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Summary 

Muscle contraction is driven by the cyclic interaction of myosin heads with actin 

filaments due to the hydrolysis of ATP. Isometric force is generated by elastic distortion 

of myosin heads when they change from their states of weak binding to actin to the 

strongly attached form. During a length release of activated muscle fibers, further 

structural changes become favored as myosin heads go forward in their working cycle. 

The power stroke of each myosin head comprises a series of states while the myosin 

head is strongly bound to actin. The last state of the power stroke is the nucleotide-free, 

rigor state of the myosin head. After this, the myosin head detaches from actin while 

binding a new ATP molecule. 

In order to explore the structure and function of states occurring later in the power 

stroke, we applied small ramp-shaped releases to isometrically contracting muscle fibers 

from rabbit psoas muscle. The accumulation of these later states was monitored by fiber 

tension recorded during the ramp-shaped releases. Before and during the ramp-shaped 

releases diffraction patterns from the fibers were recorded using high-brilliance 

synchrotron radiation at the ESRF in Grenoble and the RAPID detector developed at the 

SRS in Daresbury. This allowed us to record "snapshots" within very short time frames 

of 2 to 4 ms. For comparison, diffraction patterns were taken from the same fibers in 

relaxing as well as in rigor condition. Features that are sensitive to the rigor or rigor-like 

structure of the myosin head were analyzed in the time-resolved diffraction patterns 

recorded at the ESRF in Grenoble as well as in static diffraction patterns that were 

recorded at the SRS in Daresbury from fibers incubated in the presence of different 

concentrations of MgATPγS. The latter diffraction patterns served as a model for the 

behavior of features on the diffraction patterns when different proportions of myosin 

heads are in rigor while the other myosin heads are weakly attached to actin.  

Our data show that a redistribution of myosin heads occurs during the ramp-shaped 

release. States that occur later in the power stroke are thereby populated with a larger 

number of myosin heads, while the total number of myosin heads stereospecifically 

attached to actin remains constant. Even though later states were increasingly populated, 

no accumulation of rigor-like states was detectable. Model calculations show that the 

intensity distribution along the sixth actin layer line is sensitive to structural changes 

within the myosin head. We demonstrated that the distinct profile of the sixth actin layer 

line observed after increasing the population of later states in the power stroke by 
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application of a ramp-shaped release can not result from changes in a mixture of myosin 

heads in rigor and in states of weak binding to actin. Our data indicate that myosin 

heads are accumulated in a state, which has to be substantially different from the rigor-

like structure of the myosin head. This state of the myosin head has not been 

structurally characterized yet. It could correspond to a state before or shortly after the 

release of inorganic phosphate (Pi) from its binding site in the myosin head, as other 

later states in the power stroke show rigor features in diffraction patterns. 
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Zusammenfassung 

Muskelkontraktion wird durch die zyklische Interaktion von Myosinköpfen mit 

Aktinfilamenten als Folge der Hydrolyse von ATP generiert. Isometrische Kraft entsteht 

durch die elastische Verformung der Myosinköpfe beim Übergang von Zuständen mit 

schwacher Bindung an Aktin zu stark gebundenen Zuständen. Während einer 

Verkürzung von aktivierten Muskelfasern werden weitere strukturelle Änderungen 

bevorzugt während die Myosinköpfe in ihrem Arbeitszyklus voranschreiten. Der 

Kraftschlag eines jeden Myosinkopfs besteht aus einer Serie von Zuständen, während 

welcher der Myosinkopf stark an Aktin gebunden ist. Der letzte Zustand des 

Kraftschlags ist der nukleotidfreie Rigor-Zustand des Myosinkopfs. Danach löst sich 

der Myosinkopf von Aktin, während er ein neues ATP-Molekül bindet. 

Um die Struktur und Funktion von Zuständen zu erforschen, die später im Kraftschlag 

auftreten, ließen wir kleine, rampenförmige Verkürzungen Muskelfasern aus dem 

Psoasmuskel des Kaninchens in isometrischer Kontraktion zu. Die Anhäufung von 

diesen späteren Zuständen wurde über die Spannung der Fasern während der 

rampenförmigen Verkürzungen verfolgt. Vor und während der rampenförmigen 

Verkürzungen wurden Beugungsbilder der Fasern mit hochintensiver 

Synchrotronstrahlung am ESRF Grenoble mittels des am SRS Daresbury entwickelten 

RAPID-Detektors aufgenommen. Dadurch war es uns möglich "Schnappschüsse" in 

sehr kurzen Zeitabschnitten von 2 bis 4 ms aufzunehmen. Zum Vergleich wurden 

Beugungsbilder der gleichen Fasern unter Relaxations- und Rigor-Bedingungen 

aufgenommen. Merkmale, die für Rigor- oder rigorähnliche Strukturen empfindlich 

sind, wurden sowohl auf den am ESRF Grenoble aufgenommenen zeitaufgelösten 

Beugungsbildern als auch auf den am SRS Daresbury aufgenommenen statischen 

Beugungsbildern von Fasern, die unter verschiedenen Konzentrationen von MgATPγS 

inkubiert wurden, analysiert. Die letzteren Beugungsbilder dienten als Model für das 

Verhalten von Merkmalen auf den Beugungsbildern, wenn sich unterschiedlich viele 

Myosinköpfe im Rigor befinden, während die restlichen Myosinköpfe schwach an 

Aktin gebunden sind. 

Unsere Ergebnisse zeigen, daß es während der rampenförmigen Verkürzung zu einer 

Umverteilung der Myosinköpfe kommt. Zustände, die später im Kraftschlag auftreten, 

werden dabei mit einer größeren Anzahl an Myosinköpfen bevölkert, wobei die 
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Gesamtzahl der stereospezifisch an Aktin gebundenen Myosinköpfe konstant bleibt. 

Obwohl spätere Zustände stärker bevölkert wurden, konnte keine Anhäufung von 

rigorähnlichen Zuständen festgestellt werden. Modelrechnungen zeigen, daß die 

Intensitätsverteilung entlang der sechsten Aktinschichtlinie auf strukturelle Änderungen 

innerhalb des Myosinkopfs empfindlich ist. Wir zeigten, daß das individuelle Profil der 

sechsten Aktinschichtlinie, das nach Anhäufung von späteren Zuständen im Kraftschlag 

mittels rampenförmiger Verkürzung registriert wurde, nicht durch Änderungen in der 

Mischung von Myosinköpfen im Rigor und in schwach an Aktin gebundenen Zuständen 

entstehen konnte. Unsere Resultate zeigen auf, daß Myosinköpfe in einem Zustand 

angehäuft werden, der sich von der rigorähnlichen Struktur des Myosinkopfs wesentlich 

unterscheiden muß. Dieser Zustand des Myosinkopfs wurde bisher noch nicht 

strukturell charakterisiert. Er könnte einem Zustand vor oder kurz nach Abgabe von 

anorganischem Phosphat (Pi) von seiner Bindungsstelle am Myosinkopf entsprechen, da 

andere spätere Zustände im Kraftschlag Rigor-Merkmale auf den Beugungsbildern 

zeigen. 
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List of abbreviations 

A actin 

ADP adenosine-5’-diphosphate 

AEBSF 4-(2aminoethyl)-benzylsulfonyl-fluoride 

AlF4 aluminum fluoride 

ALL1 first actin layer line 

ALL5 fifth actin layer line 

ALL6 sixth actin layer line 

ALL7 seventh actin layer line 

AM actomyosin complex 

Ap5A P1, P5-(di-adenosine 5‘)-pentaphosphate 

ATP adenosine-5’-triphosphate 

ATPase adenosine-5’-triphosphatase 

ATPγS adenosine-5’-O-(3-thiotriphosphate) 

a.u. arbitrary units 

DTT DL-dithiothreitol 

E64 N-(trans-epoxylsuccinyl-L-leucine-4-guanidinobutylamide) 

EDTA ethylene diamine-N, N, N’, N’-tetra acetic acid  

EGTA ethylene glycol-bis(-aminoethylether)-N,N,N’,N’-tetra acetic acid 

EM electron microscopy 

ESRF European Synchrotron Radiation Facility 

F-actin filamentous actin (polymer) 

G-actin globular actin (monomer) 

h.s. half sarcomere 

I1,1/I1,0 ratio of equatorial 1,1 and 1,0 intensities 

LMM light meromyosin 

M myosin 

M3 third myosin layer line (meridional reflection) 

MgATP magnesium-adenosine-5’-triphosphate 

MgATPγS magnesium-adenosine-5’-O-(3-thiotriphosphate) 

MLL1 first myosin layer line 

mM millimolar 
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Pi inorganic phosphate 

pCa negative decadic logarithm of Ca++ ion concentration in molar 

pH negative decadic logarithm of H+ ion concentration in molar 

SAXS small angle X-ray scattering 

SRS Synchrotron Radiation Source 

U unit 
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Introduction 

Muscle function is part of our life. It defines us as entities moving in the dimensions of 

space and time. Since the antique times different biophysical models explaining the 

function of muscle have been developed. But it is not until the 1940s that the proteins 

that are mainly responsible for the contractile system have been identified (Straub, 

1942; Banga and Szent-Gyorgyi, 1942; Szent-Gyorgyi, 1944). It was then established 

that it is the interaction of the macromolecular proteins actin and myosin that generates 

force and contraction in muscle. The exact course of this interaction is still a vivid topic 

of research. 

To prepare the ground for further explanations about the known muscle function, let me 

first present an overview of the microscopic structure of muscle. As shown in figure 1 a 

whole muscle is structurally divided into bundles of muscle fibers, which in turn consist 

of myofibrils arranged in parallel. In skeletal and heart muscle a striation is visible by 

light microscopy and was described using the terms A-bands, I-bands, Z-lines, H-zones, 

as shown in the figure. In microscopy with polarized light the region of the A-bands 

appears as anisotropic structures and the region of the I-bands as isotropic structures. 

The term Z-line comes from the German "Zwischenscheibe". The section of the 

myofibril ranging from one Z-line to the next is called a sarcomere. It forms the 

structural and functional unit of the muscle. Its length is about 2.4 µm in resting muscle. 

Finer structures within the sarcomere cannot be resolved by normal light microscopy. 

Suitable methods for higher resolution are, for example, electron microscopy, X-ray 

diffraction and neutron diffraction, as they provide shorter wavelengths than visible 

light. 
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Fig. 1: Structural elements of muscle showing the organization from the macroscopic to 

the microscopic and molecular structures. From Bloom and Fawcett, 1968. The 

structure of the actin and myosin filaments has been better resolved recently, but the 

shown scheme remains generally correct. 

The sliding filament model of muscle contraction 

Early X-ray diffraction studies (Huxley, 1953b; Hanson and Huxley, 1953) indicated 

that within the sarcomere the contractile proteins actin and myosin are organized in the 

form of interdigitating thin and thick filaments. The thick filaments (myosin filaments) 
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are located at hexagonal lattice positions within the A-band and the thin filaments (actin 

filaments) are at the trigonal lattice points between the thick filaments. For a schematic 

cross-section see figure 10, which is discussed later in a different context. As no change 

in the axial periodicities of diffraction images has been observed when the muscle was 

lengthened, it was concluded that the lengths of the filaments do not change during 

contraction. Muscle contraction must therefore be accomplished by sliding of the thin 

and thick filaments past each other (Huxley and Niedergerke, 1954; Huxley and 

Hanson, 1954), and the sliding force must be produced in the overlap zone of the two 

types of filaments. It was proposed that molecular structures (cross-bridges) connecting 

the two types of filaments have to change their conformation to enable sliding and force 

production (Huxley and Niedergerke, 1954). By electron microscopy it was confirmed 

that such cross-bridges actually consist of myosin heads protruding from the thick 

filaments (Huxley, 1953a; Huxley, 1957). 

The thick filaments are located in the middle of the sarcomere, forming the A-band, and 

are constituted of myosin molecules arranged with their rod-like part in the backbone of 

the filament, while the other ends (the heads of the myosin molecules) protrude out of 

the filament. The myosin molecules in each thick filament are arranged in opposite 

directions in the two halves of the filament, making the thick filament bipolar. The thin 

filaments are tethered at intermittent positions to the Z-line. The longitudinal structure 

of the sarcomere and the sliding of the filaments are illustrated in figure 2. 

Biochemical studies have revealed that the thin filaments consist not only of 

filamentous strands (F-actin) formed from globular actin monomers (G-actin), but thin 

filaments also contain regulatory proteins. These are the proteins Troponin and 

Tropomyosin and serve, as the term regulatory proteins implies, for the regulation of the 

contractile function of the muscle. 
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Fig. 2: The sarcomere. Contraction and relaxation of the muscle is realized by the 

sliding of the interdigitating thick and thin filaments past each other. The lengths of the 

filaments remain essentially the same during both processes. From Alberts et al., 2002. 

Transitions between different structural states of the cross-

bridge 

As it is clear that the contractile force has to be produced within the overlap zone of the 

thick and thin filaments, structural changes of the cross-bridges have to be responsible 

for force development. Length change experiments (Huxley and Simmons, 1971) led to 

the proposal that the structural change of the cross-bridge is composed of multiple steps 

responsible for maintaining force and for shortening of the sarcomere. The quick 

tension recovery after a sudden step-wise shortening of the muscle fiber (see figure 3) 

was interpreted as the signature of the structural changes responsible for force 

generation during muscle contraction. In this concept, isometric force is maintained by 

elastic distortion of the cross-bridge, while during shortening the elastically stored free 

energy is converted into sliding movement. According to this model perception, the 

cross-bridge has to be able to achieve different structural conformations, with several of 

these states being capable of bearing force. Since cross-bridges act asynchronously, the 

whole population of cross-bridges in a muscle fiber is distributed between the different 

force-bearing and non-force-bearing structural states. An individual cross-bridge passes 

dynamically through its cycle of different states. A synchronized transition of a large 

number of cross-bridges into different structural states can be achieved by mechanical 

maneuvers applied to the muscle fiber, as, for example, in the step-wise length change 

experiments performed by A. F. Huxley and Simmons. 
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Fig. 3: The figure shows a recording of the tension transient upon a step-wise 

shortening of isolated frog muscle fibers during tetanic stimulation. The upper trace is 

the time course of the lengths of the muscle fibers. The numbers attached to the middle 

trace indicate parts of the tension trace corresponding to Huxley-Simmons-phases 1 to 

4, whereby phase 2 is the rapid early tension recovery interpreted as the transition to 

subsequent conformational states (conformations 2 and 3 in figure 4), whereas phases 3 

and 4 are accounted for by detachment and re-attachment of cross-bridges. The bottom 

trace is the tension base line. From Huxley, 1974. 

The mechanical model proposed by A. F. Huxley and Simmons (1971) describes two or 

more conformations of the cross-bridge as shown in figure 4. In each subsequent 

conformation the myosin head has a stronger binding to actin than in the previous one 

and the elastic component of the cross-bridge is more stretched. This elastic 

deformation accounts for the force maintained in the cross-bridge. Force is accordingly 

built up on transition from conformation 1 to subsequent conformations. A. F. Huxley 

and Simmons (1971) interpreted this transition as the mechanism underlying the early 

tension recovery (phase 2 in figure 3) and also responsible for generating and 

maintaining force during isometric contraction. That means that isometric force in a 

muscle fiber would be maintained by a certain percentage of cross-bridges that already 

made the transition into conformation 2 or subsequent conformations. 
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Fig. 4: Mechanical model proposed by A. F. Huxley and Simmons (1971) describing the 

mechanism of force development capable of explaining the tension transients obtained 

in response to step-wise shortening of activated muscle fibers. From Huxley, 1974. 

