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Abstract 1

ABSTRACT 

Bacterial wilt caused by race 1 strains of Ralstonia solanacearum is one of the most 

important and widely distributed plant diseases in the tropics and subtropics, particularly 

on tomato. Planting resistant material is the most suitable measure for the control of tomato 

bacterial wilt. To elucidate genetic control of resistance in Hawaii 7996, a stable resistance 

source, a population of 188 F9 recombinant inbred lines (RILs) derived from a cross 

between S. lycopersicum Hawaii 7996 (resistance parent) and S. pimpinellifolium West 

Virginia 700 (susceptible parent) was used for this study. First, the genetic map was 

improved, which contained a total of 362 markers with 74 AFLP, 260 DArT, 5 RFLP, 1 

SNP, and 22 SSR markers. These markers were split into ten major and two minor linkage 

groups, spanning 2131.7 cM. However, a framework map of 106 loci (32 AFLP, 59 DArT, 

6 RFLP, 11 SSR) distributed over 15 linkage groups covering 1089.1 cM was used for 

quantitative trait loci (QTL) mapping using composite interval mapping. In addition, 

association of 13 markers belonging to certain chromosomes with disease resistance were 

determined separately by single marker analysis. The phenotypic data used for the QTL 

analysis included a total of 22 datasets: 16 for disease evaluations and 6 for morphological 

traits. Disease reactions of the RIL population were evaluated in 16 trials against race 1 

and race 3 strains in six countries both in the field or at seedling stage.  

A total of 37 QTLs were identified. Out of these 37 QTLs detected, 31 QTLs were 

identified for bacterial wilt resistance, one for sympodial index, two for citric acid, two for 

soluble solid content and one for fruit color (a/b). They explained between 5.0% and 

34.7% of the phenotypic variation, depending on the traits. QTLs located on chromosome 

6, LGA and LGB showed significant linkages with disease reactions against several 

pathogen strains and in several locations and should be targeted for fine mapping. 

Resistance mechanism in Hawaii 7996 appeared to be related to the suppression of the 

pathogen colonization, as similar QTLs were found for visual symptom data as well as 

colonization data. Possible linkages between fruit size, critic acid, and fruit color with 

bacterial wilt resistance were observed. Several SNPs have been found that would be 

useful in fine mapping of QTL to develop closely linked markers for marker-assisted 

selection and gene cloning. In order to find more diverse resistance sources to overcome 

the highly variable pathogen strains, a total of 252 wild Solanum accessions and one 



Abstract 2

population of forty-nine introgression lines (ILs) of LA716 were screened for resistance to 

a race 1 biovar 4 strain Pss186 of Ralstonia solanacearum. Most wild tomato accessions 

were highly susceptible. However, five wild tomato accessions of S. pennellii, i.e. LA1943, 

LA716, LA1656, LA1732 and TL01845 were resistant to strains Pss186 and Pss190 but 

susceptible to Pss4. Only IL6-2, which has an introgression segment on chromosome 6, 

was found to be resistant to Pss186 among screened ILs. These new resistant sources will 

provide breeders more resources to breed for durable resistance to bacterial wilt of tomato.  

Keywords: Ralstonia solanacearum, quantitative trait loci, resistance. 
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ZUSAMMENFASSUNG 

Bakterielle Welke verursacht durch Rasse 1 Stämme von Ralstonia solanacearum ist eine 

der bedeutendsten und weitverbreitetsten Pflanzenkrankheiten in den Tropen und 

Subtropen, insbesondere bei Tomate. Die geeignetste Maßnahme zur Kontrolle dieser 

Krankheit bei Tomate ist der Anbau resistenter Pflanzen. Um die genetische Kontrolle der 

Resistenz von Hawaii 7996, einer stabilen Resistenzquelle, aufzuklären, wurde in der 

vorliegenden Arbeit eine Population von 188 Rekombinanten Inzuchtlinien (RIL) in der F9 

Generation aus der Kreuzung zwischen S. lycopersicum Hawaii 7996 (resistenter Elter) 

und S. pimpinellifolium West Virginia 700 (anfälliger Elter) untersucht. Zunächst wurde 

die genetische Karte auf insgesamt 362 Marker, davon 74 AFLPs, 260 DArTs, 5 RFLP, 1 

SNP und 22 SSR Marker, erweitert. Diese Marker verteilten sich auf zehn große und zwei 

kleinere Kopplungsgruppen mit insgesamt 2.131,7 cM. Für die QTL (quantitative trait 

loci) Kartierung mit Hilfe von „composite interval mapping“ wurde eine Framework-Karte 

mit 106 Loci (32 AFLP, 59 DArT, 6 RFLP, 11 SSR) verteilt auf 15 Kopplungsgruppen mit 

1.089,1 cM benutzt. Zusätzlich dazu wurden 13 Marker, die verschiedenen Chromosomen 

zugeordnet waren, auf ihre Assoziation mit der Resistenz in einer „single marker analysis“ 

untersucht. Die für die QTL Analyse verwendeten phänotypischen Daten setzten sich aus 

22 Datensätzen zusammen: 16 Datensätze aus Resistenzevaluierungen und 6 

morphologische Merkmale. Die Resistenzreaktion der RIL Population gegenüber Rasse 1 

und Rasse 3 Stämmen wurde in 16 Versuchen in sechs Ländern sowohl im Feld als auch 

im Sämlingsstadium untersucht. 

Insgesamt wurden 37 QTLs identifiziert. Davon wurden 31 QTLs für Resistenz gegen 

Ralstonia, einer für sympodialen Index, zwei für Säuregehalt, zwei für Gehalt an löslichen 

Feststoffen und einer für Fruchtfarbe (a/b) entdeckt. Die QTLs erklärten abhängig vom 

Merkmal zwischen 5.0% und 34.7% der phänotypischen Variation. QTLs auf Chromosom 

6, LGA und LGB zeigten eine signifikante Kopplung zur Resistenz gegen mehrere 

Pathogenstämme an mehreren Orten und sollten das Ziel einer Feinkartierung sein. Der 

Resistenzmechanismus in Hawaii 7996 scheint mit der Pathogenbesiedelung 

zusammenzuhängen, da ähnliche QTLs für visuelle Symptome und Daten aus 

Colonisierungsexperimenten gefunden wurden. Mögliche Kopplungen zwischen 

Fruchtgröße, Säuregehalt, Fruchtfarbe und Ralstonia-Resistenz wurden beobachtet. 

Mehrere SNPs, die für eine Feinkartierung der QTLs zur Entwicklung von eng 
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gekoppelten Markern für eine Marker-gestützte Selektion oder eine Genklonierung genutzt 

werden können, wurden identifiziert. Mit dem Ziel weitere Resistenzquellen gegen das 

hoch variable Pathogen zu finden, wurden insgesamt 252 Accessionen von Solanum 

Wildarten sowie eine Population mit 49 Introgressionslinien (ILs) aus LA716 auf 

Resistenz gegen den Rasse 1 Biovar 4 Stamm Pss186 von Ralstonia solanacearum 

untersucht. Die meisten Tomaten Wildarten waren stark anfällig. Allerdings zeigten fünf 

Accessionen von S. pennellii, LA1943, LA716, LA1656, LA1732 und TL01845, Resistenz 

gegenüber den Stämmen Pss186 und Pss190, waren aber anfällig gegenüber Pss4. Von den 

untersuchten ILs war nur die Linie IL6-2, die auf Chromosom 6 eine Introgression trägt, 

resistent gegen Pss186. Mit dieser neue Resistenzquelle steht der Züchtung eine weitere 

Resource für die Entwicklung dauerhafter Resistenz gegenüber bakterieller Welke bei 

Tomate zur Verfügung. 

 

Keywords: Ralstonia solanacearum, quantitative trait loci, Resistenz. 
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GENERAL INTRODUCTION  

Tomato (Solanum lycopersicum) is one of the most important vegetables worldwide 

because of the versatility of its use in both fresh and processed foods. However, tomato 

production is beset by many production constraints, one of which is bacterial wilt. This 

disease caused by the soil-borne pathogen Ralstonia solanacearum (E. F. Smith), formerly 

called Pseudomonas solanacearum E. F. Smith (Yabuuchi et al. 1995), is one of the most 

important bacterial plant diseases in the world. Bacterial wilt affects hundreds of different 

species, mainly in tropical and subtropical climates, including many crops such as potato, 

tomato, eggplant, pepper, ground nut, and banana (Hayward, 1991). Several methods have 

been employed to control this disease; however, the introduction of resistant varieties is 

considered the most successful, practical, environmentally sound, and economical control 

strategy (Denny, 2006). However, breeding durable resistance to bacterial wilt is 

challenging because inheritance of resistance is complicated by interactions between the 

plant genotype and pathogen strains as well as the effect of the environment on resistance 

expression (Grimault and Prior, 1993). 

In the genus Solanum, resistance to bacterial wilt was first reported in the wild tomato S. 

pimpinellifolium. It was described to be controlled by a small number of major genes and 

associated with fruit size (Acosta et al. 1964). In 1988, Opena et al. also found only a 

few different resistance genes appear to be involed in several different bacterial wilt 

resistance sources. Among a series of lines from Hawaii, Hawaii 7996 is the most stable 

resistance source (Wang et al. 1998). The decission on the most appropriate and efficient 

strategy to transfer the stable resistance from Hawaii 7996 depends on our knowledge of 

the genetic control. 

Rapid advances in crop biotechnology have provieded new tools in plant breeding. DNA 

markers are a very useful tool because they can be used to construct high density molecular 

maps, making it possible to locate more precisely genes affecting either simple or complex 

traits (Paterson et al. 1991). DNA markers tightly associated or linked to a gene of interest 

can be used in marker-assisted selection, and thus, can increase the efficiency of selection 

particulary for traits that are strongly influenced or dependent on the environment for trait 

expression (Young, 1996).  
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In tomato, molecular mapping of bacterial wilt resistance genes has been initiated and 

important QTLs have been identified (Denesh et al. 1994; Thoquet et al. 1996a; b; Wang 

et al. 2000). Among these, several QTLs were mapped in Hawaii 7996 based on F2 or F3 

populations derived from a cross with the susceptible parent line ‘West Virginia 700’ 

(WVa700) (Thoquet et al. 1996a; Thoquet et al. 1996b; Mangin et al. 1999; Wang et al. 

2000). Mapping, however, relied on the use of F2 or F3 population and therefore the effect 

of different enviroments and strains or races of the pathogen could not be extensively 

evaluated. The use of recombinant inbred lines (RILs) can overcome such limitation since 

RILs can serve as a permanent mapping resource that will permit replicated tests in 

multiple environments using different strains of the pathogen. Carmielle et al. (2006) used 

F8 RILs derived from the same cross Hawaii 7996 x WVa700 and demonstrated 

environmental factors influenced the expression of resistance against the race 3-phylotype 

II strain JT516.   

The primary goals of this study were (1) to use of F9 RILs to identify QTL general and 

specific to various environments directed towards development of PCR-based markers 

linked to important QTL for marker-assisted selection (MAS); (2) to evaluate wild tomato 

germplasm for resistance to race 1 strains of R. Solanacearum to find diverse resistance 

sources to possibly overcome the highly variable pathogen strains. 

. 
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Chapter 1 

Construction of a genetic linkage map for mapping bacterial 

wilt resistance in the tomato cultivar Hawaii 7996 

1.1 INTRODUCTION 

In the genus Solanum, several accessions of cultivated tomato (S. lycopersicum) showed 

resistance to bacterial wilt (Wang et al. 1997). Results from various genetic analysis and 

inheritance studies demonstrated that the resistance is most likely polygenic (Mohamed et 

al. 1997; Prior et al. 1994; Thoquet et al. 1996b; Wang et al. 2000). Resistance has been 

difficult or impossible to transfer to desirable cultivars due to the number of Quantitative 

Trait Loci (QTL) and/or linkage of QTL to undesirable traits. In addition, the inheritance 

of resistance is further complicated by interactions between the plant genotype and 

pathogen strains, as well as environmental effects on resistance expression (Grimault and 

Prior, 1993; Hayward, 1991). All of these factors have made breeding for resistance very 

challenging. Breeding a resistant variety using un-adapted germplasm as a donor typically 

requires a series of backcrosses to the cultivated recurrent parent, alternating with progeny 

testing, to combine desirable characteristics. This procedure is time consuming and costly. 

The application of molecular markers to facilitate the introgression of disease resistance to  

crop cultivars helps to alleviate time and cost constraints (Zhang et al. 2002). Molecular 

markers have gained favor in plant breeding as a powerful approach permiting construction 

of high density genetic maps making it possible to locate genes more precisely (Stuber, 

1992). The potential number of DNA markers for any plant species is potentially 

unlimited, which allows the development of linkage maps with a high degree of resolution 

(Helentjaris et al. 1986).  

Amplified fragment length polymorphisms (AFLPs), combine the reproducibility of RFLP 

and the speed and convenience of PCR-based marker techniques. Reproducibility of 

AFLPs is assisted by the use of restriction enzymes that cut specific sites in the genome, 

use of primers specifically designed based on synthetic adaptor sequences, and stringent 

amplification conditions (Vos et al. 1995). AFLPs yield a large number of bands, and can 
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be used without prior knowledge of genome sequence information. One of the drawbacks 

is generating primarily dominant and anonymous markers. However, AFLPs have been 

shown to be useful in saturating genetic maps in species with large genomes. AFLP maps 

have been rapidly applied in many crop species, for example barley (Becker et al. 1995; 

Powell et al. 1997), potato (van der Voort et al. 1998), rice (Mackill et al. 1996) and 

tomato (Haanstra et al. 1999).  

Microsatellites, also called simple sequence repeats (SSRs), short tandem repeats (STRs), 

simple sequence length polymorphism (SSLP), or sequence-tagged microsatellite sites 

(STMS) consist of short DNA sequences (usually 1-6bp in length) that are tandemly 

repeated from two to thousand times (Stallings et al. 1991). The DNA sequences flanking 

the SSRs were found to be unique and such conserved sequences have been exploited to 

design suitable primers for amplification of the SSR loci using PCR. SSR polymorphism 

results from variation in the number of repeat units at a particular SSR locus. Variation in the 

number of repeat units is postulated to be due to unequal crossing over or slippage of DNA 

polymerase during replication of repeat tracts (Coggins and O'Prey, 1989). Microsatellites 

are considered useful for construction of high-density maps due to their high polymorphism 

level, co-dominant character, abundance, and wide distribution over the genome. It is 

technically simple as it relies on PCR technology; the technique is sensitive, since only a 

small quality of DNA is required. SSR markers are inherited in Mendelian fashion. In 

addition, SSR markers in some cases display good transferability from one species to another 

within the same genus (Rajora et al. 2001; Shepherd et al. 2002) and can be thus used as 

convenient anchor points in the construction of intra-specific and inter-specific consensus 

maps. The technology is also readily transferable since information can be communicated as 

simple sequences of primer pairs. The major limitation of the SSR marker technology, 

however, is the initial investment and the technical expertise to clone and sequence the loci. 

Nonetheless, the application of SSR marker technology in many plant species has 

dramatically increased over the years and continuing efforts are underway to design more 

primers based on available sequence information in the plant genome databases. 

Single nucleotide polymorphisms (SNPs) are an alteration of a single nucleotide in a DNA 

sequence and can be detected and used as markers. Sequence variation consists of single-

base differences or small insertions and deletions (indels) at specific nucleotide positions. 

Their frequent occurrence provides a large source of genetic markers that are more likely to 

be located close to target genes of interest. Sequence variants of SNPs are the markers of 
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choice for genotyping and mapping because of their abundance and amenability to high-

throughput screening. In addition, SNPs can contribute directly to a phenotype or they can 

associate with a phenotype as a result of linkage disequilibrium (Daly et al. 2001; Kim et al. 

2004; Thornsberry et al. 2001). Because of availability of high throughput detection systems, 

SNPs are suited for automation (Landegren et al. 1998). Many SNP methodologies have 

been described (Landegren et al. 1998). It may involve target sequence amplification and 

then distinction of DNA sequence variants by short hybridization probes or by restriction 

endonuclease. In combination with a PCR assay, the corresponding SNP can be analyzed as 

a cleaved amplified polymorphic sequence (CAPS) marker or as single-stranded 

conformation polymorphism (SSCP) technique.  

Cleaved amplified polymorphic sequence (CAPS) markers have proven to be a powerful tool 

for molecular genetic analysis. CAPS markers rely on differences in restriction enzyme 

digestion patterns of PCR fragments caused by nucleotide polymorphism generating a 

simple type of data coded as heterozygote or homozygote (Konieczny and Ausubel, 1993; 

Michaels and Amasino, 1998). The costs of a CAPS assay is generally low, especially when 

it relies on commonly used restriction enzymes. It requires minimum amounts of genomic 

DNA and simple electrophoresis systems to reveal polymorphism; however, the only 

drawback is that sequence information is needed to tag the desired DNA fragments.  

Diversity arrays technology (DArT) involves using microarrays that does not require 

sequence knowledge, and thus may become very useful for crop researchers. A single 

DArT assay simultaneously types hundreds to thousands of SNPs and insertion/deletion 

polymorphisms spread across the genome. It is sequence-independent and can be processed 

in a cost-effective and speedy manner of hundreds to thousands of individual samples by 

using a proper setup and software (Wenzl et al. 2004). DArT offers a rapid and DNA 

sequence-independent shortcut to medium-density genome scans of any plant species 

(Yang et al. 2006). Hence, since the whole genome was first profiled using DArT markers 

in barley, approximately 2.3 million data points for 4,000 lines have been generated for 

barley breeders and researchers (Wenzl et al. 2006) and it has been rapidly applied in many 

other crops such as sugarcane (Lakshmanan et al. 2005), wheat (Semagn et al. 2006), 

cassava (Xia et al. 2005), and pigeon pea (Yang et al. 2006).  

Genetic mapping of tomato using restriction fragment length polymorphism (RFLP) was 

first published in 1986 (Bernatzky and Tanksley, 1986). Since then, more markers, mainly 

RFLP, were added onto the existing molecular linkage map. More than 1000 markers are 



Chapter 1: Introduction 10

available for tomato covering 1,276 map units and their localizations on the molecular 

linkage maps correspond to both random genomic clones and cDNA clones (Tanksley et 

al. 1992). After that, simple sequence repeats in tomato genome were characterized and 

placed in this high-density map (Broun and Tanksley, 1996; Grandillo and Tanksley, 

1996b; Suliman-Pollatschek et al. 2002, Frary et al. 2005) as well as SNP and AFLP 

(Haanstra et al.1999; Suliman-Pollatschek et al. 2002).   

Two hundred-ninety RFLP markers have been utilized to construct a linkage map to 

identify markers associated with bacterial wilt resistance from an F2 population derived 

from a cross between L286, a bacterial wilt susceptible cultivar and C285, a resistant wild 

tomato relative (S. lycopersicum var. cerasiforme) (Danesh et al. 1994). However, only 69 

markers were polymorphic and useful for segregation analysis. Of the polymorphic RFLP 

markers analyzed, 59 markers mapped to 11 linkage groups on the tomato genetic map by 

using the software MAPMAKER II (Lander et al. 1987). A follow-up study was conducted 

using an F2 population derived from a cross between a bacterial wilt susceptible line S. 

pimpinellifolium, West Virgina 700 (WVa700), and a highly resistant cultivar Hawaii 7996 

(H7996). A genetic map with 60 RFLP markers constructed using the software JOINMAP 

and the Kosambi mapping function (Thoquet et al. 1996a). RFLP markers require 

appreciable amounts of relatively pure DNA, are time consuming, costly and technically 

demanding. Therefore, Balatero (2002) constructed a linkage map consisting of 80 markers, 

which included 70 AFLPs, 7 RGAs (resistant gene analogs), and 1 SSR based on a F6 

recombinant inbred line  population derived from a cross of H7996 x WVa700. 

The study presented here was conducted at AVRDC with the overall primary goal of 

improving the efficiency of breeding programs in tomato through the application of 

molecular markers and to broaden the genetic base of tomato for improvement of durable 

resistance to Ralstonia solanacearum. In particular, the study aimed to: 1) Construct a 

genetic linkage map of H7996 x WVa700 using F9 recombinant inbred lines, and 2) use 

this map to identify DNA markers associated with resistance to bacterial wilt in H7996. 
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1.2 MATERIALS AND METHODS 

1.2.1 Plant materials 

A population of 188 F9 recombinant inbred lines (RILs), series number: 1-200 (except RIL 

number 7, 19, 34, 61, 99, 110, 123, 133, 174, 180, 181, 190) derived from a cross between 

H7996 (S. lycopersicum, resistant) and WVa700 (S. pimpinellifolium, susceptible) 

(Thoquet et al. 1996a) provided by Bacteriology Unit, AVRDC-The World Vegetable 

Center (AVRDC), were used in this study. This cross was made in France and advanced 

upto F3 using single seed descent (SSD) method (Tigchelaar and Casali, 1976). Seeds of F3 

lines were then sent to the Institute of Plant Breeding of the University of the Philippines, 

Los Banos for generation advance to produce the F5 recombinant inbred lines. Generation 

advance of H7996 x WVa700 mapping population from F6 to F9 generation was made at 

AVRDC.  

1.2.2 DNA preparation and quantification 

1.2.2.1 DNA preparation 

 DNA of two single plants of each of all 188 F9 RILs and the two parental lines were 

extracted using two methods as described by Diversity Arrays Technology (DArT P/L, 

Yarralumla, ACT 2600, Australia) (DArT method) and by Murray et al. (1980) and has 

been modified by Fulton et al. (1995) (Fulton method). In the Fulton method, a 50-100mg 

sample (approximately 4-8 new leaflets, up to 1.5cm long) of young leaf tissue was 

harvested and placed in a 1.5ml microcentrifuge tube. To each tube, 200µl of freshly 

prepared buffer (2.5 parts of extraction buffer (0.35M sorbitol, 0.1M Tris pH 7.5, 5mM 

EDTA) + 2.5 parts of lysisbuffer (0.2M Tris, 0.05M EDTA, 2M NaCl, 2% CTAB) + 1 part 

of sarcosyl (5%)) was added to the leaf tissue and was ground using plastic pestle with 

power drill. An additional 550µl of fresh microprep buffer was added, and the tube 

vortexed gently before the sample was incubated at 65oC for 30-120 minutes. An equal 

volume of chloroform:isoamyl alcohol (24:1) was added and the content was mixed well 

by sandwiching the tubes between two racks and inverting 100 times. Samples were then 

centrifuged for 5 minutes at 10,000rpm. The upper aqueous phase was transferred into a 

1.5ml-sterile microcentrifuge tube and precipitated by mixing 1 volume of supernatant with 
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0.75 volume of ice-cold isopropanol. The precipitated samples were centrifuged at 

10,000rpm for 5 minutes and the supernatant was poured off, and approximately 50µl of 

75% ethanol was then used to wash the pellet and left over night at -20oC. After 

centrifugation, the supernatant was removed; the pellet was dried at room temperature for 

1-2 days and dissolved in 50µl of sterile TE (Tris-EDTA) buffer. 

In the DArT method, one young tomato leaflet was collected and cut into 5-6 pieces and 

put in a 1.5ml microcentrifuge tube and stored at -80oC. The young tomato leaflet pieces 

were ground to fine powder with plastic pestle in liquid nitrogen, then 500µl of fresh 

working buffer (2.5 parts of extraction buffer (0.35M sorbitol, 0.1M Tris pH 7.5, 5mM 

EDTA) + 2.5 parts of lysisbuffer ((0.2M Tris, 0.05M EDTA, 2M NaCl, 2% CTAB) + 1 

part of sarcosyl (5%) + 2% PVP)) was added and the content was mixed well after 

incubating at 65oC for 5 minutes. The tubes were further incubated at 65oC for 30 minutes. 

Five-hundred microliters of chloroform:isoamyl (24:1) was added, and the tubes were 

gently inverted to mix. Then, the tubes were centrifuged at 6,000rpm for 10 minutes. The 

supernatant was transferred to a new sterile centrifuge tube and a 0.8 volume of cold 

isopropanol was added to each tube of aqueous supernatant to precipitate DNA. The 

mixture was centrifuged for 15 minutes at 6000rpm, and the supernatant was discarded. A 

volume of 500µl of 70% ethanol was added, and then tubes again centrifuged at 6,000rpm 

for 30 minutes, and the ethanol discarded. The DNA was dried at room temperature for 1-2 

days. The DNA precipitate was suspended in 50µl of sterile TE buffer by incubating at 

65oC for 20 minutes. RNA was eliminated through DNA incubation with 3.0µg/ml RNAse at 

37oC for 45 minutes. 

1.2.2.2 DNA quantification   

An agarose gel method was used to quantify and identify the quality of DNA samples. The 

concentration of genomic DNA was estimated by comparing the size and intensity of each 

sample band with those of sizing standard, DNA ladder. DNA was diluted into two different 

ratios for each of the two methods: 1:50 for the Fulton method and 1:10 for the DArT 

method. Seven microliters of diluted DNA from the DArT method and 14µl of diluted DNA 

from the Fulton method were run on a 1% agarose gel in 1% TAE (Tris-Acetate-EDTA) 

buffer at 50V for 2.5 hours. The gel was stained with ethidium bromide for 10 minutes then 

washed in sterile distilled water for 15 minutes and then visualized under UV light for DNA 

detection. A 1kb ladder (Bertec Enterprise, Taiwan) was used as a standard for calculation 

of DNA concentration. The presence of DNA was recorded when a band appeared on the 
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gel; and the concentration of DNA was calculated by comparing band intensity and amounts 

of ladder run on the same gel. The final dilution was done by adjusting concentration to 

100ng/µl for the DArT method and 5-10ng/µl for the Fulton method. 

1.2.3 DNA marker analysis 

1.2.3.1 AFLP analysis  

AFLP analysis was performed using a slightly modified procedure of Vos et al. (1995). 

The restriction enzymes, adaptors and primers used in AFLP analysis are listed in Table 

1.1 (Balatero, 2000). The following describes the detailed procedure of the AFLP analysis. 

Restriction digestion 

 From each sample, 250ng/15µl of genomic DNA was digested with 15µl cocktail 

including 10µl sterile MilliQ water, 3.0µl 10X buffer 2 (NEB) (500mM NaCl, 

100mM Tris-HCl, 100mM MgCl2, 10mM dithiothreitol, pH 7.9), 0.8µl EcoRI (20U/µl) 

(New England Biolabs) (NEB) and 1.2µl MseI (10U/µl) (NEB) at 37oC for two hours by 

using a MJ PT-200 thermocycler (MJ Research, GMI, Inc., Minnesota, USA). Then, 5µl of 

digestion product was loaded on 1% agarose gel and 1kb ladder (Bertec Enterprise, 

Taiwan) was used as molecular weight marker. Digestion products would display a smear 

of about 100-1000bp indicating that digestion was completed. The mixture was incubated 

for 15 minutes at 70oC to inactivate the restriction enzymes. 

Ligation of adapter sequence 

Twenty microliters of digestion were ligated with 1.0µl EcoRI adaptor (5pmol/µl) (NEB), 

1.0µl MseI adaptor (50pmol/µl) (NEB), 1.0µl 10X Ligase buffer (500mM Tris-HCl pH 

7.5, 100mM MgCl2, 100mM DTT, 10mM ATP) (NEB), 6.6µl sterile MilliQ water, and 

0.4µl T4 DNA ligase (400U/µl) (NEB). The ligated mixture was gently mixed, centrifuged 

briefly and incubated at 16oC overnight using the MJ PT-200 thermocycler (MJ Research, 

GMI, Inc., Minnesota, USA). The ligations were then performed a 1:10 dilution using 

sterile MilliQ water. Diluted and undiluted ligation mixtures were stored at -20oC. 
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Table 1.1 List of adaptors and primers used for AFLP analysis 

Name Enzyme Type Sequence (5’-3’) 
EcoRIadpI 
EcoRIadpII 

EcoRI 
EcoRI 

Adaptor 
Adaptor 

CTGGTAGACTGCGTACC 
CTGACGCATGGTTAA 

MseIadpI 
MseIadpII 

MseI 
MseI 

Adaptor 
Adaptor 

GACGATGAGTCCTGAG 
TACTCAGGACTCAT 

E-A EcoRI Primer + 1 AGACTGCGTACCAATTCA 
E-AAC (E1) EcoRI Primer + 3 AGACTGCGTACCAATTCAAC 
E-AAG (E2) EcoRI Primer + 3 AGACTGCGTACCAATTCAAG 
E-ACA (E3) EcoRI Primer + 3 AGACTGCGTACCAATTCACA 
E-ACC (E4) EcoRI Primer + 3 AGACTGCGTACCAATTCACC 
E-ACG (E5) EcoRI Primer + 3 AGACTGCGTACCAATTCACG 
E-AGG (E8) EcoRI Primer + 3 AGACTGCGTACCAATTCAGG 
M-C MseI Primer + 1 GATGAGTCCTGAGTAAC 
M-CAA (M1) MseI Primer + 3 GATGAGTCCTGAGTAACAA 
M-CAC (M2) MseI Primer + 3 GATGAGTCCTGAGTAACAC 
M-CAG (M3) MseI Primer + 3 GATGAGTCCTGAGTAACAG 
M-CAT (M4) MseI Primer + 3 GATGAGTCCTGAGTAACAT 
M-CTA (M5) MseI Primer + 3 GATGAGTCCTGAGTAACTA 
M-CTC (M6) MseI Primer + 3 GATGAGTCCTGAGTAACTC 
M-CTG (M7) MseI Primer + 3 GATGAGTCCTGAGTAACTG 
M-CTT (M8) MseI Primer + 3 GATGAGTCCTGAGTAACTT 

Pre-amplification 

A pre-amplification was carried out to amplify the ligated DNA fragments. The first PCR 

(pre-amplification) was performed in a 96-well micro-titer plate. Each reaction consisted of 

0.6µl E primer  (10µM), 0.6µl M primer (10µM), 1.6µl dNTPs (2.5mM) (PROtech), 2µl 

10X PCR buffer with 15mM Mg2+ (Violet, Taiwan), 10µl sterile MilliQ water, 0.2µl Tag 

DNA polymerase (2U) (Violet, Taiwan) with 5µl of diluted ligation. The components were 

mixed gently, centrifuged briefly and then covered with a PCR plastic plate cover. The 

PCR program was 28 cycles of 30 seconds at 94oC (denaturation), 30 seconds at 56oC 

(annealing), and 1 minute at 72oC (extension) using a MJ PT-200 thermocycler (MJ 

Research, GMI, Inc., Minnesota, USA). The quality and quantity of pre-amplification 

products were checked by running 10µl of each pre-amplified product in 1.0% agarose and 

using 1kb ladder (Bertec Enterprise, Taiwan) as molecular weight marker. The product that 

looked like a smear lying within 50bp to 500bp would indicate successful pre-

amplification. Pre-amplification solutions were diluted with a 1:25 dilution by taking 5µl 
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of the pre-amplification DNA mixture into a 96-well micro-titer plate and adding 120µl 

sterile MilliQ water. This was used as template DNA for selective AFLP amplification. 

