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Abstract 
 
 

Abstract 
 
The metabolically versatile and ubiquitous Pseudomonas aeruginosa is a major opportunistic 

pathogen for plants, animals and men. It is a leading cause for nosocomial infections, particularly for 

bronchopneumonia of ventilated patients at intensive care units. P. aeruginosa also causes chronic 

lung infections in individuals with cystic fibrosis (CF), bronchiectasis and chronic obstructive 

pulmonary disease. 

During lung infections the colonizing P. aeruginosa clone diversifies into niche specialists and 

morphotypes, a phenomenon called ‚dissociative behaviour‘. In the cystic fibrosis lungs, aerobic 

planctonic bacteria, microaerophilic mucoid morphotypes, biofilm forming bacteria, autoaggregative 

bacteria, small colony variants and other morphotypes were found. 

In our study we investigated the genomic capacity of P. aeruginosa to diversify in morphotype by 

single-step gene inactivation. The screening of a signature-tagged mini-Tn5 plasposon library of the 

cystic fibrosis airway isolate TBCF10839 under different culture and temperature conditions in vitro 

revealed that the transposon insertion in about 0,5 % of the genome led to a change of morphology 

into eight discernable morphotypes. Half of the 57 targets encode features of primary or secondary 

metabolism whereby quinolone production was frequently affected. In the other half the transposon 

had inserted into genes of the functional categories transport, regulation or motility/chemotaxis. Only 

three of the 57 targets identified in the screen were known from previous studies on genetic reference 

strain PAO1 to be involved in the variation of morphotype. 

To mimic dissociative behaviour of isogenic strains in lungs, pools of 25 colony morphology variants 

were tested for competitive fitness in an acute murine airway infection model. Seventeen of the 57 

mutants either grew better or worse in vivo than in vitro, respectively. Some of the variants were 

characterized in more depth by separate infection experiments and bioassays. Formal proof of 

reversion to wild type phenotype was performed for a significant proportion of targets by 

complementation in trans.  

The most common morphotype of self-destructive autolysis did unexpectedly not impair fitness. 

Metabolic proficiency to utilize the substrates that are abundant in bronchial secretions and to 

synthesize the major secondary metabolites that exert bactericidal or host immunomodulatory 

functions, were identified as key determinants of better survival.  
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Kurzfassung 
 
 

Kurzfassung 
 
Die metabolisch vielseitige und ubiquitär verbreitete bakterielle Spezies Pseudomonas aeruginosa 

gehört zu den bedeutendsten Pathogenen für Pflanzen, Tiere und Mensch. Pseudomonas aeruginosa 

ist einer der Hauptauslöser nosokomialer Infektionen, insbesondere von Infektionen der unteren 

Atemwege bei beatmeten Intensiv-Patienten. Zudem verursacht diese Spezies chronische 

Atemwegsinfektionen bei Patienten mit Cystischer Fibrose (CF), Bronchiektasen und chronisch 

obstruktiven Lungenerkrankungen. 

Im Verlauf der Lungeninfektionen spezialisiert sich der kolonisierende Klon auf die verschiedenen sich 

bietenden (besiedelbaren) „Nischen“ und bildet verschiedene Morphotypen aus (sog. dissoziatives 

Verhalten). In CF-Lungen findet man so aerobisch planktonisch lebende Bakterien, mikroaerophile 

mukoide Morphotypen, Biofilm-bildende Bakterien, sog. small colony variants und noch andere 

Morphotypen. 

Im Rahmen dieser Arbeit wurde analysiert, inwieweit Pseudomonas aeruginosa infolge der 

Inaktivierung einzelner Gene verschiedene Morphotypen ausbildet. Untersucht wurden dazu die 

Mutanten einer Mini-Tn5-Plasposon-Bibliothek des Stammes TBCF10839. Bei  Wachstum bei 

verschiedenen Temperaturen und Kulturbedingungen wiesen mehrere Mutanten eine veränderte 

Morphologie auf, wobei insgesamt acht Arten von Morphotypen unterscheidbar waren. Die 

veränderten Morphotypen ließen sich auf Transposon-Insertionen in 57 verschiedenen Genen 

zurückführen. Die Hälfte dieser Gene codiert Proteine des Primär- oder Sekundärmetabolismus, 

darunter häufig Proteine zur Synthese von Chinolonen. Die durch andere Hälfte der mutierten Gene 

codierten Proteine gehörten in die funktionellen Kategorien Transport, Regulation, Motilität oder 

Chemotaxis. Lediglich drei dieser 57 Gene waren dabei in früheren Analysen mit dem Referenzstamm 

PAO1 in Bezug auf Änderung des Morphotyps aufgefallen. 

Um das dissiozative Verhalten in der Lunge zu simulieren, wurden jeweils Gruppen von 25 isogenen 

Mutanten mit veränderter Kolonie-Morphologie mit Hilfe eines Modells zur akuten Infektion von 

Mäuselungen untersucht. Das Wachstumsverhalten in Konkurrenz zu den übrigen Mutanten (Fitness) 

unterschied sich in diesem in vivo – Experiment bei insgesamt 17 der 57 Mutanten gegenüber 

vergleichbaren in vitro – Analysen. Einige dieser 17 Mutanten wurden u. a. durch separate 

Infektionsexperimente noch genauer charakterisiert, die Wiederherstellung des Wildtyp-Phänotyps 

jeweils durch in trans - Komplementation des mutierten Gens überprüft.  

Unerwarteterweise ergab sich kein Zusammenhang zwischen dem am häufigsten auftretenden 

veränderten Morphotyp, der Präsenz von autolytischen Bereichen in der Bakterienkolonie, und der 

beobachteten Fitness. 

Als entscheidende Faktoren für erfolgreiches kompetitives Wachstum im selben Habitat (Wachstum in 

der Lunge) wurden metabolische Fähigkeiten identifiziert, die die effektive Verstoffwechselung von 

Substraten, die in Bronchialsekreten vorkommen, ermöglichen oder die die Synthese von 

Sekundärmetaboliten mit bakteriozider oder immunmodulierender Wirkung erlauben. 

Schlüsselwörter: Pseudomonas aeruginosa, Morphotypen, Maus-Infektion 
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I INTRODUCTION 
1. Phenotype of the metabolically versatile P. 

aeruginosa 
Pseudomonas aeruginosa is a Gram-negative, aerobic and polarly flagellated rod 

which belongs to the bacterial family Pseudomonadaceae of the group of γ-

proteobacteria (Palleroni, 1986). It is a metabolically versatile bacterium which 

inhabits terrestrial, aquatic, animal-, human-, and plant-host-associated environments 

(Hardalo and Edberg, 1997; Ramos, 2004).  

 

The exceptional competence of P. aeruginosa to colonize a wide variety of ecological 

niches is based on its ability to utilize a broad spectrum of organic compounds as 

food sources and its capability to survive for a long time under extremely harsh 

conditions where nutrients are limited (Ramos, 2004; Madigan and Martinko, 2005).  

 

With plants, P. aeruginosa induce symptoms of soft rot with Arabidopsis thaliana and 

Letuca sativa (Rahme et al, 1995, 1997). It is a pathogen for Caenorhabditis elegans 

(Mahajan-Miklos et al., 1999; Martínez et al., 2004), Drosophila (D'Argenio et al., 

2001) and Galleria mellonella (Miyata et al., 2003). 

 

This pathogen causes a wide range of infections in humans including localized 

infections such as urinary tract infections, acute ulcerative keratitis, malignant otitis 

media, peritonitis, acute ventilator associated pneumonia in endotracheal intubated 

patients, and burn wound infections, as well as chronic localized infections such as 

chronic destructive lung infections in cystic fibrosis (CF) patients, whose abnormal 

airway epithelia allows long-term colonization by P. aeruginosa (Tümmler et al., 

1991; Lyczak et al., 2002; Pollack, 2000; Bush et al., 2006). In addition, patients with 

severe underlying diseases reducing physical (burned patients, mechanically 

ventilated patients) and/or immune defence mechanisms (neutropenias, AIDS 

patients) are at serious risk for evolution of localised infections toward systemic 

disease, which is associated with dramatically elevated mortality (Ramos, 2004) 

Such a high metabolic versatility of P. aeruginosa is reflected in its core genome 

(Stover et al., 2000). The genome of P. aeruginosa spans over approximately 6.3 Mb 
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and comprises 5,570 predicted open reading frames (ORFs) about 90 % of which are 

highly conserved (available on http://pseudomonas.com) (Wolfgang et al., 2003). 

Analyses of this genome revealed a high proportion of two-component systems (2.1 

% of genomic ORFs) and regulatory genes (7.2 %) to modulate the diverse genetic 

and biochemical properties of this bacterium to adapt to changing environmental 

conditions. Many of the genes being responsible for growth and metabolism of 

various organic compounds enhance the ability of the bacterium to survive under 

harsh environmental conditions.  

 

Except of the core genome that is common to all strains of a taxon, the genome of P. 

aeruginosa consists of an accessory part that varies within and among clones 

(Schmidt et al., 1996). The accessory genome represents the flexible gene pool that 

frequently undergoes acquisition and loss of genetic information and hence plays an 

important role for the adaptive evolution of this bacterium. The flexible gene pool is 

made up of elements such as bacteriophages, plasmids, insertion elements, 

transposons, conjugative transposons, integrons and genomic islands. Genomic 

islands may also increase the metabolic versatility or adaptability of the bacterium, or 

promote bacterium-host interaction in terms of symbiosis, commensalism or virulence 

(Dobrindt et al., 2004). 

Additionally, genes encoding membrane transporters for nutrients uptake and 

antibiotic efflux play essential roles during the course of the infection including 

various iron-uptake systems and a series of resistance nodulation-cell division (RND) 

efflux transporters (Stover et al., 2000).  

 

Thus, consistent with its larger genome size and environmental adaptability, P. 

aeruginosa contains the highest proportion of regulatory genes observed for a 

bacterial genome and a large number of genes involved in the catabolism, transport 

and efflux of organic compounds as well as four potential chemotaxis systems 

(Stover et al., 2000). These regulatory genes presumably modulate the diverse 

genetic and biochemical capabilities of this bacterium in changing environmental 

conditions.  
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2. The virulence factors produced by P. aeruginosa 
There have been many discussions about what exactly constitutes a bacterial 

virulence factor (Domingue et al., 1997). Finlay and Falkow, in their 1997 review 

(Finlay and Falkow, 1997) discuss the various definitions of microbial pathogenicity 

and the idea that pathogens can be distinguished from their non-virulent counterparts 

by the presence of such virulence genes. Many novel virulence factors have been 

discovered through the use of homology searches like BLAST and FASTA with 

bacterial genomic sequence data. However, around a third of all ORFs in each 

genome published so far have unknown function (Weinstock, 2000).  

 

P. aeruginosa possesses and produces a large variety of both cell-associated and 

excreted virulence factors (Van Delden and Iglewski, 1998). Mainly, these factors 

suppress host immune responses as well as being involved in the establishment of 

persistent infections (Cryz et al., 1984).  

 

Cell-associated virulence factors include pili, flagella, lipopolysaccharide, a type III 

secretion system and alginate. The first step in P. aeruginosa infections is the 

adherence to and colonization of host epithelial surfaces. The primary P. aeruginosa 

adhesins for respiratory mucins are the flagella cap protein (Arora et al., 1998) and 

flagellin (Feldman et al., 1998; Lillehoj et al., 2002). Flagellum driven motility has 

been reported to enhance the efficiency of surface P. aeruginosa colonization by P. 

aeruginosa (O´Toole and Kolter, 1998). However, many P. aeruginosa strains 

isolated from chronically infected CF airways do not produce flagella, that indicates 

that flagella plays a role only in the early step of infection and longer term 

maintenance of the organism in this milieu involves other factors (Mahenthiralingam 

et al., 1994).  

 

P. aeruginosa produces several extracellular products that, after the initial step of 

colonization, can cause extensive tissue damage, bloodstream invasion, and 

dissemination (Rahme et al., 1997; Tang et al., 1996).  

Two hemolysins, phospholipase C and rhamnolipid, produced by P. aeruginosa, may 

act synergistically to break down lipids and lecithin. Phospholipase C has been 

shown to induce vascular permeability, organ damage and death in animal models as 
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well as to contribute to the release of inflammatory mediators (Berk et al., 1987). P. 

aeruginosa produces two lipases, LipA and LipC, which were shown to enhance the 

induction of inflammatory mediators by phospholipase C (Konig et al., 1996).  

Rhamnolipid is a rhamnose-containing glycolipid biosurfactant with detergent-like 

structure believed to be responsible for dissolving of the lung surfactant 

phospholipids, making them more accessible to cleavage by phospholipase C (Liu, 

1973). The resulting loss of lung surfactant may be responsible for the atelectasis 

associated with chronic and acute P. aeruginosa lung infection. Rhamnolipid also 

inhibits the mucociliary transport and ciliary function of human respiratory epithelium 

(Read et al., 1992). The rhamnolipids have been suggested to play an important role 

during the development of microbial communities inside biofilm (Davey et al., 2003). 

Recently, the rhamnolipids have been shown to induce a rapid necrosis of the 

polymorphonuclear leukocytes (PMNs) in mouse lungs infected with P. aeruginosa 

(Jensen et al., 2007).  

Proteases are also thought to play a role in the pathogenesis of some P. aeruginosa 

infections (Sokol et al., 1979; Morihara and Homma, 1985). Alkaline protease is an 

important extracellular virulence factor implicated in corneal infections (Howe and 

Iglewski, 1984), degradation of components of the complement (Hong and 

Ghebrehiwet, 1992) and hydrolysis of fibrin and fibrinogen (Shibuya et al., 1991).  

Elastases (LasA and LasB) are metalloproteases that degrade elastin which 

accounts for a significant part of human lung tissue and is an important component of 

blood vessels (Galloway, 1991), collagen and inactivate human immunoglobulin G, 

serum alpha-1, proteinase inhibitor and several complement components (Hamood et 

al., 1996). Both elastases, LasA and LasB, have been found in the sputum of CF 

patients (Storey et al., 1992, Jaffar-Bandjee et al., 1995). Protease IV is a serine 

protease implicated in the degradation of complement components as well as 

fibrinogen, plasmin and plasminogen (Engel et al., 1998a) and plays an important 

role during corneal infections (Engel et al., 1997; Engel et al., 1998b). 

The virulence factor exotoxin A is used by P. aeruginosa to ADP-ribosylate 

eukaryotic elongation factor 2 in the host cells, much as the diphtheria toxin does. 

Without elongation factor 2, eukaryotic cells cannot synthesize proteins and become 

necrotic (Plotkowski et al., 2002). 
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Other exoproteins, including exoenzyme S (Sokurenko et al., 2001), exoenzyme T 

(Nicas and Iglewski, 1984; Barbieri, 2000), exoenzyme Y and exotoxin U (Finck-

Barbancon et al., 1998; Hauser et al., 1998; Dacheux et al., 2000; Sato et al., 2003) 

require close contact with host cells and are secreted via the type III secretion 

pathway, using a complex secretion and translocation machinery to inject the effector 

proteins directly into the cytoplasm of target cells (Frank, 1997; Yahr et al., 1997).  

One of the extracellular compounds, hydrogen cyanide, has been found at relatively 

high concentrations in patients with freshly infected burns (Pessi and Haas, 2000). 

Cyanide is a potent inhibitor of cytochrome c oxidase, the terminal component of the 

aerobic respiratory chain in many organisms. This secondary metabolite is 

responsible for rapid paralytic killing of the nematode Caenorhabditis elegans, but its 

role during human infections is unclear (Gallagher and Manoil, 2001). 

The blue-green pigmented pyocanin is by far the most extensively studied phenazine 

produced by P. aeruginosa (Britigan et al., 1999; Muller, 2002). It induces apoptosis 

and inhibits generation of superoxide by neutrophils and inhibits proliferation of 

lymphocytes (Usher et al., 2002).  

Two other P. aeruginosa siderophores, pyoverdine and pyochelin, play a role in the 

uptake of iron and regulation of virulence factors and were shown to be therefore 

required for full expression of virulence of P. aeruginosa in animal models (Takase et 

al.,2000; Lamont et al., 2002). 

The ability of P. aeruginosa to attach to biotic surfaces and the subsequent 

differentiation of the microorganisms into biofilm can be considered a major virulence 

trait in a variety of infections (Tang et al., 1996; Watnick and Kolter, 2000). 

Exopolysaccharides and alginate play an essential role in the formation of biofilms. 

Alginate producing P. aeruginosa strains were proven to be more resistant to 

antibiotics and disinfectants (Govan and Deretic, 1996). Due to its major role in the 

control of extracellular virulence factor production, the quorum-sensing circuit of P. 

aeruginosa could be also considered a virulence determinant (Van Delden, 2001). 
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3. Biofilm formation by P. aeruginosa 
Bacterial biofilms consist of surface-attached organisms that live in highly 

differentiated communities inside an extracellular matrix composed of secreted 

polysaccharides, nucleic acids and proteins (Sutherland, 2001; Costerton et al., 

1995; Kolter and Greenberg, 2006). Bacteria growing in bioflms possess 

characteristics distinct from their free-floating or swimming (planktonic) counterparts. 

Bacterial biofilms are resistant to antimicrobial treatments (Costerton et al., 1999; 

O'Toole and Kolter, 1998; Sutherland, 2001) and to the immune defence of hosts 

(Costerton et al., 1995, 1999). Biofilm formation by P. aeruginosa occurs in discrete 

steps: surface attachment and multiplication; microcolony formation; and 

differentiation into mature, structured, antibiotic-resistant communities (Figure I-1).  

 

 

Figure I-1. Biofilm formation by P. aeruginosa. “One for all and all for one” (Kolter and Losick, 1998). 

 

The biofilms are not simply random clusters of cells. It has been suggested that there 

may be some specialization within biofilms, analogous to how caste development in 

social insects allows individuals to specialize in certain behaviors. In P. aeruginosa 

biofilms, several phenotypically different cell variants that exhibited different 

behaviors have been isolated (Boles et al., 2004), in particular, a wrinkly variant that 

showed faster biofilm development, and greater resistance to stress, and a mini 

variant that showed greater dispersal from the biofilm (West et al., 2007). 

About 85 % of P. aeruginosa strains isolated from the lungs of patients, especially 

with advanced stages of disease have mucoid colony morphology. In contrast, only 1 

% of strains isolated from other sites of infection are mucoid (Doggett et al., 1966; 

Fick et al., 1992; Govan and Deretic, 1996; Hoiby et al., 2001). This mucoid 
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phenotype is indicative of the overproduction of the extracellular polysaccharides 

(EPS) alginate, an O-acetylated linear polymer of D-mannuronate and L-guluronate 

residues (Evans and Linker, 1973). Infection with alginate-producing P. aeruginosa in 

CF patients has been associated with an overactive immune response and a poor 

clinical condition, suggesting that alginate production is a virulence factor (Hoiby, 

1974; Baltimore et al., 1989; Pedersen et al., 1992). Animal studies support the view 

that alginate production impedes host immune clearance, contributes to tissue 

damage and favours survival in the lung (Boucher et al., 1997; Yu et al., 1998; Song 

et al., 2003).  

 

The cell-to-cell communication is very important in the bacterial world. Bacteria make 

a continuous exchange by various molecules which help to coordinate their behavior. 

The biological fitness in this content will be dependent from other cells and their 

exudates altering the phenotype and as consequence the virulence of the pathogen. 

The change in behavior of bacteria to form the biofilm is triggered by many factors, 

including quorum-sensing. The following chapters will describe the mechanism of 

quorum sensing and its importance for P. aeruginosa. 
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4. Cell-to-cell communication by P. aeruginosa 
4.1. Role of quorum-sensing in P. aeruginosa 
During growth the bacteria secrete the specific signalling molecules, which 

accumulate in the surrounding environment as the population density increases until 

a critical threshold concentration is reached, which then triggers expression of certain 

sets of genes. This type of cell-to-cell communication was termed “quorum-sensing” 

in order to emphasize the fact that a sufficient number of bacteria, the bacterial 

“quorum”, is needed to induce or repress expression of target genes (Fuqua et al., 

1994; Van Delden and Iglewski, 1998; Williams et al., 2007). In the case of Gram-

negative bacteria the signalling molecules utilized by quorum-sensing systems are 

often acylated homoserine lactones (AHL) (Winans, 2002). One of the most 

extensively studied AHL-dependent cell-to-cell communication systems is P. 

aeruginosa (de Kievit and Iglewski, 2000; Greenberg, 2003).  

 

The multiple extracellular virulence factors including elastases, alkaline protease, 

exoenzyme S, neuraminidase, hemolysin, lectins, pyocyanin, rhamnolipids and 

hydrogen cyanide are produced and regulated in a cell density dependent manner 

under the control of quorum-sensing circuits composed of the LasRI and the RhlI 

quorum-sensing systems. The las system utilizes N-(3-oxododecanoyl)-L-

homoserinelactone (3-oxo-C12 HSL) whereas the rhl system functions by means of 

N-butanoylhomoserine lactone as signal molecules (Latifi et al., 1996; Pesci and 

Iglewski, 1997; Pesci et al., 1997). The two regulatory circuits act in tandem to control 

the expression of a number of P. aeruginosa virulence factors (Van Delden and 

Iglewski, 1998). All these extracellular virulence factors are crucial for the 

competence of P. aeruginosa to establish and maintain the infection (Passador et al., 

1993; Van Delden and Iglewski, 1998; Hasset et al., 1999; Pessi and Haas, 2000; 

Winzer et al., 2000). Mutants defective in quorum-sensing were substantially less 

pathogenic than their parental strains in the burned mouse model, the mouse agar 

bead model or in the neonatal mouse model of pneumonia (Tang et al., 1996; 

Rumbaugh et al., 1999; Wu et al., 2000). 
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4.2. PQS as an important signaling molecule for the cell-to-
cell communicaion  
An additional autoinducer has been demonstrated to be involved in quorum-sensing 

in P. aeruginosa. This signal is noteworthy because it is not of the homoserine 

lactone class and belongs to the family of 4-hydroxy-2-alkylquinolines (HAQs) (Deziel 

et al., 2004). Rather, it is 2-heptyl-3-hydroxy-4-quinolone (denoted PQS for 

Pseudomonas quinolone signal) released into the extracellular milieu, the synthesis 

and bioactivity of which has been reported to be mediated via the las and rhl systems 

respectively (Pesci et al., 1999). The direct precursor of PQS, 4-hydroxy-2-

heptylquinoline (HHQ), is first released from and then taken up again by the cells, 

before it is eventually converted into PQS by the action of PqsH, whose expression is 

controlled by the las system (Gallagher et al., 2002; Déziel et al., 2004). While the 

production of PQS seems to be enhanced by the las system – although it can be 

produced in the absence of lasR (Diggle et al., 2003) – exogenous PQS induces the 

expression of lasB encoding for the major virulence factor LasB elastase and acts by 

upregulating the rhl QS system. On the contrary, the loss of PQS biosynthesis has 

been shown to result in the abolition of primarily rhl-dependent QS phenotypes 

despite continued C4-homoserine lactone biosynthesis (Diggle et al., 2003) 

 

The global transcriptional profile of P. aeruginosa in response to PQS revealed a 

marked upregulation of genes belonging to the tightly interdependent functional 

groups of the iron acquisition and the oxidative stress response. The most of the 

differentially regulated genes, as well as the induction of rhlR, could be traced back to 

an iron-chelating effect of PQS (Bredenbruch et al., 2006). 

 

PQS is produced in the lungs of cystic fibrosis patients infected with P. aeruginosa 

(Collier et al., 2002) and is required for virulence in nematodes, plants, and mice 

(Cao et al., 2001; Gallagher et al., 2002). PQS also induces apoptosis and decreases 

viability in eukaryotic cells (Calfee et al., 2005).  

 

The PQS acts as a coinducer for a LysR-type transcriptional activator called PqsR 

(also referred to as MvfR) (Cao et al., 2001; Wade et al., 2005). In the presence of 

PQS, PqsR interacts with the promoter region of the pqsABCDE operon, which is part 
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of the PQS synthetic gene cluster (D'Argenio et al., 2002; Gallagher et al., 2002), 

thereby creating a positive feedback loop for PQS production (Wade et al., 2005).  

Along with PQS, P. aeruginosa produces at least 55 other quinolone compounds, 

many of which were identified because of their antibiotic activities (Lepine et al., 

2004). Studies of the synthesis of these compounds have shown that 4-quinolones 

are derived via the condensation of anthranilate and a fatty acid. By Farrow and 

Pesci (2007) was shown that anthranilate is a precursor for PQS and that the addition 

of an anthranilate analog to a P. aeruginosa culture would disrupt PQS production 

(Calfee et al., 2001). One of the anthranilate synthases happens to be encoded by 

genes within the PQS synthetic region. Adjacent to the pqsABCDE operon is the 

phnAB operon, which is positively controlled by PqsR and encodes the large and 

small subunits, respectively, of an anthranilate synthase. In addition, the three genes 

(kynA, kynB and kynU) of the anthranilate branch of the kynurenine (kyn) pathway, 

which converts tryptophan to anthranilate, are present in P. aeruginosa (Farrow and 

Pesci, 2007). 
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5. Colony morphology variations of P. aeruginosa 
Adaptation to novel environments usually entails morphological changes. 

Morphological variation is the most visible component of biodiversity, and 

morphological changes of organisms in a novel environment are the most visible 

indicator of organismal adaptation (Smith, 1998). 

P. aeruginosa isolates from acute and chronic airway infections of the human host 

display high phenotypic diversity (Zierdt and Schmidt, 1964; Tümmler, 2006). Once 

CF patients become colonized by P. aeruginosa, there is a subsequent gradual 

deterioration in lung function, which determines the course and prognosis in most CF 

patients. Despite the fact that chronically infected CF patients harbour only one or 

few P. aeruginosa genotypes (Breitenstein et al., 1997), there is a significant 

phenotypic variation in P. aeruginosa isolates from the CF lung, known as 

dissociative behaviour (Zierdt and Schmidt, 1964). Spatial compartmentalization in 

the supply of oxygen and nutrients and in the exposure to host inflammatory 

responses is associated with the diversification of P. aeruginosa into morphotypes 

and the establishment of niche specialists (Häussler, 2004; Tümmler, 2006; Oliver et 

al., 2000 Palmer et al., 2005; Worlitzsch et al., 2002; Yoon  et al., 2002; Alvarez-

Ortega and Harwood, 2007). 

The appearance of multiple morphotypes may be facilitated by “hypermutable” strains 

of P. aeruginosa, which have been isolated at high frequency from CF patients 

(Oliver et al., 2000).  

The morphological diversity of P. aeruginosa recovered from the respiratory tract 

material of CF patients is well known (Zierdt and Schmidt, 1964) and has been 

suggested to be almost pathognomonic for the chronically infected CF lung (Govan 

and Deretic, 1996). Those phenotypic variants that can face the challenges of the 

heterogeneous and changing habitat imposed by antibiotic therapies and the host 

immune system dominate in clonal bacterial populations (Oliver et al., 2000).  

 

In the context of chronic P. aeruginosa CF lung infection, attention has long focused 

on the appearance of the most common alginate-overproducing mucoid P. 

aeruginosa phenotype (Govan and Deretic, 1996; Mathee et al., 1999; Merighi et al., 

2007; Worlitzsch et al., 2002; Yoon et al., 2002). Other phenotypes, however, 

including small colony variants, (SCVs) (Häussler, 2004; Häussler et al., 1999, 2003; 
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Drenkard et al., 2002), colourless variants (De Vos et al., 2001) or colonies with 

visible autolysis (D'Argenio et al., 2002) or autoaggregative behaviour (Häussler et 

al., 2003; D'Argenio et al., 2002 ; von Götz et al., 2004) were described (Figure I-2). 

 

 
 
Figure I-2. Colony morphology variations of P.aeruginosa: mucoid colony morphology, A; SCVs, B; 

colony with visible autolysis, C; autoagregative colony morphology, D. 

 

5.1. Fitness of colony morphology variants of P. 

aeruginosa 
Growth and morphology are easy-to-follow phenotypic traits of organismal adaptation 

that may or may not be genetically fixed by mutation and selection. The biological 

fitness of biological organisms is not necessarily equal, but depends on the 

environment in which the organisms live (Smith, 1998; Seifert and Dirita, 2006).  

Mucoid P. aeruginosa variants preferentially grow in biofilms under microaerophilic or 

anaerobic conditions (Worlitzsch et al., 2002; Yoon et al., 2002) and as shown above 

A 

C 

B

D
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the expression of polysaccharides confers increased resistance to the host immune 

response and results in chronic pulmonary infection and poor prognosis for the 

patient. Apart from the mucoid P. aeruginosa phenotype, it has been recognized for 

many years that dwarf colonies can be isolated from the chronically infected 

respiratory tract of CF patients (Zierdt and Schmidt, 1964). The recovery of dwarf 

small-colony variants (SCVs) of P. aeruginosa could be correlated with parameters 

revealing poor lung function and the use of inhaled antibiotics (Häussler et al., 1999). 

Among the heterogeneous group of clinical SCV isolates from different patients, a 

subgroup was identified exhibiting hyperpiliation and increased twitching motility as 

well as increased fitness under stationary growth conditions, better biofilm-forming 

capabilities, and a high adherence to a pneumocytic cell line in comparison with the 

clonal fast-growing wild types (Häussler et al., 2003), better biofilm-forming 

capabilities and high adherence to airway epithelial cells (Dacheux et al., 1999; 
Häussler et al., 1999).  

Even autolysis, which might seem unambiguously detrimental to an unicellular 

organism, is an adaptive behaviour of P. aeruginosa mediated by overproduction of 

the quinolone PQS being an extracellular signal increasing the stringent response 

and the formation of protective biofilm by released DNA after the cells lysis (Häussler, 

2004; D'Argenio et al., 2002; Yang et al., 2007; Allesen-Holm et al., 2006). Moreover, 

c-di-GMP levels regulate the differentiation of P. aeruginosa populations into 

macroscopic cell aggregates and planctonic cells (Klebensberger et al., 2007).  

