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Abstract 
 
Cystic Fibrosis (CF) is the most severe common autosomal recessive congenital disorder in the 
Caucasian population. It is caused by molecular lesions in the cystic fibrosis transmembrane 
conductance regulator (CFTR) gene located on the long arm of human chromosome 7. While 
the CFTR determines the susceptibility of the airways to the opportunistic pathogen 
Pseudomonas aeruginosa in CF patients, progression and severity of the CF disease can not be 
predicted by the CFTR mutation genotype. Thus, the main objective of this study was to 
investigate TLR2, TLR4, TLR5, TLR9, SP-D, CXCR2, PON, TNFR1, CD14, and CD95 as 
modulators of CF disease severity and susceptibility to P. aeruginosa infection.  All ten 
candidate genes were targeted initially by one informative SNP (Single nucleotide 
polymorphism) to investigate them as CF disease severity modulators in European CF Twin and 
Sibling Study cohort containing 37 families with F508del-CFTR homozygous, exhibiting 
extreme clinical phenotypes. SNPs on TLR2, TLR5 and TLR9 failed to show the association. 
Polymorphisms on surfactant protein-D, CXCR2 and PON locus showed only a minor 
association with CF disease severity. The significant association was found between 
polymorphisms within TNFR1, TLR4, CD14, CD95 and CF disease severity. Hence, these four 
genes were investigated further by typing more SNPs and haplotype analysis. The genomic 
fragment containing the causative variant was identified by direct comparison of two-marker-
haplotype-distributions between sib pair sets displaying a phenotypic contrast. Individuals 
carrying contrasting haplotypes were subjected to confirmatory sequencing at the outlined 
genomic fragment and the coding region. Sequencing analysis did not reveal any coding 
variants. The functional role of non-coding causative variants was explored by in-silico analysis 
and suitable phenotypic assays. Furthermore, these causative variants were analysed for their 
role in CF infectious disease in two independent CF cohorts stratified for P. aeruginosa-related 
endophenotypes such as onset of initial and chronic colonisation. 

The haplotype analysis showed that the causative haplotype in TLR4 was located 
upstream of TLR4 exon 1 and was associated with CF disease severity but not with P. 
aeruginosa early or late colonisation.  

TNFR1 first intron harboured a disease modifying haplotype. In-silico analysis 
predicted that the alterations in DNAse hypersensitive sites, conserved non-coding sequences 
and inverted local repeats due to intron 1 variants may cause differential transcription. 
Consistently, western blot analysis showed that the levels of TNFR1 in CF patients’ serum 
correlated with TNFR1 causative haplotype.  The haplotype analysis on CD95 gene found a 
causative variant within intron 2. The in-silico analysis predicted a transcription regulatory 
region within intron 2 and the causative SNP was located within this regulatory region. Thus, it 
altered the binding site for c-Rel transcription factor. CF patients heterozygous for this intron 2 
SNP had significantly lower levels of CD95 mRNA, isolated from rectal suction biopsies of 
F508del-CFTR homozygous patients. This effect was specific to either epithelial cells or to CF 
context as mRNA quantification by real-time PCR and surface expression by FACS on 
peripheral blood mononuclear cells from healthy individuals did not reveal any association. 
CD95 polymorphisms were not associated with P. aeruginosa early or late chronic colonisation. 

CD14 promoter polymorphism and 3’ UTR polymorphism were associated with CF 
disease severity and age at onset of P. aeruginosa chronic colonisation. The diplotype analysis 
on CD14 locus revealed a significant association with age-dependent risk to acquire P. 
aeruginosa colonisation, the level of sCD14 in serum of CF patients and also associated with P. 
aeruginosa O-antigen phenotype. The 3’ UTR polymorphism was predicted to alter the binding 
site for microRNA on CD14 RNA and also binding site for mRNA processing proteins.  
 
In summary, we identified TLR4, TNFR1, and CD95 as potential genetic modulators of CF 
disease severity and CD14 as both the CF disease modulator as well as the modulator of age 
dependent risk to acquire P. aeruginosa colonisation among CF patients. Furthermore, the 
importance of non-coding variants in CF disease modulation was illustrated.  
 
Key Words: Cystic Fibrosis, Genetic modulators, Innate immunity  



 

Kurzfassung 
 

Cystische Fibrose ist die häufigste schwere autosomal rezessiv kogenital vererbte Krankheit unter 
Kaukasiern. Sie wird verursacht durch eine molekulare Veränderung im cystic fibrosis transmembrane 
conductance regulator- (CFTR-) Gen, das sich auf dem langen Arm des menschlichen Chromosoms 7 
befindet. Während das CFTR die Infektionsanfälligkeit der Atemwege für den Opportunisten 
Pseudomonas  aeruginosa in CF-  Patienten beeinflusst, können der Verlauf und der Schweregrad der 
Erkrankung nicht durch den Genotyp der CFTR- Mutation vorhergesagt werden. Daher konzentriert sich 
diese Arbeit hauptsächlich auf die Untersuchung von TLR2, TLR4, TLR5, TLR9, SP- D, CXCR2, PON, 
TNFR1, CD14 und CD95 als Modulatoren für den Schweregrad der CF- Erkrankung und die Anfälligkeit 
für P. aeruginosa– Infektionen. Für alle zehn Kanidatengene wurde zu Beginn ein informativer single 
nucleotide polymorphism (SNP) ausgewählt, um sie als Modulatoren des Schweregrades der CF- 
Erkrankung in der Kohorte der Europäischen CF Zwillings- und Geschwisterstudie zu untersuchen, die 
37 Familien mit F508del- CFTR- Homozygoten mit extremen klinischen Phänotypen umfasste. Die SNPs 
auf TLR2, TLR5 und TLR9 zeigten keine Assoziation. Polymorphismen im SP-D, CXCR2 und PON- 
Locus zeigten nur einen geringen Zusammenhang mit dem Schweregrad der CF- Erkrankung. Daher 
wurden diese sechs Gene von einer weiteren Feinkartierung ausgeschlossen. Ein signifikanter 
Zusammenhang wurde zwischen dem Schweregrad der CF- Erkrankung und Polymorphismen in TNFR1, 
TLR4, CD14, CD95 gefunden. Daher wurden diese vier Gene durch Typisierung weiterer SNPs und 
Haplotypenanalyse untersucht. Das genomische Fragment, welches die funktionelle Variante trägt, wurde 
identifiziert durch direkte Vergleiche zwischen Zwei- Marker- Haplotypen- Verteilungen zwischen 
Geschwisterpaaren, die einen unterschiedlichen Phänotyp zeigten. Individuen, welche verschiedene 
Haplotypen trugen, wurden in dem ausgewählten genomischen Fragment und der kodierenden Region 
sequenziert. Die Sequenzanalyse zeigte keine kodierenden funktionellen Varianten. Die Funktion der 
nicht- kodierenden funktionellen Sequenzen wurde durch in- silico- Analyse und geeignete Phänotyptests 
untersucht. Darüber hinaus wurden diese funktionellen Varianten auf ihre Rolle in der CF- Erkrankung 
bei zwei unabhängigen CF- Kohorten, die nach P. aeruginosa- assoziierten Endophänotypen, wie z. B. 
der der Zeitpunkt der beginnenden und der chronischen Kolonisation, stratifiziert wurden. 

Die Haplotypenanalyse zeigte, dass sich der funktionelle Haplotyp im TLR4 stromaufwärts des 
TLR4- Exon 1 befand und mit dem Schweregrad der CF- Erkrankung, nicht aber mit der frühen oder 
späten Kolonisation durch P. aeruginosa assoziiert war. Im ersten TNFR1- Intron lag der den 
Schweregrad der Erkrankung modifizierende Haplotyp. Die in- silico- Analyse sagte voraus, dass durch 
die Intron 1- Varianten Veränderungen in DNAse hypersensitiven Stellen, konservierten nicht- 
kodierenden Sequenzen und invertierten lokalen Repeats entstehen könnten, die eine veränderte 
Transkription hervorrufen könnten. Entsprechend zeigte die Western Blot- Analyse, dass die TNFR1- 
Mengen im Serum von CF- Patienten mit dem TNFR1 funktionellen Haplotyp korrelierten. 

Die Haplotypanalyse des CD95- Gens zeigte eine funktionelle Variante im Intron 2. Die in- 
silico- Analyse sagte eine transkriptionsregulatorische Region im Intron 2 voraus und der funktionelle 
SNP lag in dieser regulatorischen Region. Auf diese Weise veränderte er die Bindungsstelle für den c- 
Rel- Transkriptionsfaktor.  CF- Patienten, die heterozygot für diesen Intron 2- SNP waren, hatten 
signifikant geringere CD95- mRNA- Mengen, die  aus Rektumsaugbiopsien von F508del- CFTR 
homozygoten Patienten isoliert wurden. Dieser Effekt ist entweder spezifisch für Epithelzellen oder im 
Zusammenhang mit CF, denn die Quantifizierung der mRNA  durch Real- time Polymerasekettenreaktion 
(PCR) und der Oberflächenexpression durch Fluoreszenzaktivierte Zellsortierung (FACS) bei peripheren 
mononukleären Blutzellen aus gesunden Individuen zeigte keinen Zusammenhang. Der CD95- 
Polymorphismus war nicht mit einer frühen oder späten P. aeruginosa- Kolonisation von CF- Patienten 
verknüpft. Der CD14- Promoter- Polymorphismus und der 3`UTR- Polymorphismus waren assoziiert mit 
dem Schweregrad der CF- Erkrankung und dem Alter in dem die chronische Kolonisation mit P. 
aeruginosa begann. Die Analyse der Diplotypen auf dem CD14- Locus zeigte einen signifikanten 
Zusammenhang mit dem altersabhängigen Risiko eine P. aeruginosa- Kolonisation zu erwerben, mit der  
sCD14- Menge im Serum von CF- Patienten und war auch mit dem P. aeruginosa O- Antigen- Phänotyp 
verknüpft. Für den 3’UTR- Polymorphismus wurde vorhergesagt, dass er die Bindungsstelle für 
mikroRNA auf der CD14- RNA und auch die Bindungsstelle für mRNA- Prozessierungsproteine 
verändern würde. 

Wir haben TLR4, TNFR1 und CD95 als mögliche genetische Modulatoren des Schweregrades 
der CF- Erkrankung und CD14 sowohl als Modulator der CF- Erkrankung als auch als Modulator des 
altersabhängigen Risikos eine P. aeruginosa- Kolonisation bei CF- Patienten zu erwerben identifiziert. 
Darüber hinaus wurde die Bedeutung nicht- kodierender Varianten bei der Modulation der CF- 
Erkrankung veranschaulicht. 

 
Schlüsselbegriffe: Cystische Fibrose, Genetische modulatoren, Angeborene immunität 
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1. Introduction 
 

1.1. Cystic Fibrosis (CF) 
 

CF is known as the most common severe autosomal recessive disease within the 

Caucasian population, exhibiting an incidence of 1 in 2500 births (Welsh et al, 1995). 

This monogenic disorder is caused due to mutations in the Cystic Fibrosis 

Transmembrane conductance Regulator (CFTR) gene, which is located on chromosome 

7q31.3 (Kerem et al, 1989). The 230 kb of CFTR gene encompasses 27 exons which 

encode for a polypeptide of 1480 amino acids (Riordan et al, 1989, Zielinski et al, 

1991). CFTR is responsible for the cAMP-activated anionic, with chloride as main 

substrate, conductance of epithelial cell apical membranes. This anion channel is also 

involved in cAMP-dependent bicarbonate secretion in airway, intestinal epithelia and 

exocrine glands (Reddy et al, 2001) and transport of biomolecules like glutathione 

(GSH) (Kogan et al, 2003) and regulation of other ion channels (Bear et al, 1992, Welsh 

et al., 1992, 1993, Vankeerberghen et al 2002). More than 1500 disease-associated 

mutations have been reported to the CF Genetic Analysis Consortium database 

(www.genet.sickkids.on.ca/cftr/) since the identification of the CFTR gene. The 

majority of which are amino acid substitutions, frameshifts, splice site or nonsense 

mutations. These mutations can cause disruption of CFTR function within epithelial 

cells in different ways, ranging from complete loss of protein to surface expression with 

poor chloride conductance (Welsh et al., 1993) depending on the kind of mutation. For 

example, the most common CF mutation, F508del, a three base pair deletion that codes 

for phenylalanine at position 508, causes the protein to misfold leading to premature 

degradation by the ubiquitin proteasome system (Denning et al., 1992). Thus, loss of 

CFTR function at the cell surface leads to mortality in CF patients because of altered 

hydration of all exocrine epithelia and persistent lung infections (Welsh et al., 1993). 

 

1.2. The characteristics of Pseudomonas aeruginosa, a successful pathogen 
 

Pseudomonas aeruginosa is a gram negative, environmental bacterium. It is widely 

distributed and can grow in almost any aqueous habitat, including soil, surface waters, 

sewage, plants, and various foods, such as leafy vegetables and fresh fruit juice (Bonten 

et al., 1999). Although early infection of the CF airways is mostly caused by 

Staphylococcus aureus and Haemophilus influenza, chronic infection with P. 

http://www.genet.sickkids.on.ca/cftr/
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aeruginosa is of most significance as it is responsible for most of the morbidity and 

mortality of CF patients (Gibson et al., 2003). The main feature of this bacterium is its 

very large genome of 6.3 Mbp, which offers a benefit of tremendous adaptability to 

multiple different environments, including CF airways. The genome of P. aeruginosa 

encodes several cell surface (LPS, flagella, pili, alginate) and secreted (pyocyanin, 

pyoverdine, protease, elastase, phopholipase, rhamnolipids, exotoxins) virulence factors 

along with numerous metabolic enzymes. Also CF isolates have been found to have 

pathogenicity islands, which contain distinct group of genes which directly contribute to 

disease (He et al., 2004). Furthermore, P. aeruginosa isolates have efficient quorum 

sensing (QS) system. Importantly, the QS regulated genes are virulence genes and genes 

involved in biofilm formation (Diggle et al., 2002; Whiteley et al., 1999). In P. 

aeruginosa, las, rhl and PQS (Pseudomonas quinolone signal) are the three QS systems. 

Hierarchical interaction of las and rhl systems activates autoinducer synthase to produce 

N-(3-oxododecanoyl)-L-homoserine lactone and N-butyryl-L-homoserine lactone, 

respectively (Smith and Iglewski, 2003). The ability of P. aeruginosa to synchronize the 

regulation of virulence genes in an entire population explains its increased pathogenicity 

among QS capable strains compared to QS deficient mutants in some animal models 

(Tang et al., 1996; Pearson et al., 2000; Wu et al., 2001, Lesprit et al., 2003). Therapy of 

P. aeruginosa pulmonary infection has been problematic, largely due to the high 

intrinsic resistance of this organism to antimicrobial agents because of the low 

permeability of the outer membrane (Hancock, 1998), combined with the presence of 

both beta-lactamases (Philippon et al., 1997) and multidrug efflux pumps (Poole et al., 

1996; Köhler et al., 1997). 

 

1.3. Host-pathogen interaction in cystic fibrosis 
 

The molecular mechanism of resistance and susceptibility to a pathogen in humans 

involves a complex cross talk between host factors and pathogen virulence factors. P. 

aeruginosa cell surface virulence factors are primarily ligands for the pattern 

recognition/ innate immune receptors on host cells. LPS (Lipopolysaccharide), the 

major constituent of outer membrane of P. aeruginosa, play a major role in inducing 

immune response mainly by its role in recognition by TLR4/CD14/MD-2 innate 

receptors (Hajjar et al., 2002; Backhed et al., 2003). In addition, a key component of 

LPS, the Lipid A, activates multiple pro-inflammatroy pathways by its CF specific 
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modifications that enhance TLR4 activation (Ernst et al., 1999; 2003). During the time 

of colonisation in CF lung, P. aeruginosa isolates switch to quite distinctive 

phenotypes. They become antibiotic resistant and frequently mucoid characterised by 

excessive alginate production (Govan and Deretic, 1996). The other phenotypic 

morphotypes, termed small colony variants (SCV), were shown to be associated with 

poor lung function (Haussler et al., 1999). Furthermore, P. aeruginosa mucoid CF 

isolates often display rough LPS phenotype due to loss of O-polysaccharide side chains 

(Hancock et al., 1983) which seems to have a role in LPS signalling. Similarly, flagella 

and pili, the appendages primarily required for P. aeruginosa motility and also facilitate 

in attachment of P. aeruginosa to host cells, play significant roles in inducing 

inflammation. Binding of P. aeruginosa via flagella to asialoGM1 is shown to be sensed 

by TLR2 and TLR5 (Adamo et al., 2004) and in turn activates Src-Ras-ERK1/2-NF-kB 

pathway to release IL (Interleukin) -8 (Lillehoj et al., 2004). Since flagella are very 

immunogenic, P. aeruginosa adapt to the CF lung by selecting aflagellar mutants to 

evade host response during chronic colonisation (Mahenthiralingam et al., 1994). The 

quorum sensing (QS) molecules were also reported be immunomodulatory agents and 

depress host responses (Telford et al., 1998; Smith et al., 2002). On the other hand, most 

P. aeruginosa strains attenuate their virulence after some time during CF lung 

colonisation. During chronic phase of infection, P. aeruginosa isolates secrete less of 

most common immuno-stimulants such as proteases, exolipase, exotoxin A and 

hemolysin in vitro than their clonal relatives isolated during the initial phase of the 

infection (Tümmler et al., 1997).  

 

1.4. CF pulmonary hyperinflammatory phenotype 
 

The lung disease of cystic fibrosis is characterized by a cycle of airway obstruction, 

infection, and inflammation (Gibson et al., 2003). Infection with bacterial pathogens 

among CF patients followed by intense neutrophilic localisation to the peribronchial and 

endobronchial spaces (Khan et al., 1995, Muhlebach et al., 1999) leads to airway 

inflammation with elevated interleukin-8 and neutrophil elastase (Bonfield et al., 1995). 

As a consequence, CF airways show a prolonged inflammatory response (Gibson et al., 

2003). It has been suggested that this inflammatory response remains aggressive by 

local airway epithelium-pathogen interactions but not by systemic immune response 

(Chmiel et al., 2002). There is also evidence from in vivo experiments that production 
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of anti-inflammatory cytokines like IL-10 (Bonfield et al., 1999) and lipoxins (Karp et 

al., 2004) are reduced in CF airway. Further neutrophil influx is mediated and sustained 

by IL-8, produced by stimulated epithelial cells, macrophages and neutrophils (Chmiel 

et al., 2002, Tirouvanziam et al., 2000). Thus, inflammation in the CF lung is dominated 

by neutrophils and their products, including neutrophil elastase. It is reported that the 

neutrophil elastase can induce up-regulation of NF-kB activation and IL-8 expression 

(Devaney et al., 2003). Additionally, neutrophil elastase and cathepsin G stimulate 

airway gland secretion, which removes bacterial pathogens from airway epithelial cells 

into the airway lumen (Döring and Worlitzsch, 2000).  When neutrophil accumulation is 

exaggerated in CF, it can cause progressive damage to bronchial epithelium 

significantly mediated by neutrophil elastase (Taggart et al., 2000). Thus, the activated 

neutrophils are considered to be the primary effector cells for the pathogenesis of CF 

lung disease. In contrast, a comprehensive study by Aldallal et al. (2002) showed that 

different inflammatory responses of normal, CF and CFTR-corrected airway epithelial 

cells were likely due to differences in the cell types and they were unrelated to the 

presence of CFTR. It is also suggested that changes in volume, ionic composition, and 

the level of glutathione (GSH) in airway surface liquid due to absence of CFTR may 

cause increased concentration of secreted products which may be proinflammatory even 

in the absence of bacterial infections (Machen, 2006). Further, a study from Weber et al. 

(2001) proposed a model in which mutation in CFTR leads to accumulation of excessive 

amounts of misfolded deltaF508 CFTR in the endoplasmic reticulum (ER) lumen, 

which may alter the intracellular calcium signalling due to ER stress and in turn 

activation of NF-kB in the absence of bacterial stimulus. Additionally, Tirouvanziam et 

al. (2000) demonstrated in human fetal CF airway grafts that before any infection, CF 

airways are in proinflammatory state characterised by increased intraluminal IL-8 and 

consistent accumulation of leukocytes in the subepithelial region. Thus, the CFTR 

mutation itself may cause a proinflammatory phenotype of the airways and hence 

further infection may aggravate mucosal damage due to constant inflammation. In 

summary, the overproduction of proinflammatory cytokines on one hand and 

significantly lower levels of the anti-inflammatory cytokine IL-10 on the other hand 

results in an excessive and persistent inflammation in the CF airways. Consequently, 

lung function deteriorates more rapidly in P. aeruginosa colonised CF patients 

compared with P. aeruginosa negative CF patients (Gibson et al., 2003). 
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1.5. Innate immunity  
 

Immunity is mediated by humoral and cellular factors elicited by a complex network of 

innate and adaptive immunity. Innate immunity refers to antigen-nonspecific defense 

mechanisms that a host use immediately after exposure to antigen. Although the innate 

immune system was described more than a century ago by Metchnikoff, discovery of 

adaptive immune system overshadowed it (Silverstein 2003). However recent research 

has provided considerable insight into the molecules, particularly toll like receptors 

(TLRs) implicated in innate immune system and their functions. These molecules, 

termed pattern recognition receptors (PRRs), primarily function in recognising 

microbial structures referred to as pathogen-associated molecular patterns (PAMPs) and 

consequently, provide initial protection against microorganisms by stimulating adaptive 

immune response (West et al., 2006). TLRs are type I transmembrane proteins of the 

Interleukin-1 receptor (IL-1R) family that possess an N-terminal leucine-rich-repeat 

(LRR) domain for ligand binding, a single transmembrane domain, and a C-terminal 

intracellular signalling domain (Bell et al., 2003). Ten human TLRs have been 

identified in humans and they recognize an array of bacterial, fungal, and viral products, 

including structural molecules in the microbial cell wall like LPS (Beutler, 2004). For 

example, TLR2 recognizes gram-positive lipoteichoic acids, TLR4 recognizes gram-

negative LPS, TLR5 recognizes flagellin, and TLR9 recognizes unmethylated bacterial 

DNA. Combinatorial interaction of these TLRs leads to recognition of PAMPs and their 

signaling initiates with the recruitment of TIR-domain-containing adaptor proteins to 

the cytoplasmic TIR domain of an activated TLR (Yamamoto et al., 2004). Recruitment 

of one or more of these adaptors (MyD88, TIRAP/Mal, TRIF/TICAM-1, and 

RAM/TICAM-2) to a TLR initiates signalling events that activate the NF-kB, AP-1, and 

IRF families of transcription factors (Akira and Takeda, 2004). These transcription 

factors induce the expression of genes involved in host defense from infection. 

 

The innate immune mechanisms defend the airway from the array of microbial 

products that enter the lung. The lung has a distinctive relationship with the 

environment and it has developed line of attack to defend itself from microbial attack 

through evolution. Primary defenses like cough reflex, mucociliary clearance, and 

antimicrobial properties of the mucosal surface (Strieter et al., 2002) defend the airways 

from infection. Bacteria and virus particles are carried to the alveolar surface where they 
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interact with soluble components (IgG, complement, and collectins) and alveolar 

macrophages, which are sentinel phagocytes of the innate immune system in the lungs. 

Alveolar fluids also contain high concentrations of lipid binding protein (LBP) and 

soluble CD14 (sCD14), which are key molecules in the recognition of LPS by alveolar 

macrophages and other cells in the alveolar environment (Martin et al., 1992, 

1997).When bacteria are opsonised by IgG, complement or collectins such as SP-A and 

SP-D or mannan binding lectin (MBL) in the airspaces, they are ingested by alveolar 

macrophages and the TLRs in the phagosomal membrane provide discrimination among 

different microbial products entering the cell (Underhill et. al., 1999). Consequently, 

macrophages produce proinflammatory cytokines such as IL (interleukin) -8 and CXC 

chemokines which in turn recruits neutrophils from the lung capillary networks. 

Furthermore, alveolar macrophages carry microbial antigens into the interstitium and to 

regional lymph nodes. Specialised antigen presenting cells such as dendritic cells take 

up these antigens and present them to responding lymphocytes to initiate adaptive 

immune responses.  

 

1.6. Cystic Fibrosis Genetic Modulators 
 

The heterogeneity of CF disease severity is partly explained by the different mutations 

of the CFTR locus. However, CF patients with the same CFTR genotype, displaying 

significantly variable clinical phenotype strongly indicate the role of factors other than 

CFTR genotype. This notion was confirmed by earlier studies in which significant 

variation was seen among F508del homozygous patients with respect to their 

gastrointestinal, hepatobiliary and pulmonary disease manifestation (Johannsen et al., 

1991; Kerem et al., 1990). As modulating factors can be genetic and/or environmental, 

the role of genetic factors in modulating CF disease was clearly dissected by CF twin 

and siblings study in which monozygous CF twins were more concordant than dizygous 

CF twins with respect to their disease severity (Mekus et al., 2000). Over the years, 

many genes such as Angiotensin converting enzyme, Beta 2 Adrenergic receptor, 

Voltage-gated chloride channel 2 (ClCN2), Mannose binding lectin (MBL), Nitric oxide 

synthase 1, Glutathione-S-transferase-M1, Transforming growth factor beta 1 and TNFα 

were evaluated as CF modulators by several investigators with varying degrees of 

success (Cutting, 2005; Knowles, 2006). These findings further strengthened the role of 

genetic component in CF disease modulation.  Consistently, the impact of host genetic 
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factors in P. aeruginosa colonisation among CF patients was dissected by comparing 

the concordance and discordance for P. aeruginosa colonisation phenotype among 

monozygous and dizygous CF twin and siblings.  As monozygous twins are genetically 

identical and dizygous pairs are genetically 50% identical on average, comparing 

concordance and discordance of P. aeruginosa colonisation phenotype between 

monozygous and dizygous pairs would imply the contribution of genetic factors for the 

acquisition of P. aeruginosa. Thus, comparison of monozygous pairs 

concordant/discordant for P. aeruginosa with dizygous twin and siblings 

concordant/discordant for P. aeruginosa showed a highly significant association in 

which all monozygous pairs and 78 percent (18 out of 23 pairs) of the dizygous twins 

were concordant for P. aeruginosa infection status (Unpublished observation, Stanke 

and Tümmler) indicating a strong genetic component involved in modulating the 

susceptibility to P. aeruginosa infection among CF patients. Furthermore, the excessive 

inflammation in patients with CF (Ramsey et al., 1996) and inflammation in CF infants 

even without any infection (Khan et al., 1995) suggests that the genes involved in both 

innate and adaptive immunity as potential genetic modulators in CF. Hence, it is of 

paramount importance to identify these genetic modulators and to unravel the 

mechanism of modulation. 

 

1.7. Approaches to study CF genetic modulators 
 

Association-mapping methods attempt to locate disease mutations by detecting 

association between the incidence of a genetic polymorphism at a gene of interest (the 

‘candidate gene’) and that of a disease. Single nucleotide polymorphisms (SNPs) have 

gained widespread interest as potential molecular markers in disease association studies 

and linkage disequilibrium mapping (Pritchard and Przeworski, 2001). Further, the 

power of linkage mapping can be increased by exploiting the fact that polymorphisms in 

close physical distance occur together in linkage, implying rare recombination events 

between them. The combinations of adjacent alleles form “haplotypes”, which can be 

exploited to map causative variants to a haplotype-block (van den Oord and Neale, 

2004). Thus, the association-mapping can be used to identify CF genetic modulators by 

employing either case-control study (association) and/or family-based (linkage) studies 

(Newton-Cheh et al., 2005; Laird and Lange, 2006). Although, family-based linkage 

analyses are mostly done with microsatellite markers, majority of the genetic analysis 



8 

are moving towards SNP genotyping and analytical strategies based on association and 

haplotype analysis (Risch, 2000; Schork et al., 2000). The problem of genetic case-

control studies has been population stratification due to mixed ethnic groups (Ewens 

and Spielman, 1995). For this work, to study CF genetic modulators, the problem of 

population stratification has been tackled by selecting only Caucasians in the study 

cohort, because CF is very frequent in Caucasians and 70% of the CF alleles are 

delF508 alleles, and hence both the ethnic background as well as CFTR genotype are 

normalised.  On the other hand, as family-based studies circumvents this issue 

completely, where the parents act as genetic controls for their affected offspring, parents 

were recruited for most of the cases in this study. Thus, selecting candidate genes based 

on their biological plausibility and studying its association with disease by employing 

both case-control and family-based methodologies in combination would be optimal for 

any specific genetic disorder (Knowles, 2006).  
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1.8. Aim of the thesis 
 

Cystic fibrosis (CF) patients carrying the identical CFTR mutation genotype display 

significant variability in their disease course and susceptibility to P. aeruginosa 

infection. This evidence suggested that the disease severity variation and differential 

response towards P. aeruginosa infection among CF patients is conferred not only by 

CFTR but also by other genetic factors. Inflammation is thought to contribute 

significantly to the destruction of the CF lung and pulmonary disease severity. Thus, the 

fundamental hypothesis guiding this study was that the genes involved in innate 

immunity and non-specific defense are modulators of P. aeruginosa chronic 

colonisation and CF disease severity. Consequently, the innate immunity genes, primary 

molecules involved in crosstalk between pathogen and host due to their location at the 

interface of host and environment, were selected as potential candidate genes.  

 

Combining a candidate-gene based study and systematic haplotype block 

mapping on European CF Twin and Sibs with extreme clinical phenotypes, this study 

aims at defining whether or not naturally occurring polymorphisms on toll like receptor-

2, toll like receptor-4, toll like receptor-5, toll like receptor-9, CD14, Surfactant protein-

D, IL-8 receptor 2 (CXCR2), tumour necrosis factor receptor-1 and TNFRSF6A (CD95) 

can be detected as modulators of CF disease severity and susceptibility to P. aeruginosa 

infection.  

Additionally, if association occurs, fine-mapping by haplotype analysis and 

phenotyping of the causative variant(s) by suitable bio-assays are attempted to describe 

the molecular mechanism.   
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2. Patients and methods 
 
2.1. Patient cohorts 
 
CF twin and siblings enrolled in the study were recruited in 1996 by a German-Dutch 

team (core centers are Rotterdam and Hannover). DNA samples from twin and sibs 

were obtained in 1996-1999. Serum and microbiological samples were collected in 

1997-1999. Details of patients and mode of selection are described in chapters 2.1.1 and 

2.1.1.1.  

 

2.1.1. European CF Twin and Siblings 
 
The “European Cystic Fibrosis Twin and Sibling Study” consists of 442 CF twin and 

siblings, representing different CFTR mutation genotypes. They were recruited from 

158 CF centers from 14 different European countries during 1995 and 1996 (Mekus et. 

al., 2000) to assess the role of genetic and environmental factors on CF disease severity. 