Brenner, 1991, and Brenner et al., 1995, found that the above described concept of  

A. F. Huxley and Simmons cannot be correct. If during isometric steady-state 

contraction a proportion of cross-bridges would be in conformation 2 or subsequent 

conformations, a step-wise stretch should produce a tension trace similar to the one in 

figure 3 but flipped upside-down. This, however, was not recorded. By applying small 

ramp-shaped releases to isometrically contracting muscle fibers, Brenner, 1991, was 

able to differentiate the transition between different conformations from other effects, 

such as attachment and detachment of cross-bridges. Even though, an inversion of the 

tension transients recorded during a release could not be achieved during a stretch of 

isometrically contracting fibers. From this Brenner et al., 1995, concluded that force 

generation does not occur only in conformation 2 or subsequent conformations. Instead, 

isometric force obviously is already generated by conformation 1. 
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ATP-hydrolysis and the cross-bridge cycle 

When the muscle contracts, mechanical work is exerted. Chemical energy is converted 

into mechanical work. From early viscosity studies of extracted myosin and actin 

(Banga and Szent-Gyorgyi, 1942; Szent-Gyorgyi, 1942) and birefringence studies 

(Needham et al., 1942) it was concluded that ATP is the energy source of muscle 

contraction. It was established that myosin has ATPase activity when it is combined 

with actin to form actomyosin, and that ATP induces shortening of actomyosin threads. 

The conformational changes of the cross-bridges, which drive muscle contraction, are 

therefore coupled to the ATPase activity of the myosin head domain, and lead to the 

conversion of ATP to ADP and inorganic phosphate (Pi). For a single cross-bridge 

going through one cycle of conformational changes, one ATP molecule is hydrolyzed. 

A simple scheme of the cycle coupling the biochemical with the conformational states 

of the cross-bridge has been developed by Lymn and Taylor, 1971 (see Fig. 5). The 

cycle consists of four basic steps. The cross-bridge is formed by the myosin head, which 

is attached to actin when neither ATP, nor ADP or phosphate is bound to myosin. This 

is the AM state, panel 1 in the figure. With the binding of ATP the myosin head 

detaches from actin (M.ATP state, panel 2). In the next step, ATP is hydrolyzed but the 

hydrolysis products are not yet released from the active site of the myosin head 

(M.ADP.Pi state, panel 3), the myosin head, however, becomes "cocked" to a position 

that primes it for attachment to actin. At the transition to state 4 the head attaches again 

to actin (AM.ADP.Pi state). While in the next step the hydrolysis products Pi and ADP 

are released, forming the AM state (the rigor state - panel 1) the myosin undergoes a 

conformational change by which the attached myosin head becomes strained. This last 

transition is called the power stroke or working stroke. If the filaments are allowed to 

slide past each other, the strain generated by the power stroke can be released and leads 

to shortening of the muscle. If the filaments are held at a fixed position (isometric 

contraction), the strain is maintained and is observed as active force. 
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Fig. 5: The Lymn-Taylor-Cycle. The gray bar stands for the backbone of the myosin 

filament. The actin filament is depicted as the helix on the left side and the cross-bridge, 

in this model, consists of the oval head and the rod-like tail. From Geeves and Holmes, 

1999. 

This simple scheme depicts the basic mechanism of force production in a single cross-

bridge. This concept is still valid, although some significant modifications were 

integrated which will be described in a later section of the introduction. Our main point 

of interest, though, are the conformational changes occurring during the power stroke, 

i.e. during the transition between state 4 and state 1 in the Lymn-Taylor scheme (Fig. 5). 

As we will see, this transition, however, is quite more complex than assumed in the 

Lymn-Taylor scheme. 

Suitable methods to elucidate conformational changes of the 

cross-bridge 

As we are not able to directly see and feel the interactions between the proteins in 

muscle, we have to employ different methods of measurement to gain deeper 



Introduction 

20 

understanding of the structures, structural changes and molecular mechanisms. A 

number of different methods are applicable in order to study the structure and function 

of the cross-bridge. Each of these methods has its specific advantages and 

disadvantages. Thus, a combined application of different approaches seems to be most 

promising. 

The two general methods of imaging and non-imaging techniques have to be 

distinguished. The reason why we cannot see molecular structures with light 

microscopy is that the resolution of microscopes is limited by their aperture and the 

wavelength of the applied light. Even if the magnification is increased, after a certain 

point the image remains blurred and finer structures cannot be resolved further. This 

limitation is governed by the rules of optics. A point source is actually projected as an 

airy disc due to diffraction of the circular aperture of the microscope. The images of two 

points cannot be distinguished any more when the intensity maximum of one airy disc 

coincides with the first intensity minimum of the other. The smallest resolvable 

distance (r) between two points is described by the Rayleigh criterion:  

r = 0.61 λ / NA 

where λ is the wavelength of the light and NA is the numerical aperture: 

NA= n sin θ 

where n is the refractive index of the immersion medium and θ is the half-angle of the 

maximum cone of light that can enter or exit the objective lens. 

As the wavelength for visible light is from about 400 to 700 nm and the numerical 

aperture may achieve values up to 1.4, the theoretical best resolution for visible light is 

therefore about 200 nm, which is not sufficient to resolve changes in the cross-bridge 

structure during muscle contraction that are expected to be in the range of a few 

nanometers. 

Mechanical experiments  

Mechanical experiments generally allow measurements of force-length relationships or 

the time course of force and/or length after sudden changes in length or load of single 

muscle fibers, myofibrils, fiber assemblies or whole muscle. Environmental conditions 

of the investigated samples can be influenced by the chemical composition and 

temperature of the solution the sample is immersed in. Conclusions concerning the 

underlying molecular structures and their mechanical properties are made from 
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measured force or stiffness values. The mechanics of the cross-bridge action can be 

"sensed" by mechanical experiments, although it cannot be seen directly. 

From force transients after step-wise shortening and lengthening of activated muscle 

fibers Huxley and Simmons (1971) concluded that the cross-bridge changes between at 

least two conformational states while it is attached to the actin filament. The complete 

ensemble of attached cross-bridges is distributed between these different states. The 

population of the different states is governed by the rate constants pertaining to the 

transitions between the different conformational states. The rate constants between 

attached states of the cross-bridge are dependent on the strain of the cross-bridge (Hill, 

1974). Thus, when an attached cross-bridge that has not yet completed the power stroke 

is strained in the direction of the power stroke, the likelihood of transiting into later 

states of the power stroke by changing its conformation appropriately increases. The 

adequate opposite is valid, of course, in the other direction, when the cross-bridge is 

strained in the direction opposing its movement during the power stroke. 

Thus, by adequate mechanical maneuvers the rate constants between the different states 

of the cross-bridge can be changed and a coordinated action of cross-bridges can be 

provoked, whereby various conformational states are populated or depopulated. During 

a short release of an activated fiber, the thick and thin filaments slide past each other 

and exert strain on the attached cross-bridges, changing the rate constants of the 

transitions between various conformational states of the power stroke and favoring later 

states of the power stroke. 

As we are interested in the mechanism of the power stroke, this coordinated transition is 

worthwhile to be investigated. Instead of applying Huxley-Simmons type rapid 

shortening steps (Huxley and Simmons, 1971), an accumulation of late states in the 

power stroke can also be accomplished by a ramp shaped release, a shortening 

maneuver with constant speed, corresponding to a series of infinitesimal shortening 

steps (Kuhn et al., 1979; Ford et al., 1977; Brenner, 1991; Brenner et al., 1995). To gain 

a comprehensive understanding of the investigated mechanisms, it is opportune to 

combine mechanical experiments with imaging techniques. Three imaging techniques 

will be discussed in the following section.  

Protein X-ray-crystallography 

The mechanical and chemical function of a protein is strongly influenced by the 

particular folding of the protein. The three-dimensional structure can be investigated by 
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crystallographic means. The macromolecules, though, have to be in an appropriate 

shape to be able to agglomerate to crystals. Therefore, the method is not applicable to 

every macromolecule.  

As explained before, light (electromagnetic waves) of a wavelength much shorter than 

that of the visible light has to be employed to resolve structures on the molecular level. 

Coherent X-ray radiation is applicable for this purpose. For a suitable compromise 

between resolution and absorption, a wavelength of 1.54 Å was usually used in 

laboratory sources (Cu Kα line). The applied radiation is mostly produced in X-ray 

tubes with cooled rotating anodes, necessary because of the high electron flux impacting 

the anode. Wavelength selectivity is achieved by the characteristic emission of the 

anode material (e.g. copper - Cu Kα line). 

Diffraction images produced by Bragg reflections of an X-ray beam directed at the 

crystalline sample are used for resolving the structure. But, for being able to calculate 

the structure from the diffraction image, the phase problem has to be solved. The 

recorded diffraction patterns only contain the intensity information of the reflected light 

but not the phase information. Therefore, the structure of the diffracting matter cannot 

be calculated straightforwardly by Fourier synthesis.  

The phase problem can be solved by isomorphous replacement, a method developed by 

Max Perutz (Green et al., 1954), in which a light atom in the macromolecule is replaced 

by a heavy atom (e.g. mercury) and the diffraction pattern of the derivatized protein is 

compared to that of the underivatized protein. This method is widely applicable even 

today. 

In 1958 Max Perutz determined the three-dimensional crystal structure of hemoglobin 

to a 0.55 nm resolution and John Kendrew determined the structure of myoglobin. The 

crystal structure of monomeric actin (G-actin) was solved first by Kabsch et al., 1990, 

while the structure of myosin subfragment 1 (S1), the head of the myosin molecule 

containing the actin and the nucleotide binding site, was solved by Rayment et al., 

1993b. No crystal structure, however, was obtained yet for the actomyosin complex. So, 

conclusions about conformational changes of the myosin head during the power stroke, 

i.e. while it is bound to the actin filament, can only be drawn from other imaging 

methods, using the known crystal structures of S1 or S1 constructs. 
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Electron microscopy 

A preferred method to derive structural information from complexes of different 

proteins that cannot be co-crystallized is the fitting of the crystal structure of the 

individual proteins into electron micrographs of the complex. In the case of actin-

myosin interaction, the known crystal structures of the actin filament and the S1 or S1 

fragments are fitted into reconstructions of cryo electron microscopy data of actin 

filaments decorated with myosin heads (S1) or S1 fragments. 

Electron microscopy (EM) offers a resolution in the order of 1 nm. From early electron 

micrographs of longitudinal thin sections of muscle fibers the existence of cross-bridges 

between the thick and thin filaments has been demonstrated (Huxley, 1957). They 

appear as a ladder-like structure and show diverse angular orientations (Reedy et al., 

1965). As the thick and thin filaments themselves do not change their length 

significantly during contraction, it was proposed that the cross-bridges between them 

are responsible for force development and shortening of the muscle (Huxley and 

Niedergerke, 1954). Their orientations represent different structural conformations 

(Reedy et al., 1965). 

In cryo electron microscopy, specimens are rapidly frozen at liquid nitrogen temperature 

and cut into films thinner than 500 nm, to prevent multiple scattering of the electrons. 

Three-dimensional images of the specimen are reconstructed from layers of two-

dimensional recordings. Apart from the high resolution, cryo EM offers the advantage 

of being able to capture the structure of the sample in a defined condition. Thus further 

insight in the structural changes occurring during contraction can be gained (Milligan 

and Flicker, 1987; Milligan et al., 1990). 

The disadvantage - at least for our kind of interest - is that cryo EM, as well as other 

sample preparations for electron microscopy, investigates a non-functional sample. 

Also, the preparation method is very sensitive and may produce artifacts. 

X-ray fiber diffraction 

Unlike electron microscopy, X-ray diffraction allows to investigate living muscular 

tissue (Huxley and Brown, 1967; Huxley, 1968). By limiting the irradiation of the 

sample, it remains functional and structurally undamaged. The method permits to apply 

definable mechanical and chemical conditions to the sample. Therefore, it appears 

appropriate as an imaging technique accompanying the earlier described mechanical 

maneuvers. 
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The method has to meet a couple of requirements. To be principally able to achieve the 

resolution necessary for resolving changes in the macromolecular structure during 

muscle contraction, the used light (electromagnetic radiation) has to have a wavelength 

of the same order of magnitude as the investigated structure. The brilliance of the light 

source has to be sufficient to be able to record images on a time-resolved millisecond 

basis. Only this allows to record diffraction images during length changes of the fibers, 

which are applied in very short time intervals, e.g. a few milliseconds. 

We used synchrotron radiation to meet these requirements. Intense electromagnetic 

radiation is produced as braking radiation ("Bremsstrahlung") when the electron beam 

in the storage ring is led through so called insertion devices, undulators or wigglers. The 

wavelength is fixed to 0.1 nm at beamline ID02 of the ESRF Grenoble and 0.154 nm at 

beamline 2.1 of the SRS Daresbury, where we performed our experiments. The X-ray 

beam was focused by monochromators and mirrors in both facilities. Monochromators 

are asymmetrically cut germanium crystals or silicon crystals at Daresbury and 

Grenoble, respectively. Specific Bragg-reflections from the crystals are used to achieve 

high wavelength selectivity, and by controlled bending of the crystals, the X-ray beam 

is focused in one direction.  

The coherent light directed to the sample is scattered from it, whereby the amount of 

scattering from each structural unit depends on its electron density. As muscle fibers 

contain a regular molecular structure, they act similar to a crystal and produce a 

scattering image having distinct peaks of intensity. Light waves scattered from different 

units interfere with each other. Depending on the relative phases between the scattered 

waves, in some directions they interfere constructively, whereas in some other 

directions they interfere destructively. In these later directions no light from the sample 

is recorded. The interference process of scattered light is called diffraction. An image-

detecting device placed behind the sample records the intensity distribution, i.e. the 

diffraction pattern, which depends on the structure of the scattering sample. For 

technical details and further illustrations the interested reader is referred to the appendix 

"X-ray diffraction in a nutshell", which was the handout for a seminar I held in front of 

our lab group in October 2004. 

Muscle does not behave as a perfect crystal. There is a certain degree of disorder in the 

structure. Therefore, the recorded two-dimensional diffraction patterns exhibit broad 

peaks of light intensity on a background of differently scattered light. Nevertheless, the 

patterns reflect information about the macromolecular structure of the scattering 
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structural elements within the muscle fibers and can be analyzed accordingly. When the 

scattering structure within the muscle fibers changes, e.g. due to changes of the physical 

or chemical environment, recorded peaks on the diffraction pattern change their 

intensity distribution and position. 

The helical arrangement of masses on the thick and thin filaments in muscle fibers 

produces typical reflections on the 2D X-ray diffraction patterns (Squire, 1981; Harford 

and Squire, 1997). The reflections are categorized into equatorial, meridional and off-

meridional reflections (see figure 6, where the typical features of diffraction patterns 

from muscle fibers are explained). Basics of X-ray diffraction are also described in the 

appendix "X-ray diffraction in a nutshell". 

As known from general diffraction theory the distances on the image are inversely 

proportional to the size of the periodicities of structural elements that produce the 

reflections. A tighter grating produces larger distances between reflections, i.e. a wider 

diffraction pattern, and vice-versa. According to this, the space the image is projected 

on is also referred to as reciprocal space and distances in reciprocal space are described 

in reciprocal length units. 

From a given structure the diffraction image in reciprocal space can be calculated using 

the Fourier-transform 

! 

G(S) =  "
V
# (r) e

2$i r•S
 dV, 

where 

! 

G(S)  is the diffraction (containing the amplitude and phase information of the 

diffracted light) at a point in space described by the vector 

! 

S (in units of 1/λ), 

! 

"(r)  is 

the scattering power (electron density) at a point in the sample described by the 

vector 

! 

r . From a known 

! 

G(S)  the electron density distribution 

! 

"(r)  can be 

reconstructed using the inverse function of the Fourier-transform, the Fourier-synthesis. 

On the two-dimensional area of the detector only the intensity is recorded, i.e. the value 

proportional to 

! 

G(S)
2  with the values of 

! 

S restricted to the two-dimensional plane. 

Because the phase information contained in 

! 

G(S)  is lost in this case, the electron 

density distribution cannot be reconstructed straightforwardly. 

One possible approach to the interpretation of recorded two-dimensional X-ray 

diffraction patterns is therefore modeling of the molecular structure of the sample and 

calculation of the resulting pattern from the thus defined electron density distribution. 

