Ed. 2000, 39, 3012-3043; M. Schuster, S. Blechert, Angew. Chem. 1997, 109, 2124-2144; Angew. Chem. Int. Ed. 1997, 36, 2037-2056; S. J. Connon, S. Blechert, Angew. Chem. 2003, 115, 1944 - 1968; Angew. Chem. Int. Ed. 2003, 42, 1900-1923;
[72] K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem. 2005, 117, 4564-4601; Angew. Chem. Int. Ed. 2005, 44, 4490-4527; J. Mulzer, E. Oehler, Top. Organomet. Chem. 2004, 13, 269-366.
[73] E. L. Dias, S. T. Nguyen, R. H. Grubbs, J. Am.Chem. Soc. 1997, 119, 3887-3897; M. Ulman, R. H. Grubbs, Organometallics 1998, 17, 2484-2489; M. S. Sanford, M. Ulman, R. H. Grubbs, J. Am. Chem. Soc. 2001, 123, 749 - 750; M. S. Sanford, J. A. Love, R. H. Grubbs, J. Am. Chem. Soc. 2001, 123, 6543-6554.
[74] J. A. Tallarico, P. J. Bonitatebus, M. L. Snapper, J. Am. Chem. Soc. 1997, 119, 71577158; C. Adlhart, C. Hinderling, H. Baumann, P. Chen, J. Am. Chem. Soc. 2000, 122, 8204-8214; C. Hinderling, C. Adlhart, P. Chen, Angew. Chem., 1998, 110, 2831-2835; Angew. Chem., Int. Ed. 1998, 37, 2685-2689.
[75] P. E. Romero, W. E. Piers, J. Am. Chem. Soc. 2007, 129, 1698-1704; C. Adlhart, P. Chen, J. Am. Chem. Soc. 2007, 126, 3496-3510; M. A. Volland, C. Adlhart, C. A. Kiener, P. Chen, P. Hofmann, Chem. Eur. J., 2001, 21, 4621-4632.
[76] D. Bourissou, O. Guerret, F. P. Gabbai, G. Bertrand, Chem. Rev. 2000, 100, 39-91; A. J. Arduengo, Acc. Chem. Res. 1999, 32, 913-921; W. A. Herrmann, C. Köcher, Angew. Chem., 1997, 109, 2256-2282; Angew. Chem., Int. Ed. Engl. 1997, 36, 2163-2187.
[77] T. S. Weskamp, W. C. Schattenmann, M. Spiegler, W. A. Herrmann, Angew. Chem., 1998, 110, 2631-2633; Angew. Chem., Int. Ed. 1998, 37, 2490-2493;
[78] A. K. Chatterjee, T.-L. Choi, D. P. Sanders, R. H. Grubbs, J. Am. Chem. Soc. 2003, 125, 11360-11370;
[79] A. Michrowska, M. Bieniek, M. Kim, R. Klajn, K. Grela, Tetrahedron, 2003, 59, 4525-4531.
[80] M. Bujard, V. Gouverneur, C. Mioskowski, J. Org. Chem., 1999, 64, 2119-2123; M. Schuman, M. Trevitt, A. Redd, V. Gouverneur, Angew.Chem. 2000, 112, 2604-2607; Angew.Chem. Int. Ed. Engl. 2000, 39, 2491-2493; L. Hetherington, B. Greedy, V. Gouverneur, Tetrahedron, 2000, 56, 2053-2060; F. Bisaro, V. Gouverneur,