The patient panel studied in this project is a subgroup of the European CF Twin and 

sibling study (Table 1). 277 sib pairs, 12 pairs of dizygous twins (DZ) and 29 pairs of 

monozygous twins (MZ) were included in the original study, 114 of whom were 

reported to be homozygous for F508del. The 98 patients belonged to 43 pairs and 4 

trios. The trios were grouped into three separate sib pairs for the sake of data 

comparison, resulting in a total of 55 pairs. 13 of these were MZ, 5 were DZ and 37 

were siblings.  

 

Table 1: Number of twin and sib pairs recruited in the European cystic Fibrosis 
Twin and Sibling Study cohort to investigate the CF genetic modulators. 
 

 Sib pairs Dizygous twin pairs Monozygous pairs 
Number of pairs 

recruited 
277 12 29 

Number of F508del 
homozygous pairs 

37 5 13 

 

2.1.1.1. Selection of extreme phenotypes 
 
Two most sensitive clinical parameters to CF course and prognosis (Corey and 

Farewell, 1996; Corey et al, 1997; Lai et al, 1999), forced expiratory volume (FEVPerc) 

and weight for height (wfh%), were considered to assess the disease severity among 

twin and siblings (Mekus et al., 2000). First, lung function was evaluated from predicted 
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values of forced expiratory volume in one second 

(FEV1) expressed as a predicted value 

(FEV1%pred) based on the data by Knudson et al, 

1993. While in CF, FEV1%pred declines with age 

(Corey M et al. 1996), age and gender-dependent 

percentiles (FEVPerc) for the CF population were 

employed to correct for this disease specific effect 

by taking data from the European CF registry report 

of 1995. Second, nutritional status was assessed by 

weight, expressed as predicted weight for height 

percentage (wfh%), based on percentiles for weight 

and height corrected for age and gender (Prader et 

al., 1989). All the patients were assigned a rank 

number based on their FEVPerc and wfh%. Disease 

severity was chosen by plotting FEVPerc ranks on Y-axis and wfh% ranks on X-axis 

for every patient (Fig.1). The overall disease severity of a patient i is determined by the 

distance from origin (DfO) in the plot resulting from the rank numbers xi and yi. 

Intrapair discordance was defined by the distance (DELTA) between two data points 

representing two siblings i and j. By this approach, both sibs in a pair displaying highest 

rank numbers were grouped as concordant mild (CON+), and if both sibs were 

displaying lowest rank numbers, they were grouped as concordant severe (CON-). If 

sibs within a pair were discordant for rank numbers, then the pair was grouped as 

discordant pair (DIS). 

 

2.1.2. F508del homozygous CF twin and siblings stratified for P. aeruginosa 

colonisation 

 
A set of Caucasian F508del homozygous patient pairs selected from the sib pair 

population, were recruited from the European Cystic Fibrosis Twin and Sibling Study 

(Mekus et al., 2000), whereby extreme and intermediate phenotypes were enrolled to 

represent the CF patient pair community. The manifestation of the CF basic defect of 

this cohort was previously described (Bronsveld et al., 2000). Monozygous and 

dizygous pairs were comparable with respect to clinical characteristics such as lung 

function, nutritional status, age at chronic colonisation and gender distribution although 

Sibling i
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DELTA (Sibpair ij)
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Figure 1: Definition of DfO (disease 
severity) and DELTA (discordance), 
which are both determined by the rank 
numbers for FEVPerc and wfh% for 
sibling i and sibling j of a pair. 
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the median of age at the day of investigation was lower for monozygous pairs (P < 0.1). 

41 dizygous and 12 monozygous pairs were included in this study to assess the role of 

genetic factors on P. aeruginosa acquisition (Table 2). P. aeruginosa status of these 

patients, reported by physician in 1995-1996, was confirmed again during 1997-1998 by 

sputum bacteriology and serology. Data for age at onset of chronic P. aeruginosa 

acquisition, reported by the patient or/and physician, was available for these pairs. 

 

Table 2: Phenotypic characteristics of F508del homozygous dizygous and 

monozygous pairs recruited for determination of P. aeruginosa colonisation status  

 
 Dizygous pairs 

 
Monozygous pairs 

Number of pairs 35 12 
Number of trios 2 (form 6 pairs) - 

Total number of pairs 41 12 
Gender   

Female (n) 41 16 
Male (n) 35 8 

Age in years, Median (inner quartiles; 
range) 

13 (10.6-19.4; 5-39) 11 (9.9-18.8; 9-32) 

Age of onset of chronic colonisation, 
Median (inner quartiles; range) 

8 (4-14; 1-35) 10.7 (10-12; 1-22) 

 

 
2.1.3. F508del homozygous unrelated CF patients with early and late P. aeruginosa 

chronic colonisation 

 
To evaluate the role of genetic modulators on the onset of P. aeruginosa chronic 

colonisation among CF patients, a CF cohort, containing 21 CF patients, stratified for 

early or late colonisation of P. aeruginosa, was recruited. The 21 unrelated CF patients 

were enrolled from the CF clinic Hannover as described elsewhere (Derichs et al. 2003). 

Briefly, all patients were homozygous for the F508del mutation, matched for gender 

and had longitudinal data on P. aeruginosa colonisation. Hence, these CF patients are 

grouped according to their age at first P. aeruginosa colonisation. The first group of 13 

patients (PA-early) had an early chronic P. aeruginosa colonisation before the age of 7 

years whereas the second group of 8 patients (PA-late) showed P. aeruginosa 

colonisation at the age of 14 years or later. The infection status was verified by routine 

sputum bacteriology in the microbiology department of the MHH.  
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2.1.4. F508del homozygous unrelated CF patients stratified for birth cohorts 
 
This cohort consists of unrelated F508del homozygous CF patients from Hannover CF 

clinic who were born in 1959 to 1975. These patients were recruited initially for CFTR 

mutation genotype analysis during 1989-1992 and the age at the day of investigation 

(blood taking) ranges from 34 to 14 years. We categorized these patients into two 

groups in which 22 patients who were born in 1959 to 1967 as Early-born group and 23 

patients who were born in 1973 to 1975 as Late-born group. In order to test the 

hypothesis that the changing environmental factors (treatment) and improvement of 

survival have an impact on selection of favourable alleles and genotypes among CF 

population, Early-born group and Late-born groups were typed for CD14 

polymorphisms and the distribution of genotypes were compared with genotype 

distribution among all other cohorts investigated. 

 
2.1.5. Unrelated F508del homozygous CF patients recruited for global 

transcriptome analysis 

 

Fifteen unrelated patients, homozygous for F508del CFTR mutation, were selected from 

a cohort containing CF patients, who were recruited initially to study the impact of 

residual CFTR on global transcriptome. For transcriptome analysis, the total RNA was 

isolated from rectal biopsies using Qiagen RNeasy protocol (Qiagen Corp, Hilden, 

Germany) and the quality was determined by gel electrophoresis. cDNA was 

synthesized from total RNA and hybridized on the affymetrix chips (GeneChip®Human 

Genome U133 Plus 2.0 Array, Affymetrix, Santa Clara, CA) according to the protocol 

from Affymetrix manual (Version 700217 rev 3). The expression data was normalized 

for chips and evaluated using Affymetrix Microarray Suite v5.1 software. (The 

transcriptome analysis was done in collaboration with Larissa Pusch and Torsten Kroll, 

University of Jena). Thus, these patients had global transcriptome data. Hence, these 15 

patients were typed for candidate genes and mRNA levels were compared against 

genotypes at different polymorphisms.  
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2.2. Methods 
 
2.2.1. Isolation of high molecular weight DNA from blood  
 
The DNA isolation method from human blood described by Gross-Bellard et al. (1973) 

was followed. 5-10 ml K+ -EDTA blood (fresh or thawed on ice after storage at -20°C) 

was incubated with 40 ml lysis-buffer for 30 minutes on ice. Lateron, the nuclei of the 

lymphocytes were separated from the cell debris by centrifugation for 15 minutes at 600 

x g. The lysed pellet was then incubated with 5 ml proteinase K (0.25 mg/ml), SDS 

(0.5% w/v) in STE for 8 to 14 hours at 56°C in a shaking water bath. Subsequently, 

digested proteins and DNA were separated by phenol/chloroform extraction. 3 ml 

chloroform/ isoamylalcohol (29:1) and 3 ml phenol were added to the digest, mixed 

carefully for 15 minutes and centrifuged for 10 minutes at 600 x g. The organic phase, 

found at the bottom of the tube, was carefully removed, and the extraction step was 

repeated. Finally, an extraction step with 6 ml chloroform was performed to remove 

remaining phenol from the aqueous phase. Precipitation of DNA was done on ice by 

adding 1/10 of the volume of the aqueous phase of 3M Na2CO3 aq (pH 5.5) and 30 - 40 

ml of 70% EtOH (cooled down to -20°C). DNA was then transferred to an Eppendorf 

tube containing 1 ml 70% EtOH and centrifuged for 3 minutes at 12,000 x g. The 

supernatant was discarded and the pellet washed twice with 70% EtOH. DNA was 

dissolved in 300 µl of TE at 4°C for one week. Finally, a 1:25 dilution of the stock 

solution was prepared and DNA concentration was determined by measuring the OD at 

260 nm. 

 
2.2.2. DNA isolation from neutrophils  
 
Neutrophils were collected as a pellet during peripheral blood mononuclear cells 

isolation. The pellet was washed in 10ml of PBS and centrifuged at 8000 rpm to remove 

red blood cells (washing is repeated depending on the amount of RBCs). The washed 

pellet was subjected to DNA isolation using Peqlab DNA isolation kit (PEQLAB 

Biotechnologie GmbH).  

 
2.2.3. Genotyping  
 
Single nucleotide polymorphisms (SNPs) and microsatellites were selected for 

genotyping the candidate genes. The suitable markers were selected as it is described in 

chapter 2.2.3.1. SNPs were analysed by PCR-RFLP and microsatellites were analysed 
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by direct blotting electrophoresis as described by Mekus et al., 1995. Analysis of SNPs 

by RFLP and analysis of microsatellites by direct blotting are described in chapters 

2.2.3.2 and 2.2.3.3, respectively.  

 
2.2.3.1. Selection of genetic markers 
 
All SNPs were selected from the NCBI database based on their location within the 

region of interest and also based on their heterozygosity value as an informative 

measure. SNPs were typed on 9 different controls (DNA samples from healthy 

volunteers), to estimate the allele frequencies, by PCR-RFLP method. Preferably, SNPs 

displaying a 50% frequency of each allele were selected for further genotyping of twin 

and sibling samples (A list of all the SNPs chosen from NCBI data base is given in 

appendix). Microsatellite markers were selected based on their proximity to the 

candidate genes by screening the genomic sequences for repeat motifs. Polymorphic 

information content (PIC) of a microsatellite marker was estimated based on the allele 

frequencies among 9 control samples and a marker displaying a PIC of more than 0.5 

was typed on CF twin and siblings.  

 
2.2.3.2.  Analysis of restriction fragment length polymorphisms (RFLPs) 
 
RFLP typing was performed by using commercially available restriction-endonucleases. 

Briefly, 15µl of PCR amplified product was incubated with 10µl of restriction mix 

containing 3µl of restriction buffer and 2 to 10 U of suitable restriction enzyme (NE 

Biolabs) at its optimum temperature for overnight restriction digestion. Digested 

samples were then analysed on a 2 to 4% agarose gel.  

 
2.2.3.3. Analysing polymorphic microsatellites by direct blotting process 
 
The direct blotting process uses a denaturing polyacrylamide (PAA) gel and high 

voltage electrophoresis for high resolution separation of small DNA fragments. The 

apparatus (GATC, Konstanz) consists of a vertical electrophoresis gel with a conveyer 

belt directly beneath the lower edge of the acrylamide gel. Reaching the end of the 

vertical gel, the products are directly transferred on a positively charged nylon 

membrane that is transported down the gel by a conveyor belt running through the lower 

buffer reservoir. Resolution of separation depends on the matrix of the gel and conveyor 

belt speed. 
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2.2.3.3.1. Gel preparation 
 
For microsatellite analysis, a gel of 4% PAA and 8.3 M urea in 1 x TBE buffer with a 

thickness of 0.19 cm was used. After polymerisation, the gel was mounted into the 

blotting chamber and electrophoresis was performed at 1500V for at least 30 min in 1x 

TBE for equilibration of the gel.  

 

2.2.3.3.2. Sample preparation 
 
For analysis of microsatellites, the selected markers were amplified using an 

asymmetric primer ratio of 5 pmol biotin labelled primer and 25 pmol of unlabelled 

primer in multiwell plates. PCR was carried out in a final volume of 15 µl [1 µM 

MgCl2, 2 µM dNTP’s and 0.25 U Invitaq polymerase (Invitek)] with an oil overlay. 

Once PCR was done, 8 µl of PCR products were transferred to another multiwell plate 

and dried at 37°C for overnight. Dried products were dissolved in 10 µl of formamide 

containing 0.2% w/v bromophenol blue and xylenecyanol. Before loading, samples 

were denatured for 5 minutes at 95°C in a heating block and immediately cooled at -

20°C. 0.5 µl of each sample was then loaded onto the polyacrylamide gel and pre-run 

into the gel by electrophoresis at 500 V for 3 minutes.  

 

2.2.3.3.3. Electrophoresis 
 
Electrophoresis was performed at 1900 V. Transport of the membrane was started 

shortly after the first front of bromophenol blue had reached the membrane, the delay 

between the first contact of the bromophenol blue marker with the membrane and the 

start of transport depended on the size of the tested product. The speed of the conveyor 

belt was kept constant at 17cm/h. 30 cm of Hybond N+ nylon membrane were used for 

single markers. After electrophoresis, the blue fronts of the various runs were marked at 

the side of the membrane and membranes were stored at room temperature until 

developing. 

 

2.2.3.3.4. Membrane-Developing and detection 
 
Biotinylated products were detected by chemiluminescence. Membrane was incubated 

for 1 hour with 75ml of 1.5% of blocking reagent (Boehringer), which was dissolved in 

150 ml of buffer 1 (100 mM Tris pH 7.5, 150 mM NaCl). Next, membranes were rinsed 
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for another 1 - 2 hours in fresh 75ml of the blocking solution containing 6µl of anti-

biotin-alkaline-phosphatase fab-fragments (0.75 U/ µl). Unbound antibody and blocking 

agent were removed by washing the membranes 3 times for 8 minutes each in buffer 1 

mixed with 1% Triton-X 100. The membrane was equilibrated for 20 minutes in 

developing buffer 3 (100 mM Tris pH 9.5, 100 mM NaCl, 50 mM MgCl2). The 

chemiluminescence reaction was induced by incubating the membranes in 50 ml of 

buffer 3 containing 10% v/v Sapphire II (Tropix) and 300 µl of CDPstar (Tropix) for 5 

min. Later, the solution was retained and the membrane was rinsed with 50 ml of buffer 

3 containing 1% v/v Sapphire II and 30 µl CDPstar. Membranes were sealed in plastic 

foil and chemiluminescence was detected with help of Kodak X-o-mat X ray films. 

Exposure time varied between 5 sec and 1 hour depending on the efficiency of the PCR. 

 

2.2.4. Genotyping data evaluation 
 
The genotyping data obtained for all candidate genes, from CF twin and sibling cohort 

and from cohorts stratified for P. aeruginosa phenotype, were subjected to statistical 

analysis. Association between CF disease severity and susceptibility to P. aeruginosa 

with polymorphisms on all the candidate genes was evaluated with appropriate 

statistical tests as described in chapter 2.2.4.1.  

 
2.2.4.1. Evaluation of genotyping data from CF twin and siblings and from cohorts 

stratified for P. aeruginosa colonisation 

 
Three different hypotheses were tested in CF twin and sibling cohort. Firstly, 

preferential transmission of certain alleles (or haplotypes) in CF offsprings from their 

parents, was tested by comparing the transmitted alleles (or haplotypes) vs. non-

transmitted ones by considering all nuclear families irrespective of their disease severity 

categories. Secondly, allele and genotype distributions were compared in a case-control 

fashion. Briefly, the comparison was done between mildly (CON+) vs severely (CON-) 

affected pairs, employing the phenotypic contrast to identify CF modulators. Thirdly, 

both CON+ and CON- were grouped as CONC (Concordant) and compared against DIS 

to analyse the role of modulators in “trans” (encoded elsewhere in the genome). The 

polymorphisms on candidate genes characterised in CF twin and siblings are analysed 

in other cohorts stratified for P. aeruginosa colonisation. The allele and genotype 

distributions were compared between both P. aeruginosa early colonised and P. 
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aeruginosa late colonised groups as well as between P. aeruginosa positive and P. 

aeruginosa negative groups to determine the role of polymorphisms on candidate genes 

in susceptibility to P. aeruginosa colonisation.  

 

2.2.5. Statistical Analysis 
 
2.2.5.1. Family based evaluation 
 
Preferential transmission of alleles or haplotypes, at tested loci among CF offspring 

from their parents, was tested by analysing nuclear families with the Monte Carlo 

simulation based association test (Knapp and Becker, 2003) that can be viewed as an 

extension of the transmission-disequilibrium test (Spielman et al., 1993).  

 

2.2.5.2. Case-control analysis  
 
Case-control based evaluation was done by comparing allele/genotype/haplotype 

frequencies between two groups (For example: CON+ vs. CON- or DIS vs. CONC or P. 

aeruginosa colonised vs. P. aeruginosa non-colonised) using CLUMP software 

package. CLUMP is a program that was designed for use in genetic case-control 

association studies, and especially for distributions with a large number of categories 

(Sham and Curtis, 1995). Thus, CLUMP calculates Chi-square statistic for k x 2 

contingency tables and significance of association is determined by Monte Carlo 

simulations.  

 

2.2.5.3. Correction for sib-pair dependence and multiple testing 
 
Dependence of genotypes of the individuals within each sib-pair was corrected by 

accounting the affection status in each permutation replicate and was simultaneously 

permutated or not permutated with equal probability for both sibs (Sib-pair correction 

was kindly carried out by T. Becker, IMBIE). Further, the haplotype counts were 

obtained by using likelihood-weighted haplotype explanations for each individual as 

described by Becker et al. (2005).  As several markers on a candidate gene are tested 

individually and also in combination for the same null hypothesis in this study, all P-

values obtained for CON- versus CON+ and CONC versus DIS comparisons are 

corrected for multiple testing by applying Monte Carlo simulation based strategy. 
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Corrected P-value was obtained for single marker analysis and also for multi-marker-

combination analysis as described by Becker and Knapp (2004b). 

 

2.2.5.4. Hardy-Weinberg equilibrium analysis using FINETTI program 
 
Deviations from Hardy-Weinberg equilibrium (HWE) for polymorphisms in CD14 were 

analysed using the program FINETTI (Kindly provided by Prof. Thomas F. Wienker; 

unpublished data). The De Finetti diagram includes a parabola indicating genotype 

distributions consistent with HWE. The distance between the parabolic curve and the 

genotypes indicates the extent of deviation from HWE and the significance is calculated 

by Chi-square test.  

 
2.2.6. PCR based methods   
 
2.2.6.1. PCR in multiwell plates 
 
The inner 60 wells of a 96 well plate (Greiner) were coated with 5µl (50ng) of DNA. To 

each well, 25µl reaction mixture, containing 3µl of 5µM primer, 3µl of 2mM dNTPs, 

3µl of 10X buffer (InviTek), 1 to 3µl of 50mM MgCl2, 0.05µl of Taq-polymerase 

(5U/µl) and 12 to 10µl of H2O, was added. The outer rim of the plate was sealed with 

agarose to avoid evaporation. PCR was carried out at optimum annealing temperature in 

a Hybaid thermocycler with a heated lid. 

 

2.2.6.2. Long-range PCR 
 
For PCR amplification of sequencing targets, the Failsafe™ PCR System (EPICENTRE 

Technologies, WI USA) was employed according to the manufacturer’s instructions. 

Briefly, for 50µl amplification reaction, 25µl of Failsafe PreMix, 10µl of 5µM primers 

and 4µl of H2O was added to a 100µl reaction tube containing 1µl (100ng) of DNA 

template. Later, 0.2µl of Failsafe PCR Enzyme Mix was added and PCR was carried out 

at suitable annealing temperature. The above combination was tried with all 12 different 

Failsafe Premixes on control samples and the optimal combination was chosen for 

further applications.   

 
2.2.6.3. Sequencing long-range PCR products 
 
As good sequencing results can be obtained for a maximum fragment size of 500-

700bp, chromosome walking strategy was followed for sequencing >1kb fragments. 
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Briefly, the sequencing region (1kb to 3kb) was targeted by terminal primers and 

amplified using Failsafe™ PCR System (EPICENTRE Technologies, WI USA). 

Lateron semi-overlapping internal primers were designed using Primer3 for every 500 

to 600bp of the target for sequencing. Internal primers were designed in such a way that 

the second product should include at least 30bp of the first product. By this approach, 

sequencing results of the primer binding regions were confirmed. Sequencing was 

performed at QIAGEN (Hilden). Sequencing results were analysed by aligning both 5’ 

primer read as well as 3’ primer read of a fragment against reference sequence using the 

software “CodonCode Aligner” (CodonCode Corporation). Sequence variations found 

on both 5’ and 3’ reads were accounted for further genotyping. Variations found only on 

one read were confirmed by re-sequencing the fragment of interest with a new set of 

primers.  

 
2.2.6.4. Pre-mRNA length determination by PCR 
 
In order to find CD14 pre-mRNA length, total RNA was isolated from 293T and T84 

cell lines (chapter 2.2.6). cDNA was synthesised using random primers (chapter 

2.2.7.2). Primers were designed to amplify products of different lengths. For this, single 

forward primer (5’-GGGCTTTGCCTAAGATCCAA) was used in combination with 

four different reverse primers (Primer 1: 5’-CCATTATGTCGGGGAGTGAC, primer 2: 

5’- GTGAGGCAGGCATCTAGCTC, primer 3: 5’-TATAGGCATGAGCCACCACA, 

primer 4: 5’- GTGGTGGTGCATGCCTATAA), located on different regions to amplify 

697bp, 986bp, 1604bp and 2075bp products respectively. Products were amplified using 

Failsafe™ PCR System (EPICENTRE Technologies, WI USA). Two genomic DNA 

samples, isolated from blood, were used as controls.  

 
2.2.7. RNA isolation  
 
Total RNA from adherent cells and PBMCs were isolated with “Absolutely RNA 

miniprep kit” (Stratagene, La Jolla, CA). The concentration of RNA was determined by 

measuring the OD at 260nm and the quality was assessed by taking ratio of ODs at 260 

and 280nm.  

 
2.2.8. Real Time PCR  
 
Total RNA isolated with “Absolutely RNA miniprep kit” (Stratagene, La Jolla, CA) 

was used for cDNA synthesis. cDNA was synthesised by using oligo dT primer and 
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expand reverse transcriptase (Roche). GAPDH specific primers were used as internal 

controls (forward primer 5’-GTCAGTGGTGGACCTGACC; reverse primer 5’-

TGAGCTTGACAAAGTGGTCG). CD95 specific primers to give product size of 

226bp were used to analyse the CD95 mRNA level (forward primer 5’- 

TTTCACTTCGGAGGATTGCT; reverse primer 5’- 

ACCTGGAGGACAGGGCTTAT). The PCR reaction was performed in duplicates 

using a LightCycler–FastStart DNA Master SYBR Green I kit (Roche) according to the 

manufacturer’s instructions. Real-Time PCR was done by using Roche Applied 

Science’s “The LightCycler System” (ROCHE). PCR reactions were monitored using 

SYBR Green I Dye which is a double stranded (ds) DNA binding dye. It is thought to 

bind in the minor groove of dsDNA and upon binding increases in fluorescence over 

100 fold. The fluorescence intensity depends on the amount of dsDNA which in turn 

depends on the initial amount of cDNA template put for the PCR reaction.  

 

2.2.8.1. First-strand cDNA synthesis using oligo(dT) primers 
 
First strand cDNA was synthesised from 10µg total RNA by extension with oligo(dT)15 

and expand reverse transcriptase enzyme (Roche).  Briefly, 10µl of RNA solution was 

mixed with 1µl of 4µM oligo(dT)15. This mixture was incubated at 65°C for 10 min and 

immediately cooled on ice. Subsequently 9µl reaction mixture (4µl of 5X RT-Buffer 

(Roche), 1µl DTT (100mM) (Roche), 1µl of 10mM dNTPs, 2.5µl of H2O and 0.5µl of 

50U/µl expand reverse transcriptase enzyme) was added and reverse transcribed at 42°C 

for 1 hour followed by an inactivation step of 95 °C /5 minutes, and brief centrifugation. 

Samples were stored at -80°C. 

 
2.2.8.2. First-strand cDNA synthesis using Random primers 
 
For 20µl of reaction volume, 10µl of RNA solution was mixed with Random primers at 

a concentration of 200ng primer/µg RNA. This mixture was incubated at room 

temperature for 10min. Subsequently 9µl reaction mixture (4µl of 5X RT-Buffer 

(Roche), 1µl DTT (100mM) (Roche), 1µl of 10mM dNTPs, 2.5µl of H2O and 0.5µl of 

50U/µl expand reverse transcriptase enzyme) was added and reverse transcribed at 42°C 

for 1 hour followed by brief centrifugation. Samples were stored at -80°C. 
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2.2.8.3. Quantification of mRNA on the LightCycler 
 
A PCR reaction profile in a LightCycler can be divided into three segments: an early 

background phase, an exponential phase (or log phase) and a plateau. The background 

phase lasts until the signal from the PCR product is greater than the background signal 

of the system. The exponential phase begins when sufficient product has accumulated to 

be detected above background, and ends when the reaction efficiency falls as the 

reaction enters the plateau. Typical real-time PCR curves monitored in on the 

LightCycler are shown in Fig. 2a. The cycle at which each reaction first rises above 

background is dependent on the amount of target present at the beginning of the 

reaction.  

 
Checking efficiency of amplification 
 
For relative quantification of an unknown target, consistent standard (predefined 

template concentration) was used with a minimum of three dilutions (1 point per log of 

concentration) and standard curve was plotted to calculate the efficiency of 

amplification. This was done by plotting Cp (crossing point defined as cycle at which 

the signal rises above the background) vs. the log of the initial template concentration as 

shown in Fig. 2a. The linear plot indicates that the efficiency was constant over the 

concentration range analysed. Based on this efficiency the tool calculates the 

concentration of target template.  

 
Relative quantification 
 
All the reactions were amplified in duplicates and the final results were reported as the 

ratio of number of mRNA copies of a target gene relative to GAPDH mRNA (house 

keeping gene) from the same cDNA sample. This was calculated as shown in the Fig. 

2b. Thus, four normalised ratios were obtained for a sample and standard deviation is 

plotted for all the four values. As a standardising experiment, real-time PCR was done 

on 293T cell line and T-84 cell line cDNA to analyse the CD95 mRNA level. Two 

different targets (FAS-1 and FAS-2) for the same gene i.e. CD95, were amplified using 

two set of primers FAS-1 (forward primer 5’- TTTCACTTCGGAGGATTGCT; reverse 

primer 5’- ACCTGGAGGACAGGGCTTAT gives 226bp product) and FAS-2 (forward 

primer 5’- GGAAAGCTAGGGACTGCACA; reverse primer 5’- 

TGTTCACATTTGGTGCAAGG gives 250bp product). Results are shown in Figure 2d. 
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As this method showed that the technique is specific and consistent for CD95 mRNA 

analysis, only FAS-1 target was analysed on all other samples.   

 

 

 
 

Figure 2a: Efficiency of the 
amplification was determined by 
plotting standard curve (cp vs. log 
concentration) 

A 
B 

D 
C 

 
C/A
D/A
C/B
D/B 

Normalised Ratio = 
Standard 
deviation 

Figure 2b: Relative quantification by 
taking normalised ratio of house 
keeping gene to target  

Figure 2c: Specificity of the amplified 
products is checked by analysing 
melting curves and melting peaks 

GAPDH 
FAS/CD95 

No template 

Separate and specific melting peaks 
for both GAPDH and CD95 indicate 
specificity of the PCR amplification.  
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Figure 2d: CD95 mRNA quantification in 293T and T84 cell lines using real-time 

PCR  

 

 
The mRNA copies are quantified by taking the ratio of target gene to house keeping 
gene (FAS/GAPDH) mRNA copies and comparing the ratios between two samples.  
 
 
2.2.9. MicroRNA detection 
 
MicroRNAs are small (≈21 to 24nt) non-coding RNAs that serve as posttranscriptional 

regulators of gene expression in higher eukaryotes. Their widespread and important role 

in animals is highlighted by recent estimates that 20%–30% of all genes are microRNA 

targets. In this study, CD14 3’ UTR polymorphism was found to be located on the 

microRNA binding site, which raised the possibility of altering the binding efficiency of 

a microRNA on CD14 and in turn differential gene regulation. Hence, in an effort to 

detect the targeted microRNA, dot blot and hybridization techniques were standardised.   

 

2.2.9.1 MicroRNA isolation 
 
For isolating micro RNAs form all the cell types, mirVanaTM miRNA Isolation kit from 

Ambion® was employed. Essentially manufacturer’s instructions were followed to 

isolate small RNAs from total RNA fraction and quantity and quality was determined 

by taking OD measurements at 260 and 280nm. 
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2.2.9.2. Biotin labelling of small RNA fraction (<200 nt) 
 
2 µg of small RNA isolated using mirVanaTM miRNA Isolation kit from Ambion® was 

biotin-labelled according to manufacturer’s instructions using Biotin-Chem-Link kit 

(Roche Diagnostics GmbH).  

 

2.2.9.3. Dot Blotting 
 
One µl of each RNA samples were coated manually on Hybond N+ nylon membrane 

(8x7cm in size) with serial dilutions (400ng/µl to 4ng/µl). Coated membranes were 

dried at room temperature for 10min. Membranes were incubated at 70°C for 10 min 

followed by UV cross linking for 3 minutes. These membranes were stored at 4°C until 

use.   

 

2.2.9.4. Prehybridization 
 
Blotted membranes were washed twice in 3xSSC/0.1% SDS at room temperature and 

prehybridized for 1 hour at 37°C in 10ml of prehybridization solution (6xSSC, 5x 

Denhardt’s solution, 0.05% sodium pyrophosphate, 100µg/ml boiled herring sperm 

DNA, 0.5% SDS). (Volume of both prehybridization and hybridization solution 

depends on the size of the membrane). 

 

2.2.9.5. Hybridization 
 
Membranes were removed from the prehybridization solution and immersed in 5ml of 

hybridization solution (6xSSC, 1x Denhardt’s solution, 100µg/ml yeast tRNA, 0.05% 

sodium pyrophosphate) within a falcon tube. Later, 10ng /ml of biotin-labelled probe 

(Biotin-labelled microRNA) was added to the hybridization solution and hybridized at 

48°C for 14 to 18 hours.  

 

2.2.9.6. Detection 
 
Hybridized membranes were washed for 10 min, 3 times, in 6xSSC/0.05% 

pyrophosphate at room temperature on a shaker. Further, membranes were washed for 

45 min at 60°C in 6xSSC/0.05% pyrophosphate which was prewarmed to 60°C.  The 

temperature of the washing solution was measured using thermometer during the 

washing procedure and once the temperature of the membrane reached 60°C, washing 
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was continued for another 20 minutes. After this step, membranes were subjected to the 

detection protocol as described in chapter 2.2.2.3.4. 