 

5.2. Autolysis and autoagregation colony morphology of P. 

aeruginosa 
The plaque-like clearings and the metallic, iridescent sheen associated with the lysed 

areas are both properties noted in early descriptions for P. aeruginosa isolates (Berk, 

1963, 1965; Hadley, 1924; Holloway, 1969). In many cases, visible autolysis of P. 

aeruginosa is induced by the bacteriophage lysogenic process. The genome of P. 

aeruginosa strain PAO1 contains a filamentous bacteriophage (Stover et al., 2000) 

whose genes are highly upregulated during biofilm growth (Whiteley et al., 2001). In 

addition, inserted between the two anthranilate synthase subunit genes, trpE and 

trpG, is a gene cluster encoding bacteriocins believed to be evolved phage tails 

(Nakayama et al., 2000) and whose induction shares elements with the SOS 
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response (Matsui et al., 1993). Mutation in gene vfr was also associated with visible 

autolysis. It could be an analogous to the situation in E. coli where mutation of crp 

shifts the balance from lysogeny to lysis (Hong et al., 1971), given that vfr and crp are 

homologs (Beatson et al., 2002, West et al., 1994), and suggests an alternate 

pathway for autolysis in P. aeruginosa.  

One gene with visible autolysis was described after the screening of PAO1 mutant’s 

library, where out of 6,000 transposon insertion mutants the pqsL mutant formed 

colonies that lysed at their centers (D'Argenio et al., 2002). The phenotype was 

linked with phenazine and quinolone pathways. Authors demonstrated the positive 

correlation between autolysis and increased production of PQS by pqsL mutant. The 

PQS overproduction by autolysed mutants can be activated by starvation either 

physiologically (Van Delden et al., 2001) or by mutation (Van Delden et al., 1998). 

This situation may underlie the selection pressure for compensatory mutations in 

certain quorum-sensing mutants (D'Argenio et al., 2002).  

 

A key feature of mature P. aeruginosa biofilms is the presence of an extracellular 

matrix. Matrix production occurs at a late stage in biofilm development, when cells 

display a high degree of autoaggregation (D’Argenio et al., 2002; Sauer et al., 2002). 

The ability to autoaggregate leads to several macroscopic phenotypes; among them 

are the production of pellicles at the air-liquid interface of standing liquid cultures and 

the production of highly structured colonies on agar plates. Different strains of P. 

aeruginosa display variability in the abilities to form pellicles under different culture 

conditions and to show different colony morphologies. This phenotypic diversity most 

likely results from genetic differences among isolates (Deziel et al., 2001). 

 

D’Argenio et al. (2002) showed that the autoaggregative mutant phenotype of P. 

aeruginosa strain PAO1 can result from mutations in wspF (aCheB-like 

methylesterase; PA3703), PA2933 (an efflux proteinof the major facilitator 

superfamily), or PA0171 and PA1121 (two genes of unknown function). Similar 

mutations in Pseudomonas fluorescens and Salmonella enterica serovar 

Typhimurium resulted in the identification of a cellulose-like polymer component of 

the matrix in those species (Romling et al., 2000; Spiers et al., 2002; Zogaj et al., 

2001). A mutation of one of the EPS loci, the psl locus (PA2231 to PA2245), was 

contributed with formation of the autoaggregative colonies of P. aeruginosa (Kirisits 
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et al., 2005). The polysaccharide synthesis locus (psl) was predicted to encode an 

exopolysaccharide, which is critical for biofilm formation. The psl gene products 

synthesize an EPS contained mainly of galactose and mannose, as well as glucose 

and trace amount of rhamnose, xylose and N-Acetylglucosamine (GlcNAc) (Ma et al., 

2007).  

Recently, the formation of cell aggregates in P. aeruginosa and other bacteria has 

been shown to involve cyclic-di-guanosine monophosphate (c-di-GMP) signalling 

(Romling et al., 2005; Jenal and Malone, 2006). This intracellular second messenger 

molecule was originally found in Gluconacetobacter xylinus where it acts as an 

allosteric regulator of cellulose synthase (Ross et al., 1991). C-di-GMP biosynthesis 

from 2 GTP is catalysed by diguanylate cyclases containing a characteristic GGDEF-

domain as the active center (Chan et al., 2004; Ryjenkov et al., 2005). The hydrolysis 

of c-di-GMP is catalysed by specific phosphodiesterases containing either an EAL or 

a HD-GYP domain (Christen et al., 2005; Ryan et al., 2006). P. aeruginosa harbours 

17 genes with a GGDEF-domain, 6 genes with an EAL domain, and 14 genes 

containing both domains. A function in cell aggregation or biofilm formation has been 

demonstrated for several of them (D’Argenio et al., 2002; Drenkard and Ausubel, 

2002; Hickman et al., 2005; Hoffman et al., 2005).  

By Klebensberger et al. (2007) was demonstrated that during growth of P. 

aeruginosa strain PAO1 with the toxic detergent SDS, a part of the population 

actively formed macroscopic cell aggregates. The SDS-induced aggregation involved 

c-di-GMP signalling with the psl operon as a possible target. Cell aggregation could 

in this case serve as a pre-adaptive strategy ensuring survival and growth of P. 

aeruginosa populations in environments with multiple toxic chemicals (Klebensberger 

et al., 2007). 

 

Recently, the PelD protein of P. aeruginosa was shown as a novel c-di-GMP receptor 

that mediates c-di-GMP regulation of PEL polysaccharide biosynthesis (Lee et al., 

2007). Analysis of PelD orthologues identified a number of conserved residues that 

are required for c-di-GMP binding as well as synthesis of the PEL polysaccharide. 

The combination of a c-di-GMP binding site with a variety of output signalling motifs 

within one protein domain provides an explanation for the specificity for different 

cellular responses to this regulatory dinucleotide. 
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6. Studying host-pathogen interaction of P. 

aeruginosa 
In vitro assays contribute greatly to our understanding of bacterial pathogenesis, but 

they frequently cannot replicate the complex environment encountered by pathogens 

during infection. The information gained from such studies is therefore limited. In vivo 

models, on the other hand, can be difficult to use, and this has to some extent 

diminished the incentive to perform studies in living animals.  

6.1. Pathogenicity of P. aeruginosa in murine infection 
model 
Understanding the complex interplay between pathogen and host will help us 

determine the biological foundation of pathogenicity. P. aeruginosa virulence has 

been tested in several pathogenicity models such as  Arabidopsis leaves (Rahme et 

al., 1995), wax moth caterpillar Galleria mellonella (Jander et al., 2000), mouse full-

skin-thickness burn model (Rahme et al., 1995), and nematode Caenorhabditis 

elegans (Mahajan-Miklos et al., 1999). Since the establishment of the first animal 

model of chronic P. aeruginosa lung infection in rats by Cash et al. in 1979, several 

animal models of acute and chronic lung infection have been described including, 

guinea pig (Pennington et al., 1981), cats (Thomassen et al., 1984), inbred mice 

(Morissette et al., 1995; Stevenson et al., 1995), outbreed mice (Starke et al., 1987) 

and monkeys (Cheung et al., 1992; Cheung et al., 1993). Many of these models 

required that P. aeruginosa was embedded in an artificial biofilm (e.g., agar, agarose, 

or seaweed alginate) to prevent mechanical clearing (Johansen, 1993). Furthermore, 

these models led to chronic infections of the conducting airways in mice, due to the 

size of the beads mechanically blocking the bronchi (Wu et al., 2000).  

In the reported animal experiments the histopathologic and serologic changes were 

similar to what observed in the chronic lungs of CF patients, i.e. Inflammation 

reactions with many PMNs surrounding a bead containing bacteria and small 

microcolonies formed at the periphery of the bead, and strong antibodies against P. 

aeruginosa could be detected in the serum (Cash et al., 1979; Coleman et al., 2003; 

Hoffmann et al., 2005).  
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Since the first CF mouse model was generated by Snouwaert et al. (1992) and 

Clarke et al. (1992), several groups have tried to use different variants of transgenic 

CF mice for the study of P. aeruginosa lung infection (Davidson et al., 1995; Coleman 

et al., 2003).  

6.2. Identification of novel virulence associated genes  
Several recently developed techniques permit in vivo examination of many genes 

simultaneously. Most of these methods fall into two broad classes: in vivo expression 

technology (IVIT) and signature-tagged mutagenesis (STM) (Hensel et al., 1995). In 

vivo expression technology is a promoter-trap strategy designed to identify genes 

whose expression is induced in a specific environment, typically that encountered in 

a host (Mahan et al., 1993; Mahan et al., 1995).  

Signature-tagged mutagenesis uses comparative hybridization to isolate mutants 

unable to survive specified environmental conditions and has been used to identify 

genes critical for survival in the host. It is a negative selection strategy in which an 

animal host is infected with a pool of sequence-tagged insertion mutants. Mutations 

represented in the initial inoculum, but not recovered from the host are required for 

the infection (Hensel et al., 1995). STM is also used successfully in identification of 

factors involved in virulence/colonization in many pathogenic bacteria, for example 

Staphylococcus aureus (Coulter et al., 1998; Mei et al., 1997; Schwan et al., 1998), 

Salmonella typhimurium (Shea et al., 1996), Vibrio cholerae (Chiang and Mekalanos, 

1998), and Mycobacterium tuberculosis (Camacho et al., 1999).  STM screenings of 

a mutant library in more than one infection model have been performed (Coulter et 

al., 1998; Tsolis et al., 1999; Bispham et al., 2001; Lau et al., 2001). Such screenings 

provide valuable knowledge of whether the same virulence factors are involved in 

different types of infections.  
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7. The phenotype of P. aeruginosa TBCF10839 
P. aeruginosa TBCF10839 isolate is a highly virulent strain of P. aeruginosa, which 

belongs to a major clone in the P. aeruginosa population (Wiehlmann et al., 2007). 

TBCF10839 was isolated in 1983 from the sputum of a CF patient who had suffered 

from an acute and chronic infection with P. aeruginosa. The patient was severely ill 

and this P. aeruginosa strain had been eradicated from his airways only by high-dose 

antipseudomonal chemotherapy (Tümmler, 1987).  

TBCF10839 was the most virulent isolate from clone TB isolates that were frequently 

identified in CF patients and burn patients at the Medizinische Hochschule Hannover 

in the 1980s (Tümmler et al., 1991; Kiewitz and Tümmler, 2000).  

Phagocytosis assays with freshly isolated polymorphonuclear neutrophils (PMNs) 

uncovered the putative reason for the virulence of strain TBCF10839. Whereas the 

genetic reference strain PAO1 was efficiently phagocytosed and lysed under 

standard conditions, the CFU of TBCF10839 initially declined within the first 30 

minutes but continuously increased thereafter indicating cell growth (Miethke, 1985). 

Figure I-3 shows the survival of TBCF10839 in PMNs after 30 and 60 min incubation 

by electron microscopic analyzes. Proliferation of TB inside the phagolysosomes 

starts after 60 min incubation with PMNs. 

 

 
Figure I-3. Electron micrograph of P. aeruginosa PAO1 and TBCF10839 incubated with PMNs 

isolated from human peripheral blood. Bacteria were added at a multiplicity of infection (MOI) 20 and 

incubated at 37 °C for 30 and 60 min. 
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The enhanced resistance of P. aeruginosa TBCF10839 towards PMNs is not limited 

to those of CF patients. PMNs from 40 tested healthy donors consistently showed all 

the same phenotype of bacterial growth in the phagocytosis assay under standard 

conditions of a tenfold excess of bacteria over PMNs. This shows that the 

opportunistic pathogen P. aeruginosa can convert into a highly virulent 

microorganism (Wiehlmann et al., 2002). 

Being a strong producer of virulence effector proteins and of siderophores, 

quinolones and phenazines, it is pathogenic for Drosophila melanogaster and 

Caenorhabditis elegans and causes substantial airway pathology in mice and rats 

after intratracheal instillation. TBCF10839 is more virulent than the genetic reference 

strain PAO1 in infection models and can colonize naive murine airways (Wiehlmann 

et al., 2007).  

It is part of a contagious cluster that had caused numerous outbreaks at ICUs and 

the ward for burn wounds at the authors’ institution and had spread among patients 

of the local CF clinic by nosocomial acquisition (Tümmler et al., 1991). Transcriptome 

(Salunkhe et al., 2005) and proteome analyses (Arevalo-Ferro et al., 2004) indicated 

that TBCF10839 orchestrates many more metabolic and signalling pathways upon 

exposure to inanimate and animate stressors than the sequenced reference strain 

PAO1 (Stover et al., 2000). 
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8. Objectives of the present work 
Airway infections with P. aeruginosa are major determinants of morbidity and 

mortality for ventilated patients at ICU (Diaz et al., 2007) and individuals with CF 

(Lyczak et al., 2002; Bush et al., 2006), but the time scales of adaptation are 

different. P. aeruginosa rapidly diversifies within a few days in the airways of 

intubated patients in traits of virulence and antimicrobial resistance. During the 

infection, P. aeruginosa modifies its cell envelope to produce a different spectrum of 

exopolysaccharides and exo-products and initiates mechanisms to evade the 

immune response of the host. All the virulence factors presumably make unique and 

overlapping contribution to bacterial fitness and adaptation during an infection. 

 

In the CF lung, the colonizing P. aeruginosa clone will diversify in morphotype and 

lifestyle concurrently with airway remodelling and dedifferentiation and sequentially 

accumulates mutations over a period of months to decades (Tummler, 2006). High 

frequency of phenotype switching is often the result of adaptive genetic diversification 

resulting in increased chances of bacterial survival in their niche.  

Based on our knowledge that P. aeruginosa modifies its own morphotype during the 

lung infection, the objectives for this work were: first, to identify genes that are 

responsible for divergent morphotypes of P. aeruginosa and second, to answer how 

the changes in colony morphology affect fitness and virulence of the pathogen in 

vivo.  

 

An existing signature tagged transposon mutant library (Wiehlmann et al., 2002) of a 

clinical P. aeruginosa TBCF10839 isolate was screened under different culture and 

temperature conditions to reveal the mutants with unusual morphotypes distinct from 

the wild type. The transposon inactivated genes were identified either by Y-linker 

methodology or plasmid rescue. As a model for the differentiation and evolution in the 

CF lung, pools of the isogenic transposon colony morphology variants were tested in 

acute murine airway infections. Mutants with higher or lower fitness were 

complemented for verification of their phenotypic characteristics.  

Finally, the phenotype of the most striking isogenic colony morphology variants was 

described after testing with the various bioassays. 
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II Materials and methods 
1. Materials 
1.1. Equipment and consumables 

1.1.1. Equipment 
 
Digital Camera 7.1 Megapixel Olympus 

Centrifuge 5415D / 5417R Eppendorf 

Sorvall - Centrifuge RC5B Plus DuPont 

Rotors: GS-3 (SLA3000)  

              GSA (SLA1500)  

              SS34  

Tabletop centrifuge Hettich universal Hettich 

Thermomixer Comfort Eppendorf 

Ultracentrifuge (Rotor: SW 40 Ti) Beckman 

Glass plates (200 x 250 mm & 1.5 mm spacer) Amersham Biosciences 

DALT vertical electrophoresis system Amersham Biosciences 

Bio-Rad GenePulser BioRad 

Hybridization oven 400 HY Bachofer 

Incubator Heraeus 

Minifold I Vacuum blotter Schleicher and Schuell 

pH-Meter 761 Calimatic Knich 

Spectrophotometer U3000 Hitachi 

Thermocycler Landgraf 

Thermomixer Eppendorf 

UV- Transilluminator Bachofer 

UV Stratalinker 1800 Stratagene 

Vacuum concentrator Bachofer 

Voltage supply power pack 300 Bio-Rad 

ImageScanner™ Amersham Biosciences 

Labofuge I / Megafuge Heraeus 
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Sonifier 250 Branson 

Water bath Model G76 New Brunswick Scientific 

X-ray processor XP 505 M3 

 

1.1.2. Consumables 

 
Electroporation cuvettes 1 mm, 2 mm BioRad 

Eppendorf tubes (0.5 mL, 1.5 mL, 2 mL) Sarstedt 

Filter Celluloseester HA 0.45 μM pore size Millipore 

Filter paper GB003 Schleicher and Schuell 

Hybond N+ Nylon Membrane Amersham Biosciences 

Glass Pasteur pipettes Sarstedt 

Petri dishes 9 cm Ø Sarstedt 

Pipette tips (1 mL, 200 μl, 10 μl) Sarstedt 

Plastic tubes (50 mL, 15 mL) Greiner 

Polaroid film 667 Polaroid 

TLC plate Merck 

X-ray film X-Omat AR Kodak, AGFA 

 

1.2. Chemicals and enzymes 
Agar and agarose  Gibco BRL 

 

Anti-digoxigenin AP  

Blocking Reagent  

Klenow Polymerase 

DNA DIG Labeling and Detection Kit 

 

Roche 

 

CDP Star 

 

Tropix 

Ethidium bromide 

Gentamicin 

Ampicillin 

Tetracycline 

Carbenicilin  

Chelex-100 (iminodiacetic acid) 

Sigma 
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Congo red 

2,6 - dichlorophenol indophenol (DCPIP) 

Phenazine methosulfate 

Ethylamine 

KCN 

FAD  

L-malate 

Phenol TE buffered (pH 7.5 and pH 5.5)  

aqueous (pH 8)  

Fluka 

 

Formaldehyde 35 % 

Hydrogen peroxide (30 %) 

 

 

Merck 

Oligodeoxynucleotides, Primers MWG-Biotech 

DNA-ladder standards 

Restriction enzymes + buffer system 

T4-DNA-Ligase 

Antarctic phosphatase + buffer system 

 

New England Biolabs 

Qiaprep Spin kit 

Mini Prep plasmid kit 

QIAquick Gel Extraction Kit 

RNeasy Kit 

RNase A 

 

Qiagen 

Acrylamide solution (Rotiphorese-Gel 40) 

Phenol (Rotiphenol) 

Chelex-100 (iminodiacetic acid) 

HEPES 

Roth 

Gentamicin Serva 

Bromophenol blue, MOPS buffer Invitrogen 

Nitrocellulose membrane Schleicher & Schuell 

FailSafeTM PCR System + buffer system 

Fast-link ligase kit 

Epicentre® Biotechnologies 

GoldStar polymerase + buffer system Eurogentec 

InviTaq polymerase + buffer system InViTek 

Revert aidTM H Minus cDNA Synthesis Kit Fermentas 
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1.3. Media and solutions 

1.3.1. Media 
LB Medium:   Peptone   15 g/L 

Yeast Extract   5 g/L 

NaCl    10g/L (0.17 M) 

 
LB-Gm:    LB medium with 25 μg/mL Gentamicin 
LB-Tet:    LB medium with 50 μg/mL or 100 g/mL Tetracycline 
LB-Ap:     LB medium with 100 or 200 μg/mL Ampicillin 
LB-Cr:     LB medium with 200 μg/mL Carbenicillin 
LB- Agar: LB medium was solidified by adding 15 g/L agar and     

autoclaved.  
 
M9- Medium (10X):  Na2HPO4   68.14 g/L (0.48 M) 

KH2PO4    30 g/L (0.22  M) 

NaCl    5 g/L (85  mM) 

NH4Cl    10 g/L (0.18  M) 

 

M9- Agar: The M9 medium (10x) and water agar (15 g/L water) were autoclaved 

separately. Different carbon sources: casein (0.75 % w/v), ethanol (25 

mM, 86 mM), glucose (25 mM) were dissolved in a 50 mL of M9 (10x) 

medium and subsequently added to the 450 mL of melted water agar. 

 
SOB:    Bactotryptone   20 g/L 

Yeast Extract   5 g/L 

NaCl    0.58 g/L (10 mM) 

KCl    0.185 g/L (2.5 mM) 

pH    7.0 

after autoclaving, the following filter sterilized stock solutions were 

added: 

MgCl2    1 g/L (10 mM) 

MgSO4     1.2 g/L (10 mM)  

 
SOC:    SOB + Glucose, 3.6 g/L (20 mM) 
 
ABC minimal medium: 

A:   (NH4)2SO4   20 g/L (0.15 M) 

    Na2HPO4 ·2H2O  60 g/L (0.33 M) 
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    KH2PO4   30 g/L (0.22 M) 

    NaCl    29 g/L (0.5 M) 

B:   MgCl2 ·6H2O   0.4 g/L (2 mM) 

   CaCl2 ·2H2O   0.014 g/L (0.1  mM) 

   FeCl3 ·6H2O   0.008 g/L (0.003  mM) 

C:   Sodium citrate    10 mM 

pH    5.5 

Solution B was filter-sterilized, while A and C were sterilized by 

autoclaving. Subsequently all components were mixed together. 

Columbia blood agar  
(Becton Dickinson): This complex agar, which is used frequently in microbiology, was 

exploited for the analysis of hemolytic activity of the investigated P. 

aeruginosa strains. 
 
King’s A medium:  Peptone   20 g/L 

KOH    20 g/L (0.3 M) 

H2SO4    5.5 mL 

MgCl2 x 6H2O   3.3 g/L (16mM) 

Glycerol   1% (w/V) 

pH     7.2 

 
GYT medium:   Glycerol   10% (v/v) 

Yeast extract   0.125% (v/v) 

Tryptone   0.25% (v/v) 

Storage condition:   4 °C 

 

1.3.2. Solutions 
 
TBE-Buffer (10X):   Tris    108 g/L (0.9 M)  

Boric Acid   55 g/L (0.9 M)  

EDTA    7.7 g/L (0.02 M) 

pH    8.3-8.5 

 
Loading Buffer (6X):  Ficoll 400   15 % (v/v) 

Bromophenol Blue  0.25 % (w/v) 

Xylene cyanol   0.25 % (w/v) 

EDTA    146 g/L (0.5 M)  

pH    8.0 
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PBS (10X):    NaCl    80 g/L (1.37 M) 

KCl    2 g/L (27 mM) 

Na2HPO4x7H2O  11.5 g/L (4.3 mM) 

KH2PO4   2 g/L (1.4 mM) 

pH    7.3 

 
TB Buffer:    PIPES    3 g/L (10 mM) 

CaCl2    1.6 g/L (15 mM) 

KCl    18.6 g/L (250 mM) 

Sterilized by filtration and stored at 4 oC. 

 
TE Buffer:    Tris-HCl   1.2 g/L (10 mM) 

EDTA    0.38 g/L (1 mM)  

pH    8.0  

 
Plasmid DNA isolation 
Solution I:    Tris-Cl    6 g/L (50 mM) 

EDTA     3.8 g/L (10 mM) 

DNase free RNase A  100 μg/mL 

pH    8.0 

 
Solution II:    NaOH    16 g/L (0.4 M)  

SDS    1 % (w/v) 

 
Solution III:   Potassium acetate  294 g/L (3 M)  

Acetic acid   115 mL/L (2 M)   

 
Lysis Buffer:   Tris-acetate   4.84 g/L (40 mM)  

Sodium acetate   2.72 g/L (20 mM)  

EDTA    0.38 g/L (1 mM)   

SDS    1 % (w/v) 

pH    7.8 

 
Blot buffer:    NaOH    16 g/L (0.4 M)   
 
Blot wash buffer:   NaH2PO4 x 2H2O  7.8 g/L (50 mM) 

pH     6.5  

 
Pre-hybridization buffer: SDS    7 % (w/v) 

NaH2PO4 x·2H2O  78 g/L (0.5 M)   
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EDTA    0.38 g/L (1 mM) 

pH    7.2 

Blocking reagent   0.5 % (w/v) 

Blocking reagent was dissolved by heating the solution 

to 50-70 oC. 

 
Hybridization 
wash buffer:   NaH2PO4 x 2H2O  6.3 g/L (40 mM)  

SDS    1 % (w/v) 

EDTA    0.38 g/L (1 mM) 

pH    7.2 

 
Buffer I:    Tris-HCl   12 g/L (100 mM) 

NaCl    8.7 g/L (150 mM) 

pH    7.5 

 
Buffer II:    Buffer I + 0.5 % (w/v) Blocking reagent  

 

 
Antibody solution: 1:5000 dilution of Anti- Digoxigenin AP Fab- alkaline phosphatase 

conjugate in buffer II. 
 
 
Buffer III:    Tris-HCl   12 g/L (100 mM) 

NaCl    5.8 g/L (100 mM) 

MgCl2    4.8 g/L (50 mM) 

pH    9.5 

 
Wash solution:  NaOH    8 g/L (0.2 M)  

SDS    0.1 % (w/v) 

 
Stop solution:    Tris-Cl    24 g/L (200 mM) 

EDTA    5.84 g/L (20 mM) 

NaN3    1.3 (20mM) 

aurin tricarboxylate  20mM 
pH    8.0  
Storage condition: -21 °C in the dark 

 
STET-solution:  Sucrose   8 % 

Triton-X100   5 % 

EDTA    14.6 g/L (50 mM)  
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Tris-Cl    6 g/L (50 mM) 

pH    7.0  

The solution was prepared in DEPES treated water and supplemented 

with 2 μL of Super RNasin (20 U/μL) 
 
MOPS buffer (10X):  MOPS    41.8 g/L (200 mM)   

Sodium acetate   8.2 g/L (100 mM) 

EDTA    2.9 g/L (10 mM) 

pH     7.0 

 
RNA loading buffer:  Glycerol    50 % (v/v) 

EDTA    0.29 g/L (1 mM)       

Bromophenol blue  0.25 % (w/v) 

pH    6.0 

 
Buffer A 
(enzymatic assay):  Tris-CI    12g/L (0.1 M)  

MgSO4     1.2 g/L (10 mM)  

Glycerol   10% (w/v) 

2-mercaptoethanol  0.4mL (5 mM)  

pH    7.4 
 
Buffer B 
(enzymatic assay):  HEPES    11.9 g/L (50mM) 

potassium acetate  0.99 g/L (10 mM)  

CaCl2    1.1 g/L (10 mM) 

MgCl2    0.42 g/L (5 mM) 

pH    7.5 
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1.4. Biological materials 
 
Table II-1. Strains, plasmids, oligonucleotide primers and culture conditions. 

 
Strains 
 

Genotype and/or source 
 

Reference 

E. coli DH5α F-, φ80m801acZΔM15, Δ(lacYZA-argF), U169, recA1, endA1, 
hsdR17, (rk-; mk+), phoA, supE44, λ-, thi-1, gyrA96, relA1 

Ausubel et al., 
1987 

 
E. coli XL10 - Gold 

 
Δ(mcrA)183, Δ(mcrCB-hsdSMR-mrr)173, endA1, supE44,  thi-1, 
recA1, gyrA96, relA1, lacHte, [F´, proAB, lacIqZΔM15, Tn10 (Tetr) 
Amy Camr] 

 
Stratagene 

 
P. aeruginosa 
TBCF10839 

 
CF airways, serotype 4; pyocin type: 1h, phage lysotype: F8, M4, 
PS2, PS24, PS31, 352, 46b/2, 1214, Col21, F7, F10, PS21, 
PS73, no plasmids. Hexadecimal SNP genotype: 3C52. 

 
Wiehlmann et 
al., 2007 
Tümmler et 
al., 1991 

 
Plasmids 

 
Genotype and/or source 

 

 
pME6010  

 
Shuttle vector for Gram-negative bacteria; Tcr 

 
Heeb et al., 
1988 

pUCP20 Escherichia-Pseudomonas shuttle vector; Apr Garrity-Ryan 
et al., 2000 

pME6010::TBpilY1 pME6010 containing the BglI/EcoRI PCR product bearing the 
pilY1 gene  

This study 

pME6010::TBpilW pME6010 carrying the KpnI/EcoRI PCR product bearing the pilW 
gene  

This study 

pUCP20::TBmvfR pUCP20 carrying the HindIII/SacI PCR product bearing the mvfR 
gene  

This study 

pUCP20::TBpqsD pUCP20 carrying the HindIII/SacI PCR product bearing 
pqsABCD operon 

This study 

pUCP20::TBedd pUCP20 carrying the HindIII/SacI PCR product bearing the edd 
gene  

This study 

pUCP20::TBmqoB pUCP20 carrying the HindIII/SacI PCR product bearing the mqoB 
gene 

This study 

pUCP20::TBPA4131 pUCP20 carrying the HindIII/SacI PCR product bearing the 
PA4131 gene 

This study 

pUCP20::TBPA0785 pUCP20 carrying the HindIII/SacI PCR product bearing the 
PA0785-PA0787 genes 

This study 

pUCP20::TBPA4916 pUCP20 carrying the HindIII/SacI PCR product bearing the 
PAPA4916-PA4917 genes 

This study 
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Primers Sequence Reference 
5’pilW_KpnI 
3’pilW_EcoRI 
 

GCCGGTACCCGACTTCTTCAAGGCCAAGG 
GCGAATTCCGCGCTGTTGTGCAGGGAAGT 

This study 

5’pilY1_Bgl 
3’pilY1_EcoRI 
 

CGGAGATCTGGAACAACCTGCCCATTCCC 
GCCGAATTCGAAGGTCTGGGGATCTTCGG 

This study 

5’mvfR_HindIII 
3’mvfR_SacI 
 

GGATAAGCTTACACCTGAAGGCGCAACAGC 
CTAGAGCTCCGGAAGGTTTCGACTGCCTG 

This study 

5’pqsD_HindIII 
3’pqsD_SacI 
 

GGATAAGCTTGAAGCCTGCAAATGGCAGGC 
CTAGAGCTCGACGCCAGGACCTGTACGTT 

This study 

5’edd_HindIII 
3’edd_SacI 
 

GGATAAGCTTGCGTTCGAGACGATCCGATG 
CTAGAGCTCCCGGCGCTTCTCTTGTTGTCG 

This study 

5’mqoB_HindIII 
3’mqoB_SacI 
 

GGATAAGCTTCACTGAGCAACAGGCGATGCAGC 
CTAGAGCTCCCTGTTTCGGTACCCTGGTGG 

This study 

5’PA4131_HindIII 
3’PA4131_SacI 
 

GGATAAGCTTCAGGTAAAGGTACAGGCCGATG 
CTAGAGCTCTCTCGTAGCGCTTCATCTTG 

This study 

5’PA0785_HindIII 
3’PA0785_SacI 
 

GGATAAGCTTCAGTGGTGGAGACCGTCAGGTTG 
CTAGAGCTCCTGCCAGTGCAGGTACTCAAG 

 

5’PA4916_HindIII 
3’PA4916_SacI 
 

GCCTAAGCTTGTTCCGCCAGATCGTGGTAG 
GCAGAGCTCGTGAAGACCTCCACCTCCAG 

This study 

3’PA4640qRT-PCR 
5’PA4640qRT-PCR 
 

CGGTACCGGGTTGATGAAGG  
GTCGACATGCTGCTGGTAGG 

This study 

3’PA3452qRT-PCR 
5’-PA3452qRT-PCR 
 

GTTCTCGTTGATCGCCACCG  
GCTTTTGTGCGTCAGCGTGC 

This study 

3’-PA4916qRT-PCR 
5’-PA4916qRT-PCR 

ACGAAGTCGAGGTCGTCGTC 
CAGCGGAAGTATTGGCCAGC 

This study 

5’P1 
5’P2 
 

GTACCCCACTAGTCCCAAGC 
GTACCTCCACTCACCCAAGC 

This study 

5’ Y-linker 
 
5’ Tn5MOD 
 

CTGCTCGAGCTCAAGCTTCG 
 
TGCGTTCGGTCAAGGTTCTGG 

Kwon and 
Ricke, 2000 
This study 

5’Y1 
 
5’Y2 

TTTCTGCTCGAGCTCAAGCTTCGAACGATGTACGGGGACAC
ATG 
TGTCCCCGTACATCGTTCGAACTACTCGTACCATCCACAT 

Kwon and 
Ricke, 2000 
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2. Methods 
2.1. Microbiological methods 

2.1.1. Bacterial growth conditions 

The cultures of P. aeruginosa or E. coli were grown in LB medium at 37 oC (230 rpm) 

overnight (12 – 16 hrs) unless noted otherwise. If large volumes were required, 1-2 

mL of bacteria were inoculated in Erlenmeyer flasks containing 400 mL LB medium 

and incubated at 37 oC (250 rpm) for 12-16 h.   