Tetrahedron, 2005, 61, 2395-2400; K. S. Dunne, F. Bisaro, B. Odell, J. Paris, V. Gouverneur, J. Org. Chem., 2005, 70, 10803-10809.
[81] C. A. Slinn, A. J. Redgrave, S. L. Hind, C. Edlin, S. P. Nolan, V. Gouverneur, Org. Biomol. Chem. 2003, 1, 3820-3825.
[82] A. K. Chatterjee, T.-L. Choi, R. H. Grubbs, Synlett, 2001, 1034-1037.
[83] O. M. Demchuk, K. M. Pietrusiewicz, A. Michrowska, K. Grela, Org. Lett. 2003, 5, 3217-3220.
[84] K. Grela, M. Kim, Eur. J. Org. Chem. 2003, 963-966; M. Bieniek, A. Michrowska, Ł. Gułajski, K. Grela, Organometallics 2007, 26, 1096-1099.
[85] S. Randl, N. Buschmann, S. J. Connon, S. Blechert, Synlett 2001, 1547-1550.
[86] J. A. Love, J. P. Morgan, T. M. Trnka, R. H. Grubbs, Angew. Chem. 2002, 114, 2509 2511; Angew. Chem. Int. Ed. 2002, 41, 4035-4037.
[87] T.-L. Choi, C. W. Lee, A. K. Chatterjee, R. H. Grubbs, J. Am. Chem. Soc. 2001, 123, 10417-10418; Q. Yao, A. R. Motta, Tetrahedron Lett. 2004, 45, 2447-2451.
[88] Z. Pakulski, O. M. Demchuk, R. Kwiatosz, P. W. Osinski, W. Swierczynska, K. M. Pietrusiewicz, Tetrahedron: Asymmetry 2003, 14, 1459-1462; M. Deshmukh, E. Dunach, S. Juge, H. B. Kagan, Tetrahedron Lett. 1984, 25, 3467 - 3470.
[89] A. H. Hoveyda, D. G. Gillingham, J. J. Van Veldhuizen, O. Kataoka, S. B. Garber, J. S. Kingsbury, J. P. A. Harrity, Org. Biomol. Chem. 2004, 2, 8-23.
[90] M. Ulman, T. R. Belderrain, R. H. Grubbs, Tetrahedron Lett. 2000, 41, 4689-4693; T.L. Choi, C. W. Lee, A. K. Chatterjee, R. H. Grubbs, J. Am. Chem. Soc. 2001, 123, 10417-10418; S. Randl, S. J. Connon, S. Blechert, Chem. Commun. 2001, 1796-1797.
[91] J. Feldman, J. S. Murdzek, W. M. Davis, R. R. Schrock, Organometallics, 1989, 8, 2260-2265.
[92] N. Vinokurov, A. Michrowska, A. Szmigielska, Z. Drzazga, G. Wojciuk, O. M. Demchuk, K. Grela, K. M. Pietrusiewicz, H. Butenschön, Adv. Synth. Catal. 2006, 348, 931-938.
[93] M. Rivard, S. Blechert, Eur. J. Org. Chem. 2003, 12, 2225-2228.
[94] J. P. Morgan, R. H. Grubbs, Org. Lett. 2000, 2, 3153-3155; A. Fürstner, K. Langemann, J. Am. Chem. Soc. 1997, 119, 9130-9136.
[95] G. Spagnol, M. Heck, S. P. Nolan, C. Mioskowski, Org. Lett. 2002, 4, 1767 -1770; M. Bieniek, D. Kołoda, K. Grela, Org. Lett. 2006, 8, 5689-5692.
[96] K. S. Dunne, S. E. Lee, V. Gouverneur, J. Organomet. Chem. 2006, 691, 5246-5259.
[97] R. Bodalski, J. Koszuk, H. Krawczyk, K. M. Pietrusiewicz, J. Org. Chem. 1982, 47, 2219-2220.
[98] M. Ulman, R. H. Grubbs, Organometallics 1998, 17, 2484-2489.
[99] J. P. Harrity, M. S. Visser, J. D. Gleason, A. H. Hoveyda, J. Am. Chem. Soc. 1997, 119, 1488-1489; J. P. Harrity, D. S. La, D. R. Cefalo, M. S. Visser, A. H. Hoveyda, J. Am. Chem. Soc. 1998, 120, 2343-2351.
[100] J. S. Kingsbury, J. P. Harrity, P. J. Bonitatebus, A. H. Hoveyda, J. Am. Chem. Soc. 1999, 121, 791-799.