 

2.2.10. Western Blotting 
 
The quantity of both 55kDa and 28kDa fractions of TNFR1 in serum samples was 

measured by western blotting as described by Hawari et al. (2004) with some 

modifications in the protocol to deplete excess immunoglobulin.  

 

2.2.10.1. Sample preparation and separating on a gel 
 
Western blotting was done to quantify target protein in human serum samples. Initially, 

the serum samples were pre-cleared with Protein A (10µl /100µl serum) and Protein G 

(10µl /100µl serum) beads by incubating at 4°C on a shaker for 1hr. Then, samples were 

centrifuged at 6500 rpm/1 min at 4°C. The supernatant was taken and total protein was 

measured using Bradford’s protein quantification method. 60µg of total protein was 

mixed in sample loading buffer and heated at 90°C-95°C for 10 min and protein were 

separated on a 10%-12% SDS-polyacrylamide gel at 80 volts until the bands reached 

the separating gel and later on at 140-160 volts.  

 
2.2.10.2. Protein blotting 
 
PVDF membrane and blotting papers were cut according to the gel size. The membrane 

was soaked in methanol for 30sec and immediately transferred to transfer buffer and 

incubated for more than 5min. Blotting papers were also incubated in transfer buffer 

along with the membrane. The gel was removed from the gel-running apparatus and 

transferred to transfer buffer and incubated for 5min. Then, the membrane was placed 

on the wet blotting papers. The gel was placed on the membrane and blotting papers 

were kept on top of the gel. Blotting was done at 320Amp for 40 to 60min depending on 

the size of the protein. 

 

2.2.10.3. Immune detection  
 
The membrane was blocked using blocking buffer (I-Block, TROPIX) overnight at 4°C 

or for 2hr at RT on an orbital shaker. Later the membrane was rinsed with wash buffer 

twice for 2 min and incubated with primary antibody (1:100 to 1:500 in blocking buffer) 

in a sealed plastic bag for 1 to 2hrs at RT. After that the membrane was rinsed briefly 
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with two changes of wash buffer and washed for 15min with wash buffer at room 

temperature.  Again with fresh changes of wash buffer, the membrane was washed 3 

times for 5min at RT. HRP-labelled secondary antibody was diluted 1: 10,000 in 

blocking buffer (dilution depends on the secondary antibody and the sample used). The 

membrane was incubated in diluted secondary antibody solution for 2hrs at RT (light 

sensitive HRP-labelled antibody was protected from light by covering the membrane 

with aluminium foil). The membrane was rinsed briefly with wash buffer and washed 

for 15min at RT. Another time, membrane was washed for 15min with fresh changes of 

wash buffer at every 5min. For detection of the signals on the membrane, ECL 

chemiluminescence detection kit from Amersham was used. Briefly, both detection 

solutions, A and B, are mixed (in 1:1 ratio). The membrane was placed on a clean 

surface with blot-protein upside and mixed detection solution was poured on the 

membrane and incubated at RT for 5min. Later, the excess detection solution was 

drained using blotting paper. Membranes were sealed in plastic foil and 

chemiluminescence was detected with help of Kodak X-o-mat X ray films. Exposure 

time varied between 5 sec and 1min depending on the amount of protein. 

 

2.2.11. ELISA 
 
Soluble CD14 (sCD14) concentrations in serum was determined by Human sCD14 

Quantikine ELISA Kit (R & D Systems, DC140) according to the manufacturer’s 

instructions.  

 

2.2.12. PBMC isolation 
 
Venous blood (15-20ml) was collected into K+ -EDTA or 

heparinized tubes and immediately processed. Peripheral 

blood mononuclear cells (PBMC) were isolated using 

gradient centrifugation in Ficoll-Paque solution 

(Pharmacia). The blood was mixed with equal volume of 

PBS (137mM NaCl, 2.7mM KCl, 8.1mM Na2HPO4, and 

1.5mM KH2PO4, pH 7.2). 15 ml of Ficoll-Paque Plus was 

filled into a 50 ml Falcon tube and blood/PBS solution 

was layered over it carefully. Tubes were centrifuged at 

1600rpm for 30min without brake.  Figure 3: Ficoll-gradient 
separation of PBMCs  
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After centrifugation, four fractions were separated in four different layers (Fig. 3). The 

upper phase contains the plasma/PBS fraction. Below this phase a small buffy coat 

contains the PBMC fraction. Third phase was ficoll and then follows the 

neutrophil/erythrocyte fraction. With a 10ml pipette, the PBMC fraction was sucked out 

carefully and transferred to a new 50ml falcon tube. Later, this fraction was washed 

twice with PBS and centrifuged at 4°C, 1300rpm for 8min. Then, the pellet was 

resuspended in 5ml of RPMI (containing 10% FCS, 100U/ml penicillin, 0.1mg/ml 

streptomycin, 0.3mg/ml glutamine, and 10µM 2-Mercaptoethanol) and cells were 

counted. Cells were centrifuged again and resuspended in RPMI + 10%FCS + 

10%DMSO at 5 X 106 cells/ml. Then the tubes containing PBMCs were stored at -80°C.   

 
2.2.13. Flow cytometry 
 
PBMCs were analysed by flow cytometry using a FACS-Canto (BD Biosciences) and 

FlowJo software (Tree Star, Inc). The following monoclonal antibodies (all from BD 

Pharmingen, San Diego, CA except noted otherwise) were used: CD95-APC (Cat. No. 

558814, DX2 clone), CD3ε-FITC, CD4-FITC & -PE, CD8α-FITC, -PE & -PerCP, 

CD14-FITC, CD19-PE and TLR4-PECy7 (eBioscience, Cat. No. 25-9917). In all 

experiments, cells were also stained with corresponding isotype-matched monoclonal 

antibodies. (FACS was done in co-operation with Kaan Boztug, MHH) 

 
2.2.13.1. Staining peripheral blood mononuclear cells  
 
Frozen peripheral blood mononuclear cells were revived by thawing them in 37°C water 

bath. Immediately after thawing, cells in 1ml (≈ 4 x 106 cells/ml) media were washed 

twice with 10 to 15ml of PBS (containing 50% FCS). Cells were pelleted by 

centrifugation, resuspended in 1ml of ice cold PBS (containing 5% FCS) and kept on 

ice for blocking non-specific receptors for 15 to 20min. Antibody cocktail was prepared 

by mixing chosen antibodies and staining was performed according to the 

manufacturer’s instructions.  Expression of CD95 was analysed on different cell types 

of peripheral blood mononuclear cells (Table 3). FACS analysis and interpretation of 

data is described in detail in Fig. 4a to 4c. 
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PBMCs are mixed population of cells and thus we see different 
light scatter due to light scatter properties of cells 

The forward scatter denoted FSC measures the size, and the 
sideward scatter indicated SSC Measure the granularity of the 
cells. The black line enclosing 70.1% of cells indicates gating for 
typical total PBMCs. 

The gated population in the above scatter is represented as 
histogram, showing different peaks with forward scatter in the x axis 
indicating different populations 

Staining for surface markers using flurochrome conjugated 
antibodies and looking for respective colour on the x-axis gives the 
cell population positive for the targeted surface marker.  
For example, the histogram indicates that 13.3% of total PBMCs 
are CD19 positive and hence they are gated and looked for CD95 
expression.   

The expression of CD95 was analysed on CD19 positive cells. 
CD95 antibody is conjugated with APC, and thus the histogram 
indicate that 51.1% of total CD19+ cells are CD95 positive.  

Figure 4a: The typical scatter property of total PBMCs 

Figure 4b: Gating CD19 positive cells to analyse CD95 expression 
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Figure 4c: CD95 expression on CD19+ (B-cells) cells 
 
 

 
 
Figure 4a to 4c: The acquired cells are gated for CD19+ cells (B-cells) and these B-
cells are gated again for CD95 expressing cells. Later, CD19+CD95+ cells are 
subjected to statistics to obtain geometric mean of CD95 expression on total B-cells. 
Similar approach is followed to analyse the CD95 or CD14 or TLR4 expression on 
different cell types.  
 
Table 3: Markers for surface antigens on different cell types of peripheral blood 

mononuclear cells 
Surface markers Cell types Functions 

CD14+ Monocytes Pattern recognition receptor that detects antigenic molecules on the surface 
of bacteria (lipoteichoic acid on gram positive, LPS on gram negative), 
myobacteria (glycolipids), fungi (mannans), as part of the innate immune 
system 

CD19+ B-cells Earliest B cell antigen in fetal tissue. Regulates B cell development, 
activation and differentiation. May define intrinsic and antigen receptor-
induced signaling thresholds critical for clonal expansion of the B cell pool 
and humoral immunity   

CD3e+ Total T-cells Complex of delta, epsilon, gamma, zeta and eta chains of integral 
membrane glycoproteins that associates with T cell antigen receptor 
(TCR), and is required for TCR cell surface expression and signal 
transduction 

CD4+ T-helper cells Non-polymorphous glycoproteins belonging to immunoglobulin 
superfamily. Expressed on surface of T helper cells; serves as co-receptor 
in MHC class II-restricted antigen induced T cell activation 

CD8+ Cytotoxic T-cells Heterodimer of an alpha and a beta chain linked by two disulfide bonds; 
heterodimer on thymocytes and homodimer on peripheral blood T cells. 
Can kill target cells by recognizing peptide-MHC complexes on them or 
by secreting cytokines capable of signaling through death receptors on 
target cell surface 

 
 

 

 

rs7901656 (C to T SNP) Genotype

CC CT TT 

As an example, the expression of CD95 on CD19+ cells is grouped according to the rs7901656 genotpyes. 
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2.2.14. Serotyping of P. aeruginosa CF isolates 
 

Serotypes of P. aeruginosa clinical isolates were tested according to the manufacturer’s 

instructions using Pseudomonas aeruginosa serotyping kit (ERFA Canada Inc.). 

Briefly, bacteria were grown on Luria-Bertani agar plate overnight for agglutination 

test. Small amount of live bacteria from the culture was mixed with 10 µl antibody 

solution (17 serotype specific monoclonal antibodies) or 10 µl of sterile saline on a 

clean glass slide. Agglutination was compared with standard positive (ATCC 33348 - 

ATCC 33364) and negative control (sterile saline) for the respective serotypes. Strains 

agglutinated with only one antibody were considered as typable or O-antigen intact 

strains (smooth LPS) where as strains which showed agglutination with more than one 

type of antibodies (polyagglutinable) or no agglutination with any antibodies were 

included under non-typable strains or O-antigen deficient strains (Rough LPS).  

 

2.2.15. Electronic database resources  
 
Several electronic database resources were used in this study to understand the 

mechanism of CF disease modulation via non-coding variants. 

 

The Vista Genome Browser 

For functional annotation of non-coding variants, VISTA (Visualisation Tools for 

Alignments) tool was employed. The Vista Genome Browser, available at 

http://genome.lbl.gov/vista/index.shtml, aligns genome sequences from different 

organisms and identifies conserved non-coding sequences.  

 

TRANSFAC database 

The non-coding sequences were analysed for probable transcription factor binding sites 

using TRANSFAC (http://www.gene-regulation.com/pub/databases.html). TRANSFAC 

is the database on eukaryotic transcription factors, their binding sites and DNA binding 

profiles.  

 

miRBase (MicroRNA database) 

MicroRNA database (http://microrna.sanger.ac.uk/sequences/) is a searchable database 

of published miRNA sequences and annotation and also provides predicted miRNA 

targets in different animals.  

http://genome.lbl.gov/vista/index.shtml
http://www.gene-regulation.com/pub/databases.html
http://microrna.sanger.ac.uk/sequences/
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3. Results and discussion 
 
We hypothesised that genes which are involved in innate immune and non-specific 

defense will play a key role in determining the rate and duration of P. aeruginosa 

colonisation among CF patients, and consequently CF disease severity. Thus, twelve 

candidate genes were chosen to evaluate as modulators, namely; toll like receptor-2 

(TLR2), toll like receptor-4 (TLR4), toll like receptor-5 (TLR5), toll like receptor-9 

(TLR-9), CD14, CD95 (TNFRSF6), surfactant protein-D (SFTPD), CXCR2 (IL8RB), 

TNFα receptor 1 (TNFRSF1A), Paraoxonase (PON), Lipid binding protein (LBP) and 

myeloid differentiation primary response gene 88 (MYD88)  based on their functional 

importance in recognition of bacterial ligands and in imparting immune response. Initial 

mapping by SNP-RFLP or microsatellite typing on these candidate genes led us to focus 

on four candidate genes out of twelve for further fine mapping. For LBP and MYD88, 

no informative markers could be established.  

 

Hence, firstly, I will summarise the results of three genes TLR2, TLR5, and TLR9, for 

which no clear evidence of association was found with the disease phenotype, very 

briefly in chapter 3.1.  

 

Secondly, results of the three genes SFTPD, CXCR2, and PON, for which a minor 

association was found with single marker analysis, in chapter 3.2.  

 

Finally, results from four major modulators TNFRSF1A, TLR4, CD14 and CD95 will be 

described in detail in chapters 3.3, 3.4, 3.5 and 3.6, respectively. 
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3.1. Analysis of TLR2, TLR5 and TLR9 as CF modulators 
 
3.1.1. Toll like receptor (TLR) 2 
 
TLR2 was the first human TLR to be described and it is found to interact with a series 

of bacterial ligands such as lipopeptides (Hoshino et al., 1999), peptidoglycon (Lien et 

al., 1999), and lipoteichoic acid of gram positive bacteria (Kobe and Deisenhofer, 

1995). It is suggested that the activation of epithelial proinflammatory responses, 

stimulated with P. aeruginosa, is predominantly handled by TLR2 presented at the 

surfaces of airway cells within the context of an asialoganglioside/lipid raft 

microdomain or caveolae (Soong G et al., 2004). Furthermore, TLR2 expression and 

response were reported to be strongly enhanced in human CF bronchial epithelial cell 

lines possibly due to hypomethylation of TLR2 gene promoter (Shuto T et al., 2006). 

 

 
 
Figure 5: Schematic representation of TLR2 gene structure; TLR2, located on 
chromosome 4q32, is 21.8kb long and has one exon. Polymorphisms shown on the 
TLR2 gene are targeted for mapping analysis. SNPs are indicated by rs followed by 
their unique numbers (Location and size are based on NCBI, NC_000004.10 Reference 
assembly: Build 36.2) 
 
 
To investigate TLR2 as a modulator in CF, rs3804099, a C to T SNP located in the exon 

of TLR2 was targeted (Fig. 5). This SNP, a synonymous polymorphism, has an allele 

frequency of 52% and 48% for T and C alleles, respectively (NCBI SNP data base). 

Hence, this SNP was typed on 9 pairs of mildly affected (CON+), 9 pairs of severely 

(CON-) and 16 pairs of discordant (DIS) CF twin and sibling samples. The allele and 

genotype (Table 4) distributions were compared among CON+, CON- and DIS pairs. A 

small trend of association was observed between mildly and severely affected pairs at 

rs3804099 allele distribution, in which allele C was over represented (63%) in mildly 

affected pairs compared to severely affected pairs. However, the association was not 

statistically significant (P = 0.15).  

 

 

TLR2, chromosome 4q32

rs1898830 rs3804099 rs5743705

CodingUTRNon-coding2kb
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Table 4: Comparison of genotype and allele distribution among F508del 
homozygous CF twin and siblings in TLR2 at rs3804099 
 

Genotypes CON- CON+ DIS CONC* 
CC 3 7 10 10 
CT 10 9 16 19 
TT 5 2 6 7 

Total 18 18 32 36 
Alleles     

C 16 23 36 39 
T 20 13 28 33 

Total 36 36 64 72 
     

Freq. of allele C 0.44 0.63 0.56 0.54 
Freq. of allele T 0.56 0.37 0.44 0.46 

* Both CON- and CON+ pairs are grouped as CONC, concordant pairs, for disease 
severity 
 
 
3.1.2. Toll like receptor (TLR) 5 
 
Flagellin is a protein component of gram negative bacterial flagella and TLR5 is found 

to be receptor for it (Hayashi et al., 2001). Amino acids 386-407 of TLR5 extracellular 

domain was shown to be responsible for specific binding of flagellin (Mizel et al., 

2003). It has been suggested that TLR5 is expressed at the basal surface of epithelial 

cells, while it has been shown that the addition of P. aeruginosa to the apical surface of 

human nasal CF epithelial cells elicited a considerable amount of gene upregulation 

(Hybiske et al., 2004). Furthermore, it was shown that human airway epithelial cells 

sense P. aeruginosa infection via recognition of flagellin by TLR5 and play an 

important role in the initiation of inflammatory response against its invasion (Zhang et 

al., 2005). 

 

 
 
Figure 6: Schematic representation of TLR5 gene structure; TLR5, located on 
chromosome 1q41.q42, is 32.97kb long and has one exon. Polymorphisms shown on the 
TLR5 gene are targeted for fine mapping. SNPs are indicated by rs followed by their 
unique numbers (Location and size are based on NCBI, NC_000001.9 Reference 
assembly: Build 36.2) 
 
 

TLR5, chromosome 1q41.q42
rs5744174

rs2072493

rs1861172

CodingUTRNon-coding5kb
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Three SNPs, rs 5744174, rs2072493 and rs1861172 were selected for optimisation. 

Among these three SNPs, A to G SNP, rs1861172, was found to be informative marker 

with allele frequencies of 53% and 47% for alleles A and G, respectively. The SNP 

rs1861172 is approximately 400bp distant to the 3’ end of the TLR5 gene (Fig. 6). The 

comparison of allele and genotype distributions between eight mildly affected pairs, 

eight severely affected pairs and 14 pairs of DIS pairs at this locus did not show any 

association with disease severity (Table 5). 

 

Table 5: Comparison of genotype and allele distribution among F508del 

homozygous CF twin and siblings in TLR5 at rs1861172 

 
Genotypes CON- CON+ DIS CONC* 

AA 6 2 9 8 
AG 6 9 12 15 
GG 4 5 7 9 

Total 16 16 28 32 
Alleles     

A 18 13 30 31 
G 14 19 26 33 

Total 32 32 56 64 
     

Freq. of allele A 0.56 0.40 0.53 0.48 
Freq. of allele G 0.44 0.60 0.47 0.52 

* Both CON- and CON+ pairs are grouped as CONC, concordant pairs, for disease 
severity 
 
 
 
 
3.1.3. Toll like receptor (TLR) 9 
 
 
TLR9 recognises bacterial DNA containing unmethylated CpG motifs and TLR9 

deficient mice are not responsive to CpG DNA challenge (Hemmi et al., 2000). It has 

previously been shown that unmethylated CpG DNA isolated from CF sputum induces 

lower respiratory tract inflammation in an animal model (Schwartz et al., 1997). 

Additionally, signalling through TLR9 was shown to be important in P. aeruginosa 

keratitis (Huang et al., 2005).  Two SNPs were found to be informative after initial 

analysis on control samples. A synonymous C to T SNP, rs352140, located on exon 2 of 

the TLR9 gene and a promoter SNP rs187084 (Fig. 7) were targeted to evaluate the role 

of TLR9 in CF disease modulation by typing them on twin and sibling samples. 
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Figure 7: Schematic representation of TLR9 gene structure; TLR9, located on 
chromosome 3p21.3, is 5.08kb long and has two exons. Polymorphisms shown on the 
TLR9 gene are targeted for fine mapping. SNPs are indicated by rs followed by their 
unique numbers. C1237T is a SNP chosen from Lazarus et al., 2003. (Location and size 
are based on NCBI, NC_000003.10 Reference assembly: Build 36.2) 
 

At first, the allele and genotype distributions at these two SNPs were compared 

individually for CON+, CON- and DIS pairs. Later on, construction of 2-marker 

haplotype (rs187084-rs352140) and its distribution among CF twin and sibling pairs 

was compared. Both the single marker analysis as well as two-marker haplotype 

analysis (Table 6) did not reveal any association with CF disease modulation. 

 
Table 6: TLR9 two-marker haplotype (rs187084-rs352140) distribution among 

F508del homozygous CF twin and siblings 

 
TLR9 

rs187084- rs352140 
haplotype 

CON- CON+ DIS 

1-1 8 6 7 
1-2 10 10 13 
2-1 8 16 18 
2-2 2 0 0 

 CON-/CON+: P = 0.18, CON-/DIS: P = 0.16, CON+/DIS: P = 1.0  
 
 
3.1.4. Role of TLR2, TLR5 and TLR9 polymorphisms in CF 
 
This is the first study to analyse TLR2, TLR5 and TLR9 as cystic fibrosis modulators. 

Earlier investigations on polymorphisms in innate immunity genes have suggested that 

these polymorphisms may play a significant role in determining the susceptibility to 

infection in general (Lazarus et al., 2002). Consistent with this hypothesis, 

polymorphisms on TLR2 are reported to be associated with inflammatory bowel disease 

(Pierik et al., 2006), susceptibility to asthma and allergies in children of farmers (Eder et 

al., 2004), and risk of developing tuberculosis (Ogus et al., 2004). Similarly, TLR5 stop 

codon polymorphism was shown to be associated with susceptibility to legionnaires’ 

disease (Hawn et al., 2003), resistance to systemic lupus erythematosus (Hawn et al., 

TLR9, chromosome 3p21.3

rs187084 C1237T rs352140

CodingUTRNon-coding500bp
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2005), and negatively associated with Crohn’s disease (Gewirtz et al., 2006). TLR9 

polymorphism was reported to be associated with Crohn’s disease (Torok et al., 2004), 

and risk of low birth weight among Plasmodium falciparum-infected women 

(Mockenhaupt et al., 2006). However, no studies have reported the role of TLR2, TLR5 

and TLR9 polymorphisms in CF and susceptibility to P. aeruginosa infection. On the 

other hand, the importance of TLRs, particularly TLR2 signalling in the pulmonary host 

response to P. aeruginosa was clearly shown in which TLR2 deficient mice exhibited 

augmented cytokine response and delayed bacterial killing (Skerrett et al., 2006), and 

mucoid P. aeruginosa preferentially induced lipoprotein genes which in turn triggered 

the proinflammatory response in TLR2 dependent manner (Firoved et al., 2004). 

Furthermore, TLR2 expression was slightly reduced in bronchial epithelium of CF 

patients (Hauber et al., 2005).  

 

Table 7: P-values obtained for comparison of genotype and allele distribution 

among F508del homozygous CF twin and siblings in TLR2, TLR5 and TLR9  

 

 

 

 

 

However, there was no significant association found in our study between TLR2, TLR5 

and TLR9 polymorphisms and CF disease severity (Table 7), which may be due to two 

possibilities. Firstly, polymorphisms on TLR2, TLR5 and TLR9 may not play any role in 

CF disease modulation among CF twin and sibling cohort. Secondly, the number of 

polymorphisms tested on TLR2, TLR5 and TLR9 are not sufficient to detect the 

causative variant, if any, on these genes due to recombination events between selected 

markers and actual causative variant(s). Thus, it is necessary to perform the systematic 

haplotype analysis to examine both possibilities.  

 

 

 

 

 

 

 Disease 
phenotype 

TLR2 
rs3804099 

TLR5 
rs1861172 

TLR9 
rs187084 

TLR9 
rs352140 

Genotypes CON-/CON+ 0.3 0.3 0.8 0.3 
Genotypes CONC/DIS 0.9 0.8 0.9 0.8 

Alleles CON-/CON+ 0.1 0.3 1.0 0.5 
Alleles CONC/DIS 0.8 0.5 0.8 0.5 
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3.2. Evaluation of SFTPD, IL8RB and PON as CF genetic modulators 
 
3.2.1 Surfactant Protein (SP)-D (SFTPD) 
 
SP-D belongs to the collectin family of calcium-dependent carbohydrate binding 

proteins, which includes SP-A and the serum collectins, mannan-binding lectins and 

bovine conglutinin (Hoppe and Reid, 1994). SP-A and SP-D are considered to be 

molecules of the innate immune system, involved in first-line defense of mucosal 

surfaces, especially the lung, against bacterial, viral, fungal, or allergen challenge 

(Crouch and Wright., 2001; Clark et al., 2000). In CF scenario, it is shown that P. 

aeruginosa elastase degrades SP-A and SP-D (Mariencheck et al., 2003) and the levels 

of SP-D in the CF airway are insufficient for suppression of inflammation and 

endotoxin clearance, which may lead to bronchiectasis (Noah et al., 2003). Furthermore, 

it has been suggested that recombinant SP-D could play a role in therapeutic strategies 

for cystic fibrosis (Clark and Reid, 2003). Thus, SP-D was analysed as a CF genetic 

modulator among CF twin and sibling cohort.  

 

 
 
Figure 8: Schematic representation of SP-D (SFTPD) gene structure; SP-D, located on 
chromosome 10q22.2-q23.1, is 11.36kb long and has eight exons. Polymorphisms 
shown on the SP-D gene are targeted for fine mapping. SNPs are indicated by rs 
followed by their unique numbers (Location and size are based on NCBI, NC_000010.9 
Reference assembly: Build 36.2) 
 

Initial typing of two polymorphisms on control samples showed rs721917 as an 

informative marker. The rs721917 is a non-synonymous C to T polymorphism located 

on exon 2 of the gene (Fig. 8) and changes threonine to methionine at the 31st aminoacid 

position. Nine pairs of CON+, nine pairs of CON- and 15 DIS pairs of CF twin and 

siblings were genotyped at rs721917. Comparison of allelic and genotypic distribution 

at this locus among CF twin and siblings showed an allelic imbalance between mildly 

and severely affected pairs in which allele C was underrepresented (34%) among mildly 

affected pairs compared to 56% among severely affected pairs (Table 8). However, the 

association failed to reach statistical significance (P = 0.06).  

SFTPD, chromosome 10q22.2-q23.1

rs721917 rs1998374

CodingUTRNon-coding1kb
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Table 8: Comparison of genotype and allele distribution among F508del 

homozygous CF twin and siblings in SP-D at rs721917 

 
Genotypes CON- CON+ DIS CONC* 

CC 7 1 7 8 
CT 6 10 11 16 
TT 5 7 12 12 

Total 18 18 30 36 
Alleles     

C 20 12 25 32 
T 16 24 35 40 

Total 36 36 60 72 
     

Freq. of allele C 0.56 0.34 0.42 0.45 
Freq. of allele T 0.44 0.66 0.58 0.55 

* Both CON- and CON+ pairs are grouped as CONC, concordant pairs, for disease 
severity 
 

3.2.1.2. Role of surfactant protein-D in cystic fibrosis 
 

Surfactant protein-D plays an important role in pulmonary diseases (Hartl and Griese, 

2006). It is encoded by a single gene located on the long arm of Chromosome 10q22.2-

23.1, 335kb downstream of surfactant protein-A (SP-A) another important collectin. 

Polymorphisms on SP-D are shown to be associated with infectious pulmonary 

diseases, in which SNP rs721917 was associated with susceptibility to tuberculosis 

(Floros et al., 2000) and severe respiratory syncytial virus bronchiolitis in infants (Lahti 

et al., 2000). Further, a specific haplotype on SP-D was associated with decreased 

serum levels of SP-D (Heidinger et al., 2005). Mannose binding lectin (MBL), belongs 

to the collectin family, was successfully shown to be a modulator of cystic fibrosis by 

many investigations (Garred et al., 1999; Gabolde et al., 1999) in which variant alleles 

of MBL are associated with severity of pulmonary disease and survival of CF patients. 

In contrast, there are no associations between CF and SP-D polymorphisms have been 

identified up to this study. In this study, a minor association (P = 0.06) was found 

between a frequent polymorphism, rs721917, and CF disease severity. Although it was 

not statistically significant, it is interesting to note that the same polymorphism was 

shown to be associated with susceptibility to tuberculosis (Floros et al., 2000) and 

severe respiratory syncytial virus bronchiolitis in infants (Lahti et al., 2000). However, 

SP-A is also located close to SP-D on the genetic locus which necessitates the 

discrimination between two adjacent, equally plausible genes. Thus, it is essential to 
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fine map the region by constructing haplotypes with more number of informative 

markers and thereby delineating the actual causative variant(s).   

 

3.2.2. CXCR2 (IL8RB interleukin 8 receptor, beta) 
 
Neutrophil recruitment to the sites of infection is primarily dependent upon chemokines 

such as IL-8 (CXCL8). Peripheral blood neutrophils express two main chemokine 

receptors on cell surface, namely CXCR1 and CXCR2 (Chuntharapai et al., 1995). 

Among them, CXCR2 is thought to be predominantly responsible for recruitment of 

neutrophils in response to IL-8 (Sabroe I et al., 2002). Additionally, Tsai et al. (2000) 

reported that CXCR2 is essential for protective innate host response in murine P. 

aeruginosa pneumonia. Hence, the chemokine receptor CXCR2 was evaluated as a CF 

disease modulator.  

 

 

 
 
Figure 9: Schematic representation of CXCR2 (IL8RB) gene structure; CXCR2, located 
on chromosome 2q35, is 11.23kb long and has one exon. SNP rs2230054 shown on the 
CXCR2 gene is targeted for evaluation of association. (Location and size are based on 
NCBI, NC_000002.10 Reference assembly: Build 36.2) 
 

The SNP rs2230054 is a synonymous SNP located on exon 3 of CXCR2 (Fig. 9) with 

allele frequencies of 57% and 43% for C and T alleles respectively (NCBI database). 

This polymorphism was typed on 10 pairs of severely affected pairs, 12 pairs of mildly 

affected pairs and 17 pairs of DIS pairs. Interestingly, the allele distribution between 

CONC and DIS groups were significantly different (P = 0.04). Allele T was 

overrepresented with 66% among CONC compared to 50% among DIS pairs (Table 9) 

indicating the modulation via trans-acting factors as described for CFTR hitchhiking 

genes (Mekus et al., 2003). 

 

 

rs2230054

IL8RB, chromosome 2q35

CodingUTRNon-coding1kb
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Table 9: Comparison of genotype and allele distribution among F508del 

homozygous CF twin and siblings in CXCR2 at rs2230054 

 
Genotypes CON- CON+ DIS CONC* 

TT 9 11 10 20 
TC 10 8 14 18 
CC 1 5 10 6 

Total 20 24 34 44 
Alleles     

T 28 30 34 58 
C 12 18 34 30 

Total 40 48 68 88 
     

Freq. of allele T 0.70 0.63 0.50 0.66 
Freq. of allele C 0.30 0.37 0.50 0.34 

Both CON- and CON+ pairs are grouped as CONC, concordant pairs, for disease 
severity 

 
3.2.2.1. No association with P. aeruginosa early or late chronic colonisation among 

unrelated CF patients 

 
Single-marker analysis at rs2230054 showed an association with CF disease 

discordance. Thus, rs2230054 was further evaluated for its association with P. 

aeruginosa chronic colonisation. The cohort containing 21 unrelated F508del 

homozygous CF patients, stratified for early and late P. aeruginosa chronic 

colonisation, was typed at rs2230054. Genotype distributions at rs2230054 were 

compared between 13 patients belonging to P. aeruginosa early colonised and eight 

patients of P. aeruginosa late colonised group. The genotype distributions (P = 0.72) 

and allele distributions (P = 0.37) in both the groups were similar (Table 10). No 

association was found between CXCR2 SNP, rs2230054 and early or late colonisation 

of P. aeruginosa.  