 

E. coli strains transfected with pME6010 (DH5α) or pUCP20 constructs (XL10-Gold) 

were growing in the presence of 50 μg/mL tetracycline or 100 μg/mL ampicillin, 

respectively, and recombinant P. aeruginosa were cultured in the presence of 100 

µg/mL tetracycline (pME6010) or 200 µg/mL carbenicillin (pUCP20).  

 

2.1.2. Determination of bacterial cell density 

The optical density (OD) of P. aeruginosa or E. coli cultures was measured 

spectrophotometrically at 578 nm (OD578nm) or 600 nm (OD600nm) (Wiehlmann, 2001):  

 

P. aeruginosa                                                  OD(578nm) 0.6 ~ 1 x 109 cfu / mL 

E. coli                                                              OD(600nm)  1.0 ~ 0.8 x 108 cfu / mL 

 

2.1.3. Growth of transposon mutants 

A library of P. aeruginosa TB signature tagged mini Tn5 OGm transposon mutants 

was constructed by Wiehlmann (Wiehlmann et al., 2002). The STM library was 

maintained as glycerol stocks in 96 well plates at -80 oC.  
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2.1.4. Assessment of colony morphology 

The transposon mutants of the STM library stored at -80oC were inoculated in 96 

microtiter plates containing 200 µl LB medium and incubated at 37 oC for 16 h.   

For the assessment of colony morphology for each single mutant, the bacteria were 

inoculated from frozen glycerol stock and grown in 5 mL glass tube at 37 oC for 16 h.  

After incubation time, mutants were plated on different media and incubated (Table II-

2). Colony morphology was documented after 48 hrs of incubation.  

 
Table II-2. Media and culture conditions used in the present work. 

 

2.1.5. Maintenance of bacterial cultures 

Bacterial cultures were maintained in LB medium containing 15% glycerol and stored 

at – 80 oC. For a limited period of time, LB agar plates were used to store cultures at 

4oC. 

 

2.1.6. Generation of transformation competent cells 

2.1.6.1. Generation of chemically competent cells 

Competent cells from E. coli DH5α and XL-10 Gold were prepared according to 

Inoue et al. (1990). 10-12 colonies from LB agar plate were inoculated in a 1L 

Erlenmeyer flask containing 250 mL of SOB medium and grown at 18-20 oC on a 

Media Culture conditions 

Luria broth (LB) 
40C, ambient 

temperature,  370C, 
420C 

LB supplemented with 4mM FeSO4 
 
LB depleted from iron by Chelex-100 beads (Sigma) 
 
Minimal medium (M9) 
 
Blood-agar (Columbia agar containing 5% sheep 
blood) 
 
LB supplemented with Congo red (40μg/mL) 

 
 
 
 
 

370C 
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rotary shaker (300 rpm) up to an optical density of 0.6-0.8. At the appropriate cell 

density, flasks were chilled on ice and the cells were harvested by centrifugation at 

2500 x g for 10 min at 4 oC. The pellet was resuspended in 80 mL of ice-cold TB 

buffer. After 10 min incubation on ice, the cells were centrifuged again  at 2500 x g, 

for 10 min at 4 oC and the pellet completely resuspended in 20 mL of ice cold TB 

buffer and 1.4 ml of DMSO (7 %, v/v) was added. The cells were incubated on ice for 

10 min, aliquoted and immediately frozen in liquid nitrogen. The aliquots were stored 

at -80 oC.   

 

2.1.6.2. Generation of electrocompetent cells  

The single colony of E. coli DH5α and XL-10 Gold from a fresh agar plate was 

inoculated into a flask containing 25 mL of LB medium and incubated at 37oC 

overnight with vigorous aeration (250 rpm). 250 mL of prewarmed LB medium was 

inoculated by 12.5 ml of overnight culture and the cells were incubated at 37oC with 

(300 rpm). The growing bacterial culture was measured every 20 min. The optimum 

OD (OD600nm = 0.35-0.4) was achieved after 2.5-3 hrs of incubation. Then, the flasks 

were transferred on ice for 15-30 min and swirled occasionally to ensure that cooling 

occurred evenly.  

For maximum efficiency of transformation, it is crucial that the temperature of the 

bacteria do not rise above 4oC at any stage of the protocol.  After cooling, the 

cultures were transferred to ice-cold centrifuge bottles. The cells were harvested by 

centrifugation at 1000 x g for 15 min at 4oC. The supernatant was decanted and the 

cell pellet were resuspended in 250 mL ice-cold H2O.  The cells were centrifuged at 

1000 x g for 20 min at 4oC and the cell pellet was resuspended in 125 mL of ice-cold 

water containing 10 % glycerol. The centrifugation step was repeated at 1000 x g for 

20 min and the pellet was carefully resuspended in 5 mL of ice-cold pure water 

containing 10 % glycerol. Finally, the cells were harvested by centrifugation at 1000 x 

g for 20 min at 4oC. The supernatant was carefully decanted to remove any 

remaining buffer. The pellet was resuspended in 0.5 mL of ice-cold GYT medium. 

Afterwards, the cell suspension was diluted to a concentration of 2 x 1010 cell/mL with 

ice-cold GYT medium. 40 μL of the suspension were aliquoted into ice-cold 0.5 mL 

eppendorf tubes, dropped into a bath of liquid nitrogen and transferred to a -80 oC 

freezer.  
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2.1.7. Introduction of foreign DNA into bacteria 

2.1.7.1. Transformation by heat shock method 

Transformation was carried out by heat shock method as described previously 

(Dagert and Ehrlich, 1979). Competent cells were thawed on ice, 20 μl cells were 

aliquoted in reaction tubes and 40-60 ng of DNA were added to the cells. After 30 

min incubation on ice, the cells were heat shocked at 42 oC for 40 sec and 

immediately placed on ice for 2 min. Then 80 μl of LB medium was added to the 

mixture and the cells were incubated at 37 oC for 1 h. After the incubation period, the 

whole mixture was plated on LB agar containing an appropriate antibiotic and 

incubated at 37 oC. The colonies harboring plasmids were visible after 16-24 h of 

incubation. 

 

2.1.7.2. Electrotransformation of E. coli 

Electrocompetent E. coli cells (Dh5α and XL10-Gold) were prepared as described 

above. 1-3 μl of the ligation product were added to 40 μl of E. coli cells.  The mixture 

was poured in the electroporation 1 mm cuvette and the P. aeruginosa cells were 

electroporated with the Bio-Rad pulser (400 W, 25 μF, 1.25 kV, time constant 5 ms).  

0.9 mL of SOC medium was added in the cuvette and the whole volume was 

transferred into a fresh eppendorf tube. Bacteria were incubated at 300 rpm at 37 oC 

for 1 h.  Afterwards, the bacterial culture was centrifuged at 6000 x g for 10 min, the 

pellet was resuspended in 100 μl SOC medium and spread on LB plates containing 

an appropriate antibiotic.  The plates were inverted and incubated at 37 oC overnight. 

Positive transformants were analysed for the presence of the insert by plasmid 

isolation and digestion. 
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2.1.7.3. Electrotransformation of P. aeruginosa 

Introduction of DNA into P. aeruginosa was carried out by an electroporation protoicol 

modified from Enderle and Farwell (1998). 2 mL overnight cultures were sedimented 

by centrifugation at 6000 x g at 4 °C for 10 min. To achieve successful 

electroporation, the amount of exopolysaccharides in the culture needs to be as low 

as possible so they were removed from the pellet with repeated washing with ddH2O 

and centrifugation at 13000 x g for 3 min. After the last washing step, the bacteria 

pellet was resuspended in 100–200 μL, ice-cold ddH2O and mixed with ~ 50 ng 

plasmid. 100 μL of this mixture were transferred into pre-cooled electroporation 

cuvettes (1 mm, BioRad) and P. aeruginosa cells were electroporated with the Bio-

Rad Pulser (400 W, 25 μF, 1.25 kV, time constant 5 ms) to induce DNA uptake. 900 

μL prewarmed LB broth was added to the cell suspension followed by incubation at 

37 °C with constant shaking (350 rpm) for 3 h. Positive revertants were selected by 

plating 100 μL aliquots on LB agar containing an appropriate antibiotic and incubated 

overnight at 37 °C. Recombinant plasmids were analyzed from selected colonies by 

plasmid isolation and restriction digestion. 

 

2.1.8. Genetic complementation 

After STM competition experiments in vivo, the mutants with enhanced or impaired 

fitness in the lung were selected for the future experiments.  Subsequently these 

selected genes were complemented in trans to ensure that the observed striking 

phenotypes were caused by the transposon inactivation and not by any other 

secondary genetic event. 

Complementation in trans was performed by using plasmids pME6010 or pUCP20. 

The genes with their own promoter regions were amplified from TBCF10839 by PCR 

with GoldStar polymerase system (Eurogentec) (see chapter 2.2.4). The PCR 

product was purified by Qiaquick GelExtraction Kit (Qiagen) according to the 

manufacturer’s protocol to remove polymerase enzyme that might block the 

restriction sites and 20-25 μL were digested by 2x2.5 μL (5 U/μL) of restriction 

nucleases, 5 μL of the recommended buffer was added and 50 μL of the total volume 

was adjusted by adding of ddH2O. Digestion was preformed overnight at 37 oC. 5-10 

μg of the plasmid were subjected to restriction digestion. The digested products were 
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again purified using Qiaquick GelExtraction Kit (Qiagen) according to the 

manufacturer’s protocol. 

To avoid the self-ligation of the vector, 5´ phosphate groups were removed before 

ligation from the plasmid DNA. This property can be used to decrease the vector 

background in cloning strategies (Sambrook et al., 1989). For this, the plasmid (3-5 

μg) was dephosphorylated by addition of 4 μL of antarctic phosphatase, 5 μl of 

Antarctic Phosphatase Reaction Buffer was added and 50 μL of the total volume was 

adjusted by ddH2O. The reaction was incubated at 37 oC for 1 h. Inactivation of 

enzyme was done at 65 oC for 5 min.  

To obtain maximal ligation efficacy the vector and insert were mixed in proportion 1:3. 

The mixure was ligated (see chapter 2.2.6) and the plasmid was introduced into 

chemically competent or electrocompetent E. coli (DH5α or XL10-Gold) and 

subsequently into the respective P. aeruginosa transposon mutant by 

electroporation.  
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2.2. Molecular biological methods 

2.2.1. Isolation of DNA 

2.2.1.1. Isolation of genomic DNA from P. aeruginosa 

The genomic DNA from P. aeruginosa was isolated according to the protocol by 

Chen and Kuo (1993). The bacteria were harvested from 5 mL of overnight grown 

culture in LB medium by centrifugation at 14000 x g for 3 min. The pellet of harvested 

bacterial cells was resuspended in 900 μl of Lysis buffer. 300 μl of 5 M NaCl were 

added to the suspension and the whole volume was mixed thoroughly. Cell debris 

were separated by centrifugation at 14000 x g for 60 min at 4 oC and the supernatant 

was transferred into a fresh eppendorf tube. RNA was removed by incubation of the 

supernatant with 5 μl of RNase (10 mg/mL) at 37 oC for 30 min. Proteins were 

removed by mixing of the supernatant with equal volumes of phenol, 

phenol:chloroform:isoamyl alcohol (25:24:1) and chloroform:isoamyl alcohol (24:1) 

and separation of the phases by centrifugation at 14000 x g for 15 min. DNA was 

precipitated by addition of an equal volume of isopropanol and subsequent 

centrifugation at 14000 x g for 15 min. The pellet of the genomic DNA was washed 

with 70 % v/v ethanol, dried and resuspended in 25 – 50 μl in ddH2O or TE buffer.  

DNA isolated by this method was used as template in PCR reactions, Y – linker 

method or Southern blotting. 

 

2.2.1.2. Isolation of plasmid DNA 

For sequencing or cloning procedures, the extra pure plasmid DNA was isolated by 

using Qiagen Mini and Maxi Prep kit according to the manufacture’s protocol. The 

plasmid DNA from the transformed E. coli or P. aeruginosa was isolated by the 

modified alkaline lysis method (Birnboim and Doly, 1979). For this, 5 mL of the 

overnight grown culture in LB medium was centrifuged at 5000 x g for 5 min and 

resuspended in 300 μl solution I. Then, 300 μl solution II were added and mixed 

properly.  After 5 min incubation period, 300 μl solution III were added, thoroughly 

mixed and incubated on ice for 15 min. To precipitate cell debris, the centrifugation at 

10000 x g for 10 min at 4 oC was done and the supernatant was transferred into a 

fresh eppendorf tube. To remove proteins and lipids, an equal volume of 

phenol:chloroform:isoamyl alcohol (25:24:1, v/v) mixture was added to the above 



II Materials and methods 
 
 

 42

supernatant, thoroughly mixed and centrifuged  at 14000 x g for 2 min at 4 oC for 

phase separation. The aqueous phase was mixed with an equal volume of 

chloroform:isoamyl alcohol (24:1) and centrifuged at 10000 x g for 10 min at 4 oC. 

After centrifugation, an equal volume of isopropanol was added to the supernatant for 

the precipitation of plasmid DNA and centrifuged at 14000 x g for 15 min at ambient  

temperature. Finally, the pellet was washed with 70 % (v/v) ethanol and dried at 37oC 

for 15 min. The dried pellet was resuspended in 25 - 50 μL TE buffer.   

 

2.2.2. Separation of DNA 

2.2.2.1. Agarose gel electrophoresis 

The 0.8 - 3 % w/v agarose gel was prepared by solubilizing agarose in TBE buffer. 1x 

TBE buffer was used as a running buffer and 8.5 V/cm field strength was applied. 

The DNA was mixed with 1/5th volume of loading buffer and loaded on an agarose 

gel. Lambda phage DNA digested with BstEII restriction endonuclease was used as 

molecular size standard. After the run, the agrose gel was stained with 0.5 μg/mL 

ethidium bromide for 20 min and destained twice in water for 2 x 20 min. The DNA 

was visualized and photographed on a UV transilluminator at 312 nm. 

 

2.2.2.2. Polyacrylamide gel electrophoresis 

To separate the small DNA fragments (20–80bp), the polyacrylamide gel 

electrophoresis was applied. For this, the DNA fragments were loaded on a 10 % gel 

(19+1 acrylamide/bis-acrylamide) in TBE buffer and separated with field strength of 

6.5 V/cm. The gel was stained with 0.5 g/mL ethidium bromide for 5 min and 

destained in water for 5 min and photographed on a UV transilluminator at 312 nm.  
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2.2.3. Quantification of DNA and RNA 

The absorption was measured at 260 nm in a 1 cm thick quartz cuvette (Ausubel et 

al., 1988; Sambrook et al., 1989). Double distilled water was used as a control. The 

ratio of OD260 / OD280 provides for the estimation of DNA purity. For the ultra-pure, 

DNA or RNA has a ratio 1.8 and 2.0 respectively.  

The concentration of the DNA and RNA can be easily calculated: 

Concentration of DNA (μg/mL) = OD260  X 50 X dilution factor 

Concentration of RNA (μg/mL) = OD260  X 40 X dilution factor 

 

2.2.4. Polymerase chain reaction (PCR) 

Polymerase chain reaction (PCR) was developed by Mullis and Faloona in 1986. In 

this work, PCR was used for the amplification of signal sequences from each Tn5 

inserted mutant, for probe preparation for Southern blotting and cloning procedures. 

2.2.4.1. Construction of primers for PCR 

The primers were designed according to the Pseudomonas genome database 

(Stover et al., 2000, www.pseudomonas.com). Since a critical factor for yield and 

purity of the PCR product is the construction of correct primers, the following criteria 

were used: 

• Length of the primers was kept to approximately 20-25 base pairs. 

• G+C content of the primers was 60 – 66 % 

• The primers were not self-complementary to avoid a formation of hair-pin 

structure and primer dimer formation 

• The melting temperature (Tm) of the primers was above 60 oC to avoid the 

non specific amplification.  

• The melting temperature was calculated as Tm = [Σ(A+T) x 2 + Σ(G+C) x 

4] °C 

• Two different restriction sites (one in each primer from the respective 

primer pair) were incorporated into the primers used for complementation. 
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2.2.4.2. PCR protocols 

For quantitative PCR, probe preparation for Southern Blot detection and signal 

sequence amplification, InviTaq polymerase (InViTek) was used. For 

complementation and sequencing, amplifications were carried out either by using 

proofreading polymerase GoldStar polymerase system (Eurogentec) or FailSafeTM 

PCR system (Epicentre). PCR was performed according to the following protocols 

(Tables II-3. and II-4.) if not noted otherwise. 
Table II-3. 
The protocol of amplification of P. aeruginosa genomic sequences by InviTaq polymerase (InViTek) 
or GoldStar Taq polymerase (Eurogentec) 
 
Standard reaction 
(50 μL) 
 

(10x) reaction buffer 
Template DNA 
5’-primer (5 pmol/μL) 
3’-primer (5 pmol/μL) 
MgCl2 (50 mM) 
dNTP (each 2 mM) 
DMSO 
Polymerase (5 U/ μL) 
ddH2O 

 

 
 
5 μl 
5-100 ng 
5 μl 
5 μl 
4 μl 
6 μl 
2.5 μl 
0.2 μl 
ad 50 μl 

PCR program: 
 

 
Initial denaturation
 
Annealing 
Elongation 
Denaturation 
35 cycles 
 
Final cycle 
 

a) 
 
 
 
94 °C, 10 min 
 
variable, 45 sec 
72 °C, 60 sec/1kb 
94 °C, 30 sec 
 
 
72 °C, 120 sec/1 kb 

b) 
 
 
 
96 °C, 10 min 
 
58 °C, 20 sec 
72 °C, 20sec 
95 °C, 30 sec 
 
 
72 °C, 40 sec 

 
 
a) Amplification of genomic sequences from P. aeruginosa 
The standard protocol with the change in temperature was used for the amplification 

of genomic sequences from P. aeruginosa. For the cloning procedure 4M Betain as 

an enhancer of PCR reaction was added.   

b) Amplification of specific signal sequences: 
Primers P1 and P2 were used to amplify the signal sequence (80bp) of Tn5 insert. 

This PCR required the appropriate amount of template since small inaccuracy leads 

to substantial loss of product. 
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Table II-4. 
The protocol for amplification of P. aeruginosa genomic sequences by FailSafeTM 
PCR System (Epicentre) 
 
Standard reaction 
(25 μL) 
 
Template DNA 
5’-primer (5 pmol/μl) 
3’-primer (5 pmol/ μl) 
FailSafe enzyme 
ddH2O 
 
+ (2x) Premix buffer  
 

 
 
 
5-100 ng 
2.5 μl 
2.5 μl 
0.5 μl 
12.5 μl 
 
12.5 μl 

PCR program: 
 
 
Initial denaturation
 
Annealing 
Elongation 
Denaturation 
35 cycles 
 
Final cycle 

 
 
 
96 °C 10 min 
 
variable, 45 - 60 sec 
72 °C, 60 sec/1kb 
96 °C, 30 sec 
 
 
72 °C, 120 sec/1 kb 

 

2.2.5. Restriction digestion of DNA 

The restriction digestion was applied for the restriction of the genomic DNA, the PCR 

products of specific signal sequences or PCR products used for the cloning. The 

restriction enzymes together with the buffer system were applied according to the 

manufacturer’s protocols (New England Biolabs). For the small sequences, the 

digestion to gain the specific signal sequence was done by HindIII. 80 μL of PCR 

product were digested with 250 U of restriction enzyme in a total volume of 250 μL 

and the reaction mixture was incubated overnight. For all other procedures, the unit 

definition of restriction enzyme was defined as the quantity of enzyme required for 

the digestion of 1 μg of DNA in 1 h in the assay buffer.  

 

2.2.6. Ligation 

The plasmids constructed in this study either for plasmid rescue or complementation 

were obtained by ligation. Ligation was performed according to the following 

protocols (Tables II-5. and II-6.) if not noted otherwise. 
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a) For the construction of vectors for complementation, Fast-link ligase kit (Epicentre) 

was used. The protocol (Table II-5) was optimised for the construction of vectors in a 

short time (for as little as 5 min). Incubation of the reaction was done for 5 minutes at 

room temperature. After the indicated time, the reaction mixture was heated to 70oC 

for 15 min for inactivation of the enzyme (failure to inactivate the ligase may decrease 

transformation efficiencies). This additional step could be done as to determine the 

extent of ligation. For this, the ligation products (5 μg) have to be separated on an 

agarose gel (3%).  

b) For the plasmid rescue procedure T4 DNA ligase (New England Biolabs) was 

used (Table II-6).  Incubation of the reaction was done for 16 hrs at 4oC. Inactivation 

of the enzyme was performed for 10 min at 65oC.  

 

2.2.7. Sequencing of transposon flanking genes 

2.2.7.1. Plasmid rescue 

Plasmid rescue (ligation of digested DNA) was performed to transfer the 

minitransposon with its flanking sequences as stable episomal plasmids into E. coli. 

The protocol by Dennis and Zylstra (1998) was modified as follows: 10 μg of genomic 

DNA of the transposon mutant was digested with 40 U of PstI at 37 oC overnight in 

40 μl restriction buffer. Digested DNA was purified by phenol:chloroform:isoamyl 

alcohol (25:24:1, v/v) and by chloroform:isoamyl alcohol (24:1, v/v) extractions and 

the DNA was precipitated by ethanol. The pellet was dried for 30 min at 37oC and 

resuspended in 25 μl of TE buffer. 500 ng digested genomic DNA was incubated with 

Table II-5. 
Ligations of Insert DNA with Cohesive Ends 
by Fast-link ligase (a) 

Table II-6. 
Ligations of DNA with Cohesive Ends by T4 – 
ligase (b) 
 

10X Fast-Link Ligation Buffer 
 

1.5 μL  1 X Reaction Buffer  2 μL 

ATP (10 mM) 
 

1.5  μL T4 DNA Ligase (20 U) 1 μL 

Vector DNA 
 

50 μg ATP (10mM) 2 μL 

Insert DNA 
 

150 μg Digested DNA 50 -
500ng 

Fast-Link DNA Ligase 
 

1  μL   

ddH2O  
 

x  μL ddH2O  
 

x  μL 

Total reaction volume 
 

15  μL Total reaction volume 
 

20 μL 
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1000 cohesive end ligation units of T4-DNA ligase according to the protocol 

described above. 50 ng of ligated DNA were transformed into highly competent E. 

coli XL-10 Gold and plasmid-harbouring cells were selected on LB agar with 

getamycin (30 μg/mL). The plasmid was purified from these cells and sent for 

sequencing to QIAGEN.  

 

2.2.7.2. The Y – linker method 

This method based on the ligation of a linker of known sequence to the digested DNA 

and performing a PCR primed by an oligonucleotide specific for the non-

complementary part of the linker and on the other side by a transposon-specific 

primer sequence. By this, a PCR product is generated that can subsequently be 

sequenced (Kwon and Ricke, 2000).  

4 μL of linker strand 2 (3,5 μg/μl) were phosphorylated by adding 4 μL of 10 mM 

ATP, 4 μL of 10x concentrated polynucleotide kinase buffer (NEB), 1 μL of T4 

polynucleotide kinase (NEB) and 27 μL ddH2O to a  final volume of 40 μL. The 

reaction was incubated at 37oC for 15 min and then heated to 95oC for 20min.  

4 μL of linker strand 1 (3,5 μg/μL) and 36 μl ddH2O were added to the mixture which 

was slowly cooled to room temperature. The linker strands annealed and formed the 

ready-to-use Y-linker. Genomic DNA of the mutants in aliquots of 1 µg was digested 

either with NlaIII or SphI in a total volume of 20 μL. The reaction was incubated at 

37oC for 3 h.  500 ng of digested genomic DNA was mixed with 5 μL of the Y-linker 

and ligated according to the protocol described above. The reaction was incubated at 

25oC for 2 h, 20-50 ng of Y-linker ligated product was used as a template for the PCR 

reaction with the Y- and pTnMod-specific primers. PCR products were purified and 

the transposon insertion site was determined by sequencing. The resulting PCR 

products were purified by agarose gel electrophoresis and extracted using a Qiagen 

Gel extraction Kit. Sequencing was done by QIAGEN using TnMOD-specific primer.  
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2.2.8. RNA working technique  

2.2.8.1. RNA handling and storage 

Due to the short life of bacterial mRNA, special precautions were taken when working 

with RNA. To avoid RNA degradation, all reagents and equipment were specially 

treated to inactivate RNases prior to use. 

• The devices were autoclaved at 121 oC for 60 min. Heat unstable devices 

were wiped with sterile double distilled water and then with 70 % (v/v) ethanol. 

Metal devices such as scalpel and forceps were dipped in the 70% (v/v) 

ethanol.  

• Glass wares were sterilised at 250 oC for 5 h.  

• All the solutions were prepared in the double distilled diethylpyrocarbonate 

(DEPC) treated water. For this, the DEPC (0.05 %, v/v) added to water was 

incubated for overnight at 37 oC and then autoclaved to hydrolyze any 

unreacted DEPC. Solutions containing Tris buffer were prepared in the double 

distilled DEPC autoclaved water.  

• Gel chambers for electrophoresis of RNA samples were cleaned with 3 % 

H2O2 and rinsed with 70 % EtOH 

• Fresh stock of plastic wares was used every time.  

• When working with RNA, all samples were placed on ice and RNase inhibitor 

was added. 

• For long-term storage, RNA dissolved in RNase-free buffer or water was 

stored at -80 oC. 

 

2.2.8.2. RNA extraction 

Total RNA of P. aeruginosa mutants and strains was extracted by bacterial lysis in 

the late stationary phase.  50 - 100 mL overnight culture of bacterial cells in 

stationary phase (OD578nm ~ 3.0) was cooled on ice and treated with 5 mL STOP-

solution. Sedimentation of the cells was achieved by centrifugation at 5500 x g at 4°C 

for 10 minuts. Afterwards, the cell pellet was resuspended in 2 mL STET-solution. 

The samples were subsequently purified by phenol/chloroform extraction (aqueous 

phenol; pH 4.5-5.5). The upper aqueous phases of each lysate were pooled into one 

and the nucleic acid was precipitated with 1/10 sample volume 3 M sodium acetate 
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and 2 volumes of 95 % Ethanol (-21 °C). For complete precipitation, the sample was 

stored at -21 °C for 1 h and recovered by centrifugation at 10000 x g at 4 °C for 10 

min. The pellet containing crude nucleic acid was air-dried at 37 °C and resuspended 

in 200 μL of DEPC-treated water. To get highly pure RNA, the resuspended pellet 

was purified by Qiagen RNeasy MiniKit according to the manufacturer’s protocol. 

Resuspension of the RNA pellet in 200 μL DEPC-treated ddH2O allowed long time 

storage of the RNA at – 80 °C for 6 months. 

 

2.2.8.3. Formaldehyde agarose gel electrophoresis 

In order to check the RNA preparations, formaldehyde agarose gel electrophoresis 

was performed. The formaldehyde gel electrophoresis was preformed in mini gel 

chambers: 5 x 7 cm gel (Forschungswerkstätten, MHH).  1.2 % agarose gel was 

prepared from 50 mL MOPS buffer with a gel volume of 50 mL and supplemented 

with 2.4 mL formaldehyde at a temperature lower than 50 °C.  

The RNA extracts stored at -80 °C were denatured at 65 °C for 10 min and cooled 

down on ice.  

 
The RNA samples preparation 
RNA extract                                                    2 μL 

37 % Formaldehyde                                        2 μL 

Formamide                                                      5 μL 

RNA loading buffer                                          2 μL 

(10x) MOPS                                                    1 μL 

1 % Ethidium bromide                                     0.5 μL 

 

The samples were loaded on the gel (5 min, 60 V). The constant applied field 

strength for mini gels and blot gels was 5 V/cm (running time approx. 1 h). The 

electrophoresis of the blot gels was stopped when the bromophenol blue dye has 

migrated two-thirds of the gel length.  

 



II Materials and methods 
 
 

 50

2.2.9. Semi-quantitative RT- PCR (qRT-PCR) 

cDNA first strand synthesis for the qRT-PCR was performed by using a modified 

protocol suggested by the Revert AidTM H Minus cDNA Synthesis Kit (Fermentas).  

In the presence work, 3’-primers binding specifically to following genes were used: 

PA4640, PA3452 and PA4916.  

For the cDNA synthesis, 2 μg of mRNA isolated from each mutant / strain was mixed 

with ~ 20 pmol of the 3’-primers. DEPC water was added to 12 μL and the mix was 

incubated for 5 min at 70 °C. After cooling down the sample on ice, 2 μL dNTP mix 

(10 mM), 1 μL Ribonuclease inhibitor (RiboblockTM, Fermentas) and 4 μL (5x) 

reaction buffer were added to the samples and incubated for 5 min at 37 °C. 

Afterwards, 1 μL Revert AidTM Reverse Transcriptase (Fermentas) was added to the 

sample to start the elongation reaction during incubation at 42 °C for 1 h followed by 

70 °C for 10 min.  