Unused portion of the pre-amplification template mixture was stored at –20oC for long-

term use. 

Selective amplification 

Selective amplification was also performed in a 96-well micro-titer plate. Three selective 

nucleotides (+3) on the MseI primer combined with three selective nucleotides (+3) on the 

EcoRI primer were selected for use. The sequences of the primers used are shown in Table 

1.1. Twenty microliter mix contained 9.1µl sterile MilliQ water, 1.0µl E primer (E-ANN) 

(5µM), 1.2µl M primer (E-CNN) (5µM), 1.6µl dNTPs (2.5mM) (PROtech, Taiwan), 2µl 

10X PCR buffer with 15Mm Mg2+ (Violet, Taiwan), and 0.1µl Tag DNA polymerase (2U) 

(Violet, Taiwan) with 5µl template DNA. After covering the 96-well micro-titer plate by 

the plastic cover, the samples were amplified following one cycle of 94oC for 30 seconds, 

65oC for 30 seconds and 72oC for 1 minute; 12 cycles of subsequently lowering the 

annealing temperature (65oC) by 0.7oC per cycle while keeping 94oC for 30 seconds and 

72oC for 1 minute; twenty-eight cycles of 94oC for 30 seconds, 56oC for 30 seconds, and 

72oC for 1 minute and soak at 10oC using a MJ PT-200 thermocycler (MJ Research, GMI, 

Inc., Minnesota, USA). 

Detection of amplified bands using silver staining 

Following amplification, reaction products were mixed with 10µl tracking dye (95% 

formamide, 5M NaOH, bromophenol blue, xylene cyanol FF) then denatured at 94oC for 4 

minutes. PCR products were electrophoresed in a 6% denaturing polyacrylamide gel (19:1 

acrylamide-bisacrylamide, 7.5M urea) in 0.5X TBE buffer (25mM Tris, 25mM boric acid, 

0.5mM EDTA, pH 8.0) using Aluminum Backed Sequencing system (Model #: S3S from 

Owl Scientific, Inc). Electrophoresis was performed at constant power of 75W for 3.5 

hours including 1 hour pre-run to warm the gel to 45-50°C. Each gel included a lane of the 

low molecular weight DNA ladder (NEB). Following electrophoresis, DNA bands were 

visualized based on a silver staining procedure developed by Promega (Madison, 

Wisconsin). Gels were fixed in 10% glacial acetic acid solution tray for 20-30 minutes 

(until the tracking dyes were no longer visible). The gels were then washed three times for 

2 minutes using distilled water and transferred to a staining solution tray consisted of 0.1% 

(w/v) silver nitrate and 0.15% (v/v) of 37% formaldehyde solution for 30 minutes. The 
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gels were dipped briefly into the tray containing distilled water, drained and placed 

immediately into a tray of chilled developing solution consisting of 3% (w/v) sodium 

carbonate, 0.15% (v/v) of 37% formaldehyde and 0.02% sodium thiosulfate (400µl of 

10mg/ml per 2 liters of solution) for an additional 2-3 minutes or until all bands became 

visible. The time taken to dip the gels in distilled water and transfer into developing 

solution was no longer than 5-10 seconds. The developing reaction was terminated, fixed 

(10% glacial acetic acid) and gels then washed twice with distilled water. All steps above 

were done with constant shaking, and the volumes of the solutions used in each step were 

typically two litters. Gels were air-dried at least overnight and then scored. After scoring, 

the gels were scanned to document the image.  

Scoring AFLP markers 

AFLP is dominant type of marker, thus scoring is based on the presence (+) or absence (-) 

of band. Once the gels were dried, they were scored manually for the presence or absence 

of polymorphic bands across genotypes and individual scores were converted to either “1” 

(band present) or “0” (band absent). In cases where bands were not clear to score, they 

were treated automatically as missing data. 

1.2.3.2 Microsatellite or SSR analysis 

Eighty-five SSRs selected based on Tomato-EXPEN 2000 map 

(http://www.sgn.cornell.edu) and four unmapped SSRs (Smulders et al. 1997) were 

surveyed for polymorphism using the two parental lines, H7996 and WVa700 on 1% 

agarose gels. All but one unmapped SSR (SSR3) showed polymorphism. Hence, SSR 

markers were re-run on 5% polyacrylamide gel and 24 more SSR markers showed 

polymorphism between the two parents. Twenty five SSR markers were then mapped on 

the 188 F9 RILs. Primer sequences and repeat motifs for polymorphic SSR markers are 

listed in Table 1.2. Each PCR reaction (25µl final volume) contained 15-20ng of genomic 

DNA, 10X PCR buffer (10mM Tris-HCl, pH 9.0; 50mM KCl; 15mM MgCl2), 20mM 

dNTPs, and 20µM of each forward and reverse primer and 2U of Taq DNA polymerase 

(Violet, Taiwan). PCR reactions were performed in a MJ PT-200 thermocycler (MJ 

Research, GMI, Inc., Minnesota, USA). The amplification profile consisted of an initial 

denaturation for 5 minutes at 94°C followed by 35 cycles of 30 seconds at 94°C, 45 

seconds at the annealing temperature 50–60°C (depending on the Tm of the primers), 45 

seconds elongation at 72°C, and a final extension step of  7 minutes at 72°C.   
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Table 1.2 List of polymorphic SSR primers used for mapping population 

No. Primer code Marker  
code Chromosome Forward primer Reverse primer Annealing 

Tm. (oC) 
1 01-138.0 s01138.0 1 AATTCACCTTTCTTCCGTCG GCCCTCGAATCTGGTAGCTT 50 
2 02-022.0 s02022.0 2 TGCAGGTATGTCTCACACCA TTGCAAGAACACCTCCCTTT 50 
3 02-036.6 s02036.6 2 GGGTTATCAATGATGCAATGG CCTTTATGTCAGCCGGTGTT 50 
4 03-074.1 s03074.1 3 TGCCAATCCACTCAGACAAA TGGATTCACCAAGGCTTCTT 50 
5 03-099.0 s03099.0 3 GATCGGCAGTAGGTGCTCTC CAAGAAACACCCATATCCGC 50 
6 04-015.0 s04015.0 4 TGGCATGAACAACAACCAAT AGGAAGTTGCATTAGGCCAT 55 
7 04-037.0 s04037.0 4 GAAGGGACAATTCACAGAGTTTG CCTTCAACTTCACCACCACC 50 
8 04-054.5 s04054.5 4 AATGAAGAACCATTCCGCAC ACATGAGCCCAATGAACCTC 55 
9 04-056.0 s04056.0 4 ACATGAGCCCAATGAACCTC AACCATTCCGCACGTACATA 55 
10 04-058.0 s04058.0 4 GCGATGAGGATGACATTGAG TTTACAGGCTGTCGCTTCCT 60 
11 04-058.1 s04058.1 4 TGTTGGTTGGAGAAACTCCC AGGCATTTAAACCAATAGGTAGC 60 
12 06-006.1 s06006.1 6 TCCTCAAGAAATGAAGCTCTGA CCTTGGAGATAACAACCACAA 50 
13 06-099.8 s06099.8 6 GGAATAACCTCTAACTGCGGG CGATGCCTTCATTTGGACTT 55 
14 07-002.0 s07002.0 7 AGTGGCTCTCACCTACTGCG CAATTCTCAGGCATGAAACG 55 
15 08-001.0 s08001.0 8 TGTTGCTCGAACTCTCCAAA CATAGGAGAGGTAACCCGCA 60 
16 08-055.0 s08055.0 8 GTTTCTATAGCTGAAACTCAACCTG GGGTTCATCAAATCTACCATCA 50 
17 08-055.1 s08055.1 8 TTCGTTGAAGAAGATGATGGTC CAAAGAGAACAAGCATCCAAGA 55 
18 09-051.0 s09051.0 9 CCGTTACCTTGGTCCATCAC GGGAGATGCCACATCACATA 50 
19 09-058.0 s09058.0 9 ATTGTACAAAGACCCGTGGC GTTGCACACTGGATCAATGC 55 
20 10-033.1 s10033.1 10 AGGGTCCTTCGTTTGGAACT GCATTCCACTTGTGAAGCAT 60 
21 10-033.2 s10033.2 10 TTTCCACCTCAAACCACTCC CCCTTTGACCTGTGCCA 55 
22 10-034.5 s10034.5 10 GCAGAGGATATTGCATTCGC CAAACCGAACTCATCAAGGG 55 
23 10-075.0 s10075.0 10 TGGCTGCCTCTTCTCTGTTT TTTCTTGAAGGGTCTTTCCC 55 
24 11-040.0 s11040.0 11 CCGAGGCGAATCTTGAATAC GCACCATCTCTTGTGCCTCT 50 
25 SSR3 SSR3 unmapped CTCGTCTTTAGGTATCAATGGAGAT TCAATGCTACTCAATGGCTCA 50 



Chapter 1: Materials and methods 

 

18

The reaction products were denatured by heating for 4 minutes at 84°C with 1/3 volume of 

tracking dye (98% formamide, 10mM of EDTA, 0.25% each of bromphenol blue and 

xylene cyanol), then run on a polyacrylamide gel electrophoresis system. Condition of 

electrophoresis and staining were similar to the one used for AFLP analysis. Each gel 

included lanes of 25bp molecular size marker (Promega, Madison, WI). SSRs are co-

dominant markers; hence, residual heterozygosity in the F9 RILs can be detected. Symbols 

H (for H7996) and W (for WVa700) were used to score the entire RIL population. 

1.2.3.3 SNP analysis  

Eleven SNP markers selected from Tomato Mapping Resource Database 

(http://www.tomatomap.net/) were screened in the H7996 and WVa700 (Table 1.3). PCR 

amplification reactions were prepared in a total volume of 25µl containing 10X PCR buffer 

(100mM Tris-HCl, pH 9.0; 500mM KCl; 15mM MgCl2), 20mM dNTPs, 20µM of each 

forward and reverse primer and 2U of Taq DNA polymerase (Violet, Taiwan), and 20ng 

genomic DNA as template for PCR. The amplification procedure consisted of an initial 

denaturation for 5 minutes at 94°C and 35 cycles of 30 seconds denaturation at 94ºC, 1 

minute primer annealing at 50ºC or 55ºC depends on primers used, 2 minutes extension at 

72ºC, followed by a final extension at 72ºC for 5 minutes. After amplification, 5µl of PCR 

product was digested in a 10µl cocktail including 7.3µl sterile ddH2O, 2.5µl 10X buffer 2 

(NEB) (500mM NaCl, 100mM Tris-HCl, 100mM MgCl2, 10mM dithiothreitol, pH 7.9), 

0.2µl restriction enzyme (20U/µl) (NEB) by using a MJ PT-200 thermocycler (MJ 

Research, GMI, Inc., Minnesota, USA). The digested  products (15µl) were separated in 

1% agarose gels and 1X TBE buffer (10.8g trizma base, 5.48g boric acid, and 4ml EDTA 

(0.5mM)/1l of distilled water) for 1.5 to 2 hours at 96V. A 100bp ladder was used as 

molecular weight marker. After electrophoresis, gels were stained with ethidium bromide 

(1.5µg/ml) for 10 minutes, de-stained in distilled water for 15 minutes and photographed 

under UV light. Scoring was similar to SSR analysis. 
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Table 1.3 List of SNP primers used for screening of the parents 

No. Primer code Chromosome Forward primer/Reserve primer Restriction 
enzyme 

TCAAATCACAAAATTAACCTATTCTTT  1 LEOH8.1 9 
GACCATTTTCCTAACTCTTCAGG  
TGCCAGATTGACTGTGAAGG 2 LEOH10 4 
GGAACCCTGCATTGTTCTTG 

BsaJ I 

TGAATTTTCTGTCATCGTTGG  3 LEOH16.1 5 
TTTCGGAATCTTTGTTGAATTG  
TCGACGCTGCACAGAAATAC 4 LEOH16.2 5 
TTCCTCCTCCTTATCTCCTTCA 

BsaW I 

CAGACGAGAAGCAAGTTGAGG  5 LEOH17.1 Multiple 
CTACCACTGCGTGCTTTGAC  
AAGGCTCAGAAAGGGTCCAT 6 LEOH19 12 
TGAGTTCATCAACACATCACACA 

BsaB I 

GAGAGAAAAAGGGCACAAGG 7 LEOH23.1 2 
ACCGACAAACGCATAGATCA 

Msp I 

TTGCAATGGCTTCTCTCCTC 8 LEOH31.3 9 
ACTTGTCCGTTTCTCGCTTG 

Msp I/ 
Mse I 

TCACAAAAATGGCGATGAGA 9 LEOH36 1 
CCACCTGTGGATCCTTGACT 

Bcl I 

TTGATATATTCCATGTGTGTCTC 10 LEOH37 4 
AACTACAAATTAACAAACTTAAATGG 

NmuC I 

TGAGTTGGTGAACCATGGAA 11 LEOH40.1 7 
CCAAAGTTGGGACCTTTTGA 

NmuC I 
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1.2.3.4 Providing of DArT and RFLP markers 

The F8 RFLP marker genotype data were kindly provided by Dr. Pascale Besse, CIRAD, a 

collaborator of Dr. Jaw-Fen Wang, AVRDC.  

DArT marker data were provided by AVRDC. The data were produced by Diversity 

Arrays Technology Pty Limited, Canberra, Australia, under a contract with AVRDC. 

1.2.3.5 Marker codes 

Each AFLP marker was assigned a three-part name consisting of 3 letters as “afh” and the 

primer combination number followed by the letter. Each SSR marker was numbered of 

chromosome followed by its position (cM) on the chromosome. DArT markers were 

named following by capital “D” and number of each clone on the 96-well plates.  

1.2.3.6 Linkage analysis 

The markers were coded as follows: an individual homozygous F9 RIL like resistant parent 

H7996 = ’H’, susceptible parent WVa700 = ’W’ and missing data = ’-‘. The genotyping 

scores of 188 RILs were analyzed using the MultiPoint mapping software package 

(http://www.multiqtl.com). The approach of multilocus ordering implemented in 

MultiPoint employs evolutionary algorithms of discrete optimization, which uses the 

minimization of the total map length as the mapping criterion (Mester et al. 2003, 2004). 

The population type “RIL-selfing” was used and the initial clustering of all markers into 37 

linkage groups was based on a preset threshold recombination rate (RR) of 0.27. Initial 

linkage groups could be further merged into 12 linkage groups/chromosomes where 

markers were reordered. Map distances were calculated using the Kosambi mapping 

function, which assumes positive interference between crossovers. Linkage groups then 

were compared with an evaluation version of Joinmap 4.0 (Van Ooijen and Voorrips, 

2006). With JoinMap 4.0, the regression mapping algorithm and Kosambi cM units were 

used for genetic linkage analysis.  
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1.3 RESULTS 

1.3.1 Polymorphism screening between H7996 and WVa700 

The polymorphism screening between H7996 and WVa700 is summarized in Table 1.4. A 

total of 121 primers of AFLP, SNP and SSR was screened, and amplified  with 1008 

bands. A total of 913 distinct bands were yielded from 21 EcoRI/MseI selective primers. 

Out of  913 AFLP bands, 76 bands showed polymorphism. For SNP, 12 bands were 

generated from 11 primers. Of the twelve SNP bands, only one showed polymorphism and 

used for screening the F9 RILs. Whereas, 83 bands were generated from 89 SSR primers. 

Twenty five SSRs out of the 83 amplified loci were polymorphic between H7996 and 

WVa700. In general, the rate of polymorphism was relatively low—8.3% for AFLP and 

SNP markers; however, polymorphic percentage was higher for SSR marker with 30.1%.  

Table 1.4 Summary of polymorphism screened between the parental lines H7996 and 
WVa700 using AFLP, SNP, and SSR markers 

Type of 
marker 

No. of marker 
used 

Total no. of 
band 

No. of polymorphic 
bands 

Percent 
polymorphism 

AFLP 21 913 76 8.3 
SNP 11 12 1 8.3 
SSR 89 83 25 30.1 
Total 121 1008 102  

The number of visible AFLP bands produced per primer combination ranged between 24 

and 61 bands with a mean of 43.5 bands (Appendix Table 1.1). The polymorphic bands 

ranged from 1 to 9 with a mean of 3.7 polymorphic bands per primer combination. The 

highest percentage of polymorphism was obtained from primer combination E4&M5 with 

20.9% and lowest was from E2&M8 with 1.7%. The siz of each polymorphic AFLP 

marker was estimated based on the mobility of low molecular weight DNA ladder 

(effective size range: 25 bp to 766 bp) (Appendix Table 1.2). The AFLP fragments 

amplified ranged in size from 81bp to 487bp. The number of polymorphic bands coming 

from H7996 was 40, whereas the remaining 36 bands came from WVa700. 

Out of 11 SNP markers, eight SNP markers were digested with restriction enzymes after 

amplification and product gained from primer LEOH31.3 showed different product sizes 
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when different restriction enzymes used (Appendix Table 1.3). The size of amplified and 

digested products ranged from 180bp to 1200bp. Out of 11 primers, only one showed 

polymorphism between H7996 and WVa700. The size of the parental line H7996 was 

1000bp, whereas 1200bp was for WVa700. 

Of the eighty-nine SSR primers screened for polymorphism between the two parental lines, 

83 primers gave amplification products. Out of 83, only one primer showed polymorphism 

on 1% agarose. Then amplification products were electrophoresised on 5% polyacrilamide 

gel and resulted 24 more primers revealed polymorphism (Figure 1.1). Using the 25bp 

marker (Promega), the molecular weight of each polymorphic marker was estimated based 

on the mobility of each band (Appendix Table 1.4). The size of amplified product ranged 

from 95bp to 454bp, meanwhile, products of polymorphic primers ranged from 95bp to 

402bp. The size difference between the two parental lines was from 1bp to 42bp. 

 

 

Figure 1.1 Polymorphic SSR primers screening between the resistant (H7996) and the 
susceptible parents (WVa700). Lanes H = H7996; W = WVa700; M = 25bp marker; 1, 2, 
3, etc. = polymorphic  SSR primers. 

     1    3    4    5    6     7     8   9   10   12       14   16 17  18  19   21  22  23  24 
MHWHWHWHWHWHWHWHWHWHWHWHWHWHWHWHWHWHWHWHWM 

300bp 

275bp

250bp

225bp

200bp

175bp 

150bp 



Chapter1: Results 

 

23

1.3.2 Segregation analysis of polymorphic markers 

The twenty-one AFLP primer combinations, 25 SSR primers and 1 SNP primer were 

selected to screen on the mapping population. Generally, AFLP markers are scored as 

dominant marker, the band is either presence or absence as illustrated in Figure 1.2. Unlike 

AFLP, SSR and SNP markers are co-dominant marker.  Segregation of polymorphic SNP 

and SSR markers is shown in Figure 1.3.  

A total of 256 markers (60.8%) showed deviations from the expected segregation ratio of 

1:1 for resistance:susceptible F9 RILs (Table 1.5). Forty-nine of the 76 AFLP markers 

(64.5%) deviated from the expected segregation ratio. For SSR, of the 25 polymorphic 

markers, 9 (36.0%) deviated significantly from the expected 1:1 Mendelian segregation 

ratio. One SNP marker also deviated from the expected segregation ratio (100%). Out of 

313 DArT and 6 RFLP markers, about 62.0% of DArT markers (Appendix table 1.5) and 

50.0% for RFLP markers (Appendix table 1.6) deviated from expected segregation ratio.  

Table 1.5 Summary of Chi-Square Goodness-of-Fit for 1:1 Mendelian segregation of 
markers used for construction of genetic linkage map 

Goodness of fit 
Marker type Total number 

of markers Fitted (P>0.05) Distorted (P<0.05)  
AFLP 76 27 49 
SSR 25 16 9 
SNP 1 0 1 
DArT 313 119 194 
RFLP 6 3 3 
Total 421 165 256 

Critical χ2 values for 1 degree of freedom: 3.841 (P=0.05) and 6.635 (P=0.01); 
P: Probability value. 
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afh10b

afh14e

afh14d
afh14c

HW F9 RILs M

P-10 (E-AAG/M-CAC)

P-14 (E-AAG/M-CTC)

HW F9 RILs M
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Figure 1.2 Segregation of AFLP markers using different EcoRI/MseI primer combinations. 
a) an AFLP dominant type of markers from E-AAG/M-CAC; b) multiple AFLP markers 
(loci) in a single gel from E-AAG/M-CTC. Lanes H = H7996; W = WVa700; M = Low 
molecular weight marker (Promega). 
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a) SNP marker  

 

 

b) SSR markers 

Primer code 03-074.1

Primer code 04-054.5

Primer code 06-006.1
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Figure 1.3 Segregation of a) SNP primer LOH36 digested with enzyme Bcl I, and b) SSR 
primers 03-074.1, 04-054.5 and 04-045.5 in the F9 RILs. Lanes H = H7996; W = WVa700; 
M = 100bp marker (Promega). 
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1.3.3 Genetic linkage map of H7996 x WVa700 

A total of 421 markers, including 76 AFLP, 25 SSR, 1 SNP, 313 DArT and 6 RFLP 

markers were mapped into 37 linkage groups at a recombination rate (RR) of 0.27, each 

with 1-53 loci. This RR was chosen is that anchor markers of each chromosome were in one 

linkage group, excepted some anchor markers were not linked and located in one group 

itself; e.g. with RR = 0.25, some anchor markers in the same chromosome were located in 

different linkage groups; however, with RR = 0.3, some anchor markers belonging to 

different chromosomes were merged into one linkage group; and there were non-significant 

differences between RR of 0.25 and 0.26, 0.28 and 0.27, and 0.29 and 0.3.  

In addition, an evaluation version of JOINMAP 4.0 (JM) was used to compare grouping of 

markers to confirm the marker localizations from MultiPoint (MP). Based on anchor 

markers and grouping information from JM and MP itself, the final mapping was 

performed by merging two or more linkage groups that belong to the same chromosome, 

e.g. five linkage groups for chromosome 1; two linkage groups for chromosome 4; two 

linkage groups for chromosome 3; two linkage groups for chromosome 7; three linkage 

groups for chromosome 8; two linkage groups for chromosome 9; three linkage groups for 

linkage group A (LGA), and two linkage groups for linkage group B (LGB). Number of 

markers in linkage groups belonging to chromosome 2, 6, 10, and 11 in MP were similar to 

JM at LOD of 8, 5, 8 and 10, respectively.  

Thus, out of 421 markers, 362 markers including 74 AFLP, 260 DArT, 5 RFLP, 1 SNP, 

and 22 SSR markers from 25 linkage groups were split into ten major and two minor 

linkage groups with a total length of the linkage map of 2131.7 cM. Each major group 

contained at least 1 anchor marker to assign it to one of the ten tomato chromosomes. The 

ten major groups could be assigned to ten tomato chromosomes, while the minor linkage 

groups could be considered as chromosome 5 and 12. A total of 59 non-informative loci 

(14%) belonged to 12 remained linkage groups were excluded from mapping for the 

following reasons: (i) they did not meet the threshold of the selected recombination rate 

from MP or LOD from JM; (ii) big gap would be made when they merged with the 

selected linkage groups, and hence, the map length could be contributed negatively. 

The distribution of markers between linkage groups was unequal (Table 1.6). Most of the 

AFLP markers were mainly distributed on chromosome 3, 4, 6 and 12; whereas, DArT 

markers were most frequent in chromosome 4 and followed by chromosome 11, 2, 1, 9, 3, 
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and 4. All RFLP markers used were located on chromosome 6, excluded marker TG564F8 

was merged into LGA. SSR markers distributed into 10 assigned chromosomes. The 

number of markers positioned on chromosome 11 was numerousest and followed by 

chromosome 7 and 4. Chromosome 2 had the highest marker density (2.7 cM/interval), 

while LGA had the lowest (10.4 cM/interval). The number of markers per linkage group 

ranged from 10 to 53; the length of the linkage group ranged from 48.6 to 298 cM. Clear 

clustering of markers was observed in the genetic linkage map and co-segregating markers 

were presented in all 12 linkage groups (Figure 1.4). Most of co-segregating DArT 

markers located on chromosome 1 and 7 and followed by chromosome 2, 4 and 11.  

Table 1.6 Comparison of the genetic length and numbers of AFLP, DArT, RFLP, SNP, 
SSR markers mapped per linkage group of the RIL mapping population 

Chromosome/ 
linkage group cM AFLP DArT RFLP SNP SSR

Number 
of 

markers 

Marker 
density  

(cM/interval)
1 261.6 2 27  1 1 31 8.4 
2 91.1  32   2 34 2.7 
3 278.1 10 22   1 33 8.4 
4 209.8 15 22   7 44 4.8 
6 263.3 15 9 4  1 29 9.1 
7 172.4 3 46   1 50 3.4 
8 174.4 3 15   3 21 8.3 
9 131.6 1 24   2 27 4.9 
10 88.4 5 11   3 19 4.7 
11 298.0 19 33   1 53 5.6 

LGA 114.4 1 9 1   11 10.4 
LGB 48.6  10    10 4.9 
Total  2131.7 74 260 5 1 22 362 5.9 
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Figure 1.4 Genetic linkage map of H7996 x WVa700. The names of markers (termed 
“skeleton markers”) are listed on the left and distances (cM, Kosambi mapping function) 
are listed in the right. The dashed lines are connections between linkage groups suggested 
by MultiPoint of the nearest clusters (i.e. C1-III closed to C1-IV; C3-I closed to C3-II; 
LGA-I closed to LGA-II, LGA-II closed to LGA-III) or by Joinmap 4.0 (i.e. markers in 
C1-I and C1-II were in one group of 5.0/5(9); C1-IV and C1-V: 6.0/4(20);  C4-I and C4-II: 
7.0/4 (39); C7-I and C7-II: 7.0/2 (50); C8-I, C8-II and C8-II: 4.0/3 (21); C9-I and C9-II: 
7.0/6 (27); LGB-I and LGB-II: 3.0/3 (10) or based on anchor markers (i.e. anchor marker 
LEOH36 in C1-II and s0138.0 in C1-V). 
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Figure 1.4 continued 
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1.4 DISCUSSION 

1.4.1 Polymorphism between H7996 and WVa700 

Eighty-five SSRs and four unmapped SSRs were surveyed on the two parental lines, S. 

lycopersicum H7996 and S. pimpinellifolium WVa700, with approximately 30% 

polymorphism was consistant with results of Liu et al. (2005), who found 23.58% 

polymorphic bands gained between S. lycopersicum Mill. XE 98-7 and S. pimpinelifolium 

LA2184. A lower level of polimophism (8%) was observed using 21 AFLP primer 

combinations and eleven SNP primers. Similar amount of the polymorphic AFLP bands 

was found in H7996 and WVa700 (31 and 35 respectively) in the present study. This 

could be due to the restriction sites in these two species were similar—S. lycopersicum is 

a cultivated species, whereas S. pimpinellifolium is phylogenetically similar to S. 

lycopersicum. Thus, DNA polymorphism between S. lycopersicum and S. 

pimpinellifolium is usually lower than between S. lycopersicum and either S. pennelli or S. 

habrochaites (Miller and Tanksley, 1990), which was demonstrated by Zhang et al. 