[101] For the recent examples see: S. Prühs, C. W. Lehmann, A. Fürstner, Organometallics, 2004, 23, 280-287; P. E. Romero, W. E. Piers, R. McDonald, Angew. Chem. 2004, 116, 6287-6291; Angew. Chem. Int. Ed. 2004, 43, 6161-6165; D. Fischer, S. Blechert, Adv. Synth. Catal. 2005, 347, 1329-1332; J. C. Conrad, H. Parnas, J. S. Snelgrove, D. E. Fogg, J. Am. Chem. Soc, 2005, 127, 11882-11883; A. Fürstner, P. W. Davies, C. W. Lehmann, Organometallics, 2005, 23, 280-287; K. Vehlow, S. Maechling, S. Blechert, Organometallics 2006, 25, 25-28; S. H. Hong, R. H. Grubbs, J. Am. Chem. Soc, 2006, 128, 3508-3509; T. Ritter, M. W. Day, R. H. Grubbs, J. Am. Chem. Soc, 2006, 128, 11768-11769; M. Barbasiewicz, A. Szadkowska, R. Bujok, K. Grela, Organometallics, 2006, 25, 3599-3604; S. Monfette, D. E. Fogg, Organometallics, 2006, 25, 1940-1944; M. Bieniek, R. Bujok, M. Cabaj, N. Lugan, G. Lavigne, D. Arlt, K. Grela, J. Am. Chem. Soc. 2006, 128, 13652-13653. T. Ritter, M. W. Day, R. H. Grubbs, J. Am. Chem. Soc. 2006, 128, 11768-11769; J. M. Berlin, K. Campbell, T. Ritter, T. W. Funk, A. Chlenov, R. H. Grubbs, Org. Lett. 2007, 9, 1339 -1342; I. C. Stewart, T. Ung, A. A. Pletnev, J. M. Berlin, R. H. Grubbs, Y. Schrodi, Org. Lett. 2007, 9, 1589 -1592; D. Rix, F. Caïjo, I. Laurent, L. Gulajski, K. Grela, M. Mauduit, Chem. Commun. 2007, 3771-3773; P. H. Deshmukh, S. Blechert, Dalton Trans. 2007, 2479-2491.
[102] A. Michrowska, Ł. Gułajski, Z. Kaczmarska, K. Mennecke, A. Kirschning, K. Grela, Green Chem. 2006, 8, 685-688; Ł. Gułajski, A. Michrowska, R. Bujok, K. Grela, J. Mol. Catal. A: Chem. 2006, 254, 118-123; R. Gawin, A. Makal, K. Woźniak, M. Mauduit, K. Grela, Angew. Chem. 2007, 119, 7344-7347; Angew. Chem. Int. Ed. 2007, 46, 7206-7209;
[103] J. S. Kingsbury, A. H. Hoveyda, J. Am. Chem. Soc. 2005, 127, 4510-4517.
[104] M. Zaja, S. J. Connon, A. M. Dunne, M. Rivard, N. Buschmann, J. Jiricek, S. Blechert, Tetrahedron 2003, 59, 6545-6558.
[105] E. P. Kündig, Top. Organomet. Chem. 2004, 7, 4-17; W. McFarlane, S. O. Grim, J. Organomet. Chem. 1966, 5, 147-154.
[106] T. Weskamp, F. J. Kohl, A. Wolfgang, W. A. Herrmann, J. Organomet. Chem. 1999, 582, 263-265.
[107] E. L. Dias, R. H. Grubbs, Organometallics 1998, 17, 2758-2767.
[108] U. Frenzel, T. Weskamp, F. J. Kohl, W. C. Schattenmann, O. Nuyken W. A. Herrmann, J. Organomet. Chem. 1999, 586, 263-265.
[109] A. Michrowska, R. Bujok, S. Harutyunyan, V. Sashuk, G. Dolgonos, K. Grela, J. Am. Chem. Soc. 2004, 126, 9318-9325.
[110] a). A. Fürstner, L. Ackermann, B. Gabor, R. Goddard, C. W. Lehmann, R. Mynott, F. Stelzer, R. O. Thiel, Chem. Eur. J. 2001, 7, 3236-3253; b). K. Grela, GDCh Wissenschaftsforum Chemie 2007, 16-19. September, Ulm.
[111] D. Braga, F. Grepioni, E. Tedesco, Organometallics 1998, 17, 2669-2672.
