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Zusammenfassung 
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Zusammenfassung 
Das humanpathogene Herpes-Simplex-Virus Typ 1 (HSV1) infiziert epitheliale Zellen der Mundschleimhaut sowie 

der umgebenen Haut und etabliert in den Neuronen eine latente Infektion. Reaktivierungen von latenten Infektionen 

können erneute Entzündungen hervorrufen. Das Kapsidprotein UL25 stabilisiert das Kapsid, nachdem das virale Genom 

in das Kapsid eingeschleust worden ist, entweder durch Versiegelung des UL6-Portals oder durch das Verstärken des 

gesamten Kapsids. Darüber hinaus könnte das an die Kapside gebundende UL25 als Signal zum Verlassen des Zellkerns 

dienen. Für diese Doktorarbeit untersuchte ich das Kapsidprotein UL25 während der frühen Phase des viralen 

Lebenszyklus. 

In dieser Arbeit konnte ich zeigen, dass UL25 auf den Kapsiden verbleibt, bis der Kernporenkomplex erreicht 

wurde. Darüberhinaus war UL25 auch mit reifen Kapsiden im Zellkern und während der Virusreifung in der Zelle 

assoziiert. Um eine mögliche Funktion von UL25 während des Viruseintritts in die Zelle zu untersuchen, wurde UL25 vor 

der HSV1 Infektion überexprimiert. Ich versprach mir von diesen Experimenten, dass UL25 im Überschuß essentielle 

Interaktionen zwischen Wirtsproteinen und UL25 kompetitiv hemmen könnte, welche für den Viruseintritt von 

Bedeutung sind. Ich konnte zeigen, dass die Expression von frühen HSV1-Proteinen durch Überexpression von UL25 

signifikant reduziert wurde aber der Kapsidtransport entlang von Mikrotubuli aber nicht beeinträchtigt war. Diese Daten 

zeigten, dass während des Viruseintritts ein Schritt zwischen dem Erreichen der Kernpore und der frühen viralen 

Proteinsynthese durch überschüssiges UL25 blockiert wurde, weil dieses möglicherweise die Destabilisierung des 

Kapsids während der Genomfreisetzung an der Kernpore durch kapsid-assoziiertes UL25 kompetitiv hemmte. 

Das Kapsid benötigt das Protein Importin β, um die Kernpore zu erreichen und dort die Genomfreisetzung zu 

ermöglichen. Überschüssiges UL25 könnte eine Funktion von UL25 als potenziellen Importin β Rezeptor unterbinden.  

Allerdings wurde keine Fehllokalisierung von Importin β oder den Kernporen in UL25 überexprimierenden Zellen 

beobachtet. Elektronenmikroskopische Analysen zeigten, dass die Menge an Kapsiden, die ihr Genom an der Kernpore 

freigesetzt haben, durch UL25-Überexpression nicht reduziert wurde. Darüberhinaus wurde gezeigt, dass UL25 

unabhängig von Promotoren die Transkription leicht reduzierte. Eine generelle Inhibierung des Zellstoffwechsels könnte 

diese Repression der Transkription erklären. Die frühe Genexpression von Adenovirus oder Vaccinia-Virus ist in 

Gegenwart von UL25 nicht beeinträchtigt, daher ist die Reduzierung der HSV1 Genexpression kein genereller, sondern 

ein herpesspezifischer Effekt und nicht das Resultat einer generellen Inhibierung von Transkription oder Proteinsynthese.  

Die subzelluläre Lokalisation der viralen DNA wurde in infizierten, UL25 überexprimierenden Zellen durch 

Fluoreszenz gekoppelte In Situ Hybridisierung analysiert. Erste Ergebnisse zeigten, dass weniger Genome in den 

Zellkernen akkumulierten. Somit könnte die Translokation des viralen Genoms durch die Kernpore verhindert worden 

sein. Überraschenderweise wurde auch die späte Vaccinia Virus Genexpression reduziert, was darauf hinweist, dass die 

späte Vaccinia Virus Genexpression ähnliche zelluläre Faktoren benötigt, die HSV1-UL25 bindet. Alternativ könnte die 

stark positiv geladene Proteinoberfläche von UL25 mit zytosolischer, viraler DNA wechselwirken und somit die 

Translokation von HSV1-DNA in den Zellkern oder die späte Genexpression von Vaccinia-Virus inhibieren.  

UL25 ist nicht nur essentiell für die DNA-Verpackung und Kaspidreifung, sondern spielt auch während der späten 

Phase des Viruseintritts in die Zelle eine Rolle. Die Translokation des viralen Genoms aus dem Kapsid durch die Kernpore 

könnte durch überschüssiges UL25 unterbunden worden sein und somit eine Erklärung für die Inhibierung der frühen 

HSV1-Genexpression darstellen. Darüber hinaus könnte eine spezifische Inhibierung dieses Prozesses einen neuen 

Angriffspunkt zur Entwicklung neuer Medikamenten gegen Herpesviren darstellen.  
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Abstract  
Herpes simplex virus type 1 (HSV1) is a human pathogen, which infects the oral mucosa and establishes a life-long 

latency in neurons. Primary infection and reactivation cause several diseases. HSV1-UL25, a minor capsid-associated 

protein, is supposed to either seal the portal or to stabilize the capsid after genome packaging. Both scenarios are 

consistent with a lack of efficient DNA packaging in HSV1-∆UL25 deletion mutants. In addition, UL25 may provide the 

nuclear egress signal for capsid envelopment at the inner nuclear membrane. For this thesis, I analyzed the role of 

HSV1-UL25 during the early phase of the HSV1 viral life cycle. 

My data show that HSV1-UL25 remained attached to viral capsids during assembly, egress, as well as during cell 

entry and cytoplasmic transport to the nucleus. To reveal potential functions of HSV1-UL25 during cell entry, I 

overexpressed UL25 prior to HSV1 infection. I was hoping that the ectopically expressed UL25 would compete for 

essential interactions between host proteins and the incoming capsid-associated UL25 which may be required during 

HSV1 cell entry. Along this hypothesis, overexpression of UL25 significantly reduced the expression of immediate early 

HSV1 genes but had no effect on cytoplasmic transport of incoming capsids to the nucleus. Thus, excess UL25 inhibited 

a step between capsid arrival at the nucleus and immediate early protein synthesis, possibly by interfering with the role 

of capsid-associated UL25, and thus preventing capsid destabilization and genome uncoating at the nuclear pore.  

The host nuclear import factor importin β targets the incoming HSV1 capsids to the nuclear pore, and binding of 

the capsid to the nuclear pore may provide the trigger for genome uncoating. Since UL25 may constitute a viral 

importin β receptor, overexpressed UL25 may sequester importin β and prevent its proper function. However, the 

subcellular localization of importins or the nuclear pore complex was not affected by excess UL25. Moreover, electron 

microscopy analysis of UL25-expressing, HSV1-infected cells revealed that UL25 did not reduce the number of empty 

capsids localized at the nuclear pores. Thus, uncoating took place in UL25 overexpressing cells, but possibly the 

released viral genomes were not functional. Luciferase reporter assays showed a minor, promoter-independent 

reduction of transcription but these experiments could only be executed after long transfection times, when the cell 

metabolism might have been further modified than in the other experiments. Moreover, after similar transfection times 

as for HSV1, both vaccinia virus and adenovirus early gene expression were not reduced. Thus, there was no general 

inhibition of transcription or translation in HSV1-UL25 overexpressing cells.  

Analysis of the subcellular localization of the incoming HSV1 genomes by fluorescence in situ hybridization 

revealed that fewer genomes had accumulated in the nuclei of UL25 overexpressing cells. Interestingly, UL25 impaired 

also late vaccinia virus gene expression, suggesting that early HSV1 and late vaccinia virus gene expression may require 

similar host factors which are targeted by HSV1-UL25. Alternatively, UL25 may bind with its highly positively charged 

surface to cytosolic viral DNA, and thus prevent proper nuclear import in the case of HSV1, or proper late gene 

expression in the case of vaccinia virus. 

In summary, my data suggest that overexpressed UL25 did not affect genome uncoating per se but rather 

prevented proper nuclear import of incoming HSV1 genomes, providing a first explanation how UL25 inhibited HSV1 

gene expression. This experimental setup provides the first tool to specifically prevent nuclear import of HSV1 genomes, 

and further molecular characterization of this essential step in the life cycle of all herpesviruses might in the long run aid 

in the development of drug targeting this reaction. 
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1 Introduction 

1.1 Herpesvirales 

The order Herpesvirales is composed of enveloped double-stranded DNA viruses divided into three families 

characterized by their host cell range. The Herpesviridae  replicate in mammalian, avian and reptilian host cells 

(McGeoch and Gatherer 2005). The Alloherpesviridae include piscine and amphibian herpesviruses, and the 

Malacoherpesviridae the oyster infecting invertebrate herpesvirus (Davison et al. 2005; Farley et al. 1972; 

McGeoch et al. 2006). The Herpesviridae are divided into three subfamilies, α-, β-, and γ-herpesvirinae, and each 

subfamily in turn is divided into different genera (Table 1). 

 

Table 1: Classification of human herpesviruses (Cleator and Klapper 2004) 

 

Common name Official Nomenclature Subfamily Genus 

Herpes simplex virus type 1 (HSV1) 
Human herpesvirus 1  

(HHV-1) 
α-herpesvirinae Simplexvirus 

Herpes simplex virus type 2 (HSV2) 
Human herpesvirus 2 

(HHV-2) 
α-herpesvirinae Simplexvirus 

Varicella zoster virus (VZV) 
Human herpesvirus 3 

(HHV-3) 
α-herpesvirinae Varicellovirus 

Epstein-Barr virus (EBV) 
Human herpesvirus 4 

(HHV-4) 
γ-herpesvirinae Lymphocryptovirus 

Human cytomegalovirus (HCMV) 
Human herpesvirus 5 

(HHV-5) 
β-herpesvirinae Cytomegalovirus 

HHV-6A 
Human herpesvirus 6A 

(HHV-6A) 
β-herpesvirinae Roseolovirus 

HHV-6B 
Human herpesvirus 6B 

(HHV-6B) 
β-herpesvirinae Roseolovirus 

HHV-7 
Human herpesvirus 7 

(HHV-7) 
β-herpesvirinae - 

Kaposi’s sarcoma-associated 
herpesvirus (KSHV) 

Human herpesvirus 8 
(HHV-8) 

γ-herpesvirinae Rhadinovirus 

 

Members of the herpesviruses have a genome size of 100 to 230 kb with up to more than 200 potential 

open reading frames (Cleator and Klapper 2004; Roizman and Knipe 2001). In addition to structural proteins, they 

encode a large set of enzymes for nucleic acid metabolism and protein processing. Upon entering their host, virus 

transcription, replication and capsid assembly of progeny virions take place in the nucleus. Newly synthesized 

virions can then spread to the neighboring cells. All herpesviruses establish a life-long latent infection in specific 

cell types, from which they can be reactivated. The subsequent virus assembly leads to the production of progeny 

virus that are released via exocytosis or cell to cell spread. 
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Nine members of the Herpesviridae are known to infect humans (Table 1). Herpes simplex virus type 1 

(HSV1), also called Human Herpesvirus 1 (HHV-1), belongs to the neurotropic α-herpesvirinae subfamily and the 

genus simplexvirus. The α-herpesvirinae are characterized by a variable host cell range, a short life cycle, rapid 

spread in cell culture and efficient lysis of infected cells. HSV1 establishes latent infections primarily in sensory 

neurons (Roizman and Knipe 2001).  

The human α-herpesviruses HSV1 and HSV2 cause the well-known herpes labialis and herpes genitalis, and 

the varicella-zoster virus chickenpox and shingles. Human cytomegalovirus (HCMV), human herpesviruses 6A and 

6B as well as human herpesvirus 7 are the human β-herpesviruses. HCMV is the most common virus and a severe 

threat in immunocompromised patients, where it causes pneumonia, retinitis or hepatitis. Moreover, when 

acquired via a congenital route, neurological disorders of the newborn can occur. The human γ-herpesviruses 

Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV) are associated with the induction of 

malignant neoplasia in immunocompromised patients, like patients with AIDS. A primary infection with EBV 

causing infectious mononucleosis is prominent as “kissing disease” or “Pfeiffer’s syndrome”. Kaposi sarcomas are 

caused by KSHV in HIV infected, immunocompromised patients (Doerr 2002).  

1.2 Herpes Simplex Virus Type 1 Pathology 

Primary HSV1 infections are usually acquired during childhood when a susceptible person comes into close 

contact with an individual who is actively shedding the virus. HSV1 infects epithelial cells and keratinocytes of the 

oral and perioral skin and mucosa (Figure 1).  

 
Figure 1: HSV1 infection. HSV1 infects keratinocytes and epithelial cells of the oral and perioral region (A; primary infection). Progeny 
viruses then enter neurons innervating that area and are transported retrogradely to cranial ganglia, for example the trigeminal ganglion (A; 
red arrow), where a latent infection is established (B; latency). Upon stress factors like UV light or a compromised immune system, latent 
viruses become reactivated and newly synthesized viruses are transported anterogradely from the trigeminal ganglion to the synapse (C; 
recurrent infection, red arrow). After release from the sensory nerve endings they reinfect the epithelium causing cold sores (Scheme derived 
and modified from Caroll 2001). 
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The primary infection is unremarkable in most cases but may cause a herpes gingivostomatitis (Cleator and 

Klapper 2004). The virus replicates and progeny virus infects sensory neurons innervating that area. Viral particles 

are transported towards the cell body of cranial ganglia, such as the trigeminus ganglion (Vrabec and Alford 2004) 

and then the viral genome is released into the nucleus where it circularizes (Roizman and Knipe 2001). HSV1 

either initiates an acute or a latent infection, a state in which the viral genome exists as an episome, and virus 

replication appears to be suppressed by the host's immune system (Decman et al. 2005; Khanna et al. 2004). 

Reactivation of latent genomes can be triggered by several stress causing factors such as UV light or a 

compromised immune system and results in the activation of the lytic cycle. Progeny virions are produced and 

transported back to the initial site of infection where epithelial cells and keratinocytes become infected again. This 

leads to the secretion of infectious virions and lesion formation, known as herpes labialis or cold sores. In rare 

cases, progeny viruses travel further to neurons of the central nervous system, which results in a life-threatening 

herpes encephalitis. HSV1 can also spread to the eye and cause keratokonjunctovitis herpetika, a scarring and 

clouding of the cornea that ultimately lead to blindness (Jerome and Ashley 2003). 

Herpesvirus infections cannot be cured because medication that will attack the virus episome, that lies 

dormant in the nerve cells, will also damage the nerve cells. However, there is treatment available for acute 

outbreaks that involve the use of anti-viral drugs such as acyclovir and its derivatives valacyclovir, famciclovir and 

penciclovir (De Clercq 2007; Spruance et al. 1990).  All these nucleoside drugs in this class depend on the activity 

of the viral thymidine kinase UL23. Nucleoside drugs are phosphorylated by UL23 and subsequently by cellular 

kinases. The resulting inhibition of the viral DNA polymerase UL30 is due to chain termination. Foscarnet is a 

phosphonic acid derivate and not dependent on viral thymidine kinase. It inhibits viral DNA polymerization by 

inhibiting the pyrophosphate binding site on the viral DNA-polymerase (Noble and Faulds 1998). 

1.3 Life Cycle of Herpesvirus 

1.3.1 Virion Structure 

The infectious HSV1 virion has a diameter of about 225 nm and is composed of four structures (Grünewald et 

al. 2003; Roizman and Knipe 2001): the viral genome, the icosahedral capsid, the tegument, and the viral 

envelope. The viral genome has a size of 152 kb and encodes for about 84 proteins (Rajcani et al. 2004) whereof 

about 40 proteins build the structure of the virus.  

HSV1 proteins are named either according to their position on an SDS gel (e.g. VP5, MWapp = 155 kDa, VP26, 

MWapp = 12 kDa), to the position of the ORF on the viral genomes unique long (UL) or unique short (US) region 

(e.g. UL25, US11) or to their function (e.g. UL41/vhs = virus host shut off protein). Viral glycoproteins have an 

additional own nomenclature (e.g. gB, gC, gD).  
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Figure 2: Cryoelectron 
microscopy tomogram of 
HSV1. The icosahedral capsid 
(dark green) is composed of 
triplices, hexons and pentons. 
The tegument (light green) has 
an asymmetric distribution: at 
the bottom, the capsid closely 
reaches the envelope, whereas 
at the top it is separated by 
about 30-35 nm of tegument. 
Viral glycoproteins are em-
bedded into the viral envelope 
(grey). Image kindly provided 
by Kay Grünewald (Max Planck 
Institute of Biochemistry, 
Martiensried, Germany; Grüne-
wald et al. 2003) 
 
 
 

 

The three-dimensional structure of the HSV1 virion has been revealed by cryoelectron microscopy and 3D 

image reconstructions (Figure 2; Grünewald et al. 2003; Zhou et al. 1999; Zhou et al. 2000). The 5 nm thick viral 

membrane has a diameter of 170 to 225 nm, with viral glycoproteins protruding. Glycoproteins are important for 

attaching the incoming virus to the host cell plasma membrane, during virus assembly, trafficking and egress, and 

they also have immunomodulatory functions. The glycoproteins protrude from the viral membrane surface as 

spikes of 10 to 25 nm length and about 4 nm width (Grünewald et al. 2003; Reske et al. 2007; Spear et al. 2006). 

An amorphous protein layer called the tegument is located between the envelope and the capsid. It consists of 

about 20 different proteins. Based on assembly studies, the tegument proteins are divided into an outer shell 

containing mainly VP11/12 (UL46), VP13/14 (UL47), and VP22 (UL49); and an inner shell with close contact to the 

capsid which includes VP1-3 (UL36), UL37 and the kinase US3 (Mettenleiter 2002; Mettenleiter 2004).  

The outer tegument dissociates after release of the capsid into the cytosol, while inner tegument proteins 

remain attached to the capsid until it reaches the nucleus (Granzow et al. 2005; Luxton et al. 2005; Sodeik et al. 

1997). The two layers of tegument proteins can also be separated by detergent lysis of extracellular virions in the 

presence of different salt concentrations (Wolfstein et al. 2006). VP16 (UL48) is considered to be an adaptor 

protein between the inner and outer tegument layers, since it interacts with members of both (Vittone et al. 2005; 

Wolfstein et al. 2006). Examples of well characterized tegument proteins are VP16, a transactivator of immediate 

early viral transcription and UL41, the virus-host-shutoff factor (vhs), an RNase which degrades cellular mRNAs 

and stops host protein synthesis in infected cells (Zhang et al. 1991).  

The capsid, which encloses the viral genome, has an eccentric position within the virus, with a proximal pole, 

where the distance between capsid and envelope is about 5 nm, and a distal pole, where the capsid and the 

envelope are separated by a 30 to 35 nm layer of tegument. The tegument is presumably attached to the capsid 

via the pentons and the adjacent hexons  (Grünewald et al. 2003; Zhou et al. 1999; Zhou et al. 2000). 
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1.3.2 Capsid Assembly and DNA Packaging 

Capsid assembly and genome packaging are crucial steps in virus assembly of double stranded (ds) DNA 

viruses (Mettenleiter 2006). Although dsDNA bacteriohages are quite distinct from the herpesviruses regarding 

their hosts, they do share similarities in capsid assembly and DNA packaging (Baines and Weller 2005; Baker et al. 

2005; Catalano 2005; Duda et al. 2006). In the infected host of bacteriophages as well as of herpesviruses, capsid 

proteins are assembled into procapsids that further mature and are subsequently filled with viral concatameric 

genomes by specialized packaging and terminase machineries (Guo and Lee 2007).  

The capsid with a diameter of 125 nm consists of 20 triangular faces, 11 pentagonal vertices and one portal 

complex at the 12th vertex. The capsid shell comprises four major proteins: VP5 (UL19), VP19C (UL38), VP23 

(UL18), and VP26 (UL35; Duffy 2006; Newcomb et al. 1996; Roizman and Knipe 2001). Capsid assembly initiates 

with a spherical procapsid which self-assembles in the nucleus out of the proteins VP5, UL6, preVP22a, UL26.5 

VP19C and VP23 (Singer et al. 2005). The major capsid protein VP5 assembles into both hexamers and pentamers 

(Figure 2). There are three types of capsomers: 150 VP5 hexons that form the faces and edges of the triangular 

faces, 11 VP5 pentons located at the vertices, and one UL6 portal complex at the 12th vertex (Cardone et al. 2007; 

Newcomb et al. 1996; Newcomb et al. 1999; Newcomb et al. 1994; Trus et al. 1996; Trus et al. 2004). On top of 

the VP5 hexons a hexamer of VP26 is located, which is not found on pentons (Wingfield et al. 1997). 320 

triplexes, each consisting of two copies of VP23 and one copy of VP19C link adjacent capsomers (Chen et al. 

2001; Homa and Brown 1997). A dodecameric ring of UL6 builds the 12th vertex, a portal. It most likely serves as 

an axial channel through which the concatameric viral DNA is tightly packaged (Booy et al. 1991; Cardone et al. 

2007; Newcomb et al. 2005; Newcomb et al. 1996; Newcomb et al. 1999; Newcomb et al. 2001; Trus et al. 

2004). The products of two further genes, UL26 (encoding a protease) and the UL26.5 (encoding the main 

scaffolding protein, VP22a), form the internal scaffold which is required for capsid assembly. The viral protease 

(UL26) cleaves both itself (to generate capsid proteins VP24 and VP21) and UL26.5 protein (generating VP22a) 

and is essential for DNA packaging, capsid maturation, and virus growth. Unlike VP21 and VP22a, which are 

removed from capsids upon DNA packaging, VP24 is quantitatively retained in mature, DNA containing capsids 

(Gao et al. 1994; Sheaffer et al. 2000).  

Four capsid types are found in the nuclei of HSV1-infected cells during capsid assembly (Mettenleiter 2006). 

Capsids change either their size during maturation by expanding as shown for bacteriophages (Feis 2005) or 

changes their morphology from a rather spherical to angularized capsid as shown for herpesvirus (Baines and 

Weller 2005; Heymann et al. 2003). The so called short-lived procapsid matures into an angularized B-capsid that 

contains the scaffold proteins VP21 and VP22a. The so called A-capsids (abortive capsids) enclose neither scaffold 

nor DNA and are dead end products from unsuccessful DNA packaging. C-capsids lack scaffold proteins but do 

contain viral genomes (Homa and Brown 1997; Roizman and Knipe 2001).  
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Figure 3: DNA packaging and capsid maturation: Packaging of viral DNA into the spherical procapsid begins with cleavage of the 
viral genome into concatamers presumably by UL32, UL28 and UL15 in the nuclear replication compartment. The procapsid may be targeted 
to the replication compartment by UL17 and UL32. The terminase complex is composed of the UL28 translocase and the UL15 ATPase that 
provides energy for packaging through ATP hydrolysis. This complex associates with the UL6 portal complex and packaging through portal is 
initiated. UL15 hydrolyses ATP, and thus provides the energy for packaging the viral DNA into the capsid. UL25 might be required for 
retaining the genome inside the capsid, stabilizes the capsids at their vertices and may provide an exit signal for nuclear egress. The DNA-
containing capsid leaves the nucleus for further tegumentation, secondary envelopment and virus egress. Scheme derived and modified from 
Baines and Weller 2005; Beard et al. 2004; Beard et al. 2002; Klupp et al. 2006; Lamberti and Weller 1998; McNab et al. 1998; Newcomb 
et al. 2001; Stow 2001; Trus et al. 2007; Yang et al. 2007. 
 