The cDNA first strands of each sample serve then as template for the following 

quantitative PCR carried out in a 50 μL reaction volume. 3 aliquots of 50 μL PCR 

reactions were prepared for each strain with the following 5’-primer using InviTaq 

polymerase (InViTek) according to the PCR protocol described above. During PCR, 8 

μL aliquots were taken every second cycle from 16th cycle on until the final step after 

32 cycles and subsequently applied to a 1.5 % agarose gel electrophoresis. 

 

2.2.10. DNA fixation and hybridization 

2.2.10.1. Dot-blot preparation 

The dot blots were used during the selection experiments carried out for the 

screening of STM library in murine infection model.  

80 μL of PCR products were mixed with 40 μL of 3 M NaOH and 280 μL of TE buffer 

and denatured at 65 oC for 30 min. After cooling on ice, 400 μL of 2 M ammonium 

acetate was mixed and after short incubation period, this denatured DNA solution 

was aliquoted in a 96 well plate. 95 μL of the DNA solution was applied to a Minifold-

Dot-vacuum-bloter. The DNA was sucked and immobilized on the blot/nylon 

membrane (Hybond N+) by the vacuum generated in the equipment. The dot blots 

were rinsed with the 1 M ammonium acetate solution and dried at room temperature. 
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DNA on the dot blots was cross-linked in UV stratalinker with the program autocross 

link on both sides of the blot and was stored at room temperature till further use.  

 

2.2.10.2. Probe generation 

The PCR was performed with the use of primers P1 and P2 to amplify the signature 

tags from the mutants. The PCR products were digested for 16 h with HindIII and the 

specific 40 bp sequence tags were separated from the common flanking 20 bp 

sequences by polyacrylamide gel electrophoresis (10 % gel (19+1 acrylamide/bis-

acrylamide) in TBE buffer). The 40 bp sequence tags were cut out from the gel and 

purified (QIAGEN). The 40 bp sequences were labelled with DIG-ddUTP using a 

terminal transferase (Roche). For this, the reagents for a Dig- Oligonucleotide 3’ end 

labeling kit was used. DIG ddUTP (Digoxigenin-11-2’, 3’ dideoxyuridine 5’ 

triphosphate) was incorporated into the single stranded DNA by Terminal transferase. 

For this, the cleaned specific signal sequences (40bp) were denatured at 95 oC for 5 

min and then immediately chilled on ice. At least 1 μg of denatured DNA was mixed 

with the other components of the labeling kit as described by the manufacturer. Then 

this mixture was incubated at 37 oC for 4-8 hours and used directly as a probe 

without any further treatment in the pre-hybridization buffer (Figure II-1.).  

 

 
  A     B    C 

Figure II-1. Polyacrilamide gels for separation of small DNA sequences of signature tags after PCR 

amplification. (a) 80 bp of the Tn5 region, (b) separation of specific 40bp sequences, (c) 40 bp 

sequences after purification are ready for labelling. 

 

 

80bp 
40bp 

40bp
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2.2.10.3. Dot blot hybridization 

All the hybridization methods are based on the ability of denatured DNA to anneal to 

complementary strand at a temperature below their Tm (Church and Gilbert, 1984). 

Southern hybridization (Southern, 1975) involves a reaction between denatured DNA 

immobilized on the nylon membrane and single stranded DNA probe. It is depending 

on temperature, time, salt concentration, G+C content, probe length and 

concentration. Prior to hybridization, prehybridization is carried out in which potential 

binding sites for the probe other than complementary DNA are blocked to avoid 

background hybridization to the membrane.  

The required volume of prehybridization buffer was preheated to 58 oC and the blots 

were kept in large glass tubes (Biometra) or in 50 mL tubes. The membrane was kept 

in the tube with the DNA adhered side inward in the tube. Prehybridization buffer (10 

mL/100 cm2) was added in the tube and prehybridized at 58 oC for at least 2-3 hours 

with constant shaking. The DIG labeled probe was denatured by heating for 5-10 min 

at 95 oC and added in 10 mL total volume of prehybridization buffer to the tube 

containing blot. The blots were hybridized for 16-24 hours at 58 oC in the rotary  

hybridization oven.  

 

2.2.10.4. Immunological detection of the hybridized blot 

To remove non-specific bound DNA probe, the blots were washed twice with 20 mL 

of hybridization washing buffer and transferred into a plastic container and 

equilibrated in buffer I on a rotary shaker for 5 min. To block unspecific binding sites, 

the blot membrane was incubated in buffer II for 30 min. Antibody solution was 

prepared in buffer II (1:5000) and added to the blot for another 30 min. For detection, 

the membrane was rinsed three times in buffer I and equilibrated in freshly filtered 

buffer III for 5 min before addition of CDP-StarTM diluted in buffer III (1:1000). The 

maximal chemiluminescence is reached after 5 - 30 min and can be used for 

exposure to X-ray film. 
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2.2.10.5. Washing and stripping of hybridized membranes 

The labeled and hybridized membranes can be used several times after washing 

(stripping) under alkaline conditions.  For washing, the membranes were incubated 

twice with wash solution for 30 min under strong shaking conditions. Then the 

membrane was neutralized by keeping it in sodium phosphate buffer (pH 6.5) for 

about 15 min. Then it was wrapped in plastic foil and stored at -20 oC until the further 

use.  

 

2.2.10.6. Signals strength quantification 

Signals were quantified by PCBAS, version 2.09f. The signal strength of each dot 

was compared to the corresponding signal of a probe prepared from pooled bacteria 

grown on LB agar without in vivo selection. The mutants were retested and 

transposon mutants with consistently strong differences in their ability to survive were 

selected for further examinations.  

 

2.3. The infection experiments in vivo 

2.3.1. Mice infection experiment 

The animal experiments were performed in collaboration with Dr. Antje Munder of the 

Clinical Research Group at the Medical School Hannover.  

Prior to animal experiments, bacteria were grown in LB broth overnight at 37 oC 

(230rpm) to stationary-phase. The bacteria were pelleted by centrifugation at 5000 x 

g for 10 min, washed twice with sterile phosphate buffered saline (PBS) and the 

optical density of the bacterial suspension was adjusted by spectrophotometry at 578 

nm.  The intended number of cfu was extrapolated from a standard growth curve and 

appropriate dilutions with sterile PBS were made to prepare the inoculum for the 

mice. To verify the correct dilution, an aliquot was plated on LB agar plates. Ten to 12 

week old female mice of the inbred strain C3H/HeN (Charles River, Sulzfeld, 

Germany) were inoculated with 30 µl of this bacterial suspension containing 7.5 x 106 

CFU of the different P. aeruginosa mutants via view controlled intratracheal 

instillation. This noninvasive application technique (Munder et al., 2002) via catheter 

allows controlled delivery of the bacteria to the lungs. During the experiments mice 
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were maintained in microisolator cages with filter top lids at 21 ± 2°C, 50±5  % 

humidity and 12 h light-dark-cycle. They were supplied with autoclaved, acidulated 

water and fed ad libitum with autoclaved standard diet. Prior to the start of the 

experiments animals were acclimatized for at least seven days. All animal 

procedures were approved by the local District Governments and carried out 

according to the guidelines of the German law for the protection of animal life.  

In case of 14-day infection experiments, the weight and rectal temperature of the 

mice were measured daily and their body condition was determined using a self-

developed score (Munder et al., 2005). Murine behaviour was scored for the 

parameters vocalisation, piloerection, attitude, locomotion, breathing, curiosity, nasal 

secretion, grooming and dehydration. Two mice were sacrificed by 48 h for the 

evaluation of lung histology or the determination of cfu in homogenized organs 

(lungs, liver, spleen and brain).  

 

2.3.2. Screening of the STM mutants for survival in vivo 

Transposon mutants with different signature tags were separately grown in LB at 

37oC overnight and pooled directly before mice infection. From this pool, 100 μL of 

bacterial suspension was cultivated on LB agar or liquid for 48 h at 37oC (control) and 

30 μL (7.5 x 106 cfu) was used for the intratracheal mice infection (experiment). After 

48 h of infection, mice were sacrificed and organs (lungs, liver and spleen) were 

homogenised. Bacteria from the homogenised organs were recovered in LB and on 

LB agar at 37oC overnight. In parallel, bacteria from the control plates were collected 

and incubated on LB and LB agar at 37oC overnight in the same incubator. Genomic 

DNA was prepared from both control and experiment pools and PCR was preformed 

to amplify the signature tags from the mutants. The PCR products were digested, 

labelled and hybridized onto dot blots. 
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2.4. Bioassays 

2.4.1. Measurement of malate-quinone oxidoreductase (MQO) 
enzymatic activity 

2.4.1.1. Preparation of cell-free extracts and membrane fractions 

All operations were done at 4 °C by the use of a modified protocol of Kretzschmar et 

al. (2002).  Bacteria were grown to late exponential phase, harvested, washed twice 

with ice-cold buffer A and resuspended in the same buffer. After cell disruption by 

sonication, cell debris were removed by centrifugation for 30 min at 6000 x g. Part of 

the supernatant was used as the cell free extract; the other part was used to obtain 

the membrane fraction. 

The supernatant was centrifuged for 1h at 100000 x g; the resulting membrane-rich 

pellet was washed with ice-cold buffer B before being resuspended in a small volume 

of the same buffer buffer. Cell-free extracts and membrane fractions were split into 

aliquots and either assayed immediately for enzymic activity or stored at -20 °C. The 

protein content of the cell-free extracts was measured by adding the Bradford 

reagent (Bradford et al., 1976).  

 

2.4.1.2. Enzyme assay 

The measurement of MQO activity was carried out at 25 °C in a total volume of 1 ml. 

The MQO activity was assayed with the membrane fraction. The activity was 

determined by measuring the decrease of the absorbance of 2,6 - dichlorophenol 

indophenol (DCPIP) at 600nm, assuming an absorption coefficient of 22 cm−1 mM−1 

(Armstrong, 1964). The test of O'Brien and Taylor (1977) was modified and 

contained, in a total volume of 1 ml, 50 mM Tris/HCl, 0.05 mM DCPIP, 0.1 mM 

phenazinemethosulfate, 5 mM ethylamine, 5 mM KCN, 100 hl FAD and 1 mM L-

malate.  
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2.4.2. Phenotype MicroArrays (PMs) of P. aeruginosa (BIOLOG) 

PMs for the mutants of interest were performed as described elsewhere (Bochner et 

al., 2001) by BiOLOG Inc., Hayward, CA according to standard protocols 

(http://www.biolog.com). 

5 micro plates used in this study contain compounds related to the main catabolic 

pathways for carbon (C-source, PM1, PM2A), nitrogen (N-source, PM3B), 

phosphorous and sulphur (P-source and S-source, PM4A). One plate was used for 

stimulation of bacterial growth by nutrients (nutrient supplements, PM5).  

Different chemicals were tested in 96-well microtiter plates with each well containing 

a cell culture medium that is designed to test a unique phenotype or cell function. 

The components of the culture media were dried onto the bottom of each well. After 

inoculation the cells were incubated for 24 to 48 hours, and their phenotypic behavior 

was observed and recorded. The response of the cells in each well was monitored 

colorimetrically using a patented redox chemistry that monitors the respiration of the 

cells over the time course of the incubation.  

 

2.4.3. HAQ detection and quantification 

The assessment of Pseudomonas quinolone molecules production was performed in 

collaboration with Dr. Bredenbruch and Dr. Häußler of the Research Group Chronic 

Pseudomonas Diseases at the Helmholtz Centre for Infection Research in 

Braunschweig, Germany, as described elsewhere (Bredenbruch et al., 2005).  

For this, bacterial cultures were grown in 50 mL-flask in 10 mL BHI medium (Brain 

Heart-Infusion) and incubated with constant shaking at 37 °C for 18 h. 5 mL of this 

culture was extracted with 5 mL dichlormethane by shaking and the two phases were 

separated by centrifugation at 5000 x g for 10 min. 2 mL of the organic phase which 

contains PQS and pyocyanin was dried by evaporation, and the pellet was 

subsequently resuspended in 50 μL methanol. 2 - 4 μL of these quinolone fractions 

was applied onto a TLC plate and separated by 5 % methanol / 95 % 

dichlormethane. 

Fluorescent spots were visualized under UV light and photographed. Starting from 4-

hydroxy-2-heptylquinoline, PQS was synthesized by the procedures described by 

Pesci et al (1999) and used as standard. 
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2.4.4. Cytotoxicity assay 

The cytotoxicity assays were performed in collaboration with Stephanie Tamm of the 

Clinical Research Group at the Medical School Hannover.  

Chinese hamster ovary (CHO) cells were routinely grown in RPMI medium 

supplemented with 5% fetal calf serum (FCS) and 1% Penicillin and Streptomycin. 

For the LDH assay nearly confluent CHO cells were trypsinised and seeded in 6well 

plates to a density of 6.0x105 cells per well and again cultivated overnight. Prior to 

infection, cells were washed and covered with colourless CD-CHO-medium without 

any supplements. P. aeruginosa was grown overnight in LB, subcultured into fresh 

LB, and grown to mid-log phase. CHO cells were infected with mid-log-phase P. 

aeruginosa at an initial multiplicity of infection (MOI) of 10. Culture supernatants were 

collected at the times indicated in the figure legends and centrifuged for 10 min at 

3220 x g to sediment bacteria and CHO cells. Lactate dehydrogenase (LDH) in the 

supernatant was measured with a Roche LDH kit in accordance with the 

manufacturer’s instructions. Percent LDH release was calculated relative to that of 

the uninfected control, which was set at 0% LDH release, and that of cells lysed with 

Triton X-100, which was set at 100% LDH release. 

 

2.4.5. Assessment of pyocyanin secretion 

Pyocyanin is a blue redox-active secondary metabolite that is produced by P. 

aeruginosa and being one of the virulence factors of the bacterium (Lau et al., 2004). 

For the assessment of pyocyanin production, King A medium (King at al., 1954) was 

inoculated with 0.2 OD (578nm) and incubated at 300 rpm at 37oC. Two mL samples 

were taken every 2 hrs starting from first hour for further 36 hrs: 1 mL for the optical 

density measurement of the cells at 578nm and 1 mL for the assessment of 

pyocyanin production by measuring the optical density of the supernatant at 695 nm 

after sedimentation of the bacteria culture at 8000 rpm for 10 min. In all optical 

density measurements, pure King A medium served as negative control. 
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2.4.6. Assessment of protease secretion 

P. aeruginosa produces an arsenal of proteases such as LasB, alkaline protease and 

protease IV which can degrade casein (Cowell et al., 2003). All of them are virulence 

factors which are under the control of quorum sensing in P. aeruginosa (Passador et 

al., 1993). Hence, growth of P. aeruginosa on minimal medium containing casein as 

a carbon source shall indicate functional quorum sensing in the strain to be tested.  

For this assay, 2 μL of overnight culture were inoculated onto plates of M9 minimal 

medium containing 0.8 % (w/v) casein solidified with 1 % agar and incubated 

overnight at 37 °C. Protease secretion was indicated by a white halo around the 

colony. 

 

2.5. Internet databases and software 
The sequenced DNA was aligned with the P. aeruginosa PAO1 genome 

(http://www.pseudomonas.com) or at the National Center for Biotechnology 

Information (http://www.ncbi.nlm.hiv.gov/) using the BLAST algorithms (Benson et al., 

2002).  

To get information about the gene function, operon structure, domains, motifs, 

predicted biological function and others, the databases of the Institute for Genomic 

Research TIGR (http://www.tigr.org) or the integrated database retrieval system for 

major biological databases DBGET (http://www.genome.ad.jp/dbget/) were used. 

Signals on dot blots after southern blotting were quantified by PCBAS, version 2.09f. 

For the multiple sequences alignment the Jalview alignment editor was used 

(http://www.jalview.org).
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III Results and discussion 
The STM mini-Tn5 transposon library was generated in the P. aeruginosa strain 

TBCF10839 (Wiehlmann et al., 2002). Strain TBCF10839 was isolated in 1983 from 

an exocrine pancreas-insufficient F508del homozygous CF patient who was 

chronically infected by this strain (Tummler, 1987).  

By studies of TBCF10839 in our laboratory, the strain was shown as a strong 

producer of the quinolone PQS and N-acylhomoserinelactones, the major signal 

molecules involved in quorum sensing (Juhas et al., 2005). The strain can persist in 

polymorphonuclear leukocytes (PMNs) (Tummler, 1987), is proficient in the 

expression of type I, type II and type III secretion dependent virulence effector 

molecules and secretes large amounts of secondary metabolites such as phenazine 

and pyocyanin during stationary phase. 

Due to indicated properties, TBCF10839 strain was shown to be more virulent than 

the genetic reference strain PAO1 in infection models and can colonize naive murine 

airways (Wiehlmann et al., 2007). Transcriptome (Salunkhe et al., 2005) and 

proteome analyses (Arevalo-Ferro et al., 2004) indicated that TBCF10839 manages 

many more metabolic and signalling pathways than the sequenced reference strain 

PAO1 (Stover et al., 2000).  

For the present work, the strain TBCF10839 was chosen for studies on morphotype 

variation and airway adaptation between the sequenced burn wound isolates PAO1 

and PA14, because of several reasons.  

First, the infection model could not be established with the strain PA14 (Lee et al., 

2006), the dose was either cleared or lethal within a day (A. Bragonzi, personal 

communication). 

Second, TBCF10839 strain was isolated from a chronic CF lung infection and 

compared to PAO1 strain has a set of adaptations supporting its survival in vivo. 

Third, being a mucoid strain, TBCF10839 had already acquired the morphological 

signature of chronic airway colonizers, and hence we expected that single hits in the 

genome should generate more informative morphological variants than the same 

approach in strains PAO1 or PA14.  
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1. Screening of the STM library 
Different stress conditions were simulated in the STM library of strain TBCF10839 by 

culturing under different conditions. The 3,500 transposon mutants of the STM library 

were inoculated in 96 microtiter plates, incubated overnight and plated on square 

plates with LB agar at 4°C, 22-25°C, 37°C or 42°C and to grow at 37°C with blood 

agar or agar with minimal medium, iron-depleted LB, iron supplemented Lb or with LB 

supplemented with the dye Congo red. 

After 48 hours of incubation, morphology was documented by shape, size, margin, 

colour and texture of the colonies. After three rounds of repeated screenings, there 

remained 57 mutants with a morphotype other than wild type.  

The insertion site of the plasposon was identified for all 57 mutants by sequencing of 

PCR products generated either by the Y-linker method (Kwon and Ricke, 2000) or by 

plasmid rescue (Dennis and Zylstra, 1998).  

The Y-linker method is a readily applicable easy technique (Figure III-1).  

 

 
 
Figure III.1. The scheme of the Y-linker procedure. The Y-linker was prepared by the annealing of two 

oligonucleotides, Y1 and Y2. For this, the 3’ end of the double stranded linker forms a “Y” upon 

annealing of both strands. A primer for the Y-linker is designed to bind to the non-complementary 

region of the Y-linker (Y-linker primer) which prevents annealing to the linker itself. This way a second 

primer (Tn5MOD) is necessary for logarithmic amplification of the targeted sequence. DNA fragments 

that were not ligated to the Y-linker will not give any product.  

 

Restriction digestion 
Y1 

Y2 

5’ 

3’ 
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The principle is based on the ligation of a linker of known sequence to the digested 

DNA and performing a PCR primed by an oligonucleotide specific for the non-

complementary part of the linker and on the other side by a transposon-specific primer 

sequence. A PCR product is hence generated that can be subsequently be 

sequenced. 

 

Sequencing revealed that the transposon had inactivated genes encoding for 

elements of energy metabolism, chemotaxis, motility, attachment, secretion or 

transcription regulators (Figure III-2).  

 

 
Figure III-2. Map position of sequenced knock-out genes in the PAO1 genome. 

 

Out of 57 sequenced genes, the plasposon had inactivated a PAO1-homologous 

sequence in 52 TBCF10839 mutants, whereas sequences of five mutants had not 

been found in the PAO1 genome database (Table III-1).  
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Table III-1. P. aeruginosa TBCF10839 Tn5 minitransposon colony morphology mutants. 

Map position 
of Tn5: gene 
number in 
PAO1 
genome 

Mutant Type of 
Morphology#

Gene name Gene annotation 

 
Stable morphotypes distinct from wild type 
PA0424 8dC3 A mexR Multidrug resistance operon repressor MexR 
PA2028 8dB10 A - Probable transcriptional regulator 
PA2122 8dB6 A - Hypothetical protein 
PA3462 10dB7 A - Probable sensor/response regulator hybrid, transcriptional regulatory protein 
PA3748 10dA1 A - Conserved hypothetical protein; putative magnesium and cobalt transporter 

(CorB) 
PA4190 22D2 A pqsL Probable FAD-dependent monooxygenase 
PA4489 2D1 A - Conserved hypothetical protein 
PA5524 2bH1 A - Probable short-chain dehydrogenase 
A1 9dA5 A topA Topoisomerase 1A, P. aeruginosa 2192: genomic island PAGI-2, P. aeruginosa 

strain C. 
A2 8dA5 A fpvA Siderophore receptor for type III ferripyoverdine, P. aeruginosa strain 59.20 
A3 9dH5 A phiCTXp40 Pseudomonas phage phiCTX, hypothetical protein, ORF37 
PA0999 3D9 B pqsD 3-oxoacyl-[acyl-carrier-protein] synthase III 
PA1003 46A8 B mvfR Transcription regulator 
PA2361 8cD6 B - Hypothetical protein 
PA2588 2D4 B - Probable transcriptional regulator 
PA4915 9dC6 B - Probable chemotaxis transducer 
PA2537 3D2 C - Probable acyltransferase 
PA2579 9bA10 C kynA Tryptophan 2,3-dioxygenase 
PA2838 8A9 C - Probable transcriptional regulator 
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Map position 
of Tn5: gene 
number in 
PAO1 
genome 

Mutant Type of 
Morphology#

Gene name Gene annotation 

PA4734 9D2 C - Hypothetical protein 
PA4552 14D1 D pilW Type IV fimbrial biogenesis protein 
PA4554 10cB5 D pilY1 Type IV fimbrial biogenesis protein 
PA0413 39B4 E chpA Chemotaxis protein 
PA0415 8bB12 E chpC Chemotaxis protein 
PA1846 46D12 E cti Cis/trans isomerase 
PA4916 15D9 E - Hypothetical protein; predicted ADP-ribose pyrophosphatase 
PA4954 17A12 E motC membrane protein, part of the torque generator of the flagellar motor 
PA2388 39A12 F fpvR Transcriptional regulator 
PA2391 25D7 F opmQ Probable outer membrane protein precursor 
PA3194 24C8 G edd Phosphogluconate dehydratase 
PA4640 14D12 G mqoB Malate:quinone oxidoreductase 
H1 6eB10 H - No homologies in PAO1 genome, GC low region at pos. 3291786 – 3291972 in 

a genomic island of the P. aeruginosa 2192 genome 
 
Unstable mutant morphotypes with rapid reversion to wild type morphotype 
PA0482 8aC12 - glcB Malate synthase G 
PA0728 7bE4 - - Probable bacteriophage integrase 
PA0785 8dH9 - - Probable acyl carrier protein phosphodiesterase 
PA0920 18D12 - - Hypothetical membrane protein 
PA1589 31D7 - sucD Succinyl-CoA synthetase alpha chain 
PA1633 10cB10 - kdpA Potassium-transporting ATPase 
PA1823 8dE1 - nudC NADH pyrophosphatase 
PA2706 30A10 - - Hypothetical protein 
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Map position 
of Tn5: gene 
number in 
PAO1 
genome 

Mutant Type of 
Morphology#

Gene name Gene annotation 

PA2946 5cB6 - - Hypothetical protein; predicted integral membrane protein 
PA3012 48C4 - - Hypothetical protein 
PA3238 19B12 - - Hypothetical protein 
PA3239 10dB4 - - Conserved hypothetical protein, predicted surface lipoprotein (VacJ) 
PA3804 16D9 - - Hypothetical protein 
PA4131 18A11 - - Probable iron-sulfur protein 
PA4703 8dE7 - - Hypothetical protein; predicted regulator of competence-specific genes (TfoX) 
PA4797 44B7 - - Probable transposase. 
PA4949 1C8 - - Conserved hypothetical protein; predicted sugar kinase 
PA4951 1C2 - orn Transcription, RNA processing and degradation, oligoribonuclease 
PA5121 6B12 - - Hypothetical membrane protein; predicted small-conductance 

mechanosensitive channel (MscS) 
PA5231 36C4 - - Probable ATP-binding/permease fusion ABC transporter 
PA5546 30A4 - - Conserved hypothetical protein; predicted cyclopropane fatty acid synthase 

(Cfa) 
PA5563 21C1 - soj Chromosome partitioning protein 
UK1 9dD7 - - No homologies in PAO1 genome 
PR1 46C4 - - Promoter region of PA1266 gene 
PR2 8dA12 - - Promoter region of PA3782 gene 

 

# Morphotype: A - shiny autolysis, A+ - shiny autolysis, but not white on iron supplemented medium; B – white colony on blood agar and iron supplemented media, 

on Congo red agar the colour is concentrated in the center of colony; C – light rose or colourless on Congo red agar, D – autolysis, but no shine, E - non mucoid 

at room temperature; F – orange pigment in the center of colony; G – small colony; H – highly mucoid.  
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Four of these sequences were ascribed to either Pseudomonas phage phiCTX 

(Nakayama et al., 1999), two genomic islands known from P. aeruginosa strain 2192 

(GI 84328724) or to a non-PAO type of the pyoverdine receptor FpvA (Smith et al., 

2005), respectively. One sequence (9dD7) was not homologous to any sequence in 

the database.  

Of the 57 genes, properties of the encoded product have been characterized for 19 

genes (Table III-1). A functional category could be ascribed in silico to 18 genes, 

whereas 20 ORFs encode hypothetical proteins of yet unknown function. All 57 

sequenced genes exhibited an average of 99.8 % nucleotide homology using the 

BLAST algorithms (http://www.ncbi.nlm.hiv.gov). 

 

1.2. Colony morphology variants of P. aeruginosa  
The selection of the mutants on different media revealed 57 mutants (Table III-1). To 

confirm the indicated morphotype, an assessment of colony morphology was 

performed for each single mutant and repeated twice. Representative phenotypes of 

the eight robust morphotypes are shown in Figure III-3. 
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Figure III-3. Types of colony morphology of P. aeruginosa TBCF10839 mini-Tn5 transposon mutants on LB agar with Congo red (1), blood agar (2), LB agar (3), 

LB agar supplemented with 4 mM FeSO4 (4): WT, TBCF10839 strain; A, shiny autolysis; B, white colony on blood agar and iron supplemented media, on Congo 

red agar the colour is concentrated in the center of colony; C, light rose or colourless on Congo red agar; D, soft autolysis, no shine; E, non mucoid structure at 

room temperature; F, orange pigment in the center of colony; G, small colony size; H, highly mucoid. Transposon insertions into the TBCF10839 homolog of 

PA2028 (A), PA1003 (B), PA2579 (C), PA4554 (D), PA0415 (E), PA2388 (F), PA4640 (G), GC reach region at pos. 3291786 – 3291972 in a genomic island of 

the P. aeruginosa 2192 genome (H) 
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The metallic, iridescent sheen colonies with an inner circle of lysed cells (Figure III-3 

A) represented the most frequent morphotype in our panel (Table III-1). The colonies 

with visible autolysis are noted in early descriptions for P. aeruginosa isolates (Berk, 

1963, 1965; Holloway, 1969). In our experiments, the autolysis was visible after 24 

hours of incubation at 37 oC on all tested media. The mechanism of autolysis for 

these mutants is not clear and has so far only been described for the pqsL mutant. 

By D'Argenio et al. (2002) PqsL was established as a negative regulator of HAQ 

biosynthesis and the autolysis of the pqsL mutant was attributed to the uncontrolled 

overproduction of bactericidal HAQs. Colonies of wild-type strains are typically 

brownish on high-iron medium (4 mM FeSO4), but all mutants other than PqsL were 

colourless indicating that iron uptake was compromised. The fact that the pyoverdine 

receptor FpvA, the major uptake system for iron in P. aeruginosa (Smith et al., 2005; 

Ravel et al., 2003), is amongst these mutants, is consistent with this interpretation.  

 

Type B colony morphology mutants (Figure III-3 B) appeared white on iron 

supplemented medium and blood agar, were impaired in hemolytic activity and 

accumulated the dye Congo red in the center of the colony. Congo red is known to 

bind extracellular matrix components and is taken as a surrogate marker for biofilm 

formation (Solano et al., 2002; Zogaj et al., 2001). 
All type B mutants secreted proteases, being one of the most important determinants 

in the pathogenesis of Pseudomonas infections (Kessler et al., 1998) (Figure III-4), 

but lacked HAQ production including PQS (Bredenbruch et al., 2005) (Figure III-5).  

 

 
Figure III-4. Examination of inducible proteolytic activity on casein agar by: Tn5::PA0999 (1), 

Tn5::PA1003 (2), Tn5::PA2361 (3), Tn5::PA4915 (4), Tn5::PA2588 (5), TBCF10839 wild type (6). 
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Figure III-5. Thin layer chromatogram of HHQ metabolites. Extracts isolated from TBCF10839 (lane 2) 

and its isogenic transposon mutants Tn5::PA0999 (lane 3), Tn5: PA1003 (lane 4), Tn5::PA2361 (lane 

5), Tn5::PA4915 (lane 6), Tn5::PA2838 (lane 7), Tn5::PA4190 (lane 8), synthesized PQS (standard, 

lane 1). 

 

The pleiotropic B phenotype was not only caused by the inactivation of members of 

the HAQ biosynthesis operon (pqsD and mvfR) (Xiao et al., 2006; Wade et al., 2005; 

Farrow et al., 2007), but also by that of three yet uncharacterized genes (PA2361, 

PA2588, PA4915) (Table III-1). The phenotype of these mutants will be described in 

the following chapters in detail. 

 

Colony type C mutants were light rose or colourless on Congo red agar (Figure III-3 

C) suggesting that biofilm formation was affected. The phenotype was shared by 

mutants of metabolic genes (PA2537, PA2579), a LysR transcriptional regulator 

(PA2838) and a conserved hypothetical (PA4734) that has numerous orthologs in 

‘honorary pseudomonads’ that are the metabolically related Burkholderia, Ralstonia 

and Xanthomonas bacteria. 

 

Mutants of the non-piliated TBCF10839 strain (Chang et al., 2007) in the pilin 

biosynthesis genes pilY1 and pilW showed colonies with soft autolysis on LB agar, 

but not on blood agar or on plates supplemented with or depleted of iron (Figure III-3 
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D). Autolysis became visible by 9 hours of incubation and was maximal by 48 hours 

(Figure III-6).  