Thereby the electron density distribution can be varied to optimally fit recorded 
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diffraction patterns. Simple models presenting filamentous actin (F-actin) as a 

discontinuous helix with the periodicity of its density distribution already yield the 

typical actin layer lines in the diffraction patterns, although their intensity distribution 

does not match recorded diffraction patterns. The same is valid for the myosin filament 

and reflections resulting from its helical density arrangement (Knupp and Squire, 2004; 

Squire and Knupp, 2004). 

Actin and myosin filaments are formed by helical arrangement of actin monomers and 

myosin monomers, respectively. Their electron density along the helical path is 

therefore not continuous but rather more discrete. Such "discontinuous" helices produce 

diffraction patterns with repeating meridional reflections, having a spacing inversely 

proportional to the subunit translation on the helix. The off-meridional reflections are 

lying on so-called helix crosses originating from the meridional reflections. Their 

position is also governed by the repeat, the pitch and the diameter of the helix 

(Vainstein, 1966; Squire, 1981). 

To find a good fit of the calculated diffraction pattern to the measured one, density 

distributions from know crystal structures of actin (Kabsch et al., 1990; Holmes et al., 

1990; Lorenz et al., 1993) and myosin (Rayment et al., 1993b) have to be included in 

the modeling. Approximation of structural details by spheres of the same size permits 

reduction of the continuous Fourier-integral to a Fourier-series and thus easy 

computation of the transform. The form of the spheres then modulates the resulting 

pattern with the diffraction of a single sphere (an airy disk), according to the 

convolution theorem (Vainstein, 1966). 

By taking into account the mismatch of the periodicities of the actin and myosin 

filament the distribution of attached cross-bridges in the overlap region of the two 

filaments can be modeled (Gu et al., 2002). The distribution is modulated by the repeat 

of the actin filament (~ 36 nm) and by the distance between the crowns on the myosin 

filament (~ 14.3 nm). Gu et al., 2002, introduced a number of degrees of freedom within 

the myosin heads, their origins on the myosin backbone and their binding positions on 

the actin filament to construct the attached cross-bridges. The parameters pertaining to 

these degrees of freedom are varied to achieve an optimal fit to measured reflections on 

the diffraction pattern. Although this model reveals information about the possible 

distortions and orientations of the myosin head when it is strongly attached to actin and 

makes predictions about the influence of the second, unattached myosin head, it is not 
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able to appropriately model the intensity distributions of the lower index actin and 

myosin layer lines. 

The intensities of these layer lines are also modulated by the regular arrangement of 

actin and myosin filaments in the hexagonal lattice of the contractile apparatus. This 

intensity modulation is called "lattice sampling". The sampling of these layer lines, 

however, is not only produced by the regular transversal lattice of the actin and myosin 

filaments. Influences of axial and transversal disorder have also to be taken into 

account. Adequate modeling of lattice sampling is of huge importance for us, as we are 

interested in the role of the rigor conformation of the cross-bridges that produces 

diffraction patterns with very prominent lattice sampling. An example of a two-

dimensional diffraction pattern of fibers, where all cross-bridges are in this rigor 

conformation is shown in figure 7.  
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Fig. 6: Scheme explaining the diffraction pattern in figure 7. The diffraction pattern was 

recorded at the ESRF in Grenoble. The image was recorded on the RAPID detector 

with an active size of 200 mm x 200 mm and 1024 x 1024 pixels. Intensity is recorded in 

a circular disk produced by the aperture of the camera tube. Only few, scattered 

photons were recorded outside this area. The origin is in the upper right part of the 

image. It corresponds to the position of the non-scattered X-ray beam, which is 

inhibited from hitting the detector directly (and damaging it) by a square peace of lead, 

the beamstop. The horizontal direction crossing the origin is called the equator and the 

vertical the meridian. The region around the equator was attenuated about 3.5-fold by a 

strip of lead to diminish artifacts of the detector response produced by high-intensity 

peaks. Intensity peaks on the equator correspond (figure legend continues) 
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(figure legend continued) to the arrangement of the filaments in the hexagonal lattice 

structure of the contractile apparatus, i.e., the arrangement of diffractive mass in the 

fibers projected on a plane perpendicular to the fiber axis. As a reference see figure 10, 

where the influence of mass distribution between thick and thin filaments on the 

intensities of the 1,0 and 1,1 equatorial reflections is explained. The meridional 

reflections correspond to periodically repeating structures along the axis of the 

filaments. They are indicated by M2, M3 and M6. M3, for example, corresponds to the 

axial translation of the myosin heads in the myosin filaments, i.e., the distance of one 

crown of heads to the other, which is about 14.3 nm. The off-meridional reflections, 

MLL1, ALL1, ALL5, ALL6, ALL7, are layer lines produced by the helical arrangement 

of masses on the myosin (MLLs) and actin (ALLs) filaments, respectively. Their position 

is governed by the pitch and repeat of the helical arrangement of myosin heads and 

actin monomers, respectively. Details are explained in the appendix. The positions of 

the reflections on the diffraction pattern are mapped according to the reciprocal values 

of the corresponding periodic distances in the sample. The diffraction image is 

therefore referred to as reciprocal space. According to this, ALL6 is also called the 

59-Å-layer line and ALL7 the 51-Å-layer line. 
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Color gradient: 

 

Fig. 7: 2D-X-ray diffraction pattern of muscle fibers in rigor condition recorded with 

the RAPID detector. The image is displayed in pseudo colors. Typical rigor features are 

visible, most prominently, on the first actin layer line (ALL1), which shows the 

characteristic lattice sampling. Intense actin layer lines are produced by the labeling of 

the actin filaments with stereospecifically attached myosin heads. The image also shows 

an intense 1,1 equatorial reflection. 
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In skeletal muscle of higher vertebrates actin and myosin filaments form a super-lattice, 

as the myosin filaments have two possible orientations. Therefore, a unit cell, which 

comprises the repeating elements of the diffracting material, has to include at least one 

myosin filament of each orientation. If the diffracting structure can be divided in 

repeating unit cells, it generally suffices to calculate the Fourier-transform of one unit 

cell and account for the complete structure using the convolution theorem (Vainstein, 

1966).  

 

Fig. 8: Transversal lattice of myosin and actin filaments in the overlap zone. The 

scheme depicts a transversal cut through the A-band of the muscle fiber. The big gray 

circles represent the myosin filaments and the small circles on their circumference the 

positions of the origins of the myosin heads on the myosin backbone. The small black 

double circles are the actin filaments. In vertebrate skeletal muscle the myosin filaments 

have two possible orientations marked by the letters A and B, which are distinguished 

by the arrangement of the origins of the myosin heads. This lattice is called the 

superlattice, whereas in a simple lattice, as for example in bony fish muscle, only one 

orientation of the myosin filaments is present. A constructed unit cell, that comprises the 

smallest repeating part of the superlattice, therefore, has to contain myosin filaments of 

both orientations. In their model, Koubassova and Tsaturyan, 2002, defined the dashed 

hexagon the unit cell. From Koubassova and Tsaturyan, 2002. 

In the model presented by Koubassova and Tsaturyan, 2002, a hexagonal unit cell is 

defined, which contains six actin and three myosin filaments, whereby the central one 
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has a different orientation from the other myosin filaments (Fig. 8). By introducing 

disorder in the form of deviations of axial and transversal positions within the unit cell 

and between neighboring unit cells, typical lattice sampling on the low index layer lines 

was modeled, while in the same time there is no visible lattice sampling on the fifth, 

sixth and seventh actin layer line. The modeled profiles of the layer lines thus fit the 

experimental data nicely, although the ratios of total intensities of the actin layer lines 

could not be approximated to experimental data sufficiently. According to the authors, 

this could be due to the lack of troponin and tropomyosin in the model. Nevertheless, 

this model is highly useful for us, because it yields information about the intensity 

distributions along the layer lines depending on the number and labeling pattern of 

attached myosin heads, as well as different types of disorder. 

Vainstein, 1966, distinguishes mainly two types of disorder: disorder of the first kind 

and disorder of the second kind. The first is induced by Brownian motion and random 

movements resulting, for example, from cross-bridge action. The second is propagated 

by elastic neighbor-to-neighbor interactions. Koubassova and Tsaturyan, 2002, 

approximated disorder of the first kind by axial and transversal deviations within the 

unit cell, and disorder of the second kind by deviations between unit cells. 

Of major consequence for the interpretation of our own results are the following 

conclusions derived from the Koubassova and Tsaturyan model:  

(i) The intensity distribution along the first actin layer line (ALL1) is highly sensitive to 

transversal disorder, both of first and second kind. With decreasing transversal disorder 

lattice sampling gets more pronounced, whereas for increasing transversal disorder the 

sampled profile gets smoother. 

(ii) The intensity distribution along the ALL1 is practically independent of axial 

disorder and of the molecular structure, the conformation of various domains, and the 

orientation of the cross-bridges. 

(iii) The total off-meridional intensity of ALL1 depends solely on the number of 

stereospecifically attached myosin heads.  

(iv) The intensity distribution along the sixth actin layer line (ALL6) is independent of 

the distribution pattern of attached myosin heads. 

(v) Lattice sampling on ALL6 is negligible, what coincides with our own experimental 

results in various conditions. 

(vi) The total intensity and the intensity distribution along the ALL6 is highly sensitive 

to the structure, conformation, and orientation of the cross-bridges. Even minor 
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structural changes or bending of the light chain domain of the myosin heads produce 

significant changes both in the profile and total intensity of ALL6. 

Concerning point (iii) it has to be noted that the intensity of layer lines generally 

increases with the number of diffractors. The intensity, though, does not quite follow 

the square law introduced by Haselgrove, 1975, stating that the intensity is proportional 

to the square of the number of diffractors. It is rather found to increase linearly for small 

numbers of diffractors (Tamura et al., 2004). 

Based on the model of Koubassova and Tsaturyan, 2002, recorded changes on the first 

actin layer line during applied mechanical maneuvers can, therefore, be interpreted in 

the following way. An overall increase in ALL1 is associated with an increase in the 

number of diffractors, i.e. an increase in the number of myosin heads stereospecifically 

attached to actin. An increase in the sampled maxima of ALL1 alone, i.e., without an 

increase in total intensity, is associated with increased transversal order within the 

muscle fiber. 

Changes in the shape of the sixth actin layer line indicate structural changes within the 

attached cross-bridges. These changes include possible density shifts within the myosin 

head as it takes up another conformation, or as domains of the myosin head are tilted or 

bent, or as the myosin head itself is tilted or bent as a whole. Thus, changes on the sixth 

actin layer line that occur during mechanical maneuvers at time-points crucial for force-

development, give us information about structural changes of the cross-bridge during its 

power stroke or during force-development. 
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Fig. 9: Schematic illustration of Bragg's law. Incident light (red lines, coming from the 

left side) is being reflected on the lattice planes. The emerging light beams (right side) 

are interfering constructively, when the pathlength difference is an integer multiple of 

the wavelength of the light. The condition for constructive interference is therefore: 

! 

2a = n" = 2dsin# , where 

! 

2a  is the pathlength difference, 

! 

"  is the wavelength, d is the 

lattice spacing, and 

! 

"  is the angle of incidence of the light.  

The equatorial reflections on the diffraction patterns, the group of most intense 

reflections in the diffraction pattern, allow to monitor the density distribution in the 

transversal direction of the muscle fiber. Actin and myosin filaments are arranged in a 

regular hexagonal array, which diffracts X-rays in a direction perpendicular to the fiber 

axis.  

The positions of the reflections pertaining to lattice planes with a spacing d are 

described by Bragg's law: 

! 

n" = 2dsin#  
as illustrated in figure 9. The incident light is deflected by the angle 

! 

2" . For small 

angles 

! 

" , the above equation can be approximated by 

! 

n" = d
Sn

L
 

where 

! 

Sn is the distance of the n-th order reflection from the origin on the diffraction 

pattern and L is the camera length, i.e. the distance of the detector from the sample. The 

positions of the equatorial reflections for each lattice plane in small angle X-ray 

scattering (SAXS) are therefore determined by 
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! 

Sn = nL
"

d
 . 

The above equation shows the inverse relationship between distances in the sample and 

on the diffraction pattern, as described earlier when introducing reciprocal space. Figure 

10 shows a schematic axial projection of the lattice planes 1,0 and 1,1 in the hexagonal 

filament array and the 1st order (n=1) equatorial reflections coming from them. The 

positions of the 1,0 and 1,1 equatorial reflections are determined by the inverse lattice 

spacing of the 1,0 and 1,1 lattice planes, respectively.  

The intensities of the equatorial reflections depend on the scattering densities of the 

diffractors lying on the corresponding lattice planes. The 1,0 lattice plane includes only 

myosin filaments, whereas the 1,1 lattice plane includes both myosin and actin 

filaments. The ratio of the intensities of the reflections (I1,1/I1,0) gives a practicable 

measure for the density distribution between actin and myosin filaments. When 

diffracting mass shifts from the myosin to the actin filaments, I1,1/I1,0 increases 

accordingly. Figure 10 illustrates this effect. More density on the myosin filaments 

produces high 1,0 peaks and low 1,1 peaks (left two panels of the figure), and more 

density on the actin filaments the opposite (right two panels of the figure). Influences of 

the disorder of the first kind (random disorder), which may change during mechanical 

maneuvers, are canceled out in the ratio. Only disorder of the second kind (propagating 

disorder) is affecting I1,1 more than I1,0 (Vainstein, 1966) and may therefore have an 

influence on the ratio I1,1/I1,0 during mechanical maneuvers.  

Two-dimensional X-ray pattern contain many other features that are obviously sensitive 

to different mechanical and chemical conditions of the muscle sample. For the analysis 

of our results, though, we picked out only the recorded reflections that are sensitive to 

cross-bridges in rigor conformation. The third and sixth myosin layer lines, the 

meridional reflections M3 and M6, respectively, come from the ~14.3 nm translation 

between the crowns of myosin heads. Therefore these reflections are sensitive only to 

changes in the myosin heads not attached to actin or to parts of the attached heads that 

follow the myosin periodicity, e.g. the neck region near the origin on the myosin 

backbone (Koubassova and Tsaturyan, 2002). Part of the reflection comes also from the 

myosin backbone itself (Linari et al., 2000). The information obtained from M3 and M6 

is therefore quite complex and does not allow unambiguous interpretation of the role of 

the rigor conformation in the power stroke. 
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Based on the above explanations, we focus our study on the first and sixth actin layer 

line and on the equatorial 1,0 and 1,1 reflections. 

 

Fig. 10: Effect of mass shift on equatorial reflections. Two profiles of the equatorial 

reflections (above) are shown for two different density distributions on the actin and 

myosin filaments (below). The redistribution of electron density within the transversal 

lattice of the muscle fiber affects both the 1,0 and the 1,1 equatorial reflections. The 1,0 

and 1,1 reflections pertain to densities on the 1,0 and 1,1 lattice plane, respectively. 

Modified from Brenner, 1986b 

Other investigative methods 

There are of course other methods capable to explore the structure and function of 

muscle, such as biochemical experiments, measurement of membrane potentials, single 

molecule detection techniques, etc., but I am not going to delve into them.  

In order to investigate the structural changes occurring during the power stroke and the 

role of the rigor-like cross-bridge conformation, we applied the method of X-ray 

diffraction in combination with mechanical maneuvers and controlled chemical 

environment, because it is a noninvasive method offering information about molecular 

structures with a spatial resolution of nanometers. 
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Conformational changes of the myosin head 

Conformational changes that occur within the myosin head while it is attached to actin 

are responsible for the power stroke. The shape of the myosin molecule is described in 

figure 11. The LMM (light meromyosin) is incorporated into the backbone of the thick 

filament, whereas HMM (heavy meromyosin) that consists of the subfragments S1 and 

S2 sticks out of the backbone. The cleavage points between the different fragments are 

considered hinge regions. Each myosin molecule comprises two heavy chains and thus 

two myosin heads (subfragments 1 - S1). The S1 fragments retain the ATPase activity 

even when they are cleaved from the rest of the myosin. It is therefore assumed that the 

conformational change during the power stroke takes place in this subfragment.  