[112] N. Ledoux, B. Allaert, A. Linden, P. Van Der Voort, F. Verpoort, Organometallics 2007, 26, 1052-1056; A. Fürstner, H. Krause, L. Ackermann, C. W. Lehmann, Chem. Commun. 2001, 2240 - 2241; N. Ledoux, A. Linden, B. Allaert, H. V. Mierde, F. Verpoorta, Adv. Synth. Catal. 2007, 349, 1692-1700; M. Barbasiewicz, M. Bieniek, A. Michrowska, A. Szadkowska, A. Makal, K. Woźniak, K. Grela, Adv. Synth. Catal. 2007, 349, 193-203.
[113] N. Vinokurov, J. R. Garabatos Perera, Z. Zhao-Karger, M. Wiebcke, H. Butenschön, to be submitted.
[114] V. Sashuk, K. Grela, J. Mol. Catal. A: Chem. 2006, 257, 59-66.
[115] S. T. Nguyen, R. H. Grubbs, J. Am. Chem. Soc. 1993, 115, 9858-9859; E. L. Dias, S. T. Nguyen, R. H. Grubbs, J. Am. Chem. Soc. 1997, 119, 3887-3897.
[116] M. C. Kloetzel, Org. React. 1948, 4, 1-59; H. L. Holmes, Org. React. 1948, 4, 60-173; L. L. Butz, A. W. Rytina, Org. React. 1949, 5, 136-192;
[117] O. Diels, K. Alder, Justus Liebigs Ann. Chem. 1928, 460, 98-122.
[118] K. Alder, H. F. Rickert, Ber. Dtsch. Chem. Ges. B 1937, 70, 1364-1369; O. Diels, Ber. Dtsch. Chem. Ges. B 1942, 75, 1452-1467; K.Alder, W. Gunzl, K. Wolff, Chem. Ber. 1960, 93, 809-825; K. Alder, G. Stein, F. von Budedenbrock, W. Eckardt, W. Frercks, S. Schneider, Justus Liebigs Ann. Chem. 1934, 514, 1-33; K. Alder,G. Stein, M. Liebmann, E. Rolland, Justus Liebigs Ann. Chem. 1934, 514, 197-211; K. Alder, G. Stein, E. Rolland, G. Schulze, Justus Liebigs Ann. Chem. 1934, 514, 211-227.
[119] F. Fringuelli, A. Taticchi, "Dienes in the Diels-Alder reaction" Wiley, New York, 1990.
[120] L. F. Tietze, G. Kettschau, Top. Curr. Chem. 1997, 189, 1-120.
[121] I. Fleming "Frontier Orbitals and Organic Chemical Reactions" Wiley, Chichester, 1978.
[122] K. Fukui, Angew. Chem. 1982, 94, 852-861; Angew. Chem. Int. Ed. 1982, 21, 801-809.
[123] J. Sauer, R. Sustmann, Angew. Chem. 1980, 92, 773-801; Angew. Chem. Int. Ed. 1980, 19, 779-807; R. Huisgen, Angew. Chem. 1968, 80, 329-337; Angew. Chem. Int. Ed. 1968, 7, 321-328; K. N. Houk, J. Gonzales, Y. Li, Acc. Chem. Res. 1995, 28, 81-90.
[124] R. B. Woodward, F. Sondheimer, D. Taub, K. Heusler, W. M. McLamore, J. Am. Chem. Soc. 1952, 74, 4223-4251.
[125] K. C. Nicolaou, S. A. Snyder, T. Montagnon, G. Vassilikogiannakis Angew. Chem. 2002, 114, 1742-1773; Angew. Chem. Int. Ed. 2002, 41, 1668-1698.
[126] M. I. Kabachnik, Tetrahedron, 1964, 20, 655-669; M. I. Kabachnik, T. A. Mastryukova, T. A. Melent'yeva, Tetrahedron, 1962, 17, 239-241.
[127] W. M. Daniewski, C. E. Griffin, J. Org. Chem. 1966, 31, 3236-3241; S. D. Darling, S. J. Brandes J. Org. Chem. 1982, 47, 1413-1416; A. N. Pudovik, R. G. Kuzovleva J. Gen. Chem USSR, 1964, 34, 1024-1025; V. K. Khairullin, R. M. Kondrat'eva, A. N. Pudovik, J. Gen. Chem USSR, 1968, 38, 291-294; A. N. Pudovik, G. E. Yastrubova, V. I. Nikitina, Y. Y. Samitov, J. Gen. Chem USSR, 1968, 38, 295-300; T. K. Kostina G. M. Baranov, V. V. Perekalin, J. Gen. Chem USSR, 1981, 51, 578-579.