UL17 and UL32 are supposed to target procapsids to the nuclear sites of DNA packaging (Lamberti and 

Weller 1998). Packaging of viral DNA begins with specific binding of terminase proteins to the packaging initiation 

site of the viral concatemeric DNA (Figure 3). The genome is then packaged through a portal complex, also a 

common feature in bacteriophages and in herpesviruses (Casjens et al. 1992; Newcomb et al. 2001). The proteins 

UL6, UL15, UL17, UL25, UL28, UL32 and UL33 are essential for HSV1 DNA cleavage and packaging and located 

on the external surface of the capsid (Baines and Weller 2005; Wills et al. 2006). The terminase complex of UL15 

and UL28 build a complex in the cytosol and interact with the portal complex in the nucleus (Yang et al. 2007). 

UL15, UL28 and possibly UL33 recognizes packaging signals on the viral DNA and cleaves the concatameric DNA 

into monomeric units (Beard et al. 2004; Beard et al. 2002). UL15 hydrolyses ATP, and thus provides energy for 

packaging the viral DNA into the capsid (Beard et al. 2002; White et al. 2003; Yu and Weller 1998). Especially 

UL6 and UL25 are structural proteins of the infectious virions but absent from L-particles which contain viral 

membrane and tegument proteins but neither capsids nor viral genomes (Dargan and Subak-Sharpe 1997; Taus et 

al. 1998; Thurlow et al. 2005). Only UL17 is also found in L-particles (Thurlow et al. 2005). UL25 performs a later 

function and may be required for retaining the genome inside the capsid by plugging the portal (McNab et al. 

1998; Stow 2001). Moreover, after finishing the packaging process, heterodimeric UL25-UL17 complexes may be 

added at or near each of the capsid vertices to stabilize and reinforce the DNA-containing capsid prior to nuclear 

egress (Klupp et al. 2006; Newcomb et al. 2006; Trus et al. 2007). 
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1.3.3 Egress 

After assembly and DNA packaging, capsids have to exit the nucleus for further maturation. The egress of 

herpesviruses might occur via three distinct pathways and is subject to controversy (Figure 4, Campadelli Fiume 

2007; Campadelli-Fiume 2006; Enquist et al. 1998; Johnson and Spear 1982; Leuzinger et al. 2005; Mettenleiter 

et al. 2006; Mettenleiter and Minson 2006; Skepper et al. 2001; Wild et al. 2005). 

 
Figure 4: HSV1 egress. HSV1 capsids are assembled and the genome is packaged in the nucleus (1). According to the envelopment-
deenvelopment-reenvelopment model (A), the capsids bud through the inner nuclear membrane into the perinuclear space, thereby 
aquiering a primary tegument and envelope (2), and then fuse with the outer nuclear membrane (3). Viral envelope proteins are modified 
and accumulate at the Golgi network. Tegumentation takes place at two sites, at the capsid and at an internal membrane, presumably the 
Golgi apparatus (GN; CGN – cis-Golgi network; TGN – trans-Golgi network), or vesicles from Golgi or endosomal origin. The partially 
tegumented capsid then buds into vesicles or into endosomes, so that an infectious virion inside a vesicle is formed (6). This vesicle fuses 
with the plasma membrane and releases the virion (7). In the luminal egress model (B), the mature capsid with tegument also buds into the 
perinuclear space (7). The capsid travels through the rough endoplasmic reticulum to the GN (8). The virion inside the vesicle might leave 
the cell via exocytosis (9). The latest model proposes that mature capsids leave the nucleus through dilated, impaired nuclear pore 
complexes (10). The capsid could then bud into the outer nuclear membrane (11) for further egress according to the luminal egress route (B) 
or for futher budding at the site of secondary envelopment (4-6). Scheme derived and modified from Enquist et al. 1998; Johnson and Spear 
1982; Leuzinger et al. 2005; Mettenleiter and Minson 2006; Skepper et al. 2001; Wild et al. 2005 and kindly provided by Claus-Henning 
Nagel, Katinka Döhner and Beate Sodeik, Institute of Virology, Hannover Medical School. 

A currently widely accepted model of nuclear capsid egress and HSV1 assembly is the envelopment – 

deenvelopment – reenvelopment model (Figure 4 A; Skepper et al. 2001), suggesting the formation of a 

primary virion with primary tegument and envelope. The DNA-filled C-capsid might acquire a nuclear egress signal 

via UL25/UL17 heterodimers on the capsid pentons to leave the nucleus (Trus et al. 2007). At the inner nuclear 

membrane, the protein complex of UL31 and the transmembrane protein UL34 sequester protein kinase C that 

subsequently phosphorylates lamin A/C and lamin B (Reynolds et al. 2004; Reynolds et al. 2001; Reynolds et al. 

2002). Moreover, the viral protein kinase US3 also modifies lamin A/C (Mou et al. 2007). These processes 

disintegrate the nuclear lamina. The capsid can therefore get access to the inner nuclear membrane where it buds 

into the perinuclear space and acquires the primary tegument at least composed of UL31, the protein kinase US3 

and the viral transcription factor VP16 (Bjerke and Roller 2006; Fuchs et al. 2002; Klupp et al. 2001; Naldinho-

Souto et al. 2006; Ryckman and Roller 2004). The primary envelope protein UL34, but also the essential 
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glycoproteins gB and gH, as well as precursors of gD have also been detected on the primary virion in the 

perinuclear space (Campadelli-Fiume 2006; Farnsworth et al. 2007; Fuchs et al. 2002; Torrisi et al. 1992). 

Moreover, gM is incorporated in the membrane during budding at the inner nuclear membrane (Baines et al. 

2007). Later, primary virions fuse their primary envelopes with the outer nuclear membrane or the endoplasmic 

reticulum membrane, presumably mediated via gB and gH, and release capsids into the cytosol which contain US3 

and VP16 tegument proteins (Farnsworth et al. 2007; Granzow et al. 2004). 

The luminal egress model proposes that mature capsids bud at the inner nuclear membrane and thereby 

acquire their final envelope. The virions would then travel through the perinuclear space into the rough 

endoplasmic reticulum. They might reach the Golgi apparatus and the trans-Golgi network within transport 

vesicles (Figure 4 B; Darlington and Moss 1968; Johnson and Spear 1982; Leuzinger et al. 2005). However, in this 

model tegumentation has to take place in the nucleus, because capsids never have access to the cytosol. This 

model is in conflict with data showing a subset of tegument proteins attached to the cytosolic tails of glycoproteins 

at the site of secondary envelopment (Harley et al. 2001; Mettenleiter 2006; Turcotte et al. 2005). 

Both models were challenged by proposing that capsids may egress into the cytosol via impaired and 

dilated nuclear pores. Within this model, nuclear pores are believed to enlarge their diameter from 100 nm to 

about 700 nm and capsids leave the nucleus through those impaired pores (Figure 4 C; Leuzinger et al. 2005; Wild 

et al. 2005). The cytosolic capsids then either bud into the Golgi vesicles to follow the secretory pathway or into 

the outer nuclear membrane to travel through the perinuclear space and the endoplasmic reticulum to the Golgi 

apparatus or the trans-Golgi network. However, this hypothesis is intensively discussed since it is not in line with 

previous electron microscopy studies and mainly not consistent with the phenotypes of many mutant viruses that 

lack US3, UL31, UL34 or gB/gH (Farnsworth et al. 2007; Mettenleiter and Minson 2006; Reynolds et al. 2002), 

although minor nuclear membrane changes are observed during HSV1 infections (Haines and Baerwald 1976; 

Nagel, Döhner, Fathollahy, Strive, Borst, Messerle & Sodeik, accepted). Moreover, there is no evidence that nuclear 

transport factors interact with mature capsids that could support the egress via the dilated nuclear pore 

(Campadelli-Fiume 2006; Mettenleiter and Minson 2006).  

According to the first model, the envelopment – deenvelopment – reenvelopment model the inner 

tegument proteins VP1-3 (UL36) and UL37 are attached to the capsids in the cytosol. In deletion mutants of HSV1 

that lack the tegument proteins VP1-3 (UL36) or UL37, capsids devoid of tegument and envelope accumulate in 

the cytosol (Desai et al. 2001; Desai 2000). Viral glycoproteins together with a subset of outer tegument proteins 

like VP11/12 (UL46), VP13/14 (UL47), and VP22 (UL49) accumulate at sites of secondary budding, presumably 

vesicles or patches derived from trans-Golgi or endosomal origin (Figure 4, Granzow et al., 2001; Harley et al., 

2001; Turcotte et al., 2005). During secondary budding into the lumen of these organelles via an interaction of 

inner and outer tegument the virions become fully assembled, and are then released into the extracellular space by 

fusion of virion-containing vesicles with the plasma membrane (Mettenleiter et al. 2006). 
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1.3.4 Attachment, Entry and Nuclear Tageting 

Extracellular HSV1 virions make first contact with the cell by attaching at the plasma membrane with their 

envelope glycoproteins (Figure 5). Glycoprotein C (gC) or gB bind to cell surface via heparan sulphate or 

glycosamino glycans. These interactions, although not essential for infection, increase infection efficiency due to an 

enrichment of virions on the cell (Spear 2004; Spear et al. 2000; Spear and Longnecker 2003). For successful 

infection, gD has to bind one of the following secondary receptors (Campadelli-Fiume et al. 2007):  

(I) the herpesvirus entry mediator (HVEM) which belongs to the tumor necrosis factor receptor family, (II) 

nectin-1, also called herpesvirus entry protein C (HveC) or poliovirus receptor-related protein-1, a cell-cell adhesion 

molecule of the immunoglobulin superfamily, or (III) 3-O-sulphated heparan sulphate (Shukla and Spear 2001; 

Tiwari et al. 2006). Moreover the type II transmembrane protein B5 whose viral ligand is not known is also 

involved in virus binding (Perez et al. 2005; Perez-Romero and Fuller 2005). Furthermore, the RGD motif of gH can 

interact with αvβ3 integrin (Parry et al. 2005).  

 
Figure 5: HSV1 entry. HSV1 envelope (black) glycoproteins mediate attachment to the host cell membrane (1). The virus enters many cell 
types by fusion of the viral envelope with the plasma membrane, thereby releasing the capsid (dark green) and tegument (light green) into 
the cytosol (2). Other cell types are entered by endocytosis or phagocytic-like uptake (3). By fusion of the viral envelope with the endosomal 
membrane capsid and tegument are released into the cytosol (4). The capsid with some tegument or an HSV1 virion inside an endocytic 
vesicle is then transported by the minus-end directed microtubule motor dynein and its cofactor dynactin to the MTOC (5). Finally, viral 
capsids arrive at the nuclear envelope. Importin β mediates binding to the NPC, and the viral genome is released into the nucleus for viral 
transcription and replication (6). Scheme derived and modified from Clement et al. 2006; Gianni et al. 2004; Koyama and Uchida 1987; 
Nicola et al. 2005; Nicola et al. 2003; Nicola and Straus 2004; Döhner and Sodeik 2005; Döhner et al. 2002; Sodeik et al. 1997 and kindly 
provided by Katinka Döhner and Beate Sodeik, Institute of Virology, Hannover Medical School. 
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After attaching to the plasma membrane, the viral capsid has to reach the nuclear pore compex (NPC) for 

genome uncoating. The viral envelope fuses either with the host cell plasma membrane, or with an endosomal or 

phagosomal membrane. Cell types such as Vero, BHK, HEp-2, COS and human dorsal root ganglion neurons are 

entered by fusion of the viral envelope with the plasma membrane (Koyama and Uchida 1987; Lycke et al. 1988; 

Sodeik et al. 1997; Wittels and Spear 1991). Other cell types, such as CHO-HVEM or HeLa cells are infected by 

endocytosis (Gianni et al. 2004; Milne et al. 2005; Nicola et al. 2005; Nicola et al. 2003; Nicola and Straus 2004). 

A phagocytic-like entry has been described for human corneal fibroblasts and CHO-Nectin cells (Clement et al. 

2006). For fusion of the viral envelope with the host membrane, gD, gB and the heterodimer gH-gL are essential. 

Binding of gD to one of its receptors triggers a conformational change, which in turn results in interactions of gD 

with gB and/or gH-gL. gH-gL initiate hemifusion of the host membrane that is completed by gB (Gianni et al. 

2006a; Gianni et al. 2006b; Gianni et al. 2005a; Gianni et al. 2005b; Spear et al. 2006; Subramanian and 

Geraghty 2007). The viral capsid inside the cytosol leaves some tegument proteins associated with glycoproteins at 

the plasma membrane, but some tegument proteins like VP1-3 (UL36) or US11 remain capsid-bound until arrival 

at the nucleus (Granzow et al. 2005; Luxton et al. 2006; Sodeik et al. 1997, Schipke and Sodeik; Janus, Döhner 

and Sodeik, personal communication).  

HSV1 capsids use the minus-end directed molecular motor dynein and its cofactor dynactin to travel along 

microtubules, that are clustered with their minus end at the microtubule organizing center (MTOC;  Döhner et al. 

2005; Döhner et al. 2002; Radtke et al. 2006; Sodeik et al. 1997). The viral proteins mediating the interaction 

with dynein are unknown, but possible candidates are the tegument proteins VP1-3 (UL36) and UL37 (Luxton et 

al. 2006; Wolfstein et al. 2006). For pseudorabiesvirus, another α-herpesvirus infecting swine, it was shown that 

VP1-3 and UL37, but not VP16, VP13/14 and VP22 remain bound to capsids during the retrograde transport in 

axons (Granzow et al. 2005; Luxton et al. 2005; Luxton et al. 2006). In vitro, HSV1 capsids interact with dynein 

and dynactin and need the inner tegument for this interaction (Wolfstein et al. 2006). Capsids arrive at the MTOC, 

and from there they need to get further to the nuclear pore, presumably by using the plus-end directed 

microtubule motors of the kinesin family (Janus, Döhner, Büttner and Sodeik; personal communications). 

Moreover, capsids could also use nuclear import or export factors for their travel to the NPC (Hanz et al. 2003; 

Ojala et al. 2000; Radtke et al. 2006; Strunze et al. 2005). 

1.3.5 HSV1 Genome Uncoating  

Viruses that replicate their genomes in the nuclei of infected cells have to ensure that their genome is 

released into the nucleus and not into the cytosol. There, the genomes are either integrated into the host genome 

or maintained as an episome for transcription (reviewed in Greber and Fassati 2003). An important feature in this 

process is the nuclear pore complex (NPC). The NPC is a 125 MDa complex spanning the outer and inner nuclear 

membrane and thus providing a channel for nucleocytoplasmic trafficking. The entire pore has a diameter of about 

120 nm whereas the inner diameter of the pore channel is about 40 nm (Pante and Aebi 1993; Pante and Kann 

2002). In general, genome uncoating of nuclear replicating viruses follows one of the three pathways:  



Introduction 

 19

I. The viral capsid recruits nuclear import or export factors and thereby triggers its translocation through the 

pore to be disassembled in the nucleoplasm. Parvoviruses and hepatitis B virus pass the NPC channel prior to 

genome uncoating in the nucleoplasm (Kann 2004; Kann et al. 1999; Rabe et al. 2003; Vihinen-Ranta et al. 2002; 

Vihinen-Ranta et al. 2000). 

II. The viral capsid disassembles in the cytosol and subviral genomic particles are further translocated through 

the pore into the nucleoplasm. Lentiviruses, such as the human immune deficiency virus 1 (HIV1) can infect non-

dividing cells, whereas retroviruses can only enter cells that undergo mitosis. After cell entry, core disassembly and 

reverse transcription of the single strand RNA genome take place and the newly synthesized DNA associates with 

viral proteins to a preintegration complex which is then imported into the nucleus (Popov et al. 1998a; Popov et 

al. 1998b; Sherman and Greene 2002).  

III. The viral capsid docks at the NPC and releases its genome either after disassembly of the capsid or by 

injecting it through the channel into the nucleoplasm (Greber and Fassati 2003). Incoming adenovirus capsids 

dock to the cytoplasmic fibrils of the NPC and interact with Nup214/CAN. Disassembly factors like histone H1, 

importin β, importin 7 and HSC70 are recruited and the viral genome is released into the nucleoplasm upon 

adenovirus capsid disassembly (Greber et al. 1997; Greber et al. 1996; Greber et al. 1993; Harel and Forbes 2001; 

Trotman et al. 2001). Incoming HSV1 capsids dock with the help of importin β at the NPC via the cytoplasmic 

fibrils with one penton facing the NPC (Granzow et al., 1997; Sodeik et al., 1997; Ojala et al., 2000). The 

interaction of capsid, supposedly by the protein VP1-3, and the NPC may lead to a destabilisation of the capsid so 

that the viral genome can de injected via the pore into the nucleoplasm for viral transcription and replication 

(Batterson et al. 1983; Ojala et al. 2000). The binding partner of the NPC with the HSV capsid is unknown but it is 

likely to be located at the cytoplasmic ring of the pore like Nup88/84, Nup214/CAN or Nup358/RanBP2 (Rabut et 

al. 2004, Trotman et al. 2001). The uncoating of the herpesvirus genome requires energy and cytosol and is 

temperature dependent (Newcomb et al. 2007; Ojala et al. 2000). The protein VP1-3 (UL36) is proposed to play a 

role during uncoating, since a temperature sensitive mutant of HSV1 (tsB7), which has a mutation in the UL36 

gene, and also a UL36 mutant in pseudorabiesvirus, can bind at the NPC but are unable to inject the viral genome 

at the nonpermissive temperature (Batterson et al. 1983; Feldman et al. 1981).  

An in vitro uncoating assay of viral C-capsids revealed that destabilizing the capsid with trypsin protease 

leads to uncoating where the viral genome is ejected as a single double helix, although it is still unknown whether 

the herpesvirus genome is released during cell entry through the UL6 portal complex (Newcomb et al. 2007). 

Released genomes were also observed via atomic force microscopy as rod shaped structures with a size of 130 x 

30 nm, that enter the nucleoplasm via distorted nuclear pores (Shahin et al. 2006). In both cases, the viral genome 

is retained within the capsid, until its final destination, the NPC, is reached. After uncoating, empty capsids at the 

NPC or in vitro uncoated capsids still show an angularized morphology (Newcomb et al. 2007; Ojala et al. 2000; 

Sodeik et al. 1997). 
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1.3.6 Gene Expression, Transcription and Latency    

After the the tegument protein VP16 (UL48) is imported into the nucleus and viral DNA is released into the 

nucleoplasm, viral gene expression commences. VP16 binds to the cellular transcription factors Oct-1 and HCF, 

and this complex activates the expression of the immediate early genes (α) genes ICP0, ICP4, ICP22, ICP27 and 

ICP47 by binding to TAATGARAT elements in their promoters (La Boissiere et al. 1999; Weir 2001). ICP4 together 

with viral genomes form intranuclear replication foci that are localized near promyelotic leukaemia (PML) nuclear 

bodies, also called nuclear domain (ND) 10. However, ICP0 degradates the PML protein by its E3-ubiquitin-ligase 

activity (Everett et al. 2004; Everett et al. 2003). The cooperation between nucleoprotein complexes, formed by 

immediate early transcription of incoming viral genomes, and ND10 structures finally results in the formation of 

intranuclear replication compartments that lack PML (Everett and Murray 2005). 

HSV1 transcription is controlled in a cascade-like manner (Rajcani et al. 2004; Roizman and Knipe 2001; 

Sandri-Goldin 2007; Weir 2001).  The immediate early (α) genes induce the expression of the early (β) genes 

which are needed for viral DNA-replication. Late (γ) genes, which are expressed after HSV1-DNA replication has 

started, include structural and packaging proteins. For replication the linear viral genome circularizes in the 

nucleus to a covalently closed form (Roizman and Taddeo 2007; Strang and Stow 2005; Yao et al. 1997). The 

HSV1 origin-binding protein UL9 binds to one or more HSV1 replication origins and opens the double strand. The 

HSV1 single-strand binding protein ICP8 (UL29) stabilizes the single DNA strands (Roizman and Knipe 2001). The 

helicase/primase complex of UL5, UL8 and UL52 then form the replication fork and the viral DNA polymerase 

UL30/UL42 synthesizes progeny DNA strands (Wilkinson and Weller 2003). Early in infection a rolling circle 

mechanism for replication of circular viral genomes was proposed (Roizman and Knipe 2001). In neurons, HSV1 

establishes latent infections. No virions are produced, and circularized genomes remain silent in an episomal state. 

Latency-associated transcripts (LATs) are expressed during latency, representing a silent infection, that is ignored 

by the immune system (Bloom 2004). Besides LATs, also gB is present in neurons during latency, since CD8(+) 

T cells against a gB peptide block reactivation from latency in neurons (Khanna et al. 2003). Latency is probably 

induced by a block or impairment of immediate early gene expression (Preston 2000). Upon stress like UV-light or 

a compromised immune system, HSV1 reactivates and switches from latency to lytic replication (Khanna et al. 

2004). New virions assemble and are transported back to the synapses of the innervating neurons of the initial site 

of infection. There epithelial cells and keratinocytes are infected again resulting in virus shedding and eventually 

recurrent diseases like cold sores (Steiner 1996). 
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Table 2: Overview of some HSV1 proteins involved in different stages of the viral life cycle;                 
modified and derived from Roizman and Campadelli Fiume 2007. Some proteins have also functions during other stages during the viral life 
cycle, but they are listed where they appear first. References for the protein functions can be found in the introduction. 
 

Stage of HSV1 life cycle Protein Function 

Capsid assembly VP5 Major capsid protein; capsid hexons contain 6 copies, pentons 5 copies; 
150 hexons and 11 pentons in total 

 UL6 Builds the portal complex at a unique vertex of the capsid as a 
homododecameric protein complex 

 VP19C One copy of VP19c and two copies of  VP23 build a triplex 

 VP23 Part of the triplex that connects VP5 hexons and pentons, 320 triplices  

 VP26 Small capsid protein binds as hexamer pentons but not hexons 

 VP22a Scaffold protein present in B-capsids; will be removed upon DNA packaging 

DNA packaging UL32 Involved in procapsid transport to the nuclear replication compartments for 
DNA packaging 

 UL17 Targets the procapsid to the site of DNA packaging, presumably stabilizes 
capsids in a complex with UL25 after DNA packaging 

 UL33 Presumably involved in concatamer cleveage of the viral DNA 

 UL15 ATPase which provides energy through ATP hydrolysis for DNA packaging 

 UL28 Translocase in complex with ATPase UL15, helps packaging the DNA 
through the UL6 portal complex 

 UL25 Involved in capsid stabilization and might provide a nuclear exit signal once 
bound to C-capsids 

Egress UL31 Primary tegument protein, binds lamin A/C and directs envelopment a the 
inner nuclear membrane  

 UL34 Primary envelope protein, needs UL31 for localization at the inner nuclear 
membrane, recruits protein kinase C for lamin phosphorylation 

 US3 Serine/threonine protein kinase, dispensable for viral replication but blocks 
apoptosis, part of the primary and secondary enveloped virus 

 VP16 Might connect inner and outer tegument, major transcriptional activator in 
complex with the cellular proteins Oct-1 and HCF 

 VP1-3 Major tegument protein, essential for replication and egress of virions 
through the cytoplasm; ts mutant is deficient in DNA release into the 
nucleus at the nonpermissive temperature; putative receptor for microtubule 
motor 

 UL37 Tegument protein that binds VP1-3, bind also DNA in the presence of ICP8 
and is essential for virus replication 

 VP13/14 Outer tegument protein, binds RNA and shuttles between cytoplasm and 
nucleus 

 VP22 Tegument protein 

Entry  gC/gB Bind heparin sulfates on cells surface at initiate attachment of virus 

 gD Binds HVEM, nectin-1, 3-0-sulphated heparin sulfate for virus binding 

 gB Initiates hemifusion of viral and cellular membrane  

 gH Interacts with αvβ3 integrin, essential for fusion 

 gL Essential for fusion 

 vhs Host shut off protein that mediated cellular RNA degradation 

 US11 Virion associated US11 binds polyribosomes, late in infection it localizes to 
nucleoli 

Gene expression, ICP0 Promiscuous transactivator of gene expression 

Replication,  ICP4  Transactivator and repressor of viral gene functions 

Latency ICP8 Required for viral DNA synthesis, single-strand DNA binding protein 

 UL9 Origin binding protein 

 UL5/8/52 Helicase/primase complex, new drug target (BAY-57-1293) 

 UL30/42 DNA polymerase 

 LAT Latency associated transcript 
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1.4 The HSV1-UL25 Protein 

1.4.1 General Properties of UL25 

The UL25 gene is highly conserved among alphaherpesviruses (Rode 2003, Diploma thesis). The HSV1-UL25 

protein is composed of 580 amino acids and has a calculated molecular weight of 62.6 kDa (McNab et al. 1998). 