 

Fig. 11: The myosin molecule consists of a long coiled-coil region, which is partially 

incorporated into the backbone of the thick filament (LMM). The other fragment 

(HMM) consists of a shorter coiled coil (subfragment 2 - S2) and two globular heads 

subfragment 1 - S1). From Alberts et al., 2002 

The structure of S1 has been solved by protein crystallography (Rayment et al., 1993b, 

Fig. 12). S1 consists essentially of a head domain that comprises an actin binding site 

and a nucleotide-binding site and of a neck domain consisting of a long α-helix 

surrounded by two light chains. By fitting the obtained S1 structure to density images 

from cryo-electron microscopy Rayment et al., 1993a the structure of the actomyosin 

complex was reconstructed and associated to the nucleotide-free, rigor state of the 

cross-bridge (AM). This structural state is, according to this model, the "post-power-

stroke" conformation of the cross-bridge. 

Further conclusions were drawn from crystallographic data on truncated myosin head 

domains of Dictyostelium discoideum myosin II. A "pre-power-stroke" conformation 

was obtained by complexing with ADP-vanadate, a non-hydrolysable ATP analogue 

(Smith and Rayment, 1996). In this conformation the converter domain is rotated by 70° 



Introduction 

38 

compared to Dictyostelium constructs in a "post-power-stroke" conformation (Fisher et 

al., 1995). This 70° rotation of the converter domain produces a tilt of the neck domain. 

It is concluded that the neck domain of S1 functions as a lever arm, pulling the motor 

domain towards the M-line in the sarcomere and thus contributing to the power stroke. 

In this rotation, the end the lever arm moves about 11 nm. 

 

Fig. 12: Ribbon representation of the structure of chicken skeletal muscle 

subfragment 1 (S1). S1 consists of an elongated head, containing the upper 50K 

domain, the actin binding domain and the converter domain, and a tail or neck region, 

carrying the two light chains. From Geeves and Holmes, 1999. 

Different orientation of cross-bridges in electron micrographs (Reedy et al., 1965) were 

interpreted to show that reorientation of the myosin head (S1) represents the 

conformational change that constitutes the power stroke. Earlier fiber diffraction data 

suggested different orientations of the myosin head, ordered and disordered, with 

respect to the actin helix (Brenner and Yu, 1993). In addition, protein crystallography of 

S1 and S1 fragments revealed different orientations of the light chain binding domain 

for different states of the nucleotide in the active site (Rayment et al., 1993a). From 

these data it is possible that both reorientation of the attached myosin head relative to 

the actin helix and reorientation of the lever arm within the S1 fragment contribute to 

the power stroke (Brenner et al., 1995). 
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Current concepts of the cross-bridge cycle 

Based on the above concept of pre and post power stroke it was proposed (Geeves and 

Holmes, 1999) that force is generated by the transition between these two 

conformational states and that force is maintained by a number of cross-bridges which 

are in the post-power-stoke conformation, specifically, in a structural state like the 

nucleotide-free, rigor conformation. It was further proposed that this concept is also 

consistent with the tension recovery experiments performed by A. F. Huxley and 

Simmons (Huxley and Simmons, 1971), where quick tension recovery was interpreted 

as an increase in the number of cross-bridges late in the power stroke. 

Actually, this theory could not be confirmed by X-ray diffraction methods. Two-

dimensional X-ray diffraction images (Huxley and Brown, 1967; Haselgrove, 1975; 

Huxley et al., 1982, Rapp et al., 1991, Bordas et al., 1993; Kraft et al., 2002) did not 

show rigor-like features during active contraction, although the fraction of force 

generating cross-bridges during isometric contraction is thought to be 55-70% (Kraft et 

al., 2002). Instead, intensities of layer lines on the X-ray diffraction patterns differ 

substantially from those recorded from muscle fibers in rigor. In addition, mechanical 

and X-ray experiments (Brenner, 1991; Brenner et al., 1995) showed that very likely 

isometric force is generated already at the transition from weakly to strongly bound 

cross-bridges, i.e., before the rigor conformation is reached.  

A comprehensive biochemical scheme of the states in the cross-bridge cycle is shown in 

figure 13. In the weak binding states the cross-bridges attach and detach from actin 

dynamically with high rates (Stein et al., 1979; Chalovich et al., 1981; Brenner, 1980; 

Brenner, 1986a). For force generation, though, a transition to strong binding states is 

required, as only strong binding states can be force bearing.  

As no rigor-conformation of cross-bridges was detected during isometric contraction, 

the question arises, what role states with a rigor conformation may play in force 

generation. When the power stroke is performed, the cross-bridge transits from weak 

binding states to strong binding states, while in a first step inorganic phosphate is 

released followed by release of ADP in a later step. The rigor state is reached as a 

transient state when ADP is finally released, and the rigor state ends when ATP binds to 

the active site and the cross-bridge transits to the weakly bound states again. 
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Fig. 13: Kinetic scheme of the cross-bridge cycle, indicating the different weak and 

strong binding states. Modified from Brenner and Chalovich, 1999. A = actin, Aon = 

calcium activated actin filament, Aoff = non-activated actin filament (without calcium), 

M = myosin, T = MgATP, D = MgADP, Pi = inorganic phosphate. The different lengths 

of the transition arrows indicate qualitatively the different values of the rate constants 

of the various reaction steps. Weak binding and strong binding cross-bridge states are 

distinguished biochemically and mechanically. Weak binding states are characterized 

by a low binding affinity to actin, even in the presence of calcium when the thin filament 

is activated (Stein et al., 1979; Chalovich et al., 1981), and by the inability to activate 

the contractile system (Chalovich et al., 1983). Strong binding states, on the other side, 

have a high binding affinity to actin. Cross-bridges that are strongly bound to actin can 

activate the contractile system even in the absence of calcium and undergo the complete 

cross-bridge cycle (Greene and Eisenberg, 1980). 

The question at hand 

Mechanical events are coupled to the biochemical transitions described in the scheme of 

the cross-bridge cycle (figure 13). As the power stroke is a multi-step process (Huxley 

and Simmons, 1971), (i) several of the reaction steps shown in the scheme of figure 13 

are associated with structural changes of the attached cross-bridge, and (ii) very likely 

some of the biochemical states shown in the scheme of figure 13 are associated with 

several different conformational states. During the power stroke the filaments are driven 

past each other, or force is maintained while energy is stored in elastic distortion. The 

power stroke is initiated at the transition from weak to strong binding states and 

continues through the series of transitions among strong binding states. Most likely 

isometric force is generated by states early in the power stroke that do not show 

structural features like rigor cross-bridges. Whether the transition to the rigor state also 
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contributes to the power stroke is still unclear as is the question whether rigor like states 

are at all significantly populated during isometric contraction. In this study we therefore 

investigated the structural changes seen when cross-bridges during force generation are 

driven to their later states in the power stroke by ramp-shaped releases applied during 

isometric force generation. We used this approach since this maximizes the probability 

to detect rigor like cross-bridge states, if their occupancy can become significant at all. 

Since 2D diffraction patterns bear unique signatures of structural features, especially of 

rigor and rigor-like cross-bridges, we recorded 2D diffraction patterns as snapshots 

during ramp-shaped releases applied to muscle fibers during steady state isometric 

contraction and focused our analysis on the unique signatures of the structural features 

of rigor and rigor-like cross-bridges. 
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Materials and methods 

Single fiber preparation 

Single fibers were isolated from chemically skinned small bundles of skeletal muscle 

fibers from rabbit psoas muscle, as described previously (Brenner, 1983; Yu and 

Brenner, 1989; Kraft et al., 1995; Kraft et al., 2002). For the experiments performed at 

the SRS in Daresbury, rabbits of the race Californian Giants (about 2 years age and 5 kg 

weight) were obtained through the animal facility of the University of Keele and were 

sacrificed according to the procedures established and approved by the University of 

Keele. At the ESRF in Grenoble we used New Zeeland rabbits of about 4 kg weight. 

The rabbits were injected with 3 ml Dolethal (Vétoquinol, Lure Cedex, France) and 

bleed by cutting of the carotid artery. Access to the M. psoas maior was provided by 

ventral opening the abdomen. After removal of fatty and connective tissue, muscle fiber 

bundles of 2-3 mm diameter and 8-12 mm length were excised and transferred to a 

perspex chamber cooled on ice. Without changing their lengths, the bundles were fixed 

with stainless steel needles on a layer of Sylgard silicone („RTV 615 A+B“, Dow 

Corning Corp., Midland, MI, USA) that covered the bottom of the chamber. The 

bundles were incubated 30 to 60 minutes at 4°C in skinning solution (for specification 

see chapter "Solutions") with 0.5 vol. % Triton X-100 (Roche 1332481) as a detergent, 

in order to dissolve the cytoplasmic membranes. After this first incubation period, the 

solution was exchanged with skinning solution not containing Triton X-100. In the air-

sealed chamber, the bundles could be kept in the skinning solution at 4°C for several 

days. To avoid ATP depletion the skinning solution was changed daily. 

For the preparation of single fibers from the "skinned" fiber bundles, ~3-cm-long 

sections of the bundles were excised and pinned to the Sylgard coating of a smaller 

perspex chamber filled with skinning solution. Single fibers were pulled out of the fiber 

bundles in axial direction using a pair of tweezers (Dumont & Fils, Switzerland, No. 5). 

The fibers were covered continuously with skinning solution. Overstretched, damaged, 

inhomogeneous or conical fibers were rejected. 
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Mounting and length control 

Approximately 15 single fibers (for the time-resolved experiments at the ESRF) or 30 

(for recording of static patterns at the SRS) were mounted side by side into the x-ray 

setup (Kraft et al., 1999). For this purpose, consecutively each of the single, previously 

prepared, fiber was individually attached with silicone glue („RTV 3145“, Dow Corning 

Corp., Midland, MI, USA) to the lever of the linear motor, on one end, and a force 

transducer, at the other end. Special care was taken, not to overstretch or distort the 

fibers. After all fibers were attached to motor and force transducer, the fibers were put 

into rigor by immersion in "quick rinse" solution (composition see below) with ionic 

strength of 80 mM. After rigor had fully developed, the ends of the fibers were briefly 

fixed with 5% glutaraldehyde (Sigma, G-5882). Subsequently, the fibers were relaxed 

in relaxing solution of 120 mM ionic strength. This solution was removed for a very 

short time (~2 sec.) to stabilize the attachments by application of a surgical glue 

(Histoacryl Blau, 1050052, Aesculap, Tuttlingen). After polymerization of the surgical 

glue, the fibers were immersed again in skinning solution. The surgical glue provided a 

tight and stable connection of the fibers to motor and force transducer.  

Arrays of 15 or 30 single skinned fibers instead of natural fiber bundles were used in 

order to minimize distances for diffusion of substrates into the fibers. Sarcomere lengths 

were adjusted to 2.4 µm using diffraction of a helium-neon laser beam. Control of 

overall fiber length was achieved with the linear motor. In addition, sarcomere length 

could be monitored on a screen showing the diffracted laser light. Sarcomere length was 

monitored as a control for structural stability of the fiber throughout the experiments, 

especially during activation. 

Solutions 

Solutions used to achieve relaxation and rigor condition of the fibers were identical to 

those described by Kraft et al., 1999.  

Composition of the skinning solution used to permeabilize the muscle bundle (incl. 

0.5% Triton-X-100) and store the fibers for at most 2 days after isolation: 

5 mM KH2PO4 (Fluka, 60220) 

5 mM Mg-acetate (M-0631)  

5 mM EGTA (E-4378)  

3 mM (Na2) ATP (A-3377) 
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50 mM sodium creatine phosphate (P-7936)  

8 mM NaN3 (Serva, 30175)  

Added protease inhibitors:  

0.01 mM leupeptin (L-2884)  

0.01 mM antipain (A-6191)  

0.01 mM E64 (E-3132) 

0.01 mM pepstatin A (P-4265) 

0.001 mg/ml aprotinin (A-1153) 

1 mM AEBSF (Applichem, A1421) 

10 mM glutathione (G-4251) 

5 mM DTT (D-0632) 

Composition of the relaxing solution used also for preincubation of the fibers before 

activation: 

10 mM imidazole (I-0125)  

2 mM MgCl2 (M-1028)  

1 mM MgATP (A-3377) 

10 mM caffeine (C-0750) 

10 mM sodium creatine phosphate (P-7936) 

200 U/ml creatine phosphokinase (C-3755) 

3 mM EGTA (E-4378) 

The composition of the activating solution was the same as for the relaxing solution, 

except that 3 mM Ca-EGTA was used instead of 3 mM EGTA. 

For comparison, static patterns with different MgATPγS concentrations and saturating 

Ca++ concentrations (pCa 4.5) were recorded. The composition of the 20 µM MgATPγS 

solution was: 

10 mM imidazole (I-0125) 

2 mM MgCl2 (M-1028) 

1 mM Ca-EGTA (C-3881, E-4378) 

20 µM MgATPγS (Roche, 102342, purified by ion exchange 

chromatography as described in Kraft et al., 1992) 

0.25 mM Ap5A (D-4022) 

0.005 U/ml hexokinase (H-5000) 

200 mM D- glucose (Merck, 1.08337)  
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Solutions with 100 µM and 1000 µM MgATPγS were composed accordingly. At 

1000 µM MgATPγS 0.01 U/ml instead of 0.005 U/ml hexokinase  were used.  

The rigor solution contained: 

10 mM imidazole (I-0125) 

2.5 mM EGTA (E-4378) 

2.5 mM EDTA (ED2SS) 

For rapid transition of the fibers into rigor "quick rinse" solution was used. It contained: 

10 mM imidazole (I-0125) 

2.5 mM EGTA (E-4378) 

7.5 mM EDTA (ED2SS) 

The ionic strength of the solutions was adjusted to 80 mM by adding potassium 

propionate and the experimental temperature was held constant at 5 °C throughout all 

measurements. All solutions were adjusted to pH 7.0. All solutions used for recording 

of X-ray diffraction patterns contained 10 mM glutathione (G-4251), 5 mM DTT 

(D-0632) and 1000 U/ml catalase (C-30) to reduce radiation (beam) damage of the 

fibers (Kraft et al., 1999). All substances were obtained from Sigma Chemical Co. (St. 

Louis, MO), except where noted otherwise. The numbers in parentheses are catalogue 

numbers of the substances. 

Experimental protocols 

Time-resolved experiments at the European Synchrotron Radiation Facility 

(ESRF), Grenoble, France 

X-ray diffraction 

Two-dimensional, low angle x-ray diffraction patterns of arrays of single skinned fibers 

of rabbit psoas muscle were recorded at beam-line ID02 of the ESRF in Grenoble, 

France, using the RAPID detector developed at the SRS in Daresbury, UK (Lewis et al., 

1995; Lewis et al., 1997; Lewis et al., 1999). The camera length was 6.2 m. The size of 

the active area of the detector was 200 mm x 200 mm. 

With this camera length only one quadrant of the diffraction patterns, ranging from the 

area of the beam stop and including the actin based layer lines at inverse spacings 1/5.9 

nm-1 and 1/5.1 nm-1, could be recorded (see figure 7). The equatorial intensities were 

attenuated about 3.5-fold using a strip of lead. This attenuation was required to diminish 

the effect of reduced detector signals in rows and columns that include high intensity 
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peaks. This reduction in detector signals, i.e., sensitivity of the detector, is produced by 

the dead time of the detector after a photon impact. During a short time period (the dead 

time), the detector is insensitive to further photon impacts in the same row and column 

of its detection area. 

 

Fig. 14: Single snapshot of 2 ms exposure time, showing single photons recorded with 

the RAPID detector. 

The RAPID detector is a two-dimensional position sensitive photon-counting device. It 

comprises a "wire MicroGap" detector and excels with a very high local count rate of 

~106 photons/mm2/s and negligible dark and read-out noise (Lewis et al., 1997). This 

detector therefore allowed us to record single "snapshots" of the diffraction patterns 

within very short time frames (2 to 4 ms), which contain only few scattered photons 

(Fig. 14). Because of the low noise level of the detector, it was possible to pool 560 to 

840 snapshots (depending on the number of experiments performed) without noticeable 

increase of background noise. By accumulation of 560 to 840 snapshots, which is 
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equivalent to a total accumulation time of 2-3 seconds, diffraction patterns with 

sufficient intensities even in some of the actin- and myosin-based layer lines were 

obtained for all time frames (Fig. 15). 