[128] P. N. Nesterova, T. Y. Medved, Y. M. Polikarpov, M. I. Kabachnik, Izv. Ak. Nauk SSSR, 1974, 10, 2295-2300; Russ. Chem. Bull., 1974, 23, 2210-2214.
[129] H. Brunner, W. Pieronczyk, Angew. Chem. 1979, 91, 655-656; Angew. Chem. Int. Ed. Engl. 1979, 18, 620-621; For MeNorPHOS see: H. Brunner, M. Pröbster, Inorg. Chim. Acta. 1982, 61, 129-133.
[130] M. Maffei, G. Buono, New. J. Chem. 1988, 12, 923-930.
[131] O. Samuel, R. Couffignal, M. Lauer, S. Y. Zhang, H. B. Kagan, Nouv. J. Chem. 1981, 5, 15-20.
[132] K. M. Pietrusiewicz, W. Wisniewski, W. Wieczorek, A. Brandi, Phosphorus, Sulfur and Silicon 1995, 101, 253-259.
[133] H. Brunner. W. Pieronczyk, B. Schonhammer, K. Streng, I. Bernalund, J. Korp, Chem. Ber. 1981, 114, 1137-1149.
[134] H. B. Kagan, O. Riant, Chem. Rev. 1992, 92, 1007-1019; E. J. Corey, Angew. Chem. 2002, 114, 1724-1741; Angew. Chem. Int. Ed. Engl. 2002, 41, 1650-1698; A. I. Konovalov, V. D. Kiselev, Russ. Chem. Bull. Int. Ed., 52, 293-311.
[135] A. Yamazaki, I. Achiwa, K. Horikawa, M. Tsurubo, K. Achiwa, Synlett, 1997, 5, 455456.
[136] A. R. Chamberlin, S. H. Reich, J. Am. Chem. Soc. 1985, 107, 1440-1441; R. J. Loncharich, T. R. Schwartz, K. N. Houk, J. Am. Chem. Soc. 1987, 109, 14-23; G. Montaudo, V. Librando, S. Caccanese, P. Maravigna, J. Am. Chem. Soc. 1973, 95, 6365-6370.
[137] V. D. Kiselev, D. G. Khuzyasheva, I. M. Shakirov, A. I. Konovalov, Zh. Org. Khim. 1983, 19, 2064-2068.
[138] A. Padwa "1,3-Dipolar Cycloaddition Chemistry" Wiley, 1984.
[139] R. Huisgen, Angew. Chem. 1963, 75, 604-37; Angew. Chem. Int. Ed. Engl. 1963, 2, 565-598; R. Sustmann, Heterocycles 1995, 40, 1-18.
[140] R. B. Woodward, R. Hoffmann, "The Conservation of Orbital Symmetry", Verlag Chemie, Weinheim, 1970; R. B. Woodward, R. Hoffmann, Angew. Chem. 1969, 81, 797-869; Angew. Chem., Int. Ed. Engl. 1969, 8, 781-853.
[141] K. N. Houk, Acc. Chem. Res. 1975, 8, 361-369.
[142] P. N. Confalone, E. M. Huie, Org. React. 1988, 36, 1-173; K. B. G. Torsell "Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis. Novel Strategies in Synthesis" VCH, Weinheim 1988.
[143] M. Frederickson, Tetrahedron 1997, 53, 403-425; H. Pellissier, Tetrahedron 2007, 63, 3235-3285; K. V. Gothelf, K. A. Jørgensen, Chem. Rev. 1998, 98, 863-909; K. V. Gothelf, K. A. Jørgensen, Chem. Commun. 2000, 1449-1458.
[144] S. Mzengeza, R. A. Whitney, Chem. Commun. 1984, 606-607; J. Wityak, S. J Gould, S. J. Hein, D. A. Keszler, J. Org. Chem. 1987, 52, 2179-2183.
[145] W. Carruthers, P. Coggins, J. B. Weston, Chem. Commun. 1991, 117-118; M. Ito, C. Kibayashi, Tetrahedron Lett. 1990, 31, 5065-5068; M. Ito, C. Kibayashi, Tetrahedron 1991, 47, 9329-9350; M. Ito, M. Maeda, C. Kibayashi, Tetrahedron Lett. 1992, 33, 3765-3768.