(2002), who found 98% RFLP markers, which selected from a high-density linkage map 

of S. lycopersicum x S. pennelli, showed polymorphism between S. lycopersicum Mill. 

Line NC84173 and S. habrochaites Humb. and Bonpl. accession PI126445.  

1.4.2 Segregation distortion 

Deviation from expected Mendelian segregation ratios has been reported previously in 

mapping populations (Lee et al. 2006; Lu et al. 2002; Pradhan et al. 2003; Törjék et al. 

2006). Segregation distortion has been found in most plant pedigrees when large numbers 

of markers were mapped (Bradshaw and Stettler, 1994).  

The cause of skewed segregation could be physiological and genetic factors (see Lu et al. 

2002). In tomato, factors associated with the distorted segregation ratio are gametophytic 

selection, viability selection of segregating plants (Foolad, 1996) and spore function 

(Tanksley and Loaiza-Figueroa, 1985). Distored segregation in tomato has been reported in 

many interspecific crosses and proposed to be greater in wilder crosses compared with 

crosses between closely related species, and generally higher in filial than in backcross 

population. Several studies confirmed this proposition; e.g 8.3% distortions were observed 
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in S. lycopersicum x S. pimpinellifolium BC1 population (Grandillo and Tanskley, 1996b), 

9.9% in S. lycopersicum x S. pimpinellifolium BC1 population (Chen and Foolad, 1999), 

20% in a S. lycopersicum x S. habrochaites BC1 population (Bernacchi and Tanksley, 

1997). The while, 75% in S. lycopersicum × S. cheesmanii recombinant inbred line 

population (Paran, 1995). Thus, the overall level of distortion in the present study (60.8%) 

was consistent with previous studies. 

A large number of AFLP and DArT markers exhibited segregation distortion in this study. 

The level of distortion of AFLP marker in the present study is quite high compared with 

other crops using the same marker technique (silver staining): 21.6% using double haploid 

population in rice (Maheswaran et al. 1997) and 6% in barley (Becker et al. 1995). This 

could be due to the differences of population types used. The segregation distortion in this 

study was in accordance with results of Carlos (1998), who found 50% segregation 

distortion for AFLP markers in a F7 recombinant inbred line population of tomato. 

Markers deviating from the expected segregation ratio are generally believed to be linked 

to genes that are subject to direct selection; for example: a lethal allele in Populus spp. 

affecting embryo development was the cause of segregation distortion of markers 

(Bradshaw and Stettler, 1994); markers cosegregating with the Melampsora resistance 

gene also showed a significant deviation (Cervera et al. 2001). Therefore, all markers in 

this study should be used in the mapping process to avoid missing of parts of linkage 

groups. However, including markers with segregation distortion will increase the chance of 

type I errors (i.e., rejection of the null hypothesis) of false linkage; thus, leading inaccuracy 

of map distance between markers (Cloutier et al. 1997). Nevertheless, when searching for a 

stable order of markers for QTL analysis, we preferable deleted markers with higher 

missing data point and greater χ2 values.  

1.4.3 Map construction 

The AFLP technique has been widely used for construction of linkage maps (Bratteler et 

al. 2006; Hawthorne, 2001; Mignouna et al. 2002; Travis et al. 1998). On contrary, DArT 

is a new technique and most commonly used in wheat and barley for construction of 

linkage maps (Semagn et al. 2006; Wenzl et al. 2006).  

 In tomato, many linkage maps have been constructed based on different populations and 

markers used (Tanksley et al. 1992; Danesh et al. 1994; Vanooijen et al. 1994; Thoquet et 
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al. 1996a; Bernacchi and Tanksley, 1997; Zhang et al. 2002; Liu et al. 2005); however, 

only two mapping populations involved two sources of bacterial wilt resistance and have 

been used for mapping QTL for bacterial wilt resistance in tomato. The first mapping 

population utilized 71 F2 individuals from the cross between L285, a resistant S. 

lycopersicum var. cerasiforme line and CLN286, a susceptible tomato cultivar (Danesh et 

al. 1994). Of the 290 RFLP markers screened for polymorphism, 67 were polymorphic of 

which 59 mapped to 11 linkage groups covering 1220 cM of the total genome. Screening 

of additional 80 RAPD primers yielded only 12 primers that were useful for linkage 

mapping. Using 112 recombinant inbred lines of the same cross (L285 x CLN286), 

seventy-four out of the 242 polymorphic AFLP markers were placed on 7 linkage groups 

of the tomato genome (Carlos, 1998). Average AFLP marker polymorphism was 12.4%. 

The second mapping population utilized 188 F2 individuals from the cross H7996 (resistant 

S. lycopersicum line) x WVa700 (a susceptible S. pimpinellifolium line) (Thoquet et al. 

1996a). Eighty-eight of the 462 RFLP probes tested showed polymorphism but only 60 

were mapped. In addition, screening of 300 arbitrary RAPD primers resulted only 13 useful 

and mappable RAPD markers. Of the eight microsatellite sequences examined, only one 

sequence showed polymorphism. Using the same cross, Balatero et al. (2002) have used F6 

RILs to construct a genetic linkage map for bacterial wilt resistance utilizing AFLP, RGA, 

and SSR markers. Average marker polymorphism was 9.0% for AFLP, 10.4% for RGA, 

and 14.3% for SSR. The map was constructed using MAPMAKER software and consisted 

of 12 linkage groups and 80 markers (72 AFLP, 7 RGA and 1 SSR). The map length spaned 

a total of 378.1 cM. Thus, clearly, the level of marker saturation of the two mapping 

population is very low to allow marker assisted selection. There is a need to saturate the 

map and to identify markers that could be tightly linked to the resistance factor. 

In the present study, we constructed a linkage map using MultiPoint software (MP) and 

compared with Joinmap software (JM) using the DNA profiles of 188 F9 RILs derived 

from the same cross H7996 x WVa700. The map consisted of 362 out of 415 polymorphic 

markers including 74 AFLP, 260 DArT, 5 RFLP, 1 SNP and 22 SSR markers covering 

2131.7 cM of the 12 linkage groups with an average marker distance of 5.9 cM. The map 

was about 1.6 times of the published RFLP-based map of tomato by Tanskley et al. 

(1992). This large coverage could be due to the large gaps between connections of the 

linkage groups. However, the alignment of the linkage groups calculated in MP was in 

accordance with JM. This is the first linkage map of tomato for mapping bacterial wilt 



Chapter 1: Discussion 

 

37

resistance that utilizes DArT marker technology. The DNA sequences of DArT clones 

could be used to convert DArT markers to single-marker assay formats for applications in 

breeding program.  

An uneven distribution of recombinant events along chromosome led markers tending to 

cluster (Tanksley et al. 1992). In the present linkage map, we found both DArT and AFLP 

loci showed a tendency to clusters. This could be due to DArT markers may be indicative 

of gene-rich regions and representative of redundant clones in the whole genome (Semagn 

et al. 2006) and the use of EcoRI-MseI combination in the present study showed higher 

level of polymorphism than other combinations (Barrett and Kidwell, 1998). DArT 

markers were clustered around both centromeres and distal regions over the 12 linkage 

groups. DArT markers showed the highest frequency of clustering and number of markers 

co-segregating (Figure 1.4). This result was in accordance with results of Semagn et al. 

(2006) that the frequency of clustering of DArT markers was higher than AFLP and SSR 

markers by 3 and 15 times, respectively.  

Most AFLP markers clustered in the centromere of chromosome 4 and near centromere of 

chromosome 6. Similar results were observed in several studies in which EcoRI/MseI AFLP 

markers were used to construct linkage maps (Castiglioni et al. 1999; Strommer et al. 

2002). The reasons of clustering of AFLP markers near the centromeres could be repetitive 

elements characteristic of centromere may produce a number of AFLP markers 

representing variants of single repeats (Castiglioni et al. 1999; Vuylsteke et al. 1999) or 

the centromere regions are rich of noncoding DNA (Peters et al. 2001). The present map 

provides insights regarding the distribution of AFLP and DArT markers for linkage 

mapping. It also provides readily detectable markers for identifying novel QTLs linked to 

bacterial wilt resistance and morphological traits. 
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1.5 SUMMARY 

A genetic linkage map for bacterial wilt resistance in H7996 was constructed using 188 F9 

RILs derived from a cross between S. lycopersicum H7996 (resistance parent) and S. 

pimpinellifolium WVa700 (susceptible parent) using amplified fragment length 

polymorphism (AFLP), diversity arrays technology (DArT), restriction fragment length 

polymorphism (RFLP), single nucleotide polymorphism (SNP) and simple sequence repeat 

(SSR) markers. The map contained a total of 362 markers including 74 AFLP, 260 DArT, 

5 RFLP, 1 SNP, and 22 SSR markers, which were split into ten major and two minor 

linkage groups, spanning 2131.7 cM. All five marker types showed significant (P<0.05) 

segregation distortion, but it was highest for SNP (100%) followed AFLPs (64.5%), 

DArTs (62.0%), RFLPs (50.0%) and SSRs (36.0%). The overall percentage of markers 

with segregation distortion was 60.8%. The distribution of markers between linkage groups 

was unequal. AFLP markers were mainly distributed in chromosome 3, 4, 6 and 12; 

whereas, DArT markers were most frequent in chromosome 4 followed by chromosome 

11, 2, 1, 9, 3, and 4. Chromosome 2 showed the highest density of markers (2.7 

cM/interval), while LGA showed the lowest (10.4 cM/interval). The length of the linkage 

groups ranged from 48.6 to 298 cM. There was no mixing of AFLP and DArT markers in 

the same cluster and clear clustering of AFLP and DArT markers was observed in the 

genetic linkage map. This could be due to (1) DArT markers may be indicative for gene-

rich regions and (or) the result of inclusion of redundant clones in the genomic 

representations, and (2) the use of EcoRI-MseI combination in the present study showed 

higher level of polymorphism than other combinations. The present study is the first report 

of the use of AFLP, DArT, RFLP, SNP, and SSR markers for construction of linkage map 

for bacterial wilt resistance in H7996.  
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Chapter 2 

Detection of QTLs for bacterial wilt resistance in Hawaii 7996 

and its relationship with morphological traits 

2.1 INTRODUCTION 

Bacterial wilt caused by Ralstonia solanacearum is one of the most widespread and 

destructive disease on tomato worldwide. R. solanacearum strains can be grouped into five 

races and five biovars (Buddenhagen, 1962; Hayward, 1991). Large genotype and 

phenotype variations have been observed among strains of R. solanacearum (Denny, 

2006). It is a soil-born pathogen, and the pathogen enters plant roots through wounds or 

natural openings where lateral roots emerge. It first colonizes the host’s root cortex, then 

infects the vascular parenchyma, and finally invades the xylem elements (Vasse et al. 

1995). Once inside the xylem, the bacteria multiply and spread rapidly throughout the 

plant’s vascular system. Susceptible tomato plants respond to these high bacterial 

populations by wilting and dying. Various methods to control bacterial wilt have been 

reported (Guo et al. 2004; Ji et al. 2005; Nonomura et al. 2001; Trigalet and Trigalet-

Demery, 1990); however, none is as simple and effective as the use of resistant varieties.  

Tomato varieties with resistance to bacterial wilt have been selected or developed by 

researchers in many locations around the world (Atabug, 1981; AVRDC, 1994; Barnes and 

Vawdrey, 1992; Opena, 1990; Peter et al. 1992; Scott et al. 2003; Scott, 1992; Scott et al. 

2005; Vudhivanich, 1995; Wang et al. 1997). However, commercial cultivars with good 

stable resistance under different environments against diverse strains of the pathogen 

across regions are still lacking. 

Among the known resistance sources to bacterial wilt in tomato, genetic control was only 

studied on a few sources. Hayward (1991) has indicated that the inheritance of resistance 

to bacterial wilt in tomato can be complicated by interaction between the plant genotype 

and pathogen strains as well as the effects of the environment on resistance expression. 

Monma et al. (1997) studied inheritance of bacterial wilt resistance in tomato in two 

crosses D-9 (resistant parent) x TPL-5 (susceptible parent) and TPL-5 x Hawaii 7998 
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(resistant parent) and found that mean resistance indices of the F1 generation of the two 

crosses were lower than the resistant parent suggestting bacterial wilt resistance is partially 

recessive as there was incomplete dominance toward susceptibility. In addition, genetic 

nature of bacterial wilt resistance in tomoto accession LA 1421 (S. lycopersicum var. 

cerasiforme) was studied in two crosses LA 1421 x Cascade and LA 1421 x Caraibo, and 

significant differences were observed between generation means in the two crosses 

indicating resistance identified in LA 1421 may be different when different susceptible 

parents used. Genetic mechanism seems to be complex with a duplicate form of epistasis 

and variation observed in the F2 and BC2 progeny of the Caraibo cross sugested genetic 

combination between the two resistance sources can lead to higher level of resistance 

(Mohamed et al. 1997). 

Resistance to bacterial wilt in tomato cultivar H7996 has been studied and reported to be a 

stable resistance source (Wang et al. 1998). In order to decide the most appropriate and 

efficient strategy in transferring the stable resistance in H7996 could depend on our 

knowledge of the genetic control. The mode of inheritance of resistance in H7996 could 

vary depending on strains and inoculation methods used according to previous studies, e.g 

when  bacterial strain 8217 (race 1, biovar 1), a spontaneous mutant from strain GT1, was 

used to inoculate F2 plants that rerived from cross H7996 (resistant parent) x Froradel 

(susceptible parents) in the field, the resistance in H7996 was reported to be controlled by a 

single gene (Grimault, 1995). The while, a major locus controlled resistance to bacterial 

strain Pss4 (race 1, biovar 3) was reported as well when a soil drenching without root 

wounding method was used to inoculate F2 plants that rerived from cross H7996 (resistant 

parent) x WVa700 (susceptible parents) (Wang et al. 2000). In addition, the use of the 

same cross as in Wang et al. (2000), the resistance to strain GMI8217 was reported to be 

polygenic, when a drenching method and a scale of 1 to 9 was used in disease evaluation 

(Thoquet et al. 1996a, b; Mangin et al. 1999).   

Quantitative Trait Locus (QTL) mapping is an effective approach for studying complex 

and polygenic forms of disease resistance, which is based on the use of DNA markers 

(Tanksley, 1993). With QTL mapping, the roles of individual loci in genetically complex 

traits can be described and fundamental questions that have vexed researchers in the field 

of plant pathology for decades can be addressed (Young, 1996).  
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Progenies derived from a cross between the resistant cultivar H7996 and the susceptible 

WVa700 have been used for studying the genetic control of the resistance in H7996 

(Thoquet et al. 1996a, b; Mangin et al. 1999; Wang et al. 2000). Several QTLs were 

mapped in F2 or F3 populations evaluated at different geographic locations against different 

strains. And evidences of strain specific resistance have been demonstrated. Common QTLs 

associated with TG73 or TG118 were detected on chromosome 6 in all studies used the 

same cross (Thoquet et al. 1996a, b; Wang et al. 2000; Cameille et al. 2006). And there 

were another six QTLs detected. Among them, one QTL is specific to tests using F2 cutting 

(Thoquet et al. 1996a), and another QTLs was detected on chromosome 4 in the F3 

population (Thoquet et al. 1996b). All the resistant loci were carried from the resistance 

parent H7996, where it explained from 30% to 50% of the phenotypic variation. 

Meanwhile, in F3 population, two putative new QTLs were found on chromosome 3 and 8. 

In addition, a weak putative QTL previously detected on chromosome 10 was again 

observed using data from a field trial and one QTL on chromosome 11 was found to be 

specific to F2 cutting (Thoquet et al. 1996b). Furthermore, a QTL which controlled about 

70% variation on chromosome 12 was suggested to be specific to strain Pss4 (Wang et al. 

2000). However, in the previous studies, the use of F2 or F3 mapping population does not 

allow extensive evaluation of the environment and strain effects.   

Resistance to bacterial wilt was difficult to combine in certain breeding programs with the 

resistance to root knot nematodes conferred by the Mi gene (Acosta et al. 1964), 

suggesting that one important locus may reside on chromosome 6. This observation was 

confirmed in other lines of tomato (Prior et al. 1994) and by mapping with molecular 

markers (Aarons et al. 1992; Thoquet et al. 1992; Danesh et al. 1994; Wang et al. 2000; 

Balatero et al. 2002). In addition, QTL on chromosome 7 and 10 were identified as being 

association with resistance in L285, a resistant accession (S. lycopersicum var. 

cerasiforme) beside the important QTL close to CT184 around 40 cM on chromosome 6 

(Danesh et al. 1994); and Danesh and Young (1994) demonstrated that the resistance 

controlled by this locus could be strain-specific. 

Recombinant inbred line (RIL) has many advantages over the other populations that are 

used for genetic mapping and quantitative trait locus analysis. RIL can serve as a 

permanent mapping resource that will permit replicated trials in multiple environments or 

evaluating with different strains of the pathogen. Using RIL is especially powerful for 

analyzing quantitative traits because replicated trials can be analyzed using identical 
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genetic materials (Burr et al. 1991). Carmielle et al. (2006) used F8 RILs that derived from 

the cross H7996 x WVa700 to identify QTLs for resistance to R. solanacearum race 3-

phylotype II strain JT516 in different seasons. A major QTL, Bwr-6 and a minor one, Bwr-

3, were detected in each season for all resistance criteria and both QTLs showed stronger 

effects in the hot season than in the cool one; however, QTLs Bwr-4 and Bwr-8 were only 

detected in the hot season, demonstrating that environmental factors may influence the 

expression of resistance against the race 3-phylotype II strain JT516. AVRDC has 

continued advanced the cross of H7996 and WVa700 to F9 and have a RIL population 

ready for this study. 

Resistance cultivars can only be accepted by farmers when desired fruit traits exist. If 

resistant trait linked with undesired fruit characteristics, special efforts would be required 

to break the linkage. Acosta et al. (1964) have found the association of bacterial wilt 

resistance with small fruit size; however other researchers did not find such an association 

(Danesh et al. 1994; Monma et al. 1997). Scott et al. (2003) have broken apparent linkage 

of a hypothetical fruit size gene with a bacterial wilt resistance gene by crossing breeding 

lines with medium-large fruit and intermediate resistance. The two lines Fla. 8109 and Fla. 

8109B developed have a good level of bacterial wilt resistance and large fruit size. 

Difference in fruit and other morphological traits exists among H7996 and WVa700. 

Therefore, the RIL population can be used to exam the possible association between 

bacterial wilt resistance and morphological traits.  

Therefore, the objectives of this study were: 1) to map QTLs for bacterial wilt resistance 

with special emphasis on identifying QTLs required for stable resistance; 2) to derimine 

association of QTLs for bacterial wilt resistance with morphological traits; and 3) to develop 

PCR-based markers for identifying molecular markers closer linked to detected QTLs. 
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2.2 MATERIALS AND METHODS 

2.2.1 Plant materials  

A RIL population consisting of 188 lines in the F9 generation derived from the cross 

between H7996 and a susceptible tomato line WVa700 was used. The RIL population and 

the two parental lines H7996 and WVa700, as well as a susceptible control L390 were 

evaluated for resistance to R. solanacearum under screen-house conditions. Seeds of all 

tomato genotypes were obtained from the Bacteriology Unit, AVRDC. Before sowing, 

tomato seeds were soaked in 4X diluted Clorox for 5 minutes, rinsed under running water 

for 15 minutes, and then sown immediately in 2-inch pots. Seeds of WVa700 were sown 2 

days earlier, and those of H7996 and L390 were sown 2 days later than the F9 RILs 

because of different germination rates of the lines. The potting mixture used consisted of 

sand, soil, rice husk and compost in the ratio of 1:3:1:1 and has been steam-sterilized. 

Seedling were fertilized everyweek with 500X of foliar fertilizer (BASF Foliar 

Nitrophoska) after thinning and stop at least 4 days before inoculation.   

2.2.2 Evaluation of resistance to bacterial wilt 

2.2.2.1 Bacterial strains and inoculation 

Strains of R. solanacearum Pss4 (race 1 biovar 3), Pss186 (race 1 biovar 4), Pss190 (race1 

biovar 4) (Jaunet and Wang, 1999) were used to evaluate the resistance of the RIL 

population. Strains Pss4, Pss186 and Pss190 were isolated from tomato and provided by 

the Bacteriology Unit, AVRDC. Stored cultures at -80oC of R. solanacearum were 

streaked on tetrazolium medium (TTC) (Kelman, 1954) and incubated at 30°C for 2 days. 

Several typical fluidal single colonies from TTC were transferred to 523 medium (Kado 

and Heskett, 1970) and cultured at 30oC for 24 hours. A dense suspension of each strain 

was prepared by transferring bacterial mass from 523 medium plate into a tube with 5ml 

sterile distilled water. A total of 0.1ml of the bacterial suspension was spread on one fresh 

523 plate and kept at 30oC for 24 hours. Bacterial masses were harvested and suspended 

with distilled water until O.D. value reached 0.3 at the wavelength of 600nm (about 108 

cfu/ml). Three-week old seedlings with four fully expanded true leaves were inoculated by 

pouring 20ml of the above suspension on the soil surface of each pot. 
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2.2.2.2 Evaluation based on visual symptoms 

Experimental design  

The experiments were conducted following a randomized complete block design (RCBD) 

with two replications in a screen-house at AVRDC. For each replication, 8 plants per line 

and 48 plants of each parental line and L390 were included. Each plant was assigned an 

identification number and arranged randomly within each replication to reduce the 

environment effect on disease development. Evaluations against strain Pss4 and Pss186 

were conducted successively separated by one week in the same screen-house. The 

screenings were conducted from May 31, 2004 to September 18, 2004. 

Data recording 

Disease reactions were evaluated at 4, 7, 10, 14, 21, and 28 days after inoculation (DAI) 

using a 0-5 scale, where 0 means no symptom; 1 means one leaf wilted; 2 means two - 

three leaves wilted; 3 means four or more wilted leaves; 4 means all leaves wilted; 5 means 

death of the plant (Winstead, 1952) (Figure 2.1). Three methods of data collection and 

processing were used for analyses:  

(i) Percentage of wilted plants (PWP): Plants were either scored as healthy (scale 0) or 

wilted (scale 1 to 5). PWP = (NW/NT) x 100, where NT is number of total plants and NW is 

number of wilted plants; 

 (ii) Disease index (DI): DI was calculated following the formula (Winstead and Kelman, 

1952): DI = [(N0 x 0 + N1 x 1 + N2 x 2 + N3 x 3 + N4 x 4 + N5 x 5)/(NT x 5)] x 100; where 

N0 to N5 are the number of plants at each scale, and NT is number of total plants;  

(iii) Relative area under disease progress curve (RAUDPC) (Fry, 1978): Firstly PWP or DI 

was used to calculate area under disease progress curve (AUDPC), which expresses the 

dynamics of disease development according to Shaner and Finney (1977). AUDPC was 

calculated following the formula of AUDPC = ∑i=1 to n-1 [(Yi +1 +Yi)/2] x [Xi+1 – Xi], where 

Yi is either percentage of wilted plants (AUPDCPWP) or disease index (AUPDCDI) at the 

ith observation (i = 1 being the first observation at time zero), and Xi is time at the ith 

observation, and n is total number of observation. Values of AUDPCPWP and AUDPCDI 

were divided by the number of days of the entire observation period to calculate RAUPDC. 
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Figure 2.1 Tomato plants showing different severity after inoculation of R. solanacearum. 
Numbers indicated beside plant were rating scale, where 0: no symptom, 1: one leaf wilted; 
2: two -three leaves wilted, 3: four or more wilted leaves, 4: all leaves wilted, 5: dead. 

2.2.2.3 Evaluation based on colonization degree 

Protocol development  

Three susceptible RILs (number 79, 121 and 141) and three resistant RILs (number 13, 

41, and 200) were used. They were selected based on evaluation results over trials kindly 

provided by Dr. Jaw-Fen Wang, Bacteriology Unit, AVRDC (personal communication). 

The seedlings were inoculated as described above. Assay of colonization (method 

described below) was conducted at 3, 4, 5 and 6 days after inoculation for strain Pss190 

and at 4, 5, 6 and 7 days after inoculation for strain Pss4. At each sampling time, 8 plants 

were harvested randomly. Percentage of colonized plants were calculated and differences 

between the resistant group and the susceptible group and values of standard deviation 

were evalauted. Since the difference between the two groups was the largest and the 

standard error was the lowest at 6 days after inoculation when inoculating with strain 
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Pss4, it was decided that the sampling time would be at 6 DAI for detemining the 

percentage of colonized plants of the entire RIL population. 

Assay for colonization 

Symptomless plants were harvested, roots were cut off, and all leaves were removed. The 

remaining stems were washed with tap water, rinsed in distilled water, sprayed with 70% 

alcohol, and blotted dry on paper towels. Each plant was sectioned at the mid-point of the 

stem with a sterilized razor blade. The cut surface of the upper stem portion was pressed 

tightly on the surface of a semi-selective medium 1 (SM1) plate (Tsai et al, 1985) for 5 

seconds per print and five prints were made continuously for each cut surface. The SM1 

plates were incubated at 30oC for 3 days. When fluidal bacterial mass was observed on at 

least one out of five prints, the plant was scored as positive for pathogen colonization as 

illustrated in Figure 2.2. Percentage of colonized plants (PCP) was then calculated 

following the formula of PCP = ((NC + NW)/NT) x 100, where NT is number of total plants, 

NW  is number of wilted plants, and NC is number of plants shown positive colonization.  

          A        B 

   
Figure 2.2 Colonization by Pss4 scored after inocubation at 30oC for 3 days. A plate with 
H7996 samples shown one out of four plants was colonized (A); and WVa700 samples 
shown all four plants were colonized (B). 

Experimental design 

Experiments were laid out as a randomized complete block design (RCBD). When more 

than one strain was used in one experiment, split-plot design was followed with main-plots 

consisted of strains and subplots of RILs. All experiments consisted of three replications. 
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For developing the protocol, each RIL comprised of 32 plants per replication. Each plant 

was assigned a number and arranged randomly. The protocol was developed from July 5, 

2005 to September 16, 2006. Due to limited space in greenhouse, 3 replications for 

phenotyping all RILs were conducted one week apart in the same greenhouse and 

consisted of 8 plants per line. The plants of each line were divided into 4 groups and each 

group was assigned an identification number and completely randomized. The experiments 

were conducted from September 23, 2005 to November 10, 2006. 

2.2.3 Evaluation of morphological traits 

2.2.3.1 Experimental design 

The experiment was laid out in a non-replicated plot trial with five plants per RIL. One 

week before transplanting, the seedlings were hardened by slightly reducing water and 

exposing them directly to sunlight. About 12 hours before transplanting to the field, the 

seedlings were watered thoroughly. Plants were transplanted into the AVRDC farm with 

spacing of 60 x 40cm in a plot size of 1.2 x 1m, which has been mulched with 

polyethylene plastic sheets. Fertilizer was applied in strips along the the field before 

mulching with a 15-15-15 fertilizer (15% N, 15 % P2O5, 15% K2O, and 4% MgO) of 

120kg per hectare. In addition, 40kg per hectare were applied every 30days as side-

dressing during the trial. Plants were staked and irrigated by seepage from ditches. 

Pesticide was spayed every week to control major insect pests and foliar diseases. The 

experiment was conducted from 20 November 2004 to 15 May 2005 at AVRDC farm. 

2.2.3.2 Sampling and data collection 

Plant growth habit  

Plant growth habit was recorded as sympodial index (SPI), the number of leaf nodes per 

sympodium (i.e., between successive inflorescences) (Rick, 1986). The character was 

scored by counting the number of leaf nodes in 5-7 sympodia and deriving the mean per 

plant. Sympodia were examined from three different branches of each plant. The 

sympodial index was calculated following: SPI = LN/S, where LN is number of leaf nodes 

of each branch, S is number of sympodiums of each branch. 

Fruit characters  
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Tomato fruits at the fully red-ripe stage, approximately 110 days after transplanting, were 

harveseted once. Sampling dates varied among RILs depending on their maturity. 

Fruit weight and skin color 

Five fruits from each of the five plants per RIL were harvested and scaled for fruit weight. 

The skin of each fruit from individual plants was peel, put on a light box to evaluate 

whether skin color was clear or yellow. 

Fruit quality analyses 

The fruit quality assays were conducted by the Nutrition Unit of AVRDC, and the methods 

were described below in brief. Each sample consisted of 10-100 fully ripened fruits 

harvested from 5 plants of each RIL. Fruit were cut, blended with a homogenizer, and 

filtered through gauze to remove seeds, skin, and membranes. From each sample, a plastic 

cup and a 40ml tube were prepared containing 30-50g of tomato slurry. The cup was used 

to measure color and pH. The slurry was centrifuged at the same day with a Himac CR 21 

centrifuge at 8000rpm for 10 minutes, and the supernatants were used to measure soluble 

solids concentration and citric acid. 