 

Table 10: Comparison of allele and genotype distribution among P. aeruginosa 
early and late colonised delF508 homozygous CF patients at rs2230054 
 

 P. aeruginosa early P. aeruginosa late 
Genotypes   

TT 1 4 
CT 6 4 
CC 3 3 

Alleles   
T 8 12 
C 12 10 
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3.2.2.2. Role of CXCR2 gene in cystic fibrosis 
 
CXCR2 is an important chemokine receptor for mediating cellular activity of 

neutrophils by attracting IL-8 (Sabroe et al., 2002) and CXCR2 deficient mice had 

defects in neutrophil migration (Cacalano et al., 1994). Furthermore, neutralization of 

CXCR2 in mice increased the mortality due to reduced accumulation of neutrophils and 

impaired P. aeruginosa clearance from the lung (Tsai et al., 2000). Consistently, in CF, 

the activated neutrophils are considered to be the primary effector cells for the 

pathogenesis of CF lung disease as neutrophil influx is mediated and sustained by IL-8 

(Chmiel et al., 2002, Tirouvanziam et al., 2000). However, no association studies of 

CXCR2 and CF have been reported. On the other hand, the CXCR2 SNP, rs2230054, 

was shown to be associated with chronic obstructive pulmonary disease (COPD), in 

which patients carrying T allele had a better lung function (Matheson et al., 2006), 

supporting a role for this gene in the inflammatory processes in the airways. In this 

study, evaluation of rs2230054 for association with cystic fibrosis disease showed a 

significant association (P = 0.04) with disease discordance. This finding strongly 

suggested that gene(s) encoding elsewhere in the genome (trans-acting factors) interact 

differentially with CXCR2 locus to modify CF disease severity. Hence, fine-mapping of 

CXCR2 is needed to locate the causative variant. Additionally, analysis of the same 

polymorphism for P. aeruginosa early or late colonisation phenotype did not show any 

association. Nevertheless, it is interesting to note that individuals carrying TT genotype 

were underrepresented in P. aeruginosa early colonised group, indicating a possible role 

of CXCR2 in modulating susceptibility to P. aeruginosa colonisation among CF 

patients. Clearly, further evaluation of CXCR2 polymorphism on larger cohort, 

stratified for P. aeruginosa colonisation, is necessary to confirm this finding.  

 
 
3.2.3. PON (paraoxonase) gene cluster 
 
The PON gene cluster (Fig. 10) contains at least three members, including PON1, 

PON2 and PON3, located on chromosome 7q21.3-22.1. These three paraoxonases are a 

family of mammalian lactone hydrolases with high sequence similarity (Li et al., 2003). 

However, they show distinct substrate specificities and expression patterns (Primo-

Parmo., 1996). The PON, in general, hydrolyses many substrates including aromatic 

carboxylic acid and organophosphates such as paraoxon. These enzymes can use acyl-

HSL molecules as their substrates (Draganov et al., 2005) and can degrade N-(3-
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oxododecanoyl)-L-homoserine lactone (3OC12-HSL) from P. aeruginosa by 

hydrolysing the lactone ring (Ozer et al., 2005). As P. aeruginosa uses acyl-HSL 

quorum sensing molecules to regulate virulence genes and biofilm formation, 

degradation of this key molecule by PON may modulate the quorum sensing. With this 

rationale, we targeted the PON cluster as a modulator of CF and evaluated by typing a 

tri-nucleotide repeat microsatellite among CF twin and sibling cohort.  

 

 
 
Figure 10: Schematic representation of PON gene cluster PON2, PON3 and PON1. 
TR7V900 is a trinucleotide repeat polymorphism located 32kb upstream of PON 
cluster. (Location and size are based on NCBI, NC_000007.12 Reference assembly: 
Build 36.2) 
 
Initial optimisation of 6 microsatellites on this locus, for informative markers, indicated 

that TR7V900 as a suitable marker. TR7V900 is a (tgg)10 repeat polymorphism, located 

32 kb upstream to PON2 and has three different alleles (allele 9, 10 and 11; Fig. 11).  

 

Figure 7: Genotypes of a family at TR7V900  

 
Figure 11: Three different alleles (9, 10, and 11) observed at TR7V900 with in a family. 
Alleles are named by assigning lowest band as allele 9. (9-11); genotype of father, (9-
10); genotype of mother, (9-11); genotype of 1st sib, (9-9); genotype of 2nd sib  
 
Ten severely affected pairs, twelve mildly affected pairs and 19 DIS pairs were 

genotyped at TR7V900 (Table 11). Comparison of allele and genotype distribution 

between mildly affected and severely affected pairs showed a minor association (P = 

0.07) with disease severity in which allele 11 was over represented among mildly 

affected pairs (54%) compared to severely affected pairs (37%).  

9-11 9-10 9-11 9-9

Allele 9

Allele 11
Allele 10

Genotypes

CFTR

23CM

TR7V900

32kb

PON2 PON3 PON1

35kb8kb

PON Cluster, chromosome 7q21.3
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Table 11: Comparison of genotype and allele distribution among F508del 

homozygous CF twin and siblings at TR7V900  

 
Genotype CON- CON+ DIS CONC* 

11-11 2 9 9 11 
10-10 3 5 7 8 

9-9 0 0 0 0 
11-10 8 8 19 16 
11-9 3 0 3 3 
10-9 4 2 4 6 
Total 20 24 38 44 

Alleles     
11 15 26 40 41 
10 18 20 33 38 
9 7 2 3 9 

Total 40 48 76 88 
     

Freq. of allele 11 0.37 0.55 0.53 0.46 
Freq. of allele 10 0.45 0.41 0.43 0.43 
Freq. of allele 9 0.18 0.04 0.04 0.11 

* Both CON- and CON+ pairs are grouped as CONC, concordant pairs, for disease 
severity 
 
 
3.2.3.1. Role of PON polymorphisms in cystic fibrosis 
 
PONs, including PON1, PON2, and PON3, are a group of enzymes that play a key role 

in organophosphate detoxification and in prevention of atherosclerosis (Harel et al., 

2004). PON1 and PON3 can hydrolyse a broad range of esters and lactones (Yang et al., 

2005) and interestingly recombinant human PON2 could effectively hydrolyse several 

AHL compounds (Draganov et al., 2005). Considering all these points, PON cluster 

most likely play a role in AHL-inactivation in P. aeruginosa infected CF airways.  

 

Table 12: P-values obtained for comparison of genotype and allele distribution 

among F508del homozygous CF twin and siblings at TR7V900 

 
 Phenotype TR7V900 

Genotypes CON-/CON+ 0.07 
Genotypes CONC/DIS 0.94 

Alleles CON-/CON+ 0.07 
Alleles CONC/DIS 0.28 

 

In this study, targeted repeat polymorphism, TR7V900, showed a minor association (P 

= 0.07) of this locus with CF disease severity. However, all the patients analysed in this 

study were homozygous for deltaF508 mutation on the CFTR gene and PON cluster, 
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located 23 CM distant from CFTR on chromosome 7, is linked to CFTR (Schmiegelow 

et al., 1986). Previous study on genetic modulators in European CF twin and siblings 

has identified genes in the vicinity of CFTR as modulators of CF (Mekus et al., 2003). 

Therefore, fine-mapping of this locus with more informative markers is obligatory to 

delineate recombination breakpoints (haplotype blocks) and thereby differentiating the 

association found between CF disease and CFTR hitchhiking genes with association 

between CF disease severity and PON locus.  
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3.3. Analysis of TNFα receptor TNFRSF1A as a modulator in cystic fibrosis 
 
TNFR1 is constitutively expressed in most tissues and is found to be the key mediator 

of the pleiotrophic actions of TNFα proinflammatory cytokine on its target cells 

(Wajant et al., 2003). TNFR1, both membrane bound and soluble form, exerts 

proinflammatory response upon binding to TNFα by activating NF-kB and AP-1 

transcription factors (Wajant et al., 2003) and can also initiate apoptosis when NF-kB 

signaling is blocked (Varfolomeev and Ashkenazi, 2004). Several studies in TNFR1 

deficient mice established the requirement of this receptor in host defense against 

microorganisms (Wajant et al., 2003; Steinshamn et al., 1996; Deckert-Schluter et al., 

1998; Castanos-Velez et al., 1998; O’Brien et al., 1999) and in the induction and 

maintenance of various chronic inflammatory pathologies (Kollias et al., 1999). 

Similarly, TNFR1 role in humans was highlighted by mutations in TNFR1 gene causing 

autoinflammatory diseases, termed TNFR1-associated periodic syndromes (TRAPS) 

due to reduced levels of TNFR1 shedding (McDermott et al., 1999).     

 
3.3.1. Rationale for choosing TNFR1 as sequencing target 
 

Previously in our lab, alpha, beta and gamma subunits of ENaC (Epithelial sodium 

channel) were targeted as modulators of CF. The comparison of transmitted and non-

transmitted alleles and haplotypes from all nuclear families of 37 F508del-CFTR 

homozygous sibs on alpha subunit of ENaC (SCNN1A, maps to 12p13), revealed a 

skewed haplotype distribution. However, the haplotype in question was located exactly 

within its neighbouring gene TNFR1 (TNFRSF1A), separated by 5kb of intergenic 

sequence (Fig. 12). 

 

 
 
 
Figure 12: Schematic representation of TNFR1 (TNFRSF1A) and SCNN1A location on 
chromosome 12p13; polymorphisms shown on the map are targeted for fine mapping. 
D12S889 is a di-nucleotide repeat polymorphism; SC4 and SC3 are tetra- and tri-
nucleotide polymorphisms- the others are SNPs  

Chromosome 
12p13
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Frequency distribution of the haplotype block rs740842-rs1800693-rs1800692-

D12S889-rs767455-rs2228576, encompassing the complete TNFR1 gene, was 

significantly skewed (P = 0.008). Furthermore, the haplotype block D12S889-rs767455 

(intron 1 to codon 12 in exon 1 of TNFR1) was highly significantly skewed, in which 

the haplotype 10-G was preferentially transmitted to CF offspring while the haplotype 

13-A was more frequent among non-transmitted parental haplotypes (Table 13), 

indicating that chromosomes carrying haplotype 10-G harbour a benign variant. These 

results implied that the sequence variant(s) are located within TNFR1 and hence the 

complete coding region of TNFR1 was sequenced.  

 
Table 13: Distribution of D12S889-rs767455 haplotype block on TNFR1 among CF 
twin and siblings 
 

TNFR1 
D12S889-rs767455 

haplotype 

Transmitted Non-
transmitted 

CON- CON+ 

13-A 0.20 0.41 0.397 0.216 
14-A 0.15 0.04 0.068 0.104 
8-G 0.07 0.10 0.091 0.027 

10-G 0.58 0.28 0.250 0.500 
13-G 0.0 0.15 0.080 0.054 
Other   0.115 0.099 

 

3.3.2. Sequence analysis of TNFR1 coding region 
 

In order to find the exact causative variant(s) in TNFR1, genomic DNA samples from 

individuals harbouring contrasting haplotypes at rs1800693-rs1800692-D12S889-

rs767455 in homozygous state were sequenced. 

 

 
Figure 13: Schematic representation of TNFR1 (TNFRSF1A) gene structure; TNFR1, 
located on chromosome 12p13.2, is 14kb long and has ten exons. Polymorphisms shown 
on the TNFR1 gene are targeted for fine mapping. SNPs are indicated by rs followed by 
their unique numbers. D12S889 is a di-nucleotide repeat polymorphism (Location and 
size are based on NCBI, NC_000012.10 Reference assembly: Build 36.2) 
 

The genomic sequence of TNFR1 was determined by direct sequencing of four 

unrelated F508del homozygotes (eight chromosomes). Two individuals carried G-C-10-

rs1800692 rs1800693D12S889rs767455

1kb
CodingUTRNon-coding
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G haplotype in homozygous state at rs1800693-rs1800692-D12S889-rs767455. Three 

chromosomes carried the contrasting haplotype A-T-13-A. The sequenced fragment of 

TNFR1 coding regions composed three targets. The target 1 of size 780bp covered the 

near promoter, the 5’ UTR and exon 1. The second target of size 1690bp covered the 

exon 2 to exon 5 region and the target 3 of size 2665bp covered the exon 6 to 3’ UTR 

(Fig. 13). The primers employed for sequencing the coding regions of TNFR1 are 

tabulated in table 14.  

 

 
Figure 14:  Schematic representation of TNFR1 (TNFRSF1A) gene structure and its 
sequenced regions. Sequencing strategy for products more than 1kb in size within 
TNFR1 was shown for target 2. A1 and A2 primer pair amplifies 486bp product; B1 
and B2 primer pair amplifies 597bp product; C1 and C2 primer pair amplifies 470bp 
product. B1 primer overlaps approximately 30bp of A1A2 product. 
 

All the fragments were amplified and sequencing was performed at Qiagen. For 

sequencing target 2 and target 3, semi-overlapping internal primers were designed to 

amplify smaller products from already amplified target 2 and target 3 fragments (Fig. 

14).  

 

Table 14: Primers employed for TNFR1 coding region sequencing 

Fragment/internal primer PCR product size Forward primer Reverse primer 
Target 1; promotor, exon 1 780 bp 5’ ccatctgggaaaggctagtg 5’ ctgaccggagggacagaat 
Target 2; exon 2 to exon 5 1690 bp 5’ gccgtagtcccagctattca 5’ acagagctgccaattcaacc 
Target 2; internal primer set 1 486 bp 5’ agattgtatggccccaactg 5’ gccgattccctgaagtctct 
Target 2; internal primer set 2 597 bp 5’ cctgggctgggattttct 5’ ctgcaattgaagcactggaa 
Target 2; internal primer set 3 470 bp 5’ ggctgcaggaagaaccagt 5’ gctaatggttcccaccagtc 
Target 3; exon 6 to 3’ UTR 2665 bp 5’ ttcaagatccctgccaattc 5’ tgagccccacagaaagttgt 
Target 3; internal primer set 1 561 bp 5’ ttcaagatccctgccaattc 5’ ctccctctccctcccaaag 
Target 3; internal primer set 2 500 bp 5’ tctgaccaacacctgctttg 5’ tgggagtaactctctcatttcatc 
Target 3; internal primer set 3 581 bp 5’ gaggcatgtcaccacaagtc 5’ cacttctgaagggggttgg 
Target 3; internal primer set 4 671 bp 5’ agaggtggcaccaccctatc 5’ aggacccctcctttccaga 
confirmatory sequencing of intron 2 491 bp 5’ ccctcaggggttattggact 5’ ctgtgcacactcaccctttc 
confirmatory sequencing of exon 4 573 bp 5’ tgtgggtgcctgtctatgtg 5’ gtgcacacggtgttctgttt 
confirmatory sequencing of intron 5  572 bp 5’ tccccctcctgtattctgtg 5’ acagagctgccaattcaacc 
confirmatory sequencing of intron 7  428 bp 5’ catcccacccatccatcta 5’ gaatggtcagggacatttgg 
confirmatory sequencing of exon 9  565 bp 5’ ctgcgccaccttctctctt 5’ gatctcgtggtcgctcag 
confirmatory sequencing of 3’ UTR 618 bp 5’ gtacgccgtggtggagaac 5’ aaaaaggctcagggacgaac 

A1 A2

B1 B2

C1 C2

Semi-overlapping primer 
pairs for sequencing

more than 1kb products

Target 2; 1960bpTarget 1; 780bp Target 3; 2665bp
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Briefly, target 2 was split into 3 products of size 486bp, 597bp and 470bp. Similarly, 

target 3 was split into four fragments of size 561bp, 500bp, 581bp and 671bp. Both 

strands of each targeted fragment were sequenced and the sequenced results were 

aligned against reference sequence using the software CodonCode aligner and scanned 

for sequence variants. Additionally, small PCR products were amplified for confirming 

the ambiguous results obtained within intron 2, exon 4, intron 5, intron 7, exon 9 and 

the 3’ UTR. The sequencing analysis confirmed already typed polymorphisms 

rs1800693 in intron 6 and rs1800692 in intron 4. The entire coding sequence of TNFR1, 

the 5’ UTR and near promoter sequence was unaltered in all sequenced samples. A rare 

SNP was found within intron 4; however, further analysis of this SNP on CF twin and 

siblings showed that the SNP was not informative (polymorphism information content 

of the rare SNP: 0.11). 

 

3.3.3. Sequencing was focused on the intron 1 of TNFR1  
 

To test if preferentially transmitted haplotype is associated with disease severity, 

haplotype distribution was compared between both severely and mildly affected patient 

pairs as well as discordant and concordant pairs. Discordant and concordant pairs were 

comparable at all tested loci on 12p13. The distribution of haplotype block D12S889-

rs767455 was significantly different between mildly and severely affected pairs (P = 

0.02). The haplotype distributions at D12S889-rs767455 reflected the results of the 

family-based analysis, in which the haplotype 10-G was overrepresented among mildly 

affected patient pairs and the haplotype 13-A was overrepresented among severely 

affected pairs (Table 13), supporting the finding that haplotype 10-G at D12S889-

rs767455 is carrying a benign variant and is located within intron 1. Furthermore, 

family based haplotype analysis showed that the chromosome segment carrying allele 

10 at D12S889 was shared preferentially among all CF twin and siblings and the same 

segment was enriched among mildly affected pairs compared to severely affected pairs 

(Table 13). Accordingly, reconstruction of haplotypes and analysis for recombination 

break points showed a 10kb segment, defined by markers rs1800692 and D12S889 

(intron 4 to intron 1 of TNFR1), was shared differently among mildly and severely 

affected pairs, in which majority of the mildly affected sibs shared C-10 haplotype. This 

finding suggested that the causative variants are located within intron 1 of TNFR1.  
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3.3.4. Sequencing analysis of TNFR1 intron 1 
 

The fact that the haplotype of interest, D12S889-rs767455, was located within intron 1 

and absence of causative coding variants prompted us to screen the entire 7.5kb intron 1 

by sequencing. Similar strategy, as shown for the TNFR1 coding region sequencing 

(Fig. 14), was followed to sequence the complete intron 1 of TNFR1 (Fig. 15). The 

same eight chromosomes, which were sequenced for TNFR1 coding region, were also 

sequenced at TNFR1 intron 1. The primers employed for sequencing intron 1 are 

displayed in table 15.  

  

 
 
Figure 15:  TNFR1 first intron sequencing strategy; the two targets of size 3481bp and 
3800bp, covering the complete intron 1, were PCR-amplified. Further, target 1 and 
target 2 of intron 1 were targeted by six and seven sets of semi-overlapping internal 
primers respectively to obtain the complete intron 1 sequence. 
 
 
 
Intron 1 sequencing identified seven previously reported polymorphisms (Fig. 16). 

Interestingly, 7.5kb sequence of TNFR1 intron 1 differed by haplotype at these seven 

SNPs. Comparing the two contrasting haplotypes G-C-10-G and A-T-13-A at 

rs1800693-rs1800692-D12S889-rs767455, four chromosomes of G-C-10-G carried the 

respective seven-marker haplotype G-G-T-G-T-T-10-A and three chromosomes of A-T-

13-A carried C-T-C-A-C-C-13-G haplotype at rs2284344-rs887477-rs1860545-

rs4149581-rs4149580-rs4149577-D12S889-rs4149576 in intron 1 of TNFR1. 

Furthermore, all chromosomes carrying allele 10 at D12S889 shared the haplotype C-10 

at rs1800692-D12S889 in our CF families. 

 

 

 

Target 2; 3800bpTarget 1; 3481bp

TNFR1 intron 1 sequencing
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Figure 16: *SNPs identified by sequencing within intron 1 of TNFR1 gene are shown. 
SNPs are indicated by rs followed by their unique numbers. D12S889 is a di-nucleotide 
repeat polymorphism (Location and size are based on NCBI, NC_000012.10 Reference 
assembly: Build 36.2) 
 

Mapping of haplotype fragment within intron 1 of TNFR1 and absence of disease 

causing sequence variants in the coding region indicated that non-coding variants 

located within intron 1 might play a functional role in determining the CF disease 

severity. The mapped chromosome segment carrying allele 10 at D12S889, however, 

differed at seven SNPs within the 7.5kb of intron 1 of TNFR1. Thus, it is plausible that 

either one of the intron 1 SNPs or a haplotype composed of several allelic variants 

within intron 1 alters the functionality of TNFR1.  

 

Table 15: Primers employed for TNFR1 intron 1 sequencing 

 
Fragment/internal primer Size of PCR product Forward primer Reverse primer 
TNFR1 intron 1 – target 1  
 

3481 bp 5’ ctgcaggtcctaacctcagc 5’ ttccctgacccttaacatgc 

Target 1: internal primer set 1 591 bp 5’ gaagattagtgctcggggagt 5’ agacgtggaggacgatcaag 
Target 1: internal primer set 2 561 bp 5’ gcctcagccttgtttcaatg 5’ tgtgacacccattttggaga 
Target 1: internal primer set 3 589 bp 5’ ttccatgccttcgtttcttt 5’ gctttgccacagtctctcct 
Target 1: internal primer set 4 584 bp 5’ gagaagtggggtaggggagt 5’ accctgacaggcagtgactt 
Target 1: internal primer set 5 597 bp 5’ gaaaagtggatgtggagctga 5’ ggtgtggtcagggctcact 
Target 1: internal primer set 6 581 bp 5’ agactgagctcgggaggac 5’ ttccctgacccttaacatgc 
TNFR1 intron 1 – target 2  
 

3800 bp 5’ gatggatgaattccgtctgg 5’ gggccatacaatctgatgct 

Target 2: internal primer set 1 557 bp 5’ gatggatgaattccgtctgg 5’ tgaactcgaagcacgtgaac 
Target 2: internal primer set 2 593 bp 5’ tttggggagatcatatctgtca 5’ cctcagactccccaccact 
Target 2: internal primer set 3 598 bp 5’ ctgctgaggactgggcttac 5’ gaagggaagtctccctcgac 
Target 2: internal primer set 4 596 bp 5’ agggcacagacctgatgg 5’ agaagccactggagcaccta 
Target 2: internal primer set 5 562 bp 5’ ccctggatgggattcaaagt 5’ tttgatctctgccagcttca 
Target 2: internal primer set 6 499 bp 5’ aaatgaagcccagggaaaac 5’ tggggagtggacagaagaag 
Target 2: internal primer set 7 567 bp 5’ ggaggcagattgaggtttga 5’ cccaccttagcctcctgaat 
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3.3.5. Functional annotation of TNFRSF1A intron 1 
 

The finding of an association between the non-coding sequence variants necessitates the 

identification of functional elements within TNFR1 intron 1. For this purpose, the 

complete intron 1 sequence of TNFR1 was analysed for conserved non-coding 

sequences (CNS) using AltaVista Genome Browser. In addition, the Genome Atlas 

software was employed to analyse the primary sequences of two contrasting haplotypes, 

encompassing the complete intron 1 of TNFR1, to identify DNAse hypersensitive sites 

and other functional elements (Hallin and Ussery, 2004).  

 

 

 
 
Fig. 17: Functional annotation of TNFR1 intron 1. (A); the figure shows the entire 
7.5kb of TNFR1 intron 1 with allocated genetic markers. (B, C, E, F); Putative 
functional elements were visualised using GenomeAtlas software. Primary sequences 
for 8-marker haplotypes at rs2284344-rs887477-rs1860545-rs4149581-rs4149580-
rs4149577-D12S889-rs4149576 were compared with respect to predicted DNAse 
hypersensitive sites based on the trinucleotide model of Brukner et al. (195a, 1995b). 
Results for haplotype G-G-T-G-T-T-10-A are shown in (B) and for C-T-C-A-C-C-13-G 
are shown in (C). Comparing the two haplotypes, patterns for predicted DNAse 
hypersensitive sites were different near rs1860545, rs4149581 and rs4149580 as 
indicated by gray boxes in (D). Primary sequences were monitored for local inverted 
repeats in (E) for haplotype G-G-T-G-T-T-10-A and (F) for haplotype C-T-C-A-C-C-
13-G, whereby differences between the two haplotypes are indicated in gray boxes in 
(G) near rs887477 and rs4149581-rs4149580. (H): VISTA plot displaying the 
percentage identity between mouse and human in the TNFR1 intron 1. 
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The AltaVista Genome Browser identified nine CNSs within intron 1 of TNFR1 and 

interestingly SNP rs887477was located on CNS 4 (Fig. 17). Similarly, altered patterns 

for predicted DNAseI hypersensitive sites were observed near rs1860545-rs4149581-

rs4149580. Functional significances of these alterations due to polymorphisms can be 

explained by considering the DNA structural properties such as bendability of the DNA 

helix near DNAse hypersensitive sites (Brukner et al., 1995a, b) or nucleosome 

positioning signals (Fitzgerald et al., 1994; Baldi et al., 1996), which are determined by 

the primary sequence. Furthermore, it is plausible that the two haplotypes within intron 

1 might differ with respect to their accessibility of and responsiveness to transcriptional 

regulators. Alternatively or additionally, causative variants might act through the pre-

mRNA as splicing requires a specific tertiary structure of the pre-mRNA and its 

interaction with RNA-binding proteins such as hnRNPs (hetero nuclear ribo-nucleo 

proteins). All these mechanisms may ultimately determine the transcriptional efficiency 

of TNFR1 and thereby affecting the TNFα signalling.    

 

 

3.3.6. Soluble TNFR1 levels in serum of CF patients are associated with D12S889 

genotype 

 

The haplotype mapping indicated that the marker D12S889 is strongly linked to the 

causative haplotype associated with the disease. Hence, the levels of sTNFR1 in serum 

of CF twin and siblings were determined by western blotting and compared against their 

genotype at D12S889 in order to validate the hypothesis that variants within intron 1 of 

TNFR1 are causative variants. It is shown that the TNFR1 exists both in 55kDa full 

length and 28kDa cleaved ectodomain forms and among these two fractions, 55-kDa 

full length form is the predominant fraction in human serum and lung epithelial lining 

fluid (Hawari et al., 2004). Accordingly, 55kDa fraction was found to be a major form 

in most of the samples tested. However, few samples showed higher levels of 28kDa 

cleaved TNFR1 ectodomain form. Strikingly, both forms of the sTNFR1 levels were 

associated with D12S889 genotypes, in which individuals carrying genotype 13-13 were 

showing higher level of sTNFR1 compared to individuals carrying 10-10 genotypes 

(Fig. 18). 
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Fig. 18 Soluble TNFR1 levels in CF patients carrying different D12S889 genotypes. 
Homozygous genotypes 10-10 at D12S889 are shown in lanes 2, 3, 6 and 7. 
Homozygous genotypes 13-13 at D12S889 are shown in lanes 12 and 13. Samples in 
lanes 1, 2, 3, and 4 were from four severely affected (CON-) individuals; samples in 
lanes 5& 6, and 7&8, and 9&10 were from three mildly affected (CON+) sib pairs. 
Samples in lanes 11, 12, 13, and 14 were from four discordant (DIS) individuals. 
 

Furthermore, 13-13 genotypes showed considerably higher levels of 28kDa form 

compared to all other genotypes. Thus, the D12S889 genotype was associated with both 

quantity of TNFR1 protein as well as the ratio of two fractions of TNFR1. The fact that 

the TNFR1 protein levels were associated with D12S889 genotype strongly implies that 

the sequence variants within the intron 1 haplotype are influencing transcriptional 

activity of TNFR1.    

 

3.3.7. Impact of TNFR1 defect on innate immunity 
 
In this study, polymorphisms within intron 1 of TNFR1 were associated with CF disease 

severity (Table 13). In-silico analysis of non-coding intron 1 sequence predicted several 

possibilities such as shift in DNAseI hypersensitivity sites and location of SNP within a 

conserved non-coding sequence may interfere with gene transcription (Fig. 17). This 

possibility was further strengthened by the finding that the levels of TNFR1 protein in 

CF patient serum were correlated with the intron 1 haplotype (Fig. 18). The levels of 

TNFR1 in circulation appear to be critical in regulating TNFα induced innate 

inflammatory responses. In general, the release of membrane bound TNFR1 from cells 

into circulation involves two distinct pathways. First pathway, by the proteolytic 

cleavage and shedding of TNFR1 ectodomain by the receptor sheddases (Wajant et al., 

2003) and second pathway is by release of full length, 55-kDa TNFR1 within the 

membranes of exosome-like vesicles (Hawari et al., 2004).  Furthermore, shedding of 
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TNFR1 was shown to be an important process in immune response as TNFR1 shedding 

may attenuate TNFα activity either by rapidly down regulating the cell surface 

expression of TNF receptors or by acting as competitive antagonists for soluble TNFα 

and thereby reducing the sensitivity of a target cell to soluble TNFα (Aderka, 1996). 

Additionally, rapid shedding of TNFR1 from endothelial cells after histamine 

stimulation rendered endothelial cells refractory to the proinflammatory effects of TNFα 

(Wang et al., 2003). The role of TNFR1 shedding in innate immune response was 

further strengthened by the study in mutant mice expressing nonsheddable TNFR1 in 

which defective TNFR1 shedding caused innate immune hyperresponsiveness and 

increased susceptibility to chronic inflammatory conditions (Xanthoulea et al., 2004).  

 

In CF scenario, TNFα plays a significant role in mediating innate immune response 

against opportunistic bacterial pathogens that colonise the CF airways. Upon binding of 

TNFα, TNFR1 signaling triggers several intracellular signaling pathways which control 

gene expression through NF-kB and AP-1 transcription factors. However, these actions 

are beneficial for the healthy immuno-competent host, but in case of CF they reinforce 

chronic airway inflammation: The bacterial pathogens evade the host response and 

sustain a vicious cycle of fooled self-destructive host defense characterised by a 

pronounced imbalance between pro-and anti-inflammatory cytokines (Tümmler and 

Kiewitz, 1999). Furthermore, the accumulation of misfolded F508del-CFTR in ER 

(endoplasmic reticulum) may cause the proinflammatory ER overload response that 

ultimately results in activation of NF-kB (Knorre et al., 2002). Thus, the transcription 

factor NF-kB that plays an important integrating role in the intracellular regulation of 

immune response and inflammation, is induced in F508del-CFTR homozygotes by two 

major stimuli, the mutant CFTR protein and the TNFα signaling cascade. Taken 

together, the variability in TNFR1 protein levels may cause imbalance in the ratio of 

TNFR1 to TNFα and thus affecting the major pro-inflammatory signaling pathway. 

Hence, it is of vital importance to investigate how the polymorphisms within intron 1 of 

TNFR1 determine the levels of both 55kDa and 28kDa forms (Fig. 7) and its 

consequences on CF pathology.  
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3.4. Analysis of TLR (Toll like receptor)-4 as a modulator of cystic fibrosis 
 
TLR4 recognizes gram negative bacterial LPS and transduces the signals necessary for 

production of inflammatory mediators (Beutler, 2000, Lien et al., 2000). Additionally, 

TLR4 increases the efficiency of LPS recognition by forming complex with CD14, MD-

2 and LBP. P. aeruginosa is known to synthesize hexa-acylated LPS instead of penta-

acylated LPS during adaptation to the CF airway. Interestingly, human TLR4 has been 

shown to specifically recognize hexa-acylated LPS and induce robust proinflammatory 

signals (Hajjar et al., 2002).   