The crystal structure of an N-terminally truncated version of HSV1-UL25 (amino acids 134-580) has been 

recently resolved at a resolution of 2.1 Å (Figure 6, Bowman et al. 2006).  It reveals a novel fold with a stable 

almost brick-shaped core of multiple α-helices and four β-sheets with many emanating flexible loops which may 

mediate UL25 functions. It folds into a structure with a distinct electrostatic distribution; the electronegative side 

might contribute for oligomerization and protein-protein interactions; the electropositive face could mediate DNA 

binding. Evolutionary trace analysis of UL25 and its homologues revealed important amino acids on the protein 

surface that may be crucial for binding associated proteins.  

The functions of its homologues in human cytomegalovirus (HCMV-UL77) and in Kaposi´s sarcoma-associated 

herpesvirus (KSHV-ORF19) are unknown. For HCMV-UL77 a sequence identity to a pyruvoyl decarboxylase enzyme 

prosthetic group has been described, but its functional relevance for the viral life cycle remains unclear (Yoakum 

1993).  

 

 

 
Figure 6: Crystal structure of HSV1-UL25 (aa 134-580): The structure of UL25 was resolved at a 2.1 Å resolution. A ribbon diagram 
(a) shows multiple α-helices (pink) and four β-sheets (yellow) in a brick-shaped core emanating flexible loops (from: 
http://oca.ebi.ac.uk/oca-bin/ccpeek?id=2F5U). The electrostatic surface representation shows the electronegative face (b) that might be 
involved in self oligomerization. The electropositive site (c) might be nessecary for DNA binding (from Bowman et al. 2006, Fig. 2, modified). 
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1.4.2 UL25 Functions During Capsid Assembly 

Herpesviruses and some dsDNA bacteriophages such as T4, lambda or SPO1 share a common ancestry in 

capsid architecture and the process of DNA packaging (Baker et al. 2005; Duda et al. 2006; Murialdo 1991; 

Prevelige and King 1993). They all assemble spherical procapsids which then mature into angular capsids (Homa 

and Brown 1997; Prevelige and King 1993). After DNA packaging, the bacteriophages add scaffolding proteins to 

retain their DNA within the capsid (King et al. 1976; King et al. 1973; Lenk et al. 1975).  

The UL25 protein of herpesviruses might provide a similar function, since it is required for efficient retention 

of the packaged viral genome inside the capsid. UL25 could seal the UL6 portal after the genome has been 

packaged (Figure 7 a; Desloges and Simard 2003; McNab et al. 1998; Ogasawara et al. 2001; Sheaffer et al. 

2001; Stow 2001). However, in the absence of UL25, C-capsids are detected in HSV1 and PrV indicating 

packaging and encapsidation of viral DNA, albeit with reduced efficiency (Figure 7 b; Klupp et al. 2006; Stow 

2001). Additionally, PrV-∆UL25 capsids do not leave the nucleus (Klupp et al. 2006). These two proposed 

functions may not exclude each other (Figure 7 c). The copy number of UL25 correlates with the loss of scaffold 

protein during capsid maturation. Very little UL25 is found on procapsids that contain unprocessed scaffold. B 

capsids contain more UL25 and UL17, and the largest amount is found on C-capsids (Sheaffer et al. 2001; 

Thurlow et al. 2006; Trus et al. 2007). On PrV capsids the amount of UL25 on A- and C-capsids is higher than on 

B-capsids (Kaelin et al. 2000). A quantitative immunoblot showed that the capsid content of UL25 were 56, 20, 

and 75 copies per capsid in A, B, and C-capsids, respectively. Therefore about 5 copies per penton are found in C-

capsids (Newcomb et al. 2006). Thus, removal of scaffold may allow more efficient binding of UL25 to capsids.  

 

 
 
Figure 7: Proposed functions of UL25 during capsid assembly:  The function of the UL25 protein during assembly is highly debated. 
Previous data suggested that UL25 might seal the channel of the UL6 portal complex after DNA packaging to retain the viral genome within 
the capsid (a). Recent data suggest that UL25, presumably in a complex with the tegument protein UL17 is subsequently added after DNA 
packaging to every vertex of the capsid for stabilization. Moreover only packaged capsids that contain UL25 may leave the nucleus for 
further maturation. Therefore UL25 was proposed to be a nuclear exit signal (b). Furthermore a combination of both functions would be 
possible. Scheme derived and modified from Desloges and Simard 2003; Klupp et al. 2006; McNab et al. 1998; Ogasawara et al. 2001; 
Sheaffer et al. 2001; Stow 2001; Trus et al. 2007. 
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Far western blot analysis proposed an association of UL25 with the capsid proteins VP5, VP19C and VP23. 

Moreover UL25 specifically binds herpesviral DNA (Ogasawara et al. 2001). The C-terminus ot the large tegument 

protein VP1-3 interacts with UL25. VP1-3 was proposed to initiate tegument assembly after nuclear egress of 

capsids, Therefore, UL25 may connect VP1-3 to capsids for recruitment of tegument proteins (Coller 2007).  

A careful structural analysis of wild type virus C-capsids and A-capsids derived from UL25-deletion mutants 

revealed that there is a C-capsid specific component (CCSC) clustered at the vertices (Trus et al. 2007). Based on 

the size of this CSCC, a heterodimer of UL25 and the DNA packaging protein UL17 (Thurlow et al. 2005) most 

likely comprises this CSCC (Trus et al. 2007). UL25 remains associated with viral capsids after salt extraction 

suggesting a tight association of UL25 with the capsid (Wolfstein et al. 2006). UL25 and UL17 both play a role in 

capsid maturation and DNA packaging. In the absence of UL17, the levels of UL25 on the B-capsid were lower 

and vice versa (Thurlow et al. 2006; Thurlow et al. 2005), therefore UL25 and UL17 interactions are important for 

efficient incorporation of both proteins. UL25 and UL17 may be subsequently added to the C-capsid vertices to 

reinforce the structure and to give a signal for leaving the nucleus by budding through the nuclear membrane 

(Figure 7 b; Klupp et al. 2006; Thurlow et al. 2006; Trus et al. 2007). Regarding the common ancestry of 

bacteriopahges and herpesviruses (Baker et al. 2005), UL25 might be analogous to the lambda phage protein 

gpW, which is required for the stabilization of the phage head (Perucchetti et al. 1988).  

1.4.3 UL25 Functions During Virus Entry 

Studies on two temperature-sensitive HSV1-mutants, ts1204 and ts1208, that both have a mutation mapped 

in the UL25 open reading frame, suggest that UL25 may not only function in capsid assembly but also during cell 

entry. At the nonpermissive temperature of 39°C, the mutant ts1204 absorbed to the plasma membrane but failed 

to penetrate it. Upon superinfection with HSV2 also ts1204 could enter but lower amounts of capsids were 

generated. The mutant ts1208 penetrated the cell normally, but as for ts1204 formation of functional capsids was 

affected (Addison et al. 1984).  

Since the PrV-UL25 protein seems to associate with microtubules after transient transfection, it was proposed 

that UL25 may be involved in microtubule mediated transport of incoming capsids from the cell periphery to the 

nuclear pores (Kaelin et al. 2000). In contrast to PrV-UL25, we showed that in living cells overexpressed GFP-

tagged HSV1-UL25 was localized in the cytosol and to a lower extent in the nucleus but never on cytosceletal 

strutures (Rode 2003, Diploma thesis). Several fixation and permeabilization protocols for immunofluorescence 

labeling could maintain this localization, and overexpressed HSV1-UL25 did also not colocalize with actin, 

vimentin or microtubule filaments (Figure 8). Only after one protocol, pre-extraction in a microtubule stabilizing 

buffer and methanol fixation, we obtained a filamentous GFPUL25 pattern that partially overlapped with 

microtubules. This pattern differed from the in vivo localization as well as from the localization after several other 

fixation and permeabilization protocols therefore it was most likely a fixation artifact (Figure 8 k). After the harsh 

pre-extraction prior to fixation with methanol the negatively charged surface of the microtubules (Downing 2000) 

might interact with the electropositive side of the UL25 protein (Bowman et al. 2006).  
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Thus, in contrast to the filamentous pattern of PrV-UL25, most likely being a fixation artifact, transiently 

expressed HSV1-UL25 was localized in the cytosol and to a lower extent in the nucleus (Rode 2002, Internship 

report; Rode 2003, Diploma thesis). 

If HSV1-UL25 had a function during nuclear targeting of capsids, UL25 in excess might act as a dominant 

negative inhibitor and compete with such a process. Cells overexpressing UL25GFP (Figure 9 b, f), GFPUL25, UL25 

(not shown) or GFP (Figure 9 a, e; Rode 2003, Diploma thesis) were infected with HSV1 in the presence of 

cycloheximide to prevent new synthesis of viral proteins. At 1 h pi, the capsids were randomly distributed 

throughout the entire cytoplasm (Figure 9 c, d). Irrespective of the overexpressed protein, capsids accumulated at 

the nucleus at 3 h pi (Figure 9 g, h). Moreover, a tight association of UL25 with microtubules would rather be 

obstructive than beneficial for microtubule mediated transport, because it might disturb or hinder the binding and 

movement of dynein and its cofactor dynactin along microtubules. Thus, an excess of UL25 during the early phase 

of the HSV1 life cycle did not compete with capsid transport to the nucleus (Rode 2003, Diploma thesis). 

 
Figure 8: Cytosolic distribution of overexpressed UL25 in vivo and after different fixation and permeabilization methods. 
PtK2 cells were transiently transfected with GFPUL25. In vivo overexpressed GFPUL25 is present in the cytosol and to a lesser extent in the 
nucleus (c). Using the indicated fixation techniques (box), the localization of GFPUL25 is still cytosolic and nuclear like in living cells (d, e, i, 
j, k) and therefore not colocalizing with microtubules (f, g). Only after preextraction in a taxol containing PIPES buffer, followed by fixation 
with methanol GFPUL25 randomly overlapped with microtubules (h, k). No colocalization with actin (a) or vimentin (b) with GFPUL25 could 
be observed after PFA fixation and TX-100 permeabilization. Taken together all the observations obtained with several fixation and 
permeabilization techniques, GFPUL25 was localized in the cytosol and the nucleus (Rode 2002, Internship report; Rode 2003, Diploma 
thesis).  
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Figure 9: UL25 overexpression did not affect nuclear targeting. Capsids (c, d) were distributed over the entire cytosol at 1 h pi in 
untransfected, and GFP (a) or UL25GFP (b) expressing cells. Almost all capsids (g, h) accumulated at the nucleus at 3 h pi, while only few 
capsids remained in the cytosol, irrespective of the overexpressed protein (e, f). Similar results were obtained with GFPUL25 or UL25 (data 
not shown). Immunofluorescence microscopy of GFP (a, e) or UL25GFP (b, f) overexpressing Vero cells, infected with 70 PFU/cell in the 
presence of cycloheximide. The cells were PFA-fixed at 1 or 3 h pi and TX-100-permeabilized and labeled with a mouse anti-capsid antibody 
(mAb 5C10, c, d, g, h; Rode 2003, Diploma thesis). 
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1.5 Aim of the Study 

Analysis of temperature-sensitive HSV1-UL25 mutants, ts1204 and ts1208, suggest a role for UL25 during 

entry, since those viruses failed to penetrate the plasma membrane and less capsids were produced upon 

subsequent virus propagation (Addison et al. 1984). Moreover, the UL25 protein of pseudorabiesvirus was 

suggested to be a microtubule motor receptor and to be involved in transport of capsids to the nucleus, since 

overexpressed PrV-UL25 seemed to associate with microtubules (Kaelin et al. 2000).  

 
Figure 10: Analyzing the function of UL25 during entry: (a) What is happening to the capsid-associated UL25 on incoming viral 
capsids? Is it associated with the capsid until arrival at the nucleus or is it released during travelling to the nucleus? (b) In UL25 
overexpressing cells, capsid transport to the NPC is not affected. Surprisingly, immediate early gene expression is reduced. What happened 
to the capsid and the viral genome? Why is no immediate early protein synthesized? What is the mechanism behind? 

In my diploma work, I showed that overexpressed GFP-tagged HSV1-UL25 was localized mainly in the cytosol 

and to a lesser extent in the nucleus but never associated with the cytoskeleton (Figure 8, Rode 2003, Diploma 

thesis).  Moreover, excess UL25 did not affect the nuclear targeting of incoming capsids during virus entry (Figure 

9, Rode 2003, Diploma thesis). However, initial experiments suggested that overexpressed UL25 may inhibit 

immediate early gene expression, and that UL25 may target a step after capsid arrival at the nucleus but prior to 

immediate early gene expression (Figure 10 b; Rode 2003, Diploma thesis), and a phase of the HSV1 life cycle 

which is hardly characterized in molecular terms.  

In this thesis, I determined for the first time the subcellular localization of UL25 during capsid assembly and 

nuclear egress to address when UL25 is attached to nuclear capsids (Figure 7). Moreover, I analyzed the fate of 

capsid-associated UL25 to test whether it remains associated with incoming viral capsids until arrival at the 

nucleus or whether it is released during capsid transport (Figure 10 a). The major tasks were to analyze the 

potential reduction of immediate early gene expression quantitatively, and to elucidate at which step the excess of 

UL25 may interfere with immediate early HSV1 gene expression (Figure 39).  
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2 Material and Methods 

2.1 Chemicals 

All chemicals were of molecular biology grade purity and purchased from the following companies unless 

otherwise indicated: Amersham (Amersham, Little Chalfont, UK), AppliChem (Darmstadt, Germany), Baker 

(Deventer, Netherlands), Fluka (Buchs, Switzerland), GE Healthcare (Freiburg, Germany), Gibco (Karlsruhe, 

Germany), ICN (Aurora, Ohio, USA), Invitrogen (Karlsruhe, Germany), Dianova (Hamburg, Germany), Merck 

(Darmstadt, Germany), Molecular Probes (Karlsruhe, Germany), New England Biolabs (Ipswich, MA, USA), 

Promega (Mannheim, Germany), Riedel de Haën (Seelze, Germany), Roche (Mannheim, Germany), Roth 

(Karlsruhe, Germany), Santa Cruz (Santa Cruz, CA, USA), Seromed-Biochrom (Berlin, Germany), Serva (Heidelberg, 

Germany), Sigma-Adrich (Steinheim, Germany). 

Consumables were obtained from Amersham, BD Biosciences (Heidelberg, Germany), Beckman (Fullerton, 

CA, USA), Biozym (Hessisch Oldendorf, Germany), Corning-Costar (Schiphol, Netherlands), Eppendorf (Hamburg, 

Germany), Gilson (Middleton, WI, USA), Greiner (Frickenhausen, Germany), Pall (Pensacola, FL, USA), Pharmacia 

(New York, USA), Qiagen (Hilden, Germany), Sarstedt (Nümbrecht, Germany), Schleicher & Schuell (Dassel, 

Germany), or Whatman (Dassel, Germany). 

2.2 Antibodies  

Primary antibodies were either purchased or kindly provided by the indicated collegues and collaborators. 

mAb 5C10 – α-VP5: Mouse monoclonal antibody against HSV1-VP5 hexons, obtained from B. Newcomb and J. 

Brown (University of Virginia, Charlottesville, VA, USA; Trus et al. 1992) 

pAb NC-1 – α-VP5: Rabbit polyclonal antibody against HSV1-VP5, obtained from G. Cohen and R. Eisenberg 

(University of Pennsylvania, Philadelphia, USA; Cohen et al. 1980) 

mAb H1.4 – α-VP5: Mouse monoclonal antibody against HSV1-VP5 (Biodesign & OEM Concepts of Meridian Life 

Science, Inc.; Saco, Maine, USA) 

mAb LP12 – α-VP5:  Mouse monoclonal antibody against immature VP5, obtained from A.C. Minson (University 

of Cambridge, UK; Döhner et al. 2006; Phelan et al. 1997) 

pAb EC/R8-3 – α-UL25: Rabbit polclonal antibody against GST-UL25 (aa 341-580), obtained from E. Cantin 

(Department of Neurology, City of Hope National Medical Center, Duarte, California, USA; Ali et al. 1996) 

pAb ID1 – α-UL25: Rabbit polclonal antibody against GST-UL25, obtained from D. J. Tenney (Bristol-Myers 

Squibb Pharmaceutical Research Institute, Wallingford, Connecticut, USA; Koslowski et al. 1997) 
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mAb IC9 – α-UL6: Mouse monoclonal antibody against UL6 coupled to a maltose binding protein tag, obtained 

from B. Newcomb and J. Brown (University of Virginia, Charlottesville, VA, USA;  Taus et al. 1998) 

mAb 11060 – α-ICP0: Mouse monoclonal antibody against ICP0, obtained from R. Everett (MRC Virology Unit, 

Glasgow, UK; Everett et al. 1991) 

pAb SW7 – α-VP16: Rabbit polyclonal antibody against the thyroglobulin-conjugated carboxyl terminal amino 

acids 475 to 488 of VP16, obtained from D. J. Tenney (Bristol-Myers Squibb Pharmaceutical Research Institute; 

Weinheimer et al. 1992) 

pAb α-p35/H5R – Rabbit polyclonal antibody against the vaccinia virus protein p35 obtained from J. Krijnse-

Locker (University of Heidelberg, Germany; Tolonen et al. 2001) 

pAb α-p16/A14L – Rabbit polyclonal antibody against the vaccinia virus protein p16, obtained from J. Krijnse-

Locker, (University of Heidelberg, Germany; Salmons et al. 1997) 

mAb 1501 – α-actin: Mouse monoclonal antibody raised against purified chicken gizzard actin (Lessard 1988).  

mAb DM1A – α-tubulin: Mouse monoclonal antibody raised against human brain α–tubulin (amino acis 426-

450; Upstate – Millipore, Billerica, Maryland, USA) 

mAb 7A3 – α-vimentin: Mouse monoclonal antibody against vimentin (Kouklis et al. 1993) 

mAb 414 – α-NPC: Mouse monoclonal antibody (ab24609) that reacts with NPC proteins which contain FG 

repeats; Nup358/RanBP, Nup214/CAN, Nup62, Pom121 and Nup153, Abcam, Cambridge, UK) 

mAb 3E9 – α-importin β: Mouse monoclonal antibody that detects importin β/nuclear transport factor 97, 

raised against purified importin β from bovine erythrocytes (Abcam, Cambridge, UK) 

mAb JL8 – α-GFP: Affinity purified mouse monoclonal antibody against full length GFP, affinity purified (Living 

color® Antibody, Clontech, Mountain View, California, USA) 

pAb α-β-galactosidase: Rabbit polyclonal antibody against β-galactosidase (5-Prime – 3-Prime Inc., Boulder, 

CA, USA) 

mAb α-NFκB: Mouse monoclonal antibody against NFκB (sc-372; Santa Cruz Biotechnology, Inc., CA, USA) 

mAb α-IκB: Mouse monoclonal antibody against IκB (sc-847; Santa Cruz Biotechnology, Inc., CA, USA) 

mAb α-STAT1: Mouse monoclonal antibody against STAT1 (sc-464; Santa Cruz Biotechnology, Inc., CA, USA) 

mAb α-NFAT: Mouse monoclonal antibody against NFAT (sc-7294; Santa Cruz Biotechnology, Inc., CA, USA) 
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Secondary antibodies were isolated from antisera by immunoaffinity chromatography using antigens 

coupled to agarose beads and purchased from Jackson Immuno Research via Dianova, Hamburg, Germany. 

Fluorescein Isothiocyanate (FITC)-conjugated AffiniPure Goat anti-Mouse IgG: Minimal cross-reaction 

to human, bovine, horse, rabbit and swine serum proteins 

FITC-conjugated AffiniPure Goat anti-Rabbit IgG: Minimal cross-reaction to human, bovine and horse 

serum proteins 

Lissamine Rhodamine Sulfonyl Chloride (LRSC)-conjugated AffiniPure Goat Anti-Mouse IgG: Minimal 

cross-reaction to human, bovine, horse, rabbit and swine serum proteins  

LRSC-conjugated AffiniPure Goat Anti-Rabbit IgG: Minimal cross-reaction to human, mouse and rat serum 

proteins    

Peroxidase-conjugated AffiniPure Goat anti-Mouse IgG/Goat anti-Rabbit IgG and 

Alkaline phosphatase-conjugated AffiniPure Goat anti-Mouse IgG/Goat anti-Rabbit IgG: Antibody 

specificity is based on immunoelectrophoresis. The antibody reacts with the heavy chains on host IgG and with 

light chains to most host immunoglobulins. No antibody was detected against non-immunoglobulin serum 

proteins, but antibodies may cross react with immunoglobulins from other species. 

2.3 Molecular Biological Techniques 

All molecular biology techniques were performed according to Sambrook et al. 1989. 

2.3.1 Bacterial Strains and Propagation 

E. coli DH5α: used for maintenance and cloning of plasmids (Grant et al. 1990) 

Genotype: F- deoR recA1 endA1 hsdR17 (r
k
 -, m

k
+) supE44 λ- thi-1 gyrA96 relA1 

E. coli DH10B: used for maintenance and cloning of plasmids (Grant et al. 1990) 

Genotype: F- mcrA ∆(mrr-hsdRMS-mcrBC) Φ80lacZ∆M15 ∆lacX74 recA1 endA1 ara∆139 ∆(ara, leu) 7697   galU 

galK λ- rpsL (StrR) nupG  

LB medium:  1% [w/v] peptone (Roth); 0.5% yeast extract (Roth); 0.5% NaCl; 1 mM NaOH; sterile 

Overnight cultures from freshly picked colonies were usually grown in LB medium with the appropriate antibiotic at 

37°C and shaken at 220 rpm in a Kendro incubator (Rodenbach, Germany). The amount of growth medium was 

chosen according to the recommendations of the manufacturer´s protocol. For cryoconservation, a 400 µl aliquot 

of bacteria from a 2 ml over night culture was mixed 1:1 with glycerol, snap frozen in liquid nitrogen, and stored 

at -80°C. 
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2.3.2 DNA Purification and Labeling Kits  

Plasmid DNA and DNA probes were amplified and purified using the following kits according to the 

manufacturer´s instructions. 