The pH value was measured using an Orion Model 420A pH Meter. Soluble solid concent 

was measured as °Brix with a digital refractometer (PR-101; Atago, Tokyo, Japan). Color 

was measured by a colorimeter (Nippon Denshoku Kogyo Co., Ltd. Osaka, Japan) on three 

scales represented as a, b, and L. Color values of fresh tomato slurry were calculated as 

a/b. As chromaticity increases, a color becomes more intense; as it decreases, a color 

becomes duller. When a/b is greater than 1, the color is redder, whereas a/b is smaller than 

1, the color is more yellow. The citric acid was measured by pipetting 5ml of the 

supernatants into an 80ml beaker and filling up to 60ml with ddH2O. Then, 0.05N NaOH 

solution was pipetted slowly into the beaker until the pH reached 8.1. Thus, the amount of 

NaOH added was determined. Citric acid (CA) was calculated based on the formula 

(Nutrition Unit’s protocol):  

CA (%) = [(N x V x 192/3) x 5ml x 100]/1000, where N is the concentration of 0.05 N 

NaOH prepared, V is the amount of 0.05N NaOH solution used. “192” is the molecular 

weight of NaOH, 3 is three titratable protons from the carboxyl groups (3 -COO-); 5ml is 

the amount of tomato juice. 
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2.2.4 Data analysis 

Transformation with log10(x+1) was performed for RAUDPC, while arcsine square root 

was used for disease index and percentage of wilted plants to improve the normality of the 

data. These transformed data were used for analysis of variance (ANOVA). ANOVA was 

performed with the SAS’s GLM procedure (SAS 8.2, SAS Institute, Cary, NC, USA). 

These analyses were carried out in order to determine the effect of genotype and strain as 

well as the interaction between genotype and strain on disease development. Correlation 

among visual symptoms, colonization and morphological traits was conducted with the 

SAS’s CORR procedure.  

2.2.5 QTL analysis 

For QTL mapping, co-segregating markers in the genetic map, which has been described in 

Chapter 1, were omitted. However, some markers caused unstable order in the map were 

not included for QTL analysis. Hence, the stability of the marker order was performed via 

MultiPoint package (http://www.multiqtl.com) by keeping one marker form each cluster.  

The stability obtained for each linkage group was tested using 100 resampling (jackknife) 

runs, allowing those markers that caused local neighborhood instability in the map to be 

detected and removed. This procedure was iteratively used with final verification based on 

1000 jackknife runs until a stable ordering of markers (termed “skeleton” markers) was 

obtained. A total of 15 linkage groups as described in Chapter 1 (Figure 1.4) were used for 

QTL analysis. Thus, a subset of 106 loci (32 AFLP, 59 DArT, 6 RFLP, and 11 SSR 

markers) distributed over 15 linkage groups was selected. The map covered 1089.1 

Kosambi cM that corresponded to about 51.1% of the linkage map (Chapter 1) and about  

85% of the genome, when compared to the saturated genome map (Tanksley et al. 1992). 

In addition, 13 markers that hinted belonging to certain chromosome but not sufficient to 

include them in the framework for QTL mapping was determined association with 

resistance separately by single marker analysis. They are D1262C14, LEOH36, 

D1244H17, s01138.0 (chromosome 1), s07002.0 (chromosome 7), s08001.0 (chromosome 

8), s09058.0 (chromosome 9), D1233J4, TG564F8 (LGA), D1232L19, D1262M8, 

D1232K7, and D1233I1 (LGB). 

QTL detection was performed using composite interval mapping analysis (Zeng, 1994) 

using QTL Cartographer (Bastern et al. 2005). A 1,000-permutation test was performed 

with QTL Cartographer to estimate the appropriate significance threshold for analysis. 
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LOD threshold from 2.5 to 3.2 corresponding to a genome-wide significance level of 0.05 

was chosen. Mapchart software (Voorrips, 2001) was then used to draw QTLs on the 

linkage groups. Single marker analysis was then performed by QTL Cartographer (Bastern 

et al. 2005) for the 13 markers indicated above to identify significant marker locus-trait 

associations. When F values less than 0.05, QTLs were considered significant. 

The phenotypic data used for the QTL analysis include 22 datasets as described in Table 

2.5. They included three datasets on disease evaluation and six datasets on morphological 

traits that were produced by the author for this study. The other 13 datasets on disease 

evaluation were produced or collected by Jaw-Fen Wang, AVRDC, from various 

collaborators in different countries. 

2.2.6 Fine mapping 

2.2.6.1 Bulk segregant analysis 

Bulked segregant analysis (BSA) (Michelmore et al. 1991) was used to identify markers 

linked to bacterial wilt resistance. Bulks were prepared by combining 100ng of DNA (total 

DNA per reaction = 500ng) from seven resistant RILs (number 13, 41, 46, 70, 95, 130, and 

200) and seven susceptible RILs (number 6, 69, 79, 80, 124, 141, and 158). The resistant 

and susceptible bulks were analyzed together with the parental lines H7996 (resistant 

parent) and WVa700 (susceptible parent) using twenty-one AFLP primer combinations 

(Appendix Table 1.1) to identify potential linked markers.  

2.2.6.2 Conversion of AFLP, DArT and RFLP markers into PCR-based markers 

Fragment isolation 

The AFLP markers that showed polymorphism between the resistant and susceptible pools 

and the two parents presented band either in H7996 or WVa700 were excised from the 

polyacrylamide gel with a razor blade. The DNA-containing gel was transferred into an 

Eppendorf tube, mixed with 50µl sterile MiliQ water, and kept at 4oC overnight to release 

the DNA fragment from the gel. After the gel was spun down, the DNA-containing 

supernatant was transferred into a new Eppendorf tube and diluted with sterile MiliQ water 

in a 2 to 1 ratio and used as template for the subsequent amplification. The EcoRI+3 and 

MseI+3 primers that revealed the polymorphic bands, were used to re-amplify the isolated 

DNA with the same reaction conditions as for the AFLPs. The re-amplification products 
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were loaded onto 1% agarose gel in 1X TAE buffer at 90V for one hour, stained in 

ethidium bromide (1.5µg/ml) solution for 5 minutes, de-stained in distilled water for 15 

minutes and visualized under UV light. The correct-size bands were then excised from the 

gel under UV light and transferred into an Eppendorf tube. DNA template in agarose gel 

was melted at 85oC for 15 minutes. The DNA/agarose mixture was diluted with warm, 

sterile MilliQ water to 0.1-1.0 ng DNA/µl. The diluted-melted in-gel DNA was again 

amplified by using the corresponding primers and the same conditions as for the main 

amplification for the AFLPs. The PCR products were used for sequencing.  

DArT and RFLP markers were excised from the 1% agarose gel and extracted using 

Wizard SV gel and PCR clean-up system kit (Promega, Madison, Wisconsin). Primers of 

DArT and RFLP markers used for fine mapping are listed in Table 2.1. 

Cloning fragments  

The PCR reactions were used for ligation of the fragment into a plasmid using the Pgem T-

easy vector system from Promega (Madison, Wisconsin). The ligation reaction contained 

5.0µl 2X Rapid ligation buffer, 0.5µl pGEM-T easy vector (50ng), 3.5µl PCR product, 

1.0µl T4 DNA ligase (400U/µl) and 1.0µl sterile deionized water in a total volume of 10µl. 

The reaction was incubated overnight at 4oC.  

Transformation   

The ligated reactions were then transformed into E.coli competent cells (Invitrogen Taiwan, 

Ltd.) by adding 50µl recently thawed competent cells to a sterile-1.5µl microcentrifuge tube 

containing 2µl of each ligation reaction on ice. Colonies were grown on agar LB-A medium 

and incubated for 12 hours at 37oC. Five white colonies were isolated and transferred into 

fresh LB-A medium and incubated overnight at 37oC. Colonies were also transferred into 

0.5ml of liquid LB-A medium and incubated over night at 37oC with an agitation at 150rpm 

for extraction of plasmid DNA. Among the eight cloned fragments, seven resulted in good 

colonies and good growth in liquid LB-A medium.  
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Table 2.1 DArT and RFLP primers used for fine mapping 

No. Marker 
code Marker Reference Forward primer (5'-3') Reverse primer (5'-3') Size (bp) Tm 

(oC)1 
1 2.12 TG31 SGN TGGTGCCCTACCTTTTATGG TGGATTCCAACCACACTCAA ~2400  
2 2.2 D1261P15 (IB5) Present study CCAGAACGGTCCGTAAGATT TCGTAGACTGCGTATCCGTAAA 109  
3 2.3 D1232K4 (IC3) Present study GTAGTGCCAGAACGGTCCAT GCGTATCCGGATCTCTCTCA 435  
4 2.4 D1305B24 (IIF5) Present study GTAGTGCCAGAACGGTCGAT GGATCCAGTGCAGGGATAGA 609  
5 2.5 TG1 SGN CTTCACGAATCTTCGCTTCC GAACAAACGGATAGGCAGAAAC ~700  
6 2.6 D1233C21 (IVC3) Present study GTAGTGCCAGAACGGTCGAT GACTGCGTATCCGGATCATAA 124  
7 2.7 cLEC7P21 Frary et al. 2005 TGAACAGAAAGCACGAGTGG GACAGTTCTTCGAAGCGTTTG 350 55 
8 2.8 T1616 Frary et al. 2005 TTGGAAGAAGAGGAGGACGA CCCAGAAAGATCCAAGTCCA 1500 55 
9 3.1 TG324 Frary et al. 2005 CACTTGGTTGATGGATAGTG CTTCTAGTAGTCCAACAGCAACTG 1300 55+ 
10 3.2 cLPT5E7 SGN ACAGCCAAGTCGAAGTCCTC CCCAAGGGGGTTTAAGAGAA 1800 55 
11 3.3 TG130 Frary et al. 2005 CGGAACCCACTTTGTTTTTC ATCAACCCTGCAAGCTCAAC 1500 55 
12 3.4 TG585 Frary et al. 2005 TGGAAAGCCAGACACACAGA CAGGGGTATCAGTAGGCAGTG 491 55 
13 3.5 T1388 Frary et al. 2005 GCGATTTGGCTATCTGGGTA AACCGAAAGGCTTTTCCAAG 1000 55+ 
14 3.6 cLPT2E21 Frary et al. 2005 CGAAGATGTTGCTTGATTGC AAGCAGGAGCTGGACACAAT 1250 55 
15 3.7 TG74 Frary et al. 2005 CATGCTTGAAAAGCAGTGGA GATTATACGAGGCCTCAAGGA 2300 55 
16 4.1 D1233O18 (IIIE11) Present study GTAGTGCCAGAACGGTCGAT GCAGCTCTTGGGTAGCAAAT 107  
17 4.2 D1233J4 (IID9) Present study GTAGTGCCAGAACGGTCCAT TTTCTTTGGGGTTCATGGTG 301  
18 4.3 D1249B11 (IIA3) Present study GCAGACCACCAAATCCAACT TGGGCAATTCAAGTCAACAA 369  
19 4.4 T707 Frary et al. 2005 TCGTGGATTATGGGCTTCTT GGTAAGGCTGCAACACATCA 458 50 
20 4.5 T1405 Frary et al. 2005 CACCAACAACTAGCCCTTGA AAGCAATTCCTCCAGCTTCA 535 55 
21 4.6 cLEC7B23 Frary et al. 2005 GGAGAACACGGCTACCTCAG AGCTGGAAATGAGGTTTTGC 600 55 
22 6.1 TG178 Frary et al. 2005 AGCTTTGGACTTGGATGGTG AGCTTTGGACTTGGATGGTG ~1630  
23 6.23 D1261I18 (IB2) Present study   78  
24 6.3 TG118 Frary et al. 2005 AAACTCTCGCATGGAAGCTTAG ACAGCTTTCCTTGACAGAATCC ~2500  
25 6.4 D1304O23 (IIIF12) Present study GTAGTGCCAGAACGGTCCAT TTTGCACTGTTTGAATTTGGA 128  
26 6.5 T892 Frary et al. 2005 TGGCTCTTCGGACTTTAGTGA AGCACCTTCTGCGTTCATCT 1200 55 
27 6.6 T507 Frary et al. 2005 CCTTTTATCTCCTCCGGTGT TCTGTCCACTCACATGGATCA 800 55 
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1Annealling temperature. 
2First number is chromosome number and second number is number of marker of each 
chromosome selected. 
3Primer has not designed from this DArT marker; blank: not screened yet. 
SGN: SOL Genomics Network (http://www.sgn.cornell.edu/). 

Plasmid sequencing and sequence analysis  

Plasmid DNA was then extracted by using Plasmid DNA extraction kit (Promega, 

Madison, Wisconsin) and sent for sequencing (Mission Biotech, Taiwan). After 

sequencing, the Sequence Manipulation Suite (http://bioinformatics.org/sms/index.html) 

was used to analyze the clone sequences. ClustalW (http://www.ebi.ac.uk/clustalw/) was 

used to align the sequences of the two parental lines H7996 and WVa700 and SNP sites 

then were found.  

Primer design and PCR amplification 

Oligonucleotide primer pairs were designed by using the computer program Primer3 (Web 

software provided by Steve Rozen and Whitehead Institute for Biomedical Research). 

Traditional allele-specific primers were designed with 20 nucleotides and 3’end nucleotide 

of primer corresponds to the single nucleotide polymorphism (SNP) site. To obtain primers 

specific to the identified SNP, the fragment sequences containing the SNP site were also 

entered into the Web-available SNAPER program (http://ausubellab.mgh.harvard.edu/).  

Primers having a G+C content of approximately 50% and 18-20 nucleotides long were 

selected. The Tm was limited by 55 and 60°C, and primers were synthesized by MB 

(Mission Biotech, Taiwan). Seven primer pairs were designed from AFLP fragment 

sequences, three from DArT marker sequences. Six forward and two reverse primers were 

designed from RFLP sequences, where the 3’end nucleotide corresponds to the site of 

SNPs, and another 3 forwards primers were designed based on the SNAPER program 

(Table 2.2). 
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Table 2.2 List of primers designed from AFLP, DArT and RFLP clones 

No. Primer code Primer sequence  (5'-3') Tm (oC)1 
1 3.1-400aF2 AATGGTTAAACCTGCATGAG 50.7 
2 3.1-400bF2 ATTGAATGGTTAAACCTGCATGAG 53.9 
3 3.4-85aF2 ACAAATCAAGAGCTTCTACC 49.8 
4 3.4-85bF2 TAGTACAAATCAAGAGCTTCTACC 52.0 
5 3.6-106aR2 ATTTTGACAGTGGACTGCAG 53.2 
6 3.6-106bR2 CAAATTTTGACAGTGGACTGCAG 54.9 
7 4.4-426aF3 GCTTCTTAGACGTCATTGAT 49.9 
8 4.4-426bF3 GGGCTTCTTAGACGTCATTGAT 54.7 
9 3.1-400W13 AATGGTTAAACCTGCATGTG 51.2 
10 3.1-400W23 AATGGTTAAACCTGCACGAG 53.2 
11 3.6-106W13 CAAATTTTGACAGTGGACTGTAG 52.1 
12 3.6-106W23 ATTTTGACAGTGGACTGCTG 53.2 

13 TAFLP001.afh20b4 GACTGCGTACCAATTCACAGG 
TGGTCTTTCGAGGACTAGGTTG 

61.3 
62.1 

14 TAFLP004.afh2a4 GAGTCCTGAGTAACACTAAG 
GTGCCCTCAGTTTGTACTTGC 

56.3 
61.3 

15 TAFLP005.afh2b4 TACCAATTCAACGCATGGAG 
TACCAATTCAACGCATGGAG 

57.4 
56.3 

16 TAFLP007.afh37b4 ATGGTTTCCAGTACGGTGGA 
TGCGTACCAATTCACCAAAA 

58.4 
54.3 

17 TAFLP008.afh37c4 TCACCTATGGAGCCATTTCC 
TTGAAAGGAACCTTTGAGATTATG 

58.4 
58.4 

18 TAFLP009.afh37h4 TGCGTACCAATTCACCAAAA 
CCTCGTGTGACGAGCATAGA 

54.3 
60.5 

19 TAFLP011.afh23c4 GCGTACCAATTCACATGAGC 
GGTCCACATGTTGGGTGAAT 

58.4 
58.4 

20 D1233O185 GTAGTGCCAGAACGGTCGAT 
GCAGCTCTTGGGTAGCAAAT 

55.6 
56.7 

21 D1233J45 GTAGTGCCAGAACGGTCCAT 
TTTCTTTGGGGTTCATGGTG 

53.2 
57.1 

22 D1249B115 GCAGACCACCAAATCCAACT 
TGGGCAATTCAAGTCAACAA 

52.9 
55.6 

1Melting temperature; 2Forward primers designed from RFLP clones; 3Reverse primers 
designed from RFLP clones; 4Primers designed from AFLP clones; 5Primer designed from 
DArT clones. Underline letters are SNP sites. 

General PCR reactions were performed in a volume of 15μl contained 15-20ng of genomic 

DNA, 10X PCR buffer (10mM Tris-HCl, pH 9.0; 50mM KCl; 15mM MgCl2), 20mM 

dNTPs, 20μM of each forward and reverse primer and 2U of Taq DNA polymerase 

(Violet, Taiwan). The amplifications were following a general AFLP program, as previous 
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described in details (Chapter 1), and a touch-down program. In the general program, the 

amplification profile consisted of an initial denaturation for 5 minutes at 94 °C followed by 

35 cycles of 45 seconds at 94°C, 45 seconds at the annealing temperature with a gradient 

of 45–70°C, 1 minute elongation at 72°C, and a final extension step of 10 minutes at 72°C. 

The amplification profile of the touch-down program consisted of an initial denaturation 

for 5 minutes at 94°C, twenty cycles of subsequently lowering the annealing temperature 

(65oC) by 0.5oC per cycle while keeping 94oC for 30 seconds and 72oC for 30 seconds; 26 

cycles of 94oC for 30 seconds, 50oC for 30 seconds, and 72oC for 30 seconds and a final 

extension step of 10 minutes at 72°C. The amplifications were performed with a MJ PT-

200 thermocycler (MJ Research, GMI, Inc., Minnesota, USA). The PCR products were 

mixed with 3μl of loading buffer (5mg/ml Blue dextran in deionized formamide), and 5μl 

of loading buffer which contained 1μl of 100bp or 1kb ladder were loaded onto 6% of 

NuSieve Agarose gel and 1% general agarose gel. Gels were run in 1X TBE (0.09M Tris-

borate, 0.002M EDTA) buffer with 94V for 2.5 hours. After electrophoresis, gel was 

stained with ethidium bromide (1.5μg/ml) for 10 minutes, de-stained in distilled water for 

15 minutes and photographed under UV light. 

2.2.6.3 Inverse PCR 

Inverse PCR was performed as described by Bowtell’s Labotary (http://www.protocol-

online.org/prot/Molecular_Biology/PCR/Inverse_PCR/) with slight modifications. 

Approximately 1μg of genomic DNA of each parent H7996 and WVa700 was completely 

digested with 10μl cocktail including 4µl of 4-base cutters (20U/µl) (NEB), and 6.0µl 10X 

buffer (500mM NaCl, 100mM Tris-HCl, 100mM MgCl2, 10mM dithiothreitol, pH 7.9) and 

incubated at 37oC or 65oC for 2 hours using a MJ PT-200 thermocycler (MJ Research, 

GMI, Inc., Minnesota, USA). Each 4-base cuter was treated separately as different 

reaction. Digestion reactions were heated to stop enzyme reaction at 65°C for 20 minutes 

then diluted to 50µl sterile MiliQ water and self-ligated with 50µl 10X Ligase buffer 

(500mM Tris-HCl pH 7.5, 100mM MgCl2, 100mM DTT, 10mM ATP) (NEB), 10µl T4 

DNA ligase (NEB) (400U/µl) and 390µl sterile MiliQ water at 16oC overnight.  A 0.8 

volume of cold isopropanol was added to each tube of ligation product to precipitate DNA. 

The mixture was placed at -20oC for 2 hours and then centrifuged for 15 minutes at 

6000rpm, and the supernatant was discarded. A volume of 500µl of 70% ethanol was then 

added, and again centrifuged at 6,000rpm for 30 minutes, and the ethanol discarded. The 

DNA was dried at room temperature. The DNA precipitate was suspended in 10µl of 
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sterile MiliQ water and used as template DNA to digest with 1µl of 6-base cuter, 1µl of 

10X restriction digest buffer and incubate for 2 hours at 37oC or 65oC (depends on 

restriction enzymes)  by using a MJ PT-200 thermocycler (MJ Research, GMI, Inc., 

Minnesota, USA).  

The digestion was then used as DNA template for PCR to amplify unknown flanking 

sequence using primers covering the cloned AFLP fragment. The amplification procedure 

consisted of an initial denaturation for 5 minutes at 94°C and 35 cycles of 45 seconds for 

denaturation at 94ºC, 30 seconds for annealing at 50ºC (or 55ºC), 30 seconds for extension 

at 72ºC, followed by a final extension at 72ºC for 5 minutes. The amplification was 

separated in 1% agarose gels and 1X TBE buffer (10.8g trizma base, 5.48g boric acid, and 

4ml EDTA (0.5mM)/1L of distilled water) for 1.5 to 2 hours at 96V. After electrophoresis, 

gels were stained with ethidium bromide (1.5μg/ml) for 10 minutes, de-stained in distilled 

water for 15 minutes and photographed under UV light.  

2.2.6.4 Randomly amplified microsatellite polymorphism (RAMP)  

The RAMP PCR was performed as described by Wu et al. (1994) with modifications. 

Sixteen primers with GA and CA repeats were synthesized by MB (Mission Biotech, 

Taiwan) (Table 2.3) and tested for their potential for repeat polymorphism. The PCR 

solution was composed of 15-20ng of genomic DNA, 10X PCR buffer (10mM Tris-HCl, 

pH 9.0; 50mM KCl; 15mM MgCl2), 20mM dNTPs, 20μM RAMP primer and 20μM 

covering-AFLP-marker primer and 2U of Taq DNA polymerase (Violet, Taiwan). PCR 

reactions were performed in a MJ PT-200 thermocycler (MJ Research, GMI, Inc., 

Minnesota, USA). The amplification profile consisted of an initial denaturation for 5 

minutes at 94°C followed by 35 cycles of 45 seconds at 94°C, 30 seconds at the annealing 

temperature 40–60°C (using temperature gradient), 30 seconds elongation at 72°C, and a 

final extension step of 7 minutes at 72°C.  
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Table 2.3 Randomly amplified microsatellite polymorphism primers 

 

 
1Melting temperature

No. Primer sequence Tm (oC)1
 

1 GT(GA)4 17.9 
2 GC(GA)4 22 
3 TC(GA)4 17.9 
4 TG(GA)4 17.9 
5 CG(GA)4 22 
6 AC(GA)4 17.9 
7 AG(GA)4 17.9 
8 CT(GA)4 17.9 
9 GT(CA)4 17.9 
10 GC(CA)4 22 
11 TC(CA)4 17.9 
12 TG(CA)4 17.9 
13 CG(CA)4 22 
14 AC(CA)4 17.9 
15 AG(CA)4 17.9 
16 CT(CA)4 17.9 
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2.3 RESULTS 

2.3.1 Resistance to strain Pss4 and Pss186 in F9 RILs 

The RIL population was evaluated at seedling stage on their variation of resistance to 

strains Pss4 and Pss186. Severe wilting of L390 plants, the susceptible control, indicated 

the environment and the inoculation were suitable for the disease development with both 

Pss4 and Pss186 (Figure 2.3). The severity caused by both strains on WVa700 was slightly 

lower than that on L390. 

In general, disease progressed most rapidly between 4 and 14 days after inoculation. For 

example, 4 days after inoculation with Pss4, percentage of wilted plants ranged from 3.75 

to 9.38 on WVa700 and L390, respectively. At 11 DAI, nearly 100% of two genotypes 

displayed wilting and disease index reached near maximum (Figure 2.3). About 80% 

(inoculated with the strain Pss4) and 95% (inoculated with the strain Pss186) of H7996 

remained healthy at 28 DAI. On the contrary, the susceptible line WVa700 had only 3.1% 

survival when inoculated with Pss4 and 13.5% with Pss186, while almost L390 plants 

were wilted at 28 days after inoculation with Pss4 (0.2% survival) and only 6.2% remained 

healthy plants with Pss186. Pss4 caused faster and more severe disease development than 

Pss186. Resistance in H7996 was stable to strain Pss186 than Pss4 (Figure 2.3). By the end 

of the test, F9 population showed an intermediate level of resistance by the strain Pss186 

(53% of plants were healthy) and a lower level of resistance by the strain Pss4 (30% of 

plants were healthy). The two trials were conducted with only a week apart, and in the 

same net-house with similar temperature and relative humidity profile. Thus, differences in 

symptom development of the two strains suggest variation in their virulence. The higher 

virulence observed on Pss4 agreed with Jaunet and Wang (1999). 

Significant effects of strain, entry and strain x entry were detected with all the 4 processed 

data (Table 2.4). The inconsistent entry rank between strains and the magnitude difference 

indicated the significant effect of strain x entry. Such significant effect of genotype x strain 

could complicate our further mapping analysis. 
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Figure 2.3 Severity of bacterial wilt expressed as diseased index (DI) (continuous lines) 
and percentage of wilted plants (PWP) (dashed lines) after inoculation with Pss4 (A) and 
Pss186 (B) in H7996 (resistant), WVa700 (susceptible), F9 population mean and L390 
(control check). 

B; Pss186 

A; Pss4 
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The frequency distribution of RILs with different severity appeared differently between 

the two strains in the F9 population (Figure 2.4). A greater number of F9 families was 

closer to the susceptible parent when inoculated with Pss4. RAUDPC-calculated from 

PWP, DI and PWP of F9 population inoculated with Pss186 followed a normal 

distribution pattern, whereas RAUDPC calculated from disease index was skewed 

toward resistance. With strain Pss4, distribution of DI and PWP were skewed toward the 

susceptible side, while RAUDPC calculated from DI and PWP was distributed normally. 

Because of the different distributions observed with four kinds of processed data, 

different QTLs could be detected when using different processed data. Thus, the four 

data procession methods can be used in QTL mapping. Common QTL identified for the 

four methods could be more important.  

Table 2.4 Combined analyses of variance of the effects of strain (S; Pss4 and Pss186), 
entry (E; 188 RILs and two parents) and S x E on percentage of wilted plants, disease 
index and RAUDPC  

MS Source of 
variation DF 

RAUDPC-DI RAUDPC-PWP DI PWP 

Strain (S) 1 2.9540** 2.9167** 9.3166** 8.1535** 
Entry (E) 190 0.6090** 0.4238** 0.4654** 0.4362** 
E x S 190 0.0864** 0.0717** 0.0699** 0.0704** 
**: significant at P < 0.01.  
RAUDPC-DI: relative area under disease progress curve calculated from DI; 
RAUDPC-PWP: relative area under disease progress curve calculated from PWP. 
Both were log-transformed; DI: disease index at 28 days after inoculation; PWP: 
percentage of wilted plants at 28 days after inoculation. Both were transformed to 
arcsine of the square root for analysis. MS: mean square; DF: degree of freedom. 
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Figure 2.4 Frequency distribution of relative area under the disease progress curve (RAUDPC) calculated from disease index (RAUDPC-DI) (A); 
RAUDPC calculated from percentage of wilted plants (RAUDPC-PWP) (B); disease index (C); and percentage of wilted plants (D) in F9 populations 
after inoculated with Pss4 and Pss186. Arrows indicate the locations of H7996 and WVa700. 
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2.3.2 Colonization by the pathogen in F9 
RILs  

2.3.2.1 Protocol development 

When inoculated with strain Pss4, differences on the percentage of colonized plants 

(PCP) between the resistant and susceptible plant genotypes were obvious at 5, 6, and 7 

days after inoculation. Means of PCP on H7996, RIL13, 41, and 200 ranged from 0 to 

near 20% during the observation period, while that on L390, WVa700, RIL79, 124 and 

141 increased from 12.5% to 88.7%. Since the difference between the two groups was the 

largest and the standard error was the lowest at 6 days after inoculation when inoculating 

with strain Pss4 (Figure 2.5 A), it was decided that the sampling time would be at 6 DAI 

for detemining the percentage of colonized plants of the entire RIL population. 

A similar progress on pathogen colonization was observed in the tested genotypes, when 

inoculated with Pss190 (Figure 2.5 B). However, the degree of colonization was similar 

between the resistance and susceptible groups. At 6 DAI, the pathogen presence in 

resistant parent H7996 was similar to susceptible parent WVa700 and the susceptible 

check with 62.5% of colonized plants.  