 

Fig. 15: Two-dimensional X-ray diffraction pattern obtained by pooling of data of all 

corresponding time frames of all 6 activated single fiber arrays. The pattern shown here 

is the pattern taken in the 3 ms frame during isometric contraction (of Fig. 16). 

By recording multiple images at short exposure times and low irradiation of the fibers, it 

was possible to preserve the structure of the muscle sample. The specific properties of 

the RAPID detector enabled us to pool sufficient numbers of images. In test trials 

during previous experiments, such accumulation was not possible with a CCD detector. 

This was probably due to the high dark noise and read-out noise that generated an 

unacceptable signal to noise ratio. 
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Experimental protocol 

After activated fibers, mounted in our setup, reached isometric steady-state contraction, 

they were submitted to repeated length changes (ramp shaped releases) where the fibers 

were allowed to shorten linearly with time and were re-stretched to their original length 

after each such release. The amplitude of these ramp-shaped releases was 1.6 to 1.7% of 

the original fiber-length in the isometric steady-state contraction. The maximum 

amplitude of 1.6 to 1.7% was reached after 20 ms and was followed by a re-stretch to 

the original fiber-length within 4 ms. These ramp-shaped length changes were repeated 

after a period of isometric contraction of 0.3 seconds. For the chronology of the 

releases, see figure 16. 

After five such ramp-shaped release/re-stretch cycles, a period of nearly unloaded active 

shortening was allowed for 100 ms, followed by re-stretch to the original isometric 

sarcomere length. After a waiting period during which isometric force redeveloped to its 

steady state level, a new cycle of five ramp-shaped releases was started. The protocol of 

unloaded shortening and re-stretching after five cycles of ramp-shaped releases and re-

stretches was done to stabilize fiber structure and to avoid accumulation of disarray of 

the sarcomeres during prolonged activation of skinned fibers (Brenner, 1983). The 

complete procedure (isometric shortening with re-stretch, followed by 5 ramp-shaped 

releases) was repeated 28 times for each single fiber array, except for some experiments 

where the procedure was terminated after 14 cycles due to development of fiber 

instabilities. The overall length of the single fiber array and the signal of the force 

transducer were recorded throughout the entire experimental protocol. During each of 

the ramp-shaped releases five X-ray diffraction images were recorded in defined time 

frames with exposure times ranging from 2 to 4 ms (Fig. 16):  

Time frame I - shortly before the start of the release, i.e. at constant length representing 

isometric steady-state conditions (exposure time 3 ms). 

Time frame II - during the first rapid force decline before the force reaches a plateau 

(exposure time 2 ms). 

Time frame III - after the force plateau, i.e. during a second period of force decline 

(exposure time 3 ms). 

Time frame IV - following time frame III with a pause of less than 0.1 ms (exposure 

time 3 ms).  

Time frame V - immediately before the end of the release, exposure time 4 ms. 
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Fig. 16: Experimental protocol shows the timing of the mechanical maneuvers and 

collection of diffraction patterns. Panel a) shows the overall length (top trace), force 

(middle trace) and timing of frames of x-ray patterns (lower trace). The panel shows the 

whole 160 seconds of the protocol on each single fiber array. Panel b) is the expansion 

of one cycle of isotonic release, re-stretch with recovery of isometric force and the 5 

small ramp-shaped releases imposed after force has reached its steady state level. 

Panel c) is an expanded view of one small ramp-shaped release followed by re-stretch 

to starting length. 
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Data reduction and analysis 

X-ray diffraction images recorded in corresponding time frames during each of the 

5 x 28 ramp-shaped releases were added up to increase the photon count. The whole 

protocol was repeated with six activated single fiber arrays and the resulting six images 

were added up after careful alignment of the individual patterns (see below). Diffraction 

patterns with the same time frames and the same timing protocol were also recorded 

from fibers in relaxing (4 experiments) and in rigor solution (5 experiments), but 

without any length changes imposed on the fiber arrays (no ramp-shaped releases and 

re-stretches; no large scale releases as for isotonic condition). To obtain comparable 

intensity levels, the accumulated photon counts were divided by the number of 

experiments carried out for each condition (activated, relaxed, rigor) and also divided by 

the shutter open time of each of the fife time frames. 

After the initial pooling of corresponding time frames in the single experiments, the 

resulting images were corrected for dead time of the detector using the routine DTC 

developed by the SRS (Lewis et al., 1999). Next, uneven sensitivity of the detector was 

compensated by dividing each image by a flat-field image recorded with the detector 

while the beam was widely scattered by air upon removal of the evacuated beam pipe 

between sample position and detector. Finally, each image was carefully rotated and 

centered before adding up corresponding images of the different fiber arrays. Programs 

from the CCP13 software suite of the SRS Daresbury were used for this purpose. 

Signal-to-noise ratio for the first myosin and first actin layer-line was increased by 

folding the diffraction patterns along the equator, i.e. using the sum of the measured 

intensity values above and below the equator.  

The scale for the inverse spacing in the diffraction patterns was calibrated by assuming 

that the position of the M3 reflection on the meridian for fibers in rigor condition is 

1/14.43 nm-1 (Xu et al., 1997, Huxley and Brown, 1967). 

A 1D profile of the equator, including the 1,0 and 1,1 reflections (Fig. 17), was obtained 

by vertical integration (see Fig. 17 C), using the program BSL from the CCP13 suite.  

A rectangular section of the most intense region of the first myosin and first actin based 

layer line, labeled A in figure 17, was integrated horizontally to obtain a 1D profile of 

this segment of the two layer lines. The integration covered the region from radial 

inverse spacing of 0.039 nm-1 to 0.06 nm-1. This range was chosen because (i) the 

intensity increase of the first actin based layer line during contraction is largest (Bordas 

et al., 1999) and (ii) actin and myosin components are well separated from the troponin 
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reflection on the meridian which overlaps with the first actin and first myosin based 

layer line in the range nearer to the meridian. 

The 5.9 and 5.1 nm actin layer lines (ALL6 and ALL7 respectively) were integrated 

horizontally within a rectangular area containing both layer lines, as shown in figure 17. 

 

Fig. 17: Investigated areas. In order to obtain 1D profiles, rectangular areas of interest 

(A-C) were defined. Within areas of interest, integration was performed by adding up 

intensity values along a pixel line or row line as indicated by the double arrows, i.e., the 

intensity profile of the equator was obtained by vertical integration, the other two 

profiles by horizontal integration. 
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A function consisting of the sum of an appropriate number of Gaussian peaks (one for 

each reflection) and one exponential decay (for the background) was fit to the 1D 

intensity profiles using the software ORIGIN (OriginLab Corporation, Northampton, 

MA). The fitting functions and used parameters for profiles with two and profiles with 

four peaks are described in the appendix. An example for fitting of the first actin and 

first myosin based layer line (profile A from figure 17) is shown in figure 18. The area 

of each individual peak was obtained from the least-square fit. As the precise point-

spread function of the beam is not known, data were also fit with Lorentz-peaks instead 

of Gaussian peaks. However, least-square fitting with Lorentz-peaks produced higher 

chi-square values (data not shown), while the areas obtained with the Gaussian peaks 

represent fairly well the intensities of the actual reflections (Fig. 18). 

0.01 0.02 0.03 0.04 0.05 0.06

1200

1400

1600

1800

2000

2200

in
te

n
s
it
y

inverse spacing (nm
-1
)

MLL1
ALL1

 

Fig. 18: One-dimensional intensity profile of MLL1 and ALL1. Profile obtained by 

horizontal integration of region A defined in figure 17. The black and gray squares 

represent intensity values for each detector raster line of the integrated profile. The 

gray dots were suppressed during fitting, as they could be part of other reflections. The 

ranges of the suppressed dots were kept the same for all analyzed profiles. Continuous 

line: Fit of MLL1 and ALL1 with a function that consists of the sum of two Gaussian 

peaks and one exponential decay (for the underlying background). 
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The fitting procedure was performed for the five patterns recorded in time frames I to V 

before and during the ramp-shaped release imposed on the activated fibers. For the 

patterns recorded under relaxed and rigor conditions, without the mechanical 

maneuvers, intensity values were obtained from each of the time frames by the same 

procedure. Since no mechanical maneuvers were imposed, these intensity values were 

used to calculate mean value and standard deviation for both relaxed and rigor 

conditions. A weighted mean of the standard deviation for relaxed and rigor intensities 

was taken as an error estimate for the intensity values obtained from the active fibers in 

time frame I to V. 

Static patterns recorded at the Synchrotron Radiation Source (SRS), Daresbury, 

UK 

X-ray diffraction and experimental protocol 

Two-dimensional X-ray diffraction patterns of single fiber-arrays were recorded under 

relaxing conditions, in rigor, and in the presence of 1000, 100 and 20 µM MgATPγS, 

using a position sensitive multiwire detector at station 2.1 of the SRS at Daresbury, UK, 

(Kraft et al., 2002). All MgATPγS solutions contained saturating Ca++ concentrations 

(pCa 4.5). 

Data reduction and analysis 

The recorded images were corrected for unevenness of the detector using a detector 

response pattern obtained by irradiation with a radioactive 55Fe source. The patterns 

were then normalized to the intensity of the main beam monitored through a 

semitransparent beam stop. Camera background including solution scattering was 

recorded after removal of the muscle fibers, while the solution chamber stayed in place. 

The background was then subtracted from the recorded diffraction patterns. After 

rotation and centering, the images were folded along the equator and meridian, i.e. the 

intensities at corresponding positions in all four quadrants were added up. For each of 

the investigated states (relaxed, rigor, 1000, 100 and 20 µM MgATPγS) diffraction 

images from five single fiber arrays were added up to increase signal-to-noise ratio. 

One-dimensional profiles of the equator, the first myosin and first actin based layer line, 

the meridian and the 6th actin based layer line were calculated by integrating 

corresponding areas at the same inverse spacings as used for the time-resolved patterns 
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recorded at the ESRF, Grenoble. The intensities and standard errors of the investigated 

reflections and layer lines were obtained by least-square fitting, as described above. 

Intensity profiles along the sixth actin layer line 

Intensity profiles along the sixth actin layer line (ALL6) were obtained in the following 

way: It was assumed that sufficiently narrow strips in the middle between the 5th and 

the 6th and between the 6th and the 7th actin layer lines do not contain any intensities 

from other layer lines. Accordingly, they should contain only background information. 

For the static diffraction patterns (recorded in Daresbury) 0.0027 nm-1 was chosen as 

the width of these strips, whereas for the time-resolved patterns (recorded in Grenoble) 

wider strips of 0.0048 nm-1 were necessary because of the higher noise in the patterns 

(see Fig. 19).  

The two thus defined background strips, flanking the sixth actin layer line on both sides, 

were integrated in the axial direction to obtain radial 1D-profiles. The background 

profiles were smoothened by calculating a rolling average applied to the sum of the two 

background strips and stretching over 40 points in the case of the static patterns and 200 

points in the case of the time-resolved patterns.  

The area lying in-between the background strips, containing the ALL6, was integrated 

axially to obtain a radial 1D-profile. The width of the integrated strip was in the case of 

the static patterns 0.028 nm-1, and in the case of the time-resolved patterns 0.024 nm-1. 

For each of the static patterns the background-subtracted profile of ALL6 was obtained 

by subtracting the appropriate proportion of the background strips from the strip 

containing the ALL6. Because of the higher recording noise of the time-resolved 

patterns, the strip containing the ALL6 in each pattern was not subtracted by the 

background strips from the same pattern (as was the case for the static patterns) but by 

the average of the background strips from all seven time-resolved patterns recorded in 

different time frames. This was done assuming that the background did not change 

substantially throughout the release and re-stretch procedure. Small standard deviations 

(0.61% of the total intensity, 0.64% of the intensity of the first third, 1.12% of the 

intensity of the second third) of the background strips from all seven time frames 

vindicate this assumption. These standard deviations compare well to the standard 

deviation of the intensity of the most intense 1,0 and 1,1 reflections on the equator 

(about 1%) recorded under static conditions, where no mechanical maneuvers were 

performed. 
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The background-subtracted ALL6 profiles were smoothed by rolling average of 20 and 

100 points, for the static and the time-resolved patterns, respectively. 
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Fig. 19: Background subtraction for the profile of the sixth actin layer line. The 

rectangles in the 2D X-ray diffraction pattern enclose the regions taken for the 

background strips (1 and 3) and the region containing the layer line (2). The profiles 

along the strips 1 to 3 are shown in the traces 1 to 3 of the diagram. Trace 4 is the 

profile of the layer line obtained by subtracting trace 1 and 3 from trace 2 divided by 

appropriate factors corresponding to the widths of the strips. 
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Results 

Two-dimensional X-ray diffraction patterns 

Diffraction patterns for decreasing MgATPγS concentrations show increasing rigor 

features (figure 20). Different MgATPγS concentrations seem to produce mixtures 

between the patterns recorded at rigor and relaxed condition. This correlation is 

expected from the fact, that with different MgATPγS concentrations different 

proportions of strongly bound myosin heads in rigor conformation and myosin heads in 

a weak binding state are generated (Kraft et al., 2002). Features that are obviously 

sensitive to the proportion of rigor heads are (i) the intensity of the equatorial 1,0 and 

1,1 reflections, (ii) the intensity of the first actin layer line (ALL1) and (iii) the extent of 

lattice sampling on it, and finally (iv) the intensity and radial profile of the sixth actin 

layer line (ALL6). Patterns recorded in the time resolved experiments under rigor and 

relaxed condition at the ESRF show the same features as the corresponding ones 

recorded in the static experiments at the SRS. Due to a much smaller size of the focus at 

the detector at the ESRF, details of the time-resolved 2D patterns, like width of the layer 

lines, lattice sampling spots, equatorial reflections etc., are much better resolved at 

figure 21. From looking at the presented patterns of the time-resolved experiments for 

activated fibers during time frame I and time frame III no obvious increase in rigor 

features is visible. However, less obvious changes are possible. i.e., the proportion of 

the rigor heads might rise minutely from time frame I to time frame III. Therefore, a 

quantitative analysis and comparison of properly determined describing indicators for 

rigor features is necessary. 

For such a detailed analysis we have chosen the following indicators: (i) the ratio of the 

equatorial 1,1 and 1,0 intensities (I1,1/I1,0), (ii) the intensity of the first actin layer line, 

(iii) the intensity and profile of the sixth actin layer line. 
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A: relaxed 

 

  
D: 20 µM MgATPγS 

 
B: 1000 µM MgATPγS 

 

 
E: rigor 

  
C: 100 µM MgATPγS 

 

Fig. 20: 2D X-ray diffraction patterns 
recorded in the static experiments in 
relaxing condition (panel A), with 
different concentrations of MgATPγS 
(panels B through D) and in rigor 
(panel E). In the latter the typical rigor 
features are visible. In panels B to D, 
the rigor features become increasingly 
apparent with decreasing MgATPγS 
concentrations. 
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A: time frame I 

 

  
D: relaxed 

 
B: time frame II 

 

 
E: rigor 

  
C: time frame III 

 

Fig. 21: 2D X-ray diffraction patterns 
recorded in the time-resolved experi-
ments. Panels A, B and C show patterns 
taken before the start of the ramp-
shaped release, early in the release and 
late in the release, respectively. Panels 
D and E show patterns of the fibers in 
relaxing condition and in rigor, 
respectively. When comparing the 
patterns in panel A, B and C of this 
figure with patterns taken during the 
static experiments and at different 
concentrations of MgATPγS (Fig. 20), 
no appearance of rigor features is 
detectable during the ramp-shaped 
release. 
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I1,1/I1,0 

The ratio of the equatorial reflections, I1,1/I1,0, was measured to be 2.9 in rigor and 1.1 in 

relaxing condition (figure 22, a, left) at the ESRF and 2.3 and 1.2 respectively (figure 

22, a, right) at the SRS. In the static patterns recorded at the SRS (figure 22, a, right) the 

measured I1,1/I1,0 reflects the different proportions of nucleotide free myosin heads 

stereospecifically attached to actin at different MgATPγS concentrations. In the time-

resolved patterns of the activated fibers recorded at the ESRF (Fig. 22 a, left panel), the 

I1,1/I1,0 values for isometric condition (time frame I) and at the beginning of the ramp-

shaped release (time frame II) do not differ significantly. This is followed, though, by a 

substantial increase at the transition from time frame II to time frame III (black squares 

in figure 22 a, left panel) from 1.87 to 1.98. The overall changes are small and are 

resolved more clearly when the data are shown on an expanded scale (inset figure 22 a, 

left panel). The I1,1/I1,0 ratios from static patterns in rigor and under relaxing condition, 

recorded at the ESRF are shown by the red and green symbols, respectively. 