QiaPrep Plasmid miniprep kit    Qiagen, Heidelberg, Germany 

GeneElute HP Plasmid midiprep kit   Sigma-Aldrich, Munich, Germany 

Amersham Cy3-dCTP nucleotides     GE Healthcare, Freiburg, Germany 

2.3.3 Expression Plasmids  

The plasmid maps were constructed using the SIM Vector program (version 2, PREMIER Biosoft International, 

Palo Alto, CA, USA). 

pEGFP-C1 encodes for the enhanced green fluorescent protein (GFP) and includes a C-terminal multiple 

cloning site. It includes a kanamycin resistance cassette for propagation in bacteria and a neomycin resistance 

cassette for eukaryotic selection (GenBank Accession #: U55763, Clontech, Saint-Germain-en-Laye, France). 

pGFPUL25 encodes a N-terminal enhanced green fluorescent protein (GFP) fusion protein with the complete 

UL25 ORF (Müller 2000, Internship report). The plasmid with a size of 6.4 kb was constructed using pEGFP-C1 

(Invitrogen) and a UL25-insert amplified from the HSV1(17+)-genom with BamHI and EcoRI restriction sites.  It 

contains a neomycin resistance cassette for selection of stable cell clones in eukaryotic cell culture. The kanamycin 

resistence is important for the amplification in E.coli.  

 

 

pUL25GFP encodes a C-terminal GFP fusion protein with the complete UL25 ORF (Rode 2002, Internship 

report). The plasmid has a size of 6.4 kb and was constructed using pEGFP-N1 and a UL25 insert amplified from 

cosmid 28 (Cunningham and Davison 1993) via BamHI and XhoI restriction sites. This plasmid also encodes for a 

neomycin- and kanamycin resistance cassette. 
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pcDNA3-UL25 was constructed from pcDNA3 (Invitrogen) and a UL25 insert amplified from cosmid 28 

(Cunningham and Davison 1993) containing a Kozak consensus sequence (ACCATGG). This sequence facilitates 

the initital binding of mRNA to the small subunit of the ribosome and therefore improves expression levels (Kozak 

1986). The insert was cloned into the vector using BamHI and EcoRI. The plasmid with a size of 7.1 kb and 

encodes for a neomycin- and an ampicillin resistance cassette (Rode 2003, Diploma thesis). 

 

 

pGL2basic is a luciferase reporter plasmid (Promega, Madison, Wisconsin, USA). It lacks eukaryotic 

promoter and enhancer sequences. The expression of luciferase is dependent on the insertion and orientation of a 

functional promoter sequence upstream of the luciferase coding region. 

pGL2b-cyclin E promoter contains the human cylin E promoter upstream of the luciferase gene in 

pGL2basic  (Geng et al. 1996, kindly provided by M. Ottinger and T.F. Schulz, Institut of Virology, Hannover 

Medical School) 

pGL2b-EBV cp2.0 contains 2 kb of the Epstein Barr Virus (EBV, HHV4) C promoter upstream of the 

transcriptional start site which contains the Epstein Barr Nuclear Antigen 2 (EBNA-2) responsive element. It lacks 

the EBV origin of replication and was cloned into pGL2basic (Ottinger 2005; kindly provided by M. Ottinger and 

T.F. Schulz, Institut of Virology, Hannover Medical School). 

pGFP-Hunk encodes a N-terminal GFP fusion protein of Hunk (Ottinger 2005; kindly provided by M. 

Ottinger and T.F. Schulz, Institut of Virology, Hannover Medical School).  

pTal and pSRE are plasmids which belongs to the Mercury Pathway Profiling Vector System (Clontech, 

Saint-Germain-en-Laye, France). These vectors contain specific responsive elements upstream of the TATA-like 

(TAL) minimal promoter element of HSV1 thymidine kinase with the exception of the negative control vector pTal. 

The specific serum responsive element (SRE) together with the Tal promoter regulates transcription of the reporter 

gene luciferase. 
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2.4 Eucaryotic Cell Culture 

BHK-21 cells (American Type Culture Collection (ATCC) certified cell line (CCL)-10): Adherent kidney 

fibroblasts from syrian golden hamster (Mesocricetus auratus) 

PtK2 cells (NBL-5; ATCC no. CCL-56): Adherent kidney epithelial cells from potoroo (Potorous tridactylis) 

Vero cells (ATCC no. CCL-81): Adherent kidney epithelial cells from african green monkey (Cercopithecus 

aethiops) 

HeLa (ATCC CCL-2): Adherent cervical cancer epithelial cell from human (Homo sapiens) 

HEK 293-T (ATCC CRL-11268): Human ephithelial kidney cells that were immortalized through transformation 

with adenovirus 5 and SV40 large T-antigen (Homo sapiens) 

 

MEM (Cytogen) Eagle’s buffered salt solution, nonessential amino acids, glutamine,                      

2.2 g/l NaHCO3 

D-MEM (Gibco)                              4.5 g/l glucose, GlutaMAXTM, pyruvate (used for vaccinia virus infections) 

RPMI1640/BSA (Cytogen)  supplemented with 0.1% BSA 

Foetal calf serum (FCS; Gibco) heat-inactivated for 30 min at 56°C 

Trypsin/EDTA solution (Biochrom)   0.25%/0.02% in PBS, pH 7.4 (150 mM NaCl, 8 mM KH2PO4, 2 mM Na2HPO4) 

                                                      without Ca2+ and Mg2+ 

Cycloheximide                                100x, 50 mM stock solution in H2O 

 

For maintenance of cell lines the following media were used: 

BHK-21, PtK2, HeLa and HEK 293-T cells:  MEM supplemented with 10% FCS 

Vero cells:     MEM supplemented with 7.5% FCS 

 

Cells were grown in an incubator (Hera Cell, Kendro, Rodenbach, Germany) with a humid atmosphere and 

5% CO2 at 37°C. For maintenance cells were subcultured twice a week. 

For long-term storage in liquid nitrogen, cells of a 10 cm dish were trypsinized and resuspended in 2 ml culture 

medium supplemented with double the amount of FCS relative to the growth medium and 10% DMSO, transferred 

into a cryo tube and frozen at -80°C for a few days prior to storage in liquid nitrogen.  

To recover the cells, they were quickly thawed, resuspended and washed in pre-warmed culture medium. 

Cells were centrifuged at low speed in a cell culture centrifuge (1000 rpm, 10 min, RT, cell culture centrifuge 

5810R, Eppendorf, Hamburg, Germany) and the pellet was resuspended in growth medium and plated in a tissue 

culture flask. 

 

 



Material and Methods 

 34

2.5 Virological Techniques 

2.5.1 Viruses 

HSV1 strain F: wildtype virus (ATCC VR-733) 

HSV1 strain 17+: fully sequenced wildtype virus (GenBank accession number X14112; McGeoch et al. 1988; 

McGeoch et al. 1986; kindly provided by J.H. Subak-Sharpe; MRC Virology Unit, Glagow, UK) 

Vaccinia virus Strain Western Reserve: wildtype virus (ATCC VR-119, Parker et al. 1941; kindly provided by 

Jacomine Krijnse-Locker; University of Heidelberg, Germany) 

Adenovirus-LacZ: this adenovirus encodes for β-galactosidase under an early adenoviral promoter (Schiedner et 

al. 2000; kindly provided by Florian Kreppel; University of Ulm, Germany) 

2.5.2 Propagation of HSV1 and Quality Control of Virus Preparations 

HSV1 was prepared as previously described (Döhner 2006; Döhner et al. 2002; Sodeik et al. 1997). All 

experiments were performed with virus stocks of passage number 3. BHK-21 cells were plated in 175 cm2 flasks, 

grown to 90 to 95% confluency, washed with PBS, and then infected with a MOI of 0.01 PFU/cell. For infection, 

cells were incubated with 5 ml virus suspension in RPMI1640 containing 0.1% BSA (RPMI/BSA) for one hour on a 

rocking platform at room temperature to allow the virus to bind to the cells. Then 25 ml of culture medium were 

added, and the cells were further incubated at 37°C and 5% CO2. The virus was harvested when nearly all cells 

had rounded up and could be detached from the flask by knocking them off. The time point of harvesting 

depended on the virus strain, and for wild-type strains it was between 48 to 60 hours post infection. 

The medium containing the secreted extracellular virions and cells was spun at 4,000 rpm at 4°C for 10 min 

in a JA-10 rotor in an Avanti J-25 centrifuge (Beckman Coulter, Fullerton, CA, USA). The pooled supernatants 

containing the virions were transferred to Beckman Type 19 rotor bottles and centrifuged at 12.000 rpm at 4°C for 

90 min in a Beckman L8-70 ultracentrifuge (Beckman Coulter, Fullerton, CA, USA). The virus pellets were 

resuspended in 1 ml MNT buffer (20 mM MES; 100 mM NaCl; 30 mM Tris; pH 7.4) and allowed to dwell at 4°C 

for 24 to 36 h. For further purification, the virus suspension was sonicated for 3 times 30 s in an ultrasonic bath, 

further resuspended by pipetting up and down with a molten glass pasteur pipette, and centrifuged for 5 min at 

4.000 rpm in a 15 ml tube in an Eppendorf 5810R centrifuge. A 10 to 40% Nycodenz (Axis Shield PoC, Oslo, 

Norway) gradient in MNT was made using a Gradient Master™ Model 106 (Biocomp, Fredericton, Canada). 

 The supernatant was then loaded on top and spun at 20.000 rpm for 1 h 45 min in a SW28 ultracentrifuge 

rotor (Beckman Coulter, Fullerton, CA, USA). The virus band in the middle of the gradient was visible due to light 

scattering, harvested, aliquoted, snap-frozen in liquid nitrogen and stored at -80°C. 

The quality of the gradient purified virus was analyzed by immunoflurescence where the nuclear targeting 

efficiency of the virus was elucidated. Moreover, virus titer was determined by plaque assays on Vero cells (Döhner 

et al. 2002). 



Material and Methods 

 35

With real time detection PCR the amount of viral genomes per particle was determined. A low PFU/particle 

ratio (~ 20-40) indicates a good quality virus preparation with good nuclear targeting efficiency (Döhner et al. 

2006). Some of the virus preparations were examined according to all these quality control criteria. Not all virus 

preps could be analyzed by real time detection PCR method because they were already empty at the time of 

establishment. 

 

Table 3: Quality of some gradient purified virus preparations used in this study: 

HSV1(F) Virus titer by plaque assay Nuclear targeting efficiency  Genome/PFU (-DNAse)  

12.09.04 2.3 · 108 pfu/ml + 32.4  

14.10.05 7.2· 108 pfu/ml + 29.9 

13.01.06 1.2 · 108 pfu/ml + 20.0 

2.5.3 Transient Transfections 

Cells were seeded into or 48-well plates without cover slips or on 12 mm glass cover slips in 24-well plates 

at a density of about 1 to 2 x 104 cells per well or 3 to 4 x 104  cells per well, respectively or in 10 cm dishes with a 

cell density of 1 x 106. After 24 h, expression plasmids were transfected into cells with the calcium phosphate 

method (Döhner et al. 2002; Sambrook et al. 1989) or with the cationic liposomal-based GeneJuice (Novagen, 

Merck KGaA, Darmstadt, Germany) or Fugene transfection reagent (Roche, Mannheim, Germany) according to the 

manufacturer’s instructions for 18 to 30 h depending on the following experiments. 

2.5.4 Synchronised HSV1 Infection 

For all entry experiments Vero, PtK2 or HeLa cells were synchronously infected with HSV1, vaccina virus or 

adenovirus. The cells were plated one day before the experiment either in 24-well plates or 10 cm dishes, or two 

days before the experiment when cells were transfected prior to virus infection. The cells of one well or one dish 

were counted, and the virus suspension (200 µl/well for a 24-well plate or 500 µl for a 10 cm dish) containing the 

appropriate amount of PFU in RPMI medium supplemented with 0.1% [w/v] BSA was prepared. The cells were 

cooled on ice in RPMI medium/BSA for 20 min; the virus was added and allowed to bind at 4°C on a rocking 

platform for 1 to 2 h. For vaccinia virus infections, D-MEM without serum or BSA was used. After binding, 

unbound virus was removed by washing 3 times with RPMI medium/BSA and to start the infection growth medium 

at 37°C was added. For nuclear targeting experiments, the medium contained 0.5 mM cycloheximide which 

inhibits protein synthesis (Obrig et al. 1971). It is used here to prevent the synthesis of progeny viral proteins 

(Döhner et al. 2002, Sodeik et al. 1997). For gene expression experiments, growth medium without cycloheximide 

was used. Cells were incubated at 37°C, 5% CO2 until fixation or harvesting. MOIs of 0.5 to 10 PFU/cell were 

used for HSV1 assembly, of 20 to 500 for HSV1 cell entry, of 2-10 to monitor HSV1 early gene expression (Döhner 

et al. 2002; Mabit et al. 2002; Sodeik et al. 1997), of 100 to monitor adenovirus gene expression (Schiedner et al. 

2000) and of 60 to analyze vaccinia virus gene expression (Jensen et al. 1996; Schepis et al. 2006). 
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2.6 Protein Analysis 

2.6.1 Preparation of Cell Lysates  

Cells in a 10 cm dish were placed on ice, scraped into 300 µl (entry experiments) or 700 µl (assembly 

experiments) hot Laemmli sample buffer (5% glycerol, 58 mM SDS, 58 mM Tris-HCl, 30 µM bromophenol blue; 

0.02% β-mercaptoethanol pH 6.8; Laemmli 1970) containing protease inhibitors at the indicated final 

concentrations (AEL – 0.05 mg/ml Apronitin, 0.01 mg/ml E-64, 0.05 mg/ml Leupeptin in H2O; ABP – 0.01 mg/ml 

Antipain, 0.05 mg/ml Bestatin, 0.05 mg/ml Pepstatin in methanol; 0.16 mg/ml PMSF in isopropanol). Samples 

were transferred to a 1.5 ml tube on ice. To shear the DNA, samples were triturated 50x using a 25 µl Hamilton 

syringe (Bonaduz, Switzerland). The lysates were denatured at 95°C for 5 min and centrifuged for 10 min at 

16.000 rpm at RT before loading onto an SDS gel or stored frozen at -20°C until use.  

2.6.2 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Immunoblot 

The buffer system described by Laemmli (Laemmli 1970) was used for discontinuous electrophoresis in the 

presence of SDS. The gels had a length of 8 cm, width of 10 cm, and a thickness of 0.75 mm (HoeferTM SE250 mini 

vertical unit, Amersham, Little Chalfont, UK), or a length and width of 16 cm, and a thickness of 1.5 mm (HoeferTM 

SE600 standard dual cooled electrophoresis unit, Amersham, Little Chalfont, UK). Molecular weight standards with 

250, 150, 100, 75, 50, 37, 25, 15 and 10 kD bands (Precision Plus Protein Standard Unstained or Kaleidoscope, 

Bio-Rad) were used.  

Proteins separated on SDS gels were transferred onto BioTrace®NT nitrocellulose membrane (Pall, 

Pensacola, Florida, USA) in transfer buffer (48 mM Tris, 380 mM glycine, 0.1% w/v SDS, 10% methanol) in a tank 

blot transfer unit (Amersham, Little Chalfont, UK) for 16 hours at 40 mM for small SDS gels and at 100 mA for 

large SDS gels (Burnette 1981).  

The nitrocellulose membrane was stained with 0.2% Ponceau S in 3% trichloroacetic acid, destained in 

water or 1% [v/v] acetic acid, and the molecular weight markers were indicated. Unspecific binding sites on the 

membrane were blocked in PBST (PBS, 0.1% Tween-20) containing 5% milk (milk powder, Sucofin, Trade Service 

International, Zeven, Germany) for 1 h at RT. The membrane was incubated with an appropriate dilution of the 

primary antibody in PBST-milk for 2 h at RT on a rocking platform, washed 3 times with PBST and incubated with 

the appropriate secondary peroxidase- or alkaline phosphatase-coupled antibody in PBST-milk for 1 h at RT on a 

rocking platform. After washing 3 times with PBST, antibody labeled bands with peroxidase were detected using 

ten fold diluted SuperSignal® West Femto Maximum Sensitivity Substrate (Pierce, Perbio Science, Bonn, Germany) 

in a LAS-3000 documentation system (FujiFilm, Dusseldorf, Germany). Membranes labeled with alkaline 

phosphatase-coupled antibodies were equilibrated twice for 10 min in TSM (100 mM Tris, 100 mM NaCl, 5 mM 

MgCl2, pH 9.5), and then the bands were visualised in a colour reaction in the dark with 0.165 µg/ml 5-bromo-4-

chloro-indolyl-3-phosphatase and 0.305 µg/ml nitroblue tetrazolium salt in TSM. The reaction was stopped by 

washing with water. 
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2.6.3 Luciferase Reporter Assays 

To assay promoter activity, Vero cells were seeded in 48 well plates and cotransfected 24 h later with the 

respective 210 ng UL25, GFP or Hunk expression plasmids and 40 ng luciferase expression plasmids (cf. chapter 

2.3.3), either with the empty vector control or plasmids that contain promoter elements. 30 h post transfection, 

cells were washed with cold PBS and incubated for 10 min on ice with 75 µl/well Reporter Lysis Buffer (Promega, 

Mannheim, Germany; 25 mM Tris-phosphate, pH 7.8, 2 mM DTT, 2 mM 1,2-diaminocyclohexane-N,N,N´,N´-

tetraacetic acid, 10% glycerol, 1% Triton X-100) and transferred into a 1.5 ml tube. Lysates were cleared by 

centrifugation for 1 min at 14.000 rpm and supernatants were transferred into a fresh tube. 20 µl of cleared lysate 

was added to 100 µl Promega Luciferase Assay Buffer (supplemented with Promega Luciferase Assay substrate 

that contains Mg2+, ATP and D-Luciferin), vortexed and immediately measured in duplicates in a luminometer 

(LB9501, Berthold Lumat, Barsinghausen, Germany) for 10 seconds. Activities were calculated as fold induction 

compared to mock (empty vector) transfected cells. GFP together with the reporter plasmid was set as 1 (100%). 

The error bars represent the standard error of the mean. 

2.6.4 Fluorescence Activated Cell Sorting (FACS) 

GFP, UL25GFP or GFPUL25 overepressing Vero cells in a 10 cm dish were infected with HSV1(F) at an MOI of 

500 PFU/cell for 2 h. Infected cells were washed with PBS, trypsinized and resuspended in 3 ml growth medium. 

3 ml of 8% PFA and 0.1% glutaraldehyde in 400 mM cacodylate, pH 7.4 were added to the cell suspension, 

mixed and incubated for 20 min at RT. Cells were pelleted at 1.500 rpm for 10 min at RT and resuspended in 500 

µl PBS containing 7.5% BSA.  

FACS sorting was performed at the FACS Facility of Hannover Medical School by Dr. Matthias Ballmeier and 

Christina Reimer on a MoFlow FACS sorter (DAKO Cytomation, Glostrup, Denmark). GFP-positive single cells were 

sorted, collected and pelleted at 10.000 rpm for 5 min. The cell pellets were subsequently fixed with 1% 

glutaraldehyde in 200 mM cacodylate pH 7.4 for 1 h. The pellets were washed 3 times with 200 mM cacodylate 

pH 7.4. After every washing step, the cell pellets were centrifuged to maintain the pellets at the bottom of the 

tubes. Until embedding in epon for electron microscopy, the pellets were stored at 4°C.  

2.7 In Situ Hybridization of Viral Genomes 

2.7.1 Preparation of Viral DNA 

Viral DNA was prepared from HSV1(F)-infected BHK-21 cells according to MacLean 1998. The cell suspension 

was mixed in a ratio of 1:1 with 1% (v/v) Triton X-100 in resuspension buffer (RSB; 10 mM Tris-HCl, 10 mM KCl, 

1.5 mM MgCl2, pH 7.5), vortexed and incubated on ice for 10 min to lyse the cells. Nuclei were pelleted from the 

lysate in a cell culture centrifuge (5810R, Eppendorf, Hamburg, Germany) for 10 min at 4.000 rpm and 4°C. The 

nuclei pellets were resuspended in 6 ml of 0.5% Triton X-100 in RSB and centrifuged. The supernatants were 

pooled, and the capsids were pelleted from the cytoplasmic lysate in a Beckman SW40Ti rotor (Beckman Coulter, 
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Fullerton, CA, USA) using a Beckman L8-70 ultracentrifuge at 30.000 rpm for 90 min at 4°C. The pellets were 

resuspended in 800 µl of NTE buffer (100 mM NaCl, 10 mM Tris-HCl, 1 mM EDTA, pH 7.4) and incubated 

overnight at 4°C. To solubilize capsids and release the viral DNA, 200 µl of a 5x SDS/EDTA solution (12.5% [w/v] 

SDS, 50 mM EDTA in NTE buffer) were added, carefully mixed by inversion and incubated at 37°C for 10 min.  

The lysate was extracted twice with 1 ml phenol/chloroform/isoamyl alcohol by inverting 50 times and 

centrifuging for 5 min at 14.000 rpm. The DNA was precipitated from the aqueous phase by adding 800 µl 

isopropanol and centrifuging 15 min at 14.000 rpm. The DNA pellet was washed with 1 ml 70% [v/v] ethanol, 

dried and resuspended in 100 µl 10mM Tris-HCl, pH 8, 50 µg/ml RNase A at 4°C overnight. Viral DNA 

preparations were stored at 4°C to prevent shearing by ice crystal formation.  

2.7.2 Synthesis of Cy3-labeled DNA Probes for In Situ Hybridization 

In situ hybridization probes were generated using partially digested viral DNA and Cy3-labeled dCTP (GE 

Healthcare, Madison, Wisconsin, USA; Everett and Murray 2005). Viral DNA from HSV1(F) was incubated with 

DNase 1 (RQ1, 2 µu/µl; Promega, Madison, Wisconsin, USA) at 37°C for 30 min and analyzed on an agarose gel 

to check the amount of digestion. DNase 1 was heat inactivated and the digested viral DNA was subsequently 

used for nick translation.  

For nick translation the digested DNA was diluted in nick translation buffer (0.05 M Tris-HCl, pH 7.2; 0.01 M 

MgSO4; 1 mM Dithiothreitol) and incubated over night at 16°C with 200 mM dATP, dGTP and dTTP (Promega), as 

well as 5 nM Cy3-dCTP and 50 U of NEB-Taq Polymerase. The Cy3-labeled probe was purified by ammonium 

acetate-ethanol precipitation, and the pellet was resupended in TE buffer (10 mM Tris-HCl, 0.5 mM EDTA, pH 

8.0), and stored in aliquots at -20°C (Everett and Murray 2005). 

2.7.3 Agarose Gel Electrophoresis 

Partially digested viral DNA was separated on 1% agarose gels in TAE (40 mM Tris; 40 mM acetic acid; 1 

mM EDTA) using the Mini S/L gel system (Peqlab, Erlangen, Germany; Perfect Blue Mini S/L) at a constant voltage 

of 180 V. The Gene Ruler DNA Ladder Mix or the NEB ladders were used as molecular weight marker. Agarose 

gels contained 0.5 µg/ml ethidium bromide to visualize any DNA by ultraviolet light. For better visualization of the 

DNA bands, gels were eventually stained by soaking in 0.5 µg/ml ethidium bromide for 30 min and destained in 

H2O for 30 min. 

 

 1kb DNA Ladder (New England Biolabs, Ipswich, MA, USA): 

 10.000, 8.000, 6.000, 5.000, 4.000, 3.000, 2.000, 1.500, 1.000, 500 (sizes in bp) 

 100 bp DNA Ladder (New England Biolabs, Ipswich, MA, USA): 

 1.517, 1.200, 1.000, 900, 800, 700, 600, 517, 500, 400, 300, 200, 100 (sizes in bp) 

 6x DNA loading buffer: 30% [w/v] glycerol, 0.3% [w/v] bromophenol blue, 0.3% [w/v] xylencyanol 
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2.7.4 In Situ Hybridization of Infected Cells for Genome Detection 

Ethanol-acetic acid fixed cells (c.f. 2.8.1) were prehybridized for 30 min at 37°C in hybridization buffer (50% 

[v/v] formamide, 10% [v/v] dextran sulfate, 4x SSC (0.6 M NaCl, 0.06 M Sodium citrate)) to quench unspecific 

crosshybridization in a humidified hybridization chamber. Formamide lowers the DNA melting temperature by 

breaking the hydrogen bonds of the two strands. Dextrane sulfate precipitates lipoproteins and inhibits RNases. 