 

 
Figure 19: Schematic representation of TLR4 gene structure; TLR4, located on 
chromosome 9q32-q33, is 3.95kb long and has three exons. Polymorphisms shown on 
the TLR4 gene are targeted for fine mapping. SNPs are indicated by rs followed by their 
unique numbers and D9VK220 is a microsatellite marker. (Location and size are based 
on NCBI, NC_000009.10 Reference assembly: Build 36.2) 
 

3.4.1. Association with disease severity in CF on TLR4 revealed by single-marker 

analysis 

 
In order to investigate TLR4 as a modulator in CF, the locus was analysed by typing 5 

single nucleotide polymorphisms and one CA(22) repeat polymorphism, D9VK220, on 

CF twin and siblings (Fig. 19). Case-control analysis was done by comparing the allele 

distribution in both mildly (CON+) and severely (CON-) affected patient pairs as well 

as discordant (DIS) with concordant (CONC) pairs. Allele and genotype distributions at 

all loci were comparable between discordant and concordant pairs. Interestingly, the 

comparison revealed an allelic imbalance between mildly and severely affected patient 

pairs at D9VK220 (P = 0.008), rs1927914 (P = 0.03), rs1927911 (P = 0.03) and at 

rs214356 (P = 0.05). However, at rs10759930 (P = 1.0) and rs11536891 (P = 1.0) allele 

distributions were unaltered. This finding indicated that TLR4 locus is a modulator of 

CF disease severity. Hence, to detect the exact causative variant, haplotype distribution 

was evaluated among CF twin and siblings.   

CodingUTRNon-coding

D9VK220rs11536891rs214356rs1927911rs1927914rs10759930

1kb

TLR4, chromosome 9q32-q33
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3.4.2. Association with disease severity in CF on TLR4 confirmed by haplotype 

analysis 

 
Two-marker haplotypes for adjacent markers were constructed step by step. Distribution 

of each two-marker haplotype block was compared in both mildly and severely affected 

patient pairs as well as discordant and concordant pairs. 

 

Fig. 20 Haplotype block rs10759930-rs1927914 on TLR4 is associated with CF 

disease severity among CF twin and siblings. 

 

 
Fig. 20 Case-control analysis comparing mildly (CON+) and severely (CON-) affected 
patient pairs. P-values are shown for single markers (open circles) and haplotypes of 
adjacent markers (lines). The x-axis depicts the physical distance between the markers 
and the y-axis denotes the P-value. P = 0.02 was observed for the haplotype block 
rs10759930-rs1927914 
 

Haplotype distributions between DIS and CONC pairs at all loci were unaltered while, 

as it is shown in figure 20, the distribution of haplotype block rs10759930-rs1927914, 

located in the TLR4 promoter, was highly dissimilar between mildly and severely 

affected patient pairs (P = 0.02), in which haplotype C-T was overrepresented among 

mildly affected pairs (75%) compared to 38% in severely affected pairs. The haplotype 

analysis also revealed that rs10759930 and rs1927914 are linked without any 

recombination events between them as only three haplotype combinations were 

observed (C-T, C-C and T-T). This observation indicates that the haplotype may extend 

upstream of rs10759930. Thus, to identify sequence variants within this haplotype, 
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genomic DNA from individuals harbouring all the three observed haplotypes at 

rs10759930- rs1927914, were sequenced. 

 
3.4.3. Sequence analysis of TLR4 gene 
 
The 500bp promoter region, exon 1, exon 2 with its complete 5’ UTR and flanking 

intron sequences were analysed by sequencing eight unrelated F508del homozygotes. 

Among eight individuals, four individuals were carrying C-T haplotype, 3 individuals 

were carrying C-C haplotype and one individual was carrying T-T haplotype at 

rs10759930-rs1927914. Sequencing analysis did not reveal any novel sequence variants. 

However, previously reported polymorphisms in the 5’ UTR were confirmed (Table 

16). As the haplotype analysis revealed that the causative variant(s) is/are located 

upstream of rs1927914 and the 5’ UTR is downstream of rs1927914 (Fig. 19), the 

polymorphisms in the 5’ UTR were not evaluated for association.  

 
Table 16: TLR4 sequencing confirmed previously reported polymorphisms 
 

Region NCBI SNP ID 
5’ UTR rs760361 
5’ UTR rs2727192 
5’ UTR rs760363 
5’ UTR rs1413088 
5’ UTR rs10759933 

 
 
 
3.4.4. TLR4 polymorphism is not associated with P. aeruginosa early or late 

chronic colonisation among unrelated CF patients 

 
Both single-marker analysis as well as haplotype analysis showed that rs1927914 was 

significantly associated with CF disease severity among CF twin and siblings. Thus, 

rs1927914 was selected to evaluate TLR4 locus and its association with P. aeruginosa 

chronic colonisation. The cohort containing 22 unrelated F508del homozygous CF 

patients, stratified for early and late P. aeruginosa chronic colonisation, was typed at 

rs1927914. Allele and genotype distributions at rs1927914 were compared between 13 

patients belonging to P. aeruginosa early colonised and nine patients of P. aeruginosa 

late colonised group. The allele (P = 1.0) and genotype (P = 0.36) distributions in both 

the groups were similar (Fig. 21) and no association was observed between rs1927914 

SNP and early or late colonisation of P. aeruginosa.  
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Fig. 21 Comparison of allele and genotype distribution at rs1927914 between P. 
aeruginosa early and P. aeruginosa late colonised groups 
 

 
Figure 21: C to T SNP rs1927914 genotype and alleles are denoted on x-axis. PA-early: 
Patients chronically colonised within seven years of their age. PA-late: Patients 
chronically colonised after 15 years of their age. No significant association was found 
 
 
3.4.5. TLR4 expression analysis by FACS on peripheral blood mononuclear cells 
 
In an effort to investigate the role of rs1927914 polymorphism in TLR4 expression, 

peripheral blood mononuclear cells from 10 healthy volunteers were collected and 

surface expression level of TLR4 was studied by FACS. The expression levels were 

compared with genotype at rs1927914. Six individuals were homozygous for allele T, 

three individuals were heterozygous and only one individual was homozygous for allele 

C at rs1927914. 

 

 
Figure 22: TLR4 surface expression level vs. rs1927914 genotypes; P-values are 
derived by comparing CC and CT groups by Mann-Whitney U test. P ≤ 0.05 was 
considered significant. These data are representative of two independent experiments. 
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The comparison of TLR4 surface expression on CD14+ cells (monocytes) was done 

between TT and CT individuals only. No association was observed between genotypes 

at rs1927914 and TLR4 surface expression level (P = 0.3; Fig. 22), although there was a 

small trend of higher expression among heterozygotes.  

 

3.4.6. No informative markers within three kb region upstream of rs10759930 

 
As haplotype block rs10759930-rs1927914 indicated that the causative haplotype may 

extend upstream of rs10759930, six SNPs (Table 17), which are reported in the NCBI 

database, were typed on nine control samples to analyse the information content. 

However, none of the tested polymorphisms can be employed to construct the haplotype 

in CF twin and siblings due to their low information content.  

 

Table 17: Polymorphisms with low polymorphism information content on TLR4 

locus upstream of rs10759930 

 
SNP NCBI ID PIC† Position (bp)‡ 

rs7875169 0.11 119500162 
rs7855597 0.19 119490033 
rs10983754 0.11 119498428 
rs10983753 0.24 119495836 
rs7873159 - 119490834 
rs4837495 0.11 119490586 

†Polymorphism information content determined by accounting allele frequencies from 
nine unrelated controls 
‡Position of the polymorphisms on chromosome 9q32-q33 
 
3.4.7. Role of TLR4 signaling in CF airways 
 
The innate immune system is of vital importance to the early control of infection in CF. 

TLR4, the pathogen recognition receptor, plays an important role in signaling the innate 

immune response against bacterial infection by recognising LPS. Recognition of LPS 

occurs by the CD14/MD-2/TLR4 complex which is present on many cell types 

including macrophages and dendritic cells (Shimazu et al., 1999; Hoshino et al., 1999). 

Multiple signal transduction pathways are activated by this complex in macrophages 

upon LPS stimulation, including the activation of transcription factor NF-kB and 

increased transcription of pro-inflammatory cytokines such as IL-1β, TNFα, neutrophil 

recruiting chemokines, and metalloproteinases (Medzhitov, 2001). Furthermore, it has 

been shown that human TLR4 recognised the hexa-acylated lipid A of P. aeruginosa, 
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synthesised during adaptation to the CF lung, and activated NF-kB 100 times greater 

than with the penta-acylated lipid A (Hajjar et al., 2002).  

 

Several DNA polymorphisms in genes linked with the inflammatory response have been 

associated with an enhanced or suppressed inflammatory response (Casanova and Abel, 

2005). TLR4 coding variants, D299G and T399I, are shown to be associated with 

attenuated response to inhaled LPS in humans (Arbour et al., 2000). Translating these 

findings to CF, Urquhart et al. (2006) analysed TLR4 D299G polymorphism in 100 CF 

children stratified for clinical phenotype and reported TLR4 as a non-modulator in CF 

since they found no association with TLR4 D299G polymorphism. By contrast, in our 

CF twin and sibling cohort, the haplotype analysis and the sequencing clearly 

demonstrated that the CF modifying variant(s) is/are located within the haplotype 

fragment on TLR4 promoter or further upstream (Fig. 20), and not any coding variants.  

 

It is plausible that sequence variants in promoter regions would cause differential gene 

transcription, mostly mediated by modification of transcription factor binding sites. 

However, sequencing of 500bp TLR4 promoter region did not detect any sequence 

variants. On the other hand, since the haplotype block involved in CF disease 

modulation is not completely mapped, it is possible that the causative variants may be 

located very distant towards 5’ region of TLR4. Hence, it is necessary to fine map the 

region to identify the true causative variants. Furthermore, analysis of TLR4 promoter 

polymorphism genotype and allele distributions in CF patients stratified for P. 

aeruginosa early or late colonization did not show any association (Fig. 21). This would 

imply that TLR4 signaling is not directly determining the age at onset of P. aeruginosa 

chronic colonization even though it is capable of inducing effective NF-kB response 

against hexa-acylated lipid A of P. aeruginosa (Hajjar et al., 2002). On the other hand, 

this overwhelming TLR4 signaling may induce continued neutrophil infiltration in the 

airways. Consistent with this notion, it is shown that the TLR4 activation could cause 

down-regulation of the G protein receptor kinases, which are involved in chemokine 

receptor desensitisation and consequently, enhance neutrophil migration (Fan and 

Malik, 2003). Thus in CF airways, these neutrophils are not able to clear bacterial 

infections and instead further damage the airway and lung tissue (Döring and 

Worlitzsch, 2000). In this regard, it is extremely important to find out the TLR4 

promoter variants, responsible for CF disease modulation. 
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3.5. Analysis of CD14 as a modulator of cystic fibrosis 
 
CD14, located on chromosome 5q31.1, is constitutively expressed as a membrane-

bound form (mCD14) on the surface of monocytes, macrophages, and neutrophils 

(Ulevitch et al., 1995) and as a soluble form (sCD14) in serum (Bazil et al., 1986). It 

acts as a receptor for several bacterial ligands such as LPS, peptidoglycans and 

lipoteichoic acid (Pugin et al., 1994). The binding of LPS-CD14 complex to toll-like 

receptor (TLR) 4/MD-2 complex activates NF-kB and induces inflammatory response 

(Hajjar et al., 2002). It is also suggested that the non-opsonic phagocytosis of P. 

aeruginosa take place via CD14 (Heale et al., 2001) followed by induction of different 

pattern of cytokine production depending on the LPS structure (Pollard et. al., 2004). 

Thus, we hypothesised that the naturally occurring polymorphisms in CD14 modulate 

CF disease severity and P. aeruginosa acquisition in CF patients. Furthermore, we 

speculated that the O-antigen phenotype in P. aeruginosa LPS is dependent on host 

genetic background in general and CD14 genotype in particular as CD14 is a receptor 

for LPS.  

 

 
 
Figure 23: Schematic representation of CD14 gene structure; CD14, located on 
chromosome 5q31.3, is 1.94kb long and has two exons. Polymorphisms shown on the 
CD14 gene are targeted for fine mapping. SNPs are indicated by rs followed by their 
unique numbers (Location and size are based on NCBI, NC_000005.8 Reference 
assembly: Build 36.2) 
 

3.5.1. Association with disease discordance in CF on CD14 revealed by single-

marker analysis 

 
In order to evaluate CD14 as a modulator of CF, C-159T promoter polymorphism 

(rs2569190) in the CD14 gene, whereby both alleles are observed in equal proportions 

among Europeans (Baldini et al. 1999) and rs2563298 SNP, located 1 to 5 nucleotides 

away from the 3’ UTR of CD14, were typed in CF twin and sibling pairs (Fig. 23). The 

allele and genotype distributions among mildly affected pairs (CON+), severely affected 

rs2569190 rs2563298

CD14, chromosome 5q31.3

CodingUTRNon-coding250bp



63 

pairs (CON-), discordant pairs (DIS) and concordant pairs (CONC) were unaltered at 

both the loci (Table 18 and 19). However, a minor allelic imbalance between CONC 

and DIS pairs was observed at CD14 3’ UTR polymorphism, rs2563298 (P = 0.08). 

 

Table 18: Comparison of genotype and allele distribution among F508del 
homozygous CF twin and siblings in CD14 at promoter polymorphism rs2569190 
 

Genotypes CON- CON+ DIS CONC* 
CC 5 8 14 13 
CT 10 14 22 24 
TT 5 6 6 11 

Total 20 28 42 48 
Alleles     

C 20 30 50 50 
T 20 28 34 46 

Total 40 58 84 96 
     

Freq. of allele C 0.50 0.52 0.60 0.52 
Freq. of allele T 0.50 0.48 0.40 0.48 

* Both CON- and CON+ pairs are grouped as CONC, concordant pairs, for disease 
severity 
 
Table 19: Comparison of genotype and allele distribution among F508del 
homozygous CF twin and siblings in CD14 at 3’ UTR polymorphism rs2563298 
 

Genotypes CON- CON+ DIS CONC* 
TT 0 1 4 1 
TG 7 11 19 18 
GG 13 12 15 25 

Total 20 24 38 44 
Alleles     

T 7 13 27 20 
G 33 35 49 68 

Total 40 48 76 88 
     

Freq. of allele T 0.18 0.27 0.35 0.22 
Freq. of allele G 0.82 0.73 0.64 0.78 

* Both CON- and CON+ pairs are grouped as CONC, concordant pairs, for disease 
severity 
  

3.5.2. Association with disease discordance in CF on CD14 revealed by haplotype 

analysis 

To confirm the association found between CONC and DIS pairs and also to find out the 

exact causative variant, the two-marker haplotype (rs2569190-rs2563298) was 

constructed on CD14 and its distribution was analysed both in mildly and severely 

affected pairs as well as DIS and CONC pairs. In striking contrast to single-marker 

analysis, a highly significant distortion in rs2569190-rs2563298 haplotype distribution 
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was observed between CONC and DIS pairs (P=0.007), while the distribution of 

haplotype was unaltered between CON+ and CON- (Table 20). This finding indicated 

that the locus may have an impact on CF disease by modulating the binding efficiency 

of factors encoded elsewhere in the genome. Thus, the complete rs2569190-rs2563298 

haplotype fragment was screened for other sequence variants, if any, by sequencing.  

 

Table 20: CD14 two-marker haplotype (rs2569190-rs2563298) frequency 
distribution among CF twin and siblings  
 

CD14 
rs2569190-rs2563298 

 haplotype† 

CON- CON+ ‡DIS ‡CONC* 

C-T 0.16 0.18 0.39 0.17 
C-G 0.28 0.27 0.30 0.28 
T-G 0.54 0.54 0.30 0.54 

 ‡CONC and DIS comparison, P = 0.007 
* Both CON- and CON+ pairs are grouped as CONC, concordant pairs, for disease 
severity 
† Haplotype T-T was not observed among CF twin and siblings 
(The haplotype counts were obtained by using likelihood-weighted haplotype 
explanations for each individual – kindly performed by T. Becker, Bonn.)   
 

3.5.3. CD14 sequencing analysis 
 
2600bp fragment, encompassing the complete CD14 gene with its 678bp of promoter 

from major transcriptional start site, 5’UTR, exon 1, intron 1, exon 2 and 3’ UTR, was 

sequenced by selecting 2 unrelated CF F508del homozygous patients, where one 

individual was carrying C-G haplotype and the other was carrying T-C haplotype at 

rs2569190-rs2563298. Sequencing of complete CD14 gene did not reveal any novel 

sequence variants. However, the results confirmed C-159T promoter polymorphism and 

rs2563298. Thus, sequencing confirmed that there is no recombination between 

rs2569190 and rs2563298 and both markers in strong linkage. As preferential 

transmission of certain alleles from parents to CF offspring point towards a modifying 

locus, both polymorphisms on CD14 locus were analysed for transmission-

disequilibrium to find out the mechanism. 

 

3.5.4. Skewed allele distribution on CD14 among CF siblings  
 
All CF sib pair families, irrespective of their disease status were analyzed with the 

Monte Carlo simulation based association test (Becker and Knapp, 2004) for 
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investigating transmission-disequilibrium at CD14 polymorphisms. Family-based 

analysis showed evidence for disproportionate transmission of the haplotype block 

rs2569190-rs2563298, encompassing the complete CD14 gene, in which the haplotype 

C-T at rs2569190-rs2563298 was overrepresented in CF offspring while haplotype T-G 

was observed more frequently among non-transmitted parental haplotypes. (P = 0.07; 

Table 21). However, the transmission distortion was highly significant at rs2563298 (P 

= 0.019), While transmission at rs2569190 was unaltered (P = 0.39). Furthermore, T-T 

haplotype was not observed in any of the individuals studied, implying that both the 

markers are in absolute linkage without any recombination between them. All other 

haplotypes (C-T, C-G and T-G) were transmitted equally in both CON- and CON+ pairs 

(Table 20).  

 

Table 21: Frequency distribution of rs2569190-rs2563298 haplotype on CD14 
among CF offspring  
 

CD14 
rs2569190-rs2563298 

 haplotype 

‡Transmitted ‡Non-
transmitted 

C-T 0.38 0.17 
C-G 0.30 0.40 
T-G 0.32 0.43 

‡comparison for transmitted and non transmitted haplotypes, P = 0.07; (Comparison of 
at single locus P = 0.39 for rs2569190 and P = 0.019 at rs2563298) 
(The haplotype counts were obtained by using likelihood-weighted haplotype 
explanations for each individual – kindly performed by T. Becker, Bonn.) 
 
 
3.5.6. CF twin and siblings cohort stratified for P. aeruginosa colonisation 
 
CD14 promoter and 3’ UTR polymorphisms were analysed in CF twin and sibling 

cohort stratified for P. aeruginosa colonisation. For this purpose, all CF twin and sib 

pairs were categorised as P. aeruginosa colonised (PA-yes) and P. aeruginosa non-

colonised (PA-nil).  Monozygous and dizygous pairs were analysed separately. As 

genotypes of the individuals in each sib pair were interdependent, the transmission of 

genotypes in combination within each sib pair was considered for the analysis. Parental 

genotype frequencies were derived from their allele frequencies and expected genotype 

combinations at both the loci were calculated according to HWE law.  

Strikingly, the distribution of genotype combinations among dizygous pairs was 

significantly different from the distribution of expected genotype combinations among 

parents at rs2569190 (P = 0.02), in which the genotype combination CC/CC (both sibs 
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carrying CC genotype) was over represented and TT/CT combination (one sib carrying 

TT and the other sib carrying CT genotype) was under represented among dizygous 

pairs. The distortion of the genotype distribution from the expectancy values was 

strongest in the subgroup of siblings who were both colonized with P. aeruginosa (P = 

0.11; Table 22). Similarly, the distribution of genotype combinations among dizygous 

pairs at rs2563298 was different (Table 23) but not statistically significant (P = 0.11). 

 
Table 22: CD14 genotype at rs2569190 and P. aeruginosa status of F508del 
homozygous twins and sib pairs recruited for determination of P. aeruginosa 
colonization status. 
 

Genotype of sib or twin A 
Genotype of sib or twin B 

CC 
CC 

CT 
CC 

TT 
CC 

CT 
CT 

TT 
CT 

TT 
TT 

*P-value 

Dizygous/YY (23) 7 6 0 7 1 2 0.11 
Dizygous/NN (12) 1 3 0 6 2 0 0.77 
Dizygous/YN(6) 1 1 0 3 0 1 0.77 
All dizygous (41) 9 10 0 16 3 3 0.02 
Monozygous/YY (9) 1 0 0 4 0 4 0.72 
Monozygous/NN (3) 1 0 0 2 0 0 1.0 
All monozygous (12) 2 0 0 6 0 4 1.0 
 
Table 23: CD14 genotype at rs2563298 and P. aeruginosa status of F508del 
homozygous twins and sib pairs recruited for determination of P. aeruginosa 
colonization status. 
 

Genotype of sib or twin A 
Genotype of sib or twin B 

TT 
TT 

TG 
TT 

GG 
TT 

TG 
TG 

GG 
TG 

GG 
GG 

*P-value 

Dizygous/YY (22) 1 2 0 8 7 4 0.36 
Dizygous/NN (10) 2 0 0 3 3 2 0.50 
Dizygous/YN(6) 0 1 0 13 0 3 0.74 
All dizygous (38) 3 3 0 10 10 9 0.11 
Monozygous/YY (9) 0 0 0 3 0 6 0.72 
Monozygous/NN (3) 0 0 0 3 0 0 1.0 
All monozygous (12) 0 0 0 6 0 6 0.42 
 
Table 22 and 23: Data are represented for monozygous and dizygous pairs separately. 
YY; both sibs are colonized in a pair. NN; both sibs are not colonized in a pair. YN; one 
sib is colonised and the other one in not in a pair. * The parental genotype frequencies 
were derived from their allele frequencies and the expectancy frequencies of 6 
combinations of genotypes were calculated according to Hardy-Weinberg equilibrium 
(HWE) law. From these parental genotype expectancy frequencies, the expected 
numbers of 6 combinations of genotypes among twin and sibling pairs (for each pair-
sub groups from the above table) were derived and compared with observed numbers of 
6 combinations of genotypes among pairs. 
 

In contrast, the distributions in monozygous pairs were similar to the expected 

distribution at both the loci. As this finding suggested that the CD14 locus is involved in 

differential susceptibility to P. aeruginosa among CF twin and siblings, both 
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polymorphisms were analysed in an independent cohort stratified for age at onset of P. 

aeruginosa chronic colonisation.  

 
3.5.7. F508del homozygous unrelated CF patients with early and late P. aeruginosa 

chronic colonisation 

 
Comparison of rs2569190 genotype distribution among unrelated CF patient cohort, 

displaying extreme phenotype for the onset of P. aeruginosa chronic colonisation 

(Chapter 2.1.3), showed significant association (P = 0.008; Fig. 24a) in which 

heterozygotes are underrepresented in group who were chronically colonised before 

their seven years of age. Distortion of genotype frequencies in early chronically 

colonised group from Hardy-Weinberg equilibrium (HWE) was also seen in the De 

Finetti diagram (Fig. 25) while no distortion from HWE was observed among the 

patients colonised at an age of 15 years or later. In contrast, both allele and genotype 

distributions were similar at rs2563298 (Fig. 24b).  

 

 
 
Fig. 24 CD14 promoter polymorphism is associated with P. aeruginosa early or late 
colonization. Genotypes at CD14 polymorphisms are compared against PA-early 
(chronically colonized with in seven years of age) and PA-late (chronically colonized 
after 15 years of age).   
 
 
3.5.8. F508del homozygous unrelated CF patients stratified for birth cohorts 
 
In order to test the hypothesis that the changing environmental factors and improvement 

of survival have an impact on selection of favourable alleles and genotypes among CF 

population, we have genotyped 22 patients who were born in 1959 to 1967 from Early-

born group and 23 patients who were born in 1973 to 1975 from Late-born group 

(Chapter 2.1.4).  
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 Table 24: Genotype distributions of all the cohorts tested on CD14 promoter 
polymorphism 

 

†Colonized by P. aeruginosa before 7 years of their age; ‡Colonized by P. aeruginosa 
after 15 years of their age; a Early-born group: Individuals born between 1959 - 1967 
b Late-born group: Individuals born between 1973 -1975; (PA+): Positive for P. 
aeruginosa colonisation 
 
Figure 25: De Finetti Diagram with Hardy-Weinberg equilibrium (HWE) parabola 
for patient panels investigated on CD14 promoter polymorphism 
 

 
 
 
Fig. 25 Base of the triangle denotes the allele frequencies and 2-sides of a triangle and 
y-axis denote genotype frequencies at rs2569190. The parabolic curve shows HWE, the 
distance between a circle and the curve corresponds to the deviation from HWE.   1: 
PA-early (n = 13), 2: PA-late (n = 8), 3: Birth cohort-early born (n = 21), 4: Birth 
cohort-late born (n = 23), 5: Dizygous first born sibs positive for P. aeruginosa (n = 
21), 6: Dizygous second born sibs positive for P. aeruginosa, 7: Monozygous sibs 
positive for P. aeruginosa. 
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Thus, as visualized in figure 25, patients who were chronically colonized in their early 

age are not in HWE (P = 0.02) indicating the loss of heterozygotes at rs2569190. 

Further distortion from HWE was seen for late colonized group (P = 0.13; Fig. 25, 

group 2). Both monozygous and dizygous pairs were in HWE. No difference in 

genotype distribution was observed between P. aeruginosa positive first born dizygous 

sib and second born dizygous sib implying that there was no influence of age difference 

within the dizygous sibs. However, comparison of allele distribution of monozygous 

pairs to either P. aeruginosa positive dizygous first born sibs (P = 0.051) or second born 

sibs (P = 0.008), both showed a significant difference. In addition, the distribution of 

genotypes among patients born during 1959 to 1967 was similar to genotype 

distribution in P. aeruginosa early chronically colonized group, sharing an 

underrepresentation of heterozygotes in comparison to patients born during 1973 to 

1975. This finding, however, highlighted the concept that heterozygotes at CD14 

promoter polymorphism are selected as a favorable genotype which leads to an 

accumulation of carriers of heterozygous genotypes at rs2569190. To validate this 

finding, a cohort containing CF twin and siblings, chronically colonized with P. 

aeruginosa was genotyped at CD14 polymorphisms.  

 

3.5.9. Age dependent risk to acquire P. aeruginosa among CF twin and siblings 

shown by CD14 diplotype analysis 

 
The CD14 3’ UTR was associated with CF disease discordance but not with P. 

aeruginosa early or late colonisation phenotype. In contrast, the CD14 promoter 

polymorphism was associated with P. aeruginosa early or late colonisation but not with 

disease discordance. Furthermore, the haplotype information strongly suggested that 

both the markers are in linkage disequilibrium and associated with disease discordance 

and hence these two markers might interactively modulate the phenotype.  

Therefore, interactive effect of these two markers were analysed by constructing 

diplotypes (combination of haplotypes). As a diplotype can be homozygous or 

heterozygous, there are sixteen possible diplotype pairs. However, because of linkage 

disequilibrium between the two CD14 markers, only six diplotypes were observed. The 

distribution of diplotypes from CF twin and siblings were compared against age at onset 

of P. aeruginosa chronic colonisation (Fig. 26). Interestingly, diplotype CG-CG was 

associated with early acquisition of P. aeruginosa chronic colonisation, as two pairs 
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homozygous for CG were colonised at age 10 years or earlier (pairs 17 & 18 in Fig. 26). 

In contrast, diplotype CT-CT was associated with late acquisition of P. aeruginosa 

chronic colonisation as one pair (pair 10 in Fig. 26) and two unrelated patients (number 

21 & 22 in Fig. 26) were colonised at age 15 years or later. Thus, diplotype analysis 

suggests that diplotype CG-CG was a risk factor for early onset of P. aeruginosa 

chronic colonisation, while diplotype CT-CT was found to be beneficial. Sibs carrying 

both risk as well as beneficial diplotype, CT-CG, clustered as early colonised patients 

indicating that the risk variant CG determines the phenotype in dominant fashion (pairs 

1, 11, 12, 13, and unrelated patients 23, 25, 31, 32 in Fig. 26). Heterozygotes of the mild 

CT and the non-classified TG alleles show later onset of colonisation (Fig. 26) showing 

that CT is dominant over TG. Homozygous for haplotype TG were observed 

predominantly among monozygote twins as 4 out of 9 pairs carried diplotype TG-TG 

while only two out of 11 dizygous pairs with shared haplotype were TG homozygotes.  

 
 

 
 
Figure 26: Age dependent risk to acquire P. aeruginosa chronic colonisation among CF 
twin and siblings is determined by diplotype at CD14 polymorphisms; Monozygous 
pairs are numbered from 1 to 9 in black circles; Dizygous pairs concordant for 
diplotype-pair are numbered from 10 to 20 in white circles; Dizygous pairs discordant 
for diplotype-pair are numbered from 21 to 32 in blank diamonds; Dizygous sibs 
discordant for P. aeruginosa colonisation (one sib in a pair is colonised) are shown in 
blank circles. *Patient had unusual clinical history with excessive humoral immune 
response. ‡Discordant for clinical phenotype.    
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3.5.10. Association between P. aeruginosa O-antigen serotype and CD14 diplotype 
 
P. aeruginosa isolates become non-typeable or poly-typeable, once they chronically 

colonise the CF lung, due to lack of or variability in the number of O-antigen polymer. 

The CD14 has been described as the receptor for complexes of LPS with lipid binding 

protein. Further, it has been shown that the LPS molecules containing typical O-antigen, 

long-chain carbohydrates, and two phosphorylated Kdo moieties, signals via CD14-

dependent pathway since the affinity of CD14 for these LPS structures is very high 

(Gangloff SC et al., 1999). In an effort to address the hypothesis that the O-antigen 

phenotype among CF P. aeruginosa isolates is dependent on the CD14 genotype, 60 P. 

aeruginosa strains, isolated from CF twin and siblings, were serotyped for their O-

antigen. The number of typeable (O-antigen intact/smooth LPS) and non-typeable (O-

antigen deficient and poly-agglutinable/rough LPS) strains was compared against the 

CD14 diplotypes among CF monozygous and dizygous twin and siblings (Table 25).  