The error estimation for I1,1/I1,0 obtained for the activated fibers for time frames I to V 

was calculated from the scatter of the value for patterns recorded from fibers in rigor 

and relaxing conditions. As the 1,0 and 1,1 reflections produce a very high signal on the 

detector, the error associated with the measured intensities is very low. For the ratio 

I1,1/I1,0 it is about 0.7%. It is also much lower than the nearly 6% change in the ratio 

occurring from time frame II to time frame III. 
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Fig. 22: Ratio of equatorial 1,1 and 1,0 intensities (I1,1/I1,0). Left column: a) Ratio 

I1,1/I1,0 of the time-resolved patterns recorded at the ESRF. Squares represent the ratio 

I1,1/I1,0 for activated fibers before and during the ramp-shaped release. Data-points are 

plotted above the mid points of the time frames I to V: I - immediately before the 

release, II - at the beginning of the release, III - early after the force-plateau, IV - later 

after the force-plateau, V - at the end of the release. Triangles represent mean values 

obtained from all time frames recorded under relaxing conditions; circles represent 

mean values recorded under rigor conditions. Error bars are calculated from values at 

the different time frames in rigor and relaxation where fibers were held at a constant 

length. The size of the error bars on the squares is the weighted mean of the error of the 

relaxed and rigor conditions. Error bars are often smaller than the symbol size. In the 

inset in graph a) the ratio values for the activated fibers in the time frames I to V are 

shown on an enlarged scale. b) The time course of the fiber tension, shown at the 

bottom of the left column indicates the timing of the exposure intervals (time frames I to 

V), during which the five patterns were recorded. The time frames are illustrated by the 

solid segments of the force trace. Right column: Ratio I1,1/I1,0 of the static patterns 

recorded under (from left to right) relaxing conditions, with 1000 µM MgATPγS, 100 

µM MgATPγS, 20 µM MgATPγS, and in rigor. Error bars represent the standard error 

of the fit, calculated by the fitting software.  
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ALL1 

For the static patterns recorded at the SRS, the intensity distributions along the first 

actin layer line (ALL1) (figure 23, upper panel) show a continuous increase in the 

intensities of the maxima reflecting lattice sampling. The intensity maxima are lowest 

under relaxing conditions and become more and more prominent from 1000 µM 

MgATPγS through 100 and 20 µM to 0 µM, i.e., rigor condition. The increase of ALL1 

intensity after subtraction of background is associated with an increasing number of 

nucleotide free, rigor cross-bridges. However, for the patterns recorded during isometric 

contraction and the ramp-shaped release (frames I to V of the time resolved 

experiments, figure 23, lower panel), no larger change in the peak intensities is visible. 

Only the profile of the rigor condition shows the same typical shape as seen in the static 

experiments. Note, however, the better details in the patterns recorded at the ESRF. This 

is due to the much sharper focus at the ESRF beam line. Thus, various parts of the 

lattice sampling are less "smeared out" and more distinct than in the data from the beam 

line 2.1 of the SRS. 
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Fig. 23: Radial profiles of ALL1, i.e., intensity distribution along the ALL1, obtained by 

integration in the axial direction within a strip ranging from 0.025 nm-1 to 0.029 nm-1 

inverse radial spacing. Note, that the profiles are obtained from 2D diffraction patterns 

with no prior background subtraction. They, therefore, include a background, which 

gradually and asymptotically decreases in the direction of higher inverse radial 

spacing.  

Figure 24 compares the intensities of the first actin layer line (ALL1) and the sixth actin 

layer line (ALL6). The intensity values are obtained from the interval 0.039 to 0.06 nm-1 

of inverse radial spacing after subtraction of background and the component of the first 
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myosin layer line, as described in the Materials and methods part of this thesis (see also 

Fig. 17). Data recorded at the ESRF during the ramp-shaped releases of isometrically 

contracting fibers is shown in the left column, data recorded at the SRS on fibers 

incubated with different MgATPγS concentrations are shown in the right column of 

figure 24. In both columns, the intensities from patterns recorded under rigor and 

relaxing conditions are also shown for reference. The data are scaled and displayed such 

that for both, left and right hand graphs in each panel the difference between rigor and 

relaxing conditions are identical. This allows to compare changes observed during the 

ramp shaped releases with the changes seen when the fraction of nucleotide free, rigor 

cross-bridges was increased by lowering the concentration of MgATPγS. 

The intensity of ALL1 for the activated fibers (Fig. 24, a, left panel) is overall 

somewhat higher than under relaxing conditions, as was shown before (Kraft et al., 

2002). In contrast, the intensity of ALL1 is nearly 15-fold larger under rigor conditions. 

Accordingly, the MgATPγS titration shows an increasing intensity of ALL1 when 

MgATPγS concentration is reduced, consistent with an increasing number of 

nucleotide-free rigor-like myosin heads as MgATPγS-concentration is reduced. This 

very large increase in the ALL1 in rigor and when MgATPγS-concentration is low 

reflects the increasing lattice sampling on the ALL1, which at least in rabbit psoas is 

typical for rigor-like cross-bridge attachment. Compared to the large increase in 

intensity in rigor and at low MgATPγS concentration, only a very small increase in 

ALL1 intensity is seen between frame II and III during the ramp-shaped releases of the 

activated fibers. This increase in intensity between frame II and III becomes only 

detectable on an expanded intensity scale (see inset). It is just about 2% of the intensity 

in rigor. During the further release (time frames IV and V) the intensity of ALL1 

decreases to finally reach a slightly lower intensity than during isometric steady state 

contraction. Overall, the changes of ALL1 during the release are very small. 

Nevertheless, the changes might indicate minor changes in the number of 

stereospecifically attached cross-bridges during the release. 
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Fig. 24: Intensity of first (a) and sixth (b) order actin based layer-line. Left column: 

Intensities of layer-lines in the time-resolved patterns recorded at the ESRF. Squares 

represent intensities of activated fibers before and during the ramp-shaped release. 

Data-points are plotted in the same way as in figure 22. Triangles represent mean 

intensities obtained from all time frames recorded under relaxing conditions; circles 

represent mean intensities recorded under rigor conditions. Error bars are obtained in 

the same way as in figure 22. Intensity values are recorded photon counts that have 

been normalized to different numbers of experiments during active contraction, in rigor 

and under relaxing condition (see methods). The inset in graph a) shows the intensities 

of ALL1 for the activated and relaxed fibers on an expanded scale. The time course is 

the same as in figure 22. Right column: Intensity data (figure legend continues) 
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(figure legend continued) of the same layer lines in patterns recorded under (from left 

to right) relaxing conditions, with 1000 µM MgATPγS, 100 µM MgATPγS, 20 µM 

MgATPγS, and in rigor. Error bars represent the standard error of the fit, calculated by 

the fitting software. Intensity values are in arbitrary units. 

ALL6 

The total integrated intensity of the sixth actin layer line (Fig. 24 b, left panel) was 

obtained after background subtraction for the area of the complete layer line as 

illustrated in figure 17 (area B). It is significantly higher during active contraction than 

under relaxing condition, as shown before (Huxley and Brown, 1967; Kraft et al., 

2002). Under rigor conditions, the intensity is even higher. The total ALL6 intensity for 

the activated fibers shows a slight decrease in the course from time frame I to time 

frame V, away from the rigor intensity towards the relaxed intensity. With decreasing 

MgATPγS concentration and hence increasing proportion of myosin heads attached to 

actin in rigor-like conformation, an increase of the total ALL6 intensity is recorded 

(Fig. 24, b, right panel). The actually recorded slight decrease of total ALL6 intensity 

during the release stands, therefore, in contradiction to an increase in rigor-like myosin 

heads. 



Results 

66 

0.00 0.05 0.10 0.15 0.20

0

1

2

3

4

5

p
h

o
to

n
 c

o
u

n
t 

(a
.u

.)

inverse spacing nm
-1

 relaxing condition
 1000 !M MgATP!S
 100 !M MgATP!S
 20 !M MgATP!S
 rigor

 

Fig. 25: Intensity distribution along the ALL6 after background subtraction, from the 

static experiments with different MgATPγS concentrations and in rigor and relaxing 

condition. The series of intensity profiles show the sensitivity of the near-meridian part 

of the ALL6 intensity profile to different proportions of cross-bridges in a rigor-like 

conformation. 

To further investigate the discrepancy between the behavior of ALL1 and ALL6 during 

the ramp-shaped release, the profile of ALL6 in the radial direction, i.e. in the direction 

parallel to the equator, was analyzed. Different proportions of rigor-like cross-bridges 

versus weakly bound cross-bridges, as obtained with the MgATPγS titration, produce 

different ALL6 profiles (see Fig. 25). With more rigor-like cross-bridges the maximum 

of the profiles moves nearer to the meridian, as was observed earlier (Kraft et al., 2002). 

The part of ALL6 nearer to the meridian (particularly for inverse spacings up to 

0.08 nm-1) is intensified, while the shape of the profile for inverse spacings > 0.10 nm-1  

seems mostly unaffected by the different proportions of rigor versus weakly bound 

cross-bridges. Figure 25 clearly indicates that there is a positive correlation between the 

proportion of cross-bridges with rigor-like conformation and the near-meridian intensity 

of ALL6, at least within the interval from 0.02 nm-1 to 0.08 nm-1 inverse radial spacing. 
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Fig. 26: Time resolved patterns - background subtracted profiles of ALL6 in rigor and 

relaxing conditions as well as for the time frames I, II and III of the activated fibers 

subjected to ramp-shaped releases. The solid lines for rigor and relaxed conditions 

represent the average of all seven profiles recorded in the different time frames without 

imposed releases. The half width of the gray bands is the root-mean-square of the 

difference of the individual profiles from the average profile. 

Diffraction patterns recorded from fibers in the time-resolved experiments performed at 

the ESRF yielded the same characteristic difference in the ALL6 profile for rigor and 

relaxing conditions (figure 26) as shown for the patterns recorded at the SRS 

(figure 25). The profile under rigor condition has a maximum nearer to the meridian and 

substantially higher intensities in the near-meridian part, particularly for inverse spacing 

up to 0.08 nm-1.  

As the patterns for rigor and relaxing conditions were recorded in seven different time 

frames but without any length-change, the recording noise of the profile could be 

estimated from the variability of the seven individual profiles. Figure 25 visualizes the 

amount of recording noise by gray bands encompassing the average profiles for rigor 

and relaxing conditions. 
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For the activated fibers different profiles were recorded in time frames I to V 

(figure 26 - time frames IV and V omitted for clarity) before and during the ramp-shape 

length release. These profiles show distinct differences depending on the time frame 

they were taken in. While the profiles for time frame I and II follow essentially the same 

course, the profile of time frame III shows smaller intensities for inverse spacings up to 

0.08 nm-1, contrary to the course that would have been expected if the proportion of 

rigor-like cross-bridges had been higher during time frame III. 

Integrated intensity-values of the background-subtracted ALL6 profiles were obtained 

for inverse radial spacing ranging from 0.02 to 0.08 nm-1. This interval was chosen 

because the MgATPγS titration (figure 25) showed a positive correlation between the 

proportion of rigor-like cross-bridges and intensity for every value on the inverse 

spacing axis in this interval. Table 1 shows the integrated intensity-values for the time 

frames I to V of the activated fibers. The integrated intensity drops substantially from 

time frame II to time frame III. This coincides with the end of the pause in the tension 

drop during the ramp-shaped length release (compare figure 22 b), the time at which 

redistribution of cross-bridges to later states in the cross-bridge cycle was shown to 

have come to an end (Brenner, 1991). 

 

Time frame no. Integrated intensity (a.u.) 

I 71.93296 

II 75.79543 

III 65.47161 

IV 61.80461 

V 70.74816 

Table 1: Intensity of the ALL6 profiles for time frames I to V integrated within the 

interval from 0.02 to 0.08 nm-1 expressed in arbitrary units. 
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Discussion 

Tension trace indicates structural transition during ramp-

shaped releases 

During isometric contraction, transitions within different structural states of the 

individual cross-bridges occur asynchronously with high rates. By applying a rapid 

release to activated fibers, a temporary synchronization of these transitions can be 

achieved (Huxley and Simmons, 1973). During the short ramp-shaped releases of our 

experiments, the cross-bridges gradually redistributed among different structural states 

as the muscle fibers shortened. The mechanical maneuver of the release initiates a 

synchronized transition between different structural states of the cross-bridge. States 

that are later in the power stroke are preferentially populated by the release. This is 

because strongly attached cross-bridges become distorted in the direction of fiber 

shortening by the sliding of the filaments past each other during the shortening. 

According to Hill, 1974, such distortion in shortening direction is expected to change 

forward and reverse rate constants of the transitions between the different states of the 

power stroke such that equilibria of the state occupancies are shifted towards the later 

states in the power stroke. 

In our experiments, tension of the fibers was recorded before and during the ramp-

shaped release (figure 2 b). The observed pause in the tension decrease from time frame 

II to time frame III during the release indicates this redistribution of cross-bridges 

among at least two structural states during the release, according to the A-B transition 

described in Brenner, 1991. A substantial population of later states in the power stroke 

is therefore expected in time frame III. 

In later time frames further changes in cross-bridge distribution among different states 

of the power stroke are expected, because now also (i) some cross-bridges will leave the 

strong binding states by ending their power stroke and (ii) some cross-bridges will 

newly enter the early states of the power stroke (Huxley and Simmons, 1971, Huxley 

and Simmons, 1973). This has been especially indicated in the modeling work of 

Eisenberg et al., 1980, and Chen and Brenner, 1993. Thus, comparison of frames II and 

III most exclusively reflects redistribution among strongly bound states of the power 

stroke with least complications by cross-bridges turnover, i.e., by transitions from 
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strong binding states back to weak binding states or by weak binding cross-bridges 

entering strong binding states. 

Two-dimensional X-ray diffraction patterns show no 

appearance of rigor features after the pause in the tension 

decrease during ramp-shaped releases 

If in the redistribution occurring during the ramp-shaped release rigor-like states were 

preferentially populated, rigor features should be detectable or become more prominent 

in the 2D-X-ray diffraction patterns. It is known that rigor patterns differ substantially 

from relaxed and activated patterns (Huxley and Brown, 1967, Huxley, 1968, Kraft et 

al., 2002). This enhancement of rigor like features should be readily detected as we 

showed with the change in 2D patterns when MgATPγS concentration is reduced and 

thus the fraction of nucleotide free rigor cross-bridges increases (see figure 20). To our 

surprise, however, neither of the patterns recorded in time frames II to V shows much of 

an appearance of rigor features (figure 21), although late states in the power stroke are 

increasingly populated during the release. 

As a reference, diffraction patterns were recorded from muscle fibers for which we 

could change the fraction of cross-bridges in a rigor conformation. MgATPγS is a very 

slowly hydrolyzed ATP-analog. Using sufficiently low but different MgATPγS 

concentrations, different ratios of nucleotide free rigor cross-bridges versus weak-

binding MgATPγS cross-bridges can be obtained (Kraft et al., 2002). The static patterns 

in figure 20 show a gradual increase in rigor features with the decrease of MgATPγS 

concentration. In particular, an appearance of lattice sampling on the ALL1 and a strong 

overall increase in ALL1 intensity is visible. No comparable appearance of such rigor 

features is visible in the patterns recorded from activated fibers during the ramp-shaped 

release (see e.g. time frame III versus time frame II in figure 21). 