 

 
Figure III-6. The autolysis formation by Tn5::pilY1 mutant on LB agar with 40 μg/mL Congo red dye 

during 48 hours of incubation at 37oC. 

 

This medium-dependent phenotype of cell lysis points to pili-unrelated roles of PilY1 

and PilW for the P. aeruginosa cell. By Chang (2006) it was shown that the pilY1 

gene plays a role in the biosynthesis of phenazines. PilY1, previously only known as 

a retraction regulating tip-associated adhesin, was shown also to be involved in the 

intracellular packaging, handling and/or controlling the release of quinolones to 

protect the cell against the accumulation of these metabolites (Chang, 2006).  

 

In five mutants the alginate-overproducing TBCF10839 strain had reverted to a non-

mucoid phenotype (Figure III-3 E). Two mutants PA0413 and PA0415 are members 

of one operon of the genes involved in chemotaxis, motility and attachment. Another 

one (PA4954) is also a membrane protein, a part of the torque generator of the 

flagellar motor involved in chemotaxis. The last gene from the group encodes a 

cis/trans isomerase.  

On the contrary, the transposon mutagenesis in the 6eB10 mutant induced an even 

stronger mucoid morphotype (Figure III-3 H). Because no homologies in the PAO1 
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genome were found after the BLAST search, the region surrounding the Tn5 insert 

was obtained by plasmid rescue method. The 8.2 kbp plasmid was multiplied in E. 

coli XL-10 Gold and sequenced. The sequencing revealed that the Tn5 is inserted in 

a GC low region of a 38461 kbp genomic island of the P. aeruginosa 2192 genome at 

position 3291786 – 3291972 (Figure III-7 A, B).  
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Figure III-7. (A) The position of the Tn5 insert in the PAO1 genome. (B) The genes surrounding the 

Tn5 insert (see Appendix 1).   

 

Two mutants turned orange on Congo red agar due to the knock-out of genes (fpvR, 

opmQ) of the pyoverdine locus (Smith et al., 2005; Ravel and Cornelis, 2003) (Figure 

III-3 F). The antisigma factor FpvR is involved in signal transduction that itself 

negatively regulates the activity of the extracytoplasmic family sigma factor protein 

PvdS. It results in the production of the virulence factors: pyoverdine, exotoxin A and 

others. OpmQ has an over 30% identity with OMF proteins of RND/MFP/OMF-type 

efflux systems (Poole, 2001; Zgurskaya and Nikaido, 2000).  

 

Furthermore, colonies were smaller when transposon mutagenesis had inactivated 

one of two core genes of energy- and carbohydrate- metabolism, the 
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phosphogluconate dehydrogenase Edd that converts 6-phosphate-gluconate to 2-

keto-3-deoxy-6- phosphate -gluconate in the Entner-Douderoff pathway (Cuskey and 

Phibbs, 1985) and the malate:quinone oxidoreductase MqoB that catalyzes the 

conversion of malate to oxaloacetate in the citric acid / glyoxylate cycles 

(Kretzschmar et al., 2002).   

 

The morphology of TBCF10839 mutants was compared with the transposon mutant 

collections of the sequenced strain PAO1. TBCF10839 homologues are 99.8 % or 

more identical in sequence with the respective PAO1 genes. In contrast, the complex 

trait of a colony morphology variant found in a TBCF10839 transposon mutant was 

not reproduced by the insertion of a transposon into the homologous gene of the 

PAO1 strain in 16 of 19 loci indicating that the genetic background is essential for 

shaping complex phenotypes (Table III-2).  
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Table III-2. Comparison of colony morphology of TBCF10839 and PAO1 transposon 
mutants that are inserted into homologous genes. 
 

Morphotype* PAO1 gene number of 
transposon insertion 

TBCF10839 
transposon mutants 

PAO1 
transposon mutants** 

PA2122+ A not A; wild type PAO1 
PA3462++ A not A; wild type PAO1 
PA3748++ A not A; wild type PAO1 
PA4190++ A A 
PA4489++ A not A; wild type PAO1 
PA0999++ B B 
PA1003++ B B 
PA2361++ B not B; wild type PAO1 
PA4915++ B not B; wild type PAO1 
PA4734++ C not C; wild type PAO1 
PA4552++ D not D; wild type PAO1 
PA4554++ D not D; wild type PAO1 
PA0413++ E not E; wild type PAO1 
PA0415++ E not E; wild type PAO1 
PA1846++ E not E; wild type PAO1 
PA4954++ E not E; wild type PAO1 
PA2388+ F not F; wild type PAO1 
PA2391++ F not F; wild type PAO1 
PA4640+ G not G; wild type PAO1 

 *See Table III-1, footnote #  

**PAO1 mutants were provided by the University of Washington Genome Center “Pseudomonas 

aeruginosa PAO1 mutant collection” (http://www.genome.washington.edu) (Jacobs et al., 2003).  

+One PAO1 transposon mutant; ++Two PAO1 transposon mutants with an insert at the 5’ end (mutant 

1) or at the 3’ end (mutant 2) of the gene.  

 

All other 25 mutants listed in Table III-3 after several repeats did not show a robust, 

stable morphotype distinct from TBCF10839 wild type strain, but together with others 

were included in the STM competition experiments (Table III-3). 
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Table III-3. STM Tn5 TBCF10839 colony morphology variants: media and culture conditions1 used in the study that led to detectable 
changes in morphotype. 
 
PAO1 gene 
number of 
transposon 
insertion  

1 
LB agar 

 

2 
LB agar 

+ 
Congo red 

dye 
 

3 
LB agar 

supplement
ed with iron

(Fe2+) 

4 
LB agar 
depleted 
from iron 

 

5 
LB agar 

/ 
*LB agar 

+ 
Congo red 

dye 

6 
LB agar 

7 
LB agar1 

8 
Minimal 
medium 

(M9 agar) 
 

9 
Blood-agar 

 
 

  
37oC 

 
22 – 25oC 

 
42oC 

 
4oC 

 
37oC 

PA0424 x x x x x x  x x 
PA2028 x x x x x x  x x 
PA2122 x x x x x x  x x 
PA3462 x x x x x x  x x 
PA3748 x x x x x x  x x 
PA4190 x x  x x x   x 
PA4489 x x x x x x  x x 
PA5524 x x x x x x  x x 
A1 x x x x x x  x x 
A2 x x x x x x  x x 
A3 x x x x x x  x x 
PA0999  x x      x 
PA1003  x x      x 
PA2361  x x      x 
PA4915  x x      x 
PA2537  x        
PA2579 
PA2588 

 x 
x 
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PAO1 gene 
number of 
transposon 
insertion  

1 
LB agar 

 

2 
LB agar 

+ 
Congo red 

dye 
 

3 
LB agar 

supplement
ed with iron

(Fe2+) 

4 
LB agar 
depleted 
from iron 

 

5 
LB agar 

/ 
*LB agar 

+ 
Congo red 

dye 

6 
LB agar 

7 
LB agar1 

8 
Minimal 
medium 

(M9 agar) 
 

9 
Blood-agar 

 
 

PA2838  x        
PA4734  x        
PA4552 x x        
PA4554 x x        
PA0413     x / x*     
PA0415     x / x*     
PA1846 
PA4915 

    x / x* 
x / x* 

    

PA4954     x / x*     
PA2388 x x        
PA2391 x x        
PA3194 x x    x   x 
PA4640 x x    x   x 
H1 x x x      x 
PA0482  o        
PA0728  o        
PA0785  o        
PA0920  o       o 
PA1589  o        
PA1633  o        
PA1823  o       o 
PA2706  o        
PA2946 o o        
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PAO1 gene 
number of 
transposon 
insertion  

1 
LB agar 

 

2 
LB agar 

+ 
Congo red 

dye 
 

3 
LB agar 

supplement
ed with iron

(Fe2+) 

4 
LB agar 
depleted 
from iron 

 

5 
LB agar 

/ 
*LB agar 

+ 
Congo red 

dye 

6 
LB agar 

7 
LB agar1 

8 
Minimal 
medium 

(M9 agar) 
 

9 
Blood-agar 

 
 

PA3012  o        
PA3238  o        
PA3239  o        
PA3804  o       o 
PA4131  o  o      
PA4703  o        
PA4797  o        
PA4949  o        
PA4951 o o        
PA5121  o      o  
PA5231  o        
PA5546 o o        
PA5563  o        
UK1  o        
PR1  o        
PR2  o       o 
X Stable morphotype distinct from wild type; O Unstable morphotype with rapid reversion to wild type morphotype. 1 Cultures of conditions 1–6, 8, 9 were examined 

after 48 h cultures in LB agar at 4oC were examined every day for a period of 21 days. 
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1.3. Survival of colony morphology variants in a murine airway 
infection model  

To mimic the dissociative behaviour of P. aeruginosa in lung infections, the 57 

isogenic colony morphology variants were tested for their competitive fitness to 

survive in murine airways and to spread to other organs. For this, mutants were 

grown separately in LB agar and liquid by overnight incubation. Pools of 25 mutants 

each of which harbouring different signature tags were instilled into murine airways 

(three mice per experiment) and bacteria were recovered 48 hours later from lungs, 

spleen and liver and cultivated on LB. In parallel, bacteria from the control plates after 

48 h hours of incubation were plated again on fresh LB and incubated in the same 

incubator. Genomic DNA was prepared from both input and output pools, and an 

amplification of the signature tags was performed by PCR (Figure III-8). 
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Figure III-8. The scheme of the STM competition experiment in vivo. Transposon mutants with 

different signature tags were separately grown and pooled together directly before mice infection. 

From this pool, one aliquot of bacterial suspension was cultivated on LB agar or liquid (input pool) and 

another one was used for the intratracheal mice infection (output pool).  
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The amplified signal sequences were hybridized on dot blots, which were previously 

prepared by PCR amplification of signal sequences from selected mutants. The 

signal intensities from the output pool were compared with the signal intensities from 

the input pool. The evaluation of the selection results was performed by determining 

the optical density on a X-ray film after hybridization. These X-ray films were scanned 

and densities of the respective dots were determined with the PCBAS program, 

version 2.09f. An example of the scanned blot for selection is shown in the Figure III-

9. The dot blots show transposon mutants with higher (1) or lower survival (2) in vivo 

and mutants that were detected at similar rates (4) or not at all (3) from the pools of 

mutants grown in vitro or in vivo. 

 

 
Figure III-9. Dot blot hybridization of oligonucleotide signature tags to determine the survival of 

individual P. aeruginosa TBCF10839 colony morphology mutants in competition experiments. DIG-

labeled, HindIII-digested signal sequences isolated from bacteria not subjected to selection (control) or 

from bacteria recovered from organs after murine infection experiments (liver, lung and spleen) were 

hybridized onto dot blots of the signal sequences of the pTnModOGm SigTag. Signal intensities 

indicate mutants with high (1) or low (2) survival rates in vivo, and mutants growing poorly (3) or at 

similar rates (4) in vitro and in vivo. Transposon insertions (from left to right) into the TBCF10839 

homologs of 1, PA4131; 2, PA4552; 3, PA4954; 4, PA4734; 5, PA0999; 6, PA4640; 7, phage phiCTX 

ORF37; 8, PA3194; 9, PA5231; 10, PA2388; 11, PA5563; 12, PA1589. 

 

All in all six STM competition experiments were done. After four experiments the 

mutants with the least and the highest survival were separately tested in a fifth and 

sixth round (Figure III-10).  
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Figure III-10. Total CFU of P. aeruginosa TBCF10839 STM colony morphology mutants recovered 

from murine organs 48 h after intratracheal instillation of up to 25 differentially tagged mutants. The 

mutants with the lowest (closed diamonds) and highest survival (open diamonds) in the first four 

experiments (closed square, closed circle, closed triangle, open triangle) were pooled and tested 

again. 

 

The competition experiments revealed 17 mutants having other than wild type 

behaviour in vivo. Table III-4 lists the 17 colony morphology mutants that grew better 

(six mutants, category 1) or worse (seven mutants, category 2) than their competitors 

in vivo or that were globally compromised in growth (four mutants, category 3).  

 
 
Table III-4. STM competition experiments. P. aeruginosa TBCF10839 colony 

morpholoy mutants with higher or lower fitness in acute murine airway infection. 

Map position of 
Tn5 mutant: gene 
number in PAO1 

Annotation 

 
Category 1: “gain of function” (enhanced survival in vivo) 
PA4131 Probable iron-sulfur protein 

PA4552   pilW , type 4 fimbrial biogenesis protein 

PA4554   pilY1, type 4 fimbrial biogenesis protein 

PA4734  Conserved hypothetical protein 

PA4954 motC, chemotaxis protein 

PA5546   Hypothetical protein; predicted cyclopropane fatty acid synthase 

(Cfa) 
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Map position of 
Tn5 mutant: gene 
number in PAO1 

Annotation 

 
Category 2: “loss of function” (reduced survival in vivo) 
PA0999  pqsD, 3-oxoacyl-[acyl-carrier-protein] synthase III 

PA2537   Probable acyltransferase 

PA2588 Probable transcriptional regulator 

PA2706 Hypothetical protein 

PA2838 Probable transcriptional regulator 

PA3239 Hypothetical protein; predicted surface lipoprotein (VacJ) 

PA4640 mqoB, malate:quinone oxidoreductase 

 
Category 3: “non-competitive” (no survival in vitro and in vivo) 
PA0785 Probable acyl carrier protein phosphodiesterase 

PA3194  edd, phosphogluconate dehydratase 

PA4916 Hypothetical protein; predicted ADP-ribose pyrophosphatase 

phiCTX Pseudomonas phage phiCTX, hypothetical protein 

 
 

Twelve of the 17 mutants belonged to the group with robust morphotypes which 

included all type D and G, three type C, two type B, two type E and one mutant of the 

most abundant category A of strains with glossy autolysis.  

 

High fitness in vivo was associated with a change of extracellular texture (PA4734, 

motC), impaired swarming and swimming (motC) or predisposition to cell lysis (pilW, 

pilY1). The wild-type TB strain is non-piliated due to a deletion in the pilQ gene 

(Chang et al., 2007) and hence any secondary mutations in pilin biogenesis genes 

would be phenotypically silent with respect to pilin production. The autolysis of the 

mutants, however, points to further features of PilW and PilY1 that are unrelated to 

pilin biogenesis and should confer the higher fitness of the mutants in the STM 

infection experiments.  

 

Low fitness in murine airways was observed in metabolic- (PA2537, mqoB), 

regulators of transcription (PA2838, PA2588) or HAQ-deficient (pqsD) mutant 

morphotypes.  
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In case of the globally compromised mutants, the transposon had disrupted a gene 

that is essential for survival in a community of isogenic TB strains. Not surprisingly 

mutants were carrying the transposon in metabolic genes (PA0785, edd and 

PA4916). In the last mutant listed in the Table III-4 the transposon mutagenesis had 

hit the phiCTX phage that probably made this strain vulnerable to the attack of 

phage–proficient competitors so that it could not survive. Besides this phage mutant, 

the susceptibility to autolysis apparently conferred neither an advantage nor 

disadvantage to the strains to persist in murine airways and to spread to other 

organs. All non-competitive mutants from the third category were not auxotrophic and 

could grow in pure cultures, but could not successfully compete for nutrients in a 

microbial community of isogenic mutants.  

 

Thus, the STM technique used for the generation of the library has an advantage to 

allow simultaneous examination of a large number of isogenic transposon mutants 

using unique DNA marker sequences for differentiation. The screening a pool of 

mutants exposed to a distinct habitat of interest revealed 17 loss- or gain- of function 

mutants with a worse or better survival. To get an overview of targeted genes, the 

knocked-out mutants were tested with various bioassays and will be described in the 

following chapters.  
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2. Analysis of the targeted genes 
After identification of new virulence genes, different assays were performed with 

knock-out mutants to reveal mechanisms by which one or another gene is 

responsible for an unusual phenotype. These assays include many parameters: 

analysis of secreted virulent factors, survival rate in vivo, biochemical assays, 

transcriptome profiles and others. Figure III-11 presents the scheme of the 

experimental steps from the beginning (screening in vitro and in vivo was already 

described in previous chapters) to the detailed analysis of the targeted genes (Figure 

III-11). The main goal of the analysis of the targeted genes is our understanding of 

the function of the gene, its role in adaptation, survival and persistence of P. 

aeruginosa in the living organism.  
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Figure III-11. Scheme of the experimental steps. 

 

First of all, the causative role of the transposon-inactivated gene for morphotype was 

tested for a subset of nine mutants (Tn5::PA3194, Tn5::PA4640, Tn5::PA4916, 

Tn5::PA0785, Tn5::PA4131, Tn5::PA4552, Tn5::PA4554, Tn5::PA0999 and 

Tn5::PA1003) by complementation of the full length gene in trans. Complementation 
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was performed by using plasmids pME6010 (Heeb et al., 1988) or pUCP20 (Garrity-

Ryan et al., 2000). The genes with their own promoter regions were amplified from 

TBCF10839 by PCR and cloned into one of the vectors.  

In the beginning, the pME6010 plasmid was used for the complementation of 

Tn5::pilW and Tn5::pilY1 mutants. However, the large size of the pME6010 plasmid 

(8,3kb) is a disadvantage, especially given the difficulties of cloning and 

transformation of large fragments into the cell. As an alternative, the smaller 3898 bp 

shuttle vector pUCP20 was used for the complementation, especially for the long 

length fragments.  

 

After the complementation, the representative mutants of the three categories were 

retested separately in mice infection experiments in order to differentiate between the 

virulence for the host and the fitness within the bacterial community. Infection 

experiments were carried out for six perspective mutants listed in the Table III-4 

(Tn5::PA3194, Tn5::PA4640, Tn5::PA4916, Tn5::PA2537, Tn5::PA4954, and 

Tn5::PA0785). This non-invasive application technique (Munder et al., 2002) via 

catheter allowed controlling of the delivery of the bacteria to the lungs. During 14 

days of infection, the weight and rectal temperature (Appendix 3) of the mice were 

measured daily and their body condition was determined using a self-developed 

score (Munder et al., 2005). Two mice were sacrificed after 48 hours for the 

evaluation of lung histology or the determination of CFU in homogenized lungs, liver, 

spleen and brain.  

For the same set of mutants the metabolic profile by testing the bacterial culture on 

different chemicals was preformed by Phenotypic Microarrays (PMs) analysis. 

Different chemicals were tested in 96 well microtiter plates (Figure III-12).  

For this study, 5 micro (PMs) plates containing major substrates for the assimilation 

of carbon (181 C-sources, PM1, PM2A), nitrogen (95 N-sources, PM3B), phosphor 

and sulfur sources (59 P- and 35 S-sources, PM4A) were used. One plate was used 

to test the stimulation of bacterial growth by nutrient supplements (95 compounds, 

PM5) (http://www.biolog.com). PMs method allows testing many chemicals 

simultaneously and comparing a methabolic profile of the mutant with wild type 

strain(s).  
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Figure III-12. The procedure of testing of the bacterial cells phenotype (Bochner et al., 2001). Aliquots 

of the microbe are incubated in the microtiter well plates, and respiration is monitored automatically 

over time via the OmniLog robot. The OmniLog instrument reads and records the color change in PM 

assays. The instrument cycles microplates in front of a color CCD camera to read 50 in as little as 5 

min and provides quantitative and kinetic information about the response of cells in the PMs. Data are 

stored directly into computer files and can be recalled and compared with other data at any time.  

 

Additionally, other biochemical phenotypic assays were performed. Thus, the testing 

of metabolic knock-out genes (mqoB and edd) on different carbon sources helped to 

get additional information about the phenotype of the mutants.  

 

At the same time, in silico analysis of the knocked out genes was performed by 

application of different internet databases as well as the transcriptome data for the 

estimation of the gene expression. The microarray technique permits the 

quantification of specific genes and their expression patterns in a comprehensive 

genome-wide framework (Ferea and Brown, 1999; Lipshutz et al., 1999).  

In our study the transcriptome data of different strains previously generated by 

Salunkhe (2003) in our laboratory was used. The transcription activity of the targeted 

genes was provided by the mRNA microarray expression of different P. aeruginosa 

strains: pairs of clonal variants TBCF10839 and 892 (Tümmler et al., 1991), the 

reference strain PAO1 (Stover et al., 2000), the CF isolates CHA (Dacheux et al., 

1999), LES400 and LES431 (Salunkhe et al., 2005).  

For the transcriptome analysis, the strains had been grown under different growth 

conditions and the absence or presence of stressors such as low iron, exposure to 

hydrogen peroxide, paraquat or human neutrophils (Salunkhe et al., 2005) (Appendix 
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2). To confirm the transcriptome data, quantitative PCR of the knocked out genes of 

Tn5::PA4640, Tn5::PA3194 and Tn5::PA4916 mutants was performed.  

Additionally, other bioassays were performed for the targeted genes: cytotoxicity of 

the mutants, enzymatic assay and virulence factors production.  

 

In the following chapters, the phenotype of the most striking isogenic colony 

morphology variants: Tn5::PA4131, Tn5::PA3194, Tn5::PA4640, Tn5::PA4916, 

Tn5::PA0785 and PA4954 will be described after testing with the various bioassays in 

detail. Additionally, a separate chapter will describe the phenotype of the HAQ 

deficient mutants being essential for the production and regulation of quinolones and 

phenazines known as major compounds involved in the pathogenicity of P. 

aeruginosa.  
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2.1. Features of “gain of function” mutants 
Six mutants listed in Table III-4 were higher in fitness after the STM competition 

experiments in vivo. To get an overview about targeted genes, two (PA4131 and 

PA4954 (mot C)) out of six were chosen for the detailed analysis.  

2.1.1. Tn5::PA4131, predicted iron-sulphur protein 
One of the mutants with an enhanced survival in lungs (Table III-4) has a PA4131 

gene knock-out, which encodes for an iron- sulphur protein related to genes involved 

in energy production and conversion. The protein harbours 4Fe-4S ferredoxins 

sequence signature and has orthologs in many species. PA4131 possesses a 

conserved 4Fe-4S ferredoxin domain including four cystein residues that bind to a 

[Fe4S4] cluster. PA4131 is a redox protein integrated in cytoplasmic membrane and is 

predicted to be one of the nitrogen fixation polyferredoxin proteins NapH. Nap 

proteins have been found in many different organisms, where they fulfill different 

physiological roles depending on the species. They can function as electron sinks, 

e.g. during photosynthesis in Rhodobacter sphaeroides (Richardson and Ferguson, 

1992; Reyes et al., 1996); they are used for redox balancing during aerobic 

respiration on highly reduced carbon sources, e.g. during growth of Paracoccus with 

butyrate as the main source of carbon and energy (Sears et al., 2000); and they may 

be used during anaerobic respiration, as in E. coli (Potter et al., 2001). 

The gene seems to play an important role for TBCF10839 according to the high level 

of transcription activity (Appendix 3) being not involved in the metabolism of the cell 

(Table III-5).  

 

Table III-5. PMs data of P. aeruginosa TBCF10839 Tn5::PA4131. 
Differenceb Testa 

TBCF10839 PAO1 

Mode of action 

L-Malic Acid  -60 C-source 

Dihydroxy-Acetone -142   C-source 

Phosphoryl Choline  -71 P-source 

(a) Chemicals were tested in 96-well PMs. (b) The OmniLog-PM software generates time course 

curves for respiration (tetrazolium color formation) and calculates differences between the areas for 

mutant and control cells. The units are arbitrary. Positive values (see below) indicate that the mutant 

showed greater rates of respiration than the wild type strains (TBCF10839 and PAO1). Negative 

values indicate that the control showed greater rates of comparisons respiration than the mutant. The 

differences are averages of pairwise comparisons. All assays were performed in duplicate.  
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As shown in Table III-5 the mutant was compromised to utilize one substrate 

(dihydroxy-acetone) only in comparison with wild type.  

 

PA4131 is a redox protein and seems to be important for P. aeruginosa. The protein 

might be an enzyme of the secondary metabolism, not being involved in key 

metabolic pathways according to the PMs data. If gene is inactivated, the other 

compensatory mechanisms will be switched on to stabilize the cell state in order to 

increase the adaptive properties of the pathogen under the stress conditions present 

in the lung.  

2.1.2. Tn5::PA4954, motC  

The P. aeruginosa genome contains dual sets of motAB-like genes PA1460-PA1461 

and PA4954-PA4953 (motCD), as well as another gene, motY (PA3526), which is 

known to be required for motor function in some bacteria (Doyle et al., 2004). The 

MotC protein was first identified as RpmA encoding membrane proteins that use 

membrane potential to conduct ions are required for the rotation of the flagellar 

motor. The phenotype of the motC mutant of the P. aeruginosa CF isolate 4020 was 

shown to be resistant to nonopsonic phagocytosis (Simpson and Speert, 2000). The 

motCD locus was required for the ingestion of P. aeruginosa by murine macrophages 

which represent the primary defense against P. aeruginosa in airways (Simpson and 

Speert, 2000).  

 

The mice infection experiments showed the motC mutant was most virulent and most 

heavily growing in murine organs (Figure III-12 A, B). The histology pictures (Figure 

III-12 C) indicate significant abnormality in lung architecture and strong inflammatory 

response by the infected cells. Both the mutant and wild type showed a strong 

purulent inflammation with intra- and peribronchial infiltrates of leucocytes. Animals 

infected with TBCF10839 wild type developed a profound, diffuse, necrotic, purulent 

and fibrinogenous pneumonia. The inflammation was characterised by perivascular 

oedema and intravascular thrombi. The pneumonia generated by the mutants was 

similar but less pronounced compared to the wild type, but much stronger compared 

to the vehicle control (Figure III-13 C, D, E). 
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Figure III-13. (A) Survival of mice whose airways had been inoculated at day 0 with 5x107 CFU of P. 

aeruginosa TBCF10839 (closed square) and Tn5::PA4954 (closed diamond). (B) CFU recovered from 

murine organs 48 h after intracheal instillation of TBCF10839 (closed square) and Tn5::PA4954 

(closed diamond). (C, D, E) Lung histology 48 h after infection with Tn5::PA4954 (C), TBCF10839 wild 

type (D) or vehicle control (30 µl PBS) (E). Hematoxylin-eosin stain; original magnification x 200, bar 

50 µm. b, bronchus; v, vessel; inflammatory infiltrates are marked by arrows.   

 

On top of that, an unexpected faster turnover of nutrients by the motC mutant was 

noted (Table III-6). The mutant more efficiently metabolized glucose, malate, 

aromatic amino acids, ammonia and biogenic amines than the wild type strain.  

 

Table III-6. PMs data of P. aeruginosa TBCF10839 Tn5::motC. 
Differenceb Testa 

TBCF10839 PAO1 

Mode of action 

p-Hydroxy-Phenylacetic Acid  83  C-source 

L-Malic Acid 68  C-source 

D-Glucose  85 C-source 

p-Hydroxy-Phenylacetic Acid  76 C-source 

L-Glutamine 104  N-source 

Acetamide 98  N-source 

L-Phenylalanine 66  N-source 
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Differenceb Testa 

TBCF10839 PAO1 

Mode of action 

Histamine 51  N-source 

Ammonia 50  N-source 

(a) See Table III-5, footnote a  

(b) See Table III-5, footnote b.  

Thus, the motC gene was shown to enhance survival of the pathogen in the lung. 

Such unusual phenotype of the mutant might be explained by a reciprocal cross-

control between the type III secretion (TTSS) process and flagellum assembly in P. 

aeruginosa described recently (Soscia et al., 2007). The expression of the P. 

aeruginosa TTSS regulon had been shown to be upregulated in a nonflagellated 

background, which results in an increase of TTSS effector secretion and of 

cytotoxicity on macrophages.  

Taking into account that the antiphagocytic TTSS is dependent on close contact with 

the host, it might be appropriate for the bacteria to shut down the flagellum required 

on the one hand for movement and on the other hand for phagocytosis stimulation. 

At the same time, the inactivation of motC gene increases the ability of the mutant to 

process various nutrients, which also has a positive impact on pathogen survival.  

Hence, the inactivation of the MotC/MotD torque generator is beneficial for P. 

aeruginosa to inhabit the atypical niche of the mammalian lung and to reinforce 

virulence. It is advantageous for the bacterium to stop producing this appendage at 

some stages of the infection process in order to escape the host nonspecific immune 

response. 
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2.2. Features of “loss of function” mutants  
Seven mutants after the STM competition experiments in mice showed different 

behaviour to the wild type and were less in fitness. Four of these mutants belong to 

genes of energy metabolism. In this chapter two targets: predicted acyltransferase 

(PA2537) and malate:quinone oxidoreductase (mqoB) were chosen for detailed 

analysis. Two genes related to the HAQ regulation and biosynthesis (PA0999 and 

PA2588) were contributed together with other genes involved in HAQ metabolism 

and will be described in the separate chapter (see chapter III-2.3).  

 

2.2.1. Tn5::PA2537, predicted acyltransferase 

One of the mutants with reduced survival in vivo had the PA2537 gene knocked out 

which encodes the enzyme acyltransferase (fatty acid and phospholipid metabolism). 

PA2537 has orthologs in many species due to conserved acyltransferase domain.  

The enzyme is probably 1-acyl-glycerol-3-phosphate acyltransferase accordingly to 

the information from the pseudomonas website (http://www.pseudomonas.com).  

 

The Tn5::PA2537 mutant is one of the mutants compromised for the binding of 

Congo red dye was less competitive in the STM competition experiments and 

impaired in mice infection experiments (Figure III-14 A).  

 

During infection, the mutant was less disseminated in the liver and spleen, but not in 

the lung (Figure III-14 B). The histology images did not show significant abnormality 

in lung architecture. Compared to a strong purulent inflammation induced by the wild 

type, only slight peribronchial and perivascular inflammation was detected in 

Tn5::PA2537 infected cells (Figure III-14 C, D, E).  
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Figure III-14. (A) Survival of mice whose airways had been inoculated at day 0 with 5x107 CFU of P. 

aeruginosa TBCF10839 (closed square) and Tn5::PA2537 (open triangle). (B) CFU recovered from 

murine organs 48 h after intracheal instillation of TBCF10839 (closed square) and Tn5::PA2537 (open 

triangle). (C, D, E) Lung histology 48 h after infection with Tn5::PA2537 (C), TBCF10839 (D) or vehicle 

control instilled with 30 µl PBS (E). Hematoxylin-eosin stain; original magnification x 200, bar 50 µm. b, 

bronchus; v, vessel; inflammatory infiltrates are marked by arrows.   