Colonization maximized after 6 days inoculated in the three susceptible lines, which 

ranged from 83.3% to 95.8%; and the two resistant RIL13 and 200 had high percentage of 

colonized plants 83.3% and 70.8%, respectively. RIL41 had the lowest percentage of 

colonized plants with 31.0%. The high degree of colonization by Pss190 on H7996 and 

other resistant RILs confirms the high aggressiveness of the strain Pss190 (Jaunet and 

Wang, 1999). And the idea of evaluating the entire RIL population on colonization by 

Pss190 was dropped. 
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Figure 2.5 Changes of percentage of colonized plants (PCP) of selected RILs, H7996, 
WVa700 and L390 when inoculated with Pss4 (A) and Pss190 (B). 
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2.3.2.2 Colonization by strain Pss4 in F9 RILs 

Colonization by Pss4 in the F9 
RILs was evaluated at 6 DAI following the developed 

protocol. R. solanacearum was detected in 12.5% of symptomless H7996 plants, whereas 

it was detected in 56.3% of the symptomless WVa700 plants, and 81.3% of the 

symptomless L390 plants. Thus, the condition for the disease development was similar to 

the condition during the development of the protocol. The percentage of colonized plants 

of the RILs ranged between 0% and 100%. The pathogen was not detected in four RILs 26, 

125, 160, and 162. The frequency distribution of the RILs was illustrated in Figure 2.6. 

Although a greater number of F9 families were towards the susceptible parent side, the 

distribution resembles a bimodal with peaks at 20% and 90%. 
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Figure 2.6 Frequency distribution of percentage of colonized plants in F9 RILs population 
when inoculated with Pss4. Arrows indicate the locations of H7996 and WVa700. 
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2.3.3 Morphological trait distribution 

2.3.3.1 Sympodial index (SPI) 

The susceptible parent WVa700 had a SPI of 2.9 and intended to be indeterminate, 

whereas the resistant parental line H7996 was semi-determinate with a SPI of 2.5. In the F9 

RILs, SPIs ranged between 1.5 and 3.2 and the frequency distribution of SPI indicated a 

peak at 3 (Figure 2.7).  
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Figure 2.7 Frequency distribution of sympodial index. Arrows show locations of parents 
H7996 and WVa700. 

2.3.3.2 Fruit weight 

Large difference in fruit size was observed in the two parents in this study (Figure 2.9). 

An average of 33.8g fruit was obtained in the resistant parental line H7996, whereas 

2.3g fruit in the susceptible parental line WVa700 as illustrated in Figure 2.8. Fruit 

weight of the RILs ranged from 3.46g to 28.30g with an average of 10.62g. 

Distribution of the fruit weight of mapping population was normal and skewed toward 

the small fruit parent. 
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Figure 2.8 Fruit size of the two parental lines H7996 (left) and WVa700 (right). 
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Figure 2.9 Frequency distribution of fruit weight. Arrows show locations of parents H7996 
and WVa700. 
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2.3.3.3 Skin color 

Tomato color is a combination of skin and flesh color. Red tomatoes have a yellow skin 

and red flesh and contain most carotenes in the form of lycopene. In the colorless, which 

are usually pink, precursors of phytoene and phytofluene, and minor pigment such as beta-

carotene, zeta-carotene and neurosporene are present in lesser amount (Brandt et al. 2006; 

Sacks and Francis, 2001). Figure 2.10 illustrates skin color of the two parental lines 

observed in this study. Out of 188 RILs, 97 RILs had yellow skin as H7996, and 51 RILs 

had transparent skin as WVa700. The remaining RILs, plants had fruits with either yellow 

or transparent skin color. 

 

Figure 2.10 Skin colors of the two parental lines H7996 (right) and WVa700 (left). 
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2.3.3.4 Fruit quality 

Citric acid 

The citric acid value of 0.55 was obtained from H7996; meanwhile 0.45 was gained from 

WVa700. Citric acid of the RILs ranged from 0.24 to 0.77 with an average of 0.48 and 

followed a normal distribution (Figure. 2.11A).  

Fruit pH value 

Fruits of H7996 had a relatively lower pH (3.97) than fruit of WVa700 (4.47). Among the 

RILs, the fruit pH ranged between 3.94 and 4.91 with an average of 4.39, and exhibited a 

normal distribution (Figure 2.11B). 

Soluble solid content 

A higher soluble solid content was observed in the susceptible parent line WVa700 with 

6.1oBrix, whereas the resistant parent H7996 had 4.9oBrix. In the F9 RIL population, 

soluble solid content ranged from 3.8oBrix to 7.9oBrix with an average of 5.71oBrix, and 

exhibited a continuous distribution (Figure 2.11C). 

Color value (a/b) 

Fruit color is one of the most important factors affecting fruit appearance in tomato. It is 

determined by the fruit flesh and skin color. The fruit color in this study was measured 

based on a/b ratio. The parent H7996 had higher color value (1.58) compared to WVa700 

(1.19) indicating fruit color of H7996 is redder than WVa700. This is because H7996 had 

yellow skin, whereas WVa700 had colorless skin. The color of the F9 RIL population 

ranged from 0 to 2.01 and the frequency distribution of the color shown in Figure 2.11D is 

nearly normal. 
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Figure 2.11 Frequency distribution of fruit quality: Citric acid (A); pH value (B); Soluble solid (C); Color value (D). Arrows indicate locations of 
parents H7996 and WVa700. 
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2.3.4 Correlation among traits  

Beside the nine traits collected in this study, results from 13 additional resistance tests at 

different locations were kindly provided from Dr. Jaw-Fen Wang, AVRDC and Dr. 

Wang’s collaborators. All the traits used are summarized in Table 2.5 and were used to 

analyse QTLs for bacterial wilt resistance and  to evaluate whether the genetic control for 

internal pathogen multiplication and movement is similar to visual symptom severity. 

Correlation coefficients between all traits (bacterial wilt resistance and morphological traits) 

are presented in Table 2.6. Visual symptoms of most datasets were significantly correlated 

in a positive manner with each other, excluded PH1. Colonization by Pss4 (TW3) observed 

in the mid-stem was significantly correlated with all visual symptom datasets, excluded 

RN2, which was evaluated with JT516, a race 3 strain isolated from potato, whereas Pss4 is 

a race 1 strain isolated from tomato. Strongest positive correlation between colonization and 

visual symptom was TW2 (r = 0.70). As both tests were evaluated with Pss4, this indicates 

that visual symptom development is highly depending on the colonization and later 

multiplication of the pathogen. Positive correlation between colonization and PH1 was 

poorest with r = 0.17 and no correlation between colonization and RN2.  

Significant correlation between the disease reactions and morphological traits was not 

consistant among datasets. Symposial index was not significantly correlated with any 

disease reaction datasets. FW was significantly correlated with IN1 (r = 0.21), RN2 (r = 

0.21), TH2 (r = 0.17) and TH4 (r = 0.14). Significant negative correlations were observed 

between CA and ID2 (r = -0.18) and RN2 (r = -0.27), whereas significant positive 

correlation was observed between SSC and PH2 (r = 0.16), pH and RN2 (r = 0.20), and FC 

and RN2 (r = 0.31), TW1 (r = 0.20), TW2 (r = 0.15), TH2 (r = 0.16), TH3 (r = 0.20).  

Among the morphological traits, the strongest negative correlation between CA and pH 

value with r = -0.81. SPI was positively correlative with SSC (r = 0.34). A few correlations 

were significant between fruit weight and fruit quality. FW was negatively correlated with 

CA (r = -0.19) and SSC (r = -0.27), whereas positively correlated with FC (r = 0.20). CA 

was positively correlated with SSC with r = 0.19 while negatively correlated with pH (r = -

0.81) and FC (r = -0.33). Negative correlation was observed between SSC and FC (r = -

0.23). On the contrary, pH was positively correlated with FC. 
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Table 2.5 Trial summary and trait code of traits analysed in the recombinant inbred line population 

  Code 
d

Trait name Country Strain used and placed evaluated Rating1

1
Generation 

1 IN1 IIHR India natural population (race 1, Bv3?); Banglore (farm) DI F9 
2 IN2 IIHR2 India natural population (race 1, Bv3?); Banglore (farm) DI F9 
3 ID1 INDO-EW Indonesia natural population and Ps18 (eggplant, race 1, Bv3); EW (farm) DI F9 
4 ID2 INDO-EW2 Indonesia natural population and Ps18 (eggplant, race 1, Bv3 and Bv5); EW (farm) DI F9 
5 PH1 TM22-SH Philippine TM22 (race 1); IPB, UPLB (screenhouse) SC F6 
6 PH2 TM151-SH Philippine TM151(race 1); IPB, UPLB (screenhouse) SC F6 
7 RN1 JT519 Reunion JT519 (Pelargonium asperum, race 1, Bv3); CIRAD (screenhouse) DI F8 
8 RN2 JT516 Reunion JT516 (potato, race 3, Bv2); CIRAD (screenhouse) DI F8 
9 TW1 Pss186-SH Taiwan Pss186 (tomato, race 1, Bv4); AVRDC (screenhouse) SC F9 
10 TW2 Pss4-SH Taiwan Pss4 (tomato, race 1, Bv3); AVRDC (screenhouse) SC F9 
11 TW3 Colonization Taiwan Pss4 (tomato, race 1, Bv3); AVRDC (screenhouse)  F9 
12 TW4 TW-TSS Taiwan natural population (race 1, Bv3/4); TSS (farm) DI F9 
13 TH1 TH-MP Thailand (tomato, race 1, Kanchanaburi); Marco Polo Seeds farm SC F9 
14 TH2 SC6-2 Thailand SC6 (race 1, Bv3); EW (farm) DI F9 
15 TH3 Syngnt-THAI Thailand Syngenta (farm) DI F9 
16 TH4 THAI-EW Thailand natural population (race 1), EW (farm) DI F9 
17 SPI Sympodial index Taiwan AVRDC (farm)  F9 
18 FW Fruit weight Taiwan AVRDC (farm)  F9 
19 CA Citric acid Taiwan AVRDC (farm)  F9 
20 SSC Soluble solid Taiwan AVRDC (farm)  F9 
21 pH pH value Taiwan AVRDC (farm)  F9 
22 FC Fruit color (a/b) Taiwan AVRDC (farm)  F9 
1DI: disease incidence; SC: severity score  
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Table 2.6 Correlation between the 22 traits used (bacterial wilt resistance and morphological traits). See Table 2.5 for trait abbreviation 

  IN1 IN2 ID1 ID2 PH1 PH2 RN1 RN2 TW1 TW2 TW3 TW4 TH1 TH2 TH3 TH4 SPI FW CA SSC pH 
IN2 .24*                                         
ID1 .44** .38**                                       
ID2 .27** .18* .61**                                     
PH1 -.05 .06 .13 .11                                   
PH2 .24** .21** .58** .25** .20**                                 
RN1 .34** .37** .65** .40** .15 .53**                               
RN2 .20 .16 .35** .12 .07 .28** .26**                             
TW1 .34** .27** .71** .39** .09 .52** .63** .32**                           
TW2 .44** .39** .84** .47** .13 .58** .65** .28** .73**                         
TW3 .35** .38** .64** .42** .17* .41** .54** .19 .63** .70**                       
TW4 .49** .31** .74** .49** .09 .46** .66** .45** .60** .66** .53**                     
TH1 .36** .36** .65** .35** .08 .47** .54** .21* .63** .69** .56** .59**                   
TH2 .39** .30** .57** .25** .11 .43** .56** .34** .57** .62** .43** .61** .50**                 
TH3 .44** .33** .81** .43** .15* .52** .63** .32** .67** .78** .60** .64** .61** .59**               
TH4 .53** .39** .76** .47** .16* .51** .64** .35** .62** .74** .59** .76** .58** .58** .71**             
SPI -.11 .14 .07 .08 .13 .13 .24 -.05 .15 .03 .03 .10 .07 .04 .12 .09           
FW .21* .03 .06 .01 -.05 .02 .11 .21* .13 .13 .06 .14 -.01 .17* .12 .14* -.11         
CA .057 .04 -.09 -.18* -.03 .01 -.14 -.27** -.06 -.03 -.03 -.13 -.08 -.04 -.12 -.12 -.14 -.19**       
SSC -.16 .11 .03 .03 .04 .16* .18 .01 -.03 .00 .03 .02 -.03 -.01 -.02 .07 .34** -.27** .19**     
pH -.14 -.08 -.02 .12 .11 .00 .08 .20* -.04 -.05 -.05 .03 .02 .01 .04 .09 .17 .04 -.81** .08   
FC .06 .11 .21 .07 .04 .03 .08 .31** .20** .15* .09 .18 .10 .16* .20** .14 .11 .20** -.33** -.23** .23** 

*significant at P < 0.05; **significant at P < 0.01
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2.3.5 QTL detection  

Composite interval mapping identified a number of genomic regions significant for QTL 

associations for bacterial wilt resistance and morphological traits. The symbol used to 

identify the QTL for bacterial wilt resistance is “bwr” followed by linkage group code and 

sequential number of QTLs in the same linakge group. QTLs for morphological traits were 

name with trait code given in Table 2.5, followed by a number indicating linkage group 

code. Their map positions are shown in Figure 2.12. A total of 37 QTLs has been detected 

and are listed in Table 2.7. Out of 37 QTLs detected, 31 QTLs was identified for bacterial 

wilt resistance, one for sympodial index, two for citric acid, two for soluble solid content 

and one for fruit color (a/b). The phenotypic variation explained between 5.0% and 34.7%. 

The LOD ranged from 2.7 to 10.6. 

2.3.5.1 QTLs linked to bacterial wilt resistance  

The 31 QTLs detected were associated with BW resistance against race 1 strains present in 

Indonesia (6 QTLs), Philippine (1 QTL), Reunion (3 QTLs), Taiwan (11 QTLs) and 

Thailand (9 QTLs), as well as against race 3 strain present in Reunion (1 QTL). Alleles 

from the susceptible parent WVa700 of the QTLs located on chromosome 1 and 2 

contributed to the resistant phenotype, whereas all QTLs on chromosome 3, 6, 8 and LGA, 

alleles from the resistant parent H7996 distributed to the resistant phenotype. Percentage of 

phenotypic variation explained by each of the QTL varied from 5.3% to 34.7%. 

The presence of QTL bwr1 located on chromosome 1 between the markers afh38b and 

afh21b was detected for resistance against a Reunion strain JT519 but not JT516 

confirming strain-specific resistant QTLs presented in the F9 RIL population. Similarly, 

QTL bwr3 on chromosome 3 between markers afh34a and afh10b presented for resistance 

against a Filipino strain TM151 but not TM22. QTL bwr6.8 in vicinity of RFLP marker 

TG153F8 on chromosome 6 has similar expression—resistance against a Taiwanese strain 

Pss4, but not Pss186. On contrary, the QTL on chromosome 8, bwr8.1, between markers 

afh23a and D1233H12 was detected for resistance against a Taiwanese strain Pss186, but 

not Pss4. These QTLs could be related to strain specificity of the resistance. 
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Table 2.7 QTLs detected in association with bacterial wilt resistance and morphological 
traits from composite interval mapping 
 

No. Trait code QTL Chromosome Location (CI)1 LOD2 R2 (%)3 a4 

1 RN1 bwr1 1 0 (0-9.3) 3.1 8.3 -5.9 
2 CA ca1  22 (11-31) 2.6 5.0 0.0 
3 ID1 bwr2.1 2 32 (23-34) 3.1 5.3 -6.6 
4 TW2 bwr2.2  30 (21-44) 5.5 11.4 -7.7 
5 TW4 bwr2.3  28 (17-51) 2.7 6.0 -6.4 
6 PH2 bwr3 3 2 (0-16) 4.5 10.2 6.7 
7 ID1 bwr6.1 6 115 (109-124) 10.6 23.9 13.8 
8 ID1 bwr6.2  137 (127-150) 3.3 8.2 9.0 
9 ID2 bwr6.3  121 (114-136) 7.0 23.0 5.3 
10 RN1 bwr6.4  123 (115-143) 6.6 23.8 10.5 
11 RN1 bwr6.5  135 (114-143) 7.0 34.7 12.7 
12 RN2 bwr6.6  123 (111-138) 3.1 12.8 5.7 
13 TW1 bwr6.7  117 (106-127) 5.8 15.5 7.1 
14 TW2 bwr6.8  115 (101-125) 6.0 13.7 8.3 
15 TW3 bwr6.9  121 (108-145) 3.2 9.0 4.5 
16 TW4 bwr6.10  117 (107-126) 3.3 10.3 9.4 
17 TW4 bwr6.11  139 (131-146) 8.5 25.8 13.3 
18 TH2 bwr6.12  65 (53-74) 4.8 14.1 8.1 
19 TH2 bwr6.13  117 (105-138) 3.2 8.8 6.4 
20 TH3 bwr6.14  135 (127-149) 3.1 10.1 7.1 
21 TH4 bwr6.15  117 (109-125) 8.3 22.7 13.7 
22 TH4 bwr6.16  139 (135-150) 3.2 10.9 10.6 
23 CA ca6  119 (109-137) 3.5 11.2 0.0 
24 FC fc6  74 (63-87) 5.4 16.4 0.1 
25 TW1 bwr8.1 8 44 (35-49) 3.0 5.7 4.3 
26 TH1 bwr8.2  44 (35-48) 4.1 8.0 6.5 
27 SSC ssc9 9 39 (26-50) 5.6 18.7 0.4 
28 SPI spi10 10 0 (0-6) 5.8 19.4 -0.2 
29 SSC ssc11 11 157 (156-160) 4.1 9.7 -0.4 
30 ID1 bwra.1 LGA 8 (3-9) 8.2 13.9 11.1 
31 ID1 bwra.2  15 (10-17) 8.1 16.7 11.8 
32 TW2 bwra.3  8 (5-9) 9.8 17.7 10.0 
33 TW2 bwra.4  15 (10-17) 9.4 20.1 10.4 
34 TW4 bwra.5  6 (0-9) 4.6 8.8 7.8 
35 TH2 bwra.6  9 (1-17) 3.5 6.5 5.4 
36 TH4 bwra.7  8 (2-9) 6.5 12.3 10.7 
37 TH4 bwra.8  13 (9-17) 5.8 12.8 10.7 

1The most likely location of the QTL (location) is indicated in cM from the top of the 
linkage group, followed by the confidence interval (CI) of this location. 
2LOD: Maximum value of the log-likelihood in the marker interval.  
3R2 (%): Partial coefficient of determination, i.e., percentage of phenotypic variation 
explained by the QTL calculated by QTL CARTOGRAPHER. 
4a: Additive effect; “-“ signs indicate alleles effected the trait were carried in susceptible 
parent WVa700; the rest value without sign “-“ indicate alleles were carried in resistant 
parent H7996. 



 

 

75 

afh38b0

afh21b22

D1232L1436

D1232M246

bw
r1(R

N
1)

ta1(C
A)

C1

D1304N130
D1243P125
D1242N2211

D1233L1126
D1249P1834

D1261P150
D1233E155
D1232C811
D1305B2418

D1233C2134

s02022.052

D1233O1465

s02036.685

D1305B495

bw
r2.1(ID

1)

bw
r2.2(TW

2)

bw
r2.3(TW

4)

C2

afh34e0

D1233N1328
D1233L2230
afh19a40

afh37i65

C3

afh34a0

afh10b26
afh37h33

s03074.143

D1262M1857

bw
r3(P

H
2)

D1304O200

s04015.015

D1233L632

C4

D1242D240

D1242M2319
D1305I1626

s04054.537
afh38a44
afh35b51

afh14b63

 

Figure 2.12 Map location of the QTLs associated with bacterial wilt resistance and morphological traits in the F9 RIL population. The QTL 
position together with its confidence interval are presented in the right of linkage groups and indicated by horizontal lines. Trait codes are in 
brackets (see table 2.5 for trait abbreviation ). 
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A QTL on chromosome 2 bwr2.1 was detected for ID1, where it explained 5.3% of 

phenotypic variation, but not detected by ID2. ID1 and ID2 are results of two field trials 

conducted in different years but at the same farm in Indonesia. Therefore, this QTL could 

be related to environment effect on the resistance.  

Clusters of QTLs were detected on chromosome 6 and LGA presented in this study. There 

were five QTLs bwr6.1, bwr6.4, bwr6.7, bwr6.10 and bwr6.15 in the region between 

markers afh20b and afh2b were detected for ID1, RN1, TW1, TW4 and TH4, respectively, 

that explained 10.3-23.9% of phenotypic variation. Another five QTLs bwr6.2, bwr6.5, 

bwr6.11, bwr6.14, and bwr6.16 were located in the interval between markers afh2b and 

D1305E6, which explained between 8.2% and 34.7% of the phenotypic variation. 

However, four out of five QTLs were detected by the same traits, excluded TW1. The large 

range of phenotypic variation explained at different locations have different disease 

pressure, which could be related to the strain effect and environmental conditions. In 

addition, in the overlap region of these two regions, from marker afh20b to D1305E6, four 

QTLs bwr6.3, bwr6.6, bwr6.9, and bwr6.13 were detected for the traits ID2, RN2, TW3 

and TH2 that explained 23.0%, 12.8%, 9.0% and 8.8% of the phenotypic variation, 

respectively. Thus, these QTLs in these regions could be related to the stable resistance of 

H7996. Similarly, numerous QTLs were detected on LGA in the region between markers 

D1262P6 and D1233P23, and between markers D1233P23 and D1233P23. These QTLs 

explained phenotypic variations from 6.5% to 20.1%. These QTLs were associated with 

resistance against Indonesian, Taiwanese, and Thailand strains, but not for Reunion and 

Indian strains. Thus they could be related to location specificity of the resistance.  

2.3.5.2 QTLs affecting morphological traits  

For sympodial index, only one QTL spi10 located on chromosome 10 between markers 

D1233I4 and D1233K13 was detected explaining 19.4% of the phenotypic variation. The 

WVa700 allele contributed to this trait. Two QTLs were detected for CA: ca1 (5.0%) on 

chromosome 1 and ca6 (11.2%) on chromosome 6. Both QTLs had equal covariances 

because the expected value of additive effect is zero. Two QTLs located on different 

chromosomes affected SSC. While QTL ssc9 located between a DArT marker D1233O12 

and a SSR marker coded s09051.0, resistant parent allele reduced the trait, QTL ssc11 

located between markers afh60b and afh19f, and susceptible parent allele increased the 

trait. These two QTLs were found to explain 18.7% and 9.7% of the phenotypic variation, 
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respectively. Only one genomic region on chromosome 6 was found to influence fruit 

color (a/b), where it explained 16.4 of phenotypic variation. 

2.3.5.3 Single marker analysis 

We are interested in whether the 13 markers, which belonged to certain chromosomes but 

not fulfill the criteria to be included in the framework map for composite interval mapping, 

are linked to QTLs. A single-marker analysis approach using simple linear regression, 

which is still commonly adopted to identify potential QTL-harboring linked markers, was 

used and the results are presented in Table 2.8. All markers showed significant with certain 

traits, excluded marker LEOH36. RFLP marker TG564F8 was highly significant with 

almost all the disease reaction datasets excepted traits IN2, PH1, and RN2. This QTL 

seems having large effect as indicated by its significantce level. While the two markers on 

LGB D1232L19 and D1262M8 had shown significant association with SSC and resistance 

against Indian, Taiwanese and Thai strains, markers D1232K7 and D1233I1 had shown 

significant association with CA, FC and resistance against Taiwanese strain. These four 

markers were strongly associated with FW and SPI as well. 
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Table 2.8  QTL-linked markers identified by single marker analysis. See table 2.5 for trait abbreviation 

Chromosome/marker1 
1  7  8  9  LGA  LGB  

Trait 
D1262C14 LEOH36 D1244H17 s01138.0  s07002.0  s08001.0  s09058.0  D1233J4 TG564F8  D1232L19 D1262M8 D1232K7 D1233I1 

IN1             ****  ** **   
IN2                   
ID1      **       ****  * * *  
ID2            * ****      
PH1                   
PH2      *       ****      
RN1             ****      
RN2                 *  
TW1             ****      
TW2      *       ****  ** **   
TW3             ****      
TW4             ****  ** ** * * 
TH1        **     ***      
TH2 *     *       ****  * *   
TH3 *            ****      
TH4             ****  ** ** *  
SPI   *            * * * * 
FW          *     **** **** **** **** 
CA                 ** ** 
SSC               * *   
pH                  * 
FC                 ** ** 

1Markers were selected from linkage map (Chapter 1). 
Significance at the 5%, 1%, 0.1% and 0.01% levels are indicated by *, **, *** and ****, respectively.
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2.3.6 Fine mapping 

2.3.6.1 Bulk segregant analysis 

Twenty-one AFLP primer combinations were screened to identify polymorphisms between 

the susceptible (SB) resistant (RB) bulks derived from the H7996 x WVa700 RIL 

population. These primers generated 20 polymorphic bands potentially linked to bacterial 

wilt resistance. Based on their reproducibility, only nine markers were selected and 

converted into PCR-based marker form (Table 2.9). 

Table 2.9 Polymorphic AFLP fragments between resistant and susceptible pools 

Band presented in 
No. AFLP primer pair Marker 

name H7996 WVa700 RB SB 
Fragment 
size (bp) 

1 E1-AAC/M2-CAC afh2a + - + - 136 
2 E1-AAC/M2-CAC afh2b - + - + 137 
3 E1-AAC/M2-CAC afh2c + - + - 221 
4 E3-ACA/M4-CAT afh20b - + - + 135 
5 E3-ACA/M7-CTG afh23c - + - + 237 
6 E3-ACA/M7-CTG afh23e - + - + 378 
7 E4-ACC/M5-CTA afh37b - + - + 140 
8 E4-ACC/M5-CTA afh37c + - + - 159 
9 E4-ACC/M5-CTA afh37h - + - + 322 

RB: resistant bulk; SB: susceptible bulk; “+” presence; “-“absence. 

2.3.6.2 Conversion of AFLP, DArT and  RFLP markers into PCR-based marker form 

In order to locate quantitative trait loci effecting bacterial wilt resistance, a preliminary 

map was constructed by Dr. Elaine Graham (former head of Molecular Lab, AVRDC, 

personal communication) intergrating AFLP data from F6 generation (Dr. Bareto, 

personal communication), RFLP data from F2 generation (Dr. Grimsley, personal 

communication) and DArT and SSR data generated from the RILs (present study). Based 

on the genetic map, we determined a number of loci linked to bacterial wilt resistance on 

chromosome 2, 3, 4, and 6. The markers located in these regions were converted into 

sequence specific PCR-based markers. To saturate the regions, another eighteen markers 

located on chromosome 2, 3, 4, and 6 were selected and tested (Table 2.10).  
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Table 2.10 Selected markers from QTL regions converted into sequence specific PCR-base 
markers 

No. Marker 
code Marker name Size (bp) Actual size 

(bp)1 SNP site 

1 2.12 TG31 ~2400   
2 2.2 D1261P15 (IB5)  109  
3 2.3 D1232K4 (IC3)  435  
4 2.4 D1305B24 

(IIF5)  609  

5 2.5 TG1 ~700   
6 2.6 D1233C21 

(IVC3) 124   

7 2.7 cLEC7P21 350 350 23 
8 2.8 T1616 1500  - 
9 3.1 TG324 1300 1276 25, 400, 

1192 
10 3.2 cLPT-5-E7 1800   
11 3.3 TG130 1500 1390 96 
12 3.4 TG585 491 491 85 
13 3.5 T1388 1000 100 416, 463,  

572, 759 
14 3.6 cLPT2E21 1250 1310 106 
15 3.7 TG74 2300   
16 4.1 D1233O18 

(IIIE11)  107  

17 4.2 D1233J4 (IID9)  301  
18 4.3 D1249B11 

(IIA3)  369  

19 4.4 T707 458 458 426 
20 4.5 T1405 535   
21 4.6 cLEC7B23 600 600 no  
22 6.1 TG178 ~1630   
23 6.2 D1261I18 (IB2)  78  
24 6.3 TG118 ~2500   
25 6.4 D1304O23 

(IIIF12)  128  

26 6.5 T892 1200 1326 131, 1211
27 6.6 T507 800  - 
1Size after sequenced. 
2First number is chromosome number and second number is number of 
marker of each chromosome selected. 
” –“sequencing failed; no: no SNP found. 
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None of the new eighteen RFLP markers showed polymorphism between H7996 and 

WVa700 (Figure 2.13); and nine of these were successfully cloned and sequenced. A total 

of fourteen single nucleotide polymorphisms (SNPs), which included three from TG324, 

one from TG585, one from cLPT2E21, one from cLEC7P21, one from T707, four from 

T1388, one from TG130, and two from T892, were identified (Table 2.10). Four SNP sites 

were selected and allele-specific primers were designed (see Materials and Methods). Out 

of eight primer combinations, only one primer combination 4.4-426b/4.4R (T707-

426b/T707R) showed polymorphism when annealing temperature reached 68.4°C (Figure 

2.14). However, this result was confirmed with an annealing temperature range of 67-

68.5oC and control of 60oC (Figure 2.15). In order to increase the specificity of the allele 

specific primers, another four allele-specific primers were designed with one mismatch 

nucleotide before one or two SNP sites using the Web-available program SNAPER 

(http://ausubellab.mgh.harvard.edu/) (see Materials and Methods). One out of four primer 

combinations was polymorphic at annealing temperature of 61.8°C; however, this method 

showed inconstant results. 