Therefore the addition of dextrane sulfate enhances hybridization efficiency. Next, the coverslips were blotted dry 

and incubated at 42°C for 20 min. The probe (c = 0.1 µg/µl) was diluted 1:10 in hybridization buffer and a 5 to 7 

µl spot was added to the coverslip. Then a 20x20 mm glas coverslip was placed on the cells and everything was 

fixed on a coverslide using Marabu´s fixogum rubber cement (Tamm, Germany). The coverslide was heated at 95°C 

for 4 min in a Thermocycler Cyclone 96 (PeqLab, Erlangen, Germany), followed by over night incubation at 37°C in 

a humidified chamber. The next day, the coverslips were washed 2 times with 2X SSC (0.3 M NaCl, 0.03 M 

Sodium citrate) at 60°C and once with 2xSSC at RT. Cells were further washed with PBS/1% FCS or PBS/0.5% 

BSA and either embedded for microscopy or  labeled with antibodies (Everett and Murray 2005). 

2.8 Microscopy 

2.8.1 Fixation, Permeabilization and Antibody Labeling 

Untransfected or transfected HeLa, PtK2 or Vero cells were grown on cover slips (Ø 12 mm) prior to infection 

with HSV1 at different MOIs according to the experimental setup. At the end of the infection time, cells were 

washed once with PBS and then fixed using different protocols. 

PFA fixation: Cells were fixed in 3% [w/v] PFA in PBS for 20 min at RT. After washing 3 x 5 min in PBS, any 

remaining PFA was inactivated by addition of 50 mM NH4Cl in PBS for 10 min. Again, cells were washed 3 x 5 min 

in PBS. Cells were permeabilized in 0.1% [v/v] TX-100 in PBS for 4 min and washed 3 x in PBS (Sodeik et al. 

1997). 

PHEMO fixation: Cells were washed once in PBS at 37°C, fixed for exactly 10 min in PHEMO-Fix (68 mM 

Pipes; 25 mM Hepes, pH 6.9; 15 mM EGTA; 3 mM MgCl2; 10% DMSO; 3.7% PFA; 0.05% glutaraldehyde; 0.5% 

TX-100), washed twice for exactly 5 min in PHEMO buffer (68 mM Pipes; 25 mM Hepes, pH 6.9; 15 mM EGTA; 3 

mM MgCl2; 10% DMSO) at 37°C, and washed twice in PBS. Incubating in 50 mM NH4Cl in PBS for 10 min, and 

washing 3 times in PBS inactivated any remaining PFA. PHEMO fixation fixes and permeabilizes cells in one step 

(Döhner et al. 2002). 

In Situ fixation: Cells were washed with PBS containing 1% FCS or 0.5% BSA and fixed for 5 min in 

95% [v/v] ethanol/5% [v/v] acetic acid at -20°C. Cells were then washed 3 times with PBS/FCS or PBS/0.5% BSA 

(Everett and Murray 2005). 

EM fixation: Trypsinized, infected cells were resuspended in the same volume of 8% PFA, 0.1% 

glutaraldehyde in 400 mM cacodylate, pH 7.4 and incubated for 20 min at RT. After pelleting and resuspending 

the cells in PBS/7.5% BSA, FACS sorting was performed.  
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Sorted cells were then again fixed with 1% glutaraldehyde in 200 mM cacodylate pH 7.4 for 1 h. Later the 

pellets were washed 3 times with 200 mM cacodylate pH 7.4. After every washing step, the cell pellet was 

centrifuged again for maintaining the pellet at the bottom of the tube. Until epon embedding for transmission 

electron microscopy, the pellets were stored at 4°C until further processing for transmission electron microscopy. 

Fixed samples were subsequently labeled with antibodies as previously described (Döhner et al. 2006; 

Döhner et al. 2002; Sodeik et al. 1997) and embedded in ProLong Gold Antifade mounting medium (Molecular 

Probes-Invitrogen, Karlsruhe, Germany) or in Mowiol (6 g glycerol; 2,4 g Mowiol; 6 ml H2O; 12 ml 0,2 M Tris; pH 

8,5), supplemented with 25 – 50 mg/ml 1,4-Diazabicyclo [2,2,2]octane as an antifade reagent.  

2.8.2 Epifluorescence and Confocal Microscopy  

Cover slips were observed and images were taken using an Till-Photonics-Axiovert 200M or an Axiovert 

Observer microscope (Zeiss, Göttingen, Germany) equipped with a plan-apochromat 63x/1.40 Oil or 100x DIC 

objectives (Zeiss), a 150 W xenon lamp (Polychrome IV, TillPhotonics, Gräfeling, Germany) or a mercury lamp 

(Zeiss Observer) as a light source and appropriate filter sets (Table 4). Images were taken with a Till Imago QE 

CCD camera (TillPhotonics) using the TillVision software (version 4.0, TillPhotonics) or with the Zeiss AxioCam 

HRm (Zeiss Observer) camera using the Axiovision software (version 4.6.3.0 SP1, Zeiss). Confocal sections were 

recorded with a Zeiss LSM 510 Meta confocal microscope using a plan-apochromat 63x/1.40 Oil objective (Zeiss), 

an argon laser (Argon 2 – 458 nm, 477 nm, 488 nm and 514 nm spectral lines) and helium-neon lasers with 

either 543 nm (HeNe1) or 633 nm (HeNe2) spectral lines. Images were taken with the Carl Zeiss Laser Scanning 

Microscope LSM 520 software (Zeiss, version 3.2 SP2).  

All images were further processed with MetaMorph (version 5, Meta Imaging Software, Molecular Devices, 

Downingtown, PA, USA), ImageJh (version 1.36b, Wayne Rasband, NIH, USA, http://rsb.info.nih.gov/ij/), Zeiss LSM 

Image Browser (Zeiss, version 3,5,0,3,7,6) or Adobe Photoshop (version 6, Adobe Systems, San Jose, CA, USA). 

 

Table 4: Filter sets 

Microscope Filter set Excitation filter  Dichroic mirror  Emission filter 

Till Photonics DAPI/Hoechst SP 410 LP 410 LP 420 

 GFP SP510 LP 490 BP 535/550 

 Rhodamine Sp540 LP 565 LP 610(675 

Observer GFP – FS 38 HE BP 470/40 (HE) FT 495 (HE) BP 525/50 (HE) 

 Rhodamine – FS 43 HE BP 550/25 (HE) FT 570 (HE) BP 605/70 (HE) 

 Cy5 – FS 50 BP 640/30 FT 660 BP 690/50 

LSM Meta GFP – FS09 BP 450 - 490 FT 510 LP 515 

 Rhodamine – FS15 BP 546/12 FT 580 LP 590 
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2.8.3 Transmission Electron Microscopy  

Glutaraldehyde fixed, FACS sorted GFP-, UL25GFP- or GFPUL25 overexpressing, HSV1-infected cells were 

washed 3 times for 10 min with membrane pure water to wash out the cacodylate. For contrasting the specimen, 

pellets were incubated with a water based solution containing 1% osmium and 1.5% K3(Fe3+(CN)6 for 1 h at RT. 

Later cells were washed 4 times 10 min with membrane pure water at RT and once with 50% ethanol at RT to 

remove residual osmium. The pellets were further contrasted with 0.5% uranylacetate in 50% ethanol at RT over 

night, followed by dehydration with a graded ethanol series at room temperature (2 x 10 min 50% ethanol, 2 x 20 

min 75% ethanol, 2 x 10 min 90% ethanol, 2 x 10 min 100% ethanol (absolute, over molecular sieve), 1 x 15 min 

100% ethanol (absolute), 1 x 60 min 100 % ethanol (absolute). Cells were then transferred into a fresh reaction 

tube and incubated for 20 min at RT with propylenoxide (absolute, over molecular sieve).  

The dehydrated, osmium contrasted specimens were infiltrated with a 1:1 mixture of epon resin and 

propylenoxide over night at RT. The epon/propylenoxide mixture was replaced by fresh epon after 3h for again 3h 

and again after 1h. Polymerization occurs at 60°C for about 115 h. 

Ultrathin sections were cutted with a Leica Ultramicrotom. The sections have a thickness of 50 to 80 nm. 

Sections were stained with uranylacetate and lead citrate according to Reynolds 1963 (1.33 g Pb(NO3)2, 1.76 g 

(C6H5Na307)x2H20, 8 ml 1N NaOH, 42 ml membrane pure H20, light and air protected) placed on a formvar coated 

copper grid and examined with a Zeiss EM 10 CR electron microscope at an acceleration voltage of 80 kV. Pictures 

were scanned and further processed using Adobe Photoshop (version 6, Adobe Systems, San Jose, CA, USA). 
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3 Results 

3.1 The Subcellular Localization of UL25 During the HSV1 Life Cycle 

3.1.1 UL25 Associated with Capsids During Capsid Assembly and Egress 

The UL25 protein is required for efficient retention of the viral genome inside the capsid, possibly by sealing 

the UL6 portal complex after packaging (Ali et al. 1996; McNab et al. 1998; Ogasawara et al. 2001). Alternatively, 

UL25 may stabilize the capsid at the pentons (Trus et al. 2007), since it has been localized on capsids with 

5 copies per capsid penton (Newcomb et al. 2006). Recent studies revealed that UL25 might reinforce the capsid 

structure and give a signal for nuclear egress (Klupp et al. 2006; Trus et al. 2007). Moreover, UL25 remains 

associated with viral capsids after salt extraction with 1M KCl suggesting a tight association of UL25 with the 

capsid (Wolfstein et al. 2006). 

In the first set of experiments, I determined the expression kinetics of UL25, UL6 and VP5 during capsid 

assembly and egress. Vero cells were synchronously infected with HSV1 at an MOI of 10 PFU/cell and harvested 

for SDS-PAGE and immunoblot analysis at various times post infection (Figure 11). UL25 as well as the portal 

protein UL6 were first detected at 6 to 7 h pi. The appearance of the proteins fits to their characteristics, since they 

belong to the family of late (γ)-proteins with a weak transcription promoter (Rajcani et al. 2004). For efficient 

synthesis they need high genome copy numbers. VP5 belongs to the leaky-late (βγ)-protein family (Huang and 

Wagner 1994; Rajcani et al. 2004) and can be detected already 4 to 5 h pi, although some of the VP5 detected at 

4 h pi may also represent the inoculum. The actin loading control showed that similar amounts of cells (~ 0.5 x 

105 per lane) were loaded.  

 
Figure 11: Expression kinetics of capsid proteins during assembly. UL25 and UL6 were first detected at 6 to 7 h pi, whereas VP5 
was already detected at 4 h pi. Vero cells were synchrounosly infected with HSV1(17+) with an MOI of 10 PFU/cell for 4 to 15 hours. Cells 
were harvested in hot Laemmli-buffer, separated on a 7-15% SDS polyacrylamide gel and transferred onto nictrocellulose. The blot was 
subsequently probed with pAb UL25-EC, mAb UL6-IC9, pAb VP5-NC1, and mAb1501 against actin as a loading control.  
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Next, Vero cells were infected with an MOI of 10 PFU/cell, fixed, and analyzed by immunoflurescence 

microscopy, either wide field (Figure 12, Figure 13) or confocal laser scanning microscopy (Figure 14, Figure 15). 

The cells were labeled with the mouse monoclonal antibody mAb 5C10 directed against VP5-hexons (Döhner et al. 

2006; Newcomb et al. 1996; Trus et al. 1992), with the mouse monoclonal antibody LP12 that recognizes an 

immature VP5 epitope (Döhner et al. 2006; Phelan et al. 1997) or another mouse monoclonal antibody H1.4 

against VP5 in combination with the the rabbit polyclonal antibody UL25-EC (Ali et al. 1996) or the rabbit 

polyclonal antibody UL25-ID1 (Koslowski et al. 1997) both generated against recombinant GST-UL25.  

Newly synthesized capsids detected by mAb 5C10 were distributed as dot-like structures in nuclear, viral 

replication compartments at early time points (Figure 12 d, g, j). The mAb LP12 gave a more diffuse labeling of the 

nucleus (Figure 12 e, h, k). The mAb H1.4 seemed to recognize both populations of VP5 (Figure 12 f, i, l); dotted 

indicative for capsids and diffuse nuclear labelling, although the overall labelling intensity was weaker than with 

the other α-VP5 antibodies. All mAbs detected an increasing amont of VP5 over time (Figure 12), but only mAb 

5C10 detected capsids in the cytoplasm at later time points (Figure 14 c, arrows). This data is consistent with the 

suggestion that mAb 5C10 detects mature epitopes on capsids (Trus et al. 1992,Döhner et al. 2006). UL25 was 

detected using pAb UL25-ID1 (Figure 13, left panel; corresponding VP5-5C10 labeling of VP5 can be found in 

Figure 12 left panel) or pAb UL25-EC (Figure 13, right panel).  

Both antibodies labeled UL25 during early time points of assembly rather dotted than diffuse. These data 

indicate that UL25 antibodies rather bind capsids that were detected by mAb 5C10 and not with mAb LP12 or 

mAb H1.4 (Figure 13 c, d, e, f, g, h). To obtain an even more detailed picture, the same experiment was analyzed 

by confocal laser scanning microscopy. At 9 h pi, capsids in the nucleus and in the cytoplasm were labeled by mAb 

5C10 and colocalized with UL25 (UL25-EC, Figure 14 a, b, c-inset; UL25-ID1, Figure 15 a, b, c-inset). mAb LP12 

or mAb H1.4 detected only nuclear but no cytoplasmic capsids, both of which contained UL25 (cf Figure 14 and 

Figure 15 d, e, f-inset; g, h, i-inset).  
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Figure 12: Different VP5 antibodies labeled different populations of nuclear capsids. Newly synthesized capsids were revealed 
as dot like structures in viral replication compartments in the nucleus at early time points using mAb VP5-5C10, that recognizes mature VP5 
epitopes on hexons (d, g, j). The VP5 antibody LP12 gives a prominent diffuse and slightly dotted pattern (e, h, k). The VP5 antibody H1.4 
labeled VP5 which was clustered in dots but also difuse VP5 in the nucleus (f, i, l). Vero cells were synchronously infected with HSV1 (F) with 
an MOI of 10 PFU/cell. At several times pi, the cells were fixed with 3% PFA and permeabilized with 0.1% TX-100. VP5 was visualized with 
the indicated antibodies. 
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Figure 13: Newly synthesized UL25 accumulated in replication compartments and gave a similar labeling pattern than 
capsids labeled with VP5-5C10.  Newly synthesized UL25 was detected with the polyclonal antibody UL25-ID1 more diffuse in the 
nucleus at early time points (c) but getting more dotted at later time points (e, g).  Same UL25 distributions were observed with the 
polyclonal antibody UL25-EC (d, f, h). The localization of UL25 was similar to the capsid antibody VP5-5C10 (cf. corresponding VP5 staining 
in Figure 12 a, d, g, j to a, c, e, g). Vero cells were synchronously infected with HSV1(F) with an MOI of 10 PFU/cell. At several hours pi, cells 
were fixed with 3% PFA, permeabilzed with 0.1% TX-100 and labeled with the indicated antibodies. 
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Figure 14: UL25 was associated with maturing particles during capsid egress. UL25 (pAb UL25-EC) colocalized with some of the 
capsids labeled with VP5-5C10 during assembly in the nucleus and in the cytoplasm (a, b, c-inset, arrows), but not with VP5-LP12 (d, e, f-
inset) or VP5-H1.4 (g, h, i-inset). Vero cells were synchronously infected with HSV1(F) with an MOI of 10. At 9 h pi, cells were fixed with 3% 
PFA, permeabilized with 0.1% TX-100 and labeled with antibodies directed against UL25 or VP5. Confocal sections through the nucleus of 
0.5 µm thickness were analyzed.   
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Figure 15: UL25 was associated with maturing particles during capsid egress. UL25 (pAb UL25-ID1) colocalized with most of the 
capsids labeled with VP5-5C10 during assembly in the nucleus and in the cytoplasm (a, b, c-inset, arrows), but not with VP5-LP12 (d, e, f-
inset) or VP5-H1.4 (g, h, i-inset). Vero cells were synchronously infected with HSV1(F) with an MOI of 10. At 9 h pi, cells were fixed with 3% 
PFA, permeabilized with 0.1% TX-100 and labeled with antibodies directed against UL25 or VP5. Confocal sections through the nucleus of 
0.5 µm thickness were analyzed.   
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3.1.2 HSV1-UL25 Remained Capsid-Associated until Arrival at the Nuclear Pore 

During cell entry many tegument proteins dissociate from the incoming capsids, while others remain 

associated until the capsids dock at the nuclear pores (Morrison et al. 1998; Ojala et al. 2000; Sodeik et al. 1997). 

The temperature-sensitive HSV1 mutant virus 1204 attached to the plasma membrane but failed to penetrate it 

(Addison et al. 1984). Moreover PrV-UL25 was suggested to be a microtubule motor receptor (Kaelin et al. 2000), 

therefore the subcellular localization of incoming HSV1-UL25 during cell entry was determined.  

To detect incoming HSV1 proteins by immuno blot, cells were infected with HSV1(17+) at an MOI of 200 

PFU/cell (Figure 16 g). Virus infected cells were harvested in hot sample buffer containing protease inhibitors to 

prevent proteolytic cleavage. The input lane represented the inoculum, whereas the lanes from 0 to 3 h pi 

represented the bound and internalized virus. UL25 and VP5 protein levels remained constant over time and were 

not degraded. The actin loading control showed that similar numbers of cells (~ 2 x 105 per lane) were loaded. 

Thus, UL25 was recruited onto capsids during capsid assembly in the nucleus, and remained capsid-associated 

during virus egress, and also during the transport of incoming capsids from the cell periphery to the nuclear pores.  

Moreover, Vero cells were infected with HSV1 at an MOI of 70 PFU/cell in the presence of cycloheximide to 

prevent synthesis of progeny virus proteins, fixed and labeled with the mouse monoclonal antibody VP5-5C10 and 

the rabbit polyclonal antibody UL25-ID1. Capsids as well as UL25 were distributed throughout the entire 

cytoplasm at 1 h pi (Figure 16 a, b) and UL25 remained capsid-associated (Figure 16 c, inset). At 3 h pi, UL25 had 

reached the nuclear envelope together with the capsid (Figure 16 d, e, f, inset). 

Since PrV-UL25 was suggested to be a microtubule motor receptor (Kaelin et al. 2000), cells overexpressing 

HSV1-UL25 were analyzed for capsid transport to the nucleus. If UL25 would interact with a microtubule motor, 

overexpressed UL25 might interfere with this hypothetical interaction. Nuclear targeting of incoming HSV1 capsids 

was not impaired in the presence of excess UL25 (cf. chapter 1.4, Figure 9). During the entire HSV1 life cycle, 

neither newly synthesized UL25, nor incoming UL25, or overexpressed UL25 colocalized ever with microtubules, 

actin or vimentin (Rode 2003, Diploma thesis). Moreover, neither UL25 nor VP5 were degraded during HSV1 cell 

entry, suggesting that intact capsids with UL25 reached the nucleus. 
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Figure 16: UL25 colocalized with incoming capsids during entry and was not degraded. At 1 h pi capsids labeled with anti-VP5 
were distributed in the cell (a) and colocalized with UL25 (b, c-inset). After 3 h pi capsids (d) accumulated at the nuclear rim, where they still 
colocalized with UL25 (e. f-inset). UL25 remains associated with incoming capsids during entry. The western blot showed that VP5 and 
UL25 were not degraded during virus entry (g). The input lane represents the amount of virus that was added to the cells. After 2 hours 
binding on ice, unbound virus was washed away and the incoming capsids were assayed from 0 to 3h pi. Vero cells were infected with 
HSV1(F) with an MOI of 70 (a-f) or with HSV1(17+) with an MOI of 200 (g). Capsids were labeled with mAb 5C10 against mature VP5 
hexons (a, d) for immunofluorescence or with the rabbit polyclonal antibody VP5-NC1 for western blot. The blot was probed with mAb1501 
against actin as a loading control. UL25 was detected with a rabbit polyclonal antibody ID1 against UL25 (b, e, g) after the indicated time 
points. 
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3.2 Transiently Overexpressed UL25 During Virus Infection 

3.2.1 Immediate Early HSV1 Gene Expression was Reduced 

To test whether overexpressed UL25 had any effect on any of the subsequent steps of the HSV1 life cycle 

after the capsid had reached the nucleus, I analyzed the expression of immediate early proteins, which are the first 

proteins to be expressed after a cell is successfully infected with HSV1 (cf. chapter 1.3.6).  

GFP or UL25GFP-transfected Vero cells were infected, fixed and labeled with antibodies directed against ICP0 

(Figure 17), ICP4, ICP8, ICP22 or ICP27 (not shown). Untransfected as well as GFP expressing cells (Figure 17 a, b; 

circled cells) showed a typical punctuate distribution of ICP0 in the nucleus (Figure 17, dashed lines). However, 

cells expressing UL25GFP, indicated by the circled cell (Figure 17 c, d) showed a reduced synthesis of immediate 

early HSV1 proteins. ICP0 was reduced in UL25GFP or GFPUL25 transfected cells by 60% at 2 h pi and by 40 to 

50% at 3 h pi when compared to GFP-expressing cells. The ICP0 expression in wild type UL25-overexpressing cells 

was reduced by 70% at 2 h pi and by 50% at 3 h pi compared to untransfected cells (Figure 18). 

 
Figure 17: UL25 overexpression reduced HSV1 immediate early viral gene expression. GFP and untransfected cells expressed 
ICP0 in the nucleus (a, b), whereas UL25GFP expressing cells did not or to a lesser extent (c, d). Immunofluorescence microscopy of GFP (a, 
b) or UL25GFP (c, d) overexpressing Vero cells infected with 2 PFU/cell. The cells were fixed at 2 (a, c) or 3 h pi (b, d) with 3% PFA, 
permeabilized with 0.1% TX-100 and labeled with the mAb11060 against ICP0 (a-d). The circled cells represent the cells overexpressing 
either GFP or UL25GFP; the dashed line indicates the position of the nuclei of the transfected cell. 
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Figure 18: Quantification of reduced immediate early HSV1 gene expression. The quantification showed that ICP0 was 
significantly reduced by 60% at 2 h and by 40 to 50% at 3 h pi in cells expressing UL25EGFP or GFPUL25 compared to GFP-expressing 
cells. Compared to untransfected cells, UL25 expression reduced the ICP0 signal by 70% and 50% at 2 and 3 h pi, respectively. Statistical 
analysis using the two-sided Student´s t-test showed that the reduction of ICP0 in cells overexpressing wild type UL25 or GFP-tagged UL25 
was significant. The fluorescence intensity of cytosolic UL25GFP, GFPUL25 or UL25, nuclear ICP0 was measured using the “region tools” of 
the Meta Morph software (Universal Imaging Corporation, West Chester, PA, USA version 5.0). Cells expressing GFP or labeled with UL25 
above the threshold of 200 units were considered to be transfected. The background gray values of cells not expressing ICP0 ranged from 
250 to 290 units, and were substracted to determine the relative fluorescence intensity. The numbers above the error bars (standard error of 
the mean) represented the number of analyzed cells.  