 

The metabolic profile of the mutant did not reveal any essential phenotypic 

differences compared with wild type strains TBCF10839 and PAO1.  

 

Table III-7. PMs data of P. aeruginosa TBCF10839 Tn5::PA2537. 
Differenceb Testa 

TBCF10839 PAO1 

Mode of action 

Dihydroxy-Acetone  53 C-source 

L-Malic Acid  -99 C-source 

Allantoin -68  N-source 

(a) See Table 3.5, footnote a  

(b) See Table 3.5, footnote b.  

 

Based on the reported phenotype, it is difficult to predict a function of the enzyme. If 

the enzyme belongs to the group of proteins involved in energy metabolism, we were 

expecting more substrates on which the mutant cannot properly grow. The lesser 
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binding of Congo red dye also might indicate that the mutant might be defective in 

the production of exopolysaccharides and biofilm formation. However, PMs data 

revealed that the mutant is compromised for utilization of one substrate only 

compared with wild type. It means that the reduced survival of the mutant is not 

linked with key metabolic processes and depends on either secondary metabolism or 

other unknown mechanisms.  

 

2.2.2. Tn5::PA4640, malate:quinone oxidoreductase (mqo)  

MQO is a FAD-dependent membrane-associated protein that catalyses the oxidation 

of malate to oxaloacetate. The electrons are donated to quinones of the electron 

transfer chain and NAD will not be accepted as electron acceptor (Kather et al., 

2000).  

 

The P. aeruginosa genome encodes one poorly expressed cytosolic NAD-dependent 

malate dehydrogenase (EC 1.1.1.37; PA1252) and two membrane-bound malate-

quinone oxidoreductases (MqoA, MqoB). The two latter FAD-dependent enzymes 

catalyze the conversion of malate to oxaloacetate whereby the electrons are donated 

to quinones of the electron transfer chain. 

MQO activity in P. aeruginosa PAO1 has been described by Mizuno and Kageyama 

(1978) as a membrane-associated malate dehydrogenase (MDH) activity that uses 

dichlorophenolindophenol and phenazinemethosulfate as electron acceptors. MQO 

has previously been studied in Corynebacterium glutamicum (Molenaar et al., 1998), 

Helicobacter pylori (Kather et al., 2000) and Escherichia coli (van der Rest et al., 

2000). In C. glutamicum and E. coli, both acytoplasmic NAD-dependent MDH and a 

membrane associated MQO are present. In C. glutamicum, a deletion in mqo 

resulted in a mutant whose growth defects could be eliminated by growth in the 

presence of nicotinamide; apparently, the NAD-dependent MDH was able to take 

over the function of MQO (Molenaar et al., 2000). In E. coli, the deletion of mqo did 

not result in an observable phenotype (van der Rest et al., 2000). 

 

The morphotype of mqoB mutant was described as a small size colony (not SCVs). 

Another feature of the mqoB mutant is that it cannot grow on minimal medium with 

ethanol as a carbon source. The indicated phenotype was also described for the 
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mqoB mutant of P. aeruginosa ATCC17933 strain. The wild type growing aerobically 

on ethanol was able to use a pyrroloquinoline quinone-dependent ethanol oxidation 

system, whereas the mutant with an interrupted putative mqo gene was defective, 

showed a severe growth defect on ethanol and was unable to grow on acetate 

(Kretzschmar et al., 2002).  

 

The measurement of MQO activity was performed to confirm previous results that the 

activity of the enzyme is associated with the membrane fraction. Wild-type P. 

aeruginosa TBCF10839, as well as mutant Tn5::mqoB, were grown on glucose as 

carbon source. Cells were collected by centrifugation at the late-exponential phase 

and disrupted by sonication. The membrane fraction was separated from the soluble 

cytoplasmic and periplasmic fractions by ultracentrifugation at 100000 x g, and tested 

for MQO activity. The activity of the enzyme is shown in Figure III-15. The membrane 

fraction of the wild-type cells exhibited MQO activity higher than the membrane 

fraction from mqoB mutant. The residual activity by mqoB mutant might be explained 

by the activity of a second mqo gene (mqoA).  

 

 

 
Figure III-15. MQO activity by TBCF10839 and mqoB mutant was measured by a decrease in 

absorbance of 2,6-dichlorophenol indophenol (DCPIP) at OD595nm. A membrane suspension was 

mixed first with L-malate, DCPIP, KCN and ethylamine; the other chemicals phenazinemethosulfate 

and FAD were added after 100 sec indicating the beginning of the reaction. In the negative control no 

membrane fraction was added. MQO activity was determined in the samples by measurement of the 

slopes of the reaction kinetics.  
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To confirm the observed phenotype of mqoB mutant, a complementation was 

performed. The PA4640 gene with its own promoter was amplified from the 

TBCF10839 genome and ligated into the pUCP20 vector.  The vector bearing the 

mqoB gene was then introduced into mqoB mutant by electroporation. The efficacy of 

the complementation was checked by growth of the positive clones on M9 medium 

with ethanol (Figure III-16).  

 
Figure III-16. Growth on minimal medium with 25 mM ethanol after 24h of incubation of P. aeruginosa 

TBCF10839 transposon insertion mutants Tn5::TBmqoB (1), P. aeruginosa PA14 MrT7::PA14mqoB 

(2), P. aeruginosa TBCF10839 Tn5::TBmqoB transformed with pUCP20 plasmid (vector control) (3), 

P. aeruginosa TBCF10839 Tn5::TBmqoB mutant complemented with pUCP20::TBmqoB (carrying the 

HindIII/SacI PCR product bearing the mqoB gene) (4, 5, 6), TBCF10839 (7) and PA14 (8) wild type 

strains.  

 

For better understanding of the metabolic function of the MQO enzyme, the 

phenotype analysis was carried out by PMs. The phenotype difference between the 

mutant and TBCF10839 or PAO1 wild types is described in Table III-8. Compared 

with wild-type TBCF10839, the mqoB mutant was compromised in the utilization of 

sulfonic compounds, fumarate, malonate and acetate, but interestingly not in that of 

malate. All substrates are oxidized in TCA cycle to CO2 and energy.  
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Table III-8. PMs data of P. aeruginosa TBCF10839 Tn5::mqoB. 
Differenceb Testa 

TBCF10839 PAO1 

Mode of action 

L-Malic Acid  -111 C-source 

Acetic Acid  -76 -74 C-source 

Malonic Acid  -54  C-source 

Fumaric Acid  -52  C-source 

L-Asparagine  -66  N-source 

Adenosine  -66  nutrient stimulation 

Positive Control* -61  nutrient stimulation 

Tween 80  -57  nutrient stimulation 

Inosine + Thiamine -50  nutrient stimulation 

2-Hydroxyethane Sulfonic Acid  -70  S-source 

L-Methionine Sulfoxide -62  S-source 

Methane Sulfonic Acid -58  S-source 

(a) See Table 3.5, footnote a  
(b) See Table 3.5, footnote b.  

*The positive control contained LB broth without any supplement. 

 

Downregulation of the genes from the TCA cycle was earlier reported for 

Corynebacterium glutamicum mqo mutant by transcription analysis and have not 

been reported for P. aeruginosa. For P. aeruginosa ATCC 17933 malate and 

fumarate supported growth of the mqo mutant (Kretzschmar et al., 2002) 

Under standard growth conditions in vitro, MqoA is 3.5 times less expressed than 

MqoB both at the transcriptional and translational levels, but is 9 times higher 

expressed under oxidative stress in presence of H2O2 (Figure III-17, Appendix 2).  
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Figure III-17. The malate-oxaloacetate pathway. H2O2 (arrows up and down) indicate up and 

downregulation of genes. Strains are indicated by their colors: TBCF10839, PAO1, CHA and LES431 

(see Appendix 2).  

 

The higher expression of the mqoB gene was also confirmed by quantitative PCR 

(qPCR), where compared to mqoB no expression by mqoA gene after 30 PCR cycles 

was detected (Figure III-18). 

 

 
 
Figure III-18. The qPCR of mqoB and mqoA genes. cDNA was obtained by reversed transcription of 

total cell mRNA extracted from cultures grown until late exponential phase. In this Figure, 8μl of the 

PCR product was taken after 30th cycle and loaded into the gel,  

 

PAO1                     TBCF10839          PAO1              TBCF10839 

               mqoB                                      mqoA  
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The loss-of-function phenotype of mqoB mutant was proven by chronic murine 

infection model. The survival of mice whose airways had been inoculated by single 

mqoB mutant was higher in comparison with wild type and caused less inflammation 

in murine lungs. The mqoB mutant was recovered in wild type frequencies from 

lungs, liver, spleen and brain (Figure III-19 A, B). The histology images did not show 

significant abnormality in lung architecture (Figure III-19 C, D, E). 

 
Figure III-19. (A) Survival of mice whose airways had been inoculated at day 0 with 5x107 CFU of P. 

aeruginosa TBCF10839 (closed square) and Tn5::mqoB (closed circle). (B) CFU recovered from 

murine organs 48 h after intracheal instillation. (C, D, E) Lung histology 48 h after infection with 

Tn5::mqoB (C), TBCF10839 (D) or vehicle control (30 µl PBS) (E). Hematoxylin-eosin stain; original 

magnification x 200, bar 50 µm. b, bronchus; v, vessel; inflammatory infiltrates are marked by arrows.   
 

Thus, Mqo is the key enzyme for the production of oxaloacetate which is a precursor 

for the synthesis of amino acids and citrate. Malic enzyme and pyruvate carboxylase 

may bypass the lack of Mqo but this pathway of oxaloacetate synthesis is insufficient 

for growth if C2-compounds like acetate or ethanol are provided as sole carbon 

sources. The mqoB mutant grew normally on LB within the microbial community of 

isogenic strains, but it grew slower on plates, was less virulent than wild type and 

was out-competed in murine lungs. This data suggests that the proficient production 

of oxaloacetate is necessary for airway colonizing capacity and virulence of P. 

aeruginosa. In other words, biological fitness of P. aeruginosa requires that the 
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turnover of acetyl-CoA, the key intermediate of sugar and fatty acid degradation, is 

not restricted by the insufficient supply of oxaloacetate.  

 

2.3. Features of the mutants affected in the biosynthesis 
and regulation of HAQs  
The intercellular communication of bacteria to cooperate and coordinate their 

behavior in a cell density-dependent manner plays an important role in lifestyle of the 

pathogen.  (Camara et al., 2002; de Kievit et al., 2000). A common feature of 

intercellular communication is the transcriptional activation of quorum-sensing-

controlled genes when the bacterial signal molecules reach a certain threshold. In 

addition to the two acyl-homoserine lactone-type autoinducers, signal molecules 

belonging to the family of 4-hydroxy-2-alkylquinolines (HAQs) (Deziel et al., 2004) 

have been identified, which include in addition to N oxides (exhibiting antimicrobial 

activities) 3,4-hydroxy-2-heptylquinoline (PQS) (Pesci et al., 1999) and 4-hydroxy-2-

heptylquinoline. Both molecules have been shown to be involved in intracellular 

communication. 

 

Out of six mutants Tn5::pqsD(PA0999), Tn5::mvfR(PA1003), Tn5::pqsL(PA4190), 

Tn5::PA2361, Tn5::PA4915 are predicted to be involved in the biosynthesis and 

regulation of HAQs, the role of the gene products had so far only been investigated 

for PqsL, PqsD and MvfR. They all are involved in the biosynthesis or regulation of 

HAQs (D'Argenio et al., 2002; Deziel et al., 2004; Gallagher et al., 2002; Wade et al., 

2005; Diggle et al., 2003). The transcription regulator MvfR is required for the 

production of several secreted compounds, including virulence factors and PQS (Cao 

et al., 2001: Rahme et al., 1997). PqsD being a part of pqsABCD operon, which 

encodes several putative enzymes required for the synthesis of HAQs is an analogue 

of FabH transacetylase (Gallagher et al., 2002). 

 

2.3.1. Characteristics of PA4915 and PA2361 genes 

PA4915 and PA2361 harbour sequence signatures of metalloproteinase and 

chemotaxis proteins and both have orthologs in almost all sequenced Pseudomonas 
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genomes and numerous other gamma-proteobacteria  with an overall sequence 

similarity of 30-40% according to information from the websites http://www.tigr.org 

and http://www.genome.ad.jp.  

The first PA4915 is annotated as a methyl-accepting chemotaxis protein related to 

genes of cell motility, secretion and signal transduction mechanisms. The gene 

contains a methyl-accepting chemotaxis protein (MCP) signaling domain, which is 

thought to transduce the signal to CheA since it is highly conserved in very diverse 

MCPs (Figure III-20).  

 

 
Figure III-20. The bacterial chemotaxis of P. aeruginosa (http://www.genome.ad.jp.). 

 

The proteins involved in chemotaxis, have a complicated structure and localization. 

Many other bacteria possess numerous MCPs, including both membrane-bound and 

soluble species. In the genome of P. aeruginosa, there are five loci containing 

clusters of chemotaxis-like genes (Cluster I to Cluster V) (Ferrandez et al., 2002). 

Cluster I and Cluster V are involved in chemotaxis (Masduki et al., 1995; Stover et 

al., 2000), Cluster III is involved in the regulation and function of type IV pili and 

twitching motility (Whitchurch et al., 2004), and Cluster IV is involved in 

autoaggregation (D'Argenio et al., 2002). The P. aeruginosa genome encodes 26 

MCPs.  

 

The second gene PA2361 is annotated as an uncharacterized protein conserved in 

many bacteria with unknown function (http://www.Pseudomonas.com). The gene 

from 25 to 1251 bp contains the region IsmF responsible for the type VI protein 
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secretion system component VasK (intracellular trafficking, secretion, and vesicular 

transport) (http://www.ncbi.gov), but no more information is available for the gene so 

far.  

2.3.2. Characteristic of PA2588 gene 

PA2588 is annotated as a probable transcription regulator with an AraC-type DNA-

binding domain-containing protein (http://www.pseudomonas.com).   

The AraC family of proteins contains over a hundred activators that are related to one 

another by sequence homology, especially between their carboxy-termini, which 

constitute their DNA-binding domains (Gallegos et al., 1997). However, despite their 

similarity to each other, these proteins regulate the expression of genes or operons 

that encode diverse functions. Some AraC family members activate the expression of 

genes or operons involved in the metabolism of carbon compounds that range from 

sugars to herbicides. Others allow the cell to respond to external conditions, such as 

oxidative stress, heavy metal toxicity or the presence of antibiotics. Still other AraC 

family members are required for the expression of virulence factors by bacterial 

pathogens  (Martin et al., 2001). 

 

2.3.3. Phenotypic characteristics of the HAQ deficient mutants 

The type B colony morphology mutants are an illustrating example that knock-outs in 

unrelated pathways or regulons may converge to the same morphotype. Even the 

transcriptome profile for all five mutants revealed a similarity of the genes expression. 

Genes are shown to be down regulated under oxidative stress condition induced by 

H2O2 for all mutants (Table III-9).  
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Table III-9. GeneChip signal intensities of mRNA transcripts involved in HAQs 

biosynthesis or regulation. 

Expression of mRNA transcripts 

TBCF10839 892 

 
ORF 

 
Gene 
name 

 
Gene annotation 

*LE, LB **LE, 
LB+H2O2 

*LE, LB **LE, 
LB+H2O2 

PA0999 pqsD 3-oxoacyl-[acyl-
carrier-protein] 
synthase III 

1268 220 (0.2) 244 167 (0.7) 

PA1003 mvfR Transcription 
regulator 

239 92 (0.4) 226 50 (0.2) 

PA2361 - Hypothetical 
protein 

100 10 (0.1) 36 15 (0.4) 

PA2588 - Probable 
transcriptional 
regulator 

350 51 (0.15) 114 23 (0.2) 

PA4915 - Probable 
chemotaxis 
transducer 

506 27 (0.05) 440 23 (0.05) 

Numbers in brackets indicate relative expression values in 10 mM H2O2 compared to growth in LB 

medium. 

*late exponential (LE) phase, cells were cultivated in LB and RNA was extracted at cell density OD578 

= 3.5. **LE, LB + 10mM hydrogen peroxide (Salunkhe, 2003) 

 

The absence of HAQs produced by mutants (Figure III-5), especially PQS, which is 

an important molecule for signal transduction had not been found to be crucial for the 

survival in lungs by Tn5::mvfR, Tn5::pqsL, Tn5::PA2361 and Tn5::PA4915 mutants. 

In two other cases, the knock-out either in PA0999 or PA2588 genes decreased 

survival of TBCF10839 in the lung. Tn5::PA2588 mutant was also shown to be 

impaired in the C. elegans infection model (personal communication, Garvis S), but 

the complementation studies to this mutant failed. This may indicate that either the 

morphotype was induced by secondary mutation event or another strategy for the 

complementation is recommended.  

 

Thus, our data indicate that the gene products of all five mutants are essential for the 

production or regulation of quinolones and phenazines that adds a further layer of 

complexity to the regulation of HAQ production. If the role of MvfR and PqsD is 

known, the targets of the other two type B mutants (PA2361 and PA4915) are not 
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directly involved in quinolone or phenazine synthesis. They are probably members of 

a network that regulates the production and transport of these major secondary 

metabolites of P. aeruginosa some of which exhibit antimicrobial activity, modulate 

the host defense or act as bacterial signaling molecules.  

The knock-out of an essential gene for biosynthesis should be detrimental for fitness, 

but the knock-out of a regulatory gene may be compensated by other mechanisms of 

the P. aeruginosa signalling network. Consistent with this interpretation, the PqsD 

knock-out was out-competed by isogenic strains that were capable to synthesize 

quinolones, whereas the knock-out in the master regulatory gene mvfR was not 

compromised in its fitness in vivo.  

 



III Results and discussion 
 

 

 102

2.4. Features of “non-competitive” mutants 
Four mutants of the last category 3 were shown to be non-competitive in the 

presence of other mutants after the STM competition experiments in mice. No 

survival in vivo and in vitro was detected. Three mutants from the group are related to 

the energy metabolism enzymes. In the following chapters three mutants will be 

described in detail, where one is known to be a key enzyme of energy metabolism 

(edd) and the other two are new genes affecting the fitness of P. aeruginosa in vivo 

and have not been reported so far in the literature.  

 

2.4.1. Tn5::PA3194, a key enzyme of Entner-Doudoroff (ED) pathway 
(edd) 

One of the non-competitive mutants listed in Table III-4 has a knock-out in edd gene 

well known as 6-phospho-gluconatedehydratase (EC 4.2.1.12) which catalyses the 

first step in the Entner-Doudoroff (ED) pathway. It dehydrates 6-phospho-d-gluconate 

into 6-phospho-2-dehydro-3-deoxy-d-gluconate (Peekhaus and Conway, 1998).  

 

The colonies of the edd mutant are smaller in size than wild type. The major feature 

of the mutant is its inability to grow on minimal medium with glucose as a carbon 

source. No growth of the mutant was detected after 24 hours of incubation at 37 oC 

(Figure III-21 A). Further, the mutant was successfully complemented and growth on 

glucose was recovered. Interestingly, the phenotype of TBCF10839 mutant was 

different from another clinical isolate PA14, where the last one could utilize glucose 

(Figure III-21 B).  
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Figure III-21. (a) Growth on minimal medium with 25 mM glucose after 24h of incubation of 

transposon insertion mutants Tn5::TBedd of strain TBCF10839 (1), MrT7::PA14edd of strain PA14 (2), 

TBCF10839 (3) and PA14 (4) wild type strains. (b) Growth on minimal medium with 25 mM glucose 

after 48h of incubation of P. aeruginosa strain TBCF10839 (1) and the isogenic transposon insertion 

mutants Tn5::TBedd (2), Tn5::TBedd transformed with pUCP20 plasmid (vector control) (3), 

Tn5::TBedd mutant complemented with pUCP20::TBedd carrying the HindIII/SacI PCR product 

bearing the edd gene (4, 5, 6). 

 

Many bacteria possess genes for the ED pathway, but the extent of its role in glucose 

catabolism varies considerably (Cuskey et al., 1985). 

In our experiments, the edd- mutant was out-competed both in vivo and in vitro. The 

mutant was attenuated in virulence in the mice infection experiment, caused less 

inflammation in murine lungs and was more efficiently eliminated than the wild type 

(Figure III-22 A, B).  The histology images did not show significant abnormality in lung 

architecture (Figure III-22 C,D,E).  
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Figure III-22. (A) Survival of mice whose airways had been inoculated at day 0 with 5x107 CFU of P. 

aeruginosa TBCF10839 (closed square) and Tn5::edd (closed triangle). (B) CFU recovered from 

murine organs 48 h after intracheal instillation. (C, D, E) Lung histology 48 h after infection with 

Tn5::edd (C), TBCF10839 (D) or vehicle control (30 µl PBS) (E). Hematoxylin-eosin stain; original 

magnification x 200, bar 50 µm. b, bronchus; v, vessel; inflammatory infiltrates are marked by arrows.   

 

 

The similar phenotype was reported for P. chlororaphis, where edd- knocked out 

mutant also failed to grow on glucose and displayed reduced root colonization (Kim 

et al., 2007).  In this context, a mutation in zwf of another CF isolate P. aeruginosa 

strain FRD1, encoding glucose-6-phosphate dehydrogenase, leads to a 90% 

reduction in alginate production (Silo-Suh et al., 2005).  

The metabolic profile showed the edd mutant was compromised in utilization of 

different compounds (Table III-10).  

 
 
Table III-10. PMs data of P. aeruginosa TBCF10839 Tn5::edd. 

Differenceb Testa 

TBCF10839 PAO1 

Mode of action 

L-Malic Acid   -108 C-source 

D-Gluconic Acid  -106  C-source 

D-Glucose  -76  C-source 

L-Aspartic Acid  -68  C-source 
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Differenceb Testa 

TBCF10839 PAO1 

Mode of action 

Xanthine -55 -76 N-source 

Adenosine  -57 -73 N-source 

Uric Acid  -65 N-source 

Xanthosine  -61 N-source 

Acetamide  -111  N-source 

Guanosine  -71  N-source 

N-Acetyl-D-Glucosamine   -68  N-source 

Cytidine -61  N-source 

D-Alanine  -55  N-source 

L-Asparagine  -51  N-source 

D-(+)-Glucose  -120 nutrient stimulation 

N-Acetyl D-Glucosamine  -107 nutrient stimulation 

Deferoxamine Mesylate  -103 nutrient stimulation 

Riboflavin  -101 nutrient stimulation 

Thiamine  -88 nutrient stimulation 

Putrescine  -82  nutrient stimulation 

Positive Control*  -65  nutrient stimulation 

2`-Deoxy-Adenosine  -56  nutrient stimulation 

L-Asparagine  -55  nutrient stimulation 

Tween 80  -54  nutrient stimulation 

Phosphoryl Choline  -143 P-source 

D-Glucose-6-Phosphate  -70 P-source 

D-Glucose-1-Phosphate  -68 P-source 

Pyrophosphate  -64  P-source 

(a) See Table 3.5, footnote a  
(b) See Table 3.5, footnote b.  

*The positive control contained LB broth without any supplement. 

 

The transcriptome profile did not reveal the differences in the gene expression 

among different strains under two different conditions. To have a full picture of the 

carbohydrates degradation by prokaryotic cells the Figure III-23 was made to exhibit 

the pathways and features in the regulation of genes involved in Entner-Doudoroff 

pathway (Figure III-23). 
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Figure III-23. The metabolic pathway of carbohydrates (Entner-Doudoroff pathway). H2O2 (arrows up 

and down) indicate up and down regulation of genes. Strains are indicated by their colors: 

TBCF10839, PAO1 and CHA (see appendix 2).  

 

An explanation of the mechanism by which the mutant is out-competed in vitro and in 

vivo is based on a biochemical property of the enzyme. As shown, the Edd is 

involved in the carbon flow from glucose and gluconate (PMs data) into pyruvate and 

alginate (Banerjee et al., 1983). The knock-out in the gene leads to the reduction of 

carbon metabolic process. By this, the colonies of the mutant are smaller in size than 

wild type and less mucoid. The reduction of alginate production leads to the 

decreasing of biofilm foramtion. All these factors are negatively influence on 

colonization of the pathogen and further its adaptation. It means that genes involved 

in energy metabolism are essential for the colonization, adaptation and dissemination 

of the pathogen, the genes of key metabolic pathways especially.  
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2.4.2. Tn5::PA0785, predicted acyl carrier protein 
phosphodiesterase 

PA0785 encodes a protein annotated as an acyl carrier protein phosphodiesterase. 

The gene has a flavodoxin like fold domain conserved among different species. The 

flavodoxin family includes bacterial and eukaryotic NAD(P)H dehydrogenase 

(quinine, EC:1.6.99.2). These enzymes catalyse the NAD(P)H-dependent two-

electron reductions of quinones and protect cells against damage by free radicals 

and reactive oxygen species (Fischl and Kennedy, 1990). This enzyme uses a FAD 

co-factor. The family also includes acyl carrier protein phosphodiesterase 

(EC:3.1.4.14). This enzyme converts holo-ACP to apo-ACP by hydrolytic cleavage of 

the phosphopantetheine residue from ACP (Li et al., 1995). 

The enzyme cleaves acyl-[acyl-carrier-protein] species with acyl chains of 6-16 

carbon atoms length although it appears to demonstrate a preference for the 

unacylated acyl-carrier-protein (ACP) and short- chain ACPs over the medium- and 

long-chain species (http://www.expasy.ch). 

The phenotype of the Tn5::PA0785 mutant possessed a high cytotoxicity compared 

to wild type (Figure III-24).  
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Figure III-24. Cytotoxicity of TBCF10839 and Tn5::PA0785 toward CHO cells. The cytotoxicity was 

assayed by measuring the lactate dehydrogenase (LDH) released into culture supernatants. CHO 

cells were infected with TBCF10839 or Tn5::PA0785 at a MOI of 10, and supernatants were collected 

at different time points. Each mutant/strain was tested triplicate. % was calculated from three 

independent experiments, 100 % value represented the LDH released from cells lysed by 0.1 % (v/v) 

TritonX-100. 
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In spite of high cytotoxisity, the mutant was shown to be out-competed both in vitro 

and in vivo, attenuated in mice infection experiment (Figure III-25). During infection, 

the mutant was less presented in the liver, spleen and in the lung (Figure III-25 B). 

The histology images did not show significant abnormality in lung architecture (Figure 

III-25 C, D, E).  

 

 

Figure III-25. (A) Survival of mice whose airways had been inoculated at day 0 with 5x107 CFU of P. 

aeruginosa TBCF10839 (closed square) and Tn5::PA0785 (open circle). (B) CFU recovered from 

murine organs 48 h after intracheal instillation of TBCF10839 (closed square) and Tn5::PA2537 (open 

circle). (C, D, E) Lung histology 48 h after infection with Tn5::PA0785 (C), TBCF10839 (D) or vehicle 

control was instilled with 30 µl PBS (E). Hematoxylin-eosin stain; original magnification x 200, bar 50 

µm. b, bronchus; v, vessel; inflammatory infiltrates are marked by arrows.   

 

The metabolic profile revealed that the mutant was compromised for utilization of a 

high amount of chemicals that testify about a complex correlation and participation of 

the enzyme in various metabolic processes (Table III-11).  
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Table III-11. PMs data of P. aeruginosa TBCF10839 Tn5::PA0785. 
Differenceb Testa 

TBCF10839 PAO1 

Mode of action 

L-Malic Acid   -67 C-source 

g-Amino-N-Butyric Acid    -134 N-source 

L-Arginine  -75  N-source 

Cytosine  -68  N-source 

Uracil  -64  N-source 

Histamine  -55  N-source 

Allantoin  -52  N-source 

N-Acetyl D-Glucosamine    -80 nutrient stimulation 

Tween 20   -66 nutrient stimulation 

p-Amino-Benzoic Acid   -65 nutrient stimulation 

D;L-Mevalonic Acid   -64 nutrient stimulation 

Guanine    -60 nutrient stimulation 

Tween 60  -102 -85 nutrient stimulation 

b-Nicotinamide Adenine Dinucleotide  -94 -60 nutrient stimulation 

d-Amino-Levulinic Acid  -90 -61 nutrient stimulation 

Tween 40  -88 -80 nutrient stimulation 

Cyano-Cobalamine  -86 -66 nutrient stimulation 

Riboflavin  -85 -76 nutrient stimulation 

Thiamine Pyrophosphate -79 -68 nutrient stimulation 

Deferoxamine Mesylate  -77 -82 nutrient stimulation 

Choline  -75 -66 nutrient stimulation 

D-(+)-Glucose  -72 -90 nutrient stimulation 

Thymine  -67 -98 nutrient stimulation 

Thiamine  -65 -66 nutrient stimulation 

Menadione  -59 -83 nutrient stimulation 

Folic Acid  -62 -64 nutrient stimulation 

Glutathione (reduced form)  -59 -74 nutrient stimulation 

Hematin  -58 -76 nutrient stimulation 

Nicotinic Acid  -111  nutrient stimulation 

D-Biotin  -103  nutrient stimulation 

Tween 80  -99  nutrient stimulation 

Quinolinic Acid  -96  nutrient stimulation 

L-Ornithine  -93  nutrient stimulation 

L-Serine  -90  nutrient stimulation 

L-Proline  -87  nutrient stimulation 
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Testa Differenceb Mode of action 
 TBCF10839 PAO1  

L-Glutamine  -86  nutrient stimulation 

Glycine  -86  nutrient stimulation 

Putrescine  -85  nutrient stimulation 

Spermidine  -83  nutrient stimulation 

Adenosine-3’;5’-Cyclic Monophosphate -81  nutrient stimulation 

L-Citrulline  -79  nutrient stimulation 

p-Amino-Benzoic Acid  -79  nutrient stimulation 

Positive Control*  -78  nutrient stimulation 

Pyridoxine  -76  nutrient stimulation 

L-Alanine  -76  nutrient stimulation 

Chorismic Acid  -74  nutrient stimulation 

L-Cysteine -74  nutrient stimulation 

L-Histidine -72  nutrient stimulation 

Pyrrolo-Quinoline Quinone  -71  nutrient stimulation 

L-Glutamic Acid  -71  nutrient stimulation 

Nicotinamide  -70  nutrient stimulation 

Negative Control  -70  nutrient stimulation 

Inosine + Thiamine  -69  nutrient stimulation 

Spermine  -68  nutrient stimulation 

L-Aspartic Acid  -67  nutrient stimulation 

Adenosine  -66  nutrient stimulation 

L-Tyrosine  -65  nutrient stimulation 

L-Arginine  -64  nutrient stimulation 

L-Tryptophan  -62  nutrient stimulation 

L-Leucine  -59  nutrient stimulation 

Adenine  -58  nutrient stimulation 

Uracil  -58  nutrient stimulation 

m-Inositol  -58  nutrient stimulation 

Pyridoxal  -56  nutrient stimulation 

D-Pantothenic Acid  -56  nutrient stimulation 

D-Glutamic Acid  -53  nutrient stimulation 

L-Threonine  -52  nutrient stimulation 

Guanosine-3’;5’-Cyclic Monophosphate -51  nutrient stimulation 

Phosphoryl Choline  -62 -129 P-source 

Thymidine- 5’-Monophosphate   -67 P-source 

O-Phosphoryl-Ethanolamine   -60 P-source 

Dithiophosphate  -62  P-source 

 



III Results and discussion 
 

 

 111

Testa Differenceb Mode of action 
 TBCF10839 PAO1  

Thiophosphate  -60  P-source 

O-Phospho-L-Threonine  -57  P-source 

D-Mannose-1-Phosphate  -56  P-source 

Phospho-L-Arginine  -54  P-source 

O-Phospho-D-Tyrosine  -53  P-source 

2-Hydroxyethane Sulfonic Acid -57  S-source 

Methane Sulfonic Acid  -54  S-source 

(a) See Table 3.5, footnote a  
(b) See Table 3.5, footnote b.  