Out of nine DArT sequences, only three sequence-specific primer pairs were designed 

from DArT markers located on chromosome 4. Only one sequence-specific primer pair 

designed from the sequence of the DArT marker, D1233J4, showed polymorphism with a 

product of 300bp from resistant parental line H7996 using a touch-down PCR program 

(Figure 2.16). 
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Figure 2.13 Screening polymorphism between H7996 and WVa700 with RFLP markers on 
1% agarose gel; marker code 1: 2.7; 2: 2.8; 3: 3.1; 4: 3.2; 5: 3.3; 6: 3.4; 7: 3.5; 8: 3.6; 9: 
3.7; 10: 4.4; 11: 4.5; 12: 4.6; 13: 6.5; 14: 6.6 (see Table 2.9). [H = H7996; W = WVa700; 
M= 100bp ladder (left and right of the gel) and 1kb ladder (middle) (Promega)]. 

 
Figure 2.14 Screening polymorphism between H7996 and WVa700 with different primer 
combinations and annealing temperatures (using gradient of 45-70oC) on 1% agarose gel; 
*primer showed polymorphism at annealing temperature of 68.4oC. [H = H7996; W = 
WVa700; M= 100bp ladder (left of the gel) and 1kb ladder (right of the gel) (Promega)]. 
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Figure 2.15 Confirmation of primer combination 4.4-426bF/4.4R (T707-426bF/T707R) at 
different annealing temperatures (A) and annealing temperature at 60oC and 68oC (B) on 
1% agarose gel. [H = H7996; W = WVa700; M= 100bp ladder and 1kb ladder (Promega)]. 

 
Figure 2.16 Screening polymorphism between H7996 and WVa700 with DArT markers on 
6% NuSieve 3:1 agarose gel; *primer combination showed polymorphism; marker code 1: 
4.1; 2: 4.2; 3: 4.3. [H = H7996; W = WVa700; M= 50bp ladder (Promega)]. 
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In addition, nine AFLP markers between 135bp and 378bp, which showed in BSA to be 

linked to bacterial wilt resistance, were chosen for conversion to sequence specific PCR-

based markers. Seven out of nine fragments were successfully cloned, sequenced and 

sequence-specific primers developed. However, using these primer pairs, no 

polymorphism was detected in H7996 and WVa700. In an attempt to develop SNP 

markers, the fragments from H7996 and WVa700 were excised from the gel and then 

amplified for sequencing. Only two markers afh37h and afh23c generated good sequences 

and only marker afh23c contained SNP, a deletion in H7996.   

Due to low polymorphism between H7996 and WVa700, flanking DNA was isolated to 

obtain more sequence information using inverse PCR method. Genomic DNA of H9776 

and WVa700 were digested with several 4-base cuters AluI, HaeIII, and TagI (each was 

treated as separate template) and 6 base-cuters EcoRV (for marker afh2b) and XbaI (for 

marker afh23c) and then were amplified with new primers designed from AFLP 

fragments afh2b and afh23c. The reason we choose these two markers for inverse PCR 

was the presence of a restriction site for 6-base cuter enzymes. However, no 

polymorphism was detected between the two parents H7996 and WVa700. To overcome 

the low polymorphism rate, sixteen randomly amplified microsatellite polymorphism 

primers were designed in order to combine with either seven forward or seven reverse 

primers designed from the AFLP fragment sequences. Out of 112 primer combinations, 

only one primer combinations (TAFLP001.afh20bF + GC(GA)4) showed polymorphism 

(Figure 2.17) but polymorphic bands were not stable over PCR amplifications. Therefore, 

those primer combinations were not used to screen the RIL population.  

The two primer combinations, one was designed from DArT marker D1233J4 (see Table 

2.1) and other was designed from RFLP marker T707 (4.4-426bF/4.4R) (see Table 2.2) 

were screened on the mapping population. Since both were dominant markers, primer 

combination 4.4-426bF/4.4R was amplified at annealing temperature of 68°C to get 

polymorphic product and 60°C as control. The segregation of polymorphism gained from 

RFLP marker is shown in Figure 2.18. For the converted DArT marker, we were not able 

to score the RIL population because multiple bands were generated in the individual lines 

as illustrated in Figure 2.19.  
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Figure 2.17 Screening polymorphism between H7996 and WVa700 using various primers 
combinations on 1% agarose gel; *primer showed polymorphism. [H = H7996; W = 
WVa700; M= 100bp ladder (Promega)]. 

 

Figure 2.18 Segregation of a converted RFLP marker into PCR-base marker form. 
Products at annealing temperature at 68oC were run ahead 15 minutes at annealing 
temperature  at 60oC. [H = H7996; W = WVa700; M= 100bp ladder (left of the gel) and 
1kb ladder (right of the gel) (Promega)]. 
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Figure 2.19 Segregation of a converted DArT marker (D1233J4) into PCR-base marker 
form. [H = H7996; W = WVa700; M= 100bp ladder (left of the gel) and 1kb ladder (right 
of the gel) (Promega)]. 
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2.4 DISCUSSION  

2.4.1 Resistance to bacterial wilt in H7996 and its associated QTLs 

Expression of resistance to bacterial wilt in tomato depends on genetic variability of the 

pathogen as well as environmental and climate conditions (Prior et al. 1990). In the present 

study, performance of the RIL population derived from the cross of H7996 and WVa700 

was highly correlated among evaluations inoculated with different strains or conducted in 

various locations, with the exception of PH1 trial. This indicates that there are common 

QTLs associated with resistance expression under various environments. The term 

“environment” here includes those factors that possibly affect the resistance expression, 

such as pathogen strains, temperature, soil moisture, relative humidity, soil type, and 

presence of root knot nematode etc. The fact that no QTL was detected for the PH1 dataset 

indicated the strain TM22, used in PH1 trial, could have a very different interaction with 

H7996 compared with other strains. More studies need to be conducted to verify this 

assumption. No QTLs were detected from trial IN2 despite the data were significantly 

correlated with most of the other trials. This could be due to the low variation of the data 

points caused by low disease pressure in trial IN2.  

2.4.1.1 Common QTLs important for resistance against race 1 strains 

Diseae reactions of the RIL population were evaluated in 15 trials against race 1 strains in 

six countries both in the field or at seedling stage. QTLs commonly detected for the more 

trials would indicate the more importance of those QTLs contributing to stable resistance. 

Based on the QTL analysis results, QTLs located in three chromosomal regions fit under 

this criteria. The most important region would be the segment of 101 to 150 cM of 

chromosome 6. One to two QTLs in this region were detected for 10 out of the 15 trials.  

QTLs in this region were associated with resistance expressed under the environment of 

Taiwan (TW1, TW2, and TW4), Indonesia (ID1and ID2), Thailand (TH2, TH3, and TH4), 

and Reunion (RN1). The importance of QTLs in this region was also supported by the 

large percentage contributing to the overall disease variation ranging from 8.2 to 34.7%. 

The R2 values of the QTLs in this region were the largest among QTLs detected from trial 

TW1 (15.5%), TW4 (25.8%), ID1 (23.9%), ID2 (23.0%), TH2 (8.8%), TH3 (10.1), TH4 

(22.7%), and RN1 (34.7%). QTLs in this regions have been identified by previous studies; 
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e.g. a major QTL for resistance to Pss4 (the same strain used in the TW2 trial), JT519 (the 

same strain used in RN1 trial) and GMI8217 was detected by Wang et al. (2000), 

Carmeille et al. (2006) and Thoquet et al. (1996a; b), respectively.  

There was another QTL detected on chromosome 6 located between 53 to 74 cM that was 

associated with resistance observed in trial TH2, close to RFLP marker TG118. The same 

QTL was detected against GMI8217 in both F2 and F3 population that derived from the 

same cross by Thoquet et al. (1996a; b), however, it was not detected in studies of 

Carmeille et al. (2006) and Wang et al. (2000). 

Another chromosomal region that hosted important QTLs was on LGA. First, a QTL 

located between 0 cM and 17 cM of LGA was associated with resistance expressed under 

the environment of Taiwan (TW2 and TW4), Indonesia (ID1), and Thailand (TH2 and 

TH4). The R2 value of the QTL ranged from 6.5 to 20.1% and was the largest among 

QTLs detected from trial TW2 (20.1%). Another QTL on LGA is linked with TG564. The 

linkage with TG564 on this linkage group was detected and strongly associated to 

resistance observed in all race 1 trials in this study, excluded IN2 and PH1. In the high-

density linkage map of tomato, marker TG564 was mapped on chromosome 3 (Tanksly et 

al. 1992), whereas Wang et al. (2000) assigned this marker to chromosome 12. In the 

present study, this marker was nearest to LGA with a recombinant rate of 0.3 and merged 

into LGA. This linkage group was hypothesized to be belonged to either chromosome 5 or 

12. However, in previous studies using the same cross, a QTL linked with TG564 was 

detected for resistance to strains Pss4 in the F3 population (Wang et al. 2000) and JT519 in 

the F8 RIL population (Carmeille et al. 2006) on chromosome 12. We thus strongly 

hypothesized LGA belonging to chromosome 12.  

A QTL located on LGB might contribute to stable resistance as well. Results of single 

marker analysis indicated significant linkage with D1232L19 and D1262M8 on LGB. 

Since these two markers were only 1.8 cM apart, it is likely that only one QTL is located in 

the region. This QTL is associated with resistance expressed under the environment of 

India (IN1), Indonesia (ID1), Taiwan (TW2 and TW4) and Thailand (TH2 and TH4). This 

linkage group was hypothesized to belong to chromosome 5, since LGA was strongly 

hypothesized to belong to chromosome 12.   
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2.4.1.2 Colonization by Pss4 and resistance to bacterial wilt in H7996 

Latent infection of R. solanacearum has been reported in tomato (Grimault et al. 1994; 

Saile et al. 1997) and other crops such as potato (Ciampi and Sequeira, 1980), and 

geranium (Swanson et al. 2005). In our study, we demonstrated that H7996 is not immune 

to bacterial wilt pathogen, where 12.5 % of the symptomless plants of H7996 were 

colonized by R. solanacearum at the middle of stem. This agreed with the results of 

Grimault et al. (1994) that a race 1 strain 8217 detected in 74% of H7996 plants, while 

Carmeille et al. (2006) observed colonization by a race 3 strain JT516 in H7996 

hypocotyls. 

Colonization by strain Pss4 at middle stem in F9 RILs was correlated with disease 

reactions observed in most trials, except RN2. This could be due to trial RN2 was 

conducted with a race 3 strain JT516 isolated from potato. The largest correlation 

coefficient with the Pss4 colonization reaction was the visual symptom variation of Pss4 

(trial TW2). QTLs on chromosome 6 (in the interval of 108 to 145 cM) and LGA (linked 

with TG564) were determined to be associated with variation of Pss4 colonization. And 

these QTLs were also associated with stable resistance. Our results agreed with Prior et al. 

(1996) and Grimault et al. (1994) suggesting resistance to bacterial wilt in tomato is 

largely depending on suppression of bacterial multiplication inside the plant. Hence, 

colonization percentage could be used as a selection criterion beside visual symptom in 

selection for stable resistance, and the screening could be conducted at 6 days after 

inoculation following our protocol compared to 28 days after inoculation of the visual 

symptom screening.  

2.4.1.3 Plausible strain-specific QTLs to race 1 strains 

Strains Pss4 and Pss186 that differ in their aggressiveness but are close in genetic 

relationship (Jaunet and Wang 1999), were used to evaluate the RIL population using the 

same method and under similar environments. The objective was to determine plausible 

strain-specific QTLs. Comparing the QTLs detected to be associated with resistance to 

Pss4 and Pss186, three QTLs were detected with either one strain but not both. Those 

detected only with Pss4 (trial TW2) were bwr2.2 on chromosome 2 and the QTL linked 

with D1232L19 and D1262M8 on LGB. And that detected only with Pss186 (trial TW1) 

was bwr8.1 on chromosome 8. Among these, the allele of bwr2.2 from Wva700, the 

susceptible parent, was associated with resistance, which confirmed the results of Wang et 
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al. (2000). Whether these QTLs were really associated with strain-specific resistance 

requires further studies. One approach could be developing near-isogenic lines carrying 

different combinations of QTLs and challenging the isogenic lines against different 

pathogen strains.  

2.4.1.4 Plausible environment-specific QTLs to race 1 strains 

Several environmental factors could affect disease development caused by R. 

solanacearum. Other than the strain effect, it was difficult to conclude from our results the 

presence of QTLs that were specific to other environmental factors. Trial ID1 and ID2 

were supposedly the best combination to look for environment-specific QTLs. These two 

trials were conducted in the same plots following the same protocol but at different 

seasons. Thus, pair-wise comparisons of the QTLs detected from these trials could identify 

QTLs important for resistance expression under a particular season. QTLs on chromosome 

2, 6, LGA and LGB were detected to be associated with resistance reaction of trial ID1. 

Very few QTLs were detected from trial ID2. Those detected were located on chromosome 

6 and LGA, which were detected from trial ID1 as well. The failure of detecting other 

QTLs as in trial ID1 could be due to the low variation of trial ID2’s data. Trial ID2 was 

conducted in the rainy season, when very high disease pressure of bacterial wilt and other 

diseases like pith necrosis occurred. Therefore, it is difficult to conclude that QTLs 

detected only with trial ID1 but not ID2 were environment-specific. The best approach to 

elucidate plausible QTLs specific to certain environment factors would be to examine 

disease reactions under controlled environments.  

2.4.1.5 Comparison of QTLs associated with resistance to race 1 and 3 strains 

Trial RN2 was the only trial that was evaluted against a race 3 strain JT516. The only QTL 

detected to be associated with resistance to JT516 was bwr6.6 on chromosome 6. This 

QTL was close to the RFLP marker TG153, where a major QTL for resistance to this strain 

was detected in the both F2:3 and F6 RIL population by Carmeille et al. (2006). More 

diverse race 3 strains should be used to evaluate the mapping population to determine 

whether there are other QTLs associated with race 3 resistance. This QTL was also 

associated with stable resistance to race 1 strains. This further indicates the importance of 

this QTL against a broad spectrum of the pathogen strains.   
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2.4.2 Morphological traits and their associated QTLs 

Tomato fruit composition exhibits a quantitative variation, controlled by several genes, 

more or less influenced by environmental conditions. Molecular markers allow the 

dissection of such quantitative traits into discrete QTL, which can be located on a genetic 

map (Causse et al. 2004; Fulton et al. 2002; Saliba-Colombani et al. 2001). The existence 

of a QTL in a chromosomal region reveals at least one polymorphic locus is segregating in 

this region, and is responsible for part of the trait variation. Numerous QTLs have been 

identified for many agronomic and horticultural traits in Solanum lycopersicum and related 

species (Bernacchi et al. 1998; Causse et al. 2004; Fulton et al. 1997; Fulton et al. 2002; 

Fulton et al. 2000; Grandillo et al. 1999; Grandillo and Tanksley, 1996a; Saliba-

Colombani et al. 2001; Tanksley et al. 1996). Thus far researches were mainly focused on 

economically important characteristics such as yield, fruit weight and processing 

performance (soluble solid, color etc.) and the relationship among traits have been 

analysed with regard to QTL mapping.  

2.4.2.1 Sympodial index 

In tomato, sympodial index (SPI) is a distinctive feature among species. The wild-type 

growth habit is classified as ‘indeterminate’ (SP-) in reference to the continuous 

production of an unrestricted number of sympodial units; whereas ‘determinate’ (sp/sp) 

means a limited number of sympodial shoots arise before further extension of the main 

apex ceases (Pnueli et al. 1998).  

All of the colored-fruited species plus S. habrochaites have a mean SPI of 3, whilst the 

remaining spp., all green-fruited, average 2 (Rick, 1986). In the present study, S. 

lycopersicum H7996 had a SPI of about 2.5, whereas SPI of 2.9 was obtained in S. 

pimpinellifolium WVa700. The distribution of SPI in the F9 RILs (Figure 2.9) with a peak 

at 3 suggested dominant inheritance of the SPI from the parent WVa700, which could 

carried the SP gene family (Carmel-Goren et al. 2003).  

In tomato, at least six SELP-PRUNING (SP) genes located on chromosome 2, 3, 5, 6 and 

9, control the regulation of the vegetative reproduction (Carmel-Goren et al. 2003). 

However, in the present study, a major QTL for SPI, ssi10 (R2 = 19.4%) was detected on 

chromosome 10. This QTL with small negative effect was located 6 cM from the top of the 

chromosome. Furthermore, SPI was associated with marker D1244H17 on chromosome 1 
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and all the 4 markers on LGB (Table 2.8). The observation on LGB indicates that this 

genomic region may contain multiple, linked QTLs for SPI. These observations suggest 

that SP gene family could be presented on chromosome 1, 10 and LGB (possibly 

chromosome 5). 

2.4.2.2 Fruit weight 

Tomato fruit weight (FW) is considered as a classical example of a quantitative trait 

displaying continuous variation (MacArthur and Butler, 1938). In the genus Solanum, all 

wild species have a small fruit size compared with the domesticated tomato. Loci fw1.1, 

fw2.2, fw3.1, and fw4.1 were first identified as QTLs controlling fruit weight in a cross 

between a small-fruited wild tomato and a large-fruited cultivated counterpart; however, 

locus fw2.2 is the only one that has been cloned and studied at the molecular level (Alpert 

et al. 1995). In the present study, small fruit was observed in S. pimpinellifolium WVa700 

(2.32 g), while larger fruit was observed in S. lycopersicum H7996 (33.82 g). Fruit weights 

of the F9 RILs were intermediate between the two parents and skewed toward the small-

fruited parent suggesting small fruit is dominant and consistent with previous studies 

(Chen et al. 1999; Grandillo and Tanksley, 1996a; Paterson et al. 1991).  

In this study, FW was also strongly associated with the four markers on LGB suggesting 

presence of multiple, closely linked QTLs for FW in this region. LGB is supposed to 

belong to either chromosome 5 or 12. If it is hypothesized to belong to chromosome 12, 

this could agree with previous investigations that numerous QTLs was detected on 

chromosome 12 (Causse et al. 2002; Causse et al. 2004; Chen et al. 1999; Fulton et al. 

1997; Fulton et al. 2000; Saliba-Colombani et al. 2001). However, it could be 

hypothesized to belong to chromosome 5 that would agree with investigations of Doganlar 

et al. (2000), and van der Knaap and Tanksley (2003). In addition, an anchor marker on 

chromosome 9, s09058.0, was significantly linked with FW. This indicates that this region 

may contain a QTL linked to FW. This agreed with previous studies that several QTLs on 

chromosome 9 were identified to have significant effects on FW (Causse et al. 2004; Chen 

et al. 1999; Fulton et al. 1997).  

2.4.2.3 Skin color 

The skin color of tomato fruit has been classified as yellow or clear (colorless). The 

dominant gene Y governs the yellow skin, whereas the homozygous recessive y causes 
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colorless skin (Lindstrom, 1925). Thus, in this study, H7996 carried the dominant gene Y 

with yellow skin; covertly WVa700 carried the recessive gene y with clear skin. 

Segregation of skin color in the F9 RILs followed the expected 1:1 ratio; however, about 

21% of the F9 families showed both skin colors of the two parents suggesting those RILs 

still had residual heterozygocity.  

2.4.2.4 Fruit quality 

Since numerous QTLs effecting fruit quality have been found distributed over all 12 

chromosomes of tomato (Chen et al. 1999; Fulton et al. 2002; Fulton et al. 2000), we 

analyzed fruit quality traits of the two parents and found some degree of differences in 

citric acid, pH value, soluble solid content (Brixo), and color (a/b) from the two parents 

(Figure 2.13A, B, C, D). Hence, we were interested to know the relationship between fruit 

quality traits and bacterial wilt resistance.  

Citric acid 

Inheritance of citric acid (CA) is largely quantitative, but in some crosses, there was 

evidence of a single major gene conditioning high acidity; and the component of genetic 

variance affecting acidity was additive (Lower and Thompson, 1967). The CA of the two 

parents H7996 and WVa700 was 0.55 and 0.45, respectively, whereas variation of CA was 

observed in RILs (Figure 2.13A) suggesting that CA is a typical quantitative trait, which 

agreed with Fulton et al. (2002). 

CA was mainly controlled by two linked regions on LGB, QTLs on chromosome 1 (ca1) 

and 6 (ca6). The QTL ca1 shared more or less the same position on chromosome 1 in our 

study as the QTL detected in cross with S. pimpinellifolium (Fulton et al. 2002). QTL ca6 

is the first QTL affecting CA identified on chromosome 6 so far. Two additional QTLs 

linked to markers D1232K7 and D1233I1 on LGB were asscociated with CA as well.  

Fruit pH value  

Fruit pH is important for the flavor of fresh market tomato as variation in sour taste. Low 

fruit pH of tomato allows the reduction of processing time. In tomato, numerous QTLs 

have been identified to effect pH value (Bernacchi et al. 1998; Causse et al. 2002; Chen et 

al. 1999; Fulton et al. 2002; Fulton et al. 2000; Fulton et al. 1997b; Paterson et al. 1988; 

Saliba-Colombani et al. 2001) indicating inheritance is largely quantitative. In the present 
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study, we found the fruit of H7996 had relatively lower pH than WVa700; and the F9 RILs 

exhibited a continuous distribution (Figure 2.12B) with the mean in the direction of high 

pH. However, only one genomic region on LGB was associated with pH value (Table 2.8).  

Soluble solid content 

Soluble solid contents (SSC) are closely related to organoleptic quality of fresh market 

tomatoes and determine the price of tomato for processing. The major components of 

soluble solids are soluble sugar such as glucose and fructose (65%) and organic acids such 

as citric and malic acid (13%) and their concentrations are responsible for taste and flavor 

of ripe fruits. Most researches on tomato quality have been focused on these components 

(Balibrea et al. 2006; Baxter et al. 2005; Causse et al. 2002; Fridman et al. 2004). High 

soluble solid concent has been reported to exhibit dominance and over-dominance 

(Paterson et al. 1988; Rick, 1974; Tanksley and Hewitt, 1988). The differences observed 

between the two parents and distribution of the RIL population are indicating the high SSC 

of the population was inherited from the susceptible parent WVa700.  

The positions of soluble solid content QTLs on chromosome 9 detected in this study was 

close to QTLs detected in crosses with S. pimpinellifolium (Chen et al. 1999; Fulton et al. 

2002), S. cheesmanii (Paterson et al. 1991), S. peruvianum (Fulton et al. 1997). In 

addition, a QTL controlling SSC located on chromosome 11. This is the first QTLs linked 

to SSC detected on chromosome 11. Another two genomic regions D1232L19 and 

D1262M8 on LGB were associated with SSC. Thus, if LGB belongs to chromosome 5, the 

result was in accordance with results of Bernacchi et al. (1998) and Fulton et al. (2000). 

However, if LGB belongs to chromosome 12, the observation agreed with result of Chen et 

al. (1999) and Fulton et al. (2002).  

Color value (a/b) 

The color of tomato is a complex trait associated with tomato fruit quality. The complexity 

of tomato color is due to the presence of a diverse carotenoid pigment system with 

appearance conditioned by pigment types and concentrations, and subject to both genetic and 

environmental regulation (Sacks and Francis, 2001). Many genes influencing tomato color 

have been identified such as apricot (at), beta-carotene (B), dark green (dg), green flesh (gf), 

green ripe (Gr), high pigment-1 (pm-1), high pigment-2 (pm-2), intense pigment (Ip), red 

color in yellow fruit (ry), yellow flesh (r) (Jenkins and Mackinney, 1956; Kerr, 1955; Kerr, 
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1956a; Kerr, 1956b; Lesley and Lesley, 1960; Young, 1956). We found here in the present 

study a higher a/b value in H7996 (1.58) and a lower value in WVa700 (1.19). This result 

could be explained by H7996 having red-fruited color and yellow skin, whereas WVa700 

has a pink-fruited color with colorless skin. Thus, H7996 fruits could have higher lycopene 

content than WVa700 fruits. This was in accordance with results observed by Brandt et al. 

(2006) the higher the ratio of a/b, the higher the lycopene content; and suggesting typical 

quantitative trait presented in studied population. The QTL fc6 on chromosome 6 was 

located closely to a region QTL as detected by Saliba-Colombani et al. (2001), where fruit 

color was measured by spectrophotometer color measurement. Two additional markers 

D1232K7 and D1233I1 on LGB were also asscociated with fruit color.  

2.4.3 Possible linkage between resistance to bacterial wilt and morphological traits 

Linkage of fruit size and resistance to bacterial wilt in tomato has been studied. Monma et 

al. (1997) reported there was no correlation between the resistance index and fruit weight 

in the F2 generations of the two crosses (r = -0.074, r = -0.019) involving S. lycopersicon 

indicating it is possible to select plants with both high resistance and large fruits in 

segregating populations; whereas Scott et al. (2003) reported numerous selections over the 

years with large fruit turned to have good level of resistance, when Hawaii 7997, a sister 

line of H7996, was used as a source of resistance. This could be due to differences in 

aggresiveness of strains used. Our results showed significant positive correlations between 

FW (fruit weight) and disease reaction in trial IN1, RN2, TH2, and TH4, indicating the 

RIL having larger fruit size tend to have higher severity of bacterial wilt. The QTL analysis 

results were in agreement with this observation. The three markers on LGB were 

significantly linked with fruit weight, as well as with disease reactions in trial IN1, ID1, 

TW2, TW4, TH2 and TH4 (Table 2.8). More molecular markers and anchor markers need 

to be added on LGB to further examine the importance of the QTLs on fruit weight as well 

as disease resistance.  

Citric acid content (CA) was found negatively correlated with disease reactions in trial ID2 

and RN2. This means the higher CA, the lower disease severity. QTL ca6 on chromosome 

6 was detected to be associated with citric acid content  and had the same position as QTLs 

for bacterial wilt resistance. Similarly, a marker on LGB was associated with CA and BW 

reaction of several trials (Table 2.8). This indicates there are possible associations between 
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bacterial wilt resistance and CA. This is the first report about association between bacterial 

wilt resistance and citric acid in tomato. 

Fruit color was positively correlated with disease reactions in trial RN2, TW1, TW2, TH2, 

and TH3. The result indicates higher a/b ratio, i.e., redder-fruited plants would be less 

resistant to bacterial wilt. This was contrary to the fact that H7996 had a higher a/b ratio and 

is a resistant line, whereas WVa700 had lower a/b ratio and is a susceptible line. Fruit color 

is a complex trait and subject to both genetic and environmental regulations (Koskitalo and 

Ormrod, 1972). QTL fc6 on chromosome 6 and marker D1232K7 on LGB were found to be 

associated to FC. Marker D1232K7 was also linked to bacterial wilt resistance traits like 

ID1, TW4, and TH4. These observations suggest possible linkage between bacterial wilt 

resistance and fruit color, althought not conclusive. 

2.4.4 Fine mapping 

The very low rate of polymorphism between H7996 and WVa700 made mapping and fine 

mapping of QTLs associated with BW resistance difficult. Several techniques were 

evaluated in this study that showed ability to detect polymorphism. However, these 

techniques are slow and the success rate is low. Thus, an effective and stable SNP 

detection technology is needed for fine mapping of QTLs in this RIL population. 

Nevertheless, several SNPs have been found that would be useful in fine mapping of QTLs 

to develop closely linked markers for marker-assisted selection and gene cloning. The QTL 

detected on chromosome 6 showed highly significant resistance to different strains and 

locations and would be a primary target region for fine mapping. RFLP marker TG153, 

AFLP markers afh20b and afh2b, and DArT marker D1305E6 have been mapped to this 

region. Furthermore, the RFLP marker TG564 and the four DArT markers on another 

significant QTL regions on LGA could be utilized for conversion into sequence specific 

PCR-based markers to close the gap between linkage groups. Although some AFLP, 

RFLP, and DArT markers have been converted into sequence-specific PCR-based form, 

results achieved were not consistent. This could be due to genetic background of the 

materials used in the present study as discussed in Chapter 1. To overcome the 

inconsistency problem, real-time PCR also called quantitative real time polymerase chain 

reaction (QRT-PCR) could be an effective technique to determine whether a specific 

sequence is present in the samples. Many new technologies are available in detecting SNP 

polymorphism that are more effective and should improve the fine mapping process. 
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Lastly, the availability of markers is critical to any mapping experiment. The lack of user-

friendly markers in tomato is a challenge and this resource has to be developed to support 

genetic mapping and marker-assisted selection.    
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2.5 SUMMARY 

Resistance in tomato against race 1 strains of Ralstonia solanacearum was evaluated in a F9 

population of recombinant inbred lines (RILs) derived from a cross between S. 

lycopersicum H7996 (resistant) and S. pimpinellifolium WVa700 (susceptible). The F9 

population showed an intermediate level of resistance to strain Pss186 (53% of plants were 

healthy) and a lower level of resistance to strain Pss4 (30% of plants were healthy). To 

determine the colinization of the pathogen in the F9 population, a protocol was developed 

using three resistant RILs and three susceptible RILs. The sampling time was determined to 

be 6 days after inoculation with strain Pss4, since the difference between the two groups 

was the largest and the standard error was the lowest at 6 days after inoculation. R. 

solanacearum was detected in 12.5% of symptomless H7996 plants, whereas it was 

detected in 56.3% of the symptomless WVa700 plants. The percentage of colonized plants 

of the RILs ranged between 0% and 100%. Beside the nine traits collected in this study, 

results from 13 additional resistance tests at different locations were used. Visual symptoms 

of most datasets were significantly correlated in a positive manner with each other, 

excluded PH1. Colonization by Pss4 (TW3) observed in the mid-stem was significantly 

correlated with all visual symptom datasets, excluded RN2. Significant correlation between 

the disease reactions and morphological traits was not consistant among datasets and a few 

correlations were significant between fruit weight and fruit quality. A total of 106 loci (32 

AFLPs, 59 DArTs, 6 RFLPs, 11 SSRs) distributed over 15 linkage groups covering 1089.1 

Kosambi cM was used for quantitative trait loci (QTLs) mapping using composite interval 

mapping. In addition, 13 markers belonged to certain chromosomes were determined 

association with resistance separately by single marker analysis.  