3.2.2 Subcellular Localization of Importin β 

Incoming capsids require the nuclear transport factor importin β to bind specifically to the nuclear pore  

(Ojala et al. 2000). Since UL25 might interfere with this process, the subcellular localization of importin β was 

analyzed after overexpression of UL25GFP, UL25 or GFP as a control. In untransfected cells, importin β was 

localized in the cytosol and at the nuclear envelope. In some cells, importin β had accumulated in aggregates 

around the nuclear peripherie (Figure 19 b, d, l). In cells overexpressing GFP, the subcellular localization of 

importin β was not changed (Figure 19 a, b, c, d). Cells overexpressing UL25GFP (Figure 19 e, f) or UL25 (Figure 

19 i, j) showed a similar distribution of importin β as the cells overexpressing GFP or untransfected cells.  

However, the labeling intensity for importin β was reduced if the cells were simultaneously labeled with α-

importin β and α-UL25 (UL25-EC, cf. Figure 19 b, d, f, h with Figure 19 j, l). A stronger extraction of cytosolic 

importin β by the PHEMO protocol did also not reveal an altered localization of importin β in UL25 overexpressing 

cells (Figure 19 g, h, k, l). Compared to PFA fixed and TX-100 permeabilzed cells, the PHEMO fixation resulted in a 

stronger extraction of cytosolic importin β, whereas the fraction of importin β that was localized at the nuclear 

envelope remained. 
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Figure 19: The subcellular localization of importin β was not changed in UL25 overexpressing cells. Importin β was localized 
in the cytosol and at the nuclear rim (b, d, f, h).The labeling of importin β was a bit weaker when cells were additionally stained with α-
UL25 (j, l). A stronger extraction of cytosolic importin β also did not reveal an altered localization of importin β in UL25 overexpressing 
cells. The stronger extraction by the PHEMO fixation leads to a clearer importin β labeling at the nuclear rim. Cells overexpressing GFP (a, 
c), UL25GFP (e, g) or UL25 (i, k) were fixed with 3% PFA and permeabilized with 0.1% TX-100 (a, b, e, f, i, j). Alternatively, cells were fixed 
and permeabilzed in one step using the PHEMO fixative (c, d, g, h, k, l), which extracts the cytosol more than the PFA fixation.  
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3.2.3 The Nuclear Pore Network 

After genome uncoating, transcription and replication of viral genomes commences. A decreased gene 

expression might be the result of a defective capsid docking and uncoating process at the NPC. The nuclear pore 

network was analyzed in cells overexpressing GFP, UL25GFP, GFPUL25 or wild type UL25 using an antibody 

directed against FG-domains that are present in many nucleoporins. 

There was no difference in the dotted and nuclear rim localization of nucleoporins between GFP expressing 

and untransfected cells (Figure 20 a, e). Cells with excess UL25GFP (Figure 20 b, f), GFPUL25 (Figure 20 c, g) or 

wild type UL25 (Figure 20 d, h) showed a similar nucleoporin localization as GFP-expressing (Figure 20 a, e) and 

untransfected cells.  

 
Figure 20: Overexpressed UL25 did not affect the nuclear pore network. All transfected cells (a, b, c, d) showed a dotted rim 
staining of nucleoporins (e, f, g, h), similar to untransfected cells that were found adjacent to the transfected cells. UL25 overexpression did 
not change the appearance of NPC. The nuclear rim staining of the antibody was not disturbed by UL25. Cells overexpressing GFP, 
UL25GFP, GFPUL25 or UL25 were fixed with 3% PFA and permealized with 0.1% TX-100. NPCs were labeled with a monoclonal antibody 
that recognizes FG-repeats within many nucleoporins. UL25 was visualized with the rabbit polyclonal antibody UL25-EC. 
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3.2.4 Nuclear Import of the Major Transcriptional Activator VP16  

The HSV tegument protein VP16, also known as Vmw65 or α-TIF activates transcription of the viral 

immediate early genes and is essential for efficient virus replication (Greaves and O'Hare 1990). It is also essential 

for virus assembly (Weinheimer et al. 1992). Unlike other transcriptional transactivators, VP16 does not bind DNA 

by itself but interacts with two cellular proteins, Oct-1 and HCF. This complex binds to a TAATGARAT motif, found 

in all HSV1 immediate early enhancers (Rajcani et al. 2004). A mislocalization of the incoming heterotrimeric VP16 

transactivation complex could result in an inefficient transactivation of viral gene transcription which would lead to 

a reduced early viral gene expression.  

To analyze the subcellular localization of incoming VP16, GFPUL25 overexpressing cells were infected with 

HSV1 at a MOI of 100, PFA fixed and labeled for VP16 (Figure 21). Incoming VP16 had accumulated in the 

nucleus at 2 h pi. The presence of GFPUL25 did not reduce the nuclear import of VP16 (Figure 21 d). At 3 h pi and 

4 h pi, VP16 was mainly present in the nucleus, indicating that most of the capsid associated VP16 had reached 

the nucleus (Figure 21 e, f). To quantify the amount of VP16 in the nucleus, grey values of the nuclei were 

measured in GFPUL25 transfected and untransfected cells. The signal within the nucleus was highest at 2 h pi and 

decreased slightly over time (Figure 21, Figure 22). The signal intensity was similar in GFPUL25 transfected cells 

compared to untransfected cells (Figure 22). Thus, an impaired nuclear accumulation of VP16 seemed not to be 

the explanation for the lower immediate early gene expression in UL25 overexpressing cells. 

 

Figure 21: The accumulation of the major transcriptional activator VP16 was not influenced by excess UL25. VP16 was 
already accumulating in the nuclei of infected GFPUL25 transfected cells and neighboring untransfected cells (a, d) at 2 h pi. 3 h pi and 
4 h pi, VP16 was mostly present in the nucleus, indicating that most of the incoming VP16 had reached the nucleus (IF Fig. e, f). GFPUL25 
overexpressing cells were infected with HSV1(F) with an MOI of 100 PFU/cell, fixed with 3% PFA after 2h, 3h or 4 h pi and permeabilized 
with 0.1% TX-100. VP16 was labeled with the rabbit pAb SW7.  
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Figure 22: Nuclear targeting of VP16 in the presence of UL25. The quantification showed that the amount of VP16 was not 
changed in the presence of GFPUL25 (pink bars) compared to untransfected cells (white bars). The fluorescence intensity of nuclear VP16 
was measured using the region tools of the Image Jh software (NIH, USA, version 1.35j). The nuclear background value of uninfected cells 
was substracted from the fluorescence intensity of nuclear VP16. 

 

3.2.5 Transactivation of Cellular and Herpesviral Promoters 

Transcription factors are proteins which help to recruit the RNA polymerase II, which transcribes all protein-

coding genes in eucaryotes, place the RNA polymerase II correctly onto the promotor, aid in seperating the two 

DNA strands to initiate transcription, and release RNA polymerase II from the promoter into the elongation mode 

once transcription had been initiated (Nikolov and Burley 1997; Roeder 1996). The reduction in early viral gene 

expression by excess UL25 might be the result of mislocalized transcription factors, or a disturbed transcription 

initiation or elongation process in general e.g. by inhibiting the binding of the RNA polymerase to the promoter 

region on the DNA.   

The transcription factor NFκB (nuclear factor-κB) is a latent gene regulatory protein which is involved in 

cellular responses to stimuli such as stress, cytokines, free radicals and bacterial or viral antigens. In unstimulated 

cells, the NFkB dimers are sequestered in the cytoplasm. NFκB translocation to the nucleus is induced and 

precedes the late phase of HSV1 replication and transcription. Moreover the translocation of NFκB to the nuclei of 

infected cells is necessary to prevent apoptosis during HSV1 infection (Goodkin et al. 2003).  

The JAK (Janus Kinases)-STAT (Signal Transducer and Activator of Transcription) pathway is activated, e.g. by 

interferons. HSV1 suppresses the interferon signaling pathway by inhibiting the phosphorylation of the 

transcription factor STAT and JAK during early infection (Yokota et al. 2001).   

The transcriptional activation by NFAT (nuclear factor of activated T cells) is efficiently blocked at early stages 

of HSV1 infection and may constitute an immune evasion strategy for herpesviruses or might promote viral 

replication (Scott et al. 2001).  
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The subcellular localization of the cellular transcription factors NFκB (Figure 23 b, d) and its inhibitor IκB 

(Figure 23 f, h), STAT (Figure 23 j, l) and NFAT (Figure 23 n, p) was analyzed in the presence of overexpressed GFP 

or UL25GFP to address whether UL25 alone can influence their intracellular distribution. 24 h post transfection 

transcription factors were labeled with specific antibodies (cf. chapter 2.2) and analyzed by immunofluorescence 

microscopy. None of the tested transcription factors or the inhibitor IκB showed a relocalization in GFP (Figure 23 

a, e, i, m) or UL25GFP transfected cells (Figure 23 c, g, k, o) compared to untransfected cells.  

 
Figure 23: The subcellular localization of cellular transcription factors was not changed by overexpressed UL25. The 
localization of the cellular transcription factors NFκB (b, d), IκB (f, h), STAT1 (j, l) and NFAT (n, p) in GFP (a, e, i, m) or UL25GFP (c, g, k, o) 
overexpressing cells was not impaired, compared to untransfected cells. Vero cells were transiently transfected with GFP or UL25GFP. After 
3% PFA fixation and 0.1% TX-100 permeabilization, cells were labeled with specific antibodies against NFκB, IκB, STAT1 or NFAT.  
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Next, the activation of cellular or herpesviral promoters in the presence of overexpresed UL25 was tested 

using luciferase reporter assays (cf. chapter 2.6.3). Cells overexpressing the luciferase encoding vector pGL2, that 

lacks promoter elements as a control (Figure 24 a) or containing a cyclin E promoter (Figure 24 b) together with 

increasing amounts of GFP (white), UL25GFP (pink) or GFP-Hunk (blue) were analyzed for luciferase activity. Since 

the plasmid dilution of GFP, UL25GFP or GFP-Hunk would result in less transfectable plasmid per well, the 

difference in plasmid amount was supplemented with the vector pcDNA3. Therefore a transfection with 250 ng 

pcDNA3 was performed without any pGL2, pGL2-Cyclin E, GFP, UL25GFP or GFP-Hunk to test whether this had 

any influence on the reporter assay. As expected for a functional assay, no luciferase activity was measured (Figure 

24 b). The Hunk protein served as a positive control since it can activate the cyclin E promoter (Dey et al. 2000; 

Ottinger 2005). Expression of GFP and GFP-Hunk had no effect on intrinsic pGL2 luciferase activity. In contrast, 

high amounts of UL25GFP decreased an intrinsic residual promoter activity of pGL2 encoded luciferase (Figure 24 

a). Cells cotransfected with pGL2-Cyclin E promoter and increasing amounts of GFP did not activate cyclin E 

promoter. GFP-Hunk was able to activate luciferase expression driven by cyclin E promoter revealing that the assay 

was working. Moreover, UL25 did not influence cyclin E promoter induced luciferase activity (Figure 24 b).  

Further, a herpesviral promoter element derived from the Epstein Barr Virus (cf. Table 1) was tested. The 

vector pGL2b-EBV cp contains the EBV C promoter of the Epstein Barr Nuclear Antigen 2 (EBNA2) responsive 

element. The EBNA2 protein acts as a transcriptional activator of several viral and cellular genes and is necessary 

for immortalization of human primary B lymphocytes, a prerequisite for establishing latency (Meitinger et al. 1994; 

Ottinger 2005). Cells overexpressing pGL2-EBV-cp with increasing amounts of GFP did not exhibit enhanced 

luciferase expression driven by the EBV-cp promoter. Cells overexpressing UL25GFP decreased the promoter 

activity of EBV-cp (Figure 25).  

The activation of luciferase was also analyzed with the vector pTal that contains the TATA-like (TAL) region of 

HSV thymidine kinase (TK) minimal promoter. Luciferase expression needs to be activated by promoter elements. 

The SRE (cloned in the pTal backbone) activates the transcription factors Elk-1/STAT which are important for the 

mitogen activated kinase/c-Jun kinase signalling (MAPK/JNK) pathway. Cells overexpressing pTAL or pSRE 

together with increasing amounts of GFP (white) or UL25GFP (pink) were analyzed for luciferase activation. GFP 

neither influences the intrinsic residual luciferase activity of pTal nor the SRE driven luciferase activity. The medium 

and highest concentration of UL25GFP resulted in a reduced luciferase activity irrespective whether there is a 

promoter element present or not (Figure 26). Therefore the reduction in luciferase expression by excess UL25 is not 

depending on the transcriptional activation by the SRE.  

Disturbing specific promoter activation seemed not to be the reason for a lower gene expression in the 

presence of excess UL25, instead a general reduction of intrinsic transcription activity was observed.  



Results 

 58

 
Figure 24: The activity of the cyclin E promoter was not specifically altered by overexpressed UL25GFP.  Cells cotransfected 
with pGL2 (a) or pGL2-Cyclin E promoter (b) and increasing amounts of GFP (white bars), UL25GFP (pink bars) or GFP-Hunk (blue bars) 
were analyzed for the luciferase activity encoded by the pGL2 vector. The highest concentration of UL25GFP decreased the intrinsic residual 
promoter activity. The overexpression of GFP-Hunk only resulted in very weak activation for all three concentrations tested. Cells 
cotransfected with pGL2-Cyclin E promoter with increasing amounts of GFP or UL25GFP did not activate or reduce the luciferase expression 
driven by the cyclin E promoter. As a control, GFP-Hunk was able to activate luciferase expression driven by cyclin E promoter. Cells only 
overexpressing the empty vector pcDNA3 did not give a luciferase signal. Cells expressing the indicated plasmids for 30 h were lysed in 
reporter lysis buffer, mixed with luciferin containing substrate and measured in a luminometer.  

no promotor elements 
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Figure 25: The repression of EBV-c promoter was not specifically caused by high amounts of overexpressed UL25GFP.  
Cells cotransfected with pGL2-EBV-cp promoter and GFP (white bars) or UL25GFP (pink bars) were analyzed for the luciferase activity 
encoded by the pGL2 vector. Cells coexpressing high concentrations of UL25GFP and luciferase under the control of an EBV-cp promoter 
showed a repression of luciferase. Cells expressing the indicated plasmids for 30 h were lysed in reporter lysis buffer, mixed with luciferin 
containing substrate and measured in a luminometer.  

 
Figure 26: The residual promoter activity was repressed by overexpressed UL25GFP independently of the serum 
responsive element.  Cells cotransfected with pTAL or pSRE (that contains a serum responsive element cloned in pTAL) and increasing 
amounts of GFP (white bars) or UL25GFP (pink bars) were analyzed for the luciferase activity. Overexpression of GFP neither influenced the 
intrinsic residual luciferase activity of pTal nor the SRE driven luciferase activity (white bars). The highest concentration of UL25GFP 
repressed the intrinsic residual luciferase activity of pTAL. The medium and highest concentration of UL25GFP resulted in less luciferase 
activity in the presence of the SRE. Cells expressing the indicated plasmids for 30 h were lysed in reporter lysis buffer, mixed with luciferin 
containing substrate and measured in a luminometer.  

pGL2-EBVcp 
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3.2.6 Late but Not Early Protein Synthesis of Vaccinia Virus was Slightly Impaired 

Poxviruses, like vaccinia virus (VV) are unique among DNA viruses, as they replicate their DNA in the 

cytoplasm indepently of the nucleus and NPCs. Nevertheless, VV has also evolved ways to use the host cell to 

optimize their cytoplasmic DNA replication and to ensure that this process occurs at the right time and place 

(Schramm and Locker 2005). To test whether UL25 blocked protein synthesis in general, we infected GFP (Figure 

27 a, c) or UL25GFP (Figure 27 e, g) overexpressing Hela cells with VV at an MOI of 60 PFU/cell (Schepis et al. 

2006). As a marker for early VV gene expression p35/H5R protein, the late VV gene transcription factor 4 which 

accumulates in replication compartments next to the nucleus, was used (Kovacs and Moss 1996; Tolonen et al. 

2001). For late VV gene expression the protein p16/A14L of VV was analyzed (Salmons et al. 1997). The protein 

p16/A14L is the major membrane protein of the first infectious form of VV, the intracellular mature virus and 

during assembly of VV it is located at the ER-Golgi compartment in perinuclear areas (Sancho et al. 2002). 

Compared to the untransfected cells (Figure 27 b, f), VV replication compartments were assembled next to 

the nuclei at 3 h pi, and contained similar amounts of p35 irrespective of which protein was ectopically expressed. 

At 7 h pi, GFP overexpressing cells and untransfected cells showed similar amounts of p16 in juxtanuclear VV 

replication compartments (Figure 27 d). In contrast, in cells overexpressing UL25GFP the synthesis of p16 was 

slightly reduced compared to control cells (Figure 27 h, asterisk). Early protein synthesis per se was not impaired 

by excess UL25, but UL25 seemed to interfere with a late step during VV maturation by an unknown mechanism. 

3.2.7 Adenovirus Mediated Transgene Expression was not Influenced 

Like herpesviruses, adenoviruses (Ad) are replicating their genomes in the nucleus. Ad capsids travel to the 

nucleus and release their viral genome through the nuclear pores into the nucleoplasm for viral DNA transcription 

and replication (Trotman et al. 2001). To test whether UL25 influences gene expression of Ad, I infected GFP 

(Figure 28 a, e) or UL25GFP (Figure 28 c, g) overexpressing Hela cells with Ad encoding for β-galactosidase under 

an early adenoviral promoter (Schiedner et al. 2000).  

At 12 h pi, the cells were fixed and labeled with an antibody to β-galactosidase to monitor the progress of 

Ad infection. Similar amounts of β-galactosidase were detected in untransfected, GFP or UL25GFP overexpressing 

cells (Figure 28 f, h). This indicated that the cell entry, uncoating and gene expression of Ad was functional in 

UL25 overexpressing cells. Thus, we concluded that in the presence of HSV1-UL25, not only Ad protein translation 

is functional, but also Ad uncoating at the nuclear pore, Ad genome import through the NPC, Ad mRNA synthesis 

and export into the cytosol. 
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Figure 27: Excess UL25 did not influence early VV gene expression, but late VV gene expression was reduced. The early VV 
protein p35/H5R (b, f) was expressed 3 h pi in VV replication compartments that were located adjacent to the nuclei of infected cells 
irrespective, whether GFP (a) or UL25GFP (e) were overexpressed. At 7 h pi, only in GFP (c) overexpressing cells similar amounts of the late 
protein p16 (d) were detected in VV replication compartments next to the nuclei compared to the untransfected cells. Interestingly, in cells 
overexpressing UL25GFP (g) synthesis of p16 was slightly reduced, compared to adjacent untransfected cells or GFP expressing cells. GFP or 
UL25GFP overexpressing Hela cells were infected with VV strain WR with an MOI of 60 PFU/cell. 3 and 7 h pi, cells were fixed with 3% PFA 
and permeabilized with 0.1% TX-100 and labeled with antibodies against the early VV protein p35/H5R or the late VV protein p16/A14L 
monitor the progress of VV infection. 

 
Figure 28: Excess UL25 does not impair adenovirus infection. The expression of β-galactosidase was detected in adenovirus 
infected cells irrespective of the overexpressed protein (f, h). GFP or UL25GFP overexpressing Hela cells were infected with adenovirus at an 
MOI of 100 PFU/cell encoding for β-galactosidase under an early adenoviral promoter. 12 h pi the cells were fixed with 3% PFA and 
permeabilized with 0.1% TX-100 and labeled with an antibody to β-galactosidase to monitor the progress of Ad infection. 
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3.2.8 Uncoating of HSV1 Genomes 

If overexpressed UL25 would have disturbed the uncoating process, immediate early viral gene expression 

would be reduced. In this scenario excess UL25 could act as a dominant-negative inhibitor of the viral genome 

uncoating at the NPC.  

To address whether capsids at the NPC of UL25 overexpressing cells still contained genomes, I performed 

transmission electron microscopy (EM). GFP fluorescence cannot be detected by EM. Therefore GFP or GFP-tagged 

UL25 overexpressing infected cells were seperated from untransfected cells prior to processing for EM. To this end, 

Vero cells were transfected with GFP, UL25GFP or GFPUL25 for 24 h and infected with HSV1 at a MOI of 500 

PFU/cell. After trypsinization and fixation, the cells were sorted by FACS (Figure 29 a). The total cell population 

(blue) as well as the population of single cells (red) are depicted as an histogram, which displayed the number of 

cells at the y-axis and the cell size on the x-axis (Figure 29 b). Untransfected or GFP-transfected, uninfected cells 

were treated the same way as the transfected, infected cells and used for calibrating the FACS machine (Figure 29 

c, upper two rows). Cells above a certain threshold were sorted and collected as GFP-positive cells (Figure 29 c, 

green), fixed again and further processed for epon embedding and EM analysis (cf. chapter 2.6.4). Single Vero 

cells (Figure 29 c, red) were further analyzed according to their GFP fluorescence (Figure 29 c, green). Very low 

GFP-expressing cells mixed with large untransfected cells were omitted (Figure 29 c, grey). Reanalyis of the GFP-

positive sorted fraction by FACS revealed an enrichment of 98% GFP-expressing cells (not shown).  

In ultrathin-epon sections of FACS enriched cells overexpressing GFP (Figure 30 a), UL25GFP (Figure 30 b) or 

GFPUL25 (Figure 30 c), the subcellular localization of capsids and whether they contained the HSV1 genome or 

not were analyzed at 2 h pi. Capsids at the nucleus were located at the NPC (Figure 30, asterisks). The majority of 

capsids at the nucleus were empty, thus they had already uncoated their genome (Figure 30 a, b, c). Rarely, 

capsids contained their genome at the NPC or were empty in the cytosol (not shown).  

I quantified the frequency of capsid populations at the nuclear membrane or in the cytosol and differentiated 

for every cell population whether they contained their genome or not (GFP, UL25GFP, GFPUL25; Figure 31).  

In GFP and GFPUL25 overexpressing cells, around 60 to 70% of all capsids at the NE were empty without 

genomes and around 30% were cytosolic, DNA containing capsids. The remaining 10% were either empty capsids 

in the cytosol or full capsids at the NE. In UL25GFP overexpressing cells, the amount of empty capsids at the NE 

was reduced to 40%. But while the fraction of full capsids at the NE remained relatively constant, the number of 

full capsids in the cytosol had increased (Figure 31 a). The amount of empty capsids in the cytosol was comparable 

to that of GFP or GFPUL25 expressing cells.  

To test whether the uncoating event at the NPC was influenced by overexpressed UL25, the capsid 

population at the NE was divided in subpopulations (Figure 31 b). The total amount of capsids was comparable in 

all three cell populations transfected with GFP, UL25GFP or GFPUL25. Comparable amounts of capsids at the 

nuclear membrane were in close proximity to the outer nuclear membrane but without a NPC beneath irrespective 

of the overexpressed protein. At the NPC the number of empty capsids was equal in all cell populations, and 

therefore uncoating seemed to be unaffected by overexpressing UL25 (Figure 31 b). 
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Figure 29: Experimental setup and FACS results prior to epon embedding for transmission electron microscopy.  For EM, 
GFP or GFP-tagged UL25 overexpressing infected cells were separated from untransfected, infected cells. Vero cells were transfected for 
24 h, infected with HSV1(F) at an MOI of 500 PFU/cell, trypsinized and fixed prior to FACS sorting. GFP-positve sorted cells were embedded 
in epon resin and further processed for EM analysis (a). The amounts of single cells were determined by plotting the number of cells 
according to their size (b, Adams 2005). The blue colored cell population represented all counted cells, the red population the single cells. 
Single cell populations were further analyzed according to their GFP fluorescence (c). For FACS calibration untransfected and GFP 
transfected cells were used (c, upper two rows). Untransfected cells (red), cells that express low amounts of GFP and bigger untransfected 
cells (grey) were not taken into the sort. GFP-positive sorted cells (green cell population and percentage) were further processed for epon 
embedding and EM analysis. Histograms were created and modified using WinMDI version 2.8 (http://facs.scripps.edu; by J. Trotter). 