 
Table 25: Distribution of typeable and non-typeable P. aeruginosa isolates among 
CF twin and siblings according to CD14 diplotype pairs 
 

Monozygous pairs  
 N (%) CT-CT CT-CG CT-TG CG-CG TG-CG TG-TG 

NT† 14 (87%) - 2 4 - 2 6 
T‡ 2 (12%) - - - - 2 - 

Dizygous pairs  
NT† 33 (75%) 4 8 10 6 2 3 
T‡ 11 (25%) 1 - 5 - 2 3 

 
† Number of non-typeable strains (both poly-typeable and non-typeable strains) 
including O-antigen deficient and poly-agglutinable strains 
‡ Number of typeable strains (O-antigen intact) 
 
The proportion of non-typeable strains was higher among monozygous pairs (14 strains 

out of 16) compared to dizygous pairs (Table 25), suggesting that the P. aeruginosa 

strains undergo faster adaptability in monozygous pairs due to identical host genetic 

background. Furthermore, patients carrying diplotype CG-CG and CT-CG were found 

to harbour only non-typeable strains, while patients carrying other diplotypes were 

colonised with both typeable and non-typeable strains. Interestingly, CG-CG diplotype 

was associated with early chronic colonisation of P. aeruginosa among CF twin and 

siblings (Fig. 26) and the same diplotype was found to be prominently susceptible for 

faster adaptability of P. aeruginosa isolates to the CF lung. Diplotype association with 

P. aeruginosa early or late colonisation and O-antigen serotype of P. aeruginosa 
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suggests that both promoter polymorphism and 3’ UTR polymorphism on CD14 might 

interactively affect the phenotype.   

 

3.5.11. Influence of CD14 diplotype on the sCD14 levels in serum of CF patients 
 
In order to test whether CD14 diplotypes determine CD14 protein levels, ELISA was 

performed to quantify the sCD14 levels in serum of F508del homozygous CF twin and 

siblings. Serum samples from 47 CF individuals, who were carrying homozygous CD14 

diplotypes (CT-CT, CG-CG, and TG-TG), were available. AbProtF (Antibody against 

P. aeruginosa outer membrane protein F) values measured by ELISA in 1990, as a 

measure of P. aeruginosa infection, were available for at least one time point from all 

these 47 patients. 34 serum samples were available from 24 CF patients, in which 8 

patients had two serum samples collected at two different time points and one patient 

had three samples collected at three different time points. The patient’s age varied from 

8.9 to 26.7 years.  

 
Table 26: Age categories of 24 CF patients (34 serum samples) to test the role of 

CD14 diplotypes in determining age-dependent sCD14 levels 

 
Age group Number of 

patients 
Mean age 
(Years) 

Minimum age 
(Years) 

Maximum age 
(Years) 

Mean 
AbProtF 
values† 

I 12 10.4 8.9 11.9 8.3 
II 10 15.0 13.6 16.4 11.6 
III 12 22.5 19.9 26.7 16.9 

 
† Antibody titre against P. aeruginosa outer membrane protein-F was measured by 
ELISA (kindly performed by Peter Kubesch and Jutta Boßhammer) 
 

As the risk to acquire P. aeruginosa increase with patient’s age, these 24 patients were 

grouped into three different age periods (Table 26) and the sCD14 levels were 

compared against CD14 diplotype to test whether levels of sCD14 is also determined by 

CD14 diplotype in an age-dependent manner (Table 27). Mean AbProtF values were 

found to be positively correlated with age of patients and this association was found to 

be prominent among patients carrying CT-CT diplotype (Table 27). 
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Table 27: The soluble CD14 levels for different homozygous CD14 diplotypes 
 
Age Group CD14 diplotype Number of 

Patients 
Mean sCD14  

(µg/ml) 
Mean AbProtF 

values 
I CT-CT 

CG-CG 
TG-TG 

5 
3 
4 

1711 
1461 
1621 

13.1 
9.7 
3.6 

II CT-CT 
CG-CG 
TG-TG 

4 
2 
4 

1534 
1231 
1536 

13.5 
7.0 

12.1 
III CT-CT 

CG-CG 
TG-TG 

4 
2 
6 

2087 
1575 
1871 

28.1 
14.3 
12.1 

 
 

Mean sCD14 levels were compared against CD14 diplotypes in all three age groups. 

The patients carrying the CG-CG diplotype had lower levels of sCD14 compared to the 

other patients irrespective of age groups implying that CD14 diplotype determines the 

sCD14 levels in the serum of CF patients, albeit the rareness of the haplotype CG did 

not allow a statistical comparison.  

Therefore, to analyse whether CD14 variants influence the course of P. 

aeruginosa infection as visualised by AbProtF titers, AbProtF data from 47 patients 

were compared against their age according to their CD14 diplotypes (Fig. 27).  

 

 
Fig. 27 AbProtF values plotted against age and CD14 diplotypes of CF patients. X-axis 
denotes age groups of 3 year interval; y-axis denotes mean AbProtF values in log scale; 
for each patient, all AbProtF values for one age period were represented as average 
value.  
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All patients who were 15 years or older had high AbProtF titers irrespective of CD14 

diplotype. Four out of seven patients carrying TG-TG during 9 to 12 years of their age 

had lower AbProtF titers, while both patients carrying CT-CT diplotype had higher 

AbProtF titers. Patients carrying CG-CG diplotype had lower AbProtF titers. An 

unusual course of AbProtF titers was observed for one patient carrying CG-CG 

diplotype who showed a decline of AbProtF titers from his 6 to 15 years of age. In 

conclusion the data show that individuals carrying CT-CT diplotype were able mount a 

higher antibody response against P. aeruginosa in their early age compared to other 

individuals carrying CG-CG diplotypes. These observations were in accordance with 

the earlier findings, in which CG-CG diplotype was associated with early colonisation 

of P. aeruginosa followed by faster adaptability to the CF lung, as shown by O-antigen 

deficiency, and low sCD14 levels in the serum.  Similarly CT-CT diplotype was 

associated with late colonisation of P. aeruginosa and higher sCD14 levels. Taken 

together, these findings show consistently that CD14 diplotypes determines the levels 

sCD14 and thereby mounting the specific antibody response against P. aeruginosa, 

which means, CF patients carrying higher sCD14 levels in serum are capable of 

eliminating P. aeruginosa from their lung early in their life.  

 

3.5.12. How does CD14 3’ UTR polymorphism determine sCD14 levels among CF 

patients? 

 
The CD14 promoter polymorphism was shown to alter the binding site for SP1/SP3 

transcription factors and thereby determining the sCD14 level (Tricia et al., 2001). 

However, the single marker analysis as well as the haplotype analysis in this study 

strongly suggested that the CD14 3’ UTR polymorphism as a major causative variant in 

CF scenario. Furthermore, the CD14 diplotypes re-constructed by genotyping the CD14 

promoter polymorphism and the CD14 3’ UTR polymorphism were associated with P. 

aeruginosa related endophenotypes. Hence, this finding constitutes the first example of 

a causative relationship between the CD14 phenotype and a polymorphism in the 3’ 

UTR of CD14.  

Several studies have shown that the sequence variants within coding region or in the 

promoter region or in the 5’ UTR exert their effects on transcription or splicing or 

translation leading to variability in protein levels (Pickering and Willis, 2005; Cartegni 

et al., 2002). The 3’ UTRs are shown to be involved in  gene expression regulation at 
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multiple levels such as mRNA 3’ end formation and polyadenylation at pre-mRNA 

level and also at mature mRNA level by regulating mRNA stability/degradation, 

nuclear export, subcellular localisation and translation efficiency (Conne et al., 2000; 

Mignone et al., 2002; Chabanon et al., 2004). In support of these findings, several 3’ 

regulatory polymorphisms, which are disease causing have been reported (Chen et al., 

2006). Thus, the impact of regulatory polymorphisms within the 3’ UTRs can be 

envisaged at different level of mRNA formation. Accordingly, we attempted to study 

the possible role of polymorphism within the CD14 3’ UTR in determining the different 

levels of sCD14. 

 

3.5.13. CD14 3’ UTR polymorphism could affect CD14 mRNA 3’ end formation 
 

In general, 3’ end processing of mRNA involves interaction of multiprotein complex 

with cis-acting sequence elements on the pre-mRNA (Zhao et al., 1999): Such as 

polyadenylation signal AAUAAA interacts with multimeric cleavage/polyadenylation 

specificity factor (CPSF), a high density of G/U or U residues, located downstream of 

cleavage site, interacts with the 64-kDa subunit of the heterotrimeric Cleavage-

stimulating factor (CstF). Interactions between CPSF and CstF, as well as 

polyApolymerase (PAP) and Cleavage factors I and II (CFI and CFII respectively) are 

minimal essential requirements for efficient cleavage and for in vitro polyadenylation 

(Colgan and Manley, 1997). This RNA-protein interaction determines the site of 

cleavage 10-30 nt downstream of polyadenylation signal, preferentially immediately 3’ 

of a CA dinucleotide (Chen et al., 1995).Thus, it is conceivable that variations within 

these cis-acting elements may alter binding efficiency of these proteins and hence may 

cause poor mRNA processing. However, the CD14 3’ UTR polymorphism was located 

14 nt downstream to polyadenylation signal AUUAAA and 3 nt upstream of GU/U 

element (Fig. 28) excluding the possibility of altering the binding efficiency of both 

CPSF and CstF proteins. On the other hand, it is interesting to note that the 

polymorphism was located 2 nt downstream of the wild-type CD14 mRNA cleavage 

site indicating a probable role in cleavage site selection. Consistently, heterogeneity in 

the CD14 3’ end cleavage sites were observed and interestingly the CD14 cDNA 

isolated from insulinoma tissue (NCBI: BQ477440) was found to include the CD14 3’ 

UTR polymorphism as a site for 3’ end cleavage (Fig. 28). However, it is not clear 
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whether or not this heterogeneity in the CD14 3’ cleavage site is due to 3’ UTR 

polymorphism.  

 

  
 

Fig. 28 BLAST search against CD14 cDNA in human expressed sequence tag (EST) 
data base identified variable lengths of CD14 3’ UTR that are isolated from different 
human cell lines; X13334:THP1 macrophage cell line; Wild-type (NM_000591): 
general CD14 transcript deposited in NCBI; CD366124: Alveolar macrophage; 
BQ477440: Human insulinoma tissue. * denotes cleavage and polyadenylation site. 
ATTAAA is polyadenylation signal. T is CD14 3’ UTR G to T SNP. Probable binding 
site, GTGT, for Cleavage-stimulating factor (CstF) is shown in dotted line. 
 
 
Nevertheless, a convincing consensus for the downstream regulatory elements is not 

achieved. Thus, it is reasonable to suppose that the presence of sequence variant exactly 

within the putative cleavage site might alter the overall efficiency of cleavage complex 

assembly and in turn the efficiency of the 3’ end formation.   

   

3.5.14. MicroRNA mediated regulation of CD14 pre-mRNA 
 
MicroRNA’s are short, often phylogenetically conserved, non-protein-coding RNA 

molecules (Bartel, 2004). They bind to near perfect complementary sequences in the 3’ 

UTR of a target gene and mediate post-transcriptional gene repression either by 

degradation of target transcripts or by inhibiting protein translation. In order to test the 

possibility of microRNA mediated CD14 regulation, microRNAs which are predicted to 

be able to bind CD14 3’ UTR were explored in miRBase 

(http://microrna.sanger.ac.uk/). The “miRBase” is a database for all known microRNAs 

from different organisms and it manages the nomenclature and annotation of 

microRNAs from all species with the “miR” designation followed by a unique number 

(Ambros et al., 2003; Griffiths-Jones, 2004). The miRBase has reported three human 

microRNAs, hsa-miR-610, hsa-miR-377, and hsa-miR-369-5p (hsa denotes Homo 

sapiens) to be able bind human CD14 pre-mRNA. However, the binding sites for all 

these microRNAs are located more than 700bp downstream of 3’ UTR (Fig. 29).  

…TATTAAAATCTTAAACAACGGTTCCGTGTCATTCATTTA

…TATTAAAATCTTAAACA*AAAAAAAAAAAAAAAAAA

…TATTAAAATCTTAAACAACG*AAAAAAAAAAAAAAAAAA

…TATTAAAATCTTAAACAACGG*AAAAAAAAAAAAAAAAAA

…TATTAAAATCTTAAACAACGGT*AAAAAAAAAAAAAAAAAA

Genomic DNA

X13334

Wild type

CD366124

BQ477440
Coding

UTR
Non-coding

CD14

5‘ 3‘

http://microrna.sanger.ac.uk/
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GGGCTTTGCCTAA…

704nt 848nt 1391ntCD14 gene 
stop codon

… …

hsa-miR-369-5p hsa-miR-610 hsa-miR-377

 
Fig. 29: MicroRNAs and their binding sites on CD14 pre-mRNA predicted by miRBase; 
Black arrows indicate the position of microRNA binding sites on CD14; Nucleotide 
numbering starts from the CD14 mRNA stop codon; hsa-miR denotes Homo sapiens-
microRNA. Perfect pairing was shown by vertical lines and G to U pairing, which is 
allowed in RNA base pairing, is shown by dots.    
 

3.5.14.1. CD14 3’ UTR polymorphism, rs2563298, is located with in a microRNA 

binding site 

 
It has recently been shown that a G to A transition in the 3’ UTR of GDF8 gene 

(myostatin) in sheep created binding site for microRNAs, mir1 and mir206, and hence 

translation inhibition of GDF8 gene expression, which in turn caused muscular 

hypertrophy (Clop et al., 2006). Similarly, Abelson et al. (2005) reported that a 

sequence variant in the binding site for microRNA has-miR-189 on SLITRK1 gene was 

associated with Tourette’s syndrome. To test if the CD14 3’ UTR polymorphism, 

rs2563298, can modify the binding of any microRNA’s, CD14 3’ UTR and its 2 kb 

downstream sequence was screened for possible binding sites for microRNA’s by 

searching in miRBase (Release 9; October 2006). Interestingly, microRNA from bovine 

(Bos taurus), named bta-miR-425-5p, was predicted to be able to bind bovine and rabbit 

CD14 3’ UTR (Fig. 30a). Although, it is not reported in the miRBase that bta-miR-425-

5p can bind human CD14 3’ UTR, two findings strengthened the possibility of miR-

425-5p binding to human CD14. Firstly, miR-425-5p binding site exactly overlapped 

the cleavage and polyadenylation site of human CD14 3’ UTR. Secondly, the existence 

of same microRNA (hsa-miR-425-5p) in humans was experimentally shown (Altuvia et 

al., 2005). Consistent with this finding, miR-425-5p binding site is evolutionarily 

conserved in human, bovine and rabbit (Fig. 30b) and the eight nucleotides in the 5’ 

proximal end of microRNA, ‘seed’ region, (positions 2-8 nucleotides) allowed perfect 

base pairing to the target sequence without any mismatches. Surprisingly, the CD14 

polymorphism rs2563298 was located within in the hsa-miR-425-5p binding site 

(Figure 30c). These findings raised the possibility that the polymorphism may cause 
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differential binding of hsa-miR-425-5p to CD14 3’ UTR and in turn may play a role in 

modifying the CD14 transcript level. 

 
a

b

c

 
 
Fig. 30a Alignment of bovine microRNA (bta-miR-425-5p) sequence and its binding site 
on bovine CD14 3’ UTR; Fig. 30b Alignment of miR-425-5p binding sites on CD14 in 
bovine (Bos taurus), human (Homo sapiens) and rabbit (Oryctolagus cuniculus). 
Nucleotides conserved at least in two species are shown in grey background; Fig.30c 
Alignment of human microRNA (hsa-miR-425-5p) sequence and its binding site on 
human CD14 3’ UTR. Location of G to T polymorphism is shown in rectangle. Perfect 
pairing is shown by vertical lines and G to U pairing, which is allowed in RNA base 
pairing, is shown by dots.        
 

 

 

3.5.14.2. Biogenesis of hsa-miR-425-5p microRNA  
 
The microRNA miR-425-5p is 23 nucleotides in length and is derived from its precursor 

pre-microRNA, miR-425. The miR-425 microRNA is encoded by gene MIRN425, 

located on chromosome 3p21.31. General microRNA biogenesis pathway involves 

processing of pri-microRNAs by group of RNase III enzymes to yield mature 

microRNA (Lee et al., 2003; Denli et al., 2004; Grishok et al., 2001; Hutvagner et al., 

2001). Similarly, the MIRN425 transcript of length 86bp, a stem-loop structure, is 

processed by dicer, RNase III like nuclease, to yield two mature microRNAs from both 

arm of the stem loop namely hsa-miR-425-5p from 5’ arm and hsa-miR-425-3p from 3’ 

arm (Fig. 31).  
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hsa-mir-425 stem-loop

AAUGACACGAUCACUCCCGUUGA     hsa-mir-425-5p

AUCGGGAAUGUCGUGUCCGCC          hsa-mir-425-3p

DICER processing

 
 
 
Figure 31: Pri-microRNA miR-425 is processed by enzyme DICER to yield two mature 
microRNAs. hsa-miR-425-5p was predicted to bind human CD14 3’ UTR in this study.  
 
 
3.5.14.3. CD14 pre-mRNA, not mature mRNA, may be a target for miR-425-5p  
 
It is shown that the “seed” region, approximately 8 to 10 nt from 5’ end, of microRNA 

provides most of the pairing specificity to its target (Tomari and Zamore, 2005). Taken 

this evidence, hsa-miR-425-5p can not bind CD14 mRNA due to the fact that the CD14 

mature mRNA completely excludes the binding site for hsa-miR-425-5p “seed” region 

from its 3’ UTR. On the other hand, microRNA 425-5p can bind CD14 pre-mRNA 

prior to CD14 mRNA processing. However, there is no data available on the length of 

CD14 pre-mRNA made prior to mRNA processing. Thus, in order to test whether CD14 

pre-mRNA (prior to mRNA processing) is extended enough to possess the binding site 

for hsa-miR-425-5p binding site, the CD14 pre-mRNA length was determined.  

 
 
3.5.14.4. CD14 pre-mRNA is at least 973bp long from its stop codon 
 
The length of CD14 pre-mRNA was determined by PCR-amplifying the CD14 3’ end 

from cDNA synthesized using random primers. Random primers are supposed to 

amplify all the transcripts irrespective of polyadenylation. Hence, if CD14 pre-RNA is 

longer than the polyadenylated CD14 mRNA, synthesizing cDNA using random 

primers should amplify them. With this rationale, cDNA synthesized using random 

primers were used as templates to determine the length of CD14 pre-mRNA. The 

methodology is explained in detail in chapter 2.2.5.4. Briefly, one constant forward 

primer (enclosing the stop codon of CD14 mRNA), in combination with different 

reverse primers, was employed to amplify 697bp, 986bp, 1604bp and 2075bp fragments 

from genomic DNA and from cDNA (Fig. 32).  
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Figure 32: Map showing the location primers employed to amplify CD14 pre-mRNA  

 

All the fragments were amplified from genomic DNA, while only 697bp and 986bp 

fragments were amplified from cDNA (Fig. 33) indicating that CD14 pre-mRNA 

extends at least 973bp long from its stop codon. Thus, it is quite reasonable to speculate 

that the miR-425-5p may bind CD14 pre-mRNA to mediate its regulatory effects.  

 

 
 
Figure 33: CD14 pre-mRNA length determination; lanes C: cDNA was used as 
template; lanes G: genomic DNA was used as template; lanes M:100bp marker; Fig a. 
697bp product amplification; Fig b. 986bp product amplification; Fig c. 1.6kb and 
2.0kb products were amplified from genomic DNA but not from cDNA. (cDNA was 
tested for genomic DNA contamination: Intron spanning primers for TNFRSF6, were 
employed to amplify products of size 250bp and 600bp from both cDNA as well as 
genomic DNA, respectively. Amplifying only 250bp product but not 600bp from cDNA 
indicated that cDNA is not contaminated with genomic DNA)   
 
 
3.5.14.5. MicroRNA binding efficiency is altered by CD14 3’ UTR polymorphism 

rs2563298 

 
As a next step, the consequence of CD14 3’ UTR polymorphism rs2563298 on mir-425-

5p binding efficiency was determined by using a web tool ‘RNAhybrid’ (Rehmsmeier 

et al., 2004). RNAhybrid is primarily designed to predict microRNA targets and it also 

calculates the minimum free energy (mfe) of hybridization of a long and a short RNA 

molecules. The binding efficiencies of T allele and G allele at CD14 3’ UTR 

polymorphism, rs2563298, with hsa-miR-425-5p microRNA were estimated (Fig. 34). 

697bp 986bp 1604bp 2075bp

Forward primer
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T alleleG allele

The T allele showed a higher mfe value (-24.3 kcal/mol) for hybridizing with 

microRNA compared to G allele (-28.5 kcal/mol). This finding suggested that hsa-mir-

425-5p microRNA can bind CD14 G allele at rs2563298 more efficiently than binding 

CD14 T allele at rs2563298. Thus, as a next step, the expression of mir-425-5p in 

different cell lines was tested.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 34: hsa-miR-425-5p binding efficiencies at CD14 rs2563298 G and T alleles; 
microRNA sequence is shown in green colour and CD14 3’ UTR sequence is shown in 
red colour. G allele shows the lower energy requirement (-28.5 kcal/mol) for 
hybridization. 
 

3.5.14.6. Standardization of hybridization technique for microRNA detection from 

different human cell lines 

 

In an effort to detect microRNA hsa-miR-425-5p from different cell types, 

hybridization protocol was standardized by using artificial hsa-miR-425-5p microRNA 

as a probe and its complimentary sequence as a target. The miR-425-5p probe was 

labeled with biotin (Fig. 35a). The miR-425-5p complimentary oligo, in different 

concentrations (300ng, 100ng, and 50ng), was coated on the membrane and hybridized 

at 48°C for overnight with 50ng of biotin-labeled miR-425-5p probe (Fig. 35b). The 

specificity of hybridization was confirmed by testing hybridization conditions on 

randomly chosen complementary sequences of known microRNAs (Fig. 35c) in which 

only 425-5p showed a signal. 10ng of probe on the membrane and 50ng of biotin-

labeled miR-425-5p in the hybridization solution was enough to detect hybridization 

signal.  Thus, it was possible to discriminate different microRNAs using this method.  
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Figure 35a: Confirmation of biotin labelling; artificial microRNA 425-5p oligo was 
biotin labeled, efficiency of labeling was tested by coating them on membrane and 
signal was detected (Biotin + is labeled with biotin and 425-5p biotin- is not labeled). 
Fig. 35b: 425-5p oligo, artificial complementary sequence for miR-425-5p microRNA, 
employed as a positive control and Anti-425-5p is a negative control. Both oligos were 
coated on the membrane and hybridized with 425-5p oligo Biotin+. 
Fig. 35c: miR-191 and miR-610 complementary sequences were employed to test the 
specificity of miR-425-5p hybridization. 425-5P oligo Biotin+ hybridized only with its 
complementary oligo. 
Fig. 35d: Total microRNAs were isolated from 293T, A549, and T84 cell lines and 
biotin labeled. The labeling efficiency was tested by coating them on the membrane 
followed by detection. 
 
Hence, the total microRNAs were isolated from 293T, T84, and A549 cell lines and 2µg 

of microRNAs were labeled with biotin. Biotin labeling of total microRNAs, isolated 

from different cell lines, was successful (Fig. 35d). Complementary oligos, both for hsa-

miR-425-5p and other 15 different randomly chosen human microRNAs, were coated 

on the membrane in two different concentrations (50ng and 10ng) and hybridized with 

10ng of biotin-labeled total microRNAs isolated from different cell lines.  

 

However, hybridization of total micorRNAs failed to detect any signal. As the 

hybridization was optimized for single microRNA (50ng) with its complimentary oligo 

(10ng), total microRNAs may not contain such a high concentration of targeted 

microRNA species. Moreover, the microRNA detection technology is developing 

currently. The optimized protocols for microRNA quantification, especially from cell 

lines which I used in this study, are still not established. Thus, hybridization with 

labeled total microRNAs still needs to be optimized with different concentrations of 

microRNA and its complementary sequence. The hybridization parameters have to be 

standardized further prior to making any conclusions on miR-425-5p microRNA 

mediated CD14 regulation.  

 

425-5P oligo425-5P oligo Biotin +

425-5P oligo Biotin - Anti-425-5P
425-5P oligo

300ng 100ng 50ng

miR-610

miR-191

a. Biotin labelling b. Hybridization c. Specificity
100ng10ng

MiR_A549_Bio+

MiR_293T_Bio+

MiR_T84_Bio+

d. microRNAs from
different cell lines
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3.5.15. Role of CD14 polymorphisms in cystic fibrosis 
 

The persistent, severe neutrophilic inflammation and inability of innate immune 

response to clear chronic bacterial infection due to pronounced imbalance between pro-

and anti-inflammatory cytokines is the characteristic of CF airways (Tümmler and 

Kiewitz, 1999). Macrophages and polymorphonuclear neutrophils are the phagocytic 

cells which play a central role in innate immunity through expression of pathogen 

recognition receptors such as CD14 and TLRs. CD14 is the LPS binding receptor that 

presents LPS to its signaling receptor complex, MD-2/TLR4 and can participate in 

activation of NF-kB to induce inflammatory response (Hajjar et al., 2002). The soluble 

CD14 readily binds LPS monomers and transfers to m (membrane bound) CD14 

(Hailman et al., 1996) or directly to the MD-2/TLR4 complex on cells that do not 

express mCD14 (Frey et al., 1992; Pugin et al., 1993). Additionally, CD14 was shown 

to bind other bacterial ligands such as peptidoglycans and lipoteichoic acid (Pugin et al., 

1994). Thus, for efficient recognition of bacterial invasion and effective induction of 

down stream signal via TLR4 or TLR2, CD14 protein levels are very critical. 

 

In this study CD14 promoter and 3’ UTR polymorphisms were investigated to 

determine the role of CD14 genetic variants in CF. The haplotype analysis showed a 

significant association with CF disease discordance (Table 20) indicating that the trans-

acting factors, which are encoded elsewhere in the genome, may bind CD14 alleles 

differentially and in turn modulate the CF disease. This finding was further confirmed 

by transmission disequilibrium test (TDT) at CD14, in which a significant transmission 

distortion of haplotype was observed (Table 21). Sequencing analysis of the complete 

CD14 gene revealed no sequence variants but promoter polymorphism and 3’ UTR 

polymorphism. Further analysis of CD14 genotypes at both polymorphisms among P. 

aeruginosa stratified cohorts identified an association between CD14 diplotypes and 

early or late acquisition of P. aeruginosa (Fig. 26).  Furthermore, the O-antigen 

phenotype of P. aeruginosa strains and level of antibodies against P. aeruginosa outer 

membrane protein F (AbProtF) was found to be associated with the CD14 diplotypes 

(Table 25, 26, and 27). Thus it is possible that the higher level of CD14 may effectively 

interfere with P. aeruginosa adaptation and chronic colonization in early ages of CF 

patients.   
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A recent association study in CF children showed that the CF patients having higher 

sCD14 levels remained P. aeruginosa free and CC genotype at CD14 promoter 

polymorphism had an increased risk of early infection with P. aeruginosa (Martin et al., 

2005). However, they failed to show an association between the CD14 genotypes and 

sCD14 levels in plasma of CF children. By contrast, in this study the CD14 diplotype, 

not genotype of any single polymorphism, was associated with both the levels of sCD14 

as well as the early acquisition of P. aeruginosa among CF patients. This discrepancy 

could be due to dissimilar selection of phenotypes for the study and evaluation 

approach. Moreover, the genotype analysis at single marker can detect the true 

association with the haplotype due linkage which is prominent in CD14. Accordingly, 

in this study, the association between CD14 promoter polymorphism and P. aeruginosa 

early acquisition was significant among unrelated CF patients in which CT genotypes 

were associated with late colonization of P. aeruginosa (Fig. 24). However, the 

diplotype analysis among CF twin and siblings clearly indicated that the association 

between P. aeruginosa related endophenotype and the CD14 polymorphisms is indeed 

due to interaction of both loci. Both polymorphisms may have a functional impact on 

CD14 levels, as shown by published data and in-silico work carried out in this thesis. 

 

It is shown by Tricia DL et al. (2001) that CD14 promoter polymorphism alters the 

binding site for Sp1/Sp2/Sp3 transcription regulators and further they hypothesized that 

the enhanced binding of Sp3 to C allele at CD14 promoter polymorphism could result in 

transcriptional repression of CD14.  Although, several studies have shown that the 

variations within 3’ UTRs of different genes can cause diseases in humans (Chen et al., 

2006), no studies have investigated the CD14 3’ UTR polymorphism to explain its role 

in determining sCD14 levels. In-silico analysis in this study predicted two potential 

possibilities of how 3’ UTR polymorphism may regulate sCD14 levels. One possibility 

could be by altering the binding efficiency of CD14 RNA to the proteins involved in 

mRNA 3’ end formation (Fig. 28). This might lead to reduced efficiency of mRNA 

processing and in turn reduced level of CD14 transcripts. The other possibility 

identified in this study is that the polymorphism in CD14 pre-mRNA may alter the 

binding efficiency of hsa-miR-425-5p microRNA (Fig. 30-34), which might cause 

defect in mRNA processing or complete degradation of CD14 RNA molecules.  
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However, further experiments are necessary to detect the microRNA hsa-miR-425-5p 

from different cell lines, including peripheral blood mononuclear cells and to investigate 

its role in CD14 mRNA regulation. If the polymorphism alters the efficiency of 

microRNA mediated CD14 mRNA quantity then, the quantity of microRNA and CD14 

mRNA both isolated from the same sample should be inversely proportional if the 

sample is homozygous for G at CD14 3’ UTR polymorphism (Fig. 11). This can be 

tested by isolating both microRNA fractions as well as CD14 mRNA from peripheral 

blood mononuclear cells from individuals harboring different genotypes at CD14 3’ 

UTR polymorphism. The CD14 mRNA and microRNA hsa-miR-425-5p can be 

quantified by real-time PCR and hybridization experiments, respectively. By this 

approach, the association between the microRNA, the CD14 mRNA and the CD14 3’ 

UTR polymorphism can be explored.  

 

In summary, we identified CD14 promoter polymorphism and CD14 3’ UTR 

polymorphism as causative variants of both CF disease modulation as well as 

determinants of age at onset of P. aeruginosa chronic colonization in CF patients. 

Furthermore, by phenotyping assays and in-silico analysis we highlighted the 

mechanistic role of both polymorphisms in regulating the level of sCD14, and thereby 

affecting the CF pathology. 
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3.6. Analysis of CD95 as a modulator of cystic fibrosis 
 
 

Apoptosis is an essential physiological process for the homeostasis of epithelial and 

inflammatory cells. This process is regulated by many factors such as oxidative stress 

(Buttke, T.M. et al., 1994), extracellular matrix proteins (Meredith et al., 1993), and 

CD95 ligation (Nagata and Golstein, 1995). CD95 is a cell-surface receptor belonging 

to the tumour necrosis factor (TNF) receptor family of apoptosis signalling molecules. 

Cloning of CD95 molecule showed it to be a 319-aa type 1 transmembrane glycoprotein 

and found to be expressed in several tissues, including thymus, spleen, ovary and heart, 

and on a number of cell types, including activated T- and B-lymphocytes (Itoh et al., 

1991; Watanabe-Fukunaga et al., 1992). CD95 and CD95 (L) ligand are particularly 

essential for the elimination of haematopoietic cells, including lymphocytes, monocytes 

and macrophages, as these cells are increased in CD95-deficient lpr and CD95L-

deficient gld mice (Cohen and Eisenberg, 1991). Similarly, mutations in human CD95 

gene were shown to cause lymphoproliferation and autoimmunity (Fisher et al., 1995). 