[146] T. Koizumi, H. Hirai, E. Yoshii, J. Org. Chem. 1982, 47, 4004-4005; T. Takahashi, A. Fujii, J. Sugita, T. Hagi, K. Kitano, Y. Arai, T. Koizumi, M. Shiro, Tetrahedron: Asymmetry 1991, 2, 1379-1390.
[147] C. Bianchini, S. Cicchi, M. Peruzzini, K. M. Pietrusiewicz, A. Brandi, Chem. Commun. 1995, 833-4.
[148] B. A. Arbuzov, Y. Y. Samitov, É. N. Dianova, A. F. Lisin Russ. Chem. Bull. Int. Ed. 1975, 24, 823-828; B. A. Arbuzov, Y. Y. Samitov, É. N. Dianova, A. F. Lisin Russ. Chem. Bull. Int. Ed. 1975, 24, 2446-2449; B. A. Arbuzov, Y. Y. Samitov, É. N. Dianova, A. F. Lisin Russ. Chem. Bull. Int. Ed. 1976, 25, 2589-2594; B. A. Arbuzov, A. F. Lisin, É. N. Dianova, Y. Y. Samitov Russ. Chem. Bull. Int. Ed. 1978, 27, 2314-2329.
[149] A. Brandi, P. Cannavo, K. M. Pietrusiewicz, M. Zablocka, M. Wieczorek J. Org. Chem. 1989, 54, 3073-3077.
[150] A. Brandi, S. Chicchi, A. Goti, K. M. Pietrusiewicz, M. Zablocka, W. Wisniewski, J. Org. Chem. 1991, 56, 4383-4388.
[151] A. Brandi, S. Cicchi, A. Goti, K. M. Pietrusiewicz, Phosphorus, Sulfur and Silicon 1993, 75, 155-158.
[152] A. Brandi, S. Cicchi, A. Goti, K. M. Pietrusiewicz, Tetrahedron: Asymmetry 1991, 2, 1063-1074.
[153] A. Brandi, S. Cicchi, A. Goti, K. M. Pietrusiewicz, W. Wisniewski, Tetrahedron 1990, 46, 7093-7104.
[154] A. Goti, S. Cicchi, A. Brandi, K. M. Pietrusiewicz, Tetrahedron: Asymmetry 1991, 2, 1371-1378.
[155] Y. Kashman, O. Awerbuch, Tetrahedron Lett., 1973, 14, 3217-3220.
[156] K. Mislow, J. Am. Chem. Soc. 1970, 92, 3090-3093; R. D. Baechler, W. B. Farnham, K. Mislow, J. Am. Chem. Soc. 1969, 91, 5686-5686; K. Mislow, W. Egan, J. Am. Chem. Soc. 1971, 93, 1805-1806.
[157] P. D. Henson, K. Naumann, K. Mislow, J. Am. Chem. Soc. 1969, 91, 5645-5646.
[158] K. L. Marsi, J. Org. Chem. 1974, 39, 265-267.
[159] T. Imamoto, S. Kikuchi, T. Miura, Y. Wada, Org. Lett. 2001, 3, 87-90.
[160] S. Griffin, L. Heath, P. Wyatt, Tetrahedron Lett. 1998, 39, 4405-4406.
[161] H. Wu, J.Yu, J. B. Spencer, Org. Lett. 2004, 6, 4675-4678.
[162] T. Coumbe, N. J. Lawrence, F. Muhammad, Tetrahedron Lett. 1994, 35, 625-628.
[163] I. D. Gridnev, Y. Yamanoi, N. Higashi, H. Tsuruta, M. Yasutake, T. Imamoto, Adv. Synth. Catal. 2001, 343, 118-136.
[164] U. Nagel, B. Rieger, Chem. Ber. 1988, 121, 1123-1131; U. Nagel, A. Bublewitz, Chem. Ber. 1992, 125, 1061-1072; U. Nagel, T. Krink, Chem. Ber. 1993, 126, 10911100; U. Nagel, T. Krink, Chem. Ber. 1995, 128, 309-316.
[165] K. V. L. Crepy, T. Imamoto, G. Seidel, A. Fürstner, Org. Synth., 2005, 82, 22-29.
[166] J. Tsuji. I. Minami, Acc. Chem. Res. 1987, 20, 140-145; G. Helmchen, A. Pfaltz, Acc. Chem. Res. 2000, 33, 336 -345; B. M. Trost, D. L. Van Vranken, Chem. Rev. 1996, 96, 395-422.