*The positive control contained LB broth without any supplement. 

 

The obtained results indicate that the PA0785 gene knock-out reduces the ability of 

P. aeruginosa to survive in lungs because of its inability to utilize many substrates. At 

the same time the PA0785 gene knock-out increases the secretion of virulence 

factors that may play a role as compensatory mechanisms for better invasion and 

adaptation.   

The high cytotoxicity induced by the mutant towards to CHO cells might be explained 

by upregulation of the TTSS system to break down of the eukaryotic cells to have 

additional access of nutrients. The TTSS system is an important mechanism for P. 

aeruginosa survival throughout infection to overcome unique challenges that the 

bacteria face at specific stages (Hauser et al., 2002) however, this mechanism is not 

sufficient for bacterial cell without joint action of many metabolic enzymes which are 

obligatory for survival.  

 

In our case, the inability of the mutant to utilize many compounds is reflecting on 

competitive properties of the mutant. The mutant cannot compete with other 

mutants/clones in a mixture population and was also impaired in virulence in mice. 

Based on the reported phenotype it is an essential enzyme involved in energy 

metabolism, inactivation of which decreases the adaptation, dissemination and 

survival of P. aeruginosa in the lung.  
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2.4.3. Tn5::PA4916, predicted ADP - ribose pyrophosphatase  

The Tn5::TBPA4916 mutant is one of the non-competitive mutants listed in Table III-

4. According to the annotation from the pseudomonas website, the gene has a 

predicted function ADP-ribose pyrophosphatase belonging to the genes of nucleotide 

metabolism.  

The gene has more than 200 orthologs (http://www.genome.jp) in many species with 

an overall sequence similarity not less then 30%.  

The blast search revealed that PA4916 harbours a sequence well known as a NUDIX 

motif (from 6 to 140 aminoacids, Figure III-26) that shares a strong homology 

between many species according to the information stored in the website 

(http://www.genome.jp).  

 

 

 
Figure III-26. The nudix motive (blue color) of PA4916 gene. 

 

The nudix  (nucleoside diphosphate linked to another moiety, X) hydrolases are 

nucleoside diphosphate pyrophosphatases known to be important in degrading toxic 

intracellular compounds and in the virulence of several different bacteria (Bessman et 

al., 1996, 2001; Gaywee  et al., 2002; Lundin  et al., 2003; McLennan et al., 1999).  

The Nudix hydrolase family of proteins consists of approximately 800 members found 

in more than 200 prokaryotic and eukaryotic species (Bessman et al., 1996; Xu et al., 

2002). The hydrolases may be divided into subfamilies based on the substrate 

specificity: dinucleoside oligophosphate pyrophosphatases, NADH, ADP-ribose, 

nucleotide sugars, or ribo- and deoxyribonucleoside triphosphates (Dunn et al., 

1999). Catalytic activity is located within the Nudix motif, which has in many cases 

well conserved however, how this activity relates to cellular function is less 

understood. (Bessman et al., 2001; Cartwright et al., 1999; Conyers et al., 1999). 

 

The colonies of the mutant are smaller in size than TBCF10839 wild type and non-

mucoid under ambient temperature. The mutant was not compromised in production 

of the virulence factors such as pyocyanine and protease (Figure III-27 A, B). 
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Figure III-27. (A) The pyocyanine and (B) protease production activities by TBCF10839 and 

Tn5::PA4916 after 16 hours of incubation in King A (pyocyanine) and casein agar (protease).   

 

The mutant was subjected to cytotoxicity test on CHO cells. The results showed that 

the mutant possessed less cytotoxicity than the wild type after 7 hours of incubation 

(Figure III-28). 

 

 

Figure III-28. Cytotoxicity of TBCF10839 and Tn5::PA4916 toward CHO cells. The cytotoxicity was 

assayed by measuring the lactate dehydrogenase (LDH) released into culture supernatants. CHO 

cells were infected with TBCF10839 or Tn5::PA0785 at a MOI of 10, and supernatants were collected 

at different time points. Each mutant/strain was tested triplicate. % was calculated from three 

independent experiments, 100 % value represented the LDH released from cells lysed by 0.1 % (v/v) 

TritonX-100.  
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The main feature of the mutant is its complete avirulence in mice infection experiment 

(Figure III-30 A). After 14 days of infection the survival of mice consisted 100%, the 

mutant was completely eliminated in brain, liver and spleen, and had a minor amount 

in lungs (Figure III-29 B).  Similar to other attenuated mutants, the histology did not 

show any significant abnormality in the lung architecture and strong inflammatory 

response by infected cells (Figure III-29 C, D, E).  

 

 
Figure III-29. (A) Survival of mice whose airways had been inoculated at day 0 with 5x107 CFU of P. 

aeruginosa TBCF10839 (closed square) and Tn5::PA4916 (open triangle). (B) CFU recovered from 

murine organs 48 h after intracheal instillation. (C, D, E) Lung histology 48 h after infection with 

Tn5::PA4916 (C), TBCF10839 (D) or vehicle control instilled (30 µl PBS) (E). Hematoxylin-eosin stain; 

original magnification x 200, bar 50 µm. b, bronchus; v, vessel; inflammatory infiltrates are marked by 

arrows.   

 

In many cases genes having a nudix motif are involved in the virulence process of 

the pathogens. Thus, the nudA gene of L. pneumophila was described as a major 

importance for resisting stress in L. pneumophila and is a virulence factor (Edelstein 

et al., 2005). Similar to our case, the nudA mutant also showed a smaller colony size 

than its parent and was out-competed both in competition studies in macrophages 

and in the guinea pigs infection model in the lungs and spleen.  
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The TBCF10839 strain had acquired a robust mucoid morphotype in the CF lungs, 

and transposon insertion in PA4916 had led to a non-mucoid strain. To confirm that 

the observed unusual phenotype of the mutant was induced by Tn5 insertion in the 

PA4916 gene, the complementation of the gene was performed. The DNA fragment 

of the genes PA4916-PA4917 with their own promoter were amplified from the 

TBCF10839 genome and ligated into pUCP20 plasmid.  The vector bearing the 

PA4916-PA4917 genes was then introduced into Tn5::TB4916 mutant by 

electroporation. The efficacy of the complementation was checked by growth of the 

positive clones on blood agar at room temperature. After complementation, the 

mutant switched back to the mucoid phenotype of the wild type strain (Figure III-30).  

 

 
Figure III-30. The complementation of Tn5::PA4916 mutant by pUCP20::TBPA4916 carrying the 

HindIII/SacI PCR product bearing the PA4916-PA4917 genes.   

 

Compared with TBCF10839 wild type, the mutant was compromised in the utilization 

of carboxylic acid, triose carbohydrate and aminoacids (Table III-12). Since the gene 

has been predicted to have a function of nucleotide metabolism, it was interesting to 

notice that the phenotype of the mutant was compromised on adenine, thymine and 

adenosine-3’; 5’-cyclic monophosphate (cAMP) being a second messenger in signal 

transduction of the cell.  
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Table III-12. PMs data of P. aeruginosa TBCF10839 Tn5::PA4916. 
Differenceb Testa 

TBCF10839 PAO1 

Mode of action 

L-Malic Acid   -94 C-source 

Dihydroxy-Acetone  -55  C-source 

g-Amino-N-Butyric Acid   -59 -121 N-source 

Thymine   -68  N-source 

L-Arginine  -67  N-source 

Adenine   -67  nutrient stimulation 

Adenosine-3’;5’-Cyclic Monophosphate -63  nutrient stimulation 

Positive Control* -53  nutrient stimulation 

L-Leucine  -51  nutrient stimulation 

Phosphoryl Choline   -79 P-source 

Pyrophosphate  -76  P-source 

(a) See Table 3.5, footnote a  
(b) See Table 3.5, footnote b.  

*The positive control contained LB broth without any supplement. 

 

The protein sequence of the gene contains an EAL domain (Figure III-31). It is known 

that enzymes possessing the EAL domain control the levels of c-di-GMP being a 

chemical messenger present uniquely in bacteria (Ross et al., 1991; Simm et al., 

2004; Kulasakara et al., 2006).  

 

MSSAEVLASVDIVALRLNPGHGLELLLIRRAQAPFAGQWALPGVLVNGRSADHSLD

DAAVRALRDKARLEPAYIEQVATVGNAVRDPRGWSLSVFYLVLVGPDTQVEDDDLD

FVPLRDVRSERFALPFDHAQLVQQACERLASKSVYSALPLFLLAPRFTVAEALKAFE

CAIGQEVQHSSLRGRLERMKEAGWVEDTGERQRPPMGRPQHVLHFTPKPGGAFV

FDRSLLAS 

Figure III-31. The protein sequence of PA4916 keeping an EAL domain 

(http://www.pseudomonas.com) 

 

c-di-GMP is a novel global second messenger in bacteria the metabolism of which is 

controlled by GGDEF and EAL domain proteins. Cyclic nucleotides (cAMP, c-di-

GMP) represent second messenger molecules in all kingdoms and the signalling by 

cyclic nucleotides seems pretty simple. In bacteria, mass sequencing of genomes 

detected the highly abundant protein domains GGDEF and EAL. Both these domains 

are involved in the turnover of cyclic-di-GMP (c-di-GMP) in vivo where by the GGDEF 
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domain stimulates c-di-GMP production and the EAL domain c-di-GMP degradation 

(Ross et al., 1991; Simm et al., 2004; Kulasakara et al., 2006).  

 

Signal intensity compared among different strains during late exponential growth 

showed that the transcription activity of PA4916 gene is down regulated under 

oxidative stress in TBCF10839, 892 and LES431 strains, but not in PAO1. 

Interestingly, the transcription activity of the gene in TBCF10839 was different from 

the reference strain PAO1, as shown in Figure III-32 after qPCR.  

 

 
Figure III-32. qPCR of PA4916 gene. cDNA was obtained by reversed transcription of total cell mRNA 

extracted from cultures grown until late exponential phase. In this Figure, 8μl of the PCR product was 

taken after 30th cycle and loaded into the gel.  

 

The mechanism by which the enzyme exerts such an unusual phenotype is unknown. 

It might be explained by the belonging of the enzyme to the family of Nudix proteins. 

It is known that Nudix hydrolases perform a “housecleaning” role by hydrolyzing 

potentially toxic nucleotides and by preventing the unbalanced accumulation of 

normal metabolites. It means that in the cell cycle or during periods of stress the 

signalling molecules or metabolic intermediates whose concentrations require 

modulation during changes, increase.  High concentrations may become toxic to the 

cell. The fact that the mutant is unable to utilize cAMP and nucleotides indicates that 

in vivo condition during the bacterial growth the accumulation of these compounds 

will lead to a toxic effect for the cells. Presumably, the enzyme plays a role in both 
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extracellular and intracellular survival of the bacterium and has a high impact on the 

life style of the pathogen.  

Based on presence of the EAL domain in the protein sequence, the enzyme seems 

to have a phosphodiesterase activity in relation to different nucleotides, and 

hydrolyze c-di-GMP those increased concentration in the cells share a toxic effect 

together with other metabolites.  

Hence, results of the metabolic profile of the mutant demonstrate the association of 

the predicted function of enzyme and described phenotype. The PA4916 protein is a 

novel gene which has not been reported earlier for P. aeruginosa, and is predicted to 

be involved in the mechanism of c-di-GMP signal transduction. 
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IV. Conclusion and perspectives 
Pseudomonas aeruginosa is a metabolically versatile ubiquitous microorganism and 

an opportunistic pathogen for plants, animals and men. P. aeruginosa is a serious 

problem in patients with CF. Chronic airway infection and the accompanying 

inflammatory response are clearly the major clinical problems for CF patients today.  

Strains of P. aeruginosa from CF patients with chronic lung infections display high 

phenotypic diversity. High frequency of phenotype switching is often the result of 

adaptive genetic diversification resulting in increased chances of bacterial survival in 

their niche. During chronic P. aeruginosa infection there is a progressive anatomical 

deterioration of the CF lung, which provides spatial compartmentalization associated 

with diversification of the organism into morphotypes.  

 

Colony morphology is an easy-to-follow phenotypic trait and hence the morphotype is 

used as a major criterion in the clinical microbiology laboratory to select isolates for 

further analysis. The colony is a microbial community of genetically identical 

organisms whereby the individual cell faces a continuously changing 

microenvironment determined by the mass flow of nutrients and metabolites and the 

signals of its neighbours. Consequently, features of growth and aging, motility, 

secretion, extracellular matrix composition and cell-to-cell communication will govern 

the macroscopic appearance of a colony. 

In this work, we were interested to know if and if yes, to what extent a single mutation 

could change both morphotype and biological fitness of P. aeruginosa in the atypical 

niche of mammalian lungs.  

A metabolically versatile and pathogenic strain TBCF10839 from chronically infected 

CF lungs was chosen as the model organism because we hypothesized that such a 

strain had demonstrated its capability to persist in human airways and thus the 

perturbation by single hit mutagenesis should unravel the possible next steps of 

dissociative behaviour during niche adaptation.  

Screening of a library of non-auxotrophic transposon mutants under different culture 

conditions in vitro uncovered that a knock-out in about 1% of the 5,500 ORFs of the 

P. aeruginosa genome led to a change of morphotype half of which was robust. In 

the other half environmental cues could rapidly modulate colony morphology in 
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accordance with the complex etiology and rapid turnover of this phenotypic trait in 

nature.  

Half of the identified targets encode features of primary or secondary metabolism, 

and the other half is shared in equal portions by genes assigned to the categories of 

transport, regulation or motility/chemotaxis.  

 

The TBCF10839 strain has a robust mucoid morphotype and transposon insertion 

had led to a non-mucoid strain in four mutants (type E), but none of the targets has 

reported previously to be associated with alginate biosynthesis or its regulation. 

Autolysis divided into three subtypes (type A, PqsL, PilY1 and PilW) was the most 

prominent morphotype in the collection of single mutants, but almost an evolutionarily 

neutral trait in murine lungs. Cell lysis is supposed to be a disadvantageous 

phenotype, however, all phage-competent autolytic mutants were not impaired in 

their fitness to grow in murine airways. Moreover, the soft autolysis induced by pilY1 

and pilW mutants even increased the potential of the pathogen for the survival.  

For all other morphotypes, the association between colony morphology in vitro and 

survival in vivo was rather loose indicating that gene inactivation may modulate 

fitness by various modes, the change of morphotype being the most visible but not 

necessarily the most relevant feature in vivo.  

 

By several examples: pqsD and mvfR, opmQ and fpvR, pilW and pilY1 were shown 

that the knock-outs in related pathways or regulons may converge to the same 

morphotype. However, despite the similar morphotype, the fitness in vivo for some 

mutants was different. As an example, the genes of the mutants of category B 

showed to be essential for the production or regulation of quinolones and 

phenazines. The morphology for mvfR and pqsD mutants was the same, but the 

knock-out in an important gene for biosynthesis (pqsD) was more essential for fitness 

then the knock-out of a regulatory gene (mvfR).  

 

The metabolic control of morphotype was the main and most unexpected result of the 

study. Colony morphology variants were caused most frequently by the inactivation of 

metabolic genes. Two genes from the Entner-Douderoffy (edd) and malate-

oxaloacetate (mqoB) pathways were shown to be necessary for airway colonizing 
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capacity and virulence of P. aeruginosa. Thus, the mqoB was less virulent than wild 

type and was compromised to utilize various compounds such as sugars and fatty 

acids that decrease the fitness of the pathogen.  

The similar phenotype shown for the edd mutant was explained by its involvement in 

the carbon flow from glucose and gluconate into pyruvate and alginate. The reduction 

of the production these compounds reasonably explains why the mutant is less 

mucoid and out-competed both in vitro and in vivo.  

By these two examples, the biological fitness of P. aeruginosa has been shown to 

require the enzymes that will turnover the acetyl-CoA, pyruvate and alginate, the key 

intermediate of sugar and fatty acid degradation.   

 

In this work, the important role of the genetic background on genotype-phenotype 

associations was demonstrated. The colony morphology of the TBCF10839 strain in 

many cases was not reproducible by other PAO1 and PA14 strains. In spite of 99.8 

% or more identity in the sequence of TBCF10839 with the respective PAO1 genes, 

the phenotype of TBCF10839 strain was not reproduced by the insertion of a 

transposon into the homologous gene of the PAO1 strain. As was shown by edd 

mutants of TBCF10839 and PA14 strains, the mutant of the last one could utilize 

glucose that indicates another mechanism of sugar degradation. Also, as an 

example, the reversion of a mucoid to a non-mucoid phenotype that affected the 

fitness of the TBCF10839 strain was not be accessible in a non-mucoid ancestor 

such as PAO1.  

 

Thus, the STM technique used for the generation of the library has an advantage to 

allow simultaneous examination of a large number of isogenic transposon mutants 

using unique DNA marker sequences for differentiation. In our study, the screening a 

pool of mutants exposed to a distinct habitat of interest revealed 17 loss- or gain-of-

function mutants with a worse or better survival. One of the mutants was out-

competed in survival both in vivo and in vitro. The phenotype of the mutant was 

similar with those showed for the nudA mutant of L. pneumophila being described as 

a flagellated Gram-negative human pathogen. The mutant was not compromised in 

production of the virulence factors such as pyocyanine and protease, but was 

avirulent in the mice infection experiment. The enzyme encoding by the PA4916 

gene possesses a phosphodiesterase activity and performs a “housecleaning” role by 
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hydrolyzing potentially toxic nucleotides and by preventing the unbalanced 

accumulation of normal metabolites. Presumably, it is the new non-described enzyme 

that plays a role in both extracellular and intracellular survival of the bacterium and 

has a high impact on the life style of the pathogen. 

 

Hence, the targets identified in this combined in vitro and in vivo screening already 

provide ample opportunity to analyze in further studies the complex interplay between 

dissociative behaviour, adaptive radiation, lifestyle and fitness of P. aeruginosa. 
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VI. Abbreviations 
AHL acylated homoserine lactones Max. Maximum  

approx. approximately min Minute 

bp Base pair MOPS Morpholinopropanesulfonic acid 
oC Degree Celsius n nano- (10-9) 

c-di-GMP cyclic-di-guanosine monophosphate OD Optical Density 

CDS Coding sequence ORF Open reading frame; possible gene 

CF Cystic fibrosis p pico- (10-12) 

cfu Colony forming units PAGE Polyacrylamide gel electrophoresis 

dATP  Deoxyadenosine triphosphate PQS 2-heptyl-3-hydroxy-4-quinolone 

DEPC  Diethypyrocarbonate PCR Polymerase chain reaction 

dGTP Deoxyguanosine triphosphate QS Quorum sensing 

DIG Digoxigenin rpm Revolutions per minute 

DNase  Deoxyribonuclease RNase Ribonuclease 

dNTP Deoxynucleotide triphosphate RT Room temperature (23 oC) 

dTTP Deoxythymidine triphosphate s Second 

EDTA Ethylenediaminetetraacetic acid SDS Sodium dodecyl sulfate 

EPS Extracellular polysaccharides t Time 

e.g. For example T Temperature 

et. al.,  et alteri (and others) TE Tris-EDTA  

i.e. That means µ micro- (10-6) 

FCS Fetal calf serum Mb Megabases 

x g Centrifugal acceleration max. Maximum 

h Hour Tris Tris(hydroxymethyl)aminomethane 

HAQ 4-hydroxy-2-alkylquinolines TTSS Type III secretion system 

HHQ 4-hydroxy-2-heptylquinoline U Unit (unit of enzymatic activity) 

I.E. Injection units UV Ultra violet 

kBp 1000 Base pairs V Volt 

LB Luria-Bertani Vol. Unit volumes 

M Molar % v/v Percentage volume per total volume 

m milli- (10-3); Meter, Mass % w/v Prcentage by weight per total volume 
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VII. Appendices 
Appendix 1 
Nucleotide Sequence of the genes surrounding the Tn5 insert of 6eB10 mutant 
Gene Strand Left End Right End 
A1 + 181 387 
A2 + 507 1220 
A3 - 1248 1490 
A4 + 1744 2040 
A5 + 2037 2738 
A6 + 2735 3418 
A7 + 3415 3621 
A8 + 3618 3989 
A9 + 4419 4628 
A10 + 4666 5340 
A11 - 5498 5932 
A12 - 5979 6161 
B1 + 6359 6691 
B2 + 6688 7044 
B3 + 7047 7304 
B4 + 7304 7543 
B5 + 7540 8061 
 
A1 dir* [182-388] 
TGAACATCACTGAAGCCATTGAGCATTTTGGCTCCAAGAAAAAGCTGGCTGACGCCTTGGGGATT
CAGCCAAGTGCTGTCACCCAGTGGGGCGATTCGATACCTGTCGGCCGCCAGTACCAAATTCAGG
TGATTAGCAAGAACAGGCTGAAGGCCGAGTCTGGAGCAGCTCGTGATGAAGAGACTACGGGGG
CGGCGGAAGCCTAA 
 
A2 dir [508-1221] 
TGTCACAAGTTGCAGTCATCCAACAAGGCCCGGTCCTGGCGATGAGCAGCCGCGAGATTGCGGC
GCTGGTCGAGTCCCGACACGACAACGTGAAGAGGACCATCGAGCGCCTCGGCGAGAAGGGGGT
CATCAGGTTTACTCCGTCGGAGGAAACCTCCCACGCTGGCGCTGGGGCGCGGCCCGTGAGTGT
TTATCTCGTCGACAAGCGCGACAGCTTCGTTGTTGTTGCGCAGCTCAGCCCGGAATTCACTGCG
CGCCTGGTGGACCGCTGGCAGGAGTTGGAGTCTCAGCTAGCGCATGGTGTGCCCGCCGTCCCT
ACGAATCTGGCGGATGCACTGAGGCTGGCTGCTGATCAGGTCGAGAAGAATCAGGCGCTGCAGT
TGGTCATCAGCGAGCAGGCGCCCAAGGTCCAGGCCCTGGAGCGGCTCAGCGGTGCGGCCGGC
ACGATGTGCATAACCGACGCAGCGAAGCACCCTCAGATCAACCCCGCCCGGCTCTTCGACTGGC
TCCAGCAGAACCGATGGATCTACCGCCGGAGCGGCTCTGCTCGCTGGATCGGCTATCAGCCAC
GAATCCCAGACGGCTGGATCATGCACAAGGTGACGGTTCTCGTTCGTGACGACCAGGGCGACGA
GCGTGCTGCGAGCCAGGTACGCATCACTGCCAAGGGGCTGTCGGTGCTGGCGCGGAAGATCGA
GGAGGGCAAGCTGTGA 
 
A3 rev** [1249-1491] 
CACGAATCAAGAAAATGTGTCGCCGGAGGTGAGCCAGTGAGCACGATCATCATGTCGGCCTGCT
GGCCGCTGCAGGGTTTGACGCCGGCGCAGAAGGCTGTGCTGATCAGCTTGGCGGACAACGCGA
ACGATGAGGGCGTGTGCTGGCCTTCGGTGGCGAAGATCGCCGAGCGCACCTGCCTTTCCGAAC
GTGCCGTGCAGCAGGCCATCAAGGTGCTGAACGAGTGCAAGGCGCTGAGCAT 
 
A4 dir [1745-2041] 
TGCAGGAGGCTTGCCGGAATGTGTGGGCAGCGTACCGGGCAGCCTACGAGGCGCGCTGGAGT
GTTCAGCCGGTGCGAAACGCCAAGGTCAACTCCCAGGTGAAGCAACTGGTGGCCGCCCTCGGC
GGCGAGGCTCCAGCGGTAGCGGCGTTCTTCGTCGGGCTGGATGACAAGTTCCTGGTCGACAGT
TGCCATGAGTTCGGGTTGCTACTGGCCAAGGCTGGCGCTTACCGGACGAAGTGGGCGACAGCC
GGTTCCGCGCCGTCGGCCGATTGGACTGATCAGGTGCAGCTATGA 
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A5 dir [2038-2739] 
TGACCCGCAGGCAGTTCGAACCGCAATCGGTCGGTGCTGTGCTGGCGCATGTGAATCAGGACG
CGGGGCTGCGCCCCTTGTCCCAGCCGGCGGTGAAGGTCGATCCCCAGACGAGAAGCGAGGTC
GACCGGTTGTTCTTGCGGATCAAGGCGATCTGCCCTGGATGGAGAAGCTCCTGGCCCAACGATG
AGGTCGAGAACGCAGCGAAGGCGGAGTGGCTGGCAGAGATCGTCCGGCAACAGGTTACGCGCC
GCGAGCAACTGCAGGCCGGGGTAAGAGCGTTGAGCGCGCAGGCAAGGCCGCTTGTTCCATCTG
CCGGCCAGTTCTGCGCCTGGTGCTGGGCTCCTGAGGTCTTCGGCCTGCCATCCCTTGATGACGC
ATATCGCGAGGCGCTGGCCAATACCCACCCAGCCATGGTCGGAGCCGCGAAATGGAGTTGCCC
TGCGGTGTATTGNGCAGCCGCTGGCGCTGGATTCAGCCGGCTGCAGGCTCTGGCAAGAAAGGA
TGGGCTTGCGGCGCTGGAGATCTCCTATCGACAGATCATCAAGAAGCTGGCGCGTGGCGAGGC
GCTCGGGAAGGTCCGGATCGACAGTTGCCATGAGTTCGGGTTGCTACTGGCCAAGGCTGGCGC
TANCCGGACGAAGTGGGCGACAGCCGTTTCCGCGCCGTCGGCCGATTGGACTGATCAGGTGCA
GCTATGA 
 
A6 dir [2736-3419] 
TGACCCGCAGGCAGTTCGAACCGCAATCGGTCGGTGCTGTGCTGGCGCATGTGAATCAGGACG
CGGGGCTGCGCCCCTTGTCCCAGCCGGCGGTGAAGGTCGATCCCCAGACGAGAAGCGAGGTC
GACCGGTTGTTCTTGCGGATCAAGGCGATCTGCCCTGGATGGAGAAGCTCCTGGCCCAACGATG
AGGTCGAGAACGCAGCGAAGGCGGAGTGGCTGGCAGAGATCGTCCGGCAACAGGTTACGCGCC
GCGAGCAACTGCAGGCCGGGGTAAGAGCGTTGAGCGCGCAGGCAAGGCCGCTTGTTCCATCTG
CCGGCCAGTTCTGCGCCTGGTGCTGGGCTCCTGAGGTCTTCGGCCTGCCATCCCTTGATGACGC
ATATCGCGAGGCGCTGGCCAATACCCACCCAGCCATGGTCGGAGCCGCGAAATGGAGTTGCCC
TGCGGTGTATTGGGCAGCCGCTGGCGCTGGATTCAGCCGGCTGCAGGCTCTGGCAAGAAAGGA
TGGGCTTGCGGCGCTGGAGATCTCCTATCGACAGATCATCAAGAAGCTGGCGCGTGGCGAGGC
GCTCGGGAAGGTTCCGGAGGGAGAGGTCACCCACCAGAAAGCGCGAACCCAATCCGTTGGAAT
TGCTGCGCTTGCGCAGCTTCGAAAACAACTCAAAGGAGGAGATCGCTCATGA 
 
A7 dir [3416-3622] 
TGAAGTGGAGCGTACTCAACGACTATCTGATGGTTAGCGACACCCAGCCGCCCTACAAGGTCTG
CAAGCTCCTGGTCGCCGGCGAGGCTCACTACCGGGCCAGTGTTCAGGGTGAATTCATTTGCACC
CCGGTTGCGACTGCGAAGGAGGCGTGCGGTGTTTGCGAGCGCCATCACCAGATCACCTATCCG
CGGGAGGTCGCGTGA 
 
A8 dir [3619-3990] 
TGAAGGGGCGGGCCGTTACTTCGGAGCAGAAGCGCTGGCACGACCTGCTGGCGCGCCATGTGG
GGTGCATCGCCTGTCGGGTGTCCATGGGGATCGTGAACACCTATTGCAGCATTCACCACGTCGA
CGGCAGGACGAAGCCCCACGCGCATTGGTATGTGCTGCCGCTGTGCGCTGGGCATCATCAAAA
CGGCTACGGCGGTGCGGGCTTCACCGGGGTCGCCGTTCACCCGTACAAGGCGCGCTTTGAGGC
TGAGTACGGAACCCAATCGGACCTGCTTTCGAAATGCGCCTCGATCTTGGCGGAGGAGGGGCAC
GACATACCGGCGGGGTTCCTCGCATGGCTAGACGGTGGCGAGGTGGAAGCATGA 
 
A9 dir [4420-4629] 
TGTTCCACGAGATCGATTGCGCCGCTTGTGGAGCAGCGGGGTTCGTCGATGGCGTGACGGGGC
TGGCGCTGGAGCAGCGGGATGCGGTGGTGCAACTGCGGATGTGGGTAAAGCGGCTGCTGGAAG
AGCAGCGACGCCAGGCGAGCAGGCTGGCGCGAGAAGAGAGCAACCGGAAGGGCGCTGGCGGC
GCTCACTTTCGAGGGGATTGA 
 