Furthermore, in P. aeruginosa pneumonia model, it was shown that P. aeruginosa 

infection induces apoptosis of lung epithelail cells by activation of endogenous 

CD95/CD95 ligand system and deficiency of either CD95 or CD95 ligand caused 

increased mortality in mice (Grassme et al., 2000).  

 
 
 

 
 
Figure 36: Schematic representation of CD95 (TNFRSF6) gene structure; CD95, 
located on chromosome 10q24.1, is 25.2kb long and has nine exons. Polymorphisms 
shown on the CD95 gene are targeted for fine mapping. SNPs are indicated by rs 
followed by their unique numbers (Location and size are based on NCBI, NC_000010.9 
Reference assembly: Build 36.2) 
 

 

 

CodingUTRNon-coding

rs1800682 rs1324551 rs2147420 rs2296603 rs7901656 rs1571019

TNFRSF6, chromosome 10q24.1

2kb
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3.6.1. Skewed allele distribution among CF siblings on CD95 
 

All families of 37 F508del homozygous sib pairs were subjected to the Monte Carlo 

simulation based test and the analysis revealed disproportionate transmission of alleles 

on CD95. The comparison of transmitted and non-transmitted alleles and haplotypes 

showed transmission distortion, in which frequency distribution was significantly 

skewed for the haplotype block rs1324551-rs7901656 (P = 0.03, Fig. 37), which enclose 

intron 1 and intron 2. However, single-marker analysis did not reach the statistical 

significance after correction for multiple testing (P = 0.16). The haplotype A-C at 

rs1324551-rs7901656 was over transmitted to CF offspring while the haplotype G-C 

was frequently observed among non-transmitted parental haplotypes (Table 28). 

Consistently, haplotype A-C was found to be risk haplotype and was overrepresented 

among severely affected pairs. While haplotype G-T was underrepresented among 

severely affected (CON-) pairs compared to mildly affected pairs (Table 28).  

 

Figure 37: Family based analysis of haplotype blocks on CD95 among CF twin and 

siblings 

 

 
 
Fig. 37: Family based analysis of haplotype blocks. P-values are shown for single 
markers (open circles) and haplotypes of adjacent markers (lines). The x-axis depicts 
the physical distance between the markers and the y-axis denotes the P-value. The 
corrected P-value for haplotype block rs1324551-rs7901656 is P = 0.03. (Data is 
corrected for sib-pair dependence in co-operation with T. Becker, Bonn). 
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Table 28: Frequency distribution of rs1324551-rs7901656 haplotype block on 

CD95 among CF twin and siblings 
CD95 

rs1324551-rs7901656 
haplotype 

Transmitted Non-
transmitted 

CON- CON+ DIS 

G-C 0.26 0.38 0.14 0.14 0.21 
G-T 0.30 0.35 0.19 0.40 0.28 
A-C 0.43 0.21 0.67 0.46 0.50 
A-T 0 0.05 0.0 0.0 0.0 

 

3.6.2. Association between CD95 and CF disease severity revealed by single-

marker analysis 

 
CD95 was evaluated as a modulator in CF by initially typing six SNPs located on CD95 

(Fig. 36). Allele and genotype distributions were compared between both mildly 

affected and severely affected patient pairs as well as CONC and DIS pairs. The allele 

distributions were similar at all tested loci in both the comparison. However, genotype 

distributions were significantly different between severely and mildly affected pairs at 

all loci but rs2296603 (P = 0.26) and rs1571019 (P = 0.75) revealed by uncorrected 

single-marker P-values, in which heterozygotes were overrepresented among CON- 

group. To identify the exact sequence block involved in disease variation, haplotype 

blocks for adjacent markers were constructed and their distributions were analysed in 

CF twin and sibling cohort. 

 

3.6.3. Haplotype analysis confirmed the association between CD95 and CF disease 

severity  

 
Two-marker haplotypes were constructed for all available families and distribution was 

systematically evaluated among CF twin and siblings. As it is shown in Figure 38, 

distribution of haplotype block rs2296603-rs7901656 was significantly different 

comparing CON- and CON+ (P = 0.04), while all other blocks were similarly 

distributed among all the tested groups. The haplotype distributions were corrected for 

sib-pair dependence and multiple testing (Fig. 39). Indeed, the same haplotype block 

(rs2296603-rs7901656) was found to be associated with disease severity (P = 0.06), 

assuring that the two-marker haplotype distribution evaluation as a robust and accurate 

method.  
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Figure 38: Direct comparisons of CD95 haplotype distributions among CF twin 
and siblings using Monte-Carlo simulation of k x 2 tables 
 

 
 
Fig. 38 Case-control analysis comparing mildly (CON+) and severely (CON-) affected 
patient pairs. P-values are shown for genotype distribution at single markers (open 
circles) and haplotypes of adjacent markers (lines). The x-axis depicts the physical 
distance between the markers and the y-axis denotes the P-value. P = 0.04 was 
observed for the haplotype block rs2296603-rs7901656 
 
 
Figure 39: CD95 haplotype distributions among CF twin and siblings analysed by 
correction for multiple testing and sib-pair dependence 
 

 
 
Fig. 39 Case-control analysis comparing mildly (CON+) and severely (CON-) affected 
patient pairs. P-values are shown for single markers (open circles) and haplotypes of 
adjacent markers (lines). The x-axis depicts the physical distance between the markers 
and the y-axis denotes the P-value. P = 0.06 (corrected for multiple testing) was 
observed for the haplotype block rs2296603-rs7901656 
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Furthermore, three-marker haplotype block (rs2296603-rs7901656-rs1571019) showed 

differences in haplotype distribution comparing CON+ and CON- pairs (P = 0.02). 

However, two out of the 3 row comparing this haplotype did not reveal altered genotype 

distribution comparing CON+ and CON-  (rs1571019; P = 0.81,  rs7901656-rs1571019 

; P = 0.39). This finding strongly suggested that the sequence variant is located within 

the haplotype block rs2296603-rs7901656. Thus, the entire haplotype block rs2296603-

rs7901656, located within intron 2 of CD95 gene, was sequenced. Furthermore, to 

exclude the possibility of any coding variants for the association, the complete coding 

region from exon 1 to exon 8 of CD95 gene was sequenced. 

 
3.6.4. Sequence analysis of CD95 coding region and intron 2 
 
Genomic DNA samples from nine individuals, in which four individuals were 

harbouring haplotype A-C at rs2296603-rs7901656, 3 individuals were carrying 

haplotype G-T at rs2296603-rs7901656 and two individuals were carrying haplotype A-

C at rs2296603-rs7901656, were selected for sequence analysis. The sequenced region 

contained part of promoter, exons 1 to 8, including intron-exon boundaries and entire 

intron 2.  

 
Table 29: Sequencing of CD95 coding and promoter region confirmed the 
previously reported polymorphisms 

Region NCBI SNP ID Heterozygosity† PIC‡ 
Promoter rs2234768 0.156 - 
Promoter rs1800682* 0.500 0.37 
Intron 2 rs2296603* 0.488 0.37 
Intron 2 rs2031611 0.270 - 
Intron 2 rs9658741 0.491 - 
Intron 2 rs9658742* 0.500 0.37 
Intron 2 rs9658748 0.119 - 
Intron 2 rs7901656* 0.457 0.35 
Intron 2 rs9658750 0.124 - 
Intron 2 rs2031613 0.272 - 
Intron 2 rs2031612 0.488 - 
Exon 3 rs3218612 – Synonymous 0.116 - 

Intron 5 rs7911226 0.476 - 
Intron 6 rs2296600 0.484 - 
Exon 7 rs2234978 – Synonymous 0.333 - 

* Polymorphisms tested in this study; † Heterozygosity values reported in NCBI; ‡ 
Polymorphism information content determined by accounting parental allele 
frequencies  
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Targeted fragments were PCR-amplified and sequenced. Sequencing of the coding 

region and intron 2 did not reveal any novel sequence variants; however it confirmed 

previously reported polymorphisms (Table 29). Sequencing of CD95 intron 2 fragment, 

encompassing the targeted haplotype block rs2296603-rs7901656, showed three 

previously reported polymorphisms rs9658741, rs9658742 and rs9658748. The 

genotype distribution at these three loci indicated the transmission of alleles irrespective 

of genotypes at rs2296603 and rs7901656 (Table 30). 

 
Table 30: Sequencing results from the CD95 rs2296603-rs7901656 haplotype block 

 
 
 
 
 
 

 * Polymorphisms tested in this study 
 
 

3.6.5. Fine-mapping within haplotype block rs2296603-rs7901656  
 
To test whether any of the SNPs lying within the haplotype block rs2296603-rs7901656 

show an association with the disease severity, rs9658742 was typed by PCR-RFLP on 

CF twin and siblings. Single-marker analysis at rs9658742 showed an allelic imbalance 

between CON+ and CON- pairs (P = 0.06). Further, subsequently breaking the 

rs2296603-rs7901656 haplotype fragment with rs9658742 data did not show any 

association with the disease severity and haplotype distribution (Fig. 40).  However, 

haplotype structure indicated that the causative variants are located between rs9658742 

and rs7901656 as haplotype block rs9658742-rs7901656 showed a trend of dissimilar 

distribution between mildly and severely affected patient pairs.  

 

 

 

 

 

 

 

 

 rs2296603* rs9658741 rs9658742* rs9658748 rs7901656* 
1 AA AA C/G TT CC 
2 GG GG CC TT TT 
3 A/G GG CC G/T C/T 
4 AA GG CC TT CC 
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Figure 40: Fine-mapping the targeted haplotype rs2296603-rs7901656 with a SNP 

rs9658742 

 

 
 
Fig. 5 Case-control analysis comparing mildly (CON+) and severely (CON-) affected 
patient pairs. P-values are shown for haplotypes of adjacent markers (lines). The x-axis 
depicts the physical distance between the markers and the y-axis denotes the P-value. P 
= 0.1 was observed for the haplotype block rs9658742-rs2296603 
 
3.6.6. Conserved non-coding sequences (CNS) in CD95 gene 
 
Often regulatory sequences are only very short (only a few base-pairs long) and difficult 

to find. One way to discover them is by searching conserved areas, sequences that have 

persisted for millions of years of evolution among different organisms. Thus, 

comparison of genomic sequences by sequence aligning tools such as VISTA predicts 

the conserved non-coding sequences among different organisms (Mayor et al., 2000; 

Frazer et al., 2004). Analysis of the entire CD95 genomic sequence by aligning against 

mouse CD95 genomic sequence by VISTA (Visualisation Tools for Alignments) tool 

identified 14 blocks of conserved non-coding sequences (CNSs) with in CD95 gene 

(Fig. 41). Surprisingly, three CNSs were located within intron 2 of CD95 gene. 

Screening the haplotype block rs9658742-rs7901656 block for CNSs revealed that there 

were actually two CNSs blocks of size 100bp each, positioned within rs9658742-

rs7901656 fragment separated by only 260bp from one another.  SNP rs7901656 is 

exactly located within the second CNS block of intron 2 (Fig. 42).  Stretch of 500bp 

sequence encompassing two CNSs blocks and location of probable causative SNP on 

one of these blocks raise the possibility that this region is involved in regulation of gene 

function in an unknown way.   
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Fig. 41 VISTA plots displaying percentage identity between mouse and human in the 
CD95 gene. Two CNS blocks within the targeted haplotype (intron 2 of CD95 gene) 
fragment are indicated in green box 
 

3.6.7. Low-helical stability regions within intron 2 of CD95 gene 
 
DNA helical stability is nothing but free energy required for unwinding and separating 

the strands of the double helix. Experimentally, the low helical stability of regulatory 

regions has been detected by hypersensitivity to single-strand specific nucleases. A 

computer programme “WEBTHERMODYN” (Huang and Kowalski, 2003) was 

employed to determine the helical stability of entire CD95 gene.  Interestingly, the tool 

identified a region of low helical stability within intron 2 of CD95 gene. The low helical 

stability region exactly overlapped the second CNS in the intron 2 of CD95 (Fig. 42). 

This finding further strengthened the hypothesis that second CNS is involved in gene 

regulation. 

 
 
Fig. 42: Primary sequence of the low-helical stability region within intron 2 of CD95 
gene. Second CNS is shown in grey background. Position of rs7901656 within second 
CNS is shown in blue box. 
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3.6.8. The CNS on intron 2 of CD95 gene act as a hot-spot for transcription factor 

binding 

 
The P-Match tool (Chemenev et al., 2005) combines both pattern matching and weight 

matrix approaches thus providing higher accuracy of recognition of transcription factor 

binding sites. It is closely interconnected with the TRANSFAC database (Chapter 

2.2.14) and hence P-Match tool was used in this study to find out the possible 

transcription factors and their binding sites in intron 2 of CD95 gene. Fig. 43 shows the 

transcription factors and their binding sites found on intron 2 of CD95 gene. Strikingly, 

all the four transcription factor binding sites were located exclusively on second CNS of 

intron 2. Furthermore, the SNP rs7901656 altered the binding site, in which allele C 

creates a binding site for c-Rel transcription factor. Thus we assumed that the SNP 

rs7901656 is a causative variant and it is involved in differential transcription activity of 

the gene.  

.   

 
 
Fig. 43: Composite sequence elements for transcription factors with in intron 2 of 
CD95. The T to C SNP (rs7901656), shown in small rectangle, alters the binding site 
for c-Rel transcription factor. 
 
 
3.6.9. The SNP rs7901656, but not rs1800682, determines the transcriptional 

activity of CD95 among CF patients 

 
To investigate the role of rs7901656 polymorphism in CF, a cohort, containing 15 

unrelated F508del homozygous CF patients, was analysed. These 15 patients were 

initially recruited, as part of another study, to investigate the residual activity of CFTR 

and its effect on global transcriptome (Chapter 2.1.5). 

 

accactagca aaaaataaaa ttatacttgg acttgggttc tgttttcttt aaatattgct acaatgttat

atagccctat gcactatttt tgaattttgt tctgggaatc tccagtttgt tttttactat tgacagacta

ttatctttac ttactaaaat agcatatata tttacatgtc ataatttgct catgtagtaa atattttgtt

ttatcaaaaa gaatatatga agttattaag gaattcattgt tcctaggaaa cacagcagaa attaattttg

STAT1alpha 

NF-kappaB  

Nkx-2.5 

c-Rel
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Fig. 44 CD95 intron polymorphism is associated with mRNA levels; Genotypes at 
rs7901656 (Fig. a) and at rs1800682 (Fig. b) were plotted against CD95 mRNA data 
from the affymetrix chips. Dark horizontal lines denote mean values. P-values are 
derived from Mann-Whitney U test. 
 
Total RNA was isolated from rectal suction biopsies from these patients and mRNA 

was quantified by affymetrix chips. Thus global transcriptome data was available for 

these patients and interestingly CD95 gene was found to be differentially expressed 

among this cohort (Unpublished data).  Hence, these 15 patients were genotyped at 

rs7901656 and rs1800682. CD95 expression data was compared against the genotypes 

(Fig. 44). The polymorphism rs1800682 is located at nucleotide position -670 in the 

enhancer region of the CD95 promoter and it modifies a potential binding site for GAS 

transcriptional element (Huang et al., 1997; Shuai, 1994). However, this polymorphism 

failed to show any association with the CD95 mRNA quantity (P = 0.3). Surprisingly, a 

clear association between genotype at rs7901656 and CD95 mRNA level was observed. 

The CC individuals had a significantly higher level of CD95 mRNA compared to CT 

and TT individuals at rs7901656 (P=0.003). Thus, the SNP rs7901656 is presumably of 

biological significance since variables associated strongly with transcriptional activity. 

 
 
 
 
 
 

Fig. a CD95 transcriptome level 
against intron polymorphism

Fig. b CD95 transcriptome level 
against promoter polymorphism
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3.6.10. Real Time PCR analysis to determine the expression status of the CD95 in 

peripheral blood mononuclear cells 

 
In order to investigate whether the CD95 polymorphism rs7901656 also play a role in 

peripheral blood mononuclear cells, the defense effector cells, FACS and real time PCR 

analysis were carried out on 12 samples of peripheral blood mononuclear cells, isolated 

from 12 different healthy individuals. The CD95 mRNA level was analysed by real time 

PCR and compared against their genotypes at CD95 intron 2 SNP, rs7901656.  

 

 
 
Figure 45: Quantification of CD95 expression on PBMCs from 12 healthy volunteers. 
Left panel: comparison of CD95 to GAPDH mRNA ratio between first 6 unrelated non-
CF individuals [two CC (white bars), two CT (grey bars) and two TT (black bars) 
genotypes at rs7901656]. Right panel: Comparison of CD95 to GAPDH mRNA ratio 
between second 6 individuals [three CC (white bars) and three CT (grey bars) 
genotypes at rs7901656]  
 

Among 12 volunteers, five individuals were homozygous for C allele, five individuals 

were heterozygous (CT) and only two individuals were homozygous for T allele. The 

mRNA level was expressed as CD95 to GAPDH ratio. Two set of experiments were 

done to analyse the mRNA ratio on 12 different samples of peripheral blood 

mononuclear cells, in which six samples were analysed in each experiment. In contrast 

to the association seen with mRNA data from CF patients, in whom heterozygotes are 

associated with lower level of mRNA, the real time PCR data on peripheral blood 

mononuclear cells from healthy individuals showed no significant association with the 

genotype (Fig. 45). Thus, CD95 intron 2 SNP was not associated with CD95 mRNA 

levels in peripheral blood mononuclear cells from healthy volunteers.    
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3.6.11. CD95 surface expression level on peripheral blood mononuclear cells 

analysed by FACS 

 
The CD95 surface expression levels were assessed by FACS to test the role of CD95 

polymorhism in peripheral blood mononuclear cells from healthy volunteers. The 

surface expression levels of CD95 on peripheral blood mononuclear cells were 

compared against their genotype at rs7901656 (Fig. 46). 

 
Figure 46: CD95 surface expression level vs. rs7901656 genotypes; P-values are 
derived by comparing CC and CT groups by Mann-Whitney U test. P ≤ 0.05 was 
considered significant. These data are representative of two independent experiments. 
 
The expression level of CD95 was analysed on different cell populations of peripheral 

blood mononuclear cells such as total peripheral blood mononuclear cells, CD14+ cells 

(monocytes), CD19+ cells (B-cells), CD3e+ cells (total T-cells), CD4+ cells (T-helper 

cells) and CD8+ cells (cytotoxic T-cells) to investigate whether the CD95 intron 2 SNP 

play any role in cell specific expression of CD95. No significant association was 

observed between genotype at CD95 intron 2 SNP and CD95 surface expression levels 

on different cell types of peripheral blood mononuclear cells. This finding suggested 

that the CD95 polymorphism is not determining the CD95 expression levels in 
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peripheral blood mononuclear cells of healthy volunteers and hence intron SNP function 

could be specific to either or both epithelial cells and to CF context. 

 
3.6.12. CD95 intron SNP (rs7901656) and promoter SNP (rs1800682) are not 

associated with P. aeruginosa early or late colonisation 

 
Both rs7901656 and rs1800682 were tested to evaluate CD95 locus for its association 

with P. aeruginosa chronic colonisation. The cohort containing 22 unrelated F508del 

homozygous CF patients, stratified for early and late P. aeruginosa chronic 

colonisation, was typed at rs7901656 and rs1800682.  

 

 
 
Figure 47: C to T SNP rs7901656 genotype and A to G SNP rs1800682 are denoted on 
x-axis. PA-early: Patients chronically colonised within seven years of their age. PA-
late: Patients chronically colonised after 15 years of their age.  
 

Genotype distributions at rs7901656 and rs1800682 were compared between 13 patients 

belonging to P. aeruginosa early colonised and nine patients of P. aeruginosa late 

colonised groups. The genotype distributions (Fig. 47) in both P. aeruginosa early 

colonised and P. aeruginosa late colonised patients were similar at rs7901656 (P = 

0.85) and at rs1800682 (P = 0.86). 

 
3.6.13. The role of CD95/CD95L signaling in cystic fibrosis 
 
A precise balance between cellular apoptosis and cellular survival is essential for the 

proper functioning of the immune system. Apoptosis mediated by CD95/CD95L 

pathway is one of the mechanisms used to control immune responses. CD95 

(FAS/APO-1), a member of tumor necrosis factor receptor superfamily, is a cell surface 
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receptor interacts with its ligand CD95L to regulate programmed cell death in different 

lymphoid cells (Ashkenazi and Dixit, 1998). Furthermore, it is shown that P. 

aeruginosa binds to CD95 and trigger apoptosis by activating the acid 

sphingomyelinase enzyme that releases ceramide in membrane rafts (Grassme et al., 

2000, 2001) which in turn promotes the fusion of small rafts to a large ceramide-

enriched membrane platform that serves to cluster and signal CD95 (Gulbins et al., 

2004). Indeed, clustering of CD95 as a general mechanism involved in signaling via this 

receptor has been shown to occur in different cell types, including lymphocytes, 

hepatocytes, fibroblasts, phagocytes and thymocytes (Fanzo et al., 2003; Hueber et al., 

2002). The clustering of CD95 and its ligand leads to recruitment of Fas Associated 

Death Domain (FADD) to the receptor death domain and initiates programmed cell 

death, mediated by activation of a family of proteases termed caspases (Salvesen and 

Dixit, 1997). 

 

In this study, CD95 receptor was analysed as a modulator of CF by genotyping CD95 

polymorphisms in CF twin and sibling cohort stratified for disease severity and P. 

aeruginosa colonisation. The family based analysis to identify transmission 

disequilibrium among CF siblings at CD95 locus revealed a significant transmission 

distortion of haplotype block encompassing entire intron 1 and intron 2 of CD95 (Fig. 

37) indicating CD95 locus as a modulator in CF. Further haplotype analysis and fine 

mapping showed that the non-coding variant located within intron 2 of CD95 was 

significantly associated with disease severity (Fig. 38 and 39) and also associated with 

differential expression of CD95 mRNA in rectal tissues of CF patients (Fig. 44), in 

which the low expressing genotypes were associated with severe CF disease. However, 

CD95 mRNA quantification by RT-PCR (Fig. 45) and CD95 surface expression 

analysis by FACS (Fig. 46) in peripheral blood mononuclear cells from healthy 

volunteers failed to show the similar association with the intron 2 SNP genotype. This 

outcome suggested that the intron SNP function is specific to cell type (only in 

epithelial cells) or specific to CF phenotype (hyperinflammatory).  This finding is of 

high significance, as in CF scenario, it has been reported that the CD95 and CD95L 

expression was increased in lung sections obtained from CF patients colonised with 

Staphylococcus aureus or P. aeruginosa compared with uninfected control subjects 

(Durieu et al., 1999). Similarly, Cannon et al., (2003) reported that the expression of 

CD95/CD95L after infection of P. aeruginosa was CFTR dependent, in which P. 
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aeruginosa induced a delayed apoptotic response in cultured cells expressing mutant 

CFTR compared with cells expressing wild-type CFTR. The increased expression of 

CD95 and CD95 ligand on epithelial cells after infection by P. aeruginosa with active 

type III secretion system has also been shown by several other studies (Grassme et al., 

2000; Jendrossek et al., 2001; 2003). These observations indicate the significance of 

CD95/CD95L mediated apoptosis as a host defense mechanism in epithelial cells 

against P. aeruginosa among CF patients. 

 

The analysis of CD95 polymorphisms in a cohort stratified for P. aeruginosa 

colonisation did not show any evidence of association (Fig. 47). This would imply that 

the level of CD95 expression in CF patients is not solely determined by P. aeruginosa 

infection but the overall CF phenotype. It is shown that inflammation occurs very early 

in CF airways before any infection (Tirouvanziam et al., 2000). Hence, it is plausible 

that the proinflammatory cytokines which are specifically induced due to CF basic 

defect may stimulate the CD95 expression by activating tissue specific transcriptional 

regulators, for instance NF-kB. In this regard, it is important to note that the 

polymorphism within intron 2 was located within a conserved non-coding sequence 

(CNS) and altered the binding site for NF-kB family member c-Rel (Fig. 43). 

Additionally, the CNS within intron 2 also harboured composite sequence elements for 

several transcription factors, including a perfect consensus binding site 

“GGGRNNYYCC” for NF-kB (Fig. 43). It is known that the NF-kB members dimerize 

to form homo- or heterodimers, which are associated with specific responses to different 

stimuli and differential effects of transcription (Ghosh et al., 1998). Furthermore, 

experiments with cell lines deficient for single or multiple NF-kB subunits revealed that 

the in vivo specificity of cellular gene activation does not only lie within the sequence 

of the kB DNA site, but is also likely to be greatly influenced by combinatorial protein-

protein interactions with other promoter-bound factors (Hoffmann et al., 2003). 

Accordingly, CD95 was shown to be one of the several kB-dependent genes as it 

harbours NF-kB binding sites in its promoter (Hoffmann et al., 2003). Thus, it is 

reasonable to speculate that the interaction of NF-kB members bound both in intronic 

enhancer of CD95 and the promoter might determine the expression level.  
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Hence, it is necessary to validate the in-silico finding that c-Rel binding site with in 

enhancer region of CD95 intron 2 determines the expression level of CD95 in CF 

patients. This issue can be resolved by performing experiments such as electrophoretic 

mobility shift assay (EMSA) or chromatin immuno-precipitation (ChIP) techniques to 

find out whether or not the transcription factor c-Rel binds to CD95 intron. 

Furthermore, the question of cell specificity and CF specificity of the polymorphism can 

be answered by performing CD95 expression analysis (Real-time PCR and FACS) on 

both epithelial cells and peripheral blood mononuclear cells isolated from the CF 

patients as well as healthy individuals harbouring different genotypes at CD95 intron 

SNP. Taken together, a combination of human genetic, comparative genomic and 

functional analyses cumulatively demonstrates that the CD95 non-coding variants 

modulate the CF disease severity via variable CD95 gene expression. 
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4. Conclusions 
 
The main objectives of this study were to identify the role of innate immunity genes 

such as toll like receptor-2, toll like receptor-4, toll like receptor-5, toll like receptor-9, 

CD14, Surfactant protein-D, IL-8 receptor 2 (CXCR2), tumour necrosis factor receptor-

1 and TNFRSF6A (CD95) in CF disease severity modulation and modulation of 

susceptibility to P. aeruginosa infection in CF patients. In order to evaluate them as CF 

modulators, informative single nucleotide polymorphisms and DNA microsatellites 

within or in the vicinity to these genes were typed in European CF Twins and Sibs with 

extreme clinical phenotypes and unrelated CF patients stratified for P. aeruginosa early 

or late colonisation.  

 

4.1. Single marker analysis showed no association between TLR2, TLR5 and TLR9 

polymorphisms and CF disease severity 

 
TLR2, TLR5 and TLR9 are receptors for bacterial lipoproteins, flagellin and 

unmethylated CpG motifs, respectively. These innate immunity genes were investigated 

as CF disease severity modulators by genotyping informative single nucleotide 

polymorphisms in CF twin and siblings. The allele and genotype distributions were 

compared between mildly affected and severely affected CF patient pairs. The single 

marker analysis on TLR2, TLR5 and haplotype analysis on TLR9 did not reveal any 

association with CF disease severity among CF twin and siblings at all tested loci in 

these three genes (Chapter 3.1). To conclude that these genes do not modulate CF more 

markers have to be analysed in the gene, as a gene can not be excluded as a modulator 

by single locus analysis using one SNP. 

 

A minor association was found between surfactant protein-D, CXCR2, PON locus 

polymorphisms and CF disease severity 

 
4.2. Surfactant protein-D and CF disease severity 
 
Surfactant protein-D (SP-D) is a serum collectin and plays an important role in first-line 

defense of mucosal surfaces. SP-D is located on long arm of chromosome 10, 335kb 

downstream of another important innate immune collectin, surfactant protein-A. The 

allele and genotype distributions at a non-synonymous polymorphism within second 

exon of SP-D were compared between mildly and severely affected CF patient pairs. A 
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non-statistical significant association was found between disease severity and SP-D 

polymorphism (chapter 3.2.1). This finding points to a potential involvement of the SP-

D locus in CF disease modulation. However, SP-A is also located close to SP-D. Hence, 

to discriminate between SP-A and SP-D, two adjacent equally plausible genes, more 

markers have to be typed.  

 

4.3. CXCR2 is a modulator of CF disease discordance 
 
CXCR2 is a chemokine receptor expressed mainly on neutrophil surface. This receptor 

is responsible for the recruitment of neutrophils in response to IL-8. The comparison of 

allele and genotype distributions at a synonymous SNP, located within exon 3 of 

CXCR2, between mildly and severely affected patient pairs did not show any 

association, while the allele distribution between concordant and discordant pairs was 

significantly different (chapter 3.2.2). This finding indicated that trans-factors encoded 

elsewhere in the genome may bind differentially to cis-regulatory elements on CXCR2 

locus and in turn cause CF disease modulation. Further analysis of this polymorphism 

on CF cohort stratified for early or late colonisation of P. aeruginosa showed similar 

distribution of allele and genotypes between both groups. In order to identify the 

causative variant and to unravel the molecular mechanism, fine-mapping of the CXCR2 

locus is necessary. 

 

4.4. Paraoxonase (PON) gene cluster as a modulator of CF disease severity 
 
The PON gene cluster, PON1, PON2 and PON3, is located 23cM distant from CFTR 

gene on chromosome 7. These genes codes for paraoxanase enzymes that are reported to 

be capable of degrading P. aeruginosa quorum sensing molecules termed homoserine 

lactones. The PON locus was investigated as a modulator of CF by genotyping a tri-

nucleotide repeat polymorphism located 32kb upstream of PON locus. The allele 

distribution was found to be dissimilar between mildly and severely affected CF pairs 

(chapter 3.2.3). This finding indicates that PON genes modulate CF disease severity, 

albeit a denser map is necessary to differentiate the effect caused due to hitchhiking 

with the CFTR gene and due to the PON locus itself.  
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4.5. Haplotype block with in TNFR1 first intron modifies the CF disease severity 

 

TNFR1 receptor binds TNFα proinflammatory cytokine and exerts proinflammatory 

response by activating NF-kB and AP-1 transcription factors. The previous work from 

our lab identified TNFR1 locus as a CF modulator by serendipity. The significant 

transmission distortion of the 6-marker haplotype block (rs740842-rs1800693-

rs1800692-D12S889-rs767455-rs2228576), encompassing complete TNFR1 gene, 

among CF offspring indicated that the TNFR1 locus is a CF modulator. Hence, initially 

the complete TNFR1 coding region was screened to identify the causative variants by 

sequencing the genomic DNA samples from individuals carrying contrasting TNFR1 

haplotypes. The sequencing results did not reveal any sequence variants within the 

coding region. However, fine-mapping of TNFR1 locus revealed that the two-marker 

haplotype (D12S889-rs767455) distribution was significantly different between mildly 

and severely affected patient pairs. Furthermore, this two-marker haplotype (D12S889-

rs767455) was located within intron 1 of TNFR1 gene. Thus, the complete 7.5kb of 

intron 1 was analysed by sequencing to identify the causative variants. Sequencing 

analysis identified seven naturally occurring SNPs with in intron 1. Interestingly, 7.5kb 

sequence of TNFR1 intron 1 differed by haplotype at these seven SNPs. Thus, it was 

concluded that either one of the intron 1 SNPs or a haplotype composed of several 

allelic variants within intron 1 alters the functionality of TNFR1 (chapter 3.3.4).  