A total of 37 QTLs were identified. Out of 37 QTLs detected, 31 QTLs was identified for 

bacterial wilt resistance, one for sympodial index, two for citric acid, two for soluble solid 

content and one for fruit color (a/b). They explained from 5.0% to 34.7% of the 

phenotypic variation, depending on the traits. The LOD ranged from 2.7 to 10.6. A cluster 

of QTLs (15 QTLs) was detected in an interval of 50 cM on chromosome 6, which 

explained between 8.2% and 34.7% of phenotypic variation. The large range of 

phenotypic variation explained at different locations have different disease pressure, 

which could be related to the strain effect and environmental conditions. Thus, these 
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QTLs in these regions could be related to the stable resistance of H7996. Similarly, 

numerous QTLs were detected on LGA in the region between markers D1262P6 and 

D1233P23, and between markers D1233P23 and D1233P23 and with TG564. These 

QTLs explained phenotypic variations from 6.5% to 20.1%. These QTLs were associated 

with resistance against Indonesian, Taiwanese, and Thailand strains, but not for Reunion 

and Indian strains. Thus they could be related to location specificity of the resistance. 

Most of markers showed significant with certain traits, excluded marker LEOH36. 

Numerous SNPs have been found in this study would be promising for forthcoming fine-

mapping work, particularly the chromosome 6 regions, where QTLs were detected to be 

associated with resistance to different strains and locations. 
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Chapter 3 

Resistance to race 1 of Ralstonia solanacearum in wild tomato 

germplasm* 

3.1 INTRODUCTION 

Bacterial wilt caused by race 1 strains of Ralstonia solanacearum is one of the most 

important diseases that limit tomato production in the tropics and subtropics. As a soil-

borne pathogen, the bacteria enter tomato plants through the roots, colonize vascular 

tissue and cause wilting symptom (Denny, 2006). Race 1 strains are difficult to control 

because of their soil-borne nature and their extreme wide host range including many 

weed hosts favoring its widespread distribution and persistence in the environment 

(Hayward, 2000). Chemical control for soil-borne diseases is usually unsuccessful and 

uneconomic and furthermore no commercial pesticides are available for controlling R. 

solanacearum except the application of chemical fumigants. Thus, host plant resistance 

has been a major strategy for managing bacterial wilt in tomato.  

Resistance sources to bacterial wilt in tomato have been identified and cultivars with 

different levels of resistance have been developed (Scott et al. 2005). However, breeding 

for durable resistance is challenging due to the fact that resistance in tomato to bacterial 

wilt can be location-specific (Hanson et al. 1996). Location specificity can be due to the 

presence of strains that vary in aggressiveness. For example, all reported strains of R. 

solanacearum are race 1 and biovar 3 or 4 in Taiwan, but they are highly variable in 

aggressiveness (Jaunet and Wang, 1999). Performance of a resistant line is largely 

depending on local strain profiles (Lin and Wang, unpublished data).  Tomato accessions 

have been evaluated with different strains and biovars of race 1 of R. solanacearum and 

with different screening methods, and only few accessions were found to be resistant 

*This chapter was submitted to European Journal of Plant Pathology 
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(Gonzalez and Summers, 1996; Jaworski et al. 1987). There are only few Solanum 

pimpinellifolium or S. lycopersicum accessions being used as sources of resistance in 

breeding programs globally (Scott et al. 2005). Thus, there is a need to identify more 

diverse resistance sources to possibly overcome the highly variable pathogen strains.  

Resistance to plant pathogens has been identified from several wild tomato germplasm 

(Egashira et al. 2000; Pico et al. 2000; Pim et al. 1993; Rosello et al. 1999). In addition, 

several potential sources for resistance to tomato bacterial disease that can be easily 

crossed with S. lycopersicum cultivars, have been used successfully for genetic studies 

(Astua-Monge et al. 2000; Francis et al. 2000). However, intensive evaluations of wild 

tomato germplasm for resistance to bacterial wilt have not been conducted. Jaworski et al. 

(1987) evaluated 2,064 tomato accessions in the field with natural and artificial inoculation 

of indigenous strains of race 1 biovar 1. The evaluated wild tomato accessions include 72 

S. pimpinellifolium, 60 S. peruvianum, 4 S. habrochaites, and 6 S. habrochaites f. 

glabratum (previous known as L. hirsutum f. glabratum). And GA 1405-1-2 BWT, a 

selection from PI 251323 (S. pimpinellifolium) was the only wild accession among the four 

selected resistant materials. 

Therefore, the aim of this study is to evaluate wild tomato germplasm for resistance to race 

1 strains of R. solanacearum. First, a strain with lower aggressiveness was used. Then 

selected resistant accessions were evaluated with two other strains with higher 

aggressiveness. Because the selected resistant accessions were mostly belonged to S. 

pennellii, a population of introgression lines of LA716 (S. pennellii) were evaluated in 

order to identify possible chromosomal location of resistant QTLs.  
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3.2 MATERIALS AND METHODS 

3.2.1 Plant materials  

Two core collections of wild tomato were evaluated in this study in order to cover majority 

of tomato gene pools. They are 109 accessions from AVRDC wild tomato core collection 

and 143 accessions from core collection of Tomato Genetic Resource Center (TGRC) 

located at University of California, Davis. All together, there are 252 accessions evaluated 

including 14 accessions of S. cheesmaniae, 17 of S. chilense, 10 of S. chmielewskii, 52 of 

S. lycopersicum, 37 of S. habrochaites, 10 of S. neorickii, 19 of S. pennellii, 42 of S. 

peruvianum, and 51 of S. pimpinellifolium. All seeds of tested accessions were provided by 

Genetic Resource and Seed Unit (GRSU), AVRDC. TGRC core collection includes chosen 

accessions representing the genetic diversity of wild tomato, which was established by the 

late Dr. Charles M. Rick. The collection was acquired and multiplied by GRSU at 

AVRDC. A population of fifty introgression lines that derived from a cross between S. 

lycopersicum cv M82 and S. pennelli LA716 (Eshed and Zamir, 1994), and the two parents 

were evaluated to explore possible chromosomal locations of QTLs associated with 

resistance to R. solanacearum. The materials were acquired from TGRC and multiplied at 

AVRDC. However, line LA3487 (IL3-2), which contains a chromosome 3 segment of S. 

pennellii failed to set and was not tested due to lack of seed. 

In each evaluation, H7996 and L390 were used as resistant and susceptible controls. 

Before sowing, seeds were treated by soaking at 4X diluted Chlorox (6% sodium 

hypochlorite) for 5 minutes and then rinsed under running water for 15 minutes and sown 

immediately in 2-inch pots. Seeds of H7996 and L390 were sown 2 days later than the wild 

accessions and introgression lines. The potting mixture used consisted of sand, soil, rice 

husk and compost in the ratio of 1:3:1:1 and has been steam-sterilized. Three-week old 

seedlings with four fully expanded true leaves were used for evaluation.  

3.2.2 Bacterial strains and plant inoculation 

Strains of R. solanacearum Pss4 (race 1, biovar 3), Pss186 (race 1, biovar 4), and Pss190 

(race 1, biovar 4) (Jaunet and Wang, 1999) isolated from tomato were provided by the 

Bacteriology Unit, AVRDC. These strains were used because of their difference in 

aggressiveness. Overall, Pss190 is the most aggressive followed by Pss4 and then Pss186 
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(Jaunet and Wang, 1999).  When screening of wild tomatoes, strain Pss186 was used in the 

preliminary evaluation. Pss4 and Pss190 were used later to evaluate the durability of the 

resistance of the selected wild tomatoes. When evaluating the introgression lines of LA716, 

only strain Pss186 was used.  

Stored cultures of Pss4, Pss186 and Pss190 at -80oC were streaked on TTC medium 

(Kelman, 1954) and incubated at 30°C for 2 days. Several typical fluidal single colonies 

from TTC were transferred to 523 medium (Kado and Heskett, 1970) for multiplication at 

30oC for 24 hours. Then a dense bacterial suspension of each strain was prepared. And a 

total of 0.1 ml of the suspension was spread on one fresh 523 plate and kept at 30oC for 24 

hours. Bacterial masses were harvested and suspended with distilled water until an O.D. 

value reached 0.3 at the wavelength of 600nm (about 108 cfu/ml). Seedlings with four 

fully expanded true leaves (about three-week old) were inoculated by pouring 20ml of the 

above suspension on the soil surface of each pot. When evaluating the introgression lines 

in the field, the suspension was further diluted 5 times with distilled water (approximately 

2x107 cfu/ml).  

For seedling evaluations, inoculated plants were rated at 1, 2, 3 and 4 weeks after 

inoculation using a 0-5 scale, where 0 means no symptom; 1 means one leaf partially 

wilted; 2 means 2-3 leaves wilted; 3 means 4 or more leaves wilted; 4 means all leaves 

wilted; 5 means death of the plant (Winstead and Kelman, 1952). Percentages of wilted 

plants (PWP) at 4 weeks after inoculation were calculated following the formula of PWP = 

(NW/NT) x 100, where NT is number of total tested plants and NW is number of wilted 

plants. Plants in the field trial were rated once a week after transplanting using 0-5 scale, 

where 0 means seedling has no symptom; 1 means less than 20% leaves wilted; 2 means 

20% to less than 60% leaves wilted; 3 means 60% to less than 100% leaves wilted; 4 

means all leaves wilted; 5 means plant collapsed or dead. PWP at 6 weeks after 

transplanting was calculated. 

Relative area under the disease progress curve (RAUDPC) (Fry, 1978) was calculated 

following: First PWP was used to calculate area under the disease progress curve 

(AUDPC), which expresses the dynamics of disease development according to Shaner and 

Finney (1977), following the formula of AUDPC = ∑i=1 to n-1 [(Yi +1 +Yi)/2] x [Xi+1 – Xi], 

where Yi is percentage of wilted plants at the ith observation (i = 1 being the first 

observation point), and Xi is time at the ith observation, and n is total number of 
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observation. Second AUDPC was then divided by the number of days from inoculation to 

the end of observation period. 

To determine the presence of the pathogen in symptomless plants at the time of final 

rating, a printing method was used. Symptomless plants were harvested, and roots and all 

leaves were removed. The remaining stem was washed with tap water, rinsed in distilled 

water, sprayed with 70% alcohol, and blotted dry on paper towels. Each plant was 

sectioned at the stem midpoint and 2cm from stem tip with a sterilized razor blade. The 

cut surface of the top section and lower surface of middle section were pressed tightly on 

the plate surface for 5 seconds per print and five prints were made continuously for each 

cut surface. The medium used is a semi-selective medium of R. solanacarum called SM1 

(Tsai et al 1985). The SM1 plates were incubated at 30oC for 3 days. When fluidal 

bacterial mass was observed on at least one print, the plant was scored as positive for 

pathogen colonization; then percentage of colonized plants (PCP) was calculated for each 

section following the formula of PCP = ((NC + NW)/NT) x 100, where NT is number of 

total plants, NW is number of wilted plants, and NC is number of plants shown positive 

colonization. If there were doubts about the identity of cultured bacteria, bacterial mass 

was streaked on SM1 for observing typical colonies of the pathogen. 

3.2.3 Experimental design and data analysis 

For evaluating wild tomatoes, the accessions were evaluated over 7 batches with one week 

apart among batches due to limited space in the greenhouse. Each evaluation was laid out as 

a randomized complete block design (RCBD). Accessions with final percentage of wilted 

plants of equal or smaller than 60% were selected for confirmation. Four confirmation trials 

were conducted overtime at different seasons and greenhouse locations and against different 

pathogen strains (Table 3.2). When more than one strain was used in one experiment, split-

plot design was followed with “strain” as the main-plots and “plant materials” as the 

subplots. Screening of introgression lines of LA716 at seedling stage was conducted in the 

same way. All experiments consisted of 2 replications and 10 plants per replication. When 

evaluating LA716 introgression lines in the field, RCBD was followed with 3 replications 

and 12 plants per replication at spacing of 60cm between lines and 40cm between rows in a 

plot size of 2.4m x 1m. Basal fertilizer (15% N, 15 % P2O5, 15% K2O, and 4% MgO) was 

applied broadcasting over the field before building beds with 120kg per hectare.  
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All percentage data were transformed by arcsine square-root for the analyses of variance. 

In the combined analysis of variance across trials, and in trials involving more than one 

strain where the split plot design was used, the data was analyzed using the PROC MIXED 

procedure of SAS (SAS Institute, Inc., Cary, NC). The entry mean comparison was 

performed under each trial or strain when the entry x trial or entry x strain was significant. 

Significant differences were determined at P<0.05 by LSD. 
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3.3 RESULTS 

3.3.1 Resistance to bacterial wilt in wild tomatoes 

Evaluation of wild tomato germplasm was conducted over seven batches against R. 

solanacarum strain Pss186 from February 8, 2006 to July 21, 2006. Over the seven 

screenings, maximum temperature ranged from 31oC to 32.1oC and minimum temperature 

from 25.7oC to 27.3oC. These conditions were favorable to the development of bacterial wilt, 

which was indicated by the complete wilting of L390 plants in each test (Table 3.1). The 

similar disease pressure over batches resulted in a similar severity on the resistant control 

H7996, which had PWP at four weeks after inoculation ranged from 0% to 5%. Final 

percentage of wilted plants ranged from 10% to 100% among 253 genotypes screened. Most 

accessions were highly susceptible excluded a few of S. pennelli and S.  chmielewskii (Table 

3.1). Accessions having PWP equal to or less than 60% were selected for confirmation. 

These included one accession of S. chmielewskii, LA1317, and seven accessions of S. 

pennellii, LA1926, LA1943, LA716, LA1272, LA1656, LA1732, and TL01845.  

Table 3.1 Summary of preliminary screening of wild tomatoes over seven batches1 for 
resistance to a R. solanacearum strain Pss186 (race 1, biovar 4). 

Percentage of wilted plants 
Species2 

Range3 Mean3 
S.cheesmanii (14) 90.0-100.0 98.7 
S. chilense (17) 100.0 100.0 
S. chmielewskii (10) 50.0-100.0 87.8 
S. lycopersicum (52) 85.0-100.0 98.5 
S. habrochaites (37) 88.9-100.0 99.4 
S. neorickii (10) 90.0-100.0 98.5 
S. pennellii (19) 10.0-100.0 69.8 
S. peruvianum (42) 90.0-100.0 99.2 
S. pimpinellifolium (51) 80.0-100.0 97.5 
H7996 (Resistant control) 0.0-5.0 3.0 
L390 (Susceptible control) 100.0 100.0 

1Temperature ranges over batches were 31-32.1oC (Max.)/25.7-27.3oC 
(Min.); relative humidity ranged from 75.5-86.2% (Max.) to 57.5-74.5% 
(Min) over batches. 
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2The number of accessions screened of each species was indicated in the 
parentheses.  
3Values were ranges and means of percentage of wilted plants of 
accessions of each species and the controls over batches. 

3.3.2 Durability of selected resistant accessions 

In order to evaluate the durability of resistance in selected wild accessions, the materials 

were evaluated under different environments and against different R. solacearum strains. 

Information about each trial was summarized in Table 3.2.  

Table 3.2 Information of confirmation trials 

Trial Inoculation date 
(day/month/year) Strain used Max. T1 Min. T1 Max. RH1 Min. RH1 

1 23/06/2006 Pss186 31.9 ± 1.6 27.3 ± 0.9 85.1 ± 2.1 74.4 ± 4.9 
2 09/08/2006 Pss4, Pss186 28.9 ± 1.6 26.4 ± 0.8 90.9 ± 3.8 55.8 ± 5.0 
3 13/10/2006 Pss4, Pss186, Pss190 30.5 ± 1.8  25.0 ± 2.5 87.4 ± 6.3 68.4 ± 4.0 
4 26/12/2006 Pss190 29.0 ± 2.2  25.7 ± 1.4 62.2 ± 8.2 55.9 ± 6.5 

1Values were means of each record from inoculation day until the last recording day; Max 
T: maximum temperature; Min. T: minimum temperature; Max. RH: maximum relative 
humidity; Min. RH: minimum relative humidity.    

Trials 1 and 2 were conducted in the summer. Trial 1 was conducted in a screen-house 

without temperature control facility, and Trial 2 in a glasshouse with temperature control 

facility; this made the temperature range narrower and the relative humidity range larger in 

Trial 2. Trial 3 was conducted in the autumn, while Trial 4 was in the early winter. Both 

trials were conducted in a glasshouse with heating facility. Reactions of selected 

accessions to Pss186 were confirmed three times (Table 3.3). Combined analysis showed a 

significant interaction between trial and entry. The controls, H7996 and L390, were not 

significantly different over the trials. In general, all tested accessions had similar reactions 

over trials, excepted LA716, LA1317, and LA1656. These accessions displayed a higher 

disease incidence in Trial 1. This could be due to the higher temperature and relative 

humidity in this trial. Resistance in LA1317 could be more sensitive to Trial 1 conditions, 

which had a significant higher disease incidence. LA1943 and LA1732 were more durable 

than the others against Pss186, as they had similar reactions as H7996 in two of three 

confirmation trials.  
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Table 3.3 Percentage of wilted plants of selected accessions at 28 days after inoculation 
with Pss186 in 3 confirmation trials 

Entry Trial 1 Trial 2 Trial 3 
S. chmielewskii          
LA1317 80.0 b1 A2 25.0 cd B nt   
S. pennelli          
LA716 40.0 cd A 35.0 cd A 0.0 d B 
LA1272 64.3 c A 55.0 bc A nt   
LA1656 40.0 cd A 0.0 e B 10.0 cd AB 
LA1732 20.0 de A 55.0 bc A 40.0 b A 
LA1926 55.0 cd A 75.0 ab A nt   
LA1943 25.0 cde A 35.0 cd A 10.0 cd A 
TL01845 nt3   20.0 de A 25.0 bc A 
H7996 5.0 e A 0.0 e A 15.0 bcd A 
L390 100.0 a A 90.0 a A 100.0 a A 

1Means followed by the same small letters were not significantly different 
within the same column based on LSD0.05 (within trial comparison). 
2Means with followed by the same capital letters were not significantly different 
within the same row based on LSD0.05 (between trial comparisons).  
”nt“ means the accession was not tested in that particular trial. 

The five S. pennellii accessions, which showed a lower incidence to Pss186, were selected 

and inoculated with two other strains. The aggressiveness displayed by Pss4, Pss186, and 

Pss190 was as expected (Table 3.4). Pss4 and Pss186 caused similar percentage of wilted 

plants on H7996 plants. And Pss190 caused a complete wilting on H7996. The entry x 

strain interaction was significant, indicating individual entries had different reactions 

against different strains. All entries were highly susceptible to Pss4 and showed similar 

reactions to Pss186 and Pss190 based on visual wilting symptoms. LA716 was the most 

resistant, which had 0% of wilted plants against Pss186 and Pss190. The survived plants 

were assayed to determine whether they were colonized by the pathogen. The percentages 

of colonized plants were always lower in the top-section than in the middle-section of 

stems on plants of all entries inoculated with both strains. And all the resistant accessions 

were not immune to R. solanacearum.  
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Table 3.4 Percentage of wilted plants (PWP) and percentage of colonized plants at mid-stem (PCP-m) and top-stem (PCP-t) of selected 
accessions at 28 days after inoculation with Pss186, Pss190 and Pss4 in Trial 3 

 PWP  PCP-m  PCP-t 
Entry Pss4 Pss186 Pss190  Pss186 Pss190  Pss186 Pss190 
LA716 100.0 a1 A2 0.0 c B 0.0 c B  25.0 b A 0.0 c A  5.0 bc A 0.0 c A 
LA1656 100.0 a A 10.0 bc B 15.0 bc B  10.0 b A 35.0 bc A  5.0 bc A 10.0 c A 
LA1732 100.0 a A 40.0 b B 50.0 b B  45.0 b A 55.0 b A  40.0 b A 40.0 b A 
LA1943 100.0 a A 10.0 bc B 20.0 bc B  10.0 b A 35.0 bc A  0.0 c A 10.0 c A 
TL01845 100.0 a A 25.0 b B 10.0 bc B  45.0 b A 15.0 bc A  30.0 b A 5.0 c B 
H7996 5.0 b B 15.0 bc B 100.0 a A  15.0 b B 100.0 a A  10.0 bc B 100.0 a A 
L390 100.0 a A 100.0 a A 100.0 a A  100.0 a A 100.0 a A  100.0 a A 100.0 a A 

1Means in the same column followed by the same small letters were not significantly different based on LSD0.05 (within strain comparison). 
2 Means in the same row followed by the same capital letters were not significantly different based on LSD0.05 (between strain 
comparisons).  
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The five tested S. pennellii accessions had similar tolerance to Pss186 as H7996 resulted in 

similar percentage of colonized plants. The H7996 was highly susceptible to Pss190, while 

the S. pennellii accessions displayed good tolerance to Pss190, which have 0% to 10% of 

colonized plants, excepted LA1732. 

Reactions of selected accessions to Pss190 were confirmed in another experiment, and 

combined analysis did not show significant interaction between trial and entry (Table 3.5). 

The controls, H7996 and L390, were fully susceptible to Pss190 in the two trials. LA1317 

and LA1926 showed a susceptible reaction similar to the controls H7996 and L390. 

Among the entries, LA716 and TL01845 were the most resistant over two trials. 

Resistance to Pss190 in these wild tomatoes should be confirmed in summer under higher 

mean temperature and relative humidity conditions to ensure their durability. 

Table 3.5 Disease incidence of selected accessions at 28 days after inoculation when 
inoculated with Pss190 in 2 confirmation trials 

Entry Trial 3 Trial 4 

S. chmielewskii     

LA 1317 nt   100.0 a  

S. pennelli     

LA716 0.0 c1  15.0 bc  

LA1272 nt   55.0 b  

LA1656 15.0 bc  25.0 b  

LA1732 50.0 b  60.0 b  

LA1926 nt   75.0 ab  

LA1943 20.0 bc  40.0 b  

TL01845 10.0 bc  0.0 c  

H7996 100.0 a  95.0 a  

L390 100.0 a  100.0 a   
1Means followed by the same small letters were not 
significantly different in column-wide comparison based 
on LSD0.05 (within trial comparison). 
”nt” means not-tested. 
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3.3.3 Reactions of LA716 introgression lines to Pss186 

Introgression lines (ILs) of LA716 were evaluated in greenhouse and field to find possible 

locations of QTL associated with the resistance in LA716 to Pss186. Under the 

greenhouse conditions (mean max. temperature: 31.8oC, mean min. temperature: 29.4oC), 

ILs of LA716 were highly susceptible when inoculated with inoculum density of 108 

cfu/ml. Percentage of wilted plants of ILs ranged from 80% to 100%. All tested ILs had 

similar severity and disease progress compared to M82 and the susceptible check L390 

(data not showed). Presence of high temperature range during this trial should contribute 

to this high severity, which was observed among the three screening trials of PSs186 

(Table 3.3). Seedlings of the ILs were inoculated with lower inoculum dose and 

transplanted to the field. Here, the mean temperature ranged from 17.9oC to 26.6 oC and 

the total rainfall was 47mm during the trial. Judging from the control lines, disease 

pressure in the field trial was lower than that in the greenhouse trial due to the lower 

temperature and lower initial inoculum dose. Plants of S. pennellii LA716 was not 

adopted to high soil moisture conditions in the field. During the field trial, the field was 

irrigated right after transplanting and it rained right after transplanting (9mm in the first 4 

days), which prolonged the high soil moisture condition. Only four plants per replication 

survived one week after transplanting; however, all the ILs grew well in the trial. The 

percentage of wilted plants of introgression lines ranged from 27.8 % to 100%; 

meanwhile that of LA716 and M82 were 25% and 86.1%, respectively. When evaluating 

with final percentage of wilted plants, only LA3501 had significantly lower incidence 

than M82 and was not significantly different from LA716. Analyzing data of relative area 

under the disease progress curve (RAUPDC), which expresses the dynamics of the disease 

development, all the ILs displayed significant higher RAUPDC than LA716 except four 

ILs LA3476, LA3501, LA3510, and LA3517 showed significantly slower disease 

progress than M82 (Table 3.6). The resuslt indicated possible QTLs located in the 

introgressed segments present in these four lines. 
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Table 3.6 Percentage of wilted plants (PWP) and relative area under disease progress curve 
(RAUPDC) of selected introgression lines after inoculation with Pss186 in the field in 
comparisons to LA716 and M82 

 

Entry PWP1 LA716 M82  RAUPDC2 LA716 M82 

LA3476 (IL1-1) 72.2 ** ns  54.6 ** * 
LA3501 (IL6-2) 27.8 ns **  28.5 * ** 
LA3510 (IL8-1) 63.9 ** ns  47.6 ** ** 
LA3517 (IL10-3) 66.7 ** ns  53.2 ** * 
H7996 0.0 * **  0.0 ** ns 
L390 91.7 ** ns  73.4 ** ns 
LA716 25.0    18.8   
M82 86.1    67.7   

1 Means of final percentage of wilted plants (6 weeks after transplanting) 
2 Means of RAUPDC: relative area under the disease progress curve 
3 Mean comparisons between LA 716 and M82 with introgression lines by 
LSD (** means significant at P<0.01; * means significant at P<0.05; ns: not 
significant).
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3.4 DISCUSSION 

Planting resistant materials has been the main strategy to control tomato bacterial wilt 

caused by race 1 strains of R. solanacearum. However, limited resistance sources have 

been used in breeding programs (Scott et al. 2005) and most of them are not durable across 

locations and strains. This study evaluated resistance in 252 accessions of tomato 

germplasm belonging to 9 species with the idea to identify new diverse resistance sources 

to overcome the diverse strains of the pathogen. 

In this study, resistance to race 1 strains of R. solanacarum was identified from wild 

tomato accessions, particularly S. pennellii. Using a R. solanacearum strain, Pss186, a total 

of 8 wild accessions were found to have significant tolerance to bacterial wilt. The 

frequency of finding resistance sources from tomato germplasm has been low as shown by 

previous studies. Jaworski et al. (1987) evaluated 2,064 tomato accessions against race 1 

biovar 1 strains and only identified four selections to be highly tolerant. Among them, 

three selections were from S. lycopersicum and one from S. pimpinellifolium. Similarly, 

Gonzalez and Summers (1996) found five accessions to have some degree of resistance 

against 2 strains of race 1 biovar 1 and eight accessions were resistance to 2 strains of race 

1 biovar 3 among 233 accessions screened. More recently, partial resistance to a strain of 

race 3 was detected in one accession belonging to S. peruvianum, and one S. lycopersicon 

var. cerasiforme accession among the 82 tomato accessions screened (Carmeille et al. 

2006). Summarizing results from previous studies, it may be worthwhile to evaluate more 

intensively the accessions of S. lycopersicon var. cerasiforme, S. pimpinellifolium, and S. 

pennellii for resistance to the pathogen. 

Durability of selected resistance sources is a concern, as both temperature and strain can 

affect the final severity of bacterial wilt on tomato. It is known that several tomato varieties 

displayed higher severity of bacterial wilt under higher temperature under controlled 

environment (Krausz and Thurston, 1975) and in the field (Prior et al. 1996). The 

resistance to Pss186 in S. pennelli LA1943, LA1926, LA1272, LA1732 and TL01845 was 

consistent under different seasons and environmental conditions. Another two S. pennelli 

LA716 and LA1656 as well as S. chmielewskii LA1317 could be sensitive to high 
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temperature, as they expressed higher disease incidence, but not complete breakdown, in 

the first trial, when temperature was higher.  

Strain specific nature of resistance was found in S. pennellii accessions. These accessions 

were resistant to Pss186 and Pss190, but not Pss4. In tomato, strain specific nature of 

resistance to R. solanacearum has been reported (Krausz and Thurston, 1975). And 

strain-specific QTLs have already been identified in H7996, a resistant tomato variety 

(Danesh and Young, 1994; Wang et al. 2000). Therefore using well-characterized strains 

in screening is important for future resistance deployment. H7996 was fully susceptible 

to Pss190 but resistant to Pss186 and Pss4. In the previous studies, H7996 was found to 

be the most stable resistant source against to different strains of race 1 and race 3 as well 

(Carmeille et al. 2006; Wang et al. 1997). Therefore, integrating resistance in H7996 and 

S. pennelli accessions in breeding lines would increase durability of resistance against 

the pathogen.   