A10 dir [4667-5341] 
TGATTTACGAAAGCGTTTCAAGTGCGGTCGTTTCGGCGCTGGCAGCAGACTGCATCGACAACAC
AAGCAAGCAGGCATGGCAAAAGCTCTATCAGGCCGGCGAGCCTGGTCGTCGTGGCGGAGTGAT
GGTATCCGCTGATCTCAGGCAGCAAATCGATTGCTGGGTACATGCTCGCTTGCATGACCAACTTA
TTCCGCGCCACTGGGCGGCGCTGGTGGCGAAGTACAGCACTCACCAGGCTAAGAAAGTCCAGG
CGATCTCTCTTCTGCGGTCGGTGGTCGCAACGCCGGCTCCTGCTCTTTTCCTCTACAAGGCCATA
ACGACTTGGGCGATTCCGAAACTGAAGGGTGTCCAGCCGGCGCTGCGAAAAACCGTCTCTGTCG
AAATCCCAGTGGACGGATCACCAGAAAAGCAAGCCAGGGCCGTGCGCGCCGCGCTGGAGGCAG
AGCGAGTGAAGCGGAAGCGCCTTATGGCTCGATCTTCTGGAATGATCGTCCTGCCGGATGAGTT
CTACGACATGAACACATGGGATCTCGATGGGAAGCCCGAGTCGACTCGGCGTGAGTGGCGCAG
GAAGATTCATCGTGTTCTCGACGAAATGGTCGACGAGGCGCTGGTGGCGGCGGAGCAGATCCTC
AACGCAGAGGGATTGCTGGCCAAGGATGCGGCATAG 
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A11 rev [5499-5933] 
TACGTCTTTGTCCCGCTCGATCTGAACTCGCAGCCGAAGGCCGAGAAAATCAAGCGCATTTTCCA
GCGCTTCCATTTTGGTGTTGTGGAGGAAGTCAACGAGCCTGTCGCCCTGAGTTTGTGCGATACC
GAGCAGCCGGCAGAGGTCAGCCTTCGCATATCTCGCCGGACCATTTCGTTCCAGAGCGCGATCT
TCGCAACGGTAACCGCCGGCAGATGGATAACGCGCTCGCCTGGTTGCGCCTGGCTGGCTGCGG
GGATTTCTCGGCGCTGATCAACGTACAGCGAGAGGGTTGACTCGATGGCGTCAACCGCCTCGCT
GATTGCATGGGCCTTATCGTCACCGTAGCTGTTCAGTTCCGGCAGGTCTCTGCAGAAAACGGCG
ACGCCAGGAGCGCTATCGTCCTGTTCGAAACGGATTGCATAGTCGTACAT 
 
A12 rev [5980-6162] 
CATTTGAGCCCCAGTTGCTTGATGATCGCCTTGCGGGTCGGTTCTGGCATTTCCTTAGTTCCGTG
GTCCGCGAAGGTGGTCTGTTTGCCGTTCGGGGCGGTGATCTTGAAGTGGCTTCCCTTGCCGGCT
TCGAAGGTCACCCCTTGGGCCTTCAACCATCGTCTGAATTCGCTGAACTTCAT 
 
B1 dir [6360-6692] 
TGAAGATGCCTGACAAACCCGACACCTGGGCGGCCCTGCTCGCTTGGCTGAGCCAGCATGCGC
CTATCATCTGTGCCTCCCTCCTGTCGTGGGCCATGGCTATTGCCAGGATCATTTATGGGGGCGGT
ACGCGCAGACAGGCCTTATGGGAAGGCGCGCTTTGCGGCGGGCTGGCACTGACGGTTATCAGT
GGGTTCGAGTTCTTCGGCGTTCCGCAGAGCATGGCCACCTTCATTGGTGGCTGGATCGGATTCC
TGGGTGTCGAGAAGATCCGCGACCTGGCTGACCGTTACGCAGGGATCAAGCTGCCGCGTCGAG
GGTCTGGCGAATGA 
 
B2 dir [6689-7045] 
TGATGATTACCGCCGATCAACTCGACCGTGCTACCGGCTGCGGCGGCGCTACTGCTTCGGTCTG
GGTCGAACACATCAACGGCGCCATGGATCGGTTCGAGGTCAACACGCCTGAGCGCGTGGCGAT
GTTCCTGGCTCAGGTCGGGCACGAAAGCCAGAGCATCAAGCGCCTGGTCGAGAACCTGAACTAC
TCCGCCGATGGCTTGCTNCAGACGTGGCCGATACGGTTACGCCTGCCGAGGCGAAGCAGTACG
CCCGCCAGCCAGAGCGCATCGCGAACCGCGTCTATGCAAACAGGATGGGCAATGGGTCGCCGG
ATACGGGCGATGGGTATCGATACCGGGGCCGCGGCCTGA 
 
B3 dir [7048-7305] 
TGATCACCGGCCACGACAACTACGCCGAAGCCGCCCGCGCCCTGGCGCTGCCACTGGTGGCGC
AACCGGAGTTGCTTGAGCAACGGACCTGGGCTGCCATCGCGTCGGCATGGTGGTGGAAGTCGA
GGGGTTTAAACGAACTGGCCGACCAGGGTCGCTTCGAGCGGATCACCCTCAAGATCAACAGTGG
CTACAACGGCGCAGATGACCGTGCGGCTCGCCTCGAGTGGGCGCGTGCTGCGCTCAAGGGGGA
ATGA 
 
B4 dir [7305-7544] 
TGCTCGGGTTCACGACGAAAGCTGAGGCGCGACGCATCGGCGCCTCGCACCACGGGAGCTATT
ACGGCATTCCGATGTGGCTAGGGGATGTCGATAGCGATTGCCCGCTAGCGTTCGCAAAGTGGGC
GCCGCTTGAGCTGGTCGTCTCCCTGCTCTCGGTCATTGAGGGCATCGTCAACTCGATGCTCGAT
CAAGAGCAGACGTTCATGTTCAAGGTTGGTCGGAGGATCGACCAGTGA 
 
B5 dir [7541-8062] 
TGACCTGGCGGCCCTGGTTGGTGGTCGCCCTGGTAGGCGCGCTTGTGTTCTGGCGCCTCGATC
ACGTGACCGCTCAGCGTGACGACCTGCAGGCCGCCGTCGAGCAATCCGCCGAGACGATCACCG
CAATGGCCCAGCAGGCCAAGCGCGACACCCAGGCACAGGTCGAGGCCGATGCCCTGGCCCGAA
CCTACCAAGCAGCACTACAGGCCTCCCATGAAGAAAACCAATTGCGCCGCGATGCTATCGGCAC
TGGTGCTCGCGTCGTGTACGTCAAAGCCCGCTGTCCCGCAGACGGAGTGCACCCGGCTCCCGG
AGCCTCCGGCAGCGCTGATGCAGGAAGAGCCGTCCTTGCTGCCGCTGATGGACAAGTTGTTTCT
GATCTCCGAGCCGGAGTCGAGCGACGCGAATTGATGATTGAGGCGCTGCGTAAGCACATCGCC
GCCCTGCCGAGGATTGCAGAAGATGATCAGTATCAAGCCGGNAAGGGTTCCAGCAACANCCTCG
CCCGACCTGACTGA 
 
 *direct sequence 
**reverse sequence 
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Appendix 2 
The transcriptome data 
Table IV-1 The transcriptome profile of genes with impact on morphotype.  
 

PAO1 
gene 

number

Gene 
name

Gene 
annotation *Morphotype **Survival 

MHH01MHH01MHH01MHH01MHH03MHH03MHH03MHH03MHH03MHH03MHH03MHH0
PA0413 chpA Chemotaxis p E 161 180 256 241 155 123 428 379 148 105 108 181
PA0415 chpC Chemotaxis p E 114 98 165 175 192 219 472 444 116 155 160 178
PA0424 mexR Multidrug resis A 139 105 211 246 263 377 153 128 2353 2065 1162 835
PA0482 glcB Malate synthase G 521 510 232 370 455 431 706 849 860 887 967 1091
PA0728 Probable bacteriophage integrase 6 4 4 9 43 31 4 20 7 2 7 9
PA0785 Probable acyl carrier protein ph N 11 14 5 8 9 37 44 42 12 19 60 15
PA0920 Hypothetical membrane protein 86 99 63 95 131 81 33 15 50 44 73 94
PA0999 pqsD 3-oxoacyl-[acy B L 1392 1144 208 281 648 742 74 87 66 40 407 451
PA1003 mvfR Transcription r B 254 224 245 208 121 114 100 39 71 2 191 243
PA1589 sucD Succinyl-CoA synthetase 1809 1952 1629 1829 1868 2550 1575 1799 1816 2064 1723 1451
PA1633 kdpA Potassium-transporting ATPase 32 17 22 10 140 104 85 144 129 150 28 33
PA1823 nudC NADH pyrophosphatase 280 268 71 108 115 178 213 204 208 262 149 170
PA1846 cti Cis/trans isom E 54 48 44 52 74 56 15 146 93 39 15 148
PA2028 Probable trans A 28 31 39 39 37 22 32 43 53 38 14 82
PA2122 Hypothetical p A 9 32 5 5 7 6 9 11 5 8 7 8
PA2361 Hypothetical p B 104 96 42 31 14 13 35 67 83 25 121 154
PA2388 fpvR Transcriptiona F 152 184 104 125 21 36 125 154 73 84 156 202
PA2391 opmQ Probable oute F 31 17 31 31 94 57 155 91 65 54 117 120
PA2537 Probable acylt C L 84 90 40 40 21 23 134 115 569 511 178 208
PA2579 kynA Tryptophan 2, C 93 118 140 228 126 107 143 176 178 199 131 140
PA2706 Hypothetical protein L 152 142 125 133 217 184 185 210 189 149 206 335
PA2838 Probable trans C L 12 19 12 13 17 6 37 14 10 24 19 16
PA2946 Hypothetical protein; predicted integral membrane protein 471 365 336 323 382 383 755 641 821 651 569 564
PA3012 Hypothetical protein 62 66 111 154 67 77 16 5 46 47 77 80
PA3194 edd Phosphogluco G N 196 202 194 187 1797 933 382 484 378 207 458 518

a Growth condition

Strains indicated by 
different color TB 892 CHA PAO1 LES400 LES431

1 late 
exponential

late 
exponential

late 
exponential

late 
exponential

late 
exponential

late 
exponential

Chip- No.
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Continued Table IV-1. 

MHH00MHH00MHH01MHH01MHH03MHH03MHH01MHH01MHH03MHH03MHH03MHH03MHH00MHH00MHH00MHH00MHH01MHH01MHH00MHH00MHH01MHH01
196 245 217 173 173 133 775 668 54 168 76 131 190 136 106 136 133 133 349 261 380 261
129 158 142 103 239 87 212 223 238 72 132 185 208 173 335 240 218 191 180 168 229 167
335 302 210 245 1579 1344 149 156 1395 1319 1357 1292 1018 841 101 35 135 111 415 334 192 248
399 359 328 294 78 106 765 644 287 413 813 718 372 442 379 418 374 331 508 445 595 402
5 5 6 9 25 35 15 4 10 11 3 9 13 25 30 26 18 39 10 13 14 9
5 4 11 13 54 243 25 39 65 10 33 56 8 11 158 40 24 10 4 9 10 17
70 69 96 94 92 56 43 47 128 150 43 57 58 74 108 83 130 148 45 60 111 82

187 253 176 158 310 149 56 86 31 28 348 363 388 556 747 706 651 1161 109 145 444 387
86 98 63 38 157 120 12 36 20 94 51 70 433 479 200 93 188 216 365 420 143 188

3481 3044 3091 3490 412 522 3359 3409 394 809 1775 1389 1258 1435 2268 2056 2338 2755 1497 1225 3074 2359
52 53 15 13 118 162 43 47 84 29 61 67 51 26 57 193 99 153 23 28 36 26

167 167 204 166 133 21 282 304 138 19 166 82 85 82 209 173 172 142 122 87 152 120
85 81 82 81 19 134 98 83 41 10 69 86 20 43 105 7 65 76 38 34 69 48
39 46 50 45 67 6 26 22 7 31 45 52 59 62 143 53 75 45 36 39 38 33
3 3 3 3 26 25 17 6 21 7 9 9 9 21 14 12 9 10 8 9 5 5
12 9 13 18 92 17 14 7 41 13 42 48 37 24 16 56 38 24 28 42 32 24

216 202 200 221 80 30 196 239 103 100 225 116 733 663 143 213 238 184 293 283 166 146
88 88 79 62 44 31 42 45 163 185 54 94 64 38 98 237 323 368 34 35 49 32
64 47 46 34 104 49 37 47 85 160 128 81 46 64 98 169 85 100 49 44 40 38

366 354 225 225 125 55 73 55 76 143 204 164 82 83 134 162 107 56 239 226 279 226
108 147 124 109 301 37 99 105 282 230 125 134 130 160 223 147 104 82 107 118 150 136
4 11 15 15 25 20 4 9 71 108 6 9 14 16 21 40 38 58 6 12 14 13

641 763 627 504 9 21 765 662 319 326 452 657 175 207 98 208 287 205 348 409 312 285
62 71 67 62 12 69 44 35 5 123 80 86 55 76 86 79 54 86 121 90 192 159

365 345 267 302 635 759 773 571 602 341 402 594 253 163 361 365 309 342 293 318 147 151

TB 892 892CHA PAO1 LES400 LES431 TB TB TB TB
2 late 

exponential + 
H2O2

late 
exponential + 

H2O2

late 
exponential + 

paraquat

late 
exponential + 

H2O2

late 
exponential + 

H2O2

late 
exponential + 

H2O2

late 
exponential + 

H2O2

3 late 
exponential + 

PMNs

4 early 
exponential, 
iron depleted

5 late 
exponential, 
iron depleted

6 late 
exponential + 

paraquat
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Continued Table IV-1. 

PAO1 
gene 

number

Gene 
name

Gene 
annotation *Morphotype **Survival 

MHH01MHH01MHH01MHH01MHH03MHH03MHH03MHH03MHH03MHH03MHH03MHH03
PA3238 Hypothetical protein 122 127 50 55 140 123 51 21 131 98 83 16
PA3239 Conserved hypothetical protein L 322 355 98 102 292 322 277 153 270 277 263 204
PA3462 Probable sens A 45 47 63 46 27 26 17 17 6 8 26 15
PA3748 Conserved hy A 154 142 122 144 185 231 241 227 223 208 130 168
PA3804 Hypothetical protein 340 326 124 200 430 391 381 306 358 498 274 124
PA4131 Probable iron-sulfur protein G 2810 2598 331 463 119 173 660 954 96 93 805 750
PA4190 pqsL Probable FAD A 142 158 44 52 54 46 103 102 7 4 77 39
PA4489 Conserved hy A 79 82 83 75 89 62 159 161 240 168 105 114
PA4552 pilW Type IV fimbri D G 101 99 88 72 66 99 120 182 90 68 139 127
PA4554 pilY1 Type IV fimbri D G 80 99 74 84 149 114 230 188 75 55 89 131
PA4640 mqoB Malate:quinon G L 212 231 177 240 389 458 346 392 389 360 325 323
PA4703 Hypothetical protein; predicted regulator of competence-specific genes 114 131 281 225 21 23 9 4 50 53 42 30
PA4734 Hypothetical p C G 103 125 109 139 178 145 104 108 111 85 68 65
PA4915 Probable chem B 518 494 558 322 78 86 78 58 105 78 160 97
PA4949 Conserved hypothetical protein; predicted sugar kinase 81 90 91 86 199 275 159 94 138 140 97 174
PA4951 orn Oligoribonuclease 342 315 473 397 249 253 322 355 157 186 130 184
PA4954 motC Chemotaxis p E G 89 107 170 165 201 155 130 223 207 95 134 93
PA5121 Hypothetical membrane protein; predicted small-conductance mechan 23 34 31 38 102 88 20 15 75 105 40 28
PA5231 Probable ATP-binding/permease fusion ABC transporter 356 317 705 582 91 36 207 142 41 100 237 208
PA5524 Probable shor A 30 40 36 54 98 110 85 86 30 56 66 41
PA5546 Conserved hypothetical protein G 1168 1349 975 629 400 376 183 238 232 239 691 365
PA5563 soj Chromosome partitioning protein 224 224 470 576 422 486 232 276 510 497 244 253
PA4797 not spotted on Affymetrix- Chip

Strains indicated by TB 892 CHA PAO1 LES400 LES431

late 
exponential

late 
exponential

late 
exponential

Chip- No.

a Growth condition
1 late 

exponential
late 

exponential
late 

exponential
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Continued Table IV-1. 

MHH00MHH00MHH01MHH01MHH03MHH03MHH01MHH01MHH03MHH03MHH03MHH03MHH00MHH00MHH00MHH00MHH01MHH01MHH00MHH00MHH01MHH01
129 161 164 147 318 61 165 149 451 459 237 221 129 138 37 112 163 225 63 46 73 74
250 283 317 342 374 240 325 359 824 1409 670 609 144 157 391 297 423 438 59 65 121 103
16 21 22 4 59 93 15 5 14 7 11 10 60 51 29 17 10 11 57 51 27 46

195 196 230 235 88 154 254 258 327 48 281 262 139 121 77 63 212 208 127 115 258 150
496 427 257 303 188 20 544 536 25 207 327 447 131 153 229 247 262 274 241 272 244 209
145 150 351 219 268 239 74 52 21 45 401 405 203 242 306 347 715 566 117 106 785 506
110 82 82 41 42 139 22 20 29 16 53 56 69 69 122 173 115 135 43 34 80 62
98 74 76 52 75 27 57 75 141 170 84 104 57 51 51 51 78 90 54 85 84 65
62 79 64 93 173 98 197 117 81 93 54 46 113 102 159 208 123 118 89 106 110 110
68 80 134 91 145 208 182 198 35 34 85 78 93 98 270 260 179 187 67 71 114 88

262 235 224 269 172 10 111 114 206 356 302 289 161 163 122 222 295 311 222 163 427 264
31 29 30 25 73 116 15 30 189 206 83 65 230 293 92 92 84 75 219 309 97 157

166 203 180 159 141 62 132 115 228 88 73 74 145 155 135 143 200 195 101 112 165 127
26 27 26 19 18 116 70 76 168 177 83 92 407 342 260 261 427 346 301 456 113 297

106 95 84 100 427 252 130 131 266 204 151 229 122 104 184 211 138 109 96 111 104 85
304 282 302 311 239 253 329 373 59 182 183 109 422 453 357 291 314 298 397 504 296 333
92 124 90 77 274 220 92 68 27 166 167 272 78 146 81 83 110 164 150 147 140 135
76 64 55 62 111 14 43 41 86 87 95 42 33 23 111 28 40 53 36 27 29 36

109 118 177 54 6 127 371 345 222 30 54 63 551 522 29 180 114 112 546 622 343 610
53 65 68 75 211 144 101 95 14 43 87 89 38 54 9 4 42 24 49 66 43 45

327 343 512 240 4554 2176 939 871 2664 3898 923 852 683 502 458 589 522 584 715 961 278 452
1045 1108 817 1007 237 294 370 430 448 273 462 446 343 360 112 253 317 236 604 499 589 587

TB 892 CHA PAO1 LES400 LES431 TB TB TB TB 892
2 late 

exponential + 
H2O2

late 
exponential + 

H2O2

late 
exponential + 

H2O2

late 
exponential + 

H2O2

late 
exponential + 

H2O2

late 
exponential + 

H2O2

3 late 
exponential + 

PMNs

4 early 
exponential, 
iron depleted

5 late 
exponential, 
iron depleted

6 late 
exponential + 

paraquat

late 
exponential + 

paraquat

 
* See Table III-3 and Figure III-2 for definition of colony morphology types         
** Survival rate: G, gain of virulence; L, loss of virulence; N, non-competative  
(no survival in vivo and in vitro).   
a Various growth conditions used for RNA extraction:        
1 Late exponential (LE) phase, cells were cultivated in LB and RNA was extracted at cell density 
OD578 = 3.5      
2 LE, LB + 10mM hydrogen peroxide         
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3 LE, LB + polymorphonuclear neutrophils from the blood of healthy donors 
(separated from bacteria by Ø1 μm dialysis membrane)    
4 Early exponential phase, LB iron depleted by Chelex-100 beads (Sigma)       
5 LE, LB iron depleted by Chelex-100 beads (Sigma)        
6 LE, LB + 0.5mM paraquat          
  called as "absent" by the Affymetrix- software       
  called as "marginal expressed" by the Affymetrix- software      
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Table IV-2 The transcriptome profile of genes involved in malate-oxaloacetate pathway. 
 

PAO1 
gene 

number

Gene 
name

Gene 
annotation

Catalyzed 
reaction

MHH012MHH012MHH010MHH010MHH03MHH03MHH03MHH03MHH0 MHH0 MHH03MHH03
PA1252 (mdh) probable L-ma (L)-Malate + NAD+ <=> Oxaloacetate + NADH 99 114 43 33 60 81 71 115 55 61 124 87
PA1400 (pca) probable pyruv ATP + Pyruvate + HCO3- <=> ADP + Orthopho 16 16 31 29 73 33 5 7 43 62 62 72
PA1770 ppsA phosphoenolpyATP + Pyruvate + H2O <=> AMP + Phosphoen 399 392 339 454 201 317 476 444 162 211 167 243
PA3452 mqoA malate:quinone(L)-Malate + Acceptor <=> Oxaloacetate + Red 79 84 62 97 269 246 99 74 62 50 18 60
PA3471 (malE) probable malic (L)-Malate + NAD+ <=> Pyruvate + CO2 + NAD 211 200 120 133 292 281 375 308 246 266 198 125
PA3687 ppc phosphoenolpyOrthophosphate + Oxaloacetate <=> H2O + Ph 248 269 119 118 172 259 165 153 129 112 137 123
PA4640 mqoB malate:quinone(L)-Malate + Acceptor <=> Oxaloacetate + Red 212 231 177 240 389 458 346 392 389 360 325 323
PA5046 (malE) malic enzyme (L)-Malate + NAD+ <=> Pyruvate + CO2 + NAD 495 409 347 375 562 673 997 814 1006 1288 622 561
PA5192 pckA phosphoenolpyATP + Oxaloacetate <=> ADP + Phosphoenolp 439 402 295 322 507 817 760 721 1542 1596 1031 993

a Growth condition

Strains indicated by different 
color

1 late 
exponential

TB 892

late exponential

CHA

late 
exponential

PAO1

late 
exponential

LES400

late 
exponential

LES431

late 
exponential

Chip- No.
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Continued Table IV-2 

MHH00MHH00MHH01MHH01MHH03MHH03MHH01MHH01MHH03MHH03MHH03MHH03MHH00MHH00MHH00MHH00MHH01MHH01MHH00MHH00MHH01MHH01
35 30 42 35 72 161 37 41 163 55 57 69 71 105 255 166 101 144 37 21 40 32
24 20 17 21 102 171 18 18 59 107 25 53 27 35 21 42 35 20 26 24 35 23

741 705 784 729 26 42 774 713 145 10 324 193 310 256 270 356 287 312 416 387 765 559
447 448 221 342 207 177 91 105 18 83 99 157 58 54 263 295 238 268 71 65 64 67
227 249 416 207 89 7 388 321 76 124 230 242 123 121 247 170 182 130 98 112 268 202
87 89 131 89 254 293 220 209 116 28 133 162 263 284 65 246 204 216 119 155 119 116

262 235 224 269 172 10 111 114 206 356 302 289 161 163 122 222 295 311 222 163 427 264
1342 1255 1311 1236 274 206 1707 1718 159 222 812 763 333 287 306 380 403 428 348 338 537 397
1378 1235 1200 1288 196 87 1001 940 335 468 1325 1369 193 157 499 269 304 291 299 261 526 377

TB
2 late 

exponential + 
H2O2

892

late 
exponential + 

H2O2

CHA

late 
exponential + 

H2O2

late 
exponential + 

H2O2

TB
3 late 

exponential + 
PMNs

PAO1

late 
exponential + 

H2O2

LES400

late 
exponential + 

H2O2

TB
6 late 

exponential + 
paraquat

892

late 
exponential + 

paraquat

TB
4 early 

exponential, 
iron depleted

TB
5 late 

exponential, 
iron depleted

LES431

 
  called as "absent" by the Affymetrix- software  
  called as "marginal expressed" by the Affymetrix- software 
a See Table IV-1,  footnote (a) various growth conditions used for RNA 
extraction  
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Table IV-3 The transcriptome profile of genes involved in the carbohydrates metabolism (Entner-Doudoroff pathway). 
 

PAO1 
gene 

number

Gene 
name

Gene 
annotation

Catalyzed 
reaction

MHH01MHH01MHH01MHH01MHH03MHH03MHH03MHH03MHH03MHH03MHH03MHH03
PA2261 (kgk) probable 2-ketogl ATP + 2-Keto-D-gluconate <=> ADP + 2-Ket 26 24 57 55 78 119 5 14 11 6 8 16
PA2321 (glkB) gluconokinase ATP + D-Gluconic acid <=> ADP + 6-Phosph 18 14 520 609 780 735 80 139 321 283 320 277
PA3131 (aldA) probable aldolase2-Dehydro-3-deoxy-6-phospho-D-gluconate 51 63 36 66 138 200 98 120 100 15 97 77
PA3181 (kdpA) 2-keto-3-deoxy-6-2-Dehydro-3-deoxy-6-phospho-D-gluconate 62 74 116 116 413 471 119 67 525 574 323 305
PA3183 zwf glucose-6-phosphD-Glucose 6-phosphate + NADP+ <=> D-Glu 65 74 97 115 621 641 130 142 904 1155 449 409
PA3193 glk glucokinase ATP + D-Glucose <=> ADP + D-Glucose 6-p 36 52 49 55 156 191 75 146 109 93 134 93
PA3194 edd phosphogluconate6-Phospho-D-gluconate <=> 2-Dehydro-3-de 196 202 194 187 1797 933 382 484 378 207 458 518
PA3195 gapA glyceraldehyde 3-D-glyceraldehyde-3-phosphate + Orthophosp 141 130 258 250 1432 1685 785 1028 452 574 532 423
PA4029 (aldB) conserved hypoth2-Dehydro-3-deoxy-6-phospho-D-gluconate 55 50 343 362 187 295 211 231 402 420 209 203
PA4732 pgi glucose-6-phosphD-Glucose 6-phosphate <=> D-Fructose 6-p 459 501 212 177 408 462 659 874 542 554 630 708
PA4783 (aldC) conserved hypoth2-Dehydro-3-deoxy-6-phospho-D-gluconate 12 14 36 36 35 23 83 69 78 24 28 97

PAO1 LES400 LES431
Strains indicated by 

different color TB 892 CHA

a Growth condition
1 late 

exponential
late 

exponential
late 

exponential

Chip- No.

late 
exponential

late 
exponential

late 
exponential
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Continued Table IV-3 

MHH00MHH00MHH01MHH01MHH03MHH03MHH01MHH01MHH03MHH03MHH03MHH03MHH00MHH00MHH00MHH00MHH01MHH01MHH00MHH00MHH01MHH01
86 81 134 72 26 16 161 181 69 29 29 7 7 5 176 35 15 12 115 83 41 50

1043 972 852 940 401 247 529 542 199 463 915 875 128 80 40 172 189 239 690 614 612 506
99 130 104 113 33 179 101 113 13 58 133 124 53 48 13 56 86 81 58 53 89 60

565 545 262 317 5 48 427 415 230 97 455 394 64 86 48 49 41 65 178 203 49 64
329 304 209 248 151 23 898 944 362 182 1540 1705 51 48 14 17 52 12 168 162 57 77
219 228 145 150 158 31 201 184 163 157 86 53 42 56 19 22 69 57 103 138 45 50
365 345 267 302 635 759 773 571 602 341 402 594 253 163 361 365 309 342 293 318 147 151
640 540 445 379 616 444 2440 2233 322 250 314 337 338 306 228 492 305 325 680 758 156 176
276 261 257 271 88 50 105 108 238 207 358 348 89 104 20 102 86 59 340 263 427 373
374 313 413 329 258 192 406 411 149 351 249 357 475 511 451 569 297 396 242 208 226 188
23 36 25 21 75 18 48 47 141 70 30 72 16 26 11 79 55 67 26 31 31 33

TB LES400 TB 892892 CHA PAO1 TBLES431 TB TB

late 
exponential + 

paraquat

late 
exponential + 

H2O2

3 late 
exponential + 

PMNs

4 early 
exponential, 
iron depleted

5 late 
exponential, 
iron depleted

6 late 
exponential + 

paraquat

late 
exponential + 

H2O2

late 
exponential + 

H2O2

late 
exponential + 

H2O2

late 
exponential + 

H2O2

2 late 
exponential + 

H2O2

 
 
  called as "absent" by the Affymetrix- software  
  called as "marginal expressed" by the Affymetrix- software 
a See Table IV-1, footnote (a) various growth conditions used for RNA 
extraction  
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Appendix 3 
Body weight and rectal temperature of mice airways infected by P. aeruginosa  

 
 
Figure IV-1. Body weight (A) and rectal temperature (B) of mice whose airways had been inoculated 
at day 0 with 5x107 CFU of P. aeruginosa TBCF10839 (closed square), P. aeruginosa TBCF10839 
Tn5::PA4640 (closed circle), P. aeruginosa TBCF10839 Tn5::PA3194 (closed triangle) and P. 
aeruginosa TBCF10839 Tn5::PA4954 (closed diamond).  
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Figure IV-2. Body weight (A) and rectal temperature (B) of mice whose airways had been inoculated 
at day 0 with 5x107 CFU of P. aeruginosa TBCF10839 (closed square), P. aeruginosa TBCF10839 
Tn5::PA2537 (closed circle). 
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Figure IV-3. Body weight (A) and rectal temperature (B) of mice whose airways had been inoculated 
at day 0 with 5x107 CFU of P. aeruginosa TBCF10839 (closed square), P. aeruginosa TBCF10839 
Tn5::PA0785 (closed circle).  
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Figure IV-4. Body weight (A) and rectal temperature (B) of mice whose airways had been inoculated 
at day 0 with 5x107 CFU of P. aeruginosa TBCF10839 (closed square), P. aeruginosa TBCF10839 
Tn5::PA4916 (closed triangle).  
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