To quantitatively investigate a putative appearance of rigor features during the release, 

the following indicators were chosen, because they are sensitive to rigor-like cross-

bridges: (i) the ratio of the equatorial 1,1 and 1,0 intensities (I1,1/I1,0), (ii) the intensity of 

the first actin layer line (ALL1), and (iii) the intensity of the sixth actin layer line 

(ALL6). 
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Redistribution of masses between myosin and actin filaments 

The equatorial 1,0 reflection is produced by diffraction from the 1,0 order lattice plane 

in the hexagonal matrix of the myofilaments (see figure 10). This lattice plane 

comprises exclusively myosin filaments, whereas, the equatorial 1,1 reflection is 

produced by the 1,1 lattice plane that includes both myosin and actin filaments 

(figure 10). The ratio I1,1/I1,0 represents a measure for additional mass near the actin 

filaments (Brenner et al., 1984). It is also sensitive to the amount of overlap between the 

two types of filaments in the sarcomere, as well as to lattice disorder of the second kind 

(Vainstein, 1966). Lattice disorder of the first kind affects both I1,0 and I1,1 equally and 

is canceled out in the I1,1/I1,0 ratio, whereas the disorder of the second kind has a 

stronger effect on I1,1.  

During shortening the amount of overlap of the actin and myosin filaments rises and the 

lattice disorder decreases as increasingly longer parts of the actin filaments are ordered 

into the hexagonal lattice. Note that by their anchoring in the square lattice of the Z-

disks, actin filaments outside the overlap are displaced from their hexagonal lattice 

within the overlap area. For static experiments at different sarcomere lengths it was 

previously shown that I1,1/I1,0 increases ∼7% per 0.1 µm increase in filament overlap 

(Brenner, unpublished). Thus, both effects could produce only a slight rise in the ratio 

I1,1/I1,0 since in our experiments the pause in tension drop during the releases occurs at 

filament sliding of about 5-10 nm/h.s. (Brenner, 1991). Note that the overall length 

change of the fiber is larger than the length change at sarcomere level. This is due to 

compliant ends when the fibers are attached to the motor and force transducer. Thus, the 

correct amplitude of filament sliding is only obtained by measurement of sarcomere 

length, e.g. by laser light diffraction (see Brenner, 1991). 

Thus, the step-wise increase in I1,1/I1,0 of about 6% observed between time frame II and 

time frame III very likely indicates a mass shift from the myosin to the actin filaments 

during this time-span. This is supported by the fact that this step change coincides with 

the time of the transition in the tension trace and I1,1/I1,0 does not change substantially 

before and after this transition, while a change in I1,1/I1,0 due to filament overlap should 

be a steady change throughout the ramp-shaped release. Unless the observed change in 

I1,1/I1,0 is caused by a change in the number of myosin heads stereospecifically attached 

to actin during the release, the noted mass shift must be due to conformational changes 

of the myosin heads themselves. 
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Number of stereospecifically attached cross-bridges 

Compared to the 15-fold difference from relaxed to rigor intensity of the investigated 

part of the ALL1, only a slight increase from time frame I to time frame III is observed 

(Fig. 24 a). This increase is about 2% of the intensity increase when relaxed fibers are 

put into rigor, i.e., all cross-bridges assume a rigor conformation. All the ALL1 

intensities of all five time frames are much nearer to the intensity of relaxed fibers than 

the rigor intensity, as is typical for isometric steady state contraction (Kraft et al., 2002). 

This means that if there is an accumulation of rigor-like cross-bridges, it can only be a 

very slight one. The intensity distribution along the ALL1 is practically independent of 

axial disorder, but sensitive to transversal lattice disorder, whereas the total ALL1 

intensity is not affected by lattice disorder (Koubassova and Tsaturyan, 2002). As we 

integrated the most intense part of the ALL1 (inverse radial spacing 0.039 nm-1 to 0.06 

nm-1), substantial effects of decreasing lattice disorder during the release are not to be 

expected. According to Koubassova and Tsaturyan, 2002, lattice disorder influences the 

sharpness of the sampling peaks on ALL1. Increased lattice disorder "smoothes out" the 

sampling on the profile of ALL1, whereas decreased lattice disorder increases the 

sampling peaks and decreases the minima between them. As the intensity distribution of 

ALL1 in the integrated interval comprises at least two sampling peaks, it can serve as a 

reliable indicator of the number of stereospecifically attached myosin heads, although 

slight influences from lattice disorder cannot be ruled out completely. We limited the 

area of integration to the most intense parts because close to the meridian (inverse radial 

spacing < 0.039 nm-1) a meridional reflection originating from troponin overlaps the 

ALL1 and would therefore lead to misleading changes in observed intensity. 

Assuming that the total intensity of ALL1 is proportional to the square of the number of 

myosin heads stereospecifically attached to actin, an increase in the in the number of 

stereospecifically attached heads from time frame I to III of about 1.4% and from time 

frame II to III of about 4.5% could have occured. Bear in mind though, that the error 

margins for the observed intensities are of about nearly the same range. So the observed 

increase of stereospecifically attached myosin heads is hardly significant. The data, 

though, indicate that detachment of a larger number of cross-bridges does not occur 

before time frame IV. 
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Structural changes of the cross-bridges 

For an (at least transient) accumulation of rigor-like cross-bridges an increase in total 

intensity of the sixth actin layer line (ALL6) would be expected, as demonstrated by the 

increasing ALL6 with decreasing MgATPγS concentration (see figure 24 b, right). Even 

though the registered decrease in total intensity from time frame I to time frame V is not 

statistically significant, it still is contrary to a putative accumulation of rigor-like cross-

bridges during the imposed ramp-shaped release. 

ALL6, however, is very sensitive to structural changes of the cross-bridge. ALL6 

intensity profiles obtained from the static patterns at different MgATPγS concentrations 

(figure 25, Kraft et al., 2002) as well as model calculations (Koubassova and Tsaturyan, 

2002) show that with increasing proportion of stereospecifically bound myosin heads in 

rigor-like conformation the form of the intensity profile along the ALL6 changes. This 

change is particularly prominent at the shoulder of the ALL6 profile nearer to the 

meridian (inverse spacing ranging from 0.02 to 0.08 nm-1), where the intensity rises 

with increasing proportion of rigor-like heads (see figure 25). The integrated intensity in 

this interval, therefore, serves as an indicator for the proportion of myosin heads in 

rigor-like conformation. Hence, it is of interest to investigate this value also for the 

different time frames in the time resolved experiments. The intensity values for the 

activated fibers for time frames I to V are displayed in table 1. We are, of course, 

particularly interested in the change occurring from time frame II to time frame III in 

the ramp-shaped releases, as we have already demonstrated that during this period a 

major redistribution between different structural states occurs. 

The question arises, whether the observed large change in the measured intensity 

(integrated in the above interval) from time frame II (75.79543) to time frame III 

(65.47161) during active contraction (see table 1) is significant or purely attributed to 

chance resulting from the recording noise. Therefore, the difference of the integrated 

intensity from time frame II and time frame III was compared to the amount of scatter 

in integrated intensities, namely the ones recorded in the same time frames when the 

fibers were in relaxing and rigor conditions. With these two latter conditions, no length 

changes were performed during the experimental protocol. Consequently, the scatter in 

intensity among the different time frames of one condition depicts the degree of noise of 

the recording. Standard deviations of the integrated intensity of 4.09 and of 4.63 under 

relaxed conditions and under rigor conditions, respectively, were found.  
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With this data, as a measure of recording scatter, we investigate statistically the question 

whether the change in intensity from time frame II to time frame III is significant. Our 

hypothesis is that the difference between the integrated intensity value for time frame II 

and the integrated intensity value for time frame III is significant and not accidental. 

Our null hypothesis is that the two measured intensities are random samples of the same 

population, i.e. that the true intensities do not differ. 

We calculated an estimate for the standard deviation of the population of the activated 

condition from the standard deviations of the integrated intensities recorded under 

relaxed and rigor conditions. An estimate of 4.47 was obtained by interpolation, 

weighted by the integrated intensity values for relaxed and rigor condition. 

With this estimate for the standard deviation of the population, a two-sided Gaussian 

test can be applied for testing our above stated hypothesis. The Gaussian test implies 

that the test statistic used, i.e., 
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=  

follows a normal distribution, where 
1
x  and 

2
x  are measured values and !  is the 

common standard deviation of both measured values. With the above data and test 

statistic, the p-value was calculated to be 0.103. The p-value represents the probability 

that, given the null hypothesis is true (i.e., that the two intensities measured for time 

frame II and III belong to the same population), the two measured values differ as much 

as observed in our data or even more. 

Assuming the true intensities within the selected ranges of time frame II and time frame 

III are identical, but are measured with a noise represented by the above standard 

deviation, then the measured difference would be exclusively attributed to the recording 

noise. In this case, the probability that the measured or a larger difference in intensity 

would be just accidental is 0.103. 

Alternatively, we can also argue that a one-sided test would be appropriate. From 

increasing the proportion of rigor like cross-bridges we would originally expect an 

increase of the integrated intensity of the ALL6 in the investigated interval from time 

frame II to time frame III, as is the case with the different MgATPγS concentrations 

(see figure 25). So, we could state as the null hypothesis that the true integrated 

intensity for time frame III is equal or higher than the one for time frame II. In this case, 

the p-value obtained from the integrated intensities and the standard deviation estimated 
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from the relaxing and rigor condition is 0.0515. This means that, given the null 

hypothesis is true, only a ∼5% probability exists to observe the actually recorded or an 

even larger decrease from time frame II to time frame III. 

We could even restrict our criterion by further reducing the inverse spacing interval for 

intensity integration to 0.03 to 0.07 nm-1. This results in a p-value for the one-sided test 

of 0.0295, which is actually lower than the typical 5% confidence level for hypothesis 

testing. Thus, with the one-sided test we can reject the null hypothesis (i.e. that the true 

intensity in this interval remains constant or increases from time frame II to time frame 

III) with a confidence level of 5%. 

Thus, we can state with high certainty that the recorded profile of ALL6 is not showing 

any signs of an accumulation of rigor-like conformational states of the myosin heads. In 

our case, though, the statistical test is somewhat limited, as it is based on only one 

measured value (the difference between the integrated intensities for time frame II and 

III). Nevertheless, we can quite well argue that the probability to detect the observed 

difference in the profiles between time frame II and III just by chance is extremely low, 

if in reality both profiles were identical or the intensity for time frame III were even 

higher than for time frame II, as expected for accumulation of rigor cross-bridges. The 

measured ALL6 profiles, therefore, most likely argue against a substantial increase in 

the proportion of rigor-like cross-bridges during the release of the activated muscle 

fibers.  

Since ALL6, however, is very sensitive to even small structural changes of 

stereospecifically attached cross-bridges (Koubassova and Tsaturyan, 2002), our data 

rather support a concept that the pause in tension drop during the releases is the result of 

accumulation of stereospecifically attached cross-bridges in a state of the power stroke, 

which is both different from the structural state in the power stroke that is mostly 

occupied during isometric steady state contraction, and also different from rigor or 

rigor-like states (i.e. the AM state and AMD states obtained upon addition of MgADP 

to rigor fibers). 

The near-meridian part of ALL6 is enhanced by diffracting mass, which follows the 

helical periodicity of F-actin at larger diameters. The orientation of the neck region of 

the myosin heads, therefore, affects mostly this part of ALL6. A fixed orientation of the 

neck region produces high near-meridian intensity of ALL6, irrespective of its particular 

bent. This was demonstrated earlier by Kraft et al., 2002 using truncated S1 which 

includes only the motor domain of the myosin head and N-ethyl-maleimide (NEM)-
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modified S1 which includes both the motor domain and the neck region of the myosin 

head. Actin decorated with truncated S1 and actin decorated with NEM-S1 mimics 

states with disoriented and uniformly oriented neck regions, respectively. The intensity 

maximum of ALL6 on diffraction images produced from the latter is seen to be nearer 

to the meridian. In addition, the "anti-rigor" conformation described in Koubassova and 

Tsaturyan, 2002, which is characterized by a 70° tilt of the neck region of the myosin 

head, also produces higher intensity of the ALL6 near to the meridian, in the same way 

the rigor conformation of the myosin head does. The decrease in near-meridian intensity 

of ALL6 observed in our experiments is, therefore, neither consistent with an 

accumulation of cross-bridges in rigor-like nor anti-rigor-like states. Instead, our data 

rather indicate a mixture of different neck orientations or a predominance of a myosin 

head conformation that produces an ALL6 profile with low intensity near the meridian. 

A mixture with a substantial proportion of rigor-like or anti-rigor-like myosin head 

conformations can be excluded, though, as this would show up as an increase in near-

meridian intensity of ALL6 as in the case of the MgATPγS titration (figure 25). Thus, 

accumulation in an up to now structurally unknown state seems a likely possibility. 

Consequences 

Before delving into the critical analysis of the consequences, I would like to recapitulate 

briefly. The finding, that no rigor cross-bridges are accumulated during the release, 

follows from the described line of reasoning: (i) We observed from the intensity of 

ALL1 that the number of stereospecifically attached myosin heads surely does not 

decrease until time frame III. There is even a slight, but insignificant increase in time 

frame III compared to time frame I and II. (ii) The step-wise change in I1,1/I1,0 and the 

force trace indicate a redistribution within different conformational states of the cross-

bridge at the transition from time frame II to time frame III. (iii) The intensity 

distribution along ALL6 indicates an increased population of a conformational state in 

time frame III that is different from the rigor and even "anti-rigor" conformation of the 

cross-bridge. 

Two questions that finally arise from the above line of argument are: (i) Which is the 

structural state of the cross-bridge accumulated during the ramp-shaped release and to 

which biochemical state does it correspond? (ii) What is the role of the rigor state of the 
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cross-bridge during the release and possibly during active force development when it 

obviously was not accumulated in time frame III of the release? 

To tackle the first question, our data strongly suggests that the conformational state 

accumulated in time frame III cannot be a rigor-like state. Therefore, the biochemical 

states AM as well as the last A·M·ADP (obtained by addition of MgADP to rigor fibers) 

have to be excluded, because the latter also shows rigor-like features in the X-ray 

diffraction pattern (own unpublished results). One could hypothesize that the last 

A·M·ADP state is possibly short lived. In this case ADP dissociation has to occur at a 

high rate and there should be a number of different A·M·ADP states with only the last 

one expressing rigor-like features on the diffraction pattern.  

The state accumulated during the ramp-shaped release also does not correspond to the 

"anti-rigor" conformation, which was proposed as a possible model for the 

conformation of the cross-bridges before exertion of the power stroke. The accumulated 

state could correspond to a cross-bridge conformation already strongly attached to actin 

but before the release of Pi, i.e. an A·M·ADP·Pi state (compare figure 13 - kinetic 

scheme), or an early state after Pi release, which does not yet produce lattice sampling in 

the diffraction pattern. A comparison to work done by colleagues from our lab (Kraft et 

al., 2005), where Pi was substituted by the phosphate analogue aluminum fluoride 

(AlF4) seems to be promising, as AlF4 was employed to produce two different 

A·M·ADP·Pi analogue states, a weak binding and a strong binding one. Diffraction 

patterns recorded from muscle fibers predominantly in the strong binding 

A·M·ADP·AlF4-II state show no lattice sampling and also decreased intensity on the 

shoulder of the ALL6 profile nearer to the meridian. This A·M·ADP·AlF4-II state is 

interpreted as a corresponding analogue to a strongly attached A·M·ADP·Pi state. This 

state, therefore, seems to be a promising candidate for the state accumulated in time 

frame III of our ramp-shaped release. 