In tomato, resistance to diseases including Fusarium wilt (Fusarium oxysporum f. sp. 

lycopersici), stem canker (Alternaria alternata f. sp. lycopersic), tobacco etch virus 

(Bournival et al. 1990; Erik et al. 1995; Legnani et al. 1996; Reis et al. 2004) has been 

identified in S. pennellii accessions. However, this is the first report of S. pennellii 

accessions being resistant to bacterial wilt. Since S. pennellii LA716 was found to be 

resistant to race 1 strain Pss186 of R. solanacearum in this study, the introgression lines of 

LA716, which completely covered the genome of LA716 (Eshed and Zamir, 1994), were 

evaluated against Pss186. In the field evaluation, which had lower disease pressure, only 

LA3501 (IL6-2) showed a similar level of resistance as LA716. The IL6-2 carried an 

introgression segment on chromosome 6, where resistance gene Bwr-6 located (Carmeille 

et al. 2006). Anchor RFLP markers in the segments, like TG25 (Danesh and Young, 1994), 

TG153 (Carmeille et al. 2006; Danesh and Young, 1994; Mangin et al. 1999; Thoquet et 

al. 1996; Wang et al. 2000), TG162 and TG240 (Mangin et al. 1999; Wang et al. 2000) 

have been detected to be associated with resistance to bacterial wilt in H7996 when 

challenging with different strains of race 1 and race 3. Therefore, the resistance gene in this 

region could be essential to durable resistance to bacterial wilt in tomato. Due to the 

missing of LA3487 (IL3-2) in our study, we could not rule out the possible association of 

this chromosomal region with the resistance in LA716, although no QTL has been detected 

in this region.  
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Our strategy of using a less aggressive strain for preliminary screening and then 

confirming with more diverse strains has proved to be efficient. In this study, we 

identified new resistance sources from wild tomato accessions. Among them, the S. 

pennellii accessions LA1656, LA1943 and TL01845 showed durable resistance to 

Pss186 and Pss190, but not to Pss4. Resistance in these wild accessions needs to be 

transferred into S. lycopersicum background before it can be used in breeding program 

for improving resistance. 
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3.5 SUMMARY   

A total of 252 wild Solanum accessions and one population of forty-nine introgression 

lines (ILs) were screened for resistance to a race 1 biovar 4 strain Pss186 of Ralstonia 

solanacearum. Most wild tomato accessions were highly susceptible. However, five wild 

tomato accessions of S. pennellii, i.e. LA1943, LA716, LA1656, LA1732 and TL01845 

were resistant to strain Pss186. These accessions were challenged against strains Pss4 and 

Pss190, which were more aggressive. All the five S. pennellii accessions were susceptible 

to Pss4, but displayed high to moderate resistance to Pss190, a virulent strain that made 

H7996 susceptible, with percentage of wilted plant ranged from 0 to 60%. Thus, the results 

found in this study evidencing that the presence of strain-specific resistance. Only IL6-2, 

which has an introgression segment on chromosome 6, was found to be resistant to Pss186 

among screened ILs. This confirms the importance of resistance loci on chromosome 6 that 

were identified by other studies. These new resistant sources will provide breeders more 

resources to breed for durable resistance to bacterial wilt of tomato.  
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GENERAL CONCLUSIONS 

Resistance to R. solanacearum in a tomato line Hawaii 7996 is stable and controlled by 

several genes. Genetic polymorphism between Hawaii 7996 and WVa700, the two parents 

of the mapping population used in this study, is limited. Thus, the linkage map 

constructed in this study still has major gaps among chromosomes. QTLs on chromosome 

6, LGA (possibly chromosome 12) and LGB were associated with resistance to several 

race 1 strains under different environments, suggesting they play a major role in resistance 

to race 1 strains of R. solanacearum. Resistance mechanism in Hawaii 7996 appears to be 

related to the suppression of the pathogen colonization, as similar QTLs were found from 

visual symptom data as well as colonization data. In addition, a QTL on chromosome 2 

with resistance contributed from the susceptible parent Wv700 was identified. QTL 

analysis results also suggested plausible strain-specific and enviroment-specific QTLs that 

could modify the expression of the resistance traits. This is the first report on association 

between bacterial wilt resistance and  fruit weight, citric acid, and fruit color. Strain 

specific nature of resistance was found in S. pennellii accessions. S. pennellii accessions 

LA1656, LA1943 and TL01845 showed durable resistance to Pss186 and Pss190, but not 

to Pss4 and resistance in LA1317, LA716 and LA1656 could be sensitive to high 

temperature. Results gained from screening a set of  introgression lines of LA716 

indicated genetic control of the resistance in S. pennellii is not simple and a possible QTL 

is presumably located on chromosome 6. These new resistant genes in wild accessions 

need to be transferred into S. lycopersicum background before they can be used in 

breeding programs for improving resistance. 
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APPENDIX TABLES 
 
 

Appendix table 1.1 Summary of polymorphism of AFLP selective primer pairs used in 
screening F9 RILs derived from cross H7996 x WVa700 

No. of primer 
combination 

Primer 
combination

No. of 
bands 

No. of 
polymorphic bands 

Percent 
polymorphism

2 E1&M2 46 5 10.9 
4 E1&M4 55 2 3.6 
10 E2&M2 50 2 4.0 
11 E2&M3 43 3 7.0 
14 E2&M6 61 5 8.2 
16 E2&M8 58 1 1.7 
34 E3&M2 38 5 13.2 
19 E3&M3 46 7 15.2 
20 E3&M4 53 4 7.5 
21 E3&M5 51 4 7.8 
23 E3&M7 53 5 9.4 
26 E4&M2 32 1 3.1 
35 E4&M3 36 4 11.1 
36 E4&M4 58 3 5.2 
37 E4&M5 43 9 20.9 
38 E4&M6 41 4 9.8 
39 E4&M7 31 2 6.5 
41 E5&M1 32 2 6.3 
44 E5&M4 24 3 12.5 
46 E5&M6 28 4 14.3 
60 E8&M4 34 3 8.8 
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Appendix table 1.2 Molecular weight (MW), band presented, and χ2 test for goodness of fit 
for 1:1 Mendelian segregation ratio of AFLP markers 

Band presented in Frequency Marker 
number 

Marker 
code 

MW 
(bp) H7996 WVa700 H W χ2 value 

1 afh 260 + -  99 86 0.91  
2 afh2a 136 + -  103 82 2.38  
3 afh2b 137 - +  101 84 1.56  
4 afh2c 221 + -  104 81 2.86  
5 afh2d 225 + -  104 81 2.86  
6 afh2e 434 + -  140 45 48.78 ** 
7 afh4a 130 - +  80 99 2.02  
8 afh4b 243 - +  55 122 25.36 ** 
9 afh10a 173 + -  98 89 0.43  
10 afh10b 270 + -  100 87 0.90  
11 afh11a 124 - +  83 99 1.41  
12 afh11b 367 + -  65 117 14.86 ** 
13 afh14a 87 - +  108 80 4.17 ** 
14 afh14b 121 - +  62 126 21.79 ** 
15 afh14c 270 + -  83 105 2.57  
16 afh14d 289 + -  140 48 45.02 ** 
17 afh14e 342 + -  77 111 6.15 ** 
18 afh16a 245 - +  104 79 3.42  
19 afh19a 134 + -  96 89 0.26  
20 afh19b 169 + -  77 108 5.19 ** 
21 afh19c 172 + -  77 108 5.19 ** 
22 afh19d 303 - +  84 101 1.56  
23 afh19e 349 + -  75 110 6.62 ** 
24 afh19f 395 - +  138 47 44.76 ** 
25 afh19g 450 - +  141 43 52.20 ** 
26 afh20a 98 - +  108 78 4.84 ** 
27 afh20b 135 - +  90 96 0.19  
28 afh20c 186 - +  65 121 16.86 ** 
29 afh21a 103 - +  67 120 15.02 ** 
30 afh21b 194 + -  116 70 11.38 ** 
31 afh21c 232 - +  176 10 148.15 ** 
32 afh21d 310 + -  81 105 3.10  
33 afh23a 142 + -  108 77 5.19 ** 
34 afh23b 210 - +  68 117 12.98 ** 
35 afh23c 237 - +  126 59 24.26 ** 
36 afh23d 240 - +  174 11 143.62 ** 
37 afh23e 378 - +  91 88 0.05  
38 afh34a 81 + -  136 49 40.91 ** 
39 afh34b 354 - +  167 18 120.01 ** 
40 afh34c 386 + -  100 80 2.22  
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Appendix Table 1.2 continued 

Critical χ2 values for 1 degree of freedom: 3.841 (P=0.05) and 6.635 (P=0.01). 
 

 

Band presented Frequency Marker 
number 

Marker 
code 

MW 
(bp) H7996 WVa700 H W χ2 value 

41 afh34d 421 + -  113 72 9.09 ** 
42 afh34e 450 + -  88 97 0.44  
43 afh35a 191 - +  69 117 12.39 ** 
44 afh35b 193 - +  69 117 12.39 ** 
45 afh35c 271 + -  112 74 7.76 ** 
46 afh35d 487 - +  102 84 1.74  
47 afh36a 122 + -  145 40 59.59 ** 
48 afh36b 165 - +  75 110 6.62 ** 
49 afh36c 369 + -  90 95 0.14  
50 afh37a 118 - +  89 96 0.26  
51 afh37b 140 + -  105 80 3.38  
52 afh37c 159 + -  137 48 42.82 ** 
53 afh37d 162 + -  137 48 42.82 ** 
54 afh37e 196 - +  181 5 166.54 ** 
55 afh37f 209 - +  78 107 4.55 ** 
56 afh37g 297 + -  53 133 34.41 ** 
57 afh37h 322 - +  97 88 0.44  
58 afh37i 445 - +  115 70 10.95 ** 
59 afh38a 127 + -  74 112 7.76 ** 
60 afh38b 151 + -  80 106 3.63  
61 afh38c 163 + -  108 78 4.84 ** 
62 afh38d 165 + -  107 79 4.22 ** 
63 afh39a 109 + -  82 104 2.60  
64 afh39b 276 - +  75 111 6.97 ** 
65 afh41a 164 + -  77 110 5.82 ** 
66 afh41b 166 + -  77 110 5.82 ** 
67 afh44a 95 + -  136 49 40.91 ** 
68 afh44b 104 + -  136 49 40.91 ** 
69 afh44c 115 - +  96 89 0.26  
70 afh46a 158 + -  104 81 2.86  
71 afh46b 161 - +  107 77 4.89 ** 
72 afh46c 370 + -  72 115 9.89 ** 
73 afh46d 411 - +  133 53 34.41 ** 
74 afh60a 89 - +  67 116 13.12 ** 
75 afh60b 138 + -  138 44 48.55 ** 
76 afh60c 360 - +  75 110 6.62 ** 
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Appendix table 1.3  Summary of polymorphism of SNP primers used in screening the two 
parents H7996 and WVa700 

MW (bp) 
No. Primer 

name Chr. Restriction 
enzyme used H7996 WVa700 

1 LEOH8.1 9  180 180 
2 LEOH10 4 BsaJ I 200 200 
3 LEOH16.1 5  180 180 
4 LEOH16.2 5 BsaW I 200 200 
5 LEOH17.1 multiple  400 400 
6 LEOH19 12 BsaB I 300 300 
7 LEOH23.1 2 Msp I 200 200 
8 LEOH31.3 9 Msp I/Mse I 400/300 400/300 
9 LEOH36 1 Bcl I 1000 1200 
10 LEOH37 4 NmuC I 100 100 
11 LEOH40.1 7 NmuC I 450 450 
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Appendix table 1.4 Molecular weight (MW) and χ2 test for goodness of fit for 1:1 
Mendelian segregation ration of SSR markers 

MW (bp) Frequency No. Primer 
code 

Marker 
code H7996 WVa700 H W 

χ2 value 

1 01-138.0 s01138.0 211 213 81 102 2.41  
2 02-022.0 s02022.0 144 140 100 76 3.27  
3 02-036.6 s02036.6 180 181 93 79 1.14  
4 03-074.1 s03074.1 184 181 87 86 0.01  
5 03-099.0 s03099.0 281 285 98 82 1.42  
6 04-015.0 s04015.0 391 389 95 79 1.47  
7 04-037.0 s04037.0 249 253 79 90 0.72  
8 04-054.5 s04054.5 374 358 69 111 9.80 **
9 04-056.0 s04056.0 364 348 67 107 9.20 **
10 04-058.0 s04058.0 144 147 68 111 10.33 **
11 04-058.1 s04058.1 266 223 69 110 9.39 **
12 06-006.1 s06006.1 188 191 101 79 2.69  
13 06-099.8 s06099.8 402 399 103 71 5.89 **
14 07-002.0 s07002.0 349 355 101 76 3.53  
15 08-001.0 s08001.0 257 292 100 77 2.99  
16 08-055.0 s08055.0 269 273 96 88 0.35  
17 08-055.1 s08055.1 322 325 96 85 0.67  
18 09-051.0 s09051.0 204 227 75 101 3.84 * 
19 09-058.0 s09058.0 268 268 75 102 4.12 **
20 10-033.1 s10033.1 236 232 82 106 3.06  
21 10-033.2 s10033.2 310 306 81 95 1.11  
22 10-034.5 s10034.5 313 306 83 105 2.57  
23 10-075.0 s10075.0 211 208 97 78 2.06  
24 11-040.0 s11040.0 331 342 133 46 42.28 **
25 SSR3 SSR3 111 95 72 89 1.80  

Critical χ2 values for 1 degree of freedom: 3.841 (P=0.05) and 6.635 (P=0.01). 

 

Appendix table 1.5 Chi-square test (χ2) for goodness of fit for 1:1 Mendelian segregation 
ration of RFLP markers 

Frequency No. Marker 
name H W χ2 value 

1 K4F8 66 39 6.94 ** 
2 TG118F8 63 34 8.67 ** 
3 TG153F8 54 44 1.02  
4 TG178F8 34 34 0.00  
5 TG515F8 72 31 16.32 ** 
6 TG564F8 37 49 1.67  

Critical χ2 values for 1 degree of freedom: 3.841 (P=0.05) and 6.635 (P=0.01). 
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Appendix table 1.6 Chi-square test (χ2) for goodness of fit for 1:1 Mendelian segregation 
ration of DArT markers 

Frequency No. Marker name H W χ2 value 

1 D1232A14 67 86 2.36  
2 D1232A24 51 105 18.69 ** 
3 D1232B11 118 50 27.52 ** 
4 D1232B15 104 65 9.00 ** 
5 D1232B17 96 79 1.65  
6 D1232B18 88 68 2.56  
7 D1232B24 103 49 19.18 ** 
8 D1232B7 90 70 2.50  
9 D1232C22 85 91 0.20  
10 D1232C8 97 74 3.09  
11 D1232D2 65 92 4.64 ** 
12 D1232D23 77 88 0.73  
13 D1232D4 57 100 11.78 ** 
14 D1232E10 96 77 2.09  
15 D1232E11 115 43 32.81 ** 
16 D1232E12 82 86 0.10  
17 D1232E16 98 52 14.11 ** 
18 D1232E4 71 94 3.21  
19 D1232E6 38 125 46.44 ** 
20 D1232F20 89 74 1.38  
21 D1232F3 89 77 0.87  
22 D1232G13 55 109 17.78 ** 
23 D1232G16 88 75 1.04  
24 D1232G19 83 75 0.41  
25 D1232G3 61 105 11.66 ** 
26 D1232H15 105 66 8.89 ** 
27 D1232I10 59 105 12.90 ** 
28 D1232I17 90 73 1.77  
29 D1232I3 72 100 4.56 ** 
30 D1232I4 119 49 29.17 ** 
31 D1232J2 107 42 28.36 ** 
32 D1232J20 72 100 4.56 ** 
33 D1232J24 119 51 27.20 ** 
34 D1232J3 67 92 3.93 ** 
35 D1232K1 93 81 0.83  
36 D1232K17 61 101 9.88 ** 
37 D1232K22 77 81 0.10  
38 D1232K4 100 68 6.10 ** 
39 D1232K7 95 78 1.67  
40 D1232L10 74 75 0.01  
41 D1232L14 87 76 0.74  
42 D1232L16 95 75 2.35  
43 D1232L19 72 95 3.17  
44 D1232L20 39 130 49.00 ** 
45 D1232L22 75 96 2.58  
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Appendix Table 1.6 continued 

Frequency No. Marker name H W χ2 value 

46 D1232M2 78 85 0.30  
47 D1232M4 48 97 16.56 ** 
48 D1232M9 79 73 0.24  
49 D1232N10 89 76 1.02  
50 D1232N11 39 126 45.87 ** 
51 D1232N20 84 88 0.09  
52 D1232N22 96 73 3.13  
53 D1232N23 99 71 4.61 ** 
54 D1232O10 87 75 0.89  
55 D1232O13 72 101 4.86 ** 
56 D1232O23 71 104 6.22 ** 
57 D1232P10 96 78 1.86  
58 D1232P13 54 97 12.25 ** 
59 D1232P8 68 101 6.44 ** 
60 D1233A12 86 76 0.62  
61 D1233A16 92 79 0.99  
62 D1233A21 53 107 18.23 ** 
63 D1233B1 94 82 0.82  
64 D1233B13 101 48 18.85 ** 
65 D1233B18 50 113 24.35 ** 
66 D1233B20 108 43 27.98 ** 
67 D1233B23 100 72 4.56 ** 
68 D1233B4 92 75 1.73  
69 D1233B9 89 76 1.02  
70 D1233C12 108 52 19.60 ** 
71 D1233C13 95 79 1.47  
72 D1233C15 91 73 1.98  
73 D1233C17 66 89 3.41  
74 D1233C21 102 67 7.25 ** 
75 D1233C23 49 112 24.65 ** 
76 D1233C3 103 64 9.11 ** 
77 D1233C6 103 64 9.11 ** 
78 D1233D13 94 73 2.64  
79 D1233D18 64 107 10.81 ** 
80 D1233D20 96 73 3.13  
81 D1233D21 94 66 4.90 ** 
82 D1233E10 63 108 11.84 ** 
83 D1233E13 86 71 1.43  
84 D1233E15 100 75 3.57  
85 D1233E22 54 112 20.27 ** 
86 D1233E8 100 72 4.56 ** 
87 D1233E9 97 73 3.39  
88 D1233F12 92 75 1.73  
89 D1233F15 96 80 1.45  
90 D1233F16 95 76 2.11  
91 D1233F3 72 87 1.42  
92 D1233F4 60 109 14.21 ** 
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Appendix Table 1.6 continued 

Frequency No. Marker name H W χ2 value 

93 D1233G16 115 42 33.94 ** 
94 D1233G20 96 80 1.45  
95 D1233G23 109 45 26.60 ** 
96 D1233G6 80 96 1.45  
97 D1233H11 77 95 1.88  
98 D1233H12 70 76 0.25  
99 D1233H14 70 78 0.43  
100 D1233H18 93 78 1.32  
101 D1233H22 96 70 4.07 ** 
102 D1233H24 85 89 0.09  
103 D1233H3 77 97 2.30  
104 D1233H6 117 56 21.51 ** 
105 D1233I1 97 75 2.81  
106 D1233I2 76 88 0.88  
107 D1233I24 99 67 6.17 ** 
108 D1233I4 52 101 15.69 ** 
109 D1233I6 92 76 1.52  
110 D1233J15 47 108 24.01 ** 
111 D1233J19 92 72 2.44  
112 D1233J2 93 74 2.16  
113 D1233J20 100 74 3.89 ** 
114 D1233J21 83 88 0.15  
115 D1233J23 94 75 2.14  
116 D1233J4 27 136 72.89 ** 
117 D1233J7 92 70 2.99  
118 D1233J8 94 73 2.64  
119 D1233J9 58 112 17.15 ** 
120 D1233K10 118 55 22.94 ** 
121 D1233K13 39 111 34.56 ** 
122 D1233K15 140 25 80.15 ** 
123 D1233K19 91 74 1.75  
124 D1233K2 48 111 24.96 ** 
125 D1233K20 90 71 2.24  
126 D1233K23 91 78 1.00  
127 D1233K24 70 98 4.67 ** 
128 D1233K3 119 50 28.17 ** 
129 D1233K6 96 71 3.74  
130 D1233K8 83 78 0.16  
131 D1233L11 83 87 0.09  
132 D1233L15 96 74 2.85  
133 D1233L22 73 86 1.06  
134 D1233L5 94 76 1.91  
135 D1233L6 86 75 0.75  
136 D1233L7 95 75 2.35  
137 D1233L9 59 111 15.91 ** 
138 D1233M1 75 74 0.01  
139 D1233M10 92 75 1.73  
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Appendix Table 1.6 continued 
Frequency No. Marker name H W χ2 value 

140 D1233M11 37 131 52.60 ** 
141 D1233M12 61 110 14.04 ** 
142 D1233M15 111 40 33.38 ** 
143 D1233M2 61 99 9.03 ** 
144 D1233M23 85 82 0.05  
145 D1233M5 48 110 24.33 ** 
146 D1233M7 84 71 1.09  
147 D1233N11 50 108 21.29 ** 
148 D1233N13 71 88 1.82  
149 D1233N17 100 73 4.21 ** 
150 D1233N4 42 108 29.04 ** 
151 D1233N8 62 83 3.04  
152 D1233O12 46 115 29.57 ** 
153 D1233O14 77 80 0.06  
154 D1233O18 38 111 35.77 ** 
155 D1233O4 57 113 18.45 ** 
156 D1233O9 77 96 2.09  
157 D1233P11 80 79 0.01  
158 D1233P17 89 73 1.58  
159 D1233P2 82 89 0.29  
160 D1233P22 72 100 4.56 ** 
161 D1233P23 60 115 17.29 ** 
162 D1242D24 83 82 0.01  
163 D1242F11 117 49 27.86 ** 
164 D1242G22 79 93 1.14  
165 D1242G23 110 66 11.00 ** 
166 D1242L15 103 73 5.11 ** 
167 D1242M23 78 87 0.49  
168 D1242N22 79 82 0.06  
169 D1243A10 100 70 5.29 ** 
170 D1243B6 75 83 0.41  
171 D1243E24 86 66 2.63  
172 D1243E8 103 73 5.11 ** 
173 D1243I17 97 71 4.02 ** 
174 D1243P12 101 75 3.84 * 
175 D1243P16 105 70 7.00 ** 
176 D1244D2 111 65 12.02 ** 
177 D1244D6 67 92 3.93 ** 
178 D1244G10 80 94 1.13  
179 D1244G13 123 48 32.89 ** 
180 D1244G16 103 73 5.11 ** 
181 D1244G17 112 64 13.09 ** 
182 D1244H17 109 42 29.73 ** 
183 D1244L17 74 86 0.90  
184 D1244M23 100 62 8.91 ** 
185 D1249B11 71 86 1.43  
186 D1249D9 55 102 14.07 ** 
187 D1249E23 74 93 2.16  
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Appendix Table 1.6 continued 

Frequency No. Marker name H W χ2 value 

188 D1249F11 119 48 30.19 ** 
189 D1249G23 59 113 16.95 ** 
190 D1249I6 52 106 18.46 ** 
191 D1249J22 91 78 1.00  
192 D1249K24 52 104 17.33 ** 
193 D1249P18 42 96 21.13 ** 
194 D1249P19 45 107 25.29 ** 
195 D1250A15 52 89 9.71 ** 
196 D1250B11 104 68 7.53 ** 
197 D1250B19 68 98 5.42 ** 
198 D1250E2 59 105 12.90 ** 
199 D1250H23 65 102 8.20 ** 
200 D1250K17 91 48 13.30 ** 
201 D1250L12 71 103 5.89 ** 
202 D1250M22 57 114 19.00 ** 
203 D1250O17 63 91 5.09 ** 
204 D1250P9 54 101 14.25 ** 
205 D1255A23 151 21 98.26 ** 
206 D1255F18 110 60 14.71 ** 
209 D1261G15 74 99 3.61  
210 D1261H3 99 74 3.61  
211 D1261I18 102 68 6.80 ** 
212 D1261N4 101 60 10.44 ** 
213 D1261O23 70 91 2.74  
214 D1261P15 95 63 6.48 ** 
215 D1262C14 105 71 6.57 ** 
216 D1262C8 59 116 18.57 ** 
217 D1262E2 68 94 4.17 ** 
218 D1262G3 66 93 4.58 ** 
219 D1262M18 79 76 0.06  
220 D1262M8 67 95 4.84 ** 
221 D1262P6 46 118 31.61 ** 
222 D1304A1 98 45 19.64 ** 
223 D1304A13 103 71 5.89 ** 
224 D1304A23 102 73 4.81 ** 
225 D1304A6 111 65 12.02 ** 
226 D1304B24 74 96 2.85  
227 D1304B5 102 70 5.95 ** 
228 D1304C20 77 78 0.01  
229 D1304C3 103 73 5.11 ** 
230 D1304D18 101 74 4.17 ** 
231 D1304E11 103 73 5.11 ** 
232 D1304E22 103 73 5.11 ** 
233 D1304F18 140 23 83.98 ** 
234 D1304F19 110 65 11.57 ** 
235 D1304F6 100 67 6.52 ** 
236 D1304F7 99 74 3.61  



Appendix tables 

 

148

Appendix Table 1.6 continued 

Frequency No. Marker name H W χ2 value 

237 D1304G14 125 48 34.27 ** 
238 D1304G15 107 67 9.20 ** 
239 D1304G21 103 73 5.11 ** 
240 D1304H10 99 75 3.31  
241 D1304H14 100 72 4.56 ** 
242 D1304H2 98 75 3.06  
243 D1304I4 76 90 1.18  
244 D1304J1 103 73 5.11 ** 
245 D1304J19 100 70 5.29 ** 
246 D1304J20 75 78 0.06  
247 D1304J24 145 23 88.60 ** 
248 D1304J6 103 73 5.11 ** 
249 D1304K8 102 74 4.45 ** 
250 D1304L17 93 82 0.69  
251 D1304L19 76 90 1.18  
252 D1304M18 102 73 4.81 ** 
253 D1304M19 97 61 8.20 ** 
254 D1304M6 103 54 15.29 ** 
255 D1304N13 105 38 31.39 ** 
256 D1304N16 103 73 5.11 ** 
257 D1304N24 136 40 52.36 ** 
258 D1304O11 101 73 4.51 ** 
259 D1304O19 102 73 4.81 ** 
260 D1304O2 103 73 5.11 ** 
261 D1304O20 103 68 7.16 ** 
262 D1304O23 108 67 9.61 ** 
263 D1304P7 100 74 3.89 ** 
264 D1305A19 104 65 9.00 ** 
265 D1305A2 110 43 29.34 ** 
266 D1305A4 124 45 36.93 ** 
267 D1305B24 88 65 3.46  
268 D1305B4 76 84 0.40  
269 D1305C17 76 95 2.11  
270 D1305C19 100 72 4.56 ** 
271 D1305C22 126 49 33.88 ** 
272 D1305E6 103 62 10.19 ** 
273 D1305F12 103 69 6.72 ** 
274 D1305F18 103 73 5.11 ** 
275 D1305F19 105 54 16.36 ** 
276 D1305F2 99 73 3.93 ** 
277 D1305F21 101 73 4.51 ** 
278 D1305F8 103 73 5.11 ** 
279 D1305G16 77 95 1.88  
280 D1305G19 102 73 4.81 ** 
281 D1305G2 100 70 5.29 ** 
282 D1305G22 126 49 33.88 ** 
283 D1305G6 100 62 8.91 ** 
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 Appendix Table 1.6 continued 

Frequency No. Marker name H W χ2 value 

284 D1305G8 103 73 5.11 ** 
285 D1305H1 103 73 5.11 ** 
286 D1305H11 103 73 5.11 ** 
287 D1305H17 102 74 4.45 ** 
288 D1305H24 103 73 5.11 ** 
289 D1305I10 103 73 5.11 ** 
290 D1305I11 103 73 5.11 ** 
291 D1305I16 66 95 5.22 ** 
292 D1305I21 107 67 9.20 ** 
293 D1305I3 101 72 4.86 ** 
294 D1305J11 99 68 5.75 ** 
295 D1305J13 103 73 5.11 ** 
296 D1305J14 92 71 2.71  
297 D1305J20 121 48 31.53 ** 
298 D1305J6 126 41 43.26 ** 
299 D1305L1 103 73 5.11 ** 
300 D1305L14 77 93 1.51  
301 D1305L6 101 74 4.17 ** 
302 D1305L9 103 73 5.11 ** 
303 D1305M18 121 47 32.60 ** 
304 D1305N19 74 92 1.95  
305 D1305N21 99 69 5.36 ** 
306 D1305N4 47 121 32.60 ** 
307 D1305O1 103 73 5.11 ** 
308 D1305O10 74 94 2.38  
309 D1305O9 103 73 5.11 ** 
310 D1305P1 98 75 3.06  
311 D1305P12 103 73 5.11 ** 
312 D1305P15 103 73 5.11 ** 
313 D1305P17 122 51 29.14 ** 

Critical χ2 values for 1 degree of freedom: 3.841 (P=0.05) and 6.635 (P=0.01). 
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