[167] G. Helmchen, S. Kudis, P. Sennhenn, H. Steinhagen, Pure Appl. Chem. 1997, 69, 513518; M. Peer, J. C. de Jong, M. Kiefer, T. Langer, H. Rieck, H. Schell, P. Sennhenn, J. Sprinz, H. Steinhagen, B. Wiese, G. Helmchen, Tetrahedron 1996, 52, 7547-7583; G. Helmchen, J. Organomet. Chem. 1999, 576, 203-214; P. von Matt, A. Pfaltz, Angew. Chem. 1993, 105, 614-615; Angew. Chem. Int. Ed. Engl. 1993, 32, 566-568; A. Pfaltz, Acc. Chem. Res. 1993, 26, 339-345.
[168] A. Togni, C. Breutel, A. Schnyder, F. Spindler, H. Landert, A. Tijani, J. Am. Chem. Soc. 1994, 116, 4062-4066; U. Burckhardt, M. Baumann, G. Trabesinger, V. Gramlich, A. Togni, Organometallics 1997, 16, 5252-5259.
$[169]$ B. M. Trost, D. L. Van Vranken, Angew. Chem. 1992, 104, 194-196; Angew. Chem. Int. Ed. Engl. 1992, 31, 228-230.
[170] B. M. Trost, M. L. Crawley, Chem. Rev. 2003, 103, 2921-2943; G. Paradies, M. Ernst, G. Helmchen, Pure Appl. Chem. 2004, 76, 495-506.
[171] B. M. Trost, W. Tang, J. L. Schulte, Org. Lett. 2000, 2, 4013-4015.
[172] C. Breutel, P. S. Pregosin, R. Salzmann, A. Togni, J. Am. Chem. Soc. 1994, 116, 40674068; H. Steinhagen, M. Reggelin, G. Helmchen, Angew. Chem. 1997, 109, 21992202; Angew. Chem. Int. Ed. Engl. 1997, 36, 2108-2110; J. Vázquez, B. Goldfuss, G. Helmchen, J. Organomet. Chem. 2002, 641, 67-70;
[173] T. Imamoto, M. Nishimura, A. Koide, K. Yoshida, J. Org. Chem. 2007, 72, 7413-7416
[174] H. Duddeck, Chem. Rec. 2005, 5, 396-409; K. Wypchlo, H. Duddeck, Tetrahedron: Asymmetry 1994, 5, 27-30.
[175] D. Magiera, W. Baumann, I. S. Podkorytov, J. Omelanczuk, H. Duddeck, Eur. J. Inorg. Chem. 2002, 3253-3257; S. Rockitt, D. Magiera, J. Omelanczuk, H. Duddeck, Phosphorus, Sulfur, Silicon Relat. Elem. 2002, 177, 2079-2080;
[176] J. Mattiza, D. Albert, M. Stankevič, K. Dziuba, A. Szmigielska, K. M. Pietrusiewicz, H. Duddeck, Tetrahedron: Asymmetry 2006, 17, 2689-2696.
E. Díaz Gómez, D. Albert, H. Duddeck, S. I. Kozhushkov, A. de Meijere, Eur. J. Org. Chem. 2006, 2278-2280.
[178] E. Díaz Gómez, J. Jios, C. O. Della Védova, H. D. March, H. E. Di Loreto, G. Tóth, A. Simon, D. Albert, S. Möller, R. Wartchow, H. Duddeck, Tetrahedron: Asymmetry 2005, 16, 2285-2293.
[179] J. Jaźwiński, Z. Rozwadowski, D. Magiera, H. Duddeck, Magn. Reson. Chem. 2003, 41, 315-323.
[180] S. Moeller, D. Albert, H. Duddeck, A. Simon, G. Tóth, O. M. Demchuk, K. M. Pietrusiewicz, Tetrahedron: Asymmetry 2004, 15, 3609-3616; S. Moeller, D. Albert, H. Duddeck, A. Simon, G. Tóth, O. M. Demchuk, K. M. Pietrusiewicz, Phosphorus, Sulfur and Silicon 2006, 181, 351-361.
[180] I. D. Gridnev, T. Imamoto, Acc. Chem. Res. 2004, 37, 633-644.
[181] S. Cicchi, A. Goti, A. Brandi, A. Guarna, F. De Sarlo, Tetrahedron Lett. 1990, 31, 3351-3354.
[182] H. Danjo, M. Higuchi M. Yada, T. Imamoto, Tetrahedron Lett. 2004, 45, 603-606.
[183] G. Baccolini, C. Boga, M. Mazzacurati, J. Org. Chem. 2005, 70, 4774-4777.