 
Figure 30: Empty capsids were found at the NPC in GFP, UL25GFP or GFPUL25 overexpressing cells. Ultrathin epon sections 
with a width of 50 to 80 nm were analyzed by EM and the localization of capsids at the nucleus (N) and in the cytosol (C) were analyzed. 
Capsids at the nucleus were located at the NPC (a, b, c; asterisks) indicating that the genome was released irrespective of the overexpressed 
protein. Cells sorted for GFP (a), UL25GFP (b) or GFPUL25 (c) by FACS were embedded in epon, and ultrathin sections were made, 
contrasted in lead nitrate and analyzed at a Zeiss electron microscope.  
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Figure 31: Quantification of the capsid subpopulations in GFP, UL25GFP or GFPUL25 overexpressing, HSV1 infected cells.  
Each capsid population was quantified by counting capsids for analyzing whether overexpression of UL25 influences the subcellular 
localization of capsids.  First, the amount of empty (blue) and full (grey) capsids in the cytosol or at the nuclear envelope (NE, orange, white) 
were counted (a). In GFP and GFPUL25 overexpressing cells, around 60% of all capsids found at the NE were empty (white bars) and 
around 30% were cytosolic capsids that still contained their genome (grey bars). The remaining 10% were either empty capsids in the 
cytosol (blue bars) or full capsids at the NE (orange bars). In UL25GFP overexpressing cells the amount of empty capsids at the NE was 
reduced to 40%. But while the fraction of full capsids at the NE remained relatively constant, the number of full capsids in the cytosol 
increased. The amount of empty capsids in the cytosol and full capsids at the NE was comparable to GFP or GFPUL25 expressing cells. To 
determine, whether the uncoating event at the NPC was influenced by overexpressed UL25 the capsid population at the NE was further 
differentiated in subpopulations “empty capsids at the NPC” and “empty capsids at the nuclear membrane” compared to the “total amount 
of capsids” (b). The amount of capsids was comparable in all three analyzed cell populations of GFP (green bars), UL25GFP (pink bars) or 
GFPUL25 (yellow bars). The number of capsids at the NPC was equal in all cell populations.  
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3.2.9 Subcellular Localization of Incoming Viral Genomes 

The reduction in viral gene expression in the presence of UL25 (Figure 17, Figure 18) might be the result of a 

defective translocation of the viral genome during the uncoating event (cf. chapter 4; Figure 39). To localize the 

viral genome in UL25 transfected cells, I combined in situ hybridization (Everett and Murray 2005) with transient 

transfection and virus infection. The probe for in situ hybridization was prepared using a nick translation procedure 

according to Everett and Murray 2005 (cf. chapter 2.7). 

Briefly, HSV1(F) DNA isolated from infected cells was partially digested by DNase I, which has an 

endonuclease activity to generate single strand nicks. Those single strand breaks were then filled with fluorescently 

Cy3 labeled dCTP nucleotides by the 5´-3´polymerase activity of the Taq DNA polymerase. The aim was to produce 

DNA fragments with a size of 0.5 to 1 kb. This size of DNA fragments is well suited for random hybridization of 

the DNA template (R. Everett, MRC, Glasgow, personal communication). Viral DNA was incubated at 37°C with 

1:1000 (1 µu/µl) diluted DNase for 0 to 30 min (Figure 32) and analyzed on an agarose gel. 25 min incubation 

was sufficient to achieve a partial DNA digest that results in DNA fragments of about 0.5 to 0.8 kb. Still a lot of 

undigested viral DNA was present above 8 kb. Therefore the dilution of DNase was modified (Figure 33). A 1:300 

dilution of DNase resulted in a digest of viral DNA to fragments of 1.5 kb to 0.1 kb. A 1:600 dilution of DNase 

resulted in a complete digestion of the small fragments but also to a better digest of the higher DNA fragments. 

Therefore for further DNase digests a dilution of 1:500 (2µu/µl) was used. The in situ hybridization probe was 

prepared according to the manufacturer´s protocol (cf. chapter 2.7.2). To test the specificity of the Cy3-labeled 

HSV1(F)-DNA probe, Vero cells were infected with HSV1(17+) with an MOI of 10 PFU/cell for 8 or 12 hours. 

Fixation and hybridization with the probe were performed as described (cf. 2.7.4). 

Uninfected cells showed no Cy3 labeling in the nuclei (Figure 34 a), which were localized by DIC (Figure 34 b, 

d, f). Cells infected for 8 h showed replication compartments in the nuclei that were labeled by the HSV1(F)-Cy3 

probe (Figure 34 c) and egressing particles were detected in the cytoplasm (Figure 34 c, inset). 12 h pi, the 

replication compartments became more prominent and many egressing viral particles could be detected as dotted 

particles in the cytoplasm of the infected cells (Figure 34 e, inset).  

Next I tested whether incoming viral genomes were recognized by the HSV1(F)-Cy3-probe. Therefore Vero 

cells were infected with HSV1(F) with different MOIs and hybridized with the probe at 1 or 3 h pi (Figure 35). 

Uninfected cells showed very little background labeling derived from the probe (Figure 35 a). In cells infected with 

an MOI of 20 PFU/cell, there was a punctuate signal throughout the entire cell (Figure 35 b) that accumulated at 

the nuclear envelope at 3 h pi (Figure 35 c). Increasing the MOI from 20 PFU/cell to 50 PFU/cell (Figure 35 d, e) or 

100 PFU/cell (Figure 35 f, g) resulted in an increased labeling of incoming viral genomes.  

Cells were infected with an MOI of 70 PFU/cell, fixed, hybridized and labeled with an antibody directed 

against UL25 to determine the subcellular localization of the incoming genomes relative to the incoming viral 

capsids. I used the UL25 antibody because previous experiments had demonstrated that it recognized its epitope 

after many different fixation techniques (cf. Figure 8). Uninfected cells showed little background after labeling with 

the Cy3-probe and the UL25-antibody (Figure 36 a, b). At 1 h pi, viral capsids labeled for UL25 were distributed 



Results 

 66

throughout the cell (Figure 36 d). Viral genomes were also distributed throughout the cell (Figure 36 e) and some 

genomes colocalized with capsids (Figure 36 f, arrows). At 3 h pi, more viral genomes than capsids accumulated at 

the NE (Figure 36 g, h). While some capsids with their genomes were still in the cytoplasm (Figure 36 i, arrow), 

capsids at the nuclear envelope did not contain genomes and many genomes at the nucleus did not colocalize 

with capsids (Figure 36 i, asterisk). Thus, capsid and genome might have separated at the nuclear envelope, 

indicating that the capsid had released its genome.  

To adress whether overexpressed GFP-tagged or wild type UL25 might interfere with nuclear import of 

incoming viral genomes, the overexpressed protein was detected using antibodies since the GFP-fluorescence was 

not maintained after fixation with ethanol and acetic acid. (Figure 37 m, n, o). Antibodies directed against GFP or 

UL25 were tested in PFA-fixed (Figure 37 left) or ethanol-acetic acid fixed cells (Figure 37 right). GFP, UL25GFP, 

GFPUL25 overexpressing cells could easily be identified by GFP fluorescence after PFA fixation and TX-100 

permeabilization or labeling with an antibody against GFP after ethanol-acetic acid fixation (Figure 37 a, b, c). The 

antibodies against UL25 (ID1; Figure 37 f, g, h, r, s, t; EC Figure 37 j, k, l, v, w, x) recognized cells overexpressing 

UL25GFP, GFPUL25 or UL25 after PFA fixation and TX-100 permeabilization or after ethanol-acetic acid fixation, 

but did not react with GFP (Figure 37 e, i, q, u). Thus using these antibodies, the subcellular localization of the 

viral genomes could then be analyzed in UL25 overexpressing cells. 

Next, the subcellular localization of incoming viral genomes was detected in UL25 overexpressing cells. 

Therefore the cells were transfected with GFP, UL25GFP or GFPUL25. 24 h later, cells were infected with HSV1(F) 

at an MOI of 70 PFU/cell and after 3 h pi fixed with ethanol-acetic acid. In situ hybridization of viral genomes was 

performed with a Cy3-labeled HSV1(F)-DNA probe as described in chapter 2.7.4, followed by an immunolabeling 

with antibodies against UL25 or GFP (not shown). Confocal sections of 700 nm were generated and slices through 

the nuclei of infected cells were analysed for the amount of Cy3-labeled HSV1(F) genomes in transfected and 

untransfected cells (Figure 38). Cells overexpressing GFP showed a punctuated genome labeling within the nucleus 

at 3 h pi like neighboring untransfected cells (Figure 38 a, circled cell) but some genomes were also found in the 

cytosol. In cells overexpressing UL25GFP, GFPUL25 or UL25 the amount of genomes in the nuclei (asterisks) was 

reduced compared to untransfected cells and genomes had accumulated in the cytosol and in the nuclear 

peripherie (Figure 38 b, c, d). 
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Figure 32: Optimizing the incubation time for the partial DNase digest to get the appropriate DNA fragments for the 
DNA-probe.  8 µg/lane HSV1(F)-DNA were digested with DNase (1 µu/µl) for the indicated time at 37°C to optimize the digestion time in 
order to get a DNA smear around 0.5 kb. After digesting the viral DNA for 25 min, a smear of bands around 0.5 to 0.8 kb appeared. The 
big band of undigested viral DNA above 8 kb indicated that there was still a lot of undigested DNA. Prolonging the incubation time to more 
than 25 min resulted in a loss of the 0.5 to 0.8 kb DNA bands; therefore the concentration of DNase in the reaction needed to be increased 
to digest more viral DNA in the time of 25 min. 

 
Figure 33: Optimizing the DNase dilution of the partial DNase digest to get the appropriate DNA fragments for the DNA-
probe.  8 µg/lane HSV1(F)-DNA were digested with DNase at a diliution from 1:100 to 1:600 for 25 min at 37°C to optimize the amount of 
the DNA smear around 0.5 kb. After digesting the viral DNA for 25 min a smear of bands around 0.5 to 1.5 kb appeared at a DNase 
concentration of 1:300 to 1:600. Therefore the optimal DNase concentration was obtained by a dilution of 1:500 (2 µu/µl).  
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Figure 34: In situ hybridization of virus infected cells showed that the HSV1(F)-Cy3 probe recognized viral genomes 
specifically. Uninfected cells (a, b) showed no Cy3 labeling in the nuclei (N, indicated with dashed line). Cells infected for 8 h showed 
replication compartments in the nuclei that were labeled by the HSV1(F)-Cy3 probe (c, d) and egressing particles (inset). 12 h pi, the 
replication compartments became more prominent and even egressing viral particles were detected by in situ hybridization as dotted 
particles in the cytoplasm of the infected cells (e, f, inset). Vero cells were infected with HSV1(17+) with an MOI of 10 PFU/cell for 8 or 12 
hours, fixed with 95% ethanol and 5% acetic acid at -20°C. Cells were prehybridized for 30 min at 37°C in hybridization buffer in a 
humidified hybridization chamber. The probe was diluted 1:10 in hybridization buffer and incubated at 95°C for 4 min, followed by over 
night incubation at 37°C in a humidified chamber. After several washing steps, cells were embedded for microscopy.  
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Figure 35: Incoming viral genomes were detected by in situ hybridization with the HSV1(F)-Cy3 probe. Cells infected with 20 
PFU/cell showed dotted signal throughout the whole cell (b) that accumulated at the nuclear envelope at 3 h pi (c). Increasing the MOI to 
50 PFU/cell (d, e) or to 100 PFU/cell (f, g) resulted in an increased labeling of incoming viral genomes. Therefore the particles labeled by the 
HSV1(F)-Cy3 probe most likely represented incoming viral capsids. Uninfected cells showed very little dotted background labeling derived 
from the probe (a). Vero cells were infected with HSV1(F) with an MOI of 20, 50 or 100 PFU/cell for 1 or 3 hours, fixed with 95% ethanol 
and 5% acetic acid at  -20°C. Cells were prehybridized for 30 min at 37°C in hybridization buffer in a humidified hybridization chamber. The 
probe was diluted 1:10 in hybridization buffer and incubated at 95°C for 4 min, followed by over night incubation at 37°C in a humidified 
chamber. After several washing steps, cells were embedded for microscopy.  
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Figure 36: Some incoming viral particles colocalized with viral genomes during virus entry. Uninfected cells showed little 
background labeling by the UL25-antibody and by the Cy3-probe (a, b). At 1 h pi, viral capsids labeled for UL25 (d) and viral genomes (e) 
were distributed throughout the cell and some genomes colocalized with capsids (f, arrows). Viral genomes accumulated at the nuclear 
envelope 3 h pi (g, h), but less capsids labeled for UL25 were located at the nucleus. Some capsids with their genomes were still located in 
the cytosol (i, arrow). Capsids at the nuclear envelope didn´t show a genome labeling and genomes at the nucleus didn´t have a capsid 
labeling (i, asterisk). At the nucleus, more DNA signal was visible, suggesting that uncoating might have occured. Vero cells were infected 
with HSV1(F) with an MOI of 70 PFU/cell for 1 or 3 hours, fixed with 95% ethanol and 5% acetic acid at -20°C. Cells were prehybridized for 
30 min at 37°C in hybridization buffer in a humidified hybridization chamber. The probe was diluted 1:10 in hybridization buffer and heated 
at 95°C for 4 min, followed by over night incubation at 37°C in a humidified chamber. Then cells were labeled for UL25 with the rabbit 
polyclonal antibody UL25-ID1. After several washing steps, cells were embedded for microscopy. 
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Figure 37: UL25 overexpressing cells were recognized with specific antibodies after the fixation needed for in situ 
hybridization. GFP, UL25GFP, GFPUL25 overexpressing cells could be visualized by GFP fluorescence and labeling with an antibody 
against GFP (a, b, c) after PFA fixation and TX-100 permeabilization. The UL25-ID1 (f, g, h) or the UL25-EC antibody (j, k, l) recognized cells 
overexpressing UL25GFP, GFPUL25 or UL25 after PFA fixation and TX-100 permeabilization. When cells were fixed with ethanol-acetic acid, 
GFP fluorescence was lost but GFP, UL25GFP or GFPUL25 could be visualized with the GFP antibody (m, n, o). The antibodies UL25-ID1 or 
UL25-EC were able to recognize overexpressed UL25GFP, GFPUL25 or UL25 (r, s, t, v, w, x) but did not crossreact with GFP (q, u) after 
ethanol-acetic acid fixation. Vero cells overexpressing GFP, UL25GFP, GFPUL25 or UL25 were either fixed with 3% PFA and permeabilzed 
with 0.1% TX-100 or with 95% ethanol and 5% acetic acid at -20°C. Cells were prehybridized for 30 min at 37°C in hybridization buffer in 
a humidified hybridization chamber. The probe was diluted 1:10 in hybridization buffer and heated at 95°C for 4 min, followed by over 
night incubation at 37°C in a humidified chamber. Then cells were labeled for GFP or UL25 with the indicated antibodies. After several 
washing steps, cells were embedded for microscopy. 
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Figure 38: Cells overexpressing UL25 accumulated less genomes in the infected nuclei. Incoming viral genomes were detected 
with the HSV1(F)-Cy3-DNA probe by in situ hybridization in cells with excess GFP (a), UL25GFP (b), GFPUL25 (c) or UL25 (d) indicated by 
solid lines. Nuclei are labeled with dashed lines. Cells overexpressing GFP and untransfected cells (a-d) showed a punctuated genome 
labeling within the nucleus at 3 h pi (a). In cells overexpressing UL25GFP, GFPUL25 or UL25, the amount of genomes in the nuclei 
(asterisks) were reduced compared to GFP-transfected (a) and untransfected cells (a-d). Cells were infected with HSV1(F) at an MOI of 70 
PFU/cell and after 3 h pi fixed with ethanol-acetic acid at -20°C. In situ hybridization of viral genomes was performed with a Cy3-labeled 
HSV1(F)-DNA probe followed by an immunolabeling with antibodies against UL25 (pAb UL25-ID1, circled cell) or GFP (mAB JL-8, circled 
cell). Confocal sections of about 700 nm were generated and slices through the nuclei of infected cells were analysed for the amount of 
Cy3-labeled HSV1(F) genomes.  
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4 Discussion 

For this thesis, the minor capsid protein UL25 of HSV1 was analyzed during herpesvirus assembly, cell entry 

and genome uncoating at the nuclear pore. While the functions of UL25 during HSV1 assembly are revealed more 

and more, possible functions of UL25 during virus entry have only been suggested by the phenotypes of two UL25-

ts HSV1 mutants (Addison et al. 1984; cf. chapter 1.4).  

Based on overexpression studies I showed that excess UL25 reduced immediate early HSV1 gene expression 

after virus entry. Since overexpressed HSV1-UL25 did not interfere nuclear targeting of incoming viral capsids 

(Rode 2003, Diploma thesis), a step between nuclear capsid targeting and synthesis of viral proteins must have 

been affected (Figure 39).  

 
Figure 39: How does overexpressed UL25 prevent viral gene expression? (A) From reaching the nucleus (1) to protein synthesis 
(5) for subsequent capsid assembly, many steps during viral infection might be impaired by excess UL25 (B). Docking (1) or uncoating at the 
NPC might be impaired (2), because UL25 might interfere with NPC components or cellular factors involved in the docking process. Viral 
DNA might not enter the nucleoplasm, because the nuclear pore is blocked with UL25 (2). Alternatively, UL25 may inhibit the RNA 
polymerase (3), thus preventing transcription and no mRNA could be produced. Further transcription might be working, but mRNA export 
(4) through the NPC might be blocked. Finally, all previous steps take place, but UL25 could then inhibit the ribosomes (5), which would 
result in an inhibition of the protein synthesis. In all five scenarios, early viral gene expression would be reduced (Scheme modified from 
Baines and Weller 2005; Ojala et al. 2000; Rajcani et al. 2004; Roizman and Knipe 2001; Sandri-Goldin 2007; Sodeik et al. 1997). 
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The first possibly impaired step is the docking of the capsid to the NPC for subsequent uncoating. UL25 

might interfere with transport factors like importin β or NPC components involved in the docking process (Figure 

39 b; 1). Capsid uncoating at the nuclear pore might be unaffected, but the viral DNA may not reach the 

nucleoplasm, because the excess UL25 may prevent a certain trigger required for genome release or the nuclear 

pore could be blocked with UL25 (Figure 39 b; 2). Alternatively, UL25 could inhibit the RNA polymerase and thus 

prevent mRNA synthesis (Figure 39 b; 3). Furthermore, import of transcription factors or mRNA export through the 

NPC might be blocked (Figure 39 b; 4). Finally, UL25 could inhibit protein synthesis at the ribosomes (Figure 39 b; 

5). In all scenarios, immediate early viral gene expression would be reduced.   

In this study, I addressed the function of UL25 during this early phase of HSV1 infection. I showed that the 

reduction in HSV1 immediate early viral gene expression was significant (Figure 18) and not the result of a 

mislocalization of importin β (Figure 19), disturbed NPCs (Figure 20), an impaired transcription (Figure 21 to 

Figure 26, Figure 28) or protein synthesis in general (Figure 27). Since early gene expression of adenovirus and 

vaccinia virus was not impaired either, the effect was specific for HSV1. 

Moreover, reduced gene expression in the presence of excess UL25 was not caused by a defective uncoating 

of the capsid at the NPC (Figure 30, Figure 31), but in situ hybridization data showed that fewer genomes were 

localized in the nuclei of UL25 expressing cells (Figure 38). Thus, excess UL25 interfered with nuclear import of the 

viral genome through the NPC. This suggests that capsid-associated UL25 might be involved in translocation of 

the viral genome into the nucleoplasm, or that some UL25 has to be extracted from the capsids for proper nuclear 

genome import, and that excess UL25 might impede these functions. Alternatively, overexpressed UL25 may bind 

herpesviral genomes after release from the capsid, and thereby prevent their translocation into the nucleoplasm. 

In summary, my data suggest that the incoming capsid-associated UL25 has to engage in specific host 

interactions, which are a prerequisite for proper HSV1 genome targeting to the nucleus, or that excess UL25 blocks 

the function of a host factor which is required for proper HSV1 nuclear genome import. 

4.1 Mature Capsids Contained UL25 During Assembly, Egress and Entry  

During capsid assembly, the structural protein UL25 retains the packaged viral genome inside the capsid, 

either by sealing the UL6 portal complex after DNA packaging (Ali et al. 1996; McNab et al. 1998; Ogasawara et 

al. 2001), and/or by reinforcing the capsid structure possibly as a heterodimer in concert with UL17 or by adding 

UL25 to the capsids as soon as the DNA packaging has been completed but before the capsids leave the nucleus 

by budding at the inner nuclear membrane (Klupp et al. 2006; Newcomb et al. 2006; Stow 2001; Thurlow et al. 

2005; Trus et al. 2007.  

One prediction derived from these hypotheses is, that UL25 should preferentially colocalize with nuclear C-

capsids but not with A or B-capsids. Therefore, I analyzed the UL25 expression kinetics as well as the potential 

colocalization of newly synthesized UL25 with nuclear and cytoplasmic capsids. Consistent with their classification 

as leaky-late or late genes, VP5 was first detected at 4 h pi, and UL6 as well as UL25 at 6 h pi (Roizman and 

Campadelli Fiume 2007).  
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Newly synthesized nuclear and cytoplasmic capsids were labeled by VP5 antibody mAb 5C10 (Döhner et al. 

2006; Newcomb et al. 1996; Trus et al. 1992) that recognizes VP5 on mature hexons. The antibodies VP5-LP12 as 

well as VP5-H1.4 apparently rather labeled free VP5 than capsid-associated VP5, since they revealed a diffuse 

nuclear signal with few dots, and not cytoplasmic capsids (Figure 12, Figure 14, Figure 15). Thus, these three α-

VP5 antibodies recognized different epitopes, which had either a different subcellular localization, or were 

accessible to a different degree. The diffuse labelling of LP12 and H1.4 most likely represented free VP5, either 

single molecules or capsomeres, which had not yet been incorporated into capsids. The fact that no capsids in the 

cytoplasm were recognized by VP5-LP12 and VP5-H1.4 may also indicate that their epitopes were lost during 

capsid maturation, suggesting that VP5-LP12 and VP5-H1.4 have a stronger affinity to immature capsids (Döhner 

et al. 2006). In contrast, capsids in the nucleus and in the cytoplasm were labeled with VP5-5C10; therefore those 

capsids represent mature capsids. The localization of UL25 during assembly and egress was analyzed with α-

UL25-ID1 (Koslowski et al. 1997, Figure 13) or α-UL25-EC (Ali et al. 1996, Figure 13). Both antibodies labeled 

UL25 during assembly and egress in a punctuate pattern most likely representing capsids, whereas soluble UL25 

had either not been fixed or was not recognized by these antibodies. Thus the UL25 pattern was more comparable 

to the VP5-5C10 than to the VP5-LP12 or VP5-H1.4 labeling (Figure 14, Figure 15).  

Taken together, these data support previous biochemical studies where UL25 associates in the nucleus with 

mature capsids and then may provide a signal for nuclear egress. Most of the UL25 colocalized with capsids 

labeled with an antibody that regcognizes VP5 hexon epitopes on mature capsids and not with VP5-LP12 or VP5-

H1.4.   

Next I analyzed the subcellular localization of UL25 during HSV1 entry. Many capsid associated proteins and 

tegument proteins (e.g. VP11/12, VP22) dissociate from incoming capsids during nuclear targeting, while others 

remain associated until arrival at the nuclear pores (Granzow et al. 2005; Luxton et al. 2005; Sodeik et al. 1997). 