It is also unlikely that the effect seen on the ALL6 in time frame III is produced by 

disorder resulting from a mixture of structural states, consisting of cross-bridges 

producing rigor-like diffraction patterns and/or cross-bridges producing diffraction 

patterns as in relaxing condition. The recorded decrease in near-meridian intensity of 

the ALL6 and, therefore, reduction in radial width of the profile can not be reproduced 

by any mixture of these states. Otherwise it could have been mimicked by some 

MgATPγS concentration. MgATPγS titration, however, produces profiles with 

increasing radial width when going from relaxing towards rigor condition (figure 25). It 
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can also be excluded that the recorded smaller radial width results from interference 

between different structural states, because this would require that these different 

structural states are distributed along the fiber axis in a repeating pattern, which is not 

likely to be true. They are rather expected to be distributed randomly along the fiber 

axis and therefore their individual participations in the diffraction pattern add up in 

absolute intensity values. The recorded decrease in radial width of ALL6 from time 

frame II to time frame III could therefore only be produced by the predominance of a 

structural state of the cross-bridge, which shows the adequate feature in the diffraction 

pattern, i.e. a narrower radial profile of the ALL6. A further characterization of this 

structural state of the cross-bridge could be done by means of molecular modeling. 

Concerning the second of the two above questions, i.e., about the role of the rigor state, 

we already demonstrated that the rigor state or other states that produce rigor-like 

diffraction patterns are not accumulated in time frame III of the ramp-shaped release. It 

is, however, not very surprising not to see accumulation of rigor cross-bridges, i.e. 

nucleotide free cross-bridges, during ramp shaped releases. This is because of the high 

forward rate constant for binding of ATP to the nucleotide free myosin head and the 

subsequent fast detachment of the cross-bridge, i.e. the transition from the AM-state to 

the M·ATP-state in the cross-bridge cycle. This rate constant is estimated to be in the 

order of 106 M-1s-1 (e.g. Somlyo et al., 1988). With the ATP concentration in active 

muscle in the range of 1 mM, the rate constant for the detachment is in the magnitude of 

103 s-1. The AM-state is therefore very short lived, and not expected to accumulate even 

during releases. Hence, the rigor state seems to be only a short lived state and is very 

little populated during the power stroke. 

Altogether, with the methods employed no evidence could be found that rigor-like 

conformational cross-bridge states are accumulated substantially during force 

generation, even when muscle fibers are released to shift the cross-bridge population in 

favor of states toward the end of the power stroke. Our data, however, do show a 

redistribution of cross-bridge states during the ramp-shaped release toward states that 

are structurally different from states that are predominantly occupied during isometric 

steady state contraction. 
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Outlook 

Further studies and comparison to different AlF4 states could offer a promising 

approach to narrow in on a more detailled determination of the structural and 

biochemical characteristics of the state accumulated in time frame III of the ramp-

shaped releases. A more detailed analysis of the diffraction patterns under different 

mechanical and chemical conditions of the muscle fibers would require, though, light 

sources of even higher brilliance and better time resolution than it was the case in the 

time our time-resolved experiments at the ESRF were conducted (April 2003).  

Based on theoretical background provided by Vainstein, 1966, that has already been 

applied successfully by e.g. Gu et al., 2002, and Koubassova and Tsaturyan, 2002, 

molecular modeling could be employed to search for cross-bridge conformations that fit 

the recorded diffraction patterns and thus to possibly identify candidates for the 

conformational state accumulated in time frame III of the ramp-shaped release. 

In the last few years also X-ray microscopy has been improved. Temporary techniques 

(Miao and Sayre, 2000; Pfeifer et al., ) coherent X-ray radiation of high brilliance could 

allow resolution on a nanometer scale. In this technique the phase problem is solved by 

so called oversampling, whereby the image could be calculated by specific information 

stored in the diffraction patterns. So far, no reference to experiments performed on 

living tissue could be found in the literature. Future applications of this technique on 

muscle fibers seem to be promising, though. 
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Appendix 

 

Origin fit functions 

In order to obtain total intensities of overlapping peaks in one-dimensional profiles, I 

fitted functions containing the background and the appropriate number of Gaussian 

peaks to the intensity data. The computer application ORIGIN (OriginLab Corporation, 

Northampton, MA) was used the curve fitting. 

 

expdec1and2peaksArea 

No. of parameters 9 

Names of parameters: y0,A1,A2,A3,t1,xc1,xc2,w1,w2 

Independent variable: x 

Dependend variable: y 

y = y0 + A1*exp(-x/t1) + (A2/(w1*sqrt(PI/2)))*exp(-2*((x-xc1)/w1)^2) + 

(A3/(w2*sqrt(PI/2)))*exp(-2*((x-xc2)/w2)^2) 

Meaning of the parameters: 

y0 offset 

A1 amplitude of the exponential decay 

A2 area of the first peak 

A3 area of the second peak 

t1 exponential decay constant 

xc1 position of the first peak 

xc2 position of the second peak 

w1 width of the first peak 

w2 width of the second peak 
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expdec1and4peaksArea 

No. of parameters 15 

Names of parameters: y0,A1,A2,A3,A4,A5,t1,xc1,xc2,xc3,xc4,w1,w2,w3,w4 

Independent variable: x 

Dependend variable: y 

y = y0 + A1*exp(-x/t1) + (A2/(w1*sqrt(PI/2)))*exp(-2*((x-xc1)/w1)^2) + 

(A3/(w2*sqrt(PI/2)))*exp(-2*((x-xc2)/w2)^2) +  

(A4/(w3*sqrt(PI/2)))*exp(-2*((x-xc3)/w3)^2) +  

(A5/(w4*sqrt(PI/2)))*exp(-2*((x-xc4)/w4)^2) 

Meaning of the parameters: 

y0 offset 

A1 amplitude of the exponential decay 

A2 area of the first peak 

A3 area of the second peak 

A4 area of the third peak 

A5 area of the fourth peak 

t1 exponential decay constant 

xc1 position of the first peak 

xc2 position of the second peak 

xc3 position of the third peak 

xc4 position of the fourth peak 

w1 width of the first peak 

w2 width of the second peak 

w3 width of the third peak 

w4 width of the fourth peak 
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X-ray diffraction in a nutshell 

The following text is a hand-out to a lab-seminar I gave in October 2004. It summarizes 

the basics of the underlying theory to X-ray diffraction, features of diffraction patterns 

expected from different parameters that characterize a helix, and some technical aspects. 

Including this information in the main text would have distracted from the main points 

of the thesis. Therefore I decided to add it as supplemental information in an appendix 

to my thesis. 
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X-RAY DIFFRACTION IN A 

NUTSHELL 
 

by Ante Radocaj 
 

 
 
 
 
1. What we want to achieve? Information about the molecular configuration and 
interaction 
2. One way of doing it is x-ray diffraction 
3. Why? Investigate functional muscle fibers 
4. How does diffraction work? 
5. Double slit (use coherent beam of light, resolution wavelength of used light) 
6. Molecular structure 0.1 nm 
7. Spectrum of light 
8. What's synchrotron radiation? (accelerated electrons produce X-rays)  
    (storage ring, electrons, bending magnet, deflection) 
9. Arrangement specimen detector 
10. Short exposure time pattern + other patterns 
11. Diffraction theory (Fourier-transform, convolution) 
12. More difficult arrangement of scattering masses: helices and discontinuous 
helices 
13. Remind what our patterns look like 
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With our efforts, we wish to achieve information about the change in the 
conformation of myosin-heads during shortening of muscle fibers. What states 
are occupied? Are there any rigor-like states? And if so, what could be their 
percentage in the population? 
 
We use x-ray diffraction to approach these questions, because it allows us to 
investigate functional muscle fibers, which can be activated, develop force and 
shorten themselves. 
 
To start to explain the possibilities of X-ray diffraction, allow me to demonstrate 
the effect of diffraction using a very simple experiment that everyone should 
remember from high school.  

 
Fig. 1

a

coherent
light source

double
slit

wave
fronts

2 sine waves in phase
constructive interference

2 sine waves out of phase
destructive interference
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The double slit experiment is performed by pointing a beam of coherent light to 
a non-transparent screen that allows the light only to pass through two narrow 
apertures. That what is observed on a wall positioned far away from the double 
slit opposite the light source is an illuminated strip of varying brightness. It is the 
diffraction pattern of the sample with the very simple structure of just two slits. 
Diffraction patterns of samples with more complicated structures will be 
discussed later in this paper.  
 
By decreasing the distance between the two apertures of the double slit the light 
reflections on the wall spread out, i.e. the distance between two intensity 
maxima increases. And by increasing the distance of the apertures, the 
distance of the intensity maxima decreases. The distances are inversely 
proportional. The observed intensity maxima and minima on the wall can be 
explained by interference of the light emitted from one aperture and the light 
emitted from the other aperture. In the above image there are two point sources 
emitting light in circular waves. The waves add up the same way waves on the 
surface of a pond do. Waves that are in phase build up to a wave of twice the 
amplitude and waves that are in opposite phase annihilate themselves. 

Fig. 2 
 
Waves propagating in a direction with the angle θ to the axis are in phase, if the 
phase distance δ between them is an integer multiple of the wavelength λ (see 
image and equation above).  
 
Using the above equation, the distance of the apertures of the double slit can be 
calculated by measuring the distance between the intensity maxima on the wall, 
and knowing the distance from the double slit to the wall and the wavelength of 
the light. So, the beam of coherent light can be used to investigate the property 
of the double slit. For the calculation to be effective, the wavelength should be 
in the same order of magnitude as the structure of the investigated object (the 
sample, here the double slit). 

a

d
θ

δ

condition for maximum:

δ = d sin θ = n λ

d: spacing od double slit
δ: difference of phase
θ: difraction angle
n: integer number {0,1,2,...}
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To investigate objects with structures smaller than the wavelength of visible light 
in the same way, we have to use electromagnetic waves of shorter 
wavelengths, i.e. higher frequencies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 
 
As illustrated in the above diagram (Fig. 3) structures on a molecular scale 
could be resolved using X-rays. Synchrotrons generate coherent X-ray beams 
with exactly defined frequencies and high flux. Accelerated charged particles 
emit electromagnetic radiation. The electrons in the storage ring are kept in their 
track using bending magnets. As a side effect of their deflection in the bending 
magnets, synchrotron radiation, in the form of X-rays, emitted tangentially to the 
electron path is produced. For even higher efficiency of produced X-ray beams 
insertion devices (wigglers or undulators) are employed. The European 
Synchrotron Radiation Facility (ESRF) in Grenoble has 32 of these beamlines. 
We used beamline ID2 that is specifically equipped for fiber diffraction. 
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Fig. 4 
 
The above drawing (Fig. 4) shows the arrangement of the equipment in the 
beamline as we used it in April 2003 at the ESRF.  
 
Source characteristics for beamline ID2:

undulator on a high ß section segment A (U42) segment B (U26) segment C (U24) 

magnet period: 42 mm 26 mm 24.6 mm 

X-ray wavelength range: 0.05 - 0.15 nm 0.1 nm 0.1 nm 

source size:  0.945 x 0.0186 mm2 (HxV)FWHM 

source divergence: 0.025 x 0.0075 mrad2 (HxV)FWHM 

flux at sample position (12.5 keV): 7.0 1012 ph/s at 
100mA 

8.0 1012 ph/s at 
100mA 

1.7 1013 ph/s at 
100mA 

beam size at 55 m: 0.37 x 0.21 mm2 (ideal mirror) 

beam divergence at 55 m: 0.038 x 0.015 mrad2 (HxV) 
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Small angle diffraction patterns were recorded using the 2D RAPID detector - a 
photon counting device - permitting sufficient output even with extremely short 
exposure times, as 2 ms.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 
 
The first picture in figure 5 shows a recording of a diffraction pattern by the 
RAPID detector with an exposure time of only 2 ms. One can actually see the 
single photons which hit the detector during this interval. The smooth diffraction 
patterns, we are doing our analysis with, are actually a sum of hundreds of 
single recorded patterns. The second picture consists of 15 accumulated 
frames with a total exposure time of 30 ms, and the third picture is an addition 
of about 1000 frames with a total exposure time of about 2.7 seconds. The 
dotted pictures with the discernible photons are a nice proof of the wave-particle 
duality and Heisenberg‘s uncertainty principle. Each single photon is actually 
passing all the possible paths and interfering with itself to be measured finally at 
one distinct position in space.
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It's time to go back and ask ourselves, what kind of structure within the sample 
could produce such a complicated diffraction pattern. As it's not a double slot, it 
should be something more elaborate. The observed diffraction pattern of known 
samples can be calculated by a mathematical algorithm called discrete Fourier-
transform. It's incorporated in many expert systems, like Mathematica, Origin 
and Maple V in form of the Fast Fourier-Transform (FFT). 
 
Let's work our way up step by step from simple structures of samples to 
structures whose diffraction patterns look more like our recorded ones. 
 
 

Fig. 6 
 
According to the convolution theorem that results from the theory of the Fourier-
transform, the diffraction pattern of a convolution of two sample structures is the 
intensity product of the two resulting diffraction patterns (and vice-versa). The 
diffraction pattern of a large hole (a) is an airy disk (e) and the diffraction pattern 
of two tiny holes (point sources) is a striped pattern (f). So, the diffraction 
pattern of two large holes is a pattern as (g). Adding up more holes to the row 
just makes the stripes in the pattern thinner and sharper. The distance between 
the stripes in the pattern is inversely proportional to the distance between the 
holes. 
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Fig. 7 
 
The convolution theorem is valid the other way around, too. The diffraction 
pattern of an intensity multiplication of two samples is the convolution of the 
patterns of the two samples, resulting in the diffraction pattern (c) of a gird of 
holes. 
 
The diffraction pattern of a three dimensional helix can be calculated using 
simple means of Fourier-transform and convolution. See figure 8. 

Fig. 8 
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Muscle proteins, such as actin, troponin, tropomysin and myosin, are configured 
to form helices. Figure 9 shows a helix in which all the subunits or monomers 
(black circles) are equivalent. P is the pitch of the helix, R the repeat (the 
distance from one subunit to the next at the same angular position in the helix) 
and p is the axial translation of the subunits.  
 

Fig. 9 
 
Helical polymers can be represented by a helical chain of circles. The diffraction 
pattern of such a discontinuous helix can be deduced as in figure 10. 
 

Fig. 10 
 
A discontinuous helix is the product of a continuous one and a set of parallel 
planes perpendicular to the axis of the helix (a, b, c). The resulting diffraction 
pattern is shown in (f). The helix cross in (d) is convoluted with an array of dots 
on the meridian, so that the helix cross repeats itself in a distance proportional 
to 1/p. 
 
Helices with a nonintegral number of subunits per turn produce a bit more 
complicated diffraction patterns, as the layer lines in adjacent helix crossed do 
not coincide. Nevertheless, a lot of information about the discontinuous helix 
can be gained by analysis of the diffraction pattern. 



Appendix 

101 

Fig. 11 
 
The repeat of the helical polymer can be calculated from the inverse spacing of 
the layer lines and the translation of the subunits from the inverse spacing of the 
first meridional reflection. In this particular example, there are 5 translations per 
repeat. The ratio of the pitch to the diameter of the helix can be deducted from 
the angle of the helix crosses. 
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So, let‘s compare the theory to our experimental results.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12 
 
The inverse spacing of the meridional reflection of the myosin structure M3 
gives the periodicity of the myosin heads (~14,3 nm) on either end of the 
myosin filament. The intensity of each layer line varies with the degree of order 
and the sharpness of the corresponding macromolecular structure. From the 
intensity of M3 conclusions about the occupation of tail-up and tail-down states 
of the myosin-heads can be made. The intensity of the actin layer lines gives 
information about the number of occupied binding sites on the actin filament 
and the resulting disorder of its structure. Surely, a lot of other conclusion can 
be made, but I don't feel competent enough to comment about them. 
 
Outside sources used for this presentation: 
- John Squire, The structural basis of muscular contraction 
- Web sites of the ESRF Grenoble, SRS Daresbury and ALS Berkley 
 
Thanks to all the "inside sources"! 

M3 

M6 
ALL6 
ALL7 

M1 ALL1 

143 Å 

M2 215 Å 

72 Å 

59 Å 

51 Å 

443 Å T1 
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