Lebenslauf

n Persönliche Daten

Vorname/Name
Geburtstag-/ort
Familienstand
n Schulische Ausbildung
1987-1997 Schule № 82, Krasnodar

n Hochschulausbildung

09.1997-06.2002

Chemie (Diplom)
Kuban State University (KubSU), Krasnodar
Diplomarbeit (ausgezeichnet)
Thema: „Untersuchungen zu Umsetzungen
Organoaminosilanen mit 1 - Alkinen in Gegenwart von ZnCl_{2}. Eine neue Methode zur

Herstellung der silylierten Akinen."
10.2002-07.2003

Wissenschaftlicher Mitarbeiter am Institut für Organische Chemie, KubSU

Thema: „Die direkte Germylierung von 1 - Alkinen mit Germaniumtetrachlorid und Organogermylaminen in Gegenwart von ZnCl_{2}." AK Prof. A.A. Andreev.

n Promotion

6. 2003

Verleihung eines Promotionsstipendiums von der Gottlieb Daimler- und Karl Benz Stiftung

Anfertigung der Dissertation unter der Anleitung von Herrn Prof. Dr. Holger Butenschön

Thema: "Synthese von P - chiralen zweizähnigen Diphosphanliganden für die Asymmetrische Katalyse." am Institut für Organische Chemie, Leibniz Universität Hannover

Note: "Mit Auszeichnung" (summa cum laude)
06.2005-12.2007
wissenschaftlicher Mitarbeiter im Rahmen eines von der Deutschen Forschungsgemeinschaft geförderten

Projektes. Thema: " P - chirale DiphosphinoethanLiganden für die Asymmetrische Katalyse."

Projektnummer: BU 814/12-1

n Publikationen

1. N. Vinokurov, A. Michrowska, A. Szmigielska, Z. Drzazga, G. Wójciuk, O. Demchuk, K. Grela, K. M. Pietrusiewicz, H. Butenschön, "Homo and Cross-Olefin Metathesis Coupling of Vinylphosphane Oxides and Electron Poor Alkenes: Access to PStereogenic Dienophiles", Adv. Synth. Catal. 2006, 348, 931-938.
2. A. A. Andreev, V. V. Konshin, N. A. Vinokurov, N. V. Komarov, "Synthesis of Triand Tetraalkynylgermanes". Russian Chemical Bulletin Int. Ed. 2006, 55 (8), 14301432.
3. N. Vinokurov, J. R. Garabatos-Perera, Z. Zhao-Karger, M. Wiebcke, H. Butenschön, "A New, Highly Efficient Bimetallic Precatalyst for Alkene Metathesis", to be submitted.

n Stipendien/Preise

1.09.2003-28.02.2005	Promotionsstipendium - Stipendiat der Gottlieb Daimler- und
	Karl Benz Stiftung. Projektnummer: 02-07/03.
Posterpreis	"Synthesis of P-Chiral Bidentate Phosphorus Ligands via
	Olefin Cross - Metathesis" JCF-Frühjahrsymposium,
Roche Grant	3. April 2004, Heidelberg
	Roche Continents Youth! Arts! Science!
	$5-11$ August 2007, Salzburg

[^0]: * Only one publication was found.