 

This hypothesis was further strengthened by in-silico analysis. The functionality of the 

intron 1 variants at the haplotype level was predicted by the AltaVista Genome Browser 

and Genome Atlas software. Comparison of two contrasting haplotypes by these two 

tools revealed that the alterations in DNAse hypersensitive sites, local inverted repeats 

and conserved non-coding sequences due to intron 1 variants might cause differential 

transcription of TNFR1. This notion was validated by comparing the soluble TNFR1 

levels (both 55kDa- and 28kDa-forms) in serum from CF patients to their intron 1 

haplotype. Thus, the western blot analysis confirmed the association between intron 1 

haplotype and sTNFR1 levels in CF patients’ serum, in which the levels of both 55-kDa 

as well as 28kDa forms of TNFR1 correlated with TNFR1 intron 1 haplotype. Hence, it 

is necessary to investigate how the intron 1 variants of TNFR1 determine the levels of 

soluble TNFR1 in serum. In conclusion, the TNFR1 gene was identified as a modulator 



105 

of CF disease severity and the non-coding variants within intron 1 may modulate CF 

disease severity by determining the sTNFR1 levels in CF patients.    

 

4.6. The TLR4 promoter variants modulate CF disease severity but not age at onset 

of P. aeruginosa colonisation  

 

TLR4, an innate immunity gene, transduces signals necessary for the production of 

inflammatory mediators by recognising the gram negative bacterial LPS. The TLR4 

locus was analysed as CF modulator by typing five SNPs and a di-nucleotide 

polymorphism in CF twin and siblings (chapter 3.4). The single marker analysis showed 

a significant difference in allele distribution between mildly and severely affected pairs. 

Sequencing of TLR4 coding region did not reveal any sequence variants. Further two-

marker haplotype analysis revealed a significant difference in the distribution of two-

marker haplotype block located on the promoter of the TLR4 gene between mildly and 

severely affected CF patient pairs. This finding suggested that the TLR4 locus is a 

modulator of cystic fibrosis disease severity. The TLR4 expression on monocytes, 

isolated from healthy volunteers, was compared with their TLR4 promoter genotype in 

an attempt to disclose the functionality of the SNP. We found no association with the 

TLR4 promoter SNP genotype and the expression level TLR4 on monocytes from 

healthy individuals. Next, the TLR4 promoter polymorphism was tested in CF unrelated 

patients stratified for P. aeruginosa early or late chronic colonisation to investigate its 

role in determining the susceptibility to P. aeruginosa among CF patients. The allele 

and genotype distributions of the TLR4 promoter polymorphism were similar in both P. 

aeruginosa early or late colonised pairs. Thus, it was concluded that the haplotype block 

on TLR4 promoter plays a role in CF disease severity modulation but not age at onset of 

P. aeruginosa chronic colonisation. 

 

4.7. The CD14 polymorphisms determine both CF disease severity as well as the 

age at onset of P. aeruginosa chronic colonisation 

 

CD14 is a receptor for several bacterial ligands including LPS. The CD14-LPS complex 

is recognised by TLR4/MD-2 complex to activate NF-kB and induce inflammatory 

response. The CD14 gene was evaluated as CF modulator by testing the CD14 promoter 

polymorphism, the CD14 3’ UTR polymorphism and the haplotype of these two 
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polymorphisms (chapter 3.5). The analysis of haplotype distribution revealed a 

significant difference between concordant and discordant CF patient pairs. The 

significance was stronger at the 3’ UTR polymorphism. Thus it was concluded that the 

trans-factors, encoded else where in the genome, bind CD14 locus differentially and in 

turn modulate the CF disease severity. The sequencing of the complete CD14 gene 

confirmed the promoter SNP and 3’ UTR SNP but did not reveal any other sequence 

variants, indicating that either one or both of these SNPs were causative variants. This 

notion was further confirmed by the family based analysis in which the transmission 

disequilibrium was observed at these two loci between concordant and discordant CF 

patient pairs. However, the stronger distortion was seen at the CD14 3’ UTR 

polymorphism. Thus, it was concluded that the CD14 3’ UTR polymorphism mediates 

CF disease severity modulation.  

Furthermore, the role of the CD14 polymorphisms in determining the susceptibility to 

P. aeruginosa infection among CF patients was tested by comparing the transmission of 

genotype combinations among P. aeruginosa colonised patient pairs and P. aeruginosa 

non-colonised patient pairs. The transmission of genotype combination at the CD14 

promoter polymorphism was significantly different between P. aeruginosa colonised 

and non-colonised CF dizygous pairs. Testing these polymorphisms in a CF cohort 

stratified for the different age of birth indicated that heterozygotes at CD14 promoter 

polymorphism were selected as favourable genotypes among late born CF patients. 

Additionally, the genotype distribution at CD14 promoter polymorphism between P. 

aeruginosa early colonised and late colonised unrelated CF patients was also 

significantly different in which heterozygotes were overrepresented among late-

colonised CF patients. This finding confirmed the role of CD14 promoter 

polymorphism in determining the age dependent susceptibility to P. aeruginosa 

infection among CF patients. However, CD14 promoter polymorphism and CD14 3’ 

UTR polymorphism were in tight linkage. Thus, analysis of CD14 diplotype for the age 

dependent risk to acquire P. aeruginosa among CF twin and siblings revealed that the 

combination of CD14 polymorphisms determines the susceptibility to P. aeruginosa. 

Moreover, the early colonised CD14 diplotypes were associated with lower amount of 

soluble CD14 levels in serum. 

The CD14 promoter polymorphism was shown to alter the binding site for Sp 

transcription regulators and thus regulate the level of CD14 transcription, while nothing 

was known about the CD14 3’ UTR polymorphism. In this study, two possibilities of 



107 

how the CD14 3’ UTR polymorphism may regulate sCD14 levels were proposed. As 

CD14 3’ UTR polymorphism was located with in the mRNA cleavage and 

polyadenylation site, the first possibility was that the CD14 3’ UTR polymorphism 

alters the binding efficiency of CD14 RNA to the proteins involved in mRNA 

processing. Secondly, the 3’ UTR polymorphism was located with in a microRNA 

binding site and thus the CD14 3’ UTR polymorphism may vary the microRNA 

mediated CD14 regulation. In an effort to validate the microRNA mediated regulation, 

artificial microRNA detection protocol was standardised. In conclusion, the 

combinatorial effect of both the CD14 3’ UTR polymorphism as well as the CD14 

promoter polymorphism determine the CF disease severity and age dependent risk to 

acquire P. aeruginosa colonisation among CF patients.  

 

4.8. CD95 is a potential modulator of CF disease severity 
 
As P. aeruginosa infection is shown to trigger apoptosis via CD95 signaling, this 

apoptosis receptor was evaluated as CF modulator in this study (chapter 3.6).  

Genotyping the CD95 SNPs showed a significant difference in genotype distribution 

between mildly and severely affected CF patient pairs, in which heteroygotes were 

overrepresented among severely affected pairs. Sequencing the complete coding region 

of CD95 did not reveal any sequence variants. The transmission disequilibrium test 

showed a significant transmission distortion of haplotype block encompassing the first 

and second introns of CD95. Further fine-mapping by haplotype analysis showed a 

strong association of intron 2 SNP with disease severity. Sequencing analysis of 

complete haplotype sequence within intron 2 confirmed previously reported 

polymorphisms.  

The CD95 intron 2 SNP genotypes were compared against the quantity of CD95 

mRNA, isolated from rectal suction biopsies of CF patients and assessed by affymetrix 

chip. The intron 2 SNP was strongly associated with CD95 mRNA in which, 

heterozygotes were expressing very low levels of CD95. On the other hand the CD95 

intron 2 SNP was not associated with the CD95 expression level on peripheral blood 

mononuclear cells from healthy volunteers as tested by real-time PCR and FACS 

analysis. Hence, it was concluded that the role of intron 2 SNP is specific to epithelial 

cells or modulates CD95 expression under CF context (pro-inflammatory phenotype). 

On the other hand, the CD95 polymorphisms were not associated with P. aeruginosa 
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early or late colonisation among CF patients implying that CD95 modulates CF disease 

severity but not early or late colonisation of P. aeruginosa among CF patients.   

Thus, to understand the functional role of non-coding variant with in CD95 

intron 2 in determining the CD95 expression level, the intron 2 sequence was assessed 

by in-silico examination. The intron 2 SNP was located within a 100bp conserved non-

coding sequence as revealed by AltaVista Genome Browser. This conserved non-coding 

sequence also found to be low-helical stability region indicating this sequence as a hot-

spot for transcription factor binding. Consistently, the 100bp sequence within intron 2 

of CD95 had composite sequence elements for several transcription factors including 

NF-kB and the intron 2 SNP altered the binding site for NF-kB family member c-Rel 

transcription factor. In conclusion, CD95 is CF disease severity modulator and is 

mediated by differential expression of CD95 due to intron 2 SNP, possibly regulated by 

altered interaction of NF-kB transcription factors. Further experiments such as 

electrophoretic mobility-shift assay or chromatin immunoprecipitation are necessary to 

validate the in-silico finding.  

In summary, this study illustrated several important points. Firstly it demonstrated that 

the non-coding, naturally occurring polymorphisms on innate immunity and non-

specific defense genes modulate the CF disease severity and susceptibility to P. 

aeruginosa infection. Secondly, the modulation via these genes is not exclusively due to 

P. aeruginosa infection but due to basic CF defect (pro-inflammatory phenotype). 

Finally, it indicated that relatively common genetic variation, with little or no over 

phenotypic effect on the general population, can have significant effect in the context of 

CF. 

 

4.9. Role of non-coding DNA in determining the susceptibility to infectious diseases 
 

Susceptibility to infection arises from complex interplay between environment and host 

genetic factors. In general, many genetic loci contribute to human disease susceptibility 

and most of the focus in the field has been on identifying variants within the coding 

sequence as causative variants. The implications of a coding variant may be readily 

apparent as a change in the amino acid directly affects the protein. By contrast, the role 

of non-coding variations has been largely neglected either by considering them as “Junk 

DNA” or due to difficulties in assaying the functional effect of these polymorphisms. In 

this regard, the findings from this study greatly emphasize the importance of variations 
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within the non-coding sequence in determining the susceptibility to infectious disease. 

All four major CF modulators, characterised in this study, harboured their causative 

variants within their non-coding region. The functional consequences of these non-

coding sequence variants were at different levels of gene regulation depending on their 

location, starting from the promoter variant to the 3’ UTR variant. The fine-tuning of 

expression levels of these genes can be envisaged to result from; firstly, alterations in 

the transcription factor binding sites. Secondly, alterations in DNA conformations 

which are required for efficient splicing. Thirdly, alterations in the binding sites for 

proteins required for efficient splicing and mRNA processing and finally, alterations of 

microRNA target sites mediating gene regulation. However, irrespective of their 

location, the non-coding variants regulate the level of mRNA and in turn the quantity of 

protein made. Hence, this knowledge points to a target for therapy as the manipulations 

of regulatory polymorphisms that affect expression levels is easier than correcting the 

effects of abnormal protein. In this context, the findings reported upon in this thesis 

have added significant input for a clearer understanding of the functional significance of 

non-coding variants in determining the susceptibility to infectious diseases.   
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6. Abbreviations 
 
bp    Base pair 

CF    cystic fibrosis 

CFTR    cystic fibrosis transmembrane conductance regulator 

CON-    concordant severe CF phenotype 

CON+    concordant mild CF phenotype 

DIS    discordant CF phenotype 

DZ    dizygous twins 

MeOH    Methanol 

MZ    monozygous twins 

ND    nondiscordant CF phenotype 

nt    Nucleotides 

PCR    polymerase chain reaction 

PIC    polymorphism information content 

RFLP    restriction fragement length polymorphism 

SNP    single nucleotide polymorphism 

TEMED   N,N,N’,N’-tetramethyl-ethylene-diamine 
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7. Appendices 
 
 
Material and Equipment 
 
Membranes, separation equipment, X-ray films 
 
Amicon Microcon YM-100  
centrifugal filter device     Millipore, Billerica, MA, USA 
Filters and blotting paper    Schleicher & Schuell, Einbeck , D 
Hybond N+ Nylon membrane    Amersham, Freiburg, D 
Kodak X-o-Mat AR X-ray films   Eastman Kodak, New Haven, CT, 
USA 
 
Technical equipment 
 
Autoclave      Tuttnauer, Breda, NL 
Centrifuges: 
- Beckman GS-15R     Beckman Coulter, Fullerton, CA, 
USA 
- Beckman Microfuge R    Beckman Coulter, Fullerton, CA, 
USA 
- Eppendorff Mini Spin Plus    Eppendorff, Hamburg, D 
Direct blotter:  
- GATC1500 direct blotting     GATC, Konstanz, D 
  electrophoresis sequencer  
Gel chambers for agarose electrophoresis  Forschungswerkstätten, Medical 

School, Hannover 
Gel documentation system: 
Gel-Print 2000   Biophotonics, Ann Arbor, MI, USA 
 
Mechanical pipettes   Eppendorff, Hamburg, D  

Gilson, Villier le Bel, F 
SLG, Gauting, D 

Multiwell pipettes     Biohit, Köln, D 
       Biozym, Hess. Oldendorf, D 
       Eppendorff, Hamburg, D 
Photometer      Hitachi, Tokyo, J 
Power supplies     BioRad, Hercules, CA, USA 
Scales       Sartorius, Göttingen, D 
Thermocycler: 
- Hybaid Omnigene     Hybaid, Teddington, UK 
- Landgraf      Landgraf, Laatzen, D 
Thermomixer      Eppendorff, Hamburg, D 
UV transilluminator     Bachofer, Reutlingen, D 
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Consumables 
 
Filter pipette tips (sterile)   Greiner Bio-One, Frickenhausen, D 
Latex exam gloves (powder free)  Kimberley Clark, Zaventem, B 
Multiwell plates    Greiner-Bio one 
Pipette tips     Eppendorff, Hamburg, D 

Sarstedt, Nümbrecht, D 
      SLG, Gauting, D 
Reaction vials     Eppendorff, Hamburg, D 

Sarstedt, Nümbrecht, D 
 
 
Chemicals 
 
General chemicals 
 
Acrylamide: 
- AccuGel 19:1    National Diagnostics Atlanta, Georgia, 
USA 
- Rotiphorese Gel 40    Roth, Karlsruhe, D 
Agarose ultra pure    Life Technologies, Paisley, Scotland, UK 
Ammoniumperoxodisulfate (APS)  Roth, Karlsruhe, D 
Boric acid, crystalline (H3BO3)  Merck, Darmstadt, D 
Bromphenolblue    Serva, Heidelberg, D 
Diethyl-pyrocarbonate (DEPC)  Sigma-Aldrich, Steinheim, D 
DTT      ICN, Aurora, OH, USA 
Chloroform p.a.    Roth, Karlsruhe, D 
Acetic acid, 96%    Merck, Darmstadt, D 
Ethanol     JT Baker, Deventer, NL 
Formamide     Sigma-Aldrich, Steinheim, D 
Glycerol     Fluka, Buch, CH 
Isoamylalcohol    Roth, Karlsruhe, D 
Isopropanol     Fluka, Buchs, CH 
KCl, p.a.     Merck, Darmstadt Germany 
MgCl2 x 6 H2O, p.a.    Merck, Darmstadt, D 
NaCl, p.a.     Merck, Darmstadt, D 
NaOH, p.a.     Merck, Darmstadt, D 
Na2-EDTA     Merck, Darmstadt, D 
Paraffin     Fluka, Buchs, CH 
Phenol: 
- Roti- Phenol pH 7.5 - 8   Roth, Karlsruhe 
- peq- Gold Trifast    peqLab, Erlangen 
TEMED     Serva, Heidelberg,D 
Tris ultra pure     ICN, Aurora, Ohio, USA 
Triton X 100     Serva, Heidelberg, D 
Urea, pearls, purest    Merck, Darmstadt, D  
Xylenecyanol     Sigma, St. Louis, MO, USA 
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Buffers and standard solutions for direct electrophoresis 
 
Developing buffer I: 
 
100 mM Tris-HCl  pH 7.5 
150 mM NaCl 
 
Developing buffer III: 
 
100 mM Tris-HCl  pH 9.5 
100 mM NaCl 
50  mM MgCl2 
 
 
Loading buffer I (agarose gels): 
0.05% (w/v) xylenecyanol, 0.05% (w/v) bromphenolblue, 40% (w/v) glycerol 
 
Loading buffer II (direct blotter): 
0.2% (w/v) xylenecyanol, 0.2% (w/v) bromphenolblue in formamide 
 
Lysis buffer: 
50 mM  Tris-HCl   pH7.5 
109.5 g/ l saccharose 
1% (w/v) Triton X- 100 
 
STE: 
50  mM  Tris-HCl  pH 7.5 
100 mM NaCl 
1   mM  Na2-EDTA 
 
10 x TBE: 
1.275 M Tris-HCl  pH 9.0 
0.42  M H3BO3 
0.024 M Na2-EDTA 
 
 
TE: 
10 mM Tris-HCl   pH 8.0 
1 mM Na2-EDTA 
 
 
Buffers for western blotting 
 
Separating gel buffer 
1.5M Tris-HCl   pH 8.8 
 
Stacking gel buffer 
1M Tris-HCl    pH 6.8 
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Separating gel (10%) 
Water     12.3ml 
Acrylamide (30%)   10.3ml 
1.5M Tris    7.7ml 
10% SDS    310µl 
TEMED    23 µl 
APS     310 µl 
 
Stacking gel  
Water     7.8ml 
Acrylamide (30%)    1.95ml 
Tris (pH 6.8)    1.45ml 
10% SDS     115 µl    
TEMED     11.5 µl 
APS     310 µl 
 
3X loading buffer 
SDS     6% 
Glycerin    30% 
Tris-HCl    150mM 
Bromophenol blue    0.02% 
 
Running buffer (10X; pH 8.1-8.4) 
Tris     30g 
Glycine    144g 
SDS     10g 
Water     Make up to 1 lit. 
 
 
Transfer buffer (1X) 
Tris     25mM 
Glycine    192mM 
MeOH     10% 
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Biochemicals, enzymes and enzyme-related buffers, photo-chemicals 
 
AMV reverse transcriptase   Stratagene, La Jolla CA, USA 
Anti- Biotin- AP, Fab- fragments  Roche Diagnostics, Mannheim, D 
Blocking reagent    Roche diagnostics Mannheim, D 
CDP Star     Tropix, Bedford, MA, USA 
Developing solution for X-ray films  Agfa-Gevaert, Mortsel, B 
Desoxynukleotides (dNTPs)   Roth, Karlsruhe, D 
Express fixative salt    Tetenal, Norderstedt, D 
Luminescence-enhancer Sapphire II  Tropix, Bedford, MA, USA 
Oligonucleotides    Invitrogen, Karlsruhe, D 

Life Technologies, Paisley, UK  
MWG-Biotech, Ebersberg, D 
Roth, Karlsruhe, D 

Restriction enzymes    New England Biolabs, Frankfurt/ Main, 
Germany 
RNAsin Ribonuclease inhibitor  Promega, Madison, WI, USA 
Taq polymerase    InviTek, Berlin, D 
 
dNTPs: 
 100 mg  dNTP (A, G, C or T)  
+ 100 µl   Tris-HCl [1M] pH 7.0 
+ 900 µl   H2OSTE → check pH, add more Tris-HCl if necessary 
ad 1.1 ml  H2OSTE 
2 µM of each dNTP was put together and filled up to 1 ml with H2OSTE, resulting in a 
dNTP pre-mix with a concentration of 2mM of each dNTP 
 
PCR 10x NH4

+ reaction buffer (Invitek): 
500 mM   Tris-HCl pH 8.8 
160 mM   (NH4)2SO4 
0.1 %   Tween® 20 
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Recipe for testing TLR2 polymorphisms: 
 
SNP 
NCBI ID 

Primer sequence (5’ to 3’) Restriction 
enzyme 

Informative and 
tested on Twin and 
sibs? 

Product size: 
Fragment size 
(bp) 

rs3804099 
 

TGCTGGACTTACCTTCCTTGA 
CAAACATTCCACGGAACTTG 

HpyCH IV Yes 172: 87+85 

rs5743705 
 

ACTTCATTCCTGGCAAGTGG 
GAATGAGAATGGCAGCATCA 

Hpy 188 III No 174: 89+85 

rs1898830 
 

GAATAGTAAAATAAATCCCCA 
TGTCTTGCCAGAGGTTCATC      

Bsl I No 147: 122+25 

 
 
Recipe for testing TLR5 polymorphisms: 
 
SNP 
NCBI ID 

Primer sequence (5’ to 3’) Restriction 
enzyme 

Informative and 
tested on Twin and 
sibs? 

Product size: 
Fragment size 
(bp) 

rs2072493 GGAACCAGCTCCTAGCTCCT 
AAACCCCAGAGAACGAGTCA 

MfeI No 189: 104+85 

rs5744174 
 

ACAGCCCAGAGACTGGTGTT 
GATAGCATCCTGGATATTGG 

BccI 
 

No 228: 193 + 35 
 

rs1861172 
 

AGATAAGAGGTGGCCCCAAA 
GCTGAAAAGGTAGGTTGGTGA 

Hpy CH4 111 Yes 196: 138 + 58 

 
 
Recipe for testing TLR9 polymorphisms: 
 
SNP 
NCBI ID 

Primer sequence (5’ to 3’) Restriction 
enzyme 

Informative and tested on 
Twin and sibs? 

Product size: 
Fragment size 
(bp) 

rs352140 TTGGCTGTGGATGTTGTTGT 
AAGCTGGACCTCTACCACGA 

Bst U I Yes 177: 135+42 

rs187084 
 

TGTACTGGATCCTGGGGATG 
GAGCTCCTTTGCCTGGTCTA 

Hpy188 III Yes 168: 126+42 

 
 
Recipe for testing Surfactant protein-D polymorphisms: 
 
SNP NCBI 
ID 

Primer sequence (5’ to 3’) Restriction 
enzyme 

Informative and 
tested on Twin 
and sibs? 

Product size: 
Fragment size 
(bp) 

rs721917 GAAGACCTACTCCCACAGAGCAA 
TTGGGAGGAAGAAACACGTC 

BsrD I 
 

Yes 248: 221+27 

rs1998374 CCATTTCCTGGATCACCACT   
TTTGGTCCAGGTTCTCCAAC   

Hpy188 III 
 

No 250: 186+64 
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Recipe for testing CXCR2 polymorphism: 
 
SNP 
NCBI ID 

Primer sequence (5’ to 3’) Restriction 
enzyme 

Informative and 
tested on Twin 
and sibs? 

Product size: 
Fragment size 
(bp) 

rs2230054 
 

GCTGTCGTCCTCATCTTCCCG 
AGTCCATGGCGAAACTTCTG 

BsrBI Yes 212: 191 + 21 

 
 
Recipe for testing PON polymorphisms: 
 

Repeat ID Primer sequence (5’ to 3’) Informative 

TR7V899 GCCTGGCTGACAGAGTAAGA 
CCTGTTGAAAACCTGTGCTT 

NO 

TR7V900 TGCAAATAAGATTAAAGTACCCTTTG 
CAGCTACTCAGGCAGGTGAA 

Yes 

TE7V901 AATTAGCCCAGTGTGGTGGT 
CCCTTCTTTCCTTTCTTTCG 

NO 

TE7V902 
 

CCAGCTTGCCAAACAATACA 
GGAGGCCTAAGCCAGAAGAT 

NO 

 
 
Recipe for testing TLR4 polymorphisms: 
 
SNP 
NCBI ID 

Primer sequence (5’ to 3’) Informative 
and tested on 
Twin and sibs? 

Restriction 
enzyme 

Product size: 
Fragment 
size (bp) 

rs5030718 
 

CATCTTCAATGGCTTGTCCA     
ACCTGGAGGGAGTTCAGACA   

No Taq I 249: 225+24 

rs5030713 
 

GAGAACTTCCCCATTGGACA      
TCATAGGGTTCAGGGACAGG     

No BstB I 223: 138+85 

rs1927914 
 

TGGGATTAAATGAACTGGCATT 
ACAAAATGGTCCCTCACAGC 

Yes SphI 202: 116+86 

rs11536891 GGGTGTGTTTCCATGTCTCA  
GCATAAGGGATAAGGGGAGA 

Yes Hha I 246: 43+203 

rs10759930 GGGTGCACTCACTCACCTCT 
CCTTGGACACCCATTACCAG 

Yes Dra I 255 : 165 + 90 

rs2149356 TGACTGGTAAATATCCATTTCAGAGA 
TTTCCACAAAACTCGCTCCT 

Yes Tsp509 I 163: 130+33 

rs1927911 TCCATATCATTGGGGAGACTG 
TGGGAATCCATGCACTCTAAA 

Yes BsaJ I 157: 87 + 70 

 
 
Oligonucleotides employed for sequencing the TLR4 gene 
 

Region Primer sequence (5’ to 3’) Fragment size 

Promoter and 
Exon 1 

GCAGCCCCAGCAAACTAAT 
AGTTCTGGGCAGAAGTGAGG 

611 bp 

Exon 2 TGTGTGTCATCCTTGTGCAG 
CTCCCAACTCCCCTCTCCTA 

499 bp 
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Recipe for testing CD14 polymorphisms 
 
SNP NCBI 
ID 

Primer sequence (5’ to 3’) Restriction 
enzyme 

Informative and 
tested on Twin 
and sibs? 

Product size: 
Fragment size 
(bp) 

rs2569190 
 

CCTCCCCACCTCTCTTCCT 
CACCCACCAGAGAAGGCTTA 
 

AVAII Yes 206 : 78 + 128 

rs2563298 
 

CCGCAGTTCTTTTCTTGAGG 
CGTCAGGACGTTGAGGACTT 

Sau96I Yes 217: 145+72bp 

 
 
Oligonucleotides employed for sequencing the complete CD14 gene 
 

Targets Category Sequence (5’ to 3’) Product size (bp) 
Terminal primer left ATTTGGTGGCAGGAGATCAA Target 1 
Terminal primer right ATCTGCTCAGAAAGCCCTGA 

2111 

 1 internal primer left AAGAGAGGTGGGGAGGTGAT 
 1 internal primer right TAGCTGAGCAGGAACCTGTG 

599 

 2 internal primer left GTATGCTGACACGGTCAAGG 
 2 internal primer right CTCGGAGCGCTAGGGTTTAC 

570 

 3 internal primer left GCAACACAGGAATGGAGACG 
 3 internal primer right TTCTTGAGGAGGACAGATAGGG 

700 

Primer left  AAAAGGAAGGGGGAATTTTTC   Target 2 
Primer right GCTTCCAGGCTTCACACTTG 

596 

 
 
 
Recipe for testing CD95 polymorphisms: 
 
SNP 
NCBI ID 

Primer sequence (5’ to 3’) Informative 
and tested on 
Twin and 
sibs? 

Restriction 
enzyme 

Product 
size: 
Fragment 
size (bp) 

rs1800682 ATATAGCTGGGGCTATGCGA 
CTCAGAGAAAGACTTGCGGG 

Yes ScrF I 216: 141+75 

rs1324551 ATCTGCAAGCTGGCATTTCT  
ACTCCCATCGTGATTTCTGC 

Yes Hph I 145: 100+45 

rs2147420 TTCTGTCTCTGATGAAATCTTGG 
ACAGCGCAATGAGATCCTAAA 

Yes HpyCH4 
IV 

180: 121+59 

rs2296603 AAATTTATCCATAACCACATCAAAT 
TTTTACAGTTTTTGGTTCCCCTA 

Yes Nla III 127: 95+32 

rs7901656 TCTGGGAATCTCCAGTTTGTTT 
GCTCTGCTCACCTATACAGCAA 

Yes HpyCH4 
IV 

199: 148+51 

rs1571019 
 

GATCTTTTTAGGCAGGAGTTCTGT 
ACCTGCTCAGCATAAAGCAT 

Yes Rsa I 164: 111+53 
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Oligonucleotides employed for sequencing the CD95 gene 
 

Region Primer sequence (5’ to 3’) Fragment size 

Exon 1 ACGAACCCTGACTCCTTCCT 
CCTATCCCCGGGACTAAGAC 

471 bp 

Exon 2 GTGGAGCCCTCACATTGTCT 
AACCACATCAAATAAGCGTGA 

485 bp 

Exon 3 GCTTTTGTCTTGGGAGACTTTC 
CAGTAGTTAGCTCGGCACCTG 

505 bp 

Exon 4 AAATGATTGCTGGCCATTTC 
GCTTTCCTTGACTGTCTGTGC 

566 bp 

Exon 5 and 6 ATTTTTCATCCAGCCATCCA 
GAATGAGGCAAATCTTTGTGAA 

542 bp 

Exon 7 GTTCCAAAATCAGCGGTCTC 
TGGGCTATGGAGCAAGACTC 

381 bp 

Exon 8 TTGCTTAGTTTCTGGCAAGG 
AATGCTTTATGCTGAGCAGGT 

387 bp 

 
 
Oligonucleotides employed for sequencing the CD95 intron 2, fragment 1 
 

 Primer sequence (5’ to 3’) Fragment size 

Target 1; 
terminal 
primers 

AAGCCCTGTCCTCCAGGTAT 
TGCCGTTATTTTGTTGCATT 

2422 bp 

Internal 
primers set 1 

CAAGTGACATGCACCTCTGAA 
GGGTTGGGTTATAGGGGAGA 

639 bp 

Internal 
primers set 2 

AGCACATGGGTTCATGTGATAG 
GCAAGTATAAACAGTGGGTTGG 
 

695 bp 

Internal 
primers set 3 

GGGTACACATGCACAATCTG 
TCACATCCATAATGCATCACC 
 

884 bp 

 
 
Oligonucleotides employed for sequencing the CD95 intron 2, frgment 2 
 

 Primer sequence (5’ to 3’) Fragment size 

Target 2; 
terminal 
primers 

GGTGATGCATTATGGATGTGA 
TGGAAGAAAAATGGGCTTTG 

2543 bp 

Internal 
primers set 1 

CCTCCCCACATCATCATATTC 
CAGGTTCTTTCGTTCCTCCA 

677 bp 

Internal 
primers set 2 

CCTGCCTTTTCCAACATTTC 
ACTTCACCTTCTTGGGATGC 

759 bp 

Internal 
primers set 3 

CATCTAGCTTTCCCCATAGCA 
TTGGAGAAAGGGGAGAGGTT 

745 bp 
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