Incoming capsids were labeled with the VP5-5C10 and the UL25-ID1 antibody. Both proteins colocalized until 

arrival at the nucleus. Moreover, immuno blot analysis showed that UL25 and VP5 were not degraded during 

HSV1-entry (Figure 16). Thus, UL25 remained capsid-associated until arrival at the nucleus, and therefore could 

stabilize the capsid until docking at the nuclear pore. However, then the capsid must be destabilized and release 

the HSV1 genome and this may require that some UL25 may be extracted from the capsid at the nuclear pore. 
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4.2 Reduction of HSV1 Gene Expression by Excess UL25  

Since PrV-UL25 had been suggested to be a microtubule motor receptor (Kaelin et al. 2000), cells 

overexpressing HSV1-UL25 were analyzed with regard to their efficiency of capsid transport to the nucleus. 

Overexpressed UL25 might bind to microtubule motors or microtubules directly and thereby compete with capsid 

associated UL25 on incoming capsids during nuclear targeting. However, my previous experiments showed that 

overexpressed HSV1-UL25 did not colocalize with microtubules and that nuclear targeting of incoming viral 

capsids was not impaired by excess HSV1-UL25 (Rode 2003, Diploma thesis). Moreover, a tight localization of 

UL25 with microtubules might rather obstruct than stimulate transport.  

Thus, it seems unlikely that HSV1-UL25 is involved in nuclear targeting of incoming capsids. To test whether 

overexpressed UL25 had any effect on later steps of the HSV1 life cycle, I analyzed the expression of immediate 

early HSV1 proteins (cf. chapter 1.3.6). UL25 overexpressing cells synthesized significantly less of the immediate 

early HSV1 proteins ICP0 (Figure 17, Figure 18), ICP4, ICP8, ICP22, or ICP27 (not shown). Since nuclear targeting 

of HSV1 capsids in UL25 overexpressing cells was not affected, further steps after the transport to the nucleus 

such as viral DNA uncoating at the NPC, viral DNA import into the nucleus, viral transcription, mRNA export into 

the cytosol or protein synthesis must have been impaired (cf. Figure 39 b).  

4.3 No Effect on Importin β and Nuclear Pores 

HSV1 capsids need the nuclear transport factor importin β to bind to the nuclear pore complex. The direct 

interaction partners of the capsid have not been identified, but the nucleoporins Nup358/RanBP2 or Nup214/CAN 

which are components of the cytoplasmic filaments emanating from the nuclear pores (Ojala et al. 2000; Pante 

and Aebi 1993) are likely candidates. Since excess UL25 might interfere with the specific docking at the nuclear 

pore, the subcellular localization of importin β (Figure 19), and the nuclear pore architecture were analyzed (Figure 

20). The localization of importin β was not changed in the presence of overexpressed GFP or UL25GFP (Figure 

19). UL25 overexpressing cells labeled with the UL25-EC antibody together with the importin β antibody showed 

less signal for importin β. It seemed not to be a specific inhibition of importin β but only enriched background 

labeling by the UL25 antibody since also untransfected cells displayed less importin β signal. 

The nuclear rim labeling obtained with the mAb414 antibody that recognizes nucleoporins with FG-domains 

(Aris and Blobel 1989; Davis and Blobel 1987) was very similar in untransfected, GFP, UL25GFP or UL25 

transfected cells (Figure 20). Some irregularities within the NPC labeling were detected in all cell populations, and 

most likely represent a heterogenous amount of NPCs in the nuclear membrane during the different stages in the 

cell cycle (Maeshima et al. 2006). Cells stably expressing the inner nuclear membrane protein lamin B receptor 

coupled to a yellow fluorescent protein (Lippincott-Schwartz et al. 1999) did also not show any changes in the 

localization of the lamin B receptor in the presence of UL25 or GFP-tagged UL25 (data not shown). Thus, the 

reduced HSV1-immediate early gene expression in the presence of excess UL25 seemed not to be due to a major 

mislocalization of importin β or a disturbed nuclear pore network. 
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4.4 Transcription in the Presence of Overexpressed UL25 

Upon virus entry, the tegument protein VP16 in a complex with the cellular proteins Oct-1 and HCF is 

transported into the nucleus and facilitates the induction of HSV1 transcription (Narayanan et al. 2005; Rajcani et 

al. 2004). A reduction in immediate early viral gene expression could have been the result of mislocalized VP16 in 

UL25 overexpressing, infected cells. Therefore the degree of nuclear accumulation of VP16 was quantified. VP16 

entered the nuclei of GFPUL25 overexpressing cells as efficiently as in untransfected cells.  

The translocation of VP16 into the nucleus was not impaired, and VP16 may function as a transcriptional 

activator irrespectively of overexpressend GFPUL25 (Figure 22, Figure 23). Moreover, the localization of cellular 

transcription factors was analyzed in the presence of excess UL25 since the transcription factors NFκB and its 

inhibitor IκB, as well as STAT and NFAT are activated or reduced in HSV1 infection (Goodkin et al. 2003; Scott et 

al. 2001; Yokota et al. 2001). None of these transcription factors or the inhibitor IκB showed an altered 

subcellular localization in UL25GFP expressing cells (Figure 23). Thus, it seems unlikely that the function of those 

factors was impaired by overexpressed UL25.  

Additionally, the transactivation of transcription through promoters or responsive elements was analyzed by 

luciferase based reporter assays. Although high amounts of UL25 repressed luciferase activity driven by the cylin E 

promoter, EBV-c promoter or a serum responsive element, the repression was not specific for a particular promoter 

element because the intrinsic luciferase activity of the corresponding luciferase vectors without promoter elements 

was repressed to a similar degree (Figure 24 to Figure 26).  

These results indicated that, in contrast to experiments conducted at 18 to 24 h after transfection of UL25-

expressing plasmids, the prolonged overexpression of 30 to 35 h decreased gene expression in general. One could 

argue that the reduction in HSV1 immediate early gene expression was due to unspecific cytotoxic effects of 

overexpressed UL25, but later experiments using adenovirus or vaccinia virus showed that transcription and 

protein expression were not affected per se at UL25 expression levels which repressed HSV1 immediate early gene 

expression. 

UL25 is a minor bona fide capsid protein and remained associated with incoming capsids until arrival at the 

NPC. It seems unlikely that the few molecules of incoming UL25 would then be released to transactivate or repress 

transcription. There is no data in the literature suggesting any regulatory functions of UL25 in HSV1 transcription. 

However, at present a potentially modulatory function cannot be ruled out. UL25 may act as a transcriptional 

repressor to promote the next step in the infection cycle, the capsid assembly. But to test this hypothesis, the 

luciferase assays need to be adjusted to shorter expression times, and higher sample numbers for statistical 

analysis. 
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4.5 Vaccinia Virus Late, but not Early Gene Expression was Impaired by 

Excess UL25  

Poxviruses, e.g. vaccinia virus (VV), are DNA viruses that exclusively replicate in the cytosol of infected cells 

(Schramm and Locker 2005). I used VV early gene expression, which is independent of the nucleus to test whether 

UL25 influenced protein synthesis in general, and thereby reduced HSV1 early gene expression. GFP (Figure 27 a, 

c) or UL25GFP (Figure 27 e, g) overexpressing Hela cells were infected with VV (Jensen et al. 1996; Schepis et al. 

2006), and the expression of the early gene p35/H5R and the late gene p16/A14L were analyzed.   

VV replication compartments contained similar amounts of p35, irrespective of the protein ectopically 

expressed (Figure 27). The expression of the late protein p16 was slightly reduced in UL25GFP overexpressing cells 

compared to GFP expressing or untransfected cells (Figure 27). During VV assembly, crescents of ER derived 

cisternae mature into spherical immature viruses (IV) into which the viral DNA is packaged (Sodeik and Krijnse-

Locker 2002). The protein A14/p16 is located at the ER-Golgi compartment in perinuclear areas during assembly 

of VV and is essential for further maturation from the IV to the first infectious form of VV, the intracellular mature 

virus (IMV, Rodriguez et al. 1998). Overexpressed UL25 might slow down the recruitment of cellular membranes to 

virus factories at juxtanuclear positions.  

Herpesvirus transcription and replication take place in the nucleus. Efficient cellular DNA transcription and 

DNA replication not only require proteins for chromatin reorganization or DNA polymerization but also an intact 

nuclear membrane with functional NPCs and a nuclear lamina (Gant and Wilson 1997). The NE is physically 

connected to the rough endoplasmic reticulum (ER). During nuclear envelope assembly and disassembly, proteins 

are sequestered into the NE because of their affinity to chromatin and lamins, whereas ER proteins reside in the ER 

(Ellenberg et al. 1997).  

VV replication occurs in ER-enclosed viral factories suggesting an establishment of so called ER-derived mini 

nuclei that lack components of the nuclear envelope. The mini nuclei disappear upon ER dissociation later in 

infection to allow further maturation of the replicated genomes (Tolonen et al. 2001). This is the point when UL25 

could interfere with further VV maturation. UL25 might associate with the VV DNA due to its DNA binding ability 

(Ogasawara et al. 2001), and thereby prevent the formation of the IMV that was visualized here by the protein 

A14L/p16. Since both genomes are very GC rich (poxviruses: ~63%, herpesviruses: ~68%; Roizman and Knipe 

2001; Senkevich et al. 1996), UL25 might recognize VV as well as HSV1 DNA. That excess UL25 reduced late VV 

protein synthesis was an unexpected and interesting finding.  

However, early VV gene expression was not affected by UL25, indicating that excess UL25 did not inhibit 

protein synthesis in general. 
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4.6 UL25 did not Reduce Adenovirus Mediated Gene Expression 

Like herpesvirus capsids, adenovirus capsids are targeted to the nucleus where they release their viral 

genomes through the nuclear pores into the nucleoplasm for viral DNA transcription and replication (Greber and 

Fassati 2003).  

To test whether the excess UL25 decreased adenoviral early gene expression, we infected GFP or UL25GFP 

overexpressing Hela cells with adenovirus. The adenovirus mediated transgene expression was not reduced 

irrespective of the overexpressed protein (Figure 28). This indicated that the cell entry of adenovirus, uncoating at 

the NPC, genome release, nuclear transcription and protein synthesis at the ribosomes were functional in UL25 

overexpressing cells. Therefore I concluded that overexpressed UL25 rather influences herpesvirus infection than 

infection with other DNA viruses which replicate in the nucleus. 

4.7 HSV1 Genome Uncoating in the Presence of Excess UL25 

The correct nuclear import of the viral genome is mandatory for infection. An impaired DNA release from the 

capsid at the NPC would result in reduced early viral gene expression in UL25 overexpressing cells. In electron 

microscopy images, DNA containing capsids can be easily distinguished from empty capsids by their electron-dense 

core (Sodeik et al. 1997). To include only cells that express UL25 for electron microscopy, I established a protocol 

for FACS based enrichment of transfected cells prior to processing for electron microscopy (Figure 29). 

Ultrathin sections were analyzed for the amount of capsids localized at the nuclear membrane, at the NPC or 

in the cytosol (Figure 30). In GFP and GFPUL25 overexpressing cells, most capsids were found at the NPC and 

appeared empty, whereas the cytosolic capsids still contained their genome (Figure 31). In UL25GFP 

overexpressing cells, the total number of empty capsids at the nuclear envelope was reduced, and instead the 

cytosol contained more filled capsids (Figure 31 a). This was the first experimental difference between cells 

overexpressing GFPUL25 or UL25GFP. In all other experiments, GFPUL25 and UL25GFP showed similar 

phenotypes (cf. Figure 18, Figure 38). According to the electron microscopy data, the nuclear targeting efficiency 

of capsids was reduced in UL25GFP overexpressing cells. However, when the nuclear targeting of capsids was 

analyzed by immunofluorescence microscopy, capsids reached the nucleus as efficiently in GFP or UL25GFP 

overexpressing cells (Figure 9).  

A major difference between those two experiments was the MOI used for HSV1 infection. For 

immunofluorescence microscopy, cells were infected with an MOI of 70 to 100, whereas for the electron 

microscopy studies, the cells were infected at an MOI of 500 PFU/cell. Even with this high MOI, the number of 

capsids present in one image was only about 1 to 5 capsids per image; therefore the quantification required the 

analysis of many sections. Another discrepancy between those two experiments was the treatment of the cells 

after the infection. For immunofluorescence microscopy, adherent cells were washed, fixed, permeabilized and 

subsequently labeled with antibodies.  
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For electron microscopy analysis, the cells were first trypsinized, lightly fixed in suspension, sorted by FACS, 

fixed again, pelleted several times by centrifugation and then processed for electron microscopy. Thus, cells 

processed for electron microscopy underwent more handling steps than cells for immunofluorescence microscopy. 

Proteins with C-terminal fused tags often display properties and localizations of the untagged protein, 

whereas N-terminal fusion proteins are often non-functional (Palmer and Freeman 2004). This may explain why 

GFP and GFPUL25 show similar results in the electron microscopy quantification (Figure 31 a). GFPUL25 might not 

compete as well as the untagged UL25 or UL25GFP for potential viral or cellular interaction partners. However, 

this hypothesis was not supported by the immunofluorescence microscopy data, where all three GFPUL25, 

UL25GFP and UL25 reduced immediate early gene expression to a similar extent (Figure 18). To analyze genome 

uncoating at the NPC, also the number of empty capsids located either at the nuclear membrane or at the NPC 

was determined (Figure 31 b). All populations had a similar number of capsids.  

The uncoating of the genomes was not impaired by excess UL25. So, if the HSV1 genome was uncoated, why 

was there less expression of immediate early HSV1 proteins? 

4.8 Less Genomes Accumulated in the Nucleoplasm in the Presence of UL25 

Electron microscopy of UL25 overexpressing, HSV1 infected cells showed that uncoating at the NPC was not 

affected. Empty capsids were found at the NPC indicating that genome uncoating took place. However, since 

immediate early HSV1 gene expression was not blocked completely but rather delayed (Figure 17, Figure 18), less 

viral genomes might have reached the nucleoplasm. To address whether or not the viral genome had reached the 

nucleoplasm in UL25 overexpressing cells, I had to establish a protocol which combined viral genome detection by 

in situ hybridization with the detection of the overexpressed protein. The in situ probe was synthesized from 

HSV1(F)-DNA according to Everett & Murray (2005) and specifically recognized newly synthesized (Figure 34) as 

well as incoming genomes (Figure 35) in the replication compartments and in the cytosol.  

Due to the harsh fixation of the cells, GFP was denatured and no longer fluorescent. I tested several 

antibodies to identify those which detected the overepressed proteins under these conditions (Figure 36). The 

cytoplasm still contained UL25-positve capsids, but not every capsid colocalized with Cy3-labeled genomes. At the 

nucleus, there were more genomes detected than capsids. Nevertheless, incoming genomes and UL25 labeled 

capsids occasionally colocalized. Moreover, both UL25 antibodies and the GFP antibody recognized their epitopes 

after PFA and in situ fixation, therefore the in situ hybridization of incoming viral genomes could be combined in 

UL25 overexpressing cells (Figure 37).  

When the genomes were in situ hybridized in infected UL25-overexpressing cells, preliminary data revealed 

that fewer genomes accumulated in the nuclei of UL25 overexpressig cells (Figure 38). These results suggested 

that genome translocation through the NPC channel was impaired by an excess of UL25. 
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During adenovirus (Ad) infection, a stepwise disassembly of the Ad capsid by an adenovirus encoded 

protease occurs (Greber et al. 1996; Greber et al. 1993). Then the Ad capsid interacts with the nuclear pore 

component CAN/Nup214, a cytoplasmic filament, and the Ad genome is pulled out of the capsid by the host 

protein histone H1 (Greber et al. 1997; Trotman et al. 2001). Since herpesviruses and adenoviruses both use 

microtubules and the microtubule motor dynein for nuclear targeting (Mabit et al. 2002; Sodeik et al. 1997), 

herpesviruses might exploit a similar mechanism for DNA release at the nucleus. Moreover, the phenotype of a 

temperature-sensitive HSV1 mutant which has mutations in the UL36 open reading frame suggested that the large 

tegument protein VP1-3 might be involved in genome uncoating at the NPC. At the non-permissive temperature, 

C-capsids accumulated at the NPC and failed to uncoat their genome (Batterson et al. 1983). Furthermore, it was 

shown that VP1-3 remained associated with incoming viral capsids during nuclear targeting (Schipke & Sodeik, 

personal communication). Finally, the C-terminus of VP1-3 interacts with UL25 (Coller 2007). Since overexpressed 

UL25 reduced immediate early gene expression presumably by disturbing viral genome translocation through the 

NPC channel, it is conceivable that a putative function of VP1-3 during nuclear import of the viral genome was 

masked by the overexpressed UL25. In such a scenario, the incoming HSV1 genomes may be released into the 

cytosol rather than into the nucleoplasm. Alternatively, excess UL25 could interfere with DNA translocation 

through the nucleus by binding to the viral genome (Ogasawara et al. 2001), and thus blocking interaction sites 

for cellular factors, such as importins, which may be involved in genome translocation (Figure 40).  

Uncoating of herpesvirus genomes exclusively takes place at the NPC of infected cells (Batterson et al. 1983; 

Ojala et al. 2000, Sodeik et al. 1997) and was not disturbed by overexpressed UL25 (Figure 31). Thus, a step 

between uncoating at the NPC and genome translocation through the NPC channel might have been blocked by 

the excess UL25. In turn that would mean that endogenous UL25 might trigger a certain process or has to interact 

with a cellular factor which is required for correct genome translocation into the nucleus. 

In summary, the in situ hybridization of viral genomes in the presence of excess UL25 suggested a 

mechanism that may explain the reduction of immediate early HSV1 gene expression in the presence of excess 

UL25. In the future, this assay can also be used to set up in situ uncoating assay. To monitor uncoating of the viral 

genome, this method will require further optimization of the in situ hybridization in such a way that incoming 

genomes will be only detected after uncoating and not during nuclear targeting. Such an assay would provide a 

powerful tool to further analyze genome uncoating of HSV1 at the NPC, and may contribute to the identification of 

host and viral factors involved in HSV1 uncoating. 
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Figure 40: Hypothetical model of genome translocation through the NPC channel: In untransfected cells (A), Importin β binds 
(1) and shuttles the capsid to the NPC (2). It docks at the NPC with one vertex, presumably the UL6 portal complex, since the viral genome 
is packaged through it. A certain trigger at the NPC (3), maybe mediated through an interaction of VP1-3 or by an unknown cellular factor 
or NPC protein, leads to DNA injection through the NPC (4). In UL25-overexpressing cells (B), the shuttling from the capsid via importins 
may be functional, since nuclear targeting of incoming capsids is not impaired by overexpressed UL25 (1-2). Uncoating of capsids at the 
NPC is not impaired in UL25 overexpressing cells, but still gene expression is not detectable. In this scenario, excess UL25 may somehow 
interfere with proper binding at the NPC, in such a way that the wrong vertex binds to the NPC. The UL6 portal complex might not point in 
the direction of the NPC channel but into the cytosol. Nevertheless, the putative trigger function of VP1-3 or a cellular factor might still lead 
to uncoating (3), but the genome is translocated into the cytosol instead of into the nucleus (4). Scheme derived from Batterson et al. 1983; 
Newcomb et al. 2007; Ojala et al. 2000 and Schipke and Sodeik, personal communication. 
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5 Outlook 

5.1 Further Analysis of UL25 During the Viral Life Cycle of HSV1 

The minor capsid-associated protein UL25 stabilizes the packaged viral genome inside the capsid during 

capsid assembly and remains associated with the capsid during egress and cell entry. The latter would be 

consistent with the hypothesis, that genome uncoating, which requires first capsid destabilization, takes place 

exclusively at the nuclear pore. Thus it seems reasonable to assume that uncoating of the viral genome occurs at 

the the same time as UL25 has to detach from the incoming capsid to allow capsid destabilization. This 

hypothetical scenario can now be addressed further by combining immunolabeling with the in situ hybridization of 

the incoming genomes. It may even be possible to develop this assay further, and to modify it in such a way that 

only genomes released from HSV1 capsids will be detected, but not those genomes which are localized in 

incoming, cytoplasmic capsids. 

It was recently suggested that UL25 is added to C-capsids in order to provide a signal for nuclear egress. 

Since UL25 was also found on B-capsids, although to a lesser extent, the subnuclear localization of UL25 on the 

several capsid types should be further analyzed using immunofluorescence and immunoelectron microscopy. For 

this aim, antibodies specific for A, B (e.g. against the scaffold protein VP22a) and C-capsids could be used.  

Overexpressed UL25 reduced immediate HSV1 early gene expression. This effect could be further validated 

and characterized using FACS for a single cell analysis correlating GFPUL25 expression with HSV1 immediate early 

gene expression by using a mutant virus expressing a reporter gene such as RFP. Such a set-up would allow a 

quantitative screen of several UL25 constructs to determine which protein domain of UL25 interferes with the 

HSV1 nuclear import, and also if any positively charged protein could prevent HSV1 immediate early gene 

expression. 

The luciferase reporter assays suggested that excess UL25 induced a general reduction of transcription. These 

experiments should be further quantified by increasing the data set. Moreover, potential effects on HSV1 specific 

promoter elements and HSV1-VP16 mediated transactivation need to be determined, to test whether UL25 

interferes specifically with HSV1 transcription.  

The electron microscopy analysis using a high MOI revealed a difference in the subcellular localization of 

incoming capsids after UL25GFP or GFPUL25 overexpression, which was not detected in immunofluorescence 

microscopy experiments using a low MOI. Thus, the electron microscopy study may be extended using a bicistronic 

pIRES vector that contains GFP and authentic UL25. Due to an internal ribosomal binding site both proteins will be 

translated from a single RNA transcript, but GFP could still be used as a marker for FACS sorting, and the effect of 

untagged UL25 on the early steps of the HSV1 life cycle could then also be analyzed at the ultrastuctural level. 
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5.2 Perspectives  

When an overexpressed viral protein interferes with a specific function during the life cycle of this virus, it is 

likely that the endogenous protein might fulfill a crucial function. My experiments with excess UL25 suggest that 

the endogenous UL25 has additional functions during the ill-characterized step of HSV1-DNA import into the 

nucleus. Since HSV1 and other members of the Herpesviridae cause several severe human diseases, elucidating the 

molecular details of nuclear import of the incoming viral genomes could provide a basis for identifying new drug 

targets for the treatment of herpesviruses.  

Recent candidate proteins for developing HSV1 pharmaceuticals are the packaging proteins UL6 and UL15. 

The thiourea compound WAY-150138 inhibits viral replication by antagonizing DNA encapsidation by interfering 

with the packaging proteins UL6 and UL15 during the assembly process (Newcomb and Brown 2002; van Zeijl et 

al. 2000). A novel thiazole urea compound BAY 57-1293 targets the HSV1 helicase-primase complex (Betz et al. 

2002; Crumpacker and Schaffer 2002; Kleymann et al. 2002). This complex is composed of UL5, UL8 and UL52 

which act together to unwind double-stranded viral DNA and generate primers for DNA synthesis by UL30 

(Chattopadhyay et al. 2006; Zhu and Weller 1992). BAY 57-1293 inhibits the helicase-primase complex by 

enhancing the binding of UL5 and UL52 to the DNA (Crumpacker and Schaffer 2002; Crute et al. 2002; Kleymann 

et al. 2002).  

Since UL25 is also involved during packaging and capsid stabilization, compounds against the UL25 function 

could be developed or recombinant UL25 could be used as an inhibitory peptide, because those compounds 

represent a novel promising therapeutic agent against virus infections (Munch et al. 2007). Moreover, my data 

suggest that it may also be possible to develop new drugs which in addition to assembly also target essential steps 

of virus entry